
Electronic Journal of Qualitative Theory of Differential Equations
2024, No. 1, 1–14; https://doi.org/10.14232/ejqtde.2024.1.1 www.math.u-szeged.hu/ejqtde/

Existence of positive solutions of

elliptic equations with Hardy term

Huimin Yan and Junhui XieB

School of Mathematics and Statistics, Hubei Minzu University, Enshi Hubei, 445000, China

Received 22 March 2023, appeared 1 January 2024

Communicated by Gabriele Bonanno

Abstract. This paper is devoted to studying the existence of positive solutions of the
problem: {

−∆u = up

|x|a
+ h(x, u,∇u), inΩ,

u = 0, on ∂Ω,
(∗)

where Ω ⊂ R
N(N ≥ 3) is an open bounded smooth domain with boundary ∂Ω, and

1 < p <
N−a
N−2 , 0 < a < 2. Under suitable conditions of h(x, u,∇u), we get a priori

estimates for the positive solutions of problem (∗). By making use of these estimates
and topological degree theory, we further obtain some existence results for the positive
solutions of problem (∗) when 1 < p <

N−a
N−2 .
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1 Introduction

Let Ω ⊂ R
N(N ≥ 3) be an open bounded smooth domain with boundary ∂Ω. We consider

the following elliptic problem with Hardy term:

{
−∆u = up

|x|a
+ h(x, u,∇u), in Ω,

u = 0, on ∂Ω,
(1.1)

where 0 < a < 2, 1 < p <
N−a
N−2 . We mainly focus on the existence of solutions for problem

(1.1). It is worth pointing out that problem (1.1) occurs in various branches of mathematical

physics and biological models. Theoretically, when a = 0, there is no Hardy term in problem

(1.1). As is known to all, that the processing without a Hardy term is much simpler than the

processing with a Hardy term. When h(x, u,∇u) = h(x, u), which means, no gradient terms

appear in problem (1.1), in this case, problem (1.1) is reduced to the following problem:
{
−∆u = up + h(x, u), in Ω,

u = 0, on ∂Ω,
(1.2)
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problem of this type was raised as an important issue in the survey paper [14]. For the ex-

istence of solutions to problem of this type, it was studied by many authors with different

methods and techniques: upper and lower solution method, mountain pass theorem, a priori

estimates, fixed points theorem and so on. We recall the papers [2, 7, 13, 15, 24] and the refer-

ences therein. In [7], Figueiredo, Gossez and Ubilla concerned with the existence of solutions

based on weak upper and lower solution method. Besides, Ambrosetti and Rabinowitz pro-

posed the mountain pass theorem in [2], and proved the existence of nontrivial solutions. In

[13], the author concerned the existence and regularity of solutions based on a priori estimates

and blow up method by imposing suitable conditions on the coefficients and h(x, u). It is

worth mentioning that when h(x, u) = 0, problem (1.2) becomes:
{
−∆u = up, in Ω,

u = 0, on ∂Ω.
(1.3)

There are a lot of work related to this subject. For the existence of solutions, we refer to the

pioneering work of [5, 9, 10, 22]. It is well known that the Sobolev exponent 2∗ = 2N
N−2 serves

as the dividing number for existence and non-existence of solutions to (1.3); please see [5] and

[9]. It is pointed out that the proof in [5] is based on Pohozaev identity and moving planes

method. While in [10], the proof is based on a scaling argument reminiscent to that used in

the theory of Minimal Surfaces to get a priori bounds.

As for the problem (1.1) containing gradients term, variational methods can not directly

be applied for the problem generally. Thus, some other methods are proposed, we refer to

[1, 8, 19, 25] and the references therein. Specifically, for the following problem:
{
−∆u = h(x, u,∇u), in Ω,

u = 0, on ∂Ω.
(1.4)

The authors in [8] obtained the existence of positive solution through an iterative method

based on mountain-pass techniques. In [1], the existence of solutions are obtained for this

problem with convection term by using the Galerkin methods. It should be noted in partic-

ular that, the method Gidas and Spruck proposed in [10] is also applicable to the case with

gradients term.

Recently, great attention has been focused on the study of the existence and non-existence

solutions of the Hardy–Hénon equation:

−∆u = |x|aup, in Ω. (1.5)

Traditionally, the equation (1.5) is called Hardy (Hénon, or Lane–Emden) equation for a <

0(a > 0, a = 0). It is shown in [11] that for a < −2, 1 < p <
N+a
N−2 , equation (1.5) has no positive

solutions in R
N . Besides, in [21], Reichel and Zou proved that equation (1.5) do not admit

any classical solutions in R
N if 1 < p <

N+2+2a
N−2 and a > −2. The non-existence results of

Reichel and Zou was revisited by Phan and Souplet in [18], and a new proof of non-existence

of bounded solutions in the case N = 3 is provided by using the technique introduced in [23].

For the Dirichlet boundary value problem of (1.5), Ni obtained the existence of multiplicity

bounded positive solutions by using the upper and lower solution and approximation meth-

ods in [16]. Particularly, in [27], Zhu studied the following Hénon equation with perturbation

terms in the unit ball B of R
N(N > 4):



−∆u = |x|α|u|p−2u + h(x), in B,

u = 0, on ∂B.
(1.6)
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By applying the perturbation method in the unit sphere, the author obtained an infinite num-

ber of mutually different solutions to problem (1.6). The difficulty with this problem lies in

the existence of the Hardy term, so we need to overcome the difficulties brought about by the

Hardy term. It is worth pointing out that, in [27], the technique for handling |x|a is to impose

special symmetry restrictions on u; the authors in [18] deal with the Hardy term |x|a by a

change of variables and a doubling-rescaling argument. These methods provide us with good

ideas for dealing with Hardy term.

In this paper, we focus on the existence of positive solutions for the problem (1.1) with

Hardy term. Through the well-known Liouville-type theorem (see [10, 18]), a change of vari-

able and doubling-rescaling argument (see [20]). We firstly get the decay estimates of the

solutions, then we derive a priori bounds for positive solutions of problem (1.1). Motivated

by the works above, we can show the existence of solutions combined with the topological

degree theory under some assumptions.

Firstly, we propose the definition of weak solution.

Definition 1.1. We say that u ∈ H1
0(Ω) is a weak solution of problem (1.1) if

∫

Ω

∇u · ∇ϕdx =
∫

Ω

up

|x|a
ϕdx +

∫

Ω

h(x, u,∇u)ϕdx, ∀ϕ ∈ C∞
0 (Ω).

Throughout this paper, we always denote by ∥.∥q the norm of Lq(Ω) for any q ≥ 1, which

means ∥u∥q = ∥u∥Lq(Ω) = (
∫

Ω
|u|qdx)

1
q , 1 ≤ q < ∞, and ∥u∥∞ = ∥u∥L∞(Ω) = sup

Ω
|u|, q = ∞.

Next, we introduce the assumptions required for this paper, to this end, we first introduce

the following eigenvalue problem:

{
−∆ϕ = λϕ, in Ω,

ϕ = 0, on ∂Ω,
(1.7)

we denote by λ1(Ω) the first eigenvalue of problem (1.1). Then we give the following hy-

potheses on h(x, u,∇u):

(H1) For m > 0, h(x, m, ζ) is Hölder continuous and h(x, m, ζ) ≥ 0.

(H2) If 1 < p <
N−a
N−2 , we assume that there exists a positive constant λ0 such that

limm→∞
h(x,m,ζ)

mp = 0, limm→0
h(x,m,ζ)

m = λ0, and |h(x, m, ζ)| ≤ C(1 + mp + ζb) for m > 0,

1 < b <
2p

p+1 < p <
N−a
N−2 , appropriate constant C > 0.

Remark 1.2. If 1 < p <
N−a
N−2 , then h(x, u,∇u) = λ0u + |u|b−1u|∇u|2

1+|∇u|2
satisfies (H1) and (H2).

Now, we are turning to state the main results.

Theorem 1.3. Let N ≥ 3, 0 < a < 2 and 1 < p <
N+2
N−2 . There exists a constant C̄ = C̄(N, p, a) > 0

such that the following hold:

(1) Any nonnegative solution of problem (1.1) in Ω = {x ∈ R
N ; 0 < |x| < ρ}(ρ > 0) satisfies

that:

|u(x)| ≤ C̄|x|−
2−a
p−1 and |∇u(x)| ≤ C̄|x|−

p+1−a
p−1 , 0 < |x| <

ρ

2
.

(2) Any nonnegative solution of problem (1.1) in Ω = {x ∈ R
N ; |x| > ρ} (ρ > 0) satisfies that:

|u(x)| ≤ C̄|x|−
2−a
p−1 and |∇u(x)| ≤ C̄|x|−

p+1−a
p−1 , |x| > 2ρ.
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The proof of Theorem 1.3 is based on a change of variable and a generalization of a

doubling-rescaling arguments; see [18].

Theorem 1.4. Assume that 1 < p <
N−a
N−2 , 0 < a < 2, and that (H1) and (H2) hold with λ0 <

λ1(Ω). Then there exist two universal positive constants C̃ and Ĉ such that for any positive solution

u ∈ C2(Ω\{0}) ∩ C(Ω) of problem (1.1), there holds C̃ ≤ ∥u∥C(Ω) ≤ Ĉ.

The proof of Theorem 1.4 is based on the well-known blow up technique introduced by

Gidas and Spruck (see [10]) and adopted by Phan (see [18]).

Therefore, according to Theorem 1.4 and the Leray–Schauder degree theory, we can get

the existence of positive solutions to problem (1.1).

Theorem 1.5. Assume that 1 < p <
N−a
N−2 , 0 < a < 2, up

|x|a
+ h(x, u,∇u) ∈ Lk, where k <

min{N
a ,

N(p−1)
(p+1−a)b

}, (H1) and (H2) hold, then problem (1.1) has at least one solution.

The rest of paper is organized as follows. In Section 2, we give some preliminaries. In

Section 3, we concern the decay estimates of solutions. Section 4 is devoted to the proof of

Theorem 1.4, in which we establish a priori estimates to problem (1.1) by blow up technique.

In Section 5, we prove the existence of solutions for problem (1.1) by topology degree theory

and give the proof of Theorem 1.5.

2 Preliminaries

In this section, we will give some lemmas which will be used to prove the main results.

Lemma 2.1. Let u(x) be a nonnegative C2 solution of the following equation:

−∆u = up, x ∈ R
N ,

where N > 2, 1 < p <
N+2
N−2 . Then u(x) ≡ 0.

Lemma 2.2. Let R
N
+ be the half space {x = (x1, x2, . . . , xN) ∈ R

N : xN > 0}. Suppose that u(x) is

a nonnegative C2(RN
+)
⋂

C0({x ∈ R
N : xN ≥ 0}) solution of the following problem:

{
−∆u = up, x ∈ R

N
+ ,

u = 0, xN = 0,

where 1 < p <
N+2
N−2 . Then u(x) ≡ 0.

Remark 2.3. Lemma 2.1 and Lemma 2.2 follow directly from [10, Theorem 1.2, Theorem 1.3].

Lemma 2.4 ([18]). Let N ≥ 2, a > −2, p > 1. If p < min{ps, ps(a)} or p ≤ N+a
N−2 , ps = N+2

N−2 ,

ps(a) = N+2+2a
N−2 . Then the following equation:

−∆u = |x|aup

has no positive solution in R
N .

Lemma 2.5 (Hardy’s inequality [4]). Assume N ≥ 3 and r > 0. Suppose that u ∈ H1(B(0, r)).

Then u
|x|

∈ L2(B(0, r)), with the estimate

∫

B(0,r)

u2

|x|2
dx ≤

∫

B(0,r)

(
|Du|2 +

u2

r2

)
dx.
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Lemma 2.6 ([20]). Let (X, d) be a complete metric space, ∅ ̸= D ⊂ Σ ⊂ X with Σ closed. Further-

more, assume that M : D → (0, ∞) is bounded on compact subsets of D, and fix a real K > 0. If

y ∈ D is such that

M(y)dist(y, Γ) > 2k, Γ = Σ\D,

then there exists x ∈ D such that

M(x)dist(x, Γ) > 2k, M(x) ≥ M(y),

and

M(z) ≤ 2M(x) for all z ∈ D ∩ B
(
x, kM−1(x)

)
.

Lemma 2.7 (Leray–Schauder [3]). Assume that X is a real Banach space, Ω is a bounded, open

subset of X and Φ : [a, b]× Ω → X is given by Φ(λ, u) = u − T(λ, u) with T a compact map. Define

Tλ(u) = T(λ, u), u ∈ X,

Φλ = I − Tλ, λ ∈ [a, b],

Σ = {(λ, u) ∈ [a, b]× Ω : Φ(λ, u) = 0},

and note Σλ = {u ∈ Ω : (λ, u) ∈ Σ}. We also suppose that,

Φ(λ, u) = u − T(λ, u) ̸= 0, ∀(λ, u) ∈ [a, b]× ∂Ω.

If deg(Φa, Ω, 0) ̸= 0, then we have,

(1) Φ(λ, u) = u − T(λ, u) = 0 has a solution u ∈ X in Ω for every a ≤ λ ≤ b.

(2) Furthermore, there exists a compact connected set C ⊂ Σ such that

C ∩ ({a} × Σa) ̸= ∅, C ∩ ({b} × Σb) ̸= ∅.

3 Decay estimates

In this section, we concern the decay estimates of solutions to the problem (1.1). We need the

following lemma, which is an extensive of [20, Theorem 6.1] and [18, Lemma 2.1].

Lemma 3.1. Let N ≥ 3, 1 < p <
N+2
N−2 , α ∈ (0, 1]. Assume in addition that c(x) ∈ Cα(B1) satisfies

that,

∥c(x)∥Cα(B1)
≤ C1 and c(x) ≥ C2, x ∈ B1, (3.1)

for some C1, C2 > 0, where B1 = {x ∈ R
N ; |x| < 1}. Then there exists a constant C, depending only

on α, C1, C2, p, N such that, for any nonnegative classical solution u of

−∆u =
up

c(x)
+ h(x, u,∇u), x ∈ B1, (3.2)

u satisfies that,

|u(x)|
p−1

2 + |∇u(x)|
p−1
p+1 ≤ C

(
1 + dist−1(x, ∂B1)

)
, x ∈ B1.
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Proof. Arguing by contradiction. Denote Nk = |uk|
p−1

2 + |∇uk|
p−1
p+1 . We suppose that there

exist a sequence of ck, uk, yk verifying that (3.1), (3.2), and Nk(yk) > 2k
(
1 + dist−1(yk, ∂B1)

)
>

2k dist−1(yk, ∂B1). By Lemma 2.6, there exists xk such that

Nk(xk) ≥ Nk(yk), Nk(xk) > 2k dist−1(xk, ∂B1).

and

Nk(z) ≤ 2Nk(xk), for all z satisfying |z − xk| ≤ kN−1
k (xk).

Consequently, we have that,

λk = N−1
k (xk) → 0, k → +∞, (3.3)

due to Nk(xk) ≥ Nk(yk) > 2k. Next we let

vk(y) = λ
2

p−1

k uk(xk + λky), c̃k(y) = ck(xk + λky),

noting that |vk(0)|
p−1

2 + |∇vk(0)|
p−1
p+1 = 1,

|vk(y)|
p−1

2 + |∇vk(y)|
p−1
p+1 ≤ 2, |y| ≤ k, (3.4)

and

−∆vk = −λ
2p

p−1

k ∆uk(xk + λky)

= λ
2p

p−1

k

(
u

p
k (xk + λky)

ck(xk + λky)
+ h
(
xk + λky, uk(xk + λky),∇uk(xk + λky)

)
)

=
v

p
k

ck(xk + λky)
+ λ

2p
p−1

k h(xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk)

=
v

p
k

c̃k(y)
+ λ

2p
p−1

k h(xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk).

(3.5)

So we see that vk satisfies the following equation:

−∆vk =
v

p
k

c̃k(y)
+ λ

2p
p−1

k h
(

xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk

)
(3.6)

where |y| ≤ k. According to the condition (H2) on h(x, u,∇u), it implies that,

λ
2p

p−1

k h(xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk) ≤ C, |y| ≤ k,

for k large enough, we deduce that there exist a subsequence of vk converges in C1
loc(R

N) to a

function v(y) > 0. Fix y ∈ R
N and denote µk = λ

− 2
p−1

k vk(y), ξk = v
− p+1

2

k ∇vk(y), we may write

that,

λ
2p

p−1

k h(xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk) = v
p
k µ

−p
k h(xk + λky, µk, µ

p+1
2

k ξk).

Obviously, µk → ∞ as k → +∞ and ξk is bounded. Besides, if {xk} is bounded, condition

(H2) implies that,

v
p
k (y)µ

−p
k h(xk + λky, µk, µ

p+1
2

k ξk) → 0, k → +∞. (3.7)
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On the other hand, due to (3.1), we have C2 ≤ c̃k ≤ C1, and for each R > 0 and k > k0(R)

large enough, the following holds:

|c̃k(y)− c̃k(z)| ≤ C1|λk(y − z)|α ≤ C1|y − z|α, |y|, |z| ≤ R. (3.8)

Therefore, by the Arzelà–Ascoli theorem; see [26], there exists c̃ in C(RN), with c̃ ≥ C2 such

that, after extracting a subsequence, c̃k → c̃ in Cloc(R
N). Now for each R > 0 and 1 < q < ∞,

by (3.4), (3.6) and interior elliptic Lq estimates, the sequence vk is uniformly bounded in

W2,q(BR). Using standard embeddings and interior elliptic Schauder estimates, after extract-

ing a subsequence, we may assume that vk → v in C2
loc(R

N). Moreover, (3.3) and (3.8) imply

that |c̃k(y) − c̃k(z)| → 0 as k → +∞, so that the function c̃ is actually a constant C > 0.

Therefore, we have that,
v

p
k

c̃k(y)
→ Cvp, k → +∞. (3.9)

According to (3.7) and (3.9), it follows that v > 0 is a classical solution of

−∆v = Cvp, y ∈ R
N

and satisfying |v(0)|
p−1

2 + |∇v(0)|
p−1
p+1 = 1, this contradicts the Liouville-type theorem.

By Lemma 3.1, we are ready to prove the decay estimates of solutions to problem (1.1) as

follows.

Proof of Theorem 1.3. Assume either Ω = {x ∈ R
N ; 0 < |x| < ρ} and 0 < |x0| <

ρ
2 , or Ω =

{x ∈ R
N ; |x| > ρ} and |x0| > 2ρ. We denote R0 = 1

2 |x0|, and observe that, for all y ∈ B1, |x0|
2 <

|x0 + R0y| < 3|x0|
2 , so that x0 + R0y ∈ Ω in either case. Let us thus define that,

U(y) = R
2−a
p−1

0 u(x0 + R0y).

Therefore,

−∆U(y) = −R
2p−a
p−1

0 ∆u(x0 + R0y)

= R
2p−a
p−1

0

(
up(x0 + R0y)

|x0 + R0y|a
+ h
(

x0 + R0y, u(x0 + R0y),∇u(x0 + R0y)
))

=
Up(y)

| x0
R0

+ y|a
+ R

2p−a
p−1

0 h
(

x0 + R0y, R
− 2−a

p−1

0 U(y), R
− p+1−a

p−1

0 ∇U(y)
)

=
Up(y)

c(y)
+ R

2p−a
p−1

0 h
(

x0 + R0y, R
− 2−a

p−1

0 U(y), R
− p+1−a

p−1

0 ∇U(y)
)

,

(3.10)

where c(y) = | x0
R0

+ y|a. Then U is a solution of

−∆U(y) =
Up(y)

c(y)
+ R

2p−a
p−1

0 h
(

x0 + R0y, R
− 2−a

p−1

0 U(y), R
− p+1−a

p−1

0 ∇U(y)
)

, y ∈ B1.

Notice that |y + x0
R0
| ∈ [1, 3] for all y ∈ B1 and ∥c(y)∥C1(B1)

≤ C(a) according to Lemma 3.1,

where C(a) is a constant depending on a. Applying Lemma 3.1 again, we have that |U(0)|+

|∇U(0)| ≤ C. Hence,

|u(x0)| ≤ C̄R
− 2−a

p−1

0 , |∇u(x0)| ≤ C̄R
− p+1−a

p−1

0 ,

which yields the desired conclusion.
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4 A priori estimates

We will show a priori bounds for the positive solutions to problem (1.1) in this section. Owing

to the well-known Liouville-type results (Lemma 2.1, Lemma 2.2 and Lemma 2.4), we can get

a priori estimates. Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. To get the lower bound, we argue by contradiction. Assume that

∥u∥C(Ω) < C̃ holds for any C̃ > 0. Therefore, there exists a sequence solution {uk} of problem

(1.1) such that

Mk = sup
x∈Ω

uk(x) → 0, as k → +∞.

Multiplying the first equation of problem (1.1) by uk, and integrating the result over Ω, by

Hölder inequality, Young’s inequality with ε and Hardy’s inequality, then we have that

∫

Ω

|∇uk|
2dx =

∫

Ω

u
p+1
k

|x|a
+ ukh(x, uk,∇uk)dx

=
∫

Ω

ua
k

|x|a
· u

p+1−a
k dx +

∫

Ω

ukh(x, uk,∇uk)dx

≤
( ∫

Ω

u2
k

|x|2
dx
) a

2
( ∫

Ω

u
2(p+1−a)

2−a

k dx
) 2−a

2
+ C

∫

Ω

uk(1 + u
p
k + |∇uk|

b)dx

≤ ε
∫

Ω

u2
k

|x|2
dx + C

( ∫

Ω

u
2(p+1−a)

2−a

k dx +
∫

Ω

uk + u
p+1
k + uk|∇uk|

b
)

dx

≤ C

[
ε
∫

Ω

(|∇uk|
2 + u2

k)dx +
∫

Ω

u
2(p+1−a)

2−a

k dx +
∫

Ω

ukdx

+
∫

Ω

u
p+1
k dx +

( ∫

Ω

|∇uk|
2dx
) b

2
( ∫

Ω

u
2

2−b

k dx
) 2−b

2

]

≤ C

[
ε
∫

Ω

|∇uk|
2dx + ε

∫

Ω

u2
kdx +

∫

Ω

u
2(p+1−a)

2−a

k dx +
∫

Ω

ukdx

+
∫

Ω

u
p+1
k dx + ε

∫

Ω

|∇uk|
2dx +

∫

Ω

u
2

2−b

k dx

]
.

(4.1)

Hence,

(1 − εC)
∫

Ω

|∇uk|
2dx

≤ C

(
ε
∫

Ω

|uk|
2dx +

∫

Ω

u
2(p+1−a)

2−a

k dx +
∫

Ω

ukdx +
∫

Ω

u
p+1
k dx +

∫

Ω

u
2

2−b

k dx

)
.

(4.2)

Let ε → 0, then we have that

∥∇uk∥
2
2 ≤ C

(
∥uk∥

2(p+1−a)
2−a

2(p+1−a)
2−a

+ ∥uk∥1 + ∥uk∥
p+1
p+1 + ∥uk∥

2
2−b

2
2−b

)

≤ C∥uk∥C(Ω)

= CMk → 0, as k → +∞.

(4.3)
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Further, let uk(x) = MkUk(x), obviously, Uk(x) satisfies that,





−∆Uk =
M

p−1
k U

p
k

|x|a
+ M−1

k h(x, MkUk, Mk∇Uk), in Ω,

Uk > 0, in Ω,

Uk = 0, on ∂Ω.

(4.4)

Owing to

∫

Ω

|∇Uk|
2dx =

∫

Ω

(
M

p−1
k

U
p+1
k

|x|a
+ Uk

h(x, MkUk, Mk∇Uk)

Mk

)
dx

=
∫

Ω

M
p−1
k

Ua
k

|x|a
U

p+1−a
k dx +

∫

Ω

Uk
h(x, MkUk, Mk∇Uk)

Mk
dx

≤ M
p−1
k

( ∫

Ω

U2
k

|x|2
dx
) a

2
( ∫

Ω

U
2(p+1−a)

2−a

k dx
) 2−a

2
+
∫

Ω

U2
k

h(x, MkUk, Mk∇Uk)

MkUk
dx

≤
(

M
p−1

a

k

∫

Ω

U2
k

|x|2
dx
) a

2
(

M
p−1
2−a

k

∫

Ω

U
2(p+1−a)

2−a

k dx
) 2−a

2
+
∫

Ω

U2
k

h(x, MkUk, Mk∇Uk)

MkUk
dx

≤
a

2
CM

p−1
a

k

∫

Ω

(U2
k + |∇Uk|

2)dx +
2 − a

2
M

p−1
2−a

k

∫

Ω

U
2(p+1−a)

2−a

k dx

+
∫

Ω

U2
k

h(x, MkUk, Mk∇Uk)

MkUk
dx. (4.5)

By (H2) and the standard elliptic estimates; see [12], we can easily see that, the subsequence

in Uk converges to a positive function v in C2(Ω). Moreover, v satisfies

{
−∆v = λ0v, in Ω,

v = 0, on ∂Ω.
(4.6)

On the other hand, problem (4.6) has no positive solution due to λ0 < λ1(Ω). This reaches a

contradiction. Consequently, there exists a universal constant C̃ > 0 such that for any positive

solution u of problem (1.1), we have that,

∥u∥C(Ω) ≥ C̃. (4.7)

To get the upper bound, we also proceed by contradiction. Assume that ∥u∥C(Ω) > Ĉ

holds. Therefore, there exists a sequence of solutions uk and a sequence of points Pk ∈ Ω such

that

Mk = sup
x∈Ω

uk(x) = uk(Pk) → ∞, as k → +∞.

We may assume that Pk → P ∈ Ω as k → +∞, and we divide the proof into the following two

cases:

Case 1. P ∈ Ω\{0} or P ∈ ∂Ω. In this case, we rescale the solution as the following:

Uk(y) = λ
2

p−1

k uk(Pk + λky), λk = M
− p−1

2

k .
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Therefore, we deduce that,

−∆Uk(y) = −λ
2p

p−1

k ∆uk(Pk + λky)

= λ
2p

p−1

k

(
u

p
k (Pk + λky)

|Pk + λky|a
+ h
(

Pk + λky, uk(Pk + λky),∇uk(Pk + λky)
)
)

=
U

p
k (y)

|Pk + λky|a
+ λ

2p
p−1

k h
(

Pk + λky, λ
− 2

p−1

k Uk(y), λ
− p+1

p−1

k ∇Uk(y)
)
.

(4.8)

Then Uk satisfies that,




−∆Uk =
U

p
k

|Pk+λky|a
+ λ

2p
p−1

k h
(

Pk + λky, λ
− 2

p−1

k Uk, λ
− p+1

p−1

k ∇Uk

)
, in Ωk,

Uk > 0, in Ωk,

Uk = 0, on ∂Ωk,

(4.9)

where Ωk = λ−1
k (Ω − {Pk}). Notice that λk = M

− p−1
2

k , we can deduce that,
∣∣∣∣∣

U
p
k

|Pk + λky|a
+ λ

2p
p−1

k h(Pk + λky, λ
− 2

p−1

k Uk, λ
− p+1

p−1

k ∇Uk)

∣∣∣∣∣

=

∣∣∣∣∣
U

p
k

|Pk + λky|a
+ M

−p
k h(Pk + λky, MkUk, M

p+1
2

k ∇Uk)

∣∣∣∣∣

≤

∣∣∣∣∣
U

p
k

|Pk + λky|a
+ C(M

−p
k + U

p
k + M

(p+1)b
2 −p

k |∇Uk|
b)

∣∣∣∣∣

≤ C,

(4.10)

and so we find that Uk is a solution of the equation:

−∆Uk =
U

p
k

|Pk + λky|a
+ λ

2p
p−1

k h
(

Pk + λky, λ
− 2

p−1

k Uk, λ
− p+1

p−1

k ∇Uk

)

in a rescaled domain Ωk. Since Uk(0) = 1, 0 < Uk ≤ 1, by elliptic estimates and standard

embedding similar as that in [10], up to a subsequence, without loss of generality, still denoted

by Uk, we can deduce that {Uk} is convergent in Cloc(R
N). Hence, by the Arzelà–Ascoli

theorem and standard diagonal argument, up to a subsequence, there exists a subsequence of

{Uk} and function v ∈ C(Ω), such that Uk → v uniformly on compact sets of Ω. In addition,

v satisfies the equation −∆v = lvp, where 1 < p <
N−a
N−2 , for some l > 0 either in the whole

space R
N , or in a half-space with 0 boundary conditions. Clearly, this contradicts with the

Lemma 2.1 and Lemma 2.2.

Case 2. P = 0. In this case, we rescale the solution according to Uk(y) = λ
2−a
p−1

k uk(Pk + λky),

λk = M
− p−1

2−a

k . By a simple calculation, we infer that,

−∆Uk(y) = −λ
2p−a
p−1

k ∆uk(Pk + λky)

= λ
2p−a
p−1

k

(
u

p
k (Pk + λky)

|Pk + λky|a
+ h
(

Pk + λky, uk(Pk + λky),∇uk(Pk + λky)
)
)

=
U

p
k (y)

| Pk
λk

+ y|a
+ λ

2p−a
p−1

k h
(

Pk + λky, λ
− 2−a

p−1

k Uk(y), λ
− p+1−a

p−1

k ∇Uk(y)
)
,

(4.11)
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Then Uk satisfies that





−∆Uk =
U

p
k

|
Pk
λk

+y|a
+ λ

2p−a
p−1

k h
(

Pk + λky, λ
− 2−a

p−1

k Uk, λ
− p+1−a

p−1

k ∇Uk

)
, in Ωk,

Uk > 0, in Ωk,

Uk = 0, on ∂Ωk,

(4.12)

where Ωk = λ−1
k (Ω − {Pk}). Due to λk = M

− p−1
2−a

k , we can deduce that

∣∣∣∣∣
U

p
k

| Pk
λk

+ y|a
+ λ

2p−a
p−1

k h(Pk + λky, λ
− 2−a

p−1

k Uk, λ
− p+1−a

p−1

k ∇Uk)

∣∣∣∣∣

=

∣∣∣∣∣
U

p
k

| Pk
λk

+ y|a
+ M

− 2p−a
2−a

k h(Pk + λky, MkUk, M
p+1−a

2−a

k ∇Uk)

∣∣∣∣∣

≤

∣∣∣∣∣
U

p
k

| Pk
λk

+ y|a
+ C(M

− 2p−a
2−a

k + M
p− 2p−a

2−a

k U
p
k + M

(p+1−a)b−(2p−a)
2−a

k |∇Uk|
b)

∣∣∣∣∣

≤ C,

(4.13)

and thus we find that Uk is a solution of the following equation:

−∆Uk =
U

p
k

| Pk
λk

+ y|a
+ λ

2p−a
p−1

k h

(
Pk + λky, λ

− 2−a
p−1

k Uk, λ
− p+1−a

p−1

k ∇Uk

)

in a rescaled domain Ωk containing B(0, ρλ−1
k ) for some ρ > 0. Moreover, it follows from

the estimate in Theorem 1.3 that the sequence |Pk |
λk

= |Pk|u
p−1
2−a

k (Pk) is bounded. We may thus

assume that Pk
λk

→ x0 ∈ R
N as k → +∞. A similar limiting procedure as in Case 1 then

produces a positive solution v of

−∆v =
vp

|y + x0|a
, y ∈ R

N , (4.14)

where 0 < a < 2, then by elliptic regularity, we obtain that uk satisfy a local W2,q̂ bound for
N
2 < q̂ <

N
|a|

, so a local Hölder bound holds, and this is sufficient to pass the limit to obtain

a solution of problem (4.14). After a space shift, this gives a contradiction with Lemma 2.4.

Therefore, there exists a positive constant Ĉ such that

∥u∥C(Ω) ≤ Ĉ. (4.15)

(4.7) and (4.15) yield the desired conclusion of Theorem 1.4 and this completes the proof.

5 Existence results

This section devotes to proving some existence results to problem (1.1). For the convenience

of proving existence results, we consider the following problem with a parameter t ∈ [0, 1],

{
−∆u = up

|x|a
+ h(x, u,∇u) + t(|u|+ λ), in Ω,

u = 0, on ∂Ω.
(5.1)
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Fortunately, we have proved the boundedness of solutions firstly in Section 4, therefore, in

this section, we only need to use the Leray–Schauder topological degree theory (see [3, 6, 17])

to prove the existence of solutions.

Proof of Theorem 1.5. We always assume that h(x, u,∇u) satisfies (H1) and (H2). Let X =

C(Ω), we denote that,

f (x, u) =
up

|x|a
+ h(x, u,∇u).

Given u ∈ X and t > 0, let φt(u) = u be the unique solution of the problem (5.1). Then the

solution to problem (1.1) is equivalent to a fixed point of the operator φ0(u). Since f ∈ Lk(Ω)

for k < min{N
a ,

N(p−1)
(p+1−a)b

}, we have φt(u) ∈ W2,r(Ω) for r ∈ (N
2 , min{N

a ,
N(p−1)
(p+1−a)b

}). Therefore,

φt : X → X is compact. Observe that the right-hand sides in (5.1) are nonnegative for every

u ∈ X, hence, φt has no fixed point beyond the nonnegative cone K = {u′ ∈ X : u′
> 0} for

any t ≥ 0.

Let ∥u∥X = ε for ε > 0 small. Assume u = φ0(u), using Lp estimates, we have that,

∥u∥∞ ≤ C∥u∥2,r ≤ C∥ f ∥r ≤ C∥u∥
p
∞,

where ∥ · ∥2,r denotes the norm in W2,r(Ω). Furthermore, We can deduce that,

∥u∥∞ ≤ C∥u∥
p
∞ ≤ Cεp−1∥u∥∞.

This is a contradiction for ε sufficiently small due to the assumption p > 1. Hence u ̸= φ0(u)

and the homotopy invariance of the topological degree implies

deg(I − φ0, 0, Bε) = deg(I, 0, Bε) = 1,

where I denotes the identity and Bε = {u ∈ X : ∥u∥X < ε}.

Theorem 1.4 immediately implies φT(u) ̸= u for T large and u ∈ BR
⋂

K, φt(u) ̸= u for

t ∈ [0, T] and u ∈ (BR\BR)
⋂

K (where R > 0 is lage enough), hence we have that,

deg(I − φ0, 0, BR) = deg(I − φT, 0, BR) = 0.

Then we can obtain deg(I − φ0, 0, BR\Bε) = −1, hence, there exist u ∈ (BR\Bε)
⋂

K such that

φ0(u) = u. Finally, the maximum principle implies the positivity of u.
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1 Introduction

The aim of this paper is to study the following KGS system defined in Ω which is a bounded

domain in R2

iψt + κ∆ψ + iαb(x)ψ = ϕψχ(ω) ∈ Ω × (0,+∞)

ϕtt − ∆ϕ + ϕ + λ(x)ϕt = −Re∇ψχ(ω) ∈ Ω × (0,+∞)

ψ = ϕ = 0, on Γ × (0,+∞)

(1.1)

with locally distributed damping and where Γ is a smooth boundary and ω is an open subset

of Ω such that meas(ω) > 0 and satisfying the geometric control condition. Let α > 0 and

χ(ω) to represent the characteristic function, that is χ = 1 in ω and χ = 0 in Ω \ ω. We also

consider b, λ ∈ L∞(Ω) to be nonnegative functions such that

b(x) ≥ b0 > 0 a.e. in ω and λ(x) ≥ λ0 > 0 a.e. in ω,

in order for the nonlinearity ψ to exist where the damping terms

iαb(x)ψ, λ(x)ϕt

BCorresponding author. Email: mpoulou@uniwa.gr



2 M. Poulou, M. Filippakis and J. Zanchetta

are effective and reciprocally. If the damping is effective in the whole domain, i.e. b(x) ≥ b0 >

0 a.e. in Ω and λ(x) ≥ λ0 > 0 a.e. in Ω we can consider χω ≡ 1 a.e. in Ω. The variable (com-

plex) ψ stands for the dimensionless low frequency electron field, whereas (real) ϕ denotes

the dimensionless low frequency density. This system describes the nonlinear interaction be-

tween high frequency electron waves and low frequency ion plasma waves in a homogeneous

magnetic field, adapted to model the UHH (Upper Hybrid Heating) plasma heating scheme.

UHH is the dominant branch of the general Electron Cyclotron Resonance Heating (ECRH)

scheme, which, for tokamaks and stellarators, constitutes a basic method of plasma build-up

and heating. Moreover, ECRH is an attractive method to study transport mechanisms, since

it allows for a very localised power deposition, thus influencing temperature and current

profiles. The UHH scheme consists in injecting electromagnetic waves in the range 100 −

200GHz, from the high field side towards the core of the device. Within this frequency range,

the incident wave takes on the character of a longitudinal oscillation for the resonant electrons,

which become highly energetic. With respect to the physical mechanism involved in the

energy damping of the waves, UHH comprises of two stages:

1. Collisionless damping. The energy of the waves is transferred to the resonant electrons,

through collisionless mechanisms, e.g. Landau damping. Subsequently, the electrons

gain excessive kinetic energy, thus heated.

2. Collisional damping. The excessive electron energy is distributed over electrons and

non-resonant ions, through Coulomb collisions, producing bulk heating of the plasma

(equipartition).

Collisional damping is very crucial for the success of UHH. If collisions are infrequent, non-

thermal distributions will occur, which may result in a reduction in the power delivered to

the plasma. Therefore, it is important to determine the operational conditions for the device,

under which UHH becomes effective, namely the collisions manage to distribute the excessive

electron energy over the species at an exponential rate. The term Re∇ψ is a consequence of

the different low frequency coupling that was considered, i.e. the polarization drift instead of

the ponderomotive force. The system focuses on the vital role of collisions by considering the

non-homogeneous polarization drift for the low frequency coupling (see [12]).

By setting θ = ϕt + ϵϕ where ϵ is a real positive constant to be specified later, the system

(1.1) becomes

iψt + κ∆ψ + iαb(x)ψ = ϕψχ(ω), (1.2)

ϕt + ϵϕ = θ, (1.3)

θt + (λ(x)− ϵ)θ − ∆ϕ + (1 − ϵ(λ(x)− ϵ))ϕ = −Re∇ψχ(ω) (1.4)

satisfying the following initial conditions

ψ(x, 0) = ψ0(x), ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0(x). (1.5)

Therefore, one may set the energy equation of the problem by

E(t) :=
1

2

{

∥ψ∥2
L2(Ω) + κ∥∇ψ∥2

L2(Ω) +
∫

ω
ϕ|ψ|2 + ∥ϕ∥2

L2(Ω) + ∥∇ϕ∥2
L2(Ω) + ∥ϕt∥

2
L2(Ω)

}

. (1.6)
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Assumption 1.1. We denote by ω the intersection of Ω with a neighborhood of ∂Ω in R2 and we will

call it a neighborhood of the boundary of Ω. We assume that b, λ ∈ L∞(Ω) are nonnegative functions

such that

b(x) ≥ b0 > 0, a.e. in ω, λ(x) ≥ λ0 > 0, a.e. in ω.

In addition, if b(x) ≥ b0 > 0 a.e. in Ω then we can consider χω ≡ 1 in Ω, and if λ(x) ≥ λ0 >

0 a.e. in Ω, then we can consider χω ≡ 1 in Ω.

Definition 1.2 (Geometric control condition). Let ω geometrically control Ω, i.e there exists

T0 > 0, such that every geodesic of Ω travelling with speed 1 and issued at t = 0, which enters

the set ω in a time t < T0. So, the couple (ω, T0) satisfies the geometric control condition (GCC,

in short) if every geodesic of Ω, traveling with speed 1 and issued at t = 0 enters the open set

ω before the time T0.

Assumption 1.3. We assume that ω satisfies the geometric control condition. The standard example

is when ω is a neighbourhood of Γ(x0) where

Γ(x0) := {x ∈ Γ; (x − x0) · ν(x) > 0}

and ν(x) is the unit outward normal at x ∈ Γ.

As a consequence of the previous assumption it follows that there exists a couple (ω, T0), with

T0 > 0, such that the following observability inequalities occur:

∥ψ0∥
2
L2(Ω) ≤

∫ T

0

∫

ω
|ψ(x, t)|2dxdt (1.7)

for the following problem















iψt + ∆ψ = 0 ∈ Ω × (0, T),

ψ = 0 on Γ × (0, T),

ψ(0) = ψ0 ∈ L2(Ω)

(1.8)

and

∥ϕ1∥
2
L2(Ω) + ∥∇ϕ0∥

2
L2(Ω) ≤ C

∫ T

0

∫

ω
|ϕt(x, t)|2dxdt (1.9)

with regards to the following problem























ϕtt − ∆ϕ = 0 ∈ Ω × (0, T),

ϕ = 0 on Γ × (0, T),

ϕ(0) = ϕ0 ∈ H1
0(Ω),

ϕt(0) = ϕ1 ∈ L2(Ω)

(1.10)

for some positive constant C = C(ω, T0) and for all T > T0. The proof of (1.8) can be found in

[13] and [18] while the proof of (1.10) is established in [3] and [15].

The aim of this work is to generalize the previous results of [21] by considering the damped

structure iαb(x)ψ instead of iαψ for the Schrödinger equation following the ideas of [1, 2].

Due to the right-hand side of the wave equation, i.e. −Re∇ψχ(ω) the energy functional of

the system depends upon the integral
∫

ϕ|ψ|2 which introduces a time that is required by the

damping to smooth out the differences between the kinetic energies of the resonant electrons
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and non resonant ions. The presence of the damping terms in both equations of the system

does not necessary guarantee that the energy E(t) associated to the system is a non increasing

function of the parameter t. Indeed in [12] where b(x), λ(x) are effective in the whole of Ω and

in [21] where λ(x) is effective in ω the energy exponential rate depends upon the parameters

of the system and t∗.

Our main task is to investigate the parametric energy decay for the system. Specifically, we

seek necessary conditions, dependent on the parameters of the system b0, λ0, so that energy

decay occurs at an exponential rate and therefore improve previous results by focusing on the

ω. This ensures that, under specific plasma conditions, the energy of the coupled ion-electron

wave is effectively dissipated to the plasma. In fact in Section 3 we will prove that the energy

ia a non increasing function. For this purpose, we make use of the observability inequality for

both, the wave and the Schrödinger equations. It is important to mention that the use of the

observability inequality instead of the multiplier technique allows us to consider sharp regions

ω satisfying the geometric control condition. Indeed, the inequalities given in (1.7) and (1.9)

are proved by means of microlocal analysis and produce sharp regions when compared with

the multiplier method. The main results of this paper are the following:

Theorem 1.4. Let (ψ0, ϕ0, θ0) ∈ {H1
0(Ω)∩ H2(Ω)}2 × H1

0(Ω) and assuming that (λ0 − ϵ) > 2
3ακb0

,

(λ0 − ϵ), (1 − ϵ(λ0 − ϵ)) > 0 hold then there exists a unique regular solution of (1.2)–(1.4) such that

ψ ∈ L∞(0, ∞; H1
0(Ω) ∩ H2(Ω)), ψt ∈ L∞(0, ∞; L2(Ω)),

ϕ ∈ L∞(0, ∞; H1
0(Ω) ∩ H2(Ω)), ϕt ∈ L∞(0, ∞; H1

0(Ω)),

ϕtt ∈ L∞(0, ∞; L2(Ω)).

Theorem 1.5. Let (ψ0, ϕ0, θ0) ∈ (H1
0(Ω) ∩ H2(Ω))× H1

0(Ω) and the assumptions of Theorem 1.4

hold, then there exists positive constant C, ν, µ such that the following decay rate holds

Eµ(t) ≤ Ce−νtE(0), ∀ t ≥ 0

for every regular solution of the problem (1.1).

Let us recall the following known results. From Poincaré’s inequality we have

∥u∥L2(Ω) ≤ c∥∇u∥L2(Ω), for all u ∈ H1
0(Ω),

and the Gagliardo–Nirenberg inequality for dimension n = 2

∥u∥L4(Ω) ≤ c∥u∥
1
2

L2(Ω)
∥∇u∥

1
2

L2(Ω)
for all u ∈ H1

0(Ω). (1.11)

Notation: Denote by Hs(Ω) both the standard real and complex Sobolev spaces on Ω. For

simplicity reasons sometimes we use Hs, Ls for Hs(Ω), Ls(Ω), and ∥ · ∥, (·, ·) for the norm

and the inner product of L2(Ω) and ∥ · ∥ω, (·, ·)ω for the norm and the inner product of L2(ω)

respectively as well as
∫

dx denotes the integration over the domain Ω. Finally, C is a general

symbol for any positive constant.

2 Existence and uniqueness

In this section we derive a priori estimates for the solutions of the system (1.1). Let {ων}

be a basis of H1
0(Ω) ∩ H2(Ω) formed by the real eigenfunctions of ∆ such that the sequence
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{ων} gives a Hilbert basis of L2 (i.e. an orthonormal basis of L2) and let Vm be a subset of

H1
0(Ω) ∩ H2(Ω) generated by the first m vectors. Then, let gim ∈ C and him, kim ∈ R with

ψm(t) =
m

∑
i=1

gim(t)ωi, ϕm(t) =
m

∑
i=1

him(t)ωi, θm(t) =
m

∑
i=1

kim(t)ωi

such that {(ψm(t), ϕm(t), θm(t))} is the solution to the following Cauchy problem:











































i(ψt,m, u) + κ(∆ψm, u) + iα(b(x)ψm, u) = (ϕmψmχ(ω), u), ∀ u ∈ Vm,

(ϕt,m, z) = (θm, z)− ϵ(ϕm, z), ∀ z ∈ Vm,

(θt,m, v) + ((λ(x)− ϵ)θm, v)− (∆ϕm, v) + ((1 − ϵ(λ(x)− ϵ))ϕm, v)

= −Re(∇ψmχ(ω), v) ∀ v ∈ Vm,

ψm(0) = ψ0m → ψ0, ϕm(0) = ϕ0m → ϕ0 ∈ H1
0(Ω) ∩ H2(Ω),

θ(0) = θ0m → θ0 ∈ H1
0(Ω).

(2.1)

Let Y = (ψm, ϕm, θm) then (2.1) also reads











































(ψt,m, u) = iκ(∆ψm, u) + α(b(x)ψm, u)− i(ϕmψmχ(ω), u), ∀ u ∈ Vm,

(ϕt,m, z) = (θm, z)− ϵ(ϕm, z), ∀ z ∈ Vm,

(θt,m, v) = −((λ(x)− ϵ)θm, v) + (∆ϕm, v)− ((1 − ϵ(λ(x)− ϵ))ϕm, v)

−Re(∇ψmχ(ω), v) ∀ v ∈ Vm,

ψm(0) = ψ0m → ψ0, ϕm(0) = ϕ0m → ϕ0 ∈ H1
0(Ω) ∩ H2(Ω),

θ(0) = θ0m → θ0 ∈ H1
0(Ω).

(2.2)

Then the considered matrix is the identity and therefore one may write Yt = F(Y) with

smooth F. Hence the Cauchy–Lipschitz theorem applies straightforward. Since, the approxi-

mate system (2.1) is a finite system of ordinary differential equations which has a solution in

[0, tm[ the extension of the solution to the whole interval [0, T], for all T > 0, is a consequence

of the first estimate we are going to obtain. Let us consider u = ψm in the first equation of

(2.1). Then by taking the imaginary part we have

1

2

d

dt
∥ψm∥

2 + α
∫

b(x)|ψm|
2 = 0 (2.3)

and because
∫

b(x)|ψm|
2 ≥

∫

ω
b(x)|ψm|

2 ≥ b0

∫

ω
|ψm|

2 (2.4)

almost everywhere in ω we have

1

2

d

dt
∥ψm∥

2 + αb0∥ψm∥
2
ω ≤ 0. (2.5)

Finally, multiplying by 2 and integrating over (0, t) for t ∈ [0, tm) concludes in

∥ψm∥
2 + 2αb0

∫ t

0
∥ψm(s)∥

2
ωds ≤ ∥ψm0∥

2. (2.6)

Then, since ψm0 → ψ0 in H1
0(Ω) ∩ H2(Ω) we have

(ψm) is bounded in L∞(0, ∞; L2(Ω)) (2.7)
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and for C1 = C(∥ψ0∥) > 0 we also have

∫ ∞

0
∥ψm(s)∥

2
ωds ≤ C1 = C(∥ψ0∥). (2.8)

Next, taking u = −ψt,m in the first equation of (2.1) and considering the real part produces

κ

2

d

dt
∥∇ψm∥

2 + αIm
∫

b(x)ψmψt,m = −Re
∫

ω
ϕmψmψt,m (2.9)

and similarly with (2.4) we have

κ

2

d

dt
∥∇ψm∥

2 + αb0 Im
∫

ω
ψmψt,m ≤ −Re

∫

ω
ϕmψmψt,m. (2.10)

Now, substituting u = αb0ψm in the first equation of (2.1), integrating over ω and taking the

real part we have

αb0 Im
∫

ω
ψmψt,m = ακb0∥∇ψm∥

2
ω + αb0

∫

ω
ϕm|ψm|

2

and substituting the expression into (2.10) we obtain

κ

2

d

dt
∥∇ψm∥

2 + ακb0∥∇ψm02
ω + αb0

∫

ω
ϕm|ψm|

2 ≤ −Re
∫

ω
ϕmψmψt,m. (2.11)

Therefore, by taking into consideration that

d

dt

∫

ω
ϕm|ψm|

2 =
∫

ω
ϕt,m|ψm|

2 + 2
∫

ω
ϕmψmψt,m

equation (2.11) becomes

1

2

d

dt
{κ∥∇ψm∥

2 +
∫

ω
ϕm|ψm|

2}+ ακb0∥∇ψm∥
2
ω + αb0

∫

ω
ϕm|ψm|

2 ≤
1

2
Re

∫

ω
ϕt,m|ψm|

2. (2.12)

Continuing with the second equation of the system (2.1), let v = θm

1

2

d

dt
{∥θm∥

2 + ∥∇ϕm∥
2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥

2
ω}+ (λ0 − ϵ)∥θm∥

2
ω + ϵ∥∇ϕm∥

2

+ ϵ(1 − ϵ(λ0 − ϵ))∥ϕm∥
2
ω ≤ −Re

∫

ω
∇ψmθm.

(2.13)

Then, adding equations (2.12) and (2.13) produces

1

2

d

dt
{κ∥∇ψm∥

2 +
∫

ω
ϕm|ψm|

2 + ∥θm∥
2 + ∥∇ϕm∥

2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥
2
ω}

+ ακb0∥∇ψm∥
2
ω + αb0

∫

ω
ϕm|ψm|

2 + (λ0 − ϵ)∥θm∥
2
ω + ϵ∥∇ϕm∥

2

+ ϵ(1 − ϵ(λ0 − ϵ))∥ϕm∥
2
ω ≤ −Re

∫

ω
∇ψmθm +

1

2
Re

∫

ω
ϕt,m|ψm|

2,

(2.14)

where

1

2
Re

∫

ω
ϕt,m|ψm|

2 =
1

2
Re

∫

ω
θm|ψm|

2 −
ϵ

2
Re

∫

ω
ϕm|ψm|

2
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and with the use of ∥u∥4 ≤ c∥u∥1/2 ∥∇u∥1/2 we have

∣

∣

∣

∣

∫

ω
θm∇ψm

∣

∣

∣

∣

≤
ακb0

2
∥∇ψm∥

2
ω +

1

2ακb0
∥θm∥

2
ω

∣

∣

∣

∣

1

2

∫

ω
θm|ψm|

2

∣

∣

∣

∣

≤ ∥θm∥ω ∥ψm∥
2
4,ω ≤

(λ0 − ϵ)

4
∥θm∥

2
ω +

ακb0

4
∥∇ψm∥

2
ω + C.

Therefore, equation (2.14) becomes

1

2

d

dt

{

κ∥∇ψm∥
2 +

∫

ω
ϕm|ψm|

2 + ∥θm∥
2 + ∥∇ϕm∥

2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥
2
ω

}

+
3ακb0

4
∥∇ψm∥

2
ω + (αb0 + ϵ)

∫

ω
ϕm|ψm|

2 +

(

3(λ0 − ϵ)

4
−

1

2ακb0

)

∥θm∥
2
ω

+ ϵ∥∇ϕm∥
2 + ϵ(1 + ϵ(λ0 − ϵ))∥ϕm∥

2
ω ≤ C

(2.15)

for 3(λ0−ϵ)
4 − 1

2ακb0
> 0. Set β0 = min{ 3ακb0

4 , (αb0 + ϵ), ( 3(λ0−ϵ)
4 − 1

2ακb0
), ϵ, (1 − ϵ(λ0 − ϵ))}, with

β0 > 0 and

H0(t) = κ∥∇ψm∥
2 +

∫

ω
ϕm|ψm|

2 + ∥θm∥
2 + ∥∇ϕm∥

2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥
2
ω.

Hence we have

d

dt
H0(t) + β0H0(t) ≤ C. (2.16)

Using Gronwall’s Lemma we obtain

H0(t) ≤
C

β0
(1 − e−β0t) + H0(t)e

−β0t

and

H0(t) ≤ H0(t)e
−β0t +

C

β0
.

Finally, using (1.11) we estimate the following integral

∫

ω
ϕm|ψm|

2 ≤
κ

2
∥∇ψm∥

2 +
1

2
∥∇ϕm∥

2 + C

then

H0(t) ≥
κ

2
∥∇ψm∥

2 + ∥θm∥
2 +

1

2
∥∇ϕm∥

2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥
2
ω − C

and finally gives

κ

2
∥∇ψm∥

2 + ∥θm∥
2 +

1

2
∥∇ϕm∥

2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥
2
ω ≤ C.

Therefore, we have

(ψm) is bounded in L∞(0, ∞; H1
0(Ω)),

(θm) is bounded in L∞(0, ∞; L2(Ω)),

(ϕm) is bounded in L∞(0, ∞; H1
0(Ω)).

(2.17)
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Moving to the next estimate we take the time derivative of the first equation of (2.1) and by

choosing u = ψt,m we obtain

i(ψtt,m, ψt,m) + κ(∆ψt,m, ψt,m) + iα(b(x)ψt,m, ψt,m) = (ϕt,mψmχ(ω), ψt,m) + (ϕmψt,mχ(ω), ψt,m).

Taking into consideration the imaginary part we have

1

2

d

dt
∥ψt,m∥

2 + α
∫

b(x)|ψt,m|
2 ≤

∫

ϕt,mψmψt,m

where since ∥ψm∥∞ ≤ c∥∆ψm∥1/2∥ψm∥1/2 we obtain
∣

∣

∣

∣

∫

ω
ϕt,mψmψt,m

∣

∣

∣

∣

≤ ∥ϕt,m∥ ∥ψm∥∞∥ψt,m∥ω ≤
αb0

2
∥ψt,m∥

2
ω +

ϵκ

4
∥∆ψm∥

2 + C(∥ϕt,m∥, ∥ψm∥).

Therefore, we have

1

2

d

dt
∥ψt,m∥

2 +
αb0

2
∥ψt,m∥

2
ω ≤

ϵκ

4
∥∆ψm∥

2 + C(∥ϕt,m∥, ∥ψm∥). (2.18)

Moving to the next energy estimate by choosing u = ∆ψt,m + ϵ∆ψm for the first equation of

(2.1) and taking the real part we get

1

2

d

dt

{

κ∥∆ψm∥
2 + 2α Im

∫

b(x)ψm∆ψm − 2 Re
∫

ω
ϕmψm∆ψm

}

+ κϵ∥∆ψm∥
2

+ 2αϵ Im
∫

b(x)ψm∆ψm − 2ϵ Re
∫

ω
ϕmψm∆ψm = α Im

∫

b(x)ψt,m∆ψm

− Re
∫

ω
ϕt,mψm∆ψm − Re

∫

ω
ϕmψt,m∆ψm + αϵ Im

∫

b(x)ψm∆ψm − ϵ Re
∫

ϕmψm∆ψm.

(2.19)

Next, choosing v = −∆θ in the second equation of (2.1) produces

1

2

d

dt

{

∥∆ϕm∥
2 + (1 + ϵ2)∥∇ϕm∥

2 + ∥∇θm∥
2 − 2

∫

λ(x)ϕt,m∆ϕm

}

+ ϵ

{

∥∆ϕ∥2 + (1 + ϵ2)∥∇ϕ∥2 + ∥∇θm∥
2 − 2

∫

λ(x)ϕt,m∆ϕm

}

≤ − Re
∫

ω
∆ψm∇θm − ϵ

∫

λ(x)ϕt,m∆ϕm.

(2.20)

Adding (2.18) with (2.19) and (2.20) produces

1

2

d

dt
H1(t) + ϵH1 = α Im

∫

b(x)ψt,m∆ψm

− Re
∫

ω
ϕt,mψm∆ψm − Re

∫

ω
ϕmψt,m∆ψm + αϵ Im

∫

b(x)ψm∆ψm

− ϵ Re
∫

ϕmψm∆ψm − Re
∫

ω
∆ψm∇θm − ϵ

∫

λ(x)ϕt,m∆ϕm

+

(

ϵ −
αb0

2

)

∥ψt,m∥
2 + C∥∇ϕm∥

2∥∇ψm∥
2

where

H1(t) = ∥ψt,m∥
2 + κ∥∆ψm∥

2 + 2α Im
∫

b(x)ψm∆ψm − 2 Re
∫

ω
ϕmψm∆ψm + ∥∆ϕm∥

2

+ (1 + ϵ2)∥∇ϕm∥
2 + ∥∇θm∥

2 − 2
∫

λ(x)ϕt,m∆ϕm.
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Set

F1(t) = α Im
∫

b(x)ψt,m∆ψm − Re
∫

ω
ϕt,mψm∆ψm − Re

∫

ω
ϕmψt,m∆ψm

+ αϵ Im
∫

b(x)ψm∆ψm − ϵ Re
∫

ϕmψm∆ψm − Re
∫

ω
∆ψm∇θm

− ϵ
∫

λ(x)ϕt,m∆ϕm +
ϵκ

4
∥∆ψm∥

2 +

(

ϵ −
αb0

2

)

∥ψt,m∥
2

+ C(c0, R, ϵ, κ, α, b0, ∥θm∥, |∇ϕ∥).

(2.21)

Evaluating the terms in H1 and F1 we have

∣

∣

∣

∣

∫

ω
ϕt,mψm∆ψm

∣

∣

∣

∣

≤ ∥ψm∥∞∥ϕt,m∥ ∥∆ψm∥ ≤
κϵ

8
∥∆ψm∥

2 + C(κ, ϵ, ∥ψm∥, ∥ϕt,m∥),

∣

∣

∣

∣

∫

ω
∆ψm∇θm

∣

∣

∣

∣

≤
κϵ

8
∥∆ψm∥

2 +
2

κϵ
∥∇θm∥

2,

∣

∣

∣

∣

∫

b(x)ψm∆ψm

∣

∣

∣

∣

≤ ∥b(x)∥∞∥ψm∥ ∥∆ψm∥ ≤ ϵ1∥∆ψm∥
2 + C(ϵ1)(∥ψm∥, ∥b(x)∥∞),

∣

∣

∣

∣

∫

b(x)ψt,m∆ψm

∣

∣

∣

∣

≤ ∥b(x)∥∞∥ψt,m∥ ∥∆ψm∥ ≤
κϵ

8
∥∆ψm∥

2 + C(κ, ϵ, ∥b(x)∥∞)∥ψt,m∥
2

∣

∣

∣

∣

∫

ϕmψm∆ψm

∣

∣

∣

∣

≤ ∥ϕm∥4∥ψm∥4∥∆ψm∥ ≤ ϵ2∥∆ψm∥
2 + C(ϵ2)(∥ψm∥, ∥ϕm∥, ∥∇ψm∥, ∥∇ϕm∥),

∣

∣

∣

∣

∫

ϕmψt,m∆ψm

∣

∣

∣

∣

≤ ∥ϕm∥∞∥ψt,m∥ ∥∆ψm∥

≤
κϵ

8
∥∆ψm∥

2 +
ϵ

2
∥∆ϕm∥

2 +
αb0

4
∥ψt,m∥

2 + C(κ, ϵ, α, b0, c, ∥ϕm∥),
∣

∣

∣

∣

∫

λ(x)ϕt∆ϕm

∣

∣

∣

∣

≤ ∥λ(x)∥∞∥ϕt,m∥ ∥∆ϕm∥ ≤ ϵ3∥∆ϕm∥
2 + C(ϵ3)(∥λ(x)∥∞, ∥ϕt,m∥).

Therefore there exists a constant β1 > 0 such that

β1H1(t) ≤ F1 + C(κ, ϵ, α, b0, ϵ1, ϵ2, ϵ3, ∥λ(x)∥∞, ∥b(x)∥∞, ∥ϕm∥, ∥ψm∥, ∥∇ψm∥, ∥∇ϕm∥, ∥ϕt,m∥)

and
d

dt
H1(t) + β1H1(t) ≤ C. (2.22)

Employing Gronwall’s Lemma we finally obtain

∥ψt,m∥
2 + ∥∆ψm∥

2 + ∥∆ϕm∥
2 + ∥∇θm∥

2 ≤ C. (2.23)

Hence,

(ψm) is bounded in L∞(0, ∞; H1
0(Ω) ∩ H2

0(Ω)),

(θm) is bounded in L∞(0, ∞; H1
0(Ω)),

(ϕm) is bounded in L∞(0, ∞; H1
0(Ω) ∩ H2

0(Ω))

(ψt,m) is bounded in L∞(0, ∞; L2(Ω)).

(2.24)
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Therefore we may extract subsequences {ψν} ⊂ {ψm}, {ϕν} ⊂ {ϕm} and {θν} ⊂ {θm} such

that
ψν ⇀ ψ for the weak star topology of L∞(0, ∞; H1

0(Ω) ∩ H2
0(Ω)),

θν ⇀ θ for the weak star topology of L∞(0, ∞; H1
0(Ω)),

ϕν ⇀ ϕ for the weak star topology of L∞(0, ∞; H1
0(Ω) ∩ H2

0(Ω))

ψt,ν ⇀ ψt for the weak star topology of L∞(0, ∞; L2(Ω)).

(2.25)

These convergencies are sufficient to pass to the limit (on a standard manner) in (2.1) which

results in
iψt + κ∆ψ + iαb(x)ψ = ϕψχ(ω) in L∞(0, ∞; L2(Ω)),

ϕtt − ∆ϕ + ϕ + λ(x)ϕt = −Re∇ψχ(ω) in L∞(0, ∞; L2(Ω)).
(2.26)

From [22, Lemma 4.1, Chapter II] we may derive that

ϕ ∈ C(0, ∞; H1
0(Ω) ∩ H2

0(Ω)) and ϕt ∈ C(0, ∞; L2(Ω))

and since ψt =
1
i (−κ∆ψ − iαb(x)ψ + ϕψχ(ω)) ∈ L∞(0, ∞; L2(Ω) using results in [16] we then

obtain that

ψ ∈ C(0, ∞; H1
0(Ω) ∩ H2

0(Ω)).

Let (ψ1, ϕ1) and (ψ2, ϕ2) be two solutions of the problem. Then by setting z = ψ1 − ψ2 and

w = ϕ1 − ϕ2 the uniqueness of the solutions follows using the same above analysis.

This concludes the proof of Theorem 1.4.

3 Uniform decay rates

In order to prove the energy decay of the system we derive some useful estimates.

Theorem 3.1. Assume that Theorem 1.4 holds and let C∗
> 0 denote a constant such that |E(0)| ≤ C∗.

Then there exists a t∗ > 0 such that for every t ≥ t∗, E(0) > 0.

Proof. Taking into consideration the assumptions of Theorem 1.4 and the result ∥ψ∥ ≤ ϵ∗ for

all t ≥ t∗ > 0 we evaluate the integral of the energy functional, that is

∣

∣

∣

∣

∫

ω
ϕ|ψ|2dx

∣

∣

∣

∣

≤ c∥ϕ∥∥ψ∥2
4 ≤

1

2
∥ϕ∥2 +

c2(ϵ∗)2

2
∥∇ψ∥2.

Therefore we have

E(t) ≥
1

2

[

∥ψ∥2+

(

κ −
c2(ϵ∗)2

2

)

∥∇ψ∥2 + ∥∇ϕ∥2 + ∥ϕt∥
2

]

, for t ≥ t∗ (3.1)

which completes the proof by choosing κ >
c2(ϵ∗)2

2 .

Proceeding with the analysis we take the inner product of (1.2) with ψt + αψ, adding

equation (2.3) and following similar steps as the ones for the a priori estimates we have

1

2

d

dt

{

∥ψ∥2 + κ∥∇ψ∥2 +
∫

ω
ϕ|ψ|2

}

+ καb0∥∇ψ∥2
ω + α

∫

b(x)|ψ|2 + αb0

∫

ω
ϕ|ψ|2

=
1

2

∫

ω
ϕt|ψ|

2. (3.2)
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Next, taking the inner product of (1.1) with ϕt gives

1

2

d

dt
{∥ϕt∥

2 + ∥∇ϕ∥2 + ∥ϕ∥2}+
∫

λ(x)|ϕt|
2 = Re

∫

ω
∇ψϕt. (3.3)

Adding equations (2.5), (3.2) and (3.3) results in

Et(t) + ab0∥ψ∥2
ω + καb0∥∇ψ∥2 + α

∫

b(x)|ψ|2 +
∫

λ(x)|ϕt|
2

+ αb0

∫

ω
ϕ|ψ|2 =

1

2

∫

ω
ϕt|ψ|

2 + Re
∫

ω
∇ψϕt.

(3.4)

From equation (2.3) we have
1

2

d

dt
∥ψ∥2

ω + α∥ψ∥2
ω ≤ 0

from which we get

∥ψ∥ω ≤ ∥ψ(0)∥ωe−αt = ϵ∗ (3.5)

and therefore since

lim
t→∞

sup ∥ψ∥ω = 0.

Next, evaluating the integrals

∣

∣

∣

∣

αb0

∫

ω
ϕ|ψ|2

∣

∣

∣

∣

≤
ϵ∗cαb0

2κ
∥ϕ∥2

ω +
καb0

2
∥∇ψ∥2

ω,

∣

∣

∣

∣

Re
∫

ω
∇ψϕt

∣

∣

∣

∣

≤
1

2ϵ

∫

λ(x)|ϕt|
2 +

ϵ

2λ0
∥∇ψ∥2

ω,

∣

∣

∣

∣

1

2

∫

ω
ϕt|ψ|

2

∣

∣

∣

∣

≤
ϵ∗

8ϵ

∫

λ(x)|ϕt|
2 +

ϵ

2λ0
∥∇ψ∥2

ω.

Therefore

Et(t) ≤ −

(

καb0

2
−

ϵ

λ0

)

∥∇ψ∥2
ω − α

∫

b(x)|ψ|2 −

(

1 −
1

2ϵ
−

ϵ∗

8ϵ

)

∫

λ(x)|ϕt|
2

+
ϵ∗cαb0

2κ
∥ϕ∥2

ω − αb0∥ψ∥2
ω.

(3.6)

For µ > 0 let us define the perturbed energy

Eµ(t) = E(t) + µp(t) (3.7)

where

p(t) = (ψ(t), ψ(t)) + (ϕt(t), ϕ(t))ω. (3.8)

Lemma 3.2. For µ, C > 0 we have that

|Eµ(t)− E(t)| ≤ µCE(t), for all t ≥ t∗.

Proof. We have

|p(t)| ≤ ∥ψ∥2 +
1

2
∥ϕt∥

2 +
c1

2
∥∇ϕ∥2 ≤ C∗E(t)

which completes the proof.
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Next, by taking the time derivative of p(t) we obtain

pt(t) = 2 Re(ψt, ψ) + (ϕtt, ϕ)ω + (ϕt, ϕt)ω

≤ 2 Re(ψt, ψ) + (ϕtt, ϕ)ω +
1

λ0

∫

ω
λ(x)|ϕt|

2

≤ 2 Re(ψt, ψ) + (ϕtt, ϕ) +
1

λ0

∫

λ(x)|ϕt|
2

which with the help of (1.1) we can deduce that

pt(t) ≤ − 2α
∫

b(x)|ψ|2 − ∥∇ϕ∥2 − ∥ϕ∥2 +
1

λ0

∫

λ(x)|ϕt|
2 −

∫

λ(x)ϕtϕ − Re
∫

ω
∇ψϕ. (3.9)

Adding equations (3.6)–(3.9) gives

Et,µ = Et(t) + µpt(t)

≤ −

(

καb0

2
−

ϵ

λ0

)

∥∇ψ∥2
ω − α(2µ + 1)

∫

b(x)|ψ|2

−

(

1 −
1

2ϵ
−

ϵ∗

8ϵ
−

µ

λ0

)

∫

λ(x)|ϕt|
2

+
ϵ∗cαb0

2κ
∥ϕ∥2

ω − µ∥∇ϕ∥2 − µ∥ϕ∥2 − µ
∫

λ(x)ϕtϕ − Re µ
∫

ω
∇ψϕ − αb0∥ψ∥2

ω,

(3.10)

where
∣

∣

∣

∣

µ
∫

ω
∇ψϕ

∣

∣

∣

∣

≤
cµ

2
∥∇ψ∥2

ω +
µ

2
∥∇ϕ∥2,

∣

∣

∣

∣

µ
∫

λ(x)ϕtϕ

∣

∣

∣

∣

≤
cµ∥λ∥∞

2

∫

λ(x)|ϕt|
2 +

µ

2
∥∇ϕ∥2

which concludes in

Et,µ = Et(t) + µpt(t)

≤ −

(

καb0

2
−

ϵ

λ0
−

cµ

2

)

∥∇ψ∥2
ω − α(2µ + 1)

∫

b(x)|ψ|2

−

(

1 −
1

2ϵ
−

ϵ∗

8ϵ
−

µ

λ0
−

cµ∥λ∥∞

2

)

∫

λ(x)|ϕt|
2 − µ

(

1 −
ϵ∗cαb0

2κµ

)

∥ϕ∥2.

Therefore we will require the following expressions to be nonnegative














καb0
2 − ϵ

λ0
− cµ

2 > 0,

1 − 1
2ϵ −

ϵ∗

8ϵ −
µ
λ0

− cµ∥λ∥∞

2 > 0,

1 − ϵ∗cαb0
2κµ > 0.

Therefore, choosing κ sufficiently large enough such that the following inequality holds

2κλ0 > ϵ∗acb0(2 + λ0∥λ∥∞)

we may deduce that there exists a k such that

Et,µ(t) ≤ −k

[

∫

b(x)|ψ|2 +
∫

λ(x)|ϕt|
2

]

(3.11)

and hence Eµ(t) would be a non increasing function.
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Remark 3.3. The time t∗ introduced in the energy decay analysis which is present through the

constant ϵ∗ has a specific physical meaning. This is the time so that the non-collisional integral
∫

ϕ|ψ|2 is absorbed by the collisional terms (see (3.1)). Therefore, t∗ roughly signifies the time

required by the collisional damping to smooth out the excessive difference of the kinetic

energies of the resonant electrons and the non-resonant ions (equipartition). It is important

to note that equation (3.6) is a non increasing function due to the positive term ∥ϕ∥ω which

depends heavily on the t∗.

Lemma 3.4. For all T > T0 there exists a positive constant C = C(t) such that if (ψ, ϕ) is the regular

solution of the system (1.1) where (ψ0, ϕ0, ϕ1) ∈ {H1
0(Ω) ∩ H2(Ω)}2 × H1

0(Ω) we have

Eµ(0) ≤ C
∫ T

0

[

∫

b(x)|ψ|2 +
∫

λ(x)|ϕt|
2

]

dt. (3.12)

Proof. We will prove this lemma by contradiction. Assume (3.12) is not true and let (ψk(0),

ϕk(0), ϕt,k(0)) be a sequence of initial data where the corresponding solutions (ψk, ϕk, ϕt,k) with

Eµ,k(0), uniformly bounded in k satisfy

lim
k→+∞

Eµ,k(0)

∫ T
0

[

∫

b(x)|ψk|2 +
∫

λ(x)|ϕt,k|2
]

dt

= +∞. (3.13)

Since Eµ,k(t) is non increasing and Eµ,k(0) remains bounded we may obtain a subsequence,

denoted again as (ψk, ϕk) for which we have























ψk ⇀ ψ weak star in L∞(0, T; H1
0(Ω)),

ϕk ⇀ ϕ weak star in L∞(0, T; H1
0(Ω)),

ϕt,k ⇀ ϕt weak star in L∞(0, T; L2(Ω)),

ψt,k ⇀ ψt weak star in L∞(0, T; L2(Ω)).

(3.14)

By compactness results, see [14] we get

ψk → ψk strongly in L∞(0, T; L2(Ω)),

ϕk → ϕk strongly in L∞(0, T; L2(Ω)).
(3.15)

Now, taking into consideration (3.13) and (3.14) we obtain

lim
k→+∞

∫ T

0

∫

b(x)|ψk|
2dxdt = 0,

lim
k→+∞

∫ T

0

∫

λ(x)|ϕt,k|
2dxdt = 0.

(3.16)

Setting

ck := [Eµ,k(0)]
1/2 and ϕ̂k =

1

ck
ϕk, ψ̂k =

1

ck
ψk

we infer that

Êµ,k(t) :=
Eµ,k(t)

c2
k

for which we have

Êk(0) = 1. (3.17)
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Taking into consideration the following system



































iψ̂t,k + κ∆ψ̂k + iαb(x)ψ̂k = ϕ̂kψkχ(ω),

ϕ̂tt,k − ∆ϕ̂k + ϕ̂k + λ(x)ϕ̂t,k = −Re∇ψ̂kχ(ω),

ψ̂k = ϕ̂k = 0 ∈ Γ × (0, T),

ψ̂k(0) = ψ̂0k, ϕ̂k(0) = ϕ̂0k, ϕ̂t,k(0) = ϕ̂1k in Ω,

ϕ̂t,k → 0 ∈ L2(0, T; L2(ω))

(3.18)

and since Eµ,k(0) = 1 we may deduce that for a subsequence (ψ̂k, ϕ̂k) it is true that











































ψ̂k ⇀ ψ̂ weak star in L∞(0, T; H1
0(Ω)),

ψ̂k → ψ̂ strongly in L∞(0, T; L2(Ω)),

ψ̂t,k → ψ̂t weak star in L∞(0, T; L2(Ω)),

ϕ̂k ⇀ ϕ̂ weak star in L∞(0, T; H1
0(Ω)),

ϕ̂t,k ⇀ ϕ̂t weak star in L∞(0, T; L2(Ω)),

ϕ̂k → ϕ̂ strongly in L∞(0, T; L2(Ω)).

(3.19)

From the (3.19), we obtain

lim
k→+∞

∫ T

0

∫

b(x)|ψ̂k|
2dxdt = 0,

lim
k→+∞

∫ T

0

∫

λ(x)|ϕ̂t,k|
2dxdt = 0,

(3.20)

and therefore by (3.20) and by the compact embedding H1
0(Ω) →֒ L2(Ω)

lim
k→+∞

∫ T

0

∫

ω
|∇ψ̂k|

2dxdt = 0,

lim
k→+∞

∫ T

0

∫

ω
|ϕ̂kψk|

2dxdt = 0.

(3.21)

Taking into consideration (3.20) and letting the limit k → +∞ for the system (3.18) we get for

the wave equation















ϕ̂tt − ∆ϕ̂ + ϕ̂ = 0 in Ω × (0, T),

ϕ̂ = 0 ∈ Γ × (0, T),

ϕt = 0 a.e. ∈ ω × (0, T)

(3.22)

and for the Schrödinger equation

{

iψ̂t + κ∆ψ̂ = 0, in Ω × (0, T),

ψ̂ = 0 on Γ × (0, T).
(3.23)

Setting ϕ̂t = v equation (3.22) in the distributional sense becomes















vtt − ∆v = 0 ∈ D′(Ω × (0, T)),

v = 0 ∈ Γ × (0, T),

v = 0 a.e. ∈ ω × (0, T).

(3.24)
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From standard uniqueness results from equation (3.24) we may conclude that v ≡ 0, that is

ϕ̂t ≡ 0. Therefore for a.e. t ∈ (0, T)

{

−∆ϕ̂ = 0 ∈ Ω,

ϕ̂ = 0 ∈ Γ
(3.25)

which multiplying by ϕ̂ implies that ϕ̂ ≡ 0. Following a similar procedure for the Schrödinger

equation the uniqueness theorem concludes that ψ̂ = 0 a.e. ∈ Ω.

In order to achieve a contradiction it is enough to prove that Êµ,k(0) → 0 as k → +∞.

Êµ,k(0)=
1

2

{

∫

((2µ + 1)|ψ̂(x, 0)|2 + κ|∇ψ̂(x, 0)|2 + |ϕ̂(x, 0)|2 + |∇ϕ̂(x, 0)|2 + |ϕ̂t(x, 0)|2)

+
∫

ω
ϕ(x, 0)|ψ̂(x, 0)|2 + 2µ

∫

ω
ϕ̂t(x, 0)ϕ̂(x, 0)

}

≤
1

2

{

∫

((2µ + 1)|ψ̂(x, 0)|2 +

(

κ +
c

2

)

|∇ψ̂(x, 0)|2 +
3

2
|ϕ̂(x, 0)|2

+ (µc + 1)|∇ϕ̂(x, 0)|2 + (µ + 1)|ϕ̂t(x, 0)|2)} = Eµ,ψ̂k
(0) + Eµ,ϕ̂k

(0).

(3.26)

Our aim is to prove that Eµ,ψ̂k
(0) → 0 and Eµ,ϕ̂k

(0) → 0 with the help of (1.7) and (1.9). For

this purpose let ψ̂k = vk + wk where ψ̂k is the solution of the system (3.18) and vk, wk are the

solutions of the following systems respectively,















ivt,k + κ∆vk = 0 ∈ Ω × (0, T),

vk = 0 ∈ Γ × (0, T),

vk(0) = ψ̂0,k ∈ Ω

(3.27)

and















iwt,k + κ∆wk = −iαb(x)ψ̂k + ϕ̂kψkχ(ω),∈ Ω × (0, T),

wk = 0 ∈ Γ × (0, T),

wk(0) = 0 ∈ Ω.

(3.28)

Similarly for the wave equation we obtain ϕ̂k = zk + uk which produces the following problems























ztt,k + ∆zk = 0 ∈ Ω × (0, T),

zk = ϕ̂0k ∈ Γ × (0, T),

zk(0) = ϕ̂0,k ∈ Ω,

zt,k(0) = ϕ̂1k ∈ Ω

(3.29)

and























utt,k + ∆uk = −λ(x)ϕ̂t,k − Re∇ψ̂kχ(ω) ∈ Ω × (0, T),

uk = 0 ∈ Γ × (0, T),

uk(0) = 0 ∈ Ω,

ut,k(0) = 0 ∈ Ω.

(3.30)



16 M. Poulou, M. Filippakis and J. Zanchetta

Therefore, it follows that

Êµ,k ≤ Eµ,ψ̂k
(0) + Eµ,ϕ̂k

(0) = Eµ,vk
(0) + Eµ,zk

(0) ≤ c1

∫ T

0

∫

ω
|vk|

2 + c2

∫ T

0

∫

ω
|zt,k|

2

≤ c1

(

∫ T

0

∫

b(x)|ψ̂k|
2 +

∫ T

0

∫

ω
|wk|

2

)

+ c2

(

∫ T

0

∫

λ(x)|ϕ̂t,k|
2 +

∫ T

0

∫

ω
|xk|

2

)

.

(3.31)

From equation (3.28) we have the following integral form

ŵk(t) = S(t)ŵk(0) +
∫ T

0
S(t − τ)F(τ)dτ, (3.32)

where S(t) is the semigroup generated by

A : D(A) = H1
0(Ω) ∩ H2(Ω) ⊂ L2(Ω) → L2(Ω),

y → Ay = −i∆y

and F(t) = ϕ̂k(t)ψk(t)χ(ω)− iαb(x)ψ̂k(t). Thus, taking into consideration that ∥S(t)∥L(L2(Ω)) ≤

C we have

∥wk∥
2 ≤ c1∥w0,k∥

2 + c2

(

∫ T

0
∥F(τ)∥dτ

)2

≤ C(∥w0k∥
2 + ∥F∥2

L1(0,T;L2(Ω)))

which with the help of the embedding L∞(0, T; L2(Ω)) → L1(0, T; L2(Ω)) and wk(0) = 0

produces

∫ T

0

∫

ω
|wk|

2 ≤ ∥wk∥
2
L∞(0,T;L2(Ω))

≤ C∥F∥2
L1(0,T;L2(Ω)) ≤ C

∫ T

0

∫

|ϕ̂kψkχ(ω)− iαb(x)ψ̂k|
2.

(3.33)

Moving onto the wave equation we have the following integral form expression for the system

(3.29)

Uk(t) = S(t)U0k +
∫ T

0
S(t − τ)F(τ)dτ

where

Uk =

(

uk

ut,k

)

with A =

(

0 −I

−∆ 0

)

and F =

(

0

−λ(x)ϕ̂k − Re∇ψ̂kχ(ω)

)

.

Evaluating the following integral

∫ T

0

∫

ω
|ut,k|

2 ≤ ∥ut,k∥
2
L∞(0,T;L2(Ω))

≤ C∥F∥2
L1(0,T;L2(Ω)) ≤ C

∫ T

0

∫

| − λ(x)ϕ̂k − Re∇ψ̂kχ(ω)|2.

(3.34)

Therefore, from equation (3.31) we obtain

Êµ,k(t) ≤ C

(

∫ T

0

∫

b(x)|ψ̂k|
2 +

∫ T

0

∫

|ϕ̂kψkχ(ω)− iαb(x)ψ̂k|
2

+
∫ T

0

∫

λ(x)|ϕ̂t,k|
2 +

∫ T

0

∫

| − Re∇ψ̂kχ(ω)− λ(x)ϕ̂t,k|
2

)

,

(3.35)

which taking into consideration (3.20) and (3.21) produces Êµ,k(0) → 0 as k → +∞ and

therefore contradicts the expression (3.17).
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Proof of Theorem 1.5. Continuing with the proof of Theorem 1.5 and by taking T0 > 0 large

enough from (3.11) we may deduce that

Eµ(T0)− Eµ(0) ≤ −k

[

∫ T0

0
b(x)|ψ|2 +

∫

λ(x)|ϕt|
2

]

(3.36)

and from Lemma 3.4 we also have

Eµ(0) ≤ C
∫ T0

0
D(t)

where

D(t) :=
∫

b(x)|ψ|2 +
∫

λ(x)|ϕt|
2.

Therefore, we get

Eµ(T0) ≤ Eµ(0) ≤ C
∫ T0

0
D(t) ≤ −

C

k
Eµ(T0) +

C

k
Eµ(0),

so
(

1 +
C

k

)

Eµ(T0) ≤
C

k
Eµ(0).

Hence,

Eµ(T0) ≤ νEµ(0), 0 < ν < 1.

Proceeding in a similar way from T to 2T and eventually to nT we have

Eµ(nT) ≤ νnEµ(0), ∀ T > T0.

Finally, let t > T0 then t = nT0 + r for 0 ≤ r ≤ T0 and

Eµ(t) ≤ Eµ(t − r) = Eµ(nT0) ≤ νnEµ(0) = ν
t−r
T0 Eµ(0) = e

t−r
T0

ln ν
Eµ(0).

Moreover, by Lemma 3.2 we have

Eµ(t) ≤ 2E(t) for t ≥ 0

therefore

Eµ(t) ≤ 2E(0)e
t−r
T0

ln ν
for t ≥ 0

which completes the proof of Theorem 1.5.

Acknowledgements

The authors would like to thank the referee for his comments that have improved the results

of this work. The publication of this paper has been partly supported by the University of

Piraeus Research Center



18 M. Poulou, M. Filippakis and J. Zanchetta

References

[1] A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta, Exponential decay for the coupled

Klein–Gordon–Schrödinger equations with locally distributed damping, Commun. Pure

Appl. Anal. 17(2018), 2039–2061. https://doi.org/10.3934/cpaa.2018097; MR3809141

[2] A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta, Exponential stability for the

coupled Klein–Gordon–Schrödinger equations with locally distributed damping, Evol.

Equ. Control Theory 8(2019), No. 4, 847–865. https://doi.org/10.3934/eect.2019041;

MR3985978

[3] C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control,

and stabilization of waves from the boundary, SIAM J. Control Optim. 30(1992), 1024–1065.

https://doi.org/10.1137/0330055; MR1178650

[4] V. Bisognin, M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Soriano, Uniform de-

cay for the coupled Klein–Gordon–Schrödinger equations with locally distributed damp-

ing, NoDEA Nonlinear Differential Equations Appl. 15(2008), 91–113. https://doi.org/10.

1007/s00030-007-6025-9; MR2408346

[5] M. M. Cavalcanti, Exact controllability of the wave equation with Neumann boundary

condition and time dependent coefficients, Ann. Fac. Sci. Toulouse Math. (6) 8(1999), No. 1,

53–89. MR1721574; Zbl 1002.93023

[6] M. M. Cavalcanti, V. N. Domingos Cavalcanti, Global existence and uniform decay

for the coupled Klein–Gordon–Schrödinger equations, NoDEA Nonlinear Differential Equa-

tions Appl. 7(2000), 285–307. https://doi.org/10.1007/PL00001426; MR1807460

[7] I. Flahaut, Attractors for the dissipative Zakharov system, Nonlinear Analysis, 16(1991)

No. 7–8, 599–633. https://doi.org/10.1016/0362-546X(91)90170-6; MR1097320

[8] B. Guo, Y. Li, Attractor for dissipative Klein–Gordon–Schrödinger equations in R3,

J. Diffential Equations 136(1997), 356–377. https://doi.org/10.1006/jdeq.1996.3242;

MR1448829

[9] J. K. Hale, Theory of functional differential equations, Applied Mathematical Sciences,

Vol. 3, Springer-Verlag, New York, 1977. https://doi.org/10.1007/978-1-4612-9892-2;

MR0508721; Zbl 0352.34001

[10] J. K. Hale, Asymptotic behaviour of dissipative systems, Mathematical Surveys and Mono-

graphs, Vol. 25, American Mathematical Society, Providence, 1988. https://doi.org/10.

1090/surv/025; MR941371

[11] V. Komornik, Exact controllability and stabilization. The multiplier method, Mason–John Wi-

ley, Paris, 1994. MR1359765

[12] N. Karachalios, N. M. Stavrakakis, P. Xanthopoulos, Parametric exponential energy

decay for dissipative electron-ion plasma waves, Z. Angew. Math. Phys. 56(2005), No. 2

218–238. https://doi.org/10.1007/s00033-004-2095-2

[13] G. Lebeau, Contrôle de l’équation de Schrödinger (in French) [Control of the Schrödinger

equation], J. Math. Pures Appl. 71(1992), No. 9, 267–291.



Exponential decay for a KGS system 19

[14] J. L. Lions, Quelques métodes de résolution des problèmes aux limites non linéaires (in French),

Dunod, Paris, 1969.

[15] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Vol. 1,

Masson, Paris, 1988. MR953547

[16] J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications (in French)

Vol. 1 Dunod, Paris, 1968. MR953547

[17] K. Lu, B. Wang, Global attractors for the Klein–Gordon–Schrödinger equation in un-

bounded domains, J. Differential Equations 170(2001), 281–316. https://doi.org/10.

1006/jdeq.2000.3827

[18] E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM J. Control Op-

tim. 32(1994), 24–34. https://doi.org/10.1137/S0363012991223145, MR1255957

[19] M. N. Poulou, N. M. Stavrakakis, Global attractor for a Klein–Gordon–Schrödinger type

system, Discrete Contin. Dyn. Syst., Dynamical systems and differential equations. Proceedings

of the 6th AIMS International Conference, 2007, 844–854. https://doi.org/10.3934/proc.

2007.2007.844; MR2409921

[20] M. N. Poulou, N. M. Stavrakakis, Finite dimensionality of a Klein–Gordon–Schrödinger

type system, Discrete Contin. Dyn. Syst. Ser. S 2(2009) 149–161. https://doi.org/10.3934/

dcdss.2009.2.149; MR2481584

[21] M. N. Poulou, N. M. Stavrakakis, Uniform decay for a local dissipative Klein–Gordon–

Schrödinger type system, Electron. J. Differential Equations 2012, No. 179, 1–16. MR2991413

[22] R. Teman, Infinite-dimensional dynamical systems in mechanics and physics (2nd Edition),

Applied Mathematical Sciences Vol. 68, Springer-Verlag, New York, 1997. https://doi.

org/10.1007/978-1-4612-0645-3; MR1441312



Electronic Journal of Qualitative Theory of Differential Equations
2024, No. 3, 1–17; https://doi.org/10.14232/ejqtde.2024.1.3 www.math.u-szeged.hu/ejqtde/

Bifurcation analysis of fractional

Kirchhoff–Schrödinger–Poisson systems in R
3

Linlin Wang and Yuming XingB

School of Mathematics, Harbin Institute of Technology, Harbin, 150001, P.R. China

Received 27 July 2023 appeared 4 January 2024

Communicated by Patrizia Pucci

Abstract. In this paper, we investigate the bifurcation results of the fractional Kirchhoff–
Schrödinger–Poisson system

{
M([u]2s )(−∆)su + V(x)u + φ(x)u = λg(x)|u|p−1u + |u|2

∗
s −2u in R

3,

(−∆)tφ(x) = u2 in R
3,

where s, t ∈ (0, 1) with 2t+ 4s > 3 and the potential function V is a continuous function.
We show that the existence of components of (weak) solutions of the above equation
associated with the first eigenvalue λ1 of the problem

(−∆)su + V(x)u = λg(x)u in R
3.

The main feature of this paper is the inclusion of a potentially degenerate Kirchhoff
model, combined with the critical nonlinearity.

Keywords: Kirchhoff–Schrödinger–Poisson system, global bifurcation, first eigenvalue,
fractional Laplacian, fixed point, whole space.
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1 Introduction and main results

In this paper, we investigate the bifurcation result of the fractional Kirchhoff–Schrödinger–

Poisson system
{

M([u]2s )(−∆)su + V(x)u + φu = λg(x)|u|p−1u + |u|2
∗
s −2u, in R

3,

(−∆)tφ = u2 in R
3,

(P)

where s, t ∈ (0, 1) with 2t + 4s > 3, λ ∈ R, p ∈ (0, 1), g(x) ∈ L
6

5−p (R3) ∩ L
3
2 (R3) is a weight

function, the non-local coefficient M : R
+
0 → R

+ defined by M(t) = a + bt, where a, b ≥ 0,

and the Gagliardo semi-norm

[u]s =

(∫

R3
|(−∆)

s
2 u|2dx

)1/2

.

BCorresponding author. Email: xyuming@hit.edu.cn
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Here, we assume that (−∆)s is the fractional Laplacian which, up to a normalization constant,

is denoted as

(−∆)su(x) = 2 lim
ε→0+

∫

R3\Bε(x)

u(x)− u(y)

|x − y|3+2s
dy, x ∈ R

3,

for every u ∈ C∞

0 (R3), where Bε(x) is the ball of R
3 centered at x ∈ R

3 with radius ε > 0.

The Kirchhoff–Schrödinger–Poisson (KSP) system, including (P) as a special model, de-

scribes the interaction of a quantum particle with an electromagnetic field. The (KSP) system

consisting of a Schrödinger equation coupled with a Poisson equation and a Kirchhoff function

has been studied extensively in various settings, such as Euclidean spaces, fractional spaces,

and Heisenberg groups, due to its strong applications in physics. Some of the main topics

of interest are the existence, multiplicity, and asymptotic behavior as well as the qualitative

properties of the (weak) solutions such as regularity, symmetry, and concentration. For more

information and references, one can consult the following papers [2, 6, 8–11, 23].

The fractional (KSP) system is a generalization of the (KSP) system that involves fractional

derivatives of order s in (0, 1). The fractional part of the system introduces new challenges

and difficulties involving fractional derivatives and nonlocal and nonlinear properties. Various

methods and techniques have been developed to deal with these problems, such as variational

methods, the Nehari manifold, Ekeland variational principle, the concentration-compactness

principle, and the mountain pass theorem. We refer the readers to [12, 16, 22, 23]. Benci and

Fortunato in [3] first introduced the Schrödinger–Poisson system

{
−∆u + V(x)u + φu = f (x, u), in R

3,

−∆φ = u2, in R
3,

to describe solitary waves with an electronic field. More recently, the authors in [16] used

variational methods to obtain nonnegative solutions for an Schrödinger–Choquard–Kirchhoff

type fractional p-Laplacian

(
a + b∥u∥

p(ξ−1)
s

)
[(−∆)s

pu + V(x)|u|p−2u] = λ f (x, u) +

(∫

RN

|u|p
∗
ν,s

|x − y|µ
dy

)
|u|p

∗
ν,s−2u in R

N ,

where the nonlinearity f satisfies super-linear or sub-linear growth conditions and the param-

eter λ is large or small enough. In particular, it can be seen as a special case of the fractional

Kirchhoff–Schrödinger–Poisson system.

On the other hand, bifurcation analysis is an important method of mathematics that studies

how the qualitative behavior of solutions changes as a parameter varies, and moreover, a

bifurcation point may correspond to the appearance or disappearance of the solutions or a

change in their stability or symmetry. For instance, He, in [7], studied the nonhomogeneous

semi-linear fractional Schrödinger equation with critical growth

{
(−∆)su + u = u2∗s −1 + λ( f (x, u) + h(x)), x ∈ R

N ,

u ∈ Hs(RN), u(x) > 0 x ∈ R
N ,

where s ∈ (0, 1), N > 4s and λ > 0 is a parameter. They showed that there exists a positive

bifurcation value of the parameter such that the problem has exactly two positive solutions

for smaller values, no positive solutions for larger values, and a unique solution at the bi-

furcation value. Furthermore, many recent works investigate the bifurcation results for the

fractional Kirchhoff or Schrödinger or Poisson equation under different assumptions on the
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potential functions and the non-linearities. Very recently, for p ∈ (1, 2) and λ is small, Ruiz

[19] demonstrated the existence of a branch of positive radial solutions to the problem
{
−∆u + u + λφu = u

p
+

−∆φ = u2, lim|x|→+∞ φ(x) = 0.

After that, in [24], Xu, Qin, and Chen established bifurcation results for positive solutions by

using the local and global bifurcation techniques, a priori bounds for elliptic equation, and the

properties of the principal eigenvalues to the Kirchhoff-type problem involving sign-changing

weight functions
{
−(a(x) + b(x)∥u∥2)∆u = λm(x)u + h(x)up in Ω,

u = 0 on ∂Ω.

In [14], the bifurcation results and the regularity for the (weak) solutions of the Schrödinger–

Poisson system {
−∆u + l(x)φu = λa(x)|u|p−1u + f (λ, x, u), in R

3,

−∆φ = l(x)u2, in R
3

are proved, where a, l are weight functions and f satisfies the subcritical and critical growth

condition, respectively.

Motivated by the above works, especially by [19], this paper is dedicated to investigating

bifurcation results to the (weak) solutions of the (KSP) system (P), while overcoming the

challenges due to the lack of compactness in critical case as well as the degenerate nature of

the Kirchhoff coefficient. To our knowledge, no such general results are provided for (P).

More precisely, we put the hypotheses in the following:

(V1) V ∈ C(R3) satisfies infx∈R3 V(x) ≥ V0 > 0, where V0 > 0 is a constant;

(V2) meas{x ∈ R
3 : −∞ < V(x) ≤ ξ} < +∞ for any ξ ∈ R;

(M1)
′ M ∈ C(R+

0 ) satisfies that for any τ > 0, there exists κ = κ(τ) > 0, such that M(t) ≥ τ

for all t ≥ τ;

(g1) g ∈ L6/(5−p)(R3) ∩ L3/2(R3) ∩ L∞(R3) and g(x) ≥ 0 a.e. in R
3.

It is worth stressing that the degenerate case of Kirchhoff nonlinearity is included in the

assumption of (M1)
′.

Before stating our main results, let us introduce some notations. Firstly, thanks to the

Fourier transform, the fractional Sobolev space Hs(R3) is defined by

Hs(R3) =

{
u ∈ L2(R3) :

∫

R3
(|ξ|2s + 1)|û|2dξ < ∞

}
,

which is equipped with the standard norm and inter product

∥u∥Hs =

(∫

R3
(|ξ|2s + 1)|û|2dξ

)1/2

, ⟨u, v⟩ =
∫

R3
(|ξ|2s + 1)ûv̂dξ.

In fact, Plancherel’s theorem in [5] guarantees that ∥u∥2 = ∥û∥2 and ∥|ξ|sû∥2 = ∥(−∆)
s
2 u∥2,

and then

∥u∥Hs =

(∫

R3

(
|(−∆)

s
2 u|2 + |u|2

)
dx

)1/2

, ⟨u, v⟩ =
∫

R3

(
(−∆)

s
2 u(−∆)

s
2 v + uv

)
dx.
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Furthermore, Proposition 3.4 and Proposition 3.6 in [5] imply that

∥(−∆)
s
2 u∥2

2 =
∫

R3
|ξ|2s|û(ξ)|2dξ =

1

C(s)

∫∫

R3×R3

|u(x)− u(y)|2

|x − y|3+2s
dxdy.

By virtue of [5, Theorem 6.5], the embedding Hs(R3) →֒ Lp(R3), with p ∈ [2, 2∗s ], is continu-

ous, where 2∗s is the fractional critical Sobolev exponent, defined as 2∗s = 6/(3− 2s). Moreover,

let Ds(R3) = {u ∈ L2∗s (R3) :
∫

R3 |(−∆)
s
2 u|2dx < ∞} be the completion of C∞

0 (R3) with respect

to the norm [u]s. The continuous fractional Sobolev embedding Ds(R3) →֒ L2∗s (R3) yields that

there exists a best Sobolev constant

S∗ = inf
u∈Ds(R(3)\{0}

∫
R(3 |(−∆)

s
2 u|2dx

(
∫

R3 |u|2
∗
s dx)2/2∗

,

so that

∥u∥2∗s ≤ c[u]s, (1.1)

where c = S−1/2
∗ . In this paper, the main solutions spaces E is the subspace of Hs(R3),

considered as

E =

{
u ∈ Hs(R3) : ∥u∥ =

(∫

R3

(
|(−∆)

s
2 u|2 + V(x)|u|2

)
dx

)1/2

< ∞

}
.

Obviously, E is a uniformly convex Banach space, see for instance [16].

Now, we state the main results of this paper in the following theorems.

Theorem 1.1. Suppose that s, p ∈ (0, 1) and the hypotheses (V1)–(V2), (M1)
′ and (g1) hold, equation

(P) has the unique bifurcation point (0, 0), and there exists an unbounded component C of positive weak

solutions emanating from (0, 0).

Notation:

• → and ⇀ denote the strong convergence and the weak convergence, respectively.

• Lp(R3), 1 ≤ p ≤ +∞, denotes a Lebesgue space, and the norm in Lp(R3) is denoted by

∥ · ∥p.

• C, Ci are various positive constants.

2 Preliminaries

In this section, as preparation for proving the main results, we intend to introduce some

fundamental notations, definitions and properties which are essential to the fractional setting.

Let s, t ∈ (0, 1), with 2t + 4s > 3. Then, it follows that the embedding Hs(R3) →֒ L
12

3+2t (R3)

is continuous, due to the fact that 12
3+2t ≤

6
3−2s = 2∗s . For any u ∈ Ht(R3), we define the linear

functional Iu : Dt(R3) → R by

Iu(v) =
∫

R3
u2vdx, for any v ∈ Dt(R3).
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Obviously, from the continuous embedding Hs(R3) →֒ L
12

3+2t (R3) in the above, there exists

C1 > 0, such that

|Iu(v)| ≤

(∫

R3
|u2|

6
3+2t dx

) 3+2t
6

(∫

R3
|v|

6
3−2t dx

) 3−2t
6

≤ cS−1/2
∗ ∥u∥2

Ht [v]t = c0∥u∥2
Ht [v]t, (2.1)

by (1.1) and the Hölder inequality, where c0 = cS−1/2
∗ . Hence, according to the Lax–Milgram

theorem, for any u ∈ Ht(R3), there exists a unique φt
u ∈ Dt(R3) satisfying

∫

R3
u2vdx =

∫

R3
(−∆)

t
2 φt

u(−∆)
t
2 vdx, for any v ∈ Dt(R3), (2.2)

which concludes φt
u is the (weak) solution of (−∆)tφt

u = u2 in R
3. Consequently, φt

u can be

represented as

φt
u = ct

∫

R3

u2(y)

|x − y|3−2t
dy = ct

1

|x|3−2t
∗ u2, x ∈ R

3,

where ct = Γ(3 − 2t)/(π3/222t
Γ(t)) is the t-Riesz potential. Together with (2.1), taking φt

u as a

test function of (2.2), we deduce that

[φt
u]

2
t =

∫

R3
φt

uu2dx ≤ c0∥u∥2
Ht [φt

u]t,
∫

R3
φt

uu2dx ≤ c2
0∥u∥4

Ht . (2.3)

Now, substituting φt
u in problem (P), it follows that the fractional Kirchhoff–Schrödinger–

Poisson equation

M([u]2s )(−∆)su + V(x)u + φt
uu = λg(x)|u|p−1u + |u|2

s
∗−2u in R

3.

Definition 2.1. We call that u ∈ Hs(R3) is a (weak) solution of problem (P), if for any v ∈ E,

there holds
∫

R3

(
M([u]2s )(−∆)

s
2 u(−∆)

s
2 v + V(x)uv + φt

uuv
)
dx = λ

∫

R3
g(x)|u|p−1uvdx +

∫

R3
|u|2

s
∗−2uvdx.

Furthermore, if there exist sequences (λn)n ⊂ R and nontrivial (weak) solutions (un)n ⊂ E

of problem (P), such that (λn, un)n → (λ, 0) as n → ∞, then (λ, 0) is a bifurcation point of

problem (P).

For more information on bifurcation, see, for instance [18]. Along this paper, let (Ds(R3))∗

be the dual space of Ds(R3) and for each u ∈ Ds(R3), let a functional L : Ds(R3) → (Ds(R3))∗

be the weak formulation, defined by

⟨L(u), v⟩ =
∫

R3
(−∆)

s
2 u(−∆)

s
2 vdx, for any v ∈ E.

Note that, by using the Hölder inequality,

|⟨L(u), v⟩| ≤ [u]s[v]s, ⟨L(u), u⟩ = [u]2s . (2.4)

A simple observation of (2.4) yields that L is a bounded linear operator in Ds(R3). Moreover,

write for brevity,

⟨u, v⟩V =
∫

R3
V(x)uvdx, ∥u∥V =

(∫

R3
V(x)|u|2dx

)1/2

, for any u, v ∈ E.

Of course, arguing as (2.4), it follows that

|⟨u, v⟩V | ≤ ∥u∥V∥v∥V , ⟨u, u⟩V = ∥u∥2
V .

Now, we are in the position to state some useful lemmas.
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Lemma 2.2 ([13, Proposition 1.3]). If X is uniformly convex and (2.4) holds, then L is of type (S),

i.e. every sequence (uj)j ∈ X such that

uj ⇀ u, ⟨L(uj), uj − u⟩ → 0

has a subsequence that converges strongly to u in X.

Lemma 2.3 ([21, Lemma 2.3]). For any u ∈ Hs(R3), the function φt
u defined in (2.2) satisfies the

next properties.

(i1) φt
u is continuous with respect to u.

(i2) φt
u ≥ 0 in R

3 and φt
ξu = ξ2φu for any ξ > 0.

(i3) If un ⇀ u in E and un → u in Lp(R3), with p ∈ [2, 2∗s ), as n → ∞, then for any v ∈ E

∫

R3
φt

un
(x)un(x)v(x)dx =

∫

R3
φt

u(x)u(x)v(x)dx + o(1),

and ∫

R3
φt

un
(x)u2

ndx →
∫

R3
φt

u(x)u(x)2dx, as n → ∞.

Lemma 2.4 ([15, Lemma 1.1]). Assume that s ∈ (0, 1) and (V1)–(V2) hold. If p ∈ [2, 2∗s ], then the

embeddings

E →֒ Hs(R3) →֒ Lp(R3)

are continuous, with min{1, V0}[u]s ≤ ∥u∥, for all u ∈ E. Particularly, there exists a positive constant

Cq, such that

∥u∥q ≤ Cq∥u∥ for all u ∈ E.

If q ∈ [2, 2∗s ), the embedding E →֒ Lq(R3) is compact. Furthermore, if q ∈ [1, 2∗s ), then the embedding

E →֒ Lq(BR) is compact for any R > 0.

Furthermore, to prove the main results, we need the following embedding theorem due to

Lemma 2.1 in [4].

Lemma 2.5. Let s ∈ (0, 1) and w ∈ L3/2(R3) ∩ L∞(R3). Then the embedding

Ds(R3) →֒ L2(R3, wdx)

is continuous and compact, and ∥u∥2,w ≤ Cw[u]s, for all u ∈ Ds(R3), with Cw = S−1/2
∗ ∥w∥1/2

3/2 > 0.

3 The subcritical case

In this section, we shall demonstrate the bifurcation results of the fundamental problem

M([u]2s )(−∆)su + V(x)u + φt
uu = λg(x)|u|p−1u in R

3, (3.1)

which is of significance in substantiating the proof of the main result. To this aim, let us

consider the property of the first eigenvalue λ1(h) of the problem

(−∆)su + V(x)u = λh(x)u, (3.2)

where h ∈ L3/2(R3) ∩ L∞(R3) is a strictly positive function.
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Lemma 3.1. The eigenvalue problem (3.2) has the first eigenpair (λ1(h), u1), where

0 < λ1(h) = min
v∈E\{0}

∥v∥2

∥v∥2
2,h

= min
v∈E\{0}

∫
R3(|(−∆)

s
2 v|2 + V(x)|v|2)dx∫

R3 h(x)|v|2dx
,

and the first eigenfunction u1 has one sign. Furthermore, λ1 is decreasing map with respect

to h, i.e. if 0 < h1 ≤ h2 ∈ L3/2(R3) ∩ L∞(R3), then λ1(h1) ≥ λ1(h2).

Proof. Let (vk)k ⊂ E \ {0} be a minimizing sequence of λ1(h) in Calculus of Variations. It can

be normalized so that
∫

R3 h(x)|vk|
2dx = 1, and

λ1(h) = lim
k→∞

(∫

R3
|(−∆)

s
2 vk|

2dx +
∫

R3
V(x)|vk|

2dx

)
. (3.3)

Moreover, the fact that [|v|]s ≤ [v]s for any v ∈ E guarantees that (|vk|)k is also a minimizing

sequence, then we can further assume that vk is positive. Since ∥vk∥
2 is a real convergent

sequence in (3.3), we have

0 ≤ ∥vk∥
2 ≤ λ1 + 1.

Consequently, the sequence (vk)k is bounded in E. The reflexivity of E yields the existence of

0 ≤ v̂ ∈ E such that vk ⇀ v̂ in E and vk → v̂ a.e. in R
3, up a subsequence if necessary. Thanks

to Lemma 2.5, we obtain that
∫

R3
h|vk|

2dx →
∫

R3
h|v̂|2dx as k → ∞. (3.4)

Moreover, by the weak lower semi-continuity of the norm ∥ · ∥ and by (3.4), it follows that

0 ≤ ∥v̂∥ ≤ lim inf
k→∞

∥vk∥.

Thus, λ1 = ∥v̂∥2 and v̂ is a critical point of ψ(v) = ∥v∥2/∥v∥2
2,h, i.e. for any v ∈ E

∫

R3

(
(−∆)

s
2 v̂ (−∆)

s
2 v + V(x)v̂v

)
dx

∫

R3
h(x)|v̂|2dx

−
∫

R3

(
|(−∆)

s
2 v̂|2 + V(x)|v̂|2

)
dx

∫

R3
h(x)v̂vdx = 0.

In conclusion, v̂ is the first eigenfunction corresponding to λ1, provided that û ̸≡ 0.

Clearly, the definition of λ1 implies at once that λ1(h1) ≥ λ1(h2).

Proposition 3.2. Let P = {v ∈ E∗ : v ≥ 0} and let f (x) ∈ P. If (M1)
′ and (V1)–(V2) holds, then

equation

M([u]2s )(−∆)su + V(x)u = f (x) in R
3 (3.5)

has a unique weak solution u in E. Furthermore, the operator K : E∗ → E, defined by K( f ) = u, where

u is the unique weak solution of (3.5), is continuous.

Proof. Of course, if f ≡ 0, then u = 0 is a unique (weak) solution of equation (3.5). Next, put

f ̸≡ 0 and set R = [u]2s ≥ 0. Then, the problem (3.5) becomes

M(R)(−∆)su + V(x)u = f (x) in R
3. (3.6)

Problem (3.6) has a variational structure and J : E → R, denoted as

J(u) =
1

2
M(R)[u]2s +

∫

R3
V(x)|u|2dx − ⟨ f , u⟩ , for all u ∈ E,
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where ⟨·, ⟩ is the duality of E, is well defined and of class C1(E). It is easily deduced that

the critical point of J(u), defined by uR, is a (weak) solution of (3.1). We first claim that J is

coercive, bounded below, and sequentially weakly lower semi-continuous in E. Indeed, by

Lemma 2.4 and (M1)
′, the Hölder inequality implies that

J(u) ≥
1

2
M(R)[u]2s +

1

2

∫

R3
V(x)u2dx − ∥ f ∥E∗∥u∥

≥
1

2
min{κ, V0}∥u∥2 − C f ∥u∥.

Consequently, J(u) → ∞ as ∥u∥ → ∞ and so J is coercive in E. Now, for any minimizing

sequence (un)n in E, with J(un) → infu∈E J(u) as n → ∞, the coerciveness of J guarantees that

there exists K > 0, such that ∥un∥ ≤ K. Thus, for all n, it follows from the Hölder inequality

that

|J(un)| ≤ max

{
1,

1

2
M(R)

}
∥un∥

2 + C f ∥un∥ ≤ max

{
1,

1

2
M(R)

}
K2 + C f K,

which infers that

inf
u∈E

J(un) ≥ −max

{
1,

1

2
M(R)

}
K2 − C f K.

Hence, J is bounded below. Moreover, if vn ⇀ v in E, in view of the weakly lower semi-

continuity of ∥ · ∥,

J(v) ≤ lim inf
n→∞

(
1

2
M(R)[vn]

2
s +

∫

R3
V(x)|vn|

2dx − ⟨ f , vn⟩

)
,

We thus deduce that J is weakly lower semi-continuous. Consequently, it guarantees the

existence of the unique global minimum uR for the functional J in E, and moreover, uR is

obviously a (weak) solution of equation (3.6).

Next, let us turn to imply that uR is also a (weak) solution of problem (3.5). Let Rj → R

in R+ and let (uRj
)j be (weak) solutions of (3.5) with R replaced by Rj. Once again, by (M1)

′,

the Hölder inequality and Lemma 2.4, we have

min{κ, V0}∥uRj
∥2 ≤ M(Rj)[uRj

]2s + ∥uRj
∥2

V = ⟨ f , uRj
⟩ ≤ C f ∥uRj

∥. (3.7)

Thus, {uRj
} is bounded in E. The reflexivity of E, Lemmas 2.4 and 2.5 yield that, there exists

u ∈ E, such that up to sequences, as j → ∞,

(a) uRj
⇀ u in E; (b) uRj

→ u in L2(R3, wdx); (c) uRj
→ u in Lq(R3) with q ∈ [2, 2∗s ).

(3.8)

Recalling that Rj → R and M ∈ C(R3) in the hypothesis (M1)
′, one has

M(R)
∫

R3
(−∆)

s
2 u(−∆)

s
2 vdx +

∫

R3
V(x)uvdx

= lim
j→∞

∫

R3

(
M(Rj)(−∆)

s
2 uRj

(−∆)
s
2 v + V(x)uRj

v
)

dx

= ⟨ f , v⟩ for any v ∈ E,
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and so u is also a weak solution of (3.6). Moreover, taking the test function v = uR − u in the

weak form of (3.6) and applying the Hölder inequality, we deduce that

0 = M(R) ⟨L(u)− L(uR), u − uR⟩+ ⟨u − uR, u − uR⟩V

= M(R)
(
[u]2s − ⟨L(u), uR⟩ − ⟨L(uR), u⟩+ [uR]

2
s

)
+ ∥u∥2

V − ⟨u, uR⟩ − ⟨uR, u⟩+ ∥uR∥
2
V

≥ M(R)
(
[u]2s − 2[u]s[uR]s + [uR]

2
s

)
+ ∥u∥2

V − 2∥u∥V∥uR∥V + ∥uR∥
2
V

= M(R)([u]s − [uR]s)
2 + (∥u∥V − ∥uR∥V)

2 ≥ 0.

(3.9)

We thus have [u]2s = [uR]
2
s and ∥u∥V = ∥uR∥V . Consequently,

⟨ f , u − uR⟩ = M(R) ⟨L(u)− L(uR), u − uR⟩+ ⟨u − uR, u − uR⟩V = 0,

and so u = uR a.e. in R
3 due to the assumption that f ̸≡ 0. Hence,

u = uR in E, (3.10)

and uRj
⇀ uR in E due to (3.8)-(a). Now, we claim that

uRj
→ uR in E. (3.11)

From (3.8),

M(Rj)
〈

L(uRj
), uRj

− uR

〉
= ⟨ f , uRj

− uR⟩ −
∫

R3
V(x)uRj

(uRj
− uR)dx → 0, as j → ∞.

Combining with (2.4) and the fact that Ds(R3) is a uniformly space, uRj
→ uR in Ds(R3) by

applying Lemma 2.2, and moreover uRj
→ uR in E by using (3.8)–(b). Therefore, the claim

holds and the (weak) solution uR of (3.6) is continuous with respect to R.

Define h : R → R by

h(R) =
1

M(R)
⟨ f , uR⟩ − ∥uR∥

2
V .

Note that, according to the continuity of mappings R 7→ 1
M(R)

by (M1) and R 7→ uR, h(R) is

also a continuous mapping. Observe that h(0) > 0. In fact, we first claim that u0, with R = 0,

is not a constant. Otherwise, ∥u0∥V ≤ Cd[u0]s = 0 for some Cd > 0, due to Lemma 2.4, which

implies in particular that u0 = 0 a.e. in R
3. Moreover, since u0 is the (weak) solution of the

problem

M(0)(−∆)su0 + V(x)u0 = f

and f ̸≡ 0, there is a contradiction with u0 = 0 a.e. in R
3. For such u0,

h(0) =
1

M(0)
⟨ f , u0⟩ − ∥u0∥

2
V = [u0]

2
s > 0.

Similarly, by using the same argument of (3.7) that uR is bounded in E, there exists a positive

constant C, such that

|h(R)| =

∣∣∣∣
1

M(R)
⟨ f , uR⟩ − ∥uR∥

2
V

∣∣∣∣ ≤
1

κ
C f ∥uR∥+ ∥uR∥

2
V ≤ C f ,κ∥uR∥+ ∥uR∥

2 ≤ C.

Now, denote h1(R) : R → R as h1 = h(R)− R. Combining all facts in the above, there exists

R1 > C f , such that

h1(0) = h(0) > 0 and h1(R1) = h(R1)− R1 < 0.
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The intermediate value theorem yields at once the existence of zero-point for h1. In other

words, there exists R > 0, such that

R = h(R) =
1

M(R)
⟨ f , uR⟩ − ∥uR∥

2
V = [uR]

2
s .

Consequently, uR is a weak solution of (3.1).

Consider the uniqueness of the (weak) solution of (3.1). Assume at first that there are

distinct (weak) solutions u1, u2 ∈ E of (3.1). Let v = u1 − u2 be the test function for the weak

form of (3.1), which follows that

(a + b[u1]
2
s ) ⟨L(u1), u1 − u2⟩+ ⟨u1, u1 − u2⟩V =

∫

R3
f (u1 − u2)dx

and

(a + b[u2]
2
s ) ⟨L(u2), u1 − u2⟩+ ⟨u2, u1 − u2⟩V =

∫

R3
f (u1 − u2)dx

being u1 and u2 are the (weak) solutions of (3.1), where a, b are the constant given in the

definition of Kirchhoff function M. As a consequence,

a ⟨L(u1)− L(u2), u1 − u2⟩+ bJ1(u1, u2) + ⟨u1 − u2, u1 − u2⟩V = 0, (3.12)

where

J1(u1, u2) = [u1]
2
s ([u1]

2
s − ⟨L(u1), u2⟩) + [u2]

2
s ([u2]

2
s − ⟨L(u2), u1⟩).

By virtue of the Hölder inequality,

J1(u1, u2) ≥ [u1]
2
s ([u1]

2
s − [u1]s[u2]s) + [u2]

2
s ([u2]

2
s − [u2]s[u1]s)

≥ ([u1]s − [u2]s)([u1]
3
s − [u2]

3
s ) ≥ 0.

Then, clearly, by using the same argument of (3.9), from (3.12), [u1]s = [u2]s and ∥u1∥V =

∥u2∥V . Similar to (3.10), it can be concluded that u1 = u2 in E.

Finally, it remains to prove that the operator K is continuous. Let ( f j)j ⊂ E∗, f ∈ E∗ satisfy

f j → f strongly in E∗ and uj, u ∈ E be the (weak) solutions of (3.1) corresponding to f j and

f , respectively. We only need to prove that uj → u in E. Arguing as in the proof of (3.7) and

(3.11), we conclude that uj ⇀ u in E and uj → u a.e. in Lq(R3), with q ∈ [2, 2∗s ), up to a

sequence if necessary. Consequently,

M(uj)
〈

L(uj), uj − u
〉
= ⟨ f j, uj − u⟩ − ⟨uj, uj − u⟩V

= ⟨ f j − f , uj⟩+ ⟨ f , uj − u⟩ − ⟨uj, uj − u⟩V

→ 0, as j → ∞,

which yields that uj → u in E by Lemma 2.2. This completes the proof.

We next prove the bifurcation results of (3.1). For any fixed λ, first denote the operator

Nλ : E → E∗ pointwise for all u, v ∈ E as

⟨Nλ(u), v⟩ =
∫

R3
[λg(x)|u|p−1u − φt

uu]vdx,
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where ⟨·, ⟩ is the duality of E. We assert that Nλ(u) is a compact operator. Suppose that (uj)j

is a bounded sequence in E. Lemma 2.4 yields that there exist a subsequence of (uj)j (still

defined by (uj)j) and u ∈ E, such that for any R > 0, as j → ∞,

(a1) uj ⇀ u in E (a2) uj → u in Lq(R3), with q ∈ [2, 2∗s ) (a3) uj → u a.e. in R
3.

(3.13)

By virtue of Lemma 2.3–(i3), obviously it follows that

sup
∥v∥≤1

∫

R3

(
φt

uj
uj − φt

uu
)
vdx → 0, as j → ∞.

Further, for all R > 0,

sup
∥v∥≤1

∣∣∣∣
∫

R3
g(x)(|uj|

p−1uj − |u|p−1u)dx

∣∣∣∣ (3.14)

≤ sup
∥v∥≤1

∣∣∣∣
∫

BR

g(x)(|uj|
p−1uj − |u|p−1u)dx

∣∣∣∣+ sup
∥v∥≤1

∣∣∣∣
∫

R3\BR

g(x)(|uj|
p−1uj − |u|p−1u)dx

∣∣∣∣ .

Since g ∈ L6/(5−p)(R3), for any ε > 0, there is a constant R > 0 so large that

sup
∥v∥≤1

∫

R3\BR

g(x)(|uj|
p−1uj − |u|p−1u)vdx

≤ sup
∥v∥≤1

(∫

R3\BR

|g(x)|
6

5−p dx

) 5−p
6
(∫

R3\BR

(|uj|
p + |u|p)

6
p dx

) p
6

∥v∥6

≤ sup
∥v∥≤1

∥g∥
L

6
5−p (R3\BR)

2
6
p−1(∥uj∥

p
6 + ∥u∥

p
6)∥v∥6

≤ 2
6
p−1

cp+1∥g∥
L

6
5−p (R3\BR)

(∥uj∥
p + ∥u∥p) sup

∥v∥≤1

∥v∥

≤ ε/2.

On the other hand, note that for all R > 0, the embedding E →֒ Lq(BR), with q ∈ [1, 2∗s ), is

compact by using Lemma 2.4. Hence, take a subsequence (ujk)k ⊂ (uj)j, such that ujk → u in

Lq(BRε) for all q ∈ [1, 2∗s ), then up to a further subsequence, still denoted by (ujk)k, we have

that ujk → u a.e. in BRε . Thus, g(x)|ujk |
p+1 → g(x)|u|p+1 a.e. in BRε . Furthermore, for each

measurable subset BE ⊂ BRε , with the help of (1.1), Lemma 2.4 and the Hölder inequality, we

have
∫

BE

g(x)|ujk |
p+1dx ≤ ∥g∥

L
6

5−p (BE)
∥ujk∥

p+1
6 ≤ (cC)p+1∥g∥

L
6

5−p (BE)
,

being (uj)j is bounded in E. Therefore, (g(x)|ujk |
p+1)k is integrable and uniformly bounded

in L1(BRε), since g ∈ L6/(5−p)(R3) by the assumption. The Vitali convergence theorem shows

that

lim
k→∞

∫

BRε

g(x)|ujk |
p+1dx =

∫

BRε

g(x)|u|p+1dx, (3.15)

and so g(x)|uj|
p+1 → g(x)|u|p+1 in L1(BRε), since the sequence (ujk)k is arbitrary. Therefore,

sup
∥v∥≤1

∣∣∣∣
∫

BR

g(x)(|uj|
p−1uj − |u|p−1u)vdx

∣∣∣∣ → 0, as j → ∞,
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and further (3.14) hold. Together with Proposition 3.2, we deduce that the operator K ◦ Nλ :

E → E is compact. For the fixed λ, let Kλ : E → E, defined by

Kλ = I − K ◦ Nλ,

where I is the identity operator. Note that the zeros of Kλ are exactly the (weak) solutions of

the problem (3.1).

Having completed all necessary preparations, now, we are ready to show Theorem 3.3.

Theorem 3.3. Let s, p ∈ (0, 1). If (V1)–(V2), (M1)
′ and (g1) hold, equation (3.1) has the unique

bifurcation point (0, 0), and there exists an unbounded component C0 of (weak) solutions emanating

from (0, 0).

Proof. We first let λ < 0. For a fixed λ, consider the operator H1(r, ·) : E → E as follows

H1(r, u) = Nλ(r(λg(x)|u|p−1u − φt
uu)), r ∈ [0, 1].

We claim that there exists δ1 > 0, such that

u = H1(r, u), for any u ∈ Bδ1
, u ̸≡ 0 and r ∈ [0, 1]. (3.16)

Conversely, if there exists sequences (un)n and (rn)n, with ∥un∥ → 0, un ̸≡ 0 and rn ∈ [0, 1],

such that un = H1(rn, un). In other words, it follows that
∫

R3
(M([un]

2
s )|(−∆)

s
2 un|

2 + V(x)u2
n + rnφt

un
u2

n)dx = rn

∫

R3
λg(x)|un|

p+1dx ≤ 0 (3.17)

by the definition of λ. Thanks to (M1) and (V1), we get M([un]2s )[un]2s + ∥un∥2
V ≥ 0, and so

∥un∥ = ([un]2s + ∥un∥2
V)

1/2 = 0 by Lemma 2.3–(i2). Of course, this is a contradiction with the

assumption that un ̸≡ 0 in E and the claim is achieved. Therefore, we can choose ε ∈ (0, δ1),

such that

deg(Kλ, Bε, 0) = deg(I − H1(1, ·), Bε, 0) = deg(I − H1(0, ·), Bε, 0) = deg(I, Bε, 0) = 1 (3.18)

by applying the homotopy invariance of H1.

On the other hand, let λ > 0 and let ψ ∈ E, with ψ > 0. For this fixed λ and for any

r ∈ [0, 1], denote H2(r, ·) : E → E as

H2(r, u) = Nλ(λg(x)|u|p−1u − φt
uu + rψ).

We claim that there exists δ2 > 0, such that u ̸= H2(r, u) for any u ∈ Bδ2
\ {0} and for any

r ∈ [0, 1]. Let us argue by contradiction that if there exists a sequence (vj)j ⊂ E, with vj > 0

and ∥vj∥ → 0, as j → ∞, such that for any rj ∈ [0, 1],

vj = H2(rj, vj), (3.19)

which yields at once that

M([vj]
2
s )(−∆)svj + V(x)vj + φt

vj
vj = λg(x)|vj|

p−1vj + rjψ(x). (3.20)

Moreover, there exists a positive constant C0, such that ∥vj∥ ≤ C0 and [vj]s ≤ ∥vj∥ ≤ C0, being

∥vj∥ → 0 as j → ∞. Furthermore, up to sequence,

vj → 0 a.e. in R
3 (3.21)
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by Lemma 2.4. Consequently, M([vj]
2
s ) ≤ max{1, a + bC0} := C′

0, and then

λ1(g(x)(max{1, M([vj]
2
s )})

−1) ≤ λ1((C
′
0)

−1g(x)).

For any ε > 0, taking the test function as a first eigenfunction w1 > 0, by virtue of (1.1) and

the Hölder inequality, since g ∈ L6/(5−p)(R3) by the assumption (g1) and vj is bounded in E,

there exists Rε > 0 so large that for all j

∫

R3\BRε

g(x)|vj|
pw1dx ≤ ∥g∥

L
6

5−p (R3\BRε )
∥vj∥

p
6∥w1∥6

≤ cp+1∥g∥
L

6
5−p (R3\BRε )

∥vj∥
p∥w1∥ ≤ ε/2.

(3.22)

Thus, arguing as the proof of (3.15),

∫

BRε

g(x)|vj|
pw1dx = o(1) as j → ∞.

Similarly, according to the assumption (g2), it is easily to see that g(x)|vj|w1 → 0 in L1(BRε)

as j → ∞ and
∫

R3\BRε

g(x)vjw1dx ≤ ∥g∥
L

3
2 (R3\BRε )

∥vj∥6∥w1∥6 ≤ c2∥g∥
L

3
2 (R3\BRε )

∥vj∥∥w1∥ ≤ ε, (3.23)

being g ∈ L3/2(R3) by the assumption. In conclusion, from (3.21), (3.22) and (3.23), there is Rε

so large that as j → ∞

λ
∫

R3
g(x)|vj|

pw1dx − λ1((C
′
0)

−1g(x))
∫

R3
g(x)vjw1dx −

∫

R3
φvj

vjw1dx

= λ
∫

BRε

g(x)|vj|
pw1dx + λ

∫

R3\BRε

g(x)|vj|
pw1dx − λ1((C

′
0)

−1g(x))
∫

BRε

g(x)vjw1dx

− λ1((C
′
0)

−1g(x))
∫

R3\BRε

g(x)|vj|w1dx−C∥vj∥
3∥w1∥

≥ λ
∫

BRε

g(x)|vj|
pw1dx − λ1((C

′
0)

−1g(x))
∫

BRε

g(x)|vj|w1dx − Cε > 0.

(3.24)

Since ψ > 0, (3.20) and (3.24) yield that as n → ∞, we estimate

λ1(g(x)(max{1, M([vj]
2
s )})

−1)
∫

R3
g(x)vjw1dx

= max{M([vj]
2
s ), 1}

(∫

R3
(−∆)

s
2 vj(−∆)

s
2 w1dx +

∫

R3
V(x)vjw1dx

)

≥ M([vj]
2
s )

∫

R3
(−∆)

s
2 vj(−∆)

s
2 w1dx +

∫

R3
V(x)vjw1dx

= λ
∫

R3

(
g(x)|vj|

p−1vjw1 + rjψ(x)w1 − φt
vj

vjw1

)
dx

> λ1((C
′
0)

−1g(x))
∫

R3
g(x)vjw1dx,

and so {
λ1(g(x)max{1, M([vj]

2
s )}

−1)− λ1((C
′
0)

−1g(x))
} ∫

R3
g(x)vjw1dx > 0.

Since
∫

R3 g(x)vjw1dx > 0, we have λ1(g(x)max{1, M([vj]
2
s )}

−1) > λ1((C
′
0)

−1g(x)). This is an

obvious absurdum, and we proved the claim.
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Hence, choosing ε ∈ (0, δ2), we can find the homotopy invariance of H2, i.e.

deg(Kλ, Bε, 0) = deg(I − H2(0, ·), Bε, 0) = deg(I − H2(1, ·), Bε, 0) = 0. (3.25)

It follows from (3.18) and (3.25) that (0, 0) is a bifurcation point of (P).

Now, it is sufficient to prove the existence of the unbounded component of (weak) solutions

of (3.1). It is important to note that while the classical global bifurcation theorem [17, Theorem

1.3] is relevant to our argument, we cannot apply it directly because the operator Kλ lacks

the differentiability at u = 0 and of odd-multiplicity eigenvalue. However, by modifying

the global bifurcation theorem in Proposition 3.5 of [1] and replacing these conditions with

the topological degree proofs for (3.18) and (3.25), we can derive an efficient version of [17,

Theorem 1.3] for the assertion below.

For λ0 ̸= 0, we claim that (λ0, 0) is an isolated (weak) solution of (3.1). Set λ < 0. Similar

to the analysis of (3.17), there are no nontrivial (weak) solutions of equation (3.1). Let λ > 0.

Assume that there exists a sequence of (weak) solutions (λn, un)n ⊂ R × E of (3.1), such that

λn → λ0 and ∥un∥ → 0, as n → ∞. Hence, arguing as (3.24), for any ε > 0, there exists

N = N(ε) > 0, such that for any n ≥ N(ε),

λ1(g(x)(max{1, M([vj]
2
s )})

−1)
∫

R3
g(x)vjw1dx

≥ M([vj]
2
s )

∫

R3
(−∆)

s
2 vj(−∆)

s
2 w1dx +

∫

R3
V(x)vjw1dx

≥ (λ0 − ε)
∫

R3
g(x)|vj|

p−1vjw1dx −
∫

R3
φt

vj
vjw1dx

> λ1((C
′
0)

−1g(x))
∫

R3
g(x)vjw1dx,

which yields an absurdum λ1(g(x)(max{1, M([vj]
2
s )})

−1) > λ1((C
′
0)

−1g(x)). Therefore, (0, 0)

is a unique bifurcation point of equation (3.1).

Furthermore, if C0 is bounded in R × E, by [17, Lemma 1.2] there is a bounded open set

O ⊂ R × E such that (0, 0) ∈ O and O contains nontrivial solution other than those in Bε ⊂ E,

with ε > 0 sufficiently small.

Now, we can argue as (1.11) of [17] to conclude that the existence of ε > 0 and values λ

and λ, such that −ε < λ < 0 < λ < ε and i(Kλ, 0) = i(Kλ, 0). Therefore, owing to (3.18) and

(3.25), we have

1 = i(Kλ, 0) = i(Kλ, 0) = 0,

which is an obvious contradiction. Then, C0 is an unbounded component.

4 Main result

To determine the bifurcation results of problem (P), for any fixed λ, we define pointwise for

u, v ∈ E, Tλ : E → E∗ by

⟨Tλ(u), v⟩ =
∫

R3

{
λg(x)|u|p−1u + |u|2

∗
s −2u − φt

uu
}

vdx.

Suppose that (un)n ⊂ E is a bounded sequence in E. Then up to a subsequence, (3.13) also

holds for some u ∈ E by the reflexivity of E. Recalling the compactness result for the operator
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Nλ, as shown in section 3, it remains to prove that for any v ∈ E,

∫

R3
(|un|

2∗s −2un − |u|2
∗
s −2u)vdx → 0 as n → ∞. (4.1)

Since |un|2
∗
s −2un ∈ L(2∗s )

′
(R3), v ∈ E and E ⊂ L2∗s (R3), the definition of weak convergence

yields at once that (4.1) is achieved. In conclusion, the operator K ◦ Tλ is also compact using

Proposition 3.2.

Proof of Theorem 1.1. Let Hλ : E → E be defined as Hλ(u) = K ◦ Tλ(u), where K is the operator

introduced by Proposition 3.2. Clearly, Theorem 3.3 guarantees the existence of the positive

constants ε and δ, such that

deg(Kλ, Bδ, 0) =

{
1, λ ∈ (−ε, 0),

0, λ ∈ (0, ε).

We claim that for any λ, with 0 < λ < ε, there exist δ1, such that for any r ∈ [0, 1] and for the

operator, defined by

⟨Tr
λ(u), v⟩ =

∫

R3

{
λg(x)|u|p−1u − φt

uu + r|u|2
∗
s −2u

}
vdx,

the problem

u − K ◦ Tr
λ(u) = 0 (4.2)

has no (weak) solutions with ∥u∥ = δ1. Otherwise, if there exists a sequence of nontrivial

(weak) solutions (un)n of (4.2), with ∥un∥ → 0 and un > 0, then it yields that

M([un]
2
s )[un]

2
s + ∥un∥

2
V +

∫

R3
φt

un
u2

ndx =
∫

R3

{
λg(x)|un|

p + r|un|
2∗s
}

dx.

Thanks to (3.24), taking the test function as the first eigenvalue w1, we have

λ1(g(x)(max{1, M([un]
2
s )})

−1)
∫

R3
g(x)unw1dx

= M([un]
2
s )

∫

R3
(−∆)

s
2 un(−∆)

s
2 w1dx +

∫

R3
V(x)unw1dx

=
∫

R3

(
λg(x)|un|

p−1unw1 − φt
un

unw1 + |un|
2∗s −1w1

)
dx

> λ1((C
′
0)

−1g(x))
∫

R3
g(x)unw1dx,

which implies an absurdum that λ1(g(x)(max{1, M([un]2s )})
−1) > λ1((C

′
0)

−1g(x)). The claim

holds. Hence, the homotopy invariance of the topological degree shows that for any λ ∈ (0, ε)

and R ∈ (0, δ1)

deg(I − Hλ, BR, 0) = deg(Kλ, BR, 0) = 0. (4.3)

Fix λ < 0. Applying the same argument of (3.24), it follows that

∫

R3

{
λg(x)|u|p+1 + |u|2

∗
s
}

dx ≤ 0.
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Now similar to the analysis of (3.17), there are no nontrivial (weak) solutions of (4.2). Conse-

quently, there exist ε > 0 and δ > 0, with ε ≤ ε1 and δ ≤ δ1, such that for any λ ≤ ε and for

any R ≤ δ

deg(I − Hλ, BR, 0) = deg(Kλ, BR, 0) = 1. (4.4)

By utilizing (4.3) and (4.4), we get (0, 0) is a bifurcation point of equation (P). Moreover, simi-

lar to the argument in Theorem 3.3, we imply that the existence of an unbounded component

C of weak solutions of (P).
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Abstract. The blow-up method proves its effectiveness to characterize the integrability
of the resonant saddles giving the necessary conditions to have formal integrability and
the sufficiency doing the resolution of the associated recurrence differential equation
using induction. In this work we apply the blow-up method to monodromic singulari-
ties in order to solve the center-focus problem. The case of nondegenerate monodromic
singularities is straightforward since any real nondegenerate monodromy singularity
can be embedded into a complex system with a resonant saddle. Here we apply the
method to nilpotent and degenerate monodromic singularities solving the center prob-
lem when the center conditions are algebraic.

Keywords: monodromic singularity, blow-up, center problem, formal first integral.
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1 Introduction

The center-focus problem for systems of differential equations is one of the main unsolved

problems in the qualitative theory of differential systems in the plane [23, 26]. For the non-

degenerate monodromic singularities the center-focus problem is closely connected with in-

tegrability problem, see for instance references [37, 39]. The center-focus problem consists of

providing the necessary and sufficient conditions under which a monodromic singularity has

a neighborhood filled with periodic orbits. If the monodromic singularity is a non-degenerate

singular point, i.e., its linear part has two purely imaginary eigenvalues, then the real differ-

ential system can be embedded in the complex plane and the singular point it transformed to

a 1 : −1 resonant saddle singular point, see [15, 16, 29, 30].

Indeed, the 1 : −1 resonance can be generalized into a p : −q resonance known as a p : −q

resonant singular point of a polynomial vector field in C2, see [19, 44].

BCorresponding author. Email: jaume.gine@udl.cat



2 B. Ferčec and J. Giné

The characterization of the analytic integrability of several families of differential systems

with a resonant saddle is studied in several works, see for instance [17–19, 28–30, 44] and

references therein.

In order to find the necessary conditions of analytic integrability of a p : −q resonant

singular point there exist different algorithms. One of them is based on the transformation of

the original system to its normal form through a series of invertible changes of variables [2].

Another algorithm propose directly the formal first integral, see [41,44]. Recently the blow-up

method has been introduced to compute the necessary conditions, see [16].

Once the necessary conditions are obtained the second step is to prove their sufficiency.

There is no general algorithm that works for all differential systems in order to prove the

sufficiency. The sufficiency is guaranteed if, for instance, the system is Hamiltonian or time-

reversible. Recall that a time-reversible system is invariant by certain symmetry. The existence

of an explicit first integral well-defined in a neighborhood of the singular point guarantees

also the existence of a center in a monodromic singular point. This first integral can be

found through the knowledge of an integrating factor. The connections between integrating

factors an analytic first integrals have been studied by different authors, see [8, 13, 31, 41]

and references therein. Finally ad hoc methods to prove the sufficiency are used for some

particular families, see for instance [12, 13, 19, 32, 34–36, 40, 44]. All these different algorithms

to prove the sufficiency have been useless for certain differential systems. However, in [15]

the blow-up method is used to prove the sufficiency doing the resolution of the associated

recurrence differential equation using induction and all the open problems of previous works

have been solved.

We remark that for an isolated singularity the existence of a formal first integral implies

the existence of an analytic first integral, see [10, 41]. Consequently, to prove the sufficiency is

sufficient to prove the existence of a formal first integral. In [3] the formal integrability was

studied through the existence of invariant analytic (sometimes algebraic) curves.

In this paper we use the blow-up method to approach the center-focus problem for nilpo-

tent and degenerate monodromic singularities, also when there exists no formal integral. This

method that was successfully applied for resonant saddles and nondegenerate monodromic

singularities, is used here to determine necessary conditions. Also, it is also possible to prove

the sufficiency when the center is formally integrable. We solve open cases and cases previ-

ously studied with very difficult techniques.

2 Blow-up method for monodromic non-degenerate singular points

A monodromic non-degenerate singular point at the origin of a differential system on R2

takes the form

u̇ = v + P(u, v), v̇ = −u + Q(u, v), (2.1)

where P(u, v) and Q(u, v) are real analytic functions without constant and linear terms. Such

singular point is a center, if and only if, the system has a first integral of the form

Φ(u, v) = u2 + v2 + ∑
k+l≥3

φklu
kvl . (2.2)

analytically defined around it, see [37, 39]. Therefore, the center-focus problem reduces to the

case of proving the existence of such analytic first integral. From this result straightforward

emerge a method to determine the first necessary conditions to have a center, which consists in
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proposing a power series of the form (2.2). However the unique general method that enables

us to prove the sufficiency for this first necessary conditions is to use the method developed

in [15] solving the recurrence differential equation associated to the problem using induction.

The first step to apply the method is to complexify system (2.1) defining the complex

variable x = u + iv and system (2.1) becomes the equation ẋ = ix + R(x, x̄). Considering also

its complex conjugate equation we have the system

ẋ = ix + R(x, x̄), ˙̄x = −ix̄ + R̄(x, x̄).

If we define y := x̄ as a new variable and R̄ as a new function we obtain a complex system

which is after the change of time idt = dT written as

ẋ = x + G(x, y), ẏ = −y + H(x, y). (2.3)

The power series (2.2) is now transformed into

Ψ(x, y) = xy + ∑
i+j>2

ψijx
iyj,

verifying that XΨ = ∑i=1 v2i+1(xy)2i+2, where X is the vector field associated to system (2.3)

and v2i+1 are polynomials in the parameters of the system. We note that if all the polynomials

v2i+1 vanish then the power series Ψ(x, y) is first integral of system (2.3). The singular point

at the origin of system (2.3) is 1 : −1 resonant saddle singular point and the values v2i+1 are

the so-called saddle constants, see [41, 44].

When the 1 : −1 resonant saddle singular point at the origin is generalized into the p : −q

resonant saddle singular point at the origin then the differential system is of the form

ẋ = p x + F1(x, y), ẏ = −q y + F2(x, y), (2.4)

where F1 and F2 are analytic functions without constant and linear terms with p, q ∈ Z and

p, q > 0, see [14, 33, 44]. In this case a p : −q resonant saddle singular point is called a reso-

nant center, if an only if, there exists a meromorphic first integral Ψ = xqyp + ∑i+j>p+q ψijx
iyj

around it. We recall here that if Ψ(x, y) ∈ C[[x, y]], i.e, is a formal first integral in a neighbor-

hood of the singularity, then there also exists an analytic first integral.

The blow-up method to detect formal integrability for a resonant singular point works

as follows. We perform the blow-up (x, y) → (x, z) = (x, y/x) to system (2.4) which has a

resonant singular point at the origin. So that the origin is replaced by the line x = 0, which

contains two singular points that correspond to the separatrices of the resonant point at the

origin of system (2.4). These two singular points are a (p + q) : −p resonant saddle and a

(p + q) : −q resonant saddle that we call p1 and p2, respectively. The method is based on the

following result.

Theorem 2.1. The p : −q resonant singular point at the origin of system (2.4) is analytically inte-

grable if, and only if, either p1 or p2 is orbitally analytically linearizable.

The proof is based on the fact that if the p : −q resonant singular has an analytic first

integral Ψ(x, y) then both points p1 or p2 have also a well-defined analytic first integral given

by Ψ(x, zx). The sufficiency follows from Lemma 1 of [19] using the normal orbital form of the

p : −q resonant system (2.4) and the first integral of such normal orbital form. From Theorem

2.1 we deduce that the necessary conditions of integrability for the p : −q resonant singular
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point generate the same ideal that the necessary integrability conditions of the singular points

p1 or p2.

Hence we apply the blow-up z = y/x and system (2.4) is transformed into the system

ż = −(p + q)z + xF (x, z), ẋ = p x + x2G(x, z), (2.5)

where F (0, 0) = 0 and x = 0 is an invariant line of the new system. Next we propose the

power series H̃ = ∑
∞
i≥1 fi(z)xi, where fi(z) are arbitrary functions of z (in the case of formal

integrability these functions must be polynomials). Let X̄ be the vector field associated to

system (2.5). The lower terms of equation X̄ H̃ = 0 give the differential equation for f1(z)

given by p f1(z)− (p + q)z f ′1(z) = 0 whose solution is f1(z) = c1zp/(p+q). Taking into account

that f1(z) must be a polynomial we take c1 = 0 and consequently f1(z) = 0. The power

two of terms give the differential equation 2p f2(z) − (p + q)z f ′2(z) = 0 and its solution is

f2(z) = c2z(2p)/(p+q). Consequently, either (2p)/(p + q) ∈ N or we take c2 = 0. Taking

into account that p, q ∈ Z with p, q > 0 it always exists fk0
such that (k0 p)/(p + q) ∈ N (or

(k0q)/(p + q) ∈ N for saddle point p2). Finally, for each power of x of the equation X̄ H̃ = 0

we get the differential equation

k p fk(z)− (p + q) z fk
′(z) + gk(z) = 0, (2.6)

where gk(z) depends on some previous functions fi(z) for i = k0, . . . , k − 1. The solution of

differential equation (2.6) is given by

fk(z) = ck z
kp

p+q + z
kp

p+q

∫

z
−1− kp

p+q

p + q
gk(z) dz, (2.7)

where ck is an arbitrary constant. From (2.7) it is easy to see that functions fk in (2.7) are

always polynomials except when appear logarithmic terms. If the origin is not a resonant

center, always exists a value kr such that for k ≥ kr the functions fi(z) for i ≥ kr can have

logarithmic terms. In fact, the logarithmic term appears when there is a term s−1 in the

integral of (2.7). This is the case when

−1 − kr p

p + q
+ mk = −1,

where mk is the degree of the polynomial gk(s). So, we have kr = mk(p+ q)/p. The coefficients

of these logarithmic terms are the saddle constants of the original system (2.4).

Vanishing a certain number of saddle constants and checking that some of the next ones

are zero we can apply the following procedure. First we apply the induction method to prove

that the solution fk of recursive equation (2.6) is always a polynomial to assure that system

(2.5) has a formal first integral. Second, to prove the sufficiency of the original system (2.4)

we can apply the following result.

Theorem 2.2. Assume that system (2.5) has a formal first integral H̃(x, z). If the function H̃ =

H̃(x, y/x) is well-defined at the origin of system (2.4) then this system is analytic integrable in a

neighborhood of the origin.

The idea of the method is to study the connected singular points at infinity and if they

are formally integrable and the first integral can be extended up to the origin then the origin

is also formally integrable. The reason of why the coordinates (x, z = y/x) are better than
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the original coordinates (x, y) is double. First because doing the blow-up we introduce x as a

invariant curve of the new differential system and then we can propose an expansion passing

through the origin in powers of x with coefficients as functions of z. The second is because the

in the new variables (x, z) the coefficients functions of z are polynomials with perhaps some

logarithmic terms, see [3]. This does not happens in the original variables, where the system

may not have any invariant curve and if it does then the coefficient of the expansion do not

have to be polynomial.

In this work we apply the same method to nilpotent and degenerate monodromic singu-

larities in order to solve the center-focus problem. For degenerate monodromic singularities

there is no general method to approach the center-focus problem. The method shows that the

formal integrability of the points at infinity is intimately linked with the center problem at

the origin even though the center at the origin is not formally integrable. The method deter-

mine center conditions for monodromic singularities which are algebraically solvable. In the

following sections we solve several non trivial examples. The method can also be applied to

systems that are not formally integrable at the monodromic singular point giving information

for studying the center-focus problem.

3 Nilpotent monodromic singularities

In this section we consider different systems with a nilpotent singularity, and we study, using

the blow-up method, the center-focus problem of such systems.

Proposition 3.1. The nilpotent real cubic differential system

ẋ = y + Ax2y + Bxy2 + Cy3, ẏ = −x3 + Px2y + Kxy2 + Ly3. (3.1)

is a center if and only if P = B + 3L = (A + K)L = 0.

Proof. In [9] was solved the center-focus problem of the nilpotent cubic system (3.1) construct-

ing a Liapunov function and using different methods to prove the sufficiency. Indeed it is

well-known that all the centers are analytically (hence formally) integrable, see [7]. Later in

[22,27] the center-focus problem of such system is also solved using the fact that all the nilpo-

tent centers are limit of non-degenerate centers. Here, we apply the blow-up method to solve

it. Hence, applying the blow-up transformation

(x, y) → (z, y) = (x/y, y) (3.2)

system (3.1) becomes

ż = 1 + Cy2 + By2z − Ly2z + Ay2z2 − Ky2z2 − Py2z3 + y2z4,

ẏ = y3(L + Kz + Pz2 − z3),
(3.3)

which has a regular point at the origin. Therefore system (3.3) is analytic integrable at the

origin and the recursive differential equation do not generate logarithmic terms. Next, we

propose the power series

H(z, y) =
∞

∑
k=2

fk(z)y
k. (3.4)
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We impose that Ḣ = ż∂H/∂z + ẏ∂H/∂y = 0 and equating to zero each coefficient of power of

y we obtain the following recursive differential equation for the functions fk

(k − 1)(L + Kz + Pz2 − z3) fk−1 + (C + Bz − Lz + Az2 − Kz2 − Pz3 + z4) f ′k−1 + f ′k+1 = 0. (3.5)

Solving for the first values of k we can take fk = 0 for all k odd and for k even we find f2 = c2,

where c2 is an arbitrary integration constant that we can take c2 = 1, then we have

f4 =
1

6
(−12Lz − 6Kz2 − 4Pz3 + 3z4) + c4,

f6 =
1

630
(P6(z)− 60Pz7) + c6.

In order to have a polynomial in the original variables (x, y) we must to take P = 0. Then f8

is a polynomial of degree 9 of the form

f8 =
1

83160

(

P8(z)− 3696(B + 3L)z9
)

+ c8.

In this case we have to take B + 3L = 0. Taking B = −3L then f10 is a polynomial of degree

15 given by

f10 =
1

83160

(

P10(z)− 5896800(A + K)Lz11
)

+ c10.

If (A+K)L = 0 we have checked that some of the next fk for k even are all of degree at most k.

Now, we assume that fs have degree s for s = 2, 4, . . . , k − 1 and solving the recursive equation

(3.5) we obtain

fk+1(z) =−
∫

(k − 1)(L + Kz − z3) fk−1 + (C − 4Lz + (A − K)z2 + z4) f ′k−1 (3.6)

where it is easy to see that the higher terms cancel, that is, if we introduce fk−1(z) = C0 +C1z+

· · · + Ck−1zk−1 in (3.6) we get a polynomial for fk+1 of degree at most k + 1. Consequently,

we have proven the sufficiency since we have a formal first integral at the origin that in the

original variables (x, y) is also formal for all the center cases. Here the blow-up method gives

straightforward the necessary conditions and the sufficiency for all cases and in a unified

method for all the center cases.

Proposition 3.2. Consider the nilpotent differential system

ẋ = Ax3 + By, ẏ = Cx5 + Dx2y, (3.7)

where the unique monodromic condition is (D − 3A)2 + 12BC < 0. It has a center at the origin if and

only if 3A + D = 0.

Proof. The monodromic and center-focus problem of system (3.7) has been solved in [1]. In-

deed, system (3.7) is a (1, 3)-quasihomogeneous system and consequently, V(x, y) = Cx6 −
3Ax3y + Dx3y − 3By2 is an inverse integrating factor of (3.7). In fact such (p, q)-quasihomo-

geneous systems of degree r has a unique center condition given by

∫

Fr(ϕ)

Gr(ϕ)
dϕ = 0 (3.8)
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where

Gr(ϕ) = p Qp+r(cos ϕ, sin ϕ) cos ϕ − q Pq+r(cos ϕ, sin ϕ) sin ϕ,

Fr(ϕ) = Pp+r(cos ϕ, sin ϕ) cos ϕ + Qq+r(cos ϕ, sin ϕ) sin ϕ.

using the weighted polar blow-up (x, y) → (ρ, ϕ) given by x = rp cos ϕ, y = rq sin ϕ. Never-

theless, the computation of condition (3.8) is very demanding and sometimes impossible, see

[23,24]. However applying the blow-up method we compute the center condition in a straight-

forward way. We proceed in a similar way as in the previous example. After transformation

(3.2) system (3.9) becomes

ż = B + Ay2z3 − Dy2z3 − Cy4z6,

ẏ = y3z2(D + Cy2z3).
(3.9)

Since B ̸= 0 by the monodromic condition we have that the origin of system (3.9) is also a

regular point. Therefore system (3.9) has an analytic first integral around its origin. Hence, we

look for a power series of the form (3.4). We compute Ḣ = ż∂H/∂z + ẏ∂H/∂y for system (3.9)

and equating to zero the coefficients of the same power of y yields the following recurrence

differential equation

(k − 4)Cz5 fk−4 + (k − 2)Dz2 fk−2 − Cz6 f ′k−4 + (Az3 − Dz3) f ′k−2 + B f ′k = 0.

We take fk = 0 for k odd and for k even we can take f2(z) = 1 and

f4(z) =
1

3B
(−2Dz3) + c4,

f6(z) =
1

9B2
(−3BC + 3AD + D2)z6 + c6,

f8(z) =
1

27B3
(P8(z)− 2(3A + D)(AD − BC)z9) + c8,

where P8 is a polynomial of at most degree 8. In order to have a polynomial in the original

variables (x, y) we must to take (3A + D)(AD − BC) = 0. So we impose 3A + D = 0 because

the other one is not compatible with the monodromic condition. In this case f10 takes the form

f10(z) =
1

3B2
(24ABc8z3 + 36A2c6z6 − 3BCc6z6 − 4ACc4z9 + 3B2c10).

We can take all c4 = c6 = c8 = c10 = 0 and then f10(z) = 0 and also take fk = 0 for all k ≥ 10.

Next we define

H = f2

( x

y

)

y2 + f4

( x

y

)

y4 + f6

( x

y

)

y6 + f8

( x

y

)

y8

= y2 +
2A

B
x3y − C

3B
x6,

which is a polynomial first integral of system (3.7) and therefore it has a center at the ori-

gin. Here the computation of the necessary condition is straightforward unlike other known

methods and our method also gives directly the sufficiency.

Proposition 3.3. The nilpotent differential system

ẋ = y + x2, ẏ = −x3 + cx4, (3.10)

has not any analytic first integral at the origin and it has a center at the origin if and only if c = 0.
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Proof. First we apply the blow-up transformation (3.2) and system (3.10) becomes

ż = 1 + yz2 + y2z4 − cy3z5, ẏ = y3z3(−1 + cyz), (3.11)

We propose a power series of the form (3.4) and impose that Ḣ = ż∂H/∂z + ẏ∂H/∂y = 0 for

system (3.11) and we get the following recurrence differential equation

(k − 3)cz4 fk−3 − (k − 2)z3 fk−2 − cz5 f ′k−3 + z4 f ′k−2 + z2 f ′k−1 + f ′k = 0

and we can, as in previous case, take f2(z) = 1, and f3(z) = c3,

f4(z) =
1

2
z4 + c4, f5(z) =

1

60
(45c3z4 − 24cz5 − 20z6) + c5.

However, it is not possible to get a polynomial from f5 in the original variables (x, y). There-

fore the analytic first integral at infinity cannot be extended to the origin of system (3.10). This

also implies system (3.10) has not an analytic first integral at the origin. Next we propose a

power series of the form

V(z, y) =
∞

∑
k=1

vk(z)y
k. (3.12)

and we impose that this V satisfies the equation

ż∂V/∂z + ẏ∂V/∂y − (∂ż/∂z + ∂ẏ/∂y)V = 0, (3.13)

which is the equation of the inverse integrating factor. As an inverse integrating factor is

not coordinates free (as happens for a first integral) and it is affected by the Jacobian of the

transformation when we come back to the original coordinates. In this case the recurrence

differential equation is

6cz4vk−3 − 7z3vk−2 − 2zvk−1 − cz5v′k−3 + z4v′k−2 + z2v′k−1 + v′k = 0.

Without loss of generality we now take v1 = 1. Then v2 = z2 + c2, and

v3(z) =
1

2
(2c2z2 + z4) + c3,

v4(z) =
1

20
(20c3z2 + 15c2z4 − 8cz5) + c4,

v5(z) = 5
1

420
(420c4z2 + 420c3z4 − 252c c2z5 + 35c2z6 + 12cz7) + c5.

Taking into account that the inverse integrating factor for system (3.10) is obtained multiplying

the power series (3.12) by the Jacobian of the transformation, we have to take c = 0 in a

polynomial v5 to ensure that V is polynomial in the original variables (x, y). Then

v6 =
1

10080
(10080c5z2 + 12600c4z4 + 1680c3z6 + 525c2z8) + c6.

Choosing c2 = c3 = c4 = c5 = c6 = 0 then v6 = 0 and we can choose vk = 0 for all k ≥ 5.

Consequently,

V = v1

( x

y

)

y + v2

( x

y

)

y2 + v3

( x

y

)

y3 + v4

( x

y

)

y4 = y + x2 +
x4

2y
.
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The inverse integrating factor of system (3.10) is obtained multiplying V by the Jacobian of

the transformation

V = yV = y2 + x2y +
x4

2
.

For a general monodromic nilpotent singularity the existence of an inverse integrating factor in

a neighborhood of singularity does not guarantees the existence of a center at this singularity,

but for the nilpotent monodromic singularities with leading term (y,−x3) this is true, see the

result in [6, 20]. System (3.10) with c = 0 was studied in [11], where it was proved that there

exists no analytic first integral. Consequently, here we have used the blow–up method to find

an inverse integrating factor of system (3.10) which gives the condition c = 0 implying that

system (3.10) has a center at the origin if and only if c = 0.

Proposition 3.4. Consider the nilpotent differential system

ẋ = y + ax2 + 5xy2, ẏ = −2x3 + 3xy2 − 4y3, (3.14)

where a ∈ R. The first necessary condition of system (3.14) to have a center is −98+ 47a2 + 20a4 = 0.

Moreover system (3.14) always has a focus at the origin.

Proof. System (3.14) has a monodromic singular point at the origin if and only if |a| < 2, see

[27]. Applying the blow-up transformation (3.2) system (3.14) takes the form

ż = 1 + 9y2z + ayz2 − 3y2z2 + 2y2z4, ẏ = −y3(4 − 3z + 2z3). (3.15)

We propose directly a power series of the form (3.12) and we impose that this V satisfies the

equation (3.13). Recall that the transformation to the original variables (x, y) will be affected

by the Jacobian of the transformation. In this case the recurrence differential equation is

(

3(k − 3)z − (4k − 11)− 2(k − 1)z3
)

vk−2 − 2azvk−1 +
(

9z − 3z2 + 2z4
)

v′k−2 + az2v′k−1 + v′k = 0

and we can, as above, take v1(z) = 1, and v2(z) = az2 + c2, v3(z) = z + ac2z2 + z4 + c3

v4(z) = 5c2z − 3

2
c2z2 + ac3z2 − 4az3 +

3

4
az4 +

3

2
c2z4 + c4,

v5(z) =
1

60
(P5(z) + 60z6 − 15a2z6 + 10ac2z6) + c5,

v6(z) =
1

1680
(P7(z)− 525az8 + 210a3z8 + 630c2z8 − 140a2c2z8) + c6,

where Pi(z) are determined polynomials of degree i. Taking into account that in the original

variable the inverse integrating factor is V = yV the coefficient in the term with z8 in v6 must

be zero. Then, we have −525a + 210a3 + 630c2 − 140a2c2 = 0 which yields

c2 =
3(2a3 − 5a)

2(2a2 − 9)
,

if 2a2 − 9 ̸= 0. Recall that if 2a2 − 9 = 0 this is not a monodromic case. Next, v7 has the form

v7(z) =
P8(z) + (14112 − 9904a2 − 1376a4 + 640a6)z9

1680(2a2 − 9)
+ c7,
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where P8(z) is a determined polynomial of degree 8. The coefficient of the term with mono-

mial z9 must vanish, so,

16(−9 + 2a2)(−98 + 47a2 + 20a4) = 0.

The unique real roots of this polynomial satisfying the monodromic condition |a| < 2 are

a = ±1.153741. This last numerical value was obtained by Varin in [42] using the Bautin

method after doing a generalized polar blow-up. The method developed in [42, 43] is not

useful to compute the algebraic condition −98 + 47a2 + 20a4 = 0. Moreover, with our method

we can distinguish between a center and a focus. If we compute more terms of the power series

V the powers in z that must be zero have not a common root. Therefore, the origin of system

(3.14) is always a focus. The algebraic necessary center condition −98 + 47a2 + 20a4 = 0 was

also obtained in [27] using a more involved method based in the result that all the nilpotent

centers are limit of non-degenerate centers. The fact that, under monodromy the origin of

(3.14) is always a focus was also derived in Proposition 26 of [21]. Here we also use that

the existence of a formal inverse integrating factor defined around a nilpotent monodromic

singularity with leading term (−y, x3) is a necessary and sufficient condition to have a center

at the singularity, see [6, 20].

4 Degenerate monodromic singularities

In this section we consider different systems with a degenerate singularity, and using the

blow–up method we study the center-focus problem. The examples proposed here show the

narrow relation between the center problem and the existence of a first integral for the singular

points at infinity. The necessary conditions founded by the method do not always correspond

to trivial cases of centers.

Proposition 4.1. Consider the differential system

ẋ = x2y + ax5 + y5, ẏ = −xy2 − x5 + bx4y, (4.1)

where a, b ∈ R. System (4.1) has a center at the origin if and only if 5a + b = 0.

Proof. In [5] it is proved that the origin of system (4.1) is always monodromic. Moreover,

system (4.1) has characteristic directions because the homogeneous polynomial xqn(x, y) −
ypn(x, y), where pn and qn are the lower homogeneous terms of system (4.1), has real roots.

When the singular point has characteristic directions it is not possible to apply the Bautin

method in order to solve the center-focus problem, see [25].

After applying the blow-up transformation (3.2) system (4.1) takes the form

ż = y2 + 2z2 + ay2z5 − by2z5 + y2z6

ẏ = − yz(1 − by2z3 + y2z4).
(4.2)

Now, we look for a power series of the form (3.4) and we compute Ḣ = (∂H/∂z)ż+ (∂H/∂y)ẏ

for system (4.2). We obtain the following recursive differential equation

(k − 2)z4(b − z) fk−2 − kz fk + (1 + az5 − bz5 + z6) f ′k−2 + 2z2 f ′k = 0
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Solving for the first values of k we can take fk = 0 for all k odd and for k even we find f2 = 0,

f4 = z2 + c4 where c4 is an arbitrary integration constant, and

f6 =
1

6
(2 − 3az5 − 3bz5 + 2z6) + c6,

f8 = − 1

80
z3(100a + 20b − 240bc6 − 25a2z5 − 30abz5

− 5b2z5 + 20az6 + 4bz6 − 80zc8 − 240c6z log z),

where c6 and c8 are arbitrary constants. Since f8 must be a polynomial we have to impose

c6 = 0 and since it must be a polynomial in the original variables (x, y) we have to impose

that the terms in z9 vanish, that is, 5a + b = 0. Under this restrictions we have that

f10 = c8z2

(

2

3
+ 4az5 +

2

3
z6

)

+ c10z5.

Then taking c8 = c10 = 0 we get f10 = 0 and we can choose fk = 0 for all k ≥ 10. Consequently

H = f4

( x

y

)

y4 + f6

( x

y

)

y6 + f8

( x

y

)

y8 =
x6

3
+ 2ax5y + x2y2 +

y6

3
,

which is a polynomial first integral of system (4.1). Therefore, when 5a + b = 0 system

(4.1) has a center at the origin. It remains to see that if 5a + b ̸= 0 then system (4.1) has a

focus at the origin. From [5, Theorem 2.3] is derived the geometric criteria for proving that

if 5a + b ̸= 0 then system (4.1) has a focus at the origin, see Proposition 3.19 in [5]. Here

our blow-up method gives straightforward the necessary condition while for applying the

geometric criteria the necessary condition is needed.

Proposition 4.2. Consider the differential system

ẋ = x2y + ax3 + y5, ẏ = −xy2 + bx2y − x3, (4.3)

where a, b ∈ R. System (4.3) has a center at the origin if and only if 3a + b = 0.

Proof. The origin of system (4.3) is monodromic if and only if, (a− b)2− 8 < 0, see [5]. System

(4.3) has also characteristic directions. Applying the blow-up (3.2) system (4.3) takes the form

ż = y2 + 2z2 + az3 − bz3 + z4

ẏ = − yz(1 − bz + z2),
(4.4)

after a scaling of time. Now, we compute Ḣ = (∂H/∂z)ż+(∂H/∂y)ẏ for system (4.4) where H
is a power series of the form (3.4) and we obtain the following recursive differential equation

−5z(1 − bz + z2) fk + f ′k−2 + (2z2 + az3 − bz3 + z4) f ′k = 0.

Doing the computations of the first fk we must to take f2 = f3 = 0 in order to be polynomials

and

f4 = c4e
−

2(3a+b) arctan

(

a−b+2z√
8−(a−b)2

)

√
8−(a−b)2 z2(2 + z(a − b + z)).

where in order to have a polynomial we have to take 3a + b = 0 and without loss of generality

c4 = 1.
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Next we must to take f5 = 0 and f6 = (2+ 3z3(2+ 4az + z2)3/2c6)/3, and taking c6 = 0 we

have f6 = 2/3. Next, f7 = 0 and f8 = c8z4(2 + 4az + z2)2. Then taking c8 = 0 we obtain f8 = 0

and we can choose fk = 0 for all k ≥ 8. Consequently

H = f4

( x

y

)

y4 + f6

( x

y

)

y6 + f8

( x

y

)

y8 = x4 + 4ax3y + 2x2y2 +
2y6

3
,

which is a polynomial first integral of system (4.3). Finally to see that for 3a + b ̸= 0 we have

a focus at the origin, we use also the geometric criteria developed from [5, Theorem 2.3]. In

Proposition 3.16 [5] is that system (4.3) has a focus if 3a + b ̸= 0. As in the example before the

blow-up method gives the necessary condition directly.

Proposition 4.3. Consider the degenerate differential system

ẋ = cx2y + f xy2 + dy3, ẏ = c̃xy2 + f y3 + ax5. (4.5)

If the origin of system (4.5) is monodromic then it is a center if, and only if, f = 0.

Proof. In [38] Medvedeva studied the stability problem of the origin of system(4.5). The first

non zero focal value of system (4.5) was given in [38] through a complicate and involved

method using several blow-up transformations. The monodromy problem for system (4.5)

was solved in [5] where the following result was given.

Lemma 4.4. The origin of system (4.5) is monodromic if and only if one of the following conditions

holds:

a) d a < 0, (c̃ − c)(c̃ − 2c) > 0 and d(c̃ − c) < 0

b) d a < 0, c̃ − c = 0 and cd > 0.

c) d a < 0, c̃ − 2c = 0 and ca > 0.

Applying the blow-up transformation (3.2) to system (4.5), the new differential system

takes the form
ż = d + cz2 − c̃z2 − ay2z6,

ẏ = y (c̃z + ay2z5 + f )
(4.6)

with the change of time dτ = y2dt. From the monodromic condition we know that d ̸= 0.

System (4.6) has a regular point at the origin and consequently, an analytic first integral around

the origin and the recursive differential equation do not generate logarithmic terms. Then the

question is if this analytic first integral at infinity can be extended to the origin of the original

system (4.5). In this case the recursive differential equation is

(k − 2)az5 fk−2 + k(c̃z + f ) fk − az6 f ′k−2 + (d + cz2 − c̃z2) f ′k = 0.

Then if fi = 0 for i = 1, . . . , k − 2 we have that the value of fk is

fk = cke
−

k f arctan

(√
c−c̃ z√

d

)

√
c−c̃

√
d (d + (c − c̃)z2)

− k c̃
2(c−c̃) .

In order to have a well defined function in the original variables (x, y) we have to impose

f = 0. Moreover, under the monodromic condition system (4.5) has a center at the origin

since it is invariant with respect to the symmetry (x, y, t) → (−x, y,−t).
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To finish the proof we see that if f ̸= 0 then system (4.5) has a focus at the origin. We

apply the geometrical criteria developed in [5, Theorem 2.3]. Consider the vector field

Xc = (cx2y + dy3)
∂

∂x
+ (c̃xy2 + ax5)

∂

∂y
,

which has a center at the origin. Let X the vector field associated to system (4.5). Then we

compute that

X ∧ Xc = f y2(ax6(c̃ − c)x2y2 − dy4)

which is semi-definite under the monodromic conditions of Lemma 4.4 and by Theorem 2.3

of [5] if f ̸= 0 system (4.5) has a focus at the origin.

Finally we consider the differential system

ẋ = y3 + 2ax3y + 2x(αx4 + βxy2),

ẏ = − x5 − 3ax2y2 + 3y(αx4 + βxy2),
(4.7)

where α, β, a ∈ R. In [4] it was proven that system (4.7) with αβ ̸= 0 is not orbitally

reversible nor formally integrable. Moreover there are values of (α, β, a) with a ̸= 0 and with

the monodromic condition |a| < 1/
√

6 such that the origin of system (4.7) is a center. In fact

the center condition is not algebraic in the parameters. In [23] it was also identified the center

condition using the existence of an inverse integrating factor. Therefore the center problem is

not algebraically solvable. As we will see, if we apply the blow-up method proposing a power

series verifying the first integral equation we only find the algebraically solvable centers. So

we will propose a power series satisfying the inverse integrating equation. Applying the

blow-up (3.2) to system (4.7), the new differential system takes the form

ż = 1 + 5ayz3 + y2z6 − y2z5α − yz2β

ẏ = − y2z(3az + yz4 − 3yz3α − 3β),
(4.8)

after the scaling of time dτ = y2dt. Looking for a power series of the form (3.4) and computing

the equation that satisfies a first integral we get only the center condition α = β = 0 (the

reader can follow the steps seeing the previous examples). Therefore the analytic first integral

at infinity cannot always be extended to the origin of system (4.7). Next, we propose a power

series of the form

F (z, y) = yk2

∞

∑
k=0

vk(z)y
k, (4.9)

where k2 ∈ Q and we impose that it satisfies the equation of certain inverse integrating factor

ż∂F/∂z+ ẏ∂F/∂y = k1(∂ż/∂z+ ∂ẏ/∂y)F , where k1 ∈ R. The recurrence differential equation

is

(−(k − 2)z5 − 3k1z5 − k2z5 + 3(k − 2)z4α − 4k1z4α + 3k2z4α)vk−2

+ (−3(k − 1)az2 − 9ak1z2 − 3ak2z2 + 3(k − 1)zβ − 4k1zβ + 3k2zβ)vk−1

+ (z6 − z5α)v′k−2 + (5az3 − z2β)v′k−1 + v′k = 0
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and we can take v0(z) = 1, and

v1(z) = 3ak1z3 + ak2z3 + 2k1z2β − 3

2
k2z2β + c1,

v2(z) =
1

6
k2z6 +

1

2
a2(9k2

1 + 6k1(k2 − 2) + (k2 − 4)k2)z
6 − 3

5
k2z5α

− 3

2
c1z2β − 3

2
c1k2z2β + 2k2

1z4β2 +
3

8
k2z4β2 +

9

8
k2

2z4β2

+
1

10
az3
(

10 c1(1 + 3k1 + k2)

+ (60k2
1 + 3(7 − 5k2)k2 − k1(28 + 25k2))z

2β
)

+
1

10
k1(5z6 + 8z5α + 20c1z2β − 5(1 + 6k2)z

4β2) + c2.

We do not write here the value of v3(z) due to its length. Now, choosing the values of k1,

k2, c1, c2 and c3 we impose that v3(z) = 0. One solution is k1 = 12/13 and k2 = 16/13 and

c1 = c2 = c3 = 0 which implies vk = 0 for all k ≥ 3. Consequently,

F = yk2

(

v0

( x

y

)

+ v1

( x

y

)

y + v2

( x

y

)

y2
)

=
2x6 + 12ax3y2 + 3y4

3y36/13
.

The inverse integrating factor for system (3.10) is obtained by multiplying V = F 13
12 by the

Jacobian of the transformation and the change of time made, i.e.

V = y3V = y3F 13
12 =

(

y2 + x2y +
x4

2

)

13
12

.

For a degenerate singular point the existence of an inverse integrating factor defined around

the singular point does not guarantee the existence of a center at the singular point. In fact

for system (4.7) an extra nonalgebraic condition in the parameters is needed, see [4, 23].
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Abstract. In this paper, we consider of the following second-order Hamiltonian system

ü(t)− L(t)u(t) +∇W(t, u(t)) = 0, ∀t ∈ R,

where W(t, x) is subquadratic at infinity. With a competition condition, we establish the
existence of homoclinic solutions by using the variational methods. In our theorem, the
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1 Introduction

In this paper, we consider the following Hamiltonian system

ü(t)− L(t)u(t) +∇W(t, u(t)) = 0, ∀t ∈ R, (1.1)

where W ∈ C1
(

R × R
N , R

)

, L ∈ C
(

R, R
N2
)

is a symmetric matrix valued function and

∇W(t, x) denotes the gradient with respect to the x variable. A nontrivial solution u(t) of

problem (1.1) is homoclinic if u(t) → 0, u̇(t) → 0 as t → ±∞ and u(t) ̸≡ 0.

The importance of homoclinic solutions for Hamiltonian systems in studying the dynamic

behavior has been recognized. In recent years, many mathematicians used the variational

methods to show the existence and multiplicity of homoclinic solutions for systems (1.1) with

different growth conditions on W(t, x). In this paper, we only consider the subquadratic cases.

In [5], Ding assumed

BCorresponding author. Email: wudl2008@163.com
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(L′) letting l(t) ≡ inf|q|=1(L(t)q, q), there exists ξ > 1 such that

|t|−ξ l(t) → +∞, as |t| → +∞.

By (L′), Ding showed a compact embedding theorem from H1(R) to Lp(R) for p ∈ (1,+∞].

Under some other subquadratic conditions on W(t, x) with respect to x, Ding obtained the

existence and multiplicity of homoclinic solutions for systems (1.1). This result has been

generalized by many mathematicians. For example, in [19], Zhang introduced condition

(L′′) There exists a constant l0 > 0 such that l(t) + l0 ≥ 1 for all t ∈ R and
∫

R

(l(t) + l0)
−1 dt < ∞. (1.2)

By (L′′), the embedding H1(R) →֒ L1(R) is compact. Obviously, (L′′) is weaker than (L′)

and both of these two conditions yield that l−1(t) decays fast at infinity. When l−1(t) has a

slow decay at infinity, it is difficult for us to obtain such compact embeddings. In this case,

we can consider the decaying rate of W(t, x) at infinity with respect to t. Let us consider

the pure power nonlinearities with weight functions, i.e. W(t, x) = a(t)|x|ν(ν ∈ (1, 2)). In

[23], Zhang and Yuan assumed that a(t) belongs to L2(R, R
+) ∩ L

2
2−ν (R, R

+) to make sure

the corresponding functional is well defined and show the convergence of the (PS) sequence.

This condition is weakened by Sun, Chen and J. Nieto [12] by just requiring a ∈ L
2

2−ν (R, R
+).

In 2014, Lv and Tang [11] obtained homoclinic solutions for systems (1.1) with more general

weight functions where a ∈ Lp(R, R) for some p ∈
(

1, 2
2−ν

]

. The readers are referred to

[1–3, 6–10, 13–18, 20–22] for more details.

From above papers, we know that, the decaying rates of l−1(t) and a(t) at infinity are

important for us in finding homoclinic solutions of (1.1). There is an interesting question

that whether systems (1.1) possesses homoclinic solutions when a(t) is unbounded or l(t) is

oscillating (which means lim inf|t|→∞ l(t) < +∞ and lim sup|t|→∞ l(t) = +∞)? Motivated by

the above analysis, we are encouraged to find a twisted condition between l(t) and a(t) which

can be stated as follows:

(W0) For b ∈ [1, 2] and µ ∈ (1, 2), there exist γ ∈
(

b, 2b
2+b−bµ

]

and k ∈
[

0, γ−b
bγ

]

such that
a(t)

(l(t))k ∈ Lγ(R).

More precisely, we obtain the following theorem.

Theorem 1.1. Suppose that (W0) holds for b = 2 and

(L1) one of the following statements holds:

(i) L ∈ C2(R, R
N2
) and ((L′′(t)− κL(t))x, x) ≤ 0 for all |t| ≥ r̄1 and x ∈ R

N ;

(ii) L ∈ C1(R, R
N2
) and |L′(t)x| ≤ κ|L(t)x| for all |t| ≥ r̄1 and x ∈ R

N

with some κ > 0 and r̄1 > 0, where L′(t) = (d/dt)L(t) and L′′(t) = (d2/dt2)L(t);

(L2) there exists M0 > 0 such that l(t) ≥ M0 for all t ∈ R, where l(t) ≡ inf|u|=1(L(t)u, u);

(W1) W(t, 0) ≡ 0, there exists a ∈ C (R, R
+) such that |∇W(t, x)| ≤ a(t)|x|µ−1;

(W2) there exist λ ∈ (1, 2), η > 0, ζ > 0 and open set Ω ⊂ R such that

W(t, x) ≥ η|x|λ, ∀(t, x) ∈ Ω × R
N , |x| ≤ ζ.

Then system (1.1) possesses at least one nontrivial homoclinic solution.

(L1) is assumed to show all the critical points of corresponding functional for systems
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(1.1) are classical homoclinic solutions, which is introduced in [5]. In [11, 13, 18], the authors

only considered the homoclinic solutions in sense of u(t) → 0 as |t| → ∞ while we consider

the classical ones. To obtain the asymptotic behavior of the solutions at infinity, we can also

consider the following condition

(L3) there exist δ > 0, D > 0, q ∈ [1, 2] and r0 > 0 such that

∫ t+δ

t
l̂q(s)ds ≤ D

for all |t| ≥ r0, where l̂(t) ≡ sup|u|=1(L(t)u, u).

It is easy to see that (L3) holds if all the eigenvalues of L(t) are bounded from above. Then

(L3) can be seen as a generalization of the following bounded condition

(L4) there exists R > 0 such that

(L(t)u, u) ≤ R|u|2, ∀(t, u) ∈ R × R
N .

Then we obtain the following theorem.

Theorem 1.2. Suppose (L2), (L3), (W1), (W2) and (W0) hold with b = q, then system (1.1)

possesses at least one nontrivial homoclinic solution.

Remark 1.3. In our theorems, condition (W0) is a class of competition conditions between

a and l. When 0 < inft∈R l(t) ≤ supt∈R
l(t) < ∞, (W0) reduces to a(t) ∈ Lγ(R), which is

required in [12, 13, 18, 22]. There are examples satisfying the conditions of Theorems 1.1 and

1.2 but not the results in [2, 5, 7–14, 16–23].

Example 1.4 (Oscillating example for Theorem 1.1). Let L(t) = l(t)IdN and W(t, x) = a(t)|x|
8
5 ,

where

l(t) =

{

sin (ln 2) + 1 for |t| < 1,

t
6
7

(

sin
(

ln(t2 + 1)
)

+ 1
)

+ 1 for |t| ≥ 1,

a(t) = t
1

20
(

sin
(

ln(t2 + 1)
)

+ 1
)

3
10

and IdN is the identity matrix of order N. It is easy to see that

lim inf
|t|→∞

l(t) = 1, lim sup
|t|→∞

l(t) = +∞, lim inf
|t|→∞

a(t) = 0 and lim sup
|t|→∞

a(t) = +∞.

Hence l(t), a(t) are neither coercive nor bounded from above and l−1(t), (a(t))p ̸∈ L(R) for

any p ∈ (1, 5]. However, this example satisfies the conditions of Theorem 1.1 with γ = 5 and

k = 3
10 . Here, we only need to show condition (L1) is fulfilled while the other conditions can

be easily checked. To check (L1), we show (ii) holds, which can be verified by the following

inequality

(

6

7
t−

1
7 sin

(

ln(t2 + 1)
)

+
2t

13
7

t2 + 1
cos

(

ln(t2 + 1)
)

)

|x| ≤
(

t
6
7
(

sin
(

ln(t2 + 1)
)

+ 1
)

+ 1
)

|x|

for all x ∈ R
N and |t| large enough.
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Example 1.5 (Coercive example for Theorem 1.1). There are also examples in which l(t) and

a(t) are both coercive. Let L(t) =
(

t6 + 1
)

IdN and W(t, x) = t
2
5 |x|

3
2 . If we choose γ = 4 and

k = 1
4 , (W0) is fulfilled. Moreover, other conditions of Theorem 1.1 can be easily checked.

However this example does not satisfy the results in [2, 5, 7–14, 17–23].

Example 1.6 (Oscillating example for Theorem 1.2). Let

g(t) =



























2n
8
9

(

n
8
9 + 1

)

|t| − 2n
17
9 (n

8
9 + 1), n ≤ |t| < n + 1

2
(

n
8
9 +1
) ,

−2n
8
9

(

n
8
9 + 1

)

|t|+ 2n
17
9
(

n
8
9 + 1

)

+ 2n
8
9 , n + 1

2
(

n
8
9 +1
) ≤ |t| ≤ n + 1

n
8
9 +1

,

0, otherwise

(1.3)

and

m(t) =























2n
1

72

(

n
8
9 + 1

)

|t| − 2n
73
72

(

n
8
9 + 1

)

, n ≤ |t| < n + 1

2
(

n
8
9 +1
) ,

−2n
1

72

(

n
8
9 + 1

)

|t|+ 2n
73
72

(

n
8
9 + 1

)

+ 2n
1
72 , n + 1

2
(

n
8
9 +1
) ≤ |t| ≤ n + 1

n
8
9 +1

,

0, otherwise

(1.4)

for all n ∈ N∪{0}. We see that g(t), m(t) ≥ 0 and g ̸∈ L(R), m ̸∈ L(R). Let a(t) = m(t)+ e−|t|

and L(t) = l(t)IdN , where l(t) =
√

g(t) + 1. Obviously,

lim inf
|t|→∞

l(t) = 1, lim sup
|t|→∞

l(t) = +∞, lim inf
|t|→∞

a(t) = 0, lim sup
|t|→∞

a(t) = +∞.

Choosing q = 2 and δ = 1
4 , we deduce from the definitions of l̂ and g that

∫ t+ 1
4

t
l̂2(s)ds =

∫ t+ 1
4

t
l2(s)ds =

∫ t+ 1
4

t
(g(s) + 1)ds

≤
1

2

[

∑
i=[|t|]−1,[|t|],[|t|]+1

i
8
9

i
8
9 + 1

]

+
1

4

≤
7

4

for |t| is large enough. Then (L3) is checked. Moreover, l−1(t) , (a(t))p ̸∈ L(R) for any p > 1.

Here we only give the proof for (a(t))p ̸∈ L(R). It follows from the definition of a(t) that

∫

R

ap(s)ds ≥
∞

∑
n=0

∫ n+ 1

2

(

n
8
9 +1

)

n
mp(s)ds

=
∞

∑
n=0

∫ n+ 1

2

(

n
8
9 +1

)

n

(

2n
1
72

(

n
8
9 + 1

)

s − 2n
73
72

(

n
8
9 + 1

))p
ds

=
∞

∑
n=0

n
p

72

2(p + 1)
(

n
8
9 + 1

)

= +∞
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which implies (a(t))p ̸∈ L(R) for all p > 1. Finally, we show (W0) is fulfilled with b = q = 2.

Set W(t, x) = a(t)|x|
3
2 . Choosing γ = 4 and k = 1

4 , from (1.3) and (1.4), we infer that

∫

R

(

a(s)

l
1
4 (s)

)4

ds

=
∫

R

a4(s)
√

g(s) + 1
ds

≤
∫

R

8
(

m4(s) + e−4|s|
)

√

g(s) + 1
ds

≤ 8
∫

R

m4(s)
√

g(s)
ds + 8

∫

R

e−4|s|ds

≤ 16
∞

∑
n=0

n− 63
144

∫ n+ 1

2

(

n
8
9 +1

)

n

(

2n
1
72

(

n
8
9 + 1

)

s − 2n
73
72
(

n
8
9 + 1

)

) 7
2

ds

+ 16
∞

∑
n=0

n− 63
144

∫ n+ 1

n
8
9 +1

n+ 1

2

(

n
8
9 +1

)

(

−2n
1
72

(

n
8
9 + 1

)

s + 2n
73
72
(

n
8
9 + 1

)

+ 2n
1
72

) 7
2

ds + 4

=
32

9

∞

∑
n=0

n− 7
18

n
8
9 + 1

+ 4

< + ∞.

Then all the conditions of Theorem 1.2 are satisfied. However, since a is not integrable or

bounded, l(t) is not bounded or coercive, our example does not satisfy the theorems in [2, 5,

8, 9, 11–14, 17, 18, 20–23].

2 Proof of Theorem 1.1

Set

E :=

{

u ∈ H1(R, R
N) :

∫

R

(|u̇(t)|2 + (L(t)u(t), u(t)))dt < ∞

}

with

(u, v) =
∫

R

((u̇(t), v̇(t)) + (L(t)u(t), u(t)))dt.

By (L2), the embedding E →֒ Lp
(

R, R
N
)

is continuous for all p ∈ [2,+∞]. Hence, for any

p ∈ [2,+∞],

∥u∥p ≤ Cp∥u∥, ∀u ∈ E (2.1)

for some Cp > 0. Furthermore, let I : E → R be the functional of (1.1) defined by

I(u) =
∫

R

(

1

2
|u̇(t)|2 +

1

2
(L(t)u(t), u(t))− W(t, u(t))

)

dt. (2.2)

First, we give the following useful estimate.
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Lemma 2.1. Let u ∈ E. For any θ > 0 and q ∈ [1, 2], the following inequality holds

|u(t)| ≤ θ
1

q∗ −1
(

∫ t+θ

t
|u(s)|qds

)
1
q

+ θ
1

q∗

(

∫ t+θ

t
|u̇(s)|q ds

)
1
q

, ∀t ∈ R. (2.3)

Furthermore, if u ∈ C2(R, R
N), there holds

|u̇(t)| ≤ θ
1

q∗ −1
(

∫ t+θ

t
|u̇(s)|qds

)
1
q

+ θ
1

q∗

(

∫ t+θ

t
|ü(s)|q ds

)
1
q

, ∀t ∈ R, (2.4)

where 1
q +

1
q∗ = 1 (q∗ = +∞, if q = 1).

Proof. For any t, τ ∈ R,

|u(t)| ≤ |u(τ)|+

∣

∣

∣

∣

∫ t

τ
u̇(s)ds

∣

∣

∣

∣

.

Integrating over [t, t + θ], we get

θ|u(t)| ≤
∫ t+θ

t
|u(τ)|dτ +

∫ t+θ

t

∣

∣

∣

∣

∫ t

τ
u̇(s)ds

∣

∣

∣

∣

dτ

≤ θ
1

q∗

(

∫ t+θ

t
|u(s)|qds

)
1
q

+ θ

∫ t+θ

t
|u̇(s)| ds

≤ θ
1

q∗

(

∫ t+θ

t
|u(s)|qds

)
1
q

+ θ
1

q∗ +1
(

∫ t+θ

t
|u̇(s)|q ds

)
1
q

,

which implies

|u(t)| ≤ θ
1

q∗ −1
(

∫ t+θ

t
|u(s)|qds

)
1
q

+ θ
1

q∗

(

∫ t+θ

t
|u̇(s)|q ds

)
1
q

.

Then we obtain (2.3). Similarly, we can also obtain (2.4).

Lemma 2.2. Suppose (L2), (W0)–(W2) hold, then I ∈ C1(E, R) and

⟨I′(u), v⟩ =
∫

R

[(u̇(t), v̇(t)) + (L(t)u(t), v(t))− (∇W(t, u(t)), v(t))]dt. (2.5)

Moreover, all the critical points of I are homoclinic solutions of (1.1) if (L1) holds with b = 2 or (L3)

holds with b = q respectively.

Proof. First, we show that I is well defined. By (W1), we infer that

|W(t, u(t))| =

∣

∣

∣

∣

∫ 1

0
(∇W(t, su(t)), u(t))ds

∣

∣

∣

∣

≤
1

µ
a(t)|u(t)|µ, ∀(t, u) ∈ R × R

N . (2.6)

First, we consider a general case, i.e. γ ∈
(

1, 2
2−µ

]

and k ∈
[

0, γ−1
γ

)

. For any Λ ⊂ R, it follows
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from (W0) and (2.1) that
∫

Λ
a(t)|u(t)|µdt

=
∫

Λ

a(t)

(l(t))k
(l(t))k|u(t)|µdt

≤

(

∫

Λ

(

a(t)

(l(t))k

)γ

dt

)

1
γ
(

∫

Λ
(l(t))

kγ
γ−1 |u(t)|

µγ
γ−1 dt

)
γ−1

γ

=

(

∫

Λ

(

a(t)

(l(t))k

)γ

dt

)

1
γ
(

∫

Λ
(l(t))

kγ
γ−1 |u(t)|

2kγ
γ−1 |u(t)|

(µ−2k)γ
γ−1 dt

)
γ−1

γ

≤

(

∫

Λ

(

a(t)

(l(t))k

)γ

dt

)

1
γ





(

∫

Λ
l(t)|u(t)|2dt

)
kγ

γ−1
(

∫

Λ
|u(t)|

(µ−2k)γ
γ−1−kγ dt

)
γ−1−kγ

γ−1





γ−1
γ

≤

(

∫

Λ

(

a(t)

(l(t))k

)γ

dt

)

1
γ

C
µ−2k
(µ−2k)γ
γ−1−kγ

∥u∥µ. (2.7)

When k = γ−1
γ , we have

∫

Λ
a(t)|u(t)|µdt =

∫

Λ

a(t)

(l(t))
γ−1

γ

(l(t))
γ−1

γ |u(t)|µdt

≤

(

∫

Λ

(

a(t)

(l(t))
γ−1

γ

)γ

dt

)
1
γ (∫

Λ
l(t)|u(t)|

µγ
γ−1 dt

)
γ−1

γ

≤

(

∫

Λ

(

a(t)

(l(t))
γ−1

γ

)γ

dt

)
1
γ (

∥u∥
µγ

γ−1−2
∞

∫

Λ
l(t)|u(t)|2dt

)
γ−1

γ

≤

(

∫

Λ

(

a(t)

(l(t))
γ−1

γ

)γ

dt

)
1
γ

∥u∥
µ− 2(γ−1)

γ
∞ ∥u∥

2(γ−1)
γ

≤

(

∫

Λ

(

a(t)

(l(t))
γ−1

γ

)γ

dt

)
1
γ

C
µ− 2(γ−1)

γ
∞ ∥u∥µ. (2.8)

Since
(

b, 2b
2+b−bµ

]

⊂
(

1, 2
2−µ

]

and
[

0, γ−b
bγ

]

⊂
[

0, γ−1
γ

]

for all b ∈ [1, 2], (2.7) and (2.8) also hold

when γ ∈
(

b, 2b
2+b−bµ

]

and k ∈
[

0, γ−b
bγ

]

.

Choosing Λ = R, we see I is well defined. Similar to Lemma 3.1 in [22], one shows

I ∈ C1(E, R) and (2.5) holds. Finally, we show all the critical points of I are homoclinic

solutions for (1.1), i.e. we need to show u(t) → 0 and u̇(t) → 0 as t → ±∞ if u(t) is a critical

point of I. We can easily deduce from (2.5) that L(t)u − ∇W(t, u) is the weak derivative

of u̇. Since E ⊂ C0
(

R, R
N
)

(the space of continuous functions), W ∈ C1
(

R × R
N , R

)

and

L ∈ C
(

R, R
N2
)

, we know u is indeed in C2(R, R
N). Obviously,

∫ t+θ

t
|u(s)|qds ≤ θ

2−q
2

(

∫ t+θ

t
|u(s)|2ds

)

q
2

→ 0 as |t| → +∞ (2.9)

and
∫ t+θ

t
|u̇(s)|qds ≤ θ

2−q
2

(

∫ t+θ

t
|u̇(s)|2ds

)

q
2

→ 0 as |t| → +∞ (2.10)



8 R.-Q. Liu, D.-L. Wu and J.-F. Liao

for any θ ∈ R. It follows from (2.3) that u(t) → 0 as |t| → +∞. In order to prove u̇(t) → 0 as

|t| → +∞, we show a useful estimate as follow. For any b ∈ [1, 2], it follows from (W0) and

(2.1) that
∫

R

|∇W(t, u(t))|bdt

≤
∫

R

ab(t)|u(t)|b(µ−1)dt

=
∫

R

(

a(t)

(l(t))k

)b

(l(t))bk|u(t)|b(µ−1)dt

≤

(

∫

R

(

a(t)

(l(t))k

)γ

dt

)

b
γ
(

∫

R

(l(t))
bkγ
γ−b |u(t)|

bγ(µ−1)
γ−b dt

)
γ−b

γ

≤

(

∫

R

(

a(t)

(l(t))k

)γ

dt

)

b
γ





(

∫

R

l(t)|u(t)|2dt

)
bkγ
γ−b
(

∫

R

|u(t)|
bγ(µ−1−2k)

γ−b−bkγ dt

)
γ−b−bkγ

γ−b





γ−b
γ

≤

(

∫

R

(

a(t)

(l(t))k

)γ

dt

)

b
γ

C
b(µ−1−2k)
bγ(µ−1−2k)

γ−b−bkγ

∥u∥b(µ−1). (2.11)

Similarly, when k = γ−b
bγ ,

∫

R

|∇W(t, u(t))|bdt ≤
∫

R

ab(t)|u(t)|b(µ−1)dt

=
∫

R

(

a(t)

(l(t))
γ−b
bγ

)b

(l(t))
γ−b

γ |u(t)|b(µ−1)dt

≤

(

∫

R

(

a(t)

(l(t))
γ−b
bγ

)γ

dt

)
b
γ (∫

R

l(t)|u(t)|
bγ(µ−1)

γ−b dt

)
γ−b

γ

≤

(

∫

R

(

a(t)

(l(t))
γ−b
bγ

)γ

dt

)
b
γ [

∥u∥
bγ(µ−1)

γ−b −2
∞

∫

R

l(t)|u(t)|2dt

]

γ−b
γ

≤

(

∫

R

(

a(t)

(l(t))
γ−b
bγ

)γ

dt

)
b
γ

C
b(µ−1)− 2(γ−b)

γ
∞ ∥u∥b(µ−1). (2.12)

The following proof is divided into two cases.

Case 1. (L1) holds with b = 2. Let A be the self-adjoint extension of −(d2/dt2) + L(t)

with D(A) ⊂ L2(R, R
N). Since we have (L2) and (i)(or (ii)) of (L1), similar to Lemma

2.3 in [5], D(A) is continuously embedded in W2,2(R, R
N). Making estimates as (2.9) and

(2.10), it follows from (2.4) that u̇(t) → 0 as |t| → +∞ if u ∈ D(A). Subsequently, we

show all the critical points of I belong to D(A). By (2.11) and (2.12) with b = 2, we see

∥Au∥2
L2 =

∫

R
|∇W(t, u(t))|2dt < ∞. Then u ∈ D(A), which shows u is a homoclinic solution

for (1.1).

Case 2. (L3) holds with b = q. Since u ∈ C2(R, R
N), we deduce from (L3) and (2.4) that

|u̇(t)| ≤ δ
1

q∗ −1
(

∫ t+δ

t
|u̇(s)|qds

)
1
q

+ δ
1

q∗

(

∫ t+δ

t
|ü(s)|q ds

)
1
q

.
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By (2.10), we only need to consider
∫ t+δ

t |ü(s)|qds. Similar to Lemma 3.1 in [22], (2.11) and

(2.12), for any γ ∈
(

q,
2q

2+q−qµ

]

and k ∈
[

0,
γ−q
qγ

]

∫ t+δ

t
|ü(s)|qds

≤ 2q−1
∫ t+δ

t
(|∇W(s, u(s))|q + |L(s)u(s)|q) ds

≤ 2q−1M1

(

∫ t+δ

t

(

a(s)

(l(s))k

)γ

ds

)

q
γ

∥u∥q(µ−1) + 2q−1
∫ t+δ

t

∣

∣

∣(L(s)u(s))T L(s)u(s)
∣

∣

∣

q
2

ds

= 2q−1M1

(

∫ t+δ

t

(

a(s)

(l(s))k

)γ

ds

)

q
γ

∥u∥q(µ−1) + 2q−1
∫ t+δ

t

∣

∣

∣
(u(s))T L2(s)u(s)

∣

∣

∣

q
2

ds

= 2q−1M1

(

∫ t+δ

t

(

a(s)

(l(s))k

)γ

ds

)

q
γ

∥u∥q(µ−1) + 2q−1
∫ t+δ

t

∣

∣(L2(s)u(s), u(s))
∣

∣

q
2 ds

≤ 2q−1M1

(

∫ t+δ

t

(

a(s)

(l(s))k

)γ

ds

)

q
γ

∥u∥q(µ−1) + 2q−1

[

sup
s≥t

|u(s)|q
]

∫ t+δ

t
l̂q(s)ds

→ 0 as |t| → +∞,

where

M1 =











C
q(µ−1−2k)
qγ(µ−1−2k)

γ−q−qkγ

, k ∈
[

0,
γ−q
qγ

)

,

C
q(µ−1)− 2(γ−q)

γ
∞ , k = γ−q

qγ .

Thus u is a homoclinic solution for (1.1).

In the next lemma, we show the functional I satisfies the classical Palais–Smale ((PS) for

short) condition. We say that I satisfies the (PS) condition, if any sequence (ui)i in E such that

(I (ui))i is bounded and I′ (ui) → 0,

admits a convergent subsequence.

Lemma 2.3. Under (L2), (W0) and (W1), I satisfies the (PS) condition.

Proof. Let {ui}i∈N
⊂ E be a sequence such that {I (ui)}i∈N

is bounded and I′ (ui) → 0 as

i → +∞. Then there exists B > 0 such that |I (ui)| ≤ B. By (2.2), (2.7) and (2.8) with Λ = R,

we have

∥ui∥
2 = 2I (ui) + 2

∫

R

W (t, ui(t)) dt ≤ 2B +
2M2

µ

(

∫

R

(

a(t)

(l(t))k

)γ

dt

)

1
γ

∥ui∥
µ,

where

M2 =











C
µ−2k
(µ−2k)γ
γ−1−kγ

, k ∈
[

0, γ−1
γ

)

,

C
µ− 2(γ−1)

γ
∞ , k = γ−1

γ ,

which implies {ui}i∈N
is bounded in E. Hence, there exists u0 ∈ E(up to passing to a subse-

quence) such that ui ⇀ u0 in E and

⟨I′(ui)− I′(u0), ui − u0⟩

= ∥ui − u0∥
2 −

∫

R

(∇W (t, ui(t))−∇W(t, u0(t)), ui(t)− u0(t)) dt → 0 (2.13)
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as i → ∞. Moreover, there exists M3 > 0 such that

sup
j∈N

∥ui∥∞ ≤ M3 and ∥u0∥∞ ≤ M3. (2.14)

For any ε > 0 it follows from (W0) that there exists T > 0 such that

(

∫

|t|>T

(

a(t)

(l(t))k

)γ

dt

)

1
γ

< ε. (2.15)

It follows from (W0) and Sobolev’s compact embedding theorem in bounded domain that
∫

|t|≤T
(∇W (t, ui(t))−∇W(t, u0(t)), ui(t)− u0(t)) dt

≤
∫

|t|≤T
a(t)

(

|ui(t)|
µ−1 + |u0(t)|

µ−1
)

|ui(t)− u0(t)| dt

≤ a0





(

∫

|t|≤T
|ui(t)|

µ

)

µ−1
µ

+

(

∫

|t|≤T
|u0(t)|

µ

)

µ−1
µ





(

∫

|t|≤T
|ui(t)− u0(t)|

µ

) 1
µ

≤ ε (2.16)

for i large enough, where a0 = max|t|≤T a(t). By (W0), (2.7) and (2.8) with Λ = R \ [−T, T],

one has
∫

|t|>T
(∇W (t, ui(t))−∇W(t, u0(t)), ui(t)− u0(t)) dt

≤
∫

|t|>T
|∇W (t, ui(t))−∇W (t, u0(t)∥ui(t)− u0(t)|dt

≤
∫

|t|>T
a(t)

(

|ui(t)|
µ−1 + |u0(t)|

µ−1
)

(|ui(t)|+ |u0(t)|) dt

≤ 3
∫

|t|>T
a(t)

(

|ui(t)|
µ + |u0(t)|

µ
)

dt

≤ 3M2

(

∫

|t|>T

(

a(t)

(l(t))k

)γ

dt

)

1
γ

(∥ui∥
µ + ∥u0∥

µ) . (2.17)

By the arbitrariness of ε, (2.15) and (2.17), we obtain
∫

|t|>T
(∇W (t, ui(t))−∇W(t, u(t)), ui(t)− u0(t)) dt → 0 as i → +∞. (2.18)

Together with (2.16), we obtain
∫

R

(∇W (t, ui(t))−∇W(t, u(t)), ui(t)− u0(t)) dt → 0 as i → +∞.

Consequently, we infer from (2.13) and (2.18) that ∥ui − u0∥ → 0 as i → +∞.

Proof of Theorem 1.1. By (2.2), (2.6) and (2.7) with Λ = R, for any u ∈ E, we get

I(u) =
1

2
∥u∥2 −

∫

R

W(t, u(t))dt

≥
1

2
∥u∥2 −

1

µ

∫

R

a(t)|u(t)|µdt

≥
1

2
∥u∥2 −

M2

µ

(

∫

R

(

a(t)

(l(t))k

)γ

dt

)

1
γ

∥u∥µ,
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which implies that I(u) → +∞ as ∥u∥ → +∞. Thus I is bounded from below and satisfies

the (PS) condition. Then there exists ū such that I(ū) = c = infE I(u). We also need to show

that ū ̸≡ 0. Letting ϕ ∈ C∞
0 (Ω, R

N) \ {0} and s > 0, it follows from (2.2) and (W2) that

I (sϕ) =
s2

2
∥ϕ∥2 −

∫

R

W (t, sϕ(t)) dt

=
s2

2
∥ϕ∥2 −

∫

Ω
W (t, sϕ(t)) dt

≤
s2

2
∥ϕ∥2 − ηsλ

∫

Ω
|ϕ(t)|λ dt,

which implies I(sϕ) < 0 when s > 0 small enough. Then we can deduce that infE I(u) < 0,

which implies that ū ̸≡ 0.

Proof of Theorem 1.2. The only difference between Theorems 1.1 and 1.2 is the way to obtain

the asymptotic behavior of the solutions for (1.1) at infinity. This has been shown in the proof

of Lemma 2.2. The remaining part is similar to Theorem 1.1, we omit it here.
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Abstract. In this paper, we devote ourselves to considering a modified zero energy
critical point theory for a specific set of functionals denoted as Φµ, defined within the
confines of a uniformly convex Banach space. Integrating the nonlinear generalized
Rayleigh quotient approach with Ljusternik–Schnirelman category, we establish the
nonexistence and multiplicity of zero energy critical points of the involved function-
als. In particular, the modified zero energy critical point theory can be applied to more
nonlocal problems. Our main results improve and complement the existing results in
the related literature.
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1 Introduction

In the past decades, researchers have used classical variational methods to deal with various

nonlocal problems and obtained various properties of their solutions, such as existence, mul-

tiplicity, asymptotic behavior and so on. However, although the classical variational methods

have been properly modified, it seems still difficult to be directly effective for some compli-

cated or special nonlocal problems. Based on this situation, the research on new variational

methods has aroused increasing interest. It is worth mentioning that in this process, the ex-

istence of the number and index theory makes the Ljusternik–Schnirelman category theory

more widely used. For more detailed applications of this theory, we refer to [18, 33] and ref-

erences therein. Along this direction, in this paper we employ the Ljusternik–Schnirelman

category theory and the nonlinear generalized Rayleigh (NG-Rayleigh) quotient method to

forge a critical point theory at zero energy levels for the energy functional (1.1). By means of

this theory, we deal with several kinds of nonlocal problems, and present the nonexistence and

multiplicity of their solutions at zero energy levels. More precisely, we consider Φµ : X → R

Φµ(u) :=
1

η
N(u)−

µ

η
A(u)−

1

β
B(u) +

1

γ
R(u), (1.1)

BCorresponding author. Emails: 17685540365@163.com (X. Liang), zhangbinlin2012@163.com (B. Zhang).
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the setting is within X, a uniformly convex Banach space endowed with the norm | · |X, where

1 < η < γ < β. Moreover, the functionals N, A, B, and R are considered to be homogeneous,

nonnegative, and even, belonging to the class C1(X).

Throughout this paper, the following assumptions are imposed on the above-mentioned

nonnegative even functionals:

(M1) For any u ∈ X\{0}, there exists C > 0 such that the following inequalities hold:

C∥u∥
η
X ≥ A(u) > 0, C∥u∥

β
X ≥ B(u) > 0, R(u) > 0, N(u) ≥ C−1∥u∥

η
X;

(M2) N(tu) = tη N(u), A(tu) = tη A(u), B(tu) = tβB(u), R(tu) = tγR(u), for any t > 0;

(M3) If un ⇀ u in X, then A′(un) → A′(u) and B′(un) → B′(u) in X∗. Moreover, for any

un, u ∈ X, it holds that R′(un)(un − u) ≥ 0.

(M4) Let N be weakly lower semicontinuous, and there exists C > 0 such that for every

un, u ∈ X, the inequality

(N′(un)− N′(u))(un − u) ≥ C(∥un∥
η−1 − ∥u∥η−1)(∥un∥ − ∥u∥)

holds true.

According to assumption (M1), we know that A(u) > 0 for all u ∈ X \ {0}. Therefore,

Φµ(u) = 0 is equivalent to

µ = µ0(u) :=
N(u)− η

β B(u) + η
γ R(u)

A(u)
, for any u ∈ X \ {0},

where µ0(u) is called the Rayleigh quotient, the functional is derived using the NG-Rayleigh

quotient approach. For any u ∈ X \ {0},

µ′
0(u) =

Φ
′
µ0(u)

(u)

A(u)
= 0,

if and only if Φ
′
µ(u) = 0.

We will search for the critical points of µ0 by considering the fibering map t 7→ µ0(tu).

Obviously, µ0(tu) ∈ C2(0, ∞) for every u ∈ X \ {0}, u 7→ µ′
0(tu) ∈ C1(X \ {0}) for every t > 0.

In order to get the critical point of µ0(tu), from (M2) it follows that

µ0(tu) =
N(u)

A(u)
−

η

β

B(u)

A(u)
tβ−η +

η

γ

R(u)

A(u)
tγ−η , for any u ∈ X \ {0}, t > 0.

Let

µ′
0(tu) = −(β − η)

η

β

B(u)

A(u)
tβ−η−1 + (γ − η)

η

γ

R(u)

A(u)
tγ−η−1 = 0.

Then

t0(u) =

(
γ − η

β − η

β

γ

R(u)

B(u)

) 1
β−γ

,

that is µ′
0(t0(u)u) = 0. Since µ′′

0 (t0(u)u) < 0, we obtain that t0(u) is a non-degenerate global

maximum point of µ0(tu).
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Define

Λ(u) := µ0(t0(u)u) =

(
N(u)

A(u)
−

η

β

B(u)

A(u)
t0(u)

β−η +
η

γ

R(u)

A(u)
t0(u)

γ−η

)

=
N(u)

A(u)
+ C0

R(u)
β−η
β−γ

A(u)B(u)
γ−η
β−γ

,

as a NG-Rayleigh quotient. It is obvious that t0(u)u can be considered as the zero energy

critical point of Φµ, where µ = Λ(u). One may easily check that Λ ∈ C1(X\{0}),

Λ
′(u)v =

A(u)N′(u)v − N(u)A′(u)v

A(u)2

+ C0Q(u)

(
β − η

β − γ
B(u)A(u)R′(u)v −

γ − η

β − γ
R(u)A(u)B′(u)v − B(u)R(u)A′(u)v

)
,

for every u ∈ X\{0}, v ∈ X, where

C0 =
η

γ

β − γ

β − η
(

γ − η

β − η

β

γ
)

γ−η
β−γ > 0, Q(u) =

R(u)
γ−η
β−γ

A(u)2B(u)
β−η
β−γ

.

To better utilize the Ljusternik–Schnirelman category theory, we first denote Λ̃ as Λ on

S = {u ∈ X\{0} : ∥u∥ = 1}, where S is considered as a unit sphere in X and is a symmetric

C1 manifold. According to [28, Proposition 2.3], the critical point of Λ̃ is also the critical point

of Λ. Since N(u), A(u), B(u), R(u) are even functionals, Λ̃ is also an even functional. Now, let

us recall the concept of Krasnoselskii genus. Given a set F ⊂ S, it is closed, nonempty and

symmetric. We define

γ(F) := inf{n ∈ N : ∃h : F → R
n \ {0} odd and continuous}.

to represent the Krasnoselskii genus of F. Setting

Fn = {F ⊂ S : F is compact, symmetric, and γ(F) ≥ n},

for every n ∈ N. Define the critical value of Λ̃:

µn := inf
F∈Fn

sup
u∈F

Λ̃, if Λ̃ is bounded from below on S.

It is well-known that the Krasnoselskii genus of the unit sphere in an infinite dimensional

Banach space is infinite (cf. [13, Corollary 2.3]), namely, γ(S) = ∞.

Next, let us sketch some recent advances concerning the zero energy critical point theory.

Recently, Quoirin et al. studied qualitative properties of zero energy critical points in [28],

which means that at this point, the energy function and its derivatives are both zero. Fur-

thermore, the authors in [28] established a new zero energy critical point theory using the

NG-Rayleigh quotient method and Ljusternik–Schnirelman critical theory [2], and effectively

applied it to several types of elliptic partial differential equations, resulting in the existence,

nonexistence, and multiplicity of zero energy critical points. For more details on the NG-

Rayleigh method, we refer to [19, 20] and references therein. Undoubtedly, the zero energy

critical point theory established in paper [28] provides us with a new idea and perspective

for solving nonlinear partial differential equations. As one of the advantages of this theory, it



4 X. Liang and B. Zhang

has a wide range of theoretical applications, that is, it can directly handle many types of non-

linear non-local problems, such as concave-convex problem, Schrödinger–Poisson problem,

Kirchhoff-type problem, (p, q)-Laplace problem, and other elliptic problems. As a pioneer pa-

per on zero energy critical point theory, the authors in [28] applied this theory to solve several

local and non-local problems. For example, the following p-Laplacian problem with concave

and convex nonlinearity was investigated in a bounded domain Ω ⊂ R
N :

{
−∆pu = µ|u|q−2u + f |u|r−2u, in Ω,

u = 0 on ∂Ω,
(1.2)

where 1 < q < p < r < p∗, f , g ∈ L∞(Ω) with g > 0 in Ω, ∆p is p-Laplaian operator,

and f > 0 in some subdomain Ω
′ ⊂ Ω. With the help of the NG-Rayleigh quotient method

and Ljusternik–Schnirelman theory, the authors obtained the existence, non-existence and

multiplicity of zero energy solutions for concave and convex problems in [28].

On the other hand, the authors in [28] also considered the properties of the zero energy

solution for the Schrödinger-Poisson system, which is physically meaningful. To elaborate, the

authors conducted a comprehensive investigation into the intricacies of the following system:

{
−∆u + ωu + µφu = |u|p−2u, in R

3,

−∆u + a2
∆

2u = 4πu2 in R
3,

(1.3)

where p ∈ (2, 3), ω > 0, and a ≥ 0. In particular, the authors established the existence,

non-existence, multiplicity and sign-changing properties of the zero energy radial solution of

system (1.3). Subsequently, Quoirin et al. in [29] established the existence, multiplicity and

bifurcation results of the critical points for a class of functionals with prescribed energy along

the same technical route as in [28]. The authors first applied the corresponding critical point

theory of prescribed energy to eigenvalue problems involving nonhomogeneous perturbations

in [29], and its energy functional can be given by:

Φµ(u) =
1

p
(|∇u|

p
p − µ|u|

p
p)−

1

r
|u|rr, u ∈ W

1,p
0 (Ω), where 1 < r < p∗.

The authors made a noteworthy discovery regarding the Schrödinger–Poisson system. Specif-

ically, for c > 0 (respectively, c < 0) and by choosing p < r (respectively, p > r), the study

revealed the existence of an infinite number of pairs (µn,c, un,c) ∈ R × W
1,p
0 (Ω) \ {0} satisfy-

ing Φµn,c(±un,c) = c and Φ
′
µn,c

(±un,c) = 0. In other words, ±un represent prescribed energy

critical points.

The authors next investigated the prescribed energy critical point of the Schrödinger–

Bopp–Podolsky problem in [29]. The following represents the energy functional for this par-

ticular problem:

Φµ(u) =
1

2

∫

R3
|∇u|2dx +

ω

2

∫

R3
|u|2dx +

µ

4

∫

R3
φu2dx −

1

p

∫

R3
|u|pdx, where p ∈ (2, 3), ω > 0.

The authors obtained the existence and multiplicity of the critical point with prescribed energy

by the critical point theory. Besides, the authors also conducted relevant research on the

concave-convex problem in [29], and we will not elaborate on it here.

Motivated by [28, 29], we are interested in making appropriate modifications and exten-

sions according to the existing zero energy critical point theory so that it can be applied to
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some specific situations. Along this direction, we propose a suitable class of energy func-

tional (1.1). We point out that the purpose of this paper is to address the problem of energy

functional (1.1) in the following situation:

Φ
′
µ(u) = 0, Φµ(u) = 0.

Let δ0 = infX\{0} Λ(u). Then the primary result of our article can be stated as:

Theorem 1.1. Suppose that (M1)–(M4) hold.

(i) If µ < δ0, then there is no critical point having zero energy for the energy functional Φµ.

(ii) If µ > δ0, then the energy functional Φµ has infinitely many zero energy critical points which

change sign.

Remark 1.2. At the beginning, we attempt to investigate the qualitative properties for some

nonlocal problems in R
N by employing Theorem 1.1. But the embedding H1

r (R
N) →֒ Lp(RN)

is compact only for 2 < p < 2∗, we cannot verify assumption (M3) if problems under con-

sideration are involved the critical exponents. Inspired by [28], we give a modified version of

Theorem 3.1 in [28], so that we are able to deal with Schrödinger–Poisson systems with critical

nonlinearity.

Remark 1.3. In order to deal with Kirchhoff-type problems with critical growth in bounded

domains, we follow the idea of proof in Lemma 3.3 of [21] to detour the compact embed-

ding theorem, hence assumption (M3) can be verified, which leads to the nonexistence and

multiplicity of zero energy critical points for the following Kirchhoff problem with critical

nonlinearity.

Notations. Throughout this paper, the following notions are employed:

• Denote | · |q for the Lq(RN)-norm for q ∈ [1, ∞];

• Denote various positive constants by C, C0, C1, C2, C3, . . . ;

• Let D1,2(R3) be the completion of C∞

0 (R3) with the norm ∥u∥D1,2(R3) =
(∫

R3 |∇u|2
) 1

2 .

2 Proof of Theorem 1.1

In this proof, we refer to the technical approach demonstrated by [28] to prove Theorem 1.1.

In order to supplement and enrich the zero energy critical point theory, we give a modified

result, which can be applied to a wider range of nonlocal Lapalcian equations. Based on

the Ljusternik–Schnirelman category (see [32, Theorem 5.7]), we only need to prove that Λ̃

satisfies the Palais–Smale condition and is bounded from below on the unit sphere S.

Lemma 2.1. Assume (M1) holds, then Λ̃ is bounded from below on S.

Proof. From (M1), for all u ∈ S,

N(u)

A(u)
≥

C−1∥u∥η

C∥u∥η
=

1

C2
,

R(u)
β−η
β−γ

B(u)
γ−η
β−γ A(u)

> 0.
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Then

Λ̃ =
N(u)

A(u)
+ C0

R(u)
β−η
β−γ

A(u)B(u)
γ−η
β−γ

>
1

C2
.

Therefore, Λ̃ is bounded from below on S.

A crucial proposition required to validate the Palais–Smale condition for Λ̃(u) is as follows:

Lemma 2.2. Assume that (un) ⊂ S, Λ̃
′(un) → 0, then Λ

′(un)(un − u) → 0 as n → ∞.

Proof. Since (un) ⊂ S = {u ∈ X\{0} : ∥u∥ = 1}, we see that ∥un∥ = 1. According to S is

weakly closed and (un) is bounded in S, we can attain un ⇀ u in S. Let TS(u) = {v ∈ X :

i′(u)v = 0}, at the point u, TS(u) represents the tangent space to the set S, where i(u) = 1
2∥u∥2.

Note that, for any w ∈ X and any n ∈ N, the pair (tn, vn) ∈ R ×TS (un) is uniquely identified,

ensuring w = vn + tnun and subsequently, i′(un)w = i′(un)vn + i′(un)tnun. According to

the definition of TS(u), we can obtain that i′(un)vn = 0, i′(un)un = ∥un∥2 = 1. Therefore,

i′ (un)w = tni′ (un) un = tn. Then, (tn) is bounded, consequently, (vn) is also bounded.

Since Λ̃
′(un) → 0, namely, |Λ′(un)vn| ≤ εn∥vn∥ for any vn ∈ TS(un) with εn → 0, we have

Λ
′ (un) vn → 0. According to the Lemma 2.1 of [28] we obtain that Λ

′(un)un = 0. We conclude

that Λ
′(un)w → 0 for any w ∈ X. Taking w = un − u, we get that Λ

′(un)(un − u) → 0, as

n → ∞.

Lemma 2.3. Assume that (M1), (M3), (M4) hold, then Λ̃ satisfies the Palais–Smale condition.

Proof. Choose (un) ⊂ S such that (Λ̃(un)) is bounded and Λ̃
′(un) → 0, i.e. |Λ′(un)v| ≤ εn∥v∥

for any v ∈ TS(un), with εn → 0. By Lemma 2.2, together with the fact that (un) ⊂ S,

Λ̃
′(un) → 0, we know that

un ⇀ u in S, Λ
′(un)(un − u) → 0.

Then, for any un, u ∈ S,

Λ
′(un)(un − u)

=
A(un)N′(un)(un − u)− N(un)A′(un)(un − u)

A(un)2

+ C0Q(un)

(
β − η

β − γ
B(un)A(un)R′(un)(un − u)

−
γ − η

β − γ
R(un)A(un)B′(un)(un − u)

− B(un)R(un)A′(un)(un − u)

)
→ 0.

(2.1)

According to (M1), we can infer that A(un), B(un) is bounded, N(un), R(un) is bounded

away from zero. Since (Λ̃(un)) is bounded, we know that Q(un) is bounded. In the light of

(M3), we can obtain

A′(un)(un − u) → 0, B′(un)(un − u) → 0.

The above analysis leads to the following conclusion:

(
N′(un) + R′(un)

)
(un − u) → 0.
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According to (M3), we obtain R′(un)(un − u) ≥ 0. From (M4), we have

(N′(un)− N′(u))(un − u) ≥ C(∥un∥
η−1 − ∥u∥η−1)(∥un∥ − ∥u∥) ≥ 0

for every un, u ∈ S. Moreover, un ⇀ u in S, we have N′(u)(un − u) → 0, then N′(un)(un − u) ≥

0. Therefore, we can conclude that N′(un)(un − u) → 0. Since (N′(un)− N′(u))(un − u) → 0,

we obtain ∥un∥ → ∥u∥. Note that X is a reflexive Banach space and un ⇀ u in S, which imply

that un → u in S. This completes the proof.

Proof of Theorem 1.1.

(1) We prove that there is no critical point having zero energy when µ < δ0. Note that u

is a critical point of Λ, if and only if, t0(u)u is a zero energy critical point of Φµ with

µ = Λ(u). In other words, this means that

δ0 = inf
X\{0}

Λ(u) ≤ µ ≤ sup
X\{0}

Λ(u),

which yields the desired conclusion.

(2) According to Lemma 2.1, we know that Λ̃ is bounded from below on S. Moreover,

Lemma 2.3 implied that Λ̃ satisfies the Palais–Smale condition. Note that γ̂(S) = ∞,

we get from Ljusternik–Schnirelman category (see [32, Theorem 5.7]) that there exists a

sequence (un) ⊂ S such that Λ̃
′(un) = 0, Λ̃(un) = µn. Therefore, the energy functional

Φ has infinitely many zero energy sign changing critical points (un) ⊂ S.

3 Applications of Theorem 1.1

In this section, we shall prove the nonexistence of solutions and the existence of infinitely

many solutions for three non-local problems, we confirm that these are just a small part of

applications of Theorem 1.1.

3.1 Critical Schrödinger–Poisson system in the whole space

In this subsection, let us consider a Schrödinger–Poisson system with p-Laplacian:
{
−∆pu + |u|p−2u + λφu = |u|p

∗−2u + µ|u|p−2u, in R
3,

−∆φ = u2, in R
3,

(3.1)

where λ > 0 is a constant, 12/7 < p < 3, p∗ := 3p/(3 − p), and ∆p = div
(
|∇u|p−2∇u

)
is the

p-Laplacian. The p-Laplacian operator appears in nonlinear fluid dynamics, and the range of

p is related to the velocity of the fluid and material. For more information on the physical

origin of p-Laplacian, we refer to [9]. For any given u ∈ W1,p(R3), there exists a unique

φu(x) =
1

4π

∫

R3

|u(y)|2

|x − y|
dy, φu ∈ D1,2

(
R

3
)

,

satisfying −∆φu = |u|2 (see [17]).

The system (3.1) can be viewed as a perturbation of the system
{
−∆pu + |u|p−2u + λφu = |u|q−2u, in R

3,

−∆φ = u2, in R
3.

(3.2)
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Du, Su and Wang first considered this system in [16], they established the existence of nontriv-

ial solutions through the mountain pass theorem. Systems like (3.2) originate from quantum

mechanics models [10, 12, 23], semiconductor theory [24, 25]. They described the interaction

between quantum particles and electromagnetic fields. After the seminal work of Benci and

Fortunato in [7, 8], many researches have been conducted on systems such as (3.2) in the past

few decades, as shown in [3, 4, 6, 14, 15, 22, 26, 27, 31] and their references.

Inspired by the above work, we are committed to studying the existence of solutions for

system (3.1) in R
3. Specifically, by using the nonlinear generalized Rayleigh quotient method

and Ljusternik–Schnirelman theory, we obtain that there exist infinitely many zero energy

sign changing weak solutions.

First of all, we give the variational framework for system (3.1). Let W1,p(R3) denote the

usual Sobolev space equipped with the norm

∥u∥ :=

(∫

R3
|∇u|p + |u|pdx

) 1
p

.

One may easily get that the corresponding functional of (3.1) is Φµ(u) : W1,p(R3) → R

Φµ(u) =
1

p

∫

R3
(|∇u|p + |u|p)dx −

µ

p

∫

R3
|u|pdx −

1

p∗

∫

R3
|u|p

∗
dx +

λ

4

∫

R3
φu2dx.

It is standard to verify that Φµ is C1. Then, for every u ∈ W1,p(R3)\{0}, we have

µ0(u) =
∥u∥p

|u|
p
p

−
p

p∗

|u|
p∗

p∗

|u|
p
p

+
λp

4

∫
R3 φu2dx

|u|
p
p

,

then

µ0(tu) =
∥u∥p

|u|
p
p

− tp∗−p p

p∗

|u|
p∗

p∗

|u|
p
p

+ t4−p λp

4

∫
R3 φu2dx

|u|
p
p

.

Let

µ′
0(tu) = −tp∗−p−1(p∗ − p)

p∗

q

|u|
p∗

p∗

|u|
p
p

+ t3−p(4 − p)
λp

4

∫
R3 φu2dx

|u|
p
p

= 0.

It is easy to see that

t0(u) =

(
4 − p

p∗ − p

p∗

4

λ
∫

R3 φu2dx

|u|
p∗

p∗

) 1
p∗−4

> 0,

that is µ′
0(t0(u)u) = 0. Since µ′′

0 (t0(u)u) < 0, t0(u) is a nondegenerate global maximum point

of µ0(tu). Therefore, we have

Λ1(u) = µ0(t0(u)u) =
∥u∥p

|u|
p
p

+
p

4

p∗ − 4

p∗ − p

(
4 − p

p∗ − p

p∗

4

) 4−p
p∗−4 (λ

∫
R3 φu2dx)

p∗−p
p∗−4

|u|
p
p|u|

p∗
4−p
p∗−4

p∗

.

For simplicity’s sake, we call Λ̃1 the restriction of Λ1 to S1, where

S1 = {u ∈ W1,p(R3)\{0} : ∥u∥ = 1}.

Now it is in a position to state our main result in this section as follows.
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Theorem 3.1. Let δ1 = infW1,p(R3)\{0} Λ1(u).

(i) If µ < δ1, then there is no nontrivial weak solution having zero energy for system (3.1);

(ii) If µ > δ1, then system (3.1) has infinitely many zero energy sign changing weak solutions.

To prove Theorem 3.1, according to Ljusternik–Schnirelman category, we only need to

prove that Λ̃1 is bounded from below and Λ̃1 satisfies the Palais-Smale condition.

Lemma 3.2. Λ̃1 is bounded from below on S1.

Proof. Since the embedding W1,p(R3) →֒ Lp(R3) is continuous, there exists C > 0 such that

C∥u∥p ⩾ |u|
p
p. Because 12

7 < p < 3, p∗ > 4, one may check that

Λ̃1(u) =
∥u∥p

|u|
p
p

+
p

4

p∗ − 4

p∗ − p

(
4 − p

p∗ − p

p∗

4

) 4−p
p∗−4 (λ

∫
R3 φu2dx)

p∗−p
p∗−4

|u|
p
p|u|

p∗
4−p
p∗−4

p∗

>
1

C
.

Therefore, Λ̃1 is bounded from below on S1.

In order to prove that Λ̃1 satisfies the Palais–Smale condition, we require the following

proposition.

Lemma 3.3. If un ⇀ u in S1, then for any v ∈ W1,p(R3) there holds

∫

R3
|un|

p−2unvdx →
∫

R3
|u|p−2uvdx,

∫

R3
|un|

p∗−2unvdx →
∫

R3
|u|p

∗−2uvdx, n → ∞.

Proof. Since un ⇀ u in S1, we derive that un(x) → u(x) a.e. in R
3. Note that the embedding

W1,p(R3) →֒ Ls(R3) is continuous for s ∈ [p, p∗], there exists a positive constant C such that

∫

R3

∣∣|un|
p−2un

∣∣
p

p−1 dx ≤
∫

R3

∣∣∣|un|
p−1
∣∣∣

p
p−1

dx =
∫

R3
|un|

pdx ≤ C∥un∥
p,

∫

R3

∣∣∣|un|
p∗−2un

∣∣∣
p∗

p∗−1
dx ≤

∫

R3

∣∣∣|un|
p∗−1

∣∣∣
p∗

p∗−1
dx =

∫

R3
|un|

p∗dx ≤ C∥un∥
p∗ .

Therefore, {|un|p−2un} is bounded in L
p

p−1 (R3) and {|un|p
∗−2un} is bounded in L

p∗

p∗−1 (R3). It

follows from [34, Proposition 5.4.7] that |un|p−2un ⇀ |u|p−2u in L
p

p−1 (R3) and |un|p
∗−2un ⇀

|u|p
∗−2u in L

p∗

p∗−1 (R3). Thus for any v ∈ W1,p(R3) we have

∫

R3
|un|

p−2unvdx →
∫

R3
|u|p−2uvdx,

∫

R3
|un|

p∗−2unvdx →
∫

R3
|u|p

∗−2uvdx, n → ∞,

as required.

Lemma 3.4 (See [17, Proposition 2.1]). For any u ∈ W1,p(R3), the following properties are applica-

ble:

(1) φu ≥ 0 and for any t ∈ R
+, φtu = tpφu.

(2) There exists a positive constant C such that

|∇φu|
2
2 =

∫

R3
φu|u|

pdx ≤ C∥u∥2p.
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(3) In the case of un ⇀ u in W1,p(R3), it follows that φun ⇀ φu in D1,2(R3) and
∫

R3
φun u

p−2
n un ϕdx →

∫

R3
φuup−2uϕdx, for any ϕ ∈ W1,p(R3).

Lemma 3.5. Λ̃1 satisfies the Palais–Smale condition.

Proof. Choose a sequence (un) ⊂ S1 such that (Λ̃1(un)) is bounded and Λ̃1
′
(un) → 0, that is

|Λ′
1(un)v| ≤ εn∥v∥ for any v ∈ TS1

(un), with εn → 0. With the help of Lemma 2.2, if there is a

sequence (un) ⊂ S1 and Λ̃1
′
(un) → 0, we can obtain that un ⇀ u in S1 and Λ

′
1(un)(un − u) →

0 as n → ∞. Then, for any un, u ∈ S1,

Λ
′
1(un)(un − u) (3.3)

= p
|un|

p
p

∫
R3

(
|∇un|p−2∇un∇(un − u)+|un|p−2un(un − u)

)
dx−∥un∥p

∫
R3 |un|p−2un(un − u)dx

|un|
2p
p

+

(
4

p∗ − p

q − 4
|un|

p∗

p∗ |un|
p
p

∫

R3
φun(un−u)dx−p∗

4 − p

p∗ − 4
|un|

p
p

∫

R3
φu2

ndx
∫

R3
|un|

p∗−2un(un−u)dx

−p|un|
p∗

p∗

∫

R3
φu2

ndx
∫

R3
|un|

p−2un(un − u)dx

)
C1Q(un) → 0, as n → ∞,

where

C1 = λ
p

4

p∗ − 4

p∗ − p

(
4 − p

p∗ − p

p∗

4

) 4−p
p∗−4

, Q(un) =
(
∫

R3 φu2
ndx)

4−p
p∗−4

|un|
2p
p |un|

p∗
p∗−p
p∗−4

p∗

.

Next, we claim that
∫

R3

(
|∇un|

p−2∇un∇(un − u) + |un|
p−2un(un − u)

)
dx → 0, as n → ∞.

Therefore, we need to show that |un|
p∗

p∗ , |un|
p
p,
∫

R3 φu2
ndx and Q(un) are bounded and

∫

R3
|un|

p−2un(un − u)dx → 0,
∫

R3
|un|

p∗−2un(un − u)dx → 0,
∫

R3
φun un(un − u)dx → 0

as n → ∞. Indeed, since (un) ⊂ S1 and the embedding W1,p(R3) →֒ Ls(R3) is continuous for

s ∈ [p, p∗], we can obtain

0 < |un|
p∗

p∗ ≤ C∥un∥
p∗ = C, 0 < |un|

p
p ≤ C1∥un∥

p = C1.

This implied that |un|
p∗

p∗ and |un|
p
p are bounded. By means of Lemma 3.4, we have

0 <

∫

R3
φu2

ndx ≤ C2∥un∥
4 = C2.

Then
∫

R3 φu2
ndx is bounded. We can deduce the boundedness of Q(un) from the fact that

(Λ̃1(un)) is bounded. According to Lemma 3.3, given v = (un − u) ∈ S1, we can attain that
∫

R3

(
|un|

p−2un − |u|p−2u
)
(un − u)dx → 0,

∫

R3

(
|un|

p∗−2un − |u|p
∗−2u

)
(un − u)dx → 0,

as n → ∞. Through Lemma 3.4, given ϕ = un − u, we obtain
∫

R3
(φun un − φuu) (un − u)dx → 0, n → ∞.
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Inasmuch as un ⇀ u in S1, one can conclude that

∫

R3
|un|

p−2un(un − u)dx → 0,
∫

R3
|un|

p∗−2un(un − u)dx → 0,
∫

R3
φun un(un − u)dx → 0,

as n → ∞. Therefore, we obtain the following conclusion:

∫

R3

(
|∇un|

p−2∇un∇(un − u) + |un|
p−2un(un − u)

)
dx → 0, as n → ∞.

Notice that p(u) =
∫

R3 |∇u|p + |u|pdx, according to the Hölder inequality, one has

(p′(un)− p′(u), un − u) ≥ ∥un∥
p + ∥u∥p − ∥un∥

p−1∥u∥ − ∥u∥p−1∥un∥

= (∥un∥
p−1 − ∥u∥p−1)(∥un∥ − ∥u∥) ≥ 0.

Owing to un ⇀ u in S1, it follows that (p′(un) − p′(u), un − u) → 0, as n → ∞. Therefore,

∥un∥ → ∥u∥ in S1. According to the uniform convexity of W1,p(R3), we can obtain that un → u

in S1. Consequently, there exits a sequence (un) such that un → u in S1 up to a subsequence.

Therefore, Λ̃1 satisfied the Palais–Smale condition.

Proof of Theorem 3.1.

(i) We prove that there is no critical point having zero energy when µ < δ1. A crucial

observation is that u being a critical point of Λ1 is equivalent to t0(u)u being a zero

energy critical point of Φµ, where µ = Λ1(u). In other words, this means that

δ1 = inf
W1,p(R3)\{0}

Λ1(u) ≤ µ ≤ sup
W1,p(R3)\{0}

Λ1(u),

which yields the desired conclusion.

(ii) According to Lemma 3.2, we know that Λ̃1 is bounded from below on S1. In the mean-

time, we obtain that Λ̃1 satisfies the Palais–Smale condition from Lemma 3.5. Note that

γ̂(S1) = ∞, Ljusternik–Schnirelman category (see[32, Theorem 5.7]) yields that there

exists a sequence (un) ⊂ S1 such that Λ̃1
′
(un) = 0, Λ̃1(un) = µn. Therefore, the energy

functional Φ has infinitely many zero energy critical points (un) ⊂ S1. Since Λ̃1(u) is an

even functional, Λ̃1
′
(±un) = 0, Λ̃1(±un) = µn. Hence, system (3.1) possesses infinitely

many zero energy sign changing weak solutions.

3.2 Critical Schrödinger–Poisson system in bounded domains

The purpose of this subsection is to study the existence and nonexistence of solutions for

a Schrödinger–Poisson system with critical nonlinearity in bounded domains. Here is the

system under consideration:





−∆u + λφ|u|q−2u = µu − |u|2
∗−2u in Ω,

−∆φ = |u|q in Ω,

u = φ = 0 on ∂Ω,

(3.4)

where λ = −1, Ω ⊂ R
N(N ≥ 3) is a bounded domain with smooth boundary ∂Ω, µ is a

real parameter, 1 < N/(N − 2) < q < 2N/(N − 2) = 2∗. It is well known that problem (3.4)
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is equivalent to a nonlocal nonlinear problem related with famous Choquard equations in

bounded domains. For more related results, for instance we refer to [1, 5, 11, 30].

Now we start the analysis of problem (3.4). One may easily get that the corresponding

functional of (3.4) is as follows:

Φµ(u) =
1

2

∫

Ω

|∇u|2dx −
µ

2

∫

Ω

|u|2dx −
1

2q

∫

Ω

φ|u|qdx +
1

2∗

∫

Ω

|u|2
∗
dx, u ∈ H1

0(Ω).

This Hilbert space H1
0(Ω) provides a suitable framework for our analysis, capturing the es-

sential properties of functions under consideration. Given the norm

∥u∥ :=

(∫

Ω

|∇u|2dx

) 1
2

.

It is apparent that the functional Φµ is C1. Then, for every u ∈ H1
0(Ω)\{0},

µ0(u) =
∥u∥2

|u|22
−

1

q

∫
Ω

φ|u|qdx

|u|22
+

2

2∗
|u|2

∗

2∗

|u|22
,

µ0(tu) =
∥u∥2

|u|22
− t2q−2 1

q

∫
Ω

φ|u|qdx

|u|22
+ t2∗−2 2

2∗
|u|2

∗

2∗

|u|22
.

Let µ′
0(tu) = 0, we obtain

t0(u) =

(
2∗ − 2

2q − 2

2q

2∗
|u|2

∗

2∗∫
Ω

φ|u|qdx

) 1
2q−2∗

> 0,

that is µ′
0(t0(u)u) = 0. In the meantime, on account of µ′′

0 (t0(u)u) < 0, we can deduce that

t0(u) is a nondegenerate global maximum point of µ0(tu). As a result, we can obtain that

Λ2(u) = µ0(t0(u)u) =
∥u∥2

|u|22
+

2

2∗
2q − 2∗

2q − 2

(
2∗ − 2

2q − 2

2q

2∗

) 2∗−2
2q−2∗ (|u|2

∗

2∗)
2q−2

2q−2∗

|u|22(
∫

Ω
φ|u|qdx)

2∗−2
2q−2∗

.

For clarity, we call Λ̃2 the restriction of Λ2 to S2, where

S2 = {u ∈ H1
0(Ω)\{0} : ∥u∥ = 1}.

As for our central discovery in this subsection, it can be phrased as:

Theorem 3.6. Let δ2 = infH1
0 (Ω)\{0} Λ2(u).

(i) If µ < δ2, then there is no nontrivial weak solution having zero energy in system (3.4);

(ii) If µ > δ2, then system (3.4) has infinitely many zero energy sign changing weak solutions.

As mentioned earlier, to achieve our goal, we only need to prove the boundedness from

below of Λ̃2 on S2 and verify that Λ̃2 meets the Palais–Smale condition.

Lemma 3.7. Λ̃2 is bounded from below on S2.
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Proof. According to the embedding theorem, H1
0(Ω) →֒ L2(Ω) is continuous, there is a con-

stant C > 0 such that |u|22 ≤ C∥u∥2. Note that 1 < N/(N − 2) < q < 2∗, one may verify

that

Λ̃2 =
∥u∥2

|u|22
+

2

2∗
2q − 2∗

2q − 2

(
2∗ − 2

2q − 2

2q

2∗

) 2∗−2
2q−2∗ (|u|2

∗

2∗)
2q−2

2q−2∗

|u|22(
∫

Ω
φ|u|qdx)

2∗−2
2q−2∗

>
1

C
.

That is to say, Λ̃2 is bounded from below on S2.

Lemma 3.8. Λ̃2 satisfies the Palais–Smale condition.

Proof. Choose a sequence (un) ⊂ S2 such that Λ̃2(un) is bounded and Λ̃2
′
(un) → 0. In other

words, for any v ∈ TS2
(un), we have |Λ′

2(un)v| ≤ εn∥v∥, where εn → 0.

With the assistance of Lemma 2.2, assuming a sequence (un) ⊂ S2 satisfies Λ̃2
′
(un) → 0, we

can conclude that un ⇀ u in S2 and Λ
′
2(un)(un − u) → 0 as n → ∞. Then, for any un, u ∈ S2,

Λ
′
2(un)(un − u) = 2

|un|22
∫

Ω
∇un∇(un − u)dx − ∥un∥2

∫
Ω

un(un − u)dx

|un|42

+ C2Q(un)

(
2∗

2q − 2

2q − 2∗
|un|

2
2

∫

Ω

φ|un|
qdx

∫

Ω

|un|
2∗−2un(un − u)dx

− 2q
2∗ − 2

2q − 2∗
|un|

2∗

2∗ |un|
2
2

∫

Ω

φ|un|
q−2un(un − u)dx

− 2|un|
2∗

2∗

∫

Ω

φ|un|
qdx

∫

Ω

un(un − u)dx

)
→ 0,

(3.5)

where

C2 =
2

2∗
2q − 2∗

2q − 2

(
2∗ − 2

2q − 2

2q

2∗

) 2∗−2
2q−2∗

, Q(un) =
(|un|2

∗

2∗)
2∗−2
2q−2∗

|un|42(
∫

Ω
φ|un|qdx)

2q−2
2q−2∗

.

In order to prove Lemma 3.7, we first verify that
∫

Ω
∇un∇(un − u)dx → 0, as n → ∞.

Therefore, on the one hand, we need to show that |un|22, |un|2
∗

2∗ , Q(un) is bounded. On the

other hand, we need to prove

∫

Ω

un(un − u)dx → 0,
∫

Ω

φun |un|
q−2(un − u)dx → 0, as n → ∞.

In fact, we know that un ̸≡ 0 from (un) ⊂ S2. According to Lemma 3.4, we can obtain

0 <

∫

Ω

φun |un|
qdx ≤ C2∥un∥

2q = C2.

Therefore,
∫

Ω
φun |un|qdx is bounded. On the basis of the embedding theorem, H1

0(Ω) →֒

Ls(Ω) is continuous for 2 ≤ s ≤ 2∗, we have

0 < |un|
2
2 ≤ C∥un∥

2 = C, 0 < |un|
2∗

2∗ ≤ C∥un∥
2∗ = C,

which implied that |un|22 and |un|2
∗

2∗ are bounded. Note that Λ̃2(un) is bounded, one may check

that Q(un) is bounded. Thanks to the embedding H1
0(Ω) →֒ L2(Ω) is compact, one has

∫

Ω

un(un − u)dx → 0, as n → ∞.
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With the aid of Lemma 3.4, it holds
∫

Ω

φun |un|
q−2un ϕdx →

∫

Ω

φu|u|
q−2uϕdx, for any ϕ ∈ H1

0(Ω).

Let ϕ = un − u. Then we obtain
∫

Ω

φun |un|
q−2(un − u)dx −

∫

Ω

φu|u|
q−2(un − u)dx → 0, as n → ∞.

Since un ⇀ u in H1
0(Ω), we have

∫
Ω

φu|u|q−2(un − u)dx → 0. Consequently,
∫

Ω

φun |un|
q−2(un − u)dx → 0, as n → ∞.

The analysis leads to the following conclusion:
∫

Ω

∇un∇(un − u)dx +
∫

Ω

|un|
2∗−2un(un − u)dx → 0.

In order to obtain
∫

Ω
∇un∇(un − u)dx → 0, we will use the Hölder inequality to derive

∫

Ω

∇un∇(un − u)dx ≥ 0,
∫

Ω

|un|
2∗−2un(un − u)dx ≥ 0.

For convenience, put p1(u) =
∫

Ω
|∇u|2dx, p2(u) =

∫
Ω
|u|2

∗
dx. One may check that

(p′1(un)− p′1(u), un − u) = ∥un∥
2 + ∥u∥2 −

∫

Ω

∇un∇udx −
∫

Ω

∇u∇undx,

(p′2(un)− p′2(u), un − u) = ∥un∥
2∗

2∗ + ∥u∥2∗

2∗ −
∫

Ω

|un|
2∗−2unudx −

∫

Ω

|u|2
∗−2uundx.

By virtue of the Hölder inequality, we have

∫

Ω

∇un∇udx ≤

(∫

Ω

|∇u|2dx

) 1
2
(∫

Ω

|∇un|
2dx

) 1
2

= ∥un∥∥u∥,

∫

Ω

|un|
2∗−2unudx ≤

(∫

Ω

|un|
2∗dx

) 2∗−1
2∗
(∫

Ω

|u|2
∗
dx

) 1
2∗

= |un|
2∗−1
2∗ |u|2∗ ,

∫

Ω

|u|2
∗−2uundx ≤

(∫

Ω

|u|2
∗
dx

) 2∗−1
2∗
(∫

Ω

|un|
2∗dx

) 1
2∗

= |u|2
∗−1

2∗ |un|2∗ .

Therefore,

(p′1(un)− p′1(u), un − u) ≥ (∥un∥ − ∥u∥)(∥un∥ − ∥u∥) ≥ 0,

(p′2(un)− p′2(u), un − u) ≥ (∥un∥
2∗−1 − ∥u∥2∗−1)(∥un∥ − ∥u∥) ≥ 0.

Since un ⇀ u in S2, we have (p′1(u), un − u) → 0, (p′1(u), un − u) → 0, as n → ∞. From which

it follows that ∫

Ω

∇un∇(un − u)dx ≥ 0,
∫

Ω

|un|
2∗−2un(un − u)dx ≥ 0.

As a result, we can draw the following conclusion:
∫

Ω

∇un∇(un − u)dx → 0, as n → ∞.

Moreover, since (p′1(un) − p′1(u), un − u) → 0, we have ∥un∥ → ∥u∥ in S2. By the uniform

convexity of H1
0(Ω), we deduce that un → u in S2. Therefore, Λ̃2 satisfied the Palais–Smale

condition.
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Proof of Theorem 3.6.

(i) We show that there is no critical point having zero energy when µ < δ2. Note that u

is a critical point of Λ, if and only if, t0(u)u is a zero energy critical point of Φµ with

µ = Λ(u), this means the desired conclusion.

(ii) According to Lemma 3.5, we know that Λ̃2 is bounded from below on S2. Moreover,

Λ̃2 satisfies the Palais–Smale condition due to Lemma 3.7. Note that γ̂(S2) = ∞, it

follows from Ljusternik–Schnirelman category (see [32, Theorem 5.7]) that there exists a

sequence (un) ⊂ S2 such that Λ̃2
′
(un) = 0, Λ̃2(un) = µn. The remainder is the same as

the proof of Theorem 3.1, here we omit it.

3.3 Kirchhoff-type problems with critical growth

Now, let us consider the following Kirchhoff-type problem:

{
−(a + b

∫
Ω
|∇u|2)∆u = µu + |u|4u in Ω,

u = 0 on ∂Ω,
(3.6)

where Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω, a, b > 0, µ is a real parameter.

Inspired by the works described above, in this paper we study the existence of zero energy

solutions for a class of Kirchhoff problem with critical growth in bounded domains. In recent

years, Kirchhoff-type equation is an extension of the classical D’Alembert’s wave equation.

It was firstly proposed by Kirchhoff in 1883. Various problems of Kirchhoff-type are usually

named nonlocal problems in virtue of the appearance of the nonlocal term a + b
∫

Ω
|∇u|2 and

have been extensively investigated up to now. In [28], Quoirin et al. investigated qualitative

properties of solutions for a Kirchhoff-type problem with subcritical growth as an application

of their zero energy critical point theory. However, their theory seems difficulty to deal with

the problem like (3.6) involving the critical exponent. For this purpose, we explore a new

strategy (Theorem 1.1) to solve this problem.

As usual, one can get that the corresponding functional of (3.6) is Φµ : H1
0(Ω) → R:

Φµ(u) =
a

2

∫

Ω

|∇u|2dx −
µ

2

∫

Ω

|u|2dx −
1

6

∫

Ω

|u|6dx +
b

4

(∫

Ω

|∇u|2dx

)2

.

It is evident that Φµ is C1. Then, according to the previous preliminaries, for every u ∈

H1
0(Ω)\{0}:

µ0(u) =
a∥u∥2

|u|22
−

1

3

|u|66
|u|22

+
b

2

∥u∥4

|u|22
,

µ0(tu) =
a∥u∥2

|u|22
−

t4

3

|u|66
|u|22

+ t2 b

2

∥u∥4

|u|22
.

Let µ′
0(tu) = 0, we obtain

t0(u) =

(
3

4

b∥u∥4

|u|66

) 1
2

> 0,

and t0(u) is a nondegenerate global maximum point of µ0(tu) via µ′′
0 (t0(u)u) < 0. Therefore,

we have

Λ3(u) =
a∥u∥2

|u|22
+

3

16

(b∥u∥4)2

|u|22|u|
6
6

.
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For simplicity, we call Λ̃3 the restriction of Λ3 to S3, where

S3 = {u ∈ H1
0(Ω)\{0} : ∥u∥ = 1}.

The main result we have derived in this section is expressed as:

Theorem 3.9. Let δ3 = infH1
0 (Ω)\{0} Λ3(u).

(i) If µ < δ3, then there is no nontrivial weak solution having zero energy in problem (3.6);

(ii) If µ > δ3, then problem (3.6) has infinitely many zero energy sign changing weak solutions.

To verify this result, according to Ljusternik–Schnirelman category (see [32, Theorem 5.7]),

it is necessary to prove that Λ̃3 is bounded below and satisfies the Palais–Smale condition.

Lemma 3.10. Λ̃3 is bounded from below on S3.

Proof. Since the embedding H1
0(Ω) →֒ L2(Ω) is continuous, there exists C > 0 such that

C∥u∥2 ⩾ |u|22. Hence, one can obtain that

Λ̃3(u) =
a∥u∥2

|u|22
+

3

16

b∥u∥4

|u|22|u|
3
6

>
a

C
,

which yields that Λ̃3 is bounded from below on S3.

Lemma 3.11. If (un) ⊂ S3, then un ⇀ u in H1
0(Ω)\{0} up to a subsequence. Therefore,

∫

R3
|un|

4un ϕdx →
∫

R3
|u|4uϕdx, as n → ∞,

for any ϕ ∈ C∞

0 (R3).

Proof. We employ the strategy outlined in Lemma 3.3 from [21]. In fact, it is related to a result

from the Lebesgue Dominated Convergence Theorem. First we notice that

|un|
4un ϕ → |u|4uϕ as n → ∞,

almost everywhere in the compact support Ω of ϕ, and

||un|
4un ϕχΩ| ≤ |un|

5|ϕ|χΩ,

where χΩ represents the characteristic function of Ω. Given that un → u in Ls
loc(R

3) for all

5 < s < 6, utilizing the Hölder inequality yields

∫

Ω

|un|
5|ϕ|dx ≤

(∫

Ω

|un|
sdx

) 5
s
(∫

Ω

|ϕ|
s

s−5 dx

) s−5
s

,

which means that |un|5|ϕ|χΩ ∈ L1(R3). According to Lebesgue dominated convergence theo-

rem, it follows that ∫

R3
|un|

4un ϕdx →
∫

R3
|u|4uϕdx, as n → ∞.

The proof is now complete.

Lemma 3.12. Λ̃3 satisfied the Palais–Smale condition.
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Proof. Choosing a sequence (un) ⊂ S3 such that (Λ̃3(un)) is bounded and Λ̃3
′
(un) → 0,

that is |Λ′
3(un)v| ≤ εn∥v∥ for any v ∈ TS3

(un), with εn → 0. In view of Lemma 2.2, if

there is a sequence (un) ⊂ S3 and Λ̃3
′
(un) → 0, we can acquire that un ⇀ u in S3 and

Λ
′(un)(un − u) → 0 as n → ∞. Then, for any un, u ∈ S3,

Λ
′(un)(un − u) = 2a

|un|22
∫

Ω
∇un∇(un − u)dx − ∥un∥2

∫
Ω

un(un − u)dx

|un|42

+
3b

16
Q(un)

(
4|un|

2
2|un|

6
6

∫

Ω

|∇un|
2dx

∫

Ω

∇un∇(un − u)dx

− 6∥un∥
4|u|22

∫

Ω

|un|
4un(un − u)dx − 2∥un∥

4|un|
6
6

∫

Ω

un(un − u)dx

)
→ 0,

as n → ∞, where

Q(un) =
b∥un∥4

|un|42(|un|66)
1
2

.

Since (un) ⊂ S3 and the embedding H1
0(Ω) →֒ Ls(Ω) is continuous for 1 ≤ s ≤ 6, there exists

a constant C > 0 such that

0 < |un|
2
2 ≤ C∥un∥

2 = C, 0 < |un|
6
6 ≤ C∥un∥

6 = C.

Therefore, |un|22, |un|66 is bounded. Note that (Λ̃3(un)) is bounded, then Q(un) is bounded.

Since un ⇀ u in H1
0(Ω), one can easily deduce from the Sobolev embedding theorem that

∫

Ω

un(un − u)dx → 0, as n → ∞.

By means of Lemma 3.11, given ϕ = un − u, then as n → ∞,
∫

Ω

|un|
4un(un − u)dx −

∫

Ω

|u|4u(un − u)dx → 0.

This yields that ∫

Ω

|un|
4un(un − u)dx → 0, as n → ∞,

which leads to the following conclusion:
∫

Ω

∇un∇(un − u)dx → 0, as n → ∞,

which means that ∥un∥ → ∥u∥ in S3. By the uniform convexity of H1
0(Ω), it follows that

un → u in S3. In conclusion, Λ̃3 satisfied the Palais–Smale condition.

Proof of Theorem 3.9.

(i) We prove that there is no critical point having zero energy when µ < δ3. Note that u

is a critical point of Λ3, if and only if, t0(u)u is a zero energy critical point of Φµ with

µ = Λ3(u), this yields the desired conclusion.

(ii) According to Lemma 3.10, it follows that Λ̃3 is bounded from below on S3. In the

meantime, Λ̃3 satisfies the Palais–Smale condition as per the Lemma 3.12. Note that

γ̂(S3) = ∞, Ljusternik–Schnirelman category (see [32, Theorem 5.7]) implied that there

exists a sequence (un) ⊂ S3 such that Λ̃3
′
(un) = 0, Λ̃3(un) = µn. Analogous to the proof

of Theorem 3.1, problem (3.6) possesses infinitely many zero-energy, sign-changing weak

solutions.
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Abstract. In this work we mainly prove the following interior gradient estimates in
weighted Lorentz spaces

g−1 [M1(µ)] ∈ L
q,r
w,loc(Ω) =⇒ |Du| ∈ L

q,r
w,loc(Ω),

where g(t) = ta(t) for t ≥ 0 and M1(µ)(x) is the first-order fractional maximal function

M1(µ)(x) := sup
r>0

r|µ|(Br(x))

|Br(x)|
,

for a class of non-homogeneous divergence quasilinear elliptic equations with measure
data in the subquadratic case

−div
[

a
(
(ADu · Du)

1
2

)
ADu

]
= µ in Ω,

whose model cases are the classical elliptic p-Laplacian equation with measure data

−div
(
|Du|p−2 Du

)
= µ for 1 < p < 2

and the elliptic p-Laplacian equation with the logarithmic term and measure data

−div
(
|Du|p−2 log (1 + |Du|) Du

)
= µ for 1 < p < 2.

It deserves to be specially noted that the subquadratic case is a little different from
the superquadratic case since as an example, the modulus of ellipticity in the above-
mentioned special cases tends to infinity when |Du| → 0 for 1 < p < 2.
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2 F. Yao

1 Introduction

In this paper we mainly study the local gradient estimates in weighted Lorentz spaces for the

following non-homogeneous quasilinear elliptic equations with right-hand side measure in

divergence form

−div
[

a
(
(ADu · Du)

1
2

)
ADu

]
= µ in Ω, (1.1)

where Ω is a bounded domain in R
n for n ≥ 2, µ is a Borel measure with finite mass and

a : [0, ∞) → [0, ∞) ∈ C1[0, ∞) satisfies

−1 < ia := inf
t>0

ta′(t)

a(t)
≤ sup

t>0

ta′(t)

a(t)
=: sa < 0 for any t > 0. (1.2)

Moreover, the symmetric matrix A(x) = {aij(x)} satisfies the following uniformly elliptic

condition

Λ−1|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 (1.3)

for every ξ ∈ R
n, a.e. x ∈ R

n and some constant Λ > 0. We remark that if a(t) = tp−2 and A

is the identity matrix I, then ia = sa = p − 2 for 1 < p < 2 and (1.1) is reduced to the classical

elliptic p-Laplacian equation with right-hand side measure in divergence form

−div
(
|Du|p−2 Du

)
= µ for 1 < p < 2. (1.4)

It may be worthwhile to remark that another two natural examples of the functions a are

a(t) = tp−2 log(1 + t) for 1 < p < 2, which makes (1.1) for A = I is equal to

−div
(
|Du|p−2 log (1 + |Du|) Du

)
= µ,

and a more general example (see page 600 in [9] and page 314 in [46]), which is related to

(p, q)-growth condition given by appropriate gluing of the monomials.

Define

g(t) := ta(t) (1.5)

and

G(t) :=
∫ t

0
g(τ) dτ =

∫ t

0
τa(τ) dτ for t ≥ 0. (1.6)

From (1.2) we know that

g(t) is strictly increasing and continuous over [0,+∞), (1.7)

and then

G(t) is increasing over [0,+∞) and strictly convex with G(0) = 0. (1.8)

The partial differential equations involving measure data allow to consider various math-

ematical models in many interesting phenomena such as the blood flow in the heart [58] and

state-constrained optimal control problems [23, 24]. The pointwise estimates of solutions to

elliptic PDEs via suitable linear and nonlinear potentials of the right-hand side measure µ
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were first investigated by Kilpeläinen & Malý [39, 40], in which they obtained the pointwise

estimates for u in terms of nonlinear Wolff potentials W
µ
β,p defined by

W
µ
β,p(x, R) :=

∫ R

0

(
|µ| (B(x, ϱ))

ϱn−βp

) 1
p−1 dϱ

ϱ
for β ∈

(
0,

n

p

]
,

where

|µ|(B(x, ϱ)) :=
∫

B(x,ϱ)
|µ(y)|dy.

Remarkably, such estimates played an essential role in the nonlinear potential theory (see

[38, 60]). In more specific terms, Kilpeläinen & Malý [39, 40] proved the following estimate

|u(x0)| ≤ C(n, p)

[
W

µ
1,p(x, R) +

(∫
−

B(x,R)
|u|γdx

) 1
γ

]
, γ > p − 1 (1.9)

with B(x, R) ⊆ Ω for solution to the p-Laplacian equation with right-hand side measure (1.4).

Afterwards, Trudinger & Wang [64] used a different approach to prove the pointwise estimate

via the nonlinear Wolff potential for the p-Laplacian operators. Later, Duzaar & Mingione

[35, 51] extended (1.9) to the pointwise estimate at the gradient level

|Du(x0)| ≤ C(n, p)

[∫
−

B(x0,2R)
|Du|dx + W

µ
1/p,p(x, 2R)

]

for solutions to the elliptic p-Laplacian equation (1.4) and more general case. In the subsequent

papers, for the case p ≥ 2 Kuusi & Mingione [44, 45] made a deep study of the pointwise

estimates for gradient

|Du(x0)| ≤ C(n, p)

[∫
−

B(x0,2R)
|Du|dx + C

(
I
|µ|
1 (x0, 2R)

) 1
p−1

]

of solutions to (1.4) and more general case in terms of the linear Riesz potential of the right-

hand side I
|µ|
1 (x, R) which is defined by

I
|µ|
1 (x, R) :=

∫ R

0

|µ|(B(x, ϱ))

ϱn−1

dϱ

ϱ
.

In particular, we mention here that Duzaar & Mingione [33] obtained gradient estimates via

linear Riesz potentials

|Du(x0)| ≤ C
∫
−

B(x0,2R)
|Du|dx + C

[
I
|µ|
1 (x0, 2R)

] 1
p−1

for solutions of the general case of the elliptic p-Laplacian equation for 2 − 1/n < p < 2. We

remark that the lower bound 2 − 1/n on the exponent p is to ensure W1,1-solutions (see [33]).

It deserves to be specially noted that Dong, Nguyen, Phuc & Zhu [32, 55, 57] also studied the

local and global pointwise gradient estimates for solutions to the quasilinear elliptic equation

with measure data −div A(x, Du) = µ in the case 1 < p ≤ 2 − 1/n, whose prototype is given

by the elliptic p-Laplace equation (1.4). Moreover, an extension of the previous results to a

class of general elliptic equations

−div [a (|Du|) Du] = µ
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including the p-Laplacian equation has been recently given by Baroni [7], in which the author

proved the following pointwise gradient estimates via the linear Riesz potential

g(|Du(x0)|) ≤ Cg

(∫
−

B(x0,2R)
|Du|dx

)
+ CI

|µ|
1 (x0, 2R).

Actually, Cianchi & Maz’ya [26–28] have proved Lipschitz regularity and sharp estimates for

weak solutions of

−div (a (|Du|) Du) = f , (1.10)

which is first introduced and studied by Lieberman [46] as the most natural and best general-

ization of the p-Laplacian equation. In the meanwhile, the authors [5, 6, 10, 21, 25, 30, 31, 52, 65]

also studied regularity estimates of weak solutions for the quasilinear elliptic equations (1.10).

In a general way we call w belongs to the class of the Muckenhoupt weights Ap for some

p > 1 if w ∈ L1
loc(R

n) and w > 0 almost everywhere satisfies

(∫
−

Br

w(x)dx

)(∫
−

Br

w(x)
−1
p−1 dx

)p−1

≤ C

for any ball Br in R
n. Moreover, we denote

A∞ :=
⋃

1<p<∞

Ap and w(Br) :=
∫

Br

w(x)dx.

Furthermore, the corresponding weighted Lebesgue space L
p
w(Br) consists of all functions h

which satisfy

∥h∥L
p
w(Br)

:=

(∫

Br

|h|p w(x)dx

)1/p

< ∞.

Now we give the following definition of weighted Lorentz spaces.

Definition 1.1. The weighted Lorentz space L
q,r
w (Ω) for any 0 < q < ∞ and 0 < r ≤ ∞ is the

set of all measurable functions h satisfying

∥h∥L
q,r
w (Ω) < ∞,

where

∥h∥L
q,r
w (Ω) :=





[
q
∫ ∞

0
λr−1w ({x ∈ Ω : |h(x)| > λ})

r
q dλ

] 1
r

for r < ∞,

sup
λ>0

λ w ({x ∈ Ω : |h(x)| > λ})
1
q for r = ∞.

Actually, the weighted Lebesgue space L
q
w(Ω) = L

q,q
w (Ω) and Marcinkiewicz space Mq(Ω) =

Lq,∞(Ω).

Lemma 1.2 (see [16, 19, 47, 62, 63]). Assume that w ∈ Ap for some p > 1. Then there exists a small

positive constant σ > 0 such that

C1

(
|Br|

|BR|

)p

≤
w(Br)

w(BR)
≤ C2

(
|Br|

|BR|

)σ

for any balls Br ⊂ BR ⊂ R
n, where C2 > 1 and C1 > 0.
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There are various kinds of Calderón–Zygmund type estimates for the elliptic equations of

p-Laplacican type (see, for example, [3, 8, 17, 29, 41, 47, 48] and the references therein). More

to the point, Mingione [50] first proved the local sharp estimates in Lorentz spaces for the

solutions to the following p-Laplacian type elliptic equation with measure data

−div a(x, Du) = µ in Ω. (1.11)

Furthermore, Phuc [59] obtained the following global weighted norm inequality in Lorentz

spaces for gradients of solutions to (1.11)

(M1(µ))
1

p−1 ∈ L
q,r
w (Ω) =⇒ |Du| ∈ L

q,r
w (Ω)

for 2 − 1/n < p ≤ n, any q ∈ (0,+∞) and r ∈ (0,+∞], where M1(µ)(x) is the first-order

fractional maximal function

M1(µ)(x) := sup
r>0

r|µ|(Br(x))

|Br(x)|
, x ∈ R

n.

Subsequently, Nguyen & Phuc [54, 56] obtained existence and global regularity estimates for

gradients of solutions to quasilinear elliptic equations with measure data, whose prototypes

are of the form −div
(
|Du|p−2Du

)
= δ|Du|q + µ for 1 < p ≤ 2 − 1/n. In the meanwhile,

Byun, Ok & Park [18] established the corresponding Calderón–Zygmund type estimates for

quasilinear elliptic equations (1.11) with variable p(x)-growth involving measure data. More-

over, Byun, Cho & Youn [14] studied the existence of distributional solutions and the global

Calderón–Zygmund type estimates to nonlinear elliptic problems (1.1) and more general case

with the right-hand side Radon measure. Moreover, Avelin, Kuusi & Mingione [4] have inves-

tigated a limiting case of Calderón–Zygmund theory for a class of nonlinear elliptic equations

modeled on the elliptic p-Laplacian equation with right-hand side measure (1.4). Motivated

by the works mentioned above, our purpose of this paper is to establish the local weighted

Lorentz gradient estimates for weak solutions of the problem (1.1) with the condition (1.2) in

the case −1/n < ia ≤ sa < 0. More precisely, we shall prove that

g−1 [M1(µ)] ∈ L
q,r
w,loc(Ω) =⇒ |Du| ∈ L

q,r
w,loc(Ω).

We now state the definition of weak solutions.

Definition 1.3. A function u ∈ W1,G
loc (Ω) (see Definition 2.4) is a local weak solution of (1.1) if

for any φ ∈ W1,G
0 (Ω) ∩ L∞(Ω) we have

∫

Ω
a
(
(ADu · Du)

1
2

)
ADu · Dφdx =

∫

Ω
φdµ.

In this work we shall assume that the coefficients of A = {aij} are in the BMO space and

their semi-norms are small enough. Higher integrability of solutions to various kinds of ellip-

tic/parabolic PDEs with discontinuous coefficients of VMO/BMO type has been extensively

studied by many authors (see [2, 15, 20, 41, 43]). We would like to point out that a function

satisfies the small BMO condition if it satisfies the VMO condition. More precisely, we use the

following small BMO condition.

Definition 1.4. We say that the matrix A of coefficients is (δ, R)-vanishing if

sup
0<r≤R

sup
x∈Rn

∫
−

Br(x)

∣∣∣A(y)− ABr(x)

∣∣∣ dy ≤ δ,

where

ABr(x) =
∫
−

Br(x)
A(y) dy.
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The main result of this work is stated as follows. First of all, we remark that the following

conclusion is stated as a priori estimate for weak solutions. Actually, solutions to measure

data problems (very weak solutions) are usually found by approximation procedures. So,

they are often called SOLA (Solutions Obtained by Limiting Approximation). We can refer to

the relevant existence theory in the papers [11–13, 37, 40]. In the following we shall mention a

space W1, f (Ω), where

f (t) :=
∫ t

0

g(s)

s
ds,

whose definition is just like Section 3.2 in [7]. More precisely, the exact definition of SOLA is

given as follows: a function u ∈ W
1, f
loc (Ω) is a local SOLA of (1.1) if

∫

Ω
a
(
(ADu · Du)

1
2

)
ADu · Dφdx =

∫

Ω
φdµ

holds for any φ ∈ C∞
0 (Ω), and moreover there exists a sequence of weak solutions {uk} ∈

W1,G
loc (Ω) of

−div
(

a
(
(ADuk · Duk)

1
2

)
ADuk

)
= µk in Ω, (1.12)

such that uk → u in W
1, f
loc (Ω), where {µk} ∈ L∞(Ω) converges weakly to µ in the sense of

measure. In particular, we shall assume that −1/n < ia ≤ sa < 0 in the theorem below just

like in the paper of Duzaar & Mingione [33], in which they supposed that p > 2 − 1/n for the

elliptic p-Laplacian equations and general case.

Now we shall give a concrete conclusion of this paper.

Theorem 1.5. Suppose that µ ∈ L∞(Ω) and u ∈ W1,G
loc (Ω) is a local weak solution of (1.1) in Ω ⊃ B2

for −1/n < ia ≤ sa < 0. Then we have

g−1 [M1(µ)] ∈ L
q,r
w,loc(Ω) =⇒ |Du| ∈ L

q,r
w,loc(Ω)

for any q ∈ (1, ∞) and r ∈ (0, ∞], with the estimate

∥Du∥L
q,r
w,loc(B1)

≤ C
∫

B2

( |Du|+ 1 ) dx + C∥g−1 [M1(µ)) ∥L
q,r
w,loc(B2)

,

where C is independent of u and µ.

2 Proof of the main result

In this section we shall finish the proof of the main result in this work, Theorem 1.5. First of

all, we shall give some definitions on the general Orlicz spaces, which have been extensively

studied in the area of analysis (see [1, 53]) and play a crucial role in many fields of math-

ematics including geometric, probability theory, stochastic analysis, Fourier analysis, partial

differential equations and so on (see [61]).

Definition 2.1. A function G belongs to Φ, which consists of all increasing and convex func-

tions G : [0,+∞) → [0,+∞), is said to be a Young function if

lim
t→0+

G(t)

t
= lim

t→+∞

t

G(t)
= 0.
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Additionally, a Young function G is said to G ∈ ∆2 if there exists M > 0 such that

G(2t) ≤ MG(t) for any t > 0. (2.1)

Moreover, we call a Young function G ∈ ∇2 if there exists a number a > 1 such that

G(t) ≤
G(at)

2a
for any t > 0. (2.2)

Example 2.2.

(1) G1(t) = (1 + t) log(1 + t)− t ∈ ∆2, but G1(t) /∈ ∇2.

(2) G2(t) = et − t − 1 ∈ ∇2, but G2(t) /∈ ∆2.

(3) G3(t) = tp log(1 + t) ∈ ∆2 ∩∇2 for p > 1.

Remark 2.3. Actually, if G ∈ ∆2 ∩∇2, then we have

G(θ1t) ≤ Kθ
β1

1 G(t) and G(θ2t) ≤ 2aθ
β2

2 G(t) (2.3)

for every t > 0 and 0 < θ2 ≤ 1 ≤ θ1 < ∞, where β1 = log2 M ≥ β2 = loga 2 + 1 > 1.

Definition 2.4. Assume that G is a Young function. Then the Orlicz class KG(Rn) is the set of

all measurable functions f : R
n → R satisfying

∫

Rn
G(| f |) dx < ∞.

The Orlicz space LG(Rn) is the linear hull of KG(Rn) and W1,G(Rn) := { f ∈ LG(Rn) | D f ∈

LG(Rn)}.

Moreover, in this work we need the following crucial lemmas, which will be used in the

subsequent proof.

Lemma 2.5 ([1]). Let G be a Young function satisfying G ∈ ∆2 ∩∇2. Then

(1) KG(Ω) = LG(Ω).

(2) C∞
0 (Ω) is dense in LG(Ω).

(3) Lβ1(Ω) ⊂ LG(Ω) ⊂ Lβ2(Ω) ⊂ L1(Ω) with β1 ≥ β2 > 1 as in (2.3).

(4) If f ∈ LG(Rn), then

∫

Rn
G(| f |) dx =

∫ ∞

0
|{x ∈ R

n : | f | > µ}| d [G(µ)] .

(5) st ≤ ϵ G̃(s) + C(ϵ)G(t) for any s, t ≥ 0 and ϵ > 0,

where G̃ is the conjugate function of G

G̃(t) := sup
s≥0

{st − G(s)} for any t ≥ 0.

Now we shall recall the following results, which can be derived from Proposition 2.9 of

[26], Lemma 1.9 and Lemma 2.4 of [65] and the change of variable.
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Lemma 2.6. Assume that a(t) satisfies (1.2) for sa < 0 and G(t) =
∫ t

0 τa(τ) dτ for t ≥ 0 is defined

in (1.6).

1. For any t > 0 we find that

θia ≤
a(θt)

a(t)
≤ θsa and θ2+ia ≤

G(θt)

G(t)
≤ θ2+sa for any θ ≥ 1. (2.4)

2. G(t) ∈ ∇2 ∩ ∆2 and G̃(g(t)) ≤ CG(t) for t ≥ 0.

3. There exist C = C(n, ia, sa) > 0 and ϵ0 = ϵ0(n, ia, sa) > 0 we have

G (|ξ − η|) ≤ C(ϵ)
[

a
(
(Aξ · ξ)

1
2

)
Aξ − a

(
(Aη · η)

1
2

)
Aη
]
· (ξ − η) + ϵG (|η|)

for any ξ, η ∈ R
n and small positive constant ϵ ∈ (0, ϵ0).

Next, we can obtain the following important results for sa < 0.

Lemma 2.7. Assume that a(t) satisfies (1.2) and sa < 0, G(t) is defined in (1.6) and

V(z) =
√

a (|z|)z. (2.5)

Then for any ξ, η ∈ R
n there exists C = C(n, ia, sa) > 0 we have

Ca (|ξ|+ |η|) |ξ − η|2 ≤ |V(ξ)− V(η)|2 ≤ Ca (|ξ|+ |η|) |ξ − η|2 , (2.6)

C
√

a (|ξ|+ |η|) |ξ − η|2 ≤ [V (ξ)− V (η)] · (ξ − η) ≤ C
√

a (|ξ|+ |η|) |ξ − η|2 (2.7)

and
[

a
(
(Aξ · ξ)

1
2

)
Aξ − a

(
(Aη · η)

1
2

)
Aη
]
· (ξ − η) ≥ C |V(ξ)− V(η)|2 . (2.8)

Proof. We first find that

V (ξ)− V (η)

=
√

a (|ξ|)ξ −
√

a (|η|)η

= (ξ − η)
∫ 1

0

√
a (|sξ + (1 − s)η|) ds

+
1

2

∫ 1

0

a′ (|sξ + (1 − s)η|)

|sξ + (1 − s)η|

1√
a (|sξ + (1 − s)η|)

(sξ + (1 − s)η) [sξ + (1 − s)η]·(ξ − η) ds.

Then from (1.2) we deduce that

|V (ξ)− V (η)| ≤ |ξ − η|
∫ 1

0

√
a (|sξ + (1 − s)η|)ds −

ia

2
|ξ − η|

∫ 1

0

√
a (|sξ + (1 − s)η|)ds

=

(
1 −

ia

2

)
|ξ − η|

∫ 1

0

√
a (|sξ + (1 − s)η|) ds. (2.9)

Similarly, we have

|V (ξ)− V (η)| ≥

(
1 +

ia

2

)
|ξ − η|

∫ 1

0

√
a (|sξ + (1 − s)η|) ds, (2.10)
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[V (ξ)− V (η)] · (ξ − η) ≥

(
1 +

ia

2

)
|ξ − η|2

∫ 1

0

√
a (|sξ + (1 − s)η|) ds (2.11)

and

[V (ξ)− V (η)] · (ξ − η) ≤

(
1 −

ia

2

)
|ξ − η|2

∫ 1

0

√
a (|sξ + (1 − s)η|) ds. (2.12)

In view of the facts that a(t) is strictly decreasing and |sξ + (1 − s)η| ≤ |ξ| + |η| for any

0 ≤ s ≤ 1, we find that

∫ 1

0

√
a (|sξ + (1 − s)η|)ds ≥

∫ 1

0

√
a (|ξ|+ |η|)ds =

√
a (|ξ|+ |η|), (2.13)

which implies that the left-hand inequalities of (2.6) and (2.7) hold true. On the other hand,

we define

s0 :=
|ξ − η0|

|ξ − η|
,

where η0 is the minimum norm point on the line through ξ and η. Without loss of generality

we may as well assume that |ξ| ≥ |η| > 0. It is easy to check that s0 ≥ 1
2 . The following two

cases shall be considered separably.

Case 1: s0 ≥ 1. Then |sη + (1 − s)ξ| ≥ |sη0 + (1 − s)ξ| ≥ |s0 + (1 − s)ξ| = (1 − s) |ξ| ≥
(1−s)

2 (|ξ|+ |η|) for any s ∈ [0, 1] and |ξ| ≥ |η| > 0. Furthermore, from Lemma 2.6 (1) and the

decreasing property of a(t) we conclude that

∫ 1

0

√
a (|sη + (1 − s)ξ|)ds ≤

∫ 1

0

√

a

(
(1 − s)

2
(|ξ|+ |η|)

)
ds

≤ C
√

a (|ξ|+ |η|)
∫ 1

0
(1 − s)

ia
2 ds

≤ C
√

a (|ξ|+ |η|). (2.14)

Case 2: 1
2 ≤ s0 < 1. Recalling the definition of η0 and choosing s = θs0, we have

∫ 1

0

√
a(|sη + (1 − s)ξ|)ds ≤ 2

∫ s0

0

√
a(|sη + (1 − s)ξ|)ds

≤ C
∫ 1

0

√
a(|θη0 + (1 − θ)ξ|)dθ

≤ C
∫ 1

0

√
a ((1 − θ) |ξ|)dθ,

in view of the facts that |θη0 + (1 − θ)ξ| ≥ |θ0 + (1 − θ)ξ| = (1 − θ) |ξ| for any θ ∈ [0, 1] and

a(t) is decreasing. Similarly to Case 1, we find that

∫ 1

0

√
a (|sη + (1 − s)ξ|)ds ≤ C

√
a (|ξ|+ |η|). (2.15)

Therefore, from (2.9)–(2.15) we can conclude that the right-hand inequalities of (2.6) and (2.7)

are true.
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For the sake of clarity and brevity, we may as well assume that A = I in the following

proof. First of all, we can compute as follows

ξa (|ξ|)− ηa (|η|) = (ξ − η)
∫ 1

0
a (|sξ + (1 − s)η|) ds

+
∫ 1

0

a′ (|sξ + (1 − s)η|)

|sξ + (1 − s)η|
(sξ + (1 − s)η) [sξ + (1 − s)η] · (ξ − η) ds,

which implies that

[ξa (|ξ|)− ηa (|η|)] · (ξ − η)

≥ |ξ − η|2
∫ 1

0
a (|sξ + (1 − s)η|) ds + ia

∫ 1

0
a (|sξ + (1 − s)η|)

∣∣∣∣
[sξ + (1 − s)η] · (ξ − η)

|sξ + (1 − s)η|

∣∣∣∣
2

ds

≥ (1 + ia) |ξ − η|2
∫ 1

0
a (|sξ + (1 − s)η|) ds

in view of (1.2). Then similarly to (2.13), we find that

∫ 1

0
a (|sξ + (1 − s)η|) ds ≥ a (|ξ|+ |η|) ,

which implies that

[ξa (|ξ|)− ηa (|η|)] · (ξ − η) ≥ Ca (|ξ|+ |η|) |ξ − η|2 . (2.16)

Thus, from (2.6) and (2.16) we can obtain (2.8) and then finish the proof.

For a locally integrable function f in R
n, we define its Hardy–Littlewood maximal function

M( f )(x) as

M( f )(x) := sup
r>0

∫
−

Br(x)
| f (y)| dy.

If f is not defined outside a bounded domain Ω, then we let f be zero in the above definition if

x leaves Ω. Moreover, we can obtain the following basic properties for the Hardy–Littlewood

maximal functions.

Lemma 2.8 (see [42]).

1. If f ∈ L1(Ω), then we have the weak 1-1 estimate

|{x ∈ Ω : (M f )(x) > λ}| ≤
C3

λ

∫

Ω

∣∣ f (x)
∣∣ dx for some constant C3 > 0. (2.17)

2. If f ∈ LG(Ω) for G ∈ ∆2 ∩∇2, then we have M f ∈ LG(Ω) with the estimates

1

C

∫

Ω
G
(
| f |
)

dx ≤
∫

Ω
G
(
M f

)
dx ≤ C

∫

Ω
G
(
| f |
)

dx.

In this paper we shall use the following version of the weighted Vitali covering lemma,

which will be a crucial ingredient in obtaining our main result.

Lemma 2.9 ([59, Lemma 3.4]). Assume that E and F are measurable sets, E ⊂ F ⊂ B1, and that

there exists an ϵ > 0 such that w(E) < ϵw(B1) and that for all x ∈ B1 and for all r ∈ (0, 1] with

w (E ∩ Br(x)) ≥ ϵw (Br(x)) we have Br(x) ∩ B1 ⊂ F. Then, we have

w (E) ≤ Cϵw (F) .



Weighted Lorentz estimates 11

Moreover, we shall also use the following standard arguments of measure theory.

Lemma 2.10 (see [22,59]). Assume that r ∈ (0,+∞) and f is a nonnegative and measurable function

in Ω. Let m > 1 be a constant. Then for 0 < q < ∞ we have

f ∈ L
q,r
w (Ω) iff S := ∑

i≥1

mir
[
w
({

x ∈ Ω : f (x) > mi
})] r

q
< ∞

and
1

C
S ≤ ∥ f ∥r

L
q,r
w (Ω)

≤ C
[
(w(Ω))

r
q + S

]
,

where C > 0 is a constant depending only on m and w.

Furthermore, we shall prove the following important result, which involves a delicate

argument and a new scaling procedure in the subquadratic case sa < 0.

Lemma 2.11. Assume that u ∈ W1,G
loc (Ω) is a local weak solution of (1.1) with (1.2) and B2R ⊂ Ω. If

v ∈ W1,G(B2R) is the weak solution of





div
[

a
(
(ADv · Dv)

1
2

)
ADv

]
= 0 in B2R,

v = u on ∂B2R,
(2.18)

then for any ϵ1 > 0 there exists a constant C = C(n, ia, sa, ϵ1) > 1 such that

∫
−

B2R

|Du − Dv| dx ≤ Cg−1

(
1

ϵ1

|µ|(B2R)

(2R)n−1

)
+ ϵ1

∫
−

B2R

|Du| dx.

Proof. Without loss of generality we may as well assume that R = 1 by defining

ũ(x) = R−1u(Rx), ṽ(x) = R−1v(Rx) and µ̃(x) = Rµ(Rx).

For k ≥ 1 we define the following truncation operators (see [33, 34, 44, 49])

Tk(s) := max{−k, min{k, s}} and Φk(s) := T1(s − Tk(s)), s ∈ R.

Since u and v are weak solutions of (1.1) and (2.18) respectively, then we have

∫

B2

[
a
(
(ADu · Du)

1
2

)
ADu − a

(
(ADv · Dv)

1
2

)
ADv

]
· Dφdx =

∫

B2

φdµ (2.19)

for any φ ∈ L∞(B2) ∩ W1,G
0 (B2). Without loss of generality we may as well assume that

|µ|(B2) ≤ ϵ1 and
∫
−

B2

|Du|dx ≤
1

ϵ1
(2.20)

for any small constant ϵ1 ∈ (0, 1). If not, we can define

ũ(x) =
u(x)

λ
, ṽ(x) =

v(x)

λ
, µ̃(x) =

µ(x)

g(λ)
,

ã (t) =
a(λt)

a(λ)
and G̃ (t) =

G(λt)

G(λ)
,
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where

λ = g−1

(
1

ϵ1
|µ|(B2)

)
+ ϵ1

∫
−

B2

|Du|dx.

Then, ã (t) satisfies (1.2) and ũ(x) ∈ W1,G
loc (Ω) is a local weak solution of

−div
[

ã
(
(ADũ · Dũ)

1
2

)
ADũ

]
= µ̃.

Therefore, it is sufficient to prove the following inequality
∫
−

B2

|Du − Dv| dx ≤ C (2.21)

under the condition (2.20), where C is independent of ϵ1. By choosing φ = Φk(u − v) ∈

L∞(B2) ∩ W1,G
0 (B2) in (2.19) and using (2.8), we find that

∫

Ck

|V (Du)− V (Dv)|2 dx ≤ C
∫

B2

|µ|dx ≤ C, (2.22)

where Ck := {x ∈ B2 : k < |u(x) − v(x)| ≤ k + 1}. In the meantime, from (2.4), (2.6) and

Young’s inequality we find that

|Du − Dv| ≤ Ca−
1
2 (|Du|+ |Dv|) |V(Du)− V(Dv)|

≤ Ca−
1
2 (|Du|+ |Dv|+ 1) |V(Du)− V(Dv)|

≤ C (|Du|+ |Dv|+ 1)−
ia
2 |V(Du)− V(Dv)|

≤ C
(
|Du − Dv|−

ia
2 + |Du|−

ia
2 + 1

)
|V(Du)− V(Dv)|

≤ C |V(Du)− V(Dv)|
2

2+ia +
1

2
|Du − Dv|

+ C|Du|−
ia
2 |V(Du)− V(Dv)|+ |V(Du)− V(Dv)|

≤ C |V(Du)− V(Dv)|
2

2+ia +
1

2
|Du − Dv|+ C|Du|−

ia
2 |V(Du)− V(Dv)|+ 1

for ia ∈ (−1/n, 0), which implies that

|Du − Dv| ≤ C |V(Du)− V(Dv)|
2

2+ia + C|Du|−
ia
2 |V(Du)− V(Dv)|+ 1

and then
∫

B2

|Du − Dv| dx ≤ C
∫

B2

|V(Du)− V(Dv)|
2

2+ia + 1dx

+ C

(∫

B2

|V(Du)− V(Dv)|
2

2+ia dx

) 2+ia
2
(∫

B2

|Du|dx

)− ia
2

(2.23)

by using Hölder’s inequality. Moreover, from Hölder’s inequality, (2.22) and the definition of

Ck we find that

∫

Ck

|V(Du)− V(Dv)|
2

2+ia dx ≤ C |Ck|
1− 1

2+ia

(∫

Ck

|V(Du)− V(Dv)|2 dx

) 1
2+ia

≤ C |Ck|
1− 1

2+ia [|µ|(B2)]
1

2+ia

≤ C [|µ|(B2)]
1

2+ia
1

k
n

n−σ (1−
1

2+ia
)

(∫

Ck

|u − v|
n

n−σ dx

)1− 1
2+ia
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for some σ ∈ (−nia, 1) ⊂ (0, 1). Therefore, we conclude that

∫

B2

|V(Du)− V(Dv)|
2

2+ia dx

≤
∫

C0

|V(Du)− V(Dv)|
2

2+ia dx +
∞

∑
k=1

∫

Ck

|V(Du)− V(Dv)|
2

2+ia dx

≤ C [|µ|(B2)]
1

2+ia

{
1 +

∞

∑
k=1

1

k
n

n−σ (1−
1

2+ia
)

(∫

Ck

|u − v|
n

n−σ dx

)1− 1
2+ia

}

≤ C [|µ|(B2)]
1

2+ia



1 +

[
∞

∑
k=1

1

k
n(1+ia)

n−σ

] 1
2+ia
(

∞

∑
k=1

∫

Ck

|u − v|
n

n−σ dx

)1− 1
2+ia





≤ C [|µ|(B2)]
1

2+ia

{
1 +

(∫

B2

|u − v|
n

n−σ dx

)(1− 1
2+ia )

}

≤ C [|µ|(B2)]
1

2+ia

{
1 +

(∫

B2

|Du − Dv| dx

) n
n−σ (1− 1

2+ia )
}

(2.24)

by Sobolev’s inequality and the fact that

n(1 + ia)

n − σ
> 1,

since σ ∈ (−nia, 1). Furthermore, from (2.20), (2.23), (2.24) and Young’s inequality we obtain

∫

B2

|Du − Dv| dx ≤ C + C [|µ|(B2)]
1

2+ia

{
1 +

(∫

B2

|Du − Dv| dx

) n
n−σ (1− 1

2+ia )
}

+ C [|µ|(B2)]
1
2

(∫

B2

|Du|dx

)− ia
2

[
1 +

(∫

B2

|Du − Dv| dx

) n
n−σ (1− 1

2+ia )
] 2+ia

2

≤ C + C [|µ|(B2)]
1

2+ia

{
1 +

(∫

B2

|Du − Dv| dx

) n
n−σ (1− 1

2+ia )
}

+ C

[
[|µ|(B2)]

1
2

(∫

B2

|Du|dx

)− ia
2

] 2
−ia

+ C

(∫

B2

|Du − Dv| dx

) n
n−σ (1− 1

2+ia )

≤ C + Cϵ
1+ia
−ia

1 + C

(∫

B2

|Du − Dv| dx

) n
n−σ (1− 1

2+ia )

≤ C + C

(∫

B2

|Du − Dv| dx

) n
n−σ (1− 1

2+ia )
,

which implies that (2.21) is true since

n

n − σ

(
1 −

1

2 + ia

)
< 1 for ia ∈

(
−

1

n
, 0

)
.

Thus, we finish the proof.
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We now switch to another comparison estimate for solutions to (1.1) and the homogeneous

constant coefficient problem.

Lemma 2.12. Assume that u ∈ W1,G
loc (Ω) is a local weak solution of (1.1) with BR ⊂ Ω and (1.2). If

w ∈ W1,G(BR) is the weak solution of





div

[
a

((
ABR

Dw · Dw
) 1

2

)
ABR

Dw

]
= 0 in BR,

w = v on ∂BR,
(2.25)

then for any ϵ1 > 0 there exists a constant C = C(n, ia, sa, ϵ1) > 1 such that

∫
−

BR

|Du − Dw| dx ≤ Cg−1

(
1

ϵ1

|µ|(B2R)

(2R)n−1

)
+ ϵ1

∫
−

B2R

|Du| dx. (2.26)

Proof. If we select the test function φ = v − w, then after a direct calculation we can show the

resulting expression as

I1 :=
∫

BR

a

((
ABR

Dw · Dw
) 1

2

)
ABR

Dw · Dwdx =
∫

BR

a

((
ABR

Dw · Dw
) 1

2

)
ABR

Dw · Dvdx =: I2.

Using (1.3) and Lemmas 2.5–2.6, we find that

C
∫

BR

G (|Dw|) dx ≤ I1 = I2 ≤ τ
∫

BR

G (|Dw|) dx + C(τ)
∫

BR

G (|Dv|) dx,

which implies that
∫

BR

G (|Dw|) dx ≤ C
∫

BR

G (|Dv|) dx (2.27)

by choosing τ small enough. Moreover, we apply Gehring’s lemma (see Theorem 6.7 in [36])

to obtain the reverse Hölder type inequality

[∫

BR

[G (|Dw|)]1+δ0 dx

] 1
1+δ0

≤ C
∫

B2R

G (|Dw|) dx (2.28)

for some positive constant δ0 > 0. On the other hand, we can also calculate the result of the

expression I3 = I4, where

I3 :=
∫

BR

[
a
(
(ADv · Dv)

1
2

)
ADu − a

(
(ADw · Dw)

1
2

)
ADw

]
· (Dv − Dw)dx,

I4 := −
∫

BR

[
a
(
(ADw · Dw)

1
2

)
ADw − a

((
ABR

Dw · Dw
) 1

2

)
ABR

Dw

]
· (Dv − Dw)dx.

From Lemma 2.6 we find that

ϵ
∫

BR

G (|Dv|) dx + I3 ≥ C
∫

BR

G (|Dv − Dw|) dx.

Moreover, we first discover

|I4| ≤
∫

BR

a
(
(ADw · Dw)

1
2

) ∣∣A − ABR

∣∣ |Dw| |Dw − Dv| dx

+
∫

BR

∣∣∣∣a
(
(ADw · Dw)

1
2

)
− a

((
ABR

Dw · Dw
) 1

2

)∣∣∣∣
∣∣ABR

Dw
∣∣ |Dw − Dv| dx

=: I41 + I42.
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Estimate of I41. From (1.3), Lemma 2.6, Young’s inequality and Hölder’s inequality we find

that

I41 ≤ C
∫

BR

a (|Dw|) |Dw|
∣∣A − ABR

∣∣ |Dw − Dv| dx

≤
ϵ

2Λ

∫

BR

G (|Dw − Dv|)
∣∣A − ABR

∣∣ dx + C(ϵ)
∫

BR

G̃ (a (|Dw|) |Dw|)
∣∣A − ABR

∣∣ dx

≤ ϵ
∫

BR

G (|Dw − Dv|) dx + C(ϵ)
∫

BR

G (|Dw|)
∣∣A − ABR

∣∣ dx

≤ ϵ
∫

BR

G (|Dw − Dv|) dx + C(ϵ)

{∫

BR

[G (|Dw|)]1+δ0 dx

} 1
1+δ0

[∫

BR

∣∣A − ABR

∣∣
1+δ0

δ0 dx

] δ0
1+δ0

for any ϵ > 0, which implies that

I41 ≤ ϵ
∫

BR

G (|Dw − Dv|) dx + C(ϵ)
∫

B2R

G (|Dw|) dx

[∫

BR

∣∣A − ABR

∣∣ dx

] δ0
1+δ0

≤ ϵ
∫

BR

G (|Dw − Dv|) dx + C(ϵ)δ
δ0

1+δ0

∫

B2R

G (|Dv|) dx,

where we used Definition 1.4 and (2.27)–(2.28).

Estimate of I42. (1.2), (1.3), Lemma 2.6 and Lagrange’s mean value theorem yield the bound

I42 ≤ C
∫

BR

∣∣a′ (ζ)
∣∣
∣∣∣∣(ADw · Dw)

1
2 −

(
ABR

Dw · Dw
) 1

2

∣∣∣∣ |Dw| |Dw − Dv| dx

≤ C
∫

BR

|a (ζ)|

ζ

∣∣A − ABR

∣∣ |Dw|2

(ADw · Dw)
1
2 +

(
ABR

Dw · Dw
) 1

2

|Dw| |Dw − Dv| dx

≤ C
∫

BR

a (|Dw|) |Dw|
∣∣A − ABR

∣∣ |Dw − Dv| dx,

where ζ is between (ADw · Dw)
1
2 and

(
ABR

Dw · Dw
) 1

2 satisfying

Λ− 1
2 |Dw| ≤ ζ, (ADw · Dw)

1
2 ,
(

ABR
Dw · Dw

) 1
2 ≤ Λ

1
2 |Dw|.

And then, we have

I42 ≤ ϵ
∫

BR

G (|Dw − Dv|) dx + C(ϵ)δ
δ0

1+δ0

∫

B2R

G (|Dv|) dx

for any ϵ > 0, whose proof is totally similar to that of I41. Thus, we choose ϵ small enough

and combine the estimates of I3 and I4 to conclude that

∫

BR

G (|Dv − Dw|) dx ≤ ϵ
∫

BR

G (|Dv|) dx + C(ϵ)δ
δ0

1+δ0

∫

B2R

G (|Dv|) dx

≤ ϵ2+sa
1

∫

B2R

G (|Dv|) dx

by selecting ϵ, δ small enough satisfying the last inequality. Since θ2+ia G(t) ≤ G(θt) ≤

θ2+sa G(t) for any θ ≥ 1 and t ≥ 0 by (2.4), we find that

θ2+ia t ≤ G
(

θG−1(t)
)
≤ θ2+sa t for any θ ≥ 1,
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which implies that

G−1
(

θ2+ia t
)
≤ θG−1(t) ≤ G−1

(
θ2+sa t

)
for any θ ≥ 1.

In other words, we conclude that

θ
1

2+sa ≤
G−1(θt)

G−1(t)
≤ θ

1
2+ia for any θ ≥ 1. (2.29)

From Jensen’s inequality and the reverse Hölder’s inequality (see Lemma 4.2 in [7]) we deduce

that

G

(∫
−

BR

|Dv − Dw|dx

)
≤ C

∫
−

BR

G (|Dv − Dw|) dx

≤ Cϵ2+sa
1

∫
−

BR

G (|Dv|) dx

≤ Cϵ2+sa
1 G

(∫
−

B2R

|Dv|dx

)
,

which implies that

∫
−

BR

|Dv − Dw|dx ≤ Cϵ1

∫
−

B2R

|Dv|dx

by using (2.29). Finally, by using Lemma 2.11 and the above inequality we obtain

∫
−

BR

|Du − Dw|dx ≤
∫
−

BR

|Du − Dv|dx +
∫
−

BR

|Dv − Dw|dx

≤ Cg−1

(
1

ϵ1

|µ|(B2R)

(2R)n−1

)
+ Cϵ1

∫

BR

|Du|dx + Cϵ1

∫

B2R

|Dv|dx

≤ Cg−1

(
1

ϵ1

|µ|(B2R)

(2R)n−1

)
+ Cϵ1

∫

B2R

|Du|dx + Cϵ1

∫

B2R

|Dv − Du|dx

≤ Cg−1

(
1

ϵ1

|µ|(B2R)

(2R)n−1

)
+ Cϵ1

∫

B2R

|Du|dx

and then finish the proof.

Additionally, we can get the following local Lipschitz regularity for the homogeneous

constant coefficient problem.

Lemma 2.13 (see [7, Lemma 4.1]). Let w ∈ W1,G(Ω) be a weak solution to

div

[
a

((
ABR

Dw · Dw
) 1

2

)
ABR

Dw

]
= 0 in BR ⊂ R

n.

Then we can obtain the following De Giorgi type estimate

sup
BR/2

|Dw| ≤ C
∫
−

BR

|Dw| dx.

The following crucial lemma, which shows how the upper level sets of |Du| decay, allows

us to build the interior gradient estimates.
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Lemma 2.14. Assume that λ > 0. There is a constant N = N(n, ia, sa) > 0 so that for any ϵ > 0,

there exists a small δ = δ(ϵ) > 0 such that if u ∈ W1,G
loc (Ω) is a local weak solution of (1.1) in B6r ⊂ Ω

for r ∈ (0, 1] with

Br ∩
{

x ∈ B1 : M(|Du|)(x) ≤ λ
}
∩
{

x ∈ B1 : g−1 [M1(µ)] (x) ≤ δλ
}
̸= ∅, (2.30)

then we have

w
({

x ∈ Br : M(|Du|)(x) > Nλ
})

< ϵw (Br) . (2.31)

Proof. From (2.30), there exists a point x0 ∈ Br such that

∫
−

Bρ(x0)
|Du| dx ≤ λ and g−1

(
ρ
∫
−

Bρ(x0)
d|µ|

)
≤ δλ (2.32)

for all ρ > 0. Since B4r ⊂ B5r(x0), it follows from (2.32) that

∫
−

B4r

|Du| dx ≤
|B5r(x0)|

|B4r|
·

1

|B5r(x0)|

∫

B5r(x0)
|Du| dx ≤ 2nλ. (2.33)

Since tia+1g(1) ≤ g(t) ≤ tsa+1g(1) for any t ≥ 1 by Lemma 2.6, we know that t
1

sa+1 ≲ g−1(t) ≲

t
1

ia+1 for any t ≥ 1. Similarly, we also see that t
1

ia+1 ≲ g−1(t) ≲ t
1

sa+1 for any 0 < t < 1. In the

same way, we also have

g−1

(
4r
∫
−

B4r

d|µ|

)
≤ g−1

(
4r

5r
·
|B5r(x0)|

|B4r|
· 5r
∫
−

B5r(x0)
d|µ|

)
≤ Cδλ.

Then we apply Lemma 2.12 to deduce that

∫
−

B3r

|Du − Dw| dx ≤ Cg−1

(
4r

ϵ1

∫
−

B4r

d|µ|

)
+ ϵ1

∫
−

B4r

|Du| dx

≤ C
δλ

ϵ
1

ia+1

1

+ Cϵ1λ

by choosing δ, ϵ1 small enough satisfying C δλ

ϵ
1

ia+1
1

+ Cϵ1λ ≤ λ in advance and then

∥Dw∥L∞(B3r) ≤ C
∫
−

B4r

|Dw| dx

≤ C
∫
−

B4r

|Du| dx + C
∫
−

B4r

|Du − Dw| dx

≤ N1λ

by Lemma 2.13 and (2.33), for some positive constant N1 ≥ 1. Now we shall claim that

{
x ∈ Br : M(|Du|)(x) > Nλ

}
⊂
{

x ∈ Br : M(|Du − Dw|)(x) > N1λ
}

(2.34)

for N := max{3n, 2N1}. Actually, we take x1 ∈ {x ∈ Br : M(|Du − Dw|)(x) ≤ N1λ}. If 0 <

ρ < r, then we find that Bρ(x1) ⊂ B2r and so
∫
−

Bρ(x1)
|Du| dx ≤

∫
−

Bρ(x1)
(|Dw|+ |Du − Dw|) dx

≤ M(|Du − Dw|)(x1) + N1λ

≤ 2N1λ.
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On the other hand, if ρ ≥ r, then Bρ(x1) ⊂ B3ρ(x0). From (2.32), we deduce that

∫
−

Bρ(x1)
|Du| dx ≤

|B3ρ(x0)|

|Bρ(x1)|

∫
−

B3ρ(x0)
|Du| dx ≤ 3nλ ≤ Nλ.

Thus, the claim (2.34) is true. Then from Lemma 2.8 we estimate

1

|Br|

∣∣{x ∈ Br : M(|Du|) > Nλ
}∣∣ ≤ 1

|Br|

∣∣{x ∈ Br : M(|Du − Dw|) > N1λ
}∣∣

≤
C

N1λ

∫
−

B3r

|Du − Dw| dx

≤ C
δ

ϵ
1

ia+1

1

+ Cϵ1,

which implies that

w ({x ∈ Br : M(|Du|) > Nλ}) ≤ C


 δ

ϵ
1

ia+1

1

+ ϵ1




σ

w(Br) < ϵw(Br)

by Lemma 1.2 and choosing δ, ϵ1 small enough satisfying the last inequality. Therefore, we

finish the final proof of this lemma.

Now we are ready to finish the proof of the main result, Theorem 1.5.

Proof. Let u ∈ W1,G
loc (Ω) be the local weak solution of (1.1),

E = {x ∈ B1 : M(|Du|)(x) > Nλλ0}

and

F = {x ∈ B1 : M(|Du|) > λλ0} ∪
{

x ∈ B1 : g−1 (M1(µ)) (x) > δλλ0

}
for any λ ≥ 1,

where

λ0 =
C3

N|B1|

(
C2

ϵ

) 1
σ
∫

B2

|Du|+ 1dx. (2.35)

It follows from the weak 1-1 estimate that

|{x ∈ B1 : M(|Du|)(x) > Nλλ0}| ≤
C3

Nλλ0

∫

B1

|Du|dx <

(
ϵ

C2

) 1
σ

|B1|,

which implies that

w ({x ∈ B1 : M(|Du|)(x) > Nλλ0}) < ϵw(B1)

by Lemma 1.2. Therefore, we apply Lemma 2.9 and Lemma 2.14 to have

w (E) ≤ Cϵw (F) . (2.36)

Next, we divide into two cases.

Case 1: r = +∞. From (2.36) we conclude that

[w ({x ∈ B1 : M(|Du|)(x) > Nλλ0})]
1
q ≤ Cϵ

1
q [w ({x ∈ B1 : M(|Du|)(x) > λλ0})]

1
q

+ Cϵ
1
q

[
w
(
{x ∈ B1 : g−1 (M1(µ)) (x) > δλλ0}

)] 1
q

for any λ ≥ 1, which implies that
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∥M(|Du|)∥L
q,∞
w (B1)

:= sup
λ>0

Nλλ0 [w ({x ∈ B1 : M(|Du|)(x) > Nλλ0})]
1
q

≤ CNϵ
1
q sup

λ≥1

λλ0 [w ({x ∈ B1 : M(|Du|)(x) > λλ0})]
1
q + Cλ0

+
CNϵ

1
q

δ
sup
λ≥1

δλλ0

[
w
(
{x ∈ B1 : g−1 (M1(µ)) (x) > δλλ0}

)] 1
q

≤ C4ϵ
1
q ∥M(|Du|)∥L

q,∞
w (B1)

+ C(δ, ϵ)∥g−1 (M1(µ)) ∥L
q,∞
w (B1)

+ Cλ0.

Then, by selecting ϵ small enough such that C4ϵ
1
q = 1/2 and using an approximation argu-

ment by choosing |∇u|k := min{∇u, k} like the one in [8], we deduce that

∥Du∥L
q,∞
w (B1)

≤ ∥M(|Du|)∥L
q,∞
w (B1)

≤ C∥g−1 (M1(µ)) ∥L
q,∞
w (B1)

+ Cλ0

≤ C∥g−1 (M1(µ)) ∥L
q,∞
w (B1)

+ C
∫

B2

|Du|+ 1dx.

Case 2: 0 < r < +∞. From (2.36) we find that

[w ({x ∈ B1 : M(|Du|)(x) > Nλλ0})]
r
q

= [w (E)]
r
q ≤ Cϵ

r
q [w (F)]

r
q

≤ Cϵ
r
q [w ({x ∈ B1 : M(|Du|)(x) > λλ0})]

r
q

+ Cϵ
r
q

[
w
(
{x ∈ B1 : g−1 (M1(µ)) (x) > δλλ0}

)] r
q

.

Actually, by applying an iteration procedure we can also prove

[w ({x ∈ B1 : M(|Du|)(x) > Nmλ0})]
r
q

≤ Cϵ
mr
q [w ({x ∈ B1 : M(|Du|)(x) > λ0})]

r
q

+ C
m

∑
i=1

ϵ
ir
q

[
w
(
{x ∈ B1 : g−1 (M1(µ)) (x) > Nm−iδλ0}

)] r
q

. (2.37)

Now we select ϵ small enough satisfying Nrϵ
r
q < 1 and then apply Lemma 2.10 to observe

that

∞

∑
m=1

Nmrλr
0 [w ({x ∈ B1 : M(|Du|)(x) > Nmλ0})]

r
q

≤ C
∞

∑
m=1

Nmrλr
0

m

∑
i=1

ϵ
ir
q

[
w
(
{x ∈ B1 : g−1 (M1(µ)) (x) > Nm−iδλ0}

)] r
q

+ C
∞

∑
m=1

Nmrϵ
mr
q λr

0 [w ({x ∈ B1 : M(|Du|)(x) > λ0})]
r
q

≤
C

δr

∞

∑
i=1

ϵ
ir
q Nir

∞

∑
m=i

N(m−i)rδrλr
0

[
w
(
{x ∈ B1 : g−1 (M1(µ)) (x) > Nm−iδλ0}

)] r
q

+ Cλr
0

∞

∑
m=1

Nmrϵ
mr
q

≤ C∥g−1 (M1(µ)) ∥
r
L

q,r
w (B1)

+ Cλr
0 < +∞,
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which implies that

∥Du∥L
q,r
w (B1)

≤ ∥M(|Du|)∥L
q,r
w (B1)

≤ C∥g−1 (M1(µ)) ∥L
q,r
w (B1)

+ C
∫

B2

|Du|+ 1dx.

Thus, this finishes the proof of the main result in this work.
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Abstract. An exact solution of an initial value problem for the Susceptible–Exposed–
Infectious–Recovered–Deceased (SEIRD) epidemic model is derived, and various prop-
erties of the exact solution are obtained. It is shown that the parametric form of the
exact solution satisfies some linear differential system including a positive solution of
an Abel differential equation of the second kind. In this paper Abel differential equa-
tions play an important role in establishing the exact solution of the SEIRD differential
system, in particular the number of infected individuals can be represented in a simple
form by using a positive solution of an initial value problem for an Abel differential
equation. Uniqueness of positive solutions of an initial value problem to SEIRD differ-
ential system is also investigated, and it is shown that the exact solution is a unique
solution in the class of positive solutions.
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1 Introduction

Recently there is an increasing interest in mathematical approach to the epidemic models.

Since the pioneering work of Bernoulli [2], a vast literature and research papers has been pub-

lished so far (cf. [4, 5, 9]), and studies of epidemic models have become one of the important

areas in mathematical biology. In particular we mention Kermack and McKendrick [11] in

which the Susceptible-Infectious-Recovered (SIR) epidemic model was proposed. Exact solu-

tions of epidemic models have been investigated in recent years. We refer to Bohner, Streipert

and Torres [3], Harko, Lobo and Mak [10] and Shabbir, Khan and Sadiq [16] and Yoshida

[19] for SIR epidemic models, to Yoshida [18] for Susceptible–Infectious–Recovered–Deceased

(SIRD) epidemic models, and to Yoshida [20] for Susceptible-Exposed-Infectious-Recovered

(SEIR) epidemic models.

1Corresponding author. Email: norio.yoshidajp@gmail.com
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The Susceptible–Exposed–Infectious–Recovered–Deceased (SEIRD) epidemic models have

been an important and interesting subject to study (cf. [6, 12–15, 17]). However, there appears

to be no known results about exact solutions of SEIRD epidemic models. The objective of this

paper is to establish an exact solution of an initial value problem for SEIRD epidemic model.

Our method is an adaptation of that used in Yoshida [20], and is based on the existence

of unique positive solution of an initial value problem for Abel differential equations of the

second kind. We refer the reader to Abel [1] and Davis [8] for Abel differential equations.

Uniqueness of positive solutions of an initial value problem to SEIRD differential system is

also studied, and we find that the exact solution is a unique solution in the class of positive

solutions.

We study the Susceptible–Expose–Infectious–Recovered–Deceased (SEIRD) epidemic

model

dS(t)

dt
= −βS(t)I(t), (1.1)

dE(t)

dt
= βS(t)I(t)− δE(t), (1.2)

dI(t)

dt
= δE(t)− γI(t)− µI(t), (1.3)

dR(t)

dt
= γI(t), (1.4)

dD(t)

dt
= µI(t) (1.5)

for t > 0, where β, γ, δ and µ are positive constants. The initial condition to be considered is

the following:

S(0) = S̃, E(0) = Ẽ, I(0) = Ĩ, R(0) = R̃, D(0) = D̃. (1.6)

It is assumed throughout this paper that:

(A1) Ĩ > 0;

(A2) S̃ >
δẼ
β Ĩ

;

(A3) Ẽ >
γ+µ

δ Ĩ;

(A4) R̃ ≥ 0;

(A5) D̃ ≥ 0 and D̃ satisfies

N − R̃ > S̃e(β/µ)D̃ + D̃;

(A6) S̃ + Ẽ + Ĩ + R̃ + D̃ = N (positive constant).

In Section 2 we obtain a parametric solution of an initial value problem for SEIRD dif-

ferential system, and in Section 3 we derive an exact solution of an initial value problem for

SEIRD differential system. Section 4 is devoted to various properties of the exact solution of

SEIRD differential system. In Section 5 we show that there exists one, and only one, solution

of an initial value problem for SEIRD differential system in the class of positive solutions.
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2 Parametric solution of an initial value problem for SEIRD differ-

ential system

In this section we show that a positive solution of the initial value problem (1.1)–(1.6) can be

represented in a parametric form.

Since

d

dt
(S(t) + E(t) + I(t) + R(t) + D(t)) =

dS(t)

dt
+

dE(t)

dt
+

dI(t)

dt
+

dR(t)

dt
+

dD(t)

dt
= 0

by (1.1)–(1.5), we obtain

S(t) + E(t) + I(t) + R(t) + D(t) = k (t ≥ 0)

for some constant k. The hypothesis (A6) implies

k = S(0) + E(0) + I(0) + R(0) + D(0) = S̃ + Ẽ + Ĩ + R̃ + D̃ = N,

and therefore

S(t) + E(t) + I(t) + R(t) + D(t) = N (t ≥ 0).

We state the following important lemma.

Lemma 2.1. If (S(t), E(t), I(t), R(t), D(t)) is a solution of the SEIRD differential system (1.1)–(1.5)

such that S(t) > 0 for t > 0, then

D′′(t) + (δ + γ + µ)D′(t) = δµ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)D(t) −

(

1 +
γ

µ

)

D(t)

)

(2.1)

for t > 0.

Proof. We see from (1.1) and (1.5) that

D′(t) = µI(t) = µ

(

S′(t)

−βS(t)

)

= −
µ

β

(

log S(t)
)′

,

and integrating the above on [0, t] gives

D(t)− D̃ = −
µ

β

(

log S(t)− log S̃
)

.

Hence we obtain

log S(t) = −
β

µ

(

D(t)− D̃
)

+ log S̃

and therefore

S(t) = exp

(

log S̃ −
β

µ
D(t) +

β

µ
D̃

)

= S̃e(β/µ)D̃e−(β/µ)D(t). (2.2)

It follows from (1.5) that I(t) = D′(t)/µ, and hence I′(t) = D′′(t)/µ. Therefore, (1.3) implies

that

E(t) =
1

δ

(

I′(t) + (γ + µ)I(t)
)

=
1

δ

(

D′′(t)

µ
+ (γ + µ)

D′(t)

µ

)

=
1

δµ

(

D′′(t) + (γ + µ)D′(t)
)

. (2.3)



4 N. Yoshida

It is obvious that

R′(t) = γI(t) = γ
D′(t)

µ
=

γ

µ
D′(t),

and hence

R(t) =
γ

µ
D(t) + k

for some constant k. Letting t = 0 yields

k = R̃ −
γ

µ
D̃,

and therefore

R(t) =
γ

µ
D(t) + R̃ −

γ

µ
D̃. (2.4)

We observe, using (1.5), (2.2)–(2.4), that

D′(t)

µ
= I(t)

= N − S(t)− E(t)− R(t)− D(t)

= N − S̃e(β/µ)D̃e−(β/µ)D(t) −
1

δµ

(

D′′(t) + (γ + µ)D′(t)
)

−
γ

µ
D(t)− R̃ +

γ

µ
D̃ − D(t)

which implies

1

δµ
D′′(t) +

(

1

µ
+

γ + µ

δµ

)

D′(t) = N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)D(t) −

(

1 +
γ

µ

)

D(t).

Multiplying the above by δµ yields the desired identity (2.1).

By a solution of the SEIRD differential system (1.1)–(1.5) we mean a vector-valued function

(S(t), E(t), I(t), R(t), D(t)) of class C1(0, ∞) ∩ C[0, ∞) which satisfies (1.1)–(1.5). Associated

with every continuous function f (t) on [0, ∞), we define

f (∞) := lim
t→∞

f (t).

Lemma 2.2. Let (S(t), E(t), I(t), R(t), D(t)) be a solution of the SEIRD differential system (1.1)–

(1.5) such that S(t) > 0, E(t) > 0, I(t) > 0 and R(t) > 0 for t > 0. Then there exists the limit

D(∞).

Proof. Since I(t) > 0 for t > 0, it follows from (1.5) that D′(t) = µI(t) > 0 for t > 0, and

therefore D(t) is increasing on [0, ∞). It is easy to see that D(t) is bounded from above in

light of

D(t) = N − S(t)− E(t)− I(t)− R(t) < N (t > 0).

Hence there exists the limit D(∞).

Theorem 2.3. Let (S(t), E(t), I(t), R(t), D(t)) be a solution of the initial value problem (1.1)–

(1.6) such that S(t) > 0, E(t) > 0, I(t) > 0 and R(t) > 0 for t > 0. Then the solution
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(S(t), E(t), I(t), R(t), D(t)) can be represented in the following parametric form:

S(ϕ(u)) = S̃e(β/µ)D̃u, (2.5)

E(ϕ(u)) = Ẽe−δϕ(u) + S̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv, (2.6)

I(ϕ(u)) = N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃u +

γ + µ

β
log u − Ẽe−δϕ(u)

− S̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv, (2.7)

R(ϕ(u)) = −
γ

β
log u + R̃ −

γ

µ
D̃, (2.8)

D(ϕ(u)) = −
µ

β
log u (2.9)

for e−(β/µ)D(∞)
< u ≤ e−(β/µ)D̃, where

t = ϕ(u) =
∫ e−(β/µ)D̃

u

dξ

ξψ(ξ)
, (2.10)

with ψ(u) satisfying the Abel differential equation of the second kind

ψ′ψ −
δ + γ + µ

u
ψ = −δ

βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u

u
(2.11)

for e−(β/µ)D(∞)
< u < e−(β/µ)D̃, and the following conditions

ψ
(

e−(β/µ)D̃
)

= β Ĩ,

lim
u→e−(β/µ)D(∞)+0

ψ(u) = 0,

ψ(u) > 0 in (e−(β/µ)D(∞), e−(β/µ)D̃].

Proof. Since D′(t) = µI(t) > 0 for t > 0 in view of (1.5), we find that D(t) is increasing on

[0, ∞). Then there exists the limit D(∞) by Lemma 2.2. It is easy to check that u = u(t) =

e−(β/µ)D(t) is decreasing on [0, ∞), e−(β/µ)D(∞)
< u ≤ e−(β/µ)D̃ and limt→∞ u(t) = e−(β/µ)D(∞).

Hence there exists the inverse function ϕ(u) ∈ C1(e−(β/µ)D(∞), e−(β/µ)D̃) of u = u(t) such that

t = ϕ(u)
(

e−(β/µ)D(∞)
< u ≤ e−(β/µ)D̃

)

,

ϕ(u) is decreasing in (e−(β/µ)D(∞), e−(β/µ)D̃], limu→e−(β/µ)D(∞)+0 ϕ(u) = ∞, and ϕ
(

e−(β/µ)D̃
)

= 0.

Substituting t = ϕ(u) into (2.1) in Lemma 2.1 yields

D′′(ϕ(u)) + (δ + γ + µ)D′(ϕ(u))

= δµ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)D(ϕ(u)) −

(

1 +
γ

µ

)

D(ϕ(u))

)

(2.12)

for e−(β/µ)D(∞)
< u < e−(β/µ)D̃. Differentiating both sides of u = e−(β/µ)D(ϕ(u)) with respect to

u yields

1 = −
β

µ
D′(ϕ(u))ϕ′(u)e−(β/µ)D(ϕ(u))

= −
β

µ
D′(ϕ(u))ϕ′(u)u,
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and therefore

D′(ϕ(u)) = −
µ

β

1

ϕ′(u)u
. (2.13)

Since D′(t) ∈ C1(0, ∞) by means of (1.5) and ϕ(u) ∈ C1(e−(β/µ)D(∞), e−(β/µ)D̃), we see that

D′(ϕ(u))∈C1(e−(β/µ)D(∞), e−(β/µ)D̃), and consequently 1/(ϕ′(u)u)∈C1(e−(β/µ)D(∞), e−(β/µ)D̃).

We differentiate (2.13) with respect to u to obtain

D′′(ϕ(u))ϕ′(u) = −
µ

β

(

1

ϕ′(u)u

)′

,

and hence

D′′(ϕ(u)) = −
µ

β

(

1

ϕ′(u)u

)′ 1

ϕ′(u)
. (2.14)

It is obvious that

D(ϕ(u)) = −
µ

β
log u (2.15)

in light of u = e−(β/µ)D(ϕ(u)). Combining (2.12)–(2.15), we get

−
µ

β

(

1

ϕ′(u)u

)′ 1

ϕ′(u)
+ (δ + γ + µ)

(

−
µ

β

1

ϕ′(u)u

)

= δµ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃u −

(

1 +
γ

µ

)(

−
µ

β
log u

))

or

µ

β

(

−
1

ϕ′(u)u

)′ (

−
1

ϕ′(u)u

)

−
µ

β

δ + γ + µ

u

(

−
1

ϕ′(u)u

)

= −δµ
1

u

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃u +

µ

β

(

1 +
γ

µ

)

log u

)

. (2.16)

Letting

ψ(u) := −
1

ϕ′(u)u
, (2.17)

we observe that ψ(u) satisfies (2.11). Since t = ϕ(u) > 0 for e−(β/µ)D(∞)
< u < e−(β/µ)D̃, we

see from (1.5), (2.13) and (2.17) that

ψ(u) =
β

µ
D′(ϕ(u)) = βI(ϕ(u)) > 0

in (e−(β/µ)D(∞), e−(β/µ)D̃). If we define

ψ
(

e−(β/µ)D̃
)

:= lim
u→e−(β/µ)D̃−0

ψ(u) =
β

µ
lim

u→e−(β/µ)D̃−0
D′(ϕ(u))

=
β

µ
lim

t→+0
D′(t) =

β

µ
µI(0) = β Ĩ > 0,

then ψ(u) is a positive continuous function in (e−(β/µ)D(∞), e−(β/µ)D̃]. It follows from (2.17)

that

t = ϕ(u) =
∫ u

e−(β/µ)D̃
ϕ′(ξ)dξ =

∫ e−(β/µ)D̃

u

dξ

ξψ(ξ)
,
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and therefore (2.10) holds. Since limu→e−(β/µ)D(∞)+0 ϕ(u) = ∞, it is necessary that

limu→e−(β/µ)D(∞)+0 ψ(u) = 0.

Now we establish the representation formulae (2.5)–(2.9). We see from (2.2) and (2.15) that

S(ϕ(u)) = S̃e(β/µ)D̃e−(β/µ)D(ϕ(u)) = S̃e(β/µ)D̃u,

D(ϕ(u)) = −
µ

β
log u,

which are the desired representations (2.5) and (2.9). Combining (1.1) with (1.2) yields the

first order linear differential equation

E′(t) + δE(t) = −S′(t)

which implies

E(t) = Ẽe−δt − e−δt
∫ t

0
eδξS′(ξ)dξ. (2.18)

Differentiating (2.2), we obtain

S′(t) = −
β

µ
S̃e(β/µ)D̃D′(t)e−(β/µ)D(t). (2.19)

Substitution of (2.19) into (2.18) gives

E(t) = Ẽe−δt +
β

µ
S̃e(β/µ)D̃e−δt

∫ t

0
eδξ D′(ξ)e−(β/µ)D(ξ)dξ. (2.20)

By changing the variables D(ξ) = s, we obtain

J :=
∫ t

0
eδξ D′(ξ)e−(β/µ)D(ξ)dξ =

∫ D(t)

D̃
eδD−1(s)e−(β/µ)sds

=
∫ D(t)

D̃
eδϕ(e−(β/µ)s)e−(β/µ)sds

=
µ

β

∫ D̃

D(t)
eδϕ(e−(β/µ)s)

(

e−(β/µ)s
)′

ds

in view of D−1(s) = ϕ(e−(β/µ)s). Letting v = e−(β/µ)s yields

J =
µ

β

∫ e−(β/µ)D̃

e−(β/µ)D(t)
eδϕ(v)dv. (2.21)

Combining (2.20) with (2.21), we are led to

E(t) = Ẽe−δt + S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

e−(β/µ)D(t)
eδϕ(v)dv. (2.22)

Substituting t = ϕ(u) into (2.22), we arrive at (2.6). We observe, using (2.4), that

R(ϕ(u)) =
γ

µ
D(ϕ(u)) + R̃ −

γ

µ
D̃ = −

γ

β
log u + R̃ −

γ

µ
D̃,

which is equal to (2.8). Since I(ϕ(u)) = N − S(ϕ(u))− R(ϕ(u))− D(ϕ(u))− E(ϕ(u)), (2.7)

follows from (2.5), (2.6), (2.8) and (2.9).



8 N. Yoshida

Corollary 2.4. Let (S(t), E(t), I(t), R(t), D(t)) be a solution of the initial value problem (1.1)–(1.6)

such that S(t) > 0, E(t) > 0, I(t) > 0 and R(t) > 0 for t > 0. Then we obtain the following

relations:

S(t) = S̃e(β/µ)D̃e−(β/µ)D(t), (2.23)

E(t) = Ẽe−δt + S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

e−(β/µ)D(t)
eδD−1(−(µ/β) log v)dv, (2.24)

I(t) = N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)D(t) −

γ + µ

µ
D(t)− Ẽe−δt

− S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

e−(β/µ)D(t)
eδD−1(−(µ/β) log v)dv, (2.25)

R(t) = D(t) + R̃ −
γ

µ
D̃ (2.26)

for t ≥ 0.

Proof. It is easy to see that

u = ϕ−1(t) = e−(β/µ)D(t), (2.27)

ϕ(v) = D−1(−(µ/β) log v) (2.28)

in the proof of Theorem 2.3. Combining (2.5)–(2.8), (2.27) and (2.28), we are led to (2.23)–

(2.26).

3 Exact solution of an initial value problem for SEIRD differential

system

In this section we establish an exact solution of an initial value problem for SEIRD differential

system (1.1)–(1.5) by utilizing Theorem 2.3 in Section 2.

The following lemma follows from a result of Yoshida [18, Lemma 3] by replacing R̃, D̃, γ, µ

by D̃, R̃, µ, γ, respectively.

Lemma 3.1. Under the hypothesis (A5), the transcendental equation

x =
µ

γ + µ
N −

µ

γ + µ
R̃ +

γ

γ + µ
D̃ −

µ

γ + µ
S̃e(β/µ)D̃e−(β/µ)x

has a unique solution x = α such that

D̃ < α < N

(cf. Figure 3.1).

We assume that the following hypothesis

(A7) S̃ <
γ+µ

β e(β/µ)(α−D̃)

holds in the rest of this paper. We note that (A7) is equivalent to the following

(A′
7)

γ+µ
β > N − R̃ + γ

µ D̃ − γ+µ
µ α

in view of S̃e(β/µ)D̃e−(β/µ)α = N − R̃ + (γ/µ)D̃ − ((γ + µ)/µ) α.
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57.6 • • •

a = 160.2 • • •

25/3

Figure 3.1: Variation of (µ/(γ + µ))N − (µ/(γ + µ))R̃ + (γ/(γ + µ))D̃ −

(µ/(γ + µ))S̃e(β/µ)D̃e−(β/µ)x − x for N = 1000, S̃ = 950, R̃ = 0, D̃ = 0, β =

0.2/1000, γ = 0.05 and µ = 0.01. In this case we find that (µ/(γ+ µ))(N − S̃) =

25/3 and 0 < α = 160.2 . . . < 1000.

Remark 3.2. Combining (A2) with (A3), we have

S̃ >
δẼ

β Ĩ
>

γ + µ

β
.

Lemma 3.3. There exists a unique positive solution w(x) of the initial value problem for the Abel

differential equation

w′w +
β(δ + γ + µ)

µ
w

=
βδ

µ

(

βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃e−(β/µ)x −

β(γ + µ)

µ
x

)

(D̃ < x < α), (3.1)

subject to the initial condition

w(D̃) = β Ĩ. (3.2)

Proof. Let

f (x) := N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)x −

γ + µ

µ
x.

Since f ′(x) = 0 for

x = x̃ =
µ

β
log

(

β

γ + µ
S̃e(β/µ)D̃

)

,

we see that D̃ < x̃ < α by means of (A7) and Remark 3.2, and that f ′(x) > 0 for D̃ < x < x̃

and f ′(x) < 0 for x̃ < x < α. Hence, f (x) is increasing in [D̃, x̃) and decreasing in (x̃, α).

Since f (D̃) = N − R̃ − S̃ − D̃ = Ẽ + Ĩ > 0 and limx→α−0 f (x) = 0 by Lemma 3.1, it follows

that f (x) ∈ C[D̃, α), f (x) > 0 in [D̃, α) and limx→α−0 f (x) = 0. Therefore there exists a

unique positive solution w(x) of the initial value problem (3.1), (3.2) by a result of Yoshida

[20, Theorem 3] (cf. Figure 3.2).

Lemma 3.4. There exists a unique positive solution ψ(u) of the initial value problem for the Abel

differential equation

ψ′ψ −
δ + γ + µ

u
ψ = − δ

βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u

u
(3.3)

(e−(β/µ)α
< u < e−(β/µ)D̃)
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with the initial condition

ψ
(

e−(β/µ)D̃
)

= β Ĩ (3.4)

(cf. Figure 3.3).

bf(x)

�(x)

bf(0) = 0.01
�(0) = 0.006

R = 0
~

a = 160.2 · · · 

Figure 3.2: Variations of β f (x) (dashed curve), and w(x) (solid curve) obtained

by the numerical integration of the initial value problem (3.1), (3.2), for N =

1000, S̃ = 950, Ẽ = 20, Ĩ = 30, R̃ = D̃ = 0, β = 0.2/1000, γ = 0.05, δ = 0.2, µ =

0.01 and α = 160.2 . . . In this case we obtain β f (0) = βN − βS̃ = 0.01 and

w(0) = β Ĩ = 0.006.

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P(u)

y(u)

exp(- (b/m)a) = 0.040 · · · exp(- (b/m)D) = 1
~

P(1) = bN - bS = 0.01
y(1) = b I = 0.006

~
~

Figure 3.3: Variations of P(u) := βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ +

µ) log u (dashed curve) and ψ(u) (solid curve) obtained by the numerical inte-

gration of the initial value problem (3.3), (3.4) for N = 1000, S̃ = 950, Ẽ = 20, Ĩ =

30, R̃ = D̃ = 0, β = 0.2/1000, γ = 0.05, δ = 0.2, µ = 0.01 and α = 160.2 . . . In

this case we get e−(β/µ)α = 0.040 . . ., e−(β/µ)D̃ = 1, P(1) = βN − βS̃ = 0.01 and

ψ(1) = β Ĩ = 0.006.

Proof. Let w(x) be a unique positive solution of the initial value problem (3.1), (3.2). We define

ψ(u) by

ψ(u) := w

(

−
µ

β
log u

)

and find that

ψ′(u) = w′

(

−
µ

β
log u

)(

−
µ

β

1

u

)

,
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and hence

ψ′(u)ψ(u) = −
µ

β

1

u
w′

(

−
µ

β
log u

)

w

(

−
µ

β
log u

)

= −
µ

β

1

u

[

−
β(δ + γ + µ)

µ
w

(

−
µ

β
log u

)

+
βδ

µ

(

βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u
)

]

=
δ + γ + µ

u
ψ(u)− δ

βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u

u

for e−(β/µ)α
< u < e−(β/µ)D̃ by means of (3.1). Hence ψ(u) satisfies (3.3). It is easily seen from

(3.2) that

ψ
(

e−(β/µ)D̃
)

= w(D̃) = β Ĩ

and therefore (3.4) is satisfied. The uniqueness of ψ(u) follows from that of w(x). It can be

shown that

ψ(u) > 0 in (e−(β/µ)α, e−(β/µ)D̃] (3.5)

since ψ(u) = w
(

−(µ/β) log u
)

and w(x) > 0 in [D̃, α).

Lemma 3.5. The unique positive solution ψ(u) of the initial value problem (3.3), (3.4) satisfies the

following relation

ψ(u) = βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u

− β

(

Ẽe−δϕ(u) + S̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv

)

(3.6)

for e−(β/µ)α
< u ≤ e−(β/µ)D̃, where

ϕ(u) :=
∫ e−(β/µ)D̃

u

dξ

ξψ(ξ)
. (3.7)

Conversely, the function ψ(u) satisfying (3.5), (3.6) is a solution of the initial value problem (3.3),

(3.4).

Proof. We note that (3.6) is some kind of integral equation of ψ(u), in light of (3.7). Let ψ(u)

be the unique positive solution of the problem (3.3), (3.4), and define z(u) by

z(u) := ψ(u)− P(u), (3.8)

where

P(u) = βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u. (3.9)

Dividing (3.3) by ψ(u), we obtain

ψ′(u) =
δ + γ + µ

u
− δ

P(u)

uψ(u)
=

γ + µ

u
− δ

P(u)− ψ(u)

uψ(u)

=
γ + µ

u
+ δ

z(u)

uψ(u)
. (3.10)
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On the other hand, differentiating (3.8) yields

ψ′(u) = −βS̃e(β/µ)D̃ +
γ + µ

u
+ z′(u). (3.11)

Combining (3.10) with (3.11), we get

z′(u)−
δ

uψ(u)
z(u) = βS̃e(β/µ)D̃

or

z′(u) + δϕ′(u)z(u) = βS̃e(β/µ)D̃ (3.12)

which is a linear differential equation of first order. It is clear that

z
(

e−(β/µ)D̃
)

= ψ
(

e−(β/µ)D̃
)

−

(

βN − βR̃ +
βγ

µ
D̃ − βS̃ −

β(γ + µ)

µ
D̃

)

= β Ĩ − β
(

N − R̃ − S̃ − D̃
)

= − βẼ. (3.13)

Now we solve the initial value problem (3.12), (3.13). Multiplying (3.12) by eδϕ(u) yields

(

eδϕ(u)z(u)
)′
= βS̃e(β/µ)D̃eδϕ(u)

and then integrating the above on [u, e−(β/µ)D̃] gives

z
(

e−(β/µ)D̃
)

− eδϕ(u)z(u) = βS̃e(β/µ)D̃
∫ e−(β/µ)D̃

u
eδϕ(v)dv.

Taking account of (3.13), we obtain

z(u) = −β

(

Ẽe−δϕ(u) + S̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv

)

. (3.14)

Combining (3.8) with (3.14), we observe that ψ(u) satisfies (3.6) for e−(β/µ)α
< u < e−(β/µ)D̃. If

u = e−(β/µ)D̃, then ψ
(

e−(β/µ)D̃
)

= β Ĩ by (3.4) and the right hand side of (3.6) with u = e−(β/µ)D̃

is equal to βN − βR̃ + ((βγ)/µ)D̃ − βS̃ − (β(γ + µ)/µ)D̃ − βẼ = β Ĩ. Therefore (3.6) holds for

u = e−(β/µ)D̃.

Conversely we suppose that the function ψ(u) satisfies (3.5), (3.6), and let e−(β/µ)α
< u <

e−(β/µ)D̃. Differentiating (3.6) with respect to u yields

ψ′(u) = − βS̃e(β/µ)D̃ +
γ + µ

u
− βẼe−δϕ(u)

(

−δϕ′(u)
)

− βS̃e(β/µ)D̃

(

e−δϕ(u)
(

−δϕ′(u)
)

∫ e−(β/µ)D̃

u
eδϕ(v)dv − 1

)

=
γ + µ

u
− βδẼe−δϕ(u) 1

uψ(u)

− βδS̃e(β/µ)D̃ 1

uψ(u)
e−δϕ(u)

∫ e−(β/µ)D̃

u
eδϕ(v)dv. (3.15)

It follows from (3.6) that

−βS̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv = ψ(u)− P(u) + βẼe−δϕ(u). (3.16)
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We combine (3.15) with (3.16) to obtain

ψ′(u) =
γ + µ

u
− βδẼe−δϕ(u) 1

uψ(u)
+ δ

ψ(u)− P(u) + βẼe−δϕ(u)

uψ(u)

=
γ + µ

u
− δ

P(u)− ψ(u)

uψ(u)

=
δ + γ + µ

u
− δ

P(u)

uψ(u)

and consequently, ψ(u) satisfies (3.3) for e−(β/µ)α
< u < e−(β/µ)D̃. It is easy to see from (3.6)

that

ψ
(

e−(β/µ)D̃
)

= βN − βR̃ + ((βγ)/µ)D̃ − βS̃ − (β(γ + µ)/µ)D̃ − βẼ

= βN − βR̃ − βD̃ − βS̃ − βẼ

= β
(

N − R̃ − D̃ − S̃ − Ẽ
)

= β Ĩ

in view of ϕ
(

e−(β/µ)D̃
)

= 0, and therefore (3.4) is satisfied.

Proposition 3.6. Let ψ(u) be the unique positive solution of the initial value problem (3.3), (3.4), then

we obtain the following inequalities:

βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u > ψ(u) > 0, (3.17)

βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u

> β

(

Ẽe−δϕ(u) + S̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv

)

> 0 (3.18)

for e−(β/µ)α
< u ≤ e−(β/µ)D̃.

Proof. Since ψ(u) > 0 in (e−(β/µ)α, e−(β/µ)D̃], the relation (3.6) in Lemma 3.5 means

βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u

> β

(

Ẽe−δϕ(u) + S̃e(β/γ)R̃e−δϕ(u)
∫ e−(β/γ)R̃

u
eδϕ(v)dv

)

for e−(β/µ)α
< u ≤ e−(β/µ)D̃. It is clear that

Ẽe−δϕ(u) + S̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv > 0 (3.19)

for e−(β/µ)α
< u ≤ e−(β/µ)D̃, and therefore (3.18) follows. Since (3.19) holds, the relation (3.6)

implies that

βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u > ψ(u) > 0

for e−(β/µ)α
< u ≤ e−(β/µ)D̃, which is the desired inequality (3.17).
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Proposition 3.7. Let ψ(u) be the unique positive solution of the initial value problem (3.3), (3.4), then

we see that

lim
u→e−(β/µ)α+0

ψ(u) = 0, (3.20)

lim
u→e−(β/µ)α+0

(

Ẽe−δϕ(u) + S̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv

)

= 0 (3.21)

(cf. Figure 3.4).

Figure 3.4: Variations of P(u) = βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ +

µ) log u (dashed curve), βE(ϕ(u)) (green curve), and ψ(u) (solid curve) ob-

tained by the numerical integration of the initial value problem (3.3), (3.4)

for N = 1000, S̃ = 950, Ẽ = 20, Ĩ = 30, R̃ = D̃ = 0, β = 0.2/1000, γ =

0.05, δ = 0.2, µ = 0.01 and α = 160.2 . . . In this case we have e−(β/µ)α =

0.040 . . ., e−(β/µ)D̃ = 1, P(1) = βN − βS̃ = 0.01, ψ(1) = β Ĩ = 0.006 and

βẼ = 0.004. Moreover, limu→e−(β/µ)α+0 P(u) = 0, limu→e−(β/µ)α+0 ψ(u) = 0, and

limu→e−(β/µ)α+0 βE(ϕ(u)) = limu→e−(β/µ)α+0

(

P(u)− ψ(u)
)

= 0.

Proof. Since

lim
u→e−(β/µ)α+0

(

βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u

)

= lim
x→α−0

β

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)x −

γ + µ

µ
x

)

= 0

by Lemma 3.1, Proposition 3.6 implies that (3.20) and (3.21) hold by taking the limit as u →

e−(β/µ)α + 0 in (3.17) and (3.18).

Lemma 3.8. Let ψ(u) be the unique positive solution of the initial value problem (3.3), (3.4). Then

there exists the inverse function ϕ−1(t) ∈ C1(0, ∞) of the function

t = ϕ(u) =
∫ e−(β/µ)D̃

u

dξ

ξψ(ξ)
(3.22)

for e−(β/µ)α
< u ≤ e−(β/µ)D̃, such that ϕ−1(t) is decreasing on [0, ∞), ϕ−1(0) = e−(β/µ)D̃ and

limt→∞ ϕ−1(t) = e−(β/µ)α.
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Proof. We easily see that ϕ(u) ∈ C1(e−(β/µ)α, e−(β/µ)D̃), ϕ(u) is decreasing in (e−(β/µ)α, e−(β/µ)D̃]

and ϕ
(

e−(β/µ)D̃
)

= 0. We divide (3.3) by (δ + γ + µ)ψ(u)2 to obtain

1

uψ(u)
=

δ

δ + γ + µ

P(u)

uψ(u)2
+

1

δ + γ + µ

ψ′(u)

ψ(u)
, (3.23)

and therefore

ϕ(u) =
∫ e−(β/µ)D̃

u

dξ

ξψ(ξ)

=
δ

δ + γ + µ

∫ e−(β/µ)D̃

u

P(ξ)

ξψ(ξ)2
dξ +

1

δ + γ + µ

∫ e−(β/µ)D̃

u

ψ′(ξ)

ψ(ξ)
dξ

≥
1

δ + γ + µ

(

log (β Ĩ)− log ψ(u)
)

, (3.24)

where P(u) is defined by (3.8). We see that limu→e−(β/µ)α+0 log ψ(u) = −∞ in view of (3.20),

and that limu→e−(β/µ)α+0 ϕ(u) = ∞ by taking the limit as u → e−(β/µ)α + 0 in (3.24). Hence there

exists the inverse function ϕ−1(t) which has the desired properties.

The following is our main theorem.

Theorem 3.9. The function (S(t), E(t), I(t), R(t), D(t)) defined by

S(t) = S̃e(β/µ)D̃ ϕ−1(t), (3.25)

E(t) = Ẽe−δt + S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ(v)dv, (3.26)

I(t) = N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t)− Ẽe−δt

− S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ(v)dv, (3.27)

R(t) = −
γ

β
log ϕ−1(t) + R̃ −

γ

µ
D̃, (3.28)

D(t) = −
µ

β
log ϕ−1(t) (3.29)

is a solution of the initial value problem (1.1)–(1.6), where ϕ(u) and ϕ−1(t) are given in Lemma 3.8.

Proof. First note that

(

ϕ−1(t)
)′
=

1

ϕ′(u)

∣

∣

∣

u=ϕ−1(t)
= −uψ(u)

∣

∣

∣

u=ϕ−1(t)

= − ϕ−1(t)ψ
(

ϕ−1(t)
)

= −βϕ−1(t)I(t) (3.30)

by taking account of (3.6) and (3.27). We see from (3.25) and (3.30) that

S′(t) = S̃e(β/µ)D̃
(

ϕ−1(t)
)′

= − βS̃e(β/µ)D̃ ϕ−1(t)I(t)

= − βS(t)I(t) (3.31)
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and therefore (1.1) follows. A direct calculation yields

E′(t) = − δẼe−δt

+ S̃e(β/µ)D̃

(

−δe−δt
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ(v)dv + e−δt

(

−eδt
(

ϕ−1(t)
)′)
)

= − δẼe−δt − δS̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ(v)dv − S̃e(β/µ)D̃

(

ϕ−1(t)
)′

= − δE(t) + βS(t)I(t) (3.32)

in view of (3.26) and (3.31), and hence (1.2) is satisfied. An easy computation shows that

I′(t) = − S̃e(β/µ)D̃
(

ϕ−1(t)
)′
+

γ + µ

β

(

ϕ−1(t)
)′

ϕ−1(t)

−

(

Ẽe−δt + S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ(v)dv

)′

(3.33)

= βS(t)I(t) +
γ + µ

β

(

−βI(t)
)

− E′(t)

= βS(t)I(t)− (γ + µ)I(t)−
(

−δE(t) + βS(t)I(t)
)

= δE(t)− γI(t)− µI(t)

in view of (3.30)–(3.32). Thus, (1.3) holds. It is easily seen from (3.30) that

R′(t) = −
γ

β

(

ϕ−1(t)
)′

ϕ−1(t)
= −

γ

β
(−βI(t)) = γI(t)

which is the equation (1.4). Similarly we obtain

D′(t) = −
µ

β

(

ϕ−1(t)
)′

ϕ−1(t)
= −

µ

β
(−βI(t)) = µI(t)

which is the desired equation (1.5). It is easy to see that

S(0) = S̃e(β/µ)D̃ ϕ−1(0) = S̃e(β/µ)D̃e−(β/µ)D̃ = S̃,

E(0) = Ẽ + S̃e(β/µ)D̃
∫ e−(β/µ)D̃

ϕ−1(0)
eδϕ(v)dv = Ẽ,

I(0) = N − R̃ +
γ

µ
D̃ − S̃ +

γ + µ

β

(

−
β

µ
D̃

)

− Ẽ

= N − R̃ − S̃ − D̃ − Ẽ = Ĩ,

R(0) = −
γ

β

(

−
β

µ
D̃

)

+ R̃ −
γ

µ
D̃ = R̃,

D(0) = −
µ

β

(

−
β

µ
D̃

)

= D̃

in light of ϕ−1(0) = e−(β/µ)D̃. Therefore, (1.6) is satisfied.
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Theorem 3.10. Let (S(t), E(t), I(t), R(t), D(t)) be the exact solution (3.25)–(3.29) of the initial value

problem (1.1)–(1.6). Then,
(

Ŝ(u), Ê(u), Î(u), R̂(u), D̂(u)
)

defined by
(

Ŝ(u), Ê(u), Î(u), R̂(u), D̂(u)
)

:=
(

S(ϕ(u)), E(ϕ(u)), I(ϕ(u)), R(ϕ(u)), D(ϕ(u))
)

satisfies the linear differential system

dŜ(u)

du
=

Ŝ(u)

u
, (3.34)

dÊ(u)

du
−

δ

uψ(u)
Ê(u) = −

Ŝ(u)

u
, (3.35)

dÎ(u)

du
−

γ + µ

β

1

u
= −

δ

uψ(u)
Ê(u), (3.36)

dR̂(u)

du
= −

γ

β

1

u
, (3.37)

dD̂(u)

du
= −

µ

β

1

u
(3.38)

for u ∈ (e−(β/µ)α, e−(β/µ)D̃), and the initial condition

Ŝ
(

e−(β/µ)D̃
)

= S̃, (3.39)

Ê
(

e−(β/µ)D̃
)

= Ẽ, (3.40)

Î
(

e−(β/µ)D̃
)

= Ĩ, (3.41)

R̂
(

e−(β/µ)D̃
)

= R̃. (3.42)

D̂
(

e−(β/µ)D̃
)

= D̃. (3.43)

Proof. It follows from (3.30) that

Î(u) = I(ϕ(u)) =
1

β
ψ(u). (3.44)

Since S(t) satisfies (1.1), we obtain

S′(ϕ(u)) = −βS(ϕ(u))I(ϕ(u)) = −βŜ(u) Î(u).

Therefore we arrive at

dŜ(u)

du
=

dS(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u) = S′(ϕ(u))

(

−
1

uψ(u)

)

=
(

−βŜ(u) Î(u)
)

(

−
1

uψ(u)

)

=
Ŝ(u)

u

in light of (3.44), and hence (3.34) holds. Using (1.2) and (3.44), we get

dÊ(u)

du
=

dE(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u) = E′(ϕ(u))

(

−
1

uψ(u)

)

=
(

βŜ(u) Î(u)− δÊ(u)
)

(

−
1

uψ(u)

)

= −
Ŝ(u)

u
+

δ

uψ(u)
Ê(u),
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which is equal to (3.35). We observe, using (1.3), that

dÎ(u)

du
=

dI(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u)

=
(

δÊ(u)− γ Î(u)− µ Î(u)
)

(

−
1

uψ(u)

)

= − δ
Ê(u)

uψ(u)
+ (γ + µ)

Î(u)

uψ(u)

= −
δ

uψ(u)
Ê(u) +

γ + µ

β

1

u
,

and therefore (3.36) follows. We are led to

dR̂(u)

du
=

dR(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u) = R′(ϕ(u))

(

−
1

uψ(u)

)

= γ Î(u)

(

−
1

uψ(u)

)

= −
γ

β

1

u

by use of (1.4) and (3.44). Thus (3.37) is obtained. Similarly we have

dD̂(u)

du
=

dD(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u) = D′(ϕ(u))

(

−
1

uψ(u)

)

= µ Î(u)

(

−
1

uψ(u)

)

= −
µ

β

1

u
,

which is the desired equation (3.38). It is easily seen that

Ŝ
(

e−(β/µ)D̃
)

= S
(

ϕ
(

e−(β/µ)D̃
))

= S(0) = S̃,

Ê
(

e−(β/µ)D̃
)

= E
(

ϕ
(

e−(β/µ)D̃
))

= E(0) = Ẽ,

Î
(

e−(β/µ)D̃
)

= I
(

ϕ
(

e−(β/µ)D̃
))

= I(0) = Ĩ,

R̂
(

e−(β/µ)D̃
)

= R
(

ϕ
(

e−(β/µ)D̃
))

= R(0) = R̃,

D̂
(

e−(β/µ)D̃
)

= D
(

ϕ
(

e−(β/µ)D̃
))

= D(0) = D̃.

Hence, (3.39)–(3.43) are satisfied.

Theorem 3.11. Solving the initial value problem (3.34)–(3.43), we obtain the parametric solution

(2.5)–(2.9) for e−(β/µ)α
< u ≤ e−(β/µ)D̃.

Proof. Since (3.34) is equivalent to

d

du

(

1

u
Ŝ(u)

)

= 0,

we have

Ŝ(u) = ku
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for some constant k. We see from (3.39) that

Ŝ
(

e−(β/µ)D̃
)

= ke−(β/µ)D̃ = S̃

which implies

k = S̃e(β/µ)D̃.

Therefore we obtain

Ŝ(u) = S̃e(β/µ)D̃u. (3.45)

It follows from (3.45) that

−
Ŝ(u)

u
= −S̃e(β/µ)D̃

and hence (3.35) reduces to

dÊ(u)

du
−

δ

uψ(u)
Ê(u) = −S̃e(β/µ)D̃ (3.46)

which can be rewritten as

dÊ(u)

du
+ δϕ′(u)Ê(u) = −S̃e(β/µ)D̃. (3.47)

Multiplying (3.47) by eδϕ(u) gives

d

du

(

eδϕ(u)Ê(u)
)

= −S̃e(β/µ)D̃eδϕ(u),

and an integration of the above on [u, e−(β/γ)R̃] yields

Ê(u) = e−δϕ(u)

(

Ẽ + S̃e(β/µ)D̃
∫ e−(β/µ)D̃

u
eδϕ(v)dv

)

,

which is equal to (2.6). Multiplying (3.36) by β, we have

d(β Î(u))

du
−

γ + µ

u
= −

βδ

uψ(u)
Ê(u). (3.48)

Define z(u) by

z(u) := β Î(u)−
(

βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u
)

,

then we obtain
dz(u)

du
=

d(β Î(u))

du
+ βS̃e(β/µ)D̃ −

γ + µ

u
. (3.49)

Combining (3.48) with (3.49), we get

dz(u)

du
= βS̃e(β/µ)D̃ −

βδ

uψ(u)
Ê(u)

= − β

(

−S̃e(β/µ)D̃ +
δ

uψ(u)
Ê(u)

)

. (3.50)
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It follows from (3.46) and (3.50) that

dz(u)

du
= −β

dÊ(u)

du
,

and therefore

z(u) = −βÊ(u) + k

for some constant k. Since

z
(

e−(β/µ)D̃
)

= β Î
(

e−(β/µ)D̃
)

−
(

βN − βR̃ − βS̃ − βD̃
)

= β Ĩ −
(

βN − βR̃ − βS̃ − βD̃
)

= −βẼ

and −βÊ
(

e−(β/µ)D̃
)

= −βẼ, we see that k = 0, and therefore z(u) = −βÊ(u), i.e.,

β Î(u) =
(

βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u
)

− βÊ(u),

which is equivalent to (2.7). Solving (3.37) yields

R̂(u) = −
γ

β
log u + k

for some constant k. The initial condition (3.42) implies

R̂
(

e−(β/µ)D̃
)

= −
γ

β
log e−(β/µ)D̃ + k =

γ

µ
D̃ + k = R̃

and hence k = R̃ − (γ/µ)D̃. Hence we obtain

R̂(u) = −
γ

β
log u + R̃ −

γ

µ
D̃.

Similarly we find that

D̂(u) = −
µ

β
log u.

Remark 3.12. Let I(t) be given by (3.27). Then I(t) can be represented in the simple form

I(t) =
1

β
ψ
(

ϕ−1(t)
)

by taking account of (3.6) and (3.27).

4 Various properties of solution

This section is devoted to various properties of solution by investigating the exact solution of

the initial value problem (1.1)–(1.6).

Theorem 4.1. Let D(t) be given by (3.29). Then we find that D(∞) = α,

D(∞) = N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)D(∞) −

γ

µ
D(∞), (4.1)

and that D(t) is an increasing function on [0, ∞) such that

D̃ ≤ D(t) < α = D(∞).



Exact solution of the SEIRD epidemic model 21

Proof. We easily see that

D(∞) = lim
t→∞

D(t) = lim
t→∞

−
µ

β
log ϕ−1(t)

= lim
u→e−(β/µ)α+0

−
µ

β
log u

= α.

Since α = D(∞), the identity (4.1) follows from the definition of α (see Lemma 3.1). In light of

e−(β/µ)α
< ϕ−1(t) ≤ e−(β/µ)D̃, we obtain

−
µ

β
log e−(β/µ)D̃ ≤ D(t) < −

µ

β
log e−(β/µ)α

or

D̃ ≤ D(t) < α = D(∞).

It is easy to check that D(t) is increasing on [0, ∞) in view of the fact that ϕ−1(t) is decreasing

on [0, ∞).

Theorem 4.2. Let S(t) be given by (3.25). Then we deduce that

S(∞) = S̃e(β/µ)D̃e−(β/µ)D(∞), (4.2)

and that S(t) is a decreasing function on [0, ∞) such that

S̃ ≥ S(t) > S̃e(β/µ)D̃e−(β/µ)α = S(∞).

Proof. The identity (4.2) follows from

S(∞) = lim
t→∞

S(t) = lim
t→∞

S̃e(β/µ)D̃ ϕ−1(t)

= lim
u→e−(β/µ)α+0

S̃e(β/µ)D̃u

= S̃e(β/µ)D̃e−(β/µ)α

= S̃e(β/µ)D̃e−(β/µ)D(∞).

Since e−(β/µ)α
< ϕ−1(t) ≤ e−(β/µ)D̃, we have

S̃e(β/µ)D̃e−(β/µ)α
< S̃e(β/µ)D̃ ϕ−1(t) ≤ S̃e(β/µ)D̃e−(β/µ)D̃.

Therefore we get

S̃e(β/µ)D̃e−(β/µ)α
< S(t) ≤ S̃.

Since ϕ−1(t) is decreasing on [0, ∞), we observe that S(t) is also decreasing on [0, ∞).

Theorem 4.3. Let R(t) be given by (3.28). Then we conclude that

R(∞) =
γ

µ
D(∞) + R̃ −

γ

µ
D̃, (4.3)

and that R(t) is an increasing function on [0, ∞) such that

R̃ ≤ R(t) < R(∞).
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Proof. We obtain

R(∞) = lim
t→∞

R(t) = lim
t→∞

(

−
γ

β
log ϕ−1(t) + R̃ −

γ

µ
D̃

)

= lim
u→e−(β/µ)α+0

(

−
γ

β
log u + R̃ −

γ

µ
D̃

)

=
γ

µ
α + R̃ −

γ

µ
D̃

=
γ

µ
D(∞) + R̃ −

γ

µ
D̃.

Since e−(β/µ)α
< ϕ−1(t) ≤ e−(β/µ)D̃, we get

γ

µ
D̃ + R̃ −

γ

µ
D̃ ≤ R(t) <

γ

µ
α + R̃ −

γ

µ
D̃,

or

R̃ ≤ R(t) <
γ

µ
D(∞) + R̃ −

γ

µ
D̃ = R(∞).

Theorem 4.4. Let E(t) be given by (3.26). Then we find that

E(∞) = 0,

E(t) > 0 on [0, ∞),

and E(t) has the maximum maxt≥0 E(t) at some t = T1 ∈ {T; E′(T) = 0}, where

E′(T) =

(

δ

β
+ S̃e(β/µ)D̃ ϕ−1(T)

)

ψ
(

ϕ−1(T)
)

− δ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(T) +

γ + µ

β
log ϕ−1(T)

)

.

Proof. We easily check that

E(∞) = lim
t→∞

E(t)

= lim
u→e−(β/µ)α+0

(

Ẽe−δϕ(u) + S̃e(β/µ)D̃e−δϕ(u)
∫ e−(β/µ)D̃

u
eδϕ(v)dv

)

= 0

in light of of (3.20) in Proposition 3.7. Since e−(β/µ)α
< ϕ−1(t) ≤ e−(β/µ)D̃ (t ≥ 0) and Ê(u) > 0

for e−(β/µ)α
< u ≤ e−(β/µ)D̃ (cf. (3.19)), it is easily seen that E(t) = Ê

(

ϕ−1(t)
)

> 0 on [0, ∞).

The hypothesis (A2) implies that the right differential derivative E′
+(0) is positive because

E′
+(0) = lim

t→+0
E′(t) = lim

t→+0

(

βS(t)I(t)− δE(t)
)

= βS̃ Ĩ − δẼ > 0.

Since the definition of E′
+(0) implies

0 < E′
+(0) = lim

t→+0

E(t)− E(0)

t
= lim

t→+0

E(t)− Ẽ

t
,

we see that for ε = (1/2)E′
+(0) > 0 there exists a number δε > 0 such that

∣

∣

∣

∣

E(t)− Ẽ

t
− E′

+(0)

∣

∣

∣

∣

<
1

2
E′
+(0)
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holds for 0 < t < δε, and hence
1

2
E′
+(0) <

E(t)− Ẽ

t
or

E(t) > Ẽ +
1

2
E′
+(0)t > Ẽ

holds for 0 < t < δε. Since E(∞) = 0, there exists a number T̃ such that E(T̃) = Ẽ and

E(t) ≤ Ẽ for t ≥ T̃. Therefore there exists max0≤t≤T̃ E(t) = E(T1) (> Ẽ) at some t = T1 (< T̃).

Since E(t) ≤ Ẽ for t ≥ T̃, we observe that maxt≥0 E(t) = max0≤t≤T̃ E(t) = E(T1). It is obvious

that E′(T1) = 0. It can be shown from (3.25)–(3.27) and (3.44) that

E′(t) = − δE(t) + βS(t)I(t)

= − δE(t) + S̃e(β/γ)R̃ ϕ−1(t)ψ
(

ϕ−1(t)
)

= − δ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t)− I(t)

)

)

+ S̃e(β/µ)D̃ ϕ−1(t)ψ
(

ϕ−1(t)
)

=

(

δ

β
+ S̃e(β/µ)D̃ ϕ−1(t)

)

ψ
(

ϕ−1(t)
)

− δ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t)

)

. (4.4)

Remark 4.5. If u1 is a unique solution of the equation
(

δ

β
+ S̃e(β/µ)D̃u

)

ψ(u) = δ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃u +

γ + µ

β
log u

)

,

then we get

T1 = ϕ(u1) =
∫ e−(β/µ)D̃

u1

dξ

ξψ(ξ)

in view of (3.22) (cf. Figure 4.1).

In case E′(T1) = 0, we obtain βS(T1)I(T1) = δE(T1) by (1.2), and therefore E(T1) =

(β/δ)S(T1)I(T1). Hence, in Theorem 4.4 we see that

max
t≥0

E(t) = E(T1) =
β

δ
S(T1)I(T1).

Letting

Ψ(u) :=

(

δ

β
+ S̃e(β/µ)D̃u

)

ψ(u),

we observe that Ψ(u) is a solution of the initial value problem for the Abel differential equation

Ψ
′(u)Ψ(u)−

S̃e(β/µ)D̃

(δ/β) + S̃e(β/µ)D̃u
Ψ(u)2 −

δ + γ + µ

u

(

δ

β
+ S̃e(β/µ)D̃u

)

Ψ(u)

= − δ

(

δ

β
+ S̃e(β/µ)D̃u

)2

×
βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃u + (γ + µ) log u

u
(4.5)
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for e−(β/µ)α
< u ≤ e−(β/µ)D̃, with the initial condition

Ψ
(

e−(β/µ)D̃
)

= β

(

δ

β
+ S̃

)

Ĩ. (4.6)

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(d/b)P(u)

Y(u)

u₁

dE(j(u))exp(- (b/m)a) = 0.040 · · ·
exp(- (b/m)D) = 1

~

Figure 4.1: Variations of (δ/β)P(u) = δ(N − R̃ + (γ/µ)D̃ − S̃e(β/µ)D̃u +

((γ + µ)/β) log u) (dashed curve), δE(ϕ(u)) (green curve) and Ψ(u) (solid

curve) obtained by the numerical integration of the initial value problem (4.5),

(4.6) for N = 1000, S̃ = 950, Ẽ = 20, Ĩ = 30, R̃ = D̃ = 0, β = 0.2/1000, γ = 0.05,

δ = 0.2 and µ = 0.01. In this case we see that there exists a unique u1 such that

(δ/β)P(u1) = Ψ(u1), and that T1 is calculated by T1 = ϕ(u1) =
∫ 1

u1

dξ
ξψ(ξ)

, where

ψ(u) is a unique positive solution of the initial value problem ψ′ψ − 0.26
u ψ =

−0.2
0.2−0.19u+0.06 log u

u (0.040 . . . < u < 1), ψ(1) = 0.006.

Theorem 4.6. Let I(t) be given by (3.27). Then we see that

I(∞) = 0,

I(t) > 0 on [0, ∞),

and I(t) has the maximum maxt≥0 I(t) at some t = T2 ∈ {T; I′(T) = 0}, where

I′(T) = −
δ + γ + µ

β
ψ
(

ϕ−1(T)
)

+ δ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(T) +

γ + µ

β
log ϕ−1(T)

)

.

Proof. It follows from (3.20) and (3.30) that

I(∞) = lim
t→∞

I(t) = lim
t→∞

1

β
ψ
(

ϕ−1(t)
)

= lim
u→e−(β/µ)α+0

1

β
ψ(u)

= 0.

Since e−(β/µ)α
< ϕ−1(t) ≤ e−(β/µ)D̃ (t ≥ 0) and ψ(u) > 0 for e−(β/µ)α

< u ≤ e−(β/µ)D̃, we

find that I(t) = (1/β)ψ
(

ϕ−1(t)
)

> 0 on [0, ∞). The hypothesis (A3) implies that the right

differential derivative I′+(0) is positive because

I′+(0) = lim
t→+0

I′(t) = lim
t→+0

(

δE(t)− γI(t)− µI(t)
)

= δẼ − (γ + µ) Ĩ > 0,
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and therefore there exists a number δ1 > 0 such that I(t) > Ĩ in (0, δ1) as in the proof of

Theorem 4.3. Since I(∞) = 0, we can use the same arguments as in the proof of Theorem 4.3

to conclude that there exists the maximum maxt≥0 I(t) = I(T2) for some T2. Then I′(T2) = 0,

and we obtain

I′(t) = S̃e(β/µ)D̃ ϕ−1(t)ψ
(

ϕ−1(t)
)

−
γ + µ

β
ψ
(

ϕ−1(t)
)

− E′(t)

= S̃e(β/µ)D̃ ϕ−1(t)ψ
(

ϕ−1(t)
)

−
γ + µ

β
ψ
(

ϕ−1(t)
)

−

[(

δ

β
+ S̃e(β/µ)D̃ ϕ−1(t)

)

ψ
(

ϕ−1(t)
)

−δ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t)

)]

= −
δ + γ + µ

β
ψ
(

ϕ−1(t)
)

+ δ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t)

)

in light of (3.30), (3.33), (3.44) and (4.4).

Remark 4.7. In case u2 is a unique solution of the equation

δ + γ + µ

β
ψ(u) = δ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃u +

γ + µ

β
log u

)

,

then we get

T2 = ϕ(u2) =
∫ e−(β/µ)D̃

u2

dξ

ξψ(ξ)

(cf. Figure 4.2). If I′(T2) = 0, (1.3) implies that δE(T2) = (γ + µ)I(T2), and in Theorem 4.6 we

see that

max
t≥0

I(t) = I(T2) =
δ

γ + µ
E(T2).

Theorem 4.8. The function E(t) + I(t) has the maximum

max
t≥0

(

E(t) + I(t)
)

= S̃ + Ẽ + Ĩ −
γ + µ

β

(

1 + log S̃ − log
γ + µ

β

)

at

t = T3 := ϕ

(

γ + µ

βS̃e(β/µ)D̃

)

=
∫ e−(β/µ)D̃

(γ+µ)/(βS̃e(β/µ)D̃)

dξ

ξψ(ξ)
= S−1

(

γ + µ

β

)

.

Moreover, E(t) + I(t) is increasing in [0, T3) and is decreasing in (T3, ∞).

Proof. We see from (3.26) and (3.27) that

E(t) + I(t) = N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t). (4.7)
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0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(d/b) P(u) 

((d+g+m)/b) y(u)
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Figure 4.2: Variations of (δ/β)P(u) = δ(N − R̃ + (γ/µ)D̃ − S̃e(β/µ)D̃u + ((γ +

µ)/β) log u) (dashed curve), ((δ + γ + µ)/β)ψ(u) (solid curve), and (δ/β)ψ(u)

(green curve) obtained by the numerical integration of the initial value problem

(4.5), (4.6) for N = 1000, S̃ = 950, Ẽ = 20, Ĩ = 30, R̃ = D̃ = 0, β = 0.2/1000, γ =

0.05, δ = 0.2 and µ = 0.01. In this case we find that there exists a unique

u2 such that (δ/β)P(u2) = ((δ + γ + µ)/β)ψ(u2), and that T2 is calculated by

T2 = ϕ(u2) =
∫ 1

u2

dξ
ξψ(ξ)

, where ψ(u) is the unique positive solution of the same

initial value problem as in Figure 4.1.

Differentiating (4.7) with respect to t gives

E′(t) + I′(t) = − S̃e(β/µ)D̃
(

ϕ−1(t)
)′
+

γ + µ

β

(

ϕ−1(t)
)′

ϕ−1(t)

=

(

−S̃e(β/µ)D̃ ϕ−1(t) +
γ + µ

β

)

(

ϕ−1(t)
)′

ϕ−1(t)

=

(

−S(t) +
γ + µ

β

)

(

ϕ−1(t)
)′

ϕ−1(t)
.

Since
(

ϕ−1(t)
)′

ϕ−1(t)
= −ψ

(

ϕ−1(t)
)

< 0

by (3.30), we observe that E′(t) + I′(t) = 0 for

t = T3 = ϕ

(

γ + µ

βS̃e(β/µ)D̃

)

= S−1

(

γ + µ

β

)

.

Note that

e−(β/µ)α
<

γ + µ

βS̃e(β/µ)D̃
=

γ + µ

βS̃
e−(β/µ)D̃

< e−(β/µ)D̃

in view of (A7) and Remark 3.2. In light of (3.22) we obtain

T3 = ϕ

(

γ + µ

βS̃e(β/µ)D̃

)

=
∫ e−(β/µ)D̃

(γ+µ)/(βS̃e(β/µ)D̃)

dξ

ξψ(ξ)
= S−1

(

γ + µ

β

)

.

It is easy to check that E′(t) + I′(t) > 0 [resp. < 0] if and only if t < T3 [resp. > T3], because

ϕ−1(t) is decreasing on [0, ∞). Therefore we conclude that E(t) + I(t) is increasing in [0, T3)
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and is decreasing in (T3, ∞). It can be shown that

max
t≥0

(

E(t) + I(t)
)

= N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(T3) +

γ + µ

β
log ϕ−1(T3)

= N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ γ + µ

βS̃e(β/µ)D̃
+

γ + µ

β
log

(

γ + µ

βS̃e(β/µ)D̃

)

= N − R̃ +
γ

µ
D̃ −

γ + µ

β
+

γ + µ

β

(

log
γ + µ

β
− log S̃ −

β

µ
D̃

)

= S̃ + Ẽ + Ĩ −
γ + µ

β

(

1 + log S̃ − log
γ + µ

β

)

.

Remark 4.9. Since u3 = (γ + µ)/
(

βS̃e(β/µ)D̃
)

= ((γ + µ)/(βS̃))e−(β/µ)D̃ is a unique solution

of the equation
(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃u +

γ + µ

β
log u

)′

= 0,

we obtain

T3 = ϕ(u3) =
∫ e−(β/µ)D̃

((γ+µ)/(βS̃))e−(β/µ)D̃

dξ

ξψ(ξ)

(cf. Figure 4.3).

(1/b)P(u)

exp(- (b/m)a) = 0.040 · · · exp(- (b/m)D) = 1
~

(1/b)P(1) = 50 

u₃ = 6/19

Figure 4.3: Variation of (1/β)P(u) = N − R̃ + (γ/µ)D̃ − S̃e(β/µ)D̃u + ((γ +

µ)/β) log u (dashed curve) for N = 1000, S̃ = 950, Ĩ = 30, Ẽ = 20, R̃ = 0, β =

0.3/1000, γ = 0.1 and δ = 0.2. In this case we observe that there exists a

unique u3 = 6/19 such that (1/β)P′(u3) = 0, and that T3 is calculated by

T3 = ϕ(u3) =
∫ 1

6/19
dξ

ξψ(ξ)
= 41.9 . . ., where ψ(u) is the unique positive solution

of the same initial value problem as in Figure 4.1.

Theorem 4.10. The following relation holds:

S(∞) = S̃ + Ẽ + Ĩ +
γ + µ

β
log

S(∞)

S̃
.
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Proof. Since E(∞) = I(∞) = 0, we obtain

S(∞) = N − R(∞)− D(∞)

= N −

(

γ

µ
D(∞) + R̃ −

γ

µ
D̃

)

− D(∞)

= N − R̃ − D̃ +
γ + µ

β

(

β

µ
D̃ −

β

µ
D(∞)

)

= S̃ + Ẽ + Ĩ +
γ + µ

β
log
(

e(β/µ)D̃e−(β/µ)D(∞)
)

= S̃ + Ẽ + Ĩ +
γ + µ

β
log

S(∞)

S̃

by use of (4.2) and (4.3).

Theorem 4.11. We find that

S′(∞) = E′(∞) = I′(∞) = R′(∞) = D′(∞) = 0.

Proof. Since E(∞) = I(∞) = 0, we see from (1.1)–(1.5) that

S′(∞) = − βS(∞)I(∞) = 0,

E′(∞) = βS(∞)I(∞)− δE(∞) = 0,

I′(∞) = δE(∞)− γI(∞)− µI(∞) = 0,

R′(∞) = γI(∞) = 0,

D′(∞) = µI(∞) = 0.

Remark 4.12. The hypothesis (A5) is satisfied if D̃ = 0, since N > S̃ + R̃.

Remark 4.13. It follows from Theorems 4.1–4.6 that S(t) > 0, E(t) > 0, I(t) > 0 for t ≥ 0 and

R(t) > 0, D(t) > 0 for t > 0 (cf. Figure 4.4).

S(t)

R(t)

D(t)

I(t)

E(t)+I(t)

T₁

T₃= 41.9  · · ·

T₂

E(t)

max  E(t)+I(t) = 354.2 · · · 

950

  D(∞) = 160. 2 · · ·

 R(∞) = 801. 2 · · ·

S = 
~

Figure 4.4: Variations of S(t), E(t), I(t), R(t), D(t) and E(t) + I(t) obtained

by the numerical integration of the initial value problem (1.1)–(1.6) for N =

1000, S̃ = 950, Ẽ = 20, Ĩ = 30, R̃ = 0, D̃ = 0, β = 0.2/1000, γ = 0.05, δ = 0.2 and

µ = 0.01.
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Remark 4.14. We note that

E′
+(0) + I′+(0) = βS̃ Ĩ − (γ + µ) Ĩ,

and that E′
+(0) + I′+(0) ≤ 0 is equivalent to S̃ ≤ (γ+ µ)/β. Let E′

+(0) + I′+(0) ≤ 0 be satisfied,

and let P(u) be given by (3.9). Then we see that

1

β
P′(u) = −S̃e(β/µ)D̃ +

γ + µ

β

1

u
= 0

at u = ((γ + µ)/(βS̃))e−(β/µ)D̃ (≥ e−(β/µ)D̃) and that (1/β)P(u) is increasing in
(

e−(β/µ)α, e−(β/µ)D̃
]

, limu→e−(β/µ)α+0(1/β)P(u) = 0 and (1/β)P
(

e−(β/µ)D̃
)

= Ẽ + Ĩ > 0. Since

ϕ−1(t) is decreasing on [0, ∞), ϕ−1(0) = e−(β/µ)D̃ and limt→∞ ϕ−1(t) = e−(β/µ)α, we con-

clude that E(t) + I(t) = (1/β)P
(

ϕ−1(t)
)

is decreasing on [0, ∞), E(0) + I(0) = Ẽ + Ĩ, and

E(∞) + I(∞) = 0 (cf. Figure 4.5).

S(t)

R(t)

D(t)

E(t)

I(t)

E(t)+I(t)

Figure 4.5: Variations of S(t), E(t), I(t), R(t), D(t) and E(t) + I(t) obtained

by the numerical integration of the initial value problem (1.1)–(1.6) for N =

1000, S̃ = 700, Ẽ = 100, Ĩ = 200, R̃ = 0, D̃ = 0, β = 0.3/1000, γ = 0.3, δ = 0.2

and µ = 0.1. In this case we find that E′
+(0) = 22 > 0, I′+(0) = −60 < 0 and

E′
+(0) + I′+(0) = −38 < 0.

Remark 4.15. The function D(t) given by (3.29) is a positive and increasing solution of the

initial value problem for (2.1) with the initial conditions D(0) = D̃ and D′
+(0) = µ Ĩ. In fact,

it follows from Theorem 4.1 that D(t) is an increasing function such that D(t) > 0 for t > 0.

Since

D′(t) = −
µ

β

(

ϕ−1(t)
)′

ϕ−1(t)
= −

µ

β

(

−ψ(ϕ−1(t))
)

=
µ

β
ψ(ϕ−1(t)),

D′′(t) = −
µ

β
ϕ−1(t)ψ′(ϕ−1(t))ψ(ϕ−1(t))
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in light of (3.30), we arrive at

D′′(t) + (δ + γ + µ)D′(t)

= −
µ

β
ϕ−1(t)

(

ψ′
(

ϕ−1(t)
)

ψ
(

ϕ−1(t)
)

− (δ + γ + µ)
ψ
(

ϕ−1(t)
)

ϕ−1(t)

)

= −
µ

β
ϕ−1(t)

(

−δ
βN − βR̃ + ((βγ)/µ)D̃ − βS̃e(β/µ)D̃ ϕ−1(t) + (γ + µ) log ϕ−1(t)

ϕ−1(t)

)

= δµ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t)

)

= δµ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)D(t) −

γ + µ

µ
D(t)

)

in view of (3.3). It is easy to check that D(0) = −(µ/β) log ϕ−1(0) = −(µ/β) log e−(β/µ)D̃ = D̃

and

D′
+(0) = lim

ε→+0
D′(ε) = lim

ε→+0

µ

β
ψ(ϕ−1(ε))

=
µ

β
ψ(ϕ−1(0)) =

µ

β
ψ(e−(β/µ)D̃) =

µ

β
β Ĩ = µ Ĩ.

Remark 4.16. Let D(t) be given by (3.29). Then the functions S(t), E(t), I(t) and R(t) given by

(2.23)–(2.26) reduce to (3.25)–(3.28), respectively, since

e−(β/µ)D(t) = ϕ−1(t), t = D−1(−(µ/β) log ϕ−1(t)) and ϕ(v) = D−1(−(µ/β) log v).

Remark 4.17. If we suppose the hypothesis

(A′
4) R̃ ≥ 0 and R̃ satisfies

N − D̃ > S̃e(β/γ)R̃ + R̃,

then the transcendental equation

y =
γ

γ + µ
N −

γ

γ + µ
D̃ +

µ

γ + µ
R̃ −

γ

γ + µ
S̃e(β/γ)R̃e−(β/γ)y (4.8)

has a unique solution y = α∗ such that

R̃ < α∗ < N

(see Yoshida [18, Lemma 3]). Since the equation (4.8) reduces to the transcendental equation in

Lemma 3.1 by the transformation y = R̃− (γ/µ)(D̃ − x), we find that α∗ = R̃− (γ/µ)(D̃ − α).

We define

ϕ∗(w) :=
∫ e−(β/γ)R̃

w

dξ

ξψ∗(ξ)

for e−(β/γ)α∗ < w ≤ e−(β/γ)R̃, where ψ∗(ξ) is a unique positive solution of the initial value

problem

ψ′
∗(ξ)ψ∗(ξ)−

δ + µ + γ

ξ
ψ∗(ξ)

= − δ
βN − βD̃ + ((βµ)/γ)R̃ − βS̃e(β/γ)R̃ξ + (µ + γ) log ξ

ξ

(e−(β/γ)α∗
< ξ < e−(β/γ)R̃),

ψ∗

(

e−(β/γ)R̃
)

= β Ĩ.
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It follows from the transformation

ξ = e−(β/γ)R̃e(β/µ)D̃u

that

ϕ∗(w) =
∫ e−(β/µ)D̃

e(β/γ)R̃e−(β/µ)D̃w

du

uψ∗(e−(β/γ)R̃e(β/µ)D̃u)
,

where e−(β/µ)α
< e(β/γ)R̃e−(β/µ)D̃w ≤ e−(β/µ)D̃. It is easy to check that ψ∗(e−(β/γ)R̃e(β/µ)D̃u) is

a solution of the initial value problem (3.3), (3.4), and therefore

ψ∗

(

e−(β/γ)R̃e(β/µ)D̃u
)

= ψ(u)

by the uniqueness of solutions of the initial value problem (3.3), (3.4). Hence we obtain

ϕ∗(w) = ϕ
(

e(β/γ)R̃e−(β/µ)D̃w
)

. (4.9)

Let ϕ−1
∗ (t) and ϕ−1(t) be the inverse functions of

t = ϕ∗(w), t = ϕ
(

e(β/γ)R̃e−(β/µ)D̃w
)

,

respectively, then we see that

ϕ−1
∗ (t) = e−(β/γ)R̃e(β/µ)D̃ ϕ−1(t) (0 ≤ t < ∞). (4.10)

It is easy to see that the hypothesis (A7) is equivalent to

(A8) S̃ <
µ + γ

β
e(β/γ)(α∗−R̃).

Let
(

S∗(t), E∗(t), I∗(t), R∗(t), D∗(t)
)

be the exact solution of the initial value problem (1.1)–(1.6)

by starting our arguments utilizing (1.4) instead of (1.5). Then we get

S∗(t) = S̃e(β/γ)R̃ ϕ−1
∗ (t),

E∗(t) = Ẽe−δt + S̃e(β/γ)R̃e−δt
∫ e−(β/γ)R̃

ϕ−1
∗ (t)

eδϕ∗(v)dv,

I∗(t) = N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃ ϕ−1

∗ (t) +
µ + γ

β
log ϕ−1

∗ (t)

− Ẽe−δt − S̃e(β/γ)R̃e−δt
∫ e−(β/γ)R̃

ϕ−1
∗ (t)

eδϕ∗(v)dv,

R∗(t) = −
γ

β
log ϕ−1

∗ (t),

D∗(t) = −
µ

β
log ϕ−1

∗ (t) + D̃ −
µ

γ
R̃.

We observe, using (4.10), that

S∗(t) = S̃e(β/γ)R̃ ϕ−1
∗ (t) = S̃e(β/γ)R̃

(

e−(β/γ)R̃e(β/µ)D̃ ϕ−1(t)
)

= S̃e(β/µ)D̃ ϕ−1(t) = S(t).



32 N. Yoshida

It follows from (4.9) and (4.10) that

∫ e−(β/γ)R̃

ϕ−1
∗ (t)

eδϕ∗(v)dv =
∫ e−(β/γ)R̃

e−(β/γ)R̃e(β/µ)D̃ ϕ−1(t)
exp

(

δϕ
(

e(β/γ)R̃e−(β/µ)D̃v
))

dv

= e−(β/γ)R̃e(β/µ)D̃
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ(w)dw

and hence

E∗(t) = Ẽe−δt + S̃e(β/γ)R̃e−δt
∫ e−(β/γ)R̃

ϕ−1
∗ (t)

eδϕ∗(v)dv

= Ẽe−δt + S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ(w)dw = E(t). (4.11)

Since

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃ ϕ−1

∗ (t) +
µ + γ

β
log ϕ−1

∗ (t)

= N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t),

we deduce that I∗(t) = I(t) in view of (4.11). It is easy to see that

R∗(t) = −
γ

β
log ϕ−1

∗ (t)

= −
γ

β

(

−
β

γ
R̃ +

β

µ
D̃ + log ϕ−1(t)

)

= −
γ

β
log ϕ−1(t) + R̃ −

γ

µ
D̃ = R(t),

and that

D∗(t) = −
µ

β
log ϕ−1

∗ (t) + D̃ −
µ

γ
R̃

= −
µ

β

(

−
β

γ
R̃ +

β

µ
D̃ + log ϕ−1(t)

)

+ D̃ −
µ

γ
R̃

= −
µ

β
log ϕ−1(t) = D(t).

Consequently we conclude that

(

S∗(t), E∗(t), I∗(t), R∗(t), D∗(t)
)

≡
(

S(t), E(t), I(t), R(t), D(t)
)

on [0, ∞).

Remark 4.18. The hypotheses (A′
4) and (A5) are equivalent to

(A′′
4 ) 0 ≤ R̃ <

γ

β
log
(

1 +
(

Ẽ/S̃
)

+
(

Ĩ/S̃
))

;

(A′
5) 0 ≤ D̃ <

µ

β
log
(

1 +
(

Ẽ/S̃
)

+
(

Ĩ/S̃
))

,

respectively.
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5 Uniqueness of positive solutions

This section is devoted to the uniqueness of positive solutions of the initial value problem

(1.1)–(1.6). As a consequence we conclude that the exact solution (3.25)–(3.29) is the unique

solution in the class of positive solutions.

A solution (S(t), E(t), I(t), R(t), D(t)) of the SEIRD differential system (1.1)–(1.5) is said to

be positive if S(t) > 0, E(t) > 0, I(t) > 0, R(t) > 0 and D(t) > 0 for t > 0.

Theorem 5.1. Let (Si(t), Ei(t), Ii(t), Ri(t), Di(t)) (i = 1, 2) be solutions of the initial value problem

(1.1)–(1.6) such that Si(t) > 0, Ei(t) > 0, Ii(t) > 0, Ri(t) > 0 for t > 0. Then we find that

(S1(t), E1(t), I1(t), R1(t), D1(t)) ≡ (S2(t), E2(t), I2(t), R2(t), D2(t)) on [0, ∞). (5.1)

Proof. First we note that Di(t) > 0 for t > 0 (i = 1, 2) since D′
i(t) = µIi(t) > 0 for t > 0 and

Di(0) = D̃ ≥ 0. It follows from Lemma 2.1 that Di(t) (i = 1, 2) satisfies (2.1) and the initial

condition

Di(0) = D̃, lim
ε→+0

D′
i(ε) = µ Ĩ

in view of (1.5) and (1.6). It is easy to see that

zi(t) :=
(

Di(t), D′
i(t)
)

(i = 1, 2)

are positive solutions of the initial value problem

y′(t) = f (y(t)), t > 0,

y+(0) = lim
ε→+0

y(ε) = (D̃, µ Ĩ),

where f (y) is a function defined by

f (y) =

(

y2,−(δ + γ + µ)y2 ++δµ

(

N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃e−(β/µ)y1 −

(

1 +
γ

µ

)

y1

))

for y = (y1, y2) such that y1 > 0 and y2 > 0. Since

∂f

∂y1
(y) =

(

0, βδS̃e(β/µ)D̃e−(β/µ)y1 − δ(γ + µ)
)

,

∂f

∂y2
(y) = (1,−(δ + γ + µ)),

we obtain
∣

∣

∣

∣

∂f

∂yk
(y)

∣

∣

∣

∣

≤ max
{

βδS̃e(β/µ)D̃ + δ(γ + µ), 1 + (δ + γ + µ)
}

(≡ K) (k = 1, 2)

for y = (y1, y2) such that y1 > 0 and y2 > 0, where the magnitude of a vector y, denoted by

|y|, is defined by

|y| = |y1|+ |y2| for y = (y1, y2) ∈ R
2.

Therefore, f (y) satisfies a Lipschitz condition on (0, ∞) × (0, ∞) with Lipschitz constant K

(see Coddington [7, p.248, Theorem 1]). Since

z′
i(t) = f (zi(t)), t > 0 (i = 1, 2),
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integrating the above on [ε, t] (ε > 0) and then taking the limit as ε → +0 yield

zi(t)− lim
ε→+0

zi(ε) =
∫ t

0
f (zi(s))ds, t > 0,

and we observe, using limε→+0 zi(ε) = (D̃, µ Ĩ), that

zi(t) = (D̃, µ Ĩ) +
∫ t

0
f (zi(s))ds, t > 0.

Therefore we obtain

z1(t)− z2(t) =
∫ t

0
(f (z1(s))− f (z2(s))) ds, t > 0

and hence

|z1(t)− z2(t)| ≤ K
∫ t

0
|z1(s)− z2(s)| ds, t > 0

since f (y) satisfies a Lipschitz condition with Lipschitz constant K. Defining

W(t) :=
∫ t

0
|z1(s)− z2(s)| ds,

we obtain

W ′(t)− KW(t) ≤ 0, t > 0,

or
(

e−KtW(t)
)′
≤ 0, t > 0.

Since e−KtW(t) ≤ W(0) = 0 (t ≥ 0), we see that W(t) ≤ 0 (t ≥ 0). Hence

|z1(t)− z2(t)| ≤ KW(t) ≤ 0, t > 0,

which yields

z1(t) = z2(t), t > 0.

Therefore we conclude that

D1(t) ≡ D2(t) on (0, ∞).

Since D1(0) = D2(0) = D̃, we observe that

D1(t) ≡ D2(t) on [0, ∞).

It follows from Corollary 2.4 that Si(t) (i = 1, 2) can be represented by

Si(t) = S̃e(β/µ)D̃e−(β/µ)Di(t)

for t ≥ 0. Since D1(t) = D2(t) for t ≥ 0, we deduce that S1(t) = S2(t) for t ≥ 0. Similarly we

find that E1(t) = E2(t) (t ≥ 0), I1(t) = I2(t) (t ≥ 0) and R1(t) = R2(t) (t ≥ 0). Consequently

we conclude that (5.1) holds.
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Theorem 5.2. Assume that the hypotheses (A1)–(A7), (A′
4) hold. The function (S(t), E(t), I(t),

R(t), D(t)) given by

S(t) = S̃e(β/µ)D̃ ϕ−1(t) = S̃e(β/γ)R̃ ϕ−1
∗ (t),

E(t) = Ẽe−δt + S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ(v)dv

= Ẽe−δt + S̃e(β/γ)R̃e−δt
∫ e−(β/γ)R̃

ϕ−1
∗ (t)

eδϕ∗(v)dv,

I(t) = N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t)

− Ẽe−δt − S̃e(β/µ)D̃e−δt
∫ e−(β/µ)D̃

ϕ−1(t)
eδϕ∗(v)dv

= N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃ ϕ−1

∗ (t) +
µ + γ

β
log ϕ−1

∗ (t)

− Ẽe−δt − S̃e(β/γ)R̃e−δt
∫ e−(β/γ)R̃

ϕ−1
∗ (t)

eδϕ∗(v)dv,

R(t) = −
γ

β
log ϕ−1(t) + R̃ −

γ

µ
D̃ = −

γ

β
log ϕ−1

∗ (t),

D(t) = −
µ

β
log ϕ−1(t) = −

µ

β
log ϕ−1

∗ (t) + D̃ −
µ

γ
R̃

is a positive solution of the initial value problem (1.1)–(1.6), and is unique in the class of positive

solutions.

Proof. Combining Theorem 3.9, Remarks 4.13 and 4.17, we see that (S(t), E(t), I(t), R(t), D(t))

given above is a positive solution of the initial value problem (1.1)–(1.6). Uniqueness of posi-

tive solutions follows from Theorem 5.1.
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Abstract. We discuss the Lagrange stability for a class of impulsive Duffing equation
with time-dependent polynomial potentials. More precisely, we prove that under suit-
able impulses, all the solutions of the impulsive Duffing equation (with low regularity
in time) are bounded for all time and that there are many (positive Lebesgue measure)
quasi-periodic solutions clustering at infinity.

Keywords: boundedness, quasi-periodic solution, Moser’s twist theorem, impulsive
Duffing equation.
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1 Introduction

The stability theory plays a central role in differential equations for its practical value in
real world applications. It is well known that the longtime behavior of a time-dependent
nonlinear ordinary differential equation can be very intricate. For instance, the well-known
Duffing equation,

ẍ + δẋ + αx + βx3 = γ cos(ωt),

is an example of dynamical system that exhibits chaotic behavior.
The generalized Duffing-type equation arises in a large class of practically important ap-

plied problems in mathematics, physical science and engineering such as the cubic–quintic
Duffing oscillatory [9] and the Helmholtz–Duffing oscillator [8], which takes the form of

ẍ = ∑
j∈K

aj xj(t), K ⊂ N is finite.

See [35] and the references therein for more details.

BCorresponding author. Email: xlhe@hznu.edu.cn
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1.1 Lagrange stability of Duffing-type equation

In contrast to “Lyapunov stability” that is related to the chaotic nature of the system, we
pay special interest in this paper to the Lagrange stability of nonlinear systems, which means
that all the solutions stay bounded for all time. The Lagrange stability refers roughly to the
stability against the escape of a body from the system. We refer to the classical monograph
[14] for more details about the Lagrange stability.

The study of Lagrange stability of Duffing-type equation dates back to Littlewood [16],
Moser [20,21] and Morris [19]. In 1987, Dieckerhoff and Zehnder studied the Lagrange stabil-
ity for the generalized Duffing-type equation with time-dependent polynomial potentials

ẍ + x2n+1 +
2n

∑
i=0

xi pi(t) = 0, n ≥ 1, (1.1)

where pi ∈ Cν(T1) (0 ≤ i ≤ 2n) are 1-periodic with T1 = R/Z, and proved that every
solution x(t) of (1.1) is bounded for all time, i.e., the solution x(t) exists for all t ∈ R and
supt∈R(|x(t)|+ |ẋ(t)|) < ∞, if ν is the smallest integer satisfying

v > 1 +
4
n
+ [log2 n] → ∞ as n → ∞.

There exist a lot of papers [12, 15, 17, 18, 32–34] devoting to the relaxation of the smooth-
ness of pi in (1.1) with respect to the t-variable when studying the Lagrange stability. How-
ever, there is an example in [31] showing that a continuous coefficient would result in an
unbounded solution.

As we know, a abrupt change at certain instant during the evolution process falls into the
scope of the impulsive dynamical system [1,13], which appear widely in applied mathematics.
The appearance of impulse forces may cause complicated dynamic phenomenons and bring
difficulties to study. There are many studies on the existence of periodic solutions of impulsive
differential equations [2,7,10,22–24] via different approaches. See also [11,26] for the periodic
solution of impulsive Duffing-type equation.

However, there are only few results on the Lagrange stability and the existence of quasi-
periodic solutions for impulsive differential equations (see [3–5, 25, 30]). Coming back to the
Duffing-type equation (1.1), the term ∑

2n
i=0 xi pi(t) can be regarded as the perturbation of ẍ +

x2n+1 = 0 (up to some transformations). Then the Lagrange stability of (1.1) show that all
solutions of nonlinear equation ẍ + x2n+1 = 0 is bounded under a periodic perturbation. It is
very natural to ask the following question:

“what happens when the nonlinear equation ẍ + x2n+1 = 0 is subject to

both periodic perturbation and an impulse at the same time?"

Choosing different impulsive functions may have different effects on the solutions. It
is also not surprising that an offhand choice of impulse force would destroy the Lagrange
stability even though the coefficients pi are sufficiently smooth. To establish the Lagrange
stability of impulsive Duffing-type equation, one needs to be careful on the impulse such that
the Poincaré map can be well organized in order to apply Moser’s twist theorem after some
symplectic transformations. We mention some progress in this respect. In 2019, [30] proved
the boundedness of solutions and the existence of quasi-periodic solutions for the impulsive
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Duffing equation




ẍ + x2n+1 + ∑
2n
i=0 xi pi(t) = 0, t ̸= tj, n ≥ 1,

∆x(tj) := x(t+j )− x(t−j ) = Ij(x(t−j ), ẋ(t−j )),

∆ẋ(tj) := ẋ(t+j )− ẋ(t−j ) = Jj(x(t−j ), ẋ(t−j )), j = ±1,±2, . . .

(1.2)

with the low regularity in time

pi(t) ∈ Cγ(T1), γ > 2 −
1
n

,

and with the general sequences of impulsive functions Ij, Jj : R2 → R, where T1 := R/Z.
Moreover, the following restricted conditions are needed: for j = 1, . . . , k,

(i) the jumps Ij(x, y) = o(1) as x2 + y2 → +∞;

(ii) the jump map Φj : (x, y) → (x, y) + (Ij(x, y), Jj(x, y)) is an area-preserving homeomor-
phism,

which enables us to apply Moser’s twist theorem. See [30, Remark 2.1] for the comparison of
different types of impulse forces and their roles when studying the Lagrange stability.

For the particular case of cubic Duffing-type equation, [25] extended the Morris’s bound-
edness result [19] to the impulsive Duffing equation





ẍ + x3 + p(t) = 0, t ̸= tj,

∆x(tj) := x(t+j )− x(t−j ) = I(x(t−j ), ẋ(t−j )),

∆ẋ(tj) := ẋ(t+j )− ẋ(t−j ) = J(x(t−j ), ẋ(t−j )), j = ±1,±2, . . . ,

where 0 < t1 < 1, tj+1 = tj + 1 for j = ±1,±2, · · · and p(t) is 1-periodic and integrable.
In 2020, [3] proposed some concrete and simple impulse forces, which do not satisfy the

above conditions (i) and (ii), and proved the Lagrange stability and the existence of quasi-
periodic solutions for the impulsive Duffing-type equation





ẍ + x2n+1 + ∑
n
i=0 xi pi(t) = 0, t ̸= tj, n ≥ 1,

∆x(tj) = (γj − 1) x(t−j ),

∆ẋ(tj) = (γn+1
j − 1) ẋ(t−j )), j = ±1,±2, . . . ,

(1.3)

where γj > 0 are some constants and the coefficients pi ∈ C∞(T1) for technical simplicity.
In this paper, we pay special attention to the sharp regularity of the coefficients pi(t) in

the Duffing-type equation, together with the impulse forces given by (1.3), to establish the
Lagrange stability. More precisely, we will prove the Lagrange stability and the existence of
quasi-periodic solutions for (1.3) with low regularity in time

pi(t) ∈ Cγ(T1) (i = 0, . . . , n), γ > 1 −
1
n

.

1.2 Main result

To formulate our main result we have to introduce some notations and hypotheses. Let R, C, N

and Z be the sets of all real numbers, complex numbers, natural numbers and integers, re-
spectively. Denote by T the impulsive time sequence {tj}, j = ±1,±2, . . . , and denote by A

the set of indexes j. We assume that the following condition (H) holds true.
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(H) There exists a positive integer k such that 0 < t1 < t2 < · · · < tk < 1, and that tj’s, γj’s
are 1-periodic in j in the sense that tj+k = tj + 1, γj+k = γj for j ≤ −(k + 1) or j ≥ 1;
tj+k+1 = tj + 1, γj+k+1 = γj for −k ≤ j ≤ −1.

The main result in this paper is the following theorem.

Theorem 1.1. Suppose that condition (H) holds and that for each 0 ≤ i ≤ n, there is pi(t) ∈ Cγ(T1)

with γ > 1 − 1
n . In addition, assume that

k

∏
j=1

γj = 1. (1.4)

Then the time-1 map P̃ : (x, ẋ)t=0 7→ (x, ẋ)t=1 of (1.3) possesses many (positive Lebesgue measure)
invariant closed curves whose radiuses tend to infinity, and thus every solution x(t) of (1.3) is bounded

for all time, i.e. it exists for all t ∈ R and

sup
t∈R

(|x(t)|+ |ẋ(t)|) ≤ C̃ < +∞,

where C̃ = C̃(x(0), ẋ(0)) depends on the initial data (x(0), ẋ(0)).

Remark 1.2. In equation (1.3), the jump maps Φj : (x, y) 7→ (x, y)+ ((γj − 1)x, (γn+1
j − 1)y) are

homeomorphisms which are not area-preserving (when γj ̸= 1), and |Ij(x, y)| = |(γj − 1)x| =

O(|x|) (when γj ̸= 1). Thus, the conditions (i) and (ii) mentioned above in [30] are not satisfied.

Remark 1.3. Equation (1.1) can be written as a Hamiltonian system with the Hamiltonian
function H = h0(x, y) + R(x, y, t). It is essential to regard R as a relatively small perturbation
with respect to h0. See [15] for the detail. Otherwise, the stability might have been violated
even without the impulse. Note also that the Duffing-type equation in (1.3) is simpler than
(1.1) since the terms pi(t)xi (n + 1 ≤ i ≤ 2n) are absent. For the general case of equation (1.1)
under the impulse given by (1.3), we refer to [3] for some discussions on the obstruction when
establishing the Lagrange stability.

Remark 1.4. When using KAM theory to (1.2), one of the main difficulties is the estimation of
“small property condition” of Moser’s twist theorem. In [30], the difficult was overcome when
the smoothness in time pi ∈ Cγ(T1) with γ > 2 − 1

n is used. However, for equation (1.3), we
observe that the smoothness can be relaxed to Cγ(T1) with γ > 1 − 1

n , which is closely related
to the almost sharp result in [34]. Our method is also based on the approximation techniques
used in [34].

The paper is organized as follows. In Section 2, we establish the global existence of solu-
tions for impulsive differential equations (1.3) and construct the associated time-one map. In
Section 3, we introduce the action-angle variables and apply a preliminary symplectic trans-
formation such that (1.3) becomes a nearly integrable Hamiltonian system. In Section 4, we
introduce the approximate lemma to approximate the smooth periodic function by a real an-
alytic function. In Section 5, we take further symplectic transformations such that Moser’s
twist theorem can be applied. In Section 6, we establish some estimates for the impulsive
functions after the transformation. Finally, in Section 7, we prove Theorem 1.1 by employing
Moser’s twist theorem.
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2 Global existence of solutions and time-one map

In this section, we establish the global existence of solutions for impulsive differential equa-
tions (1.3) and construct the associated time-one map. We begin with the general impulsive
differential equation

{
u̇ = F(t, u), t ̸= tj,

∆u(tj) := u(t+j )− u(tj) = Lj(u(tj)), j ∈ A
(2.1)

with the initial value condition
u(τ+) = u0, (2.2)

where τ ∈ R, u0 ∈ Rm, m ∈ N, and where u(τ+) = u(τ) if τ /∈ T . Suppose that

(H1) The function F : R × Rm 7→ Rm is continuous, locally Lipschitz in the second variable.

(H2) The function F is 1-periodic in the first variable. There exists a positive integer k such
that 0 < t1 < t2 < · · · < tk < 1, tj+k = tj + 1, Lj+k(·) = Lj(·) for j ≤ −(k + 1) or j ≥ 1;
tj+k+1 = tj + 1, Lj+k+1(·) = Lj(·) for −k ≤ j ≤ −1.

(H3) The impulsive functions Lj : Rm → Rm are continuous for all j ∈ A.

Lemma 2.1 ([30, Lemma 3.2]). Assume that the conditions (H1)–(H3) hold and that every jump

equation

u = v + Lj(v), u ∈ Rm, j = 1, . . . , k, (2.3)

has a unique solution with respect to v ∈ Rm. Assume in addition that all the solutions of the unforced

equation u̇ = F(t, u) exist for all t ∈ R. Then the following conclusions hold true.

(a) For any τ ∈ R, u0 ∈ Rm, there is a unique solution u = u(t; τ, u0) of (2.1) satisfying the initial

value condition (2.2), and it exists for all t ∈ R.

(b) If the equation u̇ = F(t, u) is conservative and the impulsive maps ℵj : u 7→ u + Lj(u)(j ∈ A)

are homeomorphisms of Rm, then for t ∈ R \ T , the map Qt : u0 7→ u(t; τ, u0) is also a

homeomorphism.

(c) The solution satisfies the elastic property. That is, for any b0 > 0, there is rb0 > 0 such that the

inequality |u0| ≥ rb0 implies |u(t; τ, u0)| ≥ b0, for t ∈ (τ, τ + 1].

In order to deduce a global existence result of the impulsive Duffing equation (1.3), by
letting y = ẋ and noting that x(t−j ) = x(tj), y(t−j ) = y(tj), we can rewrite equation (1.3) as an
equivalent system of the form





ẋ = y, t ̸= tj,

ẏ = −x2n+1 − ∑
n
i=0 pi(t)xi, t ̸= tj;

∆x(tj) = Ij(x(tj), y(tj)) = (γj − 1)x(tj),

∆y(tj) = Jj(x(tj), y(tj)) = (γn+1
j − 1)y(tj), j = 1, 2, . . . , k.

(2.4)

For (2.4), each jump map

ℵ̃j :

{
u = x + Ij(x, y),

v = y + Jj(x, y), j = 1, . . . , k
(2.5)
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is a homeomorphism on R2. Note also that every solution (x(t), y(t)) of the unforced Duffing
equation {

ẋ = y,

ẏ = −x2n+1 − ∑
n
i=0 pi(t)xi

satisfying the initial value condition (x(t0), y(t0)) = (x0, y0) is unique and exists for all t ∈ R.
Then using the implicit function theorem and Lemma 2.1, we obtain the following corollary.

Corollary 2.2. Suppose that condition (H) holds and that for each 0 ≤ i ≤ n, pi(t) ∈ Cγ(T1) with

γ > 1 − 1
n . Then the following statements hold.

(a) For any τ ∈ R, (x0, y0) ∈ R2, there is a unique solution

(x(t), y(t)) = (x(t; τ, x0, y0), y(t; τ, x0, y0))

of (2.4) satisfying the initial condition x(τ+) = x0, y(τ+) = y0, which exists for all t ∈ R.

(b) The map Qt : (x0, y0) 7→ (x(t; τ, x0, y0), y(t; τ, x0, y0)) is continuous in (x0, y0) for t ∈ R \ T .

(c) The solution satisfies the elastic property. More precisely, for any b0 > 0, there is rb0 >

0 such that the inequalities |x0| ≥ rb0 , |y0| ≥ rb0 implies that |x(t; τ, x0, y0)| ≥ b0 and

|y(t; τ, x0, y0)| ≥ b0 for t ∈ (τ, τ + 1].

In order to deduce the time-one map of impulsive Duffing equation (2.4), we denote
by (x(t), y(t)) = (x(t; x0, y0), y(t; x0, y0)) the solution of (2.4) satisfying the initial condition
(x(0), y(0)) = (x0, y0). Let

P̃0 : (x0, y0) 7→ (x(t1), y(t1)) := (x1, y1),

Φ1 : (x1, y1) 7→ (x1 + I1(x1, y1), y1 + J1(x1, y1)) = (x(t+1 ), y(t+1 )) := (x+1 , y+1 ),

P̃1 : (x+1 , y+1 ) 7→ (x(t2), y(t2)) := (x2, y2),

Φ2 : (x2, y2) 7→ (x2 + I2(x2, y2), y2 + J2(x2, y2)) = (x(t+2 ), y(t+2 )) := (x+2 , y+2 ),
...

P̃k−1 : (x+k−1, y+k−1) 7→ (x(tk), y(tk)) := (xk, yk),

Φk : (xk, yk) 7→ (xk + Ik(xk, yk), yk + Jk(xk, yk)) = (x(t+k ), y(t+k ) := (x+k , y+k ),

P̃k : (x+k , y+k ) 7→ (x(1), y(1)).

Then the time-one map P̃ : (x0, y0) 7→ (x(1), y(1)) of (2.4) can be expressed by

P̃ = P̃k ◦ Φk ◦ · · · ◦ P̃1 ◦ Φ1 ◦ P̃0.

Remark 2.3. Under the condition (H), since the impulsive maps Φj : (x, y) 7→ (x, y) +

(Ij(x, y), Jj(x, y)), (j = 1, 2, . . . , k) are homeomorphisms on R2, the time-one map P̃ of (2.4)
is also a homeomorphism on R2.

From Corollary 2.2 and Remark 2.3, we have the following result.

Corollary 2.4. Suppose that the condition (H) holds and that for each 0 ≤ i ≤ n there is pi(t) ∈

Cγ(T1) with γ > 1 − 1
n . Then the time-one map P̃ of (2.4) is a homeomorphism on R2. Moreover, for

any b0 > 0, there is rb0 > 0 such that the inequalities |x0| ≥ rb0 , |y0| ≥ rb0 implies that |x(1; x0, y0)| ≥

b0 and |y(1; x0, y0)| ≥ b0.
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3 Action-angle variables

In this section, we introduce the action-angle variables and apply a preliminary symplectic
transformation such that (1.3) becomes a nearly integrable Hamiltonian system. The trans-
formations are standard for the Duffing equation and can be found in [6, 30, 34] for instance.
Let

x = AX, (3.1)

Y = A−nẊ = A−n−1 ẋ = A−n−1y, (3.2)

∆X(tj) = X(t+j )− X(tj), ∆Y(tj) = Y(t+j )− Y(tj). (3.3)

Then we see from equation (1.3) that




Ẋ = ∂H∗

∂Y , t ̸= tj,

Ẏ = − ∂H∗

∂X , t ̸= tj,

∆X(tj) = (γj − 1)X(tj) := Ĩj(X(tj), Y(tj)),

∆Y(tj) = (γn+1
j − 1)Y(tj) := J̃j(X(tj), Y(tj)),

(3.4)

where j = 1, 2, . . . , k and

H∗(X, Y, t) = An

(
1
2

Y2 +
1

2(n + 1)
X2(n+1)

)
+

n

∑
i=0

pi(t)

i + 1
Ai−n−1Xi+1. (3.5)

The similar formulation of (3.4) can be also found in Section 5 in [30].
Consider the auxiliary Hamiltonian system

Ẋ =
∂H∗

0

∂Y
, Ẏ = −

∂H∗
0

∂X
, (3.6)

where

H∗
0 (X, Y) =

1
2

Y2 +
1

2(n + 1)
X2(n+1).

Let (X0(t), Y0(t)) be the solution of (3.6) with initial (X0(0), Y0(0)) = (1, 0). Then this solution
is clearly periodic. Let T0 be its minimal positive period. By the energy conservation, we have

(s1) (n + 1)Y2
0 (t) + X2n+2

0 (t) ≡ 1;

(s2) X0(−t) = X0(t), Y0(−t) = −Y0(t);

(s3) Ẋ0(t) = Y0(t), Ẏ0(t) = −X2n+1
0 (t);

(s4) X0(t + T0) = X0(t), Y0(t + T0) = Y0(t).

We construct the following symplectic transformation

Ψ0 : X = cαλαX0(θT0), Y = cβλβY0(θT0), (3.7)

where α = 1
n+2 , β = 1 − α = n+1

n+2 , c = 1
αT0

and (λ, θ) ∈ R+ × T1 is the action-angle variables.

By calculation, the Jacobian determinant det ∂(X,Y)
∂(θ,λ) = 1. Then the transformation Ψ0 is indeed

symplectic.
By (3.7), we have

λ =
1
c
[X2n+2 + (n + 1)Y2]

n+2
2n+2 . (3.8)
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We claim that there exists the inverse function X̃−1
0 such that θ = X̃−1

0 (c−αλ−αX). Indeed,

from (3.7) we have X0(θT0) = c−αλ−αX. In the case of θ ∈ [0, 1
2 ], by (s3) we get dX0(θT0)

dθ =

T0Y0(θT0) < 0. Thus, we have
θ = T−1

0 X−1
0 (c−αλ−αX).

In the case of θ ∈ ( 1
2 , 1), by using (3.7), (s2) and (s4), we have

X = cαλαX0(θT0) = cαλαX0(−θT0) = cαλαX0((1 − θ)T0).

Let ξ = 1 − θ and we have dX0(ξT0)
dξ = T0Y0(ξT0) < 0 for ξ ∈ (0, 1

2 ). Then we get ξ =

T−1
0 X−1

0 (c−αλ−αX) and thus
θ = 1 − T−1

0 X−1
0 (c−αλ−αX).

From (3.4), we have that for j = 1, 2, . . . , k

{
X(t+j ) = X(tj) + Ĩj(X(tj), Y(tj)) = γjX(tj),

Y(t+j ) = Y(tj) + J̃j(X(tj), Y(tj)) = γn+1
j Y(tj).

(3.9)

Then using (1.3), (3.7)–(3.9), we have that

∆λ(tj) = λ(t+j )− λ(tj)

=
1
c
[X2n+2(t+j ) + (n + 1)Y2(t+j )]

n+2
2n+2 − λ(tj)

=
1
c
{[X(tj)+ Ĩj(X(tj), Y(tj))]

2n+2+(n+1)[Y(tj)+ J̃j(X(tj), Y(tj))]
2}

n+2
2n+2 −λ(tj)

=
1
c
{[γjX(tj)]

2n+2 + (n + 1)[γn+1
j Y(tj)]

2}
n+2

2n+2 − λ(tj)

=
1
c
{γ2n+2

j [X2n+2(tj) + (n + 1)Y2(tj)]}
n+2

2n+2 − λ(tj)

= γn+2
j λ(tj)− λ(tj) = (γn+2

j − 1)λ(tj)

=: J∗j (λ(tj), θ(tj))

(3.10)

for j = 1, 2, . . . , k.
By using (3.7), we have that for j = 1, 2, . . . , k there is

X(tj) = c
1

n+2 λ
1

n+2 (tj)X0(θ(tj)T0), Y(tj) = c
n+1
n+2 λ

n+1
n+2 (tj)X0(θ(tj)T0), (3.11)

and

X(t+j ) = c
1

n+2 λ
1

n+2 (t+j )X0(θ(t
+
j )T0), Y(t+j ) = c

n+1
n+2 λ

n+1
n+2 (t+j )X0(θ(t

+
j )T0). (3.12)

Then using (3.10) and (3.12) we have that for j = 1, 2, . . . , k,

X(t+j ) = c
1

n+2 [λ(tj) + J∗j (λ(tj), θ(tj))]
1

n+2 X0(θ(t
+
j )T0)

= c
1

n+2 [λ(tj) + (γn+2
j − 1)(λ(tj)]

1
n+2 X0(θ(t

+
j )T0)

= γjc
1

n+2 λ
1

n+2 (tj)X0(θ(t
+
j )T0).

(3.13)

Combining γj > 0, (3.9), (3.12) and (3.13), we have that for j = 1, 2, . . . , k,

X(tj) = c
1

n+2 λ
1

n+2 (tj)X0(θ(t
+
j )T0). (3.14)
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Similarly, by (1.3), (3.9), (3.10) and (3.12), we have that for j = 1, 2, . . . , k,

Y(t+j ) = γn+1
j c

n+1
n+2 λ

n+1
n+2 (tj)Y0(θ(t

+
j )T0) = γn+1

j Y(tj),

and thus
Y(tj) = c

n+1
n+2 λ

n+1
n+2 (tj)Y0(θ(t

+
j )T0). (3.15)

By (3.11), (3.14) and (3.15), we have θ(t+j ) = θ(tj). Then, for j = 1, 2, . . . , k,

∆θ(tj) = θ(t+j )− θ(tj) = 0 := I∗j (λ(tj), θ(tj)). (3.16)

As a result, under the transformation Ψ0, system (3.4) is changed into





θ̇ = ∂H
∂λ , t ̸= tj,

λ̇ = − ∂H
∂θ , t ̸= tj,

∆θ(tj) = I∗j (λ(tj), θ(tj)),

∆λ(tj) = J∗j (λ(tj), θ(tj)), j = 1, 2, . . . , k,

(3.17)

where I∗j (λ(tj), θ(tj)) = 0, J∗j (λ(tj), θ(tj)) = (γn+2
j − 1)λ(tj) and H(λ, θ, t) = H0(λ) + R(λ, θ, t)

with

H0(λ) = d · An · λ
2(n+1)

n+2 , d =
1

2(n + 1)
c

2(n+1)
n+2

and

R(λ, θ, t) =
n

∑
i=0

pi(t)

i + 1
Ai−n−1(cαX0(θT0))

i+1λα(i+1).

4 Approximation lemma

In this section, we make use of the Jackson–Moser–Zehnder approximate lemma (see [28,29,34]
for the detail) to approximate the smooth periodic function R by a real analytic periodic
function Rε. Some estimates of Rε and the remainder Rε = R − Rε are also given for the later
application.

Let T1
ε = {t ∈ C/Z : |Im t| < ε} for any ε > 0. By the Jackson–Moser–Zehnder lemma (see

Lemma 6.1 in [30]), for each pi ∈ Cγ(T1), i = 0, 1, . . . , n, and any ε > 0, there is a real analytic
function (a complex value function f (t) of complex variable t in some domain in C is called
real analytic if it is analytic in the domain and is real for real argument t) pi,ε(t) from T1

ε to C

such that
sup
t∈T1

|pi,ε(t)− pi(t)| ≤ Cεγ∥pi∥Cγ

and
sup
t∈T1

ε

|pi,ε(t)| ≤ C∥pi∥Cγ .

Write
R(λ, θ, t) = Rε(λ, θ, t) + Rε(λ, θ, t),

where

Rε(λ, θ, t) =
n

∑
i=0

1
i + 1

Ai−n−1c
i+1
n+2 Xi+1

0 (θT0)λ
i+1
n+2 pi,ε(t),
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Rε(λ, θ, t) =
n

∑
i=0

1
i + 1

Ai−n−1c
i+1
n+2 Xi+1

0 (θT0)λ
i+1
n+2 (pi(t)− pi,ε(t)).

Then, we have
H = H0(λ) + Rε(λ, θ, t) + Rε(λ, θ, t), (4.1)

where

H0(λ) = d · An · λ
2(n+1)

n+2 , d =
1

2(n + 1)
c

2(n+1)
n+2 . (4.2)

We introduce two definitions.

Definition 4.1. Given constants p and q, for a complex valued function f = f (λ, θ, t, A):
(λ, θ, t) ∈ [1,+∞)× T1 × T1

ε → C, where A ≫ 1 is a large constant, we say that

f = Oε(Apλq),

if f is C∞ in (λ, θ) ∈ [1,+∞)× T1 and is analytic in t ∈ T1
ε and for all nonnegative integers k

and l, there is

sup
(θ,t)∈T1×T1

ε

|(Dλ)
k(Dθ)

l f (λ, θ, t, A)| < Ck,l A
pλq−k, λ ≫ 1,

where Ck,l is a constant depending on k and l.

Definition 4.2. Given constants p and q, for a function f = f (λ, θ, t, A): (λ, θ, t) ∈ [1,+∞)×

T1 × T1 → R, where A ≫ 1 is a large constant, we say that

f = O(Apλq),

if f is C∞ in (λ, θ) ∈ [1,+∞)× T1 and C1 in t ∈ T1 and for all nonnegative integers k and l,
there is

sup
(θ,t)∈T1×T1

|(Dλ)
k(Dθ)

l f (λ, θ, t, A)| < Ck,l A
pλq−k, λ ≫ 1,

where Ck,l is a constant depending on k and l.

Lemma 4.3.

(i) If f1 = O(Ap1 λq1), f2 = O(Ap2 λq2), then f1 · f2 = O(Ap1+p2 λq1+q2);

(ii) If f = O(Apλq1), g(λ) = O(λq2) satisfy |g(λ)| ≥ cλq2 for λ ≥ λ0, and c > 0, q2 > 0, then

f ∗(λ, θ, t) := f (g(λ), θ, t) = O(Apλq1q2);

(iii) If f = O(Apλq), u = O(Apλq1), v = O(Apλq2) and q1 < 1, q2 < 0, then f ∗∗(λ, θ, t) :=
f (λ + u, θ + v, t) = O(Apλq).

Proof. (i). Since

(Dk
λDl

θ)( f1 · f2) =
k

∑
i=0

l

∑
j=0

Ci
kC

j
l (Dk−i

λ D
l−j
θ f1) · (Di

λD
j
θ f2),

by Definition 4.2, it follows that

f1 · f2 = O(Ap1+p2 λq1+q2).
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(ii). Note that (Dk
λDl

θ) f (g(λ), θ, t) is a sum of the terms

(Dl
θ D

p
g f (g(λ), θ, t)) · (Dm1

λ g) · (Dm2
λ g) · · · (D

mp

λ g)

with ∑
p
i=1 mi = k. Direct computation leads to the estimate

sup
(θ,t)∈T1×T1

|(Dk
λ)(Dl

θ) f (g(λ), θ, t))| ≤ Ck,l A
pλq1q2−k,

and consequently
f ∗(λ, θ, t)) = f (g(λ), θ, t)) = O(Apλq1q2).

(iii). We observe that (Dk
λ)(Dl

θ) f (λ + u, θ + v, t) is a sum of the terms

Dl
θ [(D

q
φD

p
µ f (µ, φ))(Dm1

λ µ)(Dm2
λ µ) · · · (D

mp

λ µ)(Dn1
λ φ)(Dn2

λ φ) · · · (D
nq

λ φ)],

where µ = λ + u, φ = θ + v, 0 ≤ p + q ≤ k, ∑
p
i=1 mi + ∑

q
i=1 ni = k, and

Dl
θ [(D

q
φD

p
µ f (µ, φ))(Dm1

λ µ)(Dm2
λ µ) · · · (D

mp

λ µ)(Dn1
λ φ)(Dn2

λ φ) · · · (D
nq

λ φ)]

=
l

∑
i=1

Ci
l(Di

θ D
q
φD

p
µ f (µ, φ)) · Dl−i

θ [Dm1
λ µ) · · · (D

mp

λ µ)(Dn1
λ φ) · · · (D

nq

λ φ)],

where Di
θ D

q
φD

p
µ f (µ, φ) is a sum of the terms

(D
q+q̃
φ D

p+ p̃
µ f (µ, φ))(Dm̃1

θ µ)(Dm̃2
θ µ) · · · (D

m̃p

θ µ)(Dñ1
θ φ)(Dñ2

θ φ) · · · (D
ñq

θ φ),

with 0 ≤ p̃ + q̃ ≤ i, ∑
p̃
j=1 m̃j + ∑

q̃
j=1 ñj = i. Noting that u = O(Apλq1), v = O(Apλq2),

q1 < 1, q2 < 0, we have

sup
(θ,t)∈T1×T1

|(Dk
λ)(Dl

θ) f (λ + u, θ + v, t)| ≤ Ck,l A
pλq−k.

As a result, we obtain

f ∗∗(λ, θ, t) = f (λ + u, θ + v, t) = O(Apλq).

Let ε = A−ν, where ν > 0 will be specified later. By Definition 4.1 and Definition 4.2,
we have

Rε(λ, θ, t) = Oε

(
A−1λ

n+1
n+2
)
, (4.3)

Rε(λ, θ, t) = O
(

A−1−νγλ
n+1
n+2
)
. (4.4)

In the following, we will omit the constant d in H0(λ) (see (4.2)) without loss of generality.

5 Some transformations

Firstly, we look for a series of symplectic transformations Ψ1, . . . , ΨN such that HN := H ◦

Ψ1 ◦ · · · ◦ ΨN = HN
0 + O(ε0), ε0 = A−δ, δ > 0. The following lemma is similar to Lemma 7.1

in [30] and we refer to [30] for the proof.
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Lemma 5.1. Let H(λ, θ, t) be the same as (4.1). For A ≫ 1, λ ≫ 1, then there is a symplectic

diffeomorphism Ψ1 depending periodically on t of the form

Ψ1 :

{
λ = µ̃ + u1(µ̃, φ̃, t),

θ = φ̃ + v1(µ̃, φ̃, t),

with u1 = Oε

(
A−1−nµ̃

1
n+2
)

and v1 = Oε

(
A−1−nµ̃− n+1

n+2
)
. Moreover the transformed Hamiltonian

vector field Ψ1(XH) = XH1 is of the form

H1(µ̃, φ̃, t) = H1
0(µ̃, t) + R̃1

ε (µ̃, φ̃, t) + Rε ◦ Ψ1(µ̃, φ̃, t),

where

H1
0(µ̃, t) = H0(µ̃) + [Rε](µ̃, t), H0 = dAn · µ̃

2(n+1)
n+2 ,

[Rε] = Oε

(
A−1µ̃

n+1
n+2

)
, R̃1

ε (µ̃, φ̃, t) = O ε
2

(
A−2−n

)
+ O ε

2

(
Au−1−nµ̃

1
n+2

)
,

Rε ◦ Ψ1(µ̃, φ̃, t) = O
(

A−1−vγµ̃
n+1
n+2

)
.

Let
τ > 0, ν < n(1 + τ), (5.1)

and
λ ∈

[
c1 A(n+2)τ, c2A(n+2)τ

]
, c2 > c1 > 0.

Repeating the symplectic diffeomorphism in Lemma 5.1 for N times, we get N symplectic
transformations Ψ1, . . . , ΨN such that

HN(µ, φ, t) = H ◦ Ψ1 ◦ · · · ◦ ΨN = HN
0 (µ, t) + RN

ε (µ, φ, t),

where
µ ∈

[
c1 A(n+2)τ, c2A(n+2)τ

]
, c2 > c1 > 0,

HN
0 (µ, t) = H0(µ) + H1(µ, t),

H0 = d · An · µ
2(n+1)

n+2 , H1 = O ε
2N

(
A−1µ

n+1
n+2

)
,

RN
ε = O ε

2N

(
A−1−N(1+n)µ

n+1−N(n+1)
n+2

)
+ O ε

2N

(
A−1+N(v−n)µ

n+1−Nn
n+2

)
+ O

(
A−1−νγµ

n+1
n+2

)
.

Now the corresponding unforced equation in (3.17) can be changed into




φ̇ = ∂HN

∂µ = ∂H0(µ)
∂µ + ∂H1(µ,t)

∂µ + ∂RN
ε (µ,φ,t)

∂µ ,

µ̇ = − ∂HN

∂φ = − ∂RN
ε (µ,φ,t)

∂φ ,
(5.2)

where
∂H0(µ)

∂µ
= d ·

2n + 2
n + 2

Anµ
n

n+2

and we omit the constant d · 2n+2
n+2 for simplicity in the following arguments. Define the diffeo-

morphism

Ψ : ρ =
∂µ

2n+2
n+2

∂µ
=

2n + 2
n + 2

µ
n

n+2 , φ = φ, (5.3)



Lagrange stability for a class of impulsive Duffing-type equations 13

and we get

ρ̇ =
n(2n + 2)
(n + 2)2 µ

−2
n+2 µ̇.

Then we have

ρ̇ = O
(

A−1−N(n+1)µ
n−1−N(n+1)

n+2

)
+ O

(
A−1+N(ν−n)µ

n−1−Nn
n+2

)
+ O

(
A−1−νγµ

n−1
n+2

)
,

φ̇ = ρ + r(ρ, t) + O
(

A−1−N(n+1)µ
−1−N(n+1)

n+2

)
+ O

(
A−1−N(ν−n)µ

−1−Nn
n+2

)
+ O

(
A−1−νγµ

−1
n+2

)
,

where r(ρ, t) = ∂H1(µ,t)
∂µ with µ =

(
n+2

2n+2 ρ
) n+2

n . Thus

r(ρ, t) = O
(

A−1µ
−1

n+2

)
= O

(
A−1

(
n + 2

2n + 2
ρ

)− 1
n

)
= O

(
A−1ρ−

1
n

)
.

Noting that µ ∈ [c1 A(n+2)τ, c2A(n+2)τ], we have

ρ ∈

[
c1

2n + 2
n + 2

Anτ, c2
2n + 2
n + 2

Anτ

]
. (5.4)

It follows that

ρ̇ = O
(

A−1−N(n+1)+[n−1−N(n+1)]τ
)
+ O

(
A−1+N(ν−n)+(n−1−Nn)τ

)
+ O

(
A−1−νγ+(n−1)τ

)
,

φ̇ = ρ + r(ρ, t) + O
(

A[−1−N(n+1)](1+τ)
)
+ O

(
A−1+N(ν−n)+(−1−Nn)τ

)
+ O

(
A−1−νγ−τ

)
.

When N ≫ 1 and ν < n(1 + τ), we have

−1 + N(ν − n) + (n − 1 − Nn)τ = N[ν − n(1 + τ)] + (n − 1)τ − 1 < 0,

−1 + N(ν − n) + (−1 − Nn)τ = N[ν − n((1 + τ)]− (1 + τ) < 0.

When N ≫ 1 and τ > 0, we have

−1 − N(n + 1) + [n − 1 − N(n + 1)]τ < 0, [−1 − N(n + 1)](1 + τ) < 0.

Note that −1 − νγ − τ < −1 − νγ + (n − 1)τ < n − 1 − νγ + (n − 1)τ. Let

n − 1 − νγ + (n − 1)τ < 0, (5.5)

Then, by (5.1) and (5.5), we have

(n − 1)(1 + τ)

γ
< ν < n(1 + τ). (5.6)

Since γ > 1 − 1
n , we have (n − 1)/γ < n. Then, when τ > 0 and ν ∈

( (n−1)(1+τ)
γ , n(1 + τ)

)
,

there is δ > 0 and (5.2) can be changed into
{

φ̇ = ρ + r(ρ, t) + f (ρ, φ, t) = ρ + r(ρ, t) + O(A−δ),

ρ̇ = g(ρ, φ, t) = O(A−δ),
(5.7)

where φ ∈ T1, r(ρ, t) = O(A−1ρ−
1
n ) and ρ ∈ [c3 Anτ, c4Anτ] for c4 > c3 > 0 given by (5.4).
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Next we compute the transformed impulsive forces in (3.17). Based on the symplectic
transformation Ψ1 in Lemma 5.1, we see from the implicit function theorem that

µ̃ = λ + u(λ, θ, t), φ̃ = θ + v(λ, θ, t).

Under the symplectic transformation Ψ1, we see that the jumps ∆θ(tj) and ∆λ(tj) in (3.17) can
be changed into {

∆φ̃(tj) := φ̃(t+j )− φ̃(tj) = Ĩ∗j (µ̃(tj), φ̃(tj)),

∆µ̃(tj) := µ̃(t+j )− µ̃(tj) = J̃∗j (µ̃(tj), φ̃(tj)),
(5.8)

where j = 1, 2, . . . , k.
In the same way, under the symplectic transformation Ψ2, the jumps ∆φ̃(tj) and ∆µ̃(tj) can

be changed into new forms

{
∆φ̄(tj) := φ̄(t+j )− φ̄(tj) = Ī∗j (µ̄(tj), φ̄(tj)),

∆µ̄(tj) := µ̄(t+j )− µ̄(tj) = J̄∗j (µ̄(tj), φ̄(tj)),
(5.9)

where j = 1, 2, . . . , k. Repeating this procedure by the symplectic transformations Ψ1, . . . , ΨN ,
the jumps in (3.17) are finally changed into

{
∆φ(tj) := φ(t+j )− φ(tj) = I∗∗j (µ(tj), φ(tj)),

∆µ(tj) := µ(t+j )− µ(tj) = J∗∗j (µ(tj), φ(tj)),
(5.10)

where j = 1, 2, . . . , k. Combining (5.2) and (5.10), we see that (3.17) can be transformed into




φ̇ = ∂H0(µ)
∂µ + ∂H1(µ,t)

∂µ + ∂RN
ε (µ,φ,t)

∂µ ,

µ̇ = − ∂RN
ε (µ,φ,t)

∂φ , t ̸= tj;

∆φ(tj) = I∗∗j (µ(tj), φ(tj)),

∆µ(tj) = J∗∗j (µ(tj), φ(tj)), j = 1, 2, . . . , k.

(5.11)

Similarly, under Ψ defined by (5.3), system (5.11) can be transformed into





φ̇ = ρ + r(ρ, t) + f (ρ, φ, t) = ρ + r(ρ, t) + O(A−δ),

ρ̇ = g(ρ, φ, t) = O(A−δ), t ̸= tj;

∆φ(tj) = I∗∗1
j (ρ(tj), φ(tj)),

∆ρ(tj) = J∗∗1
j (ρ(tj), φ(tj)), j = 1, 2, . . . , k,

(5.12)

where φ ∈ T1, r(ρ, t) = O(A−1ρ−
1
n ) and ρ ∈ [c3 Anτ, c4Anτ].

It should be pointed out that, although we have not been able to formulate explicitly
I∗∗1
j (ρ(tj), φ(tj)) and J∗∗1

j (ρ(tj), φ(tj)), we can implicitly express them. We will calculate the

estimates of the impulsive functions I∗∗1
j (ρ(tj), φ(tj)) and J∗∗1

j (ρ(tj), φ(tj)) in next section.

6 Some estimates

In this section, we will establish some estimates for impulsive functions I∗∗1
j (ρ, φ) and

J∗∗1
j (ρ, φ). To this end, we first give the estimates of I∗∗j (µ, φ) and J∗∗j (µ, φ). In this whole

section and in the sequel, all the occurrences of j mean j = 1, 2, . . . , k.
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Lemma 6.1. Assume that the conditions in Theorem 1.1 are satisfied. Let µ(tj) = µ, φ(tj) = φ. We

have the following estimates

I∗∗j (µ, φ) = O(A−1−nµ− n+1
n+2 ),

J∗∗j (µ, φ) = (γn+2
j − 1)µ + f j(µ, φ)

with f j(µ, φ) = O(A−1−nµ
1

n+2 ), where I∗∗j (µ, φ) and J∗∗j (µ, φ) are given by (5.10).

Proof. For (λ, θ) ∈ [c1A(n+2)τ, c2A(n+2)τ] × T1, from Lemma 5.1, the symplectic diffeomor-
phism Ψ1 is of the form

Ψ1 : λ = µ̃ + u1(µ̃, φ̃, t), θ = φ̃ + v1(µ̃, φ̃, t), (6.1)

where (µ̃, φ̃) ∈ [c1A(n+2)τ, c2A(n+2)τ]× T1, u1 = O(A−1−nµ̃
1

n+2 ), v1 = O(A−1−nµ̃− n+1
n+2 ). By the

implicit function theorem, we have

µ̃ = λ + u(λ, θ, t), φ̃ = θ + v(λ, θ, t), (6.2)

where |u| < CA−1−nλ
1

n+2 and |v| < CA−1−nλ− n+1
n+2 .

Next we show that

u = O
(

A−1−nλ
1

n+2

)
, v = O

(
A−1−nλ− n+1

n+2

)
. (6.3)

Indeed, we see from Lemma 5.1 that
{

λ = µ̃ + ∂S1
∂θ = µ̃ + ν(µ̃, θ, t),

φ̃ = θ + ∂S1
∂µ̃ = θ + g(µ̃, θ, t),

(6.4)

where
ν(µ̃, θ, t) = O

(
A−1−nµ̃

1
n+2

)
, g(µ̃, θ, t) = O

(
A−1−nµ̃− n+1

n+2

)
.

From (6.2) and (6.4) we know
u = −ν(λ + u, θ, t). (6.5)

If µ̃ and λ are large, then |Dµ̃ν| ≤ 1/2, so that u is uniquely determined by the contraction
principle. Moreover, the implicit function theorem implies that u is C∞ with respect to (λ, θ) ∈

[c1 A(n+2)τ, c2 A(n+2)τ]× T1. We claim that

u = O
(

A−1−nλ
1

n+2

)
. (6.6)

Indeed, applying (Dλ)
l to equation (6.5), the right hand side is a sum of the terms

(D
p
µ̃)(D

j1
λ (λ + u))(D

j2
λ (λ + u)) · · · (D

jp

λ (λ + u)), (6.7)

with 1 ≤ p ≤ l and ∑
p
i=1 ji = l. The highest order term is the one with p = 1, namely

(Dµ̃ν)Dn
λu. Note that |u| < CA−1−nλ

1
n+2 . Assuming that for j ≤ n − 1 the estimates |D

j
λu| <

CA−1−nλ
1

n+2−j hold true, then inductively, from (6.4) and (6.5) we can conclude that the same
estimate holds true for j = n. In fact, from (6.4) we have

|D
p
µ̃ν| < CA−1−nλ

1
n+2−p,



16 X. He, Y. Sun and J. Shen

which yields

|(1 − Dµ̃ν)Dl
λu| ≤ CA−1−nλ

1
n+2−pλ1−j1 · · · λ1−jp

< CA−1−nλ
1

n+2−l .

It follows that
|Dl

λu| < CA−1−nλ
1

n+2−l .

The estimates of (Dθ)
j(Dλ)

iu can be proved similarly. Thus, the claim (6.6) is valid. Similarly,
one also has

v = O
(

A−1−nλ− n+1
n+2

)
.

Under the symplectic transformation Ψ1, the jumps ∆θ(tj) and ∆λ(tj) in (3.17) can be
changed into Ĩ∗j (µ̃(tj), φ̃(tj)) and J̃∗j (µ̃(tj), φ̃(tj)) (see (5.8)). Then using (3.17), (5.8), (6.1) and
(6.2), we have

Ĩ∗j (µ̃(tj), φ̃(tj)) = φ̃(t+j )− φ̃(tj)

= θ(t+j ) + v(λ(t+j ), θ(t+j ), tj)− θ(tj)− v(λ(tj), θ(tj), tj)

= I∗j (λ(tj), θ(tj)) + v(λ(tj) + J∗j (λ(tj), θ(tj)), θ(tj)

+ I∗j (λ(tj), θ(tj)), tj)− v(λ(tj), θ(tj), tj)

= v[γn+2
j (µ̃(tj) + u1(µ̃(tj), φ̃(tj), tj)), φ̃(tj) + v1(µ̃(tj), φ̃(tj), tj), tj]

− v[µ̃(tj) + u1(µ̃(tj), φ̃(tj), tj), φ̃(tj) + v1(µ̃(tj), φ̃(tj), tj), tj],

J̃∗j (µ̃(tj), φ̃(tj)) = µ̃(t+j )− µ̃(tj)

= λ(t+j ) + u(λ(t+j ), θ(t+j ), tj)− λ(tj)− u(λ(tj), θ(tj), tj)

= J∗j (λ(tj), θ(tj)) + u(λ(tj) + J∗j (λ(tj), θ(tj)), θ(tj)

+ I∗j (λ(tj), θ(tj)), tj)− u(λ(tj), θ(tj), tj)

= (γn+2
j − 1)λ(tj) + u(γn+2

j λ(tj), θ(tj), tj)− u(λ(tj), θ(tj), tj)

= (γn+2
j − 1)µ̃(tj) + (γn+2

j − 1)u1(µ̃(tj), φ̃(tj), tj)

+ u(γn+2
j (µ̃(tj) + u1(µ̃(tj), φ̃(tj), tj)), φ̃(tj) + v1(µ̃(tj), φ̃(tj), tj), tj)

− u(µ̃(tj) + u1(µ̃(tj), φ̃(tj), tj), φ̃(tj) + v1(µ̃(tj), φ̃(tj), tj), tj)

=: (γn+2
j − 1)µ̃(tj) + f̃ j(µ̃(tj), φ̃(tj)).

It follows from
u1 = O

(
A−1−nµ̃

1
n+2

)
, v1 = O

(
A−1−nµ̃− n+1

n+2

)
,

u = O
(

A−1−nµ̃
1

n+2

)
, v = O

(
A−1−nµ̃− n+1

n+2

)

and Lemma 4.3 that

Ĩ∗j (µ̃(tj), φ̃(tj)) = O
(

A−1−nµ̃− n+1
n+2

)
, f̃ j(µ̃(tj), φ̃(tj)) = O

(
A−1−nµ̃

1
n+2

)
. (6.8)

Similarly, under the symplectic transformation Ψ2, the jumps Ĩ∗j (µ̃(tj), φ̃(tj)) and

J̃∗j (µ̃(tj), φ̃(tj)) can be changed into Ī∗j (µ̄(tj), φ̄(tj)) and J̄∗j (µ̄(tj), φ̄(tj)) (see (5.9)). Moreover,
there are

Ī∗j (µ̄(tj), φ̄(tj)) = O
(

A−1−nµ̄− n+1
n+2

)
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and
J̄∗j (µ̄(tj), φ̄(tj)) = (γn+2

j − 1)µ̄(tj) + f̄ j(µ̄(tj), φ̄(tj))

with
f̄ j(µ̄(tj), φ̄(tj)) = O

(
A−1−nµ̄

1
n+2

)
.

Finally, by repeating this procedure and noting the fact that Ψ = Ψm ◦ Ψm−1 ◦ · · · ◦ Ψ1

transforms (3.17) into (5.11), we have

I∗∗j (µ(tj), φ(tj)) = O
(

A−1−nµ̄− n+1
n+2

)

and
J∗∗j (µ(tj), φ(tj)) = (γn+2

j − 1)µ(tj) + f j(µ(tj), φ(tj))

with f j(µ(tj), φ(tj)) = O
(

A−1−nµ
1

n+2
)
. This completes the proof of Lemma 6.1.

Lemma 6.2. Under the assumptions of Theorem 1.1, we have

I∗∗1
j (ρ(tj), φ(tj)) = O

(
A−1−nρ−

n+1
n

)
,

and

J∗∗1
j (ρ(tj), φ(tj)) = (γn

j − 1)ρ(tj) + g̃j(ρ(tj), φ(tj))

with g̃j(ρ(tj), φ(tj)) = O
(

A−1−nρ−
1
n

)
, where I∗∗1

j (ρ(tj), φ(tj)) and J∗∗1
j (ρ(tj), φ(tj)) are given by

(5.12).

Proof. By (5.3), (5.12), Lemma 6.1 and Taylor’s formula, we have

I∗∗1
j (ρ(tj), φ(tj)) = φ(t+j )− φ(tj) = I∗∗j (µ(tj), φ(tj))

= I∗∗j

((
n + 2

2n + 2
ρ(tj)

) n+2
n

, φ(tj)

)

and

J∗∗1
j (ρ(tj), φ(tj)) = ρ(t+j )− ρ(tj) =

2n + 2
n + 2

µ
n

n+2 (t+j )− ρ(tj)

=
2n + 2
n + 2

[µ(tj) + J∗∗j (µ(tj), φ(tj))]
n

n+2 − ρ(tj)

=
2n + 2
n + 2

[µ(tj) + (γn+2
j − 1)µ(tj) + f j(µ(tj), φ(tj))]

n
n+2 − ρ(tj)

=
2n + 2
n + 2

[γn+2
j µ(tj)]

n
n+2

(
1 +

f j(µ(tj), φ(tj))

γn+2
j µ(tj)

) n
n+2

− ρ(tj)

= γn
j ρ(tj)


1 +

n

n + 2

f j(µ(tj), φ(tj))

γn+2
j µ(tj)

(
1 + ξ

f j(µ(tj), φ(tj))

γn+2
j µ(tj)

)− 2
n+2


− ρ(tj)

= (γn
j − 1)ρ(tj) +

ρ−
2
n (tj) f j

((
n+2

2n+2 ρ(tj)
) n+2

n , φ(tj)

)

n+2
n

(
n+2

2n+2

) n+2
n γ2

j

×


1 + ξ

f j

((
n+2

2n+2 ρ(tj)
) n+2

n , φ(tj)

)

γn+2
j

(
n+2

2n+2 ρ(tj)
) n+2

n




− 2
n+2
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=: (γn
j − 1)ρ(tj) + g̃j(ρ(tj), φ(tj))

by (6.8), where ξ ∈ (0, 1). Then by Lemma 4.3 and Lemma 6.1, we have

I∗∗1
j (ρ(tj), φ(tj)) = O

(
A−1−nρ

n+2
n ·(− n+1

n+2 )
)
= O

(
A−1−nρ−

n+1
n

)
,

g̃j(ρ(tj), φ(tj)) = O
(

ρ−
2
n A−1−nρ

n+2
n · 1

n+2

)
= O

(
A−1−nρ−

1
n

)
.

This completes the proof of Lemma 6.2.

7 Proof of Theorem 1.1

The following two lemmas are similar to Lemma 9.2 in [30] and Lemma 6.2 in [3], respectively.
We refer to [30] and [3] for the proofs. Let (ρ(t), φ(t)) = (ρ(t, ρ, φ), φ(t, ρ, φ)) be the solution
of (5.12) with the initial value (ρ(0), φ(0)) = (ρ, φ). Let φ1 = φ(1), ρ1 = ρ(1).

Lemma 7.1. If all conditions of Theorem 1.1 hold, then the time one map Φ1 of the flow Φt of (5.12)
takes the form of

Φ1 :

{
φ1 = φ + α(ρ) + F(ρ, φ),

ρ1 = ρ + G(ρ, φ).

Moreover, α̇(ρ) > 0 and for any non-negative integers r, s with r + s ≤ 5,

∣∣∣∣
∂r+sF(ρ, φ)

∂ρr∂φs

∣∣∣∣ ,

∣∣∣∣
∂r+sG(ρ, φ)

∂ρr∂φs

∣∣∣∣ < CA−ε0 ,

where ε0 = min(τ, δ) > 0, (ρ, φ) ∈ [c3 Anτ, c4 Anτ]× T1, c4 > c3 > 0, A ≫ 1, τ > 0, δ > 0.

Lemma 7.2. Assume that the conditions of Theorem 1.1 are satisfied, then the time-1 map Φ1 of (4.1)
has the intersection property on Ω = {(ρ, φ) | ρ large enough, φ ∈ T1}, i.e. if Γ is an embedded

circle in Ω homotopic to a circle ρ = const. in Ω, then Φ1(Γ)
⋂

Γ ̸= ∅. In particular, Φ1 has the

intersection property on Ω =
{
(ρ, φ) | c3Anτ ≤ ρ ≤ c4Anτ, φ ∈ T1

}
, where c4 > c3 > 0, τ > 0.

Now let us state Moser’s twist theorem. Let D be an annulus given by

D : a ≤ r ≤ b, 0 < a < b.

For convenience, we introduce for a function h ∈ Cl(D) the norm

|h|l = sup
D, m+n≤l

∣∣∣∣
∂m+n

∂rm∂θn

∣∣∣∣ .

Theorem 7.3 (Moser’s twist theorem). Let α(r) ∈ Cl and |∂r α(r)| ≥ ν > 0 on the annulus D for

some l with l ≥ 5, and ε be a positive number. Then there exists a δ > 0 depending on ε, l, α(r), such

that any area-preserving mapping

M :

{
θ1 = θ + 2πα(r) + f (r, θ),

r1 = r + g(r, θ)

of D into R2 with f , g ∈ Cl and

| f |l + |g|l ≤ ν δ
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possesses an invariant curve of the form

r = c + u(ξ), θ = ξ + v(ξ)

in D where u, v are continuously differentiable, of period 2π and satisfy

|u|1 + |v|1 < ε,

and c is a constant in (a, b). Moreover, the induced mapping of this curve is given by

ξ → ξ + ω,

where ω is incommensurable with 2π, and satisfies infinitely many conditions
∣∣∣∣

ω

2π
−

p

q

∣∣∣∣ ≥ γ q−τ

with some positive γ, τ, for all integers q > 0, p. In fact, each choice of ω in the range of α(r) and

satisfying the above inequalities give rise to such an invariant curve.

Moser’s twist theorem above can be found in [21, pp. 50–54] (see also [27]). It should be
pointed out that the δ does not depend on ν. It should be also noted that the period 2π can
be replaced by any period T. In addition, “any area-preserving mapping” can be relaxed to
“any mapping which has intersection property”.

We are now in a position to prove Theorem 1.1. From Lemma 7.1 and Lemma 7.2, by
Moser’s twist theorem, Φ1 has an invariant curve Γ̃ in the annulus (ρ, φ) ∈ [c3Anτ, c4Anτ]×T1,
c4 > c3 > 0, A ≫ 1, τ > 0. It follows that the time-one map of the original system has an
invariant curve Γ̃A0 . Choosing a sequence A0 = Am0 → ∞ as m → ∞, we have that there are
countable many invariant curves Γ̃Am0 , clustering at ∞. Therefore any solution of the original
system is bounded. This completes the proof of Theorem 1.1.

Remark 7.4. Any solutions starting from the invariant curves Γ̃Am0 (m = 1, 2, . . . ) are quasi-
periodic with frequencies (1, ωm) in time t, where (1, ωm) satisfies Diophantine conditions
and ωm > CAnτ

m0. Actually, the frequencies can form a positive Lebesgue set in R.
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Abstract. In this paper, we study the existence of multi-bump solutions for the follow-
ing Schrödinger–Bopp–Podolsky system with steep potential well:

{

−∆u + (λV(x) + V0(x))u + K(x)φu = |u|p−2u, x ∈ R
3,

−∆φ + a2∆2φ = K(x)u2, x ∈ R
3,

where p ∈ (4, 6), a > 0 and λ is a parameter. We require that V(x) ≥ 0 and has a
bounded potential well Ω = V−1(0). Combining this with other suitable assumptions
on Ω, V0 and K, when λ is large enough, we obtain the existence of multi-bump-type
solutions uλ by using variational methods.

Keywords: Schrödinger–Bopp–Podolsky system, penalization method, variational
methods.
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1 Introduction and main results

In this paper, we investigate the existence of multi-bump solutions for the following problem

with steep potential well:

{

−∆u + (λV(x) + V0(x))u + K(x)φu = |u|p−2u, x ∈ R
3,

−∆φ + a2∆2φ = K(x)u2, x ∈ R
3,

(1.1)

where p ∈ (4, 6), a > 0 and λ is a parameter.

To illustrate the significance of this article, we first introduce some background about

Schrödinger–Bopp–Podolsky system. As mentioned in [10], problem (1.1) is a version of

BCorresponding author. Emails: wangli.423@163.com (Li Wang), wj2746154229@163.com (Jun Wang),

wangjixiu127@aliyun.com (Jixiu Wang)
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the Schrödinger–Bopp–Podolsky system, which is a Schrödinger equation coupled with a

Bopp–Podolsky equation. It is worth mentioning that, Podolsky’s theory is a second-order

gauge theory for the electromagnetic field developed by Bopp [7], independently by Podolsky–

Schwed [14]. For some more details about the Bopp–Podolsky equation, we refer to [5, 6, 15]

and the references therein.

If a = V0(x) = 0, λ = K(x) = 1, system (1.1) gives back the classical Schrödinger–Poisson

system as follows:
{

−∆u + V(x)u + φu = f (x, u), x ∈ R
3,

−∆φ = u2, x ∈ R
3,

which has been first introduced by D’Aprile–Mugnai [9]. The authors studied the existence

of radially symmetric solitary waves by using the variational approach method for the above

question when V(x) is a constant. In this system, the potential function V is regarded as

an external potential, u and φ represent the wave functions associated with the particle and

electric potential respectively. For more details on the physical aspects of this system, we refer

the readers to [4, 8] and the references therein.

In the last decades, the classical Schrödinger–Poisson system has been widely studied

under variant assumptions on V and f . By using variational methods, the existence, nonex-

istence, and multiplicity results are obtained in many papers. For example, when f (u) =

|u|p−1u with p ∈ (3, 5), Cerami and Vaira in [8] studied the following Schrödinger–Poisson

system:
{

−∆u + u + K(x)φ(x)u = a(x) f (u), x ∈ R
3,

−∆φ = K(x)u2, x ∈ R
3.

Without requiring any symmetry property on K(x) and a(x), they proved the existence of the

positive ground state and bound state solutions by minimizing energy functional restricted to

a Nehari manifold when K(x) and a(x) satisfy different assumptions. After that, Sun et al. in

[18] extended the result to a general nonlinear term.

Note that, the steep potential well has been introduced by Bartsch and Wang [3] in the

study of nonlinear Schrödinger equation. Our assumptions on V are similar to [11], in

which Ding and Tanaka have proven the existence of multi-bump-type solutions for nonlinear

Schrödinger equations. After that, more and more researchers have studied multi-bump-type

solutions, we refer the readers to the papers [1, 12, 19]. In particular, Zhang and Ma in [21]

considered the following system with steep potential well

{

−∆u + (λa(x) + a0(x))u + K(x)φu = |u|p−2u, x ∈ R
3,

−∆φ = K(x)u2, x ∈ R
3,

(1.2)

they obtained the existence of multi-bump solutions for (1.2) by using variational methods.

Compared with [21], although our paper also studies the existence of multi-bump solutions,

it studies a new system which has great significance.

If a ̸= 0, system (1.1) is a Schrödinger–Bopp–Podolsky system. Based on variational

methods, D’Avenia–Siciliano [10] first proved the existence and nonexistence results which

depended on the parameters p and q to system

{

−∆u + ωu + q2φu = |u|p−2u, x ∈ R
3,

−∆φ + ε2∆2φ = 4πu2, x ∈ R
3.

(1.3)
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Later, for p ∈ (2, 3], Siciliano–Silva [17] obtained the existence and nonexistence of solutions

to system (1.3) by means of the fiber map approach and the Implicit Function Theorem. Note

that, the authors in [10] and [17] merely considered system (1.3) with subcritical growth, so

Liu and Chen in [13] filled the gaps. More precisely, they studied the existence, nonexistence,

and asymptotic behavior of ground state solutions to system (1.3) which involves a critical

nonlinearity.

Recently, Wang et al. in [20] considered Schrödinger–Bopp–Podolsky system with general

nonlinear term:
{

−∆u + ωu + q2φu = f (u), x ∈ R
3,

−∆φ + ε2∆2φ = 4πu2, x ∈ R
3,

(1.4)

where f is a continuous, superlinear, and subcritical nonlinearity. They proved the existence

and multiplicity of sign-changing solutions of system (1.4) by using the method of invariant

sets of descending flow incorporated with minimax arguments. In addition, the asymptotic

behavior of sign-changing solutions was also established.

Motivated by all results mentioned above, it is quite natural to ask, does the system (1.1)

have multi-bump solutions? In the present paper, we give an affirmative answer.

In this paper, we make the following assumptions:

(V1) V(x) ∈ C
(

R
3, R

+
)

and Ω := int V−1(0) is a non-empty bounded set with smooth

boundary. Moreover, there is a positive constant M0 such that the measure of the set

A =
{

x ∈ R
3 : V(x) ≤ M0

}

is finite.

(V2) There is a V0(x) ∈ C
(

R
3, R

)

and a constant M1 > 1 such that |V0(x)| ≤ M1(V(x) + 1).

(V3) Ω possesses m connected components Ω1, . . . , Ωm such that Ωj ∩ Ω\Ωj = ∅, and

infu∈H1
0(Ωj),|u|2=1

∫

Ω

[

|∇u|2 + V0(x)u2
]

dx > 0 for j = 1, 2, . . . , m.

Now, we say something about (V1): although A and M0 in (V1) are not explicitly men-

tioned in the article, they are used in the proof of Proposition 2.4. Note that the proof of

Proposition 2.4 is very similar to Corollary 1.4 in [11], so it is omitted. In [11], Corollary 1.4 is

proven by using Proposition 1.1, but the proof of Proposition 1.1 requires the use of A and M0

to ensure the vanishing of the energy outside the sphere. Please see [11] for details. Therefore,

the role of (V1) is to ensure that Proposition 2.4 holds in our manuscript.

We also assume that

(K) K ∈ L∞
(

R
3
)

, K(x) ≥ 0 and K ̸≡ 0.

The main result of this paper reads as follows:

Theorem 1.1. Assume that (V1) , (V2) , (V3) and (K) hold. Then, for any small ν > 0 and any non-

empty subset J of {1, 2, . . . , m}, there exist Λ = Λ(ν) and k(ν) > 0 such that, when λ > Λ and

|K|∞ ≤ k(ν), (1.1) has a solution uλ ∈ H1
(

R
3
)

satisfying
∣

∣

∣

∣

∣

∫

Ωj

[

|∇uλ|
2 + (λV(x) + V0(x)) u2

λ

]

dx −

(

1

2
−

1

p

)−1

c
(

Ωj

)

∣

∣

∣

∣

∣

≤ ν, j ∈ J

and
∫

R3\ΩJ

[

|∇uλ|
2 + (λV(x) + V0(x)) u2

λ

]

dx ≤ ν,

where ΩJ =
⋃

j∈J Ωj, c
(

Ωj

)

are some constants. Moreover, for any sequence of solutions {uλn
} with

λn → ∞, going if necessary to a subsequence, uλn
converges strongly in H1

(

R
3
)

to a function u

satisfying u(x) = 0 for x ∈ R
3\ΩJ .
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Remark 1.2. The constant c
(

Ωj

)

in Theorem 1.1 is the least energy of all the nontrivial solu-

tions for the following boundary value problem

−∆u + V0(x)u = |u|p−2u in Ωj, u|∂Ωj
= 0.

Hence under the assumption of (V3) , c
(

Ωj

)

> 0.

This paper is organized as follows. In Section 2, we give some variational frameworks.

After that, we introduce a modified functional and verify the Palais–Smale condition. In

Sections 4 and 5, we give some results on the Nehari manifold and the proof of Theorem 1.1

respectively.

2 Variational frameworks

We consider the following functional space

E :=

{

u ∈ H1
(

R
3
)

:
∫

R3
V(x)u2dx < ∞

}

with the inner product

(u, v)E :=
∫

R3
[∇u∇v + (V(x) + 1)uv]dx,

and the corresponding norm is ∥u∥E = (u, u)1/2
E . It is easy to see that (E, ∥ · ∥E) is a Hilbert

space and the embedding E →֒ H1
(

R
3
)

is continuous. For any open set D ⊂ R
3, we also

define

E(D) =

{

u ∈ H1(D) :
∫

D
V(x)u2dx < ∞

}

,

∥u∥E(D) =
∫

D

[

|∇u|2 + (V(x) + 1)u2
]

dx.

Note that ∥ · ∥E(D) is equivalent to ∥ · ∥H1(D) when D is bounded.

Now, we define D be the completion of C∞
0

(

R
3
)

with respect to the norm ∥ · ∥D induced

by the scalar product

(u, v)D =
∫

R3

(

∇u∇v + a2∆u∆v
)

dx.

Then D is a Hilbert space, which is continuously embedded into D1,2
(

R
3
)

and consequently

into L6(R3). We denote that Lq(R3) is the usual Lebesgue space with the standard norm

∥u∥q :=
( ∫

R3 |u|qdx
)

1
q , 1 ≤ q < ∞.

Proposition 2.1 (see [10]). The space D is continuously embedded into L∞(R3).

By using the Lax–Milgram theorem, for every fixed u ∈ E, there exists a unique solution

φa
u ∈ D of the second equation in system (1.1). In order to explicitly write such solution (see

[15]), we consider that

K(x) =
1 − e

−|x|
a

|x|
.

As for K, we have the following fundamental properties from [10].
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Proposition 2.2 (see [10]). For all y ∈ R
3,K(· − y) solves in the sense of distributions

−∆φ + a2∆2φ = 4πδy.

Moreover,

(i) if f ∈ L1
loc

(

R
3
)

and for a.e. x ∈ R
3, the map y ∈ R

3 → f (y)
|x−y| is summated, then K ∗ f ∈

L1
loc

(

R
3
)

;

(ii) if f ∈ Lp
(

R
3
)

with 1 ⩽ p <
3
2 , then K ∗ f ∈ Lq

(

R
3
)

for q ∈
( 3p

3−2p ,+∞
]

.

In both cases K ∗ f solves

−∆φ + a2∆2φ = 4π f .

Then if we fix u ∈ E, the unique solution in D of the second equation in system (1.1) can

be expressed by

φa
u = K ∗ (Ku2) =

1

4π

∫

R3

1 − e
−|x−y|

a

|x − y|
K(y)u2(y)dy.

Now, let us summarize some properties of φa
u.

Proposition 2.3 (see [10]). For every u, v ∈ E, the following statements are correct.

(i) φa
u ⩾ 0.

(ii) For each t > 0, φa
tu = t2φa

u.

(iii) If un ⇀ u in E, then φa
un

⇀ φa
u in D.

(iv) ∥φa
u∥D ⩽ C∥u∥2

12
5

⩽ C∥u∥2
E and

∫

R3 φa
u|u|

2 dx ⩽ C∥u∥4
12
5

⩽ C∥u∥4
E.

By using the classical reduction argument, system (1.1) can be reduced to a single equation:

−∆u + (λV(x) + V0(x)) u + K(x)φa
uu = |u|p−2u, x ∈ R

3. (2.1)

From now on, the solutions of system (1.1) are equal to the solutions of equation (2.1). It is

easy to see that the solutions of equation (2.1) can be regarded as critical points of the energy

functional Iλ : E → R defined by

Iλ(u) =
1

2

∫

R3

(

|∇u|2 + (λV(x) + V0(x)) u2
)

dx +
1

4

∫

R3
K(x)φa

uu2dx −
1

p

∫

R3
|u|pdx.

According to (V1) and (V3), it is easy to check that Iλ is a well defined C1 functional in E.

Moreover, ∀ϕ ∈ E, we have

〈

I′λ(u), ϕ
〉

=
∫

R3
(∇u∇ϕ + (λV(x) + V0(x)) uϕ)dx +

∫

R3
K(x)φa

uuϕdx −
∫

R3
|u|p−2uϕdx.

By assumption (V3), there exist smoothly bounded open sets Ω′
1, Ω′

2, . . . , Ω′
m ⊂ R

3 such

that Ωj ⊂ Ω′
j and Ω′

i ∩ Ω′
j = ∅ for i ̸= j. In the following proposition, which is one of the keys

of our argument, we will give the positivity of the operator −∆ + (λV(x) + V0(x)) acting on

the space E(D), where D is one of the following sets:

D = R
3, Ω′

j (j = 1, 2, . . . , k), or R
3\
⋃

j∈J

Ω′
j (J ⊂ {1, 2, . . . , k}).
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Now, we define a norm ∥ · ∥λ,D on E(D) for λ ≥ Λ1 by

∥u∥2
λ,D =

∫

D

[

|∇u|2 + (λV(x) + V0(x)) u2
]

dx.

We write ∥ · ∥λ = ∥ · ∥λ,R3 for simplicity. From Corollary 1.3 in [11], we can get that there exist

C1,λ, C′
1,λ > 0 such that

C1,λ∥u∥E(D) ≤ ∥u∥λ,D ≤ C′
1,λ∥u∥E(D) for u ∈ E(D).

Proposition 2.4. (see [11]) There exist δ0, ν0 > 0 such that for any set D and u ∈ E(D)

δ0∥u∥2
λ,D ≤ ∥u∥2

λ,D − (p − 1)ν0∥u∥2
L2(D) for λ ≥ Λ1.

3 Compactness condition

Since Iλ given in Section 2 does not satisfy the Palais–Smale condition easily, we modify it and

establish the compactness conditions in this section. For t ∈ R and ν0 given in Proposition 2.4,

set

f (t) =







|t|p−2t, if |t| ≤ ν
1

p−2

0 ,

ν0t, if |t| ≥ ν
1

p−2

0 ,

and F(t) =
∫ t

0 f (s)ds. Let J ⊂ {1, 2, . . . , k} and χJ : R
3 → [0, 1] be the characteristic function

of Ω′
J :=

⋃

j∈J Ω′
j. We consider the penalized nonlinearity

g(x, t) = χJ(x)|t|p−2t + (1 − χJ(x)) f (t).

Setting G(t) =
∫ t

0 g(s)ds, we define Jλ : E → R by

Jλ(u) =
1

2

∫

R3

(

|∇u|2 +
(

λV(x) + V0(x)u2
))

dx +
1

4

∫

R3
K(x)φa

uu2dx −
∫

R3
G(x, u)dx.

By using a standard method, one can see that Jλ is of class C1 and its nontrivial critical points

are nontrivial solutions of

−∆u + (λV(x) + V0(x)) u + K(x)φa
u(x)u = g(x, u) in R

3.

Since f (t) = |t|p−2t for |t| ≤ ν
1

p−2

0 , a critical point u of Jλ solves the original problem (1.1)

when it satisfies |u(x)| ≤ ν
1

p−2

0 for all x ∈ R
3\Ω′

J .

Next, we verify the Palais–Smale condition of Jλ. First of all, the following lemma can give

the boundedness of the (PS)c sequence of Jλ.

Lemma 3.1. For any (PS)c sequence {un}n ⊂ E of Jλ, there exists a positive constant M(c) which is

independent of λ ≥ Λ1 such that

lim sup
n→∞

∥un∥
2
λ ≤ M(c).

Proof. Due to {un}n is the (PS)c sequence of Jλ, we have

Jλ (un)−
1

p
⟨J′λ (un) , un⟩ = c + o(1) + εn ∥un∥λ ,
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where εn → ∞ as n → ∞. Then by using the fact F(t)− 1
p f (t)t ≤

(

1
2 −

1
p

)

ν0t2 for t ∈ R and
∫

R3 K(x)φa
un

u2
ndx ≥ 0, we get

c + o(1) + εn ∥un∥λ = Jλ (un)−
1

p
⟨J′λ (un) , un⟩

=

(

1

2
−

1

p

)

∥un∥
2
λ +

(

1

4
−

1

p

)

∫

R3
K(x)φa

un
u2

ndx

−
∫

R3\Ω′
J

(

F (un)−
1

p
f (un) un

)

dx −
∫

Ω′
J

(

F (un)−
1

p
f (un) un

)

dx

=

(

1

2
−

1

p

)

∥un∥
2
λ +

(

1

4
−

1

p

)

∫

R3
K(x)φa

un
u2

ndx

−
∫

R3\Ω′
J

(

F (un)−
1

p
f (un) un

)

dx

≥

(

1

2
−

1

p

)

∥un∥
2
λ −

(

1

2
−

1

p

)

ν0 ∥un∥
2
L2 .

Using Proposition 2.4, we obtain

(

1

2
−

1

p

)

δ0 ∥un∥
2
λ ≤ c + o(1) + εn ∥un∥λ .

Hence, ∥un∥λ is bounded as n → ∞ and

lim sup
n→∞

∥un∥
2
λ ≤ M(c).

Now we have the following fact.

Lemma 3.2. When c > 0, there exists Λ1 > 0, such that Jλ satisfies the Palais–Smale condition at

level c on E for λ ≥ Λ1 large enough.

Proof. By using Lemma 3.1, we know that any (PS)c-sequence {un}n is bounded in E. So,

going if necessary to a subsequence, we may assume that

un ⇀ u in E and H1(R3),

un → u in L
q
loc(R

3), 1 ≤ q < 6,

un → u a.e. in R
3.

Now we prove that un → u in E. Firstly, it is easy to check that J′λ(u) = 0. In fact, by

Proposition 2.3, we know that φa
un

⇀ φa
u in D. For any ϕ ∈ C∞

0

(

R
3
)

, since K(x)uϕ ∈ L
6
5

(

R
3
)

,

we have
∫

R3
K(x)uϕ

(

φa
un
− φa

u

)

dx → 0 as n → ∞.

Similarly,
∫

R3
K(x)ϕφa

un
(un − u)dx ≤ |K|∞∥ϕ∥3∥φa

un
∥6∥un − u∥L2(Ωϕ)

≤ C∥un − u∥L2(Ωϕ)

→ 0
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as n → ∞, where Ωϕ is the support of ϕ. Consequently,

∫

R3

(

K(x)φa
un

un ϕ − K(x)φa
uuϕ

)

dx

=
∫

R3
K(x)uϕ

(

φa
un
− φa

u

)

dx +
∫

R3
K(x)ϕφa

un
(un − u)dx

→ 0

as n → ∞, thus we see that

⟨J′λ(un)− J′λ(u), ϕ⟩ = ⟨J′λ(un), ϕ⟩ − ⟨J′λ(u), ϕ⟩

=
∫

R3
(∇un∇ϕ + (λV(x) + V0(x)) un ϕ)dx +

∫

R3
K(x)φa

un
un ϕdx

−
∫

R3
(∇u∇ϕ − (λV(x) + V0(x)) uϕ)dx −

∫

R3
K(x)φa

uuϕdx

−
∫

R3
g(x, un)ϕdx +

∫

R3
g(x, u)ϕdx

= o(1).

So J′λ(u) = 0. Then we have

⟨J′λ (un)− J′λ(u), un − u⟩

= ⟨J′λ (un) , un − u⟩ − ⟨J′λ(u), un − u⟩

= ∥un − u∥2
λ +

∫

R3

(

K(x)φa
un

un (un − u)− K(x)φa
uu (un − u)

)

dx

−
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx −
∫

Ω′
J

(

|un|
p−2 un − |u|p−2u

)

(un − u)dx

= ∥un − u∥2
λ +

∫

R3
K(x)φa

un
(un − u)2 dx +

∫

R3
K(x)

(

φa
un
− φa

u

)

u (un − u)dx

−
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx −
∫

Ω′
J

(

|un|
p−2 un − |u|p−2u

)

(un − u)dx

= o(1)

as n → ∞. Because of maxx∈R | f ′(x)| ≤ (p − 1)ν0, by using the Mean Value Theorem, we get

that
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx ≤ (p − 1)ν0 ∥un − u∥2
2 .

Noting that un → u in L
p
loc(R

3), so we have

∫

Ω′
J

(

|un|
p−2 un − |u|p−2u

)

(un − u)dx = o(1) as n → ∞.

We also remark that un ⇀ u in L3
(

R
3
)

. Thus, by the uniqueness of limit, we have |un − u|
6
5 ⇀

0 in L
5
2

(

R
3
)

. Then according to K ∈ L∞(R3) and |u|
6
5 ∈ L

5
3

(

R
3
)

, we obtain

∫

R3
K(x)

(

φa
un
− φa

u

)

u (un − u)dx ≤ |K|∞∥φa
un
− φa

u∥6

(

∫

R3
|u|

6
5 |un − u|

6
5 dx

)
5
6

= o(1) as n → ∞.
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Combining all these and the fact
∫

R3 K(x)φa
un
(un − u)2 dx ≥ 0, by using Proposition 2.4, we

have

δ0 ∥un − u∥2
λ ≤ ∥un − u∥2

λ − (p − 1)ν0 ∥un − u∥2
2 +

∫

R3
K(x)φa

un
(un − u)2 dx ≤ o(1)

as n → ∞, which completes the proof.

Following the spirit of Lemma 3.2, we have

Lemma 3.3. Suppose the sequences λn → ∞ as n → ∞ and {un}n in E satisfy

Jλn (un) ≤ c, ∥∇Jλn (un)∥λn
→ 0.

Then, after passing to a subsequence, we have:

(a) un ⇀ u in E for some u ∈ E;

(b) u ≡ 0 in R
3\ΩJ , and uj = u|Ωj

∈ H1
0

(

Ωj

)

solves −∆v + V0(x)v + K(x)φa
uv = |v|p−2v in

Ωj weakly for j ∈ J;

(c) ∥un − u∥λn
→ 0, consequently un → u in H1

(

R
3
)

;

(d) For n → ∞, un also satisfies:

(1)
∫

R3 λnV(x)u2
ndx → 0;

(2)
∫

R3\Ω′
J

(

|∇un|
2 + (λnV(x) + V0(x)) u2

n

)

dx → 0;

(3)
∫

Ω′
j

(

|∇un|
2 + (λnV(x) + V0(x)) u2

n

)

dx →
∫

Ωj

(

|∇u|2 + V0(x)u2
)

dx, j = 1, . . . , m.

Proof. By a similar method of Lemma 3.1, we obtain that {un}n is bounded in E and H1
(

R
3
)

.

So we could assume that for some u ∈ E,

un ⇀ u in E and H1(R3),

un → u in L
q
loc(R

3), 1 ≤ q < 6,

un → u a.e in R
3.

Let Cm =
{

x ∈ R
3 : V(x) ≥ 1

m

}

. When n large enough such that λn ≤ 2 (λn − λ1), we have

that
∫

Cm

u2
ndx ≤

m

λn

∫

R3
λnV(x)u2

ndx

≤
2m

λn

∫

R3
(λn − λ1)V(x)u2

ndx

≤
2m

λn

∫

R3
(λn − λ1)V(x)u2

ndx +
2m

λn
∥un∥

2
λ1

=
2m

λn

∫

R3

(

|∇un|
2 + (λnV(x) + V0(x)) u2

n

)

dx

=
2m

λn
∥un∥

2
λn

→ 0 as n → ∞.

Therefore, u(x) = 0 a.e. in
⋃

m
Cm = R

3\Ω. For any ϕ ∈ C∞
0

(

Ωj

)

, j ∈ J, we get

⟨J′λn
(un) , ϕ⟩ =

∫

Ωj

(

∇un∇ϕ + V0(x)un ϕ + K(x)φa
un

un ϕ − |un|
p−2 un ϕ

)

dx.
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Due to K(x)uϕ ∈ L
6
5

(

R
3
)

, Φ (un) ⇀ Φ(u) in D and un → u in L
q
loc

(

R
3
)

for 1 ≤ q < 6, for

n → ∞, we have
∫

Ωj

(

K(x)φa
un

un ϕ − K(x)φa
uuϕ

)

dx =
∫

Ωj

K(x)φa
un
(un − u) ϕdx +

∫

Ωj

K(x)
(

φa
un
− φa

u

)

uϕdx

→ 0.

Similar to the proof of Lemma 3.2, we have ⟨J′λn
(un)− J′λn

(u), ϕ⟩ → 0. Thus it follows from

⟨J′λn
(un) , ϕ⟩ → 0 that

∫

Ωj

(

∇u∇ϕ + V0(x)uϕ + K(x)φa
uuϕ − |u|p−2uϕ

)

dx = 0.

As a result, for j ∈ J, uj = u|Ωj
∈ H1

0

(

Ωj

)

solves −∆v + V0(x)v + K(x)φa
uv = |v|p−2v in Ωj

weakly. When j ∈ {1, 2, . . . , m} \ J, let ϕ = u, then we get
∫

Ωj

(

|∇u|2 + V0(x)u2 + K(x)φa
uu2 − f (u)u

)

dx = 0.

Because of ϕ = u ∈ C∞
0

(

Ωj

)

, we have
∫

Ω′
j

(

|∇u|2 + V0(x)u2 + K(x)φa
uu2 − f (u)u

)

dx = 0.

From Proposition 2.4, f (t)t ≤ ν0t2 for t ∈ R and the fact that K(x)φa
uu2 ≥ 0, we have

δ0∥u∥2
Λ1,Ω′

j
≤ ∥u∥2

Λ1,Ω′
j
− (p − 1)ν0∥u∥2

L2
(

Ω′
j

)

≤ ∥u∥2
Λ1,Ω′

j
− ν0∥u∥2

L2
(

Ω′
j

)

≤
∫

Ω′
j

(

|∇u|2 + a0(x)u2 + K(x)φa
uu2 − f (u)u

)

dx

= 0.

So that, u = 0 in Ωj when j ∈ {1, 2, . . . , m} \ J and we get (b).

In order to prove (c), we use the following fact:

o(1) = ⟨J′λn
(un)− J′λn

(u), un − u⟩

= ⟨J′λn
(un) , un − u⟩ − ⟨J′λn

(u), un − u⟩

= ∥un − u∥2
λn

+
∫

R3

(

K(x)φa
un

un (un − u)− K(x)φa
uu (un − u)

)

dx

−
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx −
∫

Ω′
J

(

|un|
p−2 un − |u|p−2u

)

(un − u)dx

= ∥un − u∥2
λn

+
∫

R3
K(x)φa

un
(un − u)2 dx +

∫

R3
K(x)

(

φa
un
− φa

u

)

u (un − u)dx

−
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx −
∫

Ω′
J

(

|un|
p−2 un − |u|p−2u

)

(un − u)dx.

Similar to the proof of Lemma 3.2, we also have
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx ≤ (p − 1)ν0 ∥un − u∥2
2 ,

∫

Ω′
J

(

|un|
p−2 un − |u|p−2u

)

(un − u)dx = o(1) as n → ∞
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and
∫

R3
K(x)

(

φa
un
− φa

u

)

u (un − u)dx = o(1) as n → ∞.

So we have

δ0 ∥un − u∥2
λn

≤ ∥un − u∥2
λn

− (p − 1)ν0 ∥un − u∥2
2 +

∫

R3
K(x)φa

un
(un − u)2 dx ≤ o(1).

This completes the proof of (c).

For (d), we use (c) and for sufficiently large n, λn ≤ 2 (λn − λ1). Then as n → ∞, we have

1

2

∫

R3
λnV(x)u2

ndx ≤
∫

R3
(λn − λ1)V(x)u2

ndx =
∫

R3
(λn − λ1)V(x) (un − u)2 dx

≤
∫

R3
(λn − λ1)V(x) (un − u)2 dx + ∥un − u∥2

λ1
= ∥un − u∥2

λn
→ 0.

Thus (1) in (d) is obtained. It is easy to show that (2), (3) in (d) also follows immediately

from (1) in (d) and (c), and we obtain the conclusion.

Lemma 3.4. For any fixed c > 0, there exists Λc ≥ Λ1 such that if uλ is a critical point of Jλ satisfying

|Jλ (uλ)| ≤ c for λ ≥ Λc, then |uλ| ≤ ν
1

p−2

0 on R
3\Ω′

J , ν0 is defined in Proposition 2.4. In particular,

uλ solves the original problem (1.1) .

Proof. Since uλ ∈ E is a critical point of Jλ with |Jλ (uλ)| ≤ c, uλ is bounded in E uniformly for

λ ≥ Λ1. And it satisfies the equation

−∆uλ + (λV(x) + V0(x)) uλ + K(x)φa
uλ

uλ = g (x, uλ) in R
3.

Due to Lemma 5.1 in [2], H−1
λ := (−∆ + (λV(x) + V0(x)))−1 is a well-defined bounded oper-

ator from Ls
(

R
3
)

to Lr
(

R
3
)

provided 1 ≤ s ≤ r ≤ +∞ and 1
s −

1
r ≤ 2

3 . And there exists a

constant Cr,s > 0 (independent of λ sufficiently large) such that

∥

∥

∥
H−1

λ g
∥

∥

∥

r
≤ Cr,s∥g∥s, g ∈ Ls(R3).

Let χλ,0 be the characteristic function of the set
{

x ∈ R
3 : |uλ(x)| ≤ 1

}

and define vλ,0 =

χλ,0uλ, wλ,0 = uλ − vλ,0 = (1 − χλ,0) uλ. Setting lλ,0 = g (·, vλ,0) − K(·)φa
uλ

vλ,0 and hλ,0 =

g (·, wλ,0) − K(·)φa
uλ

wλ,0, we have g (·, uλ) = lλ,0 + hλ,0. Since uλ is bounded in E, φa
uλ

is

bounded in L∞. Thus, lλ,0 is bounded in L∞(R3) uniformly in λ. Moreover, hλ,0 is bounded

uniformly for λ in L
6

p−1 (R3). In fact,

∣

∣φa
uλ
(x)
∣

∣ ≤
1

4π

∣

∣

∣

∣

∫

R3

K(y)

|x − y|
u2

λ(y)dy

∣

∣

∣

∣

≤ c|K|∞

(

∫

B1(x)

u2
λ(y)

|x − y|
dy +

∫

Bc
1(x)

u2
λ(y)

|x − y|
dy

)

≤ c|K|∞

(

(

∫

B1(x)

1

|x − y|2
dy

)1/2 (∫

B1(x)
u4

λ dy

)1/2

+

(

∫

Bc
1(x)

1

|x − y|4
dy

)1/4 (∫

Bc
1(x)

|uλ|
8/3 dy

)4/3
)

≤ c′|K|∞.
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In the set |uλ| ≤ 1, we have |wλ,0| = 0; and in the set |uλ| > 1, we have |wλ,0| = |uλ − vλ,0| =
| (1 − χλ,0) uλ| = |uλ| > 1. So we have

(

∫

R3
|wλ,0|

6
p−1 dx

)

p−1
6

=

(

∫

{x:|uλ|≤1}
|wλ,0|

6
p−1 dx +

∫

{x:|uλ|>1}
|wλ,0|

6
p−1 dx

)

p−1
6

≤

(

0 +
∫

{x:|uλ|>1}
|wλ,0|

6 dx

)

p−1
6

=

(

∫

R3
|wλ,0|

6 dx

)

p−1
6

.

Therefore, combining this with Minkowski inequality, we have

∥hλ,0∥ 6
p−1

≤ ∥g (·, wλ,0)∥ 6
p−1

+
∥

∥K(·)φa
uλ

wλ,0

∥

∥

6
p−1

≤

(

∫

R3
|uλ|

6 dx

)

p−1
6

+ |K|∞
∣

∣φa
uλ

∣

∣

∞

(

∫

R3
|wλ,0|

6
p−1 dx

)

p−1
6

≤

(

∫

R3
|uλ|

6 dx

)

p−1
6

+ |K|∞
∣

∣φa
uλ

∣

∣

∞

(

∫

R3
|wλ,0|

6 dx

)

p−1
6

≤ C ∥uλ∥
p−1
E .

Now we define vλ,1 = H−1
λ lλ,0 and wλ,1 = H−1

λ hλ,0 so that uλ = vλ,1 + wλ,1. Then, there exists

C2 > 0 such that

|vλ,1|∞ ≤ C2 and ∥wλ,1∥p1
≤ C2

uniformly in λ; here p1 = ∞ if p0 = 6
p−1 >

3
2 , and p1 is arbitrarily close to and less than

3p0

3−2p0

if p0 ≤ 3
2 . In the case p0 >

3
2 we are done. In the case p0 ≤ 3

2 , we have 5 ≤ p < 6. Thus, we can

assume that there is a positive constant δ ≤ 1 such that p = 6− δ. Let χλ,1 be the characteristic

function of the set

Aλ =
{

x ∈ R
3 : |wλ,1(x)| ≤ C2 + 1

}

.

Setting

v̄λ,1 = χλ,1uλ = χλ,1 (vλ,1 + wλ,1) ,

w̄λ,1 = uλ − v̄λ,1 = (1 − χλ,1) (vλ,1 + wλ,1) ,

lλ,1 = g (·, v̄λ,1)− K(·)φa
uλ

v̄λ,1,

hλ,1 = g (·, w̄λ,1)− K(·)φa
uλ

w̄λ,1.

We see that |lλ,1|∞ is bounded uniformly in λ. In addition, since the measure of the set Ac
λ

is finite and ∥wλ,1∥p1
≤ C2, we have hλ,1 is bounded in L

p1
p−1 (R3). Now repeating the above

argument with vλ,2 = H−1
λ lλ,1 and wλ,2 = H−1

λ hλ,1, we obtain a constant C3 > 0 such that

|vλ,2|∞ ≤ C3 and ∥wλ,1∥p2
≤ C3,

where p2 = ∞ if p̄1 = p1

p−1 >
3
2 , and p2 is arbitrarily close to and less than

3p̄1

3−2p̄1
if p̄1 ≤ 3

2 .

Using the assumption p = 6 − δ, 0 < δ ≤ 1 and after a finite number of such steps we get a

uniform bounded for |uλ|∞.

According to the definition of g and uniform boundedness of
∣

∣φa
uλ

∣

∣

∞
, we obtain that

A(x) = g(x,uλ(x))
uλ(x)

+ K(x)φa
uλ

is bounded in L∞(R). Moreover, the negative part of Wλ =
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λV + V0 − A is bounded uniformly in λ. It follows from Theorem A.2.1 in [16] that the norm

of W−
λ in the Kato class K3 is bounded uniformly in λ. Therefore, Theorem C.1.2 in [16]

implies that there is a constant C(r) which is independent of λ such that

|uλ(x)| ≤ C(r)
∫

Br(x)
|uλ|dx,

where Br(x) is a ball in R
3 centered at x with radius r. From Lemma 3.3(b), as n → ∞

uλ → 0 in L2
(

R
3\Ω

)

.

Thus, choosing r = 1
2 dist

(

Ω, R
3\Ω′

)

, we have uniformly in x ∈ R
3\Ω′,

|uλ(x)| ≤ C(r)
∫

Br(x)
|uλ|dx

≤ C(r) (meas Br(x))
1
2 |uλ|2,Br(x)

≤ C(r) (meas Br(x))
1
2 |uλ|2,R3\Ω

→ 0 as λ → ∞.

4 Nehari manifold and minimax arguments

Consider the following nonlinear problems for j ∈ J,

{

−∆u + V0(x)u = |u|p−2u, in Ωj,

u = 0, on ∂Ωj

and






−∆u + (λV(x) + V0(x)) u = |u|p−2u, in Ω′
j,

∂u

∂n
= 0, on ∂Ω′

j

with their corresponding functionals

Ij(u) =
1

2

∫

Ωj

(|∇u|2 + V0(x)u2) dx −
1

p

∫

Ωj

|u|pdx; H1
0

(

Ωj

)

→ R,

Iλ,j(u) =
1

2

∫

Ω′
j

(|∇u|2 + (λV(x) + V0(x)) u2) dx −
1

p

∫

Ω′
j

|u|pdx; H1
(

Ω′
j

)

→ R.

It is easy to check that both Ij and Iλ,j possess the mountain pass geometry and satisfy the

(PS) condition. On the other hand, the infimum of Ij and Iλ,j on their Nehari manifold

Nj =
{

u ∈ H1
0

(

Ωj

)

\{0} :
(

∇Ij(u), u
)

= 0
}

,

Nλ,j =
{

u ∈ H1
(

Ω′
j

)

\{0} :
(

∇Iλ,j(u), u
)

= 0
}

are achieved by some ωj ∈ N and ωλ,j ∈ Nλ,j respectively. By a standard argument, we can

see that ωj, ωλ,j are critical points of Ij and Iλ,j separately. The critical values cj = Ij

(

ωj

)

and cλ,j = Iλ,j

(

ωλ,j

)

are equal to the mountain pass value of their corresponding functional.

Moreover, we also have the following lemma (see Lemma 3.1 in [11] and (3.8) for details).
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Lemma 4.1. The following statements hold:

(a) there is a ρ > 0 such 0 < ρ ≤ cλ,j ≤ cj for λ ≥ Λ1 sufficiently large;

(b) cj = max
r>0

Ij

(

rwj

)

, cλ,j = max
r>0

Iλ,j

(

rwλ,j

)

;

(c) cλ,j → cj as λ → ∞;

(d)

cj = inf

{

Ij(v) : v ∈ H1
0

(

Ωj

)

,
∫

Ωj

|v|pdx =

(

1

2
−

1

p

)−1

cj

}

,

cλ,j = inf

{

Iλ,j(v) : v ∈ H1
(

Ω′
j

)

,
∫

Ω′
j

|v|pdx =

(

1

2
−

1

p

)−1

cλ,j

}

.

In the following, we give a minimax argument for Jλ(u). First of all, we fix R ≥ 2 such

that
Ij

(

Rωj

)

< 0,

R2
∥

∥wj

∥

∥

2

λ,Ω′
j
= Rp

∣

∣wj

∣

∣

p

p
≥ 2

(

1

2
−

1

p

)−1

cj

(4.1)

for all j ∈ J. By relabeling the indices, we could assume J = {1, 2, . . . , l} (l ≤ m). We define

γ0 : [0, 1]l → E,

γ0 (t1, t2, . . . , tl) (x) =
l

∑
j=1

tjRωj(x), (4.2)

ΓJ =
{

γ ∈ C
(

[0, 1]l , E
)

; γ (t1, t2, . . . , tl) = γ0 (t1, t2, . . . , tl) , (t1, t2, . . . , tl) ∈ ∂
(

[0, 1]l
)}

and

bλ,J = inf
γ∈ΓJ

max
t∈[0,1]l

Jλ(γ(t)).

Obviously, ΓJ ̸= ∅ since γ0 ∈ ΓJ . Thus bλ,j is well defined.

According to Lemma 3.3 in [11], by using a topological degree argument we can get the

following conclusion.

Lemma 4.2. For any γ ∈ ΓJ , there is a tγ ∈ [0, 1]l such that for j ∈ J

∫

Ω′
j

|γ (tγ) (x)|p dx =

(

1

2
−

1

p

)−1

cλ,j.

Lemma 4.3. ∑
l
j=1 cλ,j ≤ bλ,J ≤ ∑

l
j=1 cj + µ, where

µ =
R4

4

l

∑
j=1

∫

Ωj

K(x)φa

∑
l
j=1 ωj

(

ωj

)2
dx. (4.3)

Proof. According to Lemma 4.2, for any γ ∈ ΓJ , we have

max
t∈[0,1]l

Jλ(γ(t)) ≥ Jλ (γ (tγ)) ≥ Jλ,R3\Ω′
J
(γ (tγ)) +

l

∑
j=1

Jλ,Ω′
j
(γ (tγ)) ,
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where Jλ,Ω′
j
(u) is defined by

Jλ,Ω′
j
(u) =

1

2

∫

Ω′
j

(

|∇u|2 +
(

λV(x) + V0(x)u2
))

dx +
1

4

∫

Ω′
j

K(x)φa
uu2dx −

∫

Ω′
j

G(x, u)dx.

And the definition of Jλ,R3\Ω′
j
(u) is similar. According to Proposition 2.4 and the fact that

|G(x, t)| ≤ 1
2 ν0t2 when x ∈ R

3\Ω′
J , we get that

Jλ,R3\Ω′
j
(u) ≥ 0 for u ∈ E and j ∈ J.

By using
∫

Ω′
j
K(x)φa

uu2dx ≥ 0 and Lemma 4.1(d) we obtain

max
t∈[0,1]l

Jλ(γ(t)) ≥
l

∑
j=1

Jλ,Ω′
j
(γ (tγ)) ≥

l

∑
j=1

Iλ,j (γ (tγ))

≥
l

∑
j=1

inf

{

Iλ,j(v) : v ∈ H1
(

Ω′
j

)

,
∫

Ω′
j

|v|pdx =

(

1

2
−

1

p

)−1

cλ,j

}

=
l

∑
j=1

cλ,j.

According to the arbitrary choice of γ, we have ∑
l
j=1 cλ,j ≤ bλ,J . On the other hand,

bλ,J ≤ max
t∈[0,1]l

Jλ (γ0(t))

= max
t∈[0,1]l

l

∑
j=1

Ij

(

tjRωj

)

+
1

4

l

∑
j=1

∫

Ωj

K(x)φa

∑
l
j=1 tjRωj

(

tjRωj

)2
dx

≤
l

∑
j=1

cj +
R4

4

l

∑
j=1

∫

Ωj

K(x)φa

∑
l
j=1 ωj

(

ωj

)2
dx.

Thus, we get the conclusion.

In the following, we denote ∑
l
j=1 cj by cJ . It is easy to see that, for γ ∈ ΓJ , γ(t) = γ0(t) on

∂[0, 1]l . So, for t = (t1, t2, . . . , tl) ∈ ∂[0, 1]l , one has

Jλ(γ(t)) = Jλ (γ0(t)) ≤
l

∑
j=1

Ij

(

tjRωj

)

+
R4

4

l

∑
j=1

∫

Ωj

K(x)φa

∑
l
j=1 ωj

(

ωj

)2
dx.

Choosing k small enough such that

R4

4

l

∑
j=1

∫

Ωj

K(x)φa

∑
l
j=1 ωj

(

ωj

)2
dx ≤

1

2
min
j∈J

cj

when |K|∞ ≤ k. Due to Lemma 4.1(b), Ij

(

tjRωj

)

≤ cj for j ∈ J. But on the other hand, because

of t = (t1, t2, . . . , tl) ∈ ∂[0, 1]l , there must be some j0 ∈ J, tj0 ∈ {0, 1}. Thus Ij0 ≤ 0. Hence

Jλ(γ(t)) ≤
l

∑
j=1

cj − cj0 +
1

2
min
j∈J

cj ≤
l

∑
j=1

cj −
1

2
ρ.

By Lemma 4.3 and cλ,j → cj for j ∈ J, we have bλ,j ≥ ∑
l
j=1 cj −

1
4 ρ when λ is sufficiently large.

Combining this and the Palais-Smale condition of Jλ, we conclude that bλ,J is a critical value

of Jλ by using a standard deformation argument. Therefore, we have

Corollary 4.4. There exists k > 0 such that when |K|∞ ≤ k, bλ,J is a critical value of Jλ for large λ.
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5 Proof of Theorem 1.1

In this section, we find the so-called multi-bump solution uλ.

Firstly, we define

Dν
λ =







u ∈ E : ∥u∥λ,R3\Ω′
J
≤ ν,

∣

∣

∣

∣

∣

∣

∥u∥λ,Ω′
j
−

√

(

1

2
−

1

p

)−1

cj

∣

∣

∣

∣

∣

∣

≤ ν, j ∈ J







,

and

Jc
λ = {u ∈ E : Jλ(u) ≤ c} .

Then we have

Lemma 5.1. For 0 < ν <
1
3 minj∈J

√

(

1
2 −

1
p

)−1
cj, there exist k1(ν) > 0 and σ0 > 0, such that for

λ ≥ Λ1 sufficiently large and u ∈
(

D2ν
λ \Dν

λ

)

∩ J
cJ+µ
λ we have

∥∇Jλ(u)∥λ ≥ σ0 (5.1)

when |K|∞ < k(ν). Here

µ =
R4

4

l

∑
j=1

∫

Ωj

K(x)φa

∑
l
j=1 ωj

(

ωj

)2
dx

is defined in (4.3).

Proof. If the conclusion is false, we can assume that there exists un ∈
(

D2ν
λn
\Dν

λn

)

∩ J
cJ+µ
λ such

that ∥∇Jλn (un)∥λn
→ 0, λn → ∞.

Since (un) ⊂ J
cJ+µ
λn

, according to Lemma 3.3, we have for some u ∈ E, ∥un − u∥λn
→ 0 and

cJ + µ ≥ lim
n→∞

Jλn (un)

=
1

2

∫

ΩJ

(

|∇u|2 + V0(x)u2
)

dx +
1

4

∫

ΩJ

K(x)φa
uu2 −

1

p

∫

ΩJ

|u|pdx

= ∑
j∈J

1

2

∫

Ωj

(

|∇u|2 + V0(x)u2
)

dx +
1

4

∫

Ωj

K(x)φa
uu2dx −

1

p

∫

Ωj

|u|pdx,

where u ≡ 0 in R
3\ΩJ , and uj = u|Ωj

∈ H1
0

(

Ωj

)

is the weak solutions of −∆v + V0(x)v +

K(x)φa
uv = |v|p−2v in Ωj for j ∈ J. Hence, if uj ̸= 0, j ∈ J and tjuj ∈ Nj, we have

1

2

∫

Ωj

(

∣

∣∇uj

∣

∣

2
+ V0(x)u2

j

)

dx +
1

4

∫

Ωj

K(x)φa
uu2

j dx −
1

p

∫

Ωj

∣

∣uj

∣

∣

p
dx

= max
t>0

t2

2

∫

Ωj

(

∣

∣∇uj

∣

∣

2
+ V0(x)u2

j

)

dx +
t4

4

∫

Ωj

K(x)φa
uu2

j dx −
tp

p

∫

Ωj

∣

∣uj

∣

∣

p
dx

≥
t2

j

2

∫

Ωj

(

∣

∣∇uj

∣

∣

2
+ V0(x)u2

j

)

dx +
t4

j

4

∫

Ωj

K(x)φa
uu2

j dx −
t

p
j

p

∫

Ωj

∣

∣uj

∣

∣

p
dx

≥ Ij

(

tjuj

)

≥ cj.

Thus, we have two possibilities:

(1) there exist some j0 ∈ J such uj0 = u|Ωj0
= 0;
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(2) 1
2

∫

Ωj

( ∣

∣∇uj

∣

∣

2
+ V0(x)u2

j

)

dx + 1
4

∫

Ωj
K(x)φa

uu2
j dx − 1

p

∫

Ωj

∣

∣uj

∣

∣

p
dx ∈

[

cj, cj + µ
]

.

When (1) occurs, by Lemma 3.3(d) we obtain
∣

∣

∣

∣

∣

∣

∥un∥λn,Ω′
j0

−

√

(

1

2
−

1

p

)−1

cj0

∣

∣

∣

∣

∣

∣

→

√

(

1

2
−

1

p

)−1

cj0 ≥ 3ν,

which contradicts to the assumption un ∈ D2ν
λn
\Dν

λn
.

If (2) occurs, by Lemma 3.3(b), it is easy to check
(

1

2
−

1

p

)

∫

Ωj

(

∣

∣∇uj

∣

∣

2
+ V0(x)u2

j

)

dx +

(

1

4
−

1

p

)

∫

Ωj

K(x)φa
uu2

j dx

=
1

2

∫

Ωj

(

∣

∣∇uj

∣

∣

2
+ V0(x)u2

j

)

dx +
1

4

∫

Ωj

K(x)φa
uu2

j dx −
1

p

∫

Ωj

∣

∣uj

∣

∣

p
dx.

Thus,
(

1

2
−

1

p

)

∫

Ωj

(

|∇u|2 + V0(x)u2
)

dx +

(

1

4
−

1

p

)

∫

Ωj

K(x)φa
uu2dx ∈

[

cj, cj + µ
]

.

Since ∥u∥E ≤ M (cJ + µ), we can choose k1(ν) > 0 such that for j ∈ J,

(1) µ ≤ 1 and
√

(

1
2 −

1
p

)−1 (
cj + µ

)

≤
√

(

1
2 −

1
p

)−1
cj + ν;

(2)
[(

1
2 −

1
p

)−1
cj −

(

1
2 −

1
p

)−1( 1
4 −

1
p

) ∫

Ωj
K(x)φa

uu2dx
]1/2

≥
√

(

1
2 −

1
p

)−1
cj − ν, when |K|∞ <

k1(ν).

Hence we have
∣

∣

( ∫

Ωj
(|∇u|2 + V0(x)u2)dx

)1/2
−
√

(

1
2 −

1
p

)−1
cj

∣

∣ ≤ ν. By Lemma 3.3 again we

get that un ∈ D2ν
λn

as n is large, which is a contradiction.

Lemma 5.2. For 0 < ν <
1
3 minj∈J

(

1
2 −

1
p

)

cj, there exists k(ν) > 0, such that for λ ≥ Λ1 sufficiently

large, (1.1) possesses a solution satisfying uλ ∈ Dν
λ when |K|∞ < k(ν).

Proof. If the conclusion is false, we assume that Jλ has no critical point in Dν
λ ∩ J

cJ+µ
λ , here µ is

defined as that in Lemma 5.1. Since Jλ satisfies the Palais–Smale condition (see Lemma 3.2),

there is a constant σλ > 0 such that

∥∇Jλ(u)∥λ ≥ σλ, u ∈ Dν
λ ∩ J

cJ+µ
λ .

By (5.1) there holds, for λ ≥ Λ1 and |K|∞ ≤ k1(ν),

∥∇Jλ(u)∥λ ≥ σ0, u ∈
(

D2ν
λ \Dν

λ

)

∩ J
cJ+µ
λ .

Combining these, we could define a Lipschitz continuous function θ : E → [0, 1] such that

θ(u) = 1 for u ∈ D3ν/2
λ ; θ(u) = 0 for u /∈ D2ν

λ . Then, the vector field

V : J
cJ+µ
λ → E, V(u) = −θ(u)

∇Jλ(u)

∥∇Jλ(u)∥λ

is well defined and Lipschitz continuous. And moreover

∥V(u)∥λ ≤ 1, u ∈ E. (5.2)
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Now we consider the associated gradient flow η : [0,+∞)× J
cJ+µ
λ → J

cJ+µ
λ defined by

d

ds
η = V(η), η(0, u) = u.

By a standard argument, one can show that

d

ds
Jλ(η(s, u)) = −θ(u) ∥∇Jλ(u)∥λ ≤ 0 (5.3)

and

η(s, u) = u, s ≥ 0, u ∈ J
cJ+µ
λ \D2ν

λ . (5.4)

Recalling γ0 ∈ ΓJ , a path which is defined by (4.2). Because of (4.1), we have that

γ0(t) /∈ D2ν
λ , t ∈ ∂[0, 1]l .

Therefore, by using (5.4), we have

η (s, γ0(t)) = γ0(t), t ∈ ∂[0, 1]l .

Thus, η (s, γ0(·)) ∈ ΓJ for any s ≥ 0.

Since supp γ0 ⊂
⋃

j∈J Ωj for t ∈ [0, 1]l , thus Jλ (γ0(t)) and ∥γ0(t)∥
2
λ,Ω′

j
do not depend on

λ ≥ 0. Considering about

m0 = max
{

Jλ(u) : u ∈ γ0

(

[0, 1]l
)

\Dν
λ

}

, (5.5)

we also have that m0 does not depend on λ ≥ 0. Furthermore, we claim that there exists

k(ν) > 0 such that

m0 < cJ (5.6)

when |K|∞ ≤ k(ν). In fact, for any u = ∑
l
j=1 tjRωj ∈ γ0

(

[0, 1]l
)

\Dν
λ, there must exists some

j0 ∈ J such that
∣

∣

∣

∣

∣

∣

tj0 R
∥

∥ωj0

∥

∥

λ,Ω′
j
−

√

(

1

2
−

1

p

)−1

cj0

∣

∣

∣

∣

∣

∣

> ν.

According to the definition of ωj0 , we know that
∥

∥ωj0

∥

∥

2

λ,Ω′
j
=
(

1
2 −

1
p

)−1
cj0 . Thus,

∣

∣tj0 R − 1
∣

∣ >

(

1
2 −

1
p

)
1
2 c

− 1
2

j0
ν. So there exists δ(ν) > 0 such that

t2
j0

R2

2

∫

Ωj

(

∣

∣∇ωj0

∣

∣

2
+ V0(x)ω2

j0

)

dx −
t

p
j0

Rp

p

∫

Ωj

∣

∣ωj0

∣

∣

p
dx < cj0 − δ(ν).

And consequently,

Jλ(u) =
l

∑
j=1

Ij

(

tjRωj

)

+
1

4

l

∑
j=1

∫

Ωj

K(x)φa
u

(

tjRωj

)2
dx

<

l

∑
j=1

cj − δ(ν) +
R4

4

l

∑
j=1

∫

Ωj

K(x)φa

∑
l
j=1 ωj

ω2
j dx.
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Obviously, there is a k(ν) > 0 such that

R4

4

l

∑
j=1

∫

Ωj

K(x)φa

∑
l
j=1 ωj

ω2
j dx <

1

2
δ(ν) for |K|∞ ≤ k(ν).

Thus, Jλ(u) < cJ −
1
2 δ(ν) and we show the claim.

Next, we prove that there is k(ν) > 0 such that for some S > 0 and |K|∞ < k(ν),

max
t∈[0,1]l

Jλ (η (S, γ0(t))) ≤ max

{

m0, cJ −
1

4
σ0ν

}

. (5.7)

If this is true, according to Lemma 4.3 and η (S, γ0(·)) ∈ ΓJ we have

l

∑
j=1

cλ,j ≤ bλ,J ≤ max
t∈[0,1]L

Jλ (η (S, γ0(t))) ≤ max

{

m0, cJ −
1

4
σ0ν

}

< cJ ,

which contradicts to the fact ∑
l
j=1 cλ,j → cJ . Thus, we obtain the lemma.

Next, we want to prove (5.7). Setting u = γ0(t) ∈ E, if u /∈ Dν
λ, because of (5.3) and (5.5),

Jλ(η(s, u)) ≤ Jλ(u) ≤ m0 for all s ≥ 0. If u ∈ Dν
λ, we consider two possibilities:

(1) η(s, u) ∈ D3ν/2
λ for all s ∈ [0, S];

(2) η(s, u) ∈ ∂D3ν/2
λ for some s0 ∈ [0, S].

When (1) occurs, we have θ(η(s, u)) = 1 and ∥∇Jλ(η(s, u))∥λ ≥ min {σ0, σλ} when |K|∞ ≤
k1(ν) and λ ≥ Λ1 (see Lemma 5.1). Thus, setting S = σ0ν

2 min{σ0,σλ}
, by (5.3)

Jλ(η(S, u)) = Jλ(u) +
∫ S

0

d

ds
Jλ(η(s, u))ds

= Jλ(u)−
∫ S

0
θ(η(s, u)) ∥∇Jλ(η(s, u))∥λ ds

≤ cJ + µ − S min {σ0, σλ}

= cJ + µ −
1

2
σ0ν.

(5.8)

When (2) occurs, there exist 0 < s1 < s2 ≤ S such that

η (s1, u) ∈ ∂Dν
λ,

η (s2, u) ∈ ∂D3ν/2
λ ,

η(s, u) ∈ D3ν/2
λ \Dν

λ, s ∈ (s1, s2] .

(5.9)

So we have, for some j0 ∈ J,

∥η (s2, u)∥λ,R3\Ω′
J
=

3

2
ν or

∣

∣

∣

∣

∣

∣

∥η (s2, u)∥λ,Ω′
j0

−

√

(

1

2
−

1

p

)−1

cj0

∣

∣

∣

∣

∣

∣

=
3

2
ν.

We only see the latter case and the former one can be dealt with by a similar method. Follow-

ing from (5.9), we have
∣

∣

∣

∣

∣

∣

∥η (s1, u)∥λ,Ω′
j0

−

√

(

1

2
−

1

p

)−1

cj0

∣

∣

∣

∣

∣

∣

≤ ν,
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∥η (s2, u)− η (s1, u)∥λ,Ω′
j0

≥

∣

∣

∣

∣

∣

∣

∥η (s2, u)∥λ,Ω′
j0

−

√

(

1

2
−

1

p

)−1

cj0

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∥η (s1, u)∥λ,Ω′
j0

−

√

(

1

2
−

1

p

)−1

cj0

∣

∣

∣

∣

∣

∣

≥
1

2
ν.

This implies ∥η (s2, u)− η (s1, u)∥λ ≥ 1
2 ν.

According to (5.2),
∥

∥

d
ds η
∥

∥

λ
= ∥V(η)∥λ ≤ 1. Hence

1

2
ν ≤ ∥η (s2, u)− η (s1, u)∥λ ≤

∥

∥

∥

∥

∫ s2

s1

dη

ds
ds

∥

∥

∥

∥

λ

≤
∫ s2

s1

∥

∥

∥

∥

dη

ds

∥

∥

∥

∥

λ

ds ≤ s2 − s1.

According to (5.1), we have

Jλ(η(S, u)) = Jλ(u)−
∫ S

0
θ(η(s, u)) ∥∇Jλ(η(s, u))∥λ ds

≤ cJ + µ −
∫ s2

s1

σ0ds

≤ cJ + µ −
1

2
σ0ν.

(5.10)

Then, we can choose k(ν) > 0 such that µ ≤ 1
4 σ0ν if |K|∞ ≤ k(ν). Combining with (5.8)

and (5.10) we get (5.7). And hence Jλ possesses a critical point uλ in Dν
λ for λ ≥ Λ1 and

|K|∞ ≤ k(ν). According to Lemma 3.4, we know that uλ is a solution of (1.1).

Proof of Theorem 1.1. Setting uλn
(λn → ∞) be a sequence of solutions of (1.1) obtained by the

procedure above. Then, they are critical points of Jλn
with critical value bounded by cJ + µ.

According to Lemma 3.3, we get the conclusion.
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1 Introduction

This paper deals with necessary and sufficient conditions for local minimizers of one-dimen-

sional variational problems for vector-valued functions. We consider the functional

Φ : C1([a, b], R
N) → R : u 7→

∫ b

a
f (x, u(x), u′(x)) dx, (1.1)

where −∞ < a < b < ∞, u = (u1, u2, . . . , uN), and the Lagrangian1

f : [a, b]× R
N × R

N → R : (x, u, p) 7→ f (x, u, p)

is sufficiently smooth ( f ∈ C3 or f ∈ C2). We also fix a function u0 ∈ C1([a, b], R
N) and

(possibly empty) subsets IDa , IDb of the index set I := {1, 2, . . . , N}, and we look for conditions

guaranteeing that u0 is a local minimizer of Φ in the set

M := {u ∈ C1([a, b], R
N) : (ui − u0

i )(a) = 0 for i ∈ IDa , (ui − u0
i )(b) = 0 for i ∈ IDb }. (1.2)

BEmail: quittner@fmph.uniba.sk
1As in [8, pp. 11–12], by u we denote both the functions [a, b] → R

N and the independent variable in R
N , and

by p we denote the last argument of f ; see also similar notation L(t, x(t), ẋ(t)) vs. L(t, x, v) in [15], for example.
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This means that at x = a we consider Dirichlet endpoint constraints for the components ui

with i ∈ IDa , while the endpoints of the remaining components uj with j ∈ I \ IDa are free;

similarly for x = b. It is well known (see Proposition 2.1) that if u0 is a local minimizer of this

problem, then u0 has to satisfy the natural boundary conditions

∂ f

∂pj
(a, u0(a), (u0)′(a)) = 0 for j /∈ IDa and

∂ f

∂pj
(b, u0(b), (u0)′(b)) = 0 for j /∈ IDb .

We say that u0 is a weak (or strong, resp.) local minimizer if there exists ε > 0 such that

Φ(u0) ≤ Φ(u) for any u ∈ M satisfying ∥u − u0∥C1 < ε (or ∥u − u0∥C < ε, resp.), where

∥ · ∥C1 and ∥ · ∥C are the usual norms in C1 and C, respectively (see Definition 2.2 and the

subsequent comments for more details). If u0 is a steady state of a mechanical system with

potential energy Φ, and u0 is a weak (or strong) local minimizer of Φ, then u0 is stable with

respect to perturbations which are small in C1 (or C), respectively. On the other hand, if u0 is

not a minimizer, then u0 is unstable.

If IDa = IDb = I, i.e. if one considers the Dirichlet endpoint constraints for all components

and both ends, then necessary and sufficient conditions for u0 to be a minimizer belong to

the classical results in the calculus of variations, see [5, 7, 8], for example. They are based on

the Jacobi theory (conjugate points) or the Weierstrass theory (field of extremals and excess

function). In the general case such conditions are also known (see [15, 16] and the references

therein, and cf. also [17]); however, they use the notion of a coupled point which is more

complicated than the classical notion of a conjugate point. This might be the reason why – as

far as the author is aware – that general theory has not yet been applied in the elasticity theory,

for example. In the scalar case, another approach to problems with variable endpoints (and

a special class of Lagrangians) can be found in [12] but the conditions there are even more

complicated than those in [15, 16]. Reference [12] has been cited by several papers dealing

with problems in the elasticity theory: Some of those papers use the complicated theory in

[12] for scalar problems with special Lagrangians (see [10], for example), some use various

ad-hoc estimates to obtain at least partial results in the vector-valued case (when the theory

in [12] does not seem to apply, see [11], for example) and some refrain from considering

variable endpoints because of the complexity of the theory in [12], see [3], for example, where

the authors write: “. . . the application of the conjugate point test with nonclamped ends is a

delicate issue . . . ”. Difficulties arising in a scalar problem with variable endpoints have also

been analyzed in [14], for example.

The main purpose of this paper is to derive simple conditions for u0 to be a minimizer,

and to show how they can be applied to particular problems.

In Section 3 we derive necessary and sufficient conditions for weak minimizers by mod-

ifying the Jacobi theory (see Theorem 3.4 and also Remark 7.1 for the comparison of our

conditions with those in [15, 16]). In Section 4 we use the results from Section 3 to find op-

timal conditions for the stability of a naturally straight Kirchhoff rod under various types of

endpoint constraints. The reasons for this particular application are the following:

• We show that our general results can easily be applied to vector-valued problems in the

elasticity theory.

• We solve some open problems (and correct an erroneous result) in [11].

• We show how the choice of endpoint constraints influences the stability of the rod.
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In Section 5 we use the Weierstrass theory to derive conditions for weak, strong and global

minimizers, see Theorem 5.2. In this case we restrict our applications in Section 6 to the scalar

case N = 1. The reason for this restriction is the following: If N = 1 and the Lagragian f is

independent of its first variable x, then the phase plane analysis of the corresponding Du Bois-

Reymond equation yields a very simple and efficient way to prove (or disprove) the existence

of a suitable field of extremals; hence it is sufficient to verify the nonnegativity of the excess

function in order to check our conditions. In particular, this approach does not require the

verification of sufficient conditions based on the Jacobi theory and it can be used even if we

do not know an explicit formula for u0. In Section 6 we first determine the stability of a planar

weightless inextensible and unshearable rod (see Example 6.3). This problem has already been

analyzed in [1,10], for example, but our analysis is simpler than that in [10] and more complete

than that in [1]. The notions of weak and strong minimizers are equivalent for functionals

Φ in Section 4 and Example 6.3 (see Remark 4.2(vi) and Proposition 2.3, respectively). To

illustrate various interesting features of minimizers in a more general case and demonstrate

the applicability of our theory, in Example 6.5 we consider Lagrangians of the form f (u, p) =

u2 + g(p), where g is a double-well function. In particular, the corresponding functional can

possess both strong (even global) minimizers and minimizers which are weak but not strong.

Some of our results in the scalar case N = 1 have been obtained in the Master thesis [2].

2 Preliminaries

Throughout this paper we will use the symbols Φ, f , u0, a, b, N, I, IDa and IDb introduced in the

Introduction. The partial derivatives of f will be denoted by fx, fui
, fpi

, fpi pj
, . . .

Given f ∈ { f , fx, fui
, fpi

, fpi pj
, . . . }, we will use the notation2

f0(x) := f(x, u0(x), (u0)′(x)).

If x ∈ {a, b} and W is a space of functions [a, b] → R
N , then we set

INx := I \ IDx ,

R
N
D,x := {ξ ∈ R

N : ξi = 0 for i ∈ IDx },

R
N
N ,x := {ξ ∈ R

N : ξi = 0 for i ∈ INx },

WD,x := {v ∈ W : v(x) ∈ R
N
D,x},

WD := WD,a ∩ WD,b.

In particular, if W = C1 = C1([a, b], R
N), then

C1
D = {v ∈ C1([a, b], R

N) : vi(a) = 0 for i ∈ IDa , vi(b) = 0 for i ∈ IDb } (2.1)

is the space of C1-test functions. (Notice that the set M in (1.2) satisfies M = u0 + C1
D.)

The norm in a general Banach space X will be denoted by ∥ · ∥X; the norm in W1,2 will also

be denoted by ∥ · ∥1,2. In particular, if X = C1 = C1([a, b], R
N) or X = C = C([a, b], R

N), then

∥u∥C1 = maxx∈[a,b] |u(x)| + maxx∈[a,b] |u′(x)| or ∥u∥C = maxx∈[a,b] |u(x)|, respectively, where

|u(x)| denotes the Euclidean norm of u(x) ∈ R
N . We also set Bε := {ξ ∈ R

N : |ξ| < ε}.

2The superscript 0 in f0 denotes evaluation of f along the reference arc u0; cf. similar notation L̂(t) =
L(t, x̂(t), ˙̂x(t)) in [15] or f(x) = f(x, u(x), u′(x)) in [8, formulas (30), (39) in Section 2.3, pp. 114–116]. The ad-

vantages of our notation will become evident in Section 6: See the notation introduced in Theorem 6.1.
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We will assume that u0 is a critical point of Φ in the set u0 +C1
D, i.e. Φ′(u0)h = 0 for any test

function h ∈ C1
D, where Φ′ denotes the Fréchet derivative of Φ. The following proposition is

well known, but for the reader’s convenience we explain the idea of its proof in the Appendix.

Proposition 2.1. Let f ∈ C1 and let u0 be a critical point of Φ in u0 + C1
D. Then u0 is an extremal

(i.e. it satisfies the Euler equations d
dx ( f 0

pi
) = f 0

ui
, i = 1, 2, . . . , N), and u0 also has to satisfy the natural

boundary conditions

f 0
pj
(a) = 0 for j ∈ INa and f 0

pj
(b) = 0 for j ∈ INb . (2.2)

If fpi
∈ C1 for i = 1, 2, . . . , N, and the strengthened Legendre condition

(∃c0
> 0)

N

∑
i,j=1

f 0
pi pj

(x)ξiξ j ≥ c0|ξ|2, ξ ∈ R
N , x ∈ [a, b], (2.3)

is true, then u0 ∈ C2.

It is known that the Legendre condition (i.e. condition (2.3) with c0 = 0) is necessary for u0

to be a minimizer, but even the strengthened Legendre condition is not sufficient, in general.

Assuming that

f ∈ C3 satifies (2.3), where u0 ∈ C1([a, b], R
N) is an extremal satisfying (2.2), (2.4)

and denoting ∑k = ∑
N
k=1, we set

Ψ(h) :=
∫ b

a
F(x, h(x), h′(x)) dx, h ∈ W1,2([a, b], R

N), (2.5)

where

F = F(x, u, p) := ∑
i,j

(

f 0
pi pj

(x)pi pj + f 0
piuj

(x)piuj + f 0
ui pj

(x)ui pj + f 0
uiuj

(x)uiuj

)

. (2.6)

If h ∈ C1, then Ψ(h) = Φ′′(u0)(h, h), i.e. Ψ is the second variation of Φ at u0. In addition, if

h ∈ C2, then integration by parts yields

Ψ(h) =
∫ b

a
∑

i

(Aih)hi dx + ∑
i

(Bih)hi

∣
∣
∣

b

a
, (2.7)

where

Aih := − d

dx
(Bih) + Cih, Bih := ∑

j

(

f 0
pi pj

h′j + f 0
piuj

hj

)

, Cih := ∑
j

(

f 0
ui pj

h′j + f 0
uiuj

hj

)

. (2.8)

Set also

Ah := (A1h, . . . ,ANh), Bh := (B1h, . . .BNh), fp := ( fp1
, . . . , fpN

), fu = ( fu1
, . . . , fuN

).

The (vector-valued) second-order linear differential equation Ah = 0 is called the Jacobi

equation (for Φ and u0): it will play a fundamental role in the study of positive definiteness of

Ψ. Notice also that the Jacobi equation is the Euler equation for functional Ψ. More precisely,

by using the symmetry relations fpi pj
= fpj pi

, fpiuj
= fuj pi

and fuiuj
= fujui

we obtain

Fpi
(x, h(x), h′(x)) = 2Bih(x), Fui

(x, h(x), h′(x)) = 2Cih(x), (2.9)
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hence

2Aih(x) = − d

dx
Fpi

(x, h(x), h′(x)) + Fui
(x, h(x), h′(x)). (2.10)

Notice also that, given h, w ∈ W1,2, (2.9) and the symmetry of the second-order derivatives of

f mentioned above imply

Ψ′(h)w =
∫ b

a
∑

i

(
Fpi

(x, h(x), h′(x))w′
i(x) + Fui

(x, h(x), h′(x))wi(x)
)

dx

= 2
∫ b

a
∑

i

(
Bih · w′

i + Cih · wi

)
dx = 2

∫ b

a
∑

i

(
Biw · h′i + Ciw · hi

)
dx = Ψ′(w)h.

(2.11)

Definition 2.2. Let w ∈ M, where M is a subset of C1([a, b], R
N). The function w is called a

weak or strong local minimizer in M if there exists ε > 0 such that Φ(v) ≥ Φ(w) for any v ∈ M
satisfying ∥v − w∥C1 < ε or ∥v − w∥C < ε, respectively.

Let w ∈ N , where N is a subset of W1,2([a, b], R
N). The function w is called a local

minimizer in N if there exists ε > 0 such that Φ(v) ≥ Φ(w) for any v ∈ N satisfying ∥v∥1,2 < ε.

If the inequalities Φ(v) ≥ Φ(w) in the definitions above are strict for v ̸= w, then the

minimizer w is called strict.

Since the adjectives weak and strong are not meaningful in the case of global minimizers,

we often omit the word “local” in the notions of weak and strong local minimizers. Each

strong minimizer is a weak minimizer but the opposite is not true, in general. For example,

if N = 1 and f (x, u, p) = p2 + p3, then u0 ≡ 0 is a weak but not strong minimizer of Φ in

u0 + C1
D for any choice of a, b, IDa and IDb (see also Example 6.5 for a less trivial example). On

the other hand, the following Proposition 2.3 and Remark 4.2(vi) show that in some cases the

notions of weak and strong minimizers are equivalent. The choice of the class of Lagrangians

in Proposition 2.3 is motivated by Example 6.3, where we consider the stability of a planar

rod. Proposition 2.3 is true for any choice of a, b, IDa and IDb ; its proof is postponed to the

Appendix.

Proposition 2.3. Let N = 1 and f (x, u, p) = (p − K)2 + g(u), where K ∈ R and g ∈ C1(R). If

u0 ∈ C1 is a weak minimizer, then it is a strong minimizer.

The following proposition is a consequence of well known facts (see [5, 8], for example).

The assumptions in that proposition are much stronger than necessary, but the proposition

will be sufficient for our purposes (see Remark 4.2(vi), Section 6 and the proof of Proposi-

tion 3.5).

Proposition 2.4.

(i) Let f ∈ Ck, k ≥ 2.

If u0 ∈ C1 is a critical point of Φ in u0 + C1
D and (2.3) is true, then u0 ∈ Ck and u0 satisfies the

Du Bois-Reymond equation

d

dx
( f 0 − (u0)′ · f 0

p) = f 0
x in [a, b]. (2.12)

Conversely, if u0 ∈ C2 satisfies (2.12) and (u0)′ ̸= 0 a.e., then u0 is an extremal.

(ii) Let f ∈ C1 satisfy the growth condition (1 + |p|)| fp|+ | fu| ≤ M(|u|)(1 + |p|)2, where M :

[0, ∞) → [0, ∞) is nondecreasing. Then Φ ∈ C1(W1,2). In addition, if u0 ∈ W1,2 is a local

minimizer of Φ in u0 + W1,2
D , then there exists C ∈ R

N such that

f 0
p(x) =

∫ x

a
f 0
u(ξ) dξ + C for a.e. x ∈ [a, b].
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3 Jacobi theory

In this section we will prove necessary and sufficient conditions for weak minimizers by

modifying the classical Jacobi theory. Throughout this section we assume (2.4).

The following proposition is well known, but for the reader’s convenience we provide its

proof in the Appendix.

Proposition 3.1. Assume (2.4) and let Ψ be defined by (2.5).

(i) If Ψ is positive definite in W1,2
D , then u0 is a strict weak minimizer in u0 + C1

D.

(ii) If Ψ(h) < 0 for some h ∈ W1,2
D , then u0 is not a weak minimizer in u0 + C1

D.

We will consider the scalar case first. Assume that

h is a nontrivial solution of the Jacobi equation Ah = 0. (3.1)

Then the following classical result for problems with Dirichlet endpoint constraints is well

known.

Theorem 3.2. Assume (2.4) with N = 1 and (3.1). Let INa = INb = ∅ and h(a) = 0.

(i) If h(y) = 0 for some y ∈ (a, b), then u0 is not a weak minimizer.

(ii) If h(y) ̸= 0 for any y ∈ (a, b], then u0 is a strict weak minimizer.

Our analogue in the case of variable endpoints is the following theorem.

Theorem 3.3. Assume (2.4) with N = 1 and (3.1). Let INa = INb = {1} and Bh(a) = 0.

(i) If h(y) = 0 for some y ∈ (a, b] or Bh(b)h(b) < 0, then u0 is not a weak minimizer.

(ii) If h(y) ̸= 0 for any y ∈ (a, b] and Bh(b)h(b) > 0, then u0 is a strict weak minimizer.

In fact, a slight generalization of Theorem 3.3(ii) has been proved in [2]: The initial condi-

tion Bh(a) = 0 can be replaced with Bh(a)h(a) ≤ 0. Unfortunately, the method of the proof

in [2] does not seem to be easily extendable to the vector-valued case.

Theorems 3.2 and 3.3 are special cases of the following general theorem.

Theorem 3.4. Assume (2.4). Let h(1), . . . , h(N) be linearly independent solutions of the Jacobi equation

Ah = 0 satisfying the initial conditions h(a) ∈ R
N
D,a, Bh(a) ∈ R

N
N ,a. Set

D(x) := det(h(1)(x), . . . , h(N)(x)), H := span(h(1), . . . , h(N)), H0 := {h ∈ H : h(b) = 0}.

(i) If D(x) = 0 for some x ∈ (a, b) or

INb ̸= ∅ and Bh(b) · h(b) < 0 for some h ∈ HD,b,

then u0 is not a weak minimizer.

(ii) If D ̸= 0 in (a, b] and

either INb = ∅ or Bh(b) · h(b) > 0 for any h ∈ HD,b \ {0},

then u0 is a strict weak minimizer.
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(iii) Let D ̸= 0 in (a, b), D(b) = 0 (hence H0 ̸= {0}), and INb ̸= ∅. If

there exists h ∈ H0 such that Bih(b) ̸= 0 for some i ∈ INb , (3.2)

then u0 is not a weak minimizer. If IDb = ∅, then (3.2) is always true.

The proof of Theorem 3.4 is based on a modification of the classical Jacobi theory, and

this is also true in the case of the corresponding proof in [16]. However, our conditions in

Theorem 3.4 are simpler than those in [15, 16], see Remark 7.1 in the Appendix.

In order to prove Theorem 3.4, we need some preparation. Given y ∈ (a, b], let

Xy := {h ∈ W1,2([a, b], R
N) : h(a) ∈ R

N
D,a, h(x) = 0 for x ≥ y}

be endowed with the norm ∥h∥Xy := (
∫ b

a ∑i,j f 0
pi pj

h′ih
′
j dx)1/2 (which is equivalent to the stan-

dard norm in W1,2 for h ∈ Xy due to (2.3) and the boundary condition h(b) = 0), and let Sy

denote the unit sphere in Xy. If ỹ ∈ (y, b], then Xy ⊂ Xỹ, hence Sy ⊂ Sỹ. Set also

λ1 = λ1(y) := inf
h∈Sy

Ψ(h) = 1 + inf
h∈Sy

Ψ̂(h), (3.3)

where

Ψ̂(h) :=
∫ b

a
∑
i,j

(

f 0
piuj

h′ihj + f 0
ui pj

hih
′
j + f 0

uiuj
hihj

)

dx.

Since Sy ⊂ Sỹ if y < ỹ, the function λ1 is nonincreasing. In addition, one can easily show that

λ1 is continuous, and the estimate

|h(x)| =
∣
∣
∣

∫ y

x
h′(ξ) dξ

∣
∣
∣ ≤

(∫ y

x
|h′(ξ)|2 dξ

)1/2√
y − x

≤ 1√
c0

(∫ b

a
∑
i,j

f 0
pi pj

h′ih
′
j dξ

)1/2√
y − a =

1√
c0

√
y − a

for h ∈ Sy and x ∈ (a, y) implies limy→a+ λ1(y) = 1.

Proposition 3.5. Let D be as in Theorem 3.4 and y ∈ (a, b].

(i) If λ1(y) = 0, then D(y) = 0 and λ1(z) < 0 for z ∈ (y, b]. If D(y) = 0, then λ1(y) ≤ 0.

(ii) If h ∈ Xb, then Ψ(h) ≥ λ1(b)∥h∥2
Xb

. If λ1(b) < 0, then there exists h ∈ Xb such that Ψ(h) < 0.

Proof. Let λ1(y) = 0 and let By denote the closed unit ball in Xy. Since Ψ̂ is weakly sequentially

continuous, there exists hy ∈ By such that Ψ̂(hy) = infBy Ψ̂ = −1. We have hy ∈ Sy (otherwise

thy ∈ By for some t > 1, and Ψ̂(thy) = t2Ψ̂(hy) < infBy Ψ̂, which yields a contradiction). Since

Ψ(hy) = infSy
Ψ = 0, hy is a global minimizer of Ψ in Xy. Notice that F ∈ C1 satisfies the

growth condition

(1 + |p|)|Fp(x, u, p)|+ |Fu(x, u, p)| ≤ C(1 + |p|)(|u|+ |p|) ≤ 2C(1 + |u|2)(1 + |p|2),

where C depends only on the sup-norm of f 0
pi pj

, f 0
piuj

, f 0
ui pj

, f 0
uiuj

, hence Proposition 2.4(ii) and

(2.9) imply

2Bihy(x) = Fpi
(x, hy(x), h′y(x)) =

∫ x

a
Fui

(ξ, hy(ξ), h′y(ξ)) dξ + ci =
∫ x

a
2Cihy dξ + ci (3.4)
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for a.e. x ∈ [a, y]. Since the right-hand side of (3.4) is a continuous function of x, f ∈ C3

and (2.3) is true (hence the matrix f 0
pi pj

is invertible and the inverse matrix is a continuous

function of x), we see that the restriction of hy to [a, y] is C1. Denote this restriction by h̄y

and set C1
y := {w ∈ C1([a, y]) : w(a) ∈ R

N
D,a, w(y) = 0}, Ψy(h) =

∫ y
a F(x, h(x), h′(x)) dx.

Then h̄y is a critical point of Ψy in h̄y + C1
y = C1

y. Now Proposition 2.1, (2.10) and (2.9)

imply that h̄y is C2, it satisfies the Jacobi equation Ah = 0 in [a, y] and the natural boundary

conditions Bh(a) ∈ R
N
N ,a. Since we also have hy(a) ∈ R

N
D,a, there exists α ∈ R

N \ {0} such that

hy = ∑k αkh(k) on [a, y], where h(k) are as in Theorem 3.4. Since hy(y) = 0, we have D(y) = 0.

Next assume on the contrary that λ1(y) = 0 = λ1(z) for some z ∈ (y, b]. Then the

minimizer hy is a global minimizer of Ψ in Xz. Similarly as above we deduce that hy ∈
C2([a, z]) and hy solves the Jacobi equation in [a, z]. Consequently, hy(y) = h′y(y) = 0, which

yields a contradiction with the uniqueness of solutions of the initial value problem for the

Jacobi equation.

Next assume that D(y) = 0. Then there exists α = (α1, . . . , αN) ∈ R
N \ {0} such that

h := ∑k αkh(k) satisfies h(y) = 0, hence if we set h̃(x) := h(x) for x ≤ y and h̃(x) := 0

otherwise, then h̃ ∈ Xy. In addition, using Aih = 0, Bih(a) ∈ R
N
N ,a, h(a) ∈ R

N
D,a and h(y) = 0

we obtain

Ψ(h̃) =
∫ b

a
F(x, h̃(x), h̃′(x)) dx =

∫ y

a
F(x, h(x), h′(x)) dx =

∫ y

a
∑

i

(Aih)hi dx + ∑
i

(Bih)hi

∣
∣
∣

y

a
= 0,

hence λ1(y) ≤ 0.

If h ∈ Xb \ {0}, then Ψ(h) = ∥h∥2
Xb

Ψ(h/∥h∥Xb
) ≥ λ1(b)∥h∥2

Xb
by the definition of λ1. If

λ1(b) < 0, then the definition of λ1 implies the existence of h ∈ Sb such that Ψ(h) < 0.

Proof of Theorem 3.4. We will show that

the assumptions in (i) (or (iii)) imply Ψ(h) < 0 for some h ∈ W1,2
D , (3.5)

while

the assumptions in (ii) guarantee that Ψ is positive definite in W1,2
D , (3.6)

hence the assertions in Theorem 3.4 will follow from Proposition 3.1.

(i) If D(x) = 0 for some x ∈ (a, b), then Proposition 3.5(i) implies λ1(x) ≤ 0 and λ1(b) < 0,

hence Proposition 3.5(ii) implies the existence of h ∈ Xb ⊂ W1,2
D such that Ψ(h) < 0.

If INb ̸= ∅ and Bh(b) · h(b) < 0 for some h ∈ HD,b ⊂ W1,2
D , then Ah = 0, hi(a) = 0 for

i ∈ IDa and Bih(a) = 0 for i ∈ INa , hence (2.7) implies

Ψ(h) = Bh · h
∣
∣
∣

b

a
= Bh(b) · h(b) < 0.

(ii) Assume that D ̸= 0 in (a, b]. Then Proposition 3.5 implies λ1(b) > 0 and Ψ(h) ≥
λ1(b)∥h∥2

Xb
for h ∈ Xb. If INb = ∅, then Xb = W1,2

D , hence we are done.

Next assume that INb ̸= ∅ and Bh̃(b) · h̃(b) > 0 for any h̃ ∈ HD,b \ {0} (hence Bh̃(b) · h̃(b) ≥
c1∥h̃∥2

1,2 for some c1 > 0 due to dim HD,b < ∞), and let h ∈ W1,2
D be fixed. Since D(b) ̸= 0,

there exists α ∈ R
N such that h̃ := ∑k αkh(k) satisfies h̃(b) = h(b). In particular, h̃ ∈ HD,b.

Set ĥ := h − h̃. Then ĥ ∈ Xb, hence Ψ(ĥ) ≥ λ1(b)∥ĥ∥2
Xb

. In addition, Ψ(h̃) = Bh̃(b) · h̃(b) ≥
c1∥h̃∥2

1,2. Since Ψ is a quadratic functional, we have Ψ′′(h̃)(ĥ, ĥ) = 2Ψ(ĥ) and Ψ′′′ = 0. Using

(2.11) and integration by parts we also obtain

Ψ′(ĥ)h̃ = Ψ′(h̃)ĥ = 2
∫ b

a
Ah̃ · ĥ dx + 2Bh̃ · ĥ

∣
∣
∣

b

a
= 0,
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hence there exists c > 0 such that

Ψ(h) = Ψ(h̃ + ĥ) = Ψ(h̃) + Ψ′(h̃)ĥ +
1

2
Ψ′′(h̃)(ĥ, ĥ) = Ψ(h̃) + Ψ(ĥ) ≥ c∥h∥2

1,2.

(iii) Let h ∈ H0 and Bih(b) ̸= 0 for some i ∈ INb . Then Ah = 0, h(a) ∈ R
N
D,a, Bh(a) ∈ R

N
N ,a

and h(b) = 0, hence

Ψ(h) =
∫ b

a
Ah · h dx + Bh · h

∣
∣
∣

b

a
= 0.

Notice also that h ̸= 0 due to Bih(b) ̸= 0. Since D ̸= 0 in (a, b), D(b) = 0, limy→a+ λ1(y) = 1

and λ1 is continuous and nonincreasing, Proposition 3.5(i) implies λ1(b) = 0, hence h is a

global minimizer of Ψ in Xb. Choose h̃ ∈ C1
D with h̃(a) = 0, h̃j(b) = δij for j = 1, 2, . . . , N.

Then

Ψ′(h)h̃ = 2
∫ b

a
Ah · h̃ dx + 2Bh · h̃

∣
∣
∣

b

a
= 2Bih(b) ̸= 0,

hence

Ψ(h + εh̃) = εΨ′(h)h̃ + o(ε) < 0

provided |ε| is small enough and εBih(b) < 0.

If IDb = ∅ and h ∈ H0 \ {0}, then Ah = 0 and h(b) = 0, hence the uniqueness of the

initial value problem for the Jacobi equation implies the existence of i ∈ INb = I such that

Bih(b) ̸= 0.

Remark 3.6.

(i) If Ψ is positive semidefinite but not positive definite, then there exists h∗ ∈ W1,2
D \ {0}

such that 0 = Ψ(h∗) = inf
W1,2

D
Ψ and h∗ can be determined from our analysis. For

example, if N = 1 and IDa = IDb = ∅ (cf. Theorem 3.3), then h∗ is a positive (or negative)

solution of the Jacobi equation satisfying Bh∗(a) = Bh∗(b) = 0. If Φ depends smoothly

on a parameter θ, u0 is a critical point of Φ for any θ, and u0 is (or is not, respectively)

a weak minimizer for θ > θ∗ (or θ < θ∗, respectively), then the critical parameter θ∗

corresponds to the case where h∗ exists. (Such situation occurs, for example, in the

study of stability of a twisted rod in Section 4.) In this case one can expect bifurcation

for the problem Φ′(u) = 0 at θ = θ∗ in the direction of h∗, cf. [6, Theorem 5.6].

(ii) Let h(k), k = 1, 2, . . . , N, be as in Theorem 3.4, ξ ∈ R
N and hξ := ∑k ξkh(k). Set A :=

(akl)
N
k,l=1, where akl = Bh(k)(b) · h(l)(b), and

ΞD := {ξ ∈ R
N : hξ(b) ∈ R

N
D,b}.

Then Bhξ(b) · hξ(b) = Aξ · ξ, i.e. the condition Bh(b) · h(b) > 0 for any h ∈ HD,b \ {0}
in Theorem 3.4(ii), for example, is equivalent to Aξ · ξ > 0 for any ξ ∈ ΞD \ {0}. In

particular, if IDb = ∅ (and D(b) ̸= 0), then that condition is equivalent to the positive

definiteness of the matrix A. Notice also that akl = alk due to 2akl = Ψ′(h(k))h(l) and

Ψ′(h(k))h(l) = Ψ′(h(l))h(k).

(iii) Assertions (3.6) or (3.5) show that some of the assumptions in Theorem 3.4 are suffi-

cient for the positivity or the negativity of Ψ, respectively. We will show that those

assumptions are also necessary, at least in some cases.
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Let Ψ be positive definite in W1,2
D . Since Xb ⊂ W1,2

D , Ψ is also positive definite in Xb and

Proposition 3.5(i) implies D ̸= 0 in [a, b]. If INb ̸= ∅ and h ∈ HD,b \ {0}, then h ∈ W1,2
D ,

Bh(a) ∈ R
N
N ,a, Ah = 0, hence

0 < Ψ(h) =
∫ b

a
Ah · h dx + Bh · h

∣
∣
∣

b

a
= Bh(b) · h(b),

so that the assumptions in Theorem 3.4(ii) are satisfied. This fact and (3.6) show that the

positive definiteness of Ψ in W1,2
D and the assumptions of Theorem 3.4(ii) are equivalent.

Let Ψ(h̄) < 0 for some h̄ ∈ W1,2
D and

IDb = ∅ or INb = ∅. (3.7)

Assume that the assumptions of Theorem 3.4(i) are not satisfied. Then D ̸= 0 in (a, b)

(hence λ1(b) ≥ 0 due to Proposition 3.5(i)) and either INb = ∅ or Bh(b) · h(b) ≥ 0 for

any h ∈ HD,b. If INb = ∅, then W1,2
D = Xb, hence Ψ ≥ 0 in W1,2

D , which is a contradiction.

Consequently, INb ̸= ∅, Bh(b) · h(b) ≥ 0 for any h ∈ HD,b and IDb = ∅ (due to (3.7)). If

D(b) ̸= 0, then there exists h̃ ∈ HD,b such that h̃(b) = h̄(b). Set ĥ := h̄ − h̃ ∈ Xb. Then

similarly as in the proof of Theorem 3.4(ii) we obtain

0 > Ψ(h̄) = Ψ(h̃ + ĥ) = Ψ(h̃) + Ψ(ĥ) ≥ Bh̃(b) · h̃(b) + λ1(b)∥ĥ∥2
Xb

≥ 0,

which is a contradiction. Consequently, D(b) = 0. Since IDb = ∅ implies (3.2), all

assumptions of Theorem 3.4(iii) are satisfied. These considerations and (3.5) show that if

(3.7) is true, then the condition Ψ(h̄) < 0 for some h̄ ∈ W1,2
D is satisfied if and only if the

assumptions of Theorem 3.4(i) or the assumptions of Theorem 3.4(iii) are satisfied.

4 Stability of a twisted rod

In this section we use Theorem 3.4 in order to determine the stability of an unbuckled state of

an inextensible, unshearable, isotropic Kirchhoff rod. Under suitable assumptions the strain

energy of the rod is given by

Φ(u) =
∫ 1

0

(
A

2

(
(u′

1)
2 + (u′

2)
2 sin2 u1

)
+

C

2
(u′

3 + u′
2 cos u1)

2 + FL2 sin u1 cos u2

)

dx,

where u1, u2, u3 are so called Euler angles describing the orientation of the director basis,

A, C > 0 are constants, L is the rod-length and F ∈ R is an external terminal load; the

rod is oriented horizontally (along the x axis), see [11, (9)]. The unbuckled state is given by

u0(x) := (π
2 , 0, 2πMx) where M is a twist parameter. Notice that u0 is an extremal satisfying

the natural boundary conditions f 0
pi
(x) = 0 for i = 1, 2 and x = 0, 1. The stability of u0 was

studied in [11] under the Dirichlet boundary conditions u3(x) = u0
3(x) for x = 0, 1, and one

of the following sets of boundary conditions for u1, u2:

u1(0) = u1(1) = π/2, u2(0) = u2(1) = 0, (4.1)

u1(0) = u1(1) = π/2, u′
2(0) = u′

2(1) = 0, (4.2)

u′
1(0) = u′

1(1) = 0, u′
2(0) = u′

2(1) = 0. (4.3)

The results in [11] are essentially optimal in case (4.1), but the results in cases (4.2) and (4.3) are

only partial, leaving several open problems. Notice that the Neumann boundary conditions
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are not the same as the natural boundary conditions in general (see [13] for related issues), but

one can easily show (see Proposition 7.2 and Remark 7.3 in the Appendix) that the problem of

stability of u0 considered in [11] in cases (4.2) and (4.3) is equivalent to the question whether u0

is a weak minimizer of Φ in u0 + C1
D with IN0 = IN1 = {2} and IN0 = IN1 = {1, 2}, respectively;

hence we can use Theorem 3.4 in order to solve those problems. In fact, we will consider all

possible subsets IN0 , IN1 of {1, 2}, and in each case we will find the borderline between the

stability and instability (i.e. between the situations when u0 is and is not a weak minimizer,

respectively). On the other hand, we will always assume 3 ∈ ID0 ∩ ID1 , i.e. we will always

consider the Dirichlet boundary conditions for the third component u3.

In order to have a more graphic notation, given IN0 , IN1 ⊂ {1, 2}, we denote the correspond-

ing case by
(c1

0c1
1

c2
0c2

1

)
, where ci

j = N if i ∈ INj , ci
j = D if i ∈ IDj , i = 1, 2, j = 0, 1. For example,

(DD
NN

)
corresponds to the case IN0 = IN1 = {2}, i.e. (4.2), and

(NN
NN

)
corresponds to the case

IN0 = IN1 = {1, 2}, i.e. (4.3). Set also

α :=
2πCM

A
, β := −FL2

A
, γ :=

√
∣
∣
∣β − 1

4
α2
∣
∣
∣, δ :=

α

2
, θ :=

2γδ

γ2 + δ2
. (4.4)

We will show that we may assume α > 0, and for any
(c1

0c1
1

c2
0c2

1

)
with ci

j ∈ {D,N} we will find a

function g = g
c1

0c1
1

c2
0c2

1
: (0, ∞) → R : α 7→ β which describes the borderline between stability and

instability. In the particular cases (4.1), (4.2) and (4.3) we will also use the notation

gD := gDD
DD , gM := gDD

NN , and gN := gNN
NN ,

respectively (the notation gM reflects the fact that case (4.2) is called “Mixed” in [11, (13)]).

Proposition 4.1. Let u0 be as above, α > 0, and let IN0 , IN1 ⊂ {1, 2} be fixed. Then there exists

a continuous function g : (0, ∞) → R having the properties mentioned above, i.e. if β > g(α) (or

β < g(α), resp.), then u0 is a strict weak minimizer (or is not a weak minimizer, resp.).

(i) Let ID0 ∩ {1, 2} ̸= ∅ ̸= ID1 ∩ {1, 2}. Then

gDD
ND = gDD

DN = gDN
DD = gND

DD , gDN
ND = gND

DN , gDD
NN = gNN

DD (= gM), (4.5)

gD(α) =
α2

4
− π2, gDD

ND(α) =
α2

4
− π2

4
,

gDN
ND(α) = (k + 1

2 )π(α − (k + 1
2 )π) if α ∈ [2kπ, 2(k + 1)π], k = 0, 1, 2, . . . ,

gM(α) = kπ(α − kπ) if α ∈ [(2k − 1)π, (2k + 1)π], k = 0, 1, 2, . . . .







(4.6)

(ii) Let either ID0 ∩ {1, 2} = ∅ or ID1 ∩ {1, 2} = ∅. Then

gND
ND = gDN

DN , gNN
ND = gNN

DN , gND
NN = gDN

NN , (4.7)
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gN(α) = inf

{

β ≥ 1

2
α2 : (1 − θ2) cosh(2γ) + θ2 cos(2δ) = 1

}

∈
[

1

2
α2, α2

]

,

gND
ND(α) =







sup{β ∈ ( 1
4 α2, 1

2 α2) : (α2 − 2β) cosh(2γ) = 2β} if α > 2,
1
4 α2 if α = 2,

sup{β ∈ ( 1
4 (α

2 − π2), 1
4 α2) : (α2 − 2β) cos(2γ) = 2β} if α ∈ (0, 2),

gNN
ND (α) = inf{β ≥ βα : (γ2 − δ2) sinh(2γ) = 2γδ sin(2δ)}, βα :=

{
1
2 α2 if α ≤ π,

gND
ND(α) if α > π,

gND
NN (α) =







inf{β ≥ gND
ND(α) : (γ2 − δ2) sinh(2γ) = −2γδ sin(2δ)} if α ≥ α0,

inf{β ≥ gND
ND(α) : ξ2

1 sin ξ2 cos ξ1 = ξ2
2 sin ξ1 cos ξ2} if α ∈ ( 1

2 π, α0),

0 if α ∈ (0, 1
2 π],

where ξi := − 1
2 α ± γ and α0 > 0 is defined by α0 = 2 sin α0.

Remark 4.2. (i) If u0 is a weak minimizer of Φ with given IN0 , IN1 (and the borderline function

g), then it remains a weak minimizer if we replace INx with any subset of INx for x = 0, 1,

since the set C1
D becomes smaller. Therefore the new borderline function g̃ has to satisfy

g̃ ≤ g. In particular, gD ≤ g ≤ gN for any borderline function g, gND
ND ≤ min(gNN

ND , gND
NN ),

and gND
ND(α) ≥ gDD

ND(α) =
1
4 (α

2 − π2). We also have gN(α) ≤ α2 since the Cauchy inequality

implies that the corresponding functional Ψ is positive definite for β > α2.

(ii) If α ∈ (0, α0) is fixed, then the function Ξ(β) := ξ2
1 sin ξ2 cos ξ1 − ξ2

2 sin ξ1 cos ξ2 ap-

pearing in the formula for gND
NN in Proposition 4.1 has a unique root β∗ in in the interval

[gND
ND(α),

1
4 α2): This follows from our proof, since any root in that interval corresponds to the

case when the corresponding functional Ψ is positive semidefinite but not positive definite,

and the form of Ψ guarantees that, given α, this can happen only for one β. Consequently,

gND
NN (α) = sup

{

β <
1

4
α2 : ξ2

1 sin ξ2 cos ξ1 = ξ2
2 sin ξ1 cos ξ2

}

if α ∈ (0, α0).

In addition, our proof implies that if β∗
> gND

ND(α), then Ξ changes sign at β∗. Similarly, if α >

α0 (or α > 0, resp.), then the function (γ2 − δ2) sinh(2γ) + 2γδ sin(2δ) (or (γ2 − δ2) sinh(2γ)−
2γδ sin(2δ), resp.) has a unique root β∗ in the interval [gND

ND(α), ∞) (or [βα, ∞), resp.), and

it changes sign at β∗ if β∗
> gND

ND(α) (or β∗
> βα, resp.). In addition, the estimates in (i)

guarantee that that root β∗ satisfies β∗ ≤ gN(α) ≤ α2. Analogous statements are true in the

case of gN .

(iii) Our definition of α and β in (4.4) implies that the borderline function gM was estimated

above and below in [11, Proposition 6] by functions

gM(α) := max(0, α2 − π2) and gM(α) := π2(α2 − π2)/(α2 + π2),

respectively, see Figure 4.1. Let us also mention that the upper bound gN(α) := 1
4 α2 for gN(α)

in [11, Proposition 5] is incorrect: The error is explained below.

(iv) The function ĝ(α) := 1
2 α2 is a good approximation of functions g in Proposition 4.1(ii)

for α large, see Table 4.1 and Figure 4.2. The functions gND
NN , gNN

ND oscillate between gN and

gND
ND , they intersect each other whenever α = kπ, k = 1, 2, . . . , and then their common val-

ues equal ĝ(α) (and also gN(α) if k is even). Similarly, min(gND
NN (α), gNN

ND (α)) = gND
ND(α)

if α = (k + 1
2 )π, k = 0, 1, 2, . . . . Similar behavior of functions g̃(α) = 1

4 α2 and gM, gDN
ND ,

gDD
ND can be observed in Figure 4.1. The formulas for functions g in Proposition 4.1(ii) can
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α = 2πCM
A

π 2π 3π 4π 5π

β = − FL2

A

0

π2

−π2

2π2

3π2

4π2

5π2

6π2

1
4 α2

gD

gDD
ND

gDN
ND

•

•

•

•

•
gM = gDD

NN

•

•

•

•

•

gM

gM

gM

Figure 4.1: The case ID0 ∩ {1, 2} ̸= ∅ ̸= ID1 ∩ {1, 2}.

be used in the numerical computations of g, but they also can be used in the study of the

asymptotic or qualitative behavior of g. For example, they imply that limα→0+
gN(α)

α2 = 1,

limα→∞(ĝ − gND
ND)(α) = 0, gND

ND is C1 \ C2 at α = 2, and gN is C \ C1 at α = 2kπ, k = 1, 2 . . . .

(v) Numerical computations determining the borderlines for stability could be used also

if we did not know the formulas for functions g in Proposition 4.1. If β0 < β1 and the

problem with parameters (α0, β0) or (α0, β1) is unstable or stable, respectively, then one can set

β2 := (β0 + β1)/2 and numerically solve the Jacobi equations with suitable initial conditions

and parameters (α0, β2) (by the Euler method, for example). If that problem is stable or

unstable, then one can set β3 := (β0 + β2)/2 or β3 := (β2 + β1)/2, respectively, and solve the

problem with parameters (α0, β3) etc. In fact, we used such general approach to compute the

numerical values of functions gN and gND
ND first, and we verified a posteriori that the computed

critical parameters correspond to the critical values determined by Proposition 4.1.

(vi) Let u0 be a weak minimizer. Then a straightfoward modification of the proof of

Proposition 2.3 shows that u0 is also a strong minimizer. In fact, assume first that there exist

vk ∈ W1,2
D such that rk := ∥vk∥1,2 → 0 and Φ(u0 + vk) < Φ(u0). Since Φ ∈ C1(W1,2) is weakly

sequentially lower semicontinuous, we can find a minimizer uk of Φ in {u ∈ u0 + W1,2
D :

∥u − u0∥1,2 ≤ rk} and Lagrange multipliers λk ≤ 0 such that Φ′(uk)h = λkΘ′(uk)h for any
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αππ
2

•

•

α0 2 2π

β

0

π2

2π2

1
4 α2

1
2 α2

gNN
ND

•

gND
NN

•

gND
ND

gND
ND

gN

Figure 4.2: The case ID0 ∩ {1, 2} = ∅.

h ∈ W1,2
D , where Θ(u) = ∥u − u0∥2

1,2. The arguments in [5, Section 2.6] guarantee that uk ∈ C2

and uk satisfy the Euler equations (Fk
p(x))′ = Fk

u(x), where Fk
p(x) := Fp(λk, x, uk(x), (uk)′(x))

(similarly Fk
u) and F(λ, x, u, p) := f (x, u, p) − λ(|p − (u0)′(x)|2 + |u − u0(x)|2). These equa-

tions, the particular form of f , u0, the positive definiteness of Fk
pp and the convergence uk → u0

in W1,2 guarantee that {uk} is a Cauchy sequence in W2,1, hence in C1, thus uk → u0 in C1.

However, this contradicts our assumption that u0 is a weak minimizer. Consequently, u0 is

a local minimizer in u0 + W1,2
D . Next assume that there exist vk ∈ C1

D such that ∥vk∥C → 0

and Φ(u0 + vk) < Φ(u0). Then it is not difficult to show that there exists c > 0 such that

0 > Φ(u0 + vk) − Φ(u0) ≥ c∥vk∥2
1,2 + o(1), hence ∥vk∥1,2 → 0, which yields a contradiction

and concludes the proof.

Proof of Proposition 4.1. Notice that u0 is a critical point of Φ for any choice of IN0 , IN1 ⊂ {1, 2}.

By Proposition 3.1, we have to determine the positivity of functional Ψ in W1,2
D . We have

Ψ(h) = Ψ1(h1, h2) + Ψ2(h3), where

Ψ1(h1, h2) = A
∫ 1

0

(
(h′1)

2 + (h′2)
2 − 2αh′2h1 + β(h2

1 + h2
2)
)

dx, Ψ2(h3) = C
∫ 1

0
(h′3)

2 dx.

Since the positivity of Ψ does not change if we replace α by −α (consider −h1 instead of h1),

we may assume α ≥ 0. Since the case α = 0 is trivial, we assume α > 0. Since Ψ2 is positive

definite in W1,2
0 ([0, 1]), it is sufficient to study the positivity of the functional

Ψ̃(h1, h2) :=
1

2A
Ψ1(h1, h2) =

1

2

∫ 1

0

(
(h′1)

2 + (h′2)
2 − 2αh′2h1 + β(h2

1 + h2
2)
)

dx (4.8)
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α/π gN(α)/π2 gNN
ND (α)/π2 ĝ(α)/π2 gND

NN (α)/π2 gND
ND(α)/π2 ∆max(α)/π2

0 0 0 0 0 -0.25 0.25

0.3 0.0842 0.0732 0.045 0.0000 -0.1222 0.2064

0.5 0.2137 0.1679 0.125 0.0000 0.0000 0.2137

0.7 0.3792 0.2820 0.245 0.1826 0.1533 0.2258

1.0 0.6717 0.5000 0.500 0.5000 0.4446 0.2271

1.3 1.0067 0.8197 0.845 0.8663 0.8129 0.1938

1.5 1.2549 1.1032 1.125 1.1440 1.1032 0.1516

1.7 1.5279 1.4334 1.445 1.4558 1.4305 0.0973

2.0 2.0000 2.0000 2.000 2.0000 1.9923 0.0076

2.5 3.2058 3.1274 3.125 3.1225 3.1225 0.0832

3.0 4.5759 4.5000 4.500 4.5000 4.4992 0.0767

3.5 6.1596 6.1248 6.125 6.1252 6.1248 0.0348

4.0 8.0000 8.0000 8.000 8.0000 7.9999 0.0001

Table 4.1: Numerical values of functions g and ∆max := gN − gND
ND if ID0 ∩

{1, 2} = ∅.

in the space

W̃D := {h ∈ W1,2([0, 1], R
2) : hi(j) = 0 for i ∈ IDj , i = 1, 2, j = 0, 1}. (4.9)

In fact, Ψ is positive definite (or semidefinite, resp.) in W1,2
D if and only if Ψ̃ is positive definite

(or semidefinite, resp.) in W̃D. Therefore, in what follows, we will apply the Jacobi theory

from Section 3 to the functional Ψ̃ with α > 0. Notice that the assumptions in Theorem 3.4

depend only on the corresponding functional Ψ, and the conclusions can also be formulated

in terms of Ψ, see (3.5), (3.6). We will use Theorem 3.4 in this way. More precisely, we will

use assertions (3.5), (3.6) (with Ψ and W1,2
D replaced by Ψ̃ and W̃D, respectively) to determine

the positivity of Ψ̃ (hence the positivity of Ψ) and then we will use Proposition 3.1 (with

Ψ(h) = Ψ(h1, h2, h3)) to conclude that u0 is (or is not) a minimizer of Φ.

Notice that the index sets for functional Ψ̃ satisfy ĨDj = IDj ∩ {1, 2} and ĨNj = INj ∩ {1, 2} =

INj for j = 1, 2, hence we will use the notation INj instead of ĨNj . Similarly, the corresponding

operators B̃i, i = 1, 2 (cf. (2.8)), satisfy B̃i(h1, h2) = Bi(h1, h2, 0) for i = 1, 2, and – without

fearing confusion – we will use the notation Bih instead of B̃ih and Bh := (B1h,B2h) if

h = (h1, h2) and i = 1, 2. The same applies to operators Ci and Ai. Since

B1h = h′1, B2h = −αh1 + h′2, C1h = βh1 − αh′2, C2h = βh2, (4.10)

the corresponding system of Jacobi equations is

h′′1 + αh′2 − βh1 = 0,

h′′2 − αh′1 − βh2 = 0,

}

in (0, 1), (4.11)

and the initial conditions for h(1), h(2) in Theorem 3.4 (with N = 2) are hi(0) = 0 if i ∈ ĨD0 and

i = 1, 2, h′1(0) = 0 if 1 ∈ IN0 , and h′2(0) = αh1(0) if 2 ∈ IN0 .
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The existence of continuous borderline functions g follows from the form of Ψ̃. Notice that

if the index sets ĨD0 and ĨD1 are nonempty, then h1h2(0) = h1h2(1) = 0 for any h ∈ W̃D, hence

∫ 1

0
h′2h1 dx = −

∫ 1

0
h′1h2 dx. (4.12)

Identity (4.12) shows that the value of Ψ̃ does not change if we replace h1 with h2 and α with

−α. In general, the value of Ψ̃ does not change if we replace hi with h̃i(x) = hi(1 − x) and α

with −α. These two observations guarantee (4.5) and (4.7).

Let us first consider the cases in Proposition 4.1(i), i.e. ĨD0 ̸= ∅ ̸= ĨD1 . Then (4.12) guaran-

tees
∫ 1

0 2h′2h1 dx =
∫ 1

0 (h
′
2h1 − h′1h2) dx and the Cauchy inequality implies that

Ψ̃ is positive definite if α2
< 4β. (4.13)

Hence it is sufficient to study the case α2 ≥ 4β.

Case
(DD
DD

)
has already been solved in [11, Proposition 3], but Theorem 3.4 enables us to

to show gD(α) =
α2

4 − π2 in a simpler way. Assume α2
> 4β. We can set h(1)(x) = (sin ξ1x −

sin ξ2x, cos ξ1x − cos ξ2x) and h(2)(x) = (− cos ξ1x + cos ξ2x, sin ξ1x − sin ξ2x), where ξ1,2 =

− 1
2 α ± γ. The function D in Theorem 3.4 satisfies D(x) = 2 − 2 cos(ξ1 − ξ2)x, hence D ̸= 0 in

(0, 1] if and only if |ξ1 − ξ2| < 2π, i.e. if β > gD(α). Consequently, if β > gD(α), then u0 is

a strict weak minimizer (this remains true also if 4β = α2 due to the monotonicity of Ψ̃ with

respect to β), and if β < gD(α), then u0 is not a weak minimizer.

The remaining cases in Proposition 4.1(i) are
(DD
ND

)
,
(DN
ND

)
, and

(DD
NN

)
. Assume α2

> 4β.

Since IN0 = {2}, the initial conditions for h(1), h(2) in Theorem 3.4 are h1(0) = 0 and h′2(0) = 0.

One can easily check that we can set h(i)(x) := (sin ξix, cos ξix), i = 1, 2, where ξ1,2 := − 1
2 α ±

γ. The function D in Theorem 3.4 satisfies

D(x) = sin(ξ1 − ξ2)x = sin 2γx = sin
√

α2 − 4β x,

hence

if α2 − 4β > π2, then D(x) = 0 for some x ∈ (0, 1), (4.14)

if 0 < α2 − 4β < π2, then D(x) ̸= 0 in (0, 1]. (4.15)

Theorem 3.4(i) (more precisely, assertion (3.5)) and (4.14) imply that

Ψ̃ is not positive semidefinite if α2 − 4β > π2. (4.16)

Let IN1 = ∅. If 0 < α2 − 4β < π2, then (4.15) and Theorem 3.4(ii) (more precisely, assertion

(3.6)) guarantee that Ψ̃ is positive definite. If 0 = α2 − 4β < π2 and we replace β by β̃ := β − ε

with ε > 0 small, then 0 < α2 − 4β̃ < π2, hence the modified functional Ψ̃β̃ (with β replaced

by β̃) is positive definite, and the monotonicity of Ψ̃ with respect to β implies that Ψ̃ is positive

definite as well. These facts together with (4.13) and (4.16) imply gDD
ND(α) =

α2

4 − π2

4 .

If IN1 = {2} and α2
> 4β, then HD,b = {h̃ ∈ span(h(1), h(2)) : h̃1(1) = 0} is spanned by

h := sin ξ2h(1) − sin ξ1h(2). We have

B := Bh(1) · h(1) = h′2(1)h2(1) = (ξ2 − ξ1) sin(ξ2 − ξ1) sin ξ1 sin ξ2

and, assuming α ∈ [(2k − 1)π, (2k + 1)π], k = 0, 1, 2, . . . , α > 0, we have B > 0 or B < 0 if and

only if β is greater or less than kπ(α − kπ), respectively. Notice that

α2/4 ≥ kπ(α − kπ) ≥ (α2 − π2)/4. (4.17)
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These facts, Theorem 3.4(ii) and (4.13) imply that Ψ̃ is positive definite if β > kπ(α − kπ),

β ̸= α2/4. The assumption β ̸= α2/4 can be removed by the same argument as above (by

considering β̃ = β − ε). If β < kπ(α − kπ), then α2
> 4β due to (4.17), hence B < 0 and

Theorem 3.4(i) imply that Ψ̃ is not positive semidefinite. Consequently, the formula for gM =

gDD
NN in (4.6) is true.

If IN1 = {1}, then we can use the same arguments as in the case IN1 = {2} to show that the

formula for gDN
ND in (4.6) is true. In particular, if α2

> 4β, then HD,b = {h̃ ∈ span(h(1), h(2)) :

h̃2(1) = 0} is spanned by h := cos ξ2h(1) − cos ξ1h(2) and we have

B := Bh(1) · h(1) = h′1(1)h1(1) = (ξ1 − ξ2) sin(ξ1 − ξ2) cos ξ1 cos ξ2,

hence assuming α ∈ [2kπ, 2(k + 1)π], k = 0, 1, 2, . . . , we obtain B > 0 or B < 0 if and only if β

is greater or less than (k + 1
2 )π(α − (k + 1

2 )π), respectively.

Next consider the cases in Proposition 4.1(ii), i.e.
(ND
ND

)
,
(NN
ND

)
,
(ND
NN

)
and

(NN
NN

)
. Since

IN0 = {1, 2}, the initial conditions for h(1), h(2) in Theorem 3.4 are h′1(0) = 0 and h′2(0) =

αh1(0). We will distinguish the following four subcases:

(ii-1) β = 1
2 α2,

(ii-2) β = 1
4 α2,

(ii-3) β >
1
4 α2 and β ̸= 1

2 α2,

(ii-4) β <
1
4 α2.

(ii-1) Assume that β = 1
2 α2. We will show that Ψ̃ is positive definite (hence u0 is a strict

weak minimizer) in case
(ND
ND

)
and Ψ̃ is not positive semidefinite (hence u0 is not a weak

minimizer) in case
(NN
NN

)
if α ̸= 2kπ. In addition, in case

(NN
ND

)
, u0 is or is not a weak

minimizer if α ∈ ((2k − 1)π, 2kπ) or α ∈ (2kπ, (2k + 1)π), respectively, and the opposite is

true in case
(ND
NN

)
.

Recall that δ = α/2. If we set

h(1)(x) := (eδx(cos(δx)− sin(δx)), eδx(cos(δx) + sin(δx))),

h(2)(x) := (e−δx(cos(δx) + sin(δx)), e−δx(− cos(δx) + sin(δx))),

then we obtain D ≡ −2, hence Ψ̃ is positive definite in case
(ND
ND

)
due to Theorem 3.4(ii).

Considering case
(NN
NN

)
, one can check that the matrix A = (akl) in Remark 3.6(ii) satisfies

a11 = 4δe2δ sin2 δ, a22 = −4δe−2δ sin2 δ, a12 = a21 = −4δ sin δ cos δ.

If δ ̸= kπ, then choosing ξ := (0, 1) and h := ∑
2
k=1 ξkh(k) = h(2) ∈ HD,1 = H we obtain

Bh(1) · h(1) = Aξ · ξ = a22 < 0, i.e. Ψ̃ is not positive semidefinite due to Theorem 3.4(i).

Notice also that Bh(0) = 0, hence

Ψ̃(h) = Bh · h
∣
∣
∣

1

0
< 0. (4.18)

If δ = kπ, then A = 0 (degenerate case). Already these facts contradict [11, Proposition 5]

which claims the stability for β >
1
4 α2. In fact, the authors of [11] mention in their proof that
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“We have not used any integration by parts . . . ”, but they seem to use [11, (35)–(37)], and [11,

(35)] does use an integration by parts requiring the boundary conditions h1h2(0) = h1h2(1).

In case
(ND
NN

)
we set

h := e−δ(cos δ + sin δ)h(1) − eδ(cos δ − sin δ)h(2).

Since at least one of the numbers h
(1)
1 (1) and h

(2)
1 (1) is non-zero, we have dim HD,1 ≤ 1. Since

h1(1) = 0, we obtain HD,1 = span(h), and

Bh(1) · h(1) = B2h(1) · h2(1) = (−αh1 + h′2)(1) · h2(1) = 2α sin α

due to h2(1) = 2 and h′2(1) = α sin α. Consequently, Bh(1) · h(1) > 0 if α ∈ (2kπ, (2k + 1)π)

and Bh(1) · h(1) < 0 if α ∈ ((2k − 1)π, 2kπ), so that our assertion follows from Theorem 3.4(ii)

and Theorem 3.4(i), respectively.

Similarly, in case
(NN
ND

)
we set

h := e−δ(cos δ − sin δ)h(1) + eδ(cos δ + sin δ)h(2).

Then h2(1) = 0 and HD,1 = span(h);

Bh(1) · h(1) = B1h(1) · h(1) = h′1(1)h1(1) = −2α sin α (4.19)

due to h1(1) = 2 and h′1(1) = −α sin α. The rest of the proof is the same as in case
(ND
NN

)
.

Notice also that (similarly as in the case of (4.18)), (4.19) implies

Ψ̃(h) = Bh · h
∣
∣
∣

1

0
< 0 (4.20)

provided α ∈ (2kπ, (2k + 1)π).

(ii-2) Assume that β = 1
4 α2. Set ξ := − 1

2 α and

h(1)(x) := (sin(ξx)− ξx cos(ξx), cos(ξx) + ξx sin(ξx)),

h(2)(x) := (cos(ξx)− ξx sin(ξx),− sin(ξx)− ξx cos(ξx)).

Notice that the function D in Theorem 3.4 satisfies D(x) = ξ2x2 − 1, hence D < 0 in [0, 1]

if α < 2, and D(x) = 0 for some x ∈ (0, 1) if α > 2. This shows that 1
4 α2

< gND
ND(α) ≤

min
(

gNN
ND (α), gND

NN (α), gN(α)
)

if α > 2, i.e. u0 cannot be a weak minimizer in any case.

Let α < 2. Then u0 is a strict weak minimizer in case
(ND
ND

)
. Next consider case

(NN
NN

)
. If

β = α2/2, then (4.18) implies that Ψ̃ is not positive semidefinite. The monotonicity of Ψ̃ with

respect to β shows that Ψ̃ cannot be positive semidefinite if β = α2/4 either, hence u0 is not

a weak minimizer. The same arguments show that u0 is not a weak minimizer in case
(NN
ND

)
,

see (4.20). It remains to consider case
(ND
NN

)
. Set

h := (cos ξ − ξ sin ξ)h(1) − (sin ξ − ξ cos ξ)h(2),

so that h1(1) = 0. Then the restriction α < 2 implies h2(1) = 1 − ξ2
> 0. Since h′2(1) =

−ξ2 + ξ sin(2ξ), we see that h′2(1)h2(1) > 0 only if α < α0, where α0 is defined by α0 = 2 sin α0

(α0 ≈ 0.6π).
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(ii-3) Assume β >
1
4 α2, β ̸= 1

2 α2, and set

ϕ(x) := eγx(γ2 − δ2), ψ±(x) := e−γx(γ ± δ)2.

Then we can take

h(1)(x) := [(ϕ(x) + ψ+(x))(cos(δx) + sin(δx)), (ϕ(x) + ψ+(x))(− cos(δx) + sin(δx))],

h(2)(x) := [(ϕ(x) + ψ−(x))(cos(δx)− sin(δx)), (ϕ(x) + ψ−(x))(cos(δx) + sin(δx))],

and an easy computation yields

D(x) = 4(γ2 − δ2)
(

(γ2 − δ2) cosh(2γx) + γ2 + δ2
)

. (4.21)

The function D does not vanish in (0, 1] if and only if γ > δ (i.e. β >
1
2 α2), or γ < δ and

cosh(2γ) < γ2+δ2

δ2−γ2 . The last inequality can be written in the form

(α2 − 2β) cosh(2γ) < 2β. (4.22)

In case
(NN
NN

)
, one has to consider the numbers akl in Remark 3.6(ii):

a11 = 2γ(ϕ2 − ψ2
+)(1) + 2δ(ϕ + ψ+)

2(1) cos(2δ),

a22 = 2γ(ϕ2 − ψ2
−)(1)− 2δ(ϕ + ψ−)2(1) cos(2δ),

a12 = a21 = −2δ(ϕ + ψ+)(ϕ + ψ−)(1) sin(2δ).

If γ > δ (i.e. β >
1
2 α2), then

a11(γ + δ)−2 + a22(γ − δ)−2 = 8(γ2 + δ2)(γ − θδ cos(2δ)) sinh(2γ) > 0,

hence the matrix A is positive definite if and only if a11a22 > a2
12, which is equivalent to

(1 − θ2) cosh(2γ) + θ2 cos(2δ) > 1. (4.23)

We used the assumption β >
1
2 α2 in order to derive (4.23), but this is not restrictive, since

we know that u0 can only be a weak minimizer of our problem in case
(NN
NN

)
when β >

1
2 α2.

Hence in this case the condition (4.23) determines the domain of stability.

In cases
(NN
ND

)
and

(ND
NN

)
, we set

h := (ϕ(1) + ψ−(1))(cos δ + sin δ)h(1) + (ϕ(1) + ψ+(1))(cos δ − sin δ)h(2)

and

h := (ϕ(1) + ψ−(1))(cos δ − sin δ)h(1) − (ϕ(1) + ψ+(1))(cos δ + sin δ)h(2),

respectively. Then h2(1) = 0, h1(1) = D(1),

Bh(1) · h(1) = h′1h1(1) = 4γ(γ2 − δ2)D(1)
(
(γ2 − δ2) sinh(2γ)− 2γδ sin(2δ)

)
,

and h1(1) = 0, h2(1) = −D(1),

Bh(1) · h(1) = h′2h2(1) = 4γ(γ2 − δ2)D(1)
(
(γ2 − δ2) sinh(2γ) + 2γδ sin(2δ)

)
,
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respectively, where D is as in (4.21). Consequently, assuming that D does not vanish in [0, 1]

(i.e. (4.22) is true), the stability conditions are

(γ2 − δ2) sinh(2γ)− 2γδ sin(2δ) > 0 (4.24)

and

(γ2 − δ2) sinh(2γ) + 2γδ sin(2δ) > 0, (4.25)

respectively. Notice that if β = 1
2 α2 (hence γ = δ), then (4.24) and (4.25) are equivalent to the

corresponding stability conditions in case (ii-1).

(ii-4) If β <
1
4 α2, then we can set

h(1)(x) := (ξ2 sin(ξ1x)− ξ1 sin(ξ2x), ξ2 cos(ξ1x)− ξ1 cos(ξ2x)),

h(2)(x) := (ξ1 cos(ξ1x)− ξ2 cos(ξ2x),−ξ1 sin(ξ1x) + ξ2 sin(ξ2x)),

where ξ1,2 = − 1
2 α ± γ, and we obtain

D(x) = −2β + (α2 − 2β) cos(2γx). (4.26)

If α2 − 4β ≥ π2, then D changes sign in [0, 1]. Hence the condition D > 0 in [0, 1] is equivalent

to

α2 − 4β < π2 and (α2 − 2β) cos(2γ) > 2β. (4.27)

It is not difficult to check (cf. case (ii-2)) that if α < 2 or α > 2, then (4.27) or (4.22), respectively,

is the (essentially optimal) sufficient condition for the stability in our problem in case
(ND
ND

)
.

If α = 2, then that sufficient condition is β > 1.

Case (ii-2) shows that it remains to consider only case
(ND
NN

)
and α < α0. Take

h := (ξ1 cos ξ1 − ξ2 cos ξ2)h
(1) − (ξ2 sin ξ1 − ξ1 sin ξ2)h

(2).

Then h1(1) = 0, h2(1) = −D(1) (where D is as in (4.26)), and

h′2(1) = (ξ2
1 sin ξ2 cos ξ1 − ξ2

2 sin ξ1 cos ξ2)(ξ2 − ξ1).

Assuming D > 0 in [0, 1] (i.e. (4.27)), the condition h′2h2(1) > 0 is equivalent to

ξ2
1 sin ξ2 cos ξ1 > ξ2

2 sin ξ1 cos ξ2. (4.28)

Since ξ1 = 0 if β = 0, (4.28) can only be true if β > 0. It is not difficult to see that gND
NN (α) = 0

for α ≤ 1
2 π and gND

NN (α0) =
1
4 α2

0. If α > α0, then (4.25) determines gND
NN (α).

The formulas for functions g in Proposition 4.1(ii) follow from the stability conditions

(4.22), (4.23), (4.24), (4.25), (4.27), (4.28).

Remark 4.3. Consider case
(DD
NN

)
. We have gDD

NN (α) = gM(α) > gDD
ND(α) except for α = αk :=

(2k− 1)π, k = 1, 2, . . . . If α = αk and β = gM(α) = gDD
ND(α), then the function D in Theorem 3.4

satisfies D ̸= 0 in (0, 1), D(1) = 0, hence condition (3.2) cannot be satisfied (otherwise (3.5)

would imply Ψ̃(h̄) < 0 for some h̄ ∈ W̃D, so that Ψ̃(h̄) < 0 also if β is slightly greater than

gM(α), which is a contradiction). For example, if k = 2 (i.e. α = 3π, β = 2π2), then our

proof shows that H0 is spanned by h(x) := (− sin(πx)− sin(2πx), cos(πx) + cos(2πx)) and

B2h(1) = h2(1) = h1(1) = 0 which violates (3.2). This degeneracy seems to be also responsible

for the non-smooth behavior of gM at α = αk.
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5 Field of extremals

In this section we modify the Weierstrass theory to provide necessary and sufficient conditions

for weak, strong and global minimizers. Recall that Bε := {ξ ∈ R
N : |ξ| < ε}.

Definition 5.1. Let f ∈ C2, ε̃ > 0, and let u0 ∈ C2 be an extremal. The image P of a C1-

diffeomorphism P : [a, b]× Bε̃ → [a, b]× R
N : (x, α) 7→ (x, ϕ(x, α)) is called a field of extremals

for u0 if ϕx ∈ C1, ϕ(·, α) is an extremal for each α, and ϕ(·, 0) = u0. The slope of the field of

extremals P is defined as ψ : P → R
N : (x, v) 7→ ϕx(x, α(x, v)), where α(x, v) is defined by

ϕ(x, α(x, v)) = v.

It is known that in the case of the Dirichlet boundary conditions, the existence of a field of

extremals ϕ(x, α) satisfying the self-adjointness condition (5.1), and the nonnegativity of the

excess function

E(x, u, p, q) := f (x, u, q)− f (x, u, p)− (q − p) · fp(x, u, p)

for suitable (x, u, p, q) imply that u0 is a strong minimizer. In addition, the existence of the

field is guaranteed by the sufficient condition for the weak minimizer in Theorem 3.4(ii). In

the general case we have the following analogue (see Theorem 6.1 for a simpler version in the

scalar case N = 1):

Theorem 5.2. Let f ∈ C2, ε > 0, and let u0 ∈ C2 be an extremal satisfying (2.2).

(i) Let there exist a field of extremals P for u0 satisfying the conditions

∂ fpi
(a, v, ψ(a, v))

∂vj
=

∂ fpj
(a, v, ψ(a, v))

∂vi
whenever i, j ∈ I, v − u0(a) ∈ Bε, (5.1)

fp(a, v, ψ(a, v)) · (v − u0(a)) ≤ 0, whenever v − u0(a) ∈ R
N
D,a ∩ Bε, (5.2)

fp(b, v, ψ(b, v)) · (v − u0(b)) ≥ 0, whenever v − u0(b) ∈ R
N
D,b ∩ Bε, (5.3)

where ψ denotes the slope of the field. Assume also

E(x, v, ψ(x, v), q) ≥ 0 for all ((x, v), q) ∈ P × R
N . (5.4)

Then u0 is a strong minimizer.

If (5.4) is only true for all (x, v) ∈ P and q = q(x, v) satisfying |q − ψ(x, v)| ≤ η for some

η > 0, then u0 is a weak minimizer.

If the field is global (i.e. P = [a, b]×R
N) and (5.1), (5.2), (5.3) are true with Bε replaced by R

N ,

then u0 is a global minimizer.

(ii) Assume IDa = ∅ and let there exist a field of extremals satisfying (5.1). If the reversed inequality

“≥” is true in (5.2), and the reversed strict inequality “<” is true in (5.3) for v = u0(b) + tw0,

where t ∈ (0, 1) and w0 ∈ R
N
D,b is fixed, then u0 is not a weak minimizer.

(iii) Assume (2.4) and let the sufficient conditions for a weak minimizer in Theorem 3.4(ii) be satisfied.

If IDa = ∅ or INa = ∅ or

fpi
(a, u, p) for i ∈ IDa does not depend on uj, pj with j /∈ IDa ,

fpiuj
= fpjui

for i, j ∈ IDa ,

}

(5.5)

then a field of extremals satisfying (5.1), (5.2), (5.3) exists.
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Remark 5.3. The well known Weierstrass necessary condition for minimizers asserts that the

inequality E(x, u0(x), (u0)′(x), q) ≥ 0 for all q ∈ R
N or q = q(x) satisfying |q − (u0)′(x)| ≤ η

is necessary for u0 to be a strong or weak minimizer, respectively, hence the nonnegativity

conditions on E in Theorem 5.2 are not far from optimal. Similarly, Theorem 5.2(ii) shows that

the sufficient conditions (5.2)–(5.3) in Theorem 5.2(i) are also necessary in some sense, at least

if IDa = ∅.

The proof of part (iii) of Theorem 5.2 is quite technical and, in addition, we will not

need that part in our examples (since we will prove the existence of the field required by

Theorem 5.2(i)–(ii) by other arguments). Therefore the proof of part (iii) is postponed to the

Appendix.

In what follows we assume that

f ∈ C2, u0 ∈ C2 is an extremal,

P is a field of extremals for u0 with slope ψ, and (5.1) is true.
(5.6)

Given v ∈ C1([a, b], R
N) such that graph(v) := {(x, v(x)) : x ∈ [a, b]} ⊂ P , we define the

Hilbert invariant integral

I(v) :=
∫ b

a

[
f
(
x, v(x), ψ

(
x, v(x)

))
+

(
v′(x)− ψ

(
x, v(x)

))
· fp

(
x, v(x), ψ

(
x, v(x)

))]
dx.

The following proposition is well known, but for the reader’s convenience we provide its

proof in the Appendix.

Proposition 5.4. Assume (5.6). Then there exists S ∈ C2(P) such that

I(v) = S(b, v(b))− S(a, v(a)) for any v ∈ C1([a, b], R
N) with graph(v) ⊂ P ,

Sv(x, v) = fp(x, v, ψ(x, v)) for any (x, v) ∈ P .
(5.7)

Proof of Theorem 5.2. (i) Let u − u0 ∈ C1
D, graph(u) ⊂ P , and let S be the function from Propo-

sition 5.4. If u is close to u0 in the sup-norm, then the assumptions (5.2)–(5.3) guarantee

S(a, u(a))− S(a, u0(a)) =
∫ 1

0
Sv(a, u0(a) + t(u(a)− u0(a))) · (u(a)− u0(a)) dt ≤ 0,

and similarly S(b, u(b))− S(b, u0(b)) ≥ 0, hence I(u0) ≤ I(u) due to Proposition 5.4. This fact

and assumption (5.4) imply

Φ(u)− Φ(u0) = Φ(u)− I(u0) ≥ Φ(u)− I(u) =
∫ b

a
E(x, u(x), ψ(x, u(x)), u′(x)) dx ≥ 0,

hence u0 is a strong minimizer. The remaining assertions in (i) are obvious.

(ii) Choose tk → 0+ and let αk be such that ϕ(b, αk) = u0(b) + tkw0. Then uk := ϕ(·, αk) →
u0 in C1, uk − u0 ∈ C1

D due to IDa = ∅ and w0 ∈ R
N
D,b, and, similarly as in (i), we obtain

Φ(uk) = I(uk) = S(b, uk(b))− S(a, uk(a)) < S(b, u0(b))− S(a, u0(a)) = I(u0) = Φ(u0),

hence u0 is not a minimizer.
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6 Scalar examples with variable endpoints

Throughout this section (except for Remark 6.4) we assume N = 1 and IDa = IDb = ∅. Since

we will often use Theorem 5.2, let us first reformulate it in this special case. Notice that the

extremals in the field of extremals satisfy ϕα(x, α) ̸= 0, hence we can assume ϕα > 0 without

loss of generality.

Theorem 6.1. Let N = 1, IDa = IDb = ∅, f ∈ C2 and let u0 ∈ C2 be an extremal satisfying (2.2).

(i) Let there exist a field of extremals P = {(x, ϕ(x, α)) : x ∈ [a, b], α ∈ (−ε, ε)} for u0 satisfying

the conditions ϕα > 0 and

f α
p (a)α ≤ 0 ≤ f α

p (b)α, α ∈ (−ε, ε), (6.1)

where f α
p (x) := fp(x, ϕ(x, α), ϕx(x, α)). Assume also

E(x, v, ψ(x, v), q) ≥ 0 for all ((x, v), q) ∈ P × R. (6.2)

Then u0 is a strong minimizer.

If (6.2) is only true for all (x, v) ∈ P and q = q(x, v) satisfying |q − ψ(x, v)| ≤ η for some

η > 0, then u0 is a weak minimizer.

If P = [a, b]× R, then u0 is a global minimizer.

(ii) Let there exist a field of extremals satisfying ϕα > 0. If, for α > 0 or α < 0, the reversed

inequalities in (6.1) are true and one of them is strict (for example, if f α
p (a) ≥ 0 > f α

p (b) for

α > 0), then u0 is not a weak minimizer.

(iii) Assume (2.4) and let the sufficient conditions for a weak minimizer in Theorem 3.3(ii) be satisfied.

Then a field of extremals satisfying ϕα > 0 and (6.1) exists.

Remark 6.2. If f 0
up = 0 and we set P := f 0

pp, Q := f 0
uu, then Ψ(h) =

∫ b
a (P(h′)2 + Qh2) dx and

the Jacobi equation has the form − d
dx (Ph′) + Qh = 0. Notice also that if P, Q > 0, then Ψ is

positive definite in W1,2. Consequently, Remark 3.6(iii) implies that the sufficient conditions

for a weak minimizer in Theorem 3.3(ii) are satisfied and Theorem 6.1(iii) implies the existence

of a field of extremals satisfying ϕα > 0 and (6.1).

In the following examples we will consider Lagrangians f = f (u, p) and we will use the

phase plane analysis for the Du Bois-Reymond equation f 0 − (u0)′ f 0
p = C.

Example 6.3. The study of the deformation of a planar weightless inextensible and unshear-

able rod (satisfying suitable boundary conditions) leads to the minimization of the functional

Φ(u) =
∫ 1

0

(1

2
(u′ − K)2 + M cos u

)
dx, u ∈ C1([0, 1]), (6.3)

where K ∈ R, M > 0, and u denotes the angle between the tangent to the rod and a suitable

vertical, see [10, (97)] and cf. also [1]. Functional Φ possesses multiple critical points, i.e.

extremals satisfying the natural boundary conditions u′(0) = u′(1) = K; see [10] for their

detailed analysis. Their stability was also analyzed in [10], but that analysis based on the

approach from [12] is unnecessarily complicated. Somewhat simpler arguments were used in

[1], but those arguments cannot be used for all critical points. We will show that Theorems 3.3

and 6.1 yield a very simple way to determine the stability of any critical point.
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Proposition 2.3 implies that u0 is a weak minimizer of Φ if and only if it is a strong

minimizer. Therefore we will only speak about minimizers. Notice also that fpp = 1 and

the excess function satisfies E(x, u, p, q) = 1
2 (q − p)2 ≥ 0. Proposition 2.4 guarantees that

any critical point of Φ is C∞ and satisfies the Du Bois-Reymond equation (u′)2 = 2M cos u +

C, where C is a constant. Conversely, any non-constant solution of the Du Bois-Reymond

equation is an extremal.

We consider the phase plane (u, v), where v = u′, and set

φC := {(u, v) : v2 = 2M cos u + C}, C ∈ (−2M, ∞)

(see Figure 6.1). The considerations above show that given any non-constant critical point u0,

there exists C0
> −2M such that (u0(x), (u0)′(x)) ∈ φC0 for x ∈ [0, 1], (u0)′(0) = (u0)′(1) = K.

On the other hand, if (A0, K), (A1, K) ∈ ΦC0 for some C0 ∈ (2M, ∞), A0 ̸= A1, and u0 ∈ C1 sat-

isfies (u0(x), (u0)′(x)) ∈ φC0 for x ∈ [0, 1], (u0(0), (u0)′(0)) = (A0, K) and (u0(b), (u0)′(b)) =
(A1, K) for some b > 0, then u0 is a critical point if and only if b = 1 (the value of b is uniquely

determined in this case since (u0)′ ̸= 0). Similar assertion is true if C0 ∈ (−2M, 2M] (K ̸= 0

if C0 = 2M), but this time one can have (u0(b), (u0)′(b)) = (A1, K) for multiple values of b

(since u0 need not be monotone), and one has to allow A1 = A0.

The phase plane analysis can be used to find critical points of Φ (see [2] for a particular

case), but since those critical points are known (see [10], for example), we will restrict ourselves

to the determination of their stability. More precisely, considering the case K ≥ 0 (the case

K ≤ 0 being symmetric), we will show the following: A critical point of Φ is a minimizer

if and only if either u0(x) ≡ (2k + 1)π for some integer k or u0 is a part of curve φC0 with

C0
> 2M and (u0)′′(0) < 0 < (u0)′′(1).

u2ππβ 4π

v = u′

0

Z1
X1 •Z0

X0

ϕ(·, α) Y1

X1

Z0

Z1

K1

K2
X0

K3

2
√

M

φ2Mφ2M

φC−

φC+

u0

u0

• • • • •
u0

X0

Z0••Z1

X1

Figure 6.1: Phase plane and extremals for Example 6.3 and 0 ≤ u ≤ 4π; C−
<

2M < C+, Zi = (ϕ(i, α), ϕx(i, α)), i = 0, 1, Y1 = (A1 + α, K), Xi = (Ai, K) =

(u0(i), (u0)′(i)), i = 0, 1.

Let us first consider a critical point u0 being a part of curve φC0 with C0
> 2M, and let

(Ai, K) be as above. For symmetry reasons we may assume K > 0. Notice that u′′ = −M sin u,
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|(u0)′′(0)| = |(u0)′′(1)|, and that u0(x) can also be defined (as an extremal, hence a part of

φC0) for x /∈ [0, 1].

If (u0)′′(0) < 0 < (u0)′′(1) (i.e. u0(0) ∈ (2kπ, (2k + 1)π) and u0(1) ∈ ((2m + 1)π, (2m +

2)π) for some m ≥ k; see the extremal u0 with (u0)′(0) = K1 in Figure 6.1), then ϕ(x, α) :=

u0(x + α), x ∈ [0, 1], α ∈ (−ε, ε), is a field of extremals for u0 satisfying (6.1), hence The-

orem 6.1(i) guarantees that u0 is a minimizer. If (u0)′′(0) > 0 > (u0)′′(1), then the same

argument and Theorem 6.1(ii) show that u0 is not a minimizer.

Next assume that (u0)′′(0) · (u0)′′(1) ≥ 0. We will show that u0 is not a minimizer.

Assume (u0)′′(0) < 0, or (u0)′′(0) = 0 and (u0)′′′(0) < 0 (the cases (u0)′′(0) > 0, or

(u0)′′(0) = 0 and (u0)′′′(0) > 0 are analogous). We necessarily have A1 = A0 + 2k0π for

some k0 ∈ {1, 2, . . . }. Let ϕ(·, α) (with |α| being small) be the extremal with initial values

Z0 := (ϕ(0, α), ϕx(0, α)) = (A0 + α, K) (see the extremal u0 with (u0)′(0) = K2 in Figure 6.1).

Then ϕ is a field of extremals for u0, and ϕ(·, α) is a part of the curve φCα , where Cα is close to

C0, Cα
> C0 if α > 0.

Let α > 0 be small. If u1 and u2 are extremals in φC0 and φCα , respectively, and u1(0) =

u2(0) = 0, then u1(b1) = u2(b2) = 2π for some 0 < b1 < b2 (due to (u2)′ > (u1)′ whenever

u2 = u1). This fact and the 2π-periodicity of the problem guarantee that ϕ(b, α) = A1 + α for

some b < 1, hence ϕx(1, α) < (u0)′(1), and Theorem 6.1(ii) implies that u0 is not a minimizer.

Next consider the case C0 ∈ (−2M, 2M] and K ≥ 0; K ̸= 0 if C0 = 2M. If K > 0

and (u0)′′(0) > 0 > (u0)′′(1), then the same arguments as above guarantee that u0 is not a

minimizer. If K = 0 or (u0)′′(0) < 0 < (u0)′′(1) (hence A1 < A0) or (u0)′′(0) · (u0)′′(1) ≥ 0

(hence A0 = A1 = 2kπ), then choosing ϕ(·, α) to be an extremal satisfying initial conditions

(ϕ(0, α), ϕx(0, α)) = (A0 + α, K) we see from the phase plane that ϕ(·, α) and u0 intersect in

(0, 1) for any α ̸= 0 small (if, for example, (u0)′′(0) < 0 < (u0)′′(1) and α > 0 is small,

then there exists y ∈ (0, 1) such that ϕ(y, α) = min ϕ(·, α) < min u0, and the inequalities

ϕ(0, α) > u0(0), ϕ(y, α) < u0(y) imply that ϕ(·, α) and u0 intersect in (0, y); see the extremal

u0 with (u0)′(0) = K3 in Figure 6.1). Consequently, h := ϕx(·, 0) is a solution of the Jacobi

equation satisfying h(0) = 1, h′(0) = 0, h(y) = 0 for some y ∈ (0, 1], and Theorem 3.3

guarantees that u0 is not a minimizer.

Similar considerations as above can be used in the case of constant extremals kπ, but we

will use a different argument: If u0 ≡ (2k + 1)π, then P = 1, Q = −M cos u0 = M, and the

solution h(x) = e
√

Mx + e−
√

Mx of the Jacobi equation satisfies h > 0, h′(0) = 0, h′(1) > 0,

hence u0 is a minimizer. If u0 ≡ 2kπ, then P = 1, Q = −M and the solution h(x) = cos(
√

Mx)

of the Jacobi equation satisfies h(0) > 0, h′(0) = 0 and either h(x) = 0 for some x ∈ (0, 1] or

h′(1) < 0, hence u0 is not a minimizer.

Remark 6.4. The author of [9] considers the functional Φ in (6.3) with K = 0, [a, b] =

[−1/2, 1/2] (instead of [a, b] = [0, 1]), and the Dirichlet boundary conditions u(−1/2) =

u(1/2) = 0, see [9, (6)]. He considers the extremal u0 satisfying u0(0) = β and (u0)′(0) = 0,

i.e. the extremal passing through the point (β, 0) in Figure 6.1, and he provides explicit formu-

las for this extremal, its field of extremals ϕ and the derivative ϕα (see [9, (8),(9),(13),(14) and

(16)]; functions u0, ϕ and ϕα are denoted by θ, y and ∂y/∂γ, respectively). The nonnegativity

of the excess function then implies that u0 is a strong minimizer. In [9, Introduction], the au-

thor claims that “Based on the Jacobian test, potential energy of Euler elasticas . . . was proved

to hold a weak minimum value. . . ”, but “. . . it is an open problem to find sufficient conditions

for the potential energy for these Euler elasticas to hold a strong minimum.” However, Propo-

sition 2.3 shows that weak and strong minimizers of functional Φ in (6.3) are equivalent. In

addition, Theorem 5.2(iii) implies that the positive definiteness of the second variation ψ in
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W1,2
0 (−1/2, 1/2) (i.e. the sufficient condition for a weak minimizer) guarantees the existence

of the required field ϕ, hence the technical construction of the field in [9] is not necessary even

if we do not consider Proposition 2.3.

Example 6.5. Consider the functional Φ(u) =
∫ b

a f (u, u′) dx in C1([a, b]), where f (u, p) =

g(p) + u2 and g is a double-well function. More precisely, we will consider the following two

cases (see Figure 6.2):

0−1 1 p

g

(a)

0−1 2 p

g
(b)

Figure 6.2: Graphs of g in the symmetric and non-symetric cases.

(a) g(p) = (p2 − 1)2 (hence g′(p) = 4p(p2 − 1), g′′(p) = 4(3p2 − 1)),

(b) g(p) = 1
4 p4 − 1

3 p3 − p2 + 8
3 (hence g′(p) = (p + 1)p(p − 2), g′′(p) = 3p2 − 2p − 2).

Let us consider the symmetric case (a) first. The Du Bois-Reymond equation has the form

u2 = C + h(u′), where h(p) := 3p4 − 2p2,

see Figures 6.3 and 6.4 for the graph of h and the phase plane (u, u′), respectively. All mini-

mizers have to satisfy u′(a), u′(b) ∈ {0,±1}; the only constant extremal is u ≡ 0. Functional

Φ does not possess local maximizers since Φ′′(u0)(1, 1) > 0 for any u0.

0
− 1√

3
1√
3

p

h

Figure 6.3: Graph of h in the symmetric case.

Since fpp(u, p) = 4(3p2 − 1), the extremals in the region |u′| ≤ 1/
√

3 (satisfying (u0)′(a) =

(u0)′(b) = 0) cannot be local minimizers. The extremal u∗ with (u∗)′(a) = 1 and min(u∗)′ =
1/

√
3 (see Figure 6.4) satifies u∗(b∗) = 1 for some b∗ > a. If b ∈ (a, b∗), then there exists a

unique extremal u0 satisfying (u0)′(a) = (u0)′(b) = 1 (and a unique extremal u1 satisfying

(u1)′(a) = (u1)′(b) = −1); in addition (u0)′ > 1/
√

3 (and (u1)′ < −1/
√

3). Since P, Q > 0 and

the excess function E = (q − p)2((q + p)2 + 2(p2 − 1)) considered as a function of q changes

sign if |p| < 1, Remarks 6.2 and 5.3 show that the extremals u0, u1 are weak but not strong

minimizers. (Remark 6.2 also guarantees the existence of a field of extremals, but this fact

is not needed here: The Weierstrass necessary condition for strong minimizers in Remark 5.3

does not require the existence of a field of extremals.) Notice also that inf Φ = 0 is not attained

(neither in C1, nor in W1,4): A minimizing sequence in C1 can be obtained by suitable smooth

approximation of piecewise C1-functions uε satisfying |u′
ε| = 1 a.e. and |uε| ≤ ε.

Next consider the nonsymmetric case (b). The Du Bois-Reymond equation has the form

u2 = C + h(u′), where h(p) :=
3

4
p4 − 2

3
p3 − p2,
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u

1

−1

1√
3

− 1√
3

u′

u∗

•

Figure 6.4: Phase plane in the symmetric case.

see Figures 6.5 and 6.6 for the graph of h and the phase plane (u, u′), respectively. All mini-

mizers have to satisfy u′(a), u′(b) ∈ {0,−1, 2}; the only constant extremal is u ≡ 0.

0
1−

√
7

3
1+

√
7

3

p

h

Figure 6.5: Graph of h in the non-symmetric case.

Since fpp(u, p) = 3p2 − 2p − 2, similarly as in case (a) we see that the extremals in the

region u′ ∈ [ 1−
√

7
3 , 1+

√
7

3 ] are neither local minimizers nor local maximizers. The extremal u∗

with (u∗)′(a) = 2 and min(u∗)′ = 1+
√

7
3 (see Figure 6.6) satifies u∗(b∗) = 2 for some b∗ > a. If

b ∈ (a, b∗), then there exists a a unique extremal u0 satisfying (u0)′(a) = (u0)′(b) = 2 and, as

above, this extremal is a weak local minimizer. However, now E = 1
12 (q − p)2((

√
3(q + p)−

2√
3
)2 + 6p2 − 4p − 13 1

3 ) ≥ 0 for all q if p ≤ p1 or p ≥ p2, where p1 = 1
3 (1 −

√
21) < −1, p2 =

1
3 (1 +

√
21) ∈ ( 1

3 (1 +
√

7), 2), and Remark 6.2 guarantees the existence of a field of extremals

satisfying ϕα > 0 and (6.1), hence u0 is a strong local minimizer provided min(u0)′ > p2 (and

it is not if min(u0)′ < p2). In fact, if min(u0)′ > p2, then Proposition 6.6 below shows the

existence of a global field of extremals for u0 satisfying the assumptions of Theorem 6.1(i),

with slope ψ > p2, hence u0 is a global minimizer.

An analogous analysis as in the case u′
>

1+
√

7
3 shows that the extremals in the region

u′
<

1−
√

7
3 are weak but not strong local minimizers.

Proposition 6.6. Let Φ and p2 be as in Example 6.5(b), and let u0 be a critical point of Φ satisfying

min(u0)′ > p2. Then there exists a global field of extremals for u0 satisfying the assumptions of

Theorem 6.1(i), with slope ψ > p2.

Proof. Assume first α ≥ 0. Then we choose the extremals uα := ϕ(·, α) in the global field such
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u

2
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√

7
3
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√
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3

u′
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•

Figure 6.6: Phase plane in the non-symmetric case.

that ϕ(·, α) is the solution of the Du Bois-Reymond equation with (ϕ(a, α), ϕx(a, α)) = A(α),

where A(α) = (A1(α), A2(α)) : (0, ∞) → R
2 is smooth,

A(α) =

{

(u0(a + α), (u0)′(a + α)) if α ≤ b − a − ε,

(u0(b) + α − (b − a), 2) if α ≥ b − a + ε,
(6.4)

A′
1(α) ≥ 1, A′

2(α) > 0 for α ∈ (b − a − ε, b − a + ε), where ε ∈ (0, (b − a)/2), (6.5)

see Figure 6.7. Notice that A′
1(b − a − ε) = (u0)′(b − ε) > p2 > 1, A′

2(b − a − ε) = (u0)′′(b −
ε) > 0, A′

1(b − a + ε) = 1, A′
2(b − a + ε) = 0, A1(b − a + ε) − A1(b − a − ε) > 2ε (since

A1(b − a + ε) = u0(b) + ε, A1(b − a − ε) = u0(b − ε), u0(b)− u0(b − ε) = (u0)′(b − θε)ε > p2ε),

A2(b − a + ε) > A2(b − a − ε), so that (6.5) can be satisfied.

Let us show that ϕα > 0. Since ϕ(x, α) = u0(x + α) for α ≤ b − a − ε and (u0)′ > 0,

we may assume α > b − a − ε, hence ϕ > 0. Set w(x, α) = ϕα(x, α). Then (6.4)–(6.5) imply

w(a, α) ≥ 1. Let h−1 denote the inverse of the increasing function h|(p2,∞). Since ϕ(·, α) solves

the Du Bois-Reymond equation, there exists C(α) such that ϕ(x, α)2 = C(α) + h(ϕx(x, α)).

Consequently,

wx =
∂

∂x
(ϕα) =

∂

∂α
(ϕx) =

∂

∂α
(h−1(ϕ2 − C(α)) = (h−1)′(ϕ2 − C(α))

︸ ︷︷ ︸

>0

[2ϕw − C′(α)]. (6.6)

If wx(a, α) > 0 (which is true for α < b − a + ε due to (6.4)–(6.5)), then ϕx > 0 and (6.6)

guarantee wx(x, α) > 0 for x > a, hence w(x, α) ≥ w(a, α) ≥ 1. If wx(a, α) = 0 (which is true

for α ≥ b − a + ε due to (6.4)), then (2ϕw)(a, α) = C′(α) and

d

dx
(2ϕw − C′(α))(a, α) = 2ϕxw + 2ϕwx = 2ϕxw > 2p2 > 0
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p2 = 1
3 (1 +

√
21)

ϕx

ϕ

•
A(0)

u0 = ϕ(·, 0)

•B(0)

•
A(α1)

•
A(α2)

•
A(α3)

•
A(α4)

•
ϕ(·, α5)

A(α5)

Figure 6.7: Global field of extremals: A(α) = (ϕ(a, α), ϕx(a, α)), B(α) =

(ϕ(b, α), ϕx(b, α)), (b − a)/2 = α1 < b − a − ε = α2 < α3 < α4 = b − a + ε < α5.

hence wx(x, α) > 0 for x > a close to a, and (6.6) implies wx(x, α) > 0 for all x > a. As before,

this implies w(x, α) ≥ 1.

If α < 0, then the choice of ϕ(·, α) is symmetric: The extremal ϕ(·, α) solves the Du Bois-

Reymond equation in [a, b] and (ϕ(b, α), ϕx(b, α)) = B(α) := (−A1(−α), A2(−α)).

As an alternative to the technical construction of the global field above, we could also set

(ϕ(a, α), ϕx(a, α)) = A(α), where

A(α) =

{

(u0(a + α), (u0)′(a + α)) if 0 ≤ α ≤ b − a,

(u0(b) + α − (b − a), 2) if α > b − a,

and analogously for α < 0. Then the field ϕ(·, α) is not sufficiently smooth if |α| = b − a,

but a simple generalization of Theorem 6.1 shows that this does not matter. In fact, denote

v± := ϕ(·,±(b − a)). Let u ∈ C1([a, b]); we want to show Φ(u) ≥ Φ(u0). Approximating

u suitably, we may assume that the set {x ∈ [a, b] : u(x) = v+(x) or u(x) = v−(x)} is fi-

nite. Set ũ := max(v−, min(v+, u)) and approximate ũ by a sequence of C1-functions uk such

that graph(uk) ⊂ P1 := {(x, ϕ(x, α)) : x ∈ [a, b], |α| ≤ b − a} and uk → ũ in W1,4. Then

Theorem 6.1 shows that Φ(uk) ≥ Φ(u0), hence Φ(ũ) ≥ Φ(u0) due to the continuity of Φ

in W1,4. Let [x1, x2] be any maximal interval where ũ = v+ (i.e. u ≥ v+) or ũ = v−. No-

tice that either x1 = a or u(x1) = v±(x1), and either x2 = b or u(x2) = v±(x2). Denote

Φ
x2
x1
(u) =

∫ x2

x1
f (x, u(x), u′(x)) dx. Then the proof of Theorem 6.1 shows Φ

x2
x1
(u) ≥ Φ

x2
x1
(v+) (if

u ≥ v+ in [x1, x2]) or Φ
x2
x1
(u) ≥ Φ

x2
x1
(v−), hence Φ(u) ≥ Φ(ũ) ≥ Φ(u0).

7 Appendix

Proof of Proposition 2.1. We will consider only the special case N = 1, IDa = ∅, INb = ∅, but the

arguments in our proof can also be used in the general case.

If h ∈ C1
D = {ϕ ∈ C1([a, b]) : ϕ(b) = 0}, then integration by parts yields

0 = Φ′(u0)h =
∫ b

a
( f 0

p(x)h′(x) + f 0
u(x)h(x)) dx

= gh
∣
∣
∣

b

a
+

∫ b

a
( f 0

p(x)− g(x))h′(x) dx,

(7.1)
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where g(x) :=
∫ x

a f 0
u(ξ) dξ is C1. Considering test functions h with compact support in (a, b),

the Du Bois-Reymond Lemma and (7.1) yield the existence of a constant C such that f 0
p(x) =

g(x) + C, hence f 0
p ∈ C1 and the Euler equation d

dx ( f 0
p) = f 0

u is satisfied. This equation and

the choice of h with h(a) = 1 in (7.1) imply

0 = Φ′(u0)h =
∫ b

a
( f 0

p(x)h′(x) + f 0
u(x)h(x)) dx

= f 0
p h

∣
∣
∣

b

a
+

∫ b

a

(

− d

dx
( f 0

p(x)) + f 0
u(x)

)

h(x) dx = − f 0
p(a),

which concludes the proof of the first part. If fp ∈ C1 and f 0
pp ≥ c0

> 0, then the function

F(x, p) := fp(x, u0(x), p)− g(x)− C is C1, F(x, (u0)′(x)) = 0, Fp(x, (u0)′(x)) > 0, hence the

Implicit Function Theorem implies u0 ∈ C2.

Proof of Proposition 2.3. The proof is based on an idea due to [4].

Let u0 ∈ C1 be a weak minimizer of Φ in u0 + C1
D. Assume first that there exist vk ∈ W1,2

D ,

k = 1, 2, . . . , such that rk := ∥vk∥1,2 → 0 and Φ(u0 + vk) < Φ(u0). Since Φ is weakly lower

semicontinuous in W1,2, there exists a minimizer uk of Φ in the set {u ∈ u0 + W1,2
D : ∥u −

u0∥1,2 ≤ rk}, hence Φ(uk) ≤ Φ(u0 + vk) < Φ(u0). Set Θ(u) := ∥u − u0∥2
1,2. Then there exists a

Lagrange multiplier λk such that Φ′(uk)h = λkΘ′(uk)h for any h ∈ W1,2
D (where the derivatives

are considered in W1,2). Since Φ′(uk)(uk − u0) ≤ 0, we have λk ≤ 0. Standard theory implies

that u0, uk ∈ C2 solve the Euler equation

2(1 − λk)(u
k)′′ = g′(uk)− 2λk((u

0)′′ + uk − u0),

which shows that the sequence uk is bounded in C2. Since uk → u0 in W1,2, the boundedness in

C2 implies uk → u0 in C1 which contradicts the fact, that u0 is a weak minimizer. Consequently,

u0 is a local minimizer in u0 + W1,2
D .

Next assume that there exist vk ∈ C1
D such that ∥vk∥C → 0 and Φ(u0 + vk) < Φ(u0). Since

Φ′(u0)h =
∫ b

a (2((u
0)′ − K)h′ + g′(u0)h) dx = 0 for h ∈ C1

D, we have

0 < Φ(u0)− Φ(u0 + vk) =
∫ b

a
[((u0)′ − K)2 − ((u0)′ + (vk)′ − K)2] dx + o(1)

= −
∫ b

a
(vk)′[(vk)′ + 2((u0)′ − K)] dx + o(1)

= −∥vk∥2
1,2 +

∫ b

a
g′(u0)vk dx + o(1) = −∥vk∥2

1,2 + o(1),

hence vk → 0 in W1,2, which yields a contradiction. Consequently, u0 is a strong minimizer.

Proof of Proposition 3.1. Assume that Ψ(h) ≥ c∥h∥2
1,2 for some c > 0 and all h ∈ W1,2

D and recall

that Ψ(h) = Φ′′(u0)(h, h) if h ∈ C1. If u1 is close u0 in C1 and Ψ1 denotes the functional Ψ with

u0 replaced by u1, then one can easily check that Ψ1(h) = Φ′′(u1)(h, h) ≥ c
2∥h∥2

1,2 for h ∈ C1
D,

and the Mean Value Theorem implies the existence of θ ∈ (0, 1) such that

Φ(u0 + h)− Φ(u0) =
1

2
Φ′′(u0 + θh)(h, h) ≥ c

4
∥h∥2

1,2

whenever h ∈ C1
D is small enough. Consequently, u0 is a strict weak minimizer in u0 + C1

D.

If Ψ(h) < 0 for some h ∈ W1,2
D , then the density of C1

D in W1,2
D and the continuity of Ψ in

W1,2
D guarantee the existence of h̃ ∈ C1

D such that 0 > Ψ(h̃) = Φ′′(u0)(h̃, h̃), which shows that

u0 is not a weak minimizer u0 + C1
D.
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Proof of Theorem 5.2(iii). First assume that INa = ∅. If INb = ∅, then the assertion is well

known (see [7] or [8], for example), hence we may assume INb ̸= ∅. Our assumptions imply

D ̸= 0 in (a, b] and Bh(b) · h(b) > 0 for any h ∈ HD,b \ {0}. We may also assume that

f is defined and of class C3 in an open neighbourhood of {(x, u0(x), (u0)′(x)) : x ∈ [a, b]}
in R × R

N × R
N (see [2] for a detailed proof if N = 1). Consequently, there exists ε > 0

small such that u0 can be extended (as an extremal) for x ∈ [a − ε, a], f 0 satisfies (2.3) in

[a − ε, b], and the solutions h(k), k = 1, 2, . . . , N of the Jacobi equation in [a − ε, b] with initial

conditions h(k)(a − ε) = 0, (h
(k)
i )′(a − ε) = δik, satisfy D > 0 in (a − ε, b] and Bh(b) · h(b) > 0

for any h ∈ HD,b \ {0} due to the continuous dependence of solutions of ODEs on initial

values. Let ϕ(·, α) be the extremal satifying the initial conditions ϕ(a − ε, α) = u0(a − ε),

ϕx(a, α) = (u0)′(a − ε) + α. The arguments in [7, 8] guarantee that such extremals define a

field of extremals for u0 (in [a, b]) satisfying (5.1). Condition (5.2) is empty, hence we only have

to show that (5.3) is true. Thus assume that v − u0(b) ∈ R
N
D,b ∩ Bε \ {0}. We have v = ϕ(b, α)

for some α small. Set hα := ∑k αkh(k). If i ∈ IDb , then 0 = ϕi(b, α) − u0
i (b) = hα

i (b) + o(α),

hence hα = hα̃ + o(α) for some hα̃ ∈ HD,b \ {0} and α̃ = α+ o(α). Since our assumptions imply

Bhα̃(b) · hα̃(b) = ∑i∈INb
Bih

α̃(b)hα̃
i (b) > 0, we also have

fp(b, v, ψ(b, v)) · (v − u0(b)) = ∑
i∈INb

fpi
(b, ϕ(b, α), ϕx(b, α))(ϕi(b, α)− u0

i (b))

= ∑
i∈INb

(
Bih

α(b) + o(α)
)(

hα
i (b) + o(α)

)

= ∑
i∈INb

(
Bih

α̃(b) + o(α̃)
)(

hα̃
i (b) + o(α̃)

)
> 0.

Next assume IDa = ∅. Since our proof in this case uses similar arguments as in the case

INa = ∅ (and a very detailed proof in the case N = 1 can be found in [2]), we will be brief.

Given α ∈ R
N small and v = v(α) := u0(a) + α, the Implicit Function Theorem implies the

existence of a unique w = w(α) ∈ R
N close to (u0)′(a) such fp(a, v(α), w(α)) = 0. Let ϕ(·, α)

be the extremal satisfying the initial conditions ϕ(a, α) = v(α), ϕx(a, α) = w(α). We claim that

such extremals ϕ(·, α) define the required field. In fact, the function P in Definition 5.1 is a C1-

diffeomorphism and ϕx ∈ C1 due to the differentiability of solutions of ODEs on initial values

and the fact that h(k) := ∂ϕ
∂αk

(·, 0), k = 1, . . . , N, are linearly independent solutions of the Jacobi

equation Ah = 0 satisfying the initial conditions Bh(a) = 0, hence det(h(1), . . . , h(N)) ̸= 0 in

[a, b] due to our assumptions. Properties (5.1) and (5.2) follow from fp(a, v, ψ(a, v)) = 0 and

the proof of (5.3) is the same as in the case INa = ∅.

Finally assume (5.5). Let h(1), . . . , h(N) be solutions of the Jacobi equation Ah = 0 in [a, b]

satisfying the initial conditions

h
(k)
i (a) = ηδik for k ∈ IDa , i ∈ I,

h
(k)
i (a) = δik for k ∈ INa , i ∈ I,

(h
(k)
i )′(a) = δik for k ∈ I, i ∈ IDa ,

Bih
(k)(a) = 0 for k ∈ I, i ∈ INa ,

where η ∈ [0, 1]. If ζ ≥ 0 is small, then

h
(k)
i (a + ζ) = (η + ζ)δik + o(ζ) if k, i ∈ IDa ,

h
(k)
i (a + ζ) = δik + O(ζ) otherwise,

hence D(x) := det(h(1)(x), . . . , h(N)(x)) > 0 for x ∈ [a, a + ζ] and η ∈ (0, 1]. If η = 0, then

our assumptions imply D(x) > 0 for x ∈ [a + ζ, b] and Bh(b) · h(b) > 0 for any h := ∑k βkh(k)
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satisfying hi(b) = 0 for i ∈ IDb and h ̸≡ 0. Those properties remain true for η > 0 small

and we fix such η > 0. Set vi(α) = u0
i (a) + ηαi if i ∈ IDa , vi(α) = u0

i (a) + αi if i ∈ INa and

wi(α) = (u0
i )

′(a) + αi if i ∈ IDa . The Implicit Function Theorem guarantees that there exist

unique wi(α) for i ∈ INa (close to (u0
i )

′(a)) such that fpi
(a, v(α), w(α)) = 0 for i ∈ INa and α

small. Let ϕ(·, α) be extremals satisfying the initial conditions ϕ(a, α) = v(α), ϕx(a, α) = w(α).

Then ϕαk
(a, 0) = h(k)(a) and ϕxαk

(a, 0) = (h(k))′(a), which shows that these extremals define

a field of extremals for α small. The same arguments as above guarantee that properties

(5.2),(5.3) are satisfied. Let us show that (5.1) is true. If i, j ∈ INa , then this follows from

fpi
(a, v, ψ(a, v)) = fpj

(a, v, ψ(a, v)) = 0. Let i ∈ IDa . If j ∈ INa , then the left-hand side in (5.1)

is zero due to fpiuj
= fpi pj

= 0. If j ∈ IDa , then that left-hand side equals fpiuj
(a, v, ψ(a, v)) +

∑k∈I fpi pk
(a, v, ψ(a, v))ψk,vj

(a, v). Since fpiuj
= fpjui

, fpi pk
(a, v, ψ(a, v)) = 0 for k ∈ INa and

ψk,vj
(a, v) = 1

η δkj if k ∈ IDa , we see that that left-hand side equals to the right-hand side.

Proof of Proposition 5.4. If w = (w1, . . . , wN) depends on θ, then we denote wi,θ := ∂wi
∂θ . By

differentiating the identity ϕx(x, α) = ψ
(
x, ϕ(x, α)

)
we obtain

ϕj,xx = ψj,x + ∑
k

ψj,vk
ϕk,x = ψj,x + ∑

k

ψj,vk
ψk.

If we substitute this relation into the Euler equations

∑
j

( fpi pj
ϕj,xx + fpiuj

ϕj,x) + fpix − fui
= 0,

(where the arguments of the derivatives of f and ϕ are
(
x, ϕ(x, α), ϕx(x, α)

)
and (x, α), respec-

tively), then we obtain

∑
j

( fpi pj
(ψj,x + ∑

k

ψj,vk
ψk) + fpiuj

ψj) + fpix − fui
= 0, (7.2)

where the arguments of the derivatives of f and ψ are
(
x, v, ψ(x, v)

)
and (x, v), respectively.

For (x, v) ∈ P we set

V(x, v) := f
(

x, v, ψ(x, v)
)
− fp

(
x, v, ψ(x, v)

)
· ψ(x, v),

W(x, v) := fp

(
x, v, ψ(x, v)

)
.

(7.3)

We claim that

(Wi,vj
− Wj,vi

)(x, v) =
∂ fpi

(x, v, ψ(x, v))

∂vj
−

∂ fpj
(x, v, ψ(x, v))

∂vi
= 0, i, j ∈ I. (7.4)

In fact, if f and ϕ are of class C3, then setting v = ϕ(x, α) and ψ(x, v) = ϕx(x, α) in (7.4),

the Euler equations imply that the d/dx-derivative of the resulting expression vanishes, hence

the conclusion follows from (5.1). Such argument can also be used without the additional

smoothness assumptions on f , ϕ, see the proof of [8, Proposition 6.1.1.4].

Now (7.4) and (7.2) imply Vv = Wx. This fact and (7.4) guarantee the existence of S ∈
C2(P) such that Sx = V and Sv = W. Finally,

I(v) =
∫ b

a
(V + W · v′) dx =

∫ b

a
(Sx + Sv · v′) dx =

∫ b

a

d

dx
S
(

x, v(x)
)

dx

= S
(
b, v(b)

)
− S

(
a, v(a)

)
.
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Remark 7.1. Necessary and sufficient conditions for weak minimizers in [15, 16] are formu-

lated in terms of (semi-)coupled points and seem to be more complicated than our condi-

tions. In order to compare them, let us consider the scalar case with variable endpoints

(i.e. IDa = IDb = ∅), and let h be the solution of the Jacobi equation satisfying the initial con-

ditions h(a) = 1, Bh(a) = 0. Let us also denote Q := f 0
uu. Then our sufficient condition for a

weak minimizer in Theorem 3.3 is equivalent to

h(y) ̸= 0 for y ∈ (a, b] and Bh(b) > 0, (7.5)

while the sufficient condition for a weak minimizer in [15, 16] is equivalent to

−Bh(y) ̸=
(∫ b

y
Q
)

h(y) for y ∈ (a, b] and
∫ b

a
Q > 0. (7.6)

The proofs of the sufficiency guarantee that (7.5) is equivalent to (7.6). Let us show this

equivalence directly: For simplicity, consider just Lagrangians of the form 2 f (x, u, p) = p2 +

Q(x)u2. Then Bh = h′ and the Jacobi equation has the form h′′ = Qh. Let h be the solution of

this equation with initial conditions h(a) = 1, h′(a) = 0.

First assume that (7.5) is true. Then integration by parts yields

∫ b

a
Q =

∫ b

a

h′′

h
=

h′

h

∣
∣
∣

b

a
+

∫ b

a

(h′)2

h2
> 0. (7.7)

Assume to the contrary that −h′(y) = (
∫ b

y Q)h(y) for some y ∈ (a, b]. Then

−
∫ b

y
Q =

h′(y)
h(y)

=
h′

h

∣
∣
∣

y

a
=

∫ y

a

(h′′

h
− (h′)2

h2

)

=
∫ y

a

(

Q − (h′)2

h2

)

. (7.8)

Now (7.8) and (7.7) imply

∫ b

a
Q =

∫ y

a

(h′)2

h2
<

h′

h

∣
∣
∣

b

a
+

∫ b

a

(h′)2

h2
=

∫ b

a
Q,

which yields a contradiction.

Next assume that (7.5) fails, i.e. either h(y) = 0 for some y ∈ (a, b] or h′(b) ≤ 0, and

assume also to the contrary (7.6) is true. If h(y) = 0 for some y ∈ (a, b] and h > 0 on [a, y],

then h′(y) < 0, hence

−h′(a) = 0 <

(∫ b

a
Q
)

h(a),

−h′(y) > 0 =
(∫ b

y
Q
)

h(y),

so that there exists z ∈ (a, y) such that −h′(z) =
(∫ b

z Q
)
h(z), which yields a contradiction. If

h > 0 and h′(b) ≤ 0, then

−h′(a) = 0 <

(∫ b

a
Q
)

h(a),

−h′(b) ≥ 0 =
(∫ b

b
Q
)

h(b),

so that there exists z ∈ (a, b] such that −h′(z) =
(∫ b

z Q
)
h(z) and we arrive at contradiction

again.
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The proof above shows that if y1 is the first (= smallest) zero of h, then the smallest solution

z1 of the equation −h′(z) =
(∫ b

z Q
)
h(z) satisfies z1 < y1. The inequality z1 ≤ y1 also follows

from the proof of Theorem 3.4 and the corresponding proof in [16]. In fact, those proofs show

that y1 and z1 correspond to the zeroes of the continuous nonincreasing functions λ1(y) =

infSy
Ψ and λ̃1(z) = infS̃z

Ψ, respectively, where Sy is the unit sphere in Xy (see (3.3)) and S̃z

is the unit sphere in X̃z = {h ∈ W1,2([a, b]) : h(x) = h(z) for x ≥ z}. Since Xy ⊂ X̃y and the

norm in Xy is equivalent to the norm in W1,2, we have λ̃1 ≤ max{Cλ1, 0}.

The following proposition is motivated by [11] and Section 4. Given u0 ∈ C1([a, b], R
N),

we will use the following notation (cf. (1.2)):

M := u0 + C1
D = {u ∈ C1([a, b]) : (ui − u0

i )(x) = 0 for i ∈ IDx and x ∈ {a, b}},

MN := {u ∈ M : u′
i(x) = 0 for i ∈ INx and x ∈ {a, b}}.

Proposition 7.2. Let f ∈ C1 and let u0 be a weak minimizer of Φ in MN . Then u0 is a weak

minimizer in M. Conversely, if u is a weak minimizer in M and u0 ∈ MN , then u0 is a weak

minimizer in MN .

Proof. For simplicity, we will prove the assertion only in the special case N = 1, IDa = ∅,

INb = ∅, but it will be clear from the proof that our arguments can also be used in the general

case.

Hence assume first that u0 is a weak minimizer of Φ in

MN = {u ∈ C1([a, b]) : (u − u0)(b) = 0, u′(a) = 0}.

Then there exists ε > 0 such that u0 is a (global) minimizer of Φ in the set

Mε
N := {u ∈ MN : ∥u − u0∥C1 < ε}.

We will show that u0 is a (global) minimizer in the set Mε/4, where

Mε := {u ∈ M : ∥u − u0∥C1 < ε},

hence u0 is a weak minimizer of Φ in M = {u ∈ C1([a, b]) : (u − u0)(b) = 0}.

Fix u ∈ Mε/4. Since (u0)′(a) = 0, given k ∈ N, there exists δk ∈ (0, 1/k) such that

|(u0)′(x)| < 1/k for x ∈ Jk := [a, a + δk].

Since ∥u − u0∥C1 < ε/4, we also have |u′(x)| < ε/4 + 1/k for x ∈ Jk. Consequently, we can

modify the function u in Jk such that the modified function uk ∈ C1([a, b]) satisfies uk = u

on [a + δk, b], (uk)′(a) = 0 and |(uk)′(x)| < ε/4 + 1/k for x ∈ Jk (for example, we can choose

(uk)′(x) = u′(δk)(x − a)/(δk − a) for x ∈ Jk). Then

|(uk)′ − (u0)′| ≤ |(uk)′|+ |(u0)′| < ε/4 + 2/k on Jk

and the Mean Value Theorem implies

|uk − u0| ≤ |uk − u|+ |u − u0| < max
Jk

|(uk − u)′|δk + ε/4 < (ε/2 + 2/k)/k + ε/4 on Jk,

hence uk ∈ Mε
N for k large, which implies Φ(uk) ≥ Φ(u0). Since Φ(uk) → Φ(u), we have

Φ(u) ≥ Φ(u0).

The converse assertion is trivial.
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Remark 7.3. In [11, Propositions 5 and 6] the authors consider the function u0 and the func-

tional Φ from our Section 4, and they provide conditions guaranteeing that u0 is a weak

minimizer subject to the Neumann boundary conditions for some of its components (see (4.3)

and (4.2) above). Proposition 7.2 shows that the Neumann boundary conditions do not play

any role in such assertions, i.e. u0 remains a weak minimizer if we replace “the Neumann

boundary conditions” with “no boundary conditions”. Consequently (see Proposition 2.1), u0

then has to satisfy the corresponding natural boundary conditions (instead of the Neumann

boundary conditions). The Neumann boundary conditions are different from the natural

boundary conditions in general, but the first two components of the function u0 in Section 4

satisfy both the Neumann and the natural boundary conditions.
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Abstract. The authors investigate the multiplicity of solutions to a quasilinear periodic
boundary value problem with impulsive effects. They use variational methods and
some critical points theorems for smooth functionals, due to Ricceri, that are defined
on reflexive Banach spaces. They obtain the existence of at least three solutions to the
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1 Introduction

We study the existence of at least three distinct classical solutions to the quasilinear periodic

boundary value problem with impulsive effects




−p(x′)x′′ + α(t)x = λ f (t, x) + µg(t, x), t ̸= tj, a.e. t ∈ [0, 1],

∆(h′(u′(tj))) = Ij(u(tj)), j = 1, 2, . . . , m,

x(1)− x(0) = x′(1)− x′(0) = 0,

(P
f ,g

λ,µ)

where f : [0, 1]× R → R and g : R × R → R are L1-Carathéodory functions, λ > 0 and µ ≥ 0

are parameters, 0 = t0 < t1 < · · · < tm < tm+1 = 1, Ij : R → R, j = 1, . . . , m, are continuous

functions, ∆(h′(u′(tj))) = h′(u′(t+j ))− h′(u′(t−j )) with h′(u′(t±j )) = limt→t± h′(u′(t)), and

h(y) =
∫ y

0

(∫ τ

0
p(ξ)dξ

)
dτ for every y ∈ R.

Recall that a function h : [0, 1]× R → R is an L1-Carathéodory function if it satisfies:

(a) x 7→ h(t, x) is measurable for every x ∈ R;

B sh.heidarkhani@razi.ac.ir
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(b) t 7→ h(t, x) is continuous for a.e. x ∈ [0, 1];

(c) for every ε > 0 there exists a function lε ∈ L1([0, 1]) such that

sup
|x|≤ε

|h(t, x)| ≤ lε(t) for a.e. t ∈ [0, 1].

In this paper, and without further mention, we always assume that:

(Q1) p : R → (0, ∞) is continuous and nondecreasing on [0, ∞), and there exist M ≥ m > 0

such that

m ≤ p(x) ≤ M for all x ∈ R; (1.1)

(Q2) α ∈ C([0, 1]) and there exist α1 ≥ α0 > 0 such that

α0 ≤ α(t) ≤ α1 for all t ∈ [0, 1]; (1.2)

(Q3) Ij : R → R is nondecreasing and Ij(0) = 0 for j = 1, . . . , m.

In recent years, impulsive differential equations have played an important role in modern

applied mathematical models of real processes arising in phenomena studied in physics, ecol-

ogy, biological systems, biotechnology, and industrial robotics. Many authors have applied

variational methods to study the existence of multiple solutions of impulsive systems of the

form (1.1) or its variations, and we refer the reader to [2–4, 6, 7, 12, 17, 20] and references cited

therein for some recent results. For example, Bonanno and Livrea [3] studied the existence

and multiplicity of solutions to the periodic boundary value problem

{
−x′′ + A(t)x = λb(t)∇G(x), t ∈ [0, T],

x(T)− x(0) = x′(T)− x′(0) = 0,

where A(t) = (ai,j(t))n×n is a positive definite matrix for all t ∈ [0, T], ai,j ∈ C([0, T], R),

G ∈ C1(Rn, R), and b ∈ L1([0, T])\{0} that is nonnegative a.e. In [6], by using a three critical

points theorem due to Bonanno and Marano, the existence of at least three solutions to a

quasilinear second order differential equation was discussed. Using the symmetric mountain

pass theorem and genus properties of critical point theory, Shen and Liu [17] investigated the

existence of infinitely many solutions to the second-order quasilinear periodic boundary value

problem with impulsive effects





−u(t)′′ + b(t)u(t)− (|u(t)|2)′′u(t) = f (t, u), t ∈ J,

∆(u′(tj)) = Ij(u(tj)), j = 1, 2, . . . , m,

u(T) = u(0), u′(T) = u′(0),

where b ∈ L∞(0, T; R) and f : [0, T] × R → R is continuous. Using variational methods,

Heidarkhani and Moradi [7] discussed the existence of at least one weak solution and infinitely

many weak solutions to (P
f ,g

λ,µ) with µ = 0 and Ij ≡ 0 for j = 1, 2, . . . , m.

Motivated by the above studies, in this paper, we establish new criteria to guarantee that

the problem (P
f ,g

λ,µ) has at least three classical solutions for appropriate values of the parameters

λ and µ. It is worth stressing that we only assume g to be a L1-Carathéodory function which

permits us to use variational methods. In addition, we obtain multiplicity results for two
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cases: (i) if the nonlinearity f is asymptotically quadratic, and (ii) if it is subquadratic as

|u| → ∞. Our approach is based on variational methods and a three critical points theorem

due to Ricceri [14].

The remainder of this paper is organized as follows. Section 2 contains some preliminary

lemmas, and Section 2.1 contains our main results and their proofs.

2 Preliminaries

Our main tool is a theorem of Ricceri [14, Theorem 2] which is recalled in Lemma 2.1 below.

In what follows, we let X be a real Banach space, and as in [14], we let WX denote the class of

all functionals Φ : X → R having the property: If {un} is a sequence in X converging weakly

to u ∈ X with lim infn→∞ Φ(un) ≤ Φ(u), then {un} has a subsequence converging strongly

to u. For example, if X is uniformly convex and g : [0, ∞) → R is a continuous and strictly

increasing function, then the functional u → g(∥u∥) belongs to the class WX.

Lemma 2.1. Let X be a separable and reflexive real Banach space, let Φ : X → R be a coercive,

sequentially weakly lower semicontinuous C1-functional belonging to WX that is bounded on bounded

subsets of X and whose derivative admits a continuous inverse on X∗. Let J : X → R be a C1-functional

with a compact derivative and assume that Φ has a strict local minimum u0 with Φ(u0) = J(u0) = 0.

Finally, set

ρ = max

{
0, lim sup

∥u∥→∞

J(u)

Φ(u)
, lim sup

u→u0

J(u)

Φ(u)

}
, σ = sup

u∈Φ−1((0,∞))

J(u)

Φ(u)
,

and assume that ρ < σ. Then for each compact interval [c, d] ⊂ (1/σ, 1/ρ) (with the conventions

that 1/0 = ∞ and 1/∞ = 0), there exists R > 0 with the property: for every λ ∈ [c, d] and every

C1-functional Ψ : X → R with compact derivative, there exists γ > 0 such that for each µ ∈ [0, γ],

the equation

Φ′(u) = λJ′(u) + µΨ′(u)

has at least three solutions in X whose norms are less than R.

We refer the reader to the papers [5,8–10,18,19] in which Lemma 2.1 was successfully used

to ensure the existence of at least three solutions to boundary value problems.

The following two results of Ricceri are taken from [15, Theorem 1] and [16, Proposi-

tion 3.1], respectively.

Lemma 2.2. Let X be a reflexive real Banach space, I ⊆ R be an interval, and let Φ : X → R be a

sequentially weakly lower semicontinuous C1 functional that is bounded on bounded subsets of X, and

whose derivative admits a continuous inverse on X∗. Let J : X → R be a functional with a compact

derivative and assume that

lim
∥x∥→∞

(Φ(x)− λJ(x)) = ∞, for all λ ∈ I,

and that there exists ρ ∈ R such that

sup
λ∈I

inf
x∈X

(Φ(x)− λ(ρ − J(x))) < inf
x∈X

sup
λ∈I

(Φ(x)− λ(ρ − J(x))).
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Then there exist a nonempty open set A ⊆ I and a positive number R with the property: for every

λ ∈ A and every C1 functional Ψ : X → R with compact derivative, there exists δ > 0 such that, for

each µ ∈ [0, δ], the equation

Φ′(u)− λJ′(u)− µΨ′(u) = 0

has at least three solutions in X whose norms are less than R.

Lemma 2.3. Let X be a nonempty set and let Φ and Ψ be two real functions on X. Assume that there

exist r > 0 and x0, x1 ∈ X such that

Φ(x0) = J(x0) = 0, Φ(x1) > r, and sup
x∈Φ−1(−∞,r]

J(x) < r
J(x1)

Φ(x1)
.

Then for each ρ satisfying

sup
x∈Φ−1(−∞,r]

J(x) < ρ < r
J(x1)

Φ(x1)
,

we have

sup
λ≥0

inf
x∈X

(Φ(x)− λ(ρ − J(x))) < inf
x∈X

sup
λ≥0

(Φ(x)− λ(ρ − J(x))).

We refer the reader to the paper of Sun et al. [18] in which Lemma 2.2 was successfully

employed to ensure the existence of at least three solutions to boundary value problems.

To construct an appropriate function space and apply critical point theory, we introduce

the following notations and results to be used in the proofs of our main results.

Let us define the Banach space E by

E =
{

u : [0, 1] → R | u is absolutely continuous, u(1) = u(0), u′ ∈ L2([0, 1]
}

,

equipped with the norm

∥u∥ =

( ∫ 1

0

(
|u′|2 + |u|2

)
dt

) 1
2

.

Clearly, E is a Hilbert space with the dual space E∗.

For every u ∈ E, we define

Φ(u) =
∫ 1

0
h(u′(t))dt +

1

2

∫ 1

0
α(t)|u(t)|2dt +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ, (2.1)

J(u) =
∫ 1

0
F(t, u(t))dt, (2.2)

and

Ψ(u) =
∫ 1

0
G(t, u(t))dt, (2.3)

where

F(t, x) =
∫ x

0
f (t, s)ds and G(t, x) =

∫ x

0
g(t, s)ds for all x ∈ R.

Standard arguments show that Iλ := Φ− µΨ−λJ is a Gâteaux differentiable functional whose

Gâteaux derivative at the point u ∈ E is given by

(Φ′ − µΨ′ − λJ′)(u)(v) =
∫ 1

0
h′(u′(t))v′(t)dt +

∫ 1

0
α(t)u(t)v(t)dt

+
m

∑
j=1

Ij(u(tj))v(tj)− λ

∫ 1

0
f (t, u(t))v(t)dt

− µ

∫ 1

0
g(t, u(t))v(t)dt, for all v ∈ E.
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Furthermore, from the definition of Φ, we see that it is sequentially weakly lower semicontin-

uous.

Definition 2.4. By a weak solution of the problem (P
f ,g

λ,µ), we mean a function u ∈ E such that

∫ 1

0
h′(u′(t))v′(t)dt +

∫ 1

0
α(t)u(t)v(t)dt +

m

∑
j=1

Ij(u(tj))v(tj)

− λ

∫ 1

0
f (t, u(t))v(t)dt − µ

∫ 1

0
g(t, u(t))v(t)dt = 0,

for every v ∈ E.

By a classical solution of the problem (P
f ,g

λ,µ), we mean a function u ∈ E such that u(t)

satisfies the equation in (P
f ,g

λ,µ) for a.e. t ∈ [0, 1] \ {t1, . . . , tm} and both the impulse condition

and the boundary condition in (P
f ,g

λ,µ) hold.

Clearly, a critical point u ∈ E of the functional Iλ is a weak solution of the problem (P
f ,g

λ,µ).

Next , we show that u is indeed a classical solution.

Lemma 2.5. If u ∈ E is a critical point of Iλ, then u is a classical solution of (P
f ,g

λ,µ).

Proof. Let u ∈ E be a critical point for Iλ. Then, for any v ∈ E, it follows that

0 =
∫ 1

0
h′(u′(t))v′(t)dt +

∫ 1

0
α(t)u(t)v(t)dt +

m

∑
j=1

Ij(u(tj))v(tj)

− λ

∫ 1

0
f (t, u(t))v(t)dt − µ

∫ 1

0
g(t, u(t))v(t)dt

=
m+1

∑
j=0

h′(u′(t))v(t)|t
−
j+1

t=t+j
+

m

∑
j=1

Ij(u(tj))v(tj)

−
∫ 1

0
[(h′(u′(t)))′ − α(t)u(t) + λ f (t, u(t)) + µg(t, u(t))]v(t)dt

=
m

∑
j=1

[−∆(h′(u′(tj))) + Ij(u(tj))]v(tj) + h′(u′(1))v(1)− h′(u′(0))v(0)

−
∫ 1

0
[(h′(u′(t)))′ − α(t)u(t) + λ f (t, u(t)) + µg(t, u(t))]v(t)dt.

That is, we have

m

∑
j=1

[−∆(h′(u′(tj))) + Ij(u(tj))]v(tj) + h′(u′(1))v(1)− h′(u′(0))v(0)

−
∫ 1

0
[(h′(u′(t)))′ − α(t)u(t) + λ f (t, u(t)) + µg(t, u(t))]v(t)dt = 0 for all v ∈ E. (2.4)

Without loss of generality, we assume that v ∈ C∞
0 (tj, tj+1) and v(t) = 0 for t ∈ [0, tj]∪ [tj+1, 1].

Then, substituting into (2.4) gives

(h′(u′(t)))′ − α(t)u(t) + λ f (t, u(t)) + µg(t, u(t)) = 0 a.e. t ∈ (tj, tj+1).
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Thus, in view of the fact that (h′(u′(t)))′ = p(u′(t))u′′(t), we see that u satisfies the equation

in (P
f ,g

λ,µ). Now, by (2.4), we have

m

∑
j=1

[−∆(h′(u′(tj))) + Ij(u(tj))]v(tj) + h′(u′(1))v(1)− h′(u′(0))v(0) = 0 (2.5)

for all v ∈ E. Next we shall show that u satisfies the impulsive condition in (P
f ,g

λ,µ). If this is

not the case, without loss of generality, we assume that there exists j ∈ {1, . . . , m} such that

−∆(h′(u′(tj))) + Ij(u(tj)) ̸= 0.

Let

v(t) =
m+1

∏
i=0, i ̸=j

(t − ti).

Then,

m

∑
k=1

[−∆(h′(u′(tk))) + Ik(u(tk))]v(tk) + h′(u′(1))v(1)− h′(u′(0))v(0)

=
m

∑
k=1

[−∆(h′(u′(tk))) + Ik(u(tk))]
m+1

∏
i=0, i ̸=j

(tk − ti)

+ h′(u′(1))
m+1

∏
i=0, i ̸=j

(tm+1 − ti)− h′(u′(0))
m+1

∏
i=0, i ̸=j

(t0 − ti)

= [−∆(h′(u′(tj))) + Ij(u(tj))]
m+1

∏
i=0, i ̸=j

(tk − ti) ̸= 0,

which contradicts (2.5). Thus, u satisfies the impulse condition in (P
f ,g

λ,µ). Similarly, we can

show that u satisfies the boundary condition in (P
f ,g

λ,µ). Therefore, u is a solution of (P
f ,g

λ,µ).

We will also need the following lemma in the proof of our main result.

Lemma 2.6. Let S : E → E∗ be the operator defined by

S(u)(v) =
∫ 1

0
h′(u′(t))v′(t)dt +

∫ 1

0
α(t)u(t)v(t)dt +

m

∑
j=1

Ij(u(tj))v(tj)

for every u, v ∈ E. Then S admits a continuous inverse on E∗.

Proof. For any u ∈ E, from conditions (Q1)–(Q3), it follows that

S(u)(u) =
∫ 1

0
h′(u′(t))u′(t)dt +

∫ 1

0
α(t)|u(t)|2dt +

m

∑
j=1

Ij(u(tj))ui(tj)

≥ min{m, α0}∥u∥2,
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which implies that S is coercive. Now, for any u, v ∈ E, we have

⟨S(u)− S(v), u − v⟩ =
∫ 1

0
(h′(u′(t))− h′(v′(t)))(u′(t)− v′(t))dt

+
∫ 1

0
α(t)(u(t)− v(t))2dt

+
m

∑
j=1

(
Ij(u(t))− Ij(v(t))

)
(u(t)− v(t))

≥ min{m, α0}∥u − v∥2.

Thus, S is strongly monotone. Moreover, since E is reflexive, if un → u strongly in E as n → ∞,

it can be shown that S(un) → S(u) weakly in E∗ as n → ∞. Hence, S is demicontinuous. By

[21, Theorem 26.A(d)], the inverse operator S−1 of S exists and is continuous.

2.1 Main result

In this section, we state and prove our main results. Let

λ1 = inf
u∈E\{0}





∫ 1
0 h(u′(t))dt + 1

2

∫ 1
0 α(t)|u(t)|2dt + ∑

m
j=1

∫ u(tj)
0 Ij(ζ)dζ

∫ 1
0 F(t, u(t))dt

:
∫ 1

0
F(t, u(t))dt > 0





and

λ2 =
1

max {0, λ0, λ∞}
,

where

λ0 = lim sup
u→0

∫ 1
0 F(t, u(t))dt

∫ 1
0 h(u′(t))dt + 1

2

∫ 1
0 α(t)|u(t)|2dt + ∑

m
j=1

∫ u(tj)
0 Ij(ζ)dζ

and

λ∞ = lim sup
∥u∥→∞

∫ 1
0 F(t, u(t))dt

∫ 1
0 h(u′(t))dt + 1

2

∫ 1
0 α(t)|u(t)|2dt + ∑

m
j=1

∫ u(tj)
0 Ij(ζ)dζ

.

Theorem 2.7. Assume that

(A1) there exists a constant ε > 0 such that

max

{
lim sup

u→0

maxt∈[0,1] F(t, u)

|u|2 , lim sup
|u|→∞

maxt∈[0,1] F(t, u)

|u|2

}
< ε;

(A2) there exists a function w ∈ E such that

∫ 1

0
h(w′(t))dt +

1

2

∫ 1

0
α(t)|w(t)|2dt +

m

∑
j=1

∫ w(tj)

0
Ij(ζ)dζ ̸= 0

and

8ε

min{m, α0}
<

∫ 1
0 F(t, w(t))dt

∫ 1
0 h(w′(t))dt + 1

2

∫ 1
0 α(t)|w(t)|2dt + ∑

m
j=1

∫ w(tj)
0 Ij(ζ)dζ

.
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Then for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 such that for every λ ∈ [c, d] and

every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0 such that for every µ ∈ [0, γ],

the problem (P
f ,g

λ,µ) has at least three classical solutions whose norms in E are less than R.

Remark 2.8. Under conditions (A1) and (A2), it is true that λ1 < λ2 as is shown in the proof

of Theorem 2.7 given below.

Proof of Theorem 2.7. Our aim is to apply Lemma 2.1 to the problem (P
f ,g

λ,µ). Take X = E; clearly,

X is a separable and uniformly convex Banach space. From [13, Proposition 1.1] and its proof

with T = 1 and p = q = 2, we have

max
t∈[0,1]

|u(t)| ≤ 2∥u∥ for all u ∈ X. (2.6)

Let the functionals Φ, J, and Ψ be as given in (2.1)–(2.3). The functional Φ is C1, and by

Lemma 2.6, its derivative admits a continuous inverse on X∗. Moreover, Φ is sequentially

weakly lower semicontinuous since Φ′ is monotone (see the proof of Lemma 2.6). Since

∫ 1

0
h(u′(t))dt =

∫ 1

0

(∫ u′(t)

0

(∫ τ

0
p(ξ)dξ

)
dτ

)
dt,

from (1.1) and (1.2), it follows that

1

2
min{m, α0}∥u∥2 ≤ m

2

∫ 1

0
|u′(t)|2dt +

α0

2

∫ 1

0
|u(t)|2dt +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ

≤ Φ(u)

≤ M

2

∫ 1

0
|u′(t)|2dt +

α1

2

∫ 1

0
|u(t)|2dt +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ

≤ 1

2
max{M, α1}∥u∥2 +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ (2.7)

for every u ∈ X. We then have

lim
∥u∥→+∞

Φ(u) = ∞,

i.e., Φ is coercive. Now, let A be a bounded subset of X. Then there exist a constant c > 0

such that ∥u∥ ≤ c for all u ∈ A. From (2.6), maxt∈[0,1] |u(t)| ≤ 2c for all u ∈ A. Thus, by the

continuity of each Ij, we see that there exists K > 0 such that
∣∣∣∑m

j=1

∫ u(tj)
0 Ij(ζ)dζ

∣∣∣ < K for all

u ∈ A. Then, by (2.7), we have

Φ(u) ≤ 1

2
max{M, α1}∥c∥2 + K,

so Φ is bounded on each bounded subset of X.

To prove that Φ ∈ WX, define

Φ1(u) =
∫ 1

0
h(u′(t))dt and Φ2(u) =

1

2

∫ 1

0
α(t)|u(t)|2dt +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ

for all u ∈ X. Then,

Φ(u) = Φ1(u) + Φ2(u) for all u ∈ X.
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As in (2.7), we have

Φ1(u) ≥ d(u) :=
m

2

∫ 1

0
|u′(t)|2dt for all u ∈ X. (2.8)

Let {uk} be a sequence in X and let u ∈ X be such that uk ⇀ u and lim infk→∞ Φ(uk) ≤
Φ(u). To show that {uk} has a subsequence strongly converging to u, assume, to the contrary,

that {uk} does not have such a subsequence. Then, there exist ϵ > 0 and a subsequence {ukn
}

of {uk} such that ∥∥∥∥
ukn

− u

2

∥∥∥∥ ≥ ϵ for all n ∈ N.

Note that {ukn
} converges uniformly to u by [13, Proposition 1.2]. Then, in view of the

definition of ∥ · ∥, there exists ϵ1 > 0 such that

d

(
ukn

− u

2

)
≥ ϵ1 for all n ∈ N.

Thus, from (2.8)

Φ1

(
ukn

− u

2

)
≥ ϵ1 for all n ∈ N. (2.9)

Now, the sequentially weakly lower semicontinuity of Φ implies that lim infn→∞ Φ(ukn
) =

Φ(u). Hence, there exists a subsequence {wℓ} = {uknℓ
} of {ukn

} such that

lim
ℓ→∞

Φ(wℓ) = Φ(u).

Since {wℓ} converges uniformly to u and Ij, j = 1 . . . , m, are continuous, we see that

lim
ℓ→∞

Φ2(wℓ) = Φ2(u),

and so

lim
ℓ→∞

Φ1(wℓ) = Φ1(u). (2.10)

It is clear that Φ1 is sequentially weakly lower semicontinuous and that (wℓ + u)/2 ⇀ u as

ℓ → ∞. Then,

Φ1(u) ≤ lim inf
ℓ→∞

Φ1

(
wℓ + u

2

)
. (2.11)

By simple calculations and the nondecreasing nature of p, we have that for y > 0,

h′′(
√

y) =
1

4
y−1 p(

√
y)− 1

4
y−3/2

∫ √
y

0
p(ξ)dξ

≥ 1

4
y−1 p(

√
y)− 1

4
y−3/2√yp(

√
y) = 0.

Hence, h(
√

y) is convex. Moreover, h(y) is continuous, strictly increasing for y ≥ 0, and

h(0) = 0. Thus, from [11, Theorem 2.1], we have

1

2
Φ1(wℓ) +

1

2
Φ1(u) ≥ Φ1

(
wℓ + u

2

)
+ Φ1

(
wℓ − u

2

)
for all ℓ ∈ N.

Taking limit superior as ℓ → ∞ and using (2.8), (2.9), and (2.10) in the above inequality, we

obtain

Φ1(u)− ϵ1 ≥ lim sup
ℓ→∞

Φ1

(
wℓ + u

2

)
,
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which contradicts (2.11). This shows that {uk} has a subsequence converging strongly to u.

Therefore, Φ ∈ WX.

The functionals J and Ψ are C1-functionals with compact derivatives. Moreover, Φ has

a strict local minimum 0 with Φ(0) = J(0) = 0. Therefore, the regularity assumptions on

Φ, J, and Ψ, as required in Lemma 2.1, are satisfied. In view of (A1), there exist τ1, τ2 with

0 < τ1 < τ2 such that

F(t, u) ≤ ε|u|2 (2.12)

for every t ∈ [0, 1] and every u with |u| ∈ [0, τ1) ∪ (τ2, ∞). Since F(t, u) is continuous on

[0, 1]× R, F(t, u) is bounded on [0, 1]× [τ1, τ2]. Thus, we can choose η > 0 and υ > 2 such

that

F(t, u) ≤ ε|u|2 + η|u|υ

for all (t, u) ∈ [0, 1]× R. Then, from (2.6), we have

J(u) ≤ 4ε∥u∥2 + η2υ∥u∥υ (2.13)

for all u ∈ X. Hence, from (2.7) and (2.13), we have

lim sup
|u|→0

J(u)

Φ(u)
≤ 8ε

min{m, α0}
. (2.14)

Moreover, by (2.12), for each u ∈ X \ {0},

J(u)

Φ(u)
=

∫
|u|≤τ2

F(t, u(t))dt

Φ(u)
+

∫
|u|>τ2

F(t, u(t))dt

Φ(u)

≤
supt∈[0,1],|u|∈[0,τ2]

F(t, u)

Φ(u)
+

4ε∥u∥2

Φ(u)

≤
supt∈[0,1],|u|∈[0,τ2]

F(t, u)
1
2 min{m, α0}∥u∥2

+
8ε

min{m, α0}
.

Therefore,

lim sup
∥u∥→∞

J(u)

Φ(u)
≤ 8ε

min{m, α0}
. (2.15)

In view of (2.14) and (2.15), we have

ρ = max

{
0, lim sup

∥u∥→∞

J(u)

Φ(u)
, lim sup

u→0

J(u)

Φ(u)

}
≤ 8ε

min{m, α0}
. (2.16)

Condition (A2) together with (2.16) yield

σ = sup
u∈Φ−1((0,∞))

J(u)

Φ(u)
= sup

X\{0}

J(u)

Φ(u)

≥
∫ 1

0 F(t, w(t))dt

Φ(w(t))
=

∫ 1
0 F(t, w(t))dt

1
2 max{M, α1}∥u∥2 + ∑

m
j=1

∫ w(tj)
0 Ij(ζ)dζ

>
8ε

min{m, α0}
≥ ρ.



A quasilinear periodic boundary value problem with impulsive effects 11

Thus, all the conditions of Lemma 2.1 are satisfied. With λ1 = 1/σ and λ2 = 1/ρ, by Lemmas

2.1 and 2.5, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 such that for every

λ ∈ [c, d] and every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0 such that

for each µ ∈ [0, γ], the problem (P
f ,g

λ,µ) has at least three classical solutions whose norms in X

are less than R.

The following result is another application of Lemma 2.1.

Theorem 2.9. Assume that

max
u∈E

{
lim sup

u→0

maxt∈[0,1] F(t, u)

|u|2 , lim sup
|u|→∞

maxt∈[0,1] F(t, u)

|u|2

}
≤ 0 (2.17)

and

sup
u∈E

∫ 1
0 F(t, u(t))dt

∫ 1
0 h(u′(t))dt + 1

2

∫ 1
0 α(t)|u(t)|2dt + ∑

m
j=1

∫ u(tj)
0 Ij(ζ)dζ

> 0. (2.18)

Then for each compact interval [c, d] ⊂ (λ1, ∞), there exists R > 0 such that for every λ ∈ [c, d] and

every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0 such that for each µ ∈ [0, γ],

the problem (P
f ,g

λ,µ) has at least three classical solutions whose norms in E are less than R.

Proof. For any ε > 0, (2.17) implies that there exist τ1 and τ2 with 0 < τ1 < τ2 such that

F(t, u) ≤ ε|u|2

for every t ∈ [0, 1] and every u with |u| ∈ [0, τ1) ∪ (τ2, ∞). Since F(t, u) is continuous on

[0, 1] × R, F(t, u) is bounded on [0, 1] × [τ1, τ2]. Thus, as before, we can choose η > 0 and

υ > 2 so that

F(t, u) ≤ ε|u|2 + η|u|υ

for all (t, u) ∈ [0, 1]× R. Then, by the same process as in the proof of Theorem 2.7, we obtain

(2.14) and (2.15). Since ϵ is arbitrary, (2.14) and (2.15) give

max

{
0, lim sup

∥u∥→+∞

J(u)

Φ(u)
, lim sup

u→0

J(u)

Φ(u)

}
≤ 0.

Then, with ρ and σ defined as in Lemma 2.1, we have ρ = 0, and by (2.18), we have σ > 0. In

this case, λ1 = 1/σ and λ2 = ∞. Thus, by Lemma 2.1 the theorem is proved.

Remark 2.10. In condition (A2) of Theorem 2.7, if we choose

w0(t) =





σ, t ∈ [0, 1/4] ,

2σt + σ/2, t ∈ [1/4, 1/2] ,

−2σt + 5σ/2, t ∈ [1/2, 3/4] ,

σ, t ∈ [3/4, 1] ,

(2.19)

where σ > 0, then w0 ∈ E, and (A2) now takes the form
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(Â2) there exists a positive constant σ such that

1

4
h(2σ) +

1

4
h(−2σ) +

1

2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ ̸= 0

and

8ε

min{m, α0}
<

∫ 1
0 F(t, w0(t))dt

1
4 h(2σ) + 1

4 h(−2σ) + 1
2

∫ 1
0 α(t)|w0(t)|2dt + ∑

m
j=1

∫ w0(tj)
0 Ij(ζ)dζ

.

Next, we point out some results in which the function f is separable. To be precise, we

consider the problem





−p(x′)x′′ + α(t)x = λθ(t) f (x) + µg(t, x), t ̸= tj, a.e. t ∈ [0, 1],

∆(h′(u′(tj))) = Ij(u(tj)), j = 1, 2, . . . , m,

x(1)− x(0) = x′(1)− x′(0) = 0,

(ϕθ
λ,µ)

where θ : [0, 1] → R is a nonzero function with θ ∈ L1([0, 1]), f : R → R is a continuous

function, and g : [0, 1]× R → R is an L1-Carathéodory function. Let F(t, x) = θ(t)F(x) for

every (t, x) ∈ [0, 1]× R, where

F(x) =
∫ x

0
f (ξ)dξ for all x ∈ R.

The following existence results are then consequences of Theorem 2.7.

Theorem 2.11. Assume that

(A3) there exists a constant ε > 0 such that

sup
t∈[0,1]

θ(t) · max

{
lim sup

u→0

F(u)

|u|2 , lim sup
|u|→∞

F(u)

|u|2

}
< ε;

(A4) there exists a positive constant σ such that

1

4
h(2σ) +

1

4
h(−2σ) +

1

2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ ̸= 0

and

8ε

min{m, α0}
<

f (w0(t))
∫ 1

0 θ(t)dt

1
4 h(2σ) + 1

4 h(−2σ) + 1
2

∫ 1
0 α(t)|w0(t)|2dt + ∑

m
j=1

∫ w0(tj)
0 Ij(ζ)dζ

,

where w0 is defined by (2.19).

Then for each compact interval [c, d] ⊂ (λ3, λ4), where λ3 and λ4 are the same as λ1 and λ2, but with∫ 1
0 F(t, u(t))dt replaced by

∫ 1
0 θ(t)F(u(t))dt, there exists R > 0 such that for every λ ∈ [c, d] and

every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0 such that for each µ ∈ [0, γ],

the problem (ϕθ
λ,µ) has at least three classical solutions whose norms in E are less than R.
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Theorem 2.12. Assume that there exists a positive constant σ such that

1

4
h(2σ)+

1

4
h(−2σ) +

1

2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ > 0

and
∫ 1

0
θ(t)F(w0(t))dt > 0, (2.20)

where w0 is given by (2.19). In addition, assume that

lim sup
u→0

F(u)

|u|2 = lim sup
|u|→∞

F(u)

|u|2 = 0. (2.21)

Then for each compact interval [c, d] ⊂ (λ3, ∞), where λ3 is the same as λ1 but with
∫ 1

0 F(t, u(t))dt

replaced by
∫ 1

0 θ(t)F(u(t))dt, there exists R > 0 such that for every λ ∈ [c, d] and every L1-

Carathéodory function g : [0, 1] × R → R, there exists γ > 0 such that for each µ ∈ [0, γ], the

problem (ϕθ
λ,µ) has at least three classical solutions whose norms in E are less than R.

Proof. From (2.21), we easily see that (A3) is satisfied for every ε > 0. Moreover, using (2.20),

by choosing ε > 0 small enough, (A4) will hold. Hence, the conclusion of this theorem follows

from Theorem 2.11.

As an example in which the hypotheses of Theorem 2.12 are satisfied, we have the follow-

ing.

Example 2.13. Let p(x) = 4− cot(x) for each x ∈ R, α(t) = θ(t) = 1 for every t ∈ [0, 1], m = 1,

t1 = 1/5, I1(x) = x3 for each x ∈ R, and

f (x) =





4x3, |x| ≤ 1,

4x, 1 < |x| ≤ 2,

8, |x| ≥ 2.

Then, it is easy to check that

F(x) =





x4, |x| ≤ 1,

2x2 − 1, 1 < |x| ≤ 2,

8x − 9, x > 2,

8x + 23, x < −2.

By choosing σ = 1, w0(t) becomes

w0(t) =





1, t ∈ [0, 1/4] ,

2t + 1/2, t ∈ [1/4, 1/2] ,

−2t + 5/2, t ∈ [1/2, 3/4] ,

1, t ∈ [3/4, 1] .

It is trivial to verify that

1

4
h(2σ)+

1

4
h(−2σ) +

1

2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ > 0,
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∫ 1

0
θ(t)F(w0(t))dt > 0,

and

lim
u→0

F(u)

|u|2 = lim
|u|→∞

F(u)

|u|2 = 0.

Hence, by Theorem 2.12, for each compact interval [c, d] ⊂ (0, ∞), there exists R > 0 such that

for every λ ∈ [c, d] and every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0

such that for each µ ∈ [0, γ], the problem




−p(x′)x′′ + x = λ f (x) + µg(t, x), t ̸= 1
5 , a.e. t ∈ [0, 1],

∆(h′(u′( 1
5 ))) = I1(u(

1
5 )),

x(1)− x(0) = x′(1)− x′(0) = 0,

has at least three classical solutions whose norms in E are less than R.

The following theorem is a consequences of Lemma 2.3.

Theorem 2.14. Assume that there exist three positive constants 1 ≤ ζ < 2, θ, and σ, with

θ <

√
1

4
h(2σ) +

1

4
h(−2σ) +

31α0σ2

48
, (2.22)

such that

(B1) f (t, x) ≥ 0 for every (t, x) ∈
(
[0, 1/4]×[0, σ]

)
∪
(
[3/4, 1]×[0, σ]

)
∪
(
[1/4, 3/4]×[σ, 3σ/2]

)
;

(B2)

∫ 1
0 sup|u|≤θ F(t, u)dt

θ2
<

min{m, α0}
8

∫ 3
4

1
4

F(t, σ)dt

1
4 h(2σ) + 1

4 h(−2σ) + 31α1σ2

48 + ∑
m
j=1

∫ w0(tj)
0 Ij(ζ)dζ

;

(B3) there exists p > 0 and a positive constant q such that

|F(t, u)| ≤ p|u|ζ + q for all (t, u) ∈ [0, 1]× R;

(B4) there exists l > 0 and a positive constant ϱ ∈ R such that

G(t, u) ≤ luζ + ϱ for all (t, u) ∈ [0, 1]× R.

Then there exist a nonempty open set A ⊂ [0, ∞) and a positive number R > 0 such that for every

λ ∈ A and every L1-Carathéodory function g : [0, 1]× R → R, there exists δ > 0 such that for each

µ ∈ [0, δ], the problem (P
f ,g

λ,µ) has at least three classical solutions whose norms in E are less than R.

Proof. Since the embeddings E →֒ Lq (q ≥ 1) and E →֒ L∞ are compact (see Adams and

Fournier [1]), there exists a positive constant C such that

|u|Lq([0,1]) ≤ C∥u∥.

For any λ ≥ 0 and u ∈ E, from (Q3), (B3), and (B4), we have

Φ(u)− λΨ(u) ≥ 1

2
min{m, α0}∥u∥2 − λ

∫ 1

0
[F(t, u(t)) +

µ

λ
G(t, u(t))]dt

≥ 1

2
min{m, α0}∥u∥2 − λ

(∫ 1

0
p|u|ζdt + q

)
− µ

(
l
∫ 1

0
|u(t)|ζdt + ϱ

)

≥ 1

2
min{m, α0}∥u∥2 − λpC0∥u∥ζ − µlC1∥u∥ζ − λq − µϱ.
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Since ζ < 2,

lim
∥u∥→+∞

Φ(u)− λΨ(u) = ∞ for all λ > 0.

Let w0 be defined by (2.19) with σ given in the theorem. Now, mint∈[ 1
4 , 3

4 ]
{w0(t)} = σ and

maxt∈[ 1
4 , 3

4 ]
{w0(t)} = 3σ

2 , so

J(w0) =
∫ 1

4

0

∫ σ

0
f (t, ξ)dξdt +

∫ 3
4

1
4

∫ w0(t)

0
f (t, ξ)dξdt +

∫ 1

3
4

∫ σ

0
f (t, ξ)dξdt

≥
∫ 3

4

1
4

∫ σ

0
f (t, ξ)dξdt =

∫ 3
4

1
4

F(t, σ)dt.

Moreover, simple calculations show that

Φ(w0) =
1

4
h(2σ) +

1

4
h(−2σ) +

1

2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ

≤ 1

4
h(2σ) +

1

4
h(−2σ) +

α1

2

∫ 1

0
|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ

=
1

4
h(2σ) +

1

4
h(−2σ) +

31α1σ2

48
+

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ (2.23)

and

Φ(w0) =
1

4
h(2σ) +

1

4
h(−2σ) +

1

2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ

≥ 1

4
h(2σ) +

1

4
h(−2σ) +

α0

2

∫ 1

0
|w0(t)|2dt

=
1

4
h(2σ) +

1

4
h(−2σ) +

31α0σ2

48
. (2.24)

Let r = min{m,α0}
8 θ2. Then, from (2.22) and (2.24), we have Φ(w0) > r. From the definition of

Φ, (2.6), and (2.7), it follows that

Φ−1(−∞, r] = {x ∈ E : Φ(x) ≤ r}

⊆
{

x ∈ E : max
t∈[0,1]

|x(t)| ≤
√

8r

min{m, α0}

}

⊆
{

x ∈ E : max
t∈[0,1]

|x(t)| ≤ θ

}
.

Therefore,

sup
u∈Φ−1((−∞,r])

J(u) ≤
∫ 1

0
sup
|u|≤θ

F(t, u)dt.
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Thus, from (B2) and (2.23), we have

r
J(w0)

Φ(w0)
=

r

Φ(w0)

(∫ 1

0
F(t, w0(t))dt

)

≥

min{m, α0}
8

θ2

(∫ 3
4

1
4

F(t, σ)dt

)

1

4
h(2σ) +

1

4
h(−2σ) +

31α1σ2

48
+

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ

>

∫ 1

0
sup
|u|≤θ

F(t, u)dt ≥ sup
u∈Φ−1((−∞,r])

J(u).

We can then fix ρ so that

sup
u∈Φ−1((−∞,r])

J(u) < ρ < r
J(w0)

Φ(w0)
.

From Lemma 2.3, we obtain

sup
λ≥0

inf
u∈E

(Φ(u)− λ(ρ − J(u)) < inf
u∈E

sup
λ≥0

(Φ(u)− λ(ρ − J(u)).

Hence, by Lemma 2.2, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 such

that for every λ ∈ [c, d], and every L1-Carathéodory function g : [0, 1]× R → R there exists

δ > 0 such that, for each µ ∈ [0, δ], Φ′(u)− λJ′(u)− µΨ′(u) = 0 has at least three solutions

in E. Hence, the problem (P
f ,g

λ,µ) has at least three classical solutions whose norms are less

than R.

2.2 Results and discussion

In this paper we investigate the existence of multiple solutions to a quasilinear periodic bound-

ary value problem with impulsive effects. The main technique of proof involves variational

methods and critical points theorems for smooth functionals. We obtain the existence of at

least three solutions to the problem. The applicability of the results are illustrated by an

example.
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Abstract. We study the problem −∆u = λu − u−1 with a Neumann boundary condi-
tion; the peculiarity being the presence of the singular term −u−1. We point out that
the minus sign in front of the negative power of u is particularly challenging, since
no convexity argument can be invoked. Using bifurcation techniques we are able to
prove the existence of solution (uλ, λ) with uλ approaching the trivial constant solution
u = λ−1/2 and λ close to an eigenvalue of a suitable linearized problem. To achieve this
we also need to prove a generalization of a classical two-branch bifurcation result for
potential operators. Next we study the radial case and show that in this case one of the
bifurcation branches is global and we find the asymptotical behavior of such a branch.
This results allows to derive the existence of multiple solutions u with λ fixed.

Keywords: singular elliptic equation, positive solutions, radial solutions, variational
bifurcation, two branches.
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1 Introduction

In the last decades several authors have studied semilinear elliptic problems with singular
nonlinear term (with respect to the unknown function u). The model problem is the following:







−∆u = γu−q + f (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where q > 0 γ ̸= 0 and f is a non linear term with standard growth conditions. Existence and
multiplicity of solutions to problem (1.1) are usually investigated in terms of the behavior of
f and the sign of γ.

A main aspect to be taken into account is the variational nature of (1.1): formally speaking
solutions u of (1.1) are expected to be critical points of the functional

I(u) :=
1
2

∫

Ω
|∇u|2 dx − γ

1 − q

∫

Ω
u1−q dx −

∫

Ω
F(x, u) dx,

BCorresponding author. Email: claudio.saccon@unipi.it
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defined on W1,2
0 (Ω) and restricted to {u ≥ 0}, where F(x, s) is a primitive in s of f (x, s) (if

q = 1 a logarithm should be introduced). Unfortunately the presence of the singular term
makes it problematic to give a rigorous formulation of the above ideas.

The majority of the known results concern the case γ > 0, where the term u 7→ − γ
1−q u1−q

is convex in the interval ]0,+∞[. This fact helps a lot, whether one tries to directly deal with
I (by using some nonsmooth-critical-point theory) or to use an approximation scheme (by a
sequence In → I, In being C1 on W1,2

0 (Ω)). For instance, if f = 0, the problem has a unique
weak solution ū in W1,2

0 (Ω) when 0 < q < 3 and the solution is a minimizer for I. This
result can be extended for all q > 0 dropping the request that ū ∈ W1,2

0 (Ω) (see [5, 9]). For
a small non exhaustive list of multiplicity results for solutions of this kind of problems see
[1, 3, 7, 11, 13–15, 17, 18, 26, 27] (and the references therein).

If we turn to γ < 0 the literature is scarcer: to the author’s knowledge the main results
are contained in [6, 12, 22, 27, 28]. In this situation solutions are “attracted” from the value
zero and tend to develop “dead cores”, so the formulation (1.1) needs to be modified in order
to admit non strictly positive solutions. For instance the only solution for the case f = 0 is
u = 0 (as one can easily see by multiplying the equation by u). Moreover a direct variational
approach using the functional I seems difficult for the moment and the usual approach goes
by perturbation methods.

We have found particularly interesting the paper [22] by Montenegro and Silva, where the
authors use perturbation methods and show that there exist two nontrivial solutions when
γ = −1, 0 < q < 1, f (x, u) = µup, with q < p < and µ > 0 big enough. If we pass to q = 1,
simple tests in the radial case suggest that the Dirichlet problem only has the trivial solution.
As we said before solutions starting from zero are “forced to stick” at zero and not allowed to
“emerge” (in contrast with the case of q < 1). On this respect see Remark 4.9.

For this reasons, in the case q = 1, we are lead to replace the Dirichlet condition with a
Neumann one. In particular we have considered the problem







−∆u = λu − 1
u

in Ω,

u > 0 in Ω,

∇u · ν = 0 on ∂Ω

(1.2)

where Ω is a bounded smooth open subset of R
N and ν denotes the unit normal defined on

∂Ω. This corresponds to the problem of [22] with q = p = 1 (with Neumann condition).
In case N = 1 (1.2) is closely related to a problem studied by Del Pino, Manásevich, and

Montero in 1992 (see [10]) who deal with an ODE, in the periodic case, with a more general,
non autonomous, singular term f (u, x) (singular in u and T-periodic in x). Using topological
degree arguments they prove for instance that the equation:

−ü = λu − 1
uα

, u(x) > 0, u(x + T) = u(x),

where α ≥ 1, has a solution provided λ ̸= µk

4 for all k. Here µk denote the eigenvalues of
a suitable linearized problem which arises in a natural way from the problem. In this case,
which has a variational structure, the results of [10] can be derived from the existence of two
global bifurcation branches which originate from trivial solutions of the linearized problem.

In this paper we present two types of results concerning problem (1.2). In Theorem (2.1)
of Section 2 we prove the existence of two local bifurcation branches (u1,ρ, λ1,ρ) and (u2,ρ, λ2,ρ)

of solutions of (1.2), such that (ui,ρ, λ1,ρ) → (û, λ̂), as ρ → 0, where λ̂/2 is an eigenvalue of
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−∆ with Neumann condition and û is the constant function: û ≡ λ̂−1/2. The proof of (2.1)
heavily relies on a variant of the well known abstract results on the existence of two bifurcation
branches in the variational case (see [4, 19, 20, 25]). To the author surprise such a variant (see
Theorem (3.1) seems not to be present in the literature so its proof is carried on in Section
3. It has to be said that proving (3.1) requires some additional technicalities compared to the
standard version. Indeed in [4,20] the proof goes by studying a suitable perturbed function fρ

on the unit sphere S, while in our case S has to be replaced by a sphere-like set Sρ also varying
with ρ. This requires to construct suitable projections to show that all Sρ’s are homeomorphic
to S0 = S (for ρ small). Apart from this the proof of (3.1) follows the ideas of [2].

In Section 4 we study the radial case in dimension N = 2 (the same could be probably
done for N ≥ 3) using ODE techniques and a continuation argument for the nodal regions
of the solutions. In this way, following the ideas of [24], we are able to prove that one of
the two branches (uρ, λρ) is global and bounded in λρ. This is done by proving that nodal
regions of uρ cannot collapse along the branch and that λρ → λ̄ as

∥
∥uρ

∥
∥→ +∞, where ρ̄ is an

eigenvalue of another suitable linear problem. In this way – in the radial case – we can find a
lower estimate in the number of solutions for a fixed λ, by counting the number of branches
that cross λ.

2 A local bifurcation result for the singular problem

Let Ω be a bounded open subset of R
N with smooth boundary.

Theorem 2.1. Let µ̂ > 0 be an eigenvalue of the following Neumann problem:

{

−∆u = µu in Ω,

∇u · ν = 0 on ∂Ω,
(2.1)

(ν denotes the normal to ∂Ω).

Then there exists ρ0 > 0 such that for all ρ ∈ ]0, ρ0[ there exist two distinct pairs (u1,ρ, λ1,ρ) and

(u2,ρ, λ2,ρ) such that, for i = 1, 2:

(ui,ρ, λi,ρ) are solutions of (1.2), ui,ρ → 1
√

µ/2
(in W1,2(Ω) ) , λi,ρ

ρ→0−−→ µ̂

2
.

Proof. We start by introducing some changes of variables. First of all notice that, for all λ > 0,
Problem (1.2) has the constant solution u(x) = 1√

λ
. If we seek for solutions of the form

u = 1√
λ
+ z we easily end up with the equivalent problem on z:







−∆z = 2λz − hλ(z) in Ω,√
λz > −1 in Ω,

∇z · ν = 0 on ∂Ω,

(2.2)

where hλ :
]
− 1√

λ
,+∞

[
→ R is defined by

hλ(s) =
λ
√

λs2

1 +
√

λs
.
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Now we consider another simple transformation: v :=
√

λz, so that (2.2) turns out to be
equivalent to







−∆v = 2λ
(
v − 1

2 h1(v)
)

in Ω,

v > −1 in Ω,

∇v · ν = 0 on ∂Ω.

(2.3)

Now choose s0 with 0 < s0 < 1/2 and a C∞ cutoff function η : R → [0, 1] such that
η(s) = 1 for |s| ≤ s0, η(s) = 0, for |s| ≥ 2s0. Define h̃1 : R → R by

h̃1(s) := η(s) h1(s) (2.4)

(h̃1(s) is given the value zero for s = −1). Then h̃1 ∈ C∞
0 (R; R), h̃′1(0) = h′′1 (0) = 0, h̃1 = h1

on [−s0, s0]. Denote by H̃1 : R → R the primitive function for h̃1 (i.e. H̃′
1 = h̃1) such that

H̃1(0) = 0.
Now we apply the bifurcation theorem (3.1) with H := W1,2(Ω). L = L2(Ω), H = 0,

λ̂ = µ, H1(v) := 1
2

∫

Ω
H̃1(v) dx. In this way we get that there exists ρ0 > 0 such that for all

ρ ∈]0, ρ0[ there are two distinct pairs (v1,ρ, µ1,ρ) and (v2,ρ, µ2,ρ) which are weak solutions of

{

−∆v = µ
(
v − 1

2 h̃1(v)
)

in Ω,

∇v · ν = 0 on ∂Ω
(2.5)

and such that

vi,ρ
ρ→0−−→ 0 (in W1,2(Ω)), µi,ρ

ρ→0−−→ µk, i = 1, 2. (2.6)

We claim the there exists a constant K such, for any µ ∈ [µ̂k − 1, µ̂k + 1] and any weak solution
v of (2.5), v is bounded and:

∥v∥∞ ≤ Kµ

∥
∥
∥
∥

v − 1
2

h̃1(v)

∥
∥
∥
∥

2
. (2.7)

For this we use a standard bootstrap argument using the fact that the function k(s) =

(s − 1
2 h̃1(s)), appearing on the right hand side of (2.5), verifies

|k(s)| ≤ M|s| ∀s ∈ R (2.8)

for a suitable M (since h̃′1 is bounded). Assume that v is a solution, i.e. −∆v = µk(v), and
v ∈ Lq(Ω) for some q > 1 (for sure this is true for q = 2∗). Then, by (2.8), k(v) ∈ Lq(Ω). From
the standard Calderón–Zygmund theory (see e.g. Section 9.6 in [16]), we have v ∈ W2,q(Ω).
Then, using the Sobolev embedding Theorem, either v ∈ Lq1(Ω) with q1 ≤ Nq

N−2q (if 2q ≤ N)

or v ∈ C0,α with α > 0 (in the case 2q > N). Iterating this argument a finite number of times
we get the conclusion. Notice that we could go further and prove that v is C∞ and is a classical
solution.

Using (2.6) and (2.7) we get that vi,ρ → 0 in L∞(Ω) as ρ → 0, so |vi,ρ| < s0, i = 1, 2, for
ρ0 small. This implies that h̃1(vi,ρ) = h1(vi,ρ), and vi,ρ actually solve (2.3) with λi,ρ :=

µi,ρ
2 .

Going backwards and setting ui,ρ := 1√
λi,ρ

+
√

λi,ρvi,ρ, we find the desired solutions of (1.2).
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3 A variant for the two bifurcation branches theorem for potential

operators

Let L and H be two Hilbert spaces such that H ⊂ L with a compact embedding i : H → L.
We use the notations ∥·∥, ⟨·, ·⟩ and ∥·∥

L
, ⟨·, ·⟩

L
to indicate the norms and inner products in H

and L respectively. Let A : H → H be a bounded linear symmetric operator such that

⟨Au, u⟩ ≥ ν ∥u∥2 − M ∥u∥2
L

∀u ∈ H (3.1)

where ν > 0 and M are two constants. We say that λ ∈ R is an “eigenvalue for A” if there
exists e ∈ H \ {0} with

⟨Ae, v⟩ = λ ⟨e, v⟩
L

∀v ∈ H

which corresponds to say that:
Ae = λi∗e.

In this case we say that e is an “eigenvector” corresponding to λ.
It is well known that there exists a sequence (λn) of eigenvalues of A with λn ≤ λn+1,

λn → +∞, such that the corresponding eigenvectors generate H. It is convenient to agreee
that λ0 = −∞. We can suppose that for any k ≥ 1 we are given an eigenvector ek relative to
λk with ∥en∥L

= 1, and
⟨en, em⟩ = ⟨en, em⟩L

= 0 if n ̸= m.

If λ ∈ R we define

E−
λ := span {ei : λi < λ} , E0

λ := span {ei : λi = λ} , E+
λ := span {ei : λi > λ}(H)

(E0
λ = {0} if λ is not an eigenvalue). If λn ≤ λ ≤ λn+1 it is clear that

sup
{u∈E−

λ : ∥u∥
L
=1}

⟨Au, u⟩ ≤ λn, inf
{u∈E+λ : ∥u∥

L
=1}

⟨Au, u⟩ ≥ λn+1,

while ⟨Au, u⟩ = λ, if u ∈ E0
λ.

Theorem 3.1 (Bifurcation). Let H ∈ C1(H; R), H1 ∈ C1(L; R) be such that

H(0) = 0, ∇H(0) = 0, lim
u→0

∥∇H(u)∥
L

∥u∥
L

= 0

H1(0) = 0, ∇LH1(0) = 0, lim
u→0

∥∇LH1(u)∥L

∥u∥
L

= 0.
(3.2)

Notice that we are using the symbol ∇ to denote the gradient with respect to the inner product in H

and ∇L for the corresponding gradient in L.

Let λ̂ be an eigenvalue for A. Then, for any ρ > 0 small, there exist (u1,ρ, λ1,ρ) and (u2,ρ, λ2,ρ)

which solve the problem

Au +∇H(u) = λi∗ (u +∇LH1(u)) , u ̸= 0, (3.3)

such that u1,ρ ̸= u2,ρ and

u1,ρ
H−→ 0, u2,ρ

H−→ 0, λ1,ρ → λ̂, λ2,ρ → λ̂ as ρ → 0. (3.4)
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Proof. We adapt the proof of Lemma 3.4 in [2]. Let λ̂ = λi = λk with λi−1 < λi and λk < λk+1.
We define f : H → R and g : L → R by

f (u) :=
1
2
⟨Au, u⟩+H(u), g(u) :=

1
2
∥u∥2

L
+H1(u).

Let C := {u ∈ L : 1 < ∥u∥
L
< 2}. Moreover, if 0 < ρ < 1 we define

fρ(u) :=
1
ρ2 f (ρu), gρ(u) :=

1
ρ2 g(ρu),

Hρ(u) :=
1
ρ2H(ρu), H1,ρ(u) :=

1
ρ2H1(ρu),

Sρ :=
{

u ∈ C : gρ(u) = 1
}

.

In fact fρ(u) =
1
2 ⟨Au, u⟩+Hρ(u) and gρ(u) =

1
2 ∥u∥2

L
+H1,ρ(u).

Since the result we are proving only involves the behaviour of H,H1 near zero, we are
allowed to modify H and H1 outside of a small ball around the origin. More precisely using
(3.2) we can find R in ]0, 1/3[ such that

∥∇H(u)∥ ≤ ν

8
∥u∥ ∀u with ∥u∥ < 3R, ∥∇LH1(u)∥ ≤ 1

2
∥u∥1 ∀u with ∥u∥1 < 3R, (3.5)

and define H̃(u) := η(∥u∥)H(u), H̃1(u) := η(∥u∥1)H1(u), where η : [0,+∞[→ [0, 1] is a
cutoff function with η(s) = 1 for 0 ≤ s ≤ R, η(s) = 0 for s ≥ 3R, and η′(s) ≤ 1. Now since

H̃(u) = H(u) ∀u with ∥u∥ < R, H̃1(u) = H1(u) ∀u with ∥u∥
L
< R,

then the conclusion of Theorem 3.1 holds for H,H1 if and only if it holds for H̃, H̃1. Indeed
the first component uρ of a bifucation branch (for any of the two problems) eventually verifies
∥
∥uρ

∥
∥ < R and

∥
∥uρ

∥
∥

1 < R. So from now on we replace H with H̃ and H1 with H̃1, maintaining
the same notation. With simple computations we can deduce from (3.5) that the redefined
functions verify:

(a) |∇H(u)| ≤ ν

4
∥u∥ ∀u ∈ H, (b) |∇LH1(u)| ≤ ∥u∥

L
∀u ∈ L. (3.6)

From (a) in (3.6) we get

|H(u)| ≤ ν

4
∥u∥2 ⇒ |Hρ(u)| ≤

ν

4
∥u∥2 ∀u ∈ H, ∀ρ ∈ [0, 1]. (3.7)

Using (3.1) and (3.7) we get that:

∥u∥2 ≤ 4
ν

(

fρ(u) + M ∥u∥2
L

)

. (3.8)

From (3.2) and (3.8) we easily get that, if c ∈ R and ρ → 0:

sup
u∈C, fρ(u)≤c

|Hρ(u)| → 0, sup
u∈C

|H1,ρ(u)| → 0,

sup
u∈C, fρ(u)≤c

∥
∥∇Hρ(u)

∥
∥→ 0, sup

u∈C

∥
∥∇LH1,ρ(u)

∥
∥

L
→ 0.

(3.9)
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So if we extend the definition to ρ = 0 by letting f0(u) := 1
2 ⟨Au, u⟩ and g0(u) := 1

2 ∥u∥2
L

,
then (ρ, u) 7→ fρ(u) is continuous on [0,+∞[×H and (ρ, u) 7→ gρ(u) is continuous on
[0,+∞[×L. We also define Sρ for ρ = 0:

S0 := {u ∈ L : g0(u) = 1} =
{

u ∈ L : ∥u∥2
L
= 2

}

.

Notice that the critical values of f0 on Sρ are precisely the eigenvalues λn.
We claim that there exist ρ̄ > such that the L-closure of Sρ is contained in C for all ρ ∈]0, ρ̄]

in other terms Sρ is closed for ρ > 0 small. Indeed if the claim were false there would exist

two sequences (ρn) and (un) such that ρn → 0, ρn → 0, gρn(un) =
∥un∥2

L

2 + H1(ρnun)
ρ2 = 1, and

∥un∥L
∈ {1, 2}. From (3.2) we would have H1(ρnun)

ρ2
n

= H1(ρnun)

∥ρnun∥2
L

∥un∥2
L
→ 0, so ∥un∥L

→
√

2

which yields a contradiction for n large.
Let us split H as H = X1 ⊕ X2 ⊕ X3, where

X1 := E−
λ̂

, X2 := E0
λ̂
, X3 := E+

λ̂

and consider the orthogonal projections Πi : H → Xi. i = 1, 2, 3. We also denote Π13 :=
Π1 + Π3. Given ρ ∈ [0, ρ̄] and δ ∈]0, 1[, we set

Cδ := {u ∈ C : ∥Π2(u)∥L
≥ δ} , Sρ,δ := Sρ ∩ Cδ.

Since Sρ is closed, then Sρ,δ is a smooth manifold with boundary, the boundary being

Σρ,δ :=
{

u ∈ Sρ : ∥Π2(u)∥L
= δ

}
.

Notice that S0,δ ̸= ∅ ( δ < 1). Let us indicate by f̄ρ the restriction of fρ on Sρ,δ.
We will use the notion of lower critical point for f̄ρ (see [2,21] and the references therein): u

is (lower) critical for f̄ρ if and only there exist λ, µ ∈ R such that µ ≥ 0, µ = 0 if ∥Π2(u)∥L
> δ,

and

⟨Au, v⟩+
〈
∇Hρ(u), v

〉
= λ

〈
u +∇LH1,ρ(u), v

〉

L
+ µ ⟨Π2(u), v⟩

L
∀v ∈ H. (3.10)

Define Γ : Cδ × [1/2, 2] → Cδ and ϕ : [0, ρ̄]× Cδ × [1/2, 2] → R by

Γ(u, t) :=
δΠ2(u)

∥Π2(u)∥L

+ t

(

u − δΠ2(u)

∥Π2(u)∥L

)

= tΠ13(u) + (δ + t (∥Π2(u)∥L
− δ))

Π2(u)

∥Π2(u)∥L

,

ϕ(ρ, u, t) := gρ (Γ(u, t)) .

With easy computations:

ϕ(0, u, t) =
1
2

(

t2 ∥Π13(u)∥2
L
+ (δ + t (∥Π2(u)∥L

− δ))2
)

=
1
2

(

t2(∥u∥2
L
− 2δ ∥Π2(u)∥L

+ δ2) + 2δt(∥Π2(u)∥L
− δ) + δ2

)

.

Since 1 < ∥u∥
L
< 2 and ∥Π2(u)∥L

≥ δ, we have

t2

2
− 2δt2 ≤ ϕ(0, u, t) ≤

(

2 +
δ2

2

)

t2 + 2δt +
δ2

2
.
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In particular:

2 − 2δ ≤ ϕ(0, u, 2), ϕ (0, u, 1/2) ≤ 1
2
+

δ2

8
+ δ +

δ2

2
<

1
2
+ 2δ.

We can choose δ0 > 0 so that 2 − 2δ > 3/2 and 1
2 + 2δ < 3/4 for all δ ∈]0, δ0]. From now on

we consider 0 < δ ≤ δ0. By (3.9), up to shrinking ρ̄, we have

sup
u∈Cδ

ϕ(ρ, u, 1/2) < 1, inf
u∈Cδ

ϕ(ρ, u, 2) > 1 ∀ρ ∈ [0, ρ̄].

Moreover,

∂

∂t
ϕ(0, u, t) = t(∥u∥2

L
− 2δ ∥Π2(u)∥L

+ δ2) + δ(∥Π2(u)∥L
− δ) ≥ t(1 − 4δ)

so, up to shrinking δ0, we have ∂
∂t ϕ(0, u, t) ≥ 1

4 for all t ≥ 1
2 . Up to further shrinking ρ̄ > 0

(again we use (3.9)), we have that ρ ∈ [0, ρ̄], δ ∈]0, δ0], u ∈ Cδ imply

ϕ(ρ, u, 1/2) < 1, ϕ(ρ, u, 2) > 1,
∂

∂t
ϕ(ρ, u, t) ≥ 1

8
∀t ∈ [1/2, 2].

We can therefore conclude that for all u ∈ [0, ρ̄] and u ∈ Cδ there exists a unique t̄ = t̄(ρ, u)

in [1/2, 2] such that ϕ(ρ, u, t̄(u, ρ)) = 1, that is Γ(u, t̄(ρ, u)) ∈ Sρ,δ. It is easy to check that
t̄ : [0, ρ̄]× Cδ → [1/2, 2] is continuous and so is Φ : [0, ρ̄]× Cδ → Sρ,δ defined by Φ(ρ, u) :=
Γ(u, t̄(ρ, u)). Notice that

t ∈ [1/2, 2], u ∈ Cδ, ∥Π2(u)∥L
= δ ⇒ ∥Π2(Γ(u, t))∥

L
= δ.

Therefore Φ(ρ, ·) maps {u ∈ Cδ, ∥Π2(u)∥L
= δ} into Σρ,δ. Also notice that Φ(ρ, u) ◦ Φ(0, u) =

u whenever u ∈ Sρ,δ and Φ(0, u) ◦ Φ(ρ, u) = u whenever u ∈ S0,δ. We have thus proven that
Φ(ρ, ·)|S0,δ is a homeomorphism from (S0,δ, Σ0,δ) to (Sρ,δ, Σρ,δ) whose inverse is Φ(0, ·)|Sρ,δ .

Now let

a′ρ := sup
(X1⊕X2)∩Σρ,δ

fρ a′′ρ := inf
(X2⊕X3)∩Sρ,δ

fρ (3.11)

b′ρ := sup
(X1⊕X2)∩Sρ,δ

fρ b′′ρ := inf
(X2⊕X3)∩Σρ,δ

fρ. (3.12)

Notice that, by definition, a′′ρ ≤ b′ρ. For ρ = 0 it is easy to see that

a′0 = λi−1 +
δ2

2
(λ̂ − λi−1) < λ̂ = a′′0 = b′0 = λ̂ < λk+1 −

δ2

2
(λk+1 − λ̂) = b′′0

(recall that 0 < δ < 1). Let ε0 > 0 with ε0 < λ̂ − λi−1. We claim that, if δ2(λ̂ − λi−1) < 2ε0,
then

there exists no u ∈ Σ0,δ with u lower critical for f̄0 and λi−1 + ε0 ≤ f0(u). (3.13)

By contradiction assume that such a u exists; then there exist λ ∈ R and µ ≥ 0 such that (3.10)
holds. Let ui = Πi(u), i = 1, 2, 3. Taking v = u2 in (3.10) (with ρ = 0) yields

λ̂ ∥u2∥2
L
= ⟨Au2, u2⟩ = ⟨Au, u2⟩ = λ ⟨u, u2⟩L

+ µ ⟨u2, u2⟩L
= (λ + µ) ∥u2∥2

L
.
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Since ∥u2∥L
= δ > 0, we have λ + ν = λ̂, so λ = λ̂ − ν ≤ λ̂. Taking v = u3:

λk+1 ∥u3∥2 ≤ ⟨Au3, u3⟩ = ⟨Au, u3⟩ = ⟨λu + µu2, u3⟩ = λ ∥u3∥2
L
≤ λ̂ ∥u3∥2

L
.

Since λk+1 < λ̂, we have u3 = 0. Then u ∈ X1 ⊕ X2 ∩ Σ0,δ, which implies

f0(u) ≤ a′0 = λi−1 +
δ2

2
(λ̂ − λi−1) < λi−1 + ε0

which gives a contradiction. Hence the claim is proven. Notice that (3.13) implies that the
only critical value λ0 of f̄0, with λi−1 + ε0 ≤ λ0 ≤ λk+1 − ε0, is λ0 = λ̂. Indeed assume u0 to
be a critical point with f̄0(u0) = λ0: then, by (3.13), u0 /∈ Σ0,δ so (3.10) holds with µ = 0 which
easily implies λ0 = λ̂.

From now on we fix ε0 > 0 such that 5ε0 < min(λ̂ − λi−1, λk+1 − λ̂) and δ > 0 such that
δ2(λ̂ − λi−1) ≤ ε0 (so (3.13) holds with ε0/2). Using (3.9) we can derive that, given ε ∈]0, ε0]

there exists ρ(ε) ∈]0, ρ̄] such that, if ρ ∈]0, ρ(ε)]:

a′ρ ≤ λi−1 + ε0 < λ̂ − 4ε < λ̂ − ε ≤ a′′ρ ≤ inf
X2∩Sρ,δ

fρ

≤ sup
X2∩Sρ,δ

fρ ≤ b′ρ ≤ λ̂ + ε < λ̂ + 4ε < λk+1 − ε0 ≤ b′′ρ ;
(3.14)

there are no u ∈ Σρ,δ with u lower critical for f̄ρ and

fρ(u) ∈ [λi−1 + ε0, λk+1 − ε0] ;
(3.15)

there are no u ∈ Sρ,δ with u lower critical for f̄ρ and

fρ(u) ∈
[
λi−1 + ε0, λ̂ − ε

]
∪
[
λ̂ + ε, λk+1 − ε0

]
;

(3.16)

∣
∣ f0(u)− fρ(Φ(ρ, u))

∣
∣ < ε ∀u ∈ S0,δ with f0(u) ≤ λk+1 − ε0; (3.17)

∣
∣ fρ(u)− f0(Φ(0, (u))

∣
∣ < ε ∀u ∈ Sρ,δ with fρ(u) ≤ λk+1 − ε0. (3.18)

To prove (3.17) and (3.18) we use (3.8). If σ ∈ [ε, 4ε], set Aσ
ρ := f̄ λ̂/2−σ

ρ , Bσ
ρ := f̄ λ̂/2+σ

ρ i.e.:

Aσ
ρ =

{
u ∈ Sρ,δ : fρ(u) ≤ λ̂/2 − σ

}
, Bσ

ρ =
{

u ∈ Sρ,δ : fρ(u) ≤ λ̂/2 + σ
}

.

Moreover set Ãσ
ρ := Φ(ρ, Aσ

0 ), B̃σ
ρ := Φ(ρ, Bσ

0 ), Âσ
ρ := Φ(0, Aσ

ρ), B̂σ
ρ := Φ(0, Bσ

ρ ). From (3.17)
and (3.18) (remind that Φ(ρ, ·)−1 = Φ(0, ·)) we get

A4ε
0 ⊂ Φ(0, A3ε

ρ ) ⊂ A2ε
0 ⊂ Φ(0, Aε

ρ), Bε
0 ⊂ Φ(0, B2ε

ρ ) ⊂ B3ε
0 Φ(0, B4ε

ρ ),

A4ε
ρ ⊂ Φ(ρ, A3ε

0 ) ⊂ A2ε
ρ ⊂ Φ(ρ, Aε

0), Bε
ρ ⊂ Φ(ρ, B2ε

0 ) ⊂ B3ε
ρ Φ(ρ, B4ε

0 ).

The above inclusions give rise to the following diagram in homology:

Hq(Bε
ρ, A4ε

ρ ) Hq(B̃2ε
ρ , Ã3ε

ρ ) Hq(B3ε
ρ , A2ε

ρ ) Hq(B̃4ε
ρ , Ãε

ρ)

Hq(B̂ε
ρ, Â4ε

ρ ) Hq(B2ε
0 , A3ε

0 ) Hq(B̂3ε
ρ , Â2ε

ρ ) Hq(B4ε
0 , Aε

0)

i∗1

φ∗
1

i∗2 i∗3

φ∗
3

j∗1 j∗2

φ∗
2

j∗3

φ∗
2

where i1, i2, i3, j1, j2, j3 are embeddings and φ1, φ3 are restrictions of Φ(0, ·), while φ2, φ4

are restrictions of Φ(ρ, ·). It is clear that φ∗
i are isomorphisms. Notice that i2 ◦ φ2 ◦ j1 ◦ φ1 is

the embedding of (Bε
ρ, A4ε

ρ ) in (B3ε
ρ , A2ε

ρ ) and j3 ◦ φ3 ◦ i2 ◦ φ2 is the embedding of (B2ε
0 , A3ε

0 ) in
(B4ε

0 , Aε
0).



10 C. Saccon

Since there are no critical values for f̄0 in [λ̂ − 4ε, λ̂ − ε] ∪ [λ̂ + ε, λ̂ + 4ε] (see (3.16)),
then the pair (Bε

ρ, A4ε
ρ ) is a deformation retract of the pair (B3ε

ρ , A2ε
ρ ), so i∗2 ◦ φ∗

2 ◦ j∗1 ◦ φ∗
1 is

an isomorphism. For analogous reasons j∗3 ◦ φ∗
3 ◦ i∗2 ◦ φ∗

2 is an isomorphism. It follows that
i∗2 ◦ φ∗

2 : Hq(B2ε
0 , A3ε

0 ) → Hq(B3ε
ρ , A2ε

ρ ) is an isomorphism.
From the definitions (3.11) and (3.12) we have the inclusions:

(S0,δ ∩ (X1 ⊕ X2), Σ0,δ ∩ (X1 ⊕ X2)) ⊂ (B3ε
ρ , A2ε

ρ ) ⊂ (S0,δ \ X3,Sρ,δ \ (X2 ⊕ X3))

which allow to repeat the arguments of [2] (see also the proof of Lemma 2.3 in [21]). To
estimate the relative category:

cat(B3ε
ρ ,A2ε

ρ )(B3ε
ρ ) ≥ 2 ∀ρ ∈ ]0, ρ(ε)].

This implies that f̄ρ hat at least two critical points ū1,ρ, ū2,ρ with λ̂ − 3ε ≤ fρ(ūi,ρ) ≤ λ̂ + 2ε.

We have
∥
∥ūi,ρ

∥
∥2

L
/2 +H1,ρ(ūi,ρ) = 1 and

〈
Aūi,ρ +∇Hρ(ūi,ρ), v

〉
= λi,ρ

〈
ūi,ρ +∇LH1,ρ(ūi,ρ), v

〉

L
∀v ∈ H (3.19)

for a suitable Lagrange multiplier λi,ρ ∈ R (there is no µ, due to (3.15)). Taking v = ūi,ρ in
(3.19):

[
λ̂ − 2ε, λ̂ + 3ε

]
∋ f̄ (ūi,ρ) =

1
2

〈
Aūi,ρ, ūi,ρ

〉
+Hρ(ūi,ρ)

= Hρ(ūi,ρ)−
1
2

〈
∇Hρ(ūi,ρ), ūi,ρ

〉
+

λi,ρ

2

(∥
∥ūi,ρ

∥
∥2

L
+
〈
∇LH1,ρ(ūi,ρ), ūi,ρ

〉

L

)

= Hρ(ūi,ρ)−
〈
∇Hρ(ūi,ρ), ūi,ρ

〉

2
︸ ︷︷ ︸

:=C1(ρ)

+λi,ρ









1 +

(〈
∇LH1,ρ(ūi,ρ), ūi,ρ

〉

L

2
−H1,ρ(ūi,ρ)

)

︸ ︷︷ ︸

:=C2(ρ)









By using (3.9) we obtain C1(ρ) → 0, C2(ρ) → 0, so for ρ(ε) small enough we have |λi,ρ − λ̂| <
4ε. We have thus proven that λ1,ρ → λ̂ as ρ → 0. Let ui,ρ := ρū1,ρ. Clearly ui,ρ

L−→ 0 as ρ → 0. By
multiplying (3.19) by ρ and using the definitions of Hρ and H1,ρ we get that (u, λ) = (ui,ρ, λi,ρ)

verify (3.3). Taking the scalar product with ui,ρ in (3.3) gives
〈

Aui,ρ, ui,ρ
〉
→ 0. Then, by (3.1),

we have ui,ρ
H−→ 0.

4 A global bifurcation result for radial solutions

We consider the case N = 2 and Ω = B(0, R) =
{

x ∈ R
2 : ∥X∥ < R

}
. We look for radial

solutions for Problem (2.2), i.e. z(x, y) = w(∥(x, y)∥). Actually with similar arguments we
could have considered the general case N ≥ 2. Given R > 0, it is therefore convenient to
introduce the Hilbert space

E :=
{

w : [0, R] → R :
∫ R

0
ρẇ2 dρ < +∞

}

endowed with (v, w)E :=
∫ R

0
ρv̇ẇ dρ +

∫ R

0
ρvw dρ and for λ > 0 the set

Wλ :=
{

w ∈ E : 1 +
√

λw(ρ) > 0
}

, W := {(w, λ) ∈ R × E : λ > 0, w ∈ Wλ} .
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It is clear that ∥w∥∞ ≤ C∥w∥E, for a suitable constant C, so W is open in E and W is open in
R × E. As well known the search for radial solutions leads to the equation







ẅ +
ẇ

ρ
= −λw − λw

1 +
√

λw
=: fλ(w),

ẇ(0) = ẇ(R) = 0.
(4.1)

By the above we mean that

(w, λ) ∈ W ,
∫ R

0
ρẇδ̇ dρ =

∫ R

0
ρ fλ(w)δ dρ ∀v ∈ E. (4.2)

It is standard to check that “weak solutions”, i.e. solutions to (4.2) actually solve (4.1) in a
classical sense.

It is clear that (0, λ) is a solution for (4.1) for any λ ∈ R. We call “nontrivial ” solution a
pair (w, λ) with w ̸= 0 such that (4.1) holds.

Remark 4.1. If (w, λ) is a nontrivial solution then λ > 0. To see this it suffices to multiply
(4.1) by u and integrate over [0, R]. Actually this property is true in the general case (not just
in the radial problem).

We shall use the following simple inequality.

Remark 4.2. Let 0 < a < b < +∞. We have

b − a

b
≤ ln

(
b

a

)

≤ b − a

a
. (4.3)

We have indeed

ln
(

b

a

)

= ln
(

1 +
b − a

a

)

≤ b − a

a

and

ln
(

b

a

)

= − ln
( a

b

)

= − ln
(

1 +
a − b

b

)

≥ − a − b

b
=

b − a

b
.

A

B C

D

Figure 4.1: The different cases

Now let us suppose that a solution (w, λ) exists so we can find some properties and
estimates on w. Arguing as in the proof of Lemma 2.2 in [8] we have that either w = 0 or [0, R]

can be split as the union of a finite number of subintervals [r1,i, r2,i], i = 1 . . . , k, where w has
one of the following behaviors (see Figure 4.1, we are skipping the index i):

(A) w(r1) > 0, ẇ(r1) = 0, ẇ < 0 in ]r1, r2], and w(r2) = 0;

(B) w(r1) = 0, ẇ < 0 in [r1, r2[, ẇ(r2) = 0, and w(r2) < 0;
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(C) w(r1) < 0, ẇ(r1) = 0, ẇ > 0 in ]r1, r2], and w(r2) = 0;

(D) w(r1) = 0, ẇ > 0 in [r1, r2[, ẇ(r2) = 0, and w(r2) > 0.

So let w : [r1, r2] → R be as in one of the above cases. Multiplying (4.1) by ẇ gives

1
2

ẅẇ′ +
ẇ2

ρ
=

d

dρ
Fλ(w)

where

Fλ(s) = ln(1 +
√

λs)−
√

λs − λ

2
s2.

Let p := ẇ2, the previous equation can be written as

1
2

ṗ +
p

ρ
=

d

dρ
Fλ(w)

which is equivalent to

d

dρ
(ρ2 p) = 2ρ2 d

dρ
Fλ(w)ρ2 = 2ρ2 d

dρ
F1

(√
λw
)

.

We integrate between ρ1 and ρ2, where r1 ≤ ρ1 ≤ ρ2 ≤ r2:

ρ2
2 p(ρ2)− ρ2

1 p(ρ1) = 2ρ2
2Fλ(w(ρ2))− 2ρ2

1Fλ(w(ρ1))−
∫ ρ2

ρ1

4σFλ(w(σ)) dσ.

Notice that Fλ is increasing on
]
− 1√

λ
, 0
[

and decreasing on ]0,+∞[, so

σ 7→ Fλ(w(σ)) is increasing (decreasing) in cases (A) and (C) (in cases (B) and (D)).

We hence get, in cases (A) and (C):

−2(ρ2
2 − ρ2

1)Fλ(w(ρ2)) ≤ −
∫ ρ2

ρ1

4σFλ(w(σ)) dσ ≤ −2(ρ2
2 − ρ2

1)Fλ(w(ρ1))

while in cases (B) and (D):

−2(ρ2
2 − ρ2

1)Fλ(w(ρ1)) ≤ −
∫ ρ2

ρ1

4σFλ(w(σ)) dσ ≤ −2(ρ2
2 − ρ2

1)Fλ(w(ρ2)).

So in cases (A) and (C) we have

2ρ2
1(Fλ(w(ρ2))− Fλ(w(ρ1)) ≤ ρ2

2 p(ρ2)− ρ2
1 p(ρ1) ≤ 2ρ2

2(Fλ(w(ρ2))− Fλ(w(ρ1)) (4.4)

and in cases (B) and (D):

2ρ2
2(Fλ(w(ρ2))− Fλ(w(ρ1)) ≤ ρ2

2 p(ρ2)− ρ2
1 p(ρ1) ≤ 2ρ2

1(Fλ(w(ρ2))− Fλ(w(ρ1)). (4.5)

Now we estimate w(ρ) – we need to take into account all the four cases (A), (B), (C), (D).

Case (A). We rename ρ̄ := r1, ρ0 := r2 and let h := w(ρ̄) > 0. We use (4.4) with ρ1 = ρ̄ and
ρ2 = σ ∈ [ρ̄, ρ0]:

2ρ̄2(Fλ(w(σ))− Fλ(h)) ≤ σ2ẇ(σ)2 ≤ 2σ2(Fλ(w(σ))− Fλ(h)).
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Then we take the square root and divide:

√
2

ρ̄

σ
≤ −ẇ(σ)
√

Fλ(w(σ))− Fλ(h)
≤

√
2

and now we integrate between ρ̄ and ρ ∈ [ρ̄, ρ0] getting

√
2ρ̄ ln

(
ρ

ρ̄

)

≤ −Φλ,h(w(ρ)) + Φλ,h(h) ≤
√

2(ρ − ρ̄)

where Φλ,h : [0, h] → R is defined by

Φλ,h(s) :=
∫ s

0

dξ
√

Fλ(ξ)− Fλ(h)

(it is simple to check the the integral converges at ξ = h). So we deduce

Φ−1
λ,h

(

Φλ,h(h)−
√

2 (ρ − ρ̄)
)

≤ w(ρ) ≤ Φ−1
λ,h

(

Φλ,h(h)−
√

2ρ̄ ln
(

ρ

ρ̄

))

which we prefer to write as

Φ−1
λ,h

(

Φλ,h(h) +
√

2 (ρ̄ − ρ)
)

≤ w(ρ) ≤ Φ−1
λ,h

(

Φλ,h(h) +
√

2ρ̄ ln
(

ρ̄

ρ

))

. (4.6)

In particular, taking ρ = ρ0, which gives w(ρ0) = 0, (and using (4.3)) we have

√
2

ρ̄

ρ0
(ρ0 − ρ̄) ≤

√
2ρ̄ ln

(
ρ0

ρ̄

)

≤ Φλ,h(h) ≤
√

2 (ρ0 − ρ̄) . (4.7)

Moreover taking ρ1 = ρ̄ and ρ2 = ρ0 in (4.4) we have:

√
2

ρ̄

ρ0

√

−Fλ(h)) ≤ −ẇ(ρ0) ≤
√

2
√

−Fλ(h)) (4.8)

Case (B). We rename ρ0 := r1, ρ̄ := r2 and let h := w(ρ̄) < 0. We use (4.5) with ρ1 = σ ∈ [ρ0, ρ̄]

and ρ2 = ρ̄:

2ρ̄2(Fλ(h)− Fλ(w(σ))) ≤ −σ2ẇ(σ)2 ≤ 2σ2(Fλ(h)− Fλ(w(σ))).

We change sign and proceed as in case (A):

2σ2(Fλ(w(σ))− Fλ(h)) ≤ σ2ẇ(σ)2 ≤ 2ρ̄2(Fλ(w(σ))− Fλ(h))).

Take the square root and divide:

√
2 ≤ −ẇ(σ)

√

Fλ(w(σ))− Fλ(h)
≤

√
2

ρ̄

σ
.

Integrate on [ρ, ρ̄0]:

√
2(ρ̄ − ρ) ≤ −Φλ,h(h) + Φλ,h(w(ρ)) ≤

√
2ρ̄ ln

(
ρ̄

ρ

)
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defining Φλ,h : [h, 0] → R as in case (A). Applying Φ−1
λ,h we get that (4.6) holds in case (B) too.

In particular, taking ρ = ρ0 (and using (4.3)):

√
2(ρ̄ − ρ0) ≤ −Φλ,h(h) ≤

√
2ρ̄ ln

(
ρ̄

ρ0

)

≤
√

2
ρ̄

ρ0
(ρ̄ − ρ0) (4.9)

and taking ρ1 = ρ0 and ρ2 = ρ̄ in (4.5) we have

√
2
√

−Fλ(h)) ≤ −ẇ(ρ0) ≤
√

2
ρ̄

ρ0

√

−Fλ(h)) (4.10)

Case (C). We rename ρ̄ := r1, ρ0 := r2 end let h := w(ρ̄) < 0. Using (4.4) with ρ1 = ρ̄ and
ρ2 = σ ∈ [ρ̄, ρ0] we obtain the same inequality of case (A). After taking the square root and
dividing:

√
2

ρ̄

σ
≤ ẇ(σ)
√

Fλ(w(σ))− Fλ(h)
≤

√
2.

We integrate between ρ̄ and ρ ∈ [ρ̄, ρ0] getting

√
2ρ̄ ln

(
ρ

ρ̄

)

≤ Φλ,h(w(ρ))− Φλ,h(h) ≤
√

2(ρ − ρ̄)

with Φλ,h : [h, 0] → R defined as above. So we deduce

Φ−1
λ,h

(

Φλ,h(h) +
√

2ρ̄ ln
(

ρ

ρ̄

))

≤ w(ρ) ≤ Φ−1
λ,h

(

Φλ,h(h) +
√

2 (ρ − ρ̄)
)

. (4.11)

In particular, taking ρ = ρ0 (and using (4.3)):

√
2

ρ̄

ρ̄0
(ρ0 − ρ̄) ≤

√
2ρ̄ ln

(
ρ0

ρ̄

)

≤ −Φλ,h(h) ≤
√

2 (ρ0 − ρ̄) . (4.12)

Moreover taking ρ1 = ρ̄ and ρ2 = ρ0 in (4.4) we have

√
2

ρ̄

ρ0

√

−Fλ(h)) ≤ ẇ(ρ0) ≤
√

2
√

−Fλ(h)). (4.13)

Case (D). We rename ρ0 := r1, ρ̄ := r2 and let h := w(ρ̄) > 0. Using (4.5) with ρ1 = σ ∈ [ρ0, ρ̄]

and ρ2 = ρ̄ we obtain the same inequalities of case (B). When we take the square root and
divide: √

2 ≤ ẇ(σ)
√

Fλ(w(σ))− Fλ(h)
≤

√
2

ρ̄

σ
.

Integrate on [ρ, ρ̄0]:

√
2(ρ̄ − ρ) ≤ Φλ,h(h)− Φλ,h(w(ρ)) ≤

√
2ρ̄ ln

(
ρ̄

ρ

)

with the usual definition of Φλ,h : [h, 0] → R. Applying Φ−1
λ,h we obtain that (4.11) holds in

case (D) too. In particular, taking ρ = ρ0 (and using (4.3)):

√
2 (ρ̄ − ρ0) ≤ Φλ,h(h) ≤

√
2ρ̄ ln

(
ρ̄

ρ̄0

)

≤
√

2
ρ̄

ρ0
(ρ̄ − ρ0) (4.14)
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and taking ρ1 = ρ0 and ρ2 = ρ̄0 in (4.5) we have

√
2
√

−Fλ(h)) ≤ ẇ(ρ0) ≤
√

2
ρ̄

ρ0

√

−Fλ(h)). (4.15)

Now we have

√
2Φλ,h(h) =

∫ h

0

dξ
√

F(
√

λξ)− F(
√

λh)
=

∫ 1

0

h dσ
√

F(σ
√

λh)− F(
√

λh)
=

1√
λ

Φ̄(
√

λh)

where

Φ̄(s) :=
∫ 1

0

s dσ
√

F(σs)− F(s)
= sgn(s)

∫ 1

0

√

s2

F(σs)− F(s)
dσ.

With simple computations:

lim
s→0

s2

F(σs)− F(s)
=

1
1 − σ2 , lim

s→+∞

s2

F(σs)− F(s)
=

2
1 − σ2 ,

and

lim
s→−1−

s2

F(σs)− F(s)
= 0.

So we deduce that (see Figure 4.2)

lim
h→0+

Φλ,h(h) =
π

2
√

2λ
, lim

h→+∞
Φλ,h(h) =

π

2
√

λ
, (4.16)

lim
h→0−

Φλ,h(h) = − π

2
√

2λ
, lim

h→−1+
Φλ,h(h) = 0. (4.17)

2λ
π
√

2 2λ
π
√

2 2λ
π
√

h

Φλ,h
(h)

Figure 4.2: Graph of Φλ,h(h)

To state the main result we need some notation, which we take from [8, 23]. For k ∈ N,
k ≥ 1, we consider

S := {(w, λ) ∈ W : (w, λ) is a solution to (4.1)}
S+

k := {(w, λ) ∈ S : w has k nodes in ]0, R[, w(0) > 0} ,

S−
k := {(w, λ) ∈ S : w has k nodes in ]0, R[, w(0) < 0} .

We also consider the two eigenvalue problems:

ẅ +
ẇ

ρ
= −µw, ẇ(0) = ẇ(R) = 0. (4.18)
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v̈ +
v̇

ρ
= −νv, v̇(0) = 0, v(R) = 0. (4.19)

It is clear that w ̸= 0 and µ ̸= 0 solve (4.18) if and only if, for some integer k ≥ 1,

µ = µk :=
(yk

R

)2
(4.20)

where yk denotes the k-th nontrivial zero of J′0 and J0 is the first Bessel function, and

w = αwk, α ∈ R, wk(ρ) := J0

(yk

R
ρ
)

. (4.21)

For the sake of completeness we can agree that µ0 = 0 and w0(ρ) = J0(0). In the same way
v ̸= 0 and ν solve (4.19) if and only if, for some integer k ≥ 1:

ν = νk :=
( zk

R

)2
(4.22)

where zk is the k-th zero of J0 and

v = αvk, α ∈ R, vk(ρ) := J0

( zk

R
ρ
)

. (4.23)

Notice that νk < µk < νk+1 for all k.

Theorem 4.3. Let µk > 0 be an eigenvalue for (4.18). Then S+
k is a connected set and

• (0, µk/2) ∈ S+
k ;

• 0 < inf
{

λ ∈ R : ∃w ∈ E with (w, λ) ∈ S+
k

}
;

• sup
{

λ ∈ R : ∃w ∈ E with (w, λ) ∈ S+
k

}
< +∞;

• S+
k is unbounded and contains a sequence (wn, λn) such that ∥wn∥E → ∞ and

lim
n→∞

λn =

{

µk/2 if k is even,

ν(k+1)/2 if k is odd.
(4.24)

Figure 4.3 somehow illustrates Theorem (4.3).

λ h h+1
ν

λ

λ      /22h+1λ   /22h

Figure 4.3: Bifurcation diagram

The proof of (4.3) will be obtained from some preliminary statements.
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Remark 4.4. If (w, λ) ∈ S+ ( resp. (w, λ) ∈ S+), and 0 = ρ0 < ρ1, . . . , ρk < ρk+1=R, ρ1, . . . , ρk

being the nodal points of w, then

ρi+1 − ρi ≥ (≤ )
π

4
√

λ
for i even (resp. for i odd). (4.25)

This is easily seen using the right hand sides of the inequalities (4.7), (4.12), and (4.16).

Lemma 4.5. For any integer k there esist two constants λk and λk such that

(w, λ) ∈ S+
k ∪ S−

k ⇒ 0 < λk ≤ λ ≤ λk < +∞. (4.26)

Proof. Take any subinterval [r1, r2] as in cases (A)–(D) and consider the first eigenvalue µ̄ =

µ̄(r1, r2) for the mixed type boundary condition
{

−(ρẇ)′ = µw on ]r1, r2[

ẇ(r1) = 0, w(r2) = 0 (resp. w(r1) = 0, ẇ(r2) = 0)

in cases (A), (C) (resp. cases (C), (D)). We can choose an eigenfunction ē corresponding to µ̄

so that zē > 0 in ]r1, r2[. Multiplying (4.1) by ē and integrating over [r1, r2] yields

µ̄
∫ r2

r1

ρzē dρ = λ
∫ r2

r1

ρzē

(

1 +
1

1 +
√

λz

)

dρ.

This implies:

λ
∫ r2

r1

ρzē dρ ≤ µ̄
∫ r2

r1

ρzē dρ ≤ 2λ
∫ r2

r1

ρzē dρ

which gives µ̄
2 ≤ λ ≤ µ̄. Now since ]r1, r2[⊂]0, R[ we have µ̄ ≥ µ̄[0, R]. On the other side

since w has k nodal points we can choose r1, r2 such that r2 − r1 ≥ R/k, which implies
µ̄ ≤ supb−a=R/k µ̄(a, b) < +∞. This proves (4.26).

Lemma 4.6. Let (wn, λn) be a sequence in S+
k . Then we can consider 0 < ρ1,n < · · · < ρk,n < R to

be the nodes of wn and set ρ0,n := 0, ρk+1,n := R; in ths way wn(ρ) > 0 on ]ρ1, ρi+1[ if i is even and

wn(ρ) < 0 on ]ρ1, ρi+1[ if i is odd. The following facts are equivalent:

(a) lim
n→∞

sup
ρ∈[0,R]

wn(ρ) = +∞;

(b) lim
n→∞

inf
ρ∈[0,R]

(1 + λnwn(ρ)) = 0;

(c) lim
n→∞

sup
ρ∈[ρi,n,ρi+1,n]

wn(ρ) = +∞ if i is even;

(d) lim
n→∞

inf
ρ∈[ρi,n,ρi+1,n]

(1 + λnwn(ρ)) = 0 if i is odd;

(e) lim
n→∞

ρ1+1,n − ρi,n = 0 if i is odd;

Moreover, if any of the above holds, then (4.24) holds.

Proof. We can assume, passing to a subsequence that λn → λ̂ ∈ [λk, λk]. First notice that for
all i even (corresponding to w > 0) we have

ρi+1,n − ρi,n ≥ π

4
√

λk
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as we can infer from (4.7) or (4.14) and the behaviour of Φλ,h(h) in (4.16).
Let

hi,n := max
ρi,n≤ρi+1,n

w(ρ) for i even, hi,n := min
ρi,n≤ρi+1,n

w(ρ) for i odd.

Then for any i even:

hi,n → +∞ ⇔ Φλn,hi,n
(hi,n) →

π

2
√

λ̂
⇔ ẇ(ρi,n) → +∞ ⇔ ẇ(ρi+1,n) → −∞.

This can be deduced from (4.16), (4.8), and (4.15). In the same way, using (4.17), (4.10), and
(4.13) we get that, for i odd:

1 +
√

λnhi,n → 0 ⇔ Φλn,hi,n
(hi,n) → 0 ⇔ ẇ(ρi,n) → −∞ ⇔ ẇ(ρi+1,n) → +∞.

Now we prove our claims. Let ī ∈ {0, . . . , k} with ī even (resp. odd) and suppose that
hī,n → +∞ (resp. 1+

√
λnhī,n → 0). Then Fλn

(hī,n) → +∞ (resp. Fλn
(hī,n) → −∞) and by (4.8),

(4.15) ( (4.10), (4.13) ) we get that

ẇn(ρī,n) → +∞, ẇn(ρī+1,n) → −∞ (ẇn(ρī,n) → −∞, ẇn(ρī+1,n) → +∞)

which in turn implies

Fλn
(hī−1,n) → −∞ ( resp. + ∞), Fλn

(hī+1,n) → −∞ ( resp. + ∞)

(with the obvious exceptions when ī − 1 < 0 or ī + 1 > k). So we get

1 +
√

λnhī−1,n → 0 (hī−1,n → +∞), 1 +
√

λnhī+1,n → 0 (hī+1,n → +∞).

This shows that the property |Fλ(hi,n)| → +∞ “propagates” from the i-th interval to the
previous and to the next one. From this it is easy to deduce that (a)–(d) are all equivalent. To
prove that they are equivalent to (e) just use (4.7), (4.9), (4.12), (4.14), depending on the case,
noticing that ρ1,n ≥ π

4πλk
, as from (4.25) (this would not be possible if we were considering

S−
k ).

Finally suppose that (wn, λn) verifies any of (a)–(e). Then ∥wn∥∞ → +∞. Let ŵn := wn

∥wn∥∞
.

We can suppose that ŵn ⇀ ŵ in E and that

ρ1,n → ρ1, ρ2j−1,n → ρj, ρ2j,n → ρj 1 ≤ j ≤ k/2, ρk,n → R if k is odd,

where 0 = ρ0 < ρ1 < · · · < ρh < ρh + 1 = R and h = ⌊k/2⌋ (so ρ1 = R when k = 1). It is not
difficult to prove that ŵ(ρ) > 0 in ]ρi, ρi+1[ if i = 0, . . . , h, ŵ(ρ1) = · · · = ŵ(ρh) = 0, ŵ′(0) = 0
and ŵ′(R) = 0 is k is even while ŵ(R) = 0 is k is odd. Moreover for any i = 0, . . . , h:

−(ρŵ′)′ = λ̂ŵ on ]ρi, ρi+1[

Now we can rearrange ŵ defining w̃ := ∑
h
j=0(−1)jαjŵ1[ρj,ρj+1], where α1 = 1 and αjŵ

′
−(ρj) =

αj+1ŵ′
+(ρj), j = 1, . . . , h. In this way (λ̂, w̃) is an eigenvalue – eigenfunction pair relative for

problem (4.21) if k is even and of (4.23) if k is odd. Since w̃ has h = k/2 nodal points for k

even and h + 1 = (k + 1)/2 if k is odd, then (4.24) holds.

Proof of Theorem 4.3. If ε ∈ ]0, 1[ we set

Oε :=
{

(w, λ) ∈ E : ε < λ < ε−1, 1 +
√

λw(ρ) > ε, w(ρ) < ε−1 ∀ρ ∈ [0, R]
}

.
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Clearly Oε is an open set with Oε ⊂ W . Moreover, (µk/2, 0) ∈ Oε if ε is sufficiently small.
Define h̃λ,ε as in (2.4) with s0 = ε and let h̃λ(s) := h̃1(

√
λs). Using [23] we get there that there

exists a pair (wε, λε) in ∂Oε, with wε having k nodal points, which solves Problem (4.1) with
h̃ε,λ := h̃ε(λ, ·) instead of hλ. Since (w, λ) ∈ ∂Oε ⇒ h̃ε(w, λ) = hλ(w), we get that (wε, λε) ∈
S+

k . For ε small we have ε < λk ≤ λk < ε−1 so we get wε ∈ ∂
{

1 +
√

λεw > ε, w < ε−1
}

i.e.
there exists a point ρε ∈ [0, R] such that

either 1 +
√

λεwε(ρε) = ε or wε(ρε) = ε−1.

We can find a sequence εn → 0 such that the corresponding (wn, λn) := (wεn , λεn) verify one
of the above properties for all n ∈ N. If the first one holds for all n, then (wn, λn) verifies (b)
of Lemma (4.6); in the second case (wn, λn) verifies (a) of Lemma (4.6). Then by Lemma (4.6)
∥wn∥∞ → ∞ and (4.24) holds. This proves the theorem.

Remark 4.7. As a consequence of Theorem (4.3) we get that for any h ≥ 1 integer and any λ

strictly between λh and λ2h/2 there exists u such that (u, λ) solves Problem (1.2). The same is
true for all λ strictly between νh and λ2h−1/2.

Remark 4.8. The above proof fails if we follow the bifurcation branch (wρ, λρ) with wρ(0) < 0.
In this case it seems possible that the branch tends to a point (λ̃, w̃) where

√
λ̃w̃(0) = −1 (but√

λ̃w̃(0) > −1 for ρ > 0). This phenomenon, if true, would be worth studying.

Remark 4.9. The computations of this section show that, if Ω is the ball, then there are no
solutions for the Dirichlet problem. It is indeed impossible to construct a (nontrivial) solution
(w, λ) for (4.1) with w(R) = 0.
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1 Introduction and setting of the problem

Let Ω ⊂ R
3 be a bounded domain with smooth enough (e.g. C2) boundary ∂Ω. We consider

an arbitrary initial time τ ∈ R, and the following non-autonomous functional Navier–Stokes–

BCorresponding author. Email: julia.gluengo@upm.es
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Voigt problem:




∂

∂t

(
u − α2∆u

)
− ν∆u + (u · ∇)u +∇p = f (t) + g(t, ut) in Ω × (τ, ∞),

div u = 0 in Ω × (τ, ∞),

u = 0 on ∂Ω × (τ, ∞),

u(x, τ) = uτ(x), x ∈ Ω,

u(x, τ + s) = φ(x, s), x ∈ Ω, s ∈ (−h, 0),

(1.1)

where ν > 0 is the kinematic viscosity, α > 0 is a characterizing parameter of the elasticity of

the fluid, u = (u1, u2, u3) is the velocity field of the fluid, p is the pressure, f is a non-delayed

external force field, g is another external force containing some hereditary characteristics, and

uτ and φ(x, s − τ) are the initial data in τ and (τ − h, τ) respectively, where h > 0 is the time

of memory effect. For each t ≥ τ, we denote by ut the function defined a.e. on (−h, 0) by the

relation ut(s) = u(t + s), a.e. s ∈ (−h, 0).

The Navier–Stokes–Voigt (NSV for short in the sequel) model of viscoelastic incompresible

fluid, introduced by Oskolkov in [29], gives an approximate description of the Kelvin-Voigt

fluid (see [22, 30]), and was proposed as a regularization of the 3D-Navier–Stokes equations

for the purpose of direct numerical simulations in [2]. The extra regularizing term −α2∆ut

changes the parabolic character of the equation, making it a well-posed (forward and back-

ward) problem in 3D, but one does not observe any immediate smoothing of the solution, as

expected in parabolic PDEs. Moreover, the generated semigroup is only asymptotically com-

pact, similarly to damped hyperbolic systems. One of the studied topics about the problem

is the inviscid question in some different senses. It is also worth observing that, when ν = 0,

the inviscid equation that one recovers is the simplified Bardina subgrid scale model of tur-

bulence. The relationship between the original and inviscid models was also addressed in [2].

On other hand, some questions on the inviscid regularization were used for the study of a 2D

surface quasi-geostrophic model in [21].

With respect to the non-delayed NSV model, the long-time behaviour of the solutions

has been studied by different authors. Namely, in the autonomous case, the existence of a

global compact attractor was proved by Kalantarov and Titi in [20]. Other related results have

been also analyzed, as the Gévrey regularity of the global attractor (again for the autonomous

model) when the force term is analytic of Gévrey type (see [19]), and the establishment of

similar statistical properties (and invariant measures) as for the 3D-Navier–Stokes equations

(cf. [23, 31]). Moreover, in the non-autonomous case, the existence of minimal pullback at-

tractors in both V and D(A) norms, and some regularity properties of these attractors, were

obtained in [14]. We may also cite in this non-autonomous framework the paper [40], where

the existence of uniform attractor for a NSV model is studied.

On the other hand, in many physical experiments, the inclusion of measurement devices

to control properties of fluids (such as temperature, velocity, etc.) may incorporate additional

external forces to the model including also delay effects (e.g. for a wind-tunnel model). In this

sense, the study of 2D-Navier–Stokes models with delay terms – existence, uniqueness, sta-

tionary solutions, exponential decay, existence of attractors, et cetera – was initiated in the ref-

erences [6–8] and, after that, many different questions, as dealing with unbounded domains,

and models (for instance in three dimensions for modified terms) have been addressed (e.g.,

cf. [15,17,26,28,36] among others). In the past years, the asymptotic behaviour of the Navier–

Stokes–Voigt equations with delays or with memory have been studied in [3, 12, 24, 34, 35, 38].

It is worth pointing out that, in [24], the authors establish the existence of pullback attractors



Attractors for a delayed non-autonomous Navier–Stokes–Voigt model 3

in V norm for a three dimensional NSV model when the forcing term containing the delay

is sublinear and only continuous. Since the uniqueness of solution is not guaranteed under

these assumptions, they use the theory of multi-valued dynamical systems and similar argu-

ments as in [28] for the proof of the asymptotic compactness of the process. In this work,

we suppose more restrictive conditions on the delay operator that assure the uniqueness of

solution, so we can apply the classical results of Dynamical Systems. However, in contrast

with [24], we modify the phase-space enlarging the set of initial conditions. Moreover, for

the associated single-valued process, we are able to obtain the existence of minimal pullback

attractors, with richer compactness sections and not only in (roughly speaking) V norm, but

also in D(A) norm. Moreover, some regularity properties of these attractors are also success-

fully established. This analysis is carried out by applying similar techniques as in [14], but

with the necessary modifications caused by the inclusion of a delay term.

As commented before, the difference between this model and the standard 2D-Navier–

Stokes model is that there exists a regularizing effect in the 2D-Navier–Stokes model, while

not here. For 2D-Navier–Stokes a continuous energy method can be applied thanks to the

extra estimates that hold in higher norms (e.g., cf. [28]), which does not seem to hold for the

NSV model. Some of the proofs in the previously cited references about NSV (e.g., cf. [20])

rely on splitting the problem in two, one with exponential decay, and the other with good

asymptotic properties in the domain of a suitable fractional power of the Stokes operator.

However, similarly as in [14], we will provide a simpler proof, which does not require the

above mentioned technicalities, but a sharp use of the energy equality, and the energy method

used by Rosa in [32]. Moreover, it is worth pointing out that our results in Section 3 do not

use the regularity assumption on ∂Ω at all, and the force term may take values in V ′ instead

of in L2 as appears in [20].

The structure of the paper is the following. In Section 2 we recall some definitions of

classical functional spaces to state our problem in an abstract form, basic properties and

estimates of the involved operators. We also obtain a result on the existence, uniqueness

and regularity of the weak solution for problem (1.1). We start Section 3 with a brief recall

of the main definitions on the theory of minimal pullback attractors and bi-space attractors

for non-autonomous dynamical systems within the framework of universes. Then, we prove

the existence of pullback attractors in (roughly speaking) V norm and for two choices of

the attracted universes, namely, the standard one of fixed bounded sets, and secondly, one

given by a tempered growth condition. We also establish some relations among these families

and improve compactness and attraction norm results. In Section 4, extra regularity for the

obtained attractors will be deduced by using a bootstrapping argument that involves fractional

powers of the Stokes operator. Finally, in Section 5, the problem of attraction in D(A) norm is

studied although it is more involved (namely it fits out from the standard theoretical results).

Indeed under suitable assumptions, all attractors are proved to coincide.

2 Existence and uniqueness of solution

In this section we prove existence, uniqueness and regularity of the solutions to problem (1.1).

These results will be obtained in a similar way as in [14], but with the necessary changes due

to the inclusion of a delay term. We begin by stating the problem in an abstract setting, and to

do so we recall several definitions of functional spaces, operators and some of their properties

(for the details see [37]).

To start with, we consider the usual spaces in the variational theory of Navier–Stokes
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equations: H, the closure of V = {u ∈ (C∞
0 (Ω))3 : div u = 0} in (L2(Ω))3 with norm |·| , and

inner product (·, ·), and V, the closure of V in (H1
0(Ω))3 with norm ∥·∥ , and inner product

((·, ·)), that is, the L2-product of gradients, thanks to the Poincaré inequality.

We will use ∥·∥∗ for the norm in V ′ and ⟨·, ·⟩ for the duality ⟨V ′, V⟩ . We consider every

element h ∈ H as an element of V ′, given by the equality ⟨h, v⟩ = (h, v) for all v ∈ V. It follows

that V ⊂ H ⊂ V ′, where the injections are dense and compact.

Let us define the linear continuous operator A : V → V ′ as ⟨Au, v⟩ = ((u, v)) for all

u, v ∈ V, and we denote D(A) = {u ∈ V : Au ∈ H}. By the regularity of ∂Ω, one has

that D(A) = (H2(Ω))3 ∩ V, and Au = −P∆u for all u ∈ D(A) is the Stokes operator (P is

the ortho-projector from (L2(Ω))3 onto H). On D(A) we consider the norm | · |D(A) defined

by |u|D(A) = |Au|. Observe that on D(A) the norms ∥ · ∥(H2(Ω))3 and | · |D(A) are equivalent,

and D(A) is compactly and densely injected in V. We will also denote by {wj}j≥1 ⊂ D(A)

a Hilbert basis of H formed by normalized eigenfunctions of the Stokes operator A, with

corresponding eigenvalues {λj}j≥1 being 0 < λ1 ≤ λ2 ≤ . . . and limj→∞ λj = ∞. Recall that

the first eigenvalue of A satisfies

λ1 = inf
v∈V\{0}

∥v∥2

|v|2
. (2.1)

For the fractional powers of A, we have the following inclusions with continuous injection

(cf. [33, Chapter III, Lemmas 2.4.2 and 2.4.3]):

D(Aβ) ⊂ (L6/(3−4β)(Ω))3, ∀ 0 ≤ β < 3/4, (2.2)

D(A3/4) ⊂ (Lp(Ω))3, ∀ 1 ≤ p < ∞, (2.3)

and

D(Aβ) ⊂ (L∞(Ω))3, ∀ 3/4 < β ≤ 1. (2.4)

Now, we define

b(u, v, w) =
3

∑
i,j=1

∫

Ω
ui

∂vj

∂xi
wj dx,

for every functions u, v, w : Ω → R
3 for which the right-hand side is well defined. In particu-

lar, b has sense for all u, v, w ∈ V, and is a continuous trilinear form on V × V × V, i.e., there

exists a constant C1 > 0 such that

|b(u, v, w)| ≤ C1∥u∥∥v∥∥w∥, ∀u, v, w ∈ V. (2.5)

Important properties concerning b are that

b(u, v, w) = −b(u, w, v), ∀u, v, w ∈ V,

b(u, v, v) = 0, ∀u, v ∈ V, (2.6)

and, using Agmon inequality (e.g. cf. [10]), we can assure that there exists a constant C2 > 0

such that

|b(u, v, w)| ≤ C2|Au|1/2∥u∥1/2∥v∥|w|, ∀u ∈ D(A), v ∈ V, w ∈ H. (2.7)

For any u ∈ V, we will use B(u) to denote the element of V ′ given by ⟨B(u), w⟩ = b(u, u, w)

for all w ∈ V. Thus, by (2.5),

∥B(u)∥∗ ≤ C1∥u∥2, ∀u ∈ V, (2.8)
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and in particular, by (2.7) and the identification of H′ with H, if u ∈ D(A), then B(u) ∈ H, with

|B(u)| ≤ C2|Au|1/2∥u∥3/2, ∀u ∈ D(A). (2.9)

In fact, from (2.4), one also deduces that if u ∈ D(Aβ) with 3/4 < β ≤ 1, then B(u) ∈ H,

and more exactly

|B(u)| ≤ C(β)|A
βu|∥u∥, ∀u ∈ D(Aβ), ∀ 3/4 < β ≤ 1. (2.10)

Analogously, if 0 ≤ β < 3/4, from (2.2) one obtains that if u ∈ D(Aβ) ∩ V, B(u) ∈

D(Aβ−3/4), and more exactly

|Aβ−3/4B(u)| ≤ C(β)|A
βu|∥u∥, ∀u ∈ D(Aβ) ∩ V, ∀ 0 ≤ β < 3/4. (2.11)

Finally, in the case β = 3/4, from (2.3) one can see that if u ∈ D(A3/4), then B(u) ∈ D(A−δ)

for all δ > 0, and more exactly

|A−δB(u)| ≤ C(3/4,δ)|A
3/4u|∥u∥, ∀u ∈ D(A3/4), ∀δ > 0.

Now, we establish some appropriate assumptions on the term in (1.1) containing the delay.

Let (X, ∥ · ∥X) be a Banach space. We will denote CX = C([−h, 0]; X), the space of

continuous functions from [−h, 0] into X, with the norm ∥ϕ∥CX
= maxs∈[−h,0] ∥ϕ(s)∥X, and

L2
X = L2(−h, 0; X), where the norm will be denoted by ∥ · ∥L2

X
. On the delay operator from

(1.1), we consider that is well defined as g : R × CH → (L2(Ω))3, and it satisfies the following

assumptions:

(I) for all ξ ∈ CH, the function R ∋ t 7→ g(t, ξ) ∈ (L2(Ω))3 is measurable,

(II) g(t, 0) = 0, for all t ∈ R,

(III) there exists Lg > 0 such that for all t ∈ R, and for all ξ, η ∈ CH,

|g(t, ξ)− g(t, η)| ≤ Lg|ξ − η|CH
,

(IV) there exists Cg > 0 such that for all τ ≤ t, and for all u, v ∈ C([τ − h, t]; H),

∫ t

τ
|g(s, us)− g(s, vs)|

2 ds ≤ C2
g

∫ t

τ−h
|u(s)− v(s)|2 ds.

Examples of fixed, variable and distributed delay operators can be found, for instance, in

[6, Section 3], [8, Sections 3.5 and 3.6], and [17, Section 3], and we omit them here just for the

sake of brevity.

Observe that (I)–(III) imply that given T > τ and u ∈ C([τ − h, T]; H), the function gu :

[τ, T] → (L2(Ω))3 defined by gu(t) = g(t, ut) for all t ∈ [τ, T], is measurable and, in fact,

belongs to L∞(τ, T; (L2(Ω))3). Then, thanks to (IV), the mapping

G : u ∈ C([τ − h, T]; H) → gu ∈ L2(τ, T; (L2(Ω))3)

has a unique extension to a mapping G̃ which is uniformly continuous from L2(τ − h, T; H)

into L2(τ, T; (L2(Ω))3). From now on, we will denote g(t, ut) = G̃(u)(t) for each

u ∈ L2(τ − h, T; H), and thus property (IV) will also hold for all u, v ∈ L2(τ − h, T; H).
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Since it will be used to deduce some estimates for the solutions of (1.1), we study the

autonomous equation u + α2 Au = ϕ. From the Lax–Milgram lemma, we know that for each

ϕ ∈ V ′ there exists a unique uϕ ∈ V such that uϕ + α2Auϕ = ϕ. Therefore, the mapping

C : u ∈ V 7→ u + α2 Au ∈ V ′

is linear and bijective, with C−1ϕ = uϕ. Moreover, by the definition of D(A), we also have that

C−1(H) = D(A). Now, reasoning as in [14], we obtain that

∥uϕ∥ ≤ α−2∥ϕ∥∗, ∀ϕ ∈ V ′, (2.12)

and

|Auϕ| ≤ 2α−2|ϕ|, ∀ϕ ∈ H. (2.13)

Let us consider that uτ ∈ V, φ ∈ L2
H, and f ∈ L2

loc(R; V ′).

Definition 2.1. A weak solution to (1.1) is a function u that belongs to L2(τ − h, T; H) ∩

L2(τ, T; V) for all T > τ, such that u(τ) = uτ, u(t) = φ(t − τ) a.e. t ∈ (τ − h, τ), and

satisfies

d

dt
(u(t) + α2Au(t)) + νAu(t) + B(u(t)) = f (t) + g(t, ut), in D′(τ, ∞; V ′). (2.14)

Observe that if u is a weak solution to (1.1), then u(t)+ α2Au(t) ∈ L2(τ, T; V ′) for all T > τ,

and by (2.8), d
dt (u(t) + α2 Au(t)) ∈ L1(τ, T; V ′) for all T > τ. Therefore, by using (2.12) and

reasoning as in [14], we can deduce that u ∈ C([τ, ∞); V), whence the initial datum u(τ) = uτ

has full sense, and u′ ∈ L2(τ, T; V) for all T > τ.

Furthermore, the following energy equality holds:

1

2

d

dt
(|u(t)|2 + α2∥u(t)∥2) + ν∥u(t)∥2 = ⟨ f (t), u(t)⟩+ (g(t, ut), u(t)), a.e. t > τ. (2.15)

Concerning the existence and uniqueness of weak solution to (1.1), we have the following

result.

Theorem 2.2. Let f ∈ L2
loc(R; V ′), and g : R × CH → (L2(Ω))3 satisfying (I)–(IV), be given. Then,

for each τ ∈ R, uτ ∈ V and φ ∈ L2
H, there exists a unique weak solution u = u(·; τ, uτ, φ) of (1.1).

Moreover, if f ∈ L2
loc(R; (L2(Ω))3) and uτ ∈ D(A), then u has the following regularity

u ∈ C([τ, ∞); D(A)), u′ ∈ L2(τ, T; D(A)) for all T > τ, (2.16)

and a.e. t > τ satisfies

1

2

d

dt
(∥u(t)∥2 + α2|Au(t)|2) + ν|Au(t)|2 + (B(u(t)), Au(t)) = ( f (t) + g(t, ut), Au(t)). (2.17)

Proof. Uniqueness. Consider two weak solutions u(1) and u(2) to problem (1.1), corresponding

to the same initial data, and denote û = u(1) − u(2). Observe that by (2.5) and (2.6),

|b(u(1)(s), u(1)(s), û(s))− b(u(2)(s), u(2)(s), û(s))| = |b(û(s), u(1)(s), û(s))|

≤ C1∥u(1)(s)∥∥û(s)∥2.
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Then, from the equation satisfied by û and the energy equality, it follows that

|û(t)|2 + α2∥û(t)∥2 + 2ν
∫ t

τ
∥û(s)∥2 ds

= − 2
∫ t

τ
b(û(s), u(1)(s), û(s)) ds + 2

∫ t

τ
(g(s, u

(1)
s )− g(s, u

(2)
s ), û(s)) ds

≤ 2C1

∫ t

τ
∥u(1)(s)∥∥û(s)∥2 ds + 2

∫ t

τ
|g(s, u

(1)
s )− g(s, u

(2)
s )||û(s)| ds

for all t ≥ τ. Now, by the Young inequality and the assumption (IV) on g, taking into account

that û(s) = 0 for s ∈ (τ − h, τ), we obtain that

|û(t)|2 + α2∥û(t)∥2 + 2ν
∫ t

τ
∥û(s)∥2 ds

≤ 2C1

∫ t

τ
∥u(1)(s)∥∥û(s)∥2 ds +

∫ t

τ
|g(s, u

(1)
s )− g(s, u

(2)
s )|2 ds +

∫ t

τ
|û(s)|2 ds

≤ 2C1

∫ t

τ
∥u(1)(s)∥∥û(s)∥2 ds + λ−1

1 (C2
g + 1)

∫ t

τ
∥û(s)∥2 ds

for all t ≥ τ, and in particular

∥û(t)∥2 ≤ α−2
(
2C1 + λ−1

1 (C2
g + 1)

) ∫ t

τ

(
∥u(1)(s)∥+ 1

)
∥û(s)∥2 ds

for all t ≥ τ. Thus, from the Gronwall lemma, we conclude uniqueness.

Existence. We will follow a Galerkin scheme similarly as in [14, Theorem 4]. Let {wj}j≥1 ⊂

D(A) be the Hilbert basis of H formed by normalized eigenfunctions of the Stokes operator

A introduced before.

For each integer m ≥ 1, we pose the approximate problems of finding um ∈ Vm :=

span[w1, . . . , wm] with um(t) = ∑
m
j=1 γm,j(t)wj, where the coefficients γm,j are required to sat-

isfy the system

d

dt
(um(t) + α2 Aum(t), wj) + ν((um(t), wj)) + b(um(t), um(t), wj)

= ⟨ f (t), wj⟩+ (g(t, um
t ), wj), a.e. t > τ, 1 ≤ j ≤ m, (2.18)

and the initial conditions

um(τ) = Pmuτ and um(τ + s) = Pmφ(s) a.e. s ∈ (−h, 0),

where Pm is the orthogonal projector from H onto Vm. Observe that, by the choice of the basis

{wj}j≥1, the restriction Pm |V of Pm to V belongs to L(V), ∥Pm |V∥L(V) ≤ 1 for all m ≥ 1, and

limm→∞ ∥uτ − Pmuτ∥ = 0.

The above system of ordinary functional differential equations with finite delay fulfills the

conditions for existence and uniqueness of local solution (see for example [18]).

Next, we will deduce a priori estimates that in particular assure that the solutions um do

exist for all time t ∈ [τ − h, ∞).

Multiplying each equation in (2.18) by γm,j(t) and summing from j = 1 to j = m, we obtain

that a.e. t > τ,

d

dt
(|um(t)|2 + α2∥um(t)∥2) + 2ν∥um(t)∥2 = 2⟨ f (t), um(t)⟩+ 2(g(t, um

t ), um(t))

≤ ν∥um(t)∥2 + ν−1∥ f (t)∥2
∗ + |g(t, um

t )|
2 + |um(t)|2,
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where we have used (2.6) to remove the nonlinear term b, and the Young inequality.

By integrating in time, from the assumptions on the delay operator g, in particular we

deduce that

|um(t)|2 + α2∥um(t)∥2

≤ |Pmuτ|2 + α2∥Pmuτ∥2 + ν−1
∫ t

τ
∥ f (s)∥2

∗ ds + C2
g

∫ t

τ−h
|um(s)|2 ds +

∫ t

τ
|um(s)|2 ds

≤ |uτ|2 + α2∥uτ∥2 + C2
g∥φ∥2

L2
H
+ ν−1

∫ t

τ
∥ f (s)∥2

∗ ds + λ−1
1 (C2

g + 1)
∫ t

τ
∥um(s)∥2 ds

for all t ≥ τ, and any m ≥ 1. Now, by the Gronwall lemma we conclude that the sequence

{um}m≥1 is bounded in C([τ, T]; V) for all T > τ. Moreover, since um
τ = Pmφ converges to

φ in L2(−h, 0; H), in particular, thanks to (IV), the sequence {g(·, um
· )}m≥1 is bounded in

L2(τ, T; (L2(Ω))3) for all T > τ.

Now from (2.8), (2.18) and by the choice of the basis, we obtain that vm = Cum satisfies

∥(vm)′(t)∥∗ ≤ ν∥um(t)∥+ C1∥um(t)∥2 + ∥ f (t)∥∗ + λ−1/2
1 |g(t, um

t )|, a.e. t > τ,

which implies that the sequence {dvm/dt}m≥1 is bounded in L2(τ, T; V ′) for all T > τ. There-

fore, taking into account that dum/dt = C−1 (dvm/dt) , we have that the sequence {dum/dt}m≥1

is bounded in L2(τ, T; V) for all T > τ.

Thus, by the compactness of the injection of V into H and the Ascoli–Arzelà theorem, we

deduce that there exist a subsequence {um′
}m′≥1 ⊂ {um}m≥1 and a function u ∈ W1,2(τ, T; V)

for all T > τ, with uτ = φ, such that





um′ ∗
⇀ u weakly-star in L∞(τ, T; V),

um′
→ u strongly in C([τ, T]; H),

um′
→ u a.e. in Ω × (τ, T),

g(·, um′

· ) → g(·, u·) strongly in L2(τ, T; (L2(Ω))3),

dum′

dt
⇀

du

dt
weakly in L2(τ, T; V),

dvm′

dt
= C

(
dum′

dt

)
⇀ C

(
du

dt

)
weakly in L2(τ, T; V ′),

(2.19)

for all T > τ.

Now, using the same reasoning as in [14], we can obtain that B(um′
) ⇀ B(u) weakly in

L2(τ, T; V ′), for all T > τ. So, from all the convergences above, we can take limits in (2.18) and

conclude that u satisfies (2.14).

Notice also that u(τ) = limm′→∞ um′
(τ) = limm′→∞ Pm′uτ = uτ. Thus, u is the weak solu-

tion to (1.1).

Finally, the regularity property (2.16) and the identity (2.17) follow from the corresponding

results proved in [14, Theorem 4] and the fact that, if f ∈ L2
loc(R; (L2(Ω))3), then the function

f (·) + g(·, u·) belongs to L2
loc(τ, ∞; (L2(Ω))3).

Remark 2.3. Observe that in the above proof, using the uniqueness of solution to the problem,

for any T > τ we have that the whole sequence of the Galerkin approximations {um} con-

verges to u in C([τ, T]; H). Actually, all the convergences in (2.19), except the third one, hold
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for the whole sequence. Analogously, one also deduces that for any t ∈ [τ, T], um(t) ⇀ u(t)

weakly in V.

In addition, if uτ ∈ D(A) and f ∈ L2
loc(R; (L2(Ω))3), then for any T > τ the sequence {um}

converges to u in C([τ, T]; V), and weakly-star in L∞(τ, T; D(A)), for any t ∈ [τ, T], um(t) ⇀

u(t) in D(A), and the sequence {dum/dt} converges to du/dt weakly in L2(τ, T; D(A)).

Remark 2.4. (i) The solution depends continuously on the initial data in the strong topology

of V × L2
H. Moreover, when f ∈ L2

loc(R; (L2(Ω))3), the solution depends continuously on the

initial data in the strong topology of D(A)× L2
V . Indeed, this can be proved similarly to the

proof of uniqueness of weak solution to (1.1), considering the difference of two solutions and

using the Gronwall lemma.

(ii) The existence and uniqueness part of Theorem 2.2 do not need any regularity assump-

tion on the boundary of the domain. In fact, this assumption is only required for the additional

regularity results.

3 Existence of minimal pullback attractors in V norm

Before to start, let us recall some abstract definitions and results on pullback attractors and bi-

space attractors theories. In fact, abstract existence results are omitted for the sake of brevity.

For instance, they can be found in [4, 5, 13, 27] for pullback attractors (and references therein)

and in [11] for bi-space pullback attractors (see also [1, 9, 39] for the autonomous bi-space

attractors theory). They will be applied to a suitable dynamical system associated to (1.1), or

to a restricted version involving more regularity or because of better properties.

Consider given a metric space (X, dX), and let us denote R
2
d = {(t, τ) ∈ R

2 : τ ≤ t}.

A process U on X is a mapping R
2
d × X ∋ (t, τ, x) 7→ U (t, τ)x ∈ X such that U (τ, τ)x = x

for any (τ, x) ∈ R × X, and U (t, r)(U (r, τ)x) = U (t, τ)x for any τ ≤ r ≤ t and all x ∈ X.

A process U is said to be continuous if for any pair τ ≤ t, the mapping U (t, τ) : X → X is

continuous. It is said to be closed if for any τ ≤ t, and any sequence {xn} ⊂ X, if xn → x ∈ X

and U (t, τ)xn → y ∈ X, then U (t, τ)x = y. It is clear that every continuous process is closed.

Let us denote by P(X) the family of all nonempty subsets of X, and consider a family of

nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X).

The process U is pullback D̂0-asymptotically compact if for any t ∈ R and any sequences

{τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D0(τn) for all n, the sequence

{U (t, τn)xn} is relatively compact in X.

A process U on X being pullback D̂0-asymptotically compact possesses a family of non-

empty compact subsets of X, namely the atomized structure for the asymptotic behavior, the

omega-limit family ΛX(D̂0) = {ΛX(D̂0, t) : t ∈ R} with

ΛX(D̂0, t) =
⋂

s≤t

⋃

τ≤s

U (t, τ)D0(τ)
X

.

It pullback attracts in X norm to D̂0 (cf. [13, Proposition 3.4]), i.e.

lim
τ→−∞

distX(U (t, τ)D0(τ), ΛX(D̂0, t)) = 0, ∀t ∈ R,

where distX(·, ·) denotes the Hausdorff semi-distance in X. In fact, it is the minimal family

of closed sections in X that attracts D̂0. Moreover, if U is also a closed process on X, then (cf.

[13, Proposition 3.5]) it is invariant, i.e. U (t, τ)ΛX(D̂0, τ) = ΛX(D̂0, t) for all τ ≤ t.
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Let be given D a nonempty class of families parameterized in time D̂ = {D(t) : t ∈ R} ⊂

P(X). The class D will be called a universe in P(X).

Definition 3.1. A process U on X is said to be pullback D-asymptotically compact if it is

D̂-asymptotically compact for any D̂ ∈ D.

It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for U on X if for

any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such that U (t, τ)D(τ) ⊂ D0(t) for all

τ ≤ τ0(t, D̂).

The suitable combination of the above two ingredients leads to

Definition 3.2. Given a metric space X, a universe D in P(X), and a process U on X, a family

AD = {AD(t) : t ∈ R} is called a pullback D-attractor for U if (i) AD(t) is compact in X for

any t ∈ R, (ii) AD pullback D-attracts in X and (iii) it is invariant (i.e. U (t, τ)AD(τ) = AD(t)

for any τ ≤ t).

Besides, it is said the minimal pullback D-attractor for U on X if given any family Ĉ =

{C(t) : t ∈ R} ⊂ P(X) of closed sets that pullback D-attracts under U , then AD(t) ⊂ C(t).

Without minimality, pullback attractors are not unique in general (cf. [27]). Minimality in-

volves uniqueness and a clear candidate, after the definition of omega-limit families. Namely,

the following result is well-known.

Theorem 3.3 (cf. [13, Theorem 3.11]). Consider a closed process U : R
2
d × X → X, a universe D

in P(X), and a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) which is pullback D-absorbing for U , and

assume also that U is pullback D̂0-asymptotically compact. Then, the family AD = {AD(t) : t ∈ R}

defined by AD(t) =
⋃

D̂∈D ΛX(D̂, t)
X

is the minimal pullback D-attractor for U in X.

Remark 3.4. Under the assumptions of Theorem 3.3, the family AD satisfies AD(t)⊂ ΛX(D̂0, t)

for any t ∈ R. Actually, if D̂0 ∈ D, then AD = ΛX(D̂0). Moreover, if AD ∈ D, then it is the

unique family of closed subsets in D that satisfies (ii)–(iii) in Definition 3.2. A sufficient

condition for AD ∈ D is to have that D̂0 ∈ D, the set D0(t) is closed for all t ∈ R, and

the family D is inclusion-closed (i.e., if D̂ ∈ D, and D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with

D′(t) ⊂ D(t) for all t, then D̂′ ∈ D).

We will denote DF(X) the universe of fixed nonempty bounded subsets of X, i.e., the class

of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded

subset of X.

Now, it is easy to conclude the following result.

Corollary 3.5 (cf. [27, Corollaries 20 and 21]). Under the assumptions of Theorem 3.3, if D contains

DF(X), then the minimal pullback attractor ADF(X) also exists and ADF(X)(t) ⊂ AD(t) for all t ∈ R.

Moreover, if for some T ∈ R, the set ∪t≤TD0(t) is bounded, then ADF(X)(t) = AD(t) for all t ≤ T.

Comparison results with different universes are also possible if the process U is well-

posed in several metric spaces with a connection between them. Namely, Theorem 3.15 in [13]

allows us to gain additional regularity about attractors. For the sake of brevity, we omit such

statement. Nevertheless, we will recall another one with previous definitions, which will be

analogously useful for our results (this is inspired from another study, cf. [25, Section 5]).

Theory of bi-space attractors (cf. [1,9,39] for autonomous setting and the references therein)

is close to the previous results but joining extra regularity of the solution operator involving



Attractors for a delayed non-autonomous Navier–Stokes–Voigt model 11

two spaces. Since our context is non-autonomous, we borrow some of these results from [11],

settled in this framework also for closed processes. Consider given two metric spaces (Xi, dXi
),

i = 1, 2 (not necessarily related) and a process U on X1. It is said (cf. [11, Definition 2.12]) that

U is (X1, X2) closed if for any τ ≤ t and {xn} ⊂ X1 ∩ X2 with U (t, τ)xn ∈ X1 ∩ X2, if xn → x

in X2 and U (t, τ)xn → y ∈ X2, then x ∈ X1 and U (t, τ)x = y.

Given a parameterized-in-time family D̂0 ⊂ P(X1), a process U on X1 is said (X1, X2)

pullback D̂0-asymptotically compact (cf. [11, Definition 2.4]) if for any t ∈ R, sequence {τn} ⊂

(−∞, t] and {xn} ⊂ X1 with τn → −∞ and xn ∈ D0(τn), the sequence {U (t, τn)xn} is relatively

compact in X2. Analogously to Definition 3.1, a process U on X1 is said to be (X1, X2) pullback

D-asymptotically compact if it is (X1, X2) pullback D̂-asymptotically compact for any D̂ ∈ D.

We may run parallel the construction of a family with the desired properties of minimal

pullback attractor for a universe D in P(X1), provided that for any D̂ = {D(s) : s ∈ R} ∈ D

and t ∈ R there exists sD̂,t ≤ t such that U (t, s)D(s) ⊂ X2 for all s ≤ sD̂,t (cf. [11, (2.2)]). In this

case, data comes from X1 and the arrival attracting space is X2 with its corresponding metric

[11, Definition 2.2].

Definition 3.6. Let be given a process U on X1 and a universe D in P(X1). The family

ÂD = {ÂD(t) : t ∈ R} is called a (X1, X2) pullback D-attractor if (i) ÂD(t) ⊂ X1 ∩ X2 is

a nonempty compact set in X2 for each t ∈ R, (ii) it is pullback D-attracting using the Haus-

dorff semidistance in X2 and (iii) it is invariant. Besides, it is said minimal if for any other

family Ĉ of nonempty closed time-sections with values in X2 and pullback D-attracting in X2,

then ÂD(t) ⊂ Ĉ(t) for any t ∈ R.

Similarly to Theorem 3.3, we may ensure the existence of the minimal (X1, X2) pullback

D-attractor under rather general conditions (cf. [11, Theorem 2.16]).

Theorem 3.7. Let be given two metric spaces Xi, i = 1, 2, a process U on X1, and a universe D in

P(X1). Suppose that there exists a family B̂0 in P(X1) that is pullback D-absorbing, such that for any

t ∈ R there exists sB̂0,t ≤ t such that U (t, s)B̂0(s) ⊂ X2 for any s ≤ sB̂0,t. If the process U is (X1, X2)

closed and (X1, X2) pullback B̂0-asymptotically compact, then there exists ÂD the minimal (X1, X2)

pullback D-attractor for U , and it is given by ÂD(t) = ∪D̂∈DΛX2
(D̂, t)

X2

⊂ ΛX2
(B̂0, t).

Remark 3.8. If X2 ⊂ X1 with continuous injection, the following consequences are immediate:

(i) A process U on X1 that is X1 closed, it is also (X1, X2) closed. (ii) Given a universe D in

P(X1) and a process U (X1, X2) pullback D-asymptotically compact, then ΛX1
(D̂) = ΛX2

(D̂)

for any D̂ ∈ D thanks to the minimality properties of omega-limit families and that a compact

set in X2 is compact in X1. (iii) A process U that has a (X1, X2) pullback D-attractor ÂD, it also

has a (X1, X1) pullback D-attractor AD just using the embedding X2 ⊂ X1 (same arguments

of minimality and compact sets than in (ii), even using different clousures). In this case we

make an abuse of notation, identifying both families without any extra notation, gaining extra

regularity in X2 for the sections of the attractor.

In view of Theorem 2.2 and Remark 2.4 (i), we will apply the above abstract results in the

phase-space X = V × L2
H, which is a Hilbert space with the norm ∥(uτ, φ)∥2

X = ∥uτ∥2 + ∥φ∥2
L2

H

for a pair (uτ, φ) ∈ X.

The first consequence after the Theorem 2.2 and Remark 2.4 (i) is the following

Corollary 3.9. Let f ∈ L2
loc(R; V ′), and g : R × CH → (L2(Ω))3 satisfying (I)–(IV), be given. Then,

the bi-parametric family of maps S(t, τ) : V × L2
H → V × L2

H, with τ ≤ t, given by

S(t, τ)(uτ, φ) = (u(t; τ, uτ, φ), ut(·; τ, uτ, φ)), (3.1)
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where u = u(·; τ, uτ, φ) is the unique weak solution to (1.1), defines a continuous process on V × L2
H.

We will need the following continuity result for the process S in a weak sense.

Proposition 3.10. Let f ∈ L2
loc(R; V ′), g : R × CH → (L2(Ω))3 satisfying (I)–(IV), and τ < t be

given. Then, for any sequence such that

(uτ,n, φn) ⇀ (uτ, φ) weakly in V × L2
V

and
dφn

ds
⇀

dφ

ds
weakly in L2

V ,

the following convergences hold for the sequence of solutions u(·; τ, uτ,n, φn) towards the solution

u(·; τ, uτ, φ):

u(·; τ, uτ,n, φn)
∗
⇀ u(·; τ, uτ, φ) weakly-star in L∞(τ, t; V),

u(·; τ, uτ,n, φn) → u(·; τ, uτ, φ) strongly in C([τ − h, t]; H),

u(t; τ, uτ,n, φn) ⇀ u(t; τ, uτ, φ) weakly in V,

u(·; τ, uτ,n, φn) ⇀ u(·; τ, uτ, φ) weakly in L2(τ − h, t; V).

(3.2)

Proof. Taking into account that {φn} is bounded in W1,2(−h, 0; V) ⊂ C([−h, 0]; V), and the

compactness of the injection of V into H, by the Ascoli–Arzelà theorem we deduce that φn → φ

strongly in CH. Therefore, the a priori estimates obtained for the Galerkin approximations in

Theorem 2.2 also hold for the sequence of solutions {u(·; τ, uτ,n, φn)}, and then all the conver-

gences in (3.2) hold. Finally, the fact that the whole sequence satisfies the above convergences

is a consequence of the uniqueness of solution for the problem (cf. Remark 2.3).

Now, we introduce an additional assumption on g in order to obtain some asymptotic

estimates for the solutions to (1.1).

(V) Assume that νλ1 > Cg, and that there exists a value 0 < σ < 2(ν − λ−1
1 Cg)(λ

−1
1 + α2)−1

such that for every u ∈ L2(τ − h, t; H),

∫ t

τ
eσs|g(s, us)|

2 ds ≤ C2
g

∫ t

τ−h
eσs|u(s)|2 ds, ∀t ≥ τ.

Lemma 3.11. Consider given f ∈ L2
loc(R; V ′) and g : R × CH → (L2(Ω))3 satisfying conditions

(I)–(V). Then, for any (uτ, φ) ∈ V × L2
H, the following estimate holds for the solution u to (1.1) for all

t ≥ τ,

∥u(t)∥2 ≤ α−2 max{λ−1
1 + α2, Cg}eσ(τ−t)∥(uτ, φ)∥2

V×L2
H
+ α−2ε−1

∫ t

τ
eσ(s−t)∥ f (s)∥2

∗ ds, (3.3)

where

ε = 2ν − σ(λ−1
1 + α2)− 2λ−1

1 Cg > 0. (3.4)

Proof. By the energy equality (2.15) and the Young inequality, we have

d

dt
(|u(t)|2 + α2∥u(t)∥2) + 2ν∥u(t)∥2

≤ ε∥u(t)∥2 + ε−1∥ f (t)∥2
∗ + Cg|u(t)|

2 + C−1
g |g(t, ut)|

2, a.e. t > τ.
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Thus,

d

dt
(eσt|u(t)|2 + α2eσt∥u(t)∥2) + eσt

(
2ν − ε − σ(λ−1

1 + α2)− λ−1
1 Cg

)
∥u(t)∥2

≤ eσtε−1∥ f (t)∥2
∗ + eσtC−1

g |g(t, ut)|
2, a.e. t > τ,

and therefore, integrating in time above and using property (V), we obtain

eσt(|u(t)|2 + α2∥u(t)∥2) +
(
2ν − ε − σ(λ−1

1 + α2)− λ−1
1 Cg

) ∫ t

τ
eσs∥u(s)∥2 ds

≤ eστ(λ−1
1 + α2)∥uτ∥2 + ε−1

∫ t

τ
eσs∥ f (s)∥2

∗ ds + Cg

∫ t

τ−h
eσs|u(s)|2 ds

≤ eστ

(
(λ−1

1 + α2)∥uτ∥2 + Cg

∫ 0

−h
|φ(s)|2 ds

)
+ ε−1

∫ t

τ
eσs∥ f (s)∥2

∗ ds + λ−1
1 Cg

∫ t

τ
eσs∥u(s)∥2 ds

for all t ≥ τ, and from this last inequality and (3.4), in particular we deduce (3.3).

From now on, being σ > 0 given in (V), we will assume that f ∈ L2
loc(R; V ′) satisfies

∫ 0

−∞
eσs∥ f (s)∥2

∗ ds < ∞. (3.5)

At the light of the previous result, we now define an appropriate concept of (tempered)

universe for problem (1.1).

Definition 3.12. Denote by Dσ(V × L2
H) the class of all families of nonempty subsets D̂ =

{D(t) : t ∈ R} ⊂ P(V × L2
H) such that

lim
τ→−∞

(
eστ sup

(v,ϕ)∈D(τ)

∥(v, ϕ)∥2
V×L2

H

)
= 0.

According to the notation introduced in the previous section, we will denote by DF(V ×

L2
H) the universe of fixed bounded sets in V × L2

H. Observe that trivially DF(V × L2
H) ⊂

Dσ(V × L2
H) and that Dσ(V × L2

H) is inclusion-closed.

Remark 3.13. Although from Lemma 3.11 it is easy to see that the family {BV×L2
H
(0, ρσ(t)) :

t ∈ R} ⊂ P(V × L2
H) is pullback Dσ(V × L2

H)-absorbing for the process S, where

ρ2
σ(t) = 1 + α−2ε−1(1 + λ−1

1 heσh)e−σt
∫ t

−∞
eσs∥ f (s)∥2

∗ ds,

we will need, in order to apply Proposition 3.10, to obtain a different pullback Dσ(V × L2
H)-

absorbing family.

Lemma 3.14. Assume that g : R × CH → (L2(Ω))3 fulfills conditions (I)–(V), and f ∈ L2
loc(R; V ′)

satisfies (3.5). Then, for any t ∈ R and D̂ ∈ Dσ(V × L2
H), there exist τ1(D̂, t, h) < t − 2h and

functions {ρi}
2
i=1 such that for any τ ≤ τ1(D̂, t, h) and any (uτ, φ) ∈ D(τ), it holds

∥u(r; τ, uτ, φ)∥2 ≤ ρ2
1(t), ∀ r ∈ [t − 2h, t], (3.6)

∫ t

t−h
∥u′(θ; τ, uτ, φ)∥2 dθ ≤ ρ2

2(t), (3.7)
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where

ρ2
1(t) = 1 + α−2ε−1e−σ(t−2h)

∫ t

−∞
eσs∥ f (s)∥2

∗ ds, (3.8)

ρ2
2(t) = 4α−4hρ2

1(t)
(

ν2 + C2
1ρ2

1(t) + 2λ−2
1 C2

g

)
+ 4α−4

∫ t

t−h
∥ f (s)∥2

∗ ds, (3.9)

and ε is given by (3.4).

Proof. Let τ1(D̂, t, h) < t − 2h be such that

α−2 max{λ−1
1 + α2, Cg}e−σ(t−2h)eστ∥(uτ, φ)∥2

V×L2
H
≤ 1 ∀ τ ≤ τ1(D̂, t, h), (uτ, φ) ∈ D(τ).

Consider fixed τ ≤ τ1(D̂, t, h) and (uτ, φ) ∈ D(τ). The estimate (3.6) follows directly from

(3.3), using the increasing character of the exponential.

Now, from (2.8), (2.14), (2.1) and the fact that A is an isometric isomorphism, we obtain

that v = Cu satisfies

∥v′(θ)∥∗ ≤ ν∥u(θ)∥+ C1∥u(θ)∥2 + ∥ f (θ)∥∗ + λ−1/2
1 |g(θ, uθ)|, a.e. θ > τ,

and therefore,

∥v′(θ)∥2
∗ ≤ 4ν2∥u(θ)∥2 + 4C2

1∥u(θ)∥4 + 4∥ f (θ)∥2
∗ + 4λ−1

1 |g(θ, uθ)|
2, a.e. θ > τ.

Integrating in time and using properties (II) and (IV), we deduce

∫ t

t−h
∥v′(θ)∥2

∗ dθ ≤ 4ν2
∫ t

t−h
∥u(θ)∥2 dθ + 4C2

1

∫ t

t−h
∥u(θ)∥4 dθ

+ 4
∫ t

t−h
∥ f (θ)∥2

∗ dθ + 4λ−2
1 C2

g

∫ t

t−2h
∥u(θ)∥2 dθ,

whence, by (2.12) and (3.6), the estimate (3.7) follows.

Remark 3.15. Observe that limt→−∞ eσtρ1(t) = 0.

Corollary 3.16. Under the assumptions of Lemma 3.14, the family D̂σ = {Dσ(t) : t ∈ R} ⊂

P(V × L2
H) defined by

Dσ(t) =

{
(w, ψ) ∈ V × L2

V : ∃
dψ

ds
∈ L2

V , ∥(w, ψ)∥V×L2
V
≤ ρ̃σ(t),

∥∥∥∥
dψ

ds

∥∥∥∥
L2

V

≤ ρ2(t)

}
(3.10)

is pullback Dσ(V × L2
H)-absorbing for the process S on V × L2

H defined by (3.1), where ρ̃σ(t) satisfies

ρ̃2
σ(t) = (1 + h)ρ2

1(t), (3.11)

with ρ1(t) and ρ2(t) given by (3.8) and (3.9) respectively. Moreover, D̂σ ∈ Dσ(V × L2
H).

Now, we prove that the process S is (V × L2
H, V ×CH) pullback D̂σ-asymptotically compact.

To this end, we will apply an energy method used by Rosa (cf. [32], see also [26] and [14]),

which does not require any additional estimates on the solutions in higher norms in contrast

with the energy continuous method (e.g., cf. [28]), or the method used in [20] with the fractional

powers of the operator A. Our proof here relies on a sharp use of the differential equality that

leads to the existence of an absorbing family, the use of weak limits in V × L2
V in a diagonal

argument, and the convergences established in Proposition 3.10.
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Lemma 3.17. Under the assumptions of Lemma 3.14, the process S defined by (3.1) is (V × L2
H, V ×

CH) pullback D̂σ-asymptotically compact, where D̂σ = {Dσ(t) : t ∈ R} is defined in Corollary 3.16.

Proof. Let us consider t ∈ R, a sequence {τn} ⊂ (−∞, t] with τn → −∞, and a sequence

{(uτn , φn)} with (uτn , φn) ∈ Dσ(τn) for all n. We must prove that the sequence

{S(t, τn)(u
τn , φn)} = {(u(t; τn, uτn , φn), ut(·; τn, uτn , φn))}

is relatively compact in V × CH.

First, we check the asymptotic compactness in the first component of S. By Corollary 3.16,

for each integer k ≥ 0, there exists τD̂σ
(k) ≤ t− k such that S(t− k, τ)Dσ(τ) ⊂ Dσ(t− k) for all

τ ≤ τD̂σ
(k). From this and a diagonal argument, we can extract a subsequence {(uτn′ , φn′

)} ⊂

{(uτn , φn)} such that

S(t − k, τn′)(uτn′ , φn′
) ⇀ (wk, ψk) weakly in V × L2

V , (3.12)

d

ds
ut−k(·; τn′ , uτn′ , φn′

) ⇀
d

ds
ψk weakly in L2

V , (3.13)

for all integer k ≥ 0, where (wk, ψk) ∈ Dσ(t − k).

Now, applying Proposition 3.10 on each fixed interval [t − k, t], we deduce that

(w0, ψ0) = (V × L2
V)− weak lim

n′→∞
S(t, τn′)(uτn′ , φn′

)

= (V × L2
V)− weak lim

n′→∞
S(t, t − k)S(t − k, τn′)(uτn′ , φn′

)

= S(t, t − k)

[
(V × L2

V)− weak lim
n′→∞

S(t − k, τn′)(uτn′ , φn′
)

]

= S(t, t − k)(wk, ψk).

From (3.12) with k = 0, we obtain in particular that ∥w0∥ ≤ lim infn′→∞ ∥u(t; τn′ , uτn′ , φn′
)∥. We

will prove now that it also holds that

lim sup
n′→∞

∥u(t; τn′ , uτn′ , φn′
)∥ ≤ ∥w0∥, (3.14)

which combined with the weak converge of u(t; τn′ , uτn′ , φn′
) to w0 in V, will imply the con-

vergence in the strong topology of V.

Observe that, as we already used in Lemma 3.11, for any τ ∈ R and (uτ, φ) ∈ V × L2
H, the

solution u(·; τ, uτ, φ), for short denoted u(·), satisfies the differential equality

d

dt
(eσt|u(t)|2 + α2eσt∥u(t)∥2) = σeσt|u(t)|2 + α2σeσt∥u(t)∥2 − 2νeσt∥u(t)∥2

+ 2eσt⟨ f (t), u(t)⟩+ 2eσt(g(t, ut), u(t)), a.e. t > τ. (3.15)

Since in particular 0 < σ < 2ν(λ−1
1 + α2)−1, notice that [·], with [v]2 = (2ν − α2σ)∥v∥2 − σ|v|2,

defines an equivalent norm to ∥ · ∥ in V.

We integrate the above expression in the interval [t − k, t] for the solutions u(·; τn′ , uτn′ , φn′
)
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with τn′ ≤ t − k, which yields

|u(t; τn′ , uτn′ , φn′
)|2 + α2∥u(t; τn′ , uτn′ , φn′

)∥2

= |u(t; t − k, S(t − k, τn′)(uτn′ , φn′
))|2 + α2∥u(t; t − k, S(t − k, τn′)(uτn′ , φn′

))∥2

= e−σk
(
|u(t − k; τn′ , uτn′ , φn′

)|2 + α2∥u(t − k; τn′ , uτn′ , φn′
)∥2
)

+ 2
∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, S(t − k, τn′)(uτn′ , φn′

))⟩ ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, S(t − k, τn′)(uτn′ , φn′

))), u(s; t − k, S(t − k, τn′)(uτn′ , φn′
))) ds

−
∫ t

t−k
eσ(s−t)[u(s; t − k, S(t − k, τn′)(uτn′ , φn′

))]2 ds. (3.16)

On other hand, by (3.12), (3.13) and Proposition 3.10, we deduce that

u(·; t − k, S(t − k, τn′)(uτn′ , φn′
)) ⇀ u(·; t − k, wk, ψk) weakly in L2(t − k, t; V).

From this, as eσ(·−t) f (·) ∈ L2(t − k, t; V ′), it yields

lim
n′→∞

∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, S(t − k, τn′)(uτn′ , φn′

))⟩ ds

=
∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, wk, ψk)⟩ ds.

Since
∫ t

t−k eσ(s−t)[v(s)]2 ds defines an equivalent norm in L2(t − k, t; V), we also deduce from

above that
∫ t

t−k
eσ(s−t)[u(s; t − k, wk, ψk)]2 ds ≤ lim inf

n′→∞

∫ t

t−k
eσ(s−t)[u(s; t − k, S(t − k, τn′)(uτn′ , φn′

))]2 ds.

Finally, again by (3.12), (3.13) and Proposition 3.10, it holds that

u(·; t − k, S(t − k, τn′)(uτn′ , φn′
)) → u(·; t − k, wk, ψk) strongly in L2(t − k − h, t; H),

and therefore,

lim
n′→∞

∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, S(t − k, τn′)(uτn′ , φn′

))), u(s; t − k, S(t − k, τn′)(uτn′ , φn′
))) ds

=
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), u(s; t − k, wk, ψk)) ds (3.17)

From (3.16)–(3.17), taking into account (3.12) with k = 0, the compactness of the injection

of V into H, and (3.10), we conclude that

|w0|2 + α2 lim sup
n′→∞

∥u(t; τn′ , uτn′ , φn′
)∥2

≤ e−σk(λ−1
1 + α2)ρ̃2

σ(t − k) + 2
∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, wk, ψk)⟩ ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), u(s; t − k, wk, ψk)) ds

−
∫ t

t−k
eσ(s−t)[u(s; t − k, wk, ψk)]2 ds.
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Now, taking into account that w0 = u(t; t − k, wk, ψk), integrating again in (3.15), we obtain

|w0|2 + α2∥w0∥2 = e−σk(|wk|2 + α2∥wk∥2) + 2
∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, wk, ψk)⟩ ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), u(s; t − k, wk, ψk)) ds

−
∫ t

t−k
eσ(s−t)[u(s; t − k, wk, ψk)]2 ds.

Comparing the above two expressions, in particular we conclude that

|w0|2 + α2 lim sup
n′→∞

∥u(t; τn′ , uτn′ , φn′
)∥2 ≤ e−σk(λ−1

1 + α2)ρ̃2
σ(t − k) + |w0|2 + α2∥w0∥2.

But from Remark 3.15 and (3.11), we have that limk→∞ e−σkρ̃2
σ(t − k) = 0, so (3.14) holds, and

we conclude that

u(t; τn′ , uτn′ , φn′
) → w0 strongly in V.

Finally, we prove the asymptotic compactness in the second component of S. From (3.12)

and (3.13) with k = 0, we have that

ut(·; τn′ , uτn′ , φn′
) ⇀ ψ0 weakly in L2

V ,

d

ds
ut(·; τn′ , uτ′

n , φn′
) ⇀

d

ds
ψ0 weakly in L2

V .

Thus, by applying the Ascoli–Arzelà theorem, we can deduce that there exists a subsequence

(relabelled the same) such that ut(·; τn′ , uτn′ , φn′
) converges to ψ0 in CH. So, the proof is fin-

ished.

As a consequence of the above results, we obtain the existence of minimal pullback attrac-

tors for the process S on V × L2
H defined by (3.1).

Theorem 3.18. Assume that g : R ×CH → (L2(Ω))3 fulfills conditions (I)–(V), and f ∈ L2
loc(R; V ′)

satisfies (3.5). Then, there exist the (V × L2
H, V × CH) minimal pullback Dσ(V × L2

H) and DF(V ×

L2
H)-attractors {ADσ(V×L2

H)
(t) : t ∈ R} and {ADF(V×L2

H)
(t) : t ∈ R} respectively, both belonging to

Dσ(V × L2
H), which means that they have compact sections in V × CH and pullback attracts in this

norm, and the following relations hold:

ADF(V×L2
H)
(t) ⊂ ADσ(V×L2

H)
(t) = ΛV×CH

(D̂σ, t), ∀ t ∈ R. (3.18)

Moreover, if f satisfies the stronger requirement

sup
r≤0

(
e−σr

∫ r

−∞
eσs∥ f (s)∥2

∗ ds

)
< ∞, (3.19)

then both attractors coincide, i.e.,

ADF(V×L2
H)
(t) = ADσ(V×L2

H)
(t), ∀ t ∈ R. (3.20)

Proof. The process S is continuous on V × L2
H by Corollary 3.9. By Remark 3.8, S is (V ×

L2
H, V × CH) closed. There exists a pullback absorbing family D̂σ ∈ Dσ(V × L2

H) by Corol-

lary 3.16, and the process S is (V × L2
H, V × CH) pullback D̂σ-asymptotically compact by
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Lemma 3.17. The existence of ADσ(V×L2
H)

and ADF(V×L2
H)

follows from Theorem 3.7 (actu-

ally Theorem 3.3 and Corollary 3.5 could also be applied, but using the bi-space attractors

theory we strengthen compactness and attraction norm).

Moreover, the inclusion relation in (3.18) follows from Corollary 3.5.

The fact that ADσ(V×L2
H)

belongs to Dσ(V × L2
H) is due to Remark 3.4, since the pullback

absorbing family D̂σ ∈ Dσ(V × L2
H) has closed sections and this universe is inclusion-closed.

Finally, the equality (3.20) is a consequence of Corollary 3.5, since Dσ(t) ⊂ BV×L2
V
(0, ρ̃σ(t))

for all t ∈ R, and the assumption (3.19) is equivalent to have that supt≤T ρ̃σ(t) is bounded for

any T ∈ R.

Just splitted for the sake of clarity, with the same arguments as above, we obtain the

following result, which relates the above attractors for the universes DF(V × L2
H) ⊂ Dσ(V ×

L2
H) with new ones for the universes DF(V × CH) ⊂ Dσ(V × CH).

Corollary 3.19. Under the assumptions of Theorem 3.18 there exist the minimal pullback attractors

ADF(V×CH) and ADσ(V×CH), both belonging to Dσ(V × CH), all time sections are compact subsets in

V × CH, they attract in V × CH norm, and the following relations hold:

ADF(V×CH)(t) ⊂ ADF(V×L2
H)
(t) ⊂ ADσ(V×CH)(t) = ADσ(V×L2

H)
(t), ∀ t ∈ R.

Proof. Observe that S is well-defined on V × CH by Theorem 2.2 and closed by Remark 2.4

(i). Observe that D̂σ ⊂ P(V × CH). Then the existence of attractors and its inclusion in

Dσ(V × CH) follows from Theorem 3.3 and Remark 3.4.

The equality relation of pullback Dσ(V × CH) and Dσ(V × L2
H)-attractors follows from

[13, Theorem 3.15]. Indeed, observe that after an elapsed time h, by (3.3), S(· + h, ·) maps

elements from Dσ(V × L2
H) into Dσ(V × CH).

The rest of inclusions follows from Corollary 3.5 or by minimality arguments.

Remark 3.20. The stronger attraction and compactness properties of these results also apply

to several previous ones concerning asymptotic behavior of PDE with delays (e.g., cf. [16]).

Remark 3.21. Observe that by the invariance of the minimal pullback attractors under the

process S, and the regularity of the solutions, it is clear that the second component of any

time section of ADσ(V×L2
H)

and ADF(V×L2
H)

lives in CV . In fact, denoting R2
σ(t) = 2ρ2

1(t), from

(3.6) it holds that

ADσ(V×L2
H)
(t) ⊂ BV×CV

(0, Rσ(t)), ∀ t ∈ R.

4 Regularity of the pullback attractors

The main goal of this paragraph is to provide some extra regularity for the attractors obtained

in the previous section. This will be obtained by a bootstrapping argument, and making the

most out of a representation of the solutions to the problem splitting it in two parts, the linear

part with an exponential decay, and the nonlinear part with good enough estimates. In order

to achieve these results, we will use the fractional powers of the Stokes operator, introduced

in Section 2.

Observe that for every τ ∈ R, (uτ, φ) ∈ V × L2
H, f ∈ L2

loc(R; V ′), and g : R × CH →

(L2(Ω))3 satisfying (I)–(IV), by Theorem 2.2, there exists a unique weak solution u to problem

(1.1). Moreover, let us point out that the following representation of the solution holds:

u(t; τ, uτ, φ) = y(t; τ, uτ, φ) + z(t; τ, 0, 0), ∀ t ≥ τ,
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where y = y(·; τ, uτ, φ) and z = z(·; τ, 0, 0) are solutions of





y ∈ C([τ, ∞); V) ∩ L2(τ − h, T; H) for all T > τ,

d

dt
(y(t) + α2 Ay(t)) + νAy(t) = 0, in D′(τ, ∞; V ′),

y(τ) = uτ,

y(t) = φ(t − τ) a.e. t ∈ (τ − h, τ)

(4.1)

and 



z ∈ C([τ, ∞); V) ∩ L2(τ − h, T; H) for all T > τ,

d

dt
(z(t) + α2Az(t)) + νAz(t) = f (t) + g(t, ut)− B(u(t)), in D′(τ, ∞; V ′),

z(τ) = 0,

z(t) = 0 a.e.t ∈ (τ − h, τ)

(4.2)

respectively.

The existence and uniqueness of weak solution to (4.1) and to (4.2) can be obtained rea-

soning as in the proof of Theorem 2.2.

For the problem (4.1) we have the following result.

Lemma 4.1. For any τ ∈ R, (uτ, φ) ∈ V × L2
H and σ fulfilling that 0 < σ < 2(ν − λ−1

1 Cg)(λ
−1
1 +

α2)−1, the solution y = y(·; τ, uτ, φ) of (4.1) satisfies

∥y(t)∥2 ≤ α−2(λ−1
1 + α2)eσ(τ−t)∥(uτ, φ)∥2

V×L2
H

for all t ≥ τ. (4.3)

Proof. It is analogous to the proof of (3.3), and we omit it.

For the study of the problem (4.2), we will make use of the following lemma.

Lemma 4.2. Let me given F ∈ L2
loc(R; D(A−β)) with 0 ≤ β ≤ 1/2, τ ∈ R and σ fulfilling that

0 < σ < 2(ν − λ−1
1 Cg)(λ

−1
1 + α2)−1. Then, the problem





z ∈ C([τ, ∞); V) ∩ L2(τ − h, T; H) for all T > τ,

d

dt
(z(t) + α2Az(t)) + νAz(t) = F(t), in D′(τ, ∞; V ′),

z(τ) = 0,

z(t) = 0 a.e. t ∈ (τ − h, τ)

has a unique solution z, which also satisfies z ∈ C([τ, ∞); D(A1−β)), and

|A1−βz(t)|2 ≤ α−2ε−1
∫ t

τ
eσ(s−t)|A−βF(s)|

2
ds for all t ≥ τ,

where ε is given by (3.4).

Proof. It can be done analogously as in [14, Lemma 26] with z = 0 in (τ − h, τ).

Now we can prove the following regularity result for the pullback attractors in V norm.
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Theorem 4.3. Consider given g : R × CH → (L2(Ω))3 satisfying conditions (I)–(V). Assume that

f ∈ L2
loc(R; D(A−β)) for some 0 ≤ β ≤ 1/2, and that

sup
r≤0

∫ r

r−1
∥ f (s)∥2

∗ds < ∞. (4.4)

Then:

(1) If f also satisfies ∫ 0

−∞
eσs|A−β f (s)|2ds < ∞, (4.5)

and 



sup
r≤0

∫ r

r−1
|A−1/4−β f (s)|2ds < ∞, if 0 < β < 1/4,

sup
r≤0

∫ r

r−1
|A−δ f (s)|2ds < ∞ for some 0 < δ < 1/4, if β = 0,

(4.6)

then, for any t1 < t2, the pullback attractor ADσ(V×L2
H)

= ADF(V×L2
H)

fulfills that

⋃

t1≤t≤t2

ADσ(V×L2
H)
(t)=

⋃

t1≤t≤t2

ADF(V×L2
H)
(t) is a bounded subset of D(A1−β)× CD(A1−β). (4.7)

(2) If f also satisfies

sup
r≤0

∫ r

r−1
|A−β f (s)|2ds < ∞, (4.8)

then, for any t2 ∈ R, it holds that

⋃

t≤t2

ADσ(V×L2
H)
(t) =

⋃

t≤t2

ADF(V×L2
H)
(t) is a bounded subset of D(A1−β)× CD(A1−β). (4.9)

Proof. Let us fix t ∈ R and (v, ψ) ∈ ADσ(V×L2
H)
(t) = ADF(V×L2

H)
(t). By Remark 3.21 and (4.4),

we see that ⋃

r≤t

ADσ(V×L2
H)
(r) ⊂ BV×CV

(0, R̃σ(t)), (4.10)

where R̃2
σ(t) = 2 + 2α−2ε−1e2σh supr≤t(e

−σr
∫ r
−∞

eσs∥ f (s)∥2
∗ds), with ε given by (3.4).

Let {τn}n≥1 ⊂ (−∞, t − h] be a sequence with τn → −∞ as n → ∞. By the invariance

of ADσ(V×L2
H)

, for each n ≥ 1 there exists (uτn , φn) ∈ ADσ(V×L2
H)
(τn) such that (v, ψ) =

S(t, τn)(uτn , φn), and therefore,

(v, ψ) = Y(t, τn)(u
τn , φn) + Z(t, τn)(0, 0),

where

Y(t, τn)(u
τn , φn) = (y(t; τn, uτn , φn), yt(·; τn, uτn , φn))

and

Z(t, τn)(0, 0) = (z(t; τn, 0, 0), zt(·; τn, 0, 0))

are continuous processes on V × L2
H associated to problems (4.1) and (4.2), respectively.

From (4.3) and (4.10) we deduce that ∥Y(t, τn)(uτn , φn)∥V×CV
→ 0 as n → ∞. Thus,

lim
n→∞

∥Z(t, τn)(0, 0)− (v, ψ)∥V×CV
= 0. (4.11)
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Let us denote (un(r), un
r (·)) = S(r, τn)(uτn , φn) for r ≥ τn and n ≥ 1. By (4.10) and the invari-

ance of ADσ(V×L2
H)

,

(un(r), un
r (·)) ∈ ADσ(V×L2

H)
(r) ⊂ BV×CV

(0, R̃σ(t)), ∀τn ≤ r ≤ t, ∀n ≥ 1. (4.12)

Now we distinguish three cases.

Case 1. If 1/4 ≤ β ≤ 1/2.

In this case, from (2.11), the continuous injection of V in D(A3/4−β) and (4.12), we deduce

that

|A−βB(un(r))| ≤ C(3/4−β)|A
3/4−βun(r)|∥un(r)∥

≤ C̃(3/4−β)∥un(r)∥2

≤ C̃(3/4−β)R̃
2
σ(t), ∀τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (4.5), from Lemma 4.2, condition (V) on g, and the continuous injection of

H in D(A−β), we obtain that

|A1−βz(θ; τn, 0, 0)|2 ≤ 3α−2ε−1eσh

( ∫ t

−∞
eσ(s−t)|A−β f (s)|

2
ds + σ−1C̃2

(3/4−β)R̃
4
σ(t)

+
∫ t

τn

eσ(s−t)|A−βg(s, un
s )|

2
ds

)

≤ 3α−2ε−1eσh

( ∫ t

−∞
eσ(s−t)|A−β f (s)|

2
ds + σ−1C̃2

(3/4−β)R̃
4
σ(t)

+ CβC2
gλ−1

1

( ∫ τn

τn−h
eσ(s−t)∥φn(s − τn)∥

2 ds +
∫ t

τn

eσ(s−t)∥un(s)∥2 ds
))

for all θ ∈ [t − h, t], and then, from (4.12), we deduce that

∥Z(t, τn)(0, 0)∥2
D(A1−β)×C

D(A1−β)

≤ M2
σ,β(t), (4.13)

where

M2
σ,β(t) = 6α−2ε−1eσh

(∫ t

−∞
eσ(s−t)|A−β f (s)|

2
ds + σ−1C̃2

(3/4−β)R̃
4
σ(t) + 2CβC2

gλ−1
1 σ−1R̃2

σ(t)

)
.

From (4.11), (4.13) and the weak lower semi-continuity of the norm, we deduce that (v, ψ)

belongs to BD(A1−β)×C
D(A1−β)

(0, Mσ,β(t)), and therefore (4.7) holds.

Moreover, if f satisfies (4.8), then (4.9) holds, and more exactly,

⋃

t≤t2

ADσ(V×L2
H)
(t) ⊂ BD(A1−β)×C

D(A1−β)
(0, M̃σ,β(t2)), for all t2 ∈ R, (4.14)

where

M̃2
σ,β(t2) = 6α−2ε−1eσh

(
sup
t≤t2

∫ t

−∞
eσ(s−t)|A−β f (s)|

2
ds

+ σ−1C̃2
(3/4−β)R̃

4
σ(t2) + 2CβC2

gλ−1
1 σ−1R̃2

σ(t2)

)
.

Case 2. If 0 < β < 1/4.
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In this case, if f satisfies (4.6), as 1/4 < 1/4 + β < 1/2, from (4.14) we have that
⋃

r≤t

ADσ(V×L2
H)
(r) ⊂ BD(A3/4−β)×C

D(A3/4−β)
(0, M̃σ,1/4+β(t)).

Thus, by (2.11) and (4.12), we obtain that

|A−βB(un(r))| ≤ C(3/4−β)|A
3/4−βun(r)|∥un(r)∥

≤ C(3/4−β)M̃σ,1/4+β(t)R̃σ(t), ∀τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (4.5), from Lemma 4.2 we deduce that

∥Z(t, τn)(0, 0)∥2
D(A1−β)×C

D(A1−β)

≤ R2
σ,β(t), (4.15)

where

R2
σ,β(t) = 6α−2ε−1eσh

( ∫ t

−∞
eσ(s−t)|A−β f (s)|

2
ds

+ σ−1C2
(3/4−β)M̃

2
σ,1/4+β(t)R̃2

σ(t) + 2CβC2
gλ−1

1 σ−1R̃2
σ(t)

)
.

Again, from (4.11), (4.15) and the weak lower semi-continuity of the norm, we deduce that

(v, ψ) belongs to BD(A1−β)×C
D(A1−β)

(0, Rσ,β(t)), and therefore (4.7) holds.

Moreover, if f satisfies (4.8), then (4.9) holds, and more exactly,
⋃

t≤t2

ADσ(V×L2
H)
(t) ⊂ BD(A1−β)×C

D(A1−β)
(0, R̃σ,β(t2)), for all t2 ∈ R, (4.16)

where

R̃2
σ,β(t2) = 6α−2ε−1eσh

(
sup
t≤t2

∫ t

−∞
eσ(s−t)|A−β f (s)|

2
ds

+ σ−1C2
(3/4−β)M̃

2
σ,1/4+β(t2)R̃2

σ(t2) + 2CβC2
gλ−1

1 σ−1R̃2
σ(t2)

)
.

Case 3. If β = 0.

In this case, if f satisfies (4.6), as 0 < δ < 1/4, from (4.16) we see that
⋃

r≤t

ADσ(V×L2
H)
(r) ⊂ BD(A1−δ)×C

D(A1−δ)
(0, R̃σ,δ(t)).

So, by (2.10) and (4.12), we deduce that

|B(un(r))| ≤ C(1−δ)|A
1−δun(r)|∥un(r)∥

≤ C(1−δ)R̃σ,δ(t)R̃σ(t), ∀τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (4.5), from Lemma 4.2 we deduce that

∥Z(t, τn)(0, 0)∥2
D(A)×CD(A)

≤ R2
σ,δ,0(t) (4.17)

where

R2
σ,δ,0(t) = 6α−2ε−1eσh

( ∫ t

−∞
eσ(s−t)| f (s)|2 ds + σ−1C2

(1−δ)R̃
2
σ,δ(t)R̃2

σ(t) + 2C2
gλ−1

1 σ−1R̃2
σ(t)

)
.
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Again, from (4.11), (4.17) and the weak lower semi-continuity of the norm, we deduce that

(v, ψ) ∈ BD(A)×CD(A)
(0, Rσ,δ,0(t)),

and therefore (4.7) holds.

Moreover, if f satisfies (4.8), then (4.9) holds, and more exactly,

⋃

t≤t2

ADσ(V×L2
H)
(t) ⊂ BD(A)×CD(A)

(0, R̃σ,δ,0(t2)), for all t2 ∈ R,

where

R̃2
σ,δ,0(t2) = 6α−2ε−1eσh

(
sup
t≤t2

∫ t

−∞
eσ(s−t)| f (s)|2 ds

+ σ−1C2
(1−δ)R̃

2
σ,δ(t2)R̃2

σ(t2) + 2C2
gλ−1

1 σ−1R̃2
σ(t2)

)
.

5 Attraction in D(A) norm

By the previous results, when f ∈ L2
loc(R; (L2(Ω))3), the restriction to D(A) × L2

V of the

process S defined by (3.1) is a process on D(A)× L2
V . Now, we will prove that under suitable

assumptions on f and g, we can obtain the existence of minimal pullback attractors for S on

D(A)× L2
V and even more.

Proposition 5.1. Assume that f ∈ L2
loc(R; (L2(Ω))3), and g : R × CH → (L2(Ω))3 satisfying (I)–

(IV), are given. Then, the restriction to D(A)× L2
V of the bi-parametric family of maps S(t, τ), with

τ ≤ t, given by (3.1), is a continuous process on D(A)× L2
V .

Proof. It is a consequence of Theorem 2.2 and Remark 2.4 (i).

As in the previous section, we will need the following continuity result for the process S

in a weak sense.

Proposition 5.2. Let f ∈ L2
loc(R; (L2(Ω))3), g : R × CH → (L2(Ω))3 satisfying (I)–(IV), and τ < t

be given. Then, for any sequence such that

(uτ,n, φn) ⇀ (uτ, φ) weakly in D(A)× L2
D(A)

and
dφn

ds
⇀

dφ

ds
weakly in L2

D(A),

the following convergences hold for the sequence of solutions u(·; τ, uτ,n, φn) towards the solution

u(·; τ, uτ, φ):

u(·; τ, uτ,n, φn)
∗
⇀ u(·; τ, uτ, φ) weakly-star in L∞(τ, t; D(A)),

u(·; τ, uτ,n, φn) → u(·; τ, uτ, φ) strongly in C([τ − h, t]; V),

u(t; τ, uτ,n, φn) ⇀ u(t; τ, uτ, φ) weakly in D(A),

u(·; τ, uτ,n, φn) ⇀ u(·; τ, uτ, φ) weakly in L2(τ − h, t; D(A)).
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Proof. It can be done analogously to that of Proposition 3.10.

For the obtention of a pullback absorbing family for the process S restricted to D(A)× L2
V ,

we first have the following result.

Lemma 5.3. Suppose that f ∈ L2
loc(R; (L2(Ω))3) satisfies (4.4) and that g : R × CH → (L2(Ω))3

fulfills conditions (I)–(V). Then, for any τ ∈ R, (uτ, φ) ∈ D(A)× L2
V , and 0 < σ < σ/3, the solution

u = u(·; τ, uτ, φ) of (1.1) satisfies

|Au(t)|2 ≤ α−2 max{λ−1
1 + α2, Cg}eσ(τ−t)∥(uτ, φ)∥2

D(A)×L2
V
+ 2α−2ε−1

∫ t

τ
eσ(s−t)| f (s)|2 ds

+ 4α−2CεC
3
σ(σ − 3σ)−1

(
e−3σ(t−τ)∥(uτ, φ)∥6

V×L2
H
+ M3

t,σ

)
(5.1)

for all t ≥ τ, where ε > 0 is given by (3.4),

Cε = 27C4
2(2ε3)−1, (5.2)

Cσ = α−2 max

{
max{λ−1

1 + α2, Cg},
(

2ν − σ(λ−1
1 + α2)− 2λ−1

1 Cg

)−1
}

, (5.3)

and

Mt,σ = sup
r≤t

∫ r

−∞
eσ(s−r)∥ f (s)∥2

∗ds. (5.4)

Proof. From Lemma 3.11, we have that

∥u(s)∥2 ≤ Cσ

(
eσ(τ−s)∥(uτ, φ)∥2

V×L2
H
+ Mt,σ

)
, ∀τ ≤ s ≤ t. (5.5)

On the other hand, by (2.17),

d

dt
(eσt∥u(t)∥2 + α2eσt|Au(t)|2) + 2νeσt|Au(t)|2 + 2eσt(B(u(t)), Au(t))

= σeσt∥u(t)∥2 + α2σeσt|Au(t)|2 + 2eσt( f (t) + g(t, ut), Au(t)), a.e. t > τ.

Thus, taking into account that ∥u(t)∥2 ≤ λ−1
1 |Au(t)|2,

2| (B(u(t)), Au(t)) | ≤ 2C2∥u(t)∥3/2|Au(t)|3/2

≤ Cε∥u(t)∥6 +
ε

2
|Au(t)|2,

2| ( f (t), Au(t)) | ≤
ε

2
|Au(t)|2 +

2

ε
| f (t)|2,

and

2|(g(t, ut), Au(t))| ≤
Cg

λ1
|Au(t)|2 +

λ1

Cg
|g(t, ut)|

2,

we deduce that

eσt(∥u(t)∥2 + α2|Au(t)|2) + (2ν − ε − σ(λ−1
1 + α2)− λ−1

1 Cg)
∫ t

τ
eσs|Au(s)|2 ds

≤ eστ(λ−1
1 + α2)|Auτ|2 + 2ε−1

∫ t

τ
eσs| f (s)|2 ds + λ1Cg

∫ t

τ−h
eσs|u(s)|2 ds

+ Cε

∫ t

τ
eσs∥u(s)∥6 ds

≤ eστ
(
(λ−1

1 + α2)|Auτ|2 + Cg∥φ∥2
L2

V

)
+ 2ε−1

∫ t

τ
eσs| f (s)|2 ds + λ−1

1 Cg

∫ t

τ
eσs|Au(s)|2 ds

+ Cε

∫ t

τ
eσs∥u(s)∥6 ds
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for all t ≥ τ.

From this inequality, since the choice of ε makes the term
∫ t

τ eσs|Au(s)|2 ds disappear, using

(5.5) we easily obtain (5.1).

Definition 5.4. For any σ, σ > 0, consider the universe Dσ(D(A)× L2
V)∩Dσ(V × L2

H) formed

by the class of all families of nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(D(A)× L2
V) such

that

lim
τ→−∞

(
eστ sup

(v,ϕ)∈D(τ)

∥(v, ϕ)∥2
D(A)×L2

V

)
= lim

τ→−∞

(
eστ sup

(v,ϕ)∈D(τ)

∥(v, ϕ)∥2
V×L2

H

)
= 0.

Accordingly to the notation introduced in Section 3, DF(D(A)× L2
V) will denote the class

of families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset of D(A)× L2
V .

Observe that the universe Dσ(D(A)× L2
V) ∩ Dσ(V × L2

H), which is inclusion-closed, contains

the universe DF(D(A)× L2
V).

Remark 5.5. Under the additional assumption

∫ 0

−∞
eσs| f (s)|2 ds < ∞, (5.6)

from Lemma 5.3 it is easy to see that, for 0 < σ < σ/3, the family {BD(A)×L2
V
(0, R̃σ,σ(t)) : t ∈

R} ⊂ P(D(A)× L2
V) is pullback Dσ(D(A)× L2

V) ∩ Dσ(V × L2
H)-absorbing for the process S

on D(A)× L2
V , where

R̃2
σ,σ(t) = 1+ 2α−2ε−1(1+ λ−1

1 heσh)e−σt
∫ t

−∞
eσs| f (s)|2 ds+ (1+ λ−1

1 h)4α−2CεC
3
σ(σ− 3σ)−1M3

t,σ.

However, in order to apply Proposition 5.2, we need to obtain a different pullback Dσ(D(A)×

L2
V) ∩Dσ(V × L2

H)-absorbing family.

Lemma 5.6. Assume that f ∈ L2
loc(R; (L2(Ω))3) satisfies (4.4) and (5.6), and g : R × CH →

(L2(Ω))3 fulfills conditions (I)–(V). Then, for 0 < σ < σ/3 and for any t ∈ R and D̂ ∈ Dσ(D(A)×

L2
V) ∩ Dσ(V × L2

H), there exist τ2(D̂, t, h) < t − 2h and functions {ρi}
4
i=3 such that for any τ ≤

τ2(D̂, t, h) and any (uτ, φ) ∈ D(τ), it holds

|Au(r; τ, uτ, φ)|2 ≤ ρ2
3(t), ∀ r ∈ [t − 2h, t], (5.7)

∫ t

t−h
|Au′(θ; τ, uτ, φ)|2 dθ ≤ ρ2

4(t), (5.8)

where

ρ2
3(t) = 1 + 2α−2ε−1e−σ(t−2h)

∫ t

−∞
eσs| f (s)|2 ds + 4α−2CεC

3
σ(σ − 3σ)−1M3

t,σ, (5.9)

ρ2
4(t) = 16α−4hρ2

3(t)
(

ν2 + C2
2λ−3/2

1 ρ2
3(t) + 2λ−2

1 C2
g

)
+ 16α−4

∫ t

t−h
| f (s)|2 ds, (5.10)

where ε, Cε, Cσ and Mt,σ are given by (3.4), (5.2), (5.3) and (5.4), respectively.

Proof. Let τ2(D̂, t, h) < t − 2h be such that

α−2 max{λ−1
1 + α2, Cg}e−σ(t−2h)eστ∥(uτ, φ)∥2

D(A)×L2
V

+ 4α−2CεC
3
σ(σ − 3σ)−1e−3σ(t−2h)e3στ∥(uτ, φ)∥6

V×L2
H
≤ 1 ∀ τ ≤ τ2(D̂, t, h), (uτ, φ) ∈ D(τ).



26 J. García-Luengo and P. Marín-Rubio

Consider fixed τ ≤ τ2(D̂, t, h) and (uτ, φ) ∈ D(τ). The estimate (5.7) follows directly from

(5.1), using the increasing character of the exponential.

Now, from (2.9), (2.14) and (2.1), we obtain that v = Cu satisfies

|v′(θ)| ≤ ν|Au(θ)|+ C2|Au(θ)|1/2∥u(θ)∥3/2 + | f (θ)|+ |g(θ, uθ)|

≤ ν|Au(θ)|+ C2λ−3/4
1 |Au(θ)|2 + | f (θ)|+ |g(θ, uθ)|, a.e. θ > τ,

and therefore,

|v′(θ)|2 ≤ 4ν2|Au(θ)|2 + 4C2
2λ−3/2

1 |Au(θ)|4 + 4| f (θ)|2 + 4|g(θ, uθ)|
2, a.e. θ > τ.

Integrating in time above and using properties (II) and (IV) on g, we deduce

∫ t

t−h
|v′(θ)|2 dθ ≤ 4ν2

∫ t

t−h
|Au(θ)|2 dθ + 4C2

2λ−3/2
1

∫ t

t−h
|Au(θ)|4 dθ

+ 4
∫ t

t−h
| f (θ)|2 dθ + 4λ−2

1 C2
g

∫ t

t−2h
|Au(θ)|2 dθ,

whence, by (2.13) and (5.7), the estimate (5.8) follows.

Corollary 5.7. Under the assumptions of Lemma 5.6, for 0 < σ < σ/3, the family D̂σ,σ = {Dσ,σ(t) :

t ∈ R} ⊂ P(D(A)× L2
V) defined by

Dσ,σ(t) =

{
(w, ψ) ∈ D(A)× L2

D(A) : ∃
dψ

ds
∈ L2

D(A),

∥(w, ψ)∥D(A)×L2
D(A)

≤ Rσ,σ(t),

∥∥∥∥
dψ

ds

∥∥∥∥
L2

D(A)

≤ ρ4(t)

}
(5.11)

is pullback Dσ(D(A) × L2
V) ∩ Dσ(V × L2

H)-absorbing for the process S on D(A) × L2
V defined by

(3.1), (and therefore DF(D(A)× L2
V)-absorbing too), where Rσ,σ(t) satisfies

R2
σ,σ(t) = (1 + h)ρ2

3(t), (5.12)

with ρ3(t) and ρ4(t) given by (5.9) and (5.10) respectively.

Now, we prove that the process S is (D(A)× L2
V , D(A)× CV) pullback Dσ(D(A)× L2

V) ∩

Dσ(V × L2
H)-asymptotically compact. We will apply, under the natural necessary changes, the

same energy method used in the proof of Lemma 3.17.

Lemma 5.8. Assume that f ∈ L2
loc(R; (L2(Ω))3) satisfies (4.4) and (5.6), and g : R × CH →

(L2(Ω))3 fulfills conditions (I)–(V). Then, for any 0 < σ < σ/3, the restriction to D(A)× L2
V of the

process S defined by (3.1) is (D(A) × L2
V , D(A) × CV) pullback Dσ(D(A) × L2

V) ∩ Dσ(V × L2
H)-

asymptotically compact.

Proof. Let us fix 0 < σ < σ/3. Let be given D̂ ∈ Dσ(D(A) × L2
V) ∩ Dσ(V × L2

H), t ∈ R, a

sequence {τn} ⊂ (−∞, t] with τn → −∞, and a sequence {(uτn , φn)} with (uτn , φn) ∈ D(τn)

for all n. We must prove that the sequence

{S(t, τn)(u
τn , φn)} = {(u(t; τn, uτn , φn), ut(·; τn, uτn , φn))}

is relatively compact in D(A)× CV .
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First, we check the asymptotic compactness in the first component of S. By Corollary 5.7,

for each integer k ≥ 0, there exists τD̂(k) ≤ t − k such that S(t − k, τ)D(τ) ⊂ Dσ,σ(t − k) for all

τ ≤ τD̂(k). From this and a diagonal argument, we can extract a subsequence {(uτn′ , φn′
)} ⊂

{(uτn , φn)} such that

S(t − k, τn′)(uτn′ , φn′
) ⇀ (wk, ψk) weakly in D(A)× L2

D(A), (5.13)

d

ds
ut−k(·; τn′ , uτn′ , φn′

) ⇀
d

ds
ψk weakly in L2

D(A), (5.14)

for all integer k ≥ 0, where (wk, ψk) ∈ Dσ,σ(t − k).

Now, applying Proposition 5.2 on each fixed interval [t − k, t], we deduce that

(w0, ψ0) = (D(A)× L2
D(A))− weak lim

n′→∞
S(t, τn′)(uτn′ , φn′

)

= (D(A)× L2
D(A))− weak lim

n′→∞
S(t, t − k)S(t − k, τn′)(uτn′ , φn′

)

= S(t, t − k)

[
(D(A)× L2

D(A))− weak lim
n′→∞

S(t − k, τn′)(uτn′ , φn′
)

]

= S(t, t − k)(wk, ψk).

From (5.13) with k = 0, we obtain in particular that |Aw0| ≤ lim infn′→∞ |Au(t; τn′ , uτn′ , φn′
)|.

We will prove now that it also holds that

lim sup
n′→∞

|Au(t; τn′ , uτn′ , φn′
)| ≤ |Aw0|, (5.15)

which combined with the weak converge of u(t; τn′ , uτn′ , φn′
) to w0 in D(A), will imply the

convergence in the strong topology of D(A).

Observe that, as we already used in Lemma 5.3, for any τ ∈ R and (uτ, φ) ∈ D(A)× L2
V ,

the solution u(·; τ, uτ, φ), for short denoted u(·), satisfies the differential equality

d

dt
(eσt∥u(t)∥2 + α2eσt|Au(t)|2) = σeσt∥u(t)∥2 + α2σeσt|Au(t)|2 − 2νeσt|Au(t)|2

− 2eσt(B(u(t)), Au(t)) + 2eσt( f (t) + g(t, ut), Au(t)) (5.16)

a.e. t > τ. Since in particular 0 < σ < 2ν(λ−1
1 + α2)−1, notice that [[·]], with [[v]]2 =

(2ν − α2σ)|Av|2 − σ∥v∥2, defines an equivalent norm to | · |D(A) in D(A).

We integrate the above expression in the interval [t − k, t] for the solutions u(·; τn′ , uτn′ , φn′
)

with τn′ ≤ t − k, which yields

∥u(t; τn′ , uτn′ , φn′
)∥2 + α2|Au(t; τn′ , uτn′ , φn′

)|2

= ∥u(t; t − k, S(t − k, τn′)(uτn′ , φn′
))∥2 + α2|Au(t; t − k, S(t − k, τn′)(uτn′ , φn′

))|2

= e−σk
(
∥u(t − k; τn′ , uτn′ , φn′

)∥2 + α2|Au(t − k; τn′ , uτn′ , φn′
)|2
)

+ 2
∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, S(t − k, τn′)(uτn′ , φn′

))) ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, S(t − k, τn′)(uτn′ , φn′

))), Au(s; t − k, S(t − k, τn′)(uτn′ , φn′
))) ds

− 2
∫ t

t−k
eσ(s−t)(B(u(s; t − k, S(t − k, τn′)(uτn′ , φn′

))), Au(s; t − k, S(t − k, τn′)(uτn′ , φn′
))) ds

−
∫ t

t−k
eσ(s−t)[[u(s; t − k, S(t − k, τn′)(uτn′ , φn′

))]]2 ds. (5.17)



28 J. García-Luengo and P. Marín-Rubio

From (5.13), (5.14) and Proposition 5.2, in particular we have that

u(·; t − k, S(t − k, τn′)(uτn′ , φn′
)) → u(·; t − k, wk, ψk) strongly in C([t − k, t]; V), (5.18)

and also

u(·; t − k, S(t − k, τn′)(uτn′ , φn′
)) ⇀ u(·; t − k, wk, ψk) weakly in L2(t − k, t; D(A)). (5.19)

Then, it is not difficult to see that

lim
n′→∞

∫ t

t−k
eσ(s−t)(B(u(s; t − k, S(t − k, τn′)(uτn′ , φn′

))), Au(s; t − k, S(t − k, τn′)(uτn′ , φn′
))) ds

=
∫ t

t−k
eσ(s−t)(B(u(s; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds. (5.20)

On other hand, as eσ(·−t) f (·) ∈ L2(t − k, t; (L2(Ω))3), it yields

lim
n′→∞

∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, S(t − k, τn′)(uτn′ , φn′

))) ds

=
∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, wk, ψk)) ds.

Moreover, from (5.18), in particular we also have that

u(·; t − k, S(t − k, τn′)(uτn′ , φn′
)) → u(·; t − k, wk, ψk) strongly in L2(t − k − h, t; H),

which jointly with (5.19), implies that

lim
n′→∞

∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, S(t − k, τn′)(uτn′ , φn′

))), Au(s; t − k, S(t − k, τn′)(uτn′ , φn′
))) ds

=
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

Finally, as
∫ t

t−k eσ(s−t)[[v(s)]]2 ds defines an equivalent norm in L2(t − k, t; D(A)), we also de-

duce from above that
∫ t

t−k
eσ(s−t)[[u(s; t − k, wk, ψk)]]2 ds

≤ lim inf
n′→∞

∫ t

t−k
eσ(s−t)[[u(s; t − k, S(t − k, τn′)(uτn′ , φn′

))]]2 ds. (5.21)

From (5.17), (5.20)–(5.21), taking into account (5.13) with k = 0, the compactness of the injec-

tion of D(A) into V, and (5.11), we conclude that

∥w0∥2 + α2 lim sup
n′→∞

|Au(t; τn′ , uτn′ , φn′
)|2

≤ e−σk(λ−1
1 + α2)R2

σ,σ(t − k) + 2
∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, wk, ψk)) ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

− 2
∫ t

t−k
eσ(s−t)(B(u(s; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

−
∫ t

t−k
eσ(s−t)[[u(s; t − k, wk, ψk)]]2 ds.
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Now, taking into account that w0 = u(t; t − k, wk, ψk), integrating again in (5.16), we obtain

∥w0∥2 + α2|Aw0|2 = e−σk(∥wk∥2 + α2|Awk|2) + 2
∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, wk, ψk)) ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

− 2
∫ t

t−k
eσ(s−t)(B(u(s; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

−
∫ t

t−k
eσ(s−t)[[u(s; t − k, wk, ψk)]]2 ds.

Comparing the above two expressions, we conclude that

∥w0∥2 + α2 lim sup
n′→∞

|Au(t; τn′ , uτn′ , φn′
)|2 ≤ e−σk(λ−1

1 + α2)R2
σ,σ(t − k) + ∥w0∥2 + α2|Aw0|2.

But from (5.9) and (5.12), we have that lim
k→∞

e−σkR2
σ,σ(t − k) = 0, so (5.15) holds, and we con-

clude that

u(t; τn′ , uτn′ , φn′
) → w0 strongly in D(A).

Finally, we prove the asymptotic compactness in the second component of S. From (5.13)

and (5.14) with k = 0, we have that

ut(·; τn′ , uτn′ , φn′
) ⇀ ψ0 weakly in L2

D(A),

d

ds
ut(·; τn′ , uτ′

n , φn′
) ⇀

d

ds
ψ0 weakly in L2

D(A).

Thus, by applying the Ascoli–Arzelà theorem, we can deduce that there exists a subsequence

(relabeled the same) such that ut(·; τn′ , uτn′ , φn′
) converges to ψ0 in CV . So, the proof is finished.

Remark 5.9. Since S : R
2
d × D(A)× L2

V → D(A)× L2
V is a continuous process, by the regularity

properties established in Theorem 2.2 and Remark 2.4 (i), S : R
2
d × D(A)× CV → D(A)× CV

is a well-defined closed process. In particular, {ΛD(A)×CV
(D̂, t)}t∈R is meaningful for any

D̂ ∈ Dσ(D(A) × L2
V) ∩ Dσ(V × L2

H) by Lemma 5.8. Actually, by the embedding CV ⊂ L2
V ,

recalling Remark 3.8 (ii), it holds that ΛD(A)×CV
(D̂, t) = ΛD(A)×L2

V
(D̂, t) for any t ∈ R, which

is therefore invariant for S.

In general, the pullback absorbing family D̂σ,σ defined by (5.11) does not belong to the

universe Dσ(D(A) × L2
V) ∩ Dσ(V × L2

H), and we do not know whether or not S is pullback

D̂σ,σ-asymptotically compact. Thus, we cannot apply Theorem 3.3 nor Theorem 3.7 to the

family D̂σ,σ. Nevertheless, collecting the proved results, we may construct by hand a minimal

pullback Dσ(D(A)× L2
V)∩Dσ(V × L2

H)-attractor in a better norm than the natural one for the

phase-space D(A)× L2
V , namely in the D(A)× CV norm.

Theorem 5.10. Assume that f ∈ L2
loc(R; (L2(Ω))3) satisfies (4.4) and (5.6), and g : R × CH →

(L2(Ω))3 fulfills conditions (I)–(V). Then, for any 0 < σ < σ/3, the family Aσ,σ = {Aσ,σ(t) : t ∈

R}, given by

Aσ,σ(t) =
⋃

D̂∈Dσ(D(A)×L2
V)∩Dσ(V×L2

H)

ΛD(A)×CV
(D̂, t)

D(A)×CV

, ∀t ∈ R,

satisfies the following properties:
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(a) limτ→−∞ distD(A)×CV
(S(t, τ)D(τ),Aσ,σ(t)) = 0 for all t ∈ R and any D̂ ∈ Dσ(D(A) ×

L2
V) ∩Dσ(V × L2

H) (pullback attraction).

(b) Aσ,σ(t) is compact in D(A)× CV for all t ∈ R.

(c) It is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(D(A)× CV) (resp. Ĉ = {C(t) : t ∈

R} ⊂ P(D(A)× L2
V)) is a family of closed subsets of D(A)× CV (resp. D(A)× L2

V) such that

limτ→−∞ distD(A)×CV
(S(t, τ)D(τ), C(t)) = 0 (resp. limτ→−∞ distD(A)×L2

V
(S(t, τ)D(τ), C(t))

= 0) for all t ∈ R and any D̂ ∈ Dσ(D(A)× L2
V) ∩ Dσ(V × L2

H), then Aσ,σ(t) ⊂ C(t) for all

t ∈ R.

(d) S(t, τ)Aσ,σ(τ) = Aσ,σ(t) for all τ ≤ t (invariance).

In particular, Aσ,σ is the (D(A)× L2
V , D(A)× CV) minimal pullback Dσ(D(A)× L2

V) ∩ Dσ(V ×

L2
H)-attractor for the process S : R

2
d × D(A)× L2

V → D(A)× L2
V .

Proof. It suffices to check (a)–(d).

Claim (a). The pullback D(A)× CV-attraction property is an easy consequence of Lemma

5.8 (see also Remark 5.9).

Claim (b). Consider a sequence {yn} ⊂ Aσ,σ(t). We will extract a converging subsequence

{yn′
} ⊂ {yn} with D(A)× CV − limn′ yn′

∈ Aσ,σ(t).

By definition of Aσ,σ(t) we may consider a sequence {xn}n with xn ∈ ΛD(A)×CV
(D̂n, t),

where D̂n ∈ Dσ(D(A)× L2
V) ∩Dσ(V × L2

H), with distD(A)×CV
(xn, yn) < 1/n. For each n ∈ N,

this means that there exist sequences {zm,n}m and {τn
m}m with limm τn

m = −∞, zm,n ∈ Dn(τn
m)

and xn = D(A)× CV − limm S(t, τn
m)z

m,n. We may consider m(n) such that

distD(A)×CV
(xn, S(t, τn

m(n))z
m(n),n) < 1/n, ∀n ≥ 1.

It is obvious that we are done if we obtain a subsequence {xn′
} converging in D(A)×CV since

Aσ,σ(t) is closed in D(A)× CV and then limn′ yn′
= limn′ xn′

∈ Aσ,σ(t).

Now we rearrange the arguments of Lemma 5.8. For each integer k ≥ 0, by the absorbing

property established in Corollary 5.7, there exists τD̂n
(k) ≤ t − k such that

S(t − k, τ)Dn(τ) ⊂ Dσ,σ(t − k), ∀τ ≤ τD̂n
(k).

From this and a diagonal argument we can extract subsequences (the notation τn′

m(n′) and

zm(n′),n′
is shorten for simplicity) {τn′} and {zn′

} with τn′ → −∞ and zn′
∈ Dn′(τn′) such that

S(t − k, τn′)zn′
⇀ (wk, ψk) weakly in D(A)× L2

D(A), for all k ≥ 0,

where (wk, ψk) ∈ Dσ,σ(t − k).

Now we can repeat verbatim the arguments from Lemma 5.8 to conclude that

D(A)× CV − lim
n′

S(t, τn′)zn′
= (w0, ψ0)

which is also the limit of xn′
and yn′

, so Aσ,σ(t) is relatively compact and closed, therefore

compact in D(A)× CV .

Claim (c). The minimality among the families of closed subsets in D(A)× CV is obvious,

since Aσ,σ(t) is the closure of omega-limit sets in this topology. For the case of D(A)× L2
V ,
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observe that the omega-limit sets in this topology are those obtained in the D(A)× CV topol-

ogy (see Remark 5.9 (ii)). Besides, from (b), we have that Aσ,σ(t) is compact in D(A)× CV ,

and therefore also compact (in particular closed) in D(A)× L2
V . So the minimality argument

is analogous.

Claim (d). We prove it by double inclusion. Let us first check that Aσ,σ is negatively

invariant, that is,

Aσ,σ(t) ⊂ S(t, τ)Aσ,σ(τ), ∀τ ≤ t. (5.22)

Consider y ∈ Aσ,σ(t). Then y = D(A)× CV − limn yn with yn ∈ ΛD(A)×CV
(D̂n, t), where D̂n ∈

Dσ(D(A)× L2
V) ∩ Dσ(V × L2

H). As long as each ΛD(A)×CV
(D̂n, t) is invariant for the process

S, there exists xn ∈ ΛD(A)×CV
(D̂n, τ) with yn = S(t, τ)xn. Observe that Aσ,σ(τ) is compact

(proved previously in (b)) in D(A)× CV . Therefore there exists a subsequence {xn′
} ⊂ {xn}

with D(A)×CV − limn′ xn′
= x ∈ Aσ,σ(τ). In particular, by the D(A)× L2

V continuity of S(t, τ)

(in fact, it is also continuous in D(A)× CV) it holds that yn′
= S(t, τ)xn′

converges to S(t, τ)x

in D(A)× L2
V . So, by the uniqueness of the limit, y = S(t, τ)x and (5.22) holds.

Let us check the converse inclusion

S(t, τ)Aσ,σ(τ) ⊂ Aσ,σ(t), ∀τ ≤ t.

Fix τ ≤ t and x ∈ Aσ,σ(τ). Then x = D(A)× CV − limn xn with xn ∈ ΛD(A)×CV
(D̂n, τ), where

D̂n ∈ Dσ(D(A)× L2
V) ∩Dσ(V × L2

H). Using again the invariance property ΛD(A)×CV
(D̂n, t) =

S(t, τ)ΛD(A)×CV
(D̂n, τ), denote yn := S(t, τ)xn. As long as S(t, τ) is continuous in D(A)× CV ,

Aσ,σ(t) ⊃ ΛD(A)×CV
(D̂n, t) ∋ yn = S(t, τ)xn → S(t, τ)x,

and since Aσ,σ(t) is closed in D(A)× CV , we obtain that S(t, τ)x ∈ Aσ,σ(t), which concludes

the positive invariance of Aσ,σ.

Remark 5.11. Observe that [14, Theorem 35] can be improved analogously as we have pro-

ceeded here. The notation Xσ,σ coined in [14] -in a context without delay effects- for the

analogous role of Aσ,σ here, was used because at that moment we did not realize that this

family already had compact sections and therefore it was the minimal pullback attractor (in

several topologies).

Under the additional assumption

sup
r≤0

∫ r

r−1
| f (s)|2ds < ∞, (5.23)

the pullback absorbing family D̂σ,σ defined by (5.11) does belong to Dσ(D(A)× L2
V)∩Dσ(V ×

L2
H), whence now we can apply Theorem 3.3, and actually we have the following result.

Theorem 5.12. Assume that f ∈ L2
loc(R; (L2(Ω))3) satisfies (5.23), and g : R × CH → (L2(Ω))3

fulfills conditions (I)–(V). Then, for any 0 < σ < σ/3,

Aσ,σ = ADF(V×L2
H)

.

Actually, ADF(V×L2
H)

is the unique family of closed subsets in D(A)× L2
V in the universe Dσ(D(A)×

L2
V) ∩Dσ(V × L2

H) that is invariant for S and pullback Dσ(D(A)× L2
V) ∩Dσ(V × L2

H)-attracting.
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Proof. Consider a fixed value σ ∈ (0, σ/3).

Observe that under the above assumption on f , the family D̂σ,σ = {Dσ,σ(t) : t ∈ R}

defined by (5.11)–(5.12) belongs to Dσ(D(A)× L2
V) ∩Dσ(V × L2

H).

Let us prove the equality Aσ,σ = ADF(V×L2
H)

by double inclusion.

By Theorem 5.10, Aσ,σ is well defined, and indeed, Aσ,σ(t) ⊂ Dσ,σ(t) for any t ∈ R. By

(5.23), for any fixed t ∈ R, the set
⋃

s≤t Dσ,σ(s) is bounded in D(A)× L2
D(A) since sups≤t R2

σ,σ(s)

< ∞. In particular, from the invariance of Aσ,σ, we conclude that

Aσ,σ(t) ⊂ ADF(V×L2
H)
(t), ∀t ∈ R.

On the other hand, again by (5.23), from Theorem 4.3 we have that for any τ ∈ R,⋃
r≤τ ADF(V×L2

H)
(r) is a bounded subset of D(A)× L2

V , and therefore,

distD(A)×L2
V
(ADF(V×L2

H)
(t),Aσ,σ(t)) ≤ distD(A)×L2

V
(S(t, τ)

⋃

r≤τ

ADF(V×L2
H)
(r),Aσ,σ(t)),

where the right-hand side goes to zero as τ → −∞. So we conclude that

ADF(V×L2
H)
(t) ⊂ Aσ,σ(t).

The final statement about uniqueness is a direct consequence of Remark 3.4.

Remark 5.13. Observe that, in particular, if f ∈ L2
loc(R; (L2(Ω))3) satisfies (5.23), by Corollary

3.5 the minimal pullback attractor ADF(D(A)×L2
V)

does exist, and it also coincides with the

family ADF(V×L2
H)

. They have compact sections in D(A) × CV and pullback attract in this

metric. Moreover, from Theorem 4.3 we have that

⋃

t≤t2

Aσ,σ(t) =
⋃

t≤t2

ADF(V×L2
H)
(t) is a bounded subset of D(A)× CD(A) for any t2 ∈ R.
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Abstract. In this paper we define the notion of slow divergence integral along sliding
segments in regularized planar piecewise smooth systems. The boundary of such seg-
ments may contain diverse tangency points. We show that the slow divergence integral
is invariant under smooth equivalences. This is a natural generalization of the notion of
slow divergence integral along normally hyperbolic portions of curve of singularities in
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1 Introduction

The notion of slow divergence integral [6, Chapter 5] has proved to be an important tool to
study lower and upper bounds of limit cycles in smooth planar slow–fast systems (see e.g.
[5–7, 10, 11] and references therein). In this paper by “smooth”, we mean differentiable of
class C∞. One of the main goals of this paper is to define the slow divergence integral in
regularized planar piecewise smooth (PWS) systems with sliding and to prove its invariance
under smooth equivalences (by smooth equivalence we mean smooth coordinate change and
a multiplication by a smooth positive function). This is a natural generalization of [25] where
the slow divergence integral is defined only for a PWS two-fold bifurcation of type visible-
invisible called VI3 and the switching boundary is a straight line (for more details about
two-fold singularity VI3 see [28] and Sections 2 and 3). In this paper we define the slow

BCorresponding author. Email: renato.huzak@uhasselt.be



2 R. Huzak, K. U. Kristiansen and G. Radunović

divergence integral along sliding segments with a regular sliding vector field [16] (Section
2.1), and extend it to tangency points when only one vector field is tangent to switching
boundary (Section 2.3), two-fold singularities of sliding type VV1, I I1, VI2 and VI3 [28], and
to a visible-invisible two-fold singularity when the sliding vector field vanishes at the two-fold
point (Section 2.2).

Consider a smooth planar slow–fast system

Xϵ,λ = fλYλ + ϵQλ + O(ϵ2)

defined on open set V ⊂ R
2, where 0 < ϵ ≪ 1 is the singular perturbation parameter,

λ ∼ λ0 ∈ R
l , fλ is a smooth family of functions and Yλ and Qλ are smooth families of vector

fields. We suppose that X0,λ has a curve of singularities Cλ for all λ ∼ λ0 (Fig. 1.1). We
further assume that ∇ fλ(p) ̸= (0, 0) for all p ∈ {(x, y) ∈ V | fλ(x, y) = 0} and that Yλ has
no singularities for each λ ∼ λ0. Then we have Cλ = { fλ = 0} and Cλ is a smooth family of
1-dimensional manifolds.

The orbits of the flow of X0,λ are located inside the leaves of a smooth 1-dimensional
foliation Fλ on V tangent to Yλ (Fλ is called the fast foliation of X0,λ). If p ∈ Cλ, then
DX0,λ(p) has one eigenvalue equal to zero, with eigenspace TpCλ, and the other one equal to
div X0,λ(p) (i.e., the trace of DX0,λ(p)) with eigenspace Tplλ,p (lλ,p is the leaf through p). We
say that p ∈ Cλ is normally hyperbolic if div X0,λ(p) ̸= 0 (attracting when div X0,λ(p) < 0 and
repelling when div X0,λ(p) > 0). We can define the notion of slow vector field on normally
hyperbolic segments of Cλ. Let p ∈ Cλ be a normally hyperbolic singularity and let Q̄λ(p) ∈

TpCλ be the projection of Qλ(p) on TpCλ in the direction of Tplλ,p. Q̄λ is called the slow vector
field and its flow the slow dynamics. The time variable of the slow dynamics is the slow time
t̄ = ϵt where t is the time variable of the flow of Xϵ,λ. We point out that the classical definition
of the slow vector field using center manifolds is equivalent to this definition. For more details
see [6, Chapter 3].

mλ

Cλ

Fλ

Figure 1.1: The dynamics of X0,λ with the curve of singularities Cλ (blue) and
the fast foliation Fλ. A normally hyperbolic segment mλ ⊂ Cλ (red) along
which the slow divergence integral can be defined.

We define now the notion of slow divergence integral (see [6, Chapter 5]). If mλ ⊂ Cλ is
a normally hyperbolic segment not containing singularities of Q̄λ, then the slow divergence
integral along mλ is defined by

I(mλ) =
∫ t̄2

t̄1

div X0,λ(zλ(t̄))dt̄ (1.1)

where zλ : [t̄1, t̄2] → R
2, z′λ(t̄) = Q̄λ(zλ(t̄)) and zλ(t̄1) and zλ(t̄2) are the end points of mλ (we

parameterize mλ by t̄). This definition is independent of the choice of parameterization zλ of
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mλ and the slow divergence integral is invariant under smooth equivalences (see [6, Section
5.3]).

If both eigenvalues of the linear part of X0,λ at p ∈ Cλ are zero, then we say that p is a
(nilpotent) contact point between Cλ and Fλ. The slow divergence integral can also be defined
along parts of Cλ that contain contact points, using its invariance under smooth equivalences
and normal forms near contact points (see [6, Section 5.5]).

We come now to a natural question: can we define the notion of slow divergence integral if
we replace the slow–fast system Xϵ,λ with a regularized planar PWS system? In Section 2 we
give a positive answer to the question. Instead of X0,λ we consider a λ-family of planar PWS
systems (2.1) defined in Section 2. The switching boundary Σλ defined after (2.1) plays the
role of the curve of singularities Cλ, and the Filippov sliding vector field Zsl

λ on sliding subsets
of Σλ (see (2.2)) plays the role of the slow vector field Q̄λ on normally hyperbolic portions of
Cλ (see Proposition 2.1). The function that will be integrated (Definition 2.2 in Section 2.1) is
the divergence of a smooth slow–fast vector field visible in the scaling chart of a cylindrical
blow-up applied to regularized PWS system (2.4) (for more details see [25] and the proof of
Proposition 2.1). The notion of slow divergence integral in the PWS setting is well-defined
when the sliding vector field Zsl

λ has no singularities (see Definition 2.2).

We show that the slow divergence integral from Definition 2.2 is invariant under smooth
equivalences (see Theorem 2.4 in Section 2.1).

VI3 VV1

Figure 1.2: Limit periodic sets in planar PWS systems through two-fold points
with sliding (the VI3 case and the VV1 case). They can be located in a region
with invisible fold point (green) or in a region with visible fold point (red).

In Sections 2.2 and 2.3 we define the slow divergence integral near tangency points, as
already mentioned above (tangency points in Σλ play the role of contact points between Cλ

and Fλ). We use the invariance of the slow divergence integral under smooth equivalence.
The extension of the slow divergence integral to tangency points has proved to be crucial
when we study the number of sliding limit cycles (i.e., isolated closed orbits with sliding
segments) of a regularized planar PWS system produced by so-called canard limit periodic
sets or canard cycles (for more details see [25]). In [25] only the VI3 case has been studied,
with canard cycles located in the region with invisible fold point (see the green closed curve in
Fig. 1.2). Canard cycles contain both stable and unstable sliding portions of the discontinuity
manifold (often called switching boundary). For example, it has been proved in [25] that the
number of sliding limit cycles (produced by the canard cycles) of regularized quadratic PWS
systems is unbounded.

A canard cycle can also be located in a region with visible fold point (for example, red
closed curves in Fig. 1.2), and again the slow divergence integral associated to the segment of
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the switching boundary contained in the canard cycle plays an important role when studying
sliding limit cycles (see [24]).

Besides sliding cycles, crossing limit cycles can exist for PWS systems and for example J.
Llibre and co-workers have obtained upper bounds for a number of classes [13, 29, 32]. See
also [2, 4, 17, 18, 20, 21, 30, 31] and references therein.

Section 3 is devoted to applications of the slow divergence integral from Section 2. In
Section 3 we focus on the model used in [25] (visible-invisible two-fold VI3) and read upper
bounds of the number of sliding limit cycles and type of bifurcations near so-called gener-
alized canard cycles (Fig. 3.1) from fractal properties of a bounded and monotone sequence
in R defined using the slow divergence integral and the notion of slow relation function
(see Section 3.1). The main advantage of this fractal approach is that, instead of computing
the multiplicity of zeros of the slow divergence integral (like in [25]), it suffices to find the
Minkowski dimension [14] of the sequence. There is a bijective correspondence between the
multiplicity and the Minkowski dimension (see Section 4). A similar fractal approach has been
used in [8,22,23,26] where one deals with smooth slow–fast systems. See also [12,35] and the
references therein. We point out that there exist simple formulas for numerical computation
of the Minkowski dimension of the sequence (see e.g. [23]). In Section 3.2 we state the main
fractal results (Theorems 3.4–3.6), and in Section 4 we prove them.

For the sake of readability, in this paper we work in R
2 using the Euclidean metric. We

believe that the notion of slow divergence integral in regularized PWS systems on a smooth
surface could also be defined. We point out that the slow divergence integral [6] is defined for
slow–fast systems on a smooth surface.

2 The slow divergence integral in PWS systems with sliding

First we recall the basic definitions in PWS theory [9, 19] (switching boundary, sliding set,
crossing set, sliding vector field, tangency point, two-fold singularity, etc.). Then we define
the notion of slow divergence integral of a regularized PWS system along a sliding segment
(not containing singularities of the sliding vector field) and prove that the integral is invariant
under smooth equivalences (see Section 2.1). In Section 2.2 we extend the definition of the
slow divergence integral to segments consisting of a stable sliding region, an unstable sliding
region and a two-fold singularity between them. If the two-fold singularity is visible-invisible,
then we assume that the sliding vector field is regular or has a hyperbolic singularity in the
two-fold point. In Section 2.3 we define the slow divergence integral near a tangency point
where the tangency (quadratic or more degenerate) appears only in one vector field.

Consider a λ-family of PWS systems in the plane

ż =

{
Z+

λ (z) for z ∈ Σ
+
λ ,

Z−
λ (z) for z ∈ Σ

−
λ ,

(2.1)

where z = (x, y), λ ∼ λ0 ∈ R
l and the switching boundary is a smooth λ-family of 1-

dimensional manifolds Σλ given by

Σλ = {z ∈ R
2 | hλ(z) = 0} ∩ V,

with an open set V and a smooth family of functions hλ such that ∇hλ(z) ̸= (0, 0), ∀z ∈ Σλ.
The switching boundary Σλ separates the open set Σ

+
λ = {z ∈ V | hλ(z) > 0} from the open
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set Σ
−
λ = {z ∈ V | hλ(z) < 0}. We assume that the λ-family of vector fields Z+

λ = (X+
λ , Y+

λ )

(resp. Z−
λ = (X−

λ , Y−
λ )) is smooth in the closure of the λ-family Σ

+
λ (resp. Σ

−
λ ). In this paper

“smooth” means “C∞-smooth”.

The subset Σ
sl
λ ⊂ Σλ consisting of all points z ∈ Σλ such that

Z+
λ (hλ)(z)Z−

λ (hλ)(z) < 0

is called the sliding set, where Z±
λ (hλ)(z) := ∇hλ(z) · Z±

λ (z) is the Lie-derivative of hλ with
respect to the vector field Z±

λ at z. A sliding point z ∈ Σ
sl
λ is stable (resp. unstable) if

Z+
λ (hλ)(z) < 0 and Z−

λ (hλ)(z) > 0 (resp. Z+
λ (hλ)(z) > 0 and Z−

λ (hλ)(z) < 0). We write
Σ

sl
λ = Σ

s
λ ∪ Σ

u
λ where Σ

s
λ (resp. Σ

u
λ) is the set of all stable (resp. unstable) sliding points. In Σ

s
λ

(resp. Σ
u
λ) the vector fields Z±

λ point toward (resp. away from) the switching boundary. We
call the set Σ

cr
λ ⊂ Σλ of all points z ∈ Σλ such that

Z+
λ (hλ)(z)Z−

λ (hλ)(z) > 0

the crossing set.

At each point z ∈ Σ
cr
λ the orbit of (2.1) crosses the switching boundary Σλ (it is the con-

catenation of the orbit of Z+
λ and the orbit of Z−

λ through z). Along the sliding set Σ
sl
λ , the flow

is given by the Filippov sliding vector field [16]

Zsl
λ (z) =

1
(Z+

λ − Z−
λ )(hλ)

(
Z+

λ (hλ)Z−
λ − Z−

λ (hλ)Z+
λ

)
(z), z ∈ Σ

sl
λ . (2.2)

The sliding vector field Zsl
λ defined in (2.2) is tangent to Σ

sl
λ , i.e., Zsl

λ (z) is equal to the convex
combination τZ+

λ (z) + (1 − τ)Z−
λ (z) with

τ = τλ(z) =
−Z−

λ (hλ)

(Z+
λ − Z−

λ )(hλ)
(z) ∈]0, 1[. (2.3)

We say that z ∈ Σ
sl
λ is a pseudo-equilibrium of (2.1) if Zsl

λ (z) = 0.

A point z ∈ Σλ where Z+
λ (hλ)(z) = 0 or Z−

λ (hλ)(z) = 0 is a PWS singularity called
tangency. We say that z ∈ Σλ is a fold singularity (or a fold point) of Z+

λ (resp. Z−
λ ) if

Z+
λ (hλ)(z) = 0 and (Z+

λ )
2(hλ)(z) ̸= 0 (resp. Z−

λ (hλ)(z) = 0 and (Z−
λ )

2(hλ)(z) ̸= 0). The fold
point is visible if (Z+

λ )
2(hλ)(z) > 0 (resp. (Z−

λ )
2(hλ)(z) < 0) and invisible if (Z+

λ )
2(hλ)(z) < 0

(resp. (Z−
λ )

2(hλ)(z) > 0).

We say that z ∈ Σλ is a two-fold singularity if z is a fold point of both Z±
λ . A two-fold

singularity z ∈ Σλ is said to be visible-visible (VV) if z is visible in both Z±
λ , invisible-invisible

(I I) if z is invisible in both Z±
λ , and visible-invisible (VI) if z is visible in Z+

λ and invisible
in Z−

λ or visible in Z−
λ and invisible in Z+

λ . Following [28], there exist 7 (generic) cases for
two-fold singularities taking into account the direction of the flow of Z±

λ and Zsl
λ : 2 visible-

visible cases (denoted by VV1 and VV2 in [28]), 2 invisible-invisible cases (I I1 and I I2) and 3
visible-invisible cases (VI1, VI2 and VI3). For more details we refer to [1,19,27,28]. In Section
2.2 we define the notion of slow divergence integral near two-fold singularities of sliding type
(VV1, I I1, VI2 and VI3). The four sliding cases are illustrated in Fig. 2.2. We also treat a
visible-invisible two-fold singularity where the sliding vector field points toward (or away
from) the two-fold singularity on both sides (Fig. 2.3).

We consider a regularized PWS system [25]

ż = ϕ(hλ(z)ϵ
−1)Z+

λ (z) + (1 − ϕ(hλ(z)ϵ
−1))Z−

λ (z) (2.4)
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where 0 < ϵ ≪ 1 and ϕ : R → R is a smooth regularization function. We assume that ϕ is
strictly monotone, i.e.,

ϕ′(u) > 0 for all u ∈ R, (2.5)

and ϕ has the following asymptotics for u → ±∞:

ϕ(u) →

{
1 for u → ∞,

0 for u → −∞.
(2.6)

Moreover, we assume that ϕ is smooth at ±∞ in the following sense: The functions

ϕ+(u) :=

{
1 for u = 0,

ϕ(u−1) for u > 0,
, ϕ−(u) :=

{
ϕ(−u−1) for u > 0,

0 for u = 0,

are smooth at u = 0.
Using the asymptotics of ϕ given in (2.6), the system (2.4) becomes the PWS system (2.1)

in the limit ϵ → 0. Combining this with the fact that ϕ is smooth at ±∞, we have that, for
z kept in any fixed compact set in V \ Σλ, the right hand side of (2.4) is an o(1)-perturbation
of the right hand side of (2.1) where o(1) is a smooth function in (z, ϵ, λ) and tends to 0 as
ϵ → 0, uniformly in (z, λ). Thus, the PWS system (2.1) describes the dynamics of (2.4), for
ϵ > 0 small, as long as z is kept uniformly away from Σλ.

Near Σ
sl
λ , the dynamics of (2.4), with 0 < ϵ ≪ 1, is given by Proposition 2.1 (see also [33]).

2.1 Definition and invariance of the slow divergence integral

Proposition 2.1. Suppose that the PWS system (2.1) has a stable (resp. unstable) sliding point p ∈

Σ
sl
λ0

. Then, for each 0 < ϵ ≪ 1 and λ ∼ λ0, (2.4) has a locally invariant manifold near p with foliation

by stable (resp. unstable) fibers, and the reduced dynamics on this manifold (when ϵ → 0) is given by

sliding vector field Zsl
λ defined in (2.2).

Proof. Without loss of generality, we can assume that
∂hλ0
∂y (p) ̸= 0. Then the switching bound-

ary Σλ (locally near p) is the graph of a smooth function y = fλ(x). Using hλ(x, y) = ϵỹ, the
system (2.4) multiplied by ϵ > 0 becomes a slow–fast system

ẋ = ϵ
(
ϕ(ỹ)X+

λ (x, fλ(x)) + (1 − ϕ(ỹ))X−
λ (x, fλ(x)) + O(ϵỹ)

)
,

˙̃y = ϕ(ỹ)Z+
λ (hλ)(x, fλ(x)) + (1 − ϕ(ỹ))Z−

λ (hλ)(x, fλ(x)) + O(ϵỹ).
(2.7)

When ϵ = 0, the curve of singularities of (2.7) is given by ỹ = ϕ−1 (τλ(x, fλ(x))) where τλ is
defined in (2.3). Each singularity (x, ϕ−1 (τλ(x, fλ(x)))) is semi-hyperbolic with the nonzero
eigenvalue equal to the divergence of the vector field (2.7), with ϵ = 0, computed in that
singularity:

(Z+
λ − Z−

λ )(hλ)(x, fλ(x))ϕ′
(

ϕ−1 (τλ(x, fλ(x)))
)

. (2.8)

The reason why the eigenvalue in (2.8) is nonzero is because Z+
λ (hλ)Z−

λ (hλ) < 0 and ϕ′
> 0

(see (2.5)). The curve of singularities is attracting (resp. repelling) if p is a stable (resp.
unstable) sliding point. The result follows now from Fenichel’s theory [15]. Notice that the
reduced dynamics of (2.7) along the curve of singularities is given by the vector field

(
τλX+

λ + (1 − τλ)X−
λ

)
(x, fλ(x)). (2.9)
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We divided the x-component in (2.7) by ϵ and let ϵ → 0 with ỹ = ϕ−1 (τλ(x, fλ(x))). We get
the same expression (2.9) if we use the definition of the slow vector field introduced in Section
1. This completes the proof.

Following [6, Chapter 5] or Section 1 in the smooth slow–fast system (2.7) one can define
the notion of slow divergence integral along normally hyperbolic curve of singularities ỹ =

ϕ−1 (τλ(x, fλ(x))) when the sliding vector field in (2.9) has no singularities: it is the integral of
the divergence in (2.8) where the variable of integration is the time variable of the flow of the
sliding vector field. This is our motivation for the definition of the notion of slow divergence
integral of regularized PWS system (2.4) (see also [25]).

Definition 2.2 (Slow divergence integral). Let mλ ⊂ Σ
sl
λ be a bounded segment (Fig. 2.1) not

containing pseudo-equilibria of the PWS system (2.1). Let zλ : [t1, t2] → R
2 be a solution of

z′(t) = Zsl
λ (z(t)) where zλ(t1) and zλ(t2) are the end points of mλ (zλ is a parameterization of

mλ). Then we define the slow divergence integral of regularized PWS system (2.4) associated
to mλ as

I(mλ) =
∫ t2

t1

Eλ(zλ(t))dt (2.10)

where
Eλ(z) = (Z+

λ − Z−
λ )(hλ)(z)ϕ

′
(

ϕ−1 (τλ(z))
)

, z ∈ Σ
sl
λ .

Remark 2.3. Note that the definition of the slow divergence integral given by (2.10) is inde-
pendent of the choice of zλ. Indeed, if ẑλ is another solution to z′(t) = Zsl

λ (z(t)) and p ∈ mλ,
then there exist t̃ ∈ [t1, t2] and t̄ such that zλ(t̃) = ẑλ(t̄) = p. Then we have zλ(t) = ẑλ(t+ t̄− t̃)

due to uniqueness of solutions. Now, we get

∫ t2+t̄−t̃

t1+t̄−t̃
Eλ(ẑλ(s))ds =

∫ t2

t1

Eλ(zλ(t))dt,

where we use the change of variable s = t + t̄ − t̃.

If mλ is stable (resp. unstable), then I(mλ) is negative (resp. positive).

The slow divergence integral from Definition 2.2 is invariant under smooth equivalences
(Theorem 2.4.1 and Theorem 2.4.2). Theorem 2.4.3 tells us how to compute I(mλ) for an
arbitrary parameterization of mλ (see also [6, Proposition 5.3]).

mλ

Σ
sl
λ

Figure 2.1: A segment mλ ⊂ Σ
sl
λ (blue).
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Theorem 2.4 (Invariance of the slow divergence integral). Let us denote the family of vector field

in (2.4) by Zϵ,λ and let mλ ⊂ Σ
sl
λ be as in Definition 2.2. The following statements are true.

1. Let T : Vw → Vz ⊂ V (w 7→ z = T(w)) be a smooth coordinate transformation, with open sets

Vw, Vz ⊂ R
2. Let I(mλ) be the slow divergence integral of Zϵ,λ along mλ ⊂ Vz. Then the slow

divergence integral I(T−1(mλ)) of the pullback of the vector field Zϵ,λ|Vz along T−1(mλ) ⊂ Vw

is equal to I(mλ).

2. Let g be a smooth strictly positive function defined in a neighborhood of mλ. Then the slow

divergence integral of Zϵ,λ along mλ is equal to the slow divergence integral of the equivalent

vector field g.Zϵ,λ along mλ.

3. Let pλ : [v1, v2] → R
2 be a parameterization of mλ. Then we have

I(mλ) =
∫ v2

v1

Eλ(pλ(v))dv

| p̃λ(v)|
,

where p̃λ is a smooth λ-family of nowhere zero functions satisfying

Zsl
λ (pλ(v)) = p̃λ(v)p′λ(v).

Proof. Statement 1. The pullback of the vector field Zϵ,λ|Vz can be written as

T∗(Zϵ,λ|Vz)(w) =ϕ(hλ ◦ T(w)ϵ−1)W+
λ (w) + (1 − ϕ(hλ ◦ T(w)ϵ−1))W−

λ (w)

where W±
λ (w) = DT(w)−1(Z±

λ ◦ T)(w). It is not difficult to see that the Lie-derivative of hλ ◦ T

with respect to the vector field W±
λ is given by

W±
λ (hλ ◦ T)(w) = Z±

λ (hλ)(T(w)). (2.11)

Using (2.11) and Definition 2.2 we find that the slow divergence integral of T∗(Zϵ,λ|Vz) along
T−1(mλ) is given by

I(T−1(mλ)) =
∫ t2

t1

Eλ(T(wλ(t)))dt

where wλ : [t1, t2] → T−1(mλ) is a solution of w′(t) = Wsl
λ (w(t)) (the Filippov sliding vector

field along T−1(mλ) is given by Wsl
λ (w) = DT(w)−1Zsl

λ (T(w))). Since T ◦ wλ : [t1, t2] → mλ is
a solution to z′(t) = Zsl

λ (z(t)), the result follows.

Statement 2. From Definition 2.2 it follows that the slow divergence integral of g.Zϵ,λ along
mλ is equal to

I(mλ) =
∫ t̂2

t̂1

Eλ(ẑλ(t̂))g(ẑλ(t̂))dt̂ (2.12)

where ẑλ : [t̂1, t̂2] → mλ and ẑ′λ(t̂) = g(ẑλ(t̂))Zsl
λ (ẑλ(t̂)). We make in the integral in (2.12) the

change of variable t = ρ(t̂) =
∫ t̂

t̂1
g(ẑλ(v))dv with t̂ ∈ [t̂1, t̂2]. Then we have

∫ t̂2

t̂1

Eλ(ẑλ(t̂))g(ẑλ(t̂))dt̂ =
∫ ρ(t̂2)

0
Eλ(ẑλ ◦ ρ−1(t))dt.

Since (ẑλ ◦ ρ−1)′(t) = Zsl
λ ((ẑλ ◦ ρ−1)(t)), t ∈ [0, ρ(t̂2)], this integral is the slow divergence

integral of Zϵ,λ associated to mλ. This completes the proof of Statement 2.
Statement 3. The proof of Statement 3 is similar to the proof of Statement 2.
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Remark 2.5. It follows directly from Definition 2.2 that the slow divergence integral of −Zϵ,λ

along mλ is equal to the slow divergence integral of Zϵ,λ along mλ multiplied by −1.

We will use the invariance of the slow divergence integral under smooth equivalences in
Section 2.2 and Section 2.3.

If mλ ⊂ Σ
sl
λ contains pseudo-equilibria, then the slow divergence integral associated to mλ

is not well-defined.

2.2 The slow divergence integral near two-fold singularities

In this section we suppose that the sliding vector field Zsl
λ , given by (2.2), is defined around

a two-fold singularity. Our goal is to define the notion of slow divergence integral near such
a two-fold singularity. Since the slow divergence integral (2.10) is invariant under smooth
equivalences (Theorem 2.4), we use a normal form of (2.1), locally near the two-fold singular-
ity, in which hλ(x, y) = y and the two-fold point corresponds to the origin p = (0, 0). Notice
that such normal form coordinates exist because ∇hλ(z) ̸= (0, 0), ∀z ∈ Σλ, in (2.1).

Using hλ(x, y) = y the two-fold p satisfies

Z±
λ (hλ)(0) = Y±

λ (0) = 0, (Z±
λ )

2(hλ)(0) = X±
λ (0)∂xY±

λ (0) ̸= 0, (2.13)

and the sliding vector field Zsl
λ near p can be written as

Xsl
λ (x) =

det Zλ(x)

(Y−
λ − Y+

λ )(x, 0)
(2.14)

where
det Zλ(x) := (X+

λ Y−
λ − X−

λ Y+
λ )(x, 0).

Remark 2.6. The notation det Zλ comes from [1]. In [25] a similar notation has been used for
−(X+

λ Y−
λ − X−

λ Y+
λ ).

Since we assumed that the sliding vector field Xsl
λ is defined around the two-fold p, we

find that X+
λ (0)X−

λ (0) > 0 if the folds have the same visibility (visible-visible or invisible-
invisible) and X+

λ (0)X−
λ (0) < 0 if the folds have opposite visibility. We have p ∈ ∂Σ

s
λ ∩ ∂Σ

u
λ.

These properties follow directly from (2.13) and the definition of visible and invisible folds
(see [1, Lemma 2.8]), and imply that ∂x(Y

−
λ − Y+

λ )(0) ̸= 0 and ∂xY+
λ (0)∂xY−

λ (0) < 0.

Using ∂x(Y
−
λ − Y+

λ )(0) ̸= 0 it is clear that the sliding vector field in (2.14) has a removable
singularity in x = 0 and

Xsl
λ (x) = ν + O(x), ν =

(det Zλ)
′(0)

∂x(Y
−
λ − Y+

λ )(0)
. (2.15)

From [1, Lemma 2.9] and [1, Corollary 2.10] it follows that ν ̸= 0 and sgn(ν) = sgn(X+
λ (0))

if the folds have the same visibility (VV1 and I I1 in Fig. 2.2), and that ν ̸= 0 and sgn(ν) =

− sgn
(
X+

λ (0)(det Zλ)
′(0)

)
if the folds have opposite visibility and (det Zλ)

′(0) ̸= 0 (VI2 and
VI3 in Fig. 2.2). If the folds have opposite visibility, we assume that ν ̸= 0 in (2.15) or x = 0 is a

hyperbolic singularity of the sliding vector field Xsl
λ (or, equivalently, x = 0 is a zero of multiplicity 1

or 2 of the function det Zλ). We refer to Fig. 2.3 (the multiplicity of the zero x = 0 of det Zλ is
2).



10 R. Huzak, K. U. Kristiansen and G. Radunović

VI3VI2

I I1VV1

Figure 2.2: The different types of two-fold singularities with sliding: the folds
in VV1 and I I1 have the same visibility, while the folds in VI2 and VI3 have
opposite visibility.

From ∂x(Y
−
λ −Y+

λ )(0) ̸= 0 and ∂xY+
λ (0)∂xY−

λ (0) < 0 it follows that the function τλ defined
in (2.3) has the following property when x → 0:

lim
x→0

τλ(x, 0) = lim
x→0

−Y−
λ

Y+
λ − Y−

λ

(x, 0) =
∂xY−

λ (0)
∂x(Y

−
λ − Y+

λ )(0)
∈ ]0, 1[. (2.16)

Let us now compute the slow divergence integral along [x0, x1], with 0 < x0 < x1. We
assume that x1 is small enough such that [x0, x1] does not contain any singularities of the
sliding vector field Xsl

λ . We use Theorem 2.4.3. We take pλ(x) = (x, 0), x ∈ [x0, x1], in
Theorem 2.4.3. Then we have

p̃λ(x) =
det Zλ(x)

(Y−
λ − Y+

λ )(x, 0)
, Eλ(pλ(v)) = (Y+

λ − Y−
λ )(x, 0)ϕ′

(
ϕ−1 (τλ(x, 0))

)
.

This implies

I([x0, x1]) =
∫ x1

x0

|Y−
λ − Y+

λ |(Y+
λ − Y−

λ )(x, 0)
|det Zλ|(x)

ϕ′

(
ϕ−1

(
−Y−

λ

Y+
λ − Y−

λ

(x, 0)

))
dx. (2.17)

Finally, we define the slow divergence integral along [0, x1] (the left end point of [0, x1] is the
two-fold point).

Definition 2.7. Let mλ = [0, x1]. Then the slow divergence integral along mλ is defined as

I(mλ) = lim
x0→0+

I([x0, x1])

where I([x0, x1]) is given in (2.17).

Remark 2.8. Notice that the function x 7→ ϕ′
(
ϕ−1 (τλ(x, 0))

)
in (2.17) can be defined at x = 0

such that this function is smooth and positive on the segment mλ (see (2.5), (2.6) and (2.16)).
If the folds have the same visibility, then I(mλ) is well-defined (finite) because ν ̸= 0 in (2.15).
Since we assume that the multiplicity of the zero x = 0 of det Zλ does not exceed 2 when the
folds have opposite visibility, I(mλ) is finite.

Remark 2.9. The slow divergence integral along mλ = [x0, 0], with x0 < 0, can be defined in a
similar way: I(mλ) = limx1→0− I([x0, x1]) where I([x0, x1]) has the same form (2.17).
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(b)(a)

Figure 2.3: Non-generic visible-invisible two-fold singularities. The (extended)
sliding vector field has a hyperbolic singularity at the two-fold points. (a) The
sliding vector field points toward the two-fold singularity. (b) The sliding vector
field points away from the two-fold singularity.

2.3 The slow divergence integral near one-sided tangency points

In this section we define the slow divergence integral near a tangency point p ∈ ∂Σ
s
λ ∪ ∂Σ

u
λ

where both vectors Z±
λ (p) are nonzero and precisely one of them is tangent to Σλ at p (see e.g.

Fig. 2.4). Like in Section 2.2, the switching boundary Σλ is locally given by hλ(x, y) = y and
p = (0, 0). Since we suppose that p ∈ ∂Σ

s
λ ∪ ∂Σ

u
λ, there is a side of p (without loss of generality

we take x > 0) where the sliding vector field is defined, and given by (2.14). If the (nonzero)
vector Z+

λ (0) (resp. Z−
λ (0)) is tangent to Σλ, then X+

λ (0) ̸= 0, Y+
λ (0) = 0 and Y−

λ (0) ̸= 0 (resp.
X−

λ (0) ̸= 0, Y−
λ (0) = 0 and Y+

λ (0) ̸= 0) and

Xsl
λ (x) = X+

λ (0) + O(x)
(

resp. Xsl
λ (x) = X−

λ (0) + O(x)
)

. (2.18)

Since X+
λ (0) ̸= 0 (resp. X−

λ (0) ̸= 0), the sliding vector field Xsl
λ in (2.18) is regular near x = 0.

Thus, the segment [x0, x1], with 0 < x0 < x1, does not contain any singularities of Xsl
λ if x1

is small enough and we can define the slow divergence integral along [x0, x1] exactly in the
same way as in Section 2.2. The slow divergence integral is given by (2.17) and we use the
same notation I([x0, x1]).

(c)(b)(a)

Figure 2.4: (a) The sliding vector field is defined on one side of the tangency
point. (b) The sliding vector field is defined on both sides of the tangency point.
(c) A crossing region around the tangency point (in this case the slow divergence
integral near the tangency point is not defined).

We can now define the slow divergence integral near the tangency point p.

Definition 2.10. Let mλ = [0, x1]. Then the slow divergence integral along mλ is defined as

I(mλ) = lim
x0→0+

I([x0, x1]).
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Remark 2.11. The slow divergence integral I(mλ) from Definition 2.10 is well-defined. Indeed,
limu→±∞ ϕ′(u) = 0 (due to the smoothness of ϕ at ±∞ given after (2.6)). Moreover, we have

(a) limu→1− ϕ−1(u) = +∞, (b) limu→0+ ϕ−1(u) = −∞ (see (2.6)) and finally (c) −Y−
λ

Y+
λ −Y−

λ

(x, 0)

tends to 1 (resp. 0) as x → 0+ when Z+
λ (0) (resp. Z−

λ (0)) is tangent to Σλ. It follows from
(a), (b) and (c) that the integrand in (2.17) can be defined at x = 0 (0 for x = 0) and that the
integrand is continuous on the segment mλ. This implies that I(mλ) is well-defined.

3 Limit cycles and fractal analysis through visible-invisible two-

fold V I3

3.1 Model and assumptions

We consider a PWS system (2.1) where we assume that λ ∼ λ0 ∈ R, and hλ(x, y) = y (the
switching boundary is the line y = 0).

Assumption A. Suppose that there are η− < 0 and η+ > 0 such that the PWS system (2.1) for
λ = λ0 has stable sliding for all x ∈ [η−, 0[ (i.e., Y+

λ0
(x, 0) < 0 and Y−

λ0
(x, 0) > 0 for x ∈ [η−, 0[)

and unstable sliding for all x ∈]0, η+] (i.e., Y+
λ0
(x, 0) > 0 and Y−

λ0
(x, 0) < 0 for x ∈]0, η+]).

Moreover, we assume that the Filippov sliding vector field Xsl
λ given by (2.14) is positive for

x ∈ [η−, η+] \ {0} and λ = λ0.

Assumption A implies that Y±
λ0
(0) = 0 and the origin z = 0 is therefore a tangency point

(see Section 2). We assume that z = 0 for λ = λ0 is a two-fold singularity. Moreover, we
suppose that the two-fold singularity is visible from “above" and invisible from “below", i.e.,
the orbit of Z+

λ0
through z = 0 is contained within y > 0 near z = 0, and the orbit of Z−

λ0

through z = 0 is not contained within y < 0 (Section 2).

Assumption B. We assume that the origin z = 0 in the PWS system (2.1) is a visible-invisible
two-fold for λ = λ0: Y±

λ0
(0) = 0 and

{
X+

λ0
(0) > 0,

∂xY+
λ0
(0) > 0,

{
X−

λ0
(0) < 0,

∂xY−
λ0
(0) < 0.

(3.1)

Additionally, we assume that (det Zλ0)
′(0) < 0 where det Zλ is defined in (2.14).

Remark 3.1. From (3.1) it follows that ∂x(Y
−
λ0
−Y+

λ0
)(0) < 0. This, together with (det Zλ0)

′(0) <
0 and (2.15), implies that Xsl

λ0
(0) > 0. Thus, Xsl

λ0
(x) > 0 for all x ∈ [η−, η+] (see Assumption

A).

Assumption B and the Implicit Function Theorem imply the existence of smooth λ-families
of fold singularities z+ = (x+(λ), 0) from above and fold singularities z− = (x−(λ), 0) from
below, for λ ∼ λ0, with x±(λ0) = 0. The following assumption deals with non-zero velocity
of the collision between z+ and z− for λ = λ0 at the origin z = 0:

x′+(λ0)− x′−(λ0) =

(
−

∂λY+
λ0

∂xY+
λ0

+
∂λY−

λ0

∂xY−
λ0

)
(0) ̸= 0

where ∂λY±
λ0

means the partial derivative of Y±
λ w.r.t. λ, computed in λ = λ0.
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Assumption C. We assume that

∂λY−
λ ∂xY+

λ ̸= ∂λY+
λ ∂xY−

λ (3.2)

at (z, λ) = (0, λ0).

We consider a regularized PWS system (2.4) with hλ(x, y) = y:

ż = ϕ(yϵ−2)Z+
λ (z) + (1 − ϕ(yϵ−2))Z−

λ (z) (3.3)

where 0 < ϵ ≪ 1 and ϕ : R → R is a smooth regularization function that satisfies the
assumptions given after (2.4). More precisely, we have

Assumption D. We suppose that ϕ satisfies (2.5) and (2.6) and that ϕ is smooth at ±∞.

It is more convenient to write ϵ−2 in (3.3) instead of ϵ−1 so that we can directly use results
from [25] (see Section 4).

s0
s1s2Γ0

s

S

x = ψ−(s) x = ψ+(s)

Figure 3.1: A fractal sequence (sn)n∈N near the canard cycle Γ0.

Let S be an open section transversally cutting orbits of Z−
λ , parametrized by a regular pa-

rameter s ∼ 0 (Fig. 3.1). We assume that s increases as we approach the origin z = 0. For
λ = λ0, let Γs be the limit periodic set consisting of the orbit of Z−

λ0
connecting (ψ+(s), 0)

and (ψ−(s), 0), and the segment [ψ−(s), ψ+(s)] ⊂ {y = 0} (Fig. 3.1). We suppose that
[ψ−(s), ψ+(s)] ⊂ [η−, η+] for all s ∼ 0. In [25] Γs is called a canard cycle. From the cho-
sen parameterization of S it follows that ψ′

−(s) > 0 and ψ′
+(s) < 0. Following [25, Section 3],

to study the number of limit cycles of (3.3) produced by Γs for (ϵ, λ) ∼ (0, λ0) one can use the
slow divergence integral associated to the segment [ψ−(s), ψ+(s)]:

I(s) =
∫ ψ+(s)

ψ−(s)

(Y+
λ0
− Y−

λ0
)2(x, 0)

−det Zλ0(x)
ϕ′

(
ϕ−1

(
−Y−

λ0

Y+
λ0
− Y−

λ0

(x, 0)

))
dx. (3.4)

Remark 3.2. In (3.4) we use Definition 2.7 and Remark 2.9. Note that

I(s) = I(mλ0) + I(m̃λ0)

where mλ0 = [0, ψ+(s)] and m̃λ0 = [ψ−(s), 0].

Remark 3.3. We suppose that Assumptions A through D are satisfied and write

λ = λ0 + ϵλ̃
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with λ̃ ∼ 0. We say that the cyclicity of the canard cycle Γ0 inside (3.3) is bounded by N ∈ N

if there exist ϵ0 > 0, δ0 > 0 and a neighborhood U of 0 in the λ̃-space such that (3.3) has at
most N limit cycles, each lying within Hausdorff distance δ0 of Γ0, for all (ϵ, λ̃) ∈]0, ϵ0]× U .
We call the smallest N with this property the cyclicity of Γ0 and denote it by Cycl(Γ0).

If the slow divergence integral I in (3.4) has a simple zero at s = 0, then Cycl(Γ0) = 2 and,
for each small ϵ > 0, the λ̃-family in (3.3) undergoes a saddle-node bifurcation of limit cycles
near Γ0 when we vary λ̃ ∼ 0. Under the same assumption on I, there is a smooth function
λ̃ = λ̃(ϵ), λ̃(0) = 0, such that (3.3) with λ = λ0 + ϵλ̃(ϵ) has a unique (hyperbolic) limit cycle
Hausdorff close to Γ0 for each small ϵ > 0.

If I has a zero of multiplicity m ≥ 1 at s = 0, then Cycl(Γ0) ≤ m + 1. When I(0) < 0 (resp.
I(0) > 0), then Cycl(Γ0) = 1, and the limit cycle is hyperbolic and attracting (resp. repelling).

We refer the reader to [25, Theorem 3.1] and [25, Remark 3.4].

We say that the canard cycle Γ0 is balanced if s = 0 is a zero of I(s) defined in (3.4)
(I(0) = 0). If Γ0 is balanced, then there exists a unique function G(s) satisfying G(0) = 0,
G′(0) > 0 and

∫ ψ+(G(s))

ψ−(s)

(Y+
λ0
− Y−

λ0
)2(x, 0)

−det Zλ0(x)
ϕ′

(
ϕ−1

(
−Y−

λ0

Y+
λ0
− Y−

λ0

(x, 0)

))
dx = 0 (3.5)

for s ∼ 0. This follows from the Implicit Function Theorem because I(0) = 0, ψ′
−(s) > 0,

ψ′
+(s) < 0 and the integrand in (3.4) is negative for x < 0 and positive for x > 0 (see

Assumptions A and D). We call G defined by (3.5) the slow relation function.

Assumption E. We suppose that Γ0 is balanced and that s = 0 is an isolated zero of I(s),
meaning that s = 0 has a small neighborhood ]− s̃, s̃[ (s̃ > 0) that does not contain any other
zero of I(s).

Assumption E implies that I is either negative or positive for s > 0 (I is continuous). Using
the above mentioned property of the integrand in (3.4) it can be easily seen that 0 < G(s) < s

for s > 0 when I is negative and G(s) > s for s > 0 when I is positive. Let s0 > 0 be small
and fixed. Thus, if I is negative (resp. positive), then the orbit of s0

U0 = {s0, s1, s2, . . . } (3.6)

defined by sn+1 = G(sn) (resp. sn+1 = G−1(sn)), n ≥ 0, tends monotonically to the fixed point
s = 0 of G. We want to study the Minkowski dimension of U0.

Let us first define the notion of Minkowski (or box) dimension (see [14, 34] and references
therein). Let U ⊂ R

N be a bounded set. We define the δ-neighborhood of U:

Uδ = {x ∈ R
N | d(x, U) ≤ δ},

and denote by |Uδ| the Lebesgue measure of Uδ. The lower u-dimensional Minkowski content
of U, for u ≥ 0, is defined by

Mu
∗(U) = lim inf

δ→0

|Uδ|

δN−u
,

and analogously the upper u-dimensional Minkowski content M∗u(U) (we replace lim infδ→0

with lim supδ→0). We define lower and upper Minkowski dimensions of U:

dimBU = inf{u ≥ 0 | Mu
∗(U) = 0}, dimBU = inf{u ≥ 0 | M∗u(U) = 0}.
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We have dimBU ≤ dimBU and, if dimBU = dimBU, we call it the Minkowski dimension of U,
and denote it by dimB U.

The upper Minkowski dimension is finitely stable. More precisely,

dimB(U1 ∪ U2) = max{dimBU1, dimBU2}, U1, U2 ⊂ R
N .

If U1 ⊂ U2, then dimBU1 ≤ dimBU2 and dimBU1 ≤ dimBU2 (dimB and dimB are monotonic).
Furthermore, if 0 < Md

∗(U) ≤ M∗d(U) < ∞ for some d, then we say that U is Minkowski
nondegenerate. In this case we have necessarily that d = dimB U. Recall also that the notion
of being Minkowski nondegenerate is invariant under bi-Lipschitz maps. Namely, if Φ is a
bi-Lipschitz map and U is Minkowski nondegenerate, then Φ(U) is also Minkowski nonde-
generate (see [36, Theorem 4.1]).

We use these properties in Section 4.2.
Following [12], dimB U0 exists, it is independent of the choice of s0 > 0 and can take only

the following discrete set of values: 0, 1
2 , 2

3 , 3
4 ,. . . , 1 (see also Theorem 4.1). The set U0 is

defined in (3.6).

3.2 Statement of results

In this section we consider the family (3.3) that satisfies Assumptions A through E and assume
that λ = λ0 + ϵλ̃ with λ̃ ∼ 0.

Theorem 3.4. Let s0 > 0 be small and fixed and let U0 be the orbit of s0 defined in (3.6). If dimB U0 =

0, then the following statements hold.

1. (λ unbroken) There exists a smooth function λ̃ = λ̃(ϵ), λ̃(0) = 0, such that (3.3) with λ =

λ0 + ϵλ̃(ϵ) has a unique (hyperbolic) limit cycle Hausdorff close to Γ0 for each small ϵ > 0.

2. (λ broken) We have that Cycl(Γ0) = 2 and, for every small ϵ > 0, the λ̃-family (3.3) undergoes

a saddle-node bifurcation of limit cycles Hausdorff close to Γ0.

Theorem 3.4 will be proved in Section 4.1.

Theorem 3.5. Let U0 be the orbit of s0 defined in (3.6), for a small s0 > 0. If dimB U0 < 1, then

Cycl(Γ0) ≤
2−dimB U0
1−dimB U0

.

Theorem 3.5 will be proved in Section 4.1.

Theorem 3.6. Let U0 be the orbit of s0 defined in (3.6), for a small s0 > 0, and dimB U0 = 0. The

following statements are true.

1. For λ̃ = λ̃(ϵ) given in Theorem 3.4.1 and for each small ϵ > 0, the Minkowski dimension of any

spiral trajectory accumulating (in forward or backward time) on the unique limit cycle of (3.3)
near Γ0 is equal to 1.

2. For each small ϵ > 0, the Minkowski dimension of any spiral trajectory accumulating (in forward

or backward time) on the limit cycle of multiplicity 2 of (3.3), born in a saddle-node bifurcation

of limit cycles Hausdorff close to Γ0, is equal to 3
2 and moreover, the spiral is Minkowski nonde-

generate.

Theorem 3.6 will be proved in Section 4.2. A small (Hausdorff) neighborhood of Γ0 in
which we consider spiral trajectories in Theorem 3.6.1 or Theorem 3.6.2 does not shrink to Γ0

as ϵ → 0 (see Section 4.2).
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4 Proof of Theorems 3.4–3.6

4.1 Proof of Theorems 3.4–3.5

Let s̃ > 0 be small and fixed. Suppose that F is a smooth function on [0, s̃[, F(0) = 0 and
0 < F(s) < s for all s ∈]0, s̃[. We define H(s) := s − F(s) and the orbit of s0 ∈]0, s̃[ by H:

U := {sn = Hn(s0) | n = 0, 1, . . . }

where Hn denotes n-fold composition of H. It is clear that sn tends monotonically to zero.
We say that the multiplicity of the fixed point s = 0 of H is equal to m if s = 0 is a zero of
multiplicity m of F (F(0) = · · · = F(m−1)(0) = 0 and F(m)(0) ̸= 0). If F(n)(0) = 0 for each
n = 0, 1, . . . , then we say that the multiplicity of s = 0 of H is ∞.

Theorem 4.1 ([12]). Let F be a smooth function on [0, s̃[, F(0) = 0 and 0 < F(s) < s for each

s ∈]0, s̃[. Let H = id−F and let U be the orbit of s0 ∈ ]0, s̃[ by H. Then dimB U is independent of

the initial point s0 and, for 1 ≤ m ≤ ∞, the following bijective correspondence holds:

m =
1

1 − dimB U
(4.1)

where m is the multiplicity of s = 0 of H (if m = ∞, then dimB U = 1).

If we denote by Φ the integrand in (3.4) and (3.5), then we have

I(s) =
∫ ψ+(s)

ψ−(s)
Φ(x)dx =

∫ ψ+(G(s))

ψ−(s)
Φ(x)dx +

∫ ψ+(s)

ψ+(G(s))
Φ(x)dx =

∫ ψ+(s)

ψ+(G(s))
Φ(x)dx

where in the last step we use (3.5). From ψ′
+(s) < 0, Φ(x) > 0 for x > 0 and The Fundamental

Theorem of Calculus it follows that there exists a negative smooth function Ψ(s) such that

I(s) = Ψ(s)(s − G(s)).

This implies that s = 0 is a zero of multiplicity m of I(s) if and only if s = 0 is a zero of
multiplicity m of s − G(s).

We will first suppose that the orbit U0 in (3.6) is generated by the slow relation function
G. If dimB U0 = 0, then Theorem 4.1, with H = G, implies that the multiplicity of the fixed
point s = 0 of G is 1. Thus, we have that s = 0 is a simple zero of I and Theorem 3.4.1
(resp. Theorem 3.4.2) follows directly from [25, Theorem 3.1] (resp. [25, Remark 3.4]). See also
Remark 3.3. If dimB U0 < 1, then the multiplicity of s = 0 of G is equal to 1

1−dimB U0
(see (4.1)).

Thus, s = 0 is a zero of multiplicity 1
1−dimB U0

of I and [25, Remark 3.4]) implies that

Cycl(Γ0) ≤ 1 +
1

1 − dimB U0
=

2 − dimB U0

1 − dimB U0
.

This completes the proof of Theorem 3.5.
If U0 is generated by G−1, Theorem 3.4 and Theorem 3.5 can be proved in the same way

as above (we use Theorem 4.1 with H = G−1 and the fact that G and G−1 have the same
multiplicity of the fixed point s = 0).
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4.2 Proof of Theorem 3.6

The Minkowski dimension of spiral trajectories accumulating on a hyperbolic or non-
hyperbolic limit cycle of planar vector fields (without parameters) has been studied in [35,37].
We prove Theorem 3.6 for spiral trajectories in a Hausdorff neighborhood of the canard cycle
Γ0 that does not shrink to Γ0 as ϵ → 0.

We will first prove Theorem 3.6.1. We assume that dimB U0 = 0 and λ̃(ϵ) is given in
Theorem 3.4.1. Let V̄ be a fixed neighborhood of Γ0. Then the unique limit cycle of (3.3) with
λ̃ = λ̃(ϵ) is located in V̄ for each ϵ > 0 small enough (see [25]). For such fixed ϵ > 0, let Γ

be any spiral trajectory in V̄ accumulating on the limit cycle (in the forward time if the limit
cycle is attracting or in the backward time if the limit cycle is repelling). We write Γ = Γ̃ ∪ Γ̄

where Γ̄ is the part of Γ sufficiently close to the limit cycle (we can apply the results of [35,37])
and Γ̃ is the rest of Γ (of finite length). It is clear that dimB Γ̃ = 1 and dimBΓ̄ ≥ 1. Since
dimB ≤ dimB, dimB is monotonic and dimB is finitely stable (see Section 3.1), we have

dimBΓ̄ ≤ dimB(Γ̃ ∪ Γ̄) ≤ dimB(Γ̃ ∪ Γ̄) = max{dimBΓ̃, dimBΓ̄} = dimBΓ̄. (4.2)

Since the limit cycle is hyperbolic (see Theorem 3.4.1), [35, Theorem 10] implies that dimB Γ̄ =

dimBΓ̄ = dimBΓ̄ = 1. Using (4.2) we obtain dimB Γ = 1. This completes the proof of Theorem
3.6.1.

The first part of Theorem 3.6.2 can be proved in the same way as Theorem 3.6.1. Since the
non-hyperbolic limit cycle is generated by a saddle-node bifurcation of limit cycles we have
dimB Γ̄ = dimBΓ̄ = dimBΓ̄ = 3

2 (see [35, Theorem 10] and [37, Theorem 1]). To prove the claim
about Minkowski nondegeneracy; first observe that M3/2(Γ̃) = 0 since dimB(Γ̃) = 1 < 3/2 so
that this part does not affect the upper and lower Minkowski content of Γ = Γ̃ ∪ Γ̄; hence, it
is enough to show that Γ̄ is Minkowski nondegenerate. To see this, we observe that Γ̄ can be
partitioned into finitely many pieces Γ̄i; i = 1, . . . , k such that each Γ̄i is bi-Lipschitz equivalent
to [0, 1[×U by the Lipschitz flow-box Theorem [3]. Note also that dimB U = 1/2 and it is
Minkowski nondegenerate which implies that [0, 1[×U is also Minkowski nondegenerate; see
the proof of [37, Theorem 4(b)]. Finally, the finite stability of Minkowski dimension and of
Minkowski nondegeneracy now complete the proof exactly as in the proof of [37, Theorem
4(b)].
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ported by the HRZZ grant UIP-2017-05-1020.

Availability of data and materials Not applicable.



18 R. Huzak, K. U. Kristiansen and G. Radunović
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[23] R. Huzak, V. Crnković, D. Vlah, Fractal dimensions and two-dimensional slow–fast
systems, J. Math. Anal. Appl. 501(2021), No. 2, 21 p. https://doi.org/10.1016/j.jmaa.
2021.125212; MR4242049; Zbl 1470.34150

[24] R. Huzak, K. Uldall Kristiansen, General results on sliding cycles in regularized piece-
wise linear systems, in progress.

[25] R. Huzak, K. Uldall Kristiansen, The number of limit cycles for regularized piecewise
polynomial systems is unbounded, J. Differential Equations 342(2023), 34–62. https://
doi.org/10.1016/j.jde.2022.09.028; MR4493144; Zbl 1512.34073

[26] R. Huzak, D. Vlah, Fractal analysis of canard cycles with two breaking parameters and
applications, Commun. Pure Appl. Anal. 18(2019), No. 2, 959–975. https://doi.org/10.
3934/cpaa.2019047; MR3917688; Zbl 1411.34083



20 R. Huzak, K. U. Kristiansen and G. Radunović
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Abstract. In this paper, we consider the radially symmetric spacelike solutions of a
nonlinear Dirichlet problem for the prescribed mean curvature spacelike equation in
a Friedmann–Lemaître–Robertson–Walker spacetime. By using a conformal change of
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1 Introduction

Let I ⊆ R be an open interval in R with the metric −dt2. Denote by M the (N + 1)-

dimensional product manifold I × R
N with N ≥ 1 endowed with the Lorentzian metric

g = −dt2 + f 2(t)dx2,

where f ∈ C∞(I), f > 0, is called the scale factor or warping function in the related literature.

Clearly, M is a Lorentzian warped product with base (I,−dt2), fiber (RN , dx2) and warping

function f , we refer it as a Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. In

the fiber space (RN , dx2), the metric dx2 is an arbitrary Riemannian metric in a Generalized

FLRW spacetime. In cosmology, the FLRW spacetime is the accepted model for a spatially

homogeneous and isotropic Universe. In this context, the warping function f (t) is interpreted

as the radius of the Universe at time t, and the sign of its derivative indicates if the Universe

BCorresponding author. Email: xmannwnu@126.com
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is expanding or contracting at given time, for more details of FLRW spacetime, we refer the

reader to [11, 21, 22, 27, 34–37] and the references therein. Observe that for the particular case

f (t) ≡ 1 we recover the Minkowski spacetime.

Given f ∈ C∞(I), f > 0, for each u ∈ C∞(Ω), where Ω is a domain of R
N , such that

u(Ω) ⊆ I, we can consider its graph M = {(x, u(x)) : x ∈ Ω} in the FLRW spacetime M. The

graph is spacelike whenever

| grad u| < f (u) in Ω, (1.1)

where grad u is the gradient of u in R
N and | · | denotes the Euclidean norm in R

N , in this

case, the unit timelike normal vector field in the same time orientation of ∂t is given by

A =
f (u)√

f (u)− | grad u|2
(

1

f 2(u)
grad u + ∂t

)
,

and the corresponding mean curvature associated to A, is defined by

1

N

{
div

(
grad u

f (u)
√

f 2(u)− | grad u|2

)
+

f ′(u)√
f 2(u)− | grad u|2

(
N +

| grad u|2
f 2(u)

)}
,

where div denotes the divergence operator of R
N , f ′(u) := f ′ ◦u, it can be seen as a quasilinear

elliptic operator Q, because of (1.1). We are interested in the existence of spacelike graphs

with a prescribed mean curvature function in the FLRW spacetime M. The general problem

of the curvature prescription is, given a function H : I × R
N → R, to obtain solutions of the

quasilinear elliptic equation

Q(u) = H(u, x), | grad u| < f (u) in Ω, (1.2)

and (1.2) is called the prescribed mean curvature spacelike equation in FLRW spacetime.

Specially relevant is the case when H is constant, then it is called the prescribed constant

mean curvature spacelike equation (if H = 0 it is also called the maximal spacelike graph

equation).

In the recent years, most of the efforts have been directed to the prescribed mean curvature

spacelike equation in Minkowski spacetime ( f (t) ≡ 1), in this context, we mention the seminal

work of R. Bartnik and L. Simon [1], E. Calabi [8], S.-Y. Cheng and S.-T. Yau [10] and A. E.

Treibergs [39], in these papers, the spacelike graphs having the property that their mean

curvature is zero or constant are considered. More recently, Dirichlet problems for prescribed

mean curvature spacelike equation in Minkowski spacetime have been widely concerned by

many scholars, and their attention is mainly focused on their positive solutions, we refer the

reader to [3–6,12–16,23,24,28–32,41,42] and the references therein. In particular, based on the

detailed analysis of time map, some exact multiplicity of positive solutions have been obtained

in [24, 42], for the radially symmetric solutions on a ball, some existence, nonexistence and

multiplicity results have been established in [4, 5], and some bifurcation results have been

obtained in [14, 28] via bifurcation technique, and when Ω is a general domain in R
N , some

existence and bifurcation results have been obtained in the papers [13, 15, 16, 31]. In addition

to, these concern discrete problems associated with the prescribed mean curvature spacelike

equation in Minkowski spacetime, we refer the reader to [7,9,25,26] and the references therein.

In comparison with the study in Minkowski spacetime, the number of references devoted

to the prescribed mean curvature spacelike equation in FLRW spacetime is appreciably lower.

Only in the recent years, C. Bereanu, D. de la Fuente, A. Romero and P. J. Torres [2, 20] have
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considered the existence and multiplicity of radially symmetric spacelike solutions of the

Dirichlet problem by using the Schauder fixed point Theorem with approximation process,

J. Mawhin and P. J. Torres [33, 38] have provided some sufficient conditions for the existence

of radially symmetric spacelike solutions of the Neumann problem by the Leray–Schauder

degree theory, G. Dai, A. Romero and P. J. Torres [17–19] have obtained the existence and

multiplicity of radially symmetric spacelike positive solutions of the equation with 0-Dirichlet

boundary condition on a ball and studied the global structure of the solution set via the

Rabinowitz’s global bifurcation method. Xu and Ma [40] have considered the differential

and difference problems associated with the discrete approximation of radially symmetric

spacelike solutions of the Dirichlet problem, by using lower and upper solutions, they proved

the existence of solutions of the corresponding differential and difference problems, and based

on the ideas of a prior bound showed the solutions of the discrete problem converge to the

solutions of the continuous problem.

In this paper we are concerned with the mixed boundary value problem





− (rN−1φ(v′))′ = λNrN−1

[
f ′(ϕ−1(v))√

1 − v′2
− f (ϕ−1(v))H(ϕ−1(v), r)

]
, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0,

(1.3)

where φ(s) = s√
1−s2

, and φ : (−1, 1) → R is an increasing homeomorphism with φ(0) = 0,

such an φ is called singular, λ is a positive parameter, R is a positive constant, f ∈ C∞(I)

and f > 0, I is an open interval in R, ϕ(s) =
∫ s

0
dt

f (t)
, ϕ−1 is the inverse function of ϕ,

H : I × [0, R] → R is a continuous function. The aim of this paper is to investigate the

intervals of the λ in which the (1.3) has zero, one or two positive radial solutions.

This study mainly motivated by the numerical approximation of radially symmetric space-

like solutions of the nonlinear Dirichlet problem for the prescribed mean curvature spacelike

equation in FLRW spacetime:





div

(
grad u

f (u)
√

f 2(u)−| grad u|2

)
+ f ′(u)√

f 2(u)−| grad u|2

(
N + | grad u|2

f 2(u)

)
= NH(u, |x|) in B,

| grad u| < f (u) in B,

u = 0 on ∂B,

(1.4)

where B = {x ∈ R
N : |x| < R}, f ∈ C∞(I), f > 0 and H : I × [0,+∞) → R is the prescribed

mean curvature function. We follow the method developed in [20], let us define the function

ϕ : I → R by ϕ(s) =
∫ s

0
dt

f (t)
, and ϕ is an increasing diffeomorphism from I onto J := ϕ(I)

such that ϕ(0) = 0. Doing the change v = ϕ(u) and taking radial coordinates, we can reduce

the Dirichlet problem (1.4) to the mixed boundary value problem (1.3) with λ = 1, and the

solutions of (1.3) with λ = 1 are just the radially symmetric spacelike solutions of (1.4).

We say that a function v ∈ C1[0, R] is a solution of (1.3) if ∥v′∥∞ < 1, rN−1φ(v′) ∈ C1[0, R],

and (1.3) is satisfied. For (1.3), since the graph associate to v is spacelike, i.e. ∥v′∥∞ < 1, we

deduce that ∥v∥∞ < R, this implies the image of nonnegative v is in [0, R], therefore, when

discussing the nonnegative solutions of (1.3), we always assume ϕ−1([0, R]) ⊂ I, which is

equivalent to

I f R :=

[
0,
∫ R

0
f (ϕ−1(s))ds

]
⊂ I.
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In Section 2, we present a lower and upper solution result for continuous problem (1.3)

with λ = 1. In Section 3, we give some notations and fixed point reformulation of (1.3) with

λ = 1 and prove all possible solutions and their first differences have a prior bounds, based

on this, we calculate some topological degrees. Using the results of these two parts and the

estimate of the first derivative of a concave function, in Section 4, we show that there is a

Λ > 0 such that problem (1.3) has zero, at least one or at least two positive solutions when

λ ∈ (0, Λ), λ = Λ, λ > Λ. Finally in Section 5, for the convenience of readers and integrity

of the paper, we give the detailed derivation process of problem (1.3) with λ = 1.

The main result is as follows.

Theorem 1.1. Assume that I f R ⊂ I and f ′(t) ≥ 0, H(t, r) < f ′

f (t) for all r ∈ [0, R], t ∈ I f R and

assume also that 



lim
t→0+

N f ′(t)
ϕ(t)

= f0,

lim
t→0+

N f (t)H(t,r)
ϕ(t)

= H0,

f0 − H0 = 0.

(A f H)

Then there is a Λ >
2NM0

R3 such that problem (1.3) has zero, at least one or at least two positive solutions

when λ ∈ (0, Λ), λ = Λ, λ > Λ.

Notations: The space C := C[0, R] will be endowed with the usual sup-norm ∥ · ∥∞ and

C1 := C1[0, R] will considered with the norm ∥u∥ = ∥u∥∞ + ∥u′∥∞. C1
M := {u ∈ C1 : u′(0) =

u(R) = 0} is the closed subspace of C1. For u0 ∈ C1
M, we set B(u0, ρ) := {u ∈ C1

M : ∥u∥ <

ρ} (ρ > 0) and Bρ is used to represent B(0, ρ).

2 Lower and upper solutions

In this section, we develop the lower and upper solution method for the mixed boundary

value problem





− (rN−1φ(v′))′ = NrN−1

[
f ′(ϕ−1(v))√

1 − v′2
− f (ϕ−1(v))H(ϕ−1(v), r)

]
, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0.

(2.1)

Definition 2.1. A lower solution α of (2.1) is a function α ∈ C1 such that ∥α′∥∞ < 1, rN−1φ(α′) ∈
C1, I f R ⊂ I and

−(rN−1φ(α′))′ ≤ NrN−1

[
f ′(ϕ−1(α))√

1 − α′2 − f (ϕ−1(α))H(ϕ−1(α), r)

]
, r ∈ (0, R), α(R) ≤ 0.

An upper solution β of (2.1) is a function β ∈ C1 such that ∥β′∥∞ < 1, rN−1φ(β′) ∈ C1, I f R ⊂ I

and

−(rN−1φ(β′))′ ≥ NrN−1

[
f ′(ϕ−1(β))√

1 − β′2 − f (ϕ−1(β))H(ϕ−1(β), r)

]
, r ∈ (0, R), β(R) ≥ 0.

Such a lower or an upper solution is called strict if the above inequalities are strict.
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Theorem 2.2. Assume that I f R ⊂ I and f ′(t) ≥ 0, H(t, r) <
f ′

f (t) for all r ∈ [0, R], t ∈ I f R. If

(2.1) has a lower solution α and an upper solution β such that α(r) ≤ β(r) for all r ∈ [0, R], then (2.1)

has at least one solution v such that α(r) ≤ v(r) ≤ β(r) for all r ∈ [0, R].

Proof. Let γ : [0, R]× R → R be the continuous function defined by

γ(r, v) =





α(r), if v < α(r),

v, if α(r) ≤ v ≤ β(r),

β(r), if v > β(r).

We consider the modified problem




(rN−1φ(v′))′ + NrN−1

[
f ′(ϕ−1(γ(r, v)))√

1 − v′2

−H(ϕ−1(γ(r, v)), r) f (ϕ−1(γ(r, v)))− v + γ(r, v)

]
= 0, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = 0 = v(R).

(2.2)

It follows from [2] that the problem (2.2) has at least one solution.

We show that if v is a solution (2.2), then α(r) ≤ v(r) ≤ β(r) for all r ∈ [0, R]. This will

conclude the proof.

Suppose by contradiction that there is some r0 ∈ [0, R] such that

max
[0,R]

[α − v] = α(r0)− v(r0) > 0.

If r0 ∈ (0, R), then α′(r0) = v′(r0) and there are sequences {rk} in (0, r0) converging to r0 such

that α′(rk)− v′(rk) ≥ 0. Since φ is an increasing homeomorphism then we can have

rN−1
k φ(v′(rk))− rN−1

0 φ(v′(r0)) ≤ rN−1
k φ(α′(rk))− rN−1

0 φ(α′(r0)),

which means

(rN−1
0 φ(α′(r0)))

′ ≤ (rN−1
0 φ(v′(r0))

′.

Therefore, since α is a lower solution of (2.1) we have

(rN−1
0 φ(α′(r0)))

′

≤ (rN−1
0 φ(v′(r0)))

′

= NrN−1
0

[
− f ′(ϕ−1(α(r0)))√

1 − (α′(r0))2
+ H(ϕ−1(α(r0)), r0) f (ϕ−1(α(r0))) + v(r0)− α(r0)

]

< NrN−1
0

[
− f ′(ϕ−1(α(r0)))√

1 − (α′(r0))2
+ H(ϕ−1(α(r0)), r0) f (ϕ−1(α(r0)))

]

≤ (rN−1
0 φ(α′(r0)))

′,

but this a contradiction.

If max[0,R][α − v] = α(R) − v(R) > 0, then by definition of lower solutions, we obtain a

contradiction again. If max[0,R][α − v] = α(0)− v(0) > 0, then there exists r1 ∈ (0, R] such that

α(r)− v(r) > 0 for all r ∈ [0, r1] and α′(r1)− v′(r1) ≤ 0. It follows that

(rN−1
1 φ(α′(r1)))

′ ≤ (rN−1
1 φ(v′(r1)))

′.
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Note that I f R ⊂ I and f ′(t) ≥ 0 for all t ∈ I f R. By using the fact and integrating (2.2) from 0

to r1, we have that

rN−1
1 φ(α′(r1)) ≤ rN−1

1 φ(v′(r1))

< N
∫ r1

0
rN−1

[
− f ′(ϕ−1(α(r)))√

1 − (v′(r))2
+ H(ϕ−1(α(r)), r) f (ϕ−1(α(r)))

]
dr

≤ N
∫ r1

0
rN−1

[
− f ′(ϕ−1(α(r)))√

1 − (α′(r))2
+ H(ϕ−1(α(r)), r) f (ϕ−1(α(r)))

]
dr

≤ rN−1
1 φ(α′(r1)).

But this is a contradiction. Hence, α(r) ≤ v(r) for all r ∈ [0, R]. Analogously, we can show

that v(r) ≤ β(r) for all r ∈ [0, R].

Remark 2.3. The Theorem 2.2 still holds for f (t) ≡ 1.

3 Fixed point, a priori bounds and degree

In this section, we consider problems of type





(rN−1φ(v′))′ + rN−1g(r, v, v′) = 0, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0,

(3.1)

where N ≥ 1 is an integer, R > 0 is a constant, and we also assume that

(Aφ) φ : (−1, 1) → R is an odd, increasing homeomorphism;

(Ag) g : [0, R]× [0, α)× (−1, 1) → [0,+∞) is a continuous function with 0 < α ≤ +∞.

Recall, by a solution of (3.1) we mean a function v ∈ C1 with ∥v′∥∞ < 1, such that rN−1φ(v′) ∈
C1 and (3.1) is satisfied.

Setting

σ(r) := 1/rN−1,

we introduce the linear operators

S : C → C, Sv(r) = σ(r)
∫ r

0
tN−1v(t) dt (r ∈ [0, R]), Sv(0) = 0;

K : C → C1, Kv(r) =
∫ R

r
v(t) dt (r ∈ [0, R]).

It is easy to see the standard argument that K is bounded and that S is compact by the Arzelà–

Ascoli theorem. This means that the nonlinear operator K ◦ φ−1 ◦ S : C → C1 is compact.

Moreover, for a given function h ∈ C, the problem

(rN−1φ(v′))′ + rN−1h(r) = 0, r ∈ (0, R), |v′| < 1, v′(0) = v(R) = 0

has a unique solution

v = K ◦ φ−1 ◦ S ◦ h.
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Next, let Ng be the Nemytskii operator associated with g, i.e.,

Ng : C → C, Ng = g(·, v(·), v′(·)).

Noticing that Ng is continuous and maps a bounded set to a bounded set. So problem (3.1)

has the following reformulation about fixed points.

Lemma 3.1. A function v ∈ C1
M is a solution of problem (3.1) if and only if the compact nonlinear

operator

Ng : C1
M → C1

M, Ng = K ◦ φ−1 ◦ S ◦ Ng

has a fixed point, and furthermore the fixed point of Ng satisfies

∥v′∥∞ < 1, ∥v∥∞ < R (3.2)

and

dLS[I −Ng, Bρ, 0] = 1 for all ρ ≥ (R + 1).

Proof. Since the range of φ−1 is (−1, 1), the inequality (3.2) holds. Next, consider the compact

homotopy

H : [0, 1]× C1
M, H(τ, ·) = τNg

and

H([0, 1]× C1
M) ⊂ B(R+1).

Then, from the invariance under homotopy of the Leray–Schauder degree it follows that

dLS[I −H(0, ·), Bρ, 0] = dLS[I −H(1, ·), Bρ, 0] = dLS[I −Ng, Bρ, 0] = 1,

for all ρ ≥ (R + 1).

In view of Theorem 2.2 and Remark 2.3, we have the following result.

Lemma 3.2. Assume that (3.1) has a lower solution α and an upper solution β such that α(r) ≤ β(r)

for all r ∈ [0, R], and let Ωα,β := {v ∈ C1
M : α ≤ v ≤ β}. Assume also that (3.1) has an unique

solution v0 in Ωα,β and there exists ρ0 > 0 such that B(v0, ρ0) ⊂ Ωα,β. Then

dLS = [I −Ng, B(v0, ρ), 0] = 1 for all 0 < ρ ≤ ρ0,

where Ng is the fixed point operator associated to (3.1).

Proof. Let Ng be the fixed point operator associated with (3.1). The proof of Theorem 2.2

shows that any fixed point v of Ng is contained in Ωα,β, and this means that v0 is the unique

fixed of Ng and there exists ρ0 > 0 such that B(v0, ρ0) ⊂ Ωα,β. From Lemma 3.1 and the

excision property of the Leray–Schauder degree there is

dLS[I −Ng, B(v0, ρ0), 0] = 1,

which is

dLS[I −Ng, B(v0, ρ), 0] = 1 for all 0 < ρ ≤ ρ0.

Lemma 3.3. Assume that (Aφ), (Ag) and

(A′
g) g(r, v, v′) > 0 for all (r, v, v′) ∈ (0, R]× (0, α)× (−1, 1).
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Let v be a nontrivial solution of (3.1). Then v > 0 on [0, R) and v is strictly decreasing.

Proof. Let’s first integrate both sides of (3.1) from 0 to r, which is

v′(r) = −φ−1

(
1

rN−1

∫ r

0
sN−1g(s, v, v′)ds

)
. (3.3)

Then integrate both sides of (3.3) from r to R to get

v(r) =
∫ R

r
φ−1

(
1

tN−1

∫ t

0
sN−1g(s, v, v′)ds

)
dt. (3.4)

So if g(r, v, v′) > 0, we have v > 0 on [0, R) and v is strictly decreasing.

In the next lemma we assume that g is sublinear with respect to φ at zero.

Lemma 3.4. Assume that conditions (Aφ), (Ag) and (A′
g) hold. Assume also that

lim
s→0+

g(r, s, s′)
φ(s)

= 0 uniformly for r × s′ ∈ [0, R]× (−1, 1) (3.5)

and

lim inf
s→0+

φ(σs)

φ(s)
> 0 for all σ > 0. (3.6)

Then there exists ρ0 > 0 such that

dLS[I −Ng, Bρ, 0] = 1 for all 0 < ρ ≤ ρ0.

Proof. Using (3.6) we can find ε > 0 such that

Rε/N < lim inf
s→0

φ(s/R)

φ(s)
. (3.7)

Using (3.5) we can find sε > 0 such that

g(r, s, s′) ≤ εφ(s) for all (r, s, s′) ∈ [0, R]× [0, sε]× (−1, 1). (3.8)

Next, we consider the compact homotopy

H : [0, 1]× C1
M → C1

M, H(τ, v) = τNg(v).

Let’s we say have ρ0 > 0 such that

v ̸= H(τ, v) for all (τ, v) ∈ [0, 1]× (Bρ0 \ {0}). (3.9)

In fact, suppose there exists

vk = τkNg(vk), τk ∈ [0, 1],

where vk ∈ C1
M \ {0}, k ∈ N, ∥vk∥ → 0. From the previous lemma, v is strictly monotonically

decreasing and strictly positive on [0, R).

Asuming ∥vk∥ ≤ sε, k ∈ N, we can see from (3.8)

g(r, vk(r), v′k(r)) ≤ εφ(∥vk∥∞) for all r ∈ [0, R], k ∈ N.
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Then for any k ∈ N, there is

∥vk∥∞ ≤
∫ R

0
φ−1

(
σ(t)

∫ t

0
rN−1g(r, vk, v′k)dr

)
dt

≤ Rφ−1

(
εR

N
φ(∥vk∥∞)

)
.

That is, there is

φ
(
∥vk∥∞

R

)

φ(∥vk∥∞)
≤ εR

N
.

This contradicts (3.7) and so (3.9) is true. That is, for any ρ ∈ (0, ρ0], there is

dLS[I −H(1, ·), Bρ, 0] = dLS[I −Ng, Bρ, 0] = dLS[I −H(0, ·), Bρ, 0] = dLS[I, Bρ, 0] = 1.

4 Proof of main result

First of all there is an important lemma before the main result of this paper.

Lemma 4.1. Let k ∈ (0, 1), β0 ∈ (0, 1−k
8 R) be given. Let Ik,β0

:=
[ 4β0

1−k , R − 4β0

1−k

]
. Then

R

2
∈ Ik,β0

and

|v′(s)| ≤ 1 − k, ∀v ∈ A, ∀s ∈ Ik,β0
,

where A := { v | v is concave in [0, R], v′(0) < 1, v′(R) > −1, ∥v∥∞ ≤ 4β0}.

Proof. Let a = 1 − k, b = 4β0

1−k , then

0 < a < 1, b ∈
(

0,
R

2

)
, I := Ik,β0

= [b, R − b].

Since v ∈ C1[0, R], v is concave in [0, R] and v′ is decreasing. If there exists s ∈ I such

that |v′(s)| > 1 − k = a, then v′(s) > a or v′(s) < −a. If v′(s) < −a, then v(s)−v(R)
s−R =

v′(t), for some t ∈ (s, R). So we have v(s)
s−R ≤ v′(s) < −a. Therefore v(s) > a(R − s) ≥

ab = 4β0 ≥ ∥v∥∞. This is a contradiction. Analogously, we can get a contradiction for other

case.

Proof of Theorem 1.1. Let us say

Sj := {λ > 0 : (1.3) at least j positive solutions}, (j = 1, 2).

1. The existence of Λ.

Let λ > 0 and v be a positive solution of (1.3). Firstly, using hypothesis (A f H), we have:

∀ε0 > 0, ∃ δ1, for |ϕ−1(v)− 0| < δ1, there can be
∣∣N f ′(ϕ−1(v))

v − f0

∣∣ < ε0. For the above ε0, ∃ δ2,

when |ϕ−1(v)− 0| < δ2, there is
∣∣N f (ϕ−1(v))H(ϕ−1(v),r)

v − H0

∣∣ < ε0.
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Secondly, integrating (1.3) from 0 to r ∈ (0, R] and using that v is a positive solution of

(1.3) such that we obtain

−rN−1φ(v′) =
∫ r

0
λtN−1

(
N f ′(ϕ−1(v))√

1 − v′2
− N f (ϕ−1(v))H(ϕ−1(v), t)

)
dt

< λ
∫ r

0
tN−1

(
f0v√

1 − v′2
− H0v

)
dt

= λ
∫ r

0
tN−1

(
f0v√

1 − v′2
− f0v

)
dt.

Using Lemma 4.1, let k = a0, β0 = (1−a0)η
8 R ∈ (0, 1−a0

8 R), a0 is the constant that satisfies

the definition and η ∈ (0, 1) is the given constant, then there is I = [ η
2 R, R − η

2 R]. Hence,

∥v∥∞ ≤ (1−a0)η
2 R, |v′(s)| ≤ 1 − a0, for all s ∈ I.

Therefore,

−rN−1φ(v′) < λ
∫ r

0
tN−1

(
f0v√

1 − v′2
− f0v

)
dt

≤ λ
∫ r

0
tN−1 f0

(1 − a0)η

2
R

(
1√

1 − (1 − a0)2
− 1

)
dt

≤ λMR
∫ r

0
tN−1dt

=
λMRrN

N
,

where M = f0
(1−a0)η

2

(
1√

1−(1−a0)2
− 1
)
.

Therefore, there is

−v′(r) ≤ − v′(r)√
1 − v′2

<
λMRr

N
. (4.1)

Integrating (4.1) from 0 to R we obtain

v(0) <
λMR3

2N
. (4.2)

Next, using v(0) > 0, we obtain

λ >
2NM0

R3
,

where M0 := v(0)/M.

We know from [18] that the problem (1.3) has at least one positive solution for λ > 0.

Specially, S1 ̸= ∅ and we can define

Λ = Λ(R) := inf S1.

Clearly, we have Λ ≥ 2NM0

R3 . We claim that Λ ∈ S1. Indeed, let λk ⊂ S1, λk → Λ (k → ∞).

Since vk ∈ C1
M, vk is positive on [0, R), then

vk = K ◦ φ−1 ◦ S ◦

λk


N f ′(ϕ−1(vk))√

1 − v
′2
k

− N f (ϕ−1(vk))H(ϕ−1(vk), r)




 .
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Using (3.2) and the Arzelà–Ascoli theorem can have v ∈ C and has a subsequence such that

{vk} → v. So, it follows that v ≥ 0 and

v = K ◦ φ−1 ◦ S ◦
(

Λ

(
N f ′(ϕ−1(v))√

1 − v′2
− N f (ϕ−1(v))H(ϕ−1(v), r)

))
.

With (4.2), we can see that there is a constant c1 > 0 such that vk(0) > c1, ∀k ∈ N. This ensures

that v(0) ≥ c1, according to Lemma 3.3, has v > 0 on [0, R). Hence, Λ ∈ S1. Obviously,

Λ >
2NM0

R3 .

Next, let λ0 > Λ, where λ0 is arbitrary. Here λ0 ∈ S1 is proved by Theorem 2.2. Let v1 be

a positive solution for (1.3) corresponding to λ = Λ. It is now easy to know that v1 is a lower

solution to problem (1.3) when λ = λ0. Construct the upper solution, let H > 0, R̃ > R, while

considering the problem

(
rN−1 v′√

1 − v′2

)′
+ rN−1H = 0, v′(0) = v(R̃) = 0. (4.3)

By integrating the above formula, we get

v(r) =
N

H

[√
1 +

H2

N2
R̃2 −

√
1 +

H2

N2
r2

]
.

For fixed λ2 > λ0, let v2 is the solution of problem (4.3) corresponding to H = λ2MR̃. By

v2(R) > 0 and

λ0


N f ′(ϕ−1(v2))√

1 − v
′2
2

− N f (ϕ−1(v2))H(ϕ−1(v2), r)


 ≤ λ2MR̃, r ∈ [0, R].

Then we can see that v2 is an upper solution of problem (1.3) when λ = λ0, then

v2(R) = N

[ √
1

(λ2MR̃)2
+

R̃2

N2
−
√

1

(λ2MR̃)2
+

R2

N2

]
.

Then there is v1(0) < v2(R) when R̃ is sufficiently large. Consider that v1, v2 is strictly

decreasing, then there is v1 < v2 on [0, R]. Thus, from Theorem 2.2 we know that λ0 ∈ S1,

therefore S1 ∈ [Λ, ∞].

2. Multiplicity.

Let λ0 > Λ. Let us prove λ0 ∈ S2 by Lemma 3.1, 3.2, 3.4. Let v1, v2 be constructed

as above. When λ = λ0, let v0 be a solution to problem (1.3) such that v1 ≤ v0 ≤ v2, i.e.,

v0 ∈ Ωv1,v2 := {v0 ∈ C1
M : v1 ≤ v0 ≤ v2}.

First, we claim that exists ε > 0 with B(v0, ε) ⊂ Ωv1,v2 . For all r ∈ [0, R], there is

v2(r) =
∫ R̃

r
φ−1

(
σ(t)

∫ t

0
sN−1λ2MR̃ds

)
dt

>

∫ R

r
φ−1

(
σ(t)

∫ t

0
sN−1λ2

(
N f ′(ϕ−1(v2))√

1 − v2
′2 − N f (ϕ−1(v2))H(ϕ−1(v2), s)

)
ds

)
dt

≥
∫ R

r
φ−1

(
σ(t)

∫ t

0
sN−1λ0

(
N f ′(ϕ−1(v0))√

1 − v0
′2

− N f (ϕ−1(v0))H(ϕ−1(v0), s)

)
ds

)
dt

= v0(r).
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Therefore, there exists ε2 > 0 such that v ≤ v2 for all v ∈ B(v0, ε2). Similarly on [0, R/2] there

is v1 < v0. Therefore ε′1 > 0 can be found such that

v ∈ C1
M and ∥v − v0∥∞ ≤ ε′1 ⇒ v ≥ v1 on [0, R/2]. (4.4)

On the other hand, we have

−v′0 = φ−1 ◦ S ◦ λ0

(
N f ′(ϕ−1(v0))√

1 − v0
′2

− N f (ϕ−1(v0))H(ϕ−1(v0), r)

)

and

−v′1 = φ−1 ◦ S ◦ Λ

(
N f ′(ϕ−1(v1))√

1 − v1
′2

− N f (ϕ−1(v1))H(ϕ−1(v1), r)

)
,

yielding v′0 < v′1 on [R/2, R]. So we can find a sufficiently small ε1 ∈ (0, ε′1) such that v′ < v′1
on [R/2, R], where v ∈ B(v0, ε1). It follows from v0(R) = 0 = v(R) that for all v ∈ B(v0, ε1)

has v > v1 on [0,R]. Considering (4.4), we claim ε ∈ (0, min{ε1, ε2}). Next, if the problem (1.3)

has a second solution in Ωv1,v2 , then the proof of the multiplicity is completed.

If not, using Lemma 3.2 we get

dLS[I −Nλ0
, B(v0, ρ), 0] = 1 for all 0 < ρ ≤ ε,

where Nλ0
is the fixed point operator associated to (1.3) with λ = λ0.

In addition, using Lemma 3.1 we have

dLS[I −Nλ0
, Bρ, 0] = 1 for all ρ ≥ (R + 1).

From Lemma 3.4 one has

dLS[I −Nλ0
, Bρ, 0] = 1 for all sufficiently small ρ.

When ρ1, ρ2 is sufficiently small and ρ3 ≥ R + 1 such that B(v0, ρ1) ∩ Bρ2 = ∅ and

B(v0, ρ1) ∪ Bρ2 ⊂ Bρ3 . Then, from the additivity-excision property of the Leray–Schauder

degree it follows that

dLS[I −Nλ0
, Bρ3 \ [B(v0, ρ1) ∪ Bρ2 ], 0] = −1,

which, together with the existence property of the Leray–Schauder degree, imply that Nλ0
has

a fixed point ṽ0 ∈ Bρ3\[B(v0, ρ1)
⋃

Bρ2 ]. We infer that (1.3) has a second positive solution, and

the proof is complete.

Appendix: derivation process of problem (1.3)

To the best of our knowledge, problem (1.3) was first given in [20], but they did not given

derivation process. For the convenience of readers and integrity of the paper, here we give the

detailed derivation.

Without loss of generality, let us consider the radially symmetric spacelike solutions of the

Dirichlet problem with the mean curvature operator in FLRW spacetime




div

(
grad u

f (u)
√

f 2(u)−| grad u|2

)
+ f ′(u)√

f 2(u)−| grad u|2

(
N + | grad u|2

f 2(u)

)
= NH(u, |x|) in B(R),

| grad u| < f (u) in B(R),

u = 0 on ∂B(R),

(A.1)
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where B(R) = {x ∈ R
N : |x| < R} and N ≥ 1.

Step 1. If N = 1.

Then (A.1) reduces to




(
u′

f (u)
√

f 2(u)− u′2

)′
+

f ′(u)√
f 2(u)− u′2

(
1 +

u′2

f 2(u)

)
= H(u, |x|), x ∈ (0, R),

|u′| < f (u), x ∈ (0, R),

u′(0) = u(R) = 0.

(A.2)

In fact (A.2) can be converted to the following







1

f (u)
· u′

f (u)

√
1 −

(
u′

f (u)

)2




′

+
f ′(u)( f 2(u) + u′2)

f 3(u)

√
1 −

(
u′

f (u)

)2
= H(u, |x|), x ∈ (0, R),

|u′| < f (u), x ∈ (0, R),

u′(0) = u(R) = 0.

(A.3)

Let v(r) = ϕ(u(x)) and r = |x|. Then

v′(r) = ϕ′(u)u′(x) =
u′(x)

f (u(x))
,

(
ϕ(s) =

∫ s

0

dt

f (t)

)
,

and accordingly,

u(x) = ϕ−1(v(r)), u′(x) = f (u(x))v′(r). (A.4)

Since



1

f (u)
· u′

f (u)

√
1 −

(
u′

f (u)

)2




′

+
f ′(u)( f 2(u) + u′2)

f 3(u)

√
1 −

(
u′

f (u)

)2

=
− f ′(u)u′

f 2(u)
· u′

f (u)

√
1 −

(
u′

f (u)

)2
+

1

f (u)
·




u′

f (u)

√
1 −

(
u′

f (u)

)2




′

+
f ′(u)

f (u)

√
1 −

(
u′

f (u)

)2
+

f ′(u)u′2

f 3(u)

√
1 −

(
u′

f (u)

)2

=
1

f (u)
·




u′

f (u)

√
1 −

(
u′

f (u)

)2




′

+
f ′(u)

f (u)

√
1 −

(
u′

f (u)

)2
.

(A.5)

Then, this fact together with (A.4), problem (A.3) can be converted to the following





−
(

v′√
1 − v′2

)′
=

f ′(ϕ−1(v))√
1 − v′2

− f (ϕ−1(v))H(ϕ−1(v), r), r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0.

(A.6)



14 T. Wang and M. Xu

Step 2. If N ≥ 2.

Given u(x), x = (x1, . . . , xN).

Let v(r) = ϕ(u(x)) and r = |x| =
(

N

∑
i=1

x2
i

) 1
2

. Then

∂r

∂xi
=

1

2

(
N

∑
i=1

x2
i

)− 1
2

2xi =
xi

r
. (A.7)

∂v

∂xi
= v′(r)

∂r

∂xi
= v′(r) · xi

r
= ϕ′(u) · ∂u

∂xi
=

1

f (u)
· ∂u

∂xi
.

Hence
∂u

∂xi
= f (u) · v′(r) · xi

r
. (A.8)

Since

grad u =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
,

then

| grad u|2=
N

∑
i=1

(
∂u

∂xi

)2

=
N

∑
i=1

(
f (u) · v′(r) · xi

r

)2
=( f (u)v′(r))2

N

∑
i=1

( xi

r

)2
= ( f (u)v′(r))2, (A.9)

that is ( | grad u|
f (u)

)2

= (v′(r))2,

and accordingly, from this and (A.8), we have that

div

(
grad u

f (u)
√

f 2(u)− | grad u|2

)
+

f ′(u)√
f 2(u)− | grad u|2

(
N +

| grad u|2
f 2(u)

)

= div




1

f (u)
· grad u

f (u)

√
1 −

(
| grad u|

f (u)

)2


+

f ′(u)
(

N f 2(u) + | grad u|2
)

f 3(u)

√
1 −

(
| grad u|

f (u)

)2

= div
( 1

f (u)
· grad u

f (u)
√

1 − (v′(r))2

)
+

f ′(u)
(

N f 2(u) + ( f (u)v′(r))2
)

f 3(u)
√

1 − (v′(r))2

=
N

∑
i=1

∂

∂xi

(
1

f (u)
· 1

f (u)
√

1 − (v′(r))2
· f (u) · v′(r) · xi

r

)

+
f ′(u)

(
N f 2(u) + ( f (u)v′(r))2

)

f 3(u)
√

1 − (v′(r))2

=
N

∑
i=1

∂

∂xi

(
1

f (u)
· v′(r)√

1 − (v′(r))2
· xi

r

)
+

f ′(u)(N f 2(u) + ( f (u)v′(r))2)

f 3(u)
√

1 − (v′(r))2
.

(A.10)

From now on, let us fixed the notation φ(s) = s√
1−s2

.

From (A.7), (A.8), it follows that
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∂

∂xi

(
1

f (u)
· v′(r)√

1 − (v′(r))2
· xi

r

)

=
− f ′(u) · f (u) · v′(r) · xi

r

f 2(u)
· φ(v′(r)) · xi

r

+
1

f (u)

[
φ′(v′(r)) · xi

r
· xi

r
+ φ(v′(r)) · r − xi · xi

r

r2

]

=
− f ′(u) · v′(r) ·

( xi
r

)2

f (u)
· φ(v′(r))

+
1

f (u)
φ′(v′(r)) ·

( xi

r

)2
+

1

f (u)
· φ(v′(r)) · r2 − x2

i

r3
.

(A.11)

Hence

N

∑
i=1

∂

∂xi

(
1

f (u)
· v′(r)√

1 − (v′(r))2
· xi

r

)

=
− f ′(u) · v′(r)

f (u)
· φ(v′(r)) +

1

f (u)
φ′(v′(r)) +

1

f (u)
· φ(v′(r)) · N − 1

r
. (A.12)

From this and (A.10), we have that

div

(
grad u

f (u)
√

f 2(u)− | grad u|2

)
+

f ′(u)√
f 2(u)− | grad u|2

(
N +

| grad u|2
f 2(u)

)

=
− f ′(u) · v′(r)

f (u)
· φ(v′(r)) +

1

f (u)
φ′(v′(r)) +

1

f (u)
· φ(v′(r)) · N − 1

r

+
N f ′(u)

f (u)
√

1 − (v′(r))2
+

f ′(u)v′(r)
f (u)

· φ(v′(r))

=
1

f (u)
φ′(v′(r)) +

1

f (u)
· φ(v′(r)) · N − 1

r
+

N f ′(u)

f (u)
√

1 − (v′(r))2

= NH(u, r).

(A.13)

Hence, we have

φ′(v′(r)) +
N − 1

r
φ(v′(r)) = − N f ′(u)√

1 − (v′(r))2
+ N f (u)H(u, r),

multiplying both sides of the equation by rN−1, we get that

rN−1φ′(v′(r)) + (N − 1)rN−2φ(v′(r)) = NrN−1

[
− f ′(u)√

1 − (v′(r))2
+ f (u)H(u, r)

]
,

that is

−(rN−1φ(v′(r)))′ = NrN−1

[
f ′(u)√

1 − (v′(r))2
− f (u)H(u, r)

]
. (A.14)

From this and the fact

u(x) = ϕ−1(v(r)),
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problem (A.1) can be converted to





− (rN−1φ(v′))′ = NrN−1

[
f ′(ϕ−1(v))√

1 − v′2
− f (ϕ−1(v))H(ϕ−1(v), r)

]
, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0.

(A.15)
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Abstract. In the present paper, we further study the asymptotical behavior of the fol-
lowing higher order nonlinear difference equation

x(n + 1) = ax(n) + b f (x(n)) + c f (x(n − k)), n = 0, 1, . . .

where a, b and c are constants with 0 < a < 1, 0 ≤ b < 1, 0 ≤ c < 1 and a + b + c = 1,
f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0, and k is a positive integer, which has been
recently studied in: On global attractivity of a higher order difference equation and its
applications [Electron. J. Qual. Theory Diff. Equ. 2022, No. 2, 1–14 pp]. We obtain some
new sufficient conditions for the global attractivity of positive solutions of the equation,
and show the applications of these results to some population models..
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1 Introduction

Consider the following higher order nonlinear difference equation

x(n + 1) = ax(n) + b f (x(n)) + c f (x(n − k)), n = 0, 1, . . . , (1.1)

where a, b and c are constants with 0 < a < 1, 0 ≤ b < 1, 0 ≤ c < 1 and a + b + c = 1,

f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0 and k is a positive integer. The case when the

sum of the main coefficients of a higher order difference equation is equal to one is of a great

interest and has been studied a lot see, e.g., [1,2,19–23] and the related references therein. One

of the reasons is that such difference equations frequently model some processes in nature or

society. Recently, asymptotic behavior of positive solutions of Eq. (1.1) has been studied in [1].

Among other results, the following one was presented therein.

BCorresponding author. Email: qian@math.msstate.edu
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Theorem A. Assume that f (x) has a unique positive fixed point x̄ and satisfies the negative feedback

condition

(x − x̄)( f (x)− x) < 0, x > 0, x ̸= x̄. (1.2)

Suppose also ax + b f (x) is increasing, and f (x) is L-Lipschitz with

c
1 − ak+1

c + akb
L ≤ 1. (1.3)

Then every positive solution {x(n)} of Eq. (1.1) converges to x̄ as n → ∞.

In addition, by using a different approach, a new result on the global attractivity of positive

solutions of Eq. (1.1) was obtained in [2] for the special case that f is unimodal, that is,

f (x) = xg(x) where g ∈ C[[0, ∞), [0, ∞)] is decreasing.

In the present paper, we are still interested in the study of global attractivity of positive

solutions of Eq. (1.1), but for the case that f is decreasing, and furthermore for the case that

f is an S-map, that is, f : [0, ∞) → [0, ∞) is three times differentiable with (S f )(x) < 0 and

f ′(x) < 0 for x > 0 where S is the Schwarzian derivative

(S f )(x) =
f ′′′(x)

f ′(x)
−

3

2

(

f ′′(x)

f ′(x)

)2

.

Clearly, if we let

x(−k), x(−k + 1), . . . , x(0) (1.4)

be k + 1 given nonnegative numbers with x(0) > 0, then Eq. (1.1) has a unique positive

solution with initial condition (1.4).

In the next section, we establish two sufficient conditions on the global attractivity of

positive solutions of Eq. (1.1) under the conditions that f is a decreasing function and f is an

S-map, respectively. Our results can be applied to several difference equations derived from

mathematical biology. We show these applications in Section 3.

In the following discussion,we always assume that f is decreasing. In addition, for the

sake of convenience, we adopt the notation ∏
n
i=m s(i) = 1 and ∑

n
i=m s(i) = 0 whenever {s(n)}

is a real sequence and m > n.

2 Main results

Since f is decreasing, f has a unique positive fixed point x̄ and satisfies the negative feedback

condition (1.2). Hence by Lemma 2.1 in [1], every positive solution {x(n)} of Eq. (1.1) is

bounded and persistent.

In the following, we establish two sufficient conditions for every positive solution of

Eq. (1.1) to converge to x̄ as n → ∞. By an argument similar to that in the proof of Theo-

rem 2.2 in [1], we know that every nonoscillatory solution of Eq. (1.1) converges to x̄. Hence

we need to obtain conditions for every oscillatory solution of Eq. (1.1) to converge to x̄ also.

The following lemma on the asymptotic behavior of oscillatory solutions of Eq. (1.1) is

needed in the proof of our main results.

Lemma 2.1. Assume that ax + b f (x) is increasing and let {x(n)} be a positive solution of Eq. (1.1)

which oscillates about x̄. Then for any nonnegative integer m ≥ 0, there is a positive integer Nm such

that

u(2m) ≤ x(n) ≤ u(2m + 1) for n ≥ Nm (2.1)
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where {u(n)} is defined by

{

u(n) = c 1−ak+1

c+akb
f (u(n − 1)) + ak(b+ac)

c+akb
x̄, n = 1, 2, . . . ,

u(0) = ak(b+ac)
c+akb

x̄.
(2.2)

Proof. Let y(n) = x(n)− x̄. Then {y(n)} satisfies the equation

y(n + 1) = ay(n) + b( f (y(n) + x̄)− x̄) + c( f (y(n − k) + x̄)− x̄) (2.3)

and {y(n)} oscillates about zero.

Let y(i) and y(j) be two consecutive members of the solution {y(n)} such that

y(i) ≥ 0, y(j + 1) ≥ 0 and y(n) < 0 for i + 1 ≤ n ≤ j. (2.4)

and let

y(r) = min{y(i + 1), y(i + 2), . . . , y(j)}.

Then by an argument similar to that in the proof of Theorem 2.2 in [1] (the increasing property

of ax + b f (x) is needed in the proof) we may show that

r − (i + 1) ≤ k (2.5)

and

y(r) ≥
1 − a

c + akb
ar

r−1

∑
n=i

c

an+1
[ f (y(n − k) + x̄)− f (x̄)]. (2.6)

Noting f (y(n − k) + x̄) ≥ 0, f (x̄) = x̄ and (2.5), we see that

y(r) ≥ −x̄
1 − a

c + akb
ar

r−1

∑
n=i

c

an+1
= −x̄

1 − a

c + akb
c

(

1 − ar−i

1 − a

)

≥ −cx̄
1 − ak+1

c + akb

and so it follows that

y(n) ≥ −cx̄
1 − ak+1

c + akb
, i ≤ n ≤ j.

Since y(i) and y(j) are two arbitrary members of the solution with property (2.4), we see that

there is a positive integer N′
0 such that

y(n) ≥ −cx̄
1 − ak+1

c + akb

def
= z(0), n ≥ N′

0. (2.7)

Next, let y(i) and y(j) be two consecutive members of the solution {y(n)} with N′
0 + k ≤

i < j such that

y(i) ≤ 0, y(j + 1) ≤ 0 and y(n) > 0 for i + 1 ≤ n ≤ j (2.8)

and

y(t) = max{y(i + 1), y(i + 2), . . . , y(j)}.

Then by a similar argument, we may show that

t − (i + 1) ≤ k (2.9)
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and

y(t) ≤
1 − a

c + akb
at

t−1

∑
n=i

c

an+1
[ f (y(n − k) + x̄)− f (x̄)]. (2.10)

Since

z(0) + x̄ =

(

1 − c
1 − ak+1

c + akb

)

x̄ =
ak(b + ac)

c + akb
x̄ > 0,

f (z(0) + x̄) is well-defined. Since z(0) < 0 (see (2.7)) and f is decreasing, we see that

f (y(n − k) + x̄) ≤ f (z(0) + x̄) for n ≥ N′
0 + k.

Hence, it follows from (2.9) and (2.10) that

y(t) ≤
1 − a

c + akb
at

t−1

∑
n=i

c

an+1
[ f (z(0) + x̄)− f (x̄)] ≤ c

1 − ak+1

c + akb
[ f (z(0) + x̄)− x̄],

which yields

y(n) ≤ c
1 − ak+1

c + akb
[ f (z(0) + x̄)− x̄], i ≤ n ≤ j.

Since y(i) and y(j) are two arbitrary members of the solution with property (2.8), we see that

there is a positive integer N0 > N′
0 such that

y(n) ≤ c
1 − ak+1

c + akb
[ f (z(0) + x̄)− x̄]

def
= z(1), n ≥ N0.

Then, by an easy induction, we see that for each m ≥ 0, there is a positive integer Nm such

that

z(2m) ≤ y(n) ≤ z(2m + 1) for n ≥ Nm, (2.11)

where {z(n)} is defined by

{

z(n) = c 1−ak+1

c+akb
[ f (z(n − 1) + x̄)− x̄], n = 1, 2, . . . ,

z(0) = −cx̄ 1−ak+1

c+akb
.

(2.12)

Let u(n) = z(n) + x̄, n = 0, 1, . . . Then (2.11) and (2.12) become (2.1) and (2.2), respectively.

The proof is complete.

Theorem 2.2. Assume that ax + b f (x) is increasing and

c(1 − ak+1)

ak(b + ac)x̄
(x f (x))′ > −1, x > 0. (2.13)

Then every positive solution {x(n)} of Eq. (1.1) tends to its positive equilibrium x̄ as n → ∞.

Proof. As indicated at the beginning of the section, every nonoscillatory solution of Eq. (1.1)

converges to x̄. Hence we only need to show that every oscillatory solution converges to x̄

also. To this end, let {x(n)} be an oscillatory solution of Eq. (1.1). Then by Lemma 2.1, {x(n)}

satisfies (2.1). Since u(0) ≤ u(1), from (2.2) and the monotonicity of f it is not difficult to

see that {u(2m)} is increasing, {u(2m + 1)} is decreasing and u(2m) ≤ x̄ ≤ u(2m + 1), m =

0, 1, . . . Hence,

lim
m→∞

u(2m) = l ≤ x̄ and lim
m→∞

u(2m + 1) = L ≥ x̄
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exist, and l and L satisfy the equations

{

l = c 1−ak+1

c+akb
f (L) + ak(b+ac)

c+akb
x̄

L = c 1−ak+1

c+akb
f (l) + ak(b+ac)

c+akb
x̄.

(2.14)

We now show that l = L = x̄. To this end, let

g(x) = c
1 − ak+1

c + akb
x f (x) +

ak(b + ac)

c + akb
x̄x, x > 0

and observe that

g′(x) = c
1 − ak+1

c + akb
(x f (x))′ +

ak(b + ac)

c + akb
x̄, x > 0.

In view of (2.13), we see that g′(x) > 0. However, it follows from (2.14) that g(l) = g(L) = lL.

Hence l = L = x̄ and so limn→∞ u(n) = x̄. Then from (2.1) we see that x(n) → x̄ as n → ∞.

The proof is complete.

For the proof of the next theorem, we need the following lemma which is extracted

from [12].

Lemma 2.3. Consider the following difference equation

x(n + 1) = h(x(n)), n = 0, 1, . . . (2.15)

where h : [0, ∞) → [0, ∞) is an S-map. Assume that x̄ is the unique fixed point of h and |h′(x̄)| ≤ 1.

Then x̄ is a global attractor of all solutions of Eq. (2.15).

Theorem 2.4. Assume that ax + b f (x) is increasing and f is an S-map with

c
1 − ak+1

c + akb
f ′(x̄) ≥ −1. (2.16)

Then every positive solution {x(n)} of Eq. (1.1) tends to its positive equilibrium x̄ as n → ∞.

Proof. We only need to show that every oscillatory solution of Eq. (1.1) converges to x̄. Let

{x(n)} be an oscillatory solution. Then {x(n)} satisfies (2.1). Hence, to show that x(n) → x̄

as n → ∞ it suffices to show that u(n) → x̄ as n → ∞. To this end, let

h(x) = c
1 − ak+1

c + akb
f (x) +

ak(b + ac)

c + akb
x̄.

Clearly, h : [0, ∞) → [0, ∞), x̄ is the unique fixed point of h, h′(x) = c 1−ak+1

c+akb
f ′(x) < 0 and

(Sh)(x) = (S f )(x) < 0 for x > 0. Hence, h is an S-map. In addition, (2.16) yields |h′(x̄)| ≤ 1.

Therefore, all the conditions assumed in Lemma 2.3 are satisfied and so u(n) → x̄ as n → ∞.

Then it follows that x(n) → x̄ as n → ∞. The proof is complete.

Remark 2.5. By comparing Theorems 2.2 and 2.4 with Theorem A, we see that when f is a

decreasing function, the condition (2.13) is different from the condition (1.3); while when f is

an S-map, the condition (2.16) is better than the condition (1.3).
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3 Applications

In this section, we apply our results obtained in the last section to some difference equations

derived from mathematical biology.

Consider the following system of difference equations















x(n + 1) = (1 − ϵ) f (x(n)) + ϵy(n),

y(n + 1) = (1 − ϵ)y(n) + ϵ f (x(n)),

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.1)

where 0 < ϵ < 1 is a positive constant and f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0.

Sys. (3.1) is a population model proposed by Newman et al. [18] which assumes symmetric

dispersal between active population x(n) and refuge population y(n). The chaotic behavior

of positive solutions of Sys. (3.1) is studied in [18] by numerical simulations, whereas in

[3] various properties of solutions of (3.1) are studied and several results on the asymptotic

behavior of solutions of (3.1) are obtained. Recently, a sufficient condition on the global

stability of positive solutions of (3.1) is obtained in [1].

Notice that Sys. (3.1) can be converted into the second order difference equation

x(n + 1) = (1 − ϵ)x(n) + (1 − ϵ) f (x(n)) + (2ϵ − 1) f (x(n − 1)), n = 0, 1, . . . (3.2)

When f is decreasing and ϵ ≥ 1/2, Eq. (3.2) is in the form of (1.1) and f has a unique

positive fixed point x̄. Clearly, x̄ is the unique positive equilibrium of Eq. (3.2) and (x̄, x̄) is

the unique positive equilibrium of Sys. (3.1).

By Theorems 2.2 and 2.4, we may have the following result on the global attractivity of

positive solutions of Sys. (3.1).

Corollary 3.1. Assume that 1/2 ≤ ϵ < 1, f is decreasing and x + f (x) is increasing. Suppose also

that either x f (x) is differentiable with

(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄
(x f (x))′ > −1, x > 0 (3.3)

or f is an S-map with

(2 − ϵ)(2 − 1/ϵ) f ′(x̄) ≥ −1. (3.4)

Then every positive solution (x(n), y(n)) of Sys. (3.1) tends to its positive equilibrium (x̄, x̄) as

n → ∞.

Proof. As indicated above, Sys. (3.1) can be converted into (3.2) which is in the form of Eq. (1.1)

with a = b = 1 − ϵ, c = 2ϵ − 1 and k = 1. By the assumption, ax + b f (x) = (1 − ϵ)(x + f (x))

is increasing. In addition, noting

c(1 − ak+1)

ak(b + ac)
=

(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2
(3.5)

and

c
1 − ak+1

c + akb
= (2 − ϵ)(2 − 1/ϵ) (3.6)
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we see that when (3.5) or (3.6) holds, (2.13) or (2.16) holds respectively. Then by Theorems 2.2

and 2.4, every positive solution {x(n)} of Eq. (3.2) converges to x̄ as n → ∞. Then from (3.1)

we see that

ϵy(n) = x(n + 1)− (1 − ϵ) f (x(n)) → x̄ − (1 − ϵ) f (x̄) as n → ∞,

which yields

y(n) → x̄ as n → ∞.

Hence, it follows that every positive solution (x(n), y(n)) of Sys. (3.1) converges to (x̄, x̄). The

proof is complete.

Next, consider the following difference equation in the form

x(n + 1) = αx(n) + βg(x(n)) + γg(x(n − k)), n = 0, 1, . . . , (3.7)

where 0 < α < 1, β ≥ 0 and γ ≥ 0 with β + γ > 0 are constants, g ∈ C[[0, ∞), [0, ∞)] and k is

a positive integer, observe that it can be written as

x(n + 1) = αx(n) +
β(1 − α)

β + γ

[

β + γ

1 − α
g(x(n))

]

+
γ(1 − α)

β + γ

[

β + γ

1 − α
g(x(n − k))

]

, (3.8)

which is in the form of (1.1) with

a = α, b =
β(1 − α)

β + γ
, c =

γ(1 − α)

β + γ
and f (x) =

β + γ

1 − α
g(x).

Assume that x̄ is the unique positive fixed point of f (x), that is, x̄ is the only positive number

satisfying

g(x̄) =
1 − α

β + γ
x̄.

Clearly x̄ is the unique positive equilibrium of Eq. (3.7). Observing that

c(1 − ak+1)

ak(b + ac)x̄
=

γ(1 − αk+1)

αk(β + αγ)x̄

and

c
1 − ak+1

c + akb
f ′(x̄) =

γ(1 − αk+1)(β + γ)

(1 − α)(γ + αkβ)
g′(x̄),

we see that the following corollary on the global attractivity of x̄ is a direct consequence of

Theorems 2.2 and 2.4.

Corollary 3.2. Assume that g is decreasing and αx + βg(x) is increasing. Let x̄ be the unique positive

equilibrium of Eq. (3.7) and suppose that either xg(x) is differentiable with

γ(1 − αk+1)

αk(β + αγ)x̄
(xg(x))′ > −1 (3.9)

or g is an S-map with

γ(1 − αk+1)(β + γ)

(1 − α)(γ + αkβ)
g′(x̄) ≥ −1. (3.10)

Then every positive solution of Eq. (3.7) tends to x̄ as n → ∞.



8 X. Wang and C. Qian

When γ = 0, Eq. (3.7) reduces to

x(n + 1) = αx(n) + βg(x(n)), n = 0, 1, . . . (3.11)

Clearly, (3.9) is automatically satisfied since the left side is 0. From Corollary 3.2 we know that

when g is decreasing and αx + βg(x) is increasing, every positive solution {x(n)} of Eq. (3.11)

tends to its positive equilibrium x̄ as n → ∞ where x̄ is the unique positive number satisfying

x̄ = β
1−α g(x̄).

When β = 0, Eq. (3.7) reduces to

x(n + 1) = αx(n) + γg(x(n − k)), n = 0, 1, . . . , (3.12)

which includes several discrete models derived from mathematical biology. For instance,

when g(x) = 1
1+xp where p is a positive constant, Eq. (3.12) is a discrete analogue of a model

that has been used to study blood cells production [13]; when g(x) = e−qx where q is a positive

constant, Eq. (3.12) is a discrete version of a model of the survival of red blood cells in an

animal [25]. Due to its theoretical interest and applications, asymptotic behavior of positive

solutions of Eq. (3.12) and some related forms have been studied by numerous authors, see,

for example, [1, 2, 4–11, 13–25] and the references cited therein. As a special case of Eq. (3.7),

our results can be applied to Eq. (3.12) also.

In the following, we discuss the global attractivity of positive solutions of Eq. (3.7) when

g(x) = 1
1+xp and g(x) = e−qx where p and q are positive constants, respectively. When

g(x) = 1
1+xp , Eq. (3.7) becomes

x(n + 1) = αx(n) +
β

1 + xp
+

γ

1 + xp(n − k)
, n = 0, 1, . . . (3.13)

Clearly, g is decreasing and has a unique positive number x̄ satisfying g(x̄) = 1−α
β+γ x̄ which is

the only positive equilibrium of Eq. (3.13). When β = 0, αx + βg(x) = αx is increasing; when

β > 0 and p ≥ 1, noting

g′(x) =
−pxp−1

(1 + xp)2

and

g′′(x) =
−pxp−2((p − 1)− (p + 1)xp)

(1 + xp)3

we see that g′(x) takes minimum at x∗ = ( p−1
p+1 )

1/p and

g′(x∗) = −
1

4p
(p − 1)1−1/p(1 + p)1+1/p.

Hence, if p ≥ 1 and
β

4p
(p − 1)1−1/p(1 + p)1+1/p ≤ α, (3.14)

then

(αx + βg(x))′ ≥ α + βg′(x∗) = α −
β

4p
(p − 1)1−1/p(1 + p)1+1/p ≥ 0

and so αx + βg(x) is increasing.
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Next, observe that

(xg(x))′ =
1 + (1 − p)xp

(1 + xp)2

and

(xg(x))′′ =
pxp−1((p − 1)xp − (p + 1))

(1 + xp)3
.

We see that when p ≤ 1, (xg(x))′ > 0 and so (3.9) is true; when p > 1, (xg(x))′ has minimum

at x∗ =
( p+1

p−1

)1/p
. Hence in this case,

(xg(x))′ ≥ (xg(x))′|x=x∗ = −
(p − 1)2

4p
. (3.15)

Clearly, if

γ(1 − αk+1)

αk(β + αγ)x̄

(

−
(p − 1)2

4p

)

> −1,

that is,
γ(1 − αk+1)

αk(β + αγ)x̄

(p − 1)2

4p
< 1, (3.16)

then by noting (3.15) we know that (3.9) is satisfied. Furthermore, by a simple calculation, we

find that for p > 1,

(Sg)(x) =
g′′′(x)

g′(x)
−

3

2

(

g′′(x)

g′(x)

)2

=
1

2
(1 − p)(1 + p)x−2

< 0, x > 0,

that is, g is an S-map. In addition, by noting

g′(x̄) = −
px̄p−1

(1 + x̄p)2
= −px̄p−1g2(x̄) = −px̄p−1

(

1 − α

β + γ
x̄

)2

= −p

(

1 − α

β + γ

)2

x̄p+1

we see that if
γ(1 − αk+1)(β + γ)

(1 − α)(γ + αkβ)

(

−p

(

1 − α

β + γ

)2

x̄p+1

)

≥ −1,

that is,
γ(1 − α)(1 − αk+1)

(β + γ)(γ + αkβ)
px̄p+1 ≤ 1, (3.17)

then (3.10) is satisfied. Hence, by Corollary 3.2, we have the following conclusion: every

positive solution of Eq. (3.13) tends to its positive equilibrium x̄ as n → ∞ if one of the

following holds

(i) p ≤ 1 and β = 0;

(ii) p ≥ 1, (3.14) and (3.16) hold;

(iii) p > 1, (3.14) and (3.17) hold.

When f (x) = 1
1+xp , Sys. (3.1) becomes















x(n + 1) = 1−ϵ
1+xp(n)

+ ϵy(n),

y(n + 1) = (1 − ϵ)y(n) + ϵ
1+xp(n)

,

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.18)
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and it can be converted into Eq. (3.13) with α = β = 1 − ϵ, γ = 2ϵ − 1 and k = 1. Since α = β,

(3.14) reduces to
1

4p
(p − 1)1−1/p(1 + p)1+1/p ≤ 1. (3.19)

Hence, when p ≥ 1 and (3.19) holds, x + f (x) is increasing. Note that f (x) = g(x). From

(3.15), (3.17) and the above discussion, we know that when p ≥ 1,

(x f (x))′ ≥ −(p − 1)2/(4p) (3.20)

and

f (x̄) = −p

(

1 − α

β + γ

)2

x̄p+1 = −px̄p+1. (3.21)

Clearly, (3.20) implies that if

(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄

(

−
(p − 1)2

4p

)

> −1,

that is,
(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄

(p − 1)2

4p
< 1, (3.22)

then (3.5) is satisfied, and (3.21) implies that if

(2 − ϵ)(2 − 1/ϵ)(−px̄p+1) ≥ −1,

that is,

(2 − ϵ)(2 − 1/ϵ)px̄p+1 ≤ 1, (3.23)

then (3.6) is satisfied. In addition, from the above discussion, we know that when p > 1, f

is an S-map. Hence, by Corollary 3.1, we have the following conclusion: when 1/2 ≤ ϵ < 1,

every positive solution of Sys. (3.18) converges to its positive equilibrium (x̄, x̄) as n → ∞ if

either p ≥ 1, (3.19) and (3.22) hold, or p > 1, (3.19) and (3.23) hold.

Example 3.3. Consider the equation

x(n + 1) = (1/2)x(n) + (3/4)
1

1 + x2(n)
+ (1/4)

1

1 + x2(n − 3)
, n = 0, 1, . . . , (3.24)

which is in the form of Eq. (3.7) with α = 1/2, β = 3/4, γ = 1/4, k = 3 and g(x) = 1/(1 + x2).

Note that x̄ = 1 is the unique positive equilibrium of Eq. (3.24). Since p = 2,

β

4p
(p − 1)1−1/p(1 + p)1+1/p = (3/4)(1/8)33/2

< 1/2 = α,

that is, (3.14) is satisfied. In addition, observing that

γ(1 − αk+1)

αk(β + αγ)x̄

(p − 1)2

4p
=

(1/4)(1 − (1/2)4)

(1/2)3((3/4) + (1/2)(1/4))
·

1

8
=

15

56
< 1

we see that (3.16) is satisfied. Hence, from the above discussion, we know that every positive

solution of Eq. (3.24) tends to its positive equilibrium x̄ = 1 as n → ∞.
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Example 3.4. Consider the system















x(n + 1) = 7/15
1+x3(n)

+ (8/15)y(n),

y(n + 1) = (7/15)y(n) + 8/15
1+x3(n)

,

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.25)

which is in the form of Sys. (3.18) with ϵ = 8/15 and f (x) = 1/(1 + x3). Since p = 3,

1

4p
(p − 1)1−1/p(p + 1)1+1/p = (1/12)22/344/3

< 1,

that is, (3.19) is satisfied. In addition, we know that f is an S-map. Sys. (3.25) has the

unique positive equilibrium (x̄, x̄) where x̄ is the unique positive fixed point of f . Observing

x̄(1 + x̄3) = 1, we see that x̄ < 1. Then it follows that

(2 − ϵ)(2 − 1/ϵ)px̄p+1 ≤ (2 − 8/15)(2 − 15/8)3 = 11/20 < 1

and so (3.22) is satisfied. Hence, from the above discussion, we know that every positive

solution of Sys. (3.25) tends to its positive equilibrium (x̄, x̄) as n → ∞.

When g(x) = e−qx, Eq. (3.7) becomes

x(n + 1) = αx(n) + βe−qx(n) + γe−qx(n−k), n = 0, 1, . . . . (3.26)

Since g is decreasing, there is a unique positive number x̄ satisfying g(x̄) = 1−α
β+γ x̄. Clearly x̄ is

the only positive equilibrium of Eq. (3.26). Noting

(αx + βg(x))′ = (αx + βe−qx)′ = α − qβe−qx

we see that αx + βe−qx is increasing when

α ≥ qβ. (3.27)

In addition, observing that

(xg(x))′ = (1 − qx)e−qx and (xg(x))′′ = q(qx − 2)e−qx

we find that (xg(x))′ takes minimum when x = 2/q and so

(xg(x))′ ≥ (xg(x))′|x=q/2 = −e−2. (3.28)

Hence, if
γ(1 − αk+1)

αk(β + αγ)x̄
(−e−2) > −1,

that is,
γ(1 − αk+1)

αk(β + αγ)x̄
< e2, (3.29)

then (3.9) is satisfied. Furthermore, by a simple calculation, we find that

(Sg)(x) =
g′′′(x)

g′(x)
−

3

2

(

g′′(x)

g′(x)

)2

= −(1/2)q2
< 0, x > 0,
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that is, g is an S-map. In addition, by noting

g′(x̄) = −qe−qx̄ = −q
1 − α

β + γ
x̄ (3.30)

we see that if
γ(1 − αk+1)(β + γ)

(1 − α)(γ + αkβ)

(

−q
1 − α

β + γ
x̄

)

≥ −1

that is,
γ(1 − αk+1)

γ + αkβ
qx̄ ≤ 1, (3.31)

then (3.10) is satisfied. Hence, by Corollary 3.2, we have the following conclusion: if (3.27)

holds and either (3.29) or (3.31) holds also, then every positive solution of Eq. (3.26) tends to

its positive equilibrium as n → ∞.

When f (x) = e−qx, Sys. (3.1) is















x(n + 1) = (1 − ϵ)e−qx(n) + ϵy(n),

y(n + 1) = (1 − ϵ)y(n) + ϵe−qx(n),

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.32)

and it can be converted into Eq. (3.26) with α = β = 1 − ϵ, γ = 2ϵ − 1 and k = 1. Since α = β,

(3.27) reduces to q ≤ 1. Noting f (x) = g(x), from (3.28), (3.30) and the above discussion, we

know that

(x f (x))′ ≥ −e−2 (3.33)

and

f ′(x̄) = −qe−qx̄ = −q
1 − α

β + γ
x̄ = −qx̄. (3.34)

Clearly, (3.33) implies that if

(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄
(−e−2) > −1,

that is,
(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄
< e2, (3.35)

then (3.5) is satisfied, and if

(2 − ϵ)(2 − 1/ϵ)(−qx̄) ≥ −1,

that is,

(2 − ϵ)(2 − 1/ϵ)qx̄ ≤ 1, (3.36)

then (3.6) is satisfied. Hence, by Corollary 3.1, we have the following conclusion on the global

attractivity of positive solutions of Sys. (3.32): if q ≤ 1 and either (3.35) or (3.36) holds, then

every positive solution of Sys. (3.32) tends to its positive equilibrium (x̄, x̄) as n → ∞.

Example 3.5. Consider the equation

x(n + 1) = (2/3)x(n) + (1/3)e−2x(n) + (1/4)e−2x(n−3), n = 0, 1, . . . (3.37)
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which is in the form of Eq. (3.26) with α = 2/3, β = 1/3, γ = 1/4, k = 3 and g(x) = e−2x.

Noting q = 2, we see that (3.27) is satisfied. Let x̄ be the unique positive equilibrium of

Eq. (3.37). Then x̄ satisfies x̄e2x̄ = 7/4. By noting (1/2)e2(1/2)
< 7/4, we see that x̄ > 1/2 and

so it follows that

γ(1 − αk+1)

αk(β + αγ)x̄
<

(1/4)(1 − (2/3)4)

(2/3)3((1/3) + (2/3)(1/4))(1/2)
=

65

24
< e2,

that is, (3.29) holds. Hence, from the above discussion, we know that every positive solution

of Eq. (3.37) converges to its positive equilibrium x̄ as n → ∞.

Example 3.6. Consider the system















x(n + 1) = (2/5)e−(1/2)x(n) + (3/5)y(n),

y(n + 1) = (2/5)y(n) + (3/5)e−(1/2)x(n),

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.38)

which is in the form of Sys. (3.32) with ϵ = 3/5 and f (x) = e−(1/2)x. Note that q = 1/2 < 1.

Sys. (3.38) has the unique positive equilibrium (x̄, x̄) where x̄ is the unique positive fixed point

of f . Noting x̄e(1/2)x̄ = 1, we see that x̄ < 1. Then it follows that

(2 − ϵ)(2 − 1/ϵ)qx̄ ≤ (2 − 3/5)(2 − 5/3)(1/2) = 7/30 < 1

and so (3.36) is satisfied. Hence, from the above discussion, we know that every positive

solution of Sys. (3.38) tends to its positive equilibrium (x̄, x̄) as n → ∞.
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1 Introduction and main results

We are concerned with the existence of solutions for the following quasilinear Schrödinger

equation

−∆u + V(x)u − u

2
√

1 + u2
∆(

√

1 + u2) = λh(u), x ∈ R
N , (1.1)

which models the self-channeling of a high-power ultrashort laser in matter (see [2]).

The main mathematical difficulty with problem (1.1) is caused by the quasilinear term
u

2
√

1+u2
∆(

√
1 + u2), the natural functional corresponding to problem (1.1) maybe not well de-

fined for all u ∈ H1(RN). To overcome this difficulty, various arguments have been developed,

such as a change of variables (see [1, 4, 5, 11, 15, 17]) and a perturbation method (see [3]). Chu

and Liu [1] proved that (1.1) has a positive solution by using the monotonicity trick and a

priori estimate in the radial space. It is a little surprising that no condition is assumed on the

nonlinear term h(u) near infinity. For the periodic potential, there are references [4, 5], they

discussed the following equation

−∆u + V(x)u − [∆(1 + u2)α/2]
αu

2(1 + u2)(2−α)/2
= h(x, u), (1.2)

BCorresponding author. Email: xueyanfang2015@163.com
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where α is a parameter. Jalilian [4] considered equation (1.2) with 1.36 < α ≤ 2 and proved

that (1.2) had infinitely many geometrically distinct solutions. Then, Li [5] extended the re-

sults to 1 ≤ α ≤ 2 and proved the existence of a ground state solution for equation (1.2). Shen

and Wang [11] studied the well potential and got the standing wave solutions for (1.1) with

subcritical or critical growth by using Resonance Theorem and Hahn–Banach Theorem. For

the steep potential well, one can see [15], the authors obtained the existence of a ground state

solution by using the Mountain Pass Theorem, and considered the concentration behavior of

the solution. In [17], the authors considered the constant potential and obtained the existence

and multiplicity of radial and nonradial normalized solutions for problem (1.1) when h sat-

isfies the well-known Berestycki–Lions condition. As far as we know, there are no results

concerning problem (1.1) with the asymptotically periodic potential except [16].

However, the related semilinear equation with the asymptotically periodic condition has

been extensively studied, see [6,8,13,18] and their references. We would like to point out that

in reference [6, 8], they discussed the asymptotically periodic potential and given reformative

conditions which unify the asymptotic processes of V, h at infinity. The asymptotic processes

is weaker than those in [13, 18].

In the present paper, we borrow an idea from [1, 6] to discuss problem (1.1) with the

asymptotically periodic potential. Denote

F0 :=
{

k(x) : ∀ϵ > 0, lim|y|→∞ meas{x ∈ B1(y) : |k(x)| ≥ ϵ} = 0
}

.

Then, we give some assumptions on the potential V(x) and the nonlinear term h(s).

(V) 0 ≤ V(x) ≤ V0(x) ∈ L∞(RN), V(x)− V0(x) ∈ F0, infx∈RN V0(x) > 0 and V0(x) satisfies

V0(x + z) = V0(x) for all x ∈ R
N and z ∈ Z

N .

The function h ∈ C(R, R) satisfies

(h1) there exist p > 2, δ ∈ (0, 1) such that the function s 7→ h(s)
sp−1 is nondecreasing and h(s) > 0

on (0, δ].

(h2) there exists q ∈ (2, 2∗) such that lim infs→0+
H(s)

sq > 0, where H(s) =
∫ s

0 h(t)dt and

2∗ = 2N
N−2 is the Sobolev critical exponent.

Now we state our main result.

Theorem 1.1. Suppose that conditions (V) and (h1), (h2) are satisfied, then there is λ1 > 0 such that

problem (1.1) possesses a positive solution for λ ≥ λ1.

Remark 1.2. (1) We emphasize that no condition is assumed on the nonlinear term h(u) near

infinity in Theorem 1.1. In all these previous works for problem (1.1), among other assump-

tions, the authors always assume that the nonlinear term h(u) has growth conditions near

infinity except [1]. However, Chu and Liu [1] investigated quasi-linear Schrödinger equations

in the radial space. They had the compactness and got certain solutions easily. In our cases,

we do not have compact embedding. Due to the lack of compact embedding, the existence

of ground states of problem (1.1) becomes rather complicated. we borrow an idea from [6] to

overcome this difficulty.

(2) Our results also can be seen as the extension of semilinear poroblem in [6] to the

quasilinear one.

(3) For simplicity, we will abbreviate
∫

RN k(x)dx as
∫

RN k(x).
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Notation: In this paper, we use the following notations.

• H1(RN) is the usual Hilbert space endowed with the norm

∥u∥2
H =

∫

RN

(

|∇u|2 + u2

)

.

• Ls(RN) is the usual Banach space endowed with the norm

∥u∥s
s =

∫

RN
|u|s, ∀s ∈ [1,+∞).

• ∥u∥∞ = ess supx∈RN |u(x)| denotes the usual norm in L∞(RN).

• E = {u ∈ H1(RN) :
∫

RN V(x)u2
< ∞} is endowed with the norm

∥u∥2 =
∫

RN

(

|∇u|2 + V(x)u2

)

.

• Br(y) := {x ∈ R
N : |x − y| < r}.

• C, C1, C2, . . . denote various positive (possibly different) constants.

2 Some preliminary results

We note that the solutions of problem (1.1) are the critical points of the functional

Jh(u) =
1

2

∫

RN

[(

1 +
u2

2(1 + u2)

)

|∇u|2
]

+
1

2

∫

RN
V(x)u2 − λ

∫

RN
H(u).

Variational methods cannot be applied directly to find weak solutions of problem (1.1), since

the natural associated functional Jh(u) is not well defined in general in the space E. To over-

come this difficulty, we borrow an idea from Shen and Wang [10].

Let F(u) :=
∫ u

0 f (t)dt, where f is defined by

f (t) =

√

1 +
t2

2(1 + t2)
. (2.1)

After the change of variables u = F−1(v) from J, we get a new variational functional

Ih(v) =
1

2

∫

RN
(|∇v|2 + V(x)|F−1(v)|2)− λ

∫

RN
H(F−1(v)).

Since f is a nondecreasing positive function, we obtain |F−1(v)| ≤ |v|
f (0)

= |v|. From this and

the conditions of h, it is clear that Ih is well defined in E and Ih ∈ C1(E, R) (see [2, 10, 11] for

details). Now, we give another equation

−div

[(

1 +
u2

2(1 + u2)

)

∇u

]

+ V(x)u +
u

2(1 + u2)2
|∇u|2 = λh(u), (2.2)
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which is equivalent to (1.1). In fact, we only need to show that

−div

[(

1 +
u2

2(1 + u2)

)

∇u

]

+
u

2(1 + u2)2
|∇u|2 = −∆u − u

2
√

1 + u2
∆(

√

1 + u2).

By a direct calculation, we obtain

− div

[(

1 +
u2

2(1 + u2)

)

∇u

]

+
u

2(1 + u2)2
|∇u|2

= −div∇u − u2

2(1 + u2)
div∇u −∇u · ∇ u2

2(1 + u2)
+

u

2(1 + u2)2
|∇u|2

= −∆u − u2

2(1 + u2)
∆u − u

2(1 + u2)2
|∇u|2

= −∆u − u

2
√

1 + u2

(

u√
1 + u2

div∇u +∇u · ∇ u√
1 + u2

)

= −∆u − u

2
√

1 + u2
∆(

√

1 + u2).

If u is a weak solution of problem (1.1), then it is also a weak solution of (2.2) and should

satisfy

∫

RN

[(

1 +
u2

2(1 + u2)

)

∇u · ∇φ +
u

2(1 + u2)2
|∇u|2 φ + V(x)uφ − λh(u)φ

]

= 0, (2.3)

for all φ ∈ C∞
0 (RN). Let φ = ψ

f (u)
, then, it can be checked that (2.3) is equivalent to the

following equality

∫

RN

(

∇v · ∇ψ + V(x)
F−1(v)

f (F−1(v))
ψ − λ

h(F−1(v))

f (F−1(v))
ψ

)

= 0. (2.4)

Therefore, in order to find the solutions of problem (1.1), it suffices to study the existence of

solutions of the following equation

−△v + V(x)
F−1(v)

f (F−1(v))
= λ

h(F−1(v))

f (F−1(v))
, x ∈ R

N . (2.5)

Now, we summarize the properties of F−1, f .

Lemma 2.1. The functions F−1, f satisfy the following properties:

(1) 1 ≤ f (t) ≤
√

3
2 for all t ∈ R;

(2) 1 ≤ F−1(t) f (F−1(t))
t ≤ 6 − 2

√
6 for all t ∈ R, t ̸= 0;

(3)
√

2
3 |t| ≤ |F−1(t)| ≤ |t| for all t ∈ R;

(4) F−1(t)
t → 1 as t → 0;

(5) F−1(t)
t →

√

2
3 as t → ∞;

(6) 0 ≤ f ′(t)t
f (t)

≤ 5 − 2
√

6 for all t ∈ R;
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(7) The function t
f (t)F(t)

is strictly decreasing for all t ≥ 0;

(8) The function tµ

f (t)F(t)
, µ ∈ (2, p) is strictly increasing for all t ≥ 0.

Proof. The proof of the items (1)–(6) have been proved in [11], we only need to prove items

(7)(8). Let l1(t) =
t

f (t)F(t)
. Since f (t) is strictly increasing in (0,+∞), one has

0 ≤ F(t) =
∫ t

0
f (s)ds < t f (t). (2.6)

Then using item (6) and (2.6), we obtain

l′(t) =
F(t)− t f (t)− f ′(t)t

f (t)
F(t)

f (t)F2(t)
≤ F(t)− t f (t)

f (t)F2(t)
< 0.

The above inequality proves item (7).

Let lµ(t) =
tµ

f (t)F(t)
, l0(t) = [µ − (5 − 2

√
6)]F(t)− t f (t). It is following from item (6) that

l′0(t) = (µF(t)− t f (t))′ = f (t)

(

µ − (6 − 2
√

6)− f ′(t)t
f (t)

)

> 0.

We can get that l0(t) is strictly increasing in (0,+∞) and l0(t) > l0(0) = 0 for t > 0. Then,

using item (6) again, we obtain

l′µ(t) =
tµ−1

f (t)F2(t)

[

µF(t)− t f (t)− f ′(t)t
f (t)

F(t)

]

≥ tµ−1

f (t)F2(t)
l0(t) > 0.

The above inequality proves item (8).

Lemma 2.2 ([8]). Suppose that condition (V) is satisfied. Then, the norms ∥ · ∥H and ∥ · ∥ are

equivalent in the space E and the embedding E →֒ Lα(RN) is continuous for any α ∈ [2, 2∗].

Lemma 2.3 ([12]). Let E be a real Banach space and I ∈ C1(E, R). Let S be a closed subset of E which

disconnects E in distinct connected components E1, E2. Suppose further that I(0) = 0 and

(1) 0 ∈ E1 and there is α > 0 such that I|S ≥ α > 0.

(2) there is ρ > 0, e ∈ E2, ∥e∥ > ρ, such that I(e) < 0.

Then I possesses a sequence {un} ⊂ E satisfying

I(un) → c ≥ α, (1 + ∥un∥)∥I′(un)∥ → 0, (2.7)

where c ≥ α > 0 given by

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

We call the sequence {un} that satisfies (2.7) ia a (C)c sequence of the functional I.

Lemma 2.4. Assume that condition (V) holds. If {un} is bounded in E and un → 0 in Lα
loc(R

N) for

α ∈ [2, 2∗), one has

An1 :=
∫

RN
(V(x)− V0(x)) |F−1(un)|2 = on(1).
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Proof. When k(x) ∈ F0, for any ϵ > 0, there exists Rϵ > 0 such that
∫

|k(x)|≥ϵ
u2 ≤ C0

∫

BRϵ+1(0)
u2 + C1ϵ2/N∥u∥2

H, ∀u ∈ E, (2.8)

where C0, C1 are positive constants and independent on ϵ. Inequality (2.8) has already been

proved in [8], we omit it here.

Let k(x) := V(x)− V0(x) ∈ F0, then, |k(x)| ≤ 2|V0(x)| ≤ 2∥V0∥∞, by using Lemma 2.1-(3)

and (2.8), we have

|An1| ≤
∫

RN
|k(x)||F−1(un)|2 ≤

∫

RN
|k(x)u2

n|

=
∫

|k(x)|≥ϵ
|k(x)u2

n|+
∫

|k(x)|<ϵ
|k(x)u2

n|

≤ 2∥V0∥∞

[

C0

∫

BRϵ+1(0)
u2

n + C1ϵ
2
N ∥un∥2

H

]

+ ϵ

∫

RN
|un|2

= on(1) + C2ϵ
2
N + C3ϵ.

Let ϵ → 0, Lemma 2.4 holds.

Lemma 2.5. Assume that condition (V) holds, {un} ⊂ E is bounded, |zn| → +∞. Then for any

φ ∈ C∞
0 (RN), one has

Bn1 :=
∫

RN
(V(x)− V0(x))

F−1(un)

f (F−1(un))
φ(x − zn) = on(1).

Proof. Since φ ∈ C∞
0 (RN), we get that

∫

BRϵ+1(0)
|φ(x − zn)|2 = on(1). (2.9)

Let k(x) := V(x) − V0(x) ∈ F0, by using Lemma 2.1-(3), (2.8), (2.9) and the Hölder in-

equality, we have

|Bn1| ≤
∫

|k|≥ϵ

∣

∣

∣

∣

k(x)F−1(un)

f (F−1(un))
φ(x − zn)

∣

∣

∣

∣

+
∫

|k|<ϵ

∣

∣

∣

∣

k(x)F−1(un)

f (F−1(un))
φ(x − zn)

∣

∣

∣

∣

≤ 2∥V0∥∞

∫

|k|≥ϵ
|un φ(x − zn)|+ ϵ

∫

|k|<ϵ
|un φ(x − zn)|

≤ 2∥V0∥∞∥un∥2

(

∫

|k|≥ϵ
|φ(x − zn)|2

)1/2

+ ϵ∥un∥2∥φ∥2

≤ C4

(

C0

∫

BRϵ+1(0)
|φ(x − zn)|2 + C1ϵ2/N∥φ∥2

H

)1/2

+ C5ϵ

= on(1) + C6ϵ1/N + C5ϵ.

Let ϵ → 0, Lemma 2.5 is proved.

3 Proof of Theorem 1.1

By assumptions (h1) and (h2), we get that p ≤ q and

|h(s)s| ≤ C|s|p, ∀|s| ≤ δ.
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Then, we need to modify h(u) to prove our main results. Set

g(s) :=











0, s ≤ 0,

h(s), 0 < s ≤ δ,

C1sp−1, s > δ.

We can fix C1 > 0 such that g ∈ C(R, R
+). According to the definition of g, and we can get

the following lemma easily.

Lemma 3.1. Suppose that (h1) is satisfied. Then

(1) lims→+∞
G(s)

s2 = +∞, where G(s) =
∫ s

0 g(t)dt.

(2) there exists C > 0 such that |g(s)s| ≤ C|s|p and |G(s)| ≤ C|s|p for all s ∈ R.

(3) there exists µ ∈ (2, p) such that the function s 7→ g(s)
sµ−1 is strictly increasing on (0,+∞).

Let us consider the modified equation of problem (2.5) given by

−△v + V(x)
F−1(v)

f (F−1(v))
= λ

g(F−1(v))

f (F−1(v))
, x ∈ R

N . (3.1)

We note that the solutions of problem (3.1) are the critical points of the functional

I(v) =
1

2

∫

RN
(|∇v|2 + V(x)|F−1(v)|2)− λ

∫

RN
G(F−1(v)).

In order to prove our results, we need the periodic problem as follow

−△v + V0(x)
F−1(v)

f (F−1(v))
= λ

g(F−1(v))

f (F−1(v))
, x ∈ R

N , (3.2)

whose corresponding energy functional is denoted as

I0(v) =
1

2

∫

RN

[

|∇v|2 + V0(x)|F−1(v)|2
]

−
∫

RN
G(x, F−1(v)).

Define

N = {u ∈ E : ⟨I′(u), u⟩ = 0, u ̸= 0}, N0 = {u ∈ E : ⟨I′0(u), u⟩ = 0, u ̸= 0},

c = inf
u∈N

I(u), c0 = inf
u∈N0

I0(u).

Then we can deduce the following lemma.

Lemma 3.2. Suppose that conditions (V) and (h1), (h2) hold, then for each u ∈ E, u ̸= 0, there is a

unique tu > 0 such that tuu ∈ N . Moreover, the maximum of I(tu) for t ≥ 0 is achieved at tu.

Proof. By Lemma 2.1-(3), Lemma 3.1-(2) and the Sobolev inequality, one has

∫

RN
G(F−1(tu)) ≤ C

∫

RN
|F−1(tu)|p ≤ Ctp

∫

RN
up ≤ Ctp∥u∥p. (3.3)
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It follows from Lemma 2.1-(3), (3.3) and Lemma 2.2 that

Ψ(t) := I(tu) =
1

2

∫

RN

[

|∇(tu)|2 + V(x)|F−1(tu)|2
]

− λ

∫

RN
G(F−1(tu))

≥ t2

2

∫

RN
|∇u|2 + t2

3

∫

RN
V(x)u2 − λCtp∥u∥p

≥ t2

3
∥u∥2 − λCtp∥u∥p.

Therefore, we can get Ψ(t) > 0 whenever t > 0 is small enough.

Let Ω = {x ∈ R
N : u(x) > 0}, then thanks to Lemma 3.1-(1), Lemma 2.1-(3)(5) and the

Fatou Lemma, we can deduce that

lim sup
t→∞

Ψ(t)

t2
≤ 1

2
∥u∥2 − λ lim inf

t→∞

∫

Ω

G(F−1(tu))

|F−1(tu)|2 · |F
−1(tu)|2
(tu)2

· u2 = −∞.

Hence, Ψ(t) → −∞ as t → ∞ and Ψ has a positive maximum.

The condition Ψ′(t) = 0 is equivalent to

∫

RN
|∇u|2 =

∫

RN

[

λg(F−1(tu))

tu f (F−1(tu))
− V(x)F−1(tu)

f (F−1(tu))tu

]

u2.

Let

Z(s) :=
g(s)

f (s)F(s)
− V(x)s

f (s)F(s)
.

By Lemma 3.1-(3) and Lemma 2.1-(7)(8), s 7→ Z(s) is strictly increasing for s > 0, so there is a

unique tu > 0 such that Ψ′(tu) = 0. The conclusion is true since Ψ′(t) = t−1⟨I′(tu), tu⟩.

Lemma 3.3. Suppose that (V) and (h1), (h2) hold. Then

(i) there exists ρ > 0 such that ∥u∥ ≥ ρ for all u ∈ N .

(ii) the functional I is bounded from below on N by a positive constant.

Proof. (i) For any u ∈ N , By Lemma 3.1-(1)(2), Lemma 2.2-(1)(3) and the Sobolev inequality,

we have

2

3
∥u∥2 ≤

∫

RN
|∇u|2 +

∫

RN
V(x)

F−1(u)

f (F−1(u))
u = λ

∫

RN

g(F−1(u))

f (F−1(u))
u

≤ λC
∫

RN
up ≤ λC∥u∥p.

Hence, there exists ρ > 0 independent of u such that ∥u∥ ≥ ρ.

(ii) It follows from (3.3) and Lemma 2.1-(3) that

I(u) =
1

2

∫

RN
|∇u|2 + 1

2

∫

RN
V(x)|F−1(u)|2 − λ

∫

RN
G(F−1(u))

≥ 1

3
∥u∥2 − λC∥u∥p.

Since p > 2, there exists σ > 0 such that I(u) ≥ σ2

4 > 0 for ∥u∥ = σ > 0. For any v ∈ N , there

exists t1 > 0 such that t1∥v∥ = σ. By Lemma 3.1-(1)(2), we obtain

I(v) ≥ I(t1v) ≥ σ2

4
.

This completes the proof.
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Lemma 3.4. Suppose that conditions (V) and (h1), (h2) are satisfied. If u ∈ N and I(u) = c, then u

is a ground state solution of problem (3.1) (see [8, 16]).

It follows from [16] that the periodic problem (3.2) has a positive ground state solution u.

From Lemma 3.2, there is a unique tu > 0 such that tuu ∈ N . Moreover, the maximum of

I(tu) for t ≥ 0 is achieved at tu. Thanks to V(x) ≤ V0(x), we obtain

c ≤ I(tuu) ≤ I0(tuu) ≤ I0(u) = c0, (3.4)

hence c ≤ c0. Thanks to Lemma 3.3-(ii), we can also get c > 0.

As the argument in [14, Theorem 4.2], we obtain the following lemma due to Lemmas 3.1–

3.3.

Lemma 3.5. Suppose that (V) holds, h satisfies (h1), (h2), then

c = inf
u∈N

I(u) = inf
u∈E

max
t>0

I(tu) = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(t)) < 0}.

The above lemma is also valid for functional I0.

Next, we will give the boundedness of the Cerami sequences.

Lemma 3.6. Suppose that conditions (V) and (h1), (h2) hold. Let {un} ⊂ E be a (C)c sequence for

the functional I. Then {un} is bounded in E .

Proof. Suppose by contradiction that {un} ⊂ E be a sequence such that ∥un∥ → ∞, I(un) → c

and (1 + ∥un∥)∥I′(un)∥ → 0. Set vn := un

∥un∥ , then, there is a v ∈ E such that vn ⇀ v in E,

vn → v in L2
loc(R

N) and vn(x) → v(x) a.e. in R
N .

If v ̸= 0, let Ω∗ = {x ∈ R
N : v(x) > 0}, then meas Ω∗ > 0. For a.e. x ∈ Ω∗, one has

un(x) → +∞ as ∥un∥ → +∞,

since vn(x) = un(x)
∥un∥ → v(x) > 0 for a.e. x ∈ Ω∗, from Lemma 2.1-(5) and the fact that F−1(t) is

strictly increasing, we can deduce that for a.e. x ∈ Ω∗,

F−1(un) → +∞ as ∥un∥ → +∞.

It follows from Lemma 2.1-(3)(5) and Lemma 3.1-(1) that

0 = lim sup
n→∞

I(un)

∥un∥2

≤ lim sup
n→∞

1
2∥un∥2 − λ

∫

RN G(F−1(un))

∥un∥2

=
1

2
− λ lim inf

n→∞

∫

Ω∗

(

G(F−1(un))

|F−1(un)|2
· |F

−1(un)|2
u2

n

· v2
n

)

= −∞.

A contradiction, thus v = 0. Define

β := lim sup
n→∞

sup
z∈RN

∫

B1(z)
v2

ndx.
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If β = 0, by the Lions lemma [14, Lemma 1.21], we get vn → 0 in Lp(RN) for p ∈ (2, 2∗). It

follows from Lemma 3.1-(2) and Lemma 2.1-(3) that

∫

RN
G(F−1(tvn)) ≤ C

∫

RN
|F−1(tvn)|p ≤ Ctp

∫

RN
|vn|p = on(1), (3.5)

for any t ≥ 0. Especially, set t = 4
√

c, we obtain

∫

RN
G(F−1(4

√
cvn)) = on(1). (3.6)

By Lemma 2.1-(4), one has F−1(4
√

cvn) → 4
√

cvn, since 4
√

cvn → 0 a.e. in R
N . Then, we can

deduce that

∫

RN
V(x)

[

(4
√

cvn)
2 − [F−1(4

√
cvn)]

2
]

= on(1). (3.7)

Setting

k(x, s) = λ
g(F−1(s))

f (F−1(s))
− V(x)

F−1(s)

f (F−1(s))
+ V(x)s,

and

K(x, s) :=
∫ s

0
k(x, t)dt = λG(F−1(s))− 1

2
V(x)|F−1(s)|2 + 1

2
V(x)s2.

Then,

I(u) =
1

2

∫

RN
[|∇u|2 + V(x)u2]−

∫

RN
K(x, u). (3.8)

Thanks to (3.6) and (3.7), we can obtain that

∫

RN
K(x, 4

√
cvn) = λ

∫

RN
G(F−1(4

√
cvn))

+
1

2

∫

RN
V(x)

[

(4
√

cvn)
2 − [F−1(4

√
cvn)]

2
]

= on(1).

By the continuity of I, there exists tn ∈ [0, 1] such that I(tnun) = max0≤t≤1 I(tun). Since

∥un∥ → ∞, we have 4
√

c
∥un∥ ≤ 1 when n is large enough. Hence, one has

I(tnun) + on(1) ≥ I

(

4
√

c

∥un∥
un

)

+ on(1) = I(4
√

cvn) + on(1)

= 8c∥vn∥2 −
∫

RN
K(x, 4

√
cvn) + on(1)

= 8c + on(1).

Note that I(un) → c, so 0 < tn < 1 and ⟨I′(tnun), tnun⟩ = 0 when n is large enough. By

Lemma 3.1-(3) and Lemma 2.1-(7)(8), the function

k(x, s)

s
=

λg(F−1(s))

f (F−1(s))s
− V(x)

F−1(s)

f (F−1(s))s
+ V(x)
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is strictly increasing for s > 0. Since {un} is a Cerami sequence of I and the monotonicity of
k(x,s)

s , we can conclude

c = I(un) + on(1)

= I(un)−
1

2
⟨I′(un), un⟩+ on(1)

=
∫

RN

(

1

2
k(x, un)un − K(x, un)

)

+ on(1)

≥
∫

RN

(

1

2
k(x, tnun)tnun − K(x, tnun)

)

+ on(1)

= I(tnun)−
1

2
⟨I′(tnun), tnun⟩+ on(1)

= I(tnun) + on(1)

≥ 8c + on(1),

which is a contradiction for c > 0.

If β > 0, by the definition of β, there is zn ∈ R
N such that

β

2
<

∫

B1(zn)
v2

n.

If zn is bounded, there exists R > 0 such that

β

2
<

∫

BR(0)
v2

n,

which is a contradiction with vn → 0 in L2
loc(R

N).

If zn is unbounded, up to a subsequence, |zn| → ∞. Let wn(x) := vn(x + zn) = un(x+zn)
∥un∥ ,

we have

β

2
<

∫

B1(0)
w2

n. (3.9)

There is a function w ∈ E such that wn ⇀ w in E, wn → w in L2
loc(R

N) and wn(x) → w(x)

a.e. in R
N . Moreover, by (3.9), one has w(x) ̸= 0. Define Ω∗∗ = {x ∈ R

N : w(x) > 0}, then

measΩ∗∗ > 0 and for a.e. x ∈ Ω∗∗, we have

un(x + zn) → +∞ as ∥un∥ → +∞.

Since F−1(t) is strictly increasing for t ≥ 0, by Lemma 2.1-(5), we can conclude that for a.e.

x ∈ Ω∗∗,

F−1(un(x + zn)) → +∞ as ∥un∥ → +∞.

Then, from Lemma 3.1-(1) and Lemma 2.1-(5), one has

lim inf
n→∞

∫

RN G(F−1(un))

∥un∥2

= lim inf
n→∞

∫

RN G(F−1(un(x + zn)))

∥un∥2

≥ lim inf
n→∞

∫

Ω∗∗

G(F−1(un(x + zn)))

|F−1(un(x + zn))|2
|F−1(un(x + zn))|2

(un(x + zn))2
w2

n

= +∞.
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Combining the above inequality with Lemma 2.1-(3), we have

0 = lim sup
n→∞

I(un)

∥un∥2

≤ 1

2
− λ lim inf

n→∞

1

∥un∥2

∫

RN
G(F−1(un))

= −∞,

this contradiction finished the proof.

Lemma 3.7. Suppose that conditions (V) and (h1), (h2) hold. Then problem (3.1) has a positive

ground state solution.

Proof. It follows from Lemma 3.3-(ii) and (3.44) that

0 < c ≤ c0.

If c = c0, we can get from (3.4) that

c0 = c ≤ I(tuu) ≤ I0(tuu) ≤ I0(u) = c0.

Then tuu is a positive ground solution of problem (3.1).

If 0 < c < c0, we see that I satisfies the mountain pass geometry from the proof of Lemma

3.2. Then, we can get a Cerami sequence {un} on level c due to Lemma 2.3. Applying

Lemma 3.6, the (C)c sequence is bounded. Then, we may get, up to a subsequence, un ⇀ u

in E, un → u in L2
loc(R

N) and un(x) → u(x) a.e. in R
N . By using the Lebesgue dominated

convergence theorem, through the standard discussion, we can get that

0 = ⟨I′(un), ϕ⟩+ on(1) = ⟨I′(u), ϕ⟩,

for any ϕ ∈ C∞
0 (RN), i.e. u is a weak solution of problem (3.1).

(i) The case u ̸= 0. Since u is a weak solution of problem (3.1), I(u) ≥ c and u ∈ N . By

(3.8), the monotonicity of k(x,s)
s and the Fatou lemma, one has

c = I(un) + on(1)

= I(un)−
1

2
⟨I′(un), un⟩+ on(1)

=
∫

RN

(

1

2
k(x, un)un − K(x, un)

)

+ on(1)

≥
∫

RN

(

1

2
k(x, u)u − K(x, u)

)

+ on(1)

= I(u)− 1

2
⟨I′(u), u⟩

= I(u).

Hence, I(u) = c and I′(u) = 0, which implies that u is a ground state solution of prob-

lem (3.1). Moreover, we could deduce that u is a positive solution by applying the strongly

maximum principle.

(ii) The case u = 0. Define

β := lim sup
n→∞

sup
z∈RN

∫

B1(z)
u2

n.
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If β = 0, by the Lions lemma [14, Lemma 1.21], we get un → 0 in Lα(RN) for α ∈ (2, 2∗). It

is similar to the proof of (3.5), we can deduce
∫

RN
G(F−1(un)) ≤ on(1). (3.10)

Combining (3.10) with Lemma 2.1-(3), we obtain

c = I(un) + on(1)

≤ 1

2
∥un∥2 − λ

∫

RN
G(F−1(un)) = on(1).

A contradiction, thus β > 0. By the definition of β, up to a subsequence, there exist R > 0 and

zn ∈ Z
N such that

∫

BR(0)
u2

n(x + zn) =
∫

BR(zn)
u2

n(x) >
β

2
.

If zn is bounded, there is R′
> 0 such that
∫

BR′ (0)
u2

n ≥
∫

BR(zn)
u2

n >
β

2
,

which contradicts with un → u = 0 in L2
loc(R

N). Thus, zn is unbounded, going if necessary

to a subsequence, |zn| → ∞. Let wn(x) := un(x + zn), then there exists a function w ∈ E\{0}
such that wn ⇀ w in E, wn → w in L2

loc(R
N) and wn(x) → w(x) a.e. in R

N . It follows from

Lemma 2.5 that, for any φ ∈ C∞
0 (RN), we have

0 = ⟨I′(un), φ(x − zn)⟩+ on(1)

=
∫

RN
∇un · ∇φ(x − zn) +

∫

RN
V(x)

F−1(un)

f (F−1(un))
φ(x − zn)

− λ

∫

RN

g(F−1(un))

f (F−1(un))
φ(x − zn) + on(1)

=
∫

RN
∇un · ∇φ(x − zn) +

∫

RN
V0(x)

F−1(un)

f (F−1(un))
φ(x − zn)

− λ

∫

RN

g(F−1(un))

f (F−1(un))
φ(x − zn) + on(1)

=
∫

RN
∇wn · ∇φ +

∫

RN
V0(x)

F−1(wn)

f (F−1(wn))
φ − λ

∫

RN

g(F−1(wn))

f (F−1(wn))
φ + on(1)

=
∫

RN
∇w · ∇φ +

∫

RN
V0(x)

F−1(w)

f (F−1(w))
φ − λ

∫

RN

g(F−1(w))

f (F−1(w))
φ

= ⟨I′0(w), φ⟩,

i.e. w is a weak solution of the periodic problem (3.2).

On the one hand, it follows from Lemmas 2.4–2.5 that

c = I(un)−
1

2
⟨I′(un), un⟩+ on(1)

=
1

2

∫

RN
V(x)|F−1(un)|2 −

1

2

∫

RN
V(x)

F−1(un)

f (F−1(un))
un

+ λ

∫

RN

g(F−1(un))

2 f (F−1(un))
un − λ

∫

RN
G(F−1(un)) + on(1)
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=
1

2

∫

RN
V0(x)|F−1(un)|2 −

1

2

∫

RN
V0(x)

F−1(un)

f (F−1(un))
un

+ λ

∫

RN

g(F−1(un))

2 f (F−1(un))
un −

∫

RN
G(F−1(un)) + on(1)

=
1

2

∫

RN
V0(x)

[

|F−1(wn)|2 −
F−1(wn)

f (F−1(wn))
wn

]

+ λ

∫

RN

[

g(F−1(wn))

2 f (F−1(wn))
wn − G(F−1(wn))

]

+ on(1)

=
1

2

∫

RN
V0(x)

[

|F−1(w)|2 − F−1(w)

f (F−1(w))
w

]

+ λ

∫

RN

[

g(F−1(w))

2 f (F−1(w))
w − G(F−1(w))

]

= I0(w)− 1

2
⟨I′0(w), w⟩

= I0(w) ≥ c0,

which is a contradiction with c ≤ c0. Hence, the case u = 0 cannot happen, this completes

the proof.

Lemma 3.8. Suppose that (V) and (h1) hold. If u is a critical point of I, then u ∈ L∞(RN). Moreover,

there is a constant C > 0 independent of λ such that

∥u∥∞ ≤ Cλ
1

2∗−p

(

∫

RN
|∇u|2

)
2∗−2

2(2∗−p)

.

Proof. For all k > 0, we set

uk(x) =

{

u(x), if |u(x)| ≤ k,

± k, if ± u(x) > k.

We use φk = |uk|2(β−1)u with β > 1 as a test function and calculate ⟨I′(u), φk⟩ = 0, namely,

∫

RN
|uk|2(β−1)|∇u|2 + 2(β − 1)

∫

RN
|uk|2(β−2)uuk∇u · ∇uk

+
∫

RN
V(x)

F−1(u)

f (F−1(u))
|uk|2(β−1)u = λ

∫

RN

g(F−1(u))

f (F−1(u))
|uk|2(β−1)u. (3.11)

According to the facts that u2|∇uk|2 ≤ u2
k |∇u|2, β > 1, and the Sobolev inequality, we obtain

β2
∫

RN

(

|uk|2(β−1)|∇u|2 + 2(β − 1)|uk|2(β−2)uuk∇u · ∇uk

)

≥
∫

RN
|uk|2(β−1)|∇u|2 +

∫

RN
(β − 1)2|uk|2(β−2)u2|∇uk|2

+
∫

RN
2(β − 1)|uk|2(β−2)uuk∇u · ∇uk

=
∫

RN

∣

∣

∣

∣

∇
(

|uk|β−1u

)∣

∣

∣

∣

2

≥ C

(

∫

RN

∣

∣

∣

∣

|uk|β−1u

∣

∣

∣

∣

2∗) 2
2∗

, (3.12)
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By Lemma 2.1-(1)(3) and Lemma 3.1-(2), we have

∫

RN

g(F−1(u))

f (F−1(u))
|uk|2(β−1)u ≤

∫

RN
g(F−1(u))|uk|2(β−1)u ≤ C

∫

RN
|u|p|uk|2(β−1). (3.13)

Using Lemma 2.1-(1)(3) again, we can obtain

∫

RN
V(x)

F−1(u)

f (F−1(u))
|uk|2(β−1)u ≥ 2

3

∫

RN
V(x)|uk|2(β−1)u2 ≥ 0. (3.14)

By (3.11)–(3.14) and the Hölder inequality, we have

(

∫

RN

∣

∣

∣
|uk|β−1u

∣

∣

∣

2∗
)

2
2∗

≤ Cβ2λ

∫

RN
(|u|p−2|uk|2(β−1)u2)

≤ Cβ2λ

(

∫

RN
|u|2∗

)

p−2
2∗

(

∫

RN

∣

∣

∣
|uk|2(β−1)u2

∣

∣

∣

2∗
2∗−p+2

)

2∗−p+2
2∗

.

Then, let k → ∞, we obtain

∥u∥β·2∗ ≤ (Cβ2λ)
1

2β

(

∫

RN
|∇u|2

)

p−2
4β

∥u∥ 2·2∗β
2∗−p+2

. (3.15)

Set

βm =

(

2∗ − p + 2

2

)m+1

, m = 0, 1, . . .

Then we get
2 · 2∗βm

2∗ − p + 2
= 2∗βm−1.

It follows from (3.15) that

∥u∥βm·2∗ ≤ (Cβ2
mλ)

1
2βm

(

∫

RN
|∇u|2

)

p−2
4βm

∥u∥ 2·2∗βm
2∗−p+2

= (Cλ)
1

2βm β
1

βm
m

(

∫

RN
|∇u|2

)

p−2
4βm

∥u∥βm−1·2∗ .

According to the Moser iteration, we obtain

∥u∥βm·2∗ ≤ (Cλ)∑
m
i=0

1
2βi

m

∏
i=0

β
1
βi
i

(

∫

RN
|∇u|2

)

p−2
4 ∑

m
i=0

1
βi ∥u∥2∗ . (3.16)

Since β0 =
( 2∗−p+2

2

)

> 1 and βi = βi+1
0 , we get

m

∑
i=0

1

βi
=

m

∑
i=0

1

βi+1
0

,
m

∏
i=0

β
1
βi
i =

m

∏
i=0

(βi+1
0 )

1

βi+1
0 = (β0)

∑
m
i=0

i+1

βi+1
0 .

We can see
∞

∑
i=0

i + 1

βi+1
0

= β∗
< +∞,

∞

∑
i=0

1

βi+1
0

=
2

2∗ − p
.
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Then, letting m → ∞ in (3.16), we obtain that u ∈ L∞(RN) and

∥u∥∞ ≤ Cλ
1

2∗−p β
β∗
0

(

∫

RN
|∇u|2

)

p−2
2(2∗−p)

∥u∥2∗

≤ Cλ
1

2∗−p

(

∫

RN
|∇u|2

)
2∗−2

2(2∗−p)

. (3.17)

This lemma is proved.

Proof of Theorem 1.1. According to Lemma 3.7, equation (3.1) has a ground state solution u and

u ∈ N . By (3.8), Lemma 3.3-(i) and the Sobolev embedding, we have

c = I(u)− 1

µ
⟨I′(u), u⟩

=

(

1

2
− 1

µ

)

∫

RN
(|∇u|2 + V(x)u2) +

∫

RN
[
1

µ
k(x, u)u − K(x, u)]

≥
(

1

2
− 1

µ

)

∥u∥2. (3.18)

We can choose v ∈ E ∩ L∞(RN) such that ∥v∥∞ < 1. By (h2) and (3) of Lemma 2.1, there exists

a positive constant C1 independent of λ such that

G(F−1(tv)) ≥ C1|F−1(tv)|q ≥ C|tv|q, t ∈ [0, 1].

Meanwhile, there exists λ0 > 0 such that I(v) < 0 for λ ≥ λ0. It follows from the definition

of c, Lemma 3.1-(2) and Lemma 2.1-(3) that

c ≤ max
t∈[0,1]

I(tv)

≤ max
t∈[0,1]

t2

2

∫

RN
(|∇v|2dx + V(x)v2)− λ

∫

RN
G(F−1(tv))

≤ max
t∈[0,1]

t2

2
∥v∥2 − Ctqλ

∫

RN
|v|q

≤ Cλ
− 2

q−2 . (3.19)

Combining (3.17), (3.18) with (3.19), one has

∥u∥∞ ≤ Cλ
1

2∗−p ∥u∥
2∗−2
2∗−p ≤ Cλ

1
2∗−p λ

1
2−q · 2∗−2

2∗−p .

Since p, q ∈ (2, 2∗), there exists λ1 ≥ λ0 such that

∥u∥∞ ≤ Cλ
(2∗−q)

(2∗−p)(2−q)

1 ≤ δ.

Therefore, by the definition of g, we can obtain that u is also a positive solution of equation

(2.5) for λ ≥ λ1. This ends the proof.
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Abstract. This paper deals with the oscillation problems for nonlinear differential
equations of the form (r(t)|x′|p(t)−2x′)′ + c(t) f (x) = 0 involving p(t)-Laplacian. The
Leighton–Wintner type oscillation criteria are established without any conditions on the
limit of p(t). In addition, we discuss the applications to partial differential equations.
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1 Introduction

In this paper, we consider the second-order nonlinear differential equation

(

r(t)|x′|p(t)−2x′
)′

+ c(t) f (x) = 0, t ≥ t0 ∈ R, (1.1)

where r(t) > 0, c(t), and p(t) > 1 are continuous functions, and f (u) is a continuous function
satisfying the condition u f (u) > 0 for u ̸= 0.

A function x(t) is said to be a solution of equation (1.1) defined on [t0, τ) ⊂ R, if x(t)

and the quasiderivative r(t)|x′(t)|p(t)−2x′(t) are continuously differentiable and x(t) satisfies
equation (1.1) on [t0, τ). A nontrivial solution x(t) of equation (1.1) is said to be a singular

solution of the first kind, if there exists a number Tx > t0 such that x(t) ≡ 0 for t ≥ Tx. It is said
to be a singular solution of the second kind if τ < ∞, which means that x(t) is nonextendable to
the right, i.e.,

lim sup
t→τ−

(

|x(t)|+ |x′(t)|
)

= ∞

BCorresponding author. Email: kfujimoto@riko.shimane-u.ac.jp
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holds. It is said to be a proper solution if x(t) is nonsingular. Furthermore, a proper solution
x(t) of equation (1.1) can be divided into the following two types. It is called oscillatory, if
there exists a sequence {tn} of [t0, ∞) such that x(tn) = 0 and tn → ∞ as n → ∞. Otherwise,
it is called nonoscillatory.

A great deal of papers have been devoted to the oscillation problems for the quasilinear
differential equation

(

r(t)|x′|p−2x′
)′
+ c(t)|x|p−2x = 0 (1.2)

involving the classical p-Laplacian. It is easy to see that the constant multiple of a solution
of equation (1.2) is also a solution, but the sum of solutions is not always a solution. In this
point of view, equation (1.2) is known as a half-linear differential equation (see [1, 8]). With
this advantage, we can introduce the generalized trigonometric functions and Sturm’s separa-
tion and comparison theorems as basic tools for p-Laplacian. Moreover, the global existence
and uniqueness of solutions of equation (1.2) are guaranteed for initial-value problem, i.e., all
nontrivial solutions of equation (1.2) are proper. For example, various results for the oscil-
lation problems for equation (1.2) can be found in [1, 7–9, 14–17, 22] and the references cited
therein. Especially, the so-called Leighton–Wintner type oscillation criterion has been obtained
as follows.

Theorem A ([1, 8]). Suppose that

∫

∞

t0

(

1
r(t)

)1/(p−1)

dt = ∞ and
∫

∞

t0

c(t) dt = ∞.

Then, all nontrivial solutions of equation (1.2) are oscillatory.

The differential operator in equation (1.1) is called p(t)-Laplacian, which is a generalization
of p-Laplacian. It is also known as the one-dimensional version of the partial differential
operator p(x)-Laplacian, which appears in mathematical models of various research fields
such as nonlinear elasticity theory, electrorheological fluids, and image processing (see [4, 13,
18]). For example, oscillation problems for quasilinear elliptic partial differential equations
with p(x)-Laplacian are considered in [23–25]. In particular, sufficient conditions are obtained
under which all radial solutions of the equation

div
(

|∇u|p(x)−2∇u
)

+
1

|x|θ(x)
|u|q(x)−2u = 0 in Ω

are oscillatory in [25] under certain conditions on the limits of p, θ, and q, where Ω = {x ∈

R
N | |x| > r0} with the Euclidean norm. The proof is based on radialization technique

with ordinary differential equation involving p(t)-Laplacian. In this way, there has been an
increasing interest in the study of asymptotic behavior of solutions for ordinary differential
equations involving p(t)-Laplacian. For instance, those results can be found in [3,5,6,10–12,19–
21]. In [10], a kind of comparison theorem is proved to the oscillation problems for equation
(1.1). In addition, the existence of proper solutions and singular solutions of equation (1.1) is
treated in [3].

However, we point out that the solution space of the equation
(

r(t)|x′|p(t)−2x′
)′

+ c(t)|x|p(t)−2x = 0 (1.3)

involving p(t)-Laplacian does not have homogeneity unlike equation (1.2). Hence, to the best
of our knowledge, generalized trigonometric functions and Sturm’s separation and compar-
ison theorems are not obtained for equation (1.3). Hence, not a few results do not rule out
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the coexistence of oscillatory and nonoscillatory solutions. Moreover, the literature on p(t)-
Laplacian often assumes certain conditions on the limit of p(t). For example, the log-Hölder
decay condition is assumed in [12, 25], i.e., there exist p > 1, and M > 0 such that

t|p−p(t)|
< M

for t sufficiently large. This implies that p(t) → p > 1 as t → ∞.
The purpose of this paper is to establish Leighton–Wintner type oscillation criteria for

equation (1.1). This paper is organized as follows. In Section 2, we give two oscillation
criteria. In Section 3, we deal with the existence of proper solutions. Finally, we consider an
application to partial differential equations in Section 4.

2 Oscillation problem

In this section, we give Leighton–Wintner type oscillation criteria for equation (1.1).

Theorem 2.1. Assume that f (u) is a smooth function satisfying f ′(u) ≥ 0 for u ∈ R. Suppose that

for any L > 0,
∫

∞

t0

(

L

r(t)

)1/(p(t)−1)

dt = ∞ and
∫

∞

t0

c(t) dt = ∞. (2.1)

Then, all proper solutions of equation (1.1) are oscillatory.

Proof. Suppose, toward a contradiction, that equation (1.1) has a positive solution. That is to
say, there exists t1 ≥ t0 such that x(t) > 0 for t ≥ t1. Let

w(t) =
r(t)|x′(t)|p(t)−2x′(t)

f (x(t))
.

Then, we have

w′(t) = −c(t)−
r(t)|x′(t)|p(t) f ′(x(t))

( f (x(t)))2 .

Integrating both sides of this equality from t1 to t ≥ t1, we get

w(t) = w(t1)−
∫ t

t1

c(s) ds −
∫ t

t1

r(s)|x′(s)|p(s) f ′(x(s))

( f (x(s)))2 ds.

From (2.1) and f ′(u) ≥ 0 (u ∈ R), there exists t2 ≥ t1 such that
∫ t

t2

c(s) ds ≥ 0

and w(t) < 0 for t ≥ t2, which implies x′(t) < 0 for t ≥ t2.
Integrating both sides of equation (1.1) from t2 to t ≥ t2, we get

−r(t)|x′(t)|p(t)−1 = r(t)|x′(t)|p(t)−2x′(t)

= r(t2)|x
′(t2)|

p(t2)−2x′(t2)−
∫ t

t2

c(s) f (x(s)) ds

= r(t2)|x
′(t2)|

p(t2)−2x′(t2)− f (x(t))
∫ t

t2

c(s) ds

+
∫ t

t2

f ′(x(s))x′(s)
∫ s

t2

c(τ) dτ ds

≤ r(t2)|x
′(t2)|

p(t2)−2x′(t2) = −r(t2)|x
′(t2)|

p(t2)−1.
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Hence, we have

−x′(t) ≥

(

K

r(t)

)
1

p(t)−1

for t ≥ t2, where K = r(t2)|x′(t2)|p(t2)−1
> 0. Thus, by (2.1) we obtain

x(t) ≤ x(t2)−
∫ t

t2

(

K

r(s)

)
1

p(s)−1

ds → −∞

as t → ∞, which is a contradiction to the positivity of x(t).

We also prove the following criterion.

Theorem 2.2. Assume that c(t) > 0 for t ≥ t0 and there exists a smooth function g(u) such that

ug(u) > 0 (u ̸= 0), g′(u) ≥ 0, and | f (u)| ≥ |g(u)| (u ∈ R). Suppose that (2.1) holds for any L > 0.

Then, all proper solutions of equation (1.1) are oscillatory.

Proof. Suppose, toward a contradiction, that equation (1.1) has a positive solution x(t). That
is to say, there exists t1 ≥ t0 such that x(t) > 0 for t ≥ t1. Hence, x(t) satisfies

(

r(t)|x′(t)|p(t)−2x′(t)
)′

+ C(t)g(x(t)) = 0, t ≥ t1, (2.2)

where C(t) = c(t) f (x(t))/g(x(t)). We note that C(t) is continuous because x(t) > 0 for t ≥ t1

and ug(u) > 0 for u ̸= 0. Since | f (u)| ≥ |g(u)| (u ∈ R), we see that C(t) ≥ c(t), and therefore,
we get

∫

∞

t0

C(t) dt ≥
∫

∞

t0

c(t) dt = ∞.

Proceeding in the same manner as the proof of Theorem 2.1 with (2.2), we see that the assertion
holds.

Remark 2.3. Although the positivity of c(t) is required, we don’t need the monotonicity and
the smoothness of f (u) in Theorem 2.2.

We consider the special case that f (u) = |u|λ−2u, where λ > 1 is a constant. Then, equation
(1.1) becomes the equation

(

r(t)|x′|p(t)−2x′
)′

+ c(t)|x|λ−2x = 0. (2.3)

In the rest of this paper, for simplicity, we focus on equation (2.3). By Theorem 2.1, we give
the following corollary.

Corollary 2.4. Suppose that (2.1) holds for any L > 0. Then, all proper solutions of equation (2.3) are

oscillatory.

3 Existence of proper solutions

In order to deal with the asymptotic behavior of solutions, we must pay attention to the
existence of singular solutions. In fact, for example, when p(t) ≡ p > 1 and r(t) ≡ 1, equation
(2.3) becomes the generalized Emden–Fowler type differential equation

(

|x′|p−2x′
)′
+ c(t)|x|λ−2x = 0. (3.1)
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It is known that if p > λ (resp., p < λ) then equation (3.1) has a singular solution of the first
(resp., second) kind for certain c(t) (see [2, Theorem 4]).

In this section, we consider the existence of proper solutions of equation (2.3). According
to [3], the following theorem is proved.

Theorem B ([3]). Suppose that p(t) and (r(t))1/(p(t)−1) are continuously differentiable, p(t) is non-

decreasing, and c(t) is positive. Then, every nontrivial solutions of equation (2.3) is proper.

Using Corollary 2.4 and Theorem B, we obtain the following corollary.

Corollary 3.1. Assume that p(t) and (r(t))1/(p(t)−1) are continuously differentiable, p(t) is nonde-

creasing, and c(t) is positive. Suppose that (2.1) holds for any L > 0. Then, all nontrivial solutions of

equation (2.3) are oscillatory.

We propose an example of Corollary 3.1.

Example 3.2. Let t0 = 1, r(t) ≡ 1, c(t) = 1/t, and p(t) = 3 − 1/t. Then, equation (2.3)
becomes

(

|x′|3−1/tx′
)′

+
1
t
|x|λ−2x = 0. (3.2)

From Corollary 3.1, all nontrivial solutions of equation (3.2) are oscillatory. Figure 3.1 indicates
the solution is proper and oscillatory.

t

x

0

Figure 3.1: A solution x(t) of equation (3.2) with x(1) = 3, x′(1) = 0, and λ = 5.

We next consider the case when p(t) does not have monotonicity. For equation (2.3), the
following propositions are derived from [3, Theorems 2.1, 2.2].

Proposition 3.3. Suppose that p(t) ≤ λ for t ∈ [t0, ∞). Then, equation (2.3) has no singular solutions

of the first kind.

Proposition 3.4. Suppose that p(t) ≥ λ for t ∈ [t0, ∞). Then, equation (2.3) has no singular solutions

of the second kind.

In the case when c(t) is negative, then the following result is given from Proposition 3.4.

Theorem 3.5. Suppose that p(t) ≥ λ and c(t) < 0 for t ∈ [t0, ∞). Then, equation (2.3) has proper

solutions.

Proof. Let x(t) be a solution of equation (2.3) satisfying the initial condition x(t0) > 0 and
x′(t0) > 0. Since c(t) is negative, we can find T > t0 such that

(

r(t)|x′(t)|p(t)−2x′(t)
)′

= −c(t)|x(t)|λ−2x(t) > 0

for t ∈ [t0, T), which implies that r(t)|x′(t)|p(t)−2x′(t) is positive increasing for t ∈ [t0, T).
Hence, x′(t) is positive for any t ∈ [t0, ∞), and therefore, x(t) is a positive increasing solution.
From Proposition 3.4, we see that x(t) is proper.
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However, it is clear that (2.1) does not hold and equation (2.3) has no oscillatory solutions
under the assumptions of Theorem 3.5.

In view of Propositions 3.3 and 3.4, we see that all nontrivial solutions of equation (2.3)
are proper when p(t) ≡ λ. Otherwise, we cannot exclude the possibilities of the existence
of singular solutions by using these propositions. To illustrate this problem, we introduce an
example of Corollary 2.4 and Propositions 3.3, 3.4.

Example 3.6. Let t0 = 1, r(t) ≡ 1, c(t) = 1/t, and p(t) = sin t + 5/2. Then, equation (2.3)
becomes

(

|x′|sin t+1/2x′
)′

+
1
t
|x|λ−2x = 0. (3.3)

In the case of λ ≥ 7/2, equation (3.3) has no singular solution of the first kind, as stated in
Proposition 3.3. However, we cannot rule out the possibility that equation (3.3) has singular
solutions of the second kind. In fact, keen spikes can be observed in Figure 3.2. On the other
hand, when 1 < λ ≤ 3/2, equation (3.3) has no singular solution of the second kind according
to Proposition 3.4. However, we cannot exclude the possibility that equation (3.3) has singular
solutions of the first kind. We can identify the points in Figure 3.3 where the derivative of the
solution is zero, even though they are not extrema. In the case of 3/2 < λ < 7/2, there are
possibilities that equation (3.3) has singular solutions of the first/second kind. In any cases, it
can be derived from Corollary 2.4 that all proper solutions of equation (3.3) are oscillatory.

In the case of p(t) ̸≡ λ, the existence of proper solutions of equation (2.3) is proved by
Theorem 4.1 in [3] under the additional assumption lim inft→∞ p(t) > 1. However, in order to
apply this result, the condition

∫

∞

t0

|c(t)| dt < ∞

is also required, which is the opposite case of (2.1). It is an open problem if equation (2.3) has
proper solutions under p(t) ̸≡ λ and (2.1).

t

x

0

Figure 3.2: A solution x(t) of equation (3.3) with x(1) = 3, x′(1) = 0, and λ = 4.

t

x

0

Figure 3.3: A solution x(t) of equation (3.3) with x(1) = 1, x′(1) = 0, and
λ = 3/2.
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4 Applications

In this section, we propose an application to partial differential equations. Let us consider the
quasilinear differential equation

div
(

|∇u|p(x)−2∇u
)

+ F(x)|u|λ−2u = 0 in Ω, (4.1)

where Ω = {x ∈ R
N | |x| > r0}. If u is a radially symmetric function, i.e., u(x) = y(t), t = |x|,

we can write equation (4.1) as

(

tN−1|y′|p(t)−2y′
)′

+ tN−1F(t)|y|λ−2y = 0 for t > r0. (4.2)

We say that a radially symmetric solution u(x) of (4.1) is oscillatory if it keeps neither positive
nor negative, that is, the solution y(t) of equation (4.2) corresponding to u(x) is oscillatory.
Using Corollary 2.4, we obtain the following theorem.

Theorem 4.1. Suppose that for any L > 0,

∫

∞

t0

(

L

tN−1

)1/(p(t)−1)

dt = ∞ and
∫

∞

t0

tN−1F(t) dt = ∞.

Then, all radially symmetric solutions of equation (4.1) are oscillatory.

Example 4.2. Let N ∈ N, F(t) = 1/tN , and p(t) = sin t + N + 3/2. Then, equation (4.2)
becomes

(

tN−1|y′|sin t+N−1/2y′
)′

+
1
t
|y|λ−2y = 0 for t > r0 (4.3)

and it is easy to see that
∫

∞

r0
tN−1F(t) dt = ∞. In addition, we have 1/(p(t)− 1) ≤ 2/(2N − 1).

Hence, it is obvious that
∫

∞

r0

(

L

tN−1

)1/(p(t)−1)

dt = ∞

when N = 1. In the case of N ≥ 2, since L/tN−1 → 0 as t → ∞, we can find r1 ≥ r0 such that
L/tN−1

< 1. Hence, we have

∫ t

r1

(

L

sN−1

)1/(p(s)−1)

ds ≥
∫ t

r1

(

L

sN−1

)2/(2N−1)

ds = L2/(2N−1)
∫ t

r1

s−2(N−1)/(2N−1) ds

= (2N − 1)L2/(2N−1)
(

t1/(2N−1) − r
1/(2N−1)
1

)

→ ∞

as t → ∞. From Theorem 4.1, all radially symmetric solutions of equation (4.1) are oscillatory.
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1 Introduction

Occasionally, natural phenomena must be modeled using differential equations that may have

discontinuous solutions, such as a piecewise constant, or the impulsive effect must be present.

Some examples of such modeling can be found in the works of S. Busenberg and K. Cooke [7]

(where the authors modeled vertical transmission diseases) and L. Dai and M. C. Singh [12]

(oscillatory motion of spring-mass systems subject to piecewise constant forces such Ax([t])

or A cos([t])). The last work studied the motion of mechanisms modeled by

mx′′(t) + kx1 = A sin

(
ω

[
t

T

])
,

where [·] is the greatest integer function. (See [11]).

BCorresponding author. Email: ricardo.torres@uach.cl
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In the 70’s, A. Myshkis [15] studied differential equations with deviating arguments (h(t)≤

t, such as h(t) = [t] or h(t) = [t− 1]). The Ukrainian mathematician M. Akhmet generalized

those systems, introducing differential equations of the form

y′(t) = f (t, y(t), y(γ(t))), (1.1)

where γ(t) is a piecewise constant argument of generalized type. In order to define such γ, let

(tn)n∈Z
and (ζn)n∈Z

such that tn < tn+1 , ∀n ∈ Z with lim
n→∞

tn = ∞, lim
n→−∞

tn = −∞ and ζn ∈

[tn, tn+1]. Then, γ(t) = ζn, if t ∈ In = [tn, tn+1) . I.e., γ(t) is a step function. An elementary

example of such functions is γ(t) = [t] which is constant in every interval [n, n+ 1[ with n ∈ Z

(see (1.3)).

If a piecewise constant argument is used, the interval In is decomposed into an advanced

and delayed subintervals In = I+n
⋃

I−n , where I+n = [tn, ζn] and I−n = [ζn, tn+1]. This class

of differential equations is known as Differential Equations with Piecewise Constant Argument of

Generalized Type (DEPCAG). They have continuous solutions, even though γ is discontinuous.

If we assume continuity of the solutions of (1.1), integrating from tn to tn+1, we define a

finite-difference equation, so we are in the presence of a hybrid dynamic (see [3, 17]).

For example, taking γ(t) =
[

t+l
h

]
h with 0 ≤ l < h, we have

[
t + l

h

]
h = nh, when t ∈ In = [nh− l, (n + 1) h− l).

Then, we see that γ(t)− t ≥ 0 ⇔ t ≤ nh and γ(t)− t ≤ 0 ⇔ t ≥ nh. Hence, we have

I+n = [nh− l, nh], I−n = [nh, (n + 1) h− l].

Now, if an impulsive condition is defined at {tn}n∈Z, we are in the presence of the Impulsive

differential equations with piecewise constant argument of generalized type (IDEPCAG) (see [2]),

x′(t) = f (t, x(t), x(γ(t))), t ̸= tn

∆x(tn) := x(tn)− x(t−n ) = Jn(x(t−n )), t = tn, n ∈ N, (1.2)

where x(t−n ) = limt→t−n
x(t), and Jn is the impulsive operator (see [18]).

When the piecewise constant argument used in a differential equation is explicit, it will be

called DEPCA (IDEPCA if it has impulses).

An elementary and illustrative example of IDEPCA

Consider the scalar IDEPCA

x′(t) = (α− 1)x([t]), t ̸= n

x(n) = βx(n−), t = n, n ∈ N. (1.3)

where α, β ∈ R, β ̸= 1.

If t ∈ [n, n + 1) for some n ∈ Z, equation (1.3) can be written as

x′(t) = (α− 1)x(n). (1.4)

In the following, we will assume t0 = 0. Now, integrating on [n, n + 1) from n to t we see that

x(t) = x(n)(1 + (α− 1)(t− n)). (1.5)
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Next, assuming continuity at t = n + 1, we have

x((n + 1)−) = αx(n).

Applying the impulsive condition to the last expression, we get the following finite-difference

equation

x((n + 1)) = (αβ)x(n).

Its solution is

x(n) = (αβ)nx(0). (1.6)

Finally, applying (1.6) in (1.5) we have

x(t) = (αβ)[t] (1 + (α− 1)(t− [t]))x(0). (1.7)

Remark 1.1. From (1.7), we can conclude that the underlying dynamic is of mixed type.

The discrete and the continuous parts of the system are dependent. For example, A stable

continuous part (associated with the coefficient α) can be unstabilized by the discrete part

(associated with the parameter β). See [18].

In the next table, we describe some of the behavior of the solutions of (1.7):

Behavior of solutions Condition

|x(t)|
t→∞
−−→ 0 exponentially. |αβ| < 1 and αβ ̸= 0.

x(t) is constant. αβ = 0 or α = β = 1

x(t) is oscillatory. αβ < 0

x(t) is piecewise constant. α = 1

|x(t)| is piecewise constant and x(t)
t→∞
−−→ +∞. α = 1 and |β| > 1

x(t) is piecewise constant and x(t)
t→∞
−−→ 0. α = 1 and 0 < β < 1

|x(t)|
t→∞
−−→ +∞ exponentially. |αβ| > 1.

Table 1.1: Behavior of solutions of (1.7)

Figure 1.1: Solution of (1.3) with α = 0.9, β = 1.2, x0 = 1.8.
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Figure 1.2: solution of (1.3) with α = 0.4, β = −2, x0 = 2.4.

1.1 Why study IDEPCAG?: impulses in action

Example 1.2. Let the following scalar linear DEPCA

x′(t) = a(t)(x(t)− x([t]), x(τ) = x0, (1.8)

and the scalar linear IDEPCA

z′(t) = a(t) (z(t)− z([t])) , t ̸= k

z(k) = ckz(k−), t = k, k ∈ Z,
(1.9)

where a(t) is a continuous locally integrable function and (ck)k∈N a real sequence such that

ck /∈ {0, 1}, for all k ∈ N. As γ(t) = [t], we have tk = k = ζk = k if t ∈ [k, k + 1), k ∈ Z.

The solution of (1.8) is x(t) = x0, ∀t ≥ τ. I.e., all the solutions are constant (see [17]).

On the other hand, as we will see, the solution of (1.9) is

z(t) =




k(t)

∏
j=k(τ)+1

cj


 z(τ), t ≥ τ,

where k(t) = k is the only integer such that t ∈ [k, k + 1].

Hence, all the solutions are nonconstant if cj ̸= 1 and cj ̸= 0, for all j ≥ k(τ). This example

shows the differences between DEPCA and IDEPCA systems. The discrete part of the system

can greatly impact the whole dynamic, determining the qualitative properties of the solutions.

1.2 Fundamental matrices and variation of parameters formulas: an overview

1.2.1 The fundamental matrix of a DEPCA system

In [9], K. L. Cooke and J. Wiener were the first to obtain a fundamental matrix for a scalar

DEPCA’s using the delayed piecewise constant arguments γ(t) = [t], γ(t) = [t− 1], γ(t) =

[t− n] and γ(t) = t− n[t]. Also, they considered the very interesting scalar DEPCA

x′(t) = a(t)x(t) +
n

∑
i=0

ai(t)x([t− i]), an ̸= 0,
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Figure 1.3: Solution of (1.9) with ck = −1.1 and z(0) = −1.2

and

x′(t) = ax(t) +
n

∑
i=1

aix(t− i[t]).

Also, in [19], S. M. Shah and J. Wiener studied the DEPCA

x′(t) = a(t)x(t) +
n

∑
i=0

ai(t)x([t + i]), an ̸= 0, n ≥ 2.

Then, in [8], K. L. Cooke and J. Wiener studied the mixed-type piecewise constant argument

γ(t) = 2
[

t+1
2

]
and considered the DEPCA

z′(t) = az(t) + bz(2[(t + 1) /2]).

Additionally, in [22], J. Wiener and A. R. Aftabizadeh considered the mixed-type piecewise

constant argument γ(t) = m
[

t+k
m

]
where 0 < k < m, k, m, n ∈ Z

+, and they studied the

DEPCA

w′(t) = aw(t) + bw(m[(t + k) /m]).

1.2.2 Variation of parameters formula for a DEPCA

In [13] (1991), N. Jayasree and S. G. Deo were the first to consider the advanced and delayed

parts of the solutions studying the equation

z′(t) = az(t) + bz(2[(t + 1) /2]) + f (t),
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obtaining a variation of parameters formula for this DEPCA, in terms of the homogeneous

linear DEPCA associated:

z(t) = y(t) +
[(t+1)/2]−1

∑
j=0

λ−1(1)
∫ 2j+1

2j
Ψ(t, 2j)ϕ(2j + 1, s) f (s)ds

−
[(t+1)/2]

∑
j=1

λ−1(1)
∫ 2j−1

2j
Ψ(t, 2j)ϕ(2j− 1, s) f (s)ds

+
∫ t

2[(t+1)/2]
ϕ(t, s) f (s)ds,

where

λ(t) = exp(at)
(

1 + a−1b
)
− a−1b,

ϕ and Ψ are the fundamental solutions of x′(t) = ax(t) and y′(t) = ay(t) + by(2[(t + 1) /2])

respectively.

In [14] (2001), Q. Meng and J. Yan obtained a variation of parameters formula for the

differential equation

x′(t) + a(t)x(t) + b(t)x(g(t)) = f (t) for t > 0,

where a(t), b(t) and f (t) are locally integrable functions on [0, ∞), g(t) is a piecewise constant

function defined by g(t) = np for t ∈ [np− l, (n + 1)p− l) with n ∈ N and p, l positive con-

stants such that p > l. The authors studied the oscillation and asymptotic stability properties

of the solutions.

In [1] (2008), M. Akhmet considered the DEPCAG for systems

z′(t) = A(t)z(t) + B(t)z(γ(t)) + F(t), (1.10)

w′(t) = A(t)w(t) + B(t)w(γ(t)) + g (t, w(t), w(γ(t))) , (1.11)

where A(t), B(t) ∈ C(R) are n× n real valued uniformly bounded on R matrices, g(t, x, y) ∈

C(R×R
n ×R

n) is an n× 1 Lipschitz real valued function with g(t, 0, 0) = 0, γ(t) is a piece-

wise constant argument of generalized type. The author found the following variation of

parameters formula

w(t) = W(t, t0)w0 + W(t, t0)
∫ ζi

t0

X(t0, s)g(s, w(s), w(γ(s)))ds

+
j−1

∑
k=i

W(t, tk+1)
∫ ζk+1

ζk

X(tk+1, s)g(s, w(s), w(γ(s)))ds

+
∫ t

ζ j

X(t, s)g(s, w(s), w(γ(s)))ds,

where j = j(t) is the only j ∈ Z such that tj(t) ≤ t ≤ tj(t)+1, tk ≤ ζk ≤ tk+1, ti ≤ t0 ≤ ti+1, X is

the fundamental matrix of

x′(t) = A(t)x(t),

and W is the fundamental matrix of the homogeneous linear DEPCAG

y′(t) = A(t)y(t) + B(t)y(γ(t)).
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Later, in [17] (2011), M. Pinto gave a new DEPCAG variation of parameters formula. This time,

the author considered the delayed and advanced intervals defined by the general piecewise

constant argument

z(t) = W(t, t0)z0 + W(t, t0)
∫ ζi

t0

X(t0, s)g(s, z(s), z(γ(s)))ds

︸ ︷︷ ︸
I+k

+
j

∑
k=i+1

W(t, tk)
∫ ζk

tk

X(tk, s)g(s, z(s), z(γ(s)))ds

︸ ︷︷ ︸
I+k

+
j−1

∑
k=i

W(t, tk+1)
∫ tk+1

ζk

X(tk+1, s)g(s, z(s), z(γ(s)))ds

︸ ︷︷ ︸
I−k

+
∫ t

ζ j

X(t, s)g(s, z(s), z(γ(s)))ds

︸ ︷︷ ︸
I−k

,

where ti ≤ t0 ≤ ti+1 and tj(t) ≤ t ≤ tj(t)+1.

In the DEPCAG theory, decomposing the interval In into the advanced and delayed subin-

tervals is critical. As we will see, it is necessary for the forward or backward continuation of

solutions.

1.2.3 Variation of parameters formula for an IDEPCA: the impulsive effect applied

For the IDEPCA case, In [16] (2012), G. Oztepe and H. Bereketoglu studied the scalar IDEPCA

x′(t) = a(t)(x(t)− x([t + 1])) + f (t), x(0) = x0, t ̸= n ∈ N

∆x(n) = dn, t = n, n ∈ N. (1.12)

They proved the convergence of the solutions to a real constant when t→ ∞, and they showed

the limit value in terms of x0, using a suitable integral equation. They concluded the following

expression for the solutions of (1.12)

x(t) = exp

(∫ t

[t]
a(u)du

)
x([t]) +

(
1− exp

(∫ t

[t]
a(u)du

))
x([t + 1])

+
∫ t

[t]
exp

(∫ t

s
a(u)du

)
f (s)ds,

where

x([t]) =x0 +
[t]−1

∑
j=0

(∫ j+1

j
exp

(
−
∫ s

j
a(u)du

)
f (s)ds + exp

(
−
∫ j+1

j
a(u)du

)
dj+1

)
.

For the IDEPCA case, in [6] (2023), K-S. Chiu and I. Berna considered the following impulsive

differential equation with a piecewise constant argument

y′(t) = a(t)y(t) + b(t)y

(
p

[
t + l

p

])
, y(τ) = c0, t ̸= kp− l

∆y(kp− l) = dky(kp− l−), t = kp− l, k ∈ Z, (1.13)
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and

y′(t) = a(t)y(t) + b(t)y

(
p

[
t + l

p

])
+ f (t), y(τ) = c0, t ̸= kp− l

∆y(kp− l) = dky(kp− l−), t = kp− l, k ∈ Z, (1.14)

where a(t) ̸= 0, b(t) and f (t) are real-valued continuous functions, p < l and dk ∈ R − {1}.

The authors obtained criteria for the existence and uniqueness, a variation of parameters for-

mula, a Gronwall–Bellman inequality, stability and oscillation criteria for solutions for (1.13)

and (1.14).

To our knowledge, there is no variation formula for impulsive differential equations with

a generalized constant argument. As we have shown, some authors have studied just some

particular cases before.

2 Aim of the work

We will get a variation of parameters formula associated with IDEPCAG system

x′(t) = A(t)x(t) + B(t)x(γ(t)) + F(t), t ̸= tk

∆x|t=tk
= Ckx(t−k ) + Dk, t = tk,

(2.1)

extending the particular case treated in [6] and the general results of the DEPCAG case studied

in [17] to the IDEPCAG context.

3 Preliminaires

Let PC(X, Y) be the set of all functions r : X → Y which are continuous for t ̸= tk and

continuous from the left with discontinuities of the first kind at t = tk. Similarly, let PC1(X, Y)

the set of functions s : X → Y such that s′ ∈ PC(X, Y).

Definition 3.1 (DEPCAG solution). A continuous function x(t) is a solution of (1.1) if:

(i) x′(t) exists at each point t ∈ R with the possible exception at the times tk, k ∈ Z, where

the one side derivative exists.

(ii) x(t) satisfies (1.1) on the intervals of the form (tk, tk+1), and it holds for the right deriva-

tive of x(t) at tk.

Definition 3.2 (IDEPCAG solution). A piecewise continuous function y(t) is a solution of

(1.2) if:

(i) y(t) is continuous on Ik = [tk, tk+1) with first kind discontinuities at tk, k ∈ Z, where

y′(t) exists at each t ∈ R with the possible exception at the times tk, where lateral

derivatives exist (i.e. y(t) ∈ PC1([tk, tk+1), Rn)).

(ii) The ordinary differential equation

y′(t) = f (t, y(t), y(ζk))

holds on every interval Ik, where γ(t) = ζk.
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(iii) For t = tk, the impulsive condition

∆y(tk) = y(tk)− y(t−k ) = Jk(y(t
−
k ))

holds. I.e., y(tk) = y(t−k ) + Jk(y(t
−
k )), where y(t−k ) denotes the left-hand limit of the

function y at tk.

Let the IDEPCAG system:

x′(t) = f (t, x(t), x(γ(t))), t ̸= tk

x(tk)− x
(
t−k
)
= Jk(x(t−k )), t = tk,

x(τ) = x0,

(3.1)

where f ∈ C([τ, ∞)×R
n ×R

n, R
n), Jk ∈ C({tk} , R

n) and (τ, x0) ∈ R×R
n.

Let the following hypotheses hold:

(H1) Let η1, η2 : R → [0, ∞) locally integrable functions and λk ∈ R
+, ∀k ∈ Z; such that

∥ f (t, x1, y1)− f (t, x2, y2)∥ ≤ η1(t) ∥x1 − x2∥+ η2(t) ∥y1 − y2∥ ,∥∥Jk(x1(t
−
k ))− Jk(x2(t

−
k ))
∥∥ ≤ λk

∥∥x1

(
t−k
)
− x2

(
t−k
)∥∥ .

where ∥ · ∥ is some matricial norm.

(H2) ν = sup
k∈Z

(∫ tk+1

tk

(η1(s) + η2(s)) ds

)
< 1.

In the following, we mention some useful results: an integral equation associated with (2.1)

and two Gronwall–Bellman type inequalities necessary to prove the uniqueness and stability

of solutions.

3.1 An integral equation associated to (3.1)

Theorem 3.3 ([4, Lemma 4.2]). a function x(t) = x(t, τ, x0), τ ∈ R
+ is a solution of (3.1) on R

+

if and only if satisfies:

x(t) = x0 +
∫ t

τ
f (s, x(s), x(γ(s))ds + ∑

τ<tk≤t

Jk

(
x
(
t−k
))

,

where

∫ t

τ
f (s, x(s), x (γ(t)))ds =

∫ t1

τ
f (s, x(s), x (ζ0)) ds +

k(t)−1

∑
j=1

∫ tj+1

tj

f (s, x(s), x(ζ j))ds

+
∫ t

tk(t)

f
(

s, x(s), x
(

ζk(t)

))
ds,

3.2 First IDEPCAG Gronwall–Bellman type inequality

Lemma 3.4 ([20], [4, Lemma 4.3]). Let I an interval and u, η1, η2 : I → [0, ∞) such that u is

continuous (with possible exception at {tk}k∈N), η1, η2 are continuous and locally integrable functions,

η : {tk} → [0, ∞) and γ(t) a piecewise constant argument of generalized type such that γ(t) = ζk,

∀t ∈ Ik = [tk, tk+1) with tk ≤ ζk ≤ tk+1 ∀k ∈ N. Assume that ∀t ≥ τ

u(t) ≤ u(τ) +
∫ t

τ
(η1(s)u(s) + η2(s)u(γ(s))) ds + ∑

τ<tk≤t

η(tk)u(t
−
k )
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and

ϑ̂k =
∫ ζk

tk

(η1(s) + η2(s)) ds ≤ ϑ̂ := sup
k∈N

ϑ̂k < 1. (3.2)

hold. Then, for t ≥ τ, we have

u(t) ≤

(

∏
τ<tk≤t

(1 + η(tk))

)
exp

(∫ t

τ

(
η1(s) +

η2(s)

1− ϑ̂

)
ds

)
u(τ), (3.3)

u(ζk) ≤ (1− ϑ)u(tk) (3.4)

u(γ(t)) ≤ (1− ϑ)−1

(

∏
τ<tk≤t

(
1 + η3(tj)

)
)

exp

(∫ t

τ

(
η1(s) +

η2(s)

1− ϑ̂

)
ds

)
u(τ). (3.5)

3.3 Second IDEPCAG Gronwall–Bellman type inequality

Lemma 3.5 ([5, 20]). Let I an interval and u, η1, η2 : I → [0, ∞) such that u is continuous (with

possible exception at {tk}k∈N), η1, η2 are continuous and locally integrable functions, η : {tk} →

[0, ∞) and γ(t) a piecewise constant argument of generalized type such that γ(t) = ζk, ∀t ∈ Ik =

[tk, tk+1) with tk ≤ ζk ≤ tk+1 ∀k ∈ N. Assume that ∀t ≥ τ

u(t) ≤ u(τ) +
∫ t

τ
(η1(s)u(s) + η2(s)u(γ(s)))ds + ∑

τ<tk≤t

η(tk)u(t
−
k ) (3.6)

and

ϱk =
∫ ζk

tk

(
η2(s)e

∫ ζk
s η1(r)dr

)
ds ≤ ϱ := sup

k∈N

ϱk < 1. (3.7)

Then, for t ≥ τ, we have

u(t) ≤

(

∏
τ<tk≤t

(1 + η(tk))

)

· exp


 1

1− ϑ

k(t)

∑
j=k(τ)+1

∫ tj

tj−1

η2(s) exp

(∫ ζ j−1

tj−1

η1(r)dr

)
ds (3.8)

+
1

1− ϑ

∫ t

tk(t)

η2(s) exp

(∫ ζk(t)

tk(t)

η1(r)dr

)
ds +

∫ t

τ
η1(s)ds

)
u(τ).

3.4 Existence and uniqueness for (3.1)

Theorem 3.6 (Uniqueness [4, Theorem 4.5]). Consider the I.V.P for (2.1) with y(t, τ, y(τ)). Let

(H1)–(H2) hold. Then, there exists a unique solution y for (2.1) on [τ, ∞). Moreover, every solution is

stable.

Lemma 3.7 (Existence of solutions in [τ, tk) [4, Lemma 4.6]). Consider the I.V.P for (2.1) with

y(t, τ, y(τ)). Let (H1)–(H2) hold. Then, for each y0 ∈ R
n and ζk ∈ [tk−1, tk) there exists a solution

y(t) = y(t, τ, y(τ)) of (2.1) on [τ, tr) such that y(τ) = y0.

Theorem 3.8 (Existence of solutions in [τ, ∞ [4, Theorem 4.7]). Let (H1)–(H2) hold. Then, for

each (τ, y0 ∈ R
+
0 ×R

n, there exists y(t) = y(t, τ, y0) for t ≥ τ, a unique solution for (2.1) such that

y(τ) = y0.
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4 Variation of parameters formula for IDEPCAG

In this section, we will construct a variation of parameters formula for the IDEPCAG system

y′(t) = A(t)y(t) + B(t)y(γ(t)) + F(t), t ̸= tk

∆y|t=tk
= Cky(t−k ) + Dk, t = tk

(4.1)

where y ∈ R
n×1, t ∈ R, F(t) ∈ R

n×1 is a real valued continuous matrix, A(t), B(t) ∈ R
n×n are

real valued continuous locally integrable matrices, Ck, Dk ∈ R
n×n, (I + Ck) invertible ∀k ∈ Z,

where In×n = I is the identity matrix and γ(t) is a generalized piecewise constant argument.

This time, we will consider the advanced and the delayed intervals in our approach.

First, we will find the fundamental matrix for the linear IDEPCAG

w′(t) = A(t)w(t) + B(t)w(γ(t)), t ̸= tk

∆w|t=tk
= Ckw(t−k ), t = tk.

(4.2)

Then, we will give the variation of parameters formula for (4.1).

Let Φ(t, s), t, s ∈ R, with Φ(t, t) = I the transition (Cauchy) matrix of the ordinary system

x′(t) = A(t)x(t), t ∈ Ik = [tk, tk+1). (4.3)

We will assume the following hypothesis:

(H3) Let

ρk+(A) = exp

(∫ ζk

tk

∥A(u)∥ du

)
, ρk−(A) = exp

(∫ tk+1

ζk

∥A(u)∥ du

)
,

ρk(A) = ρk+(A) · ρk−(A), ν±k (B) = ρ±k (A) ln ρ±k (B),

and assume that

ρ(A) = sup
k∈Z

ρk(A) < ∞, ν±(B) = sup
k∈Z

ν±k (B) < ∞.

Consider the following matrices

J(t, τ) = I +
∫ t

τ
Φ(τ, s)B(s)ds, E(t, τ) = Φ(t, τ)J(t, τ), (4.4)

where

ν±k (B) < ν±(B) < 1. (4.5)

Remark 4.1. It is important to notice the following facts:

a) As a consequence of (H3), J(tk, ζk) and J(tk+1, ζk) are invertible ∀k ∈ Z, and

∥∥∥J−1(tk, ζk)
∥∥∥ ≤

∞

∑
k=0

[
ν+(B)

]k
=

1

1− ν+(B)
, ∥J(tk, ζk)∥ ≤ 1 + ν+(B), (4.6)

∥∥∥J−1(tk+1, ζk)
∥∥∥ ≤

∞

∑
k=0

[
ν−(B)

]k
=

1

1− ν−(B)
, ∥J(tk+1, ζk)∥ ≤ 1 + ν−(B). (4.7)

Additionally, setting t0 := τ, we will assume that J−1(τ, γ(τ)) exists.

b) Also, due to (H3) and the Gronwall inequality, we have

|Φ(t)| ≤ ρ(A),

(see [17]).
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4.1 The fundamental matrix of the linear homogeneous IDEPCAG

We adopt the following convention:

←
j+p

∏
k=j

Tk = Tj+p · Tj+p−1 · . . . · Tj.

Also, we will assume γ(τ) := τ if γ(τ) < τ, where k(τ) is the only k ∈ Z such that τ ∈ Ik(τ) =

[tk(τ), tk(τ)+1). We will adopt the following notation:

r

∏
j=r+1

Aj = 1,
r

∑
j=r+1

Aj = 0.

Let the system

w′(t) = A(t)w(t) + B(t)w(γ(t)), t ̸= tk

w(tk) = (I + Ck)w(t−k ), t = tk

w0 = w(τ).

(4.8)

We will construct the fundamental matrix for system (4.8).

Let t, τ ∈ Ik = [tk, tk+1) for some k ∈ Z. In this interval, we are in the presence of the ordinary

system

w′(t) = A(t)w(t) + B(t)w(ζk).

So, the unique solution can be written as

w(t) = Φ(t, τ)w(τ) +
∫ t

τ
Φ(t, s)B(s)w(ζk)ds. (4.9)

Keeping in mind I+k = [tk, ζk], evaluating the last expression at t = ζk we have

w(ζk) = Φ(ζk, τ)w(τ) +
∫ ζk

τ
Φ(ζk, s)B(s)w(ζk)ds. (4.10)

Hence, we get (
I +

∫ τ

ζk

Φ(ζk, s)B(s)ds

)
w(ζk) = Φ(ζk, τ)w(τ).

I.e.

w(ζk) = J−1(τ, ζk)Φ(ζk, τ)w(τ). (4.11)

Then, by the definition of E(t, τ) = Φ(t, τ)J(t, τ), we have

w(ζk) = E−1(τ, ζk)w(τ). (4.12)

Now, from (4.9) working on I−k = [ζk, tk+1), considering τ = ζk, we have

w(t) = Φ(t, ζk)w(ζk) +
∫ t

ζk

Φ(t, s)B(s)w(ζk)ds

= Φ(t, ζk)

(
I +

∫ t

ζk

Φ(ζk, s)B(s)ds

)
w(ζk).

I.e.,

w(t) = E(t, ζk)w(ζk). (4.13)
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So, by (4.12), we can rewrite (4.13) as

w(t) = E(t, ζk)E−1(τ, ζk)w(τ). (4.14)

Then, setting

W(t, s) = E(t, γ(s))E−1(s, γ(s)), if t, s ∈ Ik = [tk, tk+1), (4.15)

we have the solution for (4.8) for t ∈ Ik

w(t) = W(t, τ)w(τ). (4.16)

Next, if we consider τ = tk and assuming left side continuity of (4.16) at t = tk+1, we have

w(t−k+1) = W(tk+1, tk)w(tk).

Then, applying the impulsive condition to the last equation, we get

w(tk+1) = (I + Ck+1)w(t−k+1)

= (I + Ck+1)W(tk+1, tk)w(tk).

This expression corresponds to a finite-difference equation. Then, by solving it, we get

w(tk(t)) =


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
W(tj+1, tj)


w

(
tk(τ)+1

)
. (4.17)

Finally, by (4.16) and the impulsive condition, we have

w(tk(τ)+1) = (I + Ck(τ)+1)W(tk(τ)+1, τ)w(τ).

Hence, considering τ = tk in (4.16) and applying (4.17) we get

w(t) = W(t, tk(t))


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
W(tj+1, tj)



(

I + Ck(τ)+1

)
W(tk(τ)+1, τ)w(τ)

= W(t, τ)w(τ), for t ∈ Ik(t) and τ ∈ Ik(τ). (4.18)

The last equation is the solution of (4.8) on [τ, t).

We call the expression

W(t, τ) = W(t, tk(t))


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
W(tj+1, tj)



(

I + Ck(τ)+1

)
W(tk(τ)+1, τ) (4.19)

the fundamental matrix for (4.8) for t ∈ Ik(t) and τ ∈ Ik(τ).

Remark 4.2. We use the decomposition of Ik = I+k ∪ I−k to define W. In fact, we can rewrite

(4.19) in terms of the advanced and delayed parts using (4.15):

W(t, τ) = E(t, ζk(t))E−1(tk(t), ζk(t))


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
E(tj+1, ζ j)E−1(tj, ζ j)




·
(

I + Ck(τ)+1

)
E(tk(τ)+1, γ(τ))E−1(τ, γ(τ)), ζ j = γ(tj)

for t ∈ Ik(t) and τ ∈ Ik(τ).
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Remark 4.3.

a) Considering B(t) = 0, we recover the classical fundamental matrix of the impulsive

linear differential equation (see [18]).

b) If Ck = 0, ∀k ∈ Z, we recover the DEPCAG case studied by M. Pinto in [17].

c) If we consider γ(t) = p
[

t+l
p

]
, with p < l, we recover the IDEPCA case studied by K.-S.

Chiu in [6].

4.2 The variation of parameter formula for IDEPCAG

Let the IDEPCAG

y′(t) = A(t)y(t) + B(t)y(γ(t)) + F(t), t ̸= tk,

y(tk) = (I + Ck)y(t
−
k ) + Dk, t = tk,

y0 = y(τ).

(4.20)

If τ, t ∈ Ik = [tk, tk+1), then the unique solution of (4.20) is

y(t) = Φ(t, τ)y(τ) +
∫ t

τ
Φ(t, s)B(s)y(ζk)ds +

∫ t

τ
Φ(t, s) f (s)ds.

Then, if τ = ζk, we have

y(t) = Φ(t, ζk)y(ζk) +
∫ t

ζk

Φ(t, s)B(s)y(ζk)ds +
∫ t

ζk

Φ(t, s) f (s)ds

= Φ(t, ζk)

(
I +

∫ t

ζk

Φ(ζk, s)B(s)ds

)
y(ζk) +

∫ t

ζk

Φ(t, s) f (s)ds

= Φ(t, ζk)J (t, ζk) y(ζk) +
∫ t

ζk

Φ(t, s) f (s)ds,

i.e.

y(t) = E(t, ζk)y(ζk) +
∫ t

ζk

Φ(t, s) f (s)ds. (4.21)

Now, if we consider t = τ in (4.21) we have

y(τ) = E(τ, ζk)y(ζk) +
∫ τ

ζk

Φ(τ, s) f (s)ds,

and, by (H3), we get the following estimation for y(ζk)

y(ζk) = E−1(τ, ζk)

(
y(τ) +

∫ ζk

τ
Φ(τ, s) f (s)ds

)
. (4.22)

Then, applying (4.22) in (4.21) we obtain

y(t) = E(t, ζk)E−1(τ, ζk)

(
y(τ) +

∫ ζk

τ
Φ(τ, s) f (s)ds

)
+
∫ t

ζk

Φ(t, s) f (s)ds,

i.e.,

y(t) = W(t, τ)y(τ) +
∫ ζk

τ
W(t, τ)Φ(τ, s) f (s)ds +

∫ t

ζk

Φ(t, s) f (s)ds, τ, t ∈ Ik. (4.23)
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Next, taking the left-side limit to the last expression, we have

y(t−k+1) = W(tk+1, τ)

(
y(τ) +

∫ ζk

τ
Φ(τ, s) f (s)ds

)
+
∫ tk+1

ζk

Φ(tk+1, s) f (s)ds. (4.24)

Applying the impulsive condition, we get

y(tk+1) = (I + Ck+1) y(t−k+1) + Dk+1,

or

y(tk+1) = (I + Ck+1)W(tk+1, τ)

(
y(τ) +

∫ ζk

τ
Φ(τ, s) f (s)ds

)

+
∫ tk+1

ζk

(I + Ck+1)Φ(tk+1, s) f (s)ds + Dk+1.

Therefore, considering τ = tk in the last expression we have

y(tk+1) = (I + Ck+1)W(tk+1, tk)

(
y(tk) +

∫ ζk

tk

Φ(tk, s) f (s)ds

)

+
∫ tk+1

ζk

(I + Ck+1)Φ(tk+1, s) f (s)ds + Dk+1,

or

y(tk+1) = Wk

(
y(tk) + α+

k

)
+ α−k + βk,

which corresponds to a non-homogeneous linear difference equation, where

Wk = (I + Ck+1)W(tk+1, tk),

α+
k =

∫ ζk

tk

Φ(tk, s) f (s)ds,

α−k =
∫ tk+1

ζk

(I + Ck+1)Φ(tk+1, s) f (s)ds,

βk = Dk+1.

Recalling that

W(tk(t), τ) =


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
W(tj+1, tj)



(

I + Ck(τ)+1

)
W(tk(τ)+1, τ),

we get the discrete solution of (4.20):

y(tk(t)) =


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
W(tj+1, tj)


 (I + Ck(τ)+1)W(tk(τ)+1, τ)y(τ)

+
∫ ζk(τ)

τ
W
(

tk(t), τ
)

Φ(τ, s) f (s)ds

+
k(t)−1

∑
r=k(τ)+1

(
←

k(t)−1

∏
j=r

(
I + Cj+1

)
W(tj+1, tj)

) ∫ ζr

tr

Φ(tr, s) f (s)ds

+
k(t)−1

∑
r=k(τ)

(
←

k(t)−1

∏
j=r+1

(I + Cj+1)W(tj+1, tj)

) ∫ tr+1

ζr

(I + Cr+1)Φ(tr+1, s) f (s)ds

+
k(t)−1

∑
r=k(τ)

(
←

k(t)−1

∏
j=r+1

(I + Cj+1)W(tj+1, tj)

)
Dr+1,
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or, written in terms of (4.19),

y(tk(t)) = W(tk(t), τ)y(τ) +
∫ ζk(τ)

τ
W
(

tk(t), τ
)

Φ(τ, s) f (s)ds (4.25)

+
k(t)−1

∑
r=k(τ)+1

∫ ζr

tr

W(tk(t), tr)Φ(tr, s) f (s)ds

+
k(t)−1

∑
r=k(τ)

∫ tr+1

ζr

W(tk(t), tr+1)(I + Cr+1)Φ(tr+1, s) f (s)ds

+
k(t)−1

∑
r=k(τ)

W(tk(t), tr+1)Dr+1.

Now, considering τ = tk in (4.23) we have

y(t) = W(t, tk(t))y(tk(t)) +
∫ ζk(t)

tk(t)

W(t, tk(t))Φ(tk(t), s) f (s)ds +
∫ t

ζk(t)

Φ(t, s) f (s)ds.

Finally, replacing y(tk(t)) by (4.25) and rewriting in terms of (4.19), we get the variation of

parameters formula for IDEPCAG (4.20):

y(t) = W(t, τ)y(τ) (4.26)

+
∫ ζk(τ)

τ
W(t, τ)Φ(τ, s) f (s)ds +

k(t)

∑
r=k(τ)+1

∫ ζr

tr

W(t, tr)Φ(tr, s) f (s)ds

+
k(t)−1

∑
r=k(τ)

∫ tr+1

ζr

W(t, tr+1) (I + Cr+1)Φ(tr+1, s) f (s)ds

+
∫ t

ζk(t)

Φ(t, s) f (s)ds +
k(t)

∑
r=k(τ)+1

W(t, tr)Dr, for t ∈ [τ, tk(t)+1),

where W is the fundamental matrix of (4.8).

4.2.1 Green type matrix for IDEPCAG

If we define the following Green matrix type for IDEPCAG:

W̃(t, s) =

{
W+(t, s), if tr ≤ s ≤ γ(s)

W−(t, s), if γ(s) < s ≤ tr+1,
(4.27)

where

W+(t, s) = W(t, tr)Φ(tr, s), if tr ≤ s ≤ γ(s), s < t, (4.28)

and

W−(t, s) =

{
W(t, tr+1) (I + Cr+1)Φ(tr+1, s), if γ(s) ≤ s < tr+1, t > s, t ≤ tk+1,

Φ(t, s), if γ(t) < s ≤ t < tr+1.
(4.29)
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Hence, we can see that
∫ t

τ
W+(t, s) f (s)ds =

∫ ζk(τ)

τ
W(t, τ)Φ(τ, s) f (s)ds

+
k(t)

∑
r=k(τ)+1

∫ ζr

tr

W(t, tr)Φ(tr, s) f (s)ds,

∫ t

τ
W−(t, s) f (s)ds =

k(t)−1

∑
r=k(τ)

∫ tr+1

ζr

W(t, tr+1) (I + Cr+1)Φ(tr+1, s) f (s)ds

+
∫ t

ζk(t)

Φ(t, s) f (s)ds.

So, we have

W̃(t, s) = W+(t, s) + W−(t, s).

In this way, (4.26) can be expressed as

y(t) = W(t, τ)y(τ) +
∫ t

τ
W̃(t, s) f (s)ds +

k(t)

∑
r=k(τ)+1

W(t, tr)Dr. (4.30)

4.3 Some special cases of (4.20)

In the following, we present some r cases for (4.20).

1. Let γ−(t) = tk and γ+(t) = tk+1, for all t ∈ Ik = [tk, tk+1). I.e., we are considering the

completely delayed and advanced general piecewise constant arguments. Then, taking

in account Remark 4.2, the solution of (4.20) for both cases y−(t) and y+(t) respectively

are:

y−(t) = W−(t, τ)y(τ) +
k(t)−1

∑
r=k(τ)

∫ tr+1

tr

W−(t, tr+1) (I + Cr+1)Φ(tr+1, s) f (s)ds (4.31)

+
∫ t

tk(t)

Φ(t, s) f (s)ds +
k(t)

∑
r=k(τ)+1

W−(t, tr)Dr,

where

W−(t, τ) = E(t, tk(t))


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
E(tj+1, tj)


 ·

(
I + Ck(τ)+1

)
E(tk(τ)+1, τ),

(4.32)

and

y+(t) = W+(t, τ)y(τ) (4.33)

+
∫ tk(τ)+1

τ
W+(t, τ)Φ(τ, s) f (s)ds +

k(t)

∑
r=k(τ)+1

∫ tr+1

tr

W+(t, tr)Φ(tr, s) f (s)ds

−
∫ tk(t)+1

t
Φ(t, s) f (s)ds +

k(t)

∑
r=k(τ)+1

W+(t, tr)Dr,
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where

W+(t, τ) = E(t, tk(t)+1)E−1(tk(t), tk(t)+1)


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
E−1(tj, tj+1)




·
(

I + Ck(τ)+1

)
E−1(τ, tk(τ)+1),

for t ∈ Ik(t) and τ ∈ Ik(τ), recalling that γ(τ) := τ if γ(τ) < τ.

2. Let the IDEPCAG
w′(t) = B(t)w(γ(t)), t ̸= tk

w(tk) = (I + Ck)w(t−k ), t = tk

w0 = w(τ).

(4.34)

We see that Φ(t, s) = I, E(t, s) = J(t, s) and J(t, s) = I +
∫ t

s B(u)du, where I is the identity

matrix. Hence the fundamental matrix for (4.34) is given by

W(t, τ) = J(t, ζk(t))J−1(tk(t), ζk(t))


←

k(t)−1

∏
j=k(τ)+1

(
I + Cj+1

)
J(tj+1, ζ j)J−1(tj, ζ j)




·
(

I + Ck(τ)+1

)
J(tk(τ)+1, γ(τ))J−1(τ, γ(τ)), ζ j = γ(tj).

for t ∈ Ik(t) and τ ∈ Ik(τ).

This case is very important because it is used for the approximation of solutions of

differential equations considering γ(t) =
[

t
h

]
h, with h > 0 fixed.

3. Let the IDEPCAG
w′(t) = Aw(t) + Bw(γ(t)), t ̸= tk

w(tk) = (I + C)w(t−k ), t = tk

w0 = w(τ),

(4.35)

and
y′(t) = Ay(t) + By(γ(t)) + f (t), t ̸= tk

y(tk) = (I + C)y(t−k ) + Dk, t = tk

y0 = y(τ),

(4.36)

where A−1 exist. By (H3), we know that J(t, τ) = I +
∫ t

τ
eA(τ−s)B ds is invertible, for

τ, t ∈ Ik = [tk, tk+1). Moreover, following [17], we see that

J(t, τ) = I +
∫ t

τ
eA(τ−s)Bds

= I + eAτ

(∫ t

τ
(−A)e−Asds

)
(−A−1)B

= I + A−1
(

I − eA(τ−t)
)

B. (4.37)

Then, as E(t, τ) = Φ(t, τ)J(t, τ), we have

E(t, τ) = eA(t−τ)
(

I + A−1
(

I − e−A(t−τ)
)

B
)

. (4.38)
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In light of the last calculations, we define

Ẽ(t) = eAt
(

I + A−1
(

I − e−At
)

B
)

η+
k = ζk − tk, η−k = tk+1 − ζk, k ∈ Z,

η(t) = t− γ(t).

Recalling that

Ŵ(t, s) = Ẽ(t− γ(s))Ẽ−1(η(s)), if t, s ∈ Ik = [tk, tk+1), (4.39)

the solution of (4.35) is

w(t) = Ŵ(t, τ)w(τ),

where

Ŵ(t, τ) = Ẽ(η(t))Ẽ−1(−η+
k(t)

)


←

k(t)−1

∏
j=k(τ)+1

(I + C)Ẽ(η−j )Ẽ−1(−η+
j )


 (4.40)

· (I + C)Ẽ(η−
k(τ)+1

)Ẽ−1(η(τ)), (4.41)

is the fundamental matrix for (4.35) with t ∈ Ik(t) and τ ∈ Ik(τ).

The solution for (4.36) is given by

y(t) = Ẽ(η(t))Ẽ−1(−η+
k(t)

)


←

k(t)−1

∏
j=k(τ)+1

(I + C)Ẽ(η−j )Ẽ−1(−η+
j )




· (I + C)Ẽ(η−
k(τ)+1

)Ẽ−1(η(τ))

(
y(τ) +

∫ ζk(τ)

τ
eA(τ−s) f (s)ds

)
(4.42)

+ Ẽ(η(t))Ẽ−1(−η+
k(t)

)

·

{
k(t)

∑
r=k(τ)+1

(
←

k(t)−1

∏
j=r

(I + C)Ẽ(η−j )Ẽ−1(−η+
j )

) ∫ ζr

tr

eA(tr−s) f (s)ds

+
k(t)−1

∑
r=k(τ)

(
←

k(t)

∏
j=r+1

(I + C)Ẽ(η−j )Ẽ−1(−η+
j )

) ∫ tr+1

ζr

(I + C)eA(tr+1−s) f (s)ds

+
k(t)−1

∑
r=k(τ)

(
←

k(t)

∏
j=r+1

(I + C)Ẽ(η−j )Ẽ−1(−η+
j )

)
Dr

}

+
∫ t

ζk(t)

eA(t−s) f (s)ds.

Also, if η = η+
k = η−k , k ∈ Z, Ê = (I + C)Ẽ(η)Ẽ−1(−η), the solution of (4.35) is

w(t) = Ŵ(t, τ)w(τ),

where

Ŵ(t, τ) = Ẽ(η(t))Ẽ−1(−η+
k(t)

)Êk(t)−k(τ)−1(I + C)Ẽ(η)Ẽ−1(η(τ)),
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is the fundamental matrix for (4.35) with t ∈ Ik(t) and τ ∈ Ik(τ).

The solution for (4.36) is given by

y(t) = Ẽ(η(t))Ẽ−1(−η+
k(t)

)Êk(t)−k(τ)−1(I + C)Ẽ(η−
k(τ)+1

)Ẽ−1(η(τ))

·

(
y(τ) +

∫ ζk(τ)

τ
eA(τ−s) f (s)ds

)
(4.43)

+ Ẽ(η(t))Ẽ−1(−η+
k(t)

) ·

{
k(t)

∑
r=k(τ)+1

Êk(t)−r
∫ ζr

tr

eA(tr−s) f (s)ds

+
k(t)−1

∑
r=k(τ)

Êk(t)−r
∫ tr+1

ζr

(I + C)eA(tr+1−s) f (s)ds +
k(t)

∑
r=k(τ)+1

Êk(t)−rDr

}

+
∫ t

ζk(t)

eA(t−s) f (s)ds.

Remark 4.4.

1. We recover the variation of parameters concluded in [17] when Dr = Cr = 0.

2. Also, our result implies the variation of constant formulas given in section 1.2

5 Some examples of linear IDEPCAG systems

In [16], H. Bereketoglu and G. Oztepe studied the following linear IDEPCAG

z′(t) = A(t) (z(t)− z(γ(t))) + f (t), t ̸= tk

z(tk) = z(t−k ) + Dk, t = tk.

z(τ) = z0

(5.1)

where γ(t) is some piecewise constant argument of generalized type, A(t) is a continuous

locally integrable matrix, D : N → R is such that Dk ̸= 0, ∀k ∈ N. The authors originally

considered the cases γ1(t) = [t + 1], and γ2(t) = [t − 1]. Hence, tk = k, ζ1,kk = k + 1 and

ζ2,k = k− 1, respectively.

Let Φ(t) be the fundamental matrix of the ordinary differential system

x′(t) = A(t)x(t). (5.2)

It is well known that Φ−1(t) is the fundamental matrix of the adjoint system associated with

(5.2). So, it satisfies (
Φ−1

)′
(t) = −Φ−1(t)A(t).

Therefore, we have

J(t, tk) = I −
∫ t

tk

Φ(tk, s)A(s)ds

= I + Φ(tk)

(∫ t

tk

−Φ−1(s)A(s)ds

)

= I + Φ(tk)
(

Φ−1(t)−Φ−1(tk)
)

= Φ(tk, t)

= Φ−1(t, tk),
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E(t, tk) = Φ(t, tk)J(t, tk) = Φ(t, tk)Φ
−1(t, tk) = I, and, as a result of last estimations, for

t, t′ ∈ Ik, we have W (t, t′) = I. Hence, the linear homogeneous IDEPCAG (is a DEPCAG

because Ck = 0) system

w′(t) = A(t) (w(t)− w(γ(t))) , t ̸= tk

w(tk) = w(t−k ) t = tk.

w(τ) = w0,

(5.3)

has the constant solution w(t) = w(τ).

Finally, for the variation of parameters formula (4.26), the solution for (5.1) is

y(t) = y(τ) +
∫ ζk(τ)

τ
Φ(τ, s) f (s)ds +

k(t)

∑
r=k(τ)+1

∫ ζr

tr

Φ(tr, s) f (s)ds

+
k(t)−1

∑
r=k(τ)

∫ tr+1

ζr

Φ(tr+1, s) f (s)ds +
∫ t

ζk(t)

Φ(t, s) f (s)ds +
k(t)

∑
r=k(τ)+1

Dr,

Figure 5.1: Solution of (5.1) with γ(t) = [t] + 7/10, Dr = 1/r2, A(t) = 1/(t + 1),

f (t) = exp(−t) and y(0) = y0 = −1.

Remark 5.1. This is the IDEPCAG case for the well-known differential equation studied by

K. L Cooke and J. A. Yorke in [10]. The authors investigated the following delay differential

equation (DDE):

x′(t) = g(x(t))− g(x(t− L)),

where x(t) denotes the number of individuals in a population, the number of births is g(x(t)),

and L is the constant life span of the individuals in the population. Then, the number of deaths

g(x(t − L)). Since the difference g(x(t)) − g(x(t − L)] means the change of the population.

Therefore x′(t) corresponds to the growth of the population at instant t.

In (5.3), we considered g(x(t)) = A(t)x(t) and the constant delay in the Cooke–Yorke

equation is regarded as a piecewise constant argument γ(t). Notice that if Dr is summable

and f (t) = 0 ∀t ≥ τ, then the solution of (5.1) tends to the constant

y∞ = y(τ) + ∑
tr≥tk(τ)+1

Dr, as t→ ∞,

no matter what γ(t) was used. For further about asymptotics in IDEPCAG, see [4].
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Figure 5.2: Solution of (5.1) with Dk = 1/k2, f (t) = 0 and z(0) = 1.

Let us consider the following IDEPCA

z′(t) = sin(2πt)z
([

t
h

]
h + βh

)
+ 1, t ̸= kh, k ∈ N,

z(kh) =

(
−

1

2

)
z(kh−) +

1

2
, t = kh,

z(0) = z0,

(5.4)

where h > 0, 0 ≤ β ≤ 1.

It is easy to see that tk = kh, ζk = (k + β)h, k ∈ N and

I+k = [kh, (k + β)h], I−k = [(k + β)h, (k + 1)h).

We see that

ν+k (sin(2πt)) ≤ βh < 1, if h is small enough,

ν−k (sin(2πt)) ≤ (1− β)h < 1, if h is small enough,

E(t, τ) = 1 +
∫ t

τ
sin(2πs)ds.

The fundamental matrix of the homogeneous equation associated with (5.4) is

W(t, 0) =

(
1 +

∫ t

[t/h]h+βh
sin (2πs) ds

)(
1 +

∫ [t/h]h

[t/h]h+βh
sin (2πs) ds

)(−1)

·

(
−

1

2

)[t/h]
(

[t/h]−1

∏
j=0

(
1 +

∫ (j+1)h

(j+β)h
sin (2πs) ds

)(
1 +

∫ jh

(j+β)h
sin (2πs) ds

)(−1)
)

.

Hence, the solution of (5.4) is

z(t) = W(t, 0)z0 +

(
−

1

2

)
(1− β) h

[t/h]−1

∑
r=0

W (t, (r + 1) h) + (t− ([t/h]h + βh))

+ W (t, 0) βh + βh
[t/h]

∑
r=1

W (t, rh) +

(
−

1

2

) [t/h]−1

∑
r=0

W (t, (r + 1) h) .

The piecewise constant used in this example was introduced in [21] to study the approxi-

mation of solutions of differential equations (under some stability assumptions and taking

h→ 0.)
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Figure 5.3: Solution of (5.4) with h = β = 0, 2.

6 Conclusions

In this work, we gave a variation of parameters formula for impulsive differential equations

with piecewise constant arguments. We analyzed the constant coefficients case and gave

several examples of formulas applied to some concrete piecewise constant arguments. We

extended some cases treated before and showed the effect of the impulses in the dynamic.
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1 Introduction

We look for nontrivial solutions of the following fractional p-Kirchhoff system











(

k

∑
i=1

[ui]
p
s,p

)θ−1

(−∆)s
puj(x) = λj|uj|

q−2uj + ∑
i ̸=j

βij|ui|
1−m|uj|

−m in Ω,

uj = 0 in R
N \ Ω,

(1.1)

where

[uj]s,p =

(

∫∫

RN×RN

|uj(x)− uj(y)|
p

|x − y|N+ps
dxdy

)

1
p

, j = 1, 2, . . . , k, k ≥ 2,

θ ≥ 1, N > ps with s ∈ (0, 1), 0 < m < 1, 0 < 2 − 2m < θp < q < p∗s = Np
N−sp , Ω ⊂ R

N is a

bounded domain with Lipschitz boundary, λj > 0 is a parameter, βij > 0 for all 1 ≤ i < j ≤ k,

βij = β ji for i ̸= j, j = 1, 2, . . . , k, and (−∆)s
p is the fractional p-Laplace operator which may be

defined along any v ∈ C∞
0 (RN) as

(−∆)s
pv = 2 lim

δ→0+

∫

RN\Bδ(x)

|v(x)− v(y)|p−2(v(x)− v(y))

|x − y|N+ps
dy for x ∈ R

N ,

where Bδ(x) denotes the ball in R
N of radius δ centered at x. For more details on the fractional

p-Laplacian, we can see [8] and the references therein.

BCorresponding author. Email: wuzijian_math@163.com



2 Z. Wu

In [9], a steady-state Kirchhoff variational model in bounded regular domains of R
N was

proposed by Fiscella and Valdinoci. In fact, problem (1.1) is a fractional version of Kirchhoff

model. Specifically, Kirchhoff proposed the following model

ρ
∂2u

∂t2
−

(

p0

h
+

E

2L
∥∇u∥2

L2([0,L])

)

∂2u

∂x2
= f (x, u), (1.2)

where ρ, p0, h, E, L are constants. As we all know, this model extends the classical D’Alambert

wave equation. Set M(y) = p0/h + (E(2L))y with y ≥ 0. If M(0) = 0, we call problem (1.2)

degenerate, otherwise, it is called non-degenerate if M(0) > 0. For M(0) = 0, it has a very

important physical significance, that is, the base tension of the string is equal to zero. Clearly,

in this paper, we are concerned about the situation of degradation in the fractional p-Laplacian

setting. We refer the interested reader to [2, 6, 12, 13] for some related results.

In recent years, with the application of nonlocal operators in real life or engineering fields

becoming more and more obvious, such as bridge survey, population model, image process-

ing, etc., the fractional Laplacian operator has received extensive attention. Most recently,

Sousa in [14] studied a class of fractional p-Laplacian differential operators with variable ex-

ponents. The author obtained the existence of a positive solution for the investigated fractional

system of the Kirchhoff type by using the method of sub- and super- solutions, via technical

assumptions on the nonlinearity. In [19] Zuo et al. considered a variational approach based

on the scaling function method to solve optimization problems. Precisely, in [18] Zhao et

al. studied a p-fractional Schrödinger–Kirchhoff equation with electromagnetic fields and the

Hardy–Littlewood–Sobolev nonlinearity. They used the concentration-compactness principles

and improved techniques to obtain Palais–Smile condition at level c. By variational methods,

they obtained the existence and multiplicity of solutions. For more literature about the results

for nonlocal fractional Laplacian operators and related nonlocal integro-differential equations,

we can also refer to [1, 7, 17] and the references therein.

On the other hand, there are a lot of literature on the equation or system with singular

nonlinearity. Consider the following semilinear problem
{

(−∆)su = λk(x)u−γ + Muq in Ω,

u|∂Ω = 0, u > 0 in Ω,

where n > 2s, M ≥ 0, 0 < s < 1, γ > 0, λ > 0, 1 < q < 2∗s − 1. The weights k : Ω → R

are assumed to be nonnegative and (essentially) bounded. In [3], the authors studied the

existence of distributional solutions for small λ using the uniform estimates of {un} which

are solutions of the regularized problems with singular term u−γ replaced by (u + 1
m )−γ.

This was extended for the p-fractional Laplace operator by Canino et al. in [5]. Assuming

0 < γ < 1, Ghanmi and Saoudi [10] studied the existence of at least two solutions for singular

equations with a positively homogeneous function by making use of variational methods. For

fractional Laplacian system involving singular nonlinearity, the work [11] dealt with














(−∆)su = λa(x)|u|q−2u + 1−α
2−α−β c(x)|u|−α|v|1−β x ∈ Ω,

(−∆)sv = µb(x)|v|q−2u + 1−α
2−α−β c(x)|u|1−α|v|−β x ∈ Ω,

u = v = 0 x ∈ R
N \ Ω,

where λ, µ ∈ (0, ∞), 0 < α, β < 1, N > 2s, 1 < q < 2 < 2∗s = 2N
N−2s , s ∈ (0, 1), and

a, b, c ∈ C(Ω) are nonnegative functions. With the help of Nehari manifold, the authors

obtained two nontrivial solutions to this system.
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Inspired by above papers, the main purpose of this paper is to extend the following work

[16]











(

k

∑
i=1

[ui]
p
s,p

)θ−1

(−∆)s
puj(x) = λj|uj|

q−2uj + ∑
i ̸=j

βij|ui|
m|uj|

m−2uj in Ω,

uj = 0 in R
N \ Ω.

(1.3)

In [16], when 1 < q < θp < 2m < p∗s , the authors obtained two distinct solutions to

system (1.3). We try to study whether it is possible to get similar result when replacing

∑i ̸=j βij|ui|
1−m|uj|

−m in the place of ∑i ̸=j βij|ui|
m|uj|

m−2uj. The main difficulties in dealing

with this problem come from the singular nonlinearity, i.e. 0 < m < 1. To our best knowl-

edge, our result for the fractional p-Kirchhoff system with singular nonlinearity is new.

Before describing main result, we recall some necessary definitions. For convenience, we

denote by |u|r := ∥u∥Lr(RN) the norm of Lebesgue space Lr(Ω) with r ≥ 1. Define Ws,p(Ω) as

a linear space of Lebesgue measurable functions from R
N to R such that the restriction to Ω

of any function u in Ws,p(Ω) belongs to Lp(Ω) and

∫∫

RN×RN

|u(x)− u(y)|p

|x − y|N+ps
dxdy < ∞.

Equip Ws,p(Ω) with the norm

∥u∥Ws,p(Ω) = |u|p +

(

∫∫

RN×RN

|u(x)− u(y)|p

|x − y|N+ps
dxdy

)
1
p

.

Obviously, Ws,p(Ω) is a Banach space. We shall consider the following closed linear subspace

W
s,p
0 (Ω) =

{

u ∈ Ws,p(Ω) : u(x) = 0 a.e. in R
N \ Ω

}

.

Moreover, we have that

∥uj∥Wj
=

(

∫∫

RN×RN

|uj(x)− uj(y)|
p

|x − y|N+ps
dxdy

)

1
p

is an equivalent norm of Wj = W
s,p
0 (Ω). It follows from the fractional Sobolev inequality that

S = inf
uj∈Wj

(

∥uj∥Wj

|uj|p∗s

)p

. (1.4)

In this paper we will work in the reflexive Banach space W = W1 × · · · × Wk endowed with

the norm

∥u∥W =
(

∥u1∥
p
W1

+ · · ·+ ∥uk∥
p
Wk

) 1
p

, ∀u = (u1, . . . , uk) ∈ W.

The variational functional of system (1.1) is

J(u) =
1

θp
∥u∥

θp
W −

1

q

k

∑
j=1

λj|uj|
q
q −

1

1 − m

k

∑
j=1

∑
i<j

βij|uiuj|
1−m
1−m, (1.5)
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for u = (u1, . . . , uk) ∈ W. Note that J /∈ C1(W, R), and classical variational methods are not

applicable. Moreover, we say that function u = (u1, . . . , uk) ∈ W is a weak solution of system

(1.1), if

∥u∥
(θ−1)p
W

k

∑
j=1

∫∫

RN×RN

|uj(x)− uj(y)|
p−2(uj(x)− uj(y))(wj(x)− wj(y))

|x − y|n+ps
dxdy

=
k

∑
j=1

λj

∫

Ω
|uj|

q−2ujwjdx +
k

∑
j=1

∑
i ̸=j

βij

∫

Ω
|ui|

1−m|uj|
−mwjdx,

for any w = (w1, . . . , wk) ∈ W. It is easy to see that solutions of system (1.1) correspond to the

critical points of J.

Set

Λ =
θp − 2 + 2m

q − θp

(

q − 2 + 2m

q − θp

)

2−2m−q
θp−2+2m

(

k

∑
j=1

∑
i<j

βij

)

θp−q
θp−2+2m

|Ω|
(2m−2+q)(θp−p∗s )

p∗s (θp−2+2m) S
θ(2m−2+q)
θp−2+2m ,

Λ0 =

(

θp

2 − 2m

)

θp−q
θp−2+2m

Λ,

ΘΛ =







(λ1, λ2, . . . , λk) ∈ (R+)k : 0 <

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp

< Λ







and

ΘΛ0
=







(λ1, λ2, . . . , λk) ∈ (R+)k : 0 <

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp

< Λ0







.

Obviously, ΘΛ0
⊂ ΘΛ. Our main result is the following.

Theorem 1.1. Suppose that (λ1, λ2, . . . , λk) ∈ ΘΛ0
. Then system (1.1) has two distinct solutions.

The remainder of this paper is organized as follows. In Section 2, we state some prelimi-

nary results. Section 3 is devoted to the proof of Theorem 1.1.

2 Preliminaries

In this section, we state some basic results. Define the constraint set (Nehari maniflod)

N = {u ∈ W\{0} : ⟨J′(u), u⟩ = 0}.

Thus, u ∈ N if and only if

∥u∥
θp
W =

k

∑
j=1

λj

∫

Ω
|uj|

qdx + 2
k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx. (2.1)

Fix u ∈ W and define the function of the form Ku : t → J(tu) for t > 0. Such maps are famous

fibering maps, which were discussed by Brown and Wu in [4]. Precisely,

Ku(t) = J(tu) =
tθp

θp
∥u∥

θp
W −

tq

q

k

∑
j=1

λj

∫

Ω
|uj|

qdx −
t2−2m

1 − m

k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx.
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Therefore,

K′
u(t) = tθp−1∥u∥

θp
W − tq−1

k

∑
j=1

λj

∫

Ω
|uj|

qdx − 2t1−2m
k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx

and

K′′
u(t) = (θp − 1)tθp−2∥u∥

θp
W − (q − 1)tq−2

k

∑
j=1

λj

∫

Ω
|uj|

qdx

− 2(1 − 2m)t−2m
k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx.

Lemma 2.1. Let u ∈ W\{0} and t > 0. Then tu ∈ N if and only if K′
u(t) = 0.

Proof. Note that

tK′
u(t) = ∥tu∥

θp
W −

k

∑
j=1

λj

∫

Ω
|tuj|

qdx − 2
k

∑
j=1

∑
i<j

βij

∫

Ω
|tuituj|

1−mdx.

By (2.1), we can easily draw the conclusion of the lemma.

Using methods similar to those used in [15], we split N into three sets. Accordingly, we

define

N+ = {tu ∈ W : K′
u(t) = 0, K′′

u(t) > 0} = {u ∈ N : K′′
u(1) > 0};

N− = {tu ∈ W : K′
u(t) = 0, K′′

u(t) < 0} = {u ∈ N : K′′
u(1) < 0};

N 0 = {tu ∈ W : K′
u(t) = 0, K′′

u(t) = 0} = {u ∈ N : K′′
u(1) = 0}.

In the next, we state some basic properties of submanifold.

Lemma 2.2. Let u0 be a local minimizer for J such that u0 /∈ N 0. Then u0 is a critical point for J.

Proof. Since u0 is a local minimizer of J on N , it is a solution of the optimization problem

minimize J subject to F(u) = 0,

where

F(u) = ∥u∥
θp
W −

k

∑
j=1

λj

∫

Ω
|uj|

qdx − 2
k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx.

Then, applying the theory of Lagrange multipliers, we can find a µ ∈ R such that J′(u0) =

µF′(u0) which implies

0 = ⟨J′(u0), u0⟩ = µ⟨F′(u0), u0⟩.

Further, from u0 ∈ N and u0 /∈ N 0 it is easy to know ⟨F′(u0), u0⟩ ̸= 0. So we obtain µ = 0

and the proof is complete.

Lemma 2.3. The functional J is coercive and bounded below on N .



6 Z. Wu

Proof. For any u ∈ N , by (1.4), (2.1), the Young and Hölder inequalities, we obtain

J(u) =

(

1

θp
−

1

q

)

∥u∥
θp
W −

(

1

1 − m
−

2

q

) k

∑
j=1

∑
i<j

βij|uiuj|
1−m
1−m

≥

(

1

θp
−

1

q

)

∥u∥
θp
W −

1

2

(

1

1 − m
−

2

q

) k

∑
j=1

∑
i<j

βij

(

|ui|
2−2m
2−2m + |uj|

2−2m
2−2m

)

≥

(

1

θp
−

1

q

)

∥u∥
θp
W −

1

2

(

1

1 − m
−

2

q

) k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p ∥u∥2−2m
W ,

which together with 2 − 2m < θp yields that J is coercive and bounded below on N .

Set

Iu(t) = tθp−q∥u∥
θp
W − 2t2−2m−q

k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx.

Clearly, tu ∈ N if and only if

Iu(t) =
k

∑
j=1

λj

∫

Ω
|uj|

qdx. (2.2)

Moreover, Iu satisfies the following properties.

Lemma 2.4. Suppose that u ∈ W\{0}. One has

(i) the function Iu possesses a unique maximum at

t = tmax =











2(q − 2 + 2m)
k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx

(q − θp)∥u∥
θp
W











1
θp−2+2m

;

(ii) I ′u(t) > 0 for t ∈ (0, tmax) and I′u(t) < 0 for t ∈ (tmax,+∞);

(iii) limt→0+ Iu(t) = −∞, limt→+∞ Iu(t) = 0.

Proof. Note that

I′u(t) = (θp − q)tθp−q−1∥u∥
θp
W − 2(2 − 2m − q)t1−2m−q

k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx.

Set I′u(t) = 0. Obviously, I′u(tmax) = 0 and I′′u (tmax) < 0, with unique

tmax =











2(q − 2 + 2m)
k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx

(q − θp)∥u∥
θp
W











1
θp−2+2m

.

Moreover, it is easy to see that (ii) and (iii) follow from the structure of Iu.

Lemma 2.5. Suppose that tu ∈ N . Then tu ∈ N+ or (N−) if and only if I ′u(t) > 0 or (< 0).
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Proof. If tu ∈ N , by (2.1), we get

K′′
u(t) = (θp − q)tθp−2∥u∥

θp
W − 2(2 − 2m − q)t−2m

k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx.

Note that

t1−q I′u(t) = K′′
u(t),

which yields that tu ∈ N+ or (N−) if and only if I′u(t) > 0 or (< 0).

Lemma 2.6. Suppose that u ∈ W\{0}. Then for (λ1, λ2, . . . , λk) ∈ ΘΛ, there exist t+, t− > 0 such

that t+ < tmax < t−, t+u ∈ N+, t−u ∈ N− and

J(t+u) = inf
0≤t≤tmax

J(tu), J(t−u) = sup
t≥0

J(tu).

Proof. By (1.4), the Young and Hölder inequalities, we have

Iu(tmax) =
θp − 2 + 2m

q − θp

(

q − 2 + 2m

q − θp

)

2−2m−q
θp−2+2m

(

2
k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx

)

θp−q
θp−2+2m

(

∥u∥
θp
W

)

2−2m−q
θp−2+2m

≥
θp − 2 + 2m

q − θp

(

q − 2 + 2m

q − θp

)

2−2m−q
θp−2+2m

(

k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p ∥u∥2−2m
W

)

θp−q
θp−2+2m

(

∥u∥
θp
W

)

2−2m−q
θp−2+2m

=
θp − 2 + 2m

q − θp

(

q − 2 + 2m

q − θp

)

2−2m−q
θp−2+2m

(

k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p

)

θp−q
θp−2+2m

∥u∥
q
W .

It follows from (λ1, λ2, . . . , λk) ∈ ΘΛ that

0 <

k

∑
j=1

λj

∫

Ω
|uj|

qdx ≤ |Ω|
p∗s −q

p∗s

k

∑
j=1

λj|uj|
q
p∗s

≤ |Ω|
p∗s −q

p∗s S
− q

p

k

∑
j=1

λj∥uj∥
q
Wj

≤ |Ω|
p∗s −q

p∗s S
− q

p

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp
(

k

∑
j=1

∥uj∥
θp
Wj

)

q
θp

≤ |Ω|
p∗s −q

p∗s S
− q

p

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp

∥u∥
q
W < Iu(tmax),

which implies that there exist t+, t− > 0 such that t+ < tmax < t−,

Iu(t
+) =

k

∑
j=1

λj

∫

Ω
|uj|

qdx = Iu(t
−),

I′u(t
+) > 0 and I′u(t

−) < 0. Then, by (2.2) and Lemma 2.5, we obtain t+u ∈ N+ and t−u ∈ N−.

Combining Lemma 2.4 and

K′
u(t) = tq−1

(

Iu(t)−
k

∑
j=1

λj

∫

Ω
|uj|

qdx

)

,
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we get that J(tu) is strictly decreasing on (0, t+), strictly increasing on (t+, t−) and strictly

decreasing on (t−,+∞). Hence

J(t+u) = inf
0≤t≤tmax

J(tu), J(t−u) = sup
t≥0

J(tu).

The proof is completed.

Lemma 2.7. Suppose that (λ1, λ2, . . . , λk) ∈ ΘΛ. Then N 0 = ∅.

Proof. Arguing by contradiction, we assume that N 0 ̸= ∅. Then for u ∈ N 0, we have by (2.1)

that

0 = K′′
u(1) = (θp − q)∥u∥

θp
W − 2(2 − 2m − q)

k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx

= (θp + 2m − 2)∥u∥
θp
W − (q + 2m − 2)

k

∑
j=1

λj

∫

Ω
|uj|

qdx.

Hence, by (1.4), the Young and Hölder inequalities, we get

∥u∥
θp
W =

2(2 − 2m − q)

θp − q

k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx

≤
2 − 2m − q

θp − q

k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p ∥u∥2−2m
W ,

which implies that

∥u∥W ≤

(

2 − 2m − q

θp − q

k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p

) 1
θp−2+2m

. (2.3)

Moreover, by (1.4) and the Hölder inequality, we get

∥u∥
θp
W =

q + 2m − 2

θp + 2m − 2

k

∑
j=1

λj

∫

Ω
|uj|

qdx

≤
q + 2m − 2

θp + 2m − 2
|Ω|

p∗s −q

p∗s S
− q

p

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp

∥u∥
q
W ,

which implies that

∥u∥W ≥





q + 2m − 2

θp + 2m − 2
|Ω|

p∗s −q

p∗s S
− q

p

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp





1
θp−q

. (2.4)

Combining (2.3) and (2.4), we obtain

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp

≥
θp − 2 + 2m

q − θp

(

q − 2 + 2m

q − θp

)

2−2m−q
θp−2+2m

(

k

∑
j=1

∑
i<j

βij

)

θp−q
θp−2+2m

|Ω|
(2m−2+q)(θp−p∗s )

p∗s (θp−2+2m) S
θ(2m−2+q)
θp−2+2m ,
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which contradicts

0 <

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp

< Λ.

This ends the proof.

3 Proof of Theorem 1.1

By Lemmas 2.3 and 2.7, for (λ1, λ2, . . . , λk) ∈ ΘΛ, we obtain N = N+ ∪N− and J is bounded

from below on N+ and N−. Set

α+ = inf
u∈N+

J(u) and α− = inf
u∈N−

J(u).

Lemma 3.1. α+
< 0.

Proof. For u ∈ N+, we have K′
u(1) = 0 and K′′

u(1) > 0. Then

(θp − q)∥u∥
θp
W > 2(2 − 2m − q)

k

∑
j=1

∑
i<j

βij

∫

Ω
|uiuj|

1−mdx.

This yields that

J(u) =

(

1

θp
−

1

q

)

∥u∥
θp
W −

(

1

1 − m
−

2

q

) k

∑
j=1

∑
i<j

βij|uiuj|
1−m
1−m

≤

[(

1

θp
−

1

q

)

−

(

1

1 − m
−

2

q

)

q − θp

2(q − 2 + 2m)

]

∥u∥
θp
W

=
(θp − q)(θp − 2 + 2m)

(2 − 2m)qθp
∥u∥

θp
W < 0,

due to 0 < 2 − 2m < θp < q. Therefore α+
< 0 follows from the definition α+.

Lemma 3.2. The minimization problem

α+ = inf
u∈N+

J(u)

is achieved at a point u+ ∈ N+.

Proof. Let {un} be a minimizing sequence of the minimization problem, i.e. {un} ⊂ N+ and

limn→∞ J(un) = α+. By Lemma 2.3, it is easy to see that {un} is bounded, we can find a u+

such that un ⇀ u+ weakly in W, un → u+ strongly in Lr(Ω), 1 ≤ r < p∗s . Now, we prove

lim
n→∞

k

∑
j=1

∑
i<j

βij

∫

Ω
|(un)i(un)j|

1−mdx =
k

∑
j=1

∑
i<j

βij

∫

Ω
|(u+)i(u

+)j|
1−mdx (3.1)

and

lim
n→∞

k

∑
j=1

λj

∫

Ω
|(un)j|

qdx =
k

∑
j=1

λj

∫

Ω
|(u+)j|

qdx. (3.2)

By the Vitali theorem, we claim that

lim
n→∞

∫

Ω
|(un)i(un)j|

1−mdx =
∫

Ω
|(u+)i(u

+)j|
1−mdx.
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In fact, by the Young inequality, we have

∫

Ω
|(un)i(un)j|

1−mdx ≤
1

2

∫

Ω
|(un)i|

2−2mdx +
1

2

∫

Ω
|(un)j|

2−2mdx.

By the Sobolev embedding theorem and boundedness of {(un)i}, we can find a constant C > 0

such that |(un)i|p∗s ≤ C. Moreover, it follows from the Hölder inequality that

∫

Ω
|(un)i|

2−2mdx ≤ |Ω|
p∗s +2m−2

p∗s |(un)i|
2−2m
p∗s

. (3.3)

From (3.3), for every ϵ > 0, setting

δ =
( ϵ

C2−2m

)

p∗s
p∗s +2m−2

,

when A ⊂ Ω with meas A < δ, we obtain

∫

A
|(un)i|

2−2mdx ≤ |A|
p∗s +2m−2

p∗s C2−2m
< ϵ.

Similarly,
∫

A |(un)j|
2−2mdx < ϵ. This yields that

{

∫

Ω
|(un)i(un)j|

1−mdx, n ∈ N

}

is equi-absolutely-continuous. Thus, our claim is true. This implies that (3.1) holds. On the

other hand, for 1 ≤ j ≤ k, it follows from the Hölder inequality and un → u+ strongly in

Lq(Ω) that
∫

Ω

∣

∣|(un)j|
q − |(u+)j|

q
∣

∣ dx = q
∫

Ω
(|(u+)j|+ τ(|(un)j − (u+)j|))

q−1|(un)j − (u+)j|dx

≤ q|(un)j + (u+)j|
q−1
q |(un)j − (u+)j|q

≤ C|(un)j − (u+)j|q → 0,

as n → ∞, where τ ∈ (0, 1) and C > 0 denotes various constants. Therefore,

lim
n→∞

∫

Ω

∣

∣|(un)j|
q − |(u+)j|

q
∣

∣ dx = 0, ∀j ∈ {1, 2, , . . . k},

which implies that (3.2) holds. Furthermore, we can prove that un → u+ strongly in W.

Arguing by contradiction, we assume un ↛ u+ strongly in W. Then,

∥u+∥
θp
W < lim

n→∞
inf ∥un∥

θp
W .

By Lemma 2.6, there exists t+ > 0 such that t+u+ ∈ N+. Then, for un ∈ N+, one has

lim
n→∞

K′
un
(t+)

= lim
n→∞

(

(t+)θp−1∥un∥
θp
W − (t+)q−1

k

∑
j=1

λj

∫

Ω
|(un)j|

qdx−2(t+)1−2m
k

∑
j=1

∑
i<j

βij

∫

Ω
|(un)i(un)j|

1−mdx

)

> (t+)θp−1∥u+∥
θp
W − (t+)q−1

k

∑
j=1

λj

∫

Ω
|(u+)j|

qdx − 2(t+)1−2m
k

∑
j=1

∑
i<j

βij

∫

Ω
|(u+)i(u

+)j|
1−mdx

= K′
u+(t+) = 0.
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This yields K′
un
(t+) > 0 for large enough n. Note that K′

un
(1) = 0 for each n and K′

un
(t) < 0

for t ∈ (0, 1). It follows that t+ > 1. Moreover, from that fact that Ku+(t) is decreasing on

(0, t+), we have

J(t+u+) ≤ J(u+) < lim
n→∞

J(un) = α+,

which contradicts the fact that α+ = infu∈N+ J(u). Thus, we conclude that un → u+ strongly

in W. By K′
un
(1) = 0 and K′′

un
(1) > 0, we get that K′

u+(1) = 0 and K′′
u+(1) ≥ 0. Note that

N 0 = ∅. Then K′′
u+(1) > 0, which implies u+ ∈ N+. Above all, by J(u+) = infu∈N+ J(u) < 0,

u+ is a minimizer of J on N+. The proof is completed.

Lemma 3.3. Suppose that (λ1, λ2, . . . , λk) ∈ ΘΛ0
. Then α−

> α0 for some α0 > 0.

Proof. For u ∈ N−, we have K′
u(1) = 0 and K′′

u(1) < 0. Then

(θp − 2 + 2m)∥u∥
θp
W < (q − 2 + 2m)

k

∑
j=1

λj

∫

Ω
|uj|

qdx.

By (1.4) and the Hölder inequality, we have

k

∑
j=1

λj

∫

Ω
|uj|

qdx ≤ |Ω|
p∗s −q

p∗s S
− q

p

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp

∥u∥
q
W .

Hence,

∥u∥W >





q − 2 + 2m

θp − 2 + 2m
|Ω|

p∗s −q

p∗s S
− q

p

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp





1
θp−q

. (3.4)

Then we obtain

J(u) =

(

1

θp
−

1

q

)

∥u∥
θp
W −

(

1

1 − m
−

2

q

) k

∑
j=1

∑
i<j

βij|uiuj|
1−m
1−m

≥

(

1

θp
−

1

q

)

∥u∥
θp
W −

1

2

(

1

1 − m
−

2

q

) k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p ∥u∥2−2m
W

= ∥u∥2−2m
W

[

(

1

θp
−

1

q

)

∥u∥
θp−2+2m
W −

1

2

(

1

1 − m
−

2

q

) k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p

]

> ∥u∥2−2m
W















(

1

θp
−

1

q

)





q − 2 + 2m

θp − 2 + 2m
|Ω|

p∗s −q

p∗s S
− q

p

(

k

∑
j=1

λ
θp

θp−q

j

)

θp−q
θp





θp−2+2m
θp−q

−
1

2

(

1

1 − m
−

2

q

) k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p















≥ α0 > 0,

thanks to (λ1, λ2, . . . , λk) ∈ ΘΛ0
and (3.4).

Lemma 3.4. The minimization problem

α− = inf
u∈N−

J(u)

is achieved at a point u− ∈ N−.
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Proof. Let {un} be a minimizing sequence of the minimization problem, i.e. {un} ⊂ N− and

limn→∞ J(un) = α−. By Lemma 2.3, it is easy to see that {un} is bounded, we can find a u−

such that un ⇀ u− weakly in W, un → u− strongly in Lr(Ω), 1 ≤ r < p∗s . Similar to Lemma

3.2, we have

lim
n→∞

k

∑
j=1

∑
i<j

βij

∫

Ω
|(un)i(un)j|

1−mdx =
k

∑
j=1

∑
i<j

βij

∫

Ω
|(u−)i(u

−)j|
1−mdx

and

lim
n→∞

k

∑
j=1

λj

∫

Ω
|(un)j|

qdx =
k

∑
j=1

λj

∫

Ω
|(u−)j|

qdx.

Furthermore, we can prove that un → u− strongly in W. Arguing by contradiction, we assume

un ↛ u− strongly in W. Then,

∥u−∥
θp
W < lim

n→∞
inf ∥un∥

θp
W .

By Lemma 2.6, there exists t− > 0 such that t−u− ∈ N−. Thus, since {un} ⊂ N− and

J(tun) ≤ J(un), for all t > 0 we have

J(t−u−) < lim
n→∞

J(t−un) ≤ lim
n→∞

J(un) = α−,

which contradicts the fact that α− = infu∈N− J(u). Thus, we conclude that un → u− strongly

in W. By K′
un
(1) = 0 and K′′

un
(1) < 0, we get that K′

u−(1) = 0 and K′′
u−(1) ≤ 0. Note that

N 0 = ∅. Then K′′
u+(1) < 0, which implies u− ∈ N+. Above all, by J(u−) = infu∈N− J(u), u−

is a minimizer of J on N−. The proof is completed.

Proof of Theorem 1.1. For all (λ1, λ2, . . . , λk) ∈ ΘΛ0
, by Lemmas 3.2 and 3.4, we conclude that

there exist u+ ∈ N+ and u− ∈ N− satisfying J(u+) = infu∈N+ J(u) and J(u−) = infu∈N− J(u).

In view of Lemma 2.2, u+ and u− are two solutions of system (1.1). Moreover, since J(u+) =

J(|u+|) and |u+| ∈ N+ and similarly J(u−) = J(|u−|) and |u−| ∈ N+, so we may assume

u± ≥ 0. Since N+ ∩N− = ∅, two solutions of system (1.1) are distinct. And by Lemmas 3.1

and 3.3, we have J(u+) < 0 and J(u−) > 0. Hence we provided the existence of two nontrivial

nonnegative solutions to our system (1.1).
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Abstract. Consider the class QS of all non-degenerate planar quadratic differential sys-
tems and its subclass QSP of all its systems possessing an invariant parabola. This is an
interesting family because on one side it is defined by an algebraic geometric property
and on the other, it is a family where limit cycles occur. Note that each quadratic differ-
ential system can be identified with a point of R12 through its coefficients. In this paper,
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polynomials and it is done in the 12-dimensional space of parameters.
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1 Introduction and statement of main results

We consider here differential systems of the form

dx

dt
= P(x, y),

dy

dt
= Q(x, y), (1.1)

where P, Q ∈ R[x, y], i.e. P, Q are polynomials in x, y over R and their associated vector

fields

X = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.

We call degree of a system (1.1) the integer m = max(deg P, deg Q). In particular we call

quadratic a differential system (1.1) with m = 2. We denote here by QS the whole class of real

quadratic differential systems.

BEmail: nicolae.vulpe@math.usm.md
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Quadratic systems appear in the modelling of many natural phenomena described in dif-

ferent branches of science, in biological and physical applications and applications of these

systems became a subject of interest for the mathematicians. Many papers have been pub-

lished about quadratic systems, see for example [19] for a bibliographical survey.

Here we always assume that the polynomials P and Q are coprime. Otherwise doing a

rescaling of the time, systems (1.1) can be reduced to linear or constant systems. Quadratic

systems under this assumption are called non-degenerate quadratic systems.

Let V be an open and dense subset of R2, we say that a nonconstant differentiable function

H : V → R is a first integral of a system (1.1) on V if H(x(t), y(t)) is constant for all of the

values of t for which (x(t), y(t)) is a solution of this system contained in V. Obviously H is a

first integral of systems (1.1) if and only if

X(H) = P
∂H

∂x
+ Q

∂H

∂y
= 0,

for all (x, y) ∈ V. When a system (1.1) has a first integral we say that this system is integrable.

The knowledge of the first integrals is of particular interest in planar differential systems

because they allow us to draw their phase portraits.

On the other hand given f ∈ C[x, y] we say that the curve f (x, y) = 0 is an invariant

algebraic curve of systems (1.1) if there exists K ∈ C[x, y] such that

P
∂ f

∂x
+ Q

∂ f

∂y
= K f .

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. When K = 0, f

is a polynomial first integral.

Let us suppose that f (x, y) = 0 is of degree n:

f (x, y) = c00 + c10x + c01y + · · ·+ cn0xn + cn−1,1xn−1y + · · ·+ c0nyn

with ĉ = (c00, . . . , c0n) ∈ CN where N = (n + 1)(n + 2)/2. We note that the equation

λ f (x, y) = 0 where λ ∈ C∗ = C\{0} yields the same locus of complex points in the plane

as the locus induced by f (x, y) = 0. So, a curve of degree n defined by ĉ can be identified

with a point [ĉ] = [c00 : c10 : · · · : c0n] in PN−1(C). We say that a sequence of degree n

curves fi(x, y) = 0 converges to a curve f (x, y) = 0 if and only if the sequence of points

[ĉi] = [ci00 : ci10 · · · : ci0n] converges to [ĉ] = [c00 : c10 : · · · : c0n] in the topology of PN−1(C).

We observe that if we rescale the time t′ = λt by a positive constant λ the geometry of the

systems (1.1) does not change. So for our purposes we can identify a system (1.1) of degree m

with a point in [a10, a10, . . . , b0m] in SM−1(R) with M = (m + 1)(m + 2).

We compactify the space of all the polynomial differential systems of degree m on SM−1

with M = (m + 1)(m + 2) by multiplying the coefficients of each systems with 1/
(

∑(a2
ij +

b2
ij)
)1/2

.

Definition 1.1. We say that an invariant curve L : f (x, y) = 0, f ∈ C[x, y] for a polynomial

system (S) of degree m has multiplicity r if there exists a sequence of real polynomial systems

(Sk) of degree m converging to (S) in the topology of SM−1, M = (m + 1)(m + 2), such that

each (Sk) has r distinct invariant curves L1,k : f1,k(x, y) = 0, . . . ,Lr,k : fr,k(x, y) = 0 over

C, deg( f ) = deg( fi,k) = n, converging to L as k → ∞, in the topology of PN−1(C), with

N = (n + 1)(n + 2)/2 and this does not occur for r + 1.
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The motivation for studying the systems in the quadratic class is not only because of their

usefulness in many applications but also for theoretical reasons, as discussed by Schlomiuk

and Vulpe in the introduction of [20]. The study of non–degenerate quadratic systems could

be done using normal forms and applying the invariant theory.

Systematic work on quadratic differential systems possessing an invariant conic began to-

wards the end of the XX-th century and the beginning of this century. Quadratic systems hav-

ing an invariant ellipse as a limit cycle were investigated by Y.-X. Qin [18]; the necessary and

sufficient conditions on the coefficients of a quadratic system and also on the coefficients of a

conic so as to have the conic as an invariant curve of the system were presented by Druzhkova

[8]; Cairó and Llibre in [4] have investigated the Darboux integrability of the quadratic sys-

tems having invariant algebraic conics; Oliveira, Rezende and Vulpe [14] provided necessary

and sufficient conditions for a system in QS to have at least one invariant hyperbola in terms

of its coefficients and the necessary and sufficient affine invariant conditions for a system in

QS so as to have the ellipse as an invariant curve of the system were presented by Oliveira,

Rezende, Schlomiuk and Vulpe [16]. In [15] the authors classified the family of quadratic sys-

tems possessing an invariant hyperbola in terms of configurations of hyperbolas and presence

or absence of invariant lines. This is an invariant classification, independent of specific normal

forms. A similar classification in the case of an invariant ellipse is done in [13].

In this work we consider non-degenerate quadratic differential systems possessing an in-

variant parabola. We denote this family by QSP. Our goal in this paper is to obtain a char-

acterization of systems in QSP in terms of invariant polynomials. Thus our equalities and

inequalities in the bifurcation diagram splitting the parameter space into regions and subsets

with distinct dynamics, will not be expressed in terms of coefficients of a fixed normal form

or several such forms, coefficients which do not have any geometrical meaning and are rigidly

tied to these normal forms. They will be expressed in terms of invariant polynomials which

are very supple objects that can be easily be computed by a computer for any specific normal

form and allowing us also to easily pass from one normal form to any other.

It is known that the coordinates of an infinite singular point p of a quadratic system (S) are

defined by a linear factor in the factorization of the invariant polynomial C2(x, y) = yp2(x, y)−

xq2(x, y) over C. Here p2(x, y) and q2(x, y) are the corresponding quadratic homogeneous

parts of (S). The multiplicity m of the singularity p has two components (see the concepts

and notations introduced in [11]). If we denote them by (m∞, m f ) (i.e. m = m∞ + m f ) then m∞

(respectively, m f ) is the maximum number of infinite (respectively, finite) singularities which

can split from p, in small perturbations of the systems. In this case the number m∞ coincides

with the multiplicity of the linear factor of C2(x, y) which defines p.

Definition 1.2. By the direction of an invariant parabola of a quadratic system (S) we mean

the direction of its axis of symmetry which intersects the invariant line Z = 0 at an infinite

singular point p of (S) with the multiplicity (m∞, m f ). We say that this direction of the

invariant parabola is simple (respectively, double; triple) if m∞ = 1 (respectively 2; 3). We

denote this parabola by ∪ (respectively
2

∪;
3

∪). Moreover, if the infinite invariant line Z = 0

is filled up with singularities then we denote by
∞

∪ the invariant parabola which is tangent to

the line Z = 0 at a non-isolated singular point.

In order to distinguish the invariant parabolas that a quadratic system could have we use

the following notations:

• ∪ for a simple invariant parabola;
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• ⋓ for two simple invariant parabolas in the same direction (they could intersect);

• ∪⊂ for two simple invariant parabolas in different directions;

• ∪∪∪2 for one double invariant parabola;

•
2

∪ for one simple invariant parabola in double direction;

•
3

∪ for one simple invariant parabola in triple direction;

•
∞

∪ for one simple invariant parabola when the line at infinity is filled up with singulari-

ties;

•
2

∪⊂ for two simple invariant parabola: one in a double direction and one in a simple

direction;

• ⋓⊂ for three simple invariant parabolas: two in one direction and one in another

direction;

•
2

∪
2

⋓ for three real invariant parabolas in the same double direction;

•
2

∪
2

⋓
c for one real and two complex invariant parabolas in the same double direction;

•
2

∪
2

∪∪∪2 for one simple and one double real invariant parabolas in the same double direc-

tion;

•
2

∪∪∪3 for a triple real invariant parabola in a double direction;

• ∞
2

∪ for a 1-parameter family of invariant parabolas in the same double direction;

• ∞
3

∪ for a 1-parameter family of invariant parabolas in the same triple direction.

Our main results are stated in the following theorem.

Main Theorem. (A) The condition χ1 = χ2 = 0 is necessary for a non-degenerate quadratic system

to possess at least one invariant parabola.

(B) Assume that for a non-degenerate quadratic system (S) the condition χ1 = χ2 = 0 holds.

Then this system possesses at least one invariant parabola if and only if the corresponding conditions

indicated below are satisfied, respectively. Furthermore in the case of the existence of an invariant

parabola this systems could be brought via an affine transformation and time rescaling to one of the

canonical forms presented below, correspondingly:

α)α)α) For η > 0 the system (S) could only possess one of the following sets of invariant parabolas:

∪, ⋓, ∪∪∪2, ∪⊂, ⋓⊂. Moreover (S) has one of the above sets of parabolas if and only if the

corresponding conditions provided by the diagram given in Figure 1 are satisfied. Furthermore

the system (S) with an invariant parabola could be brought via an affine transformation and time

rescaling to the following canonical form

ẋ = m + nx −
1

2
(1 + g)y + gx2 + xy, ẏ = 2mx + 2ny + (g − 1)xy + 2y2 (Sααα)

possessing the invariant parabola Φ(x, y) = x2 − y.
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β)β)β) For η < 0 the system (S) could only possess one of the following sets of invariant parabolas:

∪, ⋓, ∪∪∪2. Moreover (S) has one of the above sets of parabolas if and only if the corresponding

conditions provided by the diagram given in Figure 1 are satisfied. Furthermore the system (S)

with an invariant parabola could be brought via an affine transformation and time rescaling to

the following canonical form

ẋ = m +
2n − 1

2
x −

g

2
y + gx2 − xy, ẏ = 2mx + 2ny − x2 + gxy − 2y2 (Sβββ)

possessing the invariant parabola Φ(x, y) = x2 − y.

γ)γ)γ) For η = 0 and M̃ ̸= 0 the system (S) could only possess one of the following sets of invariant

parabolas: ∪, ⋓, ∪∪∪2,
2

∪,
2

∪⊂,
2

∪
2

⋓,
2

∪
2

⋓
c,

2

∪
2

∪∪∪2,
2

∪∪∪3, ∞
2

∪.

Moreover (S) has one of the above sets of parabolas if and only if the corresponding conditions

provided by the diagram given in Figure 1 are satisfied. Furthermore the system (S) with in-

variant parabola could be brought via an affine transformation and time rescaling to one of the

following two normal forms:

ẋ = m + nx − gy/2 + gx2 + xy, ẏ = 2mx + 2ny + gxy + 2y2, g ∈ {0, 1} (S1
γγγ)

possessing the invariant parabola Φ(x, y) = x2 − y, or

ẋ = 2mx + 2ny + (h − 1)xy, ẏ = n − (h + 1)x/2 + my + hy2 (S2
γγγ)

possessing the invariant parabola Φ(x, y) = y2 − x.

δ)δ)δ) For η = M̃ = 0 and C2 ̸= 0 the system (S) could only possess one of the following sets of

invariant parabolas:
3

∪, ∞
3

∪. Moreover (S) has one of the above sets of parabolas if and only if

the corresponding conditions provided by the diagram given in Figure 1 (the branch C2 ̸= 0) are

satisfied. Furthermore the system (S) with an invariant parabola could be brought via an affine

transformation and time rescaling to the following canonical form

ẋ = m + (2n − 1)x/2 − gy/2 + gx2, ẏ = 2mx + 2ny − x2 + gxy (Sδδδ)

possessing the invariant parabola Φ(x, y) = x2 − y.

θ)θ)θ) For η = M̃ = C2 = 0 the system (S) could only possess an invariant parabola
∞

∪. Moreover (S)

has this invariant parabola if and only if the corresponding conditions provided by the diagram

given in Figure 1 (the branch C2 = 0) are satisfied. Furthermore the system (S) with an invari-

ant parabola could be brought via an affine transformation and time rescaling to the following

canonical form

ẋ = m + nx − y/2 + x2, ẏ = 2mx + 2ny + xy (Sθθθ)

possessing the invariant parabola Φ(x, y) = x2 − y.

The paper is organized as follows. In Section 2 we construct the invariant polynomials

which are responsible for the existence of an invariant parabola and obtain the ten equations

relating the coefficients of a quadratic system with those of an invariant parabola. In Section

3 we give the proof of the Main Theorem constructing the conditions for the existence of

invariant parabolas as well as the corresponding canonical systems.
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Figure 1.1: Quadratic systems with invariant parabolas: the case η > 0.

Figure 1.2: Quadratic systems with invariant parabolas: the case η < 0.



Family of quadratic differential systems with invariant parabolas 7

Figure 1.3: Quadratic systems with invariant parabolas: the case η = 0 ̸= M̃.
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Figure 1.4: Quadratic systems with invariant parabolas: the case η = 0 = M̃.
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2 The construction of the invariant polynomials

Consider real quadratic systems of the form

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P(x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

(2.1)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x2 + 2a11xy + a02y2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x2 + 2b11xy + b02y2.

It is known that on the set of quadratic systems acts the group Aff (2, R) of affine transforma-

tions on the plane (cf. [21]). For every subgroup G ⊆ Aff (2, R) we have an induced action of G

on QS. We can identify the set QS of systems (2.1) with a subset of R12 via the map QS −→ R12

which associates to each system (2.1) the 12-tuple ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01,

b20, b11, b02) of its coefficients. We associate to this group action polynomials in x, y and pa-

rameters which behave well with respect to this action, the GL-comitants (GL-invariants), the

T-comitants (affine invariants) and the CT-comitants. For their definitions as well as their

detailed constructions we refer the reader to the paper [21] (see also [1]).

2.1 Main invariant polynomials associated with invariant parabolas

We single out the following five polynomials, basic ingredients in constructing invariant poly-

nomials for systems (2.1):

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2),

Di(ã, x, y) =
∂pi

∂x
+

∂qi

∂y
, (i = 1, 2).

(2.2)

As it was shown in [23] these polynomials of degree one in the coefficients of systems (2.1)

are GL-comitants of these systems. Let f , g ∈ R[ã, x, y] and

( f , g)(k) =
k

∑
h=0

(−1)h

(
k

h

)
∂k f

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

The polynomial ( f , g)(k) ∈ R[ã, x, y] is called the transvectant of index k of ( f , g) (cf. [9, 17])).

Proposition 2.1 (see [24]). Any GL-comitant of systems (2.1) can be constructed from the elements

(2.2) by using the operations: +, −, ×, and by applying the differential operation (∗, ∗)(k).

Remark 2.2. We point out that the elements (2.2) generate the whole set of GL-comitants and

hence also the set of affine comitants as well as the set of T-comitants.
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We construct the following GL-comitants of the second degree with respect to the coeffi-

cients of the initial systems

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

(2.3)

Using these GL-comitants as well as the polynomials (2.2) we construct the additional

invariant polynomials. In order to be able to calculate the values of the needed invariant

polynomials directly for every canonical system we shall define here a family of T-comitants

expressed through Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 + D2

2

)(2)
/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ê =
[

D1(2T9 − T8)− 3 (C1, T9)
(1) − D2(3T7 + D1D2)

]
/72,

F̂ =
[
6D2

1(D2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ê

− 24
(

C2, D̂
)(2)

+120
(

D2, D̂
)(1)

−36C1 (D2, T7)
(1)+8D1 (D2, T5)

(1)
]

/144,

B̂ =
{

16D1 (D2, T8)
(1) (3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)

(1) (3D1D2 − 5T6 + 9T7)

+ 2 (D2, T9)
(1)

(
27C1T4 − 18C1D2

1 − 32D1T2 + 32 (C0, T5)
(1) )

+ 6(D2, T7)
(1)[8C0(T8−12T9)− 12C1(D1D2 + T7) + D1(26C2D1 + 32T5) + C2(9T4 + 96T3)]

+ 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2) −32C2D2

1

]
+ 48D2 (D2, T1)

(1) (2D2
2 − T8

)

− 32D1T8 (D2, T2)
(1) + 9D2

2T4 (T6 − 2T7)− 16D1 (C2, T8)
(1) (D2

1 + 4T3

)

+ 12D1 (C1, T8)
(2) (C1D2 − 2C2D1) + 6D1D2T4

(
T8 − 7D2

2 − 42T9

)

+ 12D1 (C1, T8)
(1) (T7 + 2D1D2) + 96D2

2

[
D1 (C1, T6)

(1) + D2 (C0, T6)
(1)

]

− 16D1D2T3

(
2D2

2 + 3T8

)
− 4D3

1D2

(
D2

2 + 3T8 + 6T9

)
+ 6D2

1D2
2 (7T6 + 2T7)

−252D1D2T4T9} /(2833),

K̂ = (T8 + 4T9 + 4D2
2)/72, Ĥ = (8T9 − T8 + 2D2

2)/72.

These polynomials in addition to (2.2) and (2.3) will serve as bricks in constructing affine

invariant polynomials for systems (2.1).

The following 42 affine invariants A1, . . . , A42 form the minimal polynomial basis of affine

invariants up to degree 12. This fact was proved in [2] by constructing A1, . . . , A42 using the

above bricks.

A1 = Â, A22 =
1

1152
[[C2, D̂)(1), D2

)(1)
, D2

)(1)
, D2

)(1)
D2

)(1)
,

A2 = (C2, D̂)(3)/12, A23 = [[[F̂, Ĥ)(1), K̂
)(2)

/8,

A3 = [[C2, D2)
(1), D2

)(1)
, D2

)(1)
/48, A24 = [[C2, D̂)(2), K̂

)(1)
, Ĥ

)(2)
/32,

A4 = (Ĥ, Ĥ)(2), A25 = [[D̂, D̂)(2), Ê
)(2)

/16,

A5 = (Ĥ, K̂)(2)/2, A26 = (B̂, D̂)(3)/36,
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A6 = (Ê, Ĥ)(2)/2, A27 = [[B̂, D2)
(1), Ĥ

)(2)
/24,

A7 = [[[C2, Ê)(2), D2

)(1)
/8, A28 = [[C2, K̂)(2), D̂

)(1)
, Ê

)(2)
/16,

A8 = [[D̂, Ĥ)(2), D2

)(1)
/8, A29 = [[D̂, F̂)(1), D̂

)(3)
/96,

A9 = [[D̂, D2)
(1), D2

)(1)
, D2

)(1)
/48, A30 = [[C2, D̂)(2), D̂

)(1)
, D̂

)(3)
/288,

A10 = [[D̂, K̂)(2), D2

)(1)
/8, A31 = [[D̂, D̂)(2), K̂

)(1)
, Ĥ

)(2)
/64,

A11 = (F̂, K̂)(2)/4, A32 = [[D̂, D̂)(2), D2

)(1)
, Ĥ

)(1)
, D2

)(1)
/64,

A12 = (F̂, Ĥ)(2)/4, A33 = [[D̂, D2)
(1), F̂

)(1)
, D2

)(1)
, D2

)(1)
/128,

A13 = [[C2, Ĥ)(1), Ĥ
)(2)

, D2

)(1)
/24, A34 = [[D̂, D̂)(2), D2

)(1)
, K̂

)(1)
, D2

)(1)
/64,

A14 = (B̂, C2)
(3)/36, A35 = [[D̂, D̂)(2), Ê

)(1)
, D2

)(1)
, D2

)(1)
/128,

A15 = (Ê, F̂)(2)/4, A36 = [[D̂, Ê)(2), D̂
)(1)

, Ĥ
)(2)

/16,

A16 = [[Ê, D2)
(1), C2

)(1)
, K̂

)(2)
/16, A37 = [[D̂, D̂)(2), D̂

)(1)
, D̂

)(3)
/576,

A17 = [[D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64, A38 = [[C2, D̂)(2), D̂

)(2)
, D̂

)(1)
, Ĥ

)(2)
/64,

A18 = [[D̂, F̂)(2), D2

)(1)
/16, A39 = [[D̂, D̂)(2), F̂

)(1)
, Ĥ

)(2)
/64,

A19 = [[D̂, D̂)(2), Ĥ
)(2)

/16, A40 = [[D̂, D̂)(2), F̂
)(1)

, K̂
)(2)

/64,

A20 = [[C2, D̂)(2), F̂
)(2)

/16, A41 = [[C2, D̂)(2), D̂
)(2)

, F̂
)(1)

, D2

)(1)
/64,

A21 = [[D̂, D̂)(2), K̂
)(2)

/16, A42 = [[D̂, F̂)(2), F̂
)(1)

, D2

)(1)
/16.

In the above list, the bracket “[[” is used in order to avoid placing the otherwise necessary

up to five parentheses “(”.

Using the elements of the minimal polynomial basis given above we construct the affine

invariant polynomials

χ1 = 32A3 + 45A4 − 160A5;

χ2 = 32A8(14A8 − 48A9 + 37A10 + 24A11)

+ 16A5(76A17 + 74A18 + 313A19 − 80A20 − 167A21)

+ A4(160A2
2 + 368A18 − 3363A19 + 736A20 + 2109A21) + 32(17A2

10 + 27A10A11 + 24A2
11

− 48A9A12 + 51A10A12 + 24A11A12 + 288A6 A14 − 96A7A14);

χ3 = 6520480A20(407A18 − 2253A21) + 24A18(1057715458A19 + 5944853225A21)

+ 28800A14(1872476A25 − 122259A26) + 144A12(3620283092A29 − 1554910481A30)

+ 1440A15(107225339A25 − 19561440A26)− 72A11(8198511476A29 − 2965514443A30)

+ 652048(4544A2
18 + 125A2

20 − 8955A2A42)− 9(264364688A2
19 + 39417454842A19A21

− 54474141921A2
21) + 3448898760A19A20;

χ4 = 62713A2
10 + 45787A10 A11 − 157928A2

11 + 81202A10A12 + 353474A11A12 − 145848A2
12

+ 64320A7 A15 + 28600A5 A17;

ζ1 = 13A4 − 24A5;

ζ2 = − A4;

ζ3 = 16A5 − 17A4;

ζ4 = 9A1A4 − 7A1A5 − 2A16;
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ζ5 = 166A8 + 384A9 − 1120A10 − 512A11 − 62A12;

ζ6 = − A6;

ζ7 = 40(71436A7A20 − 640883A7A21 + 1008622A1A32) + 12A12(3585035A14 + 14919259A15)

− 5(8092193A10 + 15970731A11)A14 − (129780821A10 + 269944167A11)A15;

ζ8 = A2;

ζ9 = 1040(2256A7A15 + 143A3A21)− 264(162941A10 + 315202A11)A12

+ 3A11(25887132A10 + 24385177A11) + 20603609A2
10 + 24896016A2

12;

ζ10 = 250A2
1 + 34A11 − 41A12;

ζ11 = D2
2 + 28Ĥ − 32K̂;

ζ12 = D2
2 − 4Ĥ − 16K̂;

ζ13 = D2
2 − 18K̂;

ζ14 = D2
2 − 16K̂;

ζ15 = Ĥ;

ζ16 = A2(24A18 − 42A17 − 1024A19 − 2A20 − 213A21) + 5(420A1A25 − 199A38

− 225A39 + 60A40 + 8A41);

ζ17 = 3456(C0, T7)
(1)

[
(D2, T7)

(1)
]2

+ 81D3
1(C1, T8)

(2)(C1, T9)
(2) − 36D1(D2, T7)

(1)×

×
[
8[[T8, C2)

(1), C1)
(2), C0)

(1) + [[C1, T5)
(2), 36T6 − 7D1D2)

(1)
]

− 4[[C1, T5)
(2), D2)

(1)[[C1, T5)
(2), T6 + 309D1D2)

(1) + 70T4(D2, T7)
(1)[[C1, T5)

(2), D2)
(1);

ζ18 = A37;

ζ19 = (C2, D̃)(1);

ζ20 = (C2, D̃)(2);

ζ21 = (C2, Ẽ)(1);

ζ22 = A2(3A2
2 − 4A18) + 72A1(A25 + 2A26);

ζ23 = T4;

ζ24 = 6C2D2
1 + 9C2T4 − 4D1T5;

R1 = 531A2A4 − 1472A2A5 − 8352A1A6 + 320A22 − 3216A23 + 1488A24;

R2 = 15A10 − 10A8 − 6A9;

R3 = 4800(6650951968A14A15 − 2382132830A2
14 − 9860550485A2

15) + 1600(4765089473A11

− 7838161089A12)A20 + 640(15664652914A11 − 50944340271A12)A18

− 6(20392663986679A10 + 34357804389813A11 − 739275727012A12)A21

+ 3(46944212550227A10 + 83455057317969A11 − 22899810934956A12)A19;

R4 = 251A2
1 + 25A12;

R5 = [[C2, C2)
(2), C1)

(2);

R6 = 851A2A17 − 235A41 + 170A42;

R7 = 62250A2
1 + 8956A9 − 46223A10 − 50129A11 + 14766A12.
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2.2 Preliminary results involving the use of polynomial invariants

Considering the GL-comitant C2(ã, x, y) = yp2(ã, x, y)− xq2(ã, x, y) as a cubic binary form of

x and y we calculate

η(ã) = Discrim[C2, ξ], M̃(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y. Following [23] (see also [21]) we have the next lemma.

Lemma 2.3. The number of distinct roots (real and imaginary) of the polynomial C2(ã, x, y) is deter-

mined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real (1 double) if η = 0 and M̃ ̸= 0;

(iv) 1 real (triple) if η = M̃ = 0 and C2 ̸= 0;

(v) ∞ if η = M̃ = C2 = 0.

Moreover, for each one of these cases the quadratic systems (2.1) can be brought via a linear transfor-

mation to one of the following canonical systems (SI)–(SIV):

{
ẋ = a + cx + dy + gx2 + (h − 1)xy,

ẏ = b + ex + f y + (g − 1)xy + hy2;
(SI)

{
ẋ = a + cx + dy + gx2 + (h + 1)xy,

ẏ = b + ex + f y − x2 + gxy + hy2;
(SII)

{
ẋ = a + cx + dy + gx2 + hxy,

ẏ = b + ex + f y + (g − 1)xy + hy2;
(SIII)

{
ẋ = a + cx + dy + gx2 + hxy,

ẏ = b + ex + f y − x2 + gxy + hy2,
(SIV)

{
ẋ = a + cx + dy + x2,

ẏ = b + ex + f y + xy.
(SV)

Some important necessary conditions for a quadratic system to possess invariant parabolas

are provided by the next lemma.

Lemma 2.4. If a quadratic system (2.1) possesses an invariant parabola then the conditions χ1 = χ2 =

0 hold.

Proof. Assume that a quadratic system (2.1) possesses an invariant parabola. It is known that

via an affine transformation this parabola could be brought to the canonical form y = x2.

Then as it was proved in [5] this quadratic system can be written in the form

ẋ = c(y − x2) + (a + bx + gy) + ex, ẏ = d(y − x2) + 2x(a + bx + gy) + 2ey2,

where a, b, c, d, g, h, e are real parameters. A straightforward calculation gives χ1 = χ2 = 0 for

the above systems and this completes the proof of the lemma.
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Assume that a conic

Φ(x, y) ≡ p + qx + ry + sx2 + 2vxy + uy2 = 0 (2.4)

is an affine algebraic invariant curve for quadratic systems (2.1), which we rewrite in the form:

dx

dt
= a + cx + dy + gx2 + 2hxy + ky2 ≡ P(x, y),

dy

dt
= b + ex + f y + lx2 + 2mxy + ny2 ≡ Q(x, y).

(2.5)

Remark 2.5. Following [10] we construct the determinant

∆ =

∣∣∣∣∣∣

s v q/2

v u r/2

q/2 r/2 p

∣∣∣∣∣∣
,

associated to the conic (2.4). By [10] this conic is irreducible (i.e. the polynomial Φ defining

the conic is irreducible over C) if and only if ∆ ̸= 0.

According to definition of an invariant curve (see page 2) considering the cofactor K =

Ux + Vy + W ∈ R[x, y] the following identity holds:

∂Φ

∂x
P(x, y) +

∂Φ

∂y
Q(x, y) = Φ(x, y)(Ux + Vy + W).

This identity yields a system of 10 equations for determining the 9 unknown parameters p, q,

r, s, u, v, U, V, W:

Eq1 ≡ s(2a20 − U) + 2b20v = 0,

Eq2 ≡ 2v(a20 + 2b11 − U) + s(4a11 − V) + 2b20u = 0,

Eq3 ≡ 2v(2a11 + b02 − V) + u(4b11 − U) + 2a02s = 0,

Eq4 ≡ u(2b02 − V) + 2a02v = 0,

Eq5 ≡ q(a20 − U) + s(2a10 − W) + 2b10v + b20r = 0,

Eq6 ≡ r(2b11 − U) + q(2a11 − V) + 2v(a10 + b01 − W) + 2(a01s + b10u) = 0,

Eq7 ≡ r(b02 − V) + u(2b01 − W) + 2a01v + a02q = 0,

Eq8 ≡ q(a10 − W) + 2(a00s + b00v) + b10r − pU = 0,

Eq9 ≡ r(b01 − W) + 2(b00u + a00v) + a01q − pV = 0,

Eq10 ≡ a00q + b00r − pW = 0.

(2.6)

According to [6] (see also [3]) we have the next lemma.

Lemma 2.6. Suppose that a polynomial system (1.1) of degree n has the invariant algebraic curve

f (x, y) = 0 of degree m. Let Pn, Qn and fm be the homogeneous components of P, Q and f of degree n

and m, respectively. Then the irreducible factors of fm must be factors of yPn − xQn.

3 The proof of the Main Theorem

Assuming that a quadratic system (2.5) has an invariant parabola (2.4) by Lemma 2.4 we

conclude that for this system the conditions χ1 = χ2 = 0 have to be fulfilled.

In what follows considering Lemma 2.3 we examine each one of the families of quadratic

systems provided by this lemma.
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3.1 Systems with three real infinite singularities

In this case according to Lemma 2.3 systems (2.5) via a linear transformation could be brought

to the following family of systems

dx

dt
= a + cx + dy + gx2 + (h − 1)xy,

dy

dt
= b + ex + f y + (g − 1)xy + hy2,

(3.1)

for which we have C2(x, y) = xy(x − y). Therefore the infinite singularities are located at the

intersections of the lines x = 0, y = 0 and x − y = 0 with the line Z = 0 at infinity. So by

Lemma 2.6 it is clear that if a parabola is invariant for these systems, then its homogeneous

quadratic part has one of the following forms: (i) kx2, (ii) ky2, (iii) k(x − y)2, where k is a

real nonzero constant. Obviously we may assume k = 1 (otherwise instead of conic (2.4) we

could consider Φ(x, y)/k = 0).

According to Lemma 2.4 for the existence of an invariant parabola for a system (3.1) the

condition χ1 = 0 is necessary. For the above systems we calculate

χ1 = 2(g − 2)(h − 2)(1 + g + h) (3.2)

and therefore the condition χ1 = 0 is equivalent to (g − 2)(h − 2)(1 + g + h) = 0.

On the other hand we have the following lemma.

Lemma 3.1. Assume that a system (3.1) possesses an invariant parabola. Then its quadratic homoge-

neous part is of the form x2 (respectively, y2; (x − y)2) only if the condition h − 2 = 0 (respectively,

g − 2 = 0; g + h + 1 = 0) holds.

Proof. Assume that a system (3.1) possesses an invariant parabola of the form Φ(x, y) = p +

qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic). Then considering equations (2.6)

we obtain

s = 1, v = u = 0, Eq2 = −2 + 2h − V = 0 ⇒ V = 2(h − 1).

Therefore we have Eq7 = (2− h)r = 0 and since r ̸= 0 this implies h − 2 = 0. So the statement

of the lemma is true in this case.

If the system possesses an invariant parabola of the form Φ(x, y) = p + qx + ry + y2 with

q ̸= 0 then considering equations (2.6) we obtain

s = v = 0, u = 1, Eq3 = −2 + 2g − U = 0 ⇒ U = 2(g − 1).

In this case we obtain Eq5 = (2 − g)q = 0 and due to q ̸= 0 we get g − 2 = 0.

Assume now a system (3.1) possesses an invariant parabola of the form Φ(x, y) = p+ qx +

ry + (x − y)2 with q + r ̸= 0. Then we have

s = 1, v = −1, u = 1, Eq1 = 2g − U, Eq4 = 2h − V

and therefore the equations Eq1 = 0 and Eq4 = 0 yield U = 2g and V = 2h, respectively. Then

we calculate Eq5 + Eq6 + Eq7 = −(1 + g + h)(q + r) = 0 and due to the condition q + r ̸= 0

we get 1 + g + h = 0 and this completes the proof of Lemma 3.1.
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Considering (3.2) it is clear that the condition χ1 = 0 implies either h = 2 or g = 2 or

h = −(1 + g). On the other hand for systems (3.1) we have

ζ1 = 2(g − 2)(3 + g) in the case h = 2;

ζ1 = 2(h − 2)(3 + h) in the case g = 2;

ζ1 = 2(g − 2)(3 + g) in the case h = −(1 + g)

and therefore we conclude that if χ1 = 0 then the condition ζ1 = 0 imposes the vanishing of

one more factor of the polynomial χ1.

Remark 3.2. If (h − 2)(g − 2)(1 + g + h) = 0 then without losing generality we may assume

h = 2. Furthermore if two of these factors vanish simultaneously (i.e. ζ1 = 0) then we may

assume h = 2 and g = 2.

Indeed assume h − 2 ̸= 0 and suppose first that g = 2. We observe that the change

(x, y, a, b, c, d, e, f , g, h) 7→ (y, x, b, a, e, d, f , c, h, g)

conserves systems (3.1) and hence the condition g = 2 is transformed into h = 2.

Admit now that the condition 1 + g + h = 0 is fulfilled. Then applying to these systems

the transformation

x1 = x − y, y1 = −y

and arrive at the systems

ẋ1 = a1 + c1x1 + g1x2
1 + (h1 − 1)x1y1, ẏ1 = b1 + f1y1 + (g1 − 1)x1y1 + h1y2

1

where (we are interested only in homogeneous quadratic parts)

g1 = g, h1 = 1 − g − h, ⇒ g = g1, h = 1 − g1 − h1.

Therefore we obtain 1 + h1 + g1 = 1 + (1 − g − h) + g = 2 − h and hence via the above

transformation the condition 1 + g + h = 0 is reduced to the condition h − 2 = 0.

Assume now that two of the factors (h− 2)(g− 2)(1+ g+ h) vanish. Then as it was shown

above we may assume h = 2. In this case other two factors become g− 2 and g+ 3. Supposing

h = 2 and g = −3 systems (3.1) become

ẋ = a + cx + dy − 3x2 + xy, ẏ = b + ex + f y − 4xy + 2y2,

which via the transformation x1 = x, y1 = x − y can be brought to the systems

ẋ1 = a1 + c1x1 + d1y1 + 2x2
1 + x1y1, ẏ1 = b1 + e1x1 + f1y1 + x1y1 + 2y2

1.

It remains to observe that these systems have the form (3.1) with h = 2 and g = 2 and we

conclude that the statement of Remark 3.2 is valid.

Considering Lemma 3.1 and Remark 3.2 we conclude that for determining the condi-

tions for the existence and the number of invariant parabolas for systems (3.1) it is sufficient

to examine when the invariant parabolas have the forms Φ(x, y) = p + qx + ry + x2 and

Φ(x, y) = p + qx + ry + y2. Moreover as it is mentioned above systems (3.1) could have in-

variant parabolas only in one direction (if χ1 = 0 and ζ1 ̸= 0) and they could have invariant

parabolas in two directions (if χ1 = 0 and ζ1 = 0). In what follows we examine each one of

these two possibilities.
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3.1.1 The possibility χ1 = 0 and ζ1 ̸= 0

Then we may assume h = 2 and by Lemma 3.1 systems (3.1) could have invariant parabolas of

the form Φ(x, y) = p + qx + ry + x2. Applying the translation (x, y) 7→
(
x − d, y − c + 2dg)

)

systems (3.1) can be brought to the systems

ẋ = a + gx2 + xy, ẏ = b + ex + f y + (g − 1)xy + 2y2. (3.3)

Coefficient conditions for systems (3.3) to possess invariant parabolas

Lemma 3.3. A system (3.3) possesses either one or two invariant parabolas or a double invariant

parabola of the form Φ(x, y) = p + qx + ry + x2 (r ̸= 0) if and only if Ω1 = 0 and the corresponding

set of conditions are satisfied, respectively:

(A1) g(g + 1) ̸= 0, 2g + 1 ̸= 0, D1 ̸= 0, G1 ̸= 0 ⇒ ∪;

(A2) g(g + 1) ̸= 0, 2g + 1 ̸= 0, D1 = 0, a ̸= 0, F1 ̸= 0 ⇒ ⋓;

(A3) g(g + 1) ̸= 0, 2g + 1 ̸= 0, D1 = 0, a ̸= 0, F1 = 0 ⇒ ∪2;

(A4) g(g + 1) ̸= 0, 2g + 1 ̸= 0, D1 = 0, a = 0, f ̸= 0 ⇒ ∪;

(A5) g = −1/2, D1 ̸= 0, a ̸= 0 ⇒ ∪;

(A6) g = −1/2, D1 = 0, b ̸= 0, e2 − 2b ̸= 0 ⇒ ⋓;

(A7) g = −1/2, D1 = 0, b ̸= 0, e2 − 2b = 0 ⇒ ∪2;

(A8) g = −1/2, D1 = 0, b = 0, e ̸= 0 ⇒ ∪;

(A9) g = 0, b = a, e ̸= 0, a ̸= 0 ⇒ ∪;

(A10) g = −1, b = 0, e + f ̸= 0, a ̸= 0 ⇒ ∪,

where

Ω1 = 2b2(1 + 2g)2 − b
[
4a(1 + g)(1 + 2g)(1 + 3g)− (e − f g)(e + f + f g)

]

+ a(1 + g)
[
2a(1 + g)(1 + 3g)2 − (e − 2 f g)(e + f + f g)

]
;

D1 = e + f (g + 1); G1 = a − b + 4ag − 2bg + 3ag2; F1 = 8ag(1 + g)− f 2(1 + 2g).

(3.4)

Proof. Considering the equations (2.6) and the form of invariant parabola Φ(x, y) = p + qx +

ry + x2 with r ̸= 0 we obtain

s = 1, v = u = 0, U = 2g, V = 2, W = −gq,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.

Calculating the remaining equations we obtain

Eq6 = −q − r − gr, Eq8 = 2a − 2gp + gq2 + er,

Eq9 = −2p + f r + gqr, Eq10 = aq + gpq + br.

It is clear that the equations Eq6 = 0 implies q = −(1 + g)r and then Eq9 = 0 gives us

p = r( f − gr − g2r)/2. Therefore calculations yield

Eq8 = g(1 + g)(1 + 2g)r2 + (e − f g)r + 2a,

Eq10 = r
[
g2(1 + g)2r2 − f g(1 + g)r − 2(a − b + ag)

]
/2 ≡ rΨ/2

(3.5)
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and since r ̸= 0 the equation Eq10 = 0 is equivalent to Ψ = 0.

According to [12, Lemmas 11, 12] the equations Eq8 = 0 and Ψ = 0 have a common

solution of degree 2 with respect to the parameter r if and only if

Res
(0)
r (Eq8, Ψ) = Res

(1)
r (Eq8, Ψ) = 0

where Res
(1)
r is the subresultant of order one and Res

(0)
r is the subresultant of order zero which

coincide with standard resultant (for detailed definition see [12], formula (19)). We calculate

Res
(1)
r (Eq8, Ψ) = −g2(1 + g)2(e + f + f g) ≡ −g2(1 + g)2D1,

Res
(0)
r (Eq8, Ψ) = 2g2(g + 1)2Ω1.

So we examine three possibilities: g(g + 1) ̸= 0, g = 0 and g = −1.

1: The possibility g(g + 1) ̸= 0. Considering (3.4) we observe that the polynomial Ω1 is

quadratic with respect to the parameter b if 2g + 1 ̸= 0. So we discuss two cases: 2g + 1 ̸= 0

and 2g + 1 = 0.

1.1: The case 2g+ 1 ̸= 0. We observe that due to the condition g(g+ 1) ̸= 0 the subresultant

of order one Res
(1)
r (Eq8, Ψ) vanishes if and only if D1 = 0. So we consider two subcases:

D1 ̸= 0 and D1 = 0.

1.1.1: The subcase D1 ̸= 0. Then the invariant parabola exists if and only if Ω1 = 0 and

therefore we have to examine the solutions of the equation Ω1 = 0. In this case we calculate

Discrim[Ω1, b] = −(e + f + f g)2
[
8ag(1 + g)(1 + 2g)− (e − f g)2

]
≡ −D2

1E

and hence the equation Ω1 = 0 has real solutions with respect to the parameter b if and only

if either D1 = 0 or E ≤ 0. However since the condition D1 ̸= 0 holds it remains to examine

the condition E ≤ 0.

In this case setting E = −w2 ≤ 0 we calculate

a =
(e − f g)2 − w2

8g(g + 1)(2g + 1)
(3.6)

and then we obtain:

Ω1 =
B+B−

32g2(1 + 2g)2
,

where

B± = 8bg(1 + 2g)2 + ( f g − e + εw)
[
e(1 + g)− f g(3 + 5g) + εw(1 + 3g)

]
, ε = ±1.

Then the condition Ω1 = 0 gives us

b =
(e − f g − εw)

8g(1 + 2g)2

[
e(1 + g)− f g(3 + 5g) + εw(1 + 3g)

]
(3.7)

where ε = 1 if B+ = 0 and ε = −1 if B− = 0. In this case we obtain that the polynomials Eq8

and Ψ(e, f , g, r) have the common factor ζ = 2g(1 + g)(1 + 2g)r + e − f g − εw which is linear

with respect to the parameter r. Setting ζ = 0 we get

r = −
e − f g − εw

2g(1 + g)(1 + 2g)
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and we arrive at the family of systems

ẋ =
(e − f g)2 − w2

8g(g + 1)(2g + 1)
+ gx2 + xy,

ẏ =
(e − f g − εw)

8g(1 + 2g)2

[
e(1 + g)− f g(3 + 5g) + εw(1 + 3g)

]
+ ex + f y + (g − 1)xy + 2y2.

(3.8)

This family of systems possess the following invariant parabola

Φ(x, y) = −
(e − f g − εw)(e + 2 f + 3 f g − εw)

8g(1 + g)(1 + 2g)2

+
e − f g − εw

2g(1 + 2g)
x −

e − f g − εw

2g(1 + g)(1 + 2g)
y + x2.

(3.9)

We observe that this conic is reducible if and only if e − f g + εw = 0.

Considering (3.6) and (3.7) we get

w2 = −8ag(1 + g)(1 + 2g) + (e − f g)2

and then we obtain

b =
1

8g(1 + 2g)2

[
(e − f g)(e + eg − 3 f g − 5 f g2)− 2εwg(e + f + f g)− (1 + 3g)w2

]
⇒

4b(1 + 2g)2 − 4a(1 + g)(1 + 2g)(1 + 3g) + (e + f + f g)(e − f g − εw) = 0.

Since D1 = (e + f + f g) ̸= 0 we solve the last equation with respect to εw and we obtain

εw =
1

e + f + f g

[
4b(1 + 2g)2 − 4a(1 + g)(1 + 2g)(1 + 3g) + (e − f g)(e + f + f g)

]
.

Then calculations yield

r = −
e − f g − εw

2g(1 + g)(1 + 2g)
= −

2(a − b + 4ag − 2bg + 3ag2)

g(1 + g)(e + f + f g)
= −

2G1

g(1 + g)(e + f + f g)
̸= 0.

This completes the proof of the statement (A1) of Lemma 3.3.

Since systems (3.8) are in the class defined by the condition η > 0, according to the state-

ment α)α)α) of Main Theorem we have to prove that these systems could be brought via a trans-

formation to the canonical form (Sααα).

Indeed as g(1 + g)(1 + 2g) ̸= 0 we apply to the parabola (3.9) the translation

x = x1 −
e − f g − εw

4g(1 + 2g)
, y = y1 −

e + 3eg + f g(3 + 5g)− (1 + 3g)εw

8g(1 + 2g)
(3.10)

and we get a simpler form of this parabola:

Φ̃(x1, y1) = x2
1 −

e − f g − εw

2g(1 + g)(1 + 2g)
y1.
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On the other hand applying the same translation to the family of systems (3.8) we arrive at

the systems

ẋ1 =
(e − f g − εw)

[
f g(1 − g)(3 + 5g) + e(1 + 10g + 13g2) + (g − 1)(1 + 3g)εw

]

32g2(1 + g)(1 + 2g)2
−

f g(3 + g) + e(1 + 7g)− (1 + 7g)εw

8g(1 + 2g)
x1 −

e − f g − εw

4g(1 + 2g)
y1 + gx2

1 + x1y1,

ẏ1 =
f g(1 − g)(3 + 5g) + e(1 + 10g + 13g2) + (g − 1)(1 + 3g)εw

8g(1 + 2g)
x1−

f g(3 + g) + e(1 + 7g)− (1 + 7g)εw

4g(1 + 2g)
y1 + (g − 1)x1y1 + 2y2

1.

(3.11)

Observation 3.4. We remark that simultaneously applying the same translation on systems

(3.8) and on the corresponding invariant parabola (3.9) we arrive at systems (3.11). We point

out that the linear parts of these systems together with the coefficients of the transformed

parabola Φ̃(x1, y1) suggest us the new notations for the simplification of the canonical forms.

Indeed due to the condition g(1 + g)(1 + 2g)(e − f g − εw) ̸= 0 we could set the following

new notations:

k =
e − f g − εw

2g(1 + g)(1 + 2g)
, n = −

f g(3 + g) + e(1 + 7g)− (1 + 7g)εw

8g(1 + 2g)
,

m =
f g(1 − g)(3 + 5g) + e(1 + 10g + 13g2) + (g − 1)(1 + 3g)εw

16g(1 + 2g)
⇒

e = gk − g3k + 2m + n − gn, f = −
(1 + g)(1 + 7g)k − 4n

2
,

w = −
g(1 + g)(1 + 3g)k − 2(2m + n + gn)

2ε

where k ̸= 0 due to e − f g + εw ̸= 0. Then we arrive at the following family of systems:

ẋ1 = km + nx1 −
k

2
(g + 1)y1 + gx2

1 + xy,

ẏ1 = 2mx1 + 2ny1 + (g − 1)x1y1 + 2y2
1.

which possess the invariant parabola Φ(x1, y1) = x2
1 − ky1, k ̸= 0.

Remark 3.5. If k ̸= 0 then due to a rescaling we may assume k = 1 in the above systems as

well as in the invariant parabola.

Indeed since k ̸= 0 via the rescaling (x1, y1, t1) 7→ (kx1, ky1, t/k) and setting m/k = m and

n/k = n we may assume k = 1 in the above systems. At the same time applying this rescaling

to the above parabola we get Φ(x1, y1) = k2(x2
1 − y1) and we conclude that the parabola

Φ̃(x1, y1) = x2
1 − y1 also in invariant for the above systems.

Therefore due to this remark we get the canonical systems (Sααα) provided by the statement

α)α)α) of Main Theorem.

1.1.2: The subcase D1 = 0. Then e = − f (1 + g) and therefore we obtain:

Ω1 = 2
[
a(1 + g)(1 + 3g)− b(1 + 2g)

]2
= 2G2

1



Family of quadratic differential systems with invariant parabolas 21

and since 2g + 1 ̸= 0 the condition Ω1 = 0 implies

b =
a(1 + g)(1 + 3g)

1 + 2g
.

Therefore we determine that in this case the polynomials Eq8 and Eq10 have the following

common factor

φ̃ = 2a − f (1 + 2g)r + g(1 + g)(1 + 2g)r2.

We observe that φ̃ is quadratic in r with the discriminant

Discrim[φ̃, r] = −(1 + 2g)
[
8ag(1 + g)− f 2(1 + 2g)

]

and setting this discriminant equal to be w2 we obtain

a =
f 2(1 + 2g)2 − w2

8g(1 + g)(1 + 2g)
. (3.12)

Then we arrive at the following expressions for the polynomials Eq8 and Eq10:

Eq8 =
H+H−

4g(1 + g)(1 + 2g)
, Eq10 =

rH+H−

8(1 + 2g)2
,

where

H± = f (1 + 2g)− 2g(1 + g)(1 + 2g)r ± w.

Therefore the equations Eq8 = Eq10 = 0 imply H+H− = 0. If H+ = 0 we determine

r =
f + 2 f g + w

2g(1 + g)(1 + 2g)
≡ r+

and we obtain the parabola

Φ1(x, y) =
f 2(1 + 2g)2 − w2

8g(g + 1)(2g + 1)2
−

f + 2 f g + w

2g(1 + 2g)
x +

f + 2 f g + w

2g(g + 1)(2g + 1)
y + x2.

In the case H− = 0 we obtain

r =
f + 2 f g − w

2g(1 + g)(1 + 2g)
≡ r−

and we get the parabola

Φ2(x, y) =
f 2(1 + 2g)2 − w2

8g(g + 1)(2g + 1)2
−

f + 2 f g − w

2g(1 + 2g)
x +

f + 2 f g − w

2g(g + 1)(2g + 1)
y + x2.

Both these parabolas are invariant for the following family of systems:

ẋ =
f 2(1 + 2g)2 − w2

8g(1 + g)(1 + 2g)
+ gx2 + xy,

ẏ =
(3g + 1)

[
f 2(1 + 2g)2 − w2

]

8g(2g + 1)2
− f (g + 1)x + f y + (g − 1)xy + 2y2).

(3.13)

We observe that both parabolas Φi(x, y) = 0 (i = 1, 2) exist (i.e. are not reducible) if and

only if r+r− ̸= 0 and this is equivalent to

( f + 2 f g + w)( f + 2 f g − w) = f 2(1 + 2g)2 − w2 ̸= 0
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and considering (3.12) this is equivalent to a ̸= 0.

On the other hand if only one of the factors vanishes we have a = 0 and

r+ + r− = ( f + 2 f g + w) + ( f + 2 f g − w) = 2 f (1 + 2g) ̸= 0

and due to 1+ 2g ̸= 0 we obtain that the above condition is equivalent to f ̸= 0. Therefore for

a = 0 and f ̸= 0 we could have only one parabola.

We determine that in the case w = 0 we obtain Φ1(x, y) = Φ2(x, y), i.e. the parabolas coa-

lesce when w tends to zero and we obtain a double parabola. On the other hand considering

(3.12) for w = 0 we obtain to

a −
f 2(1 + 2g)

8g(1 + g)
=

8ag(1 + g)− f 2(1 + 2g)

8g(1 + g)
=

F1

8g(1 + g)

and we conclude that these invariant parabolas coalesce if and only if F1 = 0.

Thus we conclude that the statements (A2), (A3) and (A4) of Lemma 3.3 are proved.

Next we observe that the family of systems (3.13) is a subfamily of (3.8) defined by the

condition e = − f (1 + g) (i.e. D1 = 0). Moreover considering (3.9) for e = − f (1 + g) we

obtain:

Φ(x, y) =
f 2(1 + 2g)2 − w2

8g(g + 1)(2g + 1)2
−

f + 2 f g + εw

2g(1 + 2g)
x +

f + 2 f g + εw

2g(g + 1)(2g + 1)
y + x2

and we observe that for ε = 1 (respectively ε = −1) the above parabola coincides with the

invariant parabola Φ1(x, y) = 0 (respectively Φ2(x, y) = 0) of systems (3.13).

So taking the invariant parabola Φ1(x, y) = 0 (obtained for e = − f (1 + g) and ε = 1 ) we

could apply the same translation (3.10) in this particular case and we arrive at the subfamily of

systems (3.11) defined by the conditions e = − f (1+ g) and ε = 1 which possess the following

invariant parabola

Φ̃1(x1, y1) = x2
1 +

( f + 2 f g + w)

2g(1 + g)(1 + 2g)
y1.

Since in the considered case we have only three free parameters, we set only two new param-

eters as follows:

k = −
f + 2 f g + w

2g(1 + g)(1 + 2g)
, n =

f + 5 f g + 6 f g2 + w + 7gw

8g(1 + 2g)
⇒

f = −
k + 8gk + 7g2k + 4n

2
, w =

(1 + 2g)(k + 4gk + 3g2k + 4n)

2
.

In this case after an additional rescaling (to force k = 1, see Remark 3.5) we arrive at the

subfamily of systems (Sααα) defined by the condition

m = (1 + 3g)(1 + 4g + 3g2 + 2n)/4.

1.2: The case 2g + 1 = 0. Then g = −1/2 and evaluating Ω1 and D1 we obtain

Ω1 =
[
2b(2e + f )2 + a(a − 4e2 − 6e f − 2 f 2)

]
/8 = 0, D1 = (2e + f )/2. (3.14)

So we discuss two subcases: D1 ̸= 0 and D1 = 0.
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1.2.1: The subcase D1 ̸= 0. Then 2e + f ̸= 0 and then the condition Ω1 = 0 gives us

b = −
a(a − 4e2 − 6e f − 2 f 2)

2(2e + f )2
.

In this case the polynomials Eq8 and Eq10 have the common factor 4a + (2e + f )r. Therefore

the equations Eq8 = Eq10 = 0 imply r = −4a/(2e + f ) and we arrive at the family of systems

ẋ = a − x2/2 + xy,

ẏ = −
a(a − 4e2 − 6e f − 2 f 2)

2(2e + f )2
+ ex + f y − 3xy/2 + 2y2,

(3.15)

which possess the invariant parabola

Φ(x, y) =
2a(a − 2e f − f 2)

(2e + f )2
+

2a

2e + f
x −

4a

2e + f
y + x2. (3.16)

Evidently this conic is irreducible if and only if a ̸= 0. This completes the proof of the

statement (A5) of Lemma 3.3.

Next we show that systems (3.15) could be brought via a transformation to the canonical

form (Sααα). Indeed since 2e + f ̸= 0 we apply to parabola (3.16) the translation

x = x1 −
a

2e + f
, y = y1 +

a − 4e f − 2 f 2

4(2e + f )
.

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

4a

2e + f
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.15) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k =
4a

2e + f
, n = −

(−5a + 4e f + 2 f 2)

4(2e + f )
, m =

−3a + 16e2 + 20e f + 6 f 2

16(2e + f )
⇒

a = −
k(k − 32m − 8n)

32
, e =

−3k + 16m + 12n

8
, f =

5k − 16n

8
.

Then after an additional rescaling (to force k = 1, see Remark 3.5) we arrive at the subfamily

of systems (Sααα) defined by the condition g = −1/2.

1.2.2: The subcase D1 = 0. This implies f = −2e and considering (3.14) we have

Ω1 = a2/8 = 0 ⇒ a = 0.

Therefore we obtain

Eq8 = 0, Eq10 = r(32b − 8er + r2)/32 ≡ rφ(b, e, r)/32 = 0.

Since r ̸= 0 and Discrim[φ, r] = 64(e2 − 2b) we must have e2 − 2b ≥ 0 and we set e2 − 2b =

w2 ≥ 0, i.e. b = (e2 − w2)/2. Then we obtain

φ = (4e − r − 4w)(4e − r + 4w) ≡ ϕ1 ϕ2 = 0.

If ϕ1 = 0 we obtain r = 4(e − w) ̸= 0 and we obtain the parabola

Φ′
1(x, y) = −2(e2 − w2)− 2(e − w)x + 4(e − w)y + x2 (3.17)
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which is invariant for the family of systems

ẋ = − x2/2 + xy,

ẏ = (e2 − w2)/2 + ex − 2ey − 3xy/2 + 2y2.
(3.18)

In the case ϕ2 = 0 we obtain r = 4(e + w) ̸= 0 and we obtain the parabola

Φ′
2(x, y) = −2(e2 − w2)− 2(e + w)x + 4(e + w)y + x2

which is invariant for the same family of systems (3.18).

We observe that both invariant parabolas exist only for (e − w)(e + w) = e2 − w2 ̸= 0 and

since b = (e2 − w2)/2 we obtain that the condition b ̸= 0 must hold.

On the other hand we could have only one invariant parabola in the case when one of the

factors vanishes, i.e. (e − w)(e + w) = 0. So we calculate

(e − w) + (e + w) = 2e

and we conclude that in the case b = 0 and e ̸= 0 systems (3.18) possess only one invariant

parabola.

We determine that in the case w = 0 we obtain Φ′
1(x, y) = Φ′

2(x, y), i.e. the parabolas

coalesce when w tends to zero and we obtain a double parabola. On the other hand consid-

ering the relation e2 − 2b = w2 for w = 0 we obtain e2 − 2b = 0 and hence in the case b ̸= 0

we have two distinct invariant parabolas if e2 − 2b ̸= 0 and one double invariant parabola if

e2 − 2b = 0.

Thus we conclude that the statements (A6), (A7) and (A8) of Lemma 3.3 are proved.

Next we show that systems (3.18) could be brought via a transformation to the canonical

form (Sααα). Indeed we apply to parabola (3.17) the translation

x = x1 + e − w, y = y1 + (3e + w)/4

which brings this parabola to the form Φ̃(x1, y1) = x2
1 + 4(e − w) y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.18) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = −4(e − w), n = (−e + 5w)/4 ⇒

e = (−5k + 16n)/16, w = (−k + 16n)/16.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the conditions g = −1/2 and m = (1 − 8n)/32.

2: The possibility g = 0. Then considering (3.5) we obtain

Eq8 = 2a + er = 0, Eq10 = (b − a)r = 0.

and since r ̸= 0 we obtain b = a. We discuss two cases: e ̸= 0 and e = 0.

2.1: The case e ̸= 0. Then we get r = −2a/e and we arrive at the family of systems

ẋ = a + xy, ẏ = a + ex + f y − xy + 2y2, (3.19)
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which possess the invariant parabola

Φ(x, y) = −
a f

e
+

2a

e
x −

2a

e
y + x2 (3.20)

and clearly this conic is irreducible if and only if the condition a ̸= 0 holds.

2.2: The case e = 0. Then the equation Eq8 = 0 gives us a = 0 and then the equation

Eq10 = br = 0 implies b = 0. However in this case we get the degenerate system:

ẋ = xy, ẏ = y( f − x + 2y).

So a system (3.3) with g = 0 possesses an invariant parabola if and only if the condition ea ̸= 0

is satisfied. This completes the proof of the statement (A9) of Lemma 3.3.

Now we look for a transformation to brings systems (3.19) to the canonical form (Sααα). For

this we apply to parabola (3.20) the translation

x = x1 − a/e, y = y1 −
a + e f

2e

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

2a
e y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.15) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k =
2a

e
, m =

a + 2e2 + e f

4e
, n = −

a + e f

2e
⇒

a = k(2m + n)/2, e = 2m + n, f = −(k + 4n)/2.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the condition g = 0.

3: The possibility g = −1. Then considering (3.5) we obtain

Eq8 = 2a + (e + f )r = 0, Eq10 = br = 0.

and since r ̸= 0 we obtain b = 0. We discuss two cases: e + f ̸= 0 and e + f = 0.

3.1: The case e + f ̸= 0. Then we get r = −2a/(e + f ) and we arrive at the family of

systems

ẋ = a − x2 + xy, ẏ = ex + f y − 2xy + 2y2, (3.21)

which possess the invariant parabola

Φ(x, y) = −
a f

e + f
−

2a

e + f
y + x2. (3.22)

if a(e + f ) ̸= 0.

3.2: The case e + f = 0. Then f = −e and the equation Eq8 = 0 gives us a = 0. Since b = 0

this leads to the degenerate system:

ẋ = −x(x − y), ẏ = (e − 2y)(x − y).

Thus we have proved that a system (3.3) with g = −1 possesses an invariant parabola if and

only if the condition a(e + f ) ̸= 0 holds. This completes the proof of the statement (A10).
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Next we show that systems (3.21) could be brought via a transformation to the canonical

form (Sααα). Indeed we apply to parabola (3.22) the translation

x = x1, y = y1 − f /2

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

2a

e + f
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.15) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k =
2a

e + f
, m =

e + f

2
, n = −

f

2
⇒

a = km, e = 2(m + n), f = −2n.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the conditions g = −1.

Since all the cases are examined we deduce that Lemma 3.3 is proved.

Invariant conditions: the case η > 0 and ζ1 ̸= 0 Next we determine the affine invariant

conditions for a system with η > 0 and ζ1 ̸= 0 to possess an invariant parabola. According to

Lemma 2.4 in this case the condition χ1 = 0 is necessary.

We prove the following theorem.

Theorem 3.6. Assume that for a non-degenerate arbitrary quadratic system the conditions η > 0,

χ1 = 0 and ζ1 ̸= 0 are satisfied. Then this system could possess invariant parabolas only in one

direction. More exactly it could only possess one of the following sets of invariant parabolas: ∪, ⋓ and

∪∪∪2. Moreover this system has one of the above sets of parabolas if and only if χ2 = 0 and one of the

following sets of conditions are satisfied, correspondingly:

(A1) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;

(A2) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;

(A3) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒ ∪2;

(A4) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪;

(A5) ζ2 ̸= 0, ζ3 = 0, ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;

(A6) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 ̸= 0 ζ5 ̸= 0 ⇒ ⋓;

(A7) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒ ∪2;

(A8) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪;

(A9) ζ2 = 0, ζ6 ̸= 0, R1 = 0, R2 ̸= 0 ⇒ ∪.

Proof. Assume that for an arbitrary non-degenerate quadratic system the condition η > 0

holds. Then according to Lemma 2.3 this system could be brought via a linear transformation

to the family of systems (3.1). Forcing the condition χ1 = 0 to be fulfilled for these systems

we get (h − 2)(g − 2)(1+ g + h) = 0. Considering Remark 3.2 we may assume h = 2 and after

an additional translation we arrive at the family of systems (3.3), i.e. at the systems

ẋ = a + gx2 + xy, ẏ = b + ex + f y + (g − 1)xy + 2y2. (3.23)

For these systems we calculate

ζ1 = 2(g − 2)(3 + g), χ2 = 384(g − 2)(3 + g)Ω1
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and since ζ1 ̸= 0 the condition χ2 = 0 is equivalent to Ω1 = 0.

Following the statements (A1)–(A4) of the theorem for systems (3.23) we calculate:

ζ2 = 4g(g + 1), ζ3 = 8(2g + 1)2, ζ4 = −(g − 2)(3 + g)D1/8,

R1 = 30(g − 2)(3 + g)(a − b + 4ag − 2bg + 3ag2) = 30(g − 2)(3 + g)G1.

We discuss two cases: ζ2 ̸= 0 and ζ2 = 0.

1: The case ζ2 ̸= 0. Then g(g+ 1) ̸= 0 and taking into account Lemma 3.3 we have to consider

the condition 2g + 1 ̸= 0 which is equivalent to ζ3 ̸= 0.

1.1: The subcase ζ3 ̸= 0.

Then we have 2g + 1 ̸= 0 and due to ζ1 ̸= 0 (i.e. (g − 2)(3 + g) ̸= 0) the condition ζ4 ̸= 0

is equivalent to D1 ̸= 0. So we examine two possibilities: ζ4 ̸= 0 and ζ4 = 0.

1.1.1: The possibility ζ4 ̸= 0. Then we have D1 ̸= 0 and we observe that the condition

R1 ̸= 0 is equivalent to G1 ̸= 0 since ζ1 ̸= 0. Therefore all the conditions provided by the

statement (A1) of Lemma 3.3 are satisfied and by this lemma systems (3.23) possess one

invariant parabola.

1.1.2: The possibility ζ4 = 0. In this case due to ζ1 ̸= 0 we obtain D1 = 0 and considering

(3.4) we get:

D1 = e + f (1 + g) = 0 ⇒ e = − f (1 + g).

Then for systems (3.23) we obtain

Ω1 = 2
[
a(1 + g)(1 + 3g)− b(1 + 2g)

]2

and due to the condition 1 + 2g ̸= 0 the condition Ω1 = 0 yields

b =
a(1 + g)(1 + 3g)

1 + 2g
.

Therefore for systems (3.23) with the parameters e and b above determined we calculate

ζ5 = −
19

1 + 2g
(g − 2)(3 + g)

[
8ag(1 + g)− f 2(1 + 2g)

]
= −

19

1 + 2g
(g − 2)(3 + g)F1.

So due to the condition ζ1 ̸= 0 (i.e. (g − 2)(3 + g) ̸= 0 we obtain that the condition F1 = 0 is

equivalent to ζ5 = 0.

We determine that in the case under examination the condition a ̸= 0 is equivalent to

R2 ̸= 0, which for systems (3.23) has the value

R2 = −
a(g − 2)(3 + g)(8 + 27g + 27g2)

4(1 + 2g)
.

Indeed first we observe that Discrim[8 + 27g + 27g2, g] = −135 < 0 and secondly we have

(g − 2)(3 + g)(1 + 2g) ̸= 0 due to the condition ζ1ζ3 ̸= 0. So considering Lemma 3.3 we

conclude that systems (3.23) possess two parabolas if the conditions

χ1 = χ2 = 0, ζ1 ̸= 0, ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 ̸= 0

hold. Moreover by Lemma 3.3 these invariant parabolas are distinct if ζ5 ̸= 0, i.e. F1 ̸= 0 (see

statement (A2)) and they coalesce (obtaining a double parabola) if ζ5 = 0, i.e. F1 = 0 (see

statement (A3)).
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Assume now that the condition R2 = 0 (i.e. a = 0) holds. Then for systems (3.23) with

D1 = 0 and Ω1 = 0 we calculate

ζ5 = 19 f 2(g − 2)(3 + g)

and since (g− 2)(3+ g) ̸= 0 (due to ζ1 ̸= 0) we conclude that the condition f ̸= 0 is equivalent

to ζ5 ̸= 0. So we get the conditions provided by Lemma 3.3 (see statement (A4)) and therefore

we have one simple invariant parabola.

1.2: The subcase ζ3 = 0. Then 1+ 2g = 0, i.e. g = −1/2 and for systems (3.23) calculations

yield:

ζ1 = −25/2, ζ2 = −1, ζ4 = 25(2e + f )/64 = 25D1/32,

χ2 = −300
[
2b(2e + f )2 + a(a − 4e2 − 6e f − 2 f 2)

]
.

So considering Lemma 3.3 (see statements (A5)–(A8)) we discuss two possibilities: ζ4 ̸= 0

and ζ4 = 0.

1.2.1: The possibility ζ4 ̸= 0. Then 2e + f ̸= 0 and the condition χ2 = 0 gives us

b = −
a(a − 4e2 − 6e f − 2 f 2)

2(2e + f )2
.

So according to Lemma 3.3 (see statements (A5)) systems (3.23) with g = −1/2 and the above

given value of the parameter b possess one invariant parabola if in addition the condition

a ̸= 0 holds. It remains to observe that this condition is governed by the invariant polynomial

R1 because for these systems we have R1 = 375a/8.

1.2.2: The possibility ζ4 = 0. Then we have D1 = 0 which implies f = −2e and then we

obtain χ2 = −300a2 = 0, i.e. a = 0. As a result we arrive at the family of systems

ẋ = −x2/2 + xy, ẏ = b + ex − 2ey − 3xy/2 + 2y2 (3.24)

for which we calculate

ζ1 = −25/2, ζ2 = −1, ζ3 = ζ4 = R1 = 0, R2 = −125b/16, ζ5 = 475(2b − e2).

So considering the statements (A6) and (A7) of Lemma 3.3 we deduce that in the case R2 ̸= 0

(i.e. b ̸= 0) systems (3.24) possess two distinct invariant parabolas if ζ5 ̸= 0 and one double

invariant parabola if ζ5 = 0.

Assuming R2 = 0 (i.e. b = 0) considering the value of the invariant polynomial ζ5 given

above we get ζ5 = −475e2 and hence the condition e ̸= 0 is equivalent to ζ5 ̸= 0.

So we get the conditions provided by the statement (A8) of Lemma 3.3 and therefore

systems (3.24) possess one simple invariant parabola.

2: The case ζ2 = 0. Then we have g(g + 1) = 0, i.e. either g = 0 or g = −1. We discuss each

one of these possibilities.

2.1: The possibility g = 0. Then for for systems (3.23) we calculate

χ2 = −2304(a − b)(2a − 2b − e2 − e f ), R1 = −180(a − b).

According to the statement (A9) of Lemma 3.3 for the existence of invariant parabola the

condition b = a is necessary, i.e. we must have R1 = 0 and this implies χ2 = 0. Setting b = a

we obtain

ζ6 = e/2, R2 = 12a
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and considering the statements (A9) the condition ζ6R2 ̸= 0 must be satisfied for the existence

of an invariant parabola.

2.2: The possibility g = −1. In this case for systems (3.23) we obtain

χ2 = −2304b(2b + e2 + e f ), R1 = −180b.

Considering the statement (A10) of Lemma 3.3 we deduce that for the existence of an invariant

parabola the condition b = 0 is necessary, i.e. we must have R1 = 0 and this implies χ2 = 0.

Setting b = 0 we calculate

ζ6 = −(e + f )/2, R2 = −12a

and therefore by the statements (A10) the condition ζ6R2 ̸= 0 must be satisfied for the exis-

tence of an invariant parabola.

We observe that in both cases g = 0 and g = −1 we have obtained the same invariant

conditions R1 = 0 and ζ6R2 ̸= 0. This completes the proof of the statement (A9) of Theorem

3.6 as well as the proof of Theorem 3.6.

3.1.2 The possibility χ1 = ζ1 = 0

Next we consider the case when systems (3.1) could possess invariant parabolas in two direc-

tions. Then two factors of χ1 from (3.2) vanish. According to Remark 3.2 we could consider

h = 2 = g and due to the translation (x, y) 7→ (x − d, y − e) (forcing d = e = 0) we arrive at

the family of systems

ẋ = a + cx + 2x2 + xy, ẏ = b + f y + xy + 2y2. (3.25)

Coefficient conditions for systems (3.25) to possess invariant parabolas. By Lemma 3.1

systems (3.25) could possess invariant parabolas either of the form Φ(x, y) = p + qx + ry + x2

(r ̸= 0) or of the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0). We prove the following lemma.

Lemma 3.7. A system (3.25) possesses either one or two invariant parabolas or a double invariant

parabola of the indicated form if and only if the corresponding set of conditions are satisfied, respectively:

(B) Φ(x, y) = p + qx + ry + x2 ⇔ Ω′
1 = 0 and either

(B1) D′
1 ̸= 0, G ′

1 ̸= 0 ⇒ one invariant parabola; or

(B2) D′
1 = 0, a ̸= 0, F ′

1 ̸= 0 ⇒ two invariant parabolas; or

(B3) D′
1 = 0, a ̸= 0, F ′

1 = 0 ⇒ one double invariant parabola; or

(B4) D′
1 = 0, a = 0, c ̸= 0 ⇒ one invariant parabola.

(B′) Φ(x, y) = p + qx + ry + y2 ⇔ Ω′
2 = 0 and either

(B′
1) D′

2 ̸= 0, G ′
2 ̸= 0 ⇒ one invariant parabola; or

(B′
2) D′

2 = 0, b ̸= 0, F ′
2 ̸= 0 ⇒ two invariant parabolas; or

(B′
3) D′

2 = 0, b ̸= 0, F ′
2 = 0 ⇒ one double invariant parabola; or

(B′
4) D′

2 = 0, b = 0, f ̸= 0 ⇒ one invariant parabola.
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where

Ω′
1 = 50b2 + b(109c2 − 420a − 53c f − 6 f 2) + 3(6a − c2 + c f )(49a − 6c2 − c f + 2 f 2);

D′
1 = 13c − 3 f ; G ′

1 = 21a − 5b − 10c2 + 5c f ;

F ′
1 = 15a − 15b − 2c2 + 2 f 2;

Ω′
2 = 50a2 + a(109 f 2 − 420b − 53c f − 6c2) + 3(6b − f 2 + c f )(49b − 6 f 2 − c f + 2c2);

D′
2 = 13 f − 3c; G ′

2 = 21b − 5a − 10 f 2 + 5c f ;

F ′
2 = 15b − 15a − 2 f 2 + 2c2.

(3.26)

Proof. Considering the equations (2.6) we examine each one of the statements of the above

lemma.

(B) Φ(x, y) = p + qx + ry + x2 with r ̸= 0. In this case we obtain

s = 1, v = u = 0, U = 4, V = 2, W = 2(c − q),

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.

Calculating the remaining equations we have

Eq6 = −q − 3r, Eq8 = 2a − 4p − cq + 2q2,

Eq9 = −2p − 2cr + f r + 2qr, Eq10 = aq − 2cp + 2pq + br.

It is clear that the equations Eq6 = 0 implies q = −3r whereas Eq9 = 0 gives us p = −r(2c −

f + 6r)/2. Therefore calculations yield

Eq8 = 2a + (7c − 2 f )r + 30r2,

Eq10 = r
[
b − 3a + 2c2 − c f + 3(4c − f )r + 18r2

]
≡ rΨ′(a, b, c, f , r)

and since r ̸= 0 the equation Eq10 = 0 is equivalent to Ψ′ = 0.

According to [12, Lemmas 11,12] the equations Eq8 = 0 and Ψ′ = 0 have a common

solution of degree 2 with respect to the parameter r if and only if

Res
(0)
r (Eq8, Ψ′) = Res

(1)
r (Eq8, Ψ) = 0

where Res
(1)
r is the subresultant of order one and Res

(0)
r is the subresultant of order zero which

coincide with standard resultant (for detailed definition see [12], formula (19)). We calculate

Res
(1)
r (Eq8, Ψ) = 18(13c − 3 f ) ≡ 18D′

1, Res
(0)
r (Eq8, Ψ) = 18Ω′

1.

So we examine two possibilities: D′
1 ̸= 0 and D′

1 = 0.

1: The possibility D′
1 ̸= 0. Therefore the equations Eq8 = 0 and Ψ′ = 0 could have a unique

common solution with respect to the parameter r and for this it is necessary and sufficient

Ω′
1 = 0. So we have to examine the solutions of the equation Ω′

1 = 0. In this case we calculate

Discrim[Ω′
1, b] = −(13c − 3 f )2(240a − 49c2 + 28c f − 4 f 2) ≡ −D′2

1 E
′

and hence the equation Ω′
1 = 0 has real solutions with respect to the parameter b if and only

if either D′
1 = 0 or E ′ ≤ 0. However since the condition D′

1 ̸= 0 holds it remains to examine

the condition E ′ ≤ 0. In this case setting E ′ = −w2 ≤ 0 we calculate

a =
(7c − 2 f )2 − w2

240
(3.27)
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and then we obtain Ω′
1 =

(
E+E−

)
/3200, where

E± = 400b + 93c2 − 16c f − 52 f 2 + 4ε(13c − 3 f )w + 7w2, ε = ±1.

Then the condition Ω′
1 = 0 gives us

b = −
1

400
(3c + 2 f + εw)(31c − 26 f + 7εw) (3.28)

where ε = 1 if E+ = 0 and ε = −1 if E− = 0. In this case we obtain that the polynomials Eq8

and Ψ(c, f , r) have the common factor ζ = (7c − 2 f + 60r − εw) which is linear with respect

to the parameter r. Setting ζ = 0 we get

r =
2 f − 7c + εw

60

and we arrive at the family of systems

ẋ =
(7c − 2 f )2 − w2

240
+ cx + 2x2 + xy,

ẏ = −
(3c + 2 f + εw)(31c − 26 f + 7εw)

400
+ f y + xy + 2y2.

(3.29)

This family of systems possess the following invariant parabola

Φ(x, y) =
(7c − 2 f − εw)(13c − 8 f + εw)

1200
+

(7c − 2 f − εw)

20
x −

(7c − 2 f − εw)

60
y + x2.

(3.30)

We observe that this conic is reducible if and only if 7c − 2 f − εw = 0.

Considering (3.27) and (3.28) we get

w2 = −240a + (7c − 2 f )2

and then we obtain

b = −
1

400

[
(31c − 26 f )(3c + 2 f ) + 4(13c − 3 f )εw + 7w2

]
⇒

100b − 420a + 109c2 − 53c f − 6 f 2 + (13c − 3 f )εw = 0.

Since D′
1 = 13c − 3 f ̸= 0 we solve the last equation with respect to εw and we obtain

εw =
1

13c − 3 f

(
420a − 100b − 109c2 + 53c f + 6 f 2

)
.

Then calculations yield

r =
(−7c + 2 f + εw)

60
=

21a − 5b − 10c2 + 5c f

3(13c − 3 f )
=

G ′
1

3(13c − 3 f )
̸= 0.

This completes the proof of the statement (B1) of Lemma 3.3.

Next we show that systems (3.29) could be brought via a transformation to the canonical

form (Sααα). Indeed we apply to parabola (3.30) the translation

x = x1 +
2 f − 7c + εw

40
, y = y1 +

31c − 26 f + 7εw

80
.
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which brings this parabola to the form Φ̃(x1, y1) = x2
1 +

2 f − 7c + εw

60
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.29) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = −
2 f − 7c + εw

60
, m = −

31c − 26 f + 7εw

160
, n =

11c − 2 f + 3εw

16
⇒

c = 6k − 2m + n, f =
3k − 16m + 4n

2
, εw = −21k + 2m + 3n.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the conditions g = 2.

2: The possibility D′
1 = 0. Then f = 13c/3 and therefore we obtain:

Ω′
1 = 2(63a − 15b + 35c2)2/9

and hence the condition Ω′
1 = 0 implies

b = 7(9a + 5c2)/15.

Therefore we determine that in this case the polynomials Eq8 and Eq10 have the following

common factor

φ′ = 6a − 5cr + 90r2.

We observe that φ′ is quadratic in r with the discriminant

Discrim[φ′, r] = −5(432a − 5c2)

and setting this discriminant equal to be w2 we obtain

a =
25c2 − w2

2160
. (3.31)

Then we arrive at the following expressions for the polynomials Eq8 and Eq10:

Eq10 =
3r

5
Eq8 =

r(5c − 180r + w)(5c − 180r − w)

1800
=

rU+U−

1800
.

Therefore the equations Eq8 = Eq10 = 0 imply U+U− = 0. If U+ = 0 we determine

r =
5c + w

180
≡ r+

and we obtain the parabola

Φ′
1(x, y) =

(65c − w)(5c + w)

10800
−

5c + w

60
x +

5c + w

180
y + x2. (3.32)

In the case U− = 0 we obtain

r =
5c + w

180
≡ r−

and we get the parabola

Φ′
2(x, y) =

(65c + w)(5c − w)

10800
−

5c − w

60
x +

5c − w

180
y + x2.
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Both these parabolas are invariant for the following family of systems:

ẋ =
25c2 − w2

2160
+ cx + 2x2 + xy, ẏ =

7(1225c2 − w2)

3600
+

13c

3
y + xy + 2y2. (3.33)

We observe that both parabolas Φ′
i(x, y) = 0 (i = 1, 2) exist (i.e. are not reducible) if and

only if r+r− ̸= 0 and this is equivalent to

(5c + w)(5c − w) = 25c2 − w2

and considering (3.31) this is equivalent to a ̸= 0.

On the other hand if only one of the factors vanishes we have a = 0 and

r+ + r− = (5c + w) + (5c − w) = 10c ̸= 0.

Therefore for a = 0 and c ̸= 0 we could have only one parabola.

We determine that in the case w = 0 we obtain Φ′
1(x, y) = Φ′

2(x, y), i.e. the parabolas coa-

lesce when w tends to zero and we obtain a double parabola. On the other hand considering

(3.31) for w = 0 we obtain

a −
25c2

2160
=

432a − 5c2

432
= −

9

432
F ′

1

and we conclude that these invariant parabolas coalesce if and only if F ′
1 = 0.

Thus we conclude that the statements (B2), (B3) and (B4) of Lemma 3.7 are proved.

Next we show that systems (3.33) could be brought via a transformation to the canonical

form (Sααα). Indeed we could apply to parabola (3.32) the translation

x = x1 +
5c + w

120
, y = y1 −

7(35c − w)

240

which brings this parabola to the form Φ̃(x1, y1) = x2
1 +

5c + w

180
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.29) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = −
5c + w

180
, n =

7c + 3w

48
⇒ c = −3(45k + 4n)/2, w = 15(21k + 4n)/2.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the conditions g = 2 and m = 7(21k + 2n)/4.

(B′) Φ(x, y) = p + qx + ry + y2 with q ̸= 0 otherwise we get a reducible conic. It is not

too difficult to detect that this case can be brought to the case (B) if we apply two changes:

one in systems (3.25) and another in the formula of conic (2.4). More precisely the change

(x, y, a, b, c, f ) 7→ (y, x, b, a, f , c) (3.34)

conserves systems (3.25) whereas the change

(x, y, p, q, r, s, v, u) → (y, x, p, r, q, u, v, s)

conserves the conic (2.4). We observe that the second change transfers the parabola Φ(x, y) =

p + qx + ry + x2 to the parabola Φ(x, y) = p + qx + ry + y2 and at the same time the first

change transfers the conditions (Bi), i = 1, 2, 3, 4 from the statement (B) of Lemma 3.7 to the

conditions (B′
i
), i = 1, 2, 3, 4 from the statement (B′) of the same lemma, correspondingly.

Since the conditions of the statement (B) are proved, we conclude that the conditions of the

statement (B′) of Lemma 3.7 are also valid. This completes the proof of Lemma 3.7.
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We point out that Theorem 3.6 provides the necessary and sufficient conditions for the

existence of invariant parabolas for an arbitrary quadratic systems with the conditions η > 0,

χ1 = 0 and ζ1 ̸= 0. As it was mentioned earlier (see page 16) the condition ζ1 ̸= 0 does not

allow this system to possess invariant parabolas in two directions.

Invariant conditions: the case η > 0 and ζ1 = 0 Next we consider the class of quadratic

systems for which the conditions η > 0 and ζ1 = 0, which could possess invariant parabolas

in two directions.

We prove the following theorem.

Theorem 3.8. Assume that for a non-degenerate arbitrary quadratic system the conditions η > 0 and

χ1 = ζ1 = 0 are satisfied. Then this system could possess invariant parabolas in one or two directions.

More exactly it could only possess one of the following sets of invariant parabolas: ∪, ⋓, ∪∪∪2, ∪⊂
and ⋓⊂. Moreover this system has one of the above sets of invariant parabolas if and only if χ3 = 0

and one of the following sets of conditions are satisfied, correspondingly:

(B1) χ4 ̸= 0, ζ7 ̸= 0, R3 ̸= 0 ⇒ ∪;

(B2) χ4 ̸= 0, ζ7 = 0, R4 ̸= 0, ζ8 ̸= 0 ⇒ ⋓;

(B3) χ4 ̸= 0, ζ7 = 0, R4 ̸= 0, ζ8 = 0 ⇒ ∪2;

(B4) χ4 ̸= 0, ζ7 = 0, R4 = 0 ⇒ ∪;

(B5) χ4 = 0, ζ5 ̸= 0, ζ9 ̸= 0 ⇒ ∪⊂;

(B6) χ4 = 0, ζ5 ̸= 0, ζ9 = 0, ζ10 ̸= 0 ⇒ ∪;

(B7) χ4 = 0, ζ5 = 0, ζ6 ̸= 0 ⇒ ⋓⊂.

Proof. As it was shown earlier (see page 29) if for a quadratic system with three real infinite

singularities the conditions χ1 = ζ1 = 0 are satisfied, then via an affine transformation and

time rescaling this system can be brought to the form (3.25). Thus in what follows we consider

the family of quadratic systems

ẋ = a + cx + 2x2 + xy, ẏ = b + f y + xy + 2y2. (3.35)

Considering (3.26) for these systems we calculate

χ1 = χ2 = ζ1 = 0, χ3 = 24345383 · 491 Ω′
1Ω′

2, χ4 = 123750(Ω′
1 + Ω′

2)

and therefore the condition χ3 = 0 yields Ω′
1Ω′

2 = 0, i.e. one of the necessary conditions

provided either by the statement (B) of Lemma 3.7 or by the statement (B′) of this lemma is

satisfied. We discuss two cases: χ4 ̸= 0 and χ4 = 0.

1: The case χ4 ̸= 0. Then Ω′
1 + Ω′

2 ̸= 0 and we conclude that only one of the polynomials Ω′
1

or Ω′
2 vanishes. Considering the change (3.34) we may assume without losing generality that

the conditions Ω′
1 = 0 and Ω′

2 ̸= 0 are fulfilled.

On the other hand for systems (3.35) we calculate

ζ7 = 105750
(
D′

2Ω′
1 +D′

1Ω′
2

)
, R3 = 5134081342500

(
G ′

2Ω′
1 + G ′

1Ω′
2

)
.

Therefore since Ω′
1 = 0 and Ω′

2 ̸= 0 we obtain that the condition D′
1 = 0 is equivalent to

ζ7 = 0. Moreover in this case the condition R3 ̸= 0 is equivalent to G ′
1 ̸= 0. So we discuss two

subcases: ζ7 ̸= 0 and ζ7 = 0.

1.1: The subcase ζ7 ̸= 0. Then D′
1 ̸= 0 and by Lemma 3.7 (see statement (B1)) we deduce

that systems (3.25) possess one invariant parabola if and only if G ′
1 ̸= 0. Due to Ω′

1 = 0 and
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Ω′
2 ̸= 0 this condition is equivalent to R3 ̸= 0 and we conclude that the statement (B1) of

Theorem 3.8 is proved.

1.2: The subcase ζ7 = 0. This implies D′
1 = 13c − 3 f = 0, i.e. f = 13c/3 and then we get

Ω′
1 = 2(63a − 15b + 35c2)2/9 = 0 ⇒ b = 7(9a + 5c2)/15.

So we arrive at the family of systems

ẋ = a + cx + 2x2 + xy, ẏ =
7

15
(9a + 5c2) +

13c

3
y + xy + 2y2, (3.36)

for which we calculate

ζ8 = −(432a − 5c2)/9 = F ′
1, R4 = 15600a.

We observe that the condition R4 ̸= 0 is equivalent to a ̸= 0 and therefore by Lemma 3.7 in

the case R4 ̸= 0 systems (3.36) possess two distinct parabolas in one direction (see statement

(B2)) if ζ8 ̸= 0 and they possess one double invariant parabola (see statement (B3)) if ζ8 = 0.

This means that the statements (B2) and (B3) of Theorem 3.8 are proved.

Assume now that the condition R4 = 0 holds. Then a = 0 and for systems (3.36) we have

χ4 = 110000c4 ̸= 0. Then according to the statement (B4) of Lemma 3.7 we conclude that

these systems possess one invariant parabola and therefore the statements (B4) of Theorem

3.8 is valid.

2: The case χ4 = 0. Then we get Ω′
1 = Ω′

2 = 0 and since for systems (3.35) we have

ζ5 = 25(13c − 3 f )(13 f − 3c)/4 = 25D′
1D

′
2/4,

ζ9 = −990000(21a − 5b − 10c2 + 5c f )(5a − 21b − 5c f + 10 f 2) = 990000G ′
1G

′
2,

ζ10 = 5(8a + 8b − 5c2 + 5c f − 5 f 2)/4 = 5(G ′
1 + G ′

2)/8.

(3.37)

We examine two subcases: ζ5 ̸= 0 and ζ5 = 0.

2.1: The subcase ζ5 ̸= 0. Then D′
1D

′
2 ̸= 0 and by Lemma 3.7 (see statements (A′

1) and

(B′
1)) we have one invariant parabola in the direction x = 0 if G ′

1 ̸= 0 and one in the direction

y = 0 if G ′
2 ̸= 0. So considering (3.37) we examine two possibilities: ζ9 ̸= 0 and ζ9 = 0.

2.1.1: The possibility ζ9 ̸= 0. This implies G ′
1G

′
2 ̸= 0 and by Lemma 3.7 in this case we have

one invariant parabola in one direction and another invariant parabola in other direction. So

the statement (B5) of Theorem 3.8 is proved.

2.1.2: The possibility ζ9 = 0. Then we have G ′
1G

′
2 = 0, i.e. at least one of the factors

vanishes. Considering (3.37) we conclude that both factors vanish if and only if ζ10 = 0. In

this case G ′
1 = G ′

2 = 0 and by Lemma 3.7 (see statements (B1) and (B′
1)) systems (3.25) could

not possess any invariant parabolas.

On the other hand in the case ζ10 ̸= 0 we have G ′
1 + G ′

2 ̸= 0 and since G ′
1G

′
2 = 0, by Lemma

3.7 we have one invariant parabola (either in direction y = 0 if G ′
1 = 0 or in direction x = 0 if

G ′
2 = 0. This means that the statement (B6) of Theorem 3.8 is valid.

2.2: The subcase ζ5 = 0. In this case we get D′
1D

′
2 = 0. On the other hand we obtain

D′
1 + D′

2 = 10(c + f ) and hence both D′
1 and D′

2 vanish if and only if c + f = 0 and this

condition is governed by the invariant polynomial ζ6 = −(c + f )/2. So we discuss two

possibilities: ζ6 ̸= 0 and ζ6 = 0.
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2.2.1: The possibility ζ6 ̸= 0. Then only one of the polynomials D′
1 or D′

2 vanishes and

due to the change (x, y, a, b, c, f ) 7→ (y, x, b, a, f , c) without losing generality we may assume

that for systems (3.25) the condition D′
1 = 0 holds. Considering (3.26) this condition implies

f = 13c/3 and then we obtain

Ω′
1 = 2(63a − 15b + 35c2)2/9 = 0 ⇒ b = 7(9a + 5c2)/15.

Therefore we calculate

Ω′
2 = 8(144a + 5c2)(2704a + 5c2)/225, ζ6 = −8c/3 ̸= 0

and the condition Ω′
2 = 0 gives us either a = −5c2/144 ̸= 0 or a = −5c2/2704 ̸= 0 (due to

ζ6 ̸= 0). In this case we get either

F ′
1 = 20c2/9 ̸= 0, G ′

2 = −120c2 ̸= 0

if a = −5c2/144 or

F ′
1 = 980c2/1521 ̸= 0, G ′

2 = −13720c2/117 ̸= 0

if a = −5c2/2704. So considering the statements (B2) and (B′
1) of Lemma 3.7 we conclude

that systems (3.25) possess two distinct invariant parabolas in the direction x = 0 and one

invariant parabola in the direction y = 0. This means that the statement (B7) of Theorem 3.8

is valid.

2.2.2: The possibility ζ6 = 0. This condition implies D′
1 = D′

2 = 0 and considering (3.26)

we obtain c = f = 0. Then we obtain

Ω′
1 = 2(21a − 5b)2, Ω′

2 = 2(5a − 21b)2

and evidently the conditions Ω′
1 = Ω′

2 = 0 imply a = b = 0. Therefore we arrive at the

following homogeneous system

ẋ = x(2x + y), ẏ = y(x + 2y)

that could not possess any invariant parabola.

Since all the possibilities are examined we conclude that Theorem 3.8 is proved.

3.2 Systems with one real and two complex infinite singularities

In this case according to Lemma 2.3 systems (2.5) could be brought via a linear transformation

to the following family of systems

dx

dt
= a + cx + dy + gx2 + (h + 1)xy,

dy

dt
= b + ex + f y − x2 + gxy + hy2.

(3.38)

For these systems we calculate

C2(x, y) = x(x2 + y2), χ1 = −2(2 + h)
[
g2 + (h − 3)2

]
(3.39)

and by Lemma 2.6 we conclude that the above systems could have invariant parabolas only of

the form Φ(x, y) = p + qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic).
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On the other hand according to Lemma 2.4 for a system (3.38) to possess an invariant

parabola the condition χ1 = 0 is necessary. Considering (3.39) this condition implies either

h = −2 or g = 0 = h − 3. We claim that in the second case systems (3.38) could not possess

any invariant parabola.

Indeed, assuming g = 0 and h = 3 and using a translation we may assume c = d = 0 and

we arrive at the family of systems

ẋ = a + 4xy, ẏ = b + ex + f y − x2 + 3y2. (3.40)

Considering equations (2.6) and the form of the parabola Φ(x, y) = p + qx + ry + x2 with

r ̸= 0, for systems (3.40) we have

s = 1, v = u = 0, Eq2 = 8 − V, Eq7 = r(3 − V).

Evidently the conditions Eq2 = 0 and Eq7 = 0 imply r = 0, i.e. the conic Φ(x, y) = p + qx +

ry + x2 with r = 0 is reducible and this completes the proof of our claim.

For systems (3.38) we calculate

ζ1 = −2
[
(h − 3)(1 + h)(2h − 1) + g2(3 + 2h)

]

and clearly the conditions g = 0 and h = 3 imply ζ1 = 0. On the other hand for h = −2 we

get ζ1 = 2(25 + g2) ̸= 0 and therefore the condition h + 2 = 0 is equivalent to χ1 = 0 and

ζ1 ̸= 0. So we have the next remark.

Remark 3.9. If a system (3.38) possesses an invariant parabola then the conditions χ1 = 0 and

ζ1 ̸= 0 are necessary.

According to this remark we assume that the conditions χ1 = 0 and ζ1 ̸= 0 are fulfilled for

systems (3.38). Then the condition h = −2 holds and due to a translation we may consider

c = d = 0. So we arrive at the family of systems

ẋ = a + gx2 − xy, ẏ = b + ex + f y − x2 + gxy − 2y2. (3.41)

3.2.1 Coefficient conditions for systems (3.41) to possess invariant parabolas

We prove the following lemma.

Lemma 3.10. A system (3.41) possesses either one or two invariant parabolas or a double invariant

parabola of the form Φ(x, y) = p + qx + ry + x2 if and only if Ω̃ = 0 and the corresponding set of

conditions are satisfied, respectively:

(E1) D̃ ̸= 0, G̃ ̸= 0 ⇒ one invariant parabola;

(E2) D̃ = 0, b ̸= 0, F̃ ̸= 0 ⇒ two invariant parabolas;

(E3) D̃ = 0, b ̸= 0, F̃ = 0 ⇒ one double invariant parabola;

(E4) D̃ = 0, b = 0, f ̸= 0 ⇒ one invariant parabola,

where

Ω̃ = 2a2(1 + 3g2)2 + a
[
8bg(1 + 3g2)− (e − f g)( f + eg + 2 f g2)

]
+ b(8bg2 + f 2g2 − e2),

D̃ = e − f g, G̃ = a + 2bg + 3ag2,

F̃ = 608(b + ag)(25 + g2) + 25(49e2 + 76 f 2)− f g(850e + 299 f g).
(3.42)
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Proof. Considering equations (2.6) and the form of the parabola Φ(x, y) = p + qx + ry + x2

with r ̸= 0 for systems (3.41) we obtain

s = 1, v = u = 0, U = 2g, V = −2, W = −gq − r,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0, Eq6 = q − gr.

Therefore the condition Eq6 = 0 gives us q = gr and calculations yield:

Eq9 = 2p + r( f + r + g2r) = 0 ⇒ p = −r( f + r + g2r)/2

and then we obtain

Eq8 = 2a + (e + f g)r + 2g(1 + g2)r2,

Eq10 =
r

2

[
2(b + ag)− f (1 + g2)r − (1 + g2)2r2

]
≡

r

2
Ψ̃(a, b, f , g, r).

Since r ̸= 0 the equation Eq10 = 0 is equivalent to Ψ̃ = 0.

According to [12, Lemmas 11,12] the equations Eq8 = 0 and Ψ̃ = 0 have a common solution

of degree 2 with respect to the parameter r if and only if

Res
(0)
r (Eq8, Ψ̃) = Res

(1)
r (Eq8, Ψ̃) = 0

where Res
(1)
r is the subresultant of order one and Res

(0)
r is the subresultant of order zero

which coincide with the standard resultant (for detailed definition see [12], formula (19)). We

calculate
Res

(1)
r (Eq8, Ψ̃) = (1 + g2)2(e − f g) ≡ (1 + g2)2D̃,

Res
(0)
r (Eq8, Ψ̃) = 2(1 + g2)2Ω̃.

We observe that the subresultant of order one Res
(1)
r (Eq8, Ψ̃) vanishes if and only if D̃ = 0. So

we consider two cases: D̃ ̸= 0 and D̃ = 0.

1: The case D̃ ̸= 0. Then the invariant parabola exists if and only if Ω̃ = 0 and therefore we

have to examine the solutions of the equation Ω̃ = 0. We calculate

Discrim[Ω̃, a] = (e − f g)2
[
8b(1 + g2)(1 + 3g2) + ( f + eg + 2 f g2)2

]
≡ D̃2Ẽ

and hence the equation Ω̃ = 0 has real solutions in the parameter a if and only if either D̃ = 0

or Ẽ ≥ 0. However since the condition D̃ ̸= 0 holds it remains to examine the condition Ẽ ≥ 0.

In this case setting Ẽ = w2 ≥ 0 we calculate

b = −
( f + eg + 2 f g2)2 − w2

8(1 + g2)(1 + 3g2)
(3.43)

and then we obtain

Ω̃ =
G+G−

8(1 + g2)2(1 + 3g2)2
,

where

G± = 4a(1 + g2)(1 + 3g2)2 − ( f + eg + 2 f g2 + εw)(e + 2eg2 + f g3 − εgw), ε = ±1.

Then the condition Ω̃ = 0 gives us

a =
( f + eg + 2 f g2 + εw)(e + 2eg2 + f g3 − εwg)

4(1 + g2)(1 + 3g2)2
, (3.44)
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where ε = 1 if G+ = 0 and ε = −1 if G− = 0. In this case we obtain that the polynomials Eq8

and Ψ̃ have the common factor ζ = 2(1 + g2)(1 + 3g2)r + f + eg + 2 f g2 + εw which is linear

with respect to the parameter r. Setting ζ = 0 we get

r = −
f + eg + 2 f g2 + εw

2(1 + g2)(1 + 3g2)

and we arrive at the family of systems

ẋ =
( f + eg + 2 f g2 + εw)(e + 2eg2 + f g3 − gεw)

4(1 + g2)(1 + 3g2)2
+ gx2 − xy,

ẏ = −
( f + eg + 2 f g2)2 − w2

8(1 + g2)(1 + 3g2)
+ ex + f y + gxy − 2y2.

(3.45)

This family of systems possess the following invariant parabola

Φ(x, y) =
( f − eg + 4 f g2 − εw)( f + eg + 2 f g2 + εw)

8(1 + g2)(1 + 3g2)2
−

g( f + eg + 2 f g2 + εw)

2(1 + g2)(1 + 3g2)2
x

−
f + eg + 2 f g2 + εw

2(1 + g2)(1 + 3g2)
y + x2.

(3.46)

We observe that this conic is reducible if and only if f + eg + 2 f g2 + εw = 0.

Considering (3.43) we get

w2 = 8b(1 + g2)(1 + 3g2) + ( f + eg + 2 f g2)2

and then from (3.44) we obtain

a =
1

4(1 + g2)(1 + 3g2)2

[
( f + eg + 2 f g2)(e + 2eg2 + f g3) + (e − f g)(1 + g2)εw − gw2

]
⇒

8bg(1 + 3g2) + 4a(1 + 3g2)2 − (e − f g)( f + eg + 2 f g2)− (e − f g)εw = 0.

Since D̃ = (e − f g) ̸= 0 we solve the last equation with respect to εw and we obtain

εw =
1

e − f g

[
4b(1 + 2g)2 − 4a(1 + g)(1 + 2g)(1 + 3g) + (e − f g)(e + f + f g)

]
.

Then calculations yield

r = −
f + eg + 2 f g2 + εw

2(1 + g2)(1 + 3g2)
= −

2(a + 2bg + 3ag2)

(e − f g)(1 + g2)
= −

2 G̃

(e − f g)(1 + g2)
̸= 0.

This completes the proof of the statement (E1) of Lemma 3.10.

Next we show that systems (3.45) could be brought via a transformation to the canonical

form (Sβββ). Indeed we could apply to parabola (3.46) the translation

x = x1 +
g( f + eg + 2 f g2 + εw)

4(1 + g2)(1 + 3g2)
, y = y1 +

f (2 + 9g2 + 6g4)− (2 + 3g2)(eg + εw)

8(1 + g2)(1 + 3g2)
,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

f + eg + 2 f g2 + εw

2(1 + g2)(1 + 3g2)
y1.
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On the other hand considering Observation 3.4 we apply the same translation to systems

(3.45) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k =
f + eg + 2 f g2 + εw

2(1 + g2)(1 + 3g2)
, n =

g(4e − f g + 7eg2 + 2 f g3) + (4 + 7g2)εw

8(1 + g2)(1 + 3g2)
,

m =
(2 + 3g2)(4e − f g + 7eg2 + 2 f g3)− 3g(2 + g2)εw

16(1 + g2)(1 + 3g2)
⇒

e =
gk − 2g3k + 4m + 2gn

2
, f =

4k + 7g2k − 4n

2
, w =

2n − 2gm + 3g2n

ε
.

Then after an additional rescaling (to force k = 1) we arrive at the family of systems (Sβββ).

2: The case D̃ = 0. Then e − f g = 0 and we have e = f g. Therefore we obtain:

Ω̃ = 2(a + 2bg + 3ag2)2

and the condition Ω̃ = 0 implies

a = −
2bg

1 + 3g2
.

Therefore we determine that in this case the polynomials Eq8 and Eq10 have the following

common factor

φ̃ = 2b − f (1 + 3g2)r − (1 + g2)(1 + 3g2)r2.

We observe that φ̃ is quadratic in r with the discriminant

Discrim[φ̃, r] = (1 + 3g2)(8b + f 2 + 8bg2 + 3 f 2g2)

and clearly the condition (8b + f 2 + 8bg2 + 3 f 2g2) ≥ 0 must hold. Setting

8b + f 2 + 8bg2 + 3 f 2g2 = (1 + 3g2)w2 ≥ 0,

we obtain

b = −
(1 + 3g2)( f 2 − w2)

8(1 + g2)
. (3.47)

Then we arrive at the following expressions for the polynomials Eq8 and Eq10:

Eq8 =
gM+M−

2(1 + g2)
, Eq10 = −

rM+M−

8
, M± = f + 2r + 2g2r ± w.

Therefore the equations Eq8 = Eq10 = 0 imply M+M− = 0.

If M+ = 0 we determine

r = −
f + w

2(1 + g2)
≡ r+

and we obtain the parabola

Φ1(x, y) =
( f − w)( f + w)

8 (g2 + 1)
−

g( f + w)

2 (g2 + 1)
x −

f + w

2 (g2 + 1)
y + x2. (3.48)

In the case M− = 0 we obtain

r = −
f − w

2(1 + g2)
≡ r−
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and we get the parabola

Φ2(x, y) =
( f − w)( f + w)

8 (g2 + 1)
−

g( f − w)

2 (g2 + 1)
x −

f − w

2 (g2 + 1)
y + x2.

Both these parabolas are invariant for the following family of systems:

ẋ =
g( f 2 − w2)

4(1 + g2)
+ gx2 − xy,

ẏ = −
(1 + 3g2)( f 2 − w2)

8(1 + g2)
+ f gx + f y + gxy − 2y2.

(3.49)

We observe that both parabolas Φi(x, y) = 0 (i = 1, 2) exist (i.e. are not reducible ) if and

only if r+r− ̸= 0 and this is equivalent to

( f − w)( f + w) = f 2 − w2

and considering (3.47) this is equivalent to b ̸= 0.

On the other hand if only one of the factors vanishes we have b = 0 and

r+ + r− = ( f − w) + ( f + w) = 2 f ̸= 0

i.e. f ̸= 0. Therefore for b = 0 and f ̸= 0 we could have only one parabola.

We determine that in the case w = 0 we obtain Φ1(x, y) = Φ2(x, y), i.e. the parabolas coa-

lesced when w tends to zero and we obtain a double parabola. On the other hand considering

(3.47) for w = 0 we obtain to

b +
f 2(1 + 3g2)

8(1 + g2)
=

8b(1 + g2) + f 2(1 + 3g2)

8(1 + g2)
=

(1 + 3g2)

608(25 + g2)(1 + g2)
F̃

and we conclude that these invariant parabolas coalesce if and only if F̃ = 0. So the statements

(E2)–(E4) of Lemma 3.10 are valid.

As all the cases are examined we conclude that Lemma 3.10 is proved.

Next we show that systems (3.49) could be brought via a transformation to the canonical

form (Sβββ). Indeed we could apply to parabola (3.48) the translation

x = x1 +
g( f + w)

4(1 + g2)
, y = y1 +

f (2 + g2)− (2 + 3g2)w

8(1 + g2)
.

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

f + w

2(1 + g2)
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.49) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k =
f + w

2(1 + g2)
, n =

3 f g2 + 4w + 7g2w

8(1 + g2)
⇒ f =

4k + 7g2k − 4n

2
, w =

4n − 3g2k

2
.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sβββ)

defined by the conditions m = 3g(1 + 3g2 − 2n)/4.
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3.2.2 Invariant conditions: the case η < 0

Next using Lemma 3.10 we shall construct the equivalent affine invariant conditions for a

system with η < 0 to possess an invariant parabola.

We prove the following theorem.

Theorem 3.11. Assume that for a non-degenerate arbitrary quadratic system the conditions η < 0,

χ1 = 0 and ζ1 ̸= 0 are satisfied. Then this system could possess invariant parabolas only in one (real)

direction. More exactly it could only possess one of the following sets of invariant parabolas: ∪, ⋓ and

∪∪∪2. Moreover this system has one of the above sets of invariant parabolas if and only if χ2 = 0 and

one of the following sets of conditions are satisfied, correspondingly:

(E1) ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;

(E2) ζ4 = 0, R7 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;

(E3) ζ4 = 0, R7 ̸= 0, ζ5 = 0 ⇒∪∪∪2;

(E4) ζ4 = 0, R7 = 0, ζ5 ̸= 0 ⇒ ∪.

Proof. According to Remark 3.9 for a system (3.38) to possess an invariant parabola the condi-

tions χ1 = 0 and ζ1 ̸= 0 are necessary. As it was shown earlier (see page 37) if for a quadratic

system with one real and two complex infinite singularities the conditions χ1 = 0 and ζ1 ̸= 0

are satisfied, then via an affine transformation and time rescaling this system can be brought

to the form (3.41). Thus in what follows we consider the family of quadratic systems

ẋ = a + gx2 − xy, ẏ = b + ex + f y − x2 + gxy − 2y2, (3.50)

for which considering (3.42) we calculate.

χ1 = 0, ζ1 = 2(25 + g2), χ2 = 384(25 + g2) Ω̃,

ζ4 = −(25 + g2) D̃/8, R1 = −30(25 + g2) G̃.
(3.51)

Evidently the condition χ2 = 0 is equivalent to Ω̃ = 0 and we consider two cases: ζ4 ̸= 0 and

ζ4 = 0.

1: The case ζ4 ̸= 0. Then we have D̃ ̸= 0 and according to Lemma 3.10 in this case a quadratic

system possesses an invariant parabola if and only if the condition G̃ ̸= 0 holds. According

to (3.51) this condition is governed by the invariant polynomial R1. So we conclude that the

statement (E1) of Theorem 3.11 is valid.

2: The case ζ4 = 0. This implies D̃ = 0 and considering (3.42) we get e = f g. Then for

systems (3.50) we calculate

χ2 = 768(25 + g2)(a + 2bg + 3ag2)2 = 0 ⇒ a = −
2bg

1 + 3g2

and in this case we obtain:

ζ5 = F̃/4, R7 = −64480b.

We examine two possibilities: R7 ̸= 0 and R7 = 0.

2.1: The possibility R7 ̸= 0. In this case we get b ̸= 0. We observe that the condition

ζ5 = 0 is equivalent to F̃ = 0 and according to Lemma 3.10 due to b ̸= 0 we get two invariant

parabolas for ζ5 ̸= 0 and one double invariant parabola if ζ5 = 0.
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Thus the statements (E2) and (E3) of Theorem 3.11 are valid.

2.2: The possibility R7 = 0. This implies b = 0 and for systems (3.50) with e = f g we

calculate

χ2 = 768a2(25 + g2)(1 + 3g2)2, ζ5 = 19( f 2 + 8ag)(25 + g2).

Therefore the condition χ2 = 0 gives us a = 0 and then we obtain ζ5 = 19 f 2(25 + g2). So the

condition f ̸= 0 is equivalent to ζ5 ̸= 0 and considering the statement (E4) of Lemma 3.10 we

conclude that the statement (E4) of Theorem 3.11 is valid and this completes the proof of this

theorem.

3.3 Systems with two real distinct infinite singularities

In this case, according to Lemma 2.3, the conditions η = 0 and M̃ ̸= 0 hold and systems (2.5)

could be brought via a linear transformation and the additional change (x, y, a, b, c, d, e, f , g, h)

7→ (y, x, b, a, f , e, d, c, h, g) to the following family of systems

dx

dt
= a + cx + dy + gx2 + (h − 1)xy,

dy

dt
= b + ex + f y + gxy + hy2.

(3.52)

For these systems we calculate

C2(x, y) = −xy2, χ1 = 2g2(h − 2)

and by Lemma 2.6 we conclude that the above systems could have invariant parabolas either

of the form Φ(x, y) = p + qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic) or of

the form Φ(x, y) = p + qx + ry + y2 with q ̸= 0.

According to Lemma 2.4 for the existence of an invariant parabola for a system (3.52) the

condition χ1 = 0 is necessary, i.e. g(h − 2) = 0. We prove the following lemma.

Lemma 3.12. Assume that a system (3.52) possesses an invariant parabola. Then its quadratic ho-

mogeneous part is of the form x2 (respectively, y2) only if the condition h = 2 (respectively, g = 0)

holds.

Proof. Assume that a system (3.52) possesses an invariant parabola of the form Φ(x, y) =

p + qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic). Then considering equations

(2.6) we obtain

s = 1, v = u = 0, Eq2 = −2 + 2h − V = 0 ⇒ V = 2(h − 1).

Therefore we have Eq7 = −(h − 2)r = 0 and since r ̸= 0 this implies h = 2. So the statement

of the lemma is true in this case.

If the system possesses an invariant parabola of the form Φ(x, y) = p + qx + ry + y2 with

q ̸= 0 then considering equations (2.6) we obtain

s = v = 0, u = 1, Eq3 = 2g − U = 0 ⇒ U = 2g.

In this case we obtain Eq5 = −gq = 0 and due to q ̸= 0 we get g = 0. This completes the proof

of the lemma.
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Considering Lemma 3.12 we conclude that for determining the conditions for the existence

and the number of invariant parabolas for systems (3.52) it is necessary and sufficient to

examine the two possibilities: the existence of invariant parabolas of the form Φ(x, y) =

p + qx + ry + x2 (r ̸= 0) and of the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0). By Lemma 3.12 in

the first case the condition h = 2 holds whereas in the second we have g = 0.

Taking into account that for systems (3.52) we have

χ1 = 2g2(h − 2), µ0 = g2h

we conclude that the case h − 2 = 0 is equivalent to χ1 = 0 and µ0 ̸= 0 whereas the case g = 0

is equivalent to χ1 = µ0 = 0. In what follows we examine each one of this two possibilities.

3.3.1 The possibility χ1 = 0 and µ0 ̸= 0

Then we have g ̸= 0 and h = 2 and by Lemma 3.12 systems (3.52) could have invariant

parabolas only of the form Φ(x, y) = p+ qx+ ry+ x2 with r ̸= 0. Applying the transformation

(x, y) 7→ (x/g − d, y − c + 2dg) we impose the conditions g = 1 and c = d = 0 to be fulfilled

and we arrive at the family of systems

ẋ = a + x2 + xy, ẏ = b + ex + f y + xy + 2y2. (3.53)

Coefficient conditions for systems (3.53) to possess invariant parabolas. We prove the fol-

lowing lemma.

Lemma 3.13. A system (3.53) possesses either one or two invariant parabolas or a double invariant

parabola of the form Φ(x, y) = p + qx + ry + x2 (r ̸= 0) if and only if Υ1 = 0 and the corresponding

set of conditions are satisfied, respectively:

(H1) D1 ̸= 0, G1 ̸= 0 ⇒ ∪;

(H2) D1 = 0, a ̸= 0, F1 ̸= 0 ⇒ ⋓;

(H3) D1 = 0, a ̸= 0, F1 = 0 ⇒∪∪∪2;

(H4) D1 = 0, a = 0, e ̸= 0 ⇒ ∪.

where
Υ1 = 8b2 − b(24a − e2 + f 2) + a(18a − e2 + e f + 2 f 2);

D1 = e + f ; G1 = 3a − 2b; F1 = 4a − e2.
(3.54)

Proof. Considering the equations (2.6) and the form of invariant parabola Φ(x, y) = p + qx +

ry + x2 with r ̸= 0 for systems (3.53) we obtain

s = 1, v = u = 0, U = 2, V = 2, W = −q,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.

Then we have

Eq6 = −q − r = 0, Eq9 = −2p + f r + qr = 0 ⇒ q = −r, p = r( f − r)/2

and calculations yield

Eq8 = 2a + (e − f )r + 2r2, Eq10 = −
r

2

[
2(a − b) + f r − r2)

]
≡ −

r

2
Ψ1(a, b, f , r).
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Since r ̸= 0 the equation Eq10 = 0 is equivalent to Ψ1 = 0.

According to [12, Lemmas 11,12] the equations Eq8 = 0 and Ψ1 = 0 have a common

solution of degree 2 with respect to the parameter r if and only if

Res
(0)
r (Eq8, Ψ1) = Res

(1)
r (Eq8, Ψ1) = 0

where Res
(1)
r is the subresultant of order one and Res

(0)
r is the subresultant of order zero

which coincide with the standard resultant (for detailed definition see [12], formula (19)). We

calculate

Res
(1)
r (Eq8, Ψ1) = (e + f ) ≡ D1, Res

(0)
r (Eq8, Ψ1) = 2Υ1.

So we consider two possibilities: D1 ̸= 0 and D1 = 0.

1: The possibility D1 ̸= 0. Then the invariant parabola exists if and only if Υ1 = 0 and

therefore we have to examine the solutions of the equation Υ1 = 0. In this case we calculate ??

Discrim[Υ1, b] = −(e + f )2(16a − e2 + 2e f − f 2) ≡ −D2
1E

and hence due to D1 ̸= 0 the equation Υ1 = 0 has real solutions with respect to the parameter

b if and only if E ≤ 0. Then setting E = −w2 ≥ 0 we calculate

a =
(e − f )2 − w2

16
(3.55)

and then we obtain:

Υ1 =
N+N−

128
,

where

N± = 32b − e2 + 6e f − 5 f 2 + 2(e + f )εw + 3w2, ε = ±1.

Then the condition Υ1 = 0 gives us

b =
1

32
(e − 5 f − 3εw)(e − f + εw) (3.56)

where ε = 1 if N+ = 0 and ε = −1 if N− = 0. In this case we obtain that the polynomials Eq8

and Ψ1(e, f , g, r) have the common factor ζ = e − f + 4r + εw which is linear with respect to

the parameter r. Setting ζ = 0 we get

r = −
e − f + εw

4

and we arrive at the family of systems

ẋ =
(e − f )2 − w2

16
+ x2 + xy,

ẏ =
1

32
(e − 5 f − 3εw)(e − f + εw) + ex + f y + xy + 2y2.

(3.57)

This family of systems possess the following invariant parabola

Φ(x, y) = −
(e − f + εw)(e + 3 f + εw)

32
+

e − f + εw

4
x −

e − f + εw

4
y + x2. (3.58)

We observe that this conic is reducible if and only if e − f + εw = 0.
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Considering (3.55) we get

w2 = −16a + (e − f )2

and then we obtain

b =
1

32

[
(e − 5 f )(e − f )− 2(e + f )εw − 3w2

]
⇒

16b − 24a + (e + f )(e − f + εw) = 0.

Since D1 = e + f ̸= 0 we solve the last equation with respect to εw and we obtain

εw =
1

e + f

(
24a − 16b − e2 + f 2

)
.

Then calculations yield

r = −
e − f + εw

4
= −

2(3a − 2b)

e + f
= −

2G1

e + f
̸= 0.

This completes the proof of the statement (H1) of Lemma 3.13.

Next we show that systems (3.57) could be brought via a transformation to the canonical

form (S1
γγγ). Indeed we could apply to parabola (3.58) the translation

x = x1 −
e − f + εw

8
, y = y1 −

3e + 5 f + 3εw

16
,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

e − f + εw

4
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.57) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k =
e − f + εw

4
, n = −

7e + f + 7εw

16
, m =

13e − 5 f − 3εw

32
⇒

e = −k + 2m − n, f = −
7k + 4n

2
, w =

3k − 4m − 2n

2ε
.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S1
γγγ)

defined by the conditions g = 1.

2: The possibility D1 = 0. Considering (3.54) we have f = −e and then we calculate

Υ1 = 2(3a − 2b)2 = 0 ⇒ b = 3a/2.

Therefore we determine that in this case the polynomials Eq8 and Eq10 have the following

common factor

φ1 = a + er + r2.

We observe that φ̃ is quadratic in r with the discriminant Discrim[φ1, r] = −4a+ e2 and setting

Discrim[φ1, r] = w2 we obtain

a =
e2 − w2

4
. (3.59)

Then we arrive at the following expressions for the polynomials Eq8 and Eq10:

Eq8 =
S+S−

2
, Eq10 = r

S+S−

8
, S± = (e + 2r ± w).
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Therefore the equations Eq8 = Eq10 = 0 imply S+S− = 0. If S+ = 0 we determine

r = −
e + w

2
≡ r+

and we obtain the parabola

Φ1(x, y) =
e2 − w2

8
+

e + w

2
x −

e + w

2
y + x2. (3.60)

In the case S− = 0 we obtain

r = −
e − w

2
≡ r−

and we get the parabola

Φ2(x, y) =
e2 − w2

8
+

e − w

2
x −

e − w

2
y + x2.

Both these parabolas are invariant for the following family of systems:

ẋ =
e2 − w2

4
+ x2 + xy, ẏ =

3(e2 − w2)

8
+ ex − ey + xy + 2y2. (3.61)

We observe that both parabolas Φi(x, y) = 0 (i = 1, 2) exist (i.e. are not reducible) if and only

if r+r− ̸= 0 and this is equivalent to

(e + w)(e − w) = e2 − w2 ̸= 0.

Considering (3.59) this is equivalent to a ̸= 0.

On the other hand if only one of the factors vanishes we have a = 0 and

r+ + r− = (e + w) + (e − w) = 2e ̸= 0

and we obtain that the above condition is equivalent to e ̸= 0. Therefore for a = 0 and e ̸= 0

we could have only one parabola and we have no parabolas for a = e = 0.

We determine that in the case w = 0 we obtain Φ1(x, y) = Φ2(x, y), i.e. the parabolas coa-

lesce when w tends to zero and we obtain a double parabola. On the other hand considering

(3.59) for w = 0 we obtain

a −
e2 − w2

4
=

4a − e2

4
=

F1

4
and we conclude that these invariant parabolas coalesce if and only if F1 = 0.

Thus we conclude that the statements (H2),(H3) and (H4) of Lemma 3.13 are proved.

Next we show that systems (3.61) could be brought via a transformation to the canonical

form (S1
γγγ). Indeed we could apply to parabola (3.60) the translation

x = x1 − (e + w)/4, y = y1 + (e − 3w)/8,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

e + w

2
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.61) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = (e + w)/2, n = −(3e + 7w)/8 ⇒ e = (7k + 4n)/2, w = −(3k + 4n)/2.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S1
γγγ)

defined by the conditions g = 1 and m = 3(3 + 2n)/4.
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Invariant conditions: the case η = 0, M̃ ̸= 0 and µ0 ̸= 0. Next using Lemma 3.13 we shall

construct the equivalent affine invariant conditions for a system with η = 0, M̃ ̸= 0 and µ0 ̸= 0

to possess an invariant parabola.

We prove the following theorem.

Theorem 3.14. Assume that for a non-degenerate arbitrary quadratic system the conditions η = 0,

M̃ ̸= 0, χ1 = 0 and µ0 ̸= 0 are satisfied. Then this system could possess invariant parabolas only

in one (simple) direction. More exactly it could only possess one of the following sets of invariant

parabolas: ∪, ⋓ and ∪∪∪2. Moreover this system has one of the above sets of invariant parabolas if and

only if χ2 = 0 and one of the following sets of conditions are satisfied, correspondingly:

(H1) ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;

(H2) ζ4 = 0, R2 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;

(H3) ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒∪∪∪2;

(H4) ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪.

Proof. Assume that quadratic system the conditions η = 0 and M̃ ̸= 0 are fulfilled. Then via

a linear transformation this system can be brought to the canonical form (3.52). According to

Lemma 2.4 for a system (3.52) to possess an invariant parabola the conditions χ1 = χ2 = 0 are

necessary. Moreover it was shown earlier (see page 44) that a system (3.52) with χ1 = 0 and

µ0 ̸= 0 via an affine transformation ant time rescaling can be brought to the form (3.53). Thus

in what follows we consider the family of quadratic systems

ẋ = a + x2 + xy, ẏ = b + ex + f y + xy + 2y2. (3.62)

Considering (3.54) for these systems we calculate.

χ1 = 0, χ2 = 384Υ1, ζ4 = −D1/8, R1 = 30G1. (3.63)

Evidently the condition χ2 = 0 is equivalent to Υ1 = 0 and we consider two cases: ζ4 ̸= 0 and

ζ4 = 0.

1: The case ζ4 ̸= 0. Then we have D1 ̸= 0 and according to Lemma 3.13 in this case a

quadratic system possesses an invariant parabola if and only if the condition G1 ̸= 0 holds.

According to (3.63) this condition is governed by the invariant polynomial R1. So we conclude

that the statement (H1) of Theorem 3.14 is valid.

2: The case ζ4 = 0. This implies D1 = 0 and considering (3.54) we get f = −e. Then for

systems (3.62) we calculate

χ2 = 768(3a − 2b)2 = 0 ⇒ b = 3a/2

and in this case we obtain:

ζ5 = −19(4a − e2) = −19F1, R2 = −27a/2.

We examine two possibilities: R2 ̸= 0 and R2 = 0.

2.1: The subcase R2 ̸= 0. In this case we get a ̸= 0. We observe that the condition ζ5 = 0

is equivalent to F1 = 0 and according to Lemma 3.13 due to b ̸= 0 (because a ̸= 0) we get two

invariant parabolas for ζ5 ̸= 0 and one double invariant parabola if ζ5 = 0.

Thus the statements (H2) and (H3) of Theorem 3.14 are valid.
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2.2: The subcase R2 = 0. This implies a = 0 and for systems (3.62) with f = −e and

a = b = 0 we calculate

ζ5 = 19e2.

So the condition e ̸= 0 is equivalent to ζ5 ̸= 0 and considering Lemma 3.13 we conclude that

the statement (H4) of Theorem 3.14 is valid. This completes the proof of Theorem 3.14.

3.3.2 The possibility χ1 = µ0 = 0

In this case considering the conditions χ1 = 2g2(h − 2) = 0 and µ0 = g2h for systems (3.52)

we obtain g = 0 and by Lemma 3.12 these systems could have invariant parabolas of the form

Φ(x, y) = p + qx + ry + y2 with q ̸= 0 and if in addition h = 2 then they could have invariant

parabolas of the form Φ(x, y) = p + qx + ry + x2 with r ̸= 0.

So we consider the family of systems

ẋ = a + cx + dy + (h − 1)xy, ẏ = b + ex + f y + hy2. (3.64)

Coefficient conditions for systems (3.64) to possess invariant parabolas. We prove the fol-

lowing lemma.

Lemma 3.15. A system (3.64) could only possess one of the following sets of invariant parabolas: ∪,
2

∪,
2

∪⊂,
2

∪
2

⋓,
2

∪
2

⋓
c,

2

∪
2

∪∪∪2,
2

∪∪∪3 and ∞
2

∪. Moreover this system has one of the above sets of invariant

parabolas if and only if the corresponding set of conditions are satisfied, respectively:

(K1) h + 1 ̸= 0, 3h + 1 ̸= 0, h ̸= 0, h − 2 ̸= 0, Υ2 = 0, e ̸= 0 ⇒
2

∪;

(K2) h = 2, Υ3 ̸= 0, Υ2 = 0, e ̸= 0 ⇒
2

∪;

(K3) h = 2, Υ3 = 0, Υ2 ̸= 0, e(a − cd) ̸= 0 ⇒ ∪;

(K4) h = 2, Υ3 = 0, Υ2 = 0, e(4c − f ) ̸= 0 ⇒
2

∪⊂;

(K5) h = 0, Υ2 = 0, e f ̸= 0 ⇒
2

∪;

(K6) h = −1/3, c = 2 f , D2 > 0, e ̸= 0 ⇒
2

∪
2

⋓;

(K7) h = −1/3, c = 2 f , D2 < 0, e ̸= 0 ⇒
2

∪
2

⋓
c;

(K8) h = −1/3, c = 2 f , D2 = 0, F2 ̸= 0, e ̸= 0 ⇒
2

∪
2

∪∪∪2;

(K9) h = −1/3, c = 2 f , D2 = 0, F2 = 0, e ̸= 0 ⇒
2

∪∪∪3;

(K10) h = −1, e = 0, G2 ̸= 0, H2 ̸= 0, c − f ̸= 0 ⇒
2

∪;

(K11) h = −1, e = 0, G2 = 0, H2 ̸= 0, c − f = 0 ⇒ ∞
2

∪,

where

Υ2 = aeh(1 + 3h)3 − b(1 + h)(1 + 3h)2( f + 2ch − f h)− ( f + ch + f h)
[
2c2h(1 + h)

− c f (1 + h)(5h − 1) + de − 2 f 2 + 6deh + 9deh2 + 2 f 2h2
]
; Υ3 = b + 2c2 − de − c f ;

D2 = 256b3 + 576b2(de + f 2) + 432b(de + f 2)2 − 324a2e2 − 972ade2 f

+ 27(de − 2 f 2)2(4de + f 2); F2 = 4b + 3de + 3 f 2; G2 = 2a + cd, H2 = 4b − c2 + 2c f .
(3.65)
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Proof. Considering the equations (2.6) and the form of invariant parabola Φ(x, y) = p + qx +

ry + y2 with q ̸= 0 we obtain

s = v = 0, u = 1, U = 0, V = 2h, W = 2 f − hr,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0, Eq6 = 2e − (h + 1)q.
(3.66)

So we have to consider two possibilities: h + 1 ̸= 0 and h + 1 = 0.

1: The possibility h + 1 ̸= 0. Then equation Eq6 = 0 gives us q =
2e

1 + h
and since q ̸= 0 we

get e ̸= 0. Therefore we calculate:

Eq8 =
e
[
2c − 4 f + (1 + 3h)r

]

1 + h

and we have to examine two cases: 1 + 3h ̸= 0 and 1 + 3h = 0.

1.1: The case 1 + 3h ̸= 0. Then due to e ̸= 0 the equation Eq8 = 0 implies r = −
2(c − 2 f )

1 + 3h
and calculations yield:

Eq9 =
2

(1 + h)(1 + 3h)2

[
de(1 + 3h)2 + b(1 + h)(1 + 3h)2 + (c − 2 f )(1 + h)( f + 2ch − f h)

− h(1 + h)(1 + 3h)2 p
]
,

Eq10 =
2

(1 + h)(1 + 3h)

[
ae(1 + 3h)− b(c − 2 f )(1 + h)− (1 + h)( f + ch + f h)p

]
.

(3.67)

We observe that both equations are linear with respect to parameter p and we calculate

Resp(Eq9, Eq10) = −
4

(1 + h)(1 + 3h)3
Υ2 = 0.

Considering (3.65) we observe that Υ2 is linear with respect to the parameter a with the coef-

ficient eh(1 + 3h)3 where e(1 + 3h) ̸= 0. So we consider two subcases: h ̸= 0 and h = 0.

1.1.1: The subcase h ̸= 0. Then the condition Υ2 = 0 gives us

a =
1

eh(1 + 3h)3

[
b(1 + h)(1 + 3h)2( f + 2ch − f h)

+ ( f + ch + f h)(de + c f − 2 f 2 + 2c2h + 6deh − 4c f h

+ 2c2h2 + 9deh2 − 5c f h2 + 2 f 2h2)
]
≡ a′

(3.68)

and then we calculate

Eq9 =
2

(1 + h)(1 + 3h)2
Ψ(b, c, d, e, f , h), Eq10 =

2( f + ch + f h)

h(1 + h)(1 + 3h)3
Ψ(b, c, d, e, f , h),

where

Ψ = b(1 + h)(1 + 3h)2 − h(1 + h)(1 + 3h)2 p + de(1 + 3h)2 + (c − 2 f )(1 + h)( f + 2ch − f h).

Therefore the condition Eq9 = Eq10 = 0 implies Ψ = 0 and we get

p =
2

h(1 + h)(1 + 3h)2

[
b(1 + h)(1 + 3h)2 + de(1 + 3h)2 + (c − 2 f )(1 + h)( f + 2ch − f h)

]
≡ p′.

(3.69)
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Thus we arrive at the family of systems

ẋ = a′ + cx + dy + (h − 1)xy, ẏ = b + ex + f y + hy2, e ̸= 0, (3.70)

where a′ is given in (3.68). These systems possess the following invariant parabola:

Φ = p′ +
2e

h + 1
x −

2(c − 2 f )

3h + 1
y + y2, e ̸= 0, (3.71)

where p′ is given in (3.69).

We recall that according to Lemma 3.12 in the case h − 2 = 0 systems (3.64) could possess

invariant parabolas of the form Φ(x, y) = p + qx + ry + x2. So we discuss two cases: h − 2 ̸= 0

and h − 2 = 0.

1.1.1.1: The possibility h − 2 ̸= 0. Then by Lemma 3.12 systems (3.64) could not possess

invariant parabolas in the second direction.

So we proved that in the case (h + 1)(3h + 1)h(h − 2)e ̸= 0 and Υ2 = 0 systems (3.64)

possess an invariant parabola of the form Φ(x, y) = p + qx + ry + y2.

Thus the proof of the statement (K1) of Lemma 3.15 is completed.

Next we show that systems (3.70) could be brought via a transformation to the canonical

form (S2
γγγ). Indeed we could apply to parabola (3.71) the translation

x = x1 −
1

2eh(1 + 3h)2

[
de(1 + 3h)2 + b(1 + h)(1 + 3h)2 + (c − 2 f )(1 + h)( f + ch + f h)

]
,

y = y1 +
c − 2 f

1 + 3h
,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 +

2e

1 + h
x1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.61) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = −
2e

1 + h
, m =

f + 2ch − f h

1 + 3h
, n =

h + 1

4eh(1 + 3h)2

[
de(1 + 3h)2−

b(h − 1)(1 + 3h)2 − (c − 2 f )(h − 1)( f + ch + f h)
]

⇒

c =
f (h − 1) + (1 + 3h)m

2h
, d =

(h − 1)( f 2 − m2)− 4h(bh − b − 2hkn)

2h(1 + h)k
, e = −

(1 + h)k

2
.

Then after an additional rescaling (to force k = 1) we arrive at the family of systems (S2
γγγ).

1.1.1.2: The possibility h− 2 = 0. In this case we examine the conditions for the existence

of the invariant parabolas of the form Φ(x, y) = p + qx + ry + x2 (r ̸= 0).

Considering the equations (2.6) for systems (3.64) we obtain

s = 1, v = u = 0, U = 0, V = 2, W = 2c,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0, Eq6 = 2d − q.

Therefore the equation Eq6 = 0 gives us q = 2d and then calculations yield:

Eq9 = 2d2 − 2p − 2cr + f r = 0 ⇒ p = (2d2 − 2cr + f r)/2.
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In this case we obtain

Eq8 = 2(a − cd) + er, Eq10 = 2d(a − cd) + (b + 2c2 − c f )r

and we claim that the condition e ̸= 0 must hold in order to have an invariant parabola.

Indeed suppose e = 0. Then Eq8 = 0 gives us a = cd and therefore due to r ̸= 0 from Eq10 = 0

we get b = c( f − 2c) and this leads to the following degenerate systems

ẋ = (d + x)(c + y), ẏ = −(2c − f − 2y)(c + y).

So e ̸= 0 and we obtain

r = −2(a − cd))/e ̸= 0.

In this case calculations yield

Eq10 = −2(a − cd)(b + 2c2 − de − c f )/e = −2(a − cd)Υ3/e (3.72)

and due to a − cd ̸= 0 we obtain that Eq10 = 0 is equivalent to Υ3 = 0. Therefore we discuss

two cases: Υ3 ̸= 0 and Υ3 = 0.

a) The case Υ3 ̸= 0. Then systems (3.64) could not possess invariant parabolas of the form

Φ(x, y) = p + qx + ry + x2 (r ̸= 0). However these systems could have invariant parabolas of

the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0) and for this it is sufficient to force the conditions

Υ2 = 0 and e ̸= 0. Indeed the condition h = 2 implies (h + 1)(3h + 1)h ̸= 0 and as it was

shown above (see p. 1.1.1:) in the case Υ2 = 0 and e ̸= 0 we arrive at the family of systems

(3.70) possessing the invariant parabola (3.71) in this particular case with h = 2.

Thus we conclude that the statement (K2) of Lemma 3.15 is proved.

b) The case Υ3 = 0. Considering (3.65) the condition Υ3 = 0 gives us b = −2c2 + de + c f .

Then from (3.72) we get Eq10 = 0 and we arrive at the following systems

ẋ = a + cx + dy + xy, ẏ = −2c2 + de + c f + ex + f y + 2y2, e ̸= 0, (3.73)

possessing the invariant parabola

Φ =
a(2c − f )− d(2c2 − de − c f )

e
+ 2dx −

2(a − cd)

e
y + x2, e(a − cd) ̸= 0. (3.74)

Next we show that systems (3.73) could be brought via a transformation to the canonical

form (S1
γγγ). Indeed we could apply to parabola (3.74) the translation

x = x1 − d, y = y1 +
2c − f

2
.

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

2(a − cd)

e
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.73) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k =
2(a − cd)

e
, m =

e

2
, n =

4c − f

2
⇒

a = cd + km, e = 2m, f = 2(2c − n).
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Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S1
γγγ)

defined by the condition g = 0.

Next we examine the possibility of the existence besides the parabola (3.74) another

parabola of the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0). As it was mentioned earlier the

condition h = 2 implies (h + 1)(3h + 1)h ̸= 0 and according to the statement (K1) of Lemma

3.15 to have such a parabola the condition Υ2 = 0 is necessary. So we examine two possibili-

ties: Υ2 ̸= 0 and Υ2 = 0.

b.1) The possibility Υ2 ̸= 0. In this case by the statement (K1) we could not have parabola

of the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0) and hence in the case under consideration we

have a single parabola (3.74).

Thus we deduce that the conditions provided by the statement (K3) of Lemma 3.15 are

valid.

b.2) The possibility Υ2 = 0. As it was shown above (see p. b)) for h = 2 and Υ3 = 0 systems

(3.64) can be brought to the form (3.73). For these systems we calculate

Υ2 = 2(576c3 + 343ae − 343cde − 432c2 f + 108c f 2 − 9 f 3).

So due to e ̸= 0 we obtain

a =
1

343e

[
c(343de − 576c2) + 9 f (48c2 − 12c f + f 2)

]

and we arrive at the family of systems

ẋ =
1

343e

[
c(343de − 576c2) + 9 f (48c2 − 12c f + f 2)

]
+ cx + dy + xy,

ẏ = −2c2 + de + c f + ex + f y + 2y2, e ̸= 0,
(3.75)

possessing the following two invariant parabolas:

Φ1 = d2 −
9(2c − f )(4c − f )3

343e2
+ 2dx +

18(4c − f )3

343e2
y + x2, e(4c − f ) ̸= 0;

Φ2 =
1

147
(60c f − 141c2 + 98de + 3 f 2) +

2e

3
x −

2(c − 2 f )

7
y + y2, e ̸= 0.

(3.76)

So the conditions provided by the statement (K4) of Lemma 3.15 are valid.

Next we show that systems (3.75) could be brought via a transformation to the canonical

form (S2
γγγ). Indeed we could apply to parabola Φ2 = 0 from (3.76) the translation

x = x1 +
9(4c − f )2 − 98de

98e
, y = y1 +

c − 2 f

7

which brings this parabola to the form Φ̃(x1, y1) = y2
1 +

2e

3
x1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.75) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = −
2e

3
, m =

4c − f

7
⇒ c =

f + 7m

4
, e = −

3k

2
.

Then after an additional rescaling (to force k = 1) we arrive at the the subfamily of systems

(S2
γγγ) defined by the conditions h = 2 and n = −3m2/2.
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1.1.2: The subcase h = 0. In this case considering (3.67) we obtain

Eq9 = 2(b + de + c f − 2 f 2), Eq10 = 2(ae − bc + 2b f − f p)

and clearly the condition Eq9 = 0 gives us b = −de − c f + 2 f 2. We observe that the equation

Eq10 = 0 is linear with respect to the parameter p with the coefficient f . So we discuss two

possibilities: f ̸= 0 and f = 0.

1.1.2.1: The possibility f ̸= 0. Then the condition Eq10 = 0 implies

p =
[
ae + (c − 2 f )(de + c f − 2 f 2)

]
/ f

and we arrive at the family of systems

ẋ = a + cx + dy − xy, ẏ = −de − c f + 2 f 2 + ex + f y, e f ̸= 0, (3.77)

possessing the following invariant parabola:

Φ =
1

f

[
ae + (c − 2 f )(de + c f − 2 f 2)

]
+ 2ex − 2(c − 2 f )y + y2, e f ̸= 0. (3.78)

On the other hand for h = 0 we have

Υ2 = − f (b + de + c f − 2 f 2)

and since f ̸= 0 we conclude that the condition Υ2 = 0 is equivalent to b + de + c f − 2 f 2 = 0.

1.1.2.2: The possibility f = 0. Then considering (3.67) for h = f = 0 we obtain

Eq9 = 2(b + de) = 0, Eq10 = 2(ae − bc) = 0

and due to e ̸= 0 (since q ̸= 0) this implies b = −de and a = −cd. However in this case we get

the degenerate systems

ẋ = −(d − x)(c − y), ẏ = −e(d − x).

Thus we have proved that for the existence of invariant parabola of systems (3.64) with h = 0

the conditions Υ2 = 0 and e f ̸= 0 must hold and we deduce that the conditions provided by

the statement (K5) of Lemma 3.15 are valid.

Next we show that systems (3.77) could be brought via a transformation to the canonical

form (S2
γγγ). Indeed we could apply to parabola (3.78) the translation

x = x1 −
a + cd − 2d f

2 f
, y = y1 + c − 2 f ,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 + 2e x1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.77) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = −2e, m = f , n =
a + cd

4 f
⇒

a = −cd + 4mn, e = −k/2, f = m.
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Then after an additional rescaling (to force k = 1) we arrive at the the subfamily of systems

(S2
γγγ) defined by the conditions h = 0.

1.2: The case 1 + 3h = 0. Then h = −1/3 and considering (2.6) and (3.66) we calculate

Eq6 = 2/3(3e − q) = 0 which implies q = 3e ̸= 0. Therefore calculations yield:

Eq8 = 3e(c − 2 f ), Eq9 = (6b + 9de + 2p − 3 f r − r2)/3

and since e ̸= 0 the equation Eq8 = 0 implies c = 2 f and from Eq9 = 0 we obtain

p =
1

2

[
r2 + 3 f r − 3(2b + 3de)

]
.

Then we obtain

Eq10 = −
1

6

[
r3 + 9 f r2 − 3(4b + 3de − 6 f 2)r − 18(ae + 2b f + 3de f )

]
≡ −

1

6
Ψ(r)

and we conclude that if r0 is a solution of the equation Eq10 = 0 (i.e. Ψ(r0) = 0) then systems

ẋ = a + 2 f x + dy − 4xy/3, ẏ = b + ex + f y − y2/3, e ̸= 0 (3.79)

possess the invariant parabola

Φ0(x, y) = (r2
0 + 3 f r0 − 6b − 9de)/2 + 3ex + r0y + y2. (3.80)

On the other hand we calculate

Ψ′
r = 3(r2 + 6 f r − 4b − 3de + 6 f 2), Ψ′′

r = 6(3 f + r),

Discrim[Ψ, r] = 27D2, Resr(Ψ
′
r, Ψ′′

r ) = −108F2,

and we conclude that systems (3.79) has the following invariant parabolas of the form (3.80):

• if D2 > 0 ⇒ three real distinct invariant parabolas;

• if D2 < 0 ⇒ one real and two complex invariant parabolas;

• if D2 = 0, F2 ̸= 0 ⇒ one simple and one double real invariant parabolas;

• if D2 = 0, F2 = 0 ⇒ one triple real invariant parabolas.

So we conclude that the conditions provided by the statements (K6)–(K9) of Lemma 3.15 are

valid.
Next we show that systems (3.79) could be brought via a real transformation to the canonical form

(S2
γγγ). Indeed we could apply to parabola (3.80) with r0 ∈ R the translation

x = x1 +
12b + 18de − 6 f r0 − r2

0

12e
, y = y1 − r0/2,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 + 3e x1.

On the other hand applying the same translation to systems (3.79) we arrive at the systems

ẋ1 = −
1

8e
Ψ(r0) +

2

3
(3 f + r0)x1 −

1

9e
(12b + 9de − 6 f r0 − r2

0)y1 −
4

3
x1y1,

ẏ1 =
1

6
(12b + 9de − 6 f r0 − r2

0) + ex1 +
1

3
(3 f + r0)y1 −

1

3
y2

1.
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We recall that Ψ(r0) = 0 and we set the following new notations (suggested by the above parabola and
the linear parts of the above systems):

k = −3e, m =
3 f + r0

3
, n = −

12b + 9de − 6 f r0 − r2
0

18e
⇒

b =
3dk + 6kn + 6mr0 − r2

0

12
, e = −

k

3
, f =

3m − r0

3
.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S2
γγγ) defined

by the conditions h = −1/3.

2: The possibility h + 1 = 0. Then h = −1 and considering (3.66) for h = −1 we have Eq6 = 2e = 0,
i.e. e = 0. Then taking into account (2.6) calculations yield:

Eq8 = q(c − 2 f − r), Eq9 = 2b + 2p + dq − f r − r2

and since q ̸= 0 the condition Eq8 = 0 implies c − 2 f − r = 0 and this gives us r = c − 2 f . Then from
Eq9 = 0 we obtain p = (c2 − 2b − 3c f + 2 f 2 − dq)/2 and we obtain

Eq10 =
1

2

[
(c − f )(4b − c2 + 2c f ) + (2a + cd)q

]
. (3.81)

We observe that for systems (3.64) we have G2 = 2a + cd and therefore we have to consider two cases:
G2 ̸= 0 and G2 = 0.

2.1: The case G2 ̸= 0. Then 2a + cd ̸= 0 and the equation Eq10 = 0 implies

q = −
(c − f )(4b − c2 + 2c f )

2a + cd

and we obtain the parabola

Φ =
−2ab + ac2 − 3ac f + 2a f 2 + bcd − 2bd f

2a + cd
−

(c − f )(4b − c2 + 2c f )

2a + cd
x + (c − 2 f )y + y2,

(2a + cd)(c − f )
(

4b − c2 + 2c f
)
̸= 0 ⇔ G2H2(c − f ) ̸= 0,

(3.82)

which is invariant for the family of systems

ẋ = a + cx + dy − 2xy, ẏ = b + f y − y2. (3.83)

So we conclude that the conditions provided by the statement (K10) of Lemma 3.15 are valid.

Next we show that systems (3.83) could be brought via a transformation to the canonical form (S2
γγγ).

Indeed we could apply to parabola (3.82) the translation

x = x1 −
2a − cd + 2d f

4(c − f )
, y = y1 −

c − 2 f

2
,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 −

(c − f )(4b − c2 + 2c f )

2a + cd
x1.

On the other hand considering Observation 3.4 we apply the same translation to systems (3.83)
and we set the following new notations (suggested by the above parabola and the linear parts of the
transformed systems):

k =
(c − f )(4b − c2 + 2c f )

2a + cd
, m = c − f , n =

2a + cd

4(c − f )
⇒

a = (4mn − cd)/2, b = (2cm − c2 + 4kn)/4, f = c − m.

Then after an additional rescaling (to force k = 1) we arrive at the the subfamily of systems (S2
γγγ)

defined by the conditions h = −1.
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2.2: The case G2 = 0. In this case 2a + cd = 0, i.e. a = −cd/2 and considering (3.81) the equation
Eq10 = 0 yields

(c − f )(4b − c2 + 2c f ) = 0 ⇒ (c − f )H2 = 0.

If H2 = 0 then we get b = c(c − 2 f )/4 and this leads to degenerate systems:

ẋ = −(d − 2x)(c − 2y)/2, ẏ = (c − 2y)(c − 2 f + 2y)/4.

So the condition H2 ̸= 0 is necessary and then we have c − f = 0. So we get f = c which leads to the
family of systems

ẋ = −cd/2 + cx + dy − 2xy, ẏ = b + cy − y2 (3.84)

possessing the following family of invariant parabolas:

Φ = −(2b + dq)/2 + qx − cy + y2, q ∈ R, q ̸= 0. (3.85)

Next we show that systems (3.84) could be brought via a transformation to the canonical form (S2
γγγ).

Indeed we could apply to parabola (3.85) the translation

x = x1 +
4b + c2 + 2dq

4q
, y = y1 +

c

2
,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 + q x1.

On the other hand considering Observation 3.4 we apply the same translation to systems (3.84)
and we set the following new notations (suggested by the above parabola and the linear parts of the
transformed systems):

k = −q, m = c − f , n = −
4b + c2

4q
⇒

b = (4kn − c2)/4, q = −k ̸= 0.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S2
γγγ) defined

by the conditions h = −1 and m = 0. Moreover we observe that this subfamily of systems possess the
following family of invariant parabolas:

Φ = −n(1 + q) + qx + y2, q ∈ R, q ̸= 0.

Evidently for q = −1 we get the parabola y2 − x = 0.

Thus the the condition provided by the statement (K11) of Lemma 3.15 are valid and this completes
the proof of the Lemma 3.15.

Invariant conditions: the case η = 0, M̃ ̸= 0 and µ0 = 0. Next we consider the class of

quadratic systems for which the conditions η = 0, M̃ ̸= 0, µ0 = 0, which by Lemma 3.12

could possess invariant parabolas in two directions.

We prove the following theorem.

Theorem 3.16. Assume that for a non-degenerate arbitrary quadratic system the conditions η = 0,

M̃ ̸= 0, χ1 = µ0 = 0 are satisfied. Then this system could possess invariant parabolas in two

directions. More exactly it could only possess one of the following sets of invariant parabolas: ∪,
2

∪,
2

∪⊂,
2

∪
2

⋓,
2

∪
2

⋓
c,

2

∪
2

∪∪∪2,
2

∪∪∪3 and ∞
2

∪. Moreover this system has one of the above sets of invariant

parabolas if and only if one of the following sets of conditions are satisfied, correspondingly:
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(K1) ζ11ζ12ζ13ζ14 ̸= 0, R5 ̸= 0,

{
ζ15 ̸= 0, ζ16 = 0

or ζ15 = ζ17 = 0,
⇒

2

∪;

(K2) ζ11 = 0, R3 ̸= 0, ζ16 = 0, R5 ̸= 0 ⇒
2

∪;

(K3) ζ11 = 0, R3 = 0, ζ16 ̸= 0, R6 ̸= 0 ⇒ ∪;

(K4) ζ11 = 0, R3 = 0, ζ16 = 0, ζ8 ̸= 0 ⇒
2

∪⊂;

(K5) ζ12 = 0, ζ16 = 0, ζ8 ̸= 0 ⇒
2

∪;

(K6) ζ13 = 0, ζ8 = 0, ζ18 > 0, R5 ̸= 0 ⇒
2

∪
2

⋓;

(K7) ζ13 = 0, ζ8 = 0, ζ18 < 0, R5 ̸= 0 ⇒
2

∪
2

⋓
c;

(K8) ζ13 = 0, ζ8 = 0, ζ18 = 0, R5 ̸= 0, χ3 ̸= 0 ⇒
2

∪
2

∪∪∪2;

(K9) ζ13 = 0, ζ8 = 0, ζ18 = 0, R5 ̸= 0, χ3 = 0 ⇒
2

∪∪∪3;

(K10)ζ14 = 0, ζ19 ̸= 0, ζ20 ̸= 0, R5 = 0, ζ21 ̸= 0 ⇒
2

∪;

(K11)ζ14 = 0, ζ19 = 0, ζ20 ̸= 0, R5 = 0, ζ21 = 0 ⇒ ∞
2

∪.

Proof. Assume that quadratic system the conditions η = 0 and M̃ ̸= 0 are fulfilled. Then via

a linear transformation this system can be brought to the canonical form (3.52). According to

Lemma 2.4 for a system (3.52) to possess an invariant parabola the conditions χ1 = χ2 = 0 are

necessary. Moreover it was shown earlier (see page 49) that a system (3.52) with χ1 = µ0 = 0

via an affine transformation and time rescaling can be brought to the form (3.64). Thus in

what follows we consider the family of quadratic systems

ẋ = a + cx + dy + (h − 1)xy, ẏ = b + ex + f y + hy2. (3.86)

1: The statement (K1). Considering (3.65) for these systems we calculate

χ1 = χ2 = 0, ζ11 = −4(h − 2)y2, ζ12 = 4hy2, ζ13 = (1 + 3h)y2, ζ14 = (1 + h)2y2,

ζ15 = (h − 1)2y2/4, ζ16 = 45e3(h − 1)2Υ2/8, R5 = 32e.
(3.87)

The condition ζ11 ̸= 0 implies h − 2 ̸= 0 and according to Lemma 3.12 systems (3.64) could

not possess invariant parabolas of the form Φ(x, y) = p + qx + ry + x2.

On the other hand evidently the condition ζ12ζ13ζ14 ̸= 0 is equivalent to (1+ h)(1+ 3h)h ̸=

0 and the condition R5 ̸= 0 is equivalent to e ̸= 0. So considering the statement (K1) of

Lemma 3.15 it remains to determine in invariant form the condition which is equivalent to

Υ2 = 0. We consider two cases: ζ15 ̸= 0 and ζ15 = 0.

1.1: The case ζ15 ̸= 0. Then h − 1 ̸= 0 and due to R5 ̸= 0 (i.e. e ̸= 0) we conclude that the

condition Υ2 = 0 is equivalent to ζ16 = 0 and hence the statement (K1) of Theorem 3.16 is

valid in this case.

1.2: The case ζ15 = 0. Then h = 1 and we obtain

Υ2 = −4(16bc + c3 − 16ae + 4cde + 8de f − 4c f 2), ζ17 = 13824e2Υ2.

Therefore due to e ̸= 0 we conclude that the condition Υ2 = 0 is equivalent to ζ17 = 0 and this

completes the proof of the statement (K1) of Theorem 3.16.



Family of quadratic differential systems with invariant parabolas 59

2: The statements (K2)–(K4). For systems (3.86) the condition ζ11 = 0 gives us h = 2. In

this case we calculate

R3 = −503139971565000 e4(b + 2c2 − de − c f ) = −503139971565000 e4Υ3,

R5 = 32e, R6 = 8925(a − cd)e4/4, ζ16 = 45e3Υ2/8, ζ8 = e(4c − f ).

Therefore the condition R5 ̸= 0 is equivalent to e ̸= 0 and for e ̸= 0 the condition R3 =

0 (respectively ζ16 = 0) is equivalent with Υ3 = 0 (respectively Υ2 = 0). So in the case

R3 ̸= 0 we deduce that the conditions of the statements (K2) provides the conditions of the

statements(K2) of Lemma 3.15.

Assume now R3 = 0. We observe that the condition R6 ̸= 0 (respectively ζ8 ̸= 0) implies

e(a − cd) ̸= 0 (respectively e(4c − f ) ̸= 0), i.e. in both cases we have e ̸= 0. Then the condition

R3 = 0 is equivalent to Υ3 and the condition ζ16 = 0 is equivalent to Υ2 = 0.

Thus considering Lemma 3.15 we conclude that in the case ζ16 ̸= 0 (respectively ζ16 = 0)

we get the conditions provided by the statement (K3) (respectively (K4)) of this lemma. So

the invariant conditions provided by the statements statements (K2)–(K4) of Theorem 3.16

are valid.

3: The statement (K5). Considering (3.87) the condition ζ12 = 0 implies h = 0 and we

calculate:

ζ16 = 45e3Υ2/8, ζ8 = e f .

Clearly the condition ζ8 ̸= 0 implies e f ̸= 0 and then the condition ζ16 = 0 is equivalent to

Υ2 = 0. So we get the conditions provided by the statement (K5) of Lemma 3.15 and this

implies the validity of the statement (K5) of Theorem 3.16.

4: The statements (K6)–(K9). Considering (3.87) we observe that the condition ζ13 = 0

implies h = −1/3 and we calculate:

R5 = 32e, ζ8 = −2e(c − 2 f )/3.

So the condition R5 ̸= 0 implies e ̸= 0 and then the condition ζ8 = 0 yields c = 2 f . In this

case we have

ζ18 = 64/2187 e2 D2, χ3 = −
15792269387776

729
e4 F2

2

and hence the condition ζ18 = 0 is equivalent to D2 = 0 and for ζ18 ̸= 0 we have sign(ζ18) =

sign(D2). Moreover the condition χ3 = 0 is equivalent to F2 = 0.

Thus we obtain that in the case R5 ̸= 0, ζ8 = 0 and ζ18 > 0 (respectively ζ18 < 0) then we

arrive at the conditions provided by the statement (K6) (respectively (K7) ) of Lemma 3.15.

In the case ζ18 = 0 (i.e. D2 = 0) we obtain the conditions provided by the statement (K8)

if χ3 ̸= 0 and by the statement (K9) if χ3 = 0 (i.e. F2 = 0). This proves the validity of the

statements (K6)–(K9) of Theorem 3.16.

5: The statements (K10), (K11). From (3.87) we obtain that the condition ζ14 = 0 implies

h = −1 and then we have R5 = 32e. So the condition R5 = 0 implies e = 0 and we calculate

ζ19 = 6(2a + cd)y4 = 6G2, ζ20 = 8(4b − c2 + 2c f )y2 = 8H2y2, ζ21 = 2(c − f )y3.

So we observe that for ζ19 ̸= 0, ζ20 ̸= 0 and ζ21 ̸= 0 we arrive at the conditions provided by the

statement (K10) of Lemma 3.15. In the case ζ19 = 0, ζ20 ̸= 0 and ζ21 = 0 we get the conditions

provided by the statement (K11) of the same lemma.

Thus we conclude that the statements (K10) and (K11) of Theorem 3.16 are valid and this

completes the proof of this theorem.
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3.4 Systems with a unique infinite singular point which is real

In this case according to Lemma 2.3 systems (2.5) via a linear transformation could be brought

to the following family of systems

dx

dt
= a + cx + dy + gx2 + hxy,

dy

dt
= b + ex + f y − x2 + gxy + hy2. (3.88)

For these systems we calculate

C2(x, y) = x3, χ1 = −2h3

and by Lemma 2.6 we conclude that the above systems could have invariant parabolas only of

the form Φ(x, y) = p + qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic).

According to Lemma 2.4 for a system (3.88) to possess an invariant parabola the condition

χ1 = 0 is necessary and this implies h = 0. Moreover we may assume e = 0 due to the

translation x → x + e/2, y → y and we arrive at the family of systems

dx

dt
= a + cx + dy + gx2,

dy

dt
= b + f y − x2 + gxy. (3.89)

3.4.1 Coefficient conditions for systems (3.89) to possess invariant parabolas.

We prove the following lemma.

Lemma 3.17. A system (3.89) could only possess one of the following sets of invariant parabolas:
3

∪

and ∞
3

∪. Moreover this system has one of the above sets of invariant parabolas if and only if the

corresponding set of conditions are satisfied, respectively:

(L1) g ̸= 0, Υ4 = 0, d ̸= 0 ⇒
3

∪;

(L2) g = 0, d = 0, c − f ̸= 0, f (2c − f ) ̸= 0 ⇒
3

∪;

(L3) g = 0, d = 0, f = c ̸= 0 ⇒ ∞
3

∪,

where

Υ4 = 27bdg4 − 9ag3(d − cg + 2 f g)− (2d + cg − 2 f g)(d − cg − f g)(2d − 2cg + f g). (3.90)

Proof. Considering equations (2.6) and the form of the parabola Φ(x, y) = p + qr + ry + x2

with r ̸= 0 (otherwise we get a reducible conic), for systems (3.89) we obtain

s = 1, v = u = 0, U = 2g, V = 0, W = 2c − gq − r, Eq6 = 2d − gr

and clearly we have to discuss two possibilities: g ̸= 0 and g = 0.

1: The possibility g ̸= 0. Then the equation Eq6 = 0 yields r = 2d/g ̸= 0 and we calculate:

Eq8 = 2(a − gp) + q(2d − cg)/g + gq2 = 0 ⇒ p =
a

g
−

q(cg − 2d)

2g2
+

q2

2
.

Then we obtain

Eq9 = d(4d − 4cg + 2 f g + 3g2q)/g2
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and since dg ̸= 0 the equation Eq8 = 0 gives us

q = 2(2cg − 2d − f g)/(3g2)

and finally we calculate the last equation Eq10 = 0:

Eq10 =
2

27g5

[
27bdg4 − 9ag3(d − cg + 2 f g)− (2d + cg − 2 f g)(d − cg − f g)(2d − 2cg + f g)

]

=
2

27g5
Υ4.

Since dg ̸= 0 the equation Eq10 = 0 gives us

b =
1

27dg4

[
9ag3(d − cg + 2 f g) + (2d + cg − 2 f g)(d − cg − f g)(2d − 2cg + f g)

]
≡ b0

and we arrive at the family of systems

ẋ = a + cx + dy + gx2, ẏ = b0 + f y − x2 + gxy (3.91)

possessing the invariant parabola

Φ(x, y) =
9ag3 − (2d + cg − 2 f g)(2d − 2cg + f g)

9g4
−

2(2d − 2cg + f g)

3g2
x +

2d

g
y + x2. (3.92)

This completes the proof of the statement (L1) of Lemma 3.17.

Next we show that systems (3.91) could be brought via a transformation to the canonical

form (Sδδδ). Indeed we could apply to parabola (3.92) the translation

x = x1 −
2cg − 2d − f g

3g2
, y = y1 +

8d2 − 2d(5c − f )g + g2(2c2 + c f − f 2 − 9ag)

18dg3
,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 +

2d

g
y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.91) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = −
2d

g
, n = −

−d + cg − 2 f g

3g
, m = −

16d2 − 2d(7c − 5 f )g − g2(2c2 + c f − f 2 − 9ag)

36dg2
⇒

a =
4c2 − 8ck − 5k2 − 4n2 + 4k(8gm + 3n)

16g
, d = −

gk

2
, f =

2c + k + 6n

4
.

Then after an additional rescaling (to force k = 1) we arrive at the family of systems (Sδδδ).

2: The possibility g = 0. Then the equation Eq6 = 0 yields d = 0 and we calculate:

Eq9 = r( f − 2c + r)

and due to r ̸= 0 we get r = 2c − f ̸= 0. Then calculations yield:

Eq8 = 2a + (c − f )q, Eq10 = 2bc − b f − f p + aq

and we have to examine two cases: c − f ̸= 0 and c − f = 0.
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2.1: The case c − f ̸= 0. Then the equation Eq8 = 0 gives us q = −2a/(c − f ) and then we

obtain

Eq10 =
2bc2 − 2a2 − 3bc f + b f 2

c − f
− f p.

We claim that for the existence of an invariant parabola the condition f ̸= 0 must hold.

Indeed supposing f = 0 we obtain Eq10 = 2(bc − a2)/c and then the condition Eq10 = 0

implies b = a2/c. However in this case we arrive at the degenerate systems

ẋ = a + cx, ẏ =
(a − cx)(a + cx)

c2

and this completes the proof of our claim.

So we have f ̸= 0 and then the condition Eq10 = 0 gives us

p =
−2a2 + 2bc2 − 3bc f + b f 2

f (c − f )

and we arrive at the parabola

Φ(x, y) =
2bc2 − 2a2 − 3bc f + b f 2

f (c − f )
−

2a

c − f
x + (2c − f )y + x2, f (c − f )(2c − f ) ̸= 0, (3.93)

which is invariant for the family of systems:

ẋ = a + cx, ẏ = b + f y − x2. (3.94)

This completes the proof of the statement (L2) of Lemma 3.17.

Next we show that systems (3.94) could be brought via a transformation to the canonical

form (Sδδδ). Indeed we could apply to parabola (3.93) the translation

x = x1 +
a

c − f
, y = y1 −

bc2 − a2 − 2bc f + b f 2

(c − f )2 f
,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 + (2c − f ) y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.95) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = f − 2c, m = −
a

c − f
, n =

f

2
⇒ a = −

m(k + 2n)

2
, c =

2n − k

2
, f = 2n.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sδδδ)

defined by the condition g = 0.

2.2: The case c − f = 0. Then we set f = c and the equation Eq8 = 0 gives us a = 0 and we

obtain

Eq10 = c(b − p) = 0.

In this case r = 2c − f = c ̸= 0 and hence the condition Eq10 = 0 implies p = b. Therefore we

obtain the family of systems

ẋ = cx, ẏ = b + cy − x2, (3.95)

which possess the family of the invariant parabolas depending on one parameter q.

Φ(x, y) = b + qx + cy + x2, c ̸= 0. (3.96)

This completes the proof of the Lemma 3.17.
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Next we show that systems (3.95) could be brought via a transformation to the canonical

form (Sδδδ). Indeed we could apply to parabola (3.96) the translation

x = x1 −
q

2
, y = y1 −

4b − q2

4c
,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 + c y1.

On the other hand considering Observation 3.4 we apply the same translation to systems

(3.95) and we set the following new notations (suggested by the above parabola and the linear

parts of the transformed systems):

k = −c, m =
q

2
⇒ c = −k, q = 2m.

Then after an additional rescaling (to force k = 1) arrive at the subfamily of systems (Sδδδ)

defined by the conditions g = 0 and n = −1/2.

3.4.2 Invariant conditions: the case η = M̃ = 0 and C2 ̸= 0

Next, using Lemma 3.17 we shall construct the equivalent affine invariant conditions for a

system with η = M̃ = 0 and C2 ̸= 0 to possess an invariant parabola.

We prove the following theorem.

Theorem 3.18. Assume that for a non-degenerate arbitrary quadratic system the conditions η = M̃ =

0, χ1 = 0 and C2 ̸= 0 are satisfied. Then this system could only possess one of the following sets of

invariant parabolas:
3

∪ and ∞
3

∪. Moreover this system has one of the above sets of invariant parabolas

if and only if one of the following sets of conditions are satisfied, correspondingly:

(L1) ζ14 ̸= 0, ζ22 = 0, R2 ̸= 0 ⇒
3

∪;

(L2) ζ14 = 0, ζ20 = 0, ζ23 ̸= 0, ζ24 ̸= 0 ⇒
3

∪;

(L3) ζ14 = 0, ζ20 = 0, ζ23 = 0, ζ24 ̸= 0 ⇒ ∞
3

∪.

Proof. Assume that quadratic system the conditions M̃ = 0 and C2 ̸= 0 are fulfilled. Then via

a linear transformation this system can be brought to the canonical form (3.88). According to

Lemma 2.4 for a system (3.88) to possess an invariant parabola the conditions χ1 = χ2 = 0 are

necessary. Moreover it was shown earlier (see page 60) that a system (3.88) with χ1 = 0 via

an affine transformation ant time rescaling can be brought to the form (3.89). Thus in what

follows we consider the family of quadratic systems

dx

dt
= a + cx + dy + gx2,

dy

dt
= b + f y − x2 + gxy. (3.97)

1: The statement (L1). Considering (3.90) for these systems we calculate

χ1 = χ2 = 0, ζ14 = g2x2, ζ22 = 9d3g3Υ4, R2 = 9d2g4/4 (3.98)

and clearly the condition ζ14 ̸= 0 is equivalent to g ̸= 0 and in this case the condition R2 ̸= 0

gives us d ̸= 0. Therefore we conclude that for ζ14R2 ̸= 0 the condition ζ22 = 0 is equivalent

to Υ4 = 0.
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2: The statement (L2). From (3.98) evidently the condition ζ14 = 0 implies g = 0 and then

we calculate

ζ23 = −2(c − f )2, ζ20 = −12d2x2.

Therefore the condition ζ20 = 0 is equivalent to d = 0 whereas ζ23 ̸= 0 implies c − f ̸= 0. So

for ζ20 = 0 we get d = 0 and then we calculate

ζ24 = 24 f (2c − f )x3

and hence the condition ζ24 ̸= 0 is equivalent to f (2c − f ) ̸= 0. Since the condition ζ23 ̸= 0

is equivalent to c − f ̸= 0, considering Lemma 3.17 we conclude that the statement (L2) of

Theorem 3.18 is proved.

3: The statement (L3). Since the condition ζ23 = −2(c − f )2 = 0 gives us f = c for systems

(3.97) with g = d = 0 and f = c we calculate ζ24 = 24c2x3 and clearly the condition ζ24 ̸= 0 is

equivalent to c ̸= 0. This completes the proof of Theorem 3.18.

3.5 Systems with infinite line filled up with singularities

According to Lemma 2.3 in the case C2 = 0 systems (2.5) via a linear transformation could

be brought to the systems (SV) for which in addition we may assume e = f = 0 due to a

translation. So we consider the following family of quadratic systems

dx

dt
= a + cx + dy + x2,

dy

dt
= b + xy. (3.99)

We prove the following lemma.

Lemma 3.19. A non-degenerate quadratic system (3.99) could only have invariant parabola of the form

Φ(x, y) = p + qx + ry + x2 with r ̸= 0. Moreover it possesses an invariant parabola of this form if

and only if the following conditions hold:

d ̸= 0, Υ5 = 9ac − 2c3 + 27bd = 0.

Proof. Suppose that these systems possess an invariant parabola

Φ(x, y) ≡ p + qx + ry + sx2 + 2vxy + uy2 = 0

with v2 − su = 0 and u ̸= 0, i.e. its quadratic part is not of the form sx2. Then clearly we may

assume u = 1 and then we obtain s = v2, i.e. we get the parabola

Φ(x, y) ≡ p + qx + ry + (vx + y)2 = 0, (3.100)

for which the condition q ̸= rv must hold, otherwise we get a reducible conic.

Considering equations (2.6) and the form of the parabola (3.100) with q ̸= rv, for systems

(3.99) we obtain

s = v2, u = 1, Eq3 = 2 − U − 2vV, Eq4 = −V

and evidently the equations Eq3 = 0 and Eq4 = 0 imply V = 0 and U = 2. Then calculations

yield

Eq5 = −q + 2cv2 − v2W = 0, Eq6 = −r + 2cv + 2dv2 − 2vW = 0, Eq7 = 2dv − W = 0
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and we get

W = 2dv, q = 2v2(c − dv), r = 2v(c − dv) ⇒ q = rv.

So we obtain a reducible conic.

Thus we have proved that if systems (3.99) possess an invariant parabola then it is neces-

sary of the form

Φ(x, y) ≡ p + qx + ry + sx2 = 0

with s ̸= 0 and r ̸= 0, otherwise we get a reducible conic. Then we may assume s = 1 and

again, considering the ten equations (2.6) and the above parabola, for systems (3.99) we obtain

s = 1, u = v = 0, Eq1 = 2 − U = 0, Eq2 = −V = 0 ⇒ V = 0, U = 2

and then calculations yield:

Eq5 = 2c − q − W = 0, Eq6 = 2d − r = 0 ⇒ r = 2d ̸= 0, W = 2c − q.

Therefore evaluating the remaining equations we obtain

Eq8 = 2a − 2p − cq + q2, Eq9 = d(3q − 4c), Eq10 = 2bd − 2cp + aq + pq.

Since d ̸= 0 (due to r ̸= 0) the equation Eq9 = 0 gives us q = 4c/3 and then from Eq8 = 0 we

get p = (9a + 2c2)/9. In this case we obtain

Eq10 =
2

27
(9ac − 2c3 + 27bd) =

2

27
Υ5 = 0.

Since d ̸= 0 the condition Υ5 = 0 implies b =
c

27d
(2c2 − 9a) and we arrive at the systems

ẋ = a + cx + dy + x2, ẏ =
c

27d
(2c2 − 9a) + xy (3.101)

which possess the following invariant parabola:

Φ(x, y) =
1

9

(
9a + 2c2

)
+

4c

3
x + 2dy + x2, d ̸= 0. (3.102)

This complete the proof of the Lemma 3.19.

Evaluating for systems (3.99) the invariant polynomials ζ5 and ζ22 we obtain

ζ5 = −891d2/4, ζ22 = 9d3(9ac − 2c3 + 27bd) = 9d3Υ5.

So the condition d ̸= 0 is equivalent to ζ5 ̸= 0 and in this case the condition Υ5 = 0 is

equivalent to ζ22 = 0. Therefore considering Lemma 3.19 we conclude that the following

theorem is valid.

Theorem 3.20. Assume that for a non-degenerate quadratic system the condition C2 = 0 holds. Then

this system possesses an invariant parabola (which is unique) if and only if the conditions ζ5 ̸= 0 and

ζ22 = 0 hold.
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In order to determine a simpler canonical form of systems (3.101) we apply to these sys-

tems as well as to parabola (3.102) the translation

x = x1 −
2c

3
, y = y1 −

9a − 2c2

18d
.

Then we could set the following new notations:

k = −2d, m = −
9a − 2c2

36d
, n = −

c

3
⇒

a = 2(km + n2), c = −3n, d = −
k

2
,

where k ̸= 0 due to d ̸= 0. Then we arrive at the family of systems

ẋ1 = km + nx1 −
k

2
y1 + x2

1, ẏ1 = 2mx1 + 2ny1 + x1y1,

which possess the invariant parabola

Φ(x1, y1) = x2
1 − ky1, k ̸= 0.

Finally applying the rescaling (x1, y1, t1) 7→ (kx, ky, t/k) we arrive at the systems

ẋ = m + nx − y/2 + x2, ẏ = 2mx + 2ny + xy,

which possess the invariant parabola Φ(x, y) = x2 − y.

As all the cases are investigated we conclude that the Main Theorem is proved.
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Abstract. In this paper, we study the following Schrödinger–Hardy system























−∆Gu− µ
ψ2

r(ξ)2 u = Fu(ξ, u, v) in Ω,

−∆Gv− ν
ψ2

r(ξ)2 v = Fv(ξ, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a smooth bounded domain on Carnot groups G, whose homogeneous di-
mension is Q ≥ 3, ∆G denotes the sub-Laplacian operator on G, µ and ν are real
parameters, r(ξ) is the natural gauge associated with fundamental solution of −∆G on
G, ψ is the geometrical function defined as ψ = |∇Gr|, and ∇G is the horizontal gradi-
ent associated with ∆G. The difficulty is not only the nonlinearities Fu and Fv without
Ambrosetti–Rabinowitz condition, but also the hardy terms and the structure on Carnot
groups. We obtain the existence of nonnegative solution for this system by mountain
pass theorem in a new framework.
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1 Introduction and main results

In this paper, we consider the following Schrödinger–Hardy system


















−∆Gu− µ
ψ2

r(ξ)2 u = Fu(ξ, u, v) in Ω,

−∆Gv− ν
ψ2

r(ξ)2 v = Fv(ξ, u, v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain on Carnot groups G, whose homogeneous dimension

is Q ≥ 3, ∆G denotes the sub-Laplacian operator on G, µ and ν are real parameters, r(ξ) is
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the natural gauge associated with fundamental solution of −∆G on G, ψ is the geometrical

function defined as ψ = |∇Gr|, and ∇G is the horizontal gradient associated with ∆G. The

difficulty in this paper is not only the nonlinearities Fu and Fv without Ambrosetti–Rabinowitz

condition, but also the hardy terms and the structure on Carnot groups.

In the context of stratified groups, the problem has been intensively studied in last decades,

starting with the pioneering papers [21,22]. In particular, a number of literatures are related to

Heisenberg group, such as [4,15,16,23,35,36] and references therein. Only few results concern

the general Carnot setting. For related topics, see [2, 3, 11, 31, 37] and references therein.

We mention that Ferrara et al. [17] obtained the existence of a weak solution for the fol-

lowing problem

{ −∆Gu = λ f (ξ, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain of G, λ > 0 is a real parameter, and f is a subcritical nonlin-

earity. For critical exponent subelliptic problem,

{ −∆Gu = |u|2∗−2u + f in Ω,

u = 0 on ∂Ω,
(1.2)

with 2∗ = 2Q
Q−2 . When f = 0, problem (1.2) does not admit any nonnegative non trivial

solution on star-shaped domain, see [21, 22]. If Ω is a bounded domain of G, Loiudice

[27] established the existence of positive and sign changing solutions for f = λu, extend-

ing the famous Brezis–Nirenberg results [8] to the subelliptic Carnot setting. Subsequently,

by Nehari manifold and Ekeland variational principle, Loiudice [32] considered the general

non-homogeneous problem (1.2) and proved the existence of at least two positive solutions,

provided that non-homogeneous term f satisfies suitable assumptions.

Concerning the problem for sub-Laplacian operator involving critical Hardy–Sobolev non-

linearity

{

−∆Gu = ψα

r(ξ)α |u|2
∗(α)−2u + λu in Ω,

u = 0 on ∂Ω,

where Ω ⊂ G is a bounded domain, 0 < α < 2, 2∗(α) = 2(Q−α)
Q−2 is the critical Sobolev–Hardy

exponent, Loiudice [29] proved that if λ = 0, there is no nonnegative nontrivial solutions

when Ω is a bounded star-shaped domain about the origin with respect to dilations of the

group. Also, the existence of solution was established provided that λ > 0.

For more general nonlinearity with Hardy type potential, that is

{

−∆Gu− µ
ψ2

r(ξ)2 u = f (ξ, u) in Ω,

u = 0 on ∂Ω,
(1.3)

where Ω is an open subset of G, 0 ∈ Ω, 0 ≤ µ < (Q−2
2 )2, the function f satisfies f (ξ, u) ≤

C(|u| + |u|2∗−1), ∀(ξ, u) ∈ Ω × R and C > 0 is a constant. By Lp regularity of solutions

and Moser’s iteration, Loiudice [30] showed that any positive solution of (1.3) has a stronger

singularity as µ → (Q−2
2 )2. When f is a purely critical nonlinearity, that is f (u) = |u|2∗−2u,

the behavior of solutions at origin shows the decay of solution at infinity by Kelvin transform

on Rn in Euclidean setting. However, this technique fails in Carnot group, because there does

not exist a suitable inversion with good conformal properties. We point out this technique is



Schrödinger–Hardy system on Carnot groups 3

true for a special subclass of stratified groups, that is the Iwasawa-type groups H. Loiudice

[28] showed that if u ∈ S1
0 (Ω) is a solution to

−∆Hu− µ
ψ2

r(ξ)2
u = |u|2∗−2u in Ω,

there is C1 > 0 such that

|u(ξ)| ≤ C1r(ξ)−
√

µH−
√

µH−µ, for r(ξ) large.

Moreover, if u is positive, there exists C2 > 0 such that

|u(ξ)| ≥ C2r(ξ)−
√

µH−
√

µH−µ, for r(ξ) large,

where S1
0 (Ω) is the Folland–Stein space, defined as the completion of C∞

0 (Ω) with respect to

the norm

∥u∥S1
0 (Ω) =

(

∫

Ω
|∇Gu|2dξ

)
1
2
,

and µH = (Q−2
2 )2 is the best constant in Hardy inequality on Iwasawa-type groups,

µH

∫

H

ψ2 |u|2
r(ξ)2

dξ ≤
∫

H

|∇Hu|2dξ, ∀u ∈ C∞
0 (H),

and it is never attained, some more details can be seen in [5, 10]. Moreover, this result was

extended to the whole Carnot groups in [33] by using different methods, and Loiudice in-

vestigated the existence and nonexistence for subelliptic Brezis–Nirenberg type problem as

follows

{

−∆Gu− µ
ψ2

r(ξ)2 u = u2∗−1 + λu in Ω,

u = 0 on ∂Ω.

Concerning the results in the whole Carnot group, Zhang [39] considered the following

equation

−∆Gu = λ
ψα

r(ξ)α
|u|2∗(α)−2u + β f (ξ)|u|p−2u in G,

where λ, β > 0 are parameters, 0 < α ≤ 2, Zhang proved the existence and multiplicity

of solutions by variational methods and the theory of genus. Concerning multiple Hardy

nonlinearities, Zhang [38] proved the attainability of best Sobolev–Hardy constant of

Sµ,α = inf
u∈S1(G)\{0}

∫

G
|∇Gu|2dξ − µ

∫

G

ψ(ξ)2

r(ξ)2 |u|2dξ

(

∫

G

ψ(ξ)α

r(ξ)α |u|2∗(α)dξ
)

2
2∗(α)

.

Moreover, as an application, by variational methods and local compactness of Palais–Smale se-

quences, Zhang obtained the existence of nontrivial weak solution to the following singularity

sub-elliptic equation and system

−∆Gu− µ
ψ(ξ)2

r(ξ)2
u =

ψ(ξ)α

r(ξ)α
|u|2∗(α)−2u +

ψ(ξ)β

r(ξ)β
|u|2∗(β)−2u in G,
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and






−∆Gu− µ
ψ(ξ)2

r(ξ)2 u = ψ(ξ)α

r(ξ)α |u|2
∗(α)−2u + λη

η+θ
ψ(ξ)α

r(ξ)α |u|η−2u|v|θ in G,

−∆Gv− µ
ψ(ξ)2

r(ξ)2 v = ψ(ξ)α

r(ξ)α |v|2
∗(α)−2v + λη

η+θ
ψ(ξ)α

r(ξ)α |u|η |v|θ−2v in G,

where 0 ≤ α, β < 2 and η, θ > 1 with η + θ = 2∗(α), λ > 0 is a parameter. Further,

the problems with Hardy potential have been considered by [24] and [6, 7, 34, 35] for Hardy

nonlinearity in Heisenberg group. In particular, we mention that Bordoni and Pucci [6] first

proved the existence of nontrivial nonnegative solutions of the Schrödinger system including

multiple critical nonlinearities and Hardy potentials in Heisenberg groups.

In order to deal with (1.1), we introduce the Sobolev-type inequality: there exists a positive

constant C > 0 such that

∫

Ω
|u|2∗dξ ≤ C

(

∫

Ω
|∇Gu|2dξ

)
2∗
2

, ∀u ∈ C∞
0 (Ω), (1.4)

where 2∗ is the critical exponent for ∆G, the embedding S1
0 (Ω) →֒ Lq(Ω) is compact for

1 ≤ q < 2∗ but only continuous for q = 2∗, and the Hardy-type inequality is: for every

u ∈ C∞
0 (Ω), there holds

(Q− 2

2

)2( ∫

Ω

ψ2

r(ξ)2
|u|2dξ

)

≤
∫

Ω
|∇Gu|2dξ, (1.5)

where
(Q−2

2

)2
is the optimal constant but never attained (see [12, 20]). (1.5) is first proved by

Garofalo and Lanconelli [20] in Heisenberg group, then, D’Ambrosio [12] extended this result

to all Carnot groups. Moreover, the best Hardy constant K > 0 of (1.5) is given by

K = inf
u∈S1

0 (Ω),u ̸=0

∥u∥2
S1

0 (Ω)

∥u∥2
ψ

with ∥u∥2
ψ =

∫

Ω

ψ2

r(ξ)2
|u|2dξ. (1.6)

Now, let us define a suitable solution space W = S1
0 (Ω) × S1

0 (Ω), which is a separable,

reflexive Banach space and endowed with the norm

∥(u, v)∥ =
(

∥u∥2
S1

0 (Ω)
+ ∥v∥2

S1
0 (Ω)

)
1
2
, (1.7)

we denote

∥(u, v)∥p =
(

∫

Ω
|(u, v)|pdξ

)
1
p
=

(

∫

Ω
|(u2 + v2)

1
2 |pdξ

)
1
p
,

for 1 ≤ p < ∞, and let

λ∗ = inf
(u,v)∈W\{(0,0)}

∥(u, v)∥2

∥(u, v)∥2
2

> 0.

Throughout the paper, we assume that F(ξ, u, v) : Ω×R2 → R is continuous, F(ξ, 0, 0) = 0

in Ω, and it satisfies the following assumptions.

( f1) The partial derivatives Fu, Fv ∈ C(Ω×R2), F(ξ, u, v) ≥ 0 in Ω×R2. Moreover, for each

ξ ∈ Ω,

Fu(ξ, u, v) = 0

{

if u ≤ 0 and v ∈ R,

if v ≤ 0 and u ∈ R.
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( f2) There exists s ∈ (2, 2∗) and λ ∈ [0, λ∗), then for each ϵ > 0, there is a constant Cϵ > 0

such that

|Fw(ξ, w)| ≤ (λ + ϵ)|w|+ Cϵ|w|s−1,

for every (ξ, w) ∈ Ω×R2, w = (u, v), |w| =
√

u2 + v2, where Fw = (Fu, Fv).

( f3) lim
|w|→∞

2F(ξ,w)
|w|2 = ∞, uniformly in Ω.

( f4) For any w = (u, v) ∈ R+ ×R+ and 0 < τ < 1, there exists a nonnegative function g ∈
L1(Ω) and a constant CF ≥ 1 such that H(ξ, τw) ≤ CF H(ξ, w) + g(ξ), where H(ξ, w) =

Fw(ξ, w)w− 2F(ξ, w).

The main result can be stated as follows.

Theorem 1.1. Assume that F satisfies ( f1)–( f4). Then (1.1) has at least a nonnegative solution

(u, v) ∈W for any µ, ν ∈ (−∞,K) such that

Θ− 2λ

λ∗
> 0, (1.8)

where λ ∈ [0, λ∗), Θ = min
{

1− µ+

K , 1− ν+

K
}

, µ+ = max{0, µ} and ν+ = max{0, ν}.

In this paper, the main difficulty is that the energy functional does not satisfy Palais–

Smale condition since the nonlinearities Fu and Fv loss the Ambrosetti–Rabinowitz condition,

see also [14, 25, 26]. It should be mentioned that the ( f4) plays an important role in proving

the boundless of Palais–Smale sequence.

The rest of the paper is organized as follows. In Section 2, we recall the main notations

and definitions related to the Carnot groups, and present some preparatory results. In Sec-

tion 3, we prove that the energy functional satisfies the mountain pass geometry structures.

In Section 4, we obtain the compactness theorem and prove the main result. Finally, we show

two lemmas in Section 5.

2 The functional setting of Carnot groups

We briefly recall the definitions and notations related to the Carnot groups functional setting.

For a complete treatment, we refer to [5, 18, 19].

2.1 The Carnot groups

A Carnot group is a homogeneous group, denoted as G = (Rn, ◦,F), whose Lie algebra g is

stratified, that is, g =
⊕r

i=1 Vi, where r > 0 is a integer number and called the step of G, g is

the Lie algebra of left invariant vector fields on G, Vi is a linear subspace of g, i = 1, . . . , r, and

satisfies

dimVi = ni, for i = 1, . . . , r,

[V1, Vi] = Vi+1, for 1 ≤ i ≤ r− 1, and [V1, Vr] = {0}.

From these, we can see that [V1, Vi] stands for the subspace of g generated by the commutators

[X, Y] with X ∈ V1, Y ∈ Vi.
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In fact, (Rn, ◦) is a Lie group equipped with a family of group automorphisms (namely

dilatations) F := {δη}η>0 such that, for every η > 0, the map

δη :
r

∏
i=1

R
ni →

r

∏
i=1

R
ni ,

shows that δη(ξ(1), . . . , ξ(r)) = (ηξ(1), η2ξ(2), . . . , ηrξ(r)), where ξ(i) ∈ Rni , i = 1, . . . , r, and

∑
r
i=1 ni = n. The structure G = (Rn, ◦,F) is called a homogeneous group, and Q = dimhG :=

∑
r
k=1 knk is called the homogeneous dimension of G. In this paper, we pay attention to dimhG ≥ 3.

In particular, G is the Euclidean space provided that dimhG ≤ 3, i.e. G = (RdimhG,+).

Let {Xj}n1
j=1 be a basis of V1, then the associated subelliptic operator ∆G is given by

∆G :=
n1

∑
j=1

X2
j ,

which is the second order differential operator on G. Here, n1 is the dimension of the first

step, moreover, the subelliptic gradient is ∇G := (X1, X2, . . . , Xn1
). As proved in [18], there

exists a suitable homogeneous norm r(ξ), called gauge norm, such that Γ(ξ) = C
r(ξ)Q−2 is the

fundamental solution of −∆G, where C > 0 is a constant. By definition, a homogeneous norm

is any continuous function from G to [0,+∞) such that for η > 0, ξ ∈ G, r(δη(ξ)) = ηr(ξ),

r(ξ−1) = r(ξ), r(ξ) = 0 if and only if ξ = 0.

2.2 Functional setting and preliminary results

In this subsection, we present some useful results and comments, (1.1) has a variational struc-

ture and the Euler–Lagrange functional Iµ,ν : W → R is given by

Iµ,ν(u, v) =
1

2
∥u∥2

S1
0 (Ω)

+
1

2
∥v∥2

S1
0 (Ω)
− µ

2
∥u∥2

ψ −
ν

2
∥v∥2

ψ −
∫

Ω
F(ξ, u, v)dξ,

for all u, v ∈W. Indeed, Iµ,ν is well defined and be of class C1(W) under the assumptions ( f1)

and ( f2). A function (u, v) ∈W is a weak solution of (1.1) if holds

⟨u, Φ⟩+ ⟨v, Ψ⟩ − µ⟨u, Φ⟩ψ − ν⟨v, Ψ⟩ψ =
∫

Ω

(

Fu(ξ, u, v)Φ + Fv(ξ, u, v)Ψ
)

dξ,

for every (Φ, Ψ) ∈W, where

⟨u, Φ⟩ =
∫

Ω
(∇Gu,∇GΦ)dξ, ⟨v, Ψ⟩ =

∫

Ω
(∇Gv,∇GΨ)dξ,

⟨u, Φ⟩ψ =
∫

Ω

ψ2

r(ξ)2
uΦdξ, ⟨v, Ψ⟩ψ =

∫

Ω

ψ2

r(ξ)2
vΨdξ.

Moreover, for all (u, v) ∈W, there holds

⟨I′µ,ν(u, v), (Φ, Ψ)⟩ = ⟨u, Φ⟩+ ⟨v, Ψ⟩ − µ⟨u, Φ⟩ψ − ν⟨v, Ψ⟩ψ
−

∫

Ω

(

Fu(ξ, u, v)Φ + Fv(ξ, u, v)Ψ
)

dξ, for every (Φ, Ψ) ∈W.

Therefore, the weak solutions of (1.1) are exactly the critical points of Iµ,ν.
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Lemma 2.1. The embedding W →֒ Lq(Ω)× Lq(Ω) is continuous for 1 ≤ q ≤ 2∗ and ∥(u, v)∥q ≤
C
′
q∥(u, v)∥ for all (u, v) ∈W and C

′
q > 0 is a constant.

Proof. From [19], we know that S1
0 (Ω) →֒ Lq(Ω) for 1 ≤ q ≤ 2∗, thus, there is Cq > 0 such that

∥u∥q ≤ Cq∥u∥S1
0 (Ω) and ∥v∥q ≤ Cq∥v∥S1

0 (Ω).

Moreover, by ( f2), (1.7) and a fact a + b ≤
√

2(a2 + b2) for each a, b ∈ R, there holds

∥(u, v)∥q = ∥
√

u2 + v2∥q ≤ ∥
√

(u + v)2∥q ≤ ∥u∥q + ∥v∥q

≤ Cq(∥u∥S1
0 (Ω) + ∥v∥S1

0 (Ω)) ≤ Cq

√

2(∥u∥2
S1

0 (Ω)
+ ∥v∥2

S1
0 (Ω)

) = C
′
q∥(u, v)∥.

This proof is finished.

Lemma 2.2 ([1]). Let {(uk, vk)} ⊂ W be such that (uk, vk) ⇀ (u, v) weakly in W as k → ∞, then

up to a subsequence, (uk, vk)→ (u, v) a.e. in Ω as k→ ∞.

Lemma 2.3. Let Ω ⊂ G be a smooth bounded domain, then, the embedding W →֒ Lq(Ω)× Lq(Ω) is

compact when 1 ≤ q < 2∗.

Proof. From [19], it holds that S1
0(Ω) →֒ Lq(Ω) is compact for 1 ≤ q < 2∗, that is, if {uk} and

{vk} are bounded sequences in S1
0(Ω), then there exist u, v ∈W such that,

uk → u and vk → v in Lq(Ω).

Hence, if {(uk, vk)} ⊂W be a bounded sequence, we have

∥(uk, vk)− (u, v)∥q ≤ ∥uk − u∥q + ∥vk − v∥q → 0.

It follows that {(uk, vk)} strongly in Lq(Ω)× Lq(Ω).

In the following, we recall the definition of Cerami sequence and Cerami condition.

Definition 2.4. Let X = (X, ∥ · ∥) be a Banach space, X′ denotes its dual space, the functional

I : X → R be of C1(X).

(i) Cerami sequence: A sequence uk ∈ X is called a Cerami sequence if for every uk ∈ X,

I(uk) is bounded and (1 + ∥uk∥)∥I′(uk)∥X′ → 0 as k → ∞. In particular, ∥I′(uk)∥X′ → 0 as

k→ ∞.

(ii) Cerami condition: A functional I satisfies the Cerami condition if any Cerami sequence

associated with I has a strongly convergent subsequence in X.

3 Mountain pass structure

In this section, the results concern the existence of Palais–Smale sequence for Iµ,ν.

Lemma 3.1 ([9]). Let E be a real Banach space, I ∈ C1(E) with I(0) = 0. There are constants

ρ, τ > 0 and e ∈ E with ∥e∥E > ρ such that

inf
∥u∥E=ρ

I(u) ≥ τ and I(e) < 0.
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Then there is a Cerami sequence {uk} ⊂ E such that

I(uk)→ c, (1 + ∥uk∥E)∥I′(uk)∥E → 0,

where

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ τ,

and

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

The number c is called mountain pass level. If the functional I satisfies the Cerami condition at the

minimax level c, then c is a critical value of I in E.

We first show that the energy functional Iµ,ν satisfies the geometric structure required by

Lemma 3.1.

Lemma 3.2. Assume that ( f2) holds, then there exist ζ, ρ > 0 such that

Iµ,ν(u, v) ≥ ζ, if ∥(u, v)∥ = ρ.

Proof. Let us set χ = min{(1− µ+

K ), (1− ν+

K )} and from ( f2), we have

Iµ,ν(u, v) =
1

2
∥u∥2

S1
0 (Ω)

+
1

2
∥v∥2

S1
0 (Ω)
− µ

2
∥u∥2

ψ −
ν

2
∥v∥2

ψ −
∫

Ω
F(ξ, u, v)dξ

≥ 1

2
∥u∥2

S1
0 (Ω)

(

1− µ+

K
)

+
1

2
∥v∥2

S1
0 (Ω)

(

1− ν+

K
)

−
∫

Ω

(1

2
(λ + ϵ)|(u, v)|2 + 1

s
Cϵ|(u, v)|s

)

dξ

≥ χ

2
(∥u∥2

S1
0 (Ω)

+ ∥v∥2
S1

0 (Ω)
)− 1

2
(λ + ϵ)∥(u, v)∥2

2 −
1

s
Cϵ∥(u, v)∥s

s

≥ χ

2
∥(u, v)∥2 − 1

2λ∗
(λ + ϵ)∥(u, v)∥2 − 1

s
CϵCs∥(u, v)∥s

=
1

2

(

χ− λ + ϵ

λ∗
− 2

s
CϵCs∥(u, v)∥s−2

)

∥(u, v)∥2,

where Cs > 0 is a constant, K is given in (1.6) and s ∈ (2, 2∗). Thus, if ρ is small enough such

that

χ− λ + ϵ

λ∗
− 2

s
CϵCsρ

s−2
> 0,

it holds Iµ,ν(u, v) ≥ 1
2

(

χ− λ+ϵ
λ∗ − 2

s CϵCsρ
s−2

)

ρ2 = ζ > 0 for all (u, v) ∈ W with ∥(u, v)∥ = ρ.

We obtain this lemma.

Lemma 3.3. Suppose that ( f3) holds, then there exists (ũ, ṽ) ∈ W with ∥(ũ, ṽ)∥ > ρ such that

Iµ,ν(ũ, ṽ) < 0.

Proof. It suffices to prove that for a fixed (u0, v0) ∈ W, Iµ,ν(tu0, tv0) → −∞ as t → +∞. We

assume that (u, v) ∈ W with compact support Dc. From ( f3), there are constants c1, c2, δ > 0,

such that for |u|, |v| > δ, one has

F(ξ, u, v) ≥ c1|(u, v)|2 ≥ c1|(u, v)|2 − c2, for (u, v) ∈W.
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Now, choosing arbitrarily (u0, v0) ∈W with u0, v0 > 0, and ∥(u0, v0)∥ = 1, hence, for all t > 0,

we set µ− = min{0, µ} and ν− = min{0, ν}, then

Iµ,ν(tu0, tv0) ≤
t2

2

(

∥u0∥2
S1

0 (Ω)
+ ∥v0∥2

S1
0 (Ω)
− µ∥u0∥2

ψ − ν∥v0∥2
ψ

)

−
∫

Ω

(

c1|(tu0, tv0)|2 − c2

)

dξ

≤ t2

2

(

∥u0∥2
S1

0 (Ω)
+ ∥v0∥2

S1
0 (Ω)

+ |µ−|∥u0∥2
ψ + |ν−|∥v0∥2

ψ − 2c1∥(u0, v0)∥2
2

)

+ c2|Dc|.

If c1 is large enough, there holds

0 < ∥u0∥2
S1

0 (Ω)
+ ∥v0∥2

S1
0 (Ω)

+ |µ−|∥u0∥2
ψ + |ν−|∥v0∥2

ψ < 2c1∥(u0, v0)∥2
2.

Therefore, we have Iµ,ν(tu0, tu0) → −∞ as t → ∞. Setting (ũ, ṽ) = (t0u0, t0u0) ∈ W, such that

∥(ũ, ṽ)∥ > ρ and Iµ,ν(ũ, ṽ) < 0. We obtain this lemma.

4 Cerami sequence and existence of solutions

4.1 Cerami sequence

In this section, we give an analysis of Cerami sequence and prove that Iµ,ν satisfies Cerami

condition.

Lemma 4.1. Assume that ( f1)–( f4) hold, then for each µ, ν ∈ (−∞,K), any Cerami sequence of Iµ,ν

is bounded in W.

Proof. Let {(uk, vk)} ⊂ W be a Cerami sequence of Iµ,ν, then, there exists L > 0 independent

of k such that

|Iµ,ν(uk, vk)| ≤ L for all k, (1 + ∥(uk, vk)∥)I′µ,ν(uk, vk)→ 0 as k→ ∞. (4.1)

Thus, there is τk > 0 and τk → 0 as k→ ∞, such that

|⟨I′µ,ν(uk, vk), (Φ, Ψ)⟩| ≤ τk∥(Φ, Ψ)∥
1 + ∥(uk, vk)∥

, ∀(Φ, Ψ) ∈W. (4.2)

Let us set (Φ, Ψ) = (uk, vk), then
∣

∣

∣
⟨uk, uk⟩+ ⟨vk, vk⟩ − µ⟨uk, uk⟩ψ − ν⟨vk, vk⟩ψ −

∫

Ω

(

Fu(ξ, uk, vk)uk + Fv(ξ, uk, vk)vk

)

dξ
∣

∣

∣

= |⟨I′µ,ν(uk, vk), (uk, vk)⟩| ≤
τk∥(uk, vk)∥

1 + ∥(uk, vk)∥
≤ τk ≤ C,

that is

− ∥uk∥2
S1

0 (Ω)
− ∥vk∥2

S1
0 (Ω)

+ µ∥uk∥2
ψ + ν∥vk∥2

ψ

+
∫

Ω

(

Fu(ξ, uk, vk)uk + Fv(ξ, uk, vk)vk

)

dξ ≤ C. (4.3)

Now, we prove that (uk, vk) is bounded in W. Suppose, by contradiction, ∥(uk, vk)∥ → ∞

as k → ∞. We define a sequence as (wk, zk) =
(uk ,vk)
∥(uk ,vk)∥ , then, ∥(wk, zk)∥ = 1. By Lemmas 2.2

and 2.3, there exists (w, z) ∈W such that

(wk, zk) ⇀ (w, z) weakly in W,

(wk, zk)→ (w, z) strongly in Lq(Ω)× Lq(Ω) for q ∈ [1, 2∗),

(wk, zk)→ (w, z) a.e. in Ω. (4.4)
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We divide the argument into several steps.

Step 1: We prove w ≥ 0 and z ≥ 0 a.e. in Ω. Let us set w−k = min{0, wk} and z−k = min{0, zk},
then (w−k , z−k ) is bounded because (wk, zk) in W is bounded. We choose (Φ, Ψ) = (w−k , z−k ) in

(4.2), it follows that

o(1) =
|⟨I′µ,ν(uk, vk), (w

−
k , z−k )⟩|

∥(uk, vk)∥
for ∥(uk, vk)∥ → ∞.

Therefore, from ( f1), the elementary inequality |a−− b−|2 ≤ (a− b)(a−− b−), (a, b ∈ R), (1.5)

and a fact that µ, ν < K, one has

o(1) =
1

∥(uk, vk)∥

(

⟨uk, w−k ⟩+ ⟨vk, z−k ⟩ − µ⟨uk, w−k ⟩ψ − ν⟨vk, z−k ⟩ψ

−
∫

Ω

(

Fu(ξ, uk, vk)w
−
k + Fv(ξ, uk, vk)z

−
k

)

dξ

)

=
1

∥(uk, vk)∥2

(

⟨uk, u−k ⟩+ ⟨vk, v−k ⟩ − µ⟨uk, u−k ⟩ψ − ν⟨vk, v−k ⟩ψ
)

−
∫

Ω

(

Fu(ξ, uk, vk)u
−
k + Fv(ξ, uk, vk)v

−
k

)

∥(uk, vk)∥2
dξ

=
1

∥(uk, vk)∥2

(

⟨uk, u−k ⟩+ ⟨vk, v−k ⟩ − µ⟨uk, u−k ⟩ψ − ν⟨vk, v−k ⟩ψ
)

≥ 1

∥(uk, vk)∥2

(

∥u−k ∥2
S1

0 (Ω)
+ ∥v−k ∥2

S1
0 (Ω)
− µ∥u−k ∥2

ψ − ν∥v−k ∥2
ψ

)

≥
(

1− µ+

K

)

∥w−k ∥2
S1

0 (Ω)
+

(

1− ν+

K

)

∥z−k ∥2
S1

0 (Ω)
.

It follows that

∥w−k ∥S1
0 (Ω) → 0 and ∥z−k ∥S1

0 (Ω) → 0.

Hence, (w−k , z−k ) → (0, 0) in W as k → ∞, (w−k , z−k ) = (0, 0) a.e in Ω, by the definition of w−k
and z−k , we get that w ≥ 0 and z ≥ 0 a.e. in Ω.

Step 2: We prove (w, z) = (0, 0) a.e in Ω. Let us set D+ = {ξ ∈ Ω : w > 0 or z > 0} and

D0 = {ξ ∈ Ω : (w, z) = (0, 0)}. Assume that the Haar measure of D+ is positive. From the

assumption that ∥(uk, vk)∥ → ∞, we have

|(uk, vk)| = ∥(uk, vk)∥|(wk, zk)| → ∞ a.e. in D+.

Then, from ( f3), we get

lim
k→∞

F(ξ, uk, vk)

∥(uk, vk)∥2
= lim

k→∞

F(ξ, uk, vk)|(wk, zk)|2
|(uk, vk)|2

= ∞ a.e. in D+. (4.5)

Moreover, by Fatou’s lemma and (4.5), there holds

lim inf
k→∞

∫

Ω

F(ξ, uk, vk)

∥(uk, vk)∥2
dξ ≥

∫

Ω
lim inf

k→∞

F(ξ, uk, vk)

∥(uk, vk)∥2
dξ

=
∫

Ω
lim inf

k→∞

F(ξ, uk, vk)|(wk, zk)|2
|(uk, vk)|2

dξ = ∞ a.e. in D+. (4.6)
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On the other hand, from (4.1), a fact that ∥uk∥2
S1

0 (Ω)
≤ ∥(uk, vk)∥2, ∥vk∥2

S1
0 (Ω)
≤ ∥(uk, vk)∥2 and

(1.5), we get

∫

Ω
F(ξ, uk, vk)dξ ≤ 1

2
∥uk∥2

S1
0 (Ω)

+
1

2
∥vk∥2

S1
0 (Ω)
− µ

2
∥uk∥2

ψ −
ν

2
∥vk∥2

ψ + L

≤ ∥(uk, vk)∥2 +
|µ−|
2K ∥(uk, vk)∥2 +

|ν−|
2K ∥(uk, vk)∥2 + L for k ∈ N,

where we have used a fact that ∥(uk, vk)∥ ≥ 1 because the hypothesis (uk, vk)→ ∞. Hence

lim sup
k→∞

∫

Ω

F(ξ, uk, vk)

∥(uk, vk)∥2
dξ ≤ 1 +

|µ−|
2K +

|ν−|
2K +

Z

∥(uk, vk)∥2
,

it contradicts with (4.6). Hence, the measure of D+ is zero, that is (w, z) = (0, 0) a.e in Ω.

Step 3: We prove that {(uk, vk)} ⊂ W is bounded. Choosing τk is the smallest value of

τ ∈ [0, 1] such that Iµ,ν(τkuk, τkvk) = max0≤τ≤1 Iµ,ν(τuk, τvk). For Λ > 0, we set (Wk, Zk) =√
2Λ(wk, zk) =

√
2Λ

(uk ,vk)
∥(uk ,vk)∥ , then, by (4.4) and Step 2, we obtain

lim
k→∞

(Wk, Zk) = lim
k→∞

√
2Λ(wk, zk) =

√
2Λ(w, z) =

√
2Λ(0, 0), (4.7)

in Lq(Ω)× Lq(Ω) for q ∈ [1, 2∗). By ( f1), ( f2), (4.7) and let ϵ = 1, it holds

0 ≤
∫

Ω
F(ξ, Wk, Zk)dξ ≤

∫

Ω

(

(λ + 1)|(Wk, Zk)|+ C1|(Wk, Zk)|s
)

dξ

≤ (λ + 1)∥(Wk, Zk)∥1 + C1∥(Wk, Zk)∥s
s → 0, as k→ ∞,

for s ∈ (2, 2∗), that is

lim
k→∞

∫

Ω
F(ξ, Wk, Zk)dξ = 0. (4.8)

From ∥(uk, vk)∥ → ∞, we assume that there is k0 ≥ k, such that
√

2Λ
∥(uk ,vk)∥ ∈ (0, 1), then

Iµ,ν(τkuk, τkvk) ≥ Iµ,ν

(√
2Λ

uk

∥(uk, vk)∥
,
√

2Λ
vk

∥(uk, vk)∥

)

≥ Λ∥wk∥2(1− µ+

K ) + ∥zk∥2(1− ν+

K )−
∫

Ω
F(ξ, Wk, Zk)dξ

≥ Λχ(∥wk∥2 + ∥zk∥2)−
∫

Ω
F(ξ, Wk, Zk)dξ

≥ 1

2
Λχ−

∫

Ω
F(ξ, Wk, Zk)dξ,

where χ is defined in Lemma 3.2, ∥wk∥2
S1

0 (Ω)
+ ∥zk∥2

S1
0 (Ω)

= 1 because ∥(wk, zk)∥ = 1. By (4.8),

there is k1 ≥ k0 such that
∫

Ω
F(ξ, Wk, Zk)dξ ≤ 1

2 Λχ for k ≥ k1. It follows that

lim
k→∞

Iµ,ν(τkuk, τkvk) = ∞. (4.9)

Since 0 < τk < 1, by ( f4), one has

∫

Ω
H(ξ, τkuk, τkvk)dξ ≤ CF

∫

Ω
H(ξ, uk, vk)dξ +

∫

Ω
g(ξ)dξ. (4.10)
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From the facts that Iµ,ν(0, 0) = 0, Iµ,ν(uk, vk)→ c ∈ R, (4.9), and τk ∈ (0, 1), there holds

0 = τk
d

dτ
Iµ,ν(τuk, τvk)

∣

∣

∣

τ=τk

= ⟨I′µ,ν(τkuk, τkvk), (τkuk, τkvk)⟩

= ∥τkuk∥2
S1

0 (Ω)
+ ∥τkvk∥2

S1
0 (Ω)
− µ∥τkuk∥2

ψ − ν∥τkvk∥2
ψ

−
∫

Ω

(

Fu(ξ, τkuk, τkvk)τkuk + Fv(ξ, τkuk, τkvk)τkvk

)

dξ.

By ( f4) and (4.10), it follows that

∥τkuk∥2
S1

0 (Ω)
+ ∥τkvk∥2

S1
0 (Ω)
− µ∥τkuk∥2

ψ − ν∥τkvk∥2
ψ

=
∫

Ω

(

Fu(ξ, τkuk, τkvk)τkuk + Fv(ξ, τkuk, τkvk)τkvk

)

dξ

= 2
∫

Ω
F(ξ, τkuk, τkvk)dξ +

∫

Ω
H(ξ, τkuk, τkvk)dξ

≤ 2
∫

Ω
F(ξ, τkuk, τkvk)dξ + CF

∫

Ω
H(ξ, uk, vk)dξ +

∫

Ω
g(ξ)dξ. (4.11)

From (4.9) and (4.11), one has

2Iµ,ν(τkuk, τkvk) = ∥τkuk∥2
S1

0 (Ω)
+ ∥τkvk∥2

S1
0 (Ω)
− µ∥τkuk∥2

ψ − ν∥τkvk∥2
ψ

− 2
∫

Ω
F(ξ, τkuk, τkvk)dξ

≤ CF

∫

Ω
H(ξ, uk, vk)dξ +

∫

Ω
g(ξ)dξ → ∞ as k→ ∞.

Hence, we deduce that

1

CF

(

− C +
∫

Ω
H(ξ, uk, vk)dξ

)

→ ∞ as k→ ∞. (4.12)

On the other hand, by (4.1), ( f4) and (4.3), we have

L̃ ≥ 2Iµ,ν(uk, vk)

= ∥uk∥2
S1

0 (Ω)
+ ∥vk∥2

S1
0 (Ω)
− µ∥uk∥2

ψ − ν∥vk∥2
ψ − 2

∫

Ω
F(ξ, uk, vk)dξ

= ∥uk∥2
S1

0 (Ω)
+ ∥vk∥2

S1
0 (Ω)
− µ∥uk∥2

ψ − ν∥vk∥2
ψ

−
∫

Ω

(

Fu(ξ, uk, vk)uk + Fv(ξ, uk, vk)vk

)

dξ +
∫

Ω
H(ξ, uk, vk)dξ

≥ − C +
∫

Ω
H(ξ, uk, vk)dξ, (4.13)

where L̃ is a positive constant. Since CF ≥ 1 in ( f4) and by (4.13), we obtain

1

CF

(

− C +
∫

Ω
H(ξ, uk, vk)dξ

)

≤ −C +
∫

Ω
H(ξ, uk, vk)dξ ≤ L̃.

This contradicts with (4.12), it follows that {(uk, vk)} ⊂W is a bounded Cerami sequence. We

finish the proof of this lemma.

In the following, we verify that Iµ,ν satisfies the Cerami condition at level c.
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Lemma 4.2. Assume that ( f2) with ϵ = 1 holds. Then, for all µ, ν ∈ (−∞,K), Iµ,ν satisfies the

Cerami condition in W.

Proof. Assume that {(uk, vk)} ⊂ W is a Cerami sequence of Iµ,ν. Then, by Lemma 4.1, we

know that {(uk, vk)} is bounded. Then, up to subsequence, from (1.5), Lemmas 2.2 and 2.3,

for 1 ≤ q < 2∗, there exists (u, v) ∈W such that

(uk, vk) ⇀ (u, v) in W, ∥uk − u∥S1
0 (Ω) → ā, ∥vk − v∥S1

0 (Ω) → ǎ,

uk ⇀ u in L2(Ω, ψ2r−2), ∥uk − u∥ψ → á,

vk ⇀ v in L2(Ω, ψ2r−2), ∥vk − v∥ψ → à,

(uk, vk)→ (u, v) in Lq(Ω)× Lq(Ω), (uk, vk)→ (u, v) a.e in Ω,

∇Guk ⇀ ∇Gu in L2(Ω, R
2n), ∇Gvk ⇀ ∇Gv in L2(Ω, R

2n),

∇Guk ⇀ ϑ in L2(Ω, R
2n), ∇Gvk ⇀ ς in L2(Ω, R

2n),

(4.14)

where ϑ, ς ∈ L2(Ω, R2n) are two vector field functions in Ω, and ā, á, ǎ, à are four nonnegative

numbers.

From (4.14), we conclude that

∫

Ω

ψ2

r(ξ)2
ukΦdξ →

∫

Ω

ψ2

r(ξ)2
uΦdξ and

∫

Ω

ψ2

r(ξ)2
vkΨdξ →

∫

Ω

ψ2

r(ξ)2
vΨdξ, (4.15)

for (Φ, Ψ) ∈W. We choose ϵ = 1 in ( f2), and by Hölder inequality, then

∫

Ω

∣

∣

∣

(

Fu(ξ, uk, vk)− Fu(ξ, u, v)
)

(uk − u)

+
(

Fv(ξ, uk, vk)− Fv(ξ, u, v)
)

(vk − v)
∣

∣

∣
dξ

=
∫

Ω

∣

∣

∣
Fw(ξ, wk)(wk − w)− Fw(ξ, w)(wk − w)

∣

∣

∣
dξ

≤
∫

Ω

(

(λ + 1)(|wk|+ |w|)|wk − w|+ C1(|wk|s−1 + |w|s−1)|wk − w|
)

dξ

≤ Cλ(∥wk − w∥2 + ∥wk − w∥s)→ 0 as k→ ∞, (4.16)

where Cλ > 0 is a suitable constant. From (4.1), it holds that I′µ,ν(uk, vk) → 0 in W ′ as k → ∞,

then for every (Φ, Ψ) ∈W, we have

0←⟨I′µ,ν(uk, vk), (Φ, Ψ)⟩

=
∫

Ω
(∇Guk,∇GΦ)dξ +

∫

Ω
(∇Gvk,∇GΨ)dξ − µ

∫

Ω

ψ2

r(ξ)2
ukΦdξ − ν

∫

Ω

ψ2

r(ξ)2
vkΨdξ

−
∫

Ω

(

Fu(ξ, uk, vk)Φ + Fv(ξ, uk, vk)Ψ
)

dξ. (4.17)

Subsequently, we prove that the (PS) sequence satisfies compactness condition by means

of the Brézis–Lieb lemma.

From (4.17) and Lemma A.1 (it shows that (uk, vk) satisfies the Brézis–Lieb lemma’s con-

dition, see in the Appendix), one has

∇Guk → ∇Gu and ∇Gvk → ∇Gv a.e. in Ω, (4.18)
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and by (4.14), there holds ∇Guk ⇀ ϑ and ∇Gvk ⇀ ς in L2(Ω, R2n). Hence, from Proposition

A.7 in [1], we obtain ∇Gu = ϑ and ∇Gv = ς a.e. in Ω. It yields that ∇Guk ⇀ ∇Gu and

∇Gvk ⇀ ∇Gv in L2(Ω, R2n), therefore, for any (Φ, Ψ) ∈W, one has

∫

Ω
(∇Guk,∇GΦ)dξ →

∫

Ω
(∇Gu,∇GΦ)dξ and

∫

Ω
(∇Gvk,∇GΦ)dξ →

∫

Ω
(∇Gv,∇GΦ)dξ.

It follows ⟨uk, u⟩ → ∥u∥2
S1

0 (Ω)
, ⟨u, uk⟩ → ∥u∥2

S1
0 (Ω)

and ⟨vk, v⟩ → ∥v∥2
S1

0 (Ω)
, ⟨v, vk⟩ → ∥v∥2

S1
0 (Ω)

.

Moreover, by (4.15) and (4.16), the weak limit w = (u, v) is a critical point of Iµ,ν in W. From

(4.14) and (4.18), the Brézis–Lieb lemma holds that

∥uk∥2
S1

0 (Ω)
= ∥uk − u∥2

S1
0 (Ω)

+ ∥u∥2
S1

0 (Ω)
+ o(1), ∥vk∥2

S1
0 (Ω)

= ∥vk − v∥2
S1

0 (Ω)
+ ∥v∥2

S1
0 (Ω)

+ o(1),

∥uk∥2
ψ = ∥uk − u∥2

ψ + ∥u∥2
ψ + o(1), ∥vk∥2

ψ = ∥vk − v∥2
ψ + ∥v∥2

ψ + o(1).

Consequently, one has

o(1) = ⟨I′µ,ν(wk)− I′µ,ν(w), wk − w⟩
= ∥uk∥2

S1
0 (Ω)

+ ∥u∥2
S1

0 (Ω)
+ ∥vk∥2

S1
0 (Ω)

+ ∥v∥2
S1

0 (Ω)
− ⟨uk, u⟩ − ⟨u, uk⟩ − ⟨vk, v⟩ − ⟨u, uk⟩

− µ
(

∥uk∥2
ψ + ∥u∥2

ψ − ⟨uk, u⟩ψ − ⟨u, uk⟩ψ
)

− ν
(

∥vk∥2
ψ + ∥v∥2

ψ − ⟨vk, v⟩ψ − ⟨vvk⟩ψ
)

+ o(1)

= ∥uk∥2
S1

0 (Ω)
− ∥u∥2

S1
0 (Ω)

+ ∥vk∥2
S1

0 (Ω)
− ∥v∥2

S1
0 (Ω)
− µ(∥uk∥2

ψ − ∥u∥2
ψ)

− ν(∥vk∥2
ψ − ∥v∥2

ψ) + o(1)

= ∥uk − u∥2
S1

0 (Ω)
+ ∥vk − v∥2

S1
0 (Ω)
− µ∥uk − u∥2

ψ − ν∥vk − v∥2
ψ + o(1).

From (4.14) and above equality, it follows that

ā2 + ǎ2 = lim
k→∞
∥uk − u∥2

S1
0 (Ω)

+ lim
k→∞
∥vk − v∥2

S1
0 (Ω)

= µ lim
k→∞
∥uk − u∥2

ψ + ν lim
k→∞
∥vk − v∥2

ψ

= µá2 + νà2. (4.19)

Thus, when either µ+ + ν+ = 0 or á + à = 0, we get (uk, vk) → (u, v) in W as k → ∞ and

finish the proof about compactness condition for (PS) sequence of Iϵ. In order to achieve this

aim, we assume by contradiction, that is µ+ + ν+ > 0 and á + à > 0.

(1) If either µ+ + à = 0 or ν+ + á = 0, then either á > 0 and ā = 0, or à > 0 and ǎ = 0.

However, all of cases are impossible because the nonnegative of norm in (4.14).

(2) If either µ+ + á = 0 or ν+ + à = 0, then either à > 0, ν+ > 0 and ǎ2 ≤ ν+ à2
< Kà2 ≤ ǎ2,

or á > 0, µ+
> 0 and ā2 ≤ µ+ á2

< Ká2 ≤ ā2, it appears a contradiction.

(3) µ+
> 0, ν+ > 0, á > 0 and à > 0, from (4.19) and (1.5), we get

ā2 + ǎ2 = µá2 + νà2
< Ká2 +Kà2 ≤ ā2 + ǎ2,

and a contradiction arises. From above discussions, we get á + à = 0, that is (uk, vk) → (u, v)

in W as k→ ∞, from (4.19), the proof of this lemma is finished.
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4.2 The existence of solution

In this part, we study the existence of nonnegative solution for (1.1).

Proof of Theorem 1.1. From Lemmas 3.2 and 3.3, we know that Iµ,ν satisfies the mountain pass

geometry structures. Moreover, the Cerami condition holds by Lemma 4.2. Therefore, for

every (Φ, Ψ) ∈W, there exists (u, v) ∈W, (u, v) ̸= (0, 0) such that

⟨u, Φ⟩+ ⟨v, Ψ⟩ − µ⟨u, Φ⟩ψ − ν⟨v, Ψ⟩ψ =
∫

Ω

(

Fu(ξ, u, v)Φ + Fv(ξ, u, v)Ψ
)

dξ.

Now, we prove that (u, v) is nonnegative. Let us set Φ = u− = min{0, u} and Ψ = v− =

min{0, v}, then, from ( f1), (1.6) and (1.8), one has

0 =
∫

Ω

(

Fu(ξ, u, v)u− + Fv(ξ, u, v)v−
)

dξ

= ⟨u, u−⟩+ ⟨v, v−⟩ − µ⟨u, u−⟩ψ − ν⟨v, v−⟩ψ

≥ (1− µ+

K )∥u−∥2
S1

0 (Ω)
+ (1− ν+

K )∥v−∥2
S1

0 (Ω)
≥ 0.

Thus, u− = 0 and v− = 0 a.e. in Ω, that is u ≥ 0 and v ≥ 0 a.e. in Ω, it shows that any

solution of (1.1) is nonnegative. We finish the proof.

A Appendix

In this section, we give a proof for the following lemma.

Lemma A.1. Let (uk, vk) and (u, v) belongs to W and satisfying

(i) (uk, vk) ⇀ (u, v) in W,

(ii) (uk, vk)→ (u, v) a.e. in Ω,

(iii) I ′µ,ν(uk, vk)→ 0 strongly in W
′
,

(iv) ϑ, ς ∈ Ω are two vector field functions with ϑ, ς ∈ L2(Ω, R2n) such that ∇Guk ⇀ ϑ and

∇Gvk ⇀ ς in L2(Ω, R2n), then, it holds

∇Guk → ∇Gu and ∇Gvk → ∇Gv a.e. in Ω. (A.1)

Proof. Let function βR ∈ C∞
0 (Ω) with R > 0, such that 0 ≤ βR ≤ 1 in Ω and βR ≡ 1 in BR. For

every z ∈ R, we define

ϱϵ(z) =







z, if |z| < ϵ,

ϵ
z

|z| , if |z| ≥ ϵ.

We set ϕk = βRϱϵ ◦ (uk − u) and φk = βRϱϵ ◦ (vk − v), thus, by Lemma 2.1, there holds ϕk,
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φk ∈W1,2(Ω). Let Φ = ϕk and Ψ = φk in (4.17), then

∫

Ω
βR

(

(∇Guk −∇Gu,∇G

(

ϱϵ ◦ (uk − u)
)

)

dξ

+
∫

Ω
βR

(

∇Gvk −∇Gv,∇G

(

ϱϵ ◦ (vk − v)
)

)

dξ

= −
∫

Ω
ϱϵ ◦ (uk − u)(∇Guk,∇GβR)dξ −

∫

Ω
βR

(

∇Gu,∇G

(

ϱϵ ◦ (uk − u)
)

)

dξ

−
∫

Ω
ϱϵ ◦ (vk − v)(∇Gvk,∇GβR)dξ −

∫

Ω
βR

(

∇Gv,∇G

(

ϱϵ ◦ (vk − v)
)

)

dξ

+ ⟨I′µ,ν(uk, vk), (ϕk, φk)⟩+ µ
∫

Ω

ψ2

r(ξ)2
ukϕkdξ + ν

∫

Ω

ψ2

r(ξ)2
vk φkdξ

+
∫

Ω

(

Fu(ξ, uk, vk)ϕk + Fv(ξ, uk, vk)φk

)

dξ. (A.2)

Now, we prove the each term in (A.2).

(1) We choose that β̃R be the support of βR and contained in a suitable ball of Ω, since

|ϱϵ ◦ (uk − u)∇GβR| → 0 in L2(β̃R) and |ϱϵ ◦ (vk − v)∇GβR| → 0 in L2(β̃R), and by (4.14),

∇Guk ⇀ ϑ in L2(Ω, R2n), ∇Gvk ⇀ ς in L2(Ω, R2n), then

∫

Ω
ϱϵ ◦ (uk − u)(∇Guk,∇GβR)dξ → 0 and

∫

Ω
ϱϵ ◦ (vk − v)(∇Gvk,∇GβR)dξ → 0.

(2) Since∇G

(

ϱϵ ◦ (uk−u)
)

in L2(Ω, R2n),∇G

(

ϱϵ ◦ (vk− v)
)

in L2(Ω, R2n),∇Guk∈L2(Ω, R2n),

∇Gvk ∈ L2(Ω, R2n). From Lemma 2.1, uk ⇀ u and vk ⇀ v in W, one has

∫

Ω
βR

(

∇Gu,∇G(ϱϵ ◦ (uk − u))
)

dξ → 0 and
∫

Ω
βR

(

∇Gv,∇G(ϱϵ ◦ (vk − v))
)

dξ → 0.

(3) From I′µ,ν(uk, vk)→ 0 in W ′ and (φk, ϕk) ⇀ 0 in W as k→ ∞, we have

⟨I′µ,ν(uk, vk), (φk, ϕk)⟩⇀ 0.

(4) For simplicity, we denote

Mk = µ
ψ2

r(ξ)2
uk + Fu(ξ, uk, vk), Nk = ν

ψ2

r(ξ)2
vk + Fv(ξ, uk, vk), (A.3)

by 0 ≤ βR ≤ 1 in Ω, the definition of ϕk, φk and ϱϵ(z), Lemma A.2, there holds

∫

Ω
(Mk φk + Nkϕk)dξ ≤

∫

β̃R

(

|Mk| · |ϱϵ ◦ (uk − u)|+ |Nk| · |ϱϵ ◦ (vk − v)|
)

dξ

≤ ϵ
∫

β̃R

(|Mk|+ |Nk|)dξ ≤ ϵCR,

where CR > 0 is a constant. Moreover

βR

(

∇Guk −∇Gu,∇G(ϱϵ ◦ (uk − u))
)

≥ 0,

βR

(

∇Gvk −∇Gv,∇G(ϱϵ ◦ (vk − v))
)

≥ 0 a.e. in Ω. (A.4)
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Furthermore
∫

BR

βR

(

∇Guk −∇Gu,∇G

(

ϱϵ ◦ (uk − u)
)

)

dξ

+
∫

BR

βR

(

∇Gvk −∇Gv,∇G

(

ϱϵ ◦ (vk − v)
)

)

dξ

≤
∫

Ω
βR

(

∇Guk −∇Gu,∇G

(

ϱϵ ◦ (uk − u)
)

)

dξ

+
∫

Ω
βR

(

∇Gvk −∇Gv,∇G

(

ϱϵ ◦ (vk − v)
)

)

dξ.

From (1)–(4) and a fact that βR ≡ 1 in BR, then (A.2) becomes

lim sup
k→∞

[

∫

BR

(

∇Guk −∇Gu,∇G

(

ϱϵ ◦ (uk − u)
)

)

dξ

+
∫

BR

(

∇Gvk −∇Gv,∇G

(

ϱϵ ◦ (vk − v)
)

)

dξ

]

≤ lim sup
k→∞

[

∫

Ω

(

∇Guk −∇Gu,∇G

(

ϱϵ ◦ (uk − u)
)

)

dξ

+
∫

Ω

(

∇Gvk −∇Gv,∇G

(

ϱϵ ◦ (vk − v)
)

)

dξ

]

≤ ϵCR. (A.5)

Subsequently, let gk = gu,k + gv,k with gu,k =
(

∇Guk − ∇Gu,∇G(uk − u)
)

and gv,k =
(

∇Gvk −∇Gv,∇G(vk − v)
)

. We will show that gk is nonnegative and bounded in L1(Ω).

Firstly, if we assume that gk is negative, it appears a contradiction with (A.4), thus, gk is

nonnegative. Secondly, since ∇Guk is bounded in L2(Ω, R2n), and by (4.14), we know that

∇Gvk is bounded in L2(Ω, R2n). Therefore

0 ≤
∫

Ω
gk(ξ)dξ ≤ ∥∇Guk −∇Gu∥2

2 + ∥∇Gvk −∇Gv∥2
2 ≤ C0, (A.6)

where C0 is a suitable constant and independent of k.

We select t ∈ (0, 1) and divide the ball BR into four parts,

Bϵ
u,k(R) = {ξ ∈ BR : |uk(ξ)− u(ξ)| ≤ ϵ}, B̃ϵ

u,k(R) = BR \ Bϵ
u,k(R),

Bϵ
v,k(R) = {ξ ∈ BR : |vk(ξ)− v(ξ)| ≤ ϵ}, B̃ϵ

v,k(R) = BR \ Bϵ
v,k(R).

Since ∇G

(

ϱϵ ◦ (uk − u)
)

= ∇G(uk − u) in Bϵ
u,k(R) and ∇G

(

ϱϵ ◦ (vk − v)
)

= ∇G(vk − v) in

Bϵ
v,k(R), and from (A.6), we get

∫

BR

gt
kdξ ≤

∫

BR

gt
u,kdξ +

∫

BR

gt
v,kdξ

=
∫

Bϵ
u,k(R)

gt
u,kdξ +

∫

B̃ϵ
u,k(R)

gt
u,kdξ +

∫

Bϵ
v,k(R)

gt
v,kdξ +

∫

B̃ϵ
v,k(R)

gt
v,kdξ

≤
(

∫

Bϵ
u,k(R)

gu,kdξ
)t
|Bϵ

u,k(R)|1−t +
(

∫

B̃ϵ
u,k(R)

gkdξ
)t
|B̃ϵ

u,k(R)|1−t

+
(

∫

Bϵ
v,k(R)

gv,kdξ
)t
|Bϵ

v,k(R)|1−t +
(

∫

B̃ϵ
v,k(R)

gkdξ
)t
|B̃ϵ

v,k(R)|1−t

≤ (ϵCR)
t
(

|Bϵ
u,k(R)|1−t + |B̃ϵ

v,k(R)|1−t
)

+ Ct
0

(

|Bϵ
u,k(R)|1−t + |B̃ϵ

v,k(R)|1−t
)

.
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Moreover, the definition of Bϵ
u,k(R) and Bϵ

v,k(R) follows that, |B̃ϵ
u,k(R)| and |B̃ϵ

v,k(R)| tends to 0

as k goes to ∞. Thus, 0 ≤ lim supk→∞

∫

BR
gt

kdξ ≤ (ϵCR)
t|BR|1−t, which means that gt

k → 0 as

ϵ→ 0 in L1(BR). Hence, gk → 0 a.e. in Ω for R is arbitrary, then, (A.1) is valid from Lemma 3

in [13].

Finally, the following result shows that the hardy term is bounded in W.

Lemma A.2. Let {(uk, vk)} ⊂ W be a bounded sequence and Ω0 represent a compact set of Ω, Mk

and Nk are given in (A.3). Then there is a constant C(Ω0) > 0 such that

sup
k

∫

Ω0

(|Mk|+ |Nk|)dξ ≤ C(Ω0).

Proof. Since ψ = |ψ| ≤ 1 and the Jacobian determinant is r4, thus, ψ2r−2 be of class L1
loc(Ω),

by (1.5), one has

∫

Ω0

(

(ψ

r

)2
|uk|+

(ψ

r

)2
|vk|

)

dξ ≤
∥

∥

∥

ψ

r

∥

∥

∥

2
sup

k

∥uk∥ψ +
∥

∥

∥

ψ

r

∥

∥

∥

2
sup

k

∥vk∥ψ = C2(Ω0),

where C2(Ω0) is a positive constant depending on Ω0. Moreover, from ( f2), it holds

∫

Ω0

∣

∣

∣
Fu(ξ, uk, vk) + Fv(ξ, uk, vk)

∣

∣

∣
dξ

≤
√

2
∫

Ω0

∣

∣

∣

√

H2
u(ξ, uk, vk) + H2

v(ξ, uk, vk)

2

∣

∣

∣
dξ

≤
√

2
∫

Ω0

∣

∣

∣
(λ + 1)|(uk, vk)|+ Cϵ|(uk, vk)|s−1

∣

∣

∣
dξ

≤
√

2
(

(λ + 1) sup
k

∥(uk, vk)∥2∗ |Ω0|
1
t + Cϵ|Ω0|2

∗−2+1 sup
k

∥(uk, vk)∥2−1
2∗

)

= C3(Ω0),

where t > 1 and t = 2∗
2∗−1 is the Lebesgue exponent for s ∈ (2, 2∗). From above argument, we

get supk

∫

Ω0
(|Mk|+ |Nk|)dξ ≤ C(Ω0), the proof of this lemma is completed.
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1 Introduction

This paper is concerned with the existence of solutions for the problem


























−∆u + ϕ(x)u = λ f (u) in Ω,

−∆ϕ(x) = g(u) in Ω,

u > 0 in Ω,

ϕ > 0 in Ω,

u(x) = ϕ(x) = 0 on ∂Ω,

(P)

where 0 < λ is a parameter, Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω,

f ∈ C1([0, ∞), R) and g ∈ C(R, [0, ∞)).

When the function g(t) = t2, this system represents the well known Schrödinger–Poisson

(or Schrödinger–Maxwell) equations, that have been widely studied in the recent past. This

equation appears in the mean field approach for the Hartree–Fock model and as a nonlinear

Schrödinger equation that takes into account the electrostatic field generated by the wave, see

[7, 10, 14, 15].

Recently, many authors have studied the existence, non-existence and multiplicity of solu-

tions of the problem






−∆u + λϕ(x)u = z(u) in Ω,

−∆ϕ(x) = u2 in Ω,

u(x) = ϕ(x) = 0 on ∂Ω,

BEmail: ricardoalveslima8@gmail.com
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where z is a superlinear function; see for example [1,3,8,9,11,13] and the references therein. To

prove their results they used the reduction argument and then employed variational methods.

It is worth pointing out that in the proof of Theorem 2.1 of [13] the authors used the Leray–

Schauder degree to prove the existence of a positive solution when the parameter λ is small

enough. Also, in the references of the papers mentioned above the reader will find many

works dealing with Schrödinger–Poisson systems where Ω = R
3.

Motivated by the papers above and Ambrosetti and Hess [4], we are interested in study-

ing system (P) when f is asymptotically linear and g satisfies some suitable assumptions.

Specifically, we introduce the following assumptions:

(F1) f ∈ C1([0, ∞), R), f (0) = 0 and m0 = lim
t→0+

f (t)

t
> 0 (namely m0 = f ′+(0));

(F2) There exist m∞ > 0, a function h and a constant C such that

f (t) = m∞t + h(t), where h ∈ C0,1(R+, R) and |h(t)| ≤ C, ∀t ∈ R
+(R+ = [0, ∞));

(G1) g(t) = t2p, where 0 < p < 2;

(G2) g ∈ C(R, (0, ∞)) and there exist the limit lim
t→∞

g(t) = g(∞) and a constant c > 0 such

that 0 < g(t) < c for all t ∈ R.

Some examples of functions satisfying the above assumptions are as follows.

Example 1.1.

(a) The function f (t) = t − t10, t ≥ 0, satisfies (F1).

(b) The function f (t) = t − arctg(t2), t ≥ 0, satisfies (F1) and (F2).

(c) The function f (t) = t, t ≥ 0, satisfies (F1) and (F2).

(e) The function g(t) = t2

1+t2 + 1, t ∈ R, satisfies (G2).

(g) The function g(t) = |t|
1+t2 + 1, t ∈ R, satisfies (G2).

As we can see, the function f is allowed to change sign. Before stating our main results,

we need some definitions and notations. First, we introduce the Banach space

X = C(Ω, R)

endowed with the norm ∥u∥ = supx∈Ω |u(x)| for u ∈ X.

We say that (λ, u, ϕu) ∈ R × [(H1
0(Ω)× H1

0(Ω)) ∩ (X × X)] is a solution of (P) if u > 0 in

Ω, ϕu > 0 in Ω and
∫

Ω
∇u∇φdx +

∫

Ω
ϕu(x)uφdx = λ

∫

Ω
f (u)φdx, (1.1)

∫

Ω
∇ϕu∇ψdx =

∫

Ω
g(u)ψdx, (1.2)

for all (φ, ψ) ∈ H1
0(Ω)× H1

0(Ω). When u > 0 in Ω, (u, ϕu) is a positive solution. Moreover,

we say that (λ, u, ϕu) is a weak solution of (P) if (u, ϕu) ∈ H1
0(Ω) × H1

0(Ω) and it satisfies

(1.1)–(1.2). It turns out that weak solutions are solutions provided f has subcritical growth

(see Lemma 2.4).

A bifurcation point for (P) is a number λ∗∈ R such that there exists a sequence (λn, un, ϕun)

∈ R × [(H1
0(Ω)× H1

0(Ω)) ∩ (X × X)] satisfying the following properties:
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(i) λn −→ λ∗;

(ii) (λn, un, ϕun) is a solution of (P) with un ̸= 0 and ∥un∥ −→ 0.

We say that λ∗ ∈ R is a bifurcation point from infinity of (P) if there exists a sequence

(λn, un, ϕun) ∈ R × [(H1
0(Ω)× H1

0(Ω)) ∩ (X × X)] satisfying the following properties:

(i) λn −→ λ∗;

(ii) (λn, un, ϕun) is a solution of (P) and ∥un∥ −→ +∞.

It is well known that under the assumption (G2) there exists a unique solution ϕ∞ ∈

H1
0(Ω) ∩ X of the problem







−∆u = g(∞) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Also, there exists a unique solution ϕ0 ∈ H1
0(Ω) ∩ X of the problem







−∆u = g(0) in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

where ϕ0 > 0 in Ω if g(0) > 0 holds.

Let us denote by λ1[ϕ∞] and φ∞ the first eigenvalue and the positive eigenfunction nor-

malized by ∥φ∞∥ = 1, respectively, of the eigenvalue problem

−∆u + ϕ∞(x)u = λu in Ω,

u = 0 on ∂Ω.

Similarly, let us denote by λ1[ϕ0] and φ0 the first eigenvalue and the positive eigenfunction

normalized by ∥φ0∥ = 1, respectively, of the eigenvalue problem

−∆u + ϕ0(x)u = λu in Ω,

u = 0 on ∂Ω.

We observe that if g(0) = 0 then λ1[ϕ0] and φ0 are the first eigenvalue and the positive

eigenfunction, respectively, of (−∆, H1
0(Ω)).

Now we are ready to state our main results.

Theorem 1.2. Suppose that (F1) and (G1) hold. Then λ0 = λ1[ϕ0]/m0 is the unique bifurcation point

of (P). In addition, the continuum Σ0 emanating from (λ0, 0) is unbounded. The same conclusion holds

under the assumptions (F1) and (G2).

Theorem 1.3. Assume that (F2) and (G2) hold. Then λ∞ = λ1[ϕ∞]/m∞ is the unique bifurcation

point from infinity of (P). Moreover, there exists a subset Σ∞ in R × X of solutions of (P) such that

Σ̃∞ =
{

(λ, z) : (λ, z/∥z∥2) ∈ Σ∞

}

∪ {(λ∞, 0)} is connected and unbounded.

After a bibliography review, we did not find any paper involving bifurcation theory and

problems involving a generalized Schrödinger–Poisson system in a bounded domain as in the

problem (P). Inspired by this fact, in the present paper we show that it is possible to apply

the Leray–Schauder degree theory and the global bifurcation result due to Rabinowitz [12] to
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study the existence of solution for (P). To carry out this program, we first use the reduction

argument (see [2]), which says that (P) is equivalent to a nonlocal problem (see problem

(S)). After, we follow the same methodology as Ambrosetti and Hess [4]. However as we

are working with a nonlocal problem it is necessary to do a careful study on some estimates

and convergences involving the nonlocal term ϕuu. Also, the calculation of Leray–Schauder

degree of some maps involving the nonlocal term ϕuu must be justified (see Lemma 3.2). The

reader is invited to verify that when g(0) ̸= 0 the bifurcation points of Theorems 1.2 and 1.3

are different from those found in [4]. Moreover, under additional assumptions on f and g we

will show that the bifurcation point found in our work is supercritical (the nontrivial solutions

branch off on the right of λ∞), while under the same assumption on f , the bifurcation point

found in [4] is subcritical (the branching is on the left of bifurcation point).

Finally, we would like to point out that our results are new even in the case where g(t) = t2

(that is, p = 1 in (G1)), which is the case considered in the papers mentioned above and which

allows us to apply variational methods. Indeed, in the papers mentioned above they did not

study the existence of bifurcation points for problems of type (P). Also, they did not consider

asymptotically linear nonlinearities as in our work. Thus, our work is the first to deal with the

existence of bifurcation points and the continuum emanating from these points for Problem

(P) with asymptotically linear nonlinearities even in the case when p = 1.

The paper is organized as follows. Section 2 is devoted to some preliminaries. In Section 3,

we prove Theorem 1.2. In Section 4, we prove Theorem 1.3. In section 5 we will show a result

of multiplicity of solutions under additional assumptions on f and g.

Notation. Throughout this paper, we make use of the following notations:

• Lp(Ω), for 1 ≤ p ≤ ∞, denotes the Lebesgue space with usual norm denoted by |u|p.

• H1
0(Ω) denotes the Sobolev space endowed with inner product

(u, v)H =
∫

Ω
∇u∇v, ∀u, v ∈ H1

0(Ω).

The norm associated with this inner product will be denoted by ∥ ∥H.

• W2,k(Ω) denotes the Sobolev space with norm ∥u∥W2,k =
(

∑|α|≤2 ∥Dαu∥k
k

)1/k
.

• If u is a measurable function, we denote by u− the negative part of u, which is given by

u− = max {−u, 0}.

• The function d(x, ∂Ω) denotes the distance from a point x ∈ Ω to the boundary ∂Ω,

where Ω = Ω ∪ ∂Ω is the closure of Ω ⊂ R
N .

• deg(I − Ψ,W , 0) denotes the Leray–Schauder degree of I − Ψ in W with respect to 0,

where W ⊂ X is a bounded open set and Ψ : W −→ X is a compact operator.

• Br(0) ⊂ X denotes the ball centered at 0 ∈ X with radius r > 0.

• c, c1, c2, . . . and C, C1, C2, . . . are possibly different positive constants which may change

from line to line.
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2 Preliminary results

Throughout this paper, unless it is explicitly stated, we will assume that (G1) or (G2) holds.

In this section we will establish some results that we will need in the next sections.

For all u ∈ L3/p(Ω) there exists a unique ϕu ∈ H1
0(Ω) which solves

−∆ϕ = g(u(x)) in Ω,

and there holds

ϕu(x) =
∫

Ω

g(u(y))

|x − y|
dy.

By Lp-theory one has ϕu ∈ W2,3/p(Ω), 0 < p < 2, and so ϕu ∈ X (because 6/p > 3). Since

g(u) ≥ 0, then by the maximum principle ϕu ≥ 0. Moreover, if u ̸= 0 then ϕu > 0 in Ω. Also,

we have the following estimates.

Lemma 2.1. For every u ∈ L3/p(Ω) there holds

∥ϕu∥ ≤ C2|g(u)|3/p,

for some constant C2 > 0 independent of u. In particular, if u ∈ X, then

∥ϕu∥ ≤ C∥g(u)∥, (2.1)

for some constant C > 0 independent of u.

Proof. By Lp-theory one has ϕu ∈ W2,3/p(Ω) and

∥ϕu∥W2,3/p ≤ C1|g(u)|3/p,

for some constant C1 > 0, which depends only on Ω and p.

Combining this inequality with the embedding of W2,3/p(Ω) into X we get

∥ϕu∥ ≤ C2|g(u)|3/p,

for some constant C2 > 0, which depends only on Ω and p.

If in addition u ∈ X, then the inequality |g(u)|3/p ≤ |Ω|p/3∥g(u)∥ is valid, and therefore

∥ϕu∥ ≤ C∥g(u)∥,

where C = C2(Ω)|Ω|p/3. This completes the proof of the lemma.

We recall that a map J : X → X is bounded if it maps bounded sets onto bounded sets.

In order to apply Bifurcation Theory we will need the following lemma.

Lemma 2.2. The map J : X −→ X defined by setting J (u) = ϕu is continuous and bounded.

Proof. Let {un} ⊂ X be a sequence such that un → u in X. As ϕun − ϕu ∈ H1
0(Ω) satisfies

−∆(ϕun − ϕu) = g(un)− g(u) in Ω,

by elliptic regularity it follows that

∥ϕun − ϕu∥ ≤ C∥g(un)− g(u)∥,

for some constant C > 0 independent of un and u. Since un → u in X implies g(un) → g(u)

in X, from the last inequality one deduces that ϕun → ϕu in X. This proves that the map J is

continuous in X.

Finally, the boundedness of J follows from (2.1), and the proof is completed.
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Our next result establishes the positivity of weak solutions to a variational inequality.

Lemma 2.3. Let ϕ ∈ X and suppose that u ∈ H1
0(Ω) satisfies

{

−∆u + ϕ(x)u ≥ 0 in Ω,

u ≥ 0 in Ω.

Then either u ≡ 0, or there exists ϵ > 0 such that u(x) ≥ ϵd(x, ∂Ω) in Ω.

Proof. Let k = ∥ϕ∥ and assume that u ̸≡ 0. In this case, we get

−∆u + ku ≥ −∆u + ϕ(x)u ≥ 0 in Ω,

namely, u satisfies
{

−∆u + ku ≥ 0 in Ω,

u ≩ 0 in Ω.

This allows us to apply Theorem 3 of Brezis–Nirenberg [6] to deduce that u(x) ≥ ϵd(x, ∂Ω) in

Ω, for some ϵ > 0. This completes the proof.

Now, we consider the nonlocal problem

{

−∆u + ϕu(x)u = z(u) in Ω,

u(x) = 0 on ∂Ω,
(Q)

under the following assumption on z ∈ C(R, R):

(H) |z(t)| ≤ c1 + c2|t|q, where c1, c2 > 0 are constants and 0 < q < 2∗ − 1.

Lemma 2.4. Suppose that (H) holds. Then every u ∈ H1
0(Ω) which is a weak solution of (Q) belongs

to X.

Proof. Indeed, u ∈ H1
0(Ω) is a weak solution of the problem

−∆u = h(x, u) in Ω,

where h(x, t) = z(t)− ϕu(x)t. From Lemma 2.2 and (H) one infers that

|h(x, t)| ≤ c3 + c4|t|
q,

for all x ∈ Ω, t ∈ R and some constants c3, c4 > 0. Thus, a standard bootstrap argument

implies that u ∈ X. This completes the proof.

3 Global bifurcation

The main goal of this section is to prove Theorem 1.2. To do this we need some definitions

and auxiliary lemmas.

It is well known that Problem (P) is equivalent to the nonlocal problem







−∆u + ϕu(x)u = λ f (u) in Ω,

u > 0 in Ω,

u(x) = 0 on ∂Ω.

(S)
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We extend the function f to a continuous function f̃ defined on R in such a way that

f̃ (t) = f (0) for all t < 0. Then, we can consider the nonlocal problem







−∆u + ϕu(x)u = λ f̃ (u) in Ω,

u > 0 in Ω,

u(x) = 0 on ∂Ω.

(S̃)

Now we prove the following result.

Lemma 3.1. Assume that either (F1) or (F2) is satisfied. Then Problems (S) and (S̃) are equivalent.

Proof. It is clear that if u is a solution of (S) then it is also a solution of (S̃). Now, we assume

that u is a solution of (S̃). Taking u− as test function in (S̃) we get

−∥u−∥2
H −

∫

Ω
ϕu(x)(u−)2 =

∫

Ω
λ f (0)u−,

which implies ∥u−∥H = 0, that is, u ≥ 0 in Ω. Thus f̃ (u) = f (u) in Ω, and if either (F1) or

(F2) is satisfied then

| f̃ (t)| = | f (t)| ≤ c1|t|, ∀t ∈ [0, ∥u∥+ 1),

and for some constant c1 > 0. Therefore, u satisfies







−∆u + (ϕu(x) + λc1)u ≥ 0 in Ω,

u ≩ 0 in Ω,

u(x) = 0 on ∂Ω,

and from Lemma 2.3 one infers that u > 0 in Ω. This completes the proof.

Due to Lemma 3.1, the proof of Theorems 1.2 and 1.3 is reduced to proving the existence

of the bifurcation points of Problem (S̃). To study Problem (S̃) we will transform it into a

functional equation. From now on we will denote by K the Green operator of −∆ on H1
0(Ω).

It is well known that K is compact as a map from X in itself. From Lemma 2.2 it follows that

the map Fλ : X → X given by

Fλ(u) = λ f̃ (u)− ϕuu

is continuous and bounded. As a consequence, the map T : R × X → X defined by T(λ, u) =

K(Fλ(u)) is compact and Problem (S̃) is equivalent to the functional equation

Φ(λ, u) = 0,

where Φ(λ, u) = u − T(λ, u) for (λ, u) ∈ R × X.

The first property of the map Φ that we highlight is the following.

Lemma 3.2. For every µ ∈ [0, 1] the function u ≡ 0 is the unique solution of the problem

{

−∆u + µϕu(x)u = 0 in Ω,

u ∈ H1
0(Ω) ∩ X.

(A)

In particular,

deg(Φ(0, ·), Br(0), 0) = 1,

for all r > 0.
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Proof. If u satisfies (A) then,

∥u∥2
H + µ

∫

Ω
ϕuu2 = 0,

and this implies that ∥u∥H = 0, namely that u ≡ 0.

Thus the homotopy H(µ, u) = u − µT(0, u), (µ, u) ∈ [0, 1] × X, is admissible on the ball

Br(0), for all r > 0. Using the homotopy invariance, it follows that

deg(H(1, ·), Br(0), 0) = deg(I, Br(0), 0) = 1,

and since Φ(0, ·) = H(1, ·), we get deg(Φ(0, ·), Br(0), 0) = 1.

Now, let us give the precise definition of bifurcation point of the functional equation

Φ(λ, u) = 0.

Definition 3.3. We say that λ∗ is a bifurcation point of Φ(λ, u) = 0 if there exists a sequence

(λn, un) ∈ R × X, with un ̸= 0, such that λn −→ λ∗, ∥un∥ −→ 0 and Φ(λn, un) = 0.

It turns out that the bifurcation points of Φ(λ, u) = 0 are the bifurcation points of (S̃) (and

therefore are also the bifurcation points of (P)).

Denoting by

ΣΦ = {(λ, u) ∈ R × X : Φ(λ, u) = 0, u ̸= 0} ,

and taking the closure ΣΦ of ΣΦ, we see that λ∗ is a bifurcation point of Φ(λ, u) = 0 if and

only if (λ∗, 0) ∈ ΣΦ.

For each λ ∈ R fixed, the index of Φλ = Φ(λ, ·) relative to 0, denoted by i(Φλ, 0), is

defined by

i(Φλ, 0) = lim
ϵ→0

deg(Φλ, Bϵ(0), 0).

To prove Theorem 1.2 we have to prove the change of index of Φ(λ, ·) as λ crosses λ = λ0.

The proof is based on the following lemmas.

Lemma 3.4. Let Λ ⊂ R
+ be a compact interval with λ0 /∈ Λ. Then there exists ϵ > 0 satisfying

Φ(λ, u) ̸= 0, ∀λ ∈ Λ, ∀0 < ∥u∥ ≤ ϵ.

Proof. We argue by contradiction assuming that there exists a sequence (λn, un) ∈ Λ × X

satisfying

λn −→ λ ̸= λ0, ∥un∥ −→ 0,

Φ(λn, un) = 0, un > 0.

Now, we divide the equation un = K(Fλn
(un)) by ∥un∥ to get

vn = K

(

Fλn
(un)

∥un∥

)

, where vn =
un

∥un∥
.

We claim that the sequence
{ Fλn (un)

∥un∥

}

is bounded in Λ × X. To prove this claim, let δ > 0 such

that | f (t)| ≤ (m0 + 1)|t| for all 0 < t < δ (the existence of δ is guaranteed by (F1)). Since

∥un∥ −→ 0 there exists n0 ∈ N such that ∥un∥ < δ for all n > n0. From this and (2.1) we

deduce that

∥Fλn
(un)∥ ≤ C(∥un∥+ ∥g(un)∥∥un∥),

for all n > n0 and for some constant C > 0 independent of n.
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Therefore,

∥
Fλn

(un)

∥un∥
∥ ≤ C(1 + ∥g(un)∥) ≤ C(1 + max

t∈[−δ,δ]
|g(t)|),

for n > n0, which implies that the sequence
{ Fλn (un)

∥un∥

}

is bounded in Λ × X.

Since K is compact, from vn = K
( Fλn (un)

∥un∥

)

we deduce that, up to a subsequence, vn strongly

converges to some v ∈ X with ∥v∥ = 1. Then, by Lemmas 2.1 and 2.2 and (F1) one infers

Fλn
(un)

∥un∥
−→ (λm0 − ϕ0)v in X,

and therefore

v = K((λm0 − ϕ0)v).

But this says that v is a solution of the problem

{

−∆v + ϕ0(x)v = λm0v in Ω,

v ≥ 0 in Ω,

and from Lemma 2.3 one infers that v > 0 in Ω. As a consequence v is an eigenfunction of

norm one associated to λ.

Using φ0 as a test function in this eigenvalue problem we obtain

λ1[ϕ0]
∫

Ω
vφ0 =

∫

Ω
∇v∇φ0dx +

∫

Ω
ϕ0vφ0dx = λm0

∫

Ω
vφ0,

and we conclude that λ1[ϕ0] = λm0, which is a contradiction and the proof is finished.

As a consequence of the proof of Lemma 3.4 we obtain the following corollary.

Corollary 3.5. The unique possible bifurcation point of solutions is λ = λ0.

Lemma 3.6. If λ < λ0 then i(Φλ, 0) = 1.

Proof. Fix any λ < λ0 and take Λ = [0, λ]. For t ∈ [0, 1], the parameter tλ belongs to Λ and

from Lemma 3.4 it follows that Φ(tλ, u) ̸= 0 for all 0 < ∥u∥ ≤ ϵ, where ϵ > 0 is given by

Lemma 3.4. Consider the homotopy H(t, u) = Φ(tλ, u). Using the homotopy invariance, we

get

deg(H(1, ·), Bϵ(0), 0) = deg(H(0, ·), Bϵ(0), 0),

namely

i(Φλ, 0) = deg(Φλ, Bϵ(0), 0) = deg(Φ0, Bϵ(0), 0) = 1,

where we have used Lemma 3.2 in the last equality. This completes the proof.

Lemma 3.7. For every λ > λ0 there exists δ > 0 such that

Φ(λ, u) ̸= τφ1, ∀0 < ∥u∥ ≤ δ, ∀τ ≥ 0.

Proof. We fix λ > λ0 and we assume, by contradiction, that there exist sequences un ∈ X and

τn ≥ 0 satisfying un > 0 in Ω, ∥un∥ −→ 0 and

Φ(λ, un) = τn φ1,
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or, equivalently,

un = K(Fλ(un)) + τn φ1.

Dividing this equation by ∥un∥ one finds

vn = K

(

Fλ(un)

∥un∥

)

+ φ1
τn

∥un∥
, where vn =

un

∥un∥
.

Arguing as in the proof of Lemma 3.4, we see that the sequence
{ Fλ(un)

∥un∥

}

is bounded in

X. Thus, using the compactness of K, we deduce that, up to a subsequence, K
( Fλ(un)

∥un∥

)

is

convergent and hence τn/∥un∥ is bounded. Passing again to a subsequence, if necessary, we

can assume that τn/∥un∥ −→ τ ≥ 0 and un/∥un∥ −→ v with v ∈ X and ∥v∥ = 1. Arguing as

we have done in the proof of Lemma 3.4, it is easy to see that v satisfies







−∆v + ϕ0v = λm0v + τλ1 φ1 in Ω,

v = 0 on ∂Ω,

∥v∥ = 1.

Then, using φ0 as a test function in this problem we obtain

λ1[ϕ0]
∫

Ω
vφ0 = λm0

∫

Ω
vφ0 +

∫

Ω
τλ1φ1 φ0 ≥ λm0

∫

Ω
vφ0,

which implies that λ0 ≥ λ, a contradiction. The proof is finished.

Lemma 3.8. If λ > λ0 then i(Φλ, 0) = 0.

Proof. If λ > λ0 then, from Lemma 3.7, we derive that

deg(Φλ, Bδ(0), 0) = deg(Φλ − τφ1, Bδ(0), 0), ∀τ > 0,

where δ > 0 is given by Lemma 3.7.

But, again using Lemma 3.7, the problem

{

−∆w + ϕw(x)w = λ f̃ (w) + τλ1φ1 in Ω,

w = 0 in ∂Ω,

has no nontrivial solution satisfying 0 < ∥u∥ ≤ δ. Since, w = 0 is not a solution provided that

τ > 0, we deduce that

i(Φλ, 0) = deg(Φλ, Bδ(0), 0) = deg(Φλ − τφ1, Bδ(0), 0) = 0, ∀λ > λ0.

This completes the proof.

Now, we are ready to prove Theorem 1.2.

Proof. (of Theorem 1.2) Assume that λ0 is no bifurcation point. Then there exists ϵ > 0 such

that

Φλ(u) ̸= 0, for all λ ∈ [λ0 − ϵ, λ0 + ϵ] and 0 < ∥u∥ ≤ ϵ.

Thus, if we take

λ0 − ϵ < λ̃ < λ0 < λ̂ < λ0 + ϵ
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one has

deg(Φλ̃, Bϵ(0), 0) = deg(Φλ̂, Bϵ(0), 0),

and therefore,

i(Φλ̃, 0) = i(Φλ̂, 0),

which contradicts Lemmas 3.6 and 3.8. Moreover, from Corollary 3.5 λ0 is the unique bifurca-

tion point for (P).

As a consequence, one can repeat the arguments carried out in the proof of the Global

Bifurcation Theorem due to Rabinowitz [12] to show the existence of Σ0. This completes the

proof.

4 Bifurcation from infinity

In this section we are going to prove Theorem 1.3. Hereafter we will assume that (F2) and

(G2) hold. We start with the following definition.

Definition 4.1. We say that λ∞ is a bifurcation point from infinity of Φ(λ, u) = 0 if there exists

a sequence (λn, un) ∈ R × X satisfying

λn −→ λ∞, ∥un∥ −→ +∞, Φ(λn, un) = 0.

It turns out that the bifurcation points from infinity of Φ(λ, u) = 0 are the bifurcation

points from infinity of (S̃) (and therefore are also the bifurcation points from infinity of (P)).

Following [4], if we make the Kelvin transform

z =
u

∥u∥2
, with u ̸= 0,

we derive that

Φ(λ, u) = 0, u ̸= 0 ⇔ z − ∥z∥2T

(

λ,
z

∥z∥2

)

= 0, z ̸= 0.

Thus we are led to define the map

Φ̃(λ, z) =

{

z − ∥z∥2T(λ, z
∥z∥2 ), if z ̸= 0,

0, if z = 0.

Moreover, using Lemma 2.1 we find that

∥z∥2∥ϕz/∥z∥2

z

∥z∥2
∥ ≤ C∥z∥,

for all z ̸= 0 and some constant C > 0 independent of z. As a consequence we obtain

lim
z→0

∥z∥2ϕz/∥z∥2

z

∥z∥2
= 0.

From this limit and assumption on f it readily follows that Φ̃ is continuous. In particular,

Φ̃ is a compact perturbation of the identity and λ∞ is a bifurcation point from infinity for

Φ(λ, u) = 0 if and only if λ∞ is a bifurcation point for Φ̃(λ, z) = 0. Moreover, arguing as in

the proof of Lemma 3.2, we immediately deduce the following property:

deg(Φ̃(0, ·), Bϵ(0), 0) = 1, for all ϵ > 0.

The proof of Theorem 1.3 is based on the following lemmas.
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Lemma 4.2. Let Λ ⊂ [0, λ∞) be any compact interval. Then

(a) there exists r > 0 such that Φλ(u) ̸= 0, for all λ ∈ Λ and ∥u∥ ≥ r,

(b) λ∞ is the only possible bifurcation from infinity for Φ(λ, u) = 0,

(c) i(Φ̃λ, 0) = 1 for all λ < λ∞.

Proof. (a) We argue by contradiction assuming that there exists a sequence (λn, un) ∈ Λ × X

satisfying

λn −→ λ ̸= λ∞, ∥un∥ −→ ∞,

Φ(λn, un) = 0, un > 0.

Setting vn = ∥un∥−1un, we find

vn = K

(

λn
f (un)

∥un∥
− ϕun vn

)

.

By Lemma 2.1 we infer that there exists a constant C > 0 such that

∥

∥

∥

∥

λn
f (un)

∥un∥
− ϕun vn

∥

∥

∥

∥

≤

[∥

∥

∥

∥

λn

(

m∞vn +
h(un)

∥un∥

)∥

∥

∥

∥

+ ∥ϕun vn∥

]

≤ C, for all n ∈ N.

Since K is compact, from vn = K
(

λn
f (un)
∥un∥

− ϕun vn

)

we deduce that, up to a subsequence,

vn strongly converges to some v ∈ X with ∥v∥ = 1. Note also that vn converges weakly to v

in H1
0(Ω) and v ≥ 0 in Ω. Moreover, there holds

∫

Ω
∇vn∇φdx +

∫

Ω
ϕun vn φdx =

∫

Ω
λn

f (un)

∥un∥
φdx, φ ∈ H1

0(Ω). (4.1)

On the other hand, the boundedness of g and the Lp-theory imply that, up to a subsequence,

ϕun converges weakly in H1
0(Ω) and strongly in X, to some ϕ ∈ H1

0(Ω) ∩ X. Thus, by the

Lebesgue dominated convergence theorem we yield

∫

Ω
∇v∇φdx +

∫

Ω
ϕvφdx =

∫

Ω
λm∞vφdx, φ ∈ H1

0(Ω), (4.2)

which together with Lemma 2.3 implies that v > 0 in Ω. As a consequence we get that

un(x) = ∥un∥vn(x) −→ ∞ for all x ∈ Ω, and applying the Lebesgue dominated convergence

theorem we found that
∫

Ω
∇ϕ∇φdx =

∫

Ω
g(∞)φdx, φ ∈ H1

0(Ω),

namely ϕ = ϕ∞.

Finally, using φ∞ as a test function in (4.2) we obtain

λ1[ϕ∞]
∫

Ω
vφ∞dx = λm∞

∫

Ω
vφ∞dx,

and we conclude that λ∞ = λ, which is a contradiction. This contradiction proves (a).

Statement (b) follows immediately from (a). Regarding (c), fix any λ < λ∞ and take Λ =

[0, λ]. For t ∈ [0, 1], the parameter tλ belongs to Λ and from (a) it follows that u ̸= T(tλ, u)
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for all ∥u∥ ≥ r. This implies that Φ̃(tλ, z) ̸= 0 for all 0 < ∥z∥ ≤ 1/r. Consider the homotopy

H(t, z) = Φ̃(tλ, z). Using the homotopy invariance, we get

deg(Φ̃λ, B1/r(0), 0) = deg(Φ̃0, B1/r(0), 0),

namely

i(Φ̃λ, 0) = deg(Φ̃0, B1/r(0), 0) = 1,

proving (c).

Lemma 4.3. Let λ > λ∞. Then

(a) there exists ϵ > 0 such that Φλ(u) ̸= τφ1, for all τ ≥ 0 and ∥u∥ ≥ ϵ,

(b) i(Φ̃λ, 0) = 0 for all λ > λ∞.

Proof. (a) We fix λ > λ∞ and we assume, by contradiction, that there exist τn ≥ 0 and

∥un∥ → ∞ such that Φλ(un) = τn φ1, namely

un − τn φ1 = K(λ f (un)− ϕun un).

Setting vn = ∥un∥−1un, we get

vn − τn∥un∥
−1φ1 = K

(

λ
f (un)

∥un∥
− ϕun vn

)

,

and arguing as in Lemma 4.2, one readily shows that the sequence
{ f (un)

∥un∥
− ϕun vn

}

is bounded

in X. Thus, using the compactness of K, we deduce that, up to a subsequence,

K

(

λ
f (un)

∥un∥
− ϕun vn

)

is convergent and hence τn/∥un∥ is bounded. Passing again to a subsequence, if necessary,

we can assume that τn/∥un∥ −→ τ ≥ 0 and un/∥un∥ −→ v with v ∈ X and ∥v∥ = 1. Arguing

as we have done in the proof of Lemma 4.2, we can deduce that un(x) → ∞ for all x ∈ Ω and

that v satisfies






−∆v + ϕ∞v = λm∞v + τλ1φ1 in Ω,

v = 0 on ∂Ω,

∥v∥ = 1.

Therefore, using φ∞ as a test function in this problem we obtain

λ1[ϕ∞]
∫

Ω
vφ∞ ≥ λm∞

∫

Ω
vφ∞,

and we conclude that λ∞ ≥ λ, which is a contradiction. This proves (a).

(b) Take τ = t∥u∥2, with t ∈ [0, 1]. By (a) it follows that Φλ(u) ̸= t∥u∥2φ1 for all ∥u∥ ≥ ϵ.

This implies

Φ̃λ(z) ̸= tφ1, ∀0 < ∥z∥ ≤
1

ϵ
, ∀t ∈ [0, 1]. (4.3)

Using the homotopy H(t, z) = Φ̃λ(z)− tφ1 on the ball B1/ϵ(0) we find

i(Φ̃λ, 0) = deg(Φ̃λ, B1/ϵ(0), 0) = deg(Φ̃λ − φ1, B1/ϵ(0), 0).

The latter degree is zero because (4.3), with t = 1, implies that Φ̃λ(z) = φ1 has no solution on

B1/ϵ(0). This proves (b).
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Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Arguing as in the proof of Theorem 1.2, the Lemmas 4.2 and 4.3 ensure

that λ∞ is the unique bifurcation point for the equation Φ̃(λ, z) = 0, and that from (λ∞, 0)

emanates an unbounded continuum of solutions Σ̃∞ =
{

(λ, z) : Φ̃(λ, z) = 0
}

in R × X. More-

over, (λ, z) ∈ Σ̃∞, z ̸= 0, if and only if (λ, z/∥z∥2) ∈ ΣΦ = {(λ, u) : Φ(λ, u) = 0, u ̸= 0}. We

define Σ∞ =
{

(λ, z/∥z∥2) : (λ, z) ∈ Σ̃∞, z ̸= 0
}

. Therefore, Σ∞ ⊂ ΣΦ and

Σ̃∞ =
{

(λ, z) : (λ, z/∥z∥2) ∈ Σ∞

}

∪ {(λ∞, 0)}

is connected and unbounded. This completes the proof.

Remark 4.4. The reader can ask why we consider only assumption (G2) in Theorem 1.3. To

answer this question, we recall that in the proof of Lemmas 4.2 and 4.3 the boundedness of

the sequence {ϕun vn} plays a fundamental role. However, under the assumption (G1), we

have the inequality ∥ϕun∥ ≤ C∥un∥2q, which does not ensure the boundedness of the sequence

{ϕun vn} as ∥un∥ −→ ∞.

5 Multiplicity of solutions

Throughout this section we will use the same notation as in the previous sections. In this

section we will apply Theorems 1.2 and 1.3 to show a result of multiplicity of solutions for (P)

under additional assumptions on f and g. Specifically, we introduce the following assump-

tions:

(F3) 2−1m∞t ≤ f (t) ≤ m∞t for all t ≥ 0 and f ′+(0) = m∞;

(G3) g(∞) = lim
t→∞

g(t) = lim
t→0

g(t) and g(∞) ≤ g(t) for all t ∈ R.

Assume that (G3) is valid. For every u ∈ H1
0(Ω) we have

−∆ϕu = g(u) ≥ g(∞) = −∆ϕ∞ in Ω,

which implies

ϕu ≥ ϕ∞ in Ω. (5.1)

Moreover, if we define

g̃ = sup
t≥0

g(t) and − ∆ϕg̃ = g̃, ϕg̃ ∈ H1
0(Ω),

we can show that ϕu ≤ ϕg̃ in Ω (using the same argument as above) for all u ∈ H1
0(Ω).

Let us denote by λ1[ϕg̃] and φg̃ the first eigenvalue and the positive eigenfunction normal-

ized by ∥φg̃∥ = 1, respectively, of the eigenvalue problem

−∆u + ϕg̃(x)u = λu in Ω,

u = 0 on ∂Ω.

Let us point out that under the assumptions (F1)–(F3) and (G2)–(G3) one has λ0 = λ∞.

Now we have the following lemma.
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Lemma 5.1. Suppose that (F3) and (G3) hold. If Problem (S) has a solution, then λ0 ≤ λ ≤ λg̃,

where λg̃ = 2λ1[ϕg̃]/m∞.

Proof. Indeed, if u is a solution of (S), then

λ1[ϕ∞]
∫

Ω
uφ∞dx =

∫

Ω
∇u∇φ∞dx +

∫

Ω
ϕ∞uφ∞dx

≤
∫

Ω
∇u∇φ∞dx +

∫

Ω
ϕuuφ∞dx (by (5.1))

= λ
∫

Ω
f (u)φ∞dx

≤ λm∞

∫

Ω
uφ∞dx (by (F3)).

This now implies λ ≥ λ0.

Similarly,

2−1m∞λ
∫

Ω
uφg̃dx ≤

∫

Ω
λ f (u)φg̃dx

=
∫

Ω
∇u∇φg̃dx +

∫

Ω
ϕuuφg̃dx

≤
∫

Ω
∇u∇φg̃dx +

∫

Ω
ϕg̃uφg̃dx

= λ1[ϕg̃]
∫

Ω
uφg̃dx,

whence we infer that λg̃ ≥ λ. This proves the lemma.

The main result of this section is the following theorem.

Theorem 5.2. Assume that (F1)–(F3) and (G2)–(G3) hold. Then

(a) Σ0 = Σ∞ ∪ {(λ∞, 0)},

(b) there exists ϵ > 0 such that Problem (P) has at least two solutions for λ0 < λ < λ0 + ϵ.

Proof. (a) First of all, let us remark that since Σ̃∞ is connected and Σ̃∞ ∩ (R ×{0}) = {(λ∞, 0)}
then Σ̃∞ − {(λ∞, 0)} is connected. Now, the map W : Σ̃∞ − {(λ∞, 0)} −→ ΣΦ given by

W(λ, z) = (λ, z/∥z∥2)

is continuous. Thus W(Σ̃ − {(λ∗, 0)}) = Σ∞ is a connected subset of ΣΦ. Using Lemma 5.1

and that λ∞ is the unique bifurcation point of Φ(λ, u) = 0 and the unique bifurcation point

from infinity of Φ(λ, u) = 0 we can see that Σ∞ = Σ∞ ∪ {(λ∞, 0)} (which is a connected subset

of ΣΦ too).

Finally, we will show that Σ0 = Σ∞ ∪ {(λ∞, 0)}. Clearly, Σ∞ ∪ {(λ∞, 0)} ⊂ Σ0. We assume

now that (λ, u) ∈ Σ0 − {(λ∞, 0)}, namely, u ̸= 0 and

u − T(λ, u) = 0.

Let us write (λ, u) = (λ, z/∥z∥2), where z = u/∥u∥2. Thus, the last equality above can be

rewritten as
z

∥z∥2
− T(λ, z/∥z∥2) = 0,
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which implies (λ, u) = (λ, z/∥z∥2) ∈ Σ∞.

Then one finds:

Σ0 − {(λ∞, 0)} ⊂ Σ∞

and as Σ∞ ⊂ Σ0 we conclude that Σ0 = Σ∞ ∪ {(λ∞, 0)}. This proves (a).

(b) Let uλ ∈ Σ0 and vλ ∈ Σ∞ be the solutions of (P) obtained in Theorems 1.2 and 1.3,

respectively. By using the fact that ∥uλ∥ → 0 and ∥vλ∥ → ∞ as λ → λ0 and Lemma 5.1, we

deduce that there exists ϵ > 0 such that

∥uλ∥ < 1 < ∥vλ∥ for λ0 < λ < λ0 + ϵ.

This allows us to conclude that uλ ̸= vλ, and therefore uλ and vλ are two distinct solutions of

(P) for λ0 < λ < λ0 + ϵ.
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Abstract. In this paper, we study the existence of nodal solutions of some nonlinear
boundary value problems for ordinary differential equations of fourth order with a
spectral parameter in the boundary condition. To do this, we first study the global bi-
furcation of solutions from zero and infinity of the corresponding nonlinear eigenvalue
problems in classes with a fixed oscillation count. Then, using these global bifurcation
results, we prove the existence of solutions of the considered nonlinear boundary value
problems with a fixed number of nodes.
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1 Introduction

In this paper, we consider the existence of nodal solutions to the following nonlinear boundary

value problem for ordinary differential equations of fourth order

ℓ(y) ≡ (p(x)y′′(x))′′ − (q(x)y′(x))′ = χr(x)h(y(x)), x ∈ (0, l), (1.1)

y′(0) cos α − (py′′)(0) sin α = 0, (1.2)

y(0) cos β + Ty(0) sin β = 0, (1.3)

y′(l) cos γ + (py′′)(l) sin γ = 0, (1.4)

(aλ + b)y(l)− (cλ + d)Ty(l) = 0, (1.5)

where Ty ≡ (py′′)′ − qy′, p is a positive twice continuously differentiable function on [0, l], q

is a non-negative continuously differentiable function on [0, l], χ is a positive number, r(x) is

BCorresponding author. Email: z_aliyev@mail.ru
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a positive continuous function on [0, l], α, β, γ, a, b, c, d are real constants such that α, β, γ ∈

[0, π/2] and σ = bc − ad > 0. The nonlinear term h has the form f + g, where f and g are

real-valued continuous on R functions that satisfy the following conditions:

f
0
, f0, f

∞
, f ∞ ∈ R with f

0
̸= f 0, f

∞
̸= f ∞, (1.6)

where

f
0
= lim inf

|s|→0

f (s)

s
, f 0 = lim sup

|s|→0

f (s)

s
, (1.7)

f
∞
= lim inf

|s|→+∞

f (s)

s
, f ∞ = lim sup

|s|→+∞

f (s)

s
; (1.8)

sg(s) > 0 for s ∈ R \{0}; (1.9)

there exist positive constants g0, g∞ ∈ (0,+∞) such that

g0 = lim
|s|→0

g(s)

s
, g∞ = lim

|s|→+∞

g(s)

s
. (1.10)

The subject of this paper is to determine the interval of χ, in which there are solutions to

problem (1.1)–(1.5) that have a fixed number of simple zeros in (0, l).

It is well known that boundary value problems for ordinary differential equations arise in

the study of many different processes of natural science, see [9,10,12,14,17] and the references

therein. For example, problem (1.1)–(1.5) arises when studying of bending (of deformation)

of a homogeneous rod, in the cross sections of which a longitudinal force acts and at the right

end of which the mass is concentrated or on this end a tracking force acts.

Problems similar to (1.1)–(1.5) for ordinary differential equations of second and fourth

orders have been considered before in, for example, [8, 11, 13, 16, 18–22, 26–28]. In [8, 11, 18–

21, 26], the authors using the global bifurcation results of [1, 2, 7, 8, 11, 18, 23–25] show that

there are nontrivial solutions of the considered nonlinear problems, which have the usual

nodal properties (unfortunately, there are gaps in the proofs of the main assertions in [11,

Theorems 2.2 and 3.1] and [18, Theorem 3.1]). Similar results were obtained in the paper

[22] by analytical methods involving the Prüfer angular functions. Should be noted that in

[13, 26, 27], problems with local and nonlocal boundary conditions are considered and the

existence of positive solutions of these problems is established.

In the present paper, using the global bifurcation results from [1–4, 6] and removing the

above gaps (see the proof of Steps 1–3 of Theorem 3.1), we prove the existence of two different

solutions to problem (1.1)–(1.5) with a fixed number of nodal points.

The rest of this article is organized as follows. Section 2 provides, which we need in the

future, known facts about the unilateral global bifurcation of solutions from zero and infinity

of nonlinear eigenvalue problems for fourth-order ordinary differential equations. In Section

3, we determine an interval for a parameter χ, in which there are nodal solutions to problem

(1.1)–(1.5). In this case, the proof of the main theorem, i.e. Theorem 3.1 consists of 4 steps. In

Step 1, using (1.6), (1.7) and the first condition from (1.10), we find bifurcation intervals from

zero and prove the existence of two families of unbounded components of the solution set

of problem (1.1)–(1.5) bifurcating from these intervals and contained in classes with a fixed

number of nodes. In Step 2, using (1.6), (1.8) and the second condition from (1.10), we find

bifurcation intervals from infinity and prove the existence of two families of unbounded com-

ponents of the set of solutions bifurcating from these intervals and contained in classes with a
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fixed number of nodes in the neighborhood of these intervals, which either intersect another

bifurcation interval, or intersect the line of trivial solutions, or have unbounded projections

onto the line of trivial solutions. In Step 3, it is established that the global components of

solutions to problem (1.1)–(1.5) bifurcating from intervals infinity are also contained in the

corresponding classes with a fixed number of nodes and coincide with the corresponding

components of solutions bifurcating from intervals of the line of trivial solutions.

2 Preliminary

We consider the following linear eigenvalue problem

{

ℓ(y)(x) = λr(x)y(x), x ∈ (0, l),

y ∈ (b.c.)λ,
. (2.1)

where λ ∈ C is a spectral parameter, (b.c.)λ is a set of functions satisfying the boundary

conditions (1.2)–(1.5).

The spectral properties of (2.1) were studied in [15], where, in particular, it was shown

that the spectrum of this problem is discrete and consists of an infinitely increasing sequence

{λk}
∞
k=1 of real and simple eigenvalues. Moreover, if c = 0, then eigenfunction yk(x), k ∈ N,

corresponding to the eigenvalue λk has exactly k − 1 simple zeros in (0, 1); if c ̸= 0, then there

exists N ∈ N such that the eigenfunction yk(x) corresponding to the eigenvalue λk has for

k ≤ N exactly k − 1 and for k > N exactly k − 2 simple zeros in (0, l).

Remark 2.1. Throughout what follows we will assume that the coefficients of boundary con-

ditions are chosen such that the first eigenvalue of problem (2.1) is positive.

Let E be a Banach space C3[0, l] ∩ BC0 with the norm ∥y∥3 = ∑
3
s=0 ∥ y(s)∥∞, where ∥y∥∞ =

maxx∈[0, l] |y (x)| and BC0 is a set of functions which satisfy the boundary conditions (1.2)–(1.4).

From now on ν will denote an element of {+ , −} that is, either ν = + or ν = − .

In a recent paper [4, § 2, pp. 4–5], using the Prüfer type transformation for each k ∈ N

and each ν, the authors constructed sets Sν
k of functions y ∈ E, which have the oscillatory

properties of eigenfunctions of the linear problem (2.1) and their derivatives. Note that the

sets S+
k , S−

k and Sk = S+
k ∪ S−

k are pairwise disjoint open subsets of E. Moreover, it was

shown in [1, Lemma 2.2] that if y ∈ ∂Sν
k (∂Sk), then y has at least one zero of multiplicity 4 in

(0, l).

To study the existence of solutions to problem (1.1)–(1.5) with a fixed number of nodes,

consider the following nonlinear eigenvalue problem

{

ℓ(y) = λr(x)y + h̃(x, y, y′, y′′, y′′′, λ), x ∈ (0, l),

y ∈ (b.c.)λ.
(2.2)

Here h̃ has a representation f̃ + g̃, where f̃ and g̃ are real-valued continuous functions on

[0, l]× R5 that satisfy the following conditions: there exist constants M̃ > 0 and sufficiently

small τ0 > 0 such that

∣

∣

∣

f̃ (x, y, s, v, w, λ)
y

∣

∣

∣
≤ M̃, (x, y, s, v, w) ∈ [0, l]× R4, 0 < |y|+ |s|+ |v|+ |w| ≤ τ0,

y ̸= 0, λ ∈ R;
(2.3)
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g̃(x, y, s, v, w, λ) = o (|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → 0, (2.4)

uniformly in x ∈ [0, l] and λ ∈ Λ for each bounded interval Λ ⊂ R, or there exist constants
˜̃M > 0 and sufficiently large κ0 > 0 such that

∣

∣

∣

f̃ (x, y, s, v, w, λ)
y

∣

∣

∣
≤ ˜̃M, (x, y, s, v, w) ∈ [0, l]× R4, |y|+ |s|+ |v|+ |w| ≥ κ0,

y ̸= 0, λ ∈ R;
(2.5)

g̃(x, y, s, v, w, λ) = o (|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → ∞, (2.6)

uniformly in x ∈ [0, l] and λ ∈ Λ.

If conditions (2.3) and (2.4) are satisfied, then the bifurcation of nontrivial solutions of

problem (2.2) from the line of trivial solutions R × {0} = {(λ, 0) : λ ∈ R} is considered. In

this case, the global bifurcation of nontrivial solutions of problem (2.2) is studied in [4], where

the following results are obtained.

Lemma 2.2 ([4, Lemmas 3 and 4]). Let conditions (2.3) and (2.4) be satisfied. Then for each k ∈ N

and each ν the set of bifurcation points of (2.2) with respect to the set R × Sν
k is nonempty and lies in

Ĩk × {0}, where Ĩk =
[

λk −
M̃
r0

, λk +
M̃
r0

]

, r0 = minx∈[0, l] r(x).

For each k ∈ N and each ν let D̃ν
k be the union of all the components of the set of nontrivial

solutions to problem (2.2) bifurcating from the points of the interval Ĩk × {0} with respect to

R × Sν
k . Moreover, let Dν

k = D̃ν
k ∪ ( Ĩk × {0}). Note that Dν

k is connected, but D̃ν
k may not be

connected in R × E.

Theorem 2.3 ([4, Theorem 3]). Let conditions (2.3) and (2.4) be satisfied. Then for each k ∈ N and

each ν the set D̃ν
k is nonempty, lies in R × Sν

k and is unbounded in R × E.

In the case when conditions (2.5) and (2.6) are satisfied, then we consider the bifurcation of

nontrivial solutions to problem (2.2) from infinity, or rather from the line R ×{∞} = {(λ, ∞) :

λ ∈ R}. Global bifurcation of nontrivial solutions of problem (2.2) from infinity with respect

to the set R × Sν
k was considered in [3] in the case of f̃ ≡ 0. Using the results of [1, 3] and [4]

following the corresponding arguments in [6], we can obtain the following results.

Lemma 2.4. Let conditions (2.5) and (2.6) be satisfied. Then for each k ∈ N and each ν the set of

asymptotic bifurcation points of problem (2.2) with respect to the set R × Sν
k is nonempty and lies in

˜̃Ik × {∞}, where ˜̃Ik =
[

λk −
˜̃M

r0
, λk +

˜̃M
r0

]

.

For each k ∈ N and each ν let ˜̃Dν
k be the union of all the components of the set of nontrivial

solutions to problem (2.2) bifurcating from the points of the interval ˜̃Ik × {∞} with respect

to the set R × Sν
k . Moreover, let Dν, ∗

k = ˜̃Dν
k ∪

( ˜̃Ik × {∞}
)

(in this case we add the points

{(λ, ∞) : λ ∈ R} to our space R × E and define an appropriate topology on the resulting set).

Note that Dν, ∗
k is connected.

Theorem 2.5. For each k ∈ N and each ν the set ˜̃Dν
k is nonempty and for this set at least one of the

following statements holds:

(i) the set ˜̃Dν
k meets ˜̃Ik′ × {∞} with respect to R × Sν′

k′ for some (k′, ν′) ̸= (k, ν);

(ii) the set ˜̃Dν
k meets R × {0} for some λ ∈ R;

(iii) the projection of ˜̃Dν
k on R × {0} is unbounded.

In addition, if cases (ii) and (iii) are not satisfied for the union ˜̃Dk = ˜̃D+
k ∪ ˜̃D−

k , then case (i) is

satisfied for it with k′ ̸= k.
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3 Existence of solutions to problem (1.1)–(1.5) with fixed oscillation

count

In this section we will determine the interval of χ, in which there exist nodal solutions of

problem (1.1)–(1.5).

Theorem 3.1. Let g0 > − f
0
, g∞ > − f

∞
, and for some k ∈ N one of the following conditions is

satisfied:
λk

g0 + f
0

< χ <
λk

g∞ + f ∞

;
λk

g∞ + f
∞

< χ <
λk

g0 + f 0

.

Then there are two solutions ỹ+k and ỹ−k of problem (1.1)–(1.5) such that ỹ+k ∈ S+
k and ỹ−k ∈ S−

k , i.e.,

ỹ+k has either k − 1 or k − 2 simple zeros in (0, l) and is positive near x = 0, and ỹ−k has either k − 1

or k − 2 simple zeros in (0, l) and is negative near x = 0.

Proof. To prove the theorem, consider the following nonlinear eigenvalue problem

{

ℓ(y)(x) = λχr(x)g(y(x)) + χr(x) f (y(x)), x ∈ (0, l),

y ∈ (b.c.)λ,
(3.1)

where λ ∈ R is an eigenvalue parameter.

Step 1. It follows from the first condition of (1.10) that the function g(s), s ∈ R, can be

represented in the following form

g(s) = sg0 + ρ(s), (3.2)

where ρ(s) is a real-valued continuous functions on R that satisfies the condition

lim
|s|→ 0

ρ(s)

s
= 0. (3.3)

Let ζ(u) = max|s|∈[0, u] |ρ(s)|. It is obvious that the function ζ(u) is nondecreasing on

[0,+∞).

It follows from (3.3) that for any sufficiently small ε > 0 one can find a sufficiently small

δε > 0 such that for any s ∈ R satisfying condition |s| < δε we have |ρ(s)| < ε|s|. Then we

have
ζ(u)

u
< ε for any u ∈ (0, δε). (3.4)

Since the function ζ(u) is nondecreasing on [0,+∞) for any x ∈ [0, l] we get

|ρ(y(x))|

∥y∥3
≤

ζ(∥y∥∞)

∥y∥3
≤

ζ(∥y∥3)

∥y∥3
. (3.5)

Let y ∈ E such that ∥y∥3 < δε. Then by (3.4) we have

ζ(∥y∥3)

∥y∥3
< ε,

and consequently, for any x ∈ [0, l] we get

|ρ(y(x))|

∥y∥3
< ε for any x ∈ [0, l], (3.6)
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in view of (3.5). Therefore, it follows from (3.6) that

∥ρ(y)∥∞ = o(∥y∥3) as ∥y∥3 → 0. (3.7)

Considering (3.2), the problem (3.1) can be written in the following equivalent form

{

ℓ(y)(x) = λχr(x)g0y(x) + χr(x) f (y(x)) + λχr(x)ρ(y(x)), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.8)

Let δ0 > 0 be a sufficiently small number. Then it follows from (1.6) and (1.7) that there

exists sufficiently small σ0 ∈ (0, τ0) such that

f
0
−

g0δ0

2
<

f (s)

s
< f 0 +

g0δ0

2
for any s ∈ R, 0 < |s| < σ0. (3.9)

Relation (3.9) implies that

∣

∣

∣

∣

f (s)

s

∣

∣

∣

∣

≤ M̃0 for any s ∈ R, 0 < |s| < σ0, (3.10)

where M̃0 = max
{∣

∣ f
0
− g0δ0

2

∣

∣,
∣

∣ f 0 +
g0δ0

2

∣

∣

}

> 0. Then by (3.7) (see also (3.6)) and (3.10) it

follows from Lemma 2.2 that for each k ∈ N and each ν the set of bifurcation points of (3.8)

(or (3.1)) with respect to the set R ×Sν
k is nonempty. If (λ∗, 0) is a bifurcation point of problem

(3.8) with respect to R × Sν
k , then there exists a sequence {(λ∗

n, y∗n)}
∞
n=1 ⊂ R × Sν

k such that

{

ℓ(y∗n)(x) = λ∗
nχr(x)g0y∗n(x) + χr(x) f (y∗n(x)) + λ∗

nχr(x)ρ(y∗n(x)), x ∈ (0, l),

y∗n ∈ (b.c.)λ∗
n
,

(3.11)

and

(λ∗
n, y∗n) → (λ∗, 0) in R × E as n → ∞. (3.12)

Let

φ∗
n(x) =

{

− f (ỹ∗n(x))
ỹ∗n(x)

if ỹ∗n(x) ̸= 0,

0 if ỹ∗n(x) = 0.
(3.13)

Then by (3.13) it follows from (3.11) that for each n ∈ N the pair (λ∗
n, y∗n) is a solution of the

following linearizable problem

{

1
χr(x)g0

ℓ(y)(x) + 1
g0

φ∗
n(x)y(x) = λy(x) + 1

g0
λρ(y(x)), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.14)

In view of (3.12) we can choose n ∈ N so large that

−

(

f 0

g0
+

δ0

2

)

<
1

g0
φ∗

n(x) < −

(

f
0

g0
−

δ0

2

)

for any x ∈ [0, l], (3.15)

in view of (3.9) and (3.13).

It follows from [5, Remark 4.2 and Theorem 4.3] that for each fixed n ∈ N the eigenvalues

of the linear eigenvalue problem

{

1
χr(x)g0

ℓ(y)(x) + 1
g0

φ∗
n(x)y(x) = λy(x), x ∈ (0, l),

y ∈ (b.c.)λ,
(3.16)
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are real and simple, and form an infinitely increasing sequence {λ∗
k, n}

∞
k=1; moreover, the eigen-

function y∗k, n(x), k ∈ N, corresponding to the eigenvalue λ∗
k, n lies in Sk.

In view of relation (3.15), by following the arguments in Lemmas 5.1 and 5.3 of [1] we get

λ̃k −
f 0

g0
−

δ0

2
≤ λ∗

k, n ≤ λ̃k −
f

0

g0
+

δ0

2
, (3.17)

where λ̃k, k ∈ N, is a kth eigenvalue of the linear eigenvalue problem

{

1
χr(x)g0

ℓ(y)(x) = λy(x), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.18)

Since (λ∗
k, n, 0) is a unique bifurcation point of problem (3.14) with respect to R × Sν

k by

(3.12) we can again choose n ∈ N so large that

λ∗
k, n −

δ0

2
< λ∗

n < λ∗
k, n +

δ0

2
. (3.19)

Then it follows from (3.17) and (3.19) that

λ̃k −
f 0

g0
− δ0 < λ∗

n < λ̃k −
f

0

g0
+ δ0 , (3.20)

whence, with regard to (3.12), we obtain

λ̃k −
f 0

g0
− δ0 ≤ λ∗ ≤ λ̃k −

f
0

g0
+ δ0 . (3.21)

As can be seen from (3.18) that λk = χg0λ̃k for each k ∈ N. Consequently, it follows from

(3.21) that

λk

χg0
−

f 0

g0
− δ0 ≤ λ∗ ≤

λk

χg0
−

f
0

g0
+ δ0 . (3.22)

Since δ0 is arbitrary small enough, it follows from (3.22) that

λk

χg0
−

f 0

g0
≤ λ∗ ≤

λk

χg0
−

f
0

g0
. (3.23)

Thus, (3.23) shows that the bifurcation points of problem (3.1) (or (3.8)) with respect to the set

R × Sν
k are contained in the interval I0

k × {0}, where

I0
k =

[

λk

χg0
−

f 0

g0
,

λk

χg0
−

f
0

g0

]

.

Then, by Theorem 2.3, for each k ∈ N and each ν there exists a component Dν
k, 0 of the

set of solutions of problem (3.1), which contains I0
k × {0}, lies in (R × Sν

k ) ∪ (I0
k × {0}) and is

unbounded in R × E.

Step 2. By the second condition in (1.10) we can represent the function g(s), s ∈ R, as follows:

g(s) = sg∞ + ϱ(s), (3.24)
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where

lim
|s|→+∞

ϱ(s)

s
= 0. (3.25)

Let ς(u) = max|s|∈ [0, u] |ϱ(s)|. It is obvious that the function ς(u) is nondecreasing on

[0,+∞).

In view of (3.25), for any sufficiently small ε > 0 there exists a sufficiently large ∆ε > 0

such that

|ϱ(s)| <
1

2
ε|s| for any s ∈ R, |s| > ∆ε. (3.26)

Let u ∈ [∆ε, ∞) be arbitrary. Then we have

ς(u) = max

{

max
|s|∈ [0, ∆ε]

|ϱ(s)|, max
|s|∈ [∆ε, u]

|ϱ(s)|

}

. (3.27)

Let Kε = max|s|∈ [0, ∆ε] |ϱ(s)|. We will choose ∆1, ε > ∆ε so large that Kε
∆1, ε

<
1
2 ε.

Now let u > ∆1, ε. Then by (3.26) it follows from (3.27) that

ς(u)

u
=

max{Kε, max|s|∈ [∆ε, u] |ϱ(s)|}

u
≤

max{Kε,
1
2 ε u}

u

= max

{

Kε

u
,

1

2
ε

}

≤ max

{

Kε

∆1, ε
,

1

2
ε

}

≤
1

2
ε < ε.

(3.28)

Since the function ς(u) is nondecreasing on [0,+∞) for any x ∈ [0, l] we have

|ϱ(y(x))|

∥y∥3
≤

ς(∥y∥∞)

∥y∥3
≤

ς(∥y∥3)

∥y∥3
. (3.29)

If ∥y∥3 > ∆1, ε, then by (3.28) it follows from (3.29) that

|ϱ(y(x))|

∥y∥3
< ε for any x ∈ [0, l],

which shows that

∥ϱ(y)∥∞ = o(∥y∥3) as ∥y∥3 → ∞. (3.30)

Taking into account (3.24), we can rewrite the problem (3.1) in the following equivalent

form
{

ℓ(y)(x) = λχr(x)g∞y(x) + χr(x) f (y(x)) + λχr(x)ϱ(y(x)), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.31)

Using [1, Lemma 5.1], Lemma 2.4, relations (1.6), (1.8), (3.30) and following the above

arguments, we can show that if (λ̃∗, ∞) is an asymptotic bifurcation point of problem (3.1) (or

(3.31)), then

λ̃∗ ∈ I∞
k =

[

λk

χg∞

−
f ∞

g∞

,
λk

χg∞

−
f

∞

g∞

]

.

Hence it follows from Theorem 2.5 that for each k ∈ N and each ν there exists a component

Dν
k, ∞

of the set of solutions to problem (3.1) containing I∞
k × {∞} and for which at least one

of the following statements holds:

(i) the set Dν
k, ∞

meets I∞
k′ × {∞} with respect to R × Sν′

k′ for some (k′, ν′) ̸= (k, ν);
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(ii) the set Dν
k, ∞

meets R × {0} for some λ ∈ R;

(iii) the projection of Dν
k, ∞

on R × {0} is unbounded.

Step 3. By following the arguments in Theorem 3.3 of [25] we can show that for each k ∈ N

and each ν, Dν
k, ∞

\(I∞
k × {∞}) ⊂ R × Sν

k , and consequently, alternative (i) above for Dν
k, ∞

cannot hold. Moreover, if Dν
k, ∞

meets R × {0} for some λ ∈ R, then λ ∈ I0
k . Similarly, if Dν

k, 0

meets R × {∞} for some λ ∈ R, then λ ∈ I∞
k . Hence we conclude that if Dν

k, ∞
has a bounded

projection on R × {0}, then D+
k, 0 = D+

k, ∞
and D−

k, 0 = D−
k, ∞

.

Now we show that for each k ∈ N and each ν the set Dν
k, ∞

has a bounded projection on

R × {0}. Indeed, otherwise there exists a sequence {(λn, yn)}
∞
n=1 ⊂ (Dν

k, ∞
\Qk,∞) ⊂ (R × Sν

k )

such that

lim
n→∞

λn = ±∞, (3.32)

where Qk,∞ is a some neighborhood of I∞
k × {∞}.

By (1.6)–(1.10) there exists a positive constants κ0, κ1 and κ2 such that

κ0 ≤
g(s)

s
≤ κ1 and

∣

∣

∣

∣

f (s)

s

∣

∣

∣

∣

≤ κ2 for any s ∈ R, s ̸= 0. (3.33)

We define the functions φn(x) and ϕn(x), x ∈ [0, l], as follows:

φn(x) =

{

g(yn(x))
yn(x)

if yn(x) ̸= 0,

0 if yn(x) = 0,
ϕn(x) =

{

−
f (yn(x))

yn(x)
if yn(x) ̸= 0,

0 if yn(x) = 0.
(3.34)

Since yn ∈ Sν
k by (3.34) it follows from (3.1) that λn for each n ∈ N is kth eigenvalue of the

following linear eigenvalue problem

{

ℓ(y)(x) + χr(x)ϕn(x) y(x) = λχr(x)φn(x) y(x)), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.35)

By (3.33) from (3.34) we get

κ0 ≤ φn(x) ≤ κ1 and |ϕn(x)| ≤ κ2 for any x ∈ [0, l]. (3.36)

It is known (see [1, 4]) that problem (3.35) reduces to the spectral problem for the self-

adjoint operator in the Hilbert space H = L2(0, l)⊕ C with corresponding scalar product. In

view of (3.36), by the maximum-minimum property of eigenvalues (see [1, 2]) we obtain that

the eigenvalues of problem (3.35) are uniformly bounded from below with respect to n ∈ N.

Consequently, the relation

lim
n→∞

λn = −∞

is not possible. Should be noted that the relation

lim
n→∞

λn = +∞,

is also impossible, since for a sufficiently large n, by [5, Theorem 4.3], the number of zeros of

the function yn will be large enough, which contradicts the condition yn ∈ Sν
k .

Therefore, for any k ∈ N we have

D+
k, 0 = D+

k, ∞
and D−

k, 0 = D−
k, ∞

. (3.37)
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Step 4. It is obvious that any solution to problem (3.1) of the form (1, y) gives a solution y to

problem (1.1)–(1.5). In order for problem (1.1)–(1.5) to have a solution y which is contained in

Sν
k for some k ∈ N, by (3.37) it is sufficient that on the real axis R the interval I0

k lies to the left

of 1 and the interval I∞
k lies to the right of 1, or the interval I0

k lies to the right of 1, and the

interval I∞
k lies to the left of 1.

Let the conditions g0 > − f
0

and g∞ > − f
∞

be satisfied. Hence we have g∞ > − f ∞. If the

condition λk
g0+ f

0

< χ <
λk

g∞+ f ∞

is satisfied, then we get

λk

χg0
−

f
0

g0
<

λk
λk

g0+ f
0

g0

−
f

0

g0
=

λk(g0 + f
0
)

λkg0
−

λk f
0

λkg0
= 1

and
λk

χg∞

−
f ∞

g∞

>
λk

λk

g∞+ f ∞

g∞

−
f ∞

g∞

=
λk(g∞ + f ∞)

λkg∞

−
λk f ∞

λkg∞

= 1.

The case in which λk
g∞+ f

∞

< χ <
λk

g0+ f 0

can be considered in a similar way. The proof of this

theorem is complete.

Step 4 of the proof of Theorem 3.1 makes it possible to obtain other conditions for the

existence of solutions to problem (1.1)–(1.5) contained in the sets S+
k and S−

k for some k ∈ N.

Theorem 3.2. Let g0 > − f
0
, − f ∞ < g∞ ≤ − f

∞
, and for some k ∈ N the following condition is

satisfied:
λk

g0 + f
0

< χ <
λk

g∞ + f ∞

.

Then the statement of Theorem 3.1 holds.

Theorem 3.3. Let g0 > − f
0
, g∞ ≤ − f ∞, and for some k ∈ N the following condition is satisfied:

χ >
λk

g0 + f
0

.

Then the statement of Theorem 3.1 holds.

Theorem 3.4. Let − f 0 < g0 ≤ − f
0
, g∞ > − f

∞
, and for some k ∈ N the following condition is

satisfied:
λk

g∞ + f
∞

< χ <
λk

g0 + f 0

.

Then the statement of Theorem 3.1 holds.

Theorem 3.5. Let g0 ≤ − f 0, g∞ > − f
∞

, and for some k ∈ N the following condition is satisfied:

χ >
λk

g∞ + f
∞

.

Then the statement of Theorem 3.1 holds.

The proofs of these theorems are similar to that of Step 4 of Theorem 3.1.
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Abstract. We consider a class of degenerate elliptic fully nonlinear equations with
applications to Grad equations:

{
|Du|γM+

λ,Λ

(
D2u(x)

)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,

where γ ≥ 1 is a constant, Ω is a bounded domain in R
N with C1,1 boundary. We prove

the existence of a W2,p-viscosity solution to the above equation, which degenerates
when the gradient of the solution vanishes.

Keywords: fully nonlinear degenerate elliptic equations, viscosity solution, Pucci’s ex-
tremal operator, Dirichlet boundary value problem.
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1 Introduction

We investigate the following degenerate problem:

{
|Du|γM+

λ,Λ

(
D2u(x)

)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,
(1.1)

where γ ≥ 1 is a constant, Ω is a bounded domain in R
N with C1,1 boundary, | · | denotes

the Lebesgue measure in R
N , f : [0, |Ω|] −→ R is a non-decreasing, non-negative continuous

function and u : Ω −→ R. Here, M+
λ,Λ is the Pucci’s extremal operator. In our setting, by

u ≥ u(x), we mean,

{ω ∈ Ω : u(ω) ≥ u(x)}

called the superlevel sets of u. We establish the existence of a W2,p-viscosity solution (also

known as Lp-viscosity solution) to (1.1). It is worth mentioning that the notion of W2,p-

viscosity solution was defined by Caffarelli et al. [7]. In the case when γ = 0 in (1.1), the

existence of a W2,p-viscosity solution is proven by L. Caffarelli and I. Tomasetti [8].

BEmail: priyank.k@iitgn.ac.in
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The pioneer contribution in this direction was due to H. Grad [12], who introduced such

equations, which appear in plasma physics, called “Grad equations”. In their seminal work,

Grad examined the following equation in three-dimension:

∆Ψ = F(V, Ψ, Ψ′, Ψ′′),

where the right hand side (R.H.S.) represents a second-order differential operator acting on

Ψ(V) for a surface defined by Ψ = constant. Here, Ψ′(V) represents the derivative with

respect to volume and Ψ(V) stands for the inverse function to V(Ψ), denoting the volume

enclosed by Ψ. Furthermore, they pointed out the potential for simplifying plasma equations

by introducing u∗ defined as:

u∗(t):= inf
{

s : |u < s| ≥ t
}

.

These equations, also known as Queer Differential Equations in the literature, have a wide

range of applications across various fields. One notable application is their appearance in

plasma modeling, specifically in analyzing plasma confined within toroidal containers. We

refer to [12] for the details. Moreover, these equations exhibit connections in financial math-

ematics, see [23]. R. Temam [22] pioneered the investigation of problems akin to (1.1) con-

cerning the Laplacian, a direction extensively examined by several researchers. They notably

established the existence of solutions to equations having the model structure:

∆u = g
(
|u < u(x)|, u(x)

)
+ f (x),

by exploiting the properties of directional derivatives of u∗. For further insights into this topic,

we refer the interested readers to the works of J. Mossino and R. Temam [17], as well as those

by P. Laurence and E. Stredulinsky [15, 16], along with the related references therein.

In all the aforementioned research works, the problem was studied using variational meth-

ods. However, in a recent work, L. Caffarelli and I. Tomasetti [8] studied the equation similar

to J. Mossino and R. Temam [17] for fully nonlinear uniformly elliptic operators using the

viscosity approach. Specifically, they addressed the following problem:

{
F
(

D2u(x)
)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,

where F represents a convex, uniformly elliptic operator. They established the existence of a

W2,p-viscosity solution u to this problem, satisfying the following estimate:

∥u∥W2,p(Ω) ≤ C
[
∥u∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f

(
|u ≥ u(x)|

)
∥p,Ω

]
.

For further insights into the existence and qualitative questions pertaining to extremal Pucci’s

equations, we refer to [10, 11, 18, 20, 21, 24–26] .

Concurrently, equations involving gradient degenerate fully nonlinear elliptic operators

have been widely investigated over the past decade. Pioneering works in this direction are

attributed to I. Birindelli and F. Demengel. They proved several important results for these op-

erators in a series of papers. These contributions involve comparison principle and Liouville-

type results [3], regularity and uniqueness of eigenvalues and eigenfunctions [4, 5], C1,α regu-

larity in the radial case [6]. Furthermore, the equations of the form:

|Du|γF(D2u) = f in B1, (1.2)
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when γ ≥ 0 is a constant and f ∈ L∞(B1, R), were investigated by C. Imbert and L. Silvestre

[13]. In particular, they established the interior C1,α regularity of solutions for equations of the

form (1.2). One may also see [19] for insights into variable exponent degenerate mixed fully

nonlinear local and nonlocal equations.

Motivated by the above works and recently by the work of L. Caffarelli and I. Tomasetti

[8], it is natural to ask the following question:

Question: Do we have the existence of a viscosity solution to (1.1)?

The aim of this paper is to answer this question affirmatively. The crucial difference to our

problem from [8] is due to the fact that |Du|γM+
λ,Λ(D2u) degenerates along the set of critical

points,

C:= {x : Du(x) = 0}.

The problem is challenging due to the following reasons:

(C1) The R.H.S. of (1.1) is a function of measure of superlevel sets. This makes the problem

nonlocal.

(C2) The L.H.S. of (1.1) is degenerate. The fundamental theory of Lp-viscosity solutions does

not work directly here since it requires the uniform ellipticity of the operator. Also,

when f ∈ C(Ω), the problem can be discussed in the C-viscosity sense but in the case of

discontinuous data, when f ∈ Lp(Ω), the problem needs to be treated in the Lp-viscosity

sense. We point out that this situation occurs while approximating the R.H.S. of (1.1).

We use the Lp-viscosity solution approach for Monge–Ampère equation as in [1, 8] to

(1.1). To handle the above mentioned challenges, we first consider the following approximate

problem:
{
|Du|γM+

λ,Λ

(
D2u(x)

)
+ ε∆u = f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,
(1.3)

for ε > 0. Further, using the approximations in the R.H.S. of the equation and exploiting the

results available for uniform elliptic operators, for instance, Theorem 2.5 and Theorem 2.7 (see

next), we establish the existence of a viscosity solution to the approximate problem (1.3). This

yields the existence of a viscosity solution to (1.1). More precisely, using the idea of Amadori

et al. [1], we first get the existence of a W2,p-viscosity solution to the approximate problem

(1.3) by invoking Theorem 2.1 [8]. We recall that the estimate established in [8] is not adequate

to claim the uniform bound on the W2,p-viscosity solution of (1.3). To show the existence of

a solution to the original problem (1.1), we seek the uniform bound on the solutions of (1.3),

which is crucial in approaching ε −→ 0+. We invoke the Alexandroff–Bakelman–Pucci (ABP)

estimates from Caffarelli et al. [7] to sort this issue. These estimates play a crucial role in

obtaining uniform bounds on the W2,p-viscosity solutions to (1.3).

Throughout the paper, we consider Ω to be a bounded C1,1 domain in R
N , N ≥ 2.

The main result of this paper is the following:

Theorem 1.1. Let γ ≥ 1 be a constant. Let Ω ⊂ R
N be a bounded C1,1 domain. Let f ∈

C
(
[0, |Ω|], R

)
be a non-decreasing, non-negative function and g ∈ W2,p(Ω) ∩ C(Ω), p > N. Con-

sider the problem
{
|Du|γM+

λ,Λ

(
D2u(x)

)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω.
(1.4)
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Then, there exists a W2,p-viscosity solution of (1.4). Moreover, the solution satisfies the following

estimate:

∥u∥W2,p(Ω) ≤ C

(
∥u∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f (|u ≥ u(x)|)∥p,Ω

)
,

where C > 0 is a constant.

Remark 1.2. By Sobolev’s embedding theorem we have that the solution is C1,α(Ω) regular

for any 0 < α < 1.

The organization of the paper is as follows. In Section 2, we recall the basic definitions

and several key results used in the ensuing sections of the paper. Section 3 is devoted to the

proof of our main result. Here, we sketch the plan of our proof:

(i) Perturb the left-hand side (L.H.S.), i.e., the operator |Du|γM+
λ,Λ

(
D2u

)
by adding ε∆u,

for ε > 0. (This makes the problem uniformly elliptic.)

(ii) Fix a Lipschitz function v in the R.H.S. of (1.3).

(iii) Construct a sequence of Lp-functions converging to R.H.S. (for fixed Lipschitz function

v) and obtain a sequence of solutions.

(iv) Obtain the existence of solution to equation pertaining |Du|γM+
λ,Λ

(
D2u

)
+ ε∆u for fixed

Lipschitz function v in the R.H.S.

(v) Use Theorem 2.1 [8] (an application of Schaefer fixed point theorem) to show the exis-

tence of a solution to (1.3).

(vi) Establish the existence of a W2,p-viscosity solution to (1.4).

2 Preliminaries

We recall that a continuous mapping F : SN −→ R is uniformly elliptic if:

For any A ∈ SN , where SN is the set of all N × N real symmetric matrices, there exist two

positive constants Λ ≥ λ > 0 s.t.

λ∥B∥ ≤ F(A + B)− F(A) ≤ NΛ∥B∥ for all positive semi-definite B ∈ SN ,

and ∥B∥ is the largest eigenvalue of B. Here, we have the usual partial ordering: A ≤ B in SN

means that ⟨Aξ, ξ⟩ ≤ ⟨Bξ, ξ⟩ for any ξ ∈ R
N . In other words, B − A is positive semidefinite.

Let S ∈ SN , then for the given two parameters Λ ≥ λ > 0, Pucci’s maximal operator is

defined as follows:

M+
λ,Λ(S):= Λ ∑

ei≥0

ei + λ ∑
ei<0

ei,

where {ei}
N
i=1 are the eigenvalues of S. This operator is uniformly elliptic and subadditive,

that is

M+
λ,Λ(A + B) ≤ M+

λ,Λ(A) +M+
λ,Λ(B),

for A, B ∈ SN . Clearly, for λ = Λ = 1, M+
λ,Λ ≡ ∆, the classical Laplace operator.

Next, we recall the notion of a viscosity solution. M. G. Crandall and P.-L. Lions [9] were

the first to introduce the concept of a viscosity solution. Now, we recall the definition of

continuous viscosity solution to the following equation:

|Du|γF
(

D2u(x)
)
= f in Ω, (2.1)
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for f ∈ C(Ω).

Definition 2.1 ([3]). Let u : Ω −→ R be an upper semicontinuous (USC) function in Ω. Then,

u is called a viscosity subsolution of (2.1) if

|Dϕ(x)|γF
(

D2 ϕ(x)
)
≥ f (x),

whenever ϕ ∈ C2(Ω) and x ∈ Ω is a local maximizer of u − ϕ with Dϕ ̸= 0 ∈ R
N .

Definition 2.2 ([3]). Let u : Ω −→ R be a lower semicontinuous (LSC) function in Ω. Then, u

is called a viscosity supersolution of (2.1) if

|Dψ(x)|γF
(

D2ψ(x)
)
≤ f (x),

whenever ψ ∈ C2(Ω) and x ∈ Ω is a local minimizer of u − ψ with Dψ ̸= 0 ∈ R
N .

Definition 2.3 ([3]). A continuous function u is said to be a viscosity solution to (2.1) if it is a

supersolution as well as subsolution to (2.1).

Let h ∈ Lp(Ω), g ∈ W2,p(Ω) ∩ C(Ω) for p > N. Let us consider the problem

{
|Du|γM+

λ,Λ(D2u) = h in Ω,

u = g on ∂Ω.
(2.2)

We mention that the classical definition of W2,p-viscosity solution can not be applied for (2.2),

due to the lack of uniform ellipticity. Consider the problem:

{
|Du|γM+

λ,Λ

(
D2u

)
+ ε∆u = h in Ω

u = g on ∂Ω,
(2.3)

for p ∈ R
N . Motivated by Caffarelli et al. [7] and Ishii et al. [14], we define the Lp-viscosity

subsolution (supersolution) to (2.3) as follows.

Definition 2.4. Let u be an USC (respectively, LSC) function on Ω. We say that u is an Lp-

viscosity subsolution (respectively, supersolution) to (2.3) if u ≤ g (resp., u ≥ g) on ∂Ω and

for all φ ∈ W2,p(Ω),

ess lim inf
x−→y

(
|Dφ(x)|γM+

λ,Λ

(
D2φ(x)

)
+ ε∆φ(x)− h(x)

)
≥ 0

(
resp., ess lim sup

x−→y

(
|Dφ(x)|γM+

λ,Λ

(
D2φ(x)

)
+ ε∆φ(x)− h(x)

)
≤ 0

)
,

for y ∈ Ω, the point of local maxima (respectively, minima) to u − φ.

We say that any continuous function u is an Lp-viscosity solution to (2.3) if it is both

Lp-viscosity subsolution and supersolution to (2.3). Now, we state a result concerning the ex-

istence and uniqueness of W2,p-viscosity solution to the operator F under certain hypotheses.

The following result is due to N. Winter [27].
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Theorem 2.5 ([27, Theorem 4.6]). Let Ω be a bounded C1,1 domain in R
N . Let F(p, M) be a uni-

formly elliptic operator and convex in M-variable. Also, let F(0, 0) ≡ 0 in Ω, f ∈ Lp(Ω) and

g ∈ W2,p(Ω) for p > N. Then, there exists a unique W2,p-viscosity solution to

{
F(Du, D2u) = f in Ω

u = g on ∂Ω.

Moreover, u ∈ W2,p(Ω) and

∥u∥W2,p(Ω) ≤ C

(
∥u∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f ∥p,Ω

)
,

for some positive constant C.

Theorem 2.6 ([2, Theorem 1.1]). Let Ω be a bounded domain with C2-boundary. Let γ ≥ 0 and F

be a uniformly elliptic operator and f ∈ C(Ω), g ∈ C1,β(∂Ω) for some β ∈ (0, 1). Then, any viscosity

solution u of

{
|Du|γF

(
D2u

)
= f in Ω

u = g on ∂Ω

is in C1,α for some α = α(λ, Λ, ∥ f ∥∞,Ω, N, Ω, , β). Moreover, u satisfies the following estimate

∥u∥C1,α(Ω) ≤ C

(
∥g∥C1,β(∂Ω) + ∥u∥∞,Ω + ∥ f ∥

1
1+γ

∞,Ω

)
,

for some positive constant C = C(α).

The following result plays an important role in Step 5 of the proof of our main result.

Theorem 2.7 ([7, Theorem 3.8]). Let Fi, F be uniformly elliptic and p > N. Let f , fi ∈ Lp(Ω). Let

ui ∈ C(Ω) be W2,p-viscosity subsolutions (supersolutions) to

Fi(D2ui) = fi in Ω,

for i = 1, 2, . . . Assume that ui −→ u locally uniformly in Ω. Also, assume that if for each B(x0, r) ⊂

Ω and g ∈ W2,p(B(x0, r)), we have

∥∥(Fi(D2ui)− fi(x)− F(D2(u)) + f (x)
)+∥∥

p,B(x0,r)
−→ 0,

(∥∥(Fi(D2ui)− fi(x)− F(D2(u)) + f (x)
)−∥∥

p,B(x0,r)
−→ 0

)
.

Then, u is a W2,p-viscosity subsolution (supersolution) to

F(D2u) = f in Ω.

3 Proof of our main result

Proof of Theorem 1.1. The original problem is

{
|Du|γM+

λ,Λ

(
D2u(x)

)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω.
(3.1)
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Step 1: Perturbing the L.H.S. by adding ε∆u. Consider the approximate problem:

{
|Du|γM+

λ,Λ

(
D2u

)
+ ε∆u = f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,
(3.2)

for ε > 0. Since, Gu := |Du|γM+
λ,Λ

(
D2u

)
+ ε∆u is uniformly elliptic, so by Theorem 2.1 [8],

we immediately have the existence of a W2,p-viscosity solution (say uε) to (3.2) satisfying the

following estimate:

∥uε∥W2,p(Ω) ≤ C

(
∥uε∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f

(
|uε ≥ uε(x)|

)
∥p,Ω

)
.

By the above estimate, one can not directly claim the uniform bound on uε, which is crucial

in order to pass the limit ε −→ 0 to establish the existence of W2,p-viscosity solution to (3.1).

To overcome this difficulty, we further approximate problem (3.2).

Step 2: Freeze a Lipschitz function v for the R.H.S.. Next, following the arguments similar

to [8], we fix a Lipschitz function v in Ω, and consider hv(x):= f
(
|v ≥ v(x)|

)
and reduce to

the following problem:

{
|Du|γM+

λ,Λ

(
D2u

)
+ ε∆u = hv in Ω

u = g on ∂Ω.
(3.3)

Step 3: Building a sequence of functions in R.H.S. We consider a sequence of functions{
hi

v

}∞

i=1
defined as

hi
v(x):= f

(
i
∫ 1

i

0
|v ≥ v(x)− t|dt

)
.

We approximate the function

hv(x)
(
= f

(
|v ≥ v(x)|

))

in the R.H.S. of (3.3) by the sequence of functions
{

hi
v

}∞

i=1
. Hence, we have the following

approximate problem:

{
|Du|γM+

λ,Λ

(
D2u

)
+ ε∆u = hi

v in Ω

u = g on ∂Ω,
(3.4)

for i ≥ 1. Since
{

hi
v

}
∈ Lp(Ω). For each i, by Theorem 2.5, we have the existence of a unique

W2,p-viscosity solution to (3.4).

Lemma 3.1. There exists a unique W2,p-viscosity solution to (3.4). Moreover, it satisfies the following

estimate:

∥ui
ε∥W2,p(Ω) ≤ C

(
max

∂Ω
g + ∥g∥W2,p(Ω) + f (|Ω|)|Ω|

1
p

)
.

Proof. By Theorem 2.5, we have the existence of a unique W2,p-viscosity solution ui
ε to (3.4)

satisfying the following estimate:

∥ui
ε∥W2,p(Ω) ≤ C

(
∥ui

ε∥∞,Ω + ∥g∥W2,p(Ω) + ∥hi
v∥p,Ω

)
,

Also, it is easy to observe that

∥hi
v∥∞,Ω ≤ f (|Ω|), (3.5)
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and

∥hi
v∥p,Ω =

( ∫

Ω
|hi

v(x)|pdx

) 1
p

≤ ∥hi
v∥∞,Ω|Ω|

1
p

≤ f (|Ω|)|Ω|
1
p ,

(3.6)

for each i ≥ 1. Thus the sequence of functions hi
v is uniformly bounded. Now, by ABP

estimates established in [7], we have

sup
Ω

ui
ε ≤ sup

∂Ω

ui
ε + C∥hi

v∥p,Ω,

and similarly for the infΩ ui
ε. For more details, see Proposition 3.3 [7]. Using this along with

the estimates (3.5) and (3.6), we have the following:

∥ui
ε∥W2,p(Ω) ≤ C̃,

where C̃ is a positive constant independent of i and ε.

Step 4: Establish the existence of solution to (3.3). It further gives that {ui
ε} is uniformly

bounded in W2,p(Ω) (with respect to i). Now, by reflexivity of W2,p(Ω), ui
ε converges weakly

in W2,p(Ω). Moreover, since p > N/2. Using the similar arguments as above, we have the

existence of a subsequence such that ui
ε −→ uε,v in the Lipschitz norm. As a consequence of

Theorem 2.7, uε,v is a W2,p-viscosity solution to (3.3). Moreover, uε,v satisfies the following

estimate:

∥uε,v∥W2,p(Ω) ≤ C

(
max

∂Ω
|g|+ ∥g∥W2,p(Ω) + ∥ f (|v ≥ v(x)|)∥p,Ω

)
.

Step 5: Establish the existence of solution to (3.2). Further, using Theorem 2.1 [8] (an appli-

cation of Schaefer fixed point theorem), we have the existence of a W2,p-viscosity solution to

(3.2) for each 0 < ε < 1, say uε (a Lipschitz fixed point). Moreover, uε satisfies the following

estimate:

∥uε∥W2,p(Ω) ≤ C

(
max

∂Ω
|g|+ ∥g∥W2,p(Ω) + ∥ f (|uε ≥ uε(x)|)∥p,Ω

)
. (3.7)

Step 6: Establish the existence of solution to (3.1) on ε −→ 0. Since uε is uniformly bounded

in W2,p(Ω) (with respect to ε) so we have that along some subsequence, uε converges weakly

in W2,p(Ω). Moreover, by the Rellich–Kondrasov theorem, along some subsequence uε −→ u

in C(Ω) (since p > N) to a Lipschitz function u. We further claim that u is an Lp-viscosity

solution to (3.1). We use the idea of [1]. We just check the supersolution part. Further, one can

check for the subsolution part using the similar arguments. Let, if possible, assume that u is

not an Lp-viscosity supersolution to (3.1). Then by definition, there exists a point x0 ∈ Ω and

a function φ ∈ W2,p(Ω) with Dφ ̸= 0 such that u − φ has local minimum at x0 and

|Dφ|γM+
λ,Λ(D2φ)− f (|u ≥ u(x0)|) ≥ α a.e. in some ball B(x0, r), (3.8)

for some constant α > 0. In other words, u − φ restricted to B(x0, r) has a global strict minima

at x0. Next, using the above information, we get a contradiction by constructing a function

φε = φ − ψε corresponding to uε such that

|Dφε|
γM+

λ,Λ(D2φε) + ε∆φε − f (|u ≥ u(x0)|) ≥ α a.e. in B(x0, r) (3.9)
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for small enough ε > 0 and

φε −→ φ uniformly.

Now, since uε is an Lp-viscosity solution to (3.2) so (3.9) implies that uε − φε can not attain

minimum in the ball B(x0, r). However, since uε − φε is continuous and B(x0, r) is compact.

Therefore, uε − φε attains minimum in B(x0, r). Let it be xε. It gives that xε −→ x0 along some

subsequence. It further implies that xε ∈ B(x0, r) for small enough ε, which is a contradiction.

Thus such a function φ constructed in (3.8) does not exist, which proves our claim that u is an

Lp-supersolution to (3.1). Similarly, one can check the subsolution part.

Next, we show that u is the limit function of the sequence of functions uε as ε −→ 0. Let

if possible, ε i and ε̃i be two sequences approaching 0 with u and ũ being the corresponding

limit functions to the sequences, respectively. Up to subsequences, we may assume that

· · · ≤ ε̃i+1 ≤ ε i ≤ ε̃i ≤ ε i−1 ≤ · · · .

Our aim is to show that w = uε i − uε̃i+1
≤ 0. If we show that

|Dw|γM+
λ,Λ(D2w) + ε∆w ≥ 0 in Ω (in C-viscosity sense),

we are done. As by comparison principle, we would immediately get w ≤ 0. Therefore,

uε i ≤ uε̃i+1
. Thus, in order to show that

w = uε i − uε̃i+1
≤ 0,

we only need to show that

|Dw|γM+
λ,Λ(D2w) + ε i∆w ≥ 0.

As shown above, it immediately gives w ≤ 0. Let us assume the contrary, i.e., there exists

some point x0 ∈ Ω such that for some ϕ ∈ C2(Ω), w − ϕ attains local maxima at x0, i.e., there

exists a ball B(x0, r) such that

|Dϕ|γM+
λ,Λ(D2 ϕ) + ε i∆ϕ ≤ −α in B(x0, r),

for some α > 0 and w − ϕ =
(
uε i − uε̃i+1

)
− ϕ = uε i −

(
uε̃i+1

+ ϕ
)

has a global strict maximum

at x0 in B(x0, r). Now, consider a function

Ψ := ϕ + uε̃i+1
.

Clearly, Ψ ∈ W2,p(Ω) and touches uεi
from above at x0. Also, consider a test function, Φ for
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uε̃i+1
touching from below with |DΦ(x0)| sufficiently larger than |Dϕ(x0)|. We have

|DΨ(x0)|
γM+

λ,Λ

(
D2Ψ(x0)

)
+ ε i∆Ψ(x0)− f

(
|u ≥ u(x0)|

)
+ α

≤ |DΨ(x0)|
γ
(
M+

λ,Λ

(
D2 ϕ(x0)

)
+M+

λ,Λ

(
D2Φ(x0)

))
+ ε i∆ϕ(x0)

+ ε i∆Φ(x0)− f
(
|u ≥ u(x0)|

)
+ α

= |DΨ(x0)|
γM+

λ,Λ

(
D2 ϕ(x0)

)
+ ε i∆ϕ(x0) + |DΨ(x0)|

γM+
λ,Λ

(
D2Φ(x0)

)

+ ε i∆Φ(x0)− f
(
|u ≥ u(x0)|

)
+ α

= |Dϕ(x0) + DΦ(x0)|
γM+

λ,Λ

(
D2 ϕ(x0)

)
+ ε i∆ϕ(x0) + α

+ |Dϕ(x0) + DΦ(x0)|
γM+

λ,Λ(D2Φ(x0)) + ε i∆Φ(x0)− f
(
|u ≥ u(x0)|

)

≤
|Dϕ(x0) + DΦ(x0)|γ

|Dϕ(x0)|γ
(
− α − ε i∆ϕ(x0)

)
+ ε i∆ϕ(x0) + α

+
|Dϕ(x0) + DΦ(x0)|γ

|DΦ(x0)|γ
(

f
(
|u ≥ u(x0)|

)
− ε i∆Φ(x0)

)
+ ε i∆Φ(x0)

− f
(
|u ≥ u(x0)|

)

≤
|Dϕ(x0) + DΦ(x0)|γ

|Dϕ(x0)|γ
(
− α − ε i∆ϕ(x0)

)
+ ε i∆ϕ(x0) + α

+ 2γ−1 |Dϕ(x0)|γ + |DΦ(x0)|γ

|DΦ(x0)|γ
(

f
(
|u ≥ u(x0)|

)
− ε i∆Φ(x0)

)
+ ε i∆Φ(x0)

− f
(
|u ≥ u(x0)|

)

≤
(
− α − ε i∆ϕ(x0)

) ( |Dϕ(x0) + DΦ(x0)|γ

|Dϕ(x0)|γ
− 1

)

+
(

f
(
|u ≥ u(x0)|

)
− ε i∆Φ(x0)

)
(

2γ−1

(
|Dϕ(x0)|γ + |DΦ(x0)|γ

)

|DΦ(x0)|γ
− 1

)
,

(3.10)

for all large enough i ∈ N. Note that in the second last step we used the fact that for any

positive real numbers a, b and r ≥ 1, we have

|a + b|r ≤ 2r−1
(
|a|r + |b|r

)
.

Further, by the choice of test function Φ made before (3.10), we have

M+
λ,Λ(D2Ψ) + ε i∆Ψ − f

(
|u ≥ u(x0)|

)
≤ −α < 0,

which contradicts the fact that uεi
is an Lp-viscosity solution to (3.2). Thus we have that

uε i ≤ uε̃i+1
. Letting i −→ ∞, we get u ≤ ũ. Also, following the similar arguments, one can

show that uε̃i+1
≤ uε i . Thus, we have ũ ≤ u and hence u = ũ.

Therefore, we have the existence of a W2,p-viscosity solution, u to (3.1). Moreover, by (3.7), we

have the following estimate:

∥u∥W2,p(Ω) ≤ C

(
∥u∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f (|u ≥ u(x)|)∥p,Ω

)
.
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1 Introduction

Let h(x, y), fi(x, y) : R
n × R

m → R, i = 1, . . . , N + 1, be Cr-functions, r ≥ 2, bounded on
R

n × R
m together with their derivatives, and c1 < c2 < . . . < cN < cN+1 be real numbers.

In this paper we study the problem of existence of continuous, piecewise smooth, bounded
solutions of a singularly perturbed equation like

ẋ = f (x, y),
ẏ = εg(x, y, ε)

(1.1)

where x ∈ R
n, y ∈ R

m, ε ∈ R, ε > 0 and

f (x, y) :=







fi(x, y) if ci−1 < h(x, y) < ci,
i = 1, . . . , N

fN+1(x, y) if h(x, y) > cN

(1.2)
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where we take for notational simplicity c0 = −∞. It is assumed that for all y ∈ R
m, the frozen

system
ẋ = f (x, y) (1.3)

has hyperbolic fixed points x = w±(y) with an associated piecewise Cr, heteroclinic solu-
tion u(t, y) intersecting transversally the manifolds Si(y) = {x | h(x, y) = ci}. We intend to
give a Melnikov like condition guaranteeing that the perturbed system (1.1) has a solution
(x(t, ε), y(t, ε)) such that supt∈R

|x(t, ε) − u(t, y(t, ε))| → 0 as ε → 0. This paper has been
motivated by [10, 11] where the authors considered a perturbation of a smooth, Hamiltonian,
three-dimensional system. The main result of our paper (Theorem 6.2) concerns higher di-
mension, discontinuous and not necessarily Hamiltonian systems. Moreover the approach in
[10, 11] is basically geometrical, while in this paper it is based on Lyapunov–Schmidt reduc-
tion.

This paper is a continuation of series of our works [3–6] on the study of existence of
bounded solutions for slowly varying discontinuous differential equations. Papers [3–5] deal
with the persistence of periodic solutions in case of existence of either a single or a family of
periodic solutions for the frozen system (1.3). Next, in [6] generic conditions have been given
for persistence of an isolated homoclinic-heteroclinic solution for the frozen system. Thus it
is a natural step to study the case when the frozen system possesses a parametric system of
bounded-homoclinic-heteroclinic solutions, which is the purpose of this paper.

To prove Theorem 6.2 we use a general result in [6] concerning the characterization of
bounded solutions on both the positive and the negative line for the perturbed equation,
Then, in [6], this result is used, jointly with a Lyapunov–Schmidt reduction, to write down a
bifurcation equation which is the scalar product of certain vectors with the difference at t = 0
of the value of these solutions. Now, in [6] the case is considered where this function has a
simple zero at ε = 0, while in this paper it is identically zero at ε = 0. This fact makes a big
difference and indeed the Melnikov functions obtained in the two cases are quite different.

We now briefly sketch the content of this paper. For the reader convenience and also for
the completeness of this paper, we recall necessary results from [6] in Sections 2–5. Namely,
Section 2 provides basic assumptions and defines the piecewise smooth heteroclinic solution
of the unperturbed system. Section 3 recalls the definition of exponential dichotomy and
extends this notion to discontinuous, piecewise linear, systems with jumps at some points;
moreover some results concerning existence of bounded solutions on either t ≥ 0 and t ≤ 0
are extended to these systems. In Section 4 we construct families of bounded solutions and
describes them in terms of some parameters. These solutions are continuous and piecewise
smooth and give the bounded solutions we look for, when they assume the same value at
t = 0. Section 5 defines the discontinuous variational equation.

Our main results are proved in Section 6 where we obtain a Melnikov-type condition
assuring that the bifurcation function has a manifold of solutions. Motivated by [8], Section 7,
is devoted to the construction of an example of application of the main result of this paper.
Although the equation is three-dimensional and Hamiltonian, the vector field is discontinuous
and then the results in [8, 10, 11] do not apply.

Finally, in Section 8 we show that the Melnikov function given here extends to the hetero-
clinic case with finitely many discontinuity points, the Melnikov function given in [5] for the
periodic case with two discontinuity points.

In the whole paper we will use the following notation. Given a vector v or a matrix A with
vT, AT we denote the transpose of v, A.
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2 Notation and basic assumptions

Let Ω ⊂ R
n be a bounded domain, c1 < . . . < cN+1 be real numbers and h : Ω × R

m → R be
a Cr-functions, r ≥ 2, with bounded derivatives. For ℓ = 1, . . . , N + 1, we set

Ωℓ = {(x, y) ∈ Ω × R
m | ci−1 ≤ h(x, y) < ci},

where we set for simplicity, c0 = −∞. Then let fℓ : Ω × R
m → R

n be Cr-functions, bounded
together with their derivatives in Ω × R

m.

First we give the definition of solutions of equation

ẋ = fi(x, y), (x, y) ∈ Ωi, i = 1, . . . , N + 1 (2.1)

we are considering in this paper.

Definition 2.1. A continuous, piecewise smooth function u(t, y) is a solution of equation (2.1)
on t ≥ 0 intersecting transversally the sets Si(y) = {x ∈ Ω | h(x, y) = ci}, i = 1, . . . , N, if there
exist η > 0 and Cr-functions bounded together with their derivatives 0 < t1(y) < . . . < tN(y)

such that the following conditions hold for 1 ≤ i ≤ N (note that we set t0(y) = 0)

a1) u̇(t, y) = fi(u(t, y), y) for ti−1(y) < t < ti(y) and u̇(t, y) = fN+1(u(t, y), y) for t > tN(y);

a2) h(u(ti(y), y), y) = ci, and hx(u(ti(y), y), y)u̇(ti(y)
±, y) > 2η;

a3) ci−1 < h(u(t, y), y) < ci, for ti−1(y) < t < ti(y) and h(u(t, y), y) > cN , for t > tN(y).

Similarly, a continuous, piecewise smooth function u(t, y) is a solution of equation (2.1) on
t ≤ 0 intersecting transversally the sets Si(y), if there exist η > 0 and Cr-functions bounded
together with their derivatives t−N(y) < . . . < t−1(y) < 0 such that the following conditions
hold for any 1 ≤ i ≤ N:

a′1) u̇(t, y) = fi(u(t, y), y) for t−i(y) < t < t−i+1(y) and u̇(t, y) = fN+1(u(t, y), y) for t <

t−N(y);

a′2) h(u(t−i(y), y), y) = ci, and hx(u(t−i(y), y), y)u̇(t−i(y)
±, y) < −2η;

a′3) ci−1 < h(u(t, y), y) < ci, for t−i(y) < t < t−i+1(y) and h(u(t, y), y) > cN , for t < t−N(y).

In this paper we assume that a continuous, piecewise smooth solution u(t, y) of equation
(2.1) exist, for t ∈ R, such that the following conditions hold.

A1) w0(y) := u(0, y) and its derivatives are bounded functions on R
m and w0(y) belongs to

an open and bounded subset B ⊂ R
n such that B × R

m ⊂ Ω1.

A2) There exist smooth and bounded functions w±(y) and µ0 > 0, such that

fN+1(w±(y), y) = 0,

h(w±(y), y)− cN > µ0,

for any y ∈ R
m and

lim
t→±∞

u(t, y)− w±(y) = 0

uniformly with respect to y ∈ R
m.
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Figure 2.1: The piecewise C1 bounded solution of (1.3). For simplicity we write w±
j

instead of w±
j (y).

A3) For any y ∈ R
m, fN+1,x(w±(y), y) have k eigenvalues with negative real parts and n − k

eigenvalues with positive real parts, counted with multiplicities and there exists δ0 > 0
such that all these eigenvalues satisfy

|Re λ(y)| > δ0.

We set

t0(y) = 0, ∀y ∈ R
m.

So, we are considering solutions of (2.1) which are contained in C × R
n ⊂ Ω × R

m, where
C is a compact subset of Ω. Then we may and will assume that Ω = R

n.

Remark 2.2. i) As in [6], all results in this paper can be easily generalised to the case where
the solutions exit transversally Ωi and enter into either Ωi+1 or Ωi−1 transversally. We can
formalize all of this as follows: there exists (j0, . . . , jM) such that given ji then ji+1 is either
ji − 1 or ji + 1 and for ti(y) < t < ti+1(y) we have

cji−1 < h(u(t, y), y) < cji .

Moreover

|hx(u(ti(y), y), y) fi(u(ti(y), y), y)| > 2η.

for any i = 1, . . . , N. A similar generalization can be made for t ≤ 0 and all other assumption
will be changed accordingly.
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ii) From a2) and a′2) it follows that, for i = 1, . . . , N:

∂

∂t
h(u(t, y), y)|t=ti(y) ≥ 0,

∂

∂t
h(u(t, y), y)|t=0 ≥ 0

that is

hx(u(ti(y), y), y) fi−1(u(ti(y), y), y) ≥ 0,

hx(u(ti(y), y), y) fi(u(ti(y), y), y) ≥ 0.

Similarly

hx(u(t−i(y), y), y) fi(u(t−i(y), y), y) ≤ 0;

hx(u(t−i(y), y), y) fi+1(u(t−i(y), y), y) ≤ 0.

So a2) and a′2) are a kind of transversality assumption on u(t, y).

Let w±
0 (y) = u(0, y) and set, for i = 1, . . . , N:

w±
i (y) = u(t±i(y), y) ∈ Si(y). (2.2)

The following result has been proved in [6]

Lemma 2.3. w±
i (y) are Cr-functions bounded together with their derivatives. Moreover u(t, y) and

its derivatives with respect to y are bounded uniformly with respect to y, on both t ≥ t+N(y) and

t ≤ t−N(y).

Let i = 1, . . . , N + 1. For t ≥ 0, let u+
i (t, y) be the solution of ẋ = fi(x, y) such that

u+
i (ti−1(y), y) = w+

i−1(y). Similarly, let u−
i (t, y) be the solution of ẋ = fi(x, y) such that

u−
i (t1−i(y), y) = w−

i−1(y). Note that u±
i (t, y) is defined for t ∈ R and

u(t, y) =

{

u−
i (t, y) for t−i(y) ≤ t ≤ t1−i(y), i = 1, . . . N + 1,

u+
i (t, y) for ti−1(y) ≤ t ≤ ti(y), i = 1, . . . , N + 1

(2.3)

where, for simplicity, we set t−N−1(y) = −∞ and tN+1(y) = ∞. Note that

u+
i (ti(y), y) = u(ti(y), y) = w+

i (y) = u+
i+1(ti(y), y)

and similarly,
u−

i (t−i(y), y) = u(t−i(y), y) = w−
i (y) = u−

i+1(t−i(y), y).

3 Exponential dichotomy for piecewise discontinuous systems

A basic tool in this paper is the notion of exponential dichotomy, whose definition we recall
here. Let J be either [a, ∞), (−∞, a], or R and A(t), t ∈ J, be a n × n continuous matrix. We
say that the linear system

ẋ = A(t)x, x ∈ R
n (3.1)
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has an exponential dichotomy on J if there exist a projection P : R
n → R

n and constants
δ > 0 and K ≥ 1 such that the fundamental matrix X(t) of (3.1) satisfying X(a) = I, when
J = [a, ∞), (−∞, a], or X(0) = I when J = R, satisfies

|X(t)PX(s)−1| ≤ Ke−δ(t−s), for s ≤ t, s, t ∈ J,

|X(s)(I − P)X(t)−1| ≤ Ke−δ(t−s), for s ≤ t, s, t ∈ J.

K and δ are called the constant and the exponent of the exponential dichotomy.
In [6] the notion of exponential dichotomy has been extended to systems with discontinu-

ities.
Let t0 < t1 < . . . < tN be real numbers, B1, . . . , BN be invertible n × n matrices and A(t),

t ≥ t0 be a piecewise continuous matrix with possible discontinuity jumps at t = t1, . . . , tN ,
that is

A(t) =







Ai(t) if ti−1 ≤ t < ti,
i = 1, . . . , N

AN+1(t) if t ≥ tN

(3.2)

where Ai(t) is continuous for ti−1 ≤ t ≤ ti, AN+1(t) is continuous for t ≥ tN . Note that A(t)

is continuous for t ≥ t0, t ̸= ti, i ̸= 1, . . . , N and right-continuous at t = ti, i = 1, . . . , N with
possible jumps at t = ti, i = 1, . . . , N given by the matrix Ai+1(ti)− Ai(ti).

For t ≥ t0 the fundamental matrix of the linear, discontinuous, system

ẋ = A(t)x,

x(t+i ) = Bix(t
−
i ), i = 1, . . . , N

(3.3)

is defined as

X+(t) =















U1(t) if 0 ≤ t < t1,
Ui+1(t)Ui+1(ti)

−1BiX+(t
−
i ) if ti ≤ t < ti+1,

i = 1 . . . , N − 1
UN+1(t)UN+1(tN)

−1BNX+(t
−
N) if t ≥ tN ,

where Ui(t) is the fundamental matrix of the linear systems

ẋ = Ai(t)x

on R, that is U̇i(t) = Ai(t)Ui(t), t ∈ R, and Ui(0) = I.
Similarly, if t−N < . . . t−1 < t0 and

A(t) =







AN+1(t) if t ≤ t−N ,
Ai(t) if t−i < t ≤ t−i+1,

i = 1, . . . , N

(3.4)

where Ai(t) is continuous for t−i−1 ≤ t ≤ t−i and AN+1(t) is continuous for t ≤ t−N , the
fundamental matrix, for t ≤ t0, of the linear, discontinuous, system

ẋ = A(t)x,

x(t+−i) = Bix(t
−
−i)

(3.5)

is

X−(t) =















U1(t) if t−1 < t ≤ 0,
Ui+1(t)Ui+1(t−i)

−1B−1
i X−(t+−i) if t−i−1 < t ≤ t−i,

i = 1, . . . , N − 1
UN+1(t)UN+1(t−N)

−1B−1
N X+(t

+
−N) if t ≤ t−N .
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Note that, on t ≤ t0, A(t) is continuous for t ≤ t0, t ̸= t−i, i ̸= 1, . . . , N and left-continuous
at t = t−i, i = 1, . . . , N with possible jumps at t = t−i, i = 1, . . . , N given by the matrix
Ai(t−i)− A−i+1(t−i).

Remark 3.1. As a matter of facts, for t ≥ t0, we will consider

A(t) =







Ai(t) if ti−1 ≤ t ≤ ti,
i = 1, . . . , N

AN+1(t) if t ≥ tN

and similarly for t ≤ t0. This may cause a duplicate definition of A(t) at t = ti, however it
will be always clear which one among the functions Ai(t) will be taken into account at that
point.

Without loss of generality we may and will assume that t0 = 0.

Note that X+(t) is continuous for t ̸= t1, . . . , tN and right-continuous at t = t1, . . . , tN and
X−(t) is continuous for t ̸= t−1, . . . , t−N and left-continuous at t = t−1, . . . , t−N .

It is clear that Ẋ±(t) = A(t)X±(t), for any ±t ≥ 0, t ̸= t±1, . . . , t±N , X±(0) = I, the identity
matrix, and

X+(t
+
i ) = BiX+(t

−
i ),

X−(t+−i) = BiX−(t−−i)
(3.6)

for any i = 1, . . . , N. Actually we can write

X+(ti) = BiX+(t
−
i ), X−(t−i) = B−1

i X−(t+−i)

since X+(t) is right-continuous and X−(t) is left-continuous.

Remark 3.2. Let τ ≥ 0 be a fixed number. For t ≥ 0, x(t) = X+(t)X+(τ)−1 x̃ is the right-
continuous solution of







ẋ = A(t)x, for t ≥ 0, t ̸= t1, . . . , tN

x(t+i ) = Bix(t
−
i )

x(τ+) = x̃.
(3.7)

Indeed, it is obvious that ẋ(t) = A(t)x(t) for t ≥ 0, t ̸= t1, . . . , tN and that x(t+i ) = Bix(t
−
i ),

since X+(t
+
i ) = BiX+(t

−
i ). Moreover, for any τ ≥ 0 we have x(τ+) = X+(τ+)X+(τ)−1 x̃ =

X+(τ)X+(τ)−1 x̃ = x̃, since X+(t) is right-continuous at any t ≥ 0.
Similarly, for t ≤ 0 and any fixed τ ≤ 0, x(t) = X−(t)X−(τ)−1 x̃ is the left-continuous

solution of






ẋ = A(t)x, for t ≤ 0, t ̸= t−1, . . . , t−N

x(t−−i) = B−1
i x(t+−i)

x(τ−) = x̃.
(3.8)

The following results have been proved in [6]:

Lemma 3.3. Suppose that the linear system

ẋ = AN+1(t)x

has an exponential dichotomy on t ≥ tN (resp. t ≤ t−N) with constant K, exponent δ and projection

P+ (resp. P− when t ≤ t−N). Then, the linear system (3.3) (resp. (3.5)) with A(t) as in (3.2) (resp.
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(3.4)) has an exponential dichotomy on R+, (resp. R−) with the same exponent δ, constant K̃ ≥ K and

projection

P̃+ = X+(t
+
N)

−1P+X+(t
+
N),

P̃− = X−(t−−N)
−1P−X−(t−−N).

(3.9)

Lemma 3.4. Let A(t) be either as in (3.2) or (3.4). Suppose that the condition of Lemma 3.3 holds and

let P̃± be as in (3.9). Then ξ+ ∈ RP̃+ if and only if the solution of the discontinuous system (3.3)
such that x(0) = ξ+ is bounded for t ≥ 0. Similarly, ξ− ∈ N P̃− if and only if the solution of the

discontinuous system (3.5) such that x(0) = ξ− is bounded for t ≤ 0.

Lemma 3.5. Let Bi, i = 1, . . . , N, be invertible n × n matrices and k(t) be a bounded integrable

function for t ≥ 0, (resp. t ≤ 0). Suppose the condition of Lemma 3.3 hold and set

P̃τ
+ = X+(τ)P̃+X+(τ)

−1,

P̃τ
− = X−(−τ)P̃−X−(−τ)−1

where P̃± is as in (3.9) and 0 ≤ τ ∈ R is a fixed number. Then, for any ξ+ ∈ RP̃τ
+ (resp. ξ− ∈ N P̃τ

−)

the linear inhomogeneous system

ẋ = A(t)x + k(t),

x(t+i ) = Bix(t
−
i ), i = 1, . . . , N

P̃τ
+x(τ) = ξ+

(3.10)

with t ≥ 0, [resp.

ẋ = A(t)x + k(t),

x(t−i ) = B−1
i x(t+i ),

(I − P̃τ
−)x(−τ) = ξ−

when t ≤ 0] has the unique right-continuous, [resp. left-continuous when t ≤ 0] bounded solution

x(t) = X+(t)P̃+X+(τ)
−1ξ+ +

∫ t

τ
X+(t)P̃+X+(s)

−1k(s)ds

−
∫ ∞

t
X+(t)(I − P̃+)X+(s)

−1k(s)ds

(3.11)

[resp.

x(t) = X−(t)(I − P̃−)X−(−τ)−1ξ− +
∫ t

−∞
X−(t)P̃−X−(s)−1k(s)ds

−
∫ −τ

t
X−(t)(I − P̃−)X−(s)−1k(s)ds

(3.12)

if t ≤ 0]. Moreover such a solution satisfies

sup
t≥τ

|x(t)| ≤ K[|ξ+|+ 2δ−1 sup
t≥0

|k(t)|] (3.13)

if t ≥ 0 [resp.

sup
t≤−τ

|x(t)| ≤ K[|ξ−|+ 2δ−1 sup
t≤0

|k(t)|] (3.14)

if t ≤ 0].
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4 Bounded solutions on the half lines

From A3) we know that the number of the eigenvalues of fN+1,x(w±(y), y) with negative
(and then also positive) real parts, counted with multiplicities, is independent of y ∈ R

m.
Moreover it also follows that all eigenvalues are bounded functions of y ∈ R

m. Indeed, since
fN+1,x(w±(y), y) is bounded, the matrix I − λ−1 fN+1,x(w±(y), y) is invertible for |λ| > R,
sufficiently large and independent of y. Hence all eigenvalues have to satisfy |λ| ≤ R.

Let δ0 be any positive number strictly less than min{|Re λ(y)|}, where λ(y) are the eigen-
values of fN+1,x(w±(y), y). According to [7] the system ẋ = fN+1,x(w±(y), y)x has an expo-
nential dichotomy on R with exponent δ0 and spectral projection (of rank k)

P0
±(y) =

1
2πi

∫

Γ
(zI − fN+1,x(w±(y), y))−1dz

= ∑
Reλ(y)<0

Res((zI − fN+1,x(w±(y), y))−1, z = λ(y))

where Res(F(z), z = z0) is the residual of the meromorphic function F(z) at z0 and Γ is a
closed curve that contains in its interior all eigenvalues of fN+1,x(w±(y), y) with negative real
parts, but none of those with positive real parts. Hence |P0(y)| ≤ M, for any y ∈ R

m and
some M ≥ 1.

Now, recalling (2.3), from A2) and the boundedness of tN(y), it follows immediately that

lim
t→±∞

u±
N+1(t, y) = w±(y)

uniformly with respect to y ∈ R
m.

Let T+ > supy∈Rm tN(y), T− < infy∈Rm t−N(y) and take 0 < δ < δ0. From the roughness of
exponential dichotomies (cfr. [7, Proposition 2, p. 34]) the linear systems

ẋ = fN+1,x(u
+
N+1(t + T+, y), y)x (4.1)

and
ẋ = fN+1,x(u

−
N+1(t + T−, y), y)x (4.2)

have an exponential dichotomy on R+, R− resp., uniformly with respect to y ∈ R
m, with

projections P+(y), resp. P−(y), of rank k, constant K and exponent δ. Moreover, according to
[8, Proposition 2.3], it can be assumed that, for |y − y0| sufficiently small it results: N P+(y) =

N P+(y0), RP−(y) = RP−(y0) and in this case the projections are smooth with respect to y.
Note that, N P+(y) = N P+(y0) and RP−(y) = RP−(y0) are equivalent to

P+(y) = P+(y)P+(y0), P+(y0) = P+(y0)P+(y)

P−(y) = P−(y0)P−(y), P−(y0) = P−(y)P−(y0).
(4.3)

Let U±
i (t, y) be the fundamental matrix of

ẋ = fi,x(u
±
i (t, y), y)x

in R± resp., that is

U̇±
i (t, y) = fi,x(u

±
i (t, y), y)U±

i (t, y), ±t ≥ 0,

U±
i (0, y) = I.

As in [6] we see that
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Lemma 4.1. For any τ ∈ R the linear system

ẋ = fN+1,x(u
+
N+1(t, y), y)x, (4.4)

resp.

ẋ = fN+1,x(u
−
N+1(t, y), y)x, (4.5)

has an exponential dichotomy on t ≥ τ, resp. t ≤ τ, with exponent δ, constant K̃ independent on y

and projections

Q+(y) = U+
N+1(τ, y)U+

N+1(T+, y)−1P+(y)U
+
N+1(T+, y)U+

N+1(τ, y)−1

Q−(y) = U−
N+1(τ, y)U−

N+1(T−, y)−1P−(y)U−
N+1(T−, y)U−

N+1(τ, y)−1.

In particular, if τ = T+, resp. τ = T−, then Q+(y) = P+(y), resp. Q−(y) = P−(y), and K̃ = K.

Finally, the following result holds (see [6, Theorems 4.3, 4.5]).

Theorem 4.2. There exist ρ > 0, bounded Cr-functions

t∗−N(ξ−, α, ε) < . . . < t∗−1(ξ−, α, ε) < t∗0(ξ−, α, ε) = 0 < t∗1(ξ+, α, ε) < . . . < t∗N(ξ+, α, ε)

such that, for all i = 1, . . . , N,

lim
(ξ+,ε)→0

|t∗i (ξ+, α, ε)− ti(α)| = 0,

lim
(ξ−,ε)→0

|t∗−i(ξ−, α, ε)− t−i(α)| = 0

uniformly with respect to α ∈ R
m, and continuous, piecewise Cr, solutions of (1.1)

(x±(t, ξ±, α, ε), y±(t, ξ±, α, ε))

defined for t ≥ 0 and t ≤ 0 resp., and such that

ci−1 < h(x+(t, ξ+, α, ε), y+(t, ξ+, α, ε)) < ci, for t∗i−1(ξ+, α, ε) < t < t∗i (ξ+, α, ε),

h(x+(t, ξ+, α, ε), y+(t, ξ+, α, ε)) > cN , for t > t∗N(ξ+, α, ε),

ci−1 < h(x−(t, ξ−, α, ε), y−(t, ξ−, α, ε)) < ci, for t∗−i(ξ−, α, ε) < t < t∗−i+1(ξ−, α, ε),

h(x−(t, ξ−, α, ε), y−(t, ξ−, α, ε)) > cN , for t < t∗−N(ξ−, α, ε),

h(x+(t
∗
i (ξ+, α, ε), ξ+, α, ε), y+(t

∗
i (ξ+, α, ε), ξ+, α, ε)) = ci,

h(x−(t∗−i(ξ−, α, ε), ξ−, α, ε), y−(t∗−i(ξ−, α, ε), ξ−, α, ε)) = ci,
∂

∂t
h(x+(t, ξ+, α, ε), y+(t, ξ+, α, ε))|t=t∗i (ξ+,α,ε) > η,

∂

∂t
h(x−(t, ξ−, α, ε), y−(t, ξ−, α, ε))|t=t∗−i(ξ−,α,ε) < −η,

y±(T±, ξ±, α, ε) = α,

P+(α)[x(T+)− u(T+, α)] = ξ+,

(I − P−(α))[x(T−)− u(T−, α)] = ξ−
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where c0 = −∞. Moreover

sup
t≥0

|x+(t, ξ+, α, ε)− u(t, y+(t, ξ+, α, ε))| < ρ,

sup
t≤0

|x−(t, ξ−, α, ε)− u(t, y−(t, ξ−, α, ε))| < ρ
(4.6)

and

sup
t≥0

|x+(t, ξ+, α, ε)− u(t, y+(t, ξ+, α, ε))| → 0 as |ξ+|+ |ε| → 0,

sup
t≤0

|x−(t, ξ−, α, ε)− u(t, y−(t, ξ−, α, ε))| → 0 as |ξ−|+ |ε| → 0
(4.7)

uniformly with respect to α as well as

lim
ε→0

y±(0, ξ±, α, ε) = α

uniformly with respect to (ξ±, α).

Remark 4.3. According to Theorem 4.2 we have

h(x+(t
∗
i (ξ+, α, ε), ξ+, α, ε), y+(t

∗
i (ξ+, α, ε), ξ+, α, ε)) = ci,

h(x−(t∗−i(ξ−, α, ε), ξ−, α, ε), y−(t∗−i(ξ−, α, ε), ξ−, α, ε)) = ci.
(4.8)

Differentiating (4.8) with respect to ξ+, ξ−, at ε = 0 we obtain a formula for the derivatives

∂t∗i
∂ξ+

(ξ+, α, 0),
∂t∗−i

∂ξ−
(ξ−, α, 0), i = 1, . . . , N.

However we have to distinguish when t → t∗i (ξ+, α, 0)+ or t → t∗i (ξ+, α, 0)− (resp. t →
t∗−i(ξ−, α, 0)+ or t → t∗−i(ξ−, α, 0)−). For example if t → t∗i (ξ+, α, 0)+, x+(t, ξ+, α, 0) is the
solution of ẋ = fi+1(x, α) and then, differentiating (4.8) with respect to ξ+, we get, with
t∗i = t∗i (ξ+, α, 0):

hx(x+(t
∗
i , ξ+, α, 0), α)[ fi+1(x+(t

∗
i , ξ+, α, 0), α)

∂t∗i
∂ξ+

(ξ+, α, 0) + x+,ξ+(t
∗+
i , ξ+, α, 0)] = 0.

Vice versa, when t → t∗i (ξ+, α, 0)−, x+(t, ξ+, α, 0) is the solution of ẋ = fi(x, α) and then

hx(x+(t
∗
i , ξ+, α, 0), α)[ fi(x+(t

∗
i , ξ+, α, 0), α)

∂t∗i
∂ξ+

(ξ+, α, 0) + x+,ξ+(t
∗−
i , ξ+, α, 0)] = 0.

Similarly we get, with t∗−i = t∗−i(ξ−, α, 0):

hx(x−(t∗−i, ξ−, α, 0), α)[ fi+1(x−(t∗−i, ξ−, α, 0), α)
∂t∗−i

∂ξ−
(ξ−, α, 0) + x−,ξ−(t

∗−
−i , ξ−, α, 0)] = 0

and

hx(x−(t∗−i, ξ−, α, 0), α)[ fi(x+(t
∗
−i, ξ−, α, 0), α)

∂t∗−i

∂ξ−
(ξ−, α, 0) + x−,ξ−(t

∗+
−i , ξ−, α, 0)] = 0.

We will use this remark in the next section.
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5 The discontinuous variational equation

For any fixed α ∈ R
m and ℓ = ±1, . . . ,±N we define linear operators Bℓ(α) : R

n → R
n as

follows:

Bℓ(α)x = x − hx(u(tℓ(α), α), α)x

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)
[u̇(tℓ(α)

−, α), α)− u̇(tℓ(α)
+, α), α)]. (5.1)

The following result has been proved in [6, Propositioon 5.1, 5.2].

Proposition 5.1. For any α ∈ R
m, x 7→ Bℓ(α)x are invertible linear maps. Moreover x+,ξ+(t, 0, α, 0)

is a solution of

ẋ = A(t, α)x :=







fi,x(u(t, α), α)x if ti−1(α) ≤ t < ti(α),
i = 1, . . . , N

fN+1,x(u(t, α), α)x if t ≥ tN(α),

x(ti(α)
+) = Bi(α)x(ti(α)

−), i = 1, . . . , N

(5.2)

which is C1 for t ̸= ti(α), bounded for t ≥ 0 and can be assumed to be right-continuous at t = ti(α).

Similarly x−,ξ−(t, 0, α, 0) is a solution of

ẋ = A(t, α)x :=







fi,x(u(t, α), α)x if t−i(α) < t ≤ t−i+1(α),
i = 1, . . . , N

fN+1,x(u(t, α), α)x if t ≤ t−N(α)

x(t−i(α)
+) = B−i(α)x(t−i(α)

−), i = 1, . . . , N

(5.3)

which is C1 for t ̸= t−i(α),bounded for t ≤ 0 and can be assumed to be left-continuous at t = t−i(α).

Finally, for t ≥ 0, resp. t ≤ 0, the function

u̇(t, α) =







u̇+
i (t, α) for ti−1(α) ≤ t < ti(α),

i = 1, . . . , N

u̇+
N+1(t, α) for t ≥ TN(α)

resp.

u̇(t, α) =







u̇−
i (t, α) for t−i(α) < t ≤ t−i+1(α),

i = 1, . . . , N

u̇−
N+1(t, α) for t ≤ T−N(α)

is a solution of (5.2) (resp. (5.3)) bounded on t ≥ 0 (resp, t ≤ 0).

6 Main result

First we recall that P+(y) is the projections of the exponential dichotomy on t ≥ 0, of the linear
system (4.1) with constant K and exponent δ. Then, from Lemma 4.1, we see that (4.4) has an
exponential dichotomy on t ≥ tN(y) with exponent δ and projection

U+
N+1(tN(y), y)U+

N+1(T+, y)−1P+(y)U
+
N+1(T+, y)U+

N+1(tN(y), y)−1.

Similarly, the linear system (4.5) has an exponential dichotomy on t ≤ t−N(y) with exponent
δ and projection

U−
N+1(t−N(y), y)U−

N+1(T−, y)−1P−(y)U−
N+1(T−, y)U−

N+1(t−N(y), y)−1.

From Lemma 3.3–3.4 we obtain the following
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Proposition 6.1. For any α ∈ R
m, the discontinuous linear system (5.2), resp. (5.3), has an exponen-

tial dichotomy on R+, resp. R−, with projections Q+(α), resp. Q−(α), given by

Q+(α) = X+(tN(α)
+, α)−1U+

N+1(tN(α), α)U+
N+1(T+, α)−1

· P+(α)U
+
N+1(T+, α)U+

N+1(tN(α), α)−1X+(tN(α)
+, α)

Q−(α) = X−(t−N(α)
−, α)−1U−

N+1(t−N(α), α)U−
N+1(T−, α)−1

· P−(α)U−
N+1(T−, α)U−

N+1(t−N(α), α)−1X−(t−N(α)
−, α)

where

X+(t
+
N(α), α) = BN(α)U

+
N(tN(α))U

+
N(tN−1(α), α)−1 . . . B1(α)U

+
1 (t1(α), α)

X−(t−N(α)
−, α) = B−N(α)

−1U−
N(t−N(α))U

−
N(t−N+1(α), α)−1 . . . B−1(α)

−1U−
1 (t−1(α), α).

Moreover RQ+(α) (resp. NQ−(α)) is the space of initial conditions of solutions of (5.2), resp. (5.3),
right-continuous, when t ≥ 0 (resp. left-continuous, when t ≤ 0) and bounded on R+, (resp, on R−).

We assume the following condition holds:

A5) For any α ∈ R
m, dim[RQ+(α) ∩NQ−(α)] = d ≤ m.

From Proposition 5.1 we know that u̇(0, α) ∈ RQ+(α) ∩NQ−(α) so

1 ≤ dim[RQ+(α) +NQ−(α)]⊥ = d.

Next, from A3) it follows that dimRQ+(α) = k and dimNQ−(α) = n − k, hence d ≤
min{k, n − k}.

Let ψ1(α), . . . , ψd(α) ∈ R
n be such that

[RQ+(α) +NQ−(α)]⊥ = span{ψ1(α), . . . , ψd(α)}.

Without loss of generality we assume that {ψ1(α), . . . , ψd(α)} is an orthonormal set.
The purpose of this section is to prove the following

Theorem 6.2. Suppose that A1)–A5) hold. Suppose further that there exists α0 ∈ R
m such that the

vector function

M(α) :=
(

∫ ∞

−∞
ψj(α)

TG(t, α)uy(t, α)g(u(t, α), α, 0)dt

)

j=1,...,d

where

G(t, α) =

{

Q−(α)X−(t, α)−1 if t ≤ 0,
(I − Q+(α))X+(t, α)−1 if t ≥ 0

satisfies M(α0) = 0 and rank M′(α0) = d. Then there exists ρ > 0 and ε0 > 0 such that for

0 ≤ ε ≤ ε0 system (1.1) has a (m − d)-dimensional manifold of continuous, piecewise Cr solutions

(x(t), y(t)) such that

sup
t∈R

|x(t)− u(t, y(t)) < ρ,

sup
t∈R

|x(t)− u(t, y(t))| → 0

as ε → 0.
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Proof. Arguing as in [6, Theorem 6.2] we know that

x+(t, ξ+, α, ε) = u(t, y+(t, ξ+, α, ε)) + X+(t, α)ξ̃+

+
∫ t

0
X+(t, α)Q+(α)X+(s, α)−1b+(s)ds

s −
∫ ∞

t
X+(t, α)(I − Q+(α))X+(s, α)−1b+(s)ds

(6.1)

where

b+(t) = b+(t, ξ+, α, ε)

:= f (x+(t, ξ+, α, ε), y+(t, ξ+, α, ε))− f (u(t, y+(t, ξ+, α, ε)), y+(t, ξ+, α, ε))

−A(t, α)[x+(t, ξ+, α, ε)− u(t, y+(t, ξ+, α, ε))]

− εuy(t, y+(t, ξ+, α, ε))g(x+(t, ξ+, α, ε), y+(t, ξ+, α, ε), ε)

and
ξ̃+ = Q+(α)[x+(0, ξ+, α, ε)− u(0, y+(0, ξ+, α, ε))] ∈ RQ+(α).

Moreover, for ε sufficiently small, the map (ξ+, α) 7→ (ξ̃+, y+(0, ξ+, α, ε)) from RP+(α)× R
m

into RQ+(α)× R
m is linearly invertible.

Similarly, for |α− − y0| sufficiently small we have

x−(t, ξ−, α−, ε) = u(t, y−(t, ξ−, α−, ε)) + X−(t, α−)ξ̃−

+
∫ t

−∞
X−(t, α−)Q−(α−)X−(s, α−)−1b−(s)ds

−
∫ 0

t
X−(t, α−)(I − Q−(α−))X−(s, α−)−1b−(s)ds

(6.2)

where

b−(t) = b−(t, ξ−, α−, ε)

:= f (x−(t, ξ−, α−, ε), y−(t, ξ−, α−, ε))− f (u(t, y−(t, ξ−, α−, ε)), y−(t, ξ−, α−, ε))

−A(t, α−)[x−(t, ξ−, α−, ε)− u(t, y−(t, ξ−, α−, ε))]

− εuy(t, y−(t, ξ−, α−, ε))g(x−(t, ξ−, α−, ε), y−(t, ξ−, α−, ε), ε)

and
ξ̃− = [I − Q−(α−)][x−(0, ξ−, α−, ε)− u(0, y−(0, ξ+, α−, ε))] ∈ NQ−(α−).

Moreover, for ε sufficiently small, the map (ξ−, α−) 7→ (ξ̃−, y−(0, ξ−, α−, ε)) from N P−(α−)×
R

m into NQ−(α−)× R
m is linearly invertible.

From (6.1)-(6.2) we get, for |α − y0|+ |α− − y0| sufficiently small

x+(0, ξ+, α, ε)− x−(0, ξ−, α−, ε)

= u(0, y+(0, ξ+, α, ε))− u(0, y−(0, ξ−, α−, ε)) + ξ̃+ − ξ̃−

−
∫ ∞

0
(I − Q+(α))X+(s, α)−1b+(s)ds −

∫ 0

−∞
Q−(α−)X−(s, α−)−1b−(s)ds.

(6.3)

Then the system
{

x+(0, ξ+, α, ε) = x−(0, ξ−, α−, ε),
y+(0, ξ+, α, ε) = y−(0, ξ−, α−, ε)
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is equivalent to
{

ξ̃+ − ξ̃− = k(ξ+, ξ−, α, α−, ε),
y−(0, ξ−, α−, ε)− y+(0, ξ+, α, ε) = 0

(6.4)

where

k(ξ+, ξ−, α, α−, ε) =
∫ ∞

0
(I − Q+(α))X+(s, α)−1b+(s)ds +

∫ 0

−∞
Q−(α−)X−(s, α−)−1b−(s)ds.

Differentiating b+(t) = b+(t, ξ+, α, ε) with respect to ξ+ at ξ+ = 0, ε = 0 and also using
x+(t, 0, α, 0) = u(t, α), y+(t, 0, α, 0) = α, we see that, for ti−1(α) < t < ti(α), we have

∂b+
∂ξ+

(t, 0, α, 0) = [ fi,x(u(t, α), α)− A(t, α)]x+,ξ+(t, 0, α, 0) = 0

and for t > tN(α):

∂b+
∂ξ+

(t, 0, α, 0) = [ fN+1,x(u(t, α), α)− A(t, α)]x+,ξ+(t, 0, α,0) = 0.

Then
∂

∂ξ+

[

∫ ∞

0
(I − Q+(α))X+(s, α)−1b+(s)ds

]

ξ+=0,ε=0
= 0.

Similarly we get, for |α− − y0| sufficiently small,

∂

∂ξ−

[

∫ 0

−∞
Q−(α−)X−(s, α−)−1b−(s)ds

]

ξ−=0,ε=0
= 0.

As a consequence (6.4) reads:

ξ̃+ − ξ̃− = R1(ξ̃+, ξ̃−, α, α−, ε),

α− − α = R2(ξ̃+, ξ̃−, α, α−, ε)
(6.5)

where

R1(ξ̃+, ξ̃−, α, α−, ε) = k(ξ+, ξ−, α, α−, ε)

ξ̃+ = Q+(α)[x+(0, ξ+, α, ε)− u(0, y+(0, ξ+, α, ε))]

ξ̃− = [I − Q−(α−)][x−(0, ξ−, α−, ε)− u(0, y−(0, ξ−, α−, ε))].

Note that, being (ξ+, ξ−) 7→ (ξ̃+, ξ̃−) linearly invertible, we derive: R1(ξ̃+, ξ̃−, α, α−, ε) =

O(|ξ̃+|2 + |ξ̃−|2 + |ε|) and R2(ξ̃+, ξ̃−, α, α−, ε) = O(|ε|), uniformly with respect to (α, α−).
Now, as ξ̃− ∈ NQ−(α−), we have

(I − Q−(α))ξ̃− = ξ̃− − (Q−(α)− Q−(α−))ξ̃−

and hence
1
2
|ξ̃−| ≤ |(I − Q−(α))ξ̃−| ≤ 2|ξ̃−|

provided |α− − y0| and |α − y0| are sufficiently small. Hence the map ξ̃− 7→ (I − Q−(α))ξ̃−
from NQ−(α−) into NQ−(α) is linearly invertible. Then, setting

ξ̄+ = ξ̃+, ξ̄− = (I − Q−(α))ξ̃−, (6.6)

(6.5) can be written as

ξ̄+ − ξ̄− = R̄1(ξ̄+, ξ̄−, α, α−, ε),

α− − α = R̄2(ξ̄+, ξ̄−, α, α−, ε)
(6.7)
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with

(ξ̄+, ξ̄−) ∈ RQ+(α)×NQ−(α),

R̄1(ξ̄+, ξ̄−, α, α−, ε) = R1(ξ̃+, ξ̃−, α, α−, ε),

R̄2(ξ̄+, ξ̄−, α+, α−, ε) = R2(ξ̃+, ξ̃−, α, α−, ε)

where (ξ̃+, ξ̃−) is the point corresponding to (ξ̄+, ξ̄−) through (6.6). Note that it holds
R̄1(ξ̄+, ξ̄−, α, α−, ε) = O(|ξ̄+|2 + |ξ̄−|2 + |ε|), R̄2(ξ̄+, ξ̄−, α, α−, ε) = O(|ε|) uniformly with re-
spect to (α, α−).

Let α, α− be such that |α − y0| and |α− − y0| are sufficiently small. The map (ξ̄+, ξ̄−) 7→
ξ̄+ − ξ̄− is a linear map from RQ+(α) ×NQ−(α) into RQ+(α) +NQ−(α) whose kernel is
RQ+(α) ∩NQ−(α) which, by assumption A5), is d-dimensional.

Let W(α) ⊂ RQ+(α) be a complement of RQ+(α) ∩NQ−(α) in RQ+(α), so that

RQ+(α) +NQ−(α) = W(α)⊕NQ−(α).

Note that dim W(α) = k − d and

R
n = [RQ+(α) +NQ−(α)]⊕ span{ψ1(α), . . . , ψd(α)}.

Next, let Q(α) : R
n → R

n be the orthogonal projection such that RQ(α) = RQ+(α) +

NQ−(α) and NQ(α) = span{ψ1(α), . . . , ψd(α)}. Since

(I − Q(α))x ∈ NQ(α) = span{ψ1(α), . . . , ψd(α)}

and (ψ1(α), . . . , ψd(α)) is orthonormal we get

(I − Q(α))x =
d

∑
j−1

⟨ψj(α), (I − Q(α))x⟩ψj(α)

=
d

∑
j−1

⟨(I − Q(α))ψj(α), x⟩ψj(α) =
d

∑
j−1

(ψj(α)
Tx)ψj(α).

Hence we replace (6.7) with

ξ̄+ − ξ̄− = Q(α)R̄1(ξ̄+, ξ̄−, α, α−, ε),

α − α− = R̄2(ξ̄+, ξ̄−, α, α−, ε),

ψT
j (α)R̄1(ξ̄+, ξ̄−, α, α−, ε) = 0.

(6.8)

We solve (6.8) for (ξ̄+, ξ̄−, α, α−) ∈ W(α)×NQ−(α)× R
m × R

m in terms of ε.
Since dim[RQ+(α) +NQ−(α)] = n − d, we see that for any fixed ε

ξ̄+ − ξ̄− = Q(α)R̄1(ξ̄+, ξ̄−, α, α−, ε)],

α − α− = R̄2(ξ̄+, ξ̄−, α, α−, ε)
(6.9)

is essentially a system of n − d + m equations in the n − d + 2m variables (ξ̄+, ξ̄−, α, α−) such
that, when ε = 0, has the solution

(ξ̄+, ξ̄−) = (0, 0), α− = α.
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The Jacobian matrix at this point is

J =

(

L 0 0
0 IRm −IRm

)

where L : W ×NQ−(α) → W ⊕NQ−(α) is the invertible linear map given by L(ξ̄+, ξ̄−) =

ξ̄+ − ξ̄−. We have
rank J = n − d + m

hence, for ε ̸= 0 and sufficiently small (6.9) has a m-dimensional Cr-manifold of solutions

ξ̄+ = ξ̄+(α, ε), ξ̄− = ξ̄−(α, ε), α− = α−(α, ε)

where

|ξ̄±(α, ε)| = O(|ε|),
|α−(α, ε)− α| = O(|ε|) (6.10)

uniformly with respect to α. Plugging this solution in the third equation in (6.8) we obtain the
system of equations

ψT
j (α)R̄1(ξ̄+(α, ε), ξ̄−(α, ε), α, α−(α, ε), ε) = 0, j = 1, . . . , d.

As R̄1(0, 0, α, α, 0) = 0 we see that this equation is identically satisfied when ε = 0, so we
replace it with

M(α, ε) = 0

where M(α, ε) is the Cr−1-function:

M(α, ε) =















ε−1
(

ψT
j (α)[R̄1(ξ̄+(α, ε), ξ̄−(α, ε), α, α−(α, ε), ε)

)

j=1,...,d
for ε ̸= 0,

[

(

∂
∂ε ψT

j (α)R̄1(ξ̄+(α, ε), ξ̄−(α, ε), α, α−(α, ε), ε)
)

j=1,...,d

]

|ε=0
for ε = 0.

We have already observed that R̄1(ξ̄+, ξ̄−, α, α−, ε) = O(|ξ̄+|2 + |ξ̄−|2 + |ε|) uniformly with
respect to (α, α−), then

M(α, 0) =
(

ψT
j (α)R̄1,ε(0, 0, α, α, 0)]

)

j=1,...,d
.

We now compute R̄1,ε(0, 0, α, α, 0). Since the map (ξ̃+, ξ̃−) 7→ (ξ̄+, ξ̄−) where ξ̄+ = ξ̃+ and
ξ̄− = (I − Q(α))ξ̃− is a linear isomorphism we see that

R̄1(0, 0, α, α, ε) = k(0, 0, α, α, ε)

and hence

R̄1ε(0, 0, α, α, 0) = kε(0, 0, α, α, 0)

=
∫ 0

−∞
Q−(α)X−(t, α)−1 ∂b−

∂ε
(t, 0, 0, α, α, 0)dt

+
∫ ∞

0
(I − Q+(α))X+(t, α)−1 ∂b+

∂ε
(t, 0, 0, α, α, 0)dt
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that is

M(α, 0) =
(

∫ ∞

−∞
ψT

j (t, α)bε(t, 0, 0, α, α, 0)dt

)

j=1,...,d

where

ψT
j (t, α) =

{

ψT
j (α)Q−(α)X−(t, α)−1 if t < 0,

ψT
j (α)(I − Q+(α))X+(t, α)−1 if t ≥ 0

(6.11)

and

bε(t, 0, 0, α, α, 0) =

{

∂b−
∂ε (t, 0, 0, α, α, 0) if t < 0,

∂b+
∂ε (t, 0, 0, α, α, 0) if t ≥ 0.

Now, it is easy to check that
{

∂b−
∂ε (t, 0, 0, α, α, 0) if t < 0,

∂b+
∂ε (t, 0, 0, α, α, 0) if t ≥ 0

= −uy(t, α)g(u(t, α), α, 0).

Hence

M(α, 0) = −
(

∫ ∞

−∞
ψT

j (t, α)uy(t, α)g(u(t, α), α, 0)dt

)

j=1,...,d
= −M(α). (6.12)

The thesis follows now from the Implicit Function Theorem.

Remark 6.3. i) The orthonormal basis (ψ1(α), . . . , ψd(α)) of [RQ+(α) + NQ−(α)]⊥ can be
replaced by any independent set (ψ̃1(α), . . . , ψ̃d(α)) such that

R
n = [RQ+(α) +NQ−(α)]⊕ span{ψ̃1(α), . . . , ψ̃d(α)}.

Indeed, let ⟨·, ·⟩ be a scalar product on R
n such that

[RQ+(α) +NQ−(α)]⊥ = span{ψ̃1(α), . . . , ψ̃d(α)}

and let (ψ1(α), . . . , ψd(α)) be an orthonormal basis of span{ψ̃1(α), . . . , ψ̃d(α)}. Then a smooth,
invertible d × d matrix N(α) exists such that

(ψ̃1(α) . . . ψ̃d(α)) = (ψ1(α) . . . ψd(α))N(α).

Set

M̃(α) =

[

∫ ∞

−∞
ψ̃T

j (t, α)uy(t, α)g(u(t, α), α, 0)dt

]

j=1,...,d
.

We have

[ψ̃j(α)
Tuy(t, α)g(u(t, α), α, 0)]j=1,...,d

= (ψ̃1(α) . . . ψ̃d(α))
T[uy(t, α)g(u(t, α), α, 0)]

= N(α)T(ψ1(α) . . . ψd(α))
Tuy(t, α)g(u(t, α), α, 0)

= N(α)T[ψj(α)
T[uy(t, α)g(u(t, α), α, 0)]j=1,...,d

that is
M̃(α) = N(α)T M(α).

Now, assuming that M(α0) = 0 and rank M′(α0) = d, we see that M̃(α0) = N(α0)T M(α0) = 0
and

M̃′(α0) = N(α0)
T M′(α0).
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So M̃(α0) = 0 and rank M̃′(α0) = d. The vice versa is proved in the same way using the
equality

M(α) = [N(α)T]−1M̃(α).

ii) The adjoint system to (5.2) and (5.3) is given by [1]

ẇ = −AT(t, α)w if t ≥ 0,

w(ti(α)
+) = (B∗

i (α)
T)−1w(ti(α)

−),

w(t−i(α)
+) = (B∗,i(α)

T)−1w(t−i(α)
−).

(6.13)

It is easy to check that, if ψ(α) ∈ [RQ+(α) +NQ−(α)]⊥, the function ψ(t, α) defined in (6.11)
is a bounded solution of (6.13). We prove that if

span{ψ1(α), . . . , ψd(α)} = [RQ+(α) +NQ−(α)]⊥

then {ψ1(t, α), . . . , ψd(t, α)} is a basis for the space of the bounded solutions of (6.13). Indeed,
the fundamental matrix of (6.13) on t ≥ 0 is [X+(t, α))T]−1, and the fundamental matrix of
(6.13) on t ≤ 0 is [X−(t, α))T]−1. As a consequence (6.13) has an exponential dichotomy on
R+ and R− with projections (I − QT

+) and (I − QT
−) respectively. So, the space of bounded

solutions of (6.13), C1 for t ̸= t±i(α), are those whose initial condition belongs to

R(I − QT
+(α)) ∩N (I − QT

−(α)) = (RQ+v)⊥ ∩ (NQ−(α))⊥ = (RQ+(α) +NQ−(α))⊥.

Then the dimension of the space of solutions of (6.13), bounded on R, is d and vectors
{ψ1(t, α), . . . , ψd(t, α)} span this space.

As in [5, 9] we see that if x(t, α) and ψ(t, α) are bounded solutions on R of (5.2)–(5.3) and
(6.13) resp., both continuous for t ̸= t±i(α) then ψ(t, α)Tx(t, α) is constant on R.

7 An example

The simplest case of application of Theorem 6.2 is when d = 1 that is when

RQ+(α) ∩NQ−(α) = span{u̇(0, α)}.

This condition is trivially satisfied when n = 2 since in this case k = n − k = 1. Moreover,
when n = 2, we also have dimRQ+(α) = dimNQ−(α) = 1 and hence

RQ+(α) = NQ−(α) = span{u̇(0, α)}. (7.1)

In this section we consider examples of applications of Theorem 6.2 with n = 2, m = 1 and
d = 1. Let

J =

(

0 −1
1 0

)

.

The following result that has been proved in [6]:

Proposition 7.1. Consider the system in R
3:

ẋ1 = F1(x1, x2, y),

ẋ2 = F2(x1, x2, y),

ẏ = εg(x1, x2, y).

(7.2)
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and suppose that for any α ∈ R, the unperturbed equation

ẋ1 = F1(x1, x2, α),

ẋ2 = F2(x1, x2, α)
(7.3)

has a solution u(t, α) satisfying assumptions A1)− A5). Let

A(t, α) = [ajk(t, α)]1≤j,k≤2 := [Fj,xk
(u1(t), u2(t), α)]1≤j,k≤2,

Bi(α) as in (5.1) and

v(t, α) := e−
∫ t

0 a11(s,α)+a22(s,α)ds Ju̇(t, y0) = e−
∫ t

0 a11(s,α)+a22(s,α)ds

(−u̇2(t, α)

u̇1(t, α)

)

. (7.4)

Then the space of bounded solution of the adjoint variational system are of the form

ψ(t, α) =















µ−N(α)v(t, α) for t ≤ t−N(α),
µ−i(α)v(t, α), for t−i−1(α) < t ≤ t−i(α),
µi(α)v(t, α), for ti(α) ≤ t < ti+1(α),
µN(α)v(t, α) for t ≥ tN(α)

where µ−N(α) ̸= 0 is arbitrary and, for any i = 1, . . . , N,

µ−i+1(α)v(t−i(α)
+, α) = µ−i(α)[B−i(α)

T]−1v(t−i(α)
−, α),

µi(α)v(ti(α)
+, α) = µi−1(α)[Bi(α)

T]−1v(ti(α)
−, α).

(7.5)

Remark 7.2. i) From (7.5) we have

µ−i+1(α)Ju̇(t−i(α)
+, α)) = µ−i(α)[B

T
−i(α)]

−1 Ju̇(t−i(α)
−, α)),

µi(α)Ju̇(ti(α)
+, α)) = µi−1(α)[B

T
i (α)]

−1 Ju̇(ti(α)
−, α))

and then

µi(α)∥u̇(ti(α)
+, α))∥2 = µi(α)⟨Ju̇(ti(α)

+, α)), Ju̇(ti(α)
+, α))⟩,

= µi−1(α)⟨[BT
i (α)]

−1 Ju̇(ti(α)
−, α)), Ju̇(ti(α)

+, α))⟩
and similarly

µ−i+1(α)∥u̇(t−i(α)
+, α))∥2 = µ−i(α)⟨Ju̇(t−i(α)

+, α)), Ju̇(t−i(α)
+, α))⟩,

= µ−i(α)⟨[BT
−i(α)]

−1 Ju̇(t−i(α)
−, α)), Ju̇(t−i(α)

+, α))⟩.
Hence all µi(α)’s can be computed in terms of u̇(ti(α)

±, α)).
ii) Since µ−N(α) ̸= 0 and all Bi(α), B−i(α) are invertible, we see that µ±i(α) ̸= 0 for all

i = 0, . . . , N.

The next Proposition, proved in [6], states that in some circumstances all µi(α)’s are equal.
This case is of particular interest, since then we can take ψ(t, α) = v(t, α) and the Melnikov
condition reads

∆(α0) = 0, rank ∆′(α0) = d

where

∆(α) :=
∫ ∞

−∞
e−

∫ t
0 a11(s,α)+a22(s,α)ds

(−u̇2(t, α)

u̇1(t, α)

)T (

u1,α(t, α)

u2,α(t, α)

)

g(u(t, α), α, 0)dt.

If, moreover, a11(t, α) + a22(t, α) = 0 we have

∆(α) =
∫ ∞

−∞
[u̇1(t, α)u2,α(t, α)− u̇2(t, α)u1,α(t, α)]g(u(t, α), α, 0)dt. (7.6)
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Proposition 7.3. Equations (7.5) are satisfied with µi = 1, i = −N, . . . , N, if and only if there exist

ν±i (α), i = 1, . . . , N, such that

J[ fi+1(u(t±i(α), α), α)− fi(u(t±i(α), α), α)] = νi(α)
±hx(u(t±i(α), α), α)T. (7.7)

For example, suppose
h(x, y) = xk

where either k = 1 or k = 2. Recalling that

fi(x, y) =

(

Fi
1(x1, x2, y)

Fi
2(x1, x2, y)

)

we get, omitting arguments (that can be either (u(t−i), y0) or (u(ti), y0)) for simplicity:

J[ fi+1 − fi] =

(

Fi
2 − Fi+1

2
Fi+1

1 − Fi
1

)

and then (7.7) holds if and only if

Fi
k(u(t±i(α)), α) = Fi+1

k (u(t±i(α)), α) (7.8)

for all i = 1, . . . , N.

As a concrete example we consider the following two dimensional equation (see [8]):

ẍ = λp(t)Φ(x)

where λ ≫ 1 is a large parameter, p(t) > 0 is a positive, C2, periodic function, and Φ(x) is a
piecewise C2 function such that

Φ(x) =

{

Φ−(x) if x <
1
2 ,

Φ+(x) if x >
1
2 .

Then h(x1, x2) = x1 and the discontinuity manifold is S = {x1 = 1
2}.

Taking λ = ε−2 and changing the time scale t 7→ ε−1t, the equation reads

ẍ = p(y)Φ(x),

ẏ = ε
(7.9)

or

ẋ1 = x2,

ẋ2 = p(y)Φ(x1),

ẏ = ε.

We assume that x = 0, ẋ = 0 is a hyperbolic fixed point of equation ẍ = Φ(x) with an
associated solution (u(t), u̇(t)), homoclinic to (0, 0) and such that

0 < u(t) <
1
2

for t < t− or t > t+,

u(t) >
1
2

for t− < t < t+,

u(t+) = u(t−) =
1
2

,

u̇(t±) ̸= 0.

(7.10)
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Then (7.9) has the family of homoclinic solutions

(u(t, α), u̇(t, α)) = (u(t
√

p(α)),
√

p(α)u̇(t
√

p(α)))

that satisfy assumptions A1)–A4). Note that, according to assumption we have

t±(α) =
t±

√

p(α)

and
∣

∣

∣

∣

(

u(t, α)

u̇(t, α)

)∣

∣

∣

∣

≤
√

1 + p(α)e−δt
√

p(α) ≤
√

1 + pmaxe−δt
√

pmin

where 0 < pmin := min{p(α)} < max{p(α)} := pmax.
As F1(x1, x2, y) = x2 is continuous and h(x1, x2, y) = x1 we see that (7.8) is certainly

satisfied. Then

∆(α) =
∫ ∞

−∞

√

p(α)u̇(t
√

p(α))

[

p′(α)

2
√

p(α)
u̇(t

√

p(α)) +
√

p(α)ü(t
√

p(α))
tp′(α)

2
√

p(α))

]

− p(α)ü(t
√

p(α)u̇(t
√

p(α))
tp′(α)

2
√

p(α))
dt =

1
2

p′(α)
∫ ∞

−∞
u̇(t

√

p(α))2dt

=
p′(α)

2
√

p(α)

∫ ∞

−∞
u̇(t)2dt.

As a consequence ∆(α) has a simple zero at α = α0 if and only if p(α) has a non degenerate
critical point at α = α0. From Theorem 6.2 we conclude with the following

Proposition 7.4. Let Φ±(x) be C2-functions and suppose that

ẍ = Φ(x) :=
{

Φ−(x) if 0 < x <
1
2 ,

Φ+(x) if x >
1
2

has the hyperbolic fixed point (u, u̇) = (0, 0) together with a homoclinic orbit such that (7.10) holds.

Then, if p(α) is a periodic C2-functions having a non-degenerate maximum (or minimum) at α = α0

then there exists λ0 ≫ 1 and a unique, C1, α(λ) such that limλ→∞ α(λ) = α0 and for λ > λ0 the

perturbed equation

ẍ = λp(t)Φ(x)

has a solution (x(t, λ), ẋ(t, λ)) such that

sup
t∈R

|x(t, λ)− u(t, tλ− 1
2 + α(λ))| → 0,

sup
t∈R

|ẋ(t, λ)− u̇(t, tλ− 1
2 + α(λ)))| → 0

as λ → ∞.

As a concrete example we take

Φ±(x) = ∓x, p(y) = 2 + sin y
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so that system (7.9) reads

ẍ = (2 + sin(y))x, x <
1
2

,

ẍ = −(2 + sin(y))x, x >
1
2

,

ẏ = ε.

(7.11)

The homoclinic solution of the frozen system (ε = 0) is

u(t) =















e
π
4

2 et if t ≤ −π
4 ,

1√
2

cos t if −π
4 ≤ t ≤ π

4 ,
e

π
4

2 e−t if t ≥ π
4 .

Solving p′(α) = cos α = 0, we get α1 = π
2 and α2 = 3π

2 with p′′(α1,2) = − sin α1,2 = ∓1 ̸= 0.
Now we add some numerical figures of solutions of (7.11) near

v(t) = u
(

t
√

2 + sin(α1 + εt)
)

and
w(t) = u

(

t
√

2 + sin(α2 + εt)
)

for ε small, say ε = 0.1 and for
y(0) ∼ α1,2. (7.12)

Note
v(0) = w(0) = u(0) =

1√
2

, v̇(0) = ẇ(0) = u̇(0) = 0.

Here we draw some pictures of the solutions of equation (7.11) where we take y(0) = π
2 ± 0.05.

In all these pictures we take ε = 0.1. Figures 7.2–7.5 in the paper show the curves of (t, x(t))

Figure 7.1: The plot of (v(t), v̇(t)) for t ∈ (−10, 10).

and (x(t), x′(t)) corresponding to ε = 0.1.
In the case of keeping initial conditions unchanged but taking ε = 0.01, we have the

following Figures 7.6–7.9.
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Figure 7.2: The plot of (t, x(t)) and (x(t), ẋ(t)) for t = [−3, 3] with y(0) = π
2 +

0.05, x(0) = 1√
2
+ 0.05, ẋ(0) = 0. Note that the solution escapes very quickly from

a neighbourhood of the fixed point x = ẋ = 0 as t → ±∞.

Figure 7.3: The plot of (t, x(t)) and (x(t), ẋ(t)) for t = [−10, 10] with y(0) = π
2 + 0.05,

x(0) = 1√
2
− 0.05, ẋ(0) = 0. Here the solution looks like a periodic solution in the

bounded domain 0.2 ≤ x ≤ 0.7, −0.8 ≤ ẋ ≤ 0.8.

Figure 7.4: The plot of (t, x(t)) and (x(t), ẋ(t)) for t = [−10, 10] with y(0) = π
2 − 0.05,

x(0) = 1√
2
− 0.05, ẋ(0) = 0. Also in this case the solution looks like a periodic solution

in the bounded domain 0.2 ≤ x ≤ 0.7, −0.8 ≤ ẋ ≤ 0.8.
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Figure 7.5: The plot of (t, x(t)) and (x(t), ẋ(t)) for t = [−3, 3] with y(0) = π
2 − 0.05,

x(0) = 1√
2
+ 0.05, ẋ(0) = 0. For these initial values the solution escapes very quickly

from a neighbourhood of the fixed point x = ẋ = 0 as t → ±∞.

Figure 7.6: Corresponding to the case of ε = 0.01 in Figure 7.2.

Figure 7.7: Corresponding to the case of ε = 0.01 in Figure 7.3.
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Figure 7.8: Corresponding to the case of ε = 0.01 in Figure 7.4.

Figure 7.9: Corresponding to the case of ε = 0.01 in Figure 7.5.

8 Concluding remark

According to the results in [4], with the correction given in [5], the Melnikov function in the
periodic case, with two discontinuity points and a family of periodic solutions u(t, α) of the
unperturbed equation, is

∫ T(α)/2

−T(α)/2
ψj(t, α)T fy(u(t, α), α)yε(t, 0, α, 0) dt

+ ψj(t∗(α)+, α)T hy,∗yε,∗
hx,∗ f+,∗

( f−,∗ − f+,∗) + ψj(t
∗(α)+, α)T

h∗yy∗ε
h∗x f ∗−

( f ∗+ − f ∗−).

In the following we prove that −M(α) extends the above expression to the heteroclinic case
(i.e. with ∞ replacing T(α)) with several discontinuity points.

Differentiating u̇(t, y) = f (u(t, y), y) with respect to y we see that, for t ̸= t±i(α), i =

1, . . . , N:

u̇y(t, α) = A(t, α)uy(t, α) + fy(u(t, α), α)

and then

d

dt
(uy(t, α)yε(t, 0, α, 0)) = u̇y(t, α)yε(t, 0, α, 0) + uy(t, α)ẏε(t, 0, α, 0)

= A(t, α)uy(t, α)yε(t, 0, α, 0) + fy(u(t, α), α)yε(t, 0, α, 0) + uy(t, α)g(u(t, α), α).
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So

∫ ∞

−∞
ψT

j (t, α)uy(t, α)g(u(t, α), α, 0)dt

=
∫ ∞

−∞
ψT

j (t, α)

[

d

dt
(uy(t, α)yε(t, 0, α, 0))− A(t, α)uy(t, α)yε(t, 0, α, 0)

− fy(u(t, α), α)yε(t, 0, α, 0)
]

dt

=
∫ ∞

−∞
ψT

j (t, α)
d

dt
(uy(t, α)yε(t, 0, α, 0)) + ψ̇T

j (t, α)uy(t, α)yε(t, 0, α, 0)

− ψT
j (t, α) fy(u(t, α), α)yε(t, 0, α, 0)dt

=
∫ ∞

−∞

d

dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]− ψT
j (t, α) fy(u(t, α), α)yε(t, 0, α, 0)dt.

Then the j-th component of −M(α), say −Mj(α), is

−Mj(α) =
∫ ∞

−∞
ψT

j (t, α) fy(u(t, α), α)yε(t, 0, α, 0)dt

−
∫ ∞

−∞

d

dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt.

Using the continuity of yε(t, ξ, α, η) we get:

∫ ∞

−∞

d

dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

=
∫ t−N(α)

−∞

d

dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

+
N−1

∑
i=−N

∫ ti+1(α)

ti(α)

d

dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

+
∫ ∞

tN(α)

d

dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

= ψT
j (t−N(α)

−, α)uy(t−N(α)
−, α)yε(t−N(α), 0, α, 0)

+
N−1

∑
i=−N

[

ψT
j (ti+1(α)

−, α)uy(ti+1(α)
−, α)yε(ti+1(α), 0, α, 0)

− ψT
j (ti(α)

+, α)uy(ti(α)
+, α)yε(ti(α), 0, α, 0)

]

− ψT
j (tN(α)

+, α)uy(tN(α)
+, α)yε(tN(α), 0, α, 0)

= ψT
j (t−N(α)

−, α)uy(t−N(α)
−, α)yε(t−N(α), 0, α, 0)

+
N

∑
i=−N+1

ψT
j (ti(α)

−, α)uy(ti(α)
−, α)yε(ti(α), 0, α, 0)

−
N−1

∑
i=−N

ψT
j (ti(α)

+, α)uy(ti(α)
+, α)yε(ti(α), 0, α, 0)

− ψT
j (tN(α)

+, α)uy(tN(α)
+, α)yε(tN(α), 0, α, 0)
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= ψT
j (t−N(α)

−, α)uy(t−N(α)
−, α)yε(t−N(α), 0, α, 0)

+
N−1

∑
i=−N+1

[ψT
j (ti(α)

−, α)uy(ti(α)
−, α)− ψT

j (ti(α)
+, α)uy(ti(α)

+, α)]yε(ti(α), 0, α, 0)

+ ψT
j (tN(α)

−, α)uy(tN(α)
−, α)yε(tN(α), 0, α, 0)

− ψT
j (t−N(α)

+, α)uy(t−N(α)
+, α)yε(t−N(α), 0, α, 0)

− ψT
j (tN(α)

+, α)uy(tN(α)
+, α)yε(tN(α), 0, α, 0)

=
N

∑
i=−N

[ψT
j (ti(α)

−, α)uy(ti(α)
−, α)− ψT

j (ti(α)
+, α)uy(ti(α)

+, α)]yε(ti(α), 0, α, 0)

=
N

∑
i=−N,i ̸=0

[ψT
j (ti(α)

−, α)uy(ti(α)
−, α)− ψT

j (ti(α)
+, α)uy(ti(α)

+, α)]yε(ti(α), 0, α, 0).

The last equality follows from the fact that ψj(t, α) and uy(t, α) are continuous at t = t0(α) = 0.
Next, from (3.6)–(6.11) we see that, for any ℓ = ±1, . . . ,±N, we have

ψT
j (tℓ(α)

−, α) = ψT
j (tℓ(α)

+, α)Bℓ(α)

Hence:
∫ ∞

−∞

d

dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

N

∑
ℓ=−N,ℓ ̸=0

ψT
j (tℓ(α)

+, α)[Bℓ(α)uy(tℓ(α)
−, α)− uy(tℓ(α)

+, α)]yε(tℓ(α), 0, α, 0).

From (5.1) we obtain

Bℓ(α)uy(tℓ(α)
−, α)− uy(tℓ(α)

−, α)

=− hx(u(tℓ(α), α), α)uy(tℓ(α)
−, α)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α), α)
(u̇(tℓ(α)

−, α)− u̇(tℓ(α)
+, α)).

Differentiating h(u(tℓ(α), α), α) = c|ℓ| with respect to α we get

hx(u(tℓ(α), α), α)uy(tℓ(α)
−, α)

= −hx(u(tℓ(α), α), y)u̇(tℓ(α)
−, α)t′ℓ(α)− hy(u(tℓ(α), α), α)

and then

Bℓ(α)uy(tℓ(α)
−, α)− uy(tℓ(α)

−, α)

=
hx(u(tℓ(α), α), α)u̇(tℓ(α)

−, y)t′
ℓ
(α) + hy(u(tℓ(α), α), α)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)
(u̇(tℓ(α)

−, α)− u̇(tℓ(α)
+, α))

=

[

t′ℓ(α) +
hy(u(tℓ(α), α), α)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)

]

(u̇(tℓ(α)
−, α)− u̇(tℓ(α)

+, α)).

So

Bℓ(α)uy(tℓ(α)
−, α)− uy(tℓ(α)

+, α)

= uy(tℓ(α)
−, α)− uy(tℓ(α)

+, α) + t′ℓ(α)[u̇(tℓ(α)
−, α)− u̇(tℓ(α)

+, α)]

+
hy(u(tℓ(α), α), α)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)
(u̇(tℓ(α)

−, α)− u̇(tℓ(α)
+, α)).

(8.1)
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Next, for tℓ(α) < t < tℓ+1(α) we have:

u(t, α) = u(tℓ(α)
−, α) +

∫ t

tℓ(α)
u̇(s, α)ds.

Hence
uy(tℓ(α)

+, α) = u̇(tℓ(α)
−, α)t′ℓ(α) + uy(tℓ(α)

−, α)− u̇(tℓ(α)
+, α)t′ℓ(α)

and then
uy(tℓ(α)

−, α)− uy(tℓ(α)
+, α) = [u̇(tℓ(α)

+, α)− u̇(tℓ(α)
−, α)]t′ℓ(α). (8.2)

Plugging (8.2) into (8.1) we finally obtain:

[Bℓ(α)uy(tℓ(α)
−, α)− uy(tℓ(α)

+, α)]yε(tℓ(α), 0, α, 0)

=
hy(u(tℓ(α), α), α)yε(tℓ(α), 0, α, 0)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)
(u̇(tℓ(α)

−, α)− u̇(tℓ(α)
+, α))

Putting everything together we finally get:

−Mj(α) =
∫ ∞

−∞
ψT

j (t, α) fy(u(t, α), α)yε(t, 0, α, 0)dt

+
N

∑
i=1

ψT
j (t−i(α)

+, α)
hy(u(t−i(α), α), α)yε(t−i(α), 0, α, 0)

hx(u(t−i(α), α), α) fi+1(u(t−i(α), α), α)

· ( fi(u(t−i(α), α), α)− fi+1(u(t−i(α), α), α))

+
N

∑
i=1

ψT
j (ti(α)

+, α)
hy(u(ti(α), α), α)yε(ti(α), 0, α, 0)
hx(u(ti(α), α), α) fi(u(ti(α), α), α)

· ( fi+1(u(ti(α), α), α)− fi(u(ti(α), α), α)).

(8.3)

This completes the proof that −M(α) extends the Melnikov function for the periodic case with
two discontinuity points to the heteroclinic case with a finite number of discontinuity points.
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Keywords: Navier–Stokes equations, energy equality, distributional solutions.

2020 Mathematics Subject Classification: 35Q35, 76D03, 35B65.

1 Introduction

We are interested in the energy balance of distributional solutions to Navier–Stokes equations














∂tu + u · ∇u − ∆u +∇p = 0, x ∈ R
3, t > 0

∇ · u = 0, x ∈ R
3, t > 0

u|t=0 = u0(x), x ∈ R
3.

(1.1)

It is well known since the work of Leray [8] and Hopf [6], that for any u0 ∈ L2
σ(R

3) one can
construct a global weak solutions to (1.1), namely, a function u that, for each T > 0, is in the
class

u ∈ L∞(0, T; L2
σ(R

3)) ∩ L2(0, T; H1(R3)) (1.2)

and solves (1.1) in a distributional sense. Here, L2
σ(R

3) is the subspace of L2(R3) of divergence-
free vector functions. In addition, such a u satisfies the so-called energy inequality:

∥u(t)∥2
L2 + 2

∫ t

0
∥∇u(τ)∥2

L2 dτ ≤ ∥u0∥
2
L2 , ∀ t ≥ 0. (1.3)

Much about the solutions of the Navier–Stokes equation is unknown, including uniqueness
and regularity. The main barrier is the fact that the energy equality, which states that for any
smooth solution u, it obeys the following energy balance:

∥u(t)∥2
L2 + 2

∫ t

0
∥∇u(τ)∥2

L2 dτ = ∥u0∥
2
L2 , ∀ t ≥ 0. (1.4)

BEmail: 2022994823@nit.edu.cn; wufan0319@yeah.net
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A natural question immediately arises: does any Leray–Hopf weak (distributional) solution
of the Navier–Stokes equations automatically satisfy the energy balance (1.4)? To date this
question remains open, and only conditional results are available.

Energy equality is clearly a prerequisite for regularity, and can be a first step in proving
conditional regularity results [2, 3, 11, 12]. Lions [9] and Ladyzhenskaya [7] proved indepen-
dently that a Leray–Hopf weak solution satisfy the (global) energy equality (1.4) under the
additional assumption u ∈ L4L4. Shinbrot [13] generalized the Lions–Ladyzhenskaya condi-
tion to

u ∈ Lr(0, T; Ls(Rd)) with
2
r
+

2
s
≤ 1, s ≥ 4. (1.5)

Recently, Yu [14] given a new proof to the Shinbrot energy conservation criterion. In addition,
Berselli and Chiodaroli in [1] prove some new energy balance criteria in terms of the gradient
of the velocity. Specially, they showed that

∇u ∈ L
5
2 (0, T; L2(Ω)) (1.6)

can ensure the energy identity.
From the PDEs point of view, it is significant to study the motion of distributional (very

weak) solutions of fluid equations, see Definition 1.1. In this regard, there is not any available
regularity on velocity field u, apart the solution being in L2

loc

(

R
3 × [0, T)

)

. Recently, The
famous mathematician Giovanni P. Galdi [4, 5] systematically studied the relation between
very weak and Leray–Hopf solutions to Navier–Stokes equations, and he first proved that
if distributional solution in L4(0, T; L4(R3)), and with initial data u0 in L2(R3), then energy
equality (1.4) holds true, in particular, he emphasized that the requirement (1.2) is entirely
redundant. The key observation is the use of the duality argument and the above conditions
to improve the regularity of the solution (i.e., L∞

(

0, T; L2
(

R
3
))

∩ L2
(

0, T; H1
(

R
3
))

).
As everyone knows, in fluid mechanics, the gradient of velocity(∇u) is an important phys-

ical quantity. Objective of this note is to prove that control the gradient of velocity, i.e.,
∇u ∈ L

5
2 (L2(R3)) along with the (necessary) condition u0 ∈ L2

σ(R
3) can ensure the energy

balance. More precisely, setting

DT := {ϕ ∈ C∞

0 (R3 × [0, T)) : div ϕ = 0}.

Definition 1.1 (Distributional solution). Let u0 ∈ L2(R3) with ∇ · u0 = 0, T > 0. The function
u ∈ L2

loc

(

R
3 × [0, T)

)

is a distributional solution to the Navier–Stokes equations (1.1) if

1. for any Φ ∈ DT, we have

∫ T

0

∫

R3
u · (∂tΦ + ∆Φ + u · ∇Φ)dxdt = −

∫

R3
u(x, 0) · Φ(x, 0)dx;

2. for any ϕ ∈ C∞

0 (R3), it holds that

∫

R3
u · ∇ϕdx = 0,

for a.e. t ∈ (0, T).

We will show the following.
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Theorem 1.2. Suppose that u ∈ L2
loc

(

R
3 × [0, T)

)

be a distributional solution in the sense of Defini-

tion 1.1 to the Navier–Stokes (1.1). If

∇u ∈ L
5
2
(

0, T; L2(R3)
)

,

then
∫

R3
|u(t, x)|2dx + 2

∫ t

0

∫

R3
|∇u(x, τ)|2dxdτ =

∫

R3
|u0|

2 dx

for any t ∈ [0, T].

Remark 1.3. From a purely mathematical perspective, it seems that a new strategy for study-
ing the energy balance of distributional solutions based on gradient of velocity, which may be
applied to other incompressible fluid equations.

Remark 1.4. Note that this result is supercritical with respect to the Prodi–Serrin scaling since
3
p +

2
q = 3

2 +
4
5 > 2, showing that the energy balance holds even if one does not expect the full

regularity of solutions to hold.

Remark 1.5. Berselli and Chiodaroli [1] obtained energy equality via ∇u ∈ L
5
2
(

0, T; L2(Ω)
)

,
however, we want to emphasize is that the finite energy (u ∈ L∞L2 ∩ L2H1) plays a key role
in their proof.

2 Proof of Theorem 1.2

This section is devoted to proof of Theorem 1.2. For the sake of simplicity, we will proceed
as if the solution is differentiable in time. The extra arguments needed to mollify in time are
straightforward.

Let η : R
3 → R be a standard mollifier, i.e. η(x) = Ce

1
|x|2−1 for |x| < 1 and η(x) = 0 for

|x| ⩾ 1, where constant C > 0 selected such that
∫

R3 η(x)dx = 1. For any ε > 0, we define
the rescaled mollifier ηε(x) = ε−3η

(

x
ε

)

. For any function f ∈ L1
loc(R

3), its mollified version is
defined as

f ε(x) = ( f ∗ ηε) (x) =
∫

R3
ηε(x − y) f (y)dy.

If f ∈ W1,p(R3), the following local approximation is well known

f ε(x) → f in W
1,p
loc (R

3) ∀p ∈ [1, ∞).

The crucial ingredient to prove Theorem 1.2 is the following lemmas.

Lemma 2.1 ([10]). Let ∂ be a partial derivative in one direction. Let f , ∂ f ∈ Lp
(

R
+ × R

3
)

, g ∈

Lq
(

R
+ × R

d
)

with 1 ≤ p, q ≤ ∞, and 1
p +

1
q ≤ 1. Then, we have

∥∂( f g) ∗ ηε − ∂ ( f (g ∗ ηε)) ∥Lr(R+×R3) ≤ C∥∂ f ∥Lp(R+×Rd)∥g∥Lq(R+×R3)

for some constant C > 0 independent of ε, f and g, and with 1
r = 1

p +
1
q . In addition,

∂( f g) ∗ ηε − ∂ ( f (g ∗ ηε)) → 0 in Lr
(

R
+ × R

3)

as ε → 0, if r < ∞.
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Lemma 2.2. Let u0 ∈ L2(R3) with ∇ · u0 = 0 and let u be a distributional solution in the sense of

Definition 1.1 to the Navier–Stokes equations (1.1) and satisfies

∇u ∈ L
5
2
(

0, T; L2(R3)
)

,

then we have

sup
t≥0

∥uε(·, t)∥2
L2 +

∫ t

0

∫

R3
|∇uε|2dxdτ ≤ K, ∀ t ∈ [0, T],

where K is a constant depending only on ∥u0∥L2 and
∫ T

0 ∥∇u∥
5
2
L2 dt.

Remark 2.3. Lemma 2.2 shows distributional solution u falls into the class of Leray–Hopf
weak solutions provided that ∇u ∈ L

5
2
(

0, T; L2(R3)
)

.

Proof of Lemma 2.2. Multiplying (1.1)1 by (uε)ε, then integrating over (0, T)× R
3, we infer that

1
2

d

dt

∫

R3
|uε|2dx +

∫

R3
|∇uε|2dx = −

∫

R3
div(u ⊗ u)ε · uεdx. (2.1)

Indeed, taking advantage of the interpolation inequality, Hölder’s inequality and Young’s
inequality, we know that

∣

∣

∣

∣

−
∫

R3
div(u ⊗ u)ε · uεdx

∣

∣

∣

∣

≤ C∥(u · ∇u)∥
L

3
2
∥uε∥L3

≤ C∥u∥L6∥∇u∥L2∥uε∥L3

≤ C∥∇u∥2
L2∥uε∥L3

≤ C∥∇u∥2
L2∥uε∥

1
2
L2∥uε∥

1
2
L6

≤ C∥∇u∥
5
2
L2

(

∥uε∥2
L2 + 1

)

.

(2.2)

Then substituting estimates (2.2) into (2.1), we arrive at

d

dt

∫

R3
|uε|2dx +

∫

R3
|∇uε|2dx ≤C∥∇u∥

5
2
L2

(

∥uε∥2
L2 + 1

)

. (2.3)

Applying Gronwall’s inequality to see that

sup
t≥0

∥uε(·, t)∥2
L2 +

∫ t

0

∫

R3
|∇uε|2dxdτ ≤ ∥u0∥

2
L2 exp C

∫ t

0
∥∇u∥

5
2
L2 ds

≤ K,

(2.4)

for all t ∈ [0, T], where K is a constant depending only on initial data u0 and
∫ T

0 ∥∇u∥
5
2
L2 dt.

Let ε → 0 in (2.4), one has

sup
t≥0

∥u(·, t)∥2
L2 +

∫ t

0

∫

R3
|∇u|2dxdτ ≤ K. (2.5)

Then we complete the proof of Lemma 2.2.

Proof of Theorem 1.2. With Lemma 2.1 and Lemma 2.2 in hand, we are ready to prove our main
result. First, we appeal to u ∈ L∞

(

L2
)

∩ L
5
2 (H1), by interpolation inequality we show that

∥u∥L4 ≤ ∥u∥
1
4
L2∥u∥

3
4
L6 ,
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By integration in (0, T) one easily proves that the estimate

∫ T

0
∥u∥

10
3

L4 dt ≤
∫ T

0
∥u∥

5
2
L6∥u∥

5
6
L2 dt ≤

∫ T

0
∥∇u∥

5
2
L2∥u∥

5
6
L2 dt ≤ C. (2.6)

Next, modifying the momentum equation (1.1)1 and taking the inner-product with uε, thus
we have

∫

R3
uε (∂tu + u · ∇u − ∆u +∇p)ε dx = 0. (2.7)

This yields

1
2

d

dt

∫

R3
|uε|2dx +

∫

R3
|∇uε|2dx = −

∫

R3
div(u ⊗ u)ε · uεdx. (2.8)

Clearly,

∫

R3
|uε|2dx −

∫

R3
|uε

0|
2dx + 2

∫ t

0

∫

R3
|∇uε|2dxdτ = −2

∫ t

0

∫

R3
div(u ⊗ u)ε · uεdxdτ. (2.9)

Notice that the incompressible condition div u = 0 ensures

−2
∫ t

0

∫

R3
div(u ⊗ uε) · uεdxdτ = 0,

by using Hölder’s equality and Lemma 2.1, one has

− 2
∫ t

0

∫

R3
div(u ⊗ u)ε · uε − div(u ⊗ uε) · uεdxdτ

= 2
∫ t

0

∫

R3
[(u ⊗ u)ε − (u ⊗ uε)] · ∇uεdxdτ

≤ 2
∫ t

0

∫

R3
(|(u ⊗ u)ε − u ⊗ u|+ |u ⊗ u − u ⊗ uε|) |∇uε| dxdτ

≤ C∥∇u∥
L

5
2 (0,T;L2(R3))

(

∥(u ⊗ u)ε − u ⊗ u∥
L

5
3 (0,T;L2(R3))

+ ∥u∥
L

10
3 (L4(R3))

∥u − uε∥
L

10
3 (0,T;L4(R3))

)

.

(2.10)

Thanks to (2.6) and standard properties of mollifier, we know that the right hand side of (2.10)
becomes zero as ε → 0, which completes the proof of this case.

Finally, letting ε go to zero in (2.9), and using the facts (2.10), what we have proved is that
in the limit

∫

R3
|u(t, x)|2dx + 2

∫ t

0

∫

R3
|∇u(x, τ)|2dxdτ =

∫

R3
|u0|

2 dx.

This completes the proof of Theorem 1.2.
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Abstract. This paper tightens the classical Poincaré–Bendixson theory for a positively
invariant, simply-connected compact set M in a continuously differentiable planar vec-
tor field by further characterizing for any point p ∈ M, the composition of the limit
sets ω(p) and α(p) after counting separately the fixed points on M’s boundary and
interior. In particular, when M contains finitely many boundary but no interior fixed
points, ω(p) contains only a single fixed point, and when M may have infinitely many
boundary but no interior fixed points, ω(p) can, in addition, be a continuum of fixed
points. When M contains only one interior and finitely many boundary fixed points,
ω(p) or α(p) contains exclusively a fixed point, a closed orbit or the union of the inte-
rior fixed point and homoclinic orbits joining it to itself. When M contains in general
a finite number of fixed points and neither ω(p) nor α(p) is a closed orbit or contains
just a fixed point, at least one of ω(p) and α(p) excludes all boundary fixed points and
consists only of a number of the interior fixed points and orbits connecting them.

Keywords: Poincaré–Bendixson theory, planar vector field, limit set.
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1 Introduction

Determining the asymptotic behavior of general continuous vector fields, even qualitatively,

is still a daunting task. In the nineteenth century, Poincaré studied this problem for planar

systems by focusing on the global behavior of the systems’ trajectories without integrating the

corresponding differential equations [7, 13]. The analysis was later completed by Bendixson

[2]. The related classical results are commonly referred to as the Poincaré–Bendixson theorem

[2, 7, 9–11, 14–17]. Consider the vector field

ẋ = f (x), x ∈ R
2 (1.1)

BCorresponding author. Email: pramazi@brocku.ca
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where f is C1 on an open set U in R
2. A point x∗ ∈ R

2 is a “fixed point” of the vector field if

f (x∗) = 0. Denote the omega and alpha limit sets of a point p by ω(p) and α(p), respectively.

Theorem 1.1 (Poincaré–Bendixson theorem [23, Theorem 9.0.6], [12, Theorem 1.8]). For the

vector field (1.1), let M ⊂ U be a positively invariant complex for the vector field containing a finite

number of fixed points. For any p ∈ M, one of the following holds:

1. ω(p) is a fixed point;

2. ω(p) is a closed orbit;

3. ω(p) consists of a finite number of fixed points p1, . . . , pn and orbits γ with α(γ) = pi and

ω(γ) = pj, where pi and pj are not necessarily different. Moreover, for two distinct fixed points

pi and pj, there exists at most one orbit γ such that α(γ) = pi and ω(γ) = pj.

From this theorem, although possibilities such as strange attractors and chaotic orbits can

be easily ruled out, the third case in the theorem still gives rise to sometimes a large number

of possible limiting behaviors. For example, when M contains just four fixed points on its

boundary, there can be more than 300 different compositions of ω(p) even under the simpli-

fying assumption that there is at most one homoclinic orbit at each fixed point. Some existing

results have tried to reduce the possible scenarios; in [1, Theorem 68], [18, Theorem 3] the

third case has been stated more precisely by stipulating that the trajectories γ must be the

continuations of one another, and in [19, Section 3.7, Theorem 3] the number of homoclinic

orbits at each fixed point is limited by one when the vector field is “relatively prime analytic".

However, then for the example just mentioned, ω(p) can still have more than 50 different com-

positions. This example shows that if one is interested in categorizing all possible asymptotic

behaviors of a planar system qualitatively, a greatly needed task in fields such as mathematical

biology [4], one may still encounter difficulty even with the help of the existing most tightened

form of Poincaré–Bendixson theorem.

The aim of this paper is to reduce the number of possible compositions of the limit sets of

a vector field when knowing the number of fixed points on the boundary and in the interior

of a given positively invariant, simply-connected compact set M.

Notations: Let φ(t, x) denote the flow generated by the vector field (1.1), which is the solution

of (1.1) passing through x at time t. For a point p ∈ R
2, let O(p) denote the orbit of p

defined by O(p) =
{

x ∈ R
2 | x = φ(t, p), t ∈ R

}

, and O+(p) denote the positive semi-orbit of p,

defined by O+(p) =
{

x ∈ R
2 | x = φ(t, p), t ≥ 0

}

[23]. Correspondingly, for p1, p2 ∈ O+(p),

define the segment semi-orbit O+(p) from p1 to p2 as O+(p2) − O+(p1). A homoclinic orbit

is a trajectory that joins a fixed point to itself. For a set M, denote its interior by Int M, its

boundary by ∂M, and its closure by M.

2 Main results

We first review some basic relevant results. The following lemma is applicable to higher

dimensional spaces, but we restrict it here to the plane.

Lemma 2.1 ([23, Proposition 8.1.3], [3, Theorem 3-3.6]). For the vector field (1.1), let M ⊂ U

be a positively invariant compact set. Then for any point p ∈ M, it holds that ω(p) is nonempty,

connected, and compact.
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p1

p2

L

S

(a)

p2

p1

L

S

(b)

Figure 2.1: The two possible cases for the positive semi-orbit O+(p) in the proof

of Theorem 2.4.

A continuous connected arc in the plane is said to be transverse to the vector field, if the

vector field has no fixed points on the arc and nowhere becomes tangent to the arc [11]. By

a transversal we refer to a closed line segment L that is transverse to the vector field. Due

to the continuity of the vector field, clearly one can construct a transversal through any non-

fixed point. The following lemma illustrates how the flow through a point p approaches a

transversal through a non-fixed omega limit point q ∈ ω(p) when it exists.

Lemma 2.2 ([8, reformulation of Lemma 1.26]). For the vector field (1.1), consider a point p ∈ U

such that O(p) ⊂ U . Let q ∈ ω(p) be a non-fixed point of (1.1) and let L be a transversal through q.

Then there exists a sequence {ti} → ∞, such that {φ(ti, p)} ∈ L and {φ(ti, p)} → q.

The following result guarantees the existence of a fixed point inside a closed orbit [3, 6, 9,

23]:

Lemma 2.3 ([23, Corollary 6.0.2]). Enclosed by any closed orbit of (1.1) in U , there must be at least

one fixed point.

Now we are ready to present the main results of the paper.

2.1 M has no interior fixed point

Theorem 2.4 (No interior fixed points, positively invariant vector field). For the vector field (1.1),

consider a positively invariant, simply-connected compact set M ⊂ U that contains a finite number of

fixed points, all on ∂M. Then for any p ∈ M, ω(p) is a fixed point on ∂M.

Proof. From Theorem 1.1, it suffices to prove that ω(p) contains only fixed points since then

only situation 1 is possible and the corresponding fixed point can only be on ∂M as Int M

contains no fixed points. We prove this by contradiction, so assume on the contrary that there

is a non-fixed point q ∈ ω(p). Then one can construct a transversal L through q, and from

Lemma 2.2, we know that O+(p) intersects L for infinitely many times and such intersection

points are in M since O+(p) ⊂ M. So one can pick two consecutive intersection points p1

and p2 such that the line segment p1 p2 lies in M. Should p1 and p2 coincide, ω(p) would be a

closed orbit, lying in M, but encircling no fixed point as all the fixed points are on ∂M. This

cannot happen in view of Lemma 2.3, and thus, p1 and p2 must be distinct.

As illustrated by Fig. 2.1, we construct the simply-connected compact set S whose bound-

ary is formed by the segment semi-orbit O+(p) from p1 to p2 and the line segment p1 p2. Since
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Figure 2.2: Phase portrait examples for an invariant compact set ∆. (a) e1 and

q2 are hyperbolic saddle, e3 is a hyperbolic stable and e2 is a center fixed point.

The stable invariant manifold of q2 divides ∆ into Z1 and Z2. Theorem 2.5

and the local stability results imply that for each z ∈ Int Z1, α(z) = e2 and

ω(z) = e3, and for each z ∈ Int Z2, α(z) = ω(z) = e2. (b) e1, e3 and q1 are

hyperbolic saddle, e2 is a hyperbolic unstable, and g is a hyperbolic stable fixed

point. Because of Theorem 2.7, the local stability results and the fact that no

limit cycle exists, ω(p) = {g} for all p ∈ int(∆). Hence, the unique out-going

trajectory from q1, denoted by γ1, converges to g. The rest of the orbits in int(∆)

start from e2 and end at g. This is because any out-going trajectory from e2,

e.g., γ2, together with γ1 divide the simplex into the zones Z1 and Z2, each of

which satisfy the condition of M in Theorem 2.7. Hence, every trajectory in

Int Zi, i = 1, 2, starts from e2 and end at g. (c) e2 and g are hyperbolic saddle, e1

and e3 are hyperbolic unstable and q3 and q2 are hyperbolic stable fixed points.

The trajectories γ1 and γ2 lie on the unstable invariant manifold of g. Because

of Theorem 2.7 and the local stability results, the unstable invariant manifold

of g is confined to q2 and q3 and the stable invariant manifold of g is confined

to e1 and e3. This results in the four zones Z1, . . . ,Z4. In view of Theorem 2.4,

∀z ∈ Int Z1, α(z) = e1 and ω(z) = q2, ∀z ∈ Int Z2, α(z) = e1 and ω(z) = q3,

∀z ∈ Int Z3, α(z) = e3 and ω(z) = q3, and ∀z ∈ Int Z4, α(z) = e3 and ω(z) = q2.

O+(p) always intersects L from the same side to the other, the orientation of the p1-to-p2 semi-

orbit with respect to the line segment p1 p2 must be one of the two cases shown in Fig. 2.1.

From the definition of L, the vector field at any point on p1 p2 intersects p1 p2 from the same

side of the line, and thus S is either positively invariant as shown in Fig. 2.1.(a) or negatively

invariant as shown in Fig. 2.1.(b).

Since the boundary p1-to-p2 semi-orbit and p1 p2 both lie in M, we know that S ⊆ M.

Hence, Int S ⊆ Int M and contains no fixed point. Moreover, neither O+(p) nor L contains

any fixed point, so ∂S does not contain any fixed point. Therefore, S contains no fixed point.

Consequently, if S is positively invariant, applying Theorem 1.1, we know that for any point

s ∈ S , ω(s) can only be a closed orbit confined in S . But this contradicts Lemma 2.3. If on the

other hand, S is negatively invariant, we apply the same argument after inverting the direction

of the vector field and again reach the same contradiction. So the proof is complete.

In term of the example given in the introduction, Theorem 2.4 implies that ω(p) in the

example can only be one of the fixed points, so at most four possibilities. If in addition to being
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positively invariant, M is also negatively invariant, i.e., M is invariant, then Theorem 2.4 can

get even more strengthened.

Theorem 2.5 (No interior fixed points, invariant vector field). For the vector field (1.1), consider

an invariant, simply-connected compact set M ⊂ U that contains a finite number of fixed points, all

on ∂M. Then for any p ∈ M, both ω(p) and α(p) are fixed points, not necessarily different, on ∂M.

Proof. Theorem 2.4 implies that for any p ∈ M, ω(p) contains only a single fixed point on

∂M. The same holds for α(p) after reversing the direction of the vector field since M is also

negatively invariant. This completes the proof.

Fig. 2.2 demonstrates an example from planar replicator dynamics [20–22], where the trian-

gle e1e2e3, known as a face, is invariant. Part (a) corresponds to Theorem 2.5. The reader may

refer to [4, 5] for all 49 possible qualitatively different phase portraits of the dynamics.

2.2 M has no interior, but infinitely many boundary fixed points

We obtain the following theorem that is the counterpart of Theorem 2.4 when the vector field

may have infinitely many fixed points on ∂M.

Theorem 2.6. For the vector field (1.1), consider a positively invariant, simply-connected compact set

M ⊂ U that has no interior fixed point, but may contain an infinite number of fixed points on ∂M.

Then for any p ∈ M, one of the following two holds:

1. ω(p) is a fixed point on ∂M;

2. ω(p) is a continuum of fixed points on ∂M.

Proof. Following similar steps as those in the proof for Theorem 2.4, one can construct the

simply-connected compact set S as illustrated in Fig. 2.1. Using similar arguments for S as

those in the proof for Theorem 2.4, after applying Theorem 6.1 in [7], which is the extension

of Poincaré–Bendixson theorem to the case when there are infinitely many fixed points, one

knows that ω(p) does not contain any fixed point. On the other hand, ω(p) has to be con-

nected in view of Lemma 2.1, so it can only be a connected subset of the fixed points in M,

which is either a fixed point or a continuum of fixed points on ∂M.

2.3 M has exactly one interior fixed point

Now we present the counterpart of Theorem 2.4 discussing the case when M contains exactly

one interior and finitely many boundary fixed points.

Theorem 2.7 (One interior fixed point). For the vector field (1.1), consider a positively invariant,

simply-connected compact set M ⊂ U that contains exactly one interior fixed point x∗ and a finite

number of fixed points on its boundary. Then for any p ∈ M, at least one of the following holds:

1. ω(p) is a fixed point, a closed orbit encircling x∗ or the union of {x∗} and a (possibly union of)

homoclinic orbit(s) joining x∗ to itself;

2. α(p) is {x∗}, a closed orbit encircling x∗ or the union of {x∗} and a (possibly union of) homo-

clinic orbit(s) joining x∗ to itself.
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Proof. We investigate all possibilities for ω(p) and show that each results in one of the cases

of the theorem. Should ω(p) be a singleton fixed point or a closed orbit that has to encircle

g according to Lemma 2.3, we arrive at Part 1. of the theorem. So consider the situation

when ω(p) is neither. It then follows Theorem 1.1 that ω(p) contains non-fixed points; we

pick one such point q and construct a transversal L through q. From Lemma 2.2, we know

that O+(p) intersects L for infinitely many times. Consider two consecutive intersections p1

and p2 which have to be distinctive since ω(p) is not a closed orbit. We construct the simply-

connected compact set S whose boundary is formed by the semi-orbit O+(p) from p1 to p2

and the line segment p1 p2. Similar to the proof of Theorem 2.4, one can show that:

(i) S is in the form of one of the two cases shown in Fig. 2.1,

(ii) S is positively invariant in Case (a) of the figure and negatively invariant in Case (b),

and

(iii) x∗ ∈ Int S is the only fixed point in S .

If S is positively invariant, O+(p) ∩ Int S ̸= ∅, implying the existence of some sp ∈

O+(p) ∩ Int S . Consequently, ω(sp) = ω(p). Then, applying Theorem 1.1, we know that

ω(sp) consists of a number of fixed points in S and the orbits connecting them. However,

since x∗ is the only fixed point in Int M, such orbits can only connect x∗ to itself. So ω(sp) is

the union of {x∗} and a (possibly union of) homoclinic orbit(s) joining x∗ to itself, so is ω(p).

So in this case Part 1 of the theorem holds.

Otherwise, if S is negatively invariant, then there exists a point sp ∈ O−(p) ∩ Int S where

O−(p) is the same as O+(p), but when time is reversed. Consequently, after reversing the

direction of the vector field, one can check the three cases in Theorem 1.1 as ω(sp) lead to the

three cases in Part 2 of the theorem respectively.

Theorem 2.7 is indeed restricting the third case of Theorem 1.1, for at least one of the ω or

α limit sets. Note that if, in addition, x∗ is hyperbolic and the vector field contains no closed

orbits, then for any point p ∈ M, either ω(p) is a fixed point or α(p) = {x∗}. See Fig. 2.2.(b)

and (c) for two examples. We highlight that the first case in Theorem 2.7 may not cover all

possibilities for ω(p) (see Fig. 2.3); however, then the second case of the Theorem will be in

force, determining the structure of α(p).

It is also worth mentioning that some cases in Part 1 and Part 2 of Theorem 2.7 never take

place at the same time. For example, it is impossible to have both ω(p) and α(p) being the

union of {x∗} and a homoclinic orbit joining x∗ to itself. We exclude such cases for general

positively invariant compact regions as follows. A point is periodic if it is on a closed orbit.

Proposition 2.8. Let M ⊂ U be a positively invariant compact set under the vector field (1.1). For

any non-periodic point p ∈ M, if ω(p) = α(p), then the limit sets contain only fixed points.

Either Lemma 9.0.2 in [23] or the results on the characterization of non-periodic orbits in

[6] can be used for the proof, which we skip here. In case M contains finitely many fixed

points, we can sharpen the result of Proposition 2.8 by using Proposition 8.1.3 in [23].

Corollary 2.9. For the vector field (1.1), let M ⊂ U be a positively invariant compact set containing

a finite number of fixed points. Then for any non-periodic point p ∈ M, if ω(p) = α(p), then the

limit sets exclusively contain a single fixed point.
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e1

e2 e3

γ

x∗

Figure 2.3: Phase portrait example for an invariant compact set M defined by

the triangle e1e2e3, where e1, e2 and e3 are fixed points. There is exactly one

interior fixed point, g. For every point p in the interior of M, the ω-limit set

of p equals ∂M, that is the union of the fixed points e1, e2 and e3 and the

heteroclinic orbits connecting them to each other. This is not covered by the first

case of Theorem 2.7. However, α(p) = {x∗}, which is satisfied by the second

case of Theorem 2.7.

2.4 M has finitely many interior fixed points

Following the previous subsection of having one interior fixed point in the positively invariant

compact set M, we now extend the result to the more general case of having finitely many

interior fixed points in M.

Theorem 2.10 (Finitely many interior fixed points). For the vector field (1.1), consider a positively

invariant, simply-connected compact set M ⊂ U containing a finite number of fixed points. Then for

any point p ∈ M, at least one of the following holds:

1. ω(p) is a fixed point, a closed orbit encircling at least one interior fixed point or the union of

some interior fixed points together with the orbits connecting them;

2. α(p) is an interior fixed point, a closed orbit encircling at least one interior fixed point or the

union of some interior fixed points together with the orbits connecting them.

Proof. The proof is similar to that for Theorem 2.7 and we omit it here.

Compared to the classical form of Poincaré–Bendixson Theorem 1.1, what Theorem 2.10

has further clarified is the role of the interior fixed points of M play to influence the topo-

logical structure of the limit sets. For example, as an immediate result of Theorem 2.10, if

the third case of Theorem 1.1 takes place for p, then ω(p) and α(p) cannot be free of interior

fixed points at the same time; in other words, unless ω(p) is simply a fixed point or a closed

orbit, some interior fixed points must be in either ω(p) or α(p). Another implication of The-

orem 2.10 is the exclusion of the boundary fixed points from one of ω(p) and α(p). From

Theorem 2.10, if ω(p) is not simply a fixed point, then at least one of ω(p) or α(p) does not

contain any boundary fixed point. In a sense, this implies that the interior fixed points are

more important for determining the structures of the limit sets. Finally, we note that Corol-

lary 2.9 can also be utilized here to rule out some trivial cases when ω(p) and α(p) are the

same.

At the end of this section, we present the following version of Theorem 2.10 without

requiring M to be simply connected.
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Theorem 2.11. For the vector field (1.1), consider a positively invariant, compact set M ⊂ U that

contains a finite number of fixed points. Then for any p ∈ M, at least one of the following holds:

1. ω(p) is a fixed point, a closed orbit or the union of some interior fixed points with the orbits

connecting them;

2. α(p) is one of the interior fixed points, a closed orbit or the union of some interior fixed points

with the orbits connecting them.

Proof. The proof is similar to that of Theorem 2.7. The difference is that if ω(p) or α(p) is a

closed orbit, it may encircle areas that do not belong to M.
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Keywords: patterns, Dirichlet boundary conditions, surface of revolution.

2020 Mathematics Subject Classification: 35B35, 35B36.

1 Introduction

In this work we consider the following problem

{

ut = ∆u + f (x, u, ux), (t, x) ∈ R
+ × Ω,

u(t, x) = B, (t, x) ∈ R
+ × ∂Ω

(1.1)

where f is a C1 function, B ∈ R and Ω is a surface of revolution in R
3 or is an n-dimensional

ball. We say that U is a stationary solution of (1.1) if U is a solution of (1.1) independent of

temporal variable t, that is

{

∆U + f (x, U, Ux) = 0, x ∈ Ω,

U(x) = B, x ∈ ∂Ω.
(1.2)

A stationary solution U of (1.1) is called stable if for every η > 0 there exists δ > 0 such that

for every solution v to (1.1) satisfying ∥v(0, ·)− U(·)∥L∞ < δ it holds that ∥v(t, ·)− U(·)∥L∞ <

η, for all t > 0. Finally, if U is a non-constant stable stationary solution of (1.1), then U is

commonly referred to as the spatial pattern or simply pattern.

The study of reaction-diffusion equations has been a central focus in the field of mathemat-

ical modeling for several decades. These systems have wide-ranging applications in various

scientific disciplines, including chemistry, biology, physics, and ecology. One of the intriguing
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phenomena that often arises in reaction-diffusion systems is the spontaneous formation of

spatial patterns. These patterns, which can take on diverse shapes and structures, emerge as

a consequence of the interplay between the underlying reaction kinetics and the diffusion of

the interacting species [9, 20].

In this work, we are interested in investigating the role of spatial heterogeneities as well as

the domain geometry concerning the existence or not of patterns. The literature on this subject

is extensive, mainly when Neumann boundary conditions are considered. The difficulty in

obtaining results with Dirichlet boundary conditions leads to a reduced number of studies.

Here, we cite [8, 11, 21], where the authors achieve results for one-dimensional problems, and

[13] for problems in n-dimensional balls. Some results on surfaces of revolution can be found

in [19].

Our proposal to study the problem on surfaces of revolution is motivated by the recent

interest of the scientific community in these domains [3,4,14,16,18,19], and success is primar-

ily attributed to the well-established symmetry properties of stable solutions in this domain

(similar phenomena are observed in the case of balls in R
n). Such symmetry leads us to

one-dimensional problems, and this is crucial for obtaining the results.

The proposed ideas can be applied in various situations. In this study, we provide several

examples involving the Allen–Cahn, Fisher–KPP, and sine-Gordon problems. These choices

were made given the significant relevance of these models. However, as evident, the potential

applications extend to many other cases, including reaction-convection-diffusion problems.

The work is divided as follows. In Section 2, we present preliminary results related to the

existence and uniqueness of solutions for one-dimensional nonlinear second-order problems.

In this section, we illustrate how to obtain results regarding the existence or not of patterns

in one-dimensional problems, underscoring the significance of this section in its own right.

In Section 3, we present the main results for the problem on surfaces of revolution, whereas

Section 4 is dedicated to the sine-Gordon problem in an n-dimensional ball. Finally, in Section

5, we provide some concluding remarks.

2 Preliminaries and some general one-dimensional results

In this section, we will present three general results on the existence and uniqueness of so-

lutions for certain elliptic problems in a interval. In this case, for the sake of simplicity, we

will replace the notation ux with u′. Results of this type are commonly understood when

f (x, u, u′) satisfies a specific uniform Lipschitz condition, assuming the interval length for the

variable u where the problem occurs is sufficiently small. However, in numerous scenarios, it

is necessary to extend this result to include functions f (x, u, u′) that are Lipschitz not for all u

but solely for u within a bounded interval. This is what is accomplished in the first theorem

below, which considers Dirichlet conditions at the boundary.

Additionally, it is crucial to highlight that instead of the typical Lipschitz condition, we

presume a set of one-sided conditions which, while not more restrictive, proves to be consid-

erably more practical. Further elaboration on this matter can be found in [1, 2, 6].

The subsequent results in this section are related to a function g ∈ C1 such that

g(s, 0, 0) = 0 (2.1)

and

G1(u − v, u′ − v′) ≤ g(s, u, u′)− g(s, v, v′) ≤ G2(u − v, u′ − v′) (2.2)
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where

G2(u, u′) =























M2u′ + K2u, u ≥ 0, u′ ≥ 0,

M1u′ + K2u, u ≥ 0, u′ ≤ 0,

M1u′ + K1u, u ≤ 0, u′ ≤ 0,

M2u′ + K1u, u ≤ 0, u′ ≥ 0,

(2.3)

G1(u, u′) =























M1u′ + K1u, u ≥ 0, u′ ≥ 0,

M2u′ + K1u, u ≥ 0, u′ ≤ 0,

M2u′ + K2u, u ≤ 0, u′ ≤ 0,

M1u′ + K2u, u ≤ 0, u′ ≥ 0,

(2.4)

and Mi, Ki ∈ R (i = 1, 2) are constant.

The next three theorems are crucial to all the results of this work.

Theorem 2.1 (Theorem 1 in [1]). For (s, u, u′) ∈ [0, L]× J × R, where J is a closed interval in R,

let g(s, u, u′) be a continuous function satisfying (2.1) and (2.2). If the two problems (i = 1, 2)
{

u′′
i (s) + Gi(ui(s), u′

i(s)) = 0, s ∈ (a, b),

ui(a) = A′, ui(b) = B′,
(2.5)

have unique solutions on every sub-interval [a, b] of [0, L] for arbitrary A′, B′, and if for a = 0, b = L,

A′ = A, B′ = B the ranges of ui (i = 1, 2) are subsets of J, then the problem
{

u′′(s) + g(s, u(s), u′(s)) = 0,

u(0) = A, u(L) = B,
(2.6)

has a unique solution u(s), which remains in J and it satisfies

u1(s) ≤ u(s) ≤ u2(s),

where u1 and u2 are solutions of (2.5) with G1 and G2, respectively, and a = 0, b = L, A′ = A,

B′ = B.

Before stating the next theorem, we define

α(M, K) =











































2√
4K − M2

cos−1

(

M

2
√

K

)

, if 4K − M2
> 0,

2√
M2 − 4K

cosh−1

(

M

2
√

K

)

, if 4K − M2
< 0, M > 0, K > 0,

2

M
, if 4K − M2 = 0, M > 0,

+∞, otherwise

(2.7)

and

β(M, K) =











































2√
4K − M2

cos−1

( −M

2
√

K

)

, if 4K − M2
> 0,

2√
M2 − 4K

cosh−1

( −M

2
√

K

)

, if 4K − M2
< 0, M < 0, K > 0,

−2

M
, if 4K − M2 = 0, M < 0,

+∞, otherwise.

(2.8)
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The next theorem is fundamental for verifying the existence and uniqueness of solution to

problems in (2.5) in the theorem above.

Theorem 2.2 (Theorem 1 in [2]). Let G(y, y′) be a continuous real valued function satisfying

G(0, 0) = 0 and (2.2) (assuming g(s, y, y′) = G(y, y′)) with G1 and G2 defined in (2.4) and (2.3). If

L < α(M2, K2) + β(M1, K2),

then the boundary value problem

{

u′′(s) + G(u(s), u′(s)) = 0, s ∈ (0, L),

u(0) = A′, u(L) = B′ (2.9)

has a unique solution for every pair of real numbers A′, B′.

Below, we present a new result regarding existence and uniqueness, specifically for mixed

boundary conditions. In particular, we will use this theorem to investigate the sine-Gordon

problem in an n-dimensional ball.

Theorem 2.3 (Theorem 1 in [6]). Let g(s, y, y′) be a continuous real valued function satisfying (2.2)

with G1 and G2 defined in (2.4) and (2.3). If

L < β(M1, K2),

then the mixed boundary value problem

{

u′′(s) + g(s, u(s), u′(s)) = 0, s ∈ (0, L),

u′(0) = A, u(L) = B
(2.10)

has a unique solution for every pair of real numbers A, B.

With the aforementioned theorems, it is not difficult to derive results regarding the non-

existence of patterns in one-dimensional problems and zero Dirichlet boundary conditions.

Although this is not the main objective of this work, we present a simple example below.

Example 2.4. Consider the following problem

{

ut = uxx + ρ(x)u(1 − u), (t, x) ∈ R
+ × (0, L),

u(0) = 0, u(L) = 0,
(2.11)

where ρ is a continuous function with sign-changing or not. Note that this includes the

important Fisher–KPP equation which will be further elucidated in the subsequent section.

In this case we consider J = [0, 1] and then, g(x, u) = ρ(x)u(1 − u) satisfies (2.1) and (2.2)

with G1 and G2 given by (2.4) and (2.3) if

M1 = M2 = 0, K1 = − sup
x∈[0,L]

|ρ(x)| and K2 = sup
x∈[0,L]

|ρ(x)|.

Now, in order to use Theorem 2.1 we have to analyse

{

z′′ + Gi(z) = 0, (0, L),

z(0) = A′, z(L) = B′ (2.12)
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with i = 1, 2. We can use Theorem 2.2 to conclude that if L < α(M2, K2) + β(M1, K2), that is

2
√

4K2 − M2
2

cos−1

(

M2

2
√

K2

)

+
2

√

4K2 − M2
1

cos−1

( −M1

2
√

K2

)

=
π

2
√

K2
+

π

2
√

K2
=

π√
K2

> L

or

K2 < (π/L)2,

then (2.12) has a unique solution (for i = 1, 2) for any A′, B′ ∈ R. In particular, it is easy to see

that if A′ = B′ = 0, then z ≡ 0 ∈ J = [0, 1] is the unique solution. Finally, Theorem 2.1 yields

that, in these conditions, u ≡ 0 is the unique stationary solution of (2.11), and thus, (2.11) does

not admit patterns.

Remark 2.5. Note that the interval J (= [0, 1] in the above example) is associated with the

range of variation of u and with the inequalities in (2.2). Evidently, its choice affects the values

of Mi and Ki, and consequently the application of the results of existence and uniqueness of

solution to determine whether patterns emerge or not.

Below, we present a simple example of pattern existence for a problem with mixed bound-

ary conditions. In this case, the chosen nonlinearity is related to the sine-Gordon equation.

Example 2.6. Consider the following problem with mixed boundary conditions

{

ut = (e5xux)x + (x + 6) sin(u), (t, x) ∈ R
+ × (0, 1),

ux(t, 0) = 1/2, u(t, 1) = 1/4.
(2.13)

This problem can be written as







ut

e5x
= uxx + 5ux +

(x + 6)

e5x
sin(u), (t, x) ∈ R

+ × (0, 1),

ux(t, 0) = 1/2, u(t, 1) = 1/4,
(2.14)

and the corresponding stationary problem is







uxx + 5ux +
(x + 6)

e5x
sin(u) = 0, x ∈ (0, 1),

ux(0) = 1/2, u(1) = 1/4.
(2.15)

We note that h(x, u, ux) = 5ux +
(x+6)

e5x sin(u) satisfies (2.2) with G1 and G2 defined in (2.4) and

(2.3) with

M1 = M2 = 5, K1 = −6, K2 = 6.

A simple analysis of (2.8) shows that

β(M1, K2) = ∞.

From Theorem 2.3, it follows that (2.15) has a unique solution U. Now note that E : {u ∈
H1(0, 1); u(1) = 1/4} → R defined by

E[u] =
∫ 1

0

e5x

2
(ux)

2 − F(u, x)dx +
u(0)

2
,
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where F(u, x) = (x + 6)
∫ u

0 sin(σ)dσ is the energy functional associated with (2.15), its critical

points are solutions to (2.15). Now, we state that E serves as a strict Lyapunov functional for

(2.13) i.e., except at stationary states, E[u(t, ·)] is strictly decreasing on orbits. To verify this,

we take a solution u of (2.13) and a function v ∈ H1(0, 1) such that v(1) = 0. Then

ut = (e5xux)x + (x + 6) sin(u)

and we can multiply this equation by v, integrate on (0, 1) and use integration by parts to

achieve

∫ 1

0
vutdx =

∫ 1

0
ve5xuxxdx +

∫ 1

0
v5e5xuxdx +

∫ 1

0
v(x + 6) sin(u)dx

=
∫ 1

0
v5e5xuxdx + v(1)e5ux(t, 1)− v(0)ux(t, 0)−

∫ 1

0
(ve5x)xuxdx

+
∫ 1

0
v(x + 6) sin(u)dx

=
∫ 1

0
v5e5xuxdx − v(0)

2
−

∫ 1

0
vxe5xuxdx −

∫ 1

0
v5e5xuxdx

+
∫ 1

0
v(x + 6) sin(u)dx.

We can cancel the first and fourth term of the last equality to obtain

∫ 1

0
vutdx = −v(0)

2
−

∫ 1

0
vxe5xuxdx +

∫ 1

0
v(x + 6) sin(u)dx. (2.16)

Now observe that if u is a solution of (2.13), then ut(t, ·) ∈ H1(0, 1), u(t, 1) = 1/4 for all t,

and thus ut(t, 1) = 0. If we differentiate E[u(t, ·)] with respect to t, we obtain

d

dt
E[u(t, ·)] =

∫ 1

0
e5xuxutxdx −

∫ 1

0
(x + 6) sin(u)utdx +

ut(t, 0)

2
. (2.17)

We can compare (2.16) and (2.17) to get

d

dt
E[u(t, ·)] = −

∫ 1

0
(ut)

2dx.

Therefore, we have a system with a gradient structure, and then the bounded trajectories

of (2.13) approach the set of stationary solutions (for the reader’s convenience, we cite [7] for

topics related to the dynamics of (2.13) and [15, Chapter 2] for results related to the existence

and boundedness of solutions of (2.13)). Since U is non-constant and the only stationary

solution of the problem, we conclude that U is a pattern as defined above.

3 Surfaces of revolution

Considering a smooth curve C in R
3 parameterized by (ψ(s), 0, χ(s)), where s ∈ [l1, l2] ([0, 1] ⊂

(l1, l2)), with ψ(l1) = ψ(l2) = 0, we can generate a borderless surface of revolution M. This

surface can be parametrized by

x = (ψ(s) cos(θ), ψ(s) sin(θ), χ(s)), (s, θ) ∈ [l1, l2]× [0, 2π). (3.1)
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Let M be the surface of revolution parametrized by (3.1). We also assume that ψ, χ ∈ C2,

ψ > 0 in (l1, l2), (ψs)2 + (χs)2 = 1 and χs(s) ≥ 0 in [l1, l2]. Moreover, ψs(l1) = −ψs(l2) = 1,

and as stated above, we assume ψ(l1) = ψ(l2) = 0.

By setting x1 = s and x2 = θ, we can conclude that the surface of revolution M, with the

above parametrization, is a 2-dimensional Riemannian manifold with the metric

g = ds2 + ψ2(s)dθ2. (3.2)

M has no boundary, and we always assume that M and the Riemannian metric g on it

are smooth (see [5], for instance). The area element on M is given by dσ = ψdθds, and the

gradient of u with respect to the metric g is given by

∇gu =

(

∂su,
1

ψ2
∂θu

)

.

The Laplace–Beltrami operator ∆g on M can be expressed as

∆gu = uss +
ψs

ψ
us +

1

ψ2
uθθ . (3.3)

We consider S ⊂ M as a surface of revolution with a boundary parameterized by

x = (ψ(s) cos(θ), ψ(s) sin(θ), χ(s)), (s, θ) ∈ [0, 1]× [0, 2π). (3.4)

Hence, ∂S = C0 ∪ C1, where C0 and C1 are two circles parameterized by (θ ∈ [0, 2π))

(ψ(0) cos(θ), ψ(0) sin(θ), χ(0))

and

(ψ(1) cos(θ), ψ(1) sin(θ), χ(1)),

respectively.

Theorem 3.1. Consider the following problem on a surface S as defined above

{

ut = ∆gu + h(x, u), (t, x) ∈ R
+ × S ,

u(t, x) = 0, (t, x) ∈ R
+ × ∂S = R

+ × (C0 ∪ C1),
(3.5)

where h is a function of class C1 and h(·, η) is independent of angular variation. Suppose that

(a) h̃(s, u, us) := ψs

ψ us + h(s, u) satisfies (2.1) and (2.2) with Gi (i = 1, 2) given by (2.3), (2.4) for

(s, u, us) ∈ [0, 1]× J × R where J ⊂ R is a closed interval containing 0;

(b) α(M2, K2) + β(M1, K2) > 1 where α and β are numbers defined in (2.7) and (2.8).

Then problem (3.5) does not admit patterns.

Proof. First, we observe that stable stationary solutions of (3.5) must be independent of angular

variation. This is a well-known result that can be seen in [3, 14]. Thus, due to (3.3), we can

conclude that if u is a stable stationary solution of (3.5), then u satisfies:







uss +
ψs

ψ
us + h(s, u) = 0, s ∈ [0, 1],

u(0) = u(1) = 0.
(3.6)
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Our goal now is to prove that problem (3.6) has a unique solution u ≡ 0. To achieve this,

we use Theorem 2.1.

According to hypothesis (a), h̃(s, u, us) = ψs

ψ us + h(s, u) satisfies (2.1) and (2.2) with Gi

given by (2.3) and (2.4), and it is the first part of Theorem 2.1. Note that, by hypothesis (b),

we can use Theorem 2.2 twice (with L = 1 and G = G1 and again with G = G2) to conclude

that the two problems (i = 1, 2)

{

u′′
i + Gi(ui(s), u′

i(s)) = 0,

ui(a) = A′, ui(b) = B′ (3.7)

have unique solutions on every sub-interval [a, b] ⊂ [0, 1] for arbitrary A′, B′.
Finally, the problems (i = 1, 2)

{

z′′ + Gi(z, z′) = 0, s ∈ [0, 1],

z(0) = z(1) = 0,
(3.8)

has z = 0 ∈ J as solution, which allows us to utilize Theorem 2.1 and conclude that u ≡ 0 is

the unique solution of (3.6). Hence, it follows that problem (3.5) does not admit the existence

of patterns, and the theorem is proved.

3.1 The Allen–Cahn problem

The aim now is to apply Theorem 3.1 to some relevant cases commonly found in the literature.

In this subsection, we address the nonlinearity of Allen–Cahn. In this case, we consider

problem (3.5) with h(x, u) = u − u3, i.e.

{

ut = ∆gu + u − u3, (t, x) ∈ R
+ × S ,

u(t, x) = 0, (t, x) ∈ R
+ × ∂S = R

+ × (C0 ∪ C1).
(3.9)

As we know, a stable solution of (3.9) must satisfy







uss +
ψs

ψ
us + u − u3 = 0, s ∈ [0, 1],

u(0) = u(1) = 0.
(3.10)

A simple computation shows that h̃(s, u, us) =
ψs

ψ us + u − u3 satisfies (2.2) if we consider,

for example: J = [0, 1], G1 and G2 given by (2.4) and (2.3), respectively, with

M1 = inf
s∈[0,1]

{

ψs

ψ

}

, M2 = sup
s∈[0,1]

{

ψs

ψ

}

, K1 = −2 and K2 = 1. (3.11)

Hence, if we assume ψ such that

α(M2, K2) + β(M1, K2) > 1,

we have the hypothesis (b) and we can use Lemma 2.2 to ensure that the problems (i = 1, 2)

{

z′′ + Gi(z, z′) = 0, s ∈ [0, 1],

z(0) = z(1) = 0,
(3.12)

have unique solutions ui ≡ 0 ∈ [0, 1] (i = 1, 2).
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Remark 3.2. The conditions (a) and (b) of Theorem 3.1 involve the geometry of the domain

(represented by the function ψ) along with the reaction term of the problem. In particular,
ψ′

ψ

(see also (3.11)) represents the geodesic curvature of the parallel circles s = constant on S .

Example 3.3. Consider the problem (3.9) where S1 is a finite straight cylinder, that is, ψ(s) = 1

(χ(s) = s + 1) for all s ∈ [0, 1]. In this case, M1 = M2 = 0, K1 = −2 and K2 = 1. Thus, it easy

to see that

α(0, 1) + β(0, 1) =
π

2
+

π

2
= π > 1

and we can conclude that there are no patterns for this case.

Similarly, if ψ(s) = s2/4 + 1/2 and χ(s) = s
4

√
4 − s2 + arcsin(s/2) for s ∈ [0, 1], then S2

resembles a frustum of a hyperboloid (see figure below) and we have M1 = 0, M2 = 2/3,

K1 = −2 and K2 = 1. It follows that

α(2/3, 1) + β(0, 1) > 1

and again there are no patterns for the problem (3.9) in this case.

Figure 3.1: Surface of revolution S2

Our results can also be applied to spatially heterogeneous problems. For instance, we can

consider a ∈ C1(S) as a positive diffusivity coefficient and b ∈ C1(S) as a positive reaction

coefficient multiplying u − u3. In this case, the problem becomes:

{

ut = divg(a(x)∇u) + b(x)(u − u3), (t, x) ∈ R
+ × S ,

u(t, x) = 0, (t, x) ∈ R
+ × ∂S = R

+ × (C0 ∪ C1).
(3.13)

If we assume the functions a and b are independent of angular variation, then we have











ut = auss +
(aψ)s

ψ
us +

a

ψ2
uθθ + b(u − u3), (t, s, θ) ∈ R

+ × [0, 1]× [0, 2π),

u(t, 0, θ) = u(t, 1, θ) = 0, (t, θ) ∈ R
+ × [0, 2π),

(3.14)

and the stable solutions satisfy

{

uss + h̃(s, u, us) = 0, s ∈ [0, 1],

u(0) = u(1) = 0,
(3.15)

where h̃(s, u, us) =
(a(s)ψ(s))s

a(s)ψ(s)
us(s) +

b(s)
a(s)

(u(s)− u3(s)).
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In this case, h̃ satisfies (2.1) and satisfies (2.2) if we consider

M1 = inf
s∈[0,1]

{

(aψ)s

aψ

}

, (3.16)

M2 = sup
s∈[0,1]

{

(aψ)s

aψ

}

, (3.17)

K1 = inf
s∈[0,1]

{−2b(s)

a(s)

}

(3.18)

and

K2 = sup
s∈[0,1]

{

b(s)

a(s)

}

. (3.19)

Now, if we proceed as before, we find that if a, b, ψ are taken such that

α(M2, K2) + β(M1, K2) > 1

occurs, we can also conclude the non-existence of patterns for this spatially heterogeneous

problem.

3.2 The Fisher–KPP problem

A similar analysis can also be conducted for the Fisher–KPP problem. In this case, considering

a, b ∈ C1(S), we have

{

ut = divg(a(x)∇u) + b(x)(u − u2), (t, x) ∈ R
+ × S ,

u(t, x) = 0, (t, x) ∈ R
+ × ∂S = R

+ × (C0 ∪ C1).
(3.20)

Similar to the previous case, several instability results can be derived from the relationship

between functions a and b, and the geometry of S represented by the function ψ. However,

now, we will demonstrate with examples how we can utilize the ideas developed here to

obtain results of the existence of patterns for problems with non-zero Dirichlet boundary

conditions. In this case, we once again make use of the symmetry of stable solutions, and as

usual (see [3, 14, 18]), we analyze the existence of stable solution to the problem


















ut = auss +
(a(s)ψ)s

ψ
us + b(s)(u − u2), (t, s) ∈ R

+ × [0, 1],

u(t, 0) = A, t ∈ R
+,

u(t, 1) = B, t ∈ R
+.

(3.21)

Example 3.4. Consider a ≡ b ≡ 1 and S again a finite straight cylinder (ψ(s) = 1 and

χ(s) = s + 1 for all s ∈ [0, 1]). Then we consider the following Fisher–KPP problem with

non-zero Dirichlet boundary conditions














ut = ∆gu + (u − u2), (t, x) ∈ R
+ × S ,

u(t, x) = 1/3, (t, x) ∈ R
+ × C0,

u(t, x) = 1/2, (t, x) ∈ R
+ × C1.

(3.22)

In this case, we have to analyze the following problem
{

uss + (u − u2) = 0, s ∈ [0, 1],

u(0) = 1/3, u(1) = 1/2.
(3.23)
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It is not difficult to see that h(u) = u − u2 satisfies (2.1) and (2.2) with J = [0, 1] and

M1 = M2 = 0, K1 = −1, K2 = 1.

Moreover,

α(M2, K2) + β(M1, K2) =
2

√

4K2 − M2
2

cos−1

(

M2

2
√

K2

)

+
2

√

4K2 − M2
1

cos−1

( −M1

2
√

K2

)

=
π

2
+

π

2
= π > 1.

Hence, we can use Lemma 2.2 to ensure that

{

z′′ + z = 0, s ∈ (0, 1),

z(a) = A′, z(b) = B′ (3.24)

and
{

z′′ − z = 0, s ∈ (0, 1),

z(a) = A′, z(b) = B′ (3.25)

have unique solutions on every sub-interval [a, b] of [0, 1] for arbitrary A′, B′. Finally, in order

to apply Theorem 2.1 we have to consider the problems (3.24) and (3.25) with a = 0, b = 1,

A′ = 1/3 e B′ = 1/2. After a few calculations, it’s not hard to see that

z1(s) =
2 cos(s)− 2 cot(1) sin(s) + 3 csc(1) sin(s)

6

and

z2(s) =
e−s(−3e + 2e2 − 2e2s + 3e(1+2s))

6(e2 − 1)

are solutions of (3.24) and (3.25) respectively (with a = 0, b = 1, A′ = 1/3 e B′ = 1/2),

and both solutions have range contained in [0, 1]. According to Theorem 2.1, problem (3.23)

has a unique solution U. Now we proceed as in the Example 2.6. The energy functional

E : {u ∈ H1(S); u(x) = 1/3 for x ∈ C0, u(x) = 1/2 for x ∈ C1} → R associated with the

problem (3.23) is defined by

E[u] =
∫

S

1

2
|∇gu|2 + F(u)dx

where F(u) =
∫ u

0 s − s2ds. It is routine to verify that (3.22) is a gradient system (see Example

2.6), so we can conclude that U is a pattern.

Once again, depending on computational capacity, one can contemplate more general

problems involving heterogeneities, different boundary values, and alternative surfaces.

4 Sine-Gordon equation in an n-dimensional ball

This section is dedicated to studying the sine-Gordon equation. In this equation, we have

f (u) = sin(u) and since f is globally bounded, we can, in this case, analyze the problem in an

n-dimensional ball B centered at the origin with a radius equal to 1. Hence, we consider the

following problem
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{

ut = div(a(x)∇u) + b(x) sin(u), (t, x) ∈ R
+ ×B,

u(t, x) = B, (t, x) ∈ R
+ × ∂B,

(4.1)

where a and b are functions of class C1 with radial symmetry, and B ∈ R.

It is well-known that stable solutions of (4.1) are radially symmetric; thus, if u is a stable

solution it satisfies (for simplicity, we consider n = 2)







urr +
(a(r)r)r

a(r)r
ur +

b(r)

a(r)
sin(u) = 0, r ∈ (0, 1),

ur(0) = 0, u(1) = B.

(4.2)

We can state the following theorem.

Theorem 4.1. Consider (4.1) and suppose that

h(r, u, ur) :=
(a(r)r)r

a(r)r
ur +

b(r)

a(r)
sin(u)

satisfies (2.2) with G1 and G2 defined in (2.4) and (2.3), respectively, and β(M1, K2) > 1. Then, if

B = 2kπ (k ∈ Z) (4.1) does not admit patterns.

Proof. A direct application of Theorem 2.3 gives us that the problem (4.2) with B = 2kπ (k ∈ Z)

has u ≡ 2kπ as its unique solution. Therefore, (4.1) does not admit patterns.

Example 4.2. If a and b are taken such that a(r) = e5r/r and b(r) = (r + 6)e5r/r then

h(r, u, ur) = 5ur + (r + 6) sin(u). Hence h satisfies (2.2) with

M1 = M2 = 5, K1 = −6, K2 = 6.

It follows that β(M1, K2) = ∞ e therefore (4.1) does not admit patterns if B = 2kπ (k ∈ Z).

5 Concluding remarks

In this paper, we present a straightforward and efficient approach to studying pattern forma-

tion in problems with Dirichlet boundary conditions. The symmetry of the domains under

consideration, along with the well-known properties of stable solutions, enabled us to leverage

results on the existence, uniqueness, and stability of solutions in one-dimensional problems

to achieve our objectives. Below, we provide some concluding remarks that complement the

ideas discussed thus far.

(i) Evidently, the problem of sine-Gordon could be considered on revolution surfaces as be-

fore, and then results of existence or non-existence of patterns would also be generated

for this case. On the other hand, the absence of a result like Theorem 2.1 for prob-

lems with mixed boundary conditions prevents us from considering the nonlinearities of

Allen–Cahn and Fisher–KPP in an n-dimensional ball.

(ii) The examples presented in this work serve the purpose of illustrating how one can apply

the developed theory. In this regard, the parameters (surfaces and heterogeneities) were

chosen in a way to simplify the computations. Particularly, in Example 4.2, the choice

of the diffusion coefficient a(r) = e5r/r made the problem more straightforward and

allowed us to use Theorem 4.1.
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(iii) Similarly, other equations can be considered beyond those highlighted in this work

(namely Allen–Cahn, Fisher–KPP and sine-Gordon equations). For instance, with a

nonlinearity of the form f (u, x) = u(u − θ(x))(1 − u), where 0 < θ(x) < 1, which

is related to the Fife–Greenlee equation [10], or the perturbed sine-Gordon equation where

f (u) = sin(u) − g(u) [17], or even in problems with advection terms, that is, in reac-

tion–convection–diffusion problems, see [12] and references therein.
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1 Introduction

In the present work we consider the periodic Cauchy problem and the internal controllability

of the following one-dimensional system





ηt + ∂2
xΦ − ∂4

xΦ + ∂x (η∂xΦ) = 0,

Φt + η − ∂2
xη +

1

2
(∂xΦ)2 = 0,

(1.1)

which is a rescaled version of the system derived in [14] from the evolution of long water

waves with small amplitude in the presence of surface tension, where Φ = Φ(x, t) represents

the nondimensional velocity potential on the bottom z = 0 and the variable η = η(x, t)

corresponds the free surface elevation.

As happens in water wave models, there is a Hamiltonian type structure which is clever

to characterize the space for the study of the Cauchy problem. In our particular system (1.1),

the Hamiltonian functional H = H(t) is defined as

H

(
η

Φ

)
=

1

2

∫

R

(
η2 + (∂xη)2 + (∂xΦ)2 + (∂2

xΦ)2 + η (∂xΦ)2
)

dx,

BCorresponding author. Email: rcordoba@udenar.edu.co
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and the Hamiltonian type structure is given by

(
ηt

Φt

)
= JH′

(
η

Φ

)
, J =

(
0 1

−1 0

)
.

We see directly that the functional H is well defined when

η(·, t), Φx(·, t) ∈ H1(R),

for t in some interval. These conditions already characterize the natural space for the study

of solutions of the system (1.1). Certainly, J. Quintero and A. Montes in [16] showed for the

model (1.1) the existence of solitary wave solutions which propagate with speed of wave θ > 0,

i.e. solutions of the form

η(x, t) = u(x − θt), Φ(x, t) = v(x − θt),

in the energy space H1(R)× V2(R), where H1(R) is the usual Sobolev space of order 1 and

the space V2(R) is defined with respect to the norm given by

∥w∥2
V2(R) = ∥w′∥2

H1(R) =
∫

R

(
(w′)2 + (w′′)2

)
dx.

They also showed, using the estimates of the Kato’s commutator, the local well-posedness for

the Cauchy problem associated to the system (1.1) in the Sobolev type space Hs(R)×V s+1(R),

with s > 3/2, where Hs(R) is the usual Sobolev space of order s defined as the completion of

the Schwartz class with respect to the norm

∥w∥Hs(R) = ∥ (1 + |ξ|)s ŵ(ξ)∥L2
ξ

and V s+1(R) denotes the completion of the Schwartz class with respect to the norm

∥w∥V s+1(R) = ∥ (1 + |ξ|)s |ξ|ŵ(ξ)∥L2
ξ
,

where ŵ is the Fourier transform of w in the space variable x and ξ is the variable in the

frequency space related to the variable x. Using Bourgain type spaces, in work [13] the authors

showed that the Cauchy problem associated to the system (1.1) is locally well-posedness in

the space Hs(R)× V s+1(R) for s ≥ 0.

On the case of the periodic domain T = R/(2πZ) (the one-dimensional torus), it was

proved in [15] the local well-posedness of the Cauchy problem associated to system (1.1) in

the space Hs(T)× V s+1(T), for s > 3/2, where the periodic Sobolev space Hs(T) is defined

by

Hs(T) =
{

w = ∑
k∈Z

wkeikx : ∑
k∈Z

(1 + |k|2)s|wk|
2
< +∞

}

and the space V s+1(T) is defined by the norm

∥w∥V s+1(T) =

[
∑

k∈Z

(1 + |k|2)s|k|2|wk|
2

]1/2

,

where wk = ŵ(k) denotes the k-Fourier coefficient with respect to the spatial variable x. In this

paper, we prove that the Cauchy problem associated to system (1.1) with the initial condition

η(x, 0) = η0(x), Φ(x, 0) = Φ0(x) (1.2)
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is locally well-posed in the space Hs(T)× V s+1(T) for s ≥ 0. Hence we improve the result

found in [15].

To study the Cauchy problem (1.1)–(1.2) we use its integral equivalent formulation,

(η(t), Φ(t)) = S(t)(η0, Φ0)−
∫ t

0
S(t − t′)

(
∂x(η∂xΦ),

1

2
(∂xΦ)2

)
(t′)dt′, (1.3)

where S(t)(η0, Φ0) is the solution of the linear problem, that is

S(t)(η0, Φ0) = (S1(t)(η0, Φ0), S2(t)(η0, Φ0))

with

S1(t)(η0, Φ0) = ∑
k∈Z

eikx
[
cos(ϕ(k)t)η̂0(k) + |k| sin(ϕ(k)t)Φ̂0(k)

]
,

S2(t)(η0, Φ0) = ∑
k∈Z

eikx

[
−

sin(ϕ(k)t)η̂0(k)

|k|
+ cos(ϕ(k)t)Φ̂0(k)

]
,

and the function ϕ defined as

ϕ(k) = |k|3 + |k|

is the Fourier symbol associated to the spacial linear part of the system (1.1).

The method of proof will be the application of the contraction mapping principle in a suit-

able Banach function space C
(
[0, T] : Hs(T)× V s+1(T)

)
∩ Z s, where the appropriated space-

time weight norm for Z s is determined by the knowledge of certain estimates for the solutions

of the linear part. This method, introduced by J. Bourgain in [2]-[3] and simplified by C. Kenig,

G. Ponce and L. Vega in [8]-[9], not only benefits of the above mentioned space-time estimates,

but also exploits structural properties of the nonlinearity.

As usual when dealing with dispersive models in Bourgain spaces, we slightly modify the

terms in the right-hand of (1.3) by means of a cut off function. In the following, let ψ ∈ C∞
0 (R)

with support in (−2, 2), such that 0 ≤ ψ ≤ 1, and ψ ≡ 1 in [−1, 1]. Thus, for 0 < T < 1 we

consider the following modified version of (1.3),

(η(t), Φ(t)) = ψ(t)S(t)(η0, Φ0)− ψ(t)
∫ t

0
S(t − t′)ψ(t′)

(
∂x(η∂xΦ),

1

2
(∂xΦ)2

)
(t′)dt′. (1.4)

We will show the existence of a solution of the integral problem (1.4) using the Banach fixed

point theorem and appropriate linear and nonlinear estimates.

The second part of this paper is concerned with the internal control problem for the system

(1.1) on the periodic domain T: choose an appropriate internal control function

F = F(x, t) = ( f1(x, t), f2(x, t))

to guide the model





ηt + ∂2
xΦ − ∂4

xΦ + ∂x(η∂xΦ) = f1, x ∈ T, t ≥ 0,

Φt + η − ∂2
xη +

1

2
(∂xΦ)2 = f2, x ∈ T, t ≥ 0,

(1.5)

during a time interval [0, T], from a given initial state to another preassigned terminal state,

in an appropriate function space of system states.

During the last years, there have been many contributions to the internal controllability for

different dispersive wave models. For instance, in the case of the Korteweg–de Vries equation
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D. Russell and B. Zhang in [18] showed that for T > 0 and functions u0, uT ∈ Hs(T), s ≥ 0,

one can always find a control f so that the Cauchy problem

ut + uux + uxxx = f , u(x, 0) = u0(x),

has a solution u ∈ C ([0, T] : Hs(T)) satisfying

u(x, T) = uT(x), x ∈ T,

when the initial and terminal states are sufficiently small. A similar result was proved by

B. Zhang in [20] for the Boussinesq model,

utt − uxx +
(
u2 + uxx

)
xx

= f , u(x, 0) = u0(x), ut(x, 0) = v0(x),

with the condition

u(x, T) = uT(x), ut(x, T) = vT(x),

in the space Hs(T) × Hs−2(T) with s ≥ 2. In the work [5], E. Cerpa and I. Rivas showed

controllability for the Boussinesq equation in low regularity, this is, in the space Hs(T) ×

Hs−2(T) with s > − 1
4 .

For the Benjamin–Bona–Mahony equation, L. Rosier and B. Zhang in [17] proved that

ut + ux − uxxt + uux = a(x + ct)h(x, t),

with a moving distributed control is controllable in Hs(T) for any s ≥ 1 in (sufficiently) large

time. The control time is chosen in such a way that the support of the control, which is moving

at the constant velocity c, can visit all the domain T.

C. Laurent, F. Linares and L. Rosier in [11] and F. Linares and L. Rosier in [12] considered

the control problem for the Benjamin–Ono equation,

ut +H(uxx) + uux = f , u(x, 0) = u0(x), u(x, T) = uT(x).

In the latter work, authors proved a controllability result in L2(T) that allows to prove the

global controllability in large time.

Our main result in Theorem 5.4 gives a positive answer to the internal controllability for

the system (1.5) in a local sense. We will show that for T > 0 and initial an terminal states

(η0, Φ0) , (ηT, ΦT) ∈ Hs(T)× V s+1(T), s ≥ 0,

sufficiently small, there exists a control function F = ( f1, f2) such that the Cauchy problem

associated to the system (1.5) with the initial condition

η(x, 0) = η0(x), Φ0(x, 0) = Φ0(x), x ∈ T, (1.6)

has a solution (η, Φ) ∈ C
(
[0, T] : Hs(T)× V s+1(T)

)
satisfying the condition

η(x, T) = ηT(x), Φ(x, T) = ΦT(x), x ∈ T.

Following the same approach used in the case of the KdV equation and Boussinesq equa-

tion, we restrict our attention to a control of the form

F(x, t) = ( f1(x, t), f2(x, t)) = (ρ1h1(x, t), ρ2h2(x, t)),
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with ρi being a smooth function defined on T. Thus

H(x, t) = (h1(x, t), h2(x, t))

is a new control input. Here, the function ρi can have a support strictly contained on the torus;

thus, it can represent a localization of the control hi(x, t), which would be only able to act on

a part of the domain. First, we perform a spectral analysis for the operator

M =




0 −(I − ∂2
x)∂

2
x

−(I − ∂2
x) 0


 ,

defined in the space Hs(T)× V s+1(T). Using that the k-Fourier symbol for the operator M is

given by

Mk =




0 (1 + k2)k2

−(1 + k2) 0


 ,

we prove for M the existence of a discrete spectral decomposition since the eigenvectors form

a Riesz basis of the space Hs(T)×V s+1(T). Next, using this spectral analysis and the moment

method we establish that the linear system associated with (1.5),

{
ηt + ∂2

xΦ − ∂4
xΦ = f1,

Φt + η − ∂2
xη = f2,

(1.7)

is exactly controllable in the space Hs(T)× V s+1(T), with the conditions

η(0) = η0, η(T) = ηT, Φ(0) = Φ0, Φ(T) = ΦT. (1.8)

Finally, the nonlinear problem is treated as a perturbation by fixed point theory.

The paper is organized as follows. In Section 2, first we define the Bourgain spaces related

to our problem and next we establish all the linear estimates needed to proved the result

of well-posedness. In Section 3 we estimate the bilinear forms ∂x(η∂xΦ) and (∂xΦ)(∂xΦ1)

associated to the nonlinear part of the system. The Section 4 will be dedicated to establish the

result of local well-posedness, via a standard fixed point argument. In Section 5.1, we perform

the spectral analysis for the operator M defined in the space Hs(T)× V s+1(T), for s ≥ 0. In

Section 5.2, by solving a moment problem we found the characterization of the internal control

F = ( f1, f2) for the linear problem (1.7)–(1.8). In Section 5.3, we prove the exact controllability

result for the nonlinear problem, by imposing smallness of the initial and terminal states. The

proof of this result is mainly based on the linear controllability and the Banach Fixed Point

Theorem.

2 Bourgain spaces and linear estimates

We star with the definition of the Bourgain type spaces. We consider the space Y of functions

w such that

(i) w : T × R → C, (ii) w(x, ·) ∈ S(R) for all x ∈ T,

(iii) x → w(x, ·) ∈ C∞(R), (iv) ŵ(0, t) = 0 for all t ∈ R,
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Definition 2.1. For s, β ∈ R we define the Bourgain spaces Xs,β to be the completion of the

space Y with respect to the norm

∥w∥Xs,β = ∥⟨k⟩s⟨|τ| − ϕ(k)⟩βw̃∥ℓ2
k L2

τ
,

where ⟨a⟩ = 1 + |a|; w̃ denotes the time-space Fourier transform of w,

w̃(k, τ) =
1

4π2

∫

R

∫

T

e−ixk−itτw(x, t)dxdt;

and the function ϕ is defined as

ϕ(k) = |k|3 + |k|.

The spaces Ys+1,β to be the completion of the Schwartz class Sper,2π = S(T × R) with respect

to the norm

∥w∥Ys+1,β = ∥|k|⟨|τ| − ϕ(k)⟩β⟨k⟩sw̃∥ℓ2
k L2

τ
.

We similarly introduce the spaces Zs, Ws+1, s ∈ R, with the norms

∥w∥Zs = ∥w∥Xs,−1/2 +
∥∥∥ ⟨k⟩sw̃(k, τ)

⟨|τ| − ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

,

and

∥w∥Ws+1 = ∥w∥Ys+1,−1/2 +
∥∥∥ |k|⟨k⟩

sw̃(k, τ)

⟨|τ| − ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

.

Also, we consider the spaces Us, Vs+1, s ∈ R, where Us denotes the completion of the Schwartz

class Sper,2π with respect to the norm

∥w∥Us = ∥w∥Xs,1/2 + ∥⟨k⟩sw̃(k, τ)∥ℓ2
k L1

τ

and Vs+1 denotes the completion of the Schwartz class Sper,2π with respect to the norm

∥w∥Vs+1 = ∥w∥Ys+1,1/2 + ∥|k|⟨k⟩sw̃(k, τ)∥ℓ2
k L1

τ
.

For T > 0 we denote by Us
T the space space of the restrictions to the interval [0, T] of the

elements w ∈ Us with norm defined by

∥η∥Us
T
= inf

w∈Us
{∥w∥Us : η(t) = w(t) on [0, T]}.

and by Vs+1
T the space space of the restrictions to the interval [0, T] of the elements w ∈ Vs+1

with norm defined by

∥Φ∥Vs+1
T

= inf
w∈Vs+1

{∥w∥Vs+1 : Φ(t) = w(t) on [0, T]}.

Next we look at some basic results.

Lemma 2.2. Let s ∈ R, then there exists C > 0 such that

(i) ∥ψη∥Xs,−1/2 ≤ C∥η∥Xs,−1/2 ,

(ii) ∥ψΦ∥Ys+1,−1/2 ≤ C∥Φ∥Ys+1,−1/2 .
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Proof. We will use the notation ŵ(t) for the Fourier transform of w in the time variable t. Note

that

ψ̃η(k, τ) =
1

4π2

∫

R

∫

T

e−ixke−itτ

(∫

R

eitλψ̂(t)(λ)dλ

)
η(x, t)dxdt

=
∫

R

ψ̂(t)(λ)η̃(k, τ − λ)dλ

and also

∥ψη∥2
Xs,−1/2 = ∑

k∈Z

⟨k⟩2s
∫

R

⟨|τ| − ϕ(k)⟩−1
∣∣∣
∫

R

ψ̂(t)(λ)η̃(k, τ − λ)dλ
∣∣∣
2
dτ.

Moreover

∑
k∈Z

⟨k⟩2s
∫ 0

−∞
⟨|τ| − ϕ(k)⟩−1

∣∣∣
∫

R

ψ̂(t)(λ)η̃(k, τ − λ)dλ
∣∣∣
2
dτ

≤ ∑
k∈Z

⟨k⟩2s
∫

R

⟨τ + ϕ(k)⟩−1
∣∣∣
∫

R

ψ̂(t)(λ)η̃(k, τ − λ)dλ
∣∣∣
2
dτ

=
∥∥∥⟨τ + ϕ(k)⟩−1/2⟨k⟩s

∫

R

ψ̂(t)(λ)η̃(k, τ − λ)dλ
∥∥∥

2

ℓ2
k L2

τ

≤
∫

R

|ψ̂(t)(λ)|2∥⟨τ + ϕ(k)⟩−1/2⟨k⟩sη̃(k, τ − λ)∥2
ℓ2

k L2
τ
dλ

and

∑
k∈Z

⟨k⟩2s
∫ +∞

0
⟨|τ| − ϕ(k)⟩−1

∣∣∣
∫

R

ψ̂(t)(λ)η̃(k, τ − λ)dλ
∣∣∣
2
dτ

≤
∥∥∥⟨τ − ϕ(k)⟩−1/2⟨k⟩s

∫

R

ψ̂(t)(λ)η̃(k, τ − λ)dλ
∥∥∥

2

ℓ2
k L2

τ

≤
∫

R

|ψ̂(t)(λ)|2∥⟨τ − ϕ(k)⟩−1/2⟨k⟩sη̃(k, τ − λ)∥2
ℓ2

k L2
τ
dλ.

Next, using the inequality

∣∣|τ| − ϕ(k)
∣∣ ≤ min{|τ − ϕ(k)|, |τ + ϕ(k)|},

we have for all λ ∈ R, ⟨|τ| − ϕ(k)⟩ ≤ ⟨τ ± ϕ(k)⟩ ≤ ⟨τ + λ ± ϕ(k)⟩⟨λ⟩, and then

∫

R

|ψ̂(t)(λ)|2∥⟨τ ± ϕ(k)⟩−1/2⟨k⟩sη̃(k, τ − λ)∥2
ℓ2

k L2
τ
dλ

=
∫

R

|ψ̂(t)(λ)|2
(

∑
k∈Z

⟨k⟩2s
∫

R

⟨τ + λ ± ϕ(k)⟩−1|η̃(k, τ)|2dτ
)

dλ

≤
∫

R

|ψ̂(t)(λ)|2
(

∑
k∈Z

⟨k⟩2s
∫

R

⟨λ⟩⟨|τ| − ϕ(k)⟩−1|η̃(k, τ)|2dτ
)

dλ

= ∥⟨|τ| − ϕ(k)⟩−1/2⟨k⟩sη̃∥2
ℓ2

k L2
τ

∫

R

⟨λ⟩|ψ̂(t)(λ)|2dλ

≤ C∥η∥2
Xs,−1/2 .

Thus, we conclude that

∥ψη∥Xs,−1/2 ≤ C∥η∥Xs,−1/2 .
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In a similar fashion we have that

∫

R

|ψ̂(λ)(t)|2∥⟨τ ± ϕ(k)⟩−1/2|k|⟨k⟩sΦ̃(k, τ − λ)∥2
ℓ2

k L2
τ
dλ

≤ ∥⟨|τ| − ϕ(k)⟩−1/2|k|⟨k⟩sΦ̃∥2
ℓ2

k L2
τ

∫

R

⟨λ⟩|ψ̂(t)(λ)|2dλ ≤ C∥Φ∥2
Ys+1,−1/2 .

Therefore

∥ψΦ∥Ys+1,−1/2 ≤ C∥Φ∥Ys+1,−1/2 .

Similarly, we have also the following lemma.

Lemma 2.3. Let s ∈ R, then there exists C > 0 such that

(i)
∥∥∥ ⟨k⟩sψ̃η(k,τ)

⟨|τ|−ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

≤ C
∥∥∥ ⟨k⟩s η̃(k,τ)
⟨|τ|−ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

,

(ii)
∥∥∥ |k|⟨k⟩sψ̃Φ(k,τ)

⟨|τ|−ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

≤ C
∥∥∥ |k|⟨k⟩sΦ̃(k,τ)

⟨|τ|−ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

.

In the following lemmas we establish estimations related with the semigroup S(t).

Lemma 2.4. Let s ∈ R, then exists C1 > 0 such that

∥ψ(t)S1(t)(η0, Φ0)∥Us ≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T),

∥ψ(t)S2(t)(η0, Φ0)∥Vs+1 ≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T).

Proof. We see that

[
ψ(t) ∑

k∈Z

eikxe±iϕ(k)tη̂0(k)
]∼

(k, τ) =η̂0(k)ψ̂
(t)(τ ∓ ϕ(k)).

So that

∥∥∥ψ(t) ∑
k∈Z

eixke±iϕ(k)tη̂0(k)
∥∥∥

2

Xs,1/2
= ∑

k∈Z

⟨k⟩2s|η̂0(k)|
2
∫

R

⟨|τ| − ϕ(k)⟩|ψ̂(t)(τ ∓ ϕ(k))|2dτ

≤ ∑
k∈Z

⟨k⟩2s|η̂0(k)|
2
∫

R

⟨τ⟩|ψ̂(t)(τ)|2dτ ≤ C∥η0∥
2
Hs(T).

Also, we note that

∥∥∥⟨k⟩s
[
ψ(t) ∑

k∈Z

eixke±iϕ(k)tη̂0(k)
]∼∥∥∥

2

ℓ2
k L1

τ

= ∑
k∈Z

⟨k⟩2s|η̂0(k)|
2

(∫

R

|ψ̂(t)(τ ∓ ϕ(k))|dτ

)2

≤ C∥η0∥
2
Hs(T).

In a similar fashion,

∥∥∥ψ(t) ∑
k∈Z

eixke±iϕ(k)t|k|Φ̂0(k)
∥∥∥

2

Xs,1/2

= ∑
k∈Z

⟨k⟩2s|k|2|Φ̂0(k)|
2
∫

R

⟨|τ| − ϕ(k)⟩|ψ̂(t)(τ ∓ ϕ(k))|2dτ ≤ C∥Φ0∥
2
V s+1(T)
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and

∥∥∥⟨k⟩s
[
ψ(t) ∑

k∈Z

eixke±iϕ(k)t|k|Φ̂0(k)
]∼∥∥∥

2

ℓ2
k L1

τ

= ∑
k∈Z

⟨k⟩2s|k|2|Φ̂0(k)|
2

(∫

R

|ψ̂(t)(τ ∓ ϕ(k))|dτ

)2

≤ C∥Φ0∥
2
V s+1(T).

Thus, from the previous estimates we obtain that

∥ψ(t)S1(t)(η0, Φ0)∥Us ≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T).

Similarly we have that

∥∥∥ψ(t) ∑
k∈Z

eikxe±iϕ(k)tη̂0(k)

|k|

∥∥∥
Ys+1,1/2

= ∑
k∈Z

⟨k⟩2s|η̂0(k)|
2
∫

R

⟨|τ| − ϕ(k)⟩|ψ̂(t)(τ ∓ ϕ(k))|2dτ

≤ C∥η0∥
2
Hs(T)

and

∥∥∥|k|⟨k⟩s
[
ψ(t) ∑

k∈Z

eikxe±iϕ(k)tη̂0(k)

|k|

]∼∥∥∥
ℓ2

k L1
τ

= ∑
k∈Z

⟨k⟩2s|η̂0(k)|
2
( ∫

R

|ψ̂(t)(τ ∓ ϕ(k))|dτ
)2

≤ C∥η0∥
2
Hs(T).

Also, we have that

∥∥∥ψ(t) ∑
k∈Z

eikxe±iϕ(k)tΦ̂0(k)
∥∥∥

Ys+1,1/2
= ∑

k∈Z

⟨k⟩2s|k|2|Φ̂0(k)|
2
∫

R

⟨|τ| − ϕ(k)⟩|ψ̂(t)(τ ∓ ϕ(k))|2dτ

≤ C∥Φ0∥
2
V s+1(T)

and

∥∥∥|k|⟨k⟩s
[
ψ(t) ∑

k∈Z

eikxe±iϕ(k)tΦ̂0(k)
]∼∥∥∥

ℓ2
k L1

τ

= ∑
k∈Z

⟨k⟩2s|k|2|Φ̂0(k)|
2
( ∫

R

|ψ̂(t)(τ ∓ ϕ(k))|dτ
)2

≤ C∥Φ0∥
2
V s+1(T).

Then we conclude that

∥ψ(t)S2(t)(η0, Φ0)∥Vs+1 ≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T).

Lemma 2.5. Let s ∈ R, then there exists C2 > 0 such that

(i)
∥∥∥ψ(t)

∫ t
0 f (t′)dt′

∥∥∥
H1/2

t

≤ C2

(
∥ f ∥

H−1/2
t

+ ∥⟨τ⟩−1 f̂ (t)∥L1
τ

)
.

(ii)
∥∥∥ψ(t)

∫ t
0 S1(t − t′)(η, Φ)(t′) dt′

∥∥∥
Us

≤ C2 (∥η∥Zs + ∥Φ∥Ws+1) ,

(iii)
∥∥∥ψ(t)

∫ t
0 S2(t − t′)(η, Φ)(t′) dt′

∥∥∥
Vs+1

≤ C2 (∥η∥Zs + ∥Φ∥Ws+1) .
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Proof. For the inequality (i) see Remark 3.13 of [4]. To prove the inequality (ii), first we note

that

(
ψ(t)

∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)η̂(k, t′)dt′
)∧

(k, t)

= ψ(t)
∫ t

0
e±i(t−t′)ϕ(k)η̂(k, t′)dt′

= e±iϕ(k)tψ(t)
∫ t

0
e∓iϕ(k)t′ η̂(k, t′)dt′ = e±iϕ(k)tŵ(k, t),

where w(x, t) = ψ(t)
∫ t

0 e∓iϕ(k)t′η(x, t′)dt′. Then we obtain that

[
ψ(t)

∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)η̂(k, t′)dt′
]∼

(k, τ) = w̃(k, τ ∓ ϕ(k)).

Using the fact that

max{
∣∣|τ + ϕ(k)| − ϕ(k)

∣∣,
∣∣|τ − ϕ(k)| − ϕ(k)

∣∣} ≤ |τ|

we have that

∥∥∥ψ(t)
∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)η̂(k, t′)dt′
∥∥∥

2

Xs,1/2
= ∑

k∈Z

⟨k⟩2s
∫

R

⟨|τ ± ϕ(k)| − ϕ(k)⟩|w̃(k, τ)|2dτ

≤ ∑
k∈Z

⟨k⟩2s
∫

R

⟨τ⟩|w̃(k, τ)|2dτ = ∑
k∈Z

⟨k⟩2s∥ŵ∥2
H1/2

t
.

By using part (i) we have that

∑
k∈Z

⟨k⟩2s∥ŵ∥2
H1/2

t
= ∑

k∈Z

⟨k⟩2s
∥∥∥ψ(t)

∫ t

0
e∓iϕ(k)t′ η̂(k, t′)dt′

∥∥∥
2

H1/2
t

≤ C
(

∑
k∈Z

⟨k⟩2s
∥∥∥e∓iϕ(k)tη̂(k, t)

∥∥∥
2

H−1/2
t

+ ∑
k∈Z

⟨k⟩2s
∥∥∥⟨τ⟩−1

[
e∓iϕ(k)tη̂(k, t)

]∧(t)∥∥∥
2

L1
τ

)

≤ C
[

∑
k∈Z

⟨k⟩2s
∫

R

⟨|τ| − ϕ(k)⟩−1|η̃(k, τ)|2dτ

+ ∑
k∈Z

⟨k⟩2s

(∫

R

⟨|τ| − ϕ(k)⟩−1|η̃(k, τ)|dτ

)2 ]
.

Thus ∥∥∥ψ(t)
∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)η̂(k, t′)dt′
∥∥∥

2

Xs,1/2
≤ C∥η∥2

Zs .

Let ϱ a smooth cutoff function in the time variable, supported in A = [−1, 1]. Then

ψ(t)
∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)η̂(k, t′)dt′ = ψ(t) ∑
k∈Z

eixk
∫

R

e±itϕ(k)η̃(k, τ)
( ∫ t

0
eit′(τ∓ϕ(k))dt′

)
dτ

= ψ(t) ∑
k∈Z

eixk
∫

R

eiτt − e±itϕ(k)

i(τ ∓ ϕ(k))
η̃(k, τ)dτ = S1 + S2 − S3,
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where

S1 = ψ(t) ∑
k∈Z

eixk
∫

R

eiτt − e±itϕ(k)

i(τ ∓ ϕ(k))
ϱ(τ ∓ ϕ(k))η̃(k, τ)dτ,

S2 = ψ(t) ∑
k∈Z

eixk
∫

R

[1 − ϱ(τ ∓ ϕ(k))]

i(τ ∓ ϕ(k))
η̃(k, τ)eiτtdτ,

S3 = ψ(t) ∑
k∈Z

ei(xk±tϕ(k))
∫

R

[1 − ϱ(τ ∓ ϕ(k))]

i(τ ∓ ϕ(k))
η̃(k, τ)dτ.

Now,

S1 = ψ(t) ∑
k∈Z

eixk
∫

R

e±itϕ(k)
(
eit(τ∓ϕ(k)) − 1

)

i(τ ∓ ϕ(k))
ϱ(τ ∓ ϕ(k))η̃(k, τ)dτ

= ψ(t) ∑
k∈Z

ei(xk±ϕ(k))
∫

R
∑
n≥1

tn[i(τ ∓ ϕ(k))]n−1

n!
ϱ(τ ∓ ϕ(k))η̃(k, τ)dτ

= ψ(t) ∑
n≥1

tnin−1

n!

(
∑

k∈Z

ei(xk±tϕ(k))
∫

R

(τ ∓ ϕ(k))n−1ϱ(τ ∓ ϕ(k))η̃(k, τ)dτ
)

.

Thus, using the notation

fn(k) =
∫

R

in−1(τ ∓ ϕ(k))n−1ϱ(τ ∓ ϕ(k))η̃(k, τ)dτ, ωn(t) = ψ(t)tn,

we see that

S̃1(k, τ) =
[

∑
n≥1

ωn(t)

n!

(
∑

k∈Z

ei(xk±tϕ(k)) fn(k)
)]∼

(k, τ)

= ∑
n≥1

1

n!
fn(k)ω̂

(t)
n (τ ∓ ϕ(k)).

Therefore

∥⟨k⟩sS̃1∥
2
ℓ2

k L1
τ
≤ C ∑

k∈Z

⟨k⟩2s
(
∥χA(τ ∓ ϕ(k))η̃(k, τ)∥L1

τ ∑
n≥1

1

n!

∫

R

|ω̂
(t)
n (τ ∓ ϕ(k))|dτ

)2

≤ C ∑
k∈Z

⟨k⟩2s
( ∫

R

⟨τ ∓ ϕ(k)⟩−1|η̃(k, τ)|dτ
)2

= C∥⟨k⟩s⟨|τ| − ϕ(k)⟩−1η̃∥2
ℓ2

k L1
τ
.

Now, if we use the notation

g(k, τ) = [i(τ ∓ ϕ(k))]−1[1 − ϱ(τ ∓ ϕ(k))]η̃(k, τ)

then

S̃2(k, τ) =
1

4π2

∫

R

∫

T

e−ixke−itτψ(t)g∼
−1
(x, t)dxdt = ψ̂(t)(τ) ∗ g(k, τ).

So that, from Young’s inequality,

∥⟨k⟩sS̃2∥
2
ℓ2

k L1
τ
≤ ∑

k∈Z

⟨k⟩2s∥ψ̂(t)(τ)∥2
L1

τ
∥g(k, τ)∥2

L1
τ

≤ C ∑
k∈Z

⟨k⟩2s

(∫

R

⟨τ ∓ ϕ(k)⟩−1|χB(τ ∓ ϕ(k))η̃(k, τ)|dτ

)2

≤ C∥⟨k⟩s⟨|τ| − ϕ(k)⟩−1η̃∥2
ℓ2

k L1
τ
,
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where B = {τ : |τ| ≥ 1}. Next, let

ĥ(k) =
∫

R

[i(τ ∓ ϕ(k))]−1[1 − ϱ(τ ∓ ϕ(k))]η̃(k, τ)dτ.

Then

∥⟨k⟩sS̃3∥
2
ℓ2

k L1
τ
= ∥⟨k⟩sĥ(k)ψ̂(t)(τ ∓ ϕ(k))∥2

ℓ2
k L1

τ

≤ C ∑
k∈Z

⟨k⟩2s
( ∫

R

⟨τ ∓ ϕ(k)⟩−1|χB(τ ∓ ϕ(k))η̃(k, τ)|dτ
)2

≤ C∥⟨k⟩s⟨|τ| − ϕ(k)⟩−1η̃∥2
ℓ2

k L1
τ
.

Hence, from the previous estimates we conclude that

∥∥∥⟨k⟩s
[
ψ(t)

∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)η̂(k, t′)dt′
]∼∥∥∥

ℓ2
k L1

τ

≤ C∥⟨k⟩s⟨|τ| − ϕ(k)⟩−1η̃∥ℓ2
k L1

τ
.

In what follows we will use similar arguments. First

[
ψ(t)

∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)|k|Φ̂(k, t′)dt′
]∼

(k, τ) = ṽ(k, τ ∓ ϕ(k)).

where v(x, t) = ψ(t)
∫ t

0 e∓iϕ(k)t′ |k|Φ(x, t′)dt′. Then we obtain that

∥∥∥ψ(t)
∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)|k|Φ̂(k, t′)dt′
∥∥∥

2

Xs,1/2
≤ ∑

k∈Z

⟨k⟩2s∥v̂∥2
H1/2

t

≤ C
[

∑
k∈Z

|k|2⟨k⟩2s
∫

R

⟨τ ∓ ϕ(k)⟩−1|Φ̃(k, τ)|2dτ

+ ∑
k∈Z

|k|2⟨k⟩2s
( ∫

R

⟨τ ∓ ϕ(k)⟩−1|Φ̃(k, τ)|dτ
)2]

≤ C∥Φ∥2
Ws+1 .

Now,

ψ(t)
∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)|k|Φ̂(k, t′)dt′ = S4 + S5 − S6,

where

S4 = ψ(t) ∑
k∈Z

eixk
∫

R

eiτt − e±itϕ(k)

i(τ ∓ ϕ(k))
ϱ(τ ∓ ϕ(k))|k|Φ̃(k, τ)dτ,

S5 = ψ(t) ∑
k∈Z

eixk
∫

R

[1 − ϱ(τ ∓ ϕ(k))]

i(τ ∓ ϕ(k))
|k|Φ̃(k, τ)eiτtdτ,

S6 = ψ(t) ∑
k∈Z

ei(xk±tϕ(k))
∫

R

[1 − ϱ(τ ∓ ϕ(k))]

i(τ ∓ ϕ(k))
|k|Φ̃(k, τ)dτ.

We note that

S4 = ψ(t) ∑
n≥1

tnin−1

n!

(
∑

k∈Z

ei(xk±tϕ(k))
∫

R

(τ ∓ ϕ(k))n−1ϱ(τ ∓ ϕ(k))|k|Φ̃(k, τ)dτ
)

.
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Thus, if we use the notation

ζn(k) =
∫

R

in−1(τ ∓ ϕ(k))n−1ϱ(τ ∓ ϕ(k))|k|Φ̃(k, τ)dτ, ωn(t) = ψ(t)tn,

we obtain that

S̃4(k, τ) =
[

∑
n≥1

ωn(t)

n!

(
∑

k∈Z

ei(xk±tϕ(k))ζn(k)
)]∼

(k, τ)

= ∑
n≥1

1

n!
ζn(k)ω̂

(t)
n (τ ∓ ϕ(k)).

Therefore

∥⟨k⟩sS̃4∥
2
ℓ2

k L1
τ
≤ ∑

k∈Z

⟨k⟩2s
(

∑
n≥1

1

n!
|ζn(k)|

∫

R

|ω̂
(t)
n (τ ∓ ϕ(k))|dτ

)2

≤ C ∑
k∈Z

⟨k⟩2s∥χA(τ ∓ ϕ(k))|k|Φ̃(k, τ)∥2
L1

τ

= C∥|k|⟨k⟩s⟨|τ| − ϕ(k)⟩−1Φ̃∥2
ℓ2

k L1
τ
.

Using the notation g1(k, τ) = [i(τ ∓ ϕ(k))]−1[1 − ϱ(τ ∓ ϕ(k))]|k|Φ̃(k, τ) we see that

S̃5(k, τ) =
[
ψ(t) ∑

k∈Z

eikx
∫

R

eitτg1(k, τ)dτ
]∼

(k, τ) = ψ̂(t)(τ) ∗ g1(k, τ).

Hence

∥⟨k⟩sS̃5∥
2
ℓ2

k L1
τ
≤ ∑

k∈Z

⟨k⟩2s∥ψ̂(t)(τ)∥2
L1

τ
∥g1(k, τ)∥2

L1
τ

≤ C∥|k|⟨k⟩s⟨|τ| − ϕ(k)⟩−1Φ̃∥2
ℓ2

k L1
τ
.

Now, let ĥ1(k) =
∫

R
[i(τ ∓ ϕ(k))]−1[1 − ϱ(τ ∓ ϕ(k))]|k|Φ̃(k, τ)dτ. Then

∥⟨k⟩sS̃6∥
2
ℓ2

k L1
τ
= ∑

k∈Z

⟨k⟩2s|ĥ1(k)|
2

(∫

R

|ψ̂(t)(τ ∓ ϕ(k))|dτ

)2

≤ C∥|k|⟨k⟩s⟨|τ| − ϕ(k)⟩−1Φ̃∥2
ℓ2

k L1
τ
.

Consequently, from the previous estimates we have that

∥∥∥⟨k⟩s
[
ψ(t)

∫ t

0
∑

k∈Z

eixke±i(t−t′)ϕ(k)|k|Φ̂(k, t′)dt′
]∼∥∥∥

ℓ2
k L1

τ

≤ C∥|k|⟨k⟩s⟨|τ| − ϕ(k)⟩−1Φ̃∥ℓ2
k L1

τ
.

Therefore, we conclude that

∥∥∥ψ(t)
∫ t

0
S1(t − t′)(η, Φ)(t′) dt′

∥∥∥
Us

≤ C2

(
∥η∥Zs + ∥Φ∥Ws+1

)
.

Similarly we obtain the other inequality in (iii).

In the following lemma we show the continuous embedding of the space Us × Vs+1 in the

class C(R : Hs(T)× V s+1(T)) for s ∈ R.
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Lemma 2.6. Let s ∈ R, then there exists C > 0 such that

∥(η, Φ)∥C(R : Hs(T)×V s+1(T)) ≤ C∥(η, Φ)∥Us×Vs+1 .

Proof. First we prove that Us ⊆ L∞(R : Hs(T)). Since

∥η(t)∥Hs(T) ≤
(

∑
k∈Z

⟨k⟩2s
( ∫

R

|η̃(k, τ)|dτ
)2)1/2

≤ ∥η∥Us ,

we have that ∥η∥L∞(R : Hs(T)) ≤ ∥η∥Us . Now,

∥η(t)− η(t′)∥2
Hs(T) ≤ ∑

k∈Z

⟨k⟩2s
( ∫

R

|eitτ − eit′τ||η̃(k, τ)|dτ
)2

.

Then, using the Dominated Convergence Theorem,

∥η(t)− η(t′)∥Hs(T) → 0, t → t′.

Thus η ∈ C(R : Hs(T)) and moreover ∥η∥C(R : Hs(T)) ≤ C∥η∥Us . Finally,

∥Φ(t)∥V s+1(T) =
(

∑
k∈Z

|k|2⟨k⟩2s
∣∣∣
∫

R

eitτΦ̃(k, τ)dτ
∣∣∣
2)1/2

≤ ∥Φ∥Vs+1 .

Hence, as in the previous case, ∥Φ∥C(R : V s+1(T)) ≤ C∥Φ∥Vs+1 and then

∥(η, Φ)∥C(R : Hs(T)×V s+1(T)) ≤ C∥(η, Φ)∥Us×Vs+1 .

3 Bilinear estimates

Before proceed to the proof of the bilinear estimates, we state some elementary calculus in-

equalities that will be useful later, and whose proofs can be seen, respectively, in Lemma 5.3

of [10], Lemma 2.5 of [19], and Lemma 4.2 in [6].

Lemma 3.1. If µ > 1/2 and ν = ν(k, τ) > 0, then

sup
(k,τ)∈Z×R

∑
k1∈Z

1

(ν + |k2
1 + α1k1 + α2|)µ

< +∞,

where α1 = α1(k, τ) and α2 = α2(k, τ).

Lemma 3.2. If µ > 1/3 and ν = ν(k, τ) > 0, then

sup
(k,τ)∈Z×R

∑
k1∈Z

1

(ν3 + |k3
1 + α1k2

1 + α2k1 + α3|)µ
< +∞,

where α1 = α1(k, τ), α2 = α2(k, τ) and α3 = α3(k, τ).

Lemma 3.3. For p, q > 0 and r = min{p, q, p + q − 1} with p + q > 1, we have that

∫

R

dx

⟨x − λ⟩p⟨x − µ⟩q ≤
C

⟨λ − µ⟩r . (3.1)
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The following nonlinear estimates constitute an important result for this work. We prove

these estimates using a method originally due to Bourgain (see [2, 3]) and considerably im-

proved by Kenig, Ponce and Vega (see [8, 9]).

Lemma 3.4. Let s ≥ 0, then exists C3 > 0 such that

(i) ∥∂x(η∂xΦ)∥Xs,−1/2 ≤ C3∥η∥Xs,1/2∥Φ∥Ys+1,1/2 ,

(ii) ∥(∂xΦ)(∂xΦ1)∥Ys+1,−1/2 ≤ C3∥Φ∥Ys+1,1/2∥Φ1∥Ys+1,1/2 .

Proof. First we note that

∥∂x(η∂xΦ)∥Xs,−1/2

= ∥⟨|τ| − ϕ(k)⟩−1/2k⟨k⟩s(η̃ ∗ ∂̃xΦ)(k, τ)∥ℓ2
k L2

τ

= sup
∥h∥

ℓ2
k

L2
τ
=1

∣∣∣∣∣ ∑
k,k1∈Z

∫

R2
k⟨k⟩s⟨|τ| − ϕ(k)⟩−1/2η̃(k − k1, τ − τ1)k1Φ̃(k1, τ1)h(k, τ) dτdτ1

∣∣∣∣∣ .

Thus, by letting

f (k, τ) = ⟨|τ| − ϕ(k)⟩1/2⟨k⟩sη̃(k, τ), g(k, τ) = ⟨|τ| − ϕ(k)⟩1/2⟨k⟩skΦ̃(k, τ),

we have that (i) is equivalent to

|J( f , g, h)| ≤ C∥ f ∥ℓ2
k L2

τ
∥g∥ℓ2

k L2
τ
∥h∥ℓ2

k L2
τ
, (3.2)

where

J( f , g, h) = ∑
k,k1∈Z

∫

R2

k⟨k⟩s

⟨k1⟩s⟨k − k1⟩s

f (k − k1, τ − τ1)g(k1, τ1)h(k, τ)dτdτ1

⟨|τ| − ϕ(k)⟩1/2⟨|τ1| − ϕ(k1)⟩1/2⟨|τ − τ1| − ϕ(k − k1)⟩1/2
.

For to perform the inequality (3.2), we analyse all possible cases for the sign of τ, τ1 and

τ − τ1. To do this we split Z2 × R2 into the following regions

Γ1 = {(k, k1, τ, τ1) ∈ Z
2 × R

2 : τ1 < 0, τ − τ1 < 0},

Γ2 = {(k, k1, τ, τ1) ∈ Z
2 × R

2 : τ1 ≥ 0, τ − τ1 < 0, τ ≥ 0},

Γ3 = {(k, k1, τ, τ1) ∈ Z
2 × R

2 : τ1 ≥ 0, τ − τ1 < 0, τ < 0},

Γ4 = {(k, k1, τ, τ1) ∈ Z
2 × R

2 : τ1 < 0, τ − τ1 ≥ 0, τ ≥ 0},

Γ5 = {(k, k1, τ, τ1) ∈ Z
2 × R

2 : τ1 < 0, τ − τ1 ≥ 0, τ < 0},

Γ6 = {(k, k1, τ, τ1) ∈ Z
2 × R

2 : τ1 ≥ 0, τ − τ1 ≥ 0}.

We note that τ1 < 0 and τ − τ1 < 0 implies τ < 0, and τ1 ≥ 0 and τ − τ1 ≥ 0 implies τ ≥ 0.

Then the cases τ1 < 0, τ − τ1 < 0, τ ≥ 0 and τ1 ≥ 0, τ − τ1 ≥ 0, τ < 0 cannot occur. Now,

since

1 + |k| ≤ (1 + |k1|)(1 + |k − k1|),

then for s ≥ 0 we see that
⟨k⟩2s

⟨k1⟩2s⟨k − k1⟩2s
≤ 1. (3.3)
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So, we will prove the inequality (3.2) with Z( f , g, h) instead of J( f , g, h), where

Z( f , g, h) = ∑
k,k1∈Z

∫

R2

k f (k2, τ2)g(k1, τ1)h(k, τ) dτdτ1

⟨σ⟩1/2⟨σ1⟩1/2⟨σ2⟩1/2

with k2 = k − k1, τ2 = τ − τ1 and σ, σ1, σ2 belonging to one of the following cases

(C1) σ = τ + |k|3 + |k|, σ1 = τ1 + |k1|
3 + |k1|, σ2 = τ2 + |k2|

3 + |k2|,

(C2) σ = τ − |k|3 − |k|, σ1 = τ1 − |k1|
3 − |k1|, σ2 = τ2 + |k2|

3 + |k2|,

(C3) σ = τ + |k|3 + |k|, σ1 = τ1 − |k1|
3 − |k1|, σ2 = τ2 + |k2|

3 + |k2|,

(C4) σ = τ − |k|3 − |k|, σ1 = τ1 + |k1|
3 + |k1|, σ2 = τ2 − |k2|

3 − |k2|,

(C5) σ = τ + |k|3 + |k|, σ1 = τ1 + |k1|
3 + |k1|, σ2 = τ2 − |k2|

3 − |k2|,

(C6) σ = τ − |k|3 − |k|, σ1 = τ1 − |k1|
3 − |k1|, σ2 = τ2 − |k2|

3 − |k2|.

By hypotheses we have that η̂(0, t) = 0, for all t ∈ R. Thus, if k = k1 then f (k2, τ2) = 0.

Similarly if k1 = 0 then g(k1, τ1) = 0. Then, we will estimate Z( f , g, h) when k ̸= 0, k1 ̸= 0 and

k − k1 ̸= 0.

By symmetry it is sufficient to estimate Z( f , g, h) into the following set

R = {(k, k1, τ, τ1) ∈ Z
2 × R

2 : |σ2| ≤ |σ1|}.

Now, we write Z( f , g, h) as the sum S1 + S2, where

Sj = ∑
k

∑
k1

∫∫

Rj

k f (k2, τ2)g(k1, τ1)h(k, τ)χRj
dτdτ1

⟨σ⟩1/2⟨σ1⟩1/2⟨σ2⟩1/2
, j = 1, 2,

and the sets R1, R2 are defined by

R1 = {(k, k1, τ, τ1) ∈ R : |σ1| ≤ |σ|}, R2 = {(k, k1, τ, τ1) ∈ R : |σ| ≤ |σ1|}.

We first consider σ, σ1, σ2 as the case (C1). We will use the notations ∑k F1(k),
∫

F2(x)dx

to indicate that the sum or the integral are calculated, respectively, at some subset of Z or R.

Using the Cauchy–Schwarz inequality,

|S1|
2 ≤ ∥h∥2

ℓ2
k L2

τ
∑

k

∫ (
∑
k1

∫
| f (k2, τ2)g(k1, τ1)|

2dτ1

)(
∑
k1

∫ χ2
R1
|k|2dτ1

⟨σ⟩⟨σ1⟩⟨σ2⟩

)
dτ.

We will prove that the expression

∑
k1

∫ χ2
R1
|k|2dτ1

⟨σ⟩⟨σ1⟩⟨σ2⟩
=

|k|2

⟨σ⟩ ∑
k1

∫ χ2
R1

dτ1

⟨σ1⟩⟨σ2⟩

is bounded. But, by using inequality (3.1) in Lemma 3.3 we have that

∫

R

dτ1

⟨τ1 + |k1|3 + |k1|⟩⟨τ − τ1 + |k2|3 + |k2|⟩
≤

C

⟨τ + |k1|3 + |k1|+ |k2|3 + |k2|⟩
.

Then we will prove that there exists C > 0 such that

|k|2

⟨τ + |k|3 + |k|⟩ ∑
k1

1

⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩
≤ C, on R1.
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Since for k ̸= 0, k1 ̸= 0 and k ̸= k1, |k| = |k1 + (k − k1)| ≤ |k1|+ |k − k1| ≤ 2|k1(k − k1)|.

Then
k2

2
≤ |kk1(k − k1)|. (3.4)

Moreover, we observe the relation

τ + |k|3 + |k| −
[
τ1 + |k1|

3 + |k1|+ τ2 + |k2|
3 + |k2|

]

= |k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|. (3.5)

If (k, k1, τ, τ1) ∈ R1 then

|τ2 + |k2|
3 + |k2|| ≤ |τ1 + |k1|

3 + |k1|| ≤ |τ + |k|3 + |k||.

Hence, using the triangle inequality in (3.5) we conclude that

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ ≤ 3|τ + |k|3 + |k||. (3.6)

Assume k1 > 0 and k − k1 > 0. Then k > k1 > 0 and, using Lemma 3.1, we obtain that

∑
k1

1

⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩
≤ ∑

k1∈Z

1

⟨τ + k3 + k − 3k2k1 + 3kk2
1⟩

≤ sup
(k,τ)∈Z∗×R

∑
k1∈Z

1(
1

3|k|
+
∣∣∣k2

1 − kk1 +
τ
3k +

k2

3 + 1
3

∣∣∣
)

≤ C,

where Z∗ := Z \ {0}. Moreover,

|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2| = k3 + k − k3
1 − k1 − k3

2 − k2 = 3kk1(k − k1) > 0.

So, from (3.6) and inequality (3.4) we see that

|τ + k3 + k| ≥ |kk1(k − k1)| ≥
|k|2

2
.

Thus

|k|2

⟨τ + |k|3 + |k|⟩
≤ C.

Assume k1 < 0 and k − k1 < 0. Then k < k1 < 0 and, using Lemma 3.1, we see that

∑
k1

1

⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩
≤ ∑

k1∈Z

1

⟨τ − k3 − k + 3k2k1 − 3kk2
1⟩

≤ sup
(k,τ)∈Z∗×R

∑
k1∈Z

1(
1

3|k|
+
∣∣∣k2

1 − kk1 −
τ
3k +

k2

3 + 1
3

∣∣∣
)

≤ C.

Moreover

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ =

∣∣− k3 − k + k3
1 + k1 + k3

2 + k2

∣∣ = 3|kk1(k − k1)|.
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Hence from (3.6) and (3.4) we obtain that

|τ − k3 − k| ≥ |kk1(k − k1)| ≥
|k|2

2
and

|k|2

⟨τ − k3 − k⟩
≤ C.

Assume k1 > 0 and k − k1 < 0. Using Lemma 3.2,

∑
k1

1

⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩

≤ ∑
k1∈Z

1

⟨τ + 2k3
1 + 2k1 − k3 − k + 3k2k1 − 3kk2

1⟩

≤ sup
(k,τ)∈Z×R

∑
k1∈Z

1(
1
2 +

∣∣∣k3
1 −

3
2 kk2

1 + k1 +
3
2 k2k1 +

τ
2 − k3

2 − k
2

∣∣∣
) ≤ C.

Moreover, if k > 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k − k1|

[(
k1 −

k

4

)2
+

15k2

16
+ 1

]
≥

15

8
k2.

If k < 0,

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k1|

[(
k1 −

3k

4

)2
+

15k2

16
+ 1

]
≥

15k2

8
.

Thus, from inequality (3.6) we have that

|τ + |k|3 + |k|| ≥
5k2

8
and

|k|2

⟨τ + |k|3 + |k|⟩
≤ C.

Assume k1 < 0 and k − k1 > 0. Using Lemma 3.2,

∑
k1

1

⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩

≤ sup
(k,τ)∈Z×R

∑
k1∈Z

1(
1
2 +

∣∣∣k3
1 −

3
2 kk2

1 + k1 +
3
2 k2k1 −

τ
2 − k3

2 − k
2

∣∣∣
) ≤ C.

Now, if k > 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k1|

[(
k1 −

3k

4

)2
+

15k2

16
+ 1

]
≥

15k2

8
.

and if k < 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k − k1|

[(
k1 −

k

4

)2
+

15k2

16
+ 1

]
≥

15

8
k2.

Thus, by using (3.6),

|τ + |k|3 + |k|| ≥
5k2

8
and

|k|2

⟨τ + |k|3 + |k|⟩
≤ C.
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Consequently, from the previous estimates there exists C > 0 such that

|k|2

⟨σ⟩ ∑
k1

∫
dτ1

⟨σ1⟩⟨σ2⟩
≤ C, on R1.

Therefore

|S1|
2 ≤ C∥h∥2

ℓ2
k L2

τ
∑

k1∈Z

∫

R

|g(k1, τ1)|
2
(

∑
k∈Z

∫

R

| f (k2, τ2)|
2dτ
)

dτ1

≤ C∥ f ∥2
ℓ2

k L2
τ
∥g∥2

ℓ2
k L2

τ
∥h∥2

ℓ2
k L2

τ
.

In a similar fashion,

|S2|
2 ≤ ∥g∥2

ℓ2
k L2

τ
∑

k1∈Z

∫

R

(
∑

k

∫
| f (k2, τ2)h(k, τ)|2dτ

)(
∑

k

∫ χ2
R2
|k|2dτ

⟨σ⟩⟨σ1⟩⟨σ2⟩

)
dτ1.

We will prove that the expression

∑
k

∫ χ2
R2
|k|2dτ

⟨σ⟩⟨σ1⟩⟨σ2⟩
=

1

⟨σ1⟩
∑

k

∫ χ2
R2
|k|2dτ

⟨σ⟩⟨σ2⟩

is bounded. Using inequality (3.1) in Lemma 3.3 we have that

∫

R

dτ

⟨τ + |k|3 + |k|⟩⟨τ − τ1 + |k2|3 + |k2|⟩
≤

C

⟨τ1 + |k|3 + |k| − |k2|3 − |k2|⟩
.

Thus, we will show that there exists C > 0 such that

1

⟨τ1 + |k1|3 + |k1|⟩
∑

k

|k|2

⟨τ1 + |k|3 + |k| − |k − k1|3 − |k − k1|⟩
≤ C, on R2.

We note that if (k, k1, τ, τ1) ∈ R2,

|τ + |k|3 + |k|| ≤ |τ1 + |k1|
3 + |k1||, |τ2 + |k2|

3 + |k2|| ≤ |τ1 + |k1|
3 + |k1||.

So, using the triangle inequality in (3.5) we see that

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ ≤ 3|τ1 + |k1|

3 + |k1||. (3.7)

Assume k > 0 and k − k1 > 0. Thus

∑
k

|k|2

⟨τ1 + |k|3 + |k| − |k2|3 − |k2|⟩
≤ ∑

k∈Z

|k|2

⟨τ1 + k3
1 + k1 + 3k2k1 − 3kk2

1⟩
=: J1.

Moreover, if k1 > 0 then, using inequality (3.4),

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 3|kk1(k − k1)| ≥

3k2

2

and if k1 < 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k1|

[(
k1 −

3k

4

)2
+

15k2

16
+ 1

]
≥

15k2

8
.
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Hence, from (3.7) there exists C > 0 such that

|τ1 + |k1|
3 + |k1|| ≥ Ck2

and consequently, using Lemma 3.1, we obtain

1

⟨τ1 + |k1|3 + |k1|⟩
J1 ≤ C sup

(k1,τ1)∈Z∗×R

∑
k∈Z

1(
1

3|k1|
+
∣∣∣k2 − kk1 +

τ1
3k1

+
k2

1
3 + 1

3

∣∣∣
) ≤ C.

Assume k < 0 and k − k1 < 0. Thus

∑
k

|k|2

⟨τ1 + |k|3 + |k| − |k − k1|3 − |k − k1|⟩
≤ ∑

k∈Z

|k|2

⟨τ1 − k3
1 − k1 − 3k2k1 + 3kk2

1⟩
=: J2.

Moreover, if k1 > 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k1|

[(
k1 −

3k

4

)2
+

15k2

16
+ 1
]
≥

15k2

8
.

If k1 < 0 then, using (3.4),

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 3|kk1(k − k1)| ≥

3k2

2
.

Thus, from (3.7) there exists C > 0 such that

|τ1 + |k1|
3 + |k1|| ≥ Ck2

and so

1

⟨τ1 + k3
1 + k1⟩

J2 ≤ C sup
(k1,τ1)∈Z∗×R

∑
k∈Z

1

⟨τ1 − k3
1 − k1 − 3k2k1 + 3kk2

1⟩
≤ C.

Assume k > 0 and k − k1 < 0. Then k1 > k > 0 and

∑
k

|k|2

⟨τ1 + |k|3 + |k| − |k − k1|3 − |k − k1|⟩
≤ ∑

k∈Z

|k|2

⟨τ1 + 2k3 + 2k − 3k2k1 + 3kk2
1 − k3

1 − k1⟩
=: J3.

Moreover, we see that

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ ≥ 15k2

8
and |τ1 + k3

1 + k1| ≥
5k2

8
.

Consequently

1

⟨τ1 + k3
1 + k1⟩

J3 ≤ C sup
(k1,τ1)∈Z×R

∑
k∈Z

1

⟨τ1 + 2k3 + 2k − 3k2k1 + 3kk2
1 − k3

1 − k1⟩

≤ sup
(k1,τ1)∈Z×R

∑
k∈Z

1(
1
2 +

∣∣∣k3 − 3
2 k2k1 + k + 3

2 kk2
1 +

τ1
2 −

k3
1

2 − k1
2

∣∣∣
) ≤ C.
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Assume k < 0 and k − k1 > 0. Then

∑
k

|k|2

⟨τ1 + |k|3 + |k| − |k − k1|3 − |k − k1|⟩

≤ ∑
k∈Z

|k|2

⟨τ1 − 2k3 − 2k + k3
1 + k1 + 3k2k1 − 3kk2

1⟩
=: J4.

Also we see that

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ ≥ 15k2

8
and |τ1 + k3

1 + k1| ≥
5k2

8
.

Thus, using (3.7),

|τ1 + k3
1 + k1| ≥

5k2

8
.

So that

1

⟨τ1 + k3
1 + k1⟩

J4 ≤ C sup
(k1,τ1)∈Z×R

∑
k∈Z

1

⟨τ1 − 2k3 − 2k + 3k2k1 − 3kk2
1 + k3

1 + k1⟩

≤ C sup
(k1,τ1)∈Z×R

∑
k∈Z

1(
1
2 +

∣∣∣k3 − 3
2 k2k1 + k + 3

2 kk2
1 −

τ1
2 −

k3
1

2 − k1
2

∣∣∣
) ≤ C.

Hence, from previous estimates we see that there exists C > 0 such that

1

⟨σ1⟩
∑

k

∫
|k|2dτ

⟨σ⟩⟨σ2⟩
≤ C, on R2.

Therefore

|S2|
2 ≤ C∥ f ∥2

ℓ2
k L2

τ
∥g∥2

ℓ2
k L2

τ
∥h∥2

ℓ2
k L2

τ
.

The proof of the others is similar to case (C1). Finally, note that

∥(∂xΦ)(∂xΦ1)∥Ys+1,−1/2

= sup
∥h∥

ℓ2
k

L2
τ
=1

∣∣∣ ∑
k,k1∈Z

∫

R2
k⟨k⟩s⟨|τ| − ϕ(k)⟩−1/2(k − k1)Φ̃(k − k1, τ − τ1)k1Φ̃1(k1, τ1)h(k, τ) dτdτ1

∣∣∣.

Then, by letting

f (k, τ) = ⟨|τ| − ϕ(k)⟩1/2⟨k⟩skΦ̃(k, τ), f1(k, τ) = ⟨|τ| − ϕ(k)⟩1/2⟨k⟩skΦ̃1(k, τ)

we have that (ii) is equivalent to

|K( f , f1, h)| ≤ C∥ f ∥ℓ2
k L2

τ
∥ f1∥ℓ2

k L2
τ
∥h∥ℓ2

k L2
τ
, (3.8)

where

K( f , f1, h) = ∑
k,k1∈Z

∫

R2

k⟨k⟩s

⟨k1⟩s⟨k − k1⟩s

f (k − k1, τ − τ1) f1(k1, τ1)h(k, τ) dτdτ1

⟨|τ| − ϕ(k)⟩1/2⟨|τ1| − ϕ(k1)⟩1/2⟨|τ − τ1| − ϕ(k − k1)⟩1/2
.

The proof of (3.8) is analogous to the proof of (3.2).
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The proof of the following estimates is analogous to the proof of Lemma 3.4.

Lemma 3.5. Let s ≥ 0, then there exists C4 > 0 such that

(i)
∥∥∥ ⟨k⟩s[∂x(η∂xΦ)]∼(k,τ)

⟨|τ|−ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

≤ C4∥η∥Xs,1/2∥Φ∥Ys+1,1/2 ,

(ii)
∥∥∥ |k|⟨k⟩s[(∂xΦ)(∂xΦ1)]

∼(k,τ)
⟨|τ|−ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

≤ C4∥Φ∥Ys+1,1/2∥Φ1∥Ys+1,1/2 .

Proof. First, notice that

∥∥∥ ⟨k⟩
s[∂x(η∂xΦ)]∼(k, τ)

⟨|τ| − ϕ(k)⟩

∥∥∥
ℓ2

k L1
τ

=
∥∥∥ k⟨k⟩s

⟨|τ| − ϕ(k)⟩ ∑
k1∈Z

∫

R

f (k − k1, τ − τ1)g(k1, τ1)dτ1

⟨k1⟩s⟨k − k1⟩s⟨|τ1| − ϕ(k1)⟩1/2⟨|τ − τ1| − ϕ(k − k1)⟩1/2

∥∥∥
ℓ2

k L1
τ

=: J( f , g),

where

f (k, τ) = ⟨|τ| − ϕ(k)⟩1/2⟨k⟩sη̃(k, τ), g(k, τ) = ⟨|τ| − ϕ(k)⟩1/2⟨k⟩skΦ̃(k, τ).

In view of inequality (3.3) we will prove inequality in (i) with Z( f , g) instead of J( f , g)

where

Z( f , g) =
∥∥∥ k

⟨σ⟩ ∑
k1∈Z

∫

R

f (k2, τ2)g(k1, τ1)dτ1

⟨σ1⟩1/2⟨σ2⟩1/2

∥∥∥
ℓ2

k L1
τ

.

More exactly, we will study the expression

Zj( f , g) =
∥∥∥ k

⟨σ⟩ ∑
k1

∫ f (k2, τ2)g(k1, τ1)χRj
dτ1

⟨σ1⟩1/2⟨σ2⟩1/2

∥∥∥
ℓ2

k L1
τ

, j = 1, 2,

with k2 = k − k1, τ2 = τ − τ1; σ, σ1, σ2 belonging to one of the cases (C1)-(C6); and the sets R

R1, R2 are defined by

R = {(k, k1, τ, τ1) ∈ Z
2 × R

2 : |σ2| ≤ |σ1|},

R1 = {(k, k1, τ, τ1) ∈ R : |σ1| ≤ |σ|} and R2 = {(k, k1, τ, τ1) ∈ R : |σ| ≤ |σ1|}.

Using a duality argument we see that

Z1( f , g) = sup
∥h∥

ℓ2
k
=1

∣∣∣∑
k

∑
k1

∫ ∫
k f (k2, τ2)g(k1, τ1)h(k)χR1

dτdτ1

⟨σ⟩⟨σ1⟩1/2⟨σ2⟩1/2

∣∣∣.

Now, consider σ, σ1, σ2 as in the case (C1) and note that

[
∑

k
∑
k1

∫ ∫
|k f (k2, τ2)g(k1, τ1)h(k)|χR1

dτdτ1

⟨σ⟩⟨σ1⟩1/2⟨σ2⟩1/2

]2

≤ ∥g∥2
ℓ2

k L2
τ
∑
k1

∥∥∥ ∑
k∈Z

|h(k)|2
∫

R

| f (k2, τ2)|
2dτ
∥∥∥

L∞
τ1

∑
k

∫ ∫ χ2
R1
|k|2dτdτ1

⟨σ⟩2⟨σ1⟩⟨σ2⟩
.
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Then we will prove that the expression

∑
k

|k|2
∫

1

⟨σ⟩2

( ∫ χ2
R1

dτ1

⟨σ1⟩⟨σ2⟩

)
dτ

is bounded. In fact, if (k, k1, τ, τ1) ∈ R1,

|τ2 + |k2|
3 + |k2|| ≤ |τ1 + |k1|

3 + |k1|| ≤ |τ + |k|3 + |k||. (3.9)

Hence, using inequality (3.1) in Lemma 3.3, we have for 0 < r < 1/4 that

1

⟨τ + |k|3 + |k|⟩2

∫
dτ1

⟨τ + |k1|3 + |k1|⟩⟨τ2 + |k2|3 + |k2|⟩

≤
1

⟨τ + |k|3 + |k|⟩2(1−r)

∫

R

dτ1

⟨τ + |k1|3 + |k1|⟩1+r⟨τ2 + |k2|3 + |k2|⟩1+r

≤
C

⟨τ + |k|3 + |k|⟩2(1−r)⟨τ + |k1|3 + |k1|+ |k2|3 + |k2|⟩1+r
.

So, for 0 < r < 1/4, we will prove that there exists C > 0 such that

∑
k

|k|2
∫

dτ

⟨τ + |k|3 + |k|⟩2(1−r)⟨τ + |k1|3 + |k1|+ |k2|3 + |k2|⟩1+r
≤ C, on R1.

The importance of the choice of r will be noted later. We have the relation

τ + |k|3 + |k| −
[
τ1 + |k1|

3 + |k1|+ τ2 + |k2|
3 + |k2|

]

= |k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|. (3.10)

Using the triangle inequality in (3.10) and inequality (3.9) we obtain that

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ ≤ 3|τ + |k|3 + |k||. (3.11)

Assume k1 > 0 and k − k1 > 0. Then

|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 + |k2| = 3kk1(k − k1) > 0.

Thus, from (3.4) and (3.10) we see that

|τ + k3 + k| ≥ |kk1(k − k1)| ≥
|k|2

2
,

and consequently, for 0 < r < 1/4, we have that

∑
k

|k|2
∫

dτ

⟨τ + |k|3 + |k|⟩2(1−r)⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩1+r

= ∑
k

|k|2
∫

dτ

⟨τ + k3 + k⟩2(1−r)⟨τ + k3
1 + k1 + (k − k1)3 + (k − k1)⟩1+r

≤ C ∑
k∈Z∗

1

|k|2−4r

∫

R

dτ

⟨τ + k3 + k − 3k2k1 + 3kk2
1⟩

1+r
.

Assume k1 < 0 and k − k1 < 0. Then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 + |k2|
∣∣ = 3|kk1(k − k1)|.
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So, using (3.4) and (3.11) we see that

|τ − k3 − k| ≥ |kk1(k − k1)| ≥
|k|2

2
.

Hence, for 0 < r < 1/4,

∑
k

|k|2
∫

dτ

⟨τ + |k|3 + |k|⟩2(1−r)⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩1+r

≤ C ∑
k∈Z∗

1

|k|2−4r

∫

R

dτ

⟨τ − k3 + 3k2k1 − 3kk2
1 − k⟩1+r

.

Assume k1 > 0 and k − k1 < 0. Hence, if k > 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k − k1|

[(
k1 −

k

4

)2
+

15k2

16
+ 1
]
≥

15

8
k2

and if k < 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k1|

[(
k1 −

3k

4

)2
+

15k2

16
+ 1
]
≥

15

8
k2.

So, from inequality (3.11) we conclude that

|τ + |k|3 + |k|| ≥
5

8
k2,

and

∑
k

|k|2
∫

dτ

⟨τ + |k|3 + |k|⟩2(1−r)⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩1+r

≤ C ∑
k∈Z∗

1

|k|2−4r

∫

R

dτ

⟨τ + 2k3
1 + 2k1 − k3 + 3k2k1 − 3kk2

1 − k⟩1+r
.

Assume k1 < 0 and k − k1 > 0. Hence, if k > 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k1|

[(
k1 −

3k

4

)2
+

15k2

16
+ 1
]
≥

15k2

8

and if k < 0 then

∣∣|k|3 + |k| − |k1|
3 − |k1| − |k2|

3 − |k2|
∣∣ = 2|k − k1|

[(
k1 −

k

4

)2
+

15k2

16
+ 1
]
≥

15

8
k2.

Thus, using (3.11),

|τ + |k|3 + |k|| ≥
5

8
k2

and so

∑
k

|k|2
∫

dτ

⟨τ + |k|3 + |k|⟩2(1−r)⟨τ + |k1|3 + |k1|+ |k − k1|3 + |k − k1|⟩1+r

≤ C ∑
k∈Z∗

1

|k|2−4r

∫

R

dτ

⟨τ − 2k3
1 − 2k1 + k3 − 3k2k1 + 3kk2

1 + k⟩1+r
.
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Therefore, for any h ∈ ℓ2
k we have that

|Z1|
2 ≤ C∥g∥2

ℓ2
k L2

τ

(
∑

k∈Z

|h(k)|2 ∑
k1∈Z

∫

R

| f (k2, τ)|2dτ
)

≤ C∥ f ∥2
ℓ2

k L2
τ
∥g∥2

ℓ2
k L2

τ
∥h∥2

ℓ2
k
.

Next, choosing 1/2 < r < 3/4 we see that

|Z2| ≤ C
∥∥∥ |k|

⟨σ⟩1−r ∑
k1

∫
| f (k2, τ2)g(k1, τ1)|χR2

dτ1

⟨σ1⟩1/2⟨σ2⟩1/2

∥∥∥
ℓ2

k L2
τ

= C sup
∥h∥

ℓ2
k

L2
τ
=1

∣∣∣∑
k

∑
k1

∫ ∫
|k f (k2, τ2)g(k1, τ1)|h(k, τ)χR2

dτdτ1

⟨σ⟩1−r⟨σ1⟩1/2⟨σ2⟩1/2

∣∣∣.

As before, for 1/2 < r < 3/4 it is possible to prove that there exists C > 0 such that

1

⟨τ1 + |k1|3 + |k1|⟩
∑

k

|k|2

⟨τ1 + |k|3 + |k| − |k − k1|3 − |k − k1|⟩2(1−r)
≤ C, on R2.

and, by using Lemma 3.3, we have that

∫

R

dτ

⟨τ + |k|3 + |k|⟩2(1−r)⟨τ2 + |k2|3 + |k2|⟩
≤

C

⟨τ1 + |k|3 + |k| − |k2|3 − |k2|⟩2(1−r)
,

then the expression

1

⟨σ1⟩
∑

k

|k|2
∫ χ2

R2
dτ

⟨σ⟩2(1−r)⟨σ2⟩

is bounded. Therefore, for any h ∈ ℓ2
k L2

τ we have that

|Z2|
2 ≤ C∥g∥2

ℓ2
k L2

τ
∑
k1

∫ (
∑

k

∫
| f (k2, τ2)h(k, τ)|2dτ

)(
∑

k

∫ χ2
R2
|k|2dτ

⟨σ⟩2(1−r)⟨σ1⟩⟨σ2⟩

)
dτ1

≤ C∥ f ∥2
ℓ2

k L2
τ
∥g∥2

ℓ2
k L2

τ
∥h∥2

ℓ2
k L2

τ
.

In a similar way we have the rest of the proof.

As a direct consequence of previous lemmas we have the following corollary.

Corollary 3.6. Let s ≥ 0, then there exists C5 > 0 such that

(i) ∥ψ∂x(η∂xΦ)∥Zs ≤ C5∥η∥Xs,1/2∥Φ∥Ys+1,1/2 ,

(ii) ∥ψ(∂xη)(∂xΦ1)∥Ws+1 ≤ C5∥Φ∥Ys+1,1/2∥Φ1∥Ys+1,1/2 .

4 Well-posedness

In this section we establish the local well-posedness for the model (1.1) in the space Us × Vs.
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Theorem 4.1. Let s ≥ 0, then for all (η0, Φ0) ∈ Hs(T)× V s+1(T) we have that there exist a time

T = T(∥(η0, Φ0)∥Hs(T)×V s+1(T)) > 0 and a unique solution (η, Φ) of the Cauchy problem (1.1)-(1.2)

such that

η ∈ C([0, T] : Hs(T)) ∩ Us
T and Φ ∈ C([0, T] : V s+1(T)) ∩ Vs+1

T .

Moreover, for all 0 < T′ < T there exists a neighborhood V of (η0, Φ0) in Hs(T)× V s+1(T) such

that the map data-solution is Lipschitz from V in the class

C([0, T′] : Hs(T)× V s+1(T)) ∩ (Us
T × Vs+1

T ).

Proof. For (η0, Φ0) ∈ Hs(T)× V s+1(T) we consider the operator Γ = (Γ1, Γ2) where

Γ1(η, Φ)(t) = ψ(t)S1(t)(η0, Φ0)− ψ(t)
∫ t

0
S1(t − t′)ψ(t′)

(
∂x(η∂xΦ),

1

2
(∂xΦ)2

)
(t′)dt′

and

Γ2(η, Φ)(t) = ψ(t)S2(t)(η0, Φ0)− ψ(t)
∫ t

0
S2(t − t′)ψ(t′)

(
∂x(η∂xΦ),

1

2
(∂xΦ)2

)
(t′)dt′.

Let ZM the closed ball of radius M centered at the origin in Us × Vs+1,

ZM = {(η, Φ) ∈ Us × Vs+1 : ∥(η, Φ)∥Us×Vs+1 ≤ M}.

We will show that the correspondence (η, Φ) 7→ Γ(η, Φ) maps ZM into itself and defines a

contraction if M is well chosen. In fact, using Lemma 2.4, Lemma 2.5, and Corollary 3.6 we

have that

∥Γ1(η, Φ)∥Us ≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T) + C2

(
∥ψ∂x(η∂xΦ)∥Zs + ∥ψ(∂xΦ)2∥Ws+1

)

≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T) + C2C5

(
∥η∥Xs,1/2∥Φ∥Ys+1,1/2 + ∥Φ∥2

Ys+1,1/2

)

≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T) + C2C5∥(η, Φ)∥2
Us×Vs+1

and also that

∥Γ2(η, Φ)∥Vs+1 ≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T) + C2

(
∥ψ∂x(η∂xΦ)∥Zs + ∥ψ(∂xΦ)2∥Ws+1

)

≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T) + C2C5∥(η, Φ)∥2
Us×Vs+1 ,

so that

∥Γ(η, Φ)∥Us×Vs+1 ≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T) + C2C5∥(η, Φ)∥2
Us×Vs+1 . (4.1)

Choosing M = 2C1∥(η0, Φ0)∥Hs(T)×V s+1(T) such that

K1 = 4C1C2C5∥(η0, Φ0)∥Hs(T)×V s+1(T) < 1,

we obtain that

∥Γ(η, Φ)∥Us×Vs+1 ≤ C1∥(η0, Φ0)∥Hs(T)×V s+1(T)(1 + 4C1C2C5∥(η0, Φ0)∥Hs(T)×V s+1(T))

≤ 2C1∥(η0, Φ0)∥Hs(T)×V s+1(T) = M
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and that Γ maps ZM to itself. Now, let us prove that Γ is a contraction. In fact, if (η, Φ),

(η1, Φ1) ∈ ZM, using Lemma 2.5 and Corollary 3.6 we have that

∥Γ1(η, Φ)− Γ1(η1, Φ1)∥Us

≤ C2

(
∥ψ∂x(η∂xΦ − η1∂xΦ1)∥Zs + ∥ψ((∂xΦ)2 − (∂xΦ1)

2)∥Ws+1

)

≤ C2

(
∥∂x(η∂x(Φ − Φ1))∥Zs + ∥∂x((η − η1)∂xΦ1)∥Zs

+ ∥∂x(Φ − Φ1)∂x(Φ + Φ1)∥Ws+1

)

≤ C2C5

(
∥η∥Xs,1/2∥Φ − Φ1∥Ys+1,1/2 + ∥η − η1∥Xs,1/2∥Φ1∥Ys+1,1/2

+ ∥Φ − Φ1∥Ys+1,1/2∥Φ + Φ1∥Ys+1,1/2

)

≤ C2C5∥(η, Φ)− (η1, Φ1)∥Us×Vs+1 (∥(η, Φ)∥Us×Vs+1 + ∥(η1, Φ1)∥Us×Vs+1) .

In a similar fashion we see that

∥Γ2(η, Φ)− Γ2(η1, Φ1)∥Vs+1

≤ C2

(
∥ψ∂x(η∂xΦ − η1∂xΦ1)∥Zs + ∥ψ((∂xΦ)2 − (∂xΦ1)

2)∥Ws+1

)

≤ C2C5∥(η, Φ)− (η1, Φ1)∥Us×Vs+1 (∥(η, Φ)∥Us×Vs+1 + ∥(η1, Φ1)∥Us×Vs+1) .

Then, we conclude

∥Γ(η, Φ)− Γ(η1, Φ1)∥Us×Vs+1

≤ C2C5∥(η, Φ)− (η1, Φ1)∥Us×Vs+1 (∥(η, Φ)∥Us×Vs+1 + ∥(η1, Φ1)∥Us×Vs+1) . (4.2)

So, if (4) holds we obtain that

∥Γ(η, Φ)− Γ(η1, Φ1)∥Us×Vs+1 ≤ K1∥(η, Φ)− (η1, Φ1)∥Us×Vs+1

and then Γ is a contraction in ZM. Thus, the contraction mapping principle guarantees the

existence of a unique fixed point (η, Φ) of Γ in ZM, which is solution of the truncated integral

problem (1.4). Now, if (η1, Φ1) is a restriction of (η, Φ) on [0, T], then using Lemma 2.6 we

have that

η1 ∈ C([0, T] : Hs(T)) ∩ Us, Φ1 ∈ C([0, T] : V s+1(T)) ∩ Vs+1

and (η1, Φ1) is a solution of the integral problem (1.3) on [0, T].

By the fixed point argument used we have the uniqueness of the solution of the truncated

integral problem (1.4) in the set ZM. We will use an argument as in [1] to obtain the uniqueness

of the integral problem (1.3) in the space Us
T × Vs+1

T .

Let T > 0 and (η, Φ) ∈ Us × Vs+1 be the solution of the truncated integral problem

(1.4) obtained above and (η1, Φ1) ∈ Us
T × Vs+1

T a solution of the integral problem (1.3) with

the same initial data (η0, Φ0) ∈ Hs(T) × V s+1(T). Fix an extension (η2, Φ2) ∈ Us × Vs+1 of

(η1, Φ1), then, for some T∗ < T < 1 to be fixed later, we have that

η2(t) = ψ(t)S1(t)(η0, Φ0)− ψ(t)
∫ t

0
S1(t − t′)ψ(t′)

(
∂x(η2∂xΦ2),

1

2
(∂xΦ1)

2
)
(t′)dt′

and

Φ2(t) = ψ(t)S2(t)(η0, Φ0)− ψ(t)
∫ t

0
S2(t − t′)ψ(t′)

(
∂x(η2∂xΦ2),

1

2
(∂xΦ1)

2
)
(t′)dt′,
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for all t ∈ [0, T∗].

Now, by definition of Us
T∗ ×Vs+1

T∗ we have that for any ϵ > 0, there exists (ω, ϑ) ∈ Us ×Vs+1

such that for all t ∈ [0, T∗],

ω(t) = η(t)− η2(t), ϑ(t) = Φ(t)− Φ2(t)

and

∥ω∥Us ≤ ∥η − η2∥Us
T∗
+ ϵ, ∥ϑ∥Vs+1 ≤ ∥Φ − Φ2∥Vs+1

T∗
+ ϵ. (4.3)

We define

ω1(t) = −ψ(t)
∫ t

0
S1(t − t′)ψ(t′)

(
∂x(η∂xϑ) + ∂x(ω∂xΦ2),

1

2
∂xϑ∂x(Φ + Φ2)

)
(t′)dt′,

ϑ1(t) = −ψ(t)
∫ t

0
S2(t − t′)ψ(t′)

(
∂x(η∂xϑ) + ∂x(ω∂xΦ2),

1

2
∂xϑ∂x(Φ + Φ2)

)
(t′)dt′.

Then we have that ω1(t) = η(t)− η2(t) and ϑ1(t) = Φ(t)− Φ2(t) for all t ∈ [0, T∗]. Thus, from

Lemma 2.5 and Corollary 3.6 we obtain that

∥η − η2∥Us
T∗

≤ ∥ω1∥Us

≤ C2C5∥(ω, ϑ)∥Us×Vs+1

(
∥(η, Φ)∥Us×Vs+1 + ∥(η2, Φ2)∥Us×Vs+1

)

≤ 2C2C5N∥(ω, ϑ)∥Us×Vs+1 (4.4)

where we assume that

max{∥(η, Φ)∥Us×Vs+1 , ∥(η2, Φ2)∥Us×Vs+1} ≤ N.

In a similar fashion we have that

∥Φ − Φ2∥Vs+1
T∗

≤ ∥ϑ1∥Vs+1,1/2 ≤ C2C5∥(ω, ϑ)∥Us×Vs+1

(
∥(η, Φ)∥Us×Vs+1 + ∥(η1, Φ2)∥Us×Vs+1

)

≤ 2C2C5N∥(ω, ϑ)∥Us×Vs+1 . (4.5)

If 4C2C5N ≤ 1/2, then we obtain, using (4.3), (4.4) and (4.5), that

∥η − η2∥Us
T∗
+ ∥Φ − Φ2∥Vs+1

T∗
≤ 4C2C5N∥(ω, ϑ)∥Us×Vs+1

≤
1

2

(
∥η − η2∥Us

T∗
+ ϵ + ∥Φ − Φ2∥Vs+1

T∗
+ ϵ
)

.

So, we see that

∥η − η2∥Us
T∗
+ ∥Φ − Φ2∥Vs+1

T∗
≤ 2ϵ.

Therefore η = η2 and Φ = Φ2 on [0, T∗]. Now, since the argument does not depend on the

initial data, we can iterate this process a finite number of times to extend the uniqueness result

in the whole existence interval [0, T].

Combining an identical argument to the one used in the existence proof with Lemma 2.6,

one can easily show that the map data-solution is locally Lipschitz.



Well-posedness and controllability of a nonlinear system for surface waves 29

5 Internal controllability

5.1 Spectral analysis

In this section we perform the spectral analysis for the operator

M =

(
0 −(I − ∂2

x)∂
2
x

−(I − ∂2
x) 0

)
,

defined in the space Hs(T)× V s+1(T). The result in this analysis will be the basis to transfer

the internal controllability of the associated linear system to the nonlinear system. Let us

define

E1,k =

(
eikx

0

)
, E2,k =

(
0

1
k eikx

)
,

for k ∈ Z∗ = Z \ {0}. If we set

Mk =

(
0 (1 + k2)k2

−(1 + k2) 0

)
, Σk =

(
0 (1 + k2)k

−(1 + k2)k 0

)
, k ∈ Z

∗

then we see directly that

Mk(E1,k, E2,k) = (E1,k, E2,k)Σk, k ∈ Z
∗.

Moreover, we have that the eigenvalues for Σk are

λ1,k = i
√
(1 + k2)2k2, λ2,k = −i

√
(1 + k2)2k2, k ∈ Z

∗,

with corresponding eigenvectors

ẽ1,k =

(
1

λ1,k

(1+k2)k

)
, ẽ2,k =

(
1

λ2,k

(1+k2)k

)
, k ∈ Z

∗.

Thus, we have that

M(E1,k, E2,k)(ẽ1,k, ẽ2,k) = (E1,k, E2,k)Σk(ẽ1,k, ẽ2,k)

= (λ1,k(E1,k, E2,k)ẽ1,k, λ2,k(E1,k, E2,k)ẽ2,k), k ∈ Z
∗,

meaning that λ1,k and λ2,k are the eigenvalues for the operator M with corresponding eigen-

vectors

ηj,k = (E1,k, E2,k)ẽj,k, j = 1, 2, k ∈ Z,

where

λ1,0 = λ2,0 = 0, ẽ1,0 =

(
1

0

)
, ẽ2,0 =

(
0

1

)
, E1,0 =

(
1

0

)
, E2,0 =

(
0

1

)
.

On the other hand, we see that

lim
k→±∞

λ1,k

(1 + k2)k
= ±i, lim

k→±∞

λ2,k

(1 + k2)k
= ∓i.

Then

lim
k→∞

(ẽ1,k, ẽ2,k) =

(
1 1

±i ∓i

)
and lim

k→∞
det(ẽ1,k, ẽ2,k) = ∓2i ̸= 0.
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In other words, {ν1,0, ν2,0, ν1,k, ν2,k : k ∈ Z∗} forms a Riesz basis for Hs(T)× V s+1(T) with

νj,k =
ηj,k

∥ηj,k∥Hs×V s+1

.

Moreover, we also have for j = 1, 2 that νj,k = b⃗j,keikx with

0 < B1 ≤ ∥⃗bj,k∥ ≤ B2, k ∈ Z, s ≥ 0. (5.1)

From the above discussion we have the following result.

Theorem 5.1. Let λk and ϕj,k, j = 1, 2 be given by

λk = i sign(k)
√
(1 + k2)2k2, k ∈ Z,

ϕ1,k =

{
ν1,k, k = 0, 1, 2, 3, . . .

ν2,k, k = −1,−2,−3, . . . ,
ϕ2,k =

{
ν1,−k, k = 1, 2, 3, . . .

ν2,−k, k = 0,−1,−2,−3, . . .

then we have that

(i) The spectrum of the operator M is σ(M) = {λk : k ∈ Z}, in which each λk is a double

eigenvalue with eigenvectors ϕ1,k and ϕ2,k.

(ii) The set {ϕ1,k, ϕ2,k : k ∈ Z} forms an orthonormal basis for the space Hs(T)× V s+1(T) such

that any (η, Φ) ∈ Hs(T)× V s+1(T) has the following Fourier expansion

(η, Φ) = ∑
k∈Z

(α1,kϕ1,k + α2,kϕ2,k) , αj,k =
〈
(η, Φ), ϕj,k

〉
Q

, j = 1, 2, k ∈ Z,

where Q = L2(T)× L2(T).

5.2 Linear controllability

In this section we consider the internal control problem for the linear system
{

ηt + ∂2
xΦ − ∂4

xΦ = f1,

Φt + η − ∂2
xη = f2,

(5.2)

with the initial condition

η(x, 0) = η0(x), Φ(x, 0) = Φ0(x). (5.3)

Theorem 5.2. Suppose that ρ = (ρ1, ρ2) is a non-zero smooth function defined on T. Let s ≥ 0 and

T > 0, then for any (η0, Φ0), (ηT, ΦT) ∈ Hs(T)× V s+1(T) there exists a function H = (h1, h2) ∈

L2
(
0, T; Hs(T)× V s+1(T)

)
such that if

F = ( f1(x, t), f2(x, t)) = (ρ1h1(x, t), ρ2(x)h2(x, t))

we have that the problem (5.2)–(5.3) has a unique solution

(η, Φ) ∈ C
(
[0, T] : Hs(T)× V s+1(T)

)

satisfying

η(x, T) = ηT(x), Φ(x, T) = ΦT(x).

Moreover, there exists C = C(T) > 0 such that

∥H∥L2(0,T;Hs(T)×V s+1(T)) ≤ C
(
∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥(ηT, ΦT)∥Hs(T)×V s+1(T)

)
.
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Proof. For sake of simplicity in the proof we will consider ρ2 = Φ0 = ΦT = 0. For any function

h = h(x, t), we define the control operator L by

(Lh)(x, t) = ρ1(x)h(x, t).

If f1 = Lh and f2 = 0, then we rewrite the problem (5.2)–(5.3) as the following first order

linear (
η

Φ

)

t

= M

(
η

Φ

)
+ Bh, (5.4)

with the initial condition

η(x, 0) = η0(x), Φ(x, 0) = 0 (5.5)

where

Bh =

(
Lh

0

)
.

In this case for h ∈ L2(0, T; Hs(T)), the solution of the linear problem (5.4)–(5.5) is given by

(η(t), Φ(t)) = S(t) (η0, 0) +
∫ t

0
S(t − τ)Bh(τ) dτ.

Now, using the spectral analysis on the operator M we have that

(η(t), Φ(t)) = ∑
n∈Z

eλnt(α1,nϕ1,n + α2,nϕ2,n)

+ ∑
n∈Z

∫ t

0
eλn(t−τ) (β1,n(τ)ϕ1,n + β2,n(τ)ϕ2,n) dτ, (5.6)

where αj,n and β j,n, for j = 1, 2, n ∈ Z, are given by

αj,n =
〈
(η0, Φ0), ϕj,n

〉
Q

, β j,n(t) =
〈

Bh, ϕj,n

〉
Q

. (5.7)

We verify easily that L is a self-adjoint operator in L2(T) such that

⟨Bh, (η, Φ)⟩Q = ⟨(Lh, 0), (η, Φ)⟩Q = ⟨Lh, η⟩L2(T) = ⟨h, Lη⟩L2(T) ,

then we have that

αj,n =
〈

η0, ϕ
(1)
j,n

〉
L2(T)

, β j,n(t) =
〈

h(·, t), L(ϕ
(1)
j,n )
〉

L2(T)
,

where ϕ(m) denoting the m component of ϕ.

The internal control problem consists of finding a h ∈ L2(0, T; Hs(T)) such that

η(x, T) = ηT(x), Φ(x, T) = 0.

Then, let η0 and ηT be having the following decompositions

η0 = ∑
n∈Z

(
α1,nϕ

(1)
1,n + α2,nϕ

(1)
2,n

)
, ηT = ∑

n∈Z

(
γ1,nϕ

(1)
1,n + γ2,nϕ

(1)
2,n

)
,

where γj,n =
〈
ηT, ϕ

(1)
j,n

〉
L2(T)

. But, we know that

(η(x, T), Φ(x, T)) = ∑
n∈Z

eλnT (α1,nϕ1,n + α2,nϕ2,n)

+ ∑
n∈Z

∫ T

0
eλn(T−τ) (β1,n(τ)ϕ1,n + β2,n(τ)ϕ2,n) dτ.
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So, in each node, we have for j = 1, 2 and n ∈ Z that

αj,n +
∫ T

0
e−λnτ β j,n(τ) dτ = γj,ne−λnT.

Now, from [7] we have that P = {eλkt : k ∈ Z} is a Riesz basis for its closed span

PT = genP generated in L2(0, T), with a unique dual Riesz basis given by L = {qk : k ∈ Z}

satisfying that ∫ T

0
ql(t)eλkt dt = δk

l , l, k ∈ Z.

We assume that f1 has the form f1 = Lh with h given by the expansion

h(x, t) = ∑
l∈Z

ql(t)
(

c1,l L(ϕ
(1)
1,l ) + c2,l L(ϕ

(1)
2,l )
)

, (5.8)

where the coefficients c1,l and c2,l are to be determined so that, among other things, the series

(5.8) is appropriately convergent. In this case, for j = 1, 2 and n ∈ Z we have that

∫ T

0
e−λnτ β j,n(τ) dτ =

∫ T

0
e−λnτ

〈
h(·, τ), L(ϕ

(1)
j,n )
〉

L2(T)
dτ

= ∑
k∈Z

∫ T

0
e−λnτ

( ∫

T

h(y, τ)eiky dy
)(

L(ϕ
(1)
j,n )
)

k
dτ

= ∑
k∈Z

(
L(ϕ

(1)
j,n )
)

k

∫

T

(
∑
l∈Z

∫ T

0
ql(τ)e

λnτdτ
(

c1,l L(ϕ
(1)
1,l ) + c2,l L(ϕ

(1)
2,l )
))

eiky dy

= ∑
k∈Z

(
L(ϕ

(1)
j,n )
)

k

∫

T

(
c1,nL(ϕ

(1)
1,n) + c2,nL(ϕ

(1)
2,n)
)

eiky dy

= c1,n

〈
L(ϕ

(1)
1,n), L(ϕ

(1)
j,n )
〉

L2(T)
+ c2,n

〈
L(ϕ

(1)
2,n), L(ϕ

(1)
j,n )
〉

L2(T)
,

where
(

L(ϕ
(1)
j,n )
)

k
=

̂(
L(ϕ

(1)
j,n )
)
(k). Now, using the computations above, for n ∈ Z, we have that

c1,n and c2,n must satisfy the linear system

(
a11 a21

a12 a22

)(
c1,n

c2,n

)
=

(
−α1,n + γ1,ne−λnT

−α2,n + γ2,ne−λnT

)
,

where ajl =
〈

L(ϕ
(1)
j,n ), L(ϕ

(1)
l,n )
〉

L2(T)
. Using the fact that L(ϕ

(1)
1,n) and L(ϕ

(1)
2,n) are linear indepen-

dent, we obtain that

∆n = det

(
a11 a21

a12 a22

)
= ∥L(ϕ

(1)
1,n)∥

2
L2(T)∥L(ϕ

(1)
2,n)∥

2
L2(T) −

∣∣〈L(ϕ
(1)
1,n), L(ϕ

(1)
2,n)
〉

L2(T)

∣∣2 ̸= 0.

Moreover, using that ν
(1)
j,n = b

(1)
j,n einx and the estimate (5.1), we have that

∥L(ϕ
(1)
j,n )∥

2
L2(T) ∼ |b

(1)
j,n |

2 ≥ C > 0. (5.9)

In addition (see the estimations by B. Zhang for the Boussinesq equation in [20]), it is not hard

to prove that 〈
L(ϕ

(1)
1,n), L(ϕ

(1)
2,n)
〉
→ 0, n → ∞.
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Hence there exists ϵ > 0 such that |∆n| > ϵ. So, we conclude that c1,n and c2,n are uniquely

determine by

c1,n =

∣∣∣∣
−α1,n + γ1,ne−λnT a21

−α2,n + γ2,ne−λnT a22

∣∣∣∣
∆n

, c2,n =

∣∣∣∣
a11 −α1,n + γ1,ne−λnT

a12 −α2,n + γ2,ne−λnT

∣∣∣∣
∆n

. (5.10)

It remains to show that h defined by (5.8)–(5.10) belongs to the space L2(0, T; Hs(T)) pro-

vided that η0, ηT ∈ Hs(T). To this end, let us write

L(ϕ
(1)
j,l ) = ∑

k∈Z

aj,lkeikx, aj,lk =
(

L(ϕ
(1)
j,l )
)

k
, l, k ∈ Z, j = 1, 2.

Thus

h(x, t) = h1(x, t) + h2(x, t),

where

hj(x, t) = ∑
l∈Z

∑
k∈Z

cj,laj,lkql(t)e
ikx, j = 1, 2.

From this, we conclude that

∥hj∥
2
L2(0,T;Hs(T))

=
∫ T

0
∑

k∈Z

(1 + |k|)2s|
(
hj(·, t)

)
k
|2 dt =

∫ T

0
∑

k∈Z

(1 + |k|)2s
∣∣∣ ∑

l∈Z

aj,lkcj,lql(t)
∣∣∣
2
dt

= ∑
k∈Z

(1 + |k|)2s
∫ T

0

∣∣∣ ∑
l∈Z

aj,lkcj,lql(t)
∣∣∣
2
dt ≤ C ∑

k∈Z

(1 + |k|)2s ∑
l∈Z

|cj,l |
2|aj,lk|

2

= C ∑
l∈Z

|cj,l |
2 ∑

k∈Z

(1 + |k|)2s|aj,lk|
2,

where the constant C > 0 comes from the Riesz basis property of L in PT. Now, using (5.1), if

ρ1 = ∑m∈Z ρ1
meimx we have that there exists C > 0 such that

∣∣aj,lk

∣∣ =
∣∣∣
〈

L(ϕ
(1)
j,l ), eikx

〉
L2(T)

∣∣∣ =
∣∣∣
〈

ρ1ϕ
(1)
j,l , eikx

〉
L2(T)

∣∣∣

=
∣∣∣ ∑

m∈Z

ρ1
m

〈
ϕ
(1)
j,l eimx, eikx

〉
L2(T)

∣∣∣ =
∣∣∣ ∑

m∈Z

ρ1
m

〈
b
(1)
j,l eilxeimx, eikx

〉
L2(T)

∣∣∣

≤ C
∣∣∣
∫

T

e−ix(k−l) ∑
m∈Z

ρ1
meimx dx

∣∣∣ ≤ C
∣∣∣ρ1

k−l

∣∣∣ .

Then we see that

∑
k∈Z

(1 + |k|)2s|aj,lk|
2 ≤ C ∑

k∈Z

(1 + |k|)2s|ρ1
k−l |

2 ≤ C ∑
k∈Z

(1 + |k + l|)2s|ρ1
k |

2

≤ C(1 + |l|)2s ∑
k∈Z

(1 + |k|)2s|ρ1
k |

2 = (1 + |l|)2s ∥ρ1∥
2
Hs(T).

On the other hand, we can to see that

|c1,l |
2 ≤ C

(
|a22|

2 + |a21|
2
)(
|α1,l |

2 + |α2,l |
2 + |γ1,l |

2 + |γ2,l |
2
)

= C
(
∥L(ϕ

(1)
2,l )∥

4
L2(T) +

∣∣∣
〈

L(ϕ
(1)
2,l ), L(ϕ

(1)
1,l )
〉

L2(T)

∣∣∣
2)(

|α1,l |
2 + |α2,l |

2 + |γ1,l |
2 + |γ2,l |

2
)

≤ C
(
|α1,l |

2 + |α2,l |
2 + |γ1,l |

2 + |γ2,l |
2
)

.
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Similarly,

|c2,l |
2 ≤ C

(
∥L(ϕ

(1)
1,l )∥

4
L2(T) +

∣∣∣
〈

L(ϕ
(1)
1,l ), L(ϕ

(1)
2,l )
〉

L2(T)

∣∣∣
2)

×
(
|α1,l |

2 + |α2,l |
2 + |γ1,l |

2 + |γ2,l |
2
)

≤ C
(
|α1,l |

2 + |α2,l |
2 + |γ1,l |

2 + |γ2,l |
2
)

.

From this, we conclude that

∥h∥2
L2(0,T;Hs(T)) ≤ C∥ρ1∥

2
Hs(T)

(

∑
l∈Z

(1 + |l|)2s
(
|α1,l |

2 + |α2,l |
2 + |γ1,l |

2 + |γ1,l |
2
)
)

≤ C∥ρ1∥
2
Hs(T)

(
∥η0∥

2
Hs(T) + ∥ηT∥

2
Hs(T)

)
.

Now we consider ρ1 = η0 = ηT = 0. Since the proof is similar to the previous case, we

only present some ideas. The solution of the linear problem

(
η

Φ

)

t

= M

(
η

Φ

)
+ Bh, (η(x, 0), Φ(x, 0)) = (0, Φ0(x))

with

(Bh)(x, t) =

(
0

(Lh)(x, t)

)
=

(
0

ρ2(x)h(x, t)

)

is given by

(η(t), Φ(t)) = ∑
n∈Z

eλnt (α1,nϕ1,n + α2,nϕ2,n) + ∑
n∈Z

∫ t

0
eλn(t−τ) (β1,n(τ)ϕ1,n + β2,n(τ)ϕ2,n) dτ,

where αj,n and β j,n for j = 1, 2, n ∈ Z are given by

αj,n =
〈

Φ0, ϕ
(2)
j,n

〉
L2(T)

, β j,n(t) =
〈

h(·, t), L(ϕ
(2)
j,n )
〉

L2(T)
.

Then, using the decompositions

Φ0 = ∑
n∈Z

(
α1,nϕ

(2)
1,n + α2,nϕ

(2)
2,n

)
, ΦT = ∑

n∈Z

(
γ1,nϕ

(2)
1,n + γ2,nϕ

(2)
2,n

)
,

where γj,n =
〈
ΦT, ϕ

(2)
j,n

〉
L2(T)

, then we have for j = 1, 2 and n ∈ Z that

αj,n +
∫ T

0
e−λnτ β j,n(τ) dτ = γj,ne−λnT.

Now, we take the control h to have the form

h(x, t) = ∑
l∈Z

ql(t)
(

c1,l L(ϕ
(2)
1,l ) + c2,l L(ϕ

(2)
2,l )
)

with ∫ T

0
ql(t)eλkt dt = δk

l , l, k ∈ Z.
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Then, for j = 1, 2 and n ∈ Z we have that

∫ T

0
e−λnτ β j,n(τ) dτ = ∑

k∈Z

(
Lϕ

(2)
j,n )
)

k

∫ T

0
e−λnτ

( ∫

T

h(y, τ)eiky dy
)

dτ

= ∑
k∈Z

(
L(ϕ

(2)
j,n )
)

k

∫

T

(
c1,nL(ϕ

(2)
1,n) + c2,nL(ϕ

(2)
2,n)
)

eiky dy

= c1,n

〈
L(ϕ

(2)
1,n), L(ϕ

(2)
j,n )
〉

L2(T)
+ c2,n

〈
L(ϕ

(2)
2,n), L(ϕ

(2)
j,n )
〉

L2(T)
.

Thus, the coefficients c1,n and c2,n are uniquely determine by

c1,n =

∣∣∣∣
−α1,n + γ1,ne−λnT a21

−α2,n + γ2,ne−λnT a22

∣∣∣∣
∆n

, c2,n =

∣∣∣∣
a11 −α1,n + γ1,ne−λnT

a12 −α2,n + γ2,ne−λnT

∣∣∣∣
∆n

,

where

ajl =
〈

L(ϕ
(2)
j,n ), L(ϕ

(2)
l,n )
〉

L2(T)

and

∆n = ∥L(ϕ
(2)
1,n)∥

2
L2(T)∥L(ϕ

(2)
2,n)∥

2
L2(T) −

∣∣〈L(ϕ
(2)
1,n), L(ϕ

(2)
2,n)
〉

L2(T)

∣∣2.

Finally, we write

ρ2 = ∑
k∈Z

ρ2
keikx, L(ϕ

(2)
j,l ) = ∑

k∈Z

aj,lkeikx, aj,lk =
(

L(ϕ
(2)
j,l )
)

k
, l, k ∈ Z, j = 1, 2.

Then

h(x, t) = ∑
l∈Z

∑
k∈Z

c1,la1,lkql(t)e
ikx + ∑

l∈Z

∑
k∈Z

c2,la2,lkql(t)e
ikx.

Hence, we see that

∥h∥2
L2(0,T;V s+1(T)) =

2

∑
j=1

∑
k∈Z

|k|2(1 + |k|)2s
∫ T

0

∣∣∣ ∑
l∈Z

aj,lkcj,lql(t)
∣∣∣
2
dt

≤ C
2

∑
j=1

∑
l∈Z

|cj,l |
2 ∑

k∈Z

|k|2(1 + |k|)2s|aj,lk|
2.

The fact
∣∣aj,lk

∣∣ ≤ C
∣∣ρ2

k−l

∣∣ implies

∑
k∈Z

|k|2(1 + |k|)2s|aj,lk|
2 ≤ C ∑

k∈Z

|k + l|2(1 + |k + l|)2s
∣∣ρ2

k

∣∣2 ≤ C|l|2 (1 + |l|)2s ∥ρ2∥
2
V s+1(T).

Then, using

|cj,l |
2 ≤ C

(
|α1,l |

2 + |α2,l |
2 + |γ1,l |

2 + |γ2,l |
2
)

,

we conclude that

∥h∥2
L2(0,T;V s+1(T)) ≤ C∥ρ2∥

2
V s+1(T)

(

∑
l∈Z

|l|2(1 + |l|)2s
(
|α1,l |

2 + |α2,l |
2 + |γ1,l |

2 + |γ1,l |
2
)
)

≤ C∥ρ2∥
2
Hs(T)

(
∥Φ0∥

2
V s+1(T) + ∥ΦT∥

2
V s+1(T)

)
.
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Remark 5.3. If T > 0 and (η0, Φ0), (ηT, ΦT) ∈ Hs(T)× V s+1(T) with s ≥ 0, the Theorem 5.2

implies that there is F such that

S(T)(η0, Φ0) +
∫ T

0
S(T − τ)F(τ) dτ = (ηT, ΦT).

Moreover, we have that there exists C = C(T) > 0 such that

∥F∥L1(0,T;Hs×V s+1) ≤ C (∥(η0, Φ0)∥Hs×V s+1 + ∥(ηT, ΦT)∥Hs×V s+1) .

5.3 Nonlinear controllability

Now we turn to the nonlinear system





ηt + ∂2
xΦ − ∂4

xΦ + ∂x

(
η∂xΦ

)
= f1,

Φt + η − ∂2
xη +

1

2
(∂xΦ)2 = f2,

(5.11)

with the initial condition

η(x, 0) = η0(x), Φ(x, 0) = Φ0(x), (5.12)

Theorem 5.4. Let s ≥ 0 and T > 0 be given, then there exists δ > 0 such that for any (η0, Φ0),

(ηT, ΦT) ∈ Hs(T)× V s+1(T) satisfying

∥(η0, Φ0)∥Hs(T)×V s+1(T), ∥(ηT, ΦT)∥Hs(T)×V s+1(T) < δ,

there exists a control function F = ( f1, f2) ∈ L1(0, T; Hs(T) × V s+1(T)) such that the solution

(η, Φ) ∈ C
(
[0, T] : Hs(T)× V s+1(T)

)
∩ Us

T × Vs+1
T of the problem (5.11)–(5.12) satisfies

η(x, T) = ηT(x), Φ(x, T) = ΦT(x).

Proof. We rewrite the Cauchy problem (5.11)–(5.12) in its equivalent form:

(η(t), Φ(t)) = S(t)(η0, Φ0) +
∫ t

0
S(t − t′)F(t′) dt′

−
∫ t

0
S(t − t′)

(
∂x(η∂xΦ),

1

2
(∂xΦ)2

)
(t′)dt′.

(5.13)

Now, for any (η, Φ) = (η(x, t), Φ(x, t)) we define

w((η, Φ), T) =
∫ T

0
S(T − t′)

(
∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′) dt′

According to Theorem 5.2, for given (η0, Φ0), (ηT, ΦT) ∈ Hs(T)× V s+1(T), if one chooses

F = F(η,Φ)

such that

S(T)(η0, Φ0) +
∫ T

0
S(T − t′)F(η,Φ)(t

′) dt′ = (ηT, ΦT) + w((η, Φ), T)
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in the equation (5.13), then

(η(t), Φ(t)) = S(t)(η0, Φ0) +
∫ t

0
S(t − t′)F(η,Φ)(t

′) dt′

−
∫ t

0
S(t − t′)

(
∂x(η∂xΦ),

1

2
(∂xΦ)2

)
(t′)dt′, (5.14)

with (η(0), Φ(0)) = (η0, Φ0) and

(η(T), Φ(T)) = S(T)(η0, Φ0) +
∫ T

0
S(T − t′)F(η,Φ)(t

′)dt′

−
∫ T

0
S(T − t′)

(
∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′)dt′

= (ηT, ΦT) + w((η, Φ), T)− w((η, Φ), T) = (ηT, ΦT).

This suggests that we consider the map

Γ(η, Φ) = S(t)(η0, Φ0) +
∫ t

0
S(t − t′)F(η,Φ)(t

′)dt′

−
∫ t

0
S(t − t′)

(
∂x(η∂xΦ),

1

2
(∂xΦ)2

)
(t′)dt′.

If the map Γ is shown to be a contraction in an appropriate space, then its fixed point (η, Φ)

is a solution of (5.11)-(5.12) and satisfies (η(x, T), Φ(x, T)) = (ηT(x), ΦT(x)). We show this is

the case in the space Us × Vs+1.

As in the case of the KdV equation in [18], we modify the map Γ = (Γ1, Γ2) as follow:

Γ1(η, Φ)(t) = ψ1(t)S1(t)(η0, Φ0) + ψ1(t)
∫ t

0
S1(t − t′)ψ2(t

′)F(η,Φ)(t
′)dt′

− ψ1(t)
∫ t

0
S1(t − t′)ψ2(t

′)
(

∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′)dt′,

and

Γ2(η, Φ)(t) = ψ1(t)S2(t)(η0, Φ0) + ψ1(t)
∫ t

0
S2(t − t′)ψ2(t

′)F(η,Φ)(t
′)dt′

− ψ1(t)
∫ t

0
S2(t − t′)ψ2(t

′)
(

∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′)dt′,

where ψ1 is a smooth function with its support inside the interval (T − 1, T + 1) and ψ1(t) = 1

for t ∈ [−T, T], and ψ2 is a nonnegative smooth function with supp ψ2 ⊂ (−T − 1, T + 1)

satisfying ψ2(t) = 1 for any t in the support of ψ1.

As in Theorem 4.1, let ZM be the closed ball of radius M centered at the origin in Us ×Vs+1.

Using Remark 5.3 and slight modifications of results in Lemmas 2.2–2.6 we have that

∥w((η, Φ), T)∥Hs×V s+1 =
∥∥∥
∫ T

0
S(T − t′)

(
∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′) dt′

∥∥∥
Hs×V s+1

≤ sup
t∈R

∥∥∥ψ1(t)
∫ t

0
S(t − t′)ψ2(t

′)
(

∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′) dt′

∥∥∥
Hs×V s+1

≤ C
∥∥∥ψ1(t)

∫ t

0
S(t − t′)ψ2(t

′)
(

∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′) dt′

∥∥∥
Us×Vs+1

≤ C
(
∥∂x

(
η∂xΦ

)
∥Zs + ∥ (∂xΦ)2 ∥Ws+1

)

≤ C
(
∥η∥Xs,1/2∥Φ∥Ys+1,1/2 + ∥Φ∥2

Ys+1,1/2

)
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and also that

∥Γ1(η, Φ)∥Us ≤ C(T)
(
∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥F(η,Φ)∥Hs(T)×V s+1(T)

)

+ C2C5

(
∥η∥Xs,1/2∥Φ∥Ys+1,1/2 + ∥Φ∥2

Ys+1,1/2

)

≤ C(T)
(
∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥(ηT, ΦT)∥Hs(T)×V s+1(T) + ∥(η, Φ)∥2

Us×Vs+1

)

and

∥Γ2(η, Φ)∥Vs+1 ≤ C(T)
(
∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥(ηT, ΦT)∥Hs(T)×V s+1(T) + ∥(η, Φ)∥2

Us×Vs+1

)
.

So that

∥Γ(η, Φ)∥Us×Vs+1 ≤C(T)
(
∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥(ηT, ΦT)∥Hs(T)×V s+1(T) + ∥(η, Φ)∥2

Us×Vs+1

)
.

Choosing δ > 0 and

M = 2C(T)
(
∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥(ηT, ΦT)∥Hs(T)×V s+1(T)

)

in such a way that

2C2(T)M < 1, 2C(T)δ ≤ M,

then we conclude for any (η, Φ) ∈ ZM that

∥Γ(η, Φ)∥Us×Vs+1 ≤ C(T)
(
∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥(ηT, ΦT)∥Hs(T)×V s+1(T)

) (
1 + 4C2(T)M

)

≤ 2C(T)
(
∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥(ηT, ΦT)∥Hs(T)×V s+1(T)

)

≤ 2C(T)δ ≤ M

provided that ∥(η0, Φ0)∥Hs(T)×V s+1(T) + ∥(ηT, ΦT)∥Hs(T)×V s+1(T) < δ. Now, using the same of

computations, we have that Γ is a contraction on ZM, and so, the Banach Fixed Point Theorem

guaranties the existence fixed point (η, Φ) of Γ in ZM. This fixed point (η, Φ) is a unique

solution of the integral equation

(η(t), Φ(t)) = ψ1(t)S(t)(η0, Φ0) + ψ1(t)
∫ t

0
S(t − t′)ψ2(t

′)F(η,Φ)(t
′)dt′

− ψ1(t)
∫ t

0
S(t − t′)ψ2(t

′)
(

∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′)dt′.

In particular for t ∈ [0, T],

(η(t), Φ(t)) = S(t)(η0, Φ0) +
∫ t

0
S(t − t′)(t′)F(η,Φ)(t

′)dt′

−
∫ t

0
S(t − t′)(t′)

(
∂x

(
η∂xΦ

)
,

1

2
(∂xΦ)2

)
(t′)dt′.

That is to say, (η, Φ) ∈ C
(
[0, T] : Hs(T)× V s+1(T)

)
solves





ηt + ∂2
xΦ − ∂4

xΦ + ∂x

(
η∂xΦ

)
= f1,

Φt + η − ∂2
xη +

1

2
(∂xΦ)2 = f2,

with the conditions

η(x, 0) = η0(x), Φ(x, 0) = Φ0(x), η(x, T) = ηT(x), Φ(x, T) = ΦT(x)
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Abstract. We show the existence of a positive solution to the (p, q)-Laplacian problem

{

−∆pu − a∆qu = λ f (u)− h(x) in Ω,

u = 0 on ∂Ω,

for λ large, where Ω is a bounded domain in R
n with smooth boundary ∂Ω, a is a

nonnegative constant, h ∈ L∞(Ω), p > q > 1, and f satisfies f (0) = f (r) = 0 with
f > 0 on (0, r) for some r > 0.

Keywords: positive solutions, (p, q) Laplacian, semipositone.
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1 Introduction

Consider the (p, q) Laplacian problem

{

−∆pu − a∆qu = λ f (u)− h(x) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is bounded domain in R
n with smooth boundary ∂Ω, p > q > 1, ∆ru =

div(|∇u|r−2∇u), f : [0, ∞) → R, h : Ω → R, a is a nonnegative constant, and λ is a positive

parameter.

In contrast to the p-Laplacian, the (p, q) -Laplacian is not homogenous and occurs in ap-

plied areas such as chemical reactions and quantum physics (see e.g. [2, 6]) and has been

studied extensively in recent years. The existence of a positive solution to (1.1) for λ large

when f is p-sublinear at ∞ was studied in [1]. We are interested here in the case when f

has falling zeroes and are motivated by a result in [9, Theorem 1.1], where the existence of a

positive solution to (1.1) was established for λ large when a = 0 (the p-Laplacian equation),

h ≡ ε is small, and f satisfies the following condition:

BCorresponding author. Email: ddh123498@yahoo.com
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(H) There exists a constant r > 0 such that f : [0, r] → R is continuous with f (0) = f (r) = 0

and f > 0 on (0, r).

This result extended a previous work in [4] where p = 2 and f (u) = u − u3. Note that under

the assumption (H), the function g(u) = λ f (u) − ε has at least two zeroes for λ large as

g(0) = g(r) < 0 and g(r/2) = λ f (r/2) − ε > 0 for λ large. The purpose of this note

is to extend the result in [9] to the general (p, q)-Laplacian. In fact, we show that for any

h ∈ L∞(Ω), (1.1) has a positive solution provided that λ is large enough. This extension is

nontrivial since the lack of homogeneity of the operator makes it difficult to create a positive

subsolution.

Our main result is

Theorem 1.1. Let (H) hold and c0 > 0. Suppose h ∈ L∞(Ω) with 0 ≤ h ≤ c0 in Ω. Then there exists

a constant λ0 > 0 depending on c0 such that (1.1) has a positive solution for λ > λ0.

We shall denote by ∥ · ∥p, | · |1, and | · |1,ν the norms in Lp(Ω), C1(Ω̄), and C1,ν(Ω̄) respec-

tively.

Lemma 1.2. Let f ∈ L∞(Ω) with ∥ f ∥∞ ≤ M. Then the problem

{

−∆pu − a∆qu = f in Ω,

u = 0 on ∂Ω
(1.2)

has a unique solution u ∈ C1,ν(Ω̄) for some ν ∈ (0, 1). Furthermore |u|1,ν ≤ C, where C > 0 is a

constant depending on M (but not on a and f ).

Proof. Let E = W
1,p
0 (Ω) with norm ∥u∥ =

(∫

Ω
|∇u|p

)1/p
. Define

⟨Au, v⟩ =
∫

Ω

|∇u|p−2∇u · ∇v + a
∫

Ω

|∇u|q−2∇u · ∇v

and

F(v) =
∫

Ω

f v

for u, v ∈ E. Then it is easily seen that A : E → E∗ is continuous with

⟨Au, u⟩

∥u∥
≥ ∥u∥p−1 → ∞ as ∥u∥ → ∞

and

⟨Au − Av, u − v⟩ ≥
∫

Ω

(

|∇u|p−2∇u − |∇v|p−2∇v · ∇u −∇v
)

> 0 for u ̸= v.

Hence by the Minty–Browder Theorem (see [3]), there exists a unique u ∈ E such that

Au = F in E∗ i.e. u is the unique weak solution of (1.2). To show that u ∈ C1,ν(Ω̄) for some

ν ∈ (0, 1), we need Lieberman’s regularity result in [8]. By the weak comparison principle

[10, Theorem 10.1], |u| ≤ ũ in Ω, where ũ satisfies

{

−∆pũ − a∆qũ = M in B(0, R),

ũ = 0 on ∂B(0, R),
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where R > 0 is such that Ω ⊂ B(0, R) and B(0, R) denotes the open ball centered at 0 with

radius R in R
n. Note that ũ is unique, radial, and

ũ(x) =
∫ R

|x|
φ−1

(

Ms

n

)

ds ≤
∫ R

0

(

Ms

n

)
1

p−1

ds =

(

M

n

)
1

p−1

R
p

p−1 ≡ M0 ∀x ∈ B(0, R),

where φ(t) = |t|p−2t + a|t|q−2t.

Next, let w ∈ C1,ν(Ω̄) satisfy ∆w = f in Ω, w = 0 on ∂Ω. Then the equation in (1.2)

becomes

div A(x, u,∇u) = 0 in Ω,

where A(x, z, µ) = |µ|p−2µ + a|µ|q−2µ +∇w(x). Since A(x, z, µ) satisfies assumptions (1.10a)–

(1.10d) in [8, p. 320] and |u| ≤ M0 in Ω, it follows from the remark after Theorem 1.7 in [8]

that u ∈ C1,ν(Ω̄) for some ν ∈ (0, 1) and |u|1,ν ≤ C, where C depends on M.

Lemma 1.3. Let f , g ∈ L∞(Ω) and u, v ∈ W
1,p
0 (Ω) satisfy

{

−∆pu − a∆qu = f in Ω,

u = 0 on ∂Ω,
and

{

−∆pv − a∆qv = g in Ω,

v = 0 on ∂Ω.

Then |u − v|1 → 0 as ∥ f − g∥1 → 0.

Proof. By Lemma 1.2, u, v ∈ C1,ν(Ω̄) for some ν ∈ (0, 1) and |u|1,ν, |v|1,ν ≤ C, where C depends

on an upper bound of ∥ f ∥∞, ∥g∥∞.

Multiplying the equation

−(∆pu − ∆pv)− a(∆qu − ∆qv) = f − g in Ω

by u − v and integrating, we get

∫

Ω

|∇(u − v)|p + a
∫

Ω

|∇(u − v)|q =
∫

Ω

( f − g)(u − v)

≤ 2C∥ f − g∥1 → 0

as ∥ f − g∥1 → 0. From this and the interpolation inequality [7, Corollary 1.3],

|w|1 ≤ c|w|1−θ
1,β ∥w∥θ

W1,p ∀w ∈ C1,β(Ω̄)

for some c > 0 and θ ∈ (0, 1), we obtain |u − v|1 → 0 as ∥ f − g∥1 → 0, which completes the

proof.

Lemma 1.4. Let m > 0 and um be the solution of

{

−∆pu − a∆qu = m in Ω,

u = 0 on ∂Ω.

Then

(i) ∥um∥∞ → ∞ as m → ∞.

(ii) ∥um∥∞ → 0 as m → 0.
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Proof. (i) A calculation shows that um = m
1

p−1 vm, where vm satisfies
{

−∆pvm − am
q−p
p−1 ∆qvm = 1 in Ω,

vm = 0 on ∂Ω.
(1.3)

Suppose ∥um∥∞ ̸−→ ∞ as m → ∞. Then by going to a subsequence if necessary, we can

assume that ∥um∥∞ ≤ M ∀m > 0 for some M > 0.

This implies |vm| ≤ Mm
− 1

p−1 ≤ M in Ω for m > 1. By Lemma 1.2, |vm|1,ν ≤ C, where

C > 0 is independent of m. Hence there exists v0 ∈ C1(Ω̄) and a subsequence of (vm), which

we still denote by (vm), such that vm → v0 in C1(Ω̄). Since
∫

Ω

|∇vm|
p−2∇vm · ∇ψ + am

q−p
p−1

∫

Ω

|∇vm|
q−2∇vm · ∇ψ =

∫

Ω

ψ ∀ψ ∈ W
1,p
0 (Ω),

it follows by letting m → ∞ that
∫

Ω

|∇v0|
p−2∇v0 · ∇ψ =

∫

Ω

ψ ∀ψ ∈ W
1,p
0 (Ω),

i.e v0 satisfies −∆pv0 = 1 in Ω, v0 = 0 on ∂Ω. Consequently,

∥um∥∞ = m
1

p−1 ∥vm∥∞ → ∞ as m → ∞

a contradiction which proves (i).

(ii) Using Lemma 1.3 with f = m and g = 0, we obtain the result.

Proof of Theorem 1.1. Let um be defined by Lemma 1.4. By Lemma 1.3, the map m 7→ ∥um∥∞

is continuous. This, together with Lemma 1.4, implies the existence of an m > 0 such that

∥um∥∞ = r. By [10, Corollary 8.4], um > 0 in Ω and ∂um
∂n < 0 on ∂Ω, where n denotes the

outward unit normal on ∂Ω. Let 0 < α < β < r and zα,β ∈ C1,β(Ω̄) be the solution of

−∆pz − a∆qz =

{

m if um ∈ [α, β],

−c0 otherwise
≡ hα,β, z = 0 on ∂Ω.

Note that the existence of zα,β follows from Lemma 1.2. Since −∆pum − a∆qum = m in Ω and

∥hα,β − m∥1 = (m + c0)|B| → 0

as α → 0 and β → r, where |B| denotes the Lebesgue measure of

B = {x : um(x) < α} ∪ {x : β < um(x) ≤ r},

it follows from Lemma 1.3 that |zα,β − um|1 → 0 as α → 0 and β → r. Hence there exist α, β

such that zα,β ≡ z0 such that
um

2
≤ z0 ≤ um in Ω. (1.4)

Note that the right side inequality in (1.4) follows from the weak comparison principle in

[10, Theorem 10.1]. In particular, α
2 ≤ z0 ≤ β when um ∈ [α, β], which implies f (z0) ≥

inf[α/2,β] f ≡ γ > 0 and therefore

−∆pz0 − a∆qz0 = m ≤ λγ − c0 ≤ λ f (z0)− h(x) (1.5)

for um ∈ [α, β] and λ >
m+c0

γ . For such λ and um /∈ [α, β],

−∆pz0 − a∆qz0 = −c0 ≤ −h(x) ≤ λ f (z0)− h(x) (1.6)

since f (z0) ≥ 0 in view of (1.4). Combining (1.5) and (1.6), we see that z0 is a subsolution of

(1.1). Clearly, z1 ≡ r is a supersolution of (1.1) with z0 ≤ z1 in Ω. Hence (1.1) has a solution z

with z0 ≤ z ≤ z1 in Ω by [5, Corollary 1], which completes the proof.
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Abstract. We consider the differential inclusion problem given by

−
N

∑
i=1

∂

∂xi

(

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

pi(x)−2 ∂u

∂xi

)

+ V(x)|u(x)|p
o
N−2u ∈ a(x)∂F(x, u),

in R
N . The problem deals with the anisotropic p(x)-Laplacian operator where pi are

Lipschitz continuous functions 2 ≤ pi(x) < N for all x ∈ R
N and i ∈ {1, . . . , N}.

Assume po
N(x) = max1≤i≤N pi(x), a ∈ L1

+(R
N) ∩ L

N
po

N
(x)−1 (RN), F(x, t) is locally Lips-

chitz in the t-variable integrand and ∂F(x, t) is the subdifferential with respect to the
t-variable in the sense of Clarke. By establishing the existence of infinitely many solu-
tions, we achieve a first result within the anisotropic framework.

Keywords: anisotropic p(x)-Laplacian, differential inclusion problem, locally Lipschitz
function, infinitely many solutions, variational method.
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1 Introduction

The Wulff shape, also known as the equilibrium crystal shape, is closely associated with a con-

vex hypersurface in R
N based on a given norm. Wulff [36] introduced a variational problem

concerning an anisotropic geometric functional in the context of crystal growth. He conjec-

tured, without providing a proof, that the Wulff shape, among closed convex hypersurfaces

with constant enclosed volume, minimizes the anisotropic surface energy. This seminal work

by Wulff has spurred significant research in the field of phase transitions, particularly in sce-

narios involving anisotropic and nonhomogeneous media. Recent studies have considered

the existence of solutions for anisotropic problems, (see [4, 7, 12–16, 29–34, 37] and the related

literature for more details).

BCorresponding author. Email: razani@sci.ikiu.ac.ir
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In 2019, Ge and Rădulescu [19] proved the existence of infinitely many solutions to the

differential inclusion problem involving the p(x)-Laplacian

−∆p(x)u + V(x)|u|p(x)−2u ∈ a(x)∂F(x, u), in R
N

via a combination the variational principle for locally Lipschitz functions with the properties

of the generalized Lebesgue Sobolev space.

Here, with the inspiration of [19], we investigate the existence of infinitely many solutions

of a differential inclusion problem involving the anisotropic p(x)-Laplacian

−
N

∑
i=1

∂

∂xi

(

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

pi(x)−2 ∂u

∂xi

)

+ V(x)|u(x)|p
o
N(x)−2u ∈ a(x)∂F(x, u) in R

N , (1.1)

where pi are Lipschitz continuous functions such that 2 ≤ pi(x) < N for all x ∈ R
N and i ∈

{1, . . . , N}, po
N(x) = max1≤i≤N pi(x), a ∈ L1

+(R
N)∩ L

N
po

N
(x)−1 (RN), F(x, t) is locally Lipschitz in

the t-variable integrand and ∂F(x, t) is the subdifferential with respect to the t-variable in the

sense of Clarke [5]. Notice that L1
+(R

N) := {η ∈ L1(RN) : η(x) > 0 for all x ∈ R
N} and

C+(R
N) :=

{

h ∈ C(RN) : h(x) > 1 for all x ∈ R
N
}

.

For any h ∈ C+(RN), we will denote

h− := inf
x∈RN

h(x) and h+ := sup
x∈RN

h(x).

Also we set the order h1 ≪ h2 the fact that infx∈RN (h2(x)− h1(x)) > 0.

For the potential function V, we make the following assumptions:

(V1) V ∈ C(RN), 0 < V−.

(V2) There exists r > 0 such that for any b > 0,

lim
|y|→∞

µ
({

x ∈ R
N : V(x) ≤ b

}

∩ Br(y)
)

= 0,

where µ is the Lebesgue measure on R
N .

For the nonlinearity F, suppose the function F : R
N × R → R is such that F(x, 0) = 0 a.e.

on R
N , and

( f0) F is a Carathéodory function, that is, for all t ∈ R, the mapping x 7→ F(x, t) is measurable

and, for almost all x ∈ R
N , the function t 7→ F(x, t) is locally Lipschitz.

( f1) for almost all x ∈ R
N , all t ∈ R and all w ∈ ∂F(x, t), we have

|w| ≤ c
(

1 + |t|p
o
N(x)−1

)

.

( f2) there exist δ > 0 and ⊆ ∈ L∞
−(R

N) such that, for almost all x ∈ R
N , we have

sup
0<|t|<δ

F(x, t) ≤ ⊆(x) < 0,

where L∞
−(R

N) = {η ∈ L∞(RN) : η(x) < 0 for all x ∈ R
N}.
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( f3) There exists q ∈ C+(RN) with

po
N
+
< q− ≤ q(x) <

Npo
N(x)− po

N(x)(po
N(x)− 1)

N − po
N(x)

< κ(x) for all x ∈ R
N

where κ(x) = po
N
∗(x) =

Npo
N(x)

N−po
N(x)

, such that for almost all x ∈ R
N we have

lim inf
|t|→∞

F(x, t)

|t|q(x)
> 0.

( f4) F(x,−t) = F(x, t) for all (x, t) ∈ R
N × R.

Now we state the main result of this article.

Theorem 1.1. Suppose that ( f0)–( f4), (V1) and (V2) hold. Then problem (1.1) has infinitely many

nontrivial solutions.

The unique aspect of this paper lies in its capacity to extend the conclusions of Ge and

Rădulescu [19] to a more generalized, anisotropic setting.

The subsequent sections of this paper are structured as follows. In Section 2, we will re-

visit the definitions and various properties associated with variable exponent Sobolev spaces.

Moving on to Section 3, we will establish the existence of an infinite number of nontrivial

solutions for the problem (1.1), with credit given to the essential ideas derived from [19].

2 Preliminaries

We recall some preliminary results on the theory of variable exponent Sobolev space. For

more details see [8, 10, 11, 17, 21, 23, 24, 26–28], where additional information and specifics can

be found.

For p(x) ∈ C+(RN), we define the variable exponent Lebesgue space

Lp(x) :=

{

u : u is measurable and
∫

RN
|u(x)|p(x)dx < +∞

}

with the norm

|u|Lp(x)(RN) := |u|p(x) := inf

{

Λ > 0 :
∫

RN
|
u(x)

Λ
|p(x)dx ≤ 1

}

,

and we define the variable exponent Sobolev space

W1,p(x)(RN) :=
{

u ∈ Lp(x)(RN) : |∇u| ∈ Lp(x)(RN)
}

,

with the norm |u|W1,p(x)(RN) = |u|p(x) + |∇u|p(x). We recall that spaces Lp(x)(RN) and

W1,p(x)(RN) are separable and reflexive Banach spaces.

Here, we introduce a natural generalization of the variable exponent Sobolev space

W1,p(·)(RN) that will enable us to study problem (1.1) with sufficient accuracy (see [21, 22]).

Let us denote by −→p : R
N → R

N the vectorial function

−→p (x) = (p1(x), . . . , pN(x)).
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Also assume 1 < p1(x), . . . , pN(x) < ∞.

One can define D1,−→p (·)(RN) by

D1,−→p (·)(RN) :=
{

u ∈ Lpo
N(·)(RN) : ∂xi

u ∈ Lpi(x)(RN), i = 1, . . . , N
}

.

This is a reflexive Banach space with respect to the norm

∥u∥1,−→p (·) :=
N

∑
i=1

∥∂xi
u∥

Lpi(·)(RN).

This space continuously embedded in Lpo
N(·)(RN), where po

N = max1≤i≤N pi(x). We introduce
−→
P +,

−→
P − ∈ R

N by
−→
P + := (p+1 , . . . , p+N),

−→
P − := (p−1 , . . . , p−N)

and P+
+ , P+

− , P−
− ∈ R

+ by

P+
+ = max{p+1 , . . . , p+N}, P+

− = max{p−1 , . . . , p−N}, P−
− = min{p−1 , . . . , p−N}. (2.1)

Throughout this paper we assume that

N

∑
i=1

1

p−i
> 1. (2.2)

We define

p∗(x) =
N

∑
N
i=1

1
pi(x)

− 1
, p∞ = max{P+

− , p∗−}, (2.3)

where p∗− = infx∈RN p∗(x).

Define J : D1,−→p (·)(RN) → R by

J(u) :=
N

∑
i=1

∫

RN

1

pi(x)
|∂xi

u(x)|pi(x)dx +
∫

RN

1

po
N(x)

V(x)|u(x)|p
o
N(x)dx

for all u ∈ D1,−→p (·)(RN). Then J ∈ C1(D1,−→p (·)(RN , R). If we denote

A = J′ : D1,−→p (·)(RN) → (D1,−→p (·)(RN))∗,

then

⟨A(u), v⟩ =
N

∑
i=1

∫

RN

1

pi(x)
|∂xi

u(x)|pi(x)−2∂xi
u(x)∂xi

v(x)

+
∫

RN

1

po
N(x)

V(x)|u(x)|p
o
N(x)−2uvdx

for all u, v ∈ D1,−→p (·)(RN), where ⟨·, ·⟩ is the duality pairing between (D1,−→p (·)(RN))∗ and

D1,−→p (·)(RN).

Definition 2.1. A mapping f : X → X∗ is said to be of type (S)+, if un ⇀ u in X and

lim supn→∞⟨ f (un), un − u⟩ ≤ 0 implies un → u in X.

Similar to [3] we have the following proposition.
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Proposition 2.2. Suppose G := D1,−→p (·)(RN) and A is as above. Then A : G → G∗ is

(1) convex, bounded and strictly monotone operator;

(2) a mapping of type (S)+;

(3) a homeomorphism.

Denote by Lq(x)(RN) the conjugate space of Lpo
N(x)(RN) with 1

po
N(x)

+ 1
q(x)

= 1. Then the

Hölder type inequality

∫

RN
|uv|dx ≤

(

1

po
N
− +

1

q−

)

|u|
Lpo

N
(x)(RN)

|v|Lq(x)(RN)

holds for all u ∈ Lpo
N(x)(RN) and v ∈ Lq(x)(RN). Furthermore, if we define the mapping

ρ : Lpo
N(x)(RN) → R by

ρ(u) =
∫

RN
|u|p

o
N(x)dx,

then the following relations hold:

|u|po
N(x) = µ for u ̸= 0 ⇐⇒ ρ

(

u

µ

)

= 1, (2.4)

|u|po
N(x) < 1(= 1,> 1) ⇐⇒ ρ(u) < 1(= 1,> 1), (2.5)

|u|po
N(x) > 1 =⇒ |u|

po
N
−

po
N(x)

≤ ρ(u)|u|
po

N
+

po
N(x)

, (2.6)

|u|po
N(x) < 1 =⇒ |u|

po
N
+

po
N(x)

≤ ρ(u)|u|
po

N
−

po
N(x)

. (2.7)

Proposition 2.3 ([9]). Let po
N(x), q(x) be measurable functions such that po

N(x) ∈ L∞(RN) and

1 ≤ po
N(x)q(x) ≤ ∞ almost everywhere in R

N . Let u ∈ Lq(x)(RN), u ̸= 0. Then

|u|po
N(x)q(x) ≥ 1 =⇒ |u|

po
N
−

po
N(x)q(x)

≤ ||u|p
o
N(x)|q(x) ≤ |u|

po
N
+

po
N(x)q(x)

,

|u|po
N(x)q(x) ≤ 1 =⇒ |u|

po
N
+

po
N(x)q(x)

≤ ||u|p
o
N(x)|q(x) ≤ |u|

po
N
−

po
N(x)q(x)

.

In particular, if po
N(x) = po

N is a constant, then ||u|p
o
N(x)|q(x) = |u|

po
N

po
Nq(x)

.

Next we consider the case that V satisfies (V1) and (V2). We equip the linear subspace

E =

{

u ∈ D1,−→p (·)(RN) :
N

∑
i=1

∫

RN
|∂xi

u|pi(x)dx +
∫

RN
V(x)|u|p

o
N(x)dx < +∞

}

with the norm

∥u∥E = inf

{

λ > 0 :
N

∑
i=1

∫

RN
|
∂xi

u

λ
|pi(x)dx +

∫

RN
V(x)|

u

λ
|p

o
N(x)dx < +∞

}

.

Then (E, ∥ · ∥E) is continuously embedded into D1,−→p (·)(RN) as a closed subspace. Therefore,

(E, ∥ · ∥E) is also a separable reflexive Banach space. It is easy to see that with the norm ∥ · ∥E,

Proposition 2.2 remains valid, that is, the following properties hold true.
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Proposition 2.4. Set I(u) = ∑
N
i=1

∫

RN |∂xi
u|pi(x)dx +

∫

RN V(x)|u|p
o
N(x)dx. If u(x) ∈ D1,−→p (·)(RN),

then

(i) for u ̸= 0, ∥u∥E = λ if and only if I( u
λ ) = 1,

(ii) ∥u∥E < 1(= 1,> 1) if and only if I(u) < 1(= 1,> 1),

(iii) ∥u∥E > 1 implies ∥u∥
po

N
−

E ≤ I(u) ≤ ∥u∥
po

N
+

E ,

(iv) ∥u∥E < 1 implies ∥u∥
po

N
+

E ≤ I(u) ≤ ∥u∥
po

N
−

E .

Here we recall the following theorem from [6, Theorem 2.4.] which implies there exits an

embedding from D1,−→p (RN) into Lp⋆(RN), where p⋆ := Np
N−p . This is a particular case of the

result of Troisi [35].

Theorem 2.5. Assume pi ≥ 1 for i = 1, . . . , N. Then there exists a continuous embedding D1,−→p (RN)

into Lp⋆(RN), i.e. D1,−→p (RN) →֒ Lp⋆(RN).

This implies that we have a continuous embedding E →֒ Lpo
N(x)(RN).

Now by a similar argument as [1, Theorem 3.2] which is in the Heisenberg group setting

(or by combining [25, Theorem 2.1] and [2, Lemma 4.4] which are in the Euclidean setting) we

have the following proposition.

Proposition 2.6. Assume κ(x) = po
N
∗(x) =

Npo
N(x)

N−po
N(x)

. If V satisfies (V1) and (V2), then

(i) we have a compact embedding E →֒ Lpo
N(x)(RN),

(ii) for any measurable function q : R
N → R with po

N(x) < q(x) ≪ κ(x), we have a compact

embedding E →֒ Lq(x)(RN).

Let (Y, ∥ · ∥) be a real Banach space and Y∗ its topological dual. A function ϕ : Y →

R is called locally Lipschitz if each point u ∈ Y possesses a neighborhood Nu such that

| f (u1)− f (u2)| ≤ ∥u1 − u2∥, for all u1, u2 ∈ Nu, for a constant L > 0 depending on Nu. The

generalized directional derivative of ϕ at the point u ∈ Y in the direction h ∈ Y is

ϕo(u, h) = lim inf
w→u
t→0+

ϕ(w + th)− ϕ(w)

t
.

The generalized gradient of ϕ at u ∈ Y is defined by

∂ϕ(u) = {u∗ ∈ Y∗ : ⟨u∗, h⟩ ≤ ϕo(u, h) for all h ∈ Y} ,

which is a nonempty, convex and w∗-compact subset of Y, where ⟨·, ·⟩ is the duality pairing

between Y∗ and Y. We say that u ∈ Y is a critical point of ϕ if 0 ∈ ∂ϕ(u), (see [3] for further

details).

Definition 2.7. Let Y be a real Banach space, and ϕ : Y → R is a locally Lipschitz function.

We say that ϕ satisfies the nonsmooth (PSc) condition if any sequence {un} ⊂ Y such that

ϕ(un) → c and m(un) → 0 as n → ∞ has a strongly convergent subsequence, where m(un) =

inf{∥u∗∥Y∗ : u∗ ∈ ∂ϕ(un)}. If this property holds at every level c ∈ R, then we simply say that

ϕ satisfies the nonsmooth (PS) condition.
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We recall the following lemma [18, Theorem 2.1.7].

Lemma 2.8. Assume that X is an infinite-dimensional Banach space, and let ϕ : X → R be a locally

Lipschitz function that satisfies the nonsmooth (PSc) condition for every c > 0. Assume ϕ(u) = ϕ(−u)

for all u ∈ X and ϕ(0) = 0. Suppose X = X1
⊕

X2, where X1 is finite-dimensional, and assume the

following conditions:

(a) α > 0, δ > 0 such that ∥u∥ = δ with u ∈ X2 implies ϕ(u) ≥ α.

(b) For any finite-dimensional subspace W ⊂ X1, there is R = R(W) such that ϕ(u) ≤ 0 for u ∈ W

with ∥u∥ ≥ R.

Then ϕ possesses an unbounded sequence of critical values.

Before ending this section we can define the weighted variable exponent Lebesgue space

L
q(x)
a(x)

(RN) (see [20]) as follows:

Assume a ∈ L1
+(R

N), then a(x) is a measurable, nonnegative real-valued function for

x ∈ R
N . Define

L
q(x)
a(x)

(RN) =

{

u is measurable and
∫

RN
a(x)|u(x)|q(x)dx < +∞

}

with the norm

|u|
L

q(x)
a(x)

(RN)
= inf

{

σ > 0 :
∫

RN
a(x)|

u

σ
|q(x)dx ≤ 1

}

.

Then L
q(x)
a(x)

(RN) is a Banach space.

Remark 2.9. The embedding E →֒ W1,po
N(x)(RN) →֒ L

q(x)
a(x)

(RN) is continuous.

Set h(x) = q(x) N
N−po

N(x)−1
, where q(x) is mentioned in ( f3). Then po

N
+
< h− and po

N(x) <

h(x) < κ(x) for all x ∈ R
N , where κ(x) = po

N
∗(x) =

Npo
N(x)

N−po
N(x)

. Hence, by Proposition 2.6,

there is a continuous embedding E →֒ Lh(x)(RN). Thus, for u ∈ E, we have |u(x)|q(x) ∈

L
N

N−po
N
(x)+1 (RN). By the Hölder inequality,

∫

RN
a(x)|u|q(x)dx ≤ 2|a|

L

N
po

N
(x)−1 (RN)

||u|q(x)|
L

N
N−po

N
(x)+1

(RN ) < +∞. (2.8)

It follows that u ∈ L
q(x)
a(x)

(RN), and hence the embedding E →֒ W1,po
N(x)(RN) →֒ L

q(x)
a(x)

(RN) is

continuous.

3 Infinitely many nontrivial solutions

Here, we introduce the energy functional ϕ : E → R associated with problem (1.1) by

ϕ(u) =
N

∑
i=1

∫

RN

1

pi(x)
|∂xi

u|pi(x)dx +
∫

RN

1

po
N(x)

V(x)|u|p
o
N(x)dx −

∫

RN
F(x, u)dx.

From the hypotheses on F, it is standard to check that ϕ is locally Lipschitz on E and ∂ϕ(u) ⊂

A(u)− ∂F(x, u) for all u ∈ E (see [3]).
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Definition 3.1. u ∈ E is called a solution of (1.1) to which there corresponds a mapping

x ∈ R
N → w(x) with w(x) ∈ ∂F(x, u) for almost every x ∈ R

N having the property x →

w(x)h(x) ∈ L1(RN) for every h ∈ E, and

N

∑
i=1

∫

RN
|∂xi

u|pi(x)−2∂xi
u∂xi

hdx +
∫

RN
V(x)|u|p

o
N(x)−2uh dx =

∫

RN
w(x)h(x)dx.

Notice that weak solutions of problem (1.1) are exactly the critical points of the func-

tional ϕ.

Lemma 3.2. Assume that all conditions of Theorem 1.1 are satisfied. Then the energy functional ϕ

satisfies the nonsmooth (PS) condition in E.

Proof. Suppose that {un} ⊂ E is a (PSc) sequence for ϕ, that is ϕ(un) → c and m(un) → 0 as

n → ∞, which shows that

c = ϕ(un) + o(1), m(un) = o(1), (3.1)

where o(1) → 0 as n → +∞.

We claim that the sequence {un}∞
n=1 is bounded. Suppose that this is not the case. By

passing to a subsequence if necessary, we may assume that ∥un∥E → +∞ as n → ∞. Without

loss of generality, we assume ∥un∥E ≥ 1. Let u∗
n∂ϕ(un) be such that m(un) = ∥u∗

n∥E∗ , n ∈ N.

We have u∗
n = A(un)− wn, wn(x) ∈ ∂F(x, un(x)), wn ∈ Lp′(x)(RN), where 1

po
N(x)

+ 1
p′(x)

= 1.

By (3.1), there is a constant M1 > 0 such that

|ϕ(un)| ≤ M1, for all n ≥ 1, (3.2)

and there is a constant C > 0 such that

C∥un∥E ≥ ⟨u∗
n, un⟩

= ⟨A(un), un⟩ −
∫

RN
a(x)wnundx

=
N

∑
i=1

∫

RN

1

pi(x)
|∂xi

u|pi(x)dx +
∫

RN

1

po
N(x)

V(x)|u|p
o
N(x)dx −

∫

RN
a(x)wnundx.

(3.3)

Then by (3.2) and (3.3), we have

M1 po
N
− + C∥un∥E ≥

∫

RN
a(x)(po

N
−F(x, un)− wnun)dx, (3.4)

where po
N
− is given by (2.1).

Next we estimate (3.4). By virtue of ( f3), there exists c1 > 0 and M2 > 0 such that, for

almost all x ∈ R
N and all |t| ≥ M2, we have F(x, t) ≥ c1|t|

q(x). On the other hand, from

( f1), for almost all x ∈ R
N and all t ∈ R such that |t| < M2, we have |F(x, t)| ≤ C, where

C = C(M2) > 0. Therefore, for almost all x ∈ R
N and all t ∈ R the above two inequalities

imply

F(x, t) ≥ c1|t|
q(x) − c2, for all x ∈ R

N , t ∈ R, (3.5)

where c2 = C + max{M
q−

2 , M
q+

2 }c1. Using ( f1) again, we deduce another estimate:

|wt| ≤ c(|t|+ |t|p
o
N(x)) ≤ 2c(1 + |t|p

o
N(x)). (3.6)
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From (3.5) and (3.6), we have

po
N
−F(x, t)− wt ≥ po

N
−c1|t|

q(x) − po
N
−c2 − 2c(1 + |t|p

o
N(x)). (3.7)

By (3.4) and (3.7), we get

po
N
−c1

∫

RN
a(x)|un|

q(x)dx − 2c
∫

RN
a(x)|un|

po
N(x)dx

≤ M1 po
N
− + C∥un∥E + (po

N
−c2 + 2c)|a|1.

(3.8)

Note that q− > po
N
+. Then, applying Young’s inequality with ϵ, we get

|u|p
o
N(x) = 1 × |u|p

o
N(x) = ϵ

−
po

N (x)

q(x) × ϵ
po

N (x)

q(x) |u|p
o
N(x)

≤ (ϵ
−

po
N (x)

q(x) )
q(x)

q(x)−po
N
(x) + ϵ||u(x)|p

o
N(x)|

q(x)
po

N
(x)

= ϵ
−

po
N (x)

q(x)−po
N
(x) + ϵ|u(x)|q(x)

≤ ϵ
−

po
N
+

q−−po
N
+
+ ϵ|u(x)|q(x).

(3.9)

Hence, by (3.8) and (3.9), we obtain

(po
N
−c1 − 2cϵ)

∫

RN
a(x)|un|

q(x)dx ≤ M1 po
N
− + C∥un∥E + (po

N
−c2 + 2c)|a|1 + 2cϵ

po
N
+

q−−po
N
+
|a|1.

Then, choosing ϵ0 small enough such that 0 < ϵ <
po

N
−c1

2c , we obtain

∫

RN
a(x)|un|

q(x)dx ≤
M1 po

N
− + (po

N
−c2 + 2c)|a|1 + 2cϵ

po
N
+

q−−po
N
+
|a|1

(po
N
−c1 − 2cϵ)

+
C

(po
N
−c1 − 2cϵ)

∥un∥E,

(3.10)

for all n ≥ 1.

On the other hand, using ( f1) again, we deduce another estimate:

|F(x, un)| ≤ 2c(1 + |un|
p(x)). (3.11)

Hence we obtain from (3.2), (3.11) and po
N
+
< q(x) that

1

P+
+

∥un∥
po

N
−

E ≤
N

∑
i=1

∫

RN

1

pi(x)
|∂xi

u|pi(x)dx +
∫

RN
V(x)|un|

po
N(x)dx

= ϕ(un) +
∫

RN
a(x)F(x, u)dx

≤ M1 + 2c|a|1 + 2c
∫

RN
a(x)|un|

po
N(x)dx

≤ M1 + 2c|a|1 + 2c
∫

RN
a(x)(1 + |un|

q(x))dx

= M1 + 4c|a|1 + 2c
∫

RN
a(x)|un|

q(x)dx.

(3.12)
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Therefore, combining (3.10) and (3.12), the boundedness of {un}∞
n=1 immediately follows, that

is, there is constant C > 0 such that ∥un∥E ≤ C. Thus, passing to a subsequence if necessary,

we assume that un ⇀ u0 in E, so it follows from (3.1) that

⟨A(un), un − u0⟩ −
∫

RN
a(x)wn(un − u0)dx ≤ ϵn, (3.13)

with ϵn ↓ 0, wn(x)∂F(x, un(x)).

Next we prove that
∫

RN a(x)wn(un − u0)dx as n → +∞. Clearly, by hypothesis ( f1), we

have
∫

RN
a(x)|wn| |un − u0|dx ≤ c

∫

RN
a(x)|un − u0|dx +

∫

RN
a(x)|un|

po
N(x)−1|un − u0|dx. (3.14)

On the other hand, using Hölder’s inequality, we have
∫

RN
a(x)|un|

po
N(x)−1|un − u0|dx

≤ 3|a|
L

N
po

N
(x)−1 (RN)

||un|
po

N(x)−1|
L

κ(x)
po

N
(x)−1 (RN)

|un − u0|Lpo
N
(x)(RN)

≤ 3|a|
L

po
N
(x)

po
N
(x)−r(x) (RN)

|un − u0|
L

κ(x)
po

N
(x) (RN)

||un|
po

N(x)−1|
L

κ(x)
po

N
(x)−1 (RN)

.

(3.15)

where κ(x) = po
N
∗(x). We claim that

||un|
po

N(x)−1|
L

κ(x)
po

N
(x)−1 (RN)

≤ |un|
po

N
+−1

κ(x)
+ 2. (3.16)

Indeed, we have that

if |un|κ(x) ≥ 1, then ||un|
po

N(x)−1|
L

κ(x)
po

N
(x)−1 (RN)

≤ |un|
po

N
+−1

κ(x)
. (I)

This is seen as follows: According to (2.4), to prove (I), this is equivalent to proving that

|un|κ(x) ≥ 1 implies

∫

RN

|un(x)|
(po

N(x)−1) κ(x)
po

N
(x)−1

|un(x)|
(po

N
+−1) κ(x)

po
N
(x)−1

κ(x)

dx =
∫

RN

|un(x)|κ(x)

|un(x)|
(po

N
+−1) κ(x)

po
N
(x)−1

κ(x)

dx ≤ 1.

This inequality is justified as follows: since |un|po
N(x) ≥ 1 and

(po
N
+ − 1)

κ(x)

po
N(x)− 1

− κ(x) = po
N
+ κ(x)

po
N(x)− 1

−

(

κ(x) +
κ(x)

po
N(x)− 1

)

= po
N
+ κ(x)

po
N(x)− 1

− po
N(x)

κ(x)

po
N(x)− 1

=
κ(x)

po
N(x)− 1

(po
N
+ − po

N(x))

≥ 0,

we infer that

|un(x)|κ(x)

|un|
(po

N
+−1) κ(x)

po
N
(x)−1

κ(x)

=
|un(x)|κ(x)

|un|
κ(x)
κ(x)

1

|un|
(po

N
+−1) κ(x)

po
N
(x)−1

−κ(x)

κ(x)

≤
|un(x)|κ(x)

|un|
κ(x)
κ(x)

,
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which implies
∫

RN

|un(x)|(po
N(x)−1)p′(x)

|un|
(po

N
+−1)p′(x)

po
N(x)

dx ≤
∫

RN

|un(x)|κ(x)

|un|
κ(x)
κ(x)

dx = 1,

and the proof of (I) is complete.

If |un|κ(x) < 1, then ||un|
po

N(x)−1| κ(x)
po

N
(x)−1

< 2. (I I)

Indeed, by |un|κ(x) <

∫

RN
|un|

κ(x)dx + 1 and (2.7), we obtain

||un|
po

N(x)−1| κ(x)
po

N
(x)−1

<

∫

RN
|un|

(po
N(x)−1) κ(x)

po
N
(x)−1 dx + 1

=
∫

RN
|un|

κ(x)dx + 1 < 1 + 1 = 2.

Clearly, (3.6) is a consequence of (I) and (I I).

Notice that the inclusion E →֒ Lκ(x)(RN) is continuous, and hence there exists C1 > 0 such

that

|un|κ(x) ≤ C1∥un∥E ≤ CC1. (3.17)

By Proposition 2.6, the embedding E →֒ Lpo
N(x)(RN) is compact, and un ⇀ u in E implies

un → u in Lpo
N(x)(RN). Hence using (3.15), (3.16) and (3.17), we have

∫

RN
a(x)|un|po

N(x)−1|un − u0|dx → 0 as n → +∞. (3.18)

Choose θ(x) =
po

N(x)
po

N(x)−1
. Then θ ∈ C+(RN), 1 < θ(x) < N

po
N(x)−1

for all x ∈ R
N , and there exists

λ : R
N → (0, 1) such that

1

θ(x)
=

λ(x)

1
+

1 − λ(x)
N

po
N(x)−1

a.e. x ∈ R
N .

Then, for x ∈ R
N , we have

s(x) =
1

θ(x)λ(x)
> 1, t(x) =

N

θ(x)(p(x)− 1)(1 − λ(x))
> 1.

Using a ∈ L1
+(R

N) ∩ L
N

po
N
(x)−1 (RN), we deduce

∫

RN
|a|θ(x)dx =

∫

RN
|a|

1
s(x) |a|

N
po

N
(x)−1

t(x) dx

≤ 2

[(

∫

RN
|a|dx

)
1

s+

+

(

∫

RN
|a|dx

)
1

s−
]

×

[(

∫

RN
|a|

N
p(x)−1 dx

)
1

t+

+

(

∫

RN
|a|

N
p(x)−1 dx

)
1

t−
]

.

(3.19)

This implies a ∈ L
po

N (x)

po
N
(x)−1 (RN). Hence

∫

RN
a(x)|un − u0|dx ≤ 2|a| p(x)

p(x)−1

|un − u0|p(x) → 0 as n → +∞.



12 A. Razani and G. M. Figueiredo

Combining (3.13), (3.14), (3.18) and (3.19), we get limn→+∞⟨A(un), un − u⟩ = 0. By Proposition

2.2 (2), we get un → u0 in E. This proves that ϕ(u) satisfies the nonsmooth (PS) condition

on E.

Lemma 3.3. Assume that all conditions of Theorem 1.1 are satisfied. Then there exist α > 0 and ν > 0

such that, for any u ∈ E with ∥u∥E = ν, we have ϕ(u) ≥ α.

Proof. Firstly, choose q ∈ C+(RN) (q is mentioned in ( f3)). Then

1 <
κ(x)

κ(x)− q(x)
=

Npo
N(x)

Npo
N(x)− q(x)(N − po

N(x))
<

N

po
N(x)− 1

, x ∈ R
N . (3.20)

By Proposition 2.6, the embedding E →֒ Lκ(x)(RN) is continuous, and there is constant c5 > 0

such that

|u|κ(x) ≤ c5∥u∥E for all u ∈ E. (3.21)

Now choose γ > 0 such that γ < min{1, 1
c5
}. Then, for such a fixed γ, we have

|u|κ(x) ≤ 1 for all u ∈ E with ∥u∥E = γ. (3.22)

Moreover, by virtue of hypothesis ( f2), we obtain

F(x, t) ≤ ϑ(x), (3.23)

for any x ∈ R
N and 0 < |t| < δ.

On the other hand, for all x ∈ R
N and all |t| ≥ δ, ( f1) implies

|F(x, t)| ≤ c6|t|
p(x), (3.24)

where c6 = (1 + 1
τ )c and τ = min{|δ|p

o
N
+

, |δ|p
o
N
−
}.

From (3.23) and (3.24), for all x ∈ R
N and all t ∈ R, we have F(x, t) ≤ ϑ(x) + c7|t|p(x),

where c7 = c6 +
|ϑ|∞

τ .

Thus, for all u ∈ E with ∥u∥E = γ, we have

ϕ(u) =
N

∑
i=1

∫

RN

1

pi(x)
|∂xi

u|pi(x)dx +
∫

RN

1

po
N(x)

V(x)|u|p
o
N(x)dx −

∫

RN
a(x)F(x, u)dx

≥
1

po
N
+ ∥u∥

po
N
+

E − c7

∫

RN
a(x)|u|p

o
N(x)dx −

∫

RN
a(x)ϑ(x)dx

≥
1

po
N
+ ∥u∥

po
N
+

E − c7

∫

RN
a(x)|u|p

o
N(x)dx +

∫

RN
a(x)ϑ(x)dx.

(3.25)

Applying Young’s inequality with ε, we get

|u|p
o
N(x) = 1 × |u|p

o
N(x)

≤ ε × 1
q(x)

q(x)−po
N
(x) + ε

−
q(x)−po

N (x)

po
N
(x) ||u|p

o
N(x)|

q(x)
po

N
(x)

= ε + ε
−

q(x)−po
N (x)

po
N
(x) |u|q(x)

≤ ε + ε
−

q+−po
N
−

po
N
−

|u|q(x).

(3.26)
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So, returning to (3.25) and using (3.26), for all u ∈ E with ∥u∥E = γ, we obtain

ϕ(u) ≥
1

po
N
+ ∥u∥po

N
+

− ε
−

q+−po
N
−

po
N
−

c7

∫

RN
a(x)|u(x)|q(x)dx

− c7ε
∫

RN
a(x)dx −

∫

RN
a(x)ν(x)dx.

(3.27)

Since ν ∈ L∞(RN), there exists some c8 > 0 such that −ν(x) > c8. We can choose and ε0 small

enough such that c8|a|1 − ε0c7|a|1 > 0, and then (3.27) immediately implies

ϕ(u) ≥
1

po
N
+ ∥u∥

po
N
+

E − ε
−

q+−po
N
−

po
N
−

c7

∫

RN
a(x)|u(x)|q(x)dx. (3.28)

Similarly to the proof of (3.19), and combining inequality (3.20), we have a(x) ∈ L
κ(x)

κ(x)−q(x) (RN).

Using Proposition 2.3, (3.21) and (3.22), for all u ∈ E with ∥u∥E = γ, we obtain
∫

RN
a(x)|u|q(x)dx ≤|a|

L
κ(x)

κ(x)−q(x) (RN)

||u|q(x)|
L

κ(x)
q(x) (RN)

≤|a|
L

κ(x)
κ(x)−q(x) (RN)

|u|
q−

κ(x)

≤|a|
L

κ(x)
κ(x)−q(x) (RN)

c
q−

5 ∥u∥
q−

E .

(3.29)

Using (3.29) in (3.28), we see that, for any u ∈ E with ∥u∥E = γ, we have

ϕ(u) ≥
1

po
N
+ ∥u∥

po
N
+

E − ε
−

q+−po
N
−

po
N
−

0 c
q−

5 |a|
L

κ(x)
κ(x)−q(x) (RN)

∥u∥
q−

E .

which implies that there exist α > 0 and ν > 0 such that ϕ(u) ≥ α for any u ∈ E with

∥u∥E = ν.

Lemma 3.4. Assume that all conditions of Theorem 1.1 are satisfied. Then ϕ(u) → −∞ as ∥u∥E →

+∞ for all u ∈ F , where F is an arbitrary finite-dimensional subspace of E.

Proof. By virtue of hypothesis ( f3), we can find M4 > 0 such that

F(x, t) ≥ c9|t|
q(x) for all x ∈ R

N , |t| ≥ M4. (3.30)

In addition, from hypothesis ( f1), for almost all x ∈ R
N and |t| < M4, we have

|F(x, t)| ≥ c3, (3.31)

where c3 = (1 + M
po

N
+

4 + M
po

N
−

4 )c. Thus, using 3.30 and 3.31, we obtain

F(x, t) ≥ c9|t|
q(x) for all x ∈ R

N , t ∈ R, (3.32)

where c4 = c3 + c9 max{M
po

N
+

4 , M
po

N
−

4 }. Moreover, similar to (2.6) and (2.7), we get

|u|
L

q(x)
a(x)

(RN)
> 1 =⇒ |u|

q−

L
q(x)
a(x)

(RN)
≤
∫

RN
a(x)|u|q(x)dx ≤ |u|

q+

L
q(x)
a(x)

(RN)

|u|
L

q(x)
a(x)

(RN)
< 1 =⇒ |u|

q+

L
q(x)
a(x)

(RN)
≤
∫

RN
a(x)|u|q(x)dx ≤ |u|

q−

L
q(x)
a(x)

(RN)
.

(3.33)
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Because W is a finite-dimensional subspace of E, all norms are equivalent, so we can find

0 < C = C(F ) < 1 such that

C∥u∥E ≤ |u|
L

q(x)
a(x)

(RN)
≤

1

C
∥u∥E for all u ∈ F . (3.34)

Taking into account (3.32), (3.33) and (3.34), for every u∈F with ∥u∥E > 1 and |u|
L

q(x)
a(x)

(RN)
>

1, we have

ϕ(u) =
N

∑
i=1

∫

RN

1

pi(x)
|∂xi

u|pi(x)dx +
∫

RN

1

po
N(x)

V(x)|u|p
o
N(x)dx −

∫

RN
a(x)F(x, u)dx

≤
1

po
N
− ∥u∥po

N
+

− c9

∫

RN
a(x)|u|q(x)dx + c4

∫

RN
a(x)dx

≤











1
po

N
− ∥u∥po

N
+
+ c4|a|1 − c9Cq−∥u∥

q−

E if |u|
L

q(x)
a(x)

(RN)
> 1,

1
po

N
− ∥u∥po

N
+
+ c4|a|1 − c9Cq+∥u∥

q+

E if |u|
L

q(x)
a(x)

(RN)
< 1,

(3.35)

Because of q+ ≥ q− > po
N
+, we see that ϕ(u) → −∞ as ∥u∥E → +∞.

Here is the proof of Theorem 1.1.

Proof. It is obvious that ϕ is even and ϕ(0) = 0. Besides, Lemmas 3.2, 3.3 and 3.4 permit

the application of Lemma 2.8 with X = E, X1 = F (see Lemma 3.4) and X2 = E ⊕ F (see

Lemma 3.3). Therefore, we obtain that the functional ϕ has an unbounded sequence of critical

values, so problem (1.1) possesses infinitely many nontrivial solutions.
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Abstract. In the present paper, we study the nonexistence of nontrivial weak solutions
to a class of fractional p-Laplacian equation in two cases which are sp > N and sp < N.
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1 Introduction

In this paper, we investigate the following fractional p-Laplacian equation of the type

{

(−∆)s
pu + λV(x)|u|q−2u = m(x)|u|r−2u, in Ω,

u = 0, in R
N \ Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary, s ∈ (0, 1), p, q, r are positive

numbers satisfying 1 < p < r < q < ∞ or 1 < q < r < p < ∞, m, V ∈ L1(Ω) are positive

functions and λ is a positive parameter.

The fractional p-Laplacian operator is defined as

(−∆)s
pu(x) = 2 lim

ϵ↘0

∫

RN\Bϵ(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x − y|N+sp
dy, x ∈ R

N ,

where Bϵ(x) = {y ∈ R
N : |x − y| < ϵ}.

In recent years, many papers have been devoted to the study of the fractional p-Laplacian

equations due to their interesting applications, such as game theory, image processing, op-

timization and so on (see [3–5]). In particular, the existence, nonexistence, multiplicity and

BCorresponding author. Email: tomlhd983@163.com
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some other properties of solutions to the following type of fractional p-Laplacian equation

where sp < N
{

(−∆)s
pu + V(x)|u|p−2u = f (x, u), in Ω,

u = 0, in R
N \ Ω,

(1.2)

have been widely studied by many scholars (see [1,2,6,8,9,12–16] and the references therein).

For instance, Goyal and Sreenadh [6] obtained some results on the existence and nonexistence

of solutions for the following equation with respect to the parameter λ
{

(−∆)s
pu − λV(x)|u|p−2u = m(x)|u|r−2u, in Ω,

u = 0, in R
N \ Ω,

(1.3)

where sp < N and 1 < r < p or p < r < p∗s = Np
N−sp .

Wu and Chen [15] studied the following equation

(−∆)s
pu + V(x)|u|p−2u = |u|r−2u + λ|u|q−2u, in R

N , (1.4)

for the case sp < N and 1 < q < p < r. They deduced some existence results of nontrivial

solution for some range of λ.

However, as far as we know, in the case sp > N, there have been rarely any existence or

nonexistence results for problem (1.2). Inspired by the above mentioned papers, our purpose

is to establish some results on the nonexistence of nontrivial weak solution for the problem

(1.1) in both cases sp > N and sp < N under the assumptions 1 < p < r < q < ∞ or

1 < q < r < p < ∞. More precisely, we aim to obtain concrete range of parameter for which

nontrivial weak solution of the problem does not exist in the case sp > N and the case sp < N,

respectively.

The rest of our paper is organized as follows. In Section 2, we will introduce some neces-

sary lemmas and properties, which will be used in the sequel. In Section 3, we derive some-

what sharp nonexistence conditions of nontrivial solutions for (1.1) in both cases: sp > N and

sp < N.

2 Preliminaries

To state our results, we introduce some notations. Let s ∈ (0, 1) and 1 < p < ∞ be real

numbers. The fractional Sobolev space Ws,p(RN) is defined as follows:

Ws,p(RN) := {u ∈ Lp(RN) : [u]s,p < ∞}

equipped with the norm

∥u∥s,p :=
(

∥u∥
p

Lp(RN)
+ [u]

p
s,p

)1/p
,

where

[u]s,p =
(

∫

R2N

|u(x)− u(y)|p

|x − y|N+ps
dxdy

)1/p

is the Gagliardo seminorm of a measurable function u : R
N → R.

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. We shall work on the space

W
s,p
0 (Ω) :=

{

u ∈ Ws,p(RN) : u = 0 a.e. in R
N \ Ω

}

,

which can be equivalently renormed by [u]s,p.
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Lemma 2.1 ([10]). Let Ω ⊂ R
N be bounded and open, sp > N and s ∈ (0, 1). Then there is a

constant CM > 0 such that for all u ∈ W
s,p
0 (Ω),

|u(x)− u(y)| ≤ CM|x − y|β[u]s,p, x, y ∈ R
N ,

where β = sp−N
p .

Lemma 2.2 ([4]). Let Ω ⊂ R
N be bounded and open, s ∈ (0, 1), 1 < p < ∞ with sp < N. Then,

there exists a constant CH > 0 such that

∥u∥
p

Lp∗s (RN)
≤ CH [u]

p
s,p, u ∈ W

s,p
0 (Ω),

where p∗s = Np
N−sp .

Lemma 2.3 ([4]). Let Ω ⊂ R
N be an extension domain for Ws,p with no external cusps and let

p ∈ [1,+∞), s ∈ (0, 1) be such that sp > N. Then, there exists C > 0, depending on N, s, p and Ω,

such that

∥u∥C0,α(Ω) ≤ C
(

∥u∥
p

Lp(Ω)
+
∫

Ω

∫

Ω

|u(x)− u(y)|p

|x − y|N+ps
dxdy

)
1
p
,

for any u ∈ Lp(Ω), with α = (sp − N)/p.

Lemma 2.4 ([7]). Let s ∈ (0, 1) and 1 < p < ∞ be such that sp < N. Assume that Ω ⊂ R
N

is a (bounded) uniform domain with a (locally) (s, p)-uniformly fat boundary. Then Ω admits an

(s, p)-Hardy inequality, that is, there is a constant CK > 0 such that

∫

Ω

|u(x)|p

d(x, ∂Ω)sp
dx ≤ CK[u]

p
s,p, u ∈ W

s,p
0 (Ω),

where d(x, ∂Ω) = inf{|x − y| : y ∈ ∂Ω}.

Lemma 2.5 ([11]). Let M > 0, L > 0, p > 0, q > 0 and r > 0 be given. If

(i) 1 < p < r < q;

or

(ii) 1 < q < r < p,

then for each x ≥ 0,

Mxr − Lxq ≤
M(q − r)

q − p

(

(r − p)M

(q − p)L

)

r−p
q−r

xp

holds.

Definition 2.6. We say that u ∈ W
s,p
0 (Ω) is a weak solution of (1.1) if

∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x − y|N+ps
dxdy

+ λ
∫

Ω

V(x)|u(x)|q−2u(x)v(x)dx =
∫

Ω

m(x)|u(x)|r−2u(x)v(x)dx, (2.1)

for all v ∈ W
s,p
0 (Ω).
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3 Main results

In this section, we suppose that Ω ⊂ R
N is a bounded domain satisfying the regularities

required by the fractional Sobolev inequalities given by Lemmas 2.1–2.4.

3.1 The case sp > N

Theorem 3.1. Suppose that sp > N and m
(

m
V

)

r−p
q−r ∈ L1(Ω). If

λ >
r − p

q − p

(

C
p
MR

sp−N
Ω

q − r

q − p

)

q−r
r−p

[

∫

Ω

m(x)

(

m(x)

V(x)

)

r−p
q−r

dx

]

q−r
r−p

, (3.1)

then problem (1.1) has no nontrivial weak solution u ∈ W
s,p
0 (Ω), where CM is given in Lemma 2.1

and RΩ = max{d(x, ∂Ω) : x ∈ Ω}.

Proof. Suppose on the contrary that problem (1.1) has a nontrivial weak solution u ∈ W
s,p
0 (Ω).

Taking v = u in (2.1) and from Lemma 2.5, we have
∫

R2N

|u(x)− u(y)|p

|x − y|N+ps
dxdy

=
∫

Ω

[

m(x)|u(x)|r−2u(x)− λV(x)|u(x)|q−2u(x)
]

u(x)dx

≤
∫

Ω

[

m(x)|u(x)|r − λV(x)|u(x)|q
]

dx

≤
∫

Ω

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

|u(x)|pdx,

i.e.,

[u]
p
s,p ≤

∫

Ω

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

|u(x)|pdx. (3.2)

By sp > N and Lemma 2.3, we get u is continuous in R
N , in particular in Ω. Then there is

some ξ ∈ Ω such that

|u(ξ)| = max
{

|u(x)| : x ∈ R
N
}

> 0.

From Lemma 2.1, there is a constant CM such that

|u(x)− u(y)| ≤ CM|x − y|
sp−N

p [u]s,p, x, y ∈ R
N .

Taking x = ξ in the above inequality, we obtain

|u(ξ)| ≤ CM|ξ − y|
sp−N

p [u]s,p, y ∈ ∂Ω,

i.e.,

|u(ξ)| ≤ CMR
sp−N

p

Ω
[u]s,p. (3.3)

Combining (3.2) with (3.3), we obtain

|u(ξ)| ≤ CMR
sp−N

p

Ω

(

∫

Ω

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

|u(x)|pdx

)

1
p

≤ CMR
sp−N

p

Ω

(

∫

Ω

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

dx

)

1
p

|u(ξ)|,
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which yields

1 ≤ CMR
sp−N

p

Ω

(

∫

Ω

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

dx

)

1
p

.

Thus

λ
p−r
q−r

q − r

q − p

(

r − p

q − p

)

r−p
q−r
∫

Ω

m(x)

(

m(x)

V(x)

)

r−p
q−r

dx ≥
1

C
p
MR

sp−N
Ω

,

which implies that

λ
p−r
q−r ≥

1

C
p
MR

sp−N
Ω

q−r
q−p

(

r−p
q−p

)

r−p
q−r ∫

Ω
m(x)

(

m(x)
V(x)

)

r−p
q−r

dx

.

Hence, from
p−r
q−r < 0 we obtain

λ ≤
r − p

q − p

(

C
p
MR

sp−N
Ω

q − r

q − p

)

q−r
r−p
[

∫

Ω

m(x)
(m(x)

V(x)

)

r−p
q−r

dx
]

q−r
r−p

, (3.4)

which contradicts to (3.1). This completes the proof.

3.2 The case sp < N

Theorem 3.2. Suppose that sp < N, m
(

m
V

)

r−p
q−r ∈ Lµ(Ω) and N

sp < µ < ∞. Assume that

λ >
r − p

q − p

(

C
1− N

µsp

K C
N

µsp

H R
sp− N

µ

Ω

q − r

q − p

)

q−r
r−p

[

∫

Ω

m(x)

(

m(x)

V(x)

)

r−p
q−r

dx

]

q−r
r−p

, (3.5)

then problem (1.1) has no nontrivial weak solution u ∈ W
s,p
0 (Ω), where CH and CK are given in

Lemmas 2.2 and 2.4, and RΩ = max{d(x, ∂Ω) : x ∈ Ω}.

Proof. Suppose on the contrary that problem (1.1) has a nontrivial weak solution u ∈ W
s,p
0 (Ω).

From the proof of Theorem 3.1, we have (3.2) holds. Let η = 1
µ−1

(

µ − N
sp

)

, θ = ηp + (1 − η)p∗s

where p∗s = Np
N−sp . By a straightforward computation, we have 0 < η < 1, θ = pν, where

1
µ + 1

ν = 1. On the other hand, we get

1

R
ηsp
Ω

∫

Ω

|u(x)|θdx ≤
∫

Ω

|u(x)|θ

d(x, ∂Ω)ηsp
dx, (3.6)
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and by Hölder’s inequality, Lemma 2.2, Lemma 2.4 and (3.2), we obtain
∫

Ω

|u(x)|θ

d(x, ∂Ω)ηsp
dx

=
∫

Ω

|u(x)|ηp|u(x)|(1−η)p∗s

d(x, ∂Ω)ηsp
dx

≤

[

∫

Ω

|u(x)|p

d(x, ∂Ω)sp
dx

]η [∫

Ω

|u(x)|p
∗
s dx

]1−η

≤ C
η
K[u]

pη
s,pC

(1−η)p∗s
p

H [u]
(1−η)p∗s
s,p

= C[u]
pη+(1−η)p∗s
s,p

= C[u]
p

pη+(1−η)p∗s
p

s,p

= C[u]
p θ

p
s,p

≤ C

(

∫

Ω

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

|u(x)|pdx

)

θ
p

= C

(

∫

Ω

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

|u(x)|pdx

)ν

≤ C





∫

Ω

[

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

]µ

dx





ν
µ
∫

Ω

|u(x)|θdx, (3.7)

where C = C
η
KC

(1−η)p∗s
p

H . Thus, by (11) and (12), we have

1

R
ηsp
Ω

≤ C





∫

Ω

[

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

]µ

dx





ν
µ

.

Accordingly,

∫

Ω

[

q − r

q − p

(

r − p

q − p

)

r−p
q−r

m(x)

(

m(x)

λV(x)

)

r−p
q−r

]µ

dx ≥
1

C
µ
ν R

µsp−N
Ω

. (3.8)

Therefore,

λ
µ

p−r
q−r

[

q − r

q − p

(

r − p

q − p

)

r−p
q−r

]µ [
∫

Ω

m(x)

(

m(x)

V(x)

)

r−p
q−r

]µ

≥
1

C
µ
ν R

µsp−N
Ω

. (3.9)

Hence, from
p−r
q−r < 0 we obtain

λ ≤
r − p

q − p

(

C
1
ν R

sp− N
µ

Ω

q − r

q − p

)

q−r
r−p

[

∫

Ω

m(x)

(

m(x)

V(x)

)

r−p
q−r

dx

]

q−r
r−p

. (3.10)

Combining the definition of C and the inequality (3.10), we have

λ ≤
r − p

q − p

(

C
1− N

µsp

K C
N

µsp

H R
sp− N

µ

Ω

q − r

q − p

)

q−r
r−p

[

∫

Ω

m(x)

(

m(x)

V(x)

)

r−p
q−r

dx

]

q−r
r−p

,

which contradicts to (3.5). This completes the proof.
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[16] M. Q. Xiang, B. L. Zhang, V. D. Rădulescu, Existence of solutions for perturbed

fractional p-Laplacian equations, J. Differential Equations 260(2016), No. 2, 1392–1413.

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥❞❡✳✷✵✶✺✳✵✾✳✵✷✽; MR3419730; Zbl 1332.35387



Electronic Journal of Qualitative Theory of Differential Equations
2024, No. 35, 1–34; https://doi.org/10.14232/ejqtde.2024.1.35 www.math.u-szeged.hu/ejqtde/

Existence results for singular nonlinear BVPs

in the critical regime

Francesca AnceschiB , Giuseppina Autuori and Francesca Papalini

Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche,

Via Brecce Bianche 12, 60131 Ancona, Italy

Received 10 January 2024, appeared 23 July 2024

Communicated by Alberto Cabada

Abstract. We study the existence of solutions for a class of boundary value problems
on the half line, associated to a third order ordinary differential equation of the type

(

Φ(k(t, u′(t))u′′(t))
)′
(t) = f

(

t, u(t), u′(t), u′′(t)
)

, a.a. t ∈ R
+
0 .

The prototype for the operator Φ is the Φ-Laplacian; the function k is assumed to be
continuous and it may vanish in a subset of zero Lebesgue measure, so that the problem
can be singular; finally, f is a Carathéodory function satisfying a weak growth condition
of Winter–Nagumo type. The approach we follow is based on fixed point techniques
combined with the upper and lower solutions method.
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1 Introduction

In this paper we are concerned with the existence of solutions to boundary value problems

(BVPs) on the half line, associated to strongly nonlinear third order ordinary differential equa-

tions, of the type

{

(

Φ
(

k(·, u′(·))u′′(·)
))′

(t) = f
(

t, u(t), u′(t), u′′(t)
)

, a.a. t ∈ R
+
0 ,

u(0) = u0, u′(0) = ν1, u′(+∞) = ν2.
(P)

Here, the operator Φ : R → R is the so-called Φ-Laplacian and f : R
+
0 × R

3 → R is a

Carathéodory function satisfying a weak growth condition of Winter–Nagumo type. Moreover,

the function k : R
+
0 × R → R

+
0 is continuous and it may vanish in a subset of zero Lebesgue

measure, so that problem (P) is possibly singular. Finally, u0, ν1, ν2 ∈ R are fixed real numbers.

BCorresponding author. Email: f.anceschi@staff.univpm.it
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According to the existing literature, Φ-Laplacian type equations involve a strictly increa-

sing homeomorphism

Φ : (−a, a) → (−b, b), with 0 < a, b ≤ +∞,

such that Φ(0) = 0. When a = b = +∞ the main prototype for the Φ-Laplacian is the classical

r-Laplacian Φ(s) = |s|r−2s, with r > 1. When a = +∞ and b < +∞, the map Φ is usually called

non-surjective or bounded Φ-Laplacian and its main prototype is the mean curvature operator

Φ(s) =
s√

1 + s2
, s ∈ R,

cf. [4, 21]. When a < +∞, the Φ-Laplacian is said to be singular and in this case the main

prototype is the relativistic operator

Φ(s) =
s√

1 − s2
, s ∈ (−1, 1),

see [5–7, 15, 28]. Further details on Φ-Laplacians BVPs can be found also in [18, 22].

One of the main reasons to study problem (P) is the great amount of applications of

the Φ-Laplace operator in different fields of physics and applied mathematics, such as non-

Newtonian fluid theory, diffusion of flows in porous media, nonlinear elasticity, theory of

capillary surfaces, see e.g. [20, 25], and, more recently, the modeling of glaciology, see for

instance [12, 23, 29]. Moreover, problems like (P) find many applications in fluid dynamics

as generalizations of the Blasius problem modeling the flat plate problem in boundary layer

theory for viscous fluids, cf. [16].

Due to the wide class of their applications, as well as for a more theoretical interest, several

papers have been devoted to Φ-Laplacian type equations. Many contributions concern BVPs

associated to a second order counterpart of (P) involving equations of the type

(

Φ(k(·, u(·))u′(·))
)′
(t) = f

(

t, u(t), u′(t)
)

, (1.1)

both in bounded and unbounded domains, under various assumptions for Φ and f , alongside

with different types of boundary conditions, see [8,14,27]. We also mention [30] for third-order

BVPs and [26] for higher-order BVPs in the half-line.

Recently, the multiplicity of solutions to differential equations with Φ-Laplacian has

been largely investigated under periodic, Dirichlet or Neumann boundary conditions. In

[17, 19] second order differential equations posed in bounded domains are considered by

means of the fixed point index theory, while in [3] the authors find positive unbounded solu-

tions for singular second-order BVPs set on the half-line.

We prove the solvability of (P) assuming that f may have critical rate of decay −1 at infin-

ity, that is f (t, ·, ·, ·) ∼ 1/t as t → +∞, cf. assumption (H3) and Remark 3.7. Together with

this assumption, we require a suitable form of the so-called Nagumo–Wintner condition on f ,

cf. (3.2) in assumption (H2). The Nagumo–Wintner condition allows us to obtain a priori esti-

mates on the derivatives of any solution u to (P) on compact intervals of R, see Lemma 3.11.

We stress the fact that the version of the Nagumo–Wintner condition most frequently used in

the literature for second order BVPs (see e.g. [10, 15]) is not useful in our case since it would

not provide the desired estimates on the higher order derivative of the solution. Hence, a

suitable adaptation of this condition turns out to be necessary in this context.

Our main result is Theorem 3.9 in which we prove the existence of a weak solution for

problem (P), in a sense that will be specified later. The proof is based on a fixed point
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technique, combined with the method of lower and upper solutions, named, respectively α

and β; see assumption (H1). More precisely, we start by proving the existence of a solution un

to the auxiliary boundary value problem
{

(Φ(k(·, u′(·))u′′(·)))′ (t) = f (t, u(t), u′(t), u′′(t)), a.a. t ∈ In,

u(0) = u0, u′(0) = α′(0), u′(n) = β′(n),
(Pn)

where In = [0, n], with n ∈ N sufficiently large. Then, by means of the a priori estimates

provided by the Nagumo–Wintner condition, we show that a suitable sequence (xn)n, con-

structed by extending the functions un to the entire half-line, somehow converges to a solution

of (P).

Despite assumptions (H1)–(H3) seem rather technical, they are fulfilled by a wide class of

functions, as we shall prove in Section 4. In particular, they hold for BVPs of the following

type
{

(

Φ
(

k(·, u′(·))u′′(·)
))′

(t) = f1

(

t, u(t), u′(t)
)

f2(u
′′(t)), a.a. t ∈ R

+
0 ,

u(0) = u0, u′(0) = ν1, u′(+∞) = ν2,

where f1 and f2 satisfies suitable growth conditions and either

k(t, y) = k1(t)k2(y), with k1 ≥ 0, k2 > 0 in [ν1, ν2], or

k(t, y) = k1(t) + k2(y), with k1, k2 ≥ 0.

The critical rate for f , as well as the possibility of dealing with singular equations, have been

yet considered in [11], where the authors prove the existence of heteroclinic solutions for BVPs

associated to (1.1). A similar framework, with k = k(t), can be found in the recent work [2],

where BVPs associated to third order differential equations are studied in a compact domain,

and in [1], where the author proves existence results for integro-differential BVPs in a non-

critical regime and in the half-line. In this context, Theorem 3.9 throws a further light on the

subject treating third order equations and it extends Theorem 3.3 of [2] since the function k

is more general and solutions are obtained in the half-line. In particular, in [2] only solu-

tions on compact domains are considered and the function k only depends on t. Concerning

unbounded domains, a first contribution for the existence is contained in [1], where the sub-

critical regime for the asymptotic behavior of the right-hand side f is investigated together

with some non-existence results. The present work aims at providing a careful study of the

critical regime for the asymptotic behavior of f at the same time generalizing the choice of the

function k, which can also depend on the function v and not only on t.

By performing the change of variable v(t) = u′(t), our results apply to integro-differential

BVPs of the type







(

Φ(k(·, v(·))v′(·))
)′
(t) = f

(

t,
∫ t

0
v(s) ds, v(t), v′(t)

)

, a.a. t ∈ R
+
0 ,

v(0) = ν1, v(+∞) = ν2.

Hence, when ν1 ̸= ν2, our analysis leads to the existence of heteroclinic solutions for such

BVPs. These solutions are relevant in the study of biological, physical and chemical models

since they represent a phase transition process in which the system evolves from an unstable

equilibrium to a stable one; see [24, 27, 31] and the references therein.

Finally, we highlight that a straightforward adaptation of Theorem 3.9 to problem (P) with

k = k(t, u(t), u′(t)) directly follows in R
+
0 considering an additional monotonicity assumption

on the second variable for k = k(t, x, y) and it will be object of a forthcoming paper.
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The paper is organized as follows. In Section 2 we present some preliminary facts; in

particular, Theorem 2.2 is a very general result on the solvability of Φ-Laplacian BVPs in

compact intervals. Section 3 is devoted to our main result Theorem 3.9. Finally, in Section 4 we

present a class of examples of functions Φ, k and f satisfying the assumptions used throughout

the paper.

2 Preliminary results

In this section, we present an existence result for very general BVPs in compact real intervals,

that is Theorem 2.2. The proof of Theorem 2.2 is based on the forthcoming lemma. Even if the

proof of Lemma 2.1 somehow follows the proof of analogous results, cf. [2, Lemma 2.1] and

[10, Lemma 2.6], for the sake of clarity we prefer to show it completely.

Lemma 2.1. Let T > 0 be a fixed real number and denote by I = [0, T] ⊆ R and let p > 1 be fixed.

Let F : W2,p(I) → L1(I), v 7→ Fv ∈ L1(I), be a continuous operator for which there exists Θ ∈ L1(I)

such that

|Fυ(t)| ≤ Θ(t) for all υ ∈ W2,p(I) and a.a. t ∈ I. (2.1)

Let K : W2,p(I) ⊆ C(I; R) → C(I; R), υ 7→ Kυ ∈ C(I; R), be continuous with respect to the uniform

topology of C(I; R) and suppose that there exist k1, k2 ∈ C(I; R) satisfying

k1, k2 > 0 a.e. in I and
1

k1
,

1

k2
∈ Lp(I), (2.2)

such that

k1(t) ≤ Kυ(t) ≤ k2(t) for all υ ∈ W2,p(I) and a.a. t ∈ I. (2.3)

Finally, let Ψ : R → R be a strictly increasing homeomorphism. Then for all υ ∈ W2,p(I) and for all

δ1, δ2 ∈ R there exists a unique ξυ ∈ R such that

∫ b

a

1

Kυ(t)
Ψ−1 (ξυ +Fυ(t)) dt = δ2 − δ1, (2.4)

where

F : W2,p(I) → C(I; R), υ 7→ Fυ(t) =
∫ t

a
Fυ(s)ds, t ∈ I.

Furthermore, there exists c0 > 0, independent on υ, such that:

|ξυ| ≤ c0 for all υ ∈ W2,p(I). (2.5)

Proof. First, we observe that the operator F is well defined being Fυ continuous in I for

all υ ∈ W2,p(I) by (2.1). Moreover, F is continuous from W2,p(I) in C(I, R). Indeed, F is

continuous from W2,p(I) in L1(I) by assumption and

sup
t∈I

|Fu(t)−Fυ(t)| ≤ ∥Fu − Fυ∥L1(I) for all u, υ ∈ W2,p(I). (2.6)

Furthermore

sup
t∈I

|Fυ(t)| ≤ ∥Θ∥L1(I) for all υ ∈ W2,p(I). (2.7)

Now, we fix υ ∈ W2,p(I) and define

Fυ : R → R, ξ 7→ Fυ(ξ) =
∫ b

a

1

Kυ(t)
Ψ−1 (ξ +Fυ(t)) dt.
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Note that also Fυ is continuous in I. Indeed, Fυ is continuous on I as noted above, the function

Ψ−1 is continuous by assumption and so, by Lebesgue’s Dominated Convergence Theorem,

we can infer that Fυ ∈ C(R; R).

Moreover Fυ is strictly increasing in R since Kυ ≥ 0 and Ψ−1 is strictly increasing by

assumption. Finally

Ψ−1
(

ξ − ∥Θ∥L1(I)

)

∫ b

a

1

Kυ(t)
dt ≤ Fυ(ξ) ≤ Ψ−1

(

ξ + ∥Θ∥L1(I)

)

∫ b

a

1

Kυ(t)
dt

which implies that limξ→±∞ Fυ(ξ) = ±∞. Then, by Bolzano’s Theorem, there exists a unique

ξυ ∈ R such that Fυ(ξυ) = δ2 − δ1 for any choice of δ1, δ2 ∈ R.

In order to prove (2.5), note that, by the Mean Value Theorem, there exists tυ ∈ I such that

Fυ(ξυ) =
∫ b

a

1

Kυ(t)
Ψ−1 (ξυ +Fυ(t)) dt = δ2 − δ1 = Ψ−1 (ξυ +Fυ(tυ))

∫ b

a

1

Kυ(t)
dt

and so

ξυ +Fυ(tυ) = Ψ

(

(δ2 − δ1)

(

∫ b

a

1

Kυ(t)
dt

)−1
)

. (2.8)

Now observe that, by (2.3)

(δ2 − δ1)

(

∫ b

a

1

Kυ(t)
dt

)−1

≤ |δ2 − δ1|
(

∫ b

a

1

k2(t)
dt

)−1

=: C. (2.9)

Hence, denoted by Ψ̂ = max[−C,C] |Ψ| and recalling that Ψ is strictly increasing, relations

(2.8)–(2.9) give

|ξυ| ≤ |ξυ +Fυ(tυ)|+ |Fυ(tυ)| =
∣

∣

∣

∣

∣

Ψ

(

(δ2 − δ1)

(

∫ b

a

1

Kυ(t)
dt

)−1
)∣

∣

∣

∣

∣

+ |Fυ(tυ)|

≤ |Ψ(C)|+ |Fυ(tυ)| ≤ Ψ̂ + ∥Θ∥L1(I).

Choosing c0 = Ψ̂ + ∥Θ∥L1(I) the proof is complete.

Theorem 2.2. Let T > 0, p > 1 and the operators F, K and Ψ be as in in Lemma 2.1.

Then, for all υ0, ω1, ω2 ∈ R there exists a solution υ of the problem







(

Ψ ◦ Kυυ′′)′(t) = Fυ(t), a.a. t ∈ I,

υ(0) = υ0, υ′(0) = ω1, υ′(T) = ω2,
(PA)

that is a function υ ∈ W2,p(I) such that

• t 7→ (Ψ ◦ Kυυ′′)(t) ∈ W1,p(I);

•
(

Ψ ◦ Kυυ′′)′(t) = Fυ(t), a.a. t ∈ I;

• υ(0) = υ0, υ′(0) = ω1, υ′(T) = ω2.

Proof. The proof is an adaptation of [2, Theorem 2.2] and [11, Theorem 3.1]. First, we observe

that, since the operators F, K and Ψ satisfy all the assumptions of Lemma 2.1, for all υ ∈
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W2,p(I) and all δ1, δ2 ∈ R, there exists a unique ξυ ∈ R such that (2.4) and (2.5) still hold when

δ1 = w1 and δ2 = w2. Set

W0 =
{

υ ∈ W2,p(I) : υ(0) = υ0

}

and define the operator G : W0 → W0, with υ 7→ Gυ, as follows

Gυ(t) = υ0 + ω1t +
∫ t

0

∫ s

0
gυ(τ)dτds,

where

gυ(t) =
1

Kυ(t)
Ψ−1 (ξυ +Fυ(t)) , t ∈ I.

It is easy to see that G is well defined and that the solutions to (PA) correspond to the fixed

points of G. Finally, following [2] and [11], it is possible to show that G is bounded, continuous

and compact, so that, by Schauder’s Fixed Point Theorem, we get the existence of a function

υ which is a fixed point of G in I, that is a solution to the problem (PA).

3 Functional setting and main result

Throughout the paper we assume the following structural assumptions on Φ, k and f .

(A1) Φ : R → R is a strictly increasing homeomorphism such that Φ(0) = 0 with

lim inf
s→0+

Φ(s)

sρ
> 0 for some ρ > 0.

(A2) k : R
+
0 × R → R is a continuous function such that

• k(t, y) > 0 for a.a. (t, y) ∈ R
+
0 × R;

• t 7→ 1/k(t, y) ∈ L
p
loc(R

+
0 ) for all y ∈ R, for some p > 1.

(A3) f : R
+
0 × R

3 → R is a Carathéodory function, that is

• t 7→ f (t, x, y, z) is measurable for all (x, y, z) ∈ R
3;

• (x, y, z) 7→ f (t, x, y, z) is continuous for a.a. t ∈ R
+
0 ,

which is also decreasing with respect to the second variable, that is

f (t, x1, y, z) ≥ f (t, x2, y, z) for a.a. t ∈ R
+
0 ,

for every x1, x2, y, z ∈ R such that x1 ≤ x2.

Moreover, we shall refer to the equation in (P) as (ODE), that is

(Φ ◦ Ku)
′ (t) = f (t, u(t), u′(t), u′′(t)), for a.a. t ∈ R

+
0 , (ODE)

where, for simplicity, we denote

Ku(t) = k(t, u′(t))u′′(t) with u ∈ W
2,p
loc (R

+
0 ) and t ∈ R

+
0 .
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Definition 3.1. A function u ∈ C1(R+
0 ; R) is said to be a (weak) solution of (P) if

• u ∈ W
2,p
loc (R

+
0 ) and t 7→ (Φ ◦ Ku)(t) ∈ W1,1

loc (R
+
0 );

• (Φ ◦ Ku)′(t) = f (t, u(t), u′(t), u′′(t)) for a.a. t ∈ R
+
0 ;

• u(0) = u0, u′(0) = ν1, u′(+∞) = ν2.

Remark 3.2. Since we allow the function k to vanish in a set having null measure, equation

(ODE) can become singular. In this context, we search for solutions no more belonging to

C2(R+
0 ), but to W

2,p
loc (R

+
0 ) ∩ C1(R+

0 ). The choice of this solution space is fairly natural if we

consider that the map t 7→ 1/k(t, y) is assumed to be in L
p
loc(R

+
0 ) for all y ∈ R.

Remark 3.3. Since u ∈ W
2,p
loc (R

+
0 ) is a solution of (P), and, in particular, the map

t 7→ (Φ ◦ Ku)(t) is in W1,1
loc (R

+
0 ), and Φ is a homeomorphism, then Ku can be considered

continuous in R
+
0 (see [9, Remark 2.1]).

Definition 3.4. A function α∈C1(R+
0 ; R) is said to be a (weak) lower solution of (ODE) if

• α ∈ W
2,p
loc (R

+
0 ) and t 7→ (Φ ◦ Kα)(t) ∈ W1,1

loc (R
+
0 );

• (Φ ◦ Kα)′(t) ≥ f (t, α(t), α′(t), α′′(t)) for a.a. t ∈ R
+
0 .

Definition 3.5. A function β∈C1(R+
0 ; R) is said to be a (weak) upper solution of (ODE) if

• β ∈ W
2,p
loc (R

+
0 ) and t 7→ (Φ ◦ Kβ)(t) ∈ W1,1

loc (R
+
0 );

• (Φ ◦ Kβ)
′(t) ≤ f (t, β(t), β′(t), β′′(t)) for a.a. t ∈ R

+
0 .

Finally, we say that a pair (α, β) of lower and upper solutions of (ODE) is ordered if

α′(t) ≤ β′(t) for all t ∈ R
+
0 .

Besides the structural assumptions (A1)–(A3) introduced before, we also consider some

further natural requirements, including a suitable form of the so-called Nagumo–Wintner

growth condition on f , see (3.2) below, which allows us to obtain a priori estimates on the

derivatives of the solutions of (P) on any compact interval of R
+
0 .

From now on, let T0 > 0 be a fixed positive number and denote by J = [0, T0]. Finally,

assume the following conditions.

There exists an ordered pair (α, β) of lower and upper solutions to (ODE) such that α(0) =

β(0) = u0, α′(0) = ν1, β′ is increasing in (T0,+∞) and limt→+∞ β′(t) = ν2, satisfying the following

assumptions.

(H1) Denoting by

k∗(t) = min{k(t, y) : y ∈ [α′(t), β′(t)]}, k∗(t) = max{k(t, y) : y ∈ [α′(t), β′(t)]},

assume that 1/k∗ ∈ L
p
loc(R

+
0 ).

(H2) There exist a constant H > 0, a non-negative function ℓ ∈ L1(J), a non-negative function

µ ∈ Lq(J), for some 1 < q ≤ +∞, and a measurable function ψ : R
+ → R

+ satisfying

1

ψ
∈ L1

loc(R
+) and

∫ ∞ 1

ψ(t)
dt = +∞, (3.1)
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such that

| f (t, x, y, z)| ≤ ψ(|Φ(k(t, y)z)|)
(

ℓ(t) + µ(t)|z|
q−1

q

)

(3.2)

for a.a. t ∈ J and all x, y, z ∈ R such that x ∈ [α(t), β(t)], y ∈ [α′(t), β′(t)] and |z| ≥ H.

(H3) For any L > 0 there exist a non-negative function ηL ∈ L1(R+
0 ) and a continuous function

KL ∈ W1,1
loc (R

+
0 ), with KL null in [0, T0] and strictly increasing in [T0,+∞), satisfying

∫ ∞

T0

1

k∗(t)
e
− KL(t)

ρ dt < +∞, (3.3)

such that

(i) | f (t, x, y, z)| ≥ K′
L(t)|Φ(k(t, y)z)| for a.a. t ∈ [T0,+∞), all x ∈ [α(t), β(t)], all

y ∈ [α′(t), β′(t)] and all z ∈ R with |z| ≤ NL(t)/k(t, y);

(ii) | f (t, x, y, z)| ≤ ηL(t) for a.a. t ∈ R
+
0 , all x ∈ [α(t), β(t)], all y ∈ [α′(t), β′(t)] and all

z ∈ R with |z| ≤ γ̂L(t);

(iii) f (t, x, y, z) ≤ 0 for a.a. t ∈ [T0,+∞), all x ∈ [α(t), β(t)], all y ∈ [α′(t), β′(t)] and all

z ∈ R with |z| ≤ γ̂L(t);

where

γL(t) =
NL(t)

k∗(t)
and γ̂L(t) = γL(t) + |α′′(t)|+ |β′′(t)| a.a. t ∈ R

+
0 ,

NL(t) = Φ−1
{

Φ(L)e−KL(t)
}

t ∈ R
+
0 .

Remark 3.6. Note that, since 1/k∗ ∈ L
p
loc(R

+
0 ) by (H1), also 1/k∗ ∈ L

p
loc(R

+
0 ).

Moreover, by definition of k∗, we have

NL(t)

k(t, y)
≤ NL(t)

k∗(t)
= γL(t) ≤ γ̂L(t) for a.a. t ∈ R

+
0 and all y ∈ [α′(t), β′(t)],

so that, on account of (H3)–(iii), we can rewrite (H3)–(i) as follows

f (t, x, y, z) ≤ −K′
L(t)|Φ(k(t, y)z)|

for a.a. t ∈ [T0,+∞), all x ∈ [α(t), β(t)], all y ∈ [α′(t), β′(t)] and all z ∈ R such that

|z| ≤ NL(t)/k(t, y).

Remark 3.7. Despite their technicality, assumptions (H1)–(H3) are fulfilled in several remark-

able cases, as it we be clear from the examples presented in Section 4.

In particular, the request (3.3) in (H3) is compatible with the critical nature of the problem

connected with the growth of f at infinity; see Section 4 and [11] for further details.

Remark 3.8. It is worth noting that NL is continuous so that γL = NL/k∗ ∈ L
p
loc(R

+
0 ), since

1/k∗ in L
p
loc(R

+
0 ) by (A2). Moreover, NL is strictly positive by definition, being Φ(L) > 0.

Furthermore, recalling the monotonicity of KL and the fact that Φ is a strictly increasing

homeomorphism, we infer that NL is strictly decreasing in [T0,+∞). In particular, gathering

the definition of NL and the monotonicity of Φ, we deduce that NL < L in (T0,+∞) and

NL(t) = L for all t ∈ J.
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Moreover, using the liminf condition in (A1) we deduce that

lim sup
ξ→0+

Φ−1(ξ)

ξ1/ρ
< +∞.

Consequently, combining the above considerations with (3.3) and the fact that 1/k∗ ∈ L
p
loc(R

+
0 ),

we obtain that γL = NL/k∗ ∈ L1(R+
0 ). Finally, since α, β ∈ W

2,p
loc (R

+
0 ), we also have that

γ̂L = γL + |α′′|+ |β′′| ∈ L1
loc(R

+
0 ); see [9, Remark 3.7] and [11, Remark 1].

We are now ready to state our main result.

Theorem 3.9. Assume (A1)–(A3) and (H1)–(H3). Then, problem (P) admits at least a weak solution

u ∈ W
2,p
loc (R

+
0 ) satisfying

α ≤ u ≤ β and α′ ≤ u′ ≤ β′ a.e. in R
+
0 .

The proof of Theorem 3.9 is divided into two steps.

Step 1. Solvability on compact sets. Let n ∈ N be such that n > T0 and consider problem

(Pn). By solution to (Pn) we mean a function un ∈ W2,p(In) such that

• t 7→
(

Φ ◦ Kun

)

(t) ∈ W1,1(In);

•
(

Φ ◦ Kun

)′
(t) = f (t, un(t), u′

n(t), u′′
n(t)) for a.a. t ∈ In;

• un(0) = u0, u′
n(0) = α′(0), u′

n(n) = β(n).

Step 2. A limit argument. Once the existence on compact sets In is established, we construct

a new sequence of functions (xn)n by extending the functions un to R
+
0 and we prove that the

limit function of (xn)n is a solution of (P).

3.1 Solvability on compact sets

In order to prove the existence of solutions for (Pn) we first consider and intermediate truncated

problem. Following [8], see also [2], for any pair of functions ξ, ζ ∈ L1(In), satisfying the

relation ξ ≤ ζ a.e. in In, we define the truncation operator

T ξ,ζ : L1(In) → L1(In), η 7→ T ξ,ζ
η ,

T ξ,ζ
η (t) = max{ξ(t), min{η(t), ζ(t)}}, t ∈ In.

Observe that, by definition,

T
ξ,ζ
η (t) ∈ [ξ(t), ζ(t)] for all η ∈ L1(In) and for all t ∈ In. (3.4)

Moreover, by [8, Lemma A.1] we know that

(T1) |T ξ,ζ
η1

(t)− T ξ,ζ
η2

(t)| ≤ |η1(t)− η2(t)| for all η1, η2 ∈ L1(In) and all t ∈ In;

(T2) if ξ, ζ ∈ W1,1(In), then T ξ,ζ(W1,1(In)) ⊆ W1,1(In);

(T3) if ξ, ζ ∈ W1,1(In), then T ξ,ζ is continuous from W1,1(In) into itself.
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Now, for all u ∈ W2,p(In) and for all t ∈ In we denote

Du′(t) = T −γ̂L,γ̂L
(

T α′ ,β′
u′

)′(t),

where γ̂L derives from assumption (H3), and observe that this definition is well posed when-

ever u ∈ W
2,p
loc (R

+
0 ) by (T2). Moreover, by property (3.4) it results that

|Du′(t)| ≤ γ̂L(t) for all t ∈ In. (3.5)

Finally, we set

W0 =
{

u ∈ W2,p(In) : u(0) = u0

}

and consider the operator

F : W0 → L1(In), u 7→ Fu,

defined as

Fu(t) = f
(

t, T α,β
u (t), T α′,β′

u′ (t),Du′(t)
)

+ arctan
(

u′(t)− T α′,β′

u′ (t)
)

, t ∈ In. (3.6)

Then, we are in a position to introduce the truncated problem

{

(

Φ ◦ KT
u u′′)′ (t) = Fu(t), a.a. t ∈ In,

u(0) = u0, u′(0) = α′(0), u′(n) = β′(n),
(PT n)

where

KT : W2,p(In) → C(In; R), u 7→ KT
u (t) = k

(

t, T α′,β′

u′ (t)
)

. (3.7)

We are going to prove that (PT n) admits at least a weak solution, that is a function un ∈ W0

such that

• t 7→
(

Φ ◦ KT
un

u′′
n

)

(t) ∈ W1,1(In);

•
(

Φ ◦ KT
un

u′′
n

)′
(t) = Fun(t) for a.a. t ∈ In;

• un(0) = u0, u′
n(0) = α′(0), u′

n(n) = β(n).

To this aim, in the next result we show that (PT n) can be framed into the functional

setting of Theorem 2.2 and therefore it admits at least one solution. This is an intermediate

step between the solvability of (Pn) and the solvability of (P).

Theorem 3.10. Existence for (PT n). Assume (A1)–(A3) and (H1)–(H3). Then, problem (PT n)

admits at least a weak solution.

Proof. We want to show that the operators F and KT defined in (3.6) and (3.7), respectively,

satisfy the assumptions of Theorem 2.2.

First note that, since α′(t) ≤ β′(t) for all t ∈ R
+
0 and α(0) = β(0) = u0, we also have

α(t) ≤ β(t) for all t ∈ R
+
0 . Now, by (3.4), for all t ∈ In and all u ∈ W0 we have

T α,β
u (t) ∈ [α(t), β(t)] and T α′,β′

u′ (t) ∈ [α′(t), β′(t)],
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so that, by assumption (H3)–(ii) and (3.5), we get

|Fu(t)| =
∣

∣

∣
f
(

t, T
α,β
u (t), T α′,β′

u′ (t),Du′(t)
)

+ arctan
(

u′(t)− T α′,β′

u′ (t)
)∣

∣

∣

≤
∣

∣

∣
f
(

t, T α,β
u (t), T α′,β′

u′ (t),Du′(t)
)∣

∣

∣
+

π

2

≤ ηL(t) +
π

2
,

for all u ∈ W0 and all t ∈ In. Hence F satisfies assumption (2.1) of Lemma 2.1 with Θ =

ηL + π/2.

Now we shall prove that Fu is continuous from W0 ⊆ W2,p(In) into L1(In). To this aim,

let (ui)i ⊆ W0 be a sequence in W0 such that ui → u in W0. Fix a subsequence of (Fui)i, still

denoted by (Fui)i for simplicity. Since ui → u in W0 we also have

ui −→ u in W2,p(In), u′
i −→ u′ in W1,p(In), u

′′
i −→ u′′ in Lp(In),

so that, by property (T3), it follows that

T α,β
ui

−→ T α,β
u and T α′,β′

u′
i

−→ T α′,β′

u′ in W1,1(In),

and in turn
(

T α′,β′

u′
i

)′
−→

(

T α′,β′

u′

)′
in L1(In).

Hence, by Theorem 4.9 of [13], for a.a. t ∈ In we have

T α,β
ui

(t) → T α,β
u (t) and

(

T α′,β′

u′
i

)′
(t) −→

(

T α′,β′

u′

)′
(t), (3.8)

possibly up to a further subsequence. Moreover, using (T1), for a.a. t ∈ In we find

|Du′
i
(t)−Du′(t)| =

∣

∣

∣

∣

∣

∣

T −γ̂L,γ̂L
(

T α′ ,β′
u′

i

)′(t)− T −γ̂L,γ̂L
(

T α′ ,β′
u′

)′(t)

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣
T α′,β′

u′
i

(t)− T α′,β′

u′ (t)
∣

∣

∣
−→ 0,

that is

Du′
i
(t) −→ Du′(t) for a.a. t ∈ In. (3.9)

Combining (3.8)–(3.9), with the fact that f is a Carathéodory function, we get

Fui
(t) = f

(

t, T α,β
ui

(t), T α′,β′

u′
i

(t),Du′
i
(t)
)

+ arctan
(

u′
i(t)− T

α′,β′

u′
i

(t)
)

−→ f
(

t, T α,β
u (t), T α′,β′

u′ (t),Du′(t)
)

+ arctan
(

u′(t)− T α′,β′

u′ (t)
)

= Fu(t) for a.a. t ∈ In.

Therefore we get the continuity of F by the Lebesgue Dominated Convergence Theorem.

Now, putting

αn = min
t∈In

α(t), α′
n = min

t∈In

α′(t), βn = min
t∈In

β(t), β′
n = min

t∈In

β′(t),

it follows that for all t ∈ In

αn ≤ α(t) ≤ T α,β
u (t) ≤ β(t) ≤ βn and α′

n ≤ α′(t) ≤ T α′,β′

u′ (t) ≤ β′(t) ≤ β′
n.
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Since T is a continuous operator in C(In; R), the uniform continuity of k in In × [α′
n, β′

n]

implies that KT is continuous with respect to the uniform topology of C(In; R). Moreover, if

u ∈ W2,p(In), then for all t ∈ In

T α,β
u (t) ∈ [α(t), β(t)] ⊆ [αn, βn] and T α′,β′

u′ (t) ∈ [α′(t), β′(t)] ⊆ [α′
n, β′

n]

so that

0 < k∗(t) ≤ KT
u (t) = k

(

t, T α′,β′

u′ (t)
)

≤ k∗(t),

where the functions k∗ and k∗ have been introduced in (H1). Thus we have that KT satisfies

the assumptions of Lemma 2.1 with k1 = k∗ and k2 = k∗.

Finally, taking ω1 = α′(0), ω2 = β′(n), problem (PT n) becomes (PA). Therefore (PT n)

admits a solution by Theorem 2.2.

Now, in order to prove the existence of a solution for (Pn), we consider some useful pro-

perties characterizing every solution of (PT n) that will be proved in the next lemma. To this

aim, we define

M = max
t∈J

β′(t)− min
t∈J

α′(t). (3.10)

Note that the constant M is well defined, being α, β ∈ C1(R+
0 ; R). Moreover, since Φ is a

continuous and strictly increasing function with Φ(0) = 0, there exists N ∈ R
+ such that

Φ(N) > 0, Φ(−N) < 0 and N > max

{

H,
M

2T0

}

∥k∗∥L∞(J), (3.11)

where H is the positive constant introduced in assumption (H2).

Finally, take L > N such that

min

{

∫ Φ(L)

Φ(N)

1

ψ(t)
dt,
∫ −Φ−(L)

−Φ(−N)

1

ψ(t)
dt

}

> ∥ℓ∥L1(J) + ∥µ∥Lq(J) · M
q−1

q , (3.12)

which is possible by virtue of (3.1).

Lemma 3.11. Assume (A1)–(A3) and (H1)–(H3). Let un ∈ W2,p(In) be a solution of (PT n). Then

the following properties hold:

(i) α(t) ≤ un(t) ≤ β(t) and α′(t) ≤ u′
n(t) ≤ β′(t) for all t ∈ In;

(ii) min
t∈J

|Kun(t)| ≤ N;

(iii) |Kun(t)| < L for all t ∈ J;

(iv) Kun is decreasing in [T0, n];

(v) Kun ≥ 0 in [T0, n];

(vi) if there exists t1 ∈ [T0, n] such that Kun(t1) = 0, then Kun(t) = 0 for all t ∈ [t1, n];

(vii) |Kun(t)| ≤ NL(t) for all t ∈ In;

(viii) Du′
n
(t) = u′′

n(t) ≤ γL(t) ≤ γ̂L(t) for all t ∈ In.
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Proof. The proof is similar to other results already known for second order BVPs, so that we

present it here for the sake of clarity and completeness.

Let un ∈ W2,p(In) be a solution of (PT n).

Claim (i). First we show that

α′(t) ≤ u′
n(t) ≤ β′(t) for all t ∈ In. (3.13)

Let us start with the first inequality in (3.13). Assume by contradiction that there exists t ∈ In

such that u′
n(t) < α′(t) and let us define

z(t) = u′
n(t)− α′(t), t ∈ In.

Since un solves (PT n) we find that

z(0) = u′
n(0)− α′(0) = 0, z(n) = u′

n(n)− α′(n) = β′(n)− α′(n) ≥ 0 and z(t) < 0.

Thus, by the continuity of z and the compactness of In, there exists t̂ ∈ In such that

z(t̂) = min
t∈In

z(t) < 0.

Therefore we can find t1 ∈ [0, t̂) and t2 ∈ (t̂, n] such that

z(t1) = z(t2) = 0 and z(t) < 0 for all t ∈ (t1, t2). (3.14)

Thus, by the definition of the truncating operator T and the fact that u′
n(t) < α′(t) for all

t ∈ (t1, t2), it follows

T α′,β′

u′
n

(t) = α′(t) for all t ∈ (t1, t2), (3.15)

and consequently

Du′
n
(t) = T −γ̂L,γ̂L

(

T α′ ,β′
u′n

)′(t) = T −γ̂L,γ̂L

α′′ (t) = α′′(t) for all t ∈ (t1, t2), (3.16)

the last equality in (3.16) being true since |α′′(t)| ≤ γ̂L(t) for all t ∈ (t1, t2) by the definition of

γ̂L. Now, recalling that un is a weak solution of (PT n) and α is a lower solution of (ODE), by

(3.6) and (3.14)–(3.16), we infer

(Φ ◦ KT
un
)′(t) = Fun(t) = f

(

t, T α,β
un

(t), T α′,β′

u′
n

(t),Du′
n
(t)
)

+ arctan
(

u′
n(t)− T α′,β′

u′
n

(t)
)

= f
(

t, T α,β
un

(t), α′(t), α′′(t)
)

+ arctan
(

u′
n(t)− α′(t)

)

< f (t, T α,β
un

(t), α′(t), α′′(t)) ≤ f (t, α(t), α′(t), α′′(t)) ≤ (Φ ◦ Kα)
′(t),

for all t ∈ (t1, t2), that is

(Φ ◦ KT
un
)′(t) < (Φ ◦ Kα)

′(t) for all t ∈ (t1, t2). (3.17)

Now, we set

Z1 = {t ∈ (t1, t̂) : z′(t) < 0} and Z2 = {t ∈ (t1, t̂) : z′(t) > 0}.

Note that both Z1 and Z2 have positive Lebesgue measure so that, recalling that k is positive

a.e. in R
+
0 × R, we can find t∗1 ∈ Z1 and t∗2 ∈ Z2 such that

k
(

t∗1 , T α′,β′

u′
n

(t∗1)
)

> 0 and z′(t∗1) < 0 (3.18)
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and

k
(

t∗2 , T α′,β′

u′
n

(t∗2)
)

> 0 and z′(t∗2) > 0. (3.19)

Integrating (3.17) in [t∗1 , t̂] we get

∫ t̂

t∗1

(

Φ ◦ KT
un

)′
(t)dt ≤

∫ t̂

t∗1
(Φ ◦ Kα)

′ (t)dt

which is equivalent to

(Φ ◦ KT
un
)(t̂)− (Φ ◦ Kα)(t̂) ≤ (Φ ◦ KT

un
)(t∗1)− (Φ ◦ Kα)(t

∗
1). (3.20)

Now observe that

(Φ ◦ KT
un
)(t∗1)− (Φ ◦ Kα)(t

∗
1) < 0. (3.21)

Indeed,

(Φ ◦ KT
un
)(t∗1)− (Φ ◦ Kα)(t

∗
1) = Φ

(

k
(

t∗1 , T α′,β′

u′
n

(t∗1)
)

u′′
n(t

∗
1)
)

− Φ
(

k
(

t∗1 , α′(t∗1)
)

α′′(t∗1)
)

= Φ
(

k
(

t∗1 , α′(t∗1)
)

u′′
n(t

∗
1)
)

− Φ
(

k
(

t∗1 , α′(t∗1)
)

α′′(t∗1)
)

< 0,

since T α,β
un

(t∗1) = α(t∗1), u′′
n(t

∗
1) < α′′(t∗1) by (3.18) and Φ is strictly increasing.

Thus, combining (3.20) and (3.21), we find

(Φ ◦ KT
un
)(t̂)− (Φ ◦ Kα)(t̂) < 0. (3.22)

Similarly, integrating (3.17) in [t̂, t∗2 ], we get

(Φ ◦ KT
un
)(t̂)− (Φ ◦ Kα)(t̂) ≥ (Φ ◦ KT

un
)(t∗2)− (Φ ◦ Kα)(t

∗
2).

Additionally,

(Φ ◦ KT
un
)(t∗2)− (Φ ◦ Kα)(t

∗
2) > 0,

since T
α,β
un

(t∗2) = α(t∗2), u′′
n(t

∗
2) > α′′(t∗2) by (3.19) and Φ is strictly increasing. Therefore

(Φ ◦ KT
un
)(t̂)− (Φ ◦ Kα)(t̂) > 0. (3.23)

Now, (3.22) and (3.23) provide a contradiction. Therefore α′(t) ≤ u′
n(t) for a.a. t ∈ In.

By adapting the previous argument, one is also able to prove u′
n(t) ≤ β′(t) for a.a. t ∈ In

finally obtaining α′(t) ≤ u′
n(t) ≤ β′(t) for a.a. t ∈ In.

Eventually, we get the thesis just by integrating (3.13) and recalling that un(0) = α(0) =

β(0) by assumption.

Claim (ii). Suppose, by contradiction, that Kun(t) > N for a.a. t ∈ J. Note that

u′′
n(t) =

Kun(t)

k(t, u′
n(t))

>
N

k(t, u′
n(t))

> 0

for a.a. t ∈ J. Thus, applying (i) we find

NT0 =
∫ T0

0
Ndt <

∫ T0

0
Kun(t)dt =

∫ T0

0
k
(

t, u′
n(t)

)

u′′
n(t)dt

≤ ∥k∗∥L∞(J)

∫ T0

0
u′′

n(t)dt = ∥k∗∥L∞(J)

[

u′
n(T0)− u′

n(0)
]

≤ ∥k∗∥L∞(J)

[

β′(T0)− α′(0)
]

≤ M∥k∗∥L∞(J) < NT0,
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by the choice of N in (3.11), which is a contradiction.

Similarly, we would get a contradiction assuming that Kun(t) < −N for a.a. t ∈ J.

Claim (iii). Suppose, by contradiction, that there exists t ∈ J such that |Kun(t)| ≥ L. It follows

that either Kun(t) ≥ L or Kun(t) ≤ −L.

Let us assume that Kun(t) ≥ L. By (ii) we know that

min
t∈J

Kun(t) ≤ min
t∈J

|Kun(t)| ≤ N < L

and so there exists t̂ ∈ J such that Kun(t̂) = mint∈J Kun(t) ≤ N. By the continuity of Kun we

can find t1, t2 ∈ J, with t1 ≤ t2, such that Kun(t1) = N, Kun(t2) = L and

N < Kun(t) < L for all t ∈ (t1, t2). (3.24)

Consequently, recalling the definition of Kun and the fact that k > 0 a.e. in J, we find

N

k(t, u′
n(t))

< u′′
n(t) <

L

k(t, u′
n(t))

for all t ∈ (t1, t2).

Hence, taking into account Remark 3.8, for a.a. t ∈ (t1, t2)

0 < H <
N

∥k∗∥L∞(J)
≤ N

k(t, u′
n(t))

< u′′
n(t) <

L

k(t, u′
n(t))

≤ L

k∗(t)
=

NL(t)

k∗(t)
= γL(t) ≤ γ̂L(t),

which implies, in particular, that

Du′
n(t)

= u′′
n(t) for a.a. t ∈ (t1, t2).

Therefore, recalling that un solves (PT n), using (H2) and the fact that Φ ◦Kun(t) > 0 by (3.24),

the monotonicity of Φ and the choice of N, for a.a. t ∈ (t1, t2) it results
∣

∣

∣

∣

(

Φ ◦ KT
un

)′
(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

Φ
(

k
(

t, T α′,β′

u′
n

(t)
)

u′′
n(t)

))′
(t)

∣

∣

∣

∣

=
∣

∣

∣
f
(

t, T α,β
un

(t), T α′,β′

u′
n

(t),Du′
n
(t)
)

+ arctan
(

u′
n(t)− T α′,β′

u′
n

(t)
)∣

∣

∣

=
∣

∣ f
(

t, un(t), u′
n(t), u′′

n(t)
)∣

∣

≤ ψ(|Φ ◦ Kun(t)|)
(

ℓ(t) + µ(t)|u′′
n(t)|

q−1
q

)

= ψ(Φ ◦ Kun(t))

(

ℓ(t) + µ(t)|u′′
n(t)|

q−1
q

)

.

Hence, by Hölder’s inequality, we get

∫ Φ(L)

Φ(N)

1

ψ(τ)
dτ =

∫ Φ(Kun (t2))

Φ(Kun (t1))

1

ψ(τ)
dτ =

∫ t2

t1

(Φ ◦ Kun)
′ (t)

ψ(Φ ◦ Kun(t))
dt

≤
∫ t2

t1

[

ℓ(t) + µ(t)(u′′
n(t))

q−1
q

]

dt

≤ ∥ℓ∥L1(J) + ∥µ∥Lq(J)

(

∫ t2

t1

u′′
n(t)dt

)

q−1
q

≤ ∥ℓ∥L1(J) + ∥µ∥Lq(J)

[

β′(t2)− α′(t1)
]

q−1
q

≤ ∥ℓ∥L1(J) + ∥µ∥Lq(J)M
q−1

q .
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This relation contradicts the choice of L in (3.12). Similarly, if we suppose Kun(t) ≤ −L we

reach a contradiction again.

Claim (iv). Since un is a solution to (PT n), using (i), we find that

(Φ ◦ Kun)
′ (t) = f

(

t, un(t), u′
n(t),Du′

n
(t)
)

for a.a. t ∈ In.

On the other hand, by (i) and (H3)–(iii), we get

f
(

t, un(t), u′
n(t),Du′

n
(t)
)

≤ 0 for a.a. t ∈ [T0, n],

being |Du′
n
(t)| ≤ γ̂L(t) by (3.5). Hence

(Φ ◦ Kun)
′ (t) ≤ 0 for a.a. t ∈ [T0, n]

and the claim follows since Φ is a strictly increasing homeomorphism.

Claim (v). By contradiction, suppose that there exists t1 ∈ [T0, n] such that Kun(t1) < 0. Then,

from (iv) we have that

Kun(t) ≤ Kun(t1) < 0 for all t ∈ [t1, n].

Hence, considering the definition of Kun we deduce

u′′
n(t) =

Kun(t)

k(t, u′
n(t))

< 0 for a.a. t ∈ [t1, n].

Now, we recall that un solves (PT n), and so, using (i) and assumption (H1), we get

β′(n) = u′
n(n) = u′

n(t1) +
∫ n

t1

u′′
n(τ)dτ < u′

n(t1) ≤ β′(t1) ≤ β′(n),

since β′ is increasing in (T0,+∞), which is a contradiction.

Claim (vi). The statement directly follows from (iv) and (v).

Claim (vii). Recalling that NL = L in J, by virtue of (iii) and (v), it is sufficient to prove that

0 ≤ Kun(t) ≤ NL(t) ∀t ∈ In \ J.

Put

t∗ = sup {t ≥ T0 : Kun(s) < NL(s) ∀ s ∈ [T0, t)} .

Note that t∗ is well defined, since Kun(T0) < L = NL(T0), and t∗ > T0.

We want to prove that t∗ > n. Proceed by contradiction and suppose that t∗ ≤ n. This

implies that

Kun(t) > 0 for all t ∈ [T0, t∗].

Indeed, if there exists t̄ ∈ [T0, t∗] such that Kun(t̄) = 0, we would get Kun(t) = 0 < NL(t) for

all t ∈ [t̄, n] by (vi). On the other hand, by definition of t∗, it results Kun(t) < NL(t) for all

t ∈ [T0, t∗). Consequently, since t̄ ≤ t∗, we would find Kun(t) < NL(t) for all t ∈ [T0, n] and

this relation contradicts the maximality of t∗. Hence

0 < Kun(t) = k(t, u′
n(t))u

′′
n(t) < NL(t) for a.a. t ∈ [T0, t∗),

and so

0 < u′′
n(t) <

NL(t)

k(t, u′
n(t))

≤ NL(t)

k∗(t)
= γL(t) ≤ γ̂L(t) for a.a. t ∈ [T0, t∗).
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Now, recalling that u′′
n is a solution to (PT n), assumptions (H3)–(i) and (H3)–(iii) give

(Φ ◦ Kun)
′ (t) = f

(

t, un(t), u′
n(t), u′′

n(t)
)

≤ −K′
L(t)Φ ◦ Kun(t) for a.a. t ∈ [T0, t∗).

Recalling that Kun > 0 a.e. in [T0, t∗) and that Φ is strictly increasing with Φ(0) = 0, we infer

(Φ ◦ Kun)
′ (t)

Φ ◦ Kun(t)
≤ −K′

L(t) for a.a. t ∈ [T0, t∗).

Integrating both sides of the previous estimate in [T0, t∗), we get

log(Φ ◦ Kun)(t
∗)− log(Φ ◦ Kun)(T0) ≤ −KL(t

∗),

since KL(T0) = 0. Now, by (iii) we know that Kun(T0) < L; therefore,

log
Φ ◦ Kun(t

∗)
Φ(L)

< −KL(t
∗),

being Φ strictly increasing, and in turn

Kun(t
∗) < Φ−1

(

Φ(L)e−KL(t
∗)
)

= NL(t
∗).

This contradicts the maximality of t∗. Hence we conclude that t∗ > n. This fact assures that

0 ≤ Kun(t) < NL(t) for all t ∈ [T0, n].

Claim (viii). Using (i) and (vii) we find

|u′′
n(t)| =

|k(t, u′
n(t))u

′′
n(t)|

k(t, u′
n(t))

=
|Kun(t)|

k(t, u′
n(t))

≤ NL(t)

k∗(t)
= γL(t) ≤ γ̂L(t) for a.a. t ∈ In,

so that, by the definition of D, we get the claim.

Theorem 3.12. Assume (A1)–(A3) and (H1)–(H3). Then, if un ∈ W2,p(In) is a solution of the

truncated problem (PT n), then it is also a solution to (Pn).

Proof. Let un ∈ W
2,p
loc (R

+
0 ) be a solution of (PT n). Then, by Lemma 3.11–(i) and (viii), we find

that for a.a. t ∈ In

(Φ ◦ Kun)
′ (t) =

(

Φ
(

k(t, u′
n(t))u

′′
n(t)

))′
(t) =

(

Φ
(

k
(

t, T α′,β′

u′
n

)

u′′
n(t)

))′
(t)

=
(

Φ ◦ KT
un

)′
(t) = Fun(t)

= f
(

t, T α,β
un

(t), T α′,β′

u′
n

(t),Du′
n
(t)
)

+ arctan
(

u′
n(t)− T α′,β′

u′
n

(t)
)

= f (t, un(t), u′
n(t), u′′

n(t)),

that is un solves the equation in (Pn). Moreover un(0) = u0, u′
n(0) = α′(0) and u′

n(n) = β′(n).
Hence un is a weak solution to (Pn).
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3.2 A limit argument

In order to complete the proof of Theorem 3.9 we consider a sequence (un)n of solutions to

(PT n). By Theorem 3.12, every un is also a solution to (Pn). We shall find a solution to (P)

via a limit argument.

To this aim, for any n > T0 define

xn : R
+
0 → R, xn(t) =

{

un(t), t ∈ In,

un(n) + β′(n)(t − n), t > n,

so that

x′n(t) =

{

u′
n(t), t ∈ In,

β′(n), t > n.

Moreover, for all t ∈ R
+
0 put

zn(t) = x′′n(t) =

{

u′′
n(t), t ∈ In,

0, t > n;
Φn(t) =

{

(Φ ◦ Kun)
′ (t), t ∈ In,

0, t > n.

By Lemma 3.11–(viii) we have

|zn(t)| = |x′′n(t)| =
{

|u′′
n(t)|, a.a. t ∈ In,

0, t > n,
≤ γL(t) for a.a. t ∈ R

+
0 . (3.25)

Now, since un is a solution to (Pn), by Lemma 3.11–(i) and (viii), together with (H3)–(ii), we

also find

|Φn(t)| =
{

| f (t, un(t), u′
n(t), u′′

n(t)) |, a.a. t ∈ In,

0, t > n,
≤ ηL(t) for a.a. t ∈ R

+
0 . (3.26)

Moreover, since ηL ∈ L1(R+
0 ) by assumption and also γL ∈ L1(R+

0 ), see Remark 3.8, both

(zn)n and (Φn)n are equi-integrable in R
+
0 so that, by the Dunford–Pettis Theorem, there exist

z, Φ̂ ∈ L1(R+
0 ) such that

zn ⇀ z and Φn ⇀ Φ̂ in L1(R+
0 ) as n → +∞, (3.27)

up to subsequences. Consequently, for all s ∈ R
+
0

∫ s

0
zn(τ)dτ −→

∫ s

0
z(τ)dτ and

∫ s

0
Φn(τ)dτ −→

∫ s

0
Φ̂(τ)dτ as n → +∞. (3.28)

On the other hand, by Lemma 3.11–(i) and (iii), the sequences (u′
n(0))n and (Kun(0))n are

bounded in R and so there exists K0 ∈ R such that

u′
n(0) = x′n(0) −→ α′(0) = ν1 and Kun(0) −→ K0 as n → +∞, (3.29)

up to subsequences. Now, let us define

x(t) = u0 + ν1t +
∫ t

0

∫ s

0
z(τ)dτds, t ∈ R

+
0 .
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We want to show that x is a solution to (P). Clearly, x(0) = u0. Moreover, for all t ∈ R
+
0

x′(t) = ν1 +
∫ t

0
z(s)ds, with x′(0) = α′(0) = ν1, and x′′(t) = z(t).

By (3.28)–(3.29) we have

x′n(t) = x′n(0) +
∫ t

0
zn(s)ds −→ x′(t) for all t ∈ R

+
0 . (3.30)

Furthermore, for all s ∈ R
+
0

∣

∣

∣

∣

∫ s

0
zn(τ)dτ

∣

∣

∣

∣

≤
∫ s

0
|zn(τ)|dτ ≤ ∥γL∥L1(R+

0 ),

so that, by (3.28)

∫ t

0

∫ s

0
zn(τ)dτds −→

∫ t

0

∫ s

0
z(τ)dτds for all t ∈ R

+
0 ,

and in turn, using also (3.29), it results

xn(t) = u0 + u′
n(0)t +

∫ t

0

∫ s

0
zn(τ)dτds −→ x(t) for all t ∈ R

+
0 . (3.31)

Moreover, recalling that u′
n(t) = x′n(t) and u′′

n(t) = x′′n(t) for a.a. t ∈ In, we find

Φ(k(t, x′n(t))x′′n(t)) = Φ ◦ Kun(t) = Φ ◦ Kun(0) +
∫ t

0
Φn(s)ds,

that is

x′′n(t) =
1

k(t, x′n(t))
Φ−1

(

Φ ◦ Kun(0) +
∫ t

0
Φn(s)ds

)

for a.a. t ∈ In.

Hence, recalling that k and Φ−1 are continuous, and using (3.28)–(3.30), we get

zn(t) = x′′n(t) −→
1

k(t, x′(t))
U (t) for a.a. t ∈ R

+
0 , (3.32)

where

U (t) =







Φ−1

(

Φ(K0) +
∫ t

0
Φ̂(s)ds

)

, t ∈ In,

0, t > n.

Observe that U ∈ C(R+
0 ; R), Φ ◦ U ∈ AC(R+

0 ; R) and (Φ ◦ U )′ = Φ̂ ∈ L1(R+
0 ). Now, by (3.25)

and (3.32) we obtain

zn = x′′n −→ U (·)
k(·, x′)

in L1(R),

so that, by (3.27), we get

z(t) =
U (t)

k(t, x′(t))
for a.a. t ∈ R

+
0 , (3.33)

which implies

x′′n(t) = zn(t) −→ z(t) = x′′(t) for a.a. t ∈ R
+
0 . (3.34)
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Combining (3.30), (3.31) and (3.34) with the fact that f is Carathéodory, we infer

f (t, xn(t), x′n(t), x′′n(t)) −→ f (t, x(t), x′(t), x′′(t)) for a.a. t ∈ R
+
0 . (3.35)

Now, fix t ∈ R
+
0 ; clearly there exists n̄ > T0 such that t ∈ In for all n ≥ n̄. Hence, recalling

that for all n > T0 the function un solves (Pn), for any fixed t ∈ R
+
0 we have

Φn(t) = (Φ ◦ Kun)
′ (t) = f (t, un(t), u′

n(t), u′′
n(t)) = f (t, xn(t), x′n(t), x′′n(t)) for all n ≥ n̄.

Consequently, from (3.35) we obtain

Φn(t) −→ f (t, x(t), x′(t), x′′(t)) for a.a. t ∈ R
+
0 ,

and, by (3.26)

Φn −→ f (·, x, x′, x′′) in L1(R+
0 ).

Hence, by (3.33) we deduce that

(Φ ◦ Kx)
′ (t) = (Φ ◦ U )′ (t) = Φ̂(t) = f (t, x(t), x′(t), x′′(t)) for a.a. t ∈ R

+
0 ,

that is x is a solution to (ODE).

Now, by Lemma 3.11–(i), we have

α(t) ≤ xn(t) ≤ β(t) and α′(t) ≤ x′n(t) ≤ β′(t) for a.a. t ∈ In and all n > T0,

so that, by (3.30)–(3.31)

α(t) ≤ x(t) ≤ β(t) and α′(t) ≤ x′(t) ≤ β′(t) for a.a. t ∈ R
+
0 . (3.36)

Finally, by (3.25) and (3.34) we infer that x′′n −→ x′′ in L1(R+
0 ) and, recalling (3.29), we find

sup
t∈R

+
0

|x′n(t)− x′(t)| ≤ |x′n(0)− ν1|+ ∥x′′n − x′′∥L1(R+
0 ) → 0,

so that x′n → x′ uniformly in R
+
0 . In particular,

lim
t→+∞

x′(t) = lim
n→+∞

(

lim
t→+∞

x′n(t)
)

= lim
n→+∞

β′(n) = ν2.

Concerning the regularity of x, we first observe that x ∈ C1(R+
0 ; R), being xn ∈ C1(R+

0 ; R),

and so x ∈ L
p
loc(R

+
0 ). Moreover, U is locally bounded in R

+
0 , since it is continuous, and

1/k(·, x′) ∈ L
p
loc(R

+
0 ) by virtue of (3.36), being 1/k∗ ∈ L

p
loc(R

+
0 ) by assumption. Therefore

x′′ = U/k(·, x′) ∈ L
p
loc(R

+
0 ). Furthermore also x′ ∈ L

p
loc(R

+
0 ), being

∫ b

a
|x′(t)|pdt ≤ 2p−1|b − a|

(

|ν1|p + ∥x′′∥L1([a,b])

)

< +∞ for all a, b ∈ R
+
0 .

Hence x ∈ W
2,p
loc (R

+
0 ).

Finally, Φ◦Kx = Φ◦U ∈ AC(R+
0 ; R) so that Φ◦Kx ∈ L1

loc(R
+
0 ) and (Φ◦Kx)′ = Φ̂ ∈ L1(R+

0 ).

Therefore Φ ◦ Kx ∈ W1,1
loc (R

+
0 ).

In conclusion, x ∈ W
2,p
loc (R

+
0 ) is a solution to (P) and the proof is complete.
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4 Examples

In this section we present a class of examples of functions Φ, k and f satisfying conditions

(A1)–(A3) and (H1)–(H3).

Let u0, ν1, ν2 ∈ R be such that ν1 < ν2, and let’s consider the following BVP

{

(

Φ
(

k(t, u′(·))u′′(·)
))′

(t) = f1

(

t, u(t), u′(t)
)

f2(u
′′(t)), a.a. t ∈ R

+
0 ,

u(0) = u0, u′(0) = ν1, u′(+∞) = ν2,
(4.1)

where the functions Φ, k, f1 and f2 fulfill the assumptions listed below.

(I) Φ : R → R is an odd strictly increasing homeomorphism, with Φ(0) = 0, and there

exists ρ > 0 such that

lim inf
s→0+

Φ(s)

sρ
> 0. (4.2)

(II) k : R
+
0 × R → R is continuous, strictly positive a.e. in R

+
0 × R and bounded in

R
+
0 × [ν1, ν2].

Moreover, if we denote by

k∗ = min
y∈[ν1,ν2]

k(t, y) and k∗ = max
y∈[ν1,ν2]

k(t, y),

we suppose that there exist p > 1 and σ > 0 such that

(II)1 t 7→ 1/k(t, y) ∈ L
p
loc(R

+
0 ) for all y ∈ R and 1/k∗ ∈ L

p
loc(R

+
0 );

(II)2

∫ ∞

1

1

tσk
p
∗(t)

dt < +∞.

(III) f1 : R
+
0 × R

2 → R is a Carathéodory function, decreasing with respect to the x variable,

and there exists T0 > 0 for which the following properties hold:

(III)1 there exists f̃1 ∈ L∞
loc(R

+
0 ) such that

| f1(t, x, y)| ≤ f̃1(t)

for a.a. t ∈ [0, T0], all x ∈ [u0 + tν1, u0 + tν2] and all y ∈ [ν1, ν2];

(III)2 there exist c1, c2 > 0 and δ ≥ −1 such that

c1t−1 ≤ | f1(t, x, y)| ≤ c2tδ

for a.a. t ≥ T0, all x ∈ [u0 + tν1, u0 + tν2] and all y ∈ [ν1, ν2];

(III)3 f1(t, x, y) ≤ 0 for all t ≥ T0, all x ∈ [u0 + tν1, u0 + tν2] and all y ∈ [ν1, ν2].

(IV) f2 ∈ C(R; R) and it verifies:

(IV)1 f2(z) > 0 for z > 0 and f2(0) = 0;

(IV)2 there exist z∗ > 0, two real constants d1, d2 > 0 and a number γ ≤ 1 such that

d1|Φ(z)| ≤ f2(z) ≤ d2|Φ(z)|γ for all z ∈ R with |z| < z∗;
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(IV)3 there exist H > 0 and d3 > 0 such that if z ∈ R and |z| ≥ H then

f2(z) ≤ d3|z|
q−1

q for some 1 < q ≤ +∞;

(IV)4 f2 is homogeneous of degree d > 0 in R, with d ≤ p, that is

f2(tz) = td f2(z) for all t > 0 and z ∈ R.

Finally, put

KM = max
t∈R

+
0

k∗(t) = sup{k(t, y) : (t, y) ∈ R
+
0 × [ν1, ν2]}

and suppose that
c1d1

Kd
M

≥ σρ and γ
c1d1

Kd
M

≥ σ + δ. (4.3)

Remark 4.1. When δ = −1 in (III)2 we address the critical case.

Our aim is to prove that, in the present setting, all the hypotheses of Theorem 3.9 are

satisfied. As a consequence, there exists a solution u ∈ C1(R+
0 ; R) ∩ W

2,p
loc (R

+
0 ) of (4.1).

Remark 4.2. Before proceeding, we highlight, for future reference, a few consequences of the

above assumptions (I)–(IV), that will also be employed in the sequel.

(A) For every ν ∈ (−∞, p] it results

∫ ∞

1

1

tσkν∗(t)
dt < +∞.

Indeed, since k(t, y) ≥ k∗(t) for all for all (t, y) ∈ R
+
0 × [ν1, ν2] and k is bounded in R

+
0 × [ν1, ν2],

it follows that k∗ is bounded in R
+
0 . Therefore, recalling that the map t 7→ t−σ/k

p
∗(t) is

integrable in {t ≥ 1} by (II)2, for any ν ∈ (−∞, p] we have

∫ ∞

1

1

tσkν∗(t)
dt ≤ sup

R
+
0

k
p−ν
∗

∫ ∞

1

1

tσk
p
∗(t)

dt < +∞.

(B) For all ζ > 0 it is max|z|≤ζ |Φ(z)| = Φ(ζ). Indeed, if z ∈ R is such that |z| ≤ ζ, since Φ is

odd and strictly increasing, we get −Φ(ζ) = Φ(−ζ) ≤ Φ(z) ≤ Φ(ζ).

(C) Combining (III)2 with (III)3 we have that

f1(t, x, y) ≤ −c1t−1
< 0

for a.a. t ≥ T0, all x ∈ [u0 + tν1, u0 + tν2], all y ∈ [ν1, ν2].

Obviously assumptions (A1)–(A3) are verified by virtue of (I)–(IV), with

f : R
+
0 × R

3 → R, f (t, x, y, z) = f1(t, x, y) f2(z).

Now, we are going to prove that also assumptions (H1)–(H3) are verified. To this aim, let

T0 be the positive number introduced in (III), and define

α(t) = u0 + tν1 and β(t) = u0 + tν2, t ∈ R
+
0 .
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Clearly α, β ∈ C∞(R+
0 ; R) ⊂ W

2,p
loc (R

+
0 ), with p > 1 introduced in (II), and they are, respec-

tively, a lower and a upper solution to (ODE), since f2(0) = 0 by (IV)1 and Φ(0) = 0 by (I).

Finally, α(0) = β(0) = u0 and α′(t) = ν1 < ν2 = β′(t) for all t ∈ R
+
0 , so that the pair (α, β) is

ordered in R
+
0 .

Hypothesis (H1). Obviously β′ is increasing in (T0,+∞), being β′′(t) = 0 for all t ∈ R
+
0 , and

limt→+∞ β′(t) = ν2.

Hypothesis (H2). Let H > 0, d3 > 0 and q ∈ (1,+∞] be as in (IV)3. Combining (IV)1 with

(III)1 and (IV)3, we obtain

| f (t, x, y, z)| = | f1(t, x, y)| f2(z) ≤ d3 f̃1(t)|z|
q−1

q

for a.a. t ∈ [0, T0], all x ∈ [α(t), β(t)], all y ∈ [ν1, ν2] and all z ∈ R with |z| ≥ H. Hence

assumption (H2) is verified with

ψ ≡ 1, ℓ ≡ 0, µ(t) = d3 f̃1(t).

Observe that µ = d3 f̃1 ∈ Lq([0, T0]), being f̃1 ∈ L∞
loc(R

+
0 ) by (III)1.

Hypothesis (H3). Define the map K0 : R
+
0 → R as follows

K0(t) =







0, 0 ≤ t ≤ T0,
∫ t

T0

f0(s)ds, t > T0,

where

f0(s) = min {| f1(s, x, y)| : (x, y) ∈ [α(t), β(t)]× [ν1, ν2]} .

Observe that

• f0 is well defined in R
+
0 since f1 is Carathéodory by assumption (III);

• f0 ∈ L1
loc(R

+
0 ), being f̃1 ∈ L∞

loc(R
+
0 ) by (III)1 and

f0(t) ≤ | f1(t, x, y)| ≤ f̃1(t) for all t ∈ R
+
0 , all x ∈ [α(t), β(t)] and all y ∈ [ν1, ν2].

Hence K0 ∈ AC(R+
0 ; R) ∩ W1,1

loc (R
+
0 ). Furthermore, K0 is strictly increasing in [T0,+∞), and

K0(t) ≥ c1

∫ t

T0

ds

s
= c1 log

t

T0
for all t ≥ T0, (4.4)

by (III)2 and (III)3; see also Remark 4.2–(C).

Now, let L > 0 be fixed arbitrarily and put

m(L) = min
z∗≤|z|≤L

f2(z), M(L) = max
z∗≤|z|≤L

|Φ(z)|, c(L) = min

{

d1

Kd
M

,
m(L)

M(L)Kd
M

}

> 0.

Define the function KL : R
+
0 → R as follows

HL(t) = Φ−1
(

Φ(L)e−c(L)K0(t)
)

.

By (4.4) it follows that K0(t) → +∞ as t → +∞, so that HL(t) → 0 as t → +∞. Therefore it is

possible to find tL > T0 such that

HL(t) ≤ z∗ for all t ≥ tL. (4.5)
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We then claim that the function KL(t) : R
+
0 → R defined by

KL(t) =











c(L)K0(t), 0 ≤ t ≤ tL,

c(L)K0(tL) +
d1

Kd
M

∫ t

tL

f0(s)ds, t > tL,

satisfies all the properties in assumption (H3). Observe that

• KL is continuous in R
+
0 , being K0 continuous in R

+
0 ;

• KL ≡ K0 ≡ 0 in [0, T0] and KL is strictly increasing in [T0,+∞) since the same holds for

K0 and tL > T0; see Remark 4.2–(C).

Moreover, KL ∈ W1,1
loc (R

+
0 ), since the same is true for K0, and for a.a. t ∈ R+

0 , all x ∈ [α(t), β(t)]

and all y ∈ [ν1, ν2], it is

K′
L(t) =



















0, 0 ≤ t ≤ T0

c(L) f0(t), T0 < t ≤ tL

d1

Kd
M

f0(t), t > tL

≤



















0, 0 ≤ t ≤ T0,

c(L)| f1(t, x, y)|, T0 < t ≤ tL,
d1

Kd
M

| f1(t, x, y)|, t > tL.

(4.6)

Now, we observe that KL(t) ≥ c(L)K0(t) for all t ∈ R
+
0 so that

NL(t) = Φ−1
(

Φ(L)e−KL(t)
)

≤ HL(t) for all t ∈ R
+
0 ,

and in turn, by (4.5), it follows that

NL(t) ≤ z∗ for all t ≥ tL. (4.7)

Consequently, using (IV)4 and (IV)2, by (4.6), we obtain

| f (t, x, y, z)| = | f1(t, x, y)|
kd(t, y)

f2(k(t, y)z) ≥ d1

kd(t, y)
| f1(t, x, y)| · |Φ(k(t, y)z)|

≥ d1

Kd
M

| f1(t, x, y)| · |Φ(k(t, y)z)| ≥ K′
L(t)|Φ(k(t, y)z)|,

for a.a. t > tL, x ∈ [α(t), β(t)], y ∈ [ν1, ν2] and z ∈ R such that |k(t, y)z| ≤ NL(t).

(4.8)

On the other hand, by definition of NL it is NL(t) ≤ L for all t ∈ R
+
0 . Therefore, using again

(IV)4 and (IV)2 and (4.6), it results

| f (t, x, y, z)| = | f1(t, x, y)|
kd(t, y)

f2(k(t, y)z) ≥ 1

Kd
M

| f1(t, x, y)| f2(k(t, y)z)

≥



















d1

Kd
M

| f1(t, x, y)| · |Φ(k(t, y)z)|, |k(t, y)z| ≤ z∗,

mL

MLKd
M

| f1(t, x, y)| · |Φ(k(t, y)z)|, z∗ ≤ |k(t, y)z| ≤ NL(t),

≥ c(L)| f1(t, x, y)| · |Φ(k(t, y)z)|
≥ K′

L(t)|Φ(k(t, y)z)|,

(4.9)

a.a. t ∈ [T0, tL], x ∈ [α(t), β(t)], y ∈ [ν1, ν2] and z ∈ R such that |k(t, y)z| ≤ NL(t).
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Combining (4.8) with (4.9), it follows that

| f (t, x, y, z)| ≥ K′
L(t)|Φ(k(t, y)z)|

for a.a. t ≥ T0, all x ∈ [α(t), β(t)], all y ∈ [ν1, ν2] and all z ∈ R such that |z| ≤ NL(t)/k(t, y),

that is condition (H3)–(i) is satisfied.

Now we are going to prove the validity of (3.3). To this aim, observe that, since KL is

continuous in R
+
0 and 1/k∗ ∈ L

p
loc(R

+
0 ) by (II), it results

∫ tL

T0

1

k∗(t)
e
− KL(t)

ρ dt < +∞. (4.10)

On the other hand, using the definition of KL and (III)2, we get

∫ ∞

tL

1

k∗(t)
e
− KL(t)

ρ dt = e
− c(L)K0(tL)

ρ

∫ ∞

tL

1

k∗(t)
e
− d1

ρKd
M

∫ t
tL

f0(s)ds
dt

≤ e
− c(L)K0(tL)

ρ

∫ ∞

tL

1

k∗(t)

(

tL

t

)

c1d1
ρKd

M dt

= t

c1d1
ρKd

M
L e

− c(L)K0(tL)
ρ

∫ ∞

tL

1

k∗(t)

(

1

t

)

c1d1
ρKd

M dt.

(4.11)

Now, recalling that the map t 7→ t−σ/k∗(t) is integrable in {t ≥ 1}, see Remark 4.2–(A), it

follows that also the map t 7→ t
− c1d1

ρKd
M /k∗(t) is integrable in {t ≥ 1}, since

∫ ∞

tL

1

k∗(t)

(

1

t

)

c1d1
ρKd

M dt ≤
∫ ∞

tL

1

k∗(t)

(

1

t

)σ

dt < +∞,

being σ ≤ c1d1/ρKd
M by (4.3), which implies

∫ ∞

tL

1

k∗(t)

(

1

t

)

c1d1
ρKd

M dt < +∞. (4.12)

Combining (4.11) with (4.12) we get (3.3).

Now, we want to prove the existence of a non-negative function ηL ∈ L1(R+
0 ) satisfying

(H3)–(ii) (note that γL = γ̂L in R
+
0 , being α′′ ≡ β′′ ≡ 0 in R

+
0 ). By (4.7), using also (IV)4, (III)2

and (IV)2, see also Remark 4.2–(C), for a.a. t ∈ R
+
0 , all x ∈ [α(t), β(t)], all y ∈ [ν1, ν2] and all

z ∈ R such that |k∗(t)z| ≤ NL(t) we find

| f (t, x, y, z)| = | f1(t, x, y)|
kd∗(t)

f2(k∗(t)z)

≤























c2d2
tδ

kd∗(t)
|Φ(k∗(t)z)|γ ≤ c2d2

tδ

kd∗(t)
[Φ(NL(t))]

γ , t > tL,

max
[0,L]

f2 ·
f̃1(t)

kd∗(t)
, 0 ≤ t ≤ tL,

=: ηL(t).
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Finally, we claim that ηL ∈ L1(R+
0 ). First observe that, since d ≤ p, f̃1 ∈ L∞

loc(R
+
0 ) and

1/k∗ ∈ L
p
loc(R

+
0 ), we get

∫ tl

0
ηL(t)dt ≤ max

[0,L]
f2 · ∥ f̃1∥L∞([0,tL])

∫ tL

0

1

kd∗(t)
dt

≤ max
[0,L]

f2 · ∥ f̃1∥L∞([0,tL]) sup
R

+
0

k
p−d
∗

∫ tL

0

1

k
p
∗(t)

dt

< +∞.

(4.13)

On the other hand, by (III)2, from the definition of ηL, it is

∫ ∞

tL

ηL(t)dt = c2d2

∫ ∞

tL

tδ

kd∗(t)
[Φ(NL(t))]

γ dt

= c2d2Φ(L)γ
∫ ∞

tL

tδ

kd∗(t)
e−γKL(t)dt

= c2d2Φ(L)γe−γc(L)K0(tL)
∫ ∞

tL

tδ

kd∗(t)
e
−γ

d1
Kd

M

∫ t
tL

f0(s)ds
dt

≤ c3

∫ ∞

tL

1

kd∗(t)

(

1

t

)γ
c1d1
Kd

M

−δ

dt,

(4.14)

with c3 > 0 appropriate constant.

Now, observe that, if tL ≥ 1, recalling that γ c1d1

Kd
M

− δ ≥ σ by (4.3), we get

∫ ∞

tL

1

kd∗(t)

(

1

t

)γ
c1d1
Kd

M

−δ

dt ≤
∫ ∞

1

1

kd∗(t)

(

1

t

)γ
c1d1
Kd

M

−δ

dt ≤
∫ ∞

1

1

kd∗(t)tσ
dt < +∞,

since d ≤ p by assumption, see Remark 4.2–(A); on the other hand, if tL < 1, then

∫ ∞

tL

1

kd∗(t)

(

1

t

)γ
c1d1
Kd

M

−δ

dt =
∫ 1

tL

1

kd∗(t)

(

1

t

)γ
c1d1
Kd

M

−δ

dt +
∫ ∞

1

1

kd∗(t)

(

1

t

)γ
c1d1
Kd

M

−δ

dt

≤
∫ 1

tL

1

kd∗(t)

(

1

t

)γ
c1d1
Kd

M

−δ

dt +
∫ ∞

1

1

kd∗(t)tσ
dt

< +∞,

since the map t 7→ k−d
∗ (t)t

δ−γ
c1d1
Kd

M is bounded in [tL, 1] and, as before,
∫ ∞

1
1

kd∗(t)tσ dt < +∞, being

d ≤ p. Therefore, from (4.14), we infer that
∫ ∞

tL

ηL(t)dt < +∞. (4.15)

Combining (4.13) with (4.15) we get the claim.

Gathering together all these facts, we are entitled to apply Theorem 3.9 to the BVP (4.1),

getting at least a solution u ∈ C1(R+
0 ) ∩ W

2,p
loc (R

+
0 ) such that

u0 + tν1 ≤ u(t) ≤ u0 + tν2 and ν1 ≤ u′(t) ≤ ν2 for a.a. t ∈ R
+
0 .

Remark 4.3. It is worth noting that, in the particular case when the homeomorphism Φ in (I)

is also homogeneous of degree r ∈ (0, p], the growth assumption (IV)3 can be replaced with

the following one:
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(IV)′3 there exists H > 0 and d3 > 0 such that, if z ∈ R and |z| ≥ H, then

f2(z) ≤ d3|Φ(z)|α for some α ≤ 1. (4.16)

Indeed, if (4.16) holds, it follows

| f1(t, x, y)| f2(z) ≤ d3| f1(t, x, y)| · |Φ(z)|α = d3
| f1(t, x, y)|

k(t, y)rα
|Φ(k(t, y)z)|α

≤ d3
f̃1(t)

krα∗ (t)
|Φ(k(t, y)z)|α,

for a.a. t ∈ [0, T0], all x ∈ [u0 + tν1, u0 + tν2], all y ∈ [ν1, ν2] and all z ∈ R such that |z| ≥ H.

As a consequence, hypothesis (H2) in Theorem 3.9 is fulfilled with

ψ(s) = sα, ℓ(t) = d3
f̃1(t)

kαr∗ (t)
, µ(t) ≡ 0.

Note that, since α ≤ 1, the function ψ satisfies (H2)–(i); furthermore, since f̃1 ∈ L∞
loc(R

+
0 ), the

function 1/k∗ ∈ L
p
loc(R

+
0 ) and αr ≤ r ≤ p, we infer that ℓ ∈ L1([0, T0]).

We conclude this section by presenting some concrete examples of BVPs of the form (4.1),

satisfying assumptions (I)–(IV) introduced above.

Example 4.4. Let us consider the following boundary value problem











(

Φ

(

e−u′(t)2
min

{√
t,

1

t2

}

u′(t)
))′

= f (t, u, u′(t), u′′(t)), a.a. t ∈ R
+
0 ,

u(0) = 0, u′(0) = 0, u′(+∞) = 1,

(4.17)

with m > 1 to be fixed later, θ ∈ (0, 1) and

Φ(z) = z + sin z, f (t, x, y, z) = −m[arctan(x3 + y2) + π] · |z|θ t

1 + t2
.

Obviously, problem (4.17) takes the form (4.1) with

• Φ : R → R, Φ(z) = z + sin z;

• k : R
+
0 × R → R, k(t, y) = e−y2

min{
√

t, 1/t2};

• f1 : R
+
0 × R

2 → R, f1(t, x, y) = −[arctan(x3 + y2) + π]
mt

1 + t2
;

• f2 : R → R, f2(z) = |z|θ .

We claim that the functions Φ, k, f1 and f2 satisfy all the assumptions (I)–(IV) introduced in

this section, with suitable constants fulfilling (4.3).

Assumption (I) It is straightforward to recognize that Φ is an odd strictly increasing homeo-

morphism. Moreover, since

lim
z→0+

Φ(z)

z
= lim

z→0+

z + sin z

z
= 2,

condition (4.2) is satisfied with ρ = 1.
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Assumption (II) Clearly k is continuous, strictly positive a.e. in R
+
0 × R and bounded in

R
+
0 × [0, 1]. Moreover, it is very easy to see that the map t 7→ 1/k(t, y) ∈ L

p
loc(R

+
0 ) for all

y ∈ R, for every fixed p ∈ (1, 2), and the same is true for 1/k∗(t) = e/ min{
√

t, t2}. Moreover,

∫ ∞

1

1

tσk
p
∗(t)

dt = ep
∫ ∞

1

1

tσ−2p
dt < +∞, for every σ > 2p + 1.

Assumption (III) f1 is a Carathéodory function in R
+
0 × R

2, being continuous in the same set,

and it is also decreasing with respect to x in R
+
0 × R

2.

Moreover, for all t ∈ R
+
0 , all x ∈ [0, t] and all y ∈ [0, 1] it is

| f1(t, x, y)| =
[

arctan(x3 + y2) + π
] mt

1 + t2

≤
[

arctan(1 + t3) + π
] mt

1 + t2
=: f̃1(t) ∈ C(R+

0 ; R) ⊆ L∞
loc(R

+
0 )

and also

π

2
· mt2

1 + t2
=
(

π − π

2

) mt2

1 + t2
≤ t| f1(t, x, y)| ≤ t f̃1(t) =

[

arctan(1 + t3) + π
] mt2

1 + t2
. (4.18)

Now, since

lim
t→+∞

π

2
· mt2

1 + t2
= m

π

2
and lim

t→+∞

[

arctan(1 + t3) + π
] mt2

1 + t2
=

3

2
mπ,

from (4.18) we deduce that for any ε ∈ (0, mπ/2) there exists T0 = T0(ε) > 0 such that

(

m
π

2
− ε
) 1

t
≤ | f1(t, x, y)| ≤

(

3

2
mπ + ε

)

1

t

for all t ≥ T0, all x ∈ [0, t] and all y ∈ [0, 1] , so that (III)2 holds with

c1 = m
π

2
− ε, c2 =

3

2
mπ + ε, δ = −1. (4.19)

Note that c1 = m π
2 − ε > 0. Finally, condition (III)3 is trivially satisfied.

Assumption (IV) Clearly f2 is continuous in R, being θ > 0, and (IV)1 trivially holds. Moreover,

lim
z→0

f2(z)

|Φ(z)|θ = lim
z→0

|z|θ
|z + sin z|θ =

1

2θ
,

so that for any ε ∈ (0, 1/2θ) there exists z∗ = z∗(ε) > 0 such that

(

1

2θ
− ε

)

|Φ(z)| ≤ f2(z) ≤
(

1

2θ
+ ε

)

|Φ(z)|θ for all z ∈ R : |z| < z∗.

Hence condition (IV)2 is satisfied with

d1 =
1

2θ
− ε, d2 =

1

2θ
+ ε, γ = θ. (4.20)

Furthermore, condition (IV)3 holds with any constant H > 0, any number d3 ≥ 1 and

q = 1/(1 − θ) > 1. Finally f2 is homogeneous of degree d = θ < 1 < p.
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Now, we claim that, for any fixed p ∈ (1, 2), it is possible to choose

m > 1 and 0 < ε <
1

2θ
< m

π

2

in such a way that (4.3) holds. To prove the claim, first note that

KM = sup
R

+
0 ×[0,1]

e−y2
min{

√
t, 1/t2} = 1.

Now, since

lim
ε→0+

(m − ε) ·
(

1

2θ
− ε

)

=
m

2θ
,

we can choose m > 1 and ε ∈
(

0, 1/2θ
)

satisfying

(m − ε) ·
(

1

2θ
− ε

)

> max

{

1 + 2p,
2p

θ

}

. (4.21)

Consequently, by (4.19)–(4.20) and recalling that ρ = 1, one gets

c1d1

Kd
M

= (m − ε) ·
(

1

2θ
− ε

)

> 1 + 2p = (1 + 2p)ρ.

On the other hand, using again (4.19)–(4.20) and recalling that δ = −1, we see that

γ
c1d1

Kd
M

= θ(m − ε) ·
(

1

2θ
− ε

)

> 2p = (1 + 2p) + δ.

From this, since σ can be chosen arbitrarily close to 1 + 2p, we conclude that (4.3) is satisfied.

We are then entitled to apply Theorem 3.9 which ensures the existence of a solution

u ∈ C1(R+
0 ; R) ∩ W

2,p
loc (R

+
0 ) of (4.17).

Remark 4.5. A further example which covers the critical case can be constructed following

Example 4.4, but choosing ν1 = 1 < ν2 and substituting the function f1 with the following one

f1(t, x, y) = m
[

e−(x+y) − 1
]

t sin

(

1

t2 + 1

)

.

Indeed, f1 ∈ C(R+
0 × R

2), it is non positive whenever x + y ≥ 0 and decreasing with respect

to x in the whole of R
+
0 × R

2.

Furthermore, for all t ≥ 1, all x ∈ [t, tν2] and all y ∈ [1, ν2] we have

m

2
t sin

(

1

t2 + 1

)

≤ m
[

1 − e−(x+y)
]

t sin

(

1

t2 + 1

)

= | f1(t, x, y)| ≤ mt sin

(

1

t2 + 1

)

=: f̃1(t),

with f̃1 ∈ C(R+
0 ), which implies

m

2
t2 sin

(

1

t2 + 1

)

≤ t| f1(t, x, y)| ≤ mt2 sin

(

1

t2 + 1

)

.

Therefore, for any ε ∈ (0, m/2) there exists T0 = T0(ε) that can be chosen greater or equal

than 1, such that, for all t ≥ T0, all x ∈ [t, tν2] and all y ∈ [1, ν2], it is

(m

2
− ε
) 1

t
≤ | f1(t, x, y)| ≤ (m − ε)

1

t
,
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so that condition (III) holds with

T0 = 1, c1 =
m

2
− ε, c2 = m − ε, δ = −1.

Finally, we conclude by choosing m > 1 and ε ∈
(

0, 1/2θ
)

satisfying

(m

2
− ε
)

·
(

1

2θ
− ε

)

> max

{

1 + 2p,
2p

θ

}

in place of (4.21).

Example 4.6. Let p ∈ (1,+∞) be fixed and let r, θ ∈ R be such that

1 < r < p + 1 and 0 < θ < r − 1.

Let us consider the following boundary value problem










(

Φ

( | sin t|1/p + | sin2 u′(t)|
2

u′′(t)
))′

= f (t, u(t), u′(t), u′′(t)), a.a. t ∈ R
+
0 ,

u(0) = 0, u′(0) = 1, u′(+∞) = ν2,

(4.22)

with ν2 > 1, m > 1 to be fixed later and

Φ(z) = Φr(z) = |z|r−2z and f (t, x, y, z) = −m + t| cos t|
1 + t

(x + | cos y|)3 |z|θ .

Problem (4.22) takes the form (4.1) with

• Φ : R → R is the r-Laplacian;

• k : R
+
0 × R → R, k(t, y) = | sin t|1/p+| sin2 y|

2 ;

• f1 : R
+
0 × R

2 → R, f1(t, x, y) = −m+t| cos t|
1+t (x + | cos y|)3;

• f2 : R → R, f2(z) = |z|θ .

We shall see that the functions Φ, k, f1 and f2 satisfy all the assumptions (I)–(IV) introduced

in this section, with suitable constants fulfilling (4.3).

Assumption (I) Clearly the r-Laplacian is an odd strictly increasing homeomorphism, for which

condition (4.2) is satisfied with ρ = r − 1, being limz→0+
Φ(z)
zr−1 = 1.

Assumption (II) The function k is continuous and bounded in R
+
0 ×R, and it is strictly positive

a.e. in R
+
0 × R.

Moreover, it is very easy to check that the map t 7→ 1/k(t, y) ∈ L
p
loc(R

+
0 ) for all y ∈ R, for

every fixed p ∈ (1, p), and the same is true for 1/k∗(t) = 2/| sin t|1/p, so that (II)1 holds.

Now, choose p > 1 in such a way that

p ∈ (max{1, r − 1}, p).

For any σ > 1 it results
∫ ∞

2π

1

tσk
p
∗(t)

dt = 2p
∫ ∞

2π

1

tσ| sin t|p/p
dt = 2p

∞

∑
n=1

∫ 2(n+1)π

2nπ

1

tσ| sin t|p/p
dt

= 2p
+∞

∑
n=1

∫ 2π

0

1

(t + 2nπ)σ| sin t|p/p
dt ≤ 2p

+∞

∑
n=1

∫ 2π

0

1

(2nπ)σ| sin t|p/p
dt

= 2p
+∞

∑
n=1

1

(2nπ)σ

∫ 2π

0

1

| sin t|p/p
dt < +∞,
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and, consequently, assumption (II)2 is fulfilled.

Assumption (III) f1 is a Carathéodory function in R
+
0 × R

2, being continuous in the same set,

and it is also decreasing with respect to x in R
+
0 × R

2.

Now, take T0 = 1. For all t ≥ T0, all x ∈ [t, tν2] and all y ∈ R it results f1(t, x, y) ≤ 0 and

| f1(t, x, y)| = m + t| cos t|
1 + t

(x + | cos y|)3 ≤ 4
(m + t| cos t|)

1 + t
(x3 + | cos y|3)

≤ 4(m + t)(t3ν3
2 + 1)

1 + t
=: f̃1(t),

with f̃1 ∈ C(R+
0 ; R) ⊆ L∞

loc(R
+
0 ). Furthermore, for all t ≥ 1, all x ∈ [t, tν2] and all y ∈ R

| f1(t, x, y)| ≤ f̃1(t) ≤ 4(m + 1)(ν3
2 + 1)t3. (4.23)

On the other hand, for all t ≥ 1, all x ∈ [t, tν2] and all y ∈ R, it is also true that

| f1(t, x, y)| ≥ m + t| cos t|
1 + t

x3 ≥ m

1 + t
≥ m

2
· 1

t
. (4.24)

Hence, combining (4.23) with (4.24) we see that (III)2 holds with

T0 = 1, c1 =
m

2
, c2 = 2(m + 1)(1 + ν2

2), δ = 3. (4.25)

Assumption (IV) Clearly f2 > 0 in R
+ and f2(0) = 0. Moreover, if z ∈ R and |z| < 1, then

|Φ(z)| = |z|r−1
< |z|θ = f2(z) = |z|γ(r−1) = |Φ(z)|γ,

provided that γ = θ/(r − 1) < 1. Therefore, condition (IV)2 is satisfied with z∗ = 1 and

d1 = d2 = 1. (4.26)

Now, observe that, since Φ is homogeneous of degree r − 1 < p and

f2(z) = |z|θ ≤ |z|r−1 = |Φ(z)| for all z ∈ R with |z| ≥ 1,

we find that assumption (IV)′3 in Remark 4.3 holds with

H = 1, d3 = 1 α = 1.

Finally, f2 is homogeneous of degree d = θ.

Now, in order to prove the validity of (4.3), take m > 1 satisfying

m > 2(r − 1)max

{

1,
4

θ

}

.

By definition

KM = sup
R

+
0 ×[1,ν2]

| sin t|1/p + sin2 y

2
≤ 1,

so that, by (4.25)–(4.26), and recalling that ρ = r − 1, it is

c1d1

Kd
M

≥ c1d1 =
m

2
> r − 1 = ρ.

On the other hand, using again (4.25)–(4.26), we find

γ
c1d1

Kd
M

≥ γc1d1 =
θ

r − 1
· m

2
> 4 = 1 + δ.

Choosing σ arbitrarily close to 1 we obtain (4.3).

In conclusion, by Theorem 3.9 there exists a solution u ∈ C1(R+
0 ; R) ∩ W

2,p
loc (R

+
0 ) of (4.22).
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Abstract. In this paper, we use variational methods to prove the existence of a positive
solution for the following class of logarithmic fractional Schrödinger–Poisson system:

{

ϵ2s (−∆)s u + V(x)u − ϕ(x)u = u log u2 in R
3,

ϵ2t (−∆)t ϕ = |u|2 in R
3,

where ϵ > 0, s, t ∈ (0, 1), (−∆)α is the fractional Laplacian and V is a saddle-like
potential.

Keywords: fractional Schrödinger–Poisson system, logarithmic nonlinearity, variational
methods.
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1 Introduction and main result

In this article, we consider the following fractional Schrödinger–Poisson system:

{

ϵ2s (−∆)s u + V(x)u − ϕ(x)u = u log u2 in R
3,

ϵ2t (−∆)t ϕ = |u|2 in R
3,

(1.1)

where ϵ > 0 is a small parameter, s, t ∈ (0, 1) and (−∆)α, with α ∈ {s, t}, is the fractional

Laplacian operator which may be defined for any u : R
3 → R belonging to the Schwartz class

by

(−∆)αu(x) = C(3, α)P.V.
∫

R3

u(x)− u(y)

|x − y|3+2α
dy (x ∈ R

3),

where P.V. stands for the Cauchy principal value and C(3, α) is a normalizing constant; see Di

Nezza–Palatucci–Valdinoci [13]. In recent years, there has been a surge of interest in studying

partial differential equations involving nonlocal fractional Laplace operators. This type of

nonlocal operator comes up naturally in the real world in many different applications, such as

BCorresponding author. Email: linli@ctbu.edu.cn & lilin420@gmail.com
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phase transitions, game theory, finance, image processing, Lévy processes, and optimization.

For more details and applications, we refer the interested reader to the works of Applebaum

[6], Bahrouni–Rădulescu–Winkert [7], Caffarelli–Silvestre [9], Di Nezza–Palatucci–Valdinoci

[13], Molica Bisci–Rădulescu–Servadei [21], Pucci–Xiang–Zhang [23, 24] and their references.

In the fractional scenario, there are many results for the fractional Schrödinger–Poisson

system. Teng [29] studied the existence of ground state solutions for the fractional

Schrödinger–Poisson system with the critical Sobolev exponent. Yang–Yu–Zhao [31] were

concerned with the existence and concentration behavior of ground state solutions for the

fractional Schrödinger–Poisson system with critical nonlinearity. Ambrosio [5] used penaliza-

tion techniques and Ljusternik–Schnirelmann theory to deal with the multiplicity and con-

centration of positive solutions for a fractional Schrödinger–Poisson type system with critical

growth. Meng–Zhang–He [20] dealt with the existence of a positive and a sign-changing least

energy solution for a class of fractional Schrödinger–Poisson system with critical growth and

vanishing potentials. Finally, other interesting results in this direction can be found in the

papers of Chen–Li–Peng [10], Ji [15], Murcia–Siciliano [22], Qu–He [25] and the references

therein.

The case where potential V has a saddle-like geometry was considered in del Pino–Felmer–

Miyagaki [12], essentially they assumed the potential V is bounded and V ∈ C2(R3), which

verifies the following conditions:

Fix two subspaces X, Y ⊂ R
3 such that R

3 = X ⊕ Y, then fix c0, c1 > 0 such that

c0 = inf
z∈R3

V(z) > 0 and c1 = sup
x∈X

V(x),

satisfying the following geometric condition

(V1) There exists a number λ ∈ (0, 1), such that

c0 = inf
R>0

sup
x∈∂BR(0)∩X

V(x) < inf
y∈Yλ

V(y).

where Yλ is the cone about Y given by

Yλ =
{

z ∈ R
3 : |z · y| > λ|z||y|, for some y ∈ Y

}

.

In addition to the above hypotheses, they imposed the conditions below:

(V2) The functions V, ∂V
∂xi

, ∂2V
∂xi∂xj

are bounded in R
3, for all i, j ∈ {1, 2, 3};

(V3) V satisfies the Palais–Smale condition, that is, if (xn) ⊂ R
3, such that (V(xn)) is limited

and ∇V(xn) → 0, then (xn) possesses a convergent subsequence in R
3.

Using the above conditions on V, and supposing that

c1 < 2
2(p−1)

N+2−p(N−2) c0,

the authors studied the existence of positive solutions for the following Schrödinger equation:

−ϵ2
∆u + V(z)u = |u|p−2u in R

N ,
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where p ∈ (2, 2∗) if N ≥ 3 and p ∈ (2,+∞) if N = 1, 2, for ϵ > 0 small enough. After,

Alves [1] showed the existence of a positive solution for the following elliptic equation with

exponential critical growth in R
2:

−ϵ2
∆u + V(z)u = f (u) in R

2,

Alves and Miyagaki [4] considered the following nonlinear fractional elliptic equation with

critical growth in R
N :

ϵ2s (−∆)s u + V(z)u = λ|u|q−2u + |u|2
∗
s −2u in R

N ,

where λ > 0 is a positive parameter, q ∈ (2, 2∗s ). Recently, under the same assumptions on the

potential V, Alves and Ji [3] used the variational method to prove the existence of a positive

solution for the following logarithmic Schrödinger equation:

−ϵ2
∆u + V(z)u = u log u2 in R

N .

Motivated by the above papers, in this work we consider the correlation result of the

fractional Schrödinger–Poisson system. Now, we state the main result.

Theorem 1.1. Suppose that V satisfies (V1)–(V3). If V(0) > c0 and c1 < c0 + 1, then there exists

ϵ0 > 0 such that for each ϵ ∈ (0, ϵ0), the system (1.1) has a positive solution.

Remark 1.2. Noting that in this paper we consider the nonlocal term ϕ with negative coeffi-

cient. We want to point out that if we deal with the positive nonlocal term, i.e.,

{

ϵ2s (−∆)s u + V(x)u + ϕ(x)u = u log u2 in R
3,

ϵ2t (−∆)t ϕ = |u|2 in R
3,

(1.2)

it is not easy to obtain the boundedness of Palais–Smale sequence (un). In fact, by the log-

arithmic Sobolev inequality, the key point is to prove the boundedness of (un), where the

negative coefficient plays an important role, see Lemma 3.7. In contrast, if we study (1.2),

the inequality may not necessarily hold true, then the boundedness of (un) fails to obtain.

However, we believe system (1.2) is an interesting problem, we shall consider it further in our

future work.

The paper is organized as follows. In Section 2, we recall some lemmas which we will use

in the paper. In Section 3, we show some estimates and prove a technical result. In Section 4,

we apply the deformation lemma to provide the proof of Theorem 1.1.

2 Preliminaries

If A ⊂ R
3, we denote by |u|Lq(A) the Lq(A)-norm of a function u : R

3 → R, and by |u|q its

Lq(R3)-norm. Let us define Ds,2(R3) as the completion of C∞
c (R3) with respect to

[u]2 =
∫∫

R6

|u(x)− u(y)|2

|x − y|3+2s
dxdy.

Then, we consider the fractional Sobolev space

Hs(R3) =
{

u ∈ L2
(

R
3
)

: [u] < ∞
}

,
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endowed with the norm

∥u∥2 = [u]2 + |u|22.

Now, we recall the following main embeddings for the fractional Sobolev spaces, see

Di Nezza–Palatucci–Valdinoci [13].

Lemma 2.1. Let s ∈ (0, 1). Then Hs(R3) is continuously embedded in Lp(R3) for any p ∈ [2, 2∗s ]
and compactly in L

p
loc(R

3) for any p ∈ [1, 2∗s ) with 2∗s = 6
3−2s .

We also recall a version of the well-known concentration-compactness principle, see

Felmer–Quaas–Tan [14].

Lemma 2.2. If (un) is a bounded sequence in Hs(R3) and if

lim
n→∞

sup
y∈R3

∫

BR(y)
|un|

2 dx = 0,

where R > 0, then un → 0 in Lr(R3) for all r ∈ (2, 2∗s ).

By Lemma 2.1, we have

Hs(R3) ⊂ L
12

3+2t (R3). (2.1)

For any fixed u ∈ Hs(R3), Lu : Dt,2(R3) → R be the functional given by

Lu(v) =
∫

R3
u2vdx,

which is continuous in view of the Hölder inequality and (2.1). Indeed

|Lu(v)| ≤

(

∫

R3
|u|

12
3+2t dx

)
3+2t

6
(

∫

R3
|v|2

∗
t dx

)
1

2∗t
≤ C∥u∥2∥v∥Dt,2 ,

where

∥v∥2
Dt,2 =

∫∫

R6

|v(x)− v(y)|2

|x − y|3+2t
dxdy.

Then, by the Lax–Milgram Theorem there is a unique ϕt
u ∈ Dt,2(R3), such that

〈

ϕt
u, v
〉

for

each v ∈ Dt,2(R3), where ⟨·, ·⟩ is the inner product on Dt,2(R3). Thus, we obtain the t-Riesz

formula

ϕt
u(x) = ct

∫

R3

u2(y)

|x − y|3−2t
dy, where ct = π− 3

2 2−2t Γ(3 − 2t)

Γ(t)
,

is the only weak solution of the problem

(−∆)tϕt
u = u2 in R

3.

Then, we state the following useful properties whose proofs can be found in Liu–Zhang

[19] and Teng [29]:

Lemma 2.3. For all u ∈ Hs(R3), then the following properties hold:

(1) ∥ϕt
u∥Dt,2 ≤ C|u|212

3+2t

≤ C∥u∥2 and
∫

R3 ϕt
uu2dx ≤ Ct|u|412

3+2t

. Moreover ϕt
u : Hs(R3) →

Dt,2(R3) is continuous and maps bounded sets into bounded sets;

(2) ϕt
u ≥ 0 in R

3;
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(3) if y ∈ R
3 and ū(x) = u(x + y), then ϕt

ū(x) = ϕt
u(x + y) and

∫

R3 ϕt
ūū2dx =

∫

R3 ϕt
uu2dx;

(4) ϕt
ru = r2ϕt

u for all r ∈ R;

(5) if un ⇀ u in Hs(R3), then ϕt
un

⇀ ϕt
u in Dt,2(R3);

(6) if un ⇀ u in Hs(R3), then
∫

R3 ϕt
un

u2dx =
∫

R3 ϕt
(un−u) (un − u)2 dx +

∫

R3 ϕt
uu2dx + on(1);

(7) if un → u in Hs(R3), then ϕt
un

→ ϕt
u in Dt,2(R3) and

∫

R3 ϕt
un

u2dx →
∫

R3 ϕt
uu2dx.

In order to study system (1.1), we use the change of variable x → ϵx, and the system (1.1)

is equivalent to the easier handle system

{

(−∆)s u + V(ϵx)u − ϕ(ϵx)u = u log u2 in R
3,

(−∆)t ϕ = |u|2 in R
3.

(2.2)

Substituting ϕt = ϕt
u into system (2.2), we can rewrite (2.2) as a single equation

(−∆)s u + V(ϵx)u − ϕt
uu = u log u2 in R

3. (2.3)

We shall use the variational method to study the problem (2.3). Note that, a weak solution of

(2.3) in Hs(R3) is a critical point of the associated energy functional

Iϵ(u) :=
1

2
∥u∥2

ϵ −
1

4

∫

R3
ϕt

u|u|
2dx −

1

2

∫

R3
u2 log u2dx,

defined for all u ∈ Hϵ where

Hϵ :=

{

u ∈ Hs(R3) :
∫

R3
V(ϵx)u2dx < ∞

}

is endowed with the norm

∥u∥2
ϵ := [u]2 +

∫

R3
(V(ϵx) + 1) u2dx.

Obviously, Hϵ is a Hilbert space with inner product

(u, v)ϵ =
∫∫

R6

(u(x)− u(y))(v(x)− v(y))

|x − y|3+2s
dxdy +

∫

R3
(V(ϵx) + 1) uvdx.

Definition 2.4. A solution of the problem (2.3) is a function u ∈ Hs(R3) such that u2 log u2 ∈
L1(R3) and

∫∫

R6

(u(x)− u(y))(v(x)− v(y))

|x − y|3+2s
dxdy +

∫

R3
V(ϵx)uvdx

−
∫

R3
ϕt

uuvdx =
∫

R3
uv log u2dx, ∀u, v ∈ C∞

0 (R3).

Due to the lack of smoothness of Iϵ, we shall use the approach explored in Ji–Szulkin [16]

and Squassina–Szulkin [26]. Let us decompose it into a sum of a C1 functional plus a convex

lower semicontinuous functional, respectively. For δ > 0, let us define the following functions:

F1(ξ) =















0, if ξ = 0,

− 1
2 ξ2 log ξ2 if 0 < |ξ| < δ,

− 1
2 ξ2

(

log δ2 + 3
)

+ 2δ|ξ| − 1
2 δ2, if |ξ| ≥ δ
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and

F2(ξ) =

{

0, if |ξ| < δ,
1
2 ξ2 log

(

ξ2/δ2
)

+ 2δ|ξ| − 3
2 ξ2 − 1

2 δ2, if |ξ| ≥ δ.

Then,

F2(ξ)− F1(ξ) =
1

2
ξ2 log ξ2, ∀ξ ∈ R,

and the functional Iϵ : Hϵ → (−∞,+∞] may be rewritten as

Iϵ(u) = Φϵ(u) + Ψ(u), u ∈ Hϵ, (2.4)

where

Φϵ(u) =
1

2
∥u∥2

ϵ −
1

4

∫

R3
ϕt

u|u|
2dx −

∫

R3
F2(u)dx,

and

Ψ(u) =
∫

R3
F1(u)dx,

As proven in Ji–Szulkin [16] and Squassina–Szulkin [26], F1, F2 ∈ C1(R, R). If δ > 0 is small

enough, F1 is convex, even,

F1(ξ) ≥ 0 and F′
1(ξ)ξ ≥ 0, ∀ξ ∈ R.

For each fixed p ∈ (2, 2∗s ), there exists C > 0 such that

|F′
2(ξ)| ≤ C|ξ|p−1, ∀ξ ∈ R.

If potential V in (2.3) is replaced by a constant A > −1, we have the following problem

(−∆)s u + Au − ϕt
uu = u log u2 in R

3. (2.5)

And the corresponding energy functional associated to (2.5) will be denoted by IA : Hϵ →
(−∞,+∞] and defined as

IA(u) =
1

2
[u]2 +

1

2

∫

R3
(A + 1)u2dx −

1

4

∫

R3
ϕt

u|u|
2dx −

1

2

∫

R3
u2 log u2dx.

Moreover, let us denote by m(A) the mountain pas level associated with IA, which possesses

the following characterizations

m(A) = inf
u∈Hϵ\{0}

{

max
t≥0

IA(tu)

}

= inf
u∈MA

IA(u),

where MA is the Nehari Manifold associated with IA, given by

MA =
{

u ∈ Hϵ \ {0} : I ′
A(u)u = 0

}

.

3 Technical results

In the section, we recall some definitions that can be found in Szulkin [28].

Definition 3.1. Let E be a Banach space, E′ be the dual space of E and ⟨·, ·⟩ be the duality

paring between E′ and E. Let J : E → R be a functional of the form J(u) = Φ(u) + Ψ(u),

where Φ ∈ C1(E, R) and Ψ is convex and lower semicontinuous. Let us list some definitions:
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(i) The sub-differential ∂J(u) of the functional J at a point u ∈ E is the following set

{

w ∈ E′ :
〈

Φ
′(u), v − u

〉

+ Ψ(v)− Ψ(u) ≥ ⟨w, v − u⟩, ∀v ∈ E
}

; (3.1)

(ii) A critical point of J is a point u ∈ E such that J(u) < +∞ and 0 ∈ ∂J(u), i.e.

〈

Φ
′(u), v − u

〉

+ Ψ(v)− Ψ(u) ≥ 0, ∀v ∈ E; (3.2)

(iii) A Palais–Smale sequence at level d for J is a sequence (un) ⊂ E such that J(un) → d and

there exists a numerical sequence τn → 0+ with

〈

Φ
′(un), v − un

〉

+ Ψ(v)− Ψ(un) ≥ −τn ∥v − un∥ , ∀v ∈ E;

(iv) The functional J satisfies the Palais–Smale condition at level d ((PS)d condition, for short)

if all Palais–Smale sequences at level d have a convergent subsequence;

(v) The effective domain of J is the set D(J) = {u ∈ E : J(u) < +∞}.

In what follows, for each u ∈ D(Iϵ), we set the functional I ′
ϵ(u) : Hϵ,c → R given by

〈

I ′
ϵ(u), z

〉

=
〈

Φ
′
ϵ(u), z

〉

−
∫

F′
1(u)zdx, ∀z ∈ Hϵ,c,

where

Hϵ,c = {u ∈ Hϵ : u has compact support },

and define
∥

∥I ′
ϵ(u)

∥

∥ = sup
{〈

I ′
ϵ(u), z

〉

: z ∈ Hϵ,c and ∥z∥ϵ ≤ 1
}

.

If ∥I ′
ϵ(u)∥ is finite, then I ′

ϵ(u) may be extended to a bounded operator in Hϵ, and so, it can

be seen as an element of H′
ϵ.

Lemma 3.2. Let Iϵ satisfy (2.4), then:

(i) If u ∈ D(Iϵ) is a critical point of Iϵ. Then, the following hold:

〈

Φ
′
ϵ(u), v − u

〉

+ Ψ(v)− Ψ(u) ≥ 0, ∀v ∈ Hϵ;

(ii) For each u ∈ D(Iϵ) such that ∥I ′
ϵ(u)∥ < +∞, we have ∂Iϵ(u) ̸= ∅, that is, there exists

w ∈ H′
ϵ, which is denoted by w = I ′

ϵ(u), such that

〈

Φ
′
ϵ(u), v − u

〉

+
∫

R3
F1(v)dx −

∫

R3
F1(u)dx ≥ ⟨w, v − u⟩, ∀v ∈ Hϵ;

(iii) If a function u ∈ D(Iϵ) is a critical point of Iϵ, then u is a solution of (2.3);

(iv) If (un) ⊂ Hϵ is a Palais–Smale sequence, then

〈

I ′
ϵ (un) , z

〉

= on(1)∥z∥ϵ, ∀z ∈ Hϵ,c;

(v) If Ω is a bounded domain with regular boundary, then Ψ (and hence Iϵ) is of class C1 in Hs(Ω).

More precisely, the functional

Ψ(u) =
∫

Ω

F1(u)dx, ∀u ∈ Hs(Ω)

belongs to C1 (Hs(Ω), R).
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Proof. (i) follows from (3.2). (ii) can be obtained arguing as in the proof of Squassina–Szulkin

[27] and recalling that C∞
c (R3) is dense in Hϵ. (iii) and (iv) follow the same lines of the proofs

of Ji–Szulkin [16]. To verify (v), since |F′
1(τ)| ≤ C(1 + |τ|q−1) with q ∈ (2, 2∗s ), it is enough to

proceed as in the proof of Willem [30].

As a consequence of the above proprieties, we have the following result.

Lemma 3.3. If u ∈ D(Iϵ) and ∥I ′
ϵ(u)∥ < +∞, then F′

1(u)u ∈ L1(R3).

Proof. Let ϖ ∈ C∞
c (R3) be such that 0 ≤ ϖ ≤ 1 in R

3, ϖ(x) = 1 for |x| ≤ 1 and ϖ(x) = 0 for

|x| ≥ 2. For R > 0 and u ∈ D(Iϵ), let ϖR(x) = ϖ( x
R ) and uR(x) = ϖR(x)u(x). Let us prove

that

lim
R→∞

∥uR − u∥ϵ = 0. (3.3)

Clearly, uR → u in L2(R3). On the other hand,

[uR − u]2 ≤ 2

[

∫∫

R6

|ϖR(x)− ϖR(y)|2

|x − y|3+2s
|u(x)|2dxdy +

∫∫

R6

|u(x)− u(y)|2

|x − y|3+2s
|ϖR(x)− 1|2dxdy

]

= 2 [AR + BR] .

Since

AR =
∫∫

R6

|ϖR(x)− ϖR(y)|2

|x − y|3+2s
|u(x)|2dxdy

=
∫

R3
|u(x)|2

(

∫

|x−y|>R

|ϖR(x)− ϖR(y)|2

|x − y|3+2s
dx +

∫

|x−y|≤R

|ϖR(x)− ϖR(y)|2

|x − y|3+2s
dx

)

dy

≤
∫

R3
|u(x)|2

(

∫

|x−y|>R

4∥ϖ∥2
L∞(R3)

|x − y|3+2s
dx + R−2

∫

|x−y|≤R

∥∇ϖ∥2
L∞(R3)

|x − y|3+2s
dx

)

dy

≤ C
∫

R3
|u(x)|2dy

(

∫

∞

R

1

r2s+1
dr + R−2

∫ R

0

1

r2s−1
dr

)

≤
C

R2s
,

it follows that 0 ≤ AR → 0. Moreover, BR → 0 by the dominated convergence theorem. Then,

(3.3) holds.

From Lemma 3.2-(ii),

〈

Φ
′
ϵ(u), uR

〉

+
∫

R3
F′

1(uR)uRdx = ⟨w, uR⟩, ∀w ∈ H′
ϵ. (3.4)

Then, combining (3.3), (3.4) with Lemma 3.2-(v), we can see that
∫

R3 F′
1(u)uRdx ≤ C for large

R > 0. From uR → u a.e. in R
3 as R → ∞ and Fatou’s lemma, we derive that

∫

R3
F′

1(u)udx ≤ lim inf
R→∞

∫

R3
F′

1(u)uRdx ≤ lim inf
R→∞

∫

R3
F′

1(u)ϖRdx ≤ C

The proof has been completed.

An immediate consequence of the last lemma is the following.
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Corollary 3.4. For each u ∈ D(Iϵ)\{0} with ∥I ′
ϵ(u)∥ < +∞, we have that

I ′
ϵ(u)u = [u]2 +

∫

R3
V(ϵx)u2dx −

∫

R3
ϕt

uu2dx −
∫

R3
u2 log u2dx,

and

Iϵ(u)−
1

2
I ′

ϵ(u)u =
1

2

∫

R3
u2dx +

1

4

∫

R3
ϕt

uu2dx.

Corollary 3.5. If (un) ⊂ Hϵ is a (PS) sequence for Iϵ, then I ′
ϵ(un)un = on(1)∥un∥ϵ. If (un) is

bounded, we have

Iϵ (un) = Iϵ (un)−
1

2
I ′

ϵ (un) un + on(1)∥un∥ϵ

=
1

2

∫

R3
u2

ndx +
1

4

∫

R3
ϕt

un
u2

ndx + on(1)∥un∥ϵ, ∀n ∈ N.

Corollary 3.6. If u ∈ Hϵ is a critical point of Iϵ and v ∈ Hϵ verifies F′
1(u)v ∈ L1(R3), then

I ′
ϵ(u)v = 0.

Now, we will prove some results that will be useful in the proof of Theorem 1.1.

Lemma 3.7. For any ϵ > 0, all (PS) sequences of Iϵ are bounded in Hϵ.

Proof. Let (un) be a (PS)d sequence. By Corollary 3.5, one concludes

∫

R3
u2

ndx +
1

2

∫

R3
ϕt

un
u2

ndx = 2Iϵ(un)− I ′
ϵ(un)un

= 2d + on(1) + on(1) ∥un∥ϵ

≤ C + on(1) ∥un∥ϵ ,

for some C > 0. Consequently,

∥un∥
2
ϵ ≤ C + on(1)∥un∥ϵ. (3.5)

Let us employ the following logarithmic Sobolev inequality found in Lieb–Loss [17],

∫

R3
u2 log u2dx ≤

a2

π
|∇u|22 +

(

log |u|22 − 3(1 + log a)
)

|u|22, (3.6)

for all a > 0. Fixing a2

π = 1
4 and ξ ∈ (0, 1), the inequalities (3.5) and (3.6) yield that

∫

R3
u2

n log u2
ndx ≤

1

4
|∇un|

2
2 + C

(

log |un|
2
2 + 1

)

|un|
2
2

≤
1

4
|∇un|

2
2 + C1 (1 + ∥un∥ϵ)

1+ξ .

(3.7)

Then by (3.7), we have that

d + on(1) = Iϵ(un)−
1

4
I ′

ϵ(un)un

≥
1

4
∥un∥

2
ϵ −

1

4

∫

R3
u2

n log u2
ndx

≥ C
(

∥un∥
2
ϵ − (1 + ∥un∥ϵ)

1+ξ
)

,

which shows that the sequence (un) is bounded.
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Lemma 3.8. Suppose that V satisfies (V1)–(V3). For each σ > 0, there exists ϵ0 = ϵ0(σ) > 0 such

that, if (un) is a (PS)c sequence for Iϵ with c ∈ (m (c0) + σ/2, 2m (c0)− σ) and ϵ ∈ (0, ϵ0), then

(un) has a weak limit u0 ̸= 0.

Proof. We shall prove the lemma arguing by contradiction, by supposing that there exists

σ > 0, a sequence ϵn → 0 and (un
m) ⊂ Hϵ such that

lim
m→+∞

Iϵn (u
n
m) = cn and lim

m→+∞
∥I ′

ϵn
(un

m) ∥ = 0,

with un
m ⇀ 0, as m → +∞.

Claim I: There exists δ > 0, such that

lim inf
m→+∞

sup
y∈R3

∫

BR(y)
|un

m|
2 dx ≥ δ, ∀n ∈ N.

Indeed, if the Claim does not hold, there is
(

nj

)

⊂ N satisfying

lim inf
m→+∞

sup
y∈R3

∫

BR(y)

∣

∣

∣
u

nj
m

∣

∣

∣

2
dx ≤

1

j
, ∀j ∈ N.

Then, for each j ∈ N, there is mj large enough such that

sup
y∈R3

∫

BR(y)
|u

nj
mj
|2dx ≤

2

j
, |Iϵn(u

nj
nm
)− cnj

| ≤
1

j
, and

∥

∥

∥
I ′

ϵn
(u

nj
mj
)
∥

∥

∥
≤

1

j
, ∀j ∈ N. (3.8)

Setting wj = u
nj
mj

, it shows that (wj) is a bounded sequence, and by Lions [18],

lim sup
j→+∞

∣

∣wj

∣

∣

p
= 0, ∀p ∈ (2, 2∗s ).

Then, we can see

lim sup
j→+∞

∫

R3
F′

2

(

wj

)

wjdx = 0 and lim sup
j→+∞

∫

R3
ϕt

wj
w2

j dx = 0.

On the other hand, it follows from (3.8) that

∥

∥wj

∥

∥

2

ϵnj

+
∫

R3
F′

1(wj)wjdx = I ′
ϵnj
(wj)wj +

∫

R3
F′

2(wj)wjdx +
∫

R3
ϕt

wj
w2

j dx

≤ oj(1)
∥

∥wj

∥

∥

ϵnj

,

where it follows that

lim sup
j→+∞

∥wj∥
2
ϵnj

= 0 and lim sup
j→+∞

∫

R3
F′

1(wj)wjdx = 0.

Combining this fact with convexity of F1, we can see that

lim sup
j→+∞

∫

R3
F1(wj)dx = 0.

The above analysis imply that Iϵnj
(wj) → 0 as j → +∞, and so, cnj

→ 0 as j → +∞, which is

contradictory because cnj
> m (c0) + σ/2 for all j ∈ N. This proves the Claim I.
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For each n ∈ N, there exists (zn
m) ⊂ R

3 such that

∫

BR(zn
m)
|un

m|
2 dx ≥

δ

2
, ∀n ∈ N.

Since un
m ⇀ 0 as m → +∞, we have that |zn

m| → +∞ as m → +∞. From the above study, for

each n ∈ N, we fix mn ∈ N large enough satisfying

∫

BR(zn
m)
|un

m|
2dx ≥

δ

2
, |ϵnzn

mn
| ≥ n, ∥I ′

ϵn
(un

mn
)∥ϵ ≤

1

n
and |Iϵn(u

n
mn
)− cn| ≤

1

n
.

In what follows, we denote by (zn) and (un) the sequences (zn
mn
) and (un

mn
) respectively. Then,

∫

BR(zn)
|un|

2dx ≥
δ

2
, |ϵnzn| ≥ n, ∥I ′

ϵn
(un)∥ϵ ≤

1

n
and |Iϵn(un)− cn| ≤

1

n
.

The boundedness of (un) follows by standard arguments. Then, for some subsequence,

there exists u ∈ Hϵ such that

un ⇀ u in Hϵ.

Considering ωn = un(·+ zn), we have that (ωn) is bounded in Hϵ. Thus, there exists ω ∈ Hϵ

such that

ωn ⇀ ω in Hϵ,

and
∫

BR(0)
|ω|2dx = lim inf

n→+∞

∫

BR(0)
|ωn|

2 dx = lim inf
n→+∞

∫

BR(zn)
|un|

2dx ≥
δ

2
,

which implies that ω ̸= 0.

Now, for each φ ∈ C∞
0 (R3), we have the equality below

∫∫

R6

(ωn(x)− ωn(y))(φ(x)− φ(y))

|x − y|3+2s
dxdy +

∫

R3
V (ϵnzn + ϵnx)ωn φdx

−
∫

R3
ϕt

ωn
ωn φdx −

∫

R3
ωn φ log ω2

ndx = on(1)∥φ∥ϵ,

(3.9)

showing that ω is a nontrivial solution of the problem

(−∆)su + α1u − ϕt
uu = u log u2 in R

3, (3.10)

where

α1 = lim
n→+∞

V(ϵnzn).

From Cabré–Sire [8], Caffarelli–Silvestre [9] and d’Avenia–Montefusco–Squassina [11], we can

see that ω ∈ C2(R3) ∩Hϵ.

For each k ∈ N, there is φk ∈ C∞
0 (R3) such that

∥φk − ω∥ϵ → 0 as k → +∞,

that is,

∥φk − ω∥ϵ = ok(1).
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Using
∂φk

∂xi
as a test function of (3.9), we have

∫∫

R6

(ωn(x)− ωn(y))(
∂φk

∂xi
(x)− ∂φk

∂xi
(y))

|x − y|3+2s
dxdy +

∫

R3
V (ϵnzn + ϵnx)ωn

∂φk

∂xi
dx

−
∫

R3
ϕt

ωn
ωn

∂φk

∂xi
dx −

∫

R3
ωn

∂φk

∂xi
log ω2

ndx = on(1).

Observing that

∫∫

R6

(ωn(x)− ωn(y))(
∂φk

∂xi
(x)− ∂φk

∂xi
(y))

|x − y|3+2s
dxdy

=
∫∫

R6

(ω(x)− ω(y))( ∂φk

∂xi
(x)− ∂φk

∂xi
(y))

|x − y|3+2s
dxdy + on(1),

∫

R3
ϕt

ωn
ωn

∂φk

∂xi
dx =

∫

R3
ϕt

ωn
ω

∂φk

∂xi
dx + on(1),

and
∫

R3
ωn

∂φk

∂xi
log ω2

ndx =
∫

R3
ω

∂φk

∂xi
log ω2dx + on(1).

Gathering the above limit with (3.10), we derive that

lim sup
n→+∞

∣

∣

∣

∣

∫

R3
(V (ϵnzn + ϵnx)− V (ϵnzn))ωn

∂φk

∂xi
dx

∣

∣

∣

∣

= 0.

As φk has compact support, the above limit gives

lim sup
n→+∞

∣

∣

∣

∣

∫

R3
(V (ϵnzn + ϵnx)− V (ϵnzn))ω

∂φk

∂xi
dx

∣

∣

∣

∣

= 0.

Recalling that ∂ω
∂xi

∈ L2(R3), we have that ( ∂φk

∂xi
) is bounded in L2(R3). Then,

lim sup
n→+∞

∣

∣

∣

∣

∫

R3
(V (ϵnzn + ϵnx)− V (ϵnzn)) φk

∂φk

∂xi
dx

∣

∣

∣

∣

= ok(1),

and so,

lim sup
n→+∞

∣

∣

∣

∣

∣

1

2

∫

R3
(V (ϵnzn + ϵnx)− V(ϵnzn))

∂
(

φ2
k

)

∂xi
dx

∣

∣

∣

∣

∣

= ok(1).

Using Green’s Theorem together with the fact that φk has compact support, we get the limit

below

lim sup
n→+∞

∣

∣

∣

∣

∫

R3

∂V

∂xi
(ϵnzn + ϵnx) φ2

kdx

∣

∣

∣

∣

= ok(1),

which combined with (V2) loads to

lim sup
n→+∞

∣

∣

∣

∣

∂V

∂xi
(ϵnzn)

∫

R3
|φk|

2dx

∣

∣

∣

∣

= ok(1).

As
∫

R3
|φk|

2 dx →
∫

R3
|ω|2dx > 0 as k → +∞,
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it shows that

lim sup
n→+∞

∣

∣

∣

∣

∂V

∂xi
(ϵnzn)

∣

∣

∣

∣

= ok(1), ∀i ∈ {1, 2, 3}.

Since k is arbitrary, we obtain

∇V(ϵnzn) → 0 and V(ϵnzn) → α1,

as n → ∞. Therefore, (ϵnzn) is a (PS)α1
sequence for V, which is a contradiction, because

by hypotheses V satisfies the (PS) condition and (ϵnzn) does not have any convergent subse-

quence in R
3. Thus, the proof is completed.

Hereafter, we denote by Nϵ the Nehari manifold associated with Iϵ, that is,

Nϵ = {u ∈ Hϵ\{0} : I ′
ϵ(u)u = 0}.

The next lemma will be crucial in our study to show an important estimate.

Lemma 3.9. Let ϵn → 0 and (un) ⊂ Nϵn such that Iϵn(un) → m(c0). Then, there are (zn) ⊂ R
3

with |zn| → +∞ and u1 ∈ Hϵ\{0} such that

un (·+ zn) → u1 in Hϵ.

Moreover,

lim inf
n→+∞

|ϵnzn| > 0.

Proof. Since un ∈ Nϵn , we can see that I ′
c0
(un) un ≤ 0 and Ic0(u) ≤ Iϵn(u) for all u ∈ Hϵ and

n ∈ N. Then, there exists τn ∈ (0, 1] such that

(τnun) ⊂ Nc0 and Ic0(τnun) → m(c0).

Since (τn) is bounded, by Alves–de Morais Filho [2], there exist (zn) ⊂ R
3, u1 ∈ Hϵ\{0}, and

a subsequence of (un), still denote by (un), verifying

un (·+ zn) → u1 in Hϵ.

Claim II:

lim inf
n→+∞

|ϵnzn| > 0.

Indeed, since un ∈ Nϵn for all n ∈ N, the function u1
n = un (·+ zn) must verify

[u1
n]

2 +
∫

R3
V (ϵnzn + ϵnx)

∣

∣

∣
u1

n

∣

∣

∣

2
dx −

∫

R3
ϕt

u1
n
|u1

n|
2dx +

∫

R3
F′

1

(

u1
n

)

u1
ndx

=
∫

R3
F′

2

(

u1
n

)

u1
ndx.

(3.11)

Since F1 is convex, even and F1(τ) ≥ F1(0) = 0 for all τ ∈ R, we can derive that 0 ≤ F1(τ) ≤
F′

1(τ)τ for all τ ∈ R. Supposing by contradiction that for some subsequence

lim
n→+∞

ϵnzn = 0.

Taking the limit of n → +∞ in (3.11), we have

[u1]
2 +

∫

R3
V(0) |u1|

2 dx −
∫

R3
ϕt

u1
|u1|

2dx +
∫

R3
F′

1 (u1) u1dx ≤
∫

R3
F′

2 (u1) u1dx.
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Then, there is τ1 ∈ (0, 1] such that τ1u1 ∈ MV(0). Thus, since V(0) > c0, we derive that

IV(0)(τ1u1) ≥ m(V(0)) > m(c0) > 0. (3.12)

On the other hand,

Iϵn(un) → IV(0)(τ1u1),

which leads to

m(c0) ≥ IV(0)(τ1u1). (3.13)

From (3.12) and (3.13), we can find a contradiction, which finishes the proof.

4 A special minimax level

To prove Theorem 1.1, we shall consider a special minimax level. To do that, we begin fixing

the barycenter function by

β(u) =

∫

R3
x
|x| |u|

2dx
∫

R3 |u|2dx
, ∀u ∈ Hϵ\{0}.

For each z ∈ R
N and ϵ > 0, let us define the function

φϵ,z(x) = τϵ,zu0

(

x −
z

ϵ

)

,

where τϵ,z > 0 is such that φϵ,z ∈ Nϵ and u0 is a radial positive ground state solution for Ic0 ,

that is,

Ic0 (u0) = m(c0) and I ′
c0
(u0) = 0.

In what follows, we set Υϵ(z) = φϵ,z for all z ∈ R
3.

Lemma 4.1. The function Υϵ : R
3 → Nϵ is a continuous function.

Proof. Let (zn) ⊂ R
3 and z ∈ R

3 with zn → z in R
3. We must prove that

Υϵ (zn) → Υϵ(z) in Hϵ.

Here, the main point is to prove that

τϵ,zn → τϵ,z in R.

By definition of τϵ,zn and τϵ,z, they are the unique numbers that satisfy

Iϵ

(

τϵ,zn u0

(

· −
zn

ϵ

))

=
1

2

∫

R3

∣

∣

∣
τϵ,zn u0

(

x −
zn

ϵ

)∣

∣

∣

2
dx,

and

Iϵ

(

τϵ,zu0

(

· −
z

ϵ

))

=
1

2

∫

R3

∣

∣

∣
τϵ,zu0

(

x −
z

ϵ

)∣

∣

∣

2
dx,

that is,

1

2
[τϵ,zn u0]

2 +
1

2

∫

R3
(V (ϵx + zn) + 1) |τϵ,zn u0|

2 dx −
1

4

∫

R3
ϕt

τϵ,zn u0
|τϵ,zn u0|

2dx

+
∫

R3
F1 (τϵ,zn u0)dx −

∫

R3
F2 (τϵ,zn u0)dx =

1

2

∫

R3
|τϵ,zn u0|

2 dx,

(4.1)
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and
1

2
[τϵ,zu0]

2 +
1

2

∫

R3
(V (ϵx + z) + 1) |τϵ,zu0|

2 dx −
1

4

∫

R3
ϕt

τϵ,zu0
|τϵ,zu0|

2dx

+
∫

R3
F1 (τϵ,zu0)dx −

∫

R3
F2 (τϵ,zu0)dx =

1

2

∫

R3
|τϵ,zu0|

2 dx.

A simple calculation gives that (τϵ,zn) is bounded, thus for some subsequence, we can assume

that τϵ,zn → τ∗. Since F1 is increasing in [0,+∞) and F1 (ζu0) ∈ L1(R3) for all ζ > 0, taking

the limit of n → +∞ in (4.1) and using the Lebesgue Theorem, we have

1

2
[τ∗u0]

2 +
1

2

∫

R3
(V (ϵx + z) + 1) |τ∗u0|

2 dx −
1

4

∫

R3
ϕt

τ∗u0
|τ∗u0|

2dx

+
∫

R3
F1 (τ∗u0)dx −

∫

R3
F2 (τ∗u0)dx =

1

2

∫

R3
|τ∗u0|

2 dx,

By uniqueness of τϵ,z, it shows that τϵ,z = τ∗, and so, τϵ,zn → τϵ,z. Then, since

u0

(

· −
zn

ϵ

)

→ u0

(

· −
z

ϵ

)

in Hϵ,

the proof is completed.

We establish several properties involving β and Υϵ.

Lemma 4.2. For each r > 0, we have

lim
ϵ→0

(

sup

{∣

∣

∣

∣

β (Υϵ(z))−
z

|z|

∣

∣

∣

∣

: |z| ≥ r

})

= 0.

Proof. It is enough to show that for any (zn) ⊂ R
3 with |zn| ≥ r and ϵn → 0, we have that

∣

∣

∣

∣

β (Υϵn (zn))−
zn

|zn|

∣

∣

∣

∣

→ 0 as n → +∞.

By change of variables,

∣

∣

∣

∣

β (Υϵn (zn))−
zn

|zn|

∣

∣

∣

∣

=

∫

R3

∣

∣

∣

ϵnx+zn

|ϵnx+zn|
− zn

|zn|

∣

∣

∣ |u0(x)|2 dx
∫

R3 |u0(x)|2 dx
.

Since for each x ∈ R
3, we have

∣

∣

∣

∣

ϵnx + zn

|ϵnx + zn|
−

zn

|zn|

∣

∣

∣

∣

→ 0 as n → +∞,

by the Lebesgue Dominated Convergence Theorem, we get that

∫

R3

∣

∣

∣

∣

ϵnx + zn

|ϵnx + zn|
−

zn

|zn|

∣

∣

∣

∣

|u0(x)|2 dx → 0 as n → +∞,

which completes the proof.

As a by-product of the arguments explored in the proof of the last lemma, we have

Corollary 4.3. Fixed r > 0, there is ϵ0 > 0 such that

(β (Υϵ(z)) , z) > 0, ∀|z| ≥ r and ϵ ∈ (0, ϵ0).



16 H. Tao and L. Li

Proof. By Lemma 4.2, for fixed r > 0, there is ϵ0 > 0 such that
∣

∣

∣

∣

β (Υϵ(z))−
z

|z|

∣

∣

∣

∣

<
1

2
, ∀|z| ≥ r and ϵ ∈ (0, ϵ0) .

On the other hand,

(β (Υϵ(z)) , z) =

(

β (Υϵ(z))−
z

|z|
, z

)

+

(

z

|z|
, z

)

=

(

β (Υϵ(z))−
z

|z|
, z

)

+ |z|, ∀z ∈ R
3\{0}.

Therefore, for |z| ≥ r, we have

(β (Υϵ(z)) , z) ≥ |z|

(

1 −

∣

∣

∣

∣

β (Υϵ(z))−
z

|z|

∣

∣

∣

∣

)

>
|z|

2
≥

r

2
> 0,

showing the corollary.

In the sequel, we define the set

Bϵ = {u ∈ Nϵ : β(u) ∈ Y} .

Note that Bϵ ̸= ∅, since β (φϵ,0) = 0 ∈ Y, for all ϵ > 0. Associated with the above set, let us

consider the real number Dϵ given by

Dϵ = inf
u∈Bϵ

Iϵ(u).

The next lemma establishes an important relation between the levels Dϵ and m(c0).

Lemma 4.4. The following conclusions are valid:

(a) There are ϵ0 and σ > 0 such that

Dϵ ≥ m (c0) + σ, ∀ϵ ∈ (0, ϵ0) .

(b)

lim sup
ϵ→0

{

sup
x∈X

Iϵ(Υϵ(x))

}

< 2m (c0)− σ.

Proof. (a) By the definition of Dϵ, we can see

Dϵ ≥ m(c0), ∀ϵ > 0.

Supposing by contradiction that the lemma does not hold, there is ϵn → 0 satisfying

Dϵn → m(c0).

Hence, there exists un ∈ Nϵn with β(un) ∈ Y such that

Iϵn(un) → m(c0).

Thereby, by Lemma 3.9, there are u1 ∈ Hϵ\{0} and a sequence (zn) ⊂ R
3 with

lim inf
n→+∞

|ϵnzn| > 0
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verifying

un(·+ zn) → u1 in Hϵ,

that is

un = u1 (· − zn) + ωn with ωn → 0 in Hϵ.

From the definition of β,

β (u1(· − zn)) =

∫

R3
ϵnx+ϵnzn

|ϵnx+ϵnzn|
|u1|

2 dx
∫

R3 |u1|
2 dx

.

Repeating the same arguments explored in the proof of Lemma 4.2, we know that

β (u1(· − zn)) =
zn

|zn|
+ on(1),

and so,

β (un) = β (u1(· − zn)) + on(1) =
zn

|zn|
+ on(1).

Since β (un) ∈ Y, we conclude that zn

|zn|
∈ Yλ for n large enough. Consequently, zn ∈ Yλ for n

large enough, implying that

lim inf
n→∞

V(ϵnzn) > c0.

If A = lim infn→∞ V (ϵnzn), the last inequality and the Fatou’s lemma show that

m(c0) = lim inf
n→∞

Iϵn(un) ≥ lim inf
n→∞

Iϵn(τun) ≥ IA(τu1) ≥ m(A) > m(c0),

which is a contradiction, recalling that there exists τ ∈ (0, 1] such that I ′
A(τu1)τu1 = 0 and

u1 ̸= 0.

(b) By V(0) > c0, c1 < c0 + 1 and the fact that u0 is a ground state solution associated with

Ic0 , we infer that

lim sup
ϵ→0

{

sup
x∈X

Iϵ (Υϵ(x))

}

≤
1

2
[uo]

2 +
1

2

∫

R3
(c1 + 1) |u0|

2 dx

−
1

4

∫

R3
ϕt

u0
|u0|

2dx −
1

2

∫

R3
u2

0 log u2
0dx

= Ic0 (u0) +
(c1 − c0)

2

∫

R3
|u0|

2 dx

= Ic0 (u0) + (c1 − c0) Ic0 (u0)

= (1 + c1 − c0)m(c0)

< 2m(c0),

which completes the proof.

Now, we are ready to show the minimax level. We fix ϵ ∈ (0, ϵ0) and the following sets

Id
ϵ = {u ∈ Hϵ : Iϵ(u) ≤ d} , Q = B̄R(0) ∩ X and ∂Q = ∂B̄R(0) ∩ X.

By the above notations, we define the class of the functions

Γ = {h ∈ C (Q, Kr) : h(x) = Υϵ(x), ∀x ∈ ∂Q} ,
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where r > 0, K = Υϵ(Q) and Kr = {u ∈ Hϵ : dist(u, K) < r}. Note that Γ ̸= ∅, since

Lemma 4.1 ensures that Υϵ ∈ Γ. Then, we set

Ωr = {u ∈ Kr : β(u) ∈ Y} ,

which is not empty because Υϵ(0) = φϵ,0 ∈ Kr for all r > 0. Here we have used the fact that

Υϵ(0) ∈ Υϵ(Q) and β(Υϵ(0)) = 0 ∈ Y.

Lemma 4.5. There exists r0 > 0 such that

Θr = inf
u∈Ωr

Iϵ(u) > m(c0) + σ/2, ∀r ∈ (0, r0).

Moreover, there is R > 0 such that

Iϵ(Υϵ(x)) ≤
1

2
(m(c0) + Θr) , ∀x ∈ ∂BR(0) ∩ X.

Proof. Assume by contradiction that the lemma does not hold. Then, there exist rn → 0 and

un ∈ Ωrn such that Iϵ(un) ≤ m(c0) + σ/2. By definition of Ωrn , there exists vn ∈ K such that

∥un − vn∥ ≤ rn. Since K is compact, there are a subsequence of (vn), still denoted by itself,

and v ∈ K such that vn → v in Hϵ, then un → v in Hϵ and β(v) ∈ Y, from where it follows

that v ∈ Bϵ, then by Lemma 4.4-(a), Iϵ(v) ≥ m(c0) + σ. On the other hand, since Iϵ is lower

semicontinuous, we have

lim inf
n→+∞

Iϵ(un) ≥ Iϵ(v),

which is a contradiction.

By (V1), given δ > 0, there exist ϵ0 > 0 and R > 0 such that

sup {Iϵ(Υϵ(x)) : x ∈ ∂BR(0) ∩ X} ≤ m(c0) + δ, ∀ϵ ∈ (0, ϵ0).

Fixing δ = σ
4 , where σ was given in Lemma 4.4-(a), we derive

sup {Iϵ(Υϵ(x)) : x ∈ ∂BR(0) ∩ X} ≤
1

2

(

2m(c0) +
σ

2

)

<
1

2
(m(c0) + Θr) , ∀ϵ ∈ (0, ϵ0),

which completes the proof.

Lemma 4.6. If h ∈ Γ, then h(Q) ∩ Ωr ̸= ∅ for all r ∈ (0, r0).

Proof. It is enough to show that for all h ∈ Γ, there exists x∗ ∈ Q such that

β (h (x∗)) ∈ Y.

For each h ∈ Γ, we set the function g : Q → R
3 given by

g(x) = β(h(x)) ∀x ∈ Q,

and the homotopy F : [0, 1]× Q → X as

F (τ, x) = τPX(g(x)) + (1 − τ)x,

where PX is the projection onto X =
{

(x, 0) : x ∈ R
3
}

. By Corollary 4.3, fixed R > 0 and ϵ > 0

small enough, one has

(F (τ, x), x) > 0, ∀(τ, x) ∈ [0, 1]× ∂Q.

Applying the homotopy invariance property of the topological degree, we have

d(g, Q, 0) = 1,

which implies that there is x∗ ∈ Q such that β (h (x∗)) = 0.
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Now, we define the minimax value

Cϵ = inf
h∈Γ

sup
x∈Q

Iϵ(h(x)).

By Lemmas 4.5 and 4.6,

Cϵ ≥ Θr = inf
u∈Ωr

Iϵ(u) ≥ m(c0) + σ/2, (4.2)

for ϵ is small enough. On the other hand,

Cϵ ≤ sup
x∈Q

Iϵ(Υϵ(x)).

Then, by Lemma 4.4-(b), if ϵ is small enough,

Cϵ ≤ sup
x∈Q

Iϵ(Υϵ(x)) < 2m (c0)− σ. (4.3)

From (4.2) and (4.3), there is ϵ0 such that

Cϵ ∈ (m(c0) + σ/2, 2m(c0)− σ) , ∀ϵ ∈ (0, ϵ0).

Proof of Theorem 1.1. Before proving Theorem 1.1, we first propose the following claim.

Claim III: For a given τ > 0 small enough, there exists uτ ∈ E such that

Φ
′
ϵ (uτ) · (v − uτ) + Ψ(v)− Ψ (uτ) ≥ −3τ ∥v − uτ∥ϵ , ∀v ∈ E,

and

Iϵ(uτ) ∈ [Cϵ − τ, Cϵ + τ] .

In fact, to prove the claim, we follow the ideas explored in Alves–de Morais Filho [2] and

Szulkin [28]. Have this in mind, by Lemma 4.5, we can fix τ > 0 small enough such that

Cϵ − τ/2 >
1

2
(m(c0) + Θr) ,

and we set

Γ1 =

{

h ∈ C(Q, Kr) : h|∂Q ≈ Υϵ|∂Q in ICϵ−τ/4
ϵ , sup

x∈∂Q

Iϵ(h(x)) ≤ Cϵ − τ/2

}

,

where ≈ denotes the homotopy relation and the number

C∗ = inf
h∈Γ1

sup
x∈Q

Iϵ(h(x)).

Arguing as in Szulkin [28], we have that C∗ = Cϵ, and so, it is enough to prove that Claim III

holds for C∗ instead Cϵ. In order to show this, firstly let us fix τ > 0 small enough and h ∈ Γ1

such that

Π(h) ≤ C∗ + τ and Π(g)− Π(h) ≥ −τd(g, h), ∀g ∈ Γ1, (4.4)

where

Π(g) = sup
x∈Q

Iϵ(g(x)), ∀g ∈ Γ1,
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and

d(g, h) = sup
x∈Q

∥g(x)− h(x)∥.

Supposing by contradiction that Claim III does not hold and arguing as in Alves–de Morais

Filho [2], we can apply Proposition 2.3 of Szulkin [28] with A = h(Q) to find a closed subset

W containing A in it interior and a deformation αs : W → Hϵ having the following properties:










∥u − αs(u)∥ϵ ≤ s, ∀u ∈ W and s ≈ 0+,

Iϵ (αs(u))− Iϵ(u) ≤ 2s, ∀u ∈ W,

Iϵ (αs(u))− Iϵ(u) ≤ −2τs, ∀u ∈ W with Iϵ(u) ≥ C∗ − τ,

(4.5)

and

sup
u∈A

Iϵ (αs(u))− sup
u∈A

Iϵ(u) ≤ −2τs. (4.6)

It is easy to see that g = αs ◦ h ∈ Γ1, for s small enough. However, by(4.4), (4.5) and (4.6), we

have

−τs ≤ −τd(g, h) ≤ Π(g)− Π(h) ≤ −2τs,

which is a contradiction. This contradiction shows that Claim III is true.

From Claim III, there exists a (PS)Cϵ
sequence for Iϵ, which will denoted by (un). By

Lemma 3.8, we can assume that un ⇀ uϵ for some uϵ ∈ Hϵ\{0}. On the other hand, it follows

from Lemma 3.2 that for each v ∈ C∞
0 (R3), there holds the limit ⟨I ′

ϵ (un) , v⟩ = on(1)∥v∥ϵ, from

where it shows that ⟨I ′
ϵ(uϵ), v⟩ = 0, or equivalently,

∫∫

R6

(uϵ(x)− uϵ(y))(v(x)− v(y))

|x − y|3+2s
dxdy +

∫

R3
V(ϵx)uϵ · vdx −

∫

R3
ϕt

uϵ
uϵvdx

=
∫

uϵv log u2
ϵdx, ∀v ∈ C∞

0 (R3).

Moreover, a similar computation also gives that

[uϵ]
2 +

∫

R3
V(ϵx)|uϵ|

2dx −
∫

R3
ϕt

uϵ
|uϵ|

2dx +
∫

F′
1 (uϵ) uϵdx ≤

∫

F′
2 (uϵ) uϵdx,

which implies that u2 log u2 ∈ L1(R3). This proves that uϵ is a critical point of Iϵ with ϕ = ϕuϵ

for ϵ small enough. Finally, the last inequality together with Fatou’s Lemma implies that

Iϵ(uϵ) ≤ Cϵ < 2m(c0).

By Squassina–Szulkin [26], local estimates and standard bootstrap arguments show that uϵ ∈
C2(R3, R). Moreover, by the Maximum Principle, we have that

uϵ(x) > 0 for x ∈ R.

For each ϵ > 0 small enough, let uϵ denote the positive solution obtained above. Setting

vϵ = uϵ(
x
ϵ ), then it shows that (vϵ, ϕvϵ) gives rise to a pair of solutions of (1.1).
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Abstract. In this paper, we study a hydrodynamic system modeling the evolution of
a plasma subject to a self-induced electromagnetic Lorentz force in incompressible vis-
cous fluids. The system consists of the Navier–Stokes equations coupled with a Maxwell
equation. In the three dimensional case, we show that every weak solution verifies the
energy equality for the incompressible Navier–Stokes–Maxwell equations with damp-
ing. We also establish some non-explosion criteria in terms of the velocity and magnetic
of local strong solution for standard Navier–Stokes–Maxwell system.
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1 Introduction

In this paper, we are interested in studying the unconditional energy conservation for the

weak solutions of Navier–Stokes–Maxwell (NSM for short) equations with damping (or the

tamed NSM equations)





∂tu + u · ∇u − µ∆u + ν|u|α−1u = −∇P + j × B, div u = 0,
1
c ∂tE −∇× B = −j, j = σ(cE + u × B),
1
c ∂tB +∇× E + ν|B|β−1B = 0, div B = 0,

(1.1)

with initial data

u(0, x) = u0, E(0, x) = E0, B(0, x) = B0 (1.2)

for (t, x) ∈ R
+ × Ω, where Ω is a periodic domain T

3 or whole space R
3. Here c > 0

denotes the speed of light, µ and ν denote respectively the positive viscosity and damping

coefficients of the fluid, and σ > 0 is the electrical conductivity. In the above system (1.1),

BCorresponding author. Email: wufan0319@yeah.net
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u = (u1, u2, u3) = u(t, x) stands for the velocity field of the (incompressible) fluid, while

E = (E1, E2, E3) = E(t, x) and B = (B1, B2, B3) = B(t, x) are the electric and magnetic fields,

respectively. The scalar function P = P(t, x) is the pressure and is also an unknown. Observe,

though, that the electric current j = j(t, x) is not an unknown, for it is fully determined by

(u, E, B) through Ohm’s law. The exponent α, β can be greater than or equal to 1.

The standard Navier–Stokes–Maxwell system (i.e., α = β = 1) describes the evolution of a

plasma (i.e., a charged fluid) subject to a self-induced electromagnetic Lorentz force j × B.





∂tu + u · ∇u = −∇P + j × B, div u = 0,
1
c ∂tE −∇× B = −j, j = σ(cE + u × B),
1
c ∂tB +∇× E = 0, div B = 0.

(1.3)

Mathematically, NSM equations is a coupled system, constituted by the parabolic nature of

the Navier–Stokes equations from fluid dynamics and the hyperbolic of the Maxwell equation

from electromagnetism. Moreover, it can be derived from the Vlasov–Maxwell–Boltzmann

system [3]. In the 2D case, Masmoudi [14] prove global existence of regular solutions to

the Maxwell–Navier–Stokes system (1.3), and also provide an exponential growth estimate

for the Hs norm of the solution when the time goes to infinity. In the 3D case, Ibrahim and

Keraani [7] showed the existence of global small mild solutions of NSM system (1.3). Recently,

Arsenio and Gallagher [1] have made important and new progress in this direction, they

established that global existence of solutions to the 3D system (1.3) holds whenever the initial

data tum (u0, E0, B0) is chosen in the natural energy space L2, while the electromagnetic field

(E0, B0) alone lies in Ḣs, for some given s ∈
[

1
2 , 3

2

)
, and is sufficiently small when compared

to some non-linear function of the initial energy

E0 :=
1

2

(
∥u0∥

2
L2 + ∥E0∥

2
L2 + ∥B0∥

2
L2

)
.

Kang and Lee [8] showed that the maximal existence time of the local strong solution T∗ is

finite if and only if ∫ T∗

0
∥u∥2

L∞ + ∥B∥
8
3
L∞ dt = ∞.

This was improved by Fan-Zhou [4] to be

∫ T∗

0
∥u∥2

L∞ + ∥B∥2
L∞ dt = ∞.

Thereafter, Ma, Jiang and Zhu [12] proved the following three regularity criteria:

• u ∈ L2
(
0, T; L∞

(
R

3
))

and ∇u ∈ L2
(
0, T; L3

(
R

3
))

;

• u ∈ Lp
(
0, T; Lq

(
R

3
))

, 2
p +

3
q = 1, 3 < q ≤ ∞ and ∇B ∈ L2

(
0, T; L3

(
R

3
))

;

• ∇u ∈ Lp
(
0, T; Lq

(
R

3
))

, 2
p +

3
q = 2, 3

2 < q ⩽ ∞ and ∇B ∈ L2
(
0, T; L3

(
R

3
))

.

More recently, this result has been improved by Zhang, Pan and iu [20], who proved that if

u ∈ L
2

1−r
(
0, T; Ḃ−r

∞,∞

(
R

3
))

, −1 < r < 1

and

∇B ∈ Lp
(
0, T; Lq

(
R

3
))

,
2

p
+

3

q
= 2 with 2 ≤ q ≤ 3,
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then the strong solution to the NSM system (1.3) can be smoothly extended beyond T. In

addition, the energy balance of distributional solutions/Leray–Hopf weak solutions for the

NSM system was obtained in [13, 19]. In particular, for a Leray–Hopf weak solution (u, E, B)

satisfies

u ∈ Lq (0, T; Lp(Ω)) ,
1

q
+

1

p
≤

1

2
, p ≥ 4, (1.4)

and

B ∈ Lr (0, T; Ls(Ω)) ,
1

r
+

1

s
≤

1

2
, s ≥ 4. (1.5)

Then it keeps energy balance.

The damping comes from the resistance to the motion of the flow. It describes various

physical phenomena such as porous media flow, drag or friction effects, and some dissipative

mechanisms [2]. Recently, Liu, Sun and Xin [11] considered the following 3D NSM system

with damping:




∂tu + u · ∇u − µ∆u + |u|α−1u = −∇P + j × B, div u = 0,

∂tE −∇× B + |E|E = −j, j = σ(E + u × B),

∂tB +∇× E + |B|4B = 0, div B = 0,

(1.6)

and proved the existence and uniqueness of strong solutions for system (1.6) provided that

α ≥ 3.

When E = B ≡ 0, system (1.1) reduces to the Navier–Stokes system with damping(or the

tamed Navier–Stokes equations). When viscosity and damping coefficients µ and ν equal to

one, Cai and Jiu [2] first established the global existence of strong solutions provided that

α ≥ 7
2 . Later, it was improved to the α ≥ 3 by Zhou [21]. Very recently, Hajduk and Robinson

in [6] give a simple proof of the existence of global-in-time smooth solutions for tamed Navier–

Stokes equations on a 3D periodic domain, for values of the absorption exponent α larger than

3. Furthermore, they prove that global, regular solutions exist also for the critical value of

exponent α = 3, provided that the coefficients satisfy the relation 4µν ≥ 1. Additionally, they

showed that in the critical case every Leray-Hopf weak solution verifies the energy identity:

∥u (t)∥2
L2 + 2µ

∫ t

0
∥∇u(s)∥2

L2 ds + 2ν
∫ t

0
∥u(s)∥4

L4 ds = ∥u (0)∥2
L2 , 0 < t < T.

To the best of our knowledge, the validity of the energy equality is not to date verified for the

NSM equations with damping (1.1) for the range of exponent values α, β ∈ [1, 3]. For larger

values of the exponent α, β with lower order damping term |E|E, it was already shown that

the tamed NSM equations (1.6) enjoy existence of global-in-time strong solutions (see proof

for whole spaces R
3 in [11]) and hence the energy equality is satisfied. A natural question

immediately arises: does any Leray–Hopf weak solution of the tamed NSM equations (1.1)

automatically satisfy the energy balance? In this work, we will try to answer this question,

and show the energy balance to the critical case α = β = 3. In addition, for the standard

NSM system (1.3) (i.e., α = β = 1 in (1.1)), we will show some blow-up criteria under scaling

invariant conditions on gradient of the velocity and the magnetic in some different Banach

spaces, including the homogeneous Sobolev space, the weighted L∞-space and the Morrey

space, etc.

In a same fashion with [6], we first state the definition of the Leray–Hopf weak solutions

to system (1.1).
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Definition 1.1 (Leray–Hopf weak solution). Let (u0, E0, B0) ∈ L2(Ω) with ∇ · u0 = ∇ · B0 =

0, T > 0. The function (u, E, B) is said to be a Leray–Hopf weak solution to tamed NSM

system(1.1) if

1. u ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; Ḣ1((Ω))) ∩ Lα+1(0, T; Lα+1(Ω))

B ∈ L∞(0, T; L2(Ω)) ∩ Lβ+1(0, T; Lβ+1(Ω))

E ∈ L∞(0, T; L2(Ω)), j ∈ L2(0, T; L2(Ω));

2. for any smooth test function φ ∈ C∞
c (Ω × [0, T)) and ∇ · φ = 0, holds that

−
∫ T

0

∫

Ω
u · ∂t φdxdt + µ

∫ T

0

∫

Ω
∇u : ∇φdxdt +

∫ T

0

∫

Ω
[u · ∇u − j × B + ν|u|α−1u] · φdxdt

=
∫

Ω
u0 · φ(x, 0)dx,

−
1

c

∫ T

0

∫

Ω
E · ∂t φdxdt +

∫ T

0

∫

Ω
B∇× φdxdt +

∫ T

0

∫

Ω
j · φdxdt =

∫

Ω
E0 · φ(x, 0)dx,

and

−
1

c

∫ T

0

∫

Ω
B · ∂t φdxdt−

∫ T

0

∫

Ω
E∇× φdxdt+

∫ T

0

∫

Ω
ν|B|β−1B · φdxdt =

∫

Ω
B0 · φ(x, 0)dx,

3. for any Φ ∈ C∞
c (Rd), it holds that

∫

Ω
u · ∇Φdx =

∫

Ω
B · ∇Φdx = 0

a.e. t ∈ (0, T);

4. (u, E, B) satisfies the energy inequality
1

2
(∥u(·, t)∥2

L2 + ∥E(·, t)∥2
L2 + ∥B(·, t)∥2

L2) +
∫ T

0
(µ∥∇u∥2

L2 +
1

σ
∥j∥2

L2)dt

+ ν
∫ T

0
∥u∥α+1

Lα+1 + c∥B∥
β+1

Lβ+1dt ≤
1

2

∫

Ω
(|u0|

2 + |E0|
2 + |B0|

2)dx,

for all t ∈ [0, T].

We now make the observation that Leray–Hopf weak solutions of the tamed NSM system

(1.1) with α = β = 3 by Definition 1.1 satisfy the condition (1.4)–(1.5). This suggests that the

energy balance holds for all weak solutions of this problem, and we will prove this in the

following unconditional energy balance theorem.

Theorem 1.2. Let α = β = 3 in tamed NSM system (1.1), then every Leray–Hopf weak solution

(u, E, B) with (u0, E0, B0) ∈ L2(Ω) satisfies the energy balance:

1

2
(∥u(·, t)∥2

L2 + ∥E(·, t)∥2
L2 + ∥B(·, t)∥2

L2) +
∫ T

0
(µ∥∇u∥2

L2 +
1

σ
∥j∥2

L2)dt

+ ν
∫ T

0
∥u∥4

L4 + c∥B∥4
L4dt =

1

2
(∥u0∥

2
L2 + ∥E0∥

2
L2 + ∥B0∥

2
L2), (1.7)

for all t ∈ [0, T].
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Remark 1.3. In [5], the authors approximate functions defined on smooth bounded domains

by elements of the eigenspaces of the Laplacian or the Stokes operator in such a way that

the approximations are bounded and converge in both Sobolev and Lebesgue spaces. As a

direct application, they prove that all weak solutions of the tamed NS equations posed on a

bounded domain in R
3 satisfy the energy equality. One may establish similar result to tamed

NSM equations (1.1) in smooth bounded domain by the the method developed in [4].

As mentioned in the introduction, we will give several new non-explosion criteria in terms

of the velocity and magnetic for standard NSM system on the framework of different Banach

spaces. (Definitions of various Banach spaces can be found in Section 3.)

Theorem 1.4. Let (u0, E0, B0) ∈ H2(R3) with ∇ · u0 = ∇ · B0 = 0. Assume that (u, E, B) be the

local strong solution of the standard NSM system (1.3). If

S,∇B ∈ L2
(
0, T;X

(
R

3
))

, (1.8)

where X is one of the Banach spaces:

• X = Ḣ1/2
(
R

3
)

(the homogeneous Sobolev space),

• X = L3
(
R

3
)

(the Lebesgue space),

• X =
{

f ∈ L∞
loc

(
R

3
)

: ∥ f ∥ = supx∈X |x∥ f (x)| < ∞
}

(the weighted L∞-space),

• X = PM2
(
R

3
)

(the Le Jan–Sznitman space),

• X = L3,∞
(
R

3
)

(the Marcinkiewicz space),

• X = Ṁ3
p

(
R

3
)

for each 2 < p ⩽ 3 (the Morrey space).

Then the local strong solution can be smoothly extended beyond T. Here, S = ∇sym(u)ij =
1
2

( ∂uj

∂xi
+

∂ui
∂xj

)
.

Remark 1.5. The result in Theorem 1.4 is more weaker condition to that in [12] or [20]. On the

one hand, the deformation tensor S in theorem 1.4 can be replaced ∇u or ∇× u, on the other

hand, we see that the framework of several Banach spaces in theorem 1.4 is more flexible and

larger than that of Lebesgue spaces.

2 Proof of Theorem 1.2

The goal of this section is to prove Theorem 1.2. The main idea is to use a Leray–Hopf weak

solution as a test function. We cannot do this directly since it is not sufficiently regular in space

or time. Therefore, for the sake of simplicity, we will proceed as if the solution is differentiable

in time. The extra arguments needed to mollify in time are straightforward. To this end we

recall here some standard facts of the theory of mollification and introduce a crucial lemma.

The key lemma is as follows which was proved by Lions in [10].

Let us to define η : R
d → R be a standard mollifier, i.e. η(x) = Ce

1
|x|2−1 for |x| < 1 and

η(x) = 0 for |x| ⩾ 1, where constant C > 0 selected such that
∫

Rd η(x)dx = 1. For any ε > 0,

we define the rescaled mollifier ηε(x) = ε−dη
(

x
ε

)
. For any function f ∈ L1

loc (Ω), its mollified

version is defined as

f ε(x) = ( f ∗ ηε) (x) =
∫

Ω
ηε(x − y) f (y)dy.



6 D. Ma and F. Wu

If f ∈ W1,p(Ω), the following local approximation is well known

f ε(x) → f in W
1,p
loc (Ω) ∀p ∈ [1, ∞).

Lemma 2.1. Let ∂ be a partial derivative in one direction. Let f , ∂ f ∈ Lp (R+× Ω), g ∈ Lq (R+× Ω)
with 1 ≤ p, q ≤ ∞, and 1

p +
1
q ≤ 1. Then, we have

∥∂( f g) ∗ ηε − ∂ ( f (g ∗ ηε)) ∥Lr(R+×Ω) ≤ C∥∂ f ∥Lp(R+×Ω)∥g∥Lq(R+×Ω)

for some constant C > 0 independent of ε, f and g, and with 1
r = 1

p +
1
q . In addition,

∂( f g) ∗ ηε − ∂ ( f (g ∗ ηε)) → 0 in Lr
(
R

+ × Ω
)

as ε → 0, if r < ∞.

Proof of Theorem 1.2. First, testing system (1.1)1,2,3 by (uε)ε, (Eε)ε and (Bε)ε, respectively, we

infer that 



∫
Ω

uε
(
∂tu + u · ∇u − µ∆u + ν|u|2u +∇P − j × B

)ε
dx = 0,∫

Ω
Eε (∂tE − c∇× B + cj)ε dx = 0,∫

Ω
Bε

(
∂tB + c∇× E + cν|B|2B

)ε
dx = 0.

(2.1)

Moreover, it yields that

1

2

d

dt

∫

Ω

(
|uε|2 + |Eε|2 + |Bε|2

)
dx + µ

∫

Ω
|∇uε|2dx

+ ν
∫

Ω

(
(|u|2u)ε · uε + c(|B|2B)ε · Bε

)
dx

= −
∫

Ω
div(u ⊗ u)ε · uεdx +

∫

Ω
(j × B)ε · uεdx + c

∫

Ω
(∇× B)ε · Eεdx

− c
∫

Ω
jε · Eεdx − c

∫

Ω
(∇× E)ε · Bεdx.

(2.2)

Clearly,

∫

Ω

(
|uε|2 + |Eε|2 + |Bε|2

)
dx −

∫

Ω

(
|uε

0|
2 + |Eε

0|
2 + |Bε

0|
2
)

dxdt + 2µ
∫ T

0

∫

Ω
|∇uε|2dxdt

+ 2ν
∫ T

0

∫

Ω

(
(|u|2u)ε · uε + c(|B|2B)ε · Bε

)
dxdt

= − 2
∫ T

0

∫

Ω
div(u ⊗ u)ε · uεdxdt + 2

∫ T

0

∫

Ω
(j × B)ε · uεdxdt

+ 2c
∫ T

0

∫

Ω
(∇× B)ε · Eεdxdt − 2c

∫ T

0

∫

Ω
jε · Eεdxdt

− 2c
∫ T

0

∫

Ω
(∇× E)ε · Bεdxdt

= I1 + I2 + I3 + I4 + I5.

(2.3)

We want to pass to the limit in (2.3) as ε → 0. To this end, using Hölder’s inequality, we
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observe the following estimates for the nonlinear terms:
∣∣∣∣
∫ T

0

∫

Ω
(|u|2u)ε · uεdxdt −

∫ T

0

∫

Ω
|u|2u · udxdt

∣∣∣∣

≤

∣∣∣∣
∫ T

0

∫

Ω

(
|u|2u)ε − |u|2u

)
· uε + |u|2u(uε − u)dxdt

∣∣∣∣

≤ ∥uε∥L4(0,T;L4(Ω))

∥∥(|u|2u)ε − |u|2u
)∥∥

L
4
3

(
0,T;L

4
3 (Ω)

)

+ ∥uε − u∥L4(0,T;L4(Ω))

∥∥|u|2u
∥∥

L
4
3

(
0,T;L

4
3 (Ω)

) → 0 as ε → 0.

(2.4)

Similarly, ∣∣∣∣
∫ T

0

∫

Ω
(|B|2B)ε · Bεdxdt −

∫ T

0

∫

Ω
|B|2B · udxdt

∣∣∣∣ → 0 as ε → 0. (2.5)

In addition, since

div (u ⊗ u)ε = [div(u ⊗ u)ε − div(u ⊗ uε)] + [div(u ⊗ uε)− div(uε ⊗ uε)] + div(uε ⊗ uε)

= I11 + I12 + I13,

and so

I1 = −2
∫ T

0

∫

Ω
(I11 + I12 + I13) · uεdxdt. (2.6)

From Lemma 2.1, one obtains

∥I11∥
L

4
3

(
0,T;L

4
3 (Ω)

) ≤ C∥uε∥L4(0,T;L4(Ω))∥∇uε∥L2(0,T;L2(Ω))

and it converges to zero in L
4
3

(
0, T; L

4
3 (Ω)

)
as ε tends to zero. Thus, as ε goes to zero, it follows

that ∣∣∣∣−2
∫ T

0

∫

Ω
I11uεdxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫

Ω
[div(u ⊗ u)ε − div(u ⊗ uε)] · uεdxdt

∣∣∣∣

≤ ∥I11∥
L

4
3

(
0,T;L

4
3 (Ω)

) ∥uε∥L4(0,T;L4(Ω))

→ 0.

(2.7)

Moreover, we have
∣∣∣∣−2

∫ T

0

∫

Ω
I12uεdxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫

Ω
[div(u ⊗ uε)− div(uε ⊗ uε)] · uεdxdt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(u ⊗ uε − uε ⊗ uε) · ∇uεdxdt

∣∣∣∣

≤ ∥u − uε∥L4(0,T;L4(Ω)) ∥uε∥L4(0,T;L4(Ω))∥∇uε∥L2(0,T;L2(Ω))

→ 0 as ε → 0.

(2.8)

Since div uε = 0, one has

−2
∫ T

0

∫

Ω
I13 · uεdx = 0. (2.9)

Combining (2.6)–(2.9), we know that

I1 → 0, as ε → 0. (2.10)
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For the term I2, we claim that

I2 = 2
∫ T

0

∫

Ω
(j × B)ε · uεdxdt → 2

∫ T

0

∫

Ω
(j × B) · udxdt, as ε → 0. (2.11)

Indeed,

2
∫ T

0

∫

Ω
(j × B)ε · uε − (j × B) · udxdt

= 2
∫ T

0

∫

Ω
(j × B)ε · uε − (j × B) · uε + (j × B) · uε − (j × B) · udxdt

= 2
∫ T

0

∫

Ω
[(j × B)ε − (j × B)] · uε + (j × B) · (uε − u)dxdt

≤ 2 ∥(j × B)ε − (j × B)∥
L

4
3

(
0,T;L

4
3 (Ω)

) ∥uε∥L4(0,T;L4(Ω))

+ 2 ∥j × B∥
L

4
3

(
0,T;L

4
3 (Ω)

) ∥uε − u∥L4(0,T;L4(Ω))

→ 0, as ε → 0,

(2.12)

where we used fact that

∥j × B∥
L

4
3

(
0,T;L

4
3 (Ω)

) ≤ ∥j∥L2(0,T;L2(Ω)) ∥B∥L4(0,T;L4(Ω)) ≤ C.

By using the same trick, we find that

I4 = −2c
∫ T

0

∫

Ω
jε · Eεdxdt → −2c

∫ T

0

∫

Ω
j · Edxdt, as ε → 0. (2.13)

After integration by part, the term I3 can be dominated as

I3 = 2c
∫ T

0

∫

Ω
(∇× B)ε · Eεdxdt

= 2c
∫ T

0

∫

Ω

(
ϵijk∂jBk

)ε
· Eε

i dxdt

= − 2c
∫ T

0

∫

Ω
ϵijkBε

k · ∂jE
ε
i dxdt

= 2c
∫ T

0

∫

Ω
ϵkjiB

ε
k · ∂jE

ε
i dxdt

= 2c
∫ T

0

∫

Ω
Bε · (∇× E)εdxdt,

(2.14)

So, it follows that

I3 + I5 = 0. (2.15)

Letting ε goes to zero in (2.3), and using the facts (2.4)–(2.5) and (2.10)–(2.15), we infer that

(∥u(·, t)∥2
L2 + ∥E(·, t)∥2

L2 + ∥B(·, t)∥2
L2) + 2

∫ T

0

(
µ∥∇u∥2

L2 +
1

σ
∥j∥2

L2

)
dt

+ 2ν
∫ T

0
∥u∥4

L4 + c∥B∥4
L4 dt = (∥u0∥

2
L2 + ∥E0∥

2
L2 + ∥B0∥

2
L2), (2.16)
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where we have used the facts that

2
∫ T

0

∫

Ω
(j × B) · udxdt − 2c

∫ T

0

∫

Ω
j · Edxdt = −2

∫

Ω
(u × B) · jdx − 2c

∫

Ω
E · jdx

and

j = σ(cE + u × B).

The energy equality (1.7) follows easily from (2.16).

3 Proof of Theorem 1.4

In this section, we first introduce several definitions used throughout proof of theorem 1.4

and also recall the well-known results for our analysis (see e.g. [9, 16, 17] and [18]). And then

show the derivation details of theorem 1.4.

Definition 3.1. The weighted L∞-space is defined by

Weighted L∞ =

{
f ∈ L∞

loc

(
R

3
)

: ∥ f ∥X = sup
x∈X

|x∥ f (x)| < ∞

}
.

Definition 3.2. The Le Jan–Sznitman space is defined by

PM2 =

{
v ∈ S ′

(
R

3
)

: v̂ ∈ L1
loc

(
R

3
)

, ∥v∥PM2 = ess sup
ξ∈R3

|ξ|2|v̂(ξ)| < ∞

}
.

Definition 3.3. Let 1 < p ≤ q < ∞, the homogeneous Morrey spaces are defined as

Ṁ
q
p

(
R

3
)
=

{
f ∈ L

q
loc

(
R

3
)

: ∥ f ∥Ṁ
q
p
= sup

R>0

sup
x∈R3

R
3
(

1
p−

1
q

) (∫

BR(x)
| f (y)|p dy

) 1
p

< ∞

}
.

Lemma 3.4 ([15]). For all − 3
2 < α <

3
2 and for all u divergence free in the sense that ξ · û(ξ) = 0

almost everywhere,

∥S∥2
Ḣα = ∥A∥2

Ḣα =
1

2
∥ω∥2

Ḣα =
1

2
∥∇⊗ u∥2

Ḣα , (3.1)

where symmetric part S = Sij =
1
2

(
∂uj

∂xi
+ ∂ui

∂xj

)
, which we refer to as the strain tensor, anti-symmetric

part A = Aij =
1
2

(
∂uj

∂xi
− ∂ui

∂xj

)
, ω = ∇× u.

Lemma 3.5 (Hardy-type inequalities [9]). There exists a constant K > 0 such that the following

inequality holds true

∣∣∣∣
∫

R3
W · (g · ∇)h dx

∣∣∣∣ ⩽ K∥W∥Xσ
∥∇g∥L2∥∇h∥L2 ,

for all vector fields g, h ∈ Ḣ1
(
R

3
)

and all W ∈ Xσ, where Xσ (the subspace of X of divergence-free

vector functions) is one of the Banach spaces

• Xσ = Ḣ1/2
σ

(
R

3
)

(the homogeneous Sobolev space),

• Xσ = L3
σ

(
R

3
)

(the Lebesgue space),
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• Xσ =
{

f ∈ L∞
loc

(
R

3
)

: ∥ f ∥ = supx∈Xσ
|x∥ f (x)| < ∞

}
(the weighted L∞-space),

• Xσ = PM2
(
R

3
)

(the Le Jan–Sznitman space),

• Xσ = L3,∞
σ

(
R

3
)

(the Marcinkiewicz space),

• Xσ = Ṁ3
p

(
R

3
)

for each 2 < p ⩽ 3 (the Morrey space).

The following proposition is an ad hoc variant of the preceding lemma 3.5. It will be more

applicable to proving theorem 1.4. This proposition is inspired by the details of the proof from

lemma 3.5.

Proposition 3.6. There exists a constant C > 0 such that the following inequality holds true

∣∣∣∣
∫

R3
Wgh dx

∣∣∣∣ ⩽ C∥W∥X ∥∇g∥L2∥h∥L2 ,

for all vector fields g ∈ Ḣ1
(
R

3
)
, h ∈ L2

(
R

3
)

and all W ∈ X , where X is one of the Banach spaces

• X = Ḣ1/2
(
R

3
)

(the homogeneous Sobolev space),

• X = L3
(
R

3
)

(the Lebesgue space),

• X =
{

f ∈ L∞
loc

(
R

3
)

: ∥ f ∥ = supx∈X |x∥ f (x)| < ∞
}

(the weighted L∞-space),

• X = PM2
(
R

3
)

(the Le Jan–Sznitman space),

• X = L3,∞
(
R

3
)

(the Marcinkiewicz space),

• X = Ṁ3
p

(
R

3
)

for each 2 < p ⩽ 3 (the Morrey space).

Proof of Theorem 1.4. We now shall prove Theorem 1.4, we only need to establish a priori esti-

mates. Without loss of generality, we may assume c = σ = 1 in system (1.3).

Step 1: Energy estimates. Testing (1.3)1,2,3 by u, E, B respectively, and adding up the results,

we have the well-known energy equality

d

dt
∥(u, E, B)∥2

L2 + ∥∇u∥2
L2

=
∫

R3
(j × B) · udx +

∫

R3
curl B · Edx −

∫

R3
j · Edx −

∫

R3
curl E · Bdx

= −
∫

R3
(u × B) · jdx −

∫

R3
E · jdx

= − ∥j∥2
L2 ,

where we have used Ohm’s law: j = (E + u × B). Which gives

∥(u, E, B)(t)∥2
L2 + 2

∫ T

0
∥(∇u, j)(t)∥2

L2dt = ∥(u0, E0, B0)∥
2
L2 , ∀t ≥ 0.

Step 2: Ḣ
1 estimates. First, taking ∇× on the first equation of (1.3), we get

∂tω + (u · ∇)ω − ∆ω − Sω = ∇× (j × B) , (3.2)
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the vortex stretching term Sω is often written (ω · ∇)u, that is to say Sω = (ω · ∇)u. Indeed,

the symmetric part S is given by

Sij = ∇sym(u)ij =
1

2

(
∂uj

∂xi
+

∂ui

∂xj

)

and the anti-symmetric part A is given by

Aij =
1

2

(
∂uj

∂xi
−

∂ui

∂xj

)
.

Naturally, ∇u = S + A. In addition, we know that in three spatial dimensions the anti-

symmetric matrix A can be represented as a vector. Here, we write as:

A =
1

2




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


 .

Then we have Aω = 0.

Next, multiplying (3.2) by ω and integrating by parts over R
3, one has

1

2

d

dt
∥ω∥2

L2 + ∥∇ω∥2
L2 =

∫

R3
Sω · ωdx +

∫

R3
curl (j × B) · ωdx

=
∫

R3
Sω · ωdx −

∫

R3
(j × B) · ∆udx.

(3.3)

Testing (1.3)2,3 by −∆E,−∆B in L2
(
R

3
)

respectively, and putting together, we obtain

1

2

d

dt
∥(∇E,∇B)∥2

L2 =−
∫

R3
curl B · ∆Edx +

∫

R3
j · ∆Edx +

∫

R3
curl E · ∆Bdx

=−
∫

R3
∂i j · ∂iEdx.

(3.4)

Since

−
3

∑
i=1

∫

R3
∂i j · ∂iEdx = −

3

∑
i=1

∫

R3
∂i j · ∂i(j − u × B)dx

= −∥∇j∥2
L2 +

∫

R3
∂i(u × B) · ∂i jdx.

(3.5)

From the equalities in (3.3)–(3.5), it follows that

1

2

d

dt
∥(ω,∇E,∇B)∥2

L2 + ∥(∇ω,∇j)∥2
L2

=
∫

R3
Sω · ωdx +

∫

R3
∂i(j × B) · ∂iudx +

∫

R3
∂i(u × B) · ∂i jdx

≤
∫

R3
Sω · ωdx +

∫

R3
|j||∇u||∇B|dx +

∫

R3
|u||∇B||∇j|dx

= I + J + K,

(3.6)

where we have used the following cancellation property

∫

R3
∂i j × B · ∂iudx +

∫

R3
∂i j · ∂iu × Bdx = 0.

Let (1.8) hold true. We use proposition 3.6 and lemma 3.4 to bound I as follows
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I ≤ C∥S∥X ∥ω∥L2∥∇ω∥L2

≤ C ∥S∥2
X ∥ω∥2

L2 + ϵ∥∇ω∥2
L2 ,

(3.7)

Similarly, we bound J + K as follows

J + K ≤ 2ϵ ∥∇j∥2
L2 + C ∥∇B∥2

X ∥∇u∥2
L2 . (3.8)

Where X is one of the Banach spaces:

• X = Ḣ1/2
(
R

3
)

(the homogeneous Sobolev space),

• X = L3
(
R

3
)

(the Lebesgue space),

• X =
{

f ∈ L∞
loc

(
R

3
)

: ∥ f ∥ = supx∈X |x∥ f (x)| < ∞
}

(the weighted L∞-space),

• X = PM2
(
R

3
)

(the Le Jan–Sznitman space),

• X = L3,∞
(
R

3
)

(the Marcinkiewicz space),

• X = Ṁ3
p

(
R

3
)

for each 2 < p ⩽ 3 (the Morrey space).

Applying the entropy identity (i.e., Lemma 3.4) and collecting (3.7) and (3.8) into (3.6), we find

d

dt
∥(ω,∇E,∇B)∥2

L2 + ∥(∇ω,∇j)∥2
L2 ≤ C

(
∥S∥2

X + ∥∇B∥2
X

)
∥ω∥2

L2 . (3.9)

Using the Gronwall inequality, we conclude that

sup
0≤t≤T

∫
|∇u|2 + |∇E|2 + |∇B|2dx ≤ C

and ∫ T

0
∥∆u∥2

L2 + ∥∇j∥2
L2dt ≤ C.

Step 3: Ḣ
2 estimates. Applying ∆ to (1.3)1,2,3 and multiplying by ∆u, ∆E and ∆B, respectively,

and add the result equations, one has

d

dt
∥ (∆u, ∆B, ∆E) ∥2

L2 + ∥ (∇∆u, ∆j) ∥2
L2

=
∫

R3
−∆(u · ∇u) · ∆u + ∆(j × B) · ∆u + ∆j · ∆(u × B)dx

= C
(
∥∇u∥2

L3 + 1
)
∥∆u∥2

L2 + ϵ∥∇∆u∥2
L2

+
∫

R3
∂kk j × B · ∆u + ∂k j × ∂kB · ∆u + j × ∂kkB · ∆udx

+
∫

R3
∆j · ∂kku × B + ∆j · ∂ku × ∂kB + ∆j · u × ∂kkBdx

= C
(
∥∇u∥2

L3 + 1
)
∥∆u∥2

L2 + ϵ∥∇∆u∥2
L2 +

∫

R3
∂k j × ∂kB · ∆u + j × ∂kkB · ∆udx

︸ ︷︷ ︸
I

+
∫

R3
∆j · ∂ku × ∂kB + ∆j · u × ∂kkBdx

︸ ︷︷ ︸
J

,

(3.10)
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where used the following cancellation property:
∫

R3
∂kk j × B · ∆udx +

∫

R3
∆j · ∂kku × Bdx = 0.

I can be estimated as

I ≤ C∥∆u∥L2∥∇B∥L3∥∇j∥L6 + C∥j∥L3∥∆B∥L2∥∆u∥L6

≤ C∥∆u∥2
L2

(
∥∇B∥2

L2 + ∥∆B∥2
L2

)
+C

(
∥j∥2

L2 + ∥∇j∥2
L2

)
∥∆B∥2

L2 + ϵ∥∆j∥L2 + ϵ∥∇∆u∥2
L2

(3.11)

Similarly,

J ≤ C
(
∥∇u∥2

L2 + ∥∆u∥2
L2

)
∥∆B∥2

L2 + C
(
∥∇u∥2

L2 + ∥∆u∥2
L2

)
∥∆B∥2

L2 + 2ϵ∥∆j∥2
L2 (3.12)

Putting (3.11) and (3.12) into (3.10), we obtain

d

dt
∥ (∆u, ∆B, ∆E) ∥2

L2 + ∥ (∇∆u, ∆j) ∥2
L2

≤ C
(
∥∇u∥2

L2 + ∥∆u∥2
L2 + ∥j∥2

L2 + ∥∇j∥2
L2

)
∥ (∆u, ∆B, ∆E) ∥2

L2 ,
(3.13)

and by Gronwall’s lemma, we get that

u, B, E ∈ L∞
(
0, T, Ḣ2

)
;

∇u, j ∈ L2
(
0, T, Ḣ2

)
.

This completes the proof of Theorem 1.4.
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1 Introduction

In this paper we consider the second order half-linear ordinary differential equation

(p(t)Φα(x′))′ + q(t)Φα(x) = 0, t ≥ t0, (1.1)

where Φα(x) = |x|αsgn x with α > 0, p(t) and q(t) are real-valued continuous functions on
[t0, ∞), and p(t) > 0 for t ≥ t0. If α = 1, then (1.1) reduces to the linear equation

(p(t)x′)′ + q(t)x = 0, t ≥ t0. (1.2)

The half-linear equation (1.1) can be seen as a natural generalization of the linear equation
(1.2).

For a solution x(t) of (1.1), the vector function

(x(t), y(t)) = (x(t), p(t)Φα(x′(t)))

is a solution of the two-dimensional nonlinear system

x′ = p(t)−1/αΦ1/α(y), y′ = −q(t)Φα(x). (1.3)

Conversely, for a solution (x(t), y(t)) of (1.3), the first component x(t) is a solution of (1.1).
The system of the type (1.3) was considered by Mirzov [11]. Using the result of Mirzov

BEmail: naito.manabu078@nifty.com
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[11, Lemma 2.1], we see that all local solutions of (1.1) can be continued to t0 and ∞, and
so all solutions of (1.1) exist on the entire interval [t0, ∞). Analogues of Sturm’s comparison
theorem and Sturm’s separation theorem remain valid for (1.1) (Mirzov [11, Theorem 1.1]).
Hence, if the equation (1.1) has a nonoscillatory solution, then any other nontrivial solution is
also nonoscillatory. If the equation (1.1) has an oscillatory solution, then any other nontrivial
solution is also oscillatory. Clearly, if x(t) is a solution of (1.1), then so is −x(t). Therefore
we can suppose without loss of generality that a nonoscillatory solution of (1.1) is eventually
positive.

In the last three decades, many results have been obtained in the theory of oscillatory and
asymptotic behavior of solutions of half-linear differential equations. It is known that basic
results for the second order linear equations can be generalized to the second order half-linear
equations. The important works are summarized in the book of Došlý and Řehák [8]. For the
recent results to half-linear equations we refer the reader to, for example, [1–7,9,10,12–16]. The
present paper is strongly motivated by oscillatory and nonoscilaltory results in [2–4, 6, 7, 9].

For the equation (1.1), it is sometimes assumed that

∫ ∞

t0

p(s)−1/αds = lim
t→∞

∫ t

t0

p(s)−1/αds = ∞ (1.4)

and






















∫ ∞

t0

q(s)ds = lim
t→∞

∫ t

t0

q(s)ds is convergent, and

∫ ∞

t
q(s)ds ≥ 0, ̸≡ 0 on [t+0 , ∞) for any t+0 ≥ t0.

(1.5)

We point out that for any nonoscillatory solution x(t) of (1.1) with (1.4) and (1.5) the derivative
x′(t) does not vanish eventually. More precisely,

Proposition 1.1. Consider the equation (1.1) under the conditions (1.4) and (1.5). Let x(t) be a

nonoscillatory solution of (1.1) such that x(t) > 0 for t ≥ T (≥ t0). Then, x′(t) > 0 for t ≥ T.

The above fact is easily deduced from the generalized Riccati integral equation associated
with (1.1). See Lemma 2.3 in the next section.

Together with the equation (1.1), we consider the equation of the same type

(p(t)Φα(x′))′ + q0(t)Φα(x) = 0, t ≥ t0, (1.6)

where q0(t) is a real-valued continuous function on [t0, ∞). The equation (1.1) is regarded
as a perturbation of the equation (1.6). In this paper it will be assumed that (1.6) has a
nonoscillatory solution x = x0(t) such that

x0(t) > 0, x′0(t) > 0 for t ≥ T (1.7)

and
∫ ∞

T

1
p(t)x0(t)2x′0(t)

α−1 dt = ∞. (1.8)

The condition (1.8) is closely related to an integral characterization of the principal solution
of (1.6). For the concept of the principal solution, see Došlý and Řehák [8, Section 4.2]. The
following result is known.
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Theorem 1.2 (Došlý and Elbert [5] and Došlá and Došlý [1, Proposition 2]). Suppose that x =

x0(t) is a nonoscillatory solution of (1.6) satisfying (1.7).

(i) Let 0 < α ≤ 1. If (1.8) is satisfied, then x0(t) is the principal solution of (1.6).

(ii) Let α ≥ 1. If x0(t) is the principal solution of (1.6), then (1.8) holds.

(iii) Let α ≥ 1, and suppose that the conditions (1.4) and

∫ ∞

t0

q0(s)ds exists and
∫ ∞

t
q0(s)ds ≥ 0, ̸≡ 0 eventually (1.9)

are satisfied. Then, x0(t) is the principal solution of (1.6) if and only if (1.8) holds.

Note that the part (iii) of Theorem 1.2 is stated in [5, Theorem 3.3] and [8, Theorem 4.2.8]
without the condition α ≥ 1. The part (iii) of Theorem 1.2 may fail to hold for 0 < α < 1 (see
[1, Example 1]).

As an important oscillatory result the following theorem is known.

Theorem 1.3 (Došlý and Lomtatidze [7, Theorem 1]). Suppose that the equation (1.6) is nonoscil-

latory and let x = x0(t) be the principal solution of (1.6) satisfying x0(t) > 0 for t ≥ T. If

∫ ∞

T
x0(t)

α+1 [q(t)− q0(t)] dt = ∞,

then the equation (1.1) is oscillatory.

Now let us consider the case where the equation (1.6) has a nonoscillatory solution x =

x0(t) satisfying (1.7), (1.8) and
∫ ∞

T
x0(t)

α+1 [q(t)− q0(t)] dt is convergent. (1.10)

It is not assumed that x = x0(t) is principal. Then we set

P(t) = p(t)x0(t)
2x′0(t)

α−1 and Q(t) = x0(t)
α+1 [q(t)− q0(t)] . (1.11)

Note that (1.7) implies P(t) > 0 (t ≥ T).
The condition

lim inf
t→∞

p(t)x0(t)x′0(t)
α
> 0 (1.12)

also plays an important part. The following nonoscillatory result has been showed by Došlý
and Fišnarová.

Theorem 1.4 (Došlý and Fišnarová [6, Theorem 3]). Suppose that the equation (1.6) has a nonoscil-

latory solution x = x0(t) satisfying (1.7), (1.8) and (1.12). Suppose moreover that (1.10) holds. If there

exists ε > 0 such that the linear equation

(P(t)x′)′ + (1 + ε)
α + 1

2α
Q(t)x = 0 (1.13)

is nonoscillatory, then the equation (1.1) is nonoscillatory.

The following corollary is obtained by applying the classical Hille–Nehari nonoscillation
criterion to the linear equation (1.13).
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Corollary 1.5 (Došlý and Fišnarová [6, Corollary 1 (i)]). Suppose that (1.6) has a nonoscillatory

solution x = x0(t) satisfying (1.7), (1.8) and (1.12). Suppose moreover that (1.10) holds. If

−
3α

2(α + 1)
< lim inf

t→∞

(

∫ t

T

1
P(s)

ds

)(

∫ ∞

t
Q(s)ds

)

≤ lim sup
t→∞

(

∫ t

T

1
P(s)

ds

)(

∫ ∞

t
Q(s)ds

)

<
α

2(α + 1)
,

then the equation (1.1) is nonoscillatory.

In this paper the following theorem will be proved.

Theorem 1.6. Suppose that p(t) and q(t) satisfy (1.4) and (1.5), respectively. Suppose that the

equation (1.6) has a nonoscillatory solution x = x0(t) satisfying (1.7), (1.8) and (1.12). Suppose

moreover that (1.10) holds. If there exists a number ε with 0 < ε < 1 such that the linear equation

(P(t)x′)′ + (1 − ε)
α + 1

2α
Q(t)x = 0 (1.14)

is oscillatory, then the equation (1.1) is oscillatory.

Theorem 1.6 was proved in [3, Theorem 1] under the restricted condition that

lim
t→∞

p(t)x0(t)x′0(t)
α exists and is a positive finite value.

Theorem 1.6 gives a partial extension of Theorem 4 in [6]. Applying the classical Hille–Nehari
oscillation criterion to the linear equation (1.14), we have the following corollary.

Corollary 1.7. Suppose that p(t) and q(t) satisfy (1.4) and (1.5), respectively. Suppose that (1.6) has

a nonoscillatory solution x = x0(t) satisfying (1.7), (1.8) and (1.12). Suppose moreover that (1.10)
holds. If

lim inf
t→∞

(

∫ t

T

1
P(s)

ds

)(

∫ ∞

t
Q(s)ds

)

>
α

2(α + 1)
, (1.15)

then the equation (1.1) is oscillatory.

Corollary 1.7 is a new result, while it is similar to Corollary 1 (ii) in [6].
Now, let

E(α) =
1

α + 1

(

α

α + 1

)α

, µ(α) =
1
2

(

α

α + 1

)α

, (1.16)

and

log 0 t = t, log k t = log (log k−1 t), Log k t =
k

∏
j=1

log j t (k = 1, 2, 3, . . . ).

Then, consider the half-linear equation

(Φα(x′))′ +

(

αE(α)

tα+1 +
µ(α)

tα+1

n

∑
j=1

1
(Log j t)2 + c(t)

)

Φα(x) = 0, (1.17)

where c(t) is a continuous function on an interval [t0, ∞) with sufficiently large t0. The equa-
tion (1.17) is regarded as a perturbation of the half-linear Riemann–Weber (sometimes also
called Euler–Weber) differential equation

(Φα(x′))′ +

(

αE(α)

tα+1 +
µ(α)

tα+1

n

∑
j=1

1
(Log j t)2

)

Φα(x) = 0. (1.18)
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It is known that (1.18) is nonoscillatory. Moreover, the asymptotic forms of (nonoscillatory)
solutions of (1.18) are investigated by Elbert and Schneider [9, Corollary 1]. In this paper we
pay attention to the fact that (1.18) has a nonoscillatory solution x(t) such that

x(t) ∼ tα/(α+1)(Log n t)1/(α+1) (t → ∞). (1.19)

We can prove the following theorem.

Theorem 1.8. If
∫ ∞

t0

tα(Log n t)c(t)dt = ∞, (1.20)

then (1.17) is oscillatory.

The case n = 1 in Theorem 1.8 was obtained by Došlý [2, Corollary 1]. Theorem C in Elbert
and Schneider [9] can be regarded as the case n = 0 in Theorem 1.8.

Next, consider the case where
∫ ∞

t0

tα(Log n t)c(t)dt is convergent. (1.21)

The following theorem is known.

Theorem 1.9 (Došlý [4, Theorem 3.3 (i)]). Consider the equation (1.17) under the condition (1.21).
If

−3µ(α) < lim inf
t→∞

(log n+1 t)
∫ ∞

t
sα(Log n s)c(s)ds

≤ lim sup
t→∞

(log n+1 t)
∫ ∞

t
sα(Log n s)c(s)ds < µ(α),

then (1.17) is nonoscillatory.

In the present paper the following theorem will be proved.

Theorem 1.10. Consider the equation (1.17) under the condition (1.21). If

lim inf
t→∞

(log n+1 t)
∫ ∞

t
sα(Log n s)c(s)ds > µ(α), (1.22)

then (1.17) is oscillatory.

Theorem 1.10 gives an improvement of Theorem 3.3 (ii) in [4].
Theorem 5 in [9] can be regarded as the case n = 0 in Theorems 1.9 and 1.10. Note that

Theorem 5 in [9] is restricted to the case n = 0 and
∫ ∞

t
sαc(s)ds ≥ 0 for all large t.

In the next section we state several basic (non)oscillatory results for the half-linear differ-
ential equation (1.1). The proofs are contained in the book of Došlý and Řehák [8]. For the
proof of Theorem 1.6 we need some estimates for the function F(u, v) which appears in the
modified Riccati equation associated with (1.1). In Section 3 we state and prove the estimates
for F(u, v). The proof of Theorem 1.6 is given in Section 4. The proofs of Theorems 1.8 and
1.10 are presented in Section 5.
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2 Basic results

For the convenience of the reader we summarize basic (non)oscillatory results for the half-
linear differential equation (1.1). As usual, we use the asterisk notation

ξα∗ = Φα(ξ) = |ξ|αsgn ξ, ξ ∈ R, α > 0.

Then it is easy to see that, for ξ, η ∈ R and α, α1, α2 > 0,

• (ξη)α∗ = ξα∗ηα∗, (−ξ)α∗ = −ξα∗;

• (ξα1∗)α2∗ = ξ(α1α2)∗, (ξα∗)(1/α)∗ = ξ,
(

ξ(1/α)∗
)α∗

= ξ;

• ξα∗ ≤ ηα∗ if and only if ξ ≤ η; ξα∗ < ηα∗ if and only if ξ < η;

ξα∗ = ηα∗ if and only if ξ = η.

With this asterisk notation, the equation (1.1) is rewritten as

(p(t)(x′)α∗)′ + q(t)xα∗ = 0, t ≥ t0.

Lemma 2.1. The equation (1.1) is nonoscillatory if and only if there is a continuously differentiable

function y(t) which satisfies the generalized Riccati differential inequality

y′ + q(t) + αp(t)−1/α|y|(α+1)/α ≤ 0

on an interval [T, ∞), T ≥ t0.

In what follows we consider the equation (1.1) under the condition (1.4). The next theorem
is a half-linear extension of the classical Wintner oscillation criterion for (1.2).

Lemma 2.2. Suppose that (1.4) holds. If

∫ ∞

t0

q(t)dt = ∞,

then (1.1) is oscillatory.

As a next step we consider the case where (1.4) holds and
∫ ∞

t0

q(t)dt is convergent. (2.1)

Lemma 2.3. Consider the equation (1.1) under the conditions (1.4) and (2.1). Let x(t) be a nonoscil-

latory solution of (1.1) such that x(t) > 0 for t ≥ T (≥ t0). Then

p(t)

(

x′(t)

x(t)

)α∗

=
∫ ∞

t
q(s)ds + α

∫ ∞

t
p(s)

∣

∣

∣

∣

x′(s)

x(s)

∣

∣

∣

∣

α+1

ds, t ≥ T.

If the additional condition

∫ ∞

t
q(s)ds ≥ 0, ̸≡ 0 on [T+, ∞) for any T+ ≥ T

is satisfied, then x′(t) > 0 for t ≥ T.
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The following lemma is the Hille–Nehari type (non)oscillation criteria for the equation
(1.1).

Lemma 2.4. Consider the equation (1.1) under the conditions (1.4) and (2.1). Let E(α) be the constant

defined by the former part of (1.16).

(i) The equation (1.1) is nonoscillatory provided

−(2α + 1)E(α) < lim inf
t→∞

(

∫ t

t0

p(s)−1/αds

)α (∫ ∞

t
q(s)ds

)

≤ lim sup
t→∞

(

∫ t

t0

p(s)−1/αds

)α (∫ ∞

t
q(s)ds

)

< E(α).

(ii) The equation (1.1) is oscillatory provided

lim inf
t→∞

(

∫ t

t0

p(s)−1/αds

)α (∫ ∞

t
q(s)ds

)

> E(α).

The results mentioned here are half-linear extensions of the classical results for the linear
equation (1.2). For the proofs, see [8].

3 Lemmas

It is known that the function

F(u, v) = |u + v|(α+1)/α − |v|(α+1)/α −
α + 1

α
v(1/α)∗u, u, v ∈ R, (3.1)

plays a crucial role in the study of the oscillation and nonoscillation of (1.1).

Lemma 3.1 (see, e.g., Došlý and Fišnarová [6, Lemma 4]). Let x = x(t) and x = x0(t) be

nonoscillatory solutions of (1.1) and (1.6), respectively. Suppose that x(t) > 0 and x0(t) > 0 for

t ≥ T (≥ t0). Then the function

u(t) = p(t)x0(t)
α+1

[(

x′(t)

x(t)

)α∗

−

(

x′0(t)

x0(t)

)α∗]

, t ≥ T, (3.2)

is a solution of the modified Riccati differential equation

u′(t) + x0(t)
α+1[q(t)− q0(t)]

+ αp(t)−1/αx0(t)
−(α+1)/αF(u(t), p(t)x0(t)x′0(t)

α∗) = 0, t ≥ T,
(3.3)

where F(u, v) is defined by (3.1).

Lemma 3.2. Let F(u, v) be the function which is defined by (3.1).

(i) F(u, v) ≥ 0 for all u, v ∈ R; F(u, v) = 0 if and only if u = 0.

(ii) Let k > 0 be a constant. Then there are constants L1(k) > 0 and L2(k) > 0 such that

L1(k)|v|
(1/α)−1u2 ≤ F(u, v) ≤ L2(k)|v|

(1/α)−1u2 (3.4)

for v > 0 and −v < u ≤ kv.
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(iii) Let k1 and k2 be constants satisfying 0 < k1 < k2. Then there is a constant L(k1, k2) > 0 such

that F(u, v) can be expressed in the following form

F(u, v) =
α + 1
2α2 |v|(1/α)−1u2(1 + R(u, v))

with

|R(u, v)| ≤
|α − 1|

3α
L(k1, k2)|u|

for v > 0 and |u| ≤ k1 < k2 ≤ v.

Proof. It is obvious that F(0, v) = 0. Differentiating the function F(u, v) with respect to u, we
obtain

Fu(u, v) =
α + 1

α
(u + v)(1/α)∗ −

α + 1
α

v(1/α)∗, u, v ∈ R,

Fuu(u, v) =
α + 1

α2 |u + v|(1/α)−1, u > −v,

Fuuu(u, v) =
(α + 1)(−α + 1)

α3 (u + v)[(1/α)−2]∗, u > −v.

Then, Fu(0, v) = 0 (v ∈ R) and Fuu(0, v) = [(α + 1)/α2]|v|(1/α)−1 (v > 0).
(i) Let v ∈ R be fixed. It is seen that Fu(u, v) < 0 for u < 0, Fu(u, v) > 0 for u > 0 and

Fu(0, v) = 0. This means that F(u, v) is strictly decreasing on (−∞, 0) and F(u, v) is strictly
increasing on (0, ∞). Then, since F(0, v) = 0, it is clear that F(u, v) ≥ 0 for u ∈ R and
F(u, v) = 0 if and only if u = 0.

(ii) Let v > 0 and −v < u ≤ kv. By Taylor’s theorem with integral remainder we have

F(u, v) = F(0, v) + Fu(0, v)u +
∫ u

0
(u − s)Fuu(s, v)ds.

Hence

F(u, v) =
α + 1

α2

∫ u

0
(u − s)|s + v|(1/α)−1ds

=
α + 1

α2

∫ 1

0
(u − uσ)|uσ + v|(1/α)−1udσ

=
α + 1

α2 |v|(1/α)−1u2
∫ 1

0
(1 − σ)

∣

∣

∣

u

v
σ + 1

∣

∣

∣

(1/α)−1
dσ.

Then, noting

0 ≤ −σ + 1 ≤
u

v
σ + 1 ≤ kσ + 1 (0 ≤ σ ≤ 1),

we find that, for the case 0 < α ≤ 1,

α

α + 1
=
∫ 1

0
(1 − σ)1/αdσ ≤

∫ 1

0
(1 − σ)

∣

∣

∣

u

v
σ + 1

∣

∣

∣

(1/α)−1
dσ

≤
∫ 1

0
(1 − σ)(kσ + 1)(1/α)−1dσ;

and, for the case α > 1,
∫ 1

0
(1 − σ)(kσ + 1)(1/α)−1dσ ≤

∫ 1

0
(1 − σ)

∣

∣

∣

u

v
σ + 1

∣

∣

∣

(1/α)−1
dσ

≤
∫ 1

0
(1 − σ)1/αdσ =

α

α + 1
.
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This shows that (3.4) holds with positive constants L1(k) and L2(k) such that, for the case
0 < α ≤ 1,

L1(k) =
1
α

and L2(k) =
α + 1

α2

∫ 1

0
(1 − σ)(kσ + 1)(1/α)−1dσ;

and, for the case α > 1,

L1(k) =
α + 1

α2

∫ 1

0
(1 − σ)(kσ + 1)(1/α)−1dσ and L2(k) =

1
α

.

(iii) Let v > 0 and |u| ≤ k1 < k2 ≤ v. By Taylor’s theorem there is θ such that 0 < θ < 1
and

F(u, v) = F(0, v) + Fu(0, v)u +
Fuu(0, v)

2!
u2 +

Fuuu(θu, v)

3!
u3.

Hence

F(u, v) =
α + 1
2α2 |v|(1/α)−1u2 +

(α + 1)(−α + 1)
6α3 (θu + v)[(1/α)−2]∗u3

=
α + 1
2α2 |v|(1/α)−1u2

[

1 +
−α + 1

3α
|v|−(1/α)+1(θu + v)[(1/α)−2]∗u

]

.

Notice here that
θu + v ≥ −|u|+ v ≥ −k1 + k2 > 0 (0 < θ < 1)

and

0 < −
k1

k2
+ 1 ≤

u

v
θ + 1 =

θu + v

v
≤

k1

k2
+ 1 (0 < θ < 1).

Put
R(u, v) =

−α + 1
3α

|v|−(1/α)+1(θu + v)[(1/α)−2]∗u.

Then it is easy to see that

|R(u, v)| ≤
|α − 1|

3α

∣

∣

∣

∣

θu + v

v

∣

∣

∣

∣

(1/α)−1

|θu + v|−1|u| ≤
|α − 1|

3α
L(k1, k2)|u|,

where L(k1, k2) is given by

L(k1, k2) =



















(

1 +
k1

k2

)(1/α)−1

(k2 − k1)
−1 (0 < α ≤ 1),

(

1 −
k1

k2

)(1/α)−1

(k2 − k1)
−1 (α > 1).

This proves the part (iii) of Lemma 3.2.

4 Proofs of the results

Proof of Theorem 1.6. Suppose that there is ε ∈ (0, 1) such that (1.14) is oscillatory. Assume, by
contradiction, that the equation (1.1) has a nonoscillatory solution x(t). We may suppose that
x(t) > 0 for t ≥ T. Then, we define the function u(t) by (3.2). By Lemma 3.1, u(t) satisfies
(3.3). Integrating (3.3) from T to t, we obtain

u(t)− u(T) +
∫ t

T
x0(s)

α+1[q(s)− q0(s)]ds

+ α

∫ t

T
p(s)−1/αx0(s)

−(α+1)/αF(u(s), p(s)x0(s)x′0(s)
α)ds = 0

(4.1)
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for t ≥ T. Since the integrand of the last integral in the left-hand side of (4.1) is nonnegative
for t ≥ T (see Lemma 3.2 (i)), we have either

∫ ∞

T
p(s)−1/αx0(s)

−(α+1)/αF(u(s), p(s)x0(s)x′0(s)
α)ds = ∞ (4.2)

or
∫ ∞

T
p(s)−1/αx0(s)

−(α+1)/αF(u(s), p(s)x0(s)x′0(s)
α)ds < ∞. (4.3)

Suppose first that (4.2) holds. Since (1.10) is assumed to hold, it follows from (4.1) that
u(t) → −∞ as t → ∞. We may suppose that u(t) < 0 for t ≥ T. By Lemma 2.3 we have
x′(t) > 0 for t ≥ T. Hence, by (3.2), we get

−p(t)x0(t)x′0(t)
α = −p(t)x0(t)

α+1
(

x′0(t)

x0(t)

)α∗

< u(t) ≤ p(t)x0(t)x′0(t)
α, t ≥ T.

Applying Lemma 3.2 (ii) to the case k = 1, u = u(t) and v = p(t)x0(t)x′0(t)
α, we find that

there are constants L1 = L1(1) > 0 and L2 = L2(1) > 0 such that

L1 p(t)−1x0(t)
−2x′0(t)

−α+1u(t)2

≤ p(t)−1/αx0(t)
−(α+1)/αF(u(t), p(t)x0(t)x′0(t)

α)

≤ L2 p(t)−1x0(t)
−2x′0(t)

−α+1u(t)2, t ≥ T.

Therefore, (3.3) yields

u′(t) + x0(t)
α+1 [q(t)− q0(t)] + αL1 p(t)−1x0(t)

−2x′0(t)
−α+1u(t)2 ≤ 0

for t ≥ T, and (4.2) gives
∫ ∞

T
p(t)−1x0(t)

−2x′0(t)
−α+1u(t)2dt = ∞.

Thus we obtain
u′(t) + Q(t) + αL1P(t)−1u(t)2 ≤ 0, t ≥ T, (4.4)

and
∫ ∞

T
P(t)−1u(t)2dt = ∞. (4.5)

Here the functions P(t) and Q(t) are given by (1.11).
Put

ϕ(t) =
∫ t

T
P(s)−1ds, t ≥ T. (4.6)

It follows from (4.4) that

∫ t

T
(ϕ(t)− ϕ(s))2u′(s)ds +

∫ t

T
(ϕ(t)− ϕ(s))2Q(s)ds

+ αL1

∫ t

T
(ϕ(t)− ϕ(s))2P(s)−1u(s)2ds ≤ 0, t ≥ T.

(4.7)

Denote by I(t) the first term of the left-hand side of (4.7). Then, it is seen that

I(t) = −u(T)ϕ(t)2 + 2
∫ t

T
(ϕ(t)− ϕ(s))P(s)−1u(s)ds, t ≥ T,
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and so, by the Cauchy–Schwarz inequality, we find that

|I(t)| ≤ |u(T)|ϕ(t)2 + 2
(

∫ t

T
P(s)−1ds

)1/2 (∫ t

T
(ϕ(t)− ϕ(s))2P(s)−1u(s)2ds

)1/2

for t ≥ T. Therefore, (4.6) and (4.7) yield

1
ϕ(t)2

∫ t

T
(ϕ(t)− ϕ(s))2Q(s)ds ≤ |u(T)|

+
2

ϕ(t)1/2

(

1
ϕ(t)2

∫ t

T
(ϕ(t)− ϕ(s))2P(s)−1u(s)2ds

)1/2

− αL1

(

1
ϕ(t)2

∫ t

T
(ϕ(t)− ϕ(s))2P(s)−1u(s)2ds

)

, t > T.

(4.8)

It follows from (1.8) and (4.6) that

lim
t→∞

ϕ(t) =
∫ ∞

T
P(s)−1ds =

∫ ∞

T
p(s)−1x0(s)

−2x′0(s)
−α+1ds = ∞,

and, by L’Hospital’s rule and (4.5), we get

lim
t→∞

1
ϕ(t)2

∫ t

T
(ϕ(t)− ϕ(s))2P(s)−1u(s)2ds =

∫ ∞

T
P(s)−1u(s)2ds = ∞.

Let β be a constant such that 0 < β < αL1. Then it is easy to check that (4.8) yields

1
ϕ(t)2

∫ t

T
(ϕ(t)− ϕ(s))2Q(s)ds ≤ −

β

ϕ(t)2

∫ t

T
(ϕ(t)− ϕ(s))2P(s)−1u(s)2ds

for all large t, and consequently,

lim
t→∞

1
ϕ(t)2

∫ t

T
(ϕ(t)− ϕ(s))2Q(s)ds = −∞.

On the other hand, the condition (1.10), i.e., the condition

lim
t→∞

∫ t

T
Q(s)ds =

∫ ∞

T
Q(s)ds is convergent

implies

lim
t→∞

1
ϕ(t)2

∫ t

T
(ϕ(t)− ϕ(s))2Q(s)ds =

∫ ∞

T
Q(s)ds ∈ R.

This is a contradiction. Therefore, (4.2) does not occur.
Next suppose that (4.3) holds. Using (1.10), (4.1) and (4.3), we see that limt→∞ u(t) exists

and is finite. Put limt→∞ u(t) = ℓ (∈ R). Integrating the equality (3.3) from t to τ (T ≤ t ≤ τ)

and letting τ → ∞, we obtain

u(t) = ℓ+
∫ ∞

t
x0(s)

α+1[q(s)− q0(s)]ds

+ α

∫ ∞

t
p(s)−1/αx0(s)

−(α+1)/αF(u(s), p(s)x0(s)x′0(s)
α)ds

for t ≥ T. By Lemma 2.3 we have x′(t) > 0 for t ≥ T. Hence, by (1.7), (3.2) and (1.12), there is
a positive constant k such that

−p(t)x0(t)x′0(t)
α
< u(t) ≤ kp(t)x0(t)x′0(t)

α (4.9)
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for all large t. We may suppose that (4.9) is valid for t ≥ T. Applying Lemma 3.2 (ii) to the
case u = u(t) and v = p(t)x0(t)x′0(t)

α, we find that there is a constant L1(k) > 0 such that

L1(k)p(t)−1x0(t)
−2x′0(t)

−α+1u(t)2

≤ p(t)−1/αx0(t)
−(α+1)/αF(u(t), p(t)x0(t)x′0(t)

α), t ≥ T.

Hence, (4.3) gives
∫ ∞

T
p(t)−1x0(t)

−2x′0(t)
−α+1u(t)2dt < ∞.

If limt→∞ u(t) = ℓ ̸= 0, then the above fact contradicts the condition (1.8). Therefore we see
that ℓ = 0.

Since
lim
t→∞

u(t) = ℓ = 0, (4.10)

we find from (1.12) that there are positive constants k1 and k2 such that

|u(t)| ≤ k1 < k2 ≤ p(t)x0(t)x′0(t)
α (4.11)

for all large t. We may suppose that (4.11) holds for t ≥ T. Then, applying Lemma 3.2 (iii) to
the case u = u(t) and v = p(t)x0(t)x′0(t)

α, we deduce that F(u(t), p(t)x0(t)x′0(t)
α) is expressed

as
F(u(t), p(t)x0(t)x′0(t)

α) =
α + 1
2α2 |p(t)x0(t)x′0(t)

α|(1/α)−1u(t)2(1 + R(t)) (4.12)

with

|R(t)| ≤
|α − 1|

3α
L(k1, k2)|u(t)| (4.13)

for t ≥ T. Here, L(k1, k2) is the constant appearing in Lemma 3.2 (iii). Then, (4.12) gives

p(t)−1/αx0(t)
−(α+1)/αF(u(t), p(t)x0(t)x′0(t)

α)

=
α + 1
2α2 p(t)−1x0(t)

−2x′0(t)
−α+1u(t)2(1 + R(t)), t ≥ T.

(4.14)

By (4.10) and (4.13), we have limt→∞ R(t) = 0, and so

R(t) ≥ −ε for all large t, (4.15)

where ε ∈ (0, 1) is the number in the statement of Theorem 1.6. Then, by (3.3), (4.14) and
(4.15), we find that

u′(t) + Q(t) + (1 − ε)
α + 1

2α
P(t)−1u(t)2 ≤ 0 for all large t.

Therefore the function

y(t) = (1 − ε)
α + 1

2α
u(t) with 0 < ε < 1

satisfies
y′(t) + (1 − ε)

α + 1
2α

Q(t) + P(t)−1y(t)2 ≤ 0 for all large t.

Hence, Lemma 2.1 of the case α = 1 implies that the linear equation (1.14) is nonoscillatory.
This is a contradiction to the assumption that (1.14) is oscillatory. Therefore, (4.3) also does not
occur. Consequently the equation (1.1) is oscillatory. The proof of Theorem 1.6 is complete.

Proof of Corollary 1.7. Corollary 1.7 is a simple combination of Theorem 1.6 and Lemma 2.4 (ii)
with α = 1.
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5 Proofs of the results (continued)

In this section we prove Theorem 1.8 and Theorem 1.10. It is known that the half-linear
Riemann–Weber differential equation (1.18) has a nonoscillatory solution x(t) satisfying (1.19)
(see Elbert and Schneider [9, Corollary 1]). Put

x0(t) = tα/(α+1)(Log n t)1/(α+1), t ≥ T, (5.1)

where T is taken sufficiently large such that t and Log j t (j = 1, 2, . . . , n) are positive for t ≥ T.
It is trivial that x = x0(t) is a positive solution of the equation

(Φα(x′))′ −
(Φα(x′0(t)))

′

Φα(x0(t))
Φα(x) = 0

on [T, ∞). We define the function c0(t) by

c0(t) = −
(Φα(x′0(t)))

′

Φα(x0(t))
−

(

αE(α)

tα+1 +
µ(α)

tα+1

n

∑
j=1

1
(Log j t)2

)

. (5.2)

Then the function x0(t) is a positive solution of

(Φα(x′))′ +

(

αE(α)

tα+1 +
µ(α)

tα+1

n

∑
j=1

1
(Log j t)2 + c0(t)

)

Φα(x) = 0. (5.3)

In the equations (1.1) and (1.6), let p(t) ≡ 1 and

q(t) =
αE(α)

tα+1 +
µ(α)

tα+1

n

∑
j=1

1
(Log j t)2 + c(t) (5.4)

and

q0(t) =
αE(α)

tα+1 +
µ(α)

tα+1

n

∑
j=1

1
(Log j t)2 + c0(t). (5.5)

Then, the equations (1.1) and (1.6) become (1.17) and (5.3), respectively. The key idea of the
proofs of Theorems 1.8 and 1.10 is to use the equation (5.3), not the equation (1.18).

From the calculation in [4] we see that

x′0(t) =
α

α + 1
t−1/(α+1)(Log n t)1/(α+1)

(

1 +
1
α

n

∑
j=1

1
Log j t

)

, (5.6)

and

(Φα(x′0(t)))
′ =− t−(2α+1)/(α+1)(Log n t)α/(α+1)

×

(

αE(α) + µ(α)
n

∑
j=1

1
(Log j t)2 + O

(

1
(log t)3

)

)

as t → ∞. Therefore, the function c0(t) defined by (5.2) satisfies

c0(t) = O

(

1
tα+1(log t)3

)

(t → ∞). (5.7)
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By (5.7) it is clear that
∫ ∞

T
c0(s)ds is convergent

and
lim
t→∞

tα
∫ ∞

t
c0(s)ds = 0.

Therefore, in the present case, we find that
∫ ∞

T
q0(s)ds is convergent

and
∫ ∞

t
q0(s)ds =

E(α)

tα
+ µ(α)

n

∑
j=1

∫ ∞

t

1
sα+1(Log j s)2 ds +

∫ ∞

t
c0(s)ds.

Then it is easy to see that

lim
t→∞

tα
∫ ∞

t
q0(s)ds = E(α) > 0.

Consequently, the condition (1.9) is satisfied.
By (5.1) and (5.6), the condition (1.7) is satisfied. Furthermore it is easily checked that

x0(t)
−2x′0(t)

−α+1 ∼

(

α

α + 1

)−α+1 1
t Log n t

(t → ∞).

Note here that
d

dt
log n+1 t =

1
t Log n t

,

and so
∫ t

T

1
s Log n s

ds = log n+1 t − log n+1 T.

This implies
∫ t

T
x0(s)

−2x′0(s)
−α+1ds ∼

(

α

α + 1

)−α+1

log n+1 t (t → ∞), (5.8)

which yields (1.8) with p(t) ≡ 1.
We have

∫ t

T
x0(s)

α+1 [q(s)− q0(s)] ds =
∫ t

T
sα(Log n s) [c(s)− c0(s)] ds.

Došlý [4] showed that
∫ ∞

T

Log n s

s(log s)3 ds < ∞

and

lim
t→∞

(log n+1 t)
∫ ∞

t

Log n s

s(log s)3 ds = 0.

Therefore we deduce from (5.7) that
∫ ∞

T
sα(Log n s)c0(s)ds is convergent (5.9)

and
lim
t→∞

(log n+1 t)
∫ ∞

t
sα(Log n s)c0(s)ds = 0. (5.10)

We are now ready to prove Theorems 1.8 and 1.10.
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Proof of Theorem 1.8. We apply Theorem 1.3 with p(t) ≡ 1 to the equations (1.17) and (5.3). Let
q(t) and q0(t) be the functions defined by (5.4) and (5.5), respectively. Since (1.8) (p(t) ≡ 1)
and (1.9) are satisfied, the function x0(t) which is defined by (5.1) is the principal solution of
(5.3). In fact, this can be derived from a direct application of Theorem 1.2 with p(t) ≡ 1. For
the case 0 < α ≤ 1, use the part (i), and for the case α ≥ 1 the part (iii). If (1.20) is satisfied,
then (5.9) gives

∫ ∞

T
x0(s)

α+1 [q(s)− q0(s)] ds =
∫ ∞

T
sα(Log n s) [c(s)− c0(s)] ds = ∞.

Therefore it follows from Theorem 1.3 with p(t) ≡ 1 that if (1.20) is satisfied, then the equation
(1.17) is oscillatory. The proof of Theorem 1.8 is complete.

Proof of Theorem 1.10. We apply Corollary 1.7 with p(t) ≡ 1 to the equations (1.17) and (5.3).
Let q(t) and q0(t) be the functions defined by (5.4) and (5.5), respectively. We first show that
if (1.21) holds, then (1.5) is satisfied. To see this, note that

d

dt
Log n t =

Log n t

t

(

n

∑
j=1

1
Log j t

)

and
∫ t

T
c(s)ds =

∫ t

T

1
sα Log n s

sα(Log n s)c(s)ds

= −
1

tα Log n t

∫ ∞

t
rα(Log n r)c(r)dr +

1
Tα Log n T

∫ ∞

T
rα(Log n r)c(r)dr

−
∫ t

T

[

α

sα+1 Log n s
+

1
sα+1 Log n s

(

n

∑
j=1

1
Log j s

)]

(

∫ ∞

s
rα(Log n r)c(r)dr

)

ds.

Therefore we deduce that

lim
t→∞

∫ t

T
c(s)ds exists and is finite

and
∫ ∞

t
c(s)ds =

1
tα Log n t

∫ ∞

t
rα(Log n r)c(r)dr

−
∫ ∞

t

[

α

sα+1 Log n s
+

1
sα+1 Log n s

(

n

∑
j=1

1
Log j s

)]

(

∫ ∞

s
rα(Log n r)c(r)dr

)

ds

for t ≥ T. Then it is easy to find that

lim
t→∞

tα
∫ ∞

t
c(s)ds = 0.

Since
∫ ∞

t
q(s)ds =

E(α)

tα
+ µ(α)

n

∑
j=1

∫ ∞

t

1
sα+1(Log j s)2 ds +

∫ ∞

t
c(s)ds,

we obtain
lim
t→∞

tα
∫ ∞

t
q(s)ds = E(α) (> 0).
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Thus we see that the condition (1.5) is satisfied.
As mentioned before, the conditions (1.7) and (1.8) with p(t) ≡ 1 are satisfied. By (5.1)

and (5.6), we have

x0(t)x′0(t)
α =

(

α

α + 1

)α

(Log n t)

(

1 +
1
α

n

∑
j=1

1
Log j t

)α

,

and so limt→∞ x0(t)x′0(t)
α = ∞. Hence the condition (1.12) with p(t) ≡ 1 is also satisfied. By

the definition of P(t) and Q(t) and the properties (5.8) and (5.10), we have
(

∫ t

T

1
P(s)

ds

)(

∫ ∞

t
Q(s)ds

)

=

(

∫ t

T
x0(s)

−2x′0(s)
−α+1ds

)(

∫ ∞

t
x0(s)

α+1[q(s)− q0(s)]ds

)

= ε1(t)

(

α

α + 1

)−α+1

(log n+1 t)

(

∫ ∞

t
sα(Log n s)[c(s)− c0(s)]ds

)

= ε1(t)

(

α

α + 1

)−α+1

(log n+1 t)

(

∫ ∞

t
sα(Log n s)c(s)ds

)

+ ε2(t),

where ε1(t) and ε2(t) are functions such that

lim
t→∞

ε1(t) = 1 and lim
t→∞

ε2(t) = 0,

respectively. Then it is easy to see that (1.22) implies (1.15). Thus, by Corollary 1.7, we can
conclude that if (1.22) holds, then the equation (1.17) is oscillatory. The proof of Theorem 1.10
is complete.

Finally we present an equation whose oscillation follows from Theorem 1.10 and does not
follow from Theorem 3.3 (ii) in [4].

Example 5.1. Consider the equation (1.17) of the case

c(t) = µ(α)
k + sin(2k log n+2 t)− 2k cos(2k log n+2 t)

tα+1(Log n+1 t)2 , (5.11)

where k is a constant satisfying k > 2. In this case it can be shown without difficulty that the
condition (1.21) is satisfied and

∫ ∞

t
sα(Log n s)c(s)ds = µ(α)

k + sin(2k log n+2 t)

log n+1 t
.

Therefore we have

lim inf
t→∞

(log n+1 t)
∫ ∞

t
sα(Log n s)c(s)ds = µ(α)(k − 1) > µ(α).

Hence, by Theorem 1.10, we can conclude that, for any α > 0, the equation (1.17) with (5.11)
is oscillatory.

Theorem 3.3 (ii) in [4] requires the condition that there is a constant γ satisfying

tα+1(log t)3c(t) ≥ γ >
2(α + 1)(α − 1)

3α2

(

α

α + 1

)α+1
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for all large t. If α ≥ 1, this condition leads to c(t) > 0 for all large t. There exists a sequence
{ti}

∞
i=1 such that lim ti = ∞ (i → ∞) and

k log n+2 ti = πi for all large i.

Then, for the function c(t) given by (5.11),

c(ti) = µ(α)
−k

tα+1
i (Log n+1 ti)2

< 0 for all large i.

Therefore, if α ≥ 1, then we cannot apply Theorem 3.3 (ii) in [4] to the present case.
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Abstract. This note is a reaction on a recently published sufficient condition for oscilla-
tion of all solutions of a neutral delay differential equation. It is shown by a counterex-
ample that the result is not correct and the problem is explained in details. Several,
more general, classes of neutral differential equations with time-dependent discrete,
distributed as well as mixed delays are considered. New sufficient conditions for oscil-
lation of all their solutions are proved. Applications are given for illustration.
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1 Introduction

Oscillation theory for first order linear neutral differential equations with delay,

[x(t) + P(t) x(t − τ)]′ + Q(t) x(t − σ) = 0, t ≥ t0,

has attracted researchers’ interest for decades (see, e.g., [1–3] and references therein).
Recently, a sufficient condition was proved in [5] for oscillation of all solutions of the

neutral delay differential equation

[x(t)− x(τ(t))]′ + Q(t) x(σ(t)) = 0, t ≥ t0 (1.1)

for some t0 ∈ R, where Q ∈ C([t0, ∞), R+), R+ = [0, ∞), and τ, σ ∈ Tt0 with

Tξ =

{

f ∈ C([ξ, ∞), R)

∣

∣

∣

∣

f is strictly increasing;
f (t) < t ∀t ≥ ξ; limt→∞ f (t) = ∞

}

. (1.2)

BCorresponding author. Email: michal.pospisil@fmph.uniba.sk
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However, as we shall show in this paper, the proof is not correct and the statement does not
hold. It is worth to mention that the limit property of functions from Tξ was not explicitly
assumed in [5], but it was applied in the proof.

In this paper, we prove a similar statement by a cautious use of a mathematical induction.
We give a short remark explaining the problem of the original proof from [5]. Next, we
generalize the result for the case of a convex combination of multiple discrete delays. We
also consider neutral differential equations with distributed and mixed delays, and we prove
analogous statements. More precisely, in addition to equation (1.1), the following equations
are investigated in this paper:

[

x(t)−
n

∑
i=1

λi x(τi(t))

]′

+
m

∑
j=1

Qj(t) x(σj(t)) = 0, t ≥ t0, (1.3)



x(t)−

∫ τ(t)
τ(t) λ(s)x(s) ds
∫ τ(t)

τ(t) λ(s) ds





′

+ Q(t)
∫ σ(t)

σ(t)
R(s)x(s) ds = 0, t ≥ t0, (1.4)

and
[

x(t)−

(

n1

∑
i=1

λi(t)x(τi(t)) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s)x(s) ds

)]′

+
m1

∑
j=1

Qj(t)x(σj(t)) +
m2

∑
j=1

Sj(t)
∫ σj(t)

σj(t)
Rj(s)x(s) ds = 0, t ≥ t0 (1.5)

with appropriate parameters (see Theorems 3.7, 3.9, and 3.11 below).
The paper is organized as follows. In the next section, we conclude preliminary results

and introduce an auxiliary function. Section 3 is devoted to the main results of this paper
– sufficient conditions for oscillation of all solutions of various classes of neutral differential
equations with delays. In the final section, applications to equations with particular types of
delays, and concrete examples are given for illustration.

Throughout the paper, we denote by N (N0) the set of all positive (nonnegative) integers.

2 Preliminaries

In this section, we introduce some notation and prove auxiliary results.
Let us fix ξ ∈ R and consider τ ∈ Tξ . Analogously to the iterations of function τ: τk =

τ ◦ τk−1, k ∈ N, τ0 = id, we denote τ−k = τ−1 ◦ τ−(k−1), k ∈ N the iterations of the inverse
function τ−1 : [τ(ξ), ∞) → [ξ, ∞). Then the following result holds.

Lemma 2.1. Let ξ ∈ R and τ ∈ Tξ . For any ζ ∈ [τ(ξ), ∞), the sequence {τ−k(ζ)}∞
k=1 is strictly

increasing to ∞.

Proof. Let ζ ∈ [τ(ξ), ∞) be arbitrary and fixed. Then, τ(ζ) < ζ implies ζ < τ−1(ζ), which
yields τ−1(ζ) < τ−2(ζ), etc. So, by induction, one can see that {τ−k(ζ)}∞

k=1 is a strictly
increasing sequence. Now, suppose by contrary that limk→∞ τ−k(ζ) = C < ∞. Then,

C = lim
k→∞

τ−k(ζ) = lim
k→∞

τ−1(τ−(k−1)(ζ)) = τ−1
(

lim
k→∞

τ−(k−1)(ζ)

)

= τ−1(C)

is a contradiction, and the proof is complete.
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For any ζ ∈ [τ(ξ), ∞), we define a function Nτ
ζ : [ζ, ∞) → N such that for any t ∈ [ζ, ∞),

Nτ
ζ (t) satisfies

τ−(Nτ
ζ (t)−1)(ζ) ≤ t < τ−Nτ

ζ (t)(ζ). (2.1)

Due to Lemma 2.1, function Nτ
ζ is well defined. Note that

Nτ
ζ ([τ

−k(ζ), τ−(k+1)(ζ))) = k + 1 (2.2)

for each k ∈ N0. Then, it is easy to see that Nτ
ζ in nondecreasing on [ζ, ∞) and unbounded

from above. Another important property of Nτ
ζ is proved in the next lemma.

Lemma 2.2. Let ξ ∈ R, τ ∈ Tξ , α1 ∈ [ξ, ∞), α2 = τ−k(α1) for some k ∈ N0. Then

Nτ
α1
(t) = Nτ

α2
(t) + k, t ≥ α2.

Proof. For any t ≥ α2,

τ−(Nτ
α2
(t)+k−1)(α1) = τ−(Nτ

α2
(t)+k−1)(τk(α2))

= τ−(Nτ
α2
(t)−1)(α2) ≤ t < τ−Nτ

α2
(t)(α2)

= τ−Nτ
α2
(t)(τ−k(α1)) = τ−(Nτ

α2
(t)+k)(α1).

But we know that for any t ≥ α2 (even for any t ≥ α1), there is a unique κ ∈ N satisfying
τ−(κ−1)(α1) ≤ t < τ−κ(α1), and it is given by κ = Nτ

α1
(t). Therefore, Nτ

α1
(t) = Nτ

α2
(t) + k.

We will investigate solutions of equation (1.1) in the sense of the following definitions.

Definition 2.3. Let t0 ∈ R and Q ∈ C([t0, ∞), R+), τ, σ ∈ Tt0 , ϕ ∈ C([min{τ(t0), σ(t0)}, t0], R)

be given functions. We say that

x ∈ C([min{τ(t0), σ(t0)}, ∞), R)

is a solution of equation (1.1) along with the initial condition

x(t) = ϕ(t), t ∈ [min{τ(t0), σ(t0)}, t0] (2.3)

if x(t)− x(τ(t)) is continuously differentiable for all t ∈ [t0, ∞) and x satisfies (1.1), (2.3).

In the rest of the paper, we often omit initial condition (2.3). So, x is a solution of (1.1) if
there exists a suitable function ϕ such that x solves initial value problem (1.1), (2.3).

Definition 2.4. Let t0 ∈ R and Q ∈ C([t0, ∞), R+), τ, σ ∈ Tt0 be given functions. Solution x
of (1.1) is called eventually positive (eventually negative) if there is T > t0 such that x(t) > 0
(x(t) < 0) for all t ≥ T. In this case, x is called nonoscillatory. Otherwise, we say that x
oscillates or that it is oscillatory.

In other neutral differential equations studied in the paper, their solutions are understood
in an analogous sense.

Finally, in this section, we present an auxiliary lemma.

Lemma 2.5. Let A ≥ B ≥ 0 and α > 1. Then

(A − B)
1
α ≥ A

1
α − B

1
α .
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Proof. If A = 0, the statement is obvious. Now, let A ̸= 0 and consider the function f (x) =

(1 − x)
1
α − (1 − x

1
α ) for x ∈ [0, 1]. Then f (0) = 0 = f (1). The derivative,

f ′(x) =
1
α

(

x
1−α

α − (1 − x)
1−α

α

)

vanishes if and only if x = 1
2 . Since

f
(

1
2

)

=
2 − 2

1
α

2
1
α

> 0,

we get that f (x) ≥ 0 for all x ∈ [0, 1]. In particular, f ( B
A ) ≥ 0 which proves the statement.

3 Main results

Here, we recall the result from [5] and provide a counterexample to show that it does not
hold. Next, by correcting the wrong proof from [5], we prove a new sufficient condition for
oscillation of all solutions of equation (1.1). Then, we give a generalization to multiple discrete
delays. In Subsection 3.2, an analogous problem is studied for neutral differential equations
with distributed and mixed delays.

3.1 Discrete delays

In [5], the next result was stated (we use the quotation marks to warn readers that the result
is not correct):

“Theorem” 3.1. Let t0 > 0 and Q ∈ C([t0, ∞), R+), τ, σ ∈ Tt0 be given functions. If
∫ ∞

t0

Q(s) ds = ∞ (3.1)

or
∫ ∞

t0

s Q(s) ds = ∞, (3.2)

then every solution of equation (1.1) oscillates.

It will be shown in the proof of Theorem 3.3 below (and it was correctly proved in [5]) that
inequality (3.1) is indeed a sufficient condition for oscillation of all solutions of (1.1). In the
next example, we illustrate that if (3.1) does not hold, inequality (3.2) does not guarantee the
oscillation of all solutions of (1.1).

Example 3.2. Let us consider the following equation

[

x(t)− x
(

t
2

)]′

+
1
t2 x

(

t

2 − t ln(2 − e
1
t )

)

= 0, t ≥ t0 (3.3)

for some t0 >
1

ln 2 .

Since 0 < 2 − e
1
t0 ≤ 2 − e

1
t < 1, we have ln(2 − e

1
t ) < 0 ∀t ≥ t0. So,

σ(t) =
t

2 − t ln(2 − e
1
t )

< t, t ≥ t0.
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Furthermore, from

σ′(t) =
4 − e

1
t

(

2 − e
1
t

) (

2 − t ln(2 − e
1
t )
)2 ,

one can see that σ′(t) > 0 for all t ≥ t0. It is easy to verify that σ(t) t→∞
−−→ ∞. Thus, σ ∈ Tt0 .

Clearly, τ ∈ Tt0 for τ(t) = t
2 . Moreover,

∫ ∞

t0

ds
s2 =

1
t0

< ∞,
∫ ∞

t0

ds
s

= ∞,

i.e., condition (3.1) is not satisfied, but (3.2) holds. Hence, by “Theorem” 3.1, every solution
of equation (3.3) oscillates. However, a positive function e−

1
t solves this equation. Indeed, for

x(t) = e−
1
t , the left-hand side of (3.3) reads as

e−
1
t

t2 −
2 e−

2
t

t2 +
1
t2 e−

2−t ln(2−e
1
t )

t =
1
t2

[

e−
1
t −2 e−

2
t + e−

2
t (2 − e

1
t )
]

= 0.

Next, we present our result for equation (1.1).

Theorem 3.3. Let t0 ∈ R and Q ∈ C([t0, ∞), R+), τ, σ ∈ Tt0 be given functions. If condition (3.1)
is satisfied or

∫ ∞

σ−1(t0)
(Nτ

t0
(σ(s)))

1
p Q(s) ds = ∞ (3.4)p

for some p > 1, where Nτ
t0
(t) is given by (2.1), then every solution of equation (1.1) oscillates.

Note that in the label of condition (3.4)p, we use the parameter p > 1 as the lower index.

Proof. One can easily see that condition (3.1) as well as condition (3.4)p implies that Q does
not vanish for all t sufficiently large, i.e.,

∀t ≥ t0 ∃T ≥ t : Q(T) > 0.

Without any loss of generality, we suppose in contrary that x is an eventually positive solution
of (1.1). Since limt→∞ τ(t) = limt→∞ σ(t) = ∞, there is t1 ≥ t0 such that x(t), x(τ(t)) and
x(σ(t)) are positive for all t ≥ t1. For z(t) = x(t) − x(τ(t)), equation (1.1) gives z′(t) ≤ 0
∀t ≥ t1. Moreover, from the nonvanishing property of Q, we know that for any t ≥ t1 there is
T ≥ t such that z′(T) < 0. Hence, z(t) can not vanish for all sufficiently large t, but it is either
eventually negative or eventually positive.

If z is eventually negative, then, since it is nonincreasing, there exist t2 ≥ t1 and µ > 0
such that z(t) ≤ −µ for all t ≥ t2. Equivalently, we have

x(t) ≤ x(τ(t))− µ, t ≥ t2.

In particular,
x(τ−k(t2)) ≤ x(τ−(k−1)(t2))− µ ≤ · · · ≤ x(t2)− kµ

for each k ∈ N. A contradiction with the eventual positivity of x follows, since the right side
tends to −∞ as k → ∞.

Hence, z is eventually positive, i.e., there is t2 ≥ t1 such that z(t) > 0 ∀t ≥ t2. This means
that

x(t) > x(τ(t)) > 0, t ≥ t2. (3.5)
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Therefore,
x(t) ≥ min

s∈[τ(t2),t2]
x(s) =: ω > 0, t ≥ t2. (3.6)

From equation (1.1), we obtain

0 = z′(t) + Q(t)x(σ(t)) ≥ z′(t) + ωQ(t)

for all t ≥ t3 for some t3 ≥ σ−1(t2). This gives

z(t) ≤ z(t3)− ω

∫ t

t3

Q(s) ds, t ≥ t3.

So, if condition (3.1) is satisfied, we get limt→∞ z(t) = −∞ which is a contradiction, and x is
oscillatory.

Now, assume that
∫ ∞

t0

Q(s) ds < ∞ (3.7)

and that condition (3.4)p is satisfied for some p > 1. Let us take t4 ≥ τ−1(t2) such that
t4 = τ−κ(t0) for some κ ∈ N.

From
x(t) = z(t) + x(τ(t)), t ≥ t4, (3.8)

we get
x(t) = z(t) + z(τ(t)) + · · ·+ z(τ(N−1)(t)) + x(τN(t))

for any t ∈ [τ−(N−1)(t4), τ−N(t4)), N ∈ N. Since z is nonincreasing and τ ∈ Tt0 , this identity
implies

x(t) ≥ Nz(t) + x(τN(t)), t ∈ [τ−(N−1)(t4), τ−N(t4)), N ∈ N

or, equivalently,

x(t) ≥ Nτ
t4
(t)z(t) + x(τNτ

t4
(t)(t)), t ≥ t4

(see (2.2)). Note that τ
Nτ

t4
(t)(t) ∈ [τ(t4), t4) ⊂ [t2, ∞) for any t ≥ t4. Hence, by (3.6),

x(t) ≥ Nτ
t4
(t)z(t) + ω, t ≥ t4.

Next, using the Young inequality,
Ap

p
+

Bq

q
≥ AB

for A, B > 0 and q = p
p−1 , we derive

x(t) ≥

(

(

pNτ
t4
(t)z(t)

)
1
p
)p

p
+

(

(qω)
1
q

)q

q
≥
(

pNτ
t4
(t)z(t)

)
1
p (qω)

1
q

for all t ≥ t4. Let us denote ω1 := p
1
p (qω)

1
q > 0 and take t5 = σ−1(t4). Then, (1.1) implies

z′(t) = −Q(t)x(σ(t)) ≤ −ω1Q(t)
(

Nτ
t4
(σ(t))z(σ(t))

)
1
p

≤ −ω1Q(t)
(

Nτ
t4
(σ(t))z(t)

)
1
p , t ≥ t5
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since z is nonincreasing. Dividing by z
1
p (t) and integrating over [t5, t] yields

∫ t

t5

z′(s) ds

z
1
p (s)

= qz
1
q (t)− qz

1
q (t5) ≤ −ω1

∫ t

t5

(

Nτ
t4
(σ(s))

)
1
p Q(s) ds

for all t ≥ t5. Now, it only remains to prove that
∫ ∞

t5

(

Nτ
t4
(σ(s))

)
1
p Q(s) ds = ∞. (3.9)

Consequently, we get a contradiction with the eventual positivity of z, implying that x is
oscillatory.

Using Lemmas 2.2, 2.5, we derive

(

Nτ
t4
(t)
)

1
p =

(

Nτ
t0
(t)− κ

)
1
p ≥

(

Nτ
t0
(t)
)

1
p − κ

1
p

for all t ≥ t4. Therefore, assumptions (3.4)p, (3.7) imply for t ≥ t5,

∫ t

t5

(

Nτ
t4
(σ(s))

)
1
p Q(s) ds ≥

∫ t

t5

(

Nτ
t0
(σ(s))

)
1
p Q(s) ds − κ

1
p

∫ t

t5

Q(s) ds

=
∫ t

σ−1(t0)

(

Nτ
t0
(σ(s))

)
1
p Q(s) ds − κ

1
p

∫ t

t0

Q(s) ds + C t→∞
−−→ ∞

with an appropriate constant C ∈ R.

Remark 3.4. Condition (3.1) was proved in [5], but in the proof of Theorem 3.3, we emphasize
were the missing assumption was needed. Namely, to get the existence of t1.

Remark 3.5. The original proof of “Theorem” 3.1 from [5] contains the following issues:

1. Constant τ = inft≥t3(t − τ(t)) was introduced and used as positive. However, the case
τ(t) ↗ t as t → ∞ was not considered.

2. For fixed t, the value x(τN(t)(t)) was used, where N(t) =
⌊ t−t3

τ

⌋2
, τ is defined in the

previous point of this remark, and ⌊·⌋ is the greatest integer function (or the floor func-
tion). This can be a problem if N(t) is so large that τN(t)(t) < τ(t2), because then one
can not use the estimation

x(τN(t)−1(t)) > x(τN(t)(t)).

Similarly, we use estimation (3.5), but, in our case, Nτ
t4
(t) is bounded for any fixed t ≥ t4

(as it does not depend on the infimum).

3. The proof from [5] does not work even if τ is far from zero (e.g., constant delay). The
problem is in the power 2 in the definition of N(t) (see the previous point). Because
then one can not iterate expansion (3.8) N(t)-times, due to τN(t)(t) < τ(t4).

Remark 3.6. Since Nτ
t0
(t) ∈ N and Q(t) ≥ 0 for all t ≥ t0, inequality k

1
p1 ≤ k

1
p2 for each k ∈ N

and all 1 ≤ p2 ≤ p1 gives that, (3.4)p1 implies (3.4)p2 for any 1 < p2 ≤ p1. Similarly, (3.1)
implies (3.4)p for all p > 1.

Now, we generalize Theorem 3.3 to the case of multiple delays.
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Theorem 3.7. Let t0 ∈ R, n, m ∈ N, λi > 0 for i = 1, 2, . . . , n be such that ∑
n
i=1 λi = 1, and

Qj ∈ C([t0, ∞), R+), τi, σj ∈ Tt0 for i = 1, 2, . . . , n, j = 1, 2, . . . , m be given functions. If there exists
j0 ∈ {1, 2, . . . , m} such that

∫ ∞

t0

Qj0(s) ds = ∞ (3.10)

or
∫ ∞

σ−1
j0

(t0)
(Nτ

t0
(σj0(s)))

1
p Qj0(s) ds = ∞ (3.11)p

for some p > 1, where τ = mini=1,2,...,n τi and Nτ
t0
(t) is given by (2.1), then every solution of equation

(1.3) oscillates.

Proof. In this proof, we skip some details that are the same as in the proof of Theorem 3.3.
As in the proof of Theorem 3.3, each one of conditions (3.10), (3.11)p implies that

∀t ≥ t0 ∃T ≥ t : Qj0(T) > 0.

Suppose that x is an eventually positive solution of (1.3). Then, there is t1 ≥ t0 such that x(t),
x(τi(t)), x(σj(t)), i = 1, 2, . . . , n, j = 1, 2, . . . , m are positive for all t ≥ t1. From equation (1.3),
we get z′(t) ≤ 0 ∀t ≥ t1 for z(t) = x(t) − ∑

n
i=1 λix(τi(t)). Again, z can be only eventually

negative or eventually positive.
If z is eventually negative, then there exist t2 ≥ t1 and µ > 0 such that z(t) ≤ −µ for all

t ≥ t2, i.e.,

x(t) ≤ −µ +
n

∑
i=1

λix(τi(t)) ≤ −µ + max
i=1,2,...,n

x(τi(t))

≤ −µ + max
s∈I(t)

x(s)
(3.12)

for all t ≥ t2, where I(t) = [τ(t), τ(t)], τ = maxi=1,2,...,n τi. Note that τ, τ ∈ Tt0 . Denote

Iℓ :=
[

τ−(ℓ−1)(t2), τ−ℓ(t2)
)

, ℓ ∈ N0,

Ik
ℓ

:= Iℓ ∩
[

τ−(k−1)(τ−(ℓ−1)(t2)), τ−k(τ−(ℓ−1)(t2))
)

, ℓ ∈ N, k = 1, 2, . . . , K(ℓ),
(3.13)

where K(ℓ) is the largest k ∈ N for which Ik
ℓ
̸= ∅. Notice that by (2.2), t ∈ Iℓ for ℓ ∈ N0 if and

only if Nτ
t2
(t) = ℓ. Now, if t ∈ I1

ℓ
for ℓ ∈ N, then τ(t) ∈ τ(Iℓ) = Iℓ−1 and

τ(t) ∈ τ
([

τ−(ℓ−1)(t2), τ−1(τ−(ℓ−1)(t2))
))

=
[

τ(τ−(ℓ−1)(t2)), τ−(ℓ−1)(t2)
)

⊂ Iℓ−1.

Similarly, if t ∈ Ik
ℓ

for ℓ ∈ N, k ∈ {2, 3, . . . , K(ℓ)}, then τ(t) ∈ τ(Iℓ) = Iℓ−1 and

τ(t) ∈ τ
([

τ−(k−1)(τ−(ℓ−1)(t2)), τ−k(τ−(ℓ−1)(t2))
))

=
[

τ−(k−2)(τ−(ℓ−1)(t2)), τ−(k−1)(τ−(ℓ−1)(t2))
)

⊂ Ik−1
ℓ

.

Using the above inclusions, we are able to work more precisely with I(t) for particular values
of t.

Now, we use the mathematical induction with respect to the intervals I1
1 , I2

1 , . . . , IK(1)
1 ,

I1
2 ,. . . to prove an estimation of x(t) for all t ≥ t2. Let us denote Ω := sups∈I0

x(s) =
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maxs∈I0
x(s) and Ck

ℓ
:= conv{Iℓ−1, Ik

ℓ
}, the convex hull of the corresponding sets for ℓ ∈ N,

k ∈ {1, 2, . . . , K(ℓ)}. For I(Ik
ℓ
) =

⋃

t∈Ik
ℓ

[τ(t), τ(t)], we get I(I1
ℓ
) ⊂ Iℓ−1 for each ℓ ∈ N. So, if

t ∈ I1
1 , then by (3.12),

x(t) ≤ −µ + max
s∈I(I1

1 )

x(s) = −µ + max
s∈I0

x(s) = −µ + Ω = −Nτ
t2
(t)µ + Ω.

Furthermore, I(Ik
ℓ
) ⊂ conv{Iℓ−1, Ik−1

ℓ
} = Ck−1

ℓ
for l ∈ N, k ∈ {2, 3, . . . , K(ℓ)}. Let us suppose

that ℓ ∈ N, k ∈ {1, 2, . . . , K(ℓ)} are fixed and

x(t) ≤ −Nτ
t2
(t)µ + Ω

for all t∈conv{I0, Ik
ℓ
} (due to the continuity of x, this estimation is valid for all t∈conv{I0, Ik

ℓ
}).

Now, if k < K(ℓ), for t ∈ Ik+1
ℓ

we have I(t) ⊂ I(Ik+1
ℓ

) ⊂ Ck
ℓ
. Hence, by (3.12),

x(t) ≤ −µ + max
s∈Ck

ℓ

x(s) ≤ −µ + max
s∈Ck

ℓ

(−Nτ
t2
(s)µ + Ω)

= −µ − (ℓ− 1)µ + Ω = −ℓµ + Ω = −Nτ
t2
(t)µ + Ω.

On the other side, if k = K(ℓ), for t ∈ I1
ℓ+1 we obtain

x(t) ≤ −µ + max
s∈Iℓ

x(s) ≤ −µ + max
s∈Iℓ

(−Nτ
t2
(s)µ + Ω)

= −µ − ℓµ + Ω = −(ℓ+ 1)µ + Ω = −Nτ
t2
(t)µ + Ω.

So, we have proved that
x(t) ≤ −Nτ

t2
(t)µ + Ω, t ≥ t2.

Using Nτ
t2
(t) t→∞

−−→ ∞, for t → ∞ we obtain a contradiction with x being eventually positive.
Therefore, z is eventually positive, i.e., there is t2 ≥ t1 such that

x(t) >
n

∑
i=1

λix(τi(t)) ≥ min
i=1,2,...,n

x(τi(t)) ≥ min
s∈I(t)

x(s) ≥ min
s∈[τ(t),t]

x(s)

for all t ≥ t2. In this part of the proof, we adapt the notation from the previous part with this
new value of t2. So, we have

x(t) ≥ min
s∈I0

x(s) =: ω > 0, t ≥ t2. (3.14)

Consequently, from equation (1.3), we get

0 = z′(t) +
m

∑
j=1

Qj(t)x(σj(t)) ≥ z′(t) + ω
m

∑
j=1

Qj(t)

for all t ≥ t3 for some t3 ≥ σ−1(t2), σ = minj=1,2,...,m σj ∈ Tt0 . Integrating over [t3, t] gives

z(t) ≤ z(t3)− ω
m

∑
j=1

∫ t

t3

Qj(s) ds ≤ z(t3)− ω

∫ t

t3

Qj0(s) ds, t ≥ t3.

Assuming condition (3.10), this estimation results in a contradiction with eventual positivity
of z for t → ∞, which implies that x is oscillatory.
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Now, assume that
∫ ∞

t0

Qj(s) ds < ∞

for each j = 1, 2, . . . , m, and that condition (3.11)p is satisfied for some p > 1. Then

x(t) = z(t) +
n

∑
i=1

λix(τi(t)) ≥ z(t) + min
i=1,2,...,n

x(τi(t)) ≥ z(t) + min
s∈I(t)

x(s)

for all t ≥ t4, where t4 ≥ τ−1(t2) is such that t4 = τ−κ(t0) for some κ ∈ N. Let us fix arbitrary
T ≥ t4. Then, due to z′(t) ≤ 0 for all t ≥ t4,

x(t) ≥ z(T) + min
s∈I(t)

x(s), t ∈ [t4, T].

Using induction as for (3.12), one can now show that

x(t) ≥ Nτ
t4
(t)z(T) + ω, t ∈ [t4, T].

In particular, this estimation is valid for t = T. Since T ≥ t4 was arbitrary, we have

x(t) ≥ Nτ
t4
(t)z(t) + ω, t ≥ t4.

Applying Young inequality with p > 1 such that (3.11)p holds yields

x(t) ≥
(

pNτ
t4
(t)z(t)

)
1
p
(qω)

1
q

for all t ≥ t4. Denoting ω1 := p
1
p (qω)

1
q > 0, we have

z′(t) = −
m

∑
j=1

Qj(t)x(σj(t)) ≤ −ω1

m

∑
j=1

Qj(t)
(

Nτ
t4
(σj(t))z(σj(t))

)
1
p

≤ −ω1

m

∑
j=1

Qj(t)
(

Nτ
t4
(σj(t))z(t)

)
1
p

, t ≥ t5,

where t5 = σ−1(t4). Dividing by z
1
p (t) and integrating over [t5, t] yields

qz
1
q (t)− qz

1
q (t5) ≤ −ω1

∫ t

t5

(

Nτ
t4
(σj0(s))

)
1
p

Qj0(s) ds, t ≥ t5.

Now, the proof is finished as the proof of Theorem 3.3.

Remark 3.8. Note that conditions (3.10) and (3.11)p are equivalent to

m

∑
j=1

∫ ∞

t0

Qj(s) ds = ∞

and
m

∑
j=1

∫ ∞

σ−1
j (t0)

(Nτ
t0
(σj(s)))

1
p Qj(s) ds = ∞,

respectively.
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3.2 Distributed delays

Here, we consider neutral differential equations with distributed and mixed delays.

Theorem 3.9. Let t0 ∈ R, τ, τ, σ, σ ∈ Tt0 satisfy τ(t) < τ(t) and σ(t) ≤ σ(t) for all t ≥ t0,
λ ∈ C([τ(t0), ∞), (0, ∞)), Q ∈ C([t0, ∞), R+), R ∈ C([σ(t0), ∞), R+). If

∫ ∞

t0

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds = ∞ (3.15)

or
∫ ∞

σ−1(t0)
Q(s)

∫ σ(s)

σ(s)
(Nτ

t0
(r))

1
p R(r) dr ds = ∞ (3.16)p

for some p > 1, where Nτ
t0
(t) is given by (2.1), then every solution of equation (1.4) oscillates.

Proof. Again, the proof is similar to the proofs of Theorems 3.3, 3.7, so we only provide some
key points. For brevity, we also denote

Λ(t) =
(

∫ τ(t)

τ(t)
λ(s) ds

)−1

, t ≥ t0.

As before, each one of conditions (3.15), (3.16)p implies that

∀t ≥ t0 ∃T ≥ t : Q(T)
∫ σ(T)

σ(T)
R(s) ds > 0.

We suppose that x is an eventually positive solution of (1.4). Then there exists t1 ≥ t0 such that
x(t), x(τ(t)), x(σ(t)) are positive for all t ≥ t1. Hence, by equation (1.4), z′(t) ≤ 0 ∀t ≥ t1 for

z(t) = x(t)− Λ(t)
∫ τ(t)

τ(t) λ(s)x(s) ds. We know that z is either eventually negative or eventually
positive.

If z is eventually negative, there are t2 ≥ t1 and µ > 0 such that

x(t) ≤ −µ + Λ(t)
∫ τ(t)

τ(t)
λ(s)x(s) ds ≤ −µ + max

s∈I(t)
x(s) (3.17)

for all t ≥ t2, where I(t) = [τ(t), τ(t)]. Analogously to inequality (3.12), one can show by
induction that estimation (3.17) implies

x(t) ≤ −Nτ
t2
(t)µ + Ω, t ≥ t2,

where Ω = maxs∈I0
x(s) using the notation from the proof of Theorem 3.7. Using Nτ

t2
(t) t→∞

−−→

∞, a contradiction is obtained for t → ∞ with x being eventually positive.
Therefore, z is eventually positive. So, there is t2 ≥ t1 such that

x(t) > Λ(t)
∫ τ(t)

τ(t)
λ(s)x(s) ds ≥ min

s∈I(t)
x(s)

for all t ≥ t2. Adapting the notation (3.13) for Iℓ, Ik
ℓ
, estimation (3.14) follows. Next, from

equation (1.4), we get

0 = z′(t) + Q(t)
∫ σ(t)

σ(t)
R(s)x(s) ds ≥ z′(t) + ωQ(t)

∫ σ(t)

σ(t)
R(s) ds
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for all t ≥ t3 for some t3 ≥ σ−1(t2). Integration over [t3, t] results in

z(t) ≤ z(t3)− ω

∫ t

t3

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds, t ≥ t3.

Assuming condition (3.15), we get a contradiction with eventual positivity of z, since the right
side of the latter inequality tends to −∞ as t → ∞.

Now, assume that
∫ ∞

t0

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds < ∞ (3.18)

and that condition (3.16)p is satisfied for some p > 1. Then

x(t) = z(t) + Λ(t)
∫ τ(t)

τ(t)
λ(s)x(s) ds ≥ z(t) + min

s∈I(t)
x(s)

for all t ≥ t4, where t4 ≥ τ−1(t2) is such that t4 = τ−κ(t0) for some κ ∈ N. As in the proof of
Theorem 3.7, it can be shown that

x(t) ≥ Nτ
t4
(t)z(t) + ω, t ≥ t4,

and Young inequality implies

x(t) ≥
(

pNτ
t4
(t)z(t)

)
1
p
(qω)

1
q

for all t ≥ t4. Denoting ω1 := p
1
p (qω)

1
q > 0, from equation (1.4) we derive

z′(t) = −Q(t)
∫ σ(t)

σ(t)
R(s)x(s) ds ≤ −ω1Q(t)

∫ σ(t)

σ(t)
R(s)

(

Nτ
t4
(s)z(s)

)
1
p

ds

≤ −ω1Q(t)
∫ σ(t)

σ(t)
R(s)

(

Nτ
t4
(s)
)

1
p

ds z(t)
1
p , t ≥ t5,

where t5 = σ−1(t4). Dividing by z
1
p (t) and integrating over [t5, t] gives

qz
1
q (t)− qz

1
q (t5) ≤ −ω1

∫ t

t5

Q(s)
∫ σ(s)

σ(s)

(

Nτ
t4
(r)
)

1
p

R(r) dr ds, t ≥ t5.

Now, it only remains to show that
∫ ∞

t5

Q(s)
∫ σ(s)

σ(s)

(

Nτ
t4
(r)
)

1
p

R(r) dr ds = ∞

to obtain a contradiction with eventual positivity of z, implying that x is oscillatory. Using
Lemmas 2.2, 2.5 (see the proof of Theorem 3.3), we obtain

∫ t

t5

Q(s)
∫ σ(s)

σ(s)

(

Nτ
t4
(r)
)

1
p

R(r) dr ds

≥
∫ t

t5

Q(s)
∫ σ(s)

σ(s)

(

Nτ
t0
(r)
)

1
p

R(r) dr ds − κ
1
p

∫ t

t5

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds

=
∫ t

σ−1(t0)
Q(s)

∫ σ(s)

σ(s)

(

Nτ
t0
(r)
)

1
p

R(r) dr ds − κ
1
p

∫ t

t0

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds + C

for an appropriate constant C ∈ R. Note that, by conditions (3.16)p and (3.18), the right side
tends to ∞ as t → ∞. This completes the proof.
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Remark 3.10. Condition λ ∈ C([τ(t0), ∞), (0, ∞)) in Theorem 3.9 can be weakened to λ ∈

C([τ(t0), ∞), R+) satisfying
∫ τ(t)

τ(t) λ(s) ds > 0 for all t ≥ t0.

Finally, we present a result for neutral differential equations with mixed delays and time-
dependent coefficients.

Theorem 3.11. Let t0 ∈ R, n1,2, m1,2 ∈ N0 be such that n1 + n2 ≥ 1, m1 + m2 ≥ 1. Moreover, let
the following assumptions be fulfilled:

1. λi ∈ C([t0, ∞), R+) and τi ∈ Tt0 for each i = 1, 2, . . . , n1,

2. ϑi ∈ C([τi(t0), ∞), R+) and τi, τi ∈ Tt0 are such that τi(t) ≤ τi(t) for all t ≥ t0 and for each
i = 1, 2, . . . , n2,

3. Qj ∈ C([t0, ∞), R+) and σj ∈ Tt0 for each j = 1, 2, . . . , m1,

4. Sj ∈ C([t0, ∞), R+), Rj ∈ C([σj(t0), ∞), R+), and σj, σj ∈ Tt0 are such that σj(t) ≤ σj(t) for
all t ≥ t0 and each j = 1, 2, . . . , m2,

5. for all t ≥ t0,
n1

∑
i=1

λi(t) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s) ds = 1.

If
m1

∑
j=1

∫ ∞

t0

Qj(s) ds +
m2

∑
j=1

∫ ∞

t0

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds = ∞ (3.19)

or
m1

∑
j=1

∫ ∞

σ−1
j (t0)

(Nτ
t0
(σj(s)))

1
p Qj(s) ds

+
m2

∑
j=1

∫ ∞

σ−1
j (t0)

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t0
(r))

1
p Rj(r) dr ds = ∞

(3.20)p

for some p > 1, where τ = min{mini=1,2,...,n1 τi, mini=1,2,...,n2 τi} and Nτ
t0
(t) is given by (2.1), then

every solution of equation (1.5) oscillates.

Proof. Each one of conditions (3.19), (3.20)p implies that

∀t ≥ t0 ∃T ≥ t : Qj(T) > 0 for some j ∈ {1, 2, . . . , m1}

or Sj(T)
∫ σj(T)

σj(T)
Rj(s) ds > 0 for some j ∈ {1, 2, . . . , m2}.

(3.21)

Let us denote

τ := max
{

max
i=1,2,...,n1

τi, max
i=1,2,...,n2

τi

}

, σ := min
{

min
j=1,2,...,m1

σj, min
j=1,2,...,m2

σj

}

.

Note that τ, τ, σ ∈ Tt0 . Let us assume without any loss of generality that x is an eventually
positive solution of (1.5). Take t1 ≥ t0 such that x(t), x(τ(t)) and x(σ(t)) are positive for all
t ≥ t1. Then, by (1.5), z′(t) ≤ 0 ∀t ≥ t1 for

z(t) = x(t)−

(

n1

∑
i=1

λi(t)x(τi(t)) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s)x(s) ds

)

. (3.22)



14 P. Hasil, M. Pospíšil, L. Pospíšilová Škripková and M. Veselý

Due to (3.21), z is either eventually negative or eventually positive.
If z is eventually negative, there are t2 ≥ t1 and µ > 0 such that

x(t) ≤ −µ +
n1

∑
i=1

λi(t)x(τi(t)) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s)x(s) ds

≤ −µ +

(

n1

∑
i=1

λi(t) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s) ds

)

max
s∈I(t)

x(s) = −µ + max
s∈I(t)

x(s)

for all t ≥ t2, where I(t) = [τ(t), τ(t)]. As for (3.12), one can use mathematical induction to
show that

x(t) ≤ −Nτ
t2
(t)µ + Ω, t ≥ t2,

where Ω = maxs∈I0
x(s) using the notation from the proof of Theorem 3.7. Consequently,

Nτ
t2
(t) t→∞

−−→ ∞ yields a contradiction for t → ∞ with x being eventually positive.
Hence, z is eventually positive. Take t2 ≥ t1 such that

x(t) >
n1

∑
i=1

λi(t)x(τi(t)) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s)x(s) ds

≥

(

n1

∑
i=1

λi(t) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s) ds

)

min
s∈I(t)

x(s)

= min
s∈I(t)

x(s) ≥ min
s∈[τ(t),t)

x(s) ≥ min
s∈I0

x(s) =: ω

for all t ≥ t2, where we used the notation from the proof of Theorem 3.7, again. As a conse-
quence, equation (1.5) implies

0 ≥ z′(t) + ω

(

m1

∑
j=1

Qj(t) +
m2

∑
j=1

Sj(t)
∫ σj(t)

σj(t)
Rj(s) ds

)

for all t ≥ t3 for some t3 ≥ σ−1(t2). Integrating the latter inequality over [t3, t] gives

z(t) ≤ z(t3)− ω

(

m1

∑
j=1

∫ t

t3

Qj(s) ds +
m2

∑
j=1

∫ t

t3

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds

)

for all t ≥ t3. This results in a contradiction with the eventual positivity of z for t → ∞ if
(3.19) holds. So, x is oscillatory.

Now suppose that

m1

∑
j=1

∫ ∞

t0

Qj(s) ds +
m2

∑
j=1

∫ ∞

t0

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds < ∞ (3.23)

and that condition (3.20)p is fulfilled for some p > 1. Then, by (3.22) and assumption (5), we
get

x(t) ≥ z(t) + min
s∈I(t)

x(s), t ≥ t4,

where t4 ≥ τ−1(t2) is such that t4 = τ−κ(t0) for some κ ∈ N. By induction as in the proof of
Theorem 3.7, we derive

x(t) ≥ Nτ
t4
(t)z(t) + ω, t ≥ t4.
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Denoting ω1 := p
1
p (qω)

1
q > 0, Young’s inequality yields

x(t) ≥ ω1

(

Nτ
t4
(t)z(t)

)
1
p

, t ≥ t4.

Then, equation (1.5) gives

z′(t) ≤ −ω1

(

m1

∑
j=1

Qj(t)
(

Nτ
t4
(σj(t))z(σj(t))

)
1
p
+

m2

∑
j=1

Sj(t)
∫ σj(t)

σj(t)
Rj(s)

(

Nτ
t4
(s)z(s)

)
1
p

ds

)

≤ −ω1z(t)
1
p

(

m1

∑
j=1

Qj(t)(Nτ
t4
(σj(t)))

1
p +

m2

∑
j=1

Sj(t)
∫ σj(t)

σj(t)
Rj(s)

(

Nτ
t4
(s)
)

1
p

ds

)

for all t ≥ t5 = σ−1(t4). Dividing by z
1
p (t) and integrating over [t5, t] results in

qz
1
q (t)− qz

1
q (t5)

≤ −ω1

(

m1

∑
j=1

∫ t

t5

(Nτ
t4
(σj(s)))

1
p Qj(s) ds +

m2

∑
j=1

∫ t

t5

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t4
(r))

1
p Rj(r) dr ds

)

, t ≥ t5.

If the right side tends to −∞ as t → ∞, we get a contradiction with the eventual positivity of
z, which implies that x is oscillatory. To see this, we use Lemmas 2.2, 2.5 to estimate

m1

∑
j=1

∫ t

t5

(Nτ
t4
(σj(s)))

1
p Qj(s) ds +

m2

∑
j=1

∫ t

t5

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t4
(r))

1
p Rj(r) dr ds

≥
m1

∑
j=1

(

∫ t

t5

(Nτ
t0
(σj(s)))

1
p Qj(s) ds − κ

1
p

∫ t

t5

Qj(s) ds
)

+
m2

∑
j=1

(

∫ t

t5

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t0
(r))

1
p Rj(r) dr ds − κ

1
p

∫ t

t5

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds

)

=
m1

∑
j=1

(

∫ t

σ−1
j (t0)

(Nτ
t0
(σj(s)))

1
p Qj(s) ds − κ

1
p

∫ t

t0

Qj(s) ds

)

+
m2

∑
j=1

(

∫ t

σ−1
j (t0)

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t0
(r))

1
p Rj(r) dr ds − κ

1
p

∫ t

t0

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds

)

+ C

for an appropriate constant C ∈ R. Condition (3.20)p and inequality (3.23) imply that the
right-hand side tends to ∞ as t → ∞. This completes the proof.

4 Applications

In this section, we apply the results of Section 3 to concrete neutral differential equations.

4.1 Discrete delays

First, let us consider the neutral differential equation with one constant and one variable delay,

[x(t)− x(t − α)]′ + Q(t)x(σ(t)) = 0, t ≥ t0 (4.1)



16 P. Hasil, M. Pospíšil, L. Pospíšilová Škripková and M. Veselý

for some t0 ∈ R, α > 0, σ ∈ Tt0 , and Q ∈ C([t0, ∞), R+). Then τk(t) = t − kα for k ∈ Z. Now,
inequality (2.1) has the form

ζ + (Nτ
ζ (t)− 1)α ≤ t < ζ + Nτ

ζ (t)α.

Therefrom, we derive
t − ζ

α
< Nτ

ζ (t) ≤
t − ζ

α
+ 1

that gives

Nτ
ζ (t) =

⌊

t − ζ

α

⌋

+ 1.

Since we are interested in the convergence of the integral on the left side of (3.4)p in a neigh-
borhood of ∞, it is enough to assume that s ≥ t̃0, where t̃0 ≥ σ−1(t0) is such that σ(t̃0) > 0.
Then, dividing the inequality

σ(s)− t0

α
< Nτ

t0
(σ(s)) ≤

σ(s)− t0

α
+ 1

by σ(s)/α and taking the limit s → ∞, we obtain

lim
s→∞

α

σ(s)
Nτ

t0
(σ(s)) = 1.

Therefore, condition (3.4)p holds if and only if
∫ ∞

t̃0

(σ(s))
1
p Q(s) ds = ∞. (4.2)p

Using Theorem 3.3, one can easily prove the following result.

Proposition 4.1. Let t0 ∈ R, α > 0, σ ∈ Tt0 , Q ∈ C([t0, ∞), R+), and t̃0 ≥ σ−1(t0) be such that
σ(t̃0) > 0. Every solution of equation (4.1) oscillates if condition (3.1) or (4.2)p for some p > 1 is
satisfied.

In a particular case of equation (4.1) when σ(t) = t − β, β > 0, this statement can be
simplified. From the inequality

s − β − t0

α
< Nτ

t0
(σ(s)) ≤

s − β − t0

α
+ 1

for s ≥ t̃0, where t̃0 ≥ t0 + β is positive, we get

lim
s→∞

α

s
Nτ

t0
(σ(s)) = 1.

Hence, condition (3.4)p is equivalent to
∫ ∞

t̃0

s
1
p Q(s) ds = ∞. (4.3)p

Proposition 4.2. Let t0 ∈ R, α, β > 0, Q ∈ C([t0, ∞), R+), and t̃0 ≥ t0 + β be positive. Every
solution of the equation

[x(t)− x(t − α)]′ + Q(t)x(t − β) = 0, t ≥ t0 (4.4)

oscillates if condition (3.1) or (4.3)p for some p > 1 is satisfied.



Oscillation of neutral differential equations 17

Remark 4.3. Note that condition (3.1) or (4.3)p for some p > 1 implies
∫ ∞

t0

sQ(s) ds = ∞

which, by [6], means that equation (4.4) does not have a bounded positive solution.

Remark 4.4. For Q(t) = t−α, 1 < α, equation (4.4) reads as

[x(t)− x(t − α)]′ + t−αx(t − β) = 0, t ≥ t0.

This is known [6] to have a bounded positive solution if α > 2, since
∫ ∞

t0

s1−α ds < ∞.

To see that for 1 < α < 2 every solution is oscillatory, one can verify that
∫ ∞

t0

Q(s) exp
{

1
τ

∫ s

t0

rQ(r) dr
}

ds = ∞

with Q(t) = t−α from [4], or take p = 1
α−1 > 1 in (4.3)p to get

∫ ∞

t̃0

s
1
p Q(s) ds =

∫ ∞

t̃0

s
1
p−α ds =

∫ ∞

t̃0

s−1 ds = ∞.

The case α = 2 still remains to be unanswered, despite of the fact that in [5, Corollary] the
equation is stated to be oscillatory. At least for the variable delays, we proved that the equation
has a positive solution (see Example 3.2).

4.2 Distributed delays

Example 4.5. Let us consider the following equation
[

x(t)−
2
π

∫ t− π
2

t−π
x(s) ds

]′

+
2

π(sin 2σ − sin σ)

∫ t−σ

t−2σ
x(s) ds = 0, t ≥ t0 (4.5)

for some t0 ∈ R, where σ = 1
3

(

π − 2 arctan 2
π+2

) .
= 0.79988 > 0.

This equation is of the form (1.4) with λ(t) ≡ 1, R(t) ≡ 1, Q(t) ≡ 2
π(sin 2σ−sin σ)

.
= 2.25506 >

0, τ(t) = t − π, τ(t) = t − π
2 , σ(t) = t − 2σ, and σ(t) = t − σ. It is easy to see that condition

(3.15) is satisfied. Thus, by Theorem 3.9, every solution of equation (4.5) oscillates. One of
such solutions is x(t) = sin t. Indeed, for this function, the left-hand side of (4.5) is equal to

[

sin(t) +
2
π
(cos t + sin t)

]′

+
2(cos(t − 2σ)− cos(t − σ))

π(sin 2σ − sin σ)

=

(

1 +
2
π

)

cos(t)−
2
π

sin t +
2 cos t

π

cos 2σ − cos σ

sin 2σ − sin σ
+

2
π

sin t. (4.6)

Noting that

cos 2σ − cos σ

sin 2σ − sin σ
= − tan

3
2

σ = − tan
(

π

2
− arctan

2
π + 2

)

= − cot
(

arctan
2

π + 2

)

= −
π + 2

2
= −1 −

π

2

makes the right side of (4.6) vanish.
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Abstract. In this paper, a diffusive predator-prey system considering prey-taxis term
with memory and maturation delays under Neumann boundary conditions is investi-
gated. Firstly, the existence and stability of equilibria, especially the existence, unique-
ness and stability of the positive equilibrium, are studied. Secondly, we prove that:
(i) there is no spatially homogeneous steady state bifurcation as the eigenvalue of the
negative Laplace operator is zero; (ii) as this system is only with memory delay τ1,
the the spatially nonhomogeneous Hopf bifurcation appears; (iii) when the model is
only with maturation delay τ2, the system has spatially homogeneous and nonhomoge-
neous periodic solutions; (iv) for the case of two delays, the system has rich dynamics,
for example, stability switches, whose curves have four forms. Finally, some numerical
simulations are produced to verify and support the theoretical results.

Keywords: diffusive system, fear effect, prey-taxis, memory delay, maturation delay.
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1 Introduction

The predator-prey dynamics is of great significance for developing the mathematical ecology

and has been investigated by many scholars [5, 9, 10, 15, 18, 19]. That the prey population is

also affected by the fear of predators not only the direct killing has been found [18]. On

the basis of the experiment of Zanette [18], Wang et al. originally introduced the fear effect

into the predator-prey model. The results showed that the incorporation of fear effect into the

predator-prey model with Holling-II functional response can affect the stability of equilibrium

[15]. With further research, for the various biological factors, Holling-II functional response

of the predator-prey model with fear effect is modified differently, such as Allee effect [5],

Leslie–Gower term [9] and prey refuge [19].

It is well known that in the spatial predator-prey model, predator and prey are usually

considered to move randomly and are modeled by the reaction-diffusion equation. How-

ever, species also move towards certain directions due to the attraction or repulsion of some

BCorresponding author. Email: jzcao@hbu.edu.cn.
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chemical signals, which is commonly called chemotactic movement [16]. In biology, preda-

tor population tends to move to the area where the density of the prey population is higher,

which is termed prey-taxis [6,16]. This phenomenon was first noticed in a regional experiment

about individual ladybugs and aphids by Karevia and Odell [7]. They derived a predator-prey

model by considering prey-taxis as biased random walks, which is as follows















∂u(x, t)

∂t
= ∆u −∇ · (uρ(u, v)∇v) + G1(u, v),

∂v(x, t)

∂t
= D∆v + G2(u, v),

(1.1)

where u(x, t) and v(x, t) represent separately the density of the prey and predator at time

t > 0 and space location x; −∇ · (uρ(u, v)∇v) stands for the prey-taxis term, and ρ(u, v) is a

coefficient that may rely on u(x, t) or v(x, t) and D represents the diffusion rate; G1(u, v) and

G2(u, v) describe the functional response functions.

Considering that the ability to perceive danger is also related to the memory of animals,

Fagan pointed out that it is vital to incorporate spatial memory into models of animal move-

ments [3]. Namely, combining the reaction-diffusion equation with the memory delay term,

form the spatial memory model or the memory-based diffusion system, which has attracted

many researchers [1, 12, 13]. For example, Aly [1] studied bifurcations of a memory-based

diffusive predator-prey system. Shi et al. [12] showed the wellposedness of the memory-

based diffusive system; Song [13] investigated Hopf bifurcation caused by memory delay for a

memory-based diffusive system. Recently, some scholars have considered to combine memory

delay with fear effect into diffusion system [2, 17]. For example, Debnath et al. [2] explored

the role of memory and fear effect on prey-predator dynamics. Yang et al. [17] considered

memory delay and fear effect into a predator-prey model with diffusion. They proved that the

fear effect has both the stabilizing and the destabilizing effect on the coexisting equilibrium

under different conditions.

After the predator gets its food, it does not immediately respond to a change in the number

of population, but requires a period of digestion or pregnancy. Namely, there is a time delay to

allow the predator to reach maturity. Therefore, it is necessary to introduce the maturation or

digestion delay into the model. For example, Liu et al. [8] introduced the digestion delay into

a predator-prey model with fear effect. They showed that the occurrence of stability switches

and Hopf bifurcations as the digestion delay passes through a series of critical values. Shi et

al. [11] studied a model incorporating memory-based diffusion and maturation delay. They

proved that the proper association of two delay mechanisms can cause the appearance of

the spatially inhomogeneous time-periodic patterns. Wang et al. [14] investigated the model

collecting the spatial memory, maturation effect, prey-taxis and fear effect, which is as follows











































∂u

∂t
= d1∆u + α∇(u∇vτ1

) +
r0u

1 + kvτ2

− du − au2 − puv

1 + cu
, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v − mv2 +

quv

1 + cu
, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x) ≥ 0, v(x, t) = v0(x) ≥ 0, x ∈ Ω, t ∈ (−max{τ1, τ2}, 0],

(1.2)

where the meanings of u(x, t), v(x, t) are the same to those of model (1.1); vτ1
= v(x, t − τ1),
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vτ2 = v(x, t − τ2); τ1 is the memory delay; τ2 represents the maturation delay; d1 and d2 are

self-diffusion coefficients; r0 and d stand for separately prey’s growth rate and natural death

rate without considering fear cost; a and m are on behalf of the death rates for prey’s and

predator’s intra-special competition, respectively; 1
1+kv denotes the fear factor; α∇(u∇vτ1

)

stands for the prey-taxis term; uv
1+cu is the Holling-II functional response; Ω is a bounded do-

main in R
N , N ≥ 1, with a smooth boundary ∂Ω; ∂ν is the outer flux; ∆ and ∇ are Laplace

and gradient operator defined in Ω. All of the parameters are positive. They showed that

the model can exhibit rich dynamics, such as Turing instability, Hopf bifurcation and spatially

nonhomogeneous (homogeneous) periodic distribution. They considered the spatial mem-

ory, pregnancy effect and fear effect for prey into a diffusive prey-taxis model with Holling-II

functional response function. Motivated by this, we interest the system that the spatial mem-

ory and maturation effect in predator and fear effect in prey are incorporated in a diffusive

prey-taxis model with the modified Leslie–Gower term and are curious about what dynamic

behaviors for this complex model occur. In this paper, we aim to study the diffusive prey-taxis

system considering fear effect with memory and maturation delays as follows,











































∂u(x, t)

∂t
= d1∆u +

r0u

1 + av
− du − cu2 − puv

u + kv
, x ∈ Ω, t > 0,

∂v(x, t)

∂t
= d2∆v − χ∇(v∇uτ1

) + sv

(

1 − qv

uτ2 + m

)

, x ∈ Ω, t > 0,

∂u(x, t)

∂ν
=

∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x) ≥ 0, v(x, t) = v0(x) ≥ 0, x ∈ Ω, t ∈ (−max{τ1, τ2}, 0],

(1.3)

where uτ1
= u(x, t − τ1); uτ2 = u(x, t − τ2);

1
1+av is the fear factor; c represents the birth rate of

prey; −χ∇(v∇u) stands for prey-taxis term; χ is prey-taxis coefficient; χ > 0 (< 0) is called

attractive (repulsive) prey-taxis; s is the intrinsic growth rate of predator;
puv

u+kv is the Holling-II

functional response;
qv

u+m is the modified Leslie–Gower term. Keep the meanings and qualities

of other parameters and functions be the same to system (1.2).

The remainder of this paper is structured as follows. In Sect. 2, we not only discuss the

number and stability of equilibria, but also give the conditions for the existence and stability

of the unique positive equilibrium. In Sect. 3, we analyze the existence of the spatially homo-

geneous and nonhomogeneous steady states and Hopf bifurcation, and exhibit the dynamics

of the model with the cases of τ1 > 0, τ2 = 0; τ1 = 0, τ2 > 0; τ1 > 0, τ2 > 0. At the end,

numerical simulations are given to substantiate the theoretical findings.

2 The existence and stability of equilibria

First, we discuss the existence and stability of the equilibria for the following ordinary differ-

ential equation of system (1.3)















du

dt
=

r0u

1 + av
− du − cu2 − puv

u + kv
,

dv

dt
= sv

(

1 − qv

u + m

)

.

(2.1)
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Clearly, system (2.1) always has the trivial equilibrium (0, 0) and a semi-trivial equilibrium

e01

(

0, m
q

)

; as r0 > d, the semi-trivial equilibrium e10

(

r0−d
c , 0

)

exists; as

r0 > r∗0 ≜ (dk + p)(q + am)/kq, (2.2)

system (2.1) has the unique positive solution e2(ū, v̄) with v = u+m
q , and u is the positive root

of the equation
r0q

au + am + q
− d − cu − p(u + m)

(q + k)u + km
= 0.

For each nonnegative equilibrium e2(ū, v̄), the Jacobi matrix can be expressed by

J(u,v) :=









r0

1 + av
− d − 2cu − pkv2

(u + kv)2
− ar0u

(1 + av)2
− pu2

(u + kv)2

qsv2

(u + m)2
s − 2qsv

u + m









. (2.3)

For (0, 0) and e10

(

r0−d
c , 0

)

, they are always unstable because λ2 = s > 0; for e01

(

0, m
q

)

, the

eigenvalues of the Jacobi matrix are λ1 = r0q
q+am − d − p

k , λ2 = −s < 0, then e01 is locally

asymptotically stable (unstable) if r0 < r∗0( r0 > r∗0); the corresponding characteristic equation

at the positive equilibrium e2 (ū, v̄) is

λ2 − (A11 − s) λ +

(

−sA11 −
s

q
A12

)

= 0,

where

A11 =
r0

1 + av̄
− d − 2cū − pkv̄2

(ū + kv̄)2
,

A12 = − pū

(ū + kv̄)2
− ar0ū

(1 + av̄)2
.

Hence, if

A11 − s < 0, qA11 + A12 < 0, (2.4)

then the positive equilibrium e2 (ū, v̄) is locally asymptotically stable.

Summarizing the above works, we have the following theorem.

Theorem 2.1. Model (2.1) always has an unstable trivial equilibrium (0, 0); if r0 > d, then system

(2.1) has a saddle e10

(

r0−d
c , 0

)

; the semi-trivial equilibrium e01

(

0, m
q

)

is locally asymptotically stable

when r0 < (dk + p)(q + am)/kq and unstable when r0 > (dk + p)(q + am)/kq; suppose that

condition (2.2) holds, then model (2.1) has the unique positive equilibrium e2 (ū, v̄), and it is locally

asymptotically stable as (2.4) are satisfied.

Remark 2.2. Notice that (2.2) is not only the condition for the existence of positive equilib-

rium e2, but also the change situation of the stability of equilibrium e01. In other words, the

appearance of the positive equilibrium e2 leads to the instability of the boundary equilibrium

e01. Moreover, the condition for the existence of the equilibrium e10 is also contained in (2.2).
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3 Stability analysis

In this section, we are going to analyse the stability of the positive equilibrium on one-

dimension Ω = (0, ℓπ). The linearized system of model (1.3) at e2 (ū, v̄) is















































∂u(x, t)

∂t
= d1∆u(x, t) + A11u(x, t) + A12v(x, t), x ∈ Ω, t > 0,

∂v(x, t)

∂t
= d2∆v(x, t)− χv̄∆uτ1

+
s

q
uτ2 − sv(x, t), x ∈ Ω, t > 0,

∂u(x, t)

∂v
= 0,

∂v(x, t)

∂v
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x) ≥ 0, v(x, t) = v0(x) ≥ 0, x ∈ Ω, t ∈ (−max {τ1, τ2} , 0] .

(3.1)

The characteristic equation of model (3.1) at e2 (ū, v̄) is

∆n := λ2 + Anλ + Bn + Cne−λτ1 + Dne−λτ2 = 0, n ∈ N, (3.2)

where

An = (d1 + d2)
n2

l2
− (A11 − s) > 0, Bn =

(

d1
n2

l2
− A11

)(

d2
n2

l2
+ s

)

,

Cn = −A12χv̄
n2

l2
> 0, Dn = − s

q
A12 > 0.

(3.3)

First, we discuss the existence of the steady states of model (1.3). Assume that λ = 0, then

the characteristic equation (3.2) becomes

Bn + Cn + Dn = 0. (3.4)

Note that there is no delay in equation (3.4), which is equivalent to, τ1 = τ2 = 0.

3.1 Steady states

If n = 0, one can deduce that C0 = 0, then equation (3.4) can be rewritten as

B0 + D0 = −sA11 −
s

q
A12 = 0,

which is a contradiction with condition (2.4), therefore, there is no spatially homogeneous

steady state bifurcation.

As n ̸= 0, equation (3.4) becomes

d1d2
n4

ℓ4
− (A11d2 − sd1 + χA12v̄)

n2

ℓ2
−
(

sA11 +
s

q
A12

)

= 0. (3.5)

Regard χ as a function of n2, if

A11d2 − sd1 > 0, q (A11d2 + sd1)
2 + 4d1d2sA12 > 0, (3.6)
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then there is

χ(n2) =

d1d2n4 − (A11d2 − sd1) l2n2 −
(

sA11 +
s

q
A12

)

l4

A12v̄l2n2
> 0.

Taking the derivative of χ(n2), there is

χ′(n2) =

d1d2n4 +

(

sA11 +
s

q
A12

)

l4

A12v̄l2n4
.

If n < nT, one can deduce that χ′(n2) > 0, then χ(n2) is increasing with n2; if n > nT, then

χ′(n2) < 0, and χ(n2) is decreasing with n2 , where

n2
T = ℓ

2

√

− (qsA11 + sA12)

qd1d2
.

In order to ensure n∗ is a positive integer, let

n∗ =







[nT], if χ([nT]
2) > χ

(

([nT] + 1)2
)

,

[nT] + 1, if χ([nT]
2) < χ

(

([nT] + 1)2
)

,

and χ∗ = χ(n∗), if χ > χ∗, then Bn + Cn + Dn > 0; if χ < χ∗, then there is n ∈ N+ satisfying

Bn + Cn + Dn = 0.

To sum up, we have the following theorem.

Theorem 3.1. Suppose that conditions (2.2), (2.4) and (3.6) hold. Let n = 0, then e2 (ū, v̄) is always

stable and there is no spatially homogeneous steady state bifurcation. Let n ∈ N+, if χ > χ∗, then

e2 (ū, v̄) is asymptotically stable; if χ < χ∗, then the spatially homogeneous steady state occurs.

Remark 3.2. According to Theorem 3.1, the stability of positive equilibrium e2 (ū, v̄) is affected

by χ for the predator-prey system without delay (τ1 = τ2 = 0). That is to say, fast memory

diffusion (χ > χ∗) remains the stability of the system, while slow memory diffusion (χ < χ∗)

causes the system to be unstable. Moreover, if A11d2 − sd1 < 0, χ(n2) < 0 for each n ∈ N+,

then e2 (ū, v̄) is asymptotically stable for χ > 0. That is, for a sufficiently large self-diffusion

d1, there is no spatially homogeneous steady state bifurcation.

3.2 Hopf bifurcations

In this subsection, we always assume χ > χ∗ to analyze the Hopf bifurcation of model (1.3).

Let λ = iω(ω > 0), then the characteristic equation (3.2) becomes

−ω2 + Bn + Cn cos (ωτ1) + Dn cos (ωτ2) + i
(

Anω − Cn sin (ωτ1)− Dn sin (ωτ2)
)

= 0. (3.7)

As n = 0, equation (3.7) becomes

−ω2 + B0 + D0 cos (ωτ2) + i (A0ω − D0 sin (ωτ2)) = 0, (3.8)
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which only contains pregnancy delay τ2. By equation (3.8), we have

sin (ωτ2) =
A0ω

D0
> 0, cos (ωτ2) =

ω2 − B0

D0
,

and

ω4 +
(

A2
0 − 2B0

)

ω2 + B2
0 − D2

0 = 0. (3.9)

By condition (2.4), one can obtain B0 + D0 > 0, A2
0 − 2B0 > 0,

(

A2
0 − 2B0

)2 − 4(B2
0 − D2

0) > 0.

So we consider equation (3.9) from several different cases.

1) qA11 < A12, there are no positive real roots of equation (3.9), so the system is always stable;

2) qA11 > A12, for this case, equation (3.9) has only one positive root satisfying

ω+
2,0 =

√

√

√

√

−q
(

A2
11 + s2

)

+
√

q2
(

A2
11 − s2

)2
+ 4s2A2

12

2q
, (3.10)

and the transversality condition

(

dℜ(λ)
dτ2

)−1
∣

∣

∣

∣

∣

τ2=τ
j+
2,0

=

√

q4(1 + 4sA11)(s − A11)2 + 4q2s2 A2
12

s2 A2
12

> 0, (3.11)

where τ
j+
2,0 is a sequence as follows

τ
j+
2,0 =

1

ω+
2,0

(

arccos
qω+2

2,0 + qsA11

−sA12
+ 2jπ

)

, j = 0, 1, 2, . . . (3.12)

The sequence
{

τ
j+
2,0

}∞

j=0
is an increasing sequence for j, thus τ∗

2 = τ0+
2,0 = minj∈N τ

j+
2,0 . If

0 < τ2 < τ∗
2 , all the real parts of the roots of equation (3.2) are negative; if τ2 = τ

j+
2,0 , equation

(3.2) has a pair of pure imaginary roots; if τ2 > τ∗
2 , at least, one of the roots of equation (3.2)

is positive.

Theorem 3.3. Suppose that conditions (2.2) and (2.4) hold. When n = 0, for τ1 = 0, we have the

following statements.

(1) If qA11 < A12 or qA11 > A12, τ2 < τ∗
2 , then e2 is asymptotically stable;

(2) if qA11 > A12, τ2 > τ∗
2 , then e2 is unstable;

(3) if qA11 > A12, τ2 = τ
j+
2,0 (j = 0, 1, 2, . . . ), then the spatially homogeneous Hopf bifurcation

occurs.

Remark 3.4. From the above discussion, we can see that model (1.3) does not undergo the

spatially homogeneous Hopf bifurcation as it only has the spatial memory delay τ1, and for

this case, memory diffusion χ has no effect on the stability of the positive equilibrium (ū, v̄)
of system (1.3).

Next, we assume n ̸= 0, and consider the two cases (1) τ1 > 0, τ2 = 0; or τ1 = 0, τ2 > 0; (2)

τ1 > 0, τ2 > 0.
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Case 1. τ1 = 0, τ2 > 0 or τ1 > 0, τ2 = 0.

When τ1 = 0, τ2 > 0, equation (3.7) can be simplified as

−ω2 + Bn + Cn + Dn cos (ωτ2) + i (Anω − Dn sin (ωτ2)) = 0. (3.13)

Solving equation (3.13), we obtain

sin (ωτ2) =
Anω

Dn
> 0, cos (ωτ2) =

ω2 − (Bn + Cn)

Dn
,

and

ω4 +
(

A2
n − 2 (Bn + Cn)

)

ω2 + (Bn + Cn)
2 − D2

n = 0, (3.14)

where for ∀n ∈ N+, (Bn + Cn)
2 − D2

n ̸= 0.

1). There exists at least a n ∈ N+ satisfying the condition

|Bn + Cn| < Dn, (3.15)

or

|Bn + Cn| > Dn, A2
n = 2

(

(Bn + Cn)−
√

(Bn + Cn)
2 − D2

n

)

, (3.16)

such that equation (3.14) has a unique positive root

ω+
2,n =

√

− (A2
n − 2 (Bn + Dn)) +

√

A4
n − 4 (Bn + Cn) A2

n + 4D2
n

2
,

and the corresponding τ2 is

τ
j+
2,n =

1

ω+
2,n

(

arccos
ω+2

2,n − (Bn + Cn)

Dn
+ 2jπ

)

, j = 0, 1, 2, . . .

For each fixed n,
{

τ
j+
2,n

}∞

j=0
is an increasing sequence with the variable j. Denote

τ∗
2 := τ0+

2,nc
= min

n∈N+

{

τ0+
2,n

}

,

and τ∗
2 is the minimum value of the sequence of

{

τ
j+
2,n

}∞

j=0
, n ∈ N+. The transversality

condition is
(

dℜ(λ)
dτ2

)−1
∣

∣

∣

∣

∣

τ2=τ
j+
2,0

=
2
(

ω+2
2,0 − B0

)

+ A2
0

(

ω+2
2,0 − B0

)2
+ A2

0ω+2
2,0

> 0. (3.17)

That is, if τ2 < τ∗
2 , then all the real parts of the roots of equation (3.2) are negative; if τ2 = τ∗

2 ,

then equation (3.2) has a pair of pure imaginary roots; if τ2 > τ∗
2 , then there is at least a root

of equation (3.2) that has positive real part.

2). There exists a n ∈ N+ satisfying

|Bn + Cn| > Dn, A2
n < 2

(

(Bn + Cn)−
√

(Bn + Cn)
2 − D2

n

)

, (3.18)
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such that, equation (3.13) has two positive roots,

ω±
2,n =

√

− (A2
n − 2 (Bn + Cn))±

√

A4
n − 4 (Bn + Cn) A2

n + 4D2
n

2
,

and the corresponding τ2 are

τ
j±
2,n =

1

ω±
2,n

(

arccos
ω±2

2,n − (Bn + Cn)

Dn
+ 2jπ

)

, j = 0, 1, 2, . . .

The transversality condition is

(

dℜ(λ)
dτ2

)−1
∣

∣

∣

∣

∣

τ2=τ
j+
2,n

=

√

A4
n − 4 (Bn + Cn) A2

n + 4D2
n

(

ω+2
2,n − Bn

)2
+ A2

nω+2
2,n

> 0,

(

dℜ(λ)
dτ2

)−1
∣

∣

∣

∣

∣

τ2=τ
j−
2,n

= −
√

A4
n − 4 (Bn + Cn) A2

n + 4D2
n

(

ω−2
2,n − Bn

)2
+ A2

nω−2
2,n

< 0.

For each fixed n ∈ N+,
{

τ
j+
2,n

}∞

j=0
,
{

τ
j−
2,n

}∞

j=0
are increasing sequences with j, and τ

j+
2,n < τ

j−
2,n

due to ω
j+
2,n > ω

j−
2,n. Reorder

{

τ
j+
2,n

}∞

j=0
,
{

τ
j−
2,n

}∞

j=0
as increasing subsequences and denote as

{

τS+
2

}∞

S=1
,
{

τS−
2

}∞

S=1
, respectively, and τ∗

2 = τ0+
2 is the minimum value. There exists a K2 ∈ N,

such that all the real parts of the roots of model (3.13) are negative for

τ2 ∈
(

0, τ0+
2

)
⋃

(

τ0−
2 , τ1+

2

)

⋃

· · ·
⋃

(

τ
(K2−1)−
2 , τK2+

2

)

;

at least one root of model (3.13) has positive real part for

τ2 ∈
(

τ0+
2 , τ0−

2

)
⋃

(

τ1+
2 , τ1−

2

)

⋃

· · ·
⋃

(

τK2+
2 , ∞

)

.

3). For each n ∈ N+ satisfying

|Bn + Cn| > Dn, A2
n > 2

(

(Bn + Cn)−
√

(Bn + Cn)
2 − D2

n

)

, (3.19)

(3.13) has no positive root.

Theorem 3.5. Suppose that (2.2), (2.4) and χ < χ∗ hold. When τ1 = 0, for n ̸= 0, we have the

results.

1. The positive equilibrium e2 (ū, v̄) is asymptotically stable if one of the following conditions is satis-

fied:

(1) ∃n ∈ N+, (3.15) or (3.16), τ2 < τ∗
2 ;

(2) ∃n ∈ N+, (3.18), τ2 ∈
(

0, τ0+
2

)

∪ · · · ∪
(

τ
(K2−1)−
2 , τK2+

2

)

, K2 ≥ 0;

(3) ∀n ∈ N+, (3.19).

2. The positive equilibrium e2 (ū, v̄) is unstable if one of the following conditions holds:
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(1) ∃n ∈ N+, (3.15) or (3.16) , τ2 > τ∗
2 ;

(2) ∃n ∈ N+, (3.18) holds, τ2 ∈
(

τ0+
2 , τ0−

2

)

∪ · · · ∪
(

τK2+
2 ,+∞

)

, K2 ≥ 0.

3. System (1.3) undergoes the spatially nonhomogeneous Hopf bifurcation if one of the following

conditions is met:

(1) ∃n ∈ N+, (3.15) or (3.16) holds, τ2 = τ
j+
2,n (j = 0, 1, 2, . . . );

(2) ∃n ∈ N+, (3.18) holds, τ2 = τS±
2 (S = 0, 1, 2, . . . ).

When τ1 > 0 and τ2 = 0, the discussion process is the same as above. Denote

ω±
1,n =

√

− (A2
n − 2 (Bn + Dn))±

√

A4
n − 4 (Bn + Dn) A2

n + 4C2
n

2
, (3.20)

and the corresponding delay τ1 are

τ
j±
1,n =

1

ω±
1,n

(

arccos
ω±2

1,n − (Bn + Dn)

Cn
+ 2jπ

)

, j = 0, 1, 2, . . . (3.21)

Let

τ∗
1 := τ0+

1 = min
n∈N+

{

τ0+
1,n

}

. (3.22)

We have the following statements.

Theorem 3.6. Suppose that (2.2), (2.4) and χ < χ∗ hold. When τ2 = 0, for n ̸= 0, the following

statements hold.

1. The positive equilibrium (ū, v̄) is asymptotically stable if the parameters satisfy one of the following

conditions:

(1) ∃n ∈ N+, |Bn + Dn| < Cn or |Bn + Dn| > Cn, A2
n = 2

(

(Bn + Dn)−
√

(Bn + Dn)
2 − C2

n

)

hold, τ1 < τ∗
1 ;

(2) ∃n ∈ N+, |Bn + Dn| > Cn, A2
n < 2

(

(Bn + Dn)−
√

(Bn + Dn)
2 − C2

n

)

hold, τ1 ∈
(

0, τ0+
1

)

∪

· · · ∪
(

τ
(K1−1)−
1 , τK1+

2

)

, K1 ≥ 0;

(3) ∀n ∈ N+, |Bn + Dn| > Cn, A2
n > 2

(

(Bn + Dn)−
√

(Bn + Dn)
2 − C2

n

)

hold.

2. The positive equilibrium (ū, v̄) is unstable if the parameters meet one of the following conditions:

(1) ∃n ∈ N+, |Bn + Dn| < Cn or |Bn + Dn| > Cn, A2
n = 2

(

(Bn + Dn)−
√

(Bn + Dn)
2 − C2

n

)

hold, τ1 > τ∗
1 ;

(2) ∃n∈N+, |Bn + Dn|> Cn, A2
n < 2

(

(Bn + Dn)−
√

(Bn + Dn)
2 − C2

n

)

hold, τ1 ∈
(

τ0+
1 , τ0−

1

)

∪
· · · ∪

(

τK1+
1 ,+∞

)

, K1 ≥ 0;
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3. System (1.3) undergoes the spatially nonhomogeneous Hopf bifurcation if the parameters fulfill one

of the following conditions:

(1) ∃n ∈ N+, |Bn + Dn| < Cn or |Bn + Dn| > Cn, A2
n = 2

(

(Bn + Dn)−
√

(Bn + Dn)
2 − C2

n

)

hold, τ1 = τ
j+
1,n (j = 0, 1, 2, . . . );

(2) ∃n ∈ N+, |Bn + Dn| > Cn, A2
n < 2

(

(Bn + Dn) −
√

(Bn + Dn)
2 − C2

n

)

hold, τ1 = τS+
1,n

(S = 0, 1, 2, . . . ).

Case 2. τ1, τ2 > 0

We rewrite (3.2) with τ1 > 0 and τ2 > 0 as

Dn (λ, τ1, τ2) := P0,n(λ) + P1,n(λ)e
−λτ1 + P2,n(λ)e

−λτ2 = 0, (3.23)

where

P0,n(λ) = λ2 + Anλ + Bn, P1,n(λ) = Cn, P2,n(λ) = Dn, (3.24)

An, Bn, Cn and Dn are defined in (3.3). ∀n ∈ N+, PS,n(λ) (S = 0, 1, 2) satisfy

(I) deg P0,n(λ) ≥ max{deg P1,n(λ), deg P2,n(λ)};

(II) P0,n(0) + P1,n(0) + P2,n(0) = Bn + Cn + Dn ̸= 0;

(III) P0,n(λ), P1,n(λ), P2,n(λ) has no common zeros;

(IV) limλ→∞

(∣

∣

∣

P1,n(λ)
P0,n(λ)

∣

∣

∣+
∣

∣

∣

P2,n(λ)
P0,n(λ)

∣

∣

∣

)

< 1.

Notice that λ = 0 is the solution of (3.23), thus we assume that the root of (3.23) is λ =

iω (ω > 0), and for ∀ω > 0, Pj,n(iω) ̸= 0 (j = 0, 1, 2). According to [4], λ = iω (ω > 0) is a

solution of (3.23) if and only if Ωn is nonempty. Ωn is defined as,

Ωn=
{

ω∈R+ : |P1,n(iω)|+|P2,n(iω)|≥|P0,n(iω)| ,
∣

∣|P1,n(iω)|−|P2,n(iω)|
∣

∣≤|P0,n(iω)|
}

. (3.25)

If Ωn is nonempty, then we denote the delays (τ1, τ2) satisfying (3.25) as

τ±
1,n,K1

(ω) =

∠ arg
P1,n(iω)

P0,n(iω)
+ (2K1 − 1)π ± θ1,n(ω)

ω
, K1 = K±

1,n, K±
1,n + 1, K±

1,n + 2, . . . ,

τ±
2,n,K2

(ω) =

∠ arg
P2,n(iω)

P0,n(iω)
+ (2K2 − 1)π ∓ θ2,n(ω)

ω
, K2 = K±

2,n, K±
2,n + 1, K±

2,n + 2, . . . ,

(3.26)

where

θ1,n(ω) = arccos

(

|P0,n(iω)|2 + |P1,n(iω)|2 − |P2,n(iω)|2
2 |P0,n(iω)| |P1,n(iω)|

)

,

θ2,n(ω) = arccos

(

|P0,n(iω)|2 − |P1,n(iω)|2 + |P2,n(iω)|2
2 |P0,n(iω)| |P2,n(iω)|

)

.

(3.27)

K±
1,n and K±

2,n is the smallest integers to ensure τ±
1,n,K1

, τ±
2,n,K2

are positive. Furthermore, the
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mode-n stability switching curves (3.23) are

Tn =
N
⋃

K=1

{

+∞
⋃

K1=−∞

+∞
⋃

K2=−∞

(

T +K
n,K1,K2

, T −K
n,K1,K2

)

⋂

R
2
+

}

,

where

T ±K
n,K1,K2

=
{(

τ±
1,n,K1

(ω), τ∓
2,n,K2

(ω)
)

: ω ∈ Ωn

}

.

By [4, Proposition 4.5], we have the following conclusion about Tn and Ωn.

Theorem 3.7. The mode-n stability switching curves Tn and the crossing set Ωn have the following

structures with ∀n ∈ N+,

(1) Tn is a series of spiral-like curves

(1a) for Ωn =
[

ωr
2,n, ωr

1,n

]

, if |Bn| < |Cn − Dn|;

(1b) for Ωn =
[

ωl
1,n, ωl

2,n

]
⋃
[

ωr
2,n, ωr

1,n

]

, if

Cn + Dn < |Bn| , A2
n < 2

(

Bn −
√

B2
n − (Cn − Dn)

2
)

;

(2) Tn contains a series of open ended curves and a series of spiral-like curves for

Ωn =
(

0, ωl
2,n

]
⋃
[

ωr
2,n, ωr

1,n

]

, if

|Cn − Dn| < |Bn| < Cn + Dn, A2
n < 2

(

Bn −
√

B2
n − (Cn − Dn)

2
)

;

(3) Tn is a series of open ended curves for Ωn =
(

0, ωr
1,n

]

, if

|Cn − Dn| < |Bn| < Cn + Dn, A2
n > 2

(

Bn −
√

B2
n − (Cn − Dn)

2
)

;

(4) Tn is a series of closed curves for Ωn =
[

ωl
1,n, ωr

1,n

]

, if

Cn + Dn < |Bn| , 2

(

Bn −
√

B2
n − (Cn − Dn)

2
)

< A2
n < 2

(

Bn −
√

B2
n − (Cn + Dn)

2
)

,

where

ωl
1,n =

√

−
(

A2
n − 2Bn

)

−
√

∆1

2
, ωr

1,n =

√

− (A2
n − 2Bn) +

√
∆1

2
,

ωl
2,n =

√

− (A2
n − 2Bn)−

√
∆2

2
, ωr

2,n =

√

− (A2
n − 2Bn) +

√
∆2

2
,

and

∆1 = A4
n − 4Bn A2

n + 4 (Cn + Dn)
2 ,

∆2 = A4
n − 4Bn A2

n + 4 (Cn − Dn)
2 .
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Proof. By (3.25) and (3.24), |P1,n(iω)|+ |P2,n(iω)| = |P0,n(iω)| can be rewritten as

ω4 +
(

A2
n − 2Bn

)

ω2 + B2
n − (Cn + Dn)

2 = 0. (3.28)

We have the cases:

• when Cn + Dn < |Bn|, if A2
n > 2

(

Bn −
√

B2
n − (Cn + Dn)

2), for ∀ω > 0, then |P1,n(iω)|+
|P2,n(iω)| < |P0,n(iω)|, thus Ωn = ∅; if A2

n < 2
(

Bn −
√

B2
n − (Cn + Dn)

2), for ω ∈
[

ωl
1,n, ωr

1,n

]

, then |P1,n(iω)|+ |P2,n(iω)| ≥ |P0,n(iω)|;

• when Cn + Dn > |Bn|, |P1,n(iω)|+ |P2,n(iω)| ≥ |P0,n(iω)| for ω ∈
(

0, ωr
1,n

]

.

Similarly,
∣

∣|P1,n(iω)| − |P2,n(iω)|
∣

∣ = |P0,n(iω)| can expressed as

ω4 +
(

A2
n − 2Bn

)

ω2 + B2
n − (Cn − Dn)

2 = 0. (3.29)

For the same discussion, we also have:

• when |Cn−Dn|< |Bn|, Ωn = (0, ∞) for A2
n < 2

(

Bn −
√

B2
n − (Cn − D)2); Ωn =

(

0, ωl
2,n

]

∪
[

ωr
2,n,+∞

)

for A2
n > 2

(

Bn −
√

B2
n − (Cn − D)2);

• when |Cn − Dn| > |Bn|, Ωn =
[

ωr
2,n,+∞

)

.

Particularly, ωl
1,n < ωl

2,n, ωr
2,n < ωr

1,n due to ∆1 > ∆2.

Remark 3.8. In addition, Ωn = ∅ for

Cn + Dn < |Bn| , A2
n > 2

(

Bn −
√

B2
n − (Cn − Dn)

2
)

,

the conditions are continue holding for n → ∞.

Let λ = σ + iω, and view τ1, τ2 as functions τ1(σ, ω), τ2(σ, ω). Calculating from (3.23), we

have

P1,n(iω)

P0,n(iω)
e−iωτ1 =

Cn

ω4 + (A2
n − 2Bn)ω2 + B2

n

((

−ω2 + Bn

)

cos (ωτ1)− Anω sin (ωτ1)
)

+
−Cni

ω4 + (A2
n − 2Bn)ω2 + B2

n

((

−ω2 + Bn

)

sin (ωτ1) + Anω cos (ωτ1)
)

,

P2,n(iω)

P0,n(iω)
e−iωτ2 =

Dni

ω4 + (A2
n − 2Bn)ω2 + B2

n

((

−ω2 + Bn

)

cos (ωτ2)− Anω sin (ωτ2)
)

+
−Dni

ω4 + (A2
n − 2Bn)ω2 + B2

n

((

−ω2 + Bn

)

sin (ωτ2) + Anω cos (ωτ2)
)

,

and

R1 = Re

(

P1,n(iω)

P0,n(iω)
e−iωτ1

)

, I1 = Im

(

P1,n(iω)

P0,n(iω)
e−iωτ1

)

,

R2 = Re

(

P2,n(iω)

P0,n(iω)
e−iωτ2

)

, I2 = Im

(

P2,n(iω)

P0,n(iω)
e−iωτ2

)

.
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Then

R2 I1 − R1 I2 =
−CnDn

ω4 + (A2
n − 2Bn)ω2 + B2

n

sin (ω (τ1 − τ2)) . (3.30)

The sign of R2 I1 − R1 I2 is determined by sin (ω (τ1 − τ2)) because −CnDn < 0, ω4 +
(

A2
n − 2Bn

)

ω2 + B2
n > 0, for ∀ω > 0.

From [4, Proposition 6.1], we have the following lemma.

Lemma 3.9. Let ω ∈ Ωn, (τ1, τ2) ∈ Tn such that iω is a simple root of (3.23). A pair of conjugate

complex roots cross the imaginary axis to the right (left) for sin (ω (τ1 − τ2)) < 0 (> 0) as (τ1, τ2)
moves from the region on the right to the left of Tn.

If the following conditions hold:

(1) when n = 0, |B0| > D0, A2
0 < 2

(

B0 −
√

B2
0 − D2

0

)

or |B0| < D0;

(2) when n ∈ N+, |Bn| > Cn + Dn, A2
n < 2

(

Bn −
√

B2
n − (Cn + Dn)

2
)

or |Bn| < Cn + Dn;

then there exists (τ0
1 , τ0

2 ) such that (3.23) has the pure imaginary root iω0. Moreover, when

ω0
(

τ0
1 − τ0

2

)

̸= kπ (k ∈ Z), there is a neighborhood U1 of (τ0
1 , τ0

2 ), the following results hold.

Theorem 3.10. Denote that U2 is the stable region enclosed by the stability curves Tn and τ1 − τ2, but

not contain Tn, then

(1) when (τ1, τ2) ∈ U1 ∩ U2 , the positive equilibrium (ū, v̄) is asymptotically stable;

(2) when (τ1, τ2) ∈ U1\Ū2, the positive equilibrium (ū, v̄) is unstable;

(3) when (τ1, τ2) ∈ Tn, system (1.3) undergoes the spatially nonhomogeneous Hopf bifurcation at

(ū, v̄).

4 Numerical simulations

In this section, we give some numerical simulations to support the findings of this paper.

The parameters are chosen as a = 0.1, c = 0.1, p = 0.1, k = 0.1, s = 0.1, m = 0.1,

q = 1, d = 0.5. Model (1.3) has only one non-negative stable solution e01 = (0, 0.1) for

r0 = 0.1 < d (see Fig. 4.1(a)); when d < r0 = 0.6 < (dk + p)(q + am)/kq, model (1.3) has non-

negative stable solution e01 = (0, 0.1) and unstable solution e10 = (1, 0) (see Fig. 4.1(b)); for

r0 = 2 > (dk + p)(q + am)/kq, model (1.3) has only one positive solution e2, and non-negative

solutions e01 and e10 are unstable (see Fig. 4.1(c)).

Taking the parameter values

r0 = 80, a = 2, c = 3, d = 2, p = 18, k = 1, m = 1, q = 1,

there are (ū, v̄) = (0.8678, 1.8678), a11 = 1.292, a12 = −8.27. According to condition (2.4),

for qa11 + a12 < 0, the stability of (ū, v̄) = (0.8678, 1.8678) is determined by s. The positive

equilibrium (ū, v̄) is locally asymptotically stable when s = 3 > 1.292 (see Fig. 4.2(a)) and

unstable when s = 1 < 1.292 (see Fig. 4.2(b)).

Assuming d1 = 0.01, d2 = 10, ℓ = 1, s = 1.5, other parameters are the same as those of

Fig. 4.2. Now (ū, v̄) = (0.8678, 1.8678), A11 = 1.2952, condition (3.6) is satisfied, χ∗ = 0.7043
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Figure 4.1: The change of the number and stability of equilibrium points with the
parameter r0.
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Figure 4.2: The relationship of the stability of (ū, v̄) and s.

(a) χ = 0.01 (b) χ = 0.5 (c) χ = 1 (d) χ = 10

Figure 4.3: The first and second lines represent the populations of prey and predator,
the stability of model (1.3) is controlled by χ, (ū, v̄) is unstable for χ < χ∗ as (a) χ = 0.01,
(b) χ = 0.5 and locally stable for χ > χ∗ as (c) χ = 1, (d) χ = 10.
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for n∗ = 10. Fig. 4.3 verifies Theorem 3.1, for n ∈ N+, (ū, v̄) is asymptotically stable for

χ > χ∗; when χ < χ∗, notice that (ū, v̄) is unstable, Turing instability occurs (see Fig. 4.3(a)–

(d)).

In addition, for the given χ, the stability of model (1.3) also affected by d1. From Fig. 4.4,

the spatiotemporal diagram of the prey is displayed in the figures of the first line and that

of predator is showed in the figures of the second line for χ = 0.5. Fig. 4.4 shows that, as

the self-diffusion d1 is big enough, there is no spatially or non-spatially homogeneous steady

state bifurcation for the system.

(a) d1 = 0.02 (b) d1 = 0.2 (c) d1 = 2 (d) d1 = 20

Figure 4.4: The spatiotemporal diagram of the system. The value of d1 is set as (a)
d1 = 0.02, (b) d1 = 0.2, (c) d1 = 2 and (d) d1 = 20.

Next, we illustrate the influence of delay τ1 and τ2. For the delay τ1, taking the parameter

χ = 1 > χ∗, others are the same as those of Fig.4.3, then there exists n ∈ N+ satisfied

|Bn + Dn| < Cn, and the critical values are ω3+
1,0 = 1.0828 and τ∗

1 = 0.7194 for n = 3, so

the positive equilibrium (ū, v̄) is asymptotically stable for τ1 < τ∗
1 (see Fig. 4.5(a)–(b)), and

unstable for τ1 > τ∗
1 (see Fig. 4.5(c)–(d)).

(a) τ1 = 0.1 (b) τ1 = 0.2 (c) τ1 = 0.8 (d) τ1 = 1

Figure 4.5: When τ1 < τ∗
1 , the system is always stable and unstable when τ1 > τ∗

1 , for
the fixed value χ > χ∗.

For delay τ2 on the spatial distribution when n = 0, taking the parameter q = 3, model

(1.3) has the unique positive equilibrium (ū, v̄) = (4.4826, 1.8275), the system is stable for

qA11 < A12 (see Fig. 4.6(a)–(c)).

While q = 2, (ū, v̄) = (3.4458, 2.2229), qA11 > A12, we obtain the critical values ω0+
2,0 =

0.6008 and τ∗
2 = τ0+

2,0 = 2.5366. Taking τ2 = 0.1, 1, 2 < τ∗
2 (see Fig. 4.7(a)–(c)), and τ2 =

5, 10, 15 > τ∗
2 (see Fig. 4.7(d)–(f)) to verify the results of Theorem 3.3, the interval of the

oscillation period becomes longer with the increasing of τ2.
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(a) q = 3, τ2 = 1
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(b) q = 3, τ2 = 2
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(c) q = 3, τ2 = 5

Figure 4.6: Spatiotemporal diagram of model (1.3). The system is always stable when
q = 3 for any τ2, due to qA11 < A12.

(a) τ2 = 0.1 (b) τ2 = 1 (c) τ2 = 2

(d) τ2 = 5 (e) τ2 = 10 (f) τ2 = 15

Figure 4.7: Spatiotemporal diagram of prey for model (1.3). The first line shows that
the system is always stable for τ2 < τ∗

2 , and the second line shows that Hopf bifurcation
occurs for τ2 > τ∗

2 .
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For the model with two delay (τ1, τ2 ̸= 0), when s = 3, ℓ = 1 and other parameters are the

same as those of Fig. 2, the positive equilibrium is (0.8678, 1.8678). For n = 1, the crossing set

is Ω1 = (0, 3.9051], satisfying |C1 − D1| < |B1| < C1 + D1, A2
1 > 2

(

B1 −
√

B2
1 − (C1 − D1)

2),

then the stability switching curves are a series of open ended curves, so Theorem 3.7(3) is

verified (see Fig. 4.8(a)); for n = 3, Ω1 = [2.4861, 3.0613], satisfying |B2| < |C2 − D2|, the

stability switching curves are a series of spiral-like curves, and Theorem 3.7(1a) is verified

(see Fig. 4.8(b)). Others can be got similarly.

0 2 4 6 8 10
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5
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15

τ
1

τ 2

(a) n = 1

0 2 4 6 8 10
0

2

4
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8

10

12

τ
1

τ
2

(b) n = 3

Figure 4.8: The stability switching curves for n = 1, 2. (a) open ended curves for n = 1;
(b) spiral-like curves for n = 2.

5 Conclusion

In the paper, we propose a diffusive predator-prey system with two delays. We introduce the

modified Leslie–Gower term and fear effect to the system, and consider the stability of the

model with the memory delay τ1 and maturation delay τ2, obtaining the following results.

(1) System (1.3) always has the semi-trivial equilibrium e01, which is stable for r0 < (dk +

p)(q + am)/kq; when r0 > (dk + p)(q + am)/kq, the equilibrium e01 loses stable; when r0 > d,

there exists semi-trivial equilibrium e10, which is always unstable. Meanwhile, the model

has the unique positive equilibrium e2, which is locally asymptotically stable for a11 − s < 0,

qa11 + a12 < 0. The number and stability of model (1.3) are determined by r0.

(2) For n = 0, as conditions (2.2) and (2.4) hold, there is no spatially homogeneous steady

state bifurcation. When n ̸= 0 and condition (3.6) is satisfied, for χ > χ∗, (ū, v̄) is asymptot-

ically stable; for χ < χ∗, the spatially homogeneous steady state bifurcation occurs at (ū, v̄).

Therefore, Turing instability appears. From the condition A11d2 − sd1 < 0, one can conclude

that slow prey-taxis and fast self-diffusion would cause Turing patterns to occur.

(3) System (1.3) exists the spatially nonhomogeneous Hopf bifurcation at (ū, v̄) for fast

memory delay when it only has delay τ1; model (1.3) undergoes the spatially homogeneous

and nonhomogeneous Hopf bifurcation at (ū, v̄) for fast maturation delay when it only has

delay τ2. Specially, there is no spatially homogeneous Hopf bifurcation for any delay τ2

(τ1 = 0) when q is big enough. For the model with two delay (τ1, τ2 ̸= 0), the structures of

mode-n stability switching curves Tn and the crossing set Ωn are shown as in Theorem 3.7,

and the dynamical behavior are much richer than one delay.
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1 Introduction

Systems of three second-order ordinary differential equations emerge naturally from the ap-

plication of Newton’s laws in modeling three body interaction: each equation represents the

acceleration of a body in response to the forces exerted by the other two bodies. Such systems

have a vital role in modeling problems of mechanics and oscillations.

In this paper, we investigate the interval of the existence of (strictly) positive solutions, i.e.

we determine real positive τ for which at least one positive solution exists, for the following

system of nonlinear second-order differential equations

x′′i (t) + fi(t, x1(t), x2(t), x3(t)) = 0, t ∈ (0, τ), i = 1, 2, 3, (1.1)

coupled with nonlocal boundary conditions

xi(0) = ϕi[xi] + ai, xi(τ) = ψi[xi] + bi, (1.2)

BCorresponding author. Email: aleksey.antonyuk1@gmail.com
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where ai, bi ≥ 0, fi : [0, τ] × [0,+∞)3 → [0,+∞) are continuous, ϕi[x] =
∫ τ

0 x(t)dΦi(t) and

ψi[x] =
∫ τ

0 x(t)dΨi(t) are linear functionals defined via Riemann–Stieltjes integrals, where

Φi, Ψi : [0, τ] → R are functions of bounded variation.

We write ϕi[Id] and ϕi[τ] to denote ϕi applied to the identity function and constant func-

tion with value τ, respectively. The notation |A| denotes the determinant of a square matrix

A. Throughout the paper, we assume that

(A1) 0 ≤ ϕi[Id], 0 ≤ ϕi[τ − Id] ≤ τ and 0 ≤ ψi[τ − Id], 0 ≤ ψi[Id] ≤ τ,

(A2) 0 < Di =

∣

∣

∣

∣

τ − ϕi[τ − Id] −ϕi[Id]

−ψi[τ − Id] τ − ψi[Id]

∣

∣

∣

∣

,

are valid for every i = 1, 2, 3.

By a positive solution of problem (1.1), (1.2) we understand (x1, x2, x3) ∈
(

C2[0, τ]
)3

, which

satisfies system of differential equations (1.1), boundary conditions (1.2) and positive coexis-

tence condition, i.e. xi(t) > 0 for all t ∈ (0, τ) and every i = 1, 2, 3.

We do not assume ϕi[xi] ≥ 0 and ψi[xi] ≥ 0 for all xi ≥ 0, but we allow dΦi and dΨi to

be signed measures. For details on signed measure and Riemann–Stieltjes integrals we refer

reader, for instance, to [17–19]. But we require ϕi[xi] ≥ 0 and ψi[xi] ≥ 0 for corresponding

component of the positive solution (x1, x2, x3).

The term “coexistence” was introduced by Lan [11] in context of fixed points in product

Banach spaces. Coexistence fixed point denotes a fixed point with all the components different

from zero. The common approach to obtain solutions of operator equation is to seek the

fixed points. The best-known fixed point theorems for positive solutions are Krasnosel’skiı̆’s

fixed point theorem in cones [10] and its generalizations, for instance, Krasnosel’skiı̆–Benjamin

fixed point theorem [1], where conditions are weakened, and Guo–Krasnosel’skiı̆ fixed point

theorem [3], where considered region is more general. But, as it was mentioned in [12,13,15],

these theorems cannot guarantee the coexistence fixed point. Motivated by this, Precup [12,

13] established (2-dimensional) vector version of Krasnosel’skiı̆’s fixed point theorem, which

allows to localize fixed point in the component-wise manner. Recently, Rodríguez-López [15]

showed an alternative proof via fixed point index theory. As it was pointed out in [15], the

result by Precup remains valid for n-dimensions. For multiplicity result of positive solutions

by vector version of Krasnosel’skiı̆’s fixed point theorem we refer reader to [8, 14].

Generalized version of problem (1.1), (1.2) with τ = 1 and i = 1, 2, was studied by Hen-

derson and Luca [5, 6]. In [5] was considered problem (in our notations)

(ai(t)xi(t)
′)′ − bi(t)xi(t) + λi pi(t) fi(t, x1(t), x2(t)) = 0, t ∈ (0, 1), i = 1, 2, (1.3)

αixi(0)− βia(0)x′i(0) = ϕi[xi], γixi(1) + δia(1)x′i(1) = ψi[xi], (1.4)

and sufficient conditions on λi and fi were given such that non-negative solutions of problem

(1.3), (1.4) exist. The result was based on Guo–Krasnosel’ski fixed point theorem. In [6] by

applying fixed point index theory results on existence and multiplicity of positive solutions

were obtained for the slightly modified problem (1.3), (1.4): the functions fi depended on only

one unknown xj 6=i, i.e. fi(t, xj 6=i(t)).

In this paper, we apply two methods that allow us to obtain an interval of the existence of

positive solutions for the problem (1.1), (1.2). First we find τ by solving system of inequalities,

which is based on Green’s functions of problem (1.1), (1.2) and behavior of functions fi. To

prove that for these τ there exist positive solutions we apply vector version of Krasnosel’skiı̆’s

fixed point theorem, or Krasnosel’skiı̆–Precup fixed point theorem. Let us recall this result
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here. A nonempty closed convex subset K ⊂ X of normed space (X, ‖ · ‖) is called a cone if

λx ∈ K for every x ∈ K and for all λ ≥ 0, and K ∩ (−K) = 0.

Theorem 1.1 (Krasnosel’skiı̆–Precup, [12, 15]). Let (X, ‖ · ‖) be a normed space, K1, . . . , Kn cones

in X, K = K1 × · · · × Kn, r = (r1, . . . , rn), R = (R1, . . . , Rn), with 0 < ri < Ri for i ∈ {1, . . . , n},

and

Kr,R = {x = (x1, . . . , xn) ∈ K : ∀ i ∈ {1, . . . , n} ri ≤ ‖xi‖ ≤ Ri}.

Assume that T = (T1, .., Tn) : Kr,R → K is a completely continuous map and for each i ∈ {1, .., n}
there exists hi ∈ Ki \ {0} such that one of the following conditions is satisfied in Kr,R:

(i) Tix + µhi 6= xi if ‖xi‖ = ri and µ > 0, and Tix 6= λxi if ‖xi‖ = Ri and λ > 1;

(ii) Tix 6= λxi if ‖xi‖ = ri and λ > 1, and Tix + µhi 6= xi if ‖xi‖ = Ri and µ > 0.

Then T has at least one fixed point x ∈ K with ri ≤ ‖xi‖ ≤ Ri, i ∈ {1, . . . , n}.

Conditions (i) and (ii) are called compression type and expansion type condition, respectively.

To satisfy compression and expansion type conditions various authors considered asymp-

totic behavior of f /x at zero and infinity. This approach is widely used in case of one differ-

ential equation or systems in which all fi depend on only one unknown xj 6=i (see, for instance,

[2, 6, 7, 9, 18, 19]). The idea is to use limits

lim
x→0

sup
t

f (t, x)

x
, lim

x→∞

sup
t

f (t, x)

x

lim
x→0

inf
t

f (t, x)

x
, lim

x→∞
inf

t

f (t, x)

x
.

In [9] the case where the above limits were zero or infinity was studied. In [2, 7] the limits

were allowed to be small or large enough, in a sense that necessary inequalities hold. In the

case of systems of differential equations in which fi depend on all unknowns many authors

require additional assumptions on fi to construct similar limits. For instance, fi is monotone

with respect to xj, see [12, 13], or bounded with respect to xj, see [4].

If we let ϕi ≡ 0 and ψi ≡ 0, then boundary conditions (1.2) become Dirichlet boundary con-

ditions. For such problem we compare the theoretical result with the result based on built-in

functions of program Mathematica [20]. The numerical result is obtained by shooting method:

we consider the initial value problem for system of differential equations and determine τ.

The outline of the rest of the paper is as follows. In Section 2, we rewrite boundary value

problem (1.1), (1.2) as an equivalent system of integral equations by constructing the Greens

functions and show the estimations of Greens functions. We prove the existence of positive

solutions by applying Krasnosel’skiı̆–Precup fixed point theorem in Section 3 and formulate

main result of this article in Theorem 3.7. Finally, in Section 4, we compare theoretical and

numerical results for problem (1.1) with the boundary conditions xi(0) = ai, xi(τ) = bi.

2 Construction and estimation of Green’s functions

Standard approach is to rewrite problem (1.1), (1.2) as an equivalent system of integral equa-

tions via corresponding Green’s functions. Results of this section are well-known and for

details we refer reader to [16, 18, 19].
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The Green’s function G0 corresponding to problem x′′(t) + h(t) = 0, x(1) = 0 = x(τ), is

given by

G0(t, s) =
1

τ

{

s(τ − t), 0 ≤ s ≤ t ≤ τ,

t(τ − s), 0 ≤ t ≤ s ≤ τ.
(2.1)

We denote Gϕi
(s) =

∫ τ

0 G0(t, s)dΦi(t), Gψi
(s) =

∫ τ

0 G0(t, s)dΨi(t) and in addition to (A1) and

(A2) we assume

(A3) Gϕi
(s) ≥ 0 and Gψi

(s) ≥ 0 for all s ∈ [0, τ] and every i = 1, 2, 3.

Recall that Di is given by (A2) and |A| denotes the determinant of a square matrix A.

Proposition 2.1. A triple (x1, x2, x3) is a solution of boundary value problem (1.1), (1.2) if and only

if (x1, x2, x3) is a solution of the system of integral equations

xi(t) =
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t), t ∈ [0, τ], i = 1, 2, 3, (2.2)

where

Gi(t, s) =
1

Di

∣

∣

∣

∣

∣

∣

τ − t τ − ϕi[τ − Id] −ψi[τ − Id]

t −ϕi[Id] τ − ψi[Id]

G0(t, s) −Gϕi
(s) −Gψi

(s)

∣

∣

∣

∣

∣

∣

(2.3)

and

gi(t) =
1

Di

∣

∣

∣

∣

∣

∣

τ − t τ − ϕi[τ − Id] −ψi[τ − Id]

t −ϕi[Id] τ − ψi[Id]

0 −ai −bi

∣

∣

∣

∣

∣

∣

. (2.4)

Proof. Let (x1, x2, x3) be a solution of boundary value problem (1.1), (1.2). For every i = 1, 2, 3,

integrating (1.1) twice from 0 to t and applying boundary conditions (1.2), we get

xi(t) =
∫ τ

0
G0(t, s) fi(s, x1(s), x2(s), x3(s))ds +

t

τ
(bi + ψi[xi]) +

τ − t

τ
(ai + ϕi[xi]). (2.5)

Let us denote (Fxi)(t) =
∫ τ

0 G0(t, s) fi(s, x1(s), x2(s), x3(s))ds. Applying ϕi and ψi to (2.5), we

get

ϕi[xi](τ − ϕi[τ − Id])− ϕi[Id]ψi[xi] = τ ϕi[Fxi] + bi ϕi[Id] + ai ϕi[τ − Id],

ψi[xi](τ − ψi[Id])− ψi[τ − Id]ϕi[xi] = τ ψi[Fxi] + biψi[Id] + aiψi[τ − Id].
(2.6)

We rewrite (2.6) in matrix form

(

τ − ϕi[τ − Id] −ϕi[Id]

−ψi[τ − Id] τ − ψi[Id]

)(

ϕi[xi]

ψi[xi]

)

=

(

τ ϕi[Fxi]

τ ψi[Fxi]

)

+

(

ϕi[τ − Id] ϕi[Id]

ψi[τ − Id] ψi[Id]

)(

ai

bi

)

.

By assumption (A2), Di > 0 and it follows

(

ϕi[xi]

ψi[xi]

)

=
1

Di

(

τ − ψi[Id] ϕi[Id]

ψi[τ − Id] τ − ϕi[τ − Id]

)(

τ ϕi[Fxi]

τ ψi[Fxi]

)

+
1

Di

(

τ − ψi[Id] ϕi[Id]

ψi[τ − Id] τ − ϕi[τ − Id]

)(

ϕi[τ − Id] ϕi[Id]

ψi[τ − Id] ψi[Id]

)(

ai

bi

)

.

(2.7)
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Substituting ϕi[xi] and ψi[xi] from (2.7) in (2.5), we get

xi(t) = (Fxi)(t)−
t

Di

∣

∣

∣

∣

τ − ϕi[τ − Id] −ψi[τ − Id]

−ϕi[Fxi] −ψi[Fxi]

∣

∣

∣

∣

+
τ − t

Di

∣

∣

∣

∣

−ϕi[Id] τ − ψi[Id]

−ϕi[Fxi] −ψi[Fxi]

∣

∣

∣

∣

− t

Di

∣

∣

∣

∣

τ − ϕi[τ − Id] −ψi[τ − Id]

−ai −bi

∣

∣

∣

∣

+
τ − t

Di

∣

∣

∣

∣

−ϕi[Id] τ − ψi[Id]

−ai −bi

∣

∣

∣

∣

=
1

Di

∣

∣

∣

∣

∣

∣

τ − t τ − ϕi[τ − Id] −ψi[τ − Id]

t −ϕi[Id] τ − ψi[Id]

(Fxi)(t) −ϕi[Fxi] −ψi[Fxi]

∣

∣

∣

∣

∣

∣

+
1

Di

∣

∣

∣

∣

∣

∣

τ − t τ − ϕi[τ − Id] −ψi[τ − Id]

t −ϕi[Id] τ − ψi[Id]

0 −ai −bi

∣

∣

∣

∣

∣

∣

=
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t),

where Gi is given by (2.3) and gi is given by (2.4).

Now, let (x1, x2, x3) satisfy system of integral equations (2.2). It follows that each xi also

satisfies (2.5). By differentiating (2.5) twice, it is easy to see that (x1, x2, x3) satisfies (1.1), (1.2)

and (x1, x2, x3) ∈
(

C2[0, τ]
)3

.

Remark 2.2. Note that Gi ≥ 0 and gi ≥ 0 for every i = 1, 2, 3. Indeed, expansion of (2.3) and

(2.4) along the first column is

Gi(t, s) =
τ − t

Di

∣

∣

∣

∣

−ϕi[Id] τ − ψi[Id]

−Gϕi
(s) −Gϕi

(s)

∣

∣

∣

∣

− t

Di

∣

∣

∣

∣

τ − ϕi[τ − Id] −ψi[τ − Id]

−Gϕi
(s) −Gϕi

(s)

∣

∣

∣

∣

+ G0(t, s)

=
τ − t

Di

∣

∣

∣

∣

ϕi[Id] τ − ψi[Id]

−Gϕi
(s) Gϕi

(s)

∣

∣

∣

∣

+
t

Di

∣

∣

∣

∣

τ − ϕi[τ − Id] ψi[τ − Id]

−Gϕi
(s) Gϕi

(s)

∣

∣

∣

∣

+ G0(t, s)

(2.8)

and

gi(t) =
τ − t

Di

∣

∣

∣

∣

−ϕi[Id] τ − ψi[Id]

−ai −bi

∣

∣

∣

∣

− t

Di

∣

∣

∣

∣

τ − ϕi[τ − Id] −ψi[τ − Id]

−ai −bi

∣

∣

∣

∣

=
τ − t

Di

∣

∣

∣

∣

ϕi[Id] τ − ψi[Id]

−ai bi

∣

∣

∣

∣

+
t

Di

∣

∣

∣

∣

τ − ϕi[τ − Id] ψi[τ − Id]

−ai bi

∣

∣

∣

∣

.

(2.9)

By assumptions (A1)–(A3), and ai, bi ≥ 0, and fact that G0, given by (2.1), is non-negative,

determinants in last parts of (2.8) and (2.9) are non-negative for all (t, s) ∈ [0, τ]× [0, τ] and

t ∈ [0, τ], respectively.

Let m(t) = min {t/τ, 1 − t/τ}. It is known that Green’s function G0 satisfies

m(t)G0(s, s) ≤ G0(t, s) ≤ G0(s, s), (t, s) ∈ [0, τ]× [0, τ].

Proposition 2.3. Green’s function Gi, given by (2.3), satisfies

m(t)Hi(s) ≤ Gi(t, s) ≤ Hi(s), (t, s) ∈ [0, τ]× [0, τ],

where

Hi(s) =
1

Di

∣

∣

∣

∣

∣

∣

τ τ − ϕi[τ − Id] −ψi[τ − Id]

τ −ϕi[Id] τ − ψi[Id]

G0(s, s) −Gϕi
(s) −Gψi

(s)

∣

∣

∣

∣

∣

∣

.
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Proof. Expansion of Gi(t, s) along the first column is given by (2.8). We replace τ − t with τ in

first determinant, t with τ in second determinant, G0(t, s) with G0(s, s) in third determinant

and get Hi(s). Therefore, Hi ≥ 0 by the same argument as Gi ≥ 0.

We get inequality Gi(t, s) ≤ Hi(s) by estimating τ − t ≤ τ, t ≤ τ and G0(t, s) ≤ G0(s, s).

It is clear that 1 − t/τ ≥ m(t) and t/τ ≥ m(t) for all t ∈ [0, τ]. We get inequality Gi(t, s) ≥
m(t)Hi(s) by estimating τ − t ≥ m(t)τ, t ≥ m(t)τ and G0(t, s) ≥ m(t)G0(s, s).

Observe that if ai = bi = 0, then gi ≡ 0. By (2.9), it is easy to see that gi(t) is a polynomial

with degree at most one. Hence gi is concave. Concavity of gi implies

gi(t) ≥ m(t) gi(t0), (t, t0) ∈ [0, τ]× [0, τ]. (2.10)

For every c ∈ (0, τ/2) inequality τc ≤ m(t) holds for t ∈ [c, τ − c]. As it was mentioned

in [18, 19], for Green’s function G0 optimal constant is c = τ/4. Optimal in a sense that

inf {
∫ τ−c

c G0(t, s)ds : t ∈ [c, τ − c]} is maximal.

3 Theoretical result on the existence of a positive solution

Consider Banach space C[0, τ] endowed with the norm ‖x‖ = max{|x(t)| : t ∈ [0, τ]}. We

define cone ki by

ki =

{

u ∈ C[0, τ] : u(t) ≥ 0 for t ∈ [0, τ], min
t∈[τ/4, 3τ/4]

u(t) ≥ 1

4
‖u‖, ϕi[u] ≥ 0, ψi[u] ≥ 0

}

.

Let K = k1 × k2 × k3, x = (x1, x2, x3) and T = (T1, T2, T3) : K → (C[0, τ])3 be an operator

defined by

(Tix)(t) =
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t), (3.1)

where Gi is given by (2.3) and gi is given by (2.4).

Observe that T is a completely continuous operator. Indeed, gi is obviously completely

continuous and Tix − gi is completely continuous by application of Arzelà–Ascoli theorem.

Boundary value problem (1.1), (1.2) has a non-negative solution if and only if operator T has a

fixed point in K. To prove that maximal value of each xi is positive, and hence the solution is

positive, we apply Krasnosel’skiı̆–Precup fixed point theorem (Theorem 1.1). Now, we show

that T maps K into itself.

Proposition 3.1. Operator T, given by (3.1), satisfies T(K) ⊂ K.

Proof. It is obvious that Tix ≥ 0 for each i = 1, 2, 3.

Let Tix achieve maximum value at point t0, i.e. (Tix)(t0) = ‖Tix‖. By Proposition 2.3 and

(2.10), for every t ∈ [τ/4, 3τ/4] we have

(Tix)(t) =
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t)

≥ m(t)
∫ τ

0
Hi(s) fi(s, x1(s), x2(s), x3(s))ds + m(t)gi(t0)

≥ 1

4

(

∫ τ

0
Gi(t0, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t0)

)

=
1

4
‖Tix‖.
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Next, consider

ϕi[Txi] =
∫ τ

0

(

∫ τ

0
Gi(t, s)dΦi(t)

)

fi(s, x1(s), x2(s), x3(s))ds + ϕi[gi].

By (A1)–(A3), we get
∫ τ

0 Gi(t, s)dΦi(t) ≥ 0 and ϕi[gi] ≥ 0. Hence ϕi[Txi] ≥ 0. Similarly

ψi[Txi] ≥ 0. Therefore, T(K) ⊂ K.

Now, we briefly describe the main result. First, we show that if certain conditions on

fi hold, then Ti satisfies compression type condition (i) or expansion type condition (ii) of

Krasnosel’skiı̆–Precup fixed point theorem (Theorem 1.1). Then we choose r and R such that

each Ti satisfies either condition (i) or (ii) for all x ∈ Kr,R. Finally, we conclude that at least

one positive solution of problem (1.1), (1.2) exists.

Let us introduce notations

Ai = inf
t∈[τ/4, 3τ/4]

∫ 3τ/4

τ/4
Gi(t, s)ds, Bi = sup

t∈[0,τ]

∫ τ

0
Gi(t, s)ds.

To prove the following Lemma 3.2 (and Proposition 3.6) we use standard techniques. See, for

instance, [2, 7, 9, 18, 19].

Lemma 3.2. Operator Ti satisfies compression type condition (i) if there exist constants 0 < q < Q

such that

q < min
t∈[τ/4, 3τ/4]

xi∈[q/4, q]
xj 6=i∈[q/4,Q]2

fi(t, x) · Ai and max
t∈[0,τ]

x∈[0,Q]3

fi(t, x) · Bi + ‖gi‖ < Q, (3.2)

and Ti satisfies expansion type condition (ii) if there exist constants 0 < q < Q such that

Q < min
t∈[τ/4, 3τ/4]
xi∈[Q/4, Q]

xj 6=i∈[q/4,Q]2

fi(t, x) · Ai and max
t∈[0,τ]

xi∈[0, q]
xj 6=i∈[0,Q]2

fi(t, x) · Bi + ‖gi‖ < q. (3.3)

Proof. Let Kq,Q = {x ∈ K : q ≤ ‖xi‖ ≤ Q, i = 1, 2, 3}. We show a proof for compression type

condition. Proof for expansion type condition is similar.

Let ‖xi‖ = Q and Ω = [0, τ]× [0, Q]3. We show that ‖Tix‖ ≤ ‖xi‖. It is known that this

implies Tix 6= λxi for λ > 1. Consider

‖Tix‖ ≤ max
t∈[0,τ]

∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + ‖gi‖

≤ max
(t,x)∈Ω

fi(t, x) · Bi + ‖gi‖ < Q = ‖xi‖.

Now, suppose to contrary that there exists xi with ‖xi‖ = q such that Tix + µh = xi for

µ > 0 and h : t 7→ 1. Since x ∈ Kq,Q, we have

xj(t) ≥
1

4
‖xj‖ ≥ 1

4
q, t ∈ [τ/4, 3τ/4], j = 1, 2, 3.



8 A. Anton, uks and S. Smirnov

Let ω = [τ/4, 3τ/4]× [q/4, q]× [q/4, Q]2. We get

xi(t) =
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t) + µ

≥
∫ 3τ/4

τ/4
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t) + µ

≥ min
(t,xi ,xj 6=i)∈ω

fi(t, x) · Ai + gi(t) + µ

> q + gi(t) + µ,

which gives contradiction.

Let us show examples of fi, i = 1, 2, 3, that satisfy (3.2) and (3.3) for sufficiently small q

and sufficiently large Q, i.e. there exist qi < Qi such that fi satisfies (3.2) or (3.3) for 0 < q ≤ qi

and Qi ≤ Q < +∞. The ability to choose such q and Q is used to define proper Kr,R in the

proof of the main result.

Let us define

uw
ij =

{

u, i = j,

w, i 6= j.

We use notation uw
ij to denote that i-th element of a triple (uw

i1, uw
i2, uw

i3) is u and j-th element

(j 6= i) is w, e.g. (uw
11, uw

12, uw
13) = (u, w, w) and (u0

21, u0
22, u0

23) = (0, u, 0).

Example 3.3. Let fi be non-decreasing with respect to all xi, i = 1, 2, 3. Function fi satisfies

(3.2) for sufficiently small q and sufficiently large Q if

1 < lim
u→0+

inf
t∈[τ/4, 3τ/4]

fi(t, u, u, u)

u
· Ai

4
, lim

u→+∞
sup

t∈[0,τ]

fi(t, u, u, u)

u
· Bi < 1,

and satisfies (3.3) for sufficiently small q and sufficiently large Q if ai = bi = 0 and

∀w ∈ [0,+∞) lim
u→0+

sup
t∈[0,τ]

fi(t, uw
i1, uw

i2, uw
i3)

u
= 0,

1 < lim
u→+∞

inf
t∈[τ/4, 3τ/4]

fi(t, u0
i1, u0

i2, u0
i3)

u
· Ai

4
.

(3.4)

For proof see Proposition 3.6.

Example 3.4. Let fi be bounded with respect to xi and non-decreasing with respect to every

xj 6=i, j = 1, 2, 3. Function fi satisfies (3.2) for sufficiently small q and sufficiently large Q if

1 < lim
w→0+

inf
t∈[τ/4, 3τ/4]

u∈[0,+∞)

fi(t, uw
i1, uw

i2, uw
i3)

w
· Ai

4
, lim

w→+∞
sup

t∈[0,τ]
u∈[0,+∞)

fi(t, uw
i1, uw

i2, uw
i3)

w
· Bi < 1,

and satisfies (3.3) for sufficiently small q and sufficiently large Q if ai = bi = 0 and (3.4).

Example 3.5. Let fi be bounded with respect to every xj 6=i, j = 1, 2, 3. Function fi satisfies (3.2)

for sufficiently small q and sufficiently large Q if

1 < lim
xi→0+

inf
t∈[τ/4, 3τ/4]
xj 6=i∈[0,+∞)2

fi(t, x1, x2, x3)

xi
· Ai

4
, lim

xi→+∞
sup

t∈[0,τ]
xj 6=i∈[0,+∞)2

fi(t, x1, x2, x3)

xi
· Bi < 1,
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and satisfies (3.3) for sufficiently small q and sufficiently large Q if ai = bi = 0 and

lim
xi→0+

sup
t∈[0,τ]

xj 6=i∈[0,+∞)2

fi(t, x1, x2, x3)

xi
· Bi < 1, 1 < lim

xi→+∞
inf

t∈[τ/4, 3τ/4]
xj 6=i∈[0,+∞)2

fi(t, x1, x2, x3)

xi
· Ai

4
.

Proposition 3.6. Function fi from Example 3.3 satisfies inequalities (3.2) and (3.3) for sufficiently

small q and sufficiently large Q.

Proof. First, we show that fi satisfies (3.2). Let us denote

f0 = lim
u→0+

inf
t∈[τ/4, 3τ/4]

fi(t, u, u, u)

u
, f∞ = lim

u→+∞

sup
t∈[0,τ]

fi(t, u, u, u)

u
.

Choose ε > 0 and δ > 0 such that

1 < ( f0 − ε)Ai/4 and ( f∞ + δ)Bi < 1.

Then there exist positive constants r and p such that

fi(t, u, u, u) ≥ ( f0 − ε)u, (t, u) ∈ [τ/4, 3τ/4]× (0, r] ,

fi(t, u, u, u) ≤ ( f∞ + δ)u, (t, u) ∈ [0, τ]× [p,+∞).

We denote M = max { fi(t, u, u, u) : t ∈ [0, τ], u ∈ [0, p]}. Then

fi(t, u, u, u) ≤ M + ( f∞ + δ)u, (t, u) ∈ [0, τ]× [0,+∞).

We choose q ∈ (0, r], define

Q =
Bi M + ‖gi‖

1 − Bi( f∞ + δ)
+ q

and let Kq,Q = {x ∈ K : q ≤ ‖xi‖ ≤ Q, i = 1, 2, 3}. Observe that

max
t∈[0,τ]

x∈[0,Q]3

fi(t, x) · Bi + ‖gi‖ ≤ max
t∈[0,τ]

fi(t, Q, Q, Q) · Bi + ‖gi‖ ≤ Bi M + Bi( f∞ + δ)Q + ‖gi‖

= (Bi M + ‖gi‖) +
(Bi M + ‖gi‖)Bi( f ∞

i + δ)

1 − Bi( f∞ + δ)
+ q Bi( f∞ + δ)

=
Bi M + ‖gi‖

1 − Bi( f∞ + δ)
+ q Bi( f∞ + δ) < Q

and

min
t∈[τ/4, 3τ/4]

xi∈[q/4, q]
xj 6=i∈[q/4,Q]2

fi(t, x) · Ai ≥ min
t∈[τ/4, 3τ/4]

fi(t, q/4, q/4, q/4) · Ai ≥ Ai( f0 − ε)q/4 > q.

Now, we show that fi satisfies (3.3). Recall that ai = bi = 0 implies ‖gi‖ = 0. Let us denote

f∞ = lim
u→+∞

inf
t∈[τ/4, 3τ/4]

fi(t, u0
i1, u0

i2, u0
i3)

u
.
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Choose ε > 0 such that ( f∞ − ε)Ai/4 > 1. Then there exist positive constants r and p such

that

fi(t, uw
i1, uw

i2, uw
i3) ≤ B−1

i u, (t, u, w) ∈ [0, τ]× (0, r]× [0,+∞)2,

fi(t, u0
i1, u0

i2, u0
i3) ≥ ( f∞ − ε)u, (t, u) ∈ [τ/4, 3τ/4]× [p,+∞),

We choose q ∈ (0, r], Q ∈ [4p + q,+∞) and let Kq,Q = {x ∈ K : q ≤ ‖xi‖ ≤ Q, i = 1, 2, 3}.

Observe that

max
t∈[0,τ]

xi∈[0, q]
xj 6=i∈[0,Q]2

fi(t, x) · Bi ≤ max
t∈[0,τ]

fi(t, qQ
i1, qQ

i2, qQ
i3) · Bi < q

and

min
t∈[τ/4, 3τ/4]
xi∈[Q/4, Q]

xj 6=i∈[q/4,Q]2

fi(t, x) · Ai ≥ min
t∈[τ/4, 3τ/4]

fi

(

t, (Q/4)0
i1, (Q/4)0

i2, (Q/4)0
i3

)

· Ai ≥ ( f∞ − ε)AiQ/4 > Q.

Finally, note that constants q and Q could be chosen as small and as large as desired,

respectively.

The main result of this paper is following.

Theorem 3.7. If for every fi, i = 1, 2, 3, exist qi < Qi such that fi satisfies (3.2) or (3.3) for 0 < q ≤ qi

and Qi ≤ Q < +∞, then boundary value problem (1.1), (1.2) has at least one positive solution.

Proof. We denote r = min{qi : i = 1, 2, 3}, R = max{Qi : i = 1, 2, 3} and let

Kr,R = {x ∈ K : r ≤ ‖xi‖ ≤ R, i = 1, 2, 3}.

By Lemma 3.2, each Ti satisfies compression type condition (i) or expansion type condition

(ii) in Kr,R. Therefore, by Krasnosel’skiı̆–Precup fixed point theorem, operator T has a fixed

point in Kr,R, which implies that boundary value problem (1.1), (1.2) has at least one positive

solution.

Let us show applicability of Theorem 3.7 in following example. Here and in Section 4, we

round numbers to three decimal places unless we can calculate the numbers exactly.

Example 3.8. Consider system of differential equations

x′′1 + x2
1(t + x2x3)

3 = 0, t ∈ (0, τ),

x′′2 +
(

x1t + x1/3
3

) exp (−x2) + 1

2
= 0, t ∈ (0, τ),

x′′3 +
80x3t

x3
3 + 1

+ 7 sin (x1 − x2) + 7 = 0, t ∈ (0, τ),

(3.5)

with boundary conditions

x1(0) = 3x1(1/5)− x1(1/2), x1(τ) =
1

2

∫ τ

0
t2 x1(t)dt,

x2(0) = a2, x2(τ) =
∫ τ

0
(τ − t)x2(t)dt + b2,

x3(0) = x3(1/2) + a3, x3(τ) = b3,

(3.6)
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where a2, b2, a3, b3 ≥ 0. Observe that 1/5 and 1/2 appear in the multi-point boundary

conditions in first and third line of (3.6). Hence τ is greater than 1/2.

In this example, the Green’s functions (and intervals where assumptions (A1)–(A3) are

valid) are as follows (recall that G0 is given by (2.1)):

G1(t, s) =
1

τ/10 − τ4/60

∣

∣

∣

∣

∣

∣

τ − t 1/10 −τ4/24

t −1/10 τ − τ4/8

G0(t, s) G0(1/2, s)− 3G0(1/5, s) −(sτ3 − s4)/24

∣

∣

∣

∣

∣

∣

, τ ∈ (1/2, 61/3),

G2(t, s) =
1

τ2(1 − τ2/6)

∣

∣

∣

∣

∣

∣

τ − t τ −τ3/3

t 0 τ − τ3/6

G0(t, s) 0 −(s3 − 3s2τ + 2sτ2)/6

∣

∣

∣

∣

∣

∣

, τ ∈ (1/2,
√

6),

G3(t, s) =
2

τ

∣

∣

∣

∣

∣

∣

τ − t 1/2 0

t −1/2 τ

G0(t, s) −G0(1/2, s) 0

∣

∣

∣

∣

∣

∣

, τ ∈ (1/2,+∞).

Observe that f1(t, x) = x2
1(t + x2x3)3 is non-decreasing with respect to all xi, i = 1, 2, 3, and

a1 = b1 = 0, and

∀w ∈ [0,+∞) lim
u→0+

sup
t∈[0,τ]

u2(t + w2)3

u
= 0, lim

u→+∞

inf
t∈[τ/4, 3τ/4]

u2(t + 0)3

u
= +∞.

We do not need to calculate B1 and A1. But we need A1 > 0, which is true for τ ∈ (1/2, 61/3).

Therefore (see Example 3.3), f1 satisfies (3.3) for τ ∈ (1/2, 61/3).

Next, f2(t, x) = (x1t + x1/3
3 )(exp (−x2) + 1)/2 is bounded with respect to x2, non-

decreasing with respect to x1, x3 and

lim
w→0+

inf
t∈[τ/4, 3τ/4]

u∈[0,+∞)

(

wt + w1/3
) exp (−u) + 1

2w
= +∞,

lim
w→+∞

sup
t∈[0,τ]

u∈[0,+∞)

(

wt + w1/3
) exp (−u) + 1

2w
= τ.

We expand G2(t, s) along the second column and consider

B2 = sup
t∈[0,τ]

∫ τ

0
G2(t, s)ds

= sup
t∈[0,τ]

1

τ2(1 − τ2/6)

∫ τ

0

(

τ t(s3 − 3s2τ + 2sτ2)

6
+ τ

(

τ − τ3

6

)

G0(t, s)

)

ds

= sup
t∈[0,τ]

τ t(τ2 − 12)− 2t2(τ2 − 6)

4(τ2 − 6)
=

{

(144τ2 − 24τ4 + τ6)/(32(τ2 − 6)2), 1/2 < τ < 2,

τ4/(4(6 − τ2)), 2 ≤ τ <

√
6.

Calculations show that τB2 < 1 for τ ∈ (1/2, 1.612). Therefore (see Example 3.4), f2

satisfies (3.2) for τ ∈ (1/2, 1.612).

Next, f3(t, x) = 80x3t/(x3
3 + 1) + 7 sin (x1 − x2) + 7 is bounded with respect to x1, x2 and

lim
x3→0+

inf
t∈[τ/4, 3τ/4]
x1,x2∈[0,+∞)

80x3t

(x3
3 + 1)x3

+
7 sin (x1 − x2) + 7

x3
= 20τ,
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lim
x3→+∞

sup
t∈[0,τ]

x1,x2∈[0,+∞)

80x3t

(x3
3 + 1)x3

+
7 sin (x1 − x2) + 7

x3
= 0.

We expand G3(t, s) along the third column and consider

A3 = inf
t∈[τ/4, 3τ/4]

∫ 3τ/4

τ/4
G3(t, s)ds = inf

t∈[τ/4, 3τ/4]

2

τ

∫ 3τ/4

τ/4

(

τ(τ − t)G0(1/2, s) +
τ

2
G0(t, s)

)

ds

= inf
t∈[τ/4, 3τ/4]

−16t2 − τ(8 − 15τ + 2τ2) + 2t(4 + τ2)

32

=

{

(−12τ + 28τ2 − 3τ3)/64, 1/2 < τ ≤ 2(2 −
√

3) or 2(2 +
√

3) < τ,

(−4τ + 12τ2 − τ3)/64, 2(2 −
√

3) < τ ≤ 2(2 +
√

3).

Calculations show that 1 < 5τ A3 for τ ∈ (1.197, 8.877). Therefore (see Example 3.5), f3

satisfies (3.2) for τ ∈ (1.197, 8.877).

Finally, we consider interval

(1/2, 61/3) ∩ (1/2, 1.612) ∩ (1.197, 8.877) = (1.197, 1.612).

Each fi satisfies either (3.2) or (3.3) for sufficiently small q, sufficiently large Q and τ ∈
(1.197, 1.612). Therefore, by Theorem 3.7, boundary value problem (4.3), (4.4) has at least one

positive solution for τ ∈ (1.197, 1.612).

4 Numerical result for Dirichlet boundary conditions

In this section, we consider problem (1.1) with boundary conditions

xi(0) = ai, xi(τ) = bi, (4.1)

and show examples where is compared theoretical estimation of τ with result obtained nu-

merically. Note that here Gi = G0, Ai = τ2/16 and Bi = τ2/8 for every i = 1, 2, 3.

For numerical result let us consider the initial conditions

xi(0) = ai, x′i(0) = ci ∈ R, i = 1, 2, 3. (4.2)

Let c = (c1, c2, c3) and xc = (xc
1, xc

2, xc
3) be a solution of initial value problem (1.1), (4.2). We

denote by t1(c) > 0 the positive argument for which xc(t1(c)) = (b1, b2, b3) holds for the first

time. Such t1(c) exists if and only if boundary value problem (1.1), (4.1) has a solution for

t1(c) = τ. Thus set of values of the map c 7→ t1(c) determines values of the τ. We assume that

if there is no c such that t1(c) = τ > 0, then t1(c) = 0.

In case of one equation this method is known as the shooting method. We do the following

in our case. We fix c1 and consider t1(c1, ·, ·). If problem (1.1), (4.1) has a solution for t1(c) = τ,

then t1(c1, ·, ·) is everywhere zero except one point.

To obtain the result we are using “brute force”, i.e. go through all possible choices. To

make count of choices less, we consider meshes with step sizes θi for ci, i = 1, 2, 3. To make

sure to “shoot somewhere”, we consider weakened conditions

(

x2(t1(c))− b2

)2
+

(

x3(t1(c))− b3

)2
< ε2.
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Thus for every c1 there exists a set Ωε ⊂ R
2 such that t1(c) > 0 for (c2, c3) ∈ Ωε. We denote

tM(c1) = max{t1(c) : (c2, c3) ∈ R
2}. Numerical result is a discrete plot c1 7→ tM(c1).

In the following examples we compare the results. Examples emphasize that Theorem 3.7

gives sufficient conditions.

Example 4.1. Consider system of differential equations

x′′1 + (x1t3 + x3)
1/2 x1/3

2 = 0, t ∈ (0, τ),

x′′2 + (x1t3 + x1/2
3 )

exp (−x2) + 1

10
= 0, t ∈ (0, τ),

x′′3 +
162x4

3 + x3

1 + x3
3

(

2 + sin (x1t + x2)
)

= 0, t ∈ (0, τ),

(4.3)

with boundary conditions

x1(0) = 0.2, x1(τ) = 0,

x2(0) = 0, x2(τ) = 0.2,

x3(0) = 0, x3(τ) = 0.

(4.4)

Here f1(t, x) = (x1t3 + x3)1/2 x1/3
2 is non-decreasing with respect to all xi, i = 1, 2, 3, and

lim
u→0+

inf
t∈[τ/4, 3τ/4]

(ut3 + u)1/2 u1/3

u
= +∞, lim

u→+∞
sup

t∈[0,τ]

(ut3 + u)1/2u1/3

u
= 0.

Therefore, f1 satisfies (3.2) for τ ∈ (0,+∞).

Next, f2(t, x) = (x1t3 + x1/2
3 )(exp (−x2) + 1)/10 is bounded with respect to x2, non-

decreasing with respect to x1, x3 and

lim
w→0+

inf
t∈[τ/4, 3τ/4]

u∈[0,+∞)

(

wt3 + w1/2
) exp (−u) + 1

10w
= +∞,

lim
w→+∞

sup
t∈[0,τ]

u∈[0,+∞)

(

wt3 + w1/2
) exp (−u) + 1

10w
=

τ3

5
.

Calculations show that B2 τ3/5 < 1 for τ ∈ (0, 401/5). Therefore, f2 satisfies (3.2) for τ ∈
(0, 401/5).

Next, f3(t, x) = (162x4
3 + x3)(2+ sin (x1t + x2))/(1+ x3

3) is bounded with respect to x1, x2,

and

lim
x3→0+

sup
t∈[0,τ]

x1,x2∈[0,+∞)

162x4
3 + x3

(1 + x3
3)x3

(

2 + sin (x1t + x2)
)

= 3,

lim
x3→+∞

inf
t∈[τ/4, 3τ/4]
x1,x2∈[0,+∞)

162x4
3 + x3

(1 + x3
3)x3

(

2 + sin (x1t + x2)
)

= 162.

Calculations show that 3B3 < 1 < 162A3/4 for τ ∈ (1/2, 2
√

2/3). Therefore, f3 satisfies (3.3)

for τ ∈ (1/2, 2
√

2/3).

Each fi satisfies either (3.2) or (3.3) for sufficiently small q, sufficiently large Q and τ ∈
(1/2, 2

√
2/3). Therefore, by Theorem 3.7, the theoretical result is 1/2 < τ < 2

√
2/3, or

approximately 1/2 < τ < 1.633.
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Since a2 ≤ b2 and a3 ≤ b3, we consider non-negative c2 and c3. For numerical result we

make meshes in interval [−1, 1] for c1, [0, 2] for c2 and [0.001, 2.001] for c3 with step sizes

θ1 = θ2 = θ3 = 0.1 and ε = 0.1. The result is illustrated in Figure 4.1. Numerical result shows

that 0.200 ≤ τ ≤ 2.579.

● ● ● ● ●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

-1.0 -0.5 0.5 1.0
c1

0.5

1.0

1.5

2.0

2.5

tM(c1)

Figure 4.1: Graph of the c1 7→ tM(c1) for problem (4.3), (4.4).

Example 4.2. Consider system of differential equations

x′′1 + (x1x2x3)
1/4 = 0, t ∈ (0, τ),

x′′2 +
1

1 + tx2
+

1

1 + x1x3
= 0, t ∈ (0, τ),

x′′3 ++
(15 + 4t)x3

1 + x2
3

+ cos x1 sin x2 + 1 = 0, t ∈ (0, τ),

(4.5)

with boundary conditions

x1(0) = 1, x1(τ) = 0,

x2(0) = 0, x2(τ) = 1,

x3(0) = 1, x3(τ) = 1.

(4.6)

Here f1(t, x) = (x1x2x3)1/4 is non-decreasing with respect to all xi, i = 1, 2, 3, and

lim
u→0+

inf
t∈[τ/4, 3τ/4]

u3/4

u
= +∞, lim

u→+∞
sup

t∈[0,τ]

u3/4

u
= 0.

Therefore, f1 satisfies (3.2) for τ ∈ (0,+∞).

Next, f2(t, x) = (1 + tx2)−1 + (1 + x1x3)−1 is bounded with respect to x1, x3 and

lim
x2→0+

inf
t∈[τ/4, 3τ/4]
x1,x3∈[0,+∞)

1

(1 + tx2)x2
+

1

(1 + x1x3)x2
= +∞,

lim
x2→+∞

sup
t∈[0,τ]

x1,x3∈[0,+∞)

1

(1 + tx2)x2
+

1

(1 + x1x3)x2
= 0.

Therefore, f2 satisfies (3.2) for τ ∈ (0,+∞).

Next, f3(t, x) = (15 + 4t)x3/(1 + x2
3) + cos x1 sin x2 + 1 is bounded with respect to x1, x2,

and

lim
x3→0+

inf
t∈[τ/4, 3τ/4]
x1,x2∈[0,+∞)

(15 + 4t)x3

(1 + x2
3)x3

+
cos x1 sin x2 + 1

x3
= 15 + τ,
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lim
x3→+∞

sup
t∈[0,τ]

x1,x2∈[0,+∞)

(15 + 4t)x3

(1 + x2
3)x3

+
cos x1 sin x2 + 1

x3
= 0.

Calculations show that 1 < (15 + τ)A3/4 for τ ∈ (1.944,+∞). Therefore, f3 satisfies (3.2) for

τ ∈ (1.944,+∞).

Each fi satisfies (3.2) for sufficiently small q, sufficiently large Q and τ ∈ (1.944,+∞).

Therefore, by Theorem 3.7, the theoretical result is τ > 1.944.

For numerical result we make meshes in interval [−7, 0] for c1, [0, 7] for c2 and c3 with step

sizes θ1 = 1, θ2 = θ3 = 0.1 and ε = 0.1. The result is illustrated in Figure 4.2. Numerical result

shows that τ could be less than 1.944.

● ●
●

●

●

●

●

●

-7 -6 -5 -4 -3 -2 -1
c1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tM(c1)

Figure 4.2: Graph of the c1 7→ tM(c1) for problem (4.5), (4.6).

Remark 4.3. There is no ground to say that this method is not suitable for nonlocal conditions,

for instance, x(0) = ϕi[xi] + ai, x(τ) = bi. But, since we are using “brute force” (which is long

itself), in case of nonlocal conditions program needs much smaller step size to get nonzero

tM(c1), and hence much more time to run, which makes the program inefficient.

Acknowledgements

The authors would like to thank the referee for making several suggestions that significantly

improved an earlier version of this paper.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered

Banach spaces, SIAM Rev. 18(1976), No. 4, 620–709. https://doi.org/10.1137/1018114;

MR0415432; Zbl 0345.47044

[2] J. R. Graef, B. Yang, Existence and nonexistence of positive solutions of a nonlinear

third order boundary value problem, Electron. J. Qual. Theory Differ. Equ., Proc. 8’th Coll.

Qualitative Theory of Diff. Equ. 2007, No. 9, 1–13. https://doi.org/10.14232/ejqtde.

2007.7.9; MR2509167; Zbl 1213.34036

[3] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 1988.

MR0959889; Zbl 0661.47045



16 A. Anton, uks and S. Smirnov

[4] X. Hao, L. Liu, Y. Wu, Positive solutions for second order differential systems with non-

local conditions, Fixed Point Theory 13(2012), No. 2, 507–5016. MR3024335; Zbl 1286.34043

[5] J. Henderson, R. Luca, Positive solutions for systems of second-order integral boundary

value problems, Electron. J. Qual. Theory Differ. Equ. 2013, No. 70, 1–21. https://doi.org/

10.14232/ejqtde.2013.1.70; MR3151717; Zbl 1340.34097

[6] J. Henderson, R. Luca, Existence of positive solutions for a system of nonlinear second-

order integral boundary value problems, Discrete Contin. Dyn. Syst., Dynamical sys-

tems, differential equations and applications, 10th AIMS Conference. Suppl. (2015), 596–604.

https://doi.org/10.3934/proc.2015.0596; MR3462494; Zbl 1341.34032

[7] J. Henderson, S. K. Ntouyas, Positive solutions for systems of nth order three-point

nonlocal boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2007, No. 18,

1–12. https://doi.org/10.14232/ejqtde.2007.1.18; MR2336606; Zbl 1182.34029

[8] D.-R. Herlea, D. O’Regan, R. Precup, Harnack type inequalities and multiple solutions

in cones of nonlinear problems, Z. Anal. Anwend. 39(2020), No. 2, 151–170. https://doi.

org/10.4171/ZAA/1655; MR4082922; Zbl 1444.47065

[9] L. Hu, L. Wang, Multiple positive solutions of boundary value problems for systems of

nonlinear second-order differential equations, J. Math. Anal. Appl. 335(2007), No. 2, 1052–

1060. https://doi.org/10.1016/j.jmaa.2006.11.031; MR2346890; Zbl 1127.34010
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Abstract. We investigate the following logarithmic Kirchhoff-type equation:

(

a + b
∫

R3
|∇u|2 + V(x)u2dx

)

[−∆u + V(x)u] = |u|p−2u ln |u|, x ∈ R
3,

where a, b > 0 are constants, 4 < p < 2∗ = 6. Under some appropriate hypotheses on
the potential function V, we prove the existence of a positive ground state solution, a
ground state sign-changing solution and a sequence of solutions by using the constraint
variational methods, topological degree theory, quantitative deformation lemma and
symmetric mountain pass theorem. Our results complete those of Gao et al. [Appl.
Math. Lett. 139(2023), 108539] with the case of 4 < p < 6.

Keywords: Kirchhoff-type equation, logarithmic nonlinearity, ground state sign-
changing solution, variational methods, topological degree theory.
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1 Introduction and main result

In this work, we are concerned with the existence of ground state sign-changing solutions for

the following logarithmic Kirchhoff-type equation

(

a + b
∫

R3
|∇u|2 + V(x)u2dx

)

[−∆u + V(x)u] = |u|p−2u ln |u|, x ∈ R
3, (1.1)

where a, b > 0 are constants, 4 < p < 6. Besides, we shall impose the following conditions on

potential function V:

(V1) V ∈ C(R3, R) and lim|x|→∞ V(x) = +∞;

(V2) There exists a constant V0 such that infx∈R3 V(x) ≥ V0 > 0.

BCorresponding author. E-mail address: liaojiafeng@163.com
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As is known to all, Kirchhoff [12] first proposed the following Kirchhoff model given by the

stationary analogue of equation

ρ
∂2u

∂t2
−

(

P0

h
+

E

2L

∫ L

0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dx

)

∂2u

∂x2
= 0,

where ρ is the mass density, P0 is the initial tension, h represents the area of the cross-section,

E is the Young modulus of the material and L is the length of the string. The above model

is an extension of the classical D’Alembert wave equation by taking into account the changes

in the length of the string during the transverse vibrations. After that, Lions [13] derived the

following Kirchhoff equation by using the functional analysis method

utt −

(

a + b
∫

R3
|∇u|2dx

)

∆u = f (x, u). (1.2)

This model is used to describe the chord length variation of elastic strings caused by lateral

vibration, where u is displacement, f is external force, b is initial tension force and a is related

to inherent properties of strings (see [1, 2, 5, 7] and the references therein). The corresponding

problem associated with equation (1.2) is called as the Kirchhoff-type problem.

In the past years, logarithmic nonlinearity appears frequently in partial differential equa-

tions, which has numerous applications to quantum optics, quantum mechanics, nuclear

physics, transport and diffusion phenomenon etc (see [22] and the references therein). There-

fore, many scholars studied the following Kirchhoff-type problem with logarithmic nonlinear-

ity

−

(

a + b
∫

R3
|∇u|2dx

)

∆u + V(x)u = |u|p−2u log u2, x ∈ R
3, (1.3)

where 4 < p < 6 and V ∈ C(R3, R). By using the constrained variational method, defor-

mation lemma and topological degree theory, Hu and Gao [10] proved that equation (1.3)

owns both positive solution and sign-changing solution under different types of potential (co-

ercive potential and periodic potential). Wen, Tang and Chen [20] verified that equation (1.3)

in smooth bounded domain Ω ⊂ R
3 has a ground state solution and a ground state sign-

changing solution, besides, the energy of sign-changing solution is larger than twice of the

ground state energy.

In particular, letting a = 1, b = 0 and p = 2 in equation (1.3), it leads to the following

logarithmic Schrödinger equation

− ∆u + V(x)u = u log u2, x ∈ R
N . (1.4)

Equation (1.4) has received much attention in mathematical analysis and applications. Ji and

Szulkin [11] got infinitely many solutions by adapting some arguments of the fountain the-

orem when the potential is coercive (i.e. lim|x|→∞ V(x) = +∞), and in the case of bounded

potential (i.e. lim|x|→∞ V(x) = V∞ ∈ (−1,+∞)), they obtained a ground state solution. By

using the direction derivative and constrained minimization method, Shuai [16] proved the

existence of positive and sign-changing solutions of equation (1.4) under different types of po-

tential (coercive potential and periodic potential). When the potential is radially symmetric,

the author constructed infinitely many radial nodal solutions. Zhang and Zhang [24] proved

the existence, uniqueness, non-degeneracy and some qualitative properties of positive solu-

tions of equation (1.4) when the potential V ∈ C2(RN , R) is radially symmetric and allowed

to be singular at x = 0 and repulsive at infinity(i.e. lim|x|→∞ V(x) = −∞). When potential
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V ∈ C(RN , R) satisfies lim|x|→∞ V(x) = V∞ and V(x) < V∞ + log 2, Feng, Tang and Zhang [8]

proved that equation (1.4) has a positive bound state solution.

After that, inspired by [10], Gao, Jiang and Liu et al. [9] studied the existence of solutions

to equation (1.1) for the first time, and proved that equation (1.1) has only trivial solution

for large b > 0 and two positive solutions for small b > 0 and 2 < p < 4. To the best

of our knowledge, there is no result for the existence of positive ground state, ground state

sign-changing solutions and sequence of solutions of equation (1.1) with 4 < p < 6. Inspired

by the above literature, we are interested in the existence of positive ground state solutions,

ground state sign-changing solutions and sequence of solutions for equation (1.1).

Equation (1.1) is formally associated with the energy functional I : H → R defined by

I(u) =
a

2

∫

R3
(|∇u|2 + V(x)u2)dx +

b

4

(

∫

R3
(|∇u|2 + V(x)u2)dx

)2

−
1

p

∫

R3
|u|p ln |u|dx +

1

p2

∫

R3
|u|pdx,

(1.5)

with I(0) = 0, where Sobolev space H is defined as follows:

H :=

{

u ∈ H1(R3) :
∫

R3
V(x)u2dx < +∞

}

.

endowed with the inner product

⟨u, v⟩ :=
∫

R3
(∇u · ∇v + V(x)uv)dx, ∀u, v ∈ H

and endowed with the norm

∥u∥2 := ⟨u, u⟩ =
∫

R3
(|∇u|2 + V(x)u2)dx.

Denote |u|k =
(∫

R3 |u|kdx
)1/k

the norm of u ∈ Lk(R3) for k ≥ 1, the C, C1, C2, . . . represent

several different positive constants. A elementary computation, we have

lim
t→0

tp−1 ln |t|

t
= 0 and lim

t→∞

tp−1 ln |t|

tq−1
= 0,

where 4 < p < q < 6. Therefore, for arbitrarily ε > 0, there exists Cε > 0 such that

|tp−1 ln |t|| ≤ ε|t|+ Cε|t|
q−1, ∀ t ∈ R\{0}. (1.6)

By (1.6) and [19, Lemma 3.10], we get that I ∈ C1(H, R) and the Fréchet derivative of I is

given by

⟨I′(u), v⟩ = (a + b∥u∥2)
∫

R3
(∇u∇v + V(x)uv)dx −

∫

R3
|u|p−2uv ln |u|dx, (1.7)

for all u, v ∈ H. u ∈ H is a weak solution of equation (1.1) if and only if u is a critical point

of I. Additional, if u ∈ H is a weak solution of equation (1.1) with u± ̸= 0, then u is called a

sign-changing solution of equation (1.1), where

u+ := max{u(x), 0}, u− := min{u(x), 0}.
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From (1.7), we know

⟨I′(u), u⟩ = a∥u∥2 + b∥u∥4 −
∫

R3
|u|p ln |u|dx (1.8)

and

⟨I′(u), u±⟩ = (a + b∥u∥2)∥u±∥2 −
∫

R3
|u±|p ln |u±|dx. (1.9)

By virtue of (1.8) and (1.9), it is noticed that if u ̸≡ 0, then

I(u) = I(u+) + I(u−) +
b

2
∥u+∥2∥u−∥2,

⟨I′(u), u+⟩ = ⟨I′(u+), u+⟩+ b∥u+∥2∥u−∥2,

⟨I′(u), u−⟩ = ⟨I′(u−), u−⟩+ b∥u+∥2∥u−∥2.

In this paper, our main purpose is to seek the ground state sign-changing solution for equa-

tion (1.1). As we all known, there are some very interesting results for the existence and

multiplicity of sign-changing solutions of the following Schrödinger equation

− ∆u + V(x)u = f (x, u), x ∈ R
N . (1.10)

However, these methods of seeking sign-changing solutions dependent on the following de-

composition

J(u) = J(u+) + J(u−), (1.11)

and

⟨J′(u), u+⟩ = ⟨J′(u+), u+⟩, ⟨J′(u), u−⟩ = ⟨J′(u−), u−⟩, (1.12)

where J is the energy functional of equation (1.10) given by

J(u) =
1

2

∫

RN
(|∇u|2 + V(x)u2)dx −

∫

RN
F(x, u)dx.

However, it follows from (1.5) that the energy functional I does not possess the same decom-

positions as (1.11) and (1.12). Indeed, a direct calculation yields that

I(u) > I(u+) + I(u−),

and

⟨I′(u), u+⟩ > ⟨I′(u+), u+⟩, ⟨I′(u), u−⟩ > ⟨I′(u−), u−⟩

for u± ̸= 0. Therefore, the method of getting sign-changing solutions for the local problem

(1.10) does not seem applicable to equation (1.1). In order to overcome this difficulty, we

follow in [4] by the following Nehari manifold and the nodal Nehari sets respectively

N :=
{

u ∈ H\{0} : ⟨I′(u), u⟩ = 0
}

,

and

M :=
{

u ∈ H, u± ̸= 0 : ⟨I′(u), u±⟩ = 0
}

.

It is well known that the existence of positive ground state and sign-changing solutions to

equation (1.1) can be transformed into studying the following minimization problems respec-

tively

c := inf
u∈N

I(u) and m := inf
u∈M

I(u).

Now, we state the main results.
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Theorem 1.1. Assume that (V1)–(V2) hold and 4 < p < 6, then equation (1.1) possesses a positive

ground state solution ū ∈ N such that I(ū) = c.

Theorem 1.2. Assume that (V1)–(V2) hold and 4 < p < 6, then equation (1.1) has a ground state

sign-changing solution u∗ ∈ M with precisely two nodal domains such that I(u∗) = m. Moreover,

m > 2c.

Theorem 1.3. Assume that (V1)–(V2) hold and 4 < p < 6, then equation (1.1) owns a sequence of

solutions of {un} with I(un) → +∞ as n → ∞.

Remark 1.4. To our best knowledge, our results are up to date. Compared with [9], we study

the case of 4 < p < 6. Moreover, we consider the ground state sign-changing solution and a

sequence of high energy solutions for equation (1.1).

The remaining of paper is organized as follows. In Section 2, we show some necessary

logarithmic inequalities and important lemmas. In Section 3, we prove Theorems 1.1–1.3

by the maximum principle, quantitative deformation lemma, topological degree theory and

symmetric mountain pass theorem.

2 Some preliminary results

Firstly, because of the existence of logarithmic nonlinearity, the following lemmas will be used

to obtain vital estimates for our problem.

Lemma 2.1. The following inequalities hold

(1 − xs) + sxs ln x > 0, ∀x ∈ (0, 1) ∪ (1,+∞), s > 0; (2.1)

ln x ≤
1

eσ
xσ, ∀x ∈ (0,+∞), σ > 0. (2.2)

Proof. Define f (x) := (1 − xs) + sxs ln x, then f ′(x) := s2xs−1 ln x, it’s easy to see that the

function f (x) is decreasing on (0, 1) and increasing on (1,+∞). So f (x) > f (1) = 0, i.e.

(1 − xs) + sxs ln x > 0.

Thus, (2.1) is true. The proof of (2.2) is similar to that of (2.1), here we omit it.

Next, we give the following lemma by the conclusions of [3].

Lemma 2.2. Under the assumptions (V1)–(V2), then the embedding H →֒ Lq(R3) is compact for

q ∈ [2, 6).

By virtue of Lemma 2.2, we define the following Sobolev embedding constants

Sq = inf
u∈H\{0}

∥u∥q

|u|
q
q

, q ∈ [2, 6]. (2.3)

As is known to all, the logarithmic nonlinearity |u|p−2u ln |u| satisfies neither the well-

known Nehari type monotonicity condition in [23] nor (AR) condition in [17]. Therefore, we

will establish an energy inequality related to I(u), I(su+ + tu−), ⟨I′(u), u+⟩ and ⟨I′(u), u−⟩ in

order to overcome the this difficulty.
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Lemma 2.3. For all u ∈ H and s, t ≥ 0, there holds

I(u) ≥ I(su+ + tu−) +
1 − sp

p
⟨I′(u), u+⟩+

1 − tp

p
⟨I′(u), u−⟩. (2.4)

Proof. It follows from (1.9) that (2.4) holds for u = 0, then we only consider the case when

u ∈ H\{0}. Set

Ω
+ = {u ∈ R

3 : u(x) ≥ 0}, Ω
− = {u ∈ R

3 : u(x) < 0}.

For all u ∈ H\{0} and s, t ≥ 0, one has

∫

R3
|su+ + tu−|p ln |su+ + tu−|dx

=
∫

Ω+
|su+ + tu−|p ln |su+ + tu−|dx +

∫

Ω−
|su+ + tu−|p ln |su+ + tu−|dx

=
∫

Ω+
|su+|p ln |su+|dx +

∫

Ω−
|tu−|p ln |tu−|dx

=
∫

R3
(|su+|p ln |su+|+ |tu−|p ln |tu−|)dx. (2.5)

It follows from (1.5), (1.8), (2.1) and (2.5) that

I(u)− I(su+ + tu−)

=
a

2

(

∥u∥2 − ∥su+ + tu−∥2
)

+
b

4

(

∥u∥4 − ∥su+ + tu−∥4
)

+
1

p2

∫

R3

(

|u|p − |su+ + tu−|p
)

dx

+
1

p

∫

R3

(

|u|p ln |u| − |su+ + tu−|p ln |su+ + tu−|
)

dx

=
a(1 − s2)

2
∥u+∥2 +

a(1 − t2)

2
∥u−∥2 +

b(1 − s4)

4
∥u+∥4 +

b(1 − t4)

4
∥u−∥4

+
b(1 − s2t2)

2
∥u+∥2∥u−∥2 +

(1 − sp)

p2

∫

R3
|u+|pdx +

(1 − tp)

p2

∫

R3
|u−|pdx

−
1

p

∫

R3

(

|u+|p ln |u+| − |su+|p ln |u+| − |su+|p ln s
)

dx

−
1

p

∫

R3

(

|u−|p ln |u−| − |tu−|p ln |u−| − |tu−|p ln t
)

dx

=
1 − sp

p
⟨I′(u), u+⟩+

1 − tp

p
⟨I′(u), u−⟩

+ a

[(

1 − s2

2
−

1 − sp

p

)

∥u+∥2 +

(

1 − t2

2
−

1 − tp

p

)

∥u−∥2

]

+ b

[(

1 − s4

4
−

1 − sp

p

)

∥u+∥4 +

(

1 − t4

4
−

1 − tp

p

)

∥u−∥4

]

+ b

(

1 − s2t2

2
−

1 − sp

p
−

1 − tp

p

)

∥u+∥2∥u−∥2

+
(1 − sp) + psp ln s

p2

∫

R3
|u+|pdx +

(1 − tp) + ptp ln t

p2

∫

R3
|u−|pdx.
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Since the function f (x) = 1−ax

x is monotonically decreasing on (0,+∞) for a ∈ (0, 1)∪ (1,+∞).

It follows from the above equation that

I(u)− I(su+ + tu−)

≥
1 − sp

p
⟨I′(u), u+⟩+

1 − tp

p
⟨I′(u), u−⟩+ b

(

1 − s2t2

2
−

1 − sp

p
−

1 − tp

p

)

∥u+∥2∥u−∥2

=
1 − sp

p
⟨I′(u), u+⟩+

1 − tp

p
⟨I′(u), u−⟩

+ b

[

(s2 − t2)2

4
+

(

1 − s4

4
−

1 − sp

p

)

+

(

1 − t4

4
−

1 − tp

p

)]

∥u+∥2∥u−∥2

≥
1 − sp

p
⟨I′(u), u+⟩+

1 − tp

p
⟨I′(u), u−⟩.

Hence, (2.4) holds for all u ∈ H and s, t ≥ 0.

Let s = t in (2.4), we can obtain the following corollary.

Corollary 2.4. For all u ∈ H and t ≥ 0, there holds

I(u) ≥ I(tu) +
1 − tp

p
⟨I′(u), u⟩.

According to Lemma 2.3 and Corollary 2.4, we have the following lemmas.

Lemma 2.5. For all u ∈ M, there holds I(u) = maxs,t≥0 I(su+ + tu−).

Lemma 2.6. For all u ∈ N , there holds I(u) = maxt≥0 I(tu).

By Lemmas 2.3 and 2.5, we have the following lemma.

Lemma 2.7. For all u ∈ M and s, t ≥ 0, there holds I(u) ≥ I(su+ + tu−), and the equality sign

holds if and only if s = t = 1.

Lemma 2.8. For any u ∈ H with u± ̸= 0, there exists a unique positive numbers pair (s0, t0) such

that s0u+ + t0u− ∈ M.

Proof. We firstly prove that there exists positive numbers pair (s0, t0) such that s0u+ + t0u− ∈
M. For any u ∈ H with u± ̸= 0, let

g(s, t) = ⟨I′(su+ + tu−), su+⟩, h(s, t) = ⟨I′(su+ + tu−), tu−⟩.

From (1.9), one gets

g(s, t) = (a + b∥su+ + tu−∥2)∥su+∥2 −
∫

R3
|su+|p ln |su+|dx; (2.6)

h(s, t) = (a + b∥su+ + tu−∥2)∥tu−∥2 −
∫

R3
|tu−|p ln |tu−|dx. (2.7)

Let t = s in (2.6), then

g(s, s) = (a + b∥su∥2)∥su+∥2 −
∫

R3
|su+|p ln |su+|dx

= as2∥u+∥2 + bs4∥u+∥4 + bs4∥u+∥2∥u−∥2

− sp
∫

R3
|u+|p ln |u+|dx − sp ln s

∫

R3
|u+|pdx.
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Obviously g(s, s) is continuous, it is easy to verify that g(s, s) > 0 when 0 < s < 1 small

enough and g(s, s) < 0 when s > 1 large enough. Similarly, h(t, t) > 0 when 0 < t < 1 small

enough and h(t, t) < 0 when t > 1 large enough. Therefore, there exists 0 < r < R such that

g(r, r) > 0, h(r, r) > 0; g(R, R) < 0, h(R, R) < 0. (2.8)

It follows from (2.6)–(2.8) that we have

g(r, t) > 0, g(R, t) < 0, ∀t ∈ [r, R],

h(s, r) > 0, h(s, R) < 0, ∀s ∈ [r, R].

Based on Miranda’s Theorem [14], there exist r < s0, t0 < R such that g(s0, t0) = h(s0, t0) = 0,

which implies that s0u+ + t0u− ∈ M.

Next, we prove the uniqueness of (s0, t0). By contradiction, we suppose that there are two

pairs positive numbers (s1, t1), (s2, t2) with s1 ̸= s2, t1 ̸= t2 such that g(s1, t1) = g(s2, t2) =

0, h(s1, t1) = h(s2, t2) = 0. Let s = s1
s2

and t = t1
t2

, then s ̸= 1 and t ̸= 1. From Lemma 2.7, we

know

I(s1u+ + t1u−) = I(s(s2u+) + t(t2u−)) < I(s2u+ + t2u−). (2.9)

Similarly, one has

I(s2u+ + t2u−) < I(s1u+ + t1u−),

which contradicts (2.9). Therefore, (s0, t0) is unique.

Lemma 2.9. For any u ∈ H with u ̸= 0, there exists a unique positive number t0 > 0 such that

t0u ∈ N .

Proof. Define a function g(t) = ⟨I′(tu), tu⟩ on (0,+∞), then

g(t) = a∥tu∥2 + b∥tu∥4 −
∫

R3
|tu|p ln |tu|dx

= at2∥u∥2 + bt4∥u∥4 − tp
∫

R3
|u|p ln |u|dx − tp ln t

∫

R3
|u|pdx.

(2.10)

Combined with (1.8), we know

g(t) = tp⟨I′(u), u⟩+ a(t2 − tp)∥u∥2 + b(t4 − tp)∥u∥4 − tp ln t
∫

R3
|u|pdx.

If u ∈ N , then t0 = 1. Therefore, we only consider the existence of t0 when u /∈ N . Since

4 < p < 6 and in view of (2.3), we have
∫

R3 |u|pdx ≤ S−1
p ∥u∥p

< +∞. It follows from (2.10)

that g(t) > 0 for 0 < t < 1 small enough and g(t) < 0 for t > 1 large enough. Since g(t) is

continuous, there exists t0 > 0 such that g(t0) = ⟨I′(t0u), t0u⟩ = 0, i.e. t0u ∈ N . As a similar

argument of Lemma 2.8, we can obtain the uniqueness of t0.

Lemma 2.10. Assume there exists u ∈ H with u± ̸= 0 such that ⟨I′(u), u±⟩ ≤ 0, then the unique

positive numbers pair (s0, t0) obtained in Lemma 2.8 satisfies 0 < s0, t0 ≤ 1.

Proof. From Lemma 2.8, there exists a unique positive numbers pair (s0, t0) such that s0u+ +

t0u− ∈ M. Without loss of generally, we may suppose that s0 ≥ t0 > 0. Since s0u+ + t0u− ∈
M, we have

I′(s0u+ + t0u−), s0u+⟩ = as2
0∥u+∥2 + bs4

0∥u+∥4 + bs2
0t2

0∥u+∥2∥u−∥2

−
∫

R3
|s0u+|p ln |s0u+|dx.
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Therefore,

∫

R3
|s0u+|p ln |s0u+|dx = as2

0∥u+∥2 + bs4
0∥u+∥4 + bs2

0t2
0∥u+∥2∥u−∥2

≤ as2
0∥u+∥2 + bs4

0∥u+∥4 + bs4
0∥u+∥2∥u−∥2.

(2.11)

Since ⟨I′(u), u+⟩ ≤ 0, one has

a∥u+∥2 + b∥u+∥4 + b∥u+∥2∥u−∥2 ≤
∫

R3
|u+|p ln |u+|dx.

Multiplying the both sides of the above equation with −s
p
0 , then

− s
p
0

∫

R3
|u+|p ln |u+|dx ≤ −as

p
0∥u+∥2 − bs

p
0∥u+∥4 − bs

p
0∥u+∥2∥u−∥2. (2.12)

It follows from (2.11) and (2.12) that

s
p
0 ln s0

∫

R3
|u+|pdx ≤ a(s2

0 − s
p
0)∥u+∥2 + b(s4

0 − s
p
0)∥u+∥4 + b(s4

0 − s
p
0)∥u+∥2∥u−∥2.

Clearly, if s0 > 1, the left-hand side of the above inequality is positive, while the right-hand

side of the above inequality is always negative. This is a contradiction. Therefore, s0 ≤ 1.

Similarly, we can also obtain t0 ≤ 1.

Lemma 2.11. The following minimax characterization hold

inf
u∈N

I(u) = c = inf
u∈H\{0}

max
t≥0

I(tu),

and

inf
u∈M

I(u) = m = inf
u∈H,u± ̸=0

max
s,t≥0

I(su+ + tu−).

Moreover,

c > 0 and m > 0 are achieved.

Proof. Firstly, we prove the second equality since the first equality is similar. On one hand, it

follows from Lemma 2.5 that

inf
u∈H,u± ̸=0

max
s,t≥0

I(su+ + tu−) ≤ inf
u∈M

max
s,t≥0

I(su+ + tu−) = inf
u∈M

I(u) = m. (2.13)

On the other hand, for all u ∈ H with u± ̸= 0, Lemma 2.8 implies that there exists a unique

positive numbers pair (s0, t0) such that s0u+ + t0u− ∈ M. Let v := s0u+ + t0u− ∈ M, we have

m = inf
v∈M

I(v) ≤ I(s0u+ + t0u−) ≤ max
s,t≥0

I(su+ + tu−),

which implies that

m = inf
v∈M

I(v) ≤ inf
u∈H,u± ̸=0

max
s,t≥0

I(su+ + tu−). (2.14)

Thus, the conclusion directly follows from (2.13) and (2.14).
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Next, we prove that m > 0 is achieved. Let {un} ⊂ M be a minimizing sequence, i.e.

I(un) → m as n → ∞. In light of (1.5) and (1.8), one has

m + o(1) = I(un)−
1

p
⟨I′(un), un⟩

= a

(

1

2
−

1

p

)

∥un∥
2 + b

(

1

4
−

1

p

)

∥un∥
4 +

1

p2

∫

R3
|un|

pdx

≥ a

(

1

2
−

1

p

)

∥un∥
2.

This implies that {un} is bounded in H. Thus, up to a subsequence, there exists u∗ ∈ H such

that














u±
n ⇀ u±

∗ , in H,

u±
n → u±

∗ , in Lq(R3), 2 ≤ q < 6,

u±
n (x) → u±

∗ (x), a.e. in R
3.

Since {un} ⊂ M, we have ⟨I′(un), u±
n ⟩ = 0. In light of (1.9), (2.2) and (2.3), for all q ∈ (p, 6)

and taking σ = q − p in (2.2), we have

aS
2/q
q

(

∫

R3
|u±

n |
qdx

)2/q

≤ a∥u±
n ∥

2 ≤ a∥u±
n ∥

2 + b∥un∥
2∥u±

n ∥
2

≤
∫

R3
(|u±

n |
p ln |u±

n |)
+dx

≤
1

e(q − p)

∫

R3
|u±

n |
qdx.

(2.15)

Thus,
∫

R3
|u±

n |
qdx ≥ C > 0.

By Lemma 2.2, we get
∫

R3
|u±

∗ |
qdx ≥ C > 0, (2.16)

which implies that u±
∗ ̸= 0.

Since ⟨I′(un), un⟩ = ⟨I′(un), u+
n ⟩+ ⟨I′(un), u−

n ⟩ = 0, in view of (2.3) and (2.15), we have

a∥un∥
2 ≤ a∥un∥

2 + b∥un∥
4 ≤

∫

R3
(|un|

p ln |un|)
+dx ≤ C

∫

R3
|un|

qdx ≤ CS−1
q ∥un∥

q, (2.17)

which implies that

∥un∥ ≥ C > 0.

If ∥un∥ → 0 as n → ∞, from (2.17) we know
∫

R3 |un|qdx → 0. Using Lemma 2.2 we get
∫

R3 |u∗|qdx = 0, which is in contradiction with (2.16). Therefore

m = lim
n→∞

[

a(
1

2
−

1

p
)∥un∥

2 + b(
1

4
−

1

p
)∥un∥

4 +
1

p2

∫

R3
|un|

pdx

]

≥ C > 0.

By the Lebesgue dominated convergence theorem and the weak semi-continuity of norm, we

have

a∥u±
∗ ∥

2 + b∥u∗∥
2∥u±

∗ ∥
2 ≤ lim inf

n→∞

(

a∥u±
n ∥

2 + b∥un∥
2∥u±

n ∥
2
)

= lim inf
n→∞

∫

R3
|u±

n |
p ln |u±

n |dx

=
∫

R3
|u±

∗ |
p ln |u±

∗ |dx.
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Together with (1.9), it shows that

⟨I′(u∗), u±
∗ ⟩ ≤ 0.

According to Lemma 2.10, there are two positive constants 0 < s0, t0 ≤ 1 such that s0u+
∗ +

t0u−
∗ ∈ M. Define ũ := s0u+

∗ + t0u−
∗ , it follows from (1.5), (1.8) and weak semi-continuity of

norm that

m ≤ I(ũ)−
1

p
⟨I′(ũ), ũ⟩

= a

(

1

2
−

1

p

)

∥s0u+
∗ + t0u−

∗ ∥
2 + b

(

1

4
−

1

p

)

∥s0u+
∗ + t0u−

∗ ∥
4

+
1

p2

∫

R3
|s0u+

∗ + t0u−
∗ |

pdx

= a

(

1

2
−

1

p

)

(s2
0∥u+

∗ ∥
2 + t2

0∥u−
∗ ∥

2)

+ b

(

1

4
−

1

p

)

(s4
0∥u+

∗ ∥
4 + t4

0∥u−
∗ ∥

4 + 2s2
0t2

0∥u+
∗ ∥

2∥u−
∗ ∥

2)

+
1

p2

(

s
p
0

∫

R3
|u+

∗ |
pdx + t

p
0

∫

R3
|u−

∗ |
pdx

)

≤ a

(

1

2
−

1

p

)

∥u∗∥
2 + b

(

1

4
−

1

p

)

∥u∗∥
4 +

1

p2

∫

R3
|u∗|

pdx

≤ lim inf
n→∞

[

a

(

1

2
−

1

p

)

∥un∥
2 + b

(

1

4
−

1

p

)

∥un∥
4 +

1

p2

∫

R3
|un|

pdx

]

≤ lim inf
n→∞

[

I(un)−
1

p
⟨I′(un), un⟩

]

= m.

This means that s0 = t0 = 1, i.e. ũ = u∗ ∈ M and I(u∗) = m > 0. By a similar argument as

above, we have that c > 0 is achieved.

Lemma 2.12. The minimizers of infu∈N I(u) and infu∈M I(u) are critical points of I.

Proof. According to Lemma 2.11, we have u∗ = u+
∗ + u−

∗ ∈ M and I(u∗) = m, Therefore it is

only necessary to prove that I′(u∗) = 0. Arguing by contradiction, assume that I′(u∗) ̸= 0.

Then, there exist δ > 0 and γ > 0 such that

∥I′(u)∥ ≥ γ, ∀∥u − u∗∥ ≤ 3δ and u ∈ H.

Let D :=
(

1
2 , 3

2

)

×
(

1
2 , 3

2

)

, by Lemma 2.7, one has

m̃ := max
(s,t)∈∂D

I(su+
∗ + tu−

∗ ) < m. (2.18)

Set ε := min{(m − m̃)/3, δγ/8} and Sδ := B(u∗, δ). By applying [19, Lemma 2.3], there exists

a deformation η ∈ ([0, 1]× H, H) such that

(i) η(1, u) = u, if u /∈ I−1([m − 2ε, m + 2ε]) ∩ S2δ;

(ii) η(1, Im+ε ∩ Sδ) ⊂ Im−ε;

(iii) I(η(1, u)) ≤ I(u), ∀u ∈ H.



12 W.-L. Yang and J.-F. Liao

From (iii) and Lemma 2.7, for each s, t > 0 with |s − 1|2 + |t − 1|2 ≥ δ2/∥u∗∥2, one has

I(η(1, su+
∗ + tu−

∗ )) ≤ I(su+
∗ + tu−

∗ ) < I(u∗) = m. (2.19)

By Lemma (2.3), we have I(su+
∗ + tu−

∗ ) ≤ I(u∗) = m for s, t > 0. According to (ii), one has

I(η(1, su+
∗ + tu−

∗ )) ≤ m − ε, ∀s, t > 0, |s − 1|2 + |t − 1|2 < δ2/∥u∗∥
2. (2.20)

Thus, from (2.19) and (2.20), we get

max
(s,t)∈D̄

I(η(1, su+
∗ + tu−

∗ )) < m. (2.21)

Let h(s, t) = su+
∗ + tu−

∗ , we prove that η(1, h(D)) ∩M ̸= ∅, which contradicts the definition

of m. Define

k(s, t) := η(1, h(s, t)),

Φ(s, t) :=
(

⟨I′(h(s, t)), u+
∗ ⟩, ⟨I′(h(s, t)), u−

∗ ⟩
)

:= (Φ1(s, t), Φ2(s, t)) ,

and

Ψ(s, t) :=

(

1

s
⟨I′(k(s, t)), (k(s, t))+⟩,

1

t
⟨I′(k(s, t)), (k(s, t))−⟩

)

,

where

Φ1(s, t) =
1

s
⟨I′(su+

∗ + tu−
∗ ), su+

∗ ⟩

= a(s − sp−1)∥u+
∗ ∥

2 + b(s3 − sp−1)∥u+
∗ ∥

4 + b(st2 − sp−1)∥u+
∗ ∥

2∥u−
∗ ∥

2

− sp−1 ln s
∫

R3
|u+

∗ |
pdx,

and

Φ2(s, t) =
1

t
⟨I′(su+

∗ + tu−
∗ ), tu−

∗ ⟩

= a(t − tp−1)∥u−
∗ ∥

2 + b(t3 − tp−1)∥u−
∗ ∥

4 + b(ts2 − tp−1)∥u+
∗ ∥

2∥u−
∗ ∥

2

− tp−1 ln t
∫

R3
|u−

∗ |
pdx.

Obviously, Φ is C1 functions. Moreover, by a direct calculation we have

∂Φ1(s, t)

∂s

∣

∣

∣

∣

(1,1)

= a(2 − p)∥u+
∗ ∥

2 + b(4 − p)∥u+
∗ ∥

4 + b(2 − p)∥u+
∗ ∥

2∥u−
∗ ∥

2 −
∫

R3
|u+

∗ |
pdx,

and
∂Φ1(s, t)

∂t

∣

∣

∣

∣

(1,1)

= 2b∥u+
∗ ∥

2∥u−
∗ ∥

2.

Similarly, we obtain
∂Φ2(s, t)

∂s

∣

∣

∣

∣

(1,1)

= 2b∥u+
∗ ∥

2∥u−
∗ ∥

2,

and

∂Φ2(s, t)

∂t

∣

∣

∣

∣

(1,1)

= a(2 − p)∥u−
∗ ∥

2 + b(4 − p)∥u−
∗ ∥

4 + b(2 − p)∥u+
∗ ∥

2∥u−
∗ ∥

2 −
∫

R3
|u−

∗ |
pdx.
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Let

M =







∂Φ1(s, t)

∂s

∣

∣

(1,1)

∂Φ2(s, t)

∂s

∣

∣

(1,1)

∂Φ1(s, t)

∂t

∣

∣

(1,1)

∂Φ2(s, t)

∂t

∣

∣

(1,1)






,

then we have that

det M =
∂Φ1(s, t)

∂s

∣

∣

∣

∣

(1,1)

×
∂Φ2(s, t)

∂t

∣

∣

∣

∣

(1,1)

−
∂Φ1(s, t)

∂t

∣

∣

∣

∣

(1,1)

×
∂Φ2(s, t)

∂s

∣

∣

∣

∣

(1,1)

=

[

a(2 − p)∥u+
∗ ∥

2 + b(4 − p)∥u+
∗ ∥

4 + b(2 − p)∥u+
∗ ∥

2∥u−
∗ ∥

2 −
∫

R3
|u+

∗ |
pdx

]

×

[

a(2 − p)∥u−
∗ ∥

2 + b(4 − p)∥u−
∗ ∥

4 + b(2 − p)∥u+
∗ ∥

2∥u−
∗ ∥

2 −
∫

R3
|u−

∗ |
pdx

]

− 4b2∥u+
∗ ∥

4∥u−
∗ ∥

4

> 0.

Hence, the solution of equation (1.1) is the unique isolated zero point of Φ(s, t). Then, the

topological degree theory [6, 21] implies that deg(Φ, D, 0) = 1. Combining (2.18) with (i), we

have that h = k on ∂D, then we obtain

deg(Φ, D, 0) = deg(Ψ, D, 0) = 1.

So, Ψ(s0, t0) = 0 for some (s0, t0) ∈ D, and

η(1, h(s0, t0)) = k(s0, t0) ∈ M,

which is a contradiction with (2.21). So we get that I′(u∗) = 0. Similarly, we can prove that

any minimizer of infu∈N I(u) are a critical point of I(u).

3 Proof of theorems

Firstly, we prove the existence of positive ground state solutions for equation (1.1).

Proof of Theorem 1.1. According to Lemma 2.11 and Lemma 2.12, there exists ū ∈ N such that

I(ū) = c, I′(ū) = 0.

Now, we only need to prove that ū is a positive solution of equation (1.1). Indeed, replacing

I(u) with the functional

I(ū) =
a

2

∫

R3
(|∇ū|2 + V(x)ū2)dx +

b

4

(

∫

R3
(|∇ū|2 + V(x)ū2)dx

)

−
1

p

∫

R3
|ū+|p ln |ū+|dx +

1

p2

∫

R3
|ū+|pdx.

In this way we can get a solution ū such that

(

a + b
∫

R3
|∇ū|2 + V(x)ū2dx

)

[−∆ū + V(x)ū] = |ū+|p−2ū+ ln |ū+|, x ∈ R
3. (3.1)
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Multiplying the both sides of (3.1) with u−, we deduce that

a∥ū−∥2 + b∥ū−∥4 + b∥ū+∥2∥ū−∥2 = 0.

It follows that ū−(x) = 0, and then ū(x) ≥ 0 for a.e. x ∈ R
3. The regularity theory of elliptic

equation implies that ū ∈ C2(R3) is nonnegative classical solution of equation (1.1). Since

p ∈ (4, 6), we know that limū→0+ ūp−1 ln ū = 0. It makes sense to denote ūp−1 ln ū = 0 for

ū = 0. Let Ω+ = {ū ∈ R
3 : ū(x) ≥ 0}. Then ū(x) is positive solution in R

3 if ∂Ω+ = ∅.

In the following, we prove that ∂Ω+ = ∅. Otherwise, let x0 ∈ ∂Ω+ and Bρ(x0) = {x ∈ R
3 :

|x − x0| < ρ} with small ρ > 0. Define

α =

(

a + b
∫

R3
|∇ū|2 + V(x)ū2dx

)

> 0,

and

c(x) =

(

a + b
∫

R3
|∇ū|2 + V(x)ū2dx

)

V(x)− ūp−1 ln |ū|.

Then, ū
∣

∣

Bρ(x0)
is nontrivial solution of the following boundary value problem

−α△v + c(x)v = 0, x ∈ Bρ(x0) and v(x) = ū(x) for x ∈ ∂Bρ(x0).

Under the assumptions, we see that c(x) > 0 in Bρ(x0) for ρ > 0 small enough. By the

maximum principle [18], we see that ū(x) > 0 for all x ∈ Bρ(x0), which contradicts to that

x0 ∈ ∂Ω+. In conclusion, ū is a positive ground state solution of equation (1.1). Thus the proof

of Theorem 1.1 is completed.

Secondly, we verify that equation (1.1) has a ground state sign-changing solution with

precisely two nodal domains.

Proof of Theorem 1.2. In light of Lemma 2.11 and Lemma 2.12, there exists u∗ ∈ M such that

I(u∗) = m, I′(u∗) = 0. (3.2)

Now, we show that u∗ has exactly two nodal domains. Set u∗ = u1 + u2 + u3, where

u1 ≥ 0, u2 ≤ 0, Ω1 ∩ Ω2 = ∅, u1|R3\Ω1
= u2|R3\Ω2

= u3|Ω1∪Ω2
= 0, (3.3)

Ω1 := {x ∈ R
3 : u1 > 0}, Ω2 := {x ∈ R

3 : u2 < 0},

and Ω1, Ω2 are connected open subsets of R
3. Letting v = u1 + u2, then v+ = u1 and v− = u2,

i.e. v± ̸= 0. Note that I′(u∗) = 0, by a straightforward calculation, we can obtain

⟨I′(v), v+⟩ = −b∥v+∥2∥u3∥
2, (3.4)

and

⟨I′(v), v−⟩ = −b∥v−∥2∥u3∥
2. (3.5)

It follows from (1.5), (1.8), (2.4), (3.2)–(3.5) that

m = I(u∗) = I(u∗)−
1

p
⟨I′(u∗), u∗⟩

= I(v) + I(u3) +
b

2
∥v∥2∥u3∥

2 −
1

p

[

⟨I′(v), v⟩+ ⟨I′(u3), u3⟩+ 2b∥v∥2∥u3∥
2
]
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≥ sup
s,t≥0

[

I(sv+ + tv−) +
1 − sp

p
⟨I′(v), v+⟩+

1 − tp

p
⟨I′(v), v−⟩

]

+ I(u3)−
1

p
⟨I′(v), v⟩ −

1

p
⟨I′(u3), u3⟩

≥ sup
s,t≥0

[

I(sv+ + tv−) +
bsp

p
∥v+∥2∥u3∥

2 +
btp

p
∥v−∥2∥u3∥

2

]

+ a

(

1

2
−

1

p

)

∥u3∥
2 + b

(

1

4
−

1

p

)

∥u3∥
4 +

1

p2

∫

R3
|u3|

pdx

≥ max
s,t≥0

I(sv+ + tv−) + a

(

1

2
−

1

p

)

∥u3∥
2

≥ m + a

(

1

2
−

1

p

)

∥u3∥
2,

which implies that u3 = 0. Therefore, u∗ has exactly two nodal domains.

Next, we show that the energy of sign-changing solution of equation (1.1) is strictly larger

than twice of the energy of positive ground state solution. By Lemma 2.9, there exist s∗, t∗ > 0

such that s∗u+
∗ , t∗u−

∗ ∈ N . Then it follows from (3.2) and Lemma 2.7 that

m = I(u∗) ≥ I(s∗u+
∗ + t∗u−

∗ )

= I(s∗u+
∗ ) + I(t∗u−

∗ ) + 2bs2
∗t2

∗∥u+
∗ ∥

2∥u−
∗ ∥

2

> I(s∗u+
∗ ) + I(t∗u−

∗ ) ≥ 2c > 0.

To sum up, u∗ is a ground state sign-changing solution of equation (1.1) with precisely two

nodal domains. Besides, m > 2c. Then, the proof of Theorem 1.2 is completed.

Finally, we prove that equation (1.1) has a sequence of solutions to infinity by the following

symmetric mountain pass theorem:

Theorem 3.1 ([15, Theorem 9.12]). Let E be an infinite dimensional Banach space, and let I ∈
C1(E, R) be even, satisfying (PS) condition and I(0) = 0. If E = V

⊕

X, where V is finite dimen-

sional and I satisfies

(i) there are constants ρ, α > 0 such that I|∂Bρ∩X ≥ α,

(ii) for each finite dimensional subspace Ẽ ⊂ E, there exists an R = R(Ẽ) such that I ≤ 0 on

Ẽ\BR(Ẽ),

then I possesses an unbounded sequence critical values.

Lemma 3.2. Assume that (V1)–(V2) hold, then I satisfies (PS) condition.

Proof. Let {un} ⊂ H be a sequence with {I(un)} bounded and I′(un) → 0. We first claim that

{un} is bounded in H. Indeed,

C + o(1)∥un∥ ≥ I(un)−
1

p
⟨I′(un), un⟩

= a

(

1

2
−

1

p

)

∥un∥
2 + b

(

1

4
−

1

p

)

∥un∥
4 +

1

p2

∫

R3
|un|

pdx

≥ a

(

1

2
−

1

p

)

∥un∥
2.
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This implies that {un} is bounded in H. Going if necessary up to subsequence, we may

assume that there exists u ∈ H such that














un ⇀ u, in H,

un → u, in Lq(R3), 2 ≤ q < 6,

un(x) → u(x), a.e. in R
3.

(3.6)

By limn→∞ ∥⟨I′(un), un − u⟩∥ ≤ limn→∞ ∥I′(un)∥∥un − u∥ = 0 and ∥⟨I′(u), un − u⟩∥ ≤
limn→∞ ∥I′(un)∥∥un − u∥ = 0, we deduce that

⟨I′(un)− I′(u), un − u⟩ = ⟨I′(un), un − u⟩ − ⟨I′(u), un − u⟩ → 0, as n → ∞.

On the other hand, it follows from (3.6) and Hölder’s inequality that

lim
n→∞

⟨u, un − u⟩ = lim
n→∞

∫

R3
∇u[∇un −∇u] + V(x)u(un − u)dx

≤
∫

R3
∇u[∇u −∇u]dx +

(

∫

R3
(V(x)u)2dx

)1/2

|un − u|2

= 0.

Therefore, by some preliminary calculations, one has

(a + b∥un∥
2)∥un − u∥2

= (a + b∥un∥
2)
∫

R3
[∇un∇(un − u) + V(x)un(un − u)]dx

− (a + b∥u∥2 + b∥un∥
2 − b∥u∥2)

∫

R3
[∇u∇(un − u) + V(x)u(un − u)]dx

= ⟨I′(un), un − u⟩+ b(∥u∥2 − ∥un∥
2)
∫

R3
[∇u∇(un − u) + V(x)u(un − u)]dx

+
∫

R3
|un|

p−2un(un − u) ln |un|dx − ⟨I′(u), un − u⟩ −
∫

R3
|u|p−2u(un − u) ln |u|dx

= ⟨I′(un)− I′(u), un − u⟩+ b(∥u∥2 − ∥un∥
2)⟨u, un − u⟩

+
∫

R3
(|un|

p−2un ln |un| − |u|p−2u ln |u|)(un − u)dx.

We obtain the conclusion if the last term of the above formula tend to zero as n → +∞.

Indeed, in view of (1.7), (3.6) and Hölder’s inequality, for any ε > 0 small enough we deduce

that
∣

∣

∣

∣

∫

R3
(|un|

p−2un ln |un| − |u|p−2u ln |u|)(un − u)dx

∣

∣

∣

∣

≤
∫

R3

(

||un|
p−1 ln |un||+ ||u|p−1 ln |u||

)

|un − u|dx

≤
∫

R3

[

ε(|un|+ |u|) + Cε(|un|
q−1 + |u|q−1)

]

|un − u|dx

≤ 4ε
(

|un|
2
2 + |u|22

)

+ Cε

(

|un|
q−1
q + |u|

q−1
q

)

|un − u|q

≤ εC + Cε|un − u|q.

These estimates show that un → u in H, so I satisfies (PS) condition.
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Proof of Theorem 1.3. In Theorem 3.1, let E = H and the functional I given by (1.5). By Lemma

3.2, the functional I satisfies (PS) condition, so we just need to verify that I satisfies conditions

(i) and (ii) of Theorem 3.1. Note that

I(u) ≥
a

2
∥u∥2 +

b

4
∥u∥4 −

1

p

∫

R3
|u|p ln |u|dx

≥
a

2
∥u∥2 −

1

p

∫

{x:|u|≥1}
|u|p ln |u|dx

≥
a

2
∥u∥2 − C1∥u∥p+σ,

where 0 < σ < 6 − p. Thus, we can choose ρ > 0 and α > 0 small enough such that

I|∂Bρ
≥ α > 0.

We suppose that Ẽ is a finite dimensional subspace of H, and for u ∈ Ẽ\{0}, define

v = u/∥u∥, then ∥v∥ = 1. one has

I(u) = ∥u∥p

(

a

2
∥u∥2−p +

b

4
∥u∥4−p −

1

p

∫

R3
|v|p ln |v|dx +

1

p2

∫

R3
|v|pdx −

1

p
(ln ∥u∥)

∫

R3
|v|pdx

)

≤ ∥u∥p

(

a

2
∥u∥2−p +

b

4
∥u∥4−p + C1∥v∥2 + C2∥v∥q +

S−1
p

p2
∥v∥p −

1

p
(ln ∥u∥)

∫

R3
|v|pdx

)

= ∥u∥p

(

a

2
∥u∥2−p +

b

4
∥u∥4−p + C −

1

p
(ln ∥u∥)

∫

R3
|v|pdx

)

.

Thus, there exists an R = R(Ẽ) large enough such that I ≤ 0 on Ẽ\BR(Ẽ).

To sum up, all conditions of Theorem 3.1 are satisfied. Therefore, equation (1.1) owns

a sequence of solutions {un} with I(un) → +∞ as n → ∞. This completes the proof of

Theorem 1.3.
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Abstract. We consider the class X of 3-dimensional piecewise smooth vector fields
that admit a first integral which leaves invariant any sphere centered at the origin. In
this class, we prove that a linear vector field does not admit isolated invariant cones.
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1 Introduction

Differential equations and dynamical systems can be used to model natural phenomena and

we can obtain information about it from their solutions. An interesting tool used to under-

stand the behavior of the solutions of a dynamical system is the existence of first integrals

because, when they exist, the trajectories of the corresponding vector field remain restricted

to the level surfaces of these functions. We say that a n-dimensional differential system is

completely integrable when it has n − 1 independent first integrals and the orbits of it are

obtained just intersecting the level sets of the first integrals. Moreover, if it has less than n − 1

first integrals, it is said to be partially integrable. The 2n-dimensional Hamiltonian systems

are particular cases of partially integrable systems, for which we commonly study their be-

havior restricted to their invariant level sets. The study of Hamiltonian systems has many

applications and it is very important in mechanics, for example, as we can see in [28].

Observe that, if the system restricted to an invariant level set of the first integral has a

hyperbolic closed trajectory, then the original system has a 1-parameter family of hyperbolic

BCorresponding author. Email: claudio.buzzi@unesp.br
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periodic orbits. As we will work with 3-dimensional piecewise smooth vector fields having

a first integral that keeps invariant all the spheres centered at origin, in fact we deal with

1-parameter radial families. For more details about how to consider 3-dimensional smooth

vector fields (resp. 3-dimensional piecewise smooth vector fields) with invariant spheres as

1-parameter radial family see for instance Section 5 of [4] (resp. [5]). In [6] it was proved that

the behavior of a homogeneous vector field restricted to an invariant sphere of radius ρ = 1

is topologically equivalent to the behavior of the same system restricted to any other level.

So, when a homogeneous vector field restricted to an invariant sphere has a limit cycle (resp.

a center), the 3-dimensional vector field has an isolated (resp. non-isolated) invariant cone

fulfilled of closed trajectories. On the other hand, the behavior of non-homogeneous vector

fields could be totally different in distinct levels of invariant spheres (see again [6]). In this

case, each hyperbolic closed trajectory restricted to an invariant sphere of radius ρ generates

a 1-parameter radial family of closed trajectories of the 3-dimensional vector field near the

sphere of radius ρ. So, it has locally a topological invariant cylinder near the sphere of radius

ρ fulfilled of closed trajectories. In general, it is very difficult to classify the invariant surfaces

generated by these 1-parameter families, as they can have very different behavior depending

on the vector field. Understanding it certainly depends on the knowledge on the behavior of

the vector fields restricted to each invariant sphere.

As these invariant surfaces are generated by closed trajectories of the restricted vector field,

this problem is strictly related to the Hilbert’s 16th problem, presented by D. Hilbert in 1900, at

the International Congress of Mathematicians, in Paris. The second part of the Hilbert’s 16th

problem asks for an estimation of the maximal number of limit cycles that a planar polynomial

vector field can have, being one of the most important open problems in Qualitative Theory of

Ordinary Differential Equations and Dynamical Systems. For more details we refer the reader

to [20].

In the last years, many classes of piecewise smooth dynamical systems have also been

studied and a rigorous formulation of their qualitative properties was given by Filippov, in

[15]. This theory is very important in many areas of science, see for instance [12]. Note

that, the Hilbert’s 16th problem has been extended to piecewise polynomial vector fields in a

natural way (see for example [16, 24]). In part of this paper we will analyze the existence of

(crossing) invariant cones for piecewise linear and quadratic vector fields. This dynamics also

appears in 3-dimensional piecewise linear systems as in [7–9].

In this work, we consider 3-dimensional piecewise differential vector fields with a separa-

tion set given by Σ = {(x, y, z) ∈ R3 : z = 0}, that is

Y(x, y, z) =

{
X+(x, y, z), z ≥ 0,

X−(x, y, z), z ≤ 0.
(1.1)

As Y can be multi-valued in Σ, we will follow the Filippov’s convention on the escaping and

sliding regions, see again [15].

In the piecewise smooth case, as in the smooth one, the integrability of the vector fields

X± is an important tool used to understand the behavior of the trajectories of Y = (X+, X−),
in the classification of phase portraits, and also to answer questions related to the existence

of crossing limit cycles (i.e. isolated crossing periodic orbits). See Section 2.2 and also [27]

for more details. Furthermore, when both X± have the same first integral the dimension of

the phase space where the trajectories of the piecewise smooth vector field Y = (X+, X−) are

defined is reduced by one. This property has motivated us to study 3-dimensional piecewise
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smooth vector fields partially integrable (that is, having both X± the same first integral H :

R3 → R) restricted to invariant level sets of H, as we explain on the following.

Let X be the class of smooth vector fields X : R3 → R3 that admits H(x, y, z) = x2 + y2 + z2

as a first integral. This class was previously studied in [6]. Note that all the spheres centered

at the origin with radius ρ, S2
ρ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = ρ2}, are invariant by the

flow of X ∈ X. We denote by Xn (resp. XH
n ) the class of polynomials (resp. homogeneous

polynomials) vector fields of degree n in X. In this work, we consider the class of piecewise

differential vector fields given by (1.1) such that X± ∈ X. We denote this class by X and by

Xn (resp. X H
n ) when X± ∈ Xn (resp. X± ∈ XH

n ). Hence, if Y ∈ X , then any sphere centered

at the origin is invariant by the flow of the piecewise differential system Y. Observe that we

can consider invariant ellipsoids instead of invariant spheres. Although all the results can be

easily generalized to this case, we have preferred not to do it here, to avoid repetitions. In

the sequel, we describe the results that we have obtained for piecewise linear and quadratic

(homogeneous and nonhomogeneous) differential systems in X . We remark that, in general,

the 3-dimensional homogeneous vector fields will not be when we consider them projected to

a 2-dimensional space.

Before introducing our main results, we recall some properties about homogeneous vector

fields X ∈ XH proved in [6]. X ∈ X1 is homogeneous and it writes in the form

X(x; a1, a2, a3) = (−a1y − a2z, a1x − a3z, a2x + a3y), (1.2)

where, x = (x, y, z). Moreover, (1.2) has (generically) only a line of equilibrium points pass-

ing through the origin. Further, when we consider the restriction of (1.2) to the invariant

spheres S2
ρ, we conclude that (1.2) has only two equilibrium points on each sphere which are

centers and antipodals of each other (see Lemma 3.1, for more details). It means that the

3-dimensional smooth vector field (1.2) has a continuous of invariant cones fulfilled of non-

isolated closed trajectories. In Proposition 4.3 we show that a quadratic homogeneous vector

field X ∈ XH
2 can present an isolated invariant cone, fulfilled of closed trajectories, showing an

important difference between linear and quadratic homogeneous vector fields in the class X.

Using (1.2) we can see that each 3-dimensional piecewise linear system Y = (X+, X−)∈ X1

is of the form

Y(x, y, z) =

{
X+(x; a+1 , a+2 , a+3 ), z ≥ 0,

X−(x; a−1 , a−2 , a−3 ), z ≤ 0,
(1.3)

with

X±(x; a±1 , a±2 , a±3 ) = (−a±1 y − a±2 z, a±1 x − a±3 z, a±2 x + a±3 y). (1.4)

As explained in Section 2.3, we use the stereographic projection to study the local behav-

ior of Y ∈ X restricted to the invariant spheres. Moreover, the projection of a linear (resp.

quadratic) vector field defined on an invariant sphere is a quadratic (resp. cubic) planar vec-

tor field. We observe that they lose the property of homogeneity once projected. Usually, the

behavior of piecewise smooth vector fields is richer than the behavior of the smooth ones. This

property made us to look for isolated invariant cones in X1. However, the next result proves

that they do not exist.

Theorem 1.1. No piecewise differential system Y ∈ X1, given by (1.3), admits an isolated invariant

cone.

We prove it in Section 3, where we also show the possible phase portraits of (1.3), restricted

to the invariant sphere S2
ρ, with respect to the admissibility of its equilibria (see Figures 3.3
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and 3.4). We point out that the existence of crossing invariant cones for piecewise linear vector

fields which are continuous in the separation set Σ was studied in [8,9]. But the results cannot

be applied to our study because the continuity condition is not satisfied.

Inspired by the homogeneity property of the linear vector fields in X , we study some fam-

ilies in X H
2 in Section 4, where we prove that they can present isolated and non-isolated cross-

ing invariant cones, showing an important difference between piecewise linear and quadratic

homogeneous vector fields in X . We prove it considering the restriction of a piecewise smooth

vector field Y ∈ X H
2 to the sphere of radius ρ = 1 and showing that they can present cen-

ters for some specific values of the coefficients and crossing limit cycles for others. Another

difference can be observed when we compare the piecewise quadratic homogeneous vector

fields defined on S2
1 and on R2. To see it, we recall briefly the concept of reversible vector

field defined in open regions of Rm. Let φ : Rm → Rm be a Cr-involution. It means that

φ ◦ φ(x) = x, where x ∈ Rm. Let Fix(φ) = {x; φ(x) = x}. We say that a differential vector field

X, defined in Rm, is φ-reversible if Dφ ◦ X = −X ◦ φ, where Dφ denotes the Jacobian matrix

of φ. We say that X is reversible with respect to a line (resp. a point) when Fix(φ) is a line

(resp. a point). We refer [23], for an interesting survey about reversible differential systems.

We recall that any quadratic homogeneous vector field defined in R2 is reversible with respect

to the origin and, because of that, it does not have an equilibrium point of center type (see

[2]). Thus, we cannot consider the center-focus problem for piecewise quadratic homogeneous

vector fields on the plane. Note that the concept of reversibility can also be considered for

piecewise smooth vector fields. For more details see Section 2.2.

Finally, we have also analyzed the local behavior of a piecewise quadratic vector field X2,

proving the following result.

Theorem 1.2. There exist at least ten 1-parameter radial families of invariant crossing closed trajecto-

ries in the quadratic family X2, near the radius ρ = 1.

For proving Theorem 1.2, see Section 5, we consider the restriction of a piecewise smooth

vector field Y ∈ X2 to the invariant sphere of radius ρ = 1 and we show that it has 10 hyper-

bolic crossing limit cycles on the sphere S2
1. Since these crossing limit cycles are hyperbolic

on S2
1, they are normally hyperbolic with respect to the radial direction. This implies that

Y ∈ X2 has at least ten 1-parameter radial families of crossing periodic orbits which cross the

sphere of radius ρ in isolated closed trajectories, with 1− ε < ρ < 1+ ε for ε sufficiently small.

So, the 3-dimensional vector field Y ∈ X2 has invariant surfaces, foliated by crossing closed

trajectories, which are locally topologically equivalent to cylinders. The global structure of

each invariant surface is due to the birth or death of limit cycles. For example, this surface

is topologically equivalent to a sphere when we have exactly two Hopf points in S2
ρ∗ and S2

ρ∗ ,

being ρ∗ < 1 < ρ∗.

This paper is structured as follows. Section 2 is devoted to recalling the tools used to prove

our main results. In Section 3 we study piecewise linear vector fields with invariant spheres

and we also prove Theorem 1.1. In Section 4 we give some families of centers for piecewise

continuous quadratic homogeneous vector fields, in the sphere S2
1. Finally, in Section 5 we

prove Theorem 1.2.

2 Preliminary results

This section is dedicated to recall some concepts and bifurcation techniques for piecewise

smooth vector fields, that we use in the proofs of the results of this paper. Firstly, we recall the
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integrability concept and the Filippov’s convention for piecewise smooth vector fields. After

that, we consider a smooth vector field X : R3 → R3 having H(x, y, z) = x2 + y2 + z2 as a

first integral and define a piecewise smooth vector field with the same property. Considering

that the center-focus problem and local cyclicity will be studied projecting each 3-dimensional

piecewise smooth vector field defined on the invariant sphere into a planar one, we also

recall some definitions and the computation algorithm of the center conditions (or Lyapunov

constants) for planar piecewise smooth vector fields.

2.1 Integrability

Let P : Rm → Rm such that P(x) = (P1(x), . . . , Pm(x)), where x = (x1, . . . , xm) ∈ Rm and Pi,

i = 1, . . . , m, are polynomials in the variables xi with real coefficients. Let n be the maximum

between the degrees of Pi, i = 1, . . . , m and consider an m-dimensional differential system

ẋ = P(x). (2.1)

Let U ⊂ Rm be an open subset. If there exists a non-constant analytic function H : U → R

such that

⟨P(x),∇H(x)⟩ =
m

∑
i=1

Pi(x)
∂H

∂xi
(x) = 0, for x ∈ U,

then (2.1) is partially integrable on U and H is a first integral of (2.1) on U. Moreover, if P has

m − 1 independent first integrals then P is called a completely integrable system. In [14], it was

proved that any m-dimensional linear system has m − 1 independent first integrals and then

this is an example of a class of completely integrable systems.

It is worth to say that when a system P is completely integrable its trajectories are deter-

mined by the intersection of the level sets of its first integrals, see [13] for more details about it.

Moreover, each X ∈ X has at least one first integral and, in Section 3 we will see that the key

point for the proof of Theorem 1.1 is the existence of a second first integral for X± ∈ X1 and

to have a good knowledge of how the levels of these first integrals interact with the separation

curve of piecewise system (1.3).

2.2 Filippov vector fields

In this subsection we recall the definition of a piecewise smooth vector field under the Fil-

ippov’s convention (see [15] for more details). We restrict our attention to piecewise smooth

vector fields defined in Rm, the same definitions can be extended easily to m-dimensional

manifolds.

Let x = (x1, . . . , xm) ∈ Rm and consider f : Rm → R a Cr-class function such that 0 ∈ R

is a regular value of f . Therefore, Σ = f−1(0) = {x ∈ Rm : f (x) = 0} is an embedded

codimension one submanifold of Rm. Consider Σ+ = f−1([0,+∞)) = {x ∈ Rm : f (x) ≥ 0},

Σ− = f−1((−∞, 0]) = {x ∈ Rm : f (x) ≤ 0} and the piecewise smooth vector field with

separation set Σ defined by

Y(x) =

{
X+(x), x ∈ Σ+,

X−(x), x ∈ Σ−,
(2.2)

where X± are smooth vector fields defined on Σ±. The equilibrium points of X+ and X−

located in Σ+ and Σ−, respectively, are called admissible (or visible) equilibrium points or

simply equilibrium points of (2.2). On the other hand, the equilibrium points of X+ and X−
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located in Σ− and Σ+, respectively, are called non-admissible (or invisible) equilibrium points

of (2.2).

The Lie derivative of f with respect to the vector field X± at the point p ∈ Σ is defined by

X± f (p) = X±(p) · ∇ f (p), where the dot stands for the scalar or usual product on Rm. The

successive Lie derivatives are given by (X±)n f (p) = X±(p) · ∇(X±)n−1 f (p), n ≥ 2. When

X+ f (p) = X− f (p), for all p ∈ Σ, we say that (2.2) is a refractive system (on Σ). For more

details about refractive systems we refer the reader to [3, 5].

On the following, we recall the definitions of tangency points and tangency sets of (2.2).

We say that p ∈ Σ is a fold point of Y if X+ f (p) = 0, (X+)2 f (p) ̸= 0 and X− f (p) ̸= 0 (or

X− f (p) = 0, (X−)2 f (p) ̸= 0 and X+ f (p) ̸= 0). Hence, p is a fold-fold point when X+ f (p) = 0,

X− f (p) = 0, (X+)2 f (p) ̸= 0, and (X−)2 f (p) ̸= 0. We also define the tangency set of X± with

Σ by SX± = {p ∈ Σ : X± f (p) = 0} and the tangency set of Y by SY = SX+ ∪ SX− .

As usual, we consider the crossing region Σc = {p ∈ Σ : (X+ f (p))(X− f (p)) > 0}, the

sliding region Σs = {p ∈ Σ : X+ f (p) < 0, X− f (p) > 0} and the escaping region Σe = {p ∈
Σ : X+ f (p) > 0, X− f (p) < 0}. So Σ is the disjoint union Σc ∪ Σs ∪ Σe ∪ SY and following the

Filippov’s convention we define the Filippov vector field FY(p) on Σs ∪ Σe by

FY(p) =
1

X− f (p)− X+ f (p)

(
X− f (p)X+(p)− X+ f (p)X−(p)

)
.

We also recall that a crossing trajectory is an orbit that have isolated crossing points of

intersection with the separation set Σ. Moreover, a crossing limit cycle is an isolated crossing

periodic orbit.

Finally, we say that (2.2) is time φ-reversible if Fix(φ) ⊂ Σc and Dφ ◦ Y = −Y ◦ φ, where

φ is an Cr-involution defined in Rm. As in the smooth case, each piecewise reversible vector

field presents a certain symmetry. For more details, see [21].

2.3 Orthogonal change of coordinates and stereographic projection

We say that a change of coordinates is orthogonal when the matrix of it is orthogonal, in other

words, if M is this matrix it must satisfy Mt = M−1. This kind of change of coordinates keeps

all the spheres invariant and using it we can assume that the equilibrium point of a smooth

vector field, that always exists on each invariant sphere S2
ρ, can be located at any (x0, y0, z0)

that we choose. Note that, when we consider piecewise smooth vector fields on invariant

spheres, this kind of change of coordinates (on the whole sphere) allows us to assume that

some equilibrium point of the Filippov vector field or some fold point can be located at any

(x0, y0, 0) ∈ Σ.

To study local behaviors, we use the stereographic projection with respect to the point

(0,−ρ, 0). It allows us to consider planar vector fields instead of 3-dimensional ones restricted

to spheres. In the following, we define the piecewise projected vector field. Consider the

stereographic projection, p : S2
ρ \ {(0,−ρ, 0)} → R2, on the plane {(x, y, z) ∈ R3 : y = ρ} given

by p(x, y, z) = 2ρ(x, z)/(y + ρ). We define the projected vector field associated to X ∈ X by

PX(u) = dpp−1(u) ◦ X ◦ p−1(u),

where X = X|
S2

ρ

, u = (u, v) and p(x) = u. Note that, this stereographic projection sends the

separation set Σ = {(x, y, z) ∈ R3 : z = 0} of a piecewise smooth vector field Y ∈ X to
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{(u, v) ∈ R2 : v = 0}. Thus, the projection PY : R2 → R2 of (1.1) is written as

PY(u) =

{
PX+(u), v ≥ 0,

PX−(u), v ≤ 0,
(2.3)

where X± = X±
|
S2

ρ

, u = (u, v). Besides, p preserves closed curves and contact between curves

contained on its domain of definition, so p ∈ S2
ρ is said to be a monodromic equilibrium point

of (1.1) if q = p(p) is a monodromic equilibrium point of (2.3).

2.4 Lyapunov constants and local cyclicity for planar piecewise systems

In this section, we will recall the stability algorithm (see [16, 17] and references therein) for

planar piecewise smooth vector fields of the form

Y(x, y) =

{
X+(x, y), y ≥ 0,

X−(x, y), y ≤ 0,
(2.4)

having both X± an equilibrium point of nondegenerate center-focus type at the origin. That is,

X±(x, y) =

(
α±x − β±y +

n

∑
k=2

P±
k (x, y), β±x + α±y +

n

∑
k=2

Q±
k (x, y)

)
,

with P±
k and Q±

k homogeneous polynomials of degree k in the variables x and y. We have

assumed that both linear parts are in Jordan’s normal form. Furthermore, we follow the

Filippov’s convention to define the trajectories of Y on the separation set Σ = {(x, y) ∈ R2 :

y = 0} and we assume β± ̸= 0 as the non degeneracy condition for each X±. Using polar

coordinates, (x, y) = (r cos θ, r sin θ), we write system (2.4) as

{
ṙ =R+(r, θ), θ ∈ [0, π],

ṙ =R−(r, θ), θ ∈ [π, 2π],

where the dot represents the derivative with respect to θ.

Consider r±(θ, r0) the solution of ṙ = R±(r, θ) with initial condition r±(0, r0) = r0 and

r0 > 0 sufficiently small. The expansion in Taylor’s series of the solution r±(θ, r0) can be

written as

r±(θ, r0) = r0 +
∞

∑
k=1

r±k (θ)r
k
0,

with r±k (0) = 0, for all k ≥ 1, and with r+ defined for θ ∈ [0, π] and r− defined for θ ∈ [π, 2π].

The Poincaré half-return maps are defined by

Π+(r0) = r+(π, r0),

Π̃−(r0) = r−(−π, r0),

where Π̃− denotes the inverse of Π− since both r± are defined with initial condition θ = 0

and r0 > 0 sufficiently small. The displacement function, which is analytic, is given by
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∆(r0) = Π̃−(r0)− Π+(r0) =
∞

∑
k=1

Lkrk
0,

for r0 small enough. When α+α− ̸= 0 the origin is a hyperbolic equilibrium point. Otherwise

L1 = 0 and, for k ≥ 2, we can define the k-th Lyapunov constant by Lk ̸= 0, when L1 = · · · =
Lk−1 = 0. In this case, if there exists k ≥ 2 so that Lk ̸= 0, then the origin of system (2.4) is

a weak focus of order k. Otherwise the origin is a center. For more details see for instance

[16,17]. Usually, to simplify computations we take α+ = α− = 0. Note that on the smooth case

the first non-vanishing Lyapunov constant has always odd subscript while in the piecewise

class this property does not hold. Recall that, for analytical vector fields, the classical Hopf

bifurcation occurs when one limit cycle of small amplitude bifurcates from a weak focus of

first order (with the above notation it occurs when L1 = L2 = 0 and L3 ̸= 0), while the

limit cycles arise from a higher-order weak focus in the degenerate Hopf bifurcation (see [1]

for more details). Moreover, for piecewise smooth vector fields, in [11] it is shown that one

more limit cycle appears moving the equilibrium points on Σ. Because a sliding or escaping

segment is created adding adequately some perturbative parameters which implies that the

displacement function of a piecewise-smooth vector field could be of the form

∆(r0) = Π̃−(r0)− Π+(r0) = L0 +
∞

∑
k=1

Lkrk
0,

with r0 sufficiently small. So, by the derivative division algorithm, it is possible to obtain one

limit cycle more when L0 ̸= 0. This is known as a pseudo-Hopf type bifurcation. Because

in [22], this limit cycle bifurcation was called pseudo-Hopf near a fold-fold point and proved

previously in [15]. For more details see [10,19]. We notice that a weak focus of order k, gener-

ically, unfolds exactly k limit cycles. Note that when we deal with continuous or refractive

perturbations we do have not pseudo-Hopf type bifurcations because, in these cases, we never

have sliding or escaping segments on Σ.

As we deal with polynomial perturbations of a piecewise center, we can use the Implicit

Function Theorem to obtain hyperbolic crossing limit cycles of small amplitude in a neighbor-

hood of the origin of (2.4). In this case, like in the analytical one, when we perturb a center

under the condition α± = 0, the expressions of Lk are polynomials that vanish when the per-

turbative parameters do. Therefore, we can compute the Taylor series of L2, . . . , Ll with respect

to the perturbative parameters. We denote by L
[1]
i , i = 2, . . . , l their linear parts. Consequently,

if the matrix [L
[1]
2 , . . . , L

[1]
l ], with respect to the perturbative parameters, has rank l − 1, as we

have previously explained, adding the traces and the sliding or escaping segments we can get

l small amplitude hyperbolic crossing limit cycles in a neighborhood of the origin. For more

details see [17] and references therein.

We can also study bifurcations of small amplitude limit cycles for piecewise smooth vector

fields using the Melnikov’s method. It is also used to study global bifurcations that occur

near one-parameter families of periodic orbits. In particular, the first Melnikov Function and

the first-order of the Lyapunov constants are related and we know that if, after perturbing a

center, the rank of the matrix defined by the coefficients of [L
[1]
2 , . . . , L

[1]
m ], with respect to the

parameters, is l − 1, where m > l, then there exist l hyperbolic crossing limit cycles bifurcating

from this center, when we also use the trace and the sliding parameters. For more details,

see [18].
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3 Piecewise linear vector fields on invariant spheres

In this section, we study piecewise linear vector fields defined on invariant spheres. We prove

Theorem 1.1 and we provide all phase portraits of piecewise smooth vector fields Y ∈ X when

we restrict on a invariant sphere. From the complete analysis of the phase portraits we can

have a more complete result, Proposition 3.3, that also shows the nonexistence of other type

of limit cycles on the invariant spheres, different from the crossing ones. In fact, Theorem 1.1

can be also thought as a corollary of it. Of course, the nonexistence of limit cycles on spheres,

by the homogeneity, proves immediately the nonexistence of any kind of isolated invariant

cones.

At first we summarize some results about smooth vector fields presented in [6] that we

use in what follows.

Lemma 3.1. Let X ∈ X1. The following statements are true.

(a) If p ∈ S2
ρ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = ρ2} is an equilibrium point of system (1.2), then p

is a center.

(b) Any X ∈ X1 is completely integrable with the second first integral

H̃(x, y, z) = a3x − a2y + a1z. (3.1)

(c) X ∈ X1 has only two equilibrium points of center type on each sphere S2
ρ which are antipodal of

each other.

(d) The equilibrium points of (1.2) are (0, 0, ρ) if, and only if, a2 = a3 = 0. In this case, the second

first integral of (1.2), given by (3.1), is of the form H̃(x, y, z) = a1z.

(e) Suppose that a3 ̸= 0. Then the equilibrium points of (1.2) are of the form

{(x, y, z) ∈ R
3 : y = −(a2/a3)x, z = (a1/a3)x}.

(f) Suppose that a2 ̸= 0. Then the equilibrium points of (1.2) are of the form

{(x, y, z) ∈ R
3 : x = −(a3/a2)y, z = −(a1/a2)y}.

(g) System (1.2) is invariant by the change of coordinates (x, y, z, t) 7→ (−x,−y,−z, t).

(h) The phase portrait of any X ∈ X1 on S2
ρ, with ρ > 0, is topologically equivalent to the one on S2

1.

So, (1.2) has (generically) only a line of equilibrium points passing through the origin. As

we observed in the introduction, by Lemma 3.1, we conclude that the 3-dimensional smooth

vector field (1.2) has a continuous of invariant cones fulfilled of non-isolated closed trajectories.

One of these cones is illustrated in Figure 3.1.

Now we consider the 3-dimensional piecewise smooth vector fields Y = (X+, X−) ∈ X1

given by (1.3), with separation set Σ = {(x, y, z) ∈ R3 : z = 0}. Observe that, when we restrict

our study to an invariant sphere S2
ρ we deal with a piecewise smooth vector field defined on

S2
ρ with separation set {(x, y, z) ∈ S2

ρ : z = 0}. Sure that there will be no doubt, to simplify the

notation we will continue calling the separation set and the vector fields Y and X± restricted

to the sphere S2
ρ by Σ, Y, and X±.
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x

z

y

Figure 3.1: Invariant cone of the linear vector field X(x, y, z) = (z, 0,−x) ∈ X1.

Firstly, we use Lemma 3.1 to analyze the possible positions of the equilibrium points

of (1.4) with respect to the separation set Σ. By Lemma 3.1(d), the equilibria of the linear

systems X±, defined by (1.4), are (0, 0, ρ) if, and only if, a±2 = a±3 = 0. Note that the item

(d) of Lemma 3.1 also implies that Σ is invariant by the flow of X± and that (0, 0,±ρ) are the

unique equilibria of X± on each sphere when a±2 = a±3 = 0. So, on the following we assume

that (a±2 )
2 + (a±3 )

2 ̸= 0. We do all the calculations assuming that a±3 ̸= 0, the case a±2 ̸= 0 is

analogous. Under this condition, Lemma 3.1(e) implies that the equilibria of X± are of the

form {(x, y, z) ∈ R3 : y = −(a±2 /a±3 )x, z = (a±1 /a±3 )x}. Hence, the equilibria of X± are on

the separation set Σ if, and only if, a±1 = 0. Moreover, by Lemma 3.1(c), both X± have two

equilibrium points of center type on each sphere. So, if a±1 ̸= 0 we conclude that the vector

field X± has one admissible and one non-admissible equilibrium point.

Following [27], we use the first integrals H(x, y, z) = x2 + y2 + z2 and H̃±(x, y, z), given

by (3.1), of the linear vector fields (1.4) to calculate a difference map, on Σ, defined below.

With this map we can analyze and describe the behavior of the levels curves of (3.1) on S2
ρ

and how these levels interact with the separation set Σ. It allows us to know the behavior of

the trajectories of (1.4) on each sphere S2
ρ, and, in particular, see if any system (1.3) admits

crossing limit cycles on S2
ρ.

Lemma 3.2. No piecewise differential system Y ∈ X1, given by (1.3), admits crossing limit cycles

restricting the dynamics on each fixed sphere S2
ρ, with ρ > 0.

Proof. As we saw before, a±2 = a±3 = 0 implies that Σ is invariant by the flow of (1.4). Therefore,

in this case we cannot define a difference map using (3.1). Then, on the following, we assume

that (a±2 )
2 + (a±3 )

2 ̸= 0. We do all the calculations assuming that a±3 ̸= 0. The case a±2 ̸= 0 is

analogous.

Let p = (x0, y0, 0) ∈ Σ ∩ S2
ρ. Then, there exist k± such that H̃±(p) = k±. The half-return

maps π±(p) = q± = (x±1 , y±1 , 0) satisfy

H(q±) = ρ2,

H̃+(q+) = a+3 x+1 − a+2 y+1 = k+,

H̃−(q−) = a−3 x−1 − a−2 y−1 = k−.

Solving the systems of equations

{H(q+) = ρ2, H̃+(q+) = k+}, {H(q−) = ρ2, H̃−(q−) = k−}
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we obtain the solutions

q± =

(
− ((a±2 )

2 − (a±3 )
2)x0 + 2a±2 a±3 y0

(a±2 )
2 + (a±3 )

2
,
((a±2 )

2 − (a±3 )
2)y0 − 2a±2 a±3 x0

(a±2 )
2 + (a±3 )

2
, 0

)
.

So, the difference map, d(p) = π+(p)− π−(p) : Σ → R, is such that

d(p) =
(
2(a−2 a+3 − a−3 a+2 )((a−2 a+3 + a+2 a−3 )x0 − (a−2 a+2 − a−3 a+3 )y0),

− 2(a−2 a+3 − a−3 a+2 )((a−2 a+2 − a−3 a+3 )x0 + (a−2 a+3 + a+2 a−3 )y0), 0
)
.

Consequently, it is identically zero if, and only if, a+2 a−3 = a−2 a+3 . Hence, either all the crossing

trajectories of (1.3), on S2
ρ, are closed or none of them are, which concludes the proof.

Proof of Theorem 1.1. It is a direct consequence of the fact that system (1.3) does not admit

isolated crossing periodic orbits, by Lemmas 3.1(a) and 3.2.

The remainder of this section is devoted to describing the behavior of any piecewise

smooth vector field (1.3) restricted to the sphere of radius ρ, that is S2
ρ. We show also that

no piecewise differential system Y ∈ X1, given by (1.3), admits sliding limit cycles on each

fixed sphere S2
ρ, with ρ > 0. Moreover, we provide the possible phase portraits of Y ∈ X1 and,

consequently, we will prove the following result.

Proposition 3.3. A piecewise differential system Y ∈ X1, given by (1.3), does admit neither a crossing

nor any other type of limit cycle on each fixed invariant sphere S2
ρ, with ρ > 0.

We start studying the behavior of the tangency lines of (1.4) assuming that a3 ̸= 0, under

the condition (a±2 )
2 + (a±3 )

2 ̸= 0.

Lemma 3.4. The tangency lines of (1.4) are given by

SX± =
{
(x, y, z) ∈ R

3 : y = −(a±2 /a±3 )x, z = 0
}

.

Moreover, these tangency lines intersect the sphere S2
ρ at the points

{
x = −ρa±3 /

√
(a±2 )

2 + (a±3 )
2, y = ρa±2 /

√
(a±2 )

2 + (a±3 )
2

}

and their antipodals. Then, (1.3) has two fold points on S2
ρ, for all ρ ∈ R, ρ ̸= 0. Besides, one

of these tangency points is visible and the other one is invisible unless that a±1 = 0. Finally, when

SX+ = SX− we have two fold-fold points of Y = (X+, X−) on each sphere and it occurs if, and only if,

a+2 a−3 = a−2 a+3 .

Proof. Let f : R3 → R given by f (x, y, z) = z. So, Σ = {(x, y, z) ∈ R3; z = 0} = f−1(0). Thus,

X± f = X± · ∇ f = a±2 x + a±3 y and the first part of the result follows. With straightforward

computations we prove the other statements.

It is important to note that the symmetry of the problem guarantees that if one equilibrium

point of X+ or X− remains on Σ, then so does the other. Moreover, if an equilibrium point

of X+ coincides with a tangency or an equilibrium point of X− the other one also coincides.

Besides, the change of coordinates (x, y, z) 7→ (x, y,−z) allows us to change the behavior of

the southern and northern hemispheres and then we can fix the behavior in one of them in

the next analysis.
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As we saw in Section 2, we can define the projected vector field associated to (1.3), on the

sphere S2
ρ, using (2.3). It is of the form

PY(u, v) =

{
PX+(u, v), v ≥ 0,

PX−(u, v), v ≤ 0,

where,
PX±(u, v) =

(
− 4ρ2a±1 − 4ρa±2 v − a±1 u2 + 2a±3 uv + a±1 v2,

4ρ2a±3 + 4ρa±2 u − a±3 u2 − 2a±1 uv + a±3 v2
)
.

The projected Filippov vector field is 1-dimensional and it is well defined at the points

(u, 0) for which (PX+ f )(PX− f )(u) = (4ρ2a+3 + 4ρa+2 u − a+3 u2)(4ρ2a−3 + 4ρa−2 u − a−3 u2) < 0. In

this case, we have

FY(u) =
(4ρ2 + u2)

(
(a−1 a+3 − a+1 a−3 )u

2 + 4(a+1 a−2 − a−1 a+2 )uρ + 4(a+1 a−3 − a−1 a+3 )ρ
2
)

(a−3 − a+3 )u
2 + 4ρ(a+2 − a−2 )u + 4ρ2(a+3 − a−3 )

. (3.2)

Now, we summarize the key points of the proof of Proposition 3.3, providing after the

necessary technical lemmas.

Using the two first integrals of X± we prove, in Lemma 3.5, that there exist only 10 possible

behaviors for the levels curves of (1.3) on each sphere S2
ρ, concerning the admissibility of

equilibrium points of Y ∈ X1, which are the ones in Figure 3.2. After that, we study the

behavior of the Filippov vector field, FY, given by (3.2). Note that, (3.2) is not defined when Σ

is a trajectory of X+ or X− on S2
ρ. In Lemma 3.7, we conclude that if the equilibrium points

of both X± stay on Σ (a+1 = a−1 = 0) or if there exists λ ∈ R such that X+ = λX−, then

the Filippov vector field (3.2) is identically zero. In Lemma 3.9, we prove that (3.2) has two

symmetric equilibrium points r1 and r2 if, and only if, a+1 a−3 − a−1 a+3 ̸= 0, a+1 a−1 < 0 and

a+2 a−3 − a−2 a+3 ̸= 0. In this case, the equilibrium points r1 and r2 have the same (1-dimensional)

stability and they are stable (resp. unstable) if (a+2 a−3 − a−2 a+3 )(a+1 − a−1 ) > 0 (resp. < 0).

In addition, (3.2) can have isolated equilibrium points only when the sliding and escaping

segments are delimited by two tangency points of the same type otherwise both vector fields

X+ and X− point towards the same direction on Σ. Moreover, (3.2) does not have isolated

equilibrium points when Y ∈ X1 has fold-fold points or the equilibrium points of X+ or X−

stay on Σ.

Now, changing the time orientation of the piecewise smooth vector field (1.3), if it is nec-

essary, we can fix an orientation for the vector field X− in Σ− = {(x, y, z) ∈ S2
ρ : z ≤ 0} and

choose between two different ones for X+ in Σ+ = {(x, y, z) ∈ S2
ρ : z ≥ 0}. Doing this, in

Figure 3.2 we draw the possible phase portraits for system (1.3) on the sphere S2
ρ, with respect

to the admissibility of equilibrium points of Y ∈ X1, which are the ones in Figures 3.3 and

3.4. Note that, in Figures 3.3 and 3.4 we do not distinguish the cases in which it is possible to

have connections (see Remark 3.6), because it will not be necessary to conclude the proof of

Proposition 3.3.

Joining the information about the positions of the equilibrium points on each sphere S2
ρ

with the property of the difference map detailed on Lemma 3.2, we can classify the possible

behavior of the invariant curves of piecewise smooth vector fields (1.3) on S2
ρ, with respect to

the admissibility of its equilibrium points.

Lemma 3.5. With respect to the admissibility of equilibrium points, the behavior of the level curves of

(1.3) on each fixed sphere S2
ρ, ρ > 0, are shown in Figure 3.2.
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(a) (b) (c) (d) (e)

( f ) (g) (h) (i) (j)

Figure 3.2: Invariant curves of Y ∈ X1. The blue, red, green and black dots

indicate, respectively, tangency points; equilibrium points of X± on Σ; the coin-

cidence of equilibrium and tangency points on Σ; the admissible center points

of X±.

Proof. Let Y = (X+, X−) ∈ X1. Denote by p±i and q±i , with i = 1, 2 the equilibrium and the

tangency points of X±, respectively. On the following we assume that p±1 = (x0, y0, z0) is such

that z0 ≥ 0 and p±2 = (x0, y0, z0) is such that z0 ≤ 0. We show the possible behaviors of the

level curves of Y ∈ X1 on S2
ρ in Figure 3.2. We divide the analysis into three cases depending

on the position of the equilibrium points of X− on S2
ρ.

Firstly, if p−1 = (0, 0, ρ) and p−2 = −p−1 the trajectories of X− on S2
ρ are parallel to Σ. The

same property holds when p+1 = (0, 0, ρ) and p+2 = −p+1 . If p+i = (x0, y0, z0), i = 1, 2, are

such that z0 ̸= ±ρ and z0 ̸= 0, then we have one admissible and one non-admissible center for

X+ on S2
ρ and therefore, two tangency points, q+i ∈ Σ, i = 1, 2, one visible and one invisible.

Finally, if p+i = (x0, y0, 0), i = 1, 2, both equilibrium points of X+ are on Σ. We draw the

invariant curves of these cases in Figure 3.2 (a)− (c).

Now we consider the case where p−i = (x0, y0, z0), i = 1, 2, with z0 ̸= 0 and z0 ̸= ρ.

Then, we have one admissible and one non-admissible center for X− on S2
ρ and therefore,

two tangency points, q−i ∈ Σ, i = 1, 2, one visible and one invisible, respectively. Here, as

we have already considered the case where the trajectories of X− are parallel to Σ, using the

change of coordinates (x, y, z) 7→ (x, y,−z) explained before, we only need to consider the

following two behaviors of X+ on S2
ρ. If p+i = (x0, y0, z0), i = 1, 2, are such that z0 ̸= ρ and

z0 ̸= 0, we have one admissible and one non-admissible center for X+ and therefore, two

tangency points q+i ∈ Σ, i = 1, 2, one visible and one invisible, respectively. Hence, we have

three new global behaviors depending on the relative position of q±i , i = 1, 2 that occur when

q+1 = q−1 and q+2 = q−2 , when they do not coincide and when q+1 = q−2 and q+2 = q−1 . Finally,

if p+i = (x0, y0, 0), i = 1, 2, the two equilibrium points of X+ are on Σ and we have two new

global behaviors depending on the positions of these equilibrium points, that is p+i = q−i or

p+i ̸= q−i , i = 1, 2. We show the invariant curves of these cases in Figure 3.2 (d)− (h).

We finish the analysis considering the case where the two centers of X− on S2
ρ are on Σ, it

means that p−i = (x0, y0, 0), i = 1, 2. Using the change of coordinates (x, y, z) 7→ (x, y,−z), we

can restrict to the case in which the two equilibrium points of X+, p+i for i = 1, 2, are also on
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 3.3: Possible phase portraits of Y ∈ X1. The gray, blue, pink and black

segments indicate, respectively, that the Filippov’s convention does not apply;

the escaping, sliding, and the crossing regions. Moreover, the blue, red, green

and black dots indicate, respectively, tangency points; equilibrium points of X±

on Σ; the coincidence of equilibrium and tangency points on Σ; the admissible

center points of X± or the critical points of the Fillipov vector field FY.
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(u) (v) (w) (x)

(y) (z)

Figure 3.4: Possible phase portraits of Y ∈ X1. The blue, pink and black seg-

ments indicate, respectively, the escaping, sliding, and the crossing regions.

Moreover, the blue, red and black dots indicate, respectively, tangency points;

equilibrium points of X± on Σ; the admissible center points of X±.

Σ. Here we have two new global behaviors depending on the positions of these equilibrium

points: p+i = p−i or p+i ̸= p−i . We draw the invariant curves of these cases in Figure 3.2

(i)–(j).

Remark 3.6. Note that the tangency points of X± are antipodal of each other. Therefore,

the tangency lines SX± of X± are contained in the plane {(x, y, z) ∈ R3 : z = 0} and pass

through the origin. Observe that when these tangency lines are perpendicular Y ∈ X1 admits a

tangential connection. It occurs because the trajectories of X± are restricted to the level curves

of (3.1), on S2
ρ. Thus, depending on the relative position of the tangency lines, the behavior

illustrated in the cases (e), (h), and (j) of Figure 3.2 are not unique. But for our purpose we do

not need to distinguish the cases in which there are or not separatrix connections.

As in the above analysis, we only have considered the level curves of X± we have not taken

into account the behavior of the Filippov vector field. On the following lemmas we describe

the behavior of it using the projected Filippov vector field (3.2) associated to (1.3) restricted to

the sphere S2
ρ, because it is 1-dimensional.

Lemma 3.7. The Filippov vector field (3.2) is well defined when (PX+ f )(PX− f ) < 0. In this case, it

is identically zero if, and only if, a−1 a+3 − a+1 a−3 = 0 and a−1 a+2 − a+1 a−2 = 0.

Proof. It follows since (3.2) is a rational function and its numerator is identically zero if, and

only if, (a−1 a+3 − a+1 a−3 )u
2 + 4ρ(a+1 a−2 − a−1 a+2 )u + 4ρ2(a+1 a−3 − a−1 a+3 ) ≡ 0.

Remark 3.8. The geometric implication of Lemma 3.7 is the following. Firstly, we note that

a+2 = a−2 = 0 and a+3 = a−3 = 0 imply that a−1 a+3 − a+1 a−3 = 0 and a−1 a+2 − a+1 a−2 = 0. But, in

this case, (PX+ f )(PX− f ) is identically zero and then (3.2) is not defined for these values of the

coefficients. In addition, a+1 = a−1 = 0 implies that a−1 a+3 − a+1 a−3 = 0 and a−1 a+2 − a+1 a−2 = 0
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and then (3.2) vanishes identically when the equilibrium points of both X+ and X− are on

Σ. Finally, when (a+1 )
2 + (a−1 )

2 ̸= 0, the conditions a−1 a+3 − a+1 a−3 = 0 and a−1 a+2 − a+1 a−2 = 0

imply that a−2 a+3 − a−3 a+2 = 0 and then X+ and X− are multiple of each other, which means

that the equilibrium points and tangency lines of X+ and X− coincide. So, we have that (3.2)

is identically zero if, and only if, the equilibrium points of both X± are on Σ or if X+ and X−

are multiple of each other.

Note that when a+1 a−3 − a−1 a+3 ̸= 0, the projected Filippov vector field (3.2) can have at most

two real roots, for i = 1, 2, given by

ri =
2ρ

(
(a+1 a−2 − a−1 a+2 )− (−1)i

√
(a+1 a−2 − a−1 a+2 )

2 + (a+1 a−3 − a−1 a+3 )
2
)

a+1 a−3 − a−1 a+3
(3.3)

if (PX+ f )(PX− f )(ri) < 0. In addition, (PX+ f )(PX− f )(ri) > 0 means that X+ and X− are

parallel at a crossing point and then (3.2) is not defined at this point. On the other hand,

when a+1 a−3 − a−1 a+3 = 0 the projected Filippov vector field has a unique possible real root at

the origin. The symmetry of the problem ensures that the other root is situated at infinity.

We can avoid this and suppose that (0, 0) is not an equilibrium point of (3.2) making the

same orthogonal change of coordinates in X+ and X− that put (0, ρ, 0) in (x0, y0, z0) with

y0 ̸= ρ, as it was done previously. So, without loss of generality, we only analyze the case

a+1 a−3 − a−1 a+3 ̸= 0 and study the stability of the equilibrium points of the Filippov vector field,

when it is well defined.

Lemma 3.9. The Filippov vector field (3.2) is well defined when (PX+ f )(PX− f ) < 0. In this case,

it has two symmetric equilibrium points r1 and r2 defined in (3.3) if, and only if, a+1 a−3 − a−1 a+3 ̸= 0,

a+1 a−1 < 0 and a+2 a−3 − a−2 a+3 ̸= 0. The equilibrium points r1 and r2 have the same (1-dimensional)

stability. Moreover, they are stable (resp. unstable) if (a+2 a−3 − a−2 a+3 )(a+1 − a−1 ) > 0 (resp. < 0).

Proof. As we saw before, when a+1 a−3 − a−1 a+3 ̸= 0, the Filippov vector field can have at most

two real roots r1 and r2 given in (3.3). Note that, for i = 1, 2, we have

(PX+ f )(PX− f )(ri) =
64ρ4a+1 a−1 (a+2 a−3 − a−2 a+3 )

2

(a+1 a−3 − a−1 a+3 )
4

(√
(a+1 a−2 − a−1 a+2 )

2 + (a+1 a−3 − a−1 a+3 )
2 − (−1)i(a+1 a−2 − a−1 a+2 )

)2

.

As we are assuming a+1 a−3 − a−1 a+3 ̸= 0, then

√
(a+1 a−2 − a−1 a+2 )

2 + (a+1 a−3 − a−1 a+3 )
2 ± (a+1 a−2 − a−1 a+2 )

are always different from zero. Consequently, the projected vector field (3.2) is defined at r1

and r2 if, and only if, a+1 a−1 < 0 and a+2 a−3 − a−2 a+3 ̸= 0. It means that, when the equilibrium

points of both X+ and X− are on Σ and when the tangential points of X+ and X− coincide,

the projected Filippov vector field does not have isolated equilibrium points.

When a+2 a−3 − a−2 a+3 ̸= 0 and a+1 a−1 < 0 we study the stability of these equilibrium points.

As 4ρ2 + u2 is a positive factor of (3.2), we can study the stability of the equilibrium points

of FY(u)/(4ρ2 + u2). In this case, the derivative with respect to u is nonvanishing for all u,

because it is

− 4ρ(4ρ2 + u2)(a+2 a−3 − a−2 a+3 )(a+1 − a−1 )

((a−3 − a+3 )u
2 + 4ρ(a+2 − a−2 )u + 4ρ2(a+3 − a−3 ))

2
.



3-dimensional vector fields with invariant spheres 17

Thus, r1 and r2 have the same stability which depends on the sign of

(a+2 a−3 − a−2 a+3 )(a+1 − a−1 ).

Remark 3.10. As we saw above, (3.2) is not defined when Σ is a trajectory of X+ or X−.

Moreover (3.2) does not have isolated equilibrium points neither when it has fold-fold points

nor when the equilibrium points of X+ or X− stay on Σ. Besides this, the Filippov vector field

(3.2) can have equilibrium points only when the sliding and escaping segments are delimited

by two tangency points of the same type, otherwise both vector fields X+ and X− point on

the same direction.

Now, changing the time orientation of the piecewise smooth vector field (1.3), if it is nec-

essary, we can fix a time orientation for the vector field X− and choose two different ones

for X+ on S2
ρ. Hence, when we add a time orientation in Figure 3.2 we obtain the possible

behaviors for system (1.3), that are depicted in Figures 3.3 and 3.4. Note that Figures 3.3

and 3.4 do not take into account connections of (1.3). These elements do not influence in the

existence of limit cycles. Moreover, the nonexistence of limit cycles in S2
ρ is not related to the

existence of connections. This is due to the arrangement of tangency points, admissible and

non-admissible equilibrium points, and, as (1.3) is completely integrable, the difference map

does not have isolated zeros.

With this analysis we conclude that system (1.3) has neither limit cycles nor crossing limit

cycles on the spheres S2
ρ, with ρ > 0. So, the proof of Proposition 3.3 follows.

4 Centers and limit cycles for piecewise continuous quadratic

homogeneous vector fields

In this section, inspired by the homogeneity property of linear vector fields with invariant

spheres, we study the center-focus problem for piecewise quadratic homogeneous vector fields

in X H
2 . Because of the difficulty of the problem, we restrict our attention to the class of

continuous homogeneous vector fields and give some families of centers in Proposition 4.3.

Even with this restriction, in Proposition 4.5 we exhibit a system in X H
2 with a weak focus of

third-order at the point (0, 1, 0) from which 2 small amplitude crossing limit cycles bifurcate

on S2
1 with a continuous perturbation in X H

2 . Note that with a continuous perturbation, we

cannot produce a sliding segment and then it is natural that we do not reach the maximum

upper bound for the number of small amplitude limit cycles that can bifurcate from a generic

weak focus of third-order. Moreover, in this section we only consider the perturbation in X H
2

and, in the next section we deal with a general quadratic perturbation in X2.

On the following, we recall some assumptions given in [6], for a quadratic homogeneous

vector field X ∈ XH
2 . Firstly, doing an orthogonal change of coordinates we can assume,

without loss of generality, that (0, ρ, 0) ∈ S2
ρ is an equilibrium point of X ∈ XH

2 . With this

assumption, we can write X in the form

ẋ = −a4xy − a5xz − (a6 + a7)yz − a8z2,

ẏ = a4x2 + a6xz − a9z2,

ż = a5x2 + a7xy + a8xz + a9yz.

(4.1)

Observe that the equilibrium point (0, ρ, 0) of (4.1) is located at the origin after projection and

let J be the Jacobian matrix associated to the projected vector field PX at the origin. Therefore,
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(0, ρ, 0) is of nondegenerate center-focus type if, and only if, the trace of J is zero and its

determinant is positive. A straightforward computation shows that it occurs if, and only if,

a4 − a9 = 0 and a6a7 + a2
7 − a2

9 > 0. We also assume a7 ̸= 0, otherwise a6a7 + a2
7 − a2

9 = −a2
9 ≤ 0.

Hence, with these assumptions (0, ρ, 0) is a weak focus of (4.1). Doing w2 = a6a7 + a2
7 − a2

9,

and ϱ = (w2 + a4a9)/a7 the projected system PX is of the form:

u̇ = −4a4u−4ϱv−4a5uv−4a8v2−a4u3−(ϱ − 2a7)u
2v+(a4 + 2a9)uv2 + ϱv3,

v̇ = 4a7u+4a9v+4a5u2+4a8uv−a7u3−(2a4 + a9)u
2v−(2ϱ − a7)uv2+a9v3.

(4.2)

Now, the trace and the determinant of J are −4(a4 − a9) and 16w2, respectively. The next

theorem was proved in [6] and gives the conditions to have a center of (4.1) at the point

(0, 1, 0), on the sphere S2
1.

Theorem 4.1 ([6]). The equilibrium point (0, 1, 0) of system (4.1) is a nondegenerate center if, and

only if, a7 ̸= 0, a4 = a9, and a4a5a8a9 + a5a6a7a8 + a2
5a7a9 + a5a8a2

9 − a7a2
8a9 = 0.

Next we will show an important difference between polynomial homogeneous vector fields

defined on the sphere S2
1 and on the plane. Also in our special case that the dynamics is

restricted on a invariant sphere. Firstly, we recall that a planar quadratic homogeneous vector

field does not have limit cycles. The following example shows a quadratic homogeneous

vector field X ∈ XH
2 which has at least one limit cycle on the sphere S2

1. It occurs because the

projected vector field (4.2) is a planar cubic non-homogeneous vector field. Fore more results

about quadratic homogeneous vector fields defined on invariant spheres we refer the reader

to [25, 26]. As in the previous section, this limit cycle forces the existence of an invariant cone

fulfilled of periodic orbits for (4.1).

Proposition 4.2. The quadratic homogeneous vector field (4.1) has at least one limit cycle bifurcating

from (0, 1, 0) on the sphere S2
1.

Proof. Consider the quadratic homogeneous vector field (4.1) and its projection (4.2) with the

parameters values (a4, a5, a7, a8, a9, w) = (1 + ε, 1, 1, 0, 1, 1). Note that with these values, (4.2)

writes as the following cubic vector field

u̇ = (−4 + ε)u − 4(2 + ε)v − 4uv − (1 + ε)u3 + εu2v + (3 + ε)uv2 + (2 + ε)v3,

v̇ = 4u + 4v + 4u2 − u3 − (3 + ε)u2v − (3 + ε)uv2 + v3.
(4.3)

As we observed before, the origin is an equilibrium point of (4.3). Let J be the Jacobian matrix

associated to (4.3) at the origin. As the trace of J is ε and its determinant is 16 + 12ε, then the

origin is a weak focus for ε = 0. Note that we can use the algorithm explained in Section 2.4

to calculate the Lyapunov constants of analytical vector fields assuming that PX+ and PX− are

both defined by (4.3), because it is a generalization of the algorithm presented in Chapter IX

of [1]. So, when ε = 0, we calculate the first Lyapunov constant of (4.3) being L3 = 4 ̸= 0.

Thus, by the classical Hopf bifurcation, there exist values of ε for which (4.3) has one limit

cycle bifurcating from the origin.

On the following we will focus our attention on the center-focus problem that appears

naturally for the piecewise smooth system

Y(x, y, z) =

{
X+(x, y, z), z ≥ 0,

X−(x, y, z), z ≤ 0,
(4.4)
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where we obtain X± doing ai = a±i in (4.1) and assuming that p = (0, 1, 0) ∈ Σ = {(x, y, z) ∈
R3 : z = 0} is of center type for both X+ and X− on S2

ρ. Here, as we commented above,

because of the number of free parameters, we also assume that the system (4.4) is continuous

but not differentiable on the separation set Σ. Note that, system (4.4), and the projected

associated systems PY = (PX+ ,PX−), where PX± are obtained doing ai = a±i in (4.2), are

continuous on its separation set if, and only if, a−4 = a+4 , a−5 = a+5 , and a−7 = a+7 . Consequently,

on the following, we are assuming these conditions.

As we are interested in exhibiting some families of centers for this family of piecewise

smooth vector fields we use the method explained in Section 2.4, to calculate the Lyapunov

constants for the projected system PY. To do that, we need to consider PX± in its Jordan

canonical form.

Note that the change of coordinates {u = v, v = (cu + dv)/w}, where c = 4a7 and d = 4a9

puts the linear part of (4.2) in its Jordan canonical form

u̇ = v +
a9 (a5a9 − a7a8)

wa7
2

u2 − (2a5a9 − a7a8)

a7
2

uv +
a5w

a7
2

v2 +
wa9

2a7
2

u3

+
(a7

2 + a9
2 − 2w2)

4a7
2

u2v − w2

4a7
2

v3,

v̇ = −u +
(a5a9 − a7a8)(a7

2 + a9
2)

a7
2w2

u2 − (a5a7
2 + 2a5a9

2 − a7a8a9)

wa7
2

uv

+
a5a9

a7
2

v2 +
(a7

2 + a9
2)

4a7
2

u3 +
(2a7

2 + 2a9
2 − w2)

4a7
2

uv2 − wa9

2a7
2

v3.

(4.5)

Moreover, the change of coordinates {u = v, v = (cu + dv)/w±} puts PX± in the canonical

form and the separation set Σ = {(u, v) ∈ R2 : v = 0} becomes Σ̃ = {(u, v); u = 0, v =

cu/w±}. Consequently, after this change of coordinates, we deal with the piecewise smooth

system

PY(u, v) =

{
PX+(u, v), u ≥ 0,

PX−(u, v), u ≤ 0,
(4.6)

where PX± are obtained doing ai = a±i in (4.5) and then, in polar coordinates, it is written as

{
ṙ =R+(r, θ), θ ∈ [−π/2, π/2],

ṙ =R−(r, θ), θ ∈ [−π/2,−3π/2].

Therefore, we use the technique shown in Section 2.4 after a rotation of angle π/2, to calculate

the Lyapunov constants of (4.6). Note that after the change of coordinates {u = v, v = (cu +

dv)/w±} the separation set of (4.6), Σ̃ = {(u, v); u = 0, v = cu/w±}, is parameterized in two

different ways when w+ ̸= w− and then the continuity condition must be considered before

doing it and we also take it into account when we compute the Lyapunov constants.

On the following, we give some families of centers for the piecewise smooth vector field

(4.4). Some of these centers appear in a family of reversible vector fields with respect to a line

(see the definition in Section 2.2).

Proposition 4.3. The piecewise continuous vector field (4.4) has a center at the equilibrium point

(0, 1, 0), on S2
1, if a±7 ̸= 0, a±4 = a±9 and one of the following conditions is satisfied:

(a) a−8 = −a+8 , a−9 = 0, and w+ = w−;

(b) a−7 = ±w, a−9 = 0, and w+ = w−;
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(c) a+8 = a−8 , (a−5 )
2a−7 a−9 − a−5 (a−7 )

2a−8 + a−5 a−8 (a−9 )
2 + a−5 a−8 w2 − a−7 (a−8 )

2a−9 = 0, and w+ = w−;

(d) a−5 = 0 and a−9 = 0.

Proof. In case (a), the piecewise projected continuous vector field PY = (PX+ ,PX−) is re-

versible with respect to the separation set. The case (b) follows because in polar coordinates

we have dr/dt = 0 for both PX± , which implies that the difference map defined in Σ, in a

neighborhood of the origin, is zero. In case (c), the vector field PY is smooth and it satis-

fies the condition given on Theorem 4.1. Finally, case (d) follows because both vector fields

PX± are reversible with respect to the u-axis and then the difference map defined in Σ, in a

neighborhood of the origin, is zero which concludes the proof.

If w+ = w− the change of coordinates that puts the system (4.2) on form (4.5) is the same

for X+ and X− and then the parametrization of Σ̃ coincides before this change of coordi-

nates. In this case, the only possible center families for (4.4) are that given on items (a)-(d) of

Proposition 4.3.

Proposition 4.4. The piecewise continuous vector field (4.4) with w+ = w− has a center at the

equilibrium point (0, 1, 0), on S2
1, if, and only if, a±7 ̸= 0, a±4 = a±9 and one of the conditions (a), (b),

(c), or (d) of Proposition 4.3 is satisfied.

Proof. To simplify the notation of this proof, we eliminate the superscript ± when the cor-

responding coefficients of X+ and X− are equal. Hence, we consider w+ = w− = w,

a+4 = a−4 = a4, a+5 = a−5 = a5, a+7 = a−7 = a7, and a+9 = a−9 = a9. According to the proof

of Proposition 4.3, all the families detailed in the statement have a center at the origin. Conse-

quently, we only need to check that these are the only ones when w+ = w− = w. To do that,

we compute four Lyapunov constants using the method explained in Section 2.4 for system

(4.6), with the statement assumptions, and we obtain

L2 =
2

3wa7
a9(a+8 − a−8 ),

L3 =
π

8w3a3
7

(
2a2

5a7a9(a2
7 + a2

9 + w2)− a5(a4
7a+8 − 2a+8 a4

9 − 4a+8 a2
9w2

− (a+8 + a−8 )w
4)− 2a7a9(a2

7(a+8 )
2 + (a−8 )

2a2
9 + (a+8 )

2w2)
)
,

L4 =
4

45a4
7w5

a5((a+8 )
2 − (a−8 )

2)(a2
7 − w2)(4a4

7 + 3a2
7w2 + 2w4),

L5 =
π

12w3a3
7

(a2
5 + (a+8 )

2 − w2)
(
2a2

5a7a9 − a5a2
7a+8 − a5a2

7a−8

+ 2a5a+8 a2
9 + a5a+8 w2 + a5a−8 w2 − 2a7(a+8 )

2a9

)
.

When we solve the system of equations SL = {L2 = · · · = L5 = 0} we obtain the real solutions

given on statements (a)-(d) of Proposition 4.3 and four more complex solutions given by{
a5 = ±

√
−(a−8 )

2 + w2, a7 = ± i
√

a2
9 + w2, a+8 = a−8

}
and {a7 = ± i a9, a+8 = a−8 , w = 0}. As

we are interested in real families with w ̸= 0 we conclude the proof.

Proposition 4.5. Consider system (4.4) with a−5 = 1, a−7 = 1, a+8 = 3, a−8 = 1, a−9 = 0, and w+ =

w− = 2. Then, the equilibrium point p = (0, 1, 0) is a weak focus of third-order and there exist 2 small

amplitude limit cycles, on S2
1, bifurcating from p with a continuous perturbation in X H

2 .
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Proof. Using the expressions of Li, i = 2, . . . , 5 given in the above proposition we conclude

that, for these values of parameters, we have L2 = 0 and L3 = 15π/16 ̸= 0. Hence, adding

the trace parameter and using the derivation-division algorithm (see more details in [29]) we

obtain 2 small amplitude crossing limit cycles bifurcating from the equilibrium point (0, 1, 0)

on S2
1.

We emphasize that, when we deal with a continuous perturbation, we do not have the

sliding parameter to get the maximum upper bound for the number of small amplitude cross-

ing limit cycles bifurcating from a center or a weak focus, as we have explained in Section 2.4.

Because of that, the maximum number of limit cycles that we can obtain bifurcating from the

weak focus of third-order, in the last result, is 2.

5 Local cyclicity for quadratic vector fields in X2 with piecewise

smooth perturbation in X

In this section, we study the local cyclicity of centers and weak focus families of quadratic

smooth vector fields with piecewise quadratic perturbations in X2. The continuous or re-

fractive perturbation cases are also analyzed. We show the results that we have obtained in

Propositions 5.1 and 5.2. The proof of Theorem 1.2 follows directly from Proposition 5.2(c).

On the following, we summarize some assumptions and results given in [6] for a quadratic

vector field X ∈ X2 which will be useful in the sequence. Firstly, the behavior of system X can

be totally different in two different levels of invariant spheres. Hence, we restrict our analysis

to the unit sphere S2
1 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. In this case any X ∈ X2 can be

written in its canonical form

ẋ = −a1y − a2z − a4xy − a5xz − a10y2 − (a6 + a7)yz − a8z2,

ẏ = a1x − a3z + a4x2 + a10xy + a6xz − a11yz − a9z2,

ż = a2x + a3y + a5x2 + a7xy + a8xz + a11y2 + a9yz.

(5.1)

Note that (0, 1, 0) is an equilibrium point of (5.1) if, and only if, a1 + a10 = 0, a3 + a11 = 0.

Consequently, to have the origin as an equilibrium point of the projected vector field PX

associated to (5.1), we assume these conditions on the following. Next we will impose the

conditions that ensure that (0, 1, 0) is an equilibrium point of nondegenerate center-focus type

on the sphere S2
1. We will do that analyzing the trace and the determinant of the Jacobian

matrix J associated to the projected vector field PX at the equilibrium point (0, 0). Recall that

PX has an equilibrium point of nondegenerate center-focus type at origin if, and only if, the

trace of J is zero and its determinant is positive. It occurs when a4 = a9 and a2a6 + a6a7 +

2a2a7 + a2
2 + a2

7 − a2
9 > 0. As explained in [6], due to the high number of free parameters,

we will restrict our analysis adding two extra conditions: a9 = 0 and a2 + a7 = 1. With

these assumptions, the projected vector field PX has a weak focus at the origin if, and only

if, a4 = 0 and a6 + 1 > 0. Moreover, with these restrictions the projected vector field has a

center-focus point at the origin with a Jacobian matrix in Jordan normal form. Doing a4 = 0

and w2 = a6 + 1, with w ̸= 0, the following system is obtained from (5.1)

ẋ = −a1y − (1 − a7)z − a5xz + a1y2 + (1 − a7 − w2)yz − a8z2,

ẏ = a1x + a11z − a1xy + (w2 − 1)xz − a11yz,

ż = (1 − a7)x − a11y + a5x2 + a7xy + a8xz + a11y2.

(5.2)



22 C. Buzzi, A. Rodero, and J. Torregrosa

After a time reparameterization and the change of coordinates u → wu, the corresponding

projected system obtained from (5.2) is

u̇ = −v − a1

2
u2 − a5

w
uv − a1 + 2a8

2w2
v2 +

2a7 − w2

4
u2v

+
w2 + 2a7 − 2

4w2
v3 − a1w2

8
u4 − a11w

4
u3v − a11

4w
uv3 +

a1

8w2
v4,

v̇ = u +
(2a5 − a11)w

2
u2 + a8uv − a11

2w
v2 − (2a7 − 1)w2

4
u3

−2w2 + 2a7 − 3

4
uv2 +

w3a11

8
u4 − w2a1

4
u3v − a1

4
uv3 − a11

8w
v4.

(5.3)

In items (a) and (b) of Proposition 5.2, we show that with a continuous (resp. refractive)

perturbation in X2 we obtain 5 (resp. 6) crossing limit cycles bifurcating from a center family

of (5.2). Moreover, when we consider a piecewise quadratic general perturbation in X2 we

obtain 10 limit cycles, as we will see in item (c) of Proposition 5.2, which proves Theorem 1.2.

We also exhibit a piecewise quadratic perturbation of a weak focus in Proposition 5.1 for a

fixed value of w.

In the following, we will describe the type of piecewise smooth perturbation of X ∈ X2 that

we will consider and which are the conditions that will make this perturbation continuous or

refractive.

Let X = X(x, a) ∈ X2 given by (5.2) where x = (x, y, z) and a = (a1, a5, a7, a8, a11, w).

Denoting a + ε± = (a1 + ε±1 , . . . , w + ε±6 ) we consider the piecewise smooth perturbation of X

defined by

Y(x, ε) =

{
X(x; a + ε+), z ≥ 0,

X(x; a + ε−), z ≤ 0,
(5.4)

and the projected vector field associated, defined by (2.3), which is of the form

PY(u, ε) =

{
PX(u; a + ε+), v ≥ 0,

PX(u; a + ε−), v ≤ 0,
(5.5)

where u = (u, v) and PX(u, 0) is given by (5.3).

So, when ε = 0 we have the unperturbed analytical systems (5.2) and (5.3). Following

the same idea of the last section, we will say that the perturbation of the vector field Y is

continuous (resp. refractive) if (5.4) is continuous (resp. refractive) in the separation set. With

a straightforward computation we see that (5.4) is continuous (resp. refractive) if, and only if,

ε+i = ε−i , for i = 1, 2, 3, 4 (resp. ε+i = ε−i , for i = 2, 3, 4).

Note that the origin is on the boundary of two crossing segments of the perturbative

system (5.5) as well as of the unperturbed one. This is because we assumed that the origin

is an equilibrium point of the center type for the unperturbed system and the perturbative

parameters do not change the linear part of it. If we assume a3 = −a11 + ε7 instead of

a3 = −a11 we can create a sliding segment in a neighborhood of the origin, because in this

case, the projected system is of the form

(
− a4

w
u − v +O2(u, v),

ε7

w
+ u +O2(u, v)

)
.

Thus, we also use the perturbative parameter ε7 when we deal with a piecewise perturba-

tion instead of piecewise continuous or piecewise refractive ones, to obtain one more crossing
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limit cycle of small amplitude creating from a sliding or escaping segment, as it was explained

in Section 2.

Now we are able to prove the last results. It is important to note that we confine the dy-

namics to an invariant sphere of fixed radius, which remains unchanged with the considered

perturbations because the notion of 2-dimensional limit cycle make no sense if the perturba-

tions do not keep the 2-dimensional spheres invariant.

Proposition 5.1. Consider the system

ẋ = 2αy +
9

20
z − xz − 2αy2 − 89

20
yz − αz2,

ẏ = −2αx + 2z + 2αxy + 3xz − 2yz,

ż = − 9

20
x − 2y + x2 +

29

20
xy + αxz + 2y2.

(5.6)

Then, for α = ±
√

857/488 there exists a piecewise quadratic perturbation in X such that at least 9

hyperbolic crossing limit cycles of small amplitude bifurcate from the equilibrium point (0, 1, 0) on S2
1.

Proof. Let α = ±
√

857/488. Note that system (5.6) is obtained doing a1 = −2α, a4 = 0, a5 =
1, a7 = 29/20, a8 = α, a11 = 2, and w = 2 in (5.2). It was proved in [6] that the equilibrium
point p = (0, 1, 0) of (5.6) is a weak focus of fourth-order and that there exist 4 small amplitude
limit cycles, on S2

1, bifurcating from p considering an analytical perturbation of (5.6) inside
family (5.2). Now we consider a piecewise smooth perturbation (a±1 , a±5 , a±7 , a±8 , a±11, w±) =
(−2α + ε±1 , 1 + ε±2 , 29/20 + ε±3 , α + ε±4 , 2 + ε±5 , 2 + ε±6 ) in the piecewise projected system (5.3).

As we saw before, we consider the separation set {(u, v) ∈ R2 : v = 0} of the projected system
and then we consider the perturbative parameter ε+ = (ε+1 , . . . , ε+6 ) for v > 0, ε− = (ε−1 , . . . , ε−6 )
for v < 0, and joining all ε = (ε+1 , . . . , ε+6 , ε−1 , . . . , ε−6 ). Let Li(ε) be the corresponding Lyapunov
constants. Using the method explained in Section 2.4 we compute the Taylor series of these

Lyapunov constants up to first-order with respect to ε, L
[1]
i (ε), and we write Li(ε) = L

[1]
i (ε) +

O2(ε), where

L
[1]
2 (ε) = − 2ε−2 + 2ε−5 − ε−6 + 2ε+2 − 2ε+5 + ε+6 ,

L
[1]
3 (ε) = 15616ε−2 − 15616ε−5 + 7808ε−6 − 15616ε+2 + 15616ε+5 − 7808ε+6

+ 13π
√

104554
(
−2ε−2 + ε−5 − 2ε+2 + ε+5

)
+ π

(
427ε−1 + 854ε−4 + 427ε+1 + 854ε+4

)
,

L
[1]
4 (ε) = − 5916624ε−2 + 1112640ε−3 + 5433936ε−5 − 2314584ε−6 + 5916624ε+2 − 1112640ε+3

− 5433936ε+5 + 2314584ε+6 +
√

104554
(
−80ε−1 − 160ε−4 + 80ε+1 + 160ε+4

+π
(
9750ε−2 − 4875ε−5 + 9750ε+2 − 4875ε+5

))
+ π

(
−160125ε−1 − 320250ε−4

−160125ε+1 − 320250ε+4
)

,

(5.7)

we omit the expressions of L
[1]
i (ε), 5 ≤ i ≤ 9, because of their size.

We get L
[1]
2 (0) = · · · = L

[1]
8 (0) = 0 and L

[1]
9 (0) ̸= 0. Hence, as the matrix formed with the

coefficients of (L
[1]
2 , . . . , L

[1]
8 ) with respect to ε has rank 7, we obtain eight hyperbolic crossing

limit cycles of small amplitude bifurcating from the origin adding the trace parameter and

using the Implicit Function Theorem and then the derivation-division algorithm (see again

[29]). Finally, adding the sliding parameter we obtain the ninth hyperbolic crossing limit cycle

of small amplitude.
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Proposition 5.2. Consider the system

ẋ = −4

5
y − 13

8
z − 5

2
xz +

4

5
y2 − 59

8
yz − z2,

ẏ =
4

5
x + 2z − 4

5
xy + 8xz − 2yz,

ż =
13

8
x − 2y +

5

2
x2 − 5

8
xy + xz + 2y2.

(5.8)

(a) There exists a continuous quadratic perturbation of (5.8) in X such that at least 5 hyperbolic

crossing limit cycles of small amplitude bifurcate from the equilibrium point (0, 1, 0) on S2
1.

(b) There exists a refractive quadratic perturbation of (5.8) in X such that at least 6 hyperbolic crossing

limit cycles of small amplitude bifurcate from the equilibrium point (0, 1, 0) on S2
1.

(c) There exists a piecewise quadratic perturbation of (5.8) in X such that at least 10 hyperbolic

crossing limit cycles of small amplitude bifurcate from the equilibrium point (0, 1, 0) on S2
1.

Proof. It was proved in [6] that system (5.2), with w ̸= 1, has a center at the origin when its

coefficients satisfy the conditions,

a1 =
w2 − 1

w2 + 1
a8, a4 = 0, a5 =

w2 + 1

w2 − 1
a11, and a7 =

1

w2 + 1
− 1

(w2 + 1)
a2

8 −
w2 + 1

(w2 − 1)2
a2

11,

exhibiting an inverse integral factor for the system. Moreover, there exists an analytical per-
turbation inside family (5.2) such that at least 3 small amplitude limit cycles bifurcate from the
equilibrium point (0, 1, 0) on S2

1. Thus, as system (5.8) is obtained doing a1 = 4/5, a4 = 0, a5 =
5/2, a7 = −5/8, a8 = 1, a11 = 2, and w = 3 in (5.2) it has a center at (0, 1, 0). So, we take the
parameter values (a1, a5, a7, a8, a11, w) satisfying it and we consider the piecewise smooth per-
turbation (a1, a5, a7, a8, a11, w) = (4/5 + ε±1 , 5/2 + ε±2 ,−5/8 + ε±3 , 1 + ε±4 , 2 + ε±5 , 3 + ε±6 ) in the

projected system (5.3). As we saw before, we consider the separation set {(u, v) ∈ R2 : v = 0}
of the projected system and then we consider the perturbative parameter ε+ = (ε+1 , . . . , ε+6 ) for

v > 0, ε− = (ε−1 , . . . , ε−6 ) for v < 0 and ε = (ε+1 , . . . , ε+6 , ε−1 , . . . , ε−6 ). We denote by Li(ε), the cor-
responding Lyapunov constants. When ε = 0 the origin is a center and then Li(0) = 0 for all
i. Using the method explained in Section 2.4 we compute the Taylor series of these Lyapunov

constants up to first-order with respect to ε, L
[1]
i (ε), and we write Li(ε) = L

[1]
i (ε)+O2(ε) where

L
[1]
2 (ε) = − 48ε−2 + 33ε−5 − 36ε−6 + 48ε+2 − 33ε+5 + 36ε+6 ,

L
[1]
3 (ε) = − 7680ε−2 + 5280ε−5 − 5760ε−6 + 7680ε+2 − 5280ε+5 + 5760ε+6 + π

(
675ε−1 − 56ε−2

−540ε−4 + 70ε−5 − 102ε−6 + 675ε+1 − 56ε+2 − 540ε+4 + 70ε+5 − 102ε+6
)

,

L
[1]
4 (ε) = 6380640ε−1 − 263540576ε−2 − 50641200ε−3 − 6099840ε−4 + 152862163ε−5

− 159148902ε−6 − 6380640ε+1 + 263540576ε+2 + 50641200ε+3 + 6099840ε+4
− 152862163ε+5 + 159148902ε+6 + π

(
13668750ε−1 − 1134000ε−2 − 10935000ε−4

+1417500ε−5 − 2065500ε−6 + 13668750ε+1 − 1134000ε+2 − 10935000ε+4
+1417500ε+5 − 2065500ε+6

)
.

(5.9)

We omit the expressions of L
[1]
i (ε), 5 ≤ i ≤ 12 because of their size.

In the case (a) (resp. (b)) we consider a continuous (resp. refractive) perturbation of this

center family. As we saw above, it implies that ε+i = ε−i , for i = 1, 2, 3, 4 (resp. ε+i = ε−i , for

i = 2, 3, 4). With this assumption, the matrix formed by the coefficients of (L
[1]
2 , . . . , L

[1]
7 ) with
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respect to ε has rank 5 (resp. 6). Adding the trace parameter and using the Melnikov theory,

as we have explained in the Section 2.4, we obtain 5 (resp. 6) hyperbolic crossing limit cycles

of small amplitude bifurcating from the origin.

Finally, in the case (c), the proof follows because the matrix formed by the coefficients

of (L
[1]
2 , . . . , L

[1]
12 ) with respect to ε has rank 9, so adding the trace parameter and using the

Melnikov theory, as we explained in the Section 2.4, we get 9 hyperbolic crossing limit cycles

of small amplitude bifurcating from the origin. Adding the sliding or escaping segments we

obtain one more crossing limit cycle and the proof follows.
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Abstract. In this paper, we are devoted to establishing that the existence of positive
solutions for a class of generalized quasilinear elliptic equations in RN with Sobolev
critical growth, which have appeared from plasma physics, as well as high-power ul-
trashort laser in matter. To begin, by changing the variable, quasilinear equations are
transformed into semilinear equations. The positive solutions to semilinear equations
are then presented using the Mountain Pass Theorem for locally Lipschitz functionals
and the Concentration-Compactness Principle. Finally, an inverse translation reveals
the presence of positive solutions to the original quasilinear equations.

Keywords: variational methods, Sobolev critical growth, locally Lipschitz functional.

2020 Mathematics Subject Classification: 35J20, 35J62.

1 Introduction

In this paper, we aim at studying the existence of positive solutions for the following general-

ized quasilinear elliptic equations

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = h(x, u), in R
N , (1.1)

where N ≥ 3, g ∈ C1(R, R+) is an even function and g′(t) ≥ 0 for all t ≥ 0 and g(0) = 1,

the potential V ∈ C(RN , R), h is a measurable function defined on RN × R. These equations

are closely related to the existence of standing wave solutions for the following quasilinear

Schrödinger equations

i∂tz = −∆z + E(x)z − σ(x, |z|2)z − ∆[l(|z|2)]l′(|z|2)z, (1.2)

where z : RN × R → C, E : RN → R is a potential function and σ : RN × R → R, l : R → R

are suitable functions. Notice that equation (1.2) can be reduced to elliptic equations with the

BCorresponding author. Email: nianzhang411@163.com
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following formal structure (see [15]) by setting z(x, t) = exp(−iFt)u(x), where F ∈ R and u is

a real function,

−∆u + V(x)u − ∆[l(u2)]l′(u2)u = h(x, u), in R
N . (1.3)

Furthermore, we take g2(u) = 1 + (l′(u2))2

2 , then (1.3) turns into (1.1) (see [16, 28]).

To the best of our knowledge, the quasilinear equation (1.1) have been utilized to simulate

a range of physical phenomena corresponding to various types of g(u) in several fields of

mathematical physics. For instance, the case g2(u) = 1 + 2u2, that is, l(u) = u in (1.3), we get

−∆u + V(x)u − u∆(u2) = h(x, u), in R
N , (1.4)

which simulates the time evolution of the condensate wave function in a superfluid film (see

[20]). For equation (1.1), if we take g2(u) = 1 + u2

2(1+u2)
, that is, l(u) =

√
1 + u, we get

−∆u + V(x)u − [∆
√

1 + u2]
u

2
√

1 + u2
u = h(x, u), in R

N . (1.5)

Equation (1.5) is often used as a model of the self-channeling of a high-power ultrashort laser

in matter (see [8, 12, 25]). For more physical backgrounds about equation (1.1), readers can

refer to [7, 19, 23, 24] and the references within. So, the study for general quasilinear elliptic

equation (1.1) is meaningful and important.

In [21], the quasilinear equation (1.4) was firstly transformed to a semilinear one by using

a change of variable. Then, they chose an Orlicz space as the working space and obtained

the existence of positive solutions to equation (1.4) by using the Mountain Pass theorem.

Afterwards, the same change of variable was applied in [14,30,31], but the usual Sobolev space

framework was used as the working space. For example, Silva and Vieira in [30] obtained the

existence of positive solutions of equation (1.4) in an asymptotically periodic condition with

critical growth. In [28], Shen and Wang used a new change of variable developed by (1.4)

to show the existence of positive solutions of equation (1.1) when h(x, u) was superlinear

and subcritical. Following that, by applying the same modification in variable as in [28] and

the classical Mountain Pass Theorem, Deng et al. in [16] proved the existence of a positive

solution for equation (1.1) where nonlinearity was critical growth, and Shi and Chen in [29]

proved the existence of positive solutions of equation (1.1) when nonlinearity was periodic or

asymptotically periodic cases with critical growth. On the other hand, Candela et al. in [9]

considered the more general quasilinear ellptic equation:

−div(A(x, u)|∇u|p−2∇u) +
1

p
Au(x, u)|∇u|p + V(x)|u|p−2u = h(x, u), in R

N ,

with p > 1 and A : RN × R → R such that Au(x, u) = ∂A
∂u (x, u). When A(x, u) = g2(u) and

p = 2, the above equation turns to (1.1) with N = 3. They employed an entirely new approach

to deal with (1.1) because the arguments of change of variable frequently need g(u) to meet

certain particular assumptions, and the features of g(u) directly affect the hypotheses on the

nonlinear term h(x, u). By using the Mountain Pass Theorem with the weak Cerami Palais

Smale condition, they established the existence of week-bounded solutions under certain ap-

propriate hypotheses on V(x) and h(x, u), which are independent of g(u).

It is worth pointing out that the continuity of nonlinearity is always required in these afore-

mentioned papers. It seems that there are no results concerning equation (1.1) with discon-

tinuous nonlinearities. Actually, many free boundary problems and obstacle problems arising
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from physics can be described with nonlinear partial differential equations with discontinu-

ous nonlinearities. For more problems with discontinuous nonlinearities, readers can refer to

[1,3,6,10,22,26,35] and their references. Hence, our goal is to discuss the existence of positive

solutions for problem (1.1) with discontinuous nonlinearities. In this paper, we consider equa-

tion (1.1) with h(x, t) = κ f (x, t) + g(t)|G(t)|2∗−2G(t), where κ > 0, G(t) =
∫ t

0 g(s)ds, 2∗ = 2N
N−2

and f : RN × R → R is a discontinuous function. We rewrite equation (1.1) as follows:

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = κ f (x, u) + g(u)|G(u)|2∗−2G(u), in R
N . (1.6)

The hypotheses on the function V and f are the following:

(V1) There exist a function Vp(x) ∈ C(RN , R), ZN-periodic with respect to variable x, satis-

fying

Vp(x) ≥ V0, ∀x ∈ R
N ,

and a function W(x) ∈ L
N
2 (RN) ∩ C(RN , R) with W(x) ≥ 0 such that

V(x) = Vp(x)− W(x) ≥ W0, ∀x ∈ R
N ,

where V0, W0 are positive constants and the inequality W(x) ≥ 0 is strict on a subset of

positive measure in RN .

( f1) f (x, t) is a measurable function defined on RN × R and the functions

f (x, t) := lim
δ↓0

ess inf{ f (x, s); |t − s| < δ}

and

f (x, t) := lim
δ↓0

ess sup{ f (x, s); |t − s| < δ},

are N-mensurable (see [11]).

( f2) f (x, t) ≡ 0 if t ≤ 0 and lim supt→0+
f (x,t)

t = 0, uniformly in x ∈ RN .

( f3) There are C > 0 and q ∈ (2, 2∗) such that

| f (x, t)| ≤ C(1 + g(t)|G(t)|q−1), ∀(x, t) ∈ R
N × [0, ∞).

( f4) There exists θ ∈ (2, 2∗) such that

0 ≤ θg(t)F(x, t) ≤ G(t)min{ f (x, t), ϱ}, ∀ϱ ∈ ∂tF(x, t) and ∀(x, t) ∈ R
N × [0, ∞),

where F(x, t) =
∫ t

0 f (x, s)ds and ∂tF(x, t) := [ f (x, t), f (x, t)] denotes the generalized

gradient of F(x, t) with respect to variable t (see [4]).

Here, we provide a nonlinearity f that satisfies the assumptions above as following: fixed

T > 0, let us consider the function

f (x, t) =















0, t ∈ (−∞, 0],

g(t)(G(t))q−2 [G(t)− arctan(G(t))] , t ∈ (0, T],

g(t)(G(t))q−2 [G(t)− µ arctan(G(t))] , t ∈ (T,+∞),

where 0 < µ < 1.

The asymptotic periodicity of f at infinity is given by the following condition:
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( f5) There exists a function fp(x, t) ∈ C(RN × R, R), ZN-periodic with respect to variable x,

such that fp(x, t) ≡ 0 if t ≤ 0 and
fp(x,t)

g(t)G(t)
is nondecreasing for all t > 0.

( f6) There exists ν ∈ (2, 2∗) such that

0 ≤ νg(t)Fp(x, t) ≤ G(t) fp(x, t), ∀(x, t) ∈ R
N × R,

where Fp(x, t) =
∫ t

0 fp(x, s)ds.

( f7) F(x, t) ≥ Fp(x, t) =
∫ t

0 fp(x, s)ds, ∀(x, t) ∈ RN × [0, ∞) and

| f (x, t)− fp(x, t)| ≤ π(x)g(t)|G(t)|q−1, ∀(x, t) ∈ R
N × [0, ∞),

|ϱ − fp(x, t)| ≤ π(x)g(t)|G(t)|q−1, ∀(x, t) ∈ R
N × [0, ∞), and ϱ ∈ ∂tF(x, t),

where π(x) > 0 for all x ∈ RN , π(x) ∈ L∞(RN), and π(x) → 0 as |x| → ∞.

Next, we provide a suitable example of function f (x, t) that satisfies the assumptions ( f1)–

( f7). Fixed T > 0, let

f (x, t) =















0, t ∈ (−∞, 0],

fp(x, t), t ∈ (0, T],

fp(x, t) + µ exp(−|x|)g(t)(G(t))q−2 arctan(G(t)), t ∈ (T,+∞),

where 0 < µ < 1 and

fp(x, t) =

{

0, t ∈ (−∞, 0],

g(t)(G(t))q−2 [G(t)− arctan(G(t))] , t ∈ (0,+∞).

Since f (x, t) is discontinuous, inspired by [11] and [27], we give the definition of solutions

for (1.6). We say a function u is a solution for the multivalued problem (1.6) if it satisfies

−div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u−g(u)|G(u)|2∗−2G(u)∈κ f̂ (x, u), a.e. in R
N , (1.7)

where f̂ is the multivalued function

f̂ (x, t) = [ f (x, t), f (x, t)].

Below, we describe the main results of this paper.

Theorem 1.1 (The non periodic case). Assume that (V1) and ( f1)–( f7) are satisfied. Then, there

exists κ∗ > 0 such that the problem (1.6) possesses a positive solution for all κ ≥ κ∗.

When f is ZN periodic and V = Vp given by (V1), problem (1.6) can turns to the following

periodic problem:

−di v(g2(u)∇u) + g(u)g′(u)|∇u|2 +Vp(x)u = κ f (x, u) + g(u)|G(u)|2∗−2G(u), in R
N . (1.8)

For periodic problem (1.8), we may state:

Theorem 1.2 (The periodic case). Assume that ( f1)–( f4) are satisfied and f is ZN periodic. Then,

there exists κ∗ > 0 such that the problem (1.8) possesses a positive solution for all κ ≥ κ∗.
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Remark 1.3. As is known to all, the discontinuity of nonlinearity causes a lack of functional

differentiability. In this paper, as f is discontinuous, the modified energy functional associated

with (1.6) is only locally Lipschitz continuous. The classical variational methods cannot be

directly utilized for nonsmooth functionals. For smooth functionals, it is essential that the

energy functional can be studied on the Nehari manifold and that the mountain pass level

is equal to the minimum of the energy functional on the Nehari manifold. However, these

results are not valid for nonsmooth cases. Hence, the proof of the existence of solutions for

equation (1.6) is more difficult.

Remark 1.4. Similar equations have been considered in [9]. However, our assumptions on

nonliearities are critical growth and discontinuous.

Below we give a sketch of the proofs of our main results:

1) Firstly, we make a change of variable to reduce the quasilinear problem (1.6) to a semilin-

ear problem (2.1) which can be well defined in H1(RN) and satisfies the geometric hypotheses

of the Mountain Pass Theorem. Hence, we get a (PS)c sequence associated with the minimax

level. And by using standard arguments, we show that the weak convergence limit of (PS)c

sequence is a solution of the problem (2.1).

2) Furthermore, for adopting the similar technical scheme due to [30], we assume this

solution is trivial. Thereby, we get a nontrivial critical point of the functional associated with

the periodic case, and use the nontrivial critical point to construct a special path to prove

that the maximum of the functional associated with (2.1) is strictly less than the one of the

functional associated with the periodic case, which is a contradiction.

3) Hence, we obtain the existence of nontrivial solutions of the problem (2.1). Finally, by

Lemma 2.2, Theorem 1.1 is proved.

The outline of the article is as follows: in Section 2, we introduce the variational setting

associated with problem (1.6) and some basic knowledge of the critical point theory of lo-

cally Lipschitz continuous functionals. In Section 3, we prove the geometric structure of the

Mountain Pass Theorem and some preliminary lemmas. In Section 4 and Section 5, we prove

Theorem 1.1 and Theorem 1.2, respectively.

Throughout this paper, we make use of the following notations:

• M, C, Cε denote positive constants, which may vary from line to line.

• Lp(RN) denotes the Lebesgue space with the norm ∥ · ∥p =
( ∫

RN |u|pdx
)

1
p for 1 ≤ p ≤ ∞.

• The dual space of a Banach space X will be denoted by X∗.

• The strong (respectively, weak) convergence is denoted by → (respectively, ⇀).

• on(1) denotes on(1) → 0 as n → ∞.

• Denote the function space D1,2(RN) := {v ∈ L2∗(RN) : |∇v| ∈ L2(RN)}. Here, S is the

best constant that verifies

S

(

∫

RN
|u|2∗

)
2

2∗
≤
∫

RN
|∇u|2, for all u ∈ D1,2(RN).

• Denote the function space H1(RN) = {v ∈ L2(RN) : |∇v| ∈ L2(RN)} with the usual

norm

∥v∥2
H1 =

∫

RN

(

|∇v|2 + |v|2
)

.
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2 Variational setting and preliminary knowledge

From the variational point of view, we note that we may not directly apply the variational

method to deal with the problem (1.6), since the functional associated with (1.6) may not

be well defined in general H1(RN). The first difficulty associated with (1.6) is to find an

appropriate function space where the functional responding to (1.6) is well defined. In order

to overcome this difficulty, we we change the variables u = G−1(v), where G is defined as

v = G(u) =
∫ u

0
g(t)dt

by Shen and Wang in [28].

Now, we present some important properties about the functions g, G and G−1, which

proofs can be found in [16].

Lemma 2.1. The functions g(s) and G(s) =
∫ s

0 g(t)dt enjoy the following properties.

(i) G(s) and G−1(t) are odd and strictly increasing.

(ii) For all s ≥ 0, t ≥ 0,

G(s) ≤ g(s)s, G−1(t) ≤ t

g(0)
= t.

(iii) For all t ≥ 0, G−1(t)
t is nonincreasing and

lim
t→0

G−1(t)

t
=

1

g(0)
= 1, lim

t→∞

G−1(t)

t
=











1

g(∞)
, if g is bounded,

o(1), if g is unbounded.

(iv) Denote T(t) = G−1(t)
g(G−1(t))

, then t2T′(t) ≤ T(t)t, ∀t ∈ R.

After the change of variable u = G−1(v), the problem(1.6) can be rewritten as follows:

−∆v + V(x)
G−1(v)

g(G−1(v))
=

f (x, G−1(v))

g(G−1(v))
+ |v|2∗−2v, in R

N . (2.1)

As a consequence of Lemma 2.1, the functional associated with (2.1) is well defined in

H1(RN).

Lemma 2.2. From Lemma 2.1, direct calculations demonstrate that u = G−1(v) shall be a solution of

the equation (1.6) when v is a solution of the problem (2.1). That is to say, v ∈ H1(RN) satisfies

−∆v + V(x)
G−1(v)

g(G−1(v))
− |v|2∗−2v ∈ f̂ (x, G−1(v))

g(G−1(v))
a.e. in R

N , (2.2)

where

f̂ (x, G−1(v))

g(G−1(v))
=

[

f (x, G−1(v))

g(G−1(v))
,

f (x, G−1(v))

g(G−1(v))

]

.
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From the above commentaries, in order to find solutions to equation (1.6), it suffices to

study the existence of solutions to equation (2.1). The second difficulty associated with (2.1)

is that the classical critical theory for smooth functionals cannot be directly applied to (2.1)

since the function f (x, G−1(t)) is discontinuous. To study nonsmooth problems like (2.1), we

will apply the critical point theory of locally Lipschitz continuous functionals developed by

Clarke [13]. For the convenience of the readers, here we provide some relevant knowledge of

the critical point theory of locally Lipschitz continuous functionals.

Let X be a real Banach space and I : X → R.

Definition 2.3 ([27]). If given v ∈ X there exists an open neighborhood U := Uv ⊂ X and

some constant CU > 0 such that

|I(v1)− I(v2)| ≤ CU∥v1 − v2∥X, vi ∈ U, i = 1, 2.

We call that I is locally Lipschitz continuous (I ∈ Liploc(X, R) for short).

Definition 2.4 ([27]). The generalized directional derivative of I ∈ Liploc(X, R) at v in the

direction of ṽ ∈ X is defined by

I◦(v; ṽ) = lim sup
u→0 t↓0

I(v + u + tṽ)− I(v + u)

t
.

The definition 2.4 implies that I◦(v; .) is continuous, convex and its subdifferential at w ∈ X

is given by

∂I◦(v; w) = {µ ∈ X∗; I◦(v; u) ≥ I◦(v; w) + ⟨µ, u − w⟩, ∀u ∈ X},

where X∗ is the dual of X and ⟨., .⟩ is the duality paring between X∗ and X.

Definition 2.5. ([27]) The general gradient of I ∈ Liploc(X, R) at v is the set

∂I(v) = {µ ∈ X∗; I◦(v; u) ≥ ⟨µ, u⟩, ∀u ∈ X}.

Since I◦(v; 0) = 0, ∂I(v) is the subdifferential of I◦(v; 0). Moreover, ∂I(v) ⊂ X∗ is convex,

nonempty and weak∗ compact. If I is C1 functional, ∂I(v) = {I′(v)}. We denote by λI(u) the

following real number

λI(v) := min{∥µ∥X∗ ; µ ∈ ∂I(v)}.

Definition 2.6 ([27]). An element v ∈ X is a critical point of I if 0 ∈ ∂I(v) or equivalently,

when λI(v) = 0.

Lemma 2.7. If I1 ∈ C1(X, R) and I2 ∈ Liploc(X, R), then

∂(I1 + I2)(v) = {I′1(v)}+ ∂I2(v), ∀v ∈ X.

Lemma 2.8 ([13] and [34]). Let Y be a Banach space and j : Y → X be a continuously differentiable

function. Then I ◦ j is locally Lipschitz and

∂(I ◦ j)(v) ⊂ ∂I(j(v)) ◦ j′(v), ∀v ∈ Y.

Lemma 2.9 ([13]). Let I ∈ Liploc(X, R) with I(0) = 0 and X be a Banach space. Suppose there are

constants α, ρ > 0 and function e ∈ X, such that
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(i) I(v) ≥ α, for all v ∈ X with ∥v∥X = ρ,

(ii) I(e) < 0 and ∥e∥X > r.

Let

c = inf
γ∈ΓI

max
t∈[0,1]

I(γ(t)),

where

ΓI = {γ ∈ C([0, 1], X) : γ(0) = 0, I(γ(1)) < 0}.

Then, c ≥ α and there exists a sequence {vn} ⊂ X satisfying I(vn) → c and λI(vn) → 0. The

sequence {vn} is called a (PS)c sequence for I.

3 Some preliminary lemmas

Hypotheses ( f1)–( f3) imply that, for any ε > 0, there is Cε > 0 such that

| f (x, t)| ≤ ε|t|+ Cεg(t)|G(t)|q−1, ∀t ∈ R, ∀x ∈ R
N ,

|F(x, t)| ≤ ε

2
|t|2 + Cε

q
|G(t)|q, ∀t ∈ R, ∀x ∈ R

N .
(3.1)

From the second inequality of (3.1) and Lemma 2.1-(ii), we can prove

Ψ(v) =
∫

RN
F(x, G−1(v)) ≤

∫

RN

(

ε

2
|v|2 + Cε

q
|v|q
)

≤ C(∥v∥2 + ∥v∥q), (3.2)

so functional Ψ is well defined in H1(RN). However, in order to apply variational methods

for locally Lipschitz functionals, it is preferable to deal with the functional Ψ in a more ap-

propriate space, that is Ψ : LΦ(RN) → R, for Φ(t) = |t|2 + |t|q, where LΦ(RN) denotes the

Orlicz space associated with the N-function Φ. In this paper, we are working in RN and the

conditions on f yield

|F(x, G−1(t))| ≤ C(|t|2 + |t|q), ∀t ∈ R, (3.3)

then Ψ is not well defined in Lp(RN). The above estimate involving the function F suggests

that the best space to work is the Orlicz space LΦ(RN). In bounded domains, the Orlicz space

LΦ(RN) is not necessary. In this case, (3.2) implies that the functional Ψ is well defined in

Lp(Ω). Since 2 < q < 2∗, we obtain that the embedding H1(RN) →֒ LΦ(RN) is continuous

and Φ satisfies ∆2 condition which ensures that LΦ(RN) and LΦ̃(RN) are reflexive spaces (Φ̃

is the conjugate function of Φ (see [17])). Hence, given ς ∈ (LΦ(RN))∗, we get

ς(v) =
∫

RN
uςv, ∀v ∈ LΦ(RN),

for some uς ∈ LΦ̃(RN). Essentially, by the definition of Φ and ( f1)–( f3) the conditions below

occur:
|ζ| ≤ ε|t|+ Cε|t|q−1 ≤ CΦ

′(|t|), ∀ζ ∈ ∂tF(x, G−1(t)),

|F(x, G−1(t))| ≤ ε

2
|t|2 + Cε

q
|t|q−1 ≤ CΦ(t),

(3.4)

for all t ∈ R and x ∈ RN . Here, ∂tF(x, G−1(t)) denotes the generalized gradient of F(x, G−1(t))

with respect to variable t. The above information involving Ψ and Φ is crucial in the below.

The next two lemmas establish important properties of the functional Ψ given in (3.2).
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Lemma 3.1 ([2, Theorem 4.1] and [5, Theorem 4.2]). Assume (3.4). Then, the functional Ψ :

LΦ(RN) → R given by

Ψ(v) =
∫

RN
F(x, G−1(v)), v ∈ LΦ(RN),

is well defined and Ψ ∈ Liploc(LΦ(RN), R). Furthermore,

∂Ψ(v) ⊂ ∂tF(x, G−1(v)), ∀ v ∈ LΦ(RN),

in the sense that for every ϱ∗ ∈ ∂Ψ(v) ⊂ (LΦ(RN))∗ ∼= LΦ̃(RN) there exists ϱ ∈ LΦ̃(RN) such that

ϱ(x) ∈ ∂tF(x, G−1(v(x))) =

[

f (x, G−1(v(x)))

g(G−1(v(x)))
,

f (x, G−1(v(x)))

g(G−1(v(x)))

]

a.e. in R
N

and

⟨ϱ∗, v⟩ =
∫

RN
ϱv, ∀ v ∈ LΦ(RN).

As a similar consequence of Proposition 2.3 in [5], we obtain the following lemma and the

proof will be omitted. More details can be found in [5].

Lemma 3.2. Assume (3.4). If {vn} ⊂ H1(RN) satisfies vn ⇀ v in H1(RN) and ϱn ∈ ∂Ψ(vn)

satisfies ϱn
∗
⇀ ϱ in (H1(RN))∗, then ϱ ∈ ∂Ψ(v).

We consider H1(RN) endowed with the following norm

∥v∥2 =
∫

RN

(

|∇v|2 + V(x)|v|2
)

.

Under the assumption (V1), the norm ∥ · ∥ is equivalent to the standard norm ∥ · ∥H1 .

In order to get the positive solutions, we consider the functional corresponding to (2.1)

given by J(v) = Q(v)− κΨ(v), v ∈ H1(RN), where

Q(v) =
1

2

∫

RN

(

|∇v|2 + V(x)|G−1(v)|2
)

− 1

2∗

∫

RN
(v+)2∗

and

Ψ(v) =
∫

RN
F(x, G−1(v)).

By standard arguments, we get the functional Q ∈ C1(H1(RN), R) and

⟨Q′(v), φ⟩ =
∫

RN

(

∇u∇φ + V(x)
G−1(v)

g(G−1(v))
φ

)

−
∫

RN
(v+)2∗−1 φ,

for all v, φ ∈ H1(RN). Then, by Lemma 3.1, J ∈ Liploc(H1(RN), R) and

∂J(v) = {Q′(v)} − κ∂Ψ(v). (3.5)

Lemma 3.3. Assume that (V1) and ( f1)–( f3) are satisfied. Then there exist ρ, α > 0, such that

J(v) ≥ α, ∀v ∈ H1(RN) with ∥v∥ = ρ.
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Proof. Since lim|t|→0
G−1(t)

t = 1, by (3.1), for any ε > 0, there is Cε such that

|F(x, G−1(t))| ≤ ε|t|2 + Cε|t|q, ∀t ∈ R.

From Lemma 2.1, we have

lim
s→+∞

G−1(t)

t
=











1

g(∞)
, if g is bounded,

o(1), if g is unbounded.

If g is bounded, in view of that G−1(t)
t is nonincreasing, we get

J(v) =
1

2

∫

RN

(

|∇v|2 + V(x)|G−1(v)|2
)

− κ
∫

RN
F(x, G−1(v))− 1

2∗

∫

RN
(v+)2∗

≥ 1

2

∫

RN

(

|∇v|2 + W0|G−1(v)|2
)

− κ
∫

RN
(ε|v|2 + Cε|v|q)−

1

2∗

∫

RN
(v+)2∗

≥ 1

2

∫

RN
|∇v|2 +

( W0

2g(∞)
− κε

)

∫

RN
|v|2 − κCε

∫

RN
|v|q − 1

2∗

∫

RN
|v|2∗ .

(3.6)

If g is unbounded, we set Υ(t) := − 1
2W0|G−1(t)|2 + κF(x, G−1(t)), then

lim
t→0

Υ(t)

t2
= −W0

2
< 0, lim

t→+∞

Υ(t)

t2∗ = 0.

Therefore,

J(v) =
1

2

∫

RN

(

|∇v|2 + V(x)|G−1(v)|2
)

− κ
∫

RN
F(x, G−1(v))− 1

2∗

∫

RN
(v+)2∗

≥ 1

2

∫

RN
|∇v|2 −

∫

RN
Υ(v)− 1

2∗

∫

RN
(v+)2∗

≥ 1

2

∫

RN
|∇v|2 +

(

W0

2
− ε

)

∫

RN
|v|2 − Cε

∫

RN
|v|2∗ − 1

2∗

∫

RN
|v|2∗ .

(3.7)

By (3.6), (3.7) and Sobolev’s inequality, we get

J(v) ≥ C∥v∥2 − C∥v∥q − C∥v∥2∗ .

Since 2 < q < 2∗, taking ρ > 0 sufficiently small, we conclude that there exists α > 0 such that

J(v) ≥ α, ∀v ∈ H1(RN) with ∥v∥ = ρ.

This proof is completed.

Lemma 3.4. Suppose that (V1) and ( f4) are satisfied. Then, for all κ > 0, there exists function

e ∈ H1(RN) such that J(e) ≤ 0 and ∥e∥ > ρ.

Proof. Fixing ϕ ∈ H1(RN) with ϕ ≥ 0 and ϕ ̸≡ 0, by Lemma 2.1-(i), (ii), we get

J(tϕ) =
1

2

∫

RN

(

|t∇ϕ|2 + V(x)|G−1(tϕ)|2
)

− κ
∫

RN
F(x, G−1(tϕ))− 1

2∗

∫

RN
(tϕ)2∗

≤ t2

2
∥ϕ∥2 − t2∗

2∗

∫

RN
ϕ2∗ .

Then, we can choose some t0 large enough such that ∥t0ϕ∥ > ρ and J(t0ϕ) < 0. The lemma is

completed when e = t0ϕ.
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Note that J(0) = 0 and by Lemma 3.3 and Lemma 3.4, (i) and (ii) of Lemma 2.9 are

satisfied. Thereby, we may define

cκ = inf
γ∈ΓJ

max
t∈[0,1]

J(γ(t)),

where

ΓJ = {γ ∈ C([0, 1], H1(RN)) : γ(0) = 0, J(γ(1)) < 0}.

By Lemma 2.9, there exists a sequence {vn} ⊂ H1(RN) satisfying J(vn) → cκ and λJ(vn) → 0.

Namely, the sequence {vn} is a (PS)cκ sequence for functional J.

Lemma 3.5. Assume that (V1), ( f1) and ( f4) hold. Then any (PS)cκ sequence for J is bounded in

H1(RN).

Proof. Let {vn} ⊂ H1(RN) be a (PS)cκ sequence for J, that is,

J(vn) → cκ and λJ(vn) → 0, as n → ∞.

Then, there exists wn ∈ ∂J(vn) ⊂ (H1(RN))∗ such that

∥wn∥∗ = λJ(vn) = on(1)

and

wn = Q′(vn)− ϱn,

where ∥wn∥∗ := ∥wn∥(H1(RN))∗ and ϱn ∈ ∂Ψ(vn) ⊂ LΦ̃(RN).

Therefore, we obtain that

c + 1 + ∥vn∥ ≥ J(vn)−
1

θ
⟨wn, vn⟩

=

(

1

2
− 1

θ

)

∫

RN
|∇vn|2 +

∫

RN
V(x)G−1(vn)

(

1

2
G−1(vn)−

1

θ

vn

g(G−1(vn))

)

− κ
∫

RN

(

F(x, G−1(vn))−
1

θ
ϱnvn

)

−
(

1

2∗
− 1

θ

)

∫

RN
|v+n |2

∗
.

From ( f4) and ϱn(x) ∈
[

f (x,G−1(vn(x)))

g(G−1(vn(x)))
,

f (x,G−1(vn(x)))
g(G−1(vn(x)))

]

a.e. in RN , we have

1

θ
ϱnvn ≥ F(x, G−1(vn) ≥ 0 a.e. in R

N .

Hence, by Lemma 2.1-(ii), we get

c + 1 + ∥vn∥ ≥
(

1

2
− 1

θ

)

∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

. (3.8)

For all t ≥ 1, by ( f4), we can verify that there exists some C > 0 such that CF(x, t) ≥
(G(t))θ ≥ (G(t))2. Then

∫

{|G−1(vn)|>1}
V(x)v2

n ≤ κC
∫

{|G−1(vn)|>1}
F(x, G−1(vn))

≤ κC
∫

RN
F(x, G−1(vn)) +

C

2∗

∫

RN
|v+n |2

∗

= C

[

1

2

∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

− J(vn)

]

= C

[

1

2

∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

− cκ + on(1)

]

.

(3.9)
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For {|G−1(vn)| ≤ 1}, by Lemma 2.1-(ii) and g′(t) ≥ 0 for all t ≥ 0, we have

1

g2(1)

∫

{|G−1(vn)|≤1}
V(x)v2

n ≤
∫

{|G−1(vn)|≤1}
V(x)|G−1(vn)|2

≤
∫

RN
V(x)|G−1(vn)|2.

(3.10)

By (3.8)–(3.10), we deduce that

∥vn∥2 =
∫

RN

(

|∇vn|2 + V(x)|vn|2
)

≤ C
∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

+ C

≤ C∥vn∥+ C,

which implies that the sequence {vn} is bounded in H1(RN).

Next, the following lemma shows the behavior of cκ associated with the parameter κ.

Lemma 3.6. Suppose that (V1) and ( f4) are satisfied, then limκ→+∞ cκ = 0.

Proof. Since J(v) is nonsmooth functional, unlike the method used to prove Lemma 3.1 in [29],

we will not use the Nehari manifold. For ϕ given by Lemma 3.4, it follows that there is tκ > 0

satisfying

J(tκϕ) = max
t≥0

J(tϕ) ≥ α > 0.

Then, we have

t2
κ

2

∫

RN
|∇ϕ|2 + 1

2

∫

RN
V(x)|G−1(tκϕ)|2 ≥ κ

∫

RN
F(x, G−1(tκϕ)) +

t2∗
κ

2∗

∫

RN
ϕ2∗ .

By ( f4), we get

t2
κ

2

(

∫

RN
|∇ϕ|2 +

∫

RN
V(x)|ϕ|2

)

≥ t2∗
κ

2∗

∫

RN
ϕ2∗ ,

which implies that tκ is bounded.

Next, we will prove that tκ → 0 as κ → +∞. Suppose, by contradiction, that there exists a

sequence κn → +∞ and a constant t̄ > 0 such that tκn → t̄ as n → ∞. The boundedness of tκn

implies that there is M > 0 such that

t2
κn

2

∫

RN
|∇ϕ|2 +

∫

RN
V(x)|G−1(tκn ϕ)|2 ≤ M.

Hence,

κn

∫

RN
F(x, G−1(tκn ϕ)) +

t2∗
κn

2∗

∫

RN
ϕ2∗ ≤ M.

If t̄ > 0, we have that

lim
n→∞

[

κn

∫

RN
F(x, G−1(tκn ϕ)) +

t2∗
κn

2∗

∫

RN
ϕ2∗
]

= +∞

which is absurd. Thus, we have tκ → 0 as κ → +∞.

Observe that

J(tκϕ) ≤ t2
κ

2

∫

RN
|∇ϕ|2 + 1

2

∫

RN
V(x)|G−1(tκϕ)|2 ≤ t2

κ

2
∥ϕ∥2.

Due to tκ → 0 as κ → +∞, we get cκ ≤ J(tκϕ) → 0 as κ → +∞, which finishes the proof.
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Lemma 3.7. Suppose that (V1) and ( f1)–( f3) are satisfied. Let {vn} ⊂ H1(RN) be a (PS)cκ sequence

for J with vn ⇀ 0 in H1(RN). Then there is κ∗ > 0. When κ > κ∗, there exists a sequence {yn} ⊂ RN

and δ > 0 such that

lim sup
n→∞

∫

B1(yn)
|vn|2 ≥ δ > 0.

Proof. By Lemma 3.5, there exists a constant κ∗ > 0 satisfying

cκ <
1

N
S

N
2 ,

for all κ > κ∗. Suppose, by contradiction, that {vn} is vanishing. Then, from Lions compact-

ness lemma [33], we deduce that vn → 0 in Lr(RN) for all 2 < r < 2∗. From |G−1(vn)| ≤ |vn|,
we get G−1(vn) → 0 in Lr(RN) for all 2 < r < 2∗. Since {vn} is a (PS)cκ sequence for J, there

exists wn ∈ ∂J(vn) with ∥wn∥∗ = λJ(vn) = on(1) and wn = Q′(vn)− ϱn, where ϱn ∈ ∂Ψ(vn).

By (3.1) and Lemma 3.1, we have
∫

RN
F(x, G−1(vn)) → 0 and

∫

RN
ϱnvn → 0, as n → ∞. (3.11)

Therefore, by (3.11), we have

cκ + on(1) = J(vn)−
1

2
⟨wn, vn⟩

=
1

2

∫

RN
V(x)

[

|G−1(vn)|2 −
G−1(vn)

g(G−1(vn))
vn

]

+
1

N

∫

RN
|v+n |2

∗
.

(3.12)

We claim that

lim
n→∞

∫

RN
V(x)

[

|G−1(vn)|2 −
G−1(vn)

g(G−1(vn))
vn

]

= 0. (3.13)

For proving (3.13), we only verify that

lim
n→∞

∫

RN
V(x)

[

|G−1(vn)|2 − |vn|2
]

= 0,

lim
n→∞

∫

RN
V(x)

[

|vn|2 −
G−1(vn)

g(G−1(vn))
vn

]

= 0.
(3.14)

For δ > 0 to be chosen later, we have
∫

RN
V(x)

[

|G−1(vn)|2 − |vn|2
]

=
∫

{|vn|>δ}
V(x)

[

|G−1(vn)|2 − |vn|2
]

+
∫

{|vn|≤δ}
V(x)

[

|G−1(vn)|2 − |vn|2
]

.

By Lemma 2.1-(ii) and (V1), we get
∫

{|vn|>δ}
V(x)

[

|G−1(vn)|2 − |vn|2
]

≤ 2∥V∥∞

∫

{|vn|>δ}
|vn|2

≤ 2∥V∥∞

δr−2

∫

RN
|vn|r = on(1),

(3.15)

where 2 < r < 2∗.

On the other hand, given ε > 0, by Lemma 2.1-(iii), we choose δ > 0 so that
∣

∣

∣

∣

∣

(

G−1(s)

s

)2

− 1

∣

∣

∣

∣

∣

< ε, if |s| ≤ δ.
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Then, we have

lim sup
n→∞

∫

{0<|vn|≤δ}
V(x)|vn|2

∣

∣

∣

∣

∣

(

G−1(vn)

vn

)2

− 1

∣

∣

∣

∣

∣

≤ ∥V∥∞ lim sup
n→∞

∫

{0<|vn|≤δ}
|vn|2

∣

∣

∣

∣

∣

(

G−1(vn)

vn

)2

− 1

∣

∣

∣

∣

∣

≤ ε lim sup
n→∞

∫

RN
|vn|2.

Hence

lim sup
n→∞

∫

RN
V(x)

[

|G−1(vn)|2 − |vn|2
]

≤ lim sup
n→∞

∫

{|vn|>δ}
V(x)

[

|G−1(vn)|2 − |vn|2
]

+ ε lim sup
n→∞

∫

RN
|vn|2.

As ε > 0 is arbitrary and {vn} ⊂ H1(RN) is bounded, using (3.15), we have the first limit in

(3.14).

By Lemma 2.1-(ii), (iii) and the fact that

(G−1)′(s) =
1

g(G−1(s))
→ 1 as s → 0,

the verification of the second limit in (3.14) is similar to the first one. Therefore, our claim

(3.13) is true.

Then, by (3.12) and (3.13), we obtain

lim
n→∞

∫

RN
|v+n |2

∗
= Ncκ. (3.16)

From the fact ⟨wn, vn⟩ = on(1) and the second limit in (3.11), we get

∫

RN
|∇vn|2 +

∫

RN
V(x)

G−1(vn)

g(G−1(vn))
vn −

∫

RN
|v+n |2

∗
= on(1). (3.17)

From the definition of G−1(s) and (V1), the second integral in (3.17) is nonnegative. Then, we

have
∫

RN
|∇vn|2 ≤

∫

RN
|v+n |2

∗
+ on(1). (3.18)

By the definition of S, (3.16) and (3.18), it follows that

∫

RN
|v+n |2

∗ ≤
∫

RN
|vn|2

∗ ≤ S− 2∗
2

(

∫

RN
|∇vn|2

)
2∗
2

≤ S− 2∗
2

(

∫

RN
|v+n |2

∗
+ on(1)

)
2∗
2

.

Taking n → ∞ in the above inequality, in view of (3.16), we get

Ncκ ≤ S− 2∗
2 (Ncκ)

2∗
2 ,

that is,

cκ ≥ 1

N
S

N
2 ,

which is a contradiction. Hence {vn} is non-vanishing. This concludes the proof.
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4 Proof of Theorem 1.1

In the following, we will prove that there exists v ∈ H1(RN) is a positive solution of problem

(1.6). With this aim in mind, we need to show that there is v ∈ H1(RN) and v > 0 such that

−∆v + V(x)
G−1(v)

g(G−1(v))
− v2∗−1 ∈

[

f (x, G−1(v))

g(G−1(v))
,

f (x, G−1(v))

g(G−1(v))

]

a.e. in R
N .

By Lemma 3.3 and Lemma 3.4, the functional J satisfies all hypotheses of Lemma 2.9. Then,

by Lemma 2.9 and Lemma 3.5 , there exists a bounded sequence {vn} ⊂ H1(RN) satisfying

J(vn) → cκ ≥ α > 0 and λJ(vn) → 0, as n → ∞,

where

cκ = inf
γ∈ΓJ

max
t∈[0,1]

J(γ(t)),

and

ΓJ = {γ ∈ C([0, 1], H1(RN)) : γ(0) = 0, J(γ(1)) < 0}.

Therefore, there exists wn ∈ ∂J(vn) such that ∥wn∥∗ = λJ(vn), wn = Q′(vn) − ϱn where

ϱn ∈ ∂Ψ(vn). For all ψ ∈ H1(RN),

⟨wn, ψ⟩ = ⟨Q′(vn), ψ⟩ − ⟨ϱn, ψ⟩, ∀n ∈ N.

Since H1(RN) is reflexive, taking a subsequence if necessary, there exists v ∈ H1(RN) such

that vn ⇀ v in H1(RN). Thus, we obtain

⟨ϱn, ψ⟩ = ⟨Q′(vn), ψ⟩ − ⟨wn, ψ⟩ → ⟨Q′(v), ψ⟩, as n → ∞,

that is, ϱn
∗
⇀ Q′(v) in (H1(RN))∗. By Lemma 3.2, we get Q′(v) ∈ ∂Ψ(v). Then, there exits

ϱ ∈ ∂Ψ(v) such that Q′(v) = ϱ and

∫

RN

(

∇v∇ψ + V(x)
G−1(v)

g(G−1(v))
ψ

)

−
∫

RN
(v+)2∗−1ψ =

∫

RN
ϱψ, ∀ψ ∈ H1(RN),

where

ϱ(x) ∈
[

f (x, G−1(v(x)))

g(G−1(v(x)))
,

f (x, G−1(v(x)))

g(G−1(v(x)))

]

a.e. in R
N .

Taking ψ = v− := min{v, 0}, we obtain

∫

RN

(

|∇v−|2 + V(x)
G−1(v−)

g(G−1(v−))
v−
)

≤ 0,

which implies v− ≡ 0. Thus, we get v = v+ ≥ 0 satisfying










−∆v + V(x)
G−1(v)

g(G−1(v))
= ϱ + v2∗−1 in R

N ,

v ∈ H1(RN).

Furthermore, since ϱ ∈ LΨ̃(RN) ⊂ L
q

q−1

loc (R
N), the elliptic regularity theory gives that v ∈

W
2, 2∗

2∗−1

loc (RN) and v satisfies

−∆v + V(x)
G−1(v)

g(G−1(v))
= ϱ + v2∗−1 a.e. in R

N ,
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that is,

−∆v + V(x)
G−1(v)

g(G−1(v))
− v2∗−1 ∈

[

f (x, G−1(v))

g(G−1(v))
,

f (x, G−1(v))

g(G−1(v))

]

a.e. in R
N .

Finally, in order to prove Theorem 1.1, it suffices to verify that v is nontrivial. Suppose, by

contradiction, that v is trivial. Then, we claim that in this case {vn} is also a (PS)cκ sequence

for Jp defined by

Jp(v) =
1

2

∫

RN

(

|∇v|2 + Vp(x)|G−1(v)|2
)

− 1

2∗

∫

RN
(v+)2∗ −

∫

RN
Fp(x, G−1(v)),

for v ∈ H1(RN) and Jp possesses a nontrivial critical point. It is well known that Jp ∈
C1(H1(RN), R), with

⟨J′p(v), φ⟩ =
∫

RN

(

∇u∇φ + Vp(x)
G−1(v)

g(G−1(v))
φ

)

−
∫

RN
(v+)2∗−1 φ −

∫

RN

fp(x, G−1(v))

g(G−1(v))
φ,

for all φ ∈ H1(RN).

Lemma 4.1. If {vn} is given by the above, then

ϱn − Ψ
′
p(vn) → 0 and Ψ(vn)− Ψp(vn) → 0,

where

Ψ(v) =
∫

RN
F(x, G−1(v)) and Ψp(v) =

∫

RN
Fp(x, G−1(v)).

Proof. For any φ ∈ H1(RN) with ∥φ∥ ≤ 1, by ( f7), we obtain

∣

∣

∣
⟨ϱn − Ψ

′
p(vn), φ⟩

∣

∣

∣
≤
∫

RN

∣

∣

∣

∣

∣

ϱn −
fp(x, G−1(vn))

g(G−1(vn))

∣

∣

∣

∣

∣

|φ|

≤
∫

RN
π(x)|vn|q−1|φ|

≤
(

∫

RN
|π(x)|

q
q−1 |vn|q

)

q−1
q

∥φ∥q

≤ C

(

∫

RN
|π(x)|

q
q−1 |vn|q

)

q−1
q

.

Since {vn} is bounded in H1(RN), there is M > 0 with ∥vn∥q ≤ M for all n ∈ N. Using the

fact that π(x) → 0 as |x| → +∞, given ε > 0 there is Rε > 0 such that |π(x)| ≤ ε for |x| > Rε.

Since H1(BRε(0)) →֒ Lq(BRε(0)) is compact, we have vn → 0 in Lq(BRε(0)). Thus, there is

n0 ∈ N satisfying ∥vn∥Lq(BRε (0))
≤ ε, for all n ≥ n0, and so,

∫

RN
|π(x)|

q
q−1 |vn|q =

∫

BRε (0)
|π(x)|

q
q−1 |vn|q +

∫

Bc
Rε
(0)

|π(x)|
q

q−1 |vn|q

≤ ∥π(x)∥
q

q−1
∞

∫

BRε (0)
|vn|q + ε

q
q−1

∫

RN
|vn|q

≤ εq∥π(x)∥
q

q−1
∞ + ε

q
q−1 Mq.
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As ε is arbitrary,

ϱn − Ψ
′
p(vn) → 0 in (H1(RN))∗.

A similar argument guarantees that

Ψ(vn)− Ψp(vn) → 0 in R.

Since W(x) ∈ L
N
2 (RN) and vn ⇀ 0 in H1(RN), we can conclude

∫

RN
W(x)|G−1(vn)|2 ≤

∫

RN
W(x)|vn|2 → 0. (4.1)

From Lemma 4.1 and (4.1), we deduce

∣

∣J(vn)− Jp(vn)
∣

∣ =

∣

∣

∣

∣

1

2

∫

RN
W(x)|G−1(vn)|2 + κ

∫

RN
F(x, G−1(vn))− Fp(x, G−1(vn))

∣

∣

∣

∣

≤ 1

2

∫

RN
W(x)|G−1(vn)|2 + κ

∣

∣

∣

∣

∫

RN
F(x, G−1(vn))− Fp(x, G−1(vn)

∣

∣

∣

∣

≤ 1

2

∫

RN
W(x)|vn|2 + κ

∣

∣Ψ(vn)− Ψp(vn)
∣

∣

= on(1),

(4.2)

which shows that Jp(vn) → cκ as n → ∞.

On the other hand, note that wn = Q′(vn) − ϱn and ∥wn∥∗ = λJ(vn) = on(1), where

ϱn ∈ ∂Ψ(vn). From Lemma 4.1 and (4.1), for φ ∈ H1(RN) with ∥φ∥ ≤ 1, we obtain

∣

∣

∣
⟨wn, φ⟩ − ⟨J′p(vn), φ⟩

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

RN
W(x)

G−1(vn)

g(G−1(vn))
φ + κ

∫

RN

(

ϱn φ − fp(x, G−1(vn))

g(G−1(vn))
φ

)∣

∣

∣

∣

∣

≤
∫

RN
W(x)

∣

∣

∣

∣

G−1(vn)

g(G−1(vn))

∣

∣

∣

∣

|φ|+ κ

∣

∣

∣

∣

∣

∫

RN

(

ϱn φ − fp(x, G−1(vn))

g(G−1(vn))
φ

)∣

∣

∣

∣

∣

≤
(

∫

RN
W(x)|vn|2

)
1
2

∥w∥ N
2
∥φ∥

1
2
2∗ + κ

∣

∣

∣
⟨ϱn − Ψ

′
p(vn), φ⟩

∣

∣

∣

= on(1),

(4.3)

which shows that J′p(vn) → 0, as n → ∞. Thus, by (4.2) and (4.3), {vn} is a (PS)cκ sequence

for Jp.

As we suppose that v is trivial, by Lemma 3.7, there exists a sequence {yn} ⊂ RN and

δ > 0 such that

lim sup
n→∞

∫

B1(yn)
|vn|2 ≥ δ > 0.

So, we can find a sequence {zn} ⊂ ZN such that |zn − yn| <
√

N for all n ∈ N and

lim sup
n→∞

∫

B1+
√

N(zn)
|vn|2 ≥ lim sup

n→∞

∫

B1(yn)
|vn|2 ≥ δ > 0. (4.4)

Since vn → v in Ls
loc(R

N) for all s ∈ [1, 2∗) and v = 0, we may suppose that |zn| → ∞ up

to a subsequence. Denote v̂n(x) = vn(x + zn). Since {vn} is a (PS)cκ sequence for Jp, in view

of the periodicities of Vp and fp, {v̂n} is also a (PS)cκ sequence for Jp. As {vn} is bounded in
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H1(RN), it follows that {v̂n} is also bounded in H1(RN). Without loss of generality, we may

suppose that














v̂n ⇀ v̂ in H1(RN),

v̂n → v̂ in Lr
loc(R

N), ∀ r ∈ [1, 2∗),

v̂n → v̂ a.e. in RN ,

then J′p(v̂) = 0. By (4.4), going to a subsequence if necessary, there exists n1 ∈ N such that

∫

B1+
√

N(zn)
|vn|2 ≥ δ

2
> 0, ∀ n ≥ n1.

Since v̂n(x) = vn(x + zn) and v̂n → v̂ in L2
loc(R

N), we get

∫

B1+
√

N(0)
|v̂|2 = lim

n→∞

∫

B1+
√

N(0)
|v̂n|2 = lim

n→∞

∫

B1+
√

N(zn)
|vn|2 ≥ δ

2
> 0,

which shows v̂ ̸≡ 0. Besides,

0 = ⟨J′p(v̂), v̂−⟩ =
∫

RN

(

|∇v̂−|2 + V(x)
G−1(v̂−)

g(G−1(v̂−))
v̂−
)

,

which implies v̂ = v̂+ ≥ 0. Thus, by Fatou’s Lemma and ( f6), we have

cκ = lim sup
n→∞

[

Jp(v̂n)−
1

2
⟨J′p(v̂n), v̂n⟩

]

=
1

2
lim sup

n→∞

∫

RN
Vp(x)

[

|G−1(v̂n)|2 −
G−1(v̂n)

g(G−1(v̂n))
v̂n

]

+
1

N
lim sup

n→∞

∫

RN
|v̂+n |2

∗

− κ lim sup
n→∞

∫

RN

[

Fp(x, G−1(v̂n))−
1

2

fp(x, G−1(v̂n))

g(G−1(v̂n))
v̂n

]

≥ 1

2

∫

RN
Vp(x)

[

|G−1(v̂)|2 − G−1(v̂)

g(G−1(v̂))
v̂
]

+
1

N

∫

RN
|v̂+|2∗

− κ
∫

RN

[

Fp(x, G−1(v̂))− 1

2

fp(x, G−1(v̂))

g(G−1(v̂))
v̂
]

= Jp(v̂)−
1

2
⟨J′p(v̂), v̂⟩ = Jp(v̂).

Thus, v̂ is a nontrivial critical point of Jp and Jp(v̂) ≤ cκ.

Claim 4.2. v̂ > 0 in RN .

For proving the result, we adapt the same ideas used in [30]. Since v̂ is a critical point of

Jp (namely J′p(v̂) = 0), v̂ is a weak solution of the following equation

−∆v̂ = ζ, a.e. in R
N , (4.5)

where

ζ(x, v̂) = v̂2∗−1 + κ
fp(x, G−1(v̂))

g(G−1(v̂))
− Vp(x)

G−1(v̂)

g(G−1(v̂))
.
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From the conditions (V), ( f7), (3.1) and the Lemma 2.1-(ii), we get

∣

∣

∣

∣

∣

v̂2∗−1 + κ
fp(x, G−1(v̂))

g(G−1(v̂))
− Vp(x)

G−1(v̂)

g(G−1(v̂))

∣

∣

∣

∣

∣

≤ |v̂|2∗−1 + κ
(

ε|v̂|+ Cε|v̂|q−1 + π(x)|v̂|q−1
)

+ Vp(x)|v̂|

≤ C
(

|v̂|2∗−1 + |v̂|q−1 + |v̂|
)

≤ C
(

|v̂|2∗−1 + 1
)

.

(4.6)

Using a result concluded by Brézis–Kato (see [32]), it yields that ζ(x, v̂) ∈ Lr(BR(0)) for

every r ∈ [1,+∞), with R > 0 arbitrary. By standard elliptic regularity theory, we get that

v̂ ∈ W2,r(BR(0)). So, there exits some σ ∈ (0, 1) such that v̂ ∈ C1,σ
loc (R

N).

Arguing by contradiction, we assume that there exits x0 ∈ RN such that v̂(x0) = 0. Mean-

while, we have

−∆v̂(x) + b(x)v̂(x) = Vp(x)

(

v̂(x)

g(G−1(v̂(x)))
− G−1(v̂(x))

g(G−1(v̂(x)))

)

+ v̂2∗−1(x) + κ
fp(x, G−1(v̂(x)))

g(G−1(v̂(x)))
,

(4.7)

where b(x) :=
Vp(x)

g(G−1(v̂(x)))
≥ 0, for x ∈ RN . Combining Lemma 2.1-(i) and (ii), we get

v̂(x)
g(G−1(v̂(x)))

− G−1(v̂(x))
g(G−1(v̂(x)))

≥ 0. By the hypotheses of Vp(x), we know −∆v̂(x) + b(x)v̂(x) ≥ 0. In

view of (V1), b(x) is continuous in RN . Thus, applying the Maximum Principle for the weak

solution (see [18]) on an arbitrary ball centered in x0, we get that v̂ ≡ 0. This is a contradiction.

Claim 4.3. There exists a curve γ(t) : [0, 1] → H1(RN) such that















γ(0) = 0, Jp(γ(1)) < 0, v̂ ∈ γ([0, 1]),

γ(t)(x) > 0, ∀x ∈ RN , t ∈ (0, 1],

maxt∈[0,1] Jp(γ(t)) = Jp(v̂).

(4.8)

Defining the function γ̃(t)(x) = tv̂(x) for t ≥ 0, we have

Jp(γ̃(t)) = Jp(tv̂) =
1

2

∫

RN

(

|t∇v̂|2 + Vp(x)|G−1(tv̂)|2
)

− κ
∫

RN
Fp(x, G−1(tv̂))− 1

2∗

∫

RN
|tv̂|2∗

≤ t2

2

∫

RN

(

|∇v̂|2 + Vp(x)|v̂|2
)

− t2∗

2∗

∫

RN
|v̂|2∗ .

Therefore, we may choose a sufficiently large constant L > 1 such that Jp(γ̃(L)) < 0 with

γ̃(t)(x) > 0, for all (x, t) ∈ RN × (0, L]. Furthermore, since v̂ is a critical point of Jp, set

ς(t) = Jp(tv̂) and we may write

ς′(t) = t
∫

RN
|∇v̂|2 +

∫

RN
Vp(x)

G−1(tv̂)

g(G−1(tv̂))
v̂ − κ

∫

RN

fp(x, G−1(tv̂))

g(G−1(tv̂))
v̂ − t2∗−1

∫

RN
|v̂|2∗

= t

{

∫

RN
|∇v̂|2 +

∫

RN

[

Vp(x)
G−1(tv̂)

g(G−1(tv̂))tv̂
− κ

fp(x, G−1(tv̂))

g(G−1(tv̂))tv̂
− (tv̂)2∗−2

]

v̂2

}

.
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As a direct consequence of Lemma 2.1-(iv) and ( f5), fixed x ∈ RN , the function η :

(0,+∞) → R defined by

η(t) = Vp(x)
G−1(t)

g(G−1(t))t
− κ

fp(x, G−1(t))

g(G−1(t))t
− t2∗−2

is decreasing.

Since v̂ is a critical point of Jp, we have ς′(1) = 0. Moreover, ς(t) > 0 for 0 < t < 1 and

ς(t) < 0 for t > 1. Hence,

Jp(v̂) = ς(1) = max
t≥0

ς(t) = max
t≥0

Jp(tv̂) = max
t∈[0,L]

Jp(tv̂) = max
t∈[0,L]

Jp(γ̃(t)).

Let γ(t) = γ̃(tL). We can check the curve γ(t) satisfies (4.8). From J(ϕ) ≤ Jp(ϕ) for all

ϕ ∈ H1(RN), we get γ ∈ ΓJ .

Due to the fact that γ ∈ ΓJ satisfies (4.8) and the inequality W(x) ≥ 0 is strict on a subset

of positive measure in RN , we deduce that

cλ ≤ max
t∈[0,1]

J(γ(t)) := J(γ(t)) < Jp(γ(t)) ≤ max
t∈[0,1]

Jp(γ(t)) = Jp(v̂) ≤ cλ,

which is absurd.

Thus, we conclude that v is a nontrivial solution to problem (2.1). An argument similar

to Claim 4.2 shows v > 0 in RN . By Lemma 2.2, problem (1.6) possesses a positive solution

u = G−1(v).

5 Proof of Theorem 1.2

The following section gives the proof of Theorem 1.2. First, note that the lemmas in Section 3

are not dependent on the periodicity of function f , but only on its growth, meaning all of them

are also valid here. As f satisfies ( f1)–( f4), by Lemmas 3.3, 3.4 and 3.5, there is a bounded

(PS)cκ sequence for J, denoted by {vn} ⊂ H1(RN), that is,

J(vn) → cκ ≥ α > 0 and λJ(vn) → 0, as n → ∞.

Consider wn ∈ ∂J(vn) such that ∥wn∥∗ = λJ(vn) = on(1) and wn = Q′(vn) − ϱn, where

ϱn ∈ ∂Ψ(vn). Without loss of generality, we may suppose that vn ⇀ v in H1(RN). If v is

nontrivial, then Theorem 1.2 is proved. Indeed, repeating the analogous arguments as in the

initial steps of the proof of Theorem 1.1, we can instantly obtain that v = v+ ≥ 0 and satisfies

−∆v + Vp(x)
G−1(v)

g(G−1(v))
= ϱ + v2∗−1 a.e. R

N ,

that is,

−∆v + Vp(x)
G−1(v)

g(G−1(v))
− v2∗−1 ∈

[

f (x, G−1(v))

g(G−1(v))
,

f (x, G−1(v))

g(G−1(v))

]

a.e. in R
N .

By the argument similar to the one used in Claim 4.2, we can show v > 0. Then, u = G−1(v)

will be a positive solution of problem (1.8).

Hence, in order to prove Theorem 1.2, it suffices to assume that v = 0.
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In view of Lemma 3.6, it follows that there exists κ∗ such that cκ <
1
N S

N
2 for all κ > κ∗.

Furthermore, by Lemma (3.8), there exists a sequence {yn} ⊂ RN and δ > 0 such that

lim sup
n→∞

∫

B1(yn)
|vn|2 ≥ δ > 0, for all n ∈ N. (5.1)

Since vn → v in L2
loc(R

N) and v = 0, we may suppose that |yn| → ∞ up to a subsequence.

As in the proof of Theorem 1.1, without loss of generality, we can suppose that {yn} ⊂ ZN .

Defining ṽn(x) = vn(x + yn), we get ∥ṽn∥ = ∥vn∥. Then, taking a subsequence if necessary,

there exists ṽ ∈ H1(RN) such that














ṽn ⇀ ṽ in H1(RN),

ṽn → ṽ in Lr
loc(R

N), ∀ r ∈ [1, 2∗),

ṽn → ṽ a.e. in RN .

The fact that
∫

B1(0)
|ṽ|2 = lim

n→∞

∫

B1(0)
|ṽn|2 = lim

n→∞

∫

B1(yn)
|vn|2,

and (5.1) imply that ṽ ̸= 0.

Now, we claim ṽ is a nontrivial solution of periodic problem.

First, we note that ϱn ∈ ∂Ψ(vn). By the definition of ∂Ψ(vn),

Ψ
◦(vn, ψ) ≥ ⟨ϱn, ψ⟩, ∀ψ ∈ LΦ(RN).

Since H1(RN) →֒ LΦ(RN) is continuous, a simple change variable implies

Ψ
◦(vn; ψ(· − yn)) ≥ ⟨ϱn, ψ(· − yn)⟩

=
∫

RN
ϱnψ(· − yn)

=
∫

RN
ϱn(·+ yn)ψ

= ⟨ϱ̃n, ψ⟩,

(5.2)

where ϱ̃n = ϱn(·+ yn). Meanwhile, we can easily verify

Ψ(vn + h + tψ(· − yn)) = Ψ(ṽn + h(·+ yn) + tψ) and Ψ(vn + h) = Ψ(ṽn + h(·+ yn)),

where h ∈ H1(RN) and t ∈ R. Thus, directly calculations demonstrate

Ψ
◦(vn + ψ(· − yn)) = Ψ

◦(ṽn + ψ). (5.3)

By (5.2) and (5.3), we get

Ψ
◦(ṽn + ψ) ≥ ⟨ϱ̃n, ψ⟩, ∀ψ ∈ H1(RN),

which shows ϱ̃n ∈ ∂Ψ(ṽn). Furthermore, for all ψ ∈ H1(RN), we have

⟨wn, ψ(· − yn)⟩ = ⟨Q′(vn), ψ(· − yn)⟩ − ⟨ϱn, ψ(· − yn)⟩
= ⟨Q′(ṽn), ψ⟩ − ⟨ϱ̃n, ψ⟩.

Setting ⟨wn, ψ(· − yn)⟩ = ⟨w̃n, ψ⟩, we assert

w̃n = Q′(ṽn)− ϱ̃n. (5.4)
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Claim 5.1. w̃n ∈ ∂J(ṽn).

Similarly, by change of variables, we get

J◦(vn; ψ(· − yn)) = J◦(ṽn; ψ). (5.5)

And as wn ∈ ∂J(vn), then

J◦(vn; ψ(· − yn)) ≥ ⟨wn, ψ(· − yn)⟩ = ⟨w̃n, ψ⟩, ∀ψ ∈ H1(RN). (5.6)

Combining (5.5) and (5.6), we have

J◦(ṽn; ψ) ≥ ⟨w̃n, ψ⟩, ∀ψ ∈ H1(RN),

which shows w̃n ∈ ∂J(ṽn).

Moreover, by definition of w̃n, we get

∥w̃n∥∗ = sup
ψ∈H1(RN)

|⟨w̃n, ψ⟩|
∥ψ∥ ≤ ∥wn∥∗, ∀n ∈ N.

Therefore,

0 ≤ ∥w̃n∥∗ ≤ ∥wn∥∗ = λJ(vn) = on(1). (5.7)

By (5.4), we get

⟨w̃n, ψ⟩ = ⟨Q′(ṽn), ψ⟩ − ⟨ϱ̃n, ψ⟩, ∀ψ ∈ H1(RN). (5.8)

From (5.7) and (5.8), we obtain

⟨ϱ̃n, ψ⟩ = ⟨Q′(ṽn), ψ⟩ − ⟨w̃n, ψ⟩ → ⟨Q′(ṽ), ψ⟩, as n → ∞,

that is, ϱ̃n
∗
⇀ Q′(ṽ) in (H1(RN))∗.

This limit together with Lemma 3.2 shows that Q′(ṽ) ∈ ∂Ψ(v). Thereby, Q′(ṽ) = ϱ̃ ∈
∂Ψ(ṽ), and so,

∫

RN

(

∇ṽ∇ψ + Vp(x)
G−1(ṽ)

g(G−1(ṽ))
ψ

)

−
∫

RN
(ṽ+)2∗−1ψ =

∫

RN
ϱ̃ψ, ∀ ψ ∈ H1(RN),

where

ϱ̃(x) ∈
[

f (x, G−1(ṽ(x)))

g(G−1(ṽ(x)))
,

f (x, G−1(ṽ(x)))

g(G−1(ṽ(x)))

]

a.e. in R
N .

Repeating the analogous steps of the proof of Theorem 1.1, ṽ = ṽ+ ≥ 0 and satisfies

−∆ṽ + Vp(x)
G−1(ṽ)

g(G−1(ṽ))
= ϱ̃ + ṽ2∗−1 a.e. R

N ,

that is,

−∆ṽ + Vp(x)
G−1(ṽ)

g(G−1(ṽ))
− ṽ2∗−1 ∈

[

f (x, G−1(ṽ))

g(G−1(ṽ))
,

f (x, G−1(ṽ))

g(G−1(ṽ))

]

a.e. in R
N .

Similarly, we also have ṽ > 0 in RN by the analogous argument used in Claim 4.2. Since (1.8)

is only the periodic case for (1.6), Lemma 2.2 is also valid. Hence, we can see that u = G−1(ṽ)

will be a positive solution of problem (1.8).
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Abstract. We are concerned with the principal eigenvalue of





−∆pu = λθ1 φp(v), x ∈ Ω,

−∆pv = λθ2 φp(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω

(P)

and the global structure of positive solutions for the system





−∆pu = λ f (v), x ∈ Ω,

−∆pv = λg(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(Q)

where φp(s) = |s|p−2s, ∆ps = div(|∇s|p−2∇s), λ > 0 is a parameter, Ω ⊂ R
N , N > 2,

is a bounded domain with smooth boundary ∂Ω, f , g : R → (0, ∞) are continuous
functions with p-superlinear growth at infinity. We obtain the principal eigenvalue of
(P) by using a nonlinear Krein–Rutman theorem and the unbounded branch of positive
solutions for (Q) via bifurcation technology.
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1 Introduction

In this paper, we are concerned with the global structure of positive solutions for the
system 




−∆pu = λ f (v), x ∈ Ω,

−∆pv = λg(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(1.1)
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where ∆ps = div(|∇s|p−2∇s), λ > 0 is a parameter, Ω ⊂ R
N , N > 2, is a bounded domain

with smooth boundary ∂Ω, f , g : R → (0, ∞) are continuous functions with p-superlinear
growth at infinity.

The bifurcation behavior for p-Laplacian scalar equation has been investigated by many
authors, see [11, 12, 22, 23, 30] for finite interval (N = 1) and [10, 18] for bounded domain
(N > 1). For example, in [18], Fleckinger and Reichel established the global solution branches
for the problem {

−∆pu = λ(1 + uq), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)

where λ ⩾ 0 and q > p − 1. Let p∗ := Np/(N − p) if N > p and p∗ := ∞ if n ⩽ p.
They obtained, in supercritical case, that is, q > p∗ − 1, then there exists an unbounded
continuum C + ⊂ [0,+∞) × C1

0(Ω̄) of solutions of (1.2). Moreover, in subcritical case, that
is, q ∈ (p − 1, p∗ − 1), then C + is bounded in the λ-direction and becomes unbounded near
λ = 0 under some additional conditions.

In [8], Chhetri and Girg studied global structure of the semilinear system




−∆u = λ f (v), x ∈ Ω,

−∆v = λg(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(1.3)

they make the following assumptions:

(H1) f , g ∈ C(R, (0, ∞)) are continuous and non-decreasing functions;

(C2) f and g satisfy

lim
s→+∞

f (s)

s
= +∞, lim

s→+∞

g(s)

s
= +∞.

Under (H1) and (C2), they obtained the global behavior of positive solutions set of (1.3) by
using bifurcation technology. To be more precise, in supercritical case, they obtained a com-
ponent of positive solutions for (1.3), emanating from the origin, which is bounded in positive
λ-direction. If in addition, Ω is convex, and f , g ∈ C1 satisfy certain subcriticality conditions,
they showed that the component must bifurcate from infinity at λ = 0.

As for p-Laplacian system (1.1), the first result of which we are aware concerning is the
one by Hai and Shivaji in [20], by means of sub- and supersolutions, it was proved that (1.1)
has a large positive solution (u, v) for λ > λ0 with some p-sublinear conditions for f and g.
Quite recently, there are some authors concerned with the positive solutions for p-Laplacian
systems, refer to [9, 15, 17, 26, 27, 29] and references therein. But all of them only obtain the
positive solution and do not provide any information about the global structure of positive
solutions set.

The global structure is very useful for computing the numerical solutions of differential
equations as it can be used to guide numerical work. For example, it can be used to esti-
mate the u-interval in advance in applying the finite difference method and when applying
the shooting method, it can be used to restrict the range of initial values that need to be
considered.

As we all know, if we want to get global structure of positive solutions for (1.1) by using bi-
furcation technology, it is necessary to investigate the eigenvalue of corresponding eigenvalue



Global bifurcation for p-Laplacian system 3

problem. However, to the best of our knowledge, the spectral theory of the corresponding
p-Laplacian system has not yet been established. In fact, for p = 2, the principal eigenvalue
ν1 of linear system corresponding to (1.3) can be directly expressed as

ν1 = η̂1/
√

θ1θ2,

see [7, Prop. B.1], where η̂1 is the principal eigenvalue of scalar equation. However, this
result do not hold for p ̸= 2 because p-Laplacian operator is neither self-adjoint linear nor
symmetric. In order to overcome this, we introduce a nonlinear version of Krein–Rutman
theorem established by Arapostathis [2]. Let φp(s) = |s|p−2s. By using the nonlinear Krein–
Rutman theorem, we obtain that





−∆pu = λθ1φp(v), x ∈ Ω,

−∆pv = λθ2 φp(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(1.4)

has a positive simple eigenvalue, expressed as µ1, having the smallest absolute value, that is
to say, µ1 is the principal eigenvalue of (1.4).

The additional difficulty is the bifurcation results in dealing with semilinear boundary
value problems [8] cannot be applied directly to quasilinear problems. Hence, we use the
jumps of the index of the trivial solution to obtain a branch of nontrivial solutions. In addition
to that, since ∆p is asymmetric, the proof used in Theorem 1.1 of [8] do not applicable to (1.1).
To this end, we adopt a new approach, with the help of sub- and supersolutions, to prove the
nonexistence of solution for (1.1).

Let X = C(Ω̄) × C(Ω̄), it is easy to know X is a Banach space endowed with the norm
∥(u1, u2)∥ = ∥u1∥C + ∥u2∥C, where ∥u∥C is equipped with the supremum norm. By a solution
of (1.1), we mean a (λ, (u, v)) that solves (1.1) in the weak sense, that is, (u, v) ∈ E, where
E := W

1,p
0 (Ω)× W

1,p
0 (Ω), and satisfies

∫

Ω

|∇u|p−2∇u∇ωdx = λ
∫

Ω

f (v)ωdx,
∫

Ω

|v|p−2∇v∇ϖdx = λ
∫

Ω

g(u)ϖdx

for all (ω, ϖ) ∈ E. We denote Π of the form

Π = {(λ, (u, v)) ∈ R × E | (λ, (u, v)) solution of (1.1)}.

If (λ, (u, v)) ∈ Π and u > 0, v > 0, then we say that (λ, (u, v)) is a positive solution of (1.1).
By a continuum of solutions of (1.1) we mean a subset K ⊂ Π which is closed and connected.
By a component of solutions set Π we mean a continuum which is maximal with respect to
inclusion ordering. We say that λ∞ is a bifurcation point from infinity if the solution set Π

contains a sequence (λn, (un, vn)) such that λn → λ∞ and ∥(un, vn)∥ → +∞ as n → +∞. We
say that a continuum C bifurcates from infinity at λ ∈ R if there exists a sequence of solutions
(λn, (un, vn)) ∈ C such that λn → λ∞ and ∥(un, vn)∥ → +∞ as n → +∞.

Let η1 > 0 be the principal eigenvalue of the problem
{
−∆pu = λφp(u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.5)
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by [1], η1 is simple, isolated, and the unique positive eigenvalue having a nonnegative eigen-
function χ1.

Further we assume that:

(H2) f and g satisfy

lim
s→+∞

f (s)

φp(s)
= +∞, lim

s→+∞

g(s)

φp(s)
= +∞.

We first state a nonexistence result in Theorem 1.1, which holds under weaker assumptions
than (H1)–(H2). Theorem 1.2 gives a existence result when f and g have supercritical growth
at infinite. Specifically, there is an unbounded branch C of positive solutions for (1.1), bifurcat-
ing from infinity and going through trivial solution, which is bounded in positive λ-direction.
Moreover, when Ω is convex with C2 boundary and p ∈ (1, 2), f and g satisfy certain subcrit-
ical growth restrictions, Theorem 1.3 shows that λ = 0 is the unique bifurcation point from
infinity for the continuum C obtained in Theorem 1.2.

Theorem 1.1. Let m > 0, and suppose f (s), g(s) ⩾ mφp(s) for all s > 0, then (1.1) has no solution

for λ ⩾ λ̄ := η1/m.

Theorem 1.2 (Supercritical case). Let (H1)–(H2) hold. Then there exists an unbounded component

C ⊂ Π satisfying the following:

(a) (λ, (u, v)) ∈ C is positive whenever λ ∈ (0, λ̄);

(b) (0,(0,0)) is the only element belonging to C with λ = 0;

(c) Projλ∈[0,+∞) C
def
= {λ ∈ [0,+∞) | ∃(u, v) ∈ E with (λ, (u, v)) ∈ C } ⊂ [0, λ̄);

(d) any sequence (λn, (un, vn)) ∈ C such that ∥(un, vn)∥ → +∞ as n → +∞ and λn > 0 must

satisfy λn → 0+ as n → +∞.

Theorem 1.3 (Subcritical case). Assume that (H1)–(H2) hold. Let p ∈ (1, 2), N > 2 and Ω be

convex with C2 boundary, f , g satisfy

lim
s→+∞

f (s)

sq1
= C, lim

s→+∞

g(s)

sq2
= D, (1.6)

for some positive constants C, D, and q1q2 > (p − 1)2 satisfy

max
{

p(q1 + p − 1)
q1q2 − (p − 1)2 −

N − p

p − 1
,

p(q2 + p − 1)
q1q2 − (p − 1)2 −

N − p

p − 1

}
⩾ 0.

Then µ1 = 0 is the unique bifurcation point from infinity, for the continuum C ⊂ Π from Theorem 1.2.

Corollary 1.4. We may obtain the number of positive solutions of (1.1) from Theorem 1.3:

(i) (1.1) has no positive solution for λ ⩾ λ̄;

(ii) there exists λ < λ̄ such that (1.1) has at least two positive solutions for each λ ∈ (0, λ).

Remark 1.5. It is worth remarking that Theorem 1.1 and Theorem 1.2 are direct generalizations
of the results in [8]. However, Theorem 1.3 only holds for p ∈ (1, 2) because a priori estimates

established in [4] is not available to p = 2.
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2 Preliminaries

Next we state some notations from [2].
An ordered Banach space is a real Banach space W with a cone K. When the interior of K,

denoted as intK, is nonempty, we call W a strongly ordered Banach space. As usual, we write
x ⪯ y if y − x ∈ K. A continuous map T : W → W is

• order-preserving or increasing if x ⪯ y ⇒ T(x) ⪯ T(y);

• homogeneous of degree one, or 1-homogeneous, if T(tx) = tT(x) for all t ⩾ 0.

Lemma 2.1 ([4, Lemma 1.1]). Let Ω ⊂ R
N be a bounded domain of class C1,β for some β ∈ (0, 1)

and g ∈ L∞(Ω). Then the problem

{∫
Ω
|∇u|p−2∇u∇ωdx = λ

∫
Ω

f (u)ωdx, ∀ω ∈ C∞
c (Ω),

u ∈ W
1,p
0 (Ω), p > 1

(2.1)

has a unique solution u ∈ C1
0(Ω̄). Moreover, if we define the operator K : L∞(Ω) → C1

0(Ω̄) : g 7→ u

where u is the unique solution of (2.1), then K is continuous, compact and order-preserving.

Now we give a definition of weak sub- and supersolutions of (1.1), which is defined by [20].

Definition 2.2. We say that (αu, αv) is a weak subsolution of problem (1.1) if (αu, αv) satisfies
∫

Ω

|∇αu|
p−2∇αu∇ωdx ⩽ λ

∫

Ω

f (αv)ωdx,
∫

Ω

|∇αv|
p−2∇αv∇ωdx ⩽ λ

∫

Ω

g(αu)ωdx

for all ω ∈ W
1,p
0 (Ω) with ω ⩾ 0. Similarly, we say that (βu, βv) is a weak supersolution of

problem (1.1) if (βu, βv) satisfies
∫

Ω

|∇βu|
p−2∇βu∇ωdx ⩾ λ

∫

Ω

f (βv)ωdx,
∫

Ω

|∇βv|
p−2∇βv∇ωdx ⩾ λ

∫

Ω

f (βu)ωdx

for all ω ∈ W
1,p
0 (Ω) with ω ⩾ 0.

Proposition 2.3 ([34, Theorem 14.D]). Let Y be a Banach space with Y ̸= {0} and let F : Y → Y be

compact. Then the solution component C ⊂ R × Y of the equation

x = λF(x)

which contains (0, 0) ∈ R × Y is unbounded as are both subsets

C±
def
= C∩ (R± × Y),

where R+
def
= [0, ∞) and R−

def
= (−∞, 0].

Definition 2.4 ([33]). Let Z be a Banach space and {Cn | n = 1, 2, · · · } be a certain infinite
collection of subset of Z. Then the superior limit of D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ Z | ∃{ni} ⊂ N and xni
∈ Cni

, such that xni
→ x}.
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Lemma 2.5 ([33]). Let Z be a Banach space with the norm ∥ · ∥Z, let {Cn} be a family of closed subsets

of Z. Assume that:

(i) there exist zn ∈ Cn, n = 1, 2, . . . , and z∗ ∈ Z, such that zn → z∗;

(ii) dn = sup{∥x∥Z | x ∈ Cn} = ∞;

(iii) for every R > 0, (
∞

∪
n=1

Cn) ∩ BR is a relatively compact set of Z, where

BR = {x ∈ Z | ∥x∥Z ⩽ R},

then there exists an unbounded component C in D and z∗ ∈ C.

The following nonlinear version of the Krein–Rutman theorem is firstly established by
Mahadevan [25] and corrected by Arapostathis [2].

Let

σ+(T) := {λ > 0 : T(x) = λx, x ∈ K \ {0}}.

Consider the following hypotheses:

(B1) If x ∈ ∂K \ {0}, then x − βT(x) ̸∈ K for all β > 0.

(B2) If x − y ∈ ∂K \ {0}, then x − y − β(T(x)− T(y)) ̸∈ K for all β > 0.

Lemma 2.6 ([2, Theorem 3]). Let W be strongly ordered, and T : K → K be an order-preserving,

1-homogeneous map with σ+(T) ̸= ∅.

(i) If (B1) holds, then T(int K) ⊂ int K, σ+(T) is a singleton, and all eigenvectors lie in int K.

(ii) If (B2) holds, then the unique eigenvalue in σ+(T) is simple.

3 Eigenvalue problems

Consider the eigenvalue of problem




−∆pu = λθ1φp(v), x ∈ Ω,

−∆pv = λθ2 φp(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(3.1)

where θ1, θ2 > 0, then (3.1) is equivalent to

−∆p

(
u

v

)
=

(
0 θ1

θ2 0

)(
φp(u)

φp(v)

)
,

that is, (
u

v

)
= −∆

−1
p

(
0 θ1

θ2 0

)(
φp(u)

φp(v)

)
.

It is equivalent to

U = −∆
−1
p Aφp(U) =: HU,
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where

U =

(
u

v

)
, A =

(
0 θ1

θ2 0

)
.

Obviously, H is 1-homogeneous by the property of φp and φ−1
p . Lemma 2.1 shows H is

a continuous, positively compact operator, and by the strictly increasing property of φp and
(−∆p)−1 we know that H is strictly increasing.

Taking the cone to be

P =

{
w ∈ C1

0(Ω) : w ⩾ 0 in Ω,
∂w

∂n
⩽ 0 on ∂Ω

}
.

Lemma 3.1 ([32, Lemma 2.2.1]). Let u, v ∈ C1(Ω) with u|∂Ω = 0, v|∂Ω ⩾ 0, u > 0 in Ω, and

∂nu|∂Ω < 0. Then there exists a positive constant ε > 0 such that u + εv > 0 in Ω.

By Lemma 3.1, the interior of P can be expressed as

int P =

{
w ∈ C1

0(Ω) : w > 0 in Ω,
∂w

∂n
< 0 on ∂Ω

}
.

Let
K = P × P.

Obviously, (B1) can be obtained by letting y = 0 in (B2), therefore, we only show that
H satisfies (B2). In fact, since K is a closed set, if we choose V1, V2 ∈ K such that V1 −

V2 ∈ ∂K \ {0}, then V1 − V2 ∈ K, that is to say, V1 ⪰ V2. The strong maximum principle
shows H(V1), H(V2) ∈ K. In addition, by the property that H is strictly increasing we have
H(V1) ⪰ H(V2), this means H(V1) − H(V2) ∈ K with H(V1) − H(V2) ̸= {0}. On the other
hand, V1 − V2 ∈ ∂K \ {0}, then any neighborhood of V1 − V2 contains some points that do not
belong to K, this means

V1 − V2 − β(H(V1)− H(V2)) ̸∈ K

for all β > 0.

Lemma 3.2. System (3.1) has a positive and simple eigenvalue µ1 > 0 with a eigenfunction U1 =

(ϕ1, ψ1) > 0.

Proof. By Lemma 2.1, H is compact, then σ+(T) ̸= ∅. By (i) of Lemma 2.6, σ+(T) is a singleton,
denoted by λ1, and all eigenvectors lie in int K, that is, λ1 is unique. Moreover, (B2) shows
λ1 is simple. Therefore, H has a unique positive eigenvector (eigenfunction) U1 = (ϕ1, ψ1),
which satisfies

HU1 = λ1U1,

Subsequently, µ1 = 1/λ1 is a simple, isolated and positive eigenvalue of (1.4).

4 Auxiliary results

Proof of Theorem 1.1. Suppose that there is a sequence of {λn} such that λn → ∞ as n → ∞,
and (1.1) has a positive solution (un, vn) when λ = λn. Then there is a λn0 > 0 such that
λn >

η1
m for all n > n0. We can choose a suitable ϵ0 > 0 such that λ∗ = η1 + ϵ0 and

λnm > λ∗, n > n0.
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Then
∫

Ω

|∇un|
p−2∇un∇ωdx − λ∗

∫

Ω

φp(vn)ωdx

= λn

∫

Ω

f (vn)ωdx − λ∗
∫

Ω

φp(vn)ωdx

⩾ λn

∫

Ω

mφp(vn)ωdx − λ∗
∫

Ω

φp(vn)ωdx

> 0.

Similarly,

∫

Ω

|∇vn|
p−2∇vn∇ωdx − λ∗

∫

Ω

φp(un)ωdx

= λn

∫

Ω

g(un)ωdx − λ∗
∫

Ω

φp(un)ωdx

⩾ λn

∫

Ω

mφp(un)ωdx − λ∗
∫

Ω

φp(un)ωdx

> 0.

That is, (un, vn) is a weak supersolution of the problem





−∆pu = (η1 + ϵ0)φp(v), x ∈ Ω,

−∆pv = (η1 + ϵ0)φp(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω.

(4.1)

On the other hand t(χ1, χ1), t > 0, is a subsolution of (4.1). Letting t > 0 be such that
t(χ1, χ1) ⩽ (un, vn), then by the method of sub- and super-solutions, for every n > n0, (4.1)
has a positive solution (xn, yn). (The proof of the existence of (xn, yn) have been showed,
see [16, 20] for details. We omit it here.) On the other hand, since ϵ0 > 0 is arbitrary, this
contradicts with the fact that η1 is isolated.

Now, consider an asymptotically positively homogeneous system of the form





−∆pu = λθ1φp(v+) + λ f̃ (v), x ∈ Ω,

−∆pv = λθ2φp(u+) + λg̃(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(4.2)

where x+
def
= max{0, x} is the positive part of x, and θ1, θ2 are defined above. The nonlinear

perturbations f̃ , g̃ : R → R satisfy the following assumptions:

(A1) f̃ and g̃ are continuous, non-negative, and bounded functions;

(A2) θ1 φp(y+) + f̃ (y) > 0, θ2φp(x+) + g̃(x) > 0 for all x, y ∈ R.

Let
T = {(λ, (u, v)) ∈ R × E | (λ, (u, v)) solution of (4.2)},

then we prove the following bifurcation result.
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Proposition 4.1. If µ∞ is a bifurcation point from infinity for (4.2), then µ∞ = µ1. Moreover, for

any sequence (λj, (uj, vj)) ∈ R × E with λj → µ1 and ∥(uj, vj)∥ → +∞ as j → +∞, there exists a

subsequence (λjk , (ujk , vjk)) such that

lim
jk→+∞

(ujk , vjk)

∥(ujk , vjk)∥
=

(ϕ1, ψ1)

∥(ϕ1, ψ1)∥
,

where the convergence is in E.

Proof. The operator equation corresponding to the system (4.2) is

(
u

v

)
= λ(−∆

−1
p )

(
θ1 φp(v+) + f̃ (v)

θ2φp(u+) + g̃(u)

)
. (4.3)

Let (λj, (uj, vj)) ∈ R × E be a solution of (4.2) such that ∥(uj, vj)∥ → +∞ and λj → µ∞.

Then (ûj, v̂j) =
(uj,vj)

∥(uj,vj)∥
satisfies

ûj = λj(−∆
−1
p )

(
θ1φp(v̂

+
j ) +

f̃ (vj)

∥(uj, vj)∥

)
, (4.4)

v̂j = λj(−∆
−1
p )

(
θ2φp(û

+
j ) +

g̃(uj)

∥(uj, vj)∥

)
. (4.5)

It then follows from (A1) that the right hand side of (4.4) and (4.5) are bounded in X (in-
dependent of j). Hence ∥ûj∥C1 and ∥v̂j∥C1 are bounded (independent of j), and there exists
subsequence of ûj and v̂j converging to û and v̂ and satisfying





−∆pû = µ∞θ1φp(v̂+), x ∈ Ω,

−∆pv̂ = µ∞θ2φp(û+), x ∈ Ω,

û = 0 = v̂, x ∈ ∂Ω.

(4.6)

Suppose µ∞ ⩽ 0. Since û+, v̂+ ⩾ 0, it follows by applying the maximum principle to (4.6) that
û ≡ 0 and repeating the same argument we get v̂ ≡ 0 as well. This leads to a contradiction
since ∥(û, v̂)∥ = 1.

For µ∞ > 0, we distinguish two cases: the first case is v̂+ ≡ 0 and û+ ≡ 0, and the second
is one of v̂+ ̸≡ 0 or û+ ̸≡ 0 holding. In the first case, we get û ≡ 0, a contradiction as before.
In the other case, we get û > 0 from maximum principle and v̂ > 0 by repeating the same
argument. Thus µ∞ and û, v̂ > 0 satisfies the eigenvalue problem (3.1).

However, we already discussed that (3.1) has precisely one eigenvalue µ1 with componen-
twise positive eigenfunction (ϕ1, ψ1). Therefore, it must be that µ∞ = µ1 and

(û, v̂) =
(ϕ1, ψ1)

∥(ϕ1, ψ1)∥
.

This concludes the proof of Proposition 4.1.

Lemma 4.2. Let (A1)–(A2) hold and Λ be a compact interval with µ1 /∈ Λ. Then there is a MΛ > 0
such that all solutions (λ, (u, v)) of (4.2) with λ ∈ Λ must satisfy ∥(u, v)∥ < MΛ.
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Proof. Assume to the contrary that there exist sequences λj ∈ Λ and (uj, vj) ∈ E satisfying
(4.2) with ∥(uj, vj)∥ → ∞ as j → ∞. Then there is a subsequence (λjk , (ujk , vjk)) of (λj, (uj, vj))

satisfying λjk → λ̃ and ∥(ujk , vjk)∥ → ∞. Dividing (4.2) by ∥(ujk , vjk)∥, then the same argument
as in the proof of Proposition 4.1, we obtain that λ̃ = µ1 ∈ Λ, which contradicts µ1 /∈ Λ.

Lemma 4.3. Let (A1)–(A2) hold, then for τ ∈ [0, 1], the system




−∆pu = λθ1φp(v+) + λ f̃ (v) + τ∥(u, v)∥p, x ∈ Ω,

−∆pv = λθ2 φp(u+) + λg̃(u) + τ∥(u, v)∥p, x ∈ Ω,

u = 0 = v, x ∈ ∂Ω

(4.7)

has no solution for λ > ν := µ1/ min{θ1, θ2}.

Proof. Suppose that there is a sequence of {λn} such that λn → ∞ as n → ∞, and (4.7) has a
positive solution (un, vn) when λ = λn. Then there is a λn0 > 0 such that λn >

µ1
min{θ1,θ2}

for
all n > n0. We can choose a suitable ϵ0 > 0 such that µ∗ = µ1 + ϵ0 and

λn min{θ1, θ2} > µ∗, n > n0.

Since (un, vn) is the positive solution of (4.7), then u+
n = un, v+n = vn, and

∫

Ω

|∇un|
p−2∇un∇ωdx − µ∗

∫

Ω

θ1φp(vn)ωdx

= λn

∫

Ω

θ1 φp(v
+
n )ωdx + λn

∫

Ω

f̃ (vn)ωdx +
∫

Ω

τ∥(un, vn)∥
pωdx − µ∗

∫

Ω

φp(vn)ωdx

= λn

∫

Ω

θ1 φp(vn)ωdx − µ∗
∫

Ω

φp(vn)ωdx + λn

∫

Ω

f̃ (vn)ωdx +
∫

Ω

τ∥(un, vn)∥
pωdx

> λn

∫

Ω

f̃ (vn)ωdx +
∫

Ω

τ∥(un, vn)∥
pωdx

> 0.

Similarly,
∫

Ω

|∇vn|
p−2∇vn∇ωdx − µ∗

∫

Ω

θ2 φp(un)ωdx

= λn

∫

Ω

θ2φp(u
+
n )ωdx + λn

∫

Ω

g̃(un)ωdx +
∫

Ω

τ∥(un, vn)∥
pωdx − µ∗

∫

Ω

θ2 φp(un)ωdx

= λn

∫

Ω

θ2 φp(un)ωdx − µ∗
∫

Ω

θ2φp(un)ωdx + λn

∫

Ω

g̃(un)ωdx +
∫

Ω

τ∥(un, vn)∥
pωdx

> λn

∫

Ω

g̃(vn)ωdx +
∫

Ω

τ∥(un, vn)∥
pωdx

> 0.

That is, (un, vn) is a weak supersolution of the problem




−∆pu = (µ1 + ϵ0)θ1φp(v), x ∈ Ω,

−∆pv = (µ1 + ϵ0)θ2φp(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω.

(4.8)

On the other hand t(ϕ1, ψ1), t > 0, is a subsolution of (4.8). Letting t > 0 be such that
t(ϕ1, ψ1) ⩽ (un, vn), then the same argument with the proof of Theorem 1.1 we obtain a
contradiction with that µ1 is isolated.
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Define the operator L : X → X by

Q1

(
u

v

)
=

(
θ1 φp(v+)

θ2φp(u+)

)

and

Tλ(u, v) := (−∆
−1
p ) ◦ λQ1(u, v).

It is well known that Tλ is completely continuous in X. By Lemma 3.2, µ1 is a isolated eigen-
value of (3.1), therefore, there is no nontrivial solution of (3.1) in λ ∈ (µ1 − δ, µ1)∪ (µ1, µ1 + δ)

for some δ > 0, that is, Tλ has no fixed point in ∂Br(0) for arbitrary r-ball Br(0) when λ ∈

(µ1 − δ, µ1) ∪ (µ1, µ1 + δ). Subsequently, the Leray–Schauder degree deg(I − Tλ, Br(0), (0, 0))
is well defined arbitrary r-ball Br(0) with λ ∈ (µ1 − δ) ∪ (µ1, µ1 + δ).

Define the operator Q : X → X by

Q

(
u

v

)
= Q1

(
u

v

)
+ Q2

(
u

v

)
=

(
θ1φp(v+)

θ2 φp(u+)

)
+

(
f̃ (v)

g̃(u)

)
.

Then it is clear that Q is continuous operator and problem (4.2) can be equivalently written as

(u, v) = (−∆
−1
p ) ◦ λQ(u, v) := Fλ(u, v).

Since −∆−1
p : X → X is compact, then Fλ : X → X is completely continuous. Let

Υ
p
λ(u, v) = (u, v)− (−∆

−1
p ) ◦ Fλ(τ, u, v) = (u, v)− (−∆

−1
p ) ◦ λ(Q1(u, v) + Q2(u, v)).

By (A1), f̃ , g̃ are bounded, then we have Q2(u, v) → (0, 0) for (u, v) large enough, that
is, Υ

p
λ(u, v) close to Tλ(u, v) when (u, v) → (+∞,+∞), and subsequently, Υ

p
λ(u, v) has no

nontrivial solution when λ ∈ (µ1 − δ) ∪ (µ1, µ1 + δ). Let (y, z) = (u, v)/∥(u, v)∥p, then
(u, v) → (+∞,+∞) is equivalent to (y, z) → (0, 0).

Ψ
p
λ(y, z) =

Υ
p
λ(u, v)

∥(u, v)∥p
= (y, z)− ∥(y, z)∥pFλ

(
(y, z)

∥(y, z)∥p

)
(4.9)

= (y, z)− ∥(y, z)∥p(−∆
−1
p ) ◦ λ

[
Q1

(
(y, z)

∥(y, z)∥p

)
+ Q2

(
(y, z)

∥(y, z)∥p

)]
.

Obviously, Ψ
p
λ(y, z) = (0, 0) has no nontrivial solution when (y, z) small enough, a similar

argument with Tλ we have Leray–Schauder degree deg(Ψp
λ, Br(0), (0, 0)) is well defined with

r small enough for λ ∈ (µ1 − δ, µ1) ∪ (µ1, µ1 + δ).

Next we will show µ1 is a bifurcation point, defined in Section 1, from infinity of (4.2). By
Rabinowitz [28], it is equivalent to show that

deg(Ψp
r1 , Br(0), (0, 0)) ̸= deg(Ψp

r2 , Br(0), (0, 0)),

where r1 ∈ [µ1 − δ, µ1), r2 ∈ (µ1, µ1 + δ].

Lemma 4.4. µ1 is a bifurcation point from infinity of problem (4.2).
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Proof. By (4.9), one has that µ1 is a bifurcation from infinity for (4.2) if and only if it is a
bifurcation from the trivial solution for Ψ

p
λ(u, v) = 0. Next we show

deg(Ψp
λ, Br(0), (0, 0)) = 1, λ ∈ [µ1 − δ, µ1)

and
deg(Ψp

λ, Br(0), (0, 0)) = 0, λ ∈ (µ1, µ1 + δ].

Suppose (µ1, (0, 0)) is not a bifurcation point of (4.2), then there are δ, ρ0 > 0 such that for
|λ − µ1| ⩽ δ and 0 < ρ < ρ0, that is, equation

(y, z)−F (λ, y, z) ̸= 0

for ∥(y, z)∥X = ρ, where

F (λ, y, z) := ∥(y, z)∥pFλ

(
(y, z)

∥(y, z)∥p

)
.

Consider the homotopy problem

(y, z)− τF (λ, y, z) ̸= 0,

where τ ∈ [0, 1], then by the invariance of the degree of the compact, the same argument with
[5, Corollary 3.2], we have

deg(I −F (λ, y, z), Bρ(0), (0, 0)) = deg(I, Bρ(0), (0, 0)) = 1 (4.10)

for λ ∈ [µ1 − δ, µ1).
Next we show, for λ ∈ (µ1, µ1 + δ],

deg(Ψp
λ(y, z), Bρ(0), (0, 0)) = 0.

Let λ̌ = max{µ1 + δ, ν}. Define

Φ(λ, (y, z)) = Ψ
p
λ(y, z)

and consider the following one parameter family of operators

Φ((1 − σ)(µ1 + δ) + σλ̌, (y, z)), σ ∈ [0, 1].

Obviously,

(1 − σ)(µ1 + δ) + σλ̌ ∈ [µ1 + δ, λ̌].

By Lemma 4.2, the solutions of (4.2) satisfy

∥(u, v)∥ < M(ε).

Since (y, z) = (u, v)/∥(u, v)∥p, then all solutions of (4.2) satisfy

∥(y, z)∥ =
1

∥(u, v)∥p−1 >
1

[M(ε)]p−1 .
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Hence the problem (4.2) with λ = (1− σ)(µ1 + δ)+ σλ̌ does not have any solution on ∂Bρ with
0 < ρ < 1/[M(ε)]p−1. Then by the homotopy invariance of degree with respect to σ ∈ [0, 1],
we have

deg(Φ(µ1 + δ, (y, z)), Bρ, (0, 0)) = deg(Φ(λ̌, (y, z)), Bρ, (0, 0)). (4.11)

Obviously, we wish to show that

deg(Φ(λ̌, (y, z)), Bρ, (0, 0)) = 0.

This would be trivial if Φ(λ̌, (y, z)) = (0, 0) has no solution on Bρ. Therefore, we construct an
admissible homotopy connecting Φ(λ̌, (y, z)) to an operator which does not have any solution
on Bρ for 0 < ρ < 1/[M(ε)]p−1. To this end, for τ ∈ [0, 1], consider the operator

Φ(λ̌, (y, z))− τξ

with (0, 0) ̸= ξ := (−∆p)−1(χΩ, χΩ), where χΩ stands for the characteristic function of Ω, that
is,

χΩ(x) =

{
1, x ∈ Ω,

0, x /∈ Ω.

First we show that, for all τ ∈ [0, 1] and 0 < ρ < 1/[M(ε)]p−1,

Φ(λ̌, (y, z))− τξ = (0, 0) (4.12)

does not have any solution on ∂Bρ. Indeed, assume to the contrary that there exists a solution
(y, z) of (4.12) with ∥(y, z)∥ = ρ > 0. Then (u, v) = (y, z)/∥(y, z)∥p must satisfy (4.7), which
is absurd due to Lemma 4.3. Therefore, (4.2) does not have any nontrivial solution for all
τ ∈ [0, 1]. Moreover, since (0, 0) is not a solution of (4.2), then

deg(Φ(λ̌, (y, z))− τξ, Bρ, (0, 0)) = 0 for all τ ∈ [0, 1].

Then homotopy invariance of degree with respect to τ ∈ [0, 1] yields

deg(Φ(λ̌, (y, z)), Bρ, (0, 0)) = deg(Φ(λ̌, (y, z))− ξ, Bρ, (0, 0)) = 0.

Since this holds for any 0 < ρ < 1/[M(ε)]p−1, it follows from (4.11) that

deg(Φ(µ1 + δ, (y, z)), Bρ, (0, 0)) = deg(Φ(λ̌, (y, z)), Bρ, (0, 0)) = 0.

This combine (4.10) we have µ1 is a bifurcation point of (4.2) from infinity.

Lemma 4.5. Let (A1)–(A2) hold. Then µ1 is the unique bifurcation point from infinity for (4.2).
Moreover, there exists a continuum D ⊂ T bifurcating from infinity at µ1 and satisfies the following:

(i) if (λ, (u, v)) ∈ D and λ > 0 then u > 0 and v > 0;

(ii) for λ = 0, (u, v) = (0, 0) is the only solution of (4.2) and (0,(0,0))∈ D ;

(iii) Projλ C
def
= {λ ∈ R | ∃ (u, v) ∈ E with (λ, (u, v)) ∈ D} is bounded from above and unbounded

from below.
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Proof. By Lemma 4.4 and Proposition 4.1, µ1 is the unique bifurcation point from infinity for
(4.2). It is easy to see that operator Fλ : X → X satisfies the hypotheses of Proposition 2.3.
Then there exist unbounded continua

D± ⊂ Ŝ
def
= {(λ, (u, v)) ∈ R × E | (λ, (u, v)) solution of (4.2)}

containing (0, (0, 0)). By the nonexistence result of Theorem 1.1

D+ ⊂ ([0, λ∗)× E),

and thus D+ must be unbounded in the Banach space E-direction. Then D
def
= D+ + D− is

a continuum containing (0,(0,0)). By Proposition 4.1, µ1 is the only bifurcation point from
infinity for (4.2) and D+ is unbounded in the E-direction, hence D+ must bifurcate from
infinity at µ1. To conclude the proof of Lemma 4.5, it remains to verify that D satisfies the
properties (i)–(iii).

It follows from assumption (A2) and maximum principle that u, v > 0 whenever
(λ, (u, v)) ∈ D and λ > 0, this implies part (i). For λ = 0, (u, v) = (0, 0) is the only solu-
tion of (4.2) and (0, (0, 0)) ∈ D , hence part (ii) holds. Applying Proposition 2.3, we see that
D− must be unbounded in R × E. However, by part (ii) and the fact that ν1 is the unique
bifurcation point from infinity for (4.3), we see that D− must be unbounded in the negative
λ-direction, hence (−∞, ν1) ⊂ Projλ D . This completes the proof of Lemma 4.5.

5 Proof of Theorem 1.2

Step 1. Approximation problems

Fix n ∈ N and define fn(s), gn(s) : R → (0, ∞) by

fn(s)
def
=

{
f (s); s ⩽ n,
f (n)

φp(n)
φp(s); s > n,

gn(s)
def
=

{
g(s); s ⩽ n,
g(n)

φp(n)
φp(s); s > n,

Then fn and gn are continuous functions. Note that, fn(s) = f (s) for s ⩽ n, lims→n− fn(s) =

f (n), hence fn is continuous. On the other hand, by assumption (H2),

lim
s→∞

fn(s)

φp(s)
= lim

s→∞

f (n)
φp(n)

φp(s)

φp(s)
=

f (n)

φp(n)
→ ∞

as n → ∞, then fn approaches f . Similarly, gn approaches g as n → ∞.
For each n, we consider the following problem





−∆pu = λ fn(v), x ∈ Ω,

−∆pv = λgn(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(5.1)
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by above argument, which approaches (1.1) as n → +∞. We will use Lemma 4.5 to treat (5.1)
and thus we rewrite (5.1) in the form of system (4.2) as





−∆pu = f (n)
φp(n)

φp(v+) + λ f̃n(v), x ∈ Ω,

−∆pv = g(n)
φp(n)

φp(u+) + λg̃n(u), x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(5.2)

where

f̃n(y)
def
= fn(y)−

f (n)

φp(n)
φp(y

+),

g̃n(y)
def
= gn(y)−

g(n)

φp(n)
φp(y

+).

We note that f̃n(y) and g̃n(y) are bounded in R. Indeed, since fn(y) is nondecreasing and
fn(x) = f (x) > 0 for s ⩽ n, we get

| f̃n(x)| ⩽ sup
x∈R

∣∣∣∣ fn(x)−
f (n)

φp(n)
φp(x+)

∣∣∣∣ ⩽ max
x∈[0,n]

∣∣∣∣ fn(x)−
f (n)

φp(n)
φp(x+)

∣∣∣∣+ f (0) = +∞,

where the constant only depends on n. And a same argument we can get g̃n is bounded.
Since fn, gn > 0, it is easy to see that (5.2) satisfies the hypotheses of Lemma 4.5 by taking

θ1 = f (n)
φp(n)

, θ2 = g(n)
φp(n)

Moreover, by Lemma 4.5, there is a µ1,n, such that ν1,n is the unique
bifurcation point from infinity for (5.2) and there exists a continuum Cn of positive solutions
of (5.2), which bifurcates from infinity at µ1,n and satisfies the properties (i)–(iii) of Lemma 4.5.
In particular, (0, (0, 0)) ∈ Cn, Cn is bounded above by the hyperplane λ = λ̄.

Step 2. Passing to the limit

Now we verify {Cn} satisfying the conditions of Lemma 2.5. By the definition of contin-
uum, Cn is closed.

Since all of Cn contain (0, (0, 0)), we can choose zn ∈ Cn such that zn = (0, (0, 0)) for each
n = 1, 2, . . . . Naturally, zn → z∗ = (0, (0, 0)), the condition (i) of Lemma 2.5 is satisfied.

Obviously, because of the unboundedness of {Cn}, then

dn = sup{|µ|+ ∥(u, v)∥ | (µ, (u, v)) ∈ Cn} = +∞,

(ii) of Lemma 2.5 holds.
(iii) in Lemma 2.5 can be deduced directly from the Arzelà–Ascoli theorem and the defi-

nition of fn, gn.
Therefore, the superior limit of {Cn} contains a component C ⊂ Π joining (0, (0, 0)) with

infinity, and it follows from u, v > 0 for λ > 0 whenever (λ, (u, v)) ∈ C , which establishes (a).
Part (b) follows from (0, (0, 0)) ∈ C and f (0), g(0) > 0. (c) in Theorem 1.2 can be deduced
directly from the Theorem 1.1.

6 Proof of Theorem 1.3

Now we only show if the conditions of Theorem 1.3 are satisfied, then the unique point
from infinity must be λ = 0.
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In order to do this, we use a rescaling technology below, which is used by Ambrosetti et
al. [3] to prove the scalar case as p = 2 and by Drábek et al. [6] to deal with the semipositone
p-Laplacian system.

Let
F(s) := f (s)− C|s|q1 , G(s) := g(s)− D|s|q2 ,

where C, D was defined in (1.6). Let

λ = γσ, w1 = γκ1 u, w2 = γκ2 v,

where σ, κ1, κ2 are parameters and provided by [6, Proof of Theorem 4.3]. Then (1.1) can be
translated to the form 




−∆pw1 = F̃(γ, w2), x ∈ Ω,

−∆pw2 = G̃(γ, w1), x ∈ Ω,

w1 = 0 = w2, x ∈ ∂Ω

(6.1)

with

F̃(γ, s2) := γκ2q1 F(s2/γκ2) + C|s2|
q1 ,

G̃(γ, s1) := γq2 G(s1/γ) + D|s1|
q2 .

Then, by a directly result of [4, Theorem 1.1], there is a M > 0 such that for all positive
solutions (w1, w2) ∈ C1

0(Ω̄)× C1
0(Ω̄) of (6.1) we have

∥w1∥C1 + ∥w2∥C1 ⩽ M. (6.2)

Now let λn ∈ R be a decreasing sequence with λ1 < λ̄ such that λn → 0+ as n → ∞. Then
for each n, we can get γn and the sequence w1,n, w2,n of the solution for (6.1), such that

∥w1,n∥C1 + ∥w2,n∥C1 ⩽ Mn. (6.3)

Now let n → ∞, then λn → 0+ and γn = λσ
n → 0+, then (un, vn) = (w1,n/γκ1

n , w2,n/γκ2
n ) gives

the solution of (1.1) and ∥(un, vn)∥ → ∞ as n → ∞.
Finally, we prove C must bifurcate from infinity at λ → 0+. Now let (λn, (un, vn)) ∈ C

with ∥(µn, (un, vn))∥ → +∞ as n → +∞ and λn > 0 for all n ∈ N. Suppose to the contrary
that λn → λ′

> 0 as n → +∞, then there exists a closed and bounded interval I such that
λ′ ∈ I. By above proof,

∥(un, vn)∥ ⩽ M < +∞

for all λ′, a contradiction to ∥(un, vn)∥ → +∞ as n → +∞, which completes the proof of
Theorem 1.3.
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1 Introduction

In the qualitative theory of planar differential systems, one of the classical problems is to study
the global phase portraits of polynomial differential systems. The global phase portraits of
polynomial differential systems have been extensively investigated, see for example [7, 9, 11,
20–27].

The isochronous center’s interest started the works of Huygens [15]. The isochronicity
phenomena occurred in many physical problems [10]. In the past few decades the study of
isochronicity, specially in the case of polynomial differential systems, has been driven by the
diffusion of more powerful methods of computerized analysis [1, 8, 13, 16, 28].

We assume that p is a center, then p is a uniform isochronous center if the system, in polar
coordinates x = r cos θ, y = r sin θ, is of the form ṙ = G(θ, r), θ̇ = k, k ∈ R\{0}. That is,
the angular velocity of the orbits of an uniform isochronous center does not depend on the
radius [13].

Proposition 1.1. Assume that a planar differential polynomial system ẋ = P(x, y), ẏ = Q(x, y) of

degree n has a center at the origin of coordinates. Then, this center is uniform isochronous if and only

if by doing a linear change of variables and a rescaling of time it can be written into the form

ẋ = −y + x f (x, y), ẏ = x + y f (x, y). (1.1)

Where f (x, y) is a polynomial in x and y of degree n − 1, and f (0, 0) = 0.

BCorresponding author. Email: 9906193@haust.edu.cn
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See for instance [18] for a proof of Proposition 1.1.
Recently, the global phase portraits of differential systems with uniform isochronous cen-

ters has attracted scholars’ attention, for example [2, 8, 12, 17–19]. In 1999, Chavarriga et
al. study the phase portraits of the quadratic polynomial differential system S2 at P33 of [8].
Collins [12] found that differential systems with uniform isochronous cubic centers may have
three global different portraits. In 2016, Itikawa and Llibre [19] study the phase portraits of
uniform isochronous quartic centers. The first studies on some of these phase portraits are due
to Algaba et al. [3]. The phase portraits of uniform isochronous quartic centers whose non-
linear part is homogeneous and not homogeneous were studied in [19] and [18], respectively.
However, there are some mistakes in [18], which are corrected in [5]. Until now there are few
results about the global phase portraits of differential system with uniform isochronous of
degree 5 [2]. In this paper, we will study the global phase portraits of uniform isochronous
quintic centers at the origin with time reversibility such that their nonlinear part is not homo-
geneous. We say that systems (1.1) reversible with respect to the y-axis if it is invariant under
the transformation (x, y, t) 7→ (−x, y,−t). For this case, the differential system (1.1) of quintic
reversible uniform isochronous centers can be written as

{

dx
dt = −y + x(a1x + a2xy + a3x3 + a4xy2 + a5xy3 + a6x3y),
dy
dt = x + y(a1x + a2xy + a3x3 + a4xy2 + a5xy3 + a6x3y),

(1.2)

where ai ∈ R, i = 1, 2, 3, 4, 5, 6, with a2
1 + a2

2 + a2
3 + a2

4 ̸= 0 and a2
5 + a2

6 ̸= 0.
If a3 ̸= 0, by a scaling (x, y) →

(

a−1/3
3 x, a−1/3

3 y
)

, we can assume a3 = 1, then system (1.2)
becomes

{

dx
dt = −y + x(a1x + a2xy + x3 + a4xy2 + a5xy3 + a6x3y),
dy
dt = x + y(a1x + a2xy + x3 + a4xy2 + a5xy3 + a6x3y).

(1.3)

And if a3 = 0, then system (1.2) becomes
{

dx
dt = −y + x(a1x + a2xy + a4xy2 + a5xy3 + a6x3y),
dy
dt = x + y(a1x + a2xy + a4xy2 + a5xy3 + a6x3y).

(1.4)

In what follows we state our main results.

Theorem 1.2. The phase portrait in the Poincaré disk of uniform isochronous quintic centers with time

reversibility is topologically equivalent to one of the following 67 possibilities global phase portraits of

Figure 1.1.

The rest of this paper is organized as follows. In Section 2, we characterize the global
phase portraits of system (1.2) in the Poincaré disc, that is we prove Theorem 1.2.

2 Proof of the results

In this section, we will prove Theorem 1.2. In order to obtain all possible phase portraits in
the Poincaré disc for the uniform isochronous system of degree 5, we shall study the finite
and infinite singular points of system (1.2).

By discussing the coefficient a3 of system (1.2), we divide into the following two cases: if
a3 ̸= 0, by parameter and time scale transformation, the system (1.2) can be given by system
(1.3); if a3 = 0, the system (1.2) can be given by system (1.4). Next, we will study the phase
portraits of system (1.3) and system (1.4).
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)
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(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30) (31) (32)

(33) (34) (35) (36)

(37) (38) (39) (40)
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(41) (42) (43) (44)

(45) (46) (47) (48)

(49) (50) (51) (52)

(53) (54) (55) (56)

(57) (58) (59) (60)
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(61) (62) (63) (64)

(65) (66) (67)

Figure 1.1: Global phase portraits of system (1.2)

Table 1.1: The corresponding relationship between the global phase portraits of
system (1.3) and Figure 1.1

Figure 1.1 System (1.3)

(1)–(5)
a6 = 0, a5 > 0;

a5 = 0, a6 > 0, a4 = 0;
a5a6 > 0, a5 > 0.

(6)
a6 = 0, a5 < 0;

a5 = 0, a6 < 0, a4 = 0, a6 < −a2
2/4;

a5a6 > 0, a6 < 0.
(7)–(12) a5 = 0, −a2

2/4 ≤ a6 < 0, a4 = 0.
(13)–(14) a5 = 0, a6 > 0, a4 > 0.
(15)–(18) a5 = 0, a6 > 0, a4 < 0.
(19)–(21) a5 = 0, a6 < 0, a4 ̸= 0.
(25)–(30) a4a6 − a5 = 0, a5a6 < 0, a6 < 0, 4(a5 − a6) ≥ a2

2.
(31)–(46) a4a6 − a5 = 0, a5a6 < 0, a6 < 0, a2 ̸= 0, 4(a5 − a6) < a2

2.

(47)–(51)
a4a6 − a5 = 0, a5a6 < 0, a6 > 0;
a4a6 − a5 ̸= 0, a5a6 < 0, a6 > 0.

(52)–(66) a4a6 − a5 ̸= 0, a5a6 < 0, a6 < 0.

In polar coordinates defined by (x, y) = (r cos θ, r sin θ), a planar differential system (1.2)
with an uniform isochronous center at the origin always can be written as ṙ = p(r, θ), θ̇ = 1.
Hence such systems have no finite points except the origin.

By using Poincaré compactification in [14], in the local chart U1, we obtain

{

u̇ = (1 + u2)v4,

v̇ = (uv4 − a1v3 − a2uv3 − a3v − a4u2v − a5u3 − a6u)v,
(2.1)
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Table 1.2: The corresponding relationship between the global phase portraits of
system (1.4) and Figure 1.1

Figure 1.1 System (1.4)
(1)–(5) a5 = 0, a6 > 0.

(6)
a5 = 0, a6 < −a2

2/4;
a5a6 > 0.

(7)–(12) a5 = 0, −a2
2/4 ≤ a6 < 0, a4 = 0.

(19)–(21) a5 = 0, a6 < 0, a4 ̸= 0.
(22) a5a6 > 0, a6 > 0.

(23)–(24) a5 = 0, a6 > 0, a4 ̸= 0.
(25)–(30) a4 = 0, a5a6 < 0, a6 < 0, 4(a5 − a6) ≥ a2

2.
(31)–(46) a4 = 0, a5a6 < 0, a6 < 0, a2 ̸= 0, 4(a5 − a6) < a2

2.
(52)–(66) a5a6 < 0, a6 < 0, a4 ̸= 0.

(29), (67)
a5a6 < 0, a6 > 0, a4 ̸= 0;
a5a6 < 0, a6 > 0, a4 = 0.

and therefore all the points (u, 0) for all u ∈ R are infinite singular points of the system (2.1)
in U1. In order to obtain the local phase portraits near the infinity, we make a transformation
ds = vdt and obtain the following system

{

u′ = (1 + u2)v3,

v′ = uv4 − a1v3 − a2uv3 − a3v − a4u2v − a5u3 − a6u.
(2.2)

Where the prime denotes derivative with respect to s and the system (2.2) has infinite singular
points in the u-axis.

In the local chart U2, we obtain

{

u̇ = −(1 + u2)v4,

v̇ = (−uv4 − a1uv3 − a2uv2 − a3u3v − a4u2v − a5u − a6u3)v.
(2.3)

After the rescaling of time ds = vdt, we obtain
{

u′ = −(1 + u2)v4,

v′ = −uv4 − a1uv3 − a2uv2 − a3u3v − a4u2v − a5u − a6u3.
(2.4)

It is obvious that the system (2.4) has the only singular point Ou2(0, 0).

2.1 Global phase portraits of system (1.3)

In this section, we discuss the global phase portraits of system (1.3). According to the number
of the singular points in the u-axis, the system can be divided into the following five cases.

Case I: a6 = 0, a5 ̸= 0.

In the chart U1, the system (2.2) has one singular point in the u-axis, that is OU1 (0, 0), the
corresponding linear part of system (2.2) is

(

0 0
0 −1

)

.



8 L. Guo and A. Chen

By the Theorem 2.19 of [14], we have the statements: if a5 > 0, then OU1 (0, 0) is a stable node;
if a5 < 0, then OU1 (0, 0) is a saddle.

For chart U2, the system (2.4) has only one singular point OU2 (0, 0), the corresponding
linear part of system (2.4) is

(

0 0
−a5 0

)

.

It is easy to find that OU2 (0, 0) is a nilpotent singularity. By the Theorem 3.5 of [14], we have
the statements: if a5 > 0, then OU2 (0, 0) is a nilpotent saddle; if a5 < 0, and the system (2.4)
is symmetry about v-axis, then OU2 (0, 0) is a center. If the same situation appears again, we
will not explain in detail.

By the above analysis, if a5 > 0, the local phase portrait of system (1.3) is shown in Figure
2.1. Since v′ |v=0= −a5u3: when u > 0, v′ < 0; when u < 0, v′ > 0, the direction of the local
phase portrait through the disc is shown in the Figure 2.1.

Figure 2.1: Local phase portrait of system (1.3) on the Poincaré disk of Case I
for a5 > 0.

In Figure 2.1, there are four singularities on the equator, i.e. A, B, A′, B′, and the direction
between any two points is shown. Firstly, we consider the point A1. Since the system (1.3)
is symmetry about y axis, there are only four possibilities for the ω-limit set of unstable

manifold: a singularity on the arc
⌢

BA′, a point A, a point B, and itself (return to point A1 after
bypassing the periodic orbit around the origin, forming a homoclinic orbit). They are shown
in Figure 2.2 (1)–(4).

(1) (2) (3) (4)

Figure 2.2: Consider the point A in Figure 2.1, four possibilities for the ω limit
set of an unstable manifold.

The ω-limit set of the unstable manifold at point A′ in Figure 2.2 (1) can only be itself
(bypass the origin and returns to A′ again, forming a homoclinic orbit). Therefore, there are
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two possibility global phase portraits on the Poincaré disk, as shown in Figure 1.1 (1) and (2).
The ω-limit set of the unstable manifold at point A′ in Figure 2.2 (2) can only be itself

(bypass the origin and returns to A′ again, forming a homoclinic orbit). Next, we consider a

singular point on the arc
⌢

AB′, and its α-limit set can only be a point B′. Based on the symmetry

of the original system, the ω-limit set of a singular point on the arc
⌢

AB can only be a point B,
and its phase portrait is equivalent to the Figure 1.1 (3).

The α-limit set of a singular point on the arc
⌢

AB′ in Figure 2.2 (3) can only be the point B′.
Based on the symmetry of the original system, the ω-limit set of a singular point on the arc
⌢

AB can only be the point B, its phase portrait is equivalent to the Figure 1.1 (4).
The α-limit set of the stable manifold at point A′ in Figure 2.2 (4) can only be a singular

point on the arc
⌢

AB. Based on the symmetry of the original system, the ω-limit set of a

singular point on the arc
⌢

AB′ can only be the point B, and its phase portrait is equivalent to
the Figure 1.1 (5).

If a5 < 0, the local phase portrait of the system (1.3) on the Poincaré disk is shown in
Figure 2.3, which has four singularities on its equator.

Figure 2.3: The local phase portraits of system (1.3) on the Poincaré disk of
Case I for a5 < 0.

By the same argument as Figure 2.1, Figure 2.3 has only one global phase portrait, as
shown in the Figure 1.1 (6). This is the only one global phase portrait that can be determined.
Therefore, there are 6 possible global phase portraits of system (1.3) in Case I, as shown in
Figure 1.1 (1)–(6).

Case II: a5 = 0, a6 ̸= 0.

In chart U1, OU1 (0, 0) is a singular point of system (2.2), and its linear part is

(

0 0
−a6 −1

)

.

Applying the Theorem 2.19 of [14], we have the statements: if a6 > 0, then OU1 (0, 0) is a stable
node; if a6 < 0, then OU1 (0, 0) is an unstable node.

For the chart U2, the system (2.4) can be written as

{

u′ = −(1 + u2)v3,

v′ = −uv4 − a1uv3 − a2uv2 − u3v − a4uv − a6u3.
(2.5)
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The origin OU2 (0, 0) of system (2.5) is a singular point and its linear part is identically zero,
so the OU2 (0, 0) is degenerate.

To investigate the local phase portraits of the degenerate singular points, we use the quasi-
homogeneous directional blow up(or (α, β)-blow up) technique [4, 6] . Since the choice of the
exponents α and β depends on the coefficients a4 of system (2.5), we need to consider whether
a4 is zero. Thus we apply a (3,2)-blow up and (1,1)-blow up to system (2.5) if a4 ̸= 0 and
a4 = 0, respectively.

Case II.1: a4 = 0. When a4 = 0, applying a (1, 1)-blow up to system (2.5). Firstly, we apply
blow-up (u, v) 7→ (ū, ūv̄) in the positive u-direction. After division by ū2, we get,

{

ū′ = −(1 + ū2)ūv̄3,

v̄′ = −(−v̄4 + a1ūv̄3 + a2v̄2 + ūv̄ + a6).
(2.6)

Since in the line ū = 0, we have
v̄4 − a2v̄2 − a6 = 0.

Next, we only need to discuss the existence of the roots of the above equation.

(a) If
√

a2
2 + 4a6 > a2, i.e. a6 > 0, the equilibrium of (2.6) are P1

(

0,
√

(

a2 +
√

a2
2 + 4a6

)

/2
)

and P2
(

0,−
√

(

a2 +
√

a2
2 + 4a6

)

/2
)

. The corresponding linear part of system (3.11) at
P1 is









−
(√

(

a2 +
√

a2
2 + 4a6

)

/2
)3

0

∗ 2
√

(

a2 +
√

a2
2 + 4a6

)

/2
√

a2
2 + 4a6









,

where “∗” stands for the formula about parameters a2 and a6. Applying the Theorem
2.15 of [14], we have P1 is a saddle. By the same argument, P2 is a saddle.

(b) If
√

a2
2 + 4a6 < a2, i.e. −a2

2/4 < a6 < 0, a2 > 0 , the singular points of system (2.6) in

the line ū = 0 are P1
(

0,
√

(

a2 +
√

a2
2 + 4a6

)

/2
)

, P2
(

0,−
√

(

a2 +
√

a2
2 + 4a6

)

/2
)

,

P3
(

0,
√

(

a2 −
√

a2
2 + 4a6

)

/2
)

and P4
(

0,
√

(

a2 −
√

a2
2 + 4a6

)

/2
)

. By the Theorem 2.15
of [14], P1 is a saddle, P2 is a saddle, P3 is a stable node, and P4 is an unstable node.

(c) If a2
2 + 4a6 < 0, i.e. −a2

2/4 > a6, then v̄4 − a2v̄2 − a6 = 0 has no roots, that is, the system
(2.6) has no singular point in v̄-axis.

(d) If a2
2 + 4a6 = 0, i.e. −a2

2/4 = a6, the singular points of system (2.6) in the line ū = 0
are P1

(

0,
√

a2/2
)

, P2
(

0,
√

a2/2
)

. By Theorem 3.5 of [14], P1 is a saddle-node, and P2 is a
saddle-node.

Consider the blow-up (u, v) 7→ (−ū, ūv̄) in the negative u-direction. After cancelling a
common factor ū2, we obtain

{

ū′ = (1 + ū2)ūv̄3,

v̄′ = −v̄4 + a1ūv̄3 + a2v̄2 + ūv̄ + a6.
(2.7)

It can be verified that system (2.7) and system (2.6) have the same number and type of singu-
larities.
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In addition, we apply blow-up (u, v) 7→ (ūv̄, v̄) in the positive v-direction as well as
(u, v) 7→ (ūv̄,−v̄) in the negative v-direction. After division by v̄2, we get, respectively,

{

ū′ = −1 + ū2(a1v̄ + a2 + a3ū2v̄ + a6ū2),

v̄′ = −ūv̄(v̄2 + a1v̄ + a2 + a3ū2v̄ + a6ū2),
(2.8)

and
{

ū′ = 1 + ū2(−a1v̄ + a2 − a3ū2v̄ + a6ū2),

v̄′ = ūv̄(v̄2 − a1v̄ + a2 − a3ū2v̄ + a6ū2).
(2.9)

It is obvious that the origin of system (2.8) and system (2.9) are not a singular point.
The blow up procedure and local phase portrait of the system (2.5) at the origin are shown

in Figure 2.4 in Case (a). The trajectories of the circle is shown in Figure 2.4 (1). Retracting the
circle to the origin and obtaining the trajectories in the uov plane near the origin, see Figure
2.4 (2). Considering the transformation ds = vdt, the u axis is filled with singular points, and
the negative v-axis direction is reversed, as shown in Figure 2.4 (3).

(1) (2) (3)

Figure 2.4: The local phase portrait of system (2.3) at the origin. The horizontal
axis (3) is filled with singular points.

By the same argument as Case (a), we can obtain the local phase portrait of the system
(2.5) of Case (b) and Case (d) at the origin and is shown in Figure 2.5(a). Then the local phase
portrait of (1.3) of Case (a), Case (b) (d) and Case (c) are shown in Figure 2.1, Figure 2.5(b)
and Figure 2.3, respectively.

(a) The local phase por-
trait of the system (2.5)
of Case (b) at the ori-
gin.

(b) Local phase portrait
of system (1.3) on the
Poincaré disk of Case
(b).

Figure 2.5: Local phase portraits of systems (2.5) and (1.3).
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For Case II.1, according to the symmetry and the direction through the Poincaré disk of
system (1.3), we can obtain that, for Case (a), Figure 2.1 corresponds to the possible global
phase portraits are Figure 1.1 (1)–(5); for Case (b) and Case (d), Figure 2.5(b) corresponds to
the possible global phase portraits are Figure 1.1 (7)–(12); for Case (c), Figure 2.3 corresponds
to the possible global phase portraits is Figure 1.1 (6). Therefore, there are 12 possible global
phase portraits of system (1.2) of Case II.1, see Figure 1.1 (1)–(12).

Case II.2: a4 ̸= 0. Since a4 ̸= 0, applying a (3, 2)-blow up to system (2.5). By the same
argument as Case II.1, we get the local phase portrait of system (2.5) at the origin, see Figure
2.6. Then the local phase portraits of a6 > 0, a4 < 0 and a6 < 0, a4 < 0 of the system (2.5) are
topologically equivalent to (1) and (2) in Figure 2.6, respectively.

(1) a6 > 0, a4 > 0 (2) a6 < 0, a4 > 0

Figure 2.6: The local phase portrait of system (2.5) at the origin of Subcase II.2.

From the above analysis, we characterize the local phase portrait of system (1.3) on the
Poincaré disk, see Figure 2.7 (1)–(3), and they are topologically equivalent to the possible
global phase portraits Figure 1.1 (13)–(14), (15)–(18), (19)–(21) of Theorem 1.2, respectively.
Therefore we can obtain the global phase portraits for Subcase II.2 shown in Figure 1.1 (13)–
(21) of Theorem 1.2.

(1) a6 > 0, a4 > 0. (2) a6 > 0, a4 < 0. (3) a6 < 0.

Figure 2.7: Local phase portrait of system (1.3) on the Poincaré disk of Subcase
II.2.

Case III: a5a6 > 0.

In the chart U1, we consider the system (2.2). Since a5a6 > 0, the system (2.2) has only one
singular point OU1(0, 0), and its linear part of system (2.2) is
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(

0 0
−a6 −1

)

.

Its type of singular point is the same as the Case II.
In the chart U2, the origin is the only one singular point of system (2.4). Its linear part is

(

0 0
−a5 0

)

.

Applying the Theorem 3.5 of [14], we have if a5 > 0, then the origin OU2(0, 0) is a saddle; and
if a5 < 0, then OU2(0, 0) is a center.

According to the above analysis, we characterize the local phase portrait of system (1.3)
on the Poincaré disk, see Figure 2.1 and Figure 2.3. Consequently the possible global phase
portraits can referenced by Case I, that is, they are shown in Figure 1.1(1)–(6) of Theorem 1.2.

Case IV: a4a6 − a5 = 0, a5a6 < 0.

In the chart U1, we consider the system (2.2). It is easy to find that there are three singular
points, OU1(0, 0), P1(

√
−a6/a5, 0) and P2(

√
−a6/a5, 0).

For the point OU1 (0, 0), we have the same results as the Case II. For the points P1 and P2,
their linear part is

(

0 0
2a6 0

)

.

By the Theorem 3.5 of [14], if a6 > 0, then P1 and P2 are saddles. If a6 < 0,

(a) For a2 ̸= 0, we have the following statements hold.

(a.1) If 4(a5 − a6) ≥ a2
2, then P1 and P2 are centers;

(a.2) If 4(a5 − a6) < a2
2, then the phase portrait of P1 and P2 of the system (2.2) consists

of one hyperbolic and one elliptic sector.

(b) If a1 ̸= 0, a2 = 0, and 9a2
1a5 < 16a6(a6 − a5), then P1 and P2 are centers.

(c) If a1 = 0, a2 = 0, and 4(a5 − a6) > 9, then P1 and P2 are centers.

In the chart U2, the origin OU2(0, 0) is the only one singular point of system (2.4). By the
same argument as the Case III, we have if a5 > 0, then the origin OU2(0, 0) is a saddle, and if
a5 < 0, then the origin OU2(0, 0) is a center.

Except Case (a.2), the local phase portraits of system (1.3) on the Poincaré disk is shown
in Figure 2.8.

Figure 2.8: The local phase portrait of system (1.3) on the Poincaré disk except
Case (a.2).
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In Figure 2.8, there are eight singularities on the equator, i.e. A1, B1, C1, D1, A2, B2, C2, D2,
and the direction between any two points is shown. Firstly, we consider the point A1. Since
the system (1.3) is symmetry about y axis, there are only five possibilities for the ω-limit set

of unstable manifold: a singularity on the arc
⌢

B1C1, a point C1, a singular on the arc
⌢

D1 A2, a
point A2, and itself (bypass the origin and return to A1 again, forming a homoclinic orbit). As
shown in Figure 2.9 (1)–(5).

(1) (2) (3)

(4) (5)

Figure 2.9: Consider the point A1 of Figure 2.8, five possibilities for the ω-limit
set of an unstable manifold at this point.

Figure 2.9 (1): Consider the point C2, the ω-limit set of the unstable manifold at this point
can only be the point C1. Next, we consider the unstable manifold at point C1. According
to the symmetry of the original system, there are three possibilities for the ω-limit set of an

unstable manifold at the point C1, which are a point on
⌢

D1 A2, A2 and C2.

When the ω-limit set of an unstable manifold at point C1 is a singular point on arc
⌢

D1 A2, ω-
limit set of the unstable manifold at this point can only be a itself (bypass the origin and return

to A2 again, forming a homoclinic orbit), C2 and a singular point on arc
⌢

D2C2, respectively.
According to the symmetry of the original system, the global phase portraits are equivalent
to Figure 1.1 (25), (26) and (27), respectively.

Figure 2.9 (2): Consider the unstable manifold at point C1, there are three possibilities

for the ω-limit set on point C1, which are a singular on the arc
⌢

D1A2, A2 and C2. When the

ω-limit set of an unstable manifold at C1 is a singular point on arc
⌢

D1A2, ω-limit set of the
unstable manifold at this point can only be a itself (bypass the origin and return to A2 again,

forming a homoclinic orbits), C2 and a singular point on arc
⌢

D2C2, respectively. According to
the symmetry of the original system, the global phase portraits are equivalent to the Figure
1.1 (29), (28) and (26), respectively.
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Figure 2.9 (3): Consider the point A2, the ω-limit set of the unstable manifold at this point
can only be a itself (bypass the origin and return to A2 again, forming a homoclinic orbit).

The α-limit set of the stable manifold at point C1 can only be a singular on the arc
⌢

A1B1.

The ω-limit set of the unstable manifold at point C1 can only be a singular on the arc
⌢

D1A2.
According to the symmetry of the original system, the global phase portrait is equivalent to
the Figure 1.1 (30).

Figure 2.9 (4): Consider the point C1, the ω-limit set of the unstable manifold at this point

can only be a singular on the arc
⌢

D1A2. The α-limit set of the stable manifold at point C1 can

only be a singular on the arc
⌢

A1B1. According to the symmetry of the original system, the
global phase portrait is equivalent to the Figure 1.1 (27).

Figure 2.9 (5): Consider the point C1, α-limit set of the unstable manifold at this point can

only be a singular on the arc
⌢

A1B1. Based on the the symmetry, ω-limit set of the unstable

manifold at the point C2 can only be a a singular on the arc
⌢

A1B2. Fixed the unstable manifold
of C1, there are three possibilities for the ω-limit set on the C1 , which are a singular on the

arc
⌢

D1A2, A2 and C2. Then the global phase portraits are equivalent to the Figure 1.1 (30) (29)
(27).

Therefore, the local phase portraits Figure 2.8 have 6 possible global phase portraits as
shown in Figure 1.1 (25)–(30).

For case (a.2): a2 ̸= 0, 4(a5 − a6) < a2
2, the local phase portrait of P1 and P2 of the system

(2.2) consists of one hyperbolic and one elliptic sector by using blowing up. Moving P1 to the
origin through the change of coordinates (u, v) 7→

(

u +
√
−a6/a5, v

)

, the system (2.2) becomes



























u′ = [1 + (u + 22)]v3,

v′ = uv4 +

√

− a6

a5
v4 − a1v3 − a2uv2 − a2

√

− a6

a5
v2 − 2a4

√

− a6

a5
uv

− a4u2v − a5u3 − 3a5

√

− a6

a5
u2 + 2a6u.

(2.10)

We apply a (2,1)-blow up to the system (2.1), and the local phase portrait of point P1 in the
system (2.1) is shown in Figure 2.10 (1). By the same argument, the local phase portrait of
point P2 in the system (2.1) is shown in Figure 2.10 (2). In the chart U2, we have the same
results as the Case IV.

(1) P1 (2) P2

Figure 2.10: Local phase portrait of system (2.1) at point P1 and point P2 . The
horizontal axis is filled with singular points.
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After the analysis of case (a.2): a2 ̸= 0, 4(a5 − a6) < a2
2, we characterize the local phase

portrait of system (1.3) on the Poincaré disk, see Figure 2.11 (1). By the symmetry of the
system and the directions of the Poincaré disc, the possible global phase portraits of system
(1.3) are shown in Figure 1.1 (31)–(46) of Theorem 1.2.

(1) case (a.2). (2) a6 > 0.

Figure 2.11: Local phase portrait of system (1.3) on the Poincaré disk of Case IV.

Using the similar argument as previous cases, if a6 > 0, the local phase portrait of system
(1.3) is Figure 2.11 (2), then the global phase portraits in the Poincaré disk are Figure 1.1
(47)–(51).

For Case IV, the possible global phase portrait of system (1.3) is shown in Figure 1.1 (25)–
(51) of Theorem 1.2.

Case V: a4a6 − a5 ̸= 0, a5a6 < 0.

In the chart U1, we consider the system (2.2). It is easy to find that there are three singular
points in the u-axis: OU1(0, 0), P1(

√
−a6/a5, 0) and P2(

√
−a6/a5, 0). For the point OU1(0, 0),

its singular point is the same to the system (2.2), please refer to Case II(i) and (ii) for details.
For the points P1 and P2, their linear part is

(

0 0
2a6

a4a6−a5
a5

)

.

If a4a6 − a5 ̸= 0, we have the following statements hold.

(A.1) If a6 < 0 and a4a6 − a5 > 0, then P1 and P2 are unstable nodes.

(A.2) If a6 < 0 and a4a6 − a5 < 0, then P1 and P2 are stable nodes.

(A.3) If a6 > 0, then P1 and P2 are saddles.

In the chart U2 the origin is the only one singular point of system (2.4). By the same
argument as the Case III, if a6 < 0, then the origin is a saddle, and if a6 > 0, then the origin is
a center.

Based on the above analysis, we characterize the local phase portrait of system (1.2) on the
poincaré disk. If a6 > 0, it is shown in Figure 2.11 (2); if a6 < 0, Case (A.1) and Case (A.2) are
equivalent to Figure 2.12.
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a6 < 0, a4a6 < a5

Figure 2.12: Local phase portrait of system (1.3) on the Poincaré disk of Case
(A.1) and (A.2).

By the same argument as Figure 2.8, the possible global phase portraits of Figure 2.12 are
Figure 1.1 (52)–(66). For Case IV, the possible global phase portraits of Figure 2.11 (2) are
Figure 1.1 (47)–(51).

Therefore, the possible global phase portraits of Case V of system (1.3) are Figure 1.1(47)-
(66).

2.2 Global phase portraits of system (1.4)

In this section, we discuss the global phase portraits of system (1.4). For a6 = 0, a5 ̸= 0, the
global phase portraits of system (1.4) has been studied in [2], thus we only investigate the
following situations.

Case i: a5 = 0, a6 ̸= 0.

In the chart U1, the origin OU1(0, 0) of system (2.2) is a singular point and its linear part is

(

0 0
−a6 0

)

.

By the Theorem 3.5 of [14], if a6 < 0, then OU1(0, 0) is a saddle, and if a6 > 0, then OU1(0, 0) is
a center.

In the chart U2, the origin OU2(0, 0) is the only one singular point of system (2.4). Due
to in the chart U2, the coefficient a3 does not work, the conclusion of system (1.4) is same to
system (1.3), as shown Case II.1 and Case II.2 in Section 2.1.

Based on the above analysis, the corresponding local and global phase portraits of system
(1.4) in Case I can be summarized as follows:

i.1 a4 = 0. If a6 > 0, the local phase portrait of system (1.4) on the Poincaré disk is Figure
2.3, but it needs to be rotated π/2 clockwise rotation, and all possible global phase
portraits are topologically equivalent to Figure 1.1 (6) and (22). If a6 < 0, the local phase
portrait of system (1.4) is Figure 2.5(a) and Figure 2.3, and all possible global phase
portrait is Figure 1.1 (7)–(12) and (6).

i.2 a4 ̸= 0. If a6 > 0, the local phase portrait of system (1.4) on the Poincaré disk is Figure
2.13, all possible global phase portraits are topologically equivalent to Figure 1.1 (23) and
(24). If a6 < 0, the local phase portrait of system (1.4) is Figure 2.7 (3), and all possible
global phase portraits are Figure 1.1 (19)–(21).
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Figure 2.13: Local phase portrait of system (1.4) on the Poincaré disk of Case i.2
for a6 > 0.

Therefore, the system (1.4) has 13 possible global phase portraits in Case i, as shown in
Figure 1.1 (6)–(12) and (19)–(24).

Case ii: a5a6 > 0.

If a6 > 0, the local phase portrait of system (1.4) on the Poincaré disk is Figure 2.3, but it
needs to be rotated π/2 clockwise rotation, all possible global phase portraits are topologically
equivalent to Figure 1.1 (6) and (22). If a6 < 0, the local phase portrait of system (1.4) is Figure
2.3, and all possible global phase portrait is Figure 1.1(6).

Therefore, the system (1.4) has 2 possible global phase portraits in Case ii, as shown in
Figure 1.1 (6) and (22).

Case iii: a5a6 < 0, a4 ̸= 0.

If a6 > 0, the local phase portrait of system (1.4) on the Poincaré disk is Figure 2.14, all possible
global phase portraits are topologically equivalent to Figure 1.1 (29) and (67). If a6 < 0, the
local phase portrait of system (1.4) is Figure 2.12, and all possible global phase portraits are
Figure 1.1 (52)–(66).

Figure 2.14: Local phase portrait of system (1.4) on the Poincaré disk of Case iii
for a6 > 0.

Therefore, the system (1.4) has 17 possible global phase portraits in Case iii, as shown in
Figure 1.1 (29) and (52)–(67).

Case iv: a5a6 < 0, a4 = 0.

If a6 > 0, the local phase portrait of system (1.4) is same to Case iii: a6 > 0, as shown in
Figure 2.14, its corresponding all possible global phase portraits are Figure 1.1 (29) and (67). If
a6 < 0, the local phase portrait of system (1.4) is same to Case IV: a6 < 0 , as shown in Figure
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2.8 and Figure 2.11 (1), and its corresponding all possible global phase portraits are Figure 1.1
(25)–(30) and (31)–(46).

Consequently, the system (1.4) has 22 possible global phase portraits in Case iv, as shown
in Figure 1.1 (25)–(46) and (67).

To sum up, the system (1.2) has 67 possible global phase portraits.
This completes the proof of Theorem 1.2.
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Abstract. In this work, we aim to investigate an integro-differential model that involves
localized viscoelastic effects at the boundary of the domain under the history frame-
work. We have established that the equation is well-posed and exhibits exponential
stability when a localized admissible kernel is applied, along with the δ-condition.
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1 Introduction

1.1 The model and literature overview

We consider the following problem































utt − ∆u + f (u) = 0 in Ω × (0, ∞),

u = 0 on Γ0 × (0, ∞),

∂u
∂ν

+
∫ ∞

0
g(s)a(x)ut(x, t − s) ds = 0 on Γ1 × (0, ∞),

u(x,−t) = u0(x,−t), ut(x, 0) = u0
t (x) in Ω × (0, ∞)

(1.1)

where Ω ⊂ Rd, d ≥ 2, is an open bounded domain with a sufficiently smooth boundary

Γ = ∂Ω such that Γ = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅, u0 : Ω × [0, ∞) → R is the prescribed past

history of u. We denote by ω, ω0, ω1 the intersection of Ω with a neighborhood of Γ, Γ0, Γ1

in Rd, respectively. In addition, a = a(x), is real valued non-negative function, responsible for

the localized dissipative effect, f : R+ → R+ represents a source term and g : R+ → R+ is a

nonnegative function having the form

g(s) =
∫ ∞

s
µ(τ) dτ, (1.2)
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where µ : R+ → R+ is an integrable function. Other assumptions on the functions f , g, µ

and a will be precisely stated ahead.

It is worth mentioning that the study of stabilization of evolution equations subjected to

boundary dissipation has been gaining more attention in the academic world over the past

few years. In the absence of the viscolelastic term

∫ ∞

0
g(s)a(x)ut(x, t − s)ds,

problem (1.1) has been handled by many authors when a frictional damping term (linear or

not) at the boundary is included; see for instance [7, 9, 26, 28, 40] among others. Related to

viscoelastic boundary conditions, Aassila and Cavalcanti [2] studied the following problem































utt − ∆u = 0 in Ω × (0, ∞),

u = 0 on Γ0 × (0, ∞),

∂u
∂ν

+
∫ t

0
k(t − s, x)u′(s) ds + a(x)g(u′) = 0 on Γ1 × (0, ∞),

u(x, 0) = u0(x), u′(x) = u1(x) in Ω × (0, ∞)

(1.3)

where Ω ⊂ Rn is an open bounded domain with a sufficiently smooth boundary Γ = Γ0 ∪ Γ1,

a : Γ1 → R+ is such that a(x) ≥ a0 > 0. Under the following assumptions on functions k
and g

k ≥ 0, k′ ≤ 0, k′′ ≥ αk′ on Γ1 × R+, (1.4)

C1|x|p ≤ |g(x)| ≤ C2|x|1/p, |x| ≤ 1; C3|x| ≤ |g(x)| ≤ C4|x|, |x| ≥ 1, (1.5)

for some positive constants α, Ci(1 ≤ i ≤ 4), the authors obtained the energy decays expo-

nentially if p = 1 and decays polynomially if p > 1 when u0 = 0 in Γ1, extending the work

of [23] to the case of nonlinear frictional dampings at boundary. Park and collaborators, in

[35], considered a similar extension to a nonlinear boundary condition of memory type with

the same assumption on k but without the above assumption on u0. They also included a

nonlinear source term |u|ρu acting on the domain Ω, which turns the problem more subtle

than those previously cited. For other problems in connection with viscoelastic and dynamic

boundary conditions, the reader is referred to [10], [1, 11, 19, 20, 25] and references therein.

Nowadays a question that has been extensively investigated is the role of the kernel k in a

viscoelastic term of type

∫ t

0
k(t − s, x)w(s)ds (w = u or w = u′) (1.6)

acting on the domain and/or the boundary to provide existence, as well stability of solutions.

A reasonably large class of them has been carried out for many authors. Indeed, since the

highly cited article of Dafermos [15], a flurry of work has been done with increasing kernels

k ∈ L1(R+)∩C1(R+) satisfying k(s) > 0 and conditions like 1−
∫ ∞

0 k(s) ds > 0, together with

the classical conditions (1.4) and improvements of them to provided existence and stability

of solutions, we quote for instance [1, 10, 21, 29, 33, 36, 38] among others. A generalization of

condition (1.4) was considered by Alabau-Boussouira and Cannarsa in [3] (see also [30–32]),

where the main assumption is that the kernel k solves a suitable differential inequality. Other

refinements of such condition are also discussed in [24, 27, 34].



Wave equation with nonlinear interior source and localized viscoelastic boundary feedback 3

Efforts are being made to achieve a less restricted assumption on the memory kernel k.

Indeed, in [12], the authors introduced a general class of kernels called admissible kernels.

These kernels are allowed not being strictly decreasing and can be locally flat while still

fulfilling the so-called δ-condition: for some δ > 0, there exists C ≥ 1 such that

k(t + s) ≤ Ce−δtk(s)

for every t ≥ 0 and s > 0. On these conditions, some authors have explored questions related

to existence and stability of solutions, see for example [6, 13, 14].

1.2 Contribution and article structure

As mentioned earlier, previous research on viscoelastic dissipation at boundaries has mainly

focused on the standard assumptions for the kernel, k. However, we have not found any

studies that explore the effects of a more general memory kernel at the system’s boundary,

nor in a localized framework. Therefore, this paper’s main contribution is its novel approach

to this topic. We consider the past history framework together with a localized admissible

kernel under the δ-condition to show exponential stability without the inclusion of frictional

damping, unlike some of the articles mentioned earlier. However, this approach presents cer-

tain technical difficulties that must be addressed to obtain an observability inequality, which

is crucial to proving the exponential stability of the problem.

Indeed, to demonstrate the exponential stability, we draw inspiration from the works of

Dehman, Gérard, Lebeau [16] and Dehman, Lebeau, and Zuazua [17]. The key step in this

approach involves establishing the observability inequality:

E(0) ≤ C
(

∫ T

0

∫

Γ1

∫ ∞

0
−µ′(s)a(x)|ηt(s)|2 ds dΓ dt

)

for all t ≥ T0.

To prove this statement we employ a contradiction argument and seek a sequence (um, ηt
m)

of weak solutions to the equivalent problem (2.2) such that Em(0) = 1. By utilizing a boundary

observability theorem by Duyckaerts, Zhang, and Zuazua [18], we aim to derive the desired

contradiction by showing that Em(0) → 0 as m → ∞. However, challenges arise due to the

nature of µ satisfying the δ-condition, making it difficult to establish that the convergence

lim
m→∞

∫ T

0

∫

Γ1

∫ ∞

0
−µ′(s)a(x)|ηt

m|2 ds dΓ dt = 0

implies

lim
m→∞

∫ T

0

∫

Γ1

∫ ∞

0
µ(s)a(x)|ηt

m|2 ds dΓ dt = 0,

which is usual in this kind of problem, and is a crucial step for completing our contradiction

argument.

Based on the above statements, this article is structured as follows: Section 2 discusses the

well-posedness of problem (1.1) by introducing the well-known relative displacement history

variable introduced by [15] to obtain an equivalent problem, as is typical in this kind of

approach. In Section 3, the exponential stability of the solution is established by demonstrating

an appropriate observability inequality.
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2 Existence and uniqueness of solution

Through this article, we will use basic notations and results from books by [5, 8, 39].

In this section, we will prove the first result of this paper regarding the existence and

uniqueness of solution for the system (2.2). To achieve this, we will introduce an equivalent

problem that will enable us to utilize the Semigroups theory, as well the main assumptions

and notations to be used throughout this paper.

As in the pioneer work of [15], and by following [22], we introduce the following new

variable corresponding to the relative displacement history

ηt(x, s) = u(x, t)− u(x, t − s), x ∈ Ω, s > 0, t ≥ 0, (2.1)

in order to translate (1.1) into the autonomous problem







































































utt − ∆u + f (u) = 0 in Ω × (0, ∞),

u = 0 on Γ0 × (0, ∞),

∂u
∂ν

+
∫ ∞

0
µ(s)a(x)ηt(x, s) ds = 0 on Γ1 × (0, ∞),

ηt
s + ηt

t = ut in Ω × (0, ∞)× (0, ∞),

u(x,−t) = u0(x,−t) in Ω × (0, ∞)

u(x, 0) = u0(x) = u0(x, 0), ut(x, 0) = u1(x) = u0
t (x) in Ω,

ηt(x, s) = 0 on Γ0 × (0, ∞)× (0, ∞),

η0(x, s) = η0(x, s) = u0(x, 0)− u0(x,−s) on Ω × (0, ∞)

(2.2)

in the two variables u = u(t) and η = ηt(s).
In the sequel, to state our main results on the well-posedness and asymptotic behavior of

problem (1.1), let us consider the following assumptions and notations:

A.1. a : Γ1 → R+ ∈ L∞(Γ1) ∩ C(ω1) is such that

i. a(x) ≥ 0 on Γ1;

ii. a(x) ≥ a0 > 0 in ω1 ⊂⊂ Γ1.

A.2. g : R+ → R+ is a nonnegative function having the form

g(s) =
∫ ∞

s
µ(τ) dτ, (2.3)

where µ : R+ → R+ is a pointwise absolutely continuous function, nonincreasing, integrable

and such that

i. l =
∫ ∞

0 µ(s) ds ∈ (0, 1);

ii. there exists a strictly increasing sequence {sn}, with s0 = 0, either finite or converging

to s∞ ∈ (0, ∞], such that µ has jumps at s = sn, n > 0.

A.3. f ∈ C2(R) satisfies

i. f (0) = 0;
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ii. the primitive F(s) =
∫ s

0 f (τ) dτ is such that

−γ|s|2
2

≤ F(s) ≤ f (s)s +
γ|s|2

2
, (2.4)

γ ∈ [0, λ1[, where λ1 > 0 is the first eigenvalue corresponding to the Laplacian operator

with Dirichlet boundary condition;

iii. there exists c > 0 such that

| f (j)(s)| ≤ c(1 + |s|)p−j, ∀ s ∈ R, j = 1, 2, (2.5)

where

p ≥ 1 if n = 2 and 1 ≤ p <
n

n − 2
if n ≥ 3. (2.6)

Remark 2.1.

1. Notice that the function µ defined in Assumption A.2 can be unbounded in a neighbor-

hood of zero. Moreover, µ is differentiable almost everywhere, and µ′(s) ≤ 0 for almost

every s.

2. Observe that the growth condition on f implies that

| f (s)| ≤ c(p)|s|+ c(p)|s|p. (2.7)

We still note that (2.4) implies f ′(0) + γ ≥ 0 as well.

Now, consider A : D(A) ⊂ H1
Γ0
(Ω) → H−1(Ω) the operator Au = −∆u, with D(A) =

{

u ∈ H1
Γ0
(Ω), ∂νu|Γ1

= 0
}

, h : M → L2(Γ1), h(w(s)) =
∫ ∞

0 µ(s)a(x)w(s) ds and N : L2(Ω) →
L2(Ω) be the Neumann map



















−∆u = 0 in Ω,

Ng = 0 on Γ0,

∂(Ng)
∂ν

= g on Γ1.

Therefore, we have that

N∗A∗v = −v|Γ1
, ∀v ∈ D(A

1
2 ) (2.8)

as well as the system (2.2) is equivalent to







































































utt + A(u − N[h(η)]) + f (u) = 0 in Ω × (0, ∞),

u = 0 on Γ0 × (0, ∞),

∂u
∂ν

= 0 on Γ1 × (0, ∞),

ηt
s + ηt

t = ut in Ω × (0, ∞)× (0, ∞),

u(x,−t) = u0(x,−t) in Ω × (0, ∞)

u(x, 0) = u0(x) = u0(x, 0), ut(x, 0) = u1(x) = u0
t (x) in Ω,

ηt(x, s) = 0 on Γ0 × (0, ∞)× (0, ∞),

η0(x, s) = η0(x, s) = u0(x, 0)− u0(x,−s) on Ω × (0, ∞).

(2.9)
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Next, let a be a function satisfying Assumption A.1, and define the µ-weighted space with

values in L2(Γ1) as

M =

{

η : R+ → L2(Γ1);
∫ ∞

0
µ(s)∥

√
aη(s)∥2

< ∞

}

, (2.10)

which is a Hilbert space endowed with the inner-product

(η, ζ)M =
∫ ∞

0
µ(s)

∫

Γ1

√
aη(s)

√
aζ(s) dΓ ds.

Throughout this article, H represents the energy space

H = H1
Γ0
(Ω)× L2(Ω)×M,

where H1
Γ0
(Ω) := {u ∈ H1(Ω) : u|Γ0

= 0}, and H is endowed with the inner product

⟨(u1, v1, η1), (u2, v2, η2)⟩H =
∫

Ω
(∇u1∇u2 + v1v2) dx +

∫ ∞

0
µ(s)

∫

Γ1

√
aη1

√
aη2 dΓ ds.

Therefore, denoting U = (u, ut, η)T we can write, equivalently, the system (2.9) in the form

{

d
dt U(t) + SU(t) +F (U(t)) = 0,

U(0) = (u0, u1η0),
(2.11)

where S : D(S) ⊂ H → H is given by

S




u
v
η



 =





−v
A(u − N[h(η)])

v − ηt
s



 ,

D(S) =
{

(u, v, η) ∈ H : v ∈ H1
Γ0

, u − N[h(η)] ∈ D(A), ηt
s ∈ M, η(0) = 0

}

,

which is well-defined in view of the previous explanation, and F : H → H is set by

F (U) = (0, f (u), 0)T ,

being also well-defined by virtue of the growth condition on f and standard Sobolev embed-

dings. The Hadamard well-posedness of problem (2.11) and, consequently, of the original

system (1.1), reads as follows.

Theorem 2.2. Under the Assumptions A.1–A.3 we have:

(i) If U0 = (u0, u1, η0) ∈ D(S), then there exists a unique regular solution U = (u, ut, η) of (2.11)

such that

u ∈ W2,∞(0, T; L2(Ω)) ∩ W1,∞(0, T; H1
Γ0
(Ω)), η ∈ W1,∞(0, T;M),

with U(t) = (u(t), ut(t), ηt) ∈ D(S), for all t ∈ [0, T], for a given T > 0.

(ii) If U0 = (u0, u1, η0) ∈ H, then there exists a unique mild solution U = (u, ut, η) of (2.11) such
that

u ∈ C1([0, T]; L2(Ω)) ∩ C([0, T]; H1
Γ0
(Ω)), η ∈ C([0, T],M),

for all T > 0 given.



Wave equation with nonlinear interior source and localized viscoelastic boundary feedback 7

(iii) Moreover, these solutions are continuously dependent of the initial data, in the norm of
C([0, T],H), for all T > 0.

Proof. To establish this result, firstly we shall prove that S is monotone and I −S is surjective

on the space H. Indeed, for η ∈ D(S), define

J[η] = ∑
n≥1

(µ(s−n )− µ(s+n ))∥η(sn)∥2
M,

which is a nonpositive quantity in view of Assumption A.2. Following [37, Lemma 3.4], one

notices that η ∈ D(S) satisfies

2(ηs, η)M =
∫ ∞

0
µ′(s)∥η(s)∥2

M ds + J[η].

Let




u1

v1

η1



 ,





u2

v2

η2



 ∈ D(S).

Then

〈

S




u1

v1

η1



− S




u2

v2

η2



 ,





u1

v1

η1



−




u2

v2

η2





〉

= ⟨−v1 + v2, u1 − u2⟩H1
Γ0

+ ⟨Av1 − Av2, v1 − v2⟩L2(Ω)

− ⟨A(N[h(η1)− h(η2)]), v1 − v2⟩L2(Ω) + (v1 − v2, η1 − η2)L2(Ω)

− ((η1)s − (η2)s, η1 − η2)M

= − 1

2
J[η] ≥ 0,

which shows that S is monotone.

Next, we will prove that I − S is surjective. To this end, we show the equation

(I − S)








u
v
η







 =





h1

h2

h3





has a solution




u
v
η



 ∈ H, for any h =





h1

h2

h3



 ∈ H.

The above equation is equivalent to write














u + v = h1,

v − A(u − N[h(η)]) = h2

η + ηs − v = h3.

(2.12)

Combining the above identities we deduce in the weak space

{

−A(−v − N[h(η)]) + v = h2 + A(h1)

η + ηs − v = h3.
(2.13)
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Denote

R(v, η) = (T0 + T1 + T2)(v, η),

T0(v, η) = (0, η + s), T1(v, η) = (Av + v, η), T2(v, η) = (A(N(h(η))),−v).

It is well-known that T0 is maximal monotone in H1
Γ0
×M. Also, T1 is monotone and from the

Lax–Milgram Theorem follows that it is surjective, therefore maximal monotone in H1
Γ0
×M.

Furthermore, T2 is monotone and Lipschitz continuous in H1
Γ0
×M. Then, using standard

perturbation results in [4], we conclude that R = (T0 + T1 + T2) is maximal monotone and

coercive, therefore the left hand term in (2.13) is surjective. Then, (2.13) possesses a unique

solution (v, η) ∈ H1
Γ0
(Ω)×M. Since u = v + h1 we obtain u ∈ H1

Γ0
(Ω), which implies that

I − S is surjective.

Next, to finish the proof we observe that from Assumption A.3, for a given T > 0, f
generates a locally Lipschitz perturbation on the phase space H which after some standard

calculations guarantees, by using the Kato’s Theorem, the existence of a unique strong so-

lution U ∈ W1,∞([0, T],H) such that U(t) ∈ D(S) for all t ∈ [0, T]. Moreover, this solution

continuously depends on the initial data for any T > 0.

3 Asymptotic stability result

In this section the goal is to establish the exponential stability result concerning problem (2.2).

Denoting U = (u, ut, η) the unique global solution to the problem (2.11) as stated in The-

orem 2.2, then the couple (u, η) is the corresponding solution to the equivalent system (2.2).

The associated energy functional is given by

E(t) =
1

2

[

|ut|2 + |∇u|2 + ∥η∥2
M + 2

∫

Ω

∫ u

0
f (τ) dτdx

]

. (3.1)

A straightforward computation provides the identity

d
dt

E(t) =
1

2

∫

Γ1

∫ ∞

0
µ′(s)a(x)|ηt(s)|2ds dΓ,

which, in view on Assumption A.2, implies that E(t) is a non-increasing function for all t > 0

and satisfies the identity

E(T)− E(0) =
1

2

∫ T

0

∫

Γ1

∫ ∞

0
µ′(s)a(x)|ηt(s)|2ds dΓ dt

for all T > 0.

In order to obtain the desired stability, we need to make some complementary assumptions

on the given functions, as well to make some remarks and comments which will be necessary

to prove the exponential stability.

Concerning the memory kernel µ : R+ → R+ defined in Assumption A.2 it is also assumed

that

A.4. (i) there exist δ > 0 and C ≥ 1 such that

µ(t + s) ≤ Ce−δtµ(s) (3.2)

for every t ≥ 0 and almost every s > 0;
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(ii) µ is not completely flat, that is, the set

D = {s > 0, µ′(s) < 0}

has positive Lebesgue measure.

Remark 3.1.

a. A kernel µ satisfying Assumption A.4(i) is said to fulfill the δ-condition;

b. Particularly, the δ-condition implies that, for each t ≥ 0

|Nt = {s ∈ R+, Ce−δtµ(s)− µ(t + s) < 0}| = 0, (3.3)

where | · | stands for the Lebesgue measure of the set.

c. If S∞ = sup{s, µ(s) > 0} < ∞, then µ fulfills the δ-condition for every δ > 0;

d. When C = 1, (3.2) is equivalent to the well-known condition in the literature µ′(s) +
δµ(s) ≤ 0, for almost every s > 0;

e. Regarding Assumption A.4(ii), it is fairly easy to show that there exists α > 0 large

enough such that the set

N = {s ∈ R+, αµ′(s) + µ(s) < 0} (3.4)

has positive Lebesgue measure.

In view of the aforementioned considerations, the stability result reads as follows.

Theorem 3.2. Assume that Assumptions A.1–A.4 are in force and let R > 0 be a given constant. If
E(0) ≤ R, there exist T0 > 0 and constants C0, λ > 0, depending on R, verifying

E(t) ≤ C0E(0)e−λt, ∀t > T0. (3.5)

As mentioned earlier, an important step to prove estimate (3.5) relies on obtaining an

observability inequality through a contradiction argument. To accomplish this it is needed,

among other tools, to obtain the following convergence

lim
n→∞

∫ T

0

∫

Γ1

∫ ∞

0
µ(s)a(x)|ηt

n|2ds dΓ dt = 0,

for a sequence {(un, ηt
n)} of solutions to the problem (2.2), which is not an easy task since µ

satisfies the δ-condition A.4(i). The proof of this convergence is stated in the following result:

Lemma 3.3. Let {(un, ηt
n)} be a sequence of solutions to the problem (2.2). By assuming Assumption

A.4, if

lim
n→∞

∫ T

0

∫

Γ1

∫ ∞

0
−µ′(s)a(x)|ηt

n|2ds dΓ dt = 0,

then

lim
n→∞

∫ T

0

∫

Γ1

∫ ∞

0
µ(s)a(x)|ηt

n|2ds dΓ dt = 0.
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Proof. First one notices that, according to Remark 4.1(e), as

lim
n→∞

∫ T

0

∫

Γ1

∫ ∞

0
µ(s)a(x)|ηt

n|2ds dΓ dt = lim
n→∞

∫ T

0

∫

Γ1

∫

N
µ(s)a(x)|ηt

n|2ds dΓ dt

+ lim
n→∞

∫ T

0

∫

Γ1

∫

R+\N
µ(s)a(x)|ηt

n|2ds dΓ dt,

we have that

lim
n→∞

∫ T

0

∫

Γ1

∫

N
µ(s)a(x)|ηt

n|2ds dΓ dt ≤ lim
n→∞

α
∫ T

0

∫

Γ1

∫ ∞

0
−µ′(s)a(x)|ηt

n|2ds dΓ dt = 0. (3.6)

Next, suppose that limn→∞

∫ T
0

∫

Γ1

∫

R+\N µ(s)a(x)|ηt
n|2ds dΓ dt ̸= 0. Thus, there exists n1

large enough such that
∫

R+\N
µ(s)a(x)∥ηt

n1
∥2

L2(Γ1)
ds > 0,

for all t ≥ 0. To not overload the notation, the index n1 shall be omitted in the next calculations.

As in [12] consider, for η0 ∈ M, U(t) = R(t)(0, 0, η0). Therefore, as µ satisfies (3.2), if

C̃1 > max{1, C̃}, one gets

0 <

∫

R+\N
µ(s)a(x)∥η0∥2

L2(Γ1)
ds ≤

∫ ∞

0
µ(s)a(x)∥η0∥2

L2(Γ1)
ds

≤
∫ ∞

0
µ(s − t)a(x)∥η0∥2

L2(Γ1)
ds

≤ 2∥a∥
[

∫ ∞

t
µ(s)(C̃∥ηt(s)∥2

L2(Γ1)
+ ∥u(t)∥2)ds

]

≤ 2∥a∥
[

C̃
∫ ∞

0
µ(s + t)∥η0(s)∥2

L2(Γ1)
+

∫ ∞

0
µ(s)∥u(t)∥2ds

]

< C̃1(C + M)e−δt∥η0∥2
M,

where M = ∥R(t)∥.

Particularly, for t > 0 fixed and η0(s) = χNt φ(s), where ∥φ∥L2(Γ1) = 1, we obtain

∫ ∞

0
[1 − C̃1(C + M)]e−δtχNt(s)ds < 0. (3.7)

On the other hand, for any fixed t > 0, define

Nt = {s ∈ R+, µ(t + s)− C̃1(C + M)e−δtµ(s) > 0}.

Thus, from Remark 4.1(b) follows that

0 =
∫

Nt

µ(t + s)− C̃1(C + M)e−δtµ(s) ds ≤ C̃1(C + M)e−δt|Nt|,

which contradicts (3.7) and shows that

lim
n→∞

∫ T

0

∫

Γ1

∫

R+\N
µ(s)a(x)|ηt

n|2ds dΓ dt = 0.
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Next, to the aim of obtaining the desired observability inequality which lead us to the

proof of Theorem 3.2, and in order to use an appropriate boundary observability inequality in

our arguments it is considered, for each k ∈ N, the following approximation of problem (2.2):







































































∂ttuk − ∆uk + f k(uk) = 0 in Ω × (0, ∞),

uk = 0 on Γ0 × (0, ∞),

∂uk

∂ν
+

∫ ∞

0
µ(s)a(x)ηt,k(x, s)ds = 0 on Γ1 × (0, ∞),

∂sη
t,k + ∂tη

t,k = ∂tuk in Ω × (0, ∞)× (0, ∞),

uk(x,−t) = u0(x,−t) in Ω × (0, ∞)

uk(x, 0) = uk
0(x) = u0(x, 0), ∂tuk(x, 0) = uk

1(x) = ∂tu0(x) in Ω,

ηt,k(x, s) = 0 on Γ0 × (0, ∞)× (0, ∞),

η0,k(x, s) = ηk
0(x, s) = uk

0(x, 0)− uk
0(x,−s) on Ω × (0, ∞),

(3.8)

where the function f k is defined by

f k(s) =















f (s), |s| ≤ k

f (k), s ≥ k

f (−k), s ≤ −k.

Notice that, for each k, f k is Lipschitz continuous on R and the associated energy functional

is given by

Ek(t) =
1

2

[

|∂tuk|2 + |∇uk|2 + ∥ηt,k∥2
M + 2

∫

Ω

∫ uk

0
f k(τ) dτdx

]

. (3.9)

An observability inequality to the truncated problem (3.8) shall be provided by the next result.

Proposition 3.4. Let us take Assumptions A.1-A.4 and let R > 0 be a given constant. The solution
(uk, ηk) of (3.8) satisfies the following inequality

Ek(0) ≤ C
(

∫ T

0

∫

Γ1

∫ ∞

0
−µ′(s)a(x)|ηt,k(s)|2 dsdΓdt

)

, (3.10)

for all T ≥ T0 and some constant C depending only on U0 = (u0, u1, η0), provided that Ek(0) ≤ R.

Proof. To prove (3.10) we argue by contradiction. Indeed, if such inequality does not hold,

there exist T > T0 > 0, R > 0 and a sequence {(uk
n, ηt,k

n )} of solutions to














































































∂ttuk
n − ∆uk

n + f k(uk
n) = 0 in Ω × (0, ∞),

uk
n = 0 on Γ0 × (0, ∞),

∂uk
n

∂ν
+

∫ ∞

0
µ(s)a(x)ηt,k

n (x, s)ds = 0 on Γ1 × (0, ∞),

∂sη
t,k
n + ∂tη

t,k
n = ∂tuk

n in Ω×(0, ∞)×(0, ∞),

uk
n(x,−t) = u0(x,−t) in Ω × (0, ∞)

uk
n(x, 0) = uk

0n(x) = u0
n(x, 0), ∂tuk

n(x, 0) = uk
1n(x) = ∂tu0

n(x) in Ω,

ηt,k
n (x, s) = 0 on Γ0×(0, ∞)×(0, ∞),

η0,k
n (x, s) = ηk

0n(x, s) = uk
0n(x, 0)− uk

0n(x,−s) on Ω × (0, ∞),

(3.11)
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such that Ek
n(0) ≤ R, which satisfies

lim
n→∞

Ek
n(0)

∫ T

0

∫

Γ1

∫ ∞

0
−µ′(s)a(x)|ηt,k

n (s)|2dsdΓdt
= ∞. (3.12)

Since Ek
n(t) ≤ Ek

n(0) ≤ R for all t ≥ 0, from (3.12) one gets

lim
n→∞

∫ T

0

∫

Γ1

∫ ∞

0
−µ′(s)a(x)|ηt,k

n (s)|2dsdΓdt = 0, (3.13)

and also guarantees the existence of a subsequence of {(uk
n, ηt,k

n )}, still denoted by {(uk
n, ηt,k

n )},

such that

uk
n

∗
⇀ uk in L∞(0, T; H1

0(Ω)),

∂tuk
n

∗
⇀ ∂tuk in L∞(0, T; L2(Ω)),

(3.14)

when n → ∞. By using compactness arguments we also obtain

uk
n → uk in L2(0, T; L2(Ω)). (3.15)

In the sequel, with respect to the limit function uk, the proof is twofold: uk ̸= 0 and uk = 0.

Case I: uk ̸= 0. Taking in mind (3.13), (3.14) and Lemma 3.3, from (3.11) one obtains, when

n → ∞










































∂ttuk + ∆uk + f k(uk) = 0 in Ω × (0, ∞),

uk = 0 on Γ0 × (0, ∞),

∂uk

∂ν
= 0 on Γ1 × (0, ∞),

uk(x,−t) = u0,k(x,−t) in Ω × (0, ∞)

uk(x, 0) = uk
0(x) = u0,k(x, 0), ∂tuk(x, 0) = uk

1(x) = ∂tu0,k(x) in Ω,

(3.16)

Since f k is globally Lipschitz, for each k ∈ N we find by the boundary observability theorem

due to the Theorem 2.2 in [18] that uk = 0, which presents the desired contradiction.

Case II: uk = 0. Denote

αn =
(

Ek
n(0)

) 1
2

, vk
n =

1

αn
uk

n, ζk
n =

1

αn
ηk

n. (3.17)

Whereupon, {(vk
n, ζk

n)} is solution of the normalized problem


















































































∂ttvk
n − ∆vk

n +
1

αn
f k(αnvk

n) = 0 in Ω × (0, ∞),

vk
n = 0 on Γ0 × (0, ∞),

∂vk
n

∂ν
+

∫ ∞

0
µ(s)a(x)ζt,k

n (x, s)ds = 0 on Γ1 × (0, ∞),

∂sζ
t,k
n + ∂tζ

t,k
n = ∂tvk

n in Ω × (0, ∞)× (0, ∞),

vk
n(x,−t) = v0(x,−t) in Ω × (0, ∞)

vk
n(x, 0) = vk

0n(x) = v0
n(x, 0), ∂tvk

n(x, 0) = vk
1n(x) = ∂tv0

n(x) in Ω,

ζt,k
n (x, s) = 0 on Γ0×(0, ∞)×(0, ∞),

ζ0,k
n (x, s) = ζk

0n(x, s) = vk
0n(x, 0)− vk

0n(x,−s) on Ω × (0, ∞),

(3.18)



Wave equation with nonlinear interior source and localized viscoelastic boundary feedback 13

whose energy functional is defined by

Evk
n(t) =

1

2

[

|∂tvk
n|2 + |∇vk

n|2 + ∥ζt,k
n ∥2

M + 2
∫

Ω

∫ vk
n

0
f k(τ) dτdx

]

. (3.19)

Further, as Evk
n(t) = 1

α2
n
Ek

n(t) for all t ≥ 0 we deduce

Evk
n(0) =

1

α2
n

Ek
n(0) = 1 (3.20)

for all n > 0, and also the existence of a subsequence {(vk
n, ζk

n)} such that such that

vk
n

∗
⇀ vk in L∞(0, T; H1

0(Ω)),

∂tvk
n

∗
⇀ ∂tvk in L∞(0, T; L2(Ω)),

vk
n → vk in L2(0, T; L2(Ω)),

(3.21)

since Evk
n(t) ≤ Evk

n(0) for all t ≥ 0. Moreover, by combining (3.13) and Lemma 3.3 we get

lim
n→∞

∫ T

0

∫

Γ1

∫ ∞

0
µ(s)a(x)|ζtk

n |2ds dΓ dt = 0. (3.22)

If we show that Evk
n(T) goes to zero uniformly for each k fixed the desired contradiction is

proved, since

Evk
n(T) = Evk

n(0) +
∫ T

0

∫

Γ1

∫ ∞

0
µ′(s)a(x)ζt,k

n dsdΓdt.

Indeed, for this purpose observe that, for an eventual subsequence, αn → α, where α ≥ 0.

Therefore we separate the proof in two subcases: α > 0 and α = 0.

If α > 0, since we have αnvn = uk
n → 0 strongly in L2(0, T, L2(Ω)), passing to the limit in

(3.18) when n → ∞, and taking (3.21) and (3.22) into account, we arrive at







































∂ttvk − ∆vk + 1
α f k(0) = 0 in Ω × (0, ∞),

vk = 0 on Γ0 × (0, ∞),

∂vk

∂ν
= 0 on Γ1 × (0, ∞),

vk(x,−t) = v0(x,−t) in Ω × (0, ∞)

vk(x, 0) = vk
0(x) = v0(x, 0), ∂tvk(x, 0) = vk

1(x) = ∂tv0(x) in Ω

(3.23)

which implies, as in the Case I, that vk = 0.

Now, consider α = 0. Firstly notice that, by Taylor’s formula, we have

1

αn
f (αnvk

n) =
f ′(0)αnvk

n

αn
+

R(αnvk
n)

αn
,

|R(αnvk
n)|

αn
≤ α2

n|vk
n|2

αn
+

α
p
n|vk

n|p
αn

.

(3.24)

Next, by defining the set Ωt
n =

{

x ∈ Ω s.t. |uk
n(x, t)| > k

}

, we have, thanks to assumption A.3
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and Sobolev’s embbeding,

∥

∥

∥

∥

1

αn
f k(vk

n)−
1

αn
f (vk

n)

∥

∥

∥

∥

2

L2(0,T;L2(Ω))

=

∥

∥

∥

∥

1

αn
f k(uk

n)−
1

αn
f (uk

n)

∥

∥

∥

∥

2

L2(0,T;L2(Ω))

=
1

α2
n

∫ T

0

∫

Ωt
n

∣

∣

∣
f k(uk

n)− f (uk
n)
∣

∣

∣

2
dxdt

≤ c
1

α2
n

∫ T

0

∫

Ωt
n

∣

∣

∣
f k(uk

n)
∣

∣

∣

2
dxdt +

1

α2
n

∫ T

0

∫

Ωt
n

∣

∣

∣
f (uk

n)
∣

∣

∣

2
dxdt

≤ c
1

α2
n

∫ T

0

∫

Ωt
m

(|k|2 + |k|2p) dxdt +
1

α2
n

∫ T

0

∫

Ωt
n

(|uk
n|2 + |uk

n|2p) dxdt

≤ cα
2(p−1)
n

∥

∥

∥
vk

m

∥

∥

∥

2p

L2p(0,T;L2p(Ω))
−→ 0.

(3.25)

Also, it is not difficult to see that, up to a subsequence,

R(αnvk
n)

αn
⇀ 0 in L2(0, T; L2(Ω)). (3.26)

Therefore, from (3.24) – (3.26), and since

1

αn
f k(αnvk

n)− f ′(0)vk
n =

1

αn
f k(uk

n)− f ′(0)vk =
1

αn
f k(uk

n)−
1

αn
f (uk

n) +
1

αn
f (uk

n)− f ′(0)vk,

one obtain

1

αn
f k(αnvk

n)− ( f k)′(0)vk → 0 in L2(0, T; L2(Ω)), (3.27)

By passing to the limit in (3.18) when n → ∞, and taking (2.9), (3.22), (3.25) and (3.27) into

account, we arrive at







































∂ttvk − ∆vk + 1
α ( f k)′(0)vk = 0 in Ω × (0, ∞),

vk = 0 on Γ0 × (0, ∞),

∂vk

∂ν
= 0 on Γ1 × (0, ∞),

vk(x,−t) = v0(x,−t) in Ω × (0, ∞)

vk(x, 0) = vk
0(x) = v0(x, 0), ∂tvk(x, 0) = vk

1(x) = ∂tv0(x) in Ω

(3.28)

allowing us to conclude, as before, that vk = 0. Thus, convergences (3.14) and (3.15) read as

vk
n

∗
⇀ 0 in L∞(0, T : H1

0(Ω)),

∂tvk
n

∗
⇀ 0 in L∞(0, T; L2(Ω)),

vk
n → 0 in L2(0, T; L2(Ω)).

(3.29)

Besides that,
1

αn
f k(αnvk

n) → 0 in L2(0, T, L2(Ω)). (3.30)
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In light of these calculations, consider now φk
n(x, t) =

∫ ∞

0 µ(s)ζt,k
n (x, s) ds and θ ∈ C∞(0, T);

0 ≤ θ < 1; θ(t) = 1 in (ε, T − ε). Multiplying the first equation of (3.18) by ψn = θφk
n and

integrating by parts, we infer

µ0

∫ T

0

∫

Ω
|∂tvk

n|2θdxdt = −
∫ T

0

∫

Ω
∂tvk

n

(

∫ ∞

0
µ(s)∂svk

nds
)

θdxdt +
∫ T

0

∫

Ω
∇vk

n∇φk
nθdxdt

−
∫ T

0

∫

Ω
∂tvk

nφk
nθtdxdt +

∫ T

0

∫

Γ1

a(x)
(

∫ ∞

0
µ(s)ζt,k

n ds
)2

θ dΓdt (3.31)

+
∫ T

0

∫

Ω

1

αn
f k(αnvk

n)φ
k
nθ dxdt = I1 + I2 + I3 + I4 + I5.

From convergences (3.22), (3.29) and (3.30) it is not hard to conclude that

lim
n→∞

I1 = · · · = lim
n→∞

I5 = 0.

Thus, limn→∞

∫ T−ε
ε |∂tvk

n|2dxdt = 0, that is,

lim
n→∞

∫ T

0
|∂tvk

n|2dxdt = 0. (3.32)

The next step is to show that the potential energy converges to zero. To this aim, we

multiply the first equation of (3.18) by θvk
n and integrate by parts to get

∫ T

0

∫

Ω
|∇vk

n|2θdxdt =
∫ T

0

∫

Ω
|∂tvk

n|2θdxdt +
∫ T

0

∫

Ω
∂tvk

nvk
nθtdxdt

−
∫ T

0

∫

Γ1

a(x)
∫ ∞

0
µ(s)ζt,k

n vk
nθds dΓdt

−
∫ T

0

∫

Ω

1

αn
f k(αnvk

n)v
k
nθ dxdt

= J1 + J2 + J3 + J4,

(3.33)

which, through an analysis similar to the performed previously, produces

lim
n→∞

∫ T

0

∫

Ω
|∇vk

n|2dxdt = 0. (3.34)

Therefore, since Evk
n(t) is non-increasing, from (3.30)–(3.34) we conclude that

lim
n→∞

Evk
n(T) = 0,

which concludes this proof.

Proof of Theorem 3.2. Notice that since C > 0 in (3.10) does not depend on k, by arguing sim-

ilarly to [7, Lemma 2.1 and Proposition 2.1] one can pass (3.10) to limit to obtain the observ-

ability inequality

E(0) ≤ C
(

∫ T

0

∫

Γ1

∫ ∞

0
−µ′(s)a(x)|ηt(s)|2 dsdΓdt

)

(3.35)

and, consequently, the desired exponential stability.
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Abstract. This paper considers the existence of multiple normalized solutions of the
following (2, q)-Laplacian equation:







− ∆u − ∆qu = λu + h(ϵx) f (u), in R
N ,

∫

RN
|u|2dx = a2,

where 2 < q < N, ϵ > 0, a > 0 and λ ∈ R is a Lagrange multiplier which is unknown,
h is a continuous positive function and f is also continuous satisfying L2-subcritical
growth. When ϵ is small enough, we show that the number of normalized solutions is
at least the number of global maximum points of h by Ekeland’s variational principle.

Keywords: normalized solution, multiplicity, (2, q)-Laplacian, variational methods.
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1 Introduction

This paper is devoted to the existence of multiple normalized solutions, with X := H1(RN) ∩

D1,q(RN), of the following (2, q)-Laplacian equation:

−∆u − ∆qu = λu + h(ϵx) f (u), in R
N (1.1)

under the constraint
∫

RN
|u|2dx = a2, (1.2)

where ϵ, a > 0, ∆qu = div(|∇u|q−2∇u) is the q-Laplacian of u, 2 < q < N and λ ∈ R is

a Lagrange multiplier which is unknown. The continuous function f satisfies the following

conditions:

( f1) f is odd and limt→0
| f (t)|
|t|p−1 = α > 0 for some p ∈

(

2, 2 + 4
N

)

;

BCorresponding author. Email: wangli.423@163.com
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( f2) There exist some constants c1, c2 > 0 and p1 ∈ (q, q+ 2q
N ) such that | f (t)| ≤ c1 + c2|t|p1−1,

∀t ∈ R;

( f3) the mapping t 7→ f (t)
tq−1 is a non-decreasing function when t > 0.

Hereafter, the continuous function h satisfies the following assumptions:

(h1) 0 < h0 = infx∈RN h(x) ≤ maxx∈RN h(x) = hmax;

(h2) h∞ = lim|x|→+∞ h(x) < hmax;

(h3) h−1({hmax}) = {e1, e2, . . . , el} with e1 = 0 and ej ̸= ek when j ̸= k.

In particular, since restriction of (1.2), we are seeking normalized solutions to (1.1), which

corresponds to seek critical points of the following functional

Iϵ(u) =
1

2

∫

RN
|∇u|2dx +

1

q

∫

RN
|∇u|qdx −

∫

RN
h(ϵx)F(u)dx

on the sphere

S(a) :=

{

u ∈ X := H1(RN) ∩ D1,q(RN) : |u|22 =
∫

RN
|u|2 dx = a2

}

, (1.3)

where | · |τ denotes the usual norm on Lτ(RN) for τ ∈ [1,+∞) and D1,q(RN) := {u ∈

Lq∗(RN) : ∇u ∈ Lq(RN)} with semi-norm ∥u∥D1,q(RN) = ∥∇u∥q. Moreover, ∥u∥X =

∥u∥H1(RN) + ∥u∥D1,q(RN). It is well known that Iϵ ∈ C1(X, R) and

⟨I′ϵ(u), φ⟩ =
∫

RN
∇u∇φdx +

∫

RN
|∇u|q−2∇u∇φdx −

∫

RN
h(ϵx) f (u)φdx

for all u, φ ∈ X.

The equation (1.1) is related to the general reaction-diffusion system

∂tu − ∆pu − ∆qu = f (x, u). (1.4)

The system has wide range of applications in physics and related sciences, such as bio-

physics, chemical reaction and plasma physics. In such applications, the function u de-

scribes a concentration, the (p, q)-Laplacian term in (1.4) corresponds to the diffusion as

div
[(

|∇u|p−2 + |∇u|q−2
)

∇u
]

= ∆pu + ∆qu, whereas the term f (x, u) is the reaction and re-

lates to sources and loss processes. Another model related to the (p, q)-Laplacian operator

concerns the Lavrentiev gap phenomenon, which involved variational functions with non-

standard (p, q) growth conditions, e.g., in [9, 30].

The stationary version of equation (1.4)

−∆pu − ∆qu = f (x, u), x ∈ R
N

has been extensively studied. Where N ≥ 3, 1 < p < q < N, C. J. He et al. in [11] proved the

existence of solution by mountain pass theorem and the concentration–compactness principle

when f does not satisfy the Ambrosetti–Rabinowitz condition and they derived the regularity

of weak solutions in [12]. Furthermore, when nonlinear function f is discontinuous and

satisfies the Ambrosetti–Rabinowitz condition, the authors in [31] showed the existence of

solution by mountain pass theorem and the concentration-compactness principle. Moreover,
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some researchers had studied the existence results for the nonlinear function f involving the

critical Sobolev exponent in a bounded domain. G. B. Li et al. [21] studied f = |u|p
∗−2u +

µ|u|r−2u and obtained infinitely many weak solutions by genus theorem when 1 < r < q <

p < N, µ > 0. Later on, in [28], the authors proved multiplicity of positive solutions by

using the Lusternik–Schnirelman category theorem where p < r < p∗. [13] proved some

nonexistence results where N ≥ 2, 1 < q < p < N and 1 < r < p∗. Finally, we refer the

interested readers works [8,29] for a development of the existence theory for various problems

of the (p, q)-Laplacian.

In literature, the following equation






− ∆u + λu = |u|p−2u, in R
N ,

∫

RN
|u|2dx = a2

(1.5)

has been widely studied by many researchers. In the L2-subcritical problem, namely 2 < p <

2 + 4
N , it is well konwn that the functional

E(u) =
1

2

∫

RN
|∇u|2dx −

1

p

∫

RN
|u|pdx, u ∈ H1(RN)

is bounded from below on the set
{

u ∈ H1(RN) : ∥u∥2
2 =

∫

RN |u|2 dx = a2
}

, so we can found

a solution as a global minimizer on the sphere, see [24]. While in the L2-supercritical prob-

lem, namely 2 + 4
N < p <

2N
N−2 , E|S(a) is unbounded from below. One of the main difficulties

in dealing with normalized solutions is proving the Palais–Smale condition, as a compact-

ness property. Jeanjean in [14] got one normalized solution by a mountain pass structure

for an auxiliary functional. Furthermore, in [5], the authors obtained infinitely many nor-

malized solutions by using linking geometry for a stretched functional. More results about

L2-supercritical problem can be found in [6, 15]. Regarding the critical case, we cite the arti-

cles [7, 23]. Furthermore, in a recent paper, Yang and Baldelli [27] considered the following

equation






− ∆u − ∆qu + λu = |u|p−2u, in R
N ,

∫

RN
|u|2dx = a2

in all the possible cases, where 2 < p < min{2∗, q∗} and 1 < q < N. They showed a

ground state solution by using Ekeland’s variational principle in L2-subcritical case, while in

L2-critical case, they proved existence and nonexistence results, at last, they get a solution by

using a natural constraint approach in L2-supercritical case.

In addition, the multiplicity of normalized solutions has been wildly researched. For

example, Jeanjean and Lu [18] studied the following problem






−∆u = λu + h(u), in R
N ,

u > 0,
∫

RN
|u|2dx = a2,

they obtained multiple normalized solutions by the variational methods and genus theory.

More information about multiplicity of normalized solutions by using genus theory and de-

formation arguments, see [2, 16, 17]. Particularly, without use of the genus theory, the authors

[19] studied the following problem






−∆u + λu = (Iα ∗ [h(ϵx)|u|
N+α

N ])h(ϵx)|u|
N+α

N −2u + µ|u|q−2u, x ∈ R
N ,

∫

RN
|u|2dx = a2.
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They showed multiple normalized solutions by Ekeland’s variational principle when ϵ small

enough, µ, a > 0, 2 < q < 2 + 4
N , λ ∈ R and h is a continuous positive function satisfying

(h1)–(h3).

This paper is devoted to study the problem (1.1)–(1.2), which has not been studied in

our knowledge. In order to get the existence of multiple normalized solutions for (1.1), we

will follow the variational methods in [19]. Moreover, since the workspace is X = H1(RN) ∩

D1,q(RN), it will be more complicated to obtain the strong L2(RN) convergence of the selected

Palais-Smale sequence in X.

The main result of this paper is the following:

Theorem 1.1. Assume that f satisfies ( f1)–( f3) and h satisfies (h1)–(h3). Then, there exists ϵ0 such

that (1.1) has at least l couples weak solutions (uj, λj) ∈ X × R for 0 < ϵ < ϵ0. Moreover, λj < 0

and Iϵ(uj) < 0 for j = 1, 2, . . . , l.

Now, we will give the outline about this paper. In Section 2, we prove a compactness

theorem in the autonomous case. In Section 3, we use the compactness theorem to study the

non-autonomous case. Finally, we give the proof of Theorem 1.1 in Section 4.

2 The autonomous case

Firstly, we consider the existence of normalized solution (u, λ) ∈ X ×R, where X = H1(RN)∩

D1,q(RN), for the problem below







− ∆u − ∆qu = λu + µ f (u),
∫

RN
|u|2dx = a2,

(2.1)

where a, µ > 0, λ ∈ R and f satisfies ( f1)–( f3). It is well known that the critical point of the

functional

Jµ(u) =
1

2

∫

RN
|∇u|2dx +

1

q

∫

RN
|∇u|qdx −

∫

RN
µF(u)dx

is a solution to the problem (2.1), which is restricted to the sphere S(a), where F(t) =
∫ t

0 f (s)ds. Next, we will show that problem (2.1) has a normalized solution.

Lemma 2.1 ([20, Lemma 2.7]). Assume that k > 1, Ω is an open set in R
N , α, β > 0 and Θ ∈

C(Ω × R
N , R

N) satisfying

(1) α|ξ|k ≤ Θ(x, ξ)ξ, ∀(x, ξ) ∈ Ω × R
N ,

(2) |Θ(x, ξ)| ≤ β|ξ|k−1, ∀(x, ξ) ∈ Ω × R
N ,

(3) (Θ(x, ξ)− Θ(x, η))(ξ − η) > 0, ∀(x, ξ) ∈ Ω × R
N with ξ ̸= η,

(4) Θ(x, γξ) = γ|γ|k−2Θ(x, ξ), ∀(x, ξ) ∈ Ω × R
N and γ ∈ R \ {0}.

Consider (un), u ∈ W1,k(Ω), then ∇un → ∇u in Lk(Ω) if and only if

lim
n→∞

∫

Ω

(Θ(x,∇un(x))− Θ(x,∇u(x))) (∇un(x)−∇u(x))dx = 0.

Lemma 2.2. The functional Jµ restricts to S(a) is bounded from below.
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Proof. From the conditions ( f1)–( f2), we can infer that there exist some constants C1, C2 > 0

such that

|F(t)| ≤ C1|t|
p + C2|t|

p1 , ∀t ∈ R.

By the Lq-Gagliardo–Nirenberg inequality [1, Theorem 2.1], we get that

|u|l ≤ C|∇u|
νl,q
q |u|

(1−νl,q)

2 , ∀u ∈ D1,q(RN) ∩ L2(RN) (2.2)

for some positive constant C > 0, where νl,q =
Nq(l−2)

l[Nq−2(N−q)]
, l ∈ (2, q∗ = Nq

N−q ). Hence,

Jµ(u) ≥
1

q

∫

RN
|∇u|qdx − CC1a(1−νp,q)p

(

∫

RN
|∇u|qdx

)

νp,q p

q

− CC2a(1−νp1,q)p1

(

∫

RN
|∇u|qdx

)

νp1,q p1
q

.

(2.3)

As p ∈ (2, 2 + 4
N ), p1 ∈ (q, q + 2q

N ), clearly νp,q p, νp1,q p1 < q, which ensures the boundedness

of Jµ from below. If Jµ is not bound from below, then there is u such that

1

q

∫

RN
|∇u|qdx − C

(

∫

RN
|∇u|qdx

)

νp,q p

q

− C

(

∫

RN
|∇u|qdx

)

νp1,q p1
q

→ −∞,

which is a contradiction since νp,q p, νp1,q p1 < q.

This lemma ensures that mµ(a) := infu∈S(a) Jµ(u) is well defined.

Lemma 2.3. Let µ, a > 0, then mµ(a) < 0.

Proof. By ( f1), we can deduce limt→0
pF(t)

tp = α > 0, which implies that, for some δ > 0,

pF(t)

tp
≥

α

2
(2.4)

for all t ∈ [0, δ]. Let 0 < u0 ∈ S(a) ∩ L∞(RN), we set

H(u0, r)(x) = e
Nr
2 u0(e

rx), ∀x ∈ R
N , ∀r ∈ R.

It is well known that
∫

RN
|H(u0, r)(x)|2dx = a2.

Furthermore, by a direct calculation, we have

∫

RN
F(H(u0, r)(x))dx = e−Nr

∫

RN
F(e

Nr
2 u0(x))dx.

Then, for r < 0 and |r| big enough, we have

0 ≤ e
Nr
2 u0(x) ≤ δ, ∀x ∈ R

N .

Furthermore, by (2.4), we derive

∫

RN
F(H(u0, r)(x))dx ≥

α

2p
e
(p−2)Nr

2

∫

RN
|u0(x)|pdx,



6 R. Chen, L. Wang and X. Song

so,

Jµ(H(u0, r)) ≤
e2r

2

∫

RN
|∇u0|

2dx +
e

Nqr
2 +rq−rN

2

∫

RN
|∇u0|

qdx −
µαe

(p−2)Nr
2

2p

∫

RN
|u0(x)|pdx.

Since q > 2, p ∈
(

2, 2 + 4
N

)

, increasing |r| if necessary, we get that

e2r

2

∫

RN
|∇u0|

2dx +
e

Nqr
2 +rq−rN

2

∫

RN
|∇u0|

qdx −
µαe

(p−2)Nr
2

2p

∫

RN
|u0(x)|pdx = Ar < 0,

then

Jµ(H(u0, r)) ≤ Ar < 0,

showing that mµ(a) < 0.

Lemma 2.4. If µ > 0, a > 0, then

(i) a 7→ mµ(a) is a continuous mapping;

(ii) if a1 ∈ (0, a) and a2 =
√

a2 − a2
1, we have mµ(a) < mµ(a1) + mµ(a2).

Proof. (i) Let a > 0 and (an) ⊂ (0,+∞) such that an → a, we need to prove that mµ(an) →

mµ(a). There exists un ∈ S(an) such that mµ(an) ≤ Jµ(un) < mµ(an) +
1
n for every n ∈ N

+.

Firstly, we deduce from Lemma 2.3 that mµ(an) < 0. Then by Lemma 2.2, we can get that

(un) is bounded in X. Now considering vn := a
an

un ∈ S(a), since the boundedness of (un) and

an → a, we have

mµ(a) ≤ Jµ(vn)

= Jµ(un) +
1

2

(

a2

a2
n

− 1

)

∫

RN
|∇un|

2dx +
1

q

(

aq

a
q
n

− 1

)

∫

RN
|∇un|

qdx

+
∫

RN

(

µF(un)dx − µF(
a

an
un)

)

dx

= Jµ(un) + on(1).

Let n → +∞, we can get mµ(a) ≤ limn→+∞ inf mµ(an). In the same manner, let (wn) be a

bounded minimizing sequence of mµ(a) and zn := an
a wn ∈ S(an), then we have

mµ(an) ≤ Jµ(zn) = Jµ(wn) + on(1) =⇒ lim
n→+∞

sup mµ(an) ≤ mµ(a),

so we get mµ(an) → mµ(a).

(ii) For any fix a1 ∈ (0, a), we first claim that

mµ(θa1) < θ2mµ(a1), ∀θ > 1. (2.5)

Let (un) ⊂ S(a1) be a minimizing sequence for mµ(a1), then un(θ−
2
N x) ∈ S(θa1). Since θ > 1

and
2(N−q)

N <
2(N−2)

N < 2, we have

mµ(θa1)− θ2 Jµ(un) ≤ Jµ(un(θ
− 2

N x))− θ2 Jµ(un)

=
θ

2(N−2)
N − θ2

2
|∇un|

2
2 +

θ
2(N−q)

N − θ2

q
|∇un|

q
q ≤ 0.
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As a consequence mµ(θa1) ≤ θ2mµ(a1). If mµ(θa1) = θ2mµ(a1), we will have |∇un|22 → 0 and

|∇un|
q
q → 0 as n → +∞, which can indicates that

∫

RN F(un)dx → 0 by inequality (2.2). Then,

0 > mµ(a1)

= lim
n→+∞

Jµ(un) =
1

2
lim

n→+∞

∫

RN
|∇un|

2dx +
1

q
lim

n→+∞

∫

RN
|∇un|

qdx − lim
n→+∞

∫

RN
µF(un)dx

= 0,

which is a contradiction. So we get mµ(θa1) < θ2mµ(a1). In the same manner, we can get

mµ(θa2) < θ2mµ(a2), ∀θ > 1. (2.6)

Finally, apply (2.5) with θ = a
a1

> 1 and (2.6) with θ = a
a2

> 1 respectively, we get

mµ(a) =
a2

1

a2
mµ

(

a

a1
a1

)

+
a2

2

a2
mµ

(

a

a2
a2

)

< mµ(a1) + mµ(a2).

Next, we will show the compactness theorem on S(a) which is useful for studying the

autonomous and the nonautonomous case.

Proposition 2.5. Assume that (un) ⊂ S(a) is a minimizing sequence of mµ(a). Then, for some

subsequence, either

(i) (un) is strongly convergent,

or

(ii) there exists a sequence vn(·) = u(·+ yn) with |yn| → +∞ and (yn) ⊂ R
N , which is strongly

convergent to a function v ∈ S(a) with Jµ(v) = mµ(a).

Proof. It is easy to obtain the boundedness of sequence (un) by Lemma 2.2, then there is a

subsequence un ⇀ u in X, which is still denoted as itself. For the case of u ̸= 0 and |u|2 = b,

by the Brézis–Lieb lemma in [26], we can deduce that b ∈ (0, a) and

|un|
2
2 = |u|22 + |un − u|22 + on(1),

|∇un|
2
2 = |∇u|22 + |∇(un − u)|22 + on(1).

Moreover, according to the assumption of f , we can deduce
∫

RN
F(un)dx =

∫

RN
F(u)dx +

∫

RN
F(un − u)dx + on(1).

Now, we will prove ∇un → ∇u a.e. on R
N , up to subsequences. Choose ψ ∈ C∞

0 (RN) satis-

fying 0 ≤ ψ ≤ 1 in R
N , ψ(x) = 1 for every x ∈ B1(0) and ψ(x) = 0 for every x ∈ R

N \ B2(0).

Take R > 1 and define ψR(x) = ψ(x/R). Using the ⟨J′µ(u), ϕ⟩ with u = un and ϕ = (un − u)ψR,

we get
∫

RN

[

∇un −∇u + |∇un|
q−2∇un − |∇u|q−2∇u

]

(∇un −∇u)ψRdx

= ⟨J′µ(un), (un − u)ψR⟩ −
∫

RN
∇unun∇ψRdx −

∫

RN
|∇un|

q−2∇unun∇ψRdx

+
∫

RN
µ f (un)unψRdx +

∫

RN
∇unu∇ψR +

∫

RN
|∇un|

q−2∇unu∇ψRdx

−
∫

RN
µ f (un)uψRdx −

∫

RN
∇un∇uψRdx −

∫

RN
|∇u|q−2∇u∇unψRdx.

+
∫

RN
|∇u|qψRdx +

∫

RN
|∇u|2ψRdx.
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Since, (un) ⊂ S(a) and (Jµ|S(a))
′(un) → 0, we have ⟨J′µ(un), (un − u)ψR⟩ → 0 as n → ∞.

Moreover, combining with the definition of ψR and un ⇀ u in X, we can get, as n → ∞,

∫

RN
∇unun∇ψRdx −

∫

RN
∇unu∇ψRdx → 0,

∫

RN
|∇un|

q−2∇unun∇ψRdx −
∫

RN
|∇un|

q−2∇unu∇ψRdx → 0,

∫

RN
µ f (un)unψRdx −

∫

RN
µ f (un)uψRdx → 0,

∫

RN
|∇u|q−2∇u∇unψRdx →

∫

RN
|∇u|qψRdx,

∫

RN
∇un∇uψRdx →

∫

RN
|∇u|2ψRdx.

So,

lim
n→∞

∫

RN

[

∇un −∇u + |∇un|
q−2∇un − |∇u|q−2∇u

]

(∇un −∇u)ψRdx = 0,

which is equivalent to

lim
n→∞

∫

RN
(∇un −∇u)2ψRdx = 0, lim

n→∞

∫

RN
(∇un −∇u)qψRdx = 0.

Then, by Lemma 2.1 for Θ(x, ξ) = |ξ|k−2ξ with k = 2, k = q, we have ∇un → ∇u in L2(B2(0))

and Lq(B2(0)), which ensures that ∇un → ∇u a.e. on R
N , up to subsequence. Now, applying

Brézis–Lieb lemma in [26] again, we obtain

|∇un|
q
q = |∇u|

q
q + |∇(un − u)|

q
q + on(1).

Let vn = un − u and |vn|2 = dn → d, we can get that a2 = b2 + d2 and dn ∈ (0, a) for n big

enough. So,

mµ(a) + on(1) = Jµ(un) = Jµ(u) + Jµ(vn) + on(1) ≥ mµ(dn) + mµ(b) + on(1).

By the continuity of a 7→ mµ(a) (see Lemma 2.4(i)), we have

mµ(a) ≥ mµ(d) + mµ(b),

which is contradicted to the conclusion of Lemma 2.4(ii), where a2 = b2 + d2. This asserts that

|u|2 = a.

Combining with |un|2 = |u|2 = a, un ⇀ u in L2(RN) and L2(RN) is reflexive, we can get

un → u in L2(RN). (2.7)

Combining with the inequality (2.2) and ( f1)− ( f2), we get

∫

RN
F(un)dx →

∫

RN
F(u)dx. (2.8)

So

mµ(a) = Jµ(un) + on(1) = Jµ (u) + Jµ (vn) + on(1) ≥
1

2
|∇vn|

2
2 +

1

q
|∇vn|

q
q + mµ(a) + on(1),

which indicates |∇vn|22, |∇vn|
q
q ≤ on(1). So we have vn → 0 in X, which means un → u in X.
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Let us assume u = 0, i.e., un ⇀ 0 in X. Then, for some ς, r > 0 and {yn} ⊂ R
N , we have

∫

Br(yn)
|un|

2dx ≥ ς, ∀yn ∈ R
N . (2.9)

Otherwise we must have un → 0 in Lk(RN), ∀k ∈ (2, 2∗), which implies F(un) → 0 in L1(RN).

But it contradicts to the fact that

0 > mµ(a) + on(1) = Jµ(un) ≥ −
∫

RN
F(un)dx.

Then (2.9) holds. Since u = 0, combining with the inequality (2.9) and the Sobolev embedding,

we can infer that (yn) is unbounded. Then we consider vn(x) = u(x + yn), which is easy to

check that (vn) is also a minimizing sequence of mµ(a) and (vn) ⊂ S(a). So, there holds

vn ⇀ v in X, where v ∈ X \ {0}. According to the proof of the first part, we deduce that

vn → v in X.

Lemma 2.6. Assume ( f1)–( f3) hold, µ > 0. Then, problem (2.1) has a positive radial solution u and

λ < 0.

Proof. We can assume that there is a bounded minimizing sequence (un) ⊂ S(a) of mµ(a) by

Lemma 2.2. Then, applying Proposition 2.5, we can deduce mµ(a) = Jµ(u), where u ∈ S(a).

Thus, we can get that there exists a constant λa ∈ R such that

J′µ(u) = λaΨ
′(u) in X′, (2.10)

where Ψ(u) :=
∫

RN |u|2dx. Then, according to (2.10),

−∆u − ∆qu = λau + µ f (u), x ∈ R
N ,

and
∫

RN
|∇u|2dx +

∫

RN
|∇u|qdx −

∫

RN
λau2dx −

∫

RN
µ f (u)udx = 0.

By ( f3), it is easy to obtain qF(t) ≤ f (t)t when t ≥ 0, furthermore, since mµ(a) = Jµ(u) < 0,

we get

0 > Jµ(u)−
1

q

(

∫

RN
|∇u|2dx +

∫

RN
|∇u|qdx −

∫

RN
λau2dx −

∫

RN
µ f (u)udx

)

= (
1

2
−

1

q
)
∫

RN
|∇u|2dx +

1

q

∫

RN
λau2dx +

1

q

∫

RN
µ f (u)udx −

∫

RN
µF(u)dx

≥
1

q

∫

RN
λau2dx,

which implies that λa < 0.

Next, we will show that u is positive. From the definition of Jµ(u), we have Jµ(|u|) = Jµ(u).

Moreover we can get |u| ∈ S(a). Then, we deduce

mµ(a) = Jµ(u) = Jµ(|u|) ≥ mµ(a).

Then we have Jµ(|u|) = mµ(a). Therefore, we replace u by |u|. If u∗ is the Schwarz’s Sym-

metrization of u [22, Section 3.3], we have
∫

RN
|∇u|2dx ≥

∫

RN
|∇u∗|2dx,

∫

RN
|∇u|qdx ≥

∫

RN
|∇u∗|qdx
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and
∫

RN
F(u)dx =

∫

RN
F(u∗)dx.

It is easy to check that u∗ ∈ S(a) and Jµ(u∗) = mµ(a). Thus, we replace u by u∗.

Next, we prove u(x) is positive for all x ∈ R
N . Firstly, we assume that the conclusion is

false, then there is x0 ∈ R
N satisfying u(x0) = 0. Furthermore, we can assume that there is

x1 ∈ R
N satisfying u(x1) > 0 by u ̸= 0. Thus, we can find a ball with a sufficiently large radius

R > 0 such that x0, x1 ∈ BR(0). Then, combining with the Harnack Inequality ([10, Theorem

8.20]), we can infer there is a constant C > 0 such that

sup
y∈BR(0)

u(y) ≤ C inf
y∈BR(0)

u(y),

which contradicts to the fact that

sup
y∈BR(0)

u(y) ≥ u(x1) > 0 and inf
y∈BR(0)

u(y) = u(x0) = 0.

The next corollary is obtained by Lemma 2.6.

Corollary 2.7. Fix a > 0 and let 0 ≤ µ1 < µ2. Then, mµ2(a) < mµ1
(a) < 0.

Proof. Let uµ1
∈ S(a) satisfy Jµ1

(uµ1
) = mµ1

(a), then

mµ2(a) ≤ Jµ2(uµ1
) < Jµ1

(uµ1
) = mµ1

(a).

3 The nonautonomous case

Next, we will show some properties of Iϵ : X → R,

Iϵ(u) =
1

2

∫

RN
|∇u|2dx +

1

q

∫

RN
|∇u|qdx −

∫

RN
h(ϵx)F(u)dx,

which is restricted to S(a).

Firstly, we define Imax, I∞ : X → R as

Imax(u) =
1

2

∫

RN
|∇u|2dx +

1

q

∫

RN
|∇u|qdx −

∫

RN
hmaxF(u)dx

and

I∞(u) =
1

2

∫

RN
|∇u|2dx +

1

q

∫

RN
|∇u|qdx −

∫

RN
h∞F(u)dx.

Moreover, Lemma 2.2 guarantees that

m∞(a) = inf
u∈S(a)

I∞(u), mϵ(a) = inf
u∈S(a)

Iϵ(u), mmax(a) = inf
u∈S(a)

Imax(u).

Then, according to Corollary 2.7 and h∞ < hmax, we can immediately get

mmax(a) < m∞(a) < 0. (3.1)

Now, we fix 0 < ρ1 = 1
2 (m∞(a)− mmax(a)).

Lemma 3.1. limϵ→0+ mϵ(a) ≤ mmax(a). Hence, there exists ϵ0 > 0 such that mϵ(a) < m∞(a) for all

0 < ϵ < ϵ0.
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Proof. Let u0 ∈ S(a) satisfying Imax(u0) = mmax(a). A simple calculus gives that

mϵ(a) ≤ Iϵ(u0) =
1

2

∫

RN
|∇u0|

2dx +
1

q

∫

RN
|∇u0|

qdx −
∫

RN
h(ϵx)F(u0)dx.

Letting ϵ → 0+ and applying (h3) we can get

lim sup
ϵ→0+

mϵ(a) ≤ lim
ϵ→0+

Iϵ(u0) = Imax(u0) = mmax(a).

According to (3.1), we obtain mϵ(a) < m∞(a) for ϵ small enough.

The following two lemmas will be used to prove (PS)c condition for Iϵ at some levels.

Lemma 3.2. Assume that (un) ⊂ S(a) is a minimizing sequence with Iϵ(un) → c and c < mmax(a)+

ρ1 < 0. If un ⇀ u in X, then u ̸= 0.

Proof. Firstly, we assume the conclusion is false, i.e., u ≡ 0. Then, we have

c = mϵ(a) = Iϵ(un) + on(1) = I∞(un) +
∫

RN
(h∞ − h(ϵx)) F(un)dx + on(1).

According to (h2), there exist some constants ξ, R > 0 such that

h∞ ≥ h(x)− ξ, |x| > R.

Thus, we have the following estimate

c = Iϵ(un) + on(1) ≥ I∞(un) +
∫

BR/ϵ(0)
(h∞ − h(ϵx)) F(un)dx − ξ

∫

Bc
R/ϵ(0)

F(un)dx + on(1).

Recalling that (un) is bounded in X, then for some constant C > 0, there holds

∫

RN
F(un)dx ≤ C1

(

∫

RN
|∇u|qdx

)

νp,q p

q

+ C2

(

∫

RN
|∇u|qdx

)

νp1,q p1
q

≤ C.

By the fact of un → 0 in Ll(BR/ϵ(0)) when l ∈ [1, 2∗), one has

c = Iϵ(un) + on(1) ≥ I∞(un)− ξC > m∞(a)− ξC + on(1),

which combines with the arbitrariness of ξ > 0, we can get

c ≥ m∞(a),

which contradicts to the fact that c < mmax(a) + ρ1 < m∞(a). So, we can get that u ̸= 0.

Lemma 3.3. Assume that (un) ⊂ S(a) is a (PS)c sequence of Iϵ satisfying un ⇀ uϵ in X when

c < mmax(a) + ρ1 < 0, that is, as n → +∞,

Iϵ(un) → c and ∥Iϵ|
′
S(a)(un)∥ → 0.

Then there holds

lim inf
n→+∞

|un − uϵ|
2
2 ≥ β,

where un ↛ uϵ in X and β > 0 independent of ϵ ∈ (0, ϵ0).
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Proof. Firstly, defining the functional Ψ : X → R with Ψ(u) = 1
2

∫

RN |u|2dx, we can see

S(a) = Ψ−1({a2/2}). According to [26, Proposition 5.12], there exist (λn) ⊂ R such that

∥I′ϵ(un)− λnΨ
′(un)∥X′ → 0 as n → +∞.

(un) is bounded in X since Iϵ is bounded from below and coercive as Jµ, which ensures that

(λn) is bounded, then there exists λϵ such that λn → λϵ as n → +∞. Thus, we have

I′ϵ(uϵ)− λϵΨ
′(uϵ) = 0 in X′,

and

∥I′ϵ(vn)− λϵΨ
′(vn)∥X′ → 0 as n → +∞,

where vn := un − uϵ. According to ( f3), we can get qF(t) ≤ f (t)t when t ≥ 0. Then we have

0 > ρ1 + mmax(a)>c = lim inf
n→+∞

Iϵ(un) = lim inf
n→+∞

(

Iϵ(un)−
1

q
⟨I′ϵ(un), un⟩+

1

q
λna2

)

≥
1

q
λϵa2,

which implies that

lim sup
ϵ→0

λϵ ≤
q(ρ1 + mmax(a))

a2
< 0.

Then, there is a constant λ∗ satisfying λϵ < λ∗
< 0, which is independent of ϵ. Therefore,

∫

RN
|∇vn|

2dx +
∫

RN
|∇vn|

qdx − λϵ

∫

RN
|vn|

2dx =
∫

RN
h(ϵx) f (vn)vndx + on(1),

and
∫

RN
|∇vn|

2dx +
∫

RN
|∇vn|

qdx − λ∗
∫

RN
|vn|

2dx ≤
∫

RN
h(ϵx) f (vn)vndx + on(1).

According to ( f1), we get f (t) < εt, ∀ε > 0 if t small enough, which combines with ( f2) to

give
∫

RN
f (vn)vndx ≤ C2

∫

RN
|vn|

p1dx + ε
∫

RN
|vn|

2dx ≤ C2

∫

RN
|vn|

p1dx.

So, we obtain

∫

RN
|∇vn|

2dx +
∫

RN
|∇vn|

qdx + C0

∫

RN
|vn|

2dx

≤ hmax

∫

RN
f (vn)vndx ≤ C2hmax

∫

RN
|vn|

p1dx + on(1)

for some constant C0 > 0 independent of ϵ ∈ (0, ϵ0). Since vn ↛ 0 in X, we can assume that

lim infn→+∞ ∥vn∥X > C > 0. Thus, there holds

lim inf
n→+∞

|vn|
p1
p1
≥ C3 (3.2)

for some constant C3 > 0. By (2.2), we can deduce

C3 ≤ lim inf
n→+∞

|vn|
p1
p1
≤ C(lim inf

n→+∞
|vn|2)

(1−νp1,q)p1 Kνp1,q p1 , (3.3)

where K > 0 is independent of ϵ ∈ (0, ϵ0) with ∥vn∥ ≤ K for all n ∈ N. Then, combining with

(3.2), and (3.3), we achieve the proof.



Multiple normalized solutions for (2, q)-Laplacian equation problems 13

Next, we consider 0 < ρ < min{ 1
2 ,

β
a2 }(m∞(a)− mmax(a)).

Lemma 3.4. Assume that 0 < ϵ < ϵ0 and c < mmax(a) + ρ. Then, Iϵ restricted to S(a) satisfies the

(PS)c condition.

Proof. Firstly, we can get that (un) is bounded by Lemma 2.2, then let (un) ⊂ S(a) be (PS)c

sequence of Iϵ with un ⇀ uϵ, where uϵ ̸= 0 by Lemma 3.2 and c < mmax(a) + ρ. Set vn =

un − uϵ. If vn → 0 in X, the proof is complete. If vn ↛ 0 in X and |uϵ|2 = b, by Lemma 3.3, we

have

lim inf
n→+∞

|vn|
2
2 ≥ β (3.4)

for some β > 0 which is independent of ϵ ∈ (0, ϵ0).

Let |vn|2 = dn → d ≥ β
1
2 , we have a2 = b2 + d2. From dn ∈ (0, a) for n large enough, we

can deduce

c + on(1) = Iϵ(un) = Iϵ(vn) + Iϵ(uϵ) + on(1) ≥ m∞(dn) + mmax(b) + on(1).

Applying Lemma 2.4(i) and inequality (2.5), letting n → +∞, we get

mmax(a) + ρ > c ≥ m∞(d) + mmax(b) ≥
d2

a2
m∞(a) +

b2

a2
mmax(a).

Then

ρ ≥
d2

a2
(m∞(a)− mmax(a)) ≥

β

a2
(m∞(a)− mmax(a)),

which is contradicted to the fact of ρ <
β
a2 (m∞(a)− mmax(a)). Then, it holds vn → 0 in X, that

is, un → uϵ in X, which implies that uϵ ∈ S(a) and

−∆uϵ − ∆quϵ = λϵuϵ + h(ϵx) f (uϵ), x ∈ R
N .

4 Multiplicity result

In the following, we do some technical stuff. Let ρ0, r0 > 0, ej be defined in (h3), satisfying:

• Bρ0(ei) ∩ Bρ0(ej) = ∅ for i ̸= j and i, j ∈ {1, . . . , l}.

•
⋃l

i=1 Bρ0(ei) ⊂ Br0(0).

• K ρ0
2
=

⋃l
i=1 B ρ0

2
(ei).

Set κ : R
N → R

N with

κ(x) :=

{

x, if |x| ≤ r0,

r0
x
|x|

, if |x| > r0.

Now we consider the function Gϵ : X\{0} → R
N with

Gϵ(u) :=

∫

RN κ(ϵx)|u|2dx
∫

RN |u|2dx
,

Then, we will get the existence of (PS) sequences of Iϵ, which is restricted to S(a) by the

next two lemmas.



14 R. Chen, L. Wang and X. Song

Lemma 4.1. Decreasing ϵ0 if necessary, there exists a positive constant δ0 < ρ such that

Gϵ(u) ∈ K ρ0
2

, ∀ϵ ∈ (0, ϵ0),

where u ∈ S(a) and Iϵ(u) ≤ mmax(a) + δ0.

Proof. We assume that the conclusion is false, so there exist δn → 0, un ∈ S(a) and ϵn → 0

such that

Iϵn(un) ≤ mmax(a) + δn

and

Gϵn(un) /∈ K ρ0
2

.

Firstly, we know

mmax(a) ≤ Imax(un) ≤ Iϵn(un) ≤ mmax(a) + δn,

then,

Imax(un) → mmax(a), as n → ∞.

We will analyze the following two cases by Proposition 2.5.

(i) un → u in X, where u ∈ S(a). According to the Lebesgue dominated convergence

theorem, we can deduce that

Gϵn(un) =

∫

RN κ(ϵnx)|un|2dx
∫

RN |un|2dx
→

∫

RN κ(0)|u|2dx
∫

RN |u|2dx
= 0 ∈ K ρ0

2
,

which contradicts to Gϵn(un) /∈ K ρ0
2

for n large.

(ii) There exists a sequence vn(·) = u(·+ yn) with |yn| → +∞ and (yn) ⊂ R
N , which is

convergent in X for some v ∈ S(a). Then, we can also study the following two cases:

When |ϵnyn| → +∞, we can deduce that

Iϵn(un) =
1

2

∫

RN
|∇vn|

2dx +
1

q

∫

RN
|∇vn|

qdx −
∫

RN
h(ϵnx + ϵnyn)F(vn)dx → I∞(v).

Since Iϵn(un) ≤ mmax(a) + δn, there holds

mmax(a) ≥ I∞(v) ≥ m∞(a),

which contradicts to (3.1).

When ϵnyn → y for some y ∈ R
N , we get

Iϵn(un) =
1

2

∫

RN
|∇vn|

2dx +
1

q

∫

RN
|∇vn|

qdx −
∫

RN
h(ϵnx + ϵnyn)F(vn)dx → Ih(y)(v),

then we obtain

mh(y)(a) ≤ mmax(a). (4.1)

If h(y) < hmax, Corollary 2.7 implies that mh(y)(a) > mmax(a), which contradicts to (4.1). Thus,

it holds h(y) = hmax, which means y = ei for some i = 1, . . . , l. Then we have

Gϵn(un) =

∫

RN
κ(ϵnx)|un|

2dx
∫

RN
|un|

2dx
=

∫

RN
κ(ϵnx + ϵnyn)|vn|

2dx
∫

RN
|vn|

2dx
→

∫

RN
κ(y)|v|2dx

∫

RN
|v|2dx

= ei ∈ K ρ0
2

,

which contradicts to Gϵn(un) /∈ K ρ0
2

for n large.
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Next, we introduce some notations:

• θi
ϵ := {u ∈ S(a); |Gϵ(u)− ei|≤ρ0},

• ∂θi
ϵ := {u ∈ S(a); |Gϵ(u)− ei| = ρ0},

• ηi
ϵ := infu∈θi

ϵ
Iϵ(u),

• η̃i
ϵ := infu∈∂θi

ϵ
Iϵ(u).

Lemma 4.2. Let 0 < δ0 < ρ < min{ 1
2 ,

β
a2 }(m∞(a)− mmax(a)). Then, there holds

ηi
ϵ < mmax(a) + ρ and ηi

ϵ < η̃i
ϵ, ∀ϵ ∈ (0, ϵ0).

Proof. By Proposition (2.5), we set that

mmax(a) = Imax(u), I′max(u) = 0,

where u ∈ S(a). Let ui
ϵ : R

N → R be ui
ϵ(x) = u(x − ei/ϵ) for 1 ≤ i ≤ l. By direct calculation,

we get

Iϵ(u
i
ϵ(x)) =

1

2

∫

RN
|∇u|2dx +

1

q

∫

RN
|∇u|qdx −

∫

RN
h(ϵx + ei)F(u)dx,

which implies that

lim sup
ϵ→0

Iϵ(u
i
ϵ(x)) ≤ Imax(u) = mmax(a). (4.2)

If ϵ → 0+, there holds

Gϵ(u
i
ϵ) =

∫

RN
κ(ϵx)|ui

ϵ|
2dx

∫

RN
|ui

ϵ|
2dx

=

∫

RN
κ(ϵx + ei)|u|

2dx
∫

RN
|u|2dx

→ ei.

Then we can infer that ui
ϵ ∈ θi

ϵ when ϵ is small enough. Moreover, by (4.2),

Iϵ(u
i
ϵ(x)) ≤ mmax(a) +

δ0

4
, ∀ϵ ∈ (0, ϵ0).

From this, decreasing ϵ0 if necessary,

ηi
ϵ ≤ mmax(a) +

δ0

4
, ∀ϵ ∈ (0, ϵ0).

Then,

ηi
ϵ ≤ mmax(a) + ρ, ∀ϵ ∈ (0, ϵ0),

showing the first inequality.

If there holds u ∈ ∂θi
ϵ, i.e.,

u ∈ S(a) and |Gϵ(u)− ei| = ρ0 >
ρ0

2
,

which implies Gϵ(u) /∈ K ρ0
2

. Then, combining with Lemma 4.1, we have

Iϵ(u) > mmax(a) +
δ0

2
, ∀u ∈ ∂θi

ϵ, ∀ϵ ∈ (0, ϵ0),

and so,

η̃i
ϵ ≥ mmax(a) +

δ0

2
, ∀ϵ ∈ (0, ϵ0),

from which it follows that

ηi
ϵ < η̃i

ϵ, ∀ϵ ∈ (0, ϵ0).
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4.1 Proof of Theorem 1.1

By Ekeland’s variational principle, we can get that there exists a sequence (ui
n) ⊂ S(a) such

that

Iϵ(u
i
n) → ηi

ϵ

and

Iϵ(v)− Iϵ(u
i
n) ≥ −

1

n
∥v − ui

n∥, ∀v ∈ θi
ϵ with v ̸= ui

n

for each i ∈ {1, . . . , l}. Then, we get ui
n ∈ θi

ϵ \ ∂θi
ϵ for n large enough by Lemma 4.2.

Given v ∈ Tui
n
S(a) = {w ∈ X :

∫

RN ui
nwdx = 0}, we can define the path σ : (−ξ, ξ) → S(a)

with

σ(t) = a
(ui

n + tv)

|ui
n + tv|2

,

where ξ > 0. It is obvious to know that σ ∈ C1((−ξ, ξ), S(a)) and we have

σ(t) ∈ θi
ϵ\∂θi

ϵ, ∀t ∈ (−ξ, ξ), σ(0) = ui
n and σ′(0) = v.

Then we get

Iϵ(σ(t))− Iϵ(u
i
n) ≥ −

1

n
∥σ(t)− ui

n∥

for t ∈ (−ξ, ξ), which implies that

Iϵ(σ(t))− Iϵ(σ(0)))

t
=

Iϵ(σ(t))− Iϵ(ui
n)

t

≥ −
1

n

∥

∥

∥

∥

σ(t)− ui
n

t

∥

∥

∥

∥

= −
1

n

∥

∥

∥

∥

σ(t)− σ(0)

t

∥

∥

∥

∥

, ∀t ∈ (0, ξ).

Taking the limit of t → 0+, we have

⟨I′ϵ(u
i
n), v⟩ ≥ −

1

n
∥v∥.

Then, we can replace v by −v to deduce

sup{|⟨I′ϵ(u
i
n), v⟩| : ∥v∥ ≤ 1} ≤

1

n
,

which implies that

Iϵ(u
i
n) → ηi

ϵ and ∥Iϵ|
′
S(a)(u

i
n)∥ → 0 as n → +∞,

which means (ui
n) ⊂ S(a) is a (PS)ηi

ϵ
sequence of Iϵ. Combining with Lemma 3.4 and ηi

ϵ <

mmax(a) + ρ, we can infer that there is ui such that ui
n → ui in X. So, we have

ui ∈ θi
ϵ, Iϵ(u

i) = ηi
ϵ and Iϵ|

′
S(a)(u

i) = 0.

According to our assumptions, we have

Gϵ(u
i) ∈ Bρ0(ei), Gϵ(u

j) ∈ Bρ0(ej)
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and

Bρ0(ei) ∩ Bρ0(ej) = ∅ for i ̸= j,

which means ui ̸= uj for i ̸= j while 1 ≤ i, j ≤ l. Thus, for any ϵ ∈ (0, ϵ0), Iϵ has at least l

nontrivial critical points, i.e.,

−∆ui − ∆qui = λiu
i + h(ϵx) f (ui), ∀i ∈ {1, 2, . . . , l},

which ensures
∫

RN
|∇ui|2dx +

∫

RN
|∇ui|qdx −

∫

RN
λi|u

i|2dx −
∫

RN
h(ϵx) f (ui)uidx = 0.

Combining with Iϵ(ui) < 0, we have

0 > Iϵ(u
i)−

1

q

(

∫

RN
|∇ui|2dx +

∫

RN
|∇ui|qdx −

∫

RN
λi|u

i|2dx −
∫

RN
h(ϵx) f (ui)uidx

)

=

(

1

2
−

1

q

)

∫

RN
|∇u|2dx +

1

q

∫

RN
λi|u

i|2dx +
1

q

∫

RN
h(ϵx) f (ui)uidx −

∫

RN
h(ϵx)F(ui)dx

≥
1

q

∫

RN
λi|u

i|2dx,

which implies λi < 0. This proves the desired result.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12161038)

and the Natural Science Foundation of Jiangxi Province (20232BAB201009).

References

[1] M. Agueh, Sharp Gagliardo–Nirenberg inequalities via p-Laplacian type equations,

NoDEA Nonlinear Differential Equations Appl. 15(2008), No. 4–5, 457–472. https://doi.

org/10.1007/s00030-008-7021-4; MR2465973; Zbl 1175.39012

[2] C. O. Alves, C. Ji, O. H. Miyagaki, Multiplicity of normalized solutions for a Schrödinger

equation with critical growth in R
N , arXiv preprint (2021). https://arxiv.org/abs/

2103.07940

[3] C. O. Alves, V. Ambrosio, T. Isernia, Existence, multiplicity and concentration for a class

of fractional p&q Laplacian problems in R
N , Commun. Pure Appl. Anal. 18(2018), No. 4,

2009–2045. https://doi.org/10.3934/cpaa.2019091; MR3927428; Zbl 1412.35364

[4] L. Baldelli, R. Filippucci, Existence of solutions for critical (p, q)-Laplacian equa-

tions in R
N , Commun. Contemp. Math. 25(2023), No. 5, 26. https://doi.org/10.1142/

S0219199721501091; MR4579980; Zbl 1514.35230

[5] T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations,

Arch. Math. 100(2013), No. 1, 75–83. https://doi.org/10.1007/s00013-012-0468-x;

MR3009665; Zbl 1260.35098



18 R. Chen, L. Wang and X. Song

[6] T. Bartsch, R. Molle, M. Rizzi, G. Verzini, Normalized solutions of mass supercritical

Schrödinger equations with potential, Arch. Math. 46(2021), No. 9, 1729–1756. https:

//doi.org/10.1080/03605302.2021.1893747; MR4304693; Zbl 1496.35183

[7] X. Cheng, C. Miao, L. Zhao, Global well-posedness and scattering for nonlin-

ear Schödinger equations with combined nonlinearities in the radial case, Arch.

Math. 261(2016), No. 6, 2881–2934. https://doi.org/10.1016/j.jde.2016.04.031;

MR3527618; Zbl 1350.35180

[8] L. Cherfils, Y. Il’yasov, On the stationary solutions of generalized reaction diffusion

equations with (p, q)-Laplacian, Commun. Pure Appl. Anal. 4(2005), No. 1, 9–22. https:

//doi.org/10.3934/cpaa.2005.4.9; MR2126276; Zbl 1210.35090

[9] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch.

Ration. Mech. Anal. 215(2015), No. 2, 443–496. https://doi.org/10.1007/s00205-014-

0785-2; MR3294408; Zbl 1322.49065

[10] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics

in Mathematics, Springer-Verlag, Berlin, 2001. https://doi.org/10.1007/978-3-642-

61798-0; MR1814364; Zbl 1042.35002

[11] C. He, G. Li, The existence of a nontrivial solution to the (p, q)-Laplacian problem with

nonlinearity asymptotic to up−1 at infinity in R
N , Nonlinear Anal. 68(2008), No. 5, 1100–

1119. https://doi.org/10.1016/j.na.2006.12.008; MR2381659; Zbl 1148.35024

[12] C. He, G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equa-

tions containing (p, q)-Laplacians, Ann. Acad. Sci. Fenn. Math. 33(2008), No. 2, 337–371.

MR2431370; Zbl 1159.35023

[13] K. Ho, K. Perera, I. Sim, On the Brézis–Nirenberg problem for the (p, q)-Laplacian,

Ann. Mat. Pura Appl. 202(2023), No. 4, 1991–2005. https://doi.org/10.1007/s10231-

023-01309-y; MR4597610; Zbl 1518.35403

[14] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equa-

tions, Ann. Mat. Pura Appl. 28(1997), No. 10, 1633–1659. https://doi.org/10.1016/

S0362-546X(96)00021-1; MR1430506; Zbl 0877.35091

[15] L. Jeanjean, J. Jendrej, T. T. Le, N. Visciglia, Orbital stability of ground states for a

Sobolev critical Schrödinger equation, J. Math. Pures Appl. (9) 164(2020), 158–179. https:

//doi.org/10.1016/j.matpur.2022.06.005; MR4450880

[16] L. Jeanjean, T. T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger–

Poisson–Slater equation, J. Differential Equations 303(2021), 277–325. https://doi.org/

10.1016/j.jde.2021.09.022; MR4318833; Zbl 1475.35163

[17] L. Jeanjean, T. T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger

equations, Math. Ann. 384(2022), No. 1–2, 101–134. https://doi.org/10.1007/s00208-

021-02228-0; MR4476243; Zbl 1497.35433

[18] L. Jeanjean, S. S. Lu, Nonradial normalized solutions for nonlinear scalar field equations,

Nonlinearity 32(2019), No. 12, 4942–4966. https://doi.org/10.1088/1361-6544/ab435e;

MR4030599; Zbl 1429.35101



Multiple normalized solutions for (2, q)-Laplacian equation problems 19

[19] X. Li, J. Bao, W. Tang, Normalized solutions to lower critical Choquard equation with

a local perturbation, Discrete Contin. Dyn. Syst. Ser. B 28(2023), No. 5, 3216–3232. https:

//doi.org/10.3934/dcdsb.2022213; MR4518539; Zbl 1514.35195

[20] G. Li, M. Olli, Stability in obstacle problem, Math. Scand. 75(1994), No. 1, 87–100. https:

//doi.org/10.7146/math.scand.a-12505; MR1308940; Zbl 0839.35050

[21] G. Li, G. Zhang, Multiple solutions for the (p, q)-Laplacian problem with critical ex-

ponents, Acta Math. Sci. Ser. B Engl. Ed. 29(2009), No. 4, 903–918. https://doi.org/10.

1016/S0252-9602(09)60077-1; MR2509998; Zbl 1212.35125

[22] E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, American Math-

ematical Society, Providence, RI, 2001. https://doi.org/10.1090/gsm/014; MR1817225;

Zbl 0966.26002

[23] C. Miao, G. Xu, L. Zhao, The dynamics of the 3D radial NLS with the combined terms,

Comm. Math. Phys. 318(2013), No. 3, 767–808. https://doi.org/10.1007/s00220-013-

1677-2; MR3027584; Zbl 1260.35209

[24] M. Shibata, A new rearrangement inequality and its application for L2-constraint min-

imizing problems, Math. Z. 287(2017), No. 1–2, 341–359. https://doi.org/10.1007/

s00209-016-1828-1; MR3694679; Zbl 1382.35012

[25] C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London

Math. Soc. (3) 45(1982), No. 1, 169–192. https://doi.org/10.1112/plms/s3-45.1.169;

MR662670; Zbl 0505.35010

[26] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their

Applications, Vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. https://doi.org/10.

1007/978-1-4612-4146-1; MR1400007; Zbl 0856.49001

[27] T. Yang, L. Baldelli, Normalized solutions to a class of (2, q)-Laplacian equations, arXiv

preprint (2022). https://arxiv.org/abs/2212.14873

[28] H. Yin, Z. Yang, Multiplicity of positive solutions to a (p, q)-Laplacian equation involving

critical nonlinearity, Nonlinear Anal. 75(2012), No. 6, 3021–3035. https://doi.org/10.

1016/j.na.2011.11.035; MR2890966; Zbl 1235.35123

[29] N. Zhang, G. Jia, Existence and multiplicity of solutions for a class of (p, q)-Laplacian

equations in R
N with sign-changing potential, Taiwanese J. Math. 24(2020), No. 1, 159–178.

https://doi.org/10.11650/tjm/190302; MR4053843; Zbl 1437.35413

[30] V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard

growth conditions, J. Math. Sci. (N.Y.) 173(2020), No. 5, 463–570. https://doi.org/10.

1007/s10958-011-0260-7; MR2839881; Zbl 1279.49005

[31] R. Zouai, N. Benouhiba, Nontrivial solutions for a nonlinear elliptic equation of

(p, q)-Laplacian type with a discontinuous nonlinearity in R
N , J. Elliptic Parabol. Equ.

9(2023), No. 1, 247–262. https://doi.org/10.1007/s41808-022-00200-w; MR4587597;

Zbl 1518.35418



Electronic Journal of Qualitative Theory of Differential Equations
2024, No. 49, 1–16; https://doi.org/10.14232/ejqtde.2024.1.49 www.math.u-szeged.hu/ejqtde/

Symmetric nonlinear solvable system

of difference equations
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Abstract. We show the theoretical solvability of the system of difference equations

xn+k =
yn+lyn − cd

yn+l + yn − c − d
, yn+k =

xn+l xn − cd
xn+l + xn − c − d

, n ∈ N0,

where k ∈ N, l ∈ N0, l < k, c, d ∈ C and xj, yj ∈ C, j = 0, k − 1. For several special cases
of the system, we give some detailed explanations on how some formulas for their gen-
eral solutions can be found in closed form, that is, we show their practical solvability.
To do this, among other things, we use the theory of homogeneous linear difference
equations with constant coefficients and the product-type difference equations with in-
teger exponents, which are theoretically solvable.

Keywords: symmetric system of difference equations, solvable system, solution in
closed form.
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1 Introduction

Finding general solutions to difference equations and systems of difference equations is a
classical problem which can be traced back to the beginning of the 18th century, [5,8,9]. During
the century many important results on the problem have been obtained [10, 16, 18–20]. A
majority of the results were on linear difference equations and systems of difference equations,
but some of them were also on the nonlinear ones (see also [6, 12, 17, 21, 22]). For some later
presentations and applications of the equations, see [11, 13, 23, 26, 37]. Since the solvability

BCorresponding author. Email: sscite1@gmail.com
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theory for linear difference equations was essentially completed during that time, and since it
is practically impossible to find some general methods for solving nonlinear equations, interest
in the topic diminished during the 19th century. Although from time to time, some solvable
difference equations occurred, for example, in computational mathematics [7], problem books
[2, 14, 24, 25] and in some popular journals for a wide audience. Solvable difference equations
are also useful in some comparison results [4, 15, 40]. One can study the invariants of the
equations and systems, as it was the case, e.g., in [28–30,32,38,39], but only some of their very
special classes were considered therein.

During the last two decades there has been a renewed interest in the area. It seems mostly
because of the use of some computer calculations. We have analysed some of the recent papers
and given many comments and theoretical explanations related to them (see, for example, [47]
where some of the analyses, comments and explanations are given). An interesting fact is that
the solvability of almost all of the recently presented classes of solvable difference equations
and systems rely on the solvability of some linear ones (see, for example, [3, 35, 47, 49] and
the related references therein). However, it is of some interest to enlarge the list of solvable
nonlinear difference equations and systems which are not obtained from linear ones in an
obvious way.

There has been some interest in systems of difference equations which are close to sym-
metric ones since the mid of the nineties [27, 31, 33, 34, 38, 39], which attracted our attention.
We have devoted a part of our investigation also in this direction (see, e.g., [41–47]).

Motivated by the equation

xn =
xn−sxn−t + a
xn−s + xn−t

, n ∈ N0, (1.1)

where s, t ∈ N, a ∈ C and x−j ∈ C, j = 0, max{s, t} ([36, 48]), in [49] we studied the equation

xn+s =
xn+txn − ab

xn+t + xn − a − b
, n ∈ N0, (1.2)

where s ∈ N, t ∈ N0, t < s, a, b ∈ C and xj ∈ C, j = 0, s − 1, and showed its theoretical
solvability. Equation (1.1) is a natural generalization of its special case with s = 1 and t = 2,
which can be obtained by using the secant method [7]

xn =
xn−2 f (xn−1)− xn−1 f (xn−2)

f (xn−1)− f (xn−2)
, n ∈ N0,

for f (x) = x2 − a (see, e.g., [15]).
On the other hand, motivated by our studies of the systems which stem from equation (1.1)

(see the nonlinear systems of difference equations in [41–45]), in [46] we investigated a non-
linear system of difference equations which is related to equation (1.2), showed its solvability
and discussed some special cases of the system in detail.

Here, we continue above mentioned investigations on solvability by studying the system

xn+k =
yn+lyn − cd

yn+l + yn − c − d
, yn+k =

xn+lxn − cd
xn+l + xn − c − d

, n ∈ N0, (1.3)

where k ∈ N, l ∈ N0, l < k, c, d ∈ C and xj, yj ∈ C, j = 0, k − 1, which is a symmetric relative
to equation (1.2) and has not been considered in the literature yet.
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Definition 1.1. We say that a nonlinear difference equation or system is theoretically solvable if
by some changes of variables it can be transformed to a linear difference equation or system
with constant coefficients. If the general solution to the linear difference equation or sys-
tem can be found in closed form, we say that the nonlinear difference equation or system is
practically solvable.

Remark 1.2. Not all linear difference equations with constant coefficients are practically solv-
able. For example, the difference equation

xn+5 − 6xn+1 + 3xn = 0, n ∈ N0,

is one of them, since we cannot find the roots of the associated characteristic polynomial

q5(λ) = λ5 − 6λ + 3

by radicals (see, e.g., [50]), due to the famous result by Abel and Ruffini [1].

Here we show the theoretical solvability of system (1.3), and give a detailed explanation
on how in some cases can be found the general solution, that is, how to show their practical
solvability.

2 Main results

Here we state and prove our main results.

Theorem 2.1. Suppose k ∈ N, l ∈ N0, l < k, and c, d ∈ C. Then, system (1.3) is theoretically
solvable.

Proof. Suppose c ̸= d. Note that

xn+k − d =
(yn+l − d)(yn − d)
yn+l + yn − c − d

,

xn+k − c =
(yn+l − c)(yn − c)
yn+l + yn − c − d

,

yn+k − d =
(xn+l − d)(xn − d)
xn+l + xn − c − d

,

yn+k − c =
(xn+l − c)(xn − c)
xn+l + xn − c − d

,

for n ∈ N0.
Dividing the first two relations we get

xn+k − d
xn+k − c

=
(yn+l − d)(yn − d)
(yn+l − c)(yn − c)

,

for n ∈ N0, whereas dividing the last two relations we get

yn+k − d
yn+k − c

=
(xn+l − d)(xn − d)
(xn+l − c)(xn − c)

,

for n ∈ N0.
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Now we define two auxiliary sequences as follows

ζn =
xn − d
xn − c

, ηn =
yn − d
yn − c

, (2.1)

for n ∈ N0.
They obviously satisfy the relations

ζn+k = ηn+lηn, ηn+k = ζn+lζn, (2.2)

for n ∈ N0, which yields that ζn and ηn are two solutions to the equation

ωn+2k = ωn+2lω
2
n+lωn, n ∈ N0, (2.3)

a product-type difference equation with integer exponents, which is theoretically solvable.
Hence, such one is the system (1.3).

Note also that from (2.1) we have

xn =
cζn − d
ζn − 1

, yn =
cηn − d
ηn − 1

, (2.4)

for n ∈ N0.
Now suppose c = d. Note that

xn+k − c =
(yn+l − c)(yn − c)

yn+l + yn − 2c
, (2.5)

yn+k − c =
(xn+l − c)(xn − c)

xn+l + xn − 2c
, (2.6)

for n ∈ N0.
Now we define the two auxiliary sequences

ζn =
1

xn − c
, ηn =

1
yn − c

, (2.7)

for n ∈ N0.
Combining (2.5)–(2.7), we get

ζn+k = ηn+l + ηn, ηn+k = ζn+l + ζn, (2.8)

for n ∈ N0, which implies that ζn and ηn satisfy the equation

ωn+2k − ωn+2l − 2ωn+l − ωn = 0, (2.9)

for n ∈ N0, which according to Definition 1.1 means that system (1.3) is theoretically solvable
in this case.

A natural problem is to find special cases of system (1.3) for which it is possible to find
some closed-form formulas for their general solutions.

The polynomial
q2k(λ) = λ2k − λ2l − 2λl − 1,

is the characteristic one associated to equation (2.9) [11, 13, 23, 25]. Note that

q2k(λ) = λ2k − (λl + 1)2 = (λk − λl − 1)(λk + λl + 1). (2.10)
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In some cases it is possible to find its roots (but, of course, not always [1]), for instance,
if 0 ≤ l < k ≤ 4 (there are ten cases). In all these cases, among other ones, equation (2.9)
is practically solvable. Now we present the general solution to system (1.3) in some of these
cases.

Theorem 2.2. Consider the system (1.3) with k = 1, l = 0 and c, d ∈ C.

(a) If c = d, x0 ̸= c ̸= y0, then

x2m = c +
x0 − c

4m , (2.11)

x2m+1 = c +
y0 − c
2 · 4m , (2.12)

y2m = c +
y0 − c

4m , (2.13)

y2m+1 = c +
x0 − c
2 · 4m , (2.14)

for m ∈ N0.

(b) If c ̸= d, then well-defined solutions to the system are given by

x2m =
c
(

x0−d
x0−c

)4m

− d
(

x0−d
x0−c

)4m

− 1
, (2.15)

x2m+1 =
c
(

y0−d
y0−c

)2·4m

− d
(

y0−d
y0−c

)2·4m

− 1
, (2.16)

y2m =
c
(

y0−d
y0−c

)4m

− d
(

y0−d
y0−c

)4m

− 1
, (2.17)

y2m+1 =
c
(

x0−d
x0−c

)2·4m

− d
(

x0−d
x0−c

)2·4m

− 1
, (2.18)

for m ∈ N0.

Proof. (a) First, note that (2.8) is

ζn+1 = 2ηn, ηn+1 = 2ζn,

for n ∈ N0. Thus
ζn+2 = 4ζn, ηn+2 = 4ηn,

for n ∈ N0, which yields

ζ2m = 4mζ0, ζ2m+1 = 4mζ1, η2m = 4mη0, η2m+1 = 4mη1,

for m ∈ N0. This and (2.7) imply (2.11)–(2.14), under the assumption c = d.
(b) If we assume that c ̸= d, then from (2.3) we have

ζn+2 = ζ4
n, ηn+2 = η4

n, n ∈ N0.
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Therefore

ζ2m = ζ4m

0 , ζ2m+1 = ζ4m

1 , η2m = η4m

0 , η2m+1 = η4m

1 ,

for m ∈ N0.
These four relations, the transformation in (2.1), and (2.4), imply (2.15)–(2.18), completing

the proof.

Remark 2.3. Assume that in Theorem 2.2, c = d, and that x0 = c or y0 = c. Note that from
(1.3) we have

x1 =
y2

0 − c2

2(y0 − c)
(2.19)

and

y1 =
x2

0 − c2

2(x0 − c)
. (2.20)

Hence, if x0 = c, then from (2.20) we see that y1 is not defined, whereas if y0 = c, then from
(2.19) we see that x1 is not defined.

Corollary 2.4. The system (1.3) with c, d ∈ C, l = 0 and k ∈ N \ {1} is practically solvable.

Proof. Under these conditions, we have

xn+k =
y2

n − cd
2yn − c − d

, yn+k =
x2

n − cd
2xn − c − d

, n ∈ N0,

which is a system with interlacing indices ([47]).
Let

x(j)
m = xmk+j, y(j)

m = ymk+j,

for m ∈ N0 and j = 0, k − 1.

Then, (x(j)
m , y(j)

m )m∈N0 , j = 0, k − 1, are k solutions to the system

xm+1 =
y2

m − cd
2ym − c − d

, ym+1 =
x2

m − cd
2xm − c − d

, m ∈ N0.

Note that it is the system (1.3) with k = 1 and l = 0.

Thus, if c = d, x(j)
0 ̸= c ̸= y(j)

0 , j = 0, k − 1, by Theorem 2.2 we get

x(j)
2m = c +

x(j)
0 − c
4m ,

x(j)
2m+1 = c +

y(j)
0 − c
2 · 4m ,

y(j)
2m = c +

y(j)
0 − c
4m ,

y(j)
2m+1 = c +

x(j)
0 − c
2 · 4m ,
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for m ∈ N0, j = 0, k − 1, whereas if c ̸= d, then well-defined solutions to the system are

x(j)
2m =

c
(

x(j)
0 −d

x(j)
0 −c

)4m

− d

(

x(j)
0 −d

x(j)
0 −c

)4m

− 1

,

x(j)
2m+1 =

c
(

y(j)
0 −d

y(j)
0 −c

)2·4m

− d

(

y(j)
0 −d

y(j)
0 −c

)2·4m

− 1

,

y(j)
2m =

c
(

y(j)
0 −d

y(j)
0 −c

)4m

− d

(

y(j)
0 −d

y(j)
0 −c

)4m

− 1

,

y(j)
2m+1 =

c
(

x(j)
0 −d

x(j)
0 −c

)2·4m

− d

(

x(j)
0 −d

x(j)
0 −c

)2·4m

− 1

for m ∈ N, j = 0, k − 1.
Hence, if c = d we have

x2mk+j = c +
xj − c

4m ,

x(2m+1)k+j = c +
yj − c
2 · 4m ,

y2mk+j = c +
yj − c

4m ,

y(2m+1)k+j = c +
xj − c
2 · 4m ,

for m ∈ N0, j = 0, k − 1, whereas if c ̸= d we have

x2mk+j =
c
(

xj−d
xj−c

)4m

− d
(

xj−d
xj−c

)4m

− 1
,

x(2m+1)k+j =
c
(

yj−d
yj−c

)2·4m

− d
(

yj−d
yj−c

)2·4m

− 1
,

y2mk+j =
c
(

yj−d
yj−c

)4m

− d
(

yj−d
yj−c

)4m

− 1
,

y(2m+1)k+j =
c
(

xj−d
xj−c

)2·4m

− d
(

xj−d
xj−c

)2·4m

− 1

for m ∈ N, j = 0, k − 1.
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Theorem 2.5. The system (1.3) with c, d ∈ C, l = 1 and k = 2 is practically solvable.

Proof. Suppose c ̸= d. From (2.3) we get that (ζn)n∈N0 and (ηn)n∈N0 are the solutions to

ωn+4 = ωn+2ω2
n+1ωn, n ∈ N0, (2.21)

with the initial values

ζ0, ζ1, ζ2 = η1η0, ζ3 = ζ1ζ0η1, (2.22)

η0, η1, η2 = ζ1ζ0, η3 = η1η0ζ1, (2.23)

respectively.
Rewrite (2.21) as follows

ωn = ωa1
n−2ωb1

n−3ωc1
n−4ωd1

n−5, n ≥ 5, (2.24)

where

a1 := 1, b1 := 2, c1 := 1, d1 := 0. (2.25)

Further, we have

ωn = (ωn−4ω2
n−5ωn−6)

a1 ωb1
n−3ωc1

n−4ωd1
n−5

= ωb1
n−3ωa1+c1

n−4 ω2a1+d1
n−5 ωa1

n−6

= ωa2
n−3ωb2

n−4ωc2
n−5ωd2

n−6, (2.26)

for n ≥ 6, where a2 := b1, b2 := a1 + c1, c2 := 2a1 + d1 and d2 := a1.
A simple inductive argument shows that

ωn = ω
ak
n−k−1ω

bk
n−k−2ω

ck
n−k−3ω

dk
n−k−4, (2.27)

for n ≥ k + 4, and

ak = bk−1, bk = ak−1 + ck−1, ck = 2ak−1 + dk−1, dk = ak−1 (2.28)

for k ≥ 2.
For k = n − 4 from (2.27) and (2.28), we get

ωn = ω
an−4
3 ω

bn−4
2 ω

cn−4
1 ω

dn−4
0

= ω
an−4
3 ω

an−3
2 ω

an−2−an−4
1 ω

an−5
0 , (2.29)

for n ≥ 6, whereas from (2.28), we get

ak = ak−2 + 2ak−3 + ak−4, (2.30)

for k ≥ 5, and

a1 = 1, a2 = 2, a3 = 2, a4 = 4. (2.31)

The polynomial

q4(λ) = λ4 − λ2 − 2λ − 1 = (λ2 − λ − 1)(λ2 + λ + 1), (2.32)
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is the characteristic one associated to (2.30), with the zeros

λ1,2 =
1 ±

√
5

2
and λ3,4 =

−1 ± i
√

3
2

. (2.33)

Since

ak−4 = ak − ak−2 − 2ak−3, (2.34)

by using (2.31) we can find ak for k ≤ 0, and get

a−4 = a−3 = a−2 = 0, a−1 = 1 and a0 = 0. (2.35)

Using [41, Lemma 1] we obtain

an =
λn+4

1
q′4(λ1)

+
λn+4

2
q′4(λ2)

+
λn+4

3

q′4(λ3)
+

λn+4
4

q′4(λ4)
, (2.36)

for n ∈ Z.
Since

q′4(λ) = 4λ3 − 2λ − 2 = 2(2λ3 − λ − 1) = 2(λ − 1)(2λ2 + 2λ + 1),

we have

q′4(λ1) = 5 + 3
√

5, q′4(λ2) = 5 − 3
√

5, (2.37)

q′4(λ3) = 3 − i
√

3, q′4(λ4) = 3 + i
√

3. (2.38)

Using (2.37) and (2.38) in (2.36) imply

an =
λn+4

1

5 + 3
√

5
+

λn+4
2

5 − 3
√

5
+

λn+4
3

3 − i
√

3
+

λn+4
4

3 + i
√

3

=
λn+2

1 − λn+2
2

2
√

5
+

λn+2
3 − λn+2

4

2i
√

3
, (2.39)

for n ∈ Z. Employing this formula it is not difficult to check that (2.29) holds for all n ∈ N0.
Relations (2.22) and (2.29) imply

ζn = ζ
an−4
3 ζ

an−3
2 ζ

an−2−an−4
1 ζ

an−5
0

= (η1ζ0ζ1)
an−4(η1η0)

an−3 ζ
an−2−an−4
1 ζ

an−5
0

= ζ
an−4+an−5
0 ζ

an−2
1 η

an−3
0 η

an−3+an−4
1 , (2.40)

for n ∈ N0, and due to the symmetry

ηn = η
an−4+an−5
0 η

an−2
1 ζ

an−3
0 ζ

an−3+an−4
1 , (2.41)

for n ∈ N0.
By some simple calculation and use of the Viète formulas we get

an + an−1 =
(λ1 + 1)λn+1

1 − (λ2 + 1)λn+1
2

2
√

5
+

(λ3 + 1)λn+1
3 − (λ4 + 1)λn+1

4

2i
√

3

=
λn+3

1 − λn+3
2

2
√

5
− λn+3

3 − λn+3
4

2i
√

3
, (2.42)
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for n ∈ Z.
From (2.39)–(2.42) we get

ζn = ζ

λn−1
1 −λn−1

2
2
√

5
− λn−1

3 −λn−1
4

2i
√

3
0 ζ

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3
1 η

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3
0 η

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3
1 ,

ηn = η

λn−1
1 −λn−1

2
2
√

5
− λn−1

3 −λn−1
4

2i
√

3
0 η

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3
1 ζ

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3
0 ζ

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3
1 ,

for n ∈ N0, from which together with (2.1) with n = 0, 1, we get

ζn =
( x0 − d

x0 − c

)

λn−1
1 −λn−1

2
2
√

5
− λn−1

3 −λn−1
4

2i
√

3
( x1 − d

x1 − c

)

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3

×
(y0 − d

y0 − c

)

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3
(y1 − d

y1 − c

)

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3 , (2.43)

ηn =
( x0 − d

x0 − c

)

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3
( x1 − d

x1 − c

)

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3

×
(y0 − d

y0 − c

)

λn−1
1 −λn−1

2
2
√

5
− λn−1

3 −λn−1
4

2i
√

3
(y1 − d

y1 − c

)

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3 , (2.44)

for n ∈ N0.
Combining (2.4), (2.43) and (2.44), we have

xn =
c( x0−d

x0−c )
λn−1

1 −λn−1
2

2
√

5
− λn−1

3 −λn−1
4

2i
√

3 ( x1−d
x1−c )

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3 ( y0−d
y0−c )

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3 ( y1−d
y1−c )

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3 − d

( x0−d
x0−c )

λn−1
1 −λn−1

2
2
√

5
− λn−1

3 −λn−1
4

2i
√

3 ( x1−d
x1−c )

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3 ( y0−d
y0−c )

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3 ( y1−d
y1−c )

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3 − 1

yn =
c( y0−d

y0−c )
λn−1

1 −λn−1
2

2
√

5
− λn−1

3 −λn−1
4

2i
√

3 ( y1−d
y1−c )

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3 ( x0−d
x0−c )

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3 ( x1−d
x1−c )

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3 − d

( y0−d
y0−c )

λn−1
1 −λn−1

2
2
√

5
− λn−1

3 −λn−1
4

2i
√

3 ( y1−d
y1−c )

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3 ( x0−d
x0−c )

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3 ( x1−d
x1−c )

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3 − 1

,

for n ∈ N0.
Now assume that c = d. In this case, we have

ζn+2 = ηn+1 + ηn, ηn+2 = ζn+1 + ζn, (2.45)

for n ∈ N0, implying that (ζn)n∈N0 and (ηn)n∈N0 are the two solutions to the equation

ωn+4 − ωn+2 − 2ωn+1 − ωn = 0, (2.46)

for n ∈ N0, with the initial values

ζ0, ζ1, ζ2 = η1 + η0, ζ3 = η1 + ζ1 + ζ0, (2.47)

η0, η1, η2 = ζ1 + ζ0, η3 = ζ1 + η1 + η0, (2.48)

respectively (see (2.45)).
If we write equation (2.46) in the form

ωn = ωn−2 + 2ωn−3 + ωn−4 + 0 · ωn−5

= a1ωn−2 + b1ωn−3 + c1ωn−4 + d1ωn−5,
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where a1, b1, c1, d1 are given in (2.25), then by a simple inductive argument we can prove that

ωn = akωn−k−1 + bkωn−k−2 + ckωn−k−3 + dkωn−k−4, (2.49)

for n ≥ k + 4, where (ak)k∈N, (bk)k∈N, (ck)k∈N and (dk)k∈N, satisfy (2.28). Thus (2.39) holds.
For k = n − 4 we have

ωn = an−4ω3 + an−3ω2 + (an−2 − an−4)ω1 + an−5ω0, (2.50)

for n ≥ 6, from which along with (2.47), we get

ζn = an−4(η1 + ζ1 + ζ0) + an−3(η1 + η0) + (an−2 − an−4)ζ1 + an−5ζ0

= (an−4 + an−5)ζ0 + an−2ζ1 + an−3η0 + (an−3 + an−4)η1, (2.51)

for n ∈ N0. Therefore

ηn = (an−4 + an−5)η0 + an−2η1 + an−3ζ0 + (an−3 + an−4)ζ1, (2.52)

for n ∈ N0.
Combining (2.39), (2.42), (2.51) and (2.52) it follows that

ζn =

λn−1
1 −λn−1

2

2
√

5
− λn−1

3 −λn−1
4

2i
√

3

x0 − c
+

λn
1−λn

2

2
√

5
+

λn
3−λn

4
2i
√

3

x1 − c
+

λn−1
1 −λn−1

2

2
√

5
+

λn−1
3 −λn−1

4
2i
√

3

y0 − c
+

λn
1−λn

2

2
√

5
− λn

3−λn
4

2i
√

3

y1 − c
,

ηn =

λn−1
1 −λn−1

2

2
√

5
− λn−1

3 −λn−1
4

2i
√

3

y0 − c
+

λn
1−λn

2

2
√

5
+

λn
3−λn

4
2i
√

3

y1 − c
+

λn−1
1 −λn−1

2

2
√

5
+

λn−1
3 −λn−1

4
2i
√

3

x0 − c
+

λn
1−λn

2

2
√

5
− λn

3−λn
4

2i
√

3

x1 − c
,

for n ∈ N0.
Thus

xn =

c
( λn−1

1 −λn−1
2

2
√

5
− λn−1

3 −λn−1
4

2i
√

3
x0−c +

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3
x1−c +

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3
y0−c +

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3
y1−c

)

+ 1

λn−1
1 −λn−1

2
2
√

5
− λn−1

3 −λn−1
4

2i
√

3
x0−c +

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3
x1−c +

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3
y0−c +

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3
y1−c

,

yn =

c
( λn−1

1 −λn−1
2

2
√

5
− λn−1

3 −λn−1
4

2i
√

3
y0−c +

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3
y1−c +

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3
x0−c +

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3
x1−c

)

+ 1

λn−1
1 −λn−1

2
2
√

5
− λn−1

3 −λn−1
4

2i
√

3
y0−c +

λn
1−λn

2
2
√

5
+

λn
3−λn

4
2i
√

3
y1−c +

λn−1
1 −λn−1

2
2
√

5
+

λn−1
3 −λn−1

4
2i
√

3
x0−c +

λn
1−λn

2
2
√

5
− λn

3−λn
4

2i
√

3
x1−c

,

for n ∈ N0, where we have used the change of variables (2.7).

Corollary 2.6. The system (1.3) with c, d ∈ C, k = 2s, l = s, for some s ∈ N, is practically solvable.

Proof. Under these conditions we have

xn+2s =
yn+syn − cd

yn+s + yn − c − d
, yn+2s =

xn+sxn − cd
xn+s + xn − c − d

, n ∈ N0,

which is a system with interlacing indices ([47]).
Let

x(j)
m = xms+j, y(j)

m = yms+j,
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for m ∈ N0 and j = 0, s − 1. Then, (x(j)
m , y(j)

m )m∈N0 , j = 0, s − 1, are s solutions to the system

xm+2 =
ym+1ym − cd

ym+1 + ym − c − d
,

ym+2 =
xm+1xm − cd

xm+1 + xm − c − d
,

for m ∈ N0. Note that it is the system (1.3) with k = 2 and l = 1.
Thus, Theorem 2.5 can be applied, and if c ̸= d, we get

x(j)
m =

c(
x(j)

0 −d

x(j)
0 −c

)
λm−1

1 −λm−1
2

2
√

5
− λm−1

3 −λm−1
4

2i
√

3 (
x(j)

1 −d

x(j)
1 −c

)
λm

1 −λm
2

2
√

5
+

λm
3 −λm

4
2i
√

3 (
y(j)

0 −d

y(j)
0 −c

)
λm−1

1 −λm−1
2

2
√

5
+

λm−1
3 −λm−1

4
2i
√

3 (
y(j)

1 −d

y(j)
1 −c

)
λm

1 −λm
2

2
√

5
− λm

3 −λm
4

2i
√

3 −d

(
x(j)

0 −d

x(j)
0 −c

)
λm−1

1 −λm−1
2

2
√

5
− λm−1

3 −λm−1
4

2i
√

3 (
x(j)

1 −d

x(j)
1 −c

)
λm

1 −λm
2

2
√

5
+

λm
3 −λm

4
2i
√

3 (
y(j)

0 −d

y(j)
0 −c

)
λm−1

1 −λm−1
2

2
√

5
+

λm−1
3 −λm−1

4
2i
√

3 (
y(j)

1 −d

y(j)
1 −c

)
λm

1 −λm
2

2
√

5
− λm

3 −λm
4

2i
√

3 − 1

,

y(j)
m =

c(
y(j)

0 −d

y(j)
0 −c

)
λm−1

1 −λm−1
2

2
√

5
− λm−1

3 −λm−1
4

2i
√

3 (
y(j)

1 −d

y(j)
1 −c

)
λm

1 −λm
2

2
√

5
+

λm
3 −λm

4
2i
√

3 (
x(j)

0 −d

x(j)
0 −c

)
λm−1

1 −λm−1
2

2
√

5
+

λm−1
3 −λm−1

4
2i
√

3 (
x(j)

1 −d

x(j)
1 −c

)
λm

1 −λm
2

2
√

5
− λm

3 −λm
4

2i
√

3 −d

(
y(j)

0 −d

y(j)
0 −c

)
λm−1

1 −λm−1
2

2
√

5
− λm−1

3 −λm−1
4

2i
√

3 (
y(j)

1 −d

y(j)
1 −c

)
λm

1 −λm
2

2
√

5
+

λm
3 −λm

4
2i
√

3 (
x(j)

0 −d

x(j)
0 −c

)
λm−1

1 −λm−1
2

2
√

5
+

λm−1
3 −λm−1

4
2i
√

3 (
x(j)

1 −d

x(j)
1 −c

)
λm

1 −λm
2

2
√

5
− λm

3 −λm
4

2i
√

3 − 1

,

for m ∈ N0 and j = 0, s − 1, whereas if c = d, we get

x(j)
m =

c
( λm−1

1 −λm−1
2

2
√

5
− λm−1

3 −λm−1
4

2i
√

3

x(j)
0 −c

+

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3

x(j)
1 −c

+

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3

y(j)
0 −c

+

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3

y(j)
1 −c

)

+ 1

λm−1
1 −λm−1

2
2
√

5
− λm−1

3 −λm−1
4

2i
√

3

x(j)
0 −c

+

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3

x(j)
1 −c

+

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3

y(j)
0 −c

+

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3

y(j)
1 −c

,

y(j)
m =

c
( λm−1

1 −λm−1
2

2
√

5
− λm−1

3 −λm−1
4

2i
√

3

y(j)
0 −c

+

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3

y(j)
1 −c

+

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3

x(j)
0 −c

+

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3

x(j)
1 −c

)

+ 1

λm−1
1 −λm−1

2
2
√

5
− λm−1

3 −λm−1
4

2i
√

3

y(j)
0 −c

+

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3

y(j)
1 −c

+

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3

x(j)
0 −c

+

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3

x(j)
1 −c

,

for m ∈ N0 and j = 0, s − 1, that is, if c ̸= d, we have

xms+j =

c(
xj−d
xj−c )

λm−1
1 −λm−1

2
2
√

5
− λm−1

3 −λm−1
4

2i
√

3 (
xs+j−d
xs+j−c )

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3 (
yj−d
yj−c )

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3 (
ys+j−d
ys+j−c )

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3 −d

(
xj−d
xj−c )

λm−1
1 −λm−1

2
2
√

5
− λm−1

3 −λm−1
4

2i
√

3 (
xs+j−d
xs+j−c )

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3 (
yj−d
yj−c )

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3 (
ys+j−d
ys+j−c )

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3 − 1

,

yms+j =

c(
yj−d
yj−c )

λm−1
1 −λm−1

2
2
√

5
− λm−1

3 −λm−1
4

2i
√

3 (
ys+j−d
ys+j−c )

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3 (
xj−d
xj−c )

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3 (
xs+j−d
xs+j−c )

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3 −d

(
yj−d
yj−c )

λm−1
1 −λm−1

2
2
√

5
− λm−1

3 −λm−1
4

2i
√

3 (
ys+j−d
ys+j−c )

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3 (
xj−d
xj−c )

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3 (
xs+j−d
xs+j−c )

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3 − 1

,
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for m ∈ N0 and j = 0, s − 1, whereas if c = d, we get

xms+j =

c
( λm−1

1 −λm−1
2

2
√

5
− λm−1

3 −λm−1
4

2i
√

3
xj−c +

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3
xs+j−c +

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3
yj−c +

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3
ys+j−c

)

+ 1

λm−1
1 −λm−1

2
2
√

5
− λm−1

3 −λm−1
4

2i
√

3
xj−c +

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3
xs+j−c +

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3
yj−c +

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3
ys+j−c

,

yms+j =

c
( λm−1

1 −λm−1
2

2
√

5
− λm−1

3 −λm−1
4

2i
√

3
yj−c +

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3
ys+j−c +

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3
xj−c +

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3
xs+j−c

)

+ 1

λm−1
1 −λm−1

2
2
√

5
− λm−1

3 −λm−1
4

2i
√

3
yj−c +

λm
1 −λm

2
2
√

5
+

λm
3 −λm

4
2i
√

3
ys+j−c +

λm−1
1 −λm−1

2
2
√

5
+

λm−1
3 −λm−1

4
2i
√

3
xj−c +

λm
1 −λm

2
2
√

5
− λm

3 −λm
4

2i
√

3
xs+j−c

,

for m ∈ N0 and j = 0, s − 1.

Remark 2.7. Theorem 2.2, Corollary 2.4, Theorem 2.5 and Corollary 2.6, show the practical
solvability of system (1.3) in the following six cases: k = 1, l = 0; k = 2, l = 0; k = 2, l = 1;
k = 3, l = 0; k = 4, l = 0 and k = 4, l = 2. Practical solvability of the system (1.3) in the cases:
k = 3, l = 1; k = 3, l = 2; k = 4, l = 1 and k = 4, l = 3 is shown similarly, but with more
technical details.

Remark 2.8. Employing the formulas for the general solutions to system (1.3), one can describe
their well-defined solutions. The standard problem is left to the reader as an exercise.
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Serbia, 1980.
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[42] S. Stević, Solvability of a general class of two-dimensional hyperbolic-cotangent-type
systems of difference equations, Adv. Difference Equ. 2019, Article No. 294, 34 pp. https:
//doi.org/10.1186/s13662-019-2233-y; MR3984141
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Abstract. We use essential limits inferior and superior of the nonlinear part of a dis-
continuous ODE to introduce some novel transversality conditions which imply that
Filippov solutions are Carathéodory solutions. We also prove some uniqueness criteria
based on different Lipschitz conditions on different parts of the domain separated from
one another by boundaries which satisfy certain transversality conditions.

Keywords: discontinuous differential equations, Carathéodory solutions, Filippov so-
lutions, differential inclusions.

2020 Mathematics Subject Classification: 34A36.

1 Introduction

Consider the initial value problem

x′ = f (t, x), t ∈ I = [t0, t0 + L], x(t0) = x0, (1.1)

where t0, L ∈ R, L > 0, x0 ∈ Rn (n ∈ N) and f = ( f1, f2, . . . , fn) : I × Rn −→ Rn need not be
continuous. In this paper, we prove new existence and uniqueness results on Carathéodory
and Filippov solutions to (1.1).

Assume that for a.a. t ∈ I the mapping f (t, ·) is locally essentially bounded. A Filippov
solution of (1.1) is defined as an absolutely continuous function x : I −→ Rn such that
x(t0) = x0 and

x′(t) ∈
⋂

ε>0

⋂

m(N)=0

co f (t, Bε(x(t)) \ N) for a.a. t ∈ I, (1.2)

where m is the Lebesgue measure, co means closed convex hull and Bε(x) = {y ∈ Rn :
∥y − x∥ < ε}. Here and henceforth, we denote by ∥x∥ the usual norm of a vector x ∈ Rn.
Observe that, in the scalar case (n = 1), we have Bε(x) = (x − ε, x + ε).

BCorresponding author. Email: rodrigo.lopez@usc.es
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Filippov solutions satisfy

x′(t) ∈
n

∏
j=1

[

ess lim inf
y→x(t)

f j(t, y), ess lim sup
y→x(t)

f j(t, y)

]

for a.a. t ∈ I, (1.3)

where ess lim inf and ess lim sup stand for the essential limit inferior and superior, respectively.
Namely, for each j ∈ {1, 2, . . . , n},

ess lim inf
y→x

f j(t, y) = lim
ε→0+

ess inf
0<∥x−y∥<ε

f j(t, y) = sup
ε>0

ess inf
0<∥x−y∥<ε

f j(t, y).

The essential limit superior is defined analogously.
With this information on Filippov solutions we shall deduce some sufficient conditions for

the existence of Carathédory solutions in terms of essential limits.
This paper is organized as follows. In Section 2 we prove (1.3). In Section 3 we introduce

novel transversality conditions on f (t, x) in terms of essential limits which ensure that, first,
Filippov solutions of (1.1) exist and, second, every Filippov solution is a Carathéodory solu-
tion. In Section 4, we deduce new uniqueness results for both Carathéodory and Filippov
solutions of (1.1).

2 Preliminaries

This section is mainly devoted to proving that Filippov solutions of (1.1) satisfy (1.3). We
thank the anonymous reviewer of a previous version of this paper for having brought to our
attention reference [9], where Filippov himself uses (1.3) omiting its proof.

Proposition 2.1. Let f = ( f1, f2, . . . , fn) : I × Rn −→ Rn be an arbitrary function.

For all t ∈ I and every x ∈ Rn such that f (t, ·) is essentially bounded on a neighborhood of x, we

have
⋂

ε>0

⋂

m(N)=0

co f (t, Bε(x) \ N) ⊂
n

∏
j=1

[

ess lim inf
y→x

f j(t, y), ess lim sup
y→x

f j(t, y)

]

. (2.1)

Moreover, in the scalar case (n = 1) we have

⋂

ε>0

⋂

m(N)=0

co f (t, Bε(x) \ N) =

[

ess lim inf
y→x

f (t, y), ess lim sup
y→x

f (t, y)

]

. (2.2)

Proof. For each j ∈ {1, 2, . . . , n} and each sufficiently small ε > 0 there exist c∗(j), c∗(j) ∈ R,
essential lower and upper bounds of the set

Aε(j) = { f j(t, y) : 0 < ∥x − y∥ < ε},

i.e., there exists a null measure set Nε such that

c∗(j) ≤ f j(t, y) ≤ c∗(j) provided that 0 < ∥x − y∥ < ε, y ̸∈ Nε.

We may (and we do) assume that x ∈ Nε and that Nε does not depend on j. Hence

co f (t, Bε(x) \ Nε) ⊂
n

∏
j=1

[c∗(j), c∗(j)],
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which implies that
⋂

m(N)=0

co f (t, Bε(x) \ N) ⊂
n

∏
j=1

[c∗(j), c∗(j)].

Since c∗(j) and c∗(j) were arbitrary essential lower and upper bounds of Aε(j), we deduce
that

⋂

m(N)=0

co f (t, Bε(x) \ N) ⊂
n

∏
j=1

[

ess inf
0<∥x−y∥<ε

f j(t, y), ess sup
0<∥x−y∥<ε

f j(t, y)

]

.

Finally, since ε was fixed arbitrarily, we conclude that

⋂

ε>0

⋂

m(N)=0

co f (t, Bε(x) \ N) ⊂
n

∏
j=1

[

ess lim inf
y→x

f j(t, y), ess lim sup
y→x

f j(t, y)

]

. (2.3)

Next we prove (2.2) in the scalar case. Notice that if

ξ ∈

[

ess lim inf
y→x

f (t, y), ess lim sup
y→x

f (t, y)

]

then for each ε > 0 and each N ⊂ R, m(N) = 0, we have

ξ ≥ ess lim inf
y→x

f (t, y) ≥ ess inf
Bε(x)

f (t, y) ≥ inf
Bε(x)\N

f (t, y),

and, analogously,
ξ ≤ sup

Bε(x)\N

f (t, y).

Hence, for each ε > 0 and each null measure set N ⊂ R, we have

ξ ∈

[

inf
Bε(x)\N

f (t, y), sup
Bε(x)\N

f (t, y)

]

= co f (t, Bε(x) \ N) ,

as desired.

In applications we shall often have some more assumptions on f (t, x), which yield a clearer
version of (2.2). An interesting particular case is considered in our next lemma.

Lemma 2.2. Assume that f : I × Rn −→ R satisfies that for a.a. t ∈ I there is a null measure set

N(t) such that the restriction of f (t, ·) to Rn \ N(t) is continuous.

Then, for a.a. t ∈ I and every x ∈ Rn such that f (t, ·) is essentially bounded on a neighborhood of

x, we have

ess lim inf
y→x

f (t, y) = lim inf
y→x, y ̸∈N(t)

f (t, y), (2.4)

and

ess lim sup
y→x

f (t, y) = lim sup
y→x, y ̸∈N(t)

f (t, y). (2.5)

Proof. Let us prove (2.4). The proof of (2.5) is analogous and we omit it.
Les us fix t ∈ I such that the restriction of f (t, ·) to Rn \ N(t) is continuous and N(t) is

null. Observe that (2.4) is obviously true in case x ∈ Rn \ N(t) because the restriction of f (t, ·)
to Rn \ N(t) is continuous at x, so we assume that x ∈ N(t).
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By definition, we have

ess lim inf
y→x

f (t, y) = lim
ε→0+

ess inf
0<∥x−y∥<ε

f (t, y),

so it suffices to check that for all sufficiently small ε > 0 we have

η := ess inf
0<∥x−y∥<ε

f (t, y) = inf
0<∥x−y∥<ε, y ̸∈N(t)

f (t, y) =: ι. (2.6)

Take any ε > 0 such that f (t, ·) is essentially bounded on Bε(x). Clearly, ι is an essential lower
bound for the set { f (t, y) : 0 < ∥x − y∥ < ε}, hence ι ≤ η.

Now assume, reasoning by contradiction, that ι < η. The definition of ι guarantees that
we can find y0 ∈ Rn \ N(t), 0 < ∥x − y0∥ < ε, such that

ι ≤ f (t, y0) < η.

Since the restriction of f (t, ·) to Rn \ N(t) is continuous at y0, there is a neighborhood of y0

relative to Rn \ N(t) of points y satisfying 0 < ∥x − y∥ < ε for which we have f (t, y) < η, so
η cannot be an essential lower bound for the set { f (t, y) : 0 < ∥x − y∥ < ε}, a contradiction.
The proof of (2.6) is complete.

3 Existence of Carathéodory solutions

In this section we use a deep existence result due to Filippov [10, Theorem 8, page 85] along
with Proposition 2.1 and Lemma 2.2, to establish a new existence result of Carathéodory
solutions for (1.1). We recall that a Carathéodory solution of (1.1) is an absolutely continuous
function x : I −→ Rn such that x(t0) = x0 and x′(t) = f (t, x(t)) for a.a. t ∈ I.

For the convenience of the reader, we gather the main ingredients we need from [10,
Theorem 8, page 85] in the following proposition.

Proposition 3.1. Assume that f : I × Rn −→ Rn satisfies the following conditions.

(i) The function f (t, x) is measurable;

(ii) There exists ψ ∈ L1(I) such that for a.a. t ∈ I and all x ∈ Rn we have

| f (t, x)| ≤ ψ(t).

Then, problem (1.1) has at least one Filippov solution.

We shall also employ the following result, which follows from [3, Lemma 5.8.13].

Lemma 3.2. Let a, b ∈ R, a < b. If ϕ : [a, b] −→ R is almost everywhere differentiable on [a, b], then

for each null measure set A ⊂ R there exists a null measure set B ⊂ ϕ−1(A) such that

ϕ′(t) = 0 for all t ∈ ϕ−1(A) \ B.

We are now in a position to prove a result on the existence of Carathéodory solutions
for (1.1).

Theorem 3.3. In the conditions of Proposition 3.1, assume also that there exist null measure sets

Ak ⊂ R, k ∈ C ⊂ N, and differentiable mappings τk : [ak, bk]× Rn −→ R, [ak, bk] ⊂ I, such that for

a.a. t ∈ I the following conditions hold:
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(a) There exists a null measure set N(t) ⊂ Rn such that the restriction of f (t, ·) to Rn \ N(t) is

continuous;

(b) For each x ∈ N(t) there exists k ∈ C such that t ∈ [ak, bk], τk(t, x) ∈ Ak, and

∇τk(t, x) · (1, z) ̸= 0 for all z ∈
n

∏
j=1

[

lim inf
y→x, y ̸∈N(t)

f j(t, y), lim sup
y→x, y ̸∈N(t)

f j(t, y)

]

. (3.1)

Then, problem (1.1) has at least one Carathéodory solution, which is also a Filippov solution.

Proof. By virtue of Proposition 2.1, problem (1.1) has at least one Filippov solution x : I −→

Rn, which, according to (1.2), (2.1) and (2.4)–(2.5), satisfies

x′(t) ∈
n

∏
j=1

[

lim inf
y→x(t), y ̸∈N(t)

f j(t, y), lim sup
y→x(t), y ̸∈N(t)

f j(t, y)

]

for a.a. t ∈ I.

We shall prove that x is a Carathéodory solution of (1.1).
Let E ⊂ I be a null measure set such that, first, conditions (a) and (b) hold for all t ∈ I \ E,

and, second,

x′(t) ∈
n

∏
j=1

[

lim inf
y→x(t), y ̸∈N(t)

f j(t, y), lim sup
y→x(t), y ̸∈N(t)

f j(t, y)

]

for all t ∈ I \ E.

Observe that for each t ∈ I \ E such that x(t) ̸∈ N(t) condition (a) ensures that the restric-
tion of f (t, ·) to Rn \ N(t) is continuous at x(t) and therefore

x′(t) ∈
n

∏
j=1

[

lim inf
y→x(t), y ̸∈N(t)

f j(t, y), lim sup
y→x(t), y ̸∈N(t)

f j(t, y)

]

= { f (t, x(t))}.

Hence, it suffices to prove that the set J = {t ∈ I \ E : x(t) ∈ N(t)} is null.
We deduce from condition (b) that

J ⊂
⋃

k∈C

{t ∈ [ak, bk] \ E : τk(t, x(t)) ∈ Ak},

so the proof is reduced to showing that each Jk = {t ∈ [ak, bk] \ E : τk(t, x(t)) ∈ Ak} is
a null measure set. For an arbitrarily fixed k ∈ C, we define ϕ(t) = τk(t, x(t)) for all t ∈

[ak, bk], so that Jk ⊂ ϕ−1(Ak) and it suffices to prove that ϕ−1(Ak) is null. Since m(Ak) = 0,
Lemma 3.2 guarantees the existence of a set B ⊂ ϕ−1(Ak), with m(B) = 0, such that for every
t ∈ ϕ−1(Ak) \ B we have ϕ′(t) = 0, i.e.

d

dt
τk(t, x(t)) = 0. (3.2)

Let us prove that ϕ−1(Ak) ⊂ B ∪ E, thus showing that ϕ−1(Ak) is null. Reasoning by contra-
diction, we assume that there is some t ∈ ϕ−1(Ak) such that t ̸∈ B ∪ E, and then we can use
the chain rule in (3.2) to deduce that

∇τk(t, x(t)) · (1, x′(t)) = 0,

a contradiction with condition (3.1).
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t

x τ(t, x) = c

x(t)

∇τ(t̄, x̄)

Figure 3.1: Visualization of the transversality condition (3.1) at (t̄, x̄) = (t̄, x(t̄)).

Remark 3.4. Observe that, under the assumptions of Theorem 3.3, every Filippov solution of
(1.1) is in fact a Carathéodory solution.

Note that, in general, Carathéodory solutions need not be Filippov solutions. Indeed, the
constant function x(t) ≡ 0 is a Carathéodory solution of the initial value problem

x′ = f (x) =

{

1, if x ̸= 0,

0, if x = 0,
t ∈ [0, 1], x(0) = 0, (3.3)

but it is not a Filippov solution. Readers can find in [15] a good account on the relations
between Carathéodory and Filippov solutions.

The transversality condition (3.1) is based on an original idea by Bressan and Shen [6],
later improved and applied by the authors in [12, 13]. All those papers assumed that

f (t, x) = F(t, g1(τ1(t, x), x), g2(τ2(t, x), x), . . . , gN(τN(t, x), x)) for some N ∈ N,

for functions F and gk under suitable conditions, a technical drawback which we avoid in this
paper.

Figure 3.1 can help readers to have a clearer intuition of what (3.1) means, at least in the
very specific setting of one dimension and just one discontinuity curve τ(t, x) = c. Note that
vectors (1, z) in condition (3.1) are represented as the red triangle in the figure, and condition
(3.1) means that the red triangle cannot contain tangent vectors to τ(t, x) = c at (t̄, x̄).

In addition, in [12, 13], we first look for Krasovskij solutions and then we use a transver-
sality condition to prove that they are Carathéodory solutions. In this paper, we use Filippov
solutions instead of Krasovskij’s, thus getting a milder transversality condition in terms of
essential limits. Both transversality conditions are compared in our next example.

Example 3.5. Consider the initial value problem (3.3). Theorem 3.3 ensures that (3.3) has
at least one Carathéodory solution. Indeed, the function f is continuous on R \ {0} and so
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conditions (a) and (b) in Theorem 3.3 hold with C = {1}, N = A1 = {0} and τ1(t, x) = x,
since

[

lim inf
y→0

f (y), lim sup
y→0

f (y)

]

= {1}.

The main results in [12, 13] do not apply because they are based on the larger Krasovskij
envelope

K f (x) :=

[

min
{

f (x), lim inf
y→x

f (y)

}

, max

{

f (x), lim sup
y→x

f (y)

}]

,

so the transversality condition in [12, 13], namely,

∇τ1(t, x) · (1, z) = z ̸= 0 for all z ∈ K f (0) = [0, 1],

fails (at z = 0).

We also stress that the information provided by Proposition 2.1 and Lemma 2.2 concerning
the Filippov envelope is useful in order to reduce the regularity required to the function f .
Note that in the previous mentioned papers [12, 13], it was basically assumed that for a.a.
t ∈ I there exists a null measure set N(t) ⊂ Rn such that f (t, ·) is continuous on Rn \ N(t),
instead of the weaker assumption (a) in Theorem 3.3. We highlight that Theorem 3.3 can be
even applied to functions f which are discontinuous at every point of its domain, as shown
by the following example.

Example 3.6. Any planar system of the form
{

x′ = f1(t, x, y), x(0) = 0,

y′ = f2(t, x, y), y(0) = 0,

where f1 is continuous and bounded and f2 is measurable, bounded and its restriction to
[0, L] × (R \ A) × R is continuous with A a null measure set, has at least one absolutely
continuous solution defined in the interval [0, L] provided that f1(t, x, y) ̸= 0 for all (t, x, y)

such that x ∈ A.
Indeed, it suffices to apply Theorem 3.3 with C = {1}, τ1(t, x, y) = x, A1 = A and N(t) =

A × R. Note that the transversality condition (3.1) can be written in this case as

z1 ̸= 0 for all (z1, z2) ∈
2

∏
j=1

[

lim inf
(u,v)→(x,y), u ̸∈A

f j(t, u, v), lim sup
(u,v)→(x,y), u ̸∈A

f j(t, u, v)

]

,

for each (x, y) ∈ R2 such that x ∈ A. Since f1 is continuous,
[

lim inf
(u,v)→(x,y), u ̸∈A

f1(t, u, v), lim sup
(u,v)→(x,y), u ̸∈A

f1(t, u, v)

]

= { f1(t, x, y)},

and thus the conclusion follows from the fact that f1 does not vanish at the points (t, x, y) with
x ∈ A.

For instance, we can choose f1(t, x, y) = cos2(x y) + et−x2−y2
and f2(t, x, y) = ϕ(x)esin(t+y),

where ϕ : R → R is given by
ϕ(x) = χQ(x)− χR\Q(x),

where χB denotes the characteristic function of the set B ⊂ R. It is worth mentioning that
ϕ is discontinuous at every point which, to the best of the authors’ knowledge, falls outside
the scope of earlier existence results. Observe, however that its restriction to the set R \ Q is
continuous and therefore Theorem 3.3 applies.
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Our existence result applies for discontinuous ODE-systems associated with two-phase
flows, that is, initial value problem (1.1) with a nonlinearity f which is discontinuous over a
single hypersurface Σ(t) defined as

Σ(t) := {x ∈ Rn : τ(t, x) = 0},

where τ : I × Rn −→ R is a differentiable mapping. More precisely, let us consider an initial
value problem of type

x′ = f (t, x) =

{

f+(t, x) if x ∈ Σ+(t),

f−(t, x) if x ∈ Σ−(t),
t ∈ I, x(t0) = x0, (3.4)

where
Σ+(t) = {x ∈ Rn : τ(t, x) > 0} and Σ−(t) = {x ∈ Rn : τ(t, x) < 0},

and f± : I × Rn −→ Rn are L1–bounded Carathéodory mappings. Note that the definition
of f on Σ(t) is not relevant in order to apply Theorem 3.3, so we may assume that either
f (t, x) = f+(t, x) or f (t, x) = f−(t, x) on Σ(t).

As a straightforward consequence of Theorem 3.3, we obtain the following existence result
for (3.4).

Corollary 3.7. Assume that for a.a. t ∈ I and for each x ∈ Σ(t) we have

∇τ(t, x) · (1, z) ̸= 0 for all z ∈ co
{

f−(t, x), f+(t, x)
}

. (3.5)

Then problem (3.4) has at least one Carathéodory solution.

Note that we need less regularity on f± than some related results (cf. Step 1 of [4, The-
orem 1], where they are required to be locally Lipschitz continuous in x instead of merely
continuous in x).

Let us now focus on the scalar case of (1.1), i.e., n = 1. By the implicit function theorem, if τ

is regular enough, the discontinuity curve τ(t, x) = c can be seen, at least locally, as the graph
of a time-dependent curve x = γ(t) provided that ∂ τ

∂ x (t, x) ̸= 0. Note that the transversality
condition (3.1) implies that ∇τ(t, x) ̸= (0, 0) over the discontinuity points of f which satisfy
τ(t, x) = c, where c belongs to a suitable null measure set.

With this in mind, we have the following alternative version of Theorem 3.3.

Corollary 3.8. In the conditions of Proposition 3.1 and in the case n = 1, assume also that there exist

null measure sets Ak ⊂ R, k ∈ C ⊂ N, and differentiable mappings γk : [ak, bk] ⊂ I −→ R such that

for a.a. t ∈ I the following conditions hold:

(a) the restriction of f (t, ·) to the set R \ N(t) is continuous, where

N(t) =
⋃

{k∈C : t∈[ak ,bk ]}

⋃

c∈Ak

{γk(t) + c} ;

(b) for each k ∈ C such that t ∈ [ak, bk], and each c ∈ Ak, we have either

γ′
k(t) < lim inf

y→γk(t), y ̸∈N(t)
f (t, y + c) (3.6)

or

γ′
k(t) > lim sup

y→γk(t), y ̸∈N(t)

f (t, y + c). (3.7)
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x1

1

Figure 3.2: Approximate plot of x 7→ f (0, x), discontinuous at every point of
Cantor’s ternary set.

Then, problem (1.1) has at least one Carathéodory solution.

Proof. It suffices to apply Theorem 3.3 with τk(t, x) = x − γk(t).

Example 3.9. Let C denote Cantor’s ternary set. We have

[0, 1] \ C =
∞
⋃

n=1

(an, bn),

where (an, bn) ∩ (am, bm) = ∅ if n ̸= m.
Define f : [0, 1] × R −→ R as f (t, x) = bn − an provided that x + t ∈ (an, bn) for some

n ∈ N, and f (t, x) = 1 otherwise. See Figure 3.2 for a plot of x 7→ f (0, x).
Corollary 3.8 guarantees that the corresponding initial value problem (1.1) (with t0 = x0 =

0 and L = 1) has at least one Carathéodory solution. To prove it, just define C = {1}, A1 = C,
and γ1(t) = −t for t ∈ [0, 1]. In this case, N(t) = −t + C for all t ∈ [0, 1] and the restriction of
f (t, ·) to R \ (−t + C) is continuous; moreover, condition (3.6) holds for all t ∈ [0, 1].

Observe that the set −t + C is not countable for any t, so discontinuities of f cannot be
covered by countable unions of curves, as required, for instance, in Corollary 3.7 or Corol-
lary 3.8 in [7]. Remarkably, solutions are increasing on [0, 1], so they cross every line x + t = c,
c ∈ C.

The previous result does not cover some situations in which the set of Filippov solutions
is a subset of that of Carathéodory solutions for (1.1). Indeed, one may easily verify that every
Filippov solution of the initial value problem

x′ = f (t, x) =















0, if x > t,

1, if x = t,

2, if x < t,

t ∈ [0, 1], x(0) = 0, (3.8)



10 R. López Pouso and J. Rodríguez-López

is in fact a Carathéodory solution. Nevertheless, f is discontinuous over the line x = γ(t) := t,
t ∈ [0, 1], which does not satisfy neither (3.6) nor (3.7), since

γ′(t) = 1 ∈ [0, 2] =

[

lim inf
y→t

f (t, y), lim sup
y→t

f (t, y)

]

.

Note that γ is a solution of the initial value problem (3.8).
In the following result, we admit that f be discontinuous over the graphs of a countable

family of solutions of the differential equation x′ = f (t, x).

Proposition 3.10. In the conditions of Proposition 3.1 and in the case n = 1, assume also that

there exist null measure sets Ak ⊂ R, k ∈ C ⊂ N, j ∈ D ⊂ N, and differentiable mappings

γk : [ak, bk] ⊂ I −→ R and ψj : [ãj, b̃j] ⊂ I −→ R such that for a.a. t ∈ I the following conditions

hold:

(a) the restriction of f (t, ·) to the set R \ N(t) is continuous, where

N(t) = N1(t) ∪ N2(t), N1(t) =
⋃

k∈C

⋃

ck∈Ak

{γk(t) + ck} and N2(t) =
⋃

j∈D

{

ψj(t)
}

;

(b) for each k ∈ C and each ck ∈ Ak, the function γk satisfies that for a.a. t ∈ [ak, bk] either (3.6) or

(3.7) holds;

(c) for each j ∈ D, ψ′
j(t) = f (t, ψj(t)) for a.a. t ∈ [ãj, b̃j].

Then, problem (1.1) has at least one Carathéodory solution.

Proof. It follows from Proposition 3.1 that problem (1.1) has at least one Filippov solution x.
Let us prove that x is a Carathéodory solution.

It can be shown (just as in the proof of Theorem 3.3) that the set

Jγ =
⋃

k∈C

{t ∈ [ak, bk] : x(t)− γk(t) ∈ Ak}

has Lebesgue measure zero. Suppose that there exists j ∈ D such that m(J
ψ
j ) > 0, with

J
ψ
j =

{

t ∈ [ãj, b̃j] : x(t) = ψj(t)
}

and Jψ =
⋃

j∈D

J
ψ
j .

Then x′(t) = ψ′
j(t) for a.a. t ∈ J

ψ
j . By the definition of ψj, we have that ψ′

j(t) = f (t, ψj(t)) for

a.a. t ∈ J
ψ
j and thus x′(t) = f (t, x(t)) for a.a. t ∈ J

ψ
j . Hence, x′(t) = f (t, x(t)) for a.a. t ∈ Jψ.

Finally, since the restriction of f (t, ·) to R \ N(t) is continuous at x(t) for a.a. t ∈ I \
(

Jγ ∪ Jψ
)

, we conclude that x is a Carathéodory solution of (1.1).

We shall say that both the functions γk satisfying (3.6) or (3.7) and the functions of type ψj

are admissible discontinuity curves(cf. [8]).
Note that the previous result is sharp in the following sense: if there exists a differentiable

function γ : [t0, t1] ⊂ I → R which is not an admissible discontinuity curve and such that
γ(t0) = x0 and for each t ∈ [t0, t1], f (t, ·) is discontinuous at γ(t), then γ can be extended to a
Filippov solution of (1.1) which is not a solution in the sense of Carathéodory.
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4 Uniqueness of Carathéodory and Filippov solutions

In this section we show that a similar transversality condition to that employed in Theorem
3.3 can be used to deduce uniqueness of Filippov or Carathéodory solutions of (1.1). Note that
recently Fjordholm [11] gave necessary and sufficient conditions for the uniqueness of Filippov
solutions in the scalar autonomous case of (1.1), complementing the results for Carathéodory
solutions due to Binding [2]. Our results concern non-autonomous discontinuous systems.

First, we use some transversality conditions to prove uniqueness of Filippov solutions of
(1.1). Surprisingly enough, it does not guarantee uniqueness of Carathéodory solutions.

Basically, we assume that f (t, x) satisfies a Lipschitz condition with respect to x in every
gap delimited in I × Rn by a set of hypersurfaces (not necessarily a finite set) where f may be
discontinuous and where some suitable transversality conditions hold.

We need some notation for our first main result on uniqueness. Let A ⊂ R be a non-
empty set. We will say that x0 ∈ A is a left-isolated point(right-isolated point) of A if there is
δ > 0 such that (x0 − δ, x0)∩ A = ∅ ((x0, x0 + δ)∩ A = ∅). In the sequel, we denote by I−(A)

the set of left-isolated points of A and by I+(A) that of right-isolated points. Obviously, if
x0 ∈ I−(A) ∩ I+(A), it is an isolated point of the subset A.

Theorem 4.1. In the conditions of Proposition 3.1, assume also that there exist continuously differ-

entiable mappings τk : I × Rn −→ R (k = 1, 2, . . . , m, m ∈ N) and countable closed sets Ak ⊂ R

satisfying that Ak = I−(Ak) ∪ I+(Ak) such that the following conditions hold:

(i) For each k ∈ {1, 2, . . . , m} and each (t, x) ∈ τ−1
k (Ak), there exists ε > 0 such that for a.a.

s ∈ (t, t + ε) and all ζ ∈ Bε(x) we have

∇τk(s, ζ) · (1, z) > 0 for all z ∈
n

∏
j=1

[

ess lim inf
y→ζ

f j(s, y), ess lim sup
y→ζ

f j(s, y)

]

(4.1)

if τk(t, x) ∈ I+(Ak) \ I
−(Ak);

∇τk(s, ζ) · (1, z) < 0 for all z ∈
n

∏
j=1

[

ess lim inf
y→ζ

f j(s, y), ess lim sup
y→ζ

f j(s, y)

]

(4.2)

if τk(t, x) ∈ I−(Ak) \ I
+(Ak); and either (4.1) or (4.2) if τk(t, x) ∈ I−(Ak) ∩ I+(Ak).

(ii) For each connected component, O, of the set I ×Rn \
⋃m

k=1 τ−1
k (Ak) =

⋂m
k=1 τ−1

k (R \ Ak), there

exists l ∈ L1(I) such that for a.a. t ∈ I and all x, y such that (t, x), (t, y) ∈ O we have

∥ f (t, x)− f (t, y)∥ ≤ l(t)∥x − y∥. (4.3)

Then, problem (1.1) has exactly one Filippov solution.

Proof. We can assume, without loss of generality, that Ak = I+(Ak) for every k = 1, 2, . . . , m.
Indeed, if for some k we have I−(Ak) ̸= ∅, then we replace the set Ak by two sets, namely,
Ak,1 = I+(Ak) (which satisfies (4.1) with τk) and Ak,2 = −I−(Ak) (which satisfies Ak,2 =

I+(Ak,2)) and we define a new function τ̃k = −τk. Now, condition (4.2) for I−(Ak) and τk

implies condition (4.1) for Ak,2 and τ̃k.
By virtue of Proposition 3.1, problem (1.1) has at least one Filippov solution. Let us prove

uniqueness. Let x(t) and y(t) be Filippov solutions of (1.1); we shall prove that x(t) = y(t) for
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all t ∈ I. Reasoning by contradiction, we assume that there exists some t1 ∈ [t0, t0 + L) and
ρ > 0 such that x(t1) = y(t1) and ∥x(t)− y(t)∥ > 0 for all t ∈ (t1, t1 + ρ).

Let z(t) be an arbitrary solution of (1.1) such that z(t1) = x(t1). Observe that for all t ∈ I,
t ≥ t1, we have

∥z(t)− x(t1)∥ ≤
∫ t

t1

∥z′(r)∥ dr ≤
∫ t

t1

ψ(r) dr,

so for any ε > 0 there exists µ > 0 (independent of the solution z(t)) such that z(t) ∈ Bε(x(t1))

for all t ∈ [t1, t1 + µ].
Let k ∈ {1, 2, . . . , m} be fixed. If τk(t1, x(t1)) /∈ Ak, then there exists an open interval

Ik ⊂ R \ Ak such that τk(t1, z(t1)) = τk(t1, x(t1)) ∈ Ik (observe that Ik does not depend on the
specific solution z(t)). Since τk is continuous at (t1, x(t1)), there exists rk > 0 (independent of
the solution z(t)) such that τk(t, z(t)) ∈ Ik for all t ∈ [t1, t1 + rk), or, equivalently, (t, z(t)) ∈

τ−1
k (Ik) for all t ∈ [t1, t1 + rk).

If τk(t1, x(t1)) =: a ∈ Ak = I+(Ak), then there is δ > 0 such that (a, a + δ) ∩ Ak = ∅ and
we define Ik = (a, a + δ) (which does not depend on the solution z(t)). Then, assumption (i)
implies that there exists ε > 0 such that for a.a. s ∈ (t1, t1 + ε) and ζ ∈ Bε(x(t1)) we have

∇τk(s, ζ) · (1, z) > 0 for all z ∈
n

∏
j=1

[

ess lim inf
y→ζ

f j(s, y), ess lim sup
y→ζ

f j(s, y)

]

. (4.4)

Take a sufficiently small rk ∈ (0, ε) such that z(t) ∈ Bε(x(t1)) for all t ∈ [t1, t1 + rk). For a.a.
t ∈ [t1, t1 + rk) we use the chain rule and (4.4) to deduce that

d

dt
τk(t, z(t)) = ∇τk(t, z(t)) · (1, z′(t)) > 0,

because, as a Filippov solution, z(t) satisfies (1.3). Note that the composition τk(·, z(·)) is abso-
lutely continuous, so the previous inequality implies that τk(t, z(t)) > a for all t ∈ (t1, t1 + rk).

Let r = min{r1, r2, . . . , rm}; we have proven that for every t ∈ (t1, t1 + r) we have

(t, z(t)) ∈
m
⋂

k=1

τ−1
k (Ik),

and r does not depend on the specific solution z(t) such that z(t1) = x(t1).
We know from [10, Theorem 9] that the set of all Filippov solutions of (1.1) with initial

condition (t1, x(t1)) is a connected subset of C([t1, t1 + r]). Hence, for a fixed t∗ ∈ (t1, t1 + r)

the set
S(t∗) = {(t∗, z(t∗)) : z(t) solution, z(t1) = x(t1)}

is a connected subset of I × Rn. This implies that the set

S = {(t, z(t)) : z(t) solution, z(t1) = x(t1) and t ∈ (t1, t1 + r)}

is a connected subset of I×Rn because it is the union of all the graphs {(t, z(t)) : t∈ (t1, t1 + r)}

which are connected and each contains a point in S(t∗). Therefore, S must be inside one of
the connected components of

⋂m
k=1 τ−1

k (Ik), which is contained in a connected component of
I × Rn \

⋃m
k=1 τ−1

k (Ak). Now condition (ii) ensures the existence of some l ∈ L1(I) such that

∥x(t)− y(t)∥ ≤
∫ t

t1

∥ f (s, x(s))− f (s, y(s))∥ ds ≤
∫ t

t1

l(s)∥x(s)− y(s)∥ ds, t ∈ [t1, t1 + r],

and we deduce from Gronwall’s inequality that ∥x − y∥ = 0 on [t1, t1 + r], a contradiction.
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Remark 4.2. The mappings τk may be defined in [ak, bk] × Rn, with [ak, bk] ⊂ I, instead of
the whole I × Rn. Indeed, the set {a1, b1, a2, b2, . . . , am, bm} defines a partition of the interval
[t0, t0 + L] and it suffices to apply Theorem 4.1 in each subinterval defined by the partition in
order to obtain uniqueness of Filippov solutions to (1.1).

Remark 4.3. The Lipschitz type condition (4.3) can be replaced, for instance, by one-sided
Lipschitz, Osgood’s or Montel–Tonelli’s conditions (see [1]) in such a way that uniqueness of
Filippov solutions is proven in a similar manner.

Observe that, in the hypotheses of Theorems 3.3 and 4.1, although existence of
Carathéodory solutions for the initial value problem (1.1) is guaranteed, uniqueness cannot be
ensured, as shown by the Cauchy problem (3.3). Hence, to obtain uniqueness of Carathéodory
solutions, it is necessary to reinforce the assumptions on Theorem 4.1. Obviously, it would be
sufficient to ensure that the set of Carathéodory solutions and the set of Filippov solutions co-
incide (as pointed out in Remark 3.4, Filippov solutions are Carathéodory solutions, so it only
remains to ensure the reverse inclusion). In case of autonomous systems, some comparison
between them can be found in [15]. In general, this can be directly obtained if one assumes
that f is a selection of the Filippov envelope or, even less, if for a.e. t and all x,

ess lim inf
y→x

f j(t, y) ≤ f j(t, x) ≤ ess lim sup
y→x

f j(t, y), j = 1, . . . , n, (4.5)

which provides uniqueness of Carathéodory solutions as a straightforward consequence of
Theorem 4.1.

Corollary 4.4. In the conditions of Theorem 4.1, if in addition f satisfies (4.5), then problem (1.1) has

exactly one Carathéodory solution.

This simple uniqueness criterion can be useful in practice. In particular, it enables us
to establish uniqueness of Carathéodory solutions for discontinuous ODE-systems associated
with two-phase flows, namely, initial value problems of type (3.4).

Corollary 4.5. Let f± : I × Rn −→ Rn be L1-bounded Carathéodory mappings. Assume that f± are

Lipschitz continuous in x and that for a.a. t ∈ I and for each x ∈ Σ(t), there exists ε > 0 such that for

all s ∈ (t, t + ε) and all ζ ∈ Bε(x) we have either

∇τ(s, ζ) · (1, z) > 0 for all z ∈ co
{

f−(s, ζ), f+(s, ζ)
}

or

∇τ(s, ζ) · (1, z) < 0 for all z ∈ co
{

f−(s, ζ), f+(s, ζ)
}

.

Then problem (3.4) has a unique Carathéodory solution.

Once existence is guaranteed, uniqueness of both Carathéodory and Filippov solutions
can be obtained simultaneously, without assuming (4.5), provided that there exists a unique
Krasovskij solution of (1.1). To do so, we shall strengthen the transversality condition (i) in
Theorem 4.1.

Theorem 4.6. In the conditions of Theorems 3.3 and 4.1, assume that hypothesis (i) is replaced by the

following one:
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(i∗) For each k ∈ {1, 2, . . . , m} and each (t, x) ∈ τ−1
k (Ak), there exists ε > 0 such that for a.a.

s ∈ (t, t + ε) and all ζ ∈ Bε(x) we have

∇τk(s, ζ) · (1, z) > 0 for all z ∈ K f (s, ζ) (4.6)

if τk(t, x) ∈ I+(Ak) \ I
−(Ak);

∇τk(s, ζ) · (1, z) < 0 for all z ∈ K f (s, ζ), (4.7)

if τk(t, x) ∈ I−(Ak) \ I
+(Ak); and either (4.6) or (4.7) if τk(t, x) ∈ I−(Ak) ∩ I+(Ak) (where

K f denotes the Krasovskij envelope of f ).

Then problem (1.1) has exactly one Krasovskij solution, which is also the unique Carathéodory and

Filippov solution of (1.1).

Proof. It follows, in an analogous way to the proof of Theorem 4.1, that the differential inclu-
sion

x′ ∈ K f (t, x), t ∈ I, x(t0) = x0, (4.8)

has a unique solution.
To conclude, it suffices to observe that any Carathéodory, Filippov or Krasovskij solution

of (1.1) is, in particular, an absolutely continuous solution of (4.8).

Remark 4.7. Note that the Krasovskij envelope of the function f satisfies that

K f (s, ζ) :=
⋂

ε>0

co f (s, Bε(ζ))

⊂
n

∏
j=1

[

min
{

f j(s, ζ), lim inf
y→ζ

f j(s, y)

}

, max

{

f j(s, ζ), lim sup
y→ζ

f j(s, y)

}]

.

Example 4.8. Let ⌊·⌋ be the floor function. The system

{

x′ = f1(x, y), x(0) = 0,

y′ = f2(x, y), y(0) = 0,

with f = ( f1, f2) : R2 → R2 defined as

f (x, y) =











(

5x +
1

⌊1/(1 − x2 − y2)⌋
, 5y +

1
⌊1/(1 − x2 − y2)⌋

)

, if x2 + y2
< 1,

(

5x e1−x2−y2
, 5y e1−x2−y2

)

, otherwise,

has exactly one Carathéodory solution in any interval [0, L] (L > 0).
Observe that Theorem 4.6 can be applied with m = 1, τ1(x, y) = x2 + y2 and the closed

countable set A1 = {1 − 1/(k + 1) : k ∈ N} ∪ {1} (clearly, A1 = I+(A1) and for any open
interval I the set τ−1

1 (I) is empty or connected). Indeed, in order to check condition (i∗), notice
that

1
⌊1/(1 − x2 − y2)⌋

=
1
j

(j ∈ N) if and only if 1 −
1
j
≤ x2 + y2

< 1 −
1

j + 1
.
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Hence, for j ∈ N, j ≥ 2, and x2 + y2 = 1 − 1/j fixed, we have that

K f (x, y) ⊂
2

∏
i=1

[

lim inf
(z1,z2)→(x,y)

fi(z1, z2), lim sup
(z1,z2)→(x,y)

fi(z1, z2)

]

⊂

[

5x +
1
j
, 5x +

1
j − 1

]

×

[

5y +
1
j
, 5y +

1
j − 1

]

.

It follows that for (z1, z2) ∈ K f (x, y),

∇τ1(x, y) · (z1, z2) = (2x, 2y) · (5x + aj, 5y + bj) = 10(x2 + y2) + 2(xaj + ybj)

where aj, bj ∈ [1/j, 1/(j − 1)]. Then

∇τ1(x, y) · (z1, z2) ≥ 10
(

1 −
1
j

)

− 2 (|x|+ |y|)
1

j − 1
> 10

(

1 −
1
j

)

− 4 ≥ 1

for all (z1, z2) ∈ K f (x, y).
Note that f is continuous at any (x, y) such that x2 + y2 = 1, so K f (x, y) = { f (x, y)} and

∇τ1(x, y) · ( f1(x, y), f2(x, y)) = (2x, 2y) · (5x, 5y) = 10.

Finally, by continuity, we deduce that condition (i∗) holds. Moreover, f is Lipschitz contin-
uous in the sets O− =

{

(x, y) ∈ R2 : x2 + y2
< 1

}

, O+ =
{

(x, y) ∈ R2 : x2 + y2
> 1

}

and

Oj =

{

(x, y) ∈ R2 : 1 −
1
j
< x2 + y2

< 1 −
1

j + 1

}

(j ∈ N, j ≥ 2).

Therefore, Theorem 4.6 is applicable and the conclusion follows.

As a consequence of Theorem 4.6, we can also deduce a discontinuous version of a classical
uniqueness criterion due to Norris and Driver [14]. Observe that condition (c) is slightly
stronger than condition (i∗) in Theorem 4.6 because we need to use Theorem 3.3.

Corollary 4.9. Let f : I × Rn −→ Rn a measurable function satisfying the following hypotheses:

(a) There exist a constant K > 0 and functions gk : R −→ R and τk : I × Rn −→ R, for

k = 1, 2, . . . , m, such that

∥ f (t, x)− f (t, y)∥ ≤ K ∥x − y∥+ K
m

∑
k=1

|gk(τk(t, x))− gk(τk(t, y))|

for all (t, x), (t, y) ∈ I × Rn.

(b) Each function gk : R −→ R is bounded in R and Lipschitz continuous in each bounded interval

contained in R \ Ak, where Ak is a countable closed subset of R such that Ak = I−(Ak) ∪

I+(Ak).

(c) Each function τk : I × Rn −→ R is continuously differentiable and for each (t, x) ∈ τ−1
k (Ak),

there exists ε > 0 such that for a.a. s ∈ [t, t + ε) and all ζ ∈ Bε(x) we have

∇τk(s, ζ) · (1, z) > 0 for all z ∈ K f (s, ζ) (4.9)

if τk(t, x) ∈ I+(Ak) \ I
−(Ak);

∇τk(s, ζ) · (1, z) < 0 for all z ∈ K f (s, ζ), (4.10)

if τk(t, x) ∈ I−(Ak) \ I
+(Ak); and either (4.9) or (4.10) if τk(t, x) ∈ I−(Ak)∩I+(Ak) (where

K f denotes the Krasovskij envelope of f ).
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Then the initial value problem

x′ = f (t, x), x(t0) = x0, (4.11)

has a unique local Carathéodory solution.

Proof. Existence follows from Theorem 3.3. Let us prove uniqueness as a consequence of
Theorem 4.6.

Consider an arbitrary collection of open bounded intervals Ik ⊂ R \ Ak, k = 1, 2, . . . , m,
such that

O =
m
⋂

k=1

τ−1
k (Ik) ̸= ∅.

For each k ∈ {1, 2, . . . , m}, the function gk is Lipschitz continuous in the interval Ik, so there is
Lk > 0 such that

|gk(z1)− gk(z2)| ≤ Lk |z1 − z2| for all z1, z2 ∈ Ik.

Hence, for all (t, x), (t, y) ∈ O, we have that τk(t, x), τk(t, y) ∈ Ik and thus

m

∑
k=1

|gk(τk(t, x))− gk(τk(t, y))| ≤
m

∑
k=1

Lk |τk(t, x)− τk(t, y)| ≤ C ∥x − y∥ ,

for some positive constant C, since the functions τk are Lipschitz continuous w.r.t. x on any
compact set which contains the graphs of the solutions. Therefore, for all (t, x), (t, y) ∈ O we
have

∥ f (t, x)− f (t, y)∥ ≤ (K + KC) ∥x − y∥ .

The conclusion follows now from Theorem 4.6 guaranteeing uniqueness of solutions for
(4.11) in the interval I = [t0, t0 + δ].

In view of the general assumptions on Theorem 3.3 concerning existence of Carathéodory
solutions, one may wonder whether a Lipschitz continuous condition outside the set of dis-
continuities of f implies uniqueness of Carathéodory solutions of (1.1).

Theorem 4.10. In the conditions of Proposition 3.1, assume also that there exist null measure sets

Ak ⊂ R, k ∈ C ⊂ N, and differentiable mappings τk : [ak, bk]× Rn −→ R, [ak, bk] ⊂ I, such that for

a.a. t ∈ I the following conditions hold:

(a) There exists a null measure set N(t) ⊂ Rn such that the restriction of f (t, ·) to Rn \ N(t) is

locally Lipschitz continuous, i.e., for each compact set K ⊂ Rn there exists lK ∈ L1(I) such that

for a.a. t ∈ I and all x, y ∈ K ∩ (Rn \ N(t)) we have

∥ f (t, x)− f (t, y)∥ ≤ lK(t)∥x − y∥.

(b) For each x ∈ N(t) there exists k ∈ C such that t ∈ [ak, bk], τk(t, x) ∈ Ak and

∇τk(t, x) · (1, z) ̸= 0 for all z ∈ K f (t, x). (4.12)

Then, problem (1.1) has exactly one Carathéodory solution, which is also the unique Filippov solu-

tion.
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Proof. Existence follows from Theorem 3.3. For uniqueness, first note that if x is a
Carathéodory solution, then it is a solution in the sense of Krasovskij and so the transver-
sality condition (4.12) implies that

m ({t ∈ I : x(t) ∈ N(t)}) = 0.

Let x(t) and y(t) be Carathéodory solutions of (1.1); we shall prove that x(t) = y(t) for all
t ∈ I. Reasoning by contradiction, we assume that there exists some t1 ∈ [t0, t0 + L) such that
x(t1) = y(t1) and ∥x − y∥ > 0 on (t1, t1 + ρ) for some ρ > 0. Note that x(t), y(t) ∈ Rn \ N(t)

for a.a. t ∈ (t1, t1 + ρ). Hence, there exists l ∈ L1(I) such that for a.a. t ∈ (t1, t1 + ρ) we have

∥ f (t, x(t))− f (t, y(t))∥ ≤ l(t)∥x(t)− y(t)∥.

Then

∥x(t)− y(t)∥ ≤
∫ t

t1

∥ f (s, x(s))− f (s, y(s))∥ ds ≤
∫ t

t1

l(s)∥x(s)− y(s)∥ ds, t ∈ [t1, t1 + ρ),

and we deduce from Gronwall’s inequality that ∥x − y∥ = 0 on [t1, t1 + ρ), a contradiction.

Remark 4.11. Note that the transversality condition (4.12) cannot be replaced by (3.1) in The-
orem 4.10 in order to ensure uniqueness of Carathéodory solutions for (1.1), as shown once
again by Example 3.3. Nevertheless, it is enough to ensure uniqueness of Filippov solutions
for (1.1).

Example 4.12. The planar system

{

x′ = f1(t, x, y), x(0) = 0,

y′ = f2(t, x, y), y(0) = 0,

where f1(t, x, y) = cos2(x y) + et−x2−y2
and f2(t, x, y) =

(

χQ(x)− χR\Q(x)
)

esin(t+y), already
considered in Example 3.6, has a unique Carathéodory solution. Indeed, the restriction of the
function f = ( f1, f2) to I × (R \ Q)× R is clearly locally Lipschitz continuous with respect to
(x, y) and, moreover, condition (b) in Theorem 4.10 can be verified as in Example 3.6 since f1

is continuous.

Unlike assumption (a) in Theorem 3.3, which is a reasonable condition to obtain existence
for discontinuous ODEs, condition (a) in Theorem 4.10 imposes strong restrictions on the
discontinuities of f (for instance, f cannot have jump discontinuities).

Finally, let us observe that the following simple result, which leans on local directional
Lipschitz conditions in the line of [5], can be useful in many situations with discontinuous
nonlinearities.

Theorem 4.13. In the conditions of Proposition 3.1, assume also that for each t ∈ [t0, t0 + L) and each

ξ ∈ Rn there exist ε = ε(t, ξ) > 0 and l = l(t,ξ) ∈ L1(I) such that for a.a. s ∈ (t, t + ε) we have

∥ f (s, x)− f (s, y)∥ ≤ l(s)∥x − y∥ for all x, y ∈
n

∏
j=1

[

ξ j −
∫ s

t
ψ(r) dr, ξ j +

∫ s

t
ψ(r) dr

]

. (4.13)

Then problem (1.1) has at most one Carathéodory solution.
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Proof. Let x(t) and y(t) be Carathéodory solutions of (1.1); we shall prove that x(t) = y(t) for
all t ∈ I. Reasoning by contradiction, we assume that there exists some t1 ∈ [t0, t0 + L) such
that x(t1) = y(t1) and ∥x − y∥ > 0 on (t1, t1 + ρ) for some ρ > 0.

Take ε ∈ (0, ρ) and l ∈ L1(I) in the conditions of (4.13) for the point (t, ξ) = (t1, x(t1)). We
have

∥x(t)− y(t)∥ ≤
∫ t

t1

∥ f (s, x(s))− f (s, y(s))∥ ds ≤
∫ t

t1

l(s)∥x(s)− y(s)∥ ds, t ∈ [t1, t1 + ε),

and then Gronwall’s inequality yields ∥x − y∥ = 0 on [t1, t1 + ε), a contradiction.
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Abstract. In this paper, ground-state solutions to a Hartree–Fock type system with a
critical growth are studied. Firstly, instead of establishing the local Palais–Smale (P.–
S.) condition and estimating the mountain-pass critical level, a perturbation method
is used to recover compactness and obtain the existence of ground-state solutions. To
achieve this, an important step is to get the right continuity of the mountain-pass level
on the coefficient in front of perturbing terms. Subsequently, depending on the internal
parameters of coupled nonlinearities, whether the ground state is semi-trivial or vecto-
rial is proved.
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1 Introduction

In this paper, we will study the following class of Hartree–Fock (HF) system
{

−∆u + u + φu,vu = |u|2q−2u + β|v|q|u|q−2u + µ(u5 + α|v|3|u|u), x ∈ R
3,

−∆v + v + φu,vv = |v|2q−2v + β|u|q|v|q−2v + µ(v5 + α|u|3|v|v), x ∈ R
3,

(1.1)

where the Coulomb term φu,v has the following form

φu,v(x) =
1

4π

∫

R3

u2(y) + v2(y)

|x − y| dy, x ∈ R
3, (1.2)

α, β, µ ∈ R+ := [0, ∞) are parameters and q ∈ (2, 3).

It is well known that the (HF) equation is one of the most important equations in quan-

tum physics, condensed matter physics and quantum chemistry. For example, in the study

of a molecular system composed of M atomic nucleus interacting with N electrons through

Coulomb potential, the (HF) equation is used as an approximation to describe the stationary

state, and one can refer to [5] for the specific process of derivation. According to [5], in the sys-

tem (1.1), −∆u,−∆v represent the kinetic part of the electronic system, Vu, Vv denote poten-

tials of the action on electronic system by nucleus, φu,vu, φu,vv represent the electron-electron

BCorresponding author. Email: zhuxiaoli@sxu.edu.cn
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Coulomb interactions, and the power-type nonlinearity describes the effects of exchange and

correlation among electrons. For more details on the physical aspects of the Hartree–Fock

system, we refer readers to [1, 2, 8–11] and the references therein.

In mathematics, a particular case of system (1.1), when µ = 0, leads to the following class

of Hartree–Fock type system with a cooperative pure power and subcritical nonlinearity

{

−∆u + u + φu,vu = |u|2q−2u + β|v|q|u|q−2u, x ∈ R
3,

−∆v + v + φu,vv = |v|2q−2v + β|u|q|v|q−2v, x ∈ R
3,

(1.3)

which has been studied by d′Avenia, Maia and Siciliano in [5]. In the case that q ∈ (3/2, 3),

they showed the existence of semitrivial and vectorial ground state depending on parame-

ters involved. Furthermore, they also derived the asymptotic behavior of ground states with

respect to the parameter β.

In view of conclusions obtained in [5], we considered the Sobolev critical case q = 3.

However, combining the Pohozaev identity and Nehari manifold, it could be proved that the

system (1.3) has no nontrivial solution when q = 3. Motivated by the above facts, we would

like to consider the system (1.1), which is obtained through a Sobolev perturbation basing

on the above system (1.3). It is well known that since Brezis and Nirenberg published their

famous paper [3] in 1983, elliptic equations or systems with Sobolev critical growth have

been researched extensively. The usual strategy to achieve the ground-state solution to these

critical problems is establishing the local (P.-S.) condition and verifying that the ground-state

energy belongs to the interval where the (P.-S.) condition holds. Differently, in this paper, we

will achieve the existence of ground-state solutions to the system (1.1) with a perturbation

method.

Before stating our main results, we introduce the variational setting used in this paper.

Firstly, let H1
r (R

3) =
{

w ∈ H1(R3) : w(x) = w(|x|)
}

and ∥w∥2
1 =

∫

R3

[

|∇w|2 + w2
]

for w ∈
H1

r (R
3). Then our working space is H := H1

r (R
3)× H1

r (R
3) endowed with the norm

∥(u, v)∥ =
(

∥u∥2
1 + ∥v∥2

1

)1/2
, (u, v) ∈ H.

It is well known that the embedding H1
r (R

3) →֒ Ls(R3) is continuous for s ∈ [2, 6] and com-

pact for s ∈ (2, 6). Hence the same conclusions hold for the embedding H →֒ Ls(R3) ×
Ls(R3) for s ∈ [2, 6]. Throughout this paper, denote the norm endowed in Ls(R3) by | · |s :

|w|s =
[∫

R3 |w|s
]1/s

for w ∈ Ls(R3). While the norm of Ls(R3) × Ls(R3) is |(u, v)|s =

(|u|ss + |v|ss)1/s for (u, v) ∈ Ls(R3)× Ls(R3). Subsequently, we will give the energy functional

corresponding to the system (1.1). According to the Hardy–Littlewood–Sobolev inequality, the

nonlocal term
∫

R3 φu,v(u2 + v2) is well defined in H. Therefore, we could define the energy

functional related to the system (1.1) as

Jµ(u, v) =
1

2
∥(u, v)∥2 +

1

4

∫

R3
φu,v(u

2 + v2)− 1

2q

[

|u|2q
2q + |v|2q

2q + 2β
∫

R3
|u|q|v|q

]

− µ

6

[

|u|66 + |v|66 + 2α
∫

R3
|u|3|v|3

]

=:
1

2
A(u, v) +

1

4
B(u, v)− 1

2q
C(u, v)− µ

6
D(u, v), (u, v) ∈ H. (1.4)
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Via a standard proof, there also holds that Jµ ∈ C1(H, R) with

〈

J′µ(u, v), (ϕ, ψ)
〉

=
∫

R3
(∇u · ∇ϕ +∇v · ∇ψ + uϕ + vψ) +

∫

R3
φu,v(uϕ + vψ)

−
∫

R3

[

|u|2q−2uϕ + |v|2q−2vψ + β(|v|q|u|q−2uϕ + |u|q|v|q−2vψ)
]

− µ
∫

R3

[

u5 ϕ + v5ψ + α(|v|3|u|uϕ + |u|3|v|vψ)
]

, (u, v), (ϕ, ψ) ∈ H.

Hence, finding solutions of the system (1.1) is equivalent to seeking critical points of the func-

tional Jµ in H. Furthermore, to achieve the ground-state solution to the system (1.1), we may

consider the ground state of the energy functional Jµ, and the Nehari manifold is used in this

paper. Now, let Iµ be the related Nehari functional, that is, Iµ(u, v) :=
〈

J′µ(u, v), (u, v)
〉

, (u, v) ∈
H. Then adopting notations given in (1.4) it could be rewritten as

Iµ(u, v) = A(u, v) + B(u, v)− C(u, v)− µD(u, v), (u, v) ∈ H. (1.5)

Let us denote by Nµ the Nehari manifold associated to the functional Jµ, namely

Nµ = {(u, v) ∈ H \ {(0, 0)} : Iµ(u, v) = 0},

and define the ground-state energy as

d(µ) = inf
Nµ

Jµ.

In this context, the ground-state solution to be found in this paper is a radial ground state

whose energy is minimal among all other radial ones.

Now, we formulate our first result for the system (1.1).

Theorem 1.1. Assume that q ∈ (2, 3). Then for any given α, β ∈ R+, there exists µ0 > 0 such that

the system (1.1) has a ground-state solution (uµ, vµ) ̸= (0, 0) for all µ ∈ [0, µ0).

An important step to prove Theorem 1.1 via perturbation methods is estimating the dis-

tance between the (P.–S.)m(µ) sequence of the functional Jµ and the ground-state critical points

set of the functional J0 for µ small enough. Here m(µ) is the mountain-pass level of the

functional Jµ. To achieve this, we first verify the fact that m(µ) = d(µ) and get the right conti-

nuity of m(·) at µ = 0 by showing that limµ→0+ d(µ) = d(0) subsequently, where the implicit

function theorem is used.

Basing on the existence of ground-state radial solutions, motivated by [4] and [5], we

also consider whether the ground state obtained above is semitrivial or vectorial and get the

following conclusion. Here we say that (u, v) ̸= (0, 0) is semitrivial if u = 0 or v = 0, and

(u, v) is vectorial if u ̸= 0 and v ̸= 0.

Theorem 1.2. Assume that q ∈ (2, 3) and µ ∈ [0, µ0), where µ0 is given by Theorem 1.1. Let (uµ, vµ)

be the ground state achieved in Theorem 1.1.

(i) If 0 ⩽ α < 3, 0 ⩽ β < 2q−1 − 1, then (uµ, vµ) is semitrivial.

(ii) If α > 3, β > 2q−1 − 1, then (uµ, vµ) is vectorial.
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In view of Theorem 1.2, there is an open question that whether the ground state obtained

in Theorem 1.1 is semitrivial or vectorial in the cases that (α, β) ∈ (0, 3] × [2q−1 − 1, ∞) or

(α, β) ∈ [3, ∞)× (0, 2q−1 − 1]. This is caused by the non-homogeneity of the nonlinearity in

the system (1.1).

This paper is organized as follows. In Section 2, we give some preliminaries to get the

existence of ground state via the perturbation method, subsequently, Theorems 1.1 and 1.2 are

proved in Sections 3 and 4 respectively. Throughout this paper, Ci(i = 0, 1, 2, . . . ) represent

some positive constants which may be different from line to line.

2 Preliminaries

In this section, we first give some inequalities about the four functionals A, B, C, and D by the

following lemma.

Lemma 2.1. There exist some constants C0, C1, C2 independent of µ such that for any (u, v) ∈ H, the

following inequalities hold

B(u, v) ⩽ C0[A(u, v)]2, (2.1)

C(u, v) ⩽ C1|(u, v)|2q
2q ⩽ C2[A(u, v)]q, (2.2)

D(u, v) ⩽ C1|(u, v)|66 ⩽ C2[A(u, v)]3. (2.3)

Proof. For (2.1), it follows from (1.2) that φu,v ∈ D1,2(R3) is a weak solution to the equation

−∆φu,v = u2 + v2 for all (u, v) ∈ H. Consequently,

B(u, v) =
∫

R3
φu,v(u

2 + v2) =
∫

R3
|∇φu,v|2.

By the Hölder inequality and the Sobolev embedding, there exists a constant C0 > 0 indepen-

dent of (u, v) such that
∫

R3
φu,vu2

⩽ |φu,v|6|u|212/5 ⩽ C0|∇φu,v|2∥u∥2
1.

Similarly, we get
∫

R3
φu,vv2

⩽ C0|∇φu,v|2∥v∥2
1.

Thus

|∇φu,v|22 =
∫

R3
φu,v(u

2 + v2) ⩽ C0|∇φu,v|2∥(u, v)∥2 = C0|∇φu,v|2 A(u, v),

which implies that (2.1) holds.

By the Hölder inequality and the embedding that H →֒ Ls(R3)× Ls(R3) for s ∈ [2, 6],

C(u, v) ⩽ |u|2q
2q + |v|2q

2q + 2β|u|q2q|v|
q
2q ⩽ max{β, 1}

(

|u|q2q + |v|q2q

)2
⩽ C1|(u, v)|2q

2q ⩽ C2[A(u, v)]q.

Hence (2.2) holds. Similarly, (2.3) holds.

Next, we prove that the functional Jµ has a mountain pass geometry structure for all

µ ∈ R+. Let

Γµ = {γ ∈ C([0, 1], H) : γ(0) = 0, Jµ(γ(1)) < 0},

and

m(µ) = inf
γ∈Γµ

max
t∈[0,1]

Jµ(γ(t)).

Then we could prove that both Γµ and m(µ) are well defined.
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Lemma 2.2. Assume µ ∈ R+. Then Γµ ̸= ∅ and m(µ) > 0.

Proof. First, for any (u, v) ∈ H\{(0, 0)}, we define a fiber mapping corresponding to the

functional Jµ as follows:

gu,v(t) = Jµ(t(u, v))

=
t2

2
A(u, v) +

t4

4
B(u, v)− t2q

2q
C(u, v)− µ

6
t6D(u, v), t ∈ R. (2.4)

Since q ∈ (2, 3), there exists a sufficiently small positive number δ depending on µ such that

gu,v(t) > 0, t ∈ (0, δ). Moreover, note that gu,v(t) → −∞ as t → ∞. Then there exists t0 > 0

such that Jµ(t0(u, v)) = gu,v(t0) < 0. Let γ0(t) = tt0(u, v), t ∈ [0, 1]. Then γ0 ∈ Γµ.

For µ ∈ R+, it follows from inequalities (2.2) and (2.3) that

Jµ(u, v) ⩾
1

2
A(u, v)− 1

2q
C2[A(u, v)]q − 1

6
µC2[A(u, v)]3, (u, v) ∈ H.

Therefore, there exists ρ > 0 depending on µ such that if 0 < ∥(u, v)∥2 = A(u, v) < ρ2, then

Jµ(u, v) > 0. Moreover,

αµ := inf
∥(u,v)∥=ρ

Jµ(u, v) > 0.

Furthermore, by the standard process one can deduce that m(µ) ⩾ αµ > 0.

Lemma 2.3. Suppose that (u, v) ∈ H\{(0, 0)}. Then the following conclusions hold:

(i) for any µ ∈ R+, there exists a unique t(µ) > 0 such that t(µ)(u, v) ∈ Nµ, Iµ(t(u, v)) > 0, t ∈
(0, t(µ)) and Iµ(t(u, v)) < 0, t ∈ (t(µ), ∞). Furthermore,

Jµ(t(µ)(u, v)) = max
t∈R+

Jµ(t(u, v));

(ii) the function t(·): R+ → (0, ∞) is differentiable and

t′(µ) = − t5(µ)D(u, v)

2A(u, v) + 4t2(µ)B(u, v) + 2qt2q−2(µ)C(u, v) + 6µt4(µ)D(u, v)
. (2.5)

Moreover, t(·) is decreasing in µ.

Proof. (i) Assume µ ∈ R+. For each (u, v) ∈ H\{(0, 0)}, recall the definition of gu,v given in

(2.4). Then

g′u,v(t) = tA(u, v) + t3B(u, v)− t2q−1C(u, v)− µt5D(u, v), t ∈ R+, (2.6)

which yields that

g′u,v(t)/t → A(u, v) > 0, t → 0+, g′u,v(t) → −∞, t → ∞. (2.7)

Therefore, there exists t(µ) > 0 satisfying g′u,v(t(µ)) = 0, and so t(µ)u ∈ Nµ. Furthermore, it

follows from (2.6) that

t−2(µ)A(u, v)− t2q−4(µ)C(u, v)− µt2(µ)D(u, v) = −B(u, v).
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Because the function t 7→ t−2A(u, v)− t2q−4C(u, v)−µt2D(u, v) is decreasing in t, then g′(u,v)(t)

= 0 has a unique positive root. Hence, t(µ) is the unique positive critical point of gu,v.

Combining this with (2.7) and (1.5), we know that (i) holds.

(ii) Let H(t, µ) = Iµ(t(u, v)), (t, µ) ∈ (−δ, ∞) × (−δ, ∞) for some δ > 0. Then it follows

from (1.5) that

H(t, µ) = t2 A(u, v) + t4B(u, v)− t2qC(u, v)− µt6D(u, v), (t, µ) ∈ (−δ, ∞)× (−δ, ∞).

For any (t, µ) ∈ (−δ, ∞)× (−δ, ∞) for some δ > 0, we have

∂H

∂t
(t, µ) = 2tA(u, v) + 4t3B(u, v)− 2qt2q−1C(u, v)− 6µt5D(u, v) (2.8)

and
∂H

∂µ
(t, µ) = −t6D(u, v).

Note that H(t(µ), µ) = 0 i.e. Iµ(t(µ)(u, v)) = 0 for µ ∈ [0, 1]. Then it could be derived from

(2.8) and (1.5) that

∂H

∂t
(t(µ), µ) = −2t(µ)A(u, v)− (2q − 4)t2q−1(µ)C(u, v)− 2µt5(µ)D(u, v) < 0.

Therefore, by the implicit function theorem, we can obtain that t(·) : R+ → (0, ∞) is con-

tinuous and differentiable, and (2.5) holds. It then follows from (2.5) directly that for given

(u, v) ∈ H\{(0, 0)}, t(·) is decreasing in µ.

Lemma 2.4. infµ∈[0,1] dist(0,Nµ) > 0.

Proof. Assume µ ∈ [0, 1]. Given (u, v) ∈ Nµ, it follows from (1.5), (2.2) and (2.3) that

A(u, v) ⩽ A(u, v) + B(u, v)

= C(u, v) + µD(u, v)

⩽ C2

[

[A(u, v)]q + [A(u, v)]3
]

.

Therefore there exists a σ > 0 independent of µ such that ∥(u, v)∥2 = A(u, v) ⩾ σ for all

(u, v) ∈ Nµ. The proof is complete.

In view of Lemma 2.4, since 2q > 4, then for any (u, v) ∈ Nµ, it holds that

Jµ(u, v) = Jµ(u, v)− 1

4
Iµ(u, v) ⩾

1

4
∥(u, v)∥2, (u, v) ∈ Nµ, (2.9)

from which one can also derive that d(µ) is well defined for all µ ∈ R+. Moreover, recall the

definition of m(µ). Then by Lemma 2.2 and (i) of Lemma 2.3, we can prove that following

lemma via a standard process similarly to the proof of [12, Theorem 4.2, p. 73].

Lemma 2.5. For any µ ∈ R+, it holds that m(µ) = d(µ).

Note that due to definitions of Jµ, Γµ and m(µ) for µ ∈ R+, it could be concluded that m(·)
is decreasing on R+. Then by Lemma 2.5, d(·) is also decreasing on R+. Now, we will prove

the continuity of m(·) at µ = 0. Actually, by the above lemma, it is sufficient to illustrate the

right continuity of d(·) at µ = 0. Hence, we have the following lemma.
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Lemma 2.6. d(·) is right continuous at µ = 0.

Proof. Assume {µn} ⊂ [0, 1] satisfies that µn → 0+ as n → ∞. Then, according to the definition

of d(µn), for each ε ∈ (0, d(0)), there exists (un, vn) ∈ Nµn such that

Jµn(un, vn) ⩽ d(µn) + ε/2, n ∈ N. (2.10)

Combining this with (2.9), one gets that

A(un, vn) = ∥(un, vn)∥2
⩽ 4d(µn) + 2ε < 6d(0). (2.11)

Thus, there exist (u, v) ∈ H and a subsequence of {(un, vn)} (still denoted by {(un, vn)}) such

that (un, vn) ⇀ (u, v). Moreover, (u, v) ̸= (0, 0). Otherwise, it follows from (un, vn) ∈ Nµn ,

(2.2), the compact embedding H →֒ L2q(R3)× L2q(R3), (2.3) and (2.11) that

A(un, vn) + B(un, vn) = C(un, vn) + µnD(un, vn) ⩽ C1|(un, vn)|2q
2q + µnC2[A(un, vn)]

3 → 0,

which contradicts to Lemma 2.4. Hence (u, v) ̸= (0, 0). Consequently, noting (un, vn) → (u, v)

in L2q(R3)× L2q(R3), there exists some N0 > 0 such that for n > N0,

C(un, vn) ⩾ |(un, vn)|2q
2q ⩾ |(u, v)|2q

2q/2 > 0,

which implies that for some positive number C3 independent of n such that

C(un, vn) ⩾ C3 > 0, n ∈ N (2.12)

Now, for given n > N0, according to (i) of Lemma 2.3, let tn(µ) satisfy that tn(µ)(un, vn) ∈
Nµ for all µ ∈ [0, µn], and define

hn(µ) = Jµ(tn(µ)(un, vn)), µ ∈ [0, µn].

Since tn(µ)(un, vn) ∈ Nµ, one could derive that

h′n(µ) =
〈

J′µ(tn(µ)(un, vn)), (un, vn)
〉

t′n(µ)−
1

6
t6
n(µ)

[

|un|66 + |vn|66 + 2α
∫

R3
|un|3|vn|3

]

= −1

6
t6
n(µ)D(un, vn), µ ∈ [0, µn].

Hence, from tn(µn) = 1, (ii) of Lemma 2.3, (2.3) and (2.11), we arrive at

J0(tn(0)(un, vn))− Jµn(un, vn)

= hn(0)− hn(µn)

= −
∫ µn

0
h′n(s)ds

=
1

6

∫ µn

0
t6
n(s)D(un, vn)ds

⩽
1

6
t6
n(0)µnC2[A(un, vn)]

3
⩽ 36t6

n(0)µnC2d3(0). (2.13)

Next, we shall illustrate that {tn(0)} is bounded. Indeed, due to I0(un, vn) > Iµ(un, vn) = 0

and (i) of Lemma 2.3, it holds that tn(0) > 1. Moreover, by (2.12), (2.1) and (2.11) one can

deduce that

C3t
2q
n (0) ⩽ t

2q
n (0)C(un, vn) = t2

n(0)A(un, vn) + t4
n(0)B(un, vn) ⩽ 6d(0)t2

n(0) + 36C2d2(0)t4
n(0).
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Since q > 2, this implies that there exists some C4 independent of n such that 1 < tn(0) ⩽ C4

for n ∈ N.

Subsequently, combining this with (2.13), it holds that

J0(tn(0)(un, vn))− Jµn(un, vn) ⩽ 36C6
4µnC2d3(0).

Furthermore, as a consequence of Lemma 2.5, the fact that m(0) ⩾ m(µ) for µ ⩾ 0 and (2.10),

we also get that

0 ⩽ d(0)− d(µn) ⩽ J0(tn(0)(un, vn))− Jµn(un, vn) + ε/2 ⩽ 36C6
4µnC2d3(0) + ε/2.

Thus,

0 ⩽ lim sup
n→∞

[d(0)− d(µn)] ⩽ ε/2,

which yields that d(µn) → d(0) as a consequence of the arbitrariness of ε. The proof is

complete.

3 Proof of Theorem 1.1

Lemma 3.1. Assume µ ∈ (0, 1] and {(uµ
n, v

µ
n)} is a (P.–S.)m(µ) sequence for the functional Jµ. Then

lim
µ→0

lim
n→∞

dist
(

(u
µ
n, v

µ
n), K

)

= 0,

where

K = {(u, v) ∈ H : J′0(u, v) = 0, J0(u, v) = m(0)}.

Proof. This proof is motivated by [13] and [6]. Firstly, by the mountain pass theorem and the

fact that J0 satisfies the (P.–S.) condition on H, it holds that K ̸= ∅.

Secondly, for any µ ∈ (0, 1], since {(uµ
n, v

µ
n)} is a (P.–S.)m(µ) sequence for the functional Jµ,

we have

m(µ) + 1 + ∥(uµ
n, v

µ
n)∥ ⩾ Jµ(u

µ
n, v

µ
n)−

1

4
Iµ(u

µ
n, v

µ
n).

Thus, similarly to (2.9) we can derive that

m(0) + 1 + ∥(uµ
n, v

µ
n)∥ ⩾

1

4
∥(uµ

n, v
µ
n)∥2. (3.1)

Therefore, there is a constant C5 > 0 independent of µ and n such that ∥(uµ
n, v

µ
n)∥ ⩽ C5 for all

n ∈ N and µ ∈ (0, 1].

Now, assume that {µi} satisfies µi → 0 as i → ∞. Denote the (P.–S.)m(µi) sequence of the

functional Jµi
by {(uµi

n , v
µi
n )}. Furthermore, for any given i, we could find ni > i such that

∣

∣Jµi
(u

µi
ni

, v
µi
ni
)− m(µi)

∣

∣ ⩽
1

i
,

∥

∥

∥
J′µi
(u

µi
ni

, v
µi
ni
)
∥

∥

∥
⩽

1

i
.

Denote {(uµi
ni

, v
µi
ni
)} by {(ui, vi)}. Then by (2.3), the uniform boundedness of the sequence

{(uµ
n, v

µ
n)}, Lemma 2.6 and µi → 0, we can derive that

|J0(ui, vi)− m(0)| ⩽ |Jµi
(ui, vi)− m(µi)|+

µi

6

[

|ui|66 + |vi|66 + 2α
∫

R3
|ui|3|vi|3

]

+ m(0)− m(µi)

⩽
1

i
+

µi

6
C2C6

5 + m(0)− m(µi) → 0, i → ∞.
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Similarly,

∥J′0(ui, vi)∥ ⩽ ∥J′0(ui, vi)∥+ µiC6∥(ui, vi)∥5 → 0, i → ∞,

where C6 is some positive constant independent of i. These yield that {(ui, vi)} is a (P.-S.)m(0)

sequence of J0. Due to the fact that J0 satisfies the (P.–S.) condition on H, then there exists

(u0, v0) ∈ K and up to a subsequence still denoted by {(ui, vi)} such that (ui, vi) → (u0, v0) as

i → ∞. Thus, one can derive that

lim
i→∞

lim
n→∞

dist
(

(u
µi
n , v

µi
n ), K

)

⩽ lim
i→∞

dist
(

(ui, vi), K
)

= 0.

In the end, by the arbitrariness for {µi}, the proof is complete.

Proof of Theorem 1.1. Assume µ ∈ [0, 1] and {(uµ
n, v

µ
n)} is a (P.–S.)m(µ) sequence of the func-

tional Jµ. Similarly to (3.1), we can derive that {(uµ
n, v

µ
n)} is uniformly bounded for µ ∈ [0, 1],

then there exists (uµ, vµ) ∈ H and a subsequence for {(uµ
n, v

µ
n)} still denoted by {(uµ

ni
, v

µ
ni
)}

such that (u
µ
ni

, v
µ
ni
) ⇀ (uµ, vµ) as i → ∞ and J′µ(uµ, vµ) = 0.

In what follows, we will prove that there exists µ0 > 0, such that (uµ, vµ) ̸= (0, 0) for

µ ∈ [0, µ0]. Indeed, since m(0) > 0 and K is nonempty and compact, δ0 := dist((0, 0), K) =

min(u,v)∈K ∥(u, v)∥ > 0. According to Lemma 3.1,

lim
µ→0

lim
i→∞

dist
(

(u
µ
ni

, v
µ
ni
), K

)

= 0.

Hence, for any given δ < δ0/2, there exists some µ0 = µ0(δ) satisfying: for any µ ∈ (0, µ0)

there is i0 = i0(µ) such that

dist
(

(u
µ
ni

, v
µ
ni
), K

)

< δ, i > i0.

Thus, for fixed µ ∈ (0, µ0), by the compactness of K, one can obtain a sequence {(uµ
i , v

µ
i )} ⊂ K

such that ∥(uµ
ni

, v
µ
ni
) − (u

µ
i , v

µ
i )∥ ⩽ δ for i > i0. Moreover, noting that there is (u

µ
0 , v

µ
0 ) ∈ K

such that (u
µ
i , v

µ
i ) → (u

µ
0 , v

µ
0 ) as i → ∞, it also holds that (u

µ
ni

, v
µ
ni
) ∈ B2δ(u

µ
0 , v

µ
0 ) for i large.

Therefore, the facts that B2δ(u
µ
0 , v

µ
0 ) is closed weakly and (u

µ
ni

, v
µ
ni
) ⇀ (uµ, vµ) lead to

(uµ, vµ) ∈ B2δ(u
µ
0 , v

µ
0 ).

Thereby, owing to the choosing of δ,

∥(uµ, vµ)∥ ⩾ ∥(uµ
0 , v

µ
0 )∥ − 2δ > 0, µ ∈ (0, µ0).

In the end, we will prove that (uµ, vµ) is a ground-state solution to the system (1.1). Ac-

tually, it is sufficient to prove that Jµ(uµ, vµ) = d(µ) since (uµ, vµ) ̸= (0, 0) and J′µ(uµ, vµ) = 0.

To achieve this, we calculate the following inequalities:

d(µ) ⩽ Jµ(uµ, vµ)

= Jµ(uµ, vµ)− Iµ(uµ, vµ)/4

= A(uµ, vµ)/4 + (q − 2)C(uµ, vµ)/(4q) + µD(uµ, vµ)/12

⩽ lim inf
i→∞

[

A(u
µ
ni

, v
µ
ni
)/4 + (q − 2)C(u

µ
ni

, v
µ
ni
)/(4q) + µD(u

µ
ni

, v
µ
ni
)/12

]

= lim inf
i→∞

[Jµ(u
µ
ni

, v
µ
ni
)− Iµ(u

µ
ni

, v
µ
ni
)/4] = m(µ).

Hence, it follows from Lemma 2.5 that Jµ(uµ, vµ) = d(µ). Therefore, (uµ, vµ) is a ground-state

solution to the system (1.1).
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4 Proof of Theorem 1.2

Lemma 4.1. Let p ∈ [2, ∞), and σ ⩾ 0. Define

hσ(s) = sp + (1 − s)p + 2σsp/2(1 − s)p/2, s ∈ [0, 1].

Then

(i) if σ < 2p−1 − 1, then hσ(s) < 1 for all s ∈ (0, 1);

(ii) if σ > 2p−1 − 1, then hσ(1/2) > 1.

Proof. For (i) one can refer to [4, Lemma 2.7] or [5, Lemma 2.4], while (ii) could be derived

through a direct calculation.

Lemma 4.2. Assume that q ∈ (2, 3), µ > 0, 0 ⩽ α < 3, 0 ⩽ β < 2q−1 − 1. If (u, v) ∈ H is a

ground-state radial solution to the system (1.1) with Jµ(u, v) = d(µ), then u = 0 or v = 0.

Proof. Suppose by contradiction, u ̸= 0 and v ̸= 0. Then replacing (u, v) with (|u|, |v|), by a

regularity process and the maximum principle, one could also assume that u > 0 and v > 0.

Now, let (ρ, θ) be the polar form of (u, v), that is, that is,

(u, v) = (ρ cos θ, ρ sin θ), ρ = ρ(x) > 0, θ = θ(x) ∈ (0, π/2).

Then on one aspect, by the convexity inequality for gradients in [7], there also holds that

ρ =
√

u2 + v2 ∈ H1
r (R

3). On the other aspect, through calculations, we could get that

∇u = (cos θ)∇ρ − ρ(sin θ)∇θ, ∇v = (sin θ)∇ρ + ρ(cos θ)∇θ.

Hence, it follows from definitions of functionals A, B, C and D given in (1.4),

A(u, v) =
∫

R3

[

|∇ρ|2 + ρ2|∇θ|2 + ρ2
]

= A(ρ, 0) +
∫

R3
ρ2|∇θ|2,

B(u, v) = λ
∫

R3
φu,v(u

2 + v2) = λ
∫

R3
φρ,0ρ2 = B(ρ, 0),

C(u, v) =
∫

R3
ρ2q

[

cos2q θ + sin2q θ + 2β cosq θ sinq θ
]

=
∫

R3
ρ2qhβ(cos2 θ),

and similarly there holds

D(u, v) =
∫

R3
ρ6hα(cos2 θ).

Furthermore, since θ ∈ (0, 1), then by Lemma 4.1 it holds that

C(u, v) < |ρ|2q
2q = C(ρ, 0), D(u, v) < D(ρ, 0).

Note that by (i) of Lemma 2.3 there exists some t(µ) > 0 such that t(µ)(ρ, 0) ∈ Nµ. Then

d(µ) ⩽ Jµ(t(µ)(ρ, 0))

=
1

2
t2(µ)A(ρ, 0) +

1

4
t4(µ)B(ρ, 0)− 1

2q
t2q(µ)C(ρ, 0)− 1

6
µt6(µ)D(ρ, 0)

<
1

2
t2(µ)A(u, v) +

1

4
t4(µ)B(u, v)− 1

2q
t2q(µ)C(u, v)− 1

6
µt6(µ)D(u, v)

= Jµ(t(µ)(u, v)) < Jµ(u, v) = d(µ).

This is absurd. Thus, it could only hold that u = 0 or v = 0.
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Lemma 4.3. Assume that q ∈ (2, 3), µ > 0, α > 3, β > 2q−1 − 1. If (u, v) ∈ H is a ground-state

radial solution to the system (1.1) with Jµ(u, v) = d(µ), then u ̸= 0 and v ̸= 0.

Proof. Arguing by contradiction, we suppose that v = 0. Define (u0, v0) = (u/
√

2, v/
√

2).

Then (u0, v0) ∈ H\{(0, 0)}. Similarly to the proof of Lemma 4.2, one could derive that

A(u0, v0) = A(u, 0), B(u0, v0) = B(u, 0)

and

C(u0, v0) = hβ(1/2)C(u, 0), D(u0, v0) = hα(1/2)D(u, 0).

Moreover, by (i) of Lemma 2.3, there exists a unique t(µ) > 0 such that t(µ)(u0, v0) ∈ Nµ.

Now, we make the following calculation

Jµ(t(µ)(u0, v0))

=
1

2
A(u0, v0)t

2(µ) +
1

4
B(u0, v0)t

4(µ)− 1

2q
C(u0, v0)t

2q(µ)− 1

6
µD(u0, v0)t

6(µ)

=
1

2
A(u, 0)t2(µ) +

1

4
B(u, 0)t4(µ)− 1

2q
hβ(1/2)C(u, 0)t2q(µ)− 1

6
µhα(1/2)D(u, 0)t6(µ)

<
1

2
A(u, 0)t2(µ) +

1

4
B(u, 0)t4(µ)− 1

2q
C(u, 0)t2q(µ)− 1

6
µD(u, 0)t6(µ) = Jµ(t(µ)(u, 0)).

Consequently,

d(µ) ⩽ Jµ(t(µ)(u0, v0)) < Jµ(t(µ)(u, 0)) ⩽ Jµ(u, 0) = d(µ),

which is a contraction. Thus, it holds that u ̸= 0 and v ̸= 0.

Proof of Theorem 1.2. According to Lemmas 4.2 and 4.3, one can get Theorem 1.2 directly.
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1 Introduction

In this paper, we study the magneto-micropolar system in the whole space R3:







































∂tu − (µ + χ)∆u + (u · ∇)u − (b · ∇)b − χ∇× ω +∇p = 0,

∂tω − γ∆ω − κ∇∇ · ω + 2χω + (u · ∇)ω − χ∇× u = 0,

∂tb − ν∆b + (u · ∇)b − (b · ∇)u = 0,

∇ · u = ∇ · b = 0,

u(x, 0) = u0(x), ω(x, 0) = ω0(x), b(x, 0) = b0(x),

(1.1)

where (x, t)∈R3×R+, u(x, t)=(u1(x, t), u2(x, t), u3(x, t)), ω(x, t)=(ω1(x, t), ω2(x, t), ω3(x, t)),

b(x, t) = (b1(x, t), b2(x, t), b3(x, t)) and p denote the fluid velocity, micro-rotational velocity,

magnetic field and scalar pressure, respectively. Here, µ is the kinematic viscosity, χ is the

vortex viscosity, 1
ν is the magnetic Reynolds number, while κ and γ denote angular viscosities.

This model has been used to study microelectrode fluid motion in the presence of a mag-

netic field. It was first proposed by Galdi and Rionero [8] to address microscopic physical

phenomena, such as the motion of animal blood, liquid crystals, and dilute aqueous polymer

solutions, which cannot be accurately described by the classical Navier–Stokes equations for

incompressible viscous fluids. These fluids are characterized by asymmetric stress tensors,

which is why they are referred to as asymmetric fluids. Due to the complex physical back-

ground and the richness of the phenomena involved, incompressible micropolar fluids have

been extensively studied (see [1, 2, 4, 5, 12, 17, 19, 23, 24] and references therein).

BCorresponding author. Email: zhoujiang@xju.edu.cn
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Function spaces are essential tools for studying and solving systems of fluid mechanics

equations. By means of Sobolev spaces [13], researchers can effectively characterize solu-

tions to fluid dynamics problems and investigate their existence, uniqueness, and regularity.

To further refine the analysis of local behavior and regularity, especially when dealing with

nonlinear partial differential equations, Morrey-type spaces are employed (see [6, 16, 21, 27]).

These spaces better capture the local integrability and smoothness of solutions, aiding in the

study of conditions for the emergence of local singularities and vortex structures, while also

providing more precise integral estimates for nonlinear terms. The concept of weak solutions

relies on the weak formulation within function spaces. By examining the well-posedness of

fluid mechanics equations in various function spaces, researchers can not only ensure the rea-

sonableness and solvability of these systems but also gain a deeper understanding of solution

regularity, nonlinear characteristics, stability, and the feasibility of numerical computations.

For more details, please refer to [9, 10, 14].

Rojas-Medar and Boldrini [18] used the Galerkin method to prove, for the first time, the

existence of weak solutions to the 2D and 3D magnetic differential equations (1.1). Yuan

[25] showed that if ∇u ∈ L1(0, T; Ḃ0
∞,∞(R

3)), then the weak solution is smooth on R × [0, T].

Subsequently, Gala [7], Zhang et al. [28] and Xu [22] extended the regularity criterion to

Morrey–Campanato spaces, Triebel–Lizorkin spaces and Besov spaces, respectively. Yuan and

Li [26] further refined the results of Xu [22]. Recently, Wu [20] established the regularity of the

weak solution to this system by imposing specific conditions on the partial derivatives of the

velocity and magnetic field components. Additionally, Qin and Zhang [15] obtained optimal

decay estimates for the higher-order derivatives of the strong solution to the system (1.1).

The aim of this paper is to study the regularity criterion for the solution of the magneto-

micropolar equations (1.1). Understanding this criterion is crucial for comprehending the

physical laws governing magneto-micropolar motion. Notably, Ḃ0
∞,∞(R

3) ⊂ V̇0
∞,∞,θ(R

3), where

the Vishik spaces V̇s
p,r,θ(R

3) are introduced as a class of Banach spaces (see Definition 2.3).

Consequently, we anticipate that weak solution exhibit corresponding smoothness in such

Banach spaces. In this paper, we demonstrate that to ensure the regularity of weak solution to

(1.1), it is sufficient to impose certain conditions on the fluid’s velocity field. This finding also

indirectly suggests that, in the study of weak solution regularity, the fluid velocity u plays a

more significant role than both the microscopic rotational velocity ω of the particles and the

magnetic field b.

Our main result of the paper is stated as follows:

Theorem 1.1. Let (u0, ω0, b0) ∈ H1(R3) and ∇ · u0 = ∇ · b0 = 0. Assume that (u, ω, b) is a

weak solution to the system (1.1) on the interval [0, T]. If the velocity gradient ∇u satisfies one of the

following conditions:

∇u ∈ L1
(

(0, T; V̇
3
p

p,r,1(R
3)
)

, p ≥ 1, (1.2)

∇u ∈ L
2p

2p−3 (0, T; V̇0
p,r,1(R

3)), p ≥
3

2
, (1.3)

then the weak solution (u, ω, b) is smooth on [0, T].

Remark 1.2. Notice that for θ ∈ [1, ∞], we have Ḃ0
∞,∞(R

3) ⊂ V̇0
∞,∞,θ(R

3). Therefore, Theo-

rem 1.1 can be viewed as a further improvement of [24].

The rest of this paper is organized as follows. Section 2 reviews some preliminaries.

Section 3 is devoted to the proof of Theorem 1.1.
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2 Preliminaries

Let us begin with a brief review of the definition of Littlewood–Paley decomposition, as de-

tailed in [3]. Let χ be a smooth, radially non-increasing function that takes values in [0, 1] and

is supported within the ball |ξ| ≤ 4
3 . Define ϕ in terms of χ by setting ϕ(ξ) := χ( ξ

2 )− χ(ξ),

so that ϕ is supported in the annulus { 3
4 ≤ |ξ| ≤ 8

3}. These functions satisfy the following

partition of unity:

χ(ξ) + ∑
j≥0

ϕ(2−jξ) = 1, ∀ξ ∈ R
3; ∑

j∈Z

ϕ(2−jξ) = 1, ∀ξ ̸= 0.

Let h = ϕ̌, h̃ = χ̌, where ϕ̌ and χ̌ denote the inverse Fourier transforms of ϕ and χ, respectively.

The dyadic blocks ∆̇ju and low-frequency cut-off Ṡju can then be defined as:

∆̇ju = ϕ(2−jD)u = 23j
∫

R3
h(2jy)u(x − y)dy,

Ṡju = ∑
k≤j−1

∆ju = 23j
∫

R3
h̃(2jy)u(x − y)dy, j ∈ Z.

According to the Bony decomposition, any distribution u ∈ S ′(R3) \ P(R3) can be expressed

as:

u =
+∞

∑
j=−∞

∆̇ju, u ∈ S
′
(R3) \ P(R3),

where P(R3) denotes the set of polynomials.

Recall the definition of the homogeneous Besov spaces [3], which are based on the

Littlewood–Paley decomposition.

Definition 2.1. Let p, r ∈ [1, ∞] and s ∈ R. The homogeneous Besov spaces Ḃs
p,r(R

3) are

defined as

Ḃs
p,r(R

3) :=
{

f ∈ S
′
(R3) \ P(R3) : ∥ f ∥Ḃs

p,r(R
3) < ∞

}

,

where

∥ f ∥Ḃs
p,r(R

3) :=







(

∑
∞
j=1 2jrs∥∆̇j f ∥r

Lp

)
1
r

, r ̸= ∞,

supj∈Z
∥∆̇j f ∥Lp , r = ∞.

We also recall the Bernstein inequality, which plays a key role in the proof of the main

result, see [3].

Lemma 2.2. Let k ≥ 0 and 1 ≤ a, b ≤ ∞. Then the following inequality holds

∑
|α|=k

∥∂α∆̇ju∥Lb ≤ C2kj+3j( 1
a −

1
b )∥∆̇ju∥La ,

where C > 0 is a constant depending only on k, a, b.

Next, we introduce a class of Banach spaces, known as Vishik spaces [11], which generalize

the homogeneous Besov spaces.
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Definition 2.3. Let p, r ∈ [1, ∞], s ∈ R and θ ∈ [1, r]. The Vishik spaces V̇s
p,r,θ(R

3) are defined

as

V̇s
p,r,θ(R

3) :=
{

f ∈ S
′
(R3) \ P(R3) : ∥ f ∥V̇s

p,r,θ(R
3) < ∞

}

,

where

∥ f ∥V̇s
p,r,θ(R

3) :=











supN∈N∗

(∑N
j=−N 2jθs∥∆̇j f ∥θ

Lp )
1
θ

N
1
θ
− 1

r
, θ ̸= ∞,

∥ f ∥B0
p,∞(R3), θ = ∞.

3 The proof of Theorem 1.1

Proof. By taking the L2 inner product of the first equation, the second equation and the third

equation of (1.1) with u, ω and b, respectively, summing the results, and then integrating with

respect to t, we obtain

∥u∥2
L2 + ∥ω∥2

L2 + ∥b∥2
L2 + 2

∫ T

0
(µ∥∇u∥2

L2 + γ∥∇ω∥2
L2 + ν∥∇b∥2

L2)dt ≤ C(u0, ω0, b0).

The first equation, as well as the second and third equations in (1.1), are multiplied by

−∆u, −∆ω and −∆b, respectively, and then integrated over R3 with respect to x, which yields

1

2

d

dt
(∥∇u∥2

L2 + ∥∇ω∥2
L2 + ∥∇b∥2

L2) + (µ + χ)∥∆u∥2
L2 + γ∥∆ω∥2

L2 + ν∥∆b∥2
L2

+ 2χ∥∇ω∥2
L2 + κ∥∇∇ · ω∥2

L2

=
∫

R3
(u · ∇)u · ∆udx −

∫

R3
(b · ∇)b · ∆udx − χ

∫

R3
∇× ω · ∆udx − χ

∫

R3
∇× u · ∆ωdx

+
∫

R3
(u · ∇)ω · ∆ωdx +

∫

R3
(u · ∇)b · ∆bdx −

∫

R3
(b · ∇)u · ∆bdx

=: I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + I6(t) + I7(t). (3.1)

According to the Littlewood–Paley decomposition theory, it can be obtained that

∇u = ∑
j<−N

∆̇j∇u +
N

∑
j=−N

∆̇j∇u + ∑
j>N

∆̇j∇u, (3.2)

where N is to be determined. Without loss of generality, we first estimate I5(t). Using inte-

gration by parts and (3.2), we have that

I5(t) =
∫

R3
(u · ∇)ω · ∆ωdx

= −
∫

R3
∂kui∂iωj∂kωjdx −

∫

R3
ui∂k∂iωj∂kωjdx

≤
∫

R3
|∇ω|2|∇u|dx

≤ ∑
j<−N

∫

R3
|∇ω|2|∆̇j∇u|dx +

N

∑
j=−N

∫

R3
|∇ω|2|∆̇j∇u|dx + ∑

j>N

∫

R3
|∇ω|2|∆̇j∇u|dx

=: I51 + I52 + I53. (3.3)
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Below we estimate I51–I53 separately. For I51, by means of the Hölder inequality and the

Bernstein inequality, it follows that

I51(t) = ∑
j<−N

∫

R3
|∇ω|2|∆̇j∇u|dx

≤ ∑
j<−N

∥∆̇j∇u∥L∞∥∇ω∥2
L2

≤ C ∑
j<−N

2
3j
2 ∥∆̇j∇u∥L2∥∇ω∥2

L2

≤ C2−
3N
2 ∥∇u∥L2∥∇ω∥2

L2 . (3.4)

For I52. Let p ≥ 1. By the Hölder inequality, the Bernstein inequality and the definition of

Vishik spaces, we have

I52(t) =
N

∑
j=−N

∫

R3
|∇ω|2|∆̇j∇u|dx

≤
N

∑
j=−N

∥∆̇j∇u∥L∞∥∇ω∥2
L2

≤ C
N

∑
j=−N

2
3j
p ∥∆̇j∇u∥Lp∥∇ω∥2

L2

≤ CN1− 1
r sup

N∈N∗

∑
N
j=−N 2

3j
p ∥∆̇j∇u∥Lp

N1− 1
r

∥∇ω∥2
L2

≤ CN1− 1
r ∥∇u∥

V
3
p

p,r,1

∥∇ω∥2
L2 . (3.5)

For I53. From the Hölder inequality, the Bernstein inequality and space embedding relation, it

follows that

I53(t) = ∑
j>N

∫

R3
|∇ω|2|∆̇j∇u|dx

≤ C ∑
j>N

∥∆̇j∇u∥L3∥∇ω∥L2∥∇ω∥L6

≤ C ∑
j>N

2
j
2 ∥∆̇j∇u∥L2∥∇ω∥L2∥∆ω∥L2

≤ C

(

∑
j>N

2−j

)
1
2
(

∑
j>N

22j∥∆̇j∇u∥2
L2

)
1
2

∥∇u∥L2∥∆u∥L2

≤ C2−
N
2 ∥∇u∥B1

2,2
∥∇ω∥L2∥∆ω∥L2

≤ C2−
N
2 ∥∆u∥L2∥∇ω∥L2∥∆ω∥L2 . (3.6)

Combining (3.4)–(3.6), there are

I5(t) ≤ C2−
3N
2 ∥∇u∥L2∥∇ω∥2

L2 + CN1− 1
σ ∥∇u∥

V
3
p

p,r,1

∥∇ω∥2
L2 + C2−

N
2 ∥∇ω∥L2∥∆u∥L2∥∆ω∥L2

≤ C2−
3N
2 (∥∇u∥3

L2 + ∥∇ω∥3
L2) + CN1− 1

r ∥∇u∥
V

3
p

p,r,1

∥∇ω∥2
L2

+ C2−
N
2 ∥∇ω∥L2(∥∆u∥2

L2 + ∥∆ω∥2
L2). (3.7)
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Similarly, we have

I1(t) ≤ C2−
3N
2 ∥∇u∥3

L2 + CN1− 1
σ ∥∇u∥

V
3
p

p,r,1

∥∇u∥2
L2 + C2−

N
2 ∥∇u∥L2∥∆u∥2

L2 . (3.8)

Using the Hölder inequality and the Young inequality, one obtains that

I3(t) + I4(t) = − χ
∫

R3
∇× ω · ∆udx − χ

∫

R3
∇× u · ∆ωdx

≤ χ(∥∇ω∥L2∥∆u∥L2 + ∥∇u∥L2∥∆ω∥L2)

≤
µ + χ

4
∥∆u∥2

L2 +
γ

4
∥∆ω∥2

L2 + C∥∇u∥L2 + C∥∇ω∥L2 . (3.9)

Similar to I5, we have

I2(t) + I6(t) + I7(t) ≤
∫

R3
|∇b|2|∇u|dx

≤ C2−
3N
2 (∥∇u∥3

L2 + ∥∇b∥3
L2) + CN1− 1

σ ∥∇u∥
V

3
p

p,r,1

∥∇b∥2
L2

+ C2−
N
2 ∥∇b∥L2(∥∆u∥2

L2 + ∥∆b∥2
L2). (3.10)

Combining (3.2) and (3.7)–(3.10), one has

1

2

dt

dt
(∥∇u∥2

L2 + ∥∇ω∥2
L2 + ∥∇b∥2

L2) +
µ + χ

2
∥∆u∥2

L2 +
γ

2
∥∆ω∥2

L2 + ν∥∆b∥2
L2

+ 2χ∥∇ω∥2
L2 + κ∥∇∇ · ω∥2

L2

≤ C2−
3N
2 (∥∇u∥3

L2 + ∥∇ω∥3
L2 + ∥∇b∥3

L2) + CN1− 1
r ∥∇u∥

V
3
p

p,r,1

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2)

+ C2−
N
2 (∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)(∥∆u∥2

L2 + ∥∆ω∥2
L2 + ∥∆b∥2

L2)

+ C(∥∇u∥2
L2 + ∥∇ω∥2

L2)

≤ C2−
3N
2 (∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)(∥∇u∥2

L2 + ∥∇ω∥2
L2 + ∥∇b∥2

L2)

+ CN1− 1
r ∥∇u∥

V
3
p

p,r,1

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2)

+ C2−
N
2 (∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)(∥∆u∥2

L2 + ∥∆ω∥2
L2 + ∥∆b∥2

L2). (3.11)

We fix a large enough N, which obeys

C2−
N
2 (∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2) ≤

1

4
min{µ + χ, γ, 2ν},

i.e.

N ≥ 4 +
2lnC + 2ln(∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)− 2 min{µ + χ, γ, 2ν}

ln2
.

Taking

N =

[

4 +
2lnC + 2ln(∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)− 2 min{µ + χ, γ, 2ν}

ln2

]

+ 1,
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it follows from (3.11) that

1

2

dt

dt
(∥∇u∥2

L2 + ∥∇ω∥2
L2 + ∥∇b∥2

L2) +

(

µ + χ

2
−

1

4
min{µ + χ, γ, 2ν}

)

∥∆u∥2
L2 + 2χ∥∇ω∥2

L2

+

(

γ

2
−

1

4
min{µ + χ, γ, 2ν}

)

∥∆ω∥2
L2

+

(

ν −
1

4
min{µ + χ, γ, 2ν}

)

∥∆b∥2
L2 + κ∥∇∇ · ω∥2

L2

≤ C

(

1 + ∥∇u∥
V

3
p

p,r,1

)

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2). (3.12)

Using the Gronwall inequality yields

sup
0≤t≤T

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2) + C

∫ T

0
(∥∆u∥2

L2 + ∥∆ω∥2
L2 + ∥∆b∥2

L2)(t)dt

≤ exp

(

CT + C
∫ T

0
∥∇u∥

V
3
p

p,r,1

dt

)

(∥∇u0∥
2
L2 + ∥∇ω0∥

2
L2 + ∥∇b0∥

2
L2).

Using the hypothetical condition (1.2), we get

u, ω, b ∈ L∞(0, T; H1(R3)) ∩ L2(0, T; H2(R3)).

For the regularity criterion (1.3), we focus our analysis on I5. Similarly, by applying the theory

of Littlewood–Paley decompositions, it follows that

I5(t) ≤ ∑
j<−N

∫

R3
|∇u|2|∆̇j∇u|dx +

N

∑
j=−N

∫

R3
|∇u|2|∆̇j∇u|dx + ∑

j>N

∫

R3
|∇u|2|∆̇j∇u|dx

=: J51 + J52 + J53. (3.13)

Using I51(t) and I53(t), one obtains that

J51(t) + J53(t) ≤ C2−
3N
2 ∥∇u∥3

L2 + C2−
N
2 ∥∇u∥L2∥∆u∥2

L2 . (3.14)

Let p ≥ 3
2 . From the Hölder inequality, the definition of Vishik spaces, the Gagliardo–

Nirenberg inequality and the Young inequality, we have

J52(t) =
N

∑
j=−N

∫

R3
|∇u|2|∆̇j∇u|dx

≤
N

∑
j=−N

∥∆̇j∇u∥Lp∥∇u∥2

L
2p

p−1

≤ CN1− 1
r sup

N∈N∗

∑
N
j=−N ∥∆̇j∇u∥Lp

N1− 1
r

∥∇u∥
2− 3

p

L2 ∥∆u∥
3
p

L2

≤ CN1− 1
r ∥∇u∥V0

p,r,1
∥∇u∥

2− 3
p

L2 ∥∆u∥
3
p

L2

≤
µ + χ

4
∥∆u∥2

L2 + CN
(r−1)2p
(2p−3)r ∥∇u∥

2p
2p−3

V0
p,r,1

∥∆u∥2
L2 . (3.15)
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Combining (3.13)–(3.15), yields

I5(t) ≤ C2−
3N
2 ∥∇u∥3

L2 +
µ + χ

4
∥∆u∥2

L2 + CN
(r−1)2p
(2p−3)r ∥∇u∥

2p
2p−3

V0
p,r,1

∥∆u∥2
L2 + C2−

N
2 ∥∇u∥L2∥∆u∥2

L2 .

The analysis that follows is similar to that of the regularity criterion (1.3), except for a slight

difference in the choice of N, which is omitted here. We leave the details to the interested

reader.

Based on the above analysis, we complete the proof of Theorem 1.1.

Acknowledgements

The authors want to express their sincere thanks to the editor and the referee for their invalu-

able comments and suggestions which helped improve the paper greatly.

References

[1] R. Agarwal, A. Alghamdi, S. Gala, M. Ragusa, On the regularity criterion on one

velocity component for the micropolar fluid equations, Math. Model. Anal. 28(2023), No. 2,

271–284. https://doi.org/10.3846/mma.2023.15261; MR4568298; Zbl 1514.35342

[2] D. Bresch, B. Desjardins, C. Lin, On some compressible fluid models: Korteweg, lubri-

cation, and shallow water systems, Comm. Partial Differential Equations 28(2003), No. 3–4,

843–868. https://doi.org/10.1081/pde-120020499; MR1978317; Zbl 1106.76436

[3] J. Chemin, Perfect incompressible fluids, Oxford University Press, New York, 1998.

MR1688875

[4] F. Cruz, M. Novais, On the strong solutions of the 3D magneto-micropolar equa-

tions, Appl. Anal. 101(2022), No. 6, 1963–1970. https://doi.org/10.1080/00036811.

2020.1791831; MR4413094; Zbl 1487.35284

[5] L. Deng, H. Shang, Global well-posedness for n-dimensional magneto-micropolar equa-

tions with hyperdisspation, Appl. Math. Lett. 140(2021), 1–8. https://doi.org/10.1016/

j.aml.2020.106610; MR4121518; Zbl 1451.35129

[6] H. Ding, F. Wu, Liouville-type theorems for 3D stationary tropical climate model in

mixed local Morrey spaces, Bull. Malays. Math. Sci. Soc. 46(2023), 1–34. https://doi.org/

10.1016/j.aml.2022.108533; MR4530222; Zbl 1507.35292

[7] S. Gala, Regularity criteria for the 3D magneto-micropolar fluid equations in the

Morrey–Campanato space, NoDEA Nonlinear Differential Equations Appl. 17(2010), No. 2,

181–194. https://doi.org/10.1007/s00030-009-0047-4; MR2639150; Zbl 1191.35214

[8] G. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of the

micropolar fluid equations, Internat. J. Engrg. Sci. 15(1977), No. 2, 105–108. https:

//doi.org/10.1016/0020-7225(77)90025-8; MR0467030; Zbl 0351.76006

[9] E. Guariglia, Fractional calculus, zeta functions and Shannon entropy, Open Math.

19(2021), No. 1, 87–100. https://doi.org/10.1515/math-2021-0010; MR4248257;

Zbl 1475.11151



Two regularity criteria of the 3D magneto-micropolar equations in Vishik spaces 9

[10] E. Guariglia, S. Silvestrov, Fractional-wavelet analysis of positive definite distributions

and wavelets on D′(C), in: Engineering mathematics II, Springer Proc. Math. Stat., Vol. 179,

Springer, Berlin, 2016, pp. 337–353. https://doi.org/10.1007/978-3-319-42105-6_16;

MR3630586; Zbl 1365.65294

[11] R. Kanamaru, Optimality of logarithmic interpolation inequalities and extension criteria

to the Navier–Stokes and Euler equations in Vishik spaces, J. Evol. Equ. 20(2020), No. 4,

1381–1397. https://doi.org/10.1007/s00028-020-00559-0; MR4181952; Zbl 1466.35287

[12] C. Niche, C. Perusato, Sharp decay estimates and asymptotic behaviour for 3D

magneto-micropolar fluids, Z. Angew. Math. Phys. 73(2022), No. 2, 1–20. https://doi.

org/10.1007/s00033-022-01683-2; MR4379088; Zbl 1507.35195

[13] S. Polidoro, M. A. Ragusa, Sobolev–Morrey spaces related to an ultraparabolic equa-

tion, Manuscripta Math. 96(1998), 371–392. https://doi.org/10.1007/s002290050072;

MR1638177; Zbl 0910.35037

[14] S. Polidoro, M. A. Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations

with a singular lower order term, Rev. Mat. Iberoam. 24(2008), No. 3, 1011–1046. https:

//doi.org/10.4171/rmi/565; MR2490208; Zbl 1175.35081

[15] L. Qin, Y. Zhang, Optimal decay rates for higher-order derivatives of solutions to the 3D

magneto-micropolar fluid equations, Appl. Math. Lett. 133(2022), 1–7. https://doi.org/

10.1016/j.aml.2022.108286; MR4447676; Zbl 1504.35372

[16] M. A. Ragusa, Commutators of fractional integral operators on vanishing-Morrey

spaces, J. Global Optim. 40(2008), 361–368. https://doi.org/10.1007/s10898-007-9176-

7; MR2373563; Zbl 1143.42020

[17] M. A. Ragusa, F. Wu, Eigenvalue regularity criteria of the three-dimensional micropolar

fluid equations, Bull. Malays. Math. Sci. Soc. 47(2024), No. 3, 1–11. https://doi.org/10.

1007/s40840-024-01679-3; MR4718588; Zbl 07850937

[18] M. Rojas-Medar, J. Boldrini, Magneto-micropolar fluid motion: existence of weak solu-

tions, Rev. Mat. Complut. 11(1998), No. 2, 443–460. https://doi.org/10.5209/rev_rema.

1998.v11.n2.17276; MR1484679; Zbl 0918.35114

[19] Y. Wang, L. Gu, Global regularity of 3D magneto-micropolar fluid equations, Appl.

Math. Lett. 101(2020), 1–9. https://doi.org/10.1016/j.aml.2019.07.011; MR3990123;

Zbl 1428.35402

[20] F. Wu, A refined regularity criteria of weak solutions to the magneto-micropolar

fluid equations, J. Evol. Equ. 21(2021), 725–734. https://doi.org/10.1007/s00028-020-

00598-7; MR4238222; Zbl 1464.35261

[21] B. Xu, Bilinear θ-type Calderón–Zygmund operators and its commutators on generalized

variable exponent Morrey spaces, AIMS Math. 7(2022), No. 7, 12123–12143. https://doi.

org/10.3934/math.2022674; MR4431773

[22] F. Xu, Regularity criterion of weak solution for the 3D magneto-micropolar fluid equa-

tions in Besov spaces, Commun. Nonlinear Sci. Numer. Simul. 17(2012), No. 6, 2426–2433.

https://doi.org/10.1016/j.cnsns.2011.09.038; MR2877688; Zbl 1335.35206



10 B. Xu and J. Zhou

[23] Z. Ye, Remark on exponential decay-in-time of global strong solutions to 3D inhomoge-

neous incompressible micropolar equations, Discrete Contin. Dyn. Syst. Ser. B 25(2019), No.

12, 6725–6735. https://doi.org/10.3934/dcdsb.2019164; MR4026901; Zbl 1428.35407

[24] J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-

micropolar fluid equations, Math. Method Appl. Sci. 31(2008), No. 9, 1113–1130. https:

//doi.org/10.1002/mma.967; MR2419091; Zbl 1137.76071

[25] B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math.

Sci. Ser. B 30(2010), No. 5, 1469–1480. https://doi.org/10.1016/s0252-9602(10)60139-

7; MR2778615; Zbl 1240.35421

[26] B. Yuan, X. Li, Regularity of weak solutions to the 3D magneto-micropolar equations in

Besov spaces, Acta Appl. Math. 163(2019), 207–223. https://doi.org/10.1007/s10440-

018-0220-z; MR4008703; Zbl 1428.35409

[27] B. Yuan, F. Wang, The Liouville theorems for 3D stationary tropical climate model in

local Morrey spaces, Appl. Math. Lett. 138(2023), 1–7. https://doi.org/10.1016/j.aml.

2022.108533; MR4522953; Zbl 1502.86005

[28] Z. Zhang, Z. Yao, X. Wang, A regularity criterion for the 3D magneto-micropolar fluid

equations in Triebel–Lizorkin spaces, Nonlinear Anal. 74(2011), No. 6, 2220–2225. https:

//doi.org/10.1016/j.na.2010.11.026; MR2781751; Zbl 1209.35105



Electronic Journal of Qualitative Theory of Differential Equations
2024, No. 53, 1–53; https://doi.org/10.14232/ejqtde.2024.1.53 www.math.u-szeged.hu/ejqtde/

Normalized solutions for Schrödinger equations

with potential and general nonlinearities

involving critical case on large convex domains

Jun WangB 1 and Zhaoyang Yin1, 2

1Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China
2School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China

Received 18 February 2024, appeared 10 September 2024

Communicated by Dimitri Mugnai

Abstract. In this paper, we study the following Schrödinger equations with potentials
and general nonlinearities




−∆u + V(x)u + λu = |u|q−2u + β f (u),
∫
|u|2dx = Θ,

both on RN as well as on domains Ωr where Ωr ⊂ RN is an open bounded convex
domain and r > 0 is large. The exponent satisfies 2+ 4

N ≤ q ≤ 2∗ = 2N
N−2 and f : R → R

satisfies L2-subcritical or L2-critical growth. This paper generalizes the conclusion of
Bartsch et al. in [4]. Moreover, we consider the Sobolev critical case and L2-critical case
of the above problem.

Keywords: Schrödinger equations, normalized solutions, variational methods, mixed
nonlinearity.

2020 Mathematics Subject Classification: 35A15, 35B09, 35B38, 35J50.

1 Introduction and main results

This paper studies the existence of normalized solutions for the following Schrödinger equa-

tions with potentials and general nonlinearities




−∆u + V(x)u + λu = |u|q−2u + β f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr,

(1.1)

where Ωr ⊂ RN is either all of RN or a bounded smooth convex domain, N ≥ 3, 2 + 4
N ≤

q ≤ 2∗ = 2N
N−2 , the mass Θ > 0 and the parameter β ∈ R are prescribed. The frequency λ is

unknown and to be determined.

BCorresponding author. Email: wangj937@mail2.sysu.edu.cn
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Such problems are motivated in particular by searching for solitary waves (stationary

states) in nonlinear equations of the Schrödinger type. Specifically, consider the following

nonlinear Schrödinger equation



−i

∂

∂t
Ψ = ∆Ψ−V(x)Ψ + f

(
|Ψ|2

)
Ψ = 0, (x, t) ∈ R

N ×R,

Ψ = Ψ(x, t), (x, t) ∈ C,

where N ≥ 1. Researchers are interested in finding the existence of standing wave solutions

to the above equations, that is, Ψ(x, t) = eiλtu(x), λ ∈ R, and u : RN → R, so we get the

equation

−∆u + (V(x) + λ)u = Q(u), x ∈ R
N ,

where Q(u) = f (|u|2)u. For physical reasons, we focus on the existence of normalized solu-

tions for the following problem



−∆u + (V(x) + λ)u = Q(u), x ∈ R

N ,
∫

RN
|u|2dx = Θ, x ∈ R

N .
(1.2)

For more physical background about the above equation, please refer to [9, 16].

If potential V(x) in (1.2) is constant, we call (1.2) is autonomous. In this case, recalling

paper [21], Jeanjean developed an approach based on the Pohozaev identity which has been

used successfully in recent years. The key to this method is to find a bounded Palais–Smale

sequences by using the transformation s ∗ u(x) = e
sN
2 u(esx). After that, by weakening the

conditions in [21], Jeanjean [22] and Bieganowski [8] improved these results. Of course, these

articles only consider the problem of a single nonlinear term. Recently, there have been many

studies on mixed nonlinear terms. For example, Soave [26, 27] studied normalized solution

of (1.2) with mixed nonlinearity f (|u|)u = µ|u|q−2u + |u|p−2u, 2 < p < 2 + 4
N < q ≤ 2∗ =

2N
N−2 . Specifically, Soave in [26] obtained many results of existence and non-existence. More

precisely, if 2 < q < p = 2 + 4
N , that is, the leading nonlinearity is L2-critical and a L2-

subcritical lower order term. (1.2) had a real-valued positive and radially symmetric solution

for some λ < 0 in RN provided µ > 0 and Θ > 0 small enough. Moreover, if µ < 0, (1.2)

had no solution. If 2 + 4
N = q < p < 2∗, that is, the leading term is L2-critical and L2-

supercritical, (1.2) had a real-valued positive, radially symmetric solution for some λ < 0 in

RN provided µ > 0 and µ, Θ satisfy the appropriate conditions. If 2 < q < 2 + 4
N < p < 2∗,

that is, the leading term L2-subcritical and L2-supercritical, (1.2) also had a real-valued positive

and radially symmetric solution for some λ < 0 in RN provided Θ > 0, µ < 0 and µ, Θ

satisfy the appropriate conditions. Soave in [27] considered the Sobolev critical case and

obtained some similar results. In particular, the Sobolev critical case also has been considered

in [1, 2, 24, 25](see also the references therein). It is worth mentioning that many researchers

are also interested in the existence of normalized multiple solutions. In [23], Jeanjean et al.

obtained the existence of normalized multiple solutions for Sobolev critical case in (1.2). For

more results on this aspect, please refer to [5–7, 10, 29] and its references.

If (1.2) is non-autonomous, Ikoma and Miyamoto in [19] considered question (1.2) with

V(x) ∈ C(RN), 0 ̸≡ V(x) ≤ 0, V(x) → 0(|x| → ∞), they obtained some existence and non-

existence results. After that, Ding and Zhong in [14] proved the existence of normalized

solutions to the following Schrödinger equation
{
−∆u(x) + V(x)u(x) + λu(x) = g(u(x)), x ∈ RN ,

0 ≤ u(x) ∈ H1(RN), N ≥ 3,
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where g satisfies:

(G1) g : R → R is C1 and odd.

(G2) There exists some (α, β) ∈ R2
+ satisfying 2 + 4

N < α ≤ β <
2N

N−2 such that

αG(s) ≤ g(s)s ≤ βG(s) with G(s) =
∫ s

0
g(t)dt.

(G3) The functional defined by G̃(s) := 1
2 g(s)s− G(s) is of class C1 and

G̃′(s)s ≥ αG̃(s), ∀s ∈ R,

where α is given by (G2).

Note that, (G3) plays a crucial role in the uniqueness of tu(see [14] or [21, Lemma 2.9]). How-

ever, we do not need this condition, since we directly perform scaling and complex calcula-

tions on energy functionals. Recently, Bartsch et al. in [4] considered following Schrödinger

equations with potentials and inhomogeneous nonlinearities on large convex domains



−∆u + V(x)u + λu = |u|q−2u + β|u|p−2u,
∫
|u|2dx = Θ,

they developed a robust method to study the existence of normalized solutions of nonlinear

Schrödinger equations with potential. Under the stimulation of [4], our goal is to generalize

its conclusion to general nonlinear terms and the Sobolev critical case.

In order to state our main results, we introduce some notations. Set s+ = max{s, 0},
s− = min{s, 0} for s ∈ R. The Aubin–Talenti constant [3] is denoted by S, that is, S is the

best constant in the Sobolev embedding D1,2(RN) →֒ L2∗(RN), where D1,2(RN) denotes the

completion of C∞
c (RN) with respect to the norm ∥u∥D1,2 := ∥∇u∥2. It is well known [28] that

the optimal constant is achieved by (any multiple of)

Uε,y(x) = [N(N − 2)]
N−2

4

(
ε

ε2 + |x− y|2
) N−2

2

, ε > 0, y ∈ R
N , (1.3)

which are the only positive classical solutions to the critical Lane–Emden equation

−∆w = w2∗−1, w > 0 in R
N .

Let CN,s be the best constant in the Gagliardo–Nirenberg inequality

∥u∥s
s ≤ CN,s∥u∥

2s−N(s−2)
2

2 ∥∇u∥
N(s−2)

2
2 , 2 < s < 2∗.

For some results, we expect that V is C1 and consider the function

Ṽ : R
N → R, Ṽ(x) = ∇V(x) · x.

For Ω ⊂ RN and r > 0, let

Ωr =
{

rx ∈ R
N : x ∈ Ω

}

and

Sr,Θ := SΘ ∩ H1
0(Ωr) =

{
u ∈ H1

0(Ωr) : ∥u∥2
L2(Ωr)

= Θ
}

.

From now on we assume that Ω ⊂ RN is a bounded smooth convex domain with 0 ∈ Ω.

Our assumptions on V are:
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(V0) V ∈ C1(RN) ∩ L
N
2 (RN) is bounded and ∥V−∥ N

2
< S.

(Ṽ0) V ∈ C1(RN) ∩ L
N
2 (RN) is bounded and ∥V−∥ N

2
<

N(q−p2)−2[N(p2−2)−4]
N(q−p2)

S.

(V̂0) V ∈ C1(RN) ∩ L
N
2 (RN) is bounded and ∥V−∥ N

2
<

(
1− NCNΘ

2
N

N+2

)
S.

(V1) V is of class C1, lim|x|→∞ V(x) = 0, and there exists ρ ∈ (0, 1) such that

lim inf
|x|→∞

inf
y∈B(x,ρ|x|)

(x · ∇V(y))eτ|x|
> 0 for any τ > 0.

Remark 1.1. In order to obtain the existence of normalized solutions in RN by taking Ω = B1,

the unit ball centered at the origin in RN , and analyzing the compactness of the solutions ur,Θ

established in Theorems 1.3, 1.4 and 1.5 as r tends to infinity, we require the condition (V1).

Now, we make the following assumptions on the nonlinearity f :

( f1) f ∈ C1(R, R) and f is odd.

( f2) There exists some (p1, p2) ∈ R2
+ satisfying 2 < p2 ≤ p1 < 2 + 4

N such that

p2F(τ) ≤ f (τ)τ ≤ p1F(τ) with F(τ) =
∫ τ

0
f (t)dt.

( f̃2) There exists some (p1, p2) ∈ R2
+ satisfying 2 < p2 < p1 = 2 + 4

N such that

p2F(τ) ≤ f (τ)τ ≤ p1F(τ).

Remark 1.2. If f (u) = ∑
m
i=1 ai|u|σi−2u, where ai > 0 and 2 < σi < 2 + 4

N , then the assump-

tion ( f1) can be weakened to f ∈ C(R, R) and f is odd. In order to ensure the bounded-

ness of Palais–Smale sequence under constraint conditions in Lemma 3.3, we need to slightly

strengthen the conditions for the nonlinear term f , that is, f ∈ C1(R, R).

The main results of this paper are as follows. Firstly, we consider the Sobolev subcritical

case, that is, 2 + 4
N < q < 2∗.

Theorem 1.3 (case β ≤ 0). Assume V satisfies (V0), is of class C1 and Ṽ is bounded, f satisfies

( f1)–( f2). There hold:

(i) For every Θ > 0, there exists rΘ > 0 such that (1.1) on Ωr with r > rΘ has a mountain pass

type solution (λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and positive energy Ir (ur,Θ) > 0. Moreover,

there exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

(ii) If in addition ∥Ṽ+∥ N
2
< 2S, then there exists Θ̃ > 0 such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ < Θ̃.
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Theorem 1.4 (case β > 0). Assume V satisfies (V0), f satisfies ( f1)–( f2) and set

ΘV =

[
1− ∥V−∥ N

2
S−1

2N(q− p1)

] N
2 [

q(4− N(p1 − 2))

CN,q

] 4−N(p1−2)
2(q−p1)

[
N(q− 2)− 4

αβCN,p1

] N(q−2)−4
2(q−p1)

.

Then the following hold for 0 < Θ < ΘV :

(i) There exists rΘ > 0 such that (1.1) on Ωr with r > rΘ has a local minimum type solution

(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and negative energy Ir (ur,Θ) < 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ, lim inf
r→∞

λr,Θ > 0.

Theorem 1.5 (case β > 0). Assume V satisfies (V0), is of class C1 and Ṽ is bounded, f satisfies

( f1)–( f2). Set

Θ̃V =
1

2

(
1− ∥V−∥ N

2
S−1

) N
2

(
CN,q

q
Ap1,q +

CN,q

q

)− N
2
(

αβqCN,p1

CN,q Ap1,q

) N(q−2)−4
2N(q−p1)

,

where

Ap1,q =
(q− 2)(N(q− 2)− 4)

(p1 − 2)(4− N(p1 − 2))
.

Then the following hold for 0 < Θ < Θ̃V :

(i) There exists r̃Θ > 0 such that (1.1) in Ωr admits for r > rΘ a mountain pass type solution

(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and positive energy Ir (ur,Θ) > 0. Moreover, there exists

CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

(ii) There exists 0 < Θ̄ ≤ Θ̃V such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ ≤ Θ̄.

If Ω = RN , (V1) is significant for obtaining the following results.

Theorem 1.6 (case β > 0). Assume V satisfies (V0)–(V1). Then problem (1.1) with Ω = RN admits

for any 0 < Θ < ΘV , where ΘV is as in Theorem 1.4, a solution (λΘ, uΘ) with uΘ > 0, λΘ > 0, and

I (uΘ) < 0.

Theorem 1.7 (case β > 0). Assume V satisfies (V0)–(V1). Then (1.1) with Ω = RN admits for

0 < Θ < Θ̄, Θ̄ > 0 as in Theorem 1.5 (ii), a solution (λΘ, uΘ) with uΘ > 0, λΘ > 0, and I(uΘ) > 0.

Moreover, limΘ→0 I(uΘ) = ∞.

Theorem 1.8 (case β ≤ 0). Assume V satisfies (V0)–(V1), and ∥Ṽ+∥ N
2
< 2S. Then problem (1.1)

with Ω = RN admits for 0 < Θ < Θ̃, Θ̃ > 0 as in Theorem 1.3, a solution (λΘ, uΘ) with uΘ >

0, λΘ > 0, and I(uΘ) > 0. Moreover, limΘ→0 I (uΘ) = ∞.

For the Sobolev critical case, that is q = 2∗, we have the following results.
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Theorem 1.9 (case β > 0). Assume V satisfies (V0), f satisfies ( f1)–( f2). Set

ΘV =

(
1

NαβCN,p1

) 4
2p1−N(p1−2) (

1− ∥V−∥ N
2

S−1
) N

2
S

N
2 ·

4−N(p1−2)
2p1−N(p1−2) .

Then the following hold for 0 < Θ < ΘV :

(i) There exists rΘ > 0 such that (6.2) on Ωr with r > rΘ has a local minimum type solution

(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and negative energy Ir (ur,Θ) < 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ, lim inf
r→∞

λr,Θ > 0.

Theorem 1.10 (case β ≤ 0). Assume V satisfies (V0), is of class C1 and Ṽ is bounded, f satisfies

( f1)–( f2). There hold:

(i) There exists rΘ > 0 such that (7.1) on Ωr with r > rΘ has a mountain pass type solution

(λr,Θ, ur,Θ) with ur,Θ ≥ 0 in Ωr and positive energy Ir (ur,Θ) > 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

Theorem 1.11 (case β > 0). Assume V satisfies (V0), is of class C1 and Ṽ is bounded, f satisfies

( f1)–( f2). Set

Θ̃V =

(
αβCN,p1

S
2∗
2

Ap1

)− 4
2p1−N(p1−2)

[
S

2∗
2

2 · 2∗
(

1− ∥V−∥ N
2

S−1
)
(2∗Ap1

+ 1)

] 2[2·2∗−N(p1−2)]
(2∗−2)[2p1−N(p1−2)]

where

Ap1
=

4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
.

Then the following hold for 0 < Θ < Θ̃V :

(i) There exists r̃Θ > 0 such that (8.1) in Ωr admits for r > rΘ a mountain pass type solution

(λr,Θ, ur,Θ) with ur,Θ ≥ 0 in Ωr and positive energy Ir (ur,Θ) > 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

For the L2-critical case, that is p1 = 2 + 4
N or q = 2 + 4

N , we have the following results.

Theorem 1.12 (case β > 0 and p1 = 2 + 4
N ). Assume V satisfies (Ṽ0), f satisfies ( f1) and ( f̃2). Set

Θ̃V =

[
N(q− p2)− 4

Nαβ(q− p2)CN

] N
2

.

Then the following hold for 0 < Θ < Θ̃V :
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(i) There exists r̃Θ > 0 such that (1.1) in Ωr admits for r > rΘ a mountain pass type solution

(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and positive energy Ir (ur,Θ) > 0. Moreover, there exists

CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

(ii) There exists 0 < Θ̄ ≤ Θ̃V such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ ≤ Θ̄.

Theorem 1.13 (case β ≤ 0 and p1 = 2 + 4
N ). Assume V satisfies (V0), is of class C1 and Ṽ is

bounded, f satisfies ( f1) and ( f̃2). Set

Θ̂V =

[
(N − 2)q− 2N

2Nαβ(q− p2)CN

] N
2

.

Then the following hold for 0 < Θ < Θ̂V :

(i) There exists rΘ > 0 such that (1.1) on Ωr with r > rΘ has a mountain pass type solution

(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and positive energy Ir (ur,Θ) > 0. Moreover, there exists

CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

(ii) If in addition ∥Ṽ+∥ N
2
< 2S, then there exists Θ̃ > 0 such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ < Θ̃.

Theorem 1.14. (case β > 0 and q = 2 + 4
N ) Assume V satisfies (V̂0), f satisfies ( f1)–( f2) and set

ΘV =

(
N + 2

NCN

) N
2

.

Then the following hold for 0 < Θ < ΘV :

(i) There exists rΘ > 0 such that (1.1) on Ωr with r > rΘ has a global minimum type solution

(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and negative energy Ir (ur,Θ) < 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ, lim inf
r→∞

λr,Θ > 0.

Remark 1.15.

(i) Theorems 1.3–1.11 are valid if 2 = p2 < p1 < 2 + 4
N in ( f2). Moreover, the proof of

Theorems 1.6–1.8 is very similar to [4], so we omit it in this paper.

(ii) Our conclusion also applies to p1 = p2 = 2+ 4
N if 2+ 4

N < q < 2∗, such as f (u) = |u| 4
N u.

Therefore, our results cover certain conclusions in [26].



8 J. Wang and Z. Y. Yin

Remark 1.16. Theorems 1.4 and 1.9 (resp. Theorems 1.5 and 1.11) both require some limi-

tations on ΘV (resp. Θ̃V), although their values are different, they all stem from changes in

the geometric structure of the energy functional. In addition, there are still some unknown

results for the Sobolev critical case, that is, lim infr→∞ λr,Θ > 0 may not necessarily hold when

β > 0 or β ≤ 0. In fact, the methods and techniques in Theorem 1.4 (or Theorem 1.5) cannot

be applied to the Sobolev critical case since
(N−2)q−2N

2Nq = 0, thus λΘ > 0 cannot be obtained

0 < Θ ≤ Θ̄.

Remark 1.17. In this paper, whether in subcritical or critical situations, the monotonicity trick

in [20] is one of the keys to get the conclusion. Proposition 3.2 does not ensure the existence

of a mountain pass solution for the original problem obtained when s = 1. However, it gives

the existence of a sequence sn → 1−, with a corresponding sequence of mountain pass critical

points ur,sn of Ir,sn , constrained on Sr,Θ. We aim to show that ur,sn strongly converges to a

constrained critical point of Ir. For this purpose, it is sufficient to prove that ur,sn is bounded

in H1
0(Ωr), thanks to Proposition 3.1 in [15].

The structure of this paper is arranged as follows. In section 2, we provide some ideas in

the proof of main theorems. In section 3, we obtain the mountain pass type positive solution

in the case β ≤ 0 and have completed the proof of Theorem 1.3. If β > 0, there are two

situations, that is, Theorems 1.4 and 1.5. We get the two results in sections 3 and 4 by using

different geometric analysis. After that, we consider the Sobolev critical case. Finally, we

consider the L2-critical case and give some comments.

2 Preliminary

Consider the problem




−∆u + V(x)u + λu = |u|q−2u + β f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr,

(2.1)

where N ≥ 3, 2+ 4
N ≤ q ≤ 2∗ = 2N

N−2 , the mass Θ > 0 and the parameter β ∈ R are prescribed.

The frequency λ is unknown and to be determined. The energy functional Ir : H1
0(Ωr) → R

is defined by

Ir(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

V(x)u2dx− 1

q

∫

Ωr

|u|qdx− β
∫

Ωr

F(u)dx (2.2)

and the mass constraint manifold is defined by

Sr,Θ =
{

u ∈ H1
0(Ωr) : ∥u∥2

2 = Θ
}

. (2.3)

If Ω = RN , the energy functional I : H1
0 (Ωr)→ R is defined by

I(u) =
1

2

∫

RN
|∇u|2dx +

1

2

∫

RN
V(x)u2dx− 1

q

∫

RN
|u|qdx− β

∫

RN
F(u)dx (2.4)

and the mass constraint manifold is defined by

SΘ =
{

u ∈ H1
0(R

N) : ∥u∥2
2 = Θ

}
. (2.5)
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The proof idea of Theorem 1.3 is as follows. In order to find a mountain pass type solution

(λr,Θ, ur,Θ), we first need to analyze the geometric structure of the energy functional corre-

sponding to the equation (3.1). In Lemma 3.1, we perform precise geometric analysis on the

energy functional corresponding to (3.1) and know that the energy functional Ir,s has a global

maximum. Next, we obtain the bounded Palais–Smale sequence by using [11, Theorem 1] and

get a solution (λr,s, ur,s) for (3.1). Finally, we consider Lagrange multiplier and establish an a

priori estimate for the solutions of (1.1). Theorem 1.4 is relatively simple because the energy

functional has a local minimum, which can be proved using the method of constrained mini-

mization. The proof of Theorem 1.5 is similar to Theorem 1.3, but the geometric structures of

the two cases are significantly different and require refined estimate of energy.

Note that, there are some differences between the proof of Lemma 5.3 and Lemma 3.4, and

we cannot directly use the method of Lemma 3.4, even if q can be reduced to p2 according to

condition ( f2) and p2 < 2 + 4
N < q < 2∗. More precisely, it then follows from β > 0 and ( f2)

that

1

N

∫

Ωr

|∇u|2dx− 1

2N

∫

∂Ωr

|∇u|2(x · n)dσ− 1

2N

∫

Ωr

(∇V · x)u2dx

=
(q− 2)s

2q

∫

Ωr

|u|qdx + s
∫

Ωr

(
β

2
f (u)u− βF(u))dx

≥ p2 − 2

2

(
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx−mr,s(Θ)

)
.

Consequently, we have

p2 − 2

2
mr,s(Θ) ≥ p2 − 2

2

(
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx

)
− 1

N

∫

Ωr

|∇u|2dx

+
1

2N

∫

∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫

Ωr

(∇V · x)u2dx

≥ N(p2 − 2)− 4

4N

∫

Ωr

|∇u|2dx−Θ

(
1

2N
∥∇V · x∥∞ +

p2 − 2

4
∥V∥∞

)
.

However, this method is useless because
N(p2−2)−4

4N < 0, we cannot obtain that
∫

Ωr
|∇u|2dx is

uniformly bounded in s and r.

3 Proof of Theorem 1.3

In this section, we assume β ≤ 0 and the assumptions of Theorem 1.3 hold. In order to obtain

a bounded Palais–Smale sequence, we will use the monotonicity trick inspired by [20]. For
1
2 ≤ s ≤ 1, we define the functional Ir,s : Sr,Θ → R by

Ir,s(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx− s

q

∫

Ωr

|u|qdx− β
∫

Ωr

F(u)dx. (3.1)

Note that if u ∈ Sr,Θ is a critical point of Ir,s, then there exists λ ∈ R such that (λ, u) is a

solution of the equation




−∆u + Vu + λu = s|u|q−2u + β f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(3.2)
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Lemma 3.1. For any Θ > 0, there exist rΘ > 0 and u0, u1 ∈ SrΘ,Θ such that

(i) Ir,s(u1) ≤ 0 for any r > rΘ and s ∈
[

1
2 , 1
]
,

∥∥∇u0
∥∥2

2
<

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

<

∥∥∥∇u1
∥∥∥

2

2

and

Ir,s

(
u0
)
<

(N(q− 2)− 4)
(

1− ∥V−∥ N
2

S−1
)

2N(q− 2)




2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

.

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

,

then there holds

Ir,s(u) ≥
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)

2N(q− 2)




2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

.

(iii) Set

mr,s(Θ) = inf
γ∈Γr,Θ

sup
t∈[0,1]

Ir,s(γ(t))

with

Γr,Θ =
{

γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1
}

.

Then

(N(q− 2)− 4)
(

1− ∥V−∥ N
2

S−1
)

2N(q− 2)




2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

≤ mr,s(Θ) ≤ h(TΘ),

where h(TΘ) = maxt∈R+ h(t), the function h : R+ → R being defined by

h(t) =
1

2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− αβCN,p1

Θ
p1
2 θ

N(p1−2)
4 t

N(p1−2)
2 − 1

2q
Θ

q
2 |Ω|

2−q
2 t

N(q−2)
2 .

Here θ is the principal eigenvalue of −∆ with Dirichlet boundary conditions in Ω, and |Ω| is the

volume of Ω.

Proof. (i) Clearly, the set Sr,Θ is path connected. Since v1 ∈ S1,Θ be the positive eigenfunction

associated to θ and note that θ is the principal eigenvalue of −∆, then
∫

Ω
|∇v1|2 dx = θΘ. (3.3)

By the Hölder inequality, we know that

Θ =
∫

Ω
|v1(x)|2dx ≤

(∫

Ω
|v1(x)|qdx

) 2
q

· |Ω|
q−2

q ,
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which implies ∫

Ω
|v1(x)|qdx ≥ Θ

q
2 · |Ω|

2−q
2 . (3.4)

According to ( f2), there exists a constant α > 0 such that

F(τ) ≤ ατp1 . (3.5)

For x ∈ Ω 1
t

and t > 0, define vt(x) := t
N
2 v1(tx). Using (3.3), (3.4), (3.5) and 1

2 ≤ s ≤ 1, it holds

I 1
t ,s (vt) ≤

1

2

∫

Ωr

|∇vt|2dx +
1

2

∫

Ωr

Vv2
t dx− 1

2q

∫

Ωr

|vt|qdx− αβ
∫

Ωr

|vt|p1 dx

≤ 1

2

(
1 + ∥V∥ N

2
S−1

) ∫

Ωr

|∇vt|2dx− αβCN,p1
Θ

2p1−N(p1−2)
4

(∫

Ωr

|∇vt|2 dx

) N(p1−2)
4

− 1

2q

∫

Ωr

|vt|qdx

≤ 1

2

(
1 + ∥V∥ N

2
S−1

)
t2
∫

Ω
|∇v1|2 dx− αβCN,p1

Θ
2p1−N(p1−2)

4

(
t2
∫

Ω
|∇v1|2 dx

) N(p1−2)
4

− 1

2q
t

N(q−2)
2

∫

Ω
|v1|q dx

≤ 1

2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− αβCN,p1

Θ
p1
2 θ

N(p1−2)
4 t

N(p1−2)
2 − 1

2q
t

N(q−2)
2 Θ

q
2 · |Ω|

2−q
2

=: h(t). (3.6)

Note that since 2 < p1 < 2 + 4
N < q < 2∗ and β ≤ 0 there exist 0 < TΘ < t0 such that

h (t0) = 0, h(t) < 0 for any t > t0, h(t) > 0 for any 0 < t < t0 and h (TΘ) = maxt∈R+ h(t). As a

consequence, there holds

Ir,s (vt0) = I 1
t0

,s (vt0) ≤ h (t0) = 0 (3.7)

for any r ≥ 1
t0

and s ∈
[

1
2 , 1
]
. Moreover, there exists 0 < t1 < TΘ such that

h(t) <
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)

2N(q− 2)




2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

(3.8)

for t ∈ [0, t1]. On the other hand, it follows from the Gagliardo–Nirenberg inequality and the

Hölder inequality that

Ir,s(u) ≥
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx− 1

q

∫

Ωr

|u|qdx

≥

(
1− ∥V−∥ N

2
S−1

)

2

∫

Ωr

|∇u|2dx− CN,qΘ
2q−N(q−2)

4

q

(∫

Ωr

|∇u|2dx

) N(q−2)
4

. (3.9)

Define

g(t) :=
1

2

(
1− ∥V−∥ N

2
S−1

)
t− CN,qΘ

2q−N(q−2)
4

q
t

N(q−2)
4

and

t̃ =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

,
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it is easy to see that g is increasing on (0, t̃) and decreasing on (t̃, ∞), and

g(t̃) =
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)

2N(q− 2)




2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

.

For r ≥ r̃Θ := max
{

1
t1

,
√

2θΘ
t̃

}
, we have v 1

r̃Θ

∈ Sr,Θ and

∥∇v 1
r̃Θ

∥2
2 =

(
1

r̃Θ

)2

∥∇v1∥2
2

<

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

. (3.10)

Moreover, there holds

Ir̃Θ,s

(
v 1

r̃Θ

)
≤ h

(
1

r̃Θ

)
≤ h (t1) . (3.11)

Setting u0 = v 1
r̃Θ

, u1 = vt0 and

rΘ = max

{
1

t0
, r̃Θ

}
. (3.12)

Combining (3.7), (3.8), (3.10) and (3.11), (i) holds.

(ii) By (3.9) and a direct calculation, (ii) holds.

(iii) Since Ir,s

(
u1
)
≤ 0 for any γ ∈ Γr,Θ, we have

∥∇γ(0)∥2
2 < t̃ < ∥∇γ(1)∥2

2.

It then follows from (3.9) that

max
t∈[0,1]

Ir,s(γ(t)) ≥ g(t̃)

=
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)

2N(q− 2)




2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

for any γ ∈ Γr,Θ, hence the first inequality in (iii) holds. Now we define a path γ ∈ Γr,Θ by

γ(τ)(x) =

(
τt0 + (1− τ)

1

r̃Θ

) N
2

v1

((
τt0 + (1− τ)

1

r̃Θ

)
x

)

for τ ∈ [0, 1] and x ∈ Ωr. Then by (3.6) we have mr,s(Θ) ≤ h(TΘ), where h(TΘ) = maxt∈R+ h(t).

Note that TΘ is independent of r and s.

By using Lemma 3.1, the energy functional Ir,s possesses the mountain pass geometry. To

obtain bounded Palais–Smale sequence, we recall a proposition from [11, 13].

Proposition 3.2 (see [11, Theorem 1]). Let (E, ⟨·, ·⟩) and (H, (·, ·)) be two infinite-dimensional

Hilbert spaces and assume there are continuous injections

E →֒ H →֒ E′.
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Let

∥u∥2 = ⟨u, u⟩, |u|2 = (u, u) for u ∈ E,

and

Sµ =
{

u ∈ E : |u|2 = µ
}

, TuSµ = {v ∈ E : (u, v) = 0} for µ ∈ (0,+∞).

Let I ⊂ (0,+∞) be an interval and consider a family of C2 functionals Φρ : E→ R of the form

Φρ(u) = A(u)− ρB(u), for ρ ∈ I,

with B(u) ≥ 0 for every u ∈ E, and

A(u)→ +∞ or B(u)→ +∞ as u ∈ E and ∥u∥ → +∞. (3.13)

Suppose moreover that Φ′ρ and Φ′′ρ are τ-Hölder continuous, τ ∈ (0, 1], on bounded sets in the following

sense: for every R > 0 there exists M = M(R) > 0 such that

∥∥∥Φ′ρ(u)−Φ′ρ(v)
∥∥∥ ≤ M∥u− v∥τ and

∥∥∥Φ′′ρ (u)−Φ′′ρ (v)
∥∥∥ ≤ M∥u− v∥τ (3.14)

for every u, v ∈ B(0, R). Finally, suppose that there exist w1, w2 ∈ Sµ independent of ρ such that

cρ := inf
γ∈Γ

max
t∈[0,1]

Φρ(γ(t)) > max
{

Φρ (w1) , Φρ (w2)
}

for all ρ ∈ I,

where

Γ =
{

γ ∈ C
(
[0, 1], Sµ

)
: γ(0) = w1, γ(1) = w2

}
.

Then for almost every ρ ∈ I, there exists a sequence {un} ⊂ Sµ such that

(i) Φρ (un)→ cρ,

(ii) Φ′ρ
∣∣∣
Sµ

(un)→ 0,

(iii) {un} is bounded in E.

Lemma 3.3. For any Θ > 0, let r > rΘ, where rΘ is defined in Lemma 3.1. Then problem (3.1) has a

solution (λr,s, ur,s) for almost every s ∈
[

1
2 , 1
]
. Moreover, ur,s ≥ 0 and Ir,s (ur,s) = mr,s(Θ).

Proof. By Proposition 3.2, it follows that

A(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

V(x)u2dx− β
∫

Ωr

F(u)dx and B(u) =
1

q

∫

Ωr

|u|qdx.

Note that the assumptions in Proposition 3.2 hold due to β ≤ 0 and Lemma 3.1. Hence, for

almost every s ∈
[

1
2 , 1
]
, there exists a bounded Palais–Smale sequence {un} satisfying

Ir,s (un)→ mr,s(Θ) and I′r,s (un)
∣∣
Tun Sr,Θ

→ 0,

where Tun Sr,Θ denotes the tangent space of Sr,Θ at un. Then

λn = − 1

Θ

(∫

Ωr

|∇un|2 dx +
∫

Ωr

V(x)u2
ndx− β

∫

Ωr

f (un)undx− s
∫

Ωr

|un|q dx

)

is bounded and

I′r,s (un) + λnun → 0 in H−1 (Ωr) . (3.15)
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Moreover, since {un} is a bounded Palais–Smale sequence, there exist u0 ∈ H1
0 (Ωr) and λ ∈ R

such that, up to a subsequence,

λn → λ in R,

un ⇀ u0 in H1
0(Ωr),

un → u0 in Lt(Ωr) for all 2 ≤ t < 2∗,

where u0 satisfies

{
−∆u0 + Vu0 + λu0 = s |u0|q−2 u0 + β f (u0) in Ωr

u0 ∈ H1
0 (Ωr) ,

∫
Ωr
|u0|2 dx = Θ.

Using (3.15), we have

I′r,s (un) u0 + λn

∫

Ωr

unu0dx → 0 as n→ ∞

and

I′r,s (un) un + λnΘ→ 0 as n→ ∞.

Note that

lim
n→∞

∫

Ωr

V(x)u2
ndx =

∫

Ωr

V(x)u2
0dx,

lim
n→∞

∫

Ωr

f (un)undx =
∫

Ωr

f (u0)u0dx,

lim
n→∞

∫

Ωr

f (un)u0dx =
∫

Ωr

f (u0)u0dx,

so we get un → u0 in H1
0(Ωr), hence Ir,s(u0) = mr,s(Θ).

Now, we show that ur,s ≥ 0. In order to obtain it, we only need to modify the proof of

Proposition 3.2. In fact, for almost every s ∈
[

1
2 , 1
]
, the derivative m′r,s with respect to s is well

defined since the function s 7→ mr,s is nonincreasing, where mr,s denotes mr,s(Θ) for fixed Θ.

Let s be such that m′r,s exists and {sn} ⊂
[

1
2 , 1
]

be a monotone increasing sequence converging

to s. Similar to the proof of Proposition 3.2, there exist {γn} ⊂ Γr,Θ and K = K
(
m′r,s

)
such

that:

(i) if Ir,s (γn(t)) ≥ mr,s −
(
2−m′r,s

)
(s− sn), then

∫
Ωr
|∇γn(t)|2 dx ≤ K.

(ii) maxt∈[0,1] Ir,s (γn(t)) ≤ mr,s −
(
2−m′r,s

)
(s− sn).

Letting γ̃n(t) = |γn(t)| for any t ∈ [0, 1], it follows that {γ̃n} ⊂ Γr,Θ. Observe that
∥∥∇|u|∥2

2 ≤
∥∇u∥2

2 for any u ∈ H1(RN). Now we have:

(I) if Ir,s (γ̃n(t)) ≥ mr,s −
(
2−m′r,s

)
(s− sn), then Ir,s (γn(t)) ≥ mr,s −

(
2−m′r,s

)
(s− sn). By

(i), there holds
∫

Ωr
|∇γn(t)|2 dx ≤ K, and hence

∫
Ωr
|∇γ̃n(t)|2 dx ≤ K. Thus (i) also holds

for γ̃n.

(II) maxt∈[0,1] Ir,s (γ̃n(t)) ≤ maxt∈[0,1] Ir,s (γn(t)) ≤ mr,s −
(
2−m′r,s

)
(s− sn).

By replacing γn with γ̃n in the proof of Proposition 3.2, we obtain a nonnegative bounded

Palais–Smale sequence {un}. Consequently, there exists a nonnegative normalized solution to

(3.1) for almost every s ∈
[

1
2 , 1
]

as above.
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In order to obtain a solution of (1.1), we need to prove a uniform estimate for the solutions

of (3.1) established in Lemma 3.3.

Lemma 3.4. If (λr,s, ur,s) ∈ R× Sr,Θ is a solution of (3.1) established in Lemma 3.3 for some r and s,

then ∫

Ωr

|∇u|2dx ≤ 4N

N(q− 2)− 4

[
q− 2

2
h(TΘ) + Θ

(
1

2N
∥Ṽ∥∞ +

q− 2

4
∥V∥∞

)]
,

where the constant h(TΘ) is defined in (iii) of Lemma 3.1 and is independent of r and s.

Proof. For simplicity, we denote (λr,s, ur,s) as (λ, u) in this lemma. Since u is a solution of (3.1),

we have
∫

Ωr

|∇u|2dx +
∫

Ωr

V(x)u2dx = s
∫

Ωr

|u|qdx + β
∫

Ωr

f (u)udx− λ
∫

Ωr

|u|2dx. (3.16)

The Pohozaev identity implies

N − 2

2N

∫

Ωr

|∇u|2dx +
1

2N

∫

∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫

Ωr

Ṽ(x)u2dx +
1

2

∫

Ωr

Vu2dx

= −λ

2

∫

Ωr

|u|2dx +
s

q

∫

Ωr

|u|qdx + β
∫

Ωr

F(u)dx,

where n denotes the outward unit normal vector on ∂Ωr. It then follows from β ≤ 0 and ( f2)

that

1

N

∫

Ωr

|∇u|2dx− 1

2N

∫

∂Ωr

|∇u|2(x · n)dσ− 1

2N

∫

Ωr

(∇V · x)u2dx

=
(q− 2)s

2q

∫

Ωr

|u|qdx +
∫

Ωr

(
β

2
f (u)u− βF(u))dx

≥ (q− 2)s

2q

∫

Ωr

|u|qdx +
β(q− 2)

2

∫

Ωr

F(u)dx

=
q− 2

2

(
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx−mr,s(Θ)

)
.

Consequently, we have

q− 2

2
mr,s(Θ) ≥ q− 2

2

(
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx

)
− 1

N

∫

Ωr

|∇u|2dx

+
1

2N

∫

∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫

Ωr

(∇V · x)u2dx

≥ N(q− 2)− 4

4N

∫

Ωr

|∇u|2dx−Θ

(
1

2N
∥∇V · x∥∞ +

q− 2

4
∥V∥∞

)
,

where the last inequality holds since x · n(x) ≥ 0 for any x ∈ ∂Ωr due to the convexity of Ωr.

Using Lemma 3.1, we have

N(q− 2)− 4

4N

∫

Ωr

|∇u|2dx−Θ

(
1

2N
∥∇V · x∥∞ +

q− 2

4
∥V∥∞

)
≤ q− 2

2
h(TΘ),

which implies

∫

Ωr

|∇u|2dx ≤ 4N

N(q− 2)− 4

[
q− 2

2
h(TΘ) + Θ

(
1

2N
∥Ṽ∥∞ +

q− 2

4
∥V∥∞

)]
.

This completes the proof of lemma.
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Now, we obtain a solution of (1.1) by letting s→ 1.

Lemma 3.5. For every Θ > 0, problem (1.1) has a solution (λr, ur) provided r > rΘ where rΘ is as in

Lemma 3.1. Moreover, ur ≥ 0 in Ωr.

Proof. By using Lemma 3.3, there is a nonnegative solution (λr,s, ur,s) to (3.1) for almost every

s ∈
[

1
2 , 1
]
. In view of Lemma 3.4, {ur,s} is bounded. By an argument similar to that in Lemma

3.3, there exist ur ∈ Sr,Θ and λr such that, going if necessary to a subsequence,

λr,s → λr and ur,s → ur in H1
0 (Ωr) as s→ 1.

Hence ur is a nonnegative solution of problem (1.1).

Next, we will consider the Lagrange multiplier. we first establish an a priori estimate for

the solutions of (1.1).

Lemma 3.6. If {(λr, ur)} is a family of nonnegative solutions of (1.1) such that ∥ur∥H1 ≤ C with

C > 0 independent of r, then lim supr→∞ ∥ur∥∞ < ∞.

Proof. Using the regularity theory of elliptic partial differential equations, we know that ur ∈
C(Ωr). Assume to the contrary that there exist a sequence, for simplicity denoted by {ur},
and xr ∈ Ωr such that

Mr := max
x∈Ωr

ur(x) = ur (xr)→ ∞ as r → ∞.

Suppose without loss of generality that, up to a subsequence, limr→∞
xr

|xr | = (1, 0, . . . , 0). Set

vr(x) =
ur (xr + τrx)

Mr
for x ∈ Σr :=

{
x ∈ R

N : xr + τrx ∈ Ωr

}
,

where τr = M
2−q

2
r . Then τr → 0 as r → ∞, ∥vr∥L∞(Σr) ≤ 1, and vr satisfies

−∆vr + τ2
r V (xr + τrx) vr + τ2

r λrvr = |vr|q−2 vr + βM
1−q
r f (Mrvr) in Σr. (3.17)

In fact, since ur is a nonnegative solution of (1.1), we obtain

− ∆ur (xr + τrx) + V (xr + τrx) ur (xr + τrx) + λrur (xr + τrx)

= |ur (xr + τrx)|q−2 ur (xr + τrx) + β f (ur (xr + τrx)) in Ωr,

then by a direct calculation and the definition of vr(x), τr, we know that (3.17) holds. In view

of (1.1), the Gagliardo–Nirenberg inequality and ∥ur∥H1 ≤ C with C independent of r, we

infer that the sequence {λr} is bounded. It then follows from the regularity theory of elliptic

partial differential equations and the Arzelà–Ascoli theorem that there exists v such that, up

to a subsequence

vr → v in H1
0(Σ) and vr → v in C

β
loc(Σ) for some β ∈ (0, 1),

where Σ := lim
r→∞

Σr.

Similar to the proof of [4, Lemma 2.7], we have

lim inf
r→∞

dist (xr, ∂Ωr)

τr
= lim inf

r→∞

|yr − xr|
τr

≥ d > 0,
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where yr ∈ ∂Ωr is such that dist (xr, ∂Ωr) = |yr − xr| for any large r. As a result, by letting

r → ∞ in (3.17), we obtain that v ∈ H1
0(Σ) is a nonnegative solution of

−∆v = |v|q−2v in Σ,

where

Σ =





RN if lim inf
r→∞

dist(xr ,∂Ωr)
τr

= ∞,
{

x ∈ RN : x1 > −d
}

if lim inf
r→∞

dist(xr ,∂Ωr)
τr

> 0.

It then follows from the Liouville theorems (see [17]) that v = 0 in H1
0(Σ), which contradicts

v(0) = limr→∞ vr(0) = 1.

Clearly, the proof of Lemma 3.6 does not depend on β.

Lemma 3.7. Let (λr,Θ, ur,Θ) be the solution of (1.1) from Lemma 3.5. If ∥Ṽ+∥ N
2
< 2S, then there

exists Θ̄ > 0 such that

lim inf
r→∞

λr,Θ > 0 for 0 < Θ < Θ̄.

Proof. Let (λr,Θ, ur,Θ) be the solution of (1.1) established in Theorem 3.5. By the regularity

theory of elliptic partial differential equations, we have ur,Θ ∈ C (Ωr). Using Lemma 3.6, it

holds

lim sup
r→∞

max
Ωr

ur,Θ < ∞.

Setting

Q(Θ) = lim inf
r→∞

max
Ωr

ur,Θ,

we claim that there is Θ1 > 0 such that Q(Θ) > 0 for any 0 < Θ < Θ1. Assume to the contrary

that there exists a sequence {Θk} tending to 0 as k → ∞ such that Q (Θk) = 0 for any k, that

is,

lim inf
r→∞

max
Ωr

ur,Θk
= 0 for any k. (3.18)

As a consequence of (iii) in Lemma 3.1, for any r > rΘk
, we have

Ir (ur,Θk
) = mr,1 (Θk)→ ∞ as k→ ∞. (3.19)

For any given k, it follows from (3.18) and ur,Θk
∈ Sr,Θk

that, up to a subsequence,

∫

Ωr

|ur,Θk
|s dx =

∫

Ωr

|ur,Θk
|s−2 |ur,Θk

|2 dx ≤
∣∣∣∣max

Ωr

ur,Θk

∣∣∣∣
s−2

Θk → 0 as r → ∞ (3.20)

for any s > 2. Hence, for any given large k, there exists r̄k > rΘk
such that

∣∣∣∣
1

q

∫

Ωr

|ur,Θk
|qdx + β

∫

Ωr

f (ur,Θk
)dx

∣∣∣∣ <
mr,1 (Θk)

2
for any r ≥ r̄k.

In view of (3.19) and Ir (ur,Θk
) = mr,1 (Θk), we further have

∫

Ωr

|∇ur,Θk
|2 dx +

∫

Ωr

V(x)u2
r,Θk

dx ≥ mr,1 (Θk)

2
for any large k and r ≥ r̄k. (3.21)

It follows from (3.18), (3.20) and (3.21) that there exists rk ≥ r̄k with rk → ∞ as k → ∞ such

that

lim
k→∞

max
Ωrk

urk ,Θk
= 0, (3.22)
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∫

Ωrk

|urk ,Θk
|s dx ≤

∣∣∣∣∣max
Ωrk

urk ,Θk

∣∣∣∣∣

s−2

Θk → 0 as k→ ∞ for any s > 2 (3.23)

and ∫

Ωrk

|∇urk ,Θk
|2 dx +

∫

Ωr

Vu2
rk ,Θk

dx → ∞ as k→ ∞. (3.24)

By (1.1), (3.23) and (3.24), we have

λrk ,Θk
→ −∞ as k→ ∞. (3.25)

Now (1.1) implies

−∆urk ,Θk
+ V(x)urk ,Θk

+ λrk ,Θk
urk ,Θk

= |urk ,Θk
|q−2urk ,Θk

+ β f (urk ,Θk
),

so

−∆urk ,Θk
+

(
∥V∥∞ +

λrk ,Θk

2

)
urk ,Θk

≥ −λrk ,Θk

2
urk ,Θk

+ |urk ,Θk
|q−2 urk ,Θk

+ β f (urk ,Θk
).

Using (3.25) and (3.22), it follows that

−∆urk ,Θk
+

(
∥V∥∞ +

λrk ,Θk

2

)
urk ,Θk

≥ 0

for large k. Let θrk
be the principal eigenvalue of −∆ with Dirichlet boundary condition in

Ωrk
, and vrk

> 0 be the corresponding normalized eigenfunction. It follows that

(
θrk

+ ∥V∥∞ +
λrk ,Θk

2

) ∫

Ωrk

urk ,Θk
vrk

dx ≥ 0.

Since
∫

Ωrk
urk ,Θk

vrk
dx > 0, we have

θrk
+ ∥V∥∞ +

λrk ,Θk

2
≥ 0,

which contradicts (3.25) for large k. Hence the claim holds, that is, there exists Θ1 > 0 such

that

Q(Θ) = lim inf
r→∞

max
Ωr

ur,Θ > 0 (3.26)

for any 0 < Θ < Θ1.

We consider H1(Ωr) as a subspace of H1(RN) for any r > 0. It follows from Lemma 3.4

that the set of solutions {ur,Θ : r > rΘ} established in Lemma 3.5 is bounded in H1(RN), so

there exist uΘ ∈ H1(RN) and λΘ ∈ R such that up to a subsequence:

λr,Θ → λΘ,

ur,Θ ⇀ uΘ in H1(RN),

ur,Θ → uΘ in Lk
loc(R

N) for all 2 ≤ k < 2∗,

ur,Θ → uΘ a.e. in R
N

and uΘ is a solution of the equation

−∆u + V(x)u + λΘu = |u|q−2u + β f (u) in R
N .
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Hence,
∫

RN
|∇uΘ|2 dx +

∫

RN
V(x)u2

Θdx + λΘ

∫

RN
u2

Θdx =
∫

RN
|uΘ|q dx + β

∫

RN
f (uΘ)uΘdx (3.27)

and the Pohozaev identity gives

N − 2

2N

∫

RN
|∇uΘ|2 dx +

1

2N

∫

RN
Ṽu2

Θdx +
1

2

∫

RN
V(x)u2

Θdx +
λΘ

2

∫

RN
u2

Θdx

=
1

q

∫

RN
|uΘ|q dx + β

∫

RN
F(uΘ)dx. (3.28)

It follows from (3.27), (3.28), ( f2), the Gagliardo–Nirenberg inequality and the fact β ≤ 0 that

1

N

∫

RN
|∇uΘ|2 dx +

1

2N

∫

RN
Ṽ(x)u2

Θdx

=

(
1

2
− 1

q

) ∫

RN
|uΘ|q dx +

β

2

∫

RN
( f (uΘ)uΘ − 2F(uΘ))dx

≤ CN,q(q− 2)

2q

(∫

RN
u2

Θdx

) 2q−N(q−2)
4

(∫

RN
|∇uΘ|2 dx

) N(q−2)
4

.

By using the Hölder inequality, we have

(
1

N
−
∥Ṽ+∥ N

2
S−1

2N

) ∫

RN
|∇uΘ|2 dx ≤ 1

N

∫

RN
|∇uΘ|2 dx +

1

2N

∫

RN
Ṽ(x)u2

Θdx.

Therefore,
(

1

N
−
∥Ṽ+∥ N

2
S−1

2N

) ∫

RN
|∇uΘ|2 dx

≤ CN,q(q− 2)

2q

(∫

RN
u2

Θdx

) 2q−N(q−2)
4

(∫

RN
|∇uΘ|2 dx

) N(q−2)
4

.

If uΘ ̸= 0, Using ∥Ṽ+∥ N
2
< 2S, we obtain that

∫

RN
|∇uΘ|2 dx ≥




q
(

2− ∥Ṽ+∥ N
2

S−1
)

NCN,q(q− 2)




4
N(q−2)−4

Θ
q(N−2)−2N
N(q−2)−4 . (3.29)

Next, it follows from (3.5), (3.27), (3.28), (3.29), ( f2) and 2 + 4
N < q < 2∗ that

(
1

q
− 1

2

)
λΘ

∫

RN
u2

Θdx =

(
N − 2

2N
− 1

q

) ∫

RN
|∇uΘ|2 dx +

1

2N

∫

RN
Ṽ(x)u2

Θdx

+

(
1

2
− 1

q

) ∫

RN
V(x)u2

Θdx− β

q

∫

RN
(qF(uΘ)− f (uΘ)uΘ)) dx

≤ (N − 2)q− 2N

2Nq

∫

RN
|∇uΘ|2 dx +

∥Ṽ∥∞

2N
Θ +

(q− 2)∥V∥∞

2q
Θ

− β(q− p2)α

q
CN,p1

Θ
2p1−N(p1−2)

4

(∫

RN
|∇uΘ|2 dx

) N(p1−2)
4

→ −∞ as Θ→ 0,
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since
(N−2)q−2N

2Nq < 0. Therefore, if uΘ ̸= 0 for Θ > 0 small there exists Θ0 > 0 such that λΘ > 0

for 0 < Θ < Θ0.

In order to complete the proof, we consider the case that there is a sequence Θk → 0 such

that uΘk
= 0 for any k. Assume without loss of generality that uΘ = 0 for any Θ ∈ (0, Θ1). Let

xr,Θ ∈ Ωr be such that ur,Θ (xr,Θ) = maxΩr
ur,Θ. In view of (3.26), there holds |xr,Θ| → ∞ as

r → ∞. Otherwise, there exists x0 ∈ R such that, up to a subsequence, xr,Θ → x0, and hence

uΘ(x0) ≥ dΘ > 0. This contradicts uΘ = 0. We claim that dist(xr,Θ, ∂Ωr) → ∞ as r → ∞.

Arguing by contradiction we assume that lim infr→∞ dist(xr,Θ, ∂Ωr) = l < ∞. It follows from

(3.26) that l > 0. Let wr(x) = ur,Θ(x + xr,Θ) for any x ∈ Σr := {x ∈ RN : x + xr,Θ ∈ Ωr}.
Then wr is bounded in H1(RN), and there is w ∈ H1(RN) such that wr ⇀ w as r → ∞. By

the regularity theory of elliptic partial equations and lim infr→∞ ur,Θ (xr,Θ) > dΘ > 0, we infer

that w(0) ≥ dΘ > 0. Assume without loss of the generality that, up to a subsequence,

lim
r→∞

xr,Θ

|xr,Θ|
= e1.

Setting

Σ =
{

x ∈ R
N : x · e1 < l

}
=
{

x ∈ R
N : x1 < l

}
,

we have φ(· − xr,Θ) ∈ C∞
c (Ωr) for any φ ∈ C∞

c (Σ) and r large enough. It then follows that
∫

Ωr

∇ur,Θ∇φ (· − xr,Θ) dx +
∫

Ωr

Vur,Θφ (· − xr,Θ) dx + λr,Θ

∫

Ωr

ur,Θφ (· − xr,Θ) dx

=
∫

Ωr

|ur,Θ|q−2 ur,Θφ (· − xr,Θ) dx + β
∫

Ωr

f (ur,Θ)φ (· − xr,Θ) dx. (3.30)

Since |xr,Θ| → ∞ as r → ∞, it holds
∣∣∣∣
∫

Ωr

Vur,Θφ (· − xr,Θ) dx

∣∣∣∣ ≤
∫

Supp φ
|V (·+ xr,Θ)wrφ| dx

≤ ∥wr∥2∗ ∥φ∥2∗

(∫

Supp φ
|V (·+ xr,Θ)|

N
2 dx

) 2
N

≤ ∥wr∥2∗ ∥φ∥2∗



∫

RN\B |xr,Θ |
2

|V| N
2 dx




2
N

→ 0 as r → ∞. (3.31)

Letting r → ∞ in (3.30), we obtain for φ ∈ C∞
c (Σ):

∫

Σ
∇w · ∇φdx + λΘ

∫

Σ
wφdx =

∫

Σ
|w|q−2wφdx + β

∫

Σ
f (w)φdx.

Thus w ∈ H1
0(Σ) is a weak solution of the equation

−∆w + λΘw = |w|q−2w + β f (w) in Σ. (3.32)

Hence we obtain a nontrivial nonnegative solution of (3.32) on a half space which is impossible

by the Liouville theorem (see [17]). This proves that dist (xr,Θ, ∂Ωr)→ ∞ as r → ∞. A similar

argument as above shows that (3.32) holds for Σ = RN . Now we argue as in the case uΘ ̸= 0

above that there exists Θ2 such that λΘ > 0 for any 0 < Θ < Θ2.

Setting Θ̄ = min {Θ0, Θ1, Θ2}, the proof is complete.

Proof of Theorem 1.3. The proof is an immediate consequence of Lemmas 3.5, 3.6 and 3.7.
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4 Proof of Theorem 1.4

In this section, we assume that the assumptions of Theorem 1.4 hold. Since β > 0,

Ir(u) ≥
1

2

(
1− ∥V−∥ N

2
S−1

) ∫

Ωr

|∇u|2dx− CN,qΘ
2q−N(q−2)

4

q

(∫

Ωr

|∇u|2dx

) N(q−2)
4

− αβCN,p1
Θ

2p1−N(p1−2)
4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

= h1(t),

where

h1(t) :=
1

2

(
1− ∥V−∥ N

2
S−1

)
t2 − CN,qΘ

2q−N(q−2)
4

q
t

N(q−2)
2 − αβCN,p1

Θ
2p1−N(p1−2)

4 t
N(p1−2)

2

= t
N(p1−2)

2


1

2

(
1− ∥V−∥ N

2
S−1

)
t

4−N(p1−2)
2 − CN,qΘ

2q−N(q−2)
4

q
t

N(q−p1)
2




− αβCN,p1
Θ

2p1−N(p1−2)
4 t

N(p1−2)
2 .

Consider

ψ(t) :=
1

2

(
1− ∥V−∥ N

2
S−1

)
t

4−N(p1−2)
2 − CN,qΘ

2q−N(q−2)
4

q
t

N(q−p1)
2 .

Note that ψ admits a unique maximum at

t̄ =




q(4− N(p1 − 2))
(

1− ∥V−∥ N
2

S−1
)

2N(q− p1)CN,q




2
N(q−2)−4

Θ
N(q−2)−2q

2(N(q−2)−4) .

By a direct calculation, we obtain

ψ(t̄) =

[
1− ∥V−∥ N

2
S−1

2N(q− p1)

] N(q−p1)
N(q−2)−4 [

q(4− N(p1 − 2))

CN,q

] 4−N(p1−2)
N(q−2)−4

[N(q− 2)− 4] .

Hence,

ψ(t̄) > αβCN,p1
Θ

2p1−N(p1−2)
4

as long as

ΘV =

[
1− ∥V−∥ N

2
S−1

2N(q− p1)

] N
2 [

q(4− N(p1 − 2))

CN,q

] 4−N(p1−2)
2(q−p1)

[
N(q− 2)− 4

αβCN,p1

] N(q−2)−4
2(q−p1)

.

Now, let 0 < Θ < ΘV be fixed, we obtain

ψ(t̄) > αβCN,p1
Θ

2p1−N(p1−2)
4 (4.1)

and h1(t̄) > 0. In view of 2 < p1 < 2 + 4
N < q < 2∗ and (4.1), there exist 0 < R1 < TΘ < R2

such that h1(t) < 0 for 0 < t < R1 and for t > R2, h1(t) > 0 for R1 < t < R2, and h1 (TΘ) =

maxt∈R+ h1(t) > 0.
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Define

Vr,Θ =
{

u ∈ Sr,Θ : ∥∇u∥2
2 ≤ T2

Θ

}
.

Let θ be the principal eigenvalue of operator −∆ with Dirichlet boundary condition in Ω, and

let |Ω| be the volume of Ω.

Lemma 4.1.

(i) If r <
√

CΘ
TΘ

, then Vr,Θ = ∅.

(ii) If

r > max





√
CΘ

TΘ

,




θ
(

1 + ∥V∥ N
2

S−1
)

2α1β
Θ

2−p2
2 |Ω|

p2−2
2




2
N(p2−2)+4





,

then Vr,Θ ̸= ∅ and

er,Θ := inf
u∈Vr,Θ

Ir(u) < 0

is attained at some interior point ur > 0 of Vr,Θ. As a consequence, there exists a Lagrange

multiplier λr ∈ R such that (λr, ur) is a solution of (2.1). Moreover lim infr→∞ λr > 0 holds

true.

Proof. (i) The Poincaré inequality implies there exists a positive constant C (only depending

on Ω) such that ∫

Ωr

|∇u|2dx =
1

r2

∫

Ω
|∇u|2dx ≥ C

r2

∫

Ω
|u|2dx =

CΘ

r2

for any u ∈ Sr,Θ. Since TΘ is independent of r, there holds Vr,Θ = ∅ if and only if r <
√

CΘ
TΘ

.

(ii) Let v1 ∈ S1,Θ be the positive normalized eigenfunction corresponding to θ. Setting

rΘ = max





√
CΘ

TΘ

,




θ
(

1 + ∥V∥ N
2

S−1
)

2α1β
Θ

2−p2
2 |Ω|

p2−2
2




2
N(p2−2)+4





. (4.2)

Now, we construct for r > rΘ a function ur ∈ Sr,Θ such that ur ∈ Vr,Θ and Ir (ur) < 0. Clearly,

∫

Ω
|∇v1|2 dx = θΘ, Θ =

∫

Ω
|v1|2 dx ≤

(∫

Ω
|v1|p2 dx

) 2
p2 |Ω|

p2−2
p2 .

Define ur ∈ Sr,Θ by ur(x) = r−
N
2 v1

(
r−1x

)
for x ∈ Ωr. Then

∫

Ωr

|∇ur|2 dx = r−2θΘ and
∫

Ωr

|ur|p2 dx ≥ r
N(2−p2)

2 Θ
p2
2 |Ω|

2−p2
2 . (4.3)

According to ( f2), there exists a constant α1 > 0 such that

F(τ) ≥ α1τp2 . (4.4)

By (4.2), (4.3), (4.4), 2 < p2 < 2 + 4
N and a direct calculation we have ur ∈ Vr,Θ and

Ir (ur) ≤
1

2

(
1 + ∥V∥ N

2
S−1

)
r−2θΘ− α1βr

N(2−p2)
2 Θ

p2
2 |Ω|

2−p2
2

< 0.
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It then follows from the Gagliardo–Nirenberg inequality that

Ir (ur) ≥
1

2

(
1− ∥V−∥ N

2
S−1

) ∫

Ωr

|∇u|2dx− CN,p1
βΘ

2p1−N(p1−2)
4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

− CN,q

q
Θ

2q−N(q−2)
4

(∫

Ωr

|∇u|2dx

) N(q−2)
4

. (4.5)

As a consequence Ir is bounded from below in Vr,Θ. By the Ekeland principle there exists a

sequence {un,r} ⊂ Vr,Θ such that

Ir(un,r)→ inf
u∈Vr,Θ

Ir(u), I′r(un,r)|Tun ,rSr,Θ
→ 0 as n→ ∞.

Consequently there exists ur ∈ H1
0(Ωr) such that un,r ⇀ ur in H1

0(Ωr) and

un,r → ur in Lk(Ωr) for all 2 ≤ k < 2∗.

Moreover, ∥∇ur∥2
2 ≤ lim infn→∞ ∥∇un,r∥2

2 ≤ T2
Θ, that is, ur ∈ Vr,Θ. Note that

∫

Ωr

Vu2
n,rdx →

∫

Ωr

Vu2
r dx as n→ ∞,

hence

er,Θ ≤ Ir(ur) ≤ lim inf
n→∞

Ir(un,r) = er,Θ.

It follows that un,r → ur in H1
0 (Ωr), so Ir(ur) < 0. Therefore u is an interior point of Vr,Θ

because Ir(u) ≥ h1(TΘ) > 0 for any u ∈ ∂Vr,Θ by (4.5). The Lagrange multiplier theorem

implies that there exists λr ∈ R such that (λr, ur) is a solution of (2.1). Moreover,

λrΘ =
∫

Ωr

|ur|q dx + β
∫

Ωr

f (ur)urdx−
∫

Ωr

|∇ur|2 dx−
∫

Ωr

Vu2
r dx

=
∫

Ωr

|ur|q dx + β
∫

Ωr

f (ur)urdx− 2

q

∫

Ωr

|ur|qdx− 2β
∫

Ωr

F(ur)dx− 2Ir(ur)

> −2Ir(ur) = −2er,Θ. (4.6)

It follows from the definition of er,Θ that er,Θ is nonincreasing with respect to r. Hence,

er,Θ ≤ erΘ,Θ < 0 for any r > rΘ and 0 < Θ < ΘV . In view of (4.6), we have lim infr→∞ λr > 0.

Finally, the strong maximum principle implies ur > 0.

Proof of Theorem 1.4. The proof is a direct consequence of Lemma 4.1 and Lemma 3.6.

5 Proof of Theorem 1.5

In this subsection we assume that the assumptions of Theorem 1.5 hold. For s ∈
[

1
2 , 1
]
, β > 0,

we define the functional Jr,s : Sr,Θ → R by

Jr,s(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx− s

(
1

q

∫

Ωr

|u|qdx + β
∫

Ωr

F(u)dx

)
.

Note that if u ∈ Sr,Θ is a critical point of Jr,s then there exists λ ∈ R such that (λ, u) is a

solution of the problem



−∆u + Vu + λu = s|u|q−2u + sβ f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr,

(5.1)
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Lemma 5.1. For 0 < Θ < Θ̃V where Θ̃V is defined in Theorem 1.5, there exist r̃Θ > 0 and u0, u1 ∈
SrΘ,Θ such that

(i) For r > r̃Θ and s ∈
[

1
2 , 1
]

we have Jr,s

(
u1
)
≤ 0 and

Jr,s

(
u0
)
<

N(q− 2)− 4

4




2
(

1− ∥V−∥ N
2

S
)

N(q− 2)




N(q−2)
N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4 ,

where

A =

(
CN,q(q− 2)(N(q− 2)− 4)

q(p1 − 2)(4− N(p1 − 2))
+

CN,q

q

)
.

Moreover,

∥∥∇u0
∥∥2

2
<




2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A




4
N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4

and

∥∥∥∇u1
∥∥∥

2

2
>




2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A




4
N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4 .

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =




2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A




4
N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4 ,

then there holds

Jr,s(u) ≥
N(q− 2)− 4

4




2
(

1− ∥V−∥ N
2

S
)

N(q− 2)




N(q−2)
N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4 .

(iii) Let

mr,s(Θ) = inf
γ∈Γr,Θ

sup
t∈[0,1]

Jr,s(γ(t)),

where

Γr,Θ =
{

γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1
}

.

Then

mr,s(Θ) ≥ N(q− 2)− 4

4




2
(

1− ∥V−∥ N
2

S
)

N(q− 2)




N(q−2)
N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4

and

mr,s(Θ) ≤ N(q− 2)− 4

2




θ
(

1 + ∥V∥ N
2

S−1
)

N(q− 2)




N(q−2)
N(q−2)−4

(4q)
4

N(q−2)−4 |Ω|
2(q−2)

N(q−2)−4 Θ
N(q−2)−2q
N(q−2)−4 .

where θ is the principal eigenvalue of −∆ with Dirichlet boundary condition in Ω.
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Proof. Let v1 ∈ S1,Θ be the positive normalized eigenfunction of −∆ with Dirichlet boundary

condition in Ω associated to θ, then we have

∫

Ω
|∇v1|2 dx = θΘ. (5.2)

By the Hölder inequality, we know

∫

Ω
|v1(x)|p2 dx ≥ Θ

p2
2 · |Ω|

2−p2
2 . (5.3)

Setting vt(x) = t
N
2 v1(tx) for x ∈ B 1

t
and t > 0. Using (4.4), (5.2), (5.3) and 1

2 ≤ s ≤ 1, we get

J 1
t ,s (vt) ≤

1

2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− β

2
α1t

N(p2−2)
2

∫

Ω
|v1|p2 dx− 1

2q
t

N(q−2)
2 Θ

q
2 · |Ω|

2−q
2

≤ h2(t), (5.4)

where

h2(t) =
1

2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− 1

2q
t

N(q−2)
2 Θ

q
2 · |Ω|

2−q
2 .

A simple computation shows that h2(t0) = 0 for

t0 :=
[(

1 + ∥V∥ N
2

S−1
)

qθΘ
2−q

2 |Ω|
q−2

2

] 2
N(q−2)−4

and h2(t) < 0 for any t > t0, h2(t) > 0 for any 0 < t < t0. Moreover, h2(t) achieves its

maximum at

tΘ =




4q
(

1 + ∥V∥ N
2

S−1
)

θ

N(q− 2)
Θ

2−q
2 |Ω|

q−2
2




2
N(q−2)−4

.

This implies

Jr,s(vt0) = J 1
t0

,s(vt0) ≤ h2(t0) = 0 (5.5)

for any r ≥ 1
t0

and s ∈
[

1
2 , 1
]
. There exists 0 < t1 < tΘ such that for any t ∈ [0, t1],

h2(t) <
N(q− 2)− 4

4




2
(

1− ∥V−∥ N
2

S
)

N(q− 2)




N(q−2)
N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4 . (5.6)

On the other hand, it follows from (3.5), the Gagliardo–Nirenberg inequality and the Hölder

inequality that

Jr,s(u) ≥
1

2

(
1− ∥V−∥ N

2
S−1

) ∫

Ωr

|∇u|2dx− CN,qΘ
2q−N(q−2)

4

q

(∫

Ωr

|∇u|2dx

) N(q−2)
4

− αβCN,p1
Θ

2p1−N(p1−2)
4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

. (5.7)
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Define

g1(t) :=
1

2

(
1− ∥V−∥ N

2
S−1

)
t− CN,qΘ

2q−N(q−2)
4

q
t

N(q−2)
4 − αβCN,p1

Θ
2p1−N(p1−2)

4 t
N(p1−2)

4

= t
N(p1−2)

4


1

2

(
1− ∥V−∥ N

2
S−1

)
t

4−N(p1−2)
4 − CN,qΘ

2q−N(q−2)
4

q
t

N(q−p1)
4




− αβCN,p1
Θ

2p1−N(p1−2)
4 t

N(p1−2)
4 .

In view of 2 < p < 2 + 2
N < q < 2∗ and the definition of Θ̃V , there exist 0 < l1 < lM < l2 such

that g1(t) < 0 for any 0 < t < l1 and t > l2, g1(t) > 0 for l1 < t < l2 and g1 (lM) = max
t∈R+

g1(t) >

0. Let

t2 =

(
αβqCN,p1

(p1 − 2)(4− N(p1 − 2))

CN,q(q− 2)(N(q− 2)− 4)

) 4
N(q−p1)

Θ
N−2

N .

Then by a direct calculation, we have g′′1 (t) ≤ 0 if and only if t ≥ t2. Hence

max
t∈R+

g1(t) = max
t∈[t2,∞)

g1(t).

Note that for any t ≥ t2,

g1(t) =
1

2

(
1− ∥V−∥ N

2
S−1

)
t− CN,qΘ

2q−N(q−2)
4

q
t

N(q−2)
4 − αβCN,p1

Θ
2p1−N(p1−2)

4 t
N(p1−2)

4

=
1

2

(
1− ∥V−∥ N

2
S−1

)
t− αβCN,p1

Θ
(q−p1)(N−2)

4 ·Θ
2q−N(q−2)

4 t
N(p1−2)

4

− CN,qΘ
2q−N(q−2)

4

q
t

N(q−2)
4

≥ 1

2

(
1− ∥V−∥ N

2
S−1

)
t−
(

CN,q(q− 2)(N(q− 2)− 4)

q(p1 − 2)(4− N(p1 − 2))
+

CN,q

q

)
Θ

2q−N(q−2)
4 · t

N(q−2)
4

=: g2(t). (5.8)

Now, we will determine the value of Θ̃V . In fact, g1 (lM) = maxt∈R+ g1(t) > 0 as long as

g2(t2) > 0, that is,

g2(t2) =
1

2

(
1− ∥V−∥ N

2
S−1

)( αβqCN,p1

CN,q Ap1,q

) 4
N(q−p1)

Θ
N−2

N −
(

CN,q

q
Ap1,q +

CN,q

q

)
·Θ

·
(

αβqCN,p1

CN,q Ap1,q

) q−2
q−p1

> 0,

where

Ap1,q =
(q− 2)(N(q− 2)− 4)

(p1 − 2)(4− N(p1 − 2))
.

Hence, we take

Θ̃V =
1

2

(
1− ∥V−∥ N

2
S−1

) N
2

(
CN,q

q
Ap1,q +

CN,q

q

)− N
2
(

αβqCN,p1

CN,q Ap1,q

) N(q−2)−4
2N(q−p1)

.
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Let

A =

(
CN,q(q− 2)(N(q− 2)− 4)

q(p1 − 2)(4− N(p1 − 2))
+

CN,q

q

)

and

tg =




2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A




4
N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4 ,

so that tg > t2 by the definition of Θ̃V , maxt∈[t2,∞) g2(t) = g2(tg) and

max
t∈R+

g1(t) ≥ max
t∈[t2,∞)

g2(t)

=
(N(q− 2)− 4)

4




2
(

1− ∥V−∥ N
2

S
)

N(q− 2)




N(q−2)
N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4 .

Set r̄Θ = max
{

1
t1

,
√

2θΘ
tg

}
, then v 1

r̄Θ

∈ Sr,Θ for any r > r̄Θ, and

∥∥∥∥∇v 1
r̄Θ

∥∥∥∥
2

2

=

(
1

r̄Θ

)2

∥∇v1∥2
2 < tg =




2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A




4
N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4 . (5.9)

Moreover,

Jr̄Θ,s

(
v 1

r̄Θ

)
≤ h2

(
1

r̄Θ

)
≤ h2 (t1) . (5.10)

Let u0 = v 1
τ̄Θ

, u1 = vt0 and

r̃Θ = max

{
1

t0
, r̄Θ

}
.

Then the statement (i) holds by (5.5), (5.6), (5.9), (5.10).

(ii) holds by (5.8) and a direct calculation.

(iii) In view of Jr,s

(
u1
)
≤ 0 for any γ ∈ Γr,Θ and the definition of t0, we have

∥∇γ(0)∥2
2 < tg < ∥∇γ(1)∥2

2.

It then follows from (5.8) that

max
t∈[0,1]

Jr,s(γ(t)) ≥ g2

(
tg

)

=
N(q− 2)− 4

4




2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)




N(q−2)
N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4

for any γ ∈ Γr,Θ, hence the first inequality in (iii) holds. We define a path γ : [0, 1]→ Sr,Θ by

γ(t) : Ωr → R, x 7→
(

τt0 + (1− τ)
1

r̃ Θ

) N
2

v1

((
τt0 + (1− τ)

1

r̃Θ

)
x

)
.

Then γ ∈ Γr,Θ, and the second inequality in (iii) follows from (5.4).
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Lemma 5.2. Assume 0 < Θ < Θ̃V where Θ̃V is given in Theorem 1.5. Let r > r̃Θ, where r̃Θ is defined

in Lemma 5.1. Then problem (5.1) admits a solution (λr,s, ur,s) for almost every s ∈
[

1
2 , 1
]
. Moreover,

there hold ur,s > 0 and Jr,s (ur,s) = mr,s(Θ).

Proof. The proof is similar to the Lemma 3.3. We omit it here.

Lemma 5.3. For fixed Θ > 0 the set of solutions u ∈ Sr,Θ of (5.1) is bounded uniformly in s and r.

Proof. Since u is a solution of (5.1), we have

∫

Ωr

|∇u|2dx +
∫

Ωr

Vu2dx = s
∫

Ωr

|u|qdx + sβ
∫

Ωr

f (u)udx− λ
∫

Ωr

|u|2dx.

The Pohozaev identity implies

N − 2

2N

∫

Ωr

|∇u|2dx +
1

2N

∫

∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫

Ωr

Ṽ(x)u2 +
1

2

∫

Ωr

Vu2dx

= −λ

2

∫

Ωr

|u|2dx +
s

q

∫

Ωr

|u|qdx + sβ
∫

Ωr

F(u)dx.

It then follows from β > 0 and ( f2) that

1

N

∫

Ωr

|∇u|2dx− 1

2N

∫

∂Ωr

|∇u|2(x · n)dσ− 1

2N

∫

Ωr

(∇V · x)u2dx

=
(q− 2)s

2q

∫

Ωr

|u|qdx + s
∫

Ωr

(
β

2
f (u)u− βF(u))dx

≥ q− 2

2

(
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx−mr,s(Θ)

)
+ s

β(p2 − q)

2

∫

Ωr

F(u)dx.

Using Gagliardo–Nirenberg inequality, (3.5) and (iii) in Lemma 5.1, we have

q− 2

2
mr,s(Θ) ≥ N(p2 − 2)− 4

4N

∫

Ωr

|∇u|2dx−Θ

(
1

2N
∥∇V · x∥∞ +

p2 − 2

4
∥V∥∞

)

+
sαβ(p2 − q)

2
CN,p1

Θ
2p1−N(p1−2)

4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

.

Since 2 < p1 < 2 + 4
N , we can bound

∫
Ωr
|∇u|2dx uniformly in s and r.

Lemma 5.4. Assume 0 < Θ < Θ̃V , where Θ̃V is given in Theorem 1.5, and let r > r̃Θ, where r̃Θ is

defined in Lemma 5.1. Then the following hold:

(i) Equation (2.1) admits a solution (λr,Θ, ur,Θ) for every r > r̃Θ such that ur,Θ > 0 in Ωr.

(ii) There is 0 < Θ̄ ≤ Θ̃V such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ < Θ̄.

Proof. The proof of (i) is similar to that of Lemma 3.5, we omit it. As be consider H1
0 (Ωr) as

a subspace of H1(RN) for every r > 0. In view of Lemma 5.3, there are λΘ and uΘ ∈ H1(RN)

such that, up to a subsequence,

ur,Θ ⇀ uΘ in H1(RN) and lim
r→∞

λr,Θ → λΘ.



Normalized solutions for Schrödinger equations with potential and general nonlinearities 29

Arguing by contradiction, we assume that λΘn
≤ 0 for some sequence Θn → 0. Let θr be the

principal eigenvalue of −∆ with Dirichlet boundary condition in Ωr and let vr > 0 be the

corresponding normalized eigenfunction. Testing (2.1) with vr, it holds

(θr + λr,Θn)
∫

Ωr

ur,Θn
vrdx +

∫

Ωr

Vur,Θn
vrdx ≥ 0.

In view of
∫

Ωr
ur,Θn

vrdx > 0 and θr = r−2θ1, there holds

max
x∈RN

V + λr,Θn
+ r−2θ1 ≥ 0.

Hence there exists C > 0 independent of n such that |λΘn | ≤ C for any n.

Case 1. There is subsequence denoted still by {Θn} such that uΘn
= 0. We first claim that

there exists dn > 0 for any n such that

lim inf
r→∞

sup
z∈RN

∫

B(z,1)
u2

r,Θn
dx ≥ dn. (5.11)

Otherwise, the concentration compactness principle implies for every n that

ur,Θn
→ 0 in Lt(RN) as r → ∞, for all 2 < t < 2∗.

By the diagonal principle, (2.1) and |λr,Θn | ≤ 2C for large r, there exists rn → ∞ such that

∫

Ωr

|∇urn,Θn |2 dx ≤ C

for some C independent of n, contradicting (iii) in Lemma 5.1 for large n. As a consequence

(5.11) holds, and there is zr,Θn
∈ Ωr with |zr,Θn | → ∞ such that

∫

B(zr,Θn ,1)
u2

r,Θn
dx ≥ dn

2
.

Moreover, dist (zr,Θn
, ∂Ωr)→ ∞ as r → ∞ by an argument similar to that in Lemma 3.7. Now,

for n fixed let vr(x) = ur,Θn (x + zr,Θn) for x ∈ Σr :=
{

x ∈ RN : x + zr,Θn
∈ Ωr

}
. It follows

from Lemma 5.3 that there is v ∈ H1(RN) with v ̸= 0 such that vr ⇀ v. Observe that for every

φ ∈ C∞
c

(
RN
)

there is r large such that φ (· − zr,Θn) ∈ C∞
c (Ωr) due to dist (zr,Θn

, ∂Ωr) → ∞ as

r → ∞. It follows that
∫

Ωr

∇ur,Θn
∇φ (· − zr,Θn) dx +

∫

Ωr

Vur,Θn
φ (· − zr,Θn) dx + λr,Θn

∫

Ωr

ur,Θn
φ (· − zr,Θn) dx

=
∫

Ωr

|ur,Θn |q−2 ur,Θn
φ (· − zr,Θn) dx + β

∫

Ωr

f (ur,Θn
)φ (· − zr,Θn) dx. (5.12)

Using |zr,Θn
| → ∞ as r → ∞, it follows that

∣∣∣∣
∫

Ωr

Vur,Θn
φ (· − zr,Θn) dx

∣∣∣∣ ≤
∫

Supp φ
|V (·+ zr,Θn) vrφ| dx

≤ ∥vr∥2∗ ∥φ∥2∗



∫

RN\B |zr,Θn
|

2

|V| N
2 dx




2
N

→ 0 as r → ∞.
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Letting r → ∞ in (5.12), we get for every φ ∈ C∞
c (RN) :

∫

RN
∇v · ∇φdx + λΘn

∫

RN
vφdx =

∫

RN
|v|q−2vφdx + β

∫

RN
f (v)φdx.

Therefore v ∈ H1(RN) is a weak solution of the equation

−∆v + λΘn
v = β f (v) + |v|q−2v in R

N

and ∫

RN
|∇v|2dx + λΘn

∫

RN
|v|2dx = β

∫

RN
f (v)vdx +

∫

RN
|v|qdx.

The Pohozaev identity implies

N − 2

2N

∫

RN
|∇v|2dx +

λΘn

2

∫

RN
|v|2dx = β

∫

RN
F(v)dx +

1

q

∫

RN
|v|qdx,

hence

λΘn

N

∫

RN
|v|2dx

=
β(N − 2)

2N

∫

RN

[
2N

N − 2
F(v)− f (v)v

]
dx +

2N − q(N − 2)

2Nq

∫

RN
|v|qdx

≥ β(N − 2)

2N

(
2N

N − 2
− p1

) ∫

RN
F(v)dx +

2N − q(N − 2)

2Nq

∫

RN
|v|qdx. (5.13)

We have λΘn
> 0 because of 2 < p1 < 2 + 4

N < q < 2∗, which is a contradiction.

Case 2. uΘn
̸= 0 for n large. Note that uΘn

satisfies

−∆uΘn
+ VuΘn

+ λΘn
uΘn

= β f (uΘn
) + |uΘn |q−2 uΘn

. (5.14)

If vr,Θn
:= ur,Θn

− uΘn
satisfies

lim sup
r→∞

max
z∈RN

∫

B(z,1)
v2

r,Θn
dx = 0, (5.15)

then the concentration compactness principle implies ur,Θn
→ uΘn

in Lt(RN) for any 2 < t <

2∗. It then follows from (2.1) and (5.14) that
∫

Ωr

|∇ur,Θn |2 dx + Θnλr,Θn
= β

∫

Ωr

f (ur,Θn
)ur,Θn

dx +
∫

Ωr

|ur,Θn |q dx−
∫

Ωr

Vu2
r,Θn

dx

→ β
∫

RN
f (uΘn

)ur,Θn
dx +

∫

RN
|uΘn |q dx−

∫

RN
Vu2

Θn
dx

=
∫

RN
|∇uΘn |2 dx + λΘn

∫

RN
u2

Θn
dx.

Using λr,Θn
→ λΘn

as r → ∞, we further have

∫

Ωr

|∇ur,Θn |2 dx + ΘnλΘn
→
∫

RN
|∇uΘn |2 dx + λΘn

∫

RN
u2

Θn
dx as r → ∞. (5.16)

Using (5.16), (iii) in Lemma 5.1 and |λΘn | ≤ C for large n, there holds

∫

RN
|∇uΘn |2 dx → ∞ as n→ ∞.
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By (5.14) and the Pohozaev identity

N − 2

2N

∫

RN
|∇uΘn |2 dx +

1

2N

∫

RN
Ṽu2

Θn
dx +

1

2

∫

RN
V(x)u2

Θn
dx +

λΘ

2

∫

RN
u2

Θn
dx

=
1

q

∫

RN
|uΘn |q dx + β

∫

RN
F(uΘn

)dx.

It holds that

0 ≤ (2− q)λΘn

2q

∫

RN
u2

Θn
dx

≤ (N − 2)q− 2N

2Nq

∫

RN
|∇uΘn |2 dx +

∥Ṽ∥∞

2N
Θn +

(q− 2)∥V∥∞

2q
Θn

→ −∞ as n→ ∞.

Therefore (5.15) cannot occur. Consequently there exist dn > 0 and zr,Θn
∈ Ωr with |zr,Θn | → ∞

as r → ∞ such that ∫

B(zr,Θn ,1)
v2

r,Θn
dx > dn.

Then ṽr,Θn
:= vr,Θn (·+ zr,Θn) ⇀ ṽΘn

̸= 0, and ṽΘn
is a nonnegative solution of

−∆v + λΘn
v = β f (v)v + |v|q−2v in R

N .

In fact, we have lim infr→∞ dist (zr,Θn
, ∂Ωr) = ∞ by the Liouville theorem on the half space.

It follows from an argument similar to that of (5.13) that λΘn
> 0 for large n, which is a

contradiction.

Proof of Theorem 1.5. The proof is a direct consequence of Lemma 5.4 and Lemma 3.6.

6 Proof of Theorem 1.9

In this section we assume that the assumptions of Theorem 1.9 hold. Define the functional

Ir : Sr,Θ → R by

Ir(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx− 1

2∗

∫

Ωr

|u|2∗dx− β
∫

Ωr

F(u)dx. (6.1)

Note that if u ∈ Sr,Θ is a critical point of Ir,s, then there exists λ ∈ R such that (λ, u) is a

solution of the equation




−∆u + Vu + λu = |u|2∗−2u + β f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(6.2)

Since β > 0,

Ir(u) ≥
1

2

(
1− ∥V−∥ N

2
S−1

) ∫

Ωr

|∇u|2dx− 1

2∗ · S 2∗
2

(∫

Ωr

|∇u|2dx

) 2∗
2

− αβCN,p1
Θ

2p1−N(p1−2)
4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

= h̃1(t),
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where

h̃1(t) :=
1

2

(
1− ∥V−∥ N

2
S−1

)
t2 − 1

2∗ · S 2∗
2

t2∗ − αβCN,p1
Θ

2p1−N(p1−2)
4 t

N(p1−2)
2 .

Consider

ψ̂(t) :=
1

2

(
1− ∥V−∥ N

2
S−1

)
t2 − 1

2∗ · S 2∗
2

t2∗ .

Note that ψ̂ admits a unique maximum at

t̂ =
[(

1− ∥V−∥ N
2

S−1
)

S
2∗
2

] 1
2∗−2

.

By a direct calculation, we obtain

ψ̂(t̂) =
1

N

(
1− ∥V−∥ N

2
S−1

) N
2

S
N
2 .

Hence,

ψ̂(t̂) > αβCN,p1
Θ

2p1−N(p1−2)
4 t̂

N(p1−2)
2

as long as

ΘV =

(
1

NαβCN,p1

) 4
2p1−N(p1−2) (

1− ∥V−∥ N
2

S−1
) N

2
S

N
2 ·

4−N(p1−2)
2p1−N(p1−2) .

Now, let 0 < Θ < ΘV be fixed, we obtain

ψ̂(t̂) > αβCN,p1
Θ

2p1−N(p1−2)
4 t̂

N(p1−2)
2

and h̃1(t̂) > 0. In view of 2 < p1 < 2+ 4
N < 2∗, there exist 0 < R̃1 < T̃Θ < R̃2 such that h̃1(t) <

0 for 0 < t < R̃1 and for t > R̃2, h̃1(t) > 0 for R̃1 < t < R̃2, and h̃1(T̃Θ) = maxt∈R+ h̃1(t) > 0.

Define

Ṽr,Θ =
{

u ∈ Sr,Θ : ∥∇u∥2
2 ≤ T̃Θ

2
}

.

Let θ be the principal eigenvalue of operator −∆ with Dirichlet boundary condition in Ω, and

let |Ω| be the volume of Ω.

Lemma 6.1.

(i) If r <
√

CΘ

T̃Θ

, then Ṽr,Θ = ∅.

(ii) If

r > max





√
CΘ

T̃Θ

,




θ
(

1 + ∥V∥ N
2

S−1
)

2α1β
Θ

2−p2
2 |Ω|

p2−2
2




2
N(p2−2)+4





then Ṽr,Θ ̸= ∅ and

ẽr,Θ := inf
u∈Ṽr,Θ

Ir(u) < 0

is attained at some interior point ur > 0 of Ṽr,Θ. As a consequence, there exists a Lagrange

multiplier λr ∈ R such that (λr, ur) is a solution of (6.1). Moreover lim infr→∞ λr > 0 holds

true.
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Proof. (i) The proof is similar to the Lemma 4.1. (ii) Let v1 ∈ S1,Θ be the positive normalized

eigenfunction corresponding to θ. Setting

rΘ = max





√
CΘ

T̃Θ

,




θ
(

1 + ∥V∥ N
2

S−1
)

2α1β
Θ

2−p2
2 |Ω|

p2−2
2




2
N(p2−2)+4





. (6.3)

Now, we construct for r > rΘ a function ur ∈ Sr,Θ such that ur ∈ Ṽr,Θ and Ir (ur) < 0. By (6.3),

(4.3), (4.4), 2 < p2 < 2 + 4
N and a direct calculation, we have ur ∈ Ṽr,Θ and

Ir (ur) ≤
1

2

∫

Ωr

|∇ur|2 dx +
1

2

∫

Ωr

Vu2
r dx− 1

2∗

∫

Ωr

|ur|2
∗

dx− α1β
∫

Ωr

|ur|p2 dx

≤ 1

2

(
1 + ∥V∥ N

2
S−1

)
r−2θΘ− α1βr

N(2−p2)
2 Θ

p2
2 |Ω|

2−p2
2

< 0.

It then follows from the Gagliardo–Nirenberg inequality that

Ir (ur) ≥
1

2

(
1− ∥V−∥ N

2
S−1

) ∫

Ωr

|∇u|2dx− CN,p1
βΘ

2p1−N(p1−2)
4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

− 1

2∗ · S 2∗
2

(∫

Ωr

|∇u|2dx

) 2∗
2

. (6.4)

As a consequence Ir is bounded from below in Ṽr,Θ. By the Ekeland principle there exists a

sequence {un,r} ⊂ Ṽr,Θ such that

Ir(un,r)→ inf
u∈Ṽr,Θ

Ir(u), I ′r(un,r)|Tun ,rSr,Θ
→ 0 as n→ ∞ (6.5)

Consequently there exists ur ∈ H1
0(Ωr) such that

un,r ⇀ ur in H1
0(Ωr)

and

un,r → ur in Lk(Ωr) for all 2 ≤ k < 2∗. (6.6)

We claim now that the weak limit ur does not vanish identically. Suppose by contradiction

that ur ≡ 0. Since {un,r} is bounded in H1(Ωr), up to a subsequence we have that ∥∇un,r∥2
2 →

ℓ ∈ R. Using ( f2), (6.5), (6.6), we have

⟨I ′r(un,r), un,r⟩ =
∫

Ωr

|∇un,r|2 dx +
∫

Ωr

Vu2
n,rdx−

∫

Ωr

|un,r|2
∗

dx− β
∫

Ωr

f (un,r)un,rdx

→ 0,

hence

∥un,r∥2∗
2∗ = ∥∇un,r∥2

2 → ℓ

as well. Therefore, by the Sobolev inequality ℓ ≥ Sℓ
2

2∗ , and we deduce that either ℓ = 0, or

ℓ ≥ S
N
2 . Let us suppose at first that ℓ ≥ SN/2. Since Ir(un,r)→ ẽr,Θ < 0, we have that

0 > ẽr,Θ + o(1) = Ir(un,r)

=
1

2

∫

Ωr

|∇un,r|2 dx +
1

2

∫

Ωr

Vu2
n,rdx− 1

2∗

∫

Ωr

|un,r|2
∗

dx− β
∫

Ωr

F(un,r)dx

=
1

N
∥∇un,r∥2

2 + o(1) =
ℓ

N
+ o(1),
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which is not possible. If instead ℓ = 0, we have ∥un,r∥2∗ → 0, ∥∇un,r∥2 → 0 and F(un,r) → 0.

But then Ir(un,r) → 0 ̸= ẽr,Θ, which gives again a contradiction. Thus, ur does not vanish

identically.

Since {un,r} is a bounded minimization sequence for Ir(un,r)|Sr,Θ
, there exists {λn} ⊂ R

such that for every ϕ ∈ H1(Ωr),
∫

Ωr

∇un,r · ∇ϕ +
∫

Ωr

Vun,r ϕ + λnun,r ϕ− β f (un,r)ϕ− |un,r|2
∗−2 un,r ϕ = o(1)∥ϕ∥ (6.7)

as n → ∞, by the Lagrange multipliers rule. Choosing ϕ = un,r, we deduce that {λn} is

bounded as well, and hence up to a subsequence λn → λr ∈ R. Moreover, passing to the limit

in (6.7) by weak convergence, we obtain

−∆ur + Vur + λrur = |ur|2
∗−2ur + β f (ur), x ∈ Ωr.

Recalling that vn,r = un,r − ur ⇀ 0 in H1
0(Ωr), we know

∥∇un,r∥2
2 = ∥∇ur∥2

2 + ∥∇vn,r∥2
2 + o(1).

By the Brézis–Lieb lemma [12], we have

∥un,r∥2∗
2∗ = ∥ur∥2∗

2∗ + ∥vn,r∥2∗
2∗ + o(1).

Moreover,

∥∇ur∥2
2 ≤ lim inf

n→∞
∥∇un,r∥2

2 ≤ T̃Θ

2
,

that is, ur ∈ Ṽr,Θ. Note that
∫

Ωr

Vu2
n,rdx →

∫

Ωr

Vu2
r dx as n→ ∞,

hence

∥vn,r∥2∗
2∗ = ∥∇vn,r∥2

2 → ℓ

as well. Therefore, ℓ ≥ Sℓ
2

2∗ , and we deduce that either ℓ = 0, or ℓ ≥ S
N
2 . Let us suppose at

first that ℓ ≥ SN/2. Since Ir(vn,r)→ 0, we have that

o(1) = Ir(vn,r)

=
1

2

∫

Ωr

|∇vn,r|2 dx +
1

2

∫

Ωr

Vv2
n,rdx− 1

2∗

∫

Ωr

|vn,r|2
∗

dx− β
∫

Ωr

F(vn,r)dx

=
1

2
∥∇vn,r∥2

2 + o(1) =
ℓ

N
+ o(1),

which is not possible. If instead ℓ = 0, we have that un,r → ur in H1
0 (Ωr), so Ir(ur) < 0.

Therefore u is an interior point of Ṽr,Θ because Ir(u) ≥ h̃1(T̃Θ) > 0 for any u ∈ ∂Ṽr,Θ by

(6.4). The Lagrange multiplier theorem implies that there exists λr ∈ R such that (λr, ur) is a

solution of (6.1). Moreover,

λrΘ =
∫

Ωr

|ur|2
∗

dx + β
∫

Ωr

f (ur)urdx− 2

2∗

∫

Ωr

|ur|2
∗
dx− 2β

∫

Ωr

F(ur)dx− 2Ir(ur)

=
2∗ − 2

2∗

∫

Ωr

|ur|2
∗

dx + β
∫

Ωr

[ f (ur)ur − 2F(ur)]dx− 2Ir(ur)

> −2Ir(ur) = −2ẽr,Θ. (6.8)
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It follows from the definition of ẽr,Θ that ẽr,Θ is nonincreasing with respect to r. Hence,

ẽr,Θ ≤ ẽrΘ,Θ < 0 for any r > rΘ and 0 < Θ < ΘV . In view of (6.8), we have

lim inf
r→∞

λr > 0.

Finally, the strong maximum principle implies ur > 0.

Proof of Theorem 1.9. The proof is a direct consequence of Lemma 6.1 and Lemma 3.6.

7 Proof of Theorem 1.10

In this subsection, we assume β ≤ 0 and the assumptions of Theorem 1.10 hold. Consider the

following equation




−∆u + Vu + λu = |u|2∗−2u + β f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(7.1)

For 1
2 ≤ s ≤ 1, we define the functional Ir,s : Sr,Θ → R by

Ir,s(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx− s

2∗

∫

Ωr

|u|2∗dx− β
∫

Ωr

F(u)dx. (7.2)

Note that if u ∈ Sr,Θ is a critical point of Ir,s, then there exists λ ∈ R such that (λ, u) is a

solution of the equation




−∆u + Vu + λu = s|u|2∗−2u + β f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(7.3)

Lemma 7.1. For any Θ > 0, there exist rΘ > 0 and u0, u1 ∈ SrΘ,Θ such that

(i) Ir,s(u1) ≤ 0 for any r > rΘ and s ∈
[

1
2 , 1
]
,

∥∥∇u0
∥∥2

2
<

(
1− ∥V−∥ N

2
S−1

) N−2
2

S
N
2 <

∥∥∥∇u1
∥∥∥

2

2

and

Ir,s

(
u0
)
<

1

N

(
1− ∥V−∥ N

2
S−1

) N
2

S
N
2 .

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =

(
1− ∥V−∥ N

2
S−1

) N−2
2

S
N
2 ,

then there holds

Ir,s(u) ≥
1

N

(
1− ∥V−∥ N

2
S−1

) N
2

S
N
2 .

(iii) Set

m̃r,s(Θ) = inf
γ∈Γ̃r,Θ

sup
t∈[0,1]

Ir,s(γ(t))

with

Γ̃r,Θ =
{

γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1
}

.
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Then
1

N

(
1− ∥V−∥ N

2
S−1

) N
2

S
N
2 ≤ m̃r,s(Θ) ≤ h(hΘ),

where h(hΘ) = maxt∈R+ h(t), the function h : R+ → R being defined by

h(t) =
1

2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− αβCN,p1

Θ
p1
2 θ

N(p1−2)
4 t

N(p1−2)
2 − 1

2 · 2∗ t2∗Θ
2∗
2 · |Ω| 2−2∗

2 .

Here θ is the principal eigenvalue of −∆ with Dirichlet boundary conditions in Ω, and |Ω| is the

volume of Ω.

Proof. (i) By the Hölder inequality,

∫

Ω
|v1(x)|2∗dx ≥ Θ

2∗
2 · |Ω| 2−2∗

2 . (7.4)

For x ∈ Ω 1
t

and t > 0, define vt(x) := t
N
2 v1(tx). Using (3.3), (7.4), (3.5) and 1

2 ≤ s ≤ 1, it holds

I 1
t ,s (vt) ≤

1

2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− αβCN,p1

Θ
p1
2 θ

N(p1−2)
4 t

N(p1−2)
2

− 1

2 · 2∗ t
N(2∗−2)

2 Θ
2∗
2 · |Ω| 2−2∗

2

=: h(t). (7.5)

Note that since 2 < p1 < 2 + 4
N < q = 2∗ and β ≤ 0 there exist 0 < hΘ < t0 such that

h (t0) = 0, h(t) < 0 for any t > t0, h(t) > 0 for any 0 < t < t0 and h (hΘ) = maxt∈R+ h(t). As

a consequence, there holds

Ir,s (vt0) = I 1
t0

,s (vt0) ≤ h (t0) = 0 (7.6)

for any r ≥ 1
t0

and s ∈
[

1
2 , 1
]
. Moreover, there exists 0 < t1 < hΘ such that

h(t) <
1

N

(
1− ∥V−∥ N

2
S−1

) N
2

S
N
2 (7.7)

for t ∈ [0, t1]. On the other hand, it follows from the Sobolev inequality and the Hölder

inequality that

Ir,s(u) ≥
1

2

(
1− ∥V−∥ N

2
S−1

) ∫

Ωr

|∇u|2dx− 1

2∗ · S 2∗
2

(∫

Ωr

|∇u|2dx

) 2∗
2

. (7.8)

Define

g(t) :=
1

2

(
1− ∥V−∥ N

2
S−1

)
t− 1

2∗ · S 2∗
2

t
2∗
2

and

t̃ =
(

1− ∥V−∥ N
2

S−1
) N−2

2
S

N
2 ,

it is easy to see that g is increasing on (0, t̃) and decreasing on (t̃, ∞), and

g(t̃) =
1

N

(
1− ∥V−∥ N

2
S−1

) N
2

S
N
2 .
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For r ≥ r̃Θ := max
{

1
t1

,
√

2θΘ
t̃

}
we have v 1

r̃Θ

∈ Sr,Θ and

∥∇v 1
r̃Θ

∥2
2 =

(
1

r̃Θ

)2

∥∇v1∥2
2 <

(
1− ∥V−∥ N

2
S−1

) N−2
2

S
N
2 . (7.9)

Moreover, there holds

Ir̃Θ,s

(
v 1

r̃Θ

)
≤ h

(
1

r̃Θ

)
≤ h (t1) . (7.10)

Setting u0 = v 1
r̃Θ

, u1 = vt0 and

rΘ = max

{
1

t0
, r̃Θ

}
. (7.11)

Since (7.6), (7.7), (7.8) and (7.9), then (i) holds.

(ii) By (7.8) and a direct calculation, (ii) holds.

(iii) Since Ir,s

(
u1
)
≤ 0 for any γ ∈ Γr,Θ, we have

∥∇γ(0)∥2
2 < t̃ < ∥∇γ(1)∥2

2.

It then follows from (7.8) that

max
t∈[0,1]

Ir,s(γ(t)) ≥ g(t̃) =
1

N

(
1− ∥V−∥ N

2
S−1

) N
2

S
N
2

for any γ ∈ Γ̃r,Θ, hence the first inequality in (iii) holds. Now we define a path γ ∈ Γ̃r,Θ by

γ(τ)(x) =

(
τt0 + (1− τ)

1

r̃Θ

) N
2

v1

((
τt0 + (1− τ)

1

r̃Θ

)
x

)

for τ ∈ [0, 1] and x ∈ Ωr. Then by (7.5) we have m̃r,s(Θ) ≤ h(hΘ), where h(hΘ) =

maxt∈R+ h(t). Note that hΘ is independent of r and s.

Using Proposition 3.2 to Ir,s, it follows that

A(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

V(x)u2dx− β
∫

Ωr

F(u)dx and B(u) =
1

2∗

∫

Ωr

|u|2∗dx.

Hence, for almost every s ∈
[

1
2 , 1
]
, there exists a bounded Palais–Smale sequence {un} satis-

fying

Ir,s (un)→ m̃r,s(Θ) and I ′r,s (un)
∣∣
Tun Sr,Θ

→ 0.

Next, we are devoted to proving compactness.

Lemma 7.2. If β ≤ 0 and the assumptions of Theorem 1.10 hold, then m̃r,s(Θ) <
ζ
N S

N
2 , where

ζ = s−
2

2∗−2 .

Proof. Let Uε be defined by Uε(x) :=
(

ε
ε2+|x|2

) N−2
2 (up to a scalar factor, Uε is the bubble

centered in the origin, with concentration parameter ε > 0, defined in (1.3)). Let also ϕ ∈
C∞

c (Ωr) be a radial cut-off function with ϕ ≡ 1 in B1, ϕ ≡ 0 in Bc
2, and ϕ radially decreasing.

We define

uε(x) := ϕ(x)Uε(x), and vε(x) :=
√

Θ
uε(x)

∥uε∥2
.
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Notice that uε ∈ C∞
c (Ωr), and vε ∈ Sr,Θ. Let us recall the following useful estimates (see

[27, Lemma A.1]):

∥∇uε∥2
2 = K1 + O

(
εN−2

)
, (7.12)

∥uε∥2
2∗ =

{
K2 + O

(
εN
)

, if N ≥ 4,

K2 + O
(
ε2
)

, if N = 3,
(7.13)

∥uε∥2
2 =





ε2K3 + O
(
εN−2

)
, if N ≥ 5,

ωε2| log ε|+ O
(
ε2
)

, if N = 4,

ω
(∫ 2

0 ϕ(r)dr
)

ε + O
(
ε2
)

, if N = 3,

(7.14)

∥uε∥q
q = εN− N−2

2 q
(

K4 + O
(

ε(N−2)q−N
))

if N ≥ 4 and q ∈ (2, 2∗) , and if N = 3 and q ∈ (3, 6). (7.15)

as ε → 0. Since Uε is extremal for the Sobolev inequality, we have that K1
K2

= S. Therefore,

using 1
2 ≤ s ≤ 1, we have

Ir,s(tvε) ≤
t2

2

∫

Ωr

|∇vε|2dx +
t2

2

∫

Ωr

Vv2
ε dx− st2∗

2∗

∫

Ωr

|vε|2
∗
dx− αβtp1

∫

Ωr

|vε|p1 dx

=: h3(t).

Clearly, h3(t) > 0 for t > 0 small and h3(t) → −∞ as t → ∞, so h3(t) attains its maximum at

some tε > 0 with h′3(tε) = 0. Then, observing that the function

t 7→ t2

2

∫

Ωr

|∇vε|2dx +
t2

2

∫

Ωr

Vv2
ε dx− st2∗

2∗

∫

Ωr

|vε|2
∗
dx− αβtp1

∫

Ωr

|vε|p1 dx

is increasing on the interval of


0,

[
−2∗αβ(p1 − 2)∥vε∥p1

p1

s(2∗ − 2)∥vε∥2∗
2∗

] 1
2∗−p1


 .

This fact combined with (7.12)-(7.15) implies that there exist δ1, δ2 > 0, independent of ε > 0,

such that

δ1 ≤ tε ≤ δ2.

Moreover, observing that the function

t 7→ t2

2

∫

Ωr

|∇vε|2dx− st2∗

2∗

∫

Ωr

|vε|2
∗
dx

is increasing on the interval of 
0,

(∥∇vε∥2
2

s∥vε∥2∗
2∗

) 1
2∗−2


 .
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Using (7.12)–(7.15) and the fact that K1
K2

= S, if N = 3, the same estimate holds eventually,

using ∥uε∥2
2∗ = K2 + O(ε2) instead of ∥uε∥2

2∗ = K2 + O(εN). Therefore, the maximum level is

h3(tε) ≤
t2
ε

2
∥∇vε∥2

2 +
t2
ε

2

∫

Ωr

Vv2
ε dx− st2∗

ε

2∗

∫

Ωr

|vε|2
∗
dx− αβt

p1
ε

∫

Ωr

|vε|p1 dx

≤ 1

Ns
2

2∗−2

(∥∇vε∥2
2

∥vε∥2
2∗

) 2∗
2∗−2

+

∫
Ωr

Vv2
ε dx

2

(∥∇vε∥2
2

s∥vε∥2∗
2∗

) 2
2∗−2

− αβ∥vε∥p1
p1

(∥∇vε∥2
2

s∥vε∥2∗
2∗

) p1
2∗−2

=
1

Ns
2

2∗−2

(∥∇uε∥2
2

∥uε∥2
2∗

) N
2

+

∫
Ωr

Vv2
ε dx

2s
2

2∗−2

(
Θ

2−2∗
2 · ∥∇uε∥2

2

∥uε∥2∗
2∗
· ∥uε∥2∗

2

∥uε∥2
2

) 2
2∗−2

− αβ

s
p1

2∗−2

(
Θ

2−2∗
2 · ∥∇uε∥2

2

∥uε∥2∗
2∗
· ∥uε∥2∗

2

∥uε∥2
2

) p1
2∗−2

·Θ
p1
2
∥uε∥p1

p1

∥uε∥p1

2

≤ 1

Ns
2

2∗−2

[
K1 + O

(
εN−2

)

K2 + O (εN)

] N
2

+
max
x∈Ωr

V(x)

2s
2

2∗−2

· ∥uε∥2
2 ·
∥∇uε∥

4
2∗−2

2

∥uε∥
2·2∗

2∗−2

2∗

− αβ

s
p1

2∗−2

· ∥uε∥p1
p1
· ∥∇uε∥

2p1
2∗−2

2

∥uε∥
p1 ·2∗
2∗−2

2∗

=
1

Ns
2

2∗−2

S
N
2 + O

(
εN−2

)
+ C1∥uε∥2

2 + C2∥uε∥p1
p1

=
1

Ns
2

2∗−2

S
N
2

as ε → 0, where ζ = s−
2

2∗−2 and C1 ≥ 0, C2 ≥ 0 because of β ≤ 0. In the penultimate equal

sign, we used

1

N

[
K1 + O

(
εN−2

)

K2 + O (εN)

] N
2

=
1

N

[
K1

K2
+ O

(
εN−2

)] N
2

=
S

N
2

N
+ O

(
εN−2

)
.

This completes the proof.

Lemma 7.3. For any Θ > 0, let r > rΘ, where rΘ is defined in Lemma 7.1. Then problem (7.3) has a

solution (λr,s, ur,s) for almost every s ∈
[

1
2 , 1
]
. Moreover, ur,s ≥ 0 and Ir,s (ur,s) = m̃r,s(Θ).

Proof. Based on the previous analysis, we know that, for almost every s ∈
[

1
2 , 1
]
, there exists a

bounded Palais–Smale sequence {un} satisfying

Ir,s (un)→ m̃r,s(Θ) and I ′r,s (un)
∣∣
Tun Sr,Θ

→ 0. (7.16)

Then

λn = − 1

Θ

(∫

Ωr

|∇un|2 dx +
∫

Ωr

V(x)u2
ndx− β

∫

Ωr

f (un)undx− s
∫

Ωr

|un|2
∗

dx

)

is bounded and

I ′r,s (un) + λnun → 0 in H−1 (Ωr) . (7.17)
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Moreover, since {un} is a bounded Palais–Smale sequence, there exist u0 ∈ H1
0 (Ωr) and λ ∈ R

such that, up to a subsequence,

λn → λ in R,

un ⇀ u0 in H1
0(Ωr),

un → u0 in Lt(Ωr) for all 2 ≤ t < 2∗, (7.18)

where u0 satisfies

{
−∆u0 + Vu0 + λu0 = s |u0|2

∗−2 u0 + β f (u0) in Ωr,

u0 ∈ H1
0 (Ωr) ,

∫
Ωr
|u0|2 dx = Θ.

Using (7.17), we have

I ′r,s (un) u0 + λn

∫

Ωr

unu0dx → 0 as n→ ∞

and

I′r,s (un) un + λnΘ→ 0 as n→ ∞.

Note that

lim
n→∞

∫

Ωr

V(x)u2
ndx =

∫

Ωr

V(x)u2
0dx,

lim
n→∞

∫

Ωr

f (un)undx =
∫

Ωr

f (u0)u0dx,

lim
n→∞

∫

Ωr

f (un)u0dx =
∫

Ωr

f (u0)u0dx.

Now, we show that un → u0 in H1
0 (Ωr). Firstly, note that the weak limit u0 does not vanish

identically. Suppose by contradiction that u0 ≡ 0. Since {un} is bounded in H1(Ωr), up to a

subsequence we have that ∥∇un∥2
2 → ℓ ∈ R. Using ( f2), (7.17), (7.18), we have

⟨I ′r,s(un), un⟩ =
∫

Ωr

|∇un|2 dx +
∫

Ωr

Vu2
ndx− s

∫

Ωr

|un|2
∗

dx− β
∫

Ωr

f (un)undx

→ 0,

hence

s∥un∥2∗
2∗ = ∥∇un∥2

2 → ℓ

as well. Therefore, ℓ ≥ s−
2

2∗ Sℓ
2

2∗ , and we deduce that either ℓ = 0, or ℓ ≥ s−
2

2∗−2 S
N
2 . Let us

suppose at first that ℓ ≥ s−
2

2∗−2 S
N
2 . Since Ir,s(un)→ m̃r,s(Θ) < ζ

N S
N
2 , we have that

ζ

N
S

N
2 > m̃r,s(Θ)← Ir,s(un) + o(1)

=
1

2

∫

Ωr

|∇un|2 dx +
1

2

∫

Ωr

Vu2
ndx− s

2∗

∫

Ωr

|un|2
∗

dx− β
∫

Ωr

F(un)dx

=
ℓ

N
≥ s−

2
2∗−2

S
N
2

N
,

which is not possible. If instead ℓ = 0, we have ∥un∥2∗ → 0, ∥∇un∥2 → 0 and F(un) → 0.

But then Ir,s(un) → 0 ̸= m̃r,s(Θ), which gives again a contradiction. Thus, ur does not vanish

identically.
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Since {un,r} is a bounded minimization sequence for Ir(un,r)|Sr,Θ
, there exists {λn} ⊂ R

such that for every ϕ ∈ H1(Ωr),
∫

Ωr

∇un,r · ∇ϕ +
∫

Ωr

Vun,r ϕ + λnun,r ϕ− β f (un,r)ϕ− s |un,r|2
∗−2 un,r ϕ = o(1)∥ϕ∥ (7.19)

as n → ∞, by the Lagrange multipliers rule. Choosing ϕ = un,r, we deduce that {λn} is

bounded as well, and hence up to a subsequence λn → λr ∈ R. Moreover, passing to the limit

in (7.19) by weak convergence, we obtain

−∆ur + Vur + λrur = s|ur|2
∗−2ur + β f (ur), x ∈ Ωr.

Recalling that vn,r = un,r − ur ⇀ 0 in H1
0(Ωr), we know

∥∇un,r∥2
2 = ∥∇ur∥2

2 + ∥∇vn,r∥2
2 + o(1).

By the Brézis–Lieb lemma [12], we have

∥un,r∥2∗
2∗ = ∥ur∥2∗

2∗ + ∥vn,r∥2∗
2∗ + o(1).

Note that ∫

Ωr

Vv2
n,rdx → 0 as n→ ∞,

hence

s∥vn,r∥2∗
2∗ = ∥∇vn,r∥2

2 → ℓ

as well. Therefore, by the Sobolev inequality ℓ ≥ s−
2

2∗ Sℓ
2

2∗ , and we deduce that either ℓ = 0,

or ℓ ≥ s−
2

2∗−2 S
N
2 . Let us suppose at first that ℓ ≥ s−

2
2∗−2 S

N
2 . Since Ir,s(un) → m̃r,s(Θ) < ζ

N S
N
2 ,

we have that

ζ

N
S

N
2 > m̃r,s(Θ)← Ir,s(vn) + o(1)

=
1

2

∫

Ωr

|∇vn|2 dx +
1

2

∫

Ωr

Vv2
ndx− s

2∗

∫

Ωr

|vn|2
∗

dx− β
∫

Ωr

F(vn)dx

=
ℓ

N
≥ s−

2
2∗−2

S
N
2

N
,

which is not possible. If instead ℓ = 0, we have that un,r → ur in H1
0 (Ωr), so Ir(ur) > 0.

Similar to the proof of Lemma 3.3, we also obtain that ur,s ≥ 0.

In order to obtain a solution of (7.1), we also need to prove a uniform estimate for the

solutions of (7.3) established in Lemma 7.3. Similar to the proof of Lemma 3.4 and Lemma

3.5, we obtain the following lemmas.

Lemma 7.4. If (λ, u) ∈ R × Sr,Θ is a solution of (7.3) established in Lemma 7.3 for some r and s,

then
∫

Ωr

|∇u|2dx ≤ 4N

N(2∗ − 2)− 4

(
2∗ − 2

2
h(hΘ) + Θ

(
1

2N
∥Ṽ∥∞ +

2∗ − 2

4
∥V∥∞

))
,

where the constant h(hΘ) is defined in (iii) of Lemma 7.1 and is independent of r and s.

Lemma 7.5. For every Θ > 0, problem (7.3) has a solution (λr, ur) provided r > rΘ where rΘ is as in

Lemma 7.1. Moreover, ur ≥ 0 in Ωr.

Proof of Theorem 1.10. The proof is an immediate consequence of Lemmas 7.5 and 3.6.
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8 Proof of Theorem 1.11

In this subsection, we assume β > 0 and the assumptions of Theorem 1.10 hold. Consider the

following equation




−∆u + Vu + λu = |u|2∗−2u + β f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(8.1)

For 1
2 ≤ s ≤ 1, we define the functional Jr,s : Sr,Θ → R by

Jr,s(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx− s

2∗

∫

Ωr

|u|2∗dx− sβ
∫

Ωr

F(u)dx. (8.2)

Note that if u ∈ Sr,Θ is a critical point of Jr,s, then there exists λ ∈ R such that (λ, u) is a

solution of the equation




−∆u + Vu + λu = s|u|2∗−2u + sβ f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(8.3)

Lemma 8.1. For any Θ > 0, there exist r̂Θ > 0 and u0, u1 ∈ SrΘ,Θ such that

(i) For r > r̂Θ and s ∈
[

1
2 , 1
]

we have Jr,s

(
u1
)
≤ 0 and

Jr,s

(
u0
)
< Â−

2
2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2


2∗ − 2

2

(
1

2∗

) 2∗
2∗−2


 ,

where

Â = S−
2∗
2

[
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
+

1

2∗

]
.

Moreover,

∥∥∇u0
∥∥2

2
<




(
1− ∥V−∥ N

2
S−1

)

2∗ Â




2
2∗−2

,
∥∥∥∇u1

∥∥∥
2

2
>




(
1− ∥V−∥ N

2
S−1

)

2∗ Â




2
2∗−2

.

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =




(
1− ∥V−∥ N

2
S−1

)

2∗ Â




2
2∗−2

,

then there holds

Jr,s(u) ≥ Â−
2

2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2


2∗ − 2

2

(
1

2∗

) 2∗
2∗−2


 .

(iii) Let

m̂r,s(Θ) = inf
γ∈Γ̂r,Θ

sup
t∈[0,1]

Jr,s(γ(t)),
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where

Γ̂r,Θ =
{

γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1
}

.

Then

m̂r,s(Θ) ≥ Â−
2

2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2


2∗ − 2

2

(
1

2∗

) 2∗
2∗−2




and

m̂r,s(Θ) ≤ N(2∗ − 2)− 4

2




θ
(

1 + ∥V∥ N
2

S−1
)

N(2∗ − 2)




N(2∗−2)
N(2∗−2)−4

(4 · 2∗)
4

N(2∗−2)−4 |Ω|
2(2∗−2)

N(2∗−2)−4

·Θ
N(2∗−2)−2·2∗

N(2∗−2)−4 ,

where θ is the principal eigenvalue of −∆ with Dirichlet boundary condition in Ω.

Proof. (i) By the Hölder inequality, we know

∫

Ω
|v1(x)|2∗dx ≥ Θ

2∗
2 · |Ω| 2−2∗

2 . (8.4)

For x ∈ Ω 1
t

and t > 0, define vt(x) := t
N
2 v1(tx). Using (5.2), (8.4), (4.4) and 1

2 ≤ s ≤ 1, it holds

J 1
t ,s (vt) ≤

1

2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− β

2
α1t

N(p2−2)
2

∫

Ω
|v1|p2 dx− 1

2 · 2∗ t
N(2∗−2)

2 Θ
2∗
2 · |Ω| 2−2∗

2

≤ ĥ2(t), (8.5)

where

ĥ2(t) =
1

2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− 1

2 · 2∗ t
N(2∗−2)

2 Θ
2∗
2 · |Ω| 2−2∗

2 .

A simple computation shows that ĥ2(t0) = 0 for

t0 :=
[(

1 + ∥V∥ N
2

S−1
)

2∗θΘ
2−2∗

2 |Ω| 2
∗−2
2

] 2
N(2∗−2)−4

and ĥ2(t) < 0 for any t > t0, ĥ2(t) > 0 for any 0 < t < t0. Moreover, ĥ2(t) achieves its

maximum at

tΘ =




4 · 2∗
(

1 + ∥V∥ N
2

S−1
)

θ

N(2∗ − 2)
Θ

2−2∗
2 |Ω| 2

∗−2
2




2
N(2∗−2)−4

.

This implies

Jr,s(vt0) = J 1
t0

,s(vt0) ≤ ĥ2(t0) = 0 (8.6)

for any r ≥ 1
t0

and s ∈
[

1
2 , 1
]
. There exists 0 < t1 < tΘ such that for any t ∈ [0, t1],

ĥ2(t) < A−
2

2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2


2∗ − 2

2

(
1

2∗

) 2∗
2∗−2


 . (8.7)



44 J. Wang and Z. Y. Yin

On the other hand, it follows from (3.5) that

Jr,s(u) ≥
1

2

(
1− ∥V−∥ N

2
S−1

) ∫

Ωr

|∇u|2dx− 1

2∗ · S 2∗
2

(∫

Ωr

|∇u|2dx

) 2∗
2

− αβCN,p1
Θ

2p1−N(p1−2)
4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

.

Define

ĝ1(t) :=
1

2

(
1− ∥V−∥ N

2
S−1

)
t− 1

2∗ · S 2∗
2

t
2∗
2 − αβCN,p1

Θ
2p1−N(p1−2)

4 t
N(p1−2)

4

= t
N(p1−2)

4

[
1

2

(
1− ∥V−∥ N

2
S−1

)
t

4−N(p1−2)
4 − 1

2∗ · S 2∗
2

t
2·2∗−N(p1−2)

4

]

− αβCN,p1
Θ

2p1−N(p1−2)
4 t

N(p1−2)
4 .

In view of 2 < p < 2 + 2
N < q < 2∗ and the definition of Θ̃V , there exist 0 < l1 < lM < l2

such that ĝ1(t) < 0 for any 0 < t < l1 and t > l2, ĝ1(t) > 0 for l1 < t < l2 and ĝ1 (lM) =

maxt∈R+ ĝ1(t) > 0. Let

t2 =

(
αβCN,p1

S
2∗
2 N(p1 − 2)(4− N(p1 − 2))

4(2∗ − 2)

) 4
2·2∗−N(p1−2)

Θ
2p1−N(p1−2)
2·2∗−N(p1−2) .

Then by a direct calculation, we have g′′1 (t) ≤ 0 if and only if t ≥ t2. Hence

max
t∈R+

ĝ1(t) = max
t∈[t2,∞)

ĝ1(t).

Note that for any t ≥ t2,

g1(t) =
1

2

(
1− ∥V−∥ N

2
S−1

)
t− 1

2∗ · S 2∗
2

t
2∗
2 − αβCN,p1

Θ
2p1−N(p1−2)

4 t
N(p1−2)

4

=
1

2

(
1− ∥V−∥ N

2
S−1

)
t− αβCN,p1

Θ
2p1−N(p1−2)

4 · t
N(p1−2)

4 − 1

2∗ · S 2∗
2

t
2∗
2

=
1

2

(
1− ∥V−∥ N

2
S−1

)
t− 4(2∗ − 2)

S
2∗
2 N(p1 − 2)(4− N(p1 − 2))

· t
2·2∗−N(p1−2)

4
2 · t

N(p1−2)
4

− 1

2∗ · S 2∗
2

t
2∗
2

≥ 1

2

(
1− ∥V−∥ N

2
S−1

)
t− S−

2∗
2

[
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
+

1

2∗

]
t

2∗
2

=: ĝ2(t). (8.8)

Now, we will determine the value of Θ̃V . In fact, ĝ1 (lM) = maxt∈R+ ĝ1(t) > 0 as long as
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ĝ2(t2) > 0, that is,

ĝ2(t2) =
1

2

(
1− ∥V−∥ N

2
S−1

)
t2 − S−

2∗
2

[
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
+

1

2∗

]
t

2∗
2

2

=
1

2

(
1− ∥V−∥ N

2
S−1

)(αβCN,p1
S

2∗
2

Ap1

) 4
2·2∗−N(p1−2)

Θ
2p1−N(p1−2)
2·2∗−N(p1−2)

− S−
2∗
2

(
Ap1

+
1

2∗

)(
αβCN,p1

S
2∗
2

Ap1

) 2·2∗
2·2∗−N(p1−2)

Θ
2∗ [2p1−N(p1−2)]
2[2·2∗−N(p1−2)]

> 0,

where

Ap1
=

4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
.

Hence, we take

Θ̃V =

(
αβCN,p1

S
2∗
2

Ap1

)− 4
2p1−N(p1−2)

[
S

2∗
2

2 · 2∗
(

1− ∥V−∥ N
2

S−1
)
(2∗Ap1

+ 1)

] 2[2·2∗−N(p1−2)]
(2∗−2)[2p1−N(p1−2)]

.

Let

Â = S−
2∗
2

[
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
+

1

2∗

]
, tg =




(
1− ∥V−∥ N

2
S−1

)

2∗ Â




2
2∗−2

,

so that tg > t2 by the definition of Θ̃V , maxt∈[t2,∞) ĝ2(t) = ĝ2(tg) and

max
t∈R+

ĝ1(t) ≥ max
t∈[t2,∞)

ĝ2(t) = Â−
2

2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2


2∗ − 2

2

(
1

2∗

) 2∗
2∗−2


 .

Set r̄Θ = max
{

1
t1

,
√

2θΘ
tg

}
, then v 1

r̄Θ

∈ Sr,Θ for any r > r̄Θ, and

∥∥∥∥∇v 1
r̄Θ

∥∥∥∥
2

2

=

(
1

r̄Θ

)2

∥∇v1∥2
2 < tg =




(
1− ∥V−∥ N

2
S−1

)

2∗ Â




2
2∗−2

. (8.9)

Moreover,

Jr̄Θ,s

(
v 1

r̄Θ

)
≤ ĥ

(
1

r̄Θ

)
≤ ĥ (t1) . (8.10)

Let u0 = v 1
τ̄Θ

, u1 = vt0 and

r̃Θ = max

{
1

t0
, r̄Θ

}
.

Then the statement (i) holds by (8.6), (8.7), (8.9), (8.10).

(ii) holds by (8.8) and a direct calculation.

(iii) In view of Jr,s

(
u1
)
≤ 0 for any γ ∈ Γr,Θ and the definition of t0, we have

∥∇γ(0)∥2
2 < tg < ∥∇γ(1)∥2

2.



46 J. Wang and Z. Y. Yin

It then follows from (8.8) that

max
t∈[0,1]

Jr,s(γ(t)) ≥ g2

(
tg

)
= Â−

2
2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2


2∗ − 2

2

(
1

2∗

) 2∗
2∗−2




for any γ ∈ Γr,Θ, hence the first inequality in (iii) holds. We define a path γ : [0, 1]→ Sr,Θ by

γ(t) : Ωr → R, x 7→
(

τt0 + (1− τ)
1

r̃ Θ

) N
2

v1

((
τt0 + (1− τ)

1

r̃Θ

)
x

)
.

Then γ ∈ Γr,Θ, and the second inequality in (iii) follows from (8.5).

Using Proposition 3.2 to J̃r,s, it follows that

A(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

V(x)u2dx and B(u) =
1

2∗

∫

Ωr

|u|2∗dx + β
∫

Ωr

F(u)dx.

Hence, for almost every s ∈
[

1
2 , 1
]
, there exists a bounded Palais–Smale sequence {un} satis-

fying

Jr,s (un)→ m̃r,s(Θ) and J ′r,s (un)
∣∣
Tun Sr,Θ

→ 0.

Similar to the proof of Lemmas 7.2 and 7.3, we have the following lemmas.

Lemma 8.2. If β > 0 and the assumptions of Theorem 1.11 hold, then m̃r,s(Θ) <
ζ
N S

N
2 , where

ζ = s−
2

2∗−2 .

Lemma 8.3. Assume 0 < Θ < Θ̃V where Θ̃V is given in Theorem 1.11, let r > rΘ, where rΘ is defined

in Lemma 8.1. Then problem (8.3) has a solution (λr,s, ur,s) for almost every s ∈
[

1
2 , 1
]
. Moreover,

ur,s ≥ 0 and Jr,s (ur,s) = m̃r,s(Θ).

In order to obtain a solution of (8.1), we also need to prove a uniform estimate for the

solutions of (8.3) established in Lemma 8.3.

Lemma 8.4. For fixed Θ > 0 the set of solutions u ∈ Sr,Θ of (8.3) is bounded uniformly in s and r.

Proof. Since u is a solution of (8.3), we have
∫

Ωr

|∇u|2dx +
∫

Ωr

Vu2dx = s
∫

Ωr

|u|2∗dx + sβ
∫

Ωr

f (u)udx− λ
∫

Ωr

|u|2dx.

The Pohozaev identity implies

N − 2

2N

∫

Ωr

|∇u|2dx +
1

2N

∫

∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫

Ωr

Ṽ(x)u2 +
1

2

∫

Ωr

Vu2dx

= −λ

2

∫

Ωr

|u|2dx +
s

2∗

∫

Ωr

|u|2∗dx + sβ
∫

Ωr

F(u)dx

where n denotes the outward unit normal vector on ∂Ωr. It then follows from β > 0 and ( f2)

that

1

N

∫

Ωr

|∇u|2dx− 1

2N

∫

∂Ωr

|∇u|2(x · n)dσ− 1

2N

∫

Ωr

(∇V · x)u2dx

≤ 2∗ − 2

2

(
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

Vu2dx− m̂r,s(Θ)

)
+ s

β(p2 − 2∗)
2

∫

Ωr

F(u)dx.
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Using Gagliardo–Nirenberg inequality, (3.5) and (iii) in Lemma 8.1, we have

2∗ − 2

2
m̂r,s(Θ) ≥ N(p2 − 2)− 4

4N

∫

Ωr

|∇u|2dx−Θ

(
1

2N
∥∇V · x∥∞ +

p2 − 2

4
∥V∥∞

)

+
sαβ(p2 − 2∗)

2
CN,p1

Θ
2p1−N(p1−2)

4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

.

Since 2 < p1 < 2 + 4
N , we can bound

∫
Ωr
|∇u|2dx uniformly in s and r.

Lemma 8.5. Assume 0 < Θ < Θ̃V , where Θ̃V is given in Theorem 1.11, and let r > r̃Θ, where r̃Θ is

defined in Lemma 8.1. Then equation (8.3) admits a solution (λr,Θ, ur,Θ) for every r > r̃Θ such that

ur,Θ > 0 in Ωr.

Proof. The proof of lemma is similar to the Lemma 7.5.

Proof of Theorem 1.11. The proof is an immediate consequence of Lemmas 8.5 and 3.6.

9 Mass critical case

9.1 Proof of Theorem 1.12

This subsection considers the case of p1 = 2 + 4
N , so we need to modify the proof of Theo-

rem 1.5.

Lemma 9.1. For 0 < Θ < Θ̃V where Θ̃V is defined in Theorem 1.12, there exist r̃Θ > 0 and

u0, u1 ∈ SrΘ,Θ such that

(i) For r > r̃Θ and s ∈
[

1
2 , 1
]

we have Jr,s

(
u1
)
≤ 0 and

Jr,s

(
u0
)
<

(N(q− 2)− 4)
(

1− ∥V−∥ N
2

S−1 − 2αβCNΘ
2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4


 2q

CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

.

Moreover,

∥∥∇u0
∥∥2

2
<

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

and

∥∥∥∇u1
∥∥∥

2

2
>

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

.

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

,

then there holds

Jr,s(u) ≥
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4


 2q

CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

.
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(iii) Let

mr,s(Θ) = inf
γ∈Γr,Θ

sup
t∈[0,1]

Jr,s(γ(t)),

where

Γr,Θ =
{

γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1
}

.

Then

mr,s(Θ) ≥
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4


 2q

CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

and

mr,s(Θ) ≤ N(q− 2)− 4

2




θ
(

1 + ∥V∥ N
2

S−1
)

N(q− 2)




N(q−2)
N(q−2)−4

(4q)
4

N(q−2)−4 |Ω|
2(q−2)

N(q−2)−4 Θ
N(q−2)−2q
N(q−2)−4 .

where θ is the principal eigenvalue of −∆ with Dirichlet boundary condition in Ω.

Proof. We only need to modify the proof of Lemma 5.1. There exists 0 < t1 < tΘ such that for

any t ∈ [0, t1],

h2(t) <
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4


 2q

CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

. (9.1)

On the other hand, it follows from (3.5), the Gagliardo–Nirenberg inequality and the Hölder

inequality that

Jr,s(u) =

[
1− ∥V−∥ N

2
S−1

2
− αβCNΘ

2
N

]
∥∇u∥2

2 −
CN,qΘ

2q−N(q−2)
4

q
∥∇u∥

N(q−2)
2

2 . (9.2)

Define

g1(t) :=

[
1− ∥V−∥ N

2
S−1

2
− αβCNΘ

2
N

]
t− CN,qΘ

2q−N(q−2)
4

q
t

N(q−2)
4

and

tg =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

,

it is easy to see that g1 is increasing on (0, tg) and decreasing on (tg, ∞), and

g1(tg) =
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4


 2q

CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

.

Set r̄Θ = max
{

1
t1

,
√

2θΘ
tg

}
, then v 1

r̄Θ

∈ Sr,Θ for any r > r̄Θ, and

∥∥∥∥∇v 1
r̄Θ

∥∥∥∥
2

2

=

(
1

r̄Θ

)2

∥∇v1∥2
2

< tg =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

. (9.3)
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Then the statement (i) holds by (5.5), (9.1), (5.9), (9.3).

(ii) holds by (9.2) and a direct calculation.

(iii) In view of Jr,s

(
u1
)
≤ 0 for any γ ∈ Γr,Θ and the definition of t0, we have

∥∇γ(0)∥2
2 < tg < ∥∇γ(1)∥2

2.

It then follows from (9.2) that

max
t∈[0,1]

Jr,s(γ(t)) ≥ g1

(
tg

)

=
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4


 2q

CN,qΘ
2q−N(q−2)

4




4
N(q−2)−4

for any γ ∈ Γr,Θ, hence the first inequality in (iii) holds. We define a path γ : [0, 1]→ Sr,Θ by

γ(t) : Ωr → R, x 7→
(

τt0 + (1− τ)
1

r̃ Θ

) N
2

v1

((
τt0 + (1− τ)

1

r̃Θ

)
x

)
.

Then γ ∈ Γr,Θ, and the second inequality in (iii) follows from (5.4).

Lemma 9.2. For fixed Θ > 0 the set of solutions u ∈ Sr,Θ of (5.1) is bounded uniformly in s and r.

Proof. We only need to modify the proof of Lemma 5.3. Using the Gagliardo–Nirenberg in-

equality, (3.5) and (iii) in Lemma 5.1, we have

q− 2

2
mr,s(Θ) ≥

[
N(p2 − 2)− 4

4N
− sαβ(q− p2)

2
CNΘ

2
N

] ∫

Ωr

|∇u|2dx

−Θ

(
1

2N
∥∇V · x∥∞ +

p2 − 2

4
∥V∥∞

)
.

Since 0 < Θ < Θ̃V , we can bound
∫

Ωr
|∇u|2dx uniformly in s and r.

Proof of Theorem 1.12. The proof is an immediate consequence of Lemmas 5.4 and 3.6.

9.2 Proof of Theorem 1.13

Firstly, we modify the proof of Lemma 3.1. Using (3.3), (3.4), (3.5) and 1
2 ≤ s ≤ 1, it holds

I 1
t ,s (vt) ≤

1

2

(
1 + ∥V∥ N

2
S−1 − 2αβCNΘ

2
N

)
t2θΘ− 1

2q
t

N(q−2)
2 Θ

q
2 · |Ω|

2−q
2

=: h(t).

Note that since 2+ 4
N < q < 2∗ and β ≤ 0, there exist 0 < TΘ < t0 such that h(t0) = 0, h(t) < 0

for any t > t0, h(t) > 0 for any 0 < t < t0 and h(TΘ) = maxt∈R+ h(t).

Lemma 9.3. Let (λr,Θ, ur,Θ) be the solution of (1.1) from Lemma 3.5. If ∥Ṽ+∥ N
2
< 2S, then there

exists Θ̄ > 0 such that

lim inf
r→∞

λr,Θ > 0 for 0 < Θ < Θ̄.
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Proof. We only need to modify the proof of Lemma 3.7. It follows from (3.5), (3.27), (3.28),

(3.29), ( f2) and 2 + 4
N < q < 2∗ that

(
1

q
− 1

2

)
λΘ

∫

RN
u2

Θdx ≤
[
(N − 2)q− 2N

2Nq
− β(q− p2)αCN

q
Θ

2
N

] ∫

RN
|∇uΘ|2 dx

+
∥Ṽ∥∞

2N
Θ +

(q− 2)∥V∥∞

2q
Θ

→ −∞ as Θ→ 0,

since 0 < Θ < Θ̂V .

Proof of Theorem 1.13. The proof is an immediate consequence of Lemmas 3.5, 3.6 and 9.3.

9.3 Proof of Theorem 1.14

Similarly, we only need to modify the proof of Theorem 1.4. Since β > 0, it follows from the

Gagliardo–Nirenberg inequality and the Hölder inequality that

Ir(u) =
1

2

∫

Ωr

|∇u|2dx +
1

2

∫

Ωr

V(x)u2dx− N

2N + 4

∫

Ωr

|u|2+ 4
N dx− β

∫

Ωr

F(u)dx

≥ 1

2

(
1− ∥V−∥ N

2
S−1 − NCNΘ

2
N

N + 2

) ∫

Ωr

|∇u|2dx

− αβCN,p1
Θ

2p1−N(p1−2)
4

(∫

Ωr

|∇u|2dx

) N(p1−2)
4

= h1(t),

where

h1(t) :=
1

2

(
1− ∥V−∥ N

2
S−1 − NCNΘ

2
N

N + 2

)
t2 − αβCN,p1

Θ
2p1−N(p1−2)

4 t
N(p1−2)

2 .

In view of 2 < p1 < 2 + 4
N , there exists TΘ > 0 such that h1(t) < 0 for 0 < t < TΘ and

h1(t) > 0 for t > TΘ.

Proof of Theorem 1.14. The proof is a direct consequence of Lemma 4.1 and Lemma 3.6.

10 Final comments

Some similar result (Theorems 1.3, 1.4, 1.5, but there are subtle changes in the assumptions)

can be proved for the following class of problem



−∆u + V(x)u + λu = w(u) + β|u|p−2u, x ∈ Ω,
∫

Ω
|u|2dx = Θ, u ∈ H1

0(Ω), x ∈ Ω,

where Ω ⊂ RN is either all of RN or a bounded smooth convex domain, N ≥ 3, 2 < p < 2+ 4
N ,

the mass Θ > 0 and the parameter β ∈ R are prescribed. Nonlinearity w satisfies:

(W1) w ∈ C1(R, R) and w is odd.

(W2) There exists some (p1, p2) ∈ R2
+ satisfying 2 + 4

N < p2 ≤ p1 < 2∗ such that

p2W(τ) ≤ w(τ)τ ≤ p1W(τ) with W(τ) =
∫ τ

0
w(t)dt.
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Abstract. Let Ω = (a, b) ⊂ R, 0 ≤ m, n ∈ L1(Ω), λ, µ > 0 be real parameters, and
ϕ : R → R be an odd increasing homeomorphism. In this paper we consider the
existence of positive solutions for problems of the form

{

−ϕ (u′)′ = λm(x) f (u) + µn(x)g(u) in Ω,

u = 0 on ∂Ω,

where f , g : [0, ∞) → [0, ∞) are continuous functions which are, roughly speaking, sub-
linear and superlinear with respect to ϕ, respectively. Our assumptions on ϕ, m and n
are substantially weaker than the ones imposed in previous works. The approach used
here combines the Guo–Krasnoselskiı̆ fixed-point theorem and the sub-supersolutions
method with some estimates on related nonlinear problems.

Keywords: elliptic one-dimensional problems, ϕ-Laplacian, positive solutions.
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1 Introduction

Let Ω = (a, b) ⊂ R, m, n ∈ L1 (Ω) and λ, µ > 0 be a real parameters. In this article we consider

problems of the form

{

−ϕ (u′)′ = λm (x) f (u) + µn(x)g(u) in Ω,

u = 0 on ∂Ω,
(1.1)

where ϕ : R → R is an odd increasing homeomorphism and f , g : [0, ∞) → [0, ∞) are con-

tinuous functions which are, roughly speaking, sublinear and superlinear with respect to ϕ,

respectively. When the nonlinearities f and g are concave and convex, the problem (1.1) with

BCorresponding author. Email: lmilne@dm.uba.ar
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ϕ(x) = x was first studied by Ambrosetti, Brezis and Cerami in their celebrated paper [1].

More precisely, in that article the authors studied the N-dimensional problem















−∆u = λuq + up, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)

with 0 < q < 1 < p and Ω a bounded domain in R
N . They proved the following facts: there

exists Λ > 0 such that: if λ ∈ (0, Λ) then (1.2) has at least two positive solutions, if λ = Λ

there is at least one positive solution, and if λ > Λ then there are no positive solutions.

Several authors have studied generalizations of (1.2), see for instance [2, 11, 14] and their

references, where the corresponding problem for the p-Laplacian is considered. Also, in [12]

the authors have treated the N-dimensional problem for the ϕ-Laplacian operator.

Regarding the one-dimensional ϕ-Laplacian problem that we will deal with in this article,

Wang in [15, Theorem 1.2] and [16, Theorem 1.2] studied the case m = n ≥ 0, m ̸≡ 0 on any

subinterval in Ω, m ∈ C(Ω) and λ = µ. In these papers it is proved that there exist λ0, λ1 > 0

such that if λ ∈ (0, λ0), then (1.1) has at least two positive solutions; and if λ > λ1, then there

are no positive solutions. Let us note that the hypothesis on ϕ imposed in [15, 16] are much

stronger than the ones that we shall require here. More precisely, Wang assumes

(Φ) There exist increasing homeomorphisms ψ1, ψ2 : [0, ∞) → [0, ∞) such that ψ1 (t) ϕ (x) ≤
ϕ (tx) ≤ ψ2 (t) ϕ (x) for all t, x > 0.

On other hand, (1.1) is also considered in [8] with m = n ≥ 0, m ̸≡ 0 on any subinterval in Ω

and λ = µ like in [15,16]. However, the regularity assumptions for m allow some m ∈ L1
loc(Ω).

Regarding the hypothesis on ϕ they require that

(Φ′) There exist an increasing homeomorphism ψ1 : [0, ∞) → [0, ∞) and a function ψ2 :

[0, ∞) → [0, ∞) such that ψ1 (t) ϕ (x) ≤ ϕ (tx) ≤ ψ2 (t) ϕ (x) for all t, x > 0.

The authors prove that there exist λ1 ≥ λ0 > 0 such that (1.1) has at least two positive solutions

for λ ∈ (0, λ0), one positive solution for λ ∈ [λ0, λ1], and no positive solution for λ > λ1.

In this article, employing the method of sub and supersolutions and the Guo–Krasnoselskiı̆

fixed-point theorem along with some estimates for related problems, we shall prove that there

are at least two positive solutions for λ ≈ 0, under much weaker assumptions on ϕ, m and

n. Moreover, as a consequence of Theorem 4.4 we shall see that (Φ) and (Φ′) are in fact

equivalent.

To be more precise, let us introduce the following hypothesis.

(F) There exist c0, t0, q > 0 such that

f (t) ≥ c0tq for all t ∈ [0, t0] and lim
t→0+

tq

ϕ(t)
= ∞. (1.3)

(G1) There exist c1, t1, r1 > 0 such that

g(t) ≤ c1tr1 for all t ∈ [0, t1] and lim
t→0+

tr1

ϕ(t)
= 0. (1.4)
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(G2) There exist c2, t2, r2 > 0 such that

g(t) ≥ c2tr2 for all t ≥ t2 and lim
t→∞

tr2

ϕ(t)
= ∞. (1.5)

Note that when ϕ(t) = |t|p−2 t, f (u) = uq and g(u) = ur, the limits in (F) and (G1) are satisfied

if and only if 0 < q < p − 1 < r. Let us set C1
0(Ω) := {u ∈ C1(Ω) : u = 0 on ∂Ω} and

P◦ :=
{

u ∈ C1
0(Ω) : u > 0 in Ω and u′ (b) < 0 < u′ (a)

}

.

Our main result is the following theorem:

Theorem 1.1. Let 0 ≤ m, n ∈ L1 (Ω).

(I) Assume that m ̸≡ 0 and (F) and (G1) hold. Then for all µ > 0 there exists λ0(µ) > 0 such that

(1.1) has a solution uλ ∈ P◦ for all 0 < λ < λ0(µ). Moreover, the solutions uλ can be chosen

such that

lim
λ→0+

∥uλ∥∞
= 0. (1.6)

(II) Assume that n ̸≡ 0 and (G1) and (G2) hold. Then for all µ > 0 there exists λ1(µ) > 0 such that

(1.1) has a solution vλ ∈ P◦ for all 0 < λ < λ1(µ). Furthermore, there exists ρ > 0 such that

∥vλ∥∞
> ρ for all 0 < λ < λ1(µ).

(III) Assume that {λ > 0 : (1.1) has a solution in P◦} ̸= ∅ and (F) holds for all t0 > 0. Let

Λ := sup{λ > 0 : (1.1) has a solution in P◦}.

Then, for 0 < λ < Λ (1.1) has at least one solution in P◦.

As an immediate consequence of the above theorem we have the following

Corollary 1.2. Let µ > 0 and 0 ≤ m, n ∈ L1(Ω) with m, n ̸≡ 0. Assume that (F), (G1) and (G2)

hold. Then (1.1) has at least two solutions in P◦ for λ ≈ 0.

The rest of the paper is organized as follows. In the next section we state some necessary

facts about nonlinear problems involving the ϕ-Laplacian, and in Section 3 we prove our main

results. Finally, in Section 4 we introduce some concepts about Orlicz spaces indices which we

use to prove Theorem 4.4 (and, in particular, the equivalence of (Φ) and (Φ′)), and at the end

of the section we give several examples of functions ϕ illustrating our conditions and their

relations with the ones used in the previous works. Let us mention that all the ϕ’s constructed

in Example (e) satisfy conditions (F), (G1) and (G2) but do not fulfill condition (Φ).

2 Preliminaries

Let ϕ : R → R be an odd increasing homeomorphism. We start considering problems of the

form
{

−ϕ (v′)′ = h (x) in Ω,

v = 0 on ∂Ω.
(2.1)
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It is well known that for all h ∈ L1(Ω), (2.1) possesses a unique solution v ∈ C1
0(Ω) such that

ϕ (v′) is absolutely continuous and that the equation holds pointwise a.e. x ∈ Ω. Furthermore,

the solution operator Sϕ : L1(Ω) → C1(Ω) is completely continuous and nondecreasing, see

[3, Lemma 2.1] and [6, Lemma 2.2].

We need now to introduce some notation. For 0 ≤ h ∈ L1(Ω) with h ̸≡ 0, set

Ah := {x ∈ Ω : h (y) = 0 a.e. y ∈ (a, x)} ,

Bh := {x ∈ Ω : h (y) = 0 a.e. y ∈ (x, b)} ,

and

αh :=

{

supAh if Ah ̸= ∅,

a if Ah = ∅,
βh :=

{

infBh if Bh ̸= ∅,

b if Bh = ∅,

θh := min

{

1

βh − a
,

1

b − αh

}

, θh :=
αh + βh

2
.

(2.2)

We observe that θh is well defined because h ̸≡ 0, and αh < βh (and so, θh ∈ (αh, βh)). We also

write

δΩ (x) := dist (x, ∂Ω) = min (x − a, b − x) .

We shall utilize the following estimates on several occasions in the sequel. For the proof,

see [6, Lemma 2.3 and (2.6)] and [7, Corollary 2.2].

Lemma 2.1. Let 0 ≤ h ∈ L1(Ω) with h ̸≡ 0.

(i) In Ω it holds that

θh min

{

∫ θh

a
ϕ−1

(

∫ θh

y
h

)

dy,
∫ b

θh

ϕ−1

(

∫ y

θh

h

)

dy

}

δΩ ≤ Sϕ (h) ≤ ϕ−1

(

∫ b

a
h

)

δΩ. (2.3)

(ii) In Ω it holds that

Sϕ(h) ≥ θh

∥

∥Sϕ(h)
∥

∥

∞
δΩ. (2.4)

(iii) For M > 0 there exists c > 0 not depending on M such that it holds that

min

{

∫ θh

a
ϕ−1

(

∫ θh

y
Mh

)

dy,
∫ b

θh

ϕ−1

(

∫ y

θh

Mh

)

dy

}

≥ cϕ−1(cM). (2.5)

Observe that, since θh ∈ (αh, βh), the constant that appears in the first term of the inequalities

in (2.3) is strictly positive. Note also that, since θh ∥δΩ∥∞
≥ 1/2, using the lower bound of

(2.3) and taking into account the monotonicity of the infinite norm we get

1

2
min

{

∫ θh

a
ϕ−1

(

∫ θh

y
h

)

dy,
∫ b

θh

ϕ−1

(

∫ y

θh

h

)

dy

}

≤
∥

∥Sϕ (h)
∥

∥

∞
. (2.6)

Observe also that for h as in Lemma 2.1 Sϕ (h) ∈ P◦.

Let h : Ω × R → R be a Carathéodory function (that is, h (x, ·) is continuous for a.e. x ∈ Ω

and h (·, ξ) is measurable for all ξ ∈ R). We now consider problems of the form

{

−ϕ (u′)′ = h (x, u) in Ω,

u = 0 on ∂Ω.
(2.7)
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We shall say that v ∈ C(Ω) is a subsolution of (2.7) if there exists a finite set Σ ⊂ Ω such that

ϕ(v′) ∈ ACloc(Ω \Σ), v′(τ+) := limx→τ+ v′(x) ∈ R, v′(τ−) := limx→τ− v′(x) ∈ R for each

τ ∈ Σ, and
{

−ϕ (v′)′ ≤ h (x, v (x)) a.e. x ∈ Ω,

v ≤ 0 on ∂Ω, v′(τ−) < v′(τ+) for each τ ∈ Σ.
(2.8)

If the inequalities in (2.8) are inverted, we shall say that v is a supersolution of (2.7).

For the sake of completeness, we state an existence result in the presence of well-ordered

sub and supersolutions, and a particular case of the well-known Guo–Krasnoselskiı̆ fixed-

point theorem (for a proof, see e.g. [13, Theorem 7.16] and [4, Theorem 2.3.4], respectively).

Lemma 2.2. Let v and w be sub and supersolutions respectively of (2.7) such that v ≤ w in Ω.

Suppose there exists g ∈ L1 (Ω) such that

|h (x, ξ)| ≤ g (x) for a.e. x ∈ Ω and all ξ ∈ [v (x) , w (x)] .

Then there exists u ∈ C1
0(Ω) solution of (2.7) with v ≤ u ≤ w in Ω.

Lemma 2.3. Let X be a Banach space and let K be a cone in X. Let Ω1, Ω2 ⊂ X be two open sets with

0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose that T : K ∩ (Ω2 \ Ω1) → K is a completely continuous operator and

∥Tv∥ ≥ ∥v∥ , for v ∈ K ∩ ∂Ω2,

∥Tv∥ ≤ ∥v∥ , for v ∈ K ∩ ∂Ω1.

Then, T has a fixed point in K ∩ (Ω2 \ Ω1).

3 Proof of the main results

3.1 Proof of item (I)

We start this section with two lemmas concerning sub and supersolutions that shall be used

to prove item (I) of Theorem 1.1.

Lemma 3.1. Let m, n ∈ L1(Ω) such that 0 ̸≡ m+ n ≥ 0. Assume that (G1) holds. Then for all µ > 0

there exists λ0(µ) > 0 such that for each 0 < λ < λ0(µ) there exists wλ ∈ P◦ supersolution of (1.1).

Moreover,

lim
λ→0+

∥wλ∥∞
= 0. (3.1)

Proof. Let c1, t1, r1 be given by (G1). Let us define cΩ := max
Ω

δΩ. By the continuity of ϕ−1

and the fact that ϕ−1(0) = 0, there exists K0 > 0 such that

ϕ−1

(

κ
∫ b

a
m(s) + n(s)ds

)

≤ t1

cΩ

for all κ ≤ K0. (3.2)

We observe that by the second condition on (1.4), for ρ > 0 fixed we have

lim
t→0+

[ϕ−1(ρt)]r1

t
= 0. (3.3)

We now define

ϵ :=
1

c1µcr1
Ω

, ρ :=
∫ b

a
m(s) + n(s)ds.
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We can deduce from (3.3) that there exists K1 = K1(ϵ, ρ) > 0 such that

[ϕ−1(κρ)]r1 ≤ κϵ for all κ ≤ K1. (3.4)

Let C = max[0,t1] f (t) and choose λ0 > 0 such that

λ0C ≤ min{K0, K1}. (3.5)

Also, for each 0 < λ < λ0, pick κλ such that

λC ≤ κλ ≤ min{K0, K1}, (3.6)

and for such κλ define wλ := Sϕ(κλ(m + n)). Since κλ ≤ K0, the upper bound in (2.3) and

(3.2) tell us that ∥wλ∥∞
≤ t1. Taking into account (3.4), (3.5) and (3.6), employing (G1) and the

upper bound in (2.3) we deduce that

λm(x) f (wλ) + µn(x)g(wλ) ≤ λm(x)C + c1µn(x)wr1
λ

≤ κλm(x) + c1µn(x)

[

ϕ−1(κλ

∫ b

a
m(s) + n(s)ds)δΩ

]r1

≤ κλ(m(x) + n(x)) = −ϕ(w′
λ)

′ in Ω,

and hence wλ is a supersolution of (1.1).

In order to prove (3.1), we choose κλ satisfying (3.6) and such that κλ → 0 when λ → 0+.

Hence, using the second inequality (2.3) we get that

0 ≤ wλ(x) = Sϕ(κλ(m + n)) ≤ ϕ−1

(

∫ b

a
κλ(m + n)

)

δΩ(x) → 0

uniformly in Ω when λ → 0+. Thus, limλ→0+ ∥wλ∥∞ = 0.

Lemma 3.2. Let 0 ≤ m, n ∈ L1(Ω) with m ̸≡ 0. Assume that (F) holds. Then for all λ, µ > 0 (1.1)

has a subsolution v ∈ P◦.

Proof. Let λ, µ > 0 and let c0, t0, q be given by (F). Recall that cΩ := max
Ω

δΩ. Since ϕ−1 is

continuous and ϕ−1(0) = 0, there exists ε0 > 0 such that

ϕ−1

(

ε
∫ b

a
m(s)δ

q
Ω
(s)ds

)

≤ t0

cΩ

for all ε ≤ ε0. (3.7)

By the second condition in (1.3), for ρ > 0 fixed

lim
t→0+

[ϕ−1(ρt)]q

t
= ∞. (3.8)

Let us define

M :=
1

λc0cq
,

where c is the constant in (2.5) with h = mδ
q
Ω

. It follows from (3.8) that there exists ε1 =

ε1(M, ρ) such that

[ϕ−1(ερ)]q ≥ Mε for all ε ≤ ε1. (3.9)

Let us choose

0 < ε < min{ε0, ε1} (3.10)
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and for such ε define v := Sϕ(εmδ
q
Ω
). Since ε ≤ ε0, the upper bound of Lemma 2.1 and (3.7)

tell us that ∥v∥
∞
≤ t0. Consequently, taking into account (3.9) and (3.10), employing (F) and

(2.5) we deduce that

λm(x) f (v) + µn(x)g(v) ≥ λc0m(x)vq ≥ λc0m(x)[cϕ−1(cε)δΩ]
q ≥ εm(x)δ

q
Ω

in Ω.

In other words, v is a subsolution of (1.1).

Proof of Theorem 1.1 (I). Given µ > 0, let λ0(µ) be as in Lemma 3.1. For 0 < λ < λ0(µ), let

wλ ∈ P◦ be a supersolution provided by the aforementioned lemma, and let vλ ∈ P◦ be a

subsolution given by Lemma 3.2 with ελ chosen such that ελm(x)δ
q
Ω
(x) ≤ κλ(m(x) + n(x))

for a.e.x ∈ Ω. It follows that vλ, wλ are a pair of well-ordered sub and supersolutions of (1.1).

Hence, Lemma 2.2 gives a solution of (1.1) uλ ∈ P◦. Moreover, (1.6) follows from (3.1).

3.2 Proof of item (II)

Proof of Theorem 1.1 (II). We shall use Lemma 2.3 with the operator

Tv := Sϕ(λm(x) f (v) + µn(x)g(v)),

the cone

K := {v ∈ C(Ω) : v ≥ θn ∥v∥
∞

δΩ}
(θn as in (2.2)) and the open balls BR(0), Bρ(0) ⊂ C(Ω) with 0 < ρ < R. Observe that C1

0(Ω) ∩
(K \ {0}) ⊂ P◦ and that any fixed point of T belongs to C1

0(Ω).

Let c2, t2 and r2 be given by (G2). We consider the function h := c2µ (θn)
r2 nδr2

Ω
. Taking into

account (2.5), we can find c = c(µ) > 0 such that for all M > 0

min

{

∫ θn

a
ϕ−1(M

∫ θn

y
h)dy,

∫ b

θn

ϕ−1(M
∫ y

θn

h)dy

}

≥ cϕ−1(cM). (3.11)

On other hand, the second condition in (G2) is equivalent to

lim
t→∞

ϕ−1(ρtr2)

t
= ∞

for all fixed ρ > 0, and then there exists t > 0 such that

ϕ−1(ctq2) ≥ 2t

c
for all t ≥ t. (3.12)

Let us fix R > max{t2, t}. Taking into account that Sϕ and ϕ−1 are nondecreasing, the

inequality (2.6), (G2), (3.11) and (3.12) we obtain that for v ∈ K ∩ ∂BR(0),

∥Tv∥
∞
=
∥

∥Sϕ(λm(x) f (v)) + µn(x)g(v))
∥

∥ ≥
∥

∥Sϕ(µn(x)g(v))
∥

∥

∞

≥ 1

2
min

{

∫ θn

a
ϕ−1

(

∫ θn

y
µng(v)

)

dy,
∫ b

θn

ϕ−1

(

∫ y

θn

µng(v)

)

dy

}

≥ 1

2
min

{

∫ θn

a
ϕ−1

(

c2µ
∫ θn

y
nvr2

)

dy,
∫ b

θn

ϕ−1

(

c2µ
∫ y

θn

nvr2

)

dy

}

≥ 1

2
min

{

∫ θn

a
ϕ−1

(

c2µ (θn ∥v∥
∞
)r2

∫ θn

y
nδr2

Ω

)

dy,
∫ b

θn

ϕ−1

(

c2µ (θn ∥v∥
∞
)r2

∫ y

θn

nδr2
Ω

)

dy

}

≥ 1

2
cϕ−1(c ∥v∥r2

∞
)

≥ ∥v∥
∞

.
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That is, ∥Tv∥
∞
≥ ∥v∥

∞
for such v.

On other side, let N := c1

∫ b
a n. The second condition in (G1) implies that there exists

t > 0 such that ϕ(t/cΩ) > µNtr1 for all t ∈ (0, t). Set C := max[0,R] f (t) and M :=
∫ b

a m. Let

0 < ρ < min{t, R/2, t1} be fixed and define

λ1 :=
ϕ(ρ/cΩ)− µNρr1

MC
. (3.13)

Note that λ1 > 0 by our election of t.

Now, taking into account (2.3), (G1), (3.13) and the monotonicity of ϕ−1 we see for 0 <

λ ≤ λ1 and all v ∈ K ∩ ∂Bρ(0),

Tv ≤ ϕ−1

(

∫ b

a
λm(x) f (v) + µn(x)g(v)dx

)

δΩ

≤ ϕ−1

(

λC
∫ b

a
m(x)dx + c1µ

∫ b

a
n(x)vr1 dx

)

δΩ

≤ ϕ−1 (λ1MC + µNρr1) δΩ

≤ ρ in Ω.

This tells us that ∥Tv∥
∞
≤ ρ = ∥v∥

∞
for all v ∈ K ∩ ∂Bρ(0).

Thus, Lemma 2.3 says that T has a fixed point in K ∩ (BR(0) \ Bρ(0)).

3.3 Proof of item (III)

Proof of Theorem 1.1 (III). In order to prove (III) we combine Lemma 3.2 and the inequality

(2.4). Let 0 < λ < Λ. By the definition of Λ there exists λ ∈ (λ, Λ] and uλ ∈ P◦ solution of

(1.1) associated to λ. Since λ < λ it follows that uλ is a supersolution (1.1) associated to λ.

Now, thanks to Lemma 3.2 there exists ε > 0 such that v = Sϕ(εmδ
q
Ω
) is a subsolution of (1.1)

associated to λ. Moreover, taking ε smaller if necessary, we get that v ≤ uλ. Now, (III) follows

from Lemma 2.2.

4 Comments about the hypothesis

Let us introduce some concepts about Orlicz spaces indices. Given a nonbounded, increasing,

continuous function ϕ : [0, ∞) → [0, ∞) with ϕ(0) = 0, we define

M(t, ϕ) := sup
x>0

ϕ(tx)

ϕ(x)
.

This function is nondecreasing and submultiplicative with M(1, ϕ) = 1. Then, thanks to e.g.

[9, Chapter 11], the following limits exist:

αϕ := lim
t→0+

ln M(t, ϕ)

ln t
, βϕ := lim

t→∞

ln M(t, ϕ)

ln t
,

and moreover, 0 ≤ αϕ ≤ βϕ ≤ ∞. These numbers are called Orlicz space indices or

Matuszewska–Orlicz’s indices, who introduced them in [10].

As usual, we say that ϕ satisfies the ∆2 condition if there exists k > 0 such that

ϕ(2x) ≤ kϕ(x) for all x ≥ 0.
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Remark 4.1.

(i) For ε > 0, there exists t1 > 0 such that ϕ(tx) ≤ tαϕ−εϕ(x) for all x > 0 and t ∈ [0, t1].

(ii) Suppose that βϕ < ∞. Then, for ε > 0, there exists t2 > 0 such that ϕ(tx) ≤ tβϕ+εϕ(x)

for all x > 0 and t ∈ [t2, ∞). So, if βϕ < ∞ then ϕ satisfies the ∆2 condition.

(iii) If x−pϕ(x) is nondecreasing for all x > 0, then αϕ ≥ p.

(iv) If x−pϕ(x) is nonincreasing for all x > 0, then βϕ ≤ p.

(v) The following relationships between the Orlicz space indices of ϕ and ϕ−1 hold:

βϕ =
1

αϕ−1

and αϕ =
1

βϕ−1

.

As usual, we set 1/0 = ∞ and 1/∞ = 0.

We shall need the next two useful lemmas to prove Theorem 4.4 below.

Lemma 4.2 ([5, page 34]). If 0 < αϕ ≤ βϕ < ∞ then there exist C, p, q > 0 such that

C−1 min{tp, tq}ϕ(x) ≤ ϕ(tx) ≤ C max{tp, tq}ϕ(x) for all t, x ≥ 0.

Lemma 4.3 ([9, Theorem 11.7]). The function ϕ satisfies the ∆2 condition if and only if the constant

βϕ is finite.

Theorem 4.4. The following hypothesis for ϕ are equivalent:

(i) 0 < αϕ ≤ βϕ < ∞.

(ii) (Φ).

(iii) (Φ′).

Proof. It is obvious that (ii) implies (iii), and Lemma 4.2 shows that (i) implies (ii). Let us prove

that (iii) implies (i).

Since αϕ = 1/βϕ−1 , Lemma 4.3 and Remark 4.1 (v) tell us that αϕ > 0 if and only if ϕ−1

satisfies ∆2. Let us check that the first inequality in (Φ′) implies that ϕ−1 satisfies ∆2. Indeed,

taking into account that

ψ1(t)ϕ(x) ≤ ϕ(xt) for all t, x > 0,

setting y = ϕ(x) and s = ψ(t) we get that

sy ≤ ϕ(ψ−1
1 (s)ϕ−1(y)) for all s, y > 0.

Since ϕ−1 is increasing its follows that

ϕ−1(sy) ≤ ψ−1
1 (s)ϕ−1(y) for all s, y > 0.

This implies that ϕ−1 satisfies ∆2. Thus, αϕ > 0. Moreover, the second inequality in (Φ′)
implies that ϕ satisfies ∆2. Then, βϕ < ∞.

The following two lemmas will be useful to compare the indices αϕ and βϕ with our

hypotheses (F), (G1) and (G2) stated in Section 1.
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Lemma 4.5. Let q > 0.

(i) If lim
t→0+

tq

ϕ(t)
= 0 then αϕ ≤ q.

(ii) If lim
t→∞

tq

ϕ(t)
= 0 then βϕ ≥ q.

(iii) If lim
t→0+

tq

ϕ(t)
= ∞ then βϕ ≥ q.

(iv) If lim
t→∞

tq

ϕ(t)
= ∞ then αϕ ≤ q.

Proof. We start proving (i). If αϕ > q, by Remark 4.1 (i) there exists t1 > 0 such that

ϕ(tx) ≤ tqϕ(x) for all x > 0 and t ∈ (0, t1).

Let us set C = ϕ(1)−1 and fix x = 1. Using the above inequality we have that C ≤ tq

ϕ(t)
for all

t ∈ (0, t1), which contradicts that limt→0+
tq

ϕ(t)
= 0. Therefore, we must have αϕ ≤ q. Item (ii)

follows similarly. Indeed, if βϕ < q, by Remark 4.1 (ii) we have that there exists t1 > 0 such

that

ϕ(tx) ≤ tqϕ(x) for all x > 0 and t > t1.

We now again define C = ϕ(1)−1 and fix x = 1. Employing the above inequality we have that

C ≤ tq

ϕ(t)
for all t > t1, contradicting that limt→∞

tq

ϕ(t)
= 0. Thus, βϕ ≥ q.

We prove (iii). We notice first that

lim
t→0+

tq

ϕ(t)
= ∞ if and only if lim

t→0+

t1/q

ϕ−1(t)
= 0. (4.1)

Indeed, the first limit is true if for every sequence {tk} with 0 < tk → 0, it holds that
t
q
k

ϕ(tk)
→ ∞.

Thus, taking sk = ϕ(tk) we have that 0 < sk → 0 and
[ϕ−1(sk)]

q

sk
→ ∞. Since h(t) = t1/q is

continuous and converges to ∞ as t → ∞, it follows that
ϕ−1(sk)

s
1/q
k

→ ∞, which is equivalent to

s
1/q
k

ϕ−1(sk)
→ 0. Since 0 ≤ t1/q

ϕ−1(t)
for all t > 0 it follows that limt→0+

t1/q

ϕ−1(t)
= 0. Now, from (4.1)

and item (i) we deduce that αϕ−1 ≤ 1/q, and recalling Remark 4.1 (v) we get that βϕ ≥ q, and

(iii) holds. Analogously, (iv) follows from (ii), taking into account that

lim
t→∞

tq

ϕ(t)
= ∞ if and only if lim

t→∞

t1/q

ϕ−1(t)
= 0,

and using again Remark 4.1 (v).

Lemma 4.6. Let ϕ : [0, ∞)→ [0, ∞) be a nonbounded, increasing, continuous function with ϕ(0) = 0.

(i) If q < αϕ then limt→0+
tq

ϕ(t)
= ∞.

(ii) If q > βϕ then limt→∞
tq

ϕ(t)
= ∞.

(iii) If q < αϕ then limt→∞
tq

ϕ(t)
= 0.
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(iv) If q > βϕ then limt→0+
tq

ϕ(t)
= 0.

Let us note that the reciprocals of items (i) and (ii) of the above lemma are not true, see

Example (e.1) below.

Proof. Let us begin by proving (i). Let ε > 0 such that αϕ − ε > q. By Remark 4.1 (i) there

exists t1 > 0 such that ϕ(tx) ≤ tαϕ−εϕ(x) for all x > 0 and t < t1. Taking x = 1 we get that
1

t
αϕ−ε ≤ ϕ(1)

ϕ(t)
for t < t1. Multiplying by tq on both sides and taking limit as t → 0+ it follows

that

lim
t→0+

tq

tαϕ−ε ≤ lim
t→0+

ϕ(1)tq

ϕ(t)
.

Since q < αϕ − ε, the first limit is infinite, and so also the second one. Thus, (i) is proved.

Analogously, let ε > 0 such that βϕ + ε < q. By Remark 4.1 (ii) there exists t1 > 0 such

that ϕ(tx) ≤ tβϕ−εϕ(x) for all x > 0 and t > t1. Taking x = 1 we have 1

t
βϕ−ε ≤ ϕ(1)

ϕ(t)
for t < t1.

Multiplying by tq on both sides and taking limit as t → ∞ we get

lim
t→∞

tq

tβϕ+ε
≤ lim

t→∞

ϕ(1)tq

ϕ(t)
.

Since q > βϕ + ε, the first limit is infinite, and thus also the second one.

On other hand, (iii) follows from (ii) noting that

lim
t→∞

tq

ϕ(t)
= 0 if and only if lim

t→∞

t1/q

ϕ−1(t)
= ∞,

and taking into account that αϕ > q if and only if βϕ−1 < 1/q. Similarly, (iv) follows from (i)

noting that

lim
t→0+

tq

ϕ(t)
= 0 if and only if lim

t→0+

t1/q

ϕ−1(t)
= ∞,

and recalling that βϕ < q if and only if αϕ−1 > 1/q.

Corollary 4.7. Let q, r1 and r2 be given by (F), (G1) and (G2) respectively.

1. Suppose that αϕ is positive.

(a) If q < αϕ then the limit in (F) holds.

2. Suppose that βϕ is finite.

(a) If r1 > βϕ then the limit in (G1) holds.

(b) If r2 > βϕ then the limit in (G2) holds.

4.1 Examples

Let us conclude the article with some examples of functions ϕ. We suppose x ≥ 0 and we

extend the function oddly.

a. Let

ϕ(x) = xp1 + xp2 , with p1 ≥ p2 > 0.

Since ϕ(x)/xp1 is nonincreasing and ϕ(x)/xp2 is nondecreasing, we see that βϕ < ∞ and

αϕ > 0.
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b. Let

ϕ(x) =
xp1

1 + xp2
, with p1 > p2 > 0.

Since ϕ(x)/xp1 is nonincreasing and ϕ(x)/xp1−p2 is nondecreasing, we get that βϕ < ∞

and αϕ > 0.

c. Let

ϕ(x) = x (|ln x|+ 1) .

We have that ϕ(x)/x2 is nonincreasing. Then, βϕ < ∞. Furthermore, given p ∈ (0, 1)

there exists T > 0 such that

ϕ(tx) ≤ tpϕ(x) for t ∈ [0, T] and all x ≥ 0.

This inequality implies that αϕ ≥ 1.

d. Let

ϕ(x) := x − ln(x + 1).

As in the above example, ϕ(x)/x2 is nonincreasing and then βϕ < ∞. Also, there exist

C, T > 0 such that

ϕ(tx) ≤ Ctϕ(x) for t ∈ [0, T] and all x ≥ 0.

The above inequality implies that αϕ ≥ 1. Moreover, since

lim
t→∞

tq

ϕ(t)
= ∞ for all q > 1,

thanks to Lemma 4.5 (iv) we deduce that αϕ = 1.

e. Let h : (0, ∞) → (1, ∞) be an increasing differentiable function such that limt→0+ h(t) =

1,

lim
t→∞

qtq−1h(t)

h′(t)
= ∞ for all q > 0, (4.2)

and there exists p1 > 0 such that

lim
t→0+

qtq−1h(t)

h′(t)
=

{

0 if q > p1,

∞ if q < p1.
(4.3)

Define

ϕ(x) := (ln(h(x))p, with p > 0.

By (4.2), ϕ satisfies the limit in (G2). Moreover, from Lemma 4.5 (iv) we can deduce that

αϕ = 0. Then ϕ does not satisfy the hypothesis (Φ) (and (Φ′)) at the introduction. And

since (4.3) holds it follows that

lim
t→0+

tq

ϕ(t)
=

{

0 if q > pp1.

∞ if q < pp1.

Therefore, ϕ satisfies the limits in (F) and (G1). Let us exhibit next a few particular cases.



Positive solutions for concave-convex Problems for ϕ-Laplacian 13

e.1 Let

ϕ(x) := (ln(x + 1))p, with p > 0.

A few computations show that h(x) = x + 1 satisfies (4.2) and (4.3). Moreover, we

can see that ϕ(x)/xp is nonincreasing and thus βϕ ≤ p, and since

lim
t→0+

tq

ln(t + 1)
= ∞ for all q < 1,

by Lemma 4.5 it follows that βϕ = p. This shows that the reciprocals of the items

(i) and (ii) in Lemma 4.6 are not true.

e.2 Let

ϕ(x) := arcsinh(x) = ln
(

√

x2 + 1 + x
)

.

One can see that h(x) =
√

x2 + 1 + x satisfies (4.2) and (4.3).

e.3 Let

ϕ(x) := ln(ln(x + 1) + 1).

One can verify that h(x) = ln(x + 1) + 1 satisfies (4.2) and (4.3).

Acknowledgements

This work was supported in part by Secyt-UNC 33620180100016CB.

References

[1] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlin-

earities in some elliptic problems, J. Funct. Anal. 122(1994), 519–543. https://doi.org/

10.1006/jfan.1994.1078; MR1276168; Zbl 0805.35028

[2] A. Ambrosetti, J. Garcia Azorero, I. Peral, Multiplicity results for some nonlinear

elliptic equations, J. Funct. Anal. 137(1996), 219–242. https://doi.org/10.1006/jfan.

1996.0045; MR1383017; Zbl 0852.35045

[3] H. Dang, S. Oppenheimer, Existence and uniqueness results for some nonlinear bound-

ary problems, J. Math. Anal. Appl. 198(1996), 35–48. https://doi.org/10.1006/jmaa.

1996.0066; MR1373525; Zbl 0855.34021

[4] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Notes and Reports in

Mathematics in Science and Engineering, Vol. 5, Academic Press, Inc., Boston, MA, 1988.

Zbl 0661.47045

[5] J. Gustavsson, J. Peetre, Interpolation of Orlicz spaces, Studia Math. 60(1977), 33–59.

https://doi.org/10.4064/sm-60-1-33-59; MR438102; Zbl 0353.46019

[6] U. Kaufmann, L. Milne, Positive solutions for nonlinear problems involving the one-

dimensional ϕ-Laplacian, J. Math. Anal. Appl. 461(2018), 24–37. https://doi.org/10.

1016/j.jmaa.2017.12.063; MR3759527; Zbl 1456.34021



14 U. Kaufmann and L. Milne

[7] U. Kaufmann, L. Milne, Positive solutions of generalized nonlinear logistic equations

via sub-super solutions, J. Math. Anal. Appl. 471(2019), 653–670. https://doi.org/10.

1016/j.jmaa.2018.11.001; MR3906345; Zbl 1404.35190

[8] Y.-H. Lee, X. Xu, Existence and multiplicity results for generalized Laplacian problems

with a parameter, Bull. Malays. Math. Sci. Soc. 43(2020), 403–424. https://doi.org/10.

1007/s40840-018-0691-0; MR4044894; Zbl 1491.34039

[9] L. Maligranda, Orlicz spaces and interpolation, Seminários de Matemática, Vol. 5, CU-

niversidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.

MR2264389, Zbl 0874.46022

[10] W. Matuszewska, W. Orlicz, On certain properties of Φ functions, Bull. Acad. Polon. Sci.

8(1960), 439–443. Zbl 0101.09001

[11] N. Papageorgiou, G. Smyrlis, Positive solutions for parametric p-Laplacian equations,

Commun. Pure Appl. Anal. 15(2016), 1545–1570. https://doi.org/10.3934/cpaa.2016002;

MR3538869; Zbl 1351.35035

[12] N. Papageorgiou, P. Winkert, Positive solutions for nonlinear nonhomogeneous Dirich-

let problems with concave-convex nonlinearities, Positivity 20(2016), 945–979. https:

//doi.org/10.1007/s11117-015-0395-8; MR3568178; Zbl 1359.3507
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Abstract. A stochastic SEIR(S) model with random total population, overall satura-
tion constant K > 0 and general, local Lipschitz continuous diffusion rates is pre-
sented. We prove the existence of unique, Markovian, continuous time solutions w.r.t.
filtered, complete probability spaces on certain, bounded 4D prisms. The total popu-
lation N(t) is governed by kind of stochastic logistic equations, which allows to have
an asymptotically stable maximum population constant K > 0. Under natural con-
ditions on our SEIR(S) model, we establish asymptotic stochastic and moment stabil-
ity of the disease-free and endemic equilibria. Those conditions naturally depend on
the basic reproduction number R0, the growth parameter µ > 0 and environmen-
tal noise intensity σ2

5 coupled with the maximum threshold K2 of total population
N(t). For the mathematical proofs, the technique of appropriate Lyapunov functionals
V(S(t), E(t), I(t), R(t)) is exploited. Some numerical simulations of the expected Lya-
punov functionals E[V(S, E, I, R)] depending on several parameters and time t support
our findings.
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1 Introduction to stochastic SEIR(S) model based on SDEs

Research on epidemic modeling has gone quite far since the seminal contributions of Ker-

mack and McKendrick [15]. The random, erratic nature of evolution of populations forces

us to incorporate stochastic terms in modeling and analysis. For modeling of diseases with

BCorresponding author. Email: hschurz@math.siu.edu
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sensitive, randomly fluctuating transmissions such as COVID, here we suggest to make use

of and analyze the stochastic SEIR(S) models based on Itô-interpreted SDEs

dS =
(
− βSI + µ(K − S) + αI + ζR

)
dt − σ1SI · F1

(
S, E, I, R

)
dW1

+ σ4R · F4(S, E, I, R)dW4 + σ5S(K − N)dW5

dE =
(

βSI − (µ + η)E
)

dt + σ1SI · F1

(
S, E, I, R

)
dW1 − σ2E · F2

(
S, E, I, R

)
dW2

+ σ5E(K − N)dW5

dI =
(

ηE −
(
α + γ + µ

)
I
)

dt + σ2E · F2

(
S, E, I, R

)
dW2 − σ3 I · F3

(
S, E, I, R

)
dW3

+ σ5 I(K − N)dW5

dR =
(

γI − (µ + ζ)R
)

dt + σ3 I · F3

(
S, E, I, R

)
dW3 − σ4R · F4

(
S, E, I, R

)
dW4

+ σ5R(K − N)dW5,

(1.1)

driven by independent, standard Wiener processes Wk = (Wk(t))t≥0 on a complete, filtered

probability space (Ω,F , (Ft)t≥0, P) and the total initial population (note that they can be

supposed to be nonrandom since start values are known from real-time data)

0 < N(0) := S(0) + E(0) + I(0) + R(0) < K

with nonrandom constant K > 0 of maximum possible threshold for total population. These

models (1.1) are stochastic generalizations of deterministic counterparts in mathematical epi-

demiology (cf. [21, 22]). For an introduction to mathematical models in population biology

and epidemiology, see the textbooks [2, 5, 6]. In biological modeling Itô calculus has to be

used since the dynamics of offsprings can only depend on its past, parental generations.

For an overview on the theory of Itô-interpreted stochastic differential equations (SDEs), see

[1,3,10,11,14,23,24,33] for stochastic calculus with Wiener processes. Deterministic model vari-

ants of SEIR(S), SI, SIR, SIS, etc. are well-understood nowadays. The construction and analysis

of dynamics along Lyapunov functions plays a key role in understanding those models, cf.

[7, 9, 13, 17–19]. This is also the case with stochastic settings, cf. [12, 30–32, 34, 36]. Extinction,

ergodicity, stability and recurrence of some random SEIR(S) models with constant or absent

Fk are studied in [35, 37–39], restricted to unbounded cones R
d
+. Our models (1.1) allow all

solutions to live exclusively a.s. on bounded prisms of R
4 or R

5, resp., which represents a

real requirement for biologically relevant application (due to finite resources in real life of

organisms).

To the best of our knowledge, the class of SEIR(S) models (1.1) is fairly new to the literature.

Our model focuses on the possible sensitivity of diseases to random transitions between com-

partments S of susceptible, E of exposed, I of infected, and R of recovering sub-populations,

which are controlled by noise intensity functions σkFk in a fairly general manner. Those ran-

dom transitions can be interpreted as random perturbations of the incidence terms βSI (i.e.

direct contact terms), motivated by the CLT (= Central Limit Theorem, cf. Shiryaev [33]).

Moreover, we allow a possible return of a share of the recovered sub-populations R to the sus-

ceptible ones as an expression for the possible loss of immunity w.r.t. the modelled disease-

type, represented by the parameter ζ, and a possible switch of the infected sub-populations

I to the susceptible ones, represented by the parameter α. The parameter γ stands for the

rate of transitions from the infected to the recovering sub-populations. Our main focus in this

paper is to verify several qualitative properties such as the boundedness and stability of all
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dynamics of (1.1) on certain positive prisms - properties which relate to biologically relevant

models in order to to be able to replicate real scenarios.

We shall show that the new SEIR(S) model (1.1) is well-defined (P-a.s.) on 4D prism

D =
{
(S, E, I, R) ∈ R

4
+ : 0 < S, E, I, R < K, S + E + I + R < K

}
.

For this purpose, first we shall analyze the total population N(t) of the SEIR(S) model (1.1) at

time t, which is defined by

N(t) = S(t) + E(t) + I(t) + R(t).

The understanding of their dynamics plays a crucial role in establishing qualitative properties

of the solutions of SDEs (1.1). By summing up all equations of SEIR(S) model (1.1), the SDE

for the total population N = S + E + I + R is found to be of the form

dN(t) = µ(K − N) dt + σ5N(K − N) dW5 (1.2)

on natural domain D0 =
(
0, K

)
, which can be treated in a separated fashion from the original

system (1.1).

The paper is organized as follows. Section 2 studies the boundedness of the total popula-

tion N and proves the existence of strong solutions of SDE (1.2) on open domain D0 = (0, K)

for all times t ≥ 0. Section 3 is devoted to establish the existence of unique, Markovian,

continuous time, strong solutions of the SEIR(S) model (1.1) on certain, positive 4D prisms.

There we present the two types of equilibrium solutions, namely the disease-free and the en-

demic ones. Section 4 investigates stochastic stability of the disease-free equilibrium and the

endemic equilibrium of SEIR(S) model (1.1). As usual, the associated basic reproduction num-

ber decides in which stable state the system is in (in the long-term sense). Moreover, we also

discuss the moment and stochastic stability of its saturation equilibrium n∗ = K for the SDE

(1.2) of the total populations. Finally, Section 5 is reporting on some graphical illustrations of

simulation results related to the associated mean Lyapunov functionals depending on diverse

parameters. Section 6 concludes the paper with a brief summary and outlook. An appendix

recalls a general standard result on the existence of bounded, unique solutions of systems of

Itô SDEs and the structure of associated infinitesimal generator, which plays a key role in our

studies.

2 Existence of bounded, unique solution of (1.2) on D0 = (0, K)

The proof of existence of global, unique solutions of nonlinear SDE (1.2) is far from trivial, due

to the quadratic nonlinearity in its diffusion term. For the sake of abbreviation, take σ = σ5.

Let N(t0) = N0 ∈ D0 with D0 = (0, K) and Dr =
(

1
r , K − 1

r

)
, r > 1/K. Now, consider the

events [N(t) = n]. Define

n ∈ D0 7→ V(n) := c − ln
(

n(K − n)
)
= c − ln(n)− ln(K − n).

Choose c sufficiently large such that V ≥ 0 on D0. e.g. c = ln
(

K2

4

)
. The infinitesimal generator

L of SDE (1.2) applied to the function V (see the general formula (A.2) in appendix) takes the
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form

∀n ∈ D0 : LV(n) = µ(K − n)

(
−1

n
+

1

K − n

)
+

1

2
σ2n2(K − n)2

[
1

n2
+

1

(K − n)2

]

= − µ

(
K − n

n

)
+ µ +

1

2
σ2(K − n)2 +

1

2
σ2n2.

=⇒ LV(n)
µ>0

≤ µ +
1

2
σ2(K − n)2 +

1

2
σ2n2 = µ +

1

2
σ2
[
(K − n)2 + n2

]

< µ +
1

2
σ2K2 =: c0 since g(n) := (K − n)2 + n2

< K2 on D0.

Hence, by Dynkin’s formula (1965) (cf. Dynkin [8]), we arrive at

∀t ≥ 0 : E

[
V
(

N(t)
)]

= E

[
V
(

N(0)
)]

+ E

[ ∫ t

0
LV(s) ds

]
≤ E

[
V
(

N(0)
)]

+ c0 · t < +∞

with constant c0 = µ + σ2K2/2. Obviously, we have

lim
r→+∞

inf
t≥0,n∈∂Dr

V(n) = lim
r→+∞

min
(

V
(1

r

)
, V
(

K −
1

r

))
= c − lim

r→+∞
ln
(1

r

(
K −

1

r

))
= +∞.

By the remark below Theorem A.1, there exists exactly one strong, global, continuous time,

unique Markovian solution N = (N(t))t≥0 of SDE (1.2) with N(t) ∈ D0 = (0, K) (a.s.) for all

t ≥ 0. This gives the positivity of N (a.s.) and boundedness N(t) < K (a.s.). Of course, the

equilibrium n∗ = K represents a solution itself (i.e. the trivial solution). Consequently, we

verified the following theorem.

Theorem 2.1 (Solvability and boundedness of total population SDE (1.2)). Assume that either

N(0) = K or N(0) ∈ (0, K) (a.s.) is independent of sigma-algebra σ(W) = σ(W(t) : t ≥ 0) with

E

[
ln
(

N(0)(K − N(0))
)]

< +∞.

Then, there is a unique, strong solution process N = (N(t))t≥0 satisfying SDE (1.2) and ∀ nonran-

dom 0 < T < +∞ ∀0 < N(0) < K

sup
0≤t≤T

E

[
ln
(

N(t)(K − N(t))
)]

≤ E

[
ln
(

N(0)(K − N(0))
)]

+
(

µ +
σ2

2
K2
)
· T < +∞.

3 Existence of bounded, unique solution of (1.1) on 4D prism D

The following theorem establishes the existence of strong, unique solutions of SEIR(S) models

(1.1) bounded to stay on certain positive prisms (a.s.).

Theorem 3.1 (Existence theorem of unique solutions of SEIR(S) model on prisms). Let(
S(t0), E(t0), I(t0), R(t0)

)
= (S0, E0, I0, R0) ∈ D with

D =
{
(S, E, I, R) ∈ R

4
+ : 0 < S, E, I, R < K, S + E + I + R < K

}
.
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Consider the stochastic SEIR(S) model with random, nonconstant total populations

dS =
(
− βSI + µ(K − S) + αI + ζR

)
dt − σ1SI · F1(S, E, I, R)dW1

+ σ4R · F4(S, E, I, R)dW4 + σ5S(K − N)dW5

dE =
(

βSI − (µ + η)E
)
dt + σ1SI · F1(S, E, I, R)dW1 − σ2E · F2(S, E, I, R)dW2

+ σ5E(K − N)dW5

dI =
(
ηE − (α + γ + µ)I

)
dt + σ2E · F2(S, E, I, R)dW2 − σ3 I · F3(S, E, I, R)dW3

+ σ5 I(K − N)dW5

dR =
(
γI − (µ + ζ)R

)
dt + σ3 I · F3(S, E, I, R)dW3 − σ4R · F4(S, E, I, R)dW4

+ σ5R(K − N)dW5

dN = µ(K − N) dt + σ5N(K − N) dW5.

(3.1)

Assume that all constants α, β, η, γ, ζ, µ ≥ 0 and

(i) (S0, E0, I0, R0) ∈ D is independent of σ
(
Wk : 1 ≤ k ≤ 5

)
,

(ii) ∀k = 1, 2, 3, 4, 5 : Fk ∈ C0
locLip(D) (i.e. local Lipschitz continuous on interior D)

⋂
C0(D),

(iii) E[V(S0, E0, I0, R0)] < +∞ with

V(S, E, I, R) =

{
R − ln(R) + I − ln(I) + E − ln(E) + S − ln(S),

+K − S − E − I − R − ln(K − S − E − I − R),

(iv) sup(S,E,I,R)∈D

S2 I2F2
1 (S,E,I,R)

E2 + sup(S,E,I,R)∈D

E2F2
2 (S,E,I,R)

I2 + sup(S,E,I,R)∈D

I2F2
3 (S,E,I,R)

R2 +

+ sup(S,E,I,R)∈D

R2F2
4 (S,E,I,R)

S2 < +∞.

Then, the stochastic SEIR model (1.1) with random total population size N(t) admits

(1) a unique, continuous time, Markovian, global strong solution
(
S(t), E(t), I(t), R(t)

)
on t ≥ t0,

(2) an a.s. D-invariant solution (i.e. a.s. uniform boundedness of solutions on positive cone of R
4),

(3) a uniform estimate of moments (∀T < +∞ nonrandom)

sup
0≤t≤T

E[V(S(t), E(t), S(t), R(t))] ≤ E[V(S0, E0, S0, R0)] + [βK + 4µ + η + α + γ + ζ + c1] · T,

where c1 is an appropriate constant (one may extract that from proof below).

Proof. Define

Dn :=
{
(S, E, I, R, N) ∈ R

5
+ : e−n

< S, E, I, R < K − e−n, N = S + E + I + R < K(1 − e−n)
}

for n ∈ N. Then, due to its local Lipschitz continuous drift and diffusion coefficients, system

(3.1) has a unique solution up to stopping time τ(Dn) hitting the boundary of open sets Dn

(see [3, 11, 16]). Furthermore, define

V(S, E, I, R, N) =

{
R − ln(R) + I − ln(I) + E − ln(E) + S − ln(S)

+K − N − ln(K − N)

= V1(S, E, I, R) + V2(N)

where V1(S, E, I, R) = R − ln(R) + I − ln(I) + E − ln(E) + S − ln(S),

V2(N) = Ṽ2(S, E, I, R) = K − S − E − I − R − ln(K − S − E − I − R) = K − N − ln(K − N)

on D̃ =
{
(S, E, I, R, N) ∈ R

5
+ : 0 < S, E, I, R < K, N = S + E + I + R < K

}
.
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Suppose that E
[
V(S0, E0, I0, R0, N0)

]
< +∞. Note that V(S, E, I, R, N) ≥ 5 for (S, E, I, R, N) ∈

D̃ (this fact will be used below to estimate LV). Now, calculate the infinitesimal generator

LV applied to our SEIR(S) model 3.1 using the general formula (A.2) as stated in appendix).

One encounters with the 2nd differential operator

LV(S, E, I, R, N) = (−βSI + µ(K − S) + αI + ζR)
∂V

∂S
+ (βSI − (µ + η)E)

∂V

∂E

+ (ηE − (α + γ + µ)I)
∂V

∂I
+ (γI − (µ + ζ)R)

∂V

∂R
+ µ(K − N)

∂V

∂N

+
σ2

1

2
S2 I2[F1(S, E, I, R)]2

(
∂2V

∂S2
− 2

∂2V

∂S∂E
+

∂2V

∂E2

)

+
σ2

2

2
E2[F2(S, E, I, R)]2

(
∂2V

∂E2
− 2

∂2V

∂E∂I
+

∂2V

∂I2

)

+
σ2

3

2
I2[F3(S, E, I, R)]2

(
∂2V

∂I2
− 2

∂2V

∂I∂R
+

∂2V

∂R2

)

+
σ2

4

2
R2[F4(S, E, I, R)]2

(
∂2V

∂R2
− 2

∂2V

∂R∂S
+

∂2V

∂S2

)

+
σ2

5

2
[K − N]2

(
S2 ∂2V

∂S2
+ 2ES

∂2V

∂S∂E
+ E2 ∂2V

∂E2

)

+ σ2
5 [K − N]2

(
SI

∂2V

∂S∂I
+ SR

∂2V

∂S∂R
+ SN

∂2V

∂S∂N

)

+ σ2
5 [K−N]2

(
EI

∂2V

∂E∂I
+ER

∂2V

∂E∂R
+EN

∂2V

∂E∂N
+ IR

∂2V

∂I∂R
+ IN

∂2V

∂I∂N
+RN

∂2V

∂R∂N

)

+
σ2

5

2
[K − N]2

(
I2 ∂2V

∂I2
+ R2 ∂2V

∂R2
+ N2 ∂2V

∂N2

)

(3.2)

for any twice continuously differentiable function V ∈ C2(D̃). Next, an application LV to our

specific functional V yields that

LV(S, E, I, R, N) = LV1(S, E, I, R) + LV2(N),

LV1(S, E, I, R) = µ(K − S − E − I − R) + βI −
1

S

(
µ(K − S) + αI + ζR

)
−

1

E
βSI

+ µ + η −
1

I
ηE + α + γ + µ −

1

R
γI + µ + ζ +

σ2
1

2
I2 F2

1 (S, E, I, R)

+
σ2

4

2

R2 F2
4 (S, E, I, R)

S2
+

σ2
1

2

S2 I2 F2
1 (S, E, I, R)

E2
+

σ2
2

2
F2

2 (S, E, I, R)

+
σ2

2

2

E2 F2
2 (S, E, I, R)

I2
+

σ2
3

2
F2

3 (S, E, I, R)

+
σ2

3

2

I2 F2
3 (S, E, I, R)

R2
+

σ2
4

2
F2

4 (S, E, I, R) + 2σ2
5 (K − N)2

≤ µ(K − S − E − I − R) + βI + 3µ + α + γ + η + ζ + 2σ2
5 (K − N)2

+
σ2

1

2
sup

(S,E,I,R)∈D

S2 I2F2
1 (S, E, I, R)

E2
+

σ2
1

2
max

(S,E,I,R)∈D

I2F2
1 (S, E, I, R)

+
σ2

4

2
sup

(S,E,I,R)∈D

R2F2
4 (S, E, I, R)

S2
+

σ2
4

2
max

(S,E,I,R)∈D

F2
4 (S, E, I, R)
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+
σ2

3

2
sup

(S,E,I,R)∈D

I2F2
3 (S, E, I, R)

R2
+

σ2
3

2
max

(S,E,I,R)∈D

F2
3 (S, E, I, R)

+
σ2

2

2
sup

(S,E,I,R)∈D

E2F2
2 (S, E, I, R)

I2
+

σ2
2

2
max

(S,E,I,R)∈D

F2
2 (S, E, I, R) < +∞

since Theorem 3.1 (iv). Similarly, we find

LV2(N) = LṼ2(S, E, I, R) = −µ(K − N) + µ +
σ2

5

2
N2.

Note that we may estimate σ2
5 [4(K − N)2 + N2] ≤ 4σ2

5 K2/5 on 0 < N < K. Thus, we have

LV(S, E, I, R, N) ≤ βI + 4µ + η + α + γ + ζ + c1 ≤ βK + 4µ + η + α + γ + ζ + c1

on D̃, where

c1 =





2σ2
5

5
K2 +

σ2
1

2

[
sup

(S,E,I,R,N)∈D̃

S2 I2F2
1 (S, E, I, R)

E2
+ max

(S,E,I,R,N)∈D̃

I2F2
1 (S, E, I, R)

]

+
σ2

4

2

[
sup

(S,E,I,R,N)∈D̃

R2F2
4 (S, E, I, R)

S2
+ max

(S,E,I,R,N)∈D̃

F2
4 (S, E, I, R)

]

+
σ2

3

2

[
sup

(S,E,I,R,N)∈D̃

I2F2
3 (S, E, I, R)

R2
+ max

(S,E,I,R,N)∈D̃

F2
3 (S, E, I, R)

]

+
σ2

2

2

[
sup

(S,E,I,R,N)∈D̃

E2F2
2 (S, E, I, R)

I2
+ max

(S,E,I,R,N)∈D̃

F2
2 (S, E, I, R)

]
.

(3.3)

Note that c1 is finite due to hypotheses (ii) and (iv). Next, let τn(t) := min(τ(Dn), t) where

τ(Dn) is the stopping time of the first exit from the domain Dn. An application of Dynkin’s

formula [8] (1965) provides us the estimate

E[V(S(t), E(t), I(t), R(t), N(t))]

= E[V(S0, E0, I0, R0, N0)] + E

[∫ τn(t)

0
LV(S(s), E(s), I(s), R(s), N(s)) ds

]

≤ E[V(S0, E0, I0, R0, N0)] + [βK + 4µ + η + α + γ + ζ + c1] · E[τn(t)]

≤ E[V(S0, E0, I0, R0, N0)] + [βK + 4µ + η + α + γ + ζ + c1] · t since τn(t) ≤ t,

for all nonrandom times t > t0, as long as the solution
(
S(s), E(s), I(s), R(s), N(s)

)
on D̃. Note

that ∀n ∈ N : n > 0 and n > ln(K)/5

inf
(S,E,I,R,N)∈ ∂ Dn

V(S, E, I, R, N) > 5n − ln(K). (3.4)

Recall that we have defined the stopping time τn(t) := min{t, τ(Dn)} based on the stopping

time τ(Dn) arriving the first time at the boundary of Dn. Now, apply the above estimate to
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get to

0 ≤ P

([
τ(D̃) < t

]) Dn⊆D̃

≤ P

([
τ(Dn) < t

])
= P

([
τn(t) < t

])

= E
[
1τn(t)<t

]
where 1 is the indicator function

≤ E




V
(

S
(
τ(Dn)

)
, E
(
τ(Dn)

)
, I
(
τ(Dn)

)
, R
(
τ(Dn)

)
, N
(
τ(Dn)

))

inf(S,E,I,R,N)∈∂Dn
V(S, E, I, R, N)

· 1τn<t




(3)

≤
E[V(S0, E0, I0, R0.N0)] + E[τn(t)] · [βK + 4µ + η + α + γ + ζ + c1]

inf(x,y,z,v,w)∈∂Dn
V(x, y, z, v, w)

(3.4)

≤
E[V(S0, E0, I0, R0, N0)] + t[βK + 4µ + η + α + γ + ζ + c1]

5n − ln(K)
−→ 0 as n → ∞

for all (S0, E0, I0, R0, N0) ∈ Dn, and for all fixed, nonrandom t ∈ [s, ∞). Thus

=⇒ P

([
τ(D̃) < t

])
= lim

n→+∞
P

([
τ(Dn) < t

])
= 0

for all adapted (S0, E0, I0, R0, N0) ∈ D̃ and all t ≥ t0. That means that

P

([
τ(D̃) = +∞

])
= 1.

This proves the invariance property and global existence of solutions
(
S(t), I(t), R(t), N(t)

)

on D̃ for any finite time t. Thus, the proof of Theorem (3.1) is complete.

4 Asymptotic moment and stochastic stability, stability exponents

Let p > 0 be a real constant. Consider the d-dimensional, autonomous, Itô-interpreted SDEs

dX(t) = a
(
X(t)

)
dt + b

(
X(t)

)
dW(t). (4.1)

Definition 4.1. SDE (4.1) has a globally asymptotically p-th moment stable equilibrium (so-

lution) X = x∗ if and only if a(x∗) = b(x∗) = 0 and ∀ X(s) ∈ Lp(Ω, Fs, P), s ≥ 0, X(s) ̸= x∗

we have

lim
t→+∞

E

[
∥Xs,X(s)(t)− x∗∥

p
d

]
= 0

(where d is the state-space dimension of the stochastic process X).

Definition 4.2. The equilibrium solution x∗ of SDE (4.1) is stochastically stable (stable in

probability) iff, for every ε > 0 and s ≥ t0, we have

lim
x0→x∗

P

([
sup

t0≤s<∞

∥Xs,x0(t)− x∗∥ ≥ ε

])
= 0 (4.2)

where Xs,x0(t) denotes the solution of SDE (4.1) satisfying X(s) = x0 at time t ≥ s.

Definition 4.3. The equilibrium solution x∗ of SDE (4.1) is said to be (locally) asymptotically

stochastically stable iff it is stochastically stable and

∀x0 ∈ N(x∗) : P

([
lim
t→∞

Xs,x0(t) = x∗
])

= 1. (4.3)
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Definition 4.4. The equilibrium solution x∗ of SDE (4.1) is said to be globally asymptotically

stochastically stable iff it is stochastically stable and, for every x0 and every s, we have

P

([
lim
t→∞

Xs,x0(t) = x∗
])

= 1. (4.4)

Theorem 4.5 (Stability theorem of Arnold [3]). Assume that the SDE (4.1) has a unique solution

started at every nonrandom x0 in the nonrandom, a.s. invariant, open neighborhood N(x∗) ⊆ R
d.

Then, the equilibrium solution x∗ ∈ N(x∗) ⊆ R
d for SDE (4.1) is stochastically stable if ∃ positive

definite

V = V(t, x) ∈ C1,2
(
[t0, ∞)× N(x∗), R

1
+

)

on N(x∗) such that ∀ (t, x) ∈ [t0, ∞)× N(x∗) :

LV(t, x) ≤ 0.

If additionally V is decrescent on N(x∗) and

∀ (t, x) ∈ [t0, ∞)× N(x∗) \ {x∗} : LV(t, x) < 0,

then x∗ is (locally) asymptotically stochastically stable for SDE (4.1).

We also call the equilibrium x∗ of SDE (4.1) to be globally asymptotically stochastically

stable iff it is asymptotically stochastically stable and LV < 0 on the entire domain D

where the dynamics of X live on (a.s.) (i.e., in this case, we may extend N(x∗) = D as

the relevant neighborhood of x∗ in above definition of stochastic stability). Note that the

equilibria x∗ do not have to be in the neighborhood N(x∗), but x∗ ∈ N(x∗). In fact, the

Theorem 4.5 remains valid for the cases like neighborhoods of the form N(K) = (0, K) or

N(K) = [ε, K) with equilibrium x∗ = K (or multidimensional variants of those examples) in

order to cover the important cases of semi-stability too. For the SDE of the total population N

of our SEIR(S) model, we can establish both stochastic and moment stability of the saturation

constant x∗ = K.

Theorem 4.6 (Stability of equilibrium n∗ = K for total populations). Consider the SDE for

random total population

dN = µ(K − N) dt + σ5N(K − N) dW5. (4.5)

Then, the equilibrium point n∗ = K of SDE (4.5) is

(1) global asymptotically stochastically stable if 2µ > K2σ2
5 ,

(2) p-th moment exponentially stable if 2µ > (2p − 1)K2σ2
5 and p ≥ 1

2 , and

(3) almost surely asymptotically stable if 2µ > (2p − 1)K2σ2
5 and p ≥ 1

2 .

Proof. The proof for the equilibrium n∗ = K is naturally divided into the items (1)–(3).

(1) Let n ∈ (0, K) for n∗ = K. Define the Lyapunov function V by

n ∈ (0, K) 7→ V(n) = (K − n)2.
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Then, we find that

LV(n) = µ(K − n) · 2(K − n) · (−1) +
1

2
σ2

5 n2(K − n)2 · 2

= (−2µ + σ2
5 n2)V(n)

on D0

≤ (−2µ + σ2
5 K2)V(n).

Now, note that LV(n) < 0 for all n ∈ (0, K) if 2µ > K2σ2
5 . Therefore, an application of

Arnold’s Stability Theorem 4.5 confirms the claim of stochastic stability.

(2) Next, consider the Lyapunov function

n ∈ (0, K) 7→ V(n) = (K − n)2p =
[
(K − n)2

]p
.

Then, for p ≥ 1
2 , we have

LV(n) = µ(K − n) · 2p(K − n)2p−1 · (−1) +
1

2
σ2

5 n2(K − n)2 · 2p(2p − 1)(K − n)2p−2

= 2p

[
−µ +

1

2
(2p − 1)σ2

5 n2

]
· V(n)

≤ 2p

[
−µ +

1

2
(2p − 1)σ2

5 K2

]
· V(n).

An application of Dynkin’s formula (cf. [8]) will give the conclusion that

E

[
V
(

N(t)
)]

= E

[
|K − N(t)|2p

]

≤ E

[
V
(

N(s)
)]

· e
2p

[
−µ+ 1

2 (2p−1)σ2
5 K2

]
(t−s)

(4.6)

t→+∞
−→ 0

if 2µ > (2p − 1)K2σ2
5 and p ≥ 1

2 .

(3) The property of a.s. asymptotical stability of n∗ = K follows directly from the item (2) due

to the fact that all exponentially moment stable equilibria also possess a.s. asymptotically

stable pathwise solutions (for a proof of this fact, see [26]). This completes the proof of

Theorem 4.6.

As a by-product of the previous proof, we gain the following result on the asymptotic

behavior of Lyapunov functionals V(n) = |K − n|2p = ∥K − n∥
2p

R1 .

Theorem 4.7 (Uniform estimation of moment V-exponents). Consider Itô SDEs (4.5) for random

total population N = (N(t))t≥0. Then

∀p > 0 ∀N(0) = n0 ∈ (0, K) : λ2p(n0) := lim
t→+∞

ln
(

E
[
|K − N(t)|2p

])1/2p

t

≤ − µ +
1

2
max(2p − 1, 0)σ2

5 K2,

which represents a uniform estimation of moment V-exponents λ2p(n0) on (0, K).
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Proof. Return to the identity (4.6) with V(n) = |K − n|2p. Taking 2p-th root and the natural

logarithm yield that

ln
(

E
[
|K − N(t)|2p

])1/2p
≤ ln

(
E
[
|K − N(0)|2p

])1/2p
+

(
−µ +

1

2
max(2p − 1, 0)σ2

5 K2

)
· t.

Thus, dividing by t > 0 and taking the limit as t → +∞ confirms the conclusion on the

asymptotic behavior of ln
(
E[V(N(t))]

)
/t in the moment sense.

Remark 4.8 (Moment V-exponents). The moment V-exponents λ2p measure the speed of ex-

ponential convergence of total populations N(t) to the saturation constant K as time t → +∞

in the 2p-th moment sense. The definition of moment V-exponents is made in a consistent

manner (to incorporate the deterministic case). In passing, note that nonlinear V-exponents

may depend on initial quantity N(0) = n0, whereas V-exponents for linear systems do not

depend on N(0) = n0. Remarkably, for sufficiently small powers p or noise intensities σ5 or

very small constants K > 0, we find exponentially stable 2p-moments (i.e. exponential mo-

ment convergence of N(t) to equilibrium n∗ = K) due to the birth parameter µ > 0 in our

model.

The following lemma states the form of all existing equilibria (trivial solutions) of SEIR(S)

models (1.1). Its proof is an elementary exercise of algebra, hence it is omitted here.

Lemma 4.9 (Disease-free and endemic equilibria). For the drift coefficients of our SEIR(S) model

(1.1), we have two equilibrium points. One is disease-free and the other is the endemic equilibrium. The

disease-free equilibrium of (1.1) is given by

(S1, E1, I1, R1) = (K, 0, 0, 0) ∈ D

with its total sum N1 := S1 + E1 + I1 + R1 = K and the endemic equilibrium by

(S2, E2, I2, R2) ∈ D,

where S2 =
(µ + η)(α + γ + µ)

βη

E2 =
(µ + ζ)(α + γ + µ)

βη

[
βηK − (µ + η)(α + γ + µ)

(µ + ζ)(α + γ + µ) + η(γ + µ + ζ)

]

I2 =

(
µ + ζ

β

) [
βηK − (µ + η)(α + γ + µ)

(µ + ζ)(α + γ + µ) + η(γ + µ + ζ)

]

R2 =
γ

β

[
βηK − (µ + η)(α + γ + µ)

(µ + ζ)(α + γ + µ) + η(γ + µ + ζ)

]
.

(4.7)

The disease-free equilibrium is also an equilibrium of the diffusion coefficients. For biologically mean-

ingful occurrence of endemic equilibrium (i.e. (S2, E2, I2, R2) ∈ D), we need to require that

βηK > (µ + η)(α + γ + µ) (∗)

– a condition, which is equivalent to R0 > 1. For the classic concept of endemic equilibrium of both

drift and diffusion terms at the same location, vanishing Fk(S2, E2, I2, R2) = 0 are imposed. Moreover,

at the endemic equilibrium, we have total sum

N2 := S2 + E2 + I2 + R2 = K.
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Proof. Elementary calculus exercise.

Biologists and Ecologists usually express the qualitative state of systems in terms of basic

reproduction numbers R0. For our SEIR(S) model (1.1), this quantity takes the form

R0 =
βηK

(µ + η)(α + γ + µ)
.

Indeed, as we shall see below, this quantity decides about the long-term stability mode in

which the stochastic SEIR(S) models is and the value R0 = 1 serves as a bifurcation parameter

(cf. stability analysis in what follows). Moreover, the endemic equilibrium (S2, E2, I2, R2) can

be expressed in terms of R0 by

(
S2, E2, I2, R2

)
=

(
K

R0
, (µ + ζ)

K

R0
ρ,

(µ + ζ)

β
ρ,

γ

β
ρ

)

with

ρ :=
R0 − 1

(µ+ζ)
(µ+η)

+ (γ+µ+ζ)R0

βK

.

Clearly, the 2nd, 3rd and 4th components of (S2, E2, I2, R2) are positive iff ρ > 0 iff R0 > 1.

First, for stability investigation of SEIR(S) models (1.1), note that all equilibria (S∗
k , E∗

k , I∗k , R∗
k )

of SDEs (1.1) possess the total sum

N∗
k = S∗

k + E∗
k + I∗k + R∗

k = K

and are at the boundary of domain D, i.e.

N∗
k ∈ D.

This is also the unique equilibrium of dynamics N = (N(t))t≥0 of total populations governed

by SDE (1.2). Consequently, it remains to prove that the asymptotic stability of the disease-

free equilibrium when reproduction number R0 < 1 and the endemic equilibrium when

reproduction number R0 > 1.

Asymptotic stability of general epidemic or environmental systems has already been in-

vestigated in [4, 13, 20, 31, 32, 34], but not our SEIR(S) model (1.1) to the best of our knowl-

edge. These investigations are associated to appropriate Lyapunov functions or functionals

(cf. [4, 7, 9, 10, 17–19] among others).

Theorem 4.10 (Asymptotic stochastic stability of disease-free equilibrium). The disease-free equi-

librium solution (S1, E1, I1, R1) = (K, 0, 0, 0) of (1.1) is (globally) asymptotically stochastically stable

if

σ2K2
< 2µ, ζ ≥ 0, βK ≤ α. (4.8)

Proof. We shall apply Theorem 4.5. For this purpose, define the Lyapunov function

V4(S, E, I, R) =
1

2
(S − K + E + I + R)2 + KE + KI + KR

=
1

2
(K − N)2 + KE + KI + KR = V̂4(E, I, R, N)
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on D. The infinitesimal generator L (cf. (3.2) and generally presented one in Appendix A)

acting on the Lyapunov function V4 can be written as:

LV4(S, E, I, R) =
(
− βSI + µ(K − S) + αI + ζR

)
(S − K + E + I + R)

+
(

βSI − (µ + η)E
)
(S − K + E + I + R + K)

+
(
ηE − (α + γ + µ)I

)
(S − K + E + I + R + K)

+
(
γI − (µ + ζ)R

)
(S + E + I + R + K − K) +

σ2
5

2
N2(K − N)2

= − µ(S + E + I + R − K)2 + K
[
βSI − µ(E + I + R)− αI − ζR

]

+
σ2

5

2
N2(K − N)2

= − µ(N − K)2 − µ(KE + KI + KR) + K
[
(βS − α)I − ζR

]
+

σ2
5

2
N2(K − N)2

0<δ<1
= − µ(1 − δ)(N − K)2 − µ(KE + KI + KR) + K

[
(βK − α)I − ζR

]

−
[
δµ −

σ2
5

2
N2
]
(K − N)2

≤ − µ(1 − δ)V4 + K
[
(βK − α)I − ζR

]
−
[
δµ −

σ2
5

2
K2
]
(K − N)2.

Now, let δ → 1−. Then, from some δ > 0 onwards as δ ↑ 1, we find a δ0 < 1 such that, for all

δ ∈ (δ0, 1], we have −δµ + σ2
5 K2/2 ≤ 0 by hypothesis 2µ > σ2

5 K2.

Thus, LV4(S, E, I, R) ≤ 0 is indeed negative-definite on D under the presumptions that

βK − α ≤ 0, ζ ≥ 0 and 2µ > σ2
5 K2. It remains to apply stochastic stability Theorem 4.5 to

confirm Theorem 4.10.

Remark 4.11 (Role of basic reproduction number). One of the most important quantities in

epidemiology is the basic reproduction number R0, expected number of secondary infections

produced when one infected individual entered a fully susceptible population [15]. It usually

determines whether there is an epidemic or not. If R0 < 1 then the outbreak will disappear.

On the contrary, if R0 > 1 then the epidemic will spread a population. Recall that the basic

reproduction number of our SEIR(S) model is R0 = ηβK
(µ+η)(α+γ+µ)

. Later we will see that this

number R0, the magnitude of µ > 0 and the parameter σ2
5 K2 involving environmental noise

intensity σ5 decide about whether the disease-free or the endemic equilibrium is (asymptoti-

cally) stochastically stable (cf. Theorems 4.10 and 4.15).

Remark 4.12 (Possible extinction of disease). Theorem 4.10 concludes that, if α − βK ≥ 0 and

the environmental noise level σ2
5 is so small such that 2µ ≥ σ2

5 K2, then the disease will die

out. This statement does not contradict to the fact R0 < 1. Because the stability condition

α − βK ≥ 0 can be written in terms of the basic reproduction number as follows

βK ≤ α < (α + γ + µ)
(µ + η)

η
⇒

ηβK

(µ + η)(α + γ + µ)
= R0 < 1.

Corollary 4.13 (Exponential moment stability of disease-free equilibrium). Since

LV4(S, E, I, R) ≤ −µV4(S, E, I, R)
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under condition that βK ≤ α, ζ ≥ 0 and µ ≥ σ2
5 K2, by Dynkin’s formula, the disease-free equilibrium

(K, 0, 0, 0) is exponentially moment V-stable [26, 27] with rate −µ, i.e. ∀t ≥ 0 :

E

[
V4(S(t), E(t), I(t), R(t))

]
≤ E

[
V4(S(0), E(0), I(0), R(0))

]
· exp

(
− µ · t

)
,

hence lim
t→∞

ln
[
E[V4(S(t), E(t), I(t), R(t))]

]

t
= −µ < 0. (4.9)

Proof. Recall the structure of associated infinitesimal generator L and the computations of

LV4 in the proof of Theorem 4.10. There we have found that

LV4(S, E, I, R) = −µ(N − K)2 − µ(KE + KI + KR) + K
[
(βS − α)I − ζR

]
+

σ2
5

2
N2(K − N)2.

Under µ ≥ σ2
5 K2, we further estimate

LV4(S, E, I, R) =−
µ

2
(N − K)2 − µ(KE + KI + KR) + K

[
(βS − α)I − ζR

]
−

µ − σ2
5 N2

2
(K − N)2

≤− µV4 + K
[
(βS − α)I − ζR

]
−

µ − σ2
5 K2

2
(K − N)2

︸ ︷︷ ︸
≤ 0 on D since βK ≤ α, ζ ≥ 0, µ ≥ σ2

5 K2

≤− µV4.

Then, Dynkin’s formula [8] gives

E
[
V4

(
S(t), E(t), I(t), R(t)

)]
= E

[
V4

(
S0, E0, I0, R0

)]
+ E

[ ∫ t

0
LV4

(
S(s), E(s), I(s), R(s)

)
ds
]

≤ E
[
V4

(
S0, E0, I0, R0

)]
− µE

[ ∫ t

0
V4

(
S(s), E(s), I(s), R(s)

)
ds
]
.

Now, apply the well-known Bellman–Gronwall lemma to the dynamics of

v(t) := E
[
V4

(
S(t), E(t), I(t), R(t)

)]

to conclude exponentially moment V-stability with V = V4 (for the general concept of moment

V-stability, see [26, 27]). This finishes the proof of Corollary 4.13.

Remark 4.14 (Extension of exponential stability at reduced rates). There is a verification of a

small extension of the range of exponential stability of disease-free equilibrium possible for

the case σ2
5 K2/2 < µ < σ2

5 K2. However, this is verified only at reduced rate −µ + σ2
5 K2/2

of exponential convergence, compared to rate −µ < 0 of Corollary 4.13. For this, one may

establish the estimates LV4 ≤ [−µ + σ2
5 K2/2]V4 from the above proof.

Now, let us turn to the study of asymptotic stability of the endemic equilibrium.

Theorem 4.15 (Asymptotic stochastic stability of endemic equilibrium). Assume that

βηK > (µ + η)(α + γ + µ)

(i.e. R0 > 1) and 2µ ≥ σ2
5 K2. Then, the endemic equilibrium solution (S2, E2, I2, R2) of the system

(1.1) is (globally) stochastically stable on

D =
{
(S, E, I, R) : S > 0, E > 0, I > 0, R > 0, S + E + I + R < K

}
.

If even 2µ > σ2
5 K2, then the endemic equilibrium (S2, E2, I2, R2) of (1.1) is (globally) asymptotically

stochastically stable on D.
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Proof. Introduce the function

V5(S, E, I, R) =





S − S2 + E − E2 + I − I2 + R − R2

−(S2 + E2 + I2 + R2) ln

(
S + E + I + R

S2 + E2 + I2 + R2

)
(4.10)

on D. Note that V5 ≥ 0 on D and V5 = 0 ⇐⇒ S + E + I + R = K on D (by elementary

calculus applied to V5(S, E, I, R) = Ṽ5(N) with N = S + E + I + R ∈ (0, K]. Actually Ṽ5 is

strictly decreasing in N ∈ [0, K)). Thus, it is fairly easy to recognize that V5 possesses all

properties of a Lyapunov function on D. Then, we have ∀(S, E, I, R) ∈ D

LV5(S,E,I,R) =
(
− βSI + µ(K − S) + αI + ζR

) (
1 −

S2 + E2 + I2 + R2

S + E + I + R

)

+
(

βSI − (µ + η)E
) (

1 −
S2 + E2 + I2 + R2

S + E + I + R

)

+
(
ηE − (α + γ + µ)I

) (
1 −

S2 + E2 + I2 + R2

S + E + I + R

)

+
(
γI − (µ + ζ)R

) (
1 −

S2 + E2 + I2 + R2

(S + E + I + R)

)
+

σ2
5

2
N2(K − N)2 ·

K

N2

=

(
1 −

S2 + E2 + I2 + R2

S + E + I + R

)
µ(K − S − E − I − R) +

σ2
5

2
K(K − N)2. (4.11)

Note that, with N = S + E + I + R, we find that

µ(K − N) = µ(K − S − E − I − R)
LEM4.9

= −µ(S + E + I + R − S2 − E2 − I2 − R2).

Hence, we arrive at

LV5(S, E, I, R) = − µ(S + E + I + R − S2 − E2 − I2 − R2)

(
1 −

S2 + E2 + I2 + R2

S + E + I + R

)

+
σ2

5

2
K(K − N)2

= − µ
(S − S2 + E − E2 + I − I2 + R − R2)2

S + E + I + R
+

σ2
5

2
K(K − N)2

= − µ
(K − N)2

N
+

σ2
5

2
KN

(K − N)2

N
σ2

5≥0

≤ −

(
µ −

σ2
5

2
K2

)
(K − N)2

N
≤ 0 (4.12)

since 0 < N < K on D and by hypothesis 2µ ≥ σ2
5 K2.

Therefore, by Theorem 4.5, the endemic equilibrium (S2, E2, I2, R2) is stochastically stable

(globally on D) if R0 > 1 and 2µ ≥ σ2
5 K2. Moreover, when additionally 2µ > σ2

5 K2, a careful

look again at estimation (4.12) yields that

LV5(S, E, I, R) ≤ −

(
µ −

σ2
5

2
K2

)
(K − N)2

N
< 0

on D. Consequently, by Theorem 4.5, the endemic equilibrium (S2, E2, I2, R2) of SDEs (1.1)

indeed is asymptotically stochastically stable (globally on D) if R0 > 1 and 2µ > σ2
5 K2. This

conclusion completes the proof of Theorem 4.15.
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Remark 4.16 (Nonlinear distance measure to endemic equilibrium). The function V5 of the

form (4.10) measures the distance of solutions (S, E, I, R) to the endemic equilibrium

(S2, E2, I2, R2) in a nonlinear fashion.

Corollary 4.17 (Exponential moment stability of endemic equilibrium). Assume that

βηK > (µ + η)(α + γ + µ)

(i.e. R0 > 1), 2µ > σ2
5 K2 and the initial total population 0 < N(0) := S(0) + E(0) + I(0) + R(0) <

K is nonrandom.

Then, the endemic equilibrium solution (S2, E2, I2, R2) of system (1.1) is exponentially moment V5-

stable with rate −(µ − σ2
5 K2/2)N(0)/K, i.e. ∀t ≥ 0 :

E[V5

(
S(t), E(t), I(t), R(t)

)
] ≤ E[V5

(
S(0), E(0), I(0), R(0)

)
] · exp

(
−

(
µ −

σ2
5 K2

2

)
N(0)

K
· t

)
,

hence

lim
t→+∞

ln
[
E[V5

(
S(t), E(t), I(t), R(t)

)
]
]

t
≤ −

(
µ −

σ2
5 K2

2

)
N(0)

K
< 0.

Proof. Define the total population N(t) = S(t) + E(t) + I(t) + R(t) for t ≥ 0. Suppose that

N(0) is nonrandom. Recall that S2 + E2 + I2 + R2 = K by Lemma 4.9. Now, return to the proof

of Theorem 4.15 where we have computed

LV5(S, E, I, R) =

(
1 −

S2 + E2 + I2 + R2

S + E + I + R

)
µ(K − S − E − I − R)

=

(
1 −

K

N

)(
µ −

σ2
5

2
K2

)
(K − N) = −

(
µ −

σ2
5

2
K2

)
·
(N − K)2

N

≤ −

(
µ −

σ2
5

2
K2

)
N(0)

K
· V5(S, E, I, R) for N ≥ N(0)

since the total population N(t) is monotonically increasing for our SEIR model and Lyapunov

functional V5(S, E, I, R) = N − K − K · ln
[

N
K

]
=: Ṽ5(N) on D with monotonically decreasing

Ṽ5(N) in N (calculate Ṽ ′
5(N) = (N − K)/N < 0 on N ∈ (0, K) and the simple calculus fact

that

−
(N − K)2

N
< −

N

K
Ṽ5(N) < −

N(0)

K
Ṽ5(N)

for all N ≥ N(0). Finally, with nonrandom initial N(0) = S(0) + E(0) + I(0) + R(0) < K,

apply Dynkin’s formula to arrive at

E

[
Ṽ5(N(t))

]
= E

[
Ṽ5(N(0))

]
+ E

[∫ t

0
LṼ5(N(s)) ds

]

≤ E

[
Ṽ5(N(0))

]
−

(
µ −

σ2
5

2
K2

)
N(0)

K

∫ t

0
E

[
Ṽ5(N(s))

]
ds.

It remains to use the well-known Bellman–Gronwall lemma to conclude that

v(t) := E

[
Ṽ5(N(t))

]

(recall that V5(S(t), E(t), I(t), R(t))= Ṽ5(N(t))) in order to verify exponential moment stability

along functional V5 with a “least” rate estimated by −
(
µ −

σ2
5
2 K2

)N(0)
K .
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Remark 4.18 (A.s. stability and rates of exponential stability). Since exponential moment sta-

bility also implies a.s. asymptotic stability, from Corollary 4.17, we also gain the conclusion on

a.s. asymptotic V5-stability of the endemic equilibrium (S2, E2, I2, R2) on D under the hypoth-

esis that R0 > 1 and 2µ > σ2
5 K2 (by dissipative techniques from [27]). Besides, the continuous

time and discrete time moment attractivity exponents of other appropriate functionals V ≥ 0

can also be estimated by some results from [26]. But, this would sprinkle the frame of this

paper. Note, it is common that the rates of stability or attractivity of nonlinear dynamical

systems depend on the initial values like N(0) above (in contrast to linear systems).

5 Illustrations of moment functionals and reproduction number

Here we illustrate the behavior of moment Lyapunov functionals along the solutions of SEIR(S)

model (1.1) and the structure of reproduction number. First, we plot the 2D surface of repro-

duction number R0 depending on growth parameter µ and transition parameters α + γ. The

conceivable hyperplane R0 = 1 decides whether the system (1.1) has an asymptotically stable

disease-free or endemic equilibrium. For examples, above the hyperplane R0 = 1 we locate

the region where the endemic equilibrium is asymptotically stochastically stable (similar be-

low that plane for stability of disease-free equilibrium). Figure 5.1 shows that increasing µ

stabilizes the dynamics of SEIR model (1.1) toward the disease-free equilibrium. This also

happens with increasing the transition parameter sum α + γ, but at a much slower scale. For

sufficiently small µ and small α + γ, the endemic equilibrium is asymptotically stochastically

stable since the reproduction number is well above the hyperplane R0 = 1, as clearly seen in

left corner of Figure 5.1.

Figure 5.1: Reproduction number R0(µ, α+γ) with β = 25 · 10−5, η = 0.005,

ζ = 0.002, K = 1000 depending on µ = mu and α + γ = r.

Next, we illustrate the dynamics of total population process N = (N(t))t≥0 in pathwise

(a.s.) and mean sense. Figure 5.2 shows several paths of total population N(t) generated by
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Figure 5.2: Several trajectories of total population with µ = 10−2, K = 1000,

σ = 10−5, T = 10, step size h = 10−2, started at N(0) = 950.

the Euler–Maruyama method in MATLAB. This demonstrates the variety and erratic effect of

noise on the solution-paths.

Figure 5.3: Expected Lyapunov functional E[K − N(t)]2 versus t and µ with

K = 1000, σ = 10−5, T = 10, M = 106, step size h = 10−2, started at N(0) = 950.

Figure 5.3 displays the expected Lyapunov functional E[K − N(t)]2 versus time t and pa-

rameter µ, generated by M = 106 samples started with same total population size N(0) =

950 < K = 103 and discretized by standard Euler–Maruyama method with uniform step size

h = 10−2 in MATLAB. As seen there, the dynamics stabilize with increasing parameter µ and
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with advancing time t. The decline of 2D surface of E[K − N(t)]2 in time t and µ also confirms

Theorem 4.6 that, for sufficiently large µ, we find asymptotically stable equilibrium n∗ = K

for total population.

In Figure 5.4 the expected Lyapunov functional E[K − N(10)]2 versus parameters µ and σ

is depicted, generated by M = 106 samples started with same total population size N(0) =

950 < K = 103 and discretized by standard Euler–Maruyama method with uniform step size

h = 10−2 in MATLAB. Clearly, we reckon that the dynamics of that functional is “destabi-

lized” with increasing noise intensity σ and “stabilized” with increasing parameter µ. This

gives us some statistical evidence for our Theorems 4.7 (i.e. decline of moments with growing

µ > 0) and 4.6 (i.e. the destabilizing effect of growing σ2 on moments and stability). Of course,

care is needed since growing variance with increasing σ2 reduces our confidence in the esti-

mation process and perhaps larger sample sizes are needed to confirm simulation results. All

in all, larger noise intensities reveal a fairly nontrivial, nonlinear dependence of functionals

E[K − N(10)]2 on model parameters (µ, σ).

Figure 5.4: Expected Lyapunov functional E[K − N(10)]2 versus µ and σ with

K = 1000, T = 10, M = 106, step size h = 10−2, started at N(0) = 950.

Figure 5.5 plots the 2D surface of expected Lyapunov functional E[K−N(t)]2 versus time

t and parameter σ with µ = 0.09, generated by M = 106 samples started with same total

population size N(0) = 950 < K = 103 and discretized by standard Euler–Maruyama method

with step size h = 10−2 in MATLAB. For small σ > 0, the surface of this functional declines

at lower right corner of Figure 5.5. That is an empirical indicator that the SEIR(S) model is

in the stable regime. However, for larger, increasing values of σ > 0, the 2D surface gets

“destablized” as time t advances, as we especially reckon at upper right corner of Figure 5.5.

We could continue with showing more and more simulation results. Clearly, we have

demonstrated the applicability of our analysis and have suggested to plot 2D surface of multi-

dimensional expected Lyapunov functionals in order to get empirical evidence about which

stable or unstable mode the SEIR(S) model is in. Eventually, by Figure 5.6, we display 2D sur-

faces of expected Lyapunov functional m(t, p) = (E[|K − N(t)|2p])1/2p depending on powers

p ≥ 0.5 and time t, while µ = 1.0, K = 1000 and σ = 10−5 are fixed. This shows the depen-
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Figure 5.5: Expected Lyapunov functional E[K − N(t)]2 versus time t and σ with

µ = 0.09, K = 1000, T = 10, M = 106, step size h = 10−2, started at N(0) = 950.

Figure 5.6: Expected Lyapunov functional
(
E[K − N(t)]2p

)1/2p
versus time t and

power p with µ = 1.0, K = 1000, T = 10, M = 106, step size h = 0.05, started at

N(0) = 950.
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dence of expected Lyapunov functionals m(t, p) on powers p ≥ 0.5 and time t ≥ 0. As time

t advances,the depicted hyperplane declines toward zero, giving some evidence of the stable

mode of our SEIR(S) model since 2µ > σ2K2 in our simulation. There are only small changes

in p in that range. The decline of 2D-surface m(t, p) in Figure 5.6 with increasing time t con-

firms the findings of Theorems 4.6 and 4.7 on asymptotic stability of equilibrium n∗ = N using

Lyapunov functionals. The simulation has been conducted with the Euler–Maruyama method

using step size h = 0.05 in MATLAB. The crude step size h = 0.05 is applied since the limited

computational capacity of our computers, and we put our main emphasis on large sample

sizes M and fine discretization of parameter space p ∈ (0, 25] in order to get more statistical

evidence (instead of higher numerical accuracy). To get some assurance of our graphical plots

and stable computations, we repeated the experiments to get some confirmation by much

smaller step sizes h (but at the expense of reduced sample sizes).

Similar experiments can be conducted for other functionals of biological interest like the

convergence to all their equilibria. Such an endeavor is left to interested reader.

6 Summary, conclusions and outlook

This paper introduced a stochastic SEIR(S) model (1.1) based on Itô stochastic differential

equations (SDEs) with a deterministic maximum saturation constant K > 0. The main empha-

sis is on the incorporation of possible random transitions from one compartment to another

(sub-populations). As one of the major differences to previously introduced SEIR(S) models,

our model (1.1) possesses a random total population N = (N(t))t≥0, which itself is governed

by a logistic Itô SDE with the equilibrium n∗ = K. It was shown that the total population

N(t) is a.s. positive and bounded by the saturation constant K > 0 - a requirement for the

practical relevance of any SEIR(S) models. Moreover, conditions have been worked out for

the asymptotic stochastic and moment stability of the equilibrium K of the total population

process N = (N(t))t≥0. The analysis of dynamics of the total population N is essential for the

understanding and qualitative control of the solutions of SEIR models (1.1).

The paper proves the existence of unique, strong solutions (S, E, I, R) of original SEIR(S)

models (1.1) on bounded, positive prisms D ⊂ R
4
+ for all adapted, initial data residing inside

D (with finite initial “energy”). We have also verified reasonable criteria for the asymptotic

stochastic and moment stability of the disease-free and the endemic equilibria of (1.1). As

commonly expected, the basic reproduction number R0 decides about the stable character of

the equilibria (R0 < 1 for stability of the disease-free equilibrium and R0 > 1 for stability of

the endemic equilibrium). Finally, we illustrated our major findings w.r.t. declining moment

Lyapunov functionals, depending on several parameters. Very recently during submission of

this paper, it came to our attention that there is already a generalization of SEIR(S) models with

stochastic transmission by [36]. However, his model only allows back-and-forth transitions

from S to E to S and there is no back coupling from R or I back to S and E, and he does

not incorporate general functions Fk controlling the rates of nonlinearities (i.e. just the case

of constant rates in the incidence terms). Moreover, a verification of a.s. exponential stability

of equilibria is only conducted there. Our model also admits random transitions from the

remaining population K − N to the sub-populations S, E, I, R with N = S + E + I + R.

There are plenty of possible generalizations. One could try out Levy-type- or jump-

processes for the random noise sources or Markovian switching or non-Markovian regimes.

However, all generalizations should be done through semi-martingale theory due to the conti-

nuity requirement of the underlying integration operator in biologically relevant applications.
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Itô calculus interpretations are the commonly adopted models for the sake of the fact that the

offspring populations should only depend on the past, i.e. the closest parental generations.

At the end, statistical matching to real data would decide on the relevance of each SEIR(S)

model. We leave the practical execution of all of those ideas to the interested reader. We are

convinced that our model class already offers enough flexibility and interesting phenomena,

however restricted to Markovian modeling by this contribution.

A Appendix: A general existence result of solutions of SDEs

Consider d-dimensional, Itô-interpreted stochastic differential equations (SDEs) of the form

dX(t) = f
(
X(t), t

)
dt + g

(
X(t), t

)
dW(t) (A.1)

with initial value X(t0) = X0, t0 ≤ t ≤ T < +∞, where f : R
d × [t0, T] → R

d and g :

R
d × [t0, T] → R

d×m are Borel measurable functions, W = {W(t)}t≥t0 is a R
m−valued Wiener

process and X0 is a R
d−valued random variable. Recall that its infinitesimal generator L

associated with the above SDE (A.1) is given by

L =
∂

∂t
+

d

∑
i=1

fi(x, t)
∂

∂xi
+

1

2

m

∑
j=1

d

∑
i=1

d

∑
k=1

g
j
i(x, t)g

j
k(x, t)

∂2

∂xi∂xk
. (A.2)

Theorem A.1 (Improved version of a theorem from Khas’minskii (1980)). Assume that

(i) f , g ∈ C0
locLip(L)

(
D × [0, T]

)
,

(ii) (Dr)r>0 nondecreasing, bounded, connected, all Dr ⊆ R
d and D = ∪r>0Dr,

(iii) σ
(
X(0)

)
is independent of σ

(
W(s) : s ≤ T

)
and X(0) ∈ D,

(iv) ∃V ∈ C2,1
(
D × [0, T]

)
with V : D × [0, T] → R

1
+, ∃ a ∈ L1

(
[0, T]

)

∀ x ∈ D ∀ t ∈ [0, T] : LV(x, t) ≤ a · V(x, t),

(v) E
[
V
(
X(0), 0

)]
< +∞,

(vi) inft>0, x ∈ ∂Dr
V(x, t)

r→+∞
−→ +∞.

Then, ∃ strong, unique, continuous time, Markovian solution X of SDE (A.1) with X(0) = X0 and

X(t) ∈ D for all t > 0.

Remark A.2 (Linear versus exponential moment bounds). The conclusion of Theorem A.1

remains valid if one replaces the assumption (iv) by the hypothesis

(iv)′ ∃V ∈ C2,1
(
D × [0, T]

)
with V : D × [0, T] → R

1
+, ∃ a ∈ L1

(
[0, T]

)

∀ x ∈ D ∀t ∈ [0, T] : LV(x, t) ≤ c0,

where c0 is an appropriate constant. In this case, one is able to prove the uniform boundedness

sup
0≤t≤T

E

[
V(X(t), t)

]
≤ E

[
V(X(0), 0)

]
+ [c0]+ · T
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of the moments along the functionals V of solutions X. In contrast to that fact, the original as-

sumption (iv) of Theorem A.1 with any constant a(t) = c1 guarantees the uniform exponential

bounds

sup
0≤t≤T

E

[
V(X(t), t)

]
≤ E

[
V(X(0), 0)

]
· exp

(
[c1]+ · T

)

of the moments E[V(X(t), t)] as worst-case estimate. Here, [·]+ denotes the nonnegative part

of the inscribed mathematical expression.

Remark A.3 (Comment on uniqueness of solutions). Uniqueness of strong solutions X of SDEs

(A.1) with local Lipschitz continuous coefficients f , g on open, connected sets D ⊆ R
d can only

be lost when the solutions explode on the boundary of D. Common (nonrandom) equilibria x∗

of both f and g are considered unique solutions X = x∗ of SDEs (A.1) itself, sometimes called

trivial solutions or equilibrium solutions (i.e., in this case, applied to SDEs with extended

drift and diffusion coefficients vanishing on entire D). In our paper the existence of local

solutions is established for SDEs with Lipschitz coefficients inside the open prism D. The

uniqueness of such local solutions inside D is clear from standard texts on SDEs (such as [3],

[14] and [23]) since the closed prism D is a compact set and we do not hit the boundary of

D at any finite time, provided that we start inside the prism (that latter is what we presumed

anyway). Recall that the equilibria of our SEIR(S) model are located on the boundary of the

open prism D. Hence, they can not be reached in any finite time from the interior of D.

Moreover, we have proved the boundedness of moments along certain Lyapunov functionals

V, which implies that the solutions can not hit the boundary of the prism D. This is obvious

from the application of Khasminskij’s Theorem A.1 in this appendix. We just had to construct

and verify a related Lyapunov functional V and the appropriate set D for our SEIR(S) model.
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Abstract. The aim of this paper is to obtain an estimation of Hausdorff as well as
fractal dimensions of random attractors for a stochastic reaction-diffusion equation with
delay. The stochastic equation is firstly transformed into a delayed random partial
differential equation by means of a random conjugation, which is then recast into an
auxiliary Hilbert space. For the obtained equation, it is firstly proved that it generates
a random dynamical system (RDS) in the auxiliary Hilbert space. Then it is shown that
the equation possesses random attractors by a uniform estimate of the solution and
the asymptotic compactness of the generated RDS. After establishing the variational
equation in the auxiliary Hilbert space and the almost surely differentiable properties
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1 Introduction

Existence and estimation of topological dimensions of attractors play important roles in the

study of the long time behavior of deterministic or random dynamical systems. For many

infinite dimensional systems generated by deterministic or stochastic partial differential equa-

tions and delay differential equations, the existence of attractors can reduce the essential part

of the flow to a compact set. The finite dimensionality of the attractors, which represents the

BCorresponding author. Email: caraball@us.es
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number of degrees of freedom presented in the long term dynamics of the system can further

simplify global dynamics of complex nonlinear systems and hence it is of great significance.

The theory of attractors for deterministic infinite dimensional dynamical systems has been

well established (see the monograph [26]). On the other hand, the study of random attractors

for RDSs dates back to the pioneer works [15, 16, 24], where H. Crauel, F. Flandoli, B. Schmal-

fuß, amongst others, generalized the concept of global attractors of infinite dimensional dis-

sipative systems and established the basic framework of random attractors for infinite di-

mensional RDSs. Since then, the existence, dimension estimation and qualitative properties

of random attractors for various stochastic nonlinear evolution equations or stochastic func-

tional differential equations have been investigated by many researchers. For example, for the

stochastic reaction-diffusion equation without time delay, Caraballo et al. [7], Gao et al. [25]

and Li and Guo [33] explored the existence of global attractors on bounded domains. In [2],

[42] and [45], the authors obtained the existence of global attractors on unbounded domains.

For the stochastic reaction diffusion equation with delay, the existence of random attractors

and their structure have been studied in [5, 8, 12, 32, 41] and the references therein.

Criteria for the finite Hausdorff dimensionality of attractors for deterministic fluid dynam-

ics models have been derived by Douady and Oesterle [20], which were later generalized by

Constantin, Foias, and Temam [13] (see also Temam [40]). Then, it was further extended to

the stochastic case in [17] and [37], where the RDS is first linearized and the global Lyapunov

exponents of the linearized mapping is later examined. The main difficulty of this method lies

in controlling the difference between the original nonlinear RDS and its linearization, since in

the stochastic case, the attractor is a random set which is not uniformly bounded. Debussche

showed that the random attractors of many random dynamical systems generated by dissipa-

tive evolution equations have finite Hausdorff dimension by an ergodicity argument in [18]

and further derived a precise bound on the dimension by combining the method of lineariza-

tion and Lyapunov exponents in [19]. With respect to the fractal dimensionality of random

sets, Langa proved the finite fractal dimensionality of the random attractor associated to a

model from fluid dynamics in [30]. Langa and Robinson generalized the method in [19] to

the fractal dimension by requiring differentiability of RDS in [31]. Recently, the above estab-

lished framework was generalized and adopted to various stochastic and random evolution

equations. For instance, Fan proved the existence of random attractor and obtained an upper

bound of the Hausdorff and fractal dimension of the random attractor for a stochastic wave

equations in [23] by using the method in [19]. In the recent work [46], Zhou and Zhao proved

the finiteness of fractal dimension of random attractor for stochastic damped wave equation

with linear multiplicative white noise.

Despite the fact that the finite Hausdorff and fractal dimensionality of attractors for ab-

stract RDSs and applications to stochastic partial differential equations (SPDEs) have been

extensively and intensively studied, to the best of our knowledge, the estimation of dimen-

sions of SPDEs with delay, i.e., the stochastic partial functional differential equations (SPFDEs)

have not been extensively studied. There are only some early results on the existence and local

stability of solutions [6,27,39] and recent results on the existence and qualitative properties of

random attractors [28,29,32,41,45]. Indeed, the dimension estimation of attractors for delayed

partial differential equations is scarce even for the deterministic case. To this respect, the only

works about dimensions of attractors for partial functional differential equations (PFDEs) we

could find are [38] and the very recent work [36]. In this paper, we make an attempt to esti-

mate topological dimensions of random attractors for a stochastic delayed reaction-diffusion

equation. Specifically, we consider the following SPFDE with additive noise
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∂u
∂t (x, t) = ∆u(x, t)− µu(x, t) + f (u(x, t − τ)) + ∑

m
j=1 gj(x)

dwj(t)
dt , t > 0, x ∈ O,

u0(x, s) = ϕ(x, s),−τ ≤ s ≤ 0, x ∈ O

u0(x, t) = 0,−τ ≤ t, x ∈ ∂O,

(1.1)

where O ⊆ R
N is a bounded open domain with smooth boundary ∂O, {wj}

m
j=1 are mutually

independent two-sided real-valued Wiener process on an appropriate probability space to be

specified below. Equation (1.2) can model many processes from chemistry or mathematical

biology. For instance, it can be used to describe the evolution of mature populations for age-

structured species, where ∆u and µu represent the spatial diffusion and the death rate of

mature individuals, τ is a positive number, representing the maturation time. The maturation

time f (u(x, t − τ)) represents birth rate, ∑
m
j=1 gj

dwj(t)
dt stands for the random perturbations or

environmental effects.

Let X = L2(O) be the space of square Lesbegue integrable functions on O with its usual

norm ∥ · ∥X and inner product (·, ·)X, C = C([−τ, 0], X) be the space of continuous function

from [−τ, 0] to X with the usual supremum norm ∥ · ∥C and A = ∆. Let u ∈ C([−τ, T], X)

and for each t ∈ [0, T] define the function ut : [−τ, 0] → X by ut(ξ) = u(t + ξ) for ξ ∈ [0, T].

Then, we can rewrite the term f̃ (u(t − τ)) = f (ut) for any u ∈ C([−τ, T], by simply defining

f (ϕ) = f̃ (ϕ(−τ)), for ϕ ∈ C (notice that we are identifying the function f̃ in problem (1.1)

with its associated Nemitskii operator: f̃ (u(x, t − τ) ≡ f̃ (u(t − τ))(x) for all x ∈ O and

t ∈ [0, T]). However, in order to deal with weak solutions of problem (1.1), we need to have

the functional f̃ well defined in a bigger space than C, namely we will extend the definition of

f̃ to the Hilbert space L ≜ L2([−τ, 0], X) of all square Lebesgue integral functions from [−τ, 0]

to X equipped with the inner product (φ, ψ)L = [
∫ 0
−τ(φ(s), ψ(s))2

X
ds]1/2 and norm ∥φ∥L =

[
∫ 0
−τ ∥φ(s)∥2

X
ds]1/2 for all φ ∈ L. This can be done by imposing appropriate assumptions on

the function f (or equivalently on f̃ ). This is explained in details in the next section (see also

[10, 11]). From now on we will identify the notation of f and its extension to the space L.

Then (1.1) can be written as the following abstract SPFDE in X = L2(O)

du(t)

dt
= Au(t)− µu(t) + f (ut) +

m

∑
j=1

gj

dwj(t)

dt
. (1.2)

The main difficulty for studying the topological dimensions of (1.2) lies in the fact that

the natural phase spaces for deterministic or stochastic PFDEs are Banach spaces while all the

above mentioned theories are established for dynamical systems in Hilbert spaces. Hence, in

[38], the authors associated the deterministic PFDE with a nonlinear semigroup on a product

space, i.e. a Hilbert space. In this paper, we extend the method established in [38] and [36]

to the stochastic case. Nevertheless, the extension is not trivial since the RDSs are nonau-

tonomous in nature and the random attractor is not uniformly bounded. In [38], the authors

assumed that the deterministic PFDEs are dissipative which directly implies the existence of

attractors in the auxiliary Hilbert space. In this paper, we will firstly prove the existence of

a random attractor for (1.2) in the auxiliary Hilbert space and then provide explicit upper

bounds of the Hausdorff and fractal dimensionality for the obtained attractor.

The rest of this paper is organized as follows. In Section 2, we introduce some notation,

hypotheses and recast (1.2) into a Hilbert space. In Section 3, we prove the obtained auxil-

iary equation admits a global mild solution which generates a RDS and possesses a random
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attractor under certain conditions. In Section 4, we obtain an upper bound of the Hausdorff

and fractal dimensions for the random attractor of the auxiliary equation, which directly im-

plies the finite dimensionality of the original equation (1.2). Finally, we conclude the paper by

pointing out some potential research directions.

2 Auxiliary equation

In this paper, we consider the canonical probability space (Ω,F , P) with

Ω = {ω = (ω1, ω2, . . . , ωm) ∈ C (R; R
m) : ω(0) = 0}

and F being the Borel σ-algebra induced by the compact open topology of Ω, while P being

the corresponding Wiener measure on (Ω,F ). Then, we identify W(t) with ω(t), i.e.,

W(t) ≡ (ω1(t), ω2(t), . . . , ωm(t)) for t ∈ R,

and the time shift by

θtω(·) = ω(·+ t)− ω(t), t ∈ R.

We now follow the idea of [21] to transform (1.2) into a pathwise deterministic equation.

The same idea has been adopted by many authors when dealing with random attractors or

invariant manifolds for various stochastic evolution equations, such as [22,28,32,34]. Consider

the stochastic stationary solution of the one dimensional Ornstein–Uhlenbeck equation

dzj + µzjdt = dwj(t), j = 1, . . . , m, (2.1)

which is given by

zj(t) ≜ zj

(
θtωj

)
= −µ

∫ 0

−∞
eµs
(
θtωj

)
(s)ds, t ∈ R. (2.2)

By Definition 3.4 (in Section 3), one can see that the random variable
∣∣zj

(
ωj

)∣∣ is tempered and

zj

(
θtωj

)
is P-a.e. ω continuous. Therefore, Proposition 4.3.3 in [1] implies that there exists a

tempered function 0 < r(ω) < ∞ such that

m

∑
j=1

∣∣zj

(
ωj

)∣∣2 ≤ r(ω), (2.3)

where r(ω) satisfies, for P-a.e. ω ∈ Ω,

r (θtω) ≤ e
µ
2 |t|r(ω), t ∈ R. (2.4)

Combining (3.11) with (2.4), we obtain that for P-a.e. ω ∈ Ω,

m

∑
j=1

∣∣zj

(
θtωj

)∣∣2 ≤ e
µ
2 |t|r(ω), t ∈ R. (2.5)

Moreover, we have
m

∑
j=1

∣∣zj

(
θξωj

)∣∣2 ≤ e
µτ
2 r(ω), (2.6)
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for any ξ ∈ [−τ, 0] and P-a.e. ω ∈ Ω. Putting z (θtω) = ∑
m
j=1 gjzj

(
θtωj

)
, we have

dz + µzdt =
m

∑
j=1

gjdwj.

Take the transformation v(t) = u(t)− z (θtω). Then, simple computation gives

dv(t)

dt
= Av(t)− µv(t) + f (vt + z(θt+·ω)) + Az(θtω), (2.7)

where θt+·ω is defined as θt+ξω for ξ ∈ [−τ, 0].

Throughout the remaining part of this paper, we always impose the following assumptions

on A and the nonlinear term f :

Hypothesis A1 A : D(A) ⊂ X → X is a densely defined linear operator that generates a

strongly continuous compact semigroup S(t) on X. Moreover, ϱ ≜ s(Ã)− µ < 0, where s(Ã)

is defined by s(Ã) := sup{ℜλ : λ ∈ σ(Ã)} representing the spectral bound of the linear

operator Ã.

Hypothesis A2 f : C → X is Lipschitz continuous with 0 being a fixed point, that is, f (0) = 0

and there exists L f > 0 such that

∥ f (ϕ)− f (φ)∥X ≤ L f ∥ϕ − φ∥C ,

for any ϕ, φ ∈ C. Moreover, there exists m0 ⩾ 0 and C f > 0 such that for all l ∈ [0, m0] , 0 ⩽ t, u

and v ∈ C([−τ, t]; X), the following inequality holds

∫ t

0
els∥ f (us)− f (vs) ∥

2
X ds ⩽ C2

f

∫ t

−τ
els∥u(s)− v(s)∥2

X ds. (2.8)

Remark 2.1. Notice that, thanks to Hypothesis A2, given u ∈ C0([−τ, T]; X), the function

fu : t ∈ [0, T] → X defined by fu(t) = f (ut) ∀ t ∈ [0, T], is measurable (see Bensoussan et al.

[4]) and, in fact, belongs to L∞(0, T; X). Then, thanks to (2.8), the mapping

F : u ∈ C0([−τ, T]; X) → fu ∈ L2(0, T; X)

has a unique extension to a mapping F̃ which is uniformly continuous from L2(−τ, T; X)

into L2(0, T; X). From now on, we will denote f (ut) = F̃ (u)(t) for each u ∈ L2(−h, T; X), and

thus, ∀ t ∈ [0, T], ∀ u, v ∈ L2(−τ, T; X), we will have

∫ t

0
els∥ f (us)− f (vs) ∥

2
X ds ⩽ C2

f

∫ t

−τ
els∥u(s)− v(s)∥2

X ds.

Remark 2.2. Observe that considering the abstract formulation of our original problem with

a functional f satisfying Assumption A2, we not only are considering the case of constant

delay ( f (ut) = f (u(t − τ)) but also the distributed delay one as well, that is, when f (ut) =∫ 0
τ g(s, u(t+ s))ds, for an appropriate Lipschitz function g (see Caraballo and Real [9] for more

information).

Since for P-a.e. ω ∈ Ω, (2.7) is a path-wise deterministic equation, by similar techniques

as [10, Theorem 2.3] and [43, Theorem 8], we have the following results on the existence of

solutions to (2.7).
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Lemma 2.3. Assume that Hypotheses A1–A2 hold. Then, for any initial condition (ϕ, ϕ(0)) ∈ L×

X, there exists a solution v(·, ω, ϕ) to problem (2.7) with v(·, ω, ϕ) ∈ L2(−r, T; X) ∩ L∞(0, T; X) ∩

C([−r, T]; X), ∀T > 0 and P-a.e. ω ∈ Ω.

In order to estimate topological dimensions of the random attractors of (1.2), unlike pre-

vious works [5, 8, 12, 32, 41], where vt is taken as the state and L as state space for the above

obtained pathwise deterministic delayed equation (2.7), we take V(t) = (vt, v(t)) as state

space and recast the equation into an auxiliary product space H = L× X equipped with the

inner product

⟨(ϕ, l), (ψ, k)⟩ =
∫ 0

−τ
(ϕ(s), ψ(s))Xds + (h, k)X for (ϕ, l), (ψ, k) ∈ H

and norm

∥(ϕ, l)∥ = ⟨(ϕ, l), (ϕ, l)⟩1/2 for (ϕ, l) ∈ H,

making H a Hilbert space and hence we can overcome the lack of Hilbert space geometry in

applying the abstract theory established in [18, 19, 30, 31]. Furthermore, recasting (1.2) into

the Hilbert space H also facilitates us to construct an appropriate variational equation. Take

V(t) = (vt, v(t)),

f̂ (t, θtω, vt) ≜ Az(θtω) + f (vt + z(θt+·ω)) (2.9)

and

F(t, θtω, V(t)) = (0, f̂ (t, θtω, vt)). (2.10)

We consider the following auxiliary random partial differential equation on H.





dV(t)

dt
= ÃV(t)− L̃V(t) + F(t, θtω, V(t)),

V(0) = (ϕ, l), (ϕ, l) ∈ H,

(2.11)

where operator Ã is defined as

Ã :=

(
d
dt 0

0 A

)
, (2.12)

with domain

D(Ã) = {(ϕ, l) ∈ H : ϕ is differentiable on [−τ, 0], ϕ̇ ∈ L and h = ϕ(0) ∈ D(A)} .

The linear operator L̃ is defined by

L̃ :=

(
0 0

0 µI

)
.

It follows from the definition of L̃ that

∥L̃∥ ≜ sup
φ∈H,∥φ∥=1

∥L̃φ∥ ≤ µ. (2.13)

It follows from Hypothesis A1, Lemma 3.6, Theorem 3.25 in [3] that the operator (Ã, D(Ã))

is closed and densely defined on H, and generates a strongly continuous semigroup S̃(t)

given by

S̃(t) :=

(
S(t) 0

St T0(t)

)
,
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where (T0(t))t≥0 is the nilpotent left shift semigroup on L, and St : X → L is defined by

(Stx) (ξ) :=

{
S(t + ξ)x if − t < ξ ≤ 0,

0 if − τ ≤ ξ ≤ −t.

Moreover, by Theorem 4.11 in [3], we have

∥S̃(t)∥ ⩽ es(Ã)t, t ⩾ 0.

Furthermore, it follows from Pazy [35, Theorem 6.1.5] that (2.11) admits a global classical

solution which can be represented by a integral equation based on the variation of constants

formula.

Theorem 2.4. Assume that Hypothesis A1 holds and f is continuously differentiable. Then, for each

(ϕ, l) ∈ H, there exists a continuous function V(·, ω, (ϕ, l)) : [0, ∞) → H such that

V(t, ω, (ϕ, l)) = e−L̃tS̃(t)(ϕ, l) +
∫ t

0
e−L̃(t−s)S̃(t − s)F(s, θsω, V(s, ω, (ϕ, l)))ds, t ⩾ 0 (2.14)

for P-a.e. ω ∈ Ω. Moreover, if (ϕ, l) ∈ D(Ã), then V(t, ω, (ϕ, l)) is a strong solution of (2.11).

3 Random attractors

This section is devoted to showing the existence of random attractors for the auxiliary equation

(2.11). In the sequel, we first introduce the concept of random attractor and random dynam-

ical systems following [1] and [15, 16, 24]. Subsequently, we prove the existence of tempered

pullback attractors for the auxiliary equation (2.11) by first establishing a uniform estimation

for the solution and then proving that the RDS generated by (1.2) is pullback asymptotically

compact. Unlike the previous works [5, 8, 12, 41], we prove the uniform a priori estimates of

the solution by using the semigroup approach instead of taking inner product.

Definition 3.1. Let {θt : Ω → Ω, t ∈ R} be a family of measure preserving transformations

such that (t, ω) 7→ θtω is measurable and θ0 = id, θt+s = θtθs, for all s, t ∈ R. The flow θt

together with the probability space
(
Ω,F , P, (θt)t∈R

)
is called a metric dynamical system.

It follows from Definition 3.1 that
(
Ω,F , P, (θt)t∈R

)
is a metric dynamical system, where

(Ω,F , P) is defined in Section 2. Moreover, θ is ergodic. For a given separable Hilbert space

(H, ∥ · ∥H), denote by B(H) the Borel σ-algebra generated by open subsets in H.

Definition 3.2. A mapping Φ : R
+ × Ω × H → H is said to be a random dynamical system

(RDS) on a complete separable metric space (H, d) with Borel σ-algebra B(H) over the metric

dynamical system
(
Ω,F , P, (θt)t∈R+

)
if

(i) Φ(·, ·, ·) : R
+ × Ω × H → H is (B(R+)×F ×B(H),B(H))-measurable;

(ii) Φ(0, ω, ·) is the identity on H for P-a.e. ω ∈ Ω;

(iii) Φ(t + s, ω, ·) = Φ(t, θsω, ·) ◦ Φ(s, ω, ·), for all t, s ∈ R
+ for P-a.e. ω ∈ Ω.

A RDS Φ is continuous or differentiable if Φ(t, ω, ·) : H → H is continuous or differentiable

for all t ∈ R
+ and P-a.e. ω ∈ Ω.
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Definition 3.3. A set-valued map Ω ∋ ω 7→ D(ω) ∈ 2H, such that D(ω) is closed, is said to

be a random set in H if the mapping ω 7→ d(x, D(ω)) is (F ,B(R))-measurable for any x ∈ H,

where d(x, D(ω)) ≜ infy∈D(ω) d(x, y) is the distance in H between the element x and the set

D(ω) ⊂ H.

Definition 3.4. A random set {D(ω)}ω∈Ω of H is called tempered with respect to (θt)t∈R
if

for P-a.e. ω ∈ Ω,

lim
t→∞

e−βtd (D (θ−tω)) = 0, for all β > 0,

where d(D) = supx∈D ∥x∥H.

Definition 3.5. Let D = {D(ω) ⊂ H, ω ∈ Ω} be a family of random sets. A random set

K(ω) ∈ D is said to be a D-pullback absorbing set for Φ if for P-a.e. ω ∈ Ω and for every

B ∈ D, there exists T = T(B, ω) > 0 such that

Φ (t, θ−tω, B (θ−tω)) ⊆ K(ω) for all t ≥ T.

If, in addition, for all ω ∈ Ω, K(ω) is measurable in Ω with respect to F , then we say K is a

closed measurable D-pullback absorbing set for Φ.

Definition 3.6. A RDS Φ is said to be D-pullback asymptotically compact in H if for P-a.e.

ω ∈ Ω, {Φ (tn, θ−tn ω, xn)}n≥1 has a convergent subsequence in H whenever tn → ∞ and

xn ∈ D (θ−tn ω) for any given D ∈ D.

Definition 3.7. A compact random set A(ω) is said to be a D-pullback random attractor

associated to the RDS Φ if it satisfies the invariance property

Φ(t, ω,A(ω)) = A (θtω) , for all t ≥ 0

and the pullback attracting property

lim
t→∞

dist (Φ (t, θ−tω, D (θ−tω)) ,A(ω)) = 0, for all t ≥ 0, D ∈ D, P − a.e. ω ∈ Ω.

where dist(·, ·) denotes the Hausdorff semidistance

dist(A, B) = sup
x∈A

inf
y∈B

d(x, y), A, B ⊂ H.

Lemma 3.8 ([15, Theorem 3.11]). Let (θ, Φ) be a continuous random dynamical system. Suppose

that Φ is D-pullback asymptotically compact and has a closed pullback D-absorbing random set K =

{K(ω)}ω∈Ω ∈ D. Then it possesses a random attractor {A(ω)}ω∈Ω, where

A(ω) = ∩τ≥0∪t≥τΦ (t, θ−tω, K (θ−tω)).

For convenience, we introduce the following Gronwall inequality in [5] that will be fre-

quently used in our subsequent proofs.

Lemma 3.9. Let T > 0 and u, α, f and g be non-negative continuous functions defined on [0, T] such

that

u(t) ≤ α(t) + f (t)
∫ t

0
g(r)u(r)dr, for t ∈ [0, T].

Then,

u(t) ≤ α(t) + f (t)
∫ t

0
g(r)α(r)e

∫ t
r f (τ)g(τ)dτdr, for t ∈ [0, T].
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Apparently, under the conjugation transformation induced by (2.2), no exceptional sets

appear in the equation (2.11). By the uniqueness of solution to (2.11) for each ω ∈ Ω, we can

see the mapping Φ(·, ·, ·) : R
+ × Ω × H → H defined by

Φ(t, ω, (ϕ, ϕ(0))) = V(t, ω, (ϕ, ϕ(0))) (3.1)

generates a RDS, which is (B(R+) × F × B(H),B(H))-measurable. Let P1 and P2 be the

projections of H onto L and X respectively. Then, by Theorem 3.1 and Proposition 3.2 in [38],

we have

vt(·, ω, ϕ) = P1V(t, ω, (ϕ, ϕ(0))) (3.2)

and

v(t, ω, ϕ) = P2V(t, ω, (ϕ, ϕ(0))) (3.3)

for t ⩾ 0 and P-a.e. ω ∈ Ω, where v(t, ω, ϕ) is the solution to (2.7). Therefore, the solution of

(1.2) can be represented by

ut(·, ω, ϕ) = vt(·, ω, ϕ) + z(θt+·ω) = P1[V(t, ω, (ϕ, ϕ(0))) + (z(θt+·ω), z(θtω))]

≜ P1Ψ(t, ω, (ψ, ψ(0)))
(3.4)

where the mapping Ψ : R
+ × Ω × H → H is defined by

Ψ(t, ω, (ψ, ψ(0))) ≜ Φ(t, ω, (ϕ, ϕ(0))) + (z(θt+·ω), z(θtω))

= V(t, ω, (ϕ, ϕ(0))) + (z(θt+·ω), z(θtω))
(3.5)

and (ψ, ψ(0)) = (ϕ, ϕ(0))) + (z(θ·ω), z(ω)). By the cocycle property of z and Φ, we can see

that Ψ is a RDS on H. In the following, we show the existence of random attractor for Ψ.

Lemma 3.10. Assume that Hypotheses A1–A2 hold and ϱ ≜ s(Ã) − µ <
−µ
2 , ϱ + L f < 0, then

there exists {K(ω)}ω∈Ω ∈ D satisfying that, for any B = {B(ω)}ω∈Ω ∈ D and P-a.e. ω ∈ Ω, there

is TB(ω) > 0 such that

Ψ (t, θ−tω, B (θ−tω)) ⊆ K(ω) for all t ⩾ TB(ω),

that is, {K(ω)}ω∈Ω is a random absorbing set for Ψ in D.

Proof. We first derive uniform estimates of V by (2.14) and then obtain the existence of an ab-

sorbing set for Ψ given by Ψ(t, ω, (ϕ, ϕ(0)) = V(t, ω, (ϕ, ϕ(0))) + (z(θt+·ω), z(θtω)). It follows

from (2.14) that, for any t > 0,

∥V(t, ω, (ϕ, ϕ(0)))∥

=

∥∥∥∥e−L̃tS̃(t)(ϕ, ϕ(0)) +
∫ t

0
e−L̃(t−s)S̃(t − s)F(s, θsω, V(s, ω, (ϕ, ϕ(0))))ds

∥∥∥∥

≤ eϱt∥(ϕ, ϕ(0))∥+
∫ t

0
eϱ(t−s)∥ f̃ (s, θsω, vs(·, ω, ϕ)))∥Xds

≤ eϱt∥(ϕ, ϕ(0))∥+
∫ t

0
eϱ(t−s)(∥Az(θsω)∥X + L f ∥z(θs+·ω)∥L)ds

+ L f

∫ t

0
eϱ(t−s)∥vs(·, ω, ϕ)∥Lds

≤ eϱt∥(ϕ, ϕ(0))∥+
∫ t

0
eϱ(t−s)(∥Az(θsω)∥X + L f ∥z(θs+·ω)∥L)ds

+ L f

∫ t

0
eϱ(t−s)∥V(s, ω, (ϕ, ϕ(0)))∥ds

(3.6)
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for P-a.e. ω ∈ Ω. For the sake of simplicity, we denote ϖ(ω) = (ϕ(·, ω), ϕ(0, ω)). By replacing

ω by θ−tω, we derive from (3.6) that, for all t ≥ 0,

∥V(t, θ−tω, ϖ(θ−tω))∥ ≤ eϱt∥ϖ(θ−tω)∥+ L f

∫ t

0
eϱ(t−s)∥V(s, θ−tω, ϖ(θ−tω)∥ds

+
∫ t

0
eϱ(t−s)(∥Az(θ−tθsω)∥X + L f ∥z(θ−tθs+·ω)∥L)ds.

(3.7)

Since gj ∈ X, Agj ∈ X and z (ω) = ∑
m
j=1 gjzj

(
ωj

)
, it follows from (2.5) and (2.6) that there ex-

ists a constant c such that p1(ω) ≜ ∥Az (ω) ∥X + L f ∥z (θ·ω) ∥L ≤ c ∑
m
j=1

∣∣zj

(
ωj

)∣∣2. Therefore,

it follows from (2.4) and (2.5) that

∫ t

0
eϱ(t−s)p1 (θs−tω)ds ≤ c

∫ t

0
e(ϱ+

µ
2 )(t−s)r(ω)ds ≤ cr(ω), (3.8)

where the second inequality follows from the assumption that ρ + µ
2 < 0. Incorporating (3.8)

into (3.7) gives rise to

∥V(t, θ−tω, ϖ(θ−tω)∥ ≤ eϱt∥ϖ(θ−tω)∥+ L f

∫ t

0
eϱ(t−s)∥V(s, θ−tω, ϖ(θ−tω))∥ds + cr(ω). (3.9)

Multiplying both sides of (3.9) by e−ϱt,

e−ϱt∥V(t, θ−tω, ϖ(θ−tω))∥

≤ ∥ϖ(θ−tω)∥+ L f

∫ t

0
e−ϱs∥V(s, θ−tω, ϖ(θ−tω))∥ds + ce−ϱtr(ω).

(3.10)

Hence, by the Gronwall inequality (Lemma 3.9), we have

e−ϱt∥V(t, θ−tω, ϖ(θ−tω))∥ ≤ ∥ϖ(θ−tω)∥+ ce−ϱtr(ω)

+ L f

∫ t

0
eL f (t−s)(∥ϖ(θ−sω)∥+ ce−ϱsr(ω))ds

≤ ∥ϖ(θ−tω)∥+ ce−ϱtr(ω) + L f ∥ϖ(θ−tω)∥
∫ t

0
eL f (t−s)ds

+ cL f r(ω)
∫ t

0
eL f (t−s)e−ϱsds.

(3.11)

Therefore, we have

∥V(t, θ−tω, ϖ(θ−tω))∥ ≤ eϱt∥ϖ(θ−tω)∥+ cr(ω) + eϱt(eL f t − 1)∥ϖ(θ−tω)∥

+
cL f

ϱ + L f
[e(L f +ϱ)t − 1]r(ω).

(3.12)

Note that Ψ(t, ω, χ(ω))=V(t, ω, ϖ(ω))+(z(θt+·ω), z(θtω)) and χ(ω)=ϖ(ω)+ (z(θ·ω), z(ω)).

The above estimate (3.12) implies that, for all t ≥ 0

∥Ψ(t, θ−tω, χ(θ−tω))∥ ≤ ∥V (t, θ−tω, ϖ (θ−tω))∥+ ∥(z(θ−tθt+·ω), z(θ−tθtω))∥

≤ eϱt∥ϖ(θ−tω)∥+ 2cr(ω) + eϱt(eL f t − 1)∥ϖ(θ−tω)∥

+
cL f

ϱ + L f
[e(L f +ϱ)t − 1]r(ω).

(3.13)
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Therefore, if χ ∈ D (θ−tω) and L f + ϱ < 0, then there exists a TD > 0 such that, for all

t ≥ TD(ω),

eϱt∥ϖ(θ−tω)∥+ eϱt(eL f t − 1)∥ϖ(θ−tω)∥+
cL f

ϱ + L f
e(L f +ϱ)tr(ω) ≤ c1(ω), (3.14)

which, along with (3.13) shows that, for all t ≥ TD(ω)

∥Ψ(t, θ−tω, χ(θ−tω))∥ ≤ 2cr(ω) +
−cL f

ϱ + L f
r(ω) + c1(ω). (3.15)

Given ω ∈ Ω, define

K(ω) = {φ ∈ H : ∥φ∥ ≤ 2cr(ω) +
−cL f

ϱ + L f
r(ω) + c1(ω)}. (3.16)

Then, K = {K(ω)}ω∈Ω ∈ D. Furthermore, (3.15) implies that K(ω) is a random absorbing set

for the RDS Ψ in D.

Lemma 3.11. Assume that Hypotheses A1–A2 are satisfied and ϱ ≜ s(Ã)− µ <
−µ
2 , ϱ + L f < 0.

Then, the RDS Ψ is D-pullback asymptotically compact for t > τ (the time delay), i.e., for P-a.e.

ω ∈ Ω, the sequence {Ψ(tn, θ−tn ω, ϕn (θ−tn ω))} has a convergent subsequence provided tn → ∞,

B = {B(ω)}ω∈Ω ∈ D and ϕn (θ−tn ω) ∈ B (θ−tn ω).

Proof. Take an arbitrary random set {B(ω)}ω∈Ω ∈ D, a sequence tn → +∞ and ϕn ∈

B (θ−tn ω). We have to prove that {Ψ (tn, θ−tn ω, ϕn)} is precompact. Since {K(ω)} is a ran-

dom absorbing set for Ψ, there exists T > 0 such that, for all ω ∈ Ω,

Ψ (t, θ−tω, B (θ−tω)) ⊂ K(ω) (3.17)

for all t ≥ T. Because tn → +∞, we can choose n1 ≥ 1 such that tn1
− 1 ≥ T. Applying (3.17)

for t = tn1
− 1 and ω = θ−1ω, we find that

η1 ≜ Ψ
(

tn1
− 1, θ−tn1

ω, ϕn1

)
∈ K (θ−1ω) (3.18)

Similarly, we can choose a subsequence {nk} of {n} such that n1 < n2 < · · · < nk → +∞ with

tnk
≥ k and

ηk ≜ Ψ
(

tnk
− k, θ−tnk

ω, ϕnk

)
∈ K (θ−kω) (3.19)

Hence, by the assumptions we conclude that the sequence

{Ψ (k, θ−kω, ηk)} is precompact. (3.20)

On the other hand, by (3.19) we have

Ψ(k, θ−kω, ηk) = Ψ(k, θ−kω, Ψ(tnk
− k, θ−tnk

ω, ϕnk
)) = Ψ

(
tnk

, θ−tnk
ω, ϕnk

)
, (3.21)

for all k ≥ 1. Combining (3.20) and (3.21), we obtain that the sequence
{

Ψ
(
tnk

, θ−tnk
ω, ϕnk

)}
is

precompact. Therefore, {Ψ (tn, θtn ω, ϕn)} is precompact, which completes the proof.

Lemma 3.10 says that the continuous RDS Ψ has a random absorbing set while Lemma 3.11

tells us that (θ, Ψ) is pullback asymptotically compact in H. Thus, it follows from Lemma 3.8

that the continuous RDS (θ, Ψ) possesses a random attractor. Namely, we obtain the following

result.
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Theorem 3.12. Assume that Hypotheses A1–A2 are satisfied and ϱ ≜ s(Ã)− µ <
−µ
2 , ϱ + L f < 0,

then the continuous RDS Ψ admits a D-pullback attractor AΨ(ω) in H belonging to the class D.

Moreover, by Theorem 3.12, the relationship between the RSDs Φ and Ψ defined by (3.5)

as well as Proposition 3.2 in [38], we have the following result about the existence of random

attractors for equation (1.2).

Corollary 3.13. Assume that Hypotheses A1–A2 are satisfied and ϱ ≜ s(Ã)− µ <
−µ
2 , ϱ + L f < 0.

Then, the continuous RDS P1Ψ generated by (1.2) admits a pullback attractor P1AΨ(ω) in P1H.

Moreover, AΦ(ω) ≜ {ζ|ζ = χ − (z(θt+·ω), z(θtω)), χ ∈ AΨ(ω)} is a random attractor of Φ.

4 Topological dimensions of random attractors

The aim of this section is to estimate the Hausdorff and fractal dimensions for the attractor

of (1.2). Denote by dH(AΨ(ω)) and dF(AΨ(ω)) the Hausdorff and fractal dimensions of a

random set AΨ(ω) respectively. We only need to prove that there exist constants dH and dF

such that dH(AΨ(ω)) ≤ dH and dF(AΨ(ω)) ≤ dF, since by Theorem 3.1 and Proposition 3.2

in [38], the topological dimensions of attractor P1AΨ(ω) for (1.2) satisfy dH(P1AΨ(ω)) ≤ dH

and dF(P1AΨ(ω)) ≤ dF, i.e., the random attractors of (1.2) have finite Hausdorff and fractal

dimensions less than those of (2.11). In the sequel, we investigate the Hausdorff and fractal

dimensions for the random attractor AΨ(ω) of (2.11).

We first recall the concepts of Hausdorff and fractal dimensions of the attractor AΨ(ω) ⊂

H. More details can be found in [19] and [31]. The Hausdorff dimension of the compact set

AΨ(ω) ⊂ H is

dH(AΨ(ω)) = inf {d : µH(AΨ(ω), d) = 0}

where, for d ≥ 0,

µH(AΨ(ω), d) = lim
ε→0

µH(AΨ(ω), d, ε)

denotes the d-dimensional Hausdorff measure of the set AΨ(ω) ⊂ H, where

µH(AΨ(ω), d, ε) = inf ∑
i

rd
i

and the infimum is taken over all coverings K = {Bi}i∈I of AΨ(ω) by balls Bi of radius ri ≤ ε

and the sum is over all balls of K. It can be shown that there exists dH(AΨ(ω)) ∈ [0,+∞]

such that µH(AΨ(ω), d) = 0 for d > dH(AΨ(ω)) and µH(AΨ(ω), d) = ∞ for d < dH(AΨ(ω)).

dH(AΨ(ω)) is called the Hausdorff dimension of AΨ(ω).

The fractal dimension (or capacity) of AΨ(ω) is defined as

dF(AΨ(ω)) = inf {d > 0 : µF(AΨ(ω), d) = 0} ,

where

µF(AΨ(ω), d) = lim sup
ε→0

εdnF(AΨ(ω), ε)

and nF(AΨ(ω), ε) is the minimum number of balls of radius ⩽ ε which is necessary to cover

AΨ(ω).

Take a covering of AΨ(ω) by balls of radii less than ε:

AΨ(ω) ⊂
⋃

i=1

B (ui, ri) , ri ≤ ε, ui ∈ H
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where B (ui, ri) denotes the ball in H of center ui and radius ri. Let θ = θ1 and define

Ψ(ω)ϕ = Ψ(1, ω, ϕ) (4.1)

for any ϕ ∈ H and P-a.e. ω ∈ Ω. Then, it follows from the invariance of AΨ(ω) that

AΨ(θω) ⊂
⋃

i=1

Ψ(ω)B (ui, ri) .

In order to approximate Ψ(ω) by a linear map, we impose the following almost surely uni-

formly differentiable assumption of Ψ(ω) on the attractor AΨ(ω).

Hypothesis A3 The mapping Ψ(ω) is P almost surely differentiable on AΨ(ω), that is, P

almost surely, for every u in AΨ(ω), there exists a continuous linear operator DΨ(ω, u) : H →

H, such that if u, u + h ∈ AΨ(ω), then

∥Ψ(ω)(u + h)− Ψ(ω)u − DΨ(ω, u) · h∥ ≤ K(ω)∥h∥1+α,

where K(ω) is a random variable such that

K(ω) ≥ 1, for all ω ∈ Ω,

E(ln K) < ∞ and α > 0.

We follow [40, Chapter 5] to give following definitions. For the bounded linear operator

DΨ(ω, u) on H and n ∈ N, we set

αn(DΨ(ω, u)) = sup
G⊂H
dim⩽n

inf
ϕ∈G
∥ϕ∥=1

∥DΨ(ω, u)ϕ∥

and

ωn(DΨ(ω, u)) = α1(DΨ(ω, u)) . . . αn(DΨ(ω, u)),

where αn(DΨ(ω, u)) are the square roots of the eigenvalues of DΨ(ω, u)∗DΨ(ω, u) corre-

sponding to orthogonal eigenvectors en, which are in decreasing order. We set

α∞(DΨ(ω, u)) = inf
n

αn(DΨ(ω, u))

and further make the following assumptions.

Hypothesis A4 For every d ∈ N, there exists an integrable random variable ω̄d, such that P

almost surely,

ωd(DΨ(ω, u)) ≤ ω̄d(ω)

for any u ∈ AΨ(ω) and

E (ln (ω̄d)) < 0.

Under the above assumptions, we have the following results concerning the dimension

estimation of random attractors AΨ(ω) for Ψ, of which the proof is given in [19, 31].

Lemma 4.1. Assume that Hypotheses A3–A4 are satisfied. Then, P-a.s.

dH(AΨ(ω)) ⩽ d

and

dF(AΨ(ω)) ⩽ γ

for any γ such that

γ >

E
[
max1⩽j⩽d

(
dqj − jqd

)]

−Eqd
,

where qj = log ω̄j.
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In the following, we verify Hypothesis A3–A4. We first establish the following result,

which is a key ingredient to prove the P almost surely uniform differentiability results of

Ψ(ω).

Proposition 4.2. If f : L → H is twice continuously differentiable, then for each ϖ ∈ AΨ(ω)Φ and

h ∈ H, there exists a continuous function Uϖ,h(t, ω) : [0, ∞)× Ω → H such that

Uϖ,h(t, ω) = e−L̃tS̃(t)h +
∫ t

0
e−L̃(t−s)S̃(t − s)(0, D f̃ (P1Φ(s, ω, ϖ)) P1U(s, ω))ds, t ⩾ 0. (4.2)

Moreover, if h ∈ D(Ã), then U(t, ω) is a strong solution of the following variational equation on H.





dU(t, ω)

dt
= ÃU(t, ω)− L̃U(t, ω) + (0, D f̃ (P1Φ(s, ω, ϖ)) P1U(t, ω)),

U(0, ω) = h ∈ H,

(4.3)

where operators Ã and f̃ are defined by (2.12) and (2.9), Φ(t, ω, ϖ) is the RDS defined by (3.5) with

initial condition h.

Proof. Let

L1(ω) = sup
ς∈P1AΦ(ω)

|D f̃ (ς)|, (4.4)

where

|D f̃ (ς)| = sup
∥η∥L⩽1

∥D f̃ (ς)η∥X. (4.5)

Since f̃ is C1 and P1AΨ(ω) is compact, then L1(ω) < ∞. Given any h ∈ D(Ã), define

Fχ : H → H by

Fϖ(h) = (0, D f̃ (P1Φ(t, ω, ϖ)) P1h), t ⩾ 0, h ∈ H.

It follows from the invariance of AΦ(ω) under Φ and ϖ ∈ AΦ(ω) that Φ(s, ω, ϖ) ∈ AΦ(ω)

and hence P1Φ(t, ω, ϖ) ∈ P1AΦ(ω) and |D f (P1Φ(t, ω, ϖ))| ⩽ L1(ω) < ∞, for all t ⩾ 0. This

implies that Fϖ(·) is Lipschitz continuous on H. Therefore the conclusion follows from Pazy

[35, Theorem 6.1.5].

Now, we establish the following almost surely uniform differentiability results of Ψ(ω) on

the random attractor AΨ(ω).

Theorem 4.3. The mapping Ψ(ω) is P almost surely differentiable on AΨ(ω), that is, P almost

surely, for every u in AΨ(ω), there exist a continuous linear operator DΨ(ω, u) : H → H, such that

if u, u + h ∈ AΨ(ω), then

∥Ψ(ω)(u + h)− Ψ(ω)u − DΨ(ω, u) · h∥ ≤ K(ω)∥h∥1+α

where K(ω) is a random variable such that

K(ω) ≥ 1, w ∈ Ω

and α > 0 is a number.
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Proof. We first claim that for any constant t > 0 and χ, χ + h ∈ AΨ(ω), there exists a constant

L(t) > 0 such that

∥Ψ(t, ω, χ)− Ψ(t, ω, χ + h)∥X ⩽ L(t)∥h∥.

By Theorem 2.4 and the relationship Ψ(t, ω, χ(ω)) = Φ(t, ω, ϖ(ω)) + (z(θt+·ω), z(θtω)) with

ϖ(ω) = χ(ω)− (z(θ·ω), z(ω)), we have

Ψ(t, ω, χ) = e−L̃tS̃(t)χ +
∫ t

0
e−L̃(t−s)S̃(t − s)F(s, θsω, Φ(s, ω, ϖ))ds + (z(θt+·ω), z(θtω)), (4.6)

Ψ(t, ω, χ + h) = e−L̃tS̃(t)(χ + h) +
∫ t

0
e−L̃(t−s)S̃(t − s)F(s, θsω, Φ(s, ω, ϖ + h)))ds

+ (z(θt+·ω), z(θtω)),

(4.7)

from which it follows that

Ψ(t, ω, χ + h)− Ψ(t, ω, χ) = e−L̃tS̃(t)h +
∫ t

0
e−L̃(t−s)S̃(t − s)[F(s, θsω, Φ(s, ω, ϖ + h))

− F(s, θsω, Φ(s, ω, ϖ))]ds.

(4.8)

Since ∥S̃(t)∥ ⩽ es(Ã)t, t ⩾ 0, we have

∥Ψ(t, ω, χ + h)− Ψ(t, ω, χ)∥

≤ eϱt∥h∥+ L f

∫ t

0
eϱ(t−s)∥P1[Φ(s, ω, ϖ + h)− Φ(s, ω, ϖ)]∥ds

= eϱt∥h∥+ L f

∫ t

0
eϱ(t−s)∥P1[Ψ(s, ω, χ + h)− Ψ(s, ω, χ)]∥ds

≤ eϱt∥h∥+ L f

∫ t

0
eϱ(t−s)∥Ψ(s, ω, χ + h)− Ψ(s, ω, χ)∥ds.

(4.9)

Multiplying both sides of (4.9) by e−ϱt and taking into account the Gronwall inequality, we

obtain

e−ϱt∥Ψ(t, ω, χ + h)− Ψ(t, ω, χ)∥ ≤ eL f t∥h∥, (4.10)

and hence

∥Ψ(t, ω, χ + h)− Ψ(t, ω, χ)∥ ≤ e(L f +ϱ)t∥h∥. (4.11)

Therefore, the claim holds by taking L(t) = e(L f +ϱ)t.

Next we prove that, for any t > 0, there exist K(ω) ≥ 1 and α > 0 such that, if χ, χ + h ∈

AΨ(ω), then

∥Ψ(t, ω, χ + h)− Ψ(t, ω, χ)− Uχ+h,χ(t, ω)∥ ≤ K(ω)∥h∥1+α. (4.12)

Let

L2(ω) := sup
ξ∈coAΨ(ω)(w)

∣∣D2 f (P1ξ)
∣∣ , (4.13)

where coAΨ(ω) represents the closed convex hull of AΨ(ω). Since f is C2 and AΨ(ω) is

compact, L2 < ∞. By Proposition 4.2, we have

Uχ,h(t, ω) = e−L̃tS̃(t)h +
∫ t

0
e−L̃(t−s)S̃(t − s)(0, D f̃ (P1Φ(s, ω, ϖ)) P1U(s))ds, t ⩾ 0.
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For notation simplicity, we denote y(t, ω) ≜ Ψ(t, ω, χ + h) − Ψ(t, ω, χ) = Φ(s, ω, ϖ + h) −

Φ(s, ω, ϖ) and w(t, ω) ≜ Ψ(t, ω, χ + h)− Ψ(t, ω, χ)− Uϖ,h(t, ω). Then, it follows from (4.6)

and (4.7) that

∥w(t, ω)∥

=

∥∥∥∥
∫ t

0
e−L̃(t−s)S̃(t − s){0, f̃ (P1Φ(s, ω, ϖ + h))

− f̃ (P1Φ(s, ω, ϖ))− D f̃ (P1Φ(s, ω, ϖ)) P1U(s, ω)}ds∥

≤
∫ t

0
eϱ(t−s)∥ f̃ (P1Φ(s, ω, ϖ + h))− f̃ (P1Φ(s, ω, ϖ))− D f̃ (P1Φ(s, ω, ϖ)) P1U(s, ω)∥Xds

≤
∫ t

0
eϱ(t−s)

∫ 1

0
|D f̃ (P1(Φ(s, ω, ϖ) + ϑy(s, ω)))− D f̃ (P1Φ(s, ω, ϖ)) |dϑ∥P1y(s, ω)∥Lds

+
∫ t

0
eϱ(t−s)∥D f̃ (P1Φ(s, ω, ϖ)) P1w(s, ω)∥Xds

≤
∫ t

0
eϱ(t−s)

∫ 1

0

∫ 1

0
|D2 f̃ (P1(Φ(s, ω, ϖ) + λϑy(s, ω))) |λϑdλdϑ∥P1y(s, ω)∥2

Lds

+
∫ t

0
eϱ(t−s)∥D f̃ (P1Φ(s, ω, ϖ)) P1w(s, ω)∥Xds

≤
∫ t

0
eϱ(t−s)

∫ 1

0

∫ 1

0
|D2 f̃ (P1(Φ(s, ω, ϖ) + λϑy(s, ω))) |dλdϑ∥y(s, ω)∥2ds

+
∫ t

0
eϱ(t−s)|D f̃ (P1Φ(s, ω, ϖ)) |∥w(s, ω)∥ds. (4.14)

Since χ, χ + h ∈ AΨ(ω), it follows from the invariance Corollary 3.13 that ϖ, ϖ + h ∈ AΦ(ω).

Therefore, the invariance of AΦ(ω) under Φ implies that Φ(t, ω, ϖ), Φ(t, ω, ϖ + h) ∈ AΨ(ω)

for all t ⩾ 0. Therefore, P1Φ(t, ω, ϖ) + λϑy(s, ω)) ∈ co (AΦ(ω)), for all ϑ, λ ∈ [0, 1], where

coAΦ(ω) represents the closed convex hull of AΦ(ω). Thus, it follows from (4.13) and (4.10)

and the fact f is C2 that

∥w(t, ω)∥ ⩽ L2(ω)
∫ t

0
e[2(L f +ϱ)+ϱ](t−s)∥h∥2ds + L1(ω)

∫ t

0
eϱ(t−s) ∥w(s, ω)∥ ds. (4.15)

Multiplying both sides of (4.15) by e−ϱt yields that

e−ϱt∥w(t, ω)∥ ⩽
−L2(ω)e−ϱt

2(L f + ϱ) + ϱ
∥h∥2 + L1(ω)

∫ t

0
e−ϱs ∥w(s, ω)∥ ds, (4.16)

which implies, by the Gronwall inequality, that

e−ϱt∥w(t, ω)∥ ⩽
−L2(ω)e−ϱt

2(L f + ϱ) + ϱ
∥h∥2 +

L1(ω)eL1(ω)t

−(L f + ϱ)
(e−(ϱ+L1)t − 1)∥h∥2. (4.17)

Therefore, we have

∥w(t, ω)∥ ⩽
−L2(ω)

2(L f + ϱ) + ϱ
(1 +

L1(ω)(1 − e(L1(ω)+ϱ)t

−(L f + ϱ)
)∥h∥2. (4.18)

Take DΨ(ω)h ≜ Uϖ,h(1, ω), then it follows from (4.2) that DΨ(ω) is linear and continuous.
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Moreover, we have

∥Ψ(ω)(χ + h)− Ψ(ω)χ − DΨ(ω, χ) · h∥

= ∥Ψ(1, ω, χ + h)− Ψ(1, ωχ)− Uχ,h(1, ω)∥

≤
−L2(ω)

2(L f + ϱ) + ϱ

(
1 +

L1(ω)(1 − e(L1(ω)+ϱ)

−(L f + ϱ)

)
∥h∥2,

(4.19)

what implies that the statement of Theorem 4.3 holds by taking α = 1 and K(ω) =
−L2(ω)

2(L f +ϱ)+ϱ

(
1 + L1(ω)(1−e(L1(ω)+ϱ)

−(L f +ϱ)

)
.

We can now prove the main results of this paper.

Theorem 4.4. Assume that Hypotheses A1–A4 as well as conditions of Theorem 3.12 are satisfied,

f : L → H is twice continuously differentiable and there exists L3(ω) such that for all ϕ ∈ L and a.e.

ω ∈ Ω such that

(D f̃ (P1Φ(t, ω, ϕ)) φj, φj(0)) < L3(ω), (4.20)

where φj ∈ C, j = 1, 2, . . . , m is a sequence of unit orthogonal vectors. Then, the Hausdorff and fractal

dimensions of the random attractor AΨ(ω) of (2.11) are bounded by

d < [
L1(ω)

c
]

1
1+2/N , (4.21)

where c is a positive constant, N is dimension of the spatial domain, L1(ω) is defined by (4.4).

Proof. The existence of random attractor AΨ(ω) has been proved in Theorem 2.4 under

Hypotheses A1–A2. We show in the sequel the finite dimensionality of AΨ(ω). Let ϖ ∈

AΨ(ω), hi = (ϕi, ϕi(0)) ∈ D(Ā) and Uϖ,hi
i (t, ω) be defined by

Uϖ,hi
i (t, ω)= e−L̃tS̃(t)hi+

∫ t

0
e−L̃(t−s)S̃(t−s)(0, D f̃ (P1Φ(s, ω, ϖ))P1Uϖ,hi

i (s, ω))ds, t⩾0. (4.22)

It follows from Proposition 4.2 that Uϖ,hi
i (t, ω) satisfies the following variational equation

on H.




dUϖ,hi
i (t, ω)

dt
= ÃUϖ,hi

i (t, ω)− L̃Uϖ,hi
i (t, ω) + (0, D f̃ (P1Φ(s, ω, ϖ)) P1Uϖ,hi

i (t, ω)),

Uϖ,hi
i (0, ω) = hi ∈ H.

(4.23)

Define a family of random maps Ui(t, ω) : H → H, i = 1, . . . , m by Ui(t, ω)hi = Uϖ,hi(t, ω). By

a similar argument to that for (2.40) in [40] Chapter V, we obtain

1

2

d

dt
|U1(t, ω) ∧ · · · ∧ Um(t, ω)|2∧m H = |U1(t, ω) ∧ · · · ∧ Um(t, ω)|2∧m H Tr (G(t) ◦ Qm(t)) , (4.24)

where | · |∧m H represents the exterior product and

Qm(t) = Qm (t, ϖ; h1, . . . , hm) (4.25)

is the orthogonal projection of H onto the space spanned by
{

Uj(t, ω)
}

j=1,2,...,m
and G(t) =

G(t, ω) : H → H is defined by

G(t, ω)hi = Ãhi − L̃hi + (0, D f̃ (P1Φ(s, ω, ϖ)) P1hi). (4.26)
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Therefore

|U1(t, ω) ∧ · · · ∧ Um(t, ω)|∧m H

= |U1(0, ω) ∧ · · · ∧ Um(0, ω)|∧m H exp

(∫ t

0
Tr (G(s, ω) ◦ Qm(s)) ds

)

= |h1 ∧ · · · ∧ hm|∧m H exp

(∫ t

0
Tr (G(s, ω) ◦ Qm(s)) ds

)
.

(4.27)

Let us fix an orthonormal basis
{

ej = (φj, φj(0))
}

j=1,2,...,m
of the span

{
Uj(t, ω)

}
j=1,2,...,m

. Then,

we have

Tr (G(s, ω) ◦ Qm(s)) =
m

∑
j=1

〈
G(s, ω)ej, ej

〉

=
m

∑
j=1

〈
Ãej − L̃ej + (0, D f̃ (P1Φ(s, ω, ϖ)) P1ej), ej

〉

=
m

∑
j=1

〈
(φ̇j, Aφj(0)− µφj(0) + D f̃ (P1Φ(s, ω, ϖ)) φj), (φj, φj(0))

〉
.

(4.28)

By the definition of the inner product,

〈
(φ̇j − Lφj, Aφj(0)− µφj(0) + D f̃ (P1Φ(s, ω, ϖ)) φj), (φj, φj(0))

〉

=
∫ 0

−τ

(
d

dr
φj(s + r), φj(s + r)

)
dr +

(
Aφj(0), φj(0)

)
− µ∥φj(0)∥X

+
(

D f̃ (P1Φ(s, ω, ϖ)) φj, φj(0)
)

⩽
∥∥φj(s)

∥∥2

X
−
∥∥φj(s − τ)

∥∥2

X
−
(
−Aφj(0), φj(0)

)
+ L3(ω).

(4.29)

Incorporating (4.29) into (4.28) yields

Tr (G(s, ω)◦Qm(s))⩽
m

∑
j=1

(
∥∥φj(s)

∥∥2

X
−
∥∥φj(s − τ)

∥∥2

X
)−

m

∑
j=1

(
−Aφj(0), φj(0)

)
+L3(ω). (4.30)

In order to estimate the evolution of the volume under the random maps Ui(t, ω) : H →

H, i = 1, . . . , m, i.e., the norm of |U1(t, ω) ∧ · · · ∧ Um(t, ω)|∧m H defined by (4.27), we introduce

two quantities qm(t, ω) and qm(ω), which are defined by

qm(t, ω) ≜ sup
χ∈AΨ(ω),hi∈D(Ā),∥hi∥H≤1

1

t

∫ t

0
Tr (G(s, ω) ◦ Qm(s)) ds

and
qm(ω) ≜ lim

t→∞
qm(t, ω)

respectively. Now we keep in mind that

qm(t, ω)⩽
1

t

∫ t

0

[
m

∑
j=1

(∥∥φj(s)
∥∥2

X
−
∥∥φj(s − τ)

∥∥2

X

)
−

m

∑
j=1

(
−Aφj(0), φj(0)

)
+ L3(ω)

]
ds, (4.31)

and
1

t

∫ t

0

m

∑
j=1

(∥∥φj(s)
∥∥2

X
−
∥∥φj(s − τ)

∥∥2

X

)
ds = 0. (4.32)
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Moreover, by [40] Chapter VI Section 2.1, there exists a c > 0 such that

m

∑
i=1

(
−Aφj(0), φj(0)

)
≥ cm1+ 2

N .

Then, we have qm ≤ −cm1+ 2
N + L3(ω). Therefore, the Hausdorff and fractal dimensions of the

random attractor AΨ(ω) of (2.11) obtained in Theorem 3.12 are bounded by the first integer

such m that qm ≤ 0, that is,

d <

[
L3(ω)

c

] 1
1+2/N

, (4.33)

completing the proof.

5 Conclusions

In this paper, we have estimated the topological dimensions of random attractor for the

stochastic delayed semilinear partial differential equation (1.2). In order to overcome the

difficulty caused by the lack of Hilbert geometry, we recast the equation into a Hilbert space.

One naturally wonders, whether we can estimate the dimension of attractors for SPFDEs in

their natural phase space, i.e. Banach spaces. This requires to establish the general framework

to estimate the dimension of attractors of RDS in Banach spaces, which will be studied in

the near future. Moreover, there are also SPFDEs on infinite domains which can model the

spatial-temporal patterns for the mature population of age-structured species under random

perturbations. The existence of random attractors for a stochastic nonlocal delayed reaction-

diffusion equation on a semi-infinite interval have been studied in [29]. However, little at-

tention has been paid to the estimation of topological dimensions of random attractor for the

equation therein, which also deserves much effort in the future.
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1 Introduction

In this paper, we investigate the existence of at least one or two solutions for the boundary

value problem

{

u(2n) + An−1u(2n−2) + · · ·+ A1u′′ + A0u + f (x, u) = 0 in Ω = (0, L)

u = u′′ = · · · = u(2n−2) = 0 on ∂Ω,
(1.1)

where A0, A1, . . . , An−1 are some given real constants, f is a continuous function on Ω × R

and n ≥ 2.

The existence of solutions for fourth-order problems (n = 2), which describe the deflection

of an elastic beam with supported ends, has been extensively studied in the literature (see for

example [2–4, 7, 8, 11, 15, 16] and the literature cited therein).

We mention the paper [12], where (1.1) (case n = 2) was treated under the assumption

A2
1 > 4A0 by variational tools. The authors obtained existence and multiplicity results if the

potential F(x, s) =
∫ s

0 f (x, t)dt satisfies an asymptotic behaviour at zero and for some C > 0

and p > 2

F(x, s) ≥ C|s|p, ∀ x ∈ Ω, s ∈ R. (1.2)

BEmail: cristian.danet@edu.ucv.ro
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The case A2
1 = 4A0 was treated in [15].

The existence of solutions to sixth-order equations (n = 3) was investigated in [8] by using

Clark’s theorem provided the coefficients A0, A1, A2 satisfy some relations in the particular

case when f (x, s) = a(x)s3. Here a(x) is a continuous positive and even function.

In [13], using two Brézis–Nirenberg’s linking theorems, the existence of at least two or

three solutions was obtained, where F ≥ 0 has an asymptotic behaviour at zero and satisfies

F(x, s)

s2
→ +∞, uniformly with respect to x as |s| → ∞. (1.3)

Note that condition (1.2) implies the weaker super-quadratic condition (1.3). Also in the

new paper [1] infinitely many solutions to equation (1.1) (case n = 3, Ω = (0, 1)) are ob-

tained in the case when the nonlinear term f has an oscillating behaviour and the following

restriction holds

max{A2k, A2k − A1k2, A2k − A1k2 + A0k3} < 1, (1.4)

where k = 1/π2.

For further results on sixth-order equations we refer the reader to [5, 9, 14, 16–18].

The existence results of this paper are obtained for a general 2n− order equation by vari-

ational methods and hold under different assumptions on the coefficients.

We impose here suitable conditions on the coefficients A0, . . . , An−1, allowing to define

several norms equivalent to the usual norm of the working space. One of the condition

we impose (relation (2.5)) represents a generalization to the higher-order case of condition

A2
1 > 4A0 which plays a role in the works [16] and [12].

We see that even we restrict ourselves to the case n = 3 our conditions imposed to the

coefficients are different from the condition (1.4) or from the results obtained in the above

mentioned papers.

Moreover, we note that our first two main results are stated without any asymptotic be-

haviour at infinity. More precisely, we prove by using the Brézis–Nirenberg’s linking theorem

that an existence result holds without any behaviour at infinity if F ≥ 0 (Theorem 3.1). By us-

ing Ekeland’s variational principle we show (Theorem 3.4) that a result holds if F may change

sign and if no asymptotic behaviour at infinity is required. The last existence result uses the

Mountain Pass theorem and is stated when F may change sign and f satisfies an asymptotic

behaviour at both zero and infinity ( f behavies at ±∞ as |s|p, p > 1).

2 Auxiliary results and variational settings

We consider the Hilbert space

H(Ω) = {u ∈ Hn(Ω) | u = u′′ = · · · = u(2n−4) = 0 on ∂Ω}

endowed with the standard inner product

(u, v)Hn(Ω) =
∫

Ω

(

uv + u′v′ + u′′v′′ + · · ·+ u(n)v(n)
)

dx

and standard norm

∥u∥Hn(Ω) = (u, u)
1
2

Hn(Ω)
.

For the sake of simplicity we consider n = 4k, k = 1, 2, 3, . . . , unless otherwise stated.

We recall the meaning of a weak solution to (1.1).
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Definition 2.1. A weak solution of (1.1) is a function u ∈ H(Ω) such that
∫

Ω

(

u(n)v(n) − An−1u(n−1)v(n−1) + · · · − A1u′v′ + A0uv + f (x, u)v
)

dx = 0, ∀ v ∈ H(Ω).

A classical solution of (1.1) is a function u ∈ C2n(Ω) that satisfies (1.1).

We note that since f is a continuous function on Ω × R, it follows that a weak solution of

(1.1) belongs to C2n(Ω) (to get the result imitate the proof in [17]).

We also recall that the set of functions
{

sin
mπx

L
, m ∈ N, m ≥ 1

}

is a complete orthogonal basis in H(Ω).

The symbol P(ξ) = ξ2n − An−1ξ2n−2 + · · ·+ A2ξ4 − A1ξ2 + A0 of the differential operator

L(u) = u(2n) + An−1u(2n−2) + · · ·+ A2u(4) + A1u′′ + A0u plays an important role in the sequel.

Problem (1.1) has a variational structure and weak solutions in the space H(Ω) can be

found as critical points of the functional

J : H(Ω) → R

J(u) =
1

2

∫

Ω

(

(

u(n)
)2

− An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2
)

dx +
∫

Ω
F(x, u)dx,

which is Fréchet differentiable and its Fréchet derivative is given by

⟨J′(u), v⟩ =
∫

Ω

(

u(n)v(n) − An−1u(n−1)v(n−1) + · · · − A1u′v′ + A0uv + f (x, u)v
)

dx,

for all v ∈ H(Ω).

Throughout the paper C denotes a universal positive constant depending on the indicated

quantities, unless otherwise specified.

The next lemmas are fundamental tools in proving our existence result.

First we point out some Poincaré-type inequalities.

Lemma 2.2 ([10]). The following relations hold true for any u ∈ H(Ω).

∫

Ω

(

u(k)
)2

dx ≤

(

L

π

)2 ∫

Ω

(

u(k+1)
)2

dx, k = 0, 1, 2, . . . , n − 1. (2.1)

∫

Ω
u2dx ≤

(

L

π

)2k ∫

Ω

(

u(k)
)2

dx, k = 1, 2, . . . , n. (2.2)

In particular,
∫

Ω
u2dx ≤

(

L

π

)2n ∫

Ω

(

u(n)
)2

dx. (2.3)

An immediate consequence of Lemma 2.2 is the inequality

C(L, n)∥u∥Hn(Ω) ≤
∫

Ω

(

u(n)
)2

dx ≤ ∥u∥Hn(Ω), (2.4)

which shows that the scalar product

(u, v)H(Ω) =
∫

Ω
u(n)v(n)dx

induces a norm equivalent (denoted ∥ · ∥H(Ω)) to the norm ∥ · ∥Hn(Ω) in the space H(Ω).

The next lemma is an extension of Lemma 8, [16] and is proved by different means.
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Lemma 2.3. Let u ∈ H(Ω).

a). Suppose that A0, A2, . . . , An−4 ≥ 0, A1, A3, . . . , An−3 ≤ 0, An−2, An−1 > 0 and

A2
n−1 < 4An−2. (2.5)

Then there exists a constant k such that

∫

Ω

[

(u(n))2 − An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2

]

dx ≥ k∥u∥2
Hn(Ω). (2.6)

A similar estimate holds for A0 < 0 but under the restriction

A2
n−1 < 4An−2A∗, (2.7)

where A∗ = 1 + A0

(

L
π

)2n
> 0.

b). The same estimate (2.6) holds if for some index j = 2, 4, . . . , n − 2

A2
n−j−1

An−j
< 4An−j−2, (2.8)

where

A1, A3, . . . , An−j−3, An−j+1, . . . , An−1 < 0,

A0, A2, . . . , An−j−2, An−j+2 . . . , An−2 ≥ 0, An−j−1, An−j > 0.

c). Similarly, (2.6) holds if for some index j = 1, 3, . . . , n − 1 (2.8) is fulfilled, where

A1, A3, . . . , An−j−3, An−j+1, . . . , An−1 ≤ 0,

A0, A2, . . . , An−j−2, An−j+2 . . . , An−2 ≥ 0, An−j−1 < 0, An−j > 0.

Remark 2.4.

1. Of course if An−1 ≤ 0, An−2 ≥ 0, . . . , A1 ≤ 0, A0 ≥ 0, then Lemma 2.3 is always true, i.e.,

there is nothing to prove.

2. We easily see that if n = 2 (Case a).) then we obtain exactly Lemma 8, [16] for bounded

domains, i.e., our result is a direct extension to the higher-order case.

3. Note that Lemma 2.5 and Lemma 2.6 can also be seen as extensions of Lemma 8, [16]

and hold for bounded domains Ω as well when Ω = R.

Proof. a). We see that for any real α

∫

Ω

(

u(n) + αu(n−1)
)2

dx =
∫

Ω

(

(u(n))2 − 2α(u(n−1))2 + α2(u(n−2))2
)

dx.

It follows that for any α the quantity

Qα =
∫

Ω

(

(u(n))2 − 2α(u(n−1))2 + α2(u(n−2))2
)

dx

is positive.
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For arbitrary ε > 0 and by the assumptions

∫

Ω

[

(u(n))2 − An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2
]

dx

≥
∫

Ω

[

(u(n))2 − An−1(u
(n−1))2 + An−2(u

(n−2))2

]

dx

=

{

ε
∫

Ω

[

(u(n))2 + (u(n−1))2 + (u(n−2))2

]

dx

+ (1 − ε)
∫

Ω

[

(u(n))2 −
An−1 + ε

1 − ε
(u(n−1))2 +

1

4

(

An−1 + ε

1 − ε

)2

(u(n−1))2

]

dx

+

[

An−2 − ε −
1

4

(

An−1 + ε
)2

1 − ε

]

∫

Ω
(u(n−2))2dx

}

≥ ε
∫

Ω
(u(n))2dx + (1 − ε)Q An−1+ε

1−ε

+

[

An−2 − ε −
1

4

(

An−1 + ε
)2

1 − ε

]

∫

Ω
(u(n−2))2dx.

Choosing ε sufficiently small, using that Q An−1+ε

1−ε

≥ 0, (2.5) and the equivalence of norms

∥ · ∥Hn(Ω) and ∥ · ∥H(Ω) we get the result.

b). and c). Follows from case a).

Lemma 2.5. Let u ∈ H(Ω) and A0 > 1.

Suppose that for an index i and j,

A2
i < −4Aj,

A2
i

−4Aj
≤ A0 − 1, (2.9)

where i = 2, 3, . . . , n
2 , Ai ̸= Aj, 1 ≤ j ≤ n − 1, Aj < 0, Ai < 0 if i is even and Ai > 0 if i is odd.

Then there exist the constants ki,j > 0 such that

∫

Ω

[

(u(n))2 − An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2

]

dx ≥ ki,j∥u∥2
Hn(Ω). (2.10)

Proof. a). For the sake of simplicity we consider j = 1 and i = 2, i.e.,

A1, A2 < 0, A4, . . . , An−2 ≥ 0, A3, . . . , An−1 ≤ 0

and
A2

2

−4A1
≤ A0 − 1, A2

2 < −4A1.

We are going to prove the required inequality for u ∈ Hn(R) by using the Fourier trans-

form.

Taking in particular u ∈ H(Ω) ∩ Hn(R) we get the inequalities for bounded domains Ω.

Let û(ξ) be the Fourier transform of u(x) ∈ Hn(R).

First observe that by Parseval’s identity we get

∫

R

(

(

u(n)
)2

− An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2
)

dx

=
∫

R

(

ξ2n − An−1ξ2n−2 + · · · − A1ξ2 + A0

)

∥û(ξ)∥2dξ. (2.11)
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By using elementary inequalities we get for all ξ ∈ R

A2ξ4 ≤
A2

2

−4A1
ξ6 + (−A1)ξ

2 ≤
A2

2

−4A1
ξ2n + (−A1)ξ

2 +
A2

2

−4A1

≤
A2

2

−4A1
ξ2n + (−A1)ξ

2 + A0 − 1

≤
A2

2

−4A1
ξ2n − An−1ξ2n−2 + · · · − A3ξ6 + (−A1)ξ

2 + A0 − 1.

Hence

ξ2n − An−1ξ2n−2 + · · ·+ A2ξ4 − A1ξ2 + A0

≥

(

1 −
A2

2

−4A1

)

ξ2n + 1 ≥

(

1 −
A2

2

−4A1

)(

ξ2n + 1

)

. (2.12)

It can be easily checked that ∀ ξ ∈ R

ξ2n + 1 ≥
1

n

(

1 + ξ2 + · · ·+ ξ2n

)

. (2.13)

From (2.12) and (2.13) we get

ξ2n − An−1ξ2n−2 + · · ·+ A2ξ4 − A1ξ2 + A0 ≥
1

n

(

1 −
A2

2

−4A1

)(

1 + ξ2 + · · ·+ ξ2n

)

. (2.14)

Now from (2.11) and (2.14) we obtain
∫

R

(

(

u(n)
)2

− An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2
)

dx

≥
1

n

(

1 −
A2

2

−4A1

)

∫

R

(

1 + ξ2 + · · ·+ ξ2n

)

∥û(ξ)∥2dξ

=
1

n

(

1 −
A2

2

−4A1

)

∫

R

(

u2 + (u′)2 + · · ·+
(

u(2n)
)2
)

dx

= k2,1∥u∥2
Hn(R),

which is the desired result.

Lemma 2.6. Let u ∈ H(Ω) and A0 > 1.

Suppose that for an index i = 1, 3, . . . , (n/2) − 1, Ai > 0 and for an index j = 2, 4, . . . , n − 2,

Aj > 0 the following inequality be fulfilled

A2
i < 4Aj,

A2
i

4Aj
+ Aj ≤ A0 − 1, (2.15)

where the rest of coefficients

A1, A3, . . . , Ai−2, Ai+2, . . . , An−1 ≤ 0

and

A2, A4, . . . , Aj−2, Aj+2, . . . , An−2 ≥ 0.

Then there exist the constants ki,j > 0 such that

∫

Ω

[

(u(n))2 − An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2

]

dx ≥ ki,j∥u∥2
Hn(Ω). (2.16)



On the solvability of a higher-order semilinear ODE 7

The proof is similar to the proof of Lemma 2.5 and hence is omitted.

Lemma 2.7. Let u ∈ H(Ω).

Suppose that A0, A2, . . . , An−2 ≥ 0, A1, A3, . . . , An−1 ≥ 0, and

1 − An−1

(

L

π

)2

− An−3

(

L

π

)6

− · · · − A1

(

L

π

)2n−2

> 0. (2.17)

Then there exists a constant k1 > 0 such that

∫

Ω

[

(u(n))2 − An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2

]

dx ≥ k1∥u∥2
Hn(Ω). (2.18)

A similar result holds if A0, A2, . . . , An−2 < 0 and A1, A3, . . . , An−1 ≥ 0 under the assumption

1 − An−1

(

L

π

)2

+ An−2

(

L

π

)4

− · · · − A1

(

L

π

)2n−2

+ A0

(

L

π

)2n

> 0. (2.19)

The next four lemmas gives conditions on parameters Ai, i = 0, 1, . . . , n − 1 when the

functional J is bounded below and satisfies the Palais–Smale condition. We recall here what

means that J satisfies the Palais–Smale condition.

Definition 2.8. Let X be a Banach space and J ∈ C1(X, R). We say that J satisfies a Palais–

Smale condition if any sequence {um} in X for which J(um) is bounded and J′(um) → 0 as

m → ∞, has a convergent subsequence.

Lemma 2.9. Let u ∈ H(Ω) and let α > 0 be a constant. Suppose that F ≥ 0, A0, A2, . . . , An−4 ≥

0, A1, A3, . . . , An−3 ≤ 0, An−2, An−1 > 0 and

α + 1

α
A2

n−1 < 4An−2. (2.20)

Then J is bounded below and satisfies the Palais–Smale condition.

A similar statement holds for A0 < 0 but under the restriction

α + 1

α
A2

n−1 < 4An−2A∗, (2.21)

where A∗ = 1 + α+1
α A0

(

L
π

)2n
> 0.

The same conclusion holds if we are under the hypotheses of the case b). or case c). of Lemma 2.3.

Proof. We observe that for any α > 0 we can write J(u) as a sum of

J(u) =
1

2

1

α + 1

∫

Ω

(

u(n)
)2

dx +
α

α + 1
J1(u),

where

J1(u) =
1

2

∫

Ω

[

(u(n))2 −
α + 1

α
An−1(u

(n−1))2 + · · ·+
α + 1

α
A0u2 + 2

α + 1

α
F

]

dx.

Since (2.20) holds we can use Lemma 2.3 and the positivity of F to get that J1(u) is bounded

below which implies that J(u) is bounded below.

We now show that J(u) satisfies the Palais–Smale condition.
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Suppose that {um} is a Palais–Smale sequence, i.e., there exists a constant C > 0 such that

|J(um)| ≤ C and J′(um) → 0 as m → ∞.

Since J1(u) is bounded below we get that there exists a constant C1 > 0 such that

C >
1

2

1

α + 1

∫

Ω

(

u
(n)
m

)2
dx − C1,

which implies that {um} is a bounded sequence in H(Ω).

Since

J(u) =
1

2
(u, u)H(Ω) −

1

2

∫

Ω

[

(u(n))2 − An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2

]

dx +
∫

Ω
Fdx,

we see that

J′(u) = u + K(u),

where

K : H(Ω) → H(Ω)

is defined by

⟨K(u), v⟩ = −
∫

Ω

[

An−1u(n−1)v(n−1) + · · ·+ A1u′v′ − A0uv − f (x, u)v

]

dx.

Using the fact that the Sobolev imbedding H(Ω) →֒ Cn−1(Ω) is compact we get that K is a

complete continuous operator. Since J′(um) → 0 as m → ∞ it follows that

um = J′(um)− K(um)

is a convergent sequence and hence J(u) satisfies the Palais–Smale condition.

Using the same techniques we can prove

Lemma 2.10. Let u ∈ H(Ω), A0 > 1 and let α > 0 be a constant.

Suppose that for an index i and j,

α + 1

α
A2

i < −4Aj,
A2

i

−4Aj
≤ A0 −

α

α + 1
, (2.22)

where i = 2, 3, . . . , n
2 , Ai ̸= Aj, 1 ≤ j ≤ n − 1, Aj < 0, Ai < 0 if i is even and Ai > 0 if i is odd.

Then J is bounded below and satisfies the Palais–Smale condition.

Lemma 2.11. Let u ∈ H(Ω), A0 > 1 and let α > 0 be a constant.

Suppose that for an index i = 1, 3, . . . , (n/2) − 1, Ai > 0 and for an index j = 2, 4, . . . ,

n − 2, Aj > 0 the following inequality be fulfilled

α + 1

α
A2

i < 4Aj,
A2

i

4Aj
+ Aj ≤ A0 −

α

α + 1
, (2.23)

where the rest of coefficients

A1, A3, . . . , Ai−2, Ai+2, . . . , An−1 ≤ 0,

and

A2, A4, . . . , Aj−2, Aj+2, . . . , An−2 ≥ 0.

Then J is bounded below and satisfies the Palais–Smale condition.
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Lemma 2.12. Let u ∈ H(Ω) and let α > 0 be a constant.

Suppose that A0, A2, . . . , An−2 ≥ 0, A1, A3, . . . , An−1 ≥ 0, and

1 −
α + 1

α

[

An−1

(

L

π

)2

+ An−3

(

L

π

)6

+ · · ·+ A1

(

L

π

)2n−2
]

> 0. (2.24)

Then J is bounded below and satisfies the Palais–Smale condition. A similar result holds if A0, A2,

. . . , An−2 < 0 and A1, A3, . . . , An−1 ≥ 0 under the assumption

1 −
α + 1

α

[

An−1

(

L

π

)2

− An−2

(

L

π

)4

− · · · − A1

(

L

π

)2n−2

− A0

(

L

π

)2n
]

> 0. (2.25)

The main tool in our approach is the Brézis–Nirenberg’s linking theorem [6].

Theorem 2.13. Suppose that J ∈ C1(H, R) satisfies the Palais–Smale condition and has a local linking

at 0. Assume that J is bounded below and infH J < 0. Then J has at least two nontrivial critical points.

For the sake of completeness we recall the definition of local linking.

Let the Banach space H has a direct sum decomposition H = X ⊕ Y, where X is finite

dimensional.

Definition 2.14. The functional J is said to have a local linking at 0 if for some ρ > 0,

J(x) ≤ 0, ∀ x ∈ X, ∥x∥ ≤ ρ,

and

J(y) ≥ 0, ∀ y ∈ Y, ∥y∥ ≤ ρ.

3 Main results

Our existence results read.

Theorem 3.1. Let the function F ≥ 0, ∀ x ∈ Ω, s ∈ R satisfy

F(x, s) ≤ K|s|p, p > 2, ∀ x ∈ Ω, s ∈ R, s small, (3.1)

where K > 0 is a constant. Suppose that we are under hypotheses of either Lemma 2.9, Lemma 2.10,

Lemma 2.11 or Lemma 2.12. If in addition there exists a natural number m ̸= 0 such that

P

(

mπ

L

)

< 0, (3.2)

then the boundary value problem (1.1) has at least two nontrivial solutions.

Proof. The proof uses the Brézis–Nirenberg’s linking theorem (Theorem 2.13). Hence we have

to show that J satisfies the condition imposed in Theorem 2.13.

Since we are under the hypotheses of either Lemma 2.9, Lemma 2.10, Lemma 2.11 or

Lemma 2.12 it follows that J is bounded below and satisfies the Palais–Smale condition.

We now follow the proof of Lemma 8, [13] and show that infH(Ω) J < 0.

We see that P
(

mπ
L

)

→ ∞ and since (3.2) holds we get that there exists a finite set of natural

numbers {m1, m2, . . . , mk} such that P
(miπ

L

)

< 0, i = 1, 2, . . . , k.
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Introducing the finite dimensional space

X = span

{

sin
m1πx

L
, . . . , sin

mkπx

L

}

we see that any ϕ ∈ X can be written

ϕ(x) = c1 sin
m1πx

L
+ · · ·+ ck sin

mkπx

L

and its norm in L2(Ω) is given by

∥ϕ∥2
X = c2

1 + · · ·+ c2
k = ρ2,

where c1, . . . , ck are real constants.

By (3.1) and Hölder’s inequality we get for sufficiently small ρ > 0

∫

Ω
F(x, ϕ(x))dx ≤ K

∫

Ω
|ϕ(x)|pdx

≤ K
∫

Ω

[(

c2
1 + · · ·+ c2

k

)
1
2
(

sin
m1πx

L
+ · · ·+ sin

mkπx

L

)
1
2
]p

≤ C(K, k, p, L)
(

c2
1 + · · ·+ c2

k

)

p
2
= C(K, k, p, L)ρp.

Hence

J(ϕ) ≤
L

4

k

∑
i=1

P

(

miπ

L

)

c2
i + C(K, k, p, L)ρp

≤
L

4
αρ2 + C(K, k, p, L)ρp = ρ2

(

L

4
α + C(K, k, p, L)ρp−2

)

< 0,

where α = max
{

P
(miπ

L

)

, i = 1, 2, . . . , k
}

< 0 by hypothesis.

We now show that J has a local linking at 0.

By the above estimation, we see that for sufficiently small ρ

J(u) ≤ 0, ∀ u ∈ X, ∥u∥ ≤ ρ.

Also since for any u ∈ Y = X⊥ (bear in mind that P
(mk+1π

L

)

≥ 0)

J(u) ≥
1

2
P

(

mk+1π

L

)

∥u∥2
L2(Ω) +

∫

Ω
F(x, u)dx ≥ 0,

we get that J has a local linking at 0 and the proof follows.

Immediate consequences of Theorem 3.1 are the following.

Corollary 3.2. Suppose that P(0) > 0 and that P takes negative values. The problem (1.1) has at least

two nontrivial solutions in Ω = (0, L) provided the following relation holds true

mπ

ξ2
< L <

mπ

ξ1
for some natural number m ̸= 0. (3.3)

Here 0 < ξ1 < ξ2 are the first (the smallest) two positive roots of P. Note that P may have other

roots.
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Corollary 3.3. Suppose that P(0) < 0 and let ξ1 > 0 be the smallest root of P (P may have other

roots). The problem (1.1) has at least two nontrivial solutions in Ω = (0, L) provided the following

relation holds true

L >
mπ

ξ1
for some natural number m ̸= 0. (3.4)

We note that the uniqueness results presented in [12, 13] as well as our Theorem 3.1 are

stated under the restriction F ≥ 0 and

lim
s→0

F(s)

s2
= 0. (3.5)

The next result is stated when F may change sign and (3.5) is weakened.

Theorem 3.4. Let the function F satisfy

F(x, s) ≥ −K1|s|
p − K2, ∀ x ∈ Ω, s ∈ R, (3.6)

where 0 < p < 2, and K1, K2 > 0.

Suppose that An−1 ≤ 0, An−2 ≥ 0, . . . , A1 ≤ 0, A0 ≥ 0 holds or we are under hypotheses of either

Lemma 2.3, Lemma 2.5, Lemma 2.6 or Lemma 2.7. If in addition one of the following relation holds

lim
s→0+

f (x, s)

sα
= q(x) uniformly in Ω, (3.7)

where q(x) ≤ 0, ∥q∥L∞(Ω) > 0, 0 < α < 1

lim
s→0

F(x, s)

s2
= β(x) ∈ L1(Ω), uniformly in Ω, (3.8)

where
∫

Ω
β(x) sin2 πx

L
dx +

L

4
P

(

π

L

)

< 0, (3.9)

then the boundary value problem (1.1) has at least one nontrivial solution.

Proof. We choose ρ > 0 arbitrary but fixed and denote by

Bρ = {u ∈ H(Ω) | ∥u∥H(Ω) < ρ}.

We first note that one of the relations (3.7) or (3.8) assures that

µ = inf
Bρ

J(u) < 0.

Indeed, suppose that (3.7) holds.

We can choose the positive function ϕ(x) = sin πx
L ∈ H(Ω) such that

∫

Ω
q(x)ϕα+1(x)dx < 0.

Hence

lim
s→0+

J(sϕ)

sα+1
=

1

2
lim

s→0+
s1−α

∫

Ω

(

(ϕ(n))2 − An−1(ϕ(n−1))2 + · · ·+ A0 ϕ2
)

dx

+ lim
s→0+

∫

Ω

F(x, sϕ)

sα+1
dx

=
∫

Ω
lim

s→0+

F(x, sϕ)

sα+1
dx =

∫

Ω
lim

s→0+

f (x, sϕ)ϕ

(α + 1)sα
dx

=
1

α + 1

∫

Ω
q(x)ϕα+1(x)dx < 0.
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Similarly if (3.8) holds we see that

lim
s→0

J(sϕ)

s2
=

L

4
P

(

π

L

)

+
∫

Ω
β(x) sin2 πx

L
dx < 0.

By relation (3.6), Cauchy’s inequality with ε and (2.3)

∫

Ω
F(x, u)dx ≥ −ε

∫

Ω
u2dx −

∫

Ω

(

C(p, ε)K
2

2−p

1 + K2

)

dx (3.10)

≥ −ε

(

L

π

)2n

∥u∥2
H(Ω) − C(p, ε, K1, K2, L).

Hence if we are under hypotheses of either Lemma 2.3, Lemma 2.5, Lemma 2.6 or Lemma

2.7 we can combine (3.10) with one of relations (2.6), (2.10), (2.16) or (2.18) to get (by choosing

ε sufficiently small) that J(u) is bounded below on Bρ by a negative constant.

According to the Remark, inequalities of type (2.6) are always true if An−1 ≤ 0, An−2 ≥

0, . . . , A1 ≤ 0, A0 ≥ 0 and hence again we obtain that J(u) is bounded below.

From Ekeland’s variational principle it follows that there exists a minimizing sequence

{um} ⊂ Bρ such that

J(um) → µ and J′(um) → 0, as m → ∞.

Since {um} is bounded we can extract (by using the Sobolev imbedding) a subsequence still

denoted {um} such that

um ⇀ u0 weakly in H(Ω),

um → u0 strongly in Cn−1(Ω).

Arguing as in the proof Lemma 2.9 we get that {um} converges strongly to u0 in H(Ω).

As a consequence there exists u0 ∈ H(Ω) such that J′(u0) = 0, J(u0) < 0 i.e., problem (1.1)

has at least a nontrivial solution.

The last existence result shows that if we impose some asymptotic assumptions to f we

can allow p > 2 in (3.6). The proof uses the Mountain Pass theorem and the following two

lemmas.

The first lemma shows when J(u) has a mountain pass structure

Lemma 3.5. Suppose that we are under one of the assumptions of Lemma 2.3, Lemma 2.5 or Lemma

2.6. Let F satisfy

F(x, s) ≤ C|s|t, ∀ (x, s) ∈ Ω × R, (3.11)

where C > 0, t > 2 and relation (3.7) holds.

Then

1. there exist two positive constants ρ and η such that

J(u)|∥u∥=ρ
≥ η, (3.12)

2. there exists e ∈ H(Ω) satisfying ∥u∥ > ρ and J(e) < 0.
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Here

∥u∥2 =
∫

Ω

[

(u(n))2 − An−1(u
(n−1))2 + · · · − A1(u

′)2 + A0u2

]

dx

is a norm since we work under the assumptions of Lemma 2.3, Lemma 2.5 or Lemma 2.6.

We also note that J(u) becomes

J(u) =
1

2
∥u∥2 +

∫

Ω
F(x, u)dx.

Proof. For a proof see [10].

We can now apply the Mountain Pass theorem in H(Ω) to find a Cerami type sequence,

i.e.,

there exists {um} ⊂ H(Ω) such that J(um) → λ and ∥J′(um)∥H∗(Ω) → 0. (3.13)

The next lemma gives the boundedness of the sequence {um}.

Lemma 3.6. Suppose that we are under the hypotheses of Lemma 3.5. If in addition there exist the

constants θ ∈ (0, 2), K1 ∈ R, K2 > 0 such that

f (x, s)s ≥ K1|s|
θ − K2, ∀ x ∈ Ω, |s| > M, (3.14)

for some M > 0, then the sequence {um} defined by (3.13) is bounded in H(Ω).

Proof. We argue by contradiction and suppose that ∥um∥ → ∞. Let wm = um

∥um∥
. Obviously

{wm} is a bounded sequence and we can extract a subsequence, still denoted {wm}, such that

wm → w strongly in Cn−1(Ω).

For each fixed m we define

Ω1
m = {x ∈ Ω | um(x) ≤ M} and Ω2

m = {x ∈ Ω | um(x) > M}.

By the continuity of f there exists a constant C1 > 0 such that

∫

Ω1
m

f (x, um)umdx ≥ −C1. (3.15)

Since

⟨J′(um), um⟩ = ∥um∥
2 +

∫

Ω
f (x, um)umdx,

we get by combining (3.14) and (3.15) that

⟨J′(um), um⟩ ≥ ∥umq|2 − C1 −
∫

Ω2
m

(

K1|um|
θ − K2

)

dx

≥ ∥um∥
2 − C1 − |K1|

∫

Ω2
m

|um|
θdx − K2 meas(Ω). (3.16)

Using (3.16) and the fact that ⟨J′(um), um⟩ → 0, as m → ∞ it follows that

∞ = lim
m→∞

∥um∥2

∥um∥θ
≤ lim

m→∞

(

⟨J′(um), um⟩

∥um∥θ
+ |K1|

∫

Ω
|wm|

θdx +
C1 + K2 meas(Ω)

∥um∥θ

)

= |K1|
∫

Ω
|w|θdx < ∞,

which is a contradiction.

Hence we conclude that the sequence {um} is bounded.
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The last existence result reads

Theorem 3.7. Suppose that we are under one of the assumptions of Lemma 2.3, Lemma 2.5 or Lemma

2.6 and that relation (3.7) holds. Let p, q, r > 1 be such that p ≥ σ = max{q, r} and L1, L2, L3 ∈

L∞(Ω). If in addition

lim
|s|→0

f (x, s)

|s|p
= L1(x) (3.17)

and

lim
s→∞

f (x, s)

sq
= L2(x) > 0, lim

s→−∞

f (x, s)

|s|r
= L3(x) < 0, (3.18)

uniformly in Ω, then the boundary value problem (1.1) has at least a nontrivial solution.

Proof. Combining relations (3.17) and (3.18) we get that there exists a constant C > 0 such that

for sufficiently large M

−s f (x, s) ≤ C|s|σ+1, ∀ x ∈ Ω, |s| > M. (3.19)

Integrating (3.19) one has

−F(x, s) = −
∫ 1

0
f (x, us)sdu ≤

C

σ + 1
|s|σ+1, ∀ x ∈ Ω, |s| > M.

We can now apply Lemma 3.5 to get a sequence {um} that satisfies (3.13).

On the other hand, in view of (3.18) we see that (3.14) is satisfied and hence {um} is

bounded. As a consequence um → u0 in Cn−1(Ω) and the proof follows.

Finally, we give some examples as an application of our results.

Example 1. Let F satisfy (3.1) and suppose that (3.3) holds with m = 1. Then the boundary

value problem

{

u(2n) + Au(4) + Bu′′ + Cu + f (x, u) = 0 in Ω = (0, L)

u = u′′ = · · · = u(2n−2) = 0 on ∂Ω,
(3.20)

has at least two nontrivial solutions in H(Ω). Here A < 0, B = 0, C > 0, (2.25) holds and

(

−2A

n

)

n(n−2)
4

+ A

(

−2A

n

)
n−2

2

+ C < 0. (3.21)

In particular, the result holds if n = 4, A = −2, 0 < C < 1, L = 2.

The proof follows from Corollary 3.2. Since P(ξ) = ξ2n + Aξ4 + C we study the function

ϕ(t) = t
n
2 + At + C. We can check that ϕ attains its minimum at t0 = (−2A/n)

n−2
2 . Imposing

ϕ(t0) < 0, i.e., (3.21) we see that P has (at least) two positive roots.

Consider n = 3. Then P becomes P(ξ) = ξ6 − Aξ4 + Bξ2 − C. If

A > 0, B < 0, 0 > C > γ =
1

27

[

9AB − 2A3 − 2

(

A2 − 3B

)
3
2

]

,

then P has precisely two positive roots 0 < ξ1 < ξ2. As a consequence (3.20) has at least two

nontrivial solutions in H(Ω) if (3.3) holds with m = 1.
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The reader is referred to Appendix A, [13] where the authors give detailed conditions

on parameters A, B, C and L which guarantee the existence of at least one or two positive

solutions of P(ξ) = ξ6 − Aξ4 + Bξ2 − C.

Example 2. Let F satisfy (3.1) and suppose that (3.4) holds (here ξ1 is the unique solution of

P(ξ) = 0). Consider the boundary value problem (3.20), where C < 0. Suppose that one of

the following relations holds true

A, B ≥ 0 and (2.25) (3.22)

A > 0, B < 0 and (2.25) (3.23)

A < 0, B > 0, (3.4) and n

(

−2A

n(n − 1)

)
n−1
n−2

+ 2A

(

−2A

n(n − 1)

)
1

n−2

+ B > 0. (3.24)

Then the boundary value problem (3.20) has at least two nontrivial solutions in Ω.

The proof follows from Corollary 3.3 by using the same techniques as in Example 1.

Example 3. In as similar way we can conclude that if F satisfies (3.1) and that (3.4) holds (here

ξ1 is the unique solution of P(ξ) = 0), then the problem

{

u(2n) + Au(2n−2) + Bu(2n−4) + Cu + f (x, u) = 0 in Ω = (0, L)

u = u′′ = · · · = u(2n−2) = 0 on ∂Ω,
(3.25)

has at least two nontrivial solutions in Ω. Here A, B > 0, C < 0 and we are under the

assumptions of Lemma 2.9.

Example 4. Arguing as before, if A, B > 0, A2
> 4B, F satisfies (3.1) and if (3.3) holds, it follows

that the problem
{

u(6) + Au(4) + Bu′′ + f (x, u) = 0 in Ω = (0, L)

u = u′′ = u(4) = 0 on ∂Ω,
(3.26)

has at least two nontrivial solutions in Ω.

Example 5. The functions F1(s) = ln(1 + ln(1 + · · · + ln(1 + |s|p))), p > 2 and F2(s) =

|s|(arctan |s|p + ln(1 + |s|p)), p > 1 satisfy (3.1). Hence, under the requirements of Theo-

rem 3.1 problem (1.1) (with f replaced by f1 = F′
1 or f2 = F′

2) has at least two nontrivial

solutions in Ω.

It is easy to check that F1, F2 don’t satisfy (1.3) and hence this existence result cannot be

deduced from the corresponding results presented in [12] or [13] even if we restrict ourselves

to the particular cases n = 2 or n = 3.

We can see that F3(s) = sp − Cs2, where p > 2 is even and C > 0 changes sign and does

not fulfill the restriction (3.5) imposed in [12, 13], but fulfills the requirements of Theorem 3.4

with β = −C < 0. Again we conclude that problem (1.1) (with f replaced by f3 = F′
3) has at

least a nontrivial solution if (3.9) is satisfied.

Example 6. Let C > 0, q > 2, α ∈ (0, 1). Then the function f4

f4(s) =

{

−sq − C ln(1 + sα), s > 0

|s|q, s ≤ 0

satisfies the requirements of Theorem 3.7. Hence the boundary value problem (1.1) with f

replaced by f4 has at least one solution.
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Abstract. We consider a nonlinear Robin problem driven by the anisotropic (p, q)-
Laplacian plus an indefinite potential term. In the reaction, we have the competing ef-
fects of a parametric concave (sublinear) term perturbed by a superlinear one (concave-
convex problem). We prove the existence and multiplicity result for positive solutions
which is global with respect to the parameter. We also show the existence of a minimal
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the

following parametric anisotropic Robin boundary value problem:

{

−∆p(z)u(z)− ∆q(z)u(z) + ξ(z)(u(z))p(z)−1 = λ(u(z))τ(z)−1 + f (z, u(z)) in Ω,
∂u

∂npq
+ β(z)(u(z))p(z)−1 = 0 on ∂Ω, λ > 0, u > 0, 1 < τ < p.

(pλ)

In this problem the variable exponents p(·) and q(·) of the two differential operators are

Lipschitz continuous on Ω, that is, p, q ∈ C0,1(Ω). Then the two operators are defined by

∆p(z)u = div(|Du|p(z)−2Du), ∀u ∈ W1,p(z)(Ω),

∆q(z)u = div(|Du|q(z)−2Du), ∀u ∈ W1,q(z)(Ω).

BCorresponding author. Email: eozturk@hacettepe.edu.tr
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There is also a potential term ξ(z)(u(z))p(z)−1 which is in general indefinite since ξ ∈ L∞(Ω)

can be sign-changing (nodal). Therefore the left hand side of (pλ) is not coercive. In the

reaction (right hand side of (pλ)), we have the combined effects of a parametric “concave”

(sublinear) term λuτ(z)−1 with τ ∈ C(Ω), τ+ = maxΩ̄ τ < q− = minΩ̄ q and of a Carathéodory

perturbation f (z, x) (that is, for all x ≥ 0 z → f (z, x) is measurable and for almost a.a. z ∈ Ω

x → f (z, x) is continuous) which is “convex” ((p+ − 1)-superlinear with p+ = maxΩ̄ p) but

without satisfying the usual in such cases Ambrosetti–Rabinowitz condition.

In the boundary condition, ∂u
∂npq

denotes the conormal derivative of u, corresponding to the

anisotropic (p, q)-Laplacian. If u ∈ C1(Ω̄) then

∂u
∂npq

=
(

|Du|p(z)−2 + |Du|q(z)−2
)∂u

∂n

with n(.) being the outward unit normal on ∂Ω. The boundary coefficient β ∈ C0,1(∂Ω) with

β(z) ≥ 0 and either ξ ̸≡ 0 or β ̸≡ 0.

Therefore (pλ) is an anisotropic version of the classical “concave-convex problem”, with

an indefinite potential term and Robin boundary condition. Concave-convex problems, were

first studied by Ambrosetti–Brezis–Cerami [1], for semilinear Dirichlet problems driven by

the Laplacian with no potential term (that is, ξ ≡ 0) and a reaction of the form u →

λuτ−1 + ur−1 with 1 < τ < 2 < r. Their work was extended to p-Laplacian equations

by García Azorero–Peral Alonso–Manfredi [10] and Guo–Zhang [14]. Further extensions

involved more general nonlinear nonhomogeneous differential operators and more general

reactions (see Marano–Marino–Papageorgiou [19], Papageorgiou–Rădulescu [29] and the ref-

erences therein). For anisotropic problems, there are significantly fewer papers. We mention

the works of Papageorgiou–Qin–Rădulescu [24] (Dirichlet problems driven by the anisotropic

p-Laplacian) and by Deng [6], Liu–Papageorgiou [18] (Robin problems, in [6] the differential

operator is the p(z)-Laplacian and ξ ≡ 0, while in [18] the equation is driven by the anisotropic

(p, q)-Laplacian, with ξ(z) > 0 for a.a. z ∈ Ω, the conditions on f (z, .) are stronger near 0+

and the authors employ a different superlinearity condition). Using variational tools from the

critical point theory, together with truncation and comparison techniques, we prove an exis-

tence and multiplicity result for positive solutions which is global in the parameter λ > 0 (a

bifurcation-type theorem). Our result here extends all the aforementioned anisotropic works.

We also mention the works of [3], [12], [20], [27] and [28] on isotropic Neumann and Robin

problems with indefinite potential term.

Anisotropic problems are interesting from a purely mathematical viewpoint since they

exhibit challenging nonlinearities that we do not encounter in isotropic problems. The p(z)-
Laplace differential operator is not homogeneous in contrast to the p-Laplacian. This ex-

cludes from consideration techniques which proved to be very effective in the context of

isotropic problems. This makes anisotropic problems in principle more difficult to deal with.

Anisotropic equations, proved to be the right mathematical tool to describe various phenom-

ena from physics and engineering. Materials with inhomogeneities, such as electrorheological

fluids (also known as “smart fluids”), can not be modelled adequately using the formalism

of the classical Lebesgue and Sobolev spaces. They require the use of variable such spaces (a

particular case of the so-called “Musielak–Orlicz spaces”). The book of Růžička [33] contains

mathematical models of such fluids and the phenomena characterizing them (Winslow effect).

Another important application of anisotropic problem is in image restoration, where we try to

eliminate the effect of noise. Initially, this problem was approached by smoothing the input,



Anisotropic (p, q)-Robin boundary value problems 3

which corresponds to minimizing the energy functional:

ϕ1(u) =
∫

Ω

(|Du|2 + |u − i|2)dz

with i(.) being the input which corresponds to shades of grey in Ω ⊂ R
n. We assume that

noise is additive, that is, i = t0 + n with t0 representing the true image and n the noise which

is a random variable with zero mean. It turns out that this approach destroys the small details

of the image. To remedy this, it was proposed to use the “total variation smoothing”, which

corresponds to minimizing the energy functional:

ϕ2(u) =
∫

Ω

(|Du|+ |u − i|2)dz.

This approach does a good job of preserving the edges of the image (an edge gives rise to

a large gradient of u(·)). But unfortunately, this approach also introduces edges, where they

did not exist before. For this reason Chen–Levine–Rao [4], suggested to consider the energy

functional:

ϕ3(u) =
∫

Ω

(|Du|p(z) + |u − i|2)dz

with 1 ≤ p(z) ≤ 2. This function is close to 1 where there are no edges and close to 2 where

there are. Therefore, we have an energy functional which incorporates the positive aspects of

both ϕ1(.) and ϕ2(.).

More details on the mathematical and physical applications of variable spaces can be found

in the books of Cruz Uribe–Fiorenza [5], Diening–Harjulehto–Hästö–Růžička [7], Rădulescu–

Repovš [31], Růžička [33].

The Robin boundary condition is a weighted combination of Dirichlet and Neumann

boundary conditions and so it is more difficult to handle and for this reason it is less com-

mon in the literature. However, it is important from a physical viewpoint since it appears

in electromagnetic problems (impedance boundary condition) and in heat transfer problems

(convective boundary condition).

2 Mathematical background and hypotheses

In this section, we briefly review some basic facts about variable exponent spaces. A compre-

hensive presentation of variable exponent Lebesgue and Sobolev spaces can be found in the

books of Cruz Uribe–Fiorenza [5], Diening–Harjulehto–Hästö–Růžička [7].

Let L∞

1 (Ω) = {p ∈ L∞(Ω) : ess infΩ p ≥ 1}. For p ∈ L∞

1 (Ω), we set

p− = ess inf
Ω

p and p+ = ess sup
Ω

p.

Also, let M(Ω) = {u : Ω → R : u(·) is measurable}. As usual, we identify two functions

which differ on a set of zero measure.

Given p ∈ L∞

1 (Ω), we define the following variable exponent Lebesgue space

Lp(z)(Ω) =

{

u ∈ M(Ω) :
∫

Ω

|u|p(z) dz < +∞

}

.

We equip Lp(z)(Ω) with the following norm (known as the Luxemburg norm)

∥u∥p(z) = inf

{

λ > 0 :
∫

Ω

(

|u|
λ

)p(z)

dz ≤ 1

}

.
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Also, we introduce the variable exponent Sobolev spaces as follows:

W1,p(z)(Ω) =
{

u ∈ Lp(z)(Ω) : |Du| ∈ Lp(z)(Ω)
}

.

We equip this space with the following norm:

∥u∥1,p(z) = ∥u∥p(z) + ∥Du∥p(z).

An equivalent norm of W1,p(z)(Ω) is given by:

∥u∥1,p(z) = inf

{

λ > 0 :
∫

Ω

(

(

|Du|
λ

)p(z)

+

(

|u|
λ

)p(z)
)

dz ≤ 1

}

.

We define W1,p(z)
0 (Ω) as the closure in the ∥ · ∥1,p(z) norm of all compactly supported W1,p(z)(Ω)-

functions.

When p ∈ L∞

1 (Ω) and p− > 1, then the spaces Lp(z)(Ω), W1,p(z)(Ω), and W1,p(z)
0 (Ω) are all

separable, reflexive, and uniformly convex.

If p, p′ ∈ L∞

1 (Ω) and 1
p(z) +

1
p′(z) = 1, then Lp(z)(Ω)∗ = Lp′(z)(Ω), and we have the following

Hölder-type inequality:

∫

Ω

|uv| dz ≤

(

1

p−
+

1

p′−

)

∥u∥p(z)∥v∥p′(z)

for all u ∈ Lp(z)(Ω), v ∈ Lp′(z)(Ω).

We set

p∗(z) =







Np(z)
N−p(z) , if p(z) < N,

+∞, if p(z) ≥ N.

Theorem 2.1. If p, q ∈ C(Ω̄), p+ < N and 1 ≤ q(z) ≤ p∗(z) (resp. 1 ≤ q(z) < p∗(z)) for all

z ∈ Ω̄, then W1,p(z)(Ω) and W1,p(z)
0 (Ω) are embedded continuously (resp. compactly) into Lq(z)(Ω).

We set

p∂(z) =







(N−1)p(z)
N−p(z) , if p(z) < N,

+∞, if p(z) ≥ N.

Theorem 2.2. If p ∈ C(Ω̄), p− > 1 and q ∈ C(∂Ω) satisfies the condition

1 ≤ q(z) < p∂(z) for all z ∈ ∂Ω

then W1,p(z)(Ω) embedded compactly into Lq(z)(∂Ω). In particular, W1,p(z)(Ω) embedded compactly
into Lp(z)(∂Ω).

We introduce the following modular functions:

ρ(u) =
∫

Ω

|u|p(z) dz for all u ∈ Lp(z)(Ω),

ρ̂(u) =
∫

Ω

(

|Du|p(z) + |u|p(z)
)

dz for all u ∈ W1,p(z)(Ω).

We have the following properties.
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Proposition 2.3.

(a) For every u ∈ Lp(z)(Ω), u ̸= 0, we have ∥u∥p(z) = λ ⇐⇒ ρ
(

u
λ

)

= 1;

(b) ∥u∥p(z) < 1 (resp. = 1, > 1) ⇐⇒ ρ(u) < 1 (resp. = 1, > 1);

(c) ∥u∥p(z) < 1 ⇒ ∥u∥p+
p(z) ≤ ρ(u) ≤ ∥u∥p−

p(z) and ∥u∥p(z) > 1 ⇒ ∥u∥p−
p(z) ≤ ρ(u) ≤ ∥u∥p+

p(z);

(d) ∥un∥p(z) → 0 ⇐⇒ ρ(un) → 0;

(e) ∥un∥p(z) → +∞ ⇐⇒ ρ(un) → +∞.

Similarly, we have the following implications when p ∈ C0,1(Ω).

Proposition 2.4.

(a) For every u ∈ W1,p(z)(Ω), u ̸= 0, we have ∥u∥1,p(z) = λ ⇐⇒ ρ̂
(

u
λ

)

= 1;

(b) ∥u∥1,p(z) < 1 (resp. = 1, > 1) ⇐⇒ ρ̂(u) < 1 (resp. = 1, > 1);

(c) ∥u∥1,p(z) < 1 ⇒ ∥u∥p+
1,p(z) ≤ ρ̂(u) ≤ ∥u∥p−

1,p(z) and ∥u∥1,p(z) > 1 ⇒ ∥u∥p−
1,p(z) ≤ ρ̂(u) ≤

∥u∥p+
1,p(z);

(d) ∥un∥1,p(z) → 0 ⇐⇒ ρ̂(un) → 0;

(e) ∥un∥1,p(z) → +∞ ⇐⇒ ρ̂(un) → +∞.

Let β ∈ L∞(∂Ω) with β− := infz∈∂Ω β(z) > 0, and for any u ∈ W1,p(z)(Ω), define

∥u∥β := inf

{

τ > 0 :
∫

Ω

(

|∇u|
τ

)p(z)

dz +
∫

∂Ω

β(z)

(

|u|
τ

)p(z)

dσ ≤ τ

}

.

Proposition 2.5. Let ρβ(u) =
∫

Ω
|∇u|p(z) dz +

∫

∂Ω
β(z)|u|p(z) dσ with β− > 0, where dσ is the

measure on the boundary of Ω. For any u, uk ∈ W1,p(z)(Ω) (k = 1, 2, . . . ), we have that

(a) ∥u∥β ≤ 1 ⇒ ∥u∥p−
β ≤ ρβ(u) ≤ ∥u∥p+

β ;

(b) ∥u∥β ≥ 1 ⇒ ∥u∥p+
β ≤ ρβ(u) ≤ ∥u∥p−

β ;

(c) ∥uk∥β → 0 ⇐⇒ ρβ(uk) → 0 (as k → ∞);

(d) ∥uk∥β → ∞ ⇐⇒ ρβ(uk) → ∞ (as k → ∞).

Proposition 2.6. (see [32]) If there is a vector l ∈ R
n \ {0} such that for any z ∈ Ω the function

f (t) = q(z + tl) is monotone for t ∈ Iz = {t : z + tl ∈ Ω}, then

0 < µ∗ = inf
u ̸=0

∫

Ω

1
q(z) |Du|q(z)dz

∫

Ω

1
q(z) |u|

q(z)dz
.

Theorem 2.7. For any u ∈ W1,p(z)(Ω), let

∥u∥∂ := ∥∇u∥p(z) + ∥u∥β.

Then ∥u∥∂ is a norm on W1,p(z)(Ω) which is equivalent to

∥u∥1,p(z) = ∥∇u∥p(z) + ∥u∥p(z).
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The Banach space C1(Ω) is an ordered with a positive (order) cone C+ which is defined by

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

Given u : Ω → R is measurable, then we define

u+(z) = max{u(z), 0}, u−(z) = max{−u(z), 0} for all z ∈ Ω.

These are measurable functions and u = u+ − u−, |u| = u+ + u−. Moreover, if u ∈

W1,p(.)(Ω), then u± ∈ W1,p(.)(Ω). Suppose u, v : Ω → R are measurable functions with

u(z) ≤ v(z) for a.a. z ∈ Ω. We define

[u, v] = {h ∈ W1,p(.)(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω},

intC1(Ω)[u, v] = the interior in C1(Ω) of [u, v] ∩ C1(Ω),

[u) = {h ∈ W1,p(.)(Ω) | u(z) ≤ h(z) for a.a. z ∈ Ω}.

If u(.) is a measurable function, then we write 0 ≺ u if for all K ⊆ Ω compact we have

0 < cK ≤ u(z) for a.a. z ∈ K.

Let X be a Banach space and ϕ ∈ C1(X). We say that ϕ(.) satisfies the “C-condition”, if it

has the following property:

“Every sequence {un}n∈N ⊂ X such that

• {ϕ(un)}n∈N ⊆ R is bounded,

• (1 + ∥un∥X)ϕ′(un) → 0 in X∗,

admits a strongly convergent subsequence.”

This is a compactness-type condition on ϕ(·) which compensates for the fact that the

ambient space X need not be locally compact (being in general infinite-dimensional). By Kϕ

we denote the critical set of ϕ(.), that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.

Now we are ready to state our hypotheses on the data of problem (pλ):

H0: p, q ∈ C0,1(Ω̄), τ ∈ C(Ω̄) and 1 < τ(z) ≤ τ+ < q− ≤ q+ < p(z) < N for all z ∈ Ω̄. p+ <

Np−
N−p−

, there exists d ∈ R
N such that t → q(z + td) is monotone on Iz = {t : z + td ∈ Ω},

ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) with 0 < α < 1 and ξ ̸≡ 0 or β ̸≡ 0.

H1: f : Ω × R → R is a Carathéodory function which satisfies the following conditions:

(i) 0 ≤ f (z, x) ≤ a(z)(1 + xr(z)−1) for almost every z ∈ Ω and all x ≥ 0, where

a ∈ L∞(Ω), r ∈ C(Ω̄) and p+ < r(z) < p(z)∗ for all z ∈ Ω̄;

(ii) if F(z, x) =
∫ x

0 f (z, s)ds, then limx→+∞
F(z,x)
xp+ = +∞ uniformly for almost every

z ∈ Ω;
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(iii) if for every λ > 0, we define e(z, x) = f (z, x)x − p+F(z, x) and

βλ(z, x) = λ

(

1 −
p+

τ(z)

)

xτ(z) + ξ(z)

(

p+
p(z)

− 1

)

xp(z) + e(z, x), x ≥ 0,

then there exists µ ∈ L1(Ω) such that

βλ(z, x) ≤ βλ(z, y) + µ(z)

for almost all z ∈ Ω and all 0 ≤ x ≤ y;

(iv) limx→0+
f (z,x)

xq(z)−1 = 0 uniformly for almost every z ∈ Ω.

Remark 2.8. Since we look for positive solutions and all the above hypotheses concern the pos-

itive semiaxis, we may assume that f (z, x) = 0 for almost every z ∈ Ω, all x ≤ 0. Hypotheses

H1(iii) is satisfied if there exists M > 0 such that for a.a. z ∈ Ω

x →
λxτ(z)−1 + f (z, x)− ξ(z)xp(z)−1

xp+−1

is nondecreasing on x ≥ M (see [16]).

The following function satisfies hypotheses H1 above

f (z, x) =







(x+)s(z)−1, if x ≤ 1,

xp+−1 ln x + xµ(z)−1, if 1 < x

with s ∈ C(Ω̄), q(z) < s(z) for all z ∈ Ω̄, µ ∈ C(Ω̄), µ(z) ≤ p+ for all z ∈ Ω. This function

fails to satisfy the Ambrosetti–Rabinowitz condition (see [2]).

Let p ∈ C0,1(Ω) and consider the operator V : W1,p(z)(Ω) → (W1,p(z)(Ω))∗ defined by

⟨V(u), h⟩ =
∫

Ω

(

|∇u|p(z)−2(Du, Dh)R + |∇u|q(z)−2(Du, Dh)R

)

dz, ∀u, h ∈ W1,p(z)(Ω).

This operator has the following properties (see [13]).

Proposition 2.9. The map V : W1,p(z)(Ω) → (W1,p(z)(Ω))∗ defined above is bounded(that is, maps
bounded sets to bounded sets), continuous, strictly monotone (hence maximal monotone, too) and for
type (S)+, that is

un ⇀ u (weakly) in W1,p(z)(Ω) and lim sup
n→∞

⟨V(un), (un − u)⟩ ≤ 0 ⇒ un → u in W1,p(z)(Ω).

3 Positive solutions

We introduce the following two sets:

L := {λ > 0 : problem (pλ) has a positive solution},

Sλ := set of positive solutions of (pλ).

Our first goal is to establish some basic properties of L. From now on ∥ · ∥ := ∥ · ∥1,p(z).
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Let θ > ∥ξ∥∞, λ > 0, and consider the functional ϕ̂λ : W1,p(z)(Ω) → R defined by

ϕ̂λ(u) =
∫

Ω

|∇u|p(z)

p(z)
dz +

∫

Ω

|∇u|q(z)

q(z)
dz +

∫

Ω

ξ(z)
p(z)

|u|p(z)dz +
∫

Ω

θ

p(z)
(u−)p(z)dz

+
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ −
∫

Ω

λ

τ(z)
(u+)τ(z)dz −

∫

Ω

F(z, u+)dz

for all u ∈ W1,p(z)(Ω).

Proposition 3.1. If hypotheses H0 and H1 hold, and λ > 0, then ϕ̂λ(·) satisfies the C-condition.

Proof. We consider a sequence {un}n≥1 ⊆ W1,p(z)(Ω) such that

|ϕ̂λ(un)| ≤ M1 for some M1 > 0, all n ∈ N, (3.1)

(1 + ∥un∥)ϕ̂′
λ(un) → 0 in W1,p(z)(Ω)∗ as n → ∞. (3.2)

From (3.2) we have

|⟨ϕ̂′
λ(un), h⟩| ≤

εn∥h∥
1 + ∥un∥

for all h ∈ W1,p(z)(Ω), all n ∈ N, (3.3)

with εn → 0+, which implies

∣

∣

∣

∣

⟨V(un), h⟩+
∫

Ω

ξ(z)|un|
p(z)−2unhdz −

∫

Ω

θ(u−
n )

p(z)−1hdz

− λ
∫

Ω

(u+
n )

τ(z)−1hdz +
∫

∂Ω

β(z)|un|
p(z)−2unhdσ −

∫

Ω

f (z, u+
n )hdz

∣

∣

∣

∣

≤
εn∥h∥

(1 + ∥un∥)
(3.4)

for all h ∈ W1,p(z)(Ω), n ∈ N.

In (3.4), we choose h = −u−
n ∈ W1,p(z)(Ω). We have

∣

∣

∣

∣

∫

Ω

|Du−
n |

p(z)dz +
∫

Ω

|Du−
n |

q(z)dz +
∫

Ω

ξ(z)(u−
n )

p(z)dz +
∫

Ω

θ(u−
n )

p(z)dz

+
∫

∂Ω

β(z)(u−
n )

p(z)dσ

∣

∣

∣

∣

≤ εn (3.5)

for all n ∈ N.

Then,
∣

∣

∣

∣

∫

Ω

|Du−
n |

p(z)dz +
∫

Ω

(ξ(z) + θ)(u−
n )

p(z)dz +
∫

∂Ω

β(z)(u−
n )

p(z)dσ

∣

∣

∣

∣

≤ εn (3.6)

which implies

u−
n → 0 in W1,p(z)(Ω) (recall that θ > ∥ξ∥∞). (3.7)

In (3.4), we choose h = u+
n ∈ W1,p(z)(Ω). We have

∣

∣

∣

∣

∫

Ω

|Du+
n |

p(z)dz +
∫

Ω

|Du+
n |

q(z)dz +
∫

Ω

ξ(z)(u+
n )

p(z)dz − λ
∫

Ω

(u+
n )

τ(z)dz

−
∫

Ω

f (z, u+
n )u

+
n dz +

∫

∂Ω

β(z)(u+
n )

p(z)dσ

∣

∣

∣

∣

≤ εn (3.8)
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for all n ∈ N.

On the other hand, from (3.1), (3.7) we have

∣

∣

∣

∣

∫

Ω

p+
p(z)

|Du+
n |

p(z)dz +
∫

Ω

p+
q(z)

|Du+
n |

q(z)dz +
∫

Ω

p+
p(z)

ξ(z)(u+
n )

p(z)dz

− λ
∫

Ω

p+
τ(z)

(u+
n )

τ(z)dz −
∫

Ω

p+F(z, u+
n )u

+
n dz +

∫

∂Ω

p+
p(z)

β(z)(u+
n )

p(z)dσ

∣

∣

∣

∣

≤ M2 (3.9)

for some M2 > 0, all n ∈ N.

From (3.8) and (3.9) it follows that

∫

Ω

(

p+
p(z)

− 1

)

|Du+
n |

p(z)dz +
∫

Ω

(

p+
q(z)

− 1

)

|Du+
n |

q(z)dz +
∫

Ω

ξ(z)

(

p+
p(z)

− 1

)

(u+
n )

p(z)dz

+
∫

∂Ω

(

p+
p(z)

− 1

)

β(z)(u+
n )

p(z)dσ − λ
∫

Ω

(

p+

τ(z)
− 1

)

(u+
n )

τ(z)dz +
∫

Ω

e(z, u+
n )dz ≤ M3 (3.10)

for some M3 > 0, all n ∈ N.

Recall βλ(z, x) = λ(1 − p+
τ(z) )xτ(z) + ξ(z)( p+

p(z) − 1)xp(z) + e(z, x) for all x ≥ 0. Then from

(3.10) we have
∫

Ω

βλ(z, u+
n )dz ≤ M3 for all n ∈ N. (3.11)

Claim. The sequence {u+
n }n≥1 ⊆ W1,p(z)(Ω) is bounded.

Our argument proceeds through contradiction. So, suppose that the claim is not true.

Then passing to a subsequence if necessary, we may assume that

∥u+
n ∥ → ∞ as n → ∞. (3.12)

Let yn = u+
n

∥u+
n ∥

, n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. So, we may assume that

yn ⇀ y (weakly) in W1,p(z)(Ω) and yn → y in Lp(z)(Ω), y ≥ 0. (3.13)

Let Ω+ = {z ∈ Ω : y(z) > 0} and Ω0 = {z ∈ Ω : y(z) = 0}. Then Ω = Ω+ ∪ Ω0.

First we assume that |Ω+|N > 0 (by | · |N we denote the Lebesgue measure on R
N). We

have u+
n (z) → +∞ for a.a. z ∈ Ω+ and so on account of hypothesis H1(ii) we have

∫

Ω

F(z, u+
n )

∥u+
n ∥p+

dz → +∞ as n → +∞ (see [23]). (3.14)

On account of (3.12), we may assume that ∥u+
n ∥ ≥ 1 for all n ∈ N. Then from (3.1) and

(3.5), we have

λ
∫

Ω

1

τ(z)
(u+

n )
τ(z)

∥u+
n ∥p+

dz +
∫

Ω

F(z, u+
n )

∥u+
n ∥p+

dz ≤ ε′n +
1

p−

∫

Ω

|Du+
n |

p(z)

∥u+
n ∥p+

dz +
1

q−

∫

Ω

|Du+
n |

q(z)

∥u+
n ∥p+

dz

+
∥ξ∥∞

p−

∫

Ω

(u+
n )

p(z)

∥u+
n ∥p+

dz +
∥β∥∞

p−

∫

∂Ω

(u+
n )

p(z)

∥u+
n ∥p+

dσ

≤ ε′n +
1

p−

∫

Ω

|Dyn|
p(z)dz +

1

q−∥un∥p+−q+

∫

Ω

|Dyn|
q(z)dz +

∥ξ∥∞

p−

∫

Ω

(yn)
p(z)dz

+
∥β∥∞

p−

∫

∂Ω

(yn)
p(z)dσ ≤ M4 (3.15)
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for some M4 > 0 with ε′n → 0.

Comparing (3.14) and (3.15), we have a contradiction. We can assume that y ≡ 0, that is

|Ω|N = |Ω0|N . We define

ϕ̂λ(tnu+
n ) := max{ϕ̂λ(tu

+
n ) : 0 ≤ t ≤ 1}. (3.16)

Let vn = η1/p−yn for all n ∈ N, with η ≥ 1. Then, we have

vn ⇀ 0 in W1,p(z)(Ω) and
∫

Ω

F(z, vn) dz → 0 as n → ∞ (see [23]). (3.17)

Also, we have
∫

Ω

1

τ(z)
vτ(z)

n dz → 0. (3.18)

Moreover (3.12) implies that we can find n0 ∈ N such that

η
1

p−

∥u+
n ∥

∈ (0, 1] for all n ≥ n0. (3.19)

Hence from (3.16) and (3.19)

ϕ̂λ(tnu+
n ) ≥ ϕ̂λ(vn) =

∫

Ω

1

p(z)
|Dvn|

p(z)dz +
∫

Ω

1

q(z)
|Dvn|

q(z)dz +
∫

Ω

1

p(z)
ξ(z)vp(z)

n dz

− λ
∫

Ω

1

τ(z)
vτ(z)

n dz +
∫

∂Ω

1

p(z)
β(z)vp(z)

n dσ −
∫

Ω

F(z, vn) dz for all n ≥ n0

≥
1

p+

(

∫

Ω

|Dvn|
p(z)dz +

∫

Ω

ξ(z)vp(z)
n dz +

∫

∂Ω

β(z)vp(z)
n dσ

)

−
∫

Ω

F(z, vn) dz

≥
η

2p+
(see hypotheses H0 and (3.17))

for all n ≥ n1 ≥ n0. Since η ≥ 1 is an arbitrary number, we can infer that

ϕ̂λ(tnu+
n ) → +∞ as n → ∞. (3.20)

We know that

ϕ̂λ(0) = 0 and ϕ̂λ(u
+
n ) ≤ M5, all n ∈ N. (3.21)

From (3.20) and (3.21) it follows that we can find n2 ∈ N such that

tn ∈ (0, 1) for all n ≥ n2. (3.22)

Then from (3.16) and (3.22) we infer that

tn
d
dt

ϕ̂λ(tu
+
n )

∣

∣

∣

∣

t=tn

= 0, then ⟨ϕ̂′
λ(tnu+

n ), tnu+
n ⟩ = 0, ∀n ≥ n2,
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ϕ̂λ(tnu+
n ) = ϕ̂λ(tnu+

n )−
1

p+
⟨ϕ̂′

λ(tnu+
n ), tnu+

n ⟩

=
∫

Ω

tp(z)
n

[

1

p(z)
−

1

p+

]

|Du+
n |

p(z)dz +
∫

Ω

tq(z)
n

[

1

q(z)
−

1

p+

]

|Du+
n |

q(z)dz

+
∫

Ω

[

1

p(z)
−

1

p+

]

ξ(z)(tnu+
n )

p(z)dz −
∫

Ω

λ

[

1

τ(z)
−

1

p+

]

(tnu+
n )

τ(z)dz

+
∫

∂Ω

[

1

p(z)
−

1

p+

]

β(z)(tnu+
n )

p(z)dσ +
1

p+

∫

Ω

e(z, tnu+
n )dz

≤
∫

Ω

[

1

p(z)
−

1

p+

]

|Du+
n |

p(z)dz+
∫

Ω

[

1

q(z)
−

1

p+

]

|Du+
n |

q(z)dz +
1

p+

∫

Ω

βλ(z, tnu+
n )dz

+
∫

Ω

[

1

p(z)
−

1

p+

]

ξ(z)(tnu+
n )

p(z)dz +
∫

∂Ω

[

1

p(z)
−

1

p+

]

β(z)(tnu+
n )

p(z)dσ

≤
∫

Ω

[

1

p(z)
−

1

p+

]

|Du+
n |

p(z)dz +
∫

Ω

[

1

q(z)
−

1

p+

]

|Du+
n |

q(z)dz

+
1

p+

∫

Ω

βλ(z, u+
n )dz +

1

p+
∥µ∥1 +

∫

Ω

[

1

p(z)
−

1

p+

]

ξ(z)(u+
n )

p(z)dz

+
∫

∂Ω

[

1

p(z)
−

1

p+

]

β(z)(u+
n )

p(z)dσ

= ϕ̂λ(u
+
n )−

1

p+
⟨ϕ̂λ(u

+
n ), u+

n ⟩+
1

p+
∥µ∥1. (3.23)

Hence we have,

ϕ̂λ(tnu+
n ) ≤ ϕ̂λ(u

+
n )−

1

p+
⟨ϕ̂λ(u

+
n ), u+

n ⟩+
1

p+
∥µ∥1 for all n ≥ n2 (see (3.8))

≤ ϕ̂λ(u
+
n ) +

εn

p+
+

1

p+
∥µ∥1 (3.24)

(3.20) and (3.24) give us that ϕ̂λ(u+
n ) → +∞, and this contradicts with (3.21).

Therefore {u+
n } ⊂ W1,p(z)(Ω) is bounded. Then from (3.7) and the claim it follows that

{un} ⊂ W1,p(z)(Ω) is bounded.

We may assume that

un ⇀ u in W1,p(z)(Ω) and un → u in Lr(z)(Ω) as n → ∞. (3.25)

In (3.4), we choose h = un − u ∈ W1,p(z)(Ω), pass to the limit as n → ∞ and use (3.25). Then

lim
n→∞

⟨V(un), un − u⟩ = 0 (3.26)

(3.26) and Proposition (2.9) give us un → u in W1,p(z)(Ω). So ϕ̂λ(·.) satisfies the C-condition.

Proposition 3.2. If hypotheses H0 and H1 hold, then L ̸= ∅ and we have then Sλ ⊂ int C+ for every
λ ∈ L.

Proof. On account of hypotheses H1(iv), we see that given ε > 0, we can find Cε = C(ε) > 0

such that

F(z, x) ≤
ε

q(z)
xq(z) + Cεxr+ for a.a. z ∈ Ω, all x ≥ 0.
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For every u ∈ W1,p(z)(Ω), we have

ϕ̂λ(u) ≥
∫

Ω

1

p(z)
|Du|p(z) dz +

∫

Ω

1

q(z)
|Du|q(z) dz +

∫

∂Ω

β(z)
p(z)

|u|p(z)dσ +
∫

Ω

ξ(z)
p(z)

|u|p(z)dz

+
∫

Ω

θ

p(z)
(u−)p(z)dz −

∫

Ω

ε

q(z)
|u|q(z) dz − Cε

∫

Ω

|u|r+dz − λ
∫

Ω

1

τ(z)
(u+)τ(z)dz

≥ C̃ min{∥u∥p+ , ∥u∥p−}+
∫

Ω

1

q(z)
|Du|q(z) dz −

∫

Ω

ε

q(z)
|u|q(z) dz

− Cε

∫

Ω

|u|r+dz − λ
∫

Ω

1

τ(z)
(u+)τ(z)dz (3.27)

for some C̃ > 0 (recall that θ > ∥ξ∥∞).

Observe next that,
∫

Ω

1

q(z)
|Du|q(z) dz ≥ µ∗

∫

Ω

1

q(z)
|u|q(z) dz (see Proposition 2.6). (3.28)

∫

Ω

1

τ(z)
(u+)τ(z)dz ≤

1

τ−
max{∥u∥τ+

τ(z), ∥u∥τ−
τ(z)}. (3.29)

We return to (3.27) and use (3.28) and (3.29). Then for u ∈ W1,p(z)(Ω) with ∥u∥ ≤ 1, ε < µ∗

we have

ϕ̂λ(u) ≥ C̃∥u∥p+ − λC1∥u∥τ− − Cε∥u∥r+

= (C̃ − λC1∥u∥τ−−p+ − Cε∥u∥r+−p+)∥u∥p+ , u ∈ W1,p(z)(Ω) (3.30)

for some C1 > 0.

Let us set, for any t > 0,

kλ(t) = λC1tτ−−p+ − Cεt
r+−p+ .

Since τ− < p+ < r+ we have limt→∞ kλ(t) = limt→0+ kλ(t) = ∞.

Then there exists t0 > 0 satisfying k′λ(t0) = 0. One has

λC1(τ− − p+)t
τ−−p+−1
0 = −Cε(r+ − p+)t

r+−p+−1
0

⇒ t0 = t0(λ) =

(

λC1

Cε

p+ − τ−
r+ − p+

)
1

r+−τ−

.

Then

kλ(t0) = λC1

(

λC1

Cε

p+ − τ−
r+ − p+

)

τ−−p+
r+−τ−

+ Cε

(

λC1

Cε

p+ − τ−
r+ − p+

)

r+−p+
r+−τ−

and since p+ < τ+ we have limλ→0+ kλ(t0) = 0. So we can find λ0 > 0 such that

kλ(t0) < C̃ for all λ ∈ (0, λ0).

Then from (3.30) it follows that

ϕ̂λ(u) ≥ m̂λ > 0 for all ∥u∥ = t0. (3.31)

For u ∈ int C+, on account of the superlinearity hypothesis H1(ii), we have

ϕ̂λ(tu) → −∞ as t → ∞. (3.32)
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Then, (3.31), (3.32) and Proposition (3.1) permit the use of mountain pass theorem. Therefore

for every λ ∈ (0, λ0) we can find uλ ∈ W1,p(z)(Ω) such that

uλ ∈ Kϕ̂λ
and 0 < m̂λ ≤ ϕ̂λ(uλ). (3.33)

From (3.33) we have uλ ̸= 0 (recall that φ̂λ(0) = 0) and

⟨ϕ̂′
λ(uλ), h⟩ = 0 for all h ∈ W1,p(z)(Ω). (3.34)

Choosing h = −u−
λ ∈ W1,p(z)(Ω), we obtain

∫

Ω

|Du−
λ |

p(z)dz +
∫

Ω

|Du−
λ |

q(z)dz +
∫

Ω

(θ + ξ(z))(u−
λ )

p(z)dz +
∫

∂Ω

β(z)(u−
λ )

p(z)dσ = 0

⇒
∫

Ω

|Du−
λ |

p(z)dz +
∫

Ω

(θ + ξ(z))(u−
λ )

p(z)dz +
∫

∂Ω

β(z)(u−
λ )

p(z)dσ ≤ 0

⇒ uλ ≥ 0, uλ ̸= 0.

Then from (3.34) it follows that uλ is a positive solution (pλ). From the anisotropic regu-

larity theory (see [8] and [17] for the corresponding isotropic theory) we have

uλ ∈ C+ \ {0}.

For every u ∈ Sλ, we have u ∈ C+ \ {0} and

−∆p(z)u(z)− ∆q(z)u(z) + ξ(z)u(z)p(z)−1 ≥ 0 for a.a. z ∈ Ω,

⇒ ∆p(z)u(z) + ∆q(z)u(z) ≤ ∥ξ∥∞u(z)p(z)−1 for a.a. z ∈ Ω,

⇒ u ∈ int C+ (see [35] and [26], Proposition A2).

So, we have proved that (0, λ0) ⊆ L and so L ̸= ∅. Moreover, we have Sλ ⊆ int C+ for all

λ > 0.

Next, we show that L is an interval.

Proposition 3.3. If hypotheses H0 and H1 hold, λ ∈ L and 0 < µ < λ then µ ∈ L and given
uλ ∈ Sλ, we can find uµ ∈ Sµ such that uµ ≤ uλ.

Proof. Let us introduce the Carathéodory function gµ(z, x) defined by

gµ(z, x) =

{

µ(x+)τ(z)−1 + f (z, x+) + θ(x+)p(z)−1, if x ≤ uλ(z),

µuλ(z)τ(z)−1 + f (z, uλ(z)) + θuλ(z)p(z)−1, if uλ(z) < x.
(3.35)

Here θ > ∥ξ∥∞.

We set Gµ(z, x) =
∫ x

0 gµ(z, s) ds and consider the C1-functional Ψµ : W1,p(z)(Ω) → R

defined by

Ψµ(u) =
∫

Ω

1

p(z)
|Du|p(z) dz +

∫

Ω

1

q(z)
|Du|q(z) dz

+
∫

Ω

θ + ξ(z)
p(z)

|u|p(z) dz +
∫

∂Ω

β(z)
p(z)

|u|p(z) dσ −
∫

Ω

Gµ(z, u) dz (3.36)
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for all u ∈ W1,p(z)(Ω). Since θ > ∥ξ∥∞, it is clear that Ψµ(·) is coercive. Also, using the

fact that W1,p(z)(Ω) →֒ Lp(z)(Ω) compactly, we see that Ψµ(·) is sequentially weakly lower

semicontinuous.

So, by the Weierstrass–Tonelli theorem, there exists uµ ∈ W1,p(z)(Ω) such that

Ψµ(uµ) = inf
{

Ψµ(u) : u ∈ W1,p(z)(Ω)
}

. (3.37)

Since τ+ < p−, we see that

Ψµ(uµ) < 0 = Ψµ(0) ⇒ uµ ̸= 0.

From (3.37) we have

Ψ
′
µ(uµ) = 0 ⇒

⟨V(uµ), h⟩+
∫

Ω

[θ + ξ(z)]|uµ|
p(z)−2uµh dz +

∫

∂Ω

β(z)|uµ|
p(z)−2uµh dσ =

∫

Ω

gµ(z, uµ)h dz (3.38)

for all h ∈ W1,p(z)(Ω). In (3.38) first we choose h = −u−
µ ∈ W1,p(z)(Ω). We obtain

∫

Ω

|Du−
µ |

p(z)dz +
∫

Ω

|Du−
µ |

q(z)dz

+
∫

Ω

(θ + ξ(z))(u−
µ )

p(z)dz +
∫

∂Ω

β(z)(u−
µ )

p(z)dσ =
∫

Ω

gµ(z, uµ)u
−
µ dz

⇒ uµ ≥ 0, uµ ̸= 0 (see (3.35)).

Next, in (3.38) we choose h = (uµ − uλ)
+ ∈ W1,p(z)(Ω). We have

⟨V(uµ), (uµ − uλ)
+⟩+

∫

Ω

[θ + ξ(z)]up(z)−1
µ (uµ − uλ)

+ dz +
∫

∂Ω

β(z)|uµ|
p(z)−1uµ(uµ − uλ)

+ dσ

=
∫

Ω

[µuτ(z)−1
λ + f (z, uλ) + θup(z)−1

λ ](uµ − uλ)
+ dz (see (3.35))

≤
∫

Ω

[λuτ(z)−1
λ + f (z, uλ) + θup(z)−1

λ ](uµ − uλ)
+ dz (since µ < λ)

= ⟨V(uλ), (uµ − uλ)
+⟩+

∫

Ω

[θ + ξ(z)]up(z)−1
λ (uµ − uλ)

+ dz (since uλ ∈ Sλ).

The monotonicity of V(·) (see Proposition (2.9) ) and the fact that θ > ∥ξ∥∞ imply that

uµ ≤ uλ, ⇒ uµ ∈ [0, uλ], uµ ̸= 0, ⇒ uµ ∈ Sµ ⊆ int C+ (see (3.35) and (3.38)).

So, according to Proposition 3.3, the solution multifunction λ 7→ Sλ has a kind of weak

monotonicity property. We can improve this monotonicity property by adding one more

condition on the perturbation f (z, ·).

The new hypotheses on f (z, x) are the following:

H2: f : Ω × R → R is a function which is measurable in z ∈ Ω, for a.a. z ∈ Ω we have

f (z, ·) ∈ C1(R),

(i)–(iv) hypotheses H2(i)–(iv) are the same as the corresponding hypotheses H1(i)–(iv),
and

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function x →

f (z, x) + ξ̂ρxp(z)−1 is nondecreasing on [0, ρ].
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Remark 3.4. Hypotheses H2(v) is a one-sided local Hölder condition on f (z, ·). It is satisfied

for all z ∈ Ω, f (z, x) is differentiable and for every ρ > 0, we can find Cρ̂ > 0 such that

f ′x(z, x) ≥ −Cρ̂xp(z)−1 for a.a. z ∈ Ω and all 0 ≤ x ≤ ρ.

Proposition 3.5. If hypotheses H0, H2 hold, λ ∈ L, uλ ∈ Sλ ⊆ int C+ and µ ∈ (0, λ), then µ ∈ L

and we can find uµ ∈ Sµ ⊆ int C+ such that uλ − uµ ∈ int C+.

Proof. From Proposition 3.3 we know that µ ∈ L and there exists uµ ∈ Sµ ⊆ int C+ such that

uλ − uµ ∈ C+ \ {0} (3.39)

Let ρ = ∥uλ∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H2(v). We can always assume

that ξ̂ρ > ∥ξ∥∞. Then we have

− ∆p(z)uµ − ∆q(z)uµ + [ξ(z) + ξ̂ρ]u
p(z)−1
µ

= µuτ(z)−1
µ + f (z, uµ) + ξ̂ρup(z)−1

µ

≤ µuτ(z)−1
λ + f (z, uλ) + ξ̂ρup(z)−1

λ (see (3.39) and hypothesis H2(v))

≤ λuτ(z)−1
λ + f (z, uλ) + ξ̂ρup(z)−1

λ (since µ < λ)

= −∆p(z)uλ − ∆q(z)uλ + [ξ(z) + ξ̂ρ]u
p(z)−1
λ . (3.40)

Note that since uλ ∈ int C+ and µ < λ, we have

0 ≺ (λ − µ)uq(z)−1
λ . (3.41)

Then from (3.40), (3.41) and Proposition 2.4 in [23], we can conclude that

uλ − uµ ∈ int C+.

The proof is now complete.

Next, we show that for every λ ∈ L, the solution set Sλ has the smallest element (minimal

positive solution). To this end, first, we consider the following auxiliary problem:

{

−∆p(z)u(z)− ∆q(z)u(z) + |ξ(z)||u(z)|p(z)−2u(z) = λ|u(z)|τ(z)−2u(z) in Ω,
∂u

∂npq
+ β(z)|u(z)|p(z)−1 = 0 on ∂Ω, λ > 0, u > 0.

(3.42)

Proposition 3.6. If hypotheses H0 hold and λ > 0, then problem (3.42) admits a unique positive
solution ūλ ∈ int C+.

Proof. We consider the C1-functional γλ : W1,p(z)(Ω) → R defined by

γλ(u) =
∫

Ω

1

p(z)
|Du|p(z) dz +

∫

Ω

1

q(z)
|Du|q(z) dz +

∫

Ω

|ξ(z)||u|p(z) dz

− λ
∫

Ω

1

τ(z)
(u+)τ(z) dz +

∫

∂Ω

β(z)
p(z)

|u|p(z)dσ

for all u ∈ W1,p(z)(Ω). Evidently, γλ(·) is coercive (since τ+ < p−, q+ < p−.) and sequentially

weakly lower semicontinuous. So, we can find ūλ ∈ W1,p(z)(Ω) such that

γλ(ūλ) = min{γλ(u) : u ∈ W1,p(z)(Ω)} < 0 = γλ(0) (since τ+ < p−),
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which implies ūλ ̸= 0. We have

γ′
λ(ūλ) = 0,

which implies

⟨V(ūλ), h⟩+
∫

Ω

|ξ(z)||ūλ|
p(z)−2ūλh dz − λ

∫

Ω

(ū+
λ )

τ(z)−1h dz +
∫

∂Ω

β(z)|ūλ|
p(z)−2ūλdσ = 0

(3.43)

for all h ∈ W1,p(z)(Ω).

In (3.43) we choose h = −ū−
λ ∈ W1,p(z)(Ω). Then

∫

Ω

|Dū−
λ |

p(z)dz +
∫

Ω

|Dū−
λ |

q(z)dz +
∫

Ω

|ξ(z)|(ū−
λ )

p(z)dz +
∫

∂Ω

β(z)(ū−
λ )

p(z)dσ = 0

⇒
∫

Ω

|Dū−
λ |

p(z)dz +
∫

Ω

|ξ(z)|(ū−
λ )

p(z)dz +
∫

∂Ω

β(z)(ū−
λ )

p(z)dσ ≤ 0

which implies ūλ ≥ 0, ūλ ̸= 0, hence ūλ is a positive solution of (3.42) (see (3.43)), therefore

ūλ ∈ C+ \ {0} (anisotropic regularity theory).

Therefore

∆p(z)ūλ(z) + ∆q(z)ūλ(z) ≤ ∥ξ∥∞(ūλ(z))
p(z)−1 for a.a. z ∈ Ω,

which implies ūλ ∈ int C+ (see Zhang [35]).

Next, we show that this positive solution of (3.42) is unique. Suppose that v̄λ is another

positive solution of (3.42). Again we have v̄λ ∈ int C+. On account of Proposition 4.1.22 of

Papageorgiou, Rădulescu and Repovs [22], p. 274, we have ūλ
v̄λ

, v̄λ
ūλ

∈ L∞(Ω). So, we can apply

Theorem 2.5 of Takac and Giacomoni [34] and get

0 ≤
∫

Ω

[

−∆p(z)ūλ − ∆q(z)ūλ

(ūλ)q−−1
+

−∆p(z)v̄λ − ∆q(z)v̄λ

(v̄λ)q−−1

]

((ūλ)
q− − (v̄λ)

q−) dz

=
∫

Ω

[

λ

(

1

(ūλ)q−−τ(z)
−

1

(v̄λ)q−−τ(z)

)

−|ξ(z)|
(

(ūλ)
p(z)−q− − (v̄λ)

p(z)−q−
)

]

((ūλ)
q− − (v̄λ)

q−) dz,

which implies ūλ = v̄λ (since τ+ < p− ≤ p(z)).
Therefore the positive solution ūλ ∈ int C+ of problem (3.42) is unique.

This solution ūλ ∈ int C+ provides a lower bound for the solution set Sλ.

Proposition 3.7. If hypotheses H0, H1 hold and λ ∈ L, then ūλ ≤ u for all u ∈ Sλ.

Proof. Let u ∈ Sλ ⊂ int C+ and consider the Carathéodory function βλ(z, x) defined by

β̂λ(z, x) =

{

λ(x+)τ(z)−1, if x ≤ u(z),

λu(z)τ(z)−1, if u(z) < x.
(3.44)

We set B̂λ(z, x) =
∫ x

0 β̂λ(z, s)ds and consider the C1-functional τλ : W1,p(z)(Ω) → R defined by

τλ(u) =
∫

Ω

1

p(z)
|Du|p(z)dz +

∫

Ω

1

q(z)
|Du|q(z)dz +

∫

Ω

|ξ(z)|
p(z)

|u|p(z)dz

+
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ −
∫

Ω

B̂λ(z, u)dz
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for all u ∈ W1,p(z)(Ω).

From (3.44) we see that τλ(·) is coercive. Also, it is sequentially weakly lower semicontin-

uous. So, we can find ũλ ∈ W1,p(z)(Ω) such that

τλ(ũλ) = min
{

τλ(u) : u ∈ W1,p(z)(Ω)
}

< 0 = τλ(0) (since τ+ < p−),

which implies ũλ ̸= 0.

We have

τ′
λ(ũλ) = 0,

⟨V(ũλ), h⟩+
∫

Ω

|ξ(z)||ũλ|
p(z)−2ũλhdz +

∫

∂Ω

β(z)|ũλ|
p(z)−2ũλhdσ =

∫

Ω

β̂λ(z, ũλ)hdz (3.45)

for all h ∈ W1,p(z)(Ω). In (3.45) we first choose h = −ũ−
λ ∈ W1,p(z)(Ω) and infer that

ũλ ≥ 0, ũλ ̸= 0.

Next, in (3.45) we choose h = (ũλ − u)+ ∈ W1,p(z)(Ω). We have

⟨V(ũλ), (ũλ − u)+⟩+
∫

Ω

|ξ(z)|(ũλ)
p(z)−1(ũλ − u)+dz +

∫

∂Ω

β(z)(ũλ)
p(z)−1(ũλ − u)+dσ

=
∫

Ω

λuτ(z)−1(ũλ − u)+dz (see (3.44))

≤
∫

Ω

[λuτ(z)−1 + f (z, u)](ũλ − u)+dz (since f ≥ 0)

≤ ⟨V(u), (ũλ − u)+⟩+
∫

Ω

|ξ(z)|up(z)−1(ũλ − u)+dz +
∫

∂Ω

β(z)up(z)−1(ũλ − u)+dσ

(since u ∈ Sλ)

⇒ ũλ ≤ u.

So, we have proved that

ũλ ∈ [0, u]\{0}. (3.46)

Then it follows from (3.43), (3.44), (3.46) that

ũλ is a positive solution of (3.42),

⇒ ũλ = ūλ ∈ int C+ (see Proposition 3.5),

⇒ ūλ ≤ u for all u ∈ Sλ.

The proof is now complete.

Remark 3.8. Reasoning as in the above proof, we show that λ 7→ ūλ is increasing, that is, if

0 < µ < λ, then ūλ − ūµ ∈ C+ \ 0.

We know that Sλ is downward directed (see Filippakis and Papageorgiou [9] and Papa-

georgiou, Rădulescu and Repovš [21], and recall that V(·) is monotone (see Proposition 2.9)).

Proposition 3.9. If hypotheses H0, H1 hold and λ ∈ L, then there exists u∗
λ ∈ Sλ ⊆ int C+ such that

u∗
λ ≤ u for all u ∈ Sλ (minimal positive solution of (pλ)).
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Proof. By Lemma 3.10 of Hu and Papageorgiou [15] (p. 178), we know that we can find

{un}n≥1 ⊆ Sλ ⊆ int C+ decreasing (recall that Sλ is downward directed) such that

inf
n≥1

un = inf Sλ.

Since uλ ≤ un ≤ u1 for all n ∈ N (see Proposition 3.6), from hypothesis H1(i) it follows

that {un}n≥1 ⊆ W1,p(Ω) is bounded. So, we may assume that

un ⇀ u∗
λ in W1,p(Ω) and un → u∗

λ in Lr(z)(Ω) as n → ∞. (3.47)

We have

⟨V(un), un − u∗
λ⟩+

∫

Ω

ξ(z)up(z)−1
n (un − u∗

λ) dz +
∫

∂Ω

β(z)up(z)−1
n (un − u∗

λ)dσ

= λ
∫

Ω

uτ(z)−1
n (un − u∗

λ) dz +
∫

Ω

f (z, un)(un − u∗
λ) dz,

which implies

lim
n→∞

⟨V(un), un − u∗
λ⟩ = 0,

and thus

un → u∗
λ in W1,p(z)(Ω) (see Proposition 2.9). (3.48)

Note that ūλ ≤ u∗
λ and so u∗

λ ̸= 0,

⟨V(u∗
λ), h⟩+

∫

Ω

ξ(z)(u∗
λ)

p(z)−1h dz +
∫

∂Ω

β(z)(u∗
λ)

p(z)−1hdσ

= λ
∫

Ω

(u∗
λ)

τ(z)−1h dz +
∫

Ω

f (z, u∗
λ)h dz

for all h ∈ W1,p(z)(Ω) (see (3.48)).

It follows that

u∗
λ ∈ Sλ ⊆ int C+ and u∗

λ = inf Sλ.

The proof is now complete.

We set λ∗ = supL.

Proposition 3.10. If hypotheses H0, H2 hold, then λ∗
< ∞.

Proof. On account of hypotheses H0, H2(iv) and since τ+
< p−, we see that we can find λ > λ∗

such that

λxτ(z)−1 + f (z, x)− ξ(z)xp(z)−1 ≥ 0 for a.a. z ∈ Ω, all x ≥ 0. (3.49)

Let λ > λ̂ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ int C+. Let Ω0 ⊂⊂ Ω (that is,

Ω0 ⊆ Ω0 ⊆ Ω) and assume that ∂Ω0 is a C2-manifold. We set m0 = minΩ0
uλ > 0 (recall that

uλ ∈ int C+). Also, let ξ̂ρ > ∥ξ∥∞. Let mδ
0 = m0 + δ for δ > 0 small enough. We have

− ∆p(z)m
δ
0 − ∆q(z)m

δ
0 + [ξ(z) + ξ̂ρ](m

δ
0)

p(z)−1

≤ [ξ(z) + ξ̂ρ](m
δ
0)

p(z)−1 + χ(δ) with χ(δ) → 0+ as δ → 0+

≤ λ̂mτ(z)−1
0 + f (z, m0) + ξ̂ρmp(z)−1

0 + χ(δ) (see (3.49))

≤ λ̂uτ(z)−1
λ + f (z, uλ) + ξ̂ρup(z)−1

λ + χ(δ) (see hypothesis H2(v))

≤ λ̂uτ(z)−1
λ + f (z, uλ) + ξ̂ρup(z)−1

λ − [λ − λ̂]mp(z)−1
0 + χ(δ)

≤ − ∆p(z)uλ − ∆q(z)uλ + [ξ(z) + ξ̂ρ]u
p(z)−1
λ in Ω0, for 0 < δ < 1 small. (3.50)
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Note that δ ∈ (0, 1) small enough, we will have

[λ − λ̂]mp(z)−1
0 − χ(δ) ≥ η > 0.

So, from (3.50) and Papageorgiou–Qin–Rădulescu [24], Proposition 5 (see also [25], Propo-

sition 6) we have

uλ(z) ≥ mδ0
for all z ∈ Ω, all 0 < δ < 1 small enough

which is a contradiction. Therefore 0 < λ∗ ≤ λ̂ < ∞.

According to this proposition, we have

(0, λ∗) ⊆ L ⊆ (0, λ∗]. (3.51)

We will show that for all λ ∈ (0, λ∗), we have at least two positive smooth solutions for

problem (pλ). To do this we need to strengthen a little the hypotheses on f (z, ·). The new

conditions on f (z, x) are the following:

H3: f : Ω × R → R is a Carathéodory function, hypotheses H3(i)–(v) are the same as the

corresponding hypotheses H2(i)–(v) = H1(i)–(v) and

(vi) for every m > 0, there exists ηm > 0 such that

f (z, x) ≥ ηm > 0 for a.a. z ∈ Ω, all x ≥ m.

Proposition 3.11. If hypotheses H0, H3 hold and λ ∈ (0, λ∗), then problem (pλ) admits at least two
positive solutions u0, û ∈ int C+, u0 ̸= û.

Proof. Let η ∈ (λ, λ∗). We have η ∈ L (see (3.51)) and so we can find uη ∈ Sη ⊆ int C+. Then

according to Proposition 3.5, we can find u0 ∈ Sλ ⊆ int C+ such that

uη − u0 ∈ int C+. (3.52)

Recall that ūλ ≤ u0 (see Proposition 3.7).

Let ρ = ∥u0∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H3(v)(H2(v)). We can assume

that ξ̂ρ > ∥ξ∥∞. Then we have

− ∆p(z)ūλ − ∆q(z)ūλ + [ξ(z) + ξ̂ρ]ū
p(z)−1
λ

≤ − ∆p(z)ūλ − ∆q(z)ūλ + [|ξ(z)|+ ξ̂ρ]ū
p(z)−1
λ

= λūτ(z)−1
λ + ξ̂ρūp(z)−1

λ (see Proposition 3.6)

≤ λuτ(z)−1
0 + f (z, ūλ) + ξ̂ρup(z)−1

0 (recall that f ≥ 0)

≤ λuτ(z)−1
0 + f (z, u0) + ξ̂ρup(z)−1

0 (see Proposition 3.7 and hypothesis H3(v) = H2(v))

= − ∆p(z)u0 − ∆q(z)u0 + [ξ(z) + ξ̂ρ]u
p(z)−1
0 (since u0 ∈ Sλ). (3.53)

On account of hypothesis H3(vi) and since uλ ∈ int C+, we see that

0 ≺ f (·, ūλ(·)).
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Then from (3.53) and Proposition 2.4 in [23] (see also [25], Proposition 7), we can conclude

that

u0 − ūλ ∈ int C+. (3.54)

It follows from (3.52) and (3.54) that

u0 ∈ intC1(Ω̄)[ūλ, uη ]. (3.55)

As before, let θ > ∥ξ∥∞ and consider the Carathéodory function kλ(z, x) defined by

kλ(z, x) =















λūλ(z)τ(z)−1 + f (z, ūλ(z)) + θūλ(z)p(z)−1, if x < ūλ(z)

λxτ(z)−1 + f (z, x) + θxp(z)−1, if ūλ(z) ≤ x ≤ uη(z)

λuη(z)τ(z)−1 + f (z, uη(z)) + ϑuη(z)p(z)−1, if uη(z) < x.

(3.56)

We set Kλ(z, x) =
∫ x

0 kλ(z, s)ds and consider the C1-functional τλ : W1,p(z)(Ω) → R de-

fined by

τλ(u) =
∫

Ω

1

p(z)
|Du|p(z)dz +

∫

Ω

1

q(z)
|Du|q(z)dz +

∫

Ω

1

p(z)
(θ + ξ(z))|u|p(z)dz

−
∫

Ω

Kλ(z, u)dz +
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ

for all u ∈ W1,p(z)(Ω).

From (3.56) and since θ > ∥ξ∥∞, we infer that τλ(·) is coercive. Also, it is sequentially

weakly lower semicontinuous. So, we can find ũ0 ∈ W1,p(z)(Ω) such that

τλ(ũ0) = min{τλ(u) : u ∈ W1,p(z)(Ω)},

⇒ τ′
λ(ũ0) = 0,

⇒ ⟨τ′
λ(ũ0), h⟩ = 0 for all h ∈ W1,p(z)(Ω).

Choosing h = (ūλ − ũ0)+ and h = (ũ0 − uη)+ and using (3.56), we show as before that

ũ0 ∈ [ūλ, uη ] ∩ int C+.

Therefore, we may assume that ũ0 = u0 or otherwise, we already have a second positive

smooth solution and so, we are done.

Next, we consider the Carathéodory function

k̂λ(z, x) =

{

λūλ(z)τ(z)−1 + f (z, ūλ(z)) + θūλ(z)p(z)−1, if x ≤ ūλ(z)

λxτ(z)−1 + f (z, x) + ϑxp(z)−1, if ūλ(z) < x.
(3.57)

We define K̂λ(z, x) =
∫ x

0 k̂λ(z, s)ds and introduce the C1-functional τ̂λ : W1,p(z)(Ω) → R

defined by

τ̂λ(u) =
∫

Ω

1

p(z)
|Du|p(z)dz +

∫

Ω

1

q(z)
|Du|q(z)dz +

∫

Ω

1

p(z)
(θ + ξ(z))|u|p(z)dz

−
∫

Ω

K̂λ(z, u)dz +
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ

for all u ∈ W1,p(z)(Ω).
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From (3.56) and (3.57), it is clear that

τλ

∣

∣

[ūλ,uη ]
= τ̂λ

∣

∣

[ūλ,uη ]
.

On account of (3.55), we have that u0 is a local C1(Ω)-minimizer of τ̂λ,

⇒ u0 is a local W1,p(z)(Ω)− minimizer of τ̂λ.

(see Gasiński and Papageorgiou [[13], Proposition 3.3])

Using (3.57), we can easily see that

Kτ̂λ
⊂ [ūλ) ∩ int C+. (3.58)

Then from (3.57) and the above, we can infer that we may assume that Kτ̂λ
is finite or otherwise,

we already have an infinity of positive smooth solutions all distinct from u0 and so, we are

done. According to Theorem 5.7.6 of Papageorgiou, Rădulescu, and Repovš [[22], p. 449], we

can find ρ ∈ (0, 1) small such that

τ̂λ(u0) < inf{τ̂λ(u) : ∥u − u0∥ = ρ} = m̂ρ. (3.59)

On account of hypothesis H3(ii) for u ∈ int C+, we have

τ̂λ(tu) → −∞ as t → +∞. (3.60)

Finally, from (3.57), it follows that

φλ̂

∣

∣

[ūλ)
= τ̂λ

∣

∣

[ūλ)
+ η̂ with η̂ ∈ R,

⇒ τ̂λ(·) satisfies the C-condition (see Proposition 3.1). (3.61)

Then (3.59), (3.60), (3.61) permit the use of the mountain pass theorem. So, we can find

û ∈ W1,p(z)(Ω) such that

û ∈ Kτ̂λ
⊂ [ūλ) ∩ int C+ and m̂ρ ≤ τ̂λ(û). (3.62)

From (3.62) and (3.57), we see that û ∈ Sλ ⊆ int C+, while from (3.62) and (3.59), we have that

û ̸= u0.

Finally, we show that the critical parameter value λ∗ is admissible, that is, λ∗

Proposition 3.12. If hypotheses H0, H1 hold, then λ∗ ∈ L.

Proof. Let {λn}n≥1 ⊆ L such that λn → λ∗ as n → ∞. From the proof of Proposition 3.3, we

know that we can find un ∈ Sλn ⊆ int C+ such that ϕλ̂n
(un) < 0 for all n ∈ N.

Also, we have ϕ′
λ̂n
(un) = 0, for all n ∈ N. Then as in the proof of Proposition 3.1, we show

that {un}n≥1 ⊆ W1,p(z)(Ω) is bounded.

We may assume that

un ⇀ u∗ in W1,p(z)(Ω) and un → u∗ in Lr(z)(Ω) as n → ∞. (3.63)

We have

⟨V(un), h⟩+
∫

Ω

ξ(z)up(z)−1
n h dz +

∫

∂Ω

β(z)up(z)−1
n hdσ = λn

∫

Ω

uτ(z)−1
n h dz +

∫

Ω

f (z, un)h dz
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for all h ∈ W1,p(z)(Ω), all n ∈ N.

Choosing h = un − u∗, passing to the limit as n → ∞ and using (3.63), we obtain

un → u∗ in W1,p(z)(Ω).

So, in the limit as n → ∞, we have

⟨V(u∗), h⟩+
∫

Ω

ξ(z)(u∗)p(z)−1h dz +
∫

∂Ω

β(z)(u∗)p(z)−1hdσ

= λ∗
∫

Ω

(u∗)q(z)−1h dz +
∫

Ω

f (z, u∗)h dz

for all h ∈ W1,p(z)(Ω).

We have ūλ1
≤ un for all n ∈ N (see the Remark 3.8),

⇒ ūλ1
≤ u∗,

⇒ u∗ ∈ Sλ∗ ⊆ int C+ and so λ∗ ∈ L.

The proof is now complete.

Summarizing, we can state the following existence and multiplicity theorem for the prob-

lem (pλ), which is global in the parameter λ > 0 (a bifurcation-type theorem).

Theorem 3.13. If hypotheses H0, H3, hold, then there exists λ∗
> 0 such that

(a) for all λ ∈ (0, λ∗), problem (pλ) has at least two positive solutions

u0, û ∈ int C+;

(b) for λ = λ∗, problem (pλ) has at least one positive solution

u∗ ∈ int C+;

(c) for all λ > λ∗, problem (pλ) has no positive solutions;

(d) for every λ ∈ L = (0, λ∗], problem (pλ) has a smallest positive solution u∗
λ ∈ int C+ and the

map λ 7→ u∗
λ from L = (0, λ∗] into C+ \ {0} is increasing, that is,

0 < µ ≤ λ ∈ L ⇒ u∗
λ − u∗

µ ∈ C+ \ {0}.
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[27] N. S. Papageorgiou, V. D. Rădulescu, W. Zhang, Global existence and multiplicity for

nonlinear Robin eigenvalue problems, Results Math 78(2023), No. 4, Paper No. 133, 17 pp.

https://doi.org/10.1007/s00025-023-01912-8; MR4581175; Zbl 1514.35026

[28] N. S. Papageorgiou, C. Vetro, F. Vetro, Superlinear Robin problems with indefinite

linear part, Bull. Malays. Math. Sci. Soc. 43(2020), 537–562. https://doi.org/10.1007/

s40840-018-0701-2; MR4044899; Zbl 1431.35026
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[33] M. Růžička, Electrorheological fluids: modeling and mathematical theory, Springer-Verlag,

Berlin, 2000. https://doi.org/10.1007/BFb0104029; MR1810360; Zbl 0968.76531
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Abstract. This manuscript introduces a framework that focuses on the singularity of a
zero-double-Hopf system with 1 : 1 resonance in general retarded differential equations
(RDDs). Initially, practical algorithms are proposed to identify the zero-double-Hopf
singularity and the associated generalized eigenspace that corresponds to zero and
two pairs of purely imaginary eigenvalues. Subsequently, by utilizing center manifold
reduction and normal form techniques, we derive a reduced form of parameterized
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1 Introduction

In this paper, our primary objective is to analyze the zero-double-Hopf bifurcation with 1 : 1
resonance in relation to the following equation:

ż(t) = A(ϵ)z(t) + B(ϵ)z(t − τ) + F(z(t), z(t − τ), ϵ), (1.1)

where z ∈ Rn, ϵ ∈ Rm, A(ϵ), B(ϵ) ∈ C2(Rm,Mn×n(R)) and F ∈ C3(R2n+m, Rn) satisfies

F(0, 0, ϵ) =
∂F

∂x
(0, 0, ϵ) =

∂F

∂y
(0, 0, ϵ) = 0.

The characteristic equation of (1.1) at (z, ϵ) = (0, 0) is

∆(λ) ≡ det(λIn − A − e−λτB) = 0, (1.2)

BCorresponding author. Email: Houssem.Achouri@uphf.fr
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where In is the n × n identity matrix, A = A(0) and B = B(0).
To understand the dynamic behavior of the given differential system (1.1), it is crucial to

examine the root distribution in equation (1.2). Several cases can arise, including:

• All roots of equation (1.2) have negative real parts, except for a double or triple zero root,
respectively. In these scenarios, if the transversality condition is satisfied, the system (1.1)
undergoes a Bogdanov–Takens bifurcation or a triple-zero bifurcation, respectively. The
Bogdanov–Takens bifurcation in neutral differential systems was studied in [4], while
both the Bogdanov–Takens and triple-zero bifurcations for neutral functional differential
equations with multiple delays were explored in [2].

• All roots of equation (1.2) possess negative real parts, except for a pair of purely imagi-
nary roots. In this case, if the transversality condition is met, the system (1.1) undergoes
a Hopf bifurcation. This case has been discussed in [10].

• All roots of equation (1.2) exhibit negative real parts, except for a pair of purely imagi-
nary roots and a simple zero root. If the transversality condition is satisfied, the system
(1.1) experiences a zero-Hopf bifurcation. This case has been examined for delayed dif-
ferential equations in [11] and for neutral differential equations in [1].

• All roots of equation (1.2) have negative real parts, except for two pairs of purely imagi-
nary roots ±iw1 and ±iw2. In this situation, a double-Hopf bifurcation may occur. The
corresponding normal form for scalar DDE has been computed in [3], while the same
has been derived for systems of delay differential equations in [9] for the case where
w1
w2

/∈ Q.

• All roots of equation (1.2) possess negative real parts, except for two pairs of purely
imaginary roots ±iw1 and ±iw2, where w1 = w2. In [14], a double-Hopf bifurcation with
1:1 resonance in a van der Pol oscillator has been studied. Where, the authors established
explicit conditions for the characteristic equation to have a pair of purely imaginary roots
with multiplicity 2 and they derived the corresponding normal forms up to order 2. In
[12], authors presented a framework for studying the double-Hopf singularity with 1:1
resonance in general delayed differential equations. They also derived the corresponding
normal form up to the third-order terms. To illustrate the application of their study, they
applied these findings to a van der Pol oscillator with delayed feedback.

Explicit expressions for the eigenspace, its dual, and the coefficients of the normal form related
to the zero-double-Hopf singularity in retarded differential equations have not been provided
thus far. In [7], the authors presented the second-order normal form associated with the
zero-Hopf singularity for one-dimensional delayed differential equations. However, it has
been demonstrated in [8] that the second-order normal form is insufficient for determining
and analyzing the bifurcation diagrams of the zero-Hopf singularity. Consequently, to obtain
comprehensive bifurcation diagrams for this singularity, it becomes necessary to compute the
third-order normal form, which poses greater challenges and complexities compared to the
second-order normal form.

The remaining sections of this paper are organized as follows: Section 2 establishes spe-
cific conditions for the examined system to guarantee the existence of the zero-double-Hopf
singularity. Section 3 applies the theory of normal forms to compute the normal form up
to third-order terms for this singularity. The concluding remarks are presented in the final
section of the manuscript.
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2 Existence of the zero-double-Hopf with 1 : 1 resonance singularity

In this section, our examination focuses on the existence of the zero-double-Hopf singularity
with 1 : 1 resonance in the analyzed retarded differential equation, considering the case where
ϵ ∈ R3. We make use of the concepts and notations introduced in [5,6,13] for our investigation.

The system (1.1) can be expressed in the following form:

ż(t) = L(ϵ)zt + F(zt, ϵ) = L(0)zt + F̂(zt, ϵ), zt(θ) = z(t + θ), −τ ≤ θ ≤ 0, (2.1)

with F̂(zt, ϵ)= (L(ϵ)−L(0))zt+F(zt, ϵ), L(ϵ)ϕ=
∫ 0
−τ d[ηϵ(θ)]ϕ(θ), for all ϕ∈C=C([−τ, 0], Rn),

with supreme norm.
In particular, Lzt = L(0)zt = Az(t) + Bz(t − τ) =

∫ 0
−τ d[η0(θ)]zt(θ).

The function ηϵ is a bounded variation matrix-valued function defined on the interval
[−τ, 0] as follows:

ηϵ(θ) =















A(ϵ) + B(ϵ), θ = 0,

B(ϵ), −τ < θ < 0,

0, θ = −τ.

Let us consider the linear system given by

ż(t) = L(0)zt. (2.2)

As stated in [13], the infinitesimal generator for the solution semigroup defined by the system
(2.2) can be represented as:

A0ϕ = ϕ̇,

D(A0) =

{

ϕ ∈ C :
dϕ

dθ
∈ C, ϕ̇(0) = L(0)ϕ

}

.

The adjoint innner product on C × C∗ is defined by:

⟨ψ, ϕ⟩ = ψ(0)ϕ(0)−
∫ 0

−τ

∫ s

0
ψ(θ − s)d[η0(s)]ϕ(θ)dθ.

where C∗ = C([0, τ], Rn∗), with Rn∗ is the space of all row n-vector.
The adjoint A∗

0 of A0 is defined as follows:

A∗
0ψ = −ψ̇,

D(A∗
0) =

{

ψ ∈ C∗,
dϕ

dθ
∈ C∗,−ψ̇(0) =

∫ 0

−τ
ψ(−θ)d[η0(θ)]

}

.

Now, it is necessary to impose the following hypotheses:

(A1): The infinitesimal generator A0 possesses a pair of purely imaginary eigenvalues λ =

±iw (w > 0) with an algebraic multiplicity of 2 and a geometric multiplicity of 1.

(A2): The infinitesimal generator A0 has a unique eigenvalue λ = 0.

(A3): All eigenvalues of the infinitesimal generator A0 exhibit negative real parts, except for
the simple zero eigenvalue and the two pairs of purely imaginary eigenvalues.
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Let P denote the eigenspace of A0, and let P∗ represent the adjoint space of P.
The space C = C([−τ, 0], Rn) can be decomposed as C = P ⊕ Q, where Q = {ϕ ∈ C :

⟨ψ, ϕ⟩ = 0, ∀ ψ ∈ P∗}.
Let ϕ1, ϕ2, and ϕ3 denote eigenvectors of P.
Therefore, we have A0ϕ1 = iwϕ1, (A0 − iwIn)ϕ2 = ϕ1, and A0ϕ3 = 0.

By employing the definition of A0, we derive the following expressions:
{

ϕ̇1(θ) = iwϕ1(θ), −τ ≤ θ < 0,

ϕ̇1(0) = L0ϕ1(θ), θ = 0,

{

ϕ̇2(θ) = iwϕ2(θ) + ϕ1(θ), −τ ≤ θ < 0,

iwϕ2(0) + ϕ1(0) = L0ϕ2(θ), θ = 0

and
{

ϕ̇3(θ) = 0, −τ ≤ θ < 0,

ϕ̇3(0) = L0ϕ3(θ), θ = 0.

Hence, the eigenvectors ϕ1, ϕ2, and ϕ3 can be written as follows: ϕ1(θ) = eiwθϕ0
1, ϕ2(θ) =

eiwθ(ϕ0
2 + θϕ0

1), and ϕ3(θ) = ϕ0
3, where ϕ0

1, ϕ0
2 ∈ Cn \ {0} and ϕ0

3 ∈ Rn \ {0}. These vectors
satisfy the following equations:

iwϕ0
1 = (A + e−iwτB)ϕ0

1, (τe−iwτB + In)ϕ
0
1 = (A + e−iwτB − iwIn)ϕ

0
2 and (A + B)ϕ0

3 = 0.

Consequently, we have P = span{ϕ1, ϕ2, ϕ̄1, ϕ̄2, ϕ3}.
Now, let ψ1, ψ2, and ψ3 denote the eigenvectors of A∗

0 .
Hence, we have A∗

0ψ2 = −iwψ2, (A∗
0 + iwIn)ψ1 = ψ2 , and A∗

0ψ3 = 0.
Accordingly, the eigenvectors ψ1, ψ2, and ψ3 can be represented as follows:
ψ2(s) = e−iwsψ0

2, ψ1(s) = e−iws(ψ0
1 − sψ0

2) and ψ3(s) = ψ0
3, where ψ0

1, ψ0
2 ∈ Cn∗ \ {0} and

ψ0
3 ∈ Rn∗ \ {0} satisfying the following equations:

ψ0
2(A + eiwτB) = −iwψ0

2, ψ0
2(τeiwτB + In) = ψ0

1(A + eiwτB + iwIn) and ψ0
3(A + B) = 0.

So, P∗ = span{ψ̄1, ψ̄2, ψ1, ψ2, ψ3}.
It is crucial to emphasize that the eigenvectors of P and P∗ must fulfill the following

conditions:
⟨ψ̄1, ϕ1⟩ = ⟨ψ1, ϕ̄1⟩ = ⟨ψ̄2, ϕ2⟩ = ⟨ψ2, ϕ̄2⟩ = ⟨ϕ3, ψ3⟩ = 1 (2.3)

and

⟨ψ1, ϕ1⟩ = ⟨ψ1, ϕ2⟩ = ⟨ψ1, ϕ̄2⟩ = ⟨ψ1, ϕ3⟩ = 0, (2.4)

⟨ψ̄1, ϕ̄1⟩ = ⟨ψ̄1, ϕ2⟩ = ⟨ψ̄1, ϕ̄2⟩ = ⟨ψ̄1, ϕ3⟩ = 0, (2.5)

⟨ψ2, ϕ1⟩ = ⟨ψ2, ϕ̄1⟩ = ⟨ψ2, ϕ2⟩ = ⟨ψ2, ϕ3⟩ = 0, (2.6)

⟨ψ̄2, ϕ1⟩ = ⟨ψ̄2, ϕ̄1⟩ = ⟨ψ̄2, ϕ̄2⟩ = ⟨ψ̄2, ϕ3⟩ = 0, (2.7)

⟨ψ3, ϕ1⟩ = ⟨ψ3, ϕ̄1⟩ = ⟨ψ3, ϕ2⟩ = ⟨ψ3, ϕ̄2⟩ = 0. (2.8)

Therefore, we can appropriately select values for ϕ0
1, ϕ0

2, ϕ̄0
1, ϕ̄0

2, ϕ0
3, ψ̄0

1, ψ̄0
2, ψ0

1, ψ0
2, and ψ0

3
to ensure the satisfaction of equations (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8).

Let Φ = (ϕ1, ϕ2, ϕ̄1, ϕ̄2, ϕ3) and Ψ = (ψ̄1, ψ̄2, ψ1, ψ2, ψ3)T, then Φ̇ = ΦJ and Ψ̇ = −JΨ, where

J =















iw 1 0 0 0
0 iw 0 0 0
0 0 −iw 1 0
0 0 0 −iw 0
0 0 0 0 0















.
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3 Calculation of the normal form

In this section, our focus is on calculating the normal form up to the third order associated
with the zero-double-Hopf singularity. Our approach is based on the methodology introduced
by Faria and Magalhães [5, 6].

We assume that hypotheses (A1), (A2), and (A3) are satisfied.
Let BC the enlarged space of C, which is defined as follows:

BC = {ϕ : [−τ, 0] → Rn : ϕ uniformly continuous on [−τ, 0)

and with a possible jump discontinuity at 0}.

An element ψ ∈ BC can be expressed as: ψ = ϕ + X0v, with ϕ ∈ C, v ∈ Rn and

X0(θ) =

{

0, −τ ≤ θ < 0,

In, θ = 0.

Let π be the projection defined as

π : BC → P

ϕ + X0v 7→ Φ[< Ψ, ϕ > +Ψ(0)v].

The differential system (2.1) can be reformulated as


















ẋ = Jx + ∑
j≥2

1
j!

f 1
j (x, y, ϵ)

ẏ = AQ1 y + ∑
j≥2

1
j!

f 2
j (x, y, ϵ)

(3.1)

where f 1
j (x, y, ϵ) = Ψ(0)F̂j(Φx + y, ϵ) and f 2

j (x, y, ϵ) = (I − π)F̂j(Φx + y, ϵ), F̂(Φx + y, ϵ) =

∑j≥2
1
j! F̂j(Φx + y, ϵ) and zt = Φx + y, with x ∈ C5 and y ∈ Q1 = {ϕ ∈ Q : ϕ̇ ∈ C}, and

AQ1 ⊂ ker(π), AQ1 ϕ = ϕ̇ + X0(L(0)ϕ − ϕ̇(0)).
The normal form associated with P of the system (3.1) can be represented as follows on its

center manifold:

ẋ = Jx +
1
2

g1
2(x, 0, ϵ) +

1
6

g1
3(x, 0, ϵ) + h.o.t., (3.2)

where g1
2 and g1

3 are the second and third order terms in (x, ϵ), respectively.
Let Mj be the operator defined in V8

j (C
5 × ker π) with the range in the same space by

Mj( f , g) = (M1
j f , M2

j g), with Vj(Y) is the the space of homogeneous polynomials with degree
j, for a normed space Y, where

M1
j f = M1

j















f1

f2

f3

f4

f5















= Dx f (x, ϵ)Jx − J f (x, ϵ),

M2
j g = M2

j g(x, ϵ) = Dxg(x, ϵ)Jx −AQ1 g(x, ϵ),
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with f (x, ϵ) ∈ V8
j (C

5) and (x, ϵ) ∈ V8
j (ker π).

By using the above notation, g1
2(x, 0, ϵ) and g1

3(x, 0, ϵ) can be written as follows:

g1
2(x, 0, ϵ) = Projker(M1

2)
f 1
2 (x, 0, ϵ) = ProjS1 f 1

2 (x, 0, ϵ) +O(|ϵ|2)

g1
3(x, 0, ϵ) = Projker(M1

3)
f̃ 1
3 (x, 0, ϵ) = ProjS2 f̃ 1

3 (x, 0, ϵ) +O(|ϵ|2x),

where

f̃ 1
3 (x, 0, ϵ) = f 1

3 (x, 0, ϵ) +
3
2
[(Dx f 1

2 )(x, 0, ϵ)U1
2(x, ϵ) + (Dy f 1

2 )(x, 0, ϵ)U2
2(x, ϵ)]

U1
2 and U2

2 are defined by:

U1
2(x, ϵ) = (M1

2)
−1 ProjIm(M1

2)
f 1
2 (x, 0, ϵ) and (M2

2U2
2(x, ϵ)) = f 2

2 (x, 0, ϵ).

ker(M1
2) is spanned by

ϵjx2e1, x2x5e1, ϵjx4e3, x4x5e3, ϵ1ϵ2e5, ϵ1ϵ3e5, ϵ2ϵ3e5, ϵ2
j e5, ϵjx5e5, x2x4e5, x2

5e5,

for j = 1, 2, 3, with (e1, e2, e3, e4, e5)T being the canonical basis of R5.
ker(M1

3) is spanned by:

ϵ2
j x2e1, x2

2x4e1, x2
5x2e1, ϵjx2x5e1, ϵ1ϵ2x2e1, ϵ1ϵ3x2e1, ϵ2ϵ3x2e1,

ϵ2
j x4e3, x2

4x2e3, x2
5x4e3, ϵjx4x5e3, ϵ1ϵ2x4e3, ϵ1ϵ3x4e3, ϵ2ϵ3x4e3,

ϵ3
j e5, ϵ2

1ϵ2e5, ϵ2
1ϵ3e5, ϵ2

2ϵ1e5, ϵ2
2ϵ3e5, ϵ2

3ϵ1e5, ϵ2
3ϵ1e5, ϵ2

j x5e5, x3
5e5,

ϵjx
2
5e5, ϵjx2x4e5, ϵ1ϵ2x5e5, ϵ1ϵ3x5e5, ϵ2ϵ3x5e5, x2x4x5e5,

for j = 1, 2, 3, with (e1, e2, e3, e4, e5)T being the canonical basis of R5.
Consequently, S1 and S2 are spanned respectively by

ϵjx2e1, x2x5e1, ϵjx4e3, x4x5e3, ϵjx5e5, x2x4e5, x2
5e5

and

x2
2x4e1, x2

5x2e1, x2
4x2e3, x2

5x4e3, x3
5e5x2x4x5e5, for j = 1, 2, 3.

Write

1
2

F̂2(zt, ϵ) = A1ϵ1z(t) + A2ϵ2z(t) + A3ϵ3z(t) + B1ϵ1z(t − τ) + B2ϵ2z(t − τ) + B3ϵ3z(t − τ)

+
n

∑
i=1

Eizi(t)z(t − τ) +
n

∑
i=1

Fizi(t)z(t) +
n

∑
i=1

Kizi(t − τ)z(t − τ),

with A(ϵ) = A + ϵ1A1 + ϵ2 A2 + ϵ3 A3 + O(|ϵ|2) and B(ϵ) = B + ϵ1B1 + ϵ2B2 + ϵ3B3 + O(|ϵ|2).
So

1
2

F̂2(Φx, ϵ) = H1ϵ1x1 + H2ϵ2x1 + H3ϵ3x1 + H4ϵ1x2 + H5ϵ2x2 + H6ϵ3x2 + H7ϵ1x3 + H8ϵ2x3

+ H9ϵ3x3 + H10ϵ1x4 + H11ϵ2x4 + H12ϵ3x4 + H13ϵ1x5 + H14ϵ2x5

+ H15ϵ3x5 + H16x2
1 + H17x2

2 + H18x2
3 + H19x2

4 + H20x2
5 + H21x1x2 + H22x1x3

+ H23x1x4 + H24x1x5 + H25x2x3 + H26x2x4 + H27x2x5 + H28x3x4 + H29x3x5

+ H30x4x5 +O(|ϵ|2|x|),
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and

1
2

F̂2(Φx + y, ϵ) =
1
2

F̂2(Φx, ϵ) +
5

∑
j=1

n

∑
k=1

(Rjkxjyk(0) + Sjkxjyk(−τ))

+
n

∑
j=1

(Tjy
2
j (0) + Qjy

2
j (−τ)) +

n

∑
j,k=1

(Pjkyj(0)yk(−τ)) +O(|ϵ|2|x|), (3.3)

with A1, A2, A3, B1, B2, B3, Ej, Fj, Kj, Rjk, Sjk, Pjk, Tj and Qj, for 1 ≤ j, k ≤ n are coefficient
matrix. The values of Hi for 1 ≤ i ≤ 30 are provided in the appendix.

Write

1
6

F̂3(zt, 0) =
n

∑
i,j=1

Ω1
i,jzi(t)zj(t)z(t) +

n

∑
i,j=1

Ω2
i,jzi(t)zj(t − τ)z(t − τ)

+
n

∑
i,j=1

Ω3
i,jzi(t − τ)zj(t)z(t) +

n

∑
i,j=1

Ω4
i,jzi(t − τ)zj(t − τ)z(t − τ),

Ω1
i,j, Ω2

i,j, Ω3
i,j and Ω4

i,j, for 1 ≤ i, j ≤ n, are coefficient matrices. So

1
6

F̂3(Φx, 0) = G1x3
1 + G2x3

2 + G3x3
3 + G4x3

4 + G5x3
5 + G6x2

1x2 + G7x2
1x3 + G8x2

1x4 + G9x2
1x5

+ G10x2
2x1 + G11x2

2x3 + G12x2
2x4 + G13x2

2x5 + G14x2
3x1 + G15x2

3x2 + G16x2
3x4

+ G17x2
3x5 + G18x2

4x1 + G19x2
4x2 + G20x2

4x3 + G21x2
4x5 + G22x2

5x1 + G23x2
5x2

+ G24x2
5x3 + G25x2

5x4 + G26x1x2x3 + G27x1x2x4 + G28x1x2x5 + G29x1x3x4

+ G30x1x3x5 + G31x1x4x5 + G32x2x3x4 + G33x2x3x5 + G34x2x4x5

+ G35x3x4x5 +O(|ϵ|2|x|).

The values of Gi for i = 1, 2, . . . , 35 are provided in the appendix.
We have:

1
2

g1
2(x, 0, ϵ) =

1
2

ProjS1 f 1
2 (x, 0, ϵ) =

1
2

ProjS1 Ψ(0)F̂2(Φx, ϵ) =















α1x2 + α2x2x5

0
α3x4 + α4x4x5

0
α6x5 + α7x2x4 + α8x2

5















,

where α1 = ψ̄0
1(H4ϵ1 + H5ϵ2 + H6ϵ3), α2 = ψ̄0

1 H27, α3 = ψ0
1(H10ϵ1 + H11ϵ2 + H12ϵ3), α4 =

ψ0
1 H30, α5 = ψ0

3(H13ϵ1 + H14ϵ2 + H15ϵ3), α6 = ψ0
3 H26 and α7 = ψ0

3 H20.

Remark 3.1. We remark that H4 = H̄10, H5 = H̄11, H6 = H̄12, H27 = H̄30. So, α1 = ᾱ3 and
α2 = ᾱ4.

Therefore,

1
2

g1
2(x, 0, ϵ) =















α1x2 + α2x2x5

0
ᾱ1x4 + ᾱ2x4x5

0
α6x5 + α7x2x4 + α8x2

5















.
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Now, we will calculate the term g1
3(x, 0, ϵ).

1
6

g1
3(x, 0, ϵ) =

1
6

Projker(M1
3)

f̃ 1
3 (x, 0, ϵ)

=
1
6

ProjS2 f 1
3 (x, 0, 0) +

1
4

ProjS2 [(Dx f 1
2 )(x, 0, 0)U1

2(x, 0)

+ (Dy f 1
2 )(x, 0, 0)U2

2(x, 0)] + h.o.t.

First,

1
6

ProjS2 f 1
3 (x, 0, 0) =

1
6

ProjS2 Ψ(0)F̂3(Φx, 0) =















β1x2
2x4 + β2x2x2

5
0

β3x2
4x2 + β4x4x2

5
0

β5x3
5 + β6x2x4x5















,

where β1 = ψ̄0
1G12, β2 = ψ̄0

1G23, β3 = ψ0
1G19, β4 = ψ0

1G25, β5 = ψ0
3G5 and β6 = ψ0

3G34.
Since f2(x, 0, 0) = Ψ(0)F̂2(Φx, 0), then:

U1
2(x, 0) = U1

2(x, ϵ) |ϵ=0= (M1
2)

−1 ProjIm(M1
2)

f 1
2 (x, 0, 0).

Therefore,

1
4

ProjS2 [(Dx f 1
2 )(x, 0, 0)U1

2(x, 0)] =















γ1x2
2x4 + γ2x2x2

5
0

γ3x2
4x2 + γ4x4x2

5
0

γ5x3
5 + γ6x2x4x5















,

where

γ1 =
1
2

ψ̄0
1 H21

[

−ψ̄0
1

(

2
(iw)3 H22 +

1
(iw)2 H23 +

1
(iw)2 H25 +

1
iw

H26

)

+ψ̄0
2

(

5
(iw)4 H22 +

2
(iw)3 H23 +

1
(iw)3 H25 +

1
(iw)2 H26

)]

+
1
2

ψ̄0
1 H23

[

ψ̄0
1

(

2
(iw)3 H16 +

1
iw

H17 −
1

(iw)2 H21

)

+ ψ̄0
2

(

4
(iw)4 H16 +

1
(iw)2 H17 −

1
(iw)3 H21

) ]

− ψ̄0
1 H17ψ̄0

2

(

1
(iw)3 H22 +

1
(iw)2 H23 +

1
iw

H26

)

+
1

2iw
ψ̄0

1 H26ψ̄0
2 H17

+
1
2

ψ̄0
1 H25

[

ψ0
1

(

2
(iw)3 H22 −

1
(iw)2 H23 −

1
(iw)2 H25 +

1
iw

H26

)

+ ψ0
2

(

4
(iw)4 H22 −

2
(iw)3 H23 −

1
(iw)3 H25 +

1
(iw)2 H26

)]

+
1
2

ψ̄0
1 H28

[

ψ0
1

(

2
(iw)3 H16 +

1
iw

H17 −
1

(iw)2 H21

)

+ ψ0
2

(

6
(iw)4 H16 +

1
(3iw)2 H17 −

2
(3iw)3 H21

)]

+ ψ̄0
1 H19ψ0

2

(

2
(3iw)3 H16 +

1
3iw

H17 −
2

(3iw)2 H21

)
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+
1
2

ψ̄0
1 H26ψ0

2

(

1
(iw)3 H22 −

1
(iw)2 H23 −

1
(iw)2 H25 +

1
iw

H26

)

+
1
2

ψ̄0
1 H30ψ0

3

(

2
(2iw)3 H16 +

1
2iw

H17 −
1

(2iw)2 H21

)

,

γ2 =
1
2

ψ̄0
1 H21

(

−
1

iw
ψ̄0

1 +
1

(iw)2 ψ̄0
2

)

H20 − ψ̄0
1 H17ψ̄0

2 H20 +
1
2

ψ̄0
1 H25

(

1
iw

ψ0
1 +

1
(iw)2 ψ0

2

)

H20

+ ψ̄0
1 H29

[

ψ0
1

(

1
2iw

H27 −
1

(2iw)2 H24

)

+ ψ0
2

(

1
(2iw)2 H27−

2
(2iw)3 H24

)]

+
1

2iw
ψ̄0

1 H26ψ0
2 H20

+
1
2

ψ̄0
1 H30ψ0

2

(

1
2iw

H27 −
1

(2iw)2 H24

)

+ ψ̄0
1 H20ψ0

3

(

1
iw

H27 −
1

(iw)2 H24

)

γ3 = γ̄1, γ4 = γ̄2

γ5 =
1
2

ψ0
3 H24

(

−
1

iw
ψ̄0

1 +
1

(iw)2 ψ̄0
2

)

H20 −
1

2iw
ψ0

3 H27ψ̄0
2 H20

+
1
2

ψ0
3 H29

(

1
iw

ψ0
1 +

1
(iw)2 ψ0

2

)

H20 +
1

2iw
ψ0

3 H30ψ0
2 H20

γ6 =
1
2

ψ0
3 H21

[

− ψ̄0
1

(

1
iw

1
2iw

H29 +
1

2iw
H30

)

+ ψ̄0
2

(

1
iw

1
(2iw)2 H29 +

1
(2iw)2 H30

)]

+
1
2

ψ0
3 H24

[

− ψ̄0
1

(

2
(iw)3 H22 +

1
(iw)2 H23 +

1
(iw)2 H25 +

1
iw

H26

)

+ ψ̄0
2

(

5
(iw)4 H22 +

2
(iw)3 H23 +

1
(iw)3 H25 +

1
(iw)2 H26

)]

−
1

2iw
ψ0

3 H17ψ̄0
2 H30 −

1
2

ψ0
3 H27ψ̄0

2

(

1
(iw)3 H22 +

1
(iw)2 H23 +

1
iw

H26

)

+
1
2

ψ0
3 H28

[

ψ0
1

(

1
2iw

H27 −
1

(2iw)2 H24
)

+ ψ0
2

(

1
(2iw)2 H27 −

2
(2iw)3 H24

)]

+
1
2

ψ0
3 H29

[

ψ0
1

(

2
(iw)3 H22 −

1
(iw)2 H23 −

1
(iw)2 H25 +

1
iw

H26

)

+ ψ0
2

(

4
(iw)4 H22 −

2
(iw)3 H23 −

2
(iw)3 H25 +

1
(iw)2 H26

)]

+ ψ0
3 H19ψ0

2

(

1
2iw

H27 −
1

(2iw)2 H24

)

+
1
2

ψ0
3 H30ψ0

2

(

1
(iw)3 H22 −

1
(iw)2 H23 −

1
(iw)2 H25 +

1
iw

H26

)

To compute ProjS2 Dy f 1
2 (x, 0, ϵ)U2

2(x, 0), we define h = h(x)(θ) = U2
2 and write

h(θ) =











h(1)(θ)

h(2)(θ)
...

h(n)(θ)











= h20000x2
1 + h02000x2

2 + h00200x2
3 + h00020x2

4 + h00002x2
5 + h11000x1x2

+ h10100x1x3 + h10010x1x4 + h10001x1x5 + h01100x2x3 + h01010x2x4

+ h01001x2x5 + h00110x3x4 + h00101x3x5 + h00011x4x5
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=













h
(1)
20000x2

1 + h
(1)
02000x2

2 + h
(1)
00200x2

3 + · · ·+ h
(1)
00011x4x5

h
(2)
20000x2

1 + h
(2)
02000x2

2 + h
(2)
00200x2

3 + · · ·+ h
(2)
00011x4x5

...

h
(n)
20000x2

1 + h
(n)
02000x2

2 + h
(n)
00200x2

3 + · · ·+ h
(n)
00011x4x5













where h20000,h02000, h00200, h00020, h00002, h11000, h10100, h10010, h10001, h01100, h01010, h01001, h00110,
h00101, h00011 ∈ Q1.

The coefficients of h can be determined by solving the equation (M2
2h)(x) = f 2

2 (x, 0, 0),
which can also be written as:

DxhJx −AQ1(h) = (I − π)F̂2(Φx, 0).

Next, by utilizing the definition of AQ1 and the projection π, we derive the following system
of equations:

{

ḣ − DxhJx = Φ(θ)Ψ(0)F̂2(Φx, 0),

ḣ(0)− Lh = F̂2(Φx, 0).
(3.4)

Here, ḣ denotes the derivative of h with respect to θ. We have:

F̂2(Φx, 0) = 2(H16x2
1 + H17x2

2 + H18x2
3 + H19x2

4 + H20x2
5 + H21x1x2

+ H22x1x3 + H23x1x4 + H24x1x5 + H25x2x3 + H26x2x4

+ H27x2x5 + H28x3x4 + H29x3x5 + H30x4x5).

By comparing the coefficients of each monomial, we establish the following relationships:
h20000 = h̄00200, h02000 = h̄00020, h00110 = h̄11000, h00101 = h̄10001, h01001 = h̄00011 and h10010 = h̄01100.
By substituting (3.4) into the expressions, we find that the coefficients h20000, h00200, h10100,
h10010, h10001, h00101, h00002, h11000 and h00110 satisfy the following equations:

{

ḣ20000 − 2iwh20000 = 2Φ(θ)Ψ(0)H16,

ḣ20000(0)− L(h20000) = 2H16,
(3.5)

{

ḣ02000 − (h11000 + 2iwh02000) = 2Φ(θ)Ψ(0)H17,

ḣ02000(0)− L(h02000) = 2H17,
(3.6)

{

ḣ00002 = 2Φ(θ)Ψ(0)H20,

ḣ00002(0)− L(h00002) = 2H20,
(3.7)

{

ḣ11000 − 2(h20000 + iwh11000) = 2Φ(θ)Ψ(0)H21,

ḣ11000(0)− L(h11000) = 2H21,
(3.8)

{

ḣ10100 = 2Φ(θ)Ψ(0)H22,

ḣ10100(0)− L(h10100) = 2H22,
(3.9)

{

ḣ10010 − h10100 = 2Φ(θ)Ψ(0)H23,

ḣ10010(0)− L(h10010) = 2H23,
(3.10)

{

ḣ10001 − iwh10001 = 2Φ(θ)Ψ(0)H24,

ḣ10001(0)− L(h10001) = 2H24,
(3.11)
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{

ḣ01010 − (h10010 + h01100) = 2Φ(θ)Ψ(0)H26,

ḣ00101(0)− L(h00101) = 2H26,
(3.12)

{

ḣ01001 − (h10001 + iwh01001) = 2Φ(θ)Ψ(0)H27,

ḣ00110(0)− L(h00110) = 2H27.
(3.13)

By utilizing equations (3.3), we deduce that

1
4

ProjS2 Dy f 1
2 |y=0,ϵ=0 U2

2 =















σ1x2
2x4 + σ2x2x2

5,
0

σ3x2
4x2 + σ4x4x2

5,
0

σ5x3
5 + σ6x2x4x5















where

σ1 =
1
2

ψ̄1(0)
n

∑
j=1

(R2jh
(j)
01010(0) + S2jh

(j)
01010(−τ) + R4jh

(j)
02000(0) + S4jh

(j)
02000(−τ)),

σ2 =
1
2

ψ̄1(0)
n

∑
j=1

(R2jh
(j)
00002(0) + S2jh

(j)
00002(−τ) + R5jh

(j)
01001(0) + S5jh

(j)
01001(−τ)),

σ3 =
1
2

ψ1(0)
n

∑
j=1

(R2jh
(j)
00020(0) + S2jh

(j)
00020(−τ) + R4jh

(j)
01010(0) + S4jh

(j)
01010(−τ)),

σ4 =
1
2

ψ1(0)
n

∑
j=1

(R4jh
(j)
00002(0) + S4jh

(j)
00002(−τ) + R5jh

(j)
00011(0) + S5jh

(j)
00011(−τ)),

σ5 =
1
2

ψ3(0)
n

∑
j=1

(R5jh
(j)
00002(0) + S5jh

(j)
00002(−τ)),

σ6 =
1
2

ψ3(0)
n

∑
j=1

(R2jh
(j)
00011(0) + S2jh

(j)
00011(−τ) + R5jh

(j)
01010(0) + S5jh

(j)
01010(−τ)

+ R4jh
(j)
01001(0) + S4jh

(j)
01001(−τ)).

Remark 3.2. σ1 = σ̄3 and σ2 = σ̄4.

We can explicitly determine the expressions of h20000, h02000, h00002, h11000, h10100, h10010,
h10001, h01010 and h01001 in the same way detailed in [1, 11].

By consolidating all the obtained results, we reach the following conclusion:

1
6

g1
3(x, 0, ϵ) =















(β1 + γ1 + σ1)x2
2x4 + (β2 + γ2 + σ2)x2x2

5
0

(β3 + γ3 + σ3)x2
4x2 + (β4 + γ4 + σ4)x4x2

5
0

(β5 + γ5 + σ5)x3
5 + (β6 + γ6 + σ6)x2x4x5















.

Consequently, the system described in equation (3.2) can be reformulated as:


































ẋ1 = iwx1 + x2 + α1x2 + α2x2x5 + (β1 + γ1 + σ1)x2
2x4 + (β2 + γ2 + σ2)x2x2

5,

ẋ2 = iwx2,

ẋ3 = −iwx3 + x4 + α3x4 + α4x4x5 + (β3 + γ3 + σ3)x2
4x2 + (β4 + γ4 + σ4)x4x2

5,

ẋ4 = −iwx4,

ẋ5 = α6x5 + α7x2x4 + α8x2
5 + (β5 + γ5 + σ5)x3

5 + (β6 + γ6 + σ6)x2x4x5.

(3.14)
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Given that x1 = x̄3 and x2 = x̄4, the system (3.14) can be expressed equivalently as:


































ẋ1 = iwx1 + x2 + α1x2 + α2x2x5 + (β1 + γ1 + σ1)x2
2x4 + (β2 + γ2 + σ2)x2x2

5

ẋ2 = iwx2,

ẋ3 = −iwx3 + x4 + ᾱ1x4 + ᾱ2x4x5 + (β̄1 + γ̄1 + σ̄1)x2
4x2 + (β̄2 + γ̄2 + σ̄2)x4x2

5,

ẋ4 = −iwx4,

ẋ5 = α6x5 + α7x2x4 + α8x2
5 + (β5 + γ5 + σ5)x3

5 + (β6 + γ6 + σ6)x2x4x5.

(3.15)

Theorem 3.3. Assuming the validity of assumptions (A1), (A2), and (A3), the retarded differential

system (1.1) can be equivalently represented by the reduced system (3.15).

4 Conclusion

Despite the extensive literature on various types of singularities in retarded differential equa-
tions (RDDs), such as the Bogdanov–Takens singularity, Hopf singularity, zero-Hopf singu-
larity, saddle-node singularity, and double-Hopf singularity, the zero-double-Hopf singularity
in RDDs remains relatively unexplored. This paper addresses this research gap by providing
explicit conditions for the occurrence of the zero-double-Hopf singularity with 1 : 1 resonance
in general RDDs. By employing the normal form theory proposed by Faria and Magalhães,
we transform the considered RDDs into a system of three ordinary differential equations. De-
tailed calculations and formulas are presented, facilitating their implementation in symbolic
computation systems.

However, an important question arises: How can we analyze the bifurcation diagram
associated with this singularity to examine and understand the dynamics of various systems
modeled by delay differential equations? Answering this question will be the focus of our
future research endeavors.

A Appendix

In this part, we will define the notations:

H1 = A1ϕ1(0) + B1ϕ1(−τ), H2 = A2ϕ1(0) + B2ϕ1(−τ), H3 = A3ϕ1(0) + B3ϕ1(−τ),

H4 = A1ϕ2(0) + B1ϕ2(−τ), H5 = A2ϕ2(0) + B2ϕ2(−τ), H6 = A3ϕ2(0) + B3ϕ2(−τ),

H7 = A1ϕ̄1(0) + B1ϕ̄1(−τ), H8 = A2ϕ̄1(0) + B2ϕ̄1(−τ), H9 = A3ϕ̄1(0) + B3ϕ̄1(−τ),

H10 = A1ϕ̄2(0) + B1ϕ̄2(−τ), H11 = A2ϕ̄2(0) + B2ϕ̄2(−τ), H12 = A3ϕ̄2(0) + B3ϕ̄2(−τ),

H13 = A1ϕ3(0) + B1ϕ3(−τ), H14 = A2ϕ3(0) + B2ϕ3(−τ), H15 = A3ϕ3(0) + B3ϕ3(−τ),

H16 =
n

∑
i=1

(Eiϕ1i(0)ϕ1(−τ) + Fiϕ1i(0)ϕ1(0) + Kiϕ1i(−τ)ϕ1(−τ)),

H17 =
n

∑
i=1

(Eiϕ2i(0)ϕ2(−τ) + Fiϕ2i(0)ϕ2(0) + Kiϕ2i(−τ)ϕ2(−τ)),

H18 =
n

∑
i=1

(Eiϕ̄1i(0)ϕ̄1(−τ) + Fiϕ̄1i(0)ϕ̄1(0) + Kiϕ̄1i(−τ)ϕ̄1(−τ)),

H19 =
n

∑
i=1

(Eiϕ̄2i(0)ϕ̄2(−τ) + Fiϕ̄2i(0)ϕ̄2(0) + Kiϕ̄2i(−τ)ϕ̄2(−τ)),
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H20 =
n

∑
i=1

(Eiϕ3i(0)ϕ3(−τ) + Fiϕ3i(0)ϕ3(0) + Kiϕ3i(−τ)ϕ3(−τ)),

H21 =
n

∑
i=1

(

Ei(ϕ1i(0)ϕ2(−τ) + ϕ2i(0)ϕ1(−τ)) + Fi(ϕ1i(0)ϕ2(0) + ϕ2i(0)ϕ1(0))

+ Ki(ϕ1i(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ1(−τ))
)

,

H22 =
n

∑
i=1

(

Ei(ϕ1i(0)ϕ̄1(−τ) + ϕ̄1i(0)ϕ1(−τ)) + Fi(ϕ1i(0)ϕ̄1(0)

+ ϕ̄1i(0)ϕ1(0)) + Ki(ϕ1i(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ1(−τ))
)

,

H23 =
n

∑
i=1

(

Ei(ϕ̄2i(0)ϕ1(−τ) + ϕ1i(0)ϕ̄2(−τ)) + Fi(ϕ̄2i(0)ϕ1(0) + ϕ1i(0)ϕ̄2(0))

+ Ki(ϕ̄2i(−τ)ϕ1(−τ) + ϕ1i(−τ)ϕ̄2(−τ))
)

,

H24 =
n

∑
i=1

(

Ei(ϕ1i(0)ϕ3(−τ) + ϕ3i(0)ϕ1(−τ)) + Fi(ϕ1i(0)ϕ3(0) + ϕ3i(0)ϕ1(0))

+ Ki(ϕ1i(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ1(−τ))
)

,

H25 =
n

∑
i=1

(

Ei(ϕ̄1i(0)ϕ2(−τ) + ϕ2i(0)ϕ̄1(−τ)) + Fi(ϕ̄1i(0)ϕ2(0) + ϕ2i(0)ϕ̄1(0))

+ Ki(ϕ̄1i(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ̄1(−τ))
)

,

H26 =
n

∑
i=1

(

Ei(ϕ2i(0)ϕ̄2(−τ) + ϕ̄2i(0)ϕ2(−τ)) + Fi(ϕ2i(0)ϕ̄2(0) + ϕ̄2i(0)ϕ2(0))

+ Ki(ϕ2i(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ2(−τ))
)

,

H27 =
n

∑
i=1

(

Ei(ϕ2i(0)ϕ3(−τ) + ϕ3i(0)ϕ2(−τ)) + Fi(ϕ2i(0)ϕ3(0) + ϕ3i(0)ϕ2(0))

+ Ki(ϕ2i(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ2(−τ))
)

,

H28 =
n

∑
i=1

(

Ei(ϕ̄1i(0)ϕ̄2(−τ) + ϕ̄2i(0)ϕ̄1(−τ)) + Fi(ϕ̄1i(0)ϕ̄2(0) + ϕ̄2i(0)ϕ̄1(0))

+ Ki(ϕ̄1i(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ̄1(−τ))
)

,

H29 =
n

∑
i=1

(

Ei(ϕ̄1i(0)ϕ3(−τ) + ϕ3i(0)ϕ̄1(−τ)) + Fi(ϕ̄1i(0)ϕ3(0) + ϕ3i(0)ϕ̄1(0))

+ Ki(ϕ̄1i(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ̄1(−τ))
)

,

H30 =
n

∑
i=1

(

Ei(ϕ̄2i(0)ϕ3(−τ) + ϕ3i(0)ϕ̄2(−τ)) + Fi(ϕ̄2i(0)ϕ3(0) + ϕ3i(0)ϕ̄2(0))

+ Ki(ϕ̄2i(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ̄2(−τ))
)

.

G1 =
n

∑
i,j=1

[

Ω1
i,jϕ1i(0)ϕ1j(0)ϕ1(0) + Ω2

i,jϕ1i(0)ϕ1j(−τ)ϕ1(−τ) + Ω3
i,jϕ1i(−τ)ϕ1j(0)ϕ1(0)

+ Ω4
i,jϕ1i(−τ)ϕ1j(−τ)ϕ1(−τ)

]

,

G2 =
n

∑
i,j=1

[

Ω1
i,jϕ2i(0)ϕ2j(0)ϕ2(0) + Ω2

i,jϕ2i(0)ϕ2j(−τ)ϕ2(−τ) + Ω3
i,jϕ2i(−τ)ϕ2j(0)ϕ2(0)

+ Ω4
i,jϕ2i(−τ)ϕ2j(−τ)ϕ2(−τ)

]

,
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G3 =
n

∑
i,j=1

[

Ω1
i,jϕ̄1i(0)ϕ̄1j(0)ϕ̄1(0) + Ω2

i,jϕ̄1i(0)ϕ̄1j(−τ)ϕ̄1(−τ) + Ω3
i,jϕ̄1i(−τ)ϕ̄1j(0)ϕ̄1(0)

+ Ω4
i,jϕ̄1i(−τ)ϕ̄1j(−τ)ϕ̄1(−τ)

]

,

G4 =
n

∑
i,j=1

[

Ω1
i,jϕ̄2i(0)ϕ̄2j(0)ϕ̄2(0) + Ω2

i,jϕ̄2i(0)ϕ̄2j(−τ)ϕ̄2(−τ) + Ω3
i,jϕ̄2i(−τ)ϕ̄2j(0)ϕ̄2(0)

+ Ω4
i,jϕ̄2i(−τ)ϕ̄2j(−τ)ϕ̄2(−τ)

]

,

G5 =
n

∑
i,j=1

[

Ω1
i,jϕ3i(0)ϕ3j(0)ϕ3(0) + Ω2

i,jϕ3i(0)ϕ3j(−τ)ϕ3(−τ) + Ω3
i,jϕ3i(−τ)ϕ3j(0)ϕ3(0)

+ Ω4
i,jϕ3i(−τ)ϕ3j(−τ)ϕ3(−τ)

]

,

G6 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ1i(0)ϕ1j(0)ϕ2(0) + ϕ1i(0)ϕ2j(0)ϕ1(0) + ϕ2i(0)ϕ1j(0)ϕ1(0)
)

+ Ω2
i,j
(

ϕ1i(0)ϕ1j(−τ)ϕ2(−τ) + ϕ1i(0)ϕ2j(−τ)ϕ1(−τ) + ϕ2i(0)ϕ1j(−τ)ϕ1(−τ)
)

+ Ω3
i,j

(

ϕ1i(−τ)ϕ1j(0)ϕ2(0) + ϕ1i(−τ)ϕ2j(0)ϕ1(0) + ϕ2i(−τ)ϕ1j(0)ϕ1(0)
)

+ Ω4
i,j
(

ϕ1i(−τ)ϕ1j(−τ)ϕ2(−τ) + ϕ1i(−τ)ϕ2j(−τ)ϕ1(−τ) + ϕ2i(−τ)ϕ1j(−τ)ϕ1(−τ)
)]

,

G7 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ1i(0)ϕ1j(0)ϕ̄1(0) + ϕ1i(0)ϕ̄1j(0)ϕ1(0) + ϕ̄1i(0)ϕ1j(0)ϕ1(0)
)

+ Ω2
i,j
(

ϕ1i(0)ϕ1j(−τ)ϕ̄1(−τ) + ϕ1i(0)ϕ̄1j(−τ)ϕ1(−τ) + ϕ̄1i(0)ϕ1j(−τ)ϕ1(−τ)
)

+ Ω3
i,j

(

ϕ1i(−τ)ϕ1j(0)ϕ̄1(0) + ϕ1i(−τ)ϕ̄1j(0)ϕ1(0) + ϕ̄1i(−τ)ϕ1j(0)ϕ1(0)
)

+ Ω4
i,j
(

ϕ1i(−τ)ϕ1j(−τ)ϕ̄1(−τ) + ϕ1i(−τ)ϕ̄1j(−τ)ϕ1(−τ) + ϕ̄1i(−τ)ϕ1j(−τ)ϕ1(−τ)
)]

,

G8 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ1i(0)ϕ1j(0)ϕ̄2(0) + ϕ1i(0)ϕ̄2j(0)ϕ1(0) + ϕ̄2i(0)ϕ1j(0)ϕ1(0)
)

+ Ω2
i,j
(

ϕ1i(0)ϕ1j(−τ)ϕ̄2(−τ) + ϕ1i(0)ϕ̄2j(−τ)ϕ1(−τ) + ϕ̄2i(0)ϕ1j(−τ)ϕ1(−τ)
)

+ Ω3
i,j

(

ϕ1i(−τ)ϕ1j(0)ϕ̄2(0) + ϕ1i(−τ)ϕ̄2j(0)ϕ1(0) + ϕ̄2i(−τ)ϕ1j(0)ϕ1(0)
)

+ Ω4
i,j
(

ϕ1i(−τ)ϕ1j(−τ)ϕ̄2(−τ) + ϕ1i(−τ)ϕ̄2j(−τ)ϕ1(−τ) + ϕ̄2i(−τ)ϕ1j(−τ)ϕ1(−τ)
)]

,

G9 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ1i(0)ϕ1j(0)ϕ3(0) + ϕ1i(0)ϕ3j(0)ϕ1(0) + ϕ3i(0)ϕ1j(0)ϕ1(0)
)

+ Ω2
i,j
(

ϕ1i(0)ϕ1j(−τ)ϕ3(−τ) + ϕ1i(0)ϕ3j(−τ)ϕ1(−τ) + ϕ3i(0)ϕ1j(−τ)ϕ1(−τ)
)

+ Ω3
i,j

(

ϕ1i(−τ)ϕ1j(0)ϕ3(0) + ϕ1i(−τ)ϕ3j(0)ϕ1(0) + ϕ3i(−τ)ϕ1j(0)ϕ1(0)
)

+ Ω4
i,j
(

ϕ1i(−τ)ϕ1j(−τ)ϕ3(−τ) + ϕ1i(−τ)ϕ3j(−τ)ϕ1(−τ) + ϕ3i(−τ)ϕ1j(−τ)ϕ1(−τ)
)]

,

G10 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ1i(0)ϕ2j(0)ϕ2(0) + ϕ2i(0)ϕ1j(0)ϕ2(0) + ϕ2i(0)ϕ2j(0)ϕ1(0)
)

+ Ω2
i,j
(

ϕ1i(0)ϕ2j(−τ)ϕ2(−τ) + ϕ2i(0)ϕ1j(−τ)ϕ2(−τ) + ϕ2i(0)ϕ2j(−τ)ϕ1(−τ)
)

+ Ω3
i,j

(

ϕ1i(−τ)ϕ2j(0)ϕ2(0) + ϕ2i(−τ)ϕ1j(0)ϕ2(0) + ϕ2i(−τ)ϕ2j(0)ϕ1(0)
)

+ Ω4
i,j
(

ϕ1i(−τ)ϕ2j(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ1j(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ2j(−τ)ϕ1(−τ)
)]

,
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G11 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ̄1i(0)ϕ2j(0)ϕ2(0) + ϕ2i(0)ϕ̄1j(0)ϕ2(0) + ϕ2i(0)ϕ2j(0)ϕ̄1(0)
)

+ Ω2
i,j
(

ϕ̄1i(0)ϕ2j(−τ)ϕ2(−τ) + ϕ2i(0)ϕ̄1j(−τ)ϕ2(−τ) + ϕ2i(0)ϕ2j(−τ)ϕ̄1(−τ)
)

+ Ω3
i,j

(

ϕ̄1i(−τ)ϕ2j(0)ϕ2(0) + ϕ2i(−τ)ϕ̄1j(0)ϕ2(0) + ϕ2i(−τ)ϕ2j(0)ϕ̄1(0)
)

+ Ω4
i,j
(

ϕ̄1i(−τ)ϕ2j(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ̄1j(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ2j(−τ)ϕ̄1(−τ)
)]

,

G12 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ̄2i(0)ϕ2j(0)ϕ2(0) + ϕ2i(0)ϕ̄2j(0)ϕ2(0) + ϕ2i(0)ϕ2j(0)ϕ̄2(0)
)

+ Ω2
i,j
(

ϕ̄2i(0)ϕ2j(−τ)ϕ2(−τ) + ϕ2i(0)ϕ̄2j(−τ)ϕ2(−τ) + ϕ2i(0)ϕ2j(−τ)ϕ̄2(−τ)
)

+ Ω3
i,j

(

ϕ̄2i(−τ)ϕ2j(0)ϕ2(0) + ϕ2i(−τ)ϕ̄2j(0)ϕ2(0) + ϕ2i(−τ)ϕ2j(0)ϕ̄2(0)
)

+ Ω4
i,j
(

ϕ̄2i(−τ)ϕ2j(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ̄2j(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ2j(−τ)ϕ̄2(−τ)
)]

,

G13 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ3i(0)ϕ2j(0)ϕ2(0) + ϕ2i(0)ϕ3j(0)ϕ2(0) + ϕ2i(0)ϕ2j(0)ϕ3(0)
)

+ Ω2
i,j
(

ϕ3i(0)ϕ2j(−τ)ϕ2(−τ) + ϕ2i(0)ϕ3j(−τ)ϕ2(−τ) + ϕ2i(0)ϕ2j(−τ)ϕ3(−τ)
)

+ Ω3
i,j

(

ϕ3i(−τ)ϕ2j(0)ϕ2(0) + ϕ2i(−τ)ϕ3j(0)ϕ2(0) + ϕ2i(−τ)ϕ2j(0)ϕ3(0)
)

+ Ω4
i,j
(

ϕ3i(−τ)ϕ2j(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ3j(−τ)ϕ2(−τ) + ϕ2i(−τ)ϕ2j(−τ)ϕ3(−τ)
)]

,

G14 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ1i(0)ϕ̄1j(0)ϕ̄1(0) + ϕ̄1i(0)ϕ1j(0)ϕ̄1(0) + ϕ̄1i(0)ϕ̄1j(0)ϕ1(0)
)

+ Ω2
i,j
(

ϕ1i(0)ϕ̄1j(−τ)ϕ̄1(−τ) + ϕ̄1i(0)ϕ1j(−τ)ϕ̄1(−τ) + ϕ̄1i(0)ϕ̄1j(−τ)ϕ1(−τ)
)

+ Ω3
i,j

(

ϕ1i(−τ)ϕ̄1j(0)ϕ̄1(0) + ϕ̄1i(−τ)ϕ1j(0)ϕ̄1(0) + ϕ̄1i(−τ)ϕ̄1j(0)ϕ1(0)
)

+ Ω4
i,j
(

ϕ1i(−τ)ϕ̄1j(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ1j(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ̄1j(−τ)ϕ1(−τ)
)]

,

G15 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ2i(0)ϕ̄1j(0)ϕ̄1(0) + ϕ̄1i(0)ϕ2j(0)ϕ̄1(0) + ϕ̄1i(0)ϕ̄1j(0)ϕ2(0)
)

+ Ω2
i,j
(

ϕ2i(0)ϕ̄1j(−τ)ϕ̄1(−τ) + ϕ̄1i(0)ϕ2j(−τ)ϕ̄1(−τ) + ϕ̄1i(0)ϕ̄1j(−τ)ϕ2(−τ)
)

+ Ω3
i,j

(

ϕ2i(−τ)ϕ̄1j(0)ϕ̄1(0) + ϕ̄1i(−τ)ϕ2j(0)ϕ̄1(0) + ϕ̄1i(−τ)ϕ̄1j(0)ϕ2(0)
)

+ Ω4
i,j
(

ϕ2i(−τ)ϕ̄1j(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ2j(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ̄1j(−τ)ϕ2(−τ)
)]

,

G16 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ̄2i(0)ϕ̄1j(0)ϕ̄1(0) + ϕ̄1i(0)ϕ̄2j(0)ϕ̄1(0) + ϕ̄1i(0)ϕ̄1j(0)ϕ̄2(0)
)

+ Ω2
i,j
(

ϕ̄2i(0)ϕ̄1j(−τ)ϕ̄1(−τ) + ϕ̄1i(0)ϕ̄2j(−τ)ϕ̄1(−τ) + ϕ̄1i(0)ϕ̄1j(−τ)ϕ̄2(−τ)
)

+ Ω3
i,j

(

ϕ̄2i(−τ)ϕ̄1j(0)ϕ̄1(0) + ϕ̄1i(−τ)ϕ̄2j(0)ϕ̄1(0) + ϕ̄1i(−τ)ϕ̄1j(0)ϕ̄2(0)
)

+ Ω4
i,j
(

ϕ̄2i(−τ)ϕ̄1j(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ̄2j(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ̄1j(−τ)ϕ̄2(−τ)
)]

,

G17 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ3i(0)ϕ̄1j(0)ϕ̄1(0) + ϕ̄1i(0)ϕ3j(0)ϕ̄1(0) + ϕ̄1i(0)ϕ̄1j(0)ϕ3(0)
)

+ Ω2
i,j
(

ϕ3i(0)ϕ̄1j(−τ)ϕ̄1(−τ) + ϕ̄1i(0)ϕ3j(−τ)ϕ̄1(−τ) + ϕ̄1i(0)ϕ̄1j(−τ)ϕ3(−τ)
)

+ Ω3
i,j

(

ϕ3i(−τ)ϕ̄1j(0)ϕ̄1(0) + ϕ̄1i(−τ)ϕ3j(0)ϕ̄1(0) + ϕ̄1i(−τ)ϕ̄1j(0)ϕ3(0)
)

+ Ω4
i,j
(

ϕ3i(−τ)ϕ̄1j(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ3j(−τ)ϕ̄1(−τ) + ϕ̄1i(−τ)ϕ̄1j(−τ)ϕ3(−τ)
)]

,
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G18 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ1i(0)ϕ̄2j(0)ϕ̄2(0) + ϕ̄2i(0)ϕ1j(0)ϕ̄2(0) + ϕ̄2i(0)ϕ̄2j(0)ϕ1(0)
)

+ Ω2
i,j
(

ϕ1i(0)ϕ̄2j(−τ)ϕ̄2(−τ) + ϕ̄2i(0)ϕ1j(−τ)ϕ̄2(−τ) + ϕ̄2i(0)ϕ̄2j(−τ)ϕ1(−τ)
)

+ Ω3
i,j

(

ϕ1i(−τ)ϕ̄2j(0)ϕ̄2(0) + ϕ̄2i(−τ)ϕ1j(0)ϕ̄2(0) + ϕ̄2i(−τ)ϕ̄2j(0)ϕ1(0)
)

+ Ω4
i,j
(

ϕ1i(−τ)ϕ̄2j(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ1j(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ̄2j(−τ)ϕ1(−τ)
)]

,

G19 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ2i(0)ϕ̄2j(0)ϕ̄2(0) + ϕ̄2i(0)ϕ2j(0)ϕ̄2(0) + ϕ̄2i(0)ϕ̄2j(0)ϕ2(0)
)

+ Ω2
i,j
(

ϕ2i(0)ϕ̄2j(−τ)ϕ̄2(−τ) + ϕ̄2i(0)ϕ2j(−τ)ϕ̄2(−τ) + ϕ̄2i(0)ϕ̄2j(−τ)ϕ2(−τ)
)

+ Ω3
i,j

(

ϕ2i(−τ)ϕ̄2j(0)ϕ̄2(0) + ϕ̄2i(−τ)ϕ2j(0)ϕ̄2(0) + ϕ̄2i(−τ)ϕ̄2j(0)ϕ2(0)
)

+ Ω4
i,j
(

ϕ2i(−τ)ϕ̄2j(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ2j(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ̄2j(−τ)ϕ2(−τ)
)]

,

G20 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ̄1i(0)ϕ̄2j(0)ϕ̄2(0) + ϕ̄2i(0)ϕ̄1j(0)ϕ̄2(0) + ϕ̄2i(0)ϕ̄2j(0)ϕ̄1(0)
)

+ Ω2
i,j
(

ϕ̄1i(0)ϕ̄2j(−τ)ϕ̄2(−τ) + ϕ̄2i(0)ϕ̄1j(−τ)ϕ̄2(−τ) + ϕ̄2i(0)ϕ̄2j(−τ)ϕ̄1(−τ)
)

+ Ω3
i,j

(

ϕ̄1i(−τ)ϕ̄2j(0)ϕ̄2(0) + ϕ̄2i(−τ)ϕ̄1j(0)ϕ̄2(0) + ϕ̄2i(−τ)ϕ̄2j(0)ϕ̄1(0)
)

+ Ω4
i,j
(

ϕ̄1i(−τ)ϕ̄2j(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ̄1j(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ̄2j(−τ)ϕ̄1(−τ)
)]

,

G21 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ3i(0)ϕ̄2j(0)ϕ̄2(0) + ϕ̄2i(0)ϕ3j(0)ϕ̄2(0) + ϕ̄2i(0)ϕ̄2j(0)ϕ3(0)
)

+ Ω2
i,j
(

ϕ3i(0)ϕ̄2j(−τ)ϕ̄2(−τ) + ϕ̄2i(0)ϕ3j(−τ)ϕ̄2(−τ) + ϕ̄2i(0)ϕ̄2j(−τ)ϕ3(−τ)
)

+ Ω3
i,j

(

ϕ3i(−τ)ϕ̄2j(0)ϕ̄2(0) + ϕ̄2i(−τ)ϕ3j(0)ϕ̄2(0) + ϕ̄2i(−τ)ϕ̄2j(0)ϕ3(0)
)

+ Ω4
i,j
(

ϕ3i(−τ)ϕ̄2j(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ3j(−τ)ϕ̄2(−τ) + ϕ̄2i(−τ)ϕ̄2j(−τ)ϕ3(−τ)
)]

,

G22 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ1i(0)ϕ3j(0)ϕ3(0) + ϕ3i(0)ϕ1j(0)ϕ3(0) + ϕ3i(0)ϕ3j(0)ϕ1(0)
)

+ Ω2
i,j
(

ϕ1i(0)ϕ3j(−τ)ϕ3(−τ) + ϕ3i(0)ϕ1j(−τ)ϕ3(−τ) + ϕ3i(0)ϕ3j(−τ)ϕ1(−τ)
)

+ Ω3
i,j

(

ϕ1i(−τ)ϕ3j(0)ϕ3(0) + ϕ3i(−τ)ϕ1j(0)ϕ3(0) + ϕ3i(−τ)ϕ3j(0)ϕ1(0)
)

+ Ω4
i,j
(

ϕ1i(−τ)ϕ3j(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ1j(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ3j(−τ)ϕ1(−τ)
)]

,

G23 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ2i(0)ϕ3j(0)ϕ3(0) + ϕ3i(0)ϕ2j(0)ϕ3(0) + ϕ3i(0)ϕ3j(0)ϕ2(0)
)

+ Ω2
i,j
(

ϕ2i(0)ϕ3j(−τ)ϕ3(−τ) + ϕ3i(0)ϕ2j(−τ)ϕ3(−τ) + ϕ3i(0)ϕ3j(−τ)ϕ2(−τ)
)

+ Ω3
i,j

(

ϕ2i(−τ)ϕ3j(0)ϕ3(0) + ϕ3i(−τ)ϕ2j(0)ϕ3(0) + ϕ3i(−τ)ϕ3j(0)ϕ2(0)
)

+ Ω4
i,j
(

ϕ2i(−τ)ϕ3j(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ2j(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ3j(−τ)ϕ2(−τ)
)]

,

G24 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ̄1i(0)ϕ3j(0)ϕ3(0) + ϕ3i(0)ϕ̄1j(0)ϕ3(0) + ϕ3i(0)ϕ3j(0)ϕ̄1(0)
)

+ Ω2
i,j
(

ϕ̄1i(0)ϕ3j(−τ)ϕ3(−τ) + ϕ3i(0)ϕ̄1j(−τ)ϕ3(−τ) + ϕ3i(0)ϕ3j(−τ)ϕ̄1(−τ)
)

+ Ω3
i,j

(

ϕ̄1i(−τ)ϕ3j(0)ϕ3(0) + ϕ3i(−τ)ϕ̄1j(0)ϕ3(0) + ϕ3i(−τ)ϕ3j(0)ϕ̄1(0)
)

+ Ω4
i,j
(

ϕ̄1i(−τ)ϕ3j(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ̄1j(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ3j(−τ)ϕ̄1(−τ)
)]

,
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G25 =
n

∑
i,j=1

[

Ω1
i,j
(

ϕ̄2i(0)ϕ3j(0)ϕ3(0) + ϕ3i(0)ϕ̄2j(0)ϕ3(0) + ϕ3i(0)ϕ3j(0)ϕ̄2(0)
)

+ Ω2
i,j
(

ϕ̄2i(0)ϕ3j(−τ)ϕ3(−τ) + ϕ3i(0)ϕ̄2j(−τ)ϕ3(−τ) + ϕ3i(0)ϕ3j(−τ)ϕ̄2(−τ)
)

+ Ω3
i,j

(

ϕ̄2i(−τ)ϕ3j(0)ϕ3(0) + ϕ3i(−τ)ϕ̄2j(0)ϕ3(0) + ϕ3i(−τ)ϕ3j(0)ϕ̄2(0)
)

+ Ω4
i,j
(

ϕ̄2i(−τ)ϕ3j(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ̄2j(−τ)ϕ3(−τ) + ϕ3i(−τ)ϕ3j(−τ)ϕ̄2(−τ)
)]

,

G26 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ1i(0)
(

ϕ2j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ2(0)
)

+ ϕ2i(0)
(

ϕ1j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ1(0)
)

+ ϕ̄1i(0)
(

ϕ1j(0)ϕ2(0) + ϕ2j(0)ϕ1(0)
)

)

+ Ω2
i,j

(

ϕ1i(0)
(

ϕ2j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ2(−τ)
)

+ ϕ2i(0)
(

ϕ1j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ1(−τ)
)

+ ϕ̄1i(0)
(

ϕ1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ1(−τ)
)

)

+ Ω3
i,j

(

ϕ1i(−τ)
(

ϕ2j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ2(0)
)

+ ϕ2i(−τ)
(

ϕ1j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ1(0)
)

+ ϕ̄1i(−τ)
(

ϕ1j(0)ϕ2(0) + ϕ2j(0)ϕ1(0)
)

)

+ Ω4
i,j

(

ϕ1i(−τ)
(

ϕ2j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ2(−τ)
)

+ ϕ2i(−τ)
(

ϕ1j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ1(−τ)
)

+ ϕ̄1i(−τ)
(

ϕ1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ1(−τ)
)

)]

,

G27 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ1i(0)
(

ϕ2j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ2(0)
)

+ ϕ2i(0)
(

ϕ1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ1(0)
)

+ ϕ̄2i(0)
(

ϕ1j(0)ϕ2(0) + ϕ2j(0)ϕ1(0)
)

)

+ Ω2
i,j

(

ϕ1i(0)
(

ϕ2j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ2(−τ)
)

+ ϕ2i(0)
(

ϕ1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ1(−τ)
)

+ ϕ̄2i(0)
(

ϕ1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ1(−τ)
)

)

+ Ω3
i,j

(

ϕ1i(−τ)
(

ϕ2j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ2(0)
)

+ ϕ2i(−τ)
(

ϕ1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ1(0)
)

+ ϕ̄2i(−τ)
(

ϕ1j(0)ϕ2(0) + ϕ2j(0)ϕ1(0)
)

)

+ Ω4
i,j

(

ϕ1i(−τ)
(

ϕ2j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ2(−τ)
)

+ ϕ2i(−τ)
(

ϕ1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ1(−τ)
)

+ ϕ̄2i(−τ)
(

ϕ1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ1(−τ)
)

)]

,
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G28 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ1i(0)
(

ϕ2j(0)ϕ3(0) + ϕ3j(0)ϕ2(0)
)

+ ϕ2i(0)
(

ϕ1j(0)ϕ3(0) + ϕ3j(0)ϕ1(0)
)

+ ϕ3i(0)
(

ϕ1j(0)ϕ2(0) + ϕ2j(0)ϕ1(0)
)

)

+ Ω2
i,j

(

ϕ1i(0)
(

ϕ2j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ2(−τ)
)

+ ϕ2i(0)
(

ϕ1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ1(−τ)
)

+ ϕ3i(0)
(

ϕ1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ1(−τ)
)

)

+ Ω3
i,j

(

ϕ1i(−τ)
(

ϕ2j(0)ϕ3(0) + ϕ3j(0)ϕ2(0)
)

+ ϕ2i(−τ)
(

ϕ1j(0)ϕ3(0) + ϕ3j(0)ϕ1(0)
)

+ ϕ3i(−τ)
(

ϕ1j(0)ϕ2(0) + ϕ2j(0)ϕ1(0)
)

)

+ Ω4
i,j

(

ϕ1i(−τ)
(

ϕ2j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ2(−τ)
)

+ ϕ2i(−τ)
(

ϕ1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ1(−τ)
)

+ ϕ3i(−τ)
(

ϕ1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ1(−τ)
)

)]

,

G29 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ1i(0)
(

ϕ̄2j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ̄2(0)
)

+ ϕ̄2i(0)
(

ϕ1j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ1(0)
)

+ ϕ̄1i(0)
(

ϕ1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ1(0)
)

)

+ Ω2
i,j

(

ϕ1i(0)
(

ϕ̄2j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ̄2(−τ)
)

+ ϕ̄2i(0)
(

ϕ1j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ1(−τ)
)

+ ϕ̄1i(0)
(

ϕ1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ1(−τ)
)

)

+ Ω3
i,j

(

ϕ1i(−τ)
(

ϕ̄2j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ̄2(0)
)

+ ϕ̄2i(−τ)
(

ϕ1j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ1(0)
)

+ ϕ̄1i(−τ)
(

ϕ1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ1(0)
)

)

+ Ω4
i,j

(

ϕ1i(−τ)
(

ϕ̄2j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ̄2(−τ)
)

+ ϕ̄2i(−τ)
(

ϕ1j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ1(−τ)
)

+ ϕ̄1i(−τ)
(

ϕ1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ1(−τ)
)

)]

,

G30 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ1i(0)
(

ϕ3j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ3(0)
)

+ ϕ3i(0)
(

ϕ1j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ1(0)
)

+ ϕ̄1i(0)
(

ϕ1j(0)ϕ3(0) + ϕ3j(0)ϕ1(0)
)

)

+ Ω2
i,j

(

ϕ1i(0)
(

ϕ3j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ3(−τ)
)

+ ϕ3i(0)
(

ϕ1j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ1(−τ)
)

+ ϕ̄1i(0)
(

ϕ1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ1(−τ)
)

)

+ Ω3
i,j

(

ϕ1i(−τ)
(

ϕ3j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ3(0)
)

+ ϕ3i(−τ)
(

ϕ1j(0)ϕ̄1(0) + ϕ̄1j(0)ϕ1(0)
)

+ ϕ̄1i(−τ)
(

ϕ1j(0)ϕ3(0) + ϕ3j(0)ϕ1(0)
)

)
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+ Ω4
i,j

(

ϕ1i(−τ)
(

ϕ3j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ3(−τ)
)

+ ϕ3i(−τ)
(

ϕ1j(−τ)ϕ̄1(−τ) + ϕ̄1j(−τ)ϕ1(−τ)
)

+ ϕ̄1i(−τ)
(

ϕ1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ1(−τ)
)

)]

,
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G31 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ1i(0)
(

ϕ3j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ3(0)
)

+ ϕ3i(0)
(

ϕ1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ1(0)
)

+ ϕ̄2i(0)
(

ϕ1j(0)ϕ3(0) + ϕ3j(0)ϕ1(0)
)

)

+ Ω2
i,j

(

ϕ1i(0)
(

ϕ3j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ3(−τ)
)

+ ϕ3i(0)
(

ϕ1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ1(−τ)
)

+ ϕ̄2i(0)
(

ϕ1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ1(−τ)
)

)

+ Ω3
i,j

(

ϕ1i(−τ)
(

ϕ3j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ3(0)
)

+ ϕ3i(−τ)
(

ϕ1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ1(0)
)

+ ϕ̄2i(−τ)
(

ϕ1j(0)ϕ3(0) + ϕ3j(0)ϕ1(0)
)

)

+ Ω4
i,j

(

ϕ1i(−τ)
(

ϕ3j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ3(−τ)
)

+ ϕ3i(−τ)
(

ϕ1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ1(−τ)
)

+ ϕ̄2i(−τ)
(

ϕ1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ1(−τ)
)

)]

,

G32 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ̄1i(0)
(

ϕ2j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ2(0)
)

+ ϕ2i(0)
(

ϕ̄1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ̄1(0)
)

+ ϕ̄2i(0)
(

ϕ̄1j(0)ϕ2(0) + ϕ2j(0)ϕ̄1(0)
)

)

+ Ω2
i,j

(

ϕ̄1i(0)
(

ϕ2j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ2(−τ)
)

+ ϕ2i(0)
(

ϕ̄1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ̄1(−τ)
)

+ ϕ̄2i(0)
(

ϕ̄1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ̄1(−τ)
)

)

+ Ω3
i,j

(

ϕ̄1i(−τ)
(

ϕ2j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ2(0)
)

+ ϕ2i(−τ)
(

ϕ̄1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ̄1(0)
)

+ ϕ̄2i(−τ)
(

ϕ̄1j(0)ϕ2(0) + ϕ2j(0)ϕ̄1(0)
)

)

+ Ω4
i,j

(

ϕ̄1i(−τ)
(

ϕ2j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ2(−τ)
)

+ ϕ2i(−τ)
(

ϕ̄1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ̄1(−τ)
)

+ ϕ̄2i(−τ)
(

ϕ̄1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ̄1(−τ)
)

)]

,

G33 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ̄1i(0)
(

ϕ2j(0)ϕ3(0) + ϕ3j(0)ϕ2(0)
)

+ ϕ2i(0)
(

ϕ̄1j(0)ϕ3(0) + ϕ3j(0)ϕ̄1(0)
)

+ ϕ3i(0)
(

ϕ̄1j(0)ϕ2(0) + ϕ2j(0)ϕ̄1(0)
)

)

+ Ω2
i,j

(

ϕ̄1i(0)
(

ϕ2j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ2(−τ)
)

+ ϕ2i(0)
(

ϕ̄1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ̄1(−τ)
)

+ ϕ3i(0)
(

ϕ̄1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ̄1(−τ)
)

)

+ Ω3
i,j

(

ϕ̄1i(−τ)
(

ϕ2j(0)ϕ3(0) + ϕ3j(0)ϕ2(0)
)

+ ϕ2i(−τ)
(

ϕ̄1j(0)ϕ3(0) + ϕ3j(0)ϕ̄1(0)
)

+ ϕ3i(−τ)
(

ϕ̄1j(0)ϕ2(0) + ϕ2j(0)ϕ̄1(0)
)

)
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+ Ω4
i,j

(

ϕ̄1i(−τ)
(

ϕ2j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ2(−τ)
)

+ ϕ2i(−τ)
(

ϕ̄1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ̄1(−τ)
)

+ ϕ3i(−τ)
(

ϕ̄1j(−τ)ϕ2(−τ) + ϕ2j(−τ)ϕ̄1(−τ)
)

)]

,

G34 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ2i(0)
(

ϕ3j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ3(0)
)

+ ϕ3i(0)
(

ϕ2j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ2(0)
)

+ ϕ̄2i(0)
(

ϕ2j(0)ϕ3(0) + ϕ3j(0)ϕ2(0)
)

)

+ Ω2
i,j

(

ϕ2i(0)
(

ϕ3j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ3(−τ)
)

+ ϕ3i(0)
(

ϕ2j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ2(−τ)
)

+ ϕ̄2i(0)
(

ϕ2j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ2(−τ)
)

)

+ Ω3
i,j

(

ϕ2i(−τ)
(

ϕ3j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ3(0)
)

+ ϕ3i(−τ)
(

ϕ2j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ2(0)
)

+ ϕ̄2i(−τ)
(

ϕ2j(0)ϕ3(0) + ϕ3j(0)ϕ2(0)
)

)

+ Ω4
i,j

(

ϕ2i(−τ)
(

ϕ3j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ3(−τ)
)

+ ϕ3i(−τ)
(

ϕ2j(−τ)ϕ̄2(−τ)

+ ϕ̄2j(−τ)ϕ2(−τ)
)

+ ϕ̄2i(−τ)
(

ϕ2j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ2(−τ)
)

)]

,

G35 =
n

∑
i,j=1

[

Ω1
i,j

(

ϕ̄1i(0)
(

ϕ̄2j(0)ϕ3(0) + ϕ3j(0)ϕ̄2(0)
)

+ ϕ̄2i(0)
(

ϕ̄1j(0)ϕ3(0) + ϕ3j(0)ϕ̄1(0)
)

+ ϕ3i(0)
(

ϕ̄1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ̄1(0)
)

)

+ Ω2
i,j

(

ϕ̄1i(0)
(

ϕ̄2j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ̄2(−τ)
)

+ ϕ̄2i(0)
(

ϕ̄1j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ̄1(−τ)
)

+ ϕ3i(0)
(

ϕ̄1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ̄1(−τ)
)

)

+ Ω3
i,j

(

ϕ̄1i(−τ)
(

ϕ̄2j(0)ϕ3(0) + ϕ3j(0)ϕ̄2(0)
)

+ ϕ̄2i(−τ)
(

ϕ̄1j(0)ϕ3(0) + ϕ3j(0)ϕ̄1(0)
)

+ ϕ3i(−τ)
(

ϕ̄1j(0)ϕ̄2(0) + ϕ̄2j(0)ϕ̄1(0)
)

)

+ Ω4
i,j

(

ϕ̄1i(−τ)
(

ϕ̄2j(−τ)ϕ3(−τ) + ϕ3j(−τ)ϕ̄2(−τ)
)

+ ϕ̄2i(−τ)
(

ϕ̄1j(−τ)ϕ3(−τ)

+ ϕ3j(−τ)ϕ̄1(−τ)
)

+ ϕ3i(−τ)
(

ϕ̄1j(−τ)ϕ̄2(−τ) + ϕ̄2j(−τ)ϕ̄1(−τ)
)

)]

.
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Abstract. Optimization problems are omnipresent in the mathematical modeling of real
world systems and cover a very extensive range of applications becoming apparent in
all branches of Economics, Finance, Materials Science, Astronomy, Physics, Structural
and Molecular Biology, Engineering, Computer Science, and Medicine. In this paper,
we aim to delve deeper into the multiplicity findings concerning a specific class of
quasilinear periodic boundary value problems. In fact, as an optimization problem, we
look for the critical points of the energy functional related to the problem. Utilizing a
corollary derived from Bonanno’s local minimum theorem, we investigate the existence
of a one solution under certain algebraic conditions on the nonlinear term. Additionally,
we explore conditions that lead to the existence of two solutions, incorporating the
classical Ambrosetti-Rabinowitz (AR) condition alongside algebraic criteria. Moreover,
by employing two critical point theorems one by Averna and Bonanno, and another by
Bonanno, we establish the existence of two and three solutions in a particular scenario.
To illustrate our findings, we provide an example.

Keywords: multiple solutions, quasilinear periodic, critical point, variational methods.
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1 Introduction

The target of global optimization is to find the best solution of decision models, in presence

of the multiple local solutions. Optimization plays an ever-increasing role in mathematics,

BCorresponding author. Emails: sh.heidarkhani@razi.ac.ir and s.heidarkhani@unirc.it
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economics, engineering, health sciences, management and life sciences. Many optimization

problems have existence in the real world including space planning, networking, logistic man-

agement, financial planning, and risk management. The objective of this paper is to ascertain

the existence of solutions for the following quasilinear periodic boundary value problem

{

−p(u′)u′′ + ζ(x)u = λ f (x, u(x)) + µg(x, u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0
(P

f ,g
λ,µ)

where f , g : [0, 1] × R → R are L1-Carathéodory functions, λ is a positive parameter and

µ ≥ 0. We need the following assumptions:

(Q1) p : R → (0, ∞) is a continuous and nondecreasing on [0, ∞), there exist two positive

numbers M ≥ m such that

m ≤ p(x) ≤ M, ∀x ∈ R (1.1)

(Q2) ζ ∈ C([0, 1]) and there exist ζ1 ≥ ζ0 > 0 such that

ζ0 ≤ ζ(x) ≤ ζ1, ∀x ∈ [0, 1]. (1.2)

Exactly, as an optimization problem, we look for the critical points of the energy functional

related to the problem which are the solutions of the problem.

In recent years, various fixed-point theorems, critical points, and variational methods have

been effectively employed to explore the existence of solutions for quasilinear periodic bound-

ary value problems. References such as [2,9,14,17,20,21,23,26,27] and others have extensively

discussed this topic. For instance, Matzakos and Papageorgiou in [21] combined the varia-

tional method with techniques involving upper and lower solutions to establish the existence

of periodic solutions for quasilinear differential equations. Similarly, Papageorgiou and Pa-

palini in [23] utilized variational arguments, methods from the theory of nonlinear operators

of monotone type, and upper and lower solution techniques to demonstrate the existence of at

least two nontrivial solutions, one positive and the other negative for the following quasilinear

periodic problem

{

−(|u′(x)|p−2u′(x))′ = f (x, u(x)) = 0, x ∈ [0, b],

u(0) = u(b), u′(0) = u′(b), 2 ≤ p < ∞

where f : T ×R → R is a function. In [14], the existence of at least three classical solutions for

a Dirichlet quasilinear elliptic system was established through the application of variational

methods and critical point theory. Similarly, in [17], the utilization of a recent three critical

points theorem by Bonanno and Marano led to the confirmation of at least three solutions for

quasilinear second order differential equation on a compact interval [a, b] ⊂ R

{

−u′′ = (λ f (x, u) + g(u))h′(u), in (a, b),

u(a)− u(b) = 0

where f : [a, b]× R → R is an L1-Carathéodory function, g : R → R is a Lipschitz continuous

function, was discussed. Shen and Liu, in [26], utilized the symmetric mountain pass theorem

and genus properties in critical point theory to explore the existence of infinitely many solu-

tions for second-order quasilinear periodic boundary value problems with impulsive effects.
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Meanwhile, Wang et al., in [27], investigated the existence of at least three periodic solutions

for the problem (P
f ,g

λ,µ) by employing appropriate hypotheses and a three critical points theo-

rem by Ricceri.

Additionally, in [15], variational methods and critical point theorems for smooth function-

als defined on reflexive Banach spaces were used to discuss the existence of at least three

solutions to an impulsive effects version of the problem (P
f ,g

λ,µ). Furthermore, in [19], varia-

tional methods were employed to discuss the existence of at least three weak solutions for

the problem (P
f ,g

λ,µ) in the case µ = 0. In [12], the investigation focused on the existence of

infinitely many classical solutions for an impulsive effects version of the problem (P
f ,g

λ,µ) in the

case µ = 0, utilizing critical point theory. In [13], by using variational methods, the existence

of non-zero solutions and the existence of multiple solutions for positive parameter values for

the problem (P
f ,g

λ,µ) in the case µ = 0, was discussed. Lastly, in [18], the existence of at least

one weak solution and infinitely many weak solutions for the problem (P
f ,g

λ,µ) in the case µ = 0

was studied based on variational methods.

Our approach employs variational methods, with the primary tools being four local mini-

mum theorems for differentiable functionals. Specifically, we utilize a corollary of Bonanno’s

local minimum theorem to establish the existence of one solution under certain algebraic con-

ditions on the nonlinear terms, and two solutions for the problem under algebraic conditions

alongside the classical Ambrosetti–Rabinowitz (AR) condition on the nonlinear terms (refer

to [3]). Furthermore, by leveraging two critical point theorems, one by Averna and Bonanno,

and another by Bonanno, we ensure the existence of two and three solutions for the problem

(P
f ,g

λ,µ) in the case µ = 0.

In comparison to previous findings, we introduce novel assumptions to establish the exis-

tence of solutions for the problem (P
f ,g

λ,µ), thus extending recent related works.

Here, we present two specific cases of our main results focusing on scenarios with a single

impulse.

Theorem 1.1. Let ψ : R → R be a continuous function. Assume that there exist two positive constants

γ and η with the property
√

2h(2η) + 2h(−2η) + 8ζ1η2

min{m, ζ0}
< γ

and

• there exist ν > 2 and R > 0 such that

0 < ν

∫ ξ

0
ψ(s)ds ≤ ξψ(ξ)

for all |ξ| ≥ R.

Then, for each

λ ∈

(

0,
min{m, ζ0}γ2

8
∫ γ

0 ψ(s)ds

)

and for every function g : [0, 1]× R → R satisfying the following condition:

• there exist ν > 2 and R > 0 such that

0 < ν

∫ ξ

0
g(x, s)ds ≤ ξg(x, ξ)

for all |ξ| ≥ R and for all x ∈ [0, 1],
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there exists δλ > 0, for each µ ∈ [0, δλ[, the problem

{

−p(u′)u′′ + ζ(x)u = λe−tψ(x) + µg(x, u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0
(1.3)

admits at least two solutions u1 and u2 in

{

u : [0, 1] → R : u is absolutely continuous, u(1) = u(0), u′ ∈ L2([0, 1]
}

such that

max
x∈[0,1]

|u1(x)| < γ.

Theorem 1.2. Assume that ψ : R → R is a nonnegative and continuous function. Moreover, assume

that

lim
ξ→0+

ψ(ξ)

ξ
= lim

|ξ|→∞

ψ(ξ)

|ξ|
= 0

and there exists a positive constant η̄ such that
∫ η̄

0 ψ(s)ds > 0. Then, for each λ > λ∗ where

λ∗ =
1

4
∫

3
4

1
4

θ(x)dx
inf
η̄>0

h(2η̄) + h(−2η̄) + 4ζ1η̄2

∫ η̄

0 ψ(s)ds
,

the problem (1.3) in the case µ = 0, admits at least one nonnegative and one non zero solution in

{

u : [0, 1] → R : u is absolutely continuous, u(1) = u(0), u′ ∈ L2([0, 1]
}

.

The structure of the paper is outlined as follows:

Section 2 presents our fundamental theorems and revisits relevant definitions. Section 3

discusses and proves the existence of one solution for the problem (P
f ,g

λ,µ). Section 4 addresses

the existence of two solutions for the problem (P
f ,g

λ,µ). Section 5 introduces a new multiplicity

result aimed at obtaining at least two and three solutions for the problem (P
f ,g

λ,µ), specifically

in the case µ = 0.

2 Preliminaries

The main tools utilized to prove our results in Sections 3, 4, and 5 are the following theorems.

For the following notations and results, we refer the reader to [22, 24]. Let X be a real

Banach space. We say that a continuously Gâteaux differentiable functional J : X → R satis-

fies the Palais–Smale condition (abbreviated as (PS)-condition) if any sequence {un} such that

{J(un)} is bounded and limn→∞ ∥J′(un)∥X∗ = 0 has a convergent subsequence.

Let Φ, Ψ : X → R be two continuously Gâteaux differentiable functions. Set

J = Φ − Ψ,

and fix r1, r2 ∈ [−∞, ∞] with r1 < r2. We say that J satisfies the Palais–Smale condition cut off

lower at r1 and upper at r2(in short [r1](PS)[r2]-condition) if any sequence {un} such that {J(un)}

is bounded, limn→∞ ∥J′(un)∥X∗ = 0 and r1 < Φ(un) < r2 for all n ∈ N, has a convergent

subsequence.

Clearly, if r1 = −∞ and r2 = ∞ it coincides with the classical (PS)-condition. Moreover,

if r1 = −∞ and r2 ∈ R it is denoted by (PS)[r2], while if r1 ∈ R and r2 = ∞ it is denoted by
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[r1](PS). Indeed, if Φ and Ψ be two continuously Gâteaux differentiable functionals defined

on a real Banach space X and fix r ∈ R. The functional I = Φ − Ψ is said to verify the

Palais–Smale condition cut off upper at r (in short (PS)[r]) if any sequence {un}n∈N in X

such that {I(un)} is bounded, limn→∞ ∥I′(un)∥X∗ = 0 and Φ(un) < r for all n ∈ N, has

a convergent subsequence. Furthermore, if J satisfies [r1](PS)[r2]-condition, then it satisfies
[ϱ1](PS)[ϱ2]-condition for all ϱ1, ϱ2 ∈ [−∞, ∞] such that r1 ≤ ϱ1 < ϱ2 ≤ r2.

In particular, we deduce that if J satisfies the classical (PS)-condition, then it satisfies
[ϱ1](PS)[ϱ2]-condition for all ϱ1, ϱ2 ∈ [−∞, ∞] with ϱ1 < ϱ2.

In the proof of our main results, we will apply the following four theorems.

Theorem 2.1 ([7, Theorem 2.3]). Let X be a real Banach space and let Φ, Ψ : X → R be two

continuously Gâteaux differentiable functions such that infu∈X Φ(u) = Φ(0) = Ψ(0) = 0. Assume

that there exist r > 0 and ū ∈ X, with 0 < Φ(ū) < r, such that:

(a1)
sup

Φ(u)≤r Ψ(u)

r <
Ψ(ū)
Φ(ū)

,

(a2) for each λ ∈
(

Φ(ū)
Ψ(ū)

, r
sup

Φ(u)≤r Ψ(u)

)

, the functional Iλ = Φ − λΨ satisfies (PS)[r]-condition.

Then, for each

λ ∈ Λr =

(

Φ(ū)

Ψ(ū)
,

r

sup
Φ(u)≤r Ψ(u)

)

,

there exists u0,λ ∈ Φ
−1(0, r) such that Iλ(u0,λ) ≡ ϑX∗ and Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ

−1(0, r).

Theorem 2.2 ([7, Theorem 3.2]). Let X be a real Banach space, Φ, Ψ : X → R be two continuously

Gâteaux differentiable functionals such that Φ is bounded from below and Φ(0) = Ψ(0) = 0. Fix

r > 0 and assume that, for each

λ ∈

(

0,
r

supu∈Φ−1(−∞,r) Ψ(u)

)

,

the functional Iλ = Φ − λΨ satisfies (PS)-condition and it is unbounded from below. Then, for each

λ ∈

(

0,
r

supu∈Φ−1(−∞,r) Ψ(u)

)

,

the functional Iλ admits two distinct critical points.

Theorem 2.3 ([4, Theorem A]). Let X be a reflexive real Banach space, Φ : X → R a continu-

ously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux

derivative admits a continuous inverse on X∗, and Ψ : X → R a continuously Gâteaux differentiable

functional whose Gâteaux derivative is compact. Assume that:

(b1) lim∥u∥→∞(Φ(u) + λΨ(u)) = ∞ for all λ ∈ [0, ∞);

(b2) there is r ∈ R such that

inf
X

Φ < r,

and

φ1(r) < φ2(r)
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where

φ1(r) = inf
u∈Φ−1(−∞,r)

Ψ(u)− inf
Φ−1(−∞,r)

w Ψ

r − Φ(u)
,

φ2(r) = inf
u∈Φ−1(−∞,r)

sup
v∈Φ−1[r,∞)

Ψ(u)− Ψ(v)

Φ(v)− Φ(u)
,

and Φ−1(−∞, r)
w

is the closure of Φ
−1(−∞, r) in the weak topology.

Then, for each λ ∈
(

1
φ2(r)

, 1
φ1(r)

)

, the functional Φ + λΨ has at least three critical points in X.

Note that φ1(r) in Theorem 2.3 could be 0. In this and similar cases, here and in the sequel,

we agree to read 1
0 as ∞.

We also use the following two critical points theorem.

Theorem 2.4 ([6, Theorem 1.1]). Let X be a reflexive real Banach space, and let Φ, Ψ : X → R be

two sequentially weakly lower semicontinuous and Gâteaux differentiable functions. Assume that Φ is

(strongly) continuous and satisfies

lim
∥u∥→∞

Φ(u) = ∞.

Assume also that there exist two constants r1 and r2 such that

(c1) infX Φ < r1 < r2;

(c2) φ1(r1) < φ∗
2(r1, r2);

(c3) φ1(r2) < φ∗
2(r1, r2), where φ1 is defined as in Theorem 2.3 and

φ∗
2(r1, r2) = inf

u∈Φ−1(−∞,r1)

sup
v∈Φ−1[r1,r2)

Ψ(u)− Ψ(v)

Φ(v)− Φ(u)
.

Then, for each

λ ∈

(

1

φ∗
2(r1, r2)

, min

{

1

φ1(r1)
,

1

φ1(r2)

})

,

the functional Φ + λΨ admits at least two critical points which lie in Φ
−1(−∞, r1] and Φ

−1[r1, r2),

respectively.

We remind the reader that Theorem 2.3 and Theorem 2.4 rely on Ricceri’s variational

principle [25].

For successful application of Theorems 2.1–2.2, we recommend referring to [8] to ensure

the existence of at least one and two solutions for elliptic Dirichlet problems with variable

exponent. Additionally, for the utilization of Theorems 2.3–2.4, we suggest consulting [10]

to guarantee the existence of at least two and three solutions for a boundary value problem

on the half-line. Furthermore, for effective implementations of Theorems 2.1–2.4, we advise

referring to [11, 16] to explore the existence of multiple solutions for Kirchhoff-type second-

order impulsive differential equations on the half-line and to study an elastic beam equation

with local nonlinearities, respectively.

In this section, we will present several fundamental definitions, notations, lemmas, and

propositions utilized throughout this paper.
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Let us start by defining the finite T-dimensional Banach space

X =
{

u : [0, 1] → R : u is absolutely continuous, u(1) = u(0), u′ ∈ L2([0, 1]
}

, (2.1)

which is equipped with the norm

∥u∥ =

(

∫ 1

0

(

|u′(x)|2 + |u(x)|2
)

dx

)
1
2

. (2.2)

Clearly, X is a Hilbert space and X∗ is the dual space of X.

Setting

h(y) =
∫ y

0

(

∫ τ

0
p(ξ)dξ

)

dτ

for every y ∈ R, we have

h′(y) =
∫ y

0
p(ξ)dξ and h′′(y) = p(y)

for every y ∈ R.

We define functionals Φ, Ψ for every u ∈ X, as follows

Φ(u) =
∫ 1

0
h(u′(x))dx +

1

2

∫ 1

0
ζ(x)|u(x)|2dx (2.3)

and

Ψ(u) =
∫ 1

0

(

∫ u(x)

0
f (x, ξ)dξ

)

dx +
µ

λ

∫ 1

0

(

∫ u(x)

0
g(x, ξ)dξ

)

dx, (2.4)

and we put

Iλ(u) = Φ(u)− λΨ(u)

for every u ∈ X. Clearly, Iλ is Gâteaux differentiable.

Definition 2.5. We mean by a (weak) solution of the BVP (P
f ,g

λ,µ), any function u ∈ X such that

∫ 1

0
h′(u′(x))y′(x)dx+

∫ 1

0
ζ(x)u(x)y(x)dx − λ

∫ 1

0
f (x, u(x))y(x)dx

−µ

∫ 1

0
g(x, u(x))y(x)dx = 0

for every y ∈ X.

Lemma 2.6. If u ∈ X is a critical point of Iλ in X, iff u ∈ X is a solution of (P
f ,g

λ,µ).

Proof. If u ∈ X is a critical point for Iλ, we have

∫ 1

0
h′(u′(x))y′(x)dx +

∫ 1

0
ζ(x)u(x)y(x)dx

= λ

∫ 1

0
f (x, u(x))y(x)dx + µ

∫ 1

0
g(x, u(x))y(x)dx
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for each y ∈ X. This implies that h′ ◦ u′ has a weak derivative which equals ζ(x)u(x) −

λ f (x, u(x))− µg(x, u(x)) and is thus continuous, so h′ ◦ u′ is C1([0, 1]). Since h′ is an invertible

C1-function, it follows that u′ is also in C1([0, 1]), hence x is in C2([0, 1]). Set

e(x) = −h′(u′(x)) +
∫ t

0
ζ(τ)u(τ)dτ − λ

∫ t

0
f (τ, u(τ))dτ − µ

∫ t

0
g(τ, u(τ))dτ − C

such that
∫ 1

0 e(x)dx = 0. Let y(x) =
∫ t

0 e(τ)dτ. Then y(x) ∈ X and
∫ 1

0 |e(x)|2dx = 0, that is,

e(x) = 0 for a.e. x ∈ [0, 1]. This shows that

−(h′ ◦ u′)′(x) + ζ(x)u(x) =− h′′(u′)u′′(x) + ζ(x)u(x) = −p(u′(x))u′′(x) + ζ(x)u(x)

=λ f (x, u(x)) + µg(x, u(x))

for all x ∈ [0, 1]. Hence we conclude that x is a solution of problem (P
f ,g

λ,µ) belongs to C2([0, 1]).

Proposition 2.7 ([27, Proposition 2.3]). If p(·) satisfies (Q1), then h′ is strongly monotone.

Proposition 2.8 ([27, Proposition 2.4]). If p(·) and ζ(·) satisfy (1.1) and (1.2), respectively, then

(1) Φ is well-defined in X,

(2) Φ is Gâteaux differentiable in X,

(3) Φ
′ is a Lipschitzian operator,

(4) Φ is convex in X.

Put

F(x, t) =
∫ t

0
f (x, s)ds and G(x, t) =

∫ t

0
g(x, s)ds for all (x, t) ∈ [0, 1]× R.

3 Existence of one solution

In this section, we focus on establishing the existence of one solution for the problem (P
f ,g

λ,µ).

For clarity and convenience, let us define

Gθ =
∫ 1

0
sup
|ξ|≤θ

G(x, ξ)dx for all θ > 0

and

Gη = inf
[0,1]×[0,η]

G(x, ξ) for all η > 0.

If g is sign-changing, then clearly Gθ ≥ 0 and Gη ≤ 0.

For our goal, we fix two positive constants θ and η, put

δλ,g = min

{

min{m, ζ0}θ2 − 8λ
∫ 1

0 sup|t|≤θ F(x, t)dx

8Gθ
,

1
4 h(2η) + 1

4 h(−2η) + ζ1η2 − λ
∫

3
4

1
4

F(x, η)dx

Gη

}
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and

δλ,g = min















δλ,g,
1

max

{

0, 8
min{m,ζ0}

lim sup|t|→+∞

supx∈[0,1] G(x,t)

x2

}















(3.1)

where we read ϵ/0 = +∞, so that, for instance, δλ,g = +∞ when

lim sup
|t|→+∞

supx∈[0,1] G(x, t)

x2
≤ 0,

and Gη = Gθ = 0.

Theorem 3.1. Assume that there exist two positive constants γ and η with the property

√

2h(2η) + 2h(−2η) + 8ζ1η2

min{m, ζ0}
< γ

such that

(A1) f (x, t) ≥ 0 for every (x, t) ∈ [0, 1]×
[

0, 1
4

]
⋃
[

3
4 , 1
]

,

(A2)
∫ 1

0 sup|t|≤γ F(x,t)dx

γ2 < min{m, ζ0}

∫

3
4

1
4

F(x,η)dx

2h(2η)+2h(−2η)+8ζ1η2 ,

(A3) minx∈[0,1] lim sup|ξ|→∞

F(x,ξ)
|ξ|2

∈ (−∞, 0].

Then, for each

λ ∈ Λ =







h(2η) + h(−2η) + 4ζ1η2

4
∫

3
4

1
4

F(x, η)dx
,

min{m, ζ0}γ2

8
∫ 1

0 sup|t|≤γ F(x, t)dx







and for every function g : [0, 1]× R → R satisfying the condition

min
x∈[0,1]

lim sup
|ξ|→∞

G(x, ξ)

|ξ|2
∈ (−∞, 0), (3.2)

there exists δλ,g > 0 given by (3.1) such that for each µ ∈ [0, δλ,g), the problem (P
f ,g

λ,µ) admits at least

one solution uλ in X such that

max
x∈[0,1]

|uλ(x)| < γ.

Proof. Our objective is to apply Theorem 2.1 to the problem (P
f ,g

λ,µ). Consider the functionals Φ

and Ψ defined in (2.3) and (2.3), respectively. Our task is to demonstrate that these functionals

satisfy the necessary conditions outlined in Theorem 2.1. Since f , g : [0; 1] × R → R are

L1-Carathéodory functions, we know that Ψ
′ is a well-defined and Gâteaux differentiable

functional with

Ψ
′(u)(y) =

∫ 1

0
f (x, u(x))y(x)dx +

µ

λ

∫ 1

0
g(x, u(x))y(x)dx

for every u, y ∈ X. Since the embeddings X →֒ Lq(q ≥ 1) and X →֒ L∞ are compact (Adams

[1]), we have Ψ
′ : X → X∗ is a continuous and compact operator, and Ψ is sequentially weakly
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upper semicontinuous. Moreover, Again using the Lebesgue’s theorem, from the continuity

of h′ and the arbitrariness of {an}, we know that Φ is Gâteaux differentiable in X with

Φ
′(u)(y) =

∫ 1

0
h′(u′(x))y′(x)dx +

∫ 1

0
ζ(x)u(x)y(x)dx (3.3)

for every u, y ∈ X. Furthermore, by the definition of Φ, we observe that it is sequentially

weakly lower semicontinuous and strongly continuous. Combining this observation with

(1.1) and (1.2), we have

∫ 1

0
h′(u′(x))dx =

∫ 1

0

(

∫ u′(x)

0

(

∫ τ

0
p(ξ)dξ

)

dτ

)

dx

and

1

2
min{m, ζ0}∥u∥2 ≤

m

2

∫ 1

0
|u′(x)|2dx +

ζ0

2

∫ 1

0
|u(x)|2dx ≤ Φ(u)

≤
M

2

∫ 1

0
|u′(x)|2dx +

ζ1

2

∫ 1

0
|u(x)|2dx ≤

1

2
max{M, ζ1}∥u∥2 (3.4)

for every u ∈ X, which implies that Φ is well-defined in X. By using the first inequality in

(3.4), it follows

lim
∥u∥→+∞

Φ(u) = +∞,

namely Φ is coercive. Further, we claim that Φ admits a continuous inverse on X∗. In fact, by

(1.1), (1.2), Proposition 2.7 and (3.3), we have

⟨Φ′(u)− Φ
′(y), u − y⟩ =

∫ 1

0
(h′(u′(x))− h′(y′(x)), u′(x)− y′(x))dx

+
∫ 1

0
ζ(x)|u(x)− y(x)|2dx

≥
∫ 1

0
m|u′(x)− y′(x)|2dx +

∫ 1

0
ζ0|u(x)− y(x)|2dx

≥ min{m, ζ0}∥u(x)− y(x)∥2

for all u, y ∈ X, which shows that Φ
′ is uniformly monotone in X. Put y = 0, then we have

min{m, ζ0}∥u∥2 ≤ ⟨Φ′(u), u⟩ ≤ ∥Φ
′(u)∥X∗ .∥u∥

⇒ min{m, ζ0}∥u∥ ≤ ∥Φ
′(u)∥X∗

which shows that Φ
′ is coercive in X. Since Φ

′ is a Lipschitzian operator, it is hemicontinuous

in X. According to Theorem 26.A of [28], Φ admits a continuous inverse on X∗. Additionally,

the functional Ψ belongs to C1(X, R) and has a compact derivative. Given that the embedding

X →֒ Lq (where q ≥ 1) is compact, there exists a positive constant C such that

|u|Lq([0,1]) ≤ C∥u∥

and it follows that

|u|L2([0,1]) ≤ C1∥u∥
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where C1 is positive constant. Moreover, for λ > 0, the functional Iλ is coercive. Indeed, since

µ < δλ we can fix κ such that

min
x∈[0,1]

lim sup
|ξ|→∞

G(x, ξ)

|ξ|2
∈ (−∞, κ)

and µκ <
min{m,ζ0}

2C2
1

. Therefore, there exists a positive constant ϱ such that

G(x, ξ) ≤ κξ2 + ϱ

for each ξ ∈ R and x ∈ [0, 1]. Now, we fix 0 < ε <
1

λC2
1

(min{m,ζ0}
2 − µC2

1κ
)

. From the

assumption (A3) there is a positive constant ρε such that

F(x, ξ) ≤ εξ2 + ρε

for every (x, ξ) ∈ [0, 1]× R. It follows that, for each u ∈ X, we have

Φ(u)− λΨ(u) ≥
1

2
min{m, ζ0}∥u∥2 − λ

∫ 1

0
[F(x, u(x)) +

µ

λ
G(x, u(x))]dx

≥
1

2
min{m, ζ0}∥u∥2 − λ

(

ε

∫ 1

0
|u(x)|2dx + ρε

)

− µ

(

κ

∫ 1

0
|u(x)|2dx + ϱ

)

≥

(

1

2
min{m, ζ0} − λC2

1ε − µC2
1κ

)

∥u∥2 − λρε − µϱ

and thus

lim
∥u∥→∞

(Φ(u)− λΨ(u)) = ∞,

which means the functional Iλ = Φ − λΨ is coercive. Thus, by [5, Proposition 2.1] the func-

tional Iλ = Φ − λΨ verifies (PS)[r]-condition for each r > 0 and so the condition (a2) of

Theorem 2.1 is verified. Fix λ ∈ (0, λ∗), thus

∫
3
4

1
4

F(x, η)dx − µ
λ Gη

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
>

1

λ
.

Put r = min{m,ζ0}
8 γ2 and

w(x) =























η, x ∈
[

0, 1
4

]

,

2ηx + η
2 , x ∈

[

1
4 , 1

2

]

,

−2ηx + 5η
2 , x ∈

[

1
2 , 3

4

]

,

η, x ∈
[

3
4 , 1
]

.

(3.5)

Clearly, w ∈ X. Then, we have Φ(0) = Ψ(0) = 0,

Φ(w) =
1

4
h(2η) +

1

4
h(−2η) +

1

2

∫ 1

0
ζ(x)|w(x)|2dx

≤
1

4
h(2η) +

1

4
h(−2η) +

ζ1

2

∫ 1

0
|w(x)|2dx

=
1

4
h(2η) +

1

4
h(−2η) +

31ζ1η2

2 × 24

<
1

4
h(2η) +

1

4
h(−2η) + ζ1η2 (3.6)
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and

Φ(w) ≥
1

4
h(2η) +

1

4
h(−2η) +

ζ0

2

∫ 1

0
|w(x)|2dx

=
1

4
h(2η) +

1

4
h(−2η) +

31ζ0η2

2 × 24

>
1

4
h(2η) +

1

4
h(−2η) +

ζ0η2

8
. (3.7)

From minx∈[ 1
4 , 3

4 ]
{w(x)} = η, maxx∈[ 1

4 , 3
4 ]
{w(x)} = 3η

2 and the assumption (A1), we have

Ψ(w) =
∫ 1

4

0

∫ η

0
f (x, ξ)dξdx +

∫ 3
4

1
4

∫ w

0
f (x, ξ)dξdx +

∫ 1

3
4

∫ η

0
f (x, ξ)dξdx

+
µ

λ

∫ 1

0

(

∫ w(x)

0
g(x, ξ)dξ

)

dx ≥
∫ 3

4

1
4

∫ η

0
f (x, ξ)dξdx +

µ

λ
Gη

=
∫ 3

4

1
4

F(x, η)dx +
µ

λ
Gη .

Thus, by the assumption

√

8

min{m, ζ0}

(

1

4
h(2η) +

1

4
h(−2η) + ζ1η2

)

< γ,

we have 0 < Φ(w) < r. For u ∈ X, taking into account

|u(x)| ≤

∣

∣

∣

∣

∫ t

t1

u′(τ)dτ

∣

∣

∣

∣

+ |u(x1)| ≤
∫ 1

0
|u′(τ)|dτ + |u(x1)|

and

|u(x)| ≤
∫ 1

0
|u′(τ)|dτ +

∫ 1

0
|u(x1)|dx1 ≤

(

∫ 1

0
|u′(τ)|2dτ

)
1
2

+

(

∫ 1

0
|u(τ)|2dτ

)
1
2

,

we have

max
x∈[0,1]

|u(x)| ≤ 2∥u∥. (3.8)

From the definition of Φ and in view of (3.4) for every r > 0, one has

Φ
−1(−∞, r] = {u ∈ X, Φ(x) ≤ r}

⊆

{

u ∈ X, max
x∈[0,1]

|u(x)| ≤

√

8r

min{m, ζ0}

}

⊆

{

u ∈ X, max
x∈[0,1]

|u(x)| ≤ γ

}

.

Hence, we have

sup
Φ(u)<r

Ψ(u) = sup
u∈Φ−1(−∞,r)

Ψ(u) ≤
∫ 1

0
sup
|t|≤γ

F(x, t)dx +
µ

λ
Gγ.
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Therefore, we have

supu∈Φ−1(−∞,r] Ψ(u)

r
=

supu∈Φ−1(−∞,r]

(

∫ 1
0 F(x, u(x))dx + µ

λ

∫ 1
0 G(x, u(x))dx

)

r

≤

∫ 1
0 sup|t|≤γ F(x, t)dx + µ

λ Gγ

min{m,ζ0}
8 γ2

(3.9)

and

Ψ(w)

Φ(w)
≥

∫
3
4

1
4

F(x, η)dx + µ
λ

∫ 1
0 G(x, η)dx

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
(3.10)

≥

∫
3
4

1
4

F(x, η)dx + µ
λ Gη

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
.

Since

µ <

min{m, ζ0}γ2 − 8λ
∫ 1

0 sup|t|≤γ F(x, t)dx

8Gγ
,

we have

8

∫ 1
0 sup|t|≤γ F(x, t)dx + µ

λ Gγ

min{m, ζ0}γ2
<

1

λ
.

Furthermore,

µ <

1
4 h(2η) + 1

4 h(−2η) + ζ1η2 − λ
∫

3
4

1
4

F(x, η)dx

Gη
,

this means
∫

3
4

1
4

F(x, η)dx + µ
λ Gη

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
>

1

λ
.

Then,

8

min{m, ζ0}

∫ 1
0 sup|t|≤γ F(x, t)dx + µ

λ Gγ

γ2
<

1

λ
<

∫
3
4

1
4

F(x, η)dx + µ
λ Gη

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
. (3.11)

Hence, from (3.9)–(3.11), the condition (a1) of Applying Theorem 2.1 with ū = w ensures the

existence of a local minimum point uλ for the functional Iλ such that 0 < Φ(uλ) < r. Thus, uλ

serves as a nontrivial solution to the problem (P
f ,g

λ,µ), satisfying

max
x∈[0,1]

|uλ(x)| < γ.

Now, we illustrate Theorem 3.1 through the following example.

Example 3.2. We consider the following problem

{

−p(u′)u′′ + u = λ f (x, u(x)) + µg(x, u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0
(3.12)
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where p(t) = 3 − 2 cos(t) for every t ∈ R, ζ(x) = 1 for each x ∈ [0, 1] and

f (x, t) =

{

4
10 e−xt3, for every (x, t) ∈ [0, 1]× (−∞, 1),
4

10t e−x, for every (x, t) ∈ [0, 1]× [1,+∞).

By the expression of f , we have

F(x, t) =

{

1
10 e−xt4, for every (x, t) ∈ [0, 1]× (−∞, 1),

e−x
(

4
10 ln(t) + 1

10

)

, for every (x, t) ∈ [0, 1]× [1,+∞).

Hence, lim|ξ|→∞

F(x,ξ)
|ξ|2

= 0, thus (A3) holds. Choose γ = 10−2, and η = 1. By simple calcula-

tions, we obtain m = 1, M = 5 and ζ0 = ζ1 = 1. Since

∫ 1
0 sup|t|≤γ F(x, t)dx

γ2
=

e − 1

109e
<

e0.75 − e0.25

(160 + 80 cos(2))e
=

min{m, ζ0}
∫

3
4

1
4

F(x, η)dx

2h(2η) + 2h(−2η) + 8ζ1η2
,

thus (A2) holds true, then all conditions in Theorem 3.1 are satisfied. Therefore, it follows

that for each

λ ∈

(

(80 + 40 cos(2))e

4(e0.75 − e0.25)
,

109e

8(e − 1)

)

and for every function g : [0, 1]× R → R satisfying the condition

min
x∈[0,1]

lim sup
|ξ|→∞

G(x, ξ)

|ξ|2
∈ (−∞, 0),

there exists δλ,g > 0 such that for each µ ∈ [0, δλ,g), the problem (3.12) admits at least one

solution uλ in X such that

max
x∈[0,1]

|uλ(x)| < 10−2.

4 Existence of two solutions

In this section, our objective is to establish the existence of two distinct solutions for the

problem (P
f ,g

λ,µ). The following result is derived by applying Theorem 2.2, without the need for

assumption (A3).

Theorem 4.1. Assume that there exist two positive constants γ and η with the property

√

2h(2η) + 2h(−2η) + 8ζ1η2

min{m, ζ0}
< γ

and

(A4) there exist ν > 2 and R > 0 such that

0 < νF(x, ξ) ≤ ξ f (x, ξ) (4.1)

for all |ξ| ≥ R and for all x ∈ [0, 1].
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Then, for each

λ ∈



0,
min{m, ζ0}γ2

8
∫ 1

0 sup|t|≤γ F(x, t)dx



 ,

and for every function g : [0, 1]× R → R satisfying the condition (A4), there exists δλ > 0, for each

µ ∈ [0, δλ[, the problem (P
f ,g

λ,µ) admits at least two solutions u1 and u2 in X such that

max
x∈[0,1]

|u1(x)| < γ.

Proof. Our aim is to apply Theorem 2.2 to the space X with the norm is defined in (2.2) and

to the functionals Φ and Ψ defined in the proof of Theorem 3.1. The functional Iλ satisfies

the (PS)-condition. Indeed, assume that {un}n∈N ⊂ X such that {Iλ(un)}n∈N is bounded and

I′λ(un) → 0 as n → ∞. Then, there exists a positive constant c0 such that

|Iλ(un)| ≤ c0, |I′λ(un)| ≤ c0 ∀n ∈ N.

Therefore, we deduce from the definition of I′λ and assumption (A3) that

c0 + c1∥un∥ ≥ νIλ(un)− I′λ(un)(un) ≥ min{m, ζ0}

(

ν

2
− 1

)

∥un∥
2

− λ

∫ 1

0
(νF(x, un(x))− f (x, un(x))(un(x)))dx

− µ

∫ 1

0
(νG(x, un(x))− g(x, un(x))(un(x)))dx

≥ min{m, ζ0}

(

ν

2
− 1

)

∥un∥
2

for some c1 > 0. Since ν > 2, this implies that (un) is bounded. Consequently, since X is a

reflexive Banach space we have, up to a subsequence,

un ⇀ u in X.

By I′λ(un) → 0 and un ⇀ u in X, we obtain

(

I′λ(un)− I′λ(u)
)

(un − u) → 0. (4.2)

From the continuity of f and g, we have

∫ 1

0
( f (x, un(x))− f (x, u(x))) (un(x)− u(x))dx → 0, as n → ∞

and
∫ 1

0
(g(x, un(x))− g(x, u(x))) (un(x)− u(x))dx → 0, as n → ∞.
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Moreover, an easy computation shows

(

I′λ(un)− I′λ(u)
)

(un − u) =
∫ 1

0
h′(u′

n(x)− u′(x))(u′
n(x)− u′(x))dx

+
∫ 1

0
ζ(x)(un(x)− u(x))(un(x)− u(x))dx

− λ

∫ 1

0
( f (x, un(x))− f (x, u(x))) (un(x)− u(x))dx

− µ

∫ 1

0
(g(x, un(x)− g(x, u(x))) (un(x)− u(x))dx

≥ min{m, ζ0}∥un − u∥2.

Thus, the sequence un converges strongly to u in X. Therefore, Iλ satisfies the (PS)-condition.

Moreover, by integrating the condition (4.1), there exist constants a1, a2, a3, a4 > 0 such that

that

F(x, t) ≥ a1|t|
ν − a2 and G(x, t) ≥ a3|t|

ν − a4

for all x ∈ [0, 1] and t ∈ R. Moreover, for any u ∈ X, one has

1

2
min{m, ζ0}∥u∥2 ≤ Φ(u) ≤

1

2
max{M, ζ1}∥u∥2. (4.3)

Now, choosing any u ∈ X \ {0}, for each τ > 0 taking (4.3) into account one has

Iλ(τu) = (Φ + λΨ)(τu)

≤
max{M, ζ1}

2
∥τu∥2 − λ

∫ 1

0
F(x, τu(x))dx − µ

∫ 1

0
G(x, τu(x))dx

≤
max{M, ζ1}τ2

2
∥u∥2 − λτνa1

∫ 1

0
|u(x)|νdx + µτνa3

∫ 1

0
|u(x)|νdx − λa2 − µa4.

Since ν > 2, this condition guarantees that Iλ is unbounded from below. Thus, all hypotheses

of Theorem 2.2 are satisfied. Therefore, for each

λ ∈



0,
min{m, ζ0}γ2

8
∫ 1

0 sup|t|≤γ F(x, t)dx



 ,

the functional Iλ admits two distinct critical points that are solutions of the problem (P
f ,g

λ,µ).

Remark 4.2. Theorem 1.1 immediately follows from Theorem 4.1.

Remark 4.3. In Theorem 2.1, it is observed that if either f (x, 0) ̸= 0 for some x ∈ [0, 1] or

g(x, 0) ̸= 0 for some x ∈ [0, 1], or both conditions hold true, then Theorem 4.1 guarantees

the existence of two nontrivial solutions for the problem (P
f ,g

λ,µ). However, if the condition

f (x, 0) ̸= 0 for some x ∈ [0, 1] and g(x, 0) ̸= 0 for some x ∈ [0, 1] does not hold, the second

solution u2 of the problem (P
f ,g

λ,µ) may be trivial, but the problem still has at least one nontrivial

solution.

Remark 4.4. Using similar arguments as those provided in the proof of [7, Theorem 3.5], the

non-triviality of the second solution guaranteed by Theorem 4.1 can also be achieved in the

case where f (x, 0) = 0 for all x ∈ [0, 1], provided that an extra condition at zero is imposed.
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Specifically, this condition entails the existence of a non-empty open set D ⊆ [0, 1] and a set

B ⊂ D of positive Lebesgue measure such that

lim sup
ξ→0+

ess infx∈B F(x, ξ)

|ξ|2
= ∞ and lim inf

ξ→0+

ess infx∈D F(x, ξ)

|ξ|2
> −∞.

See [18, Theorem 3.1] for more details.

5 Another multiplicity result for the case µ = 0

In this section, we focus on establishing the existence of at least two and three solutions for

the problem (P
f ,g

λ,µ) in the case µ = 0. To achieve this, we define

Fc =
∫ 1

0
sup
|t|≤c

F(x, t)dx and Fc = inf
x∈[0,1]

F(x, c)

for every c > 0.

Theorem 5.1. Assume that there exist two positive constants γ̄ and η̄ such that

√

2h(2η̄) + 2h(−2η̄) + 8ζ1η̄2

min{m, ζ0}
< γ̄ (5.1)

and suppose that the assumptions (A1) and (A3) in Theorem 3.1 hold. Moreover, assume that

(A5)
Fγ̄

min{m,ζ0}γ̄2 <

1
2 Fη̄−Fγ̄

2h(2η̄)+2h(−2η̄)+8ζ1η̄2 .

Then, for each

λ ∈

(

h(2η̄) + h(−2η̄) + 4ζ1η̄2

2Fη̄ − 4Fγ̄
,

min{m, ζ0}γ̄2

8Fγ̄

)

,

the problem (P
f ,g

λ,µ) in the case µ = 0 admits at least three solutions in X.

Proof. Put Iλ = Φ + λΨ, where

Φ(u) =
∫ 1

0
h(u′(x))dx +

1

2

∫ 1

0
ζ(x)|u(x)|2dx (5.2)

and

Ψ(u) = −
∫ 1

0
F(x, u(x))dx

for all u ∈ X. Standard arguments demonstrate that Φ and Ψ are Gâteaux differentiable

functionals, and their Gâteaux derivatives at the point u ∈ X are given by

Φ
′(u)(v) =

∫ 1

0
h′(u′(x))v′(x)dx +

∫ 1

0
ζ(x)u(x)v(x)dx

and

Ψ
′(u)(v) = −

∫ 1

0
f (x, u(x))v(x)dx
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for all u, v ∈ X, respectively. Hence, a critical point of the functional Φ + λΨ, gives us a solu-

tion of (P
f ,g

λ,µ) in the case µ = 0. Our goal is to apply Theorem 2.3 to Φ and Ψ. By sequentially

weakly lower semicontinuity of the norm and continuity of h, the functional Φ is sequentially

weakly lower semicontinuous. Moreover, from Section 3, Φ is continuously Gâteaux differ-

entiable while Proposition 2.7 gives that its Gâteaux derivative admits a continuous inverse

on X∗. The functional Ψ : X → R is well defined and is continuously Gâteaux differentiable

whose Gâteaux derivative is compact. Then, it is enough to show that Φ and Ψ satisfy (c1)

and (c2) in Theorem 2.3. Now, we fix 0 < ϵ <
min{m,ζ0}

2λC2
1

. From the assumption (A3) there is a

function ρε : [0, 1] → R with ρϵ(x) < ∞ for all x ∈ [0, 1] such that

F(x, t) ≤ εt2 + ρ(x)

for every (x, t) ∈ [0, 1]× R. It follows that for each u ∈ X,

Φ(u)− λΨ(u) ≥
min{m, ζ0}

2
∥u∥2 − λ

∫ 1

0
F(x, u(x))dx

≥
min{m, ζ0}

2
∥u∥2 − λϵ

∫ 1

0
u2(x)dx − λ

∫ 1

0
ρ(x)dx

≥

(

min{m, ζ0}

2
− λC2

1ϵ

)

∥u∥2dx − λ

∫ 1

0
ρ(x)dx

and thus

lim
∥u∥→∞

(Φ(u) + λΨ(u)) = ∞,

which means the functional Iλ = Φ + λΨ is coercive. Now it remains to show that (c2) of

Theorem 2.3 is fulfilled. Let r̄ = min{m,ζ0}
8 γ̄2 and

w(x) =























η̄, x ∈
[

0, 1
4

]

,

2η̄x + η̄
2 , x ∈

[

1
4 , 1

2

]

,

−2η̄x + 5η̄
2 , x ∈

[

1
2 , 3

4

]

,

η̄, x ∈
[

3
4 , 1
]

.

Clearly, w ∈ X. Then, we have Φ(0) = Ψ(0) = 0,

Φ(w) <
1

4
h(2η̄) +

1

4
h(−2η̄) + ζ1η̄2

and

Φ(w) >
1

4
h(2η̄) +

1

4
h(−2η̄) +

ζ0η̄2

8
.

Thus by (5.1), Φ(w) > r̄. Moreover

Ψ(w) = −
∫ 1

0
F(x, w(x))dx ≤ −

∫ 3
4

1
4

F(x, η̄)dx ≤ −
1

2
Fη̄ .

Taking (3.8) into account, for every u ∈ X such that Φ(u) < r̄, we have

sup
x∈[0,1]

|u(x)| ≤ γ̄.
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Thus,

sup
Φ(u)<r̄

Ψ(u) = sup
u∈Φ−1(−∞,r̄)

∫ 1

0
F(x, u(x))dx ≤

∫ 1

0
sup
|t|≤γ̄

F(x, t)dx = Fγ̄. (5.3)

By simple calculations and from the definition of φ(r̄), since Φ(0) = Ψ(0) = 0 and

Φ−1(−∞, r̄)
w
= Φ

−1(−∞, r̄), one has

φ1(r̄) = inf
u∈Φ−1(]−∞,r̄[)

Ψ(u)− inf
Φ−1(−∞,r̄)

w Ψ

r̄ − Φ(u)
≤

− inf
Φ−1(−∞,r̄)

w Ψ

r̄

≤
8

min{m, ζ0}

∫ 1
0 sup|t|≤γ̄ F(x, t)dx

γ̄2
=

8Fγ̄

min{m, ζ0}γ̄2
.

On the other hand, by (5.3), one has

φ2(r̄) = inf
u∈Φ−1(−∞,r̄)

sup
v∈Φ−1[r̄,∞)

Ψ(u)− Ψ(v)

Φ(u)− Φ(v)
≥ inf

u∈Φ−1(−∞,r̄)

Ψ(u)− Ψ(w)

Φ(w)− Φ(u)

≥
infu∈Φ−1(−∞,r̄) Ψ(u)− Ψ(w)

Φ(w)− Φ(u)

≥
−
∫ 1

0 sup|t|≤γ̄ F(x, t)dx +
∫

3
4

1
4

F(x, η̄)dx

Φ(w)− Φ(u)

≥
2Fη̄ − 4Fγ̄

h(2η̄) + h(−2η̄) + 4ζ1η̄2
.

Hence, from (A5), one has

φ1(r̄) < φ2(r̄).

Therefore, from Theorem 2.3, taking also into account that

1

φ2(r̄)
≤

h(2η̄) + h(−2η̄) + 4ζ1η̄2

2Fη̄ − 4Fγ̄

and
1

φ1(r̄)
≥

min{m, ζ0}γ̄2

8Fγ̄
,

we obtain the desired conclusion.

Remark 5.2. When the assumption (A5) of Theorem 5.1 holds, simple calculations show that

the condition

(A6)
Fγ̄

min{m,ζ0}γ̄2 <
Fη̄

4h(2η̄)+4h(−2η̄)+16ζ1η̄2

implies (A5) of Theorem 5.1. Hence, if the assumptions (5.1) and (A6) hold, then for each

λ ∈

(

h(2η̄) + h(−2η̄) + 4ζ1η̄2

2Fη̄
,

min{m, ζ0}γ̄2

8Fγ̄

)

,

the problem (P
f ,g

λ,µ) in the case µ = 0 admits at least three solutions.
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Now, we present an application of Theorem 2.4, which will be utilized later to derive

multiple solutions for the problem (P
f ,g

λ,µ) in the case µ = 0, without the need for assumption

(A3).

Theorem 5.3. Assume that there exist three positive constants γ̄1, η̄ and γ̄2 with

γ̄1 <

√

8

min{m, ζ0}

(

1

4
g(2η̄) +

1

4
g(−2η̄) +

ζ0η̄2

8

)

(5.4)

and
√

8

min{m, ζ0}

(

1

4
g(2η̄) +

1

4
g(−2η̄) + ζ1η̄2

)

< γ̄2 (5.5)

such that the assumption (A5) in Theorem 5.1 holds and

(A7)
1

min{m,ζ0}
max

{

Fγ̄1

γ̄2
1

, Fγ̄2

γ̄2
2

}

<
Fη̄

4h(2η̄)+4h(−2η̄)+16ζ1η̄2 .

Then, for each

λ ∈ Λ =

(

h(2η̄) + h(−2η̄) + 4ζ1η̄2

2Fη̄
, min

{

min{m, ζ0}γ̄2
1

8Fγ̄1
,

min{m, ζ0}γ̄2
2

8Fγ̄2

})

,

the problem (P
f ,g

λ,µ) in the case µ = 0 admits at least two solutions u1,λ and u2,λ such that

maxx∈[0,1] |u1,λ(x)| < γ̄1 and maxx∈[0,1] |u2,λ(x)| < γ̄2.

Proof. Put

f (x, t) =















f (x,−γ̄2), if (x, t) ∈ [0, 1]× (−∞, γ̄2),

f (x, t), if (x, t) ∈ [0, 1]× [−γ̄2, γ̄2],

f (x, γ̄2), if (x, t) ∈ [0, 1]× (γ̄2, ∞).

Clearly, f : [0, 1]× R → R is a Carathéodory function. Now put F(x, ξ) =
∫ ξ

0 f (x, t)dx for all

(x, ξ) ∈ [0, 1]× R and take X and Φ as (2.1) and (5.2), respectively, and

Ψ(u) = −
∫ 1

0
F(x, u(x))dx

for all u ∈ X. Our goal is to apply Theorem 2.4 to Φ and Ψ. It is well known that

lim∥u∥→∞ Φ(u) = ∞ and Ψ is a differentiable functional whose differential at the point u ∈ X

is

Ψ
′(u)(v) = −

∫ 1

0
f (x, u(x))v(x)dx

for any v ∈ X as well as it is sequentially weakly lower semicontinuous. Furthermore Ψ
′ :

X → X∗ is a compact operator. Thus, it is enough to show that Φ and Ψ satisfy the conditions

(c1), (c2) and (c3) in Theorem 2.4. Let

r̄1 =
min{m, ζ0}

8
γ̄2

1, r̄2 =
min{m, ζ0}

8
γ̄2

2

and w as in the proof of Theorem 5.1. Due to the assumptions (3.4), (5.4) and (5.5) we have

r̄1 < Φ(w) < r̄2 and infX Φ < r̄1 < r̄2. Moreover, arguing as in the proof of Theorem 5.1 and

taking also into account Remark 5.2 we obtain

φ1(r̄1) ≤
8

min{m, ζ0}

∫ 1
0 sup|t|≤γ̄1

F(x, t)dx

γ̄2
1

=
8Fγ̄1

min{m, ζ0}γ̄2
1

,
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φ1(r̄2) ≤
8

min{m, ζ0}

∫ 1
0 sup|t|≤γ̄2

F(x, t)dx

γ̄2
2

=
8Fγ̄2

min{m, ζ0}γ̄2
2

and

φ∗
2(r̄1, r̄2) ≥

2Fη̄

h(2η̄) + h(−2η̄) + 4ζ1η̄2
.

Hence, from (A7), the conditions (c2) and (c3) of Theorem 2.4 hold. Therefore, from Theo-

rem 2.4 we obtain that, for each λ ∈ Λ, the problem

{

−p(u′)u′′ + ζ(x)u = λ f (x, u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0

admits at least two solutions u1,λ and u2,λ such that maxx∈[0,1] |u1,λ(x)| < γ̄1 and

maxx∈[0,1] |u2,λ(x)| < γ̄2. Observing that these solutions are also solutions for the problem

(P
f ,g

λ,µ) in the case µ = 0, the conclusion follows.

Now, we provide some remarks on our results in this section.

Remark 5.4. In Theorems 5.1 and 5.3, we investigated the critical points of the functional Iλ

naturally associated with the problem (P
f ,g

λ,µ) in the case µ = 0. It is worth noting that, in

general, Iλ can be unbounded from below in X. For instance, when f (t) = 1 + |t|ϑ−2t for all

t ∈ R with ϑ > 2, for any fixed u ∈ X\0 and ι ∈ R, we obtain

Iλ(ιu) ≤
max{m, ζ1}

2
∥ιu∥2 − λ

∫ 1

0
F(x, ιu(x))dx

≤
max{M, ζ1}ι2

2
∥u∥2 − λιC4∥u∥ − λC5

ιϑ

ϑ
∥u∥ϑ → −∞

where C4 and C5 are positive constants, as ι → ∞. Hence, we can not use direct minimization

to find critical points of the functional Iλ.

Remark 5.5. We observe that if f is non-negative, Theorem 5.3 represents a bifurcation result,

indicating that the pair (0, 0) belongs to the closure of the set

{

(uλ, λ) ∈ X × (0, ∞) : uλ is a non-trivial solution of (P
f ,g

λ,µ) , µ = 0
}

⊂ X × R.

Indeed, if λ goes to zero, by Theorem 5.3 we have that γ̄i → 0, i = 1, 2 and since

maxx∈[0,1] |ui,λ(x)| < γ̄i, i = 1, 2, there exist two sequences {uj} in X and {λj} in R
+ (here

uj = uλj
) such that

λj → 0+ and ∥uj∥ → 0,

as j → ∞. Moreover, since f is nonnegative, Ψ(u) < 0 for all u ∈ R and thus

(0, λ∗) ∋ λ 7→ Iλ(uλ)

is strictly decreasing. Hence, for every λ1, λ2 ∈ (0, λ∗), with λ1 ̸= λ2, solutions uλ1
and uλ2

ensured by Theorem 2.4 are different.

Remark 5.6. If f is non-negative, then the solutions guaranteed by Theorems 5.1 and 5.3 are

also non-negative.
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Now, we highlight some results where the function f has separated variables. Specifically,

consider the following problem

{

−p(u′)u′′ + ζ(x)u = λθ(x) f (u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0
(P

f ,θ
λ )

where θ : [0, 1] → R is a non-negative and non-zero function such that θ(x) < ∞ for all

x ∈ [0, 1] and f : R → R is a non-negative and continuous function. Put

F(ξ) =
∫ ξ

0
f (s)ds

for all ξ ∈ R.

The following existence results are consequences of Theorems 5.1 and 5.3, respectively, by

setting f (x, t) = θ(x) f (x) for every (x, t) ∈ [0, 1]× R.

Theorem 5.7. Assume that there exist two positive constants γ̄ and η̄, with

√

2h(2η̄) + 2h(−2η̄) + 8ζ1η̄2

min{m, ζ0}
< γ̄

such that

(A8) θ(x) ≥ 0 for every x ∈ [0, 1] and f (t) ≥ 0 for every t ∈
[

0, 1
4

]
⋃
[

3
4 , 1
]

,

(A9)
1

min{m,ζ0}

∫ 1
0 θ(x)dxF(γ̄)

γ̄2 <

∫

3
4

1
4

θ(x)dxF(η̄)

2h(2η̄)+2h(−2η̄)+8ζ1η̄2 ,

(A10) lim sup|ξ|→∞

F(ξ)
|ξ|2

∈ (−∞, 0].

Then, for each

λ ∈







1

4
∫

3
4

1
4

θ(x)dx

h(2η̄) + h(−2η̄) + 4ζ1η̄2

F(η̄)
,

min{m, ζ0}

8
∫ 1

0 θ(x)dx

γ̄2

F(γ̄)






,

the problem (P
f ,θ

λ ) admits at least three solutions in X.

Theorem 5.8. Assume that there exist three positive constants γ̄1, η̄ and γ̄2 with

γ̄1 <

√

8

min{m, ζ0}

(

1

4
g(2η̄) +

1

4
g(−2η̄) +

ζ0η̄2

8

)

and
√

8

min{m, ζ0}

(

1

4
g(2η̄) +

1

4
g(−2η̄) + ζ1η2

)

< γ̄2

such that

(A11) θ(x) ≥ 0 for every x ∈ [0, 1] and f (t) ≥ 0 for every t ∈
[

0, 1
4

]

∪
[

3
4 , 1
]

,

(A12)
∫ 1

0 θ(x)dx

min{m,ζ0}
max

{

F(γ̄1)
γ̄2

1
, F(γ̄2)

γ̄2
2

}

<

∫

3
4

1
4

θ(x)dxF(η̄)

2h(2η̄)+2h(−2η̄)+8ζ1η̄2 .
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Then, for each

λ ∈Λ =







1

4
∫

3
4

1
4

θ(x)dx

h(2η̄) + h(−2η̄) + 4ζ1η̄2

F(η̄)
,

min{m, ζ0}

8
∫ 1

0 θ(x)dx
min

{

γ̄2
1

F(γ̄1)
,

γ̄2
2

F(γ̄2)

}






,

the problem (P
f ,θ

λ ) admits at least two solutions u1,λ and u2,λ such that maxx∈[0,1] |u1,λ(x)| < γ1 and

maxx∈[0,1] |u2,λ(x)| < γ2.

Now, we point out a special case of Theorem 5.7.

Theorem 5.9. Assume that

lim
ξ→0+

f (ξ)

ξ
= lim

|ξ|→∞

f (ξ)

|ξ|
= 0 (5.6)

and there exists a positive constant η̄ such that F(η̄) > 0. Then, for each λ > λ∗, where

λ∗ =
1

4
∫

3
4

1
4

θ(x)dx
inf
η̄>0

h(2η̄) + h(−2η̄) + 4ζ1η̄2

F(η̄)
,

the problem (P
f ,θ

λ ) admits at least one nonnegative and one non zero solution in X.

Proof. Let λ > λ∗. Then, there is η̄ > 0 such that

λ >
1

4
∫

3
4

1
4

θ(x)dx
inf
η̄>0

h(2η̄) + h(−2η̄) + 4ζ1η̄2

F(η̄)
.

From (5.6) we obtain

lim
u→0+

sup|ξ|≤u f (ξ)

u
= lim

u→∞

sup|ξ|≤u f (ξ)

u
= 0.

So we can pick γ̄1 and γ̄2 such that

γ̄1 <

√

8

min{m, ζ0}

(

1

4
g(2η̄) +

1

4
g(−2η̄) +

ζ0η̄2

8

)

and
√

8

min{m, ζ0}

(

1

4
g(2η̄) +

1

4
g(−2η̄) + ζ1η2

)

< γ̄2,

sup|ξ|≤γ̄1
f (ξ)

γ̄1
<

min{m,ζ0}

8
∫ 1

0 θ(x)dx

γ̄2
1

F(γ̄1)
and

sup|ξ|≤γ̄2
f (ξ)

γ̄2
<

min{m,ζ0}

8
∫ 1

0 θ(x)dx

γ̄2
2

F(γ̄2)
. Hence, from Theorem 5.8 we

obtain the conclusion.

Remark 5.10. Theorem 1.2 immediately follows from Theorem 5.9.



24 S. Heidarkhani, S. Moradi, G. Caristi and M. Ferrara

6 Ethical statement

Author Contributions All authors contributed equally to this work.

Funding Not applicable.

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest: The authors declare that they have no conflict of interest.

Consent to participate: Not applicable.

7 Acknowledgments

This work was funded by the Next Generation EU-Italian NRRP, Mission 4, Component 2,

Investment 1.5, call for the creation and strengthening of ’Innovation Ecosystems’, building

’Territorial R&D Leaders’ (Directorial Decree n. 2021/3277) - project Tech4You - Technologies

for climate change adaptation and quality of life improvement, n. ECS0000009. This work

reflects only the authors’ views and opinions, neither the Ministry for University and Research

nor the European Commission can be considered responsible for them.

References

[1] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Elsevier/Academic Press, Amsterdam,

2003. MR2424078; Zbl 1098.46001

[2] G. A. Afrouzi, S. Heidarkhani, Three solutions for a quasilinear boundary value prob-

lem, Nonlinear Anal. 69(2008), 3330–3336. https://doi.org/10.1016/j.na.2007.09.022;

MR2450542; Zbl 1158.34311

[3] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and

applications, J. Funct. Anal. 14(1973), 349–381. https://doi.org/10.1016/0022-1236(73)

90051-7; MR0370183; Zbl 0273.49063

[4] D. Averna, G. Bonanno, A three critical point theorem and its applications to the

ordinary Dirichlet problem, Topol. Methods Nonlinear Anal. 22(2003), 93–103. https:

//doi.org/; MR2037268; Zbl 1048.58005

[5] G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear

Anal. 75(2012), 2992–3007. https://doi.org/10.1016/j.na.2011.12.003; MR2878492;

Zbl 1239.58011

[6] G. Bonanno, A critical points theorem and nonlinear differential problems, J.

Global Optim. 28(2004), 249–258. https://doi.org/10.1023/B:JOGO.0000026447.51988.

f6; MR2074785; Zbl 1087.58007

[7] G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Non-

linear Anal. 1(2012) 205–220. https://doi.org/10.1515/anona-2012-0003; MR3034869;

Zbl 1277.35170



Multiple solutions of a quasilinear periodic boundary value problem 25

[8] G. Bonanno, A. Chinnì, Existence and multiplicity of weak solutions for elliptic Dirich-

let problems with variable exponent, J. Math. Anal. Appl. 418(2014), 812–827. https:

//doi.org/10.1016/j.jmaa.2014.04.016; MR3206681; Zbl 1312.35111

[9] G. Bonanno, R. Livrea, Periodic solutions for a class of second order Hamiltonian sys-

tems, Electron. J. Differential Equations 2005, No. 115, 13 pp. MR2174547; Zbl 1096.34027

[10] G. Bonanno, D. O’Regan, A boundary value problem on the half-line via critical point

methods, Dynam. Systems Appl. 15(2006), 395–408. MR2367653

[11] G. Caristi, S. Heidarkhani, A. Salari, Variational approaches to Kirchhoff-type second-

order impulsive differential equations on the half-line, Results Math. 73(2018), 1–31.

https://doi.org/10.1007/s00025-018-0772-2; MR3764544; Zbl 1390.34053

[12] M. Ferrara, S. Heidarkhani, S. Moradi, G. Caristi, A sequence of solutions for im-

pulsive quasilinear periodic boundary value problems, preprint.

[13] M. Ferrara, S. Heidarkhani, S. Moradi, G. Caristi, Energy estimates and existence

results for a quasilinear periodic boundary value problem, Mediterr. J. Math. 21(2024), No.

137, 1–21. https://doi.org/10.1007/s00009-024-02669-2; MR4756237; Zbl 1540.34057

[14] J. R. Graef, S. Heidarkhani, L. Kong, A critical points approach for the existence of

multiple solutions of a Dirichlet quasilinear system, J. Math. Anal. Appl. 388(2012), 1268–

1278. https://doi.org/10.1016/j.jmaa.2011.11.019; MR3356852; Zbl 1244.34024

[15] J. R. Graef, S. Heidarkhani, L. Kong, S. Moradi, Multiple solutions to a quasilinear

periodic boundary value problem with impulsive effects, Electron. J. Qual. Theory Dif-

fer. Equ. 2024, No. 12, 1–18. https://doi.org/10.14232/ejqtde.2024.1.12; MR4710534;

Zbl 07911172

[16] A. Ghobadi, S. Heidarkhani, Variational approach for an elastic beam equation with

local nonlinearities, Ann. Polon. Math. 130(2023), 201–222. https://doi.org/10.4064/

ap220519-20-10; MR4638662; Zbl 1531.34031

[17] S. Heidarkhani, Multiple solutions for a quasilinear second order differential equation

depending on a parameter, Acta Math. Appl. Sin. Engl. Ser. 32(2016), 199–208. https:

//doi.org/10.1007/s10255-016-0548-y; MR3482433; Zbl 1338.34052

[18] S. Heidarkhani, S. Moradi, Existence results for a quasilinear periodic boundary value

problem, preprint.

[19] S. Heidarkhani, S. Moradi, M. Ferrara, D. Barilla, G. Caristi, A variational ap-

proach for quasilinear periodic boundary value problems, preprint.

[20] R. Livrea, Existence of three solutions for a quasilinear two point boundary value

problem, Arch. Math. 79(2002), 288–298. https://doi.org/10.1007/s00013-002-8315-0;

MR1944953; Zbl 1015.34012

[21] N. Matzakos, N. S. Papageorgiou, Existence of periodic solutions for quasilinear or-

dinary differential equations with discontinuities, Demonstratio Math. 33(2000), 753–770.

https://doi.org/10.1515/dema-2000-0408; MR1807641; Zbl 0985.34012



26 S. Heidarkhani, S. Moradi, G. Caristi and M. Ferrara
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Abstract. In this paper, we study the existence of multiple normalized solutions to the
following Schrödinger–Poisson system with general nonlinearities:





−ε2
∆u + V(x)u + φu = f (u) + λu in R

3,

−ε2
∆φ = u2 in R

3,∫
R3 |u|2dx = ε3a2,

where ε, a > 0, λ ∈ R is an unknown parameter that appears as a Lagrange multiplier,
V(x) : R

3 → [0, ∞) is a continuous function, and f is a differentiable function satisfying
L2-subcritical growth. Through using the minimization techniques and the Lusternik–
Schnirelmann category, we prove that the numbers of normalized solutions are related
to the topology of the set where the potential V(x) attains its minimum value.

Keywords: Schrödinger–Poisson system, normalized solutions, Lusternik–
Schnirelmann category, variational methods.
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1 Introduction

In this paper, we are concerned with the existence of multiple normalized solutions to the

following Schrödinger–Poisson system with general nonlinearities:





−ε2
∆u + V(x)u + φu = f (u) + λu in R

3,

−ε2
∆φ = u2 in R

3,∫
R3 |u|2dx = ε3a2,

(1.1)

where ε, a > 0, λ ∈ R is an unknown parameter that appears as a Lagrange multiplier.

BCorresponding author. Email: tengkaimin2013@163.com
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Problem (1.1) arises in the study of the coupled Schrödinger–Poisson system:

{
iψt − ∆ψ + V(x)ψ + φψ = g(|ψ|2)ψ in R

3,

−∆φ = |ψ|2 in R
3,

(1.2)

where ψ(x, t) : R
3 × [0, T] is the wave function. Equation (1.2) arises from approximation

of the Hartree–Fock equation which describes a quantum mechanical of many particles, see

[11, 12, 24]. Set ψ(x, t) = eiλtu(x) and u : R
3 → R, one is led to the equation

{
−∆u + V(x)u + φu = f (u) + λu in R

3,

−∆φ = u2 in R
3,

where f (u) = g(|u|2)u, λ ∈ R. The system (1.1) was firstly introduced by Benci and Fortunato

in [9]. System (1.1) also arises in various fields of physics, for instance, in semiconductor

theory (see [10,25,26]), for more details on the physical aspects, we refer the reader to [9] and

references therein.

When λ ∈ R is a fixed parameter, we call (1.1) the fixed frequency problem. In the last

decades, the existence, concentration and multiplicity of solutions for the fixed frequency

problem (1.1) has been studied by many scholars, for example [2–4, 13, 15, 27, 29] and the

references therein.

Recently, the existence and multiplicity of normalized solution are attracted many people’s

interests. Such solutions have a prescribed L2-norm, that is, solutions which satisfy ∥u∥2 = a

for a priori given a > 0. In this case, the parameter λ ∈ R cannot be fixed but instead appears

as a Lagrange multiplier.

When ε = 1, V(x) = 0 and f (u) = |u|p−2u, normalized solutions of (1.1) can be obtained

by considering the critical points of the following functional

J(u) =
1

2

∫

R3
|∇u|2dx +

1

4

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dydx −

1

p

∫

R3
|u|pdx

on the constraint

S(a) = {u ∈ H1(R3) : ∥u∥2 = a}.

As far as we know, the first work for normalized solutions to Schrödinger–Poisson system

is due to Sánchez and Soler [28], they proved that all the minimizing sequence for σa are

compact provided that a ∈ (0, a0) for a suitable a0 > 0 small enough and p = 8
3 , where σa is

defined by

σa = inf
u∈S(a)

J(u). (1.3)

Bellazzini and Siciliano in [5] and [6] proved that σa is achieved when a > 0 is small and

p ∈ (2, 3) and when a > 0 is large and p ∈ (3, 10
3 ), respectively. Subsequently, Jeanjean and

Luo in [22] sharpened the conclusion of [6] by showing that (1.3) has a minimizer if and only

if

a ≥ a1 = inf{a > 0 : σa < 0}.

Moreover, for the case of p = 3 or p = 10
3 , they proved σa has no minimizer for any a > 0.

For the L2-supercritical case, that is, p ∈ ( 10
3 , 6), the functional J(u) is no more bounded

from below on S(a). Bellazzini, Jeanjean and Luo in [7] found critical points of J(u) on S(a)

by looking at the mountain-pass level for a > 0 sufficiently small. In 2021, Jeanjean and Le in
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[21] obtained the existence of two positive solutions for (1.1) with f (u) = |u|p−2u which can

be characterized respectively as a local minima and as a mountain pass critical point when

p ∈ ( 10
3 , 6]. For the general nonlinearity, Chen, Tang and Yuan in [16] studied the existence

of normalized solutions for system (1.1), where f ∈ C(R, R) covers the case f (u) = |u|p−2u

with q ∈ (2, 10
3 ) ∪ ( 10

3 , 6). When considering more general L2-supercritical conditions without

imposing the monotonicity property on f , Hu, Tang and Jin [20] obtained the existence of

normalized solutions for problem (1.1) under suitable assumptions on f .

For the case combining nonlinearity, Kang, Li and Tang in [23] considered system (1.1)

with f (u) = µ|u|q−2u + |u|p−2u, where µ ∈ R, 2 < q ≤ 10
3 ≤ p < 6 with q ̸= p. Under some

suitable assumptions on s and µ, they proved some existence, nonexistence and multiplicity

of normalized solutions.

When ε = 1 and V(x) ̸= 0, it is more complicated to deal with the existence of normalized

solutions. Zeng and Zhang in [32] considered system (1.1) with f (u) = |u|pu (0 < p <
4
3 ) and

unbounded potential, where the potential function V(x) satisfies the following conditions

V ∈ C(RN , R
+), inf

x∈RN
V(x) = 0 and lim

|x|→+∞

V(x) = ∞,

with the help of the compactness of Sobolev embedding in the working space, they obtained

the existence of normalized solutions.

To our best of knowledge, there is few results for the existence of multiple normalized so-

lutions to Schrödinger–Poisson system (1.1). Motivated by [1], the main purpose of this paper

is to study the existence of multiple normalized solutions to (1.1) by using the Lusternik–

Schnirelmann category when V(x) satisfies the global conditions:

(V) V ∈ C(RN , R) ∩ L∞(RN), V(0) = 0, 0 = inf
x∈RN

V(x) < lim inf
|x|→+∞

V(x) = V∞.

By change of variable x → εx, problem (1.1) reduces to the following system




−∆u + V(εx)u + φu = f (u) + λu in R
3,

−∆φ = u2 in R
3,∫

R3 |u|2dx = a2.

(1.4)

We assume that V(x) satisfies (V) and f satisfies the following assumptions:

( f1) f is odd and there exist q ∈ (3, 10
3 ) and α ∈ (0,+∞) such that lims→0

| f (s)|
|s|q−1 = α.

( f2) There exist constants c1, c2, c3, c4 > 0 and p ∈ (3, 10
3 ) such that

| f (s)| ≤ c1 + c2|s|
p−1 ∀s ∈ R and | f ′(s)| ≤ c3 + c4|s|

p−2 ∀s ∈ R.

( f3) There exists q1 ∈ (3, 10
3 ) and q > q1 such that f (s)/sq1−1 is an increasing function of s on

(0,+∞).

Remark 1.1. The conditions ( f1) and ( f3) imply that F(t) ≥ 0 for all t ∈ R. Indeed,

f (s)

sq1−1
≥ lim

s→0+

f (s)

sq−1
sq−q1 = 0, s > 0,

that is, f (s) ≥ 0. Hence, F(t) ≥ 0.

An example of a function f that satisfies the above assumption is

f (s) = |s|q−2s + |s|r−2s ln(1 + |s|) ∀s ∈ R,

for some r, q ∈ (3, 10
3 ) and r > q, here ( f2) and ( f3) hold with p ∈ (r, 10

3 ).
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A solution u to the problem (1.4) with
∫

R3 |u|2 = a2 can be obtained by looking for critical

points of the following functional

Jε(u) =
1

2

∫

R3
(|∇u|2 + V(εx)u2)dx +

1

4

∫

R3
φuu2dx −

∫

R3
F(u)dx, u ∈ H1(R3),

restricted to sphere

S(a) = {u ∈ H1(R3) : ∥u∥2 = a},

where ∥ · ∥p denotes the usual norm in Lp(R3) for p ∈ [1,+∞).

Moreover, it is easy to see that Jε ∈ C1(H1(R3), R) and

J′ε(u)v =
∫

R3
(∇u∇v + V(εx)uv)dx +

∫

R3
φuuvdx −

∫

R3
f (u)vdx, ∀v ∈ H1(R3).

When we study the multiplicity of solutions in the nonautonomous case, we need to use

the following sets:

M = {x ∈ R
3 : V(x) = 0}

and

Mδ = {x ∈ R
3 : dist(x, M) ≤ δ}, δ > 0.

Now, we state our main result as follows.

Theorem 1.2. Suppose that f satisfies the conditions ( f1)–( f3) and that V satisfies (V). Then for each

δ > 0, there exist ε0, µ∗ > 0 and a∗ > 0 such that (1.1) admits at least catMδ
(M) couples (uj, λj) ∈

H1(R3)× R of weak solutions for 0 < ε < ε0, |V|∞ < µ∗ and a > a∗ with
∫

R3 |uj|
2dx = a2 and

Jε(uj) < 0.

Remark 1.3. For V(0) =: V0 ̸= 0, V0 < V∞, we can also obtain Theorem 1.2.

We recall that, if Y is a closed subset of a topological space X, the Lusternik–Schnirelmann

category catX(Y) is the least number of closed and contractible sets in X which cover Y. If

X = Y, we use the notation cat(X). For more details about this subject, we cite [30].

The organization of this paper is as follows. In Section 2, we study the autonomous

problem. In Section 3, we study the nonautonomous case. In this section, we also study

the Palais–Smale condition on the sphere S(a) for the energy functional and provide some

crucial tools to establish a multiplicity result. In Section 4, we prove the multiplicity and

concentration of solutions to problem (1.1).

2 The autonomous case

The following classical Gagliardo–Nirenberg inequality is so crucial in this paper, which can

be found in [31]. Precisely, let l ∈ [2, 6), then

|u|ll ≤ C|u|
(1−βl)l
2 |∇u|

βl l
2 in R

3, βl =
3(l − 2)

2l
, (2.1)

for some positive constant C = C(3, l) > 0.

In this section, we list some preliminary lemmas which used later involving the existence

of normalized solution for the following Schrödinger–Poisson system




−∆u + µu + φu = f (u) + λu in R
3,

−∆φ = u2 in R
3,∫

R3 |u|2dx = a2,

(2.2)
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where a > 0, µ ≥ 0, and λ ∈ R is unknown parameter that appears as a Lagrange multiplier

and f is a continuous function satisfying ( f1)–( f3).

A solution u to the problem (2.2) corresponds to a critical point of the C1 functional

Iµ(u) =
1

2

∫

R3
(|∇u|2 + µu2)dx +

1

4

∫

R3
φuu2dx −

∫

R3
F(u)dx, u ∈ H1(R3),

on the constraint S(a) given by

S(a) = {u ∈ H1(R3) : ∥u∥2 = a}.

Our main result in this section is stated as follows.

Theorem 2.1. Suppose that f satisfies the conditions ( f1)–( f3). Then, there exists µ∗ > 0 and a∗ > 0

such that problem (2.2) has a couple (u, λ) solution when 0 ≤ µ < µ∗ and a > a∗, where u is positive.

The proof of the theorem above will be divided into several lemmas.

Now, we recall some properties of the functions φu in the following lemma (for a proof see

[27], [18] and [17]).

Lemma 2.2. The following results hold:

(1) φu ≥ 0;

(2) there exist some constants C1, C2 > 0 such that
∫

R3 φuu2dx ≤ C1|u|
4
12
5

≤ C2∥u∥4;

(3) if un → u in Lt(R3), ∀t ∈ [2, 6), then
∫

R3 φun un
2dx →

∫
R3 φuu2dx,

where ∥ · ∥ denotes the usual norm in H1(R3).

Define N: H1(R3) → R by

N(u) =
∫

R3
φuu2dx.

Lemma 2.3 ([33, Lemma 2.2]). Let un ⇀ u in H1(R3) and un → u a.e. in R
3. Then as n → ∞,

(1) N(un − u) = N(un)− N(u) + o(1);

(2) N′(un − u) = N′(un)− N′(u) + o(1), in (H1(R3))′.

Lemma 2.4. The functional Iµ is coercive and bounded from below in S(a).

Proof. According to ( f1)–( f2), there is C1, C2 > 0 such that

|F(t)| ≤ C1|t|
q + C2|t|

p ∀t ∈ R.

Then it follows from (2.1) that

Iµ(u) ≥
1

2

∫

R3
|∇u|2dx − CC1a(1−βq)q

(∫

R3
|∇u|2dx

) βqq

2

− CC2a(1−βp)p

(∫

R3
|∇u|2dx

) βp p

2

.

Since q, p ∈ (2, 10
3 ), by simple calculation, we get βqq, βp p < 2, which ensures the coercivity

and boundedness of Iµ from below.
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Lemma 2.4 guarantees that the minimization problem

Iµ,a = inf
u∈S(a)

Iµ(u)

is well defined. In what follows, we are going to establish some properties of Iµ related to the

parameter µ ≥ 0.

Lemma 2.5. There exists µ∗ > 0, a∗ > 0 such that Iµ,a < 0 for 0 ≤ µ < µ∗ and a > a∗.

Proof. By assumption ( f3), we have

f ′(t)t − (q1 − 1) f (t) ≥ 0 ∀t > 0. (2.3)

In order to show t 7→ F(t)
tq1 is increasing on (0,+∞), we need to prove

d

dt

F(t)

tq1
=

f (t)tq1 − q1F(t)tq1−1

t2q1
=

f (t)t − q1F(t)

tq1+1
∀t > 0.

Define h(t) = f (t)t − q1F(t), clearly, h(0) = 0 and (2.3) yields that

h′(t) = f ′(t)t − (q1 − 1) f (t) ≥ 0 ∀t > 0,

which implies that

h(t) = f (t)t − q1F(t) ≥ 0. (2.4)

This leads to d
dt

F(t)
tq1 ≥ 0, that is, the function t 7→ F(t)

tq1 is increasing on (0,+∞), thus, we have

that
F(ts)

(ts)q1
≥

F(s)

sq1
∀s > 0 and t ≥ 1,

which yields that

F(ts) ≥ tq1 F(s) ∀s > 0 and t ≥ 1. (2.5)

Given u0(x) ∈ S(a) ∩ L∞(R3) a nonnegative function, let

u
η
0(x) = η2u0(ηx) for all x ∈ R

3 and all η ∈ R. (2.6)

By simple computation, we have
∫

R3
|u

η
0(x)|2dx = ηa2,

that is, u
η
0(x) ∈ S(η

1
2 a). Therefore,

Iµ(u
η
0(x)) ≤

η3

2

∫

R3
|∇u0|

2dx +
µηa2

2
+

η3

4

∫

R3
φu0 u2

0dx − η2q1−3
∫

R3
F(u0(x))dx.

When q1 ∈ (3, 10
3 ) and η > 0, 2q1 − 3 > 3, for |η| large, we deduce that

η3

2

∫

R3
|∇u0|

2dx +
η3

4

∫

R3
φu0 u2

0dx − η2q1−3
∫

R3
F(u0(x))dx = Aη < 0,

thus, we obtain that

Iµ(u
η
0(x)) ≤ Aη +

µa2

2
.

Hence, we fix µ∗ > 0 such that

Iµ(u
η
0(x)) < 0, ∀µ ∈ [0, µ∗),

showing that I
µ,t

1
2 a

< 0. Thus, for a large enough, Iµ,a < 0.
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Lemma 2.6. Fix µ ∈ [0, µ∗) and let a∗ < a1 < a2. There holds
a6

1

a6
2
Iµ,a2 < Iµ,a1

< 0.

Proof. Let ξ > 1 such that a2 = ξa1 and {un} ⊂ S(a1) be a nonnegative minimizing sequence

with respect to the Iµ,a1
(because Iµ(u) = Iµ(|u|) for all u ∈ H1(R3)), that is,

Iµ(un) → Iµ,a1
as n → +∞.

Set vn = ξ4un(ξ2x). Obviously vn ∈ S(a2) and

Iµ,a2 ≤ Iµ(vn)

=
ξ6

2

∫

R3
|∇un|

2dx +
ξ2µ2

2

∫

R3
u2

ndx +
ξ6

4

∫

R3
φun u2

ndx − ξ−6
∫

R3
F(ξ4un(x))dx

≤ ξ6

[
1

2

∫

R3
|∇un|

2dx +
µ2

2

∫

R3
u2

ndx +
1

4

∫

R3
φun u2

ndx

]
− ξ−6

∫

R3
F(ξ4un(x))dx.

By (2.5), we deduce that

Iµ,a2 ≤ Iµ(vn) = ξ6 Iµ(un) + (ξ6 − ξ4q1−6)
∫

R3
F(un(x))dx.

Claim 2.7. There exists a constant C > 0 and n0 ∈ N such that
∫

R3
F(un)dx ≥ C for n ≥ n0.

Arguing by contradiction that there exists a subsequence of {un}, still denoted by itself,

such that ∫

R3
F(un)dx → 0 as n → +∞.

Thus, we have

0 > Iµ,a + on(1) = Iµ(un) ≥ −
∫

R3
F(un)dx,

which is absurd. Thus, Claim 2.7 holds. It is easy to verify that ξ6 − ξ4q1−6
< 0. Hence, we

have

Iµ,a2 ≤ ξ6 Iµ(un) + (ξ6 − ξ4q1−6)C.

As n → +∞, we get

Iµ,a2 < ξ6Iµ,a1
+ (ξ6 − ξ4q1−6)C < ξ6Iµ,a1

,

that is,
a6

1

a6
2

Iµ,a2 < Iµ,a1
.

The following theorem is a compactness theorem on S(a), which is crucial to study the

autonomous case and the nonautonomous case.

Theorem 2.8. Let µ ∈ [0, µ∗), a > a∗ and {un} ⊂ S(a) be a minimizing sequence with respect to Iµ.

Then, for some subsequence either

(i) {un} is strongly convergent in H1(R3);

or

(ii) there exists {yn} ⊂ R
3 with |yn| → +∞ such that vn(x) = un(x + yn) → v in H1(R3), where

v ∈ S(a) and Iµ(v) = Iµ,a.
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Proof. Since Iµ is coercive on S(a), the sequence {un} is bounded. Hence, up to a subsequence,

still denoted by un, we may assume that there exists some u ∈ H1(R3) such that un ⇀ u in

H1(R3).

If u ̸= 0 and |u|2 = b ̸= a, we have that b ∈ (0, a). It follows from Brézis–Lieb lemma

(see [30]) that:

|un|
2
2 = |un − u|22 + |u|22 + on(1).

Moreover, setting vn = un − u, dn = |vn|2, t ∈ (0, 1), by using mean value theorem, ( f1), ( f2),

and Young’s inequality, we get

|F(vn + u)− F(vn)− F(u)| ≤ |F(vn + u)− F(vn)|+ |F(u)|

≤ | f (vn + tu)||u|+ |F(u)|

≤ [C1|vn + tu|q−1 + C2|vn + tu|p−1]|u|+ C1|u|
q−1 + C2|u|

p−1

≤ C(|vn|
q−1 + |u|q−1 + |vn|

p−1 + |u|p−1)|u|+ C1|u|
q−1 + C2|u|

p−1

≤ Cε(|vn|
q + |vn|

p) + (Cε−(q−1) + C1)|u|
q + (Cε−(p−1) + C2)|u|

p.

Since limn→+∞ |F(vn + u)− F(vn)− F(u)| = 0 a.e. in R
3, by Lebesgue dominated convergence

Theorem, it is easy to get that

∫

R3
F(vn + u)dx =

∫

R3
F(vn)dx +

∫

R3
F(u)dx + on(1),

that is, ∫

R3
F(un)dx =

∫

R3
F(un − u)dx +

∫

R3
F(u)dx + on(1). (2.7)

Suppose that |vn|2 → d, then a2 = b2 + d2 and dn ∈ (0, a) for n large enough. Thus, by

Lemma 2.3 and (2.7), we have that

Iµ,a + on(1) = Iµ(un) = Iµ(vn) + Iµ(u) + on(1) ≥ Iµ,dn
+ Iµ,b + on(1).

From Lemma 2.6, it follows that

Iµ,a + on(1) ≥
d6

n

a6
Iµ,a + Iµ,b + on(1).

As n → +∞, we arrive at the inequality

Iµ,a ≥
d6

a6
Iµ,a + Iµ,b. (2.8)

Since b ∈ (0, a), by Lemma 2.6 and (2.8), we obtain

0 > Iµ,a >
d6

a6
Iµ,a +

b6

a6
Iµ,a =

b6 + d6

a6
Iµ,a,

which yields that

b6 + d6

a6
> 1.

By using a2 = b2 + d2, we deduce that

b6 + d6
> a6 = (b2 + d2)3 = b6 + d6 + 3b2d4 + 3b4d2,
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which is absurd. Hence, we infer that |u|2 = a, that is, u ∈ S(a).

As |un|2 = |u|2 = a, un ⇀ u in L2(R3), it is easy to verify that

un → u in L2(R3). (2.9)

By (2.9) and interpolation theorem in the Lebesgue spaces, one infers that

un → u in Lt(R3), ∀t ∈ [2, 6),

which combines with ( f1)–( f2), we can deduce that

∫

R3
F(un)dx →

∫

R3
F(u)dx. (2.10)

Thus, by Lemma 2.2-(3) and Iµ,a = limn→∞ Iµ(un), we have that Iµ,a ≥ Iµ(u). Since u ∈ S(a),

it follows that Iµ,a = Iµ(u), and then limn→∞ Iµ(un) = Iµ(u), which combines with (2.9), (2.10)

and Lemma 2.2-(3), we have that un → u in D1,2(R3). From (2.9), it follows that ∥un∥2 → ∥u∥2,

that is, un → u in H1(R3).

If u = 0, then un ⇀ 0 in H1(R3). Similar to Claim 2.7, we prove that there exists C > 0

such that ∫

R3
F(un)dx ≥ C for n ∈ N large. (2.11)

Next, we prove that there exist R, β > 0 and yn ∈ R
3 such that

∫

BR(yn)
|un|

2dx ≥ β ∀n ∈ N. (2.12)

Suppose on the contrary, by Lions’ vanishing lemma, we get that un → 0 in Lt(R3) for all

t ∈ (2, 2∗). Hence, it is easy to check that F(un) → 0 in L1(R3), which is contradict with (2.11).

Since u = 0, we claim that {yn} is unbounded. Arguing by contradiction that {yn} is

bounded, there exists R0 > 0, such that |yn| < R0. Hence, BR(yn) ⊂ BR+R0
(0). Thus, we have

that ∫

BR(yn)
|un|

2dx ≤
∫

BR+R0
(0)

|un|
2dx → 0 as n → +∞,

which is contradiction with (2.12). The claim follows.

Setting ũn(x) = u(x + yn), clearly {ũn} ⊂ S(a) and it is also a minimizing sequence with

respect to Iµ,a, up to a subsequence, we may assume that there exists ũ ∈ H1(R3) \ {0} such

that

ũn ⇀ ũ in H1(R3) and ũn(x) → ũ(x) a.e. in R
3.

Similarly arguing as the above proof, we can deduce that ũn → ũ in H1(R3). This completes

the proof.

2.1 Proof of Theorem 2.1

From Lemma 2.4, there exists a bounded minimizing sequence {un} ⊂ S(a) with respect to

Iµ,a, that is, Iµ(un) → Iµ,a. By Theorem 2.8, there exists u ∈ S(a) with Iµ(u) = Iµ,a. Hence, by

the Lagrange multiplier, there exists λa ∈ R such that

Iµ
′(u) = λaΨ

′(u) in (H1(R3))′, (2.13)
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where Ψ : H1(R3) → R is given by

Ψ(u) =
∫

R3
|u|2dx, u ∈ H1(R3).

By (2.13), we have

−∆u + µu + φu = λau + f (u) in R
3. (2.14)

Next, by simple calculation, it is easy to see that Iµ(|u|) = Iµ(u). Besides, since u ∈ S(a)

implies that |u| ∈ S(a), then the following equality holds:

Iµ,a = Iµ(u) = Iµ(|u|) ≥ Iµ,a,

thus, Iµ(|u|) = Iµ,a. Then we can replace u by |u|, thus we may assume that u ≥ 0, by standard

argument, we can prove that u(x) > 0 in R
3.

By Theorem 2.1, it is easy to conclude the following corollary.

Corollary 2.9. Fix a > a∗ and let 0 ≤ µ1 < µ2 ≤ µ∗. There holds Iµ1,a < Iµ2,a < 0.

Proof. Let uµ2,a ∈ S(a) satisfying Iµ2(uµ2,a) = Iµ2,a. It is easy to infer that

Iµ1,a ≤ Iµ1
(uµ2,a) < Iµ2(uµ2,a) = Iµ2,a.

3 The nonautonomous case

In this section, we will study the nonautonomous case of the Schrödinger–Poisson system

(1.4). Hereafter, we will suppose that |V|∞ < µ∗ and a > a∗, where µ∗ and a∗ was given

in section 2. In order to prove some properties of the functional Jε, we give several useful

definitions. We define J0, J∞ : H1(R3) → R by the following functionals:

J0(u) =
1

2

∫

R3
|∇u|2dx +

1

4

∫

R3
φuu2dx −

∫

R3
F(u)dx

and

J∞(u) =
1

2

∫

R3
(|∇u|2 + V∞|u|

2)dx +
1

4

∫

R3
φuu2dx −

∫

R3
F(u)dx.

Furthermore, we denote Υε,a, Υ0,a and Υ∞,a:

Υε,a = inf
u∈S(a)

Jε(u), Υ0,a = inf
u∈S(a)

J0(u), Υ∞,a = inf
u∈S(a)

J∞(u).

Since 0 < V∞ < +∞, we deduce from Corollary 2.9 that

Υ0,a < Υ∞,a < 0. (3.1)

In the following, we set 0 < ρ1 = 1
2 (Υ∞,a − Υ0,a).

The following lemma establishes some essential relations involving the levels Υε,a, Υ0,a

and Υ∞,a.

Lemma 3.1. lim supε→0+ Υε,a ≤ Υ0,a and there exists ε0 > 0 such that Υε,a < Υ∞,a for all ε ∈ (0, ε0).
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Proof. Let u0 ∈ S(a) with J0(u0) = Υ0,a, we have that

Υε,a ≤ Jε(u0) =
1

2

∫

R3
(|∇u0|

2 + V(εx)|u0|
2)dx +

1

4

∫

R3
φu0 u2

0dx −
∫

R3
F(u0)dx.

As ε → 0+, we arrive at the inequality

lim sup
ε→0+

Υε,a ≤ lim
ε→0+

Jε(u0) = J0(u0) = Υ0,a.

By (3.1) and the above inequality, we can obtain that Υε,a < Υ∞,a for ε small enough.

Lemma 3.2. Fix ε ∈ (0, ε0) and let {un} ⊂ S(a) such that Jε(un) → c with c < Υ0,a + ρ1 < 0. If

un ⇀ u in H1(R3), then u ̸= 0.

Proof. We argue by contradiction that u = 0. From the definition of Jε(un) and J∞(un), it

follows that

Υ0,a + ρ1 + on(1) > c + on(1) = Jε(un) = J∞(un) +
1

2

∫

R3
(V(εx)− V∞)|un|

2dx.

From (V), for any given ζ > 0, there exists R > 0 such that

V(x) ≥ V∞ − ζ, ∀ |x| ≥ R.

Thus, there holds

Υ0,a + ρ1 + on(1) > Jε(un) ≥ J∞(un) +
1

2

∫

BR/ε(0)
(V(εx)− V∞)|un|

2dx −
ζ

2

∫

Bc
R/ε(0)

|un|
2dx.

Since {un} is bounded in H1(R3) and un → 0 in Ll(BR/ε(0)) for all l ∈ [1, 2∗), we obtain

Υ0,a + ρ1 + on(1) ≥ J∞(un)− ζC ≥ Υ∞,a − ζC

for some C > 0. Because ζ > 0 is arbitrary, it follows that

Υ0,a + ρ1 ≥ Υ∞,a,

which is contradict with the definition of ρ1. The proof is completed.

Lemma 3.3. Let {un} ⊂ S(a) be a (PS)c sequence for Jε restricted to S(a) with c < Υ0,a + ρ1 < 0

and un ⇀ uε in H1(R3), that is,

Jε(un) → c as n → +∞ and ∥Jε|
′
S(a)(un)∥ → 0 as n → +∞.

If vn = un − uε ↛ 0 in H1(R3), then there exists β > 0, such that

lim inf
n→+∞

|un − uε|
2
2 ≥ β.

Proof. Let the functional Ψ : H1(R3) → R be given by

Ψ(u) =
1

2

∫

R3
|u|2dx,

we have that S(a) = Ψ
−1({ a2

2 }). Then, by Proposition 5.12 in [30], we see that

∥Jε|
′
S(a)(un)∥ = min

λ∈R

∥Jε
′(un)− λΨ

′(un)∥(H1(R3))′ ,
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thus, there exists {λn} ⊂ R such that

∥Jε
′(un)− λnΨ

′(un)∥(H1(R3))′ → 0 as n → +∞.

Since

∥Jε
′(un)− λnΨ

′(un)∥(H1(R3))′ = sup
v∈H1(R3)\{0}

⟨Jε
′(un)− λnΨ

′(un), v⟩

∥v∥
→ 0 as n → +∞.

In view of the boundedness of {un}, we can deduce that

⟨Jε
′(un)− λnΨ

′(un), un⟩

∥un∥
≤ ∥Jε

′(un)− λnΨ
′(un)∥(H1(R3))′ → 0 as n → +∞,

which leads to

λna2 =
∫

R3
(|∇un|

2 + V(εx)u2
n)dx +

∫

R3
φun u2

ndx −
∫

R3
f (un)undx + on(1). (3.2)

From the boundedness of {un} ∈ H1(R3), it follows that {λn} is also a bounded sequence, up

to a subsequence, we may assume that λn → λε as n → +∞. Hence, we have that

∥Jε
′(un)− λεΨ

′(un)∥(H1(R3))′ ≤ ∥Jε
′(un)− λnΨ

′(un)∥(H1(R3))′ + |λn − λε|∥Ψ
′(un)∥(H1(R3))′ ,

which combing with un ⇀ uε in H1(R3), we can deduce that

Jε
′(uε)− λεΨ

′(uε) = 0 in (H1(R3))′.

By using Lemma 2.3, we can prove that

Jε
′(un) = Jε

′(uε) + Jε
′(vn) + on(1),

and

Ψ
′(un) = Ψ

′(uε) + Ψ
′(vn) + on(1).

Hence, we have

Jε
′(un)− λεΨ

′(un) = Jε
′(vn)− λεΨ

′(vn) + on(1),

and so

∥Jε
′(vn)− λεΨ

′(vn)∥(H1(R3))′ → 0 as n → +∞,

which implies that

∫

R3
(|∇vn|

2 + V(εx)|vn|
2)dx +

∫

R3
φvn vn

2dx − λε

∫

R3
|vn|

2dx =
∫

R3
f (vn)vndx + on(1).

Suppose on the contrary that |vn|2 → 0, by interpolation inequality, one infers that

vn → 0 in Lt(R3), ∀t ∈ [2, 6). (3.3)

By ( f1), ( f2) and (3.3), we deduce that

∫

R3
f (vn)vndx ≤

∫

R3
C1|vn|

p + C2|vn|
qdx → 0 as n → +∞,

and ∫

R3
φvn vn

2dx ≤ |vn|
4
12
5
→ 0 as n → +∞,
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and ∫

R3
V(εx)|vn|

2dx ≤
∫

R3
µ∗|vn|

2dx → 0 as n → +∞.

Hence, we have that ∫

R3
|∇vn|

2dx → 0 as n → +∞,

which leads to ∥vn∥H1(R3) → 0, which gives a contradiction by vn ↛ 0 in H1(R3). Therefore,

there exists β > 0 independent of ε ∈ (0, ε0) such that

lim inf
n→+∞

|un − uε|
2
2 ≥ β.

In what follows, we set

0 < ρ < min

{
1

2
,

β3

a6

}
(Υ∞,a − Υ0,a) ≤ ρ1. (3.4)

Lemma 3.4. For each ε ∈ (0, ε0), the functional Jε satisfies the (PS)c condition restricted to S(a) for

c < Υ0,a + ρ.

Proof. Let {un} be a (PS)c sequence for Jε restricted to S(a) with un ⇀ uε in H1(R3) and

c < Υ0,a + ρ. Then, by Proposition 5.12 in [30], there exists (λn) ⊂ R such that

∥Jε
′(un)− λnΨ

′(un)∥(H1(R3))′ → 0 as n → +∞.

By Lemma 3.3, if vn = un − uε ↛ 0 in H1(R3), there exists β > 0 independent of ε such

that

lim inf
n→+∞

|vn|
2
2 ≥ β.

Let dn = |vn|2 satisfying that |vn|2 → d > 0 and |uε|2 = b, by Brézis-Lieb lemma, we obtain

a2 = b2 + d2. By Lemma 3.2, we have b > 0 and in its proof it was proved that Jε(vn) ≥

Υ∞,dn
+ on(1), we must have dn ∈ (0, a) for n large enough, and so

c + on(1) = Jε(un) = Jε(vn) + Jε(uε) + on(1) ≥ Υ∞,dn
+ Υ0,b + on(1).

By Lemma 2.6, we infer that

ρ + Υ0,a >
d6

n

a6
Υ∞,a +

b6

a6
Υ0,a.

As n → +∞, using a2 = b2 + d2, we arrive at the inequality

ρ >
d6

a6
Υ∞,a +

b6 − a6

a6
Υ0,a >

d6

a6
(Υ∞,a − Υ0,a) +

3a2d4 − 3a4d2

a6
Υ0,a >

β3

a6
(Υ∞,a − Υ0,a),

which is contradict with (3.4). Thus, vn → 0 in H1(R3), that is, un → uε in H1(R3), which

implies that |uε|2 = a and

−∆uε + V(εx)uε + φuε = λεuε + f (uε) in R
3,

where λε is the limit of some subsequence of {λn}.
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4 Multiplicity result

Let δ > 0 be fixed and w be a positive solution of the following Schrödinger–Poisson system





−∆u + φu = f (u) + λu in R
3,

−∆φ = u2 in R
3,∫

R3 |u|2dx = a2,

with J0(w) = Υ0,a. Let η be a smooth nonincreasing cut-off function satisfying

η(s) =

{
1, 0 ≤ s ≤ δ

2 ,

0, s ≥ δ.

For any y ∈ M, let us define

Ψε,y(x) = η(|εx − y|)w

(
εx − y

ε

)
, Ψ̃ε,y(x) = a

Ψε,y(x)

|Ψε,y|2
,

and denote Φε: M → S(a) by Φε(y) = Ψ̃ε,y. Clearly, Φε(y) has a compact support for any

y ∈ M.

Lemma 4.1 (See [14, Chapter II, 3.2]). Let I be a C1-functional defined on C1-Finsler manifold V .

If I is bounded from below and satisfies the (PS) condition, the I has at least catV (V) distinct critical

points.

Lemma 4.2 (See [8, Lemma 4.3]). Let Γ, Ω
+, Ω

− be closed sets with Ω
− ⊂ Ω

+. Let Φ : Ω
− → Γ,

β : Γ → Ω
+ be two continuous maps such that β ◦ Φ is homotopically equivalent to the embedding

Id : Ω
− → Ω

+. Then cat(Γ) ≥ catΩ+(Ω−).

Lemma 4.3. The function Φε has the following property:

lim
ε→0

Jε(Φε(y)) = Υ0,a, uniformly in y ∈ M.

Proof. To prove this lemma, we argue by contradiction that there exist δ0 > 0, {yn} ⊂ M, {yn}

is a bounded sequence and εn → 0 such that

|Jεn(Φεn(yn))− Υ0,a| ≥ δ0, ∀n ∈ N.

Since

|η(εnz)w(z)|2 → |w(z)|2 a.e. in R
3 as n → +∞,

and

|η(εnz)w(z)|2 ≤ |w(z)|2,

by Lebesgue’s dominated convergence theorem, we get

lim
n→+∞

∫

R3
|Ψεn,yn |

2dx = lim
n→+∞

∫

R3
|η(εnz)w(z)|2dz =

∫

R3
|w|2dz = a2.

Then, there exists N > 0 such that

|Ψεn,yn |
2
2 ≥

a2

2
, ∀n > N.
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Setting |Ψεn,yn |
2
2 ≥ C = min{ a2

2 , |Ψε1,y1
|22, |Ψε2,y2 |

2
2, . . . , |ΨεN ,yN

|22}.

Since

lim
n→+∞

F(Φεn(yn)) = lim
n→+∞

F

(
a

η(εnz)w(z)

|η(εnz)w(z)|2

)
= F(w) a.e. in R

3,

and by ( f1) and ( f2), we have that

|F(Φεn(yn))| =

∣∣∣∣F
(

a
η(εnz)w(z)

|η(εnz)w(z)|2

)∣∣∣∣ ≤ C1|w(z)|p + C2|w(z)|q,

thus, by Lebesgue’s dominated convergence theorem, we have

lim
n→+∞

∫

R3
F(Φεn(yn))dx = lim

n→+∞

∫

R3
F

(
a

η(εnz)w(z)

|η(εnz)w(z)|2

)
dz =

∫

R3
F(w)dz.

For almost every z ∈ R
3, we deduce that

lim
n→+∞

|∇Φεn(yn)|
2

= lim
n→+∞

a2

|Ψεn,yn |
2
2

|∇(η(εnz)w(z))|2

= lim
n→+∞

|∇(η(εnz))w(z) + η(εnz)∇w(z)|2

= lim
n→+∞

[ε2
n|∇(η(εnz))w(z)|2 + |η(εnz)∇w(z)|2 + 2εnη(εnz)∇(η(εnz))w(z)∇w(z)]

= lim
n→+∞

|∇w(z)|2

and

|∇Φεn(yn)|
2 ≤

a2

C
[ε2

n|∇(η(εnz))w(z)|2 + |η(εnz)∇w(z)|2 + 2εnη(εnz)∇(η(εnz))w(z)∇w(z)]

≤
a2

C
[C3ε2

n|w(z)|2 + |∇w(z)|2 + C4ε2
n|w(z)|2|∇w(z)|2],

by Lebesgue’s dominated convergence theorem, we obtain

lim
n→+∞

∫

R3
|∇Φεn(yn)|

2dx =
∫

R3
|∇w|2dz.

Since

lim
n→+∞

V(εnx)|Φεn(yn)|
2 = lim

n→+∞

a2V(εnz + yn)

|Ψεn,yn |
2
2

|η(εnz)w(z)|2 = 0 a.e. in R
3,

and

V(εnx)|Φεn(yn)|
2 =

a2V(εnz + yn)

|Ψεn,yn |
2
2

|η(εnz)w(z)|2 ≤
a2

C
µ∗W(z)2,

by Lebesgue’s dominated convergence theorem, we deduce that

lim
n→+∞

∫

R3
V(εnx)|Φεn(yn)|

2dx = 0.

Since

lim
n→+∞

φΦεn (yn)Φεn(yn)
2

= lim
n→+∞

∣∣∣ a
|Ψεn ,yn |2

η(εnz)w(z)
∣∣∣
2 ∣∣∣ a

|Ψεn ,yn |2
η(εnr)w(r)

∣∣∣
2

|z − r|
= φww2 a.e. in R

3,
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and by Lemma 2.2-(2), we have that

φΦεn (yn)Φεn(yn)
2 =

∣∣∣ a
|Ψεn ,yn |2

η(εnz)w(z)
∣∣∣
2 ∣∣∣ a

|Ψεn ,yn |2
η(εnr)w(r)

∣∣∣
2

|z − r|

≤
a4

C4

|w(z)|2 |w(r)|2

|z − r|
≤ C5φww2,

by Lebesgue’s dominated convergence theorem, there holds

lim
n→+∞

∫

R3
φΦεn (yn)Φεn(yn)

2dx

= lim
n→+∞

∫

R3

∫

R3

∣∣∣ a
|Ψεn ,yn |2

η(εnz)w(z)
∣∣∣
2 ∣∣∣ a

|Ψεn ,yn |2
η(εnr)w(r)

∣∣∣
2

|z − r|
dzdr

=
∫

R3
φww2dz.

Consequently,

lim
n→+∞

Jεn(Φεn(yn)) = J0,a(w) = Υ0,a,

which is absurd. Hence, we complete the proof.

For any δ > 0, let R = R(δ) > 0 be such that Mδ ⊂ BR(0). Let χ: R
3 → R

3 denote by

χ(x) = x for |x| ≤ R and χ(x) = Rx
|x|

for |x| ≥ R. Hereafter, we are going to consider βε:

S(a) → R
3 given by

βε(u) =

∫
R3 χ(εx)|u|2dx

a2
.

Lemma 4.4. The function Φε has the following property:

lim
ε→0

βε(Φε(y)) = y, uniformly in y ∈ M.

Proof. Suppose on the contrary that there exist δ0 > 0, {yn} ⊂ M, and εn → 0 such that

|βεn(Φεn(yn))− yn| ≥ δ0, ∀n ∈ N. (4.1)

By the definition of Φεn(yn) and βεn , we have that

βεn(Φεn(yn)) = yn +

∫
R3 (χ(εnz + yn)− yn)|η(εnz)w(z)|2dz

|Ψεn,yn(
εn+yn

εn
)|22

.

Since (yn) ⊂ M ⊂ BR(0),

(χ(εnz + yn)− yn)|η(εnz)w(z)|2

|Ψεn,yn(
εn+yn

εn
)|22

→ 0 a.e. in R
3,

and
(χ(εnz + yn)− yn)|η(εnz)w(z)|2

|Ψεn,yn(
εn+yn

εn
)|22

≤
2R

C
|w(z)|2,

by Lebesgue’s dominated convergence theorem, we deduce that

|βεn(Φεn(yn))− yn| → 0, as n → +∞,

which attains a contradiction with (4.1). Hence, we complete the proof.
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Proposition 4.5. Let εn → 0 and {un} ⊂ S(a) with Jε(un) → Υ0,a. Then, there is {ỹn} ⊂ R
3

such that vn(x) = un(x + ỹn) has a strongly convergent subsequence in H1(R3). Moreover, up to a

subsequence, yn = εnỹn → y in R
3 for some y ∈ M.

Proof. Firstly, we claim that there exist R0, τ > 0 and ỹn ∈ R
3 such that

∫

BR0
(ỹn)

|un|
2dx ≥ τ ∀n ∈ N.

Otherwise, owing to Lions’ vanishing lemma, we have that un → 0 in Lp(R3) for all p ∈ (2, 2∗),

which implies that
∫

R3 F(un)dx → 0. Thus, limn→+∞ Jεn(un) ≥ 0, which contradicts with

limn→+∞ Jεn(un) = Υ0,a < 0.

Considering vn(x) = un(x + ỹn), up to a subsequence, we may assume that there exists

v ∈ H1(R3) \ {0} satisfying vn ⇀ v in H1(R3). Since {vn} ⊂ S(a) and Jεn(un) ≥ J0(un) =

J0(vn) ≥ Υ0,a, there holds that J0(vn) → Υ0,a. By Theorem 2.8, vn → v in H1(R3) and v ∈ S(a).

In what follows, we are to prove that {yn} is bounded. Arguing by contradiction that for

some subsequence |yn| → +∞, the limit

Υ0,a = lim
n→+∞

Jεn(un)

= lim
n→+∞

(
1

2

∫

R3
(|∇vn|

2 + V(εnx + yn)|vn|
2)dx +

1

4

∫

R3
φvn vn

2dx −
∫

R3
F(vn)dx

)

≥
1

2

∫

R3
(|∇v|2 + V∞|v|

2)dx +
1

4

∫

R3
φvv2dx −

∫

R3
F(v)dx

≥ Υ∞,a,

this gives a contradiction due to (3.1). Therefore, we can suppose that yn → y in R
3. Similarly

discussed as above, we obtain

Υ0,a ≥
1

2

∫

R3
(|∇v|2 + V(y)|v|2)dx +

1

4

∫

R3
φvv2dx −

∫

R3
F(v)dx ≥ ΥV(y),a.

By Corollary 2.9, we know that ΥV(y),a > Υ0,a as V(y) > 0. Since V(y) ≥ 0 for all y ∈ R
3, the

above inequality implies that V(y) = 0, that is, y ∈ M.

Let h: [0,+∞) → [0,+∞) be a function such that h(ε) → 0 as ε → 0 and set

S̃(a) = {u ∈ S(a) : Jε(u) ≤ Υ0,a + h(ε)}. (4.2)

In view of Lemma 4.3, the function h(ε) = supy∈M |Jε(Φε(y))− Υ0,a| satisfies that h(ε) → 0 as

ε → 0. Thus, Φε(y) ∈ S̃(a) for all y ∈ M.

Lemma 4.6. Let δ > 0 and Mδ = {x ∈ R
3 : dist(x, M) ≤ δ}. There holds

lim
ε→0

sup
u∈S̃(a)

inf
z∈Mδ

|βε(u)− z| = 0.

Proof. Let εn → 0 and un ∈ S̃(a) such that

inf
z∈Mδ

|βεn(un)− z| = sup
un∈S̃(a)

inf
z∈Mδ

|βεn(un)− z|+ on(1).
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According to the above equality, it is sufficient to find a sequence {yn} ⊂ Mδ such that

lim
n→+∞

|βεn(un)− yn| = 0.

Since un ∈ S̃(a), we obtain

Υ0,a ≤ J0(un) ≤ Jεn(un) ≤ Υ0,a + h(εn) ∀n ∈ N,

and so,

un ∈ S(a) and Jεn(un) → Υ0,a.

From Proposition 4.5, it follows that there exists {ỹn} ⊂ R
3 such that yn = εnỹn → y for

some y ∈ M and vn(x) = un(x + ỹn) is strongly convergent to some v ∈ H1(R3) with v ̸= 0.

Then, {yn} ⊂ Mδ for n large enough and

βεn(un) = yn +

∫
R3(χ(εnz + yn)− yn)|vn|2dz

a2
,

which implies that

βεn(un)− yn =

∫
R3(χ(εnz + yn)− yn)|vn|2dz

a2
→ 0 as n → +∞.

The proof is completed.

4.1 Proof of Theorem 1.2.

In what follows, let ε ∈ (0, ε0). By Lemma 4.3, for any y ∈ M, we have

Jε(Φε(y)) ≤ Υ0,a + h(ε), h(ε) → 0 (ε → 0),

which implies that Φε(M) ⊂ S̃(a). By Lemma 4.6, we obtain

dist(βε(u), Mδ) ≤ δ, ∀u ∈ S̃(a),

which leads to βε(S̃(a)) ⊂ Mδ. Hence, we have that βε ◦Φε(M) ⊂ Mδ. We define id : M → Mδ.

Hereafter, let us define W : [0, 1]× M → Mδ

W(t, y) = tβε ◦ Φε + (1 − t) id(y) t ∈ [0, 1],

satisfying W(0, y) = id(y), W(1, y) = βε ◦ Φε, we can conclude that βε ◦ Φε is homotopic to

the inclusion map id : M → Mδ. By Lemma 4.2, it follows that

cat(S̃(a)) ≥ catMδ
(M).

Arguing as Lemma 2.4, we also have that Jε is bounded from below on S(a). From Lemma

3.4, we have that the functional Jε satisfies the (PS)c condition for the c ∈ (Υ0,a, Υ0,a + h(ε)).

By Lemma 4.1, there exists at least cat(S(a)) critical points of Jε restricted to S(a). Since

S̃(a) ⊂ S(a), cat(S̃(a)) ≤ cat(S(a)). Then, by the Lusternik–Schnirelmann category theory

(see [19] and Theorem 5.20 of [30]), we have that Jε has at least catMδ
(M) critical points on

S(a).
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1 Introduction

In the qualitative theory of real planar differential systems, one of research focus is the number

and configuration of limit cycles, which belong to the context of the second part of Hilbert’s

16th Problem. Until now the problem still remains to be unsolved even though a lot of works

have been done. As well known, Arnold [1] proposed a weaker version of this problem, the

so-called infinitesimal Hilbert’s 16th problem, that is to study the number of isolated zeros of

the Abelian integrals obtained from integrating polynomial 1-forms over ovals of polynomial

Hamiltonian.

Consider perturbations of the Hamiltonian system







ẋ = Hy(x, y) + εP(x, y),

ẏ = −Hx(x, y) + εQ(x, y),
(1.1)

where H(x, y) is a polynomial of degree n + 1, P(x, y) and Q(x, y) are polynomials of degree

m in x, y, and ε is a small parameter.

We assume that there is a family of ovals Γh ⊂ {(x, y) | H(x, y) = h}, continuously

depending on a parameter h ∈ (h1, h2), then the Abelian integral of system (1.1) is defined as

I(h) =
∮

Γh

P(x, y)dy − Q(x, y)dx, (1.2)

BCorresponding author. Email: mathsyishao@126.com
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where Γh is the open punctured neighborhood foliated by periodic orbits of system (1.1) as

ε = 0. The displacement function d(h, ε) of system (1.1) is defined on a segment transversal to

the flow, which is parameterized by the Hamiltonian value h, then

d(h, ε) =
∮

Γh

dH = ε(I(h) + O(ε)). (1.3)

Hence, if I(h) is not identically zero, then the number of isolated zeros of the Abelian integral

I(h) (or be called the first order Melnikov function) gives an upper bound for the number of

limit cycles of system (1.1) in any compact region of period annulus. It is well known that the

limit cycles bifurcating from the period annulus is called Poincaré bifurcation.

The generalized Liénard system ẋ = y, ẏ = f (x) + εyg(x) of type (m, n) has rich dynamic

behavior, where m and n are degrees of polynomials f (x) and g(x), respectively. If m = 2, 3

and ε = 0, then Hamiltonian functions of this system are called elliptic. Many authors studied

the bifurcations of limit cycles on this system. Dumortier and Li have made a complete

investigate for Liénard system of type (3, 2) in a series of papers (see [3–6]), and they proved

that the upper bound of number of isolated zeroes of Abelian integrals is five. In [11], the

authors also investigated some Liénard systems of type (3, 2) with symmetry, which exist at

most two limit cycles.

If m ≥ 4 and ε = 0, then Hamiltonian functions of the above Liénard system are called

hyperelliptic. In [7], Gavrilov and Iliev given the topological classification of hyperelliptic

Hamiltonian system of degree five, its normal form of Hamiltonian function is

H(x, y) =
1

2
y2 +

λµ

2
x2 − λ + µ + λµ

3
x3 +

1 + λ + µ

4
x4 − 1

5
x5, (1.4)

where there are eleven cases having period annulus. J. Wang (see [15,16]) studied the number

of limit cycles of two classes of Liénard systems of type (4, 3) and (4, 2), in which unperturbed

systems has a saddle and degenerated polycycle, respectively. The authors of [20] obtained

lower bounds of the number of limit cycles for a Liénard system of type (4, n) having two

elementary centers, where 20 ≤ n ≤ 24.

In this paper, we choose one of eleven cases in [7], that is, we investigation Poincaré

bifurcation for a Liénard system of type (4, 3) with hyperelliptic Hamiltonian H(x, y) = h,

h ∈ (h1, h2) in (1.4) having a pair of conjugated complex critical points. The perturbation

system is as follows






ẋ = y,

ẏ = x(x − 1)(x2 + ax + b) + ε(α + βx + γx2 + x3)y, a2 − 4b < 0.
(1.5)

It is easy to know that the unperturbed system of (1.5) has a bounded period annulus sur-

rounding the elementary center (0, 0), corresponding to endpoint h1, and a homoclinic loop

(bounder of period annulus) passing through hyperbolic saddle (1, 0), corresponding to end-

point h2. By (1.2), we know that the Abelian integral of system (1.5) is

I(h) =
∫

Γh

(α + βx + γx2 + x3)ydx = αI0(h) + βI1(h) + γI2(h) + I3(h), (1.6)

where Ii(h) =
∫

Γh
xiydx, i = 0, 1, 2, 3 and Γh is the compact component of H(x, y) = h, defined

by (1.5).

There are many techniques and arguments to tackle the problem of bounding the num-

ber of zeroes of Abelian integrals, lots of them are very long and non-trivial, see [2]. Since
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Hamiltonian function H(x, y) has the higher degree, a purely algebraic criterion proposed

in [8] and [12] are usual methods. These methods can transfer the estimation the number

of zeros of Abelian integrals to that of the number of real roots of linear combinations of a

tuple (I0(h), I1(h), I2(h), I3(h)) of associated semi-algebraic systems (SAS for short). This cri-

terion can reduce the difficulties of qualitative analysis in limit cycle bifurcating from a center.

Nonetheless, it is challenging and very difficult to obtain the cyclicity of this family of period

annuli that depends on the variables a, b indeed, which need to verify the problem whether

the collection of Abelian integrals is an ECT-system or a Chebyshev system with accuracy k

(see [8]). We attempt several values of the variables a, b by using software Maple, which lead

to a desktop computer to a dead end due to the huge polynomials with huge coefficients and

thousands of terms.

In the present paper, we take a = b = 2, and use approaches of real root isolation and

interval analysis to get the number of roots of huge polynomial, as a result, we can obtain the

number of zeros of Abelian integrals of system (1.5) for a = b = 2. We rewrite system (1.5) as

{

ẋ = y,

ẏ = x(x − 1)(x2 + 2x + 2) + ε(α + βx + γx2 + x3)y,
(1.7)

where α, β, γ are arbitrary real constants and ε > 0 is a small parameter, and the first integral

of (1.7) is

H(x, y) =
1

2
y2 + x2 − 1

4
x4 − 1

5
x5 = h, h ∈

(

0,
11

20

)

(1.8)

as ε = 0. The projection interval of the period annulus Γh on the x-axis is (x0, 1), where

x0 ≈ −0.763592319985, and it is an intersection of the homoclinic loop with the negative half

axis of the x-axis. Phase portrait of the unperturbed system of (1.7) see Figure 1.1.

Figure 1.1: Phase portrait of system (1.5) when ε = 0.

The main purpose in this paper is to show that system (1.7) can undergo Poincaré bifurca-

tion from the period annulus surrounding the origin. We can prove that the Abelian integral

I(h) has at most six zeros (taken into account muitiplicity), see Proposition 3.1 in Section 3.

Proposition 3.1 and the equation (1.3) imply that system (1.7) can produce at most six limit

cycles. The main results of this paper as follows.

Theorem 1.1. The number of limit cycles of system (1.7) bifurcating from period annulus surrounding

the center is at most six for arbitrary value of parameters α, β, γ.
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Note that unperturbed system of (1.7) has a period annulus surrounding the elementary

center, its outer boundary is a saddle loop. According to Roussarie’s theorem [14], the upper

bound of number of isolated zeros of the Abelian integral I(h) covers the number of limit

cycles from center, from period annulus and from the homoclinic loop, therefore we have the

following Theorem.

Theorem 1.2. System (1.7) could give rise to at most six limit cycles in the finite plane surrounding

the origin for sufficiently small ε and any parameters α, β, γ.

The paper is organized as follows. In Section 2, we introduce some definitions and prop-

erties of Chebyshev systems. In Section 3, we study the number of zeros of Abelian integral

I(h) and obtain the maximal number of limit cycles bifurcating from period annulus by using

Chebyshev criterion. Hence Proposition 3.1 is main result of this paper.

2 Preliminary properties

In order to study the number of isolated zeros of Abelian integral I(h) in h ∈ (0, 11
20 ), Grau et

al. in [8] give a Chebyshev criterion, which check whether (I0, I1, I2, I3) in (1.6) is an extended

complete Chebyshev system or Chebyshev system with accuracy k. Hence we introduce some

preliminary definitions and properties, the reader can refer to [8, 12] or the recent paper [13]

for more details.

Definition 2.1. Let ϕ0(x), ϕ1(x), . . . , ϕn−1(x) be analytic functions on an open interval L of R.

(i) The set of functions (ϕ0(x), ϕ1(x), . . . , ϕn−1(x)) is a Chebyshev system (T-system) with

accuracy k on L if any nontrivial linear combination

α0ϕ0(x) + α1 ϕ1(x) + · · ·+ αn−1 ϕn−1(x)

has at most n + k − 1 isolated zeros for x ∈ L.

(ii) The set of functions (ϕ0(x), ϕ1(x), . . . , ϕn−1(x)) is an extended complete Chebyshev sys-

tem (ECT-system) on L if for all m = 1, 2, . . . , n, any nontrivial linear combination

α0 ϕ0(x) + α1ϕ1(x) + · · ·+ αm−1ϕm−1(x)

has at most m − 1 isolated zeros on L counted with multiplicities.

(iii) The continuous Wronskian of (ϕ0(x), ϕ1(x), . . . , ϕm−1(x)) at x ∈ L is

W[ϕ0, ϕ1, . . . , ϕm−1](x) = Det(ϕ
(i)
j (x))0≤i,j≤m−1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ0(x) · · · ϕm−1(x)

ϕ′
0(x) · · · ϕ′

m−1(x)
...

. . .
...

ϕ
(m−1)
0 (x) · · · ϕ

(m−1)
m−1 (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where ϕ′
j(x) and ϕ

(i)
j (x)(i ≥ 2) represent the derivative of one order and the ith order of

ϕj(x), respectively.

Lemma 2.2 ([10] or [8]). (ϕ0(x), ϕ1(x), . . . , ϕn−1(x)) is an extended complete Chebyshev system on

L if and only if, for each m = 1, 2, . . . , n,

W[ϕ0, ϕ1, . . . , ϕm−1](x) ̸= 0 for all x ∈ L.
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Now we rewrite the first integral (1.8) as

H(x, y) = A(x) + B(x)y2, (2.1)

where

A(x) = x2 − 1

4
x4 − 1

5
x5, B(x) =

1

2

and H(x, y) is an analytic function in open interval. There exists a period annulus filled by

the set of ovals Γh ∈ {(x, y)|H(x, y) = h, h ∈ (0, 11
20 )} and H(0, 0) = 0 is a local minimum.

It is easy to verify that xA′(x) = x2(1 − x)(x2 + 2x + 2) > 0 for any x ∈ (x0, 1) \ 0 (x0 ≈
−0.763592319985). Thus, there exists an analytic involution z = σ(x) (σ ◦ σ = Id and σ ̸= Id)

with x0 < z < 0 such that

A(x) = A(σ(x)) for all x ∈ (0, 1)

and σ(0) = 0. Using Theorem A in [12], we get the following lemma.

Lemma 2.3. Assume that gi(x) are an analytic function on the interval (x0, 1), i = 0, 1, 2, 3. Denote

Īi(h) =
∫

Γh

gi(x)y2s−1dx,

where Γh is the set of periodic orbit surrounding the origin inside the level curve {A(x)+B(x)y2m = h}
for each h ∈ (0, 11

20 ). Let

ϕi(x) =
gi(x)

A′(x)(B(x))
2s−1
2m

− gi(σ(x))

A′(σ(x))(B(σ(x)))
2s−1
2m

.

If the following statements hold:

(i) W[ϕ0, ϕ1, . . . , ϕm](x) is not vanish on (0, 1) for m = 1, 2, . . . , n − 2;

(ii) W[ϕ0, ϕ1, . . . , ϕn−1](x) has k zeroes on (0, 1) counted with multiplicities, and

(iii) s > m(n + k − 2),

then ( Ī0(h), Ī1(h), . . . , Īn−1(h)) has at most n + k − 1 isolated zeros on (0, 11
20 ) counted with multiplic-

ities.

To prove Proposition 3.1 in Section 3, note that Ii(h) =
∫

Γh
xiydx, s = 1, m = 1 and n = 4,

even if k = 0, but the condition s > 2 in Lemma 2.3 would not be satisfied. Hence we can not

apply Lemma 2.3 directly. We need promote the power y in the integrand of Ii(h) such that

the conditions s > m(n + k − 2) = k + 2 hold. By using Lemma 4.1 in [8], we have

Lemma 2.4. Let Γh be an oval inside the level curve {A(x) + B(x)y2 = h}. If there exists a function

U(x) such that U(x)
A′(x)

is analytic at x = 0. Then, for any s ∈ N,

∫

Γh

U(x)ys−2dx =
∫

Γh

V(x)ysdx,

where V(x) = 2
s

( B(x)U(x)
A′(x)

)′ − B′(x)U(x)
A′(x)

.
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In order to get the number of real roots of linear combinations of a tuple (I0(h), I1(h), I2(h),

I3(h)) in (1.6), Lemma 2.3 is a main criterion in our paper. By applying this criterion, we can

transfer the estimation of the number of real zeroes of Abelian integral to that of the number of

real roots of a tuple, which reduce a semi-algebraic systems(SAS) and the reader is referred to

see [18,19] for more details. The key to solve of SAS question is to solve polynomial equations.

We suppose that the polynomial equation W(x, z) = 0 has a real root (x∗, z∗) at the rect-

angle domain D = {(x, z) | (x, z) ∈ (0, 1)× (x0, 0)}, where the variables x, z also satisfy the

equation q(x, z) = 0, where z = σ(x) is an involution and σ′(x) < 0. Solving this SAS question

is to solve common root of systems of equations of two unknowns W(x, z) = 0, q(x, z) = 0.

We divide analytic techniques into three steps.

Step 1 (Elimination variable by resultant): We can elimination variable x (or z) by the theory

of resultant, that is, variables x, z satisfy the resultant equation

R(z) = res(W(x, z), q(x, y), x) = 0 or R̄(x) = res(W(x, z), q(x, y), z) = 0.

Step 2 (Interval isolation of real root): Without loss of generality, Assume that the resultant

equation R̄(x) = 0 has a real root x∗ in [x1, x2] ⊂ [0, 1] (corresponding z∗ in [z1, z2] ⊂ [x0, 0])

by using command realroot in Maple. We substitute x = x1 and x = x2 into p(x, z) = 0, and

let maximal interval of isolation real root of equation p(x, z) = 0 be [z11, z12] ⊂ [z1, z2]. Thus

we minimize the possible existing the rectangle domain of the common roots of W(x, z) = 0

and q(x, y) = 0.

However, it should be noted that if we solve R̄(x) = 0 directly without using interval isola-

tion of real root, then we can only get a approximation of x∗. But the results of these numerical

calculation are sometimes unreliable due to the thousands of terms of polynomials with huge

coefficients, a famous cautionary example see [17], and example of numerical calculation see

Lemma 3.4 [iv] of [9].

Step 3 (Analysis of common real roots): Let the above the rectangle domain be ABCD, where

A(x1, z12), B(x1, z11), C(x2, z11) and D(x2, z12). We can analysize whether the rectangle domain

has a common root or not by positive and negative values of W(x, z) and q(x, z) at vertices

A, B, C, D, the involution and the intermediate value theorem of continuous function. The

detailed application skills see proof of Lemma 3.2.

3 Poincaré bifurcations of system (1.7)

In this Section, to prove Theorem 1.1, firstly, we will study the number of isolated zeros of

Abelian integral I(h) in h ∈ (0, 11
20 ) , that is the following Proposition 3.1.

Proposition 3.1. For arbitrary value of parameters (α, β, γ), the Abelian integral I(h) of system (1.7)

has at most six zeros (counting multiplicities) in h ∈ (0, 11
20 ).

The main tools of proving Proposition 3.1 are Lemmas 2.2–2.4. Hence we need to check

the Chebyshev property of the Abelian integral (1.6). Proof of Proposition 3.1 will be given at

the end of this section.

Now applying Lemma 2.4, we rewrite Ii(h) in (1.7) as

Ii(h) =
1

h

∫

Γh

(

A(x) +
1

2
y2

)

xiydx =
1

h

∫

Γh

[

xi A(x)y +
1

2
xiy3

]

dx

=
1

h

∫

Γh

Vi(x)y3dx, i = 0, 1, 2, 3,
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where

Vi(x) =
xiνi(x)

60(x − 1)2(x2 + 2x + 2)2

with

νi(x) = (160 + 40i)− (130 + 30i)x2 − (112 + 28i)x3

+ (35 + 5i)x4 + (68 + 9i)x5 + (34 + 4i)x6.

To promote the power y such that the condition s > 2 (suppose k = 0) is satisfied, by using

Lemma 2.4 again, we obtain that

Ii(h) =
1

h2

∫

Γh

(

A(x) +
1

2
y2

)

Vi(x)y3dx

=
1

h2

∫

Γh

[

Vi(x)A(x)y3 +
1

2
Vi(x)y5

]

dx =
1

h2

∫

Γh

gi(x)y5dx,

where

gi(x) =
xiτi(x)

6000(x − 1)4(x2 + 2x + 2)4
(3.1)

with

τi(x) = (38400 + 16000i + 1600i2)− (62400 + 24800i + 2400i2)x2

− (51840 + 21920i + 2240i2)x3 + (44300 + 15200i + 1300i2)x4

+ (81120 + 27600i + 2400i2)x5 + (23992 + 8324i + 804i2)x6

− (41480 + 11990i + 820i2)x7 − (37939 + 10782i + 719i2)x8

− (5354 + 1851i + 134i2)x9 + (11096 + 2375i + 121i2)x10

+ (7344 + 1492i + 72i2)x11 + (1836 + 352i + 16i2)x12.

Denote

Īi(h) = h2 Ii(h) =
∫

Γh

gi(x)y5dx, h ∈
(

0,
11

20

)

.

We can see that gi(x) is analytic on (x0, 1) and (I0(h), I1(h), I2(h), I3(h)) is an ECT-system or T-

system on (0, 11
20 ) if and only if so is ( Ī0(h), Ī1(h), Ī2(h), Ī3(h)). Therefore, applying Lemma 2.4

to ( Ī0(h), Ī1(h), Ī2(h), Ī3(h)) with s = 3, we have

ϕ̄i(x, z) = ḡi(x)− ḡi(z) =

(

4
√

2gi

A′

)

(x)−
(

4
√

2gi

A′

)

(z), i = 0, 1, 2, 3, (3.2)

where

ḡi(x) =

√
2xi−1τi(x)

1500(1 − x)5(x2 + 2x + 2)5
,

ḡi(z) =

√
2zi−1τi(z)

1500(1 − z)5(z2 + 2z + 2)5

and z = σ(x) is an involution function.

On the other hand, due to

A(x)− A(z) =
1

20
(x − z)p(x, z) = 0,
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where

p(x, z) = −20(x + z) + 5(x3 + x2z + xz2 + z3) + 4(x4 + x3z + x2z2 + xz3 + z4).

Since σ(0) = 0, It turns out that z = σ(x) is defined by means of p(x, z) = 0. Moreover, we

get that

σ′(x) =
dz

dx
= − p′x(x, z)

p′z(x, z)
, (3.3)

where

p′x(x, z) = −20 + 15x2 + 10xz + 5z2 + 16x3 + 12x2z + 8xz2 + 4z3,

p′z(x, z) = −20 + 5x2 + 10xz + 15z2 + 4x3 + 8x2z + 12xz2 + 16z3.

By Lemma 2.2, we find that the Wronskian W[(ϕ̄0, ϕ̄1, ϕ̄2, ϕ̄3)](x) has two zeros on (0, 1) by

interval analysis, which shows that (ϕ̄0, ϕ̄1, ϕ̄2, ϕ̄3) is not an ECT-system on (0, 1). According

to Lemma 2.3(iii), we need to take s > m(n+ k− 2) = 4. Hence we lift the power of y in the in-

tegrand of Ii(h) to 2s− 1 = 9. But we find that the associated Wronskian W[(ϕ0, ϕ1, ϕ2, ϕ3)](x)

has three zeros for x ∈ (0, 1). So we further take s = 6 and lift the power of y of integrand

of Ii(h) to 2s − 1 = 11, fortunately, the associated Wronskian W[(ϕ̃0, ϕ̃1, ϕ̃2, ϕ̃3)](x) has still

three zeros, all of the first order Wronskians W[(ϕ̃i)](x)(i = 0, 1, 2, 3), the second order Wron-

skians W[(ϕ̃2, ϕ̃1)](x) and the third order Wronskians W[(ϕ̃2, ϕ̃1, ϕ̃0)](x) have all no zero for

x ∈ (0, 1), which give us hope to obtain the number of zeros of linear combinations of the

tuple of functions (ϕ̃0, ϕ̃1, ϕ̃2, ϕ̃3) by Lemma 2.3.

Repeating the above procedures, it follows from Lemma 2.4 that

Ĩi(h) = h5 Ii(h) =
∫

Γh

Fi(x)y11dx, h ∈
(

0,
11

20

)

. (3.4)

where

Fi(x) =
xiGi(x)

33264000000(x − 1)10(x2 + 2x + 2)10
,

and Gi(x) is a polynomial of degree 30 in x, we omit it here because the polynomial has a

longer expression. Let

ϕ̃i(x, z) =

(

32
√

2Fi

A′

)

(x)−
(

32
√

2Fi

A′

)

(z), i = 0, 1, 2, 3, (3.5)

where z = σ(x) is an involution and x ∈ (0, 1).

According to Lemma 2.3, we need to compute the number of zeros of many Wronskians,

moreover, each of Wronskians is a the huge polynomial with huge coefficients and hundreds

of items. After many attempts to the ordered linear combinations of associated criterion

function (ϕ̃0, ϕ̃1, ϕ̃2, ϕ̃3), finally we find that the tuple of functions (ϕ̃2, ϕ̃1, ϕ̃0, ϕ̃3) satisfy the

statements in Lemma 2.3. Then we get the following lemma.

Lemma 3.2. ( Ĩ2(h), Ĩ1(h), Ĩ0(h), Ĩ3(h)) has at most six isolated zeros on (0, 11
20 ) counted with multi-

plicities.

Proof. It follows from Lemma 2.3 that we need to verify the statements (i) and (ii). For this

purpose, we divide the proof into four cases.

Case 1: The fourth Wronskian W[ϕ̃2, ϕ̃1, ϕ̃0, ϕ̃3](x, z) has three zeros for (x, z) ∈ (0, 1)× (x0, 0).
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With the help of the computer algebraic system Maple, by direct computation, we get that

W[ϕ̃2, ϕ̃1, ϕ̃0, ϕ̃3](x, z)

= − (x − z)10ω4(x, z)

8341981409179687500000000000000x4z4q4(x)q4(z)(p′z(x, z))6
,

(3.6)

where ω4(x, z) is a polynomial of degree 228 in (x, z), p′z(x, z) as in (3.3),

q4(x) = (x − 1)38(x2 + 2x + 1)38, q4(z) = (z − 1)38(z2 + 2z − 1)38,

and z = σ(x) is an implicit function determined by the polynomial equation p(x, z) = 0.

Meanwhile, we find that ω4(x, z) is symmetric polynomial with respect to x, z.

We assert that p′z(x, z) ̸= 0 for any (x, z) ∈ (0, 1) × (x0, 0). In fact, by computing the

resultant R(p′z, p, z) with respect to z between p′z(x, z) and p(x, z), we have

R(p′z, p, z) = 8000(4x3 + 13x2 + 22x + 11)(4x3 + 5x2 − 20)

× (16x6 − 24x5 − 7x4 − 68x3 + 256x2 − 296x + 148).

It is easy to verify that three polynomial factors in R(p′z, p, z) have not zeros in x ∈ (0, 1). This

implies W[ϕ̃2, ϕ̃1, ϕ̃0, ϕ̃3](x, z) is well defined in (0, 1)× (x0, 0).

Next we calculate the resultant with respect to z between ω4(x, z) and p(x, z) and obtain

R(ω4, p, z) = 396154108207169536000000000000(x − 1)28(x2 + 20 + 2)28φ4(x),

where φ4(x) is a polynomial of degree 828 in x.

Note that ω4(x, z) and p(x, z) are symmetric polynomials with respect to x, z and z = σ(x)

is an involution. Therefore the resultant R(ω4, p, z)(or R(ω4, p, x)) between ω4(x, z) and p(x, z)

with respect to x (or z) suffices that the statement R(ω4, q, x) = R(ω4, q, z)|z=x. By command

realroot in Maple, we get that φ4(x) has five isolate zeros x∗i (i = 1, 2, 3, 4, 5) in (0, 1) and three

isolate zeros z∗i (i = 1, 2, 3) in (x0, 0)(x0 ≈ −0.763592319985). List of the isolation intervals of

these zeros are as follows

x∗1 ∈ [x̂11, x̂12] =

[

73134709858141

140737488355328
,

36567354929071

70368744177664

]

,

x∗2 ∈ [x̂21, x̂22] =

[

42527490909395

70368744177664
,

85054981818791

140737488355328

]

,

x∗3 ∈ [x̂31, x̂32] =

[

29671532711011

35184372088832
,

118686130844045

140737488355328

]

,

x∗4 ∈ [x̂41, x̂42] =

[

122355652851087

140737488355328
,

7647228303193

8796093022208

]

,

x∗5 ∈ [x̂51, x̂52] =

[

137735701579791

140737488355328
,

8608481348737

8796093022208

]

and

z∗1 ∈ [ẑ11, ẑ12] =

[

− 53678146230419

70368744177664
,−107356292460837

140737488355328

]

,

z∗2 ∈ [ẑ21, ẑ22] =

[

− 102328736960905

140737488355328
,−12791092120113

17592186044416

]

,

z∗3 ∈ [ẑ31, ẑ32] =

[

− 80910761056793

140737488355328
,−10113845132099

17592186044416

]

.
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Figure 3.1: The sketch graph of ω4(x, z) =

0 and p(x, z) = 0 intersecting in the rect-

angle A1B1C1D1.

Figure 3.2: The sketch graph of ω4(x, z) =

0 and p(x, z) = 0 intersecting in the rect-

angle A3B3C3D3.

Since z = σ(x) is an involution determined by p(x, z) = 0 and satisfy σ′(x) < 0 for

x ∈ (0, 1), which imply that ω4(x, z) and p(x, z) = 0 have at most three common real roots.

Firstly, we substitute z = ẑ11 and z = ẑ12 into p(x, z), then equation p(x, z) = 0 has one root

in interval

[x11, x12] =

[

68867850789901

70368744177664
,

137735701579803

140737488355328

]

,

and

[x21, x22] =

[

34433925394947

35184372088832
,

137735701579789

140737488355328

]

,

respectively. It is easy to verify that interval [x11, x12] ⊃ [x̂51, x̂52] and [x21, x22] ⊃ [x̂51, x̂52],

which shows that ω4(x, z) and p(x, z) = 0 possibly have common real root.

Let the four vertices of closed rectangle containing the point (x∗5 , z∗1) be A1(x̂51, ẑ12),

B1(x̂51, ẑ11), C1(x̂52, ẑ11) and D1(x̂52, ẑ12), see Figure 3.1. Substituting coordinates of four ver-

tices A1, B1, C1, D1 into ω4(x, z), we get that

ω4(A1) = −1103261 · · · 6171875

1000814 · · · 7682176
, ω4(B1) = −2177946 · · · 3395375

1973759 · · · 7196544
,

ω4(C1) =
3939512 · · · 4495625

2780712 · · · 3723776
, ω4(D1) =

3353939 · · · 1640625

2365568 · · · 5694464
,

here we omit digits using dots for brevity because their numerators and denominators are all

huge numbers.

Note that ω4(A1) < 0, ω4(B1) < 0, ω4(C1) > 0 and ω4(D1) > 0, by command fsolve in

Maple, we find that ω4(x, z) has not zero at the sides A1B1 and C1D1 of rectangle A1B1C1D1

as x = x̂51 and x = x̂52, respectively, which implies that ω4(x, z) < 0 at the side A1B1

and ω4(x, z) > 0 at the side C1D1. Meanwhile, the zero set of polynomial ω4(x, z) inter-

secting with the sides B1C1 and A1D1 of rectangle forms a simple curve ended by points

(0.9786710221234176135, ẑ11) and (0.9786710221234176104, ẑ12), respectively.

Using the same sequence, substituting coordinates of four vertices A1, B1, C1, D1 into

p(x, z), we have

p(A1) = −1656260 · · · 5869779

9807971 · · · 0539264
, p(B1) =

9711472 · · · 0200531

9807971 · · · 0539264
,

p(C1) =
5556451 · · · 8475385

6129982 · · · 4408704
, p(D1) = −2477410 · · · 4753759

9807971 · · · 0539264
.
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By direct computation, we get that p(x, z) < 0 at the side A1D1, p(x, z) > 0 at the side B1C1,

a simple curve p(x, z) = 0 intersect the side A1B1 with point (x̂51,−0.76281233746184644)

and the side C1D1 with point (x̂52,−0.76281233746184695). According to the Intermediate

Value Theorem, curves ω4(x, z) = 0 intersect transversely with p(x, z) = 0 in the rectangle

A1B1C1D1, which implies that ω4(x, z) = 0 and p(x, z) = 0 have and only have one common

solution in the associated rectangle. Hence W[ϕ̃2, ϕ̃1, ϕ̃0, ϕ̃3](x, z) has one zero in the rectangle

A1B1C1D1.

Secondly, we substitute z = ẑ21 and z = ẑ22 into p(x, z), we find that p(x, z) = 0 has one

root in interval

[x̄11, x̄12] =

[

59343065422023

70368744177664
,

118686130844047

140737488355328

]

,

and

[x̄21, x̄22] =

[

118686130844043

140737488355328
,

29671532711011

35184372088832

]

,

respectively. Note that

[min(x̄11, x̄21), max(x̄12, x̄22)] = [x̄21, x̄12] ⊃ [x̂31, x̂32].

By similar discussion and computation to the above procedure and omitting the details for the

sake of brevity, we get that W[ϕ̃2, ϕ̃1, ϕ̃0, ϕ̃3](x, z) has also one zero in the rectangle A2B2C2D2,

where the vertices A2(x̂31, ẑ22), B2(x̂31, ẑ21), C2(x̂32, ẑ21) and D2(x̂32, ẑ22).

Finally, we substitute z = ẑ31 into p(x, z) = 0 and get that it has one root just in interval

[x̂21, x̂22]. Using the same sequence, let A3(x̂21, ẑ32), B3(x̂21, ẑ31), C3(x̂22, ẑ31) and D3(x̂22, ẑ32),

see Figure 3.2. In the rectangle A3B3C3D3, we obtain that

ω4(A3) < 0, ω4(B3) < 0, ω4(C3) > 0, ω4(D3) > 0,

and

p(A3) < 0, p(B3) > 0, p(C3) < 0, p(D3) < 0,

here we omit the specific values of ω4(x, z) and p(x, z) at A3, B3, C3, D3 for brevity.

By similar analysis, we find that one simple curve ω4(x, z) = 0 in the rectangle A3B3C3D3

intersect the side A3D3 with point (0.604351994715489, ẑ32) and the side B3C3 with point

(0.604351994715488, ẑ31), the other simple curve p(x, z) = 0 intersect the side A3B3 with

point (x̂21,−0.574905535137251) and the side B3C3 with point (0.604351994715491, ẑ31). Since

0.604351994715491 > 0.604351994715488, it is obvious that curves ω4(x, z) = 0 and p(x, z) = 0

has one intersection in the rectangle A3B3C3D3, which shows that W[ϕ̃2, ϕ̃1, ϕ̃0, ϕ̃3](x, z) has

one zero in the rectangle A3B3C3D3.

To sum up, we prove that W[ϕ̃2, ϕ̃1, ϕ̃0, ϕ̃3](x, z) has three zeros for (x, z) ∈ (0, 1)× (x0, 0).

Case 2: The third Wronskian W[ϕ̃2, ϕ̃1, ϕ̃0](x, z) has no zero for (x, z) ∈ (0, 1)× (x0, 0).

Applying the same method as the fourth Wronskian, we obtain the third Wronskian

W[ϕ̃2, ϕ̃1, ϕ̃0](x, z) =

√
2(x − z)6ω3(x, z)

577799578125000000000000x3z3q3(x)q3(z)(p′z(x, z))3
, (3.7)

where ω3(x, z) is a asymmetric polynomial of degree 177 in (x, z), p′z(x, z) as in (3.3),

q3(x) = (x − 1)30(x2 + 2x + 2)30 and q3(z) = (z − 1)30(z2 + 2z + 2)30.
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The resultant with respect to x between ω3(x, z) and p(x, z) is

R(ω3, p, x) = 629407744000000z2(z − 1)24(z2 + 2z + 2)24φ3(z),

here φ3(z) is a polynomial of degree 636 in z. We find three isolate zeros of φ3(z) in (x0, 0)

and one isolate zero in (0, 1). These real root isolation intervals are as follows

z̃1 ∈ [z̃11, z̃12] =

[

− 771

2024
,−6167

8192

]

, z̃2 ∈ [z̃21, z̃22] =

[

− 39

64
,−4991

8192

]

,

z̃3 ∈ [z̃31, z̃32] =

[

− 3753

16384
,− 7505

32768

]

, x̃ ∈ [x̃11, x̃12] =

[

6279

8192
,

785

1024

]

.

We take interval end points x̃11 and x̃12 into interval polynomial equation p(x, z)) = 0 and

get two real roots intervals in (x0, 0)

[z̄11, z̄12] =

[

− 5637

8192
,

1409

2408

]

, [z̄21, z̄22] =

[

− 2819

4096
,

5637

8192

]

,

respectively. We find that each of intervals [z̄i,1, z̄i,2](i = 1, 2) has not intersection with any of

the intervals [z̃i,1, z̃i,2] for i = 1, 2, 3, which implies that there does not exist value of (x, z) in

plane area D = (0, 1)× (x0, 0) such that both ω3(x, z) = 0 and p(x, z) = 0 hold simultaneously.

This shows that W[ϕ̃2, ϕ̃1, ϕ̃0](x, z) ̸= 0 for (x, z) ∈ (0, 1)× (x0, 0).

Case 3: The second Wronskian W[ϕ̃2, ϕ̃1](x, z) has no zero for (x, z) ∈ (0, 1)× (x0, 0).

By similar calculation to Case 2, we get that

W[ϕ̃2, ϕ̃1](x, z) =
(x − z)3ω2(x, z)

10005187500000000q2(x)q2(z)p′z(x, z)
, (3.8)

where ω2(x, z) is a asymmetric polynomial of degree 120 in (x, z),

q1(x) = (x − 1)21(x2 + 2x + 2)21 and q1(z) = (z − 1)21(z2 + 2z + 2)21. (3.9)

The resultant with respect to x between ω2(x, z) and p(x, z) is

R(ω1, p, x) = 6400(z − 1)18(z2 + 2z + 2)18φ2(z),

where φ2(z) is a polynomial of degree 426 in z.

Using command realroot in Maple, we find that φ2(z) has two zero in the interval (x0, 0)

and one zero in (0, 1), which are

z1 ∈ [z11, z12] =

[

− 93303

131072
,−46651

65536

]

, z2 ∈ [z21, z22] =

[

− 85549

262144
,−21387

65536

]

,

x ∈ [x1, x2] =

[

39715

65536
,

79431

131073

]

.

By solving polynomial equations p([xi, z]) = 0 (i = 1, 2), we get the following the isolation

intervals of real root z

[z̄11, z̄12] =

[

− 75527

131072
,−37763

65536

]

and [z̄21, z̄22] =

[

− 9441

16384
,− 75527

131072

]

.
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We find that the intervals [z̄11, z̄12] and [z̄21, z̄22] have not intersection with intervals [z11, z12]

and [z21, z22]. This shows that ω2(x, z) = 0 and p(x, z) = 0 have no common root for x0 < z <

0 < x < 1. Therefore, W[ϕ̄2, ϕ̄1](x, z) ̸= 0 for all (x, z) ∈ (0, 1)× (x0, 0).

Case 4: The first Wronskian W[ϕ̃2](x, z) has no zero for (x, z) ∈ (0, 1)× (x0, 0).

We get easily that the first Wronskian

W[ϕ̃2](x, z) = ϕ̃2(x, z) =

√
2(x − z)ω1(x, z)

346500000q1(x)q1(z)
, (3.10)

where ω1(x, z) is a polynomial of degree 63 in (x, z),

q1(x) = (x − 1)11(x2 + 2x + 2)11 and q1(z) = (z − 1)11(z2 + 2z + 2)11.

The resultant between ω1(x, z) and p(x, z) with respect to x is

R(ω1, p, x) = (z − 1)10(z2 + 2z + 2)10φ1(z),

where φ1(z) is a polynomial of degree 222 in z. It is easy to know that φ1(z) ̸= 0 for z ∈ (x0, 0)

by command realroot in Maple , which implies that ω1(x, z) = 0 and p(x, z) = 0 have no

common root. Hence W[ϕ̃2](x, z) ̸= 0 for all (x, z) ∈ (0, 1)× (x0, 0).

Summarizing the above cases 1-4, we have verified that the statements (i) and (ii) in

Lemma 2.3 are hold. It follows from Lemma 2.3 that Lemma 3.2 holds, thus we finish proof

of Lemma 3.2.

Proof of Proposition 3.1. Since h5 Ii(h) = Ĩi(h), i = 0, 1, 2, 3, any linear combination of

( Ĩ0, Ĩ1, Ĩ2, Ĩ3) has the same number of zeros as that occurs with (I0, I1, I2, I3). It is easy to

see that Abelian integral in (1.6) together with Hamiltonian (1.8) is the linear span of genera-

tors (I0, I1, I2, I3). By Lemma 3.2, we know that any linear combination of ( Ĩ0, Ĩ1, Ĩ2, Ĩ3) has at

most six zeros on (0, 11
20 ) counted with multiplicities, this implies that any linear combination

of (I0, I1, I2, I3) has also at most six zeros. Therefore, the Abelian integral I(h) has at most six

zeros for arbitrary parameters (α, β, γ). The proof of Proposition 3.1 is completed.

Proof of Theorem 1.1. By Proposition 3.1 and the equation (1.3), if I(h) is not identically

zero, then system (1.7) has at most six limit cycles bifurcating from the period annulus of

unperturbed system of (1.7) by Poincaré bifurcation. Thus we complete proof of Theorem 1.1.
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1 Introduction

Cellular Neural Networks (CNNs) are widely used as mathematical models of the interactions of

the neurons in the human brain. For its construction, electrical and chemical properties have

been considered. The synapses correspond to the connections of the neurons (excitatory and

inhibitory) and are modeled by positive and negative weights. The weighted neural inputs

are added up. Then, the so-called activation function defines the amplitude of the response

signal of the neuron.

BCorresponding author. Email: hartung.ferenc@mik.uni-pannon.hu



2 F. Hartung, M. Pinto and R. Torres

In [16], John Hopfield proposed a novel type of CNN in order to find how human memory

works. They were called Hopfield cellular neural network, and it is represented by the following

nonlinear system:

x′i(t) = −ai(t)xi(t) +
m

∑
j=1

bijgj(xj(t)) + ci(t), i = 1, . . . , m, (1.1)

This model corresponds to a mesh of linked neurons, where every neuron is connected to all

other neurons without self-connection. The states of the neurons are of binary type, and it

depends on whether the neuron’s input exceeds a fixed value. This type of CNN has been

applied in psychology and combinatorics, among others (see [22]). Since the signals travel

at a finite speed between the neurons, time delays are natural to introduce in the models.

Without completeness, we refer to [3, 6, 7, 18, 20, 23, 27] for investigations of different classes

of delayed CNN models.

In [19], A. D. Myshkis introduced differential equations of the form

x′(t) = f (t, x(t), x(τ(t))),

where τ(t) corresponds to a deviated argument (a discontinuous piecewise constant function).

These type of equations are called Differential Equations with Piecewise Constant Arguments (DE-

PCA). The research in this new field started in the 80’s with the works of S. Busenberg and

K. L. Cooke with a model of vertically transmitted diseases (see [8, 26]). There are many fields

where this type of equations have been applied (see [5, 10, 17]).

In [2], M. U. Akhmet investigated systems of the form

y′(t) = f (t, y(t), y(γ(t))), (1.2)

where γ(t) is a piecewise constant argument of generalized type. More precisely, given (tn)n∈Z

and (ζn)n∈Z
such that tn < tn+1 , ∀n ∈ Z with lim

n→±∞
tn = ±∞ and tn ≤ ζn ≤ tn+1, then

γ(t) = ζn, if t ∈ In = [tn, tn+1) .

When such a function γ is introduced, it generates advanced and delayed arguments in the

equation, dividing the interval In into two pieces In = I+n
⋃

I−n , where I+n = [tn, ζn] corresponds

to the advanced, and I−n = [ζn, tn+1] to the delayed interval. These equations are known

as Differential Equations with Piecewise Constant Argument of Generalized Type (DEPCAG). In

this class of differential equations, the solutions are continuous functions, although γ is a

discontinuous function. Integrating (1.2) from tn to tn+1 we obtain a difference equation,

giving the character of hybrid to this kind of equations (see also [21]).

The following example will be important for the rest of the work (when k = 0). Consider

γ(t) =
[

t+k
h

]

h with 0 ≤ k < h, where [·] is the greatest integer function. We have
[

t + k

h

]

h = nh, when t ∈ In = [nh − k, (n + 1) h − k).

Hence, γ (t)− t ≥ 0 ⇔ t ≤ nh and γ (t)− t ≤ 0 ⇔ t ≥ nh, that implies

I+n = [nh − k, nh], I−n = [nh, (n + 1) h − k].

Now, if additionally a jump condition is applied at the endpoints of the intervals In =

[tn, tn+1), it defines the class of Impulsive differential equations with piecewise constant argument of

generalized type, (IDEPCAG) (see [1]),

y′(t) = f (t, y(t), y(γ(t))), t ̸= tn

∆y(tn) := y(tn)− y(t−n ) = Jn(y(t
−
n )), t = tn, n ∈ N. (1.3)
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Definition 1.1 (IDEPCAG solution). A piecewise continuous function y(t) is a solution of (1.3)

if:

(i) y(t) is continuous on In = [tn, tn+1) with discontinuities of the first kind at tn with n ∈ Z,

where y′(t) exists at each t ∈ R with the possible exception of the points tn, where the

lateral derivatives exist.

(ii) On each interval In, the ordinary differential equation

y′(t) = f (t, y(t), y(ζn))

holds, with γ(t) = ζn.

(iii) For t = tn, the following impulsive condition holds:

∆y(tn) = y(tn)− y(t−n ) = Jn(y(t
−
n )),

i.e., y(tn) = y(t−n ) + Jn(y(t−n )), where y(t−n ) denotes the left-hand limit of the function y

at tn.

I. Győri used first DEPCAG to approximate linear delay equations with constant delays

in [12]. He defined three variants of approximating DEPCAG and proved the convergence

of each method on compact time intervals. See also [14] for further generalization of this

approach for other classes of differential equations.

In [9], Cooke and Győri proposed an approximation of a linear delay differential equation

x′(t) =
N

∑
i=1

qix(t − τi), t ≥ 0, (1.4)

x(t) = φ(t), t ∈ [−τ, 0], (1.5)

where qi ∈ R, τi > 0, and φ ∈ C([−τ, 0], R). Here C([−τ, 0], R) denotes the space of real-

valued continuous functions defined on [−τ, 0]. In order to approximate (1.4)–(1.5), they

proposed the following DEPCAG

y′(t) =
N

∑
i=1

qiy([t/h − [τi/h]]h), t ≥ 0, (1.6)

y(nh) = φ(nh), n = k, . . . , 0. (1.7)

In this case, the approximation considered was uniform over the non-compact interval [0, ∞).

The main assumption is a condition of asymptotic stability of the trivial solution of (1.4).

Note that in [13] I. Győri and F. Hartung extended this result for linear neutral differential

equations.

Recently, in [15] F. Hartung investigated the numerical approximation of the following

scalar delay differential equation with impulsive self-support condition

x′(t) = αx(t) + βx(t − τ), a.e t ≥ 0

x(t) = c + d, if x(t−) = c (1.8)

with the initial condition

x(t) = ϕ(t), if t ∈ [−τ, 0],
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where c, d > 0, α + |β| < 0, τ > 0, c < ϕ(t), for t ∈ [−τ, 0], and ϕ : [−τ, 0] → R a Lipschitz

continuous function. The approximating equation is an associated DEPCA with a self-support

condition

y′(t) = αy([t/h]h) + βy([t/h]h − [τ/h]h), a.e t ≥ 0

y(kh) = c + d, if y(kh−) ≤ c (1.9)

with the initial condition

y(t) = ϕ(t), if t ∈ [−τ, 0].

The convergence of (1.9) was proved at every point except the impulsive time moments.

In [24], R. Torres et al. considered the following impulsive Hopfield-type CNN system

with impulses

x′i(t) = −ai(t)xi(t) +
m

∑
j=1

bij(t)gj(xj(t)) + ci(t), t ≥ 0, t ̸= tk,

∆xi(tk) = −pi,kxi(t
−
k ) + ei,k + Ji,k(xi(t

−
k )), t = tk, (1.10)

xi(t0) = x0
i ,

and the following IDEPCA system

y′i(t) = −ai(t)yi(t) +
m

∑
j=1

bij(t)gj(yj(γ(t))) + ci(t), t ≥ 0, t ̸= γ(tk)

∆yi(γ(tk)) = −pi,kyi(γ(tk)
−) + ei,k + Ji,k(yi(γ(tk)

−)), t = γ(tk), (1.11)

yi(t0) = y0
i ,

where γ(t) = [t/h]h. Assuming an ergodic stability condition over the corresponding lin-

ear homogeneous system associated with (1.10), the uniform approximation of (1.10) by the

IDEPCA (1.11) was concluded over [0, ∞), where the error of approximation was given by

|xi(t)− yi(t)| ≤
|x0

i − y0
i |

1 − θc
+

oi(h)

1 − θc
,

with oi(h) → 0 as h → 0, and 0 < θc < 1 were defined in [24].

In [11], M. Elghandouri and K. Ezzinbi, using resolvent operators theory, obtained an

approximation of the mild solutions of the delayed semilinear integro-differential equation

x′(t) = A(t)x(t) +
∫ t

0
G(t − s)x(s)ds + f (t, x(t − r)), t ≥ 0,

x(t) = ϕ(t), t ∈ [−r, 0], (1.12)

using an integro-differential equation with piecewise constant arguments

x′h(t) = A(t)xh(t) +
∫ t

0
G(t − s)xh(s)ds + f (t, xh(γh(t − r))), t ≥ 0,

xh(0) = ϕ(0), xh(t) = ϕ(kh), t ∈ [kh, (k + 1)h), (1.13)

with k = −l, . . . ,−1, and γh(t) = [t/h]h, on the Banach space (X, ∥ · ∥). The approximation

was done over compact and unbounded intervals. They also obtained an exponential error

decay by using the stability of the resolvent operator and the Halanay’s Inequality.

The interested reader in approximation of solutions of differential equations by using

piecewise constant argument can see [25] for an elementary and simple introduction to the

subject.
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1.1 Aim of the work

In this paper, we use γ(t) = [t/h] h as the piecewise constant argument function, where [·] is

the greatest integer part function, and h > 0 is a fixed discretization parameter. We note that

γ depends on the selection of h, but for simplicity, this dependence is not indicated explicitly

in the notation, but it always should be kept in mind.

We consider a delayed CNN system with impulses

x′i(t) = −ai(t)xi(t) +
m

∑
j=1

bij(t)gj(xj(t − τj)) + ci(t), t ≥ 0, t ̸= tk,

∆xi(tk) = −pi,kxi(t
−
k ) + ei,k + Ji,k(xi(t

−
k )), k ∈ N, (1.14)

xi(t) = ϕi(t), t ∈ [−τ, 0].

Similar delayed CNN systems (without impulses) were investigated, e.g., in [7, 18, 20].

For a fixed discretization parameter h > 0 we associate to (1.14) the IDEPCA system

y′i(t) = −ai(t)yi(t) +
m

∑
j=1

bij(t)gj(yj(γ(t)− γ(τj))) + ci(t), t ≥ 0, t ̸= γ(tk),

∆yi(γ(tk)) = −pi,kyi(γ(tk)
−) + ei,k + Ji,k(yi(γ(tk)

−)), k ∈ N, (1.15)

yi(t) = ψi(t), t ∈ [−τ, 0],

where i = 1, 2, . . . , m, k ∈ N = {1, 2, 3 . . .}, tk, pi,k, ei,k are real sequences, ai, bij, ci are real-

valued locally integrable functions on [0, ∞), Ji,k ∈ C(R, R) and gj ∈ C(R, R) for all i, j =

1, . . . , m and k ∈ N; the constant delays satisfy τi ≥ 0 and τ = max{τ1, . . . , τm} > 0, and the

initial functions ϕi, ψi : [−τ, 0] → R are continuous for i = 1, . . . , m.

We note that the initial time in system (1.14) is fixed to be 0. This does not affect the gen-

erality of the problem, but it simplifies the definition of the approximation in (1.15), since, in

this way, the initial time is a member of the mesh points of the piecewise constant approxima-

tion, and γ(t) ≥ 0, and hence γ(t)− γ(τj) ≥ −τj ≥ −τ for t ≥ 0 and j = 1, . . . , m. Also, the

impulse times tk form a strictly monotone increasing sequence of positive reals, and they are

approximated by γ(tk) for k ∈ N for the sake of easier computation of the numerical scheme.

For simplicity of the notation we introduce t0 = 0, so the sequence tk is defined for k ∈
N0 = {0, 1, 2, . . .}.

The main goal of this manuscript is to show that the solutions of (1.15) approximate that

of (1.14) uniformly on [0, ∞), i.e.,

sup
t∈[0,∞)

|xi(t)− yi(t)| → 0, as h → 0+, i = 1, . . . , m,

assuming also ϕi = ψi for i = 1, . . . , m, and we show that, under certain conditions, the error

estimate goes to 0 as t → ∞ with an exponential speed.

Remark 1.2. This paper extends the work of [24] for the case when τi > 0 in (1.14). Moreover,

in this work, we assume a different set of conditions and we use M-matrix technique to get

our main results. Another improvement corresponds to the exponential error decay of the

approximation, see Theorem 3.1 below. A key step to obtain the main result is to show

that, under the assumed conditions, the solutions of (1.14) are exponentially bounded (see

Lemma 2.2) and are exponentially stable (see Lemma 2.4, below).



6 F. Hartung, M. Pinto and R. Torres

1.2 Hypotheses and main assumptions

In this manuscript, we will use the following assumptions on the parameters of problem (1.14):

(H1) Let gj ∈ C(R, R) be such that gj(0) = 0, and there exist constants Lj ≥ 0 such that

∣

∣gj(u)− gj(v)
∣

∣ ≤ Lj |u − v| , u, v ∈ R, j = 1, 2, . . . , m.

(H2) Let Ji,k ∈ C(R, R) be such that Ji,k(0) = 0, and there exist constants li,k ≥ 0 such that

|Ji,k(u)− Ji,k(v)| ≤ li,k |u − v| , u, v ∈ R, i = 1, . . . , m, k ∈ N.

(H3) There exist positive constants p∗i , l∗i , e∗i , δ and real constants p
i

for i = 1, . . . , m such that

(i) p
i
≤ pi,k ≤ p∗i < 1, k ∈ N, i = 1, . . . , m;

(ii) 0 ≤ lik ≤ l∗i , k ∈ N, i = 1, . . . , m;

(iii) |ei,k| ≤ e∗i , k ∈ N, i = 1, . . . , m;

(iv) 0 < δ ≤ tk+1 − tk, k ∈ N0.

(H4) There exist positive constants σi, Λij, c∗i for i, j = 1, . . . , m and ε0 such that 0 < ε0 < σi for

i = 1, . . . , m, and

(i) σi(t − s) ≤
∫ t

s
ai(u) du − ∑

j∈J(s,t)

ln(1 − pi,j), 0 ≤ s < t, i = 1, . . . , m, where

J(s, t) = {j ∈ N : s ≤ tj < t};

(ii)
∫ t

0
e−(σi−ε0)(t−s)|bij(s)| ds ≤ Λij, t ≥ 0, i, j = 1, . . . , m;

(iii) |ci(t)| ≤ c∗i , t ≥ 0, i = 1, . . . , m.

(H5)
m

∑
j=1

(1 − p−
i
)ΛijLj +

(1 − p−
i
)l∗i

(1 − p∗i )(1 − e−σiδ)
< 1, i = 1, . . . , m, where p−

i
= min{0, p

i
}.

(H6) There exist positive constants β1 and β2 such that

|ei,k| ≤ e−β1tk e∗i , k ∈ N, and |ci(t)| ≤ e−β2tc∗i , t ≥ 0, i = 1, . . . , m.

(H7) There exist positive constants a∗i for i = 1, . . . , m such that ai(t) ≤ a∗i , t ≥ 0, i = 1, . . . , m.

(H8) There exist positive constants b∗ij for i, j = 1, . . . , m and Lϕ such that

|bij(t)| ≤ b∗ij, t ≥ 0, and |ϕi(t)− ϕi(t̄)| ≤ Lϕ|t − t̄|, t, t̄ ∈ [−τ, 0]

for i, j = 1, . . . , m.

Remark 1.3. We comment that (H6) and (H8) yield (H3) (iii), (H4) (iii) and (H4) (ii) with

Λij =
b∗ij

σi−ε0
, but they are not assumed in Lemmas 2.2 and 2.4.
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2 Auxiliary results

Recall that tk is a strictly monotone increasing sequence which tends to +∞ as k → ∞. We

denote the set of time moments by T = {tk : k ∈ N}. Throughout this manuscript, we use the

notation ℓ(t) for the uniquely defined nonnegative integer with the property that

t ∈ [tℓ(t), tℓ(t)+1), t ≥ 0. (2.1)

Note that if t ̸∈ T , then tℓ(t) < t, otherwise tℓ(t) = t.

We use the vector notation x(t) = (x1(t), . . . , xm(t))T throughout the manuscript. For a

norm of vector x = (x1, . . . , xm)T ∈ R
m we use the infinity norm |x|∞ = max{|x1|, . . . , |xm|}.

The corresponding induced matrix norm is denoted by ∥A∥∞ for A ∈ R
m×m. For con-

tinuous functions ψ : [−τ, 0] → R and ψ : [−τ, 0] → R
m we use the supremum norm

|ψ|C = max−τ≤t≤0 |ψ(t)| and |ψ|C = max−τ≤t≤0 |ψ(t)|∞, respectively.

The notation x ≤ y is used for x = (x1, . . . , xm)T ∈ R
m and y = (y1, . . . , ym)T ∈ R

m if the

componentwise comparisons xi ≤ yi hold for all i = 1, . . . , m. We note that 0 ≤ x ≤ y implies

|x|∞ ≤ |y|∞. We say that a matrix A ∈ R
m×m is monotone if Ax ≤ Ay yields x ≤ y for every

x, y ∈ R
m. Let I ∈ R

m×m denote the identity matrix. We say that the matrix I − A ∈ R
m×m is

a nonsingular M-matrix if ρ(A) < 1, where ρ(A) is the spectral radius of A. We refer to [4] for

50 equivalent definitions of a nonsingular M-matrix.

The following variation of constants formula was formulated in [24] for the system (1.14)

without delays. It is straightforward to extend it for (1.14).

Lemma 2.1. The solution x(t) = (x1(t), . . . , xm(t))T of (1.14) satisfies

xi(t) = e−
∫ t

0 ai(u)du

(

ℓ(t)

∏
j=1

(1 − pi,j)

)

ϕi(0)

+
ℓ(t)

∑
r=1

(

k(t)

∏
j=r

(1 − pi,j)

)

∫ tr

tr−1

e−
∫ t

s ai(u)duGi(s, x(s))ds

+
ℓ(t)

∑
r=1

(

k(t)

∏
j=r+1

(1 − pi,j)

)

e−
∫ t

tr
ai(u)du(Ji,r(xi(t

−
r )) + ei,r)

+
∫ t

tℓ(t)

e−
∫ t

s ai(u)duGi(s, x(s))ds, i = 1, . . . , m, t ≥ 0, (2.2)

where

Gi(t, x(t)) =
m

∑
j=1

bij(t)gj(xj(t − τj)) + ci(t). (2.3)

Next we show that under conditions (H1)–(H5) the solutions of (1.14) are bounded on

[0, ∞). Moreover, if assumption (H6) holds, the solutions are exponentially bounded.

Lemma 2.2. Suppose (H1)–(H5) hold. Then all solutions of (1.14) are bounded on [0, ∞). Moreover,

if (H6) holds too, then for every solution x(t) of (1.14) there exist positive constants α0 and K0 such

that

|x(t)|∞ ≤ K0e−α0t, t ≥ −τ, (2.4)

i.e., every solution of (1.14) is exponentially bounded.
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Proof. 1. First, we prove the boundedness of the solutions. Let x(t) = (x1(t), . . . , xm(t))T be

the solution of (1.14) corresponding to initial condition ϕ = (ϕ1, . . . , ϕm)T. Then xi satisfies

the variation of constant formula (2.2), where Hi is defined by (2.3).

Now suppose s ∈ [tr−1, tr) for some r ∈ N, s < t and t ̸∈ T . Then we get s < tr < tℓ(t) <

t < tℓ(t)+1, J(s, t) = {r, r + 1, . . . , ℓ(t)} if t > tr, and J(s, t) = ∅ if t ≤ tr, therefore (H3) (i) and

(H4) (i) yield

e−
∫ t

s ai(u) du

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

= exp



−
∫ t

s
ai(u) du + ∑

j∈J(s,t)

ln(1 − pi,j)





≤ e−σi(t−s).

If t = tr0 for some r0 ∈ N, s ∈ [tr−1, tr), s < t, then J(s, tr0) = {r, r + 1, . . . , r0 − 1}, and

e−
∫ tr0

s ai(u) du

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

= (1 − pi,r0
) exp

(

−
∫ tr0

s
ai(u) du +

r0−1

∑
j=r

ln(1 − pi,j)

)

≤ (1 − p
i
)e−σi(tr0

−s).

Hence

e−
∫ t

s ai(u) du

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

≤ (1 − p−
i
)e−σi(t−s), s ∈ [tr−1, tr), s ≤ t, i = 1, . . . , m, (2.5)

where p−
i
= min{0, p

i
}.

For s ∈ (tℓ(t), t) it follows J(s, t) = ∅, and

e−
∫ t

s ai(u) du = exp



−
∫ t

s
ai(u) du + ∑

j∈J(s,t)

ln(1 − pi,j)



 ≤ e−σi(t−s). (2.6)

For tr < t, t ̸∈ T we get tr < tr+1 ≤ tℓ(t) < t, so J(tr, t) = {r, r + 1, . . . , ℓ(t)}, and therefore

(H3) (i) and (H4) (i) imply

e−
∫ t

tr
ai(u) du

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

=
1

1 − pi,r
e−
∫ t

tr
ai(u) du

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

≤ 1

1 − p∗i
exp



−
∫ t

tr

ai(u) du + ∑
j∈J(tr ,t)

ln(1 − pi,j)





≤ 1

1 − p∗i
e−σi(t−tr).

Finally, if t = tr0 for some r0 ∈ N and r < r0, then it follows J(tr, tr0) = {r, r + 1, . . . , r0 − 1},

ℓ(t) = r0, and so

e−
∫ tr0

tr
ai(u) du

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

=
1 − pi,r0

1 − pi,r
exp

(

−
∫ tr0

tr

ai(u) du +
r0−1

∑
j=r

ln(1 − pi,j)

)

≤
1 − p

i

1 − p∗i
e−σi(tr0

−tr).



Uniform approximation of impulsive delayed Hopfield neural networks 9

Combining the above two cases, we get

e−
∫ t

tr
ai(u) du

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

≤
1 − p−

i

1 − p∗i
e−σi(t−tr), t ≥ tr, r ∈ N, i = 1, . . . , m. (2.7)

Then (2.2), (2.5), (2.6) and (2.7) imply for t ≥ 0

|xi(t)| ≤ (1 − p−
i
)e−σit|ϕi(0)|+

ℓ(t)

∑
r=1

∫ tr

tr−1

(1 − p−
i
)e−σi(t−s)|Gi(s, x(s))| ds

+
ℓ(t)

∑
r=1

1 − p−
i

1 − p∗i
e−σi(t−tr)(|Ji,r(xi(t

−
r ))|+ |ei,r|) +

∫ t

tℓ(t)

e−σi(t−s)|Gi(s, x(s))| ds

= (1 − p−
i
)e−σit|ϕi(0)|+

∫ t

0
(1 − p−

i
)e−σi(t−s)|Gi(s, x(s))| ds

+
ℓ(t)

∑
r=1

1 − p−
i

1 − p∗i
e−σi(t−tr)(|Ji,r(xi(t

−
r ))|+ |ei,r|). (2.8)

The assumed relations (H1)–(H4), (2.8), t ∈ [tℓ(t), tℓ(t)+1),

|Ji,r(xi(t
−
r ))| ≤ li,r|xi(t

−
r )| ≤ l∗i |xi(t

−
r )|, i = 1, . . . , m, r ∈ N

and

|Gi(s, x(s))| ≤
m

∑
j=1

|bij(s)|Lj|xj(s − τj)|+ |ci(s)|, i = 1, . . . , m, s ≥ 0

yield

|xi(t)| ≤ (1 − p−
i
)e−σit|ϕi(0)|

+
∫ t

0
(1 − p−

i
)e−σi(t−s)

( m

∑
j=1

|bij(s)|Lj|xj(s − τj)|+ |ci(s)|
)

ds

+
1 − p−

i

1 − p∗i

ℓ(t)

∑
r=1

e−σi(t−tr)(l∗i |xi(t
−
r )|+ |ei,r|), i = 1, . . . , m, t ≥ 0. (2.9)

Using relation δ ≤ tr+1 − tr for r ∈ N0 from (H4) and t ∈ [tℓ(t), tℓ(t)+1), we obtain

ℓ(t)

∑
r=1

e−σi(t−tr) =
ℓ(t)

∑
r=1

e−σi(t−tℓ(t)+(tℓ(t)−tℓ(t)−1)+···+(tr+1−tr))

≤
ℓ(t)

∑
r=1

e−σi(t−tℓ(t))e−σi(ℓ(t)−r)δ

≤
ℓ(t)

∑
r=1

(

e−σiδ
)ℓ(t)−r

≤ 1

1 − e−σiδ
, t ≥ 0. (2.10)

Combining (2.9) with assumptions (H3), (H4), relation (2.10), and the estimate

∫ t

0
e−σi(t−s) ds ≤ 1

σi
, t ≥ 0, (2.11)
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we get for t ≥ 0 and i = 1, . . . , m

|xi(t)| ≤ (1 − p−
i
)e−σit|ϕi(0)|

+
∫ t

0
(1 − p−

i
)e−σi(t−s)

( m

∑
j=1

|bij(s)|Lj sup
−τ≤u≤s

|xj(u)|+ c∗i )
)

ds

+
1 − p−

i

1 − p∗i

ℓ(t)

∑
r=1

e−σi(t−tr)(l∗i sup
0≤u≤t

|xi(u)|+ e∗i )

≤ (1 − p−
i
)|ϕi(0)|+

m

∑
j=1

(1 − p−
i
)ΛijLj sup

−τ≤u≤t

|xj(u)|+
(1 − p−

i
)c∗i

σi

+
1 − p−

i

(1 − p∗i )(1 − e−σiδ)

(

l∗i sup
−τ≤u≤t

|xi(u)|+ e∗i
)

. (2.12)

Since the right-hand side of (2.12) is monotone increasing in t, and |xi(u)| ≤ |ϕi|C ≤ (1 −
p−

i
)|ϕi|C for u ∈ [−τ, 0], (2.12) yields

sup
−τ≤u≤t

|xi(u)| ≤ (1 − p−
i
)|ϕi|C +

m

∑
j=1

(1 − p−
i
)ΛijLj sup

−τ≤u≤t

|xj(u)|+
(1 − p−

i
)c∗i

σi

+
1 − p−

i

(1 − p∗i )(1 − e−σiδ)

(

l∗i sup
−τ≤u≤t

|xi(u)|+ e∗i
)

, (2.13)

for i = 1, . . . , m and t ≥ 0. Fix a nonnegative parameter α. Then we introduce the correspond-

ing notations

v(α)(t) =
(

sup
−τ≤u≤t

eαu|x1(u)|, . . . , sup
−τ≤u≤t

eαu|xm(u)|
)T

∈ R
m, t ≥ −τ,

a(α) = (a
(α)
1 , . . . , a

(α)
m )T ∈ R

m, where

a
(α)
i = (1 − p−

i
)

(

|ϕi|C +
c∗i

σi − α
+

e∗i
(1 − p∗i )(1 − e−(σi−α)δ)

)

,

A(α) = (aij) ∈ R
m×m, a

(α)
ij =







(1 − p−
i
)ΛijLie

ατi +
(1−p−

i
)l∗i

(1−p∗i )(1−e−(σi−α)δ)
, i = j,

(1 − p−
i
)ΛijLje

ατj , i ̸= j.
(2.14)

Hence (2.13) implies the vector inequality

v(0)(t) ≤ a(0) + A(0)v(0)(t), t ≥ 0.

The definition of a(0) yields v(0)(t) ≤ a(0) for t ∈ [−τ, 0], so

v(0)(t) ≤ a(0) + A(0)v(0)(t), t ≥ −τ.

Assumption (H5) implies ∥A(0)∥∞ < 1, so I − A(0) is a nonsingular M-matrix. Therefore

Theorem 6.2.3 in [4] yields that I − A(0) is monotone, and

(|x1(t)|, . . . , |xm(t)|)T ≤ v(0)(t) ≤ (I − A(0))−1a(0), t ≥ −τ.

It follows

|x(t)|∞ ≤ |(I − A(0))−1a(0)|∞, t ≥ −τ,
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i.e., x(t) is bounded on [−τ, ∞).

2. Next, we show the exponential boundedness of the solutions under the additional

assumption (H6).

We select a positive constant α0 such that

α0 < min{ε0, β1, β2} and
m

∑
j=1

(1 − p−
i
)ΛijLje

α0τj +
(1 − p−

i
)l∗i

(1 − p∗i )(1 − e−(σi−α0)δ)
< 1 (2.15)

for i = 1, . . . , m. Note that such α0 exists since (H5) holds. Multiplying both sides of (2.9) by

eα0t we get

eα0t|xi(t)| ≤ (1 − p−
i
)e−(σi−α0)t|ϕi(0)|

+
∫ t

0
(1 − p−

i
)e−(σi−α0)(t−s)

( m

∑
j=1

|bij(s)|Lje
α0τj eα0(s−τj)|xj(s − τj)|+ eα0s|ci(s)|

)

ds

+
1 − p−

i

1 − p∗i

ℓ(t)

∑
r=1

e−(σi−α0)(t−tr)(l∗i eα0tr |xi(t
−
r )|+ eα0tr |ei,r|)

for i = 1, . . . , m and t ≥ 0. Then (H3), (H4), (H6), α0 < min{ε0, β1, β2}, and (2.10) and (2.11)

where σi is replaced by σi − α0 imply

eα0t|xi(t)| ≤ (1 − p−
i
)|ϕi|C +

m

∑
j=1

(1 − p−
i
)ΛijLje

α0τj sup
−τ≤u≤t

eα0u|xj(u)|+
(1 − p−

i
)c∗i

σi − α0

+
(1 − p−

i
)l∗i

(1 − p∗i )(1 − e−(σi−α0)δ)
sup

−τ≤u≤t

eα0u|xi(u)|+
(1 − p−

i
)e∗i

(1 − p∗i )(1 − e−(σi−α0)δ)

for i = 1, . . . , m and t ≥ 0. Then the monotonicity of the right-hand side and eα0t|xi(t)| ≤
|ϕi|C ≤ (1 − p−

i
)|ϕi|C for −τ ≤ t ≤ 0 imply the vector inequality

v(α0)(t) ≤ a(α0) + A(α0)v(α0)(t), t ≥ −τ. (2.16)

Relation (2.15) yields ∥A(α0)∥∞ < 1, so I − A(α0) is a nonsingular M-matrix, hence I − A(α0) is

monotone. Therefore

(eα0t|y1(t)|, . . . , eα0t|ym(t)|)T ≤ v(α0)(t) ≤ (I − A(α0))−1a(α0), t ≥ −τ,

so (2.4) holds with

K0 = |(I − A(α0))−1a(α0)|∞,

i.e., x(t) is exponentially bounded on [−τ, ∞).

Remark 2.3. Let A(0) be defined by (2.14) with α = 0. We remark that (H5) can be replaced

by the weaker condition ρ(A(0)) < 1, and the statement of Lemma 2.2 remains true.

Our next result shows that every solution of (1.14) is exponentially stable.

Lemma 2.4. Suppose (H1)–(H5) hold. Then there exist positive constants α0 and K1 such that

|x(t)− x̄(t)|∞ ≤ K1e−α0t|ϕ− ϕ̄|C, t ≥ 0, (2.17)

where ϕ(t) = (ϕ1, . . . , ϕm)T and ϕ̄ = (ϕ̄1, . . . , ϕ̄m)T are two initial functions in (1.14), and x(t) =

(x1(t), . . . , xm(t))T and x̄(t) = (x̄1(t), . . . , x̄m(t))T are the corresponding solutions of (1.14), respec-

tively, i.e., every solution of (1.14) is exponentially stable.
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Proof. Let (ϕ1, . . . , ϕm)T and (ϕ̄1, . . . , ϕ̄m)T be the vectors of two initial functions in (1.14), and

(x1(t), . . . , xm(t))T and (x̄1(t), . . . , x̄m(t))T be the corresponding solutions of (1.14). Then the

variation of constant formula (2.2) yields

xi(t)− x̄i(t) = e−
∫ t

0 ai(u) du

(

ℓ(t)

∏
j=1

(1 − pi,j)

)

(ϕi(0)− ϕ̄i(0))

+
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

∫ tr

tr−1

e−
∫ t

s ai(u) du
(

Gi(s, x(s))− Gi(s, x̄(s))
)

ds

+
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

e−
∫ t

tr
ai(u) du

(

Ji,r(xi(t
−
r ))− Ji,r(x̄i(t

−
r ))
)

+
∫ t

tℓ(t)

e−
∫ t

s ai(u) du
(

Gi(s, x(s))− Gi(s, x̄(s))
)

ds, i = 1, . . . , m, t ≥ 0.

We have

|Gi(s, x(s))− Gi(s, x̄(s))| ≤
m

∑
j=1

|bij(s)|Lj|xj(s − τj)− x̄i(s − τj)|,

hence, similarly to the derivation of (2.9), we get

|xi(t)− x̄i(t)| ≤ (1 − p−
i
)e−σit|ϕi(0)− ϕ̄i(0)|

+
m

∑
j=1

∫ t

0
(1 − p−

i
)e−σi(t−s)|bij(s)|Lj|xj(s − τj)− x̄i(s − τj)| ds

+
1 − p−

i

1 − p∗i

ℓ(t)

∑
r=1

e−σi(t−tr)l∗i |xi(t
−
r )− x̄i(t

−
r )|, i = 1, . . . , m, t ≥ 0. (2.18)

We select a positive constant α0 such that (2.15) is satisfied. Note that such α0 exists since (H5)

holds. Multiplying both sides of (2.18) by eα0t we obtain

eα0t|xi(t)− x̄i(t)|
≤ (1 − p−

i
)e(α0−σi)t|ϕi(0)− ϕ̄i(0)|

+
m

∑
j=1

∫ t

0
(1 − p−

i
)e−(σi−α0)(t−s)|bij(s)|Lje

α0τj eα0(s−τj)|xj(s − τj)− x̄i(s − τj)| ds

+
1 − p−

i

1 − p∗i

ℓ(t)

∑
r=1

e−(σi−α0)(t−tr)l∗i eα0tr |xi(t
−
r )− x̄i(t

−
r )| (2.19)

for i = 1, . . . , m and t ≥ 0. Introduce the functions

vi(t) = sup
−τ≤u≤t

eα0u|xi(u)− x̄i(u)|, i = 1, . . . , m, t ≥ −τ.

Then (2.19) combined with (2.10) where σi is replaced by σi − α0 and

eα0u|xi(u)− x̄i(u)| ≤ eα0u|x(u)− x̄(u)|∞ ≤ |ϕ− ϕ̄|C ≤ (1 − p−
i
)|ϕ− ϕ̄|C, −τ ≤ u ≤ 0
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imply

vi(t) ≤ (1 − p−
i
)|ϕ− ϕ̄|C +

m

∑
j=1

∫ t

0
(1 − p−

i
)e−(σi−α0)(t−s)|bij(s)|Lje

α0τj vj(s) ds

+
1 − p−

i

1 − p∗i

ℓ(t)

∑
r=1

e−(σi−α0)(t−tr)l∗i vi(t)

≤ (1 − p−
i
)|ϕ− ϕ̄|C +

m

∑
j=1

(1 − p−
i
)ΛijLje

α0τj vj(t)

+
(1 − p−

i
)l∗i

(1 − p∗i )(1 − e−(σi−α0)δ)
vi(t)

for i = 1, . . . , m and t ≥ 0. Therefore, the vector inequality

v(t) ≤ b + A(α0)v(t), t ≥ −τ, (2.20)

holds, where

v(t) = (v1(t), . . . , vm(t))
T ∈ R

m, t ≥ −τ,

b =
(

(1 − q−
1
)|ϕ− ϕ̄|C, . . . , (1 − q−

m
)|ϕ− ϕ̄|C

)T
∈ R

m, (2.21)

and A(α0) is defined by (2.14). Relation (2.15) yields ∥A(α0)∥∞ < 1, hence I − A(α0) is a nonsin-

gular M-matrix, so I − A(α0) is monotone. Therefore (2.20) gives

v(t) ≤ (I − A(α0))−1b, t ≥ −τ,

and hence

eα0t|x(t)− x̄(t)|∞ ≤ |v(t)|∞ ≤ ∥(I − A(α0))−1∥∞|b|∞ = K1|ϕ− ϕ̄|C,

where K1 = ∥(I − A(α0))−1∥∞ max{1 − q−
1

, . . . , 1 − q−
m
}. This completes the proof of (2.17).

Remark 2.5. Let A(α) be the matrix defined by (2.14). We note that ρ(A(0)) < 1 implies

ρ(A(α0)) < 1 for sufficiently small α0 > 0, so assumption (H5) in Lemma 2.4 can be replaced

by the weaker condition ρ(A(0)) < 1.

Next, we prove an estimate which will be important in the proof of our main result in the

next section.

Lemma 2.6. Suppose (H1)–(H5) hold. Let x = (x1, . . . , xm)T be a solution of (1.14), and let α0 > 0

be the corresponding constant from Lemma 2.2. For 0 < α < α0 and u > 0 define

ωα(u) = sup
{

eαt|x(t)− x(t̄)|∞ :
(

t, t̄ ∈ [tr, tr+1), r ∈ N or t, t̄ ∈ [−τ, t1)
)

,

and |t̄ − t| ≤ u
}

. (2.22)

(i) Then

lim
u→0+

ωα(u) = 0, 0 < α < α0. (2.23)
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(ii) Assume further (H6), (H7) and (H8). Then there exist M0 > 0 and u0 > 0 such that

ωα(u) ≤ M0u, 0 < u ≤ u0, 0 < α < α0. (2.24)

Proof. (i) It follows from Lemma 2.2 that x satisfies (2.4). Fix 0 < α < α0, ε > 0 and ū > 0.

Since tk → ∞ as k → ∞, there exists k0 such that

K0eα0ūe(α−α0)t <
ε

2
, t ≥ tk0

.

Then, using (2.4) and the triangle inequality, we get

eαt|x(t)− x(t̄)|∞ < eαt
(

K0e−α0t + K0e−α0 t̄
)

≤ K0e(α−α0)t + K0eα0ue(α−α0)t < ε,

for t, t̄ ≥ tk0
, |t̄ − t| ≤ u and 0 < u < ū.

The function eαtxi(t) is uniformly continuous on the intervals [tk, tk+1) for k = 1, . . . , k0 − 1

and i = 1, . . . , m, and on the interval [−τ, t1) since it has continuous extension to the closed

intervals [tk, tk+1] and [−τ, t1]. Therefore, there exists δ > 0 such that

|eαtx(t)− eαt̄x(t̄)|∞ <
ε

2
and δ < min

{

ū,
ε

2(e − 1)K0α
,

1

α

}

if t, t̄ ∈ [tr, tr+1) for some r ∈ {1, . . . , k0 − 1} or t, t̄ ∈ [−τ, t1), and |t̄ − t| ≤ δ. Then (2.4) and

the estimate

|es − 1| ≤ (e − 1)|s|, |s| ≤ 1 (2.25)

imply

eαt|x(t)− x(t̄)|∞ ≤ |eαtx(t)− eαt̄x(t̄)|∞ + |eαt − eαt̄||x(t̄)|∞
<

ε

2
+ |eα(t−t̄) − 1|eαt̄|x(t̄)|∞

<
ε

2
+ (e − 1)αδK0

< ε,

if t, t̄ ∈ [tr, tr+1) for some r ∈ {1, . . . , k0 − 1} or t, t̄ ∈ [−τ, t1), and |t̄ − t| ≤ δ. Hence ωα(u) ≤ ε

for 0 < α < α0 and 0 < u < δ, which completes the proof of (2.23).

(ii) Note that it follows from the proof of Lemma 2.2 that α < α0 < β2. Since xi(t) is

continuously differentiable on [tr, tr+1), we get from (1.14) that for t, t̄ ∈ [tr, tr+1) for some

r ∈ N0

eαt(xi(t)− xi(t̄)) =
∫ t

t̄
eαt
(

−ai(s)xi(s) +
m

∑
j=1

bij(s)gj(xj(s − τj)) + ci(s)
)

ds.

Define the constant M = a∗i K0 + ∑
m
j=1 b∗ijLje

α0τj K0 + c∗i . Then, using eαs|xi(s)| ≤ eα0s|xi(s)| ≤ K0

from (2.4) and eαs|ci(s)| ≤ eβ2s|ci(s)| ≤ c∗i from (H6) and (2.25), we get

eαt|xi(t)− xi(t̄)| ≤
∫ t

t̄
eα(t−s)

(

a∗i eαs|xi(s)|+
m

∑
j=1

b∗ijLje
α0τj eα(s−τj)|xj(s − τj)|+ eαs|ci(s)|

)

ds

≤ M
∫ t

t̄
eα(t−s) ds

= M

(

eα(t−t̄) − 1

α

)

≤ M(e − 1)u, t, t̄ ∈ [tr, tr+1), r ∈ N0,
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for |t − t̄| ≤ u ≤ u0 = 1
α0

.

Assumption (H8) yields

eαt|xi(t)− xi(t̄)| ≤ |ϕi(t)− ϕi(t̄)| ≤ Lϕ|t − t̄|, t, t̄ ∈ [−τ, 0].

Suppose −τ ≤ t̄ ≤ 0 ≤ t < t1 and |t − t̄| ≤ u < u0. Then combining the above two cases and

u0 = 1
α0

we obtain

eαt|xi(t)− xi(t̄)| ≤ eαt
(

|xi(t)− xi(0)|+ |xi(0)− xi(t̄)|
)

≤ M(e − 1)t + eαu0 Lϕ(−t̄)

≤ M0u,

where M0 = max{M(e − 1), eLϕ}.

For −τ ≤ t ≤ 0 ≤ t̄ < t1 and |t − t̄| ≤ u < u0 we get

eαt|xi(t)− xi(t̄)| ≤ |xi(t)− xi(0)|+ eαt̄|xi(0)− xi(t̄)| ≤ Lϕ(−t) + M(e − 1)t̄ ≤ M0u.

The proof of (2.24) is completed.

3 Main results

In this section, we prove that the solutions of (1.15) approximate that of (1.14) uniformly on

[0, ∞).

Theorem 3.1. Suppose (H1)–(H7) hold. Let x = (x1, . . . , xm)T be the solution of (1.14) corresponding

to initial function ϕ = (ϕ1, . . . , ϕm)T, and y = (y1, . . . , ym)T be the solution of (1.15) corresponding

to h > 0 and an initial function ψ = (ψ1, . . . , ψm)T, and let α0 > 0 be the corresponding constant

from Lemma 2.2.

(i) Then for every 0 < α < α0 and ε > 0 there exist constants K2 > 0 and h∗ > 0, and a function

θ(h) such that θ(h) → 0 as h → 0+, and

|x(t)− y(t)|∞ ≤ e−αtK2

(

|ϕ− ψ|C + θ(h) + ε
)

, t ∈ [−τ, ∞), 0 < h < h∗. (3.1)

(ii) Assume further (H8). Then for every 0 < α < α0 there exist constants K2 > 0, M > 0 and

h̄ > 0 such that

|x(t)− y(t)|∞ ≤ e−αtK2

(

|ϕ− ψ|C + Mh
)

, t ∈ [−τ, ∞), 0 < h < h̄. (3.2)

Proof. The variation of constants formula (2.2) applied for problem (1.15) gives

yi(t) = e−
∫ t

0 ai(u) du

(

ℓ(t)

∏
j=1

(1 − pi,j)

)

ψi(0)

+
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

∫ tr

tr−1

e−
∫ t

s ai(u) duGi(s, y(γ(s))) ds

+
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

e
−
∫ t

γ(tr)
ai(u) du(Ji,r(yi(γ(tr)

−)) + ei,r)

+
∫ t

tℓ(t)

e−
∫ t

s ai(u) duGi(s, y(γ(s))) ds, i = 1, . . . , m, t ≥ 0,
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where

Gi(t, y(γ(t))) =
m

∑
j=1

bij(t)gj(yj(γ(t)− γ(τj))) + ci(t), i = 1, . . . , m.

Combining it with (2.2) we get

xi(t)− yi(t) = e−
∫ t

0 ai(u) du

(

ℓ(t)

∏
j=1

(1 − pi,j)

)

(ϕi(0)− ψi(0))

+
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

∫ tr

tr−1

e−
∫ t

s ai(u) du
(

Gi(s, x(s))− Gi(s, y(γ(s)))
)

ds

+
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

(

e−
∫ t

tr
ai(u) du(Ji,r(xi(t

−
r )) + ei,r)

− e
−
∫ t

γ(tr)
ai(u) du(Ji,r(yi(γ(tr)

−)) + ei,r)
)

+
∫ t

tℓ(t)

e−
∫ t

s ai(u) du
(

Gi(s, x(s))− Gi(s, y(γ(s)))
)

ds

for i = 1, . . . , m and t ≥ 0. Therefore, (2.5), (2.6) and |ϕi(0)− ψi(0)| ≤ |ϕ− ψ|C yield

|xi(t)− yi(t)| ≤ (1 − p−
i
)e−σit|ϕ− ψ|C

+
∫ t

0
(1 − p−

i
)e−σi(t−s)

∣

∣

∣
Gi(s, x(s))− Gi(s, y(γ(s)))

∣

∣

∣
ds + Ai(t) (3.3)

for i = 1, . . . , m and t ≥ 0, where

Ai(t) =
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

∣

∣

∣
e−
∫ t

tr
ai(u) du(Ji,r(xi(t

−
r )) + ei,r)

−e
−
∫ t

γ(tr)
ai(u) du(Ji,r(yi(γ(tr)

−)) + ei,r)
∣

∣

∣
.

Let α0 and K0 be the constants from (2.4). We select a positive constant α such that

0 < α < min{ε0, β1, β2, α0}

and

eαδ
m

∑
j=1

(1 − p−
i
)ΛijLje

ατj +
(1 − p−

i
)l∗i eαδ

(1 − p∗i )(1 − e−(σi−α)δ)
< 1, i = 1, . . . , m. (3.4)
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Note that such α exists since (H5) holds. Multiplying (3.3) with eαt and using (H1) we get

eαt|xi(t)− yi(t)|
≤ (1 − p−

i
)e−(σi−α)t|ϕ− ψ|C

+
∫ t

0
(1 − p−

i
)eαt−σi(t−s)

∣

∣

∣
Gi(s, x(s))− Gi(s, y(γ(s)))

∣

∣

∣
ds + eαt Ai(t)

≤ (1 − p−
i
)|ϕ− ψ|C

+
m

∑
j=1

∫ t

0
(1 − p−

i
)e−(σi−α)(t−s)|bij(s)|Lje

αs
∣

∣

∣
xj(s − τj)− yj(γ(s)− γ(τj))

∣

∣

∣
ds

+ eαt Ai(t)

≤ (1 − p−
i
)|ϕ− ψ|C

+
m

∑
j=1

∫ t

0
(1 − p−

i
)e−(σi−α)(t−s)|bij(s)|Lje

αs
(∣

∣

∣xj(s − τj)− xj(γ(s)− γ(τj))
∣

∣

∣

+
∣

∣

∣
xj(γ(s)− γ(τj))− yj(γ(s)− γ(τj))

∣

∣

∣

)

ds + eαt Ai(t) (3.5)

for i = 1, . . . , m and t ≥ 0. We have

Ai(t) ≤
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

∣

∣

∣e
−
∫ t

tr
ai(u) du − e

−
∫ t

γ(tr)
ai(u) du

∣

∣

∣|Ji,r(xi(t
−
r ))|

+
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

e−
∫ t

tr
ai(u) due

−
∫ tr

γ(tr)
ai(u) du

×
∣

∣

∣
Ji,r(xi(t

−
r ))− Ji,r(yi(γ(tr)

−))
∣

∣

∣

+
ℓ(t)

∑
r=1

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

∣

∣

∣e
−
∫ t

tr
ai(u) du − e

−
∫ t

γ(tr)
ai(u) du

∣

∣

∣|ei,r| (3.6)

for i = 1, . . . , m and t ≥ 0. Assumption (H7), estimates 1 − e−t < t for t > 0, the following

direct consequence of |t − γ(t)| < h:

t − h < γ(t) ≤ t, t ∈ R, (3.7)

and (2.7) imply

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

∣

∣

∣e
−
∫ t

tr
ai(u) du − e

−
∫ t

γ(tr)
ai(u) du

∣

∣

∣

= e−
∫ t

tr
ai(u) du

(

ℓ(t)

∏
j=r+1

(1 − pi,j)

)

(

1 − e
−
∫ tr

γ(tr)
ai(u) du

)

≤
1 − p−

i

1 − p∗i
e−σi(t−tr)(1 − e−a∗i h)

≤
1 − p−

i

1 − p∗i
e−σi(t−tr)a∗i h, t ≥ tr. (3.8)
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Then, combining (H2), (H3) (ii), (3.6), (3.7) and (3.8), we obtain

eαt Ai(t) ≤
ℓ(t)

∑
r=1

e−(σi−α)(t−tr)
(1 − p−

i
)a∗i hl∗i

1 − p∗i
eαtr |xi(t

−
r )|

+
ℓ(t)

∑
r=1

e−(σi−α)(t−tr)
(1 − p−

i
)l∗i

1 − p∗i
eαtr

×
(

|xi(t
−
r )− xi(γ(tr)

−)|+ |xi(γ(tr)
−)− yi(γ(tr)

−)|
)

+
ℓ(t)

∑
r=1

e−(σi−α)(t−tr)
(1 − p−

i
)a∗i h

1 − p∗i
eαtr |ei,r|, i = 1, . . . , m, t ≥ 0. (3.9)

For 0 < h < δ we have tr−1 < γ(tr) ≤ tr, hence (2.22) and (3.7) yield

eαtr |xi(t
−
r )− xi(γ(tr)

−)| = lim
n→∞

eα(tr− 1
n )
∣

∣

∣

∣

xi

(

tr −
1

n

)

− xi

(

γ(tr)−
1

n

)∣

∣

∣

∣

≤ ωα(h)

for h < δ. Therefore (3.9), (2.10) with σi replaced by σi − α, eαtr |xi(t
−
r )| ≤ eα0tr |xi(t

−
r )| ≤ K0,

eαtr |ei,r| ≤ e∗i and eαtr = eα(tr−γ(tr))eαγ(tr) ≤ eαheαγ(tr) imply

eαt Ai(t) ≤
ℓ(t)

∑
r=1

e−(σi−α)(t−tr)
(1 − p−

i
)a∗i hl∗i

1 − p∗i
K0

+
ℓ(t)

∑
r=1

e−(σi−α)(t−tr)
(1 − p−

i
)l∗i

1 − p∗i

(

ωα(h) + eαh sup
0≤u≤t

eαu|xi(u)− yi(u)|
)

+
ℓ(t)

∑
r=1

e−(σi−α)(t−tr)
(1 − p−

i
)a∗i he∗i

1 − p∗i

≤
(1 − p−

i
)(a∗i hl∗i K0)

(1 − p∗i )(1 − e−(σi−α)δ)
+

(1 − p−
i
)l∗i ωα(h)

(1 − p∗i )(1 − e−(σi−α)δ)

+
(1 − p−

i
)a∗i he∗i

(1 − p∗i )(1 − e−(σi−α)δ)

+
(1 − p−

i
)l∗i eαh

(1 − p∗i )(1 − e−(σi−α)δ)
sup

0≤u≤t

eαu|xi(u)− yi(u)|

≤ d∗i h + d̄iωα(h) + d̂i sup
0≤u≤t

eαu|xi(u)− yi(u)| (3.10)

for t ≥ 0, i = 1, . . . , m and 0 < h < δ, where

d∗i =
(1 − p−

i
)(a∗i l∗i K0 + a∗i e∗i )

(1 − p∗i )(1 − e−(σi−α)δ)
, d̄i =

(1 − p−
i
)l∗i

(1 − p∗i )(1 − e−(σi−α)δ)
,

and

d̂i =
(1 − p−

i
)l∗i eαδ

(1 − p∗i )(1 − e−(σi−α)δ)
.

We introduce the functions

ηi(t, h) =
m

∑
j=1

∫ t

0
e−(σi−α)(t−s)|bij(s)|Lje

αs
∣

∣

∣
xj(s − τj)− xj(γ(s)− γ(τj))

∣

∣

∣
ds (3.11)
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for t ≥ 0, h > 0, and

wi(t) = max
−τ≤u≤t

eαu|xi(u)− yi(u)|, t ≥ −τ, h > 0

for i = 1, . . . , m. Then estimate (3.5) together with (3.10), (3.11) and

eαs = eα(s−γ(s)+γ(τj))eα(γ(s)−γ(τj)) ≤ eα(h+τj)eα(γ(s)−γ(τj)) (3.12)

yields

eαt|xi(t)− yi(t)| ≤ (1 − p−
i
)|ϕ− ψ|C + (1 − p−

i
)ηi(t, h) + eαt Ai(t)

+
m

∑
j=1

∫ t

0
(1 − p−

i
)e−(σi−α)(t−s)|bij(s)|Lje

αs

×
∣

∣

∣
xj(γ(s)− γ(τj))− yj(γ(s)− γ(τj))

∣

∣

∣
ds

≤ (1 − p−
i
)|ϕ− ψ|C + (1 − p−

i
)ηi(t, h) + d∗i h + d̄iωα(h) + d̂iwi(t)

+
m

∑
j=1

∫ t

0
(1 − p−

i
)e−(σi−α)(t−s)|bij(s)|Lje

α(h+τj)wj(s) ds

≤ (1 − p−
i
)|ϕ− ψ|C + (1 − p−

i
)ηi(t, h) + d∗i h + d̄iωα(h) + d̂iwi(t)

+
m

∑
j=1

(1 − p−
i
)ΛijLje

α(h0+τj)wj(t) (3.13)

for 0 < h < δ, t ≥ 0 and i = 1, . . . , m.

Define h1 = δ/2, and next we suppose that 0 < h < h1, j ∈ {1, . . . , m} and r ∈ N. Relation

(3.7) implies

tr ≤ (s − h)− τj ≤ γ(s)− γ(τj) ≤ s − (τj − h) < tr+1, s ∈ [tr + τj + h, tr+1 + τj − h).

Therefore

s − τj ∈ [tr, tr+1) and γ(s)− γ(τj) ∈ [tr, tr+1), s ∈ [tr + τj + h, tr+1 + τj − h). (3.14)

Moreover, (3.7) yields

|s − τj − (γ(s)− γ(τj))| = |s − γ(s)− (τj − γ(τj))| ≤ h, s ∈ [tr + τj + h, tr+1 + τj − h).

(3.15)

Hence it follows from (2.22), (3.14) and (3.15) that

eαs|xj(s − τj)− xj(γ(s)− γ(τj))| ≤ eατj eα(s−τj)|xj(s − τj)− xj(γ(s)− γ(τj))|
≤ eατj ωα(h), s ∈ [tr + τj + h, tr+1 + τj − h). (3.16)

Similarly, it is easy to check that

eαs|xj(s − τj)− xj(γ(s)− γ(τj))| ≤ eατj eα(s−τj)|xj(s − τj)− xj(γ(s)− γ(τj))|
≤ eατj ωα(h), s ∈ [0, t1 + τj − h). (3.17)

We define the sets

Aj,h = [0, t1 + τj − h] ∪
∞
⋃

r=1

[tr + τj + h, tr+1 + τj − h], Bj,h = [0, ∞) \ Aj,h
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for j = 1, . . . , m and 0 < h < h1. We use relation (3.16) to estimate the function ηi(t, h) defined

by (3.11) for i = 1, . . . , m, t ≥ 0, 0 < h < h1, and for s ∈ Aj,h:

ηi(t, h) =
m

∑
j=1

(

∫

Aj,h∩[0,t]
e−(σi−α)(t−s)|bij(s)|Lje

αs
∣

∣

∣xj(s − τj)− xj(γ(s)− γ(τj))
∣

∣

∣ ds

+
∫

Bj,h∩[0,t]
e−(σi−α)(t−s)|bij(s)|Lje

αs
∣

∣

∣xj(s − τj)− xj(γ(s)− γ(τj))
∣

∣

∣ ds
)

≤
m

∑
j=1

(

∫ t

0
e−(σi−α)(t−s)|bij(s)|Lje

ατj ωα(h) ds

+
∫

Bj,h∩[0,t]
e−(σi−α)(t−s)|bij(s)|Lje

αs
∣

∣

∣
xj(s − τj)− xj(γ(s)− γ(τj))

∣

∣

∣
ds
)

. (3.18)

For s ∈ Bj,h we use a different estimate. Let 0 < h < h2 = min{h1, 1/α0}. We have from

Lemma 2.2

eαs|xj(s − τj)− xj(γ(s)− γ(τj))|
≤ eατj eα(s−τj)|xj(s − τj)|+ eα(s−γ(s)+γ(τj))eα(γ(s)−γ(τj))|xj(γ(s)− γ(τj))|
≤ eατj K0e−(α0−α)(s−τj) + eα(s−γ(s)+γ(τj))K0e−(α0−α)(γ(s)−γ(τj))

≤ eατj K0e−(α0−α)(s−τj) + eα(h+τj)K0e−(α0−α)(s−h−τj)

≤ eατj(1 + eα0h)K0e−(α0−α)(s−τj)

≤ eατj(1 + e)K0e−(α0−α)(s−τ), j = 1, . . . , m, s ≥ 0. (3.19)

Fix ε > 0. Then it follows from (3.19) that there exists T = T(ε, α) such that

eαs|xj(s − τj)− xj(γ(s)− γ(τj))| ≤ eατj
ε

M2
, s ≥ T, j = 1, . . . , m, (3.20)

where M2 = maxi=1,...,m ∑
m
j=1 ΛijLje

ατj . Let k0 ∈ N be the smallest index such that tk0
≥ T. We

recall that h2 ≤ δ/2. So if 1 ≤ r ≤ k0, then for s ∈ [tr + τj − h, tr + τj + h] and 0 < h < h2 we

have

s − τj ≤ tk0
+ h < tk0+1 and γ(s)− γ(τj) ≤ s − τj + h ≤ tk0

+ 2h < tk0+1. (3.21)

Similarly, for r > k0, s ∈ [tr + τj − h, tr + τj + h] and 0 < h < h2 we get

s − τj ≥ tr − h > tr−1 ≥ tk0
≥ T, and γ(s)− γ(τj) ≥ s − h − τj ≥ tr − 2h > tr−1 ≥ tk0

.

(3.22)

Define the sets

Cj,h =
k0
⋃

r=1

[tr + τj − h, tr + τj + h] and Dj,h =
∞
⋃

r=k0+1

[tr + τj − h, tr + τj + h].

Then, clearly, Bj,h = Cj,h ∪Dj,h, j = 1, . . . , m. Define the constants b̃ij = b̃ij(ε) by

b̃ij = max
0≤u≤tk0+1

|bij(u)|, i, j = 1, . . . , m.
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Then (H3), (3.18), (3.19), (3.20), (3.21) and (3.22) yield

ηi(t, h) ≤
m

∑
j=1

(

β∗
ijLje

ατj ωα(h)

+
∫

Cj,h∩[0,t]
e−(σi−α)(t−s)|bij(s)|Lje

αs
∣

∣

∣
xj(s − τj)− xj(γ(s)− γ(τj))

∣

∣

∣
ds

+
∫

Dj,h∩[0,t]
e−(σi−α)(t−s)|bij(s)|Lje

αs
∣

∣

∣xj(s − τj)− xj(γ(s)− γ(τj))
∣

∣

∣ ds
)

≤ M2ωα(h) +
m

∑
j=1

ℓ(t)

∑
r=1

∫ tr+τj+h

tr+τj−h
e−(σi−α)(t−s)b̃ijLje

ατj(1 + e)K0 ds

+
m

∑
j=1

∫ t

0
e−(σi−α)(t−s)|bij(s)|Lje

ατj
ε

M2
ds

≤ M2ωα(h) +
m

∑
j=1

ℓ(t)

∑
r=1

∫ tr+τj+h

tr+τj−h
e−(σi−α)(t−s)b̃ijLje

ατj(1 + e)K0 ds + ε (3.23)

for t ≥ 0 and 0 < h < h2. Relation (2.25) gives

et − e−t = e−t(e2t − 1) ≤ (e − 1)2t, t ∈ [0, 1],

hence, using (H7), (2.10) with σi is replaced by σi − α, and (3.23), we get for i = 1, . . . , m

ηi(t, h) ≤ M2ωα(h) + ε

+
m

∑
j=1

b̃ijLje
ατ(1 + e)K0

ℓ(t)

∑
r=1

(

e−(σi−α)(t−tr−τj−h) − e−(σi−α)(t−tr−τj+h)

σi − α

)

= M2ωα(h) + ε

+
m

∑
j=1

b̃ijLje
ατ

(

(1 + e)K0

σi − α

)

(

e(σi−α)(τj+h) − e(σi−α)(τj−h)
)

ℓ(t)

∑
ℓ=1

e−(σi−α)(t−tℓ)

≤ M2ωα(h) + ε +
m

∑
j=1

b̃ijLje
ατ

(

(1 + e)K0

σi − α

)

(

e(σi−α)h − e−(σi−α)h

1 − e−(σi−α)δ

)

≤ M2ωα(h) + ε + g̃ih, 0 < h < h∗, (3.24)

where g̃i = g̃i(ε) is defined by

g̃i =
m

∑
j=1

b̃ijLje
σiτ

(1 + e)K02(e − 1)

1 − e−(σi−α)δ
and h∗ = min

{

h2,
1

σ1 − α
, . . . ,

1

σm − α

}

.

Then (3.13) yields for i = 1, . . . , m, t ≥ 0 and 0 < h < h∗

wi(t) ≤ (1 − p−
i
)
(

|ϕ− ψ|C + M2ωα(h) + g̃ih + ε
)

+ d∗i h + d̄iωα(h)

+
m

∑
j=1

(1 − p−
i
)ΛijLje

α(h0+τj)wj(t) + d̂iwi(t). (3.25)

Relation (3.25) gives the vector inequality

w(t) ≤ d(h) + Cw(t), t ≥ 0, 0 < h < h∗, (3.26)
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where

w(t) = (w1(t), . . . , wm(t))
T,

d(h) = (d1(h), . . . , dm(h))
T, where

di(h) = (1 − p−
i
)
(

|ϕ− ψ|C + M2ωα(h) + g̃ih + ε
)

+ d∗i h + d̄iωα(h),

C = (cij) ∈ R
m×m, cij =

{

(1 − p−
i
)Λi,iLie

α(h0+τi) + d̂i, i = j,

(1 − p−
i
)ΛijLje

α(h0+τj), i ̸= j.
(3.27)

Relation (3.4) yields that ∥C∥∞ < 1 for 0 < h < h∗. Then I − C is an M-matrix, hence (3.26)

implies

w(t) ≤ (I − C)−1d(h), t ≥ 0, 0 < h < h∗.

Therefore, the definitions of w(t), d(h) and

wi(t) ≤ max
−τ≤u≤t

|xi(u)− yi(u)| ≤ |ϕ− ψ|C ≤ di(h), t ∈ [−τ, 0], i = 1, . . . , m

gives

w(t) ≤ (I − C)−1d(h), t ≥ −τ, 0 < h < h∗,

which yields (3.1) with

K2 = ∥(I − C)−1∥∞ max
i=1,...,m

(1 − p−
i
) and θ(h) = (M2 + max

i=1,...,m
d̄i)ωα(h) + h max

i=1,...,m
(g̃i + d∗i ).

(ii) To prove (3.2) we now assume (H8) too.

Let M0 and u0 be the constants defined by Lemma 2.6 (ii). We consider estimate (3.18) of

the proof of part (i). Now, since bij(s) is bounded by b∗ij for all s ≥ 0, we estimate the last

integral similarly to steps used for the set Cj,h in the proof of part (i), but using b∗ij instead

of b̃ij:

ηi(t, h) ≤ M2ωα(h) +
m

∑
j=1

ℓ(t)

∑
r=1

∫ tr+τj+h

tr+τj−h
e−(σi−α)(t−s)b∗ijLje

ατj(1 + e)K0 ds.

Then a calculation similar to that used in (3.24) and (2.24) gives

ηi(t, h) ≤ M2ωα(h) + g∗i h ≤ M2M0h + g∗i h, 0 < h < h̄, (3.28)

where

g∗i =
m

∑
j=1

b∗ijLje
σiτ

(

(1 + e)K02(e − 1)

1 − e−(σi−α)δ

)

and h̄ = min {u0, h∗} .

Combining (2.24), (3.13) and (3.28) we get for i = 1, . . . , m, t ≥ 0 and 0 < h < h̄

wi(t) ≤ (1 − p−
i
)
(

|ϕ− ψ|C + M2M0h + g∗i h
)

+ d∗i h + d̄i M0h

+
m

∑
j=1

(1 − p−
i
)ΛijLje

α(h0+τj)wj(t) + d̂iwi(t),

hence, the vector inequality

w(t) ≤ d̂(h) + Cw(t), t ≥ 0, 0 < h < h̄
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and therefore

w(t) ≤ d̂(h) + Cw(t), t ≥ −τ, 0 < h < h̄ (3.29)

holds, where

d̂(h) = (d̂1(h), . . . , d̂m(h))
T,

d̂i(h) = (1 − p−
i
)|ϕ− ψ|C +

(

(1 − p−
i
)(M2M0 + g∗i ) + d∗i + d̄i M0

)

h.

Then (3.29) implies

w(t) ≤ (I − C)−1d̂(h), t ≥ −τ, 0 < h < h̄,

which proves (3.2) with

K2 = ∥(I − C)−1∥∞ max
i=1,...,m

(1 − p−
i
) and M = M2M0 + max

i=1,...,m
(g∗i + d∗i + d̄i M0).

Remark 3.2. We note that relation (3.1) gives for ϕ = ψ that

sup
t∈[−τ,∞)

|x(t)− y(t)|∞ ≤ K2(θ(h) + ε),

which yields that the solutions of (1.15) approximate that of (1.14) uniformly on [0, ∞).

Remark 3.3. Let C be the matrix defined by (3.27). Assumption (H5) in Theorem 3.1 can be

replaced by the weaker condition ρ(C) < 1, and the statement of the theorem remains true.

Thanks to our main Theorem 3.1 and Lemma 2.2 we can give the following result con-

cerning the transference of the exponential estimate of the solutions of (1.14) to the approximate

solution.

Proposition 3.4. Suppose (H1)–(H7) hold. Let x = (x1, . . . , xm)T be the solution of (1.14) corre-

sponding to initial function ϕ = (ϕ1, . . . , ϕm)T, and y = (y1, . . . , ym)T be the solution of (1.15)

corresponding to h > 0 and an initial function ψ = (ψ1, . . . , ψm)T, and let α0 > 0 be the correspond-

ing constant from Lemma 2.2.

(i) Then for every 0 < α < α0 and ε > 0 there exist constants K3 > 0 and h∗ > 0, and a function

θ(h) such that θ(h) → 0 as h → 0+, and

|y(t)|∞ ≤ e−αtK3

(

1 + |ϕ− ψ|C + θ(h) + ε
)

, t ∈ [−τ, ∞), 0 < h < h∗. (3.30)

(ii) Assume further (H8). Then for every 0 < α < α0 there exist constants K3 > 0, M > 0 and

h̄ > 0 such that

|y(t)|∞ ≤ e−αtK3

(

1 + |ϕ− ψ|C + Mh
)

, t ∈ [−τ, ∞), 0 < h < h̄. (3.31)

Proof. The proof follows immediately from |z(t)|∞ ≤ |z(t)− x(t)|∞ + |x(t)|∞, (2.4), (3.1) and

(3.2) with K3 = max{K0, K2}.
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4 The bounded coefficients case

In the following, we give a practical result concerning the bounded coefficients case for a

CNN delayed impulsive system as a simple consequence of Theorem 3.1. In addition to our

assumptions (H1)–(H3), we suppose that the coefficient functions ai(t) are bounded below

too, and bij(t) are bounded. This will allow to simplify conditions (H4)–(H8), as follows:

(H4’) There exist positive constants ai, a∗i , c∗i , σi for i = 1, . . . , m such that

(i) ai ≤ ai(t) ≤ a∗i for t ≥ 0 and i = 1, . . . , m;

(ii) ai −
1

δ
ln(1 − p−

i
) ≥ σi, i = 1, . . . , m, where p−

i
= min{0, p

i
};

(iii) |bij(t)| ≤ b∗ij, t ≥ 0, i = 1, . . . , m.

(H5’) There exists ε0 such that 0 < ε0 < σi for i = 1, . . . , m, and

m

∑
j=1

(1 − p−
i
)b∗ij

σi − ε0
Lj +

(1 − p−
i
)l∗i

(1 − p∗i )(1 − e−σiδ)
< 1, i = 1, . . . , m.

(H6’) There exist positive constants β1, β2 and c∗i (i = 1, . . . , m) such that

|ei,k| ≤ e−β1tk e∗i , k ∈ N, and |ci(t)| ≤ e−β2tc∗i , t ≥ 0, i = 1, . . . , m.

(H7’) There exists a positive constant Lϕ such that

|ϕi(t)− ϕi(t̄)| ≤ Lϕ|t − t̄|, t, t̄ ∈ [−τ, 0], i = 1, . . . , m.

Note that (H4) (i) was used in the proofs of Lemma 2.2, Lemma 2.4 and Theorem 3.1 to

prove estimates (2.5), (2.6) and (2.7). Now we show that our boundedness assumptions (H4’)

imply the same estimates (2.5), (2.6) and (2.7).

Suppose p
i
< 0, s ∈ [tr−1, tr) for some r ∈ N, and t ≥ tr. Then (H3) (iv), (H4’) and the

estimates (ℓ(t)− r)δ ≤ tℓ(t) − tr ≤ t − s yield

e−
∫ t

s ai(u) du

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

= exp

(

−
∫ t

s
ai(u) du +

ℓ(t)

∑
j=r

ln(1 − pi,j)

)

≤ exp
(

−ai(t − s) + (ℓ(t)− r + 1) ln(1 − p
i
)
)

≤ (1 − p
i
) exp

(

−ai(t − s) +
t − s

δ
ln(1 − p

i
)

)

≤ (1 − p
i
)e−σi(t−s).

If s < t < tr, then ℓ(t) < r, so ∏
ℓ(t)
j=r (1 − pi,j) = 1. In the case p

i
≥ 0 we have σi ≤ ai, hence

e−
∫ t

s ai(u) du

(

ℓ(t)

∏
j=r

(1 − pi,j)

)

≤ e−
∫ t

s ai(u) du ≤ e−σi(t−s).

Therefore (2.5) holds. (2.6) and (2.7) can be proved similarly under assumption (H4’).

Using Remark 1.3, we get immediately that (H5’) implies (H5). Hence Theorem 3.1 has the

following corollary.
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Corollary 4.1. Assume (H1)–(H3),(H4’)–(H7’) hold. Let x = (x1, . . . , xm)T be the solution of (1.14)

corresponding to initial function ϕ = (ϕ1, . . . , ϕm)T, and y = (y1, . . . , ym)T be the solution of (1.15)

corresponding to h > 0 and an initial function ψ = (ψ1, . . . , ψm)T, and let α0 > 0 be the corresponding

constant from Lemma 2.2. Then for every 0 < α < α0 there exist constants K2 > 0, M > 0 and h̄ > 0

such that (3.2) holds. Hence, the solutions of (1.14) are approximated by that of (1.15) uniformly over

[0, ∞).

5 An example

Now, we present an example to illustrate the applicability of our conditions.

Example 5.1. Consider the system

x′1(t) = −a1(t)x1(t) +
2

∑
j=1

b1j(t)gj(xj(t − τj)) + c1(t), t ̸= tn

x′2(t) = −a2(t)x2(t) +
2

∑
j=1

b2j(t)gj(xj(t − τj)) + c2(t), t ̸= tn

∆x1(tn) = −p1,nx1(t
−
n ) + e1,n + J1,n(x1(t

−
n )), n ∈ N

∆x2(tn) = −p2,nx2(t−n ) + e2,n + J2,n(x2(t−n )), n ∈ N,

(5.1)

where

a1(t) = 2 + sin(
√

3t), a2(t) = 4 + cos(t);

b11(t) = 0.5 sin(t), b21(t) = 0.2 sin(t);

b12(t) = 0.3 cos(t), b22(t) = 0.3 sin(t);

c1(t) = exp(−t), c2(t) = exp(−2t);

p1,n = −0.15, n ∈ N, p2,n = −0.4, n ∈ N;

e1,n = exp(−3tn), n ∈ N, e2,n = exp(−4tn), n ∈ N;

g1(x) = tanh(x), g2(x) = tanh(x);

J1,n(x) = 1
10 tanh(x), n ∈ N, J2,n(x) = 1

10 tanh(x), n ∈ N.

(5.2)

We suppose τ1 = 1, τ2 = 2, τ = max{τ1, τ2} = 2, the initial functions ϕ1(t), ϕ2(t), ψ1(t), ψ2(t) :

[−2, 0] → R, defined as ϕ1(t) = ψ1(t) = 0.5 sin(t) and ϕ2(t) = ψ2(t) = cos(t). Also, we

consider tn = n for n ∈ N.

System (5.1) is approximated by the following IDEPCA system

y′1(t) = −a1(t)y1(t) +
2

∑
j=1

b1j(t)gj(yj(γ(t)− γ(τj))) + c1(t), t ̸= γ(tn)

y′2(t) = −a2(t)y2(t) +
2

∑
j=1

b2j(t)gj(yj(γ(t)− γ(τj))) + c2(t), t ̸= γ(tn)

∆y1(γ(tn)) = −p1,ny1(γ(tn)−) + e1,n + I1,n(y1(γ(tn)−)), n ∈ N

∆y2(γ(tn)) = −p2,ny2(γ(tn)−) + e2,n + I2,n(y2(γ(tn)−)), n ∈ N,

(5.3)

where γ(t) = [t/h]h and all the coefficients are given in (5.2). Because tanh(x) is a Lipschitz-

type function, with Lipschitz constant 1, we can conclude that Li = 1 and l∗i = li,n = 1
10 ,

i = 1, 2, n ∈ N. We have δ = 1, a1 = 1, a2 = 3, p
1
= p∗1 = −0.15 and p

2
= p∗2 = −0.4, hence
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we get

a1 −
1

δ
ln(1 − p−

1
) ≈ 0.86024, a2 −

1

δ
ln(1 − p−

2
) ≈ 2.66353,

so σ1 = 0.86 and σ2 = 2.66 satisfy (H4’) (ii). Use ε0 = 0.01, b∗11 = 0.5, b∗12 = 0.3, b∗21 = 0.2 and

b∗22 = 0.3. Then

1 − q−
1

σ1 − ε0

m

∑
j=1

b∗1jLj +
(1 − q−

1
)l∗1

(1 − q∗1)(1 − e−σ1δ)
=

1.15

0.85
(0.5 + 0.3) +

0.1

1 − e−0.86
≈ 0.91748,

and

1 − q−
2

σ2 − ε0

m

∑
j=1

b∗2jLj +
(1 − q−

2
)l∗1

(1 − q∗2)(1 − e−σ2δ)
=

1.4

0.85
(0.2 + 0.3) +

0.1

1 − e−2.66
≈ 0.31884,

therefore (H5’) is satisfied. Therefore Corollary 4.1 yields that the solutions of (5.3) approxi-

mate that of (5.1) uniformly on [0, ∞) as h goes to 0.

Figures 5.1–5.2 illustrate the solution of (5.1) and its approximation by the solution of (5.3)

corresponding to the discretization parameter h = 0.1. Note that for this value of h and the

definition of tn, we have γ(tn) = tn for all n ∈ N. Both initial value problems are solved

numerically using the function ❞❞❡s❞ in Matlab on the consecutive intervals [tn, tn+1]. The

blue curves are the graphs of xi(t), and the red dots are the values of the function yi(t) at the

time values t = 0.1n, n ∈ N0. At the impulse time points, the left-hand limits of yi(t) are

also displayed. Even though the discretization parameter is relatively large for this numerical

experience, we see that the approximation error becomes smaller as time increases. This is a

consequence of estimate (3.2).
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Figure 5.1: Graphs of x1(t), y1(0.1n) (on the left) and x2(t), y2(0.1n) (on the

right) with h = 0.1
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Figure 5.2: The graphs of (t, x1(t), x2(t)) and (0.1n, z1(0.1n), z2(0.1n)) with

h = 0.1.
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This addendum addresses the findings presented in the paper [1] titled “Higher order

stroboscopic averaged functions: a general relationship with Melnikov functions” published

in Electron. J. Qual. Theory Differ. Equ. 2021, No. 77.

The main result of the referred paper, [1, Theorem A], establishes a general relationship

between averaged functions gi and Melnikov functions fi. As a direct consequence of this

general relationship, [1, Corollary A] states that if, for some ℓ ∈ {2, . . . , k}, either f1 = · · · =

fℓ−1 = 0 or g1 = · · · = gℓ−1 = 0, then fi = T gi for i ∈ {1, . . . , ℓ}. This consequence

was somewhat expected based on existing results in the literature within more restricted

contexts. Here, we will demonstrate that under the same conditions, the relationship fi = T gi

actually holds for every i ∈ {1, . . . , 2ℓ − 1}, which represents a more unexpected outcome.

The expression for g2ℓ(z) will also be provided.

Proposition 1. Let ℓ ∈ {2, . . . , k}. If either f1 = · · · = fℓ−1 = 0 or g1 = · · · = gℓ−1 = 0, then

fi = T gi for i ∈ {1, . . . , 2ℓ− 1} and

g2ℓ(z) =
1

T

(

f2ℓ(z)−
1

2
dfℓ(z) · fℓ(z)

)

or, equivalently, f2ℓ(z) = Tg2ℓ(z) +
T2

2
dgℓ(z) · gℓ(z).
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Proof. Given ℓ ∈ {2, . . . , k}, assume that either f1 = · · · = fℓ−1 = 0 or g1 = · · · = gℓ−1 = 0.

From [1, Corollary A], we have that

gi = fi = 0, for i ∈ {1, . . . , ℓ− 1}, and gℓ =
1

T
fℓ. (1)

For any i, [1, Theorem A] provides

gi(z) =
1

T

(

fi(z)−
i−1

∑
j=1

j

∑
m=1

1

j!
dmgi−j(z)

∫ T

0
Bj,m

(

ỹ1, . . . , ỹj−m+1

)

(s, z)ds

)

, (2)

where ỹi(t, z), for i ∈ {1, . . . , k}, are polynomial in the variable t recursively defined as follows:

ỹ1(t, z) = t g1(z)

ỹi(t, z) = i!t gi(z) +
i−1

∑
j=1

j

∑
m=1

i!

j!
dmgi−j(z)

∫ t

0
Bj,m

(

ỹ1, . . . , ỹj−m+1

)

(s, z)ds.
(3)

Taking (1) into account, the function gi−j in (2) vanishes for i − j ≤ ℓ − 1, that is, for

j ≥ i − ℓ+ 1. Thus,

gi(z) =
1

T

(

fi(z)−
i−ℓ

∑
j=1

j

∑
m=1

1

j!
dmgi−j(z)

∫ T

0
Bj,m

(

ỹ1, . . . , ỹj−m+1

)

(s, z)ds

)

. (4)

Also, from (1) and (3), one has

ỹ1 = · · · ỹℓ−1 = 0 and ỹℓ(t, z) = ℓ!tgℓ(z) =
ℓ!

T
tfℓ(z). (5)

Now, let i ∈ {ℓ+ 1, . . . , 2ℓ− 1}. Thus, for j ≤ i − ℓ and m ≥ 1, one has that

j − m + 1 ≤ i − ℓ ≤ 2ℓ− 1 − ℓ = ℓ− 1,

which implies, from (5), that ỹ1 = · · · = ỹj−m+1 = 0 in (4). Consequently, fi(z) = Tgi(z).

Finally, from (4),

g2ℓ(z) =
1

T

(

f2ℓ(z)−
ℓ

∑
j=1

j

∑
m=1

1

j!
dmg2ℓ−j(z)

∫ T

0
Bj,m

(

ỹ1, . . . , ỹj−m+1

)

(s, z)ds

)

. (6)

Notice that, for 1 ≤ j ≤ ℓ and 1 ≤ m ≤ j, the relationship j−m+ 1 ≥ ℓ implies that m = 1 and

j = ℓ, which are the only possible values for m and j for which ỹj−m+1 in (6) is not vanishing.

In this case, from (5), ỹ1 = · · · = ỹj−m = 0 and ỹj−m+1 = ỹℓ = ℓ!tgℓ(z). Thus,

g2ℓ(z) =
1

T

(

f2ℓ(z)−
1

ℓ!
dgℓ(z)

∫ T

0
Bℓ,1

(

0, . . . , 0, ℓ!tgℓ(z)
)

ds

)

=
1

T

(

f2ℓ(z)−
1

ℓ!
dgℓ(z)

∫ T

0
ℓ!tgℓ(z) ds

)

=
1

T

(

f2ℓ(z)−
T2

2
dgℓ(z) · gℓ(z)

)

=
1

T

(

f2ℓ(z)−
1

2
dfℓ(z) · fℓ(z)

)

.

Equivalently,

f2ℓ(z) = Tg2ℓ(z) +
T2

2
dgℓ(z) · gℓ(z).
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Abstract. We use a functional form of the mirroring technique to fully characterize
equivalence classes of unbounded stationary solutions of lattice reaction-diffusion equa-
tions with eventually negative and decreasing nonlinearities. We show that solutions
which connect a stable fixed point of the nonlinearity with infinity can be characterized
by a single parameter from a bounded interval. Within a two-dimensional parametric
space, these solutions form a boundary to an existence region of solutions which di-
verge in both directions. Additionally, we reveal a natural relationship of lattice equa-
tions with an interesting functional equation which involves an unknown function and
its inverse.
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1 Introduction

We study a special class of unbounded stationary solutions to reaction-diffusion lattice differ-
ential equations (LDE)

u′i(t) = d(ui−1(t)− 2ui(t) + ui+1(t)) + g(ui(t)), i ∈ Z, t > 0, (1.1)

in which d > 0 is a diffusion rate and g is a reaction function. We assume that g is a C1-
function and satisfies the following assumptions:

(g1) g(ℓ) = 0 for some ℓ ∈ R,

(g2) g′(u) < 0 for all u ∈ [ℓ, ∞).

Let us immediately note that general assumptions (g1)–(g2) cover well-known and widely
studied prototypes of monostable and bistable dynamics – the Fisher lattice equation (with
logistic reaction) and the Nagumo lattice equation (with cubic reaction) as well as many others
reactions, their modifications, and caricatures which have been commonly used in numerous
studies on lattice equations [2, 5, 12, 15, 21]. See Section 4 for detailed examples.

BCorresponding author. Email: pstehlik@kma.zcu.cz
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The primary object of our interest is a class of unbounded stationary solutions which con-
nect the stationary point ℓ with infinity. Therefore, we refer to them as onesided unbounded
solutions.

Bounded stationary and traveling patterns

The LDE (1.1) serves as a discrete-space counterpart of the reaction-diffusion partial differen-
tial equation (PDE)

ut(x, t) = duxx(x, t) + g(u(x, t)), x ∈ R, t > 0, (1.2)

which occurs naturally as a model to many biological and chemical processes and has inspired
many mathematical concepts and techniques – traveling wave solutions u(x, t) = Φ(x − ct),
perturbation techniques, stability of waves, etc. [13].

Recent interest in the LDE (1.1) stems from its natural applications (see, e.g., [15]) and the
fact that the discrete space provides new or richer dynamic phenomena in comparison with
the PDE (1.2). The most notable among those is the pinning of traveling waves for sufficiently
small diffusion parameters. The Nagumo lattice equation is a prototype of wave pinning
[12,16,21]. In other words, for sufficiently small d > 0, solutions of the form ui(t) = Φ(i− ct)

of the LDE (1.1) with the bistable nonlinearity with a monotone profile Φ satisfy c = 0. The
phenomenon is general and has been studied in various discrete-time models [11] and systems
of lattice equations [4, 6].

The presence of pinning regions in discrete-space models is naturally related to spatial
topological chaos, the existence of large number of bounded heterogeneous stationary patterns
of the LDE (1.1), [2, 15]. Stationary solutions of the LDE (1.1) are double-sequences u = (ui),
i ∈ Z, satisfying difference equations

d(ui−1 − 2ui + ui+1) + g(ui) = 0, i ∈ Z. (1.3)

The structure of large number of solutions for small diffusion 0 < d ≪ 1 is still not fully
understood. Partial results are related to localized pulses and their bifurcations [1] or the
ordering and symmetry of exponential number of k-periodic patterns [9]. Explicit forms of
specific solutions have been found for piecewise linear nonlinearities [3,5,18,20]. Connections
of stable periodic patterns then lead to existence of nonmonotone waves, [8, 10]. However,
many fascinating open questions remain unanswered. These are related, for example, to bi-
furcations of pulses [1] finite-dimensional graph reaction-diffusion equations which are con-
nected to k-periodic patterns [19] but also to the broader picture, e.g., coexistence of bounded
and unbounded patterns and a related ambition to describe all types of nonnegative patterns
of the LDE (1.1). The goal of this paper is to contribute by describing onesided unbounded
patterns and as a by-product describe mirroring functional iterations and a relationship to a
functional equation.

Unbounded stationary patterns

In [7] we fully characterized equivalence classes of generally asymmetric twosided unbound-
ed stationary solutions of (1.1) with (g1)–(g2) being satisfied such that ui > ℓ for every i ∈ Z

and

lim
i→±∞

ui = ∞, (1.4)

see Figure 1.1. In contrast to twosided unbounded solutions of the PDE (1.2) we have shown
that the twosided unbounded solutions (i) form a two-parametric family of equivalence classes,
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Figure 1.1: A twosided unbounded stationary solution of (1.1) satisfying (1.4)
(left panel) and onesided unbounded stationary solutions satisfying either (1.5)
or (1.6) (center and right panel).

(ii) are generally asymmetric, and (iii) exist on the whole unbounded integer lattice Z (i.e.,
they do not blow up at the ends of bounded spatial interval), see Theorem 3.1 below. Finally,
in contrast to bounded patterns, twosided unbounded patterns of the LDE (1.1) exist for all
diffusion values d > 0.

Onesided unbounded stationary solutions

Motivated by miscellaneous types of stationary solutions of (1.1), we primarily focus on the
characterization of other type of unbounded stationary solutions, specifically, onesided un-
bounded stationary solutions which satisfy ui > ℓ for all i ∈ Z and either (see Figure 1.1)

lim
i→−∞

ui = ℓ and lim
i→∞

ui = ∞, (1.5)

or

lim
i→−∞

ui = ∞ and lim
i→∞

ui = ℓ. (1.6)

The equations (1.1) and (1.3) are autonomous in the spatial variable i ∈ Z. Thus, every
solution generates an equivalence class of another solutions which are only shifted in i. For
this purpose, we say that stationary solutions u, u∗ of (1.1) are equivalent (denoted u ∼ u∗) if
there exists an s ∈ Z such that ui+s = u∗i for every i ∈ Z. The equivalence class represented
by a solution u∗ is denoted by [u∗] =

{

u ∈ R
Z : u ∼ u∗

}

.
The first main result of this manuscript characterizes the onesided stationary solutions

of (1.1).

Theorem 1.1. Let g be a C1-function and satisfy (g1)–(g2). There exists a unique function f : [ℓ, ∞)→
[ℓ, ∞) which is continuous, strictly increasing with f (ℓ) = ℓ, limu→∞ f (u) = ∞, and f (u) > u for

all u > ℓ such that for arbitrary ξ > ℓ every α ∈ [ξ, f (ξ)) determines an equivalence class
[

uα,I
]

of strictly increasing stationary solutions u of (1.1) satisfying ui > ℓ for all i ∈ Z and (1.5); and an

equivalence class
[

uα,D
]

of strictly decreasing stationary solutions u of (1.1) satisfying ui > ℓ for all

i ∈ Z and (1.6). The representatives uα,I and uα,D satisfy

uα,I
0 = α and uα,I

1 = f (α); (1.7)

and

uα,D
0 = α and uα,D

1 = f−1(α), (1.8)

respectively. Moreover, for every α̃ ∈ [ξ, f (ξ)) there is
[

uα,I
]

̸=
[

uα̃,I
]

and
[

uα,D
]

̸=
[

uα̃,D
]

provided

α ̸= α̃.

On the contrary, every stationary solution u of (1.1) satisfying ui > ℓ for every i ∈ Z and (1.5)
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Figure 1.2: Illustration of two main results. Theorem 1.1 implies the existence
of a function f and the corresponding interval [ξ, f (ξ)). Each value from this
interval characterizes an equivalence class of increasing (1.5) or decreasing (1.6)
onesided unbounded solutions. Mirroring symmetry via ϕ from (1.11) and cob-
webbing which are used to construct the solutions are indicated (left panel).
Theorem 1.2 then shows that the curves f and f−1 form a boundary to a set
V . All pairs (ui, ui+1) ∈ V generate twosided unbounded solutions with (1.4),
whereas all pairs (ui, ui+1) ∈ ∂IV or (ui, ui+1) ∈ ∂DV lead to onesided un-
bounded solutions with (1.5) or (1.6) (right panel).

is strictly increasing and belongs into one of the above described equivalence classes
[

uα,I
]

for some

α ∈ [ξ, f (ξ)); and every stationary solution u of (1.1) satisfying ui > ℓ for every i ∈ Z and (1.6)
is strictly decreasing and belongs into one of the above described equivalence classes

[

uα,D
]

for some

α ∈ [ξ, f (ξ)).

In other words, we are able to characterize the equivalence classes by a single value α ∈
[ξ, f (ξ)), see Figure 1.2. In Sections 2 and 3 we provide the proof of Theorem 1.1 which relies
on an iterative construction of function f . The onesided unbounded stationary solutions can
then also be iteratively constructed via mirroring or cobwebbing as indicated in Figure 1.2 as
well.

Characterization of onesided and twosided unbounded stationary solutions

Combining Theorem 1.1 and results from [7] we obtain a full characterization of unbounded
stationary solutions of (1.1) which satisfy ui > ℓ for all i ∈ Z. We define the following open
set using the function f from Theorem 1.1:

V =
{

(ξ, ζ) ∈ R
2 : ξ > ℓ and f−1(ξ) < ζ < f (ξ)

}

, (1.9)

and upper and lower parts of its boundary (see Figure 1.2)

∂I
V =

{

(ξ, ζ) ∈ R
2 : ξ > ℓ and ζ = f (ξ)

}

,

∂D
V =

{

(ξ, ζ) ∈ R
2 : ξ > ℓ and ζ = f−1(ξ)

}

.
(1.10)
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Obviously, there is ∂IV ∩ ∂DV = ∅ and the boundary ∂V of V satisfies

∂V = ∂I
V ∪ ∂D

V ∪ {(ℓ, ℓ)}.
Our second main result states that the sets V , ∂IV , and ∂DV fully describe all values of all
twosided and onesided unbounded stationary solutions of (1.1) satisfying ui > ℓ for all i ∈ Z,
respectively.

Theorem 1.2. Let g be a C1-function, satisfy (g1)–(g2), and u be a stationary solution of (1.1) such

that ui > ℓ for all i ∈ Z. Then:

(i) (1.4) holds if and only if (ui, ui+1) ∈ V for all i ∈ Z,

(ii) (1.5) holds if and only if (ui, ui+1) ∈ ∂IV for all i ∈ Z,

(iii) (1.6) holds if and only if (ui, ui+1) ∈ ∂DV for all i ∈ Z.

Mirroring

Our main tool to study asymmetric and symmetric twosided unbounded solutions in [7] was
the mirroring technique. The second order difference equation (1.3) for finding stationary
solutions of (1.1) can be transformed into

ui+1 −
(

ui − 1
2d g(ui)

)

=
(

ui − 1
2d g(ui)

)

− ui−1, i ∈ Z.

If we define an auxiliary function (which we call a mirroring function)

ϕ(u) = u− 1
2d g(u), (1.11)

we obtain a mirroring symmetry with respect to ϕ for all stationary solutions (1.3), since

ui+1 − ϕ(ui) = ϕ(ui)− ui−1, i ∈ Z. (1.12)

In this paper we go one step further and study mirroring of functions and their sequences in
Section 2.

Functional equation

The mirroring (1.12) in the proof of Theorem 1.1 closely relate the problem of finding station-
ary solutions (1.3) of the LDE (1.1) with an interesting functional equation

f (u) + f−1(u)

2
= ϕ(u), u ∈ [0, ∞) , (1.13)

in which ϕ is a given function and f is an unknown function to be found, see Figure 1.2. To
our best knowledge, this challenging problem has not been studied itself and its analysis can
have deep consequences for other stationary patterns of the LDE (1.1), most notably classes of
bounded patterns. See Section 5 for more details.

Paper structure

In Section 2 we generalize the mirroring technique (1.12) to a functional iterative scheme and
study the monotonicity and convergence of generated function sequences. In Section 3 we
then use these results to prove Theorems 1.1 and 1.2 and show that the onesided unbounded
solutions (1.5) or (1.6) are generated by a value from a single interval and form a boundary
to the two-parametric domain which generate twosided unbounded solutions satisfying (1.4).
We then illustrate our results by several examples with different nonlinearities g in Section 4
and discuss the functional equation (1.13) and its solvability in a special case connected to
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our analysis in Section 5. We conclude in Section 6 by final remarks which connect our study
to the solutions of the PDE (1.2), topological chaos of the LDE (1.1), and further possible
applications of mirroring schemes and the functional equation (1.13).

2 Mirroring idea and functional iterative scheme

To describe the functional generalization of the mirroring (1.12) and establish that generated
iterations are well-defined, we need some functions (for now specifically ϕ) satisfy some de-
sired properties. For this purpose, we say that a function p : [ℓ, ∞) → R satisfies (p1) or (p2)

provided:

(p1) p(ℓ) = ℓ,

(p2) p′(u) > 1 for all u ∈ [ℓ, ∞) (which also yields that p(u) is strictly increasing and thus
invertible),

respectively. The next lemma states that the function ϕ given by (1.11) satisfies (p1)–(p2) pro-
vided (g1)–(g2) hold.

Lemma 2.1. Let (g1)–(g2) be satisfied. The function ϕ defined by (1.11) is of class C1 and satis-

fies (p1)–(p2).

Proof. The statements follow immediately from the definition (1.11) of ϕ.

Now we are able to make the following considerations. We call the relation (1.12) the
mirroring scheme, since for given initial conditions u0 > ℓ, u1 > ℓ the point (u2, u1) as a point
in the R

2-plane is by (1.12) the horizontal mirror image of (u0, u1) with respect to the graph
of ϕ−1. Then, the point (u2, u3) is by (1.12) the vertical mirror image of (u2, u1) with respect
to the graph of function ϕ, etc. (see Figure 1.2). Therefore, the forward solution ui of (1.3)
for i = 2, 3, . . . can be generated from the initial conditions u0, u1 by mirroring of the points
with respect to ϕ−1 horizontally and with respect to ϕ vertically, respectively, in the switching
manner.

Analogically, the backward solution ui of (1.3) for i = −1,−2, . . . can be generated from
the initial conditions u0, u1 by mirroring of the points with respect to ϕ vertically and with
respect to ϕ−1 horizontally, respectively.

At this stage, we generalize the mirroring scheme (1.12) to functions. Let ϕ satisfy (p1)–(p2)

and consider the following functional iterative scheme:

fn+1(u) = 2ϕ(u)− f−1
n (u), n ∈ N0, u ∈ [ℓ, ∞) . (2.1)

Generally, the iterates do not have to be well-defined because of the inverses. This fundamen-
tally depends on the properties of the initial function f0. We focus on two special sequences
given by specific initial iterates f0 for which we establish that all iterates given by (2.1) are
well-defined.

Definition 2.2. Let ϕ be a C1-function and satisfy (p1)–(p2). We define functional sequences
(
¯
fn) and ( f̄n), n ∈ N0, as follows:

(i) (
¯
fn) are the iterates of (2.1) initiated by

¯
f0(u) = 2ϕ(u)− ϕ−1(u),

(ii) ( f̄n) are the iterates of (2.1) initiated by f̄0(u) = 2ϕ(u)− ℓ.
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Let us note that the inverse ϕ−1 is well-defined thanks to (p2). Further, let us verify that
the iterates

¯
fn and f̄n in Definition 2.2 are correctly defined for every n ∈ N0 as well. This

(besides others) follows from the following lemma.

Lemma 2.3. Let ϕ be a C1-function and satisfy (p1)–(p2). If fn is a C1-function and satisfies (p1)–(p2),

then fn+1 defined by (2.1) is well-defined C1-function and satisfies (p1)–(p2) as well.

In particular,
¯
fn and f̄n are well-defined C1-functions for every n ∈ N0 and all satisfy (p1)–(p2).

Proof. Since f ′n(u) > 1 for all u ∈ [ℓ, ∞) by (p2), the inverse f−1
n is well-defined and of class C1

by the inverse function rule

( f−1
n )′(u) =

1
f ′n( f−1

n (u))
. (2.2)

Hence, fn+1 defined by (2.1) is also well-defined and of class C1. If fn(ℓ) = ℓ by (p1), then
fn+1(ℓ) = ℓ immediately from (2.1) and thanks to ϕ(ℓ) = ℓ (the function ϕ satisfies (p1) as
well by the assumption). Moreover, if f ′n(u) > 1 for all u ∈ [ℓ, ∞), then ( f−1

n )′(u) < 1 for all
u ∈ [ℓ, ∞) again by (2.2). Since also ϕ′(u) > 1 for all u ∈ [ℓ, ∞) (ϕ satisfies (p2)), then

f ′n+1(u) = 2ϕ′(u)− ( f−1
n )′(u) > 2 · 1− 1 = 1 for all u ∈ [ℓ, ∞) .

Finally, one can similarly show that
¯
f0(u) = 2ϕ(u)− ϕ−1(u) and f̄0(u) = 2ϕ(u)− ℓ sat-

isfy (p1)–(p2). Then (p1)–(p2) hold for all
¯
fn and f̄n as well by induction.

In the next lemma we show that the sequence (
¯
fn) is increasing, ( f̄n) is decreasing, and

whole sequence (
¯
fn) lies below ( f̄n), see Figure 2.1.

Lemma 2.4. Let ϕ be a C1-function and satisfy (p1)–(p2). Then for every m, n ∈ N0 and all u ∈ [ℓ, ∞)
the following hold:

(i) ϕ(u) ≤
¯
fn(u) ≤

¯
fn+1(u),

(ii) f̄n+1(u) ≤ f̄n(u),

(iii)
¯
fn(u) ≤ f̄m(u).

Moreover, the equalities hold if and only if u = ℓ.

Proof. Firstly, there is u ≤ ϕ(u) ≤
¯
f0(u) ≤ f̄0(u) for all u ∈ [ℓ, ∞). Indeed, the first and last

inequalities follow immediately from (p1)–(p2) (Lemma 2.1). The middle one is verified again
by (p1)–(p2) and by the following:

¯
f0(u) = 2ϕ(u)− ϕ−1(u) = ϕ(u) + (ϕ(u)− ϕ−1(u)) ≥ ϕ(u).

For the inverses, the reversed inequalities ℓ ≤ f̄−1
0 (u) ≤

¯
f−1
0 (u) ≤ ϕ−1(u) hold for all u ∈

[ℓ, ∞).
Let us prove (i), i.e., that ϕ(u) ≤

¯
fn(u) ≤

¯
fn+1(u) for all n ∈ N0 and u ∈ [ℓ, ∞) by

induction. For n = 0 there is
¯
f0(u) = 2ϕ(u)− ϕ−1(u), i.e., 2ϕ(u) =

¯
f0(u) + ϕ−1(u), and thus

¯
f1(u) = 2ϕ(u)−

¯
f−1
0 (u) =

¯
f0(u) + ϕ−1(u)−

¯
f−1
0 (u) ≥

¯
f0(u) ≥ ϕ(u),

since
¯
f0(u) ≥ ϕ(u) ≥ ϕ−1(u) for all u ∈ [ℓ, ∞). Assume that ϕ(u) ≤

¯
fn−1(u) ≤

¯
fn(u) for

some n ∈ N and all u ∈ [ℓ, ∞). Then, ℓ ≤
¯
f−1
n (u) ≤

¯
f−1
n−1(u) ≤ ϕ−1(u) for all u ∈ [ℓ, ∞) by

inversion. Further, for n + 1 there is

¯
fn+1(u) = 2ϕ(u)−

¯
f−1
n (u) ≥ 2ϕ(u)−

¯
f−1
n−1(u) =

¯
fn(u) ≥ ϕ(u),

which concludes the induction step.
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The inequality in (ii), i.e., f̄n+1(u) ≤ f̄n(u) for every n ∈ N0 and u ∈ [ℓ, ∞), and also that

¯
fn(u) ≤ f̄n(u) for every n ∈ N0 and all u ∈ [ℓ, ∞) (2.3)

can be proved similarly by induction.
Hence, let us finally show (iii), i.e., that

¯
fn(u) ≤ f̄m(u) for all m, n ∈ N and u ∈ [ℓ, ∞).

Assume by contradiction that there are some mc, nc ∈ N, mc ̸= nc, such that
¯
fnc(uc) > f̄mc(uc)

for some uc > ℓ (note that for u = ℓ there is
¯
fn(ℓ) = f̄m(ℓ) = ℓ for all mc, nc ∈ N0). If nc ≥ mc

then by (ii)

¯
fnc(uc) > f̄mc(uc) ≥ f̄mc+1(uc) ≥ f̄mc+2(uc) ≥ . . . ≥ f̄nc(uc),

a contradiction with (2.3). If otherwise mc ≥ nc then by (i)

f̄mc(uc) <
¯
fnc(uc) ≤

¯
fnc+1(uc) ≤

¯
fnc+2(uc) ≤ . . . ≤

¯
fmc(uc),

again a contradiction with (2.3).
One can easily check that all the verified inequalities are strict if and only if u > ℓ.

As a by-product, Lemma 2.4 guarantees the existence of limit functions for both (
¯
fn) and

( f̄n). We show their existence in the next corollary and provide several properties of these
limit functions, see Figure 2.1.

Figure 2.1: Illustration of the mirroring functional iterative scheme (2.1) and
functional sequences (

¯
fn) and ( f̄n) from Lemma 2.4 (left panel). Convergence

of these sequences is implied by Corollaries 2.5 and 2.7 (right panel).

Corollary 2.5. Let ϕ be a C1-function and satisfy (p1)–(p2). There exist continuous limit functions

¯
f (u) = lim

n→∞ ¯
fn(u) and f̄ (u) = lim

n→∞
f̄n(u), u ∈ [ℓ, ∞) ,

which satisfy:

(i) ϕ(u) ≤
¯
fn(u) ≤

¯
f (u) ≤ f̄ (u) ≤ f̄n(u) for all n ∈ N0 and u ∈ [ℓ, ∞),

(ii)
¯
f and f̄ are strictly increasing, i.e., invertible, on [ℓ, ∞) and

¯
f−1(u) = lim

n→∞ ¯
f−1
n (u) and f̄−1(u) = lim

n→∞
f̄−1
n (u) for all u ∈ [ℓ, ∞) ,

(iii)
¯
f (u) = 2ϕ(u)−

¯
f−1(u) and f̄ (u) = 2ϕ(u)− f̄−1(u) for all u ∈ [ℓ, ∞).
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Proof. The sequence (
¯
fn(u)), n ∈ N0, for given u ∈ [ℓ, ∞) is increasing and bounded from

above by all f̄n(u), n ∈ N0, (see Lemma 2.4) which guarantees the existence of pointwise limit

¯
f (u). The existence of f̄ (u), u ∈ [ℓ, ∞), follows similarly.

Lemma 2.3 yields that the iterates
¯
fn and f̄n (and also their inverses

¯
f−1
n and f̄−1

n ), n ∈ N0,
are strictly increasing C1-functions and for all n ∈ N0 there is

1 <

¯
f ′n+1(u) = 2ϕ′(u)− (

¯
f−1
n )′(u) ≤ 2ϕ′(u) (analogically for f̄ ′n+1(u)),

by (2.1). Since ϕ is a C1-function, the functions
¯
fn and f̄n have uniformly bounded derivatives

on every compact subinterval of [ℓ, ∞). This implies that they converge to their pointwise
limits

¯
f and f̄ uniformly on such intervals and thus,

¯
f and f̄ are continuous on whole [ℓ, ∞).

The limits have to satisfy that ϕ(u) ≤
¯
fn(u) ≤

¯
f (u) ≤ f̄ (u) ≤ f̄n(u) for all n ∈ N0 and

u ∈ [ℓ, ∞) by Lemma 2.4 again which proves (i).
The limit functions

¯
f and f̄ are strictly increasing and therefore invertible on [ℓ, ∞). Indeed,

for every u1, u2 ∈ [ℓ, ∞) such that, e.g., u1 < u2 the mean value theorem and Lemma 2.3
implies

¯
fn(u2)−

¯
fn(u1) =

¯
f ′n(ξ)(u2 − u1) > u2 − u1.

Passing n→ ∞ we obtain

¯
f (u2)−

¯
f (u1) ≥ u2 − u1 > 0,

which implies that
¯
f (and analogously f̄ ) is strictly increasing. By the reflection with respect

to the axis of the first quadrant we obtain that the inverse functions
¯
f−1 and f̄−1 satisfy

¯
f−1(u) = limn→∞

¯
f−1
n (u) and f̄−1(u) = limn→∞ f̄−1

n (u), u ∈ [ℓ, ∞), which proves (ii).
Finally, both iterates (

¯
fn) and ( f̄n), n ∈ N0, are consistent with the iterative scheme (2.1),

specifically,

fn+1(u) = 2ϕ(u)− f−1
n (u), u ∈ [ℓ, ∞) .

Taking n → ∞ in this equality together with (i) and (iii) we obtain that both limit functions
¯
f

and f̄ satisfy

f (u) = 2ϕ(u)− f−1(u), u ∈ [ℓ, ∞) ,

which concludes the proof of (iii).

In the rest of this section we show that
¯
f = f̄ on [ℓ, ∞), i.e., both sequences (

¯
fn) and ( f̄n)

converge to a common limit function (specifically, (
¯
fn) from below and ( f̄n) from above). We

build our argument on the following technical lemma.

Lemma 2.6. Let ϕ be a C1-function and satisfy (p1)–(p2). Then

f̄
(

¯
f−1 ( f̄ (u)

)

)

− f̄ (u) ≥
¯
f−1( f̄ (u))− u for all u ∈ [ℓ, ∞) .

Proof. Let u ∈ [ℓ, ∞) be arbitrary but fixed. Lemma 2.3 guarantees that f̄ ′n(s) > 1 for s ∈
[

u,
¯
f−1( f̄ (u))

]

. Therefore, the mean value theorem yields that for some ξ ∈
(

u,
¯
f−1( f̄ (u))

)

there is

f̄n

(

¯
f−1 ( f̄ (u)

)

)

− f̄n(u) = f̄ ′n(ξ) · (
¯
f−1( f̄ (u))− u) >

¯
f−1( f̄ (u))− u.

Taking n→ ∞ we obtain the statement of the lemma.

Now we are able to show that the limit functions
¯
f and f̄ of iterates (

¯
fn) and ( f̄n) are the

same, see again Figure 2.1.
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Corollary 2.7. Let ϕ be a C1-function and satisfy (p1)–(p2). Then
¯
f (u) = f̄ (u) for all u ∈ [ℓ, ∞).

Proof. Assume by contradiction that there exists u1 > ℓ such that
¯
f (u1) < f̄ (u1), i.e., f̄ (u1)−

¯
f (u1) > 0 (note that for u = ℓ there is

¯
f (ℓ) = f̄ (ℓ) = ℓ). Corollary 2.5 (iii) yields that

f̄ (u1)−
¯
f (u1) = (2ϕ(u1)− f̄−1(u1))− (2ϕ(u1)−

¯
f−1(u1))

=
¯
f−1(u1)− f̄−1(u1).

(2.4)

Let u1 = f̄ (ū) for some ū > ℓ (recall that the limit functions are homeomorphisms of
[ℓ, ∞), see Corollary 2.5 (i)–(ii)) and denote u2 =

¯
f−1(u1) =

¯
f−1( f̄ (ū)). Then

f̄ (u2)−
¯
f (u2) = f̄ (

¯
f−1( f̄ (ū)))−

¯
f (

¯
f−1( f̄ (ū)))

= f̄ (
¯
f−1( f̄ (ū)))− f̄ (ū)

≥
¯
f−1( f̄ (ū))− ū

=
¯
f−1( f̄ (ū))− f̄−1( f̄ (ū))

=
¯
f−1(u1)− f̄−1(u1)

= f̄ (u1)−
¯
f (u1),

in which the inequality follows from Lemma 2.6 and the last equality from (2.4). Thus, there
exists u2 =

¯
f−1(u1) < u1 such that f̄ (u2) −

¯
f (u2) ≥ f̄ (u1) −

¯
f (u1) > 0. By induction we

construct a sequence (un), n ∈ N, such that

ℓ < un+1 =
¯
f−1(un) < un

and

f̄ (un+1)−
¯
f (un+1) ≥ f̄ (un)−

¯
f (un) > f̄ (u1)−

¯
f (u1) > 0

for all n ∈ N. Since (un) is decreasing, bounded, and satisfies un+1 =
¯
f−1(un), it has to

converge to the unique fixed point of
¯
f−1, i.e., un → ℓ for n → ∞. The continuity of limit

functions
¯
f and f̄ (see Corollary 2.5) then yields

0 < f̄ (u1)−
¯
f (u1) ≤ f̄ (un)−

¯
f (un)→ f̄ (ℓ)−

¯
f (ℓ) = ℓ− ℓ = 0

for n→ ∞, a contradiction which concludes the proof.

3 Proofs of main theorems

In this section we go back to the problem (1.3) for stationary solutions of (1.1) and prove
our main result Theorem 1.1 with the help of the mirroring technique and related functional
iterative scheme (2.1) for the specific mirroring function (1.11).

Firstly, let us note that using the mirroring scheme (1.12), the authors proved in [7] the
following result on twosided unbounded stationary solutions of (1.1) satisfying ui > ℓ for all
i ∈ Z and (1.4). Specifically, we showed that these solutions are uniquely characterised and
indexed by points of two-dimensional set

U =
{

(α, β) ∈ R
2 : α > ℓ and ϕ−1(α) ≤ β ≤ ϕ(α)

}

, (3.1)

in contrast to Theorem 1.1 on onesided unbounded stationary solutions in which the charac-
terizing set is one-dimensional and even bounded. Note that while U consists of all unique
characteristic pairs generating twosided unbounded stationary solutions, the set V consists of
all pairs generated by initial conditions from U , see Figure 3.1. Theorem 1.1 implies the same
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relationship between the curve

C = {(α, f (α)) ∈ R
2 : ξ ≤ α < f (ξ))}

and the boundaries ∂IV , ∂DV , see the left panel of Figure 3.1.

Theorem 3.1 ([7, Theorem 5]). Let (g1)–(g2) be satisfied. Then every point (α, β) ∈ U determines

an equivalence class
[

uα,β
]

of stationary solutions u of (1.1) satisfying ui > ℓ for all i ∈ Z and (1.4)

represented by a solution uα,β such that u
α,β
0 = α, u

α,β
1 = β, and:

(i) if ϕ−1(α) < β < ϕ(α), then
[

uα,β
]

̸=
[

uα̃,β̃
]

for every (α̃, β̃) ̸= (α, β), (α̃, β̃) ∈ U ,

(ii) if either ϕ−1(α) = β, or β = ϕ(α), then
[

uα,β
]

=
[

uβ,α
]

.

Moreover, every stationary solution u of (1.1) satisfying ui > ℓ for all i ∈ Z and (1.4) is an element of

an equivalence class
[

uα,β
]

determined by a point (α, β) ∈ U .

In order to establish relationship of twosided unbounded solutions characterized by Theo-
rem 3.1 with iterative schemes from Section 2, we focus on initial conditions outside the set U

given by (3.1). First, let us characterize solutions which eventually also have values ui /∈ [ℓ, ∞).

Lemma 3.2. Let (g1)–(g2) be satisfied and u be a stationary solution of (1.1). If there exists i0 ∈ Z

such that

ui0+1 ≥ f̄n0(ui0) or ui0 ≥ f̄n0(ui0+1) for some n0 ∈ N0,

then there has to exists j0 ∈ Z such that uj0 ≤ ℓ.

Proof. Let ui0+1 ≥ f̄n0(ui0) for some i0 ∈ Z and n0 ∈ N0 (the other case ui0 ≥ f̄n0(ui0+1) is
similar). Then we obtain by (2.1) that ui0+1 ≥ f̄n0(ui0) = 2ϕ(ui0) − f̄−1

n0−1(ui0) and therefore,
by (1.3) that

ui0−1 = 2ui0 − ui0+1 − 1
d g(ui0) = 2ϕ(ui0)− ui0+1 ≤

¯
f−1
n0−1(ui0).

Applying the increasing function
¯
fn0−1 to this inequality (note that Lemma 2.1 verifies that ϕ

defined by (1.11) satisfies the needed hypotheses (p1)–(p2) from Section 2, i.e., Lemma 2.3 (iii)

holds), we get

ui0 ≥
¯
fn0−1(ui0−1).

Repeating this procedure n0-times and applying Definition 2.2 we obtain that

ui0−n0+1 ≥
¯
f0(ui0−n0) = 2ϕ(ui0−n0)− ℓ.

Then (1.3) yields that

ui0−n0−1 = 2ui0−n0 − ui0−n0+1 − 1
d g(ui0−n0) = 2ϕ(ui0−n0)− ui0−n0+1 ≤ ℓ,

i.e., we obtain the statement for j0 = i0 − n0 − 1.

Our next auxiliary lemma characterize initial conditions which generate ui > ℓ and do not
lead to onesided unbounded solutions but to twosided ones from Theorem 3.1 and are thus
part of solutions characterized by a pair (α, β) ∈ U .

Lemma 3.3. Let (g1)–(g2) be satisfied and u be a stationary solution of (1.1). If there exists i0 ∈ Z

such that

ui0 ≤ ui0+1 ≤
¯
fn0(ui0) or ui0+1 ≤ ui0 ≤

¯
fn0(ui0+1) for some n0 ∈ N0,

then there has to exists j0 ∈ Z such that (uj0 , uj0+1) ∈ U or (uj0+1, uj0) ∈ U , respectively, and thus,

(1.4) holds.
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Proof. If ui0 ≤ ui0+1 ≤ ϕ(ui0), then (ui0 , ui0+1) ∈ U by the definition (3.1) of U . Hence,
(1.4) holds by Theorem 3.1. Otherwise, if ϕ(ui0) < ui0+1 ≤

¯
fn0(ui0), then one can proceed

analogically as in the proof of Lemma 3.2 to verify the statement.
For ui0 ≤

¯
fn0(ui0+1) it is again similar.

In other words, Lemma 3.2 characterizes initial conditions outside V and Lemma 3.3 in-
side V . We have thus collected all tools to prove the first main result of the manuscript,
Theorem 1.1.

Proof of Theorem 1.1. Let us note that the function ϕ defined by (1.11) is of class C1 and sat-
isfies (p1)–(p2), since g satisfies (g1)–(g2) (see Lemma 2.1). Thus, all results from Section 2
hold. Let f (u) =

¯
f (u) = f̄ (u), u ∈ [ℓ, ∞), be the limit function of iterative scheme (2.1) and

ξ > ℓ. Let us prove the existence of equivalence class
[

uα,I
]

of strictly increasing solutions
satisfying (1.7). Firstly, put uα,I

0 = α ∈ [ξ, f (ξ)) and for i ̸= 0 define

uα,I
i+1 = f (uα,I

i ), or equivalently, uα,I
i−1 = f−1(uα,I

i ), (3.2)

since f is invertible by Corollary 2.5 (ii). Then, (uα,I
i ) is defined for all i ∈ Z and is strictly

increasing, because f (u) > u, resp. f−1(u) < u, for all u > ℓ. Since u = ℓ is the only fixed
point of the mapping f (and of f−1 as well) on [ℓ, ∞) and again f (u) > u, resp. ℓ < f−1(u) <

u, for all u ∈ [ℓ, ∞), then

uα,I
i > ℓ for all i ∈ Z, lim

i→−∞

uα,I
i = ℓ, and lim

i→∞

uα,I
i = ∞.

Let us verify that such a sequence (uα,I
i ), i ∈ Z, complies with (1.3) and thus forms a stationary

solution of (1.1). One can compute for arbitrary i ∈ Z

d(uα,I
i−1 − 2uα,I

i + uα,I
i+1) + g(uα,I

i ) = d
(

uα,I
i+1 + uα,I

i−1 − 2
(

uα,I
i − 1

2d g(uα,I
i )

))

= d
(

f (uα,I
i ) + f−1(uα,I

i )− 2ϕ(uα,I
i )

)

= 0,

which is verified by Corollary 2.5 (iii).
Let α̃ ∈ [ξ, f (ξ)) be such that α̃ < α (for α̃ > α it is similar) and assume that

[

uα,I
]

=
[

uα̃,I
]

,
i.e., there exists s0 ∈ N such that uα̃,I

s0 = uα,I
0 = α. Then Corollary 2.5 (ii) implies

f (ξ) ≤ f (α̃) ≤ f s0(α̃) = uα̃,I
s0

= uα,I
0 = α

(the symbol f s0 denotes s0-multiple composition of f ), which is a contradiction.
On the contrary, let u be a stationary solution of (1.1) satisfying ui > ℓ for all i ∈ Z

and (1.5). This implies that (ui), i ∈ Z, is strictly increasing, since otherwise there exists i ∈ Z

such that ui−1 < ui and ui+1 ≤ ui, i.e., ui−1 − 2ui + ui+1 < 0. Therefore Eq. (1.3) implies
g(ui) > 0, a contradiction. Hence, there is ui < ui+1 for all i ∈ Z. If there exists i0 ∈ Z such
that ui0+1 = f (ui0), then the uniqueness of solution of (1.3) with given initial conditions ui0 = α

and ui0+1 = f (α) yields that the solution lies in the equivalence class
[

uα,I
]

. If α ∈ [ξ, f (ξ)),
we are done. Thus, let us assume that α < ξ (for α ≥ f (ξ) it is similar). Then there exists
s0 ∈ N such that f s0(α) ∈ [ξ, f (ξ)) and thus,

[

uα,I
]

=
[

uγ,I
]

for γ = f s0(α). Indeed, since
f s(α)→ ∞ for s→ ∞ there has to exist s0 ∈ Z such that f s0−1(α) < ξ and f s0(α) ≥ ξ. Since f

is strictly increasing on [ℓ, ∞) by Corollary 2.5 (iii), there is

f s0(α) = f ( f s0−1(α)) < f (ξ), i.e., f s0(α) ∈ [ξ, f (ξ)) .

Finally, we show by Lemma 3.2 and Lemma 3.3 that other cases cannot occur. Indeed,
if ui+1 ̸= f (ui) for every i ∈ Z, there is either ui+1 > f (ui), or ui < ui+1 < f (ui) for
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Figure 3.1: The left panel refines Figure 1.2 by including the set U from (3.1)
which characterizes all twosided solutions (Theorem 3.1). The right panel then
shows the mirroring scheme (1.12) for onesided (full line) and twosided un-
bounded solutions (dashed line).

some i ∈ Z. If ui+1 > f (ui), then Corollary 2.5 (i) implies that there exists n0 ∈ N0 such
that ui+1 > f̄n0(ui). Then Lemma 3.2 yields that there has to exists j0 ∈ Z such that uj0 ≤ ℓ, a
contradiction. If ui < ui+1 < f (ui), then Corollary 2.5 (i) implies that there exists n0 ∈ N0 such
that ui < ui+1 <

¯
fn0(ui). Now Lemma 3.3 implies that (1.4) holds, which is a contradiction

with (1.5).
The statement of Theorem 1.1 for equivalence classes of decreasing solutions

[

uα,D
]

can be
proved similarly.

To conclude, we prove the second main result – Theorem 1.2 which characterizes all un-
bounded stationary solutions of (1.1) satisfying ui > ℓ for all i ∈ Z.

Proof of Theorem 1.2. Let u be an unbounded stationary solution of (1.1) which satisfies ui > ℓ

for all i ∈ Z. Then (ui, ui+1) ∈ V ∪ ∂IV ∪ ∂DV for all i ∈ Z. Indeed, assuming by contradiction
that ui0+1 > f (ui0) for some i0 ∈ N0 (and similarly if ui0+1 < f−1(ui0)) there has to exists an
index n0 ∈ N0 such that ui0+1 > f̄n0(ui0) ( f̄n → f ). Then Lemma 3.2 yields that uj0 ≤ ℓ for
some j0 ∈ N0, a contradiction.

Let us prove (i) and assume that (ui, ui+1) ∈ V for all i ∈ Z. Let i0 ∈ Z be arbitrary,
denote α = ui0 , and assume ui0 ≤ ui0+1 (for ui0 ≥ ui0+1 similarly). Since (ui0 , ui0+1) ∈ V , there
is ui0 ≤ ui0+1 < f (ui0) and thus ui0 ≤ ui0+1 ≤

¯
fn0(ui0) for an index n0 ∈ N0. Consequently,

Lemma 3.3 yields that (1.4) holds.
On the contrary, assuming (1.4) there has to be (ui, ui+1) ∈ V for all i ∈ Z. Indeed, if

(ui0 , ui0+1) ∈ ∂IV for some i0 ∈ N0 (and similarly if (ui0 , ui0+1) ∈ ∂DV ), i.e., ui0+1 = f (ui0) by
definition of ∂IV , then Theorem 1.1 implies that u ∈

[

uα,I
]

with α = ui0 and limi→−∞ ui = ℓ, a
contradiction with (1.4).

Let us prove (ii) and suppose (ui, ui+1) ∈ ∂IV for all i ∈ Z. For arbitrary i0 ∈ Z there is
ui0+1 = f (ui0) and Theorem 1.1 yields that u ∈

[

uα,I
]

with α = ui0 , i.e., (1.5) holds.
Assuming (1.5) there has to be (ui, ui+1) ∈ ∂IV for all i ∈ Z. Indeed, if (ui0 , ui0+1) ∈ V

for some i0 ∈ N0 then limi→±∞ ui = ∞ similarly as above which is a contradiction with (1.5).
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In the same way, if (ui0 , ui0+1) ∈ ∂DV , then ui0+1 = f−1(ui0) and Theorem 1.1 yields that
u ∈

[

uα,D
]

and limi→+∞ ui = ℓ, again a contradiction with (1.5).
The third item (iii) can be proved similarly as (ii).

4 Examples of specific reaction-diffusion LDEs

In this section we illustrate Theorems 1.1 and 1.2 for specific reaction functions g in (1.1)
satisfying the key assumptions (g1)–(g2). Let us start with two most common reactions.

Example 4.1 (Fisher and Nagumo equation). Considering the logistic (monostable) or cubic
(bistable) reaction functions

g(u) = u(1− u) or g(u) = u(1− u)(u− a), a ∈ (0, 1), (4.1)

the LDE (1.1) becomes the well-known Fisher or Nagumo lattice equation, respectively, [2,
15]. Both reaction functions in (4.1) satisfy (g1)–(g2) with ℓ = 1. We can therefore apply
Theorem 1.1 and 1.2 to characterize onesided and twosided unbounded stationary solutions
u of the corresponding LDE (1.1) with ui > 1 for all i ∈ Z via the function f and the set V

(which are qualitatively the same in both cases, see Figure 3.1).

Our next example contains simple piecewise linear reaction functions for which we can
analytically express boundary of V and explicit formulas for uα,I and uα,D.

Example 4.2 (Sawtooth and McKean’s caricatures of bistability). For simplicity, let us consider
the LDE (1.1) and piecewise linear caricatures of the standard cubic bistable nonlinearity

g(u) =















−u for u ∈
[

0, a
2

)

,

u− a for u ∈
[

a
2 , 1+a

2

]

,

1− u for u ∈
( 1+a

2 , ∞
)

,
or

g(u)















= −u for u ∈ [0, a) ,

∈ [−a, 1− a] for u = a,

= 1− u for u ∈ (a, ∞) ,

a ∈ (0, 1),

(proposed by [17] and nicknamed as sawtooth and McKean’s caricature, respectively, [5, 14,
20]). The functions are smooth on (a, ∞) and the assumptions (g1)–(g2) are satisfied with ℓ = 1
in both cases and the mirroring function ϕ is for u ∈ [1, ∞) defined by

ϕ(u) = 2d+1
2d (u− 1) + 1

(i.e., ϕ−1(u) = 2d
2d+1 (u − 1) + 1). Thus, all iterates

¯
fn or f̄n, n ∈ N0, are linear functions

which yields that the limit function f is linear as well, i.e., f (u) = k(u− 1) + 1 and f−1(u) =
1
k (u− 1) + 1 for some k > 1. Then Corollary 2.5 (iii) implies

k = k(d) =
2d + 1 +

√
4d + 1

2d
.

The corresponding sets U and V are therefore cones in this case (see Figure 4.1) and

lim
d→∞

k(d) = 1 and lim
d→0+

k(d) = ∞.

Then, we obtain from (3.2) explicit formulas for the representatives uα,I and uα,D of equivalence
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Figure 4.1: The left panel shows linear functions ϕ and f induced by piecewise
linear bistable caricatures from Ex. 4.2. The arrows indicate widening (full ar-
rows) and shrinking (dashed arrows) of conical sets U and V as d decreases
or increases, respectively. The center and right panels then provide examples
of nonconvex functions ϕ and f . We depict numerically obtained sets U and
V for the Holling functional response of type II (4.2) with a = 0.6 and b = 0.2
from Ex. 4.3 (center panel) and the wavy reaction (4.4) with a = 1.1 from Ex. 4.4
(right panel).

classes
[

uα,I
]

,
[

uα,D
]

of onesided unbounded stationary solutions, respectively, for α > 1 as

uα,I
i = (α− 1)ki + 1 and uα,D

i = (α− 1)k−i + 1.

In contrast, our next example considers a reaction leading to more complicated sets U and
V , which we obtain only numerically. Logistic reaction with a predation term leads to sets U

and V with nonconvex upper boundaries ϕ and f .

Example 4.3 (Holling functional response II). Let us modify the Fisher equation and con-
sider the LDE (1.1) with reaction function g consisting of the logistic term (describing the in-
traspecific competition) and of an external predation term determined by Holling functional
response of type II (describing the interspecific competition), specifically,

g(u) = u(1− u)− au

b + u
, a, b > 0. (4.2)

We discuss two distinct situations. The largest root of g is ℓ = 1
2 (1− b +

√
b2 + 2b + 1− 4a) >

0 provided

(a, b) ∈P =
{

(a, b) ∈ R
2
+ : (a ∈ (0, 1) ∧ b > 2

√
a− 1) ∨ (a ≥ 1∧ b > a)

}

.

It is possible to show that in this case

g′′(u) < 0 for all u ∈ [ℓ, ∞), (4.3)

which implies that (g1)–(g2) hold for every such pair (a, b) ∈ P . Thus, by application of
Theorems 1.1 and 1.2 we obtain the function f and the set V describing onesided and twosided
unbounded stationary solutions u of (1.1) with ui > ℓ > 0 for all i ∈ Z. Moreover, (4.3) yields
that ϕ′′(u) > 0 for all u ∈ [ℓ, ∞) and hence, the function f satisfies f ′′(u) > 0 for all u ∈ [ℓ, ∞)

from which we deduce that f and V have qualitatively same shape as in Ex. 4.1 and Figure 3.1.
For

(a, b) ∈ Z =
{

(a, b) ∈ R
2
+ : (a ∈ (0, 1) ∧ b ≤ 2

√
a− 1) ∨ (a ≥ 1∧ b ≤ a)

}

the largest root of g is ℓ = 0. In this case the situation is more intricate and there are values of
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(a, b) ∈ Z for which (g2) holds as well as values (a, b) ∈ Z for which (g2) is not satisfied. For
example, (g2) does not hold for a = 0.4 and b = 0.2. However, the assumption (g2) is valid,
e.g., for a = 0.6 and b = 0.2 and consequently, Theorems 1.1 and 1.2 provide the function f

and the set V characterizing onesided and twosided unbounded stationary solutions u of (1.1)
with ui > 0 for all i ∈ Z. Interestingly, the function ϕ is not convex for u ∈ [ℓ, ∞) in this case
which implies that the limit function f has inflection as well, see Figure 4.1.

We conclude with an illustrative example which provides an interesting wavy shape of the
corresponding function f and underlying sets U and V .

Example 4.4. Considering the LDE (1.1) with

g(u) = sin(u)− au, a > 1, (4.4)

the assumptions (g1)–(g2) are satisfied with ℓ = 0 for all a > 1. The limit function f has
infinitely many inflection points in this case. For the corresponding sets U and V , see Fig-
ure 4.1.

5 Arithmetic mean of function with its inverse

The iterative scheme (2.1) is motivated by the mirroring form (1.12) of the equation (1.3).
Focusing on Corollary 2.5 (iii), we interestingly reveal a connection between stationary solu-
tions of (1.1), iterative scheme (2.1), and the following functional equation with an unknown
function f :

f (u) + f−1(u)

2
= ϕ(u), u ∈ [0, ∞) , (5.1)

in which ϕ is a given C1-function on [0, ∞) which satisfies (p1)–(p2) with ℓ = 0. In other words,
the unknown function f should be such that the arithmetic mean of f and its inverse f−1 gives
the prescribed function ϕ.

Remark 5.1. First of all, we point out that the functional equation (5.1) has in principle in-
finitely many solution pairs provided at least one exists. Indeed, let f be a solution of (5.1),
u0 ∈ (0, ∞) be given, and (ui), i ∈ Z, be defined iteratively by

ui+1 = f (ui) and ui−1 = f−1(ui).

Considering the following function:

g(u) =







f (u), if u ̸= ui for all i ∈ Z,

f−1(u), if u = ui for some i ∈ Z,
(5.2)

one can verify that g is also a solution of (5.1), different from f and f−1 (note that f (u) ̸=
f−1(u) for all u ∈ (0, ∞) because of (p1)–(p2)), although it still uses only values of either f or
f−1 (it only interchanges them at ui, i ∈ Z). This motivates the following definition.

Taking a solution f of (5.1), it has to satisfy for every u ∈ [0, ∞) that either f (u) > ϕ(u),
or f−1(u) > ϕ(u), or f (u) = f−1(u) = ϕ(u). Define the mapping P : f 7→ P( f ), where
P( f ) : [0, ∞)→ R, as

P( f )(u) =







f (u), if f (u) ≥ ϕ(u),

f−1(u), if f−1(u) > ϕ(u).
(5.3)

We immediately see that P( f )(u) ≥ ϕ(u) for all u ∈ [0, ∞).
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Consequently, we define an equivalence relation f ∽ g between two solutions f and g

of (5.1) saying that f ∽ g provided P( f ) = P(g) (e.g., the function g defined by (5.2) is
equivalent to the original solution f , also to its inverse f−1, and also to its own inverse g−1).

The following lemma claims that every equivalence class of solutions of (5.1) containing f

and using the same values (as f and g above) has a unique representative P( f ) which satisfies
P( f )(u) ≥ ϕ(u) for all u ∈ [0, ∞).

Lemma 5.2. Let ϕ be a C1-function and satisfy (p1)–(p2) with ℓ = 0. Let f be a solution of (5.1) and

P( f ) be defined by (5.3). Then P( f ) is also a solution of (5.1).

Proof. The function P( f ) is injective and thus invertible on [0, ∞). Indeed, let us assume by
contradiction that P( f )(u1) = P( f )(u2) for some u1 < u2. If f (u1) ≥ ϕ(u1) and f (u2) ≥ ϕ(u2)

(analogically for f−1(u1) ≥ ϕ(u1) and f−1(u2) ≥ ϕ(u2)), then

f (u1) = P( f )(u1) = P( f )(u2) = f (u2),

a contradiction, since f is invertible. If f (u1) ≥ ϕ(u1) and f−1(u2) ≥ ϕ(u2) (analogically for
f−1(u1) ≥ ϕ(u1) and f (u2) ≥ ϕ(u2)), then

f (u1) = P( f )(u1) = P( f )(u2) = f−1(u2) = w.

Since w = f (u1) = P( f )(u1) ≥ ϕ(u1), w = P( f )(u2) = f−1(u2) ≥ ϕ(u2), and ϕ is strictly
increasing and ϕ−1(u) ≤ u ≤ ϕ(u) for all u ∈ [0, ∞) by (p1)–(p2), then

f−1(w) < f (w) ≤ ϕ−1(w) ≤ ϕ(w),

a contradiction with (5.1). Thus, P( f ) is invertible, (P( f ))−1(u) ≤ ϕ−1(u) for all u ∈ [0, ∞),
and by definition of P( f ) there has to be

(P( f ))−1(u) =

{

f−1(u), if f (u) ≥ ϕ(u),

f (u), if f−1(u) > ϕ(u).

Therefore, P( f ) is also a solution of (5.1), since

P( f )(u) + (P( f ))−1(u)

2
=

f (u) + f−1(u)

2
= ϕ(u)

in both cases f (u) ≥ ϕ(u), or f−1(u) > ϕ(u) for a u ∈ [0, ∞).

Finally, as a byproduct of our previous considerations from Section 2 we obtain the fol-
lowing result which states that the functional equation (5.1) has a unique equivalence class of
nonnegative solutions f and characterizes its representative P( f ).

Theorem 5.3. Let ϕ be a C1-function and satisfy (p1)–(p2) with ℓ = 0. Then there exists a unique

equivalence class of nonnegative solutions f of functional equation (5.1) (with respect to the rela-

tion ∽) and its representative P( f ) is given by

P( f )(u) = lim
n→∞ ¯

fn(u) = lim
n→∞

f̄n(u), u ∈ [0, ∞) ,

in which
¯
fn and f̄n are given by the iterative scheme (2.1) with

¯
f0(u) = 2ϕ(u)− ϕ−1(u) and f̄0(u) =

2ϕ(u), respectively (cf. Definition 2.2). In particular, the representative P( f ) is continuous.

Proof. The existence and properties of a common limit function f (u) = limn→∞

¯
fn(u) =

limn→∞ f̄n(u), u ∈ [0, ∞), of (2.1) follows from Corollary 2.5 (i)–(ii). Moreover, f (and also
f−1) solves the functional equation (5.1) by Corollary 2.5 (iii). Since the limit function f satis-
fies f (u) ≥ ϕ(u) for all u ∈ [0, ∞), then P( f )(u) = f (u) for all u ∈ [0, ∞) which concludes the
proof of existence and representation of the equivalence class.
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Let g be another nonnegative solution of (5.1) such that P(g) ̸= P( f ) and without loss of
generality (see Lemma 5.2) assume that P(g) = g. Let us show that

¯
f0(u) = 2ϕ(u)− ϕ−1(u) ≤ g(u) ≤ 2ϕ(u) = f̄0(u) for all u ∈ [0, ∞) . (5.4)

For the former inequality, assume by contradiction that g(uc) < 2ϕ(uc) − ϕ−1(uc) for some
uc > 0 (for u = 0 there has to be g(0) = g−1(0) = 0, since both g and g−1 are assumed to be
nonnegative and ϕ(0) = 0 by (p1)). Then (5.1) yields that

2ϕ(uc)− ϕ−1(uc) > g(uc) = 2ϕ(uc)− g−1(uc), i.e., g−1(uc) > ϕ−1(uc).

Thus, since ϕ−1 is a strictly increasing function, there has to exist a vc > 0 such that ϕ(vc) >

g(vc), which is a contradiction because g(u) = P(g)(u) ≥ ϕ(u) for all u ∈ [0, ∞).
For the latter inequality in (5.4), assume again by contradiction that g(uc) > 2ϕ(uc) for

some uc > 0. Then (5.1) implies that

2ϕ(uc) < g(uc) = 2ϕ(uc)− g−1(uc), i.e., g−1(uc) < 0,

which is a contradiction with the nonnegativeness of g−1.
Finally, if two initial functions of the iterative scheme (2.1) are ordered for all u ∈ [0, ∞),

then all iterates of (2.1) are ordered in the same fashion for all u ∈ [0, ∞), this can be proved
similarly as in Lemma 2.4. Therefore, the inequalities (5.4) and the fact that g is the fixed
element of (2.1) yield that

¯
fn(u) ≤ g(u) ≤ f̄n(u) for all n ∈ N0 and u ∈ [0, ∞) .

The squeeze argument then implies that

P( f )(u)←
¯
fn(u) ≤ g(u) ≤ f̄n(u)→ P( f )(u) for all u ∈ [0, ∞) and n→ ∞,

i.e., g(u) = P(g)(u) = P( f )(u) for all u ∈ [0, ∞), a contradiction. This concludes the proof of
the uniqueness of the equivalence class of nonnegative solutions of (5.1).

Remark 5.4. Note that besides the existence, uniqueness, and several properties of the class
of nonnegative solutions of (5.1), Theorem 5.3 presents the procedure how the continuous
representative P( f ) can be approximated by the iterations (2.1) with

¯
f0(u) = 2ϕ(u)− ϕ−1(u)

(from below) and f̄0(u) = 2ϕ(u) (from above).

6 Discussion

In this paper we showed that onesided unbounded stationary solutions of the LDE (1.1) form
a one-parametric family of equivalence classes, Theorem 1.1, and bound the region of un-
bounded twosided solutions in a two-parametric space, Theorem 1.2 and Figures 3.1 and 4.1.

Continuous counterpart

Let us emphasize the behaviour of corresponding solutions of the PDE (1.2). The simple phase
plane analysis (e.g., [7, Section 4]) yields that there is only a unique equivalence class of strictly
increasing solutions with (1.5) and a unique class of strictly decreasing onesided solutions
satisfying (1.6). Moreover, these continuous solutions exist only on a bounded spatial interval
and blow up to infinity at its ends.
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Topological chaos and unbounded solutions

Let us also highlight the fact that both onesided and twosided lattice stationary solutions
characterized by Theorem 1.2 exist for any diffusion parameters. This fact and a simple look
at the white regions in Figure 3.1 lead to an intriguing problem. In the case of Nagumo
lattice equation (1.1) with g(u) = u(1− u)(u− a), a ∈ (0, 1), stationary solutions which are
represented by

(ui, ui+1) ∈ W =
{

(ξ, ζ) ∈ R
2 : ξ, ζ > ℓ and (ξ, ζ) /∈ V

}

,

where V is defined in (1.9), can be very difficult to characterize fully because the iterations
lead to the domain of topological chaos. For example, which initial conditions lead to positive
stationary solutions? How does the set of such initial conditions depend on the value of
d > 0 in the LDE (1.1)? Twosided and onesided lattice stationary solutions satisfying (1.4),
(1.5), or (1.6) correspond to continuous counterparts in the PDE (1.2) and are more numerous,
generally asymmetric in the twosided case (1.4) and do not blow up to infinity in finite spatial
interval. Intuitively, solutions with (ui, ui+1) ∈ W may have richer behaviour and, most
importantly, could generate qualitatively new types of stationary solutions.

Applications of mirroring

In this paper we generalized the mirroring technique to functional mirroring scheme and
connected it to the functional equation (5.1). It is possible that this geometric approach could
contribute to one of the many problems related to the topological chaos, e.g., explicit solutions
for special reaction functions.

Functional equation

Our final remark is related to the functional equation (5.1). Note that ϕ in our case is the
specific mirroring function defined by (1.11). The functional equation (5.1) represent an in-
teresting problem itself once any function ϕ is considered. In principle, the solvability of
functional equations is nontrivial and depend for example on the domain. Theorem 5.3 pro-
vides a specific existence and uniqueness result in the case in which ϕ satisfies (p1)–(p2).
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1 Introduction

Asymptotic behaviour of solutions is a classical topic in the qualitative theory of differential

equations. It has been discussed in well-known monographs such as [5–7]. In this paper,

we study the asymptotic behavior of solutions of linear time-varying ordinary differential

equations (ODEs) under nonlinear perturbations

x′(t) = A(t)x(t) + f (t, x(t)), t ∈ I = [t0, ∞), (1.1)

where the coefficient A : I → Cn×n and the nonlinear term f : I × Cn → Cn are continuous.

The question is that if the nonlinear term f is supposed to be sufficiently small in some sense,

how certain solutions of the quasi-linear ODE (1.1) behave asymptotically comparing to those

BCorresponding author. Email: linhvh@vnu.edu.vn
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of the unperturbed linear ODE as t tends to infinity. In the case of constant matrix A, the

result is known as Perron theorem, which was established long time ago, see [6, Theorem 5,

p. 97].

Theorem 1.1. Consider the equation (1.1) with a constant matrix A such that

∥ f (t, x(t))∥ ≤ γ(t)∥x(t)∥, t ≥ t0,

where γ(t) is a continuous nonnegative function satisfying

∫ t+1

t
γ(s)ds → 0, t → ∞. (1.2)

If x(t) is a bounded solution of (1.1) then either x(t) = 0 for all large t or the limit

µ = lim
t→∞

1

t
ln ||x(t)||

exists and is equal to the real part of one of the eigenvalues of A.

This is the classical version of Perron theorem. It is noted that actually Perron did prove

a weaker form. This version is due to Lettenmeyer. Later Hartman and Wintner refined the

proof. The number µ is called the (strict) Lyapunov exponent of the solution x [1]. Theorem

1.1 means that the Lyapunov exponent of the solution x exists and it is equal to one of the

Lyapunov exponents of the linear system, i.e., no new Lyapunov exponent arises.

Recently, extensions of this result to functional differential equations [18], nonautonomous

ODEs [4], and differential-algebraic equations [14] were obtained. Similar results were also

obtained for difference equations [3, 17] and functional difference equations [16]. In the case

of time-dependent coefficient matrix A, by using the regularity theory Barreira and Valls did

prove a similar result but under a more restrictive assumption.

Theorem 1.2 ([4, Theorem 1]). Consider the quasi-linear system (1.1), where A(t) is supposed to be

given in the block diagonal form. It is assumed further that the linear subsystems associated with each

block have the same and sharp Lyapunov exponents, but the Lyapunov exponents belonging to different

blocks are distinct. If x(t) is a solution of (1.1) such that

∥ f (t, x(t))∥ ≤ γ(t)∥x(t)∥, t ≥ t0,

where γ(t) is a continuous nonnegative function satisfying

∫ t+1

t
eδsγ(s)ds → 0, t → ∞, (1.3)

for some δ > 0 then either x(t) = 0 for all large t or the limit

µ = lim
t→∞

1

t
ln ||x(t)||

exists and it is equal to one of the Lyapunov exponents of the linear system.

One can see that the condition (1.3) on γ(t) in Theorem 1.2 is much stronger than the con-

dition (1.2) in Theorem 1.1. The variation of Lyapunov exponents under linear perturbations,

i.e. f (t, x(t)) = B(t)x(t) has been well investigated in the literature, see [1, Chapter 5]. The
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stability concept plays a key role in the preservation of Lyapunov exponents under small lin-

ear perturbations. Necessary and sufficient conditions for the stability of Lyapunov exponents

have been discussed in details in [1, Chapter V]. We emphasize that neither the existence of

sharp Lyapunov exponents nor the regularity does imply the stability. We note in addition

that in the case of constant matrix A, the Lyapunov exponents of the linear systems are stable

without any extra assumption. An analogue of the result in [4] was established for nonau-

tonomous difference equations in [3]. Furthermore, an extension to the so-called µ-Lyapunov

exponents, see [2], was obtained in [10] where more general growth rates of solutions are

characterized. Some further discussions on the stability of Lyapunov exponents and compu-

tational consequences are given in [8, 9], where the numerical approximation of Lyapunov

exponents is addressed.

In this paper, we present an alternative version of Perron theorem for the nonlinear system

(1.1) with a time-varying coefficient A. Under an assumption that guarantees the stability of

distinct (upper) Lyapunov exponents, we are able to relax the condition on the nonlinear

term, i.e., the assumption on γ(t) remains the same as in Theorem 1.1. Furthermore, we

do not require the sharp Lyapunov exponents as in [4]. The proof, which differs from that

in [4], relies on reducing the linear part to a diagonal system. Analogous statements are also

obtained for lower Lyapunov exponents and Bohl exponents. This investigation is of particular

interest because the quasi-linear system (1.1) may arise when linearizing a nonlinear system

along a particular solution. As a consequence, we can obtain information about the rate at

which nearby solutions converge or diverge to/from the particular solution.

The paper is organized as follows. In the next section, we provide a brief overview of the

theory on Lyapunov and Bohl exponents, with a focus on the stability of Lyapunov exponents,

the property of integral separation, and the relationship between them. In Section 3, we

describe the asymptotic behavior of solutions under the assumption of integral separation. As

the main result, Perron-type theorems that establish the exponential growth rates of solutions

are then presented. In the last section, we discuss several open questions and conjectures.

2 Preliminaries

First, we recall the notion of Lyapunov exponents, which is used to characterize the asymp-

totic growth of functions. Then, we briefly summarize the results related to the stability of

Lyapunov exponents. These results are given in details in [1].

Definition 2.1. For a non-vanishing function f : [0, ∞) −→ Rn, the quantities χu( f ) =

lim supt→∞
1
t ln ∥ f (t)∥, χℓ( f ) = lim inft→∞

1
t ln ∥ f (t)∥, are called upper and lower Lyapunov ex-

ponents of f , respectively. If the exact limit exists, i.e., the upper and the lower Lyapunov

exponents coincide, then we say f has a sharp Lyapunov exponent.

Consider a linear system

x′(t) = A(t)x(t), t ∈ I = [0, ∞), (2.1)

with a bounded and continuous matrix function A.

Definition 2.2. Given a fundamental solution matrix X of (2.1), we introduce

λu
i = lim sup

t→∞

1

t
ln ||X(t)ei|| , λℓ

i = lim inf
t→∞

1

t
ln ||X(t)ei|| ,
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where ei denotes the i-th unit vector and ||·|| denotes the Euclidean norm. The columns of X

form a normal basis if Σn
i=1λu

i is minimal. The λu
i , i = 1, 2, . . . , n belonging to a normal basis

are called (upper) Lyapunov exponents of (2.1).

We assume that the upper Lyapunov exponents are ordered

−∞ < λu
1 ≤ λu

2 ≤ · · · ≤ λu
n < ∞.

The following result is known as Lyapunov’s inequality.

Theorem 2.3 ([1, Theorem 2.5.1]). Let {λu
i }n

i=1 be the upper Lyapunov exponents of (2.1). Then

n

∑
i=1

λu
i ≥ lim sup

t→∞

1

t

∫ t

0
trace A(s)ds. (2.2)

Here trace A denotes the trace of the matrix function A.

We say that the system (2.1) is regular if the inequality (2.2) becomes an equality and the

exact limit exists, i.e.,
n

∑
i

λu
i = lim inf

t→∞

1

t

∫ t

0
trace A(s)ds.

If (2.1) is regular, then for any nontrivial solution x, the sharp Lyapunov exponent exists.

Hence, we have λl
i = λu

i for i = 1, . . . , n, i.e., the Lyapunov spectrum of (2.1) is a point

spectrum. We apply the transformation x = L(t)y, where L is a nonsingular and continuously

differentiable matrix function for t ≥ t0, to system (2.1), we obtain

y′ = B(t)y, B(t) = L−1 A(t)L(t)− L−1(t)L′(t). (2.3)

This transformation is called a kinematic similarity transformation.

Definition 2.4. The above transformation is called a Lyapunov transformation if L(t), L−1(t)

and L′(t) are bounded for t ≥ t0.

If we apply a Lyapunov transformation to system (2.1) and obtain the new system (2.3),

then we say (2.1) is reducible to (2.3). Lyapunov transformations form a group and they do

not change the Lyapunov exponent.

One of the most important questions is the variation of Lyapunov exponents under small

linear and nonlinear perturbations. Consider the perturbed system

y′ = (A(t) + Q(t))y, (2.4)

where Q is a continuous and bounded matrix function. Let the upper Lyapunov exponents of

(2.4) be ordered and denoted as follows

−∞ < γu
1 ≤ γu

2 ≤ · · · ≤ γu
n < ∞.

Definition 2.5. The upper Lyapunov exponents of system (2.1) are said to be stable if for any

ε > 0 there exists a δ > 0 such that the inequality supt≥t0
∥Q(t)∥ < δ implies

|λu
i − γu

i | < ε, i = 1, 2, . . . , n.

It is known that regularity does not ensure the stability of exponents. In order to answer

the question of stability, we need the property of integral separation.
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Definition 2.6. The real, bounded and continuous functions a1(t), a2(t), . . . , an(t) are said to

be separated on R+ if there exists a constant a > 0 such that

ak+1(t)− ak(t) ≥ a, k = 1, 2, . . . , n − 1, t ≥ 0.

They are said to be integrally separated on R+ if there exist constants a > 0 and d > 0 such

that
∫ t

s
[ak+1(τ)− ak(τ)]dτ ≥ a(t − s)− d

for all t ≥ s ≥ 0, k = 1, 2, . . . , n − 1.

Obviously, the condition for separateness implies integral separateness, but not vice versa.

Definition 2.7. A linear system is said to be system with integral separateness if it has solu-

tions x1(t), x2(t), . . . , xn(t) such that the inequality

∥xi+1(t)∥
∥xi+1(s)∥

:
∥xi(t)∥
∥xi(s)∥

≥ dea(t−s), i = 1, 2, . . . , n − 1, (2.5)

with some constants a > 0, d ≥ 1, is valid for all t ≥ s.

The definition of integral separateness implies some properties:

• integrally separated systems have different Lyapunov exponents;

• integral separateness is invariant under Lyapunov transformations;

• the solutions x1(t), x2(t), . . . , xn(t) in Definition 2.7 form a normal basis.

The following important property was proven by Bylov.

Theorem 2.8 ([1, Theorem 5.3.1 and Corollary 5.3.2]). An integrally separated system is reducible

to a real diagonal one by means of a Lyapunov transformation and the diagonal is integrally separated.

Furthermore, by the use the Steklov function and the H-transformation, see [1, pp. 153-

155], we have the following result.

Theorem 2.9 ([1, Theorem 5.4.1]). A diagonal real system with an integrally separated diagonal is

reducible to a diagonal system with a separated diagonal.

By Millionshchikov’s method of rotation, a necessary and sufficient condition for the sta-

bility of distinct Lyapunov exponents was obtained.

Theorem 2.10 ([1, Theorem 5.4.8]). If system (2.1) has n distinct Lyapunov exponents λ1 < λ2 <

· · · < λn, then they are stable if and only if the system is integrally separated, i.e. there exists an

integrally separated fundamental solution matrix.

In addition to Lyapunov exponents, another characteristic of the asymptotic behavior of

the solutions of system (2.1) introduced by Bohl [7], has more natural properties.

Definition 2.11. Let x be a nontrivial solution of system (2.1). The (upper) Bohl exponent κu
B(x)

of this solution is the greatest lower bound of all those numbers ρ for which there exist

numbers Nρ such that

||x(t)|| ≤ Nρeρ(t−s) ||x(s)|| , t ≥ s ≥ 0.

If such numbers ρ do not exist, then one sets κu
B(x) = +∞.

Similarly, the lower Bohl exponent κℓB(x) is the least upper bound of all those numbers ρ′ for

which there exist numbers N′
ρ such that

||x(t)|| ≥ N′
ρeρ′(t−s) ||x(s)|| , 0 ≤ s ≤ t.
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It is easy to verify the estimates

κℓB(x) ≤ λℓ(x) ≤ λu(x) ≤ κu
B(x)

as well as the formulas

κu
B(x) = lim sup

s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t − s

, κℓB(x) = lim inf
s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t − s

.

If A(t) is integrally bounded, i.e., if

sup
t≥0

∫ t+1

t
||A(s)|| ds < ∞,

then the Bohl exponents are finite.

The relation between Lyapunov and Bohl exponents are as follows.

• Bohl exponents characterize the uniform growth rate of solutions, while Lyapunov ex-

ponents simply characterize the growth rate of solutions departing from t = 0.

• If the greatest bound of upper Lyapunov exponents for all solutions of (2.1) is negative,

then the system is asymptotically stable. If the same holds for the greatest bound of the

upper Bohl exponents then the system is uniformly exponentially stable.

• Unlike Lyapunov exponents, Bohl exponents are stable without any extra assumption,

see [7, Theorem 4.6].

The following lemma will be used in the proof of the main theorem in Section 3.

Lemma 2.12 ([6, Lemma 1, p. 98]). Let β(v) be a continuous function at v = v∗ and let γ(t) be a

continuous nonnegative function such that (1.2) holds. If v(t) is a solution of the differential inequality

v′ ≥ β(v)− γ(t)

for t ≥ t0 and there exists a sequence τn → ∞ such that v(τn) → v∗, then β(v∗) ≤ 0. Moreover, the

exact limit of v(τ) as τ → ∞ exists.

3 Perron-type theorems for integrally separated systems

First, we establish a generalization of the classical Perron theorem for time-varying systems

(1.1).

Theorem 3.1. Consider the quasi-linear system (1.1), where the associated linear system (2.1) is inte-

grally separated and has finite exponents. If x(t) is a solution of (1.1) such that

∥ f (t, x(t))∥ ≤ γ(t)∥x(t)∥, t ≥ t0,

where γ(t) is a continuous nonnegative function satisfying condition (1.2), then either x(t) = 0 for all

large t or

lim sup
t→∞

1

t
ln ||x(t)||

is equal to one of the upper Lyapunov exponents of the linear system.

The same statement holds true for the limit inferior and the lower Lyapunov exponents, respectively.
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That is, here we assume the stability of distinct Lyapunov exponents instead of the regu-

larity. The proof is quite similar to that in [6] for the case of a constant coefficient. While in

the case of a constant A, the transformation to the Jordan canonical form is used, here thanks

to the integral separation, the linear system can be transformed into a diagonal system with a

separated diagonal.

Proof. Due to Theorem 2.8 and Theorem 2.9, without loss of generality, we assume that A is

already of real diagonal form

A(t) = diag (λ1(t), λ2(t), . . . , λn(t)) ,

and

λi(t)− λi+1(t) ≥ a > 0, ∀t ≥ t0, i = 1, 2, . . . , n − 1.

Then, the i-th equation (i = 1, 2, . . . , n) reads

x′i = λi(t)xi + fi(t, x),

which implies
d

dt
|xi|2 = 2λi|xi|2 + 2x̄i fi.

Here, x̄i and |xi| denote the complex conjugate and the modulus of xi, respectively. Here, the

argument t of the functions is omitted for brevity. Writing ri = |xi|, we have

∣

∣

∣

∣

d

dt
r2

i − 2λir
2
i

∣

∣

∣

∣

≤ 2ri| fi(t, x)|, i = 1, 2, . . . , n. (3.1)

Putting

lim sup
t→∞

1

t

∫ t

t0

λi(s)ds = µi,

it clearly holds that µi, i = 1, 2, . . . , n, are the upper Lyapunov exponents of the linear system,

and µi − µi+1 ≥ a. Let us denote

Lk = r2
k , Mk = ∑

i<k

r2
i , Nk = ∑

i≥k

r2
i ,

we have so that Mk + Nk = ∑
n
i=1 r2

i = ∥x∥2, where the Euclidean norm is used.

From (3.1), we obtain

∣

∣L′
k − 2λkLk

∣

∣ ≤ 2γ(t)L1/2
k (Mk + Nk)

1/2, (3.2)

M′
k ≥ 2λk−1Mk − 2γ(t)M1/2

k (Mk + Nk)
1/2, (3.3)

N′
k ≤ 2λkNk + 2γ(t)N1/2

k (Mk + Nk)
1/2. (3.4)

Thus, N1 = ∥x∥2 satisfies

2(λn(t)− γ(t))N1 ≤ N′
1 ≤ 2(λ1(t) + γ(t))N1.

By integration, we get for t ≥ t1 ≥ t0

e
∫ t

t1
2(λn(t)−γ(t))ds∥x(t1)∥ ≤ ∥x(t)∥ ≤ e

∫ t
t1

2(λ1(t)+γ(t))ds∥x(t1)∥.
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This shows that if x(t1) for some t1 ≥ t0, then x(t) = 0 for all t ≥ t1. Thus, we exclude this

case from now on.

Consider the function

v(t) = vk(t) =
Mk

Mk + Nk
,

which is well defined for all t ≥ t0 and fulfills 0 ≤ v ≤ 1. Furthermore, since

v′ =
M′N − MN′

(M + N)2
and v(1 − v) =

MN

(M + N)2
,

from (3.3) and (3.4), we obtain

v′ ≥ bv(1 − v)−
√

2γ(t), (3.5)

where b = bk = 2(λk−1 − λk) ≥ 2a > 0.

By Lemma 2.12, it follows that for each k = 1, 2, . . . , n, the limit of vk(t) as t → ∞ exists

and equal either 0 or 1. Moreover, v1(t) → 0 as t → ∞, since M1 ≡ 0. Let m be the greatest

value of k for which limt→∞ vk(t) = 0. Since Mk = L1 + · · ·+ Lk−1, it follows that

lim
t→∞

Lk(t)

Mk(t) + Nk(t)
=

{

0 for k ̸= m,

1 for k = m.
(3.6)

Therefore, we have

lim
t→∞

Lk(t)

Lm(t)
= 0 for k ̸= m (3.7)

and by (3.2) with k = m

∣

∣

∣

∣

d

dt
(ln Lm)− 2λm

∣

∣

∣

∣

≤ 2γ(t)

(

Mm + Nm

Lm

)1/2

. (3.8)

Note that

lim
t→∞

Mm(t) + Nm(t)

Lm(t)
= 1

and assumption (1.2) implies t−1
∫ t

t0
γ(s)ds → 0 as t → ∞. Therefore, integrating both sides of

(3.8) from t0 to t and dividing by t, we get

ln Lm(t)

t
− 2

t

∫ t

t0

λm(s)ds = o(1), t → ∞.

This, together with the asymptotic relation

ln ∥x(t)∥2

t
=

ln Lm(t)

t
(1 + o(1)), t → ∞,

implies that

lim sup
t→∞

ln ∥x(t)∥
t

= lim sup
t→∞

ln Lm(t)

2t
= lim sup

t→∞

1

t

∫ t

t0

λm(s)ds = µm,

which completes the proof.

If we take the limit inferior instead of the limit superior, the statement for the lower Lya-

punov exponent is obtained, too.
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Remark 3.2. The condition on f (t, x) in Theorem 3.1 is certainly satisfied by any solution x(t)

of (1.1) which tends to zero as t → ∞ if

f (t, x) = o(∥x∥), for t → ∞, ∥x∥ → 0.

In the special case of linear perturbation f (t, x) = B(t)x, the condition (1.2) holds in particular

if ∥B(t)∥ → 0 as t → ∞ or B(t) ∈ Lp[t0, ∞), where 1 ≤ p < ∞.

As a consequence, we obtain a theorem on the asymptotic stability of a non-stationary

solution of a nonlinear system by using linearization.

Theorem 3.3. Consider a nonlinear system

y′ = g(t, y), t ≥ t0, (3.9)

where g is continuous and continuously differentiable with respect to variable y. Suppose that y∗ =

y∗(t) is a particular solution that exists on [t0, ∞). Consider the linearized system

x′ = A(t)x, A(t) = gy(t, y∗(t)). (3.10)

If the system (3.10) is integrally separated and all of its Lyapunov exponents are negative, then y∗ is

an asymptotically stable solution of (3.9).

We note the fact that all of its Lyapunov exponents are negative implies that the system

(3.10) is exponentially stable, but it is not necessarily uniformly exponentially stable.

Analogously, we obtain a Perron theorem for Bohl exponents.

Theorem 3.4. Consider the quasi-linear system (1.1), where the associated linear system (2.1) is inte-

grally separated and has finite exponents. If x(t) is a solution of (1.1) such that

∥ f (t, x(t))∥ ≤ γ(t)∥x(t)∥, t ≥ t0,

where γ(t) is a continuous nonnegative function satisfying condition (1.2), then either x(t) = 0 for all

large t or

lim sup
s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t − s

is equal to one of the upper Bohl exponents of the linear system.

The same statement holds true for the limit inferior and the lower Bohl exponents, respectively.

Proof. We proceed as in the the proof of Theorem 3.1 and integrate both sides of (3.8) from s

to t and dividing by t − s. Then, take the limit superior/inferior as s, t − s tend to ∞.

4 Discussion

In this paper, we have derived two extended versions of the classical Perron-type theorem.

Assuming integral separation, which guarantees the stability of Lyapunov exponents, we have

confirmed that the Perron theorem remains valid under the same smallness condition on the

nonlinear part as in the constant coefficient case. Therefore, our version of the Perron theorem

differs from the one obtained in [4]. Additionally, we have established a Perron theorem

for Bohl exponents as well. Extensions of these results to different growth rates and the µ-

Lyapunov exponents defined in [2, 10] appear to be straightforward.
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Several open problems and conjectures remain. First, our results can be extended to differ-

ence equations, providing an alternative to the Perron-type theorem presented in [3]. Second,

it is known that the Lyapunov exponents of linear systems may be nondistinct but still sta-

ble, as characterized in [1, Theorem 5.4.9] and [9]. In such cases, the linear system (2.1) can

be reduced to block-diagonal form with upper-triangular blocks subject to additional condi-

tions. We conjecture that Theorem 3.1 still holds, i.e., the stability of Lyapunov exponents

implies their preservation under small nonlinear perturbations satisfying (1.3). This would

fully generalize the classical Perron theorem to the time-varying system (1.1).

Furthermore, it is well known that Bohl exponents are stable without any additional as-

sumptions. Therefore, we also conjecture that the result of Theorem 3.4 holds without the

integral separation assumption (see the related result in [7, Chapter VII, Section 3] and [9]).

However, the arguments used in the proof of Theorem 3.1 are insufficient for the last two

problems, as reducibility to diagonal form no longer holds. Addressing these questions would

require overcoming further technical challenges.

Lastly, recent results on the asymptotic behavior of solutions and Lyapunov exponents

have been extended from ODEs to DAEs (see [11–15]). Therefore, extending the Perron-type

theorem to linear time-varying DAEs under small nonlinear perturbations would also be of

interest.
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Abstract. We study the multiparameter p-Laplacian Dirichlet problem

{

(

ϕp(u′(x))
)′
+ λ(kup−1 + ∑

m
i=1 aiu

qi )− µ ∑
n
j=1 bju

rj = 0, − 1 < x < 1,

u(−1) = u(1) = 0,

where p > 1, ϕp(y) = |y|p−2 y,
(

ϕp(u′)
)′

is the one-dimensional p-Laplacian, λ > 0
and µ ≥ 0 are two bifurcation parameters. We assume that k ≥ 0, 0 < p − 1 < q1 <

q2 < · · · < qm < r1 < r2 < · · · < rn, m, n ≥ 1, a1 = 1, ai > 0 for i = 1, 2, . . . , m
and b1 = 1, bj > 0 for j = 1, 2, . . . , n. We mainly prove that, on the (λ, ∥u∥∞)-plane, the
bifurcation diagram consists of a strictly decreasing curve for µ = 0, and always consists
of a ⊂-shaped curve for fixed µ > 0. We then study the structures and evolution of the
bifurcation diagrams with varying µ ≥ 0.

Keywords: bifurcation diagram, evolution, positive solution, p-Laplacian, ⊂-shaped
bifurcation curve, time map.
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1 Introduction

In this paper we study the structures and evolution of bifurcation diagrams for the multipa-

rameter p-Laplacian Dirichlet problem

{

(

ϕp(u′(x))
)′
+ λ(kup−1 + ∑

m
i=1 aiu

qi)− µ ∑
n
j=1 bju

rj = 0, − 1 < x < 1,

u(−1) = u(1) = 0,
(1.1)

where p > 1, ϕp(y) = |y|p−2 y,
(

ϕp(u′)
)′

is the one-dimensional p-Laplacian, and λ > 0 and

µ ≥ 0 are two bifurcation parameters. We assume that the nonlinearity

fk,µ,λ(u) ≡ λ(kup−1 +
m

∑
i=1

aiu
qi)− µ

n

∑
j=1

bju
rj (1.2)

BCorresponding author. Email: shwang@math.nthu.edu.tw
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is a generalized polynomial (see [9]) satisfying

{

k ≥ 0, 0 < p − 1 < q1 < q2 < · · · < qm < r1 < r2 < · · · < rn, m, n ≥ 1,

a1 = 1, ai > 0 for i = 1, 2, . . . , m and b1 = 1, bj > 0 for j = 1, 2, . . . , n.
(1.3)

This problem arises in the study of non-Newtonian fluids, nonlinear diffusion problems,

and population dynamics of one species. The quantity p is a characteristic of the medium.

Media with 1 < p < 2 are called pseudoplastics fluids and those with p > 2 are called

dilatant. If p = 2, they are Newtonian fluids (see, e.g., Díaz [3, 4] and their bibliographies).

In population dynamics, in (1.1), the one-dimensional p-Laplacian operator
(

ϕp(u′)
)′

acts as

the diffusive mechanism describing the migration of u throughout the habitat (−1, 1) which

is assumed to be surrounded by a completely hostile boundary {±1}. In (1.1), the reaction

term λ(kup−1 + ∑
m
i=1 aiu

qi)− µ ∑
n
j=1 bju

rj is the growth rate of the population, which consists

of a source term λ(kup−1 + ∑
m
i=1 aiu

qi) and an absorption term µ ∑
n
j=1 bju

rj . Note that, by (1.3),

if µ > 0, the absorption term µ ∑
n
j=1 bju

rj is dominated by the source term when u near 0+

and dominate the source term when u is large enough, and the domination of the absorption

term over the source term is assumed to be strictly increasing on (0, ∞). Murray [11] suggested

using diffusion of the form p in the study of diffusion-kinetic enzymes problems. By a positive

solution to p-Laplacian problem (1.1) with general p > 1, we mean a positive function u ∈

C1[−1, 1] with ϕp(u′) ∈ C1[−1, 1] satisfying (1.1). Let Z = {x ∈ [−1, 1] : u′(x) = 0}. We note

that it is easy to show that, if u is a positive solution of (1.1), then u ∈ C2[−1, 1] if 1 < p ≤ 2

and u ∈ C2([−1, 1]∖ Z) if p > 2. For the proof we refer to [1, Lemma 6].

To study bifurcation diagrams of positive solutions of (1.1), (1.3), it is important to study

the shape of nonlinearity fk,µ,λ(u) on (0, ∞) in the beginning. We show that there exist three

positive numbers βµ,λ > ζµ,λ > γµ,λ such that fk,µ,λ(u) with λ, µ > 0 satisfies (1.4), (1.9), and

(1.11) stated behind. That is, positive numbers βµ,λ > ζµ,λ > γµ,λ are the unique positive zero,

critical point, and p-inflection point of fk,µ,λ(u) on (0, ∞), respectively. First, we easily observe

that, for fk,µ,λ(u) with λ, µ > 0 satisfying (1.3), the number of sign changes in the sequence of

coefficients for the generalized polynomial fk,µ,λ(u)

(λk, λa1, λa2, . . . , λam,−µb1,−µb2, . . . ,−µbn)

is 1. Applying Laguerre’s Theorem [10] (see also [9, Theorem 4.7]) on the number of positive

zeros to the generalized polynomial fk,µ,λ(u), we obtain that there exists a unique positive

number βµ,λ such that














fk,µ,λ(u) > 0 on (0, βµ,λ),

fk,µ,λ(0) = fk,µ,λ(βµ,λ) = 0,

fk,µ,λ(u) < 0 on (βµ,λ, ∞).

(1.4)

We set βµ=0,λ = ∞ if µ = 0. Notice that, by (1.3), it is easy to see that, for fixed λ > 0,

lim
µ→∞

βµ,λ = 0. (1.5)

In addition,

for fixed µ > 0, βµ,λ is a continuous, strictly increasing function of λ on (0, ∞) (1.6)

and

for fixed λ > 0, βµ,λ is a continuous, strictly decreasing function of µ on (0, ∞). (1.7)
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Secondly, we compute that

f ′k,µ,λ(u) = λ

[

(p − 1)kup−2 +
m

∑
i=1

aiqiu
qi−1

]

− µ
n

∑
j=1

bjrju
rj−1. (1.8)

Thus again, similarly, applying (1.3) and Laguerre’s Theorem [10] on the number of positive

zeros to the generalized polynomial f ′k,µ,λ(u) in (1.8), we obtain that there exists a unique positive

number ζµ,λ < βµ,λ such that















f ′k,µ,λ(u) > 0 on (0, ζµ,λ),

f ′k,µ,λ(u)(ζµ,λ) = 0,

f ′k,µ,λ(u) < 0 on (ζµ,λ, βµ,λ).

(1.9)

So fk,µ,λ(u) with λ, µ > 0 is increasing-decreasing on (0, βµ,λ). Thirdly, we compute that

(p − 2) f ′k,µ,λ(u)− u f ′′k,µ,λ(u) = λ
m

∑
i=1

aiqi(p − 1 − qi)u
qi−1 − µ

n

∑
j=1

bjrj(p − 1 − rj)u
rj−1, (1.10)

in which p − 1 − qi < 0 for i = 1, 2, . . . , m and p − 1 − rj < 0 for j = 1, 2, . . . , n. Thus again,

applying (1.3) and Laguerre’s Theorem [10] on the number of positive zeros to the generalized

polynomial (p − 2) f ′k,µ,λ(u)− u f ′′k,µ,λ(u) in (1.10), we obtain that there exists a unique positive

number γµ,λ < ζµ,λ such that















(p − 2) f ′k,µ,λ(u)− u f ′′k,µ,λ(u) < 0 on (0, γµ,λ),

(p − 2) f ′k,µ,λ(γµ,λ)− u f ′′k,µ,λ(γµ,λ) = 0,

(p − 2) f ′k,µ,λ(u)− u f ′′k,µ,λ(u) > 0 on (γµ,λ, βµ,λ).

(1.11)

In this case fk,µ,λ(u) with λ, µ > 0 is said to be p-convex-concave on (0, βµ,λ).

Note that, in (1.1), λkup−1 is the p-linear term for generalized polynomial nonlinearity

fk,µ,λ if bifurcation parameter k > 0. If k = 0, then fk,µ,λ has no p-linear term. In this paper we

are concerned only with positive solutions u of (1.1), (1.3) satisfying

0 < ∥u∥∞ < βµ,λ

{

= ∞ if µ = 0,

< ∞ if µ > 0.
(1.12)

Positive solutions u of (1.1), (1.3) satisfying (1.12) are called classical positive solutions. Note

that positive solutions u of (1.1), (1.3) satisfying ∥u∥∞ = βµ,λ are called flat-core positive solu-

tions.

For problem (1.1), (1.3), we study evolutionary bifurcation diagrams Sp,k,µ on the (λ, ∥u∥∞)-

plane defined by:

Sp,k,µ = {(λ, ∥uλ∥∞) : λ > 0 and uλ is a (classical) positive solution of (1.1), (1.3)} , µ ≥ 0.

(1.13)

First, when µ = 0 and fk,µ=0,λ(u) ≡ λ(kup−1 + ∑
m
i=1 aiu

qi), we study Sp,k,µ=0 on the

(λ, ∥u∥∞)-plane in the next proposition. We let

λ̄ ≡

(

p − 1

k

)(

π

p
csc

π

p

)p
{

< ∞ if k > 0,

= ∞ if k = 0.
(1.14)
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Proposition 1.1 (See Figs. 2.1–2.2 depicted behind). Let p > 1. Consider p-Laplacian problem

(1.1), (1.3) with µ = 0 and fk,µ=0,λ(u) = λ(kup−1 + ∑
m
i=1 aiu

qi) > 0 on (0, ∞). Then the bifurcation

diagram Sp,k,µ=0 satisfies the following assertions (i)–(ii):

(i) On the (λ, ∥u∥∞)-plane, Sp,k,µ=0 emanates from the positive ∥u∥∞-axis as λ → 0+, tends to

the point (λ̄, 0) =
(( p−1

k

)(

π
p csc π

p

)p
, 0
)

if k > 0 and tends to the positive λ-axis as λ → ∞ if

k = 0, and consists of a continuous, strictly decreasing curve.

(ii) Moreover, if k = 0, m = 1, q ≡ q1 > p − 1 and fk=0,µ=0,λ(u) ≡ λuq
> 0 on (0, ∞), then

Sp,k=0,µ=0 =
{

(λ, ∥uλ∥∞) = (cp,qαp−q−1, α), α = ∥uλ∥∞ > 0
}

,

where

cp,q ≡

(

p − 1

p

)

(q + 1)1−p





Γ( p−1
p )Γ( 1

q+1 )

Γ( pq+2p−q−1
p(q+1)

)





p

> 0, (1.15)

and Γ(t) ≡
∫ ∞

0 xt−1e−xdx is the usual gamma function.

Proof. (I) We prove part (i). To study Sp,k,µ=0 for p-Laplacian problem (1.1), (1.3) with µ = 0,

we apply the time-map method for which the time-map formula takes the form as follows:

λ1/p =

(

p − 1

p

)1/p ∫ α

0

1

[F̄(α)− F̄(u)]
1/p

du ≡ T f̄ (α) for α = ∥u∥∞ > 0, (1.16)

where

f̄ (u) ≡ fk,µ=0,λ=1(u) = kup−1 +
m

∑
i=1

aiu
qi

and F̄(u) ≡
∫ u

0 f̄ (t)dt; see, e.g., [2, Lemmas 2.1 and 2.2] for the derivation of the time map

formula T(α) in (1.16). We have that positive solution uλ(x) of p-Laplacian problem (1.1), (1.3)

with µ = 0 corresponds to ∥uλ∥∞ = α > 0 satisfying (1.16), e.g., [13, p. 382]. It is easy to

compute that, by (1.3),

lim
u→0+

f̄ (u)

up−1
=

kup−1 + ∑
m
i=1 aiu

qi

up−1
= k ≥ 0, lim

u→∞

f̄ (u)

up−1
=

kup−1 + ∑
m
i=1 aiu

qi

up−1
= ∞,

and

(p − 1) f̄ (u)− u f̄
′
(u) =

m

∑
i=1

ai(p − 1 − qi)u
qi
< 0 on (0, ∞).

Thus, by [13, (1.7), (1.9) and (4.4)], we have that limα→0+ T f̄ (α) =
( p−1

k

)1/p π
p csc π

p ∈ (0, ∞],

limα→∞ T f̄ (α) = 0, and T f̄ (α) is a strictly decreasing function on (0, ∞). So part (i) directly

follows from (1.13) and (1.16).

(II) We prove part (ii). We have that f̄ (u) = uq, q > p − 1 > 0 and F̄(u) ≡
∫ u

0 f̄ (t)dt =
1

q+1 uq+1. It can be computed that

T f̄ (α) =

(

p − 1

p

)1/p ∫ α

0

1

[F̄(α)− F̄(u)]
1/p

du

=

(

p − 1

p

)1/p

(q + 1)1/p
∫ α

0

1

[αq+1 − uq+1]
1/p

du

=

(

p − 1

p

)1/p

(q + 1)(1−p)/p





Γ( p−1
p )Γ( 1

q+1 )

Γ( pq+2p−q−1
p(q+1)

)



 α
p−q−1

p
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by [6, p. 212, formula 855.42] or using symbolic manipulator Mathematica 11.0. Thus by (1.15)

and (1.16), we obtain that

λ =
[

T f̄ (α)
]p

= (
p − 1

p
)(q + 1)1−p





Γ( p−1
p )Γ( 1

q+1 )

Γ( pq+2p−q−1
p(q+1)

)





p

αp−q−1

= cp,qαp−q−1. (1.17)

So part (ii) holds.

The proof of Proposition 1.1 is now complete.

2 Main results

The main results in this paper are next Theorem 2.1 and Theorem 2.2 for problem (1.1), (1.3)

with 1 < p ≤ 2 and p > 2, respectively. In Theorems 2.1–2.2 with any fixed µ > 0, we prove

that, on the (λ, ∥u∥∞)-plane, the bifurcation diagram Sp,k,µ always consists of a continuous,

⊂-shaped curve with exactly one (right) turning point at some point (λ∗, ∥uλ∗∥∞). While the

upper branch of each ⊂-shaped bifurcation diagram Sp,k,µ is unbounded if 1 < p ≤ 2 and is

bounded if p > 2. We then study the structures and evolution of bifurcation diagrams Sp,k,µ

with varying µ ≥ 0; see Fig. 2.1 with 1 < p ≤ 2 and Fig. 2.2 with p > 2. Theorem 2.1 and

Theorem 2.2 substantially improve [14, Corollary 2.2] and [14, Corollary 2.4], respectively. Cf.

[14, Corollary 2.2] with 1 < p ≤ 2 and [14, Corollary 2.4] with p > 2 for details. Also see

Remark 3.2 stated behind.

Figure 2.1: Evolutionary bifurcation diagrams Sp,k,µ for (1.1), (1.3) with fixed

p ∈ (1, 2], k ≥ 0 and varying µ ≥ 0.

Theorem 2.1 (See Fig. 2.1). Let 1 < p ≤ 2 and k ≥ 0. Consider p-Laplacian problem (1.1), (1.3) with

varying µ ≥ 0. Then the bifurcation diagram Sp,k,µ consists of a continuous curve on the (λ, ∥u∥∞)-

plane and the following assertions (i)–(v) hold:

(i) For µ = 0, Sp,k,µ=0 emanates from the positive ∥u∥∞-axis as λ → 0+, tends to the point

(λ̄, 0) =
(( p−1

k

)(

π
p csc π

p

)p
, 0
)

if k > 0 and tends to the positive λ-axis as λ → ∞ if k = 0, and

consists of a strictly decreasing curve.
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(ii) For any fixed µ > 0, Sp,k,µ always starts at the point (λ̄, 0) =
(( p−1

k

)(

π
p csc π

p

)p
, 0
)

if k > 0

and emanates from the positive λ-axis as λ → ∞ if k = 0 (that is, (λ̄, 0) = (∞, 0) if k = 0).

Sp,k,µ is a ⊂-shaped curve with exactly one turning point at some point (λ∗, ∥uλ∗∥∞) satisfying

0 < λ∗
< λ̄ and 0 < ∥uλ∗∥∞ < βµ,λ∗ .

In addition, the upper branch of Sp,k,µ tends to infinity when λ → ∞. Thus, (1.1), (1.3) has

exactly two (classical) positive solutions for λ∗
< λ < λ̄, exactly one (classical) positive solution

for λ = λ∗ and λ ≥ λ̄, and no (classical) positive solution for 0 < λ < λ∗.

(iii) For any nonnegative µ1 < µ2, Sp,k,µ2
lies on the right hand side of Sp,k,µ1

. (So Sp,k,µ1
and Sp,k,µ2

do not intersect.)

(iv) For the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with µ > 0, λ∗ is a continuous, strictly increasing

function of µ > 0, ∥uλ∗∥∞ is a continuous function of µ > 0,

lim
µ→0+

(λ∗, ∥uλ∗∥∞) = (0, ∞) and lim
µ→∞

(λ∗, ∥uλ∗∥∞) = (λ̄, 0) =

((

p − 1

k

)(

π

p
csc

π

p

)p

, 0

)

.

In particular, when k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) =

λuq − µur, then ∥uλ∗∥∞ is a strictly decreasing function of µ > 0.

(v) When k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) = λuq − µur, then

all points (λ, ∥uλ∥∞) ∈ Sp,k=0,µ satisfy

0 <

( cp,q

λ

)

1
q−p+1

< ∥uλ∥∞ < βµ,λ =

(

λ

µ

)
1

r−q

, (2.1)

where cp,q is defined in (1.15).

Figure 2.2: Evolutionary bifurcation diagrams Sp,k,µ for (1.1), (1.3) with fixed

p > 2, k ≥ 0 and varying µ ≥ 0.

Theorem 2.2 (See Fig. 2.2). Let p > 2 and k ≥ 0. Consider one-dimensional p-Laplacian problem

(1.1), (1.3) with varying µ ≥ 0. Then the bifurcation diagram Sp,k,µ consists of a continuous curve on

the (λ, ∥u∥∞)-plane and the following assertions (i)–(vi) hold:
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(i) For µ = 0, Sp,k,µ=0 emanates from the positive ∥u∥∞-axis as λ → 0+, tends to the point

(λ̄, 0) =
(( p−1

k

)(

π
p csc π

p

)p
, 0
)

if k > 0 and tends to the positive λ-axis as λ → ∞ if k = 0, and

consists of a strictly decreasing curve.

(ii) For any fixed µ > 0, Sp,k,µ starts at the same point (λ̄, 0) =
(( p−1

k

)(

π
p csc π

p

)p
, 0
)

if k > 0

and emanates from the positive ∥u∥∞-axis as λ → 0+ if k = 0 (that is, (λ̄, 0) = (∞, 0) if

k = 0), ends at some point
(

λ̃, ∥vλ̃∥∞

)

satisfying 0 < λ̃ < ∞ and 0 < ∥vλ̃∥∞
= vλ̃(0) = βµ,λ̃

satisfying fk,µ,λ̃(βµ,λ̃) = 0 (that is, vλ̃(x) ≡ limλ→λ̃− vλ(x) is a flat-core positive solution

of problem (1.1), (1.3), see part (a) stated below for (classical) positive solutions vλ(x) with

λ∗
< λ < λ̃). Moreover, Sp,k,µ is a ⊂-shaped curve with exactly one turning point at some point

(λ∗, ∥uλ∗∥∞) satisfying

0 < λ∗
< min(λ̄, λ̃) and 0 < ∥uλ∗∥∞ < ∥vλ̃∥∞

= βµ,λ̃.

Moreover, there exists a unique positive µ̂ = µ̂(p, k, qi, rj, ai, bj) < ∞ if k > 0 and µ̂ = ∞ if

k = 0 such that:

(a) If 0 < µ < µ̂, then (λ∗
<) λ̃ < λ̄ such that problem (1.1), (1.3) has exactly two (classical)

positive solutions uλ, vλ with uλ < vλ satisfying ∥uλ∥∞ < ∥vλ∥∞ < βµ,λ̃ for λ∗
< λ <

λ̃, exactly one (classical) positive solution uλ satisfying ∥uλ∥∞ < βµ,λ̃ for λ = λ∗ and

λ̃ ≤ λ < λ̄, and no (classical) positive solution for 0 < λ < λ∗ and λ ≥ λ̄. In addition,

limλ→λ̄− ∥uλ∥∞ = 0 and limλ→λ̃− ∥vλ∥∞ = ∥vλ̃∥∞
= βµ,λ̃.

(b) If µ = µ̂, then (λ∗
<) λ̃ = λ̄ such that problem (1.1), (1.3) has exactly two (classical)

positive solutions uλ, vλ with uλ < vλ satisfying ∥uλ∥∞ < ∥vλ∥∞ < βµ,λ̃ for λ∗
< λ <

λ̄, exactly one (classical) positive solution uλ satisfying ∥uλ∥∞ < βµ,λ̃ for λ = λ∗, and no

(classical) positive solution for 0 < λ < λ∗ and λ ≥ λ̄. In addition, limλ→λ̄− ∥uλ∥∞ = 0

and limλ→λ̃− ∥vλ∥∞ = ∥vλ̃∥∞
= βµ,λ̃.

(c) If µ > µ̂, then (λ∗
<) λ̄ < λ̃ such that problem (1.1), (1.3) has exactly two (classical)

positive solutions uλ, vλ with uλ < vλ satisfying ∥uλ∥∞ < ∥vλ∥∞ < βµ,λ̃ for λ∗
< λ <

λ̄, exactly one (classical) positive solution uλ satisfying ∥uλ∥∞ < βµ,λ̃ for λ = λ∗ and

exactly one (classical) positive solution vλ satisfying ∥vλ∥∞ < βµ,λ̃ for λ̄ ≤ λ < λ̃, and no

(classical) positive solution for 0 < λ < λ∗ and λ ≥ λ̃. In addition, limλ→λ̄− ∥uλ∥∞ = 0

and limλ→λ̃− ∥vλ∥∞ = ∥vλ̃∥∞
= βµ,λ̃.

(iii) For any nonnegative µ1 < µ2, Sp,k,µ2
lies on the right hand side of Sp,k,µ1

. (So Sp,k,µ1
and Sp,k,µ2

do not intersect.)

(iv) For the ending points
(

λ̃, ∥vλ̃∥∞

)

of Sp,k,µ with µ > 0, λ̃ is a continuous, strictly increasing

function of µ > 0, ∥vλ̃∥∞
is a continuous, strictly decreasing function of µ > 0,

lim
µ→0+

(

λ̃, ∥vλ̃∥∞

)

= (0, ∞) and lim
µ→∞

(

λ̃, ∥vλ̃∥∞

)

= (∞, 0). (2.2)

(v) For the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with µ > 0, λ∗ is a continuous, strictly increasing

function of µ > 0, ∥uλ∗∥∞ is a continuous function of µ > 0,

lim
µ→0+

(λ∗, ∥uλ∗∥∞) = (0, ∞) and lim
µ→∞

(λ∗, ∥uλ∗∥∞) = (λ̄, 0) =

((

p − 1

k

)(

π

p
csc

π

p

)p

, 0

)

.
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(vi) When k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) = λuq − µur, then

all points (λ, ∥uλ∥∞) ∈ Sp,k=0,µ satisfy (2.1).

Remark 2.3 (See Fig. 2.2). By Theorem 2.2, for fixed p ∈ (2, ∞) and k > 0, it is easy to see that,

when µ → ∞, Sp,k,µ converges to the half-line [λ̄, ∞) on the positive λ-axis.

3 Lemmas

To prove Theorems 2.1–2.2 for p-Laplacian problem (1.1), (1.3), we need the following Lemmas

3.1 and 3.3–3.12. In particular, Theorems 2.1–2.2 is based on Lemma 3.1 which is due to Wang

and Yeh [14]. Wang and Yeh [14] considered the p-Laplacian Dirichlet problem with one

parameter λ:
{

(

ϕp(u′(x))
)′
+ fλ(u(x)) = 0, −1 < x < 1,

u(−1) = u(1) = 0.
(3.1)

They assumed that the nonlinearity

fλ(u) ≡ λg(u)− h(u), (3.2)

where functions g, h ∈ C[0, ∞) ∩ C2(0, ∞) satisfy hypotheses (H1)–(H4) if 1 < p ≤ 2 and

satisfy hypotheses (H1)–(H5) if p > 2:

(H1) g(0) = h(0) = 0, g(u), h(u) > 0 on (0, ∞), and

0 = lim
u→0+

h(u)

up−1
≤ m

g
0 ≡ lim

u→0+

g(u)

up−1
< ∞.

(H2) The positive function h(u)/g(u) is strictly increasing on (0, ∞), and

lim
u→0+

h(u)

g(u)
= 0, lim

u→∞

h(u)

g(u)
= ∞.

(H3) (p − 2)g′(u)− ug′′(u) < 0 on (0, ∞) and (p − 2)h′(u)− uh′′(u) < 0 on (0, ∞).

(H4) The positive function [(p − 2)h′(u)− uh′′(u)] / [(p − 2)g′(u)− ug′′(u)] is strictly increas-

ing on (0, ∞), and

lim
u→0+

(p − 2)h′(u)− uh′′(u)

(p − 2)g′(u)− ug′′(u)
= 0, lim

u→∞

(p − 2)h′(u)− uh′′(u)

(p − 2)g′(u)− ug′′(u)
= ∞.

(H5) There exists a positive number p∗ > p − 1 such that g(u)/up∗ is strictly decreasing on

(0, ∞) and h(u)/up∗ is strictly increasing on (0, ∞). In addition, for each fixed s ∈ (0, 1),

h(su)

up−1

(

h(u)g(su)

g(u)h(su)
− 1

)

is a strictly increasing function of u on (0, ∞), and

lim
u→∞

h(u)g(su)

g(u)h(su)
∈ (1, ∞].
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Notice that, for p-Laplacian problem (3.1), hypotheses (H1)–(H2) imply that, for each fixed

λ > 0, there exists a unique positive number βλ such that














fλ(u) = λg(u)− h(u) > 0 on (0, βλ),

fλ(0) = λg(0)− h(0) = 0 and fλ(βλ) = λg(βλ)− h(βλ) = 0,

fλ(u) = λg(u)− h(u) < 0 on (βλ, ∞).

Moreover, the number βλ is a continuous, strictly increasing function of λ on (0, ∞),

limλ→0+ βλ = 0 and limλ→∞ βλ = ∞. See [14, (1.4)–(1.5)]. Also, hypotheses (H1)–(H4) im-

ply that, for each fixed λ > 0, the function fλ(u) with λ > 0 is p-convex-concave on (0, βλ).

More precisely, there exists a unique positive number γλ < βλ such that














(p − 2) f ′λ(u)− u f ′′λ (u) < 0 on (0, γλ),

(p − 2) f ′λ(γλ)− γλ f ′′λ (γλ) = 0,

(p − 2) f ′λ(u)− u f ′′λ (u) > 0 on (γλ, βλ).

See [14, (1.6)]. In [14], Wang and Yeh are concerned only with positive solutions u of (3.1)

satisfying 0 < ∥u∥∞ < βλ. Let

λ̂ ≡

(

p − 1

m
g
0

)

(

π

p
csc

π

p

)p
{

< ∞ if m
g
0 > 0,

= ∞ if m
g
0 = 0.

(3.3)

For fλ(u) = λg(u)− h(u) in (3.2), we define Fλ(u) =
∫ u

0 fλ(t)dt and

Tλ(α) = (
p − 1

p
)1/p

∫ α

0
[Fλ(α)− Fλ(u)]

−1/pdu for 0 < α < βλ.

Lemma 3.1. Consider p-Laplacian problem (3.1) with p > 1. Then the following assertions (i)–(ii)

hold:

(i) ([14, Theorem 2.1 and Fig. 1]) Let 1 < p ≤ 2. If fλ(u) = λg(u) − h(u), g, h ∈ C[0, ∞) ∩

C2(0, ∞) satisfy (H1)–(H4). Then the bifurcation diagram consists of a continuous, ⊂-shaped

curve on the (λ, ∥u∥∞)-plane. More precisely, the there exists a positive number λ∗
< λ̂ such

that (1.1) has exactly two positive solutions uλ, vλ with uλ < vλ for λ∗
< λ < λ̂, exactly one

positive solution vλ for λ = λ∗ and λ ≥ λ̂, and no positive solution for 0 < λ < λ∗. Moreover,

limλ→λ̂− ∥uλ∥∞ = 0 and limλ→∞ ∥vλ∥∞ = ∞.

(ii) ([14, Theorem 2.3 and Fig. 3]) Let p > 2. If fλ(u) = λg(u)− h(u), g, h ∈ C[0, ∞) ∩ C2(0, ∞)

satisfy (H1)–(H5). Then the bifurcation diagram consists of a continuous, ⊂-shaped curve on the

(λ, ∥u∥∞)-plane. More precisely, there exist three positive numbers λ∗
< λ̃ and βλ̃ satisfying

λ∗
< λ̂ (≤ ∞) and fλ̃(βλ̃) = 0 and limα→β−

λ̃
Tλ̃(α) = 1 such that:

(a) (See [14, Fig. 3(a)–(b)]) If λ̃ < λ̂ (≤ ∞), then (1.1) has exactly two positive solutions

uλ, vλ with uλ < vλ for λ∗
< λ < λ̃, exactly one positive solution uλ for λ = λ∗ and

λ̃ ≤ λ < λ̂, and no positive solution for 0 < λ < λ∗ and for λ ≥ λ̂ (if λ̂ < ∞).

(b) (See [14, Fig.3(c)–(d)]) If λ̂ ≤ λ̃, then (1.1) has exactly two positive solutions uλ, vλ

with uλ < vλ for λ∗
< λ < λ̂, exactly one positive solution vλ for λ = λ∗ and for

λ̂ ≤ λ < λ̃ (if λ̃ > λ̂), and no positive solution for 0 < λ < λ∗ and λ ≥ λ̃. Moreover,

limλ→λ̂− ∥uλ∥∞ = 0 and limλ→λ̃− ∥vλ∥∞ = βλ̃.
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Remark 3.2. To Lemma 3.1(i)–(ii), Wang and Yeh [14, Corollaries 2.2 and 2.4] gave examples

of generalized polynomial nonlinearities for

fλ(u) = λg(u)− h(u) = λ(kup−1 + uq)− ur

satisfying r > q > p − 1 > 0 and k ≥ 0, which is a special case of

fk,µ,λ(u) = λ

(

kup−1 +
m

∑
i=1

aiu
qi

)

− µ
n

∑
j=1

bju
rj

defined in (1.2) satisfying (1.3).

For p-Laplacian problem (1.1), (1.3) with two parameters µ and λ and fk,µ,λ(u) defined in

(1.2), we define the time map formula as follows:

Tµ,λ(α) =

(

p − 1

p

)1/p ∫ α

0

du
[

Fk,µ,λ(α)− Fk,µ,λ(u)
]1/p

for 0 < α < βµ,λ, (3.4)

where βµ,λ is defined in (1.4) and

Fk,µ,λ(u) =
∫ u

0
fk,µ,λ(t)dt. (3.5)

We define fk,µ,λ(u) = λg(u) − µh̃(u) where g(u) = kup−1 + ∑
m
i=1 aiu

qi , h̃(u) = ∑
n
j=1 bju

rj ,

G(u) =
∫ u

0 g(t)dt and H̃(u) =
∫ u

0 h̃(t)dt.

We suppose that uµ,λ(x) is a (classical) positive solution of p-Laplacian problem (1.1), (1.3)

satisfying (1.12). Then (classical) positive solution uµ,λ(x) corresponds to
∥

∥uµ,λ

∥

∥

∞
= α and

Tµ,λ(α) =

(

p − 1

p

)1/p ∫ α

0

du
[

Fk,µ,λ(α)− Fk,µ,λ(u)
]1/p

= 1 for 0 < α < βµ,λ. (3.6)

See, e.g., [8, (3.9)].

Recall the number λ̄ =
( p−1

k

)(

π
p csc π

p

)p
defined in (1.14).

Lemma 3.3. Consider p-Laplacian problem (1.1), (1.3) with p > 1, λ > 0 and µ > 0. Then the

following assertions (i)–(ii) hold:

(i) limα→0+ Tµ,λ(α) = ( λ̄
λ )

1/p and Tµ,λ(α) has exactly an critical point at some α∗
µ,λ, a minimum,

on (0, βµ,λ). Moreover,

lim
α→β−

µ,λ

Tµ,λ(α) = ∞ if 1 ≤ p < 2.

(ii) There exist two positive numbers C < D < βµ,λ such that C < α∗
µ,λ < D where C = C(k, µ, λ),

D = D(k, µ, λ) satisfy

(p − 1) fk,µ,λ(µ)(C)− C f ′k,µ,λ(µ)(C) = 0 and pFk,µ,λ(µ)(D)− D fk,µ,λ(µ)(D) = 0, (3.7)

respectively. Cf. [14, (3.10) and (3.11)]. Then T′
µ,λ(α) < 0 for α ∈ (0, C] and T′

µ,λ(α) > 0 for

α ∈ [D, βµ,λ).

Proof. Parts (i) and (ii) simply follow by (1.4), (1.11), and slight modification of the proofs of

[14, Lemmas 3.1 and 3.2]. We omit the detailed proofs here.



Structures and evolution of bifurcation diagrams for a p-Laplacian Dirichlet problem 11

We show comparison results for Tµ,λ(α) in the next lemma; cf. [7, Lemma 3.3(i)–(ii)].

Notice that, for any fixed µ > 0 and 0 < λ1 < λ2, βµ,λ1
< βµ,λ2

by (1.6), and for any fixed

λ > 0 and 0 < µ1 < µ2, βµ2,λ < βµ1,λ by (1.7).

Lemma 3.4. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions

(i)–(ii) hold:

(i) For any fixed µ > 0 and 0 < λ1 < λ2, Tµ,λ1
(α) > Tµ,λ2

(α) for 0 < α < βµ,λ1
.

(ii) For any fixed λ > 0 and 0 < µ1 < µ2, Tµ1,λ(α) < Tµ2,λ(α) for 0 < α < βµ2,λ.

Proof. The proofs of parts (i)–(ii) follow by modification of those of [7, Lemma 3.3(i)–(ii)]. We

omit them here.

Lemma 3.5. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions

(i)–(ii) hold:

(i) For any fixed µ ≥ 0 and 0 < λ1 < λ2, Tµ,λ(α) is a continuous function of λ ∈ [λ1, λ2] for

0 < α < βµ,λ1
.

(ii) For any fixed λ > 0 and 0 ≤ µ1 < µ2, Tµ,λ(α) is a continuous function of µ ∈ [µ1, µ2] for

0 < α < βµ2,λ.

Proof. The proofs of parts (i)–(ii) follow by modification of those of [7, Lemma 3.4(i)–(ii)]. We

omit them here.

By Lemma 3.3(i), Tµ,λ(α) has exactly one critical point at some α∗
µ,λ, a minimum, on

(0, βµ,λ). Let

m(µ, λ) ≡ Tµ,λ(α
∗
µ,λ) = min

α∈(0,βµ,λ)
Tµ,λ(α).

Lemma 3.6. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions

(i)–(ii) hold:

(i) For any fixed µ ∈ (0, ∞), there exists a unique λ∗
> 0 such that m(µ, λ∗) = 1.

(ii) For any fixed λ ∈ (0, λ̄), there exists a unique µ∗
> 0 such that m(µ∗, λ) = 1.

Moreover, for any fixed λ ≥ λ̄ and µ > 0, m(µ, λ) < 1.

Proof. (I) We prove part (ii). We have that limα→∞ Tµ=0,λ(α) = 0, which follows from Proposi-

tion 1.1(i) and since limµ→0+ Tµ,λ(α) = Tµ=0,λ(α). So we can find a number µ1 > 0 such that

m(µ1, λ) = minα∈(0,βµ1,λ) Tµ1,λ(α) < 1. In addition, we have that limα→0+ Tµ,λ(α) > 1, which

follows from Lemma 3.3(i) for 0 < λ < λ̄. By (3.7), we compute and obtain that

λ

µ
=

∑
n
j=1 bj(rj − p + 1)Crj

∑
m
i=1 ai(qi − p + 1)Cqi

=
∑

n
j=1 bj

rj−p+1

rj+1 Drj

∑
m
i=1 ai

qi−p+1
qi+1 Dqi

.

So, for fixed λ ∈ (0, λ̄), we have that limµ→∞ α∗
µ,λ = 0 since limµ→∞ C = limµ→∞ D = 0 and

α∗
µ,λ ∈ (C, D) by Lemma 3.3(ii). Hence we can find a number µ2 > 0 such that m(µ2, λ) =

minα∈(0,βµ2,λ) Tµ2,λ(α) > 1.
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Next, we set positive numbers α1 ≡ infµ∈[µ1,µ2] α∗
µ,λ and α2 ≡ supµ∈[µ1,µ2]

α∗
µ,λ ≥ α1. If

α1 = α2, then α∗
µ,λ = α1 = α2 for all µ ∈ [µ1, µ2]. Thus Tµ2,λ(α1) = m(µ2, λ) > 1 and

Tµ1,λ(α1) = m(µ1, λ) < 1. So, by Lemma 3.5(ii) and the Intermediate Value Theorem, there

exists µ∗ ∈ (µ1, µ2) such that

m(µ∗, λ) = Tµ∗,λ(α1) = 1.

By Lemma 3.4(ii), m(µ, λ) = Tµ,λ(α1) is strictly increasing in µ ∈ [µ1, µ2], and hence µ∗ is

unique.

While if α1 < α2, we first show that m(µ, λ) is a continuous function of µ on [µ1, µ2] as

follows. By Lemma 3.4(ii) and Lemma 3.5(ii), for each µ1 < µ2 and fixed α ∈ (0, βµ2,λ), Tµ,λ(α)

is a continuous, strictly increasing function of µ on (µ1, µ2). So for any fixed µ̌ ∈ [µ1, µ2], by

the Dini Theorem [12, p. 195], it is easy to see that

lim
µ→µ̌

(

min
α∈[α1,α2]

Tµ,λ(α)

)

= min
α∈[α1,α2]

Tµ̌,λ(α). (3.8)

Since for any µ ∈ [µ1, µ2], the minimum of Tµ,λ(α) occurs at α∗
µ,λ ∈ [α1, α2]. So

m(µ, λ) = min
α∈(0,βµ,λ)

Tµ,λ(α) = min
α∈[α1,α2]

Tµ,λ(α) for µ ∈ [µ1, µ2]. (3.9)

By (3.8) and (3.9), limµ→µ̌ m(µ, λ) = m(µ̌, λ). Hence m(µ, λ) is a continuous function of µ on

[µ1, µ2]. By the Intermediate Value Theorem, there exists µ∗ ∈ (µ1, µ2) such that m(µ∗, λ) = 1.

Moreover, since m(µ, λ) is strictly increasing in µ ∈ [µ1, µ2], we obtain that µ∗ is unique.

For any fixed λ ≥ λ̄ and µ > 0. By Lemma 3.3, we have limα→0+ Tµ,λ(α) ≤ 1 and

m(µ, λ) < 1.

By above, part (ii) holds.

(II) The proof of part (i) is similar to that of part (ii). We omit it here.

The proof of Lemma 3.6 is now complete.

Lemma 3.7 (See Theorems 2.1–2.2 and Figs. 2.1–2.2). Consider p-Laplacian problem (1.1), (1.3)

with p > 1. Then, for the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with varying µ > 0, λ∗ is a continuous,

strictly increasing function of µ > 0. Moreover, limµ→0+ λ∗ = 0 and limµ→∞ λ∗ = λ̄.

Proof. For fixed µ2 > µ1 > 0, by Lemma 3.6(i), there exists λ∗
2(µ2) > 0 (resp. λ∗

1(µ1) > 0)

such that Tµ2,λ∗
2
(α) (resp. Tµ1,λ∗

1
(α)) has exactly one minimum point αµ2,λ∗

2
∈ (0, βµ2,λ∗

2
) (resp.

αµ1,λ∗
1
∈ (0, βµ1,λ∗

1
)) satisfying Tµ2,λ∗

2
(αµ2,λ∗

2
) = 1 (resp. Tµ1,λ∗

1
(αµ1,λ∗

1
) = 1). Observe that αµ2,λ∗

2
∈

(0, βµ2,λ∗
2
) ⊊ (0, βµ1,λ∗

2
). So we obtain that

Tµ1,λ∗
2
(αµ2,λ∗

2
) =

(

p − 1

p

)1/p ∫ αµ2,λ∗2

0
[λ∗

2(G(αµ2,λ∗
2
)− G(u))− µ1(H̃(αµ2,λ∗

2
)− H̃(u))]−1/pdu

<

(

p − 1

p

)1/p ∫ αµ2,λ∗2

0
[λ∗

2(G(αµ2,λ∗
2
)− G(u))− µ2(H̃(αµ2,λ∗

2
)− H̃(u))]−1/pdu

= Tµ2,λ∗
2
(αµ2,λ∗

2
)

= 1.

So

min
α∈(0,βµ1,λ∗2

)
Tµ1,λ∗

2
(α) ≤ Tµ1,λ∗

2
(αµ2,λ∗

2
) < 1. (3.10)
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For any α ∈ (0, βµ1,λ∗
1
), we have that

Tµ1,λ∗
1
(α) ≥ min

α∈(0,βµ1,λ∗
1
)
Tµ1,λ∗

1
(α) = Tµ1,λ∗

1
(αµ1,λ∗

1
) = 1. (3.11)

By (3.10), (3.11) and Lemma 3.4(i), we obtain λ∗
1(µ1) < λ∗

2(µ2). By Lemma 3.6, we obtain

λ∗((0, ∞)) = (0, λ̄). Hence λ∗(µ) : (0, ∞) → (0, λ̄) is a continuous, strictly increasing function.

Moreover, limµ→0+ λ∗(µ) = 0 and limµ→∞ λ∗(µ) = λ̄.

The proof of Lemma 3.7 is now complete.

Lemma 3.8 (See Theorems 2.1–2.2 and Figs. 2.1–2.2). Consider p-Laplacian problem (1.1), (1.3)

with p > 1 and k ≥ 0. Then, for the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with varying µ > 0,
λ∗(µ)

µ is a continuous, strictly decreasing function of µ > 0. Moreover, limµ→0+
λ∗(µ)

µ = ∞ and

limµ→∞
λ∗(µ)

µ = 0.

Proof. For fixed µ2 > µ1 > 0, we let N1 ≡ λ∗(µ1)
µ1

and N2 ≡ λ∗(µ2)
µ2

. Then

Tµ2,λ∗(µ2)(∥uλ∗(µ2)∥∞) = 1 = Tµ1,λ∗(µ1)(∥uλ∗(µ1)∥∞)

= Tµ1,N1µ1
(∥uλ∗(µ1)∥∞)

=

(

p − 1

p

)1/p∫ ∥uλ∗(µ1)
∥∞

0
[N1µ1(G(∥uλ∗(µ1)∥∞)−G(u))−µ1(H̃(∥uλ∗(µ1)∥∞)− H̃(u))]−1/pdu

=

(

µ2

µ1

)1/p ( p − 1

p

)1/p

×
∫ ∥uλ∗(µ1)

∥∞

0
[N1µ2(G(∥uλ∗(µ1)∥∞)− G(u))− µ2(H̃(∥uλ∗(µ1)∥∞)− H̃(u))]−1/pdu

=

(

µ2

µ1

)1/p

Tµ2,N1µ2
(∥uλ∗(µ1)∥∞)

> Tµ2,N1µ2
(∥uλ∗(µ1)∥∞)

since µ2 > µ1 > 0. If λ∗(µ2) ≥ N1µ2, then Tµ2,N1µ2
(∥uλ∗(µ1)∥∞) ≥ Tµ2,λ∗(µ2)(∥uλ∗(µ1)∥∞) ≥

Tµ2,λ∗(µ2)(∥uλ∗(µ2)∥∞) by Lemma 3.4(i) and Lemma 3.3(i), which leads to a contradiction since

Tµ2,λ∗(µ2)(∥uλ∗(µ2)∥∞) > Tµ2,N1µ2
(∥uλ∗(µ1)∥∞). Hence we obtain λ∗(µ2) < N1µ2. So

N2 =
λ∗(µ2)

µ2
< N1 =

λ∗(µ1)

µ1
.

By Lemma 3.7, we obtain that λ∗(µ) is a continuous function of µ > 0. Hence
λ∗(µ)

µ is a

continuous, strictly decreasing function of µ > 0.

We prove limµ→0+
λ∗(µ)

µ = ∞ by method of contradiction. Suppose limµ→0+
λ∗(µ)

µ < ∞, then

there exists a positive N3 > limµ→0+
λ∗(µ)

µ such that

lim
µ→0+

(

1

µ

)1/p

Tµ=1,λ=N3

(

∥uλ∗(µ)∥∞

)

= lim
µ→0+

(

1

µ

)1/p ( p − 1

p

)1/p

×
∫ ∥uλ∗(µ)∥∞

0
[N3(G(∥uλ∗(µ)∥∞)− G(u))− (H̃(∥uλ∗(µ)∥∞)− H̃(u))]−1/pdu
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< lim
µ→0+

(

1

µ

)1/p ( p − 1

p

)1/p

×
∫ ∥uλ∗(µ)∥∞

0
[
λ∗(µ)

µ
(G(∥uλ∗(µ)∥∞)− G(u))− (H̃(∥uλ∗(µ)∥∞)− H̃(u))]−1/pdu

= lim
µ→0+

(

p − 1

p

)1/p

×
∫ ∥uλ∗(µ)∥∞

0
[λ∗(µ)(G(∥uλ∗(µ)∥∞)− G(u))− µ(H̃(∥uλ∗(µ)∥∞)− H̃(u))]−1/pdu

= lim
µ→0+

Tµ,λ∗(µ)(∥uλ∗(µ)∥∞).

By Lemma 3.3(i), there exist two fixed positive numbers α1,N3
and L1,N3

such that

Tµ=1,λ=N3
(α1,N3

) = L1,N3
is an absolute minimum on (0, β1,N3

). So

1 = lim
µ→0+

Tµ,λ∗(µ)(∥uλ∗(µ)∥∞) > lim
µ→0+

(

1

µ

)1/p

Tµ=1,λ=N3
(∥uλ∗(µ)∥∞) ≥ lim

µ→0+

(

1

µ

)1/p

L1,N3
= ∞,

which leads to a contradiction. Hence limµ→0+
λ∗(µ)

µ = ∞.

Similarly, we prove limµ→∞
λ∗(µ)

µ = 0 by method of contradiction. Suppose limµ→∞
λ∗(µ)

µ >

0, then there exists a positive N4 such that N4 < limµ→∞
λ∗(µ)

µ . By Lemma 3.3(i), there exist

two fixed positive numbers α1,N4
and L1,N4

such that Tµ=1,λ=N4
(α1,N4

) = L1,N4
is an absolute

minimum on (0, β1,N4
). We then need the next claim.

Claim A. limµ→∞ Tµ,λ∗(µ)(α1,N4
) ≥ limµ→∞ Tµ,λ∗(µ)(∥uλ∗(µ)∥∞).

Proof of Claim A. Since N4 < limµ→∞
λ∗(µ)

µ , there exists a positive number µ0 such that, for

all µ > µ0, N4 <
λ∗(µ)

µ . By (1.4) and (1.6), for all µ > µ0, we have β1,N4
< β

1,
λ∗(µ)

µ

. For µ > 0,

by (1.4), we have β
1,

λ∗(µ)
µ

= βµ,λ∗(µ) since f
k,1,

λ∗(µ)
µ

(βµ,λ∗(µ)) = 1
µ fk,µ,λ∗(µ)(βµ,λ∗(µ)) = 0. Hence,

for all µ > µ0, 0 < α1,N4
< β1,N4

< βµ,λ∗(µ). By Lemma 3.3(i), Lemma 3.6(i) and (3.6), for

all µ > µ0, we have Tµ,λ∗(µ)(α1,N4
) ≥ Tµ,λ∗(µ)(∥uλ∗(µ)∥∞). Moreover, limµ→∞ Tµ,λ∗(µ)(α1,N4

) ≥

limµ→∞ Tµ,λ∗(µ)(∥uλ∗(µ)∥∞). So Claim A holds.

We thus have that

lim
µ→∞

(

1

µ

)1/p

Tµ=1,λ=N4
(α1,N4

)

= lim
µ→∞

(

1

µ

)1/p( p − 1

p

)1/p∫ α1,N4

0
[N4(G(α1,N4

)− G(u))− (H̃(α1,N4
)− H̃(u))]−1/pdu

> lim
µ→∞

(

1

µ

)1/p( p − 1

p

)1/p∫ α1,N4

0

[

λ∗(µ)

µ
(G(α1,N4

)− G(u))− (H̃(α1,N4
)− H̃(u))

]−1/p

du

= lim
µ→∞

(

p − 1

p

)1/p ∫ α1,N4

0
[λ∗(µ)(G(α1,N4

)− G(u))− µ(H̃(α1,N4
)− H̃(u))]−1/pdu

= lim
µ→∞

Tµ,λ∗(µ)(α1,N4
)

≥ lim
µ→∞

Tµ,λ∗(µ)(∥uλ∗(µ)∥∞) (by Claim A)

= 1,
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which leads to a contradiction since

lim
µ→∞

(

1

µ

)1/p

Tµ=1,λ=N4
(α1,N4

) = lim
µ→∞

(

1

µ

)1/p

L1,N4 = 0.

Hence limµ→∞
λ∗(µ)

µ = 0.

The proof of Lemma 3.8 is now complete.

Lemma 3.9 (See Theorems 2.1–2.2 and Figs. 2.1–2.2). Consider p-Laplacian problem (1.1), (1.3)

with p > 1 and k ≥ 0. Then, for the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with varying µ > 0,

C < ∥uλ∗∥∞ < D, (3.12)

where C = C(k, µ, λ∗(µ)), D = D(k, µ, λ∗(µ)) satisfy

(p − 1) fk,µ,λ∗(µ)(C)− C f ′k,µ,λ∗(µ)(C) = 0 and pFk,µ,λ∗(µ)(D)− D fk,µ,λ∗(µ)(D) = 0, (3.13)

respectively. Moreover, limµ→0+ ∥uλ∗∥∞ = ∞ and limµ→∞ ∥uλ∗∥∞ = 0.

Proof. By Lemma 3.3(ii) and (3.6), it is easy to see that C < ∥uλ∗∥∞ < D. Equations in (3.13)

follow by Eqs. (3.7) directly. By (3.13), (1.2) and (3.5), we then compute and obtain that

λ∗(µ)

µ
=

∑
n
j=1 bj(rj − p + 1)Crj

∑
m
i=1 ai(qi − p + 1)Cqi

=
∑

n
j=1 bj

rj−p+1

rj+1 Drj

∑
m
i=1 ai

qi−p+1
qi+1 Dqi

,

in which rj − p + 1 > 0 for j = 1, 2, . . . , n and qi − p + 1 > 0 for i = 1, 2, . . . , m. Thus, by

applying Lemma 3.8 and (1.3), we have that limµ→0+ C = limµ→0+ D = ∞ and limµ→∞ C =

limµ→∞ D = 0. Hence limµ→0+ ∥uλ∗∥∞ = ∞ and limµ→∞ ∥uλ∗∥∞ = 0 by (3.12).

The proof of Lemma 3.9 is now complete.

Lemma 3.10. Consider p-Laplacian problem (1.1), (1.3) with p > 2 and k ≥ 0. Then the following

assertions (i)–(ii) hold:

(i) For any fixed µ > 0, limα→β−
µ,λ

Tµ,λ(α) is a continuous, strictly decreasing function of λ on

(0, ∞). Moreover,

lim
λ→0+

lim
α→β−

µ,λ

Tµ,λ(α) = ∞ and lim
λ→∞

lim
α→β−

µ,λ

Tµ,λ(α) = 0.

(ii) For any fixed λ > 0, limα→β−
µ,λ

Tµ,λ(α) is a continuous, strictly increasing function of µ on

(0, ∞). Moreover,

lim
µ→0+

lim
α→β−

µ,λ

Tµ,λ(α) = 0 and lim
µ→∞

lim
α→β−

µ,λ

Tµ,λ(α) = ∞.

Proof. (I) We prove part (i) where

g(u) = kup−1 +
m

∑
i=1

aiu
qi and h(u) = µ

n

∑
j=1

bju
rj (with m, n ≥ 1 and µ > 0)
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satisfy (1.3). We take p∗ = qm+r1

2 > p − 1. Then it is easy to see that
g(u)

up∗ is strictly decreasing

on (0, ∞) and h(u)

up∗ is strictly increasing on (0, ∞). For each fixed s ∈ (0, 1),

h(su)

up−1

[

h(u)g(su)

g(u)h(su)
− 1

]

=
h(u)g(su)− h(su)g(u)

up−1g(u)

=

µ
m

∑
i=1

n

∑
j=1

aibj(s
qi − srj)uqi+rj + µkup−1 ∑

n
j=1 bj(s

p−1 − srj)urj

up−1(kup−1 + ∑
m
i=1 aiuqi)

is a strictly increasing function of u on (0, ∞) and limu→∞
h(u)g(su)
g(u)h(su)

= sqm−rn ∈ (1, ∞) since

s ∈ (0, 1) and qm < rn. So g, h satisfy (H5). For λ ∈ (0, ∞), by (3.4), we obtain that

lim
α→β−

µ,λ

Tµ,λ(α)

= lim
α→β−

µ,λ

(

p − 1

p

)1/p ∫ α

0

[

∫ α

u
fk,µ,λ(t)dt

]−1/p

du

= lim
α→β−

µ,λ

(

p − 1

p

)1/p ∫ α

0

[

∫ α

u

h(βµ,λ)

g(βµ,λ)
g(t)− h(t)dt

]−1/p

du

(since fk,µ,λ(u) = λg(u)− h(u) and by (1.4))

= lim
α→β−

µ,λ

(

p − 1

p

)1/p

α(p−1)/p
∫ 1

0

[

∫ 1

v

h(βµ,λ)

g(βµ,λ)
g(sα)− h(sα)ds

]−1/p

dv

(let u = αv and t = αs )

=

(

p − 1

p

)1/p

β
(p−1−p∗)/p
µ,λ lim

α→β−
µ,λ

∫ 1

0

[

∫ 1

v
sp∗

(

h(βµ,λ)g(sα)

g(βµ,λ) (sα)p∗ −
h(sα)

(sα)p∗

)

ds

]−1/p

dv

=

(

p − 1

p

)1/p

β
(p−1−p∗)/p
µ,λ

∫ 1

0

[

∫ 1

v
lim

α→β−
µ,λ

sp∗

(

h(βµ,λ)g(sα)

g(βµ,λ) (sα)p∗ −
h(sα)

(sα)p∗

)

ds

]−1/p

dv

(by (H5) and the Monotone Convergence Theorem)

=

(

p − 1

p

)1/p ∫ 1

0





∫ 1

v

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

ds





−1/p

dv. (3.14)

By (H5) and since βµ,λ is strictly increasing in λ ∈ (0, ∞), we obtain that limα→β−
µ,λ

Tµ,λ(α) is a

strictly decreasing function of λ on (0, ∞).
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For any number λ0 ∈ (0, ∞), by (3.14), we obtain that

lim
λ→λ0

lim
α→β−

µ,λ

Tµ,λ(α) = lim
λ→λ0

(

p − 1

p

)1/p ∫ 1

0





∫ 1

v

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

ds





−1/p

dv

=

(

p − 1

p

)1/p ∫ 1

0





∫ 1

v
lim

λ→λ0

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

ds





−1/p

dv

(by (H5) and the Monotone Convergence Theorem)

=

(

p − 1

p

)1/p ∫ 1

0





∫ 1

v

h(sβµ,λ0
)

β
p−1
µ,λ0

(

h(βµ,λ0
)g(sβµ,λ0

)

g(βµ,λ0
)h(sβµ,λ0

)
− 1

)

ds





−1/p

dv

= lim
α→β−

µ,λ0

Tµ,λ0
(α).

So we obtain that limα→β−
µ,λ

Tµ,λ(α) is a continuous function of λ on (0, ∞).

Finally, we prove limλ→0+ limα→β−
µ,λ

Tµ,λ(α) = ∞ and limλ→∞ limα→β−
µ,λ

Tµ,λ(α) = 0. By

(3.14), we obtain that

lim
λ→0+

lim
α→β−

µ,λ

Tµ,λ(α) = lim
λ→0+

(

p − 1

p

)1/p ∫ 1

0





∫ 1

v

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

ds





−1/p

dv

=

(

p − 1

p

)1/p ∫ 1

0





∫ 1

v
lim

λ→0+

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

ds





−1/p

dv

and

lim
λ→∞

lim
α→β−

µ,λ

Tµ,λ(α) = lim
λ→∞

(

p − 1

p

)1/p ∫ 1

0





∫ 1

v

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

ds





−1/p

dv

=

(

p − 1

p

)1/p ∫ 1

0





∫ 1

v
lim

λ→∞

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

ds





−1/p

dv

by (H5) and the Monotone Convergence Theorem. For each fixed s ∈ (0, 1), we have that, by

(H5),

lim
λ→0+

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

= lim
βµ,λ→0+

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

= 0

and

lim
λ→∞

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

= lim
βµ,λ→∞

h(sβµ,λ)

β
p−1
µ,λ

(

h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1

)

= ∞.

So limλ→0+ limα→β−
µ,λ

Tµ,λ(α) = ∞ and limλ→∞ limα→β−
µ,λ

Tµ,λ(α) = 0.

(II) The proof of part (ii) is similar to that of part (i). We omit it here.

The proof of Lemma 3.10 is now complete.
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Lemma 3.11. Consider p-Laplacian problem (1.1), (1.3) with p > 2 and k ≥ 0. Then the following

assertions (i)–(ii) hold:

(i) For any fixed µ ∈ (0, ∞), there exists a unique λ̃ > 0 such that limα→β−
µ,λ̃

Tµ,λ̃(α) = 1.

(ii) For any fixed λ ∈ (0, ∞), there exists a unique µ̃ > 0 such that limα→β−
µ̃,λ

Tµ̃,λ(α) = 1.

Proof. (I) We prove part (i). For any fixed µ > 0, by Lemma 3.10(i) and the Intermediate Value

Theorem, there exists a unique λ̃ > 0 such that limα→β−
µ,λ̃

Tµ,λ̃(α) = 1.

(II) We prove part (ii). For any fixed λ > 0, by Lemma 3.10(ii) and the Intermediate Value

Theorem, there exists a unique µ̃ > 0 such that limα→β−
µ̃,λ

Tµ̃,λ(α) = 1.

The proof of Lemma 3.11 is now complete.

Lemma 3.12 (See Theorem 2.2 and Fig. 2.2). Consider p-Laplacian problem (1.1), (1.3) with p > 2

and k ≥ 0. Then, for the ending points
(

λ̃, ∥vλ̃∥∞

)

of Sp,k,µ with varying µ > 0, λ̃ is a continuous,

strictly increasing function of µ > 0. Moreover, limµ→0+ λ̃ = 0 and limµ→∞ λ̃ = ∞.

Proof. For fixed µ2 > µ1 > 0, by Lemma 3.10(ii), limα→β−
µ2 λ̃1

Tµ2,λ̃1
(α) > limα→β−

µ1,λ̃1

Tµ1,λ̃1
(α) =

1. If λ̃1 ≥ λ̃2, then by Lemma 3.10(i), limα→β−
µ2,λ̃1

Tµ2,λ̃1
(α) ≤ limα→β−

µ2,λ̃2

Tµ2,λ̃2
(α) = 1, which

leads to a contradiction. So we obtain λ̃1 < λ̃2. By Lemma 3.11, we obtain λ̃((0, ∞)) = (0, ∞).

Hence λ̃(µ) : (0, ∞) → (0, ∞) is a continuous, strictly increasing function of µ > 0. Moreover,

limµ→0+ λ̃ = 0 and limµ→∞ λ̃ = ∞.

The proof of Lemma 3.12 is now complete.

4 Proofs of main results

Proof of Theorem 2.1. Let 1 < p ≤ 2 and k ≥ 0.

(I)(a) We prove that, for any fixed µ > 0, the bifurcation diagram Sp,k,µ consists of a

continuous curve on the (λ, ∥u∥∞)-plane. For any fixed µ > 0 and λ > 0, it is easy to see that

Tµ,λ(α) defined in (3.4) is a continuous function of α ∈ (0, βµ,λ). By Lemma 3.4(i) and Lemma

3.6(i), we have that, for any fixed µ > 0, the set {α ∈ (0, βµ,λ) : Tµ,λ(α) = 1 for all λ > 0} is

connected. Thus, by Lemma 3.5(i), for any fixed µ > 0, Sp,k,µ consists of a continuous curve

on the (λ, ∥u∥∞)-plane.

(I)(b) Part (i) follows from Proposition 1.1(i).

(II) We prove part (ii) where nonlinearities

g(u) = kup−1 +
m

∑
i=1

aiu
qi and h(u) = µ

n

∑
j=1

bju
rj (with µ > 0)

satisfy (1.3). We prove that g, h satisfy (H1)–(H4). It is first easy to see that g, h ∈ C[0, ∞) ∩

C2(0, ∞) satisfy (H1) with m
g
0 ≡ limu→0+

g(u)
up−1 = k ≥ 0. Hence, by (3.3), λ̂ =

( p−1
k

)(

π
p csc π

p

)p
=

λ̄. By (1.3), it is easy to see that the function

h(u)

g(u)
=

µ ∑
n
j=1 bju

rj

kup−1 + ∑
m
i=1 aiuqi

(µ > 0)

is positive and strictly increasing on (0, ∞) and satisfies that

lim
u→0+

h(u)

g(u)
= 0 and lim

u→∞

h(u)

g(u)
= ∞.
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Thus g, h satisfy (H2). It is clear that, by (1.3),

(p − 2)g′(u)− ug′′(u) =
m

∑
i=1

aiqi(p − 1 − qi)u
qi−1

< 0 on (0, ∞),

(p − 2)h′(u)− uh′′(u) = µ
n

∑
j=1

bjrj(p − 1 − rj)u
rj−1

< 0 on (0, ∞).

Thus g, h satisfy (H3). Finally, by (1.3), we compute that

(p − 2)h′(u)− uh′′(u)

(p − 2)g′(u)− ug′′(u)
=

µ ∑
n
j=1 bjrj(p − 1 − rj)u

rj−1

∑
m
i=1 aiqi(p − 1 − qi)uqi−1

(µ > 0)

=
µ ∑

n
j=1 bjrj(p − 1 − rj)u

rj

∑
m
i=1 aiqi(p − 1 − qi)uqi

which is positive and strictly increasing on (0, ∞) and satisfies that

lim
u→0+

(p − 2)h′(u)− uh′′(u)

(p − 2)g′(u)− ug′′(u)
= 0 and lim

u→∞

(p − 2)h′(u)− uh′′(u)

(p − 2)g′(u)− ug′′(u)
= ∞.

So g, h satisfy (H4). By above, we conclude that g, h satisfy (H1)–(H4). So part (ii) follows from

Lemma 3.1(i).

(III) We prove part (iii). Consider any nonnegative µ1 < µ2. If, on the (λ, ∥u∥∞)-plane,

bifurcation diagrams Sp,k,µ1
and Sp,k,µ2

attain a fixed number ∥u∥∞ = ᾱ for any feasible ᾱ > 0

at λ = λ1 > 0 and λ = λ2 > 0, respectively. Then by (3.6), we have the following equalities:

Tµ1,λ1
(ᾱ) =

(

p − 1

p

)1/p
∫ ᾱ

0
[λ1(G(ᾱ)− G(u))− µ1(H̃(ᾱ)− H̃(u))]−1/pdu = 1, (4.1)

Tµ2,λ2
(ᾱ) =

(

p − 1

p

)1/p ∫ ᾱ

0
[λ2(G(ᾱ)− G(u))− µ2(H̃(ᾱ)− H̃(u))]−1/pdu = 1. (4.2)

Suppose that λ1 ≥ λ2, since 0 < µ1 < µ2 and λ1 ≥ λ2, we have that

λ1(G(ᾱ)− G(u))− µ1(H̃(ᾱ)− H̃(u)) > λ2(G(ᾱ)− G(u))− µ2(H̃(ᾱ)− H̃(u)).

Thus Tµ1,λ1
(ᾱ) < Tµ2,λ2

(ᾱ), which leads to a contradiction since the above equality (4.1) for

Tµ1,λ1
(ᾱ) and equality (4.2) for Tµ2,λ2

(ᾱ) are both equal to 1. So λ1 < λ2. Hence, for any

nonnegative µ1 < µ2, on the (λ, ∥u∥∞)-plane, Sp,k,µ2
lies on the right hand side of Sp,k,µ1

.

(IV) We prove part (iv). By Lemma 3.7, λ∗(µ) : (0, ∞) → (0, λ̄) is a continuous, strictly

increasing function. Moreover, limµ→0+ λ∗(µ) = 0 and limµ→∞ λ∗(µ) = λ̄. It is easy to show

that ∥uλ∗∥∞ (=
∥

∥uµ,λ∗

∥

∥

∞
) is a continuous function of µ > 0. By Lemma 3.9, we have that

limµ→0+ ∥uλ∗∥∞ = ∞ and limµ→∞ ∥uλ∗∥∞ = 0.

In particular, when k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) =

λuq − µur, we let u = uµ,λ be a (classical) positive solution of (1.1), (1.3). Then the change of

variables

uµ,λ(x) =

(

λ

µ

)1/(r−q)

v(µ
p−q−1
p(r−q) λ

r−p+1
p(r−q) x)

transforms uµ,λ into a solution v of

{

(

ϕp(v′(x))
)′
+ vq − vr = 0, −L < x < L,

v(−L) = v(L) = 0,
(4.3)
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with

L ≡ µ
p−q−1
p(r−q) λ

r−p+1
p(r−q) . (4.4)

Cf. [5, p. 463]. For p-Laplacian problem (4.3) with 1 < p ≤ 2 and 0 < p − 1 < q < r, we define

the time map formula as follows:

T̃(α) =

(

p − 1

p

)1/p ∫ α

0

dv
[

F̃(α)− F̃(v)
]1/p

for 0 < α < 1, (4.5)

where F̃(v) ≡
∫ v

0 f̃ (t)dt and f̃ (v) ≡ vq − vr. By [14, Lemma 3.1], there exist two fixed positive

numbers ∥v∗∥∞ and L∗ such that T̃(α) has exactly one critical point, an absolute minimum

T̃(∥v∗∥∞) = L∗, on (0, 1). Thus, by (4.4),

L∗ = µ
p−q−1
p(r−q) (λ∗)

r−p+1
p(r−q) ,

and hence
(

λ∗

µ

)1/(r−q)

= (L∗)
p

r−p+1 µ
1

p−1−r .

So we get that

∥uλ∗∥∞ =

(

λ∗

µ

)1/(r−q)

∥v∗∥∞ = (L∗)
p

r−p+1 µ
1

p−1−r ∥v∗∥∞ .

Since r > p − 1, ∥uλ∗∥∞ is a continuous, strictly decreasing function of µ > 0.

(V) We prove part (v). We consider 0 < α < βµ,λ and have that

Tµ=0,λ(α) =

(

p − 1

p

)1/p ∫ α

0
[λ(G(α)− G(u))]−1/pdu

<

(

p − 1

p

)1/p ∫ α

0
[λ(G(α)− G(u))− µ(H̃(α)− H̃(u))]−1/pdu = Tµ,λ(α).

By (3.4), (1.16) and (1.17), we obtain that

λ1/pTµ=0,λ(α) = T f̄ (α) = (cp,qαp−1−q)1/p.

If Tµ=0,λ(α) = 1, then α =
(

cp,q

λ

)
1

q−p+1
. Then by (3.6) and Proposition 1.1(ii), we obtain that

0 <

( cp,q

λ

)

1
q−p+1

< ∥uλ∥∞ < βµ,λ

since T f̄ (α) is a strictly decreasing function on (0, ∞) and Tµ=0,λ

(( cp,q

λ

)
1

q−p+1
)

= 1. So (2.1)

holds.

The proof of Theorem 2.1 is now complete.

Proof of Theorem 2.2. Let p > 2 and k ≥ 0.

(I)(a) We have that, for any fixed µ > 0, the bifurcation diagram Sp,k,µ consists of a contin-

uous curve on the (λ, ∥u∥∞)-plane. The proof is exactly the same as that given in part (I)(a) of

the proof of Theorem 2.1 with 1 < p ≤ 2. So we omit it here.

(I)(b) Part (i) follows from Proposition 1.1(i).
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(II)(a) We prove part (ii) where

g(u) = kup−1 +
m

∑
i=1

aiu
qi and h(u) = µ

n

∑
j=1

bju
rj (with µ > 0)

satisfy (1.3). We prove that g, h satisfy (H1)–(H5). We first notice that the proofs of g, h

satisfying (H1)–(H4) when p > 2 are exactly the same as those of g, h satisfying (H1)–(H4)

when 1 < p ≤ 2, given in part (II) of the proof of Theorem 2.1. So we omit them here. We

then show that g, h satisfy (H5). We take the number p∗ = qm+r1

2 > p − 1 by (1.3). It is easy to

see that
g(u)

up∗
= kup−1−p∗ +

m

∑
i=1

aiu
qi−p∗ is strictly decreasing on (0, ∞)

and
h(u)

up∗
= µ

n

∑
j=1

bju
rj−p∗ is strictly increasing on (0, ∞).

For each fixed s ∈ (0, 1), we compute that

h(su)

up−1

[

h(u)g(su)

g(u)h(su)
− 1

]

=
h(u)g(su)− h(su)g(u)

up−1g(u)

=
µ ∑

m
i=1 ∑

n
j=1 aibj(s

qi − srj)uqi+rj + µkup−1 ∑
n
j=1 bj(s

p−1 − srj)urj

up−1(kup−1 + ∑
m
i=1 aiuqi)

which is a strictly increasing function of u on (0, ∞) and satisfies that

lim
u→∞

h(u)g(su)

g(u)h(su)
= sqm−rn ∈ (1, ∞)

since s ∈ (0, 1) and qm < rn. So g, h satisfy (H5). By above, we conclude that g, h satisfy

(H1)–(H5). So part (ii) follows from Lemma 3.1(ii).

(II)(b) By Lemma 3.10(ii), we have that

lim
µ→0+

lim
α→β−

µ,λ̄

Tµ,λ̄(α) = 0, lim
µ→∞

lim
α→β−

µ,λ̄

Tµ,λ̄(α) = ∞

and limα→β−
µ,λ̄

Tµ,λ̄(α) is a continuous, strictly increasing function of µ on (0, ∞). So by the

Intermediate Value Theorem, there exists a positive number µ̂ such that limα→β−
µ,λ̄

Tµ,λ̄(α) < 1

if 0 < µ < µ̂, limα→β−
µ,λ̄

Tµ,λ̄(α) = 1 if µ = µ̂, and limα→β−
µ,λ̄

Tµ,λ̄(α) > 1 if µ > µ̂.

For each fixed k > 0 and µ > 0, limα→β−
µ,λ̃

Tµ,λ̃(α) = 1 by Lemma 3.1(ii) and limα→β−
µ,λ

Tµ,λ(α)

is a continuous, strictly decreasing function of λ on (0, ∞) by Lemma 3.10(i). Hence we obtain

that λ̃ < λ̄ if 0 < µ < µ̂, λ̃ = λ̄ if µ = µ̂, and λ̄ < λ̃ if µ > µ̂.

For each µ > 0 and k = 0, we have λ̄ = ∞. By Lemma 3.10(i), limλ→∞ limα→β−
µ,λ

Tµ,λ(α) = 0.

Hence limα→β−
µ,λ̄

Tµ,λ̄(α) = 0. Since limα→β−
µ,λ̃

Tµ,λ̃(α) = 1 by Lemma 3.1(ii) and limα→β−
µ,λ

Tµ,λ(α)

is a continuous, strictly decreasing function of λ on (0, ∞) by Lemma 3.10(i), we obtain that

λ̃ < λ̄ and µ̂ = ∞.

(III) The proof of part (iii) of Theorem 2.2 is exactly the same as that of part (iii) of Theo-

rem 2.1. So we omit it here.
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(IV) We prove part (iv). By Lemma 3.12, λ̃(µ) : (0, ∞) → (0, ∞) is a continuous, strictly

increasing function. Moreover, limµ→0+ λ̃ = 0 and limµ→∞ λ̃ = ∞. We let u = uµ,λ be a

(classical) positive solution of (1.1), (1.3). Then the change of variables

uµ,λ(x) = v(µ
1
p x)

transforms uµ,λ into a solution v of

{

(

ϕp(v′(x))
)′
+ λ

µ (kvp−1 + ∑
m
i=1 aiv

qi)− ∑
n
j=1 bjv

rj , − L < x < L,

v(−L) = v(L) = 0,
(4.6)

with

L ≡ µ
1
p .

Cf. [5, p. 463]. By Lemma 3.11(i), for any fixed µ ∈ (0, ∞), there exists a unique λ̃(µ) > 0

such that limα→β−
µ,λ̃(µ)

Tµ,λ̃(µ)(α) = 1. Then there exists a unique η = λ̃(µ)
µ > 0 such that

limα→β−
µ,λ̃(µ)

T1,η(α) = µ
1
p and βµ,λ̃(µ) = β1,η . For 0 < µ1 < µ2,

lim
α→β−

µ1,λ̃(µ1)

T1,η1
(α) = µ

1
p

1 < µ
1
p

2 = lim
α→β−

µ2,λ̃(µ2)

T1,η2
(α).

Hence η1 > η2 by Lemma 3.10(i). Similarly, for any fixed η ∈ (0, ∞), there exists a unique

µ > 0 such that limα→β−
1,η

T1,η(α) = µ
1
p and βµ,λ̃(µ) = β1,η . It is clear that β1,η is a continuous,

strictly increasing function of η on (0, ∞). Hence

∥vλ̃(µ1)
∥∞ = βµ1,λ̃(µ1)

= β1,η1
> β1,η2

= βµ2,λ̃(µ2)
= ∥vλ̃(µ2)

∥∞.

So ∥vλ̃∥∞ is a continuous, strictly decreasing function of µ > 0. By Lemma 3.10(i),

limµ→0+ η(µ) = ∞ and limµ→∞ η(µ) = 0 since limα→β−
1,η

T1,η(α) = µ
1
p . Hence

lim
µ→0+

∥vλ̃(µ)∥∞ = lim
µ→0+

βµ,λ̃(µ) = lim
η→∞

β1,η = ∞

and

lim
µ→∞

∥vλ̃(µ)∥∞ = lim
µ→∞

βµ,λ̃(µ) = lim
η→0+

β1,η = 0.

(V) The proof of part (v) of Theorem 2.2 is exactly the same as that of part (iv) of Theorem

2.1. So we omit it here.

(VI) The proof of part (vi) of Theorem 2.2 is exactly the same as that of part (v) of Theorem

2.1. So we omit it here.

The proof of Theorem 2.2 is now complete.

5 A final remark

For evolutionary bifurcation diagram Sp,k,µ on the (λ, ∥u∥∞)-plane studied in Theorems 2.1–

2.2, analogically, we also study evolutionary bifurcation diagrams Σp,k,λ on the (µ, ∥u∥∞)-plane

defined by:

Σp,k,λ =
{

(µ,
∥

∥uµ

∥

∥

∞
) : µ > 0 and uµ is a (classical) positive solution of (1.1), (1.3)

}

, λ > 0.
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Applying Theorems 2.1–2.2 and by modified analytic techniques used in the proof of [7, The-

orem 2.2], we obtain the following Theorem 5.1 and Fig. 5.1 with 1 < p ≤ 2 and Theorem 5.2

and Fig. 5.2 with p > 2 for evolutionary bifurcation diagrams Σp,k,λ on the (µ, ∥u∥∞)-plane.

We omit the proofs here.

Figure 5.1: Evolutionary bifurcation diagrams Σp,k,λ for (1.1), (1.3) with fixed

p ∈ (1, 2], k ≥ 0 and varying λ > 0.

Theorem 5.1 (See Fig. 5.1). Let 1 < p ≤ 2 and k ≥ 0. Consider p-Laplacian problem (1.1),

(1.3) with varying λ > 0. Then the bifurcation diagram Σp,k,λ consists of a continuous curve on the

(µ, ∥u∥∞)-plane and the following assertions (i)–(iii) hold:

(i) If

0 < λ < λ̄ =

(

p − 1

k

)(

π

p
csc

π

p

)p
{

< ∞ if k > 0,

= ∞ if k = 0,

then:

(a) Σp,k,λ starts at some point (0, b) where b > 0, tends to the positive ∥u∥∞-axis as µ → 0+,

and is a reversed ⊂-shaped curve with exactly one turning point at some point
(

µ∗,
∥

∥uµ∗

∥

∥

∞

)

satisfying µ∗
> 0 and

∥

∥uµ∗

∥

∥

∞
> b. More precisely, problem (1.1), (1.3) has exactly two

(classical) positive solutions uµ, vµ with uµ < vµ for 0 < µ < µ∗, exactly one (classi-

cal) positive solution uµ∗ for µ = µ∗, and no (classical) positive solution for µ > µ∗. In

addition, limµ→0+
∥

∥uµ

∥

∥

∞
= b and limµ→0+

∥

∥vµ

∥

∥

∞
= ∞.

(b) For the starting points (0, b) of Σp,k,λ with 0 < λ < λ̄, b = b(λ) is a continuous, strictly

decreasing function of λ ∈ (0, λ̄), limλ→0+(0, b) = (0, ∞) and limλ→λ̄−(0, b) = (0, 0).

(c) For the turning points
(

µ∗,
∥

∥uµ∗

∥

∥

∞

)

of Σp,k,λ with 0 < λ < λ̄, µ∗ is a continuous, strictly

increasing function of λ ∈ (0, λ̄),
∥

∥uµ∗

∥

∥

∞
is a continuous function of λ ∈ (0, λ̄),

lim
λ→0+

(µ∗,
∥

∥uµ∗

∥

∥

∞
) = (0, ∞) and lim

λ→λ̄−
(µ∗,

∥

∥uµ∗

∥

∥

∞
) = (∞, 0).

In particular, when k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) =

λuq − µur, then
∥

∥uµ∗

∥

∥

∞
is a strictly decreasing function of λ ∈ (0, λ̄).
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(ii) If λ ≥ λ̄, then Σp,k,λ emanates from the positive ∥u∥∞-axis as µ → 0+, tends to the positive

µ-axis as µ → ∞, and is a strictly monotone curve. More precisely, problem (1.1), (1.3) has

exactly one (classical) positive solution for µ > 0.

(iii) For any positive λ2 > λ1, Σp,k,λ2
lies on the right hand side of Σp,k,λ1

. (So Σp,k,λ1
and Σp,k,λ2

do

not intersect.)

Figure 5.2: Evolutionary bifurcation diagrams Σp,k,λ for (1.1), (1.3) with fixed

p > 2, k ≥ 0 and varying µ ≥ 0.

Theorem 5.2 (See Fig. 5.2). Let p > 2 and k ≥ 0. Consider p-Laplacian problem (1.1), (1.3) with

varying λ > 0. Then the bifurcation diagram Σp,k,λ consists of a continuous curve on the (µ, ∥u∥∞)-

plane and the following assertions (i)–(iv) hold:

(i) If

0 < λ < λ̄ =

(

p − 1

k

)(

π

p
csc

π

p

)p
{

< ∞ if k > 0,

= ∞ if k = 0,

then:

(a) Σp,k,λ starts at some point (0, b) where b > 0, ends at some point
(

µ̃,
∥

∥vµ̃

∥

∥

∞

)

satisfying

0 < µ̃ < ∞ and 0 <

∥

∥vµ̃

∥

∥

∞
= vµ̃(0) = βµ̃,λ satisfying fk,µ̃,λ(βµ̃,λ) = 0 (that is, vµ̃(x) ≡

limλ→λ̃− vλ(x) is a flat-core positive solution of (1.1), (1.3), see below for (classical)

positive solutions vλ(x) with µ̃ < µ < µ∗). Moreover, Σp,k,λ is a reverse ⊂-shaped curve

with exactly one turning point at some point (µ∗,
∥

∥uµ∗

∥

∥

∞
) satisfying

0 < µ̃ < µ∗ and 0 <

∥

∥uµ∗

∥

∥

∞
<

∥

∥vµ̃

∥

∥

∞
= βµ̃,λ.

More precisely, problem (1.1), (1.3) has exactly two (classical) positive solutions uµ, vµ with

uµ < vµ for µ̃ < µ < µ∗, exactly one (classical) positive solution uµ∗ for µ = µ∗ and 0 <

µ ≤ µ̃, and no (classical) positive solution for µ > µ∗. In addition, limµ→0+
∥

∥uµ

∥

∥

∞
= b

and limµ→µ̃−

∥

∥vµ

∥

∥

∞
=
∥

∥vµ̃

∥

∥

∞
= βµ̃,λ.
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(b) For the starting points (0, b) of Σp,k,λ with 0 < λ < λ̄, b = b(λ) is a continuous, strictly

decreasing function of λ ∈ (0, λ̄), limλ→0+(0, b) = (0, ∞) and limλ→λ̄−(0, b) = (0, 0).

(c) For the turning points
(

µ∗,
∥

∥uµ∗

∥

∥

∞

)

of Σp,k,λ with 0 < λ < λ̄, µ∗ is a continuous, strictly

increasing function of λ ∈ (0, λ̄),
∥

∥uµ∗

∥

∥

∞
is a continuous function of λ ∈ (0, λ̄),

lim
λ→0+

(µ∗,
∥

∥uµ∗

∥

∥

∞
) = (0, ∞) and lim

λ→λ̄−
(µ∗,

∥

∥uµ∗

∥

∥

∞
) = (∞, 0).

In particular, when k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) =

λuq − µur, then
∥

∥uµ∗

∥

∥

∞
is a strictly decreasing function of λ ∈ (0, λ̄).

(ii) If λ ≥ λ̄, then Σp,k,λ emanates from the positive µ-axis as µ → ∞, and ends at some point
(

µ̃,
∥

∥vµ̃

∥

∥

∞

)

in which vµ̃ is a flat-core positive solution. Moreover, Σp,k,λ is a strictly monotone

curve. More precisely, problem (1.1), (1.3) has exactly one (classical) positive solution for µ > µ̃.

(iii) For any positive λ2 > λ1, Σp,k,λ2
lies on the right hand side of Σp,k,λ1

. (So Σp,k,λ1
and Σp,k,λ2

do

not intersect.)

(iv) For the ending points
(

µ̃,
∥

∥vµ̃

∥

∥

∞

)

of Σp,k,λ with λ > 0, µ̃ is a continuous, strictly increasing

function of λ > 0,
∥

∥vµ̃

∥

∥

∞
is a continuous, strictly decreasing function of λ > 0,

lim
λ→0+

(

µ̃,
∥

∥vµ̃

∥

∥

∞

)

= (0, ∞) and lim
λ→∞

(

µ̃,
∥

∥vµ̃

∥

∥

∞

)

= (∞, 0).
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Abstract. We are concerned with the radial solutions of the Dirichlet problem
−∆u = K(|x|) f (u) on the exterior of the ball of radius R > 0 centered at the ori-
gin in R

N with N ≥ 3 where f is superlinear at ∞ and has a singularity at 0 with
f (u) ∼ 1

|u|q−1u
and 0 < q < 1 for small u. We prove that if K(|x|) ∼ |x|−α with

α > 2(N − 1) then there exist two infinite families of sign-changing radial solutions.

Keywords: exterior domains, singular, superlinear, radial solution.
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1 Introduction

In this paper we study the radial solutions of

−∆u = K(|x|) f (u) on R
N\BR(0) (1.1)

u(x) = 0 on ∂BR(0), lim
|x|→∞

u(x) = 0 (1.2)

where ∆ : Ck(RN)→ Ck−2(RN) denotes the N-dimensional Laplacian, BR(0) denotes the unit

ball centered at the origin, |x| denotes the Euclidean distance of x, and u : R
N → R with

N ≥ 3.

Numerous papers have proved the existence of positive solutions of these equations with

K(|x|) = 1. See for example [4, 5, 10]. In [10], Miyamoto and Naito studied the problem in

the domain BR(0) \ {0}. Some other papers have dealt with the positive solutions of these

equations with various nonlinearities f (u) and K(|x|) ∼ |x|−α with α > 0. (See [1, 9, 11]).

We prove the existence of sign-changing solutions of (1.1)–(1.2) and analyze their proper-

ties. The papers [2, 3, 7, 8] examined the case where the non-linear function f (u) in (1.1) has a

unique positive zero. We choose a superlinear function f (u) that has no positive zeros.

Our study of the solutions of (1.1)–(1.2) is based on the following assumptions:

BCorresponding author. Email: narayanaryal@my.unt.edu
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(H1) f : R\{0} → R is odd, locally Lipschitz, and f > 0 on (0, ∞). (So, by the symmetry of f

about the origin, f < 0 on (−∞, 0)),

(H2) f (u) = |u|p−1u + g(u) with p > 1 for large u and limu→∞
|g(u)|
|u|p = 0,

(H3) there exists a locally Lipschitz function g1 : R → R such that f (u) = 1
|u|q−1u

+ g1(u) with

0 < q < 1 and g1(0) = 0,

(H4) K(r), K′(r) are continuous on [R, ∞) with K(r) > 0 such that 2(N − 1) + rK′
K < 0 on

[R, ∞),

(H5) there exist a constant k0 > 0 and α > 2(N − 1) such that k0
rα ≤ K(r) on [R, ∞).

Let F(u) =
∫ u

0 f (t) dt. From (H3) it follows that f is integrable at 0 and therefore F is

continuous with F(0) = 0. Also, since f is odd and f > 0 on (0, ∞), it follows that F is even

and F(u) > 0 for u ̸= 0.

Since we are studying the radial solutions of (1.1)–(1.2), we let u(x) = u(|x|) = u(r) where

r = |x| =
√

x2
1 + x2

2 + · · ·+ x2
N . Denoting ∂u

∂r by u′ and ∂2u
∂r2 by u′′ then (1.1)–(1.2) becomes:

u′′(r) +
N − 1

r
u′(r) + K(r) f (u) = 0 for R < r < ∞, (1.3)

u(R) = 0, lim
r→∞

u(r) = 0. (1.4)

In this paper we prove the following:

Theorem 1.1. Assume (H1)–(H5) hold and N ≥ 3. There exist two infinite families of non-trivial

radial solutions of (1.3)–(1.4). In addition, ∃n0 ≥ 0 such that for every n ≥ n0 then there are at least

two solutions of (1.3)–(1.4) with exactly n zeros on (R, ∞).

2 Preliminaries and behavior for large a

We prove the existence of a solution of (1.3)–(1.4) with

u(R) = 0, u′(R) = a > 0 (2.1)

on [R, R + ϵ) for some ϵ > 0. We denote u(r) by ua(r) to emphasize the dependence of u on

the initial parameter a. We begin first by making the following change of variables

ua(r) = va(r
2−N).

Let r2−N = t and denote R2−N by R∗. We observe then that solving (1.3), (2.1) is equivalent to

solving the following initial value problem

v′′a + h(t) f (va) = 0 on (0, R∗) (2.2)

va(R∗) = 0, v′a(R∗) = − aRN−1

N − 2
< 0 (2.3)
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where h(t) = t
2(N−1)

2−N K(t
1

2−N )

(N−2)2 . We will then try to find values of a such that va(0) = 0.

From (H4), (H5), and the definition of h(t) it follows that

h(t) > 0, h′(t) > 0 on (0, R∗]

and ∃h1 > 0 such that h1tα̃ ≤ h(t) on (0, R∗] where α̃ =
α− 2(N − 1)

N − 2
> 0.

(2.4)

We first prove the existence of a solution for (2.2)–(2.3) on [R∗ − ϵ, R∗] for some ϵ > 0. To

do this, we transform this equation into an integral equation and use the contraction mapping

principle to solve it. Let t > 0 and let va be a solution of (2.2)–(2.3). By integrating (2.2) over

(t, R∗) and using (2.3) we obtain

v′a(t) = −
aRN−1

N − 2
+

∫ R∗

t
h(x) f (va(x)) dx. (2.5)

Now integrate (2.5) over (t, R∗) and use (2.3). This gives

va(t) =
aRN−1

N − 2
(R∗ − t)−

∫ R∗

t

(

∫ R∗

s
h(x) f (va(x)) dx

)

ds. (2.6)

Letting va(t) = (R∗ − t)y(t) and y(R∗) ≡ limt→R∗−
va(t)
R∗−t = −v′a(R∗) = aRN−1

N−2 , we can

rewrite the equation (2.6) in terms of y(t) as

y(t) =
aRN−1

N − 2
− 1

R∗ − t

∫ R∗

t

(

∫ R∗

s
h(x) f ((R∗ − x)y(x)) dx

)

ds. (2.7)

We now solve (2.7) by defining an operator on an appropriate space and showing that it

has a fixed point. For this, let a > 0 and consider the Banach space

X =

{

y ∈ C[R∗ − ϵ, R∗] : y(R∗) =
aRN−1

N − 2
,

∣

∣

∣

∣

y(t)− aRN−1

N − 2

∣

∣

∣

∣

≤ aRN−1

2(N − 2)
on [R∗ − ϵ, R∗]

}

equipped with the supremum norm defined by

∥y∥ = sup
x∈[R∗−ϵ,R∗]

|y(x)|.

We define a map T : X → C[R∗ − ϵ, R∗] by

(Ty)(t) =
aRN−1

N − 2
− 1

R∗ − t

∫ R∗

t

(

∫ R∗

s
h(x) f ((R∗ − x)y(x)) dx

)

ds for R∗− ϵ ≤ t < R∗ (2.8)

and T(R∗) = aRN−1

N−2 . Since f = 1
|u|q−1u

+ g1(u) by (H3), we have from (2.8) that

(Ty)(t)=
aRN−1

N − 2
− 1

R∗ − t

∫ R∗

t

(

∫ R∗

s
h(x)

(

1

(R∗ − x)qyq(x)
+ g1 ((R∗ − x)y(x))

)

dx

)

ds. (2.9)

Since 0 < q < 1 by (H3), it follows that 1
(R∗−x)q is integrable on [0, R∗]. Using this fact

together with that g1 is locally Lipschitz, it can be shown that T is a contraction mapping

from X into itself for sufficiently small ϵ (the details are carried out in [3]). Thus by the

contraction mapping principle [6], there exists a unique element y ∈ X such that Ty = y on
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[R∗ − ϵ, R∗]. Hence, we obtain a solution va(t) = (R∗ − t)y(t) of (2.2)–(2.3) on [R∗ − ϵ, R∗] if

a > 0 and ϵ > 0 is sufficiently small.

Next let (R1, R∗] be the maximal half-open interval of existence of the solution to (2.2)–

(2.3). Now we define the energy of the solution

Ea =
1

2

v′2a
h(t)

+ F(va) for R1 < t ≤ R∗. (2.10)

Then it follows from (2.2) and (2.4) that

E′a = −
v′2a h′

2h2
≤ 0 on (R1, R∗]. (2.11)

Thus, Ea is non-increasing on (R1, R∗] and hence for R1 < t ≤ R∗ we have

0 <
1

2

a2R2(N−1)

(N − 2)2h(R∗)
=

1

2

v′2a (R∗)
h(R∗)

= Ea(R∗) ≤ Ea =
1

2

v′2a
h(t)

+ F(va) on (R1, R∗]. (2.12)

So Ea > 0 on (R1, R∗].

We next claim that the solution of (2.2)–(2.3) exists on [0, R∗] and analyze the properties of

the solution in several lemmas.

Lemma 2.1. Assume (H1)–(H5) hold, N ≥ 3 and a > 0. Let va be the solution of (2.2)–(2.3). Then

va can be extended to the maximal interval [0, R∗].

Proof. Let va be the unique solution of (2.2)–(2.3) on the maximal half-open interval of exis-

tence (R1, R∗]. We show that R1 = 0. Suppose on the contrary that R1 > 0. Using (2.2), (2.4)

and that F(va) ≥ 0 we obtain

(

1

2
v′2a + h(t)F(va)

)′
= h′(t)F(va) ≥ 0 on (R1, R∗]. (2.13)

Let 0 < t < R1. Now by integrating (2.13) over (t, R∗), using (2.3) and that h(t) > 0,

F(va) ≥ 0 we obtain

1

2
v′2a ≤

1

2
v′2a + h(t)F(va) ≤

1

2

a2R2(N−1)

(N − 2)2
on (R1, R∗]. (2.14)

Therefore,

|v′a| ≤
aRN−1

N − 2
on (R1, R∗]. (2.15)

Also, we have

|va| =
∣

∣

∣

∣

∫ R∗

t
v′a ds

∣

∣

∣

∣

≤
∫ R∗

t
|v′a| ds ≤ aRN−1

N − 2
(R∗ − t) ≤ aRN−1

N − 2
R∗ =

aR

N − 2
on (R1, R∗]. (2.16)

Now let (tn) ⊂ (R1, R∗] such that tn → R+
1 . Then by the mean value theorem and (2.15) we

obtain

|va(tn)− va(tm)| = |v′a(cn,m)||tn − tm| ≤
aRN−1

N − 2
|tn − tm| → 0 as m, n→ ∞.
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This shows that (va(tn)) is a Cauchy sequence on (R1, R∗] and so ∃L ∈ R such that

limt→R+
1

va(t) = L. Also since h(t)F(va) and h′(t)F(va) are continuous on (R1, R∗], inte-

grating (2.13) on (t, R∗) we see that limt→R+
1

v′a(t) = L1 exists. From (2.12) we see 0 <

Ea ≤ 1
2

L2
1

h(R∗) + F(L) on (R1, R∗] which shows that L and L1 cannot both be zero. Now if

L = 0 then L1 ̸= 0 and we can use the contraction mapping principle as we did earlier to

extend our solution to (R1 − δ, R∗] for some δ > 0. On the other hand, if L ̸= 0, then we can

use the standard existence theorem for ordinary differential equations to obtain a solution on

(R1 − δ, R∗] for some δ > 0. Therefore in both cases the solution of (2.2)-(2.3) can be extended

to (R1− δ, R∗] for some δ > 0, contradicting the maximality of (R1, R∗]. Hence R1 = 0. It then

follows from (2.15) and (2.16) that va and v′a are bounded on (0, R∗] and so in a similar way to

earlier we see that the limits limt→0+ va(t) and limt→0+ v′a(t) exist. Thus va and v′a are defined

and continuous [0, R∗].

Remark 2.2. If va solves (2.2)–(2.3) and z ∈ (0, R∗) is such that va(z) = 0 then by (2.12),

0 < Ea(za) = 1
2

v′2a (z)
h(z)

and hence v′a(z) ̸= 0. Thus the zeros of va on (0, R∗) are simple. Also,

since limu→0 | f (u)| = ∞, by (H3) it follows that the solution to (2.2)–(2.3) is twice differen-

tiable except at points where va(t0) = 0. Therefore, by a solution va of (2.2)–(2.3) we mean a

continuously differentiable function va on [0, R∗] that satisfies the equation (2.6) with (2.3).

Lemma 2.3. Assume (H1)–(H5) hold, N ≥ 3 and a > 0. Let va solve (2.2)–(2.3) on [0, R∗]. Then va

depends continuously on the initial parameter a on [0, R∗].

Proof. Let 0 < a1 < a < a2. Then from (2.15) we have

|v′a| ≤
aRN−1

N − 2
≤ a2c1 for all a such that 0 < a1 ≤ a ≤ a2 (2.17)

where c1 = RN−1

N−2 . And from (2.16) we have

|va| =
aR

N − 2
≤ a2c2 for all a such that 0 < a1 ≤ a ≤ a2 (2.18)

where c2 = R
N−2 . Thus, (2.17) and (2.18) show that the upper bounds for |va|, |v′a| can be

chosen to be independent of a on [0, R∗] for all a such that 0 < a1 ≤ a ≤ a2.

Now let ã > 0 and suppose a → ã. Then, we want to show that va → vã uniformly on

[0, R∗]. Suppose on the contrary, that there is a subsequence (aj) ⊂ R such that aj → ã as

j→ ∞ and ϵ0 > 0 such that

|vaj
(tj)− vã(tj)| ≥ ϵ0 for some sequence tj ∈ [0, R∗]. (2.19)

Since aj → ã, there exists N0 ∈ N such that for all j ≥ N0 |aj| ≤ ã + 1. From (2.15) and (2.16)

we know that va and v′a are uniformly bounded on the compact domain [0, R∗]. Hence, by the

Arzelà–Ascoli theorem, there exists a subsequence (vajk
) ⊂ (vaj

) such that vajk
→ vã uniformly

on [0, R∗] as k→ ∞. Therefore, as k→ ∞ from (2.19) we obtain

0← |vajk
(tjk)− vã(tjk)| ≥ ϵ0

which is a contradiction. Thus, va → vã uniformly on [0, R∗] and this completes the proof of

the lemma.
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Lemma 2.4. Assume (H1)–(H5) hold and N ≥ 3. If a > 0 and va is a solution of (2.2)–(2.3), then va

has at most finitely many zeros on (0, R∗).

Proof. Suppose on the contrary that ∃ a sequence (zk,a) ⊂ (0, R∗) with 0 < · · · < z2,a < z1,a

such that va(zk,a) = 0. Then zk,a converges to some z∗a on [0, R∗]. Since va has infinitely many

zeros, zk,a, and v′a(zk,a) ̸= 0 by the Remark 2.2, it follows that va has infinitely many local

extrema, {Mk,a}∞

k=1, with zk+1,a < Mk,a < zk,a and so limk→∞ Mk,a = z∗a . Since Ea(t) > 0 on

(0, R∗] and E is non-increasing by (2.12) we have F(va(Mk,a)) = Ea(Mk,a) ≥ 1
2

a2R2(N−1)

(N−2)2h(R∗) > 0.

So ∃βa > 0 such that |va(Mk,a)| ≥ βa for all k. Now by the mean value theorem and (2.15)

∃tk,a ∈ (Mk,a, zk,a) such that

0< βa≤ |va(Mk,a)|= |va(Mk,a)− va(zk,a)|= |v′a(tk,a)||Mk,a − zk,a| ≤
aRN−1

(N − 2)
|Mk,a − zk,a|. (2.20)

Since Mk,a → z∗a and zk,a → z∗a as k → ∞, the right-hand side of (2.20) goes to 0 as k → ∞

which gives a contradiction. Therefore va has at most finitely many zeros on (0, R∗) for

a > 0.

Lemma 2.5. Assume (H1)–(H5) hold, N ≥ 3 and let va solve (2.5). Then for a > 0 sufficiently large

va has a local maximum, Ma. In addition, va(Ma)→ ∞ and Ma → R∗ as a→ ∞.

Proof. First we show for any 0 ≤ t0 < R∗ that max[t0,R∗) |va(t)| → ∞ as a→ ∞.

If va has a local maximum Ma ∈ [t0, R∗), then v′a(Ma) = 0. So, by letting t = Ma in (2.12)

we obtain

F(va(Ma)) ≥
1

2

a2R2(N−1)

h(R∗)(N − 2)2
. (2.21)

Since h(R∗) > 0, it follows that the right-hand side of (2.21) approaches infinity as a → ∞

and hence from the definition of F we see that

va(Ma)→ ∞ as a→ ∞. (2.22)

On the other hand, if va has no local maximum on (t0, R∗) then va is decreasing on (t0, R∗).
We want to show that max[t0,R∗) |va(t)| → ∞ as a → ∞. Suppose on the contrary that this is

false. Then there exists a constant c3 > 0 independent of a such that |va(t)| ≤ c3 on [t0, R∗].
Then by the continuity of F there exists c4 > 0 such that F(va(t)) ≤ c4. Using this and (2.3), it

follows from (2.12) that

1

2

v′2a (t)
h(t)

+ c4 ≥
1

2

v′2a (t)
h(t)

+ F(va(t)) ≥
1

2

v′2a (R∗)
h(R∗)

=
1

2
a2c2

5 on [t0, R∗] (2.23)

where c5 = RN−1

(N−2)
√

h(R∗)
. Rewriting (2.23) we obtain

|v′a(t)| ≥
√

a2c2
5 − 2c4

√

h(t). (2.24)

By (2.4) there exists h1 > 0 such that h(t) ≥ h1tα̃ on [t0, R∗]. By using this and choosing a

sufficiently large we can ensure that

|v′a(t)| ≥
ac5

2

√

h(t) ≥ ac5

2

√

h1t
α̃
2 . (2.25)
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Since va is decreasing, then by (2.25) we have v′a < 0 on [t0, R∗]. Now integrating (2.25) over

(t0, R∗) yields

c3 ≥ va(t0) =
∫ R∗

t0

−v′a(t) dt ≥ ac5

2

√

h1

∫ R∗

t0

t
α̃
2 dt =

ac5

2

√

h1





(R∗)
α̃
2 +1 − t

α̃
2 +1
0

α̃ + 2



 . (2.26)

The left hand side of (2.26) is a constant while the right-hand side approaches ∞ as a → ∞

which is a contradiction. Thus we conclude that for any t0 ∈ [0, R∗)

max
[t0,R∗)

|va(t)| → ∞ as a→ ∞. (2.27)

We claim next that va has a local max, Ma, and 1
2 R∗ < Ma < R∗ if a is sufficiently large.

Suppose on the contrary that va is decreasing on [ 1
2 R∗, R∗]. Let

Ca =
1

2
min

[ 1
2 R∗, 3

4 R∗]

h(t) f (va)

va
. (2.28)

By letting t0 = 3
4 R∗ in (2.27), we obtain va(

3
4 R∗) → ∞ as a → ∞. Since va is decreasing on

the interval [ 1
2 R∗, 3

4 R∗] we see that va → ∞ uniformly as a → ∞ on the interval [ 1
2 R∗, 3

4 R∗].
By (2.4) h1tα̃ ≤ h(t) on (0, R∗] for some constant h1 > 0 from which it follows that h(t) is

bounded from below on [ 1
2 R∗, 3

4 R∗]. Also we have f (va) = |va|p−1va + g(va) by (H2) and

so it follows that if va is large then f (va) ≥ 1
2 v

p
a . It then follows from this that

f (va)
va
≥

1
2 v

p−1
a (t) ≥ 1

2 v
p−1
a

(

3
4 R∗

)

on [ 1
2 R∗, 3

4 R∗]. Since p− 1 > 0 and va(
3
4 R∗) → ∞ as a → ∞, then we

see
f (va)

va
→ ∞ on [ 1

2 R∗, 3
4 R∗] as a → ∞. And since h is bounded from below on [ 1

2 R∗, 3
4 R∗], it

follows from this and (2.28) that

Ca → ∞ as a→ ∞.

Now we consider the differential equation

w′′a + Cawa = 0 (2.29)

with

wa

(

3

4
R∗

)

= va

(

3

4
R∗

)

> 0,

w′a

(

3

4
R∗

)

= v′a

(

3

4
R∗

)

< 0.

(2.30)

Clearly, {cos
√

Ca(t− 3
4 R∗), sin

√
Ca(t− 3

4 R∗)} is a fundamental set of solutions of (2.29). So,

wa = α1 cos
√

Ca(t− 3
4 R∗) + α2 sin

√
Ca(t− 3

4 R∗) for some constants α1 and α2. We also know

that the distance between two consecutive zeros of wa is π√
Ca
→ 0 as a → ∞. So, for a > 0

sufficiently large we have 1
2 R∗ <

3
4 R∗ − π√

Ca
. Therefore, for a > 0 sufficiently large wa has

a zero on [ 1
2 R∗, 3

4 R∗] and hence has a local maximum M̃ on this interval with w′a < 0 on

(M̃, 3
4 R∗].

Next, we rewrite equation (2.2) and consider

v′′a +
(

h(t) f (va)

va

)

va = 0. (2.31)
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Multiplying (2.29) by va, (2.31) by wa, and subtracting we obtain

(w′ava − wav′a)
′ +

(

Ca −
h(t) f (va)

va

)

wava = 0.

Integrating this on (M̃, 3
4 R∗) and using (2.30) gives

wa(M̃)v′a(M̃) =
∫ 3

4 R∗

M̃

(

h(t) f (va)

va
− Ca

)

wava dt. (2.32)

Since wa(M̃) > 0, Ca <
h(t) f (va)

va
on [0, 3

4 R∗], and wa, va stay positive on [M̃, 3
4 R∗] it follows from

(2.32) that v′a(M̃) > 0, contradicting our assumption that va is decreasing on [ 1
2 R∗, R∗]. Thus

va has a local maximum, Ma, and 1
2 R∗ < Ma < R∗ with va decreasing on [Ma, R∗] for a > 0

sufficiently large. It also follows immediately from (2.22) that va(Ma)→ ∞ as a→ ∞.

Next we show that Ma → R∗ as a → ∞. Since va is decreasing on [Ma, R∗) and va(R∗) =
0 so we see va > 0 on [Ma, R∗). But then from (2.2) we know v′′a = −h(t) f (va) < 0 on [Ma, R∗)
and so va is concave down on [Ma, R∗). This implies

va (λMa + (1− λ) R∗) ≥ λva(Ma) + (1− λ)va(R∗) for 0 ≤ λ ≤ 1.

So by letting λ = 1
2 we obtain

va

(

Ma + R∗

2

)

≥ va(Ma) + va(R∗)
2

=
va(Ma)

2
→ ∞ as a→ ∞. (2.33)

By the superlinearity of f it follows that f (va(t)) ≥ 1
2 v

p
a (t) on [Ma, Ma+R∗

2 ] if a is sufficiently

large. By using this in (2.2) we obtain

v′′a = −h(t) f (va(t)) ≤ −
1

2
v

p
a (t).

Now integrating this on [Ma, t] where Ma ≤ t ≤ Ma+R∗
2 and recalling that Ma is a local maxi-

mum of va with va decreasing on [Ma, R∗] yields

v′a(t) ≤ −
1

2

∫ t

Ma

v
p
a (x) dx ≤ −1

2
v

p
a (t)

∫ t

Ma

h(x) dx.

Rewriting the above gives
−v′a
v

p
a

≥ 1

2

∫ t

Ma

h(x) dx.

Integrating again on (Ma, t) gives,

1

(p− 1)v
p−1
a (t)

≥ 1

p− 1
[v

1−p
a (t)− v

1−p
a (Ma)] ≥

1

2

∫ t

Ma

∫ s

Ma

h(x) dx ds.

Evaluating at t = Ma+R∗
2 we obtain

1

(p− 1)v
p−1
a (Ma+R∗

2 )
≥ 1

2

∫ Ma+R∗
2

Ma

∫ s

Ma

h(x) dx ds. (2.34)

Since p− 1 > 0, it follows from (2.33) that the left-hand side of (2.34) goes to zero as a → ∞.

Thus, since h(x) > 0 and h is continuous on [Ma, R∗], it follows from (2.34) that Ma → R∗ as

a→ ∞. This completes the lemma.
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Lemma 2.6. Assume (H1)–(H5) hold, N ≥ 3 and let va solve (2.5). Then for a > 0 sufficiently large

va has a zero, za, with 0 < za < Ma < R∗ where za → R∗ and |v′a(za)| → ∞ as a→ ∞. In addition,

if a is sufficiently large and n ≥ 1, then va has n zeros on (0, R∗).

Proof. First we show that ∃za ∈ (0, Ma) such that va(za) = 0. Suppose on the contrary that va

stays positive on (0, Ma). We note that va cannot have a positive critical point on (0, Ma). If

it has a positive critical point ca with v′a > 0 on (ca, Ma), then va(ca) > 0 and v′′a (ca) ≥ 0. So

by (2.2) f (va(ca)) ≤ 0 but then va(ca) ≤ 0 contradicting that va > 0 on (0, Ma). Thus va is

increasing on (0, R∗). Next recall from (2.11) that E′a ≤ 0 on (0, R∗]. So we have

1

2

v′2a
h(t)

+ F(va) ≥ F(va(Ma)) on (0, Ma]. (2.35)

Rewriting (2.35) and integrating on (0, Ma) by making the change of variable s = va(t) gives

∫ Ma

0

√

2h(t) dt ≤
∫ Ma

0

v′a(t) dt
√

F(Va(Ma)− F(va(t))
=

∫ va(Ma)

va(0)

ds
√

F(va(Ma))− F(s)

≤
∫ va(Ma)

0

ds
√

F(va(Ma))− F(s)
.

(2.36)

We now estimate the integral on the right-hand side of (2.36). Letting s = va(Ma)x, we obtain

∫ va(Ma)

0

ds
√

F(va(Ma))− F(s)
=

va(Ma)
√

F(va(Ma))

∫ 1

0

dx
√

1− F(va(Ma)x)
F(va(Ma))

. (2.37)

Let G(u) =
∫ u

0 g(s) ds. Then by (H2) it follows that

F(va(Ma)x)

F(va(Ma))
=

v
p+1
a (Ma)xp+1 + G(va(Ma)x)

v
p+1
a (Ma) + G(va(Ma))

=
xp+1 + G(va(Ma)x)

v
p+1
a (Ma)

1 + G(va(Ma))

v
p+1
a (Ma)

.

(2.38)

By (H2) and L’Hôpital’s rule it follows that |G(u)|
|up+1| → 0 as u → ∞. This implies that given

ϵ > 0 there exists U such that |G(u)| ≤ ϵ|u|p+1 for |u| ≥ U. Also the continuity of G implies

that there exists c6 > 0 such that |G(u)| ≤ c6 for |u| ≤ U. Therefore

|G(u)| ≤ c6 + ϵ|u|p+1 for all u.

Letting u = va(Ma)x in the above inequality and using (2.22) we obtain

|G(va(Ma)x)|
v

p+1
a (Ma)

≤ c6

v
p+1
a (Ma)

+ ϵxp+1

≤ c6

v
p+1
a (Ma)

+ ϵ(R∗)p+1

≤ 2(R∗)p+1ϵ for a sufficiently large.

Therefore lima→∞
G(va(Ma)x)

v
p+1
a (Ma)

= 0 uniformly on [0, 1]. In particular it follows that

lima→∞
G(va(Ma))

v
p+1
a (Ma)

= 0. Thus it follows from (2.38) that F(va(Ma)x)
F(va(Ma))

→ xp+1 uniformly as a → ∞.
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Also we know that
∫ 1

0
dx√

1−xp+1
< ∞ since p > 1. So it follows from this and the fact that f is

superlinear that va(Ma)√
F(va(Ma)

→ 0 as a→ ∞. Therefore it follows from (2.37) that

lim
a→∞

∫ va(Ma)

0

ds
√

F(va(Ma))− F(s)
= 0.

Hence, the right-hand side of (2.36) goes to 0 as a→ ∞. However, we know h(t) > 0 on (0, R∗)
and Ma → R∗ as a → ∞ (by Lemma 2.4), so the integral on the left-hand side of (2.36)

goes to
∫ R∗

0

√

2h(t) dt > 0 which gives a contradiction. Therefore va has a zero, za, with

0 < za < Ma < R∗. Now we show that za → R∗ as a → ∞. Rewriting (2.35) and integrating

on (za, Ma) by letting x = va(t) we obtain

∫ va(Ma)

0

dx
√

F(va(Ma))− F(x)
≥

∫ Ma

za

√

2h(t) dt. (2.39)

As we have just proved above that the left-hand side of (2.39) goes to 0 as a → ∞. Thus since

h > 0 is continuous we must have (Ma − za) → 0 as a → ∞. Since we know from Lemma 2.4

that Ma → R∗ as a→ ∞, it follows that za → R∗ as a→ ∞.

Next we show that |v′a(za)| → ∞ as a → ∞. Since 0 < za < Ma and Ea is non-increasing

we have
1

2

v′2a (za)

h(za)
= Ea(za) ≥ Ea(Ma) = F(va(Ma)).

So by rewriting this we obtain

2h(za)F(va(Ma)) ≤ v′2a (za). (2.40)

Since za → R∗ as a → ∞ and h is continuous then h(za) → h(R∗) > 0 as a → ∞. Also, in

Lemma 2.4 we saw that va(Ma)→ ∞ as a→ ∞ and thus since F is continuous, it follows that

F(va(Ma)) → ∞ as a → ∞. Thus, from (2.40) we see that v′2a (za) → ∞ as a → ∞ which then

implies |v′a(za)| → ∞ as a→ ∞.

Finally, we denote the largest zero of va on (0, R∗) as z1,a. Using a similar argument as

in Lemma 2.5, it can be shown that va has a local minimum, ma ∈ (0, z1,a) if a is sufficiently

large. And by following a similar argument as above we can show that there exists a second

zero, z2,a ∈ (0, ma) of va, z2,a → R∗ as a → ∞, and |v′a(z2,a)| → ∞ as a → ∞. Continuing in

this way if a is sufficiently large and n is a given non-negative integer, then va has n zeros on

(0, R∗) if a is sufficiently large.

3 Behavior for small a > 0

Lemma 3.1. Assume (H1)–(H5) hold and let va solve (2.2)–(2.3). Suppose a is sufficiently small.

Then va has a zero, za, and a local maximum, Ma, with 0 < za < Ma < R∗. In addition, za → R∗,
Ma → R∗, |v′a(za)| → 0, and va(Ma) → 0 as a → 0+. Furthermore, given n ≥ 1, if a is sufficiently

small then va has n zeros on (0, R∗).

Proof. First we want to show that va has a zero on (0, R∗) if a is sufficiently small. Suppose on

the contrary that va > 0 on (0, R∗) for all a > 0. By (2.6) we have

va(t) =
aRN−1

N − 2
(R∗ − t)−

∫ R∗

t

(

∫ R∗

s
h(x) f (va(x)) dx

)

ds. (3.1)
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Since va > 0 near R∗ it follows from (2.2) that v′′a < 0 near R∗ so by integrating this inequality

twice we obtain

0 < va <
aRN−1

N − 2
(R∗ − t). (3.2)

From (H1) and (H3) there exists f1 > 0 such that f (va) ≥ f1v
−q
a . Substituting this into (3.1)

gives

va(t) ≤ ac7(R∗ − t)− f1

∫ R∗

t

(

∫ R∗

s
h(x)v

−q
a (x) dx

)

ds (3.3)

where c7 = RN−1

N−2 . Since h is increasing on [0, R∗] then from (3.2) and (3.3) we obtain

va(t) ≤ ac7(R∗− t)− f1h(t)
∫ R∗

t

(

∫ R∗

s
v
−q
a (x) dx

)

ds = ac7(R∗− t)− f1h(t)(R∗ − t)2−q

aqc
q
7(1− q)(2− q)

. (3.4)

Therefore if va > 0 on [ R∗
2 , R∗], then from (3.4) we obtain

f1h(t)(R∗ − t)1−q

c
q+1
7 (1− q)(2− q)

≤ aq+1. (3.5)

Letting t = R∗
2 in (3.5) we obtain

f1h(R∗
2 )(R∗)1−q

c
q+1
7 21−q(1− q)(2− q)

≤ aq+1. (3.6)

The left-hand side of (3.6) is a positive constant but the right-hand side goes to 0 as a → 0+.

Thus we obtain a contradiction if a is sufficiently small. Hence va has a zero, za, on [ R∗
2 , R∗] if

a > 0 is sufficiently small and va > 0 on (za, R∗). Since va(za) = 0 = va(R∗) and v′a(R∗) < 0,

it follows that va has a local maximum, Ma, with 0 < za < Ma < R∗.

Next by letting t = za in (3.5) we obtain

f1h(za)(R∗ − za)1−q

c
q+1
7 (1− q)(2− q)

≤ aq+1. (3.7)

Since the right-hand side of (3.7) goes to 0 as a→ 0+ it follows that za → R∗ as a→ 0+. Since

za < Ma < R∗ it then follows that Ma → R∗ as a→ 0+.

Next we know that 1
2 v′2a + h(t)F(va) is increasing by (2.13). So it follows that

1

2
v′2a (za) =

1

2
v′2a (za) + h(za)F(va(za)) ≤

1

2
v′2a (R∗) + h(R∗)F(va(R∗)) =

1

2

a2R2(N−1)

(N − 2)2
. (3.8)

The right-hand side of (3.8) goes to 0 as a→ 0+ which implies that |v′a(za)| → 0 as a→ 0+.

Now we show that va(Ma) → 0 as a → 0+. From (2.16) we have |va| ≤ aR
N−2 on (0, R∗).

Since va(Ma) ≥ 0 it then follows that

0 ≤ va(Ma) ≤
aR

N − 2
→ 0 as a→ 0+.

Now if we denote the largest zero of va on (0, R∗) as z1,a then by using a similar argument

as above we can show that va has a local minimum, ma, on (0, z1,a) if a is sufficiently small.

Also, it can be shown that there exists a zero, z2,a ∈ (0, ma) of va and z2,a → R∗ as a → 0+.

Continuing in this way, given n ≥ 1 then va has n zeros on (0, R∗) if a is sufficiently small .
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4 Proof of Theorem 1.1

Let n ≥ 0 and consider the set

Sn = {a > 0 | va solves (2.2)–(2.3) and va has exactly n zeros on (0, R∗)}.

By Lemma 2.4 we observe that if a > 0 then Sn ̸= ∅ for some n. Let n0 ≥ 0 be the least

integer n such that Sn ̸= ∅ (i.e, Sn0 ̸= ∅ and Sn = ∅ for all 0 ≤ n < n0). Also it follows from

Lemma 2.6 that Sn0 is bounded from above. So let

a+n0
= sup Sn0 .

Lemma 4.1. va+n
has exactly n zeros, va+n

(0) = 0, and v′
a+n
(0) ̸= 0 for all n ≥ n0.

Proof. It follows from the definition of Sn0 that va+n0
has at least n0 zeros on (0, R∗). Suppose

that va+n0
has an (n0 + 1)st zero. Then by the continuous dependence of va on a it follows

that va has an (n0 + 1)st zero if a is sufficiently close to an0 . But if we choose a ∈ Sn0 such

that a < an0 and a is sufficiently close to an0 , then va has only n0 zeros on (0, R∗) which

gives a contradiction. Thus va+n0
has exactly n0 zeros on (0, R∗). Now we want to show that

va+n0
(0) = 0. Assume without the loss of generality that va+n0

> 0 on (0, zan0
). Then by the

continuity of va+n0
we have va+n0

(0) ≥ 0. Suppose va+n0
(0) > 0. Since the zeros of va are simple

and va(0) > 0 it follows that va has exactly n0 zeros on (0, R∗) if a is close to an0 . But if a > an0

then va has at least n0 + 1 zeros on (0, R∗) which is a contradiction. Therefore, we must have

va+n0
(0) = 0.

Next we want to show that v′
a+n0

(0) ̸= 0. Assume without loss of generality that va+n0
> 0

on (0, zn0) where zn0 is the nth
0 zero of a+n0

on (0, R∗). Since va+n0
solves (2.2) we have

v′′
a+n0

+ h(t) f (va+n0
) = 0.

From the above equation it follows that

(tv′
a+n0

− va+n0
)′ = tv′′

a+n0

= −th(t) f (va+n0
) < 0.

Thus, tv′
a+n0

− va+n0
is decreasing. Also, since limt→0+(tv

′
a+n0

− va+n0
)=0 we have that (tv′

a+n0

− va+n0
) ≤

0 on (0, zn0). It then follows that
(va+n0

t

)′
≤ 0. (4.1)

Since va+n0
> 0 on (0, zan0

), we see from (4.1) that limt→0+

v
a+n0
t exists. Integrating (4.1) on (t, t0)

we obtain

0 <

va+n0
(t0)

t0
≤ lim

t→0+

va+n0
(t)

t
= v′

a+n0

(0).

Therefore, v′
a+n0

(0) > 0.

Next let

Sn0+1 = {a > 0 | va solves (2.2)–(2.3) and va has exactly (n0 + 1) zeros on (0, R∗)}.
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If a is sufficiently close to a+n0
with a > a+n0

, then by the definition of a+n0
it follows that va has

an (n0 + 1)st zero, zan0
+1 ∈ (0, R∗). By integrating (2.13) on (t, R∗) we obtain

1

2
v′2a =

1

2

a2R2(N−1)

(N − 2)2
−

∫ R∗

t
h′F(va). (4.2)

Similarly, we have

1

2
v′2

a+n0

=
1

2

a+n0

2
R2(N−1)

(N − 2)2
−

∫ R∗

t
h′F(va+n0

). (4.3)

Since va → va+n0
uniformly as a→ a+n0

it follows from (4.2) and (4.3) that

lim
a→a+n0

v′2a = v′2
a+n0

uniformly on [0, t0] for t0 > 0. (4.4)

Since v′2
a+n0

(0) > 0 it follows from (4.4) that v′a(t) ̸= 0 if a > a+n0
and a close to a+n0

and t is close

to 0. Hence, va has at most (n0 + 1) zeros and therefore va has exactly (n0 + 1) zeros if a is

sufficiently close to a+n0
and a > a+n0

. Thus, Sn0+1 ̸= ∅. Also it follows from Lemma 2.6 that

Sn0+1 is bounded above.

Now let

a+n0+1 = sup Sn0+1.

Then by using a similar argument as above we can show that va+n0
+1 has exactly (n0 + 1) zeros

on (0, R∗) and that va+n0
+1(0) = 0. Continuation of this process will generate an infinite family

of solutions {va+n
}n≥n0 of (2.2)–(2.3) where va+n

has exactly n zeros on (0, R∗) and va+n0
(0) = 0.

To complete the proof we again consider the set Sn0 as above which is non-empty. By

Lemma 3.1 it follows that Sn0 is bounded from below by a positive real number. So we define

a−n0
= inf Sn0 .

Then by using the continuous dependence of the solution va on a as above we can show that

va−n0
has exactly n0 zeros and va−n0

(0) = 0 and v′
a−n0

(0) ̸= 0. Now it may be possible that Sn0 is

a singleton set. Then we have a−n0
= a+n0

. In this case there is only one solution with n0 zeros.

But we know that if a > a+n0
then Sn0+1 ̸= ∅. Also if a < a−n0

= a+n0
and a is close to a−n0

, then va

has exactly (n0 + 1) zeros. Thus Sn0+1 has at least two points. Next let

a−n0+1 = inf Sn0+1.

Then a−n0+1 < a+n0+1 and we can also show that va−n0
+1 has exactly (n0 + 1) solutions and

va−n0
+1(0) = 0. Thus, va+n0

+1 and va−n0
+1 are two solutions with exactly (n0 + 1) zeros on (0, R∗).

Continuation of this process will generate a second infinite family of solutions {va−n }n≥n0 of

(2.2)–(2.3) where va−n has exactly n zeros on (0, R∗) and va−n0
(0) = 0.

Finally, by letting u+
n (t) = v+an

(t
1

2−N ) and u−n (t) = v−an
(t

1
2−N ) we obtain two infinite families

of solutions of (1.3)–(1.4) with prescribed number of zeros. This ends the proof of Theorem

1.1.
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1 Introduction

In this paper, we consider the following equation





−div [a(x,∇u(x))] = f (x, u(x)) in Ω,

u(x) = 0 on Γ1,

n(x) · a(x,∇u(x)) = g(x, u(x)) on Γ2.

(1.1)

Here Ω is a bounded domain of R
N (N ≥ 2) with a Lipschitz-continuous (C0,1 for short)

boundary ∂Ω = Γ satisfying that

Γ1 and Γ2 are disjoint open subsets of Γ such that Γ1 ∪ Γ2 = Γ and Γ1 ̸= ∅, (1.2)

BCorresponding author. Email: aramaki@hctv.ne.jp



2 J. Aramaki

and the vector field n denotes the unit, outer, normal vector to Γ. The function a(x, ξ) =

∇ξ A(x, ξ) is a Carathéodory function on Ω × R
N satisfying some structure conditions asso-

ciated with an anisotropic exponent function p ∈ C(Ω) with 1 < p(x) for x ∈ Ω. Then the

operator div [a(x,∇u(x))] is more general than the p(·)-Laplacian

∆p(x)u(x) = div [|∇u(x)|p(x)−2
∇u(x)]

and the mean curvature operator

div [(1 + |∇u(x)|2)(p(x)−2)/2
∇u(x)].

These generalities bring about difficulties and requires some conditions.

We impose the mixed boundary conditions, that is, the Dirichlet condition on Γ1 and the

Steklov condition on Γ2. The given data f : Ω ×R → R and g : Γ2 ×R → R are Carathéodory

functions satisfying some conditions.

The study of differential equations with p(·)-growth conditions is a very interesting topic

recently. Studying such problem stimulated its application in mathematical physics, in partic-

ular, in elastic mechanics (Zhikov [31]), in electrorheological fluids (Diening [10], Halsey [19],

Mihăilescu and Rădulescu [22], Růžička [24]).

Since we can only find a few of papers associate with the problem with the mixed bound-

ary condition in variable exponent Sobolev space as in (1.1). See Aramaki [2, 5]. We are

convinced of the reason for existence of this paper.

Fan [13] considered the problem (1.1) when A(x, ξ) = 1
p(x)

|ξ|p(x) and Γ2 = ∅, and derived

the existence of a nontrivial weak solution to (1.1). Yücedağ [29] and Mashiyev et al. [21]

and many authors extended the result to the case where A(x, ξ) satisfies the p(·)-uniform

convexity. In Aramaki [3] and Dai and Hao [8], the authors treated the Kirchhoff-type operator

in the case where A(x, ξ) satisfies the p(·)-uniform convexity. Here the p(·)-uniform convexity

of A(x, ξ) means that

A

(
x,

ξ + η

2

)
+ c|ξ − η|p(x) ≤

1

2
A(x, ξ) +

1

2
A(x, η) (1.3)

for a.e. x ∈ Ω and all ξ, η ∈ R
N with some constant c > 0. However, even in the case

where A(x, ξ) = 1
p(x)

|ξ|p(x), in general, if 1 < p(x) < 2 in a non-empty subset of Ω, then this

p(·)-uniform convexity does not hold. Of course, if p(x) ≥ 2 in Ω, then (1.3) holds.

In this paper, we give up this condition, but we assume that a(x, ξ) is uniformly monotone

(see (A.2) below in Section 3), because we think that this hypothesis is more natural for the

p(·)-Laplacian and the mean curvature operator, and allow not only the case 2 ≤ p(x) in

Ω, but also the case 1 < p(x) in Ω. To overcome this, if we apply a version of the idea

of Glowinski and A. Marroco [18] who treated the case p(x) = p = const., then we get

Proposition 3.7 below. So our results are new, because the results contain the case 1 < p(x) in

Ω.

We derive that there exist one, two and infinitely many nontrivial weak solutions. We

use the standard Mountain-Pass Theorem, Ekeland variational principle and the Symmetric

Mountain-Pass Theorem, respectively (cf. Aramaki [4, 6], [21]).

This paper is also an extension of the articles [13] to the case of mixed boundary value

problem and of a class of operators containing the p(·)-Laplacian and the mean curvature

operator with the case where p(x) > 1 in Ω.
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The paper is organized as follows. In Section 2, we recall some well-known results on

variable exponent Lebesgue-Sobolev spaces. In Section 3, we give the assumptions to the

main theorems. In Section 4, we state the main theorems (Theorem 4.3, 4.5 and 4.6) on the

existence of at least one, two and infinitely many nontrivial weak solutions according to the

hypotheses on given functions f and g. The proofs of these main theorems are given in

Section 5.

2 Preliminaries

Throughout this paper, let Ω be a bounded domain in R
N (N ≥ 2) with a C0,1-boundary Γ

and Ω is locally on the same side of Γ. Moreover, we assume that Γ satisfies (1.2).

In the present paper, we only consider vector spaces of real valued functions over R. For

any space B, we denote BN by the boldface character B. Hereafter, we use this character

to denote vectors and vector-valued functions, and we denote the standard inner product of

vectors a = (a1, . . . , aN) and b = (b1, . . . , bN) in R
N by a · b = ∑

N
i=1 aibi and |a| = (a · a)1/2.

Furthermore, we denote the dual space of B by B∗ and the duality bracket by ⟨·, ·⟩B∗,B.

We recall some well-known results on variable exponent Lebesgue and Sobolev spaces.

See Fan and Zhang [15], Kovác̆ik and Rácosník [20] and references therein for more detail.

Furthermore, we consider some new properties on variable exponent Lebesgue space. Define

C(Ω) = {p; p is a continuous function on Ω}, and for any p ∈ C(Ω), put

p+ = p+(Ω) = sup
x∈Ω

p(x) and p− = p−(Ω) = inf
x∈Ω

p(x).

For any p ∈ C(Ω) with p− ≥ 1 and for any measurable function u on Ω, a modular ρp(·) =

ρp(·),Ω is defined by

ρp(·)(u) =
∫

Ω
|u(x)|p(x)dx.

The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u; u : Ω → R is a measurable function satisfying ρp(·)(u) < ∞}

equipped with the (Luxemburg) norm

∥u∥Lp(·)(Ω) = inf
{

λ > 0; ρp(·)

(u

λ

)
≤ 1

}
.

Then Lp(·)(Ω) is a Banach space. We also define

W1,p(·)(Ω) = {u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)},

where ∇u is the gradient of u, that is, ∇u = (∂1u, . . . , ∂Nu), ∂i = ∂/∂xi, endowed with the

norm

∥u∥W1,p(·)(Ω) = ∥u∥Lp(·)(Ω) + ∥|∇u|∥Lp(·)(Ω).

The following three propositions are well known (see Fan et al. [16], Fan and Zhao [17],

Zhao et al. [30]).

Proposition 2.1. Let p ∈ C(Ω) with p− ≥ 1, and let u, un ∈ Lp(·)(Ω) (n = 1, 2, . . .). Then we have

the following properties.
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(i) ∥u∥Lp(·)(Ω) < 1(= 1,> 1) ⇐⇒ ρp(·)(u) < 1(= 1,> 1).

(ii) ∥u∥Lp(·)(Ω) > 1 =⇒ ∥u∥
p−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥

p+

Lp(·)(Ω)
.

(iii) ∥u∥Lp(·)(Ω) < 1 =⇒ ∥u∥
p+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥

p−

Lp(·)(Ω)
.

(iv) limn→∞ ∥un − u∥Lp(·)(Ω) = 0 ⇐⇒ limn→∞ ρp(·)(un − u) = 0.

(v) ∥un∥Lp(·)(Ω) → ∞ as n → ∞ ⇐⇒ ρp(·)(un) → ∞ as n → ∞.

The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let p ∈ C+(Ω), where

C+(Ω) := {p ∈ C(Ω); p− > 1}.

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have

∫

Ω
|u(x)v(x)|dx ≤

(
1

p−
+

1

(p′)−

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω) ≤ 2∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω).

Here and from now on, for any p ∈ C+(Ω), p′(·) denote the conjugate exponent of p(·), that is,

p′(x) = p(x)/(p(x)− 1).

For p ∈ C+(Ω), define for x ∈ Ω,

p∗(x) =

{
Np(x)

N−p(x)
if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.3. Let Ω be a bounded domain of R
N with C0,1-boundary and let p ∈ C+(Ω). Then

we have the following properties.

(i) The spaces Lp(·)(Ω) and W1,p(·)(Ω) are separable, reflexive and uniformly convex Banach spaces.

(ii) If q(x) ∈ C(Ω) with q− ≥ 1 satisfies that q(x) ≤ p∗(x) for all x ∈ Ω, then the embedding

W1,p(·)(Ω) →֒ Lq(·)(Ω), where →֒ means that the embedding is continuous.

(iii) If q(x) ∈ C(Ω) with q− ≥ 1 satisfies that q(x) < p∗(x) for all x ∈ Ω, then the embedding

W1,p(·)(Ω) →֒ Lq(·)(Ω) is compact.

Next we consider the trace (cf. Fan [14]). Let Ω be a bounded domain of R
N with a C0,1-

boundary Γ and p ∈ C(Ω) with p− ≥ 1. Since W1,p(·)(Ω) ⊂ W1,1(Ω), the trace γ(u) = u
∣∣
Γ

to

Γ of any function u in W1,p(·)(Ω) is well defined as a function in L1(Γ). We define

(Tr W1,p(·))(Γ) = { f ; f is the trace to Γ of a function F ∈ W1,p(·)(Ω)}

equipped with the norm

∥ f ∥(Tr W1,p(·))(Γ) = inf{∥F∥W1,p(·)(Ω); F ∈ W1,p(·)(Ω) satisfying F
∣∣
Γ
= f }

for f ∈ (Tr W1,p(·))(Γ), where the infimum can be achieved. Then we can see that (Tr W1,p(·))(Γ)

is a Banach space. In the later we also write F
∣∣
Γ
= g by F = g on Γ. Moreover, for i = 1, 2, we

denote

(Tr W1,p(·))(Γi) = { f
∣∣
Γi

; f ∈ (Tr W1,p(·))(Γ)}
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equipped with the norm

∥g∥(Tr W1,p(·))(Γi)
= inf{∥ f ∥(Tr W1,p(·))(Γ); f ∈ (Tr W1,p(·))(Γ) satisfying f

∣∣
Γi
= g},

where the infimum can also be achieved, so for any g ∈ (Tr W1,p(·))(Γi), there exists F ∈

W1,p(·)(Ω) such that F
∣∣
Γi
= g and ∥F∥W1,p(·)(Ω) = ∥g∥(Tr W1,p(·))(Γi)

.

Let q ∈ C+(Γ) := {q ∈ C(Γ); q− > 1} and denote the surface measure on Γ induced from

the Lebesgue measure dx on Ω by dσx. We define

Lq(·)(Γ) =

{
u; u : Γ → R is a measurable function with respect to dσx

satisfying
∫

Γ
|u(x)|q(x)dσx < ∞

}

and the norm is defined by

∥u∥Lq(·)(Γ) = inf

{
λ > 0;

∫

Γ

∣∣∣∣
u(x)

λ

∣∣∣∣
q(x)

dσx ≤ 1

}
,

and we also define a modular on Lq(·)(Γ) by

ρq(·),Γ(u) =
∫

Γ
|u(x)|q(x)dσx.

Similarly as Proposition 2.1, we have the following proposition.

Proposition 2.4. Let q ∈ C(Γ) with q− ≥ 1, and let u, un ∈ Lq(·)(Γ). Then we have the following

properties.

(i) ∥u∥Lq(·)(Γ) < 1(= 1,> 1) ⇐⇒ ρq(·),Γ(u) < 1(= 1,> 1).

(ii) ∥u∥Lq(·)(Γ) > 1 =⇒ ∥u∥
q−

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥

q+

Lq(·)(Γ)
.

(iii) ∥u∥Lq(·)(Γ) < 1 =⇒ ∥u∥
q+

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥

q−

Lq(·)(Γ)
.

(iv) ∥un∥Lq(·)(Γ) → 0 ⇐⇒ ρq(·),Γ(un) → 0.

(v) ∥un∥Lq(·)(Γ) → ∞ ⇐⇒ ρq(·),Γ(un) → ∞.

The Hölder inequality also holds for functions on Γ.

Proposition 2.5. Let q ∈ C(Γ) with q− > 1. Then the following inequality holds.

∫

Γ
| f (x)g(x)|dσx ≤ 2∥ f ∥Lq(·)(Γ)∥g∥Lq′(·)(Γ) for all f ∈ Lq(·)(Γ), g ∈ Lq′(·)(Γ).

Proposition 2.6. Let Ω be a bounded domain of R
N with a C0,1-boundary Γ and let p ∈ C+(Ω). If

f ∈ (Tr W1,p(·))(Γ), then f ∈ Lp(·)(Γ) and there exists a constant C > 0 such that

∥ f ∥Lp(·)(Γ) ≤ C∥ f ∥(Tr W1,p(·))(Γ).

In particular, If f ∈ (Tr W1,p(·))(Γ), then f ∈ Lp(·)(Γi) and ∥ f ∥Lp(·)(Γi)
≤ C∥ f ∥(Tr W1,p(·))(Γ) for

i = 1, 2.
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For p ∈ C+(Ω), define for x ∈ Ω,

p∂(x) =

{
(N−1)p(x)

N−p(x)
if p(x) < N,

∞ if p(x) ≥ N.

The following proposition follows from Yao [28, Proposition 2.6].

Proposition 2.7. Let p ∈ C+(Ω). Then if q ∈ C+(Γ) satisfies q(x) ≤ p∂(x) for all x ∈ Γ, then the

trace mapping W1,p(·)(Ω) → Lq(·)(Γ) is well-defined, continuous and

∥u∥Lq(·)(Γ) ≤ C∥u∥W1,p(·)(Ω) for u ∈ W1,p(·)(Ω)

for some constant C > 0.

In particular, if q(x) < p∂(x) for all x ∈ Γ2, then the trace mapping W1,p(·)(Ω) → Lq(·)(Γ) is

compact.

Now we consider the weighted variable exponent Lebesgue space. Let p ∈ C(Ω) with

p− ≥ 1 and let a(x) be a measurable function on Ω with a(x) > 0 a.e. x ∈ Ω. We define a

modular

ρ(p(·),a(·))(u) =
∫

Ω
a(x)|u(x)|p(x)dx for any measurable function u in Ω.

Then the weighted Lebesgue space is defined by

L
p(·)
a(·)

(Ω) =
{

u; u is a measurable function on Ω satisfying ρ(p(·),a(·))(u) < ∞
}

equipped with the norm

∥u∥
L

p(·)
a(·)

(Ω)
= inf

{
λ > 0;

∫

Ω
a(x)

∣∣∣∣
u(x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Then L
p(·)
a(·)

(Ω) is a Banach space.

We have the following proposition (cf. [13, Proposition 2.5]).

Proposition 2.8. Let p ∈ C(Ω) with p− ≥ 1. For u, un ∈ L
p(·)
a(·)

(Ω), we have the following.

(i) For u ̸= 0, ∥u∥
L

p(·)
a(·)

(Ω)
= λ ⇐⇒ ρ(p(·),a(·))

(
u
λ

)
= 1.

(ii) ∥u∥
L

p(·)
a(·)

(Ω)
< 1 (= 1,> 1) ⇐⇒ ρ(p(·),a(·))(u) < 1 (= 1,> 1).

(iii) ∥u∥
L

p(·)
a(·)

(Ω)
> 1 =⇒ ∥u∥

p−

L
p(·)
a(·)

(Ω)
≤ ρ(p(·),a(·))(u) ≤ ∥u∥

p+

L
p(·)
a(·)

(Ω)
.

(iv) ∥u∥
L

p(·)
a(·)

(Ω)
< 1 =⇒ ∥u∥

p+

L
p(·)
a(·)

(Ω)
≤ ρ(p(·),a(·))(u) ≤ ∥u∥

p−

L
p(·)
a(·)

(Ω)
.

(v) limn→∞ ∥un − u∥
L

p(·)
a(·)

(Ω)
= 0 ⇐⇒ limn→∞ ρ(p(·),a(·))(un − u) = 0.

(vi) ∥un∥L
p(·)
a(·)

(Ω)
→ ∞ as n → ∞ ⇐⇒ ρ(p(·),a(·))(un) → ∞ as n → ∞.

The author of [13] also derived the following proposition (cf. [13, Theorem 2.1]).
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Proposition 2.9. Let Ω be a bounded domain of R
N with a C0,1-boundary and p ∈ C+(Ω). Moreover,

let a ∈ Lα(·)(Ω) satisfy a(x) > 0 a.e. x ∈ Ω and α ∈ C+(Ω). If q ∈ C(Ω) satisfies

1 ≤ q(x) <
α(x)− 1

α(x)
p∗(x) for all x ∈ Ω,

then the embedding W1,p(·)(Ω) →֒ L
q(·)
a(·)

(Ω) is compact.

Similarly, let q ∈ C(Γ) with q− ≥ 1 and let b(x) be a measurable function with respect to σ

on Γ with b(x) > 0 σ-a.e. x ∈ Γ. We define a modular

ρ(q(·),b(·)),Γ(u) =
∫

Γ
b(x)|u(x)|q(x)dσx.

Then the weighted Lebesgue space on Γ is defined by

L
q(·)
b(·)

(Γ) = {u; u is a σ-measurable function on Γ satisfying ρ(q(·),b(·)),Γ(u) < ∞}

equipped with the norm

∥u∥
L

q(·)
b(·)

(Γ)
= inf

{
λ > 0;

∫

Γ
b(x)

∣∣∣∣
u(x)

λ

∣∣∣∣
q(x)

dσx ≤ 1

}
.

Then L
q(·)
b(·)

(Γ) is a Banach space.

Then we have the following proposition.

Proposition 2.10. Let q ∈ C(Γ) with q− ≥ 1. For u, un ∈ L
q(·)
b(·)

(Γ), we have the following.

(i) ∥u∥
L

q(·)
b(·)

(Γ)
< 1 (= 1,> 1) ⇐⇒ ρ(q(·),b(·)),Γ(u) < 1 (= 1,> 1).

(ii) ∥u∥
L

q(·)
b(·)

(Γ)
> 1 =⇒ ∥u∥

q−

L
q(·)
b(·)

(Γ)
≤ ρ(q(·),b(·)),Γ(u) ≤ ∥u∥

q+

L
q(·)
b(·)

(Ω)
.

(iii) ∥u∥
L

q(·)
b(·)

(Γ)
< 1 =⇒ ∥u∥

q+

L
q(·)
b(·)

(Γ)
≤ ρ(q(·),b(·)),Γ(u) ≤ ∥u∥

q−

L
q(·)
b(·)

(Γ)
.

(iv) limn→∞ ∥un − u∥
L

q(·)
b(·)

(Γ)
= 0 ⇐⇒ limn→∞ ρ(q(·),b(·)),Γ(un − u) = 0.

(v) ∥un∥L
q(·)
b(·)

(Γ)
→ ∞ as n → ∞ ⇐⇒ ρ(q(·),b(·)),Γ(un) → ∞ as n → ∞.

The following proposition plays an important role in the present paper.

Proposition 2.11. Let Ω be a bounded domain of R
N with a C0,1-boundary Γ and let p ∈ C+(Ω).

Assume that 0 < b ∈ Lβ(·)(Γ), β ∈ C+(Γ). If r ∈ C(Γ) satisfies

1 ≤ r(x) <
β(x)− 1

β(x)
p∂(x) for all x ∈ Γ,

then the embedding W1,p(·)(Ω) →֒ L
r(·)
b(·)

(Γ) is compact.

The following proposition is due to Edmunds and Rákosník [11, Lemma 2.1].
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Proposition 2.12. Let q ∈ L∞(Ω) and p be a measurable function on Ω such that 1 ≤ p(x) ≤ ∞

and 1 ≤ q(x)p(x) ≤ ∞. Assume that f ∈ Lp(·)(Ω) with f ̸= 0. Then we have the following.

∥ f ∥Lq(·)p(·)(Ω) ≤ 1 =⇒ ∥ f ∥
q+

Lq(·)p(·)(Ω)
≤ ∥| f |q(·)∥Lp(·)(Ω) ≤ ∥ f ∥

q−

Lq(·)p(·)(Ω)
.

∥ f ∥Lq(·)p(·)(Ω) ≥ 1 =⇒ ∥ f ∥
q−

Lq(·)p(·)(Ω)
≤ ∥| f |q(·)∥Lp(·)(Ω) ≤ ∥ f ∥

q+

Lq(·)p(·)(Ω)
.

In particular, if q(x) = q = const., then ∥| f |q∥Lp(·)(Ω) = ∥ f ∥
q

Lqp(·)(Ω)
.

Define a space by

X = {v ∈ W1,p(·)(Ω); v = 0 on Γ1}. (2.1)

Then it is clear to see that X is a closed subspace of W1,p(·)(Ω), so X is a reflexive and separable

Banach space. We get the following Poincaré-type inequality (cf. Ciarlet and Dinca [7]).

Proposition 2.13. Let Ω be a bounded domain of R
N with a C0,1-boundary and let p ∈ C+(Ω). Then

there exists a constant C = C(Ω, N, p) > 0 such that

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω) for all u ∈ X.

In particular, ∥∇u∥Lp(·)(Ω) is equivalent to ∥u∥W1,p(·)(Ω) for u ∈ X.

For the direct proof, see Aramaki [1, Lemma 2.5].

Thus we can define the norm on X so that

∥v∥X = ∥∇v∥Lp(·)(Ω) for v ∈ X, (2.2)

which is equivalent to ∥v∥W1,p(·)(Ω) from Proposition 2.13.

3 Assumptions to the main theorems

In this section, we state the assumptions to the main theorems. Let p ∈ C+(Ω) be fixed.

Throughout this paper, we assume the following.

(A.0) Let A : Ω × R
N → [0, ∞) be a function satisfying that for a.e. x ∈ Ω the function

A(x, ·) : R
N ∋ ξ 7→ A(x, ξ) is of C1-class, and for all ξ ∈ R

N the function A(·, ξ) :

Ω ∋ x 7→ A(x, ξ) is measurable. Moreover, suppose that A(x, 0) = 0 and put a(x, ξ) =

∇ξ A(x, ξ). Then a(x, ξ) is a Carathéodory function on Ω × R
N .

Moreover, we assume the following structure conditions. There exist constants C0, k0 > 0,

nonnegative functions h0 ∈ Lp′(·)(Ω) and h1 ∈ L1(Ω) with h1(x) ≥ 1 for a.e. x ∈ Ω such that

the following conditions hold.

(A.1) |a(x, ξ)| ≤ C0(h0(x) + h1(x)|ξ|p(x)−1) for all ξ ∈ R
N and a.e. x ∈ Ω.

(A.2) a(x, 0) = 0 for a.e. x ∈ Ω and

(a(x, ξ)− a(x, η)) · (ξ − η) ≥

{
k0h1(x)|ξ − η|p(x) if p(x) ≥ 2,

k0h1(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2

for a.e. x ∈ Ω and all ξ, η ∈ R
N .



Existence of weak solutions for a class of nonlinear equation 9

(A.3) A is p(·)-subhomogeneous in the sense of

a(x, ξ) · ξ ≤ p(x)A(x, ξ) + h1(x) for all ξ ∈ R
N and a.e. x ∈ Ω.

Lemma 3.1. Under (A.0) and (A.2), there exists a constant c > 0 such that

1

2
A(x, ξ) +

1

2
A(x, η)− A

(
x,

ξ + η

2

)
≥

{
c h1(x)|ξ − η|p(x) if p(x) ≥ 2,

c h1(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2

for a.e. x ∈ Ω and all ξ, η ∈ R
N .

In particular, A(x, ξ) is convex with respect to ξ.

Proof. Since

A(x, η)− A

(
x,

ξ + η

2

)
=

∫ 1

0
a

(
x,

ξ + η

2
+ s

(
η− ξ

2

))
·

η− ξ

2
ds,

and

A

(
x,

ξ + η

2

)
− A(x, ξ) =

∫ 1

0
a

(
x, ξ + s

(
η− ξ

2

))
·

η− ξ

2
ds,

it follows from (A.0) and (A.2) that

1

2
A(x, ξ) +

1

2
A(x, η)− A

(
x,

ξ + η

2

)

=
1

2

∫ 1

0

(
a

(
x,

ξ + η

2
+ s

η− ξ

2

)
− a

(
x, ξ + s

η− ξ

2

))
·

η− ξ

2
ds

≥





1
2 k0h1(x)

∣∣∣ η−ξ
2

∣∣∣
p(x)

if p(x) ≥ 2,

1
2 k0h1(x)

∫ 1
0

(
1 +

∣∣∣ ξ+η
2 + s

η−ξ
2

∣∣∣+
∣∣∣ξ + s

η−ξ
2

∣∣∣
)p(x)−2 ∣∣∣ η−ξ

2

∣∣∣
2

ds if p(x) < 2

≥

{(
1
2

)p++1
k0h1(x)|ξ − η|p(x) if p(x) ≥ 2,

1
4 k0h1(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2.

In particular, since A
(
x,

ξ+η
2

)
≤ 1

2 A(x, ξ) + 1
2 A(x, η) and A(x, ξ) is continuous with respect to

ξ, it is well known that A(x, ξ) is convex.

Example 3.2.

(i) A(x, ξ) = h(x)
p(x)

|ξ|p(x) with h ∈ L1(Ω) satisfying h(x) ≥ 1 for a.e. x ∈ Ω.

(ii) A(x, ξ) = h(x)
p(x)

((1 + |ξ|2)p(x)/2 − 1) with h ∈ Lp′(·)(Ω) satisfying h(x) ≥ 1 for a.e. x ∈ Ω.

Then A(x, ξ) and a(x, ξ) = ∇ξ A(x, ξ) satisfy the above assumptions (A.0)–(A.3).

Proof. In the case (i), A(x, ξ) is clearly differentiable with respect to ξ for ξ ̸= 0 and a(x, ξ) =

h(x)|ξ|p(x)−2ξ for ξ ̸= 0. Since p(x) > 1, if we define a(x, 0) = 0, then we see that A(x, ξ)

is of C1-class with respect to ξ, so (A.0) holds. (A.1) easily holds. If we use the well-known

inequality (cf. Thelin [25]): there exists a constant k0 > 0 such that

(|ξ|p(x)−2ξ − |η|p(x)−2η) · (ξ − η) ≥

{
k0|ξ − η|p(x) if p(x) ≥ 2,

k0(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2,
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for all ξ, η ∈ R
N , then we see that (A.2) holds. We can easily see that (A.3) holds.

In the case (ii), clearly A(x, ξ) is of C1-class with respect to ξ and a(x, ξ) = h(x)(1 +

|ξ|2)(p(x)−2)/2ξ.

If p(x) ≥ 2, since |ξ| ≤ 1 + |ξ|p(x)−1, we have

|a(x, ξ)| ≤ h(x)2(p+−2)/2(1 + |ξ|p(x)−2)|ξ| ≤ 2p+/2(h(x) + h(x)|ξ|p(x)−1).

If p(x) < 2,

|a(x, ξ)| ≤ h(x)|ξ|p(x)−2|ξ| = h(x)|ξ|p(x)−1.

Thus (A.1) with h0 = h1 = h holds. We show that (A.2) holds. We have

(a(x, ξ)− a(x, η)) · (ξ − η)

= h(x)
∫ 1

0

d

ds

[
(1 + |sξ + (1 − s)η|2)(p(x)−2)/2(sξ + (1 − s)η)

]
ds · (ξ − η)

= h(x)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−2)/2ds|ξ − η|2

+ h(x)(p(x)− 2)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−4)/2|(sξ + (1 − s)η) · (ξ − η)|2ds.

If p(x) ≥ 2, it follows from DiBenedetto [9, p. 14] that

(a(x, ξ)− a(x, η)) · (ξ − η) ≥ h(x)
∫ 1

0
|sξ + (1 − s)η|p(x)−2ds|ξ − η|2 ≥ k0h(x)|ξ − η|p(x).

If p(x) < 2, we have

(a(x, ξ)− a(x, η)) · (ξ − η)

≥ h(x)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−2)/2ds|ξ − η|2

+ h(x)(p(x)− 2)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−4)/2|sξ + (1 − s)η|2|ξ − η|2ds

≥ h(x)(p(x)− 1)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−2)/2ds|ξ − η|2

≥ (p− − 1)h(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2.

Thus (A.2) holds. We show that (A.3) holds.

a(x, ξ) · ξ = h(x)(1 + |ξ|2)(p(x)−2)/2|ξ|2

= h(x)(1 + |ξ|2)(p(x)−2)/2(1 + |ξ|2 − 1)

= h(x)(1 + |ξ|2)p(x)/2 − h(x)(1 + |ξ|2)(p(x)−2)/2

= p(x)A(x, ξ) + h(x)(1 − (1 + |ξ|2)(p(x)−2)/2)

≤ p(x)A(x, ξ) + h(x).

If p(x) ≥ 2, then we can delete the last term h(x), however if p(x) < 2, then we can not delete

the last term h(x) since {(1 + |ξ|2)(p(x)−2)/2; ξ ∈ R
N} = [0, 1].

Remark 3.3.

(i) When h(x) ≡ 1, (i) corresponds to the p(·)-Laplacian and (ii) corresponds to the pre-

scribed mean curvature operator for nonparametric surface.
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(ii) In many papers (for example, [29], [21], [6], [4]), the authors assume that a(x, ξ) · ξ ≤

p(x)A(x, ξ) instead of (A.3). However, in the above Example 3.2 we saw that if the

example (ii) satisfies 1 < p(x) < 2 in a subset of Ω with positive measure, then we have

to assume (A.3).

Lemma 3.4. Under (A.0)–(A.2), we have the following.

(i) |A(x, ξ)| ≤ C0(h0(x)|ξ|+ h1(x)|ξ|p(x)) for a.e. x ∈ Ω and all ξ ∈ R
N .

(ii) There exist constants c > 0 and C ≥ 0 such that

a(x, ξ) · ξ ≥ ch1(x)|ξ|p(x) − Ch1(x) for a.e. x ∈ Ω and all ξ ∈ R
N .

In particular, if p− ≥ 2, then we can take C = 0.

Proof. (i) From (A.0) and (A.1), we have

|A(x, ξ)| = |A(x, ξ)− A(x, 0)| =

∣∣∣∣
∫ 1

0

d

dt
A(x, tξ)dt

∣∣∣∣ =
∣∣∣∣
∫ 1

0
a(x, tξ) · ξdt

∣∣∣∣

≤ C0(h0(x)|ξ|+ h1(x)|ξ|p(x)).

(ii) Since it follows from (A.2) with η = 0 that

a(x, ξ) · ξ ≥

{
k0h1(x)|ξ|p(x) if p(x) ≥ 2,

k0h1(x)(1 + |ξ|)p(x)−2)|ξ|2 if p(x) < 2,

it suffices to show that when p(x) < 2, we have (1 + |ξ|)p(x)−2|ξ|2 ≥ c′|ξ|p(x) − C′ for some

constant c′, C′
> 0. Using an elementary inequality (a + b)q ≤ 2q(aq + bq) for real numbers

a, b ≥ 0 and q > 0, we have

(1 + |ξ|)2−p(x) ≤ 22−p(x)(|ξ|2−p(x) + 1) ≤ 22−p− |ξ|2−p(x) + 22−p− .

Thereby, |ξ|2−p(x) ≥ 2p−−2(1 + |ξ|)2−p(x) − 1. When |ξ| ≤ 1, since p(x)− 1 > 0, we have

(1 + |ξ|)p(x)−2|ξ|2 = (1 + |ξ|)p(x)−2|ξ|2−p(x)|ξ|p(x)

≥ (1 + |ξ|)p(x)−2(2p−−2(1 + |ξ|)2−p(x) − 1)|ξ|p(x)

= 2p−−2|ξ|p(x) − (1 + |ξ|)p(x)−2|ξ|p(x)

≥ 2p−−2|ξ|p(x) − (2|ξ|)p(x)−2|ξ|p(x)

≥ 2p−−2|ξ|p(x) − 2p+−2|ξ|2(p(x)−1)

≥ 2p−−2|ξ|p(x) − 2p+−2.

When |ξ| ≥ 1, we have (1 + |ξ|)p(x)−2|ξ|2 ≥ (2|ξ|)p(x)−2|ξ|2 ≥ 2p−−2|ξ|p(x). Therefore, we have

(1 + |ξ|)p(x)−2|ξ|2 ≥ 2p−−2|ξ|p(x) − 2p+−2 for all ξ ∈ R
N .

For the function h1 ∈ L1(Ω) with h1(x) ≥ 1 for a.e. x ∈ Ω, we define a modular

ρp(·),h1(·)(v) = ρp(·),h1(·),Ω(v) =
∫

Ω
h1(x)|∇v(x)|p(x)dx for v ∈ Y,
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where Y is our basic space defined by

Y = Y(Ω) = {v ∈ X; ρp(·),h1(·)(v) < ∞}, (3.1)

the space X is defined by (2.1), equipped with the norm

∥v∥Y = inf
{

λ > 0; ρp(·),h1(·)

( v

λ

)
≤ 1

}
.

Then Y is a Banach space (see Proposition 3.5 below). We note that C∞
0 (Ω) ⊂ Y. Since

ρp(·),h1(·)(v) = ρp(·)(h
1/p(·)
1 ∇v),

we have

∥v∥Y = ∥h
1/p(·)
1 ∇v∥Lp(·)(Ω). (3.2)

We have the following propositions.

Proposition 3.5. The space (Y, ∥ · ∥Y) is a separable and reflexive Banach space.

For the proof, see [4, Lemma 2.12].

Proposition 3.6. Let Y be the above Banach space defined by (3.1) and X be the space defined by (2.1).

Then we have the following properties.

(i) Y →֒ X and ∥v∥X ≤ ∥v∥Y for all v ∈ Y.

(ii) Let v ∈ Y. Then ∥v∥Y > 1(= 1,< 1) ⇐⇒ ρp(·),h1(·)(v) > 1(= 1,< 1).

(iii) Let v ∈ Y. Then ∥v∥Y > 1 =⇒ ∥v∥
p−

Y ≤ ρp(·),h1(·)(v) ≤ ∥v∥
p+

Y .

(iv) Let v ∈ Y. Then ∥v∥Y < 1 =⇒ ∥v∥
p+

Y ≤ ρp(·),h1(·)(v) ≤ ∥v∥
p−

Y .

(v) Let un, u ∈ Y. Then limn→∞ ∥un − u∥Y = 0 ⇐⇒ limn→∞ ρp(·),h1(·)(un − u) = 0.

(vi) Let un ∈ Y. Then ∥un∥Y → ∞ as n → ∞ ⇐⇒ ρp(·),h1(·)(un) → ∞ as n → ∞.

The following proposition fulfills an important role in this paper. In the following, we

denote positive constants by c, c′, C, C′ which may vary from line to line, and put Ω1 = {x ∈

Ω; p(x) ≥ 2}, Ω2 = {x ∈ Ω; p(x) < 2}.

Proposition 3.7. Under (A.0)–(A.2), there exist positive constants c and C such that

∫

Ω
(a(x,∇u(x))− a(x,∇v(x))) · (∇u(x)−∇v(x))dx ≥ cρh1(·),p(·),Ω1

(u − v)

+
{

c(C + ∥u∥Y + ∥v∥Y)
(p−(Ω2)−2)p−(Ω2)/2ρh1(·),p(·),Ω2

(u − v)
}2/p+(Ω2)

∧
{

c(C + ∥u∥Y + ∥v∥Y)
(p−(Ω2)−2)p−(Ω2)/2ρh1(·),p(·),Ω2

(u − v)
}2/p−(Ω2)

for u, v ∈ Y. Here and from now on, we denote a ∨ b = max{a, b} and a ∧ b = min{a, b} for real

numbers a and b.

In particular, if v = 0 and ∥u∥Y < 1, then we have
∫

Ω
a(x,∇u(x)) ·∇u(x)dx ≥ c1(ρh1(·),p(·),Ω1

(u) + ρh1(·),p(·),Ω2
(u)2/p−)

for some constant c1 > 0. We also get the following estimate.
∫

Ω
a(x,∇u(x)) ·∇u(x)dx ≥ c∥u∥

p+

Y ∧ ∥u∥
p−

Y − C∥h1∥L1(Ω) for all u ∈ Y. (3.3)



Existence of weak solutions for a class of nonlinear equation 13

Proof. For brevity of notation, for u, v ∈ Y, we put

J(u(x); v(x)) = (a(x,∇u(x))− a(x,∇v(x))) · (∇u(x)−∇v(x)).

We decompose the integral of J(u(x); v(x)) over Ω as follows.

∫

Ω
J(u(x); v(x))dx =

∫

Ω1

J(u(x); v(x))dx +
∫

Ω2

J(u(x); v(x))dx.

We can easily see that when |Ω1| > 0, it follows from (A.2) that

∫

Ω1

J(u(x); v(x))dx ≥ k0

∫

Ω1

h1(x)|∇u(x)−∇v(x)|p(x)dx.

When |Ω2| > 0, it follows from (A.2) that

(h1(x)1/p(x) + h1(x)1/p(x)|∇u(x)|+ h1(x)1/p(x)|∇v(x)|)2−p(x) J(u(x); v(x))

≥ k0|h1(x)1/p(x)
∇u(x)− h1(x)1/p(x)

∇v(x)|2.

By integrating p(x)/2-powers of the above inequality over Ω2, we have

∫

Ω2

k
p(x)/2
0 |h1(x)1/p(x)

∇u(x)− h1(x)1/p(x)
∇v(x)|p(x)dx

≤
∫

Ω2

(h1(x)1/p(x) + h1(x)1/p(x)|∇u(x)|+ h1(x)1/p(x)|∇v(x)|)(2−p(x))p(x)/2

× J(u(x); v(x))p(x)/2dx.

We note that

(h1(·)
1/p(·) + h1(·)

1/p(·)|∇u(·)|+ h1(·)
1/p(·)|∇v(·)|)(2−p(·))p(·)/2 ∈ L2/(2−p(·))(Ω2),

and (J(u(·); v(·))p(·)/2 ∈ L2/p(·)(Ω2), and (2− p(x))/2+ p(x)/2 = 1. By the Hölder inequality

(Proposition 2.2), we have

k1

∫

Ω2

h1(x)1/p(x)|∇u(x)− h1(x)1/p(x)
∇v(x)|p(x)dx

≤ 2∥(h1(·)
1/p(·) + h1(·)

1/p(·)|∇u(·)|+ h1(·)
1/p(·)|∇v(·)|)(2−p(·))p(·)/2∥L2/(2−p(·))(Ω2)

× ∥J(u(·); v(·))p(·)/2∥L2/p(·)(Ω2)
,

where k1 = k
p+(Ω2)/2
0 ∧ k

p−(Ω2)/2
0 . We choose C > 1 so that C∥h1(·)

1/p(·)∥Lp(·)(Ω2)
≥ 1. Then

∥Ch1(·)
1/p(·) + h1(·)

1/p(·)|∇u(·)| + h1(·)
1/p(·)|∇v(·)|∥Lp(·)(Ω2)

≥ 1 by the definition of Lp(·)-

norm. By Proposition 2.12,

∥(Ch1(·)
1/p(·) + h1(·)

1/p(·)|∇u(·)|+ h1(·)
1/p(·)|∇v(·)|)(2−p(·))p(·)/2∥L2/(2−p(·))(Ω2)

≤ ∥Ch1(·)
1/p(·) + h1(·)

1/p(·)|∇u(·)|+ h1(·)
1/p(·)|∇v(·)|∥

((2−p(·))p(·)/2)+(Ω2)

Lp(·)(Ω2)
.

Here since (2 − p(x))p(x)/2 = − 1
2 (p(x) − 1)2 + 1

2 , we see that (2 − p(x))p(x)/2)+(Ω2) =

(2 − p−(Ω2))p−(Ω2)/2. Since it follows from Proposition 2.12 that

∥Ch1(·)
1/p(·)∥Lp(·)(Ω2)

≤ C∥h1∥
1/p+(Ω2)

L1(Ω)
∨ ∥h1∥

1/p−(Ω2)

L1(Ω)
=: C1,
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and ∥h1(·)
1/p(·)|∇u(·)|∥Lp(·)(Ω2)

≤ ∥u∥Y and ∥h1(·)
1/p(·)|∇v(·)|∥Lp(·)(Ω2)

≤ ∥v∥Y, we have

∥(Ch1(·)
1/p(·) + h1(·)

1/p(·)|∇u(·)|+ h1(·)
1/p(·)|∇v(·)|)(2−p(·))p(·)/2∥L2/(2−p(·))(Ω2)

≤ (C1 + ∥u∥Y + ∥v∥Y)
(2−p−(Ω2))p−(Ω2)/2.

Using Proposition 2.12,

∥J(u(·); v(·))p(·)/2∥L2/p(·)(Ω2)
≤ ∥J(u(·); v(·))∥

p+(Ω2)/2

L1(Ω2)
∨ ∥J(u(·); v(·))∥

p−(Ω2)/2

L1(Ω2)
.

Hence we have
∫

Ω2

J(u(x); v(x))dx = ∥J(u(·); v(·))∥L1(Ω2)

≥

{
(C1 + ∥u∥Y + ∥v∥Y)

(p−(Ω2)−2)p−(Ω2)/2k1

∫

Ω2

h1(x)|∇u(x)−∇v(x)|p(x)dx

}2/p+(Ω2)

∧

{
(C1 + ∥u∥Y + ∥v∥Y)

(p−(Ω2)−2)p−(Ω2)/2k1

∫

Ω2

h1(x)|∇u(x)−∇v(x)|p(x)dx

}2/p−(Ω2)

.

In particular case where v = 0 and ∥u∥Y < 1,

∫

Ω
a(x,∇u(x)) ·∇u(x)dx ≥ k0

∫

Ω1

h1(x)|∇u(x)|p(x)dx

+ (C1 + 1)p−(Ω2)−2k
2/p+(Ω2)
1 ∧ k

2/p−(Ω2)
1

{∫

Ω2

h1(x)|∇u(x)|p(x)dx

}2/p−(Ω2)

.

For the estimate (3.3), it suffices to use Lemma 3.4 (ii). This completes the proof.

Here we state the assumptions on functions f and g in (1.1).

(f.1) f = f (x, t) is a real Carathéodory function on Ω × R and there exist 1 ≤ a ∈ Lα(·)(Ω)

with α ∈ C+(Ω), and q ∈ C+(Ω) with

q(x) <
α(x)− 1

α(x)
p∗(x) for all x ∈ Ω

such that

| f (x, t)| ≤ C1(1 + a(x)|t|q(x)−1) for all t ∈ R and a.e. x ∈ Ω,

where C1 is a positive constant and p+ < q−.

(f.2) There exist θ > p+ and t0 > 0 such that

0 < θF(x, t) ≤ f (x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Ω,

where

F(x, t) =
∫ t

0
f (x, s)ds. (3.4)

(f.3) f (x, t) = o(|t|p
+−1) uniformly as t → 0.
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(g.1) g = g(x, t) is a real Carathéodory function on Γ2 × R and there exist 1 ≤ b ∈ Lβ·)(Γ2)

with β ∈ C+(Γ2), and r ∈ C+(Γ2) with

r(x) <
β(x)− 1

β(x)
p∂(x) for all x ∈ Γ2

such that

|g(x, t)| ≤ C2(1 + b(x)|t|r(x)−1) for all t ∈ R and σ-a.e. x ∈ Γ2,

where C2 is a positive constant and p+ < r−.

(g.2) Let θ and t0 be as in (f.2). That is, there exist θ > p+(Ω1) ∨ 2p+(Ω2)/p−(Ω2) and t0 > 0

such that

0 < θG(x, t) ≤ g(x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Γ2,

where

G(x, t) =
∫ t

0
g(x, s)ds. (3.5)

(g.3) g(x, t) = o(|t|p
+−1) uniformly as t → 0.

Lemma 3.8. Under (f.1)–(f.3) and (g.1)–(g.3), we have the following.

(i) For any λ > 0, there exists a constant C′
1 > 0 such that

|F(x, t)| ≤
λ

p+
|t|p

+
+ C′

1a(x)|t|q(x) −
1

|Ω|
∥h1/p∥L1(Ω) for a.e. x ∈ Ω, t ∈ R.

(ii) For any λ > 0, there exists a constant C′
2 > 0 such that

|G(x, t)| ≤
λ

p+
|t|p

+
+ C′

2b(x)|t|r(x) for σ-a.e. x ∈ Γ2, t ∈ R.

Proof. From (f.3), for any λ > 0, there exists δ ∈ (0, 1) such that

| f (x, t)| ≤ λ|t|p
+−1 for a.e. x ∈ Ω, t ∈ (−δ, δ).

Hence we have

|F(x, t)| ≤
λ

p+
|t|p

+
for a.e. x ∈ Ω, t ∈ (−δ, δ).

On the other hand, from (f.1), we have

|F(x, t)| ≤ C1(|t|+
a(x)

q(x)
|t|q(x)) ≤ C′

2a(x)|t|q(x) for a.e. x ∈ Ω, |t| ≥ δ.

If we choose C′′
2 > 0 so that C′′

2 δq+ ≥ 1
|Ω|

∥h1/p∥L1(Ω), then

C′′
2 a(x)|t|q(x) −

1

|Ω|
∥h1/p∥L1(Ω) ≥ C′′

2 δq+ −
1

|Ω|
∥h1/p∥L1(Ω) ≥ 0

for a.e. x ∈ Ω and |t| ≥ δ. Hence |F(x, t)| ≤ (C′
2 + C′′

2 )a(x)|t|q(x) − 1
|Ω|

∥h1/p∥L1(Ω) for a.e.

x ∈ Ω and |t| ≥ δ. It suffices to put C′
1 = C′

2 + C′′
2 .

Similarly (ii) holds.
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Define a functional on Y by

I(u) = Φ(u)− J(u)− K(u) for u ∈ Y, (3.6)

where

Φ(u) =
∫

Ω
A(x,∇u(x))dx, (3.7)

J(u) =
∫

Ω
F(x, u(x))dx, F(x, t) is defined by (3.4), (3.8)

K(u) =
∫

Γ2

G(x, u(x))dσx, G(x, t) is defined by (3.5). (3.9)

Proposition 3.9. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then the functionals

Φ, J, K ∈ C1(Y, R) and the Fréchet derivatives Φ′, J′ and K′ satisfy the following equalities.

⟨Φ′(u), v⟩ =
∫

Ω
a(x,∇u(x)) ·∇v(x)dx, (3.10)

⟨J′(u), v⟩ =
∫

Ω
f (x, u(x))v(x)dx, (3.11)

⟨K′(u), v⟩ =
∫

Γ2

g(x, u(x))v(x)dσx (3.12)

for all u, v ∈ Y. Here and hereafter, we write the duality ⟨·, ·⟩Y∗,Y by simply ⟨·, ·⟩.

For the proof, see [4, Proposition 4.2].

Proposition 3.10. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then we have the follow-

ing.

(i) The functionals J and K are weakly continuous in Y, that is, if un → u weakly in Y as n → ∞,

then J(un) → J(u) and K(un) → K(u) as n → ∞.

(ii) The functional Φ is sequentially weakly lower semi-continuous in Y, that is, if un → u weakly

in Y as n → ∞, then Φ(u) ≤ lim infn→∞ Φ(un).

(iii) Φ(u)− Φ(v) ≥ ⟨Φ′(v), u − v⟩ for all u, v ∈ Y.

For the proof, see [4, Proposition 4.4].

Lemma 3.11. Under (f.1)–(f.3) and (g.1)–(g.3), there exist constants c1, c2, C3 and C4 such that for

u ∈ Y with ∥u∥Y < 1, the following inequalities hold.

(i) We have

J(u) ≤
λ

p+
c1∥u∥

p+

Y + C3∥u∥
q−

Y − ∥h1/p∥L1(Ω).

(ii) We have

K(u) ≤
λ

p+
c2∥u∥

p+

Y + C4∥u∥r−

Y .
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Proof. From Lemma 3.8,

J(u) ≤
λ

p+

∫

Ω
|u(x)|p

+
dx + C3

∫

Ω
a(x)|u(x)|q(x)dx − ∥h1/p∥L1(Ω).

Here it suffices to note that ∫

Ω
|u(x)|p

+
dx ≤ C∥u∥

p+

Y

with some constant C > 0, and
∫

Ω
a(x)|u(x)|q(x)dx ≤ C′∥u∥

q−

Y .

(ii) follows from the similar arguments as (i).

Proposition 3.12. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then there exist constants

c, c1, c2 > 0 and C′
1, C′

2 > 0 such that for u ∈ Y with ∥u∥Y < 1,

I(u) ≥ (c − λc1 − λc2) ∥u∥
p+

Y − C′
1∥u∥

q−

Y − C′
2∥u∥r−

Y .

In particular, there exists ρ ∈ (0, 1) such that

inf
∥u∥Y=ρ

I(u) > 0. (3.13)

Proof. Let ∥u∥Y < 1. It follows from (A.3) and Proposition 3.7 that

Φ(u) =
∫

Ω
A(x,∇u(x))dx ≥

∫

Ω

1

p(x)
a(x,∇u(x)) ·∇u(x)dx − ∥h1/p∥L1(Ω)

≥ c∥u∥
p+

Y − ∥h1/p∥L1(Ω).

From Lemma 3.11,

I(u) = Φ(u)− J(u)− K(u) ≥ (c − λc1 − λc2)∥u∥
p+

Y − C′
1∥u∥

q−

Y − C′
2∥u∥r−

Y .

If we choose λ > 0 small enough so that c′′ := c − λc1 − λc2 > 0, then we have

I(u) ≥ ∥u∥
p+

Y (c′′ − C′
1∥u∥

q−−p+

Y − C′
2∥u∥

r−−p+

Y ).

Since q− > p+ and r− > p+, if ∥u∥Y = ρ > 0 is small, then we have inf∥u∥Y=ρ I(u) > 0.

Proposition 3.13. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then there exists a con-

stant C4 > 0 such that

I(u) ≥

(
1

p+
−

1

θ

)
c∥u∥

p+

Y ∧ ∥u∥
p−

Y +
1

θ
⟨I′(u), u⟩ − C4 for all u ∈ Y.

Proof. From (A.3) and Lemma 3.4 (ii), for u ∈ Y, we have

Φ(u)−
1

θ
⟨Φ′(u), u⟩ =

∫

Ω
A(x,∇u(x))dx −

1

θ

∫

Ω
a(x,∇u(x)) ·∇u(x)dx

≥
∫

Ω

(
1

p(x)
−

1

θ

)
a(x,∇u(x)) ·∇u(x)dx − ∥h1/p∥L1(Ω)

≥

(
1

p+
−

1

θ

)(
c
∫

Ω
h1(x)|∇u(x)|p(x)dx − C

∫

Ω
h1(x)dx

)
− ∥h1/p∥L1(Ω)

≥

(
1

p+
−

1

θ

)
c∥u∥

p+

Y ∧ ∥u∥
p−

Y − C1∥h1∥L1(Ω)
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for some constant C1 > 0.

On the other hand, it follows from (f.2) that

0 < θF(x, t) ≤ f (x, t)t for a.e. x ∈ Ω, t ∈ R \ (−t0, t0).

Put Ωu = {x ∈ Ω; |u(x)| > t0}. Then 1
θ f (x, u(x))u(x)− F(x, u(x)) ≥ 0 for a.e. x ∈ Ωu. For

x ∈ Ω \ Ωu, we have
∣∣∣∣
1

θ
f (x, u(x))u(x)− F(x, u(x))

∣∣∣∣ ≤ C2(t0 + a(x)t
q+

0 ∨ t
q−

0 ).

Hence we have

1

θ
⟨J′(u), u⟩ − J(u) =

∫

Ωu

(
1

θ
f (x, u(x))u(x)− F(x, u(x))

)
dx

+
∫

Ω\Ωu

(
1

θ
f (x, u(x))u(x)− F(x, u(x))

)
dx

≥ −C2

∫

Ω\Ωu

(t0 + a(x)t
q+

0 ∨ t
q−

0 )dx

≥ −C2t0|Ω| − C2t
q+

0 ∨ t
q−

0 ∥a∥L1(Ω).

Similarly we have

1

θ
⟨K′(u), u⟩ − K(u) ≥ −C3t0|Γ2| − C3tr+

0 ∨ tr−

0 ∥b∥L1(Γ2).

Thus we have

I(u)−
1

θ
⟨I′(u), u⟩ = Φ(u)−

1

θ
⟨Φ′(u), u⟩ −

(
J(u)−

1

θ
⟨J′(u), u⟩

)

−

(
K(u)−

1

θ
⟨K′(u), u⟩

)
≥

(
1

p+
−

1

θ

)
c∥u∥

p+

Y ∧ ∥u∥
p−

Y − C4

for some constant C4.

Proposition 3.14. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then the functional I

satisfies the Palais–Smale condition, that is, if a sequence {un} ⊂ Y satisfies that limn→∞ I(un) =

γ ∈ R exists and limn→∞ ∥I′(un)∥Y∗ = 0, then {un} has a convergent subsequence.

Proof. Let {un} ⊂ Y satisfy that limn→∞ I(un) = γ ∈ R exists and limn→∞ ∥I′(un)∥Y∗ = 0.

Step 1. {un} is bounded in Y. Indeed, if it is false, then passing to a subsequence, we can

assume that limn→∞ ∥un∥Y = ∞. By proposition 3.13, we have

I(un) ≥

(
1

p+
−

1

θ

)
k0∥un∥

p−

Y −
1

θ
∥I′(un)∥Y∗∥un∥Y − C4

for large n. Since 1
p+ − 1

θ > 0 and p− > 1 and limn→∞ ∥I′(un)∥Y∗ = 0, we have I(un) → ∞ as

n → ∞. This is a contradiction.

Step 2. Since Y is a reflexive Banach space from Proposition 3.5, there exist a subsequence

{un′} of {un} and u ∈ Y such that un′ → u weakly in Y as n′ → ∞. Since {un′ − u} is bounded

in Y and limn′→∞ ∥I′(un′)∥Y∗ = 0, we see that

⟨I′(un′), un′ − u⟩ → 0 as n′ → ∞.
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By Proposition 2.9, un′ → u strongly in L
q(·)
a(·)

(Ω) and L
r(·)
b(·)

(Γ2) as n′ → ∞. From (f.1), using the

Hölder inequality,

∣∣∣∣
∫

Ω
f (x, un′(x))(un′(x)− u(x))dx

∣∣∣∣

≤
∫

Ω
C1(1 + a(x)|un′(x)|q(x)−1)|un′(x)− u(x)|dx

≤ C1

∫

Ω
(a(x)1/q(x)|un′(x)− u(x)|+ a(x)1/q′(x)|un′(x)|q(x)−1a(x)1/q(x)|un′(x)− u(x)|)dx

≤ 2C1∥1∥Lq′(·)(Ω)∥a1/q(·)|un′ − u|∥Lq(·)(Ω)

+ 2C1∥a1/q′(·)|un′(·)|q(·)−1∥Lq′(·)(Ω)∥a1/q(·)|un′ − u|∥Lq(·)(Ω).

Since

ρq′(·)(a1/q′(·)|un′ |q(·)−1) =
∫

Ω
a(x)|un′(x)|q(x)dx

is bounded, we see that ∥a1/q′(·)|un′ |q(·)−1∥Lq′(·)(Ω) is bounded. Since ∥un′ − u∥
L

q(·)
a(·)

(Ω)
→ 0 as

n′ → ∞, we see that

lim
n′→∞

⟨J′(un′), un′ − u⟩ = lim
n′→∞

∫

Ω
f (x, un′(x))(un′(x)− u(x))dx = 0.

Similarly, we have

lim
n′→∞

⟨K′(un′), un′ − u⟩ = lim
n′→∞

∫

Γ2

g(x, un′(x))(un′(x)− u(x))dσx = 0.

Thus we have

lim
n′→∞

⟨Φ′(un′), un′ − u⟩ = lim
n′→∞

(⟨J′(un′), un′ − u⟩+ ⟨K′(un′), un′ − u⟩+ ⟨I′(un′), un′ − u⟩) = 0.

Since un′ → u weakly in Y, we have limn′→∞⟨Φ
′(u), un′ − u⟩ = 0, so

lim
n′→∞

⟨Φ′(un′)− Φ′(u), un′ − u⟩ = 0.

Since {un′} is bounded in Y, it follows from Proposition 3.7 that

∫

Ω
h1(x)|∇un′(x)−∇u(x)|p(x)dx → 0 as n′ → ∞,

so un′ → u strongly in Y.

4 Main theorems

In this section, we state the main theorems (Theorem 4.3, 4.5 and 4.6).

Definition 4.1. We say u ∈ Y is a weak solution of (1.1) if u satisfies that

∫

Ω
a(x,∇u(x)) ·∇v(x)dx =

∫

Ω
f (x, u(x))v(x)dx +

∫

Γ2

g(x, u(x))v(x)dσx (4.1)

for all v ∈ Y.
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Remark 4.2. Since C∞
0 (Ω) ⊂ Y, if u ∈ Y satisfies (4.1), then the equation (1.1) holds in the

distribution sense.

Now we obtain the following three theorems.

Theorem 4.3. Let Ω be a bounded domain of R
N (N ≥ 2) with a C0,1-boundary Γ satisfying (1.2).

Under the hypotheses (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3), the problem (1.1) has a nontrivial weak

solution.

Remark 4.4. This theorem extends the result of [8] in which the authors considered the case

where A(x, ξ) = 1
p(x)

|ξ|p(x), Γ2 = ∅ and p− ≥ 2. This theorem is new and also an extension to

the case p− > 1.

We impose one more assumption.

(f.4) For any δ′ ∈ (0, 1), the function f (x, t) satisfies the following inequality.

f (x, t) ≥

{
ctm−1 for t ∈ [δ′, 1],

0 for t ∈ [0, ∞) \ [δ′, 1],

where c > 0 and 0 < m < 1.

For example, A function f (x, t) = χδ′(t)|t|
m−2t + a(x)|t|q(x)−2t, where χδ′ ∈ C0(R) satisfying

that 0 ≤ χδ′ ≤ 1,

χδ′(t) =

{
0 for |t| ≤ δ′/2

1 for δ′ ≤ |t| ≤ 1

and that a function a is as in (f.1) verifies (f.1)–(f.4).

Theorem 4.5. In addition to the hypotheses of Theorem 4.3, assume that (f.4) also holds. Then the

problem (1.1) has at least two nontrivial weak solutions.

Finally, in addition to the hypotheses of Theorem 4.3, we assume the following hypotheses.

(A.4) A(x, ξ) is even with respect to ξ, that is, A(x,−ξ) = A(x, ξ) for a.e. x ∈ Ω and all

ξ ∈ R
N .

(f.5) f (x, t) is odd with respect to t, that is, f (x,−t) = − f (x, t) for a.e. x ∈ Ω and all t ∈ R.

(g.4) g(x, t) is odd with respect to t, that is, g(x,−t) = −g(x, t) for σ-a.e. x ∈ Γ2 and all t ∈ R.

Then we can derive that there exist infinitely many weak solutions of (1.1).

Theorem 4.6. In addition to the hypotheses of Theorem 4.3, assume that (A.4), (f.5) and (g.4) also

hold. Then the problem (1.1) has infinitely many nontrivial weak solutions.

5 Proofs of Theorem 4.3, 4.5 and 4.6

In this section, we give proofs of Theorem 4.3, 4.5 and 4.6. Assume that (A.0)–(A.3), (f.1)–(f.3)

and (g.1)–(g.3) hold.

The proofs of Theorem 4.3, 4.5 and 4.6 consist of some lemma and propositions.
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Lemma 5.1. Under the hypotheses of Theorem 4.3, we have the following.

(i) |F(x, t)| ≤ C′
1(1 + a(x)|t|q(x)) for a.e. x ∈ Ω and all t ∈ R with some constant C′

1 > 0.

(ii) There exists γ ∈ Lα(·)(Ω) such that γ(x) > 0 a.e. x ∈ Ω and F(x, t) ≥ γ(x)tθ for all

t ∈ [t0, ∞) and a.e. x ∈ Ω, where α(·) and t0 are as in (f.1) and (f.2), respectively.

(iii) |G(x, t)| ≤ C′
2(1 + b(x)|t|r(x)) for σ-a.e. x ∈ Γ2 and all t ∈ R with some constant C′

2 > 0.

(iv) There exists δ ∈ Lβ(·)(Γ2) such that δ(x) > 0 σ-a.e. x ∈ Γ2 and G(x, t) ≥ δ(x)tθ for all

t ∈ [t0, ∞) and σ-a.e. x ∈ Γ2, where β(·) and t0 are as in (g.1) and (g.2), respectively.

Proof. (i) easily follows from (f.1).

(ii) From (f.2), for t ≥ t0,

0 < θF(x, t) ≤ f (x, t)t. (5.1)

Put γ(x) = F(x, t0)t
−θ
0 . Then γ(x) > 0 for a.e. x ∈ Ω and it follows from (ii) that

γ(x) ≤ C′
1(1 + a(x)t

q(x)
0 )t−θ

0 ≤ C′
1(1 + a(x)t

q+

0 ∨ t
q−

0 )t−θ
0 .

So γ ∈ Lα(·)(Ω). From (5.1),

θ

τ
≤

f (x, τ)

F(x, τ)
=

∂F
∂τ (x, τ)

F(x, τ)
.

Integrating this inequality over (t0, t), we have

θ log
t

t0
≤ log

F(x, t)

F(x, t0)
for all t ≥ t0.

This implies that F(x, t) ≥ γ(x)tθ for all t ≥ t0.

(iii) and (iv) follow from the similar argument as (i) and (ii) using (g.1) and (g.2), respec-

tively.

5.1 Proof of Theorem 4.3

For a proof of Theorem 4.3, we apply the following standard Mountain-Pass Theorem (cf.

Willem [26]).

Proposition 5.2. Let (V, ∥ · ∥V) be a Banach space and I ∈ C1(V, R) be a functional satisfying

the Palais–Smale condition. Assume that I(0) = 0, and there exist ρ > 0 and z0 ∈ V such that

∥z0∥V > ρ, I(z0) ≤ I(0) = 0 and

α := inf{I(u); u ∈ V with ∥u∥V = ρ} > 0.

Let G := {ϕ ∈ C([0, 1], V); ϕ(0) = 0, ϕ(1) = z0} ̸= ∅ and β = inf{max I(ϕ([0, 1]); ϕ ∈ G}. Then

β ≥ α and β is a critical value of I.

We apply Proposition 5.2 with (V, ∥ · ∥V) = (Y, ∥ · ∥Y). By Proposition 3.9 and Proposition

3.14, the functional I satisfies that I ∈ C1(Y, R) and the Palais–Smale condition holds. Since

Φ(0) = J(0) = K(0) = 0, we have I(0) = 0. According to (3.13),

α = inf
∥v∥Y=ρ

I(v) > 0. (5.2)
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We show that there exists u0 ∈ Y such that ∥u0∥Y > ρ and I(u0) ≤ 0. Choose v0 ∈ C∞
0 (Ω)

such that v0 ≥ 0 and W = {x ∈ Ω; v0(x) ≥ t0} has a positive measure, where t0 is as in

(f.2). We see that F(x, v0(x)) > 0 for a.e. x ∈ W from (f.2). Let t > 1 and define Wt = {x ∈

Ω; tv0(x) ≥ t0}, then W ⊂ Wt. By Lemma 5.1 (ii), there exists γ ∈ Lα(·)(Ω)(⊂ L1(Ω)) such

that γ(x) > 0 a.e. x ∈ Ω and F(x, t) ≥ γ(x)tθ for t ∈ [t0, ∞). Thereby,

∫

Wt

F(x, tv0(x))dx ≥
∫

Wt

γ(x)tθv0(x)θdx ≥ tθ L(v0),

where L(v0) =
∫

W γ(x)v0(x)θdx > 0. For t ∈ [0, t0], it follows from Lemma 5.1 (i) that

|F(x, t)| ≤ C′
1(1 + a(x)tq(x)) ≤ C′

1(1 + a(x)t
q+

0 ∨ t
q−

0 ).

By (f.2), F(x, st) ≥ F(x, t)sθ for t ∈ R \ (−t0, t0) and s > 1. Indeed, if we define h(s) = F(x, st),

then

h′(s) = f (x, st)t =
1

s
f (x, st)st ≥

θ

s
F(x, st) =

θ

s
h(s).

Thus h′(s)/h(s) ≥ θ/s, so log h(s)/h(1) ≥ θ log s for s > 1. This implies h(s) ≥ h(1)sθ .

(A.3) implies that

A(x, sξ) +
h1(x)

p(x)
≤ sp(x)

(
A(x, ξ) +

h1(x)

p(x)

)
for s > 1.

Indeed, if we define k(s) = A(x, sξ) + h1(x)/p(x), then we see that k′(s) ≤ 1
s p(x)k(s). Hence

we obtain the inequality. Thus we see that, for t > 1, Φ(su) + ∥h1/p∥L1(Ω) ≤ sp(x)(Φ(u) +

∥h1/p∥L1(Ω) for u ∈ Y and s > 1. Thereby we see that, for t > 1,

I(tv0) = Φ(tv0)− J(tv0)

≤ Φ(tv0)−
∫

Wt

F(x, tv0(x))dx −
∫

Ω\Wt

F(x, tv0(x))dx

≤ tp+Φ(v0) + tp+∥h1/p∥L1(Ω) − ∥h1/p∥L1(Ω) − tθ L(v0) + C′
1|Ω|+ t

q+

0 ∨ t
q−

0 ∥a∥L1(Ω).

Since θ > p+ and L(v0) > 0, we can see that I(tv0) → −∞ as t → ∞. Hence there exists t1 > 1

such that ∥t1v0∥Y > ρ and I(t1v0) ≤ 0. Put u0 = t1v0.

If we define ϕ(t) = tu0, then ϕ ∈ G, so G ̸= ∅. Hence all the hypotheses of Proposition

5.2 hold. Therefore, β = inf{max I(ϕ([0, 1]); ϕ ∈ G} satisfies that β ≥ α > 0 and β is a critical

value of I, that is, there exists u1 ∈ Y such that I(u1) = β and I′(u1) = 0. Thus u1 is a weak

solution of (1.1). Since I(u1) = β ≥ α > 0 = I(0), u1 is nontrivial weak solution of (1.1). This

completes the proof of Theorem 4.3.

5.2 Proof of Theorem 4.5.

It follows from (f.4) that for 0 ≤ t ≤ 1,

F(x, t) ≥

{∫ t
δ′ f (x, s)ds if t ≥ δ′,

0 if t < δ′
≥

{
c
m (tm − (δ′)m) if t ≥ δ′,

0 if t < δ′.

Fix t1 ∈ (0, 1) small enough and choose δ′ ∈ (0, 1) such that (δ′)m ≤ t1. If (δ′)m ≤ t, then

F(x, t) ≥ c
m (tm − t) since (δ′)m ≥ δ′. Choose ϕ ∈ C∞

0 (Ω) so that 0 ≤ ϕ ≤ 1 and ϕ ̸≡ 0. Put
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Ωδ′ = {x ∈ Ω; (δ′)m ≤ t1ϕ(x)}. Then we note that |Ω \ Ωδ′ | → 0 as δ′ → 0, where |A| denotes

the measure of a measurable set A. Thus we have

J(t1 ϕ) =
∫

Ω
F(x, t1ϕ(x))dx

≥
∫

Ωδ′

F(x, t1ϕ(x))dx

≥
c

m

∫

Ωδ′

((t1 ϕ(x))m − t1ϕ(x))dx

≥
c

m
tm
1

(∫

Ω
ϕ(x)mdx −

∫

Ω\Ωδ′

ϕ(x)mdx

)
−

c

m
t1

∫

Ωδ′

ϕ(x)dx

≥
c

m
tm
1

(∫

Ω
ϕ(x))mdx − |Ω \ Ωδ′ |

)
−

c

m
t1|Ω|.

If we replace δ′ with smaller one, if necessary, we may assume that
∫

Ω
ϕ(x)mdx− |Ω \Ωδ′ | > 0.

On the other hand, since A(x, ξ) is convex with respect to ξ and A(x, 0) = 0, we have

A(x, t1ξ) = A(x, t1ξ + (1 − t1)0) ≤ t1A(x, ξ). Thus

Φ(t1ϕ) =
∫

Ω
A(x, t1∇ϕ(x))dx ≤ t1Φ(ϕ).

Therefore, we have

I(t1 ϕ) = Φ(t1 ϕ)− J(t1ϕ) ≤ t1

(
Φ(ϕ) +

c

m
|Ω|

)
−

c

m
tm
1

(∫

Ω
ϕ(x)mdx − |Ω \ Ωδ′ |

)
.

Since 0 < m < 1, if t1 > 0 is small enough, then we see that I(t1ϕ) < 0. By Proposition 3.12, I

is bounded from below on Bρ(0), where Bρ(0) = {v ∈ Y; ∥v∥Y < ρ}, ρ is as in (3.13). Hence

−∞ < c := inf
v∈Bρ(0)

I(v) < 0.

Let 0 < ε < infv∈∂Bρ(0) I(v)− inf
v∈Bρ(0)

I(v). Here we note that infv∈∂Bρ(0) I(v) > 0. Then there

exists u ∈ Bρ(0) such that

inf
v∈Bρ(0)

I(v) ≤ I(u) ≤ inf
v∈Bρ(0)

I(v) + ε2.

Since inf
v∈Bρ(0)

I(v) < 0, we can choose u ∈ Bρ(0) so that I(u) < 0. By applying the Ekeland

variational principle (cf. Ekeland [12, Theorem 1.1]) in the complete metric space Bρ(0), there

exists uε ∈ Bρ(0) such that

I(uε) ≤ I(u), (5.3)

I(uε) ≤ I(v) + ε∥v − uε∥Y for all v ∈ Bρ(0), (5.4)

∥u − uε∥Y ≤ ε. (5.5)

Define a functional Î : Bρ(0) → R by Î(v) = I(v) + ε∥v − uε∥Y for v ∈ Bρ(0). Since I(uε) ≤

I(u) < 0 from (5.3) and I(v) > 0 for all v ∈ ∂Bρ(0), we have uε ∈ Bρ(0). Choose ρ′ > 0 small

enough so that uε + w ∈ Bρ(0) for w ∈ Bρ′(0). From (5.4), since Î(uε) ≤ Î(uε + w) for all

w ∈ Bρ′(0), we have

⟨I′(uε), w⟩+ ε∥w∥Y

∥w∥Y

=
⟨I′(uε), tw⟩+ εt∥w∥Y − ( Î(uε + tw)− Î(uε))

t∥w∥Y
+

Î(uε + tw)− Î(uε)

t∥w∥Y
.
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Here we note that from (5.4),

Î(uε + tw)− Î(uε) = I(uε + tw) + ε∥tw∥Y − I(uε) ≥ 0

for t ∈ (0, 1). Hence

⟨I′(uε), w⟩+ ε∥w∥Y

∥w∥Y
≥

⟨I′(uε), tw⟩ − (I(uε + tw)− I(uε))

t∥w∥Y
→ 0 as t → +0.

So ⟨I′(uε), w⟩+ ε∥w∥Y ≥ 0 for all w ∈ Bρ′(0), so ⟨I′(uε), w⟩ ≥ −ε∥w∥Y. Replacing w with −w,

we have |⟨I′(uε), w⟩| ≤ ε∥w∥Y for all w ∈ Bρ′(0). Thus ∥I′(uε)∥Y∗ ≤ ε. Letting ε → 0, we see

that I(uε) → c and I′(uε) → 0 in Y∗. Since I satisfies the Palais–Smale condition in Y, there

exist a subsequence {un} of {uε} and u2 ∈ Bρ(0) such that un → u2 in Y and I′(u2) = 0.

Therefore, u2 is a weak solution of (1.1). Since I(u2) = c < 0 = I(0), u2 is a nontrivial weak

solution of (1.1). Since I(u2) = c < 0 < I(u1), we have u1 ̸= u2. This completes the proof of

Theorem 4.5.

5.3 Proof of Theorem 4.6

We apply the following Symmetric Mountain-Pass Theorem due to the Rabinowitz [23, Theo-

rem 9.12] (cf. Xie and Xiao [27, Proposition 2.1]).

Proposition 5.3. Let V be an infinite-dimensional real Banach space. A functional I : V → R is of

C1-class and satisfies the Palais–Smale condition. Furthermore, assume that

(I.1) I(0) = 0 and I is an even functional, that is, I(−u) = I(u) for all u ∈ V.

(I.2) There exist positive constants α and ρ such that

inf
u∈∂Bρ(0)

I(u) ≥ α.

(I.3) For each finite-dimensional linear subspace V1 ⊂ V, the set {u ∈ V1; I(u) ≥ 0} is bounded.

Then I has an unbounded sequence of critical values.

We apply Proposition 5.3 with V = Y. Note that the functional I defined by (3.6) is of class

C1 (Proposition 3.9) and satisfies the Palais–Smale condition (Proposition 3.14). From (A.4),

(f.5) and (g.4), (I.1) is trivial. (I.2) follows from (3.13). Thus it suffices to derive (I.3).

Let u ∈ Y with ∥u∥Y > 1. Since Φ(u) ≤ c1∥h0∥Lp′(·)(Ω)∥u∥Y + C1∥u∥
p+

Y from Lemma 3.4

and p+ > 1, we have

Φ(u) ≤ C5∥u∥
p+

Y for some constant C5 > 0. (5.6)

Since F(x, t) is an even function with respect to t, it follows from Lemma 5.1 (ii) that F(x, t) ≥

γ(x)|t|θ for |t| ≥ t0. Define Ωt0 = {x ∈ Ω; |u(x)| ≥ t0}. Then

J(u) =
∫

Ω
F(x, u(x))dx =

∫

Ωt0

F(x, u(x))dx +
∫

Ω\Ωt0

F(x, u(x))dx.

From (f.1), ∫

Ω\Ωt0

|F(x, u(x))|dx ≤ C′
1|Ω|+ t

q+

0 ∨ t
q−

0 ∥a∥L1(Ω).
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Hence we have

J(u) ≥
∫

Ωt0

γ(x)|u(x)|θdx − C6

=
∫

Ω
γ(x)|u(x)|θdx −

∫

Ω\Ωt0

γ(x)|u(x)|θdx − C6

≥
∫

Ω
γ(x)|u(x)|θdx − C7, (5.7)

where C7 is a constant. Similarly we have

K(u) ≥
∫

Γ2

δ(x)|u(x)|θdσx − C8, (5.8)

where C8 is a constant.

We note that (∫

Ω
γ(x)|u(x)|θdx +

∫

Γ2

δ(x)|u(x)|θdσ

)1/θ

is a norm in Y.

Let Y1 be any finite-dimensional linear subspace of Y. Since Y1 is of finite-dimensional, the

above norm is equivalent to the norm ∥u∥Y in Y1, so there exists C9 > 0 such that

C9∥u∥θ
Y ≤

∫

Ω
γ(x)|u(x)|θdx +

∫

Γ2

δ(x)|u(x)|θdσx.

Therefore, for u ∈ Y1 with ∥u∥Y > 1, it follows from (5.6), (5.7) and (5.8) that

I(u) ≤ C5∥u∥
p+

Y − C9∥u∥θ
Y + C7 + C8.

If u ∈ Y1 with ∥u∥Y > 1 satisfies I(u) ≥ 0, then we have C9∥u∥θ
Y ≤ C5∥u∥

p+

Y + C7 + C8.

Since θ > p+, the set {u ∈ Y1; ∥u∥Y > 1, I(u) ≥ 0} is bounded, so {u ∈ Y1; I(u) ≥ 0} is

bounded. Since all the assumptions of Proposition 5.3 hold, I has an unbounded sequence of

critical values, so problem (1.1) has infinitely many weak solutions. This completes the proof

of Theorem 4.6.
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Abstract. The authors consider the general third order functional differential equation

(
a2(ν)

[(
a1(ν)

(
x′(ν)

)α1
)′]α2

)′

+ q(ν)xβ(τ(ν)) = 0, ν ≥ ν0,

and obtain sufficient conditions for the oscillation of all solutions. It is important to
note that αi for i = 1, 2, and β are somewhat independent of each other. The results
obtained are illustrated with examples.
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1 Introduction

The primary objective of this work is to study the oscillatory behavior of solutions of the

nonlinear third order differential equation

(
a2(ν)

[(
a1(ν)

(
x′(ν)

)α1
)′]α2

)′

+ q(ν)xβ(τ(ν)) = 0, ν ≥ ν0, (1.1)

where αi, i = 1, 2, and β are quotients of odd positive integers. A solution x of (1.1) is a

continuous function on [Tx, ∞), Tx ≥ ν0 that satisfies (1.1) on [Tx, ∞). We consider only those

solutions x(ν) of (1.1) that are continuable, i.e., they satisfy sup{|x(ν)| : ν ≥ T} > 0 for all

T > Tx ≥ ν0. Such a solution is said to be oscillatory if it is neither eventually positive nor

eventually negative, and to be nonoscillatory otherwise.

Throughout, we always assume that

1Corresponding author. Email: John-Graef@utc.edu
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(A1) ai(ν), q(ν) ∈ C ([ν0, ∞), R+) for i = 1, 2, with q(ν) ̸≡ 0 and

∫
∞

ν0

a
− 1

α1
1 (s)ds = ∞ =

∫
∞

ν0

a
− 1

α2
2 (s)ds; (1.2)

(A2) τ ∈ C1 ([ν0, ∞), R) with τ(ν) ≤ ν, τ′(ν) ≥ 0, and limν→∞ τ(ν) = ∞.

As equation (1.1) is regarded as a useful instrument for simulating processes in various fields

of applied mathematics, physics, and chemistry (see the monographs [6,22,24]), it is important

to analyze the qualitative properties of equation (1.1). For several years now, there has been

a growing interest in the asymptotic behavior of solutions of various forms of linear and

nonlinear third order differential equations and their applications; see, e.g., [1–5, 7–16, 18, 21]

and the references therein.

In particular, Baculíková and Džurina [4] considered the third-order nonlinear delay dif-

ferential equation of the form

(
a1(ν)

[
x′′(ν)

]α1
)′

+ q(ν)xβ(τ(ν)) = 0. (1.3)

They used a comparison theorem with appropriate lower-order equations to derive sufficient

condition for the asymptotic and oscillatory behaviour of Eq. (1.3). This work allows us to

note the following:

(1) Eq. (1.3) is a particular case of Eq. (1.1);

(2) There is no general rule to choose the function ξ(ν) that plays a very important role in

deriving the oscillation of Eq. (1.1).

Chatzarakis et al. [9] considered the third-order linear differential equation of the form

(
a2(ν)

[(
a1(ν)

(
x′(ν)

))′])′
+ q(ν)x(τ(ν)) = 0, (1.4)

and using the integral technique, comparison method, and Gronwall inequality, they im-

proved the results reported in [4] by relaxing the above mentioned second observation. In-

spired by the papers referenced here, we wish to the study of the general equation (1.1) and

derive some easily verifiable sufficient conditions for the oscillation of all it solutions.

2 Basic lemmas

In view of (1.2), we introduce the following notation:

A(ν, ν0) =
∫ ν

ν0

a
− 1

α2
2 (s)ds and A∗(ν, ν0) =

∫ ν

ν0

(
A(s, ν0)

a1(s)

) 1
α1

ds.

Setting G1(x(ν)) = (x′(ν))α1 and G2(x(ν)) =
[
(a1(ν)G1(x(ν)))′

]α2 , we can write equation

(1.1) as the equivalent equation

(a2(ν)G2(x(ν)))′ + q(ν)xβ(τ(ν)) = 0 for ν ≥ ν0. (2.1)

To obtain our main results, we will utilize the following lemmas, the first of which is well

known.
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Lemma 2.1. Let (A1) and (A2) hold. If x is an eventually positive solution of (1.1) for ν ≥ ν0, then

there exists ν1 > ν0 such that either

(I) G1(x(ν)) ≥ 0 and G2(x(ν)) ≥ 0, or (II) G1(x(ν)) ≤ 0 and G2(x(ν)) ≥ 0

for ν ≥ ν1.

Lemma 2.2. Let (A1) and (A2) hold. If x is a positive solution of (1.1) such that Case I of Lemma 2.1

holds for ν ≥ ν1, then

x(ν) ≥ A∗(ν, ν1)
(
(a2(ν)G2(x(ν)))

1
α1α2

)
(2.2)

for ν ≥ ν2 > ν1.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(ν) > 0, x(τ(ν)) > 0, and

which satisfies Case I of Lemma 2.1 for ν ≥ ν1 for some ν1 > ν0. Then,

a1(ν)G1(x(ν)) ≥
∫ ν

ν1

(a1(s)G1(x(s)))′ ds =
∫ ν

ν1

a
1

α2
2 (s)G

1
α2
2 (x(s))

a
1

α2
2 (s)

ds,

that is,

a1(ν)(x′(ν))α1 ≥ A(ν, ν1)a
1

α2
2 (ν)G

1
α2
2 (x(ν)),

so

x′(ν) ≥

(
A(ν, ν1)

a1(ν)

) 1
α1

(a2(ν)G2(x(ν)))
1

α1α2 . (2.3)

Integrating from ν1 to ν gives

x(ν) ≥ (a2(ν)G2(x(ν)))
1

α1α2

∫ ν

ν1

(
A(s, ν1)

a1(s)

) 1
α1

ds = A∗(ν, ν1)
(
(a2(ν)G2(x(ν)))

1
α1α2

)
,

which completes the proof.

For convenience, we let

B(ν, s) =

(
A(ν, s)

a1(s)

) 1
α1

and

Â∗(ν, τ(ν)) =
∫ ν

τ(ν)
B(ν, s)ds.

Lemma 2.3. Let (A1) and (A2) hold. If x is a positive solution of (1.1) such that Case II of Lemma 2.1

holds for ν ≥ ν1, then

x(τ(ν)) ≥ Â∗(ν, τ(ν))

(
a2(ν)G2(x(ν))

) 1
α1α2

(2.4)

for ν ≥ ν2 > ν1.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(ν) > 0, x(τ(ν)) > 0, and

Case II of Lemma 2.1 is satisfied for ν ≥ ν1 for some ν1 > ν0. For ν ≥ s > ν1, we have

a1(ν)G1(x(ν))− a1(s)G1(x(s)) =
∫ ν

s
(a1(u)G1(x(u)))′ du =

∫ ν

s

a
1

α2
2 (u)G

1
α2
2 (x(u))

a
1

α2
2 (s)

du.
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That is,

−a1(s)(x′(s))α1 ≥ A(ν, s)a
1

α2
2 (ν)G

1
α2
2 (x(ν)),

so

−x′(s) ≥

(
A(ν, s)

a1(ν)

) 1
α1

(a2(ν)G2(x(ν)))
1

α1α2 ≥ B(ν, s) (a2(ν)G2(x(ν)))
1

α1α2 . (2.5)

Integrating from τ(ν) to ν, we obtain

−x(ν) + x(τ(ν)) ≥

(
a2(ν)G2(x(ν))

) 1
α1α2

∫ ν

τ(ν)
B(ν, s)ds,

or

x(τ(ν)) ≥ Â∗(ν, τ(ν))

(
a2(ν)G2(x(ν))

) 1
α1α2

.

This proves the lemma.

Remark 2.4. In view of Lemma 2.3, from (1.1) and (2.4), we see that

− (a2(ν)G2(x(ν)))′ = q(ν)xβ(τ(ν)) ≥ q(ν)
(

Â∗(ν, τ(ν))
)β
(

a2(ν)G2(x(ν))

) β
α1α2

.

Integrating this inequality from τ(ν) to ν, we have

lim sup
ν→∞

∫ ν

τ(ν)
q(u)

(
Â∗(u, τ(u))

)β
du > 1

in the case where
β

α1α2
= 1.

We also have the following lemma.

Lemma 2.5. In addition to the hypotheses of Lemma 2.3, assume that there exists a constant γ > 1

such that γτ(ν) ≤ ν for ν ≥ ν2 > ν1. Then

x(τ(ν)) ≥ Â∗(γτ(ν), τ(ν))

(
a2(γτ(ν))G2(x(γτ(ν)))

) 1
α1α2

(2.6)

for ν ≥ ν2 > ν1.

Proof. If we integrate (2.5) from τ(ν) to γτ(ν), we can obtain (2.6).

3 Oscillation results

Our first oscillation result is as follows.

Theorem 3.1. Let (A1) and (A2) hold and assume that there exists a constant γ > 1 such that

γτ(ν) ≤ ν for ν ≥ ν2 > ν1. If the first-order delay equations

Y′(ν) + q(ν) (A∗(τ(ν), ν1))
β (Y(τ(ν)))

β
α1α2 = 0 (3.1)

and

Z′(ν) + q(ν)
(

Â∗(γτ(ν), τ(ν))
)β

(Z(γτ(ν)))
β

α1α2 = 0 (3.2)

are oscillatory, then Eq. (1.1) is oscillatory.



Third-order functional equations 5

Proof. Let x be a nonoscillatory solution of (1.1) such that x(ν) > 0 and x(τ(ν)) > 0 for

ν ≥ ν1 > ν0. According to Lemma 2.1, we distinguish the following two cases.

Case I. Using (2.2) in (2.1), we obtain

− (a2(ν)G2(x(ν)))′ = q(ν)xβ(τ(ν))

≥ q(ν)
(

A∗(τ(ν), ν1)
)β
((

a2(τ(ν))G2(x(τ(ν)))

) 1
α1α2
)β

.

Setting Y(ν) = a2(ν)G2(x(ν)), this becomes

Y′(ν) + q(ν) (A∗(τ(ν), ν1))
β (Y(τ(ν)))

β
α1α2 ≤ 0.

By [3, Lemma 2.1(I)], the related differential equation (3.1) also has a positive solution, which

is a contradiction.

Case II. Using (2.6) in Eq. (2.1), we obtain

− (a2(ν)G2(x(ν)))′ = q(ν)xβ(τ(ν))

≥ q(ν)
(

Â∗(γτ(ν), τ(ν))
(
(a2(γτ(ν))G2(x(γτ(ν))))

1
α1α2

))β

.

Setting Z(ν) = a2(ν)G2(x(ν)), this becomes

Z′(ν) + q(ν)
(

Â∗(γτ(ν), τ(ν))
)β

(Z(γτ(ν)))
β

α1α2 ≤ 0.

Again by [3, Lemma 2.1(I)], the corresponding differential equation (3.2) must have a positive

solution. This contradiction proves the theorem.

Example 3.2. Consider the third-order delay equation


ν

[(
1

ν2

(
x′(ν)

))′
]3



′

+
c

ν2
x

1
3

(ν

3

)
= 0, ν ≥ 1, (3.3)

where c > 0 is a constant, α1 = 1, α2 = 3, a1(ν) = 1
ν2 , a2(ν) = ν, q(ν) = c

ν2 , β = 1
3 , and

τ(ν) = ν
3 . Clearly, (A1), (A2) and (1.2) hold. Using

A(ν, 1) =
∫ ν

1
a
− 1

α2
2 (s)ds =

∫ ν

1
s−

1
3 ds =

3ν
2
3 − 3

2

and

A∗(τ(ν), 1) =
∫ τ(ν)

1

(
A(s, 1)

a1(s)

) 1
α1

ds =
∫ ν

3

1




s2
(

3s
2
3 − 3

)

2


 ds =

1

2

(
ν

11
3

33 · 3
2
3

−
ν3

27
+

2

11

)
,

it is not difficult to see that equation (3.1) becomes

Y′(ν) +
c

2ν2

(
ν

11
3

33 · 3
2
3

−
ν3

27
+

2

11

) 1
3

Y
1
9

(ν

3

)
= 0. (3.4)
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Also, using γ = 2 and

B(ν, s) =

(
A(ν, s)

a1(s)

) 1
α1

=

∫ ν

s u− 1
3 du

1
ν2

=
3ν2(ν

2
3 − s

2
3 )

2
,

we see that

Â∗(γτ(ν), τ(ν)) =
∫ γτ(ν)

τ(ν)
B(ν, s)ds =

∫ 2ν
3

ν
3

3ν2(ν
2
3 − s

2
3 )

2
ds =

ν
11
3

2
−

2
5
3 ν

11
3 − ν

11
3

3
5
3

,

and so equation (3.2) becomes

Z′(ν) +
c

2ν2

(
ν

11
3

2
−

2
5
3 ν

11
3 − ν

11
3

3
5
3

) 1
3

Z
1
9

(
2ν

3

)
= 0. (3.5)

Clearly, [19, Theorem 5] guarantee that all solutions of Eqs. (3.4) and (3.5) are oscillatory. Thus,

every solution of Eq. (3.3) oscillates.

Theorem 3.3. Let (A1) and (A2) hold. If the first-order delay equation (3.1) is oscillatory and

lim sup
ν→∞

∫ ν

τ(ν)
q(u) (A∗(τ(ν), τ(s)))β ds > 1 (3.6)

for β = α1α2, then Eq. (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(ν) > 0 and x(τ(ν)) > 0 for

ν ≥ ν1 > ν0. We again consider the two cases in Lemma 2.1.

Case I. Proceeding as in the proof of Theorem 3.1, we again obtain a contradiction.

Case II. Clearly, for v ≥ u > ν1,

a1(v)G1(x(v))− a1(u)G1(x(u)) =
∫ v

u
(a1(s)G1(x(s)))′ds =

∫ v

u

a
1

α2
2 (s)G

1
α2
2 (x(s))

a
1

α2
2 (s)

ds,

that is,

−a1(u)G1(x(u)) ≥ a
1

α2
2 (v)G

1
α2
2 (x(v))

∫ v

u

1

a
1

α2
2 (s)

ds,

and so

−a1(u)(x′(u))α1 ≥ a
1

α2
2 (v)G

1
α2
2 (x(v))

∫ v

u

1

a
1

α2
2 (s)

ds,

Hence,

−x′(u) ≥ (a2(v)G2(x(v)))
1

α1α2


 1

a1(u)

∫ v

u

1

a
1

α2
2 (s)

ds




1
α1

,

and integrating from u to v gives

x(u)− x(v) ≥ (a2(v)G2(x(v)))
1

α1α2

∫ v

u


 1

a1(y)

∫ v

y

1

a
1

α2
2 (s)

ds




1
α1

dy,
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or

x(u) ≥ (a2(v)G2(x(v)))
1

α1α2 A∗(v, u).

Now, for any ν ≥ s > ν2, for some ν2 > ν1, if we set u = τ(s) and v = τ(ν) in the preceding

inequality, gives

x(τ(s)) ≥

(
a2(τ(ν))G2(x(τ(ν)))

) 1
α1α2

A∗(τ(ν), τ(s)). (3.7)

Integrating Eq. (1.1) from τ(ν) to ν and then applying (3.7),

a2(τ(ν))G2(x(τ(ν))) ≥
∫ ν

τ(ν)
q(s)xβ(τ(s))ds

≥

(
a2(τ(ν))G2(x(τ(ν)))

) β
α1α2

∫ ν

τ(ν)
q(s)(A∗(τ(ν), τ(s))

)β
ds,

which implies ∫ ν

τ(ν)
q(s) (A∗(τ(ν), τ(s)))β ds ≤ 1,

and contradicts (3.6).

Example 3.4. Consider the equation


 1

ν2

[(
1

9ν2

(
x′(ν)

))′
]3



′

+
δ

ν7
x3
(ν

2

)
= 0, ν ≥ 1, (3.8)

where we have α1 = 1, α2 = 3, a1(ν) = 1
9ν2 , a2(ν) = 1

ν2 , q(ν) = δ
ν7 for δ > 0, β = 3 and

τ(ν) = ν
2 . Clearly, (A1), (A2) and (1.2) hold. Using

A(ν, 1) =
∫ ν

1
a
− 1

α2
2 (s)ds =

∫ ν

1

(
1

s2

)− 1
3

ds =

(
3ν

5
3 − 3

)

5

and

A∗(τ(ν), 1) =
∫ τ(ν)

1

(
A(s, 1)

a1(s)

) 1
α1

ds =
∫ ν

2

1

s2
(

3s
5
3 − 3

)

5
ds

=
1

5

(
9ν

14
3

224 · 2
2
3

−
ν3

8
−

5

14

)
,

it is not difficult to see that (3.1) becomes

Y′(ν) +
42

125 · ν7

(
9ν

14
3

7 · 2
17
3

−
ν3

8
−

5

14

)3

Y
(ν

2

)
= 0. (3.9)

Indeed, following [20, Theorem 2.1.1], Eq. (3.9) is oscillatory if

lim
ν→∞

∫ ν

ν
2

δ

125 · s7

(
9s

14
3

7 · 2
17
3

−
s3

8
−

5

14

)3

ds >
1

e
.
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And using

A(ν, u) =
∫ ν

u
a
− 1

α2
2 (s)ds =

∫ ν

u

(
1

s2

)−1
3

ds =
3ν

5
3 − 3u

5
3

5
.

A∗(τ(ν), τ(s)) =
∫ τ(ν)

τ(s)

(
A(ν, y)

a1(y)

) 1
α1

dy =
∫ ν

2

s
2

27y2
(

ν
5
3 − y

5
3

)

5
dy

=
27

25

(
ν

5
3

(
ν3 − s3

)

8
−

3ν
14
3 − 3s

14
3

7 · 2
17
3

)
.

Eq. (3.6) becomes

∫ ν

τ(ν)
q(s) (A∗(τ(ν), τ(s)))β ds =

∫ ν

ν
2

δ

s7

(
27

25

(
ν

5
3

(
ν3 − s3

)

8
−

3ν
14
3 − 3s

14
3

7 · 2
17
3

))3

ds

> 1.

By Theorem 3.3, every solution of (3.8) oscillates.

Theorem 3.5. Let (A1) and (A2) hold. If β = α1α2 and there is a nondecreasing function φ ∈

C1([ν0, ∞), (0, ∞) such that (3.6) and

lim sup
ν→∞

∫ ν

ν1

[
φ(s)q(s)−

(φ′(s))2(φ(s))
1

α1α2
−2

4βτ′(s)

(
A(τ(s), ν1)

a1(s)

)−1
α1

]
ds = ∞ (3.10)

hold, then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(ν) > 0 and x(τ(ν)) > 0 for

ν ≥ ν1 > ν0. We again consider cases.

Case I. Define

W(ν) = φ(ν)
a2(ν)G2(x(ν))

xβ(τ(ν))
.

Then W(ν) > 0, and using Lemma 2.2, the decreasing nature of a2(ν)G2(x(ν)), and (2.3)

W ′(ν) =
φ(ν)(a2(ν)G2(x(ν)))′

xβ(τ(ν))
+

a2(ν)G2(x(ν))φ′(ν)

xβ(τ(ν))
− β

φ(ν)(a2(ν)G2(x(ν)))x′(τ(ν))τ′(ν)

xβ+1(τ(ν))

≤ −φ(ν)q(ν) +
φ′(ν)

φ(ν)
W(ν)− βτ′(ν)

(
A(τ(ν), ν1)

a1(ν)

) 1
α1 φ(ν)(a2(ν)G2(x(ν)))

1+ 1
α1α2

xβ+1(τ(ν))

≤ −φ(ν)q(ν) +
φ′(ν)

φ(ν)
W(ν)−

βτ′(ν)

φ
1

α1α2 (ν)

(
A(τ(ν), ν1)

a1(ν)

) 1
α1

W2(ν).

If we complete the square on the right hand side, we find that

W ′(ν) ≤ −φ(ν)q(ν) +
(φ′(ν))2

4βτ′(ν)
(φ(ν))

1
α1α2

−2
(

A(τ(ν), ν1)

a1(ν)

)−1
α1

.

Integrating the preceding inequality from ν1 to ν, we see that (3.10) gives a contradiction to

the fact that W(ν) ≥ 0.

Case II. Proceeding as in the proof of Theorem 3.3, leads to a contradiction in this case.
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Example 3.6. Consider the equation


1

ν

[(
1

ν

(
x′(ν)

) 1
3

)′
]3



′

+
δ

ν3
x
(ν

3

)
= 0, ν ≥ 1, (3.11)

where we have α1 = 1
3 , α2 = 3, a1(ν) =

1
ν , a2(ν) =

1
ν , q(ν) = δ

ν3 for δ > 0, β = 1 and τ(ν) = ν
3 .

Clearly, (A1), (A2) and (1.2) hold. Using φ(ν) = ν4 and A(τ(ν), ν1) = 3
4

[ (
ν
3

) 4
3 − 1

]
in Eq.

(3.10), we have

lim sup
ν→∞

∫ ν

1

[
φ(s)q(s)−

(φ′(s))2(φ(s))
1

α1α2
−2

4βτ′(s)

(
A(τ(s), 1)

a1(s)

)−1
α1

]
ds

= lim sup
ν→∞

∫ ν

1

[
δs −

3s6

s4

(
3s

4
(s

4
3 − 1)

)−3
]

ds = ∞.

It is not difficult to see that (3.6) holds, so by Theorem 3.5, every solution of (3.11) oscillates.

4 Concluding remark

Employing the methods of comparison, Riccati substitution, and the integral method, we in-

troduced three novel conditions for the oscillation of a general third-order nonlinear delay

differential equation. Interestingly, our results are applicable to linear, sublinear, and super-

linear equations. Some illustrative examples are given to show the applicability of our results.
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Abstract. In this paper, we show the existence of solution for a relatively general system
of semilinear parabolic equations with nonlinear reaction rate terms and inflow-outflow
boundary conditions. Generally, to show the existence of global solution, it has been
seen in the literature that either mass conservation or some growth condition on the
source term is needed. Also, in several recent works only the nonlinearity up to certain
order or of certain structure is allowed. However, our work considerably weakens the
ones previously made by several authors on the coefficients of the elliptic operator, on
the source (reaction rate) terms as well as on the boundary conditions. Our proof is
also rather small and uses an argument based on implicit function theorem.
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non-identical diffusion coefficients, global solution, mass action kinetics.
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1 Introduction

Even a very simple semilinear parabolic equation (e.g., diffusion-reaction equation) can have

merely local solutions, i.e. solutions in some perhaps small neighbourhood of the initial time

t0. The same applies to coupled systems of more than one variable. Therefore, it takes some

special structure of the nonlinearities to guarantee the existence of the global solutions, i.e.

solutions on any given time interval [0, T), T < ∞. In this regard, nonlinearities which are

obtained by modelling equilibrium (reversible) reactions amongst chemical species via mass-

action kinetics bear some potential for producing global solutions since positive productions

are accompanied by negative ones. Kräutle [11] and Mahato et al. [12] showed that the pro-

duction rates of a large class of J number of equilibrium (reversible) reactions of I number of

chemical species can be reduced to the following setting: let Ω ⊂ R
N be a bounded domain

with C2-boundary ∂Ω, S := [0, T) be the time interval for some T < ∞ and we denote by

BCorresponding author. Email: hsmahato@maths.iitkgp.ac.in
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S the stoichiometric matrix such that S = (sij) ∈ MI×J , the set of all I × J matrices, with

rank(S) = J and |sij| ∈ {0} ∪ [1, ∞). The entries sij = νij − τij for 1 ≤ i ≤ I and 1 ≤ j ≤ J,

where −τij ∈ Z
−
0 and νij ∈ Z

+
0 are the stoichiometric coefficients for reversible reactions given

by

τ1jX1 + τ2jX2 + · · ·+ τ I jXI ⇌ ν1jX1 + ν2jX2 + · · ·+ νI jXI , (1.1)

where Xi, 1 ≤ i ≤ I, denotes the chemical species involved in J reactions. Let u = (u1, . . . , uI)

be the unknown concentration vector of I chemical species. For k f
j , kb

j > 0 and j = 1, 2, . . . , J,

we set

R f
j (u) = k f

j

I

∏
m=1
smj<0

u
−smj
m , Rb

j (u) = kb
j

I

∏
m=1
smj>0

u
smj
m (1.2a)

Rj(u) =
(

R f
j (u)− Rb

j (u)
)

, R = (R1, . . . , RJ)
T, f̂ (u) = SR(u), (1.2b)

where s−mj and s+mj denote the negative and positive parts of smj, respectively, such that smj =

s+mj − s−mj. For the i − th species,

(SR(u))i =
J

∑
j=1

sijRj(u). (1.3)

Furthermore, let D = (D01
, . . . , D0I ), where D0i denotes the symmetric N × N diffusive matrix

of the i-th chemical species such that D0i ∈ L∞(Ω; Sym(N)). Let q : S × Ω → R
N denote the

velocity vector such that ∇ · q = 0. For i = 1, 2, . . . , I, we now define the following operators:

A := diag(A1, . . . , AI), B := diag(B1, . . . , BI), Ai(D, u) := Ai := div(ji) (1.4a)

ji := −aiD0i∇ui + qui (= diffusive + advective flux) (1.4b)

Bi(D, u) := Bi := −(aiD0i∇ui − qui) · n⃗, (1.4c)

where n⃗ = n⃗(x) is the unit outward normal on ∂Ω. The coefficients ai = ai(x) ∈ {0, 1} and

θ ∈ (0, 1] are explained below. The semilinear problem is: let g and h be given, then find a

u : S × Ω → R
I such that

θ
∂u
∂t

+ A(D, u) = f̂ (u) in S × Ω, u(0, ·) = g in Ω and (1.5)

B(D, u) = h on S × ∂Ω. (1.6)

For identical diffusion coefficients and p > N + 1, in [11] Kräutle’s showed that the solution

u(t, ·) belongs in H2,p(Ω)I for a.a. t. Since he deals with diffusion and reaction in porous

media, in his setting the porosity θ might be different from one whereas, Mahato et. al. in [12]

considers a free flow and thus in his setting θ = 1. Kräutle in [11] splits ∂Ω in two disjoint

parts Γin and Γout, the inflow and outflow boundary parts, respectively, and specifies (1.5) as

− q·⃗n = 0 on S × Γin, −q·⃗n ≤ 0 on S × Γout and (1.7)

−D0i
∂ui

∂⃗n
= 0 on S × Γout, h ≤ 0 on S × Γin and h ≥ 0 on S × Γout, (1.8)
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i.e. the outflow is entirely advective (cf. [11]). Let us denote the problem (1.5)–(1.6) by (P).

In order to model the conditions in (1.6) and (1.7), we choose ai(x) := 1 on (1.5)–(1.7) and

ai(x) := 0 on Γout whereas in Ω, ai(x) = 1. The existence of solution of (1.5)–(1.7) in [11]

is based on L∞-estimates obtained via a Lyapunov functional, a fixed-point argument and

classical H2,p-theory for linear parabolic systems. An essential drawback of their approaches

is that the diffusion coefficients need to be the same for all species. For a diffusion setting

in a porous medium this can be justified by the observation that, usually, the advective flux

dominates the diffusive one by order of magnitudes. In this note we address the issue of

non-identical diffusion coefficients and show that the unique existence of weak solutions can

still be guaranteed under certain assumptions which are given in next section.

1.1 Literature survey

In regards to the global in time solution, the authors in [18] showed that only mass control and

positivity of the solutions are not sufficient to prevent the blowup in the solution and therefore

we need a growth control condition. In the survey paper [16], the author has summarized the

conditions (and limitations) under which the global solution can be guaranteed. The existence

of weak solutions for (P) is shown in [17] under the assumption that the nonlinearities belong

to L1(S×Ω). For quadratic nonlinearities, the existence of weak solutions is shown in [4] via a

duality method. The authors in [8,20] showed the existence of a global renormalized solution

if nonlinearities satisfy the entropy condition: ∑
I
i=1 f̂i(u)(log ui + αi) ≤ 0 for all u ∈ (0, ∞)I

for some α1, α2, . . . , αI ∈ R. In [9], the global classical solutions for (P) with homogeneous

Neumann boundary condition is shown under the assumption of mass conservation and en-

tropy condition. In [9], the authors have assumed that f̂i(u) has the cubic growth for n = 1

and f̂i(u) has the quadratic growth for n = 2. The result later improved in [24] by utiliz-

ing a modified Gagliardo–Nirenbarg inequality. For higher-order nonlinearities in any space

dimension if the diffusion coefficients are close to each other, i.e. if they are quasi-uniform,

then the global existence of classical solutions is proved in [3, 5]. In [1], the authors have

shown that under the polynomial growth condition, the L∞-norm of the classical solution can

be obtained, however, later on this growth condition is removed in [3]. The authors in [19]

proved the global existence and uniform boundedness for quadratic growth and dimension

n = 2 by relaxing the mass conservation to mass dissipation. This result is improved in [15]

by replacing the mass dissipation assumption with a weaker intermediate sum condition. In

higher dimensions, the existence of global classical solutions for nonlinearities with quadratic

growth has been proved in [2,6,23] and for the case of Ω = R
n is deduced in [10]. The work in

[2] is based on mass conservation assumption together with the entropy condition, whereas in

[23] the mass conservation condition is replaced by the mass dissipation assumption. A more

general work is done in [6] under the mass control assumption. The uniform in time bound

for the solutions is shown in [7]. Thus, in the previous works the global classical solutions

in any space dimensions and for the higher order nonlinearities is shown under the restric-

tion that the diffusion coefficients are close to each other and on some particular structure of

the nonlinearities. Our work shows the existence of weak solution in a H1,p setting and far

less assumptions on the nonlinearities. Our argument to prove the existence of global solu-

tion is rather small and involves less calculations. We have also incorporated inflow-outflow

boundary conditions which in turn do not disturb the global existence of the solution.
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2 Mathematical preliminaries

2.1 Function spaces

Let p, q ∈ [1, ∞], 1
p + 1

q = 1, λ ∈ [0, 1], Ω ⊂ R
N be a bounded Lipschitz domain. Sym(N)

is the set of all real symmetric matrices A = (Aij) normed by |A|Sym(N) := maxi,j=1,...,N
∣∣Aij

∣∣.
(·, ·)p,λ and [·, ·]λ stand for the real- and complex-interpolation functor, respectively (cf. [25]).

Likewise Lp(Ω), Hα,p(Ω), α ∈ N and Cλ(Ω) denote the Lebesgue, Sobolev and Hölder spaces,

respectively, with their usual norms (cf. [25]). ” →֒ ” denotes a continuous imbedding. For

a normed space Y, Lp(S; Y) and H1,p(S; Y) are the (standard) Bochner and Sobolev–Bochner

spaces (cf. [25]). Y∗ stands for the dual of Y. ⟨·, ·⟩I denotes the inner product on R
I and

| · |I be the corresponding norm. If X and Y are normed spaces, then L(X, Y) represents

the set of all bounded linear operators from X to Y and Iso(X; Y) stands for the set of all

linear isomorphisms of L(X; Y). From here on we assume p > N + 2 is fixed. The imbedding

Lp(Ω)I →֒ (H1,q(Ω)∗)I is given by Lp(Ω)I ∋ h0 7→ Lh : ⟨Lh, w⟩ := ∑
I
i=1

∫
Ω

h0i(x)wi(x)dx, w ∈

(H1,q(Ω))I . We set Fp := Fp(S, Ω) := Lp(S; H1,p(Ω)) ∩ H1,p(S; H1,q(Ω)∗) normed by

∥ψ∥Fp
:= ∥ψ∥Lp(S;H1,p(Ω)) +

∥∥ψ′
∥∥

Lp(S;H1,q(Ω)∗)

, (2.1)

where u′ is the distributional derivative of u. The solution space of the system under consid-

eration is FI
p = Fp × Fp × · · · × Fp︸ ︷︷ ︸

I-times

and its norm is defined by ∥u∥FI
p

:=
[

∑
I
i=1 ∥ui∥

p
Fp

] 1
p . Note

that for p > N + 2, Fp ⊂ C(S; (H1,q(Ω)∗, H1,p(Ω))1− 1
p ,p) and Fp ⊂ C(S; C(Ω)) (cf. [12]). For

abbreviation, we set

V := H1,p(Ω)I , W := H1,q(Ω)I , W∗ := [H1,q(Ω)∗]I , V0 := (H1,q(Ω)∗, H1,p(Ω))I
1− 1

p ,p, (2.2a)

V∂Ω := Lp(∂Ω)I , P0 = Lp(S; V0), P1 = FI
p, P2 := Lp(S; H1,q(Ω)∗)I , P := P2 × V0, (2.2b)

Q1 := C(S; C(Ω))I , Q2 := Lp(S; C(Ω))I , E := Q0 × P1 and Q0 := L∞(Ω; Sym(N))I . (2.2c)

Then, for p > N + 2, a simple embedding result from [12] yields

Lp(S; V) ∩ H1,p(S; W∗) →֒ C(S; V0) →֒ C(S̄; C(Ω̄))I →֒ C(S̄; L∞(Ω))I . (2.3)

Remark 2.1. If D = (D01
, D02

, . . . , D0I ) ∈ L∞(Ω; Sym(N))I , i.e. ∀i D0i ∈ L∞(Ω; Sym(N)), then

|||D|||L∞(Ω;Sym(N))I := maxi,j,k ∥D0ikj∥L∞(Ω) = maxi,j,k ess supx∈Ω |D0ikj(x)|L∞(Ω). However, in our

case, we only have D0ikj(x) = D0 = constant ∀i, j, k and x ∈ Ω, then |||D|||L∞(Ω;Sym(N))I :=

maxi,j,k ∥D0ikj∥L∞(Ω) = maxi,j,k ess supx∈Ω |D0ikj(x)| = D0.

To state the main theorem of the paper, we would require the following assumptions:

A1. let D0 be a positive constant. For each i = 1, 2, . . . , I, D0i := diag(D0, . . . , D0) ∈

Sym(N) ⊂ R
N×N be a diagonal matrix such that D := (D01

, . . . , D0I ) ∈ Sym(N)I ,

where I ∈ N.

A2. let h ∈ Lp(∂Ω)I and let g ∈ V0 such that gi ≥ 0 for each i.

A3. let (1.6) and (1.7) hold true and q⃗ ∈ L∞(S × Ω) be such that Q := ∥⃗q∥L∞(S×Ω) < ∞ and

q⃗ · n⃗ ∈ L∞(S × Γout).
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Definition 2.2 (Weak formulation). Let the assumptions A1–A3 hold true. Then, a vector

u ∈ FI
p is said to be a weak solution of the problem (P) if u(0) = g and

∫

S
⟨∂tui, φi⟩W∗×W dt +

∫

S

∫

Ω
(D0i∇ui − q⃗ui)∇φi dx dt −

∫

S×Γin
hφi ds dt

+
∫

S×Γout
q⃗ · n⃗φi ds dt =

∫

S
⟨ f̂i, φi⟩W∗×W dt, ∀φ ∈ Lq(S; W). (2.4)

Next, we state the existence theorem from [13] which addresses the question of same

diffusion coefficients in the system.

Theorem 2.3. Let the assumptions A1–A3 hold true. Then, there exists a unique global positive weak
solution (in the sense of Definition 2.2) u ∈ FI

p of the problem (P).

For Theorem 2.3, the global existence of solution follows from the construction of a par-

ticular type of Lyapunov function and exploiting the dissipative property of the reaction rate

term and an application of Schaefer’s fixed point theorem. The uniqueness and positivity

follow from Gronwall’s inequality.

Now, we shall state the main theorem of this paper which is existence of solution for

different diffusion coefficients.

Theorem 2.4. Let the assumptions A1–A3 hold true. Then, there is a neighborhood U = U(D0) in
L∞(Ω; Sym(N))I such that (1.5)–(1.7) is solvable for all D ∈ U. Moreover, the components of the
solutions are non-negative.

Remark 2.5. The proof of the implicit function theorem provides estimates for the size of

U(D0). Here we do not yet go into detail, however, in [5, 6] it has been shown that the if the

diffusion co-efficients are very close to one and another, then there exists a classical solution.

Remark 2.6. In this note we do not directly employ the particular structure (1.5) of the reac-

tion rates incorpoated into f̂ (u), rather we use f̂ is locally Lipschitz, then by Rademacher’s

theorem, we have f̂ ∈ C1(RI)I in Theorem 2.4.

2.2 Operators

Let U, V be two Banach spaces and x ∈ U, then a continuous linear operator Ψ : U → V is

called the Fréchet derivative of the operator T : U → V at x if T(x + θ) − T(x) = Ψ(θ) +

φ(x, θ) and lim∥θ∥U→0
∥φ(x,θ)∥V

∥θ∥U
= 0 or, equivalently lim∥θ∥U→0

∥T(x+θ)−T(x)−Ψ(θ)∥V
∥θ∥U

= 0. For a

function v = v(t, x), t ∈ S, x ∈ Ω, we set v(t) := v(t, ·). Let H : U → V and G : ∏
n
i=1 Ui → V,

where U, Ui and V are Banach spaces. For functions ξ ∈ U, ξ i ∈ Ui ∀i, Dξ∗ H(ξ) is the Fréchet

derivative of H = H(ξ) at ξ∗ and ∂iG := ∂ξ i
G := ∂G

∂ξ i
is the partial Fréchet derivative of

G = G(ξ1, . . . , ξn).

We will now define the following operators:

By Remark 2.6, f̂ ∈ C1(RI , R
I) (production-rate vector). Clearly, f̂ : Lp(S; V) → Lp(S; W∗)

and we define
〈

f̂ (u), v
〉

:=
∫

Ω
f̂ (u(x))Tv(x)dx (the V-realisation of f̂ ). We then introduce the

operator F : FI
p → Lp(S; W∗) via

⟨F (u)(t), v⟩ :=
∫

Ω
⟨ f̂ (u(t, x)), v(x)⟩Idx a.e. t ∈ S, v ∈ W. (2.5)
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We further define A(D, u) := A1(D, u) + A2(D, u), where A1(D, u) := −(div(D01
∇u1),

. . . , div(D0I∇uI))
T, A2(D, u) := (div u1q, . . . , div uIq)

T, where

A(D, u) := A1(D, u) + A2(D, u),

⟨A1(D, u), v⟩ := ∑
I
i=1

∫

Ω
D0i∇ui · ∇vk dx, u ∈ V, v ∈ W,

⟨A2(D, u), v⟩ := ∑
I
i=1

∫

Ω
uiq · ∇vi dx, u ∈ V, v ∈ W and

⟨B(h), v⟩ := ∑
I
i=1

∫

∂Ω
hivi dσ, v ∈ V.

We note that A : E → P2. The corresponding extensions for time dependent u = u(t) is, with

the same notation, given by A(D, u)(t) := A(D, u(t)). Similarly, we proceed with A1, A2 and

B and obtain

A, A1, A2 : E → P2, B : Lp(S; V∂Ω) → P2.

Also, note that h ̸= 0 corresponds to non-homogeneous flux boundary conditions. Finally, we

set

G1(D, u) := u′ + A(D, u) + B(h)−F (u), (2.6)

G2(D, u) := u(0)− g, (2.7)

G(D, u) := (G1(D, u), G2(D, u))T. (2.8)

Therefore, the problem (1.5)–(1.7) has now been formulated into an abstract evolution

equation (2.6)–(2.8) and its weak formulation can be given by

Definition 2.7. Let the assumptions A1–A3 be true. A function u ∈ FI
p is called a weak

solution of problem (2.6)–(2.8), if u(0) = g and u′(t) + A(D, u(t)) + B(h(t)) = F (u(t)) in P2.

Alternatively, a function u ∈ FI
p is a weak solution of (2.6)–(2.8) if G(D), u) = 0 in P.

In order to prove Theorem 2.4, we will first look in to following lemmas:

Lemma 2.8. Let p > N + 2. For k = 1, 2, let Pk and Qk be the normed spaces, defined as in (2.2a)–
(2.2c), such that P1 →֒ Q1, Q2 →֒ P2. Assume further that M : Q1 → Q2 be a Fréchet differentiable
operator and set M := M|P1

= restriction of M on P1. Then,

L(Q1; Q2) →֒ L(P1; P2), Du M = Du M|P1
∈ L(P1; P2). (2.9)

Proof. Let v ∈ Q2, then ∥v∥Q2
≤ C∥v∥Q1

. Since P1 →֒ Q1 and Q2 →֒ P2 , ∥v∥P2
≤ C∥v∥Q2

≤

C∥v∥Q1
≤ C∥v∥P1

. This concludes (2.9). Now, we shall prove (2.9). We note that M : Q1 → Q2

is a Fréchet differentiable operator, i.e. Q1 ∋ l 7→ Dl M(l) ∈ Q2 is a bounded linear operator

from Q1 to Q2. Then, by the definition of Fréchet derivative, we have for ε > 0

∥M(u + l)− M(u)−Dl M(l)∥Q2
< ε∥l∥Q1

.

Then, by P1 →֒ Q1, Q2 →֒ P2, we obtain

∥M(u + l)− M(u)−Dl M(l)∥P2
< ε∥l∥P1

. (2.10)

(2.10) implies that Dl M : P1 → P2 is a bounded linear operator, i.e. M : P1 → P2 is a Fréchet

differentiable operator. Now, for u, l ∈ P1, M(u+ l) = M(u+ l), M(u) = M(u), therefore from

(2.10), we have ∥M(u + l) − M(u) − Dl M(l)∥P2
= ∥M(u + l) − M(u) − Dl M(l)∥P2

< ε∥l∥P1

which implies Dl M|P1
∈ L(P1; P2).
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Lemma 2.9 (Implicit Function Theorem, cf. [22]). Suppose that X, Y, Z are Banach spaces, C is
an open subset of X × Y and T : C → Z is continuous operator. Suppose further that for some
(x0, y0) ∈ C,

(i) T(x0, y0) = 0,

(ii) The Fréchet derivative of T(·, ·), when x is fixed is denoted by Ty(x, y), is called the partial Fréchet
derivative w.r.t. y which exists at each point (x, y) in a neighourhood of the point (x0, y0) and is
continuous at (x, y).

(iii) [Ty(x0, y0)]−1 ∈ L(Z, Y).

Then there is an open subset U of X containing x0 and a unique continuous mapping y : U → Y such
that T(x, y(x)) = 0 and y(x0) = y0.

3 Proof of Theorem 2.4

Before we prove Theorem 2.4, we recall Theorem 2.4 since it deals with the system of semilin-

ear parabolic PDEs with identical diffusion coefficients. It states that under the assumptions

A1–A3, there exists a unique positive global weak solution u ∈ P1 of the problem (1.5)–(1.7).

In other words, for a fixed D ∈ Q0 there exists a unique u∗ ∈ P1 such that we have

G(D, u∗) = 0. (3.1)

Now, in the spirit of Lemma 2.9, we denote T = G, X = Q0, Y = P1 and Z = P. Next, we will

show that the following equations holds true:

⟨Du∗F (u), v⟩ =
∫

Ω
⟨Du∗ f̂ (u(t, x)), v(x)⟩Idx for a.a. t ∈ S, u ∈ P1, v ∈ W, (3.2)

⟨Du∗G1(D, u), v⟩ = ⟨∂tu∗ + A(D, u∗)−Du∗ F(u), v⟩ for u ∈ P1, and v ∈ W, (3.3)

⟨Du∗G2(D, u), v⟩ = ⟨u∗(0)− g, v⟩, (3.4)

G1 ∈ P2 is Fréchet differentiable on Q0 × P1, (3.5)

For fixed (D, u∗),

L := Du∗G(D, u) ∈ L(P, P1), i.e. L = (Du∗G1(D, u),Du∗G2(D, u)) ∈ Iso(P1, P). (3.6)

We shall prove (3.2)–(3.6) in several steps.

Step 1: At first, we show that G : Q0 × P1 → P2 × P0 is a continuous operator. We note

that G1(D, u) := u′ + A0(D, u) + B(h) − F(u), G2(D, u) = u(0) − g, Then, for a φ ∈ D :=

C∞
0 (S × Ω)I , we have

⟨G1(D, u), φ⟩ = ⟨u′ + A(D, u) + B(h)−F (u), φ⟩

= −⟨u, ∂tφ⟩+
∫

S×Ω
⟨D∇u,∇v⟩I +

∫

S×Ω
⟨uq,∇φ⟩I +

∫

S×∂Ω
⟨h, v⟩I −

∫

S×Ω
⟨ f̂ , φ⟩I .

By Hölder’s inequality and D →֒ P1 →֒ P0 →֒ P2, it follows that ∥G1(D, u)∥P2
< ∞. We also

note that ∥G2(D, u)∥P0
< ∞. Altogether these two estimates imply that ∥G(D, u)∥P2×P0

< ∞,
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i.e. G : Q0 × P1 → P2 × P0 is a continuous operator. Since f̂ ∈ C1(RI)I , then by definition of

F (u) and Fréchet derivative, we obtain

⟨Du∗ F(u), v⟩ =
∫

Ω

〈[
f̂ (u∗(t, x) + θ(t, x))− f̂ (u∗(t, x))− Ψ(u∗(t, x), θ(t, x))

]
, v(x)

〉
I

dx

=
∫

Ω
⟨Du∗ f̂ (u(t, x)), v(x)⟩I dx, (3.7)

for a.e. t ∈ S, u, θ ∈ V and v ∈ W. By (3.7), it follows that DuF ∈ L(V; W) exists as C(S) →֒

Lp(S). Now, since H1,p(Ω) →֒ C(Ω) →֒ H1,q(Ω)∗, the restriction F|P1
is Fréchet differentiable

with DuF|P1
∈ L(P1; P2) for all u ∈ P1. Therefore, ⟨DuF, v⟩ exists in (3.2).

Step 2: We note from definition 2.1.1 that the Fréchet derivative of a linear operator T is T
itself. Since, ∂t, A : FI

p → P2 are linear and B can be treated as a constant w.r.t. u ∈ FI
p, therefore

the Fréchet derivative of G1 will yield

Du∗G1(D, u) = ∂tu∗ + A(D, u∗)−Du∗F (u) ∈ P2.

This concludes (3.3). Likewise, (3.4) follows with similar arguments. Furthermore, by step 1,

we know DuF|P1
∈ L(P1; P2). This implies DuG1 ∈ L(Q0 × P1; P2), i.e. DuG1 : Q0 × P1 → P2

exists, i.e. G1(D, u∗) ∈ P2 is Fréchet differentiable on Q0 × P1.

Step 3.: We have obtained the continuity of one of the partial derivative (DuG1(D, .)) of a

total of two and the existence of DuG2(D, u∗), we obtain the existence of DG(·, ·). Now the

estimate

∥DuG2(D, u∗)∥P2
= ∥u∗

0∥P2
≤ C∥u∗

0∥Lp(S;V0) ≤ C∥u∗
0∥P1

< ∞,

by the definition of function spaces and a straightforward imbedding of P1 →֒ P0 →֒ P2. This

implies the continuity of DuG2. Hence, the continuity of both DuG1 and DuG2 imply the

continuity of DG.

Step 4: Let ( f , g) ∈ P2 × V0. In order to verify (3.6) it remains to show that the problem:

Find (D, u∗) ∈ Q0 × P1 with (3.8)

∂tu∗ + A(D, u∗) = Du∗F (u), u∗(0) = g, (3.9)

has a unique solution. The operator A(D, u∗) possesses the maximal parabolic regularity

property on P1 in the Lp-sense (cf. [21]). From [21], it follows that (3.8)–(3.9) is uniquely

solvable. Upon combining the steps 1 to 4, all the three conditions of implicit function theorem

(Lemma 2.9) satisfied. Therefore, there exists an open neighbourhood of D, U(D) ⊂ Q0 such

that G(D, u) = 0 for all D ∈ U(D). Moreover, the size of the neighbourhood U(D) can

be estimated, however this will be addressed somewhere else. Now, for the positivity, we

multiply the PDE (1.5) with −u−
i (−1× negative part of ui) and integrate over Ω−

i (support

of u−
i ) for all i = 1, 2, . . . , I and for a.e. t ∈ S. We use the fact that u(0) ≥ 0 which eventually

yields the positivity of the solutions via Gronwall’s inequality.

Remark 3.1. Although we did not show the size of this neighbourhood in which the diffusion

coefficient must lie, in [6] an idea regarding that is mentioned and recently in [14] has been

shown that this can be further refined and a rather general neighbourhood can be chosen.
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1 Introduction

The existence of homoclinic solutions for autonomous and non-autonomous differential equa-

tions and Hamiltonian systems is a crucial subject in qualitative theory (see [19]).

In this work, the second-order equation in the real line considered is





−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|
q−1 + |u(t)|p−1 + g(|u′(t)|), in R

u(t) > 0, in R

limt→±∞ u(t) = 0,

(1.1)

with

(H1) 1 < q < 2 < p < +∞ and a1 ∈ Ls(R) ∩ C(R), s = 2
2−q , a positive even function;

BCorresponding author. Email: p.correa@usp.br
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(H2) A : R → R a Lipschitz, smooth (at least C1(R)), non-decreasing function satisfying:

∃ γ ∈ (0, 1) such that 0 < γ ≤ A(t) ∀t ∈ R;

(H3) g : R → R a continuous function satisfying:

0 ≤ sg(s) ≤ |s|θ for all s ∈ R, where 2 < θ ≤ 3. (1.2)

The equation in (1.1) arises in several real phenomena, for instance, as the study of travel-

ing wavefronts for parabolic reaction-diffusion equations with a local reaction term, chemical

models, and others, as mentioned in [13, 14], and generalizes several classical equations such

as Duffing-type equations [3, 10, 16] or Liénard-like systems [18].

Now, we state our main result.

Theorem 1.1. There exists λ∗
> 0 such that, for all λ ∈ (0, λ∗], problem (1.1) has an even, positive

and C2(R) homoclinic solution to the origin. Moreover, as λ → 0, this solution goes to 0 in C0(R).

We also find an additional result with respect to appropriate ranges of λ in order to guar-

antee the existence of solutions.

Proposition 1.2. Assume the hypotheses of Theorem 1.1. If λ > 0 is sufficiently large, then equation

(1.1) has no (positive) solution in H1(R).

The idea to consider problem (1.1) came from article [3], where the authors considered a

similar equation but with a different set of hypotheses; namely, their formulation was focused

on the study of the equation

{
−(A(u)u′)′ + u(t) = h(t, u(t)) + g(t, u′(t)) in R

u(±∞) = u′(±∞) = 0,

with

(H̃1) h, g : R
2 → R locally Hölder continuous, even in the first variable and h(t, 0) = g(t, 0) =

0;

(H̃2) there exist constants 0 < r1, r2 < 1 and smooth functions b ∈ L1(R) ∩ L∞(R) with

b(t) > 0 for all t ∈ R, a1 ∈ L2(R) and a2 ∈ L
2

1−r2 (R), satisfying

b(t)|µ|r1 ≤ h(t, µ) ≤ a1(t) + a2(t)|µ|
r2 , ∀(t, µ) ∈ R

2;

(H̃3) there exist a constant 0 < r3 < 1 and smooth functions a3 ∈ L
2

1−r3 (R) and a4 ∈ L2(R)

satisfying

0 ≤ g(t, η) ≤ a4(t) + a3(t)|η|
r3 ∀(t, η) ∈ R

2;

(H̃4) the function A is smooth, nondecreasing and there exists γ ∈ (0, 1) satisfying

0 < γ ≤ A(t) ∀t ∈ R.
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By comparison with our work, we considered sup-linear growth on u and u′, terms involv-

ing this type of growth are not covered in [3]. Another aspect that we would like to emphasize

is the weakening of the hypothesis over g: comparing with [3], we asked only for continuity

over g, instead of Hölder continuity. Although the formulation presented here is not an im-

mediate consequence of [3], some techniques therein proved to be quite solid and very useful

in the study of this type of problem, transcending the circumstances framed by the authors.

Our formulation presented some interesting challenges, for instance, the problem is not

variational. Among the non-variational techniques, we chose the Galerkin method as a tool to

gather information about the existence of weak solutions. Although proving itself beneficial,

the Galerkin method presented us with other types of challenges to circumvent. For example,

the nonlinear term g(|u′(t)|) with 0 ≤ sg(s) ≤ |s|θ and 2 < θ ≤ 3 enables us to take g(s) ≡

sign(s)|s|2. Thus estimations involving
∫

Ω
|u′|2 become essential to the calculations but, at the

same time, we cannot say much about it a priori: this is due to the lack of information about

u′, since the embedding theorems of H1
0(Ω) do not provide substation information about u′

as they do for u.

We consider the case θ = 3 as the critical one and treat it separately in our estimations.

For θ > 3 we would get expressions involving
∫
|u′|θ−1 that we could not control, because

θ − 1 > 2 and we only know that u′ ∈ L2; for this reason we limited θ ≤ 3, and θ > 2 was

required because we wanted to focus on the sup-linear case.

There is some literature about equations on domains in R
n involving the term |∇u|2 in

the nonlinearity (see [1, 2, 9, 15]), some authors call this type of growth: “critical growth on the

gradient”. Simple changes on how this term appears in the equation can have dramatic effects

on the outcome. For instance, a simple change in the sign of |∇u|2 can lead to a total failure

to obtain a solution (even in the weak sense), see the article [2] for more information. We

also would like to emphasize article [9] for its results and broader discussion about PDE with

quadratic growth on the gradient: the model problem studied by the authors is

−div(A(x)∇u) = c0(x)u + µ(x)|∇u|2 + f (x),

with suitable hypothesis. In this context, our problem (1.1) presents a similar structure that

was not covered before, thus we believe it contributes to the discussion previously mentioned.

The methods applied in our work require certain symmetry, which is due mainly to a

lack of a comparison principle (known to the authors) to guarantee that some limit-functions

are not zero almost everywhere (a.e.), (see Proposition 2.24). To overcome this obstacle, we

founded this work focusing on the set E
1
0(I) = {u ∈ H1

0(I); u(t) = u(−t) a.e.}, I ⊂ R a

symmetric interval, which is the subset of H1
0(I) consisting of even (or radial symmetric)

functions.

In order to develop our study, in Section 2, we started by analyzing our equation on a

bounded interval:
{
−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|

q−1 + |u(t)|p−1 + g(|u′(t)|), in (−n, n)

u(n) = u(−n) = 0.
(Pn)

This restriction was essential to realize our estimations and to obtain upper bound constants

that were crucial to construct the solution in R to the problem (1.1). The process developed in

Section 2 consisted mainly of two steps:

First Approximate g by a sequence of Lipschitz functions ( fk) using the Strauss Approximation;

this sequence received this name after its first appearance in the article [17].
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This approximation was useful because it helped us to work with the necessary estima-

tions without extra hypotheses over g. We followed [5] in the definition and presentation

of the properties of the sequence ( fk). In this article, the authors used this approxima-

tion to avoid the usage of the Ambrosetti–Rabinowitz condition and were able to obtain

a positive solution to the equation




−∆u = λuq(r)−1 + f (r, u) in B(0, 1)

u > 0 in B(0, 1)

u = 0 on ∂B,

see [5] for more information.

We would like to emphasize that, in [5], the authors used this approximation in a term

involving u; namely they used it to approximate f (r, u). In our work, we used it in u′.

Second We used the sequence ( fk) to define an approximate problem in (−n, n) and used

the Galerkin method to obtain a weak solution. Then, using the work done by Gary M.

Liberman [12], we obtained the a priori estimation summarized in Proposition 2.21. Thus

we obtained a strong solution to this problem. Afterward, we were able to construct a

strong solution to the problem (Pn).

In Section 4 we used the pieces of information gathered in Section 2 to construct a solution

to the problem (1.1), thus proving Theorem 1.1. We also prove Proposition 1.2 in Section 4.

We would like to point out the role of Section 3: there we study the asymptotic behavior, in

respect to λ, of the solution to the problem (Pn) – the arguments presented were inspired by

the article [8]. This was useful to tackle the last assertion of Theorem 1.1.

2 Solution in a bounded interval

First, we will obtain a solution to a problem related to (1.1); namely, we will study
{
−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|

q−1 + |u(t)|p−1 + g(|u′(t)|), in (−n, n)

u(n) = u(−n) = 0,
(Pn)

with the same set of hypothesis (H1), (H2) and (H3). The motivation for this approach is to

construct a solution to the problem (1.1) using the solutions of (Pn). Although the analysis

of (Pn) is easier since it is defined over (−n, n), rather than R, the lack of hypothesis over g

creates a difficult situation for our estimations. To overcome this matter, we will utilize the

Strauss Approximation on g at the same time that we approximate the problem (Pn). Let us

define the sequence of functions that will approximate g.

Define G(s) =
∫ s

0 g(t)dt so that G is differentiable and G′(s) = g(s). By means of G we

shall construct a sequence of approximations of g by Lipschitz functions fk : R −→ R. Let

fk(s) =





−k[G(−k − 1
k )− G(−k)], if s ≤ −k

−k[G(s − 1
k )− G(s)], if − k ≤ s ≤ −1

k

k2s[G(−2
k )− G(−1

k )], if −1
k ≤ s ≤ 0

k2s[G( 2
k )− G( 1

k )], if 0 ≤ s ≤ 1
k

k[G(s + 1
k )− G(s)], if 1

k ≤ s ≤ k

k[G(k + 1
k )− G(k)], if s ≥ k.

(2.1)



Homoclinic solution to zero of a non-autonomous ODE 5

Remark 2.1. The construction of the sequence ( fk) is due to [17].

The advantage of this sequence lies in the properties that one can obtain from it:

Theorem 2.2 ([5, Lemma 1]). The sequence fk as defined above satisfies:

1. s fk(s) ≥ 0 for all s ∈ R;

2. for all k ∈ N there is a constant c(k) such that | fk(ξ)− fk(η)| ≤ c(k)|ξ − η|, for all ξ, η ∈ R;

3. fk converges uniformly to g in bounded sets.

Remark 2.3. From the definition of the sequence fk, and the fact that sign(g(s)) = sign(s) for

all s ∈ R, it follows without difficulties that 1 is true. In [5, p. 6, Prop. 5] one can find a

detailed proof of 2, so we will only prove 3 by an alternative argumentation.

Proof. Given a bounded set J ⊂ R, there exists m0 ∈ N such that J ⊂ (−m0, m0); so to prove 3

we only need to prove that it holds in intervals such as (−m, m), m ∈ N. We may also assume

that k > m. Given ϵ > 0, for s ∈ (−m, m) there are four possible cases:

Case I. −m < s ≤ −1
k Here we have that

| fk(s)− g(s)| =

∣∣∣∣−k

[
G

(
s −

1

k

)
− G(s)

]
− g(s)

∣∣∣∣ =
∣∣∣∣∣

[
G(s − 1

k )− G(s)
]

−1
k

− g(s)

∣∣∣∣∣ .

Then, since G′(s) = g(s), there exists δ(s) > 0 such that 0 < |h| < δ(s) implies

∣∣∣∣
[G(s + h)− G(s)]

h
− g(s)

∣∣∣∣ < ϵ

From the family of open sets {(s − δ(s), s + δ(s)); s ∈ [−m, 0]} we extract a finite subcover

{(si − δ(si), si + δ(si)); i = 1 . . . l} of the compact set [−m, 0] and take δ = min{δ(si); i =

1, . . . l}. Thus, for k >
1
δ we get | fk(s)− g(s)| < ϵ.

Case II. −1
k ≤ s ≤ 0

Since g(0) = 0 and g is continuous, for the given ϵ > 0 there exists δ > 0 such that |t| < δ

implies |g(t)| < ϵ/2. Let k0 ∈ N be such that k0 > m and k0 > 2/δ. Then, for k > k0

| fk(s)− g(s)| =

∣∣∣∣k
2s

[
G

(
−2

k

)
− G

(
−1

k

)]
− g(s)

∣∣∣∣

≤ k2|s|

∣∣∣∣
∫ −2/k

−1/k
|g(t)|dt

∣∣∣∣+ |g(s)|

≤ k2(
1

k2
)

ϵ

2
+

ϵ

2
= ϵ ∀s ∈ [

−1

k
, 0].

The cases 0 ≤ s ≤ 1
k and 1

k ≤ s < m can be analyzed in a similar fashion. Thus we see

that, for ϵ > 0 , we can take k ∈ N big enough such that | fk(s)− g(s)| < ϵ independently of

s ∈ (−m, m).

Lemma 2.4 ([5, Lemma 2]). Let g : R → R be a continuous function satisfying (1.2). Then the

sequence fk of Theorem 2.2 satisfies

1. For all k ∈ N, 0 ≤ s fk(s) ≤ C1|s|
θ for every |s| ≥ 1

k ;
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2. for all k ∈ N, 0 ≤ s fk(s) ≤ C1|s|
2 for every |s| ≤ 1

k ;

where C1 is a constant independent of k.

Proof. See [5, Page 8, Lemma 2].

Now we are in condition – using ( fk) – to define a problem that approximates problem

(Pn). Let ψ ∈ L2(−n, n) ∩ C(−n, n) be a positive, even function. We define our approximate

problem by:

{
−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|

q−1 + |u(t)|p−1 + fk(|u
′(t)|) + ψ

k , in (−n, n)

u(n) = u(−n) = 0.
(Pk

n)

In the next subsection we will utilize the Galerkin method to obtain a solution to (Pk
n); afterward,

we will let k vary and thus, as k → ∞, obtain a solution to (Pn). Before jumping into the next

subsection, let us define what we understand as weak solution to problem (Pn):

Definition 2.5. We will call w ∈ H1
0(−n, n) a weak solution of (Pn) if

∫ n

−n
A(w)w′v′ +

∫ n

−n
wv =

∫ n

−n
λa1|w|q−1v +

∫ n

−n
|w|p−1v +

∫ n

−n
g(|w′|)v

for all v ∈ H1
0(−n, n).

Remark 2.6. We will use, for the sake of clarity, the notation ∥ · ∥W1,2 for the usual norm of H1
0

and for (∥u∥L2 + ∥u′∥L2) or (∥u∥2
L2 + ∥u′∥2

L2)
1/2. Since these norms are equivalent the results

will not change but the constants may. In most of the cases ∥u∥W1,2 = ∥u∥L2 + ∥u′∥L2 . We also

emphasize that, when the context is clear, we will omit the domain in norms such as those

from the spaces Lp(−n, n).

Remark 2.7. The integrals in the definition above are well defined, see for instance the esti-

mations of Proposition 2.16. The same is true for the definitions given in the next subsection.

2.1 Solution to the approximate problem

Our main goal in this subsection is to prove the following theorem:

Theorem 2.8. There exist λ∗
> 0, β ∈ (0, 1) and k∗ ∈ N for which the problem (Pk

n) admits a

nontrivial, even, non-negative C1,β[−n, n] ∩ C2(−n, n) solution for every λ ∈ (0, λ∗) and k ≥ k∗.

As mentioned, we will utilize the Galerkin method; thus we will start by presenting the

foundations that this method requires. The next lemma is a well-known result, but it plays a

central role in all arguments involving the Galerkin method.

Lemma 2.9. Let F : R
N → R

N be a continuous function such that ⟨F(x), x⟩ ≥ 0 for all x ∈ R
N

with ∥x∥RN = r. Then there exists x0 in the closed ball B[0, r] such that F(x0) = 0.

Proof. See [11, Chap. 5, Theorem 5.2.5].

Now we will define an entity called E-weak solution. It is well known that the main focus

of the Galerkin method is to obtain a weak solution, but we will utilize it to obtain an E-weak

solution first.
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Definition 2.10. A function w ∈ H1
0(−n, n) is called an E-weak solution of (Pk

n) if w is an even

function satisfying

∫ n

−n
A(w)w′φ′ +

∫ n

−n
wφ =

∫ n

−n
λa1|w|q−1 φ +

∫ n

−n
|w|p−1φ +

∫ n

−n
fk(|w

′|)φ +
∫ n

−n

ψ

k
φ

for all φ ∈ E
1
0(−n, n) = {u ∈ H1

0(−n, n); u(t) = u(−t) a.e.}.

The use of the E-weak solution will be central in our argumentation to obtain an even

solution to the problem (Pk
n). This symmetry – being even – will also be beneficial in the use

of our comparison principle, which is stated as follows:

Theorem 2.11 ([3, Theorem 3.1]). Let σ : (0,+∞) → R be a continuous function such that the

mapping (0,+∞) ∋ s 7→ σ(s)
s is strictly decreasing and ρ > 0. Suppose that there exist even

functions v, w ∈ C2(−ρ, ρ) ∩ C[−ρ, ρ] such that:

1. (A(w)w′)′ − w + σ(w) ≤ 0 ≤ (A(v)v′)− v + σ(v) in (−ρ, ρ);

2. v, w ≥ 0 in (−ρ, ρ) and v(ρ) ≤ w(ρ);

3. {x ∈ (−ρ, ρ); v(x) = 0} and {x ∈ (−ρ, ρ); w(x) = 0} have null measure in R;

4. v′ · w′ ≥ 0 in (−ρ, ρ);

5. v′, w′ ∈ L∞(−ρ, ρ).

Then v ≤ w in (−ρ, ρ).

Proof. The same as [3, p. 2419, Thm 3.1].

Turns out that, obtaining an E-weak solution enables us to recuperate a weak solution in

the usual sense:

Definition 2.12. We will call w ∈ H1
0(−n, n) a weak solution of (Pk

n) if

∫ n

−n
A(w)w′v′ +

∫ n

−n
wv =

∫ n

−n
λa1|w|q−1v +

∫ n

−n
|w|p−1v +

∫ n

−n
fk(|w

′|)v +
∫ n

−n

ψ

k
v

for all v ∈ H1
0(−n, n).

This is achieved by

Lemma 2.13 ([3, Lemma 4.1]). Let w ∈ H1
0(−n, n) be an E-weak solution of (Pk

n). Then w is a weak

solution of (Pk
n).

Proof. See [3, p. 2421, Lemma 4.1].

The subset E
1
0(−n, n) ⊂ H1

0(−n, n) can be understood as the set of radial symmetric func-

tions in R. One can prove without difficulties the following properties of E
1
0(−n, n):

i) it is a Hilbert space;

ii) it is separable;

iii) it has an orthonormal basis.
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Let E
1
0(−n, n) = {u ∈ H1

0(−n, n); u(t) = u(−t) a.e.} and (el)
∞
l=1 be an orthonormal basis of

E
1
0(−n, n).

Define VM = span{e1, . . . , eM}; then for every u ∈ VM there exist ξ1, . . . , ξM in R such that

u = ∑
M
i=1 ξiei. By means of T : VM → R

M, T(u) = T(∑M
i=1 ξiei) = (ξ1, . . . , ξM), which is a

linear isomorphism and preserve norm, we may define F : R
M → R

M such that

F(ξ) = (F1(ξ), . . . ,FM(ξ)) (2.2)

and

Fj(ξ) =
∫ n

−n
A(u)u′e′j +

∫ n

−n
uej −

∫ n

−n
λa1|u|

q−1ej −
∫ n

−n
|u|p−1ej −

∫ n

−n
fk(|u

′|)ej −
∫ n

−n

ψ

k
ej,

where j ∈ {1, . . . , M} and u = T−1(ξ), for all ξ ∈ R
M.

Lemma 2.14. The function F is continuous.

Remark 2.15. Our proof will use the fact that, if (xn) is a sequence that converges to x and,

for all subsequence (xnl
) of (xn), there exist a subsequence (xnlk

) of (xnl
) such that F(xnlk

)

converges to F(x), then F(xn) converges to F(x).

Proof. Given ξ = (ξ1, . . . , ξM) ∈ R
M, let (ξl)

∞
l=1 be a sequence in R

M such that ∥ξl − ξ∥RM → 0.

By means of T we can identify T−1(ξ) = u = ∑
M
i=1 eiξi and T−1(ξl) = ul = ∑

M
i=1 eiξ

l
i . Since T is

isometry we have that ∥ul − u∥W1,2 → 0. That is, ∥ul − u∥L2 → 0 and ∥u′
l − u′∥L2 → 0. Taking

a subsequence, if necessary, we may assume that

ul(x) → u(x) a.e. on (−n, n),

u′
l(x) → u′(x) a.e. on (−n, n),

and |ul(x)| ≤ h1(x), |u′
l(x)| ≤ h2(x) a.e. on (−n, n), with h1, h2 ∈ L2(−n, n). Let j ∈

{1, 2, . . . , M}, we will prove that Fj(ξl) → Fj(ξ).
∣∣∣∣
∫ n

−n
A(ul)u

′
le
′
j −

∫ n

−n
A(u)u′e′j

∣∣∣∣ ≤
∫ n

−n

(
|u′

l ||A(ul)− A(u)|+ |A(u)||u′
l − u′|

)
|e′j|, (2.3)

since |u′
l(x)||A(ul(x))− A(u(x))||e′j(x)| → 0 a.e. and |A(u(x))||u′

l(x)− u′(x)||e′j(x)| → 0 a.e.,

by the Dominated Convergence Theorem (D.C.T) the left side of (2.3) tends to zero as l → +∞.
∣∣∣∣
∫ n

−n
ulej −

∫ n

−n
uej

∣∣∣∣ ≤
∫ n

−n
|ul − u||ej| → 0 by (D.C.T). (2.4)

∣∣∣∣
∫ n

−n
[λa1(|ul |

q−1 − |u|q−1) + (|ul |
p−1 − |u|p−1) + ( fk(u

′
l)− fk(u

′))]ej

∣∣∣∣

≤
∫ n

−n
λ|a1|

∣∣∣|ul |
q−1 − |u|q−1

∣∣∣ |ej|+
∫ n

−n

∣∣∣|ul |
p−1 − |u|p−1

∣∣∣ |ej|

+
∫ n

−n

∣∣ fk(|u
′
l |)− fk(|u

′|)
∣∣ |ej|, (2.5)

since that |ul |
q−1 → |u|q−1 a.e. and |ul |

p−1 → |u|p−1 a.e., (D.C.T) implies that the first two

integrals above converge to zero. Using the second item of Theorem 2.2, we have
∫ n

−n

∣∣ fk(|u
′
l |)− fk(|u

′|)
∣∣ |ej| ≤

∫ n

−n
c(k)|u′

l − u′||ej|. (2.6)

Then, by (D.C.T), (2.6) converges to 0 as l → +∞.

These estimations show us that for every subsequence (ξlk) of (ξl), there exists a subse-

quence (ξlkn
) of (ξlk) that Fj(ξlkn

) → Fj(ξ). Therefore Fj(ξl) → Fj(ξ).
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Proposition 2.16. There exist λ∗
> 0 and k∗ ∈ N for which the problem (Pk

n) admits a nontrivial

weak solution for every λ ∈ (0, λ∗) and k ≥ k∗.

Remark 2.17. We will, in fact, search for an E-weak solution; but as seen in Lemma 2.13 this

will also be a weak solution.

Proof. Our aim is to use Lemma 2.9, with the function F defined in (2.2). Given ξ ∈ R
M, we

have that

⟨F(ξ), ξ⟩ =
∫ n

−n
A(u)|u′|2 +

∫ n

−n
|u|2 −

∫ n

−n
λa1|u|

q−1u −
∫ n

−n
|u|p−1u

−
∫ n

−n
fk(|u

′|)u −
∫ n

−n

ψ

k
u. (2.7)

In the following, we will estimate the above integrals. We have that

∫ n

−n
λa1|u|

q−1u ≤ λ∥a1∥Ls(R)∥u∥
q

L2 ≤ λC2∥u∥
q

W1,2 , (2.8)

∫ n

−n

ψ

k
u ≤

∥ψ∥L2(−n,n)∥u∥W1,2

k
. (2.9)

Now let ũ : R → R be the extension by zero of u, then

∫ n

−n
|u|p−1u ≤

∫ n

−n
|u|p =

∫ n

−n
|u|2|u|p−2 (2.10)

≤ ∥ũ∥
p−2

L∞(R)

∫ n

−n
|u|2 (2.11)

= ∥ũ∥
p−2

L∞(R)
∥u∥2

L2 (2.12)

≤ Cp−2∥u∥
p−2

W1,2∥u∥2
W1,2 = Cp−2∥u∥

p

W1,2 . (2.13)

Where C is the constant for the embedding W1,2(R) →֒ L∞(R).

Define

Ω≥ =

{
s ∈ (−n, n) : |u′(s)| ≥

1

k

}
and Ω≤ =

{
s ∈ (−n, n) : 0 < |u′(s)| ≤

1

k

}
.

Then ∫ n

−n
fk(|u

′|)u =
∫

Ω≥

fk(|u
′|)u +

∫

Ω≤

fk(|u
′|)u.

Notice that by Lemma 2.4,

∫

Ω≤

fk(|u
′|)u ≤

∫

Ω≤

C1|u
′||u| ≤

∫

Ω≤

C1

k
|u|

≤
C1

k

∫ n

−n
|u| ≤

C1(2n)1/2

k
∥u∥L2

≤
C1(2n)1/2

k
∥u∥W1,2 .

To estimate the integral over Ω≥, consider the following cases :

Case 1. 2 < θ < 3.
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Using Lemma 2.4, we have

∫

Ω≥

fk(|u
′|)u ≤

∫

Ω≥

C1|u
′|θ−1|u| ≤

∫ n

−n
C1|u

′|θ−1|u|

≤ C1

(∫ n

−n
|u|w

) 1
w
(∫ n

−n
|u′|2

) θ−1
2

≤ C1

(∫

R

|ũ|2|ũ|w−2

) 1
w

∥u′∥θ−1
L2

≤ C1∥ũ∥
w−2

w

L∞(R)
∥u∥

2
w

L2∥u′∥θ−1
L2

≤ C1C
w−2

w ∥u∥
w−2

w

W1,2∥u∥
2
w

W1,2∥u∥θ−1
W1,2 = C1C

w−2
w ∥u∥θ

W1,2 .

Where w =
(

2
θ−1

)′
= 2

3−θ > 2.

Case 2. θ = 3.
∫

Ω≥

fk(|u
′|)u ≤

∫

Ω≥

C1|u
′|2|u| ≤

∫ n

−n
C1|u

′|2|u|

≤ C1∥ũ∥L∞(R)∥u′∥2
L2 ≤ C1C∥u∥W1,2∥u∥2

W1,2

= C1C∥u∥3
W1,2 .

Now we are able to estimate (2.7). Notice that w−2
w = θ − 2.

⟨F(ξ), ξ⟩ ≥ γ∥u∥2
W1,2 − λC2∥u∥

q

W1,2 − Cp−2∥u∥
p

W1,2

− C1 max{Cθ−2, C}∥u∥θ
W1,2 −

(
C1(2n)1/2

k
+

∥ψ∥L2(−n,n)

k

)
∥u∥W1,2 .

Define Zk : R
+ → R by

Zk(x) = γx2 − λC2xq − Cp−2xp − C1 max{Cθ−2, C}xθ −

(
C1(2n)1/2

k
+

∥ψ∥L2(−n,n)

k

)
x.

We would like to find r > 0 such that

γr2 − Cp−2rp − C1 max{Cθ−2, C}rθ
>

r2

2
γ (2.14)

or equivalently,
γ

2
> Cp−2rp−2 + C1 max{Cθ−2, C}rθ−2.

For this, if we take

δ1 = min

{( γ

4Cp−2

)1/(p−2)
,

(
γ

4C1 max{Cθ−2, C}

)1/(θ−2)
}

,

then for 0 < r < δ1 (2.14) is true. Consequently,

Zk(r) ≥
r2

2
γ − λC2δ

q
1 −

(
C1(2n)1/2

k
+

∥ψ∥L2(−n,n)

k

)
δ1.
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Define ρ1 = r2

2 γ − λC2δ
q
1. We will adjust λ > 0 so that ρ1 > 0; for this if ρ1 > 0 it would imply

that
r2

2
γ − λC2δ

q
1 > 0 ⇔

r2γ

2C2δ
q
1

> λ.

Take λ∗ = r2γ

2C2δ
q
1

and 0 < λ < λ∗. Thus, ρ1 > 0 and we can find k∗ ∈ N such that for k > k∗,

ρ1 >

(C1(2n)1/2

k +
∥ψ∥

L2(−n,n)

k

)
δ1 > 0. Therefore, for 0 < r < δ1, 0 < λ < λ∗ and k > k∗

Zk(r) > 0,

and so, with ∥u∥W1,2 = r,

⟨F(ξ), ξ⟩ > 0. (2.15)

By Lemma 2.9, there exists yM ∈ B[0, r] such that F(yM) = 0 that is, identifying vM =

T−1(yM), for all j ∈ {1, . . . , M}

∫ n

−n
A(vM)v′Me′j +

∫ n

−n
vMej (2.16)

=
∫ n

−n
λa1|vM|q−1ej +

∫ n

−n
|vM|p−1ej +

∫ n

−n
fk(|v

′
M|)ej +

∫ n

−n

ψ

k
ej.

Therefore (2.16) holds for all φ ∈ VM, because {e1, . . . , eM} is a basis of VM. Notice that

∥vM∥W1,2 ≤ r for all M ∈ N. (2.17)

Remark 2.18. Our choice of r does not depend on M,n, λ or k. This free determination of r

will be useful further down in the argumentation, because using the embedding W1,2(R) →֒

L∞(R) we will be able to obtain a uniform upper bound, in the norm of L∞(R), for the

sequence of solutions of the problem (Pk
n). Then this upper bound will naturally be transferred

to also bound the sequence of solution of (Pn).

Since ∥vM∥W1,2 ≤ r there is v0 ∈ E
1
0(−n, n) such that vM ⇀ v0 in H1

0(−n, n). By the

compact embedding W1,2(−n, n) →֒ L2(−n, n) we conclude vM → v0 in L2(−n, n). Our goal

is to show that v0 is a weak solution of (Pk
n). Let ΓM : VM → V∗

M and BM : VM → V∗
M be defined

by

⟨ΓM(v), φ⟩ =
∫ n

−n
A(v)v′φ′ (2.18)

and

⟨BM(v), φ⟩ =
∫ n

−n

(
−v + λa1|v|

q−1 + |v|p−1 + fk(|v
′|) +

ψ

k

)
φ. (2.19)

Hence, ⟨ΓM(vM)− BM(vM), φ⟩ = 0 for all φ ∈ VM.

Denoting PM : E
1
0(−n, n) → VM the projection of E

1
0(−n, n) onto VM, (that is, if u =

∑
∞
i=1 αiei then PM(u) = ∑

M
i=1 αiei) we have

⟨ΓM(vM)− BM(vM), vM − PMv0⟩ = 0,

so

⟨ΓM(vM), vM − PMv0⟩ = ⟨BM(vM), vM − PMv0⟩ (2.20)

=
∫ n

−n

(
−vM + λa1|vM|q−1 + |vM|p−1 + fk(|v

′
M|) +

ψ

k

)
(vM − PMv0).
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Letting M → ∞ one can see without difficulties that ⟨ΓM(vM), vM − PMv0⟩ → 0. This conver-

gence allows us to prove the following

Lemma 2.19. vM → v0 strongly, i.e. in the norm of H1
0(−n, n).

Remark 2.20. The idea to consider the operators ΓM and BM was an inspiration from the

arguments presented in [7].

Proof. The limit ∥vM − v0∥L2(−n,n) → 0 has been established before, thus we will focus our

efforts demonstrating the same for ∥v′M − v′0∥L2(−n,n). Let ΦM, Φ, ΨM, ζM ∈ (E1
0(−n, n))∗ be

given by

ΦM(w) =
∫ n

−n
A(vM)v′0w′ (2.21)

Φ(w) =
∫ n

−n
A(v0)v

′
0w′ (2.22)

ΨM(w) =
∫ n

−n
A(vM)PMv′0w′ (2.23)

ζM(w) =
∫ n

−n
A(v0)PMv′0w′. (2.24)

Then, by a straightforward calculation, |ΦM − Φ| → 0,|ΨM − ΦM| → 0 and |ζM − Φ| → 0 in

(E1
0(−n, n))∗. Thus, |ΨM − ζM| → 0 in (E1

0(−n, n))∗, since |ΨM − ζM| ≤ |ΨM − ΦM|+ |ΦM −

Φ| + |Φ − ζM|. Writing ΨM = (ΨM − ζM) + ζM yields that ΨM → Φ in (E1
0(−n, n))∗. Re-

membering the weak convergence vM ⇀ v0 one can conclude (vM − PMv0) ⇀ 0 in E
1
0(−n, n)

because for all f ∈ (E1
0(−n, n))∗

| f (vM)− f (PMv0)| ≤ | f (vM)− f (v0)|+ ∥ f ∥∥v0 − PMv0∥W1,2 .

Consequently, letting M → ∞, ΨM(vM − PMv0) → Φ(0) = 0. This means that

∫ n

−n
A(vM)PMv′0(v

′
M − PMv′0) → 0. (2.25)

Also, rewriting (2.20)

∫ n

−n
A(vM)v′M(v′M − PMv′0) → 0 as M → ∞. (2.26)

Therefore, from (2.26)–(2.25)

∫ n

−n
A(vM)(v′M − PMv′0)

2 → 0 as M → ∞. (2.27)

Since A(x) ≥ γ > 0 for all x ∈ R we conclude ∥v′M − PMv′0∥L2(−n,n) → 0 as M → ∞.

Then ∥v′M − v′0∥L2(−n,n) → 0 as result of ∥v′M − v′0∥L2(−n,n) ≤ ∥v′M − PMv′0∥L2(−n,n) + ∥v′0 −

PMv′0∥L2(−n,n), proving the lemma.

We know that for every φ ∈ VM

∫ n

−n
A(vM)v′M φ′ +

∫ n

−n
vM φ (2.28)

=
∫ n

−n
λa1|vM|q−1φ +

∫ n

−n
|vM|p−1φ +

∫ n

−n
fk(|v

′
M|)φ +

∫ n

−n

ψ

k
φ.
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By the previous lemma, taking a subsequence if necessary, we may assume that v′M(x) con-

verges a.e. to v′0(x) and there exists h ∈ L2(−n, n) such that |v′M(x)| ≤ h(x) a.e. Then notice

that
∣∣∣∣
∫ n

−n

(
A(vM)v′M − A(v0)v

′
0

)
φ′

∣∣∣∣ ≤
(∫ n

−n
|A(vM)v′M − A(v0)v

′
0|

2

)1/2

∥φ′∥L2 (2.29)

and exists Q > 0 such that ∥vM∥∞ < Q for all M ∈ N, because vM converges to v0 in

C0[−n, n] due to the embedding W1,2(−n, n) →֒ C0[−n, n]. We can suppose Q big enough so

that Q > 2 (r + A(0)) and we take Ã = supx∈[−Q,Q] A(x). Since

|A(vM(x))v′M(x)− A(v0(x))v′0(x)| → 0 a.e. (2.30)

and

|A(vM(x))v′M(x)− A(v0(x))v′0(x)|2 ≤
(
|A(vM(x))v′M(x)|+ |A(v0(x))v′0(x)|

)2

= |A(vM(x))|2|v′M(x)|2

+ 2|A(vM(x))||A(v0(x))||v′M(x)||v′0(x)|

+ |A(v0(x))|2|v′0(x)|2

≤ Ã2Q2h2(x) + 2Ã2Q2|v′0(x)|h(x)

+ Ã2Q2|v′0(x)|2

almost everywhere, we conclude by (D.C.T) that
∫ n

−n
A(vM)v′M φ′ →

∫ n

−n
A(v0)v

′
0 φ′ as M → ∞. (2.31)

Also, by direct calculation, the following convergences are true
∫ n

−n
vM φ →

∫ n

−n
v0φ (2.32)

∫ n

−n
λa1|vM|q−1 φ →

∫ n

−n
λa1|v0|

q−1 φ (2.33)

∫ n

−n
|vM|p−1 φ →

∫ n

−n
|v0|

p−1 φ (2.34)

∫ n

−n
fk(|v

′
M|)φ →

∫ n

−n
fk(|v

′
0|)φ (2.35)

as M → ∞. Thus, for every φ ∈ VM
∫ n

−n
A(v0)v

′
0 φ′ +

∫ n

−n
v0φ =

∫ n

−n
λa1|v0|

q−1 φ +
∫ n

−n
|v0|

p−1φ +
∫ n

−n
fk(|v

′
0|)φ +

∫ n

−n

ψ

k
φ. (2.36)

Furthermore, for every u ∈ E
1
0(−n, n), it follows that
∫ n

−n
A(v0)v

′
0PMu′ →

∫ n

−n
A(v0)v

′
0u′ (2.37)

∫ n

−n
v0PMu →

∫ n

−n
v0u (2.38)

∫ n

−n
λa1|v0|

q−1PMu →
∫ n

−n
λa1|v0|

q−1u (2.39)

∫ n

−n
|v0|

p−1PMu →
∫ n

−n
|v0|

p−1u (2.40)

∫ n

−n
fk(|v

′
0|)PMu →

∫ n

−n
fk(|v

′
0|)u (2.41)
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as M → ∞. Thus, for every u ∈ E
1
0(−n, n)

∫ n

−n
A(v0)v

′
0u′ +

∫ n

−n
v0u =

∫ n

−n
λa1|v0|

q−1u +
∫ n

−n
|v0|

p−1u +
∫ n

−n
fk(|v

′
0|)u +

∫ n

−n

ψ

k
u. (2.42)

So v0 is an E-weak solution of (Pk
n); by Lemma 2.13 v0 is also a weak solution. Notice that

∥v0∥W1,2 ≤ r,

and our choice of r does not depend on n, λ or k. This finishes the proof of Proposition

2.16.

In what follows we will make k → ∞ thus we can consider ψ ≡ 1, because the term
ψ
k will

converge to 0 as k → ∞.

Proposition 2.21. The above weak solution v0 satisfies:

1. there exist β(L/γ) and Ĉ(L/γ, n), such that v0 ∈ C1,β[−n, n] ∩ C2(−n, n) and

|v0|1+β ≤ Ĉ,

where

L > 2 max{Cr + λa1(n)|Cr|q−1 + |Cr|p−1 + 1, 2C1, A(Cr), Ã};

2. v0(t) ≥ 0.

Proof. To prove 1, we will use [12, Theorem 1]. Let F : [−n, n] × [−Cr, Cr] × R → R be

defined by F(x, z, p) = A(z)p, where C is the embedding constant for W1,2(R) →֒ L∞(R), and

B(x, z, p) = z − (λa1(x)|z|q−1 + |z|p−1 + fk(|p|) +
1
k ) be defined in the same domain. Then,

problem (Pk
n) may be rewritten as

divx F(x, u(x), u′(x)) + B(x, u(x), u′(x)) = 0.

In order to use [12, Theorem 1] we must verify the existence of nonnegative constants

l, L, M0, m, κ with l ≤ L such that

∂F

∂p
(x, z, p)ξ2 ≥ l(κ + |p|)mξ2, (2.43)

∣∣∣∣
∂F

∂p
(x, z, p)

∣∣∣∣ ≤ L(κ + |p|)m, (2.44)

|F(x, z, p)− F(y, w, p)| ≤ L(1 + |p|)m+1 · |z − w|, (2.45)

|B(x, z, p)| ≤ L(1 + |p|)m+2, (2.46)

for all (x, z, p) ∈ {−n, n} × [−M0, M0] × R, w ∈ [−M0, M0] and ξ ∈ R. Since ∂F
∂p (x, z, p) =

A(z), inequality (2.43) follows from A(z)ξ2 ≥ γξ2, that is, l = γ.

To prove the remaining inequalities take M0 = Cr,

T > max{Cr + λa1(n)|Cr|q−1 + |Cr|p−1 + 1, 2C1, A(Cr), Ã},

L = 2T, κ = 0 and m = 0, where Ã is the Lipchitz constant of A. Then:
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(2.44) ∣∣∣∣
∂F

∂p
(x, z, p)

∣∣∣∣ = A(z) ≤ A(Cr) < L;

(2.45)

|F(x, z, p)− F(y, w, p)| = |A(z)p − A(w)p| ≤ Ã|p||z − w| ≤ L(1 + |p|)|z − w|;

(2.46)

|B(x, z, p)| =

∣∣∣∣z −
(

λa1(x)|z|q−1 + |z|p−1 + fk(|p|) +
1

k

)∣∣∣∣ (2.47)

≤ Cr + λa1(n)|Cr|q−1

+ |Cr|p−1 + 1/k + C1(1 + |p|θ−1)

≤ T + C1(1 + (1 + |p|)θ−1)

≤ T + 2C1(1 + |p|)2

≤ T(1 + (1 + |p|)2)

≤ 2T(1 + |p|)2 = L(1 + |p|)2.

Therefore, by [12, Theorem 1] there exists β ∈ (0, 1) and a constant Ĉ, independent of k, such

that v0 ∈ C1,β([−n, n]) and

|v0|1+β ≤ Ĉ. (2.48)

It follows from [6, p. 317, Chap. 6, Theorem 4] that v0 ∈ W2,2(−n, n) and since v0 is a weak

solution of (Pk
n) we have

v′′0 =
v0 − λa1|v0|q−1 − |v0|p−1 − fk(|v

′
0|)− 1/k − A′(v0)|v′0|

2

A(v0)
(2.49)

showing that v′′0 is continuous, thus v0 ∈ C2(−n, n).

To prove that v0(t) ≥ 0 for all t ∈ (−n, n) we first notice that v−0 (t) = max{0,−v0(t)} ∈

H1
0(−n, n). Using v−0 (t) as a test function in the definition of weak solution provides

−
∫ n

−n
A(v0)|v

−
0 |

2 −
∫ n

−n
|v−0 |

2 =
∫ n

−n
λa1|v0|

q−1v−0 +
∫ n

−n
|v0|

p−1v−0

+
∫ n

−n
fk(|v

′
0|)v

−
0 +

∫ n

−n

1

k
v−0 . (2.50)

Then −γ∥v−0 ∥
2
W1,2 ≥ 0, thus ∥v−0 ∥W1,2 = 0 implying v−0 ≡ 0 a.e. Since v0 is continuous,

v0(t) ≥ 0 for all t ∈ (−n, n). This finishes the proof of Proposition 2.21.

Thus, by Proposition 2.16 and Proposition 2.21 we obtain the proof of Theorem 2.8.

2.2 Constructing a solution to problem (Pn)

Let vk be the (strong) solution of problem (Pk
n), obtained just above, with k varying. By the

previous constructions, we have that ∥vk∥W1,2(−n,n) ≤ r independent of k, as noticed in Remark

2.18. Then there exists un ∈ H1
0(−n, n), ∥un∥W1,2(−n,n) ≤ r, so that vk has a subsequence
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converging weakly in H1
0(−n, n) to un. From now on vk will denote this subsequence. Since

the function

H1
0(−n, n) ∋ w 7→

∫ n

−n
A(un)u

′
nw′

belongs to (H1
0(−n, n))∗, we have, by the weak convergence, that

∫ n

−n
A(un)u

′
n(vk − un)

′ → 0 as k → ∞.

This convergence will be useful in our next task: to prove that vk → un strongly in H1
0(−n, n).

Lemma 2.22. The following convergence is true
∫ n

−n
A(un)v

′
k(vk − un)

′ → 0 as k → ∞.

Proof. We might write
∫ n

−n
A(un)v

′
k(vk − un)

′ =
∫ n

−n
[A(un)− A(vk) + A(vk)]v

′
k(v

′
k − u′

n)

=
∫ n

−n
[A(un)− A(vk)]v

′
k(v

′
k − u′

n)
︸ ︷︷ ︸

I1

+
∫ n

−n
A(vk)v

′
k(v

′
k − u′

n)
︸ ︷︷ ︸

I2

and analyze I1 and I2 separately.

Analysis of I2 By the weak formulation of (Pk
n)

∫ n

−n
A(vk)v

′
k(v

′
k − u′

n)

=
∫ n

−n
−vk(vk − un) + λa1|vk|

q−1(vk − un) + |vk|
p−1(vk − un) +

(vk − un)

k︸ ︷︷ ︸
E1

+
∫ n

−n
fk(|v

′
k|)(vk − un)

︸ ︷︷ ︸
E2

.

Since we have compact injection of H1
0(−n, n) onto L2(−n, n), the weak convergence of vk to

un in H1
0(−n, n) implies ∥vk − un∥L2 → 0. Thus, it is straightforward to see that (E1) converges

to 0 as k → ∞. Remains to verify what happens with (E2) in the limit. We have that
∫ n

−n
fk(|v

′
k|)(vk − un) ≤

∫ n

−n
C1(|v

′
k|

θ−1 + |v′k|)|vk − un|

by Lemma 2.4. Using Proposition 2.21, item 1, that is, the estimation |vk|1,β ≤ Ĉ which is

independent of k, we have that

|v′k|
θ−1 + |v′k| ≤ (Ĉ)θ−1 + Ĉ.

Then,
∫ n

−n
fk(|v

′
k|)(vk − un) ≤ C1[(Ĉ)

θ−1 + Ĉ]
∫ n

−n
|vk − un|

≤ (2n)1/2C1[(Ĉ)
θ−1 + Ĉ]∥vk − un∥L2︸ ︷︷ ︸

→0 as k→∞

.

Thus, limk→∞ I2(k) = 0.
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Analysis of I1 We also have that limk→∞ I1(k) = 0, as one can see through

∣∣∣∣
∫ n

−n
[A(un)− A(vk)]v

′
k(v

′
k − u′

n)

∣∣∣∣ ≤
∫ n

−n
|A(un)− A(vk)||v

′
k||v

′
k − u′

n|

≤ Ĉ
∫ n

−n
|A(un)− A(vk)||v

′
k − u′

n|

≤ ĈÃ
∫ n

−n
|un − vk||v

′
k − u′

n|

≤ ĈÃ∥un − vk∥L2∥v′k − u′
n∥L2

≤ ĈÃ2r∥un − vk∥L2 .

Thus,

∫ n

−n
A(un)u

′
n(vk − un)

′ → 0 as k → ∞ (2.51)

∫ n

−n
A(un)v

′
k(vk − un)

′ → 0 as k → ∞. (2.52)

Subtracting (2.52) from (2.51) we have

∫ n

−n
A(un)(v

′
k − u′

n)
2 → 0 as k → ∞ (2.53)

implying that v′k → u′
n in L2(−n, n), since γ is a uniform lower-bound for A. Hence vk → un

in H1
0(−n, n).

Remark 2.23. Since vk → un in H1
0(−n, n) we conclude that un is also an even function; due

to the embedding W1,2(−n, n) →֒ C[−n, n].

Proposition 2.24. The function un satisfies:

1. un is strictly positive in (−n, n);

2. un is a solution to (Pn).

Proof.

Item 1. Let ã := infx∈[−n,n] a1(x). We will divide our argument into two cases:

Remark 2.25. This division of cases is a geometric argument that we borrowed from [3].

Case 1. There exists a subsequence (vki
)i∈N of (vk) such that v′ki

≥ 0 in (−n, 0) for all i.

Consider the problem





−(A(u)u′)′ + u = λã|u|q−1 in (−n, n)

u > 0 in (−n, n)

u(−n) = u(n) = 0.

(2.54)

Since v′ki
≥ 0 in (−n, 0) we get that vki

> 0 in (−n, 0), because, due to Proposition 2.21, vki
is an

even solution of (Pk
n), thus it can not be identically zero in an interval and vki

≥ 0; i.e., supposing

the existence of xi ∈ (−n, 0) such that vki
(xi) = 0 implies the existence of yi ∈ (−n, 0) such
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that v′ki
(yi) < 0, which would be a contradiction. Thus, we see that vki

is a sup-solution for

equation (2.54). Let ϕ1 be an even and positive eigenfunction for the eigenvalue problem

{
−u′′ = λ1u in (−n, n)

u(−n) = u(n) = 0
(2.55)

where λ1 = π2

(2n)2 . Thus, choosing τ such that

τ2−q(1 + γλ1)

λã
≤ ϕ

q−2
1

we have that τϕ1 is as sub-solution of (2.54). By Theorem 2.11

vki
(t) ≥ τϕ1(t) ∀t ∈ (−n, n),

therefore, in the limit,

un(t) ≥ τϕ1(t) > 0 ∀t ∈ (−n, n).

Case 2. There exists a subsequence (vki
)i∈N of (vk) and there exists a sequence (zi)i∈N ⊂

(−n, 0) such that v′ki
(zi) < 0.

Remark 2.26. Although the geometric argument is an inspiration from [3], we still need to

adjust it to our necessity. Lemma 2.27 is one such adjustment.

Lemma 2.27. Let x ∈ (−n, n) such that v′′ki
(x) ≥ 0, then vki

(x) > (λã)
1

2−q .

Proof. Since vki
is a solution for the problem (Pk

n), with k = ki, for all t

− A′(vki
(t))|v′ki

(t)|2 − A(vki
(t))v′′ki

(t) + vki
(t)

= λa1(t)|vki
(t)|q−1 + |vki

(t)|p−1 + fki
(|v′ki

(t)|) +
1

ki

≥ λa1(t)|vki
(t)|q−1 + |vki

(t)|p−1 +
1

ki
.

Here we used that sign( fki
(s)) = sign(s), thus fki

(|v′ki
|) ≥ 0. Using that |vki

|p−1 ≥ 0 and

a1(t) ≥ ã > 0 we obtain:

−A′(vki
(t))|v′ki

(t)|2 − A(vki
(t))v′′ki

(t) + vki
(t) ≥ λã|vki

(t)|q−1 +
1

ki
. (2.56)

Then, with t = x,

−A(vki
(x))v′′ki

(x) ≥ λã|vki
(x)|q−1 − vki

(x) + A′(vki
(x))|v′ki

(x)|2 +
1

ki

> λã|vki
(x)|q−1 − vki

(x).

Where, in the last inequality, we used that A is non-decreasing, |v′ki
| ≥ 0 and 1/ki > 0.

Notice that the resulting estimation is strict because 1/ki > 0. By hypotheses v′′ki
(x) ≥ 0, then

−A(vki
(x))v′′ki

(x) ≤ 0. Using the previous inequality,

vki
(x) > λã|vki

(x)|q−1,

thus vki
(x) ̸= 0 and vki

(x) > (λã)
1

2−q .
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Now, in order to use this lemma, we ought to find a xi ∈ (−n, n) such that v′′ki
(xi) ≥ 0. Us-

ing the fact that vki
is even and v′ki

(zi) < 0 we have that v′ki
(−zi)> 0. Let xi = minx∈[zi ,−zi ] vki

(x)

and notice that xi ̸= zi and xi ̸= −zi; indeed, there exist δ > 0 such that, if x ∈ (zi, zi + δ) ∪

(−zi − δ,−zi), then vki
(x) < vki

(zi) = vki
(−zi). Hence xi ∈ (zi,−zi) and v′ki

(xi) = 0; therefore

v′′ki
(xi) must be greater or equal than 0, because if v′′ki

(xi) < 0 there would be ξ > 0 such that,

for x ∈ (xi, xi + ξ) ⊂ (zi,−zi), v′ki
(x) < 0; and for this neighborhood vki

(x) < vki
(xi) – a

contradiction with the minimality of xi. Thus, v′′ki
(xi) ≥ 0. By Lemma 2.27, we obtain for all i

vki
(xi) > (λã)

1
2−q .

From the compactness of [−n, n], there exist x0 ∈ [−n, n] such that xi → x0 when i → ∞;

taking a subsequence if necessary. Then

un(x0) = lim
i→∞

vki
(xi) ≥ (λã)

1
2−q > 0.

Finally, we will conclude item 1 showing that, also in this case, un is strictly positive in (−n, n).

Suppose by contradiction that there exists y ∈ (−n, n) such that un(y) = 0. Let (d, s) ⊂

(−n, n) be the biggest interval containing y satisfying the property: if x ∈ (d, s) then un(x) <

(λã)
1

2−q

2 . Since un(x0) = un(−x0) >
(λã)

1
2−q

2 we have that d ̸= −n or s ̸= n. Thus we can

suppose without loss of generality that d > −n, because on the contrary, we would apply our

following arguments using the interval (d′, s′), where d′ = −s and s′ = −d, and the point

y′ = −y.

By the maximality of (d, s) and the continuity of un we have that un(d) = (λã)
1

2−q

2 . Since

un(x) < (λã)
1

2−q

2 for all x ∈ (d, s) and vki
converges uniformly to un, there exists i1 ∈ N such

that, for i > i1 and x ∈ (d, s),

vki
(x) < (λã)

1
2−q .

Then, by Lemma 2.27 v′′ki
(x) < 0. Using that un(d) = (λã)

1
2−q

2 , there exist i2 ∈ N such that

i > i2 implies

vki
(d) >

(λã)
1

2−q

4
.

Let i0 > max{i1, i2} and define f : (d, s) → R by

f (x) =
(λã)

1
2−q

4
·

x − s

d − s
.

We have that f (d) = (λã)
1

2−q

4 and f (s) = 0. Let Ui(x) = vki
(x)− f (x) for i ≥ i0, then

{
U′′

i (x) < 0, for x ∈ (d, s)

Ui(d) > 0, Ui(s) = vki
(s) ≥ 0.

(2.57)

By the maximum principle, the minimum of Ui is reached on the border of the interval (d, s),

implying that Ui(x) > 0 for all x ∈ (d, s), that is, vki
(x) > f (x) for all x ∈ (d, s) and i ≥ i0.

Thus, taking x = y and making i → ∞, we obtain

un(y) ≥ f (y) > 0,

which is a contradiction.
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Item 2. Since the estimation from Proposition 2.21 item 1 holds, that is,

|vk|1+β ≤ Ĉ

for all k ∈ N; and, for all 1 < α < β, we have compact embedding C1,β[−n, n] →֒ C1,α[−n, n],

we may assume, taking a subsequence, if necessary, that there exist ũn ∈ C1,α[−n, n] such that

vk → ũn in C1,α[−n, n] as k → ∞. Thus,

vk → un in C0[−n, n] as k → ∞

vk → ũn in C1,α[−n, n] as k → ∞.

Then for all x ∈ [−n, n] we have

un(x) = lim
k→∞

vk(x) = ũn(x),

i.e., un = ũn ∈ C1,α[−n, n].

Considering the definition of weak solution, for all φ ∈ H1
0(−n, n)

∫ n

−n
A(vk)v

′
k φ′ +

∫ n

−n
vk φ =

∫ n

−n
(λa1|vk|

q−1 + |vk|
p−1)φ +

∫ n

−n
fk(|v

′
k|)φ +

∫ n

−n

φ

k
.

By (D.C.T), it is straightforward to see that the following convergences are true:
∫ n

−n
A(vk)v

′
k φ′ →

∫ n

−n
A(un)u

′
n φ′,

∫ n

−n
vk φ →

∫ n

−n
un φ,

∫ n

−n
(λa1|vk|

q−1 + |vk|
p−1)φ →

∫ n

−n
(λa1|un|

q−1 + |un|
p−1)φ,

∫ n

−n

φ

k
→ 0,

as k → ∞. Let us examine the remaining integral. First notice that fk(|v
′
k|) converges uni-

formly to g(|u′
n|); indeed, g is uniformly continuous in compacts, then for the compact [−Ĉ, Ĉ]

given ϵ > 0 there exists δ > 0 such that if |x − y| < δ, then

|g(x)− g(y)| <
ϵ

2
. (2.58)

Also there exists k0 ∈ N such that k > k0 implies

||v′k(x)| − |u′
n(x)|| < δ ∀x ∈ [−n, n]. (2.59)

thus for k > k0

|g(|v′k(x)|)− g(|u′
n(x)|)| <

ϵ

2
∀x ∈ [−n, n]. (2.60)

In the perspective of Theorem 2.2, fk converges to g uniformly in bounded sets; since ∥u′
n∥∞ ≤

Ĉ, for x ∈ [−Ĉ, Ĉ] there exist k1 ∈ N such that k > k1 implies

| fk(x)− g(x)| <
ϵ

2
∀x ∈ [−Ĉ, Ĉ] (2.61)

and with all these ingredients we obtain the uniform convergence, because for k > max{k0, k1}

| fk(|v
′
k(x)|)− g(|u′

n(x)|)| ≤ | fk(|v
′
k(x)|)− g(|v′k(x)|)|+ |g(|v′k(x)|)− g(|u′

n(x)|)|

< ϵ ∀x ∈ [−n, n].
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Thus, by (D.C.T) ∫ n

−n
fk(|v

′
k|)φ →

∫ n

−n
g(|u′

n|)φ

as k → ∞. All these convergences together show that un is a weak solution for the problem

(Pn).

From [6, Pag. 317, Chap. 6, Theorem 4] we conclude that un ∈ W2,2(−n, n); and similarly,

to the argument showed in equation (2.49) we obtain that u′′
n ∈ C0(−n, n). Thus, un is a strong

solution to the problem (Pn).

3 Asymptotic solution to problem (Pn)

In this section we will briefly study the solution’s behavior of problem (Pn) when λ → 0 or

λ → λ∗. Our main result is the following:

Theorem 3.1. Denoting by uλ the solution of (Pn):

1. as λ → 0, we get that ∥uλ∥W1,2 → 0;

2. one can take λ = λ∗ and still obtain a solution to problem (Pn).

Proof. Let vk be the strong solution of problem (Pk
n), with ψ ≡ 1. In the previous section, we

proved, among other things, that vk → uλ as k → ∞, (taking a subsequence, if necessary).

Using vk as test function in the Definition 2.12, we get:

∫ n

−n
A(vk)|v

′
k|

2 +
∫ n

−n
|vk|

2 =
∫ n

−n
λa1|vk|

q−1vk +
∫ n

−n
|vk|

p−1vk +
∫ n

−n
fk(|v

′
k|)vk +

∫ n

−n

vk

k
.

Thus, following the estimations done in Proposition 2.16, we can estimate these integrals to

obtain

γ∥vk∥
2
W1,2 ≤ λC2∥vk∥

q

W1,2 + Cp−2∥vk∥
p

W1,2 + C1 max{Cθ−2, C}∥vk∥
θ
W1,2

+

(
C1(2n)1/2

k
+

(2n)1/2

k

)
∥vk∥W1,2 .

Rearranging we obtain

∥vk∥
2
W1,2

(
γ − Cp−2∥vk∥

p−2

W1,2 − C1 max{Cθ−2, C}∥vk∥
θ−2
W1,2

)

≤ λC2∥vk∥
q

W1,2 +

(
C1(2n)1/2

k
+

(2n)1/2

k

)
∥vk∥W1,2 . (3.1)

Notice that ∥vk∥W1,2 ≤ r independent of k and

r < min

{( γ

4Cp−2

)1/(p−2)
,

(
γ

4C1 max{Cθ−2, C}

)1/(θ−2)
}

.

Thus,

∥vk∥
2
W1,2 ≤

2

γ

(
λC2rq +

(
C1(2n)1/2

k
+

(2n)1/2

k

)
r

)
. (3.2)
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Making k → ∞ we end up with

∥uλ∥
2
W1,2 ≤ λ ·

(
2C2rq

γ

)
. (3.3)

Then, as λ → 0 we see that ∥uλ∥
2
W1,2 → 0. This proves item 1.

To prove item 2, one can take a sequence (λn) in (0, λ∗) such that λn → λ∗. Noticing that

∥uλn
∥W1,2 ≤ r independent of λn, one can obtain a candidate uλ∗ ∈ H1

0(−n, n) such that uλn

converges weakly to uλ∗ in H1
0(−n, n). Then, following similar argumentation as exposed in

Section 2, one can prove that uλ∗ is an even, positive solution to (Pn) with λ = λ∗.

Remark 3.2. Let

r̃ = min

{
r, λ1/2

(
2C2rq

γ

)1/2
}

.

Then, by inequality (3.3) and the estimations from Proposition 2.16, we get that ∥uλ∥W1,2 ≤ r̃.

Notice that r̃ → 0 as λ → 0.

Remark 3.3. For now, on we will resume the previous notation, that is, we will call the strong

solution of problem (Pn) by un. This will be useful in the next section.

4 Solution in R

To obtain the homoclinic solution, we can proceed similarly as in [3]. However, we present a

slightly different approach.

To obtain a solution defined in R we will utilize a subsequence construction wrapping it

up with the arguments presented in Section 2. The reader should notice that the notation

“un” used for the solution of (Pn), previously obtained, in (−n, n) is not accidental: extending

un by zero out of [−n, n] we obtain a sequence (un) in H1(R). Throughout this section, we

will use un to denote the solution “un” and its extension. Also, one can see that ∥un∥H1(R) =

∥un∥W1,2(−n,n) ≤ r̃ for all n.

Let K1 = [−1, 1]; then for all n ≥ 1 we have that u1
n := un|K1

is well defined and

u1
n ∈ H1(−1, 1). By the limitation

∥∥u1
n

∥∥
W1,2(−1,1)

≤ r̃ there exists a subsequence un,1 and s1 ∈

H1(−1, 1) such that un,1 ⇀ s1 in H1(−1, 1). Notice that the compact injection H1(−1, 1) →֒

C0[−1, 1] implies that, passing to a subsequence, un,1 → s1 in C0[−1, 1].

Let K2 = [−2, 2]. Taking n in the set of indices of the subsequence un,1, for n ≥ 2 we have

that u2
n := un|K2

is well defined and
∥∥u2

n

∥∥
W1,2(−2,2)

≤ r̃. Thus, there exists a subsequence un,2

of u2
n and s2 ∈ H1(−2, 2) such that un,2 ⇀ s2 in H1(−2, 2).

Repeating the same argument, by induction we get that for all j ∈ N there exists a

subsequence un,j of un,j−1 and sj ∈ H1(−j, j) such that un,j ⇀ sj in H1(−j, j). Notice that

∥sj∥H1(−j,j) ≤ r̃ for all j ∈ N.

Remark 4.1. un,j is the subsequence of un that converges weakly in H1(−j, j) to sj. As men-

tioned, this weak convergence implies convergence in C0[−j, j] which gives us, in particular,

that sj is an even function, since un,j is even for all n ∈ N.

Lemma 4.2. sj|[1−j,j−1] = sj−1
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Proof. Given x ∈ [1 − j, j − 1] we have that

sj−1(x) = lim
n→∞

un,j(x) = sj(x),

because un,j is a subsequence of un,j−1.

Fix j ∈ N; from here and forward we will focus our attention on proving that, in fact, sj is

smooth and positive.

Define W : [−n, n]× [−Cr, Cr]× R −→ R by

W(x, z, p) = z − (λa1(x)|z|q−1 + |z|p−1 + g(|p|))

one can see that the estimation (2.47) also holds, with W taking part as B (remember that C is

the constant for the embedding W1,2(R) →֒ L∞(R)). Then, for any n ≥ j, by Theorem 1 from

[12] there exist Ĉ(j) > 0 and 0 < β ≤ 1 such that

|un|1+β ≤ Ĉ(j) in C1,β[−j, j].

Taking 0 < α < β ≤ 1 we get (see the argumentation on item 2 Proposition 2.24)

un,j → sj in C1,α[−j, j].

Let ãj := infx∈[−j,j] a1(x). We will use the arguments presented on Item 1 from Proposition

2.24 to prove that sj is strictly positive on the interval [−j, j].

Case 1. There exists a subsequence (uni ,j)i∈N of (un,j) such that u′
ni ,j

≥ 0 in (−j, 0) for all i.

The analysis of this case follows exactly the same parameters of Case 1 from Item 1, Propo-

sition 2.24. The main difference is the change of ã to ãj.

Case 2. For all subsequence of (un,j) there exists a sub-subsequence (uni ,j)i∈N and exists a

sequence (zi)i∈N ⊂ (−j, 0) such that u′
ni ,j

(zi) < 0.

For this case we can reformulate Lemma 2.27 as follows: If x ∈ (−j, j) and u′′
ni ,j

(x) ≥ 0,

then uni ,j(x) > (λãj)
1

2−q . This is true because we already know that uni ,j is strictly positive in

(−j, j), then the estimation

−A′(uni ,j(t))|u
′
ni ,j

(t)|2 − A(uni ,j(t))u
′′
ni ,j

(t) + uni ,j(t) > λãj|uni ,j(t)|
q−1 (4.1)

is immediately established. The remaining argumentation is similar.

Thus, we conclude that sj > 0, as in Proposition 2.24. At last, let φ ∈ C∞
0 (−j, j). Then

∫ j

−j
A(un,j)u

′
n,j φ

′ +
∫ j

−j
un,j φ =

∫ j

−j
(λa1|un,j|

q−1 + |un,j|
p−1)φ +

∫ j

−j
g(|u′

n,j|)φ.

When n → ∞ we get

∫ j

−j
A(sj)s

′
j φ

′ +
∫ j

−j
sj φ =

∫ j

−j
(λa1|sj|

q−1 + |v|p−1)φ +
∫ j

−j
g(|s′j|)φ.

Since φ ∈ C∞
0 (−j, j) is arbitrary, we conclude that sj is a weak solution for the problem

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|
q−1 + |u(t)|p−1 + g(|u′(t)|) (4.2)
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in (−j, j); by [6, sect. 6.3, Theorem 1] we have that sj ∈ H2
loc(−j, j), thus, using the same

arguments as in (2.49), sj ∈ C2(−j, j).

Now we will construct our candidate solution of problem (1.1). Define wn = un,n, that is, wn is

the diagonal sequence. Notice that, for n ≥ j, wn is a subsequence of un,j; thus wn|[−j,j] → sj

in C1,α[−j, j] for all j ∈ N. Let v(x) be defined by

v(x) = lim
n→∞

wn(x).

Then, v(x) = sj(x) for x ∈ [−j, j]. Since R =
⋃

j∈N[−j, j], by Lemma 4.2, v is well defined in

R. Using the properties of sj obtained just above, and the fact that v|[−j,j] = sj for all j ∈ N,

we conclude that v ∈ C2(R), ∥v∥H1(R) ≤ r̃ and v is a positive, even solution of problem (1.1).

From [4, p. 214, Corol. 8.9] we get the homoclinic condition.

4.1 Asymptotic solution

Throughout our previous argumentation, we fixed λ ∈ (0, λ∗]. Denote by vλ the strong

solution – obtained above – to the problem (1.1). We will analyze the behavior of vλ as λ → 0.

Proposition 4.3. As λ → 0, vλ → 0 in C0(R).

Proof. By [4, Theorem 8.8.], we obtain

∥vλ∥L∞(R) ≤ C∥vλ∥H1(R) ≤ Cr̃. (4.3)

But remember that

r̃ = min

{
r, λ1/2

(
2C2rq

γ

)1/2
}

.

Then, as λ → 0, we obtain that ∥vλ∥L∞(R) → 0, completing the proof of Theorem 1.1 .

4.2 Proof of Proposition 1.2

We proceed to prove Proposition 1.2 that says that there is no solution of (1.1) for λ large.

Proof. Suppose on the contrary that λ∗ = ∞. In this way there is a sequence λn → ∞ and

corresponding solutions vλn
> 0 in R given by Theorem 1.1.

Fix R > 0 and define P(t, s) = λa1(t)s
q−1 + sp−1 and ãR = inf(−R,R) a1(t). Define also

Λ = λ ãR.

We claim that there is a constant CΛ > 0 such that

P(t, s) ≥ Λsq−1 + sp−1 ≥ CΛs for s > 0, t ∈ (−R, R).

Consider the function Q(s) = (Λsq−1 + sp−1)s−1. Then Q(s) → ∞ as s → 0+ and as

s → ∞. The minimum value of Q is achieved at the unique point

m =

(
Λ

2 − q

p − 2

) 1
p−q

.

Thus CΛ = Q(m).
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Let σ1 > 0 and φ1 > 0, respectively, the first eigenvalue and the first eigenfunction satisfy-

ing {
−φ′′

1 = σ1φ1 in (−R, R)

φ1(−R) = φ1(R) = 0.

Since CΛ increases as λn increases, there is λ0 such that the corresponding constant satisfies

CΛ0
≥ A(Cr̃)σ1 + A(Cr̃)δ + 1, for all δ ∈ (0, 1). Hence, by (H2)–(H3) and (4.3), the solution

vλ0
> 0 in R of (1.1) associated to λ0 satisfies




−v′′λ0

≥
(CΛ0

−1)

A(vλ0
)

vλ0
≥

(CΛ0
−1)

A(Cr̃)
vλ0

≥ (σ1 + δ)vλ0
in (−R, R)

vλ0
(−R), vλ0

(R) ≥ 0.

Otherwise, taking ε > 0 small enough we obtain εφ1 < v0 in (−R, R) and

{
−(εφ1)

′′ = (εσ1)φ1 ≤ (σ1 + δ)φ1 in (−R, R)

φ1(−R) = φ1(R) = 0.

By the method of subsolution and supersolution, there is a solution εφ1 < ω < v0 in BR(0) of

{
−ω′′ = (σ1 + δ)ω in (−R, R)

ω(−R) = ω(R) = 0.

Hence there is a contradiction to the fact that σ1 is isolated. Therefore, λ∗
< ∞, indeed.
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Abstract. In this paper, we study the quasilinear Schrödinger equations

−∆u + V(x)u + ∆(u2)u = f (x, u), ∀x ∈ R
N ,

where V ∈ C(RN ; R) may change sign and f is only locally defined for |u| small. Under
some new assumptions on V and f , we show that the above equation has a sequence
of solutions converging to zero. Some recent results in the literature are generalized
and significantly improved and some examples are also given to illustrate our main
theoretical results.

Keywords: variational methods, critical points, quasilinear Schrödinger equations.
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1 Introduction

The aim of this paper is to establish the existence of multiple small solutions for the following

quasilinear Schrödinger equations

−∆u + V(x)u + ∆(u2)u = f (x, u), ∀x ∈ R
N , (QSE)

where V ∈ C(RN ; R) may change sign and f is only locally defined near the origin with

respect to u and satisfies some weak and general sublinear assumptions.

Quasilinear Schrödinger equations (QSE) are widely used in non-Newtonian fluids,

reaction-diffusion problems and other physical phenomena. More information on the physical

background of these equations can be found in [6].

In recent years, with the aid of variational methods, the existence, nonexistence and mul-

tiplicity results of various solutions for (QSE) have been extensively investigated in the litera-

ture see [1, 5, 8, 10, 13] and the references therein. Here we emphasize that in all these papers

V is a positive constant or possesses some kind of periodicity or radially symmetric, and the

BCorresponding author. Email: bridaasafa83@gmail.com
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nonlinear term f (x, u) is always required to satisfied various growth conditions at infinity

with respect to u.

Recently, Chong et al. in [8] studied the equation (QSE) and proved the existence of mul-

tiple small solutions under the following conditions:

(C1) There exist δ > 0 and C > 0 such that f ∈ C(RN × [−δ, δ], R
N), f is odd in x and

| f (x, u)| ≤ C|u|, uniformly in x ∈ R
N ;

(C2) There exist x0 ∈ R
N and r0 > 0 such that

lim inf
u→0

(
inf

x∈Br0
(x0)

F(x, u)

|u|2
)
> −∞

and

lim sup
u→0

(
inf

x∈Br0
(x0)

F(x, u)

|t|2
)
= +∞,

where

F(x, u) =
∫ u

0
f (x, s)ds.

(V) For all x ∈ R
N , 0 < V(x).

Motivated by the work of Chong et al. [8] and the [17, Lemma 2.3], in [5] the authors replaced

the Condition (C2) by a weak condition and proved the existence of multiple small solutions.

Precisely, they supposed the following assumption:

(C′
2) There exist x0 ∈ R

N, two sequences (δn), (Mn) and constants α, r0 > 0 such that

δn, Mn > 0 and

lim
n→∞

δn = 0, lim
n→∞

Mn = +∞,

F(x, u)

δn
2

≥ Mn for |x − x0| ≤ r0 and |u| = δn,

F(x, u) ≥ −αu2 for |x − x0| ≤ r0 and |u| ≤ δ.

In the present paper, different from the references mentioned above, we are going to study

the existence of infinitely many solutions for (QSE) without any growth condition assumed

on f (x, u) at infinity with respect to u and the potential V ∈ C(RN ; R) may change sign. In

fact, we will only require that f (x, u) is locally defined for u small and satisfies some general

and weak sufficient sublinear condition in u and V is neither of constant sign nor periodic.

More precisely, we make the following assumptions:

(V0) There exists a constant a0 > 0 such that

V(x) + a0 ≥ 1, ∀x ∈ R
N ,

∫

RN
(V(x) + a0)

−1dx < ∞,

and
{

x ∈ R
N/V(x) ≡ 0

}
⊃ B(0, 1), where B(0, 1) is the unit ball in R

N .
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(F1) F ∈ C1(RN × (−δ, δ)) is even, and there exists a constant a1 > 0 such that

| f (x, u)| ≤ a1, ∀(x, u) ∈ R
N × (−δ, δ),

where δ > 0.

For ρ > 0, x ∈ B(0, 1) satisfying B(x, ρ) ⊂ B(0, 1) and for u ∈ (0, δ), we define

F(x, u, ρ) := inf

{
F(y, u)

u2
ρ2 : y ∈ B(x, ρ)

}
, (1.1)

F(x, u, ρ) := inf

{
F(y, mu)

u2
ρ2 : y ∈ B(x, ρ), 0 ≤ m ≤ 1

}
. (1.2)

Substituting m = 0 into
F(y,mu)

u2 ρ2, we see that F(x, u, ρ) ≤ 0. We assume:

(F2) There exists a positive integer k0 satisfying the following condition:

For each k ≥ k0, there exist µk ∈ (− δ
2 , 0) ∪ (0, δ

2 ), xk,i ∈ B(0, 1), with 1 ≤ i ≤ 2k and

ρk > 0 such that B(xk,i, ρk) ⊂ B(0, 1), B(xk,i, ρk) ∩ B(xk,j, ρk) = ∅ for i ̸= j and

min
1≤i≤2k

F(xk,i, µk, ρk) + (2N+1 − 1) min
1≤i≤2k

F(xk,i, µk, ρk) > 2N+2. (1.3)

In (1.3), N is the dimension of the domain R
N .

Our main results reads as follows.

Theorem 1.1. Suppose that (V0) and (F1), (F2) are satisfied. Then, equation (QSE) possesses a

sequence of solutions {uk} such that uk(x) → 0 in L∞ as k → ∞.

Remark 1.2.

• We insist on the fact that in the hypotheses (F1)–(F2), the conditions on the nonlinearity

F(x, u) are supposed only near u = 0 and there are no conditions for large |u|. This is

essential and important. Indeed, this assumptions allows us to study equations having

singularity or supercritical terms as |u| → ∞.

• Under (F1)–(F2), F(x, u) can be subquadratic, superquadratic or asymptotically quadratic

at infinity. Our Theorem 1.1 is in some sense an improvement for some related results

in the existing literature.

• To the best of our knowledge, there is no result concerning the existence and multiplicity

of solutions for the equation (QSE) with the conditions.

Corollary 1.3. Suppose that (V0) and (F1) are satisfied and δ > 0 be as in (F1). We assume that

there exist sequences Mn → ∞ as n → ∞, un ∈ (− δ
2 , 0) ∪ (0, δ

2 ) and ρn > 0, vn ∈ B(0, 1) such that

B(vn, ρn) ⊂ B(0, 1) and a constant c ≥ 0, satisfy

F(x, un)ρ
2
n ≥ Mnu2

n, F(x, lun)ρ
2
n ≥ −cu2

n for x ∈ B(vn, ρn), 0 ≤ l ≤ 1. (1.4)

Then, equation (QSE) possesses a sequence of solutions {uk} such that uk(x) → 0 in L∞ as k → ∞.

Corollary 1.4. Suppose that (V0) and (F1) are satisfied and δ > 0 be as in (F1). We assume that there

exist sequences un ∈ (0, δ
2 ), ρn > 0 and vn ∈ B(0, 1) such that B(vn, ρn) ⊂ B(0, 1), and they satisfy

lim
n→∞

F(vn, un, ρn) = ∞, (1.5)

lim inf
n→∞

F(vn, un, ρn) > −∞. (1.6)

Then, equation (QSE) possesses a sequence of solutions {uk} such that uk(x) → 0 in L∞ as k → ∞.
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Corollary 1.5. Suppose that (V0), (F) and (F1) are satisfied. Then, equation (QSE) possesses a

sequence of solutions {uk} such that uk(x) → 0 in L∞ as k → ∞.

Corollary 1.6. Suppose that (V0), (F1) and

inf
x∈B(x0,r0)

u−2F(x, u) → ∞ as u → 0, (1.7)

are satisfied. Then, equation (QSE) possesses a sequence of solutions {uk} such that uk(x) → 0 in L∞

as k → ∞.

2 Preliminary results and variational setting

We employ an argument inspired by the work of Costa, Wang [11], the quasilinear problem

was can be established:

−div(h2(u)∇u) + h(u)h′(u)|∇u|2 + V(x)u = f (x, u), x ∈ R
N , (2.1)

where h : [0,+∞) → R satisfying

h(t) =





√
1 − 2t2 if 0 ≤ t < 1√

6
,

1
6t +

1√
6

if t ≥ 1√
6
,

and h(t) = h(−t) for t < 0. It deduces that h ∈ C1(R, (
(

1√
6

)
, 1)) and is increasing in (−∞, 0)

and decreasing in [0,+∞). Then, we define

H(t) :=
∫ t

0
h(s)ds.

It is well known that H(t) is an odd function and inverse function H−1(t) exists. We now

summarize some properties of H−1(t) as follow.

Lemma 2.1 ([1]). We have:

1. |t| ≤ |H−1(t)| ≤
√

6|t| for all t ∈ R;

2. |H(t)| ≤ |t| for all t ∈ R;

3. − 1
2 ≤ t

h(t)
h′(t) ≤ 0 for all t ≥ 0.

As in [11], in the present paper we are concerned to provide that the problem (2.1) has a

sequence of weak solution {un} satisfying ∥un∥L∞ < min{δ/2, 1√
6
}, in this situation

h(un) =
(

1 − 2|un|2
)1/2

.

In order to prove our main result via the critical point theory, we need to establish the

variational setting for (QSE). Before this, we have the following remark:
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Remark 2.2. Let V0(x) = V(x) + a0, F0(x, H−1(v)) = F(x, H−1(v)) + a0
2 (H−1(v))2 and

F0(x, u) :=
∫ u

0 f0(x, s)ds. Consider the following equation

−∆v + V0(x)
H−1(v)

h(H−1(v))
=

f0(x, H−1(v))

h(H−1(v))
, ∀x ∈ R

N . (2.2)

Then, equation (2.2) is equivalent to equation (QSE). It is easy to check that the hypotheses

(V0) and (F1), (F2) still hold for V0 and F0 provided that those hold for V and F. Hence, in

what follows, we always assume without loss of generality that V(x) ≥ 1 for all x ∈ R
N and∫

RN (V(x))−1dx < ∞.

In view of Remark 2.2, we consider the space E := {u ∈ H1(RN) |
∫

RN V(x)u2dx < ∞}
equipped with the following inner product

(u, v) :=
∫

RN
(∇u · ∇v + V(x)uv)dx.

Then E is a Hilbert space and we denote by ∥ · ∥ the associated norm. In what follows, E

becomes our working space. Moreover, we write E∗ for the topological dual of E, and ⟨·, ·⟩:
E∗ × E → R for the dual pairing. Evidently, E is continuously embedded into H1(RN). Using

the Sobolev embedding theorem, we immediately get the following lemma.

Lemma 2.3. If V satisfies (V0), then E is continuously embedded in L1.

Proof. By (V0) and Hölder inequality, we have for all u ∈ E
∫

RN
|u| dx =

∫

RN

∣∣∣(V(x))
−1
2 (V(x))

1
2 u
∣∣∣ dx

≤
∫

RN
(V(x))

−1
2

∣∣∣(V(x))
1
2 u
∣∣∣ dx

≤
(∫

RN
(V(x))−1 dx

) 1
2
(∫

RN
V(x)u2dx

) 1
2

≤
(∫

RN
(V(x))−1 dx

) 1
2

∥u∥ .

(2.3)

Lemma 2.4. If V satisfies (V0) then E is compactly embedded into L1.

Proof. Let (un) ⊂ E be a bounded sequence such that un ⇀ u in E. We will show that un → u

in L1. By Hölder’s inequality, we have
∫

RN
|un − u| dx

=
∫

|x|≤R
|un − u| dx +

∫

|x|>R
|un − u| dx

≤ ωRN

(∫

|x|≤R
|un − u|2 dx

) 1
2

+
∫

|x|>R

∣∣∣(V(x))
−1
2 (V(x))

1
2 (un − u)

∣∣∣ dx

≤ ωRN

(∫

|x|≤R
|un − u|2 dx

) 1
2

+
∫

|x|>R
(V(x))−

1
2

∣∣∣(V(x))
1
2 (un − u)

∣∣∣ dx

≤ ωRN

(∫

|x|≤R
|un − u|2 dx

) 1
2

+

(∫

|x|>R
(V(x))−1 dx

) 1
2
(∫

|x|>R
V(x)(un − u)2dx

) 1
2

≤ ωRN

(∫

|x|≤R
|un − u|2 dx

) 1
2

+

(∫

|x|>R
(V(x))−1 dx

) 1
2

∥un − u∥ ,

(2.4)
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where R > 0, ω the volume of the unit ball in R
N . Then by (V0) and the Sobolev embedding

Theorem, for any ε > 0 there exits R0 > 0 such that for R > R0, we have

∫

RN
|un − u| dx ≤ ε.

Lemma 2.5 ([2]). E is continuously embedded into Lp(RN) for all p ∈ [2, 6], and hence there exists

τp > 0 such that

∥v∥Lp(RN) ≤ τp∥u∥, ∀u ∈ E and p ∈ [2, 6]. (2.5)

3 Proofs of main results

In order to define the corresponding variational functional on our working space E, we need

modify f (x, u) for u outside a neighborhood of the origin to get a globally defined f̃ (x, u) as

follows: Choose a constant b ∈ (0, δ
2 ) and define a cut-off function χ ∈ C(R, R) satisfying

χ(t) :=





1 if − b ≤ t ≤ b

0 if t ≥ 2b
and, − 2

b
≤ χ′(t) < 0 for b < |t| < 2b. (3.1)

Let f̃ (x, u) := χ(u) f (t, u), for all (x, u) ∈ R
N × R, and F̃(x, u) :=

∫ u
0 f̃ (x, s)ds, for all (x, u) ∈

R
N × R. By (3.1) and assumption (F1) we have, for all (x, u) ∈ R

N × R,

∣∣∣F̃(x, u)
∣∣∣ ≤ a1 |u| and

∣∣∣ f̃ (x, u)
∣∣∣ ≤ a2, (3.2)

where a1 is the constant given in assumption (F1) and a2 is a positive constant.

Remark 3.1. As we have mentioned above, it is easy to verify that the equation (3.2) becomes

∣∣∣F̃(x, H−1(v))
∣∣∣ ≤ a1

∣∣∣H−1(v)
∣∣∣ and

∣∣∣ f̃ (x, H−1(v))
∣∣∣ ≤ a2

∣∣∣h(H−1(v))
∣∣∣ . (3.3)

Now, we consider the following modified equation

−∆v + V(x)
H−1(v)

h(H−1(v))
=

f̃ (x, H−1(v))

h(H−1(v))
, ∀x ∈ R

N . (Q̃SE)

To find the weak solutions of (Q̃SE) with desired properties, we focus on a Lagrangian func-

tional defined by

Φ(v) :=
1

2

∫

RN

(
|∇v|2 + V(x)|H−1(v)|2

)
dx − Ψ(H−1(v)), (3.4)

with the change of variable v = H(u) and Ψ(v) =
∫

RN F̃(x, H−1(v))dx.

Lemma 3.2. Suppose that conditions (V0) and (F1) are satisfied. If v ∈ E is a critical point of Φ, then

u = H−1(v) ∈ E and this u is a weak solution for (Q̃SE).

Proof. Since v ∈ E and by Lemma 2.1, we can conclude that u = H−1(v) ∈ E. Furthermore, v

is a critical point for Φ, it follows that

∫

RN
∇v∇φdx +

∫

RN
V(x)

H−1(v)

h(H−1(v))
φdx =

∫

RN

f̃ (x, H−1(v))

h(H−1(v))
φdx, for all φ ∈ E.
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If we take the function φ = h(u)ψ, where u = H−1(v) and ψ ∈ C∞
0 (RN), then we can obtain

∫

RN
∇v∇uh′(u)ψdx +

∫

RN
∇v∇ψh(u)dx +

∫

RN
V(x)uψdx −

∫

RN
f̃ (x, u)ψdx = 0.

Then, we get

∫

RN

(
− div(h2(u)∇u) + h(u)h′(u)|∇u|2 + V(x)u − f̃ (x, u)

)
ψdx = 0.

According to [8], we know that in order to find solutions of (Q̃SE) it suffices to obtain

the critical points of Φ. For this purpose we recall the following definitions and results (see

[14, 15]).

Definition 3.3 ([15]). Let E be a real Banach space and ϕ ∈ C1(E, R).

• ϕ is said to satisfy (PS) condition if any sequence (uk) ⊂ E for which (ϕ(uk)) is bounded

and ϕ′(uk) → 0 as k → +∞, possesses a convergent subsequence in E. Here ϕ′(u)
denotes the Fréchet derivative of ϕ(u).

• Set Γ := {A ⊂ E\ {0} : A is closed and symmetric with respect to the origin} . For A ∈
Γ, we say genus of A is n (denoted by σ(A) = n), if there is an odd mapping φ ∈
C(A, R

n\{0}), and n is the smallest integer with this property.

Theorem 3.4 ([14, Theorem 1]). Let ϕ be an even C1 functional on E with ϕ(0) = 0. Suppose that

ϕ satisfies the (PS) condition and

(1) ϕ is bounded from below.

(2) For each k ∈ N, there exists an Ak ∈ Γ such that supu∈Ak
ϕ(u) < 0, where Γk = {A ∈ Γ :

σ(A) ≥ k}.

Then either (i) or (ii) below holds.

(i) There exists a critical point sequence (uk) such that ϕ(uk) < 0 and limk→∞ uk = 0.

(ii) There exist two critical point sequences (uk) and (vk) such that ϕ(uk) = 0, uk ̸= 0, limk→∞ uk =

0, ϕ(vk) < 0, limk→∞ ϕ(vk) = 0, and (vk) converges to a non-zero limit.

Lemma 3.5. Let (V0) and (F1) be satisfied. Then Ψ ∈ C1(E, R), and hence Φ ∈ C1(E, R). Moreover,

⟨Ψ′(v), φ⟩ =
∫

RN

f̃ (x, H−1(v))

h(H−1(v))
φ dx, (3.5)

and

⟨Φ′(v), φ⟩ =
∫

RN

(
∇v∇φ + V(x)

H−1(v)

h(H−1(v))
φ
)

dx − ⟨Ψ′(v), φ⟩,

=
∫

RN

(
∇v∇φ + V(x)

H−1(v)

h(H−1(v))
φ
)

dx −
∫

RN

f̃ (x, H−1(v))

h(H−1(v))
φ dx,

(3.6)

for all v, φ ∈ E, and nontrivial critical points of Φ on E are solutions of equation (Q̃SE).



8 S. Bridaa, A. B. Hassine and T. Talbi

Proof. First, we show that Φ and Ψ are both well defined. For any v ∈ E, by (2.3) and (3.2), we

have
∫

RN
|F̃(x, H−1(v))|dx ≤ a1

∫

RN
|H−1(v)| dx

≤ a1

∫

RN
|v| dx

≤ a1

(∫

RN
(V(x))−1dx

) 1
2

∥v∥.

This implies that Φ and Ψ are both well defined.

Next, we prove Ψ ∈ C1(E, R). For any given v ∈ E, define an associated linear operator

J(v) : E → R by

⟨J(v), φ⟩ =
∫

RN

f̃ (x, H−1(v))

h(H−1(v))
φ dx, ∀φ ∈ E.

By (2.3) and (3.2), there holds

|⟨J(v), φ⟩| =
∫

RN

∣∣∣∣∣
f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣ |φ| dx

≤ a2

∫

RN
|φ| dx

≤ a2

(∫

RN
(V(x))−1 dx

) 1
2

∥φ∥.

This implies that J(v) is well defined and bounded. Observing (2.3) and (3.2), for any v, φ ∈ E,

by the Mean Value Theorem and Lebesgue’s Dominated Convergence Theorem, we have

lim
s→0

Ψ(H−1(v) + sφ)− Ψ(H−1(v))

s
= lim

s→0

∫

RN

f̃ (x, H−1(v) + θ(x)sφ)

h(H−1(v) + θ(x)sφ)
φ dx

=
∫

RN

f̃ (x, H−1(v))

h(H−1(v))
φ dx

= ⟨J(v), φ⟩,

(3.7)

where θ(x) ∈ [0, 1] depends on v, φ, s. This implies that Ψ is Gâteaux differentiable on E and

the Gâteaux derivative of Ψ at v ∈ E is J(v). Now for any ϵ > 0, by (V0), there exists Rϵ > 0

such that (∫

|x|>Rϵ

(V(x))−1dx

) 1
2

<
ϵ

4a2
. (3.8)

For this end, we claim that if H−1(vn) ⇀ H−1(v) in E, then for any R > 0,
f̃ (x,H−1(vn))
h(H−1(vn))

→
f̃ (x,H−1(v))
h(H−1(v))

in L2(BR), where BR denotes the ball in R
N centered at 0 with radius R. Arguing

indirectly, by Lemma 2.5, we assume that there exist constants Rϵ, ϵ > 0 and a subsequence

{H−1(vnk
)}k∈N such that

H−1(vnk
) → H−1(v) in L2(BRϵ) and H−1(vnk

) → H−1(v) a.e. in BRϵ as k → ∞, (3.9)

but using (F1), we have

∫

|x|≤Rϵ

∣∣∣∣∣
f̃ (x, H−1(vnk

))

h(H−1(vnk
))

− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣

2

dx ≥ ϵ, ∀k ∈ N. (3.10)
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By (3.9), passing to a subsequence if necessary, we can assume that

∞

∑
k=1

∥H−1(vnk
)− H−1(v)∥L2(BRϵ )

< +∞.

By virtue of (3.3), we get

∫

|x|≤Rϵ

∣∣∣∣∣
f̃ (x, H−1(vnk

))

h(H−1(vnk
))

− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣

2

dx < +∞. (3.11)

For the Rϵ given above, combining (3.9), (3.11) and Lebesgue’s Dominated Convergence The-

orem, we have

lim
k→∞

∫

|x|≤Rϵ

∣∣∣∣∣
f̃ (x, H−1(vnk

))

h(H−1(vnk
))

− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣

2

dx = 0,

which contradicts (3.10). Thus the claim is true. Consequently, there exists Nϵ ∈ N such that

∫

|x|≤Rϵ

∣∣∣∣∣
f̃ (x, H−1(vnk

))

h(H−1(vnk
))

− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣

2

dx <
ϵ

2
, ∀n ≥ Nϵ. (3.12)

Combining (3.3), (3.8), (3.12) and the Hölder inequality, for each n ≥ Nϵ, we have

∥J(vn)− J(v)∥E∗ = sup
∥H−1(v)∥=1

|⟨J(vn)− J(v), φ⟩|

≤ sup
∥H−1(v)∥=1

∣∣∣∣∣

∫

RN

[
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

]
φdx

∣∣∣∣∣

≤ sup
∥H−1(v)∥=1

∣∣∣∣∣

∫

|x|≤Rϵ

[
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

]
φdx

∣∣∣∣∣

+ sup
∥H−1(v)∥=1

∣∣∣∣∣

∫

|x|>Rϵ

[
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

]
φdx

∣∣∣∣∣

≤ sup
∥H−1(v)∥=1



∫

|x|≤Rϵ

∣∣∣∣∣
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))
dx

∣∣∣∣∣

2



1
2(∫

|x|≤Rϵ

|φ|2 dx

) 1
2

+ 2a2 sup
∥H−1(v)∥=1

(∫

|x|>Rϵ

(V(x))−1dx

) 1
2
(∫

|x|>Rϵ

V(x)φ2dx

) 1
2

≤ ϵ

2
+

2a2ϵ

4a2
= ϵ.

This, means that J is continuous in u. Thus, Ψ ∈ C1(E, R) and (3.5) holds. Due to the form of

ϕ, we know that Φ ∈ C1(E, R) and (3.6) also holds.

Finally, a standard argument shows that nontrivial critical points of Φ on E are solutions

of (Q̃SE) (see, e.g., [8]). The proof is completed.

Lemma 3.6. Let (V0) and (F1) be satisfied. Then Φ is bounded from below and satisfies (PS) condition.
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Proof. We first prove that Φ is bounded from below. Combining (F1), (2.3), (3.2) and the

Hölder inequality, we have

Φ(v) ≥ 1

2
∥v∥2 − a1

∫

RN
|H−1(v)|dx

≥ 1

2
∥v∥2 − a1

(∫

RN
(V(x))−1dx

) 1
2

∥v∥, ∀v ∈ E,

(3.13)

where a2 is the constant given in (3.2). Then it follows that Φ is bounded from below.

Next, we show that Φ satisfies (PS)-condition.

Let {vn} ⊂ E be a (PS)-sequence, i.e.,

|Φ(vn)| ≤ D2 and Φ′(vn) → 0 as n → ∞ (3.14)

for some D2 > 0. By (3.13) and (3.14), we have

D2 ≥ 1

2
∥vn∥2 − a2

( ∫

RN
(V(x))−1dx

) 1
2

∥vn∥, ∀n ∈ N.

This implies that {vn} is bounded in E. Thus, there exists a subsequence {H−1(v)nk
} such

that

H−1(vnk
) ⇀ H−1(v0) as k → ∞ (3.15)

for some v0 ∈ E. By Lemma 2.4, it holds that

H−1(vnk
) → H−1(v0) in L1 as k → ∞. (3.16)

This together with (3.3) yields

∣∣∣∣∣

∫

RN

[
f̃ (x, H−1(vnk

))

h(H−1(vnk
))

− f̃ (x, H−1(v0))

h(H−1(v0))

]
(H−1(vnk

)− H−1(v0))dx

∣∣∣∣∣

≤ 2a2

∫

RN
|H−1(vnk

)− H−1(v0)|dx → 0 as k → ∞. (3.17)

Noting that {ξn} is bounded in E, we infer from (3.14) and (3.15) that

⟨Φ′(ξnk
)− Φ′(ξ0), H−1(ξnk

)− H−1(ξ0)⟩ → 0 as k → ∞. (3.18)

Combining (3.6), (3.17) and (3.18), we have

∥H−1(ξnk
)− H−1(ξ0)∥2

= ⟨Φ′(ξnk
)− Φ′(ξ0), H−1(ξnk

)− H−1(ξ0)⟩

+
∫

RN

(
f̃ (x, ξnk

)

h(H−1(ξnk
))

− f̃ (x, ξ0)

h(H−1(ξ0))

)
(H−1(ξnk

)− H−1(ξ0))dx → 0 as k → ∞.

(3.19)

This means that H−1(ξnk
) → H−1(ξ0) in E as k → ∞. Thus Φ satisfies (PS)-condition.

We introduce a closed symmetric set Vk as below:

Vk ≡ {(l1, l2, . . . , l2k) ∈ R
2k; |li| ≤ 1 for all i, card{i : |li| = 1} ≥ k}. (3.20)
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Lemma 3.7 ([15, Lemma 4.5]). Vk has the genus of k + 1.

Lemma 3.8. Let (V0), (F1) and (F2) be satisfied. Then for each k ∈ N, there exists an Ak ⊆ E with

genus σ(Ak) = k + 1 such that supu∈Ak
Φ(v) < 0.

Proof. Let µk, xk,i and ρk with k ≥ k0 be given in assumption (F2). Since Γk ⊂ Γk−1 by definition,

it is enough to construct an Ak ∈ Γk for k ≥ k0 such that supu∈Ak
Φ(u) < 0. Fix k ≥ k0. Instead

of µk, xk,i and ρk we write µ, xi and ρ for simplicity. Using F and F given by (1.1) and (1.2)

respectively, we define

Fi := F(xi, µ, ρ), Fi := F(xi, µ, ρ), 1 ≤ i ≤ 2k.

It follows from (1.1) and (1.2) and for x ∈ B(xi, ρ), that

F(x, µ) ≥ 1

ρ2
Fi(H−1(µ))2 ≥ 1

ρ2
Fiµ

2, (3.21)

F(x, l(µ)) ≥ 1

ρ2
Fi(H−1(µ))2 ≥ 1

ρ2
Fiµ

2, |l| ≤ 1. (3.22)

We define a function φ(t) on R by φ(t) = 1 for |t| ≤ 1/2, φ(t) = 2(1 − |t|) for 1/2 ≤ |t| ≤ 1,

φ(t) = 0 for |t| ≥ 1. Put φi(x) = φ(|x − xi|/ρ) for x ∈ R
N . Then φi ∈ W1,∞(RN). Define

Bi := B(xi, ρ) and Di := B(xi, ρ/2). Then 0 ≤ φi(x) ≤ 1 in R
N , φi(x) = 0 for x ∈ R

N\Bi and

φi(x) = 1 for x ∈ Di, |∇φi(x)| ≤ 2

ρ
for x ∈ R

N . (3.23)

Let Vk be given by (3.20). We define

Ak :=

{
µ

2k

∑
i=1

li φi(x) : (l1, . . . , l2k) ∈ Vk

}
.

Since all the supports of φi (1 ≤ i ≤ 2k) are disjoint, they are linearly independent. De-

fine g(l1, . . . ., l2k) := µ ∑
2k
i=1 li φi(x). Then g is a mapping from Vk onto Ak and it is an odd

homeomorphism. By Lemma 3.7, the genus of Vk is k + 1 and so is Ak. Thus Ak ∈ Γk.

We shall show that supAk
Φ(v) < 0. Fix (l1, . . . , l2k) ∈ Vk arbitrary. Let v := µ ∑

2k
i=1 li φi(x) ∈

Ak and µ ∈ (0, 1
2
√

6
δ) be arbitrary. Since the support of φi is Bi and Bi ∩ Bj = ∅ for i ̸= j, we

have

Φ(v) =
1

2

∫

RN
(|∇v|2 + V0(x)(H−1(v))2)dx −

∫

RN
F̃0(x, H−1(v))dx

=
1

2

∫

RN
(|∇v|2 + V(x)(H−1(v))2)dx −

∫

RN
F̃(x, H−1(v))dx

=
2k

∑
i=1

∫

Bi

1

2
µ2|li|2|∇φi|2dx −

2k

∑
i=1

∫

Bi

F(x, H−1(µli φi))dx.

By the assumption (V0) and (3.23), we have

Φ(v) ≤ 4kωµ2ρN−2 −
2k

∑
i=1

∫

Bi

F(x, H−1(µli φi))dx. (3.24)
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To estimate the second term, we define

Λ1 := {i ∈ {1, . . . , 2k} : |li| = 1},

Λ2 := {i ∈ {1, . . . , 2k} : |li| < 1}.

By the definition of Vk, the cardinal number of Λ1 greater than or equal to k. We compute

the integral of F on Bi for i ∈ Λ1, and for i ∈ Λ2, separately. Recall that F(x, v) is even with

respect to v and φi(x) = 1 on Di. Clearly, the volume of Di is 2−NωρN . By (3.21) and (3.22),

we obtain, for i ∈ Λ1,
∫

Bi

F(x, H−1(µli φi))dx =
∫

Di

F(x, H−1(µ))dx +
∫

Bi\Di

F(x, H−1(µli φi))dx

≥ 2−Nωµ2ρN−2Fi + (1 − 2−N)ωµ2ρN−2Fi.

(3.25)

We define

α := min
1≤i≤2k

Fi, β := min
1≤i≤2k

Fi.

As stated after (1.2), it holds that Fi ≤ 0, and hence β ≤ 0. We rewrite (1.3) as

α + (2N+1 − 1)β > 2N+2. (3.26)

We reduce (3.25) to

∫

Bi

F(x, µli φi)dx ≥
[

2−Nα + (1 − 2−N)β

]
ωµ2ρN−2.

The right hand side is positive because of (3.26) with β ≤ 0. Recall that the cardinal number of

Λ1 is greather than ou equal to k. Summing up both sides of the inequality above over i ∈ Λ1,

we obtain

∑
i∈Λ1

∫

Bi

F(x, µli φi)dx ≥
[

2−Nα + (1 − 2−N)β

]
kωµ2ρN−2. (3.27)

Next, by (3.22), for i ∈ Λ2, we have

∫

Bi

F(x, µli φi)dx ≥ ωµ2ρN−2Fi ≥ βωµ2ρN−2. (3.28)

Recall that the cardinal number of Λ2 is less than or equal to k. Summing up both sides

over i ∈ Λ2 and using β ≤ 0, we find

∑
i∈Λ2

∫

Bi

F(x, µli φi)dx ≥ kβωµ2ρN−2. (3.29)

The set Λ2 may be empty. In this case, we consider the left hand side to be zero. Then the

inequality above is still valid because β ≤ 0. Substituting (3.27) and (3.29) into (3.24) and using

(3.26), we obtain

Φ(v) ≤ −
[

α(2N+1 − 1) + β − 2N+2

]
kωµ2ρN−2

< 0,

which implies that supv∈Ak
Φ(v) < 0.

In order to prove our main results, we further need the following lemma.

Lemma 3.9. If {vk} is a critical point sequence of Φ satisfying vk → 0 in E as k → ∞, then vk → 0

in L∞(RN) as k → ∞.
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Proof. Let v ∈ E be a weak solution of (Q̃SE), i.e.,

∫

RN
∇v∇φdx +

∫

RN
V(x)

H−1(v)

h(H−1(v))
φdx (3.30)

−
∫

RN

f̃ (x, H−1(v))

h(H−1(v))
φdx for all φ ∈ C∞

0 (RN).

Set T > 0, and denote

vT :=





−T, if v ≤ T,

v, if − T < v < T,

T, if v ≥ T.

(3.31)

Taking φ = |vT|2(η−1)vT as the text function, where η > 1 to be determined later, we obtain
∫

RN
|vT|2(η−1)∇v∇vTdx + 2(η − 1)

∫

RN
|vT|2(η−1)−1∇v∇vTdx

+
∫

RN
V(x)

H−1(v)

h(H−1(v))
|vT|2(η−1)vTdx

=
∫

RN

f̃ (x, H−1(v))

h(H−1(v))
|vT|2(η−1)vTdx.

(3.32)

By using the facts

(η − 1)
∫

RN
|vT|2(η−1)−1∇v∇vTdx ≥ 0,

∫

RN
V(x)

H−1(v)

h(H−1(v))
|vT|2(η−1)vTdx ≥ 0

and Lemma 2.1, we have

1

η2

∫

RN
|∇|vT|η |2dx ≤

∫

RN

f̃ (x, H−1(v))

h(H−1(v))
|vT|2η−1dx ≤ a2

∫

RN
|v|2η−1dx. (3.33)

On the other hand, it follows from the Sobolev inequality that

S

η2
∥vT∥2η

2∗η ≤ 1

η2

∫

RN
|∇|vT|η |2dx, (3.34)

where S = inf{
∫

RN |∇v|2dx \
∫

RN |v|2∗dx = 1} and 2∗ = 2N/(N − 2). In what follows, by

(3.33) and (3.34), we get
1

η2
∥vT∥2η

2∗η ≤ a2

∫

RN
|v|2η−1dx. (3.35)

From Fatou’s lemma, sending T → ∞ in (3.35), it follows that

∥v∥2∗η ≤ (cη)1/η∥v∥(2η−1)/2η
2η−1 . (3.36)

Let us define ηk := 2∗ηk−1
2 , where k = 1, 2, . . . . and η0 = 2∗−1

2 . Next, we present the first step

of Moser’s iteration, which is shown below:

∥v∥η12∗ ≤ (Cη1)
1/η1∥v∥(2η1−1)/2η1

2η1−1 (3.37)

≤ (Cη1)
1/η1(Cη0)

1/η0(2η1−1)/2η1∥v∥(2η0−1)/2η0(2η1−1)/2η1

2η0−1 . (3.38)
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We can assume, without loss of generality, that C > 1. Moreover, for any i < j, we we have

the inequality given by equation

(Cηi)
(2ηj−1)/2ηj ≤ Cηj. (3.39)

Using equations (3.37) and (3.39), we obtain the inequality

∥v∥η12∗ ≤ (Cη1)
1/η1(Cη0)

1/η0∥v∥(2η0−1)/pη0(2η1−1)/2η1

2η1−1 .

Applying Moser’s iteration method, we can now derive the following result.

∥v∥2ηk+1−1 ≤ exp

( k

∑
i=0

ln(Cηi)

ηi

)
∥v∥µk

2∗ ,

where µk = Πk
i=0

2ηi−1
2ηi

. Taking the limit as k → ∞, we obtain the following result.

∥v∥∞ ≤ exp

( k

∑
i=0

ln(Cηi)

ηi

)
∥v∥µ

2∗ ,

where µ = Πk
i=0

2ηi−1
2ηi

(0 < µ < 1) and exp
(

∑
k
i=0

ln(Cηi)
ηi

)
is a positive constant. This, together

with the Sobolev embedding theorem, we can conclude that if vk is a sequence of critical

points of Φ such that vk → 0 strongly in E as k → ∞, then vk converges strongly to zero in

L∞(RN).

Now we are in the position to give the proofs of our main results.

4 Proofs of Theorem 1.1 and Corollaries 1.3–1.6

The aim of this section is to establish the proofs of Theorem 1.1 and Corollaries 1.3–1.6.

4.1 Proof of Theorem 1.1

Lemmas 3.6, 3.7 and 3.8 shows that the functional Φ satisfies conditions (1) and (2) in The-

orem 3.4. Therefore, there exist a sequence of nontrivial critical points (uk) of Φ such that

Φ(uk) ≤ 0 for all k ∈ N and uk → 0 in E as k → ∞. By virtue of Lemma 3.5, {uk} is a

sequence of solutions of (Q̃SE) with uk → 0 in E as k → ∞. Hence, there exists k0 ∈ N such

that uk is a solution of (QSE) for each k ≥ k0.

4.2 Proof of Corollary 1.3 and 1.4

It is enough to show that (1.5) and (1.6) ⇒ (1.4) ⇒ (1.3). Impose (1.5) and (1.6). Then we

shall construct µk, xk,i and ρk satisfying (1.3). Fix k arbitrarily. Let Cn be the inscribed cube

in B(vn, ρn). Then its edge has the length of 2ρn/
√

N. Let q be the smallest positive integer

satisfying qN ≥ 2k. We divide the cube Cn equally into qN small cubes by planes parallel to

each face of Cn and denote them by Cn,i with 1 ≤ i ≤ qN . More precisely, denote Cn by

Cn := [0, a]× · · · × [0, a] with a := 2ρn/
√

N.

Put Ij := [a(j − 1)/q, aj/q] with 1 ≤ j ≤ q and define

I(j1, . . . , jN) := Ij1 × · · · × IjN
with 1 ≤ j1, . . . , jN ≤ q.
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This, is a cube in R
N and Cn is the union of all these cubes. We rename all I(j1, . . . , jN) to Cn,i

with 1 ≤ i ≤ qN . Then the edge of each Cn,i has the length of 2ρn/q
√

N. Denote the inscribed

ball in Cn,i by B(xn,i, rn). Then rn = ρ/q
√

N. Since qN ≥ 2k, xn,i is defined for all 1 ≤ i ≤ 2k.

We shall show that assumption (F2) is fulfilled with µk, xk,i and ρk replaced by un, xn,i

and rn, respectively, if n is large enough. It is clear that B(xn,i, rn) ⊂ B(0, 1) and B(xn,i, rn) ∩
B(xn,j, rn) = ∅ when i ̸= j. Define Mn := F(vn, un, ρn), which implies that

F(x, un)

u2
n

ρ2
n ≥ Mn for x ∈ B(vn, ρn).

By (1.6), there exists a c ≥ 0 such that

F(x, lun)

u2
n

ρ2
n ≥ −c for x ∈ B(vn, ρn), 0 ≤ l ≤ 1.

Then we obtain (1.4). On the other hand, substituting ρn = q
√

N rn in the two inequalities

above, we have
NF(x, un)

u2
n

q2r2
n ≥ Mn,

NF(x, lun)

u2
n

q2r2
n ≥ −c,

for x ∈ B(vn, ρn) and 0 ≤ l ≤ 1. Since B(xn,i, rn) ⊂ B(vn, ρn), the inequalities above are valid

for x ∈ B(xn,i, rn) also. Taking the infimum on B(xn,i, rn), we have

F(xn,i, un, rn) ≥
Mn

Nq2
, F(xn,i, un, rn) ≥ − c

Nq2
.

Then we get

min
1≤i≤2k

F(xn,i, un, rn) + (2N+1 − 1) min
1≤i≤2k

F(xn,i, un, rn) ≥
1

Nq2

(
Mn − (2N+1 − 1)c

)
.

Since limn→∞ Mn = ∞ by (1.5), the right hand side is larger than 2N+2 for n large enough.

4.3 Proof of Corollary 1.5

To prove this corollary, it is enough to show that the assumption (F) implies (1.5) and (1.6).

By (F) there exists a sequence un converging to zero such that

inf
x∈B(x0,r0)

u−2
n F(x, un) → ∞ as n → ∞.

Put B(xn, rn) := B(x0, r0) for all n. Then the above inequality shows (1.5). Also, by (F), there

exists a constant c ≥ 0 such that

inf
x∈B(x0,r0)

u−2F(x, u) ≥ −c for 0 < |u| ≤ 1.

Putting u := lun, we find

inf
x∈B(x0,r0)

(lun)
−2F(x, lun) ≥ −c for all large n and 0 < l ≤ 1,

which leads to

inf
x∈B(x0,r0)

u−2
n F(x, lun) ≥ −cl2 ≥ −c.

Therefore (1.6) holds.
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4.4 Proof of Corollary 1.6

We observe that (1.7) implies (F). Therefore, Corollary 1.5 yields Corollary 1.6.

5 Example

For the reader’s convenience, we present one example to illustrate our main results.

Let

V(x) =





0 if |x| ≤ p,

(p2 + 1)2(|x| − p), if p ≤ |x| < p + 1
p2+1

,

p2 + 1, if p + 1
p2+1

≤ |x| < p + p2

p2+1
,

(p2 + 1)2(p + 1 − |x|), if p + p2

p2+1
≤ |x| < p + 1,

and

F(x, u) =
a

s
|u|s − d(x)

r
|u|r, (5.1)

where p ∈ N
∗, and s, r, a are constants satisfying 1 < r < 2, 1 < s < 2

3 (r + 1), a > 0 and

d(x) := inf{|x − y| : y ∈ ∂B(0, 1)}.

Then V is neither of constant sign nor periodic. Moreover, we have

inf
x∈B(x0,r0)

F(x, u)

u2
=

a

s
|u|−(2−s) − D

r
|u|−(2−r) → −∞ as u → 0,

for any B(x0, r0) ⊂ B(0, 1), where D := max|x−x0|≤r0
d(x) > 0. Which implies that the assump-

tion (C2) and (C′
2) are not satisfied. Now, we show that V and F match Theorem 1.1. Indeed,

it is clear that V(x) and F(x, u) satisfy (V0) and (F1) respectively. It remains to check that

F(x, u) satisfies (F2). For this purpose we assume that there exists a δ > 0 such that for each

k ∈ N, there exist points ξi ∈ ∂B(0, 1) with 1 ≤ i ≤ 2k which satisfy |ξi − ξ j| ≥ 4δ/k for

i ̸= j, and δ is independent of k. Indeed, for example, choose a smooth curve on ∂B(0, 1)

such that g : [0, 1] → ∂B(0, 1) is a C1-diffeomorphism from [0, 1] onto g([0, 1]). Since g−1 is

Lipschitz continuous, there exists a c0 > 0 such that |g(t)− g(s)| ≥ c0|t − s| for t, s ∈ [0, 1].

Put ξi := g(i/2k) with 1 ≤ i ≤ 2k. Then we have for i ̸= j,

|ξi − ξ j| = |g(i/2k)− g(j/2k)| ≥ c0|(i − j)/2k| ≥ c0/2k.

Define δ := c0/8. Then |ξi − ξ j| ≥ 4δ/k for i ̸= j and δ is independent of k.

Put ρk := δ/k. For each 1 ≤ i ≤ 2k, there exists a unique point xi ∈ B(0, 1) such that

B(xi, ρk) ⊂ B(0, 1) and ∂B(xi, ρk) ∩ ∂B(0, 1) = {ξi}, after replacing δ by a small constant if

necessary. Since |ξi − ξ j| ≥ 4δ/k for i ̸= j, B(xi, ρk) ∩ B(xj, ρk) = ∅ for i ̸= j. Since d(x) ≤ 2ρk

in B(xi, ρk), we have

F(x, u) ≥ a

s
|u|s − 2

r
|u|rρk for x ∈ B(xi, ρk). (5.2)

Define θ as follows
2

2 − s
< θ <

s

2(s − r)
+ 1 when s > r, (5.3)
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2

2 − s
< θ when s ≤ r. (5.4)

It follows from (5.3) and (5.4) and 1 < s < 2(r + 1)/3 that

−(2 − s)θ + 2 < 0, −(2 − s)θ + 2 < −(2 − r)θ + 3. (5.5)

We define µk := ρθ
k . Let us compute F defined by (1.1). Using (5.2), we have

F(xi, µk, ρk) ≥
a

s
ρ
−(2−s)θ+2
k − 2

r
ρ
−(2−r)θ+3
k → ∞, (5.6)

as k → ∞ by (5.5). Using (5.2) and µk := ρθ
k , we compute

F(x, mµk)

µ2
k

ρ2
k ≥

ams

s
ρ
−(2−s)θ+2
k − 2mr

r
ρ−(2−r)θ+3, (5.7)

for x ∈ B(xi, ρk) and 0 ≤ m ≤ 1. We put

αk := aρ
−(2−s)θ+2
k , βk := 2ρ

−(2−r)θ+3
k

and denote the right hand side of (5.7) by

gk(m) :=
αk

s
ms − βk

r
mr for m ∈ [0, 1].

We shall show that gk(m) is bounded from below by a constant independent of k and m ∈ [0, 1].

By (5.6), gk(1) > 0 for k ≥ k0 with a large k0. We divide the proof into two cases.

• s > r. Then gk(m) achieves a negative minimum in [0, 1], which is computed as

min
0≤m≤1

gk(m) = − s − r

sr
α
− r

s−r

k β
s

s−r

k = − s − r

sr
2

s
s−r a−

r
s−r ρν

k ,

where

ν =
1

s − r

(
− 2(s − r)θ + 3s − 2r

)
.

Then ν > 0 because of (5.3). Thus, the minimum of gk converges to zero as k → ∞.

• s ≤ r. Since ms ≥ mr, we have gk(m) ≥
(
(αk/s) − (βk/r)

)
ms ≥ 0 for k ≥ k0 and

m ∈ [0, 1].

By Cases 1 and 2, we have the inequality gk(m) ≥ −c with some c ≥ 0 independent of k and

m ∈ [0, 1], which shows that F(xi, µk, ρk) ≥ −c for all 1 ≤ i ≤ 2k and k ∈ N. This estimate

with (5.6) shows (1.3) for all large k.
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Abstract. In this paper, we investigate the existence of ground state solution to a class
of Schrödinger equation involving logarithmic nonlinearity. To overcome the lack of
smoothness, the corresponding functional J is first decomposed into the sum of a C1

functional and a convex lower semicontinuous functional by adapting to the approach
of Squassina–Szulkin in [Calc. Var. Partial Differential Equations 54(2015), 585–597]. Sec-
ondly, the existence of a ground state solution to the studied equation is proved by
using the Mountain Pass Theorem under the weakened Ambrosetti–Rabinowitz condi-
tions.
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1 Introduction

In this paper, we consider the following Schrödinger equation involving logarithmic nonlin-

earity
{

−∆u + V(x)u = Q(x)u log u2 + f (x, u), in RN ,

u ∈ H1(RN),
(1.1)

where N ≥ 1, the external potential V(x), the term Q(x) and f (x, u) are continuous functions

and satisfy certain properties given later.

The Schrödinger equation was first proposed by the Austrian physicist E. Schrödinger.

As a more complex nonlinear Schrödinger equation, it is derived from the following classical

model

i∂tΨ + ∆Ψ − (V(x) + w)Ψ + f (|Ψ|) = 0. (1.2)

The solution Ψ is called the standing wave solution of (1.2). Standing wave phenomenon

refers to the phenomenon that electromagnetic waves can stay in a fixed position in some

media without propagating and forming a resident electromagnetic field. Its application is

widely reflected in our daily lives, such as magnetic resonance imaging to scan and image the

BCorresponding author. E-mail:zhaoylch@sina.com.
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internal structure of the human body. Applied to optical filters that allow specific wavelengths

of light to pass through for spectral analysis and filtering. It is used in the field of acoustic

standing wave cancellers to reduce noise and quantum mechanics theory. The interference

function f in (1.2) is a nonlinear term, it can also be used to describe a variety of nonlinear

waves in quantum physics, such as laser beam propagation in the medium with refractive

index and wave amplitude, ionic sound wave in plasma, etc, see [4, 23] and the references

therein. At present, many scholars have studied the existence and multiplicity of solutions to

Schrödinger equation, see [2, 5, 6, 8–11, 14, 18, 19, 21, 22, 25, 26, 28–31] and the references therein

for an overview on the related topic.

The logarithmic Schrödinger equation

i∂tΨ + ∆Ψ + Ψ log |Ψ|2 = 0, Ψ : [0,+∞)× R
N → C, N ≥ 3, (1.3)

possesses wide applications to quantum mechanics, nuclear physics, open quantum systems,

effective quantum gravity, transport and diffusion phenomena, theory of superfluidity and

Bose–Einstein condensation, see [32] and the references therein. We refer to [7, 12] for a study

of the existence and uniqueness of the solutions of the associated Cauchy problem in some

suitable condition as well as the global existence and blow-up of the solutions. On the other

hand, many researchers are interested in the existence, multiplicity and qualitative properties

of the standing waves solution of problem (1.3). Consider the following Schrödinger equation

with logarithmic nonlinear terms

−∆u + V(x)u = Q(x)u log u2, x ∈ R
N . (1.4)

When V(x) = Q(x) = 1, Avenia–Montefusco–Squassina [13] proved that there are infinitely

many solutions to equation (1.4) by introducing weak slope and using non-smooth critical

point theory. Ji–Szulkin [16] proved the existence of infinitely many solutions to equation

(1.4) by Fountain theorem in the case which Q(x) = 1 and potential function V(x) satisfies

the mandatory condition, that is lim|x|→+∞ V(x) = +∞. In addition, Shuai [20] used the con-

straint minimization method to obtain the existence of positive solutions and node solutions

of equation (1.4) under different assumptions of potential function V(x). When V(x) and

Q(x) are 1-period, Squassina–Szulkin [22] investigated the existence of infinitely many dif-

ferent solutions to problem (1.4) by applying non-smooth critical point theory and Z2 index

theory, and the existence of ground state solutions of problem (1.4) was proved .

Through the analysis of the above mentioned results, as far as we know, there is few

corresponding result if V(x) ̸= 1, Q(x) ̸= 1 and V(x), Q(x) are not 1-period in equation (1.4).

Therefore, a natural question is whether the equation (1.4) plus the disturbance term f (x, u)

can also obtain the ground state solution through the Mountain Pass Theorem with the

weakened Ambrosetti–Rabinowitz conditions? There are two key difficulties in the proof

process, one is that the energy functional is not well defined and not C1 smooth, the other is

to prove the existence of the ground state solution when the Ambrosetti–Rabinowitz condition

(for short AR-condition) is not satisfied.

For convenience, in this paper, it is assumed that the potential function V and the distur-

bance term f satisfy the following conditions:

(V1) The potential function V(x) ∈ C(RN , [0,+∞)), and there exists a constant a0 > 0 such

that |{x ∈ RN : V(x) ≤ a0}| < +∞;

(V2) intV−1(0) ̸= ∅, Q(x) ∈ C ′(RN , [0,+∞)), min(V(x) + Q(x)) ≥ 1.
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(f1) The function f (x, t) ∈ C(RN × R, R), and for any ε > 0 there exist constants C(ε) > 0

and p ∈ (2, 2∗) such that | f (x, t)| ≤ ε|t|+ C(ε)|t|p−1, where 2∗ := 2N/(N − 2) if N ≥ 3,

2∗ := ∞ if N = 1 or 2;

(f2) lim|t|→+∞

F(x,t)
t2 = +∞, where F(x, t) =

∫ t
0 f (x, τ)dτ;

(f3) There exist constants α > 2 and θ with 0 < θ <
S(α−2)

4 (S be given in (2.9) below), such

that

lim
|t|→∞

inf
f (x, t)t − αF(x, t)

|t|2
> −θ, uniformly for a.e. x ∈ R

N .

Our main result states as follows.

Theorem 1.1. Assume that (V1)–(V2) and (f1)–(f3) hold. Then problem (1.1) admits a ground state

solution.

Remark 1.2. By (f3), there exist constants M > 0, α > 2 such that u f (x, u) ≥ αF(x, u) for |u| ≥

M, (x, u) ∈ RN × R. Thus,

u f (x, u)− aF (x, u) ≥ 0 ≥ −θ|u|2.

Obviously, we can show that the AR-condition implies (f3), while the inverse implication fails.

Remark 1.3. There exists extensively the disturbance term f (x, u) which satisfies conditions (f1)–(f3)

of Theorem 1.1. Such as, taking N = 3, 2∗ = 6, then p ∈ (2, 6), if p = 4 for all x ∈ R3 and

f (x, t) =
S

3
| sin x|

(

|t|t +
1

2
t sin 2t

)

,

where S be given by formula (2.9) below, then

F(x, t) =
S

3
| sin x|

(

1

3
|t|3 −

1

4
t cos 2t +

1

8
sin 2t

)

.

Set α = 3, θ = S
5 , then

f (x, t)t − αF(x, t) =
S

3
| sin x|

(

|t|3 +
1

2
t2 sin 2t −

α

3
|t|3 +

α

4
t cos 2t −

α

8
sin 2t

)

≥
S

3
| sin x|

(

(1 −
α

3
)|t|3 −

1

2
|t|2 −

α

4
t −

α

8

)

= −
S

3
| sin x|

(

1

2
|t|2 +

3

4
t +

3

8

)

≥ −
S

3

(

1

2
|t|2 +

3

4
t +

3

8

)

,

which implies

lim
|t|→∞

inf
f (x, t)t − 3F(x, t)

|t|2
= lim

|t|→∞

− S
3

(

1
2 |t|

2 + 3
4 t + 3

8

)

|t|2
= −

S

6
> −θ.

Obviously f (x, t) satisfies all the conditions of Theorem 1.1.
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This paper is organized as follows. In Section 2, we present some preliminary results that

will be used later. Section 3 is devoted to proving the existence of ground state solutions to

problem (1.1).

Notation. From now on, otherwise mentioned, we use the following notations:

• C, C1, C2, C3, etc. will denote positive constants, whose exact values are not relevant.

• ∥ · ∥k denotes the usual norm of the Lebesgue space Lk(RN), for k ∈ [1,+∞].

• on(1) denotes a real sequence with on(1) → 0 as n → +∞.

2 Preliminaries

To prove Theorem 1.1, we need to present some notation and auxiliary lemmas, which will

be crucial in dealing with ground state solutions of problem (1.1).

Towards problem (1.1), we define the space E as follows:

E :=

{

u ∈ H1(RN) :
∫

RN
(V(x) + Q(x))u2dx < +∞

}

,

endowed with the following norm:

∥u∥E :=
(

∫

RN
|∇u|2 + (V(x) + Q(x))u2dx

)
1
2

, u ∈ E,

and the space E is a Hilbert space. Problem (1.1) has a variational structure and is properly

associated with the energy functional J : E → R ∪ {+∞} defined by

J(u) =
1

2
∥u∥2

E −
∫

RN
F(x, u)dx −

1

2

∫

RN
Q(x)u2 log u2dx, u ∈ E. (2.1)

One premise, the critical point of the energy functional J is the weak solution of the cor-

responding equation, is that the energy functional J can be well defined and smooth. But, in

general, the logarithmic term may cause that the energy functional J fails to be finite and C1

smooth in H1(RN). Concretely, from [17], we have the following simple modification of the

standard logarithmic Sobolev inequality:

∫

RN
u2 log u2dx ≤

a2

π
∥∇u∥2

2 + (log ∥u∥2
2 − N(1 + log a))∥u∥2

2, (2.2)

for any u ∈ H1(RN) and a > 0. It follows from (2.2) that J(u) > −∞ for all u ∈ H1(RN), but

there exists u∗ ∈ H1(RN) with
∫

RN u2
∗ log u2

∗dx = −∞.

Recently, many scholars have tried to find some different techniques and methods to over-

come the above given difficulty. For instance, in [7], Cazenave’s main idea was to find a

suitable Banach space endowed with a Luxemburg type norm. On account of the definition

of Luxemburg type norm and some special properties, the functional J(u) is finally well de-

fined and C1 smooth. Another way to overcome it comes from [15], the authors penalize the

nonlinearity term around the origin and obtain a priori estimates to get a nontrivial solution

at the limit.
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In what follows, by a solution to problem (1.1) we shall usually indicate a function u ∈

H1(RN) such that u2 log u2 ∈ L1(RN) and
∫

RN
(∇u · ∇v + V(x)uv)dx =

∫

RN
Q(x)uv log u2dx +

∫

RN
f (x, u)vdx, for any v ∈ C∞

0 (RN).

In this paper, we take the approach from [22], although J(u) is not smooth, we split the

functional J(u) into the sum of a C1 functional and a convex lower semicontinuous functional.

In order to split J(u), we define the following two functions for δ > 0:

F1(s) =















0, s = 0,

− 1
2 s2 log s2, 0 < |s| ≤ δ,

− 1
2 s2(log δ2 + 3) + 2δ|s| − 1

2 δ2, |s| > δ,

and

F2(s) =

{

0, |s| ≤ δ,

− 1
2 s2 log(s2/δ2) + 2δ|s| − 3

2 s2 − 1
2 δ2, |s| > δ.

Then F2(s)− F1(s) = 1
2 s2 log s2 for all s ∈ R. Thus, the functional J : E → (−∞,+∞] can be

rewritten as

J(u) = Φ̃(u) + Ψ(u), u ∈ E

where

Φ̃(u) =
1

2
∥u∥2

E −
∫

RN
Q(x)F2(u)dx −

∫

RN
F(x, u)dx (2.3)

and

Ψ(u) =
∫

RN
Q(x)F1(u)dx. (2.4)

In the sequel, we list some properties about F1(s), F2(s) that shall be useful for our proofs later,

which were proved in [16, 22].

Proposition 2.1. If δ > 0 is sufficiently small, then the following results are true:

(i) F1(s), F2(s) ∈ C1(R, R).

(ii) The function F1(s) is convex, even, and

F1(s) ≥ 0, F′
1(s)s ≥ 0, ∀s ∈ R. (2.5)

(iii) For each fixed q ∈ (2, 2∗), there is a constant C > 0 such that

|F′
2(s)| ≤ C|s|q−1, ∀s ∈ R. (2.6)

Hereafter, δ > 0 is fixed and sufficiently small such that the above properties of F1, F2 hold.

Corollary 2.1. Assume that (V1)–(V2) and (f1) hold, then Φ̃ ∈ C1(E, R).

Proof. Let Φ(u) = 1
2∥u∥2

E −
∫

RN Q(x)F2(u)dx, according to Lemma 3.10 in [27] and (2.5), it is

easy to show that Φ ∈ C1(E, R). Since

Φ̃(u) = Φ(u)−
∫

RN
F(x, u)dx,

we just need to prove
∫

RN F(x, u)dx ∈ C1(E, R). By condition (f1), there holds

|F(x, t)| ≤
1

2
ε|t|2 +

1

p
C(ε)|t|p, (2.7)

which implies
∫

RN F(x, u)dx ∈ C1(E, R). Thus Φ̃ ∈ C1(E, R).
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Corollary 2.2. The functional Ψ admits the following properties:

(i) The functional Ψ(u) is convex, Ψ ≥ 0 for all u ∈ E, and Ψ(u) = +∞ for certain u ∈ E.

Furthermore, Ψ (and hence J ) is lower semicontinuous.

(ii) If Ω ⊂ RN is a bounded domain, then the functional Ψ (and therefore J ) is of class C1 in H1(Ω).

Proof. (i) By the definition of the function F1(s), we get Ψ ≥ 0. Since Q(x) > 0 and F1(s) is

convex, then for all λ ∈ [0, 1] and u1, u2 ∈ E, there holds

Ψ(λu1 + (1 − λ)u2) =
∫

RN
Q(x)F1(λu1 + (1 − λ)u2)dx

≤ λ
∫

RN
Q(x)F1(u1)dx + (1 − λ)

∫

RN
Q(x)F1(u2)dx

= λΨ(u1) + (1 − λ)Ψ(u2).

This implies that Ψ is convex, and Ψ(u) = +∞ for certain u ∈ E. Moreover, there exists s0 ∈ E,

for all sequence {sn} with sn → s0 as n → +∞. It follows naturally from the Fatou’s lemma

that

lim
n→+∞

inf Ψ(sn) = lim
n→+∞

inf

(

∫

RN
Q(x)F1(sn)dx

)

≥
∫

RN
lim

n→+∞
inf Q(x)F1(sn)dx = Ψ(s0).

Thus Ψ is lower semicontinuous, and the functional J is also lower semicontinuous.

(ii) By the definition of the function F1(s), we have |F′
1(s)| ≤ C(1 + |s|p−1) for p ∈ (2, 2∗).

Then it follows from Lemma 2.16 of [27] that the conclusion is true in H1
0(Ω) but the argument

remains valid in H1(Ω).

According to some arguments in [24] and by Corollary 2.1 and Corollary 2.2, we also give

the following definition:

Definition 2.3. Let E be a Banach space, E′ be the dual space of E, and ⟨·, ·⟩ be the duality pairing

between E′ and E. Let J : E → R be a functional of the form J(u) = Φ̃(u) + Ψ(u), where Φ̃ ∈

C1(E, R) and Ψ(u) is convex and lower semicontinuous. Let us list some definitions:

(1) The sub-differential ∂J(u) of the functional J at a point u ∈ E is the following set

{w ∈ E′ : ⟨Φ̃′(u), v − u⟩+ Ψ(v)− Ψ(u) ≥ ⟨w, v − u⟩, ∀v ∈ E}.

(2) A critical point of J is a point u ∈ E such that J(u) < +∞ and 0 ∈ ∂J(u), i.e.

⟨Φ̃′(u), v − u⟩+ Ψ(v)− Ψ(u) ≥ 0, ∀v ∈ E.

(3) A Palais–Smale sequence at level c for J is a sequence {un} ⊂ E such that J(un) → c and there

is a numerical sequence τn → 0+ with

⟨Φ̃′(un), v − un⟩+ Ψ(v)− Ψ(un) ≥ −τn∥v − un∥E, ∀v ∈ E.

(4) The functional J satisfies the Palais–Smale condition at level c ((PS)c condition, for short) if all

Palais–Smale sequences at level c have a convergent subsequence.

(5) The effective domain of J is the set D(J) = {u ∈ E : J(u) < +∞}.
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In the sequel, for each u ∈ D(J), we set the following functional J′(u) : H1
c (R

N) → R

given by

⟨J′(u), z⟩ = ⟨Φ̃′(u), z⟩+
∫

RN
Q(x)F′

1(u)zdx for any z ∈ H1
c (R

N),

where H1
c (R

N) := {u ∈ H1(RN) : u has compact support}, and define

∥J′(u)∥ = sup{⟨J′(u), z⟩ : z ∈ H1
c (R

N) and ∥z∥E ≤ 1}.

Hence, J′(u) can be extended to a bounded operator in E when ∥J′(u)∥ is finite, and it may

be seen as an element of E′.

In order to prove Theorem 1.1, we will use the following Lemma 2.4, whose proof can be

found in Lemma 2.4 of [22] .

Lemma 2.4. If u ∈ D(J), then ∂J(u) ̸= ∅, i.e. there exists w ∈ E′ such that

⟨Φ′(u), v − u⟩+ Ψ(v)− Ψ(u) ≥ ⟨w, v − u⟩, for all v ∈ E.

Moreover, this w is unique and satisfies

⟨Φ′(u), z⟩+
∫

RN
Q(x)F′

1(u)zdx = ⟨w, z⟩, for all z ∈ E such that F′
1(u)z ∈ L1(RN).

As an immediate consequence, we know that the unique element w ∈ E′ introduced in

Lemma 2.4 will be denoted by J′(u). Moreover, there holds

⟨J′(u), u⟩ =
∫

RN
(|∇u|2 + V(x)|u|2)dx −

∫

RN
Q(x)u2 log u2dx −

∫

RN
f (x, u)udx, (2.8)

for each u ∈ D(J) with ∥J′(u)∥ < +∞. Thus solution of problem (1.1) is equivalent to a

nontrivial critical point of the functional J.

Theorem 2.5 ([27, Theorem 1.8], Sobolev imbedding theorem). The following imbeddings are

continuous:

H1(RN) →֒ Lp(RN), 2 ≤ p < ∞, N = 1, 2,

H1(RN) →֒ Lp(RN), 2 ≤ p ≤ 2∗, N ≥ 3,

D1,2(RN) →֒ L2∗(RN), N ≥ 3.

According to the norm in the space E and L2(RN) respectively, we have ∥u∥2
2 ≤ ∥u∥2

E. In

particular, the best constant for the Sobolev embedding E →֒ L2(RN) is given by

S := inf
u∈E\{0}

∥u∥2
E

∥u∥2
2

. (2.9)

3 Proof of Theorem 1.1

In what follows, we will show that the functional J satisfies the Mountain pass geometry. The

following two conclusions can be found in Theorem 3.1 and Corollary 3.1 of [1], which are

crucial in our approach.

Theorem 3.1 (Mountain Pass Theorem without (PS) condition). Let X be a real Banach space and

J : X → R be a functional such that:
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(i) J(u) = Φ̃(u) + Ψ(u), u ∈ X with Φ̃(u) ∈ C1(X, R), and Ψ : X → R is convex, Ψ ̸≡ +∞ and

is lower semicontinuous (l.s.c);

(ii) J(0) = 0 and J|∂Bρ
≥ α0, for real constants ρ, α0 > 0;

(iii) J(e) ≤ 0, for some e /∈ Bρ(0).

If

c := inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)) ≥ α0 > 0, Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, J(γ(1)) < 0}.

Then, for a given ϵ > 0, there is uϵ ∈ X such that

⟨Φ̃′(uϵ), v − uϵ⟩+ Ψ(v)− Ψ(uϵ) ≥ −3ϵ∥v − uϵ∥, ∀v ∈ X, (3.1)

and J(uϵ) ∈ [c − ϵ, c + ϵ].

Corollary 3.2. Under the conditions of Theorem 3.1, there is a (PS)c sequence {un} of the functional

J(u), that is, J(un) → c and

⟨Φ̃′(un), v − un⟩+ Ψ(v)− Ψ(un) ≥ −τn∥v − un∥, ∀v ∈ X,

with τn → 0+.

Lemma 3.3. Assume that (V1)–(V2) and (f1)–(f2) hold. Then the functional J(u), defined with Φ̃(u)

and Ψ(u) in (2.3) and (2.4), has the Mountain pass geometry.

Proof. Now we will show that the functional J satisfies (i), (ii) and (iii) of the Theorem 3.1.

(i) For each u ∈ D(J), the functional J(u) defined with Φ̃(u) and Ψ(u) in (2.3)–(2.4), respec-

tively. According to Corollary 2.1–2.2, then Φ̃(u) ∈ C1, Ψ(u) is a convex lower semicontinuous

function and Ψ ̸≡ +∞.

(ii) Obviously, J(0) = 0. It follows from (2.5)–(2.7), and embedding theorem that there

holds

J(u) =
1

2
∥u∥2

E −
∫

RN
F(x, u)dx −

∫

RN
Q(x)F2(u)dx +

∫

RN
Q(x)F1(u)dx

≥
1

2
∥u∥2

E −
∫

RN
F(x, u)dx −

∫

RN
Q(x)F2(u)dx

≥
1

2
∥u∥2

E −
1

2
ε
∫

RN
|u|2dx −

1

p
C(ε)

∫

RN
|u|pdx −

∫

RN
Q(x)F2(u)dx.

≥
1

2
∥u∥2

E −
1

2
ε∥u∥2

2 −
1

p
C(ε)∥u∥

p
p − CQ∞∥u∥

q
q

≥
1

2
∥u∥2

E −
ε

2S
∥u∥2

E −
C(ε)

pS
p
2

∥u∥
p
E − C1Q∞∥u∥

q
E

=

(

1

2
−

ε

2S
−

C(ε)

pS
p
2

∥u∥
p−2
E − C1Q∞∥u∥

q−2
E

)

∥u∥2
E,

where Q∞ := |Q(x)|∞ and C1 is a positive constant. We may choose ε = S
2 and ρ sufficiently

small (i.e. ρ is such that 1
4 −

C(ε)

pS
p
2

ρp−2 − C1Q∞ρq−2
> 0), thus

J(u) ≥

(

1

4
−

C(ε)

pS
p
2

ρp−2 − C1Q∞ρq−2

)

ρ2 : = α0 > 0, for any u ∈ ∂Bρ.
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(iii) We may choose u∗ ∈ D(J) with u∗ ≥ 0 and supp(ϕ) ⊂ BR(0) for some R > 0. By the

condition (f2) we know that there exist constants C2, C3 > 0, such that |F(x, u)| ≥ C2|u|2 − C3

for any u ∈ R+. Then let e := tu∗ for any t > 0, there holds

J(e) = J(tu∗) =
1

2
∥tu∗∥

2
E −

1

2

∫

RN
Q(x)t2u2

∗ log(tu∗)
2dx −

∫

RN
F(x, tu∗)dx

≤ t2

(

I(u∗)−
1

2

∫

RN
Q(x)u2

∗ log t2dx

)

− C2t2

(

∫

BR(0)
u2
∗dx +

∫

RN\BR(0)
u2
∗dx

)

+ C4

≤ t2

(

I(u∗)− log t
∫

RN
Q(x)u2

∗dx − C2

∫

BR(0)
u2
∗dx

)

+ C4

→ −∞ as t → +∞,

where I(u∗) = 1
2∥u∗∥2

E − 1
2

∫

RN Q(x)u2
∗ log u2

∗dx is the energy functional of (1.4). Therefore

there exists enough large t0 > 0 with ∥e∥E = ∥t0u∗∥E > ρ, i.e. e /∈ B̄ρ(0) such that

J(e) = J(t0u∗) ≤ 0.

So the proof of Lemma 3.3 is now completed.

By Theorem 3.1 and Lemma 3.3, J(u) admits a (PS)c sequence, where c is the Mountain

level of J(u).

Lemma 3.4. Assume that (V1)–(V2), and (f1)–(f3) hold, then all (PS)c sequence {un} are bounded

in E.

Proof. If {un} is unbounded in E, then we can take, passing to a subsequence if necessary,

that ∥un∥E > 1. Since {un} ⊂ E is a (PS)c sequence, then {J(un)} is bounded above and

⟨J′(un), un⟩ → 0 as n → +∞. Thus

⟨J′(un), z⟩ = on(1)∥z∥E, ∀z ∈ E.

Since Q(x) > 0, then take
√

Q(x)u instead of u in (2.2), there yields

∫

RN
Q(x)u2 log(Q(x)u2)dx

≤
a2

π
∥∇(

√

Q(x)u)∥2
2 +

(

log ∥
√

Q(x)u∥2
2 − N(1 + log a)

)

∥
√

Q(x)u∥2
2. (3.2)

From Lemma 2.2 of [3], there exists a positive constant C5 such that

N(1 + log a)∥u∥2
2 ≤ (log ∥u∥2

2)∥u∥2
2 + C5∥u∥2

2. (3.3)

Then taking a > 0 enough small, there exists a positive constant C6 such that

∫

RN
Q(x)u2 log u2dx ≤

1

2
∥∇u∥2

2 + C6(log ∥u∥2
2 + 1)∥u∥2

2. (3.4)

We have exploited the fact that the function t → log t (t > 0) is increasing. Then for r ∈ (0, 1),

there is a constant C7 > 0 satisfying

|t log t| ≤ C7(1 + |t|1+r), for any t > 0.
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Therefore there exists a positive constant C8 such that

∥un∥
2
2 log(∥un∥

2
2) ≤ C7(1 + (∥un∥

2
2)

1+r) ≤ C8(1 + ∥un∥E)
1+r. (3.5)

From (3.3)–(3.5) and Theorem 2.5, there holds

∫

RN
Q(x)u2 log u2dx ≤

1

2
∥∇u∥2

2 + C9(1 + ∥un∥E)
1+r, (3.6)

where C9 is a positive constant. By the condition (f3), there exists a constant M0 > 0 with

|u| > M0 such that f (x, t)t − αF(x, t) ≥ −θ|t|2 for all |t| > M0, x ∈ RN . Let Ωn = {x ∈ RN :

|u| > M0}. It follows from (2.1), (2.8), (3.2) and (3.6) that

c + ∥un∥E ≥ J(un)−
1

α
⟨J′(un), un⟩

=
1

2

∫

RN

(

|∇un|
2 + (V(x) + Q(x))u2

n

)

dx −
1

α

∫

RN

(

|∇un|
2dx + V(x)u2

n

)

dx

+

(

1

α
−

1

2

)

∫

RN
Q(x)u2

n log u2
ndx +

1

α

∫

RN
( f (x, un)un − αF(x, un)) dx

≥

(

1

2
−

1

α

)

||un||
2
E +

(

1

α
−

1

2

)(

1

2
∥∇un∥

2
2 + C9(1 + ∥un∥E)

1+r

)

−
θ

α

(

∫

Ωn

+
∫

RN\Ωn

)

|un|
2dx

≥

(

1

2
−

1

α

)

∥un∥
2
E +

(

1

α
−

1

2

)(

1

2
∥un∥

2
E + C9 (1 + ∥un∥E)

1+r
)

−
θ

α

∫

Ωn

|un|
2dx − C10

≥

(

1

4
−

1

2α
−

θ

Sα

)

∥un∥
2
E +

(

1

α
−

1

2

)

C9 (1 + ∥un∥E)
1+r − C10,

where C10 is a positive constant. Divide both sides of this inequality by the norm ∥un∥2
E, then

this leads to the following contradiction:

0 >
S(α − 2)− 4θ

4Sα
> 0,

and the proof of Lemma 3.4 is completed.

Since the sequence {un} is bounded in E, it has a weakly convergent subsequence in E.

Without loss of generality we can assume that there exist u ∈ E and a subsequence of {un},

still denoted by itself, such that















un ⇀ u in E,

un → u in L
p
loc(R

N), p ∈ (2, 2∗),

un → u a.e. x ∈ RN ,

as n → ∞.

Lemma 3.5. Assume that (f1) satisfies, then there hold

lim
n→+∞

∫

RN
F′

2(un)undx =
∫

RN
F′

2(u)udx,

lim
n→+∞

∫

RN
f (x, un)undx =

∫

RN
f (x, u)udx.
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Proof. It follows from (2.6) that we know |F′
2(s)| ≤ C|s|q−1, then

∣

∣

∣

∣

∫

RN
F′

2(un)undx −
∫

RN
F′

2(u)udx

∣

∣

∣

∣

≤
∫

RN
C ||un|

q − |u|q| dx → 0, as n → +∞.

By the condition (f1), there holds

∣

∣

∣

∣

∫

RN
( f (x, un)un − f (x, u)u) dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

RN

(

ε|un|
2 + C(ε)|un|

p − ε|u|2 − C(ε)|u|p
)

dx

∣

∣

∣

∣

≤ ε
∫

RN

∣

∣|un|
2 − |u|2

∣

∣ dx + C(ε)
∫

RN
||un|

p − |u|p| dx → 0,

as n → +∞. The proof of Lemma 3.5 is completed.

Lemma 3.6. Let {un} be a (PS)c sequence of J in E, then un → u in E.

Proof. By Lemma 3.4, the sequence {un} is bounded in E. Then without loss of generality we

can assume that un ⇀ u in E, recalling that ⟨J′(un), un⟩ = on(1)∥un∥E yields

∫

RN

[

|∇un|
2 + (V(x) + Q(x))u2

n

]

dx +
∫

RN
Q(x)F′

1(un)undx

=
∫

RN
f (x, un)undx +

∫

RN
Q(x)F′

2(un)undx + on(1).
(3.7)

Moreover, limn→∞⟨J′(un), un⟩ = 0, i.e.

∫

RN

[

|∇u|2 + (V(x) + Q(x))u2
]

dx +
∫

RN
Q(x)F′

1(u)udx

=
∫

RN
f (x, u)udx +

∫

RN
Q(x)F′

2(u)udx.
(3.8)

By the Lemma 3.5, the right-hand side of (3.7) and (3.8) are equal. Therefore, there holds

∥un∥
2
E +

∫

RN
Q(x)F′

1(un)undx + on(1) = ∥u∥2
E +

∫

RN
Q(x)F′

1(u)udx.

Without loss of generality we have
∫

RN F′
1(un)undx →

∫

RN F′
1(u)udx, and

∥un∥
2
E → ∥u∥2

E,

as n → +∞. Thus we can conclude that un → u in E.

Because {un} ⊂ E is the (PS)c sequence of the functional J(u), and by (3) of Definition 2.3,

then there exists a function v ∈ C∞
0 (RN), for τn → 0+ such that

−τn∥v − un∥E ≤
∫

RN
[∇un∇(v − un) + (V(x) + Q(x))un(v − un)] dx −

∫

RN
f (x, un)(v − un)dx

−
∫

RN
Q(x)F′

2(un)(v − un)dx +
∫

RN
Q(x)F1(v)dx −

∫

RN
Q(x)F1(un)dx.

Since Ψ is lower semicontinuous, then

Ψ(un) ≥ lim
n→∞

inf Ψ(un) ≥ Ψ(u).
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It follows from Lemmas 3.5–3.6 that there holds

lim
n→∞

(−τn∥v − u∥E) ≤
∫

RN
[∇u∇(v − u) + (V(x) + Q(x))u(v − u)] dx

−
∫

RN
f (x, u)(v − u)dx −

∫

RN
Q(x)F′

2(u)(v − u)dx

+
∫

RN
Q(x)F1(v)dx −

∫

RN
Q(x)F1(u)dx.

(3.9)

The above formula (3.9) is equivalent to

⟨Φ′(u), v − u⟩+ Ψ(v)− Ψ(u) ≥ 0.

It can be seen that it satisfies (2) of Definition 2.3. This implies that u is the critical point of

the functional J(u). Therefore, u is the solution of problem (1.1).

In what follows, we mainly prove that the solution u is nontrivial and reachable.

Lemma 3.7. Assume that (V1)–(V2) and (f1)–(f3) hold, then the functional J(u) satisfies (PS)c con-

dition, and u is a critical point of J. Furthermore, u is nontrivial solution of equation (1.1).

Proof. If u = 0, then un ⇀ 0 in E. One of the following two cases is always true.

(i) un → 0, as n → +∞.

(ii) lim infn→+∞ supy∈RN\{0}

∫

Br(y)
|un|2dx > 0.

Now we next will prove that neither (i) nor (ii) is true:

If (i) is true, then J(u) → 0, but J(u) → c (c > 0), which leads to a contradiction. Therefore

(ii) is true. Let β := lim infn→+∞ supy∈RN\{0}

∫

Br(y)
|un|2dx > 0. Choose Ar := {x ∈ RN \

Br(0) : V(x) < a0}, as r → +∞. It follows from (V1) that meas(Ar) → 0. There exists a

constant r∗ such that if r > r∗ and q∗ ∈ (2, 2∗), and according to the Hölder inequality and

Sobolev imbedding inequality, we have

∫

Ar

|un|
2dx ≤

(

∫

Ar

|un|
q∗dx

)
2

q∗
(

∫

Ar

1dx

)

q∗−2
q∗

≤ C∥un∥
2
E (meas(Ar))

q∗−2
q∗ ≤

β

4
.

(3.10)

Take Dr := {x ∈ RN \ Br(0) : V(x) ≥ a0}, as a0 is enough large. Then there holds

∫

Dr

|un|
2dx ≤

1

1 + a0

∫

RN
(1 + V(x))|un|

2dx ≤
C

1 + a0
≤

β

4
. (3.11)

It follows from (3.10) and (3.11) that

β = lim inf
n→+∞

sup
y∈RN\{0}

∫

Br(y)
|un|

2dx

≤ lim inf
n→+∞

∫

RN\Br(0)
|un|

2dx

= lim inf
n→+∞

(

∫

Dr

|un|
2dx +

∫

Ar

|un|
2dx

)

≤
β

2
,

which leads to a contradiction. Thus we have u ̸= 0. The proof of Lemma 3.7 is completed.
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Proof of Theorem 1.1. By the statement in Section 3, we admit that the sequence {un} ⊂ E is

the (PS)c sequence of the functional J(u). From Lemma 3.7, the weak limit of (PS)c sequence

is nontrivial, we easily infer that the weak limit is the desired ground state. On the one hand,

since un → u (n → ∞), the norm ∥u∥E and Ψ(u) are lower semicontinuous, it follows from

(2.1), (2.3), (2.4) that

J(u) = Φ̃(u) + Ψ(u)

=
1

2
∥u∥2

E −
∫

RN
F(x, u)dx −

∫

RN
Q(x)F2(u)dx +

∫

RN
Q(x)F1(u)dx

≤
1

2
∥u∥2

E − inf
∫

RN
F(x, u)dx − inf

∫

RN
Q(x)F2(u)dx +

∫

RN
Q(x)F1(u)dx

≤ lim inf
n→+∞

1

2
∥un∥

2
E − lim inf

n→+∞

∫

RN
F(x, un)dx − lim inf

n→+∞

∫

RN
Q(x)F2(un)dx

+ lim inf
n→+∞

∫

RN
Q(x)F1(un)dx

= lim inf
n→+∞

J(un) = c.

Then we can get J(u) ≤ c. On the other hand, by the definition of c, we have J(u) ≥ c. Hence

J(u) = c. In a word, we deduce that c is attained and the corresponding minimizer is a ground

state solution of problem (1.1). The proof of Theorem 1.1 is completed.
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Abstract. In this paper, we consider the existence of normalized solutions for the fol-
lowing Kirchhoff-type problem:

−

(
a + b

∫

RN
|∇u|2dx

)
∆u = λu + |u|p−2u + µ|u|q−2u in R

N ,

with prescribed L2-norm: ∫

RN
|u|2dx = c2,

where N = 2, 3, a ≥ 0, b > 0 and c > 0 are constants, λ ∈ R, 2 < q < p = 2 + 8
N and

µ > 0. The number 2 + 8
N behaves as the L2 -critical exponent for the above problem.

We prove the multiplicity of normalized solutions for the above Kirchhoff-type problem
with L2-critical nonlinearity (that is, p = 2 + 8

N ) in the two cases: 2 < q < 2 + 4
N and

2 + 4
N < q < 2 + 8

N .

Keywords: Kirchhoff equation, constrained minimization, variational method, Po-
hozaev manifold.
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1 Introduction and main results

In this paper, we investigate the multiplicity of normalized solutions for the following

Kirchhoff-type problem

−

(
a + b

∫

RN
|∇u|2dx

)
∆u = λu + |u|p−2u + µ|u|q−2u in R

N , (1.1)

with prescribed mass ∫

RN
|u|2dx = c2,

BCorresponding author. Email: ouzengq707@sina.com
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where N = 2, 3, a ≥ 0, b, c > 0, λ ∈ R appears as a Lagrange multiplier, 2 < q < p = 2 + 8
N

and µ > 0. Let Ls(RN)(1 ≤ s < +∞) be the Lebesgue space with norm |u|s = (
∫

RN |u|sdx)1/s,

H1(RN) be the Hilbert space with the norm ∥u∥ =
( ∫

RN
(|∇u|2 + |u|2)dx

) 1
2 .

Problem (1.1) is a special form of the following Kirchhoff problem

−

(
a + b

∫

RN
|∇u|2dx

)
∆u = f (x, u) in R

N ,

which is also a variant of Dirichlet problem




−

(
a + b

∫

Ω

|∇u|2dx

)
∆u = f (x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

where Ω ⊂ R
N is a bounded domain with smooth boundary. It is well-known that problem

(1.2) appears naturally in the context of physics. Problem (1.2) is the stationary case of a

nonlinear wave equation

utt −

(
a + b

∫

Ω

|∇u|2dx

)
∆u = f (x, u), (1.3)

first proposed by Kirchhoff [9] in 1883. Problem (1.3) is a generalization of the classical

D’Alembert’s wave equation which describes free vibrations of elastic strings. The param-

eters in problem (1.3) have specific physical meaning: f is the external force, a is related to

the intrinsic properties of the string, and u means the displacement while b denotes the initial

tension. Since then, problem (1.3) has received much attention, see [1, 11, 12, 14, 15] and the

references therein. Since Lions in [11] proposed an abstract functional analysis framework,

Kirchhoff type problem has been intensively studied during the last decades. From a mathe-

matical perspective, problem (1.2) is not a pointwise identity as the appearance of the nonlocal

term
∫

Ω
|∇u|2dx. The nonlocal term causes some mathematical difficulties and the investiga-

tion of problem (1.2) is more interesting and challenging. Such a nonlocal model also appears

in other fields as biological systems describing a process depending on the average of itself,

for example one species’ population density.

A way to study problem (1.1) is to search for solutions with L2-norm constraint, and such

solutions are known as normalized solutions and λ ∈ R appears as a Lagrange multiplier. In

addition, the study of L2-norm constraint problem can give a better insight of the dynamical

properties, like orbital stability or instability, and can describe attractive Bose-Einstein con-

densate. Normalized solutions of problem (1.1) can be obtained by looking for critical points

of the energy functional Ea,µ(u) constrained on Sc, where

Ea,µ(u) :=
a

2

∫

RN
|∇u|2dx +

b

4

(∫

RN
|∇u|2dx

)2

−
1

p

∫

RN
|u|pdx −

µ

q

∫

RN
|u|qdx,

and

Sc :=

{
u ∈ H1(RN) :

∫

RN
|u|2dx = c2

}
.

Many interesting results on the normalized solutions of Kirchhoff problem are also ob-

tained not long ago, see [2,3,5,6,8,13,17,23]. Especially, many experts considered the existence

of normalized solutions for problem (1.1) with combined nonlinearities. For the case µ > 0,
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under different ranges of p and q, Li and Lou in [10] proved a multiplicity result for problem

(1.1). In detail, if 2 < q <
10
3 , 14

3 < p < 6 and µ < min{µ′, µ′′} , two solutions for problem

(1.1) were obtained. If 14
3 < q < p < 6, problem (1.1) has a mountain pass type solution. Hu

and Mao in [6] considered the following minimization problem

ma,c = inf
u∈Sc

Ea,µ(u), (1.4)

and they proved that if 2 < q <
10
3 and 2 < q < p ≤ 14

3 , problem (1.4) has a minimizer for

every c ∈ (0, c∗p). At the same time, when c satisfies the suitable conditions, the nonexistence

of minimizers for problem (1.4) was considered in the following four cases: (i) q = 10
3 and

p = 14
3 ; (ii) 10

3 = q < p <
14
3 ; (iii) 2 < q < p = 14

3 ; (iv) 2 < q < p, 14
3 < p < 6. Moreover, if

14
3 < q < p < 6, they also obtained the existence of normalized solutions for problem (1.1) by

using constraint minimization on a suitable submanifold of Sc. For the Sobolev critical case

(that is, p = 6), Feng, Liu and Zhang in [3] proved the existence and multiplicity of normalized

solutions for problem (1.1) under suitable assumptions on µ and c for the following four cases:

2 < q <
10
3 , q = 10

3 , 10
3 < q <

14
3 , 14

3 ≤ q < p = 6. Some similar results were also obtained in

[10,23]. For the case µ = 0, the existence, multiplicity and uniqueness of normalized solutions

for problem (1.1) have been considered in [13,19–22]. For the case µ < 0, we refer to [2,6], and

for the nonlinear Kirchhoff-type equations in high dimensions see [8].

As far as we known, there are few papers to consider the existence and multiplicity of

normalized solutions for problem (1.1) with L2-critical nonlinearity (that is p = 2 + 8
N ) in the

two cases: 2 < q < 2 + 4
N and 2 + 4

N < q < 2 + 8
N . The object of this paper is to prove

the existence and multiplicity of normalized solutions for problem (1.1) in those cases under

suitable assumptions on µ and a.

Before stating the main results of this paper, let us recall the Gagliardo–Nirenberg inequal-

ity (see [18]): for any s ∈ [2, 2N
N−2 ) if N ≥ 3 and s ≥ 2 if N = 1, 2, we have

1

s
|u|ss ≤

1

2|Qs|
s−2
2

|∇u|sγs

2 |u|s−sγs

2 , (1.5)

where γs := N(s−2)
2s and with equality only for u = Qs, and up to translations, Qs is the unique

positive solution of

−
N(s − 2)

4
∆u +

(
1 +

s − 2

4
(2 − N)

)
u = |u|s−2u in R

N ,

and satisfies

|∇Qs|
2
2 = |Qs|

2
2 =

2

s
|Qs|

s
s.

Especially, let p = 2 + 8
N , define

c∗ :=

(
b|Qp|

8
N
2

2

) N
8−2N

.

For s = p = 2 + 8
N and for any u ∈ Sc, we have

1

p
|u|

p
p ≤

1

4

2

c2

(
c

|Qp|2

) 8
N

|∇u|42 =
b

4

( c

c∗

) 8−2N
N

|∇u|42. (1.6)
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Set

µ∗ :=
2a|Qq|

q−2
2

(4 − qγq)cq−qγq


 2a(2 − qγq)

b(4 − qγq))
(
( c

c∗ )
8−2N

N − 1
)




2−qγq
2

. (1.7)

Now, our main results are following.

Theorem 1.1. Let 2 < q < 2 + 4
N , p = 2 + 8

N , c > c∗ and 0 < µ < µ∗. Then problem (1.1) has two

radial solutions, denoted by ũc,µ and ûc,µ. Moreover, ũc,µ is a local minimizer of the functional Ea,µ on

the set

AR0
:= {u ∈ Sc,r : |∇u|22 < R0}

for a suitable R0 = R0(c, µ) > 0 with Ea,µ(ũc,µ) < 0 and ũc,µ solves problem (1.1) for some λ̃c,µ < 0,

and ûc,µ is a critical point of mountain pass type for Ea,µ with Ea,µ(ûc,µ) > 0 and ûc,µ solves problem

(1.1) for some λ̂c,µ < 0.

Theorem 1.2. If 2 + 4
N < q < p = 2 + 8

N , µ > 0 and c < c∗, we have the following results:

(i) if a = 0, m0,c := infu∈Sc
E0,µ(u) has a radial minimizer ũ, and ũ solves problem (1.1) for some

λ̃ < 0.

(ii) let ā = b
2

(
1−

(
c
c∗

) 8−2N
N
)(

2
N(q−2)

− 1
4

)
|∇ũ|22 > 0, for any a ∈ (0, ā), problem (1.1) has two radial

solutions, the one is a global minimizer ũc,a with λ̃c,a < 0, and the other is the mountain pass

type solution uc,a with λc,a < 0.

Remark 1.3. Theorem 1.1 complements [6, Theorem 1.2], where Hu and Mao considered the

case c ∈ (0, c∗) and obtained a minimizer of the functional Ea,µ on Sc. However, we deal with

the case c > c∗ and obtain two solutions for problem (1.1) under suitable assumptions on the

constant µ > 0. In the proof of Theorem 1.1, since the functional Ea,µ is not bounded from

below on Sc for c > c∗, we will restrict the functional Ea,µ on the Pohozaev set Pc,µ. We can

get a local minimizer for Ea,µ|Pc,µ
and use mountain pass theorem to get the second critical

point. We emphasis that (1.7) has been used to ensure that Pc,µ is a smooth manifold and the

existence of mountain pass type solution.

To the best of our knowledge, Hu and Mao in [6] proved that if N = 3, 10
3 < q <

14
3 ,

p = 14
3 , c < c∗ and µ > 0 satisfy appropriate condition, problem (1.1) with has no minimizer.

However, we try to prove the existence of normalized solution for problem (1.1) with 2 + 4
N <

q < p = 2 + 8
N for the suitable constant a > 0. Furthermore, there are few results about the

existence of normalized solutions to degenerate Kirchhoff equations, that is, a = 0, so we first

establish the existence of minimizer m0,c = infu∈Sc
E0,µ(u) < 0, which is a normalized solution

of the degenerate Kirchhoff equation. And then, we establish ma,c := infu∈Sc,r
Ea,µ(u) < 0 with

the help of the minimizer of m0,c. At last, we will prove the existence of the second solution

with the mountain pass type for problem (1.1).

To overcome the lack of compactness, we work in H1
r (R

N). Although the energy functional

Ea,µ has a bounded Palais–Smale sequence on the mass constraint set Sc,r, unfortunately, we

can not deduce whether Ea,µ satisfies the Palais–Smale condition. To overcome this difficulty,

in the proof of Theorem 1.1, we will constrain the energy functional Ea,µ on a submanifold

of Sc,r corresponding to the Pohozaev identity. In the proof of (2) of Theorem 1.2, we use

Jeanjean’s method in [7] and construct an auxiliary map Ia,µ(u, τ) := Ea,µ(τ ⋆ u), which has

the same type of geometric structure on Sc,r × R as Ea,µ on Sc,r.



Normalized solutions for Kirchhoff-type equations 5

2 Preliminaries

In this section, we will introduce some notations, then we recall a version of linking theorem.

Finally, we give the compactness analysis of Palais–Smale sequences for Ea,µ|Sc,r
. Let

H1
r (R

N) = {u ∈ H1(RN) : u(|x|) = u(x)},

Sc,r := Sc ∩ H1
r (R

N) = {u ∈ Sc : u(x) = u(|x|)}.

For u ∈ Sc, and τ ∈ R, define the fiber map preserving the L2-norm

(τ ⋆ u)(x) := e
N
2 τu(eτx) for any x ∈ R

N .

We introduce the auxiliary functional Ia,µ : H1(RN)× R
+ → R by

Ia,µ(u, τ) := Ea,µ(τ ⋆ u) =
e2τa

2
|∇u|22 +

e4τb

4
|∇u|42 −

e4τ

p
|u|

p
p − µ

eγqqτ

q
|u|

q
q, (2.1)

then we easily see that the functional Ia,µ is of class C1. In addition, we define the Pohozaev

set by

Pc,µ = {u ∈ Sc,r : Pµ(u) = 0}

with

Pµ(u) = a|∇u|22 + b|∇u|42 −
4

p
|u|

p
p − µγq|u|

q
q.

Lemma 2.1 ([4, Theorem 2.7]). Let ϕ be a C1-functional on a complete connected C1-Finsler manifold

X and consider a homotopy-stable family F with extended boundary B. Set

c = c(ϕ,F ) = inf
A∈F

max
x∈A

ϕ(x)

and let F be a closed subset of X satisfying

A ∩ F\B ̸= ∅ for every A ∈ F (2.2)

and

sup
x∈B

ϕ(x) ≤ c ≤ inf
x∈F

ϕ(x). (2.3)

Then, for any sequence of sets (An)n ∈ F such that limn→∞ supAn
ϕ = c, there exists a sequence

(xn)n in X\B such that

lim
n→∞

ϕ(xn) = c, lim
n→∞

∥dϕ(xn)∥ = 0, lim
n→∞

dist(xn, F) = 0, lim
n→∞

dist(xn, An) = 0.

Lemma 2.2. Let a > 0, b > 0, c > 0, µ > 0, 2 < q < p = 2 + 8
N . Let {un} ⊂ Sc,r be a bounded

Palais–Smale sequence for Ea,µ|Sc,r
at energy level m ̸= 0 with Pµ(un) → 0 as n → ∞. Then up to a

subsequence un → u strongly in H1(RN). Moreover, u ∈ Sc,r and u is a radial solution for problem

(1.1) for some λ < 0.

Proof. The proof is divided into three steps.

Step 1: Lagrange multipliers λn → λ in R. Since H1
r (R

N) →֒ Ls(RN) is compact for s ∈

(2, 2N
N−2 ), from the boundedness of Palais–Smale sequence {un}, there exists a subsequence of

{un}, still denoted by {un}, and u ∈ H1
r (R

N) such that

un ⇀ u in H1
r (R

N), un → u in Ls(RN), un → u a.e. on R
N .
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Because {un} is a Palais–Smale sequence of Ea,µ|Sc,r
, by the Lagrange multipliers rule, there

exists λn ∈ R such that

(a + b|∇un|
2
2)
∫

RN
∇un∇ϕdx − µ

∫

RN
|un|

q−2un ϕdx

−
∫

RN
|un|

p−2un ϕdx − λn

∫

RN
un ϕdx = on(1) (2.4)

for every ϕ ∈ H1(RN), where on(1) → 0 as n → ∞. In particular, taking ϕ = un in (2.4), we

have

λnc2 = a|∇un|
2
2 + b|∇un|

4
2 − µ|un|

q
q − |un|

p
p + on(1).

The boundedness of {un} in H1
r (R

N) ∩ Lq(RN) ∩ Lp(RN) implies that {λn} is bounded as

well. Hence, up to a subsequence, we have λn → λ ∈ R.

Step 2: λ < 0 and u ̸≡ 0. Recalling that Pµ (un) → 0, we have

λnc2 = µ(γq − 1)|un|
q
q + (γp − 1)|un|

p
p + on(1),

hence, let n → ∞, we have

λc2 = µ(γq − 1)|u|
q
q + (γp − 1)|u|

p
p.

Since µ > 0 and 0 < γq, γp < 1, we deduce that λ ≤ 0, with “=" if and only if u ≡ 0. If λn → 0,

we have limn→∞ |un|
p
p = 0 = limn→∞ |un|

q
q. Using again Pµ(un) → 0, we have Ea,µ(un) → 0,

which is a contradiction with Ea,µ(un) → m ̸= 0 and thus λn → λ < 0 and u ̸≡ 0.

Step 3: un → u in H1(RN). Since un ⇀ u ̸≡ 0 in H1(RN), we get B := limn→∞ |∇un|22 ≥

|∇u|22 > 0. Then, (2.4) implies that

(a + bB)
∫

RN
∇u∇ϕdx − µ

∫

RN
|u|q−2uϕdx −

∫

RN
|u|p−2uϕdx − λ

∫

RN
uϕdx = 0 (2.5)

for any ϕ ∈ H1(RN). Combining (2.4) with (2.5) and taking ϕ = un − u, we obtain

(a + bB)|∇(un − u)|22 − λ|un − u|22 → 0 as n → ∞.

Since λ < 0, we conclude that {un} converges strongly in H1(RN).

3 Proof of Theorem 1.1

In this section, we deal with the case 2 < q < 2 + 4
N , p = 2 + 8

N , c > c∗, µ > 0 and prove

Theorem 1.1. First of all, it is well known that any critical point of the functional Ea,µ belongs

to Pc,µ. Conversely, if u ∈ Pc,µ, we get ∂τ Ia,µ(u, 0) = 0. Now, we consider the decomposition

of Pc,µ into the disjoint union Pc,µ = P+
c,µ ∪ P0

c,µ ∪ P−
c,µ, where

P+
c,µ := {u ∈ Pc,µ : 2a|∇u|22 + 4b|∇u|42 > µqγ2

q |u|
q
q + pγ2

p|u|
p
p} = {u ∈ Pc,µ : ∂ττ Ia,µ(u, 0) > 0},

P0
c,µ := {u ∈ Pc,µ : 2a|∇u|22 + 4b|∇u|42 = µqγ2

q |u|
q
q + pγ2

p|u|
p
p} = {u ∈ Pc,µ : ∂ττ Ia,µ(u, 0) = 0},

P−
c,µ := {u ∈ Pc,µ : 2a|∇u|22 + 4b|∇u|42 < µqγ2

q |u|
q
q + pγ2

p|u|
p
p} = {u ∈ Pc,µ : ∂ττ Ia,µ(u, 0) < 0}.
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By (1.5) and (1.6), we have

Ea,µ(u) ≥
a

2
|∇u|22 +

b

4

(
1 −

( c

c∗

) 8−2N
N

)
|∇u|42 − µ

cq−γqq

2|Qq|
q−2
2

|∇u|
γqq
2 (3.1)

for every u ∈ Sc,r. Therefore, to understand the geometry of the functional Ea,µ|Sc,r
, it is useful

to consider the function h : R
+ → R:

h(t) :=
a

2
t +

b

4

(
1 −

( c

c∗

) 8−2N
N

)
t2 − µ

cq−γq

2|Qq|
q−2
2

t
γqq

2 .

Now, we study the properties of h(t).

Lemma 3.1. Let c > c∗, 2 < q < 2 + 4
N , p = 2 + 8

N , 0 < µ < µ∗, where µ∗ is defined in (1.7), the

function h has a local strict minimum at negative level and a global strict maximum at positive level.

Moreover, there exist 0 < R0 < R1, both depending on c and µ, such that h(R0) = 0 = h(R1) and

h(t) > 0 for any t ∈ (R0, R1).

Proof. Since

h(t) = t
γqq

2

(
a

2
t1−

γqq

2 +
b

4

(
1 −

( c

c∗

) 8−2N
N

)
t2−

γqq

2 − µ
cq−qγq

2|Qq|
q−2
2

)

for t > 0, we have h(t) > 0 if and only if

ϕ(t) > µ
cq−qγq

2|Qq|
q−2
2

, with ϕ(t) :=
a

2
t1−

γqq

2 +
b

4

(
1 −

( c

c∗

) 8−2N
N

)
t2−

γqq

2 .

It is not difficult to check that ϕ has a unique critical point t̄ on (0, ∞), which is a global

maximum point at positive level:

t̄ :=
2a(2 − qγq)

b(4 − qγq)
(
( c

c∗ )
8−2N

N − 1
) ,

and the maximum level is

ϕ(t̄) =
a

(4 − qγq)


 2a(2 − qγq)

b(4 − qγq)
(
( c

c∗ )
8−2N

N − 1
)




1−
qγq

2

> 0.

From 0 <
γqq

2 < 1, µ > 0 and c > c∗, it is obvious that limt→0+ h(t) = 0− and limt→+∞ h(t) =

−∞. Therefore, h is positive on an open interval (R0, R1) if ϕ(t̄) > µ cq−qγq

2|Qq|
q−2
2

, which is ensured

by

0 < µ < µ∗ :=
2a|Qq|

q−2
2

(4 − qγq)cq−qγq


 2a(2 − qγq)

b(4 − qγq)
(
( c

c∗ )
8−2N

N − 1
)




1−
qγq

2

.

It follows immediately that h has a global maximum at positive level in (R0, R1). Moreover,

since limt→0+ h(t) = 0−, there exists a local minimum point at negative level in (0, R0). The

fact that h has no other critical points can be verified observing that h′(t) = 0 if and only if

ψ(t) = µ
γqqcq−qγq

2|Qq|
q−2
2

with ψ(t) := at
2−qγq

2 + b

(
1 −

( c

c∗

) 8−2N
N

)
t

4−qγq
2 .
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Clearly ψ has only one critical point, which is a strict maximum, and hence the above equation

has at most two solutions, which necessarily are the local minimum and the global maximum

of h previously found.

We now study the structure of the Pohozaev manifold Pc,µ. Recalling the decomposition

of Pc,µ = P+
c,µ ∪ P0

c,µ ∪ P−
c,µ.

Lemma 3.2. If 2 < q < 2 + 4
N , p = 2 + 8

N and 0 < µ < µ∗, then P0
c,µ = ∅ and Pc,µ is a smooth

manifold of codimension 2 in H1(RN).

Proof. Otherwise, let u ∈ P0
c,µ, from Pc,µ(u) = 0 and ∂ττ Ia,µ(u, 0) = 0, we have

a|∇u|22 + b|∇u|42 − µγq|u|
q
q −

4

p
|u|

p
p = 0,

2a|∇u|22 + 4b|∇u|42 − µqγ2
q |u|

q
q − pγ2

p|u|
p
p = 0.

By (1.5), we obtain

(2 − qγq)a|∇u|22 + (4 − qγq)b|∇u|42 = γp(pγp − qγq)|u|
p
p ≤ (4 − qγq)b

( c

c∗

) 8−2N
N

|∇u|42,

2a|∇u|22 = µγq(4 − qγq)|u|
q
q ≤ µqγq(4 − qγq)

cq−qγq

2|Qq|
q−2
2

|∇u|
qγq

2 .

Then, the lower and upper bounds of |∇u|2 are given by


 a(2 − qγq)

b(4 − qγq)
(
( c

c∗
)

8−2N
N − 1

)




1
2

≤ |∇u|2 ≤

(
µqγq(4 − qγq)cq−qγq

4a|Qq|
q−2
2

) 1
2−qγq

,

which leads to

µ >
4a|Qq|

q−2
2

qγq(4 − qγq)cq−qγq


 a(2 − qγq)

b(4 − qγq)
(
( c

c∗
)

8−2N
N − 1

)




2−qγq
2

> µ∗,

which contradicts to 0 < µ < µ∗, hence, P0
c,µ = ∅. Pc,µ is a smooth manifold of codimension

2 in H1(RN), see proof of [16, Lemma 5.2].

Lemma 3.3. Let a > 0, b > 0, 2 < q < 2 + 4
N , p = 2 + 8

N , 0 < µ < µ∗, if u ∈ Pc,µ is a critical point

for Ea,µ|Pc,µ , then u is a critical point for Ea,µ|Sc,r
, where µ∗ is defined in (1.7).

Proof. From Lemma 3.2, we deduce that Pc,µ is a smooth manifold of codimension 2 in H1(RN)

and P0
c,µ = ∅. If u ∈ Pc,µ is a critical point for Ea,µ|Pc,µ

, then by the Lagrange multipliers rule,

there exists λ, ξ ∈ R such that

〈
E′

a,µ(u), ϕ
〉
− λ

∫

RN
uϕdx − ξ

〈
P′

µ(u), ϕ
〉
= 0, ∀ϕ ∈ H1

(
R

N
)

.

So u solves

−((1 − 2ξ)a + (1 − 4ξ)b|∇u|22)∆u − λu + µ(ξqδq − 1)|u|q−2u + (pξγp − 1)|u|p−2u = 0.



Normalized solutions for Kirchhoff-type equations 9

Combining with the Pohozaev identity, we have

(1 − 2ξ)a|∇u|22 + (1 − 4ξ)b|∇u|42 + µγq(ξqγq − 1)|u|
q
q + γp(pξγp − 1)|u|

p
p = 0.

Since u ∈ Pc,µ and u /∈ P0
c,µ, we deduce from ξ(2a|∇u|22 + 4b|∇u|42 − µqγ2

q |u|
q
q − γ2

p p|u|
p
p) = 0

that ξ = 0.

The manifold Pc,µ is then divided into two components P+
c,µ and P−

c,µ, having disjoint

closure.

Lemma 3.4. For every u ∈ Sc,r, we have

(i) if b
4 |∇u|42 ≥ 1

p |u|
p
p, the function Ia,µ(u, ·) has a critical point su ∈ R and a zero cu ∈ R, with

su < cu;

(ii) if b
4 |∇u|42 <

1
p |u|

p
p, the function Ia,µ(u, ·) has exactly two critical points su < tu ∈ R and two

zeros cu < du ∈ R, with su < cu < tu < du;

(iii)
∫

RN |∇(τ ⋆ u)|2 ≤ R0 for every τ ≤ cu, and

Ea,µ(su ⋆ u) = min

{
Ea,µ(τ ⋆ u) : τ ∈ R and

∫

RN
|∇(τ ⋆ u)|2dx < R0

}
< 0; (3.2)

(iv) For any u ∈ Sc,r with b
4 |∇u|42 <

1
p |u|

p
p, we have

Ea,µ(tu ⋆ u) = max{Ea,µ(τ ⋆ u) : τ ∈ R} > 0, (3.3)

and Ia,µ is strictly decreasing and concave on τ ∈ (tu,+∞);

(v) The maps u ∈ Sc,r 7→ su ∈ R and u ∈ Sc,r 7→ tu ∈ R are of class C1.

Proof. We recall that by (3.1)

Ia,µ(u, τ) = Ea,µ(τ ⋆ u) ≥ h

(∫

RN
|∇(τ ⋆ u)|2dx

)
= h

(
e2τ
∫

RN
|∇u|2dx

)
.

Thus, the function Ia,µ(u, ·) is positive on (C(R0), C(R1)) with

(C(R0), C(R1)) :=

(
1

2
ln

(
R0/

∫

RN
|∇u|2dx

)
,

1

2
ln

(
R1/

∫

RN
|∇u|2dx

))
.

If b
4 |∇u|42 ≥ 1

p |u|
p
p, from (2.1), Ia,µ(u, τ) → +∞ as τ → +∞, and Ia,µ(u, τ) → 0− as τ → −∞.

Hence, it follows that Ia,µ has at least a critical point su, with su local minimum point on

(−∞, C(R0)) at negative level, and Ia,µ has at least a zero point cu with su < cu < C(R0). Note

that ∂τ Ia,µ(u, τ) = 0 reads

φ(τ) = µγq|u|
q
q with φ(τ) := ae

4−N(q−2)
2 τ|∇u|22 + be

8−N(q−2)
2 τ|∇u|42 −

4

p
e

8−N(q−2)
2 τ|u|

p
p. (3.4)

But φ(τ) is increasing on (−∞,+∞), hence, Ia,µ has exactly a critical point su and a zero

point cu.

If b
4 |∇u|42 <

1
p |u|

p
p, Ia,µ(u, τ) → −∞ as τ → +∞ and φ has a unique maximum point, and

Ia,µ(u, τ) → 0− as τ → −∞. Therefore, we conclude that Ia,µ has exactly two critical points:
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su, local minimum on (−∞, C(R0)) at negative level, and tu, global maximum at positive level,

which also gives (3.3).

From su < C (R0), then it holds that

∫

RN
|∇(su ⋆ u)|2dx = e2su

∫

RN
|∇u|2dx < R0.

In addition, we have su ⋆ u ∈ Pc,µ, tu ⋆ u ∈ Pc,µ, and τ ⋆ u ∈ Pc,µ implies τ ∈ {su, tu}. By

minimality and P0
c,µ = ∅, we have ∂ττ Ia,µ(u, su) > 0, that is, su ⋆ u ∈ P+

c,µ. In the same way,

tu ⋆ u ∈ P−
c,µ. In particular, Ia,µ(u, ·) is concave on [tu,+∞).

Finally, we show that u 7→ su and u 7→ tu are of class C1. To this end, we apply the

implicit function theorem on the C1 function Φ(u, τ) := ∂τ Ia,µ(u, τ). We see Φ(u, su) = 0 and

∂τΦ(u, su) = ∂ττ Ia,µ(u, su) > 0, and the fact that it is not possible to pass with continuity from

P+
c,µ to P−

c,µ (since P0
c,µ = ∅). By the same argument, we have that u 7→ tu is of C1.

From the proof of Lemma 3.4, we see that su < C (R0) < tu and

∫

RN
|∇(su ⋆ u)|2dx < R0 <

∫

RN
|∇(tu ⋆ u)|2dx,

which implies

P+
c,µ ⊆ {u ∈ Sc,r : |∇u|22 < R0}

and

P−
c,µ ⊆ {u ∈ Sc,r : |∇u|22 > R0}.

For k > 0, let us set

Ak := {u ∈ Sa,r : |∇u|22 < k},

and

Mc,µ := inf
u∈AR0

Ea,µ(u).

As an immediate lemma, we have:

Lemma 3.5. supP+
c,µ

Ea,µ ≤ 0 ≤ infP−
c,µ

Ea,µ.

Lemma 3.6. It results that Mc,µ ∈ (−∞, 0), that

Mc,µ = inf
Pc,µ

Ea,µ = inf
P+

c,µ

Ea,µ, and that Mc,µ < inf
AR0

\AR0−ρ

Ea,µ

for ρ > 0 small enough.

Proof. For any u ∈ AR0
, we have

Ea,µ(u) ≥ h(|∇u|22) ≥ min
t∈[0,R0]

h(t) > −∞,

and hence Mc,µ > −∞. Moreover, for any u ∈ Sc,r, we have |∇(τ ⋆ u)|22 < R0 and Ea,µ(τ ⋆ u) <

0 for τ ≪ −1, and hence Mc,µ < 0.

Now, Mc,µ ≤ infP+
c,µ

Ea,µ from P+
c,µ ⊂ AR0

. On the other hand, if u ∈ AR0
, then su ⋆ u ∈

P+
c,µ ⊂ AR0

, and

Ea,µ(su ⋆ u) = min

{
Ea,µ(τ ⋆ u) : τ ∈ R and

∫

RN
|∇(τ ⋆ u)|2dx < R0

}
≤ Ea,µ(u),
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which implies that infP+
c,µ

Ea,µ ≤ Mc,µ. To prove that infP+
c,µ

Ea,µ = infPc,µ
Ea,µ, it is sufficient to

recall that Ea,µ(u) > 0 on P−
c,µ.

Finally, by the continuity of h, there exists ρ > 0 such that h(t) ≥
Mc,µ

2 for any t ∈ [R0 −

ρ, R0]. Therefore, we have

Ea,µ(u) ≥ h(|∇u|22) ≥
Mc,µ

2
> Mc,µ

for every u ∈ Sc,r with R0 − ρ ≤ |∇u|22 ≤ R0.

Lemma 3.7. Mc,µ can be achieved by some ũc,µ ∈ Sc,r. Moreover, ũc,µ is an interior local minimizer for

Ea,µ|AR0
, and ũc,µ solves problem (1.1) for some λ̃c,µ < 0. Moreover, ũc,µ is a ground state of Ea,µ|Sc,r

,

any ground state of Ea,µ|Sc,r
is a local minimizer of Ea,µ on AR0

.

Proof. Let us consider a minimizing sequence {vn} for Ea,µ|AR0
. By Lemma 3.4, there exists a

sequence {svn} such that svn ⋆ vn ∈ P+
c,µ and

Ea,µ(svn ⋆ vn) = min

{
Ea,µ(τ ⋆ svn) : τ ∈ R and

∫

RN
|∇(τ ⋆ svn)|

2dx < R0

}
< Ea,µ(vn),

where the last inequality follows from vn ∈ AR0
. Besides, we also see that

∫

RN
|∇(svn ⋆ vn)|

2dx < R0,

furthermore, by Lemma 3.6, we have
∫

RN
|∇(svn ⋆ vn)|

2dx < R0 − ρ.

Once again by Lemma 3.6, it holds that

Mc,µ = inf
Pc,µ

Ea,µ = inf
P+

a,µ

Ea,µ.

Setting un = svn ⋆ vn and using the Ekeland’s variational principle, we may assume that {un}

is a Palais–Smale sequence for Ea,µ on Sc,r and Pµ (un) = 0. Hence, we have

Ea,µ(un) =
a

4
|∇un|

2
2 −

µ

q

(
1 −

N(q − 2)

8

)
|un|

q
q = Mc,µ + on(1).

It results to

a

4
|∇un|

2
2 ≤ (Mc,µ + 1) +

µ

q

(
1 −

N(q − 2)

8

)
cq− N(q−2)

2

2|Qq|
q−2
2

|∇un|
N(q−2)

2
2 , (3.5)

which gives {|∇un|2} is bounded, hence, {un} is bounded in H1(RN). From Lemma 2.2, up to

a subsequence, un → ũc,µ strongly in H1(RN) , and ũc,µ solves problem (1.1) for some λ̃c,µ < 0.

Moreover, we have
∫

RN |∇ũc,µ|2dx < R0 − ρ and ũc,µ is an interior local minimizer for Mc,µ.

Since any critical point of Ea,µ|Sc,r
lies in Pc,µ and Mc,µ = infPc,µ

Ea,µ, we see that ũc,µ is a

ground state for Ea,µ|Sc,r
. It only remains to prove that any ground state of Ea,µ|Sc,r

is a local

minimizer of Ea,µ in AR0
. Let u be a critical point of Ea,µ|Sc,r

with Ea,µ(u) = Mc,µ = infPc,µ
Ea,µ.

Since Ea,µ(u) < 0 < infP−
c,µ

Ea,µ, necessarily u ∈ P+
c,µ. Then Lemma 3.6 implies that P+

c,µ ⊂ AR0
.

This leads to |∇u|2 < R0, and as a consequence u is a local minimizer for Ea,µ|AR0
. Lemma 3.4

implies that Ea,µ(u) ≤ 0 for any u ∈ P+
c,µ, and |∇u|22 < R0. Hence, u is a local minimizer for

Ea,µ|AR0
.
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In the following, we focus on the existence of a second critical point for Ea,µ|Sc,r
. Let

Q̃p(x) := c
Qp(x)

|Qp|2
, Qτ

p(x) := c
e

N
2 τQp(eτx)

|Qp|2
for any τ > 0,

we have Q̃p(x), Qτ
p(x) ∈ Sc,r.

Lemma 3.8. If 2 < q < 2 + 4
N , p = 2 + 8

N , and c > c∗, we have
∫

RN |∇Qτ
p|

2dx → +∞ and

Ia,µ(Q̃p, τ) → −∞ as τ → +∞.

Proof. A straightforward calculation shows that

∫

RN
|∇Qτ

p|
2dx = e2τ

∫

RN
|∇Q̃p|

2dx.

From (1.5) with s = p and (2.1), we have

Ia,µ(Q̃p, τ)

=
ae2τ

2

∫

RN
|∇Q̃p|

2dx +
be4τ

4

(∫

RN
|∇Q̃p|

2dx

)2

−
e4τ

p

∫

RN
|Q̃p|

pdx − µ
eγqqτ

q

∫

RN
|Q̃p|

qdx

=
ae2τ

2

c2|∇Qp|22
|Qp|22

− µ
eγqqτ

q

cq

|Qp|
q
2

|Qp|
q
q + c4e4τ

(
b

4

|∇Qp|42
|Qp|42

−
1

4

2

c2

(
c

|Qp|2

) 8
N 2|Qp|

p
p

q|Qp|22

)

=
ac2e2τ

2
− µ

eγqqτ

q

cq

|Qp|
q
2

|Qp|
q
q +

bc4e4τ

4

(
1 −

( c

c∗

) 8−2N
N

)
,

from c > c∗, we have Ia,µ(Q̃p, τ) → −∞ as τ → +∞.

Lemma 3.9. Suppose that Ea,µ(u) < Mc,µ. Then the value tu defined by Lemma 3.4 is negative.

Lemma 3.10. It results that

σ̃c,µ = inf
u∈P−

c,µ

Ea,µ(u) > 0.

We introduce the minimax class

Γ :=

{
γ ∈ C([0, 1], Sc,r) : γ(0) ∈ P+

c,µ with
b

4
|∇γ(0)|42 <

1

p
|γ(0)|

p
p, Ea,µ(γ(1)) ≤ 2Mc,µ

}
,

then Γ ̸= ∅. In fact, we have sQ̃p
⋆ Q̃p ∈ P+

c,µ by Lemma 3.4 and Ea,µ(τ ⋆ Q̃p) → −∞ as τ → +∞

by Lemma 3.8, and τ 7→ τ ⋆ Q̃p is continuous. Thus, we can define the minimax value

σc,µ := inf
γ∈Γ

max
t∈[0,1]

Ea,µ(γ(t)).

Lemma 3.11. σc,µ > 0 can be achieved by some ûc,µ ∈ Sc,r, and ûc,µ solves problem (1.1) for some

λ̂c,µ < 0.

Proof. Since we want to use Lemma 2.1, next we verify the conditions of Lemma 2.1 one by

one. Let us set

F := Γ, A := γ([0, 1]), F := P−
c,µ and B := P+

c,µ ∪ E
2Mc,µ
a,µ ,

where Ec
a,µ := {u ∈ Sc,r : Ea,µ(u) ≤ c}.
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We first show that F is homotopy-stable family with extended boundary B: for any γ ∈ Γ

and any η ∈ C([0, 1]× Sc,r; Sc,r) satisfying η(t, u) = u, (t, u) ∈ (0 × Sc,r) ∪ ([0, 1]× B), we want

to get η(1, γ(t)) ∈ Γ. In fact, let γ̃(t) = η(1, γ(t)), then γ̃(0) = η(1, γ(0)) = γ(0) ∈ P+
c,µ.

Besides, γ̃(1) = η(1, γ(1)) = γ(1) ∈ E
2Mc,µ
a,µ . Therefore, we have η(1, γ(t)) ∈ Γ.

Next we verify the condition (2.2): by Lemma 3.5 and Lemma 3.9, we know F ∩ B = ∅ and

hence F\B = F. We claim that

A ∩ (F\B) = A ∩ F = γ([0, 1]) ∩ P−
c,µ ̸= ∅, ∀γ ∈ Γ. (3.6)

Indeed, since γ(0) ∈ P+
c,µ with b

4 |∇γ(0)|42 <
1
p |γ(0)|

p
p, we know sγ(0) = 0 (see the definition of

su in Lemma 3.4) and hence tγ(0) > sγ(0) = 0. On the other hand, since Ea,µ(γ(1)) ≤ 2Mc,µ <

Mc,µ (see Lemma 3.6), we by Lemma 3.8 have tγ(1) < 0. By Lemma 3.4, we know tγ(τ) is

continuous in τ. It follows that for every γ ∈ Γ there exists τγ ∈ (0, 1) such that tγ(τγ) = 0,

that is, γ(τγ) ∈ P−
c,µ, and hence A ∩ (F\B) ̸= ∅.

Finally, we verify the condition (2.3), that is, we need to show

inf
P−

c,µ

Ea,µ ≥ σc,µ ≥ sup

P+
c,µ∪E

2Mc,µ
a,µ

Ea,µ.

By (3.6), for every γ ∈ Γ, we have

max
t∈[0,1]

Ea,µ(γ(t)) ≥ inf
P−

c,µ

Ea,µ,

so that σc,µ ≥ σ̃c,µ. On the other hand, if u ∈ P−
c,µ with b

4 |∇u|42 <
1
p |u|

p
p, then for s1 ≫ 1 large

enough

γu : τ ∈ [0, 1] 7→ ((1 − τ)su + τs1) ⋆ u ∈ Sc,r

is a path in Γ. Since u ∈ P−
c,µ, we know tu = 0 is a global maximum point for Ia,µ, and deduce

that

Ea,µ(u) ≥ max
t∈[0,1]

Ea,µ (γu(t)) ≥ σc,µ,

which implies that σ̃c,µ ≥ σc,µ. Thus, we get σc,µ = σ̃c,µ > 0. By Lemma 3.5, we know

Ea,µ(u) ≤ 0 for any u ∈ P+
c,µ ∪ E

2Mc,µ
a,µ , hence we get (2.3). From Lemma 2.1, we obtain a Palais–

Smale sequence {un} for the functional Ea,µ on Sc,r and Pµ (un) → 0. Similar to (3.5), {un} is

bounded. Hence, from Lemma 2.2, up to a subsequence, un → ûc,µ strongly in H1(RN) , and

ûc,µ solves problem (1.1) for some λ̂c,µ < 0.

Proof of Theorem 1.1. Theorem 1.1 comes from Lemma 3.7 and Lemma 3.11.

4 Proof of Theorem 1.2

In this section, we deal with the case 2 + 4
N < q < p = 2 + 8

N , µ > 0, a ≥ 0 and prove

Theorem 1.2. We first consider the existence of normalized ground state solution for the

degenerate Kirchhoff-type equations, that is, a = 0, by the following minimization problem:

m0,c = inf
u∈Sc

Ea,µ(u).

And then, we discuss the the existence of normalized solutions for the nondegenerate

Kirchhoff-type equations, that is, a > 0.
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Lemma 4.1. If a ≥ 0, 2 + 4
N < q < p = 2 + 8

N and c < c∗, the functional Ea,µ is coercive on Sc.

Moreover, m0,c < 0.

Proof. Utilizing (1.5) and (1.6), we see that for any u ∈ Sc,

Ea,µ(u) ≥
b

4

(
1 −

( c

c∗

) 8−2N
N

)
|∇u|42 − µ

cq−qγq

2|Qq|
q−2
2

|∇u|
qγq

2 ,

hence, from 2 < γqq < 4 and c < c∗, we obtain that the functional Ea,µ is coercive on Sc.

For any u ∈ Sc, set ut(x) = t
N
2 u(tx) for any t > 0, then ut ∈ Sc and

m0,c ≤ E0,µ(u
t) =

b

4
|∇u|42t4 −

1

p
|u|

p
pt4 −

µ

q
|u|

q
qtγqq → 0− as t → 0+,

hence, from µ > 0 and 2 < γqq < 4, we obtain m0,c < 0.

In order to prove that the minimizer of ma,c can be obtained, we now give two lemmas.

Lemma 4.2. If ma,c < 0, we have ma,c < ma,γ + ma,c−γ for any 0 < γ < c.

Proof. The proof is similar to [19, Lemma 2.5], so we omit it.

Corollary 4.3. ma,c is strictly decreasing in c ∈ (0,+∞).

Lemma 4.4. Let c < c∗, m0,c := inf u ∈ ScE0,µ(u) has a radial minimizer ũ, and ũ solves problem

(1.1) for some λ̃ < 0.

Proof. Let {un} ⊂ Sc be a minimizing sequence of m0,c < 0, it can easily see that {un} is

bounded in H1(RN) by Lemma 4.1. Since E0,µ is even, we can suppose that un ≥ 0. Moreover,

let u∗
n be the symmetric radial decreasing rearrangement of un, up to subsequence, we may

assume that there exists ũ ∈ H1
r (R

N) such that

u∗
n ⇀ ũ in H1(RN), u∗

n → ũ in Ls(RN), s ∈ (2, 2∗), u∗
n(x) → ũ(x) a.e. in R

N . (4.1)

Hence, we have

E0,µ(ũ) ≤ lim inf
n→∞

E0,µ(u
∗
n) ≤ lim inf

n→∞
E0,µ(un) = m0,c, |ũ|22 ≤ c2.

From E0,µ(ũ) ≤ m0,c < 0, it follows that ũ ̸≡ 0. By Corollary 4.3, it must hold that

E0,µ(ũ) = m0,c, |ũ|22 = c2.

By the Lagrange multiplier rule, there is λ̃ ∈ R such that

−b|∇ũ|22∆ũ = λ̃ũ + |ũ|p−2ũ + µ|ũ|q−2ũ,

and then, combining with the Pohozaev identity, we have

λ̃|ũ|22 =
4 − p

p
|ũ|

p
p +

µ

2q
(N(q − 2)− 2q)|ũ|

q
q,

which implies λ̃ < 0 from 2 + 4
N < q < p = 2 + 8

N .
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Lemma 4.5. Let 2 + 4
N < q < p = 2 + 8

N , there is a constant ā = ā(b, c, q) > 0 such that for any

a ∈ (0, ā), we have

ma,c := inf
u∈Sc

Ea,µ(u) < 0.

Proof. From [21, Lemma 2.1], ũ satisfies the following Pohozeav identity:

b|∇ũ|42 −
4

p
|ũ|

p
p − µ

N(q − 2)

2q
|ũ|

q
q = 0,

and it follows that

m0,c = E0,µ(ũ)

=
b

4
|∇ũ|42 −

1

p
|ũ|

p
p − µ

1

q
|ũ|

q
q

=

(
1

4
−

2

N(q − 2)

)
b|∇ũ|42 +

(
8

N(q − 2)
− 1

)
1

p
|ũ|

p
p

< 0.

Hence, we obtain

Ea,µ(ũ) =
a

2
|∇ũ|22 + E0,µ(ũ)

=
a

2
|∇ũ|22 +

(
1

4
−

2

N(q − 2)

)
b|∇ũ|42 +

(
8

N(q − 2)
− 1

)
1

p
|ũ|

p
p

≤
a

2
|∇ũ|22 +

b

4

(
1 −

( c

c∗

) 8−2N
N

)(
1

4
−

2

N(q − 2)

)
|∇ũ|42.

Let

ā =
b

2

(
1 −

( c

c∗

) 8−2N
N

)(
2

N(q − 2)
−

1

4

)
|∇ũ|22,

for any a ∈ (0, ā), we have Ea,µ(ũ) < 0, and hence ma,c ⩽ Ea,µ(ũ) < 0.

Lemma 4.6. Let 0 < a < ā and c < c∗, ma,c := infu∈Sc
Ea,µ(u) has a radial minimizer ũc,a, and ũc,a

solves problem (1.1) for some λ̃c,a < 0.

Proof. The proof is similar with that of Lemma 4.4, and we omit it.

Lemma 4.7. Let 0 < a < ā, 2 + 4
N < q < p = 2 + 8

N and c < c∗, there exists 0 < Kc,a <
|∇ũc,a|22

2

small enough such that

0 < sup
u∈A

Ea,µ(u) < inf
u∈B

Ea,µ(u),

where A = {u ∈ Sc,r : |∇u|22 < Kc,a}, B = {u ∈ Sc,r : |∇u|22 = 2Kc,a}.

Proof. Let K > 0 be arbitrary but fixed and suppose that u, v ∈ Sc,r satisfies

|∇u|22 < K and |∇v|22 = 2K.

From (1.5), we have

Ea,µ(v)− Ea,µ(u) ≥ Ea,µ(v)−
a

2
|∇u|22 −

b

4
|∇u|42

≥
aK

2
+

3bK2

4
− b

( c

c∗

) 8−2N
N

K2 − µ
cq−qγq

|Qq|
q−2
2

(2K)
N(q−2)−4

4

= K

(
a

2
+

(
3

4
−
( c

c∗

) 8−2N
N

)
bK − µ

cq−qγq

|Qq|
q−2
2

(2K)
N(q−2)−4

4

)
,
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and

Ea,µ(u) ≥
a

2
|∇u|22 +

b

4

(
1 −

( c

c∗

) 8−2N
N

)
|∇u|42 − µ

cq−qγq

2|Qq|
q−2
2

|∇u|
qγq

2 .

In summary, we can choose sufficiently small constant 0 < Kc,a <
|∇ũc,a|22

2 such that

0 < sup
u∈A

Ea,µ(u) < inf
u∈B

Ea,µ(u)

where A = {u ∈ Sc,r : |∇u|22 < Kc,a}, B = {u ∈ Sc,r : |∇u|22 = 2Kc,a}.

Let u ∈ Sc,r be arbitrary and fixed, it is easy to see that |∇(τ ⋆ u)|22 → 0 and Ia,µ(u, τ) →

0+ as τ → 0+. Hence, there exists ûc,a ∈ Sc,r such that |∇ûc,a|22 < Kc,a and Ea,µ(ûc,a) > 0.

Combining with Lemma 4.7, we can construct the minimax value for the functionals Ea,µ

and Ia,µ:

γ̃c = inf
h̃∈Γ̃c

max
t∈[0,1]

Ia,µ(h̃(t))

with Γ̃c = {h̃ ∈ C([0, 1], Sc,r × R) : h̃(0) = (ûc,a, 0), h̃(1) = (ũc,a, 0)}, and

γc = inf
h∈Γc

max
t∈[0,1]

Ea,µ(h(t))

with Γc = {h ∈ C([0, 1], Sc,r) : h(0) = ûc,a, h(1) = ũc,a}, where ũc,a is obtained in Lemma 4.6.

We have the following lemma.

Lemma 4.8. If 0 < a < ā, 2 + 4
N < q < p = 2 + 8

N and c < c∗, we have

γ̃c = γc ≥ max{Ea,µ(ûc,a), Ea,µ(ũc,a)} := δc > 0.

Proof. For any h̃ ∈ Γ̃c, we can write it into

h̃(t) = (h̃1(t), h̃2(t)) ∈ Sc,r × R.

Setting h(t) = h̃2(t) ⋆ h̃1(t), we have h(t) ∈ Γc and

max
t∈[0,1]

Ia,µ(h̃(t)) = max
t∈[0,1]

Ea,µ(h̃2(t) ⋆ h̃1(t)) = max
t∈[0,1]

Ea,µ(h(t)),

which implies γ̃c ≥ γc. On the other hand, for any h ∈ Γc, set h̃(t) = (h(t), 0), we get h̃ ∈ Γ̃c

and

max
t∈[0,1]

Ia,µ(h̃(t)) = max
t∈[0,1]

Ea,µ(h(t)),

which provides that γc ≥ γ̃c. Thus, we have γ̃c =γc. Finally, γc ≥ max{Ea,µ(ûc,a), Ea,µ(ũc,a)}>0

follows from the definition of γc.

In what follows, we give the relationship between the Palais–Smale sequence for the func-

tional Ia,µ and that of the functional Ea,µ.

Lemma 4.9. There exists a sequence {(vn, τn)} ⊂ Sc,r × R
+ such that for n → ∞, we have

(1) Ia,µ(vn, τn) → γ̃c,
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(2) I′a,µ|Sc,r×R(vn, τn) → 0, i.e., it holds that

∂τ Ia,µ(vn, τn) → 0 and ⟨∂u Ia,µ(vn, τn), ϕ̃⟩ → 0

for any

ϕ̃ ∈ Tvn =

{
ϕ̃ ∈ H1(RN) :

∫

RN
vn ϕ̃dx = 0

}
.

In addition, setting un(x) = τn ⋆ vn(x), then for n → ∞ we get

(i) Ea,µ(un) → γc,

(ii) Pµ(un) → 0,

(iii) E′
a,µ|sc,r(un) → 0, i.e., it holds that ⟨E′

a,µ(un), ϕ⟩ → 0 for any

ϕ ∈ Tun =

{
ϕ ∈ H1(RN) :

∫

RN
un ϕdx = 0

}
.

Proof. According to the construction of γ̃c, we know that the conclusions (1) and (2) follow

directly from Ekeland’s Variational Principle. Next we mainly prove (i)–(iii).

For (i), it is obvious from

Ea,µ(un) = Ea,µ(τn ⋆ vn) = Ia,µ(vn, τn)

and γ̃c = γc.

For (ii), we first have

∂τ Ia,µ(vn, τn) = e2τn a|∇vn|
2
2 + e4τn b|∇vn|

4
2 − µeγqqτn γq|vn|

q
q − e4τn

4

p
|vn|

p
p

= a|∇(τn ⋆ vn)|
2
2 + b|∇(τn ⋆ vn)|

4
2 − µγq|τn ⋆ vn|

q
q −

4

p
|τn ⋆ vn|

p
p

= a|∇un|
2
2 + b|∇un|

4
2 − µγq|un|

q
q −

4

p
|un|

p
p

= Pµ(un).

Thus, (ii) is a consequence of ∂τ Ia,µ(vn, τn) → 0 as n → ∞.

For (iii), by the definition of the functional Ia,µ, we have

⟨∂u Ia,µ(vn, τn), ϕ̃⟩ = e2τn a
∫

RN
∇vn∇ϕ̃dx + e4τn b|∇vn|

2
2

∫

RN
∇vn∇ϕ̃dx

− µeγqqτn

∫

RN
|vn|

q−2vn ϕ̃dx − e4τn

∫

RN
|vn|

p−2vn ϕ̃dx,

where

ϕ̃ ∈ Tvn =

{
ϕ̃ ∈ H1(RN) :

∫

RN
vn ϕ̃dx = 0

}
.

On the other hand, for any

ϕ ∈ Tun =

{
ϕ ∈ H1(RN) :

∫

RN
un ϕdx = 0

}
,
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from un(x) = τn ⋆ vn(x), we have

⟨E′
a,µ(un), ϕ⟩

= a
∫

RN
∇un∇ϕdx + b|∇un|

2
2

∫

RN
∇un∇ϕ̃dx − µ

∫

RN
|un|

q−2un ϕdx −
∫

RN
|un|

p−2un ϕdx

= e2τn a
∫

RN
∇vne−

Nτn
2 ∇ϕ(e−τn x)dx + e4τn b|∇vn|

2
2

∫

RN
∇vne−

Nτn
2 ∇ϕ(e−τn x)dx

− µeγqqτn

∫

RN
|vn(x)|q−2vn(x)e−

Nτn
2 ϕ(e−τn x)dx

− e4τn

∫

RN
|vn(x)|p−2vn(x)e−

Nτn
2 ϕ(e−τn x)dx.

Setting

ϕ̃(x) = e−
Nτn

2 ϕ(e−τn x),

we get (iii) if we could show ϕ̃ ∈ Tvn . In fact, ϕ̃ ∈ Tvn comes from the following equalities:

0 =
∫

RN
un ϕdx =

∫

RN
e

Nτn
2 vn(e

τn x)ϕ(x)dx =
∫

RN
vn(x)e−

Nτn
2 ϕ(e−τn x)dx =

∫

RN
vn ϕ̃dx.

Lemma 4.10. γc > 0 can be achieved by some uc,a ∈ Sc,r, and uc,a is a radial solution of problem (1.1)

for some λc < 0.

Proof. By Lemma 4.1 and Lemma 4.9, we obtain a bounded Palais–Smale sequence {un} ⊂ Sc,r

for Ea,µ|Sc,r
at level γc > 0 such that Pµ(un) → 0 as n → ∞. By Lemma 2.2, we have un → uc,a

in H1
r (R

N), and uc,a ∈ Sc,r is a radial solution of problem (1.1) for some λc < 0.

Proof of Theorem 1.2. Theorem 1.2 comes from Lemma 4.4, Lemma 4.6 and Lemma 4.10.
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Abstract. We are interested in the existence of multiple solutions for a class of p(x)-curl
systems arising in electromagnetism. We work on variable exponent Sobolev spaces and
by using critical point theory and the variational method, we investigate the existence
of at least one, two, and three solutions to the problem.
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1 Introduction

The study of partial differential equations or systems with variable exponents is a recent re-

search topic that developed quickly. It started when it was understood that variable exponents

give better descriptions of the behavior of certain materials or phenomena.

Let Ω ⊂ R
3, is a bounded simply connected domain with a C1,1 boundary denoted by ∂Ω.

In what follows, vector functions and spaces of vector functions will be denoted by boldface

symbols. We will use n to denote the outward unitary normal vector to ∂Ω and ∂x to denote

the partial derivative of a function with respect to the variable x.

The divergence of a vector function v = (v1, v2, v3) is denoted by

∇.v = ∂x1
v1 + ∂x2 v2 + ∂x3 v3

and the curl of v by

∇× v = (∂x2 v3 − ∂x3 v2, ∂x3 v1 − ∂x1
v3, ∂x1

v2 − ∂x2 v1).

We recall the identity

−∆v = ∇× (∇× v)−∇.(∇.v),

where ∆v = (∆v1, ∆v2, ∆v3) and ∆vi = ∇.(∇vi), i = 1, 2, 3.

BCorresponding author. Email: afrouzi@umz.ac.ir
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In this article, We are interested in the existence of multiple solutions for the following

intriguing system

{

∇× (|∇ × u|p(x)−2∇× u) + a(x)|u|p(x)−2u = λ f (x, u), ∇.u = 0 in Ω,

|∇ × u|p(x)−2∇× u × n = 0, u.n = 0 on ∂Ω,
(1.1)

where λ ∈ (0,+∞), Ω ⊂ R
3, is a bounded simply connected domain with a C1,1 boundary

denoted by ∂Ω. We will use n to denote the outward unitary normal vector to ∂Ω. a is a

functional in L∞ and there exist a0, a1 > 0 such that

a0 < a(x) < a1, ∀x ∈ Ω.

p ∈ C(Ω̄), with

3 < p− = min
x∈Ω

p(x) ≤ p+ = max
x∈Ω

p(x) < ∞,

and p(x) satisfies logarithmic continuity: there exists a function ω : R
+
0 → R

+
0 such that

∀x, y ∈ Ω̄, |x − y| < 1, |p(x)− p(y)| ≤ ω(|x − y|), and lim
τ→0+

ω(τ) log
1

τ
= C < ∞. (1.2)

The interest in transposing the problems into new problems with variable exponents is linked

to a large scale of applications that are involving some nonhomogeneous materials. It was

established that for appropriate treatment of these materials, we can not rely on the classical

Sobolev space and that we have to allow the exponent to vary instead. Working with variable

exponents, hence working in the framework of variable exponent spaces, opens the door for

multiple applications. The variable exponent problems arise in many different applications,

such as nonlinear elastic [26], electrorheological fluids [22], image processing [13] and other

physics phenomena [2, 27]. The literature on variable exponent Sobolev spaces and their

applications is quite large, here we just quote a few, see [5,6,12,13,19,20,23] and the references

therein. For the basic properties of variable exponent Sobolev spaces and their applications to

partial differential equations, we refer the readers to [14, 21].

In [4], Antontsev, Miranda, and Santos studied the qualitative properties of solutions for

the following p(x, t)-curl systems:















∂tu +∇× (|∇ × u|p(x,t)−2∇× u) = λ f (u), ∇.u = 0 in Ω × (0, T),

|∇ × u|p(x,t)−2∇× u × n = 0, u.n = 0 on ∂Ω × (0, T),

u(x, 0) = u0(x) in Ω,

(1.3)

where ∇× (|∇ × u|p(x,t)−2∇× u) is the p(x, t)-curl operator, f (u) = λu(
∫

Ω
|u|2dx)

ρ−2
2 with

λ ∈ {−1, 0, 1} and ρ > 0 is constant. The authors introduced a suitable variable exponent

Sobolev space and obtained the existence of local or global weak solutions for system (1.3)

by using Galerkin’s method. The authors also studied the blow-up and finite-time extinction

properties of solutions. When p(x, t) ≡ p, then problem (1.3) turns into a model from the

generalized Maxwell’s equations in the electromagnetic field theory. More precisely, u denotes

the magnetic field, ∇ × u denotes the total current density, f denotes an internalmagnetic

current, and ∇× (|∇ × u|p−2∇× u) denotes the electric field.

Motivated by the above works, we study the existence and multiplicity of solutions for

systems (1.1) with general nonlinearities. To the best of our knowledge, this is the first time
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to deal with the existence of steady-state solutions for systems (1.1) involving the p(x)-curl

operator by applying variational methods different from that used in [24].

Xianga, Wanga, and Zhangc [24] investigated the existence and multiplicity of solutions

to problem (1.1) in the case λ = 1. They studied the existence of ground state solutions

and infinitely many solutions for (1.1) in the case λ = 1 with the nonlinearity f satisfying

superlinear growth conditions is obtained by combining the mountain pass theorem with the

Nehari manifold method, and a variant of the mountain pass theorem.

In this paper, we obtain three different results about the existence of weak solutions to

the problem (1.1) by using critical point theorems established in [8, 9, 11]. The first aim of

this paper is to provide an estimate of the positive interval for the parameter λ in which the

problem (1.1) possesses at least one nontrivial weak solution. We also wish to consider the

existence of two solutions to our problem by using a result of Bonanno [9, Theorem 3.2]. In

a recent paper, Bonanno and Chinnì [10] studied the existence of at least two distinct weak

solutions to a problem involving a p(x)-Laplacian by applying critical point theory. Our first

main result will require the (P.S.)[r] condition, while in our second one, we will ask that the

(AR)-condition holds and use it to ensure that the (usual) (PS)-condition is satisfied. We refer

the reader to the papers [7, 10, 17, 18] where this approach was applied successfully. Finally,

our third goal is to obtain the existence of three solutions to (1.1); this problem is less studied

by researchers. In this case, we consider problem (1.1) where the nonlinearity f has subcritical

growth, and we apply variational methods and critical point theory. The main tool used is the

critical point theorem of Bonanno and Marano [11, Theorem 3.6].

The remainder of this paper is organized as follows. First, in Section 2, we recall briefly

some basic results for fractional Sobolev spaces. In Section 3, we obtain the existence of at

least one, two, or three nontrivial weak solutions to the problem (1.1) provided the parameter

λ belongs to a positive interval to be determined.

2 Preliminaries

In this section, we introduce some definitions and results of Sobolev spaces with variable

exponents.

Let Ω ⊂ R
3 be a bounded simply connected domain with a C1,1 boundary denoted by ∂Ω.

Let p ∈ C(Ω̄). Set

p− = min
x∈Ω̄

p(x), and p+ = max
x∈Ω̄

p(x), with 1 < p− ≤ p+ < ∞.

We define the variable exponent Lebesgue space Lp(·)(Ω) as the set of all measurable functions

u : Ω → R for which the convex modular

ρp(x)(u) =
∫

Ω

|u|p(x)dx,

is finite. We define a norm, the so-called Luxemburg norm, on this space by the formula

∥u∥p(·) = inf
{

γ > 0 : ρp(·)

(u

γ

)

≤ 1
}

.

The space (Lp(·)(Ω), ∥.∥Lp(·)(Ω)) is a separable and reflexive Banach space. Moreover, the space

Lp(·)(Ω) is uniformly convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω),

where 1
p(·)

+ 1
p′(·)

= 1.
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Finally, we have the Hölder type inequality:

∣

∣

∣

∣

∫

Ω

uvdx

∣

∣

∣

∣

≤

(

1

p−
+

1

(p′)−

)

∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω). An important role in manipulating the generalized

Lebesgue spaces is played by the ρp(·)-modular of the space Lp(·)(Ω), we have the following

result.

Proposition 2.1 (See [16]). If u ∈ Lp(·)(Ω), un ∈ Lp(·)(Ω) and p+ < ∞, then

(i) if ∥u∥Lp(·)(Ω) > 1, then ∥u∥
p−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥

p+

Lp(·)(Ω)
;

(ii) if ∥u∥Lp(·)(Ω) < 1, then ∥u∥
p+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥

p−

Lp(·)(Ω)
;

(iii) limn→∞ ∥un − u∥p(·) = 0 ⇔ limn→∞ ρp(·)(un − u) = 0.

Define the variable exponent Sobolev space W1,p(·)(Ω) by

W1,p(·)(Ω) =
{

u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

equipped with the norm

∥u∥W1,p(·)(Ω) = ∥u∥Lp(·)(Ω) + ∥∇u∥Lp(·)(Ω).

The space (W1,p(·)(Ω), ∥.∥W1,p(·)(Ω)) is a separable and reflexive Banach space. We consider also

W
1,p(·)
0 (Ω) =

{

u ∈ W1,p(·)(Ω) : u |∂Ω)= 0
}

,

with the norm

∥u∥
W

1,p(·)
0 (Ω)

= ∥∇u∥Lp(·)(Ω).

Remark 2.2. Assuming (1.2), we have C∞

0 (Ω) is dense in W
1,p(·)
0 (Ω) and this last space can

be defined as the completion of C∞

0 (Ω) with respect to the norm ∥.∥W1,p(·)(Ω). The density of

smooth functions in the space W
1,p(·)
0 (Ω) is crucial for the understanding of these spaces. The

condition of log-continuity of p(·) is the best known and the most frequently used sufficient

condition for the density of C∞

0 (Ω) in W
1,p(·)
0 (Ω) (see [3, 14]). Although this condition is not

necessary and can be substituted by other conditions (see [14, Chapter 9] for a discussion of

this question) we keep it throughout the paper for the sake of simplicity of presentation.

Also, we observe that W
1,p(·)
0 (Ω) ⊆ W

1,p−

0 (Ω), the Sobolev inequality

∥u∥Lq(·)(Ω) ≤ C∥u∥W1,p(·)(Ω),

holds, with 1 ≤ q(x) <
3p(x)

3−p(x)
if p− < 3, any q if p− = 3, and q = ∞ if p− > 3 Here

C = C(p−, Ω) is a positive constant.

Now, we define the space wp(x)(Ω)

Let Lp(x)(Ω) = Lp(x)(Ω)× Lp(x)(Ω)× Lp(x)
Ω and define

Wp(x)(Ω) = {v ∈ Lp(x)(Ω) : ∇× v ∈ Lp(x)(Ω),∇.v, v.n|∂Ω = 0}
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where n denotes the outward unitary normal vector to ∂Ω. Equip Wp(x)(Ω) with the norm

∥v∥Wp(x)(Ω) = ∥v∥Lp(x)(Ω) + ∥∇× v∥Lp(x)(Ω).

If p− > 1, by [4, Theorem 2.1], Wp(x)(Ω) is a closed subspace of W
1,p(x)
n (Ω), where

W
1,p(x)
n (Ω) = {v ∈ Wp(x)(Ω) : v.n|∂Ω = 0}

and

W1,p(x)(Ω) = W1,p(x)(Ω)× W1,p(x)(Ω)× W1,p(x)
Ω.

Thus, we have the following theorem.

Theorem 2.3 (see [4, Theorem 2.1]). Assume that 1 < p− ≤ p+ < ∞ and p satisfies (1.2). Then

Wp(x)(Ω) is a closed subspace of W
1,p(x)
n (Ω). Moreover, if p− >

6
5 , then ∥∇× .∥Lp(x)(Ω) is a norm in

Wp(x)(Ω) and there exists C = C(N, p−, p+) > 0 such that

∥v∥Wp(x)(Ω) ≤ C∥∇× v∥Lp(x)(Ω).

Remark 2.4. By Remark 2.2 and Theorem 2.3, we know the embedding Wp(x)(Ω) →֒ C∞

0 (Ω)

is compact, with 3 < p− ≤ p+ < ∞, for all x ∈ Ω̄. Moreover, (Wp(x)(Ω), ∥.∥Wp(x)(Ω)) is a

reflexive Banach space. We set

c0 = sup
u∈Wp(x)(Ω)

∥u∥∞

∥u∥Wp(x)(Ω)

.

Definition 2.5 ([8, p. 2993], [9, p. 210]). Let Φ and Ψ be two continuously Gâteaux differen-

tiable functionals defined on a real Banach space X and fix r ∈ R. The functional I = Φ − Ψ is

said to verify the Palais-Smale condition cut off upper at r, denoted by (P.S.)[r] if any sequence

{un}n∈N in X such that

(1) {I(un)} is bounded;

(2) limn→∞ ∥I′(un)∥X∗ = 0;

(3) Φ(un) < r for each n ∈ N

has a convergent subsequence.

If only conditions (1) and (2) hold, then I = Φ − Ψ is said to satisfy the (usual) Palais–

Smale (P.S.) condition.

We next wish to define what is meant by a weak solution to our problem.

Definition 2.6. We say that a function u ∈ Wp(x)(Ω) is a weak solution of the problem (1.1) if

∫

Ω

|∇ × u|p(x)−2∇× u.∇× vdx +
∫

Ω

a(x)|u|p(x)−2u.vdx =
∫

Ω

f (x, u).vdx,

holds for all v ∈ Wp(x)(Ω).
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Remark 2.7. Let u be a classical solution of (1.1). Let e = |∇ × u|p(x)−2∇ × u and v be a

smooth function in Ω, then we obtain

∇(e × v) = v.∇× e − e.∇× v. (2.1)

Multiplying the first equation of (1.1) by v and integrating over Ω, we get

∫

Ω

∇× e.vdx +
∫

Ω

a(x)|u|p(x)−2u.vdx =
∫

Ω

f (x, u).vdx.

Using (2.1) and the boundary conditions in (1.1) and integrating by parts, we have

∫

Ω

e.∇× vdx +
∫

Ω

a(x)|u|p(x)−2u.vdx =
∫

Ω

f (x, u).vdx,

which means that Definition 2.6 is correct.

Assume that f : Ω × R
3 → R

3 is a Carathédory function. We set

F(x, t) =
∫ t

0
f (x, ξ)dξ for all (x, t) ∈ Ω × R

3.

The variational structure of this problem leads us to introduce We define the functionals

Φ, Ψ : Wp(x)(Ω) → R defined by

Φ(u) :=
∫

Ω

|∇ × u|p(x) + a(x)|u|p(x)

p(x)
dx (2.2)

and

Ψ(u) :=
∫

Ω

F(x, u)dx. (2.3)

Lemma 2.8 ([24, Lemmas 3.1. and 3.2.]). The functional Φ is of class C1 and

⟨Φ′(u), v⟩ =
∫

Ω

|∇ × u|p(x)−2∇× u.∇× vdx +
∫

Ω

a(x)|u|p(x)−2u.vdx

for every u, v ∈ Wp(x)(Ω). For each u ∈ Wp(x)(Ω), Φ
′(u) ∈ (Wp(x)(Ω))∗, where (Wp(x)(Ω))∗ is

the dual space of Wp(x)(Ω). Moreover, Φ is a convex functional in Wp(x)(Ω).

The functional Ψ is of class C1 and

⟨Ψ′(u), v⟩ =
∫

Ω

f (x, u).vdx

for every u, v ∈ Wp(x)(Ω).

By Lemma 2.8, we know that Iλ = Φ − λΨ is of class C1 and

⟨I′λ(u), v⟩ =
∫

Ω

|∇ × u|p(x)−2∇× u.∇× vdx +
∫

Ω

a(x)|u|p(x)−2u.vdx − λ
∫

Ω

f (x, u).vdx,

for all u, v ∈ Wp(x)(Ω). Hence a critical point of Iλ is a (weak) solution of (1.1).
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3 Main results

We begin by presenting a result that guarantees the existence of at least one solution to prob-

lem (1.1).

Theorem 3.1. Let f : Ω × R
3 → R

3 be a Carathédory function and assume that there exist two

positive constants τ and δ, such that:

(H1) p+c
p−

0 a1 meas(Ω)max{δp− , δp+} < p− min{1, a0}τp− ;

(H2)
∫

Ω
sup|t|≤τ F(x,t)dx

τp <
p− min{1,a0}

∫

Ω
F(x,δ)dx

p+c
p−

0 a1 meas(Ω)max{δp− ,δp+}
;

(H3) infx∈Ω,t∈R3,|t|=1 F(x, t) > 0.

Then, for each

λ ∈ Λw :=

]

a1 meas(Ω)max{δp− , δp+}

p−
∫

Ω
F(x, δ)dx

,
min{1, a0}τp−

p+c
p−

0

∫

Ω
sup|t|≤τ F(x, t)dx

[

, (3.1)

problem (1.1) admits at least one nontrivial solution uλ ∈ Wp(x)(Ω) such that ∥uλ∥∞ ≤ τ.

Proof. Our goal is to apply [9, Theorem 2.3] to problem (1.1). To this end, take the real Banach

space Wp(x)(Ω) with the norm as defined in Section 2, Φ, Ψ be the functionals defined in (2.2)

and (2.3). We can see Φ, Ψ are of C1 in Lemma 2.8. For each u ∈ Wp(x)(Ω) we have

min{1, a0}

p+
∥u∥

p(x)

Wp(x)(Ω)
≤ Φ(u) ≤

max{1, a1}

p−
∥u∥

p(x)

Wp(x)(Ω)
. (3.2)

From the first inequality in (3.2), it follows that Φ is coercive. To show that Φ
′ admits a

continuous inverse, in view of [25, Theorem 26.A(d)], it suffices to show that Φ
′ is coercive,

hemicontinuous, and uniformly monotone. For any u ∈ Wp(x)(Ω) we have

⟨Φ′(u), u⟩

∥u∥Wp(x)(Ω)

=

∫

Ω
|∇ × u|p(x)dx +

∫

Ω
a(x)|u|p(x)dx

∥u∥Wp(x)(Ω)

≥
min{1, a0}∥u∥

p(x)

Wp(x)(Ω)

∥u∥Wp(x)(Ω)

.

By Proposition 2.1 for any u ∈ Wp(x)(Ω)

lim
∥u∥

Wp(x)(Ω)
→∞

⟨Φ′(u), u⟩

∥u∥Wp(x)(Ω)

≥ lim
∥u∥

Wp(x)(Ω)
→∞

(min{1, a0}∥u∥
p−−1

Wp(x)(Ω)
) = ∞,

i.e. Φ
′

is coercive. The fact that Φ
′

is hemicontinuous can be verified using standard argu-

ments. (see, for example, [18]).

Finally, we show that Φ
′

is uniformly monotone. First, recall the inequality that for any

ξ, ψ ∈ R,

(|ξ|r−2ξ − |ψ|r−2ψ)(ξ − ψ) ≥ 2−r|ξ − ψ|r, for all r > 2. (3.3)
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Thus, for every u, v ∈ X, we deduce that

⟨Φ′(u)− Φ
′(v), u − v⟩

=
∫

Ω

(|∇ × u|p(x)−2∇× u − |∇× v|p(x)−2∇× v)(∇× u −∇× v)dx

+
∫

Ω

a(x)(|u|p(x)−2u − |v|p(x)−2v)(u − v)dx

≥ 2−p+(
∫

Ω

|∇ × u −∇× v|p(x)dx +
∫

Ω

a(x)|u − v|p(x)dx)

≥ min{2−p+ , a02−p+}(
∫

Ω

|∇ × u −∇× v|p(x)dx +
∫

Ω

|u − v|p(x)dx)

≥







c1∥u − v∥
p−

Wp(x)(Ω)
if ∥u − v∥Lp(x)(Ω), ∥∇× (u − v)∥Lp(x)(Ω) > 1,

c2∥u − v∥
p+

Wp(x)(Ω)
if ∥u − v∥Lp(x)(Ω), ∥∇× (u − v)∥Lp(x)(Ω) < 1,

the last inequality is obtained from Proposition 2.1. It is easy to check that Φ
′ is uniformly

monotone. Moreover, Ψ
′ is a compact operator. Indeed, it is enough to show that Ψ

′
is strongly

continuous on Wp(x)(Ω). For this end, for fixed u ∈ Wp(x)(Ω), let un → u weakly in Wp(x)(Ω)

as n → ∞, then un(x) converges uniformly to u(x) on Ω as n → ∞; see [25]. Since f is

continuous in R
3 for every x ∈ Ω, so

f (x, un) → f (x, u),

as n → ∞. Thus Ψ
′
(un) → Ψ

′
(u) as n → ∞. Hence we proved that Ψ

′
is a compact operator by

[25, Proposition 26.2]. This ensures that the functional Iλ = Φ − λΨ verifies (P.S.)[r] condition

for each r > 0 (see [8, Proposition 2.1]). To apply [9, Theorem 2.3] to the functional Iλ, first

note that infX Φ = Φ(0) = Ψ(0) = 0. We need to show that there is an r > 0 and w ∈ X with

0 < Φ(w) < r such that
sup

Φ(u)≤r Ψ(u)

r <
Ψ(w)
Φ(w)

. To this end, set

r :=
min{1, a0}

p+

(

τ

c0

)p−

,

and define w ∈ Wp(x)(Ω) by

w(x) =

{

δ, if x ∈ Ω,

0, otherwise.
(3.4)

One has

Φ(w) =
∫

Ω

a(x)

p(x)
|w(x)|p(x)dx ≤

meas(Ω)a1

p−
max{δp+ , δp−}. (3.5)

Hence, it follows from (H1) that 0 < Φ(w) < r. If u ∈ Φ
−1([0, r]), by Proposition 2.1 (i) and

(3.2), for any u ∈ Wp(x)(Ω) with ∥u∥Wp(x)(Ω) > 1, we obtain

min{1, a0}

p+
∥u∥

p−

Wp(x)(Ω)
≤ Φ(u) ≤

min{1, a0}

p+

(

τ

c0

)p−

.

Similarly, by Proposition 2.1 (ii) and (3.2), for any u ∈ Wp(x)(Ω) with ∥u∥Wp(x)(Ω) < 1, we

obtain
min{1, a0}

p+
∥u∥

p+

Wp(x)(Ω)
≤ Φ(u) ≤

min{1, a0}

p+

(

τ

c0

)p−

.
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Then

∥u∥Wp(x)(Ω) ≤
τ

c0
.

Hence, we obtain

|u(x)| ≤ ∥u∥L∞(Ω) ≤ c0∥u∥Wp(x)(Ω) ≤ τ ∀x ∈ Ω.

Hence, for each u ∈ Φ
−1((−∞, r])

sup
Φ(u)≤r Ψ(u)

r
=

supu∈Φ−1(−∞,r]

∫

Ω
F(x, u)dx

min{1,a0}
p+ ( τ

c0
)p−

≤
c

p−

0 p+
∫

Ω
sup|t|≤τ F(x, t)dx

min{1, a0}τp−
. (3.6)

Moreover, thanks to (H2) and (3.5), one has

Ψ(w)

Φ(w)
≥

p−
∫

Ω
F(x, δ)dx

a1 meas(Ω)max{δp− , δp+}

≥
c

p−

0 p+
∫

Ω
sup|t|≤τ F(x, t)dx

min{1, a0}τp−

≥
sup

Φ(u)≤r Ψ(u)

r
,

which means that Φ(v̄)
Ψ(v̄)

≥ r
sup

Φ(x)≤r Ψ(u)
holds for some v̄ ∈ Wp(x)(Ω). Hence, for each λ ∈

]

Φ(w)
Ψ(w)

, r
sup

Φ(x)≤r Ψ(u)

[

, the functional Iλ admits at least one critical point uλ with

0 < Φ(uλ) < r

which in turn is a nontrivial solution of problem (1.1) such that ∥uλ∥∞ < τ.

Our second aim in this paper is to obtain a result on the existence of two distinct solutions

to problem (1.1). The following theorem is obtained by applying [9, Theorem 3.2].

Theorem 3.2. Let f : Ω × R
3 → R

3 be a Carathédory function, and assume that

(H4) (Ambrosetti–Rabinowitz Condition) there exist µ > p+ and R > 0 such that

0 < µF(x, t) ≤ t f (x, t) ∀x ∈ Ω and t ∈ R
3\{0}, with |t| ≥ R.

Then, for each

λ ∈ Λr :=

]

0,
min{1, a0}τp−

p+c
p−

0

∫

Ω
sup|t|≤τ F(x, t)dx

[

,

the problem (1.1) admits at least two nontrivial solutions.

Proof. Let Φ, Ψ be the functionals defined in Theorem (2.2) and (2.3). Notice that they satisfy

all regularity assumptions required in [9, Theorem 3.2]). Arguing as in the proof of Theorem

3.1, choosing

r =
min{1, a0}

p+

(

τ

c0

)p−

,
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for each λ ∈ Λr we obtain

sup
Φ(u)≤r Ψ(u)

r
≤

c
p−

0 p+
∫

Ω
sup|t|≤τ F(x, t)dx

min{1, a0}τp−
<

1

λ

(see (3.6)). Now, from condition (H4), a straight forward calculation shows that there are

positive constants m and C such that

F(x, t) ≥ m|t|µ − C for all x ∈ Ω, t ∈ R
3.

Hence, for every λ ∈ Λr, u ∈ Wp(x)(Ω) \ {0} and t > 1, we obtain

Iλ(tu) = Φ(tu)− λ
∫

Ω

F(x, tu)dx

≤
tp+

p−

∫

Ω

(|∇ × u|p(x) + a(x)|u|p(x))dx

− mλtµ
∫

Ω

|u|µdx + Cλ meas(Ω).

Since µ > p+, this condition guarantees that Iλ is unbounded from below. To show that Iλ

satisfies the (PS)-condition, let {un}n∈N ⊂ Wp(x)(Ω) such that {Iλ(un)}n∈N is bounded and

I′λ,µ(un) → 0 in (Wp(x)(Ω))∗ as n → +∞. Then, there exists a positive constant s0 such that

|Iλ(un)| ≤ s0, ∥I′λ(un)∥ ≤ s0 ∀n ∈ N.

Using also the condition (H4), and the definition of I′λ, we see that, for all n ∈ N, there exists

D > 0 such that

µs0 + s0∥un∥Wp(x)(Ω) ≥ µIλ(un)− I′λ(un)un

≥

(

µ

p+
− 1

)

∫

Ω

|∇ × u|p(x) + a0

(

µ

p+
− 1

)

∫

Ω

|u|p(x)dx

+ λ
∫

Ω

( f (x, un)un − µF(x, un)) dx

≥

(

µ

p+
− 1

)

min{1, a0}∥un∥
p(x)

Wp(x)(Ω)
− D.

Since µ > p+ it follows {un}n∈N is bounded. Consequently, since Wp(x)(Ω) is a reflexive

Banach space we have, up to taking a subsequence if necessary,

un ⇀ u in Wp(x)(Ω).

By the fact that I′λ(un) → 0 and un ⇀ u in Wp(x)(Ω), we obtain

(I′λ(un)− I′λ(u))(un − u) → 0.

Furthermore,
∫

Ω

( f (x, un)− f (x, u))(un − u)dx → 0, as n → +∞.
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An easy computation shows that

⟨I′λ(un)− I′λ(u), un − u⟩

=
∫

Ω

(|∇ × un|
p(x)−2∇× un − |∇× u|p(x)−2∇× u)(∇× un −∇× u)dx

+
∫

Ω

a(x)(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx

− λ
∫

Ω

( f (x, un)− f (x, u))(un − u)dx

≥ 2−p+∥∇× (un − u)∥
p(x)

Lp(x)(Ω)
+ a02−p+∥un − u∥

p(x)

Lp(x)(Ω)

− λ
∫

Ω

( f (x, un)− f (x, u))(un − u)dx

≥ min{2−p+ , a02−p+}∥un − u∥
p(x)

Wp(x)(Ω)
− λ

∫

Ω

( f (x, un)− f (x, u))(un − u)dx.

The last of the above inequality is obtained by using (3.3). Combining the last relation with

Proposition 2.1 (iii), we find that the sequence {un}n∈N converges strongly to u in Wp(x)(Ω).

Therefore, Iλ,µ satisfies the (PS)-condition and so all hypotheses of [9, Theorem 3.2], are

verified. Hence, for each λ ∈ Λr the function Iλ admits at least two distinct critical points that

are solutions of the problem (1.1).

In our final result, we discuss the existence of at least three solutions to the problem (1.1).

Theorem 3.3. Let f : Ω × R
3 → R

3 be a Carathédory function, and let (H2), (H3) in Theorem 3.1

hold. Moreover, assume that there exist two positive constants τ and δ, such that

(H5) a0c
p−

0 meas(Ω)min{δp− , δp+} > τp− min{1, a0},

(H6) there exist constants c > 0, q ∈ C(Ω̄) and 1 < q(x) ≤ q+ < p− in Ω̄ such that

|F(x, t)| ≤ c(1 + |t|q(x)) ∀(x, t) ∈ Ω × R
3.

Then for every λ ∈ Λw as in (3.1), the problem (1.1) admits at least three distinct solutions.

Proof. Our aim is to apply [11, Theorem 3.6]. We consider the functionals Φ and Ψ, defined

in (2.2) and (2.3). Once again, they satisfy the regularity assumptions needed in [11, Theorem

3.6]. Now, we argue as in the proof of Theorem 3.1 with w(x) defined in (3.4), and

r =
min{1, a0}

p+

(

τ

c0

)p−

.

In view of (H5) we have Φ(w) > r > 0. Therefore, from (H2), inequality (3.6) holds, and so

sup
Φ(u)≤r Ψ(u)

r
<

Ψ(v)

Φ(v)

holds for some v̄ ∈ Wp(x)(Ω).

Now, we prove that, for each λ ∈ Λw the functional Iλ is coercive. By using inequality (3.2),

conditions (H6), and Sobolev embedding theorem, we easily obtain for all u ∈ Wp(x)(Ω):

Iλ(u) ≥
min{1, a0}

p+
∥u∥

p−

Wp(x)(Ω)
− λ

∫

Ω

F(x, u)dx

≥
min{1, a0}

p+
∥u∥

p−

Wp(x)(Ω)
− λc∥u∥

q+

Wp(x)(Ω)
− λc meas(Ω).
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Since p− > q+ we see that Iλ → +∞ as ∥u∥Wp(x)(Ω) → +∞, so the functional Iλ is coercive.

Thus, for each λ ∈ Λw, [11, Theorem 3.6] implies that the functional Iλ admits at least three

critical points in Wp(x)(Ω) that are solutions of the problem (1.1).
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Abstract. We consider the existence of normalized solutions for a fractional coupled
Hartree system, with the upper critical exponent in the sense of the Hardy–Littelwood–
Sobolev inequality. Particularly, in an L2-subcritical regime or an L2-supercritical
regime, we establish the existence of positive normalized solutions for the two cases,
respectively. Furthermore, we prove the nonexistence of positive normalized solutions,
under the nonlinearities satisfying the Sobolev critical growth.
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1 Introduction

This paper is concerned with the existence of solutions (λ1, λ2, u, v) ∈ R2 × Hs(RN , R2) to the

following fractional critical Hartree system:

{
(−∆)su = λ1u + µ1|u|

p−2u + βr1|u|
r1−2u|v|r2 + (Iα ∗ |v|

2∗α,s)|u|2
∗
α,s−2u, in RN ,

(−∆)sv = λ2v + µ2|v|p−2v + βr2|v|r2−2v|u|r1 + (Iα ∗ |u|
2∗α,s)|v|2

∗
α,s−2v, in RN ,

(1.1)

satisfying the additional conditions
∫

RN
u2dx = a2, and

∫

RN
v2dx = b2. (1.2)

The masses a, b > 0 are prescribed and the parameters µ1, µ2, β > 0. Here (−∆)s is the

fractional Laplacian, s ∈ (0, 1), 2s < N ≤ 4s, α ∈ (0, N), 2∗α,s = 2N−α
N−2s is the upper critical

exponent due to the Hardy–Littlewood–Sobolev inequality, 2∗s = 2N
N−2s is the fractional Sobolev

critical exponent, r1, r2 > 1, p, r1 + r2 ∈ (2, 2∗s ] with p < r1 + r2 and ∗ stands for the convolution

on RN with Iα : RN \ {0} → R is the Riesz potential,

Iα(x) =
AN,α

|x|α
, with AN,α =

Γ( α
2 )

2N−απ
N
2 Γ(N−α

2 )
.

BCorresponding author. Email: shbdeng@swu.edu.cn
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The fractional Laplacian operator (−∆)s is defined for any u : RN → R sufficiently smooth by

(−∆)su(x) = C(N, s)P.V.
∫

RN

u(x)− u(y)

|x − y|N+2s
dy,

where P.V. stands for the Cauchy principal value and C(N, s) is a positive constant depend-

ing only on N and s. Recently, a great attention has been devoted to study the nonlinear

problems involving fractional elliptic operators, both for the pure mathematical research and

applications. We refer to [3, 11, 16, 37] for a simple introduction to basic properties of the frac-

tional Laplacian operator and concrete applications based on variational methods. Moreover,

fractional Choquard type equation with critical growth has been studied by many researchers,

see [1, 22, 23, 35, 36] and references therein.

The problem under investigation comes from the research of solitary waves for the follow-

ing physical model:

{
(−∆)sφ1 = −i

∂φ1

∂t + µ1|φ1|
p−2φ1 + βr1|φ1|

r1−2φ1|φ2|r2 + (Iα ∗ |φ2|
2∗α,s)|φ1|

2∗α,s−2φ1,

(−∆)sφ2 = −i
∂φ2

∂t + µ2|φ2|p−2φ2 + βr2|φ2|r2−2φ2|φ1|
r1 + (Iα ∗ |φ1|

2∗α,s)|φ2|
2∗α,s−2φ2,

(1.3)

where i2 = −1 and φj(j = 1, 2) is the wave function of the jth component, and µj, β denote

the intra-species and intra-species scattering lengths. In particular, the interaction of states

is attractive if β > 0, while the interaction of states is repulsive when β < 0. Solitary wave

solutions of system (1.3) are solutions having the form

φ1(x, t) = eiλ1tu(x), φ2(x, t) = eiλ1tv(x),

where λ1, λ2 ∈ R are the chemical potentials and (u, v) solves (1.1). Since φ1(x, t), φ2(x, t)

retain their masses over time, we consider this problem from two aspects: one can either

regard the frequencies λ1, λ2 as fixed, or include them in the unknown and prescribe the

masses.

Fixing the parameters λ1, λ2 in (1.1), we call it the fixed frequency problem. The two-

component system with Hartree-type nonlinearities describes the boson stars in mean-field

theory [18, 27], which appears naturally in optical systems [30] and is known to influence

the propagation of electromagnetic waves in plasmas [7]. Moreover, the non-locality of the

critical term also plays an important role in the theory of Bose-Einstein condensation, where

it accounts for the finite-range many-body interaction [15]. The Hartree type systems, mainly

on λ1, λ2 are prescribed, have been widely studied. We refer to [20] and references therein.

However, much less is known when the masses are prior prescribed. In this case, λ1, λ2 ∈ R

are unknown quantities arising as Lagrange multipliers. In recent years, since physicists are

interested in normalized solutions (which L2-norms of solutions are prescribed), mathematical

researchers began to investigate the solutions of various classes of Schrödinger equations or

systems having a prescribed L2-norm, that is a solution which satisfies
∫

RN |u|2dx = c for a

priori given c.

When s = 1, i.e. the fractional Laplace operator (−∆)s reduces to the local differential

operator −∆, the literature for the normalized solutions of Schrödinger equations or sys-

tems is abundant. Starting from the seminal paper by Jeanjean in [25], he firstly studied

L2-supercritical case, and dealt with the existence of normalized solutions when the energy

functional is unbounded from below, by using the mountain pass lemma and a skillful com-

pactness argument. Furthermore, for the particular case of a combined nonlinearity of power
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type, in [38], Soave considered the existence of normalized solutions and orbitally stable for

the following problem:

{
−∆u = λu + µ|u|q−2u + |u|p−2u, in RN ,∫

RN |u|2dx = c, in RN ,
(1.4)

where N ≥ 1, q, p ∈ (2, 2∗) and q < p. Moreover, when p = 2∗ in (1.4), in [39], the Sobolev

critical case was studied by Soave, where he considered the energy level less than a certain

number to get the compactness, and obtained the existence and nonexistence of normalized

solutions. For the system case, Bartsch, Jeanjean and Soave investigated the following elliptic

system 



−∆u = λ1u + µ1u3 + βuv2, in R3,

−∆v = λ2v + µ2u3 + βvu2, in R3,∫
R3 |u|2dx = a,

∫
R3 |v|2dx = b,

(1.5)

where µ1, µ2, a, b > 0. In [4], Bartsch, Jeanjean and Soave obtained the existence results for

different ranges of β > 0 and stability properties of (1.5). Furthermore, in [6], Bartsch and

Soave considered the case β < 0 of (1.5) and showed phase separation occurs for the solutions

as β → −∞. In particular, Bartsch, Li and Zou [5] studied the normalized solutions for

a Schrödinger systems with Sobolev critical nonlinearities. Specifically, in [5], they proved

the existence and nonexistence results and obtained the asymptotic behavior as β → 0+ or

β → +∞. When 3 ≤ N ≤ 4, in [29], Li and Zou obtained the existence of positive normalized

ground state for (1.5). For more researches of the normalized solutions of the Laplacian

systems, we refer to [31, 34] and references therein.

The situation is different when s ∈ (0, 1), and few results are available. We note that the

L2-critical exponent for fractional case is p̄ := 2 + 4s
N . In [32], Luo and Zhang studied the

existence and nonexistence of normalized solutions for the following fractional problem

{
(−∆)su = λu + µ|u|q−2u + |u|p−2u, in RN ,∫

RN |u|2dx = c, in RN ,
(1.6)

where q, p ∈ (2, 2∗s ), q < p and µ ∈ R. Moreover, when p = 2∗s in (1.6), Zhen and Zhang

[44] proved the existence and nonexistence results of the normalized solutions by using the

Jeanjean’s skill in [25], and they also considered the behavior of the ground state obtained as

µ → 0+. Furthermore, in [24], He, Rădulescu and Zou showed the existence and nonexis-

tence of solutions for a fractional equation with the upper critical exponent, among 3 cases:

L2-subcritical, L2-critical and L2-supercritical. In the case of fractional systems, Zuo and

Rǎdulescu studied the following problem





(−∆)su = λ1u + µ1|u|
p−2u + |u|2

∗
s −2u + γα|u|α−2u|v|β, in RN ,

(−∆)sv = λ2v + µ2|v|q−2v + |v|2
∗
s −2v + γβ|v|α−2v|u|β, in RN .∫

RN |u|2dx = a,
∫

RN |v|2dx = b, in RN ,

(1.7)

where s ∈ (0, 1), p, q, α + β ∈ ( p̄, 2∗s ). In [45], Zuo and Rădulescu showed the existence

of positive normalized solutions when γ is big enough, and obtained the nonexistence of

positive normalized solutions if p = q = α + β = 2∗s . Li [28] studied the existence of positive

radial solutions for a fractional Hartree–Fock type system in L2-subcritical case, L2-critical
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case and L2-supercritical case, but without the upper critical exponent in the sense of the

Hardy–Littlewood–Sobolev inequality (see Lemma 2.1).

Inspired by the above mentioned works, in the present paper, our goal is two-fold. On one

hand, we show the existence of normalized ground states for p ∈ (2, 2∗s ), and r1 + r2 ∈ (p, 2∗s );

on the other hand, we obtain the nonexistence result for p = r1 + r2 = 2∗s . Compared to the

Laplace operator, the fractional Laplacian problems are nonlocal and more challenging. More-

over, since the compactness of system is closely related to (see Proposition 4.9) the following

problem {
(−∆)su = λu + µ|u|p−2u, in RN ,∫

RN u2dx = c2,
(1.8)

we may be more careful to the energy level and solutions of (1.8). However, for p = p̄ and

c > 0 , the Pohožaev manifold related to (1.8) is indefinite (see Lemma 5.2), which makes it

difficult to construct the geometry for the related energy functional.

Before we state our main results, we introduce some notations for the fractional Sobolev

space Hs(RN). Let s ∈ (0, 1). We denote by Ds(RN) the completion of C∞
c (RN) with

[u]2 =
∫∫

R2N

|u(x)− u(y)|2

|x − y|N+2s
dxdy.

The fractional Sobolev space is defined by

Hs(RN) := {u ∈ L2(RN) : [u] < ∞},

with the standard norm and inner product

∥u∥2 = [u]2 +
∫

RN
|u|2dx, and ⟨u, ϕ⟩ =

∫

RN

(
(−∆)

s
2 u(−∆)

s
2 ϕ + uϕ

)
dx.

It is well known (see [2]) that the embedding Hs(RN) →֒ Lq(RN) is continuous for all q ∈

[2, 2∗s ], locally compact for all q ∈ [1, 2∗s ) and Ds(RN) →֒ L2∗s (RN) is continuous. Then we

define the working space H as

H := {(u, v) : u ∈ Hs(RN), v ∈ Hs(RN)},

endowed with the norm

∥(u, v)∥2
H := ∥u∥2 + ∥v∥2,

and related inner product is, for any (ϕ, ψ) ∈ H:

⟨(u, v), (ϕ, ψ)⟩H := ⟨u, ϕ⟩+ ⟨v, ψ⟩.

By using the variational methods, a classical way for studying the normalized solutions of

system (1.1) is to look for critical points of the following C1-functional

J(u, v) =
1

2
([u]2 + [v]2)−

1

p
(µ1|u|

p
p + µ2|v|

p
p)− β

∫

RN
|u|r1 |v|r2 dx −

1

2∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

constrained on the set

S := {(u, v) ∈ H : (u, v) ∈ Sa × Sb},

where |u|r =
( ∫

RN |u|rdx
) 1

r and Sa := {u ∈ Hs(RN) :
∫

RN |u|2dx = a2}. The main results of

this paper can be stated as follows:
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Theorem 1.1. When 2s < N ≤ 4s, p ∈ (2, p̄) and r1 + r2 ∈ (p, 2∗s ), there exists β∗
> 0 such that

for 0 < β < β∗, there exist µ∗
1 = µ∗

1(β), µ∗
2 = µ∗

2(β), such that for any µ1 ∈ (0, µ∗
1), µ2 ∈ (0, µ∗

2),

(1.1)–(1.2) has a normalized ground state (u, v), which is a positive and radially symmetric function,

for some λ1, λ2 < 0. Moreover, (u, v) is an interior local minimizer on the set

Br(a, b) := {(u, v) ∈ S : ([u]2 + [v]2)
1
2 < r},

for a suitable r > 0 small enough; and any other ground state solution of J(u, v)|S is a local minimizer

of J(u, v) on Br(a, b).

Theorem 1.2. When 2s < N ≤ 4s, p ∈ ( p̄, 2∗s ) and r1 + r2 ∈ (p, 2∗s ), there exists β0 > 0, such

that for any β > β0, (1.1)–(1.2) has a normalized ground state (u, v), which is a positive and radially

symmetric function, for some λ1, λ2 < 0, and (u, v) is a Mountain Pass type solution.

Theorem 1.3. When 2s < N ≤ 4s, suppose p = r1 + r2 = 2∗s , then the system (1.1)–(1.2) has no

positive normalized solutions.

Remark 1.4.

(I) In Theorem 1.1, we consider 3 cases: r1 + r2 ∈ (2, p̄), r1 + r2 = p̄ and r1 + r2 ∈ ( p̄, 2∗s ).

These different situations are mainly reflected in Lemmas 4.3 and 5.3.

(II) From the processes in our proof, one difference between Theorems 1.1 and 1.2 lies in

their respective geometric structures. In fact, when p changes from L2-subcritical to L2-

supercritical, it changes the geometry of J(u, v)|S and prevents the existence of a local

minimizer in Theorem 1.2.

(III) Compared with the result in [24], we need an elementary inequality (see Proposition 4.9),

which combined the single case (1.8) with the coupling case (1.1), to ensure compactness

result. Theorems 1.1, 1.2, 1.3 seem to be the first results of normalized solutions for a

fractional coupling systems with the upper critical exponent in the sense of the Hardy–

Littlewood–Sobolev inequality.

The paper is organized as follows. In Section 2, we give some preliminaries for the func-

tional space. In Section 3, we will briefly introduce the properties of a single case (1.8), which

plays an important role to the proof of Palais–Smale condition in our problem. In Section 4,

we prove Theorem 1.1. In Section 5, we obtain Theorem 1.2. At last, we show the nonexistence

for Theorem 1.3 in Section 6.

2 Preliminaries

Following, for the convenience of the reader, we recall some basic properties, which we shall

need in the sequel. Let us first recall the well-known Hardy–Littlewood–Sobolev inequality.

Lemma 2.1 ([30]). Let t, r > 1, 0 < α < N, with 1
t +

α
N + 1

r = 2, f ∈ Lt(RN) and h ∈ Lr(RN).

There exists a sharp constant C(N, t, α, r) independent of f and h, such that

∫

RN

∫

RN

f (x)h(y)

|x − y|α
≤ C(N, t, α, r)| f |t|h|r, (2.1)
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where | · |q stands for the Lq(RN)-norm for q ∈ [1,+∞). If t = r = 2N
2N−α , then

C(N, t, α, r) = C(N, α) = π
α
2

Γ(N
2 − α

2 )

Γ(N − α
2 )

.

Besides, there is a equality in (2.1) if and only if f ≡ (constant.)h and

h(x) = C(γ2 + |x − a|2)−
2N−α

2 ,

for some C ∈ C, γ ̸= 0 and a ∈ RN .

According to Lemma 2.1, the functional

∫

RN

∫

RN

up(x)up(y)

|x − y|α
dydx,

is well defined in Hs(RN) × Hs(RN) if 2N−α
N ≤ p ≤ 2N−α

N−2s . We often call 2N−α
N is the

lower Hardy–Littlewood–Sobolev critical exponent and 2N−α
N−2s is the upper Hardy–Littlewood–

Sobolev critical exponent. From Lemma 2.1, we define the best constant

Sh,l = inf
Ds(RN\{0})

[u]2

(
∫

RN (Iα ∗ |u|
2∗α,s)|u|2

∗
α,s dx)

1
2∗α,s

,

and from [23], we know Sh,l is attained by the function

ũε,y = C̃N,α,suε,y, x, y ∈ R
N , and ε > 0,

such that

[ũε,y]
2 = S

2N−α
N−α+2s

h,l ,

with ũε,y satisfying this equation

(−∆)su = (Iα ∗ |u|
2∗α,s)|u|2

∗
α,s−2u, x ∈ R

N .

The function uε,y = κ(ε2 + |x − y|2)−
N−2s

2 solves

(−∆)su = |u|2
∗
s −2u, in R

N ,

and achieves the infimum of

S := inf
Ds(RN\{0})

[u]2

|u|22∗s
,

with

Sh,l = SC
− 1

2∗α,s

N,α,s and κ =

(
S

N
2s Γ(N)

π
N
2 Γ(N

2 )

) N−2s
2N

.

In order to prove our problem, we shall make use of the following infimum

S∗ := inf
(u,v)∈Ds(RN)×Ds(RN)

[u]2 + [v]2

( ∫
RN (Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

) 1
2∗α,s

, (2.2)

and from [43, Lemma 2.2], we know
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Lemma 2.2. We have

S∗ = 2Sh,l ,

and S∗ is achieved if and only if, for C > 0,

u = v = Cuε,y.

Then we recall the fractional Gagliardo–Nirenberg–Sobolev inequality, which can be seen

in [19].

Lemma 2.3. Let N > 2s and p ∈ (2, 2∗s ), then there exists a constant C(N, p, s) > 0, such that for

all u ∈ Hs(RN),

|u|
p
p ≤ C(N, p, s)|(−∆)

s
2 u|

N(p−2)
2s

2 |u|
p− N(p−2)

2s
2 . (2.3)

Defining γp := N(p−2)
2ps , it is easy to see

pγp





< 2, if 2 < p < p̄,

= 2, if p = p̄, and γ2∗s = 1,

> 2, if p̄ < p < 2∗s .

and

|u|
p
p ≤ C(N, p, s)|(−∆)

s
2 u|

pγp

2 |u|
p(1−γp)
2 . (2.4)

Following, we obtain the corresponding Pohožaev type identity for system (1.1). Before the

statement of this result, we introduce the s-harmonic extension (see [11]) techniques. Denote

RN+1 = {(x, y) : x ∈ RN , y ∈ R} and define X = Xs(RN+1
+ )× Xs(RN+1

+ ) under the norms

∥(U, V)∥X =

(
κs

∫

R
N+1
+

y1−2s|∇U|2dxdy + κs

∫

R
N+1
+

y1−2s|∇V|2dxdy

) 1
2

,

where Xs(RN+1
+ ) is the completion of C∞

0 (RN+1
+ ) with the norm

∥U∥Xs(RN+1
+ ) =

(
κs

∫

R
N+1
+

y1−2s|∇U|2dxdy

) 1
2

.

Let (u, v) ∈ H be a solution of (1.1) and define (U, V) ∈ X be its s-harmonic extension to the

upper half space R
N+1
+ , then u = U(x, 0), v = V(x, 0) and (U, V) is a solution to the following

problem




−div(y1−2s∇U) = 0;−div(y1−2s∇V) = 0, in R
N+1
+ ,

− ∂U
∂y1−2s = λ1u + µ1|u|

p−2u + βr1|u|
r1−2u|v|r2 + (Iα ∗ |v|

2∗α,s)|u|2
∗
α,s−2u, on RN ,

− ∂V
∂y1−2s = λ2v + µ2|v|p−2v + βr2|v|r2−2v|u|r1 + (Iα ∗ |u|

2∗α,s)|v|2
∗
α,s−2v, on RN .

(2.5)

From [8, Proposition A.1] and [42, Lemma 4.1], we have the following result.

Proposition 2.4. Let (u, v) ∈ H be a weak solution of (1.1), that is (u, v) satisfies:

0 = ⟨u, ϕ⟩+ ⟨v, ψ⟩ −
∫

RN
(λ1uϕ + λ2vψ)dx

−
∫

RN
(µ1|u|

p−2uϕ + µ2|v|
p−2vϕ)dx − β

∫

RN
(r1|u|

r1−2u|v|r2 ϕ + r2|u|
r1 |v|r2−2vψ)dx

−
∫

RN
[(Iα ∗ |v|

2∗α,s)|u|2
∗
α,s−2uϕ + (Iα ∗ |u|

2∗α,s)|v|2
∗
α,s−2vψ]dx, ∀(ϕ, ψ) ∈ H,
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then we have (u, v) satisfies

N − 2s

2

∫

RN
(|(−∆)

s
2 u|2 + |(−∆)

s
2 v|2)dx

=
N

2

∫

RN
(λ1|u|

2 + λ2|v|
2)dx +

N

p

∫

RN
(µ1|u|

p + µ2|v|
p)dx

+ βN
∫

RN
|u|r1 |v|r2 dx +

2N − α

2∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.

Proof. If (u, v) ∈ H is a weak solution of (1.1), from [2, Proposition 3.2.14], we have (u, v) ∈

L∞(RN) × L∞(RN). Using the same arguments as in [13, Proposition 4.1], we get (u, v) ∈

C2,τ(RN) × C2,τ(RN) with τ depending on s. Let (U, V) be its s-harmonic extension and

satisfy (2.5), then (U, V) ∈ C2(RN+1
+ )× C2(RN+1

+ ).

Set Dm := {(x, y) ∈ RN+1 : |(x, y)| ≤ m} and Qr = D+
r ∪ (Dr ∩ (RN × {0})), where

D+
r = Dr ∩ R

N+1
+ . Let ϕ ∈ C∞

0 (RN+1) with 0 ≤ ϕ ≤ 1, ϕ = 1 in D1, ϕ = 0 outside D2 and

|∇ϕ| ≤ 2. For R > 0, define

ψR(x, y) = ψ

(
(x, y)

R

)
, where ψ = ϕ|

R
N+1
+

.

Multiplying (2.5) by ((x, y) · ∇U)ψR and ((x, y) · ∇V)ψR respectively, we obtain from [8,

Proposition A.1],

lim
R→∞

∫

D2R∩(R×{0})
|u|p−2u · (x, y) · ∇UψRdx = −

N

p

∫

RN
|u|pdx.

lim
R→∞

∫

D2R∩(R×{0})
u · (x, y) · ∇UψRdx = −

N

2

∫

RN
|u|2dx.

and

lim
R→∞

∫

D2R∩(RN×{0})
|v|p−2v · (x, y) · ∇VψRdx = −

N

p

∫

RN
|v|pdx.

lim
R→∞

∫

D2R∩(RN×{0})
v · (x, y) · ∇VψRdx = −

N

2

∫

RN
|v|2dx.

Moreover,

lim
R→∞

∫

D2R∩(RN×{0})

(
r1|v|

r2 |u|r1−2u · (x, y) · ∇UψR + r2|u|
r1 |v|r2−2v · (x, y) · ∇VψR

)
dx

= − N
∫

RN
|u|r1 |v|r2 dx.

and

lim
R→∞

∫

Q2R

y1−2s∇U∇[((x, y) · ∇U)ψR]dxdy = −
N − 2s

2

∫

R
N+1
+

y1−2s|∇U|2dxdy,

lim
R→∞

∫

Q2R

y1−2s∇V∇[((x, y) · ∇V)ψR]dxdy = −
N − 2s

2

∫

R
N+1
+

y1−2s|∇V|2dxdy.

Furthermore, combining with [42, Lemma 4.1], we have

lim
R→∞

∫

D2R∩(RN×{0})

(
(Iα ∗ |v|

2∗α,s)|u|2
∗
α,s−2 · (x, y) · ∇UψR

+ (Iα ∗ |u|
2∗α,s)|v|2

∗
α,s−2 · (x, y) · ∇VψR

)
dx

=
α − 2N

2∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.
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Multiplying (2.5) by UψR and VψR respectively, and using the same techniques of [8, Propo-

sition A.1], we firstly obtain
∫

R
N+1
+

y1−2s|∇U|2dxdy =
∫

RN
|(−∆)

s
2 u|2dx,

∫

R
N+1
+

y1−2s|∇V|2dxdy =
∫

RN
|(−∆)

s
2 v|2dx,

and then we finish this proof.

Lemma 2.5. Let (u, v) ∈ H be a weak solution of (1.1), then we have Pohožaev manifold

Pµ1,µ2 = {(u, v) ∈ S : Pµ1,µ2(u, v) = 0},

where

Pµ1,µ2(u, v) = s([u]2 + [v]2)− sγp(µ1|u|
p
p + µ2|v|

p
p)− sβ(r1 + r2)γ(r1+r2)

∫

RN
|u|r1 |v|r2 dx

− 2s
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.

(2.6)

Proof. Since Proposition 2.4, we have (u, v) satisfies

N − 2s

2

∫

RN
(|(−∆)

s
2 u|2 + |(−∆)

s
2 v|2)dx

=
N

2

∫

RN
(λ1|u|

2 + λ2|v|
2)dx +

N

p

∫

RN
(µ1|u|

p + µ2|v|
p)dx

+ βN
∫

RN
|u|r1 |v|r2 dx +

2N − α

2∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

and
∫

RN
(|(−∆)

s
2 u|2 + |(−∆)

s
2 v|2)dx =

∫

RN
(λ1|u|

2 + λ2|v|
2)dx +

∫

RN
(µ1|u|

p + µ2|v|
p)dx

+ β(r1 + r2)
∫

RN
|u|r1 |v|r2 dx + 2

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.

Thus,

s
∫

RN
(|(−∆)

s
2 u|2 + |(−∆)

s
2 v|2)dx

= sγp

∫

RN
(µ1|u|

p + µ2|v|
p)dx + βs(r1 + r2)γ(r1+r2)

∫

RN
|u|r1 |v|r2 dx

+ 2s
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

and the conclusions follows.

Under the L2-invariant scaling introduced by Jeanjean in [25],

t ∗ u := e
Nt
2 u(etx), and t ∗ (u, v) := (t ∗ u, t ∗ v),

it is natural to study the fiber maps

Ψµ1,µ2(t) := J(t ∗ (u, v)) =
e2st

2
([u]2 + [v]2)−

espγpt

p
(µ1|u|

p
p + µ2|v|

p
p)

− βes(r1+r2)γ(r1+r2)
t
∫

RN
|u|r1 |v|r2 dx

−
e22∗α,sst

2∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

(2.7)
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satisfying Ψ′
µ1,µ2

(t) = Pµ1,µ2(t ∗ u, t ∗ v), that is

Pµ1,µ2 = {(u, v) ∈ S : Ψ
′
µ1,µ2

(0) = 0}.

We decompose Pµ1,µ2 into 3 disjoint unions Pµ1,µ2 = P+
µ1,µ2

∪ P0
µ1,µ2

∪ P−
µ1,µ2

, defined by

P+
µ1,µ2

:= {u ∈ Pµ1,µ2 : Ψ
′′
µ1,µ2

(0) > 0};

P0
µ1,µ2

:= {u ∈ Pµ1,µ2 : Ψ
′′
µ1,µ2

(0) = 0};

P−
µ1,µ2

:= {u ∈ Pµ1,µ2 : Ψ
′′
µ1,µ2

(0) < 0}.

Set m(a, b) = infPµ1,µ2
J(u, v) and m±(a, b) = inf(u,v)∈P±

µ1,µ2
J(u, v), respectively. The main idea

of this paper is to show whether m(a, b) is achieved.

3 The relevant results

Before solving problem (1.1) and (1.2), we study the following problem:

{
(−∆)su = λu + µ|u|p−2u, in RN ,∫

RN u2dx = c2, u ∈ Hs(RN),
(3.1)

where µ, c > 0, p ∈ (2, 2∗s ) \ { p̄}. The standard method obtaining the normalized solutions of

(3.1) is to search for the critical points of

Iµ,c(u) =
1

2
[u]2 −

µ

p

∫

RN
|u|pdx,

constrained on Sc := {u ∈ Hs(RN) : |u|22 = c2}. By the same arguments as in Section 2, the

Pohožaev identity related to (3.1) is

Pµ,c(u) = s[u]2 − µγps|u|
p
p,

and the corresponding Pohožaev manifold is

Pµ,c := {u ∈ Sc : [u]2 = µγp|u|
p
p}.

Moreover, we have

Ψµ,c(t) := Iµ,c(t ∗ u) =
e2st

2
[u]2 −

µepγpst

p

∫

RN
|u|pdx,

and Pµ,c can also be divided into 3 disjoint unions Pµ,c = P+
µ,c ∪ P0

µ,c ∪ P−
µ,c, where

P+
µ,c := {u ∈ Pµ,c : Ψ

′′
µ,c(0) > 0};

P0
µ,c := {u ∈ Pµ,c : Ψ

′′
µ,c(0) = 0};

P−
µ,c := {u ∈ Pµ,c : Ψ

′′
µ,c(0) < 0}.

Define mµ(c) = infu∈Pµ,c
Iµ,c(u) and let m(a, 0) = mµ1

(a), m(0, b) = mµ2(b). From Lemma 2.3,

for any u ∈ Sa, there is C1 := C1(N, p, a, s) > 0, such that

∫

RN
|u|pdx ≤ C(N, p, s)|u|

p(1−γp)
2 [u]pγp = C1[u]

pγp
≤ C1([u]

2 + [v]2)
pγp

2 . (3.2)
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In particular, when p < p̄, from (3.2) we get

Iµ1,a(u) =
1

2
[u]2 −

µ1

p

∫

RN
|u|pdx ≥

1

2
[u]2 −

C1µ1

p
[u]pγp =: h([u]),

where

h(ρ) :=
1

2
ρ2 −

C1µ1

p
ρpγp . (3.3)

Setting

ρ∗ := (C1µ1γp)
1

2−pγp ,

we have that h(ρ∗) < 0, h(ρ) is strictly decreasing in (0, ρ∗), and is strictly increasing in (ρ∗, ∞).

If we denote R0 = ( 2C1µ1

p )
1

2−pγp , then h(R0) = 0 and h(ρ) < 0 iff ρ ∈ (0, R0).

From [44], we have the following already known results. For the mass subcritical case:

Theorem 3.1 ([44, Theorem 1.1]). When 2s < N ≤ 4s, p ∈ (2, p̄) and µ, c > 0 in (3.1), there is

µ̂ > 0, for any µ ∈ (0, µ̂), then Iµ,c|Sc
has a ground state solution uµ for some λ < 0. Moreover,

mµ(c) = inf
u∈Sc

Iµ,c(u) = Iµ,c(uµ) < 0,

and uµ is an interior local minimizer of Iµ,c on the set

B̂R0
:= {u ∈ Sc : [u] < R0}.

Besides, any other normalized ground state solution is a minimizer of Iµ,c on BR0
.

Remark 3.2. We set µ̂1, µ̂2 to obtain Theorem 3.1, under µ = µ1, c = a and µ = µ2, c = b in

(3.1), respectively.

For the mass supercritical case:

Theorem 3.3 ([44, Theorem 1.3]). When 2s < N ≤ 4s, p ∈ ( p̄, 2∗s ) and µ, c > 0 in (3.1), then

Iµ,c|Sc
has a ground state solution uµ for some λ < 0. Moreover uµ is a critical point of Mountain Pass

type and

mµ(c) = inf
u∈Sc

max
t∈R

Iµ,c(t ∗ u) = max
t∈R

Iµ,c(t ∗ uµ) = Iµ,c(uµ) > 0.

In order to proceed our proof, we also need the following monotonicity result which is

essential for Lemmas 4.6 and 5.7.

Lemma 3.4. mµ1
(a) is non-increasing with respect to a, that is

mµ1
(a) ≤ mµ1

(a1), for any 0 < a1 ≤ a.

Proof. We will prove for any 0 < a1 ≤ a and an arbitrary ε > 0,

mµ1
(a) ≤ mµ1

(a1) + ε.

We divide this proof into two cases.

Case 1: 2 < p < p̄. For this case, from the definition of R0 in (3.3), we see R0 is increasing as a

is increasing. Hence, by Theorem 3.1 and a1 ≤ a, there exists a R̂0 with R̂0 < R0, such that

mµ1
(a1) = inf

u∈B̂R̂0

Iµ1
(u).



12 S. Deng and W. Luo

Let u ∈ B̂R̂0
⊂ B̂R0

be such that Iµ1
(u) ≤ mµ1

(a1) +
ε
2 . Setting φ ∈ C∞

0 (RN) be a cut-off function

satisfies 0 ≤ φ ≤ 1 and

φ(x) =

{
0, if |x| ≥ 2,

1, if |x| ≤ 1.

For δ > 0, defined uδ(x) = u(x)φ(δx), we get uδ → u in Hs(RN) as δ → 0. Thus, for

η = ε
6 > 0, there exists δ > 0 such that

Iµ1
(uδ) ≤ Iµ1

(u) +
ε

6
, and [uδ] < R0 −

η

R0
. (3.4)

Taking ϕ ∈ C∞
0 (RN) satisfies supp(ϕ) ⊂ O1+ 3

δ
(0) \ O 3

δ
(0), where Om(n) means a ball in RN

with radius m and centered at n. Let

w(x) =
(a2 − |uδ|

2
2)

1
2

|ϕ|2
ϕ,

then for t < 0,

supp(uδ) ∩ supp(t ∗ w) = ∅.

Therefore, we get uδ + t ∗ w ∈ Sa. Moreover, as t → −∞, we have

Iµ1
(t ∗ w) ≤

ε

6
, and [t ∗ w] ≤

η

R0
. (3.5)

By the Hölder inequality, we obtain

[uδ + t ∗ w]2 =
∫∫

R2N

|(uδ + t ∗ w)(x)− (uδ + t ∗ w)(y)|2

|x − y|N+2s
dxdy

=
∫∫

R2N

|uδ(x)− uδ(y)|
2

|x − y|N+2s
dxdy +

∫∫

R2N

|(t ∗ w)(x)− (t ∗ w)(y)|2

|x − y|N+2s
dxdy

+ 2
∫∫

R2N

(uδ(x)− uδ(y))((t ∗ w)(x)− (t ∗ w)(y))

|x − y|N+2s
dxdy

≤[uδ]
2 + [t ∗ w]2 + 2[uδ][t ∗ w]

= ([uδ] + [t ∗ w])2,

then [uδ + t ∗ w] < R0. Now from Theorem 3.1, mµ1
(a) = infu∈B̂R0

Iµ1
(u), by (3.4)–(3.5), we

obtain
mµ1

(a) ≤ Iµ1
(uδ + t ∗ w) ≤ Iµ1

(uδ) + Iµ1
(t ∗ w) + [uδ][t ∗ w]

≤ mµ1
(a1) +

ε

2
+

ε

6
+

ε

6
+

ε

6
≤ mµ1

(a1) + ε.

Case 2: p̄ < p < 2∗s . In this case, pγp > 2, and by the definition of mµ1
(a1), there exists

u ∈ Pµ1,a1
, such that

Iµ1
(u) ≤ mµ1

(a1) +
ε

2
.

From Theorem 3.3, we have u is bounded in Hs(RN) and

[u]2 = µ1γp|u|
p
p.

Since (3.2) and a1 ≤ a, we get

[u] ≥

(
1

µ1γpC(N, p, s)a
p(1−γp)
1

) 1
pγp−2

≥

(
1

µ1γpC(N, p, s)ap(1−γp)

) 1
pγp−2

.
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Hence there are Ĉ, C̃ > 0, which are independent with a1, such that [u] ≥ Ĉ, and |u|
p
p ≥ C̃.

Later we may assume ε < C̃. Same definitions as in Case 1, we have uδ → u in Hs(RN) as

δ → 0 and from Theorem 3.3, tuδ
∗ uδ → tu ∗ u in Hs(RN) as δ → 0, where tu means strict

maximum point of Ψµ1,a1
(t) and the map u → tu is of C1 class. Then, for fixed δ > 0, there

exists C > 0 such that

Iµ1
(tuδ

∗ uδ) ≤ Iµ1
(u) +

ε

6
, [uδ] ≤ C, and |uδ|

p
p ≥ C̃ −

ε

2
. (3.6)

Choose ψ ∈ C∞
0 (RN) with supp(ψ) ⊂ O1+ 3

δ
(0) \ O 3

δ
(0), where Om(n) means a ball as defined

on the previous page. Set

κ =
(a2 − |uδ|

2
2)

1
2

|ψ|2
ψ.

Then for τ < 0, we have

supp(uδ) ∩ supp(τ ∗ κ) = ∅.

Let uτ := uδ + τ ∗ κ ∈ Sa, and as τ → −∞,

∫

RN
|uτ|

pdx =
∫

RN
|uδ|

pdx +
∫

RN
|τ ∗ κ|pdx

=
∫

RN
|uδ|

pdx + epγpsτ
∫

RN
|κ|

p
pdx → |uδ|

p
p.

Similarly, we obtain

[uτ]
2 ≤ [uδ]

2 + [τ ∗ κ]2 + 2[uδ][τ ∗ κ]

= [uδ]
2 + e2sτ[κ]2 + 2esτ[uδ][κ] → [uδ]

2.

From Theorem 3.3, there exists tτ such that Pµ1,a(tτ ∗ uτ) = 0, i.e.

1

e(pγp−2)stτ
[uτ]

2 = γpµ1|uτ|
p
p.

Then as τ → −∞,

e(pγp−2)stτ =
[uτ]2

γpµ1|uτ|
p
p

≤
[uδ]

2

γpµ1|uδ|
p
p

.

Combining with (3.6), we get tτ is bounded from above as τ → −∞. Hence, for τ < −1

sufficiently small, there exists C∗
> 0 such that

[tτ ∗ uδ] ≤ C∗, Iµ1
((tτ + τ) ∗ κ) ≤

ε

6
, and [(tτ + τ) ∗ κ] <

ε

6C∗
. (3.7)

Thus from (3.6) and (3.7), we obtain

mµ1
(a) ≤ Iµ1

(tτ ∗ uτ) ≤ Iµ1
(tτ ∗ uδ) + Iµ1

((tτ + τ) ∗ κ) + [tτ ∗ uδ][(tτ + τ) ∗ κ]

≤ Iµ1
(tuδ

∗ uδ) +
ε

6
+

ε

6

≤ Iµ1
(u) +

ε

6
+

ε

6
+

ε

6
≤ mµ1

(a1) + ε.

Then, we complete this proof.
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4 The case: 2 < p < p̄, p < (r1 + r2) < 2∗s

In this section, we consider the mixed exponent case. For any (u, v) ∈ S, from (2.2), the

Hölder inequality and (2.4), there are C2 = C2(N, p, b, s) > 0, C3 = C3(N, (r1 + r2), s, a, b) and

C4 = (S∗)−2∗α,s , such that

∫

RN
|v|pdx ≤ C(N, p, s)|v|

p(1−γp)
2 [v]pγp = C2[v]

pγp
≤ C2([v]

2 + [u]2)
pγp

2 , (4.1)

∫

RN
|u|r1 |v|r2 dx ≤ |u|r1

(r1+r2)
|v|

r2

(r1+r2)

≤ C(N, (r1 + r2), s)|u|
r1(1−γ(r1+r2)

)

2 [u]r1γ(r1+r2) |v|
r2(1−γ(r1+r2)

)

2 [v]r2γ(r1+r2)

≤ C3([u]
2 + [v]2)

(r1+r2)γ(r1+r2)
2 ,

(4.2)

and ∫

RN
(Iα ∗ |v|

2∗α,s)|u|2
∗
α,s dx ≤ (S∗)−2∗α,s([u]2 + [v]2)2∗α,s = C4([u]

2 + [v]2)2∗α,s . (4.3)

Hence, substituting (3.2), (4.1)–(4.3) into J(u, v), we obtain

J(u, v) ≥
1

2
([u]2 + [v]2)−

µ1C1 + µ2C2

p
([u]2 + [v]2)

pγp
2 − βC3([u]

2 + [v]2)
(r1+r2)γ(r1+r2)

2

−
C4

2∗α,s

([u]2 + [v]2)2∗α,s .

(4.4)

Then we introduce the function k : R+ → R by

k(t) :=
1

2
t2 −

µ1C1 + µ2C2

p
tpγp − βC3t(r1+r2)γ(r1+r2) −

C4

2∗α,s

t22∗α,s , (4.5)

and k(0+) = 0−, and k(+∞) = −∞.

Lemma 4.1. There exists β∗ > 0, such that for any β ∈ (0, β∗), there exist µ1,∗ = µ1,∗(β) > 0 and

µ2,∗ = µ2,∗(β) > 0, for any µ1 ∈ (0, µ1,∗), µ2 ∈ (0, µ2,∗), the function k(t) has exactly two critical

points, one is a local strict minimum at a negative level, and the other one is a global maximum at a

positive level. Further, there exist 0 < R2 < R3 such that k(R2) = k(R3) = 0, k(t) > 0 if and only if

t ∈ (R2, R3).

Proof. Since the monotonicity of k(t) will be strongly affected by the comparison of p and

r1 + r2, we may divide this proof into 3 different situations.

Case 1: 2 < p < (r1 + r2) < p̄. In this case, we have pγp < (r1 + r2)γ(r1+r2) < 2 and

k′(t) = tpγp−1[t2−pγp − C3β(r1 + r2)γ(r1+r2)t
(r1+r2)γ(r1+r2)

−pγp − 2C4t22∗α,s−pγp − γp(µ1C1 + µ2C2)].

Denote

k̃(t) := t2−pγp − C3β(r1 + r2)γ(r1+r2)t
(r1+r2)γ(r1+r2)

−pγp − 2C4t22∗α,s−pγp ,

then

k̃′(t) = t(r1+r2)γ(r1+r2)
−pγp−1[(2 − pγp)t

2−(r1+r2)γ(r1+r2) − 2C4(22∗α,s − pγp)t
22∗α,s−(r1+r2)γ(r1+r2)

− C3β(r1 + r2)γ(r1+r2)((r1 + r2)γ(r1+r2) − pγp)].
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Let

k̂(t) := (2 − pγp)t
2−(r1+r2)γ(r1+r2) − 2C4(22∗α,s − pγp)t

22∗α,s−(r1+r2)γ(r1+r2) , (4.6)

then
k̂′(t) = t1−(r1+r2)γ(r1+r2) [(2 − pγp)(2 − (r1 + r2)γ(r1+r2))

− 2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2))t
22∗α,s−2].

We see from the definition of k̂′(t) that k̂(t) has a unique critical point t0 in (0,+∞) satisfying

t
22∗α,s−2

0 =
(2 − pγp)(2 − (r1 + r2)γ(r1+r2))

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2))
.

Moreover, since pγp < (r1 + r2)γ(r1+r2) < 2, we have k̃(+∞) = −∞, k̃(0+) = 0−. If

k̂(t0) > C3β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp];

k̃(t0) > γp(µ1C1 + µ2C2), and k(t0) > 0,
(4.7)

i.e.




[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] 2−(r1+r2)γ(r1+r2)

22∗α,s−2 (2 − pγp)(22∗α,s − 2)

22∗α,s − (r1 + r2)γ(r1+r2)

> C3β(r1 + r2)γ(r1+r2)
((r1 + r2)γ(r1+r2)

− pγp);

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] pγp
22∗α,s−2

[
1 −

(2 − pγp)(2 − (r1 + r2)γ(r1+r2)
)

(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

]

> γp(µ1C1 + µ2C2) + C3β(r1 + r2)γ(r1+r2)

×

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] (r1+r2)γ(r1+r2)
−pγp

22∗α,s−2

;

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] 22∗α,s
22∗α,s−2

C4

[
(22∗α,s − pγp)(22∗α,s − (r1 + r2)γp)

(2 − pγp)(2 − (r1 + r2)γ(r1+r2)
)

−
1

2∗α,s

]

>
µ1C1 + µ2C2

p
×

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] pγp
22∗α,s−2

+ βC3

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] (r1+r2)γ(r1+r2)

22∗α,s−2

,

(4.8)

then the function k(t) has exactly two critical points, one is a local minimum at a negative

level, the other one is a global maximum at a positive level. Therefore, there exist R2, R3 with

0 < R2 < R3 such that k(R2) = k(R3) = 0, k(t) > 0 if and only if t ∈ (R2, R3).

Case 2: 2 < p < r1 + r2 = p̄. This implies pγp < (r1 + r2)γ(r1+r2) = 2. We choose β such that

C3β <
1
2 and k(t) turns to be

k(t) =

(
1

2
− C3β

)
t2 −

µ1C1 + µ2C2

p
tpγp −

C4

2∗α,s

t22∗α,s .

Taking a similar argument as in Case 1, first we have

k′(t) = tpγp−1[(1 − 2C3β)t2−pγp − 2C4t22∗α,s−pγp − γp(µ1C1 + µ2C2)].



16 S. Deng and W. Luo

Denote

k̃(t) = (1 − 2C3β)t2−pγp − 2C4t22∗α,s−pγp ,

and

k̃′(t) = t1−pγp [(1 − 2C3β)(2 − pγp)− 2C4(22∗α,s − pγp)t
22∗α,s−2].

Thus there exists t1 ∈ (0,+∞) satisfying

t
22∗α,s−2

1 =
(1 − 2C3β)(2 − pγp)

2C4(22∗α,s − pγp)
,

and if

k̃(t1) > γp(µ1C1 + µ2C2), and k(t1) > 0, (4.9)

that is




(
2 − pγp

2C4

) (2−pγp)

22∗α,s−2

(22∗α,s − 2)(22∗α,s − pγp)
pγp−22∗α,s

22∗α,s−2
> γp(µ1C1 + µ2C2)(1 − 2C3β)

pγp−22∗α,s
22∗α,s−2 ;

(
22∗α,s − pγp

2 − pγp
−

1

2∗α,s

)
C4 >

µ1C1 + µ2C2

p

[
(1 − 2C3β)(2 − pγp)

2C4(22∗α,s − pγp)

] pγp−22∗α,s
22∗α,s−2

,

(4.10)

then we get the same conclusions as Case 1.

Case 3: 2 < p < p̄ < r1 + r2 < 2∗s . In this case, pγp < 2 < (r1 + r2)γ(r1+r2). Similarily, we have

k̃(t) := t2−pγp − C3β(r1 + r2)γ(r1+r2)t
(r1+r2)γ(r1+r2)

−pγp − 2C4t22∗α,s−pγp ,

and

k̃′(t) = t1−pγp [(2 − pγp)− C3β(r1 + r2)γ(r1+r2)((r1 + r2)γ(r1+r2) − pγp)t
(r1+r2)γ(r1+r2)

−2

− 2C4(22∗α,s − pγp)t
22∗α,s−2].

Therefore, k̃(t) has a unique critical point t2 ∈ (0,+∞). If

k̃(t2) > γp(µ1C1 + µ2C2), and k(t2) > 0, (4.11)

we obtain the same conclusions as Case 1. Following, we get an estimate at t2. Let

t∗ =

[
(µ1C1 + µ2C2)d((r1 + r2)γ(r1+r2) − pγp)

2 − pγp

] 1
2−pγp

,

where d will be fixed later. If t2 > t∗ and d >
γp(2−pγp)

(r1+r2)γ(r1+r2)
−2

, we get

(µ1C1 + µ2C2)γpt
pγp

2 + C3β(r1 + r2)γ(r1+r2)t
(r1+r2)γ(r1+r2)

2 + 2C4t
22∗α,s

2

≤ (µ1C1 + µ2C2)γpt
pγp−2
∗ t2

2 +
2 − pγp

(r1 + r2)γ(r1+r2) − pγp
t2
2 < t2

2,

and if d >
2(r1+r2)γ(r1+r2)

p[(r1+r2)γ(r1+r2)
−2]

,

µ1C1 + µ2C2

p
t

pγp

2 + C3βt
(r1+r2)γ(r1+r2)

2 +
C4

2∗α,s

t
22∗α,s

2

≤
2 − pγp

(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]
t2
2 +

µ1C1 + µ2C2

p
t

pγp−2
∗ t2

2 <
1

2
t2
2.
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Therefore, if we choose d >
2(r1+r2)γ(r1+r2)

p((r1+r2)γ(r1+r2)
−2)

, we get (4.11). Hence we only need t2 > t∗. By

the definition of t2, we need

(2 − pγp) > C3β(r1 + r2)γ(r1+r2)((r1 + r2)γ(r1+r2) − pγp)t
(r1+r2)γ(r1+r2)

−2
∗

+ 2C4(22∗α,s − pγp)t
22∗α,s−2
∗ ,

that is,

(2 − pγp) >

[
(µ1C1 + µ2C2)d((r1 + r2)γ(r1+r2) − pγp)

2 − pγp

] (r1+r2)γ(r1+r2)
−2

2−pγp

×


C3β(r1 + r2)γ(r1+r2)((r1 + r2)γ(r1+r2) − pγp)

+ 2C4(22∗α,s − pγp)

(
(µ1C1 + µ2C2)d((r1 + r2)γ(r1+r2) − pγp)

2 − pγp

) 22∗α,s−2

2−pγp


 .

(4.12)

To sum up, there exists β∗ > 0, such that for any β ∈ (0, β∗), there exist µ1,∗ = µ1,∗(β) > 0

and µ2,∗ = µ2,∗(β) > 0, for any µ1 ∈ (0, µ1,∗), µ2 ∈ (0, µ2,∗), then (4.8), (4.10) and (4.12) are

satisfied. We complete this lemma.

We now study the structure of Pohožaev manifold. Recalling the decomposition of Pµ1,µ2 =

P+
µ1,µ2

∪ P0
µ1,µ2

∪ P−
µ1,µ2

, we have:

Lemma 4.2. There exists β̃∗ > 0, such that for any β ∈ (0, β̃∗), there exist µ̃1,∗ = µ̃1,∗(β) > 0

and µ̃2,∗ = µ̃2,∗(β) > 0, for every µ1 ∈ (0, µ̃1,∗), µ2 ∈ (0, µ̃2,∗), then P0
µ1,µ2

= ∅ and Pµ1,µ2 is a

C1-submanifold in H with codimension 3.

Proof. Firstly, assume by contradiction that there exists a (u, v) ∈ P0
µ1,µ2

satisfying

([u]2 + [v]2) = γp(µ1|u|
p
p + µ2|v|

p
p) + β(r1 + r2)γ(r1+r2)

∫

RN
|u|r1 |v|r2 dx

+ 2
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

(4.13)

and

2([u]2 + [v]2) = pγ2
p(µ1|u|

p
p + µ2|v|

p
p) + β(r1 + r2)

2γ2
(r1+r2)

∫

RN
|u|r1 |v|r2 dx

+ 42∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.

(4.14)

Following we define

h̄(ρ) := ρΨ
′
µ1,µ2

(0)− Ψ
′′
µ1,µ2

(0)

= (ρ − 2)([u]2 + [v]2)− γp(ρ − pγp)(µ1|u|
p
p + µ2|v|

p
p)

− 2(ρ − 22∗α,s)
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

− β(r1 + r2)γ(r1+r2)(ρ − (r1 + r2)γ(r1+r2))
∫

RN
|u|r1 |v|r2 dx = 0,

(4.15)
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and let

η := ([u]2 + [v]2)
1
2 .

Case 1: When p < r1 + r2 < p̄, we have pγp < (r1 + r2)γ(r1+r2) < 2. From (4.15) and (4.3), we

have h̄((r1 + r2)γ(r1+r2)) = 0 and

[
2 − (r1 + r2)γ(r1+r2)

]
η2 ≤ 2

[
22∗α,s − (r1 + r2)γ(r1+r2)

] ∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

≤ 2C4

[
22∗α,s − (r1 + r2)γ(r1+r2)

]
η22∗α,s .

(4.16)

It follows η ≥
[ 2−(r1+r2)γ(r1+r2)

2C4(22∗α,s−(r1+r2)γ(r1+r2)
)

] 1
22∗α,s−2 . Moreover, by h̄(22∗α,s) = 0, from (3.2), (4.1) and

(4.2),we obtain

(22∗α,s − 2)η2 = γp(22∗α,s − pγp)(µ1|u|
p
p + µ2|v|

p
p)

+ β(r1 + r2)γ(r1+r2)

[
22∗α,s − (r1 + r2)γ(r1+r2)

] ∫

RN
|u|r1 |v|r2 dx

≤γp(22∗α,s − pγp)(µ1C1 + µ2C2)t
pγp

+ C3β(r1 + r2)γ(r1+r2)

[
22∗α,s − (r1 + r2)γ(r1+r2)

]
t(r1+r2)γ(r1+r2) ,

that is

22∗α,s − 2 ≤ γp(22∗α,s − pγp)(µ1C1 + µ2C2)

[
2 − (r1 + r2)γ(r1+r2)

2C4(22∗α,s − (r1 + r2)γ(r1+r2))

] pγp−2

22∗α,s−2

+ C3β(r1 + r2)γ(r1+r2)

[
2 − (r1 + r2)γ(r1+r2)

2C4(22∗α,s − (r1 + r2)γ(r1+r2))

] (r1+r2)γ(r1+r2)
−2

22∗α,s−2

.

(4.17)

Hence, we can choose β̃∗ > 0, such that for any β ∈ (0, β̃∗), there exist µ̃1,∗ = µ̃1,∗(β) > 0

and µ̃2,∗ = µ̃2,∗(β) > 0, for every µ1 ∈ (0, µ̃1,∗), µ2 ∈ (0, µ̃2,∗), such that (4.17) can not happen.

Therefore, P0
µ1,µ2

= ∅.

Case 2: As in p < r1 + r2 = p̄, we get pγp < (r1 + r2)γ(r1+r2) = 2. Similarly as in Case 1, from

(4.1)–(4.3) and (4.15), we have h̄(pγp) = 0, i.e.

(2 − pγp)t
2 = β(r1 + r2)γ(r1+r2)

[
(r1 + r2)γ(r1+r2) − pγp

] ∫

RN
|u|r1 |v|r2 dx

+ 2(22∗α,s − pγp)
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

≤ 2C3β(2 − pγp)η
2 + 2C4(22∗α,s − pγp)η

22∗α,s .

(4.18)

From h̄(22∗α,s) = 0 we get

(22∗α,s − 2)η2 ≤ γp(µ1C1 + µ2C2)(22∗α,s − pγp)η
pγp + 2C3β(22∗α,s − 2)η2. (4.19)

Combining with (4.18), we first suppose 1 − 2C3β > 0 and then

[
(1 − 2C3β)(2 − pγp)

2C4(22∗α,s − pγp)

] 1
22∗α,s−2

≤

[
γp(µ1C1 + µ2C2)(22∗α,s − pγp)

(22∗α,s − 2)(1 − 2C3β)

] 1
2−pγp

,
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that is (
2 − pγp

2C4

)2−pγp
(

22∗α,s − 2

γp

)22∗α,s−2(
1

22∗α,s − pγp

)22∗α,s−pγp

≤(µ1C1 + µ2C2)
22∗α,s−2

(
1

1 − 2C3β

)22∗α,s−pγp

.

Similar argument as in Case 1, choose appropriate β̃∗, µ̃1,∗ = µ̃1,∗(β), µ̃2,∗ = µ̃2,∗(β), such that

the last inequality may not happen. Therefore P0
µ1,µ2

= ∅.

Case 3: If p < p̄ < r1 + r2, then pγp < 2 < (r1 + r2)γ(r1+r2). Also by (3.2), (4.1)–(4.3) and (4.15),

since h̄(pγp) = 0 we have

(2 − pγp)η
2 ≤ C3β(r1 + r2)γ(r1+r2)

[
(r1 + r2)γ(r1+r2) − pγp

]
η(r1+r2)γ(r1+r2)

+ 2C4(22∗α,s − pγp)η
22∗α,s .

(4.20)

By the definition of t2 and t∗ in Lemma 4.1, we need

η ≥ t2 > t∗ :=

[
(µ1C1 + µ2C2)d((r1 + r2)γ(r1+r2) − pγp)

2 − pγp

] 1
2−pγp

.

Besides, from h̄((r1 + r2)γ(r1+r2)) = 0 we have

((r1 + r2)γ(r1+r2) − 2)η2 ≤ γp(µ1C1 + µ2C2)
[
(r1 + r2)γ(r1+r2) − pγp

]
ηpγp . (4.21)

i.e.

η ≤

[
γp(µ1C1 + µ2C2)((r1 + r2)γ(r1+r2) − pγp)

((r1 + r2)γ(r1+r2) − 2)

] 1
2−pγp

.

This is a contradiction with d >
2(r1+r2)γ(r1+r2)

p((r1+r2)γ(r1+r2)
−2)

in Lemma 4.1. Hence, we can fix β̃∗ = β∗ ,

µ̃1,∗ := µ̃1,∗(β) = µ1,∗ and µ̃2,∗ := µ̃2,∗(β) = µ2,∗, to make sure t2 > t∗ and P0
µ1,µ2

= ∅, where

β∗, µ1,∗ and µ2,∗ are from Lemma 4.1.

Following, we prove Pµ1,µ2 is a C1-submanifold in H with codimension 3. For any (u, v) ∈

Pµ1,µ2 , we have Pµ1,µ2(u, v) = 0, G(u) = 0 and F(v) = 0, where

G(u) :=
∫

RN
u2 − a2dx, and F(v) :=

∫

RN
v2 − b2dx.

Then we need to prove

d(Pµ1,µ2(u, v), G(u), F(v)) : H 7→ R
3 is surjective.

If not, there exist ν1, ν2 ∈ R, for every (ϕ, 0) and (0, ψ) in H such that

2s
∫

RN
(−∆)

s
2 u(−∆)

s
2 ϕdx = spγp

∫

RN
µ1|u|

p−2uϕdx + sβ(r1 + r2)γ(r1+r2)r1

∫

RN
|u|r1−2uϕdx

+ 2s2∗α,s

∫

RN
(Iα ∗ |v|

2∗α,s)|u|2
∗
α,s−2uϕdx + 2ν1

∫

RN
uϕdx;

and

2s
∫

RN
(−∆)

s
2 v(−∆)

s
2 ψdx = spγp

∫

RN
µ2|v|

p−2vψdx + sβ(r1 + r2)γ(r1+r2)r2

∫

RN
|v|r2−2vψdx

+ 2s2∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s−2vψdx + 2ν2

∫

RN
vψdx.
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From which (u, v) is a weak solution of the system in RN





2s(−∆)su = 2ν1u + spγpµ1|u|
p−2u + sβ(r1 + r2)γ(r1+r2)r1|u|

r1−2u|v|r2

+ 2s2∗α,s(Iα ∗ |v|
2∗α,s)|u|2

∗
α,s−2u,

2s(−∆)sv = 2ν2v + spγpµ2|v|
p−2v + sβ(r1 + r2)γ(r1+r2)r2|v|

r2−2|u|r1

+ 2s2∗α,s(Iα ∗ |u|
2∗α,s)|v|2

∗
α,s−2v,

∫

RN
|u|2dx = a2,

∫

RN
|v|2dx = b2.

The related Pohožaev identity of the above system is

2([u]2 + [v]2) = pγ2
p(µ1|u|

p
p + µ2|v|

p
p) + β(r1 + r2)

2γ2
(r1+r2)

∫

RN
|u|r1 |v|r2 dx

+ 42∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

thus P0
µ1,µ2

(u, v) = 0, which contradicts with P0
µ1,µ2

= ∅. We complete this lemma.

From Lemmas 4.1 and 4.2, we can have the geometry of Ψµ1,µ2 .

Lemma 4.3. For every (u, v) ∈ S, the function Ψµ1,µ2(t) has exactly two critical points su,v < tu,v ∈ R

and two zeros cu,v < du,v ∈ R with su,v < cu,v < tu,v < du,v. Moreover,

(i) su,v ∗ (u, v) ∈ P+
µ1,µ2

and tu,v ∗ (u, v) ∈ P−
µ1,µ2

, and if t ∗ (u, v) ∈ Pµ1,µ2 , then either t = su,v or

t = tu,v.

(ii) ([t ∗ u]2 + [t ∗ v]2)
1
2 ≤ R2 (R2 is from Lemma 4.1) for every t ≤ cu,v and

J(su,v ∗ (u, v)) = min{J(t ∗ (u, v)) : t ∈ R and ([t ∗ u]2 + [t ∗ v]2)
1
2 ≤ R2}.

(iii) We get J(tu,v ∗ (u, v)) = max{J(t ∗ (u, v)) : t ∈ R} > 0 and Ψµ1,µ2(t) is strictly decreasing

and concave on (tu,v, ∞). In particular, if tu,v < 0, then Pµ1,µ2(u, v) < 0.

(iv) The maps (u, v) 7→ su,v, and (u, v) 7→ tu,v for any (u, v) ∈ S are of class C1.

Proof. Let (u, v) ∈ S, then t ∗ (u, v) ∈ Pµ1,µ2 if and only if Ψ′
µ1,µ2

(t) = 0. By (4.4)-(4.5),

Ψµ1,µ2(t) = J(t ∗ (u, v)) ≥ k(est([u]2 + [v]2)
1
2 ),

thus from Lemma 4.1, Ψµ1,µ2(t) is positive on
(

s−1 ln
R2

([u]2 + [v]2)
1
2

, s−1 ln
R3

([u]2 + [v]2)
1
2

)
.

Since pγp < 2, we see Ψµ1,µ2(−∞) = 0− and Ψµ1,µ2(+∞) = −∞. Then Ψµ1,µ2(t) has at

least two critical points. Therefore, Ψµ1,µ2(t) has a local minimum point su,v at a negative

level in
(
− ∞, s−1 ln R2

([u]2+[v]2)
1
2

)
, and has a global maximum point tu,v at a positive level in

(
s−1 ln R2

([u]2+[v]2)
1
2

, s−1 ln R3

([u]2+[v]2)
1
2

)
. We claim Ψµ1,µ2(t) has exactly two critical points. Let

Ψ′
µ1,µ2

(t) = 0, namely

Ψ
′
µ1,µ2

(t) = se2st([u]2 + [v]2)− sγpespγpt(µ1|u|
p
p + µ2|v|

p
p)− 2se22∗α,sst

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

− sβ(r1 + r2)γ(r1+r2)e
s(r1+r2)γ(r1+r2)

t
∫

RN
|u|r1 |v|r2 dx. (4.22)
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Case 1: 2 < p < r1 + r2 < p̄. From (4.22) we have

Ψ
′
µ1,µ2

(t) = espγpt
[
se(2−pγp)st([u]2 + [v]2)− sβ(r1 + r2)γ(r1+r2)e

s[(r1+r2)γ(r1+r2)
−pγp]t

∫

RN
|u|r1 |v|r2 dx

− 2se(22∗α,s−pγp)st
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx − sγp(µ1|u|

p
p + µ2|v|

p
p)
]
.

Denote

g1(t) := se(2−pγp)st([u]2 + [v]2)− 2se(22∗α,s−pγp)st
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

− sβ(r1 + r2)γ(r1+r2)e
s[(r1+r2)γ(r1+r2)

−pγp]t
∫

RN
|u|r1 |v|r2 dx,

then

g′1(t) = e[(r1+r2)γ(r1+r2)
−pγp]st

[
(2 − pγp)s

2e(2−(r1+r2)γ(r1+r2)
)st([u]2 + [v]2)

− 2(22∗α,s − pγp)s
2e(22∗α,s−(r1+r2)γ(r1+r2)

)st
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

− [(r1 + r2)γ(r1+r2) − pγp]s
2(r1 + r2)γ(r1+r2)β

∫

RN
|u|r1 |v|r2 dx

]
.

Now define

f1(t) := (2 − pγp)s
2e[2−(r1+r2)γ(r1+r2)

]st([u]2 + [v]2)

− 2(22∗α,s − pγp)s
2e(22∗α,s−(r1+r2)γ(r1+r2)

)st
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

thus

f ′1(t) = e(2−(r1+r2)γ(r1+r2)
)st

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2))s

3([u]2 + [v]2)

− 2(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2))s
3e(22∗α,s−2)st

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

]
.

We see f1(t) has only one critical point t̄, which is also a maximum point. Therefore if

f1(t̄) ≤ [(r1 + r2)γ(r1+r2) − pγp]s
2(r1 + r2)γ(r1+r2)β

∫

RN
|u|r1 |v|r2 dx,

we have g′1(t) < 0 and g1(t) is strictly decreasing in R \ {t̄}. Since g1(−∞) = 0− and

g1(+∞) = −∞, we get

g1(t) < 0 < sγp(µ1|u|
p
p + µ2|v|

p
p),

and hence Ψ′
µ1,µ2

(t) < 0, which means Ψµ1,µ2(t) has no critical points. On the other hand, if

f1(t̄) > [(r1 + r2)γ(r1+r2) − pγp]s
2(r1 + r2)γ(r1+r2)β

∫

RN
|u|r1 |v|r2 dx,

then by f1(−∞) = 0+ , f1(+∞) = −∞, there exist two constants t̄1 < t̄ < t̄2, such that

f1(t̄1) = f1(t̄2) = [(r1 + r2)γ(r1+r2) − pγp]s
2(r1 + r2)γ(r1+r2)β

∫

RN
|u|r1 |v|r2 dx.

Therefore, we find from the definitions of g1(t) and Ψµ1,µ2(t) that

g1(t) = sγp(µ1|u|
p
p + µ2|v|

p
p),
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has at most two critical points, which implies Ψµ1,µ2(t) has at most two critical points.

Case 2: 2 < p < (r1 + r2) = p̄. In this case, (4.22) becomes

Ψ
′
µ1,µ2

(t) = s

(
[u]2 + [v]2 − 2β

∫

RN
|u|r1 |v|r2 dx

)
e2st − sγpespγpt(µ1|u|

p
p + µ2|v|

p
p)

− 2se22∗α,sst
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.

(4.23)

If

[u]2 + [v]2 − 2β
∫

RN
|u|r1 |v|r2 dx ≤ 0,

we see Ψ′
µ1,µ2

(t) < 0 and Ψµ1,µ2(t) has no critical points. Now we suppose

[u]2 + [v]2 − 2β
∫

RN
|u|r1 |v|r2 dx > 0.

Then similarly as in Case 1, we conclude Ψµ1,µ2(t) has at most two critical points.

Case 3: 2 < p < p̄ < r1 + r2. From the definition of g1(t), we have

g′1(t) = e(2−pγp)st

[
(2 − pγp)s

2([u]2 + [v]2)− 2s2(22∗α,s − pγp)e
(22∗α,s−2)st

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

− s2β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]e
((r1+r2)γ(r1+r2)

−2)st
∫

RN
|u|r1 |v|r2 dx

]

=: e(2−pγp)st[(2 − pγp)s
2([u]2 + [v]2)− Q(t)],

where

Q(t) = 2s2(22∗α,s − pγp)e
(22∗α,s−2)st

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

+ s2β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]e
((r1+r2)γ(r1+r2)

−2)st
∫

RN
|u|r1 |v|r2 dx.

Moreover by

pγp < 2 < min{(r1 + r2)γ(r1+r2), 22∗α,s},

we see Q(t) is strictly increasing in R. Therefore g1(t) has a unique critical point t̂, which is

also a maximum point and g1(t) is strictly increasing in (−∞, t̂), strictly decreasing in (t̂,+∞).

On one hand, if

g1(t̂) ≤ sγp(µ1|u|
p
p + µ2|v|

p
p),

we have Ψµ1,µ2(t) has no critical points. Besides, if

g1(t̂) > sγp(µ1|u|
p
p + µ2|v|

p
p),

then Ψ′
µ1,µ2

(t) = 0 has at most two solutions, that is Ψµ1,µ2(t) has at most two critical points.

Hence, Ψµ1,µ2(t) has exactly two critical points su,v < tu,v.

By the definitions of Pµ1,µ2(u, v) in (2.6) and Ψµ1,µ2(t) in (2.7), we find Ψ′
µ1,µ2

(t) = Pµ1,µ2(t ∗

u, t ∗ v). Therefore we know Pµ1,µ2(t ∗ u, t ∗ v) = 0 if and only if t is a critical point of Ψµ1,µ2(t).

From above we find Ψµ1,µ2(t) has exactly two critical points su,v, tu,v, then we have Pµ1,µ2(t ∗

u, t ∗ v) = 0 if and only if t = su,v or t = tu,v. Moreover from Lemma 2.5 the definition of

Pµ1,µ2 here, by (t ∗ u, t ∗ v) ∈ S we see that (t ∗ u, t ∗ v) ∈ Pµ1,µ2 if and only if t = su,v or

t = tu,v. Noticing Ψ′′
µ1,µ2

(su,v) ≥ 0 , Ψ′′
µ1,µ2

(tu,v) ≤ 0 and P0
µ1,µ2

= ∅, we obtain su,v ∗ (u, v) ∈
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P+
µ1,µ2

and tu,v ∗ (u, v) ∈ P−
µ1,µ2

. By the monotonicity and the behavior of Ψµ1,µ2(t), we see

Ψµ1,µ2(t) has exactly two zeros cu,v < du,v ∈ R with su,v < cu,v < tu,v < du,v, and Ψµ1,µ2(t) has

exactly two inflection points. Moreover, Ψµ1,µ2(t) is concave on [tu,v, ∞), and if tu,v < 0, then

Pµ1,µ2(u, v) = Ψ′
µ1,µ2

(0) < 0. Finally, we apply implicit function theorem on the C1 function

Φ(t, u, v) = Ψ′
µ1,µ2

(t), then Φ(su,v, u, v) = Ψ′
µ1,µ2

(su,v) = 0, ∂tΦ(su,v, u, v) = Ψ′′
µ1,µ2

(su,v) > 0.

Therefore we know (u, v) → su,v is of class C1. Similarly, (u, v) → tu,v is also of class C1.

For r > 0, define

Br(a, b) := {(u, v) ∈ S : ([u]2 + [v]2)
1
2 < r}, and m̂(a, b) := inf

(u,v)∈BR2
(a,b)

J(u, v).

From Lemma 4.3, we can deduce the following conclusion directly.

Corollary 4.4. The set P+
µ1,µ2

⊂ BR2
(a, b), and

sup
(u,v)∈P+

µ1,µ2

J(u, v) ≤ 0 ≤ inf
(u,v)∈P−

µ1,µ2

J(u, v).

Lemma 4.5. We have m̂(a, b) ∈ (−∞, 0), moreover

m̂(a, b) = m(a, b) = m+(a, b) and m̂(a, b) < inf
BR2

(a,b)\BR2−δ(a,b)
J(u, v),

for δ > 0 small enough.

Proof. For any (u, v) ∈ BR2
(a, b), by (4.4) and (4.5), we get

J(u, v) ≥ k(([u]2 + [v]2)
1
2 ) ≥ min

t∈[0,R2]
k(t) > −∞.

Hence m̂(a, b) > −∞. Moreover, for any (u, v) ∈ S, when t ≪ −1, we have ([t ∗ u]2+

[t ∗ v]2)
1
2 < R2 and J(t ∗ (u, v)) < 0. Hence m̂(a, b) < 0. From Corollary 4.4, P+

µ1,µ2
⊂ BR2

(a, b),

then m̂(a, b) ≤ m+(a, b). On the other hand, for any (u, v) ∈ BR2
(a, b), from Lemma 4.3 we get

m+(a, b) ≤ J(su,v ∗ (u, v)) ≤ J(u, v).

Thus m+(a, b) = m̂(a, b). Since J(u, v) > 0 on P−
µ1,µ2

, we know m(a, b) = m+(a, b). Finally,

by the continuity of k(t) and k(R2) = 0, we see from −∞ < m̂(a, b) < 0 that there is δ > 0

satisfying k(t) ≥ m̂(a,b)
2 if t ∈ [R2 − δ, R2]. Thus

J(u, v) ≥ k(([u]2 + [v]2)
1
2 ) ≥

m̂(a, b)

2
≥ m̂(a, b),

for any (u, v) ∈ S with R2 − δ ≤ ([u]2 + [v]2)
1
2 ≤ R2. This completes the proof.

Similarly from Case 1 in Lemma 3.4, we obtain the monotonicity for this problem (1.1)–

(1.2).

Lemma 4.6. There exists β̂∗ > 0, for β ∈ (0, β̂∗), there are µ̂1,∗ := µ̂1,∗(β), µ̂2,∗ := µ̂2,∗(β) > 0,

for any µ1 ∈ (0, µ̂1,∗) and µ2 ∈ (0, µ̂2,∗), the level satisfies m(a, b) ≤ m(a1, b1) for any 0 < a1 ≤ a,

0 < b1 ≤ b.
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Proof. We also divide this proof into 3 cases.

Case 1: 2 < p < r1 + r2 < p̄. From Lemmas 4.1 and 4.3, we have m(a, b) = infBt0
(a,b) J(u, v) and

t0 =

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2))

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2))

] 1
22∗α,s−2

,

which is independent with a, b. Besides, from (3.2), (4.1) and (4.2), we get C1, C2 and C3

are increasing when a, b are increasing. Hence, we can choose β̂∗ = min{β∗, β̃∗}, µ̂1,∗ =

min{µ1,∗, µ̃1,∗} and µ̂2,∗ = min{µ1,∗, µ̃1,∗}, such that there is (u, v) ∈ Bt0(a1, b1) with J(u, v) ≤

m(a1, b1) +
ε
2 , for ε is arbitrarily small. Using the same argument as Case 1 in Lemma 3.4, we

get this result.

Case 2: 2 < p < r1 + r2 = p̄. Similarly, we have m(a, b) = infBt1
(a,b) J(u, v) with

t1 =

[
(1 − 2C3β)(2 − pγp)

2C4(22∗α,s − pγp)

] 1
22∗α,s−2

≤

[
(2 − pγp)

2C4(22∗α,s − pγp)

] 1
22∗α,s−2

:= t1,∗,

which is independent with a, b. If there exists β̆∗ > 0. Then for any β ∈ (0, β̆∗), there are

µ̆1,∗ = µ̆1,∗(β), µ̆2,∗ = µ̆2,∗(β) > 0, for any µ1 ∈ (0, µ̆1,∗) and µ2 ∈ (0, µ̆2,∗), such that k(t1,∗) ≥ 0,

that is

1

2
−

2 − pγp

22∗α,s(22∗α,s − pγp)
≥ C3β +

µ1C1 + µ2C2

p

[
(2 − pγp)

2C4(22∗α,s − pγp)

] pγp−2

22∗α,s−2

. (4.24)

Then from Lemmas 4.1 and 4.3, we can have m(a, b) = infBt1,∗
(a,b) J(u, v). Hence, there ex-

ists β̂∗ = min{β∗, β̃∗, β̆∗}, for β ∈ (0, β̂∗), there are µ̂1,∗(β) = min{µ1,∗, µ̃1,∗, µ̆1,∗}, µ̂2,∗(β) =

min{µ2,∗, µ̃2,∗, µ̆2,∗}, for any µ1 ∈ (0, µ̂1,∗) and µ2 ∈ (0, µ̂2,∗), there is (u, v) ∈ Bt1,∗(a1, b1) with

J(u, v) ≤ m(a1, b1) +
ε
2 . The remainder of the proof is similar to Lemma 3.4, and so we omit

the details here.

Case 3: 2 < p < p̄ < (r1 + r2) < 2∗s . First we have m(a, b) = infBt2
(a,b) J(u, v) and

2 − pγp = C3β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]t
(r1+r2)γ(r1+r2)

−2

2 + 2C4(22∗α,s − pγp)t
22∗α,s−2

2 .

If we choose

t2,∗ =

[
2 − pγp

2C4(22∗α,s − pγp)

] 1
22∗α,s−2

,

which is independent with a, b and satisfies

2 − pγp < C3β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]t
(r1+r2)γ(r1+r2)

−2

2,∗ + 2C4(22∗α,s − pγp)t
22∗α,s−2

2,∗ ,

then t2 ≤ t2,∗. Furthermore, if k(t2,∗) ≥ 0, that is

1

2
−

2 − pγp

22∗α,s(22∗α,s − pγp)
≥

µ1C1 + µ2C2

p

[
(2 − pγp)

2C4(22∗α,s − pγp)

] pγp−2

22∗α,s−2

+ C3β

[
(2 − pγp)

2C4(22∗α,s − pγp)

] pγp−2

(r1+r2)γ(r1+r2)
−2

.

Hence m(a, b) = infBt2,∗
(a,b) J(u, v). Like the same argument as before, choosing appropriate

β̂∗, µ̂1,∗, µ̂2,∗, using the same techniques in Lemma 3.4, we finish this problem.
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Lemma 4.7. We have

m(a, b) < min{m(a, 0), m(0, b)}.

Proof. From Theorem 3.1, we get m(a, 0) can be achieved by û ∈ Sa. We choose a proper

test function v̂ ∈ Sb such that (û, t ∗ v̂) ∈ S. By (3.3) and (4.5), we obtain h(t) > k(t) for

t ∈ (0,+∞). Hence, from Lemma 4.1, we have R0 < R2. By Theorem 3.1, we get

m(a, 0) = inf
Pµ1,a

Iµ1,a(u) = inf
BR0

Iµ1,a(u).

Therefore [û] ≤ R0 < R2. Thus, for t ≪ −1, we have (û, t ∗ v̂) ∈ BR2
(a, b) and

m(a, b) = inf
(u,v)∈BR2

(a,b)
J(u, v) ≤ J(û, t ∗ v̂)

=
1

2
[û]2 −

µ1

p

∫

RN
|û|pdx +

(
e2st

2
[v̂]2 −

µ2epγpst

p

∫

RN
|v̂|pdx

− β
∫

RN
|û|r1 |t ∗ v̂|r2 dx −

1

2∗α,s

∫

RN
(Iα ∗ |û|

2∗α,s)|t ∗ v̂|2
∗
α,s dx

)

<
1

2
[û]2 −

µ1

p

∫

RN
|û|pdx = m(a, 0).

Analogously, we have m(a, b) < m(0, b). Hence, the proof is completed.

To obtain the compact result, we prove the boundedness first.

Lemma 4.8. Let 2 < p < p̄, p < r1 + r2 < 2∗s and µ1, µ2, a, b > 0. Let {(un, vn)} ⊂ Sr be a

Palais–Smale sequence, such that

J(un, vn) → c; J′(un, vn)|S → 0 and Pµ1,µ2(un, vn) → 0,

where Sr = S ∩ Hr and Hr is the space of radially symmetric functions in H. Then {(un, vn)} is

bounded in H.

Proof. We divide this proof into two cases. Case 1: 2 < p < r1 + r2 < p̄. This implies

pγp < (r1 + r2)γ(r1+r2) < 2. Since (3.2), (4.1)–(4.3),

c + on(1) = J(un, vn)−
1

22∗α,s

Pµ1,µ2(un, vn)

=
N + 2s − α

2(2N − α)
([un]

2 + [vn]
2)−

(
1

p
−

γp

22∗α,s

)
(µ1|un|

p
p + µ2|vn|

p
p)

− β

[
1 −

(r1 + r2)γ(r1+r2)

22∗α,s

] ∫

RN
|un|

r1 |vn|
r2 dx

≥
N + 2s − α

2(2N − α)
([un]

2 + [vn]
2)−

(
1

p
−

γp

22∗α,s

)
(µ1C1 + µ2C2)([un]

2 + [vn]
2)

pγp
2

− β

[
1 −

(r1 + r2)γ(r1+r2)

22∗α,s

]
C3([un]

2 + [vn]
2)

(r1+r2)γ(r1+r2)
2 .

Then, {(un, vn)} is bounded in H.
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Case 2: 2 < p < p̄ ≤ r1 + r2 < 2∗s . From (3.2), (4.1)–(4.3) and α < N, we can obtain

c + on(1) = J(un, vn)−
1

(r1 + r2)γ(r1+r2)
Pµ1,µ2(un, vn)

=

[
1

2
−

1

(r1 + r2)γ(r1+r2)

]
([un]

2 + [vn]
2)−

[
1

p
−

γp

(r1 + r2)γ(r1+r2)

]
(µ1|un|

p
p + µ2|vn|

p
p)

−

[
1

2∗α,s

−
2

(r1 + r2)γ(r1+r2)

] ∫

RN
(Iα ∗ |un|

2∗α,s)|vn|
2∗α,s dx

≥

[
1

2
−

1

(r1 + r2)γ(r1+r2)

]
([un]

2 + [vn]
2)

−

[
1

p
−

γp

(r1 + r2)γ(r1+r2)

]
(µ1C1 + µ2C2)([un]

2 + [vn]
2)

pγp
2 .

From this, we have {(un, vn)} is bounded in H.

In what follows, we discuss the convergence of a special Palais–Smale sequence, satisfying

suitable additional conditions.

Proposition 4.9. Let {(un, vn)} ⊂ Sr such that as n → ∞,

J′(un, vn)− λ1,nun − λ2,nvn → 0, for some λ1,n, λ2,n ∈ R;

J(un, vn) → m(a, b), Pµ1,µ2(un, vn) → 0;

u−
n , v−n → 0, a.e. in R

N ,

(4.25)

with

m(a, b) ̸= 0, and m(a, b) <
N + 2s − α

2N − α

(
S∗

2

) 2N−α
N+2s−α

.

Then there exist (u, v) ∈ Hr with u, v > 0 and λ1, λ2 < 0, such that up to a subsequence, (un, vn) →

(u, v) in H and (λ1,n, λ2,n) → (λ1, λ2) in R2.

Proof. From Lemma 4.8, we get {(un, vn)} is bounded in Hr. Moreover, by (4.25) we get

λ1,n =
1

a2
J′(un, vn)(un, 0) + on(1), and λ2,n =

1

b2
J′(un, vn)(0, vn) + on(1),

thus {λ1,n} and {λ2,n} are bounded in R. Therefore, there exist (u, v) ∈ Hr and λ1, λ2 ∈ R

such that up to a subsequence,

(un, vn) ⇀ (u, v), in Hr,

(un, vn) → (u, v), in Lq(RN)× Lq(RN), for 2 < q < 2∗s ,

(un, vn) → (u, v), a.e. in R
N ,

(λ1,n, λ2,n) → (λ1, λ2), in R
2.

Since

|vn|
2∗α,s ⇀ |v|2

∗
α,s , in L

2N
2N−α (RN),

and the map T : L
2N

2N−α (RN) 7→ L
2N
α (RN) defined by T(w) = Iα ∗ w is well defined , linear and

continuous, we have

Iα ∗ |vn|
2∗α,s ⇀ Iα ∗ |v|

2∗α,s , in L
2N
α (RN).
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Besides, by

|un|
2∗α,s−2un ⇀ |u|2

∗
α,s−2u, in L

2N
N+2s−α (RN),

we get

(Iα ∗ |vn|
2∗α,s)|un|

2∗α,s−2un ⇀ (Iα ∗ |v|
2∗α,s)|u|2

∗
α,s−2u, in L

2N
N+2s (RN).

Hence for any φ, ψ ∈ C∞
0 (RN), we get

∫

RN
(Iα ∗ |vn|

2∗α,s)|un|
2∗α,s−2unφdx →

∫

RN
(Iα ∗ |v|

2∗α,s)|u|2
∗
α,s−2uφdx,

and ∫

RN
(Iα ∗ |un|

2∗α,s)|vn|
2∗α,s−2vnψdx →

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s−2vψdx.

Therefore from (4.25), (u, v) satisfies




(−∆)su = λ1u + µ1|u|
p−2u + βr1|u|

r1−2u|v|r2 + (Iα ∗ |v|
2∗α,s)|u|2

∗
α,s−2u, in RN ,

(−∆)sv = λ2v + µ2|v|p−2v + βr2|u|r1 |v|r2−2v + (Iα ∗ |u|
2∗α,s)|v|2

∗
α,s−2v, in RN ,

u ≥ 0, v ≥ 0,

(4.26)

and Pµ1,µ2(u, v) = 0.

Next, we will show u ̸≡ 0 and v ̸≡ 0. If not, we assume u ≡ 0. We claim v ̸≡ 0. Otherwise,

from Pµ1,µ2(un, vn) → 0 and un, vn → 0 in Lq(RN) for any q ∈ (2, 2∗s ), we get

[un]
2 + [vn]

2 = 2
∫

RN
(Iα ∗ |un|

2∗α,s)|vn|
2∗α,s dx + on(1).

Since {(un, vn)} is bounded in H, we may assume [un]2 + [vn]2 → l ∈ R. Then from (2.2), we

have

l = 0 or l ≥ 2

(
S∗

2

) 2N−α
N+2s−α

.

On one hand, if l = 0, we have (un, vn) → (0, 0) in Ds(RN) × Ds(RN). Consequently

J(un, vn) → 0 which gives a contradiction with m(a, b) ̸= 0. On the other hand, if l ≥

2( S∗

2 )
2N−α

N+2s−α , from Pµ1,µ2(un, vn) → 0, we obtain

m(a, b) = J(un, vn) + on(1) = J(un, vn)−
1

2
Pµ1,µ2(un, vn) + on(1) ≥

N + 2s − α

2N − α

(
S∗

2

) 2N−α
N+2s−α

,

which can not happen since m(a, b) <
N+2s−α

2N−α ( S∗

2 )
2N−α

N+2s−α . Therefore v ̸≡ 0. From (4.26) and

u ≡ 0, we have v satisfies
{
(−∆)sv = λ2v + µ2|v|

p−2v, in R
N ,

v ≥ 0.

Then we obtain from |v|2 ≤ b and Lemma 3.4,

m(a, b) = J(un, vn)−
1

2
Pµ1,µ2(un, vn) + on(1)

=

(
γp

2
−

1

p

)
µ2|v|

p
p + (1 −

1

2∗α,s

)
∫

RN
(Iα ∗ |un|

2∗α,s)|vn|
2∗α,s dx + on(1)

≥

(
γp

2
−

1

p

)
µ2|v|

p
p ≥ m(0, |v|2) ≥ m(0, b).
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From Lemma 4.7, which contradicts with m(a, b) < m(0, b). Similar to [45, Lemma 3.7] and

[32, Section 3], by the strong maximum principle [37, Proposition 2.17], we have u > 0. Anal-

ogously v > 0.

We claim (un, vn)→ (u, v) in Ds(RN)×Ds(RN). Indeed, if we let (ûn, v̂n) := (un−u, vn−v),

by [12, Lemma 2.2],

∫

RN
(Iα ∗ |un|

2∗α,s)|vn|
2∗α,s dx −

∫

RN
(Iα ∗ |ûn|

2∗α,s)|v̂n|
2∗α,s dx + on(1) =

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

and [45, Lemma 2.4],

∫

RN
|un|

r1 |vn|
r2 − |ûn|

r1 |v̂n|
r2 − |u|r1 |v|r2 dx = on(1).

Therefore by the Brézis–Lieb Lemma [9], we have

Pµ1,µ2(ûn, v̂n) = Pµ1,µ2(un, vn)− Pµ1,µ2(u, v) + on(1) = on(1).

We deduce by the strong embedding in Lq(RN) for q ∈ (2, 2∗s ) that,

lim
n→∞

([ûn]
2 + [v̂n]

2) = lim
n→∞

2
∫

RN
(Iµ ∗ |ûn|

2∗α,s)|v̂n|
2∗α,s .

Same argument as before, from (2.2) we can have

([ûn]
2 + [v̂n]

2) → 0,

or

([ûn]
2 + [v̂n]

2) ≥ 2

(
S∗

2

) 2N−α
N+2s−α

.

If the latter happens, we obtain from |u|2 ≤ a, |v|2 ≤ b and Lemma 4.6,

m(a, b) + on(1) = J(u, v) + J(ûn, v̂n) = J(u, v) + J(ûn, v̂n)−
1

22∗α,s

Pµ1,µ2(ûn, v̂n)

≥ m(|u|2, |v|2) +
N + 2s − α

2N − α

(
S∗

2

) 2N−α
N+2s−α

≥ m(a, b) +
N + 2s − α

2N − α

(
S∗

2

) 2N−α
N+2s−α

,

this can not happen. Therefore we have ([ûn]2 + [v̂n]2) → 0, and we finish this claim.

Following, we claim λ1, λ2 < 0. If not, we may assume λ1 ≥ 0. From u ≥ 0 we have

(−∆)su = λ1u + µ1|u|
p−2u + βr1|u|

r1−2u|v|r2 + (Iα ∗ |v|
2∗α,s)|u|2

∗
α,s−2u ≥ 0.

From [29, Lemma 2.3] and 2s < N ≤ 4s, we have u ≡ 0, which is a contradiction. Hence, we

obtain λ1 < 0, and analogously λ2 < 0. Then we deduce from taking (un − u, vn − v) into
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(4.26) and the first formula of (4.25),

[un − u]2 + [vn − v]2 + on(1)

=
∫

RN
(λ1,nun − λ1u)(un − u) + (λ2,nvn − λ2v)(vn − v)dx

+ µ1

∫

RN
(|un|

p−2un − |u|p−2u)(un − u)dx

+ µ2

∫

RN
(|vn|

p−2vn − |v|p−2v)(vn − v)dx

+ βr1

∫

RN
(|un|

r1−2un|vn|
r2 − |u|r1−2u|v|r2)(un − u)dx

+ βr2

∫

RN
(|un|

r1 |vn|
r2−2vn − |u|r1 |v|r2−2v)(vn − v)dx

+
∫

RN
[(Iα ∗ |vn|

2∗α,s)|un|
2∗α,s−2un − (Iα ∗ |v|

2∗α,s)|u|2
∗
α,s−2u](un − u)dx

+
∫

RN
[(Iα ∗ |un|

2∗α,s)|vn|
2∗α,s−2vn − (Iα ∗ |u|

2∗α,s)|v|2
∗
α,s−2v](vn − v)dx.

Since (un, vn) → (u, v) in Ds(RN) × Ds(RN) and the embedding Ds(RN) →֒ L2∗s (RN) is

continuous, we have

0 = lim
n→∞

∫

RN
(λ1,nun − λ1u)(un − u) + (λ2,nvn − λ2v)(vn − v)dx

= lim
n→∞

∫

RN
λ1(un − u)2 + λ2(vn − v)2dx,

by λ1, λ2 < 0, then (un, vn) → (u, v) in H and we complete this proof.

Proof of Theorem 1.1. Taking β∗ = β̂∗, there exist µ∗
1(β) = min{µ̂1,∗, µ̂1} and µ∗

2(β) =

min{µ̂2,∗, µ̂2}, for any µ1 ∈ (0, µ∗
1) and µ2 ∈ (0, µ∗

2), such that Lemmas 4.1, 4.2 and 4.7 are

satisfied. Then, from Proposition 4.9, to finish this proof, it is sufficient to prove the existence

of a sequence which satisfies Proposition 4.9. Let {(un, vn)} be a minimizing sequence for

m(a, b) = infBR2
(a,b) J(u, v), and assume that {(un, vn)} ⊂ Sr is radially decreasing, symme-

try and non-negative for every n ∈ N (Firstly, due to |(−∆)
s
2 |u|| ≤ |(−∆)

s
2 u|, we can have

(un, vn) is non-negative. Secondly, we replace |un| with |un|∗ and |vn| with |vn|∗, where | · |∗ is

the Schwarz symmetrization rearrangement, then we can obtain another function in BR2
(a, b)

with J(|un|∗, |vn|∗) ≤ J(un, vn)). Moreover by Lemma 4.3, sun,vn ∗ (un, vn) ∈ P+
µ1,µ2

such that

([un]
2 + [vn]

2)
1
2 < R2,

and

J(sun,vn ∗ (un, vn)) = min{J(t ∗ (un, vn)) : t ∈ R and ([t ∗ un]
2 + [t ∗ vn]

2)
1
2 < R2}

≤ J(un, vn).

Thus, we get another minimizing sequence {ũn := sun,vn ∗ un, ṽn := sun,vn ∗ vn} with

{(ũn, ṽn)} ⊂ Sr. By Lemma 4.5, we have ([ũn]2 + [ṽn]2)
1
2 ≤ R2 − δ. Then, from Ekeland’s

Variational Principle [17], we know there exists a radially Palais–Smale sequence {(wn, zn)}

for J|S satisfying ∥(wn, zn)− (ũn, ṽn)∥H → 0 as n → ∞. Following, we claim Pµ1,µ2(wn, zn) =

P(ũn, ṽn) + on(1) = on(1). Firstly, by the Brézis–Lieb Lemma and Sobolev’s embedding Theo-

rem, we have

[wn]
2 = [wn − ũn]

2 + [ũn]
2 + on(1) = [ũn]

2 + on(1),
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and
∫

RN
|wn|

pdx =
∫

RN
|wn − ũn|

pdx +
∫

RN
|ũn|

pdx + on(1) =
∫

RN
|ũn|

pdx + on(1).

Moreover, by the Hölder inequality and Lemma 2.1, we get

∫

RN
|wn|

r1 |zn|
r2 dx =

∫

RN
|ũn|

r1 |ṽn|
r2 dx + on(1),

and ∫

RN
(Iα ∗ |wn|

2∗α,s)|zn|
2∗α,s dx =

∫

RN
(Iα ∗ |ũn|

2∗α,s)|ṽn|
2∗α,s dx + on(1).

The same relationship happen to zn and ṽn. Therefore, we obtain

Pµ1,µ2(wn, zn) = Pµ1,µ2(ũn, ṽn) + on(1) = on(1), and w−
n , z−n → 0, a.e. in R

N .

Thus from Proposition 4.9, we obtain there is (u, v) ∈ Hr and (λ1, λ2) ∈ R2 with λ1, λ2 < 0,

such that (wn, zn) → (u, v) in H and (λ1,n, λ2,n) → (λ1, λ2) in R2. Hence, (u, v) ∈ Pµ1,µ2 is a

solution for (1.1)–(1.2), which is a normalized ground state with J(u, v) = m(a, b). Moreover,

for any ground state solution (u, v), from m(a, b) < 0 and Lemma 4.2, we have

J(u, v) = m(a, b) = inf
BR2

(a,b)
J(u, v), and ([u]2 + [v]2)

1
2 < R2,

i.e. (u, v) is a local minimizer for J(u, v) on BR2
(a, b).

5 The case: p̄ < p < r1 + r2 < 2∗s

Firstly, we show the boundedness result for this case.

Lemma 5.1. Let p̄ < p < r1 + r2 < 2∗s and µ1, µ2, a, b > 0. Let {(un, vn)} ⊂ Sr be a Palais–Smale

sequence such that

J(un, vn) → c; J′(un, vn)|S → 0, and Pµ1,µ2(un, vn) → 0.

Then {(un, vn)} is bounded in H.

Proof. In this case, we have 2 < pγp < (r1 + r2)γ(r1+r2). Then

c + on(1) = Jµ1,µ2(un, vn)−
1

2
Pµ1,µ2(un, vn)

=

(
γp

2
−

1

p

)
(µ1|un|

p
p + µ2|vn|

p
p) + β

[
(r1 + r2)γ(r1+r2)

2
− 1

] ∫

RN
|un|

r1 |vn|
r2 dx

+

(
1 −

1

2∗α,s

) ∫

RN
(Iα ∗ |un|

2∗α,s)|vn|
2∗α,s dx,

by each coefficient is positive, we get {(un, vn)} is bounded in H. The proof is completed.

Recalling the decomposition of Pµ1,µ2 = P+
µ1,µ2

∪ P0
µ1,µ2

∪ P−
µ1,µ2

, we have

Lemma 5.2. P0
µ1,µ2

= ∅ and Pµ1,µ2 is a C1-submanifold in H with codimension 3.
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Proof. If there is (u, v) ∈ P0
µ1,µ2

, then

[u]2 + [v]2 = γp(µ1|u|
p
p + µ2|v|

p
p) + β(r1 + r2)γ(r1+r2)

∫

RN
|u|r1 |v|r2 dx + 2

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

and

2([u]2 + [v]2) = pγ2
p(µ1|u|

p
p + µ2|v|

p
p) + β(r1 + r2)

2γ2
(r1+r2)

∫

RN
|u|r1 |v|r2 dx

+ 4 · 2∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.

From above, we obtain

(2 − pγp)([u]
2 + [v]2) = β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]

∫

RN
|u|r1 |v|r2 dx

+ 2(22∗α,s − pγp)
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.

Since 2 − pγp < 0, (r1 + r2)γ(r1+r2) − pγp > 0 and 22∗α,s − pγp > 0, we have (u, v) = (0, 0),

which contradicts with (u, v) ∈ S. The remainder parts of this proof is similar with Lemma 4.2,

and we omit the details here.

Following, we show the geometry for this mass supercritical case.

Lemma 5.3. For every (u, v) ∈ S, the function Ψµ1,µ2(t) has exactly one critical point tu,v ∈ R such

that tu,v ∗ (u, v) ∈ Pµ1,µ2 . Moreover:

(i) Pµ1,µ2 = P−
µ1,µ2

;

(ii) Ψµ1,µ2(t) is strictly decreasing and concave on (tu,v,+∞), and Ψµ1,µ2(tu,v)=maxt∈RΨµ1,µ2(t)>

0;

(iii) The map (u, v) 7→ tu,v is of class C1;

(iv) If Pµ1,µ2(u, v) < 0, then tu,v < 0.

Proof. From the definition of Ψµ1,µ2(t), we have

Ψ
′
µ1,µ2

(t)

= e2st

[
s([u]2 + [v]2)− sγpe(pγp−2)st(µ1|u|

p
p + µ2|v|

p
p)− 2se(22∗α,s−2)st

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

− sβ(r1 + r2)γ(r1+r2)e
[(r1+r2)γ(r1+r2)

−2]st
∫

RN
|u|r1 |v|r2 dx

]
,

which implies Ψµ1,µ2(t) has exactly one critical point tu,v. Since

Ψµ1,µ2(−∞) = 0+, and Ψµ1,µ2(+∞) = −∞,

we get tu,v is a strict maximum point at a positive level and tu,v ∗ (u, v) ∈ Pµ1,µ2 . From

Ψ′′
µ1,µ2

(tu,v) ≤ 0 and P0
µ1,µ2

= ∅, we have Ψ′′
µ1,µ2

(tu,v) < 0, this implies tu,v ∗ (u, v) ∈ P−
µ1,µ2

and

Pµ1,µ2 = P−
µ1,µ2

. To see (iii), we use the implicit function theorem as in Lemma 4.3. Finally,

since Ψ′
µ1,µ2

(t) < 0 if and only if t > tu,v, we get Pµ1,µ2(u, v) = Ψ′
µ1,µ2

(0) < 0 if and only if

tu,v < 0.

Remark 5.4. From Lemma 5.3, we see m(a, b) = m−(a, b).
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Lemma 5.5. m(a, b) = infPµ1,µ2
J(u, v) > 0.

Proof. For (u, v) ∈ Pµ1,µ2 , then from (3.2), (4.1)-(4.3), we get

([u]2 + [v]2) ≤ γp(C1µ1 + C2µ2)([u]
2 + [v]2)

pγp
2 + 2C4([u]

2 + [v]2)2∗α,s

+ C3β(r1 + r2)γ(r1+r2)([u]
2 + [v]2)

(r1+r2)γ(r1+r2)
2 .

Since pγp > 2, we obtain infPµ1,µ2
([u]2 + [v]2) > 0 and so

inf
Pµ1,µ2

J(u, v) = inf
Pµ1,µ2

[
J(u, v)−

1

2
Pµ1,µ2(u, v)

]

= inf
Pµ1,µ2

[(
γp

2
−

1

p

)
(µ1|u|

p
p + µ2|v|

p
p) + β

(
(r1 + r2)γ(r1+r2)

2
− 1

) ∫

RN
|u|r1 |v|r2 dx

+

(
1 −

1

2∗α,s

) ∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx

]
> 0.

Therefore we have m(a, b) > 0.

Lemma 5.6. For any δ > 0 sufficiently small, we have 0 < supBδ
J(u, v) < m(a, b) and

u ∈ Bδ ⇒ J(u, v), Pµ1,µ2(u, v) > 0,

where Bδ := {(u, v) ∈ S : ([u]2 + [v]2)
1
2 < δ}.

Proof. Since (3.2), (4.1)–(4.3), we get

J(u, v) ≥
1

2
([u]2 + [v]2)−

(µ1C1 + µ2C2)

p
([u]2 + [v]2)

pγp
2 − βC3([u]

2 + [v]2)
(r1+r2)γ(r1+r2)

2

−
C4

2∗α,s

([u]2 + [v]2)2∗α,s ,

and

Pµ1,µ2(u, v) ≥ s([u]2 + [v]2)− sγp(µ1C1 + µ2C2)([u]
2 + [v]2)

pγp
2 − 2sC4([u]

2 + [v]2)2∗α,s

− sβ(r1 + r2)γ(r1+r2)C3([u]
2 + [v]2)

(r1+r2)γ(r1+r2)
2 .

Thus for δ > 0 small enough, we have J(u, v) > 0 and Pµ1,µ2(u, v) > 0. Moreover, by

Lemma 5.5, we can choose δ with smaller quantity, such that

J(u, v) ≤ ([u]2 + [v]2) < m(a, b).

To use the Proposition 4.9, we need some properties about m(a, b). Firstly, we get the

monotonicity of m(a, b). The proof is similar with Case 2 in Lemma 3.4 and we omit this

process here.

Lemma 5.7. m(a, b) ≤ m(a1, b1) for any 0 < a1 ≤ a, 0 < b1 ≤ b.

Lemma 5.8. For a, b > 0 fixed, we have limβ→+∞ m(a, b) = 0+.
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Proof. This lemma is equivalent to prove, for any ε > 0, there exists β̄ > 0 such that

m(a, b) < ε for any β ≥ β̄.

Firstly, from Lemma 5.6, for any β > 0, we have m(a, b) > 0. If we choose ϕ ∈ C∞
0 (RN) with

|ϕ|2 ≤ min{a, b}, by Lemmas 5.3 and 5.7 we obtain,

m(a, b) ≤ m(|ϕ|2, |ϕ|2) ≤ max
t∈R

J(t ∗ (ϕ, ϕ)) = max
t∈R

[
E(t)− βes(r1+r2)γ(r1+r2)

t
∫

RN
|ϕ|(r1+r2)dx

]
,

where

E(t) := e2ts[ϕ]2 −
epγpst

p
(µ1 + µ2)|ϕ|

p
p −

e22∗α,sst

2∗α,s

∫

RN
(Iα ∗ |ϕ|

2∗α,s)|ϕ|2
∗
α,s dx.

From pγp − 2 > 0 and 22∗α,s − 2 > 0 we see

E(t) = e2ts

(
[ϕ]2 −

e(pγp−2)st

p
(µ1 + µ2)|ϕ|

p
p −

e(22∗α,s−2)st

2∗α,s

∫

RN
(Iα ∗ |ϕ|

2∗α,s)|ϕ|2
∗
α,s dx

)

= e2ts([ϕ]2 + o(1)) → 0+, as t → −∞.

And there exists t̃ > 0 such that E(t) < ε
4 for t < −t̃. Moreover, there exists β̄ > 0, such that

for any β ≥ β̄,

max
t≥−t̃

[
E(t)− βes(r1+r2)γ(r1+r2)

t|ϕ|r1+r2
r1+r2

]

≤max
t≥−t̃

[
e2ts[ϕ]2 − βes(r1+r2)γ(r1+r2)

t|ϕ|
(r1+r2)
(r1+r2)

−
e22∗α,sst

2∗α,s

∫

RN
(Iα ∗ |ϕ|

2∗α,s)|ϕ|2
∗
α,s dx

]

≤max
t∈R

[
e2ts[ϕ]2 −

e22∗α,sst

2∗α,s

∫

RN
(Iα ∗ |ϕ|

2∗α,s)|ϕ|2
∗
α,s dx

]
− βe−s(r1+r2)γ(r1+r2)

t̃|ϕ|r1+r2
r1+r2

≤

(
1 −

1

2∗α,s

)
[ϕ]

22∗α,s
2∗α,s−1

( ∫

RN
(Iα ∗ |ϕ|

2∗α,s)|ϕ|2
∗
α,s dx

) −1
2∗α,s−1

− βe−s(r1+r2)γ(r1+r2)
t̃|ϕ|r1+r2

r1+r2
.

Hence, we have maxt∈R

[
E(t)− βes(r1+r2)γ(r1+r2)

t|ϕ|r1+r2
r1+r2

]
< ε for β ≥ β̄, and m(a, b) < ε.

Thus by the above lemma, we have the following conclusion:

Lemma 5.9. There exists β̂1 > 0, we get m(a, b) < N+2s−α
2N−α ( S∗

2 )
2N−α

N+2s−α for any β > β̂1.

Lemma 5.10. There exists β̂2 > 0 such that for any β > β̂2, the level satisfies

m(a, b) < min{m(a, 0), m(0, b)}.

Proof. From Theorem 3.3, m(a, 0) > 0 can be achieved by u∗ ∈ Sa. Similarly, m(0, b) > 0 can

be achieved by v∗ ∈ Sb. Since

Iµ1,a(t ∗ u∗) → 0, and Iµ2,b(t ∗ v∗) → 0, as t → −∞,

there is t∗ ≪ −1 which is independent of β, such that

max
t<t∗

J(u∗, v∗) < max
t<t∗

Iµ1,a(t ∗ u∗) + max
t<t∗

Iµ2,b(t ∗ v∗) < min{m(a, 0), m(0, b)}.
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On the other hand, for t > t∗, firstly we have

∫

RN
|t ∗ u∗|r1 |t ∗ v∗|r2 dx = est(r1+r2)γ(r1+r2)

∫

RN
|u∗|r1 |v∗|r2 dx ≥ Cest∗(r1+r2)γ(r1+r2) ,

for some C > 0. Then by Theorem 3.3, we get

max
t≥t∗

J(t ∗ (u∗, v∗)) ≤ max
t≥t∗

Iµ1,a(t ∗ u∗) + max
t≥t∗

Iµ2,b(t ∗ v∗)− Cβest∗(r1+r2)γ(r1+r2)

≤ m(a, 0) + m(0, b)− Cβest∗(r1+r2)γ(r1+r2) .

Hence, there is β̂2 > 0, for any β > β̂2 such that m(a, b) < min{m(a, 0), m(0, b)}.

To prove Theorem 1.2, we give the following minimax theorem to establish the existence

of Palais–Smale sequence. At first, we show some definitions.

Definition 5.11 ([21, Definition 3.1]). Let Θ be a closed subset of a metric space X ⊂ H. We

say that a class F of compact subsets of X is a homotopy-stable family with closed boundary

Θ provided

(i) every set in F contains Θ;

(ii) for any set Υ ∈ F and any η ∈ C([0, 1] × X, X) satisfying η(t, x) = x for all (t, x) ∈

({0} × X) ∪ ([0, 1]× Θ), we have that η({1} × Υ) ∈ F .

Definition 5.12. [33] Let M be a C∞ m-dimensional manifold and T̃M = TM \ {0}, where TM

is a tangent bundle. A function F : TM → [0, ∞) is called a Finsler structure on M if F has the

following properties:

(i) F(tY) = tF(Y), ∀t ∈ R+;

(ii) F is C∞ on T̃M;

(iii) for every non-zero Y ∈ Tx M, the induced quadratic form gY is an inner product in Tx M,

where

gY(U, V) :=
1

2

∂2

∂s∂t
(F2(Y + sU + tV))|s=t=0,

and Tx M is the tangent space at the point x. A Finsler manifold is a C∞-manifold M with its

Finsler structure F.

Remark 5.13. From [14], we know Riemannian manifolds are special cases of Finsler mani-

folds. Denote X := R × Sr. Since R is a Banach space and Sr ⊂ Hs(RN , R)× Hs(RN , R) is a

Banach manifold, similar to [24] (see (7.2) there), [26, Lemma 4.8] and [32, Theorem 6.12], we

know X is a para-compact space with satisfying the requirement of locally limited refinement

for each open coverage. Moreover, by [41, Section 3], we can assign X a Finsler structure and

we know X is a Finsler manifold.

Proposition 5.14 ([21, Theorem 3.2]). Let ϕ be a C1-functional on a complete connected C1-Finsler

manifold X (without boundary) and consider a homotopy stable family F of compact subsets of X with

a closed boundary B.

c = c(ϕ,F ) = inf
Υ∈F

max
u∈Υ

ϕ(u),
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and suppose that sup ϕ(Θ) < c. Then for any sequence of sets {Υn} in F such that limn→∞ sup
Υn

ϕ =

c, there exists a sequence {un} in X such that

lim
n→∞

ϕ(un) = c; lim
n→∞

∥dϕ(un)∥ = 0; and lim
n→∞

dist(un, Υn) = 0.

Furthermore, if dϕ is uniformly continuous, then un can be chosen to be in Υn for each n.

Proof of Theorem 1.2. Using the strategy from [25], for δ > 0 be defined by Lemma 5.6, let the

function J̃ : R × H 7→ R as

J̃(t, (u, v)) := J(t ∗ (u, v)) =
e2st

2
([u]2 + [v]2)−

espγpt

p
(µ1|u|

p
p + µ2|v|

p
p)

− βes(r1+r2)γ(r1+r2)
t
∫

RN
|u|r1 |v|r2 dx

−
e22∗α,sst

2∗α,s

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx,

then J̃ ∈ C1 and a Palais–Smale sequence for J̃|R×Sr
is a Palais–Smale sequence for J̃|R×S.

Setting Jc := {(u, v) ∈ S, J(u, v) ≤ c}, we introduce the minimax class

Γ := {γ = (α, β) ∈ C([0, 1], R × Sr) : γ(0) ∈ (0, Bδ), γ(1) ∈ (0, J0)},

with the minimax level

σ(a, b) := inf
γ∈Γ

max
(t,(u,v))∈γ([0,1])

J̃(t, (u, v)).

Let (u, v) ∈ Sr. From [t ∗ u]2 + [t ∗ v]2 → 0+ as t → −∞ and J(t ∗ (u, v)) → −∞ as t → +∞,

there is t0 ≪ −1 and t1 ≫ 1 such that

γ(u,v) : τ ∈ [0, 1] 7→ (0, ((1 − τ)t0 + τt1) ∗ (u, v)) ∈ R × Sr, (5.1)

which is a path in Γ and σ(a, b) is a real number. For any γ = (α, β) ∈ Γ, we study the function

Πγ : τ ∈ [0, 1] 7→ Pµ1,µ2(α(τ) ∗ β(τ)) ∈ R.

From Lemma 5.6, we find Πγ(0) = Pµ1,µ2(β(0)) > 0. Besides, from Lemma 5.3, Ψµ1,µ2(t) > 0

for any t ∈ (−∞, tu,v). If (u, v) = β(1), we have Ψµ1,µ2(0) = J(β(1)) ≤ 0. Hence, we obtain

tβ(1) < 0 and Πγ(1) = Pµ1,µ2(0 ∗ β(1)) < 0. Since the map τ 7→ α(τ) ∗ β(τ) is continuous

from [0, 1] to H, there exists τγ ∈ (0, 1) such that Πγ(τγ) = 0, which implies α(τγ) ∗ β(τγ) ∈

Pµ1,µ2 ∩ Sr and

max
γ([0,1])

J̃ ≥ J̃(γ(τγ)) = J(α(τγ) ∗ β(τγ)) ≥ inf
Pµ1,µ2

∩Sr

J(u, v) = mr(a, b).

Therefore, σ(a, b) ≥ mr(a, b). On the other hand, for any (u, v) ∈ Pµ1,µ2 ∩ Sr, from (5.1), γ(u,v)

is a path in Γ and by Lemma 5.3,

J(u, v) = max
γ(u,v)([0,1])

J̃ ≥ σ(a, b),

then mr(a, b) ≥ σ(a, b). Combining this with (5.6), we get

σ(a, b) = mr(a, b) > sup
(Bδ∪J0)∩Sr

J(u, v) = sup
((0,Bδ)∪(0,J0))∩(R×Sr)

J̃.
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From Definition 5.11, the set {γ([0, 1]) : γ ∈ Γ} is a homotopy stable family of compact subsets

of R × Sr with closed boundary (0, Bδ) ∪ (0, J0). By Proposition 5.14, similar to [24,32], taking

any minimizing sequence {γn = (αn, βn)} ⊂ Γn for σ(a, b) with αn ≡ 0, and βn(τ) ≥ 0 a.e. in

R, for every τ ∈ [0, 1], there exists a Palais–Smale sequence {tn, wn} ⊂ R × Sr for J̃|R×Sr
at the

level σ(a, b), where wn = (un, vn), such that,

∂t J̃(tn, wn) → 0, ∥∂wJ̃(tn, wn)∥(Twn Sr)∗ → 0, as n → ∞, (5.2)

with an additional property

|tn|+ distH(wn, βn([0, 1])) → 0, as n → ∞. (5.3)

From (5.3), we have tn is bounded in both side. Besides, from the first formula of (5.2), we

have Pµ1,µ2(tn ∗ (un, vn)) → 0, and from the second formula of (5.2) with the boundedness of

tn, for any ϕ ∈ Twn Sr,

dJ(tn ∗ wn)[tn ∗ ϕ] = on(1)∥ϕ∥ = on(1)∥tn ∗ ϕ∥, as n → ∞.

Following, we define ŵn := tn ∗ wn with ŵn = (ûn, v̂n). Therefore, {(ûn, v̂n)} is a Palais–Smale

sequence for J(u, v)|Sr
at the level σ(a, b) with an additional condition Pµ1,µ2(ûn, v̂n) → 0. From

Lemma 5.8, there exists β̂1 > 0, mr(a, b) ∈
(
0, N+2s−α

2N−α ( S∗

2 )
2N−α

N+2s−α
)

for any β > β̂1. Besides, from

Lemma 5.10, there exists β̂2 > 0 such that mr(a, b) < min{m(a, 0), m(0, b)}. Following, we

may require β0 = max{β̂1, β̂2}. Then for β ∈ (β0,+∞), by Proposition 4.9, we know there is

(u, v) ∈ H with u, v > 0 a.e. in R, such that (ûn, v̂n) → (u, v) in H and J(u, v) = mr(a, b).

Hence, we need to show

inf
Pµ1,µ2

∩Sr

J(u, v) = inf
Pµ1,µ2

J(u, v) = m(a, b).

If this does not happen, there is (ū, v̄) ∈ Pµ1,µ2 \ Sr such that J(ū, v̄) < mr(a, b). Denote

(ũ, ṽ) := (|ū|∗, |v̄|∗) as the symmetric decreasing rearrangement of (ū, v̄) such that

[ũ]2 + [ṽ]2 ≤ [û]2 + [v̂]2, J(ũ, ṽ) ≤ J(ū, v̄), and Pµ1,µ2(ũ, ṽ) ≤ Pµ1,µ2(ū, v̄) = 0.

If Pµ1,µ2(ũ, ṽ) = 0, which (ũ, ṽ) ∈ Pµ1,µ2 ∩ Sr, there is a contradiction. On the other hand, if

Pµ1,µ2(ũ, ṽ) < 0, from Lemma 5.3, we get tũ,ṽ < 0. Therefore, by tũ,ṽ ∗ (ũ, ṽ) ∈ Pµ1,µ2 , we have

J(ū, v̄) ≤ J(tũ,ṽ ∗ (ũ, ṽ))−
1

2
Pµ1,µ2(tũ,ṽ ∗ (ũ, ṽ))

=

(
γp

2
−

1

p

)
epγpstũ,ṽ(µ1|ũ|

p
p + µ2|ṽ|

p
p)

+ β

[
(r1 + r2)γ(r1+r2)

2
− 1

]
e(r1+r2)γ(r1+r2)

stũ,ṽ

∫

RN
|ũ|r1 |ṽ|r2 dx

+

(
1 −

1

2∗α,s

)
e22∗α,sstũ,ṽ

∫

RN
(Iα ∗ |ũ|

2∗α,s)|ṽ|2
∗
α,s dx

< J(ū, v̄),

which is a contradiction. Thus, we have mr(a, b) = m(a, b) and (u, v) is a ground state solution.
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6 The case: p = r1 + r2 = 2∗s

Lemma 6.1. Assume s ∈ (0, 1), 2s < N ≤ 4s, p = r1 + r2 = 2∗s and a, b, µ1, µ2, β > 0. Then the

following system





(−∆)su = λ1u + µ1|u|
p−2u + βr1|u|

r1−2u|v|r2 + (Iα ∗ |v|
2∗α,s)|u|2

∗
α,s−2u,

(−∆)sv = λ2v + µ2|v|p−2v + βr2|v|r2−2v|u|r1 + (Iα ∗ |u|
2∗α,s)|v|2

∗
α,s−2v,∫

RN u2dx = a2,
∫

RN v2dx = b2, u, v ∈ Hs(RN),

(6.1)

has no positive solution.

Proof. Assume by contradiction that there is a positive solution (u, v) of (6.1) for some λ1, λ2 ∈

R. On one hand, from Proposition 4.9 and [29, Lemma 2.3], we see that λ1, λ2 < 0 for

2s < N ≤ 4s. On the other hand, by Proposition 2.4 we know (u, v) satisfies the Pohožaev

identity such that

[u]2 + [v]2 = (µ1|u|
2∗s
2∗s
+ µ2|v|

2∗s
2∗s
) + β2∗s

∫

RN
|u|r1 |v|r2 dx + 2

∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx. (6.2)

Moreover since (u, v) is a weak solution to (1.1)-(1.2), it satisfies

[u]2 + [v]2 =
∫

RN
(λ1|u|

2 + λ2|v|
2)dx + (µ1|u|

2∗s
2∗s
+ µ2|v|

2∗s
2∗s
) + β2∗s

∫

RN
|u|r1 |v|r2 dx

+ 2
∫

RN
(Iα ∗ |u|

2∗α,s)|v|2
∗
α,s dx.

(6.3)

Combining (6.2)–(6.3), we show

∫

RN
λ1|u|

2 + λ2|v|
2dx = λ1a2 + λ2b2 = 0.

From which we obtain λ1 = λ2 = 0. This is clearly a contradiction with λ1, λ2 < 0. The proof

is complete.

Proof of Theorem 1.3. Theorem 1.3 follows from Lemma 6.1, then we finish the proof.
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1 Introduction

The theory of center manifolds plays a crucial role in stability and bifurcation theory, as it
often enables the reduction of the dimension of the state space (see [19,29,31–33]). The origins
of this theory date back to the 1960s, with the works of Pliss [49] and Kelley [34, 35]. Subse-
quently, various results on this subject were developed by several authors. In the context of
autonomous differential equations, we recommend the surveys by Vanderbauwhede [54] (see
also Vanderbauwhede and Gils [56]) for the finite-dimensional case and by Vanderbauwhede
and Iooss [55] in the infinite-dimensional case. For the nonautonomous case we recommend
the survey by Aulbach and Wanner [3]. We also recommend [23, 24] and [22, 25, 26, 44, 53] for,
respectively, finite and infinite dimension.

The concept of trichotomy is an essential tool for obtaining center manifolds. The (uni-
form) exponential trichotomies were introduced, independently, by Sacker and Sell [51],
Aulbach [2] and Elaydi and Hájek [28]. This notion was motivated by the idea of (uniform)
exponential dichotomy that started in the thirties with Perron [47, 48].

Several generalizations of exponential trichotomies have since emerged. Fenner and
Pinto [42] introduced the (h, k)-trichotomies that use non exponential growth rates and Bar-
reira and Valls [4, 5] introduced nonuniform exponential trichotomies that take into account
the initial time. Later, Barreira and Valls [6, 7] introduced the ρ-nonuniform exponential tri-
chotomies that are nonuniform and non exponential, but do not include the (h, k)-trichoto-
mies.
BCorresponding author. Email: helder@ubi.pt
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In [12, 15], a general type of trichotomies was introduced, for linear differential equations
and linear difference equations, respectively. This new framework contains as special cases
the notions of trichotomies mentioned above and also contains additional new cases (the case
of dichotomies was done in [13, 14]).

Invariant manifold theory has also been extended to dynamical systems with randomness.
In this work, we focus on random dynamical systems (RDS), which can be generated, for
instance, by random or stochastic differential equations. In this context, various studies have
addressed center, stable, unstable, and inertial invariant manifolds, both locally and globally,
across a range of spaces that goes from finite to infinite dimension, including Hilbert spaces
and separable Banach spaces. Arnold’s monograph [1] provides a detailed exposition on the
Multiplicative Ergodic Theorem and invariant manifold theory for finite-dimensional RDS.
Smooth systems are discussed in [41]. For results on infinite-dimensional RDS, we refer to
[8–11, 18, 27, 37, 40, 43, 45, 46, 50, 52] and the references therein.

Center manifolds for RDS have also garnered attention, either in finite or infinite dimen-
sions. In the finite-dimensional context, Wanner [57] discusses invariant manifolds, including
center manifolds, in terms of linearization in R

n. Boxler [17] proved the existence of center
manifolds for discrete random maps (random diffeomorphisms). Existence, smooth conju-
gacy theorems, and Takens-type theorems based on Lyapunov exponents were established by
Li and Lu in [38] and by Guo and Shen in [30], in the presence of zero Lyapunov exponents.
On the other hand, infinite-dimensional RDS hold significant interest not only due to their
inherent mathematical richness but also for their applications in understanding stochastic
and partial differential equations. Under the assumption of an exponential trichotomy, Chen,
Roberts, and Duan [20] established the existence and smoothness of center manifolds for a
class of stochastic evolution equations with linear multiplicative noise. In [21], Chen, Roberts
and Duan established the existence of center manifolds for both discrete and continuous-time
infinite-dimensional RDS, assuming an exponential trichotomy, by employing the Lyapunov–
Perron method. Moreover, they provided examples illustrating the application of these results
to stochastic evolution equations through their conversion into infinite-dimensional RDS. In a
similar vein, Kuehn and Neamţu [36] addressed the issue of center manifolds for rough partial
differential equations, which also translates into center manifolds within the RDS framework.
Li, Zeng and Huan [39] established the existence and smoothness of center-unstable invariant
manifolds and center-stable foliations for a class of stochastic PDE with non-dense domain,
by converting them into infinite-dimensional RDS.

Exponential trichotomies have played an important role in invariant manifold theory for
infinite-dimensional dynamical systems and non-autonomous systems, whether in determin-
istic or random scenarios, as discussed. In this work, we extend the results on the existence
of center manifolds for infinite-dimensional RDS by assuming a generalized trichotomy. This
type of general assumption was considered in [16] for dichotomies, and in this work, it is
extended to include a central direction. This generalization allows various types of non expo-
nential behaviours along the three subspaces of the invariant splitting. In our context, each
subspace is governed by a very general type of rate for controlling the growth of the evolution
operator, described in terms of a cocycle. In specific cases, these subspaces correspond to
the traditional central, stable, and unstable subspaces. However, our assumptions are suffi-
ciently general to accommodate behaviours beyond exponential-type, such as those observed
in (non)uniformly (pseudo-)hyperbolic settings.

This paper is organized as follows. Section 2 introduces the setup and provides prelim-
inaries on RDS and generalized random trichotomies, as well as a description of auxiliary



Center manifolds for RDS 3

spaces of functions which are essential for handling nonlinear RDS components and deriving
the center manifold as the graph of a suitable regular function. Section 3 presents the main
result for continuous-time RDS (Theorem 3.1), while Section 4 focuses on the discrete-time
counterpart (Theorem 4.1). In Section 5, continuous-time examples are discussed, includ-
ing tempered exponential trichotomies and a general framework called ψ-trichotomies, which
extend beyond exponential bounds. Corresponding discrete-time examples are provided in
Section 6.

2 Generalized trichotomies for RDS

2.1 Random Dynamical Systems

Consider time T = Z or T = R, and set T
− = T ∩ ]− ∞, 0] and T

+ = T ∩ [0,+∞[. A measure-

preserving dynamical system is a quadruplet Σ ≡ (Ω,F , P, θ), where (Ω,F , P) is a measure
space and

θ : T × Ω → Ω is measurable;

θt(·) = θ(t, ·) : Ω → Ω preserves P for all t ∈ T;

θ0 = IdΩ;

θt+s = θt ◦ θs for all t, s ∈ T.

A (Bochner) measurable random dynamical system, henceforth abbreviated as RDS, on a
Banach space X over a measure-preserving dynamical system Σ with time T is a map

Φ : T × Ω × X → X

such that

i) Φ(·, ·, x) is (Bochner) measurable for all x ∈ X;

ii) Φt
ω(·) = Φ(t, ω, ·) : X → X satisfies

a) Φ0
ω = IdX for all ω ∈ Ω;

b) Φt+s
ω = Φt

θsω ◦ Φs
ω, for all ω ∈ Ω and all s, t ∈ T.

When Φt
ω is a bounded linear operator for all (t, ω) ∈ T × Ω, the RDS Φ is called linear.

We may restrict the driving system Σ to a θt-invariant subset Ω′ ⊂ Ω with P-full measure,
obtaining a (Bochner) measurable RDS Φ|T×Ω′×X over Σ′ ≡ (Ω′,F ′, P|F ′ , θ|Ω′), where F ′ =

{B ∩ Ω′ : B ∈ F}. In view of this, without any loss of generality, throughout this work,
requiring a property to hold for all ω ∈ Ω′, for a θt-invariant subset Ω′ ⊂ Ω with P-full
measure, can be replaced by simply requiring it for all ω ∈ Ω by restricting, if necessary, the
RDS Φ to Φ|T×Ω′×X over Σ′.

2.2 Generalized trichotomies

For every i ∈ {c, s, u}, consider a map Pi : Ω × X → X, and set Pi
ω(·) = P(ω, ·) : X → X. Let

P = (Pc, Ps, Pu). A (Bochner) measurable linear RDS Φ over Σ admits a (Bochner) measurable
P-invariant splitting if
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i) Pi(·, x) is (Bochner) measurable, for all x ∈ X and every i ∈ {c, s, u};

ii) Pi
ω is a bounded linear projection, for all ω ∈ Ω and every i ∈ {c, s, u};

iii) Pc
ω + Ps

ω + Pu
ω = Id, for all ω ∈ Ω;

iv) Pc
ωPs

ω = 0, for all ω ∈ Ω;

v) Pi
θtω

Φt
ω = Φt

ωPi
ω, for all (t, ω) ∈ T × Ω and every i ∈ {c, s, u};

Notice that for all ω ∈ Ω and i, j ∈ {c, s, u}, with i ̸= j, we have Pi
ωP

j
ω = 0. To shorten the

writing during future computations, for t ∈ T, ω ∈ Ω, and i ∈ {c, s, u} we will adopt the
notation

Φi,t
ω = Φt

ωPi
ω.

We define the linear subspaces Ei
ω = Pi

ω(X) for each i ∈ {c, s, u}. As usual, we identify
Ec

ω × Es
ω × Eu

ω and Ec
ω ⊕ Es

ω ⊕ Eu
ω. Given the maps

αc : T × Ω → (0,+∞),

αs : T
+ × Ω → (0,+∞),

αu : T
− × Ω → (0,+∞),

we define α = (αc, αs, αu). Denote αi(t, ω) by αi
t,ω. We say that a (Bochner) measurable linear

RDS Φ over Σ exhibits a generalized trichotomy with bounds α (or simply an α-trichotomy) if it
admits a (Bochner) measurable P-invariant splitting satisfying

(T1) ∥Φ
c,t
ω ∥ ⩽ αc

t,ω for all (t, ω) ∈ T × Ω,

(T2) ∥Φ
s,t
ω ∥ ⩽ αs

t,ω for all (t, ω) ∈ T
+ × Ω,

(T3) ∥Φ
u,t
ω ∥ ⩽ αu

t,ω for all (t, ω) ∈ T
− × Ω,

where the operators in (T1)-(T3) are considered as operators from X into X. In what follows,
we always consider the operators defined in the whole Banach space X.

In Section 5 and Section 6, we present several examples of generalized trichotomies with
both exponential and non-exponential bounds α.

In the remainder of this article, Φ will always denote a measurable (when T = Z)
or Bochner measurable (when T = R) linear RDS on a Banach space X over a measure-
preserving dynamical system Σ ≡ (Ω,F , P, θ) exhibiting a trichotomy with bounds α =

(αc, αs, αu).

2.3 Auxiliary spaces

Let F denote the space of maps f : Ω× X → X such that f (·, x) is measurable for every x ∈ X,
and for which, setting fω(·) = f (ω, ·), for every ω ∈ Ω we have

fω(0) = 0 (2.1)

and

Lip( fω) = sup
{
∥ fω(x)− fω(y)∥

∥x − y∥
: x, y ∈ X, x ̸= y

}

< +∞. (2.2)
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Conditions (2.2) and (2.1) ensure that for all ω ∈ Ω and x, y ∈ X

∥ fω(x)− fω(y)∥ ⩽ Lip( fω)∥x − y∥, (2.3)

and
∥ fω(x)∥ ⩽ Lip( fω)∥x∥. (2.4)

Let F (B) represent the collection of functions f ∈ F for which f (·, x) is Bochner measurable

for each x ∈ X. Additionally, define F
(B)
α as the subset of F (B) consisting of functions f such

that, for every ω ∈ Ω, the maps

[a, b] ∋ r 7→ αc
t−r,θrω Lip( fθrω)α

c
r,ω,

[c, 0] ∋ r 7→ αs
−r,θrω Lip( fθrω)α

c
r,ω,

[0, d] ∋ r 7→ αu
−r,θrω Lip( fθrω)α

c
r,ω

are measurable for every a < b, c < 0, d > 0 and t ∈ R.

We define the set
C = {(t, ω, ξ) ∈ T × Ω × X : ξ ∈ Ec

ω}.

For a given M > 0, let CM (resp. C
(B)
M ) denote the space of all functions h : C → X such that,

for each (t, ω) ∈ T × Ω, the map ht,ω(·) = h(t, ω, ·) satisfies

h(·, ·, Pc
ωx) is measurable (resp. Bochner measurable) for all x ∈ X; (2.5)

ht,ω(0) = 0 for all (t, ω) ∈ T × Ω; (2.6)

h0,ω = IdEc
ω

for all ω ∈ Ω; (2.7)

ht,ω(Ec
ω) ⊆ Ec

θtω for all (t, ω) ∈ T × Ω; (2.8)

∥ht,ω(ξ)− ht,ω(ξ
′)∥ ⩽ Mαc

t,ω∥ξ − ξ ′∥ for all (t, ω, ξ), (t, ω, ξ ′) ∈ C. (2.9)

From (2.9) and (2.6), it follows that

∥ht,ω(ξ)∥ ⩽ Mαc
t,ω∥ξ∥ for all (t, ω, ξ) ∈ C. (2.10)

Defining

d1(h, g) = sup

{

∥ht,ω(ξ)− gt,ω(ξ)∥

αc
t,ω∥ξ∥

: (t, ω, ξ) ∈ C, ξ ̸= 0

}

(2.11)

we have that (CM, d1) and (C
(B)
M , d1) are complete metric spaces.

We now consider the set

D = {(ω, ξ) ∈ Ω × X : ξ ∈ Ec
ω}.

For a given N > 0, let DN (resp. D(B)
N ) denote the space of all functions ϕ : D → X such that,

for each ω ∈ Ω, the map ϕω(·) = ϕ(ω, ·) satisfies

ϕ(·, Pc
ωx) is measurable (resp. Bochner measurable) for all x ∈ X; (2.12)

ϕω(0) = 0 for all ω ∈ Ω; (2.13)

ϕω(Ec
ω) ⊆ Es

ω ⊕ Eu
ω for all ω ∈ Ω; (2.14)

∥ϕω(ξ)− ϕω(ξ
′)∥ ⩽ N∥ξ − ξ ′∥ for all (ω, ξ), (ω, ξ ′) ∈ D. (2.15)
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By (2.15) and (2.13), taking ξ ′ = 0, we get

∥ϕω(ξ)∥ ⩽ N∥ξ∥ for all (ω, ξ) ∈ D. (2.16)

For future use, we set the notation ϕs
ω = Ps

ω ϕω and ϕu
ω = Pu

ω ϕω. Given ϕ ∈ DN and ω ∈ Ω,
we denote the graph of ϕω by

Γϕ,ω = {(ξ, ϕω(ξ)) : ξ ∈ Ec
ω} ⊆ X.

Defining now

d2(ϕ, ψ) = sup
{
∥ϕω(ξ)− ψω(ξ)∥

∥ξ∥
: (ω, ξ) ∈ D, ξ ̸= 0

}

(2.17)

it follows that (DN , d2) and (D
(B)
N , d2) are complete metric spaces.

To conclude this section, let UM,N = CM ×DN and U
(B)
M,N = C

(B)
M ×D

(B)
N . Setting

d((h, ϕ), (g, ψ)) = d1(h, g) + d2(ϕ, ψ),

we also have that (UM,N , d) and (U
(B)
M,N , d) are complete metric spaces.

3 Invariant manifolds in continuous-time RDS

Throughout this section, we focus on the continuous-time case by considering T = R. Given

a Bochner measurable linear RDS Φ and a map f ∈ F
(B)
α , we define

σ = sup
(t,ω)∈R×Ω

1
αc

t,ω

∣
∣
∣
∣

∫ t

0
αc

t−r,θrω Lip( fθrω)α
c
r,ω dr

∣
∣
∣
∣

(3.1)

and

τ = sup
ω∈Ω

∫ 0

−∞
αs
−r,θrω Lip( fθrω)α

c
r,ω dr +

∫ +∞

0
αu
−r,θrω Lip( fθrω)α

c
r,ω dr. (3.2)

If for every (ω, x) ∈ Ω × X there is a unique solution Ψ(·, ω, x) of the equation

u(t) = Φt
ωx +

∫ t

0
Φt−r

θrω fθrω(u(r)) dr (3.3)

then Ψ : R × Ω × X → X is a Bochner measurable RDS on X over Σ. In particular, Ψ(·, ·, x) is
Bochner measurable for all x ∈ X, and

Ψt
ωx = Φt

ωx +
∫ t

0
Φt−r

θrω fθrω(Ψ
r
ωx) dr. (3.4)

Theorem 3.1. Let Φ be a Bochner measurable linear RDS exhibiting an α-trichotomy, and let f ∈

F
(B)
α . Suppose that Ψ is a Bochner measurable RDS such that Ψ(·, ω, x) is the unique solution

of (3.3) for all (ω, x) ∈ Ω × X. If

lim
t→−∞

αs
−t,θtωαc

t,ω = lim
t→+∞

αu
−t,θtωαc

t,ω = 0 (3.5)

for all ω ∈ Ω, and

σ + τ < 1/2, (3.6)
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then there are N ∈ ]0, 1[ and a unique ϕ ∈ D
(B)
N such that

Ψt
ω(Γϕ,ω) ⊆ Γϕ,θtω (3.7)

for all (t, ω) ∈ R × Ω. Moreover, for all (t, ω, ξ), (t, ω, ξ ′) ∈ C we have

∥Ψt
ω(ξ, ϕω(ξ))− Ψt

ω(ξ
′, ϕω(ξ

′))∥ ⩽ (N/τ)αc
t,ω ∥ξ − ξ ′∥. (3.8)

The remaining part of this section is devoted to proving Theorem 3.1.

From [15, Lemma 5.1], we may find constants M ∈ ]1, 2[ and N ∈ ]0, 1[ such that

σ =
M − 1

M(1 + N)
and τ =

N

M(1 + N)
. (3.9)

Lemma 3.2. Consider (h, ϕ) ∈ U
(B)
M,N .

a) For every x ∈ X the maps

(t, r, ω) 7→ Φ
c,t−r
θrω fθrω(hr,ω(Pc

ωx), ϕθrω(hr,ω(Pc
ωx))) ,

(r, ω) 7→ Φ
s,−r
θrω fθrω(hr,ω(Pc

ωx), ϕθrω(hr,ω(Pc
ωx))) ,

(r, ω) 7→ Φ
u,−r
θrω fθrω(hr,ω(Pc

ωx), ϕθrω(hr,ω(Pc
ωx)))

are Bochner measurable on R × R × Ω, R
− × Ω and R

+ × Ω, respectively.

b) For every (t, ω, x) ∈ R × Ω × X the map

r 7→ Φ
c,t−r
θrω fθrω(hr,ω(Pc

ωx), ϕθrω(hr,ω(Pc
ωx)))

is Bochner integrable in every closed interval with bounds 0 and t.

c) For every (ω, x) ∈ Ω × X and t > 0, the maps

r 7→ Φ
s,−r
θrω fθrω(hr,ω(Pc

ωx), ϕθrω(hr,ω(Pc
ωx))) ,

r 7→ Φ
u,−r
θrω fθrω(hr,ω(Pc

ωx), ϕθrω(hr,ω(Pc
ωx)))

are Bochner integrable in [−t, 0] and [0, t], respectively.

The proof follows similarly as [16, Lemma 3.6]. Given ω ∈ Ω and xω = (xc
ω, xs

ω, xu
ω) ∈

Ec
ω × Es

ω × Eu
ω, it follows from (3.4) that the trajectory xθtω = Ψt

ωxω =
(
xc

θtω
, xs

θtω
, xu

θtω

)
satisfies,

for all i ∈ {c, s, u} and all t ∈ R,

xi
θtω = Φi,t

ω xω +
∫ t

0
Φ

i,t−s
θsω fθsω(xc

θsω, xs
θsω, xu

θsω) ds. (3.10)

Taking into account the invariance required in (3.7), for any given xω ∈ Γϕ,ω and t ∈ R we
must have xθtω ∈ Γϕ,θtω. Thus, in this situation, the equations given by (3.10) can be written
as

xc
θtω = Φc,t

ω xω +
∫ t

0
Φ

c,t−s
θsω fθsω(xc

θsω, ϕθsω(xc
θsω)) ds,

ϕs
θtω(xθtω) = Φt

ω ϕs
ω(xc

ω) +
∫ t

0
Φ

s,t−s
θsω fθsω(xc

θsω, ϕθsω(xc
θsω)) ds,

ϕu
θtω(xθtω) = Φt

ω ϕu
ω(xc

ω) +
∫ t

0
Φ

u,t−s
θsω fθsω(xc

θsω, ϕθsω(xc
θsω)) ds.
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Lemma 3.3. Consider (h, ϕ) ∈ U
(B)
M,N such that, for all (t, ω, ξ) ∈ C,

ht,ω(x) = Φt
ωξ +

∫ t

0
Φ

c,t−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr. (3.11)

The following properties a) and b) are equivalent:

a) For each j ∈ {s, u} and all (t, ω, ξ) ∈ C,

ϕ
j

θtω
(ht,ω(ξ)) = Φt

ω ϕ
j
ω(ξ) +

∫ t

0
Φ

j,t−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr (3.12)

b) For all (ω, ξ) ∈ D

ϕs
ω(ξ) =

∫ 0

−∞
Φ

s,−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr (3.13)

and

ϕu
ω(ξ) = −

∫ +∞

0
Φ

u,−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr. (3.14)

Proof. From (2.4), (2.16) and (2.10) we have

∥ fθrω(hr,ω(ξ), ϕθrω(hr,ω(ξ)))∥ ⩽ Lip( fθrω)(∥hr,ω(ξ)∥+ ∥ϕθrω(hr,ω(ξ))∥)

⩽ M(1 + N)Lip( fθrω)α
c
r,ω∥ξ∥

for every (ω, ξ) ∈ D. Thus, by (T2),

∫ 0

−∞

∥
∥Φ

s,−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ)))

∥
∥ dr ⩽ M(1 + N)τ∥ξ∥,

and by (T3) we obtain
∫ +∞

0

∥
∥Φ

u,−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ)))

∥
∥ dr ⩽ M(1 + N)τ∥ξ∥.

Hence the integrals are convergent.
Suppose that (3.12) holds for j = s and all (t, ω, ξ) ∈ C. By applying Φ−t

θtω
to both sides, it

is equivalent to

ϕs
ω(ξ) = Φ

s,−t
θtω

ϕs
θtω(ht,ω(ξ))−

∫ t

0
Φ

s,−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr. (3.15)

Using (T2), (2.16) and (2.10), for t ⩽ 0 we have
∥
∥
∥Φ

s,−t
θtω

ϕs
θtω(ht,ω(ξ))

∥
∥
∥ ⩽ MNαs

−t,θtω αc
t,ω∥ξ∥,

which converges to zero as t → −∞ by (3.5). Thus, by taking t → −∞ in equation (3.15) we
obtain (3.13). Similarly, equation (3.12) with j = u can be written as

ϕu
ω(ξ) = Φ

u,−t
θtω

ϕθtω(ht,ω(ξ))−
∫ t

0
Φ

u,−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr. (3.16)

Using (T3), (2.16) and (2.10), for t ⩾ 0 we have
∥
∥
∥Φ

u,−t
θtω

ϕθtω(ht,ω(ξ))
∥
∥
∥ ⩽ MNαu

−t,θtωαc
t,ω ∥ξ∥ ,
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which, by (3.5), converges to zero as t → +∞. Thus, we obtain (3.14) by taking t → +∞ in
equation (3.16).

For the converse, assume now that (3.13) and (3.14) hold for all (ω, ξ) ∈ D. For all t ∈ R ,
we have

Φt
ω ϕs

ω(ξ) =
∫ 0

t
Φ

s,t−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr

+
∫ 0

−∞
Φ

s,−r
θt+rω

fθt+rω(ht+r,ω(ξ) , ϕθt+rω(ht+r,ω(ξ))) dr

and

Φt
ω ϕu

ω(ξ) = −
∫ t

0
Φ

u,t−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr

−
∫ 0

−∞
Φ

u,−r
θt+rω

fθt+rω(ht+r,ω(ξ) , ϕθt+rω(ht+r,ω(ξ))) dr.

Since ht+s,ω(ξ) = hs,θtω(ht,ω(ξ)) due to the uniqueness of the solution of (3.3), we get the
identity (3.12) for j = s and j = u.

Consider the operator C, which assigns each pair (h, ϕ) ∈ U
(B)
M,N to the map C(h, ϕ) : C → X

given by

[C(h, ϕ)] (t, ω, ξ) = Φt
ωξ +

∫ t

0
Φ

c,t−r
θrω ϕ(r, ω) dr.

Lemma 3.4. C
(
U
(B)
M,N

)
⊆ C

(B)
M .

Proof. Fix a pair (h, ϕ) ∈ U
(B)
M,N . It is straightforward to check that C(h, ϕ) satisfies conditions

(2.5) to (2.8). Define

γθrω(ξ, ξ ′) = ∥ fθrω(hr,ω(ξ), ϕθrω(hr,ω(ξ)))− fθrω(hr,ω(ξ
′), ϕθrω(hr,ω(ξ

′)))∥.

From (2.3), (2.15) and (2.9) we have

γθrω(ξ, ξ ′) ⩽ Lip( fθrω)M(1 + N)∥ξ − ξ ′∥αc
r,ω. (3.17)

Following the previous notation, C(h, ϕ)t,ω (ξ) stands for [C(h, ϕ)](t, ω, ξ). By (T1), (3.1),
(3.17) and (3.9), we have

∥C(h, ϕ)t,ω (ξ)− C(h, ϕ)t,ω (ξ ′)∥ ⩽ ∥Φc,t
ω ∥∥ξ − ξ ′∥+

∫ t

0
∥Φ

c,t−r
θrω ∥γθrω(ξ, ξ ′) dr

⩽ (1 + σM(1 + N)) αc
t,ω∥ξ − ξ ′∥

= Mαc
t,ω∥ξ − ξ ′∥.

Hence C(h, ϕ) also satisfies (2.9).

Consider now the operator D, which assigns each pair (h, ϕ) ∈ U
(B)
M,N the map

D(h, ϕ) : D → X

given by
[D(h, ϕ)] (ω, ξ) = [Ds(h, ϕ)] (ω, ξ) + [Du(h, ϕ)] (ω, ξ)
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where

[Ds(h, ϕ)] (ω, ξ) =
∫ 0

−∞
Φ

s,−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr

and

[Du(h, ϕ)] (ω, ξ) = −
∫ +∞

0
Φ

u,−r
θrω fθrω(hr,ω(ξ) , ϕθrω(hr,ω(ξ))) dr.

Lemma 3.5. D
(
U
(B)
M,N

)
⊆ D

(B)
N .

Proof. Fix (h, ϕ) ∈ U
(B)
M,N . It is immediate to check that [D(h, ϕ)] (ω, ξ) satisfies conditions

(2.12) to (2.14). Again, D(h, ϕ)ω (ξ) stands for [D(h, ϕ)] (ω, ξ). From (T2), (T3), (3.17), (3.2)
and (3.9) we have

∥
∥D(h, ϕ)ω (ξ)− D(h, ϕ)ω (ξ ′)

∥
∥ ⩽

∫ 0

−∞

∥
∥Φ

s,−r
θrω

∥
∥ γθrω(ξ, ξ ′) dr +

∫ +∞

0

∥
∥Φ

u,−r
θrω

∥
∥ γθrω(ξ, ξ ′) dr

⩽ τM(1 + N)
∥
∥ξ − ξ ′

∥
∥

= N
∥
∥ξ − ξ ′

∥
∥ .

Hence (2.15) also holds for D(h, ϕ).

Consider now U : U(B)
M,N → U

(B)
M,N given by

U(h, ϕ) =(C(h, ϕ), D(h, ϕ)) .

Lemma 3.6. The operator U is a contraction in (U
(B)
M,N , d).

Proof. Consider (h, ϕ) ,(g, ψ) ∈ U
(B)
M,N . Define

γ̂θrω(ξ) = ∥ fθrω(hr,ω(ξ), ϕθrω(hr,ω(ξ)))− fθrω(gr,ω(ξ), ψθrω(gr,ω(ξ)))∥.

By (2.3), (2.15), (2.11), (2.17) and (2.10), for all (r, ω) ∈ R
+
0 × Ω and all ξ ∈ Eω,

γ̂θrω(ξ) ⩽ Lip( fθrω)α
c
r,ω((1 + N)d1(h, g) + Md2(ϕ, ψ)) ∥ξ∥. (3.18)

Hence, in one hand, from (T1), (3.18) and (3.1), we have

∥C(h, ϕ)t,ω(ξ)− C(g, ψ)t,ω(ξ)∥ ⩽

∫ t

0

∥
∥
∥Φ

c,t−r
θrω

∥
∥
∥ γ̂θrω(ξ) dr

⩽ σαc
t,ω((1 + N)d1(h, g) + Md2(ϕ, ψ)) ∥ξ∥ ,

which implies
d1(C(h, ϕ), C(g, ψ)) ⩽ σ((1 + N)d1(h, g) + Md2(ϕ, ψ)) .

On the other hand, from (T2), (T3), (3.18) and (3.2) we get

∥D(h, ϕ)ω (ξ)− D(g, ψ)ω (ξ)∥ ⩽

∫ 0

−∞

∥
∥Φ

s,−r
θrω

∥
∥ γ̂θrω(ξ) dr +

∫ +∞

0

∥
∥Φ

u,−r
θrω

∥
∥ γ̂θrω(ξ) dr

⩽ τ((1 + N)d1(h, g) + Md2(ϕ, ψ)) ∥ξ∥,

which implies
d2(D(h, ϕ), D(g, ψ)) ⩽ τ((1 + N)d1(h, g) + Md2(ϕ, ψ)) .
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In overall we get

d(U(h, ϕ), U(g, ψ)) ⩽ (σ + τ)((1 + N)d1(h, g) + Md2(ϕ, ψ))

⩽
1
2

max {1 + N, M} d((h, ϕ), (g, ψ))

and because N < 1 and M < 2, U is a contraction.

Proof of Theorem 3.1. Since U is a contraction, by the Banach Fixed Point Theorem, U has a
unique fixed point (h, ϕ), that satisfies (3.11), (3.13) and (3.14). By Lemma 3.3, the pair (h, ϕ)

also satisfies conditions (3.12). Therefore, for given initial condition xω = (ξ, ϕs
ω(ξ), ϕu

ω(ξ)) ∈

Ec
ω × Es

ω × Eu
ω, the trajectory xθtω =(ht,ω(ξ), ϕθtω(ht,ω(ξ))) is the solution of (3.3). The graphs

Γϕ,ω are the required invariant manifolds of Ψ. To obtain (3.8), it follows from (2.15), (2.9)
and (3.9) that, for each (t, ω, ξ), (t, ω, ξ ′) ∈ C

∥Ψt
ω(ξ, ϕs

ω(ξ), ϕu
ω(ξ))− Ψt

ω(ξ
′, ϕs

ω(ξ
′), ϕu

ω(ξ
′))∥

= ∥(ht,ω(ξ), ϕθtω(ht,ω(ξ)))−
(
ht,ω(ξ

′), ϕθtω(ht,ω(ξ
′))

)
∥

⩽ M(1 + N)αc
t,ω∥ξ − ξ̄∥

⩽
N

τ
αc

t,ω∥ξ − ξ̄∥.

4 Invariant manifolds in discrete-time RDS

Throughout this section we consider T = Z. Given a measurable linear RDS Φ and a map
f ∈ F , we define

σ−
ω = sup

n∈N

1
αc
−n,ω

−1

∑
k=−n

αc
−n−k−1,θk+1ω Lip( fθkω)α

c
k,ω,

σ+
ω = sup

n∈N

1
αc

n,ω

n−1

∑
k=0

αc
n−k−1,θk+1ω Lip( fθkω)α

c
k,ω

and
σ = sup

ω∈Ω

max
{

σ−
ω , σ+

ω

}
.

Moreover, writing

τ−
ω =

−1

∑
k=−∞

αs
−k−1,θk+1ω Lip( fθkω)α

c
k,ω,

τ+
ω =

+∞

∑
k=0

αu
−k−1,θk+1ω Lip( fθkω)α

c
k,ω,

we also define
τ = sup

ω∈Ω

(τ−
ω + τ+

ω ).

Consider the measurable RDS Ψ : Z × Ω × X → X given by

Ψn
ω(x) =







Φn
ωx +

n−1

∑
k=0

Φn−k−1
θk+1ω

fθkω(Ψ
k
ω(x)) if n ⩾ 1,

x if n = 0,

Φn
ωx −

−1

∑
k=n

Φn−k−1
θk+1ω

fθkω(Ψ
k
ω(x)) if n ⩽ −1

(4.1)
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which encapsulates the solutions of the random nonlinear difference equation

xn+1 = Φ1
θnωxn + fθnω(xn).

Theorem 4.1. Let Φ be a measurable linear RDS exhibiting an α-trichotomy and let f ∈ F . If

lim
n→−∞

αs
−n,θnωαc

n,ω = lim
n→+∞

αu
−n,θnωαc

n,ω = 0

for all ω ∈ Ω, and

σ + τ < 1/2,

then there are N ∈ ]0, 1[ and a unique ϕ ∈ DN such that for the RDS Ψ given by (4.1) we have

Ψn
ω(Γϕ,ω) ⊆ Γϕ,θnω (4.2)

for all (n, ω) ∈ Z × Ω. Moreover, for every (n, ω, ξ), (n, ω, ξ ′) ∈ C we have

∥Ψn
ω(ξ, ϕω(ξ))− Ψn

ω(ξ
′, ϕω(ξ

′))∥ ⩽ (N/τ)αc
n,ω ∥ξ − ξ ′∥.

The proof of Theorem 4.1 is analogous to the proof of Theorem 3.1. Therefore, in the
remainder of this section, we provide a guide to the necessary adaptations. Fix M and N as
in (3.9). Given ω ∈ Ω and

xω = (xc
ω, xs

ω, xu
ω) ∈ Ec

ω × Es
ω × Eu

ω,

the trajectory
xθnω = Ψn

ωxω =(xc
θnω, xs

θnω, xu
θnω) ∈ Ec

ω × Es
ω × Eu

ω

satisfies the following equations for each i ∈ {c, s, u}:

xi
θnω =







Φi,n
ω xi

ω +
n−1

∑
k=0

Φ
i,n−k−1
θk+1ω

fθkω(xc
θkω, xs

θkω, xu
θkω) if n ⩾ 1,

Φi,n
ω xi

ω −
−1

∑
k=n

Φ
i,n−k−1
θk+1ω

fθkω(xc
θkω, xs

θkω, xu
θkω) if n ⩽ −1.

(4.3)

In view of the invariance required in (4.2), if xω ∈ Γϕ,ω then xθnω must be in Γϕ,θnω for every
n ∈ Z, and thus, in this situation, the equations from (4.3) can be written as

xc
θnω =







Φc,n
ω xc

ω +
n−1

∑
k=0

Φ
c,n−k−1
θk+1ω

fθkω(xc
θkω, ϕθkω(xc

θkω)) if n ⩾ 1,

Φc,n
ω xc

ω −
−1

∑
k=n

Φ
c,n−k−1
θk+1ω

fθkω(xc
θkω, ϕθkω(xc

θkω)) if n ⩽ −1

(4.4)

and, for j ∈ {s, u},

ϕ
j
θnω(xθnω) =







Φ
j,n
ω ϕω(xω) +

n−1

∑
k=0

Φ
j,n−k−1
θk+1ω

fθkω(xc
θkω, ϕθkω(xc

θkω)) if n ⩾ 1,

Φ
j,n
ω ϕω(xω)−

−1

∑
k=n

Φ
j,n−k−1
θk+1ω

fθkω(xc
θkω, ϕθkω(xc

θkω)) if n ⩽ −1.

(4.5)

Let us prove prove that equations (4.4) and (4.5) have solutions. First, we rewrite them, by a
discrete version of Lemma 3.3.
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Lemma 4.2. Consider (h, ϕ) ∈ UM,N such that, for all (n, ω) ∈ Z × Ω and all ξ ∈ Ec
ω

hn,ω(ξ) =







Φc,n
ω ξ +

n−1

∑
k=0

Φ
c,n−k−1
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))) if n ⩾ 1,

Φc,n
ω ξ −

−1

∑
k=n

Φ
c,n−k−1
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))) if n ⩽ −1.

(4.6)

Then the following conditions a) and b) are equivalent:

a) For each j ∈ {u, s} and all (n, ω, ξ) ∈ C

ϕ
j
θnω(hn,ω(ξ)) =







Φ
j,n
ω ϕω(ξ) +

n−1

∑
k=0

Φ
j,n−k−1
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))) if n ⩾ 1,

Φ
j,n
ω ϕω(ξ)−

−1

∑
k=n

Φ
j,n−k−1
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))) if n ⩽ −1.

(4.7)

b) For all (ω, ξ) ∈ D

ϕs
ω(ξ) =

−1

∑
k=−∞

Φ
s,−(k+1)
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))) (4.8)

and

ϕu
ω(ξ) = −

+∞

∑
k=0

Φ
u,−(k+1)
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))). (4.9)

Consider here the operator C, which assigns each pair (h, ϕ) ∈ U
(B)
M,N to the map

C(h, ϕ) : C → X

given by

[C(h, ϕ)] (n, ω, ξ) =







Φc,n
ω ξ +

n−1

∑
k=0

Φ
c,n−k−1
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))) if n ⩾ 1,

Φc,n
ω ξ −

−1

∑
k=n

Φ
c,n−k−1
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))) if n ⩽ −1,

and D be the operator that assigns to each pair (h, ϕ) ∈ UM,N the map D(h, ϕ) : D → X

defined by
[D(h, ϕ)] (ω, ξ) = [Ds(h, ϕ)] (ω, ξ) + [Du(h, ϕ)] (ω, ξ),

where

[Ds(h, ϕ)] (ω, ξ) =
−1

∑
k=−∞

Φ
s,−(k+1)
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ)))

and

[Du(h, ϕ)] (ω, ξ) = −
+∞

∑
k=0

Φ
u,−(k+1)
θk+1ω

fθkω(hk,ω(ξ), ϕθkω(hk,ω(ξ))).
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To finalize, define U : UM,N → UM,N by

U(h, ϕ) =(C(h, ϕ), D(h, ϕ)) .

The operator U is a contraction in (UM,N , d). By the Banach Fixed Point Theorem, U as
a unique fixed point (h, ϕ), which satisfies conditions (4.6), (4.8) and (4.9). By Lemma 4.2
the pair (h, ϕ) also satisfy the conditions in (4.7). Hence, by (4.4) and (4.5), we get that
(hn,ω(ξ), ϕθnω(hn,ω(ξ))) is the orbit by Ψ of the initial condition

(ξ, ϕs
ω(ξ), ϕu

ω(ξ)) ∈ Ec
ω × Es

ω × Eu
ω.

The graphs Γϕ,ω are the required invariant manifolds of Ψ. Furthermore, for all ω ∈ Ω, all
n ∈ Z and all ξ, ξ ′ ∈ Ec

ω it follows from (2.15), (2.9) and (3.9) that

∥Ψn
ω(ξ, ϕω(ξ))− Ψn

ω(ξ
′, ϕω(ξ

′))∥ ⩽
N

τ
αc

n,ω∥ξ − ξ̄∥,

which finishes the proof of Theorem 4.1.

5 Continuous-time examples

For this section assume T = R. Throughout this entire section we consider a constant δ ∈

]0, 1/6[ and a random variable G : Ω → ]0,+∞[ satisfying

∫ +∞

−∞
G(θrω) dr ⩽ 1 for all ω ∈ Ω.

In all the following examples we may consider different growth rates along the central directions

Ec
ω, depending if we are looking to the future (t → +∞) or to the past (t → −∞).

5.1 Tempered exponential trichotomies

Let
λc, λc, λs, λu : Ω → R

be θ-invariant random variables, i.e. satisfying λℓ(θtω) = λℓ(ω) for all ω ∈ Ω, t ∈ R and
ℓ ∈ {c, c, s, u}. A Bochner measurable linear RDS Φ exhibits an exponential trichotomy if it
exhibits a generalized trichotomy with bounds

αc
t,ω =

{

K(ω) eλc(ω)t, t ⩾ 0,

K(ω) eλc(ω)t, t ⩽ 0,

αs
t,ω = K(ω) eλs(ω)t, t ⩾ 0,

αu
t,ω = K(ω) eλu(ω)t, t ⩽ 0

for some random variable K : Ω → [1,+∞[. If the random variable K is tempered, i.e., if

ΛK,γ,ω := sup
t∈T

[

e−γ|t| K(θtw)
]

< +∞ (5.1)

for all γ > 0 and all ω ∈ Ω, we say that Φ exhibits an tempered exponential trichotomy.
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Corollary 5.1. Let Φ be a Bochner measurable linear RDS exhibiting a tempered exponential tri-

chotomy such that

λc(ω) > λs(ω) and λc(ω) < λu(ω)

for all ω ∈ Ω, and let f ∈ F
(B)
α . Assume that Ψ is a Bochner measurable RDS such that (3.3)

has unique solution Ψ(·, ω, x) for every (ω, x) ∈ Ω × X. Consider a θ-invariant random variable

γ(ω) > 0 satisfying

a(ω) := λc(ω)− λs(ω)− γ(ω) > 0 and b(ω) := λu(ω)− λc(ω)− γ(ω) > 0

for all ω ∈ Ω. If

Lip( fω) ⩽
δ

K(ω)
min

{

G(ω),
a(ω)

ΛK,γ(ω),ω
,

b(ω)

ΛK,γ(ω),ω

}

for all ω ∈ Ω, then the same conclusions of Theorem 3.1 hold.

Proof. Since K is a tempered random variable, we have

lim
t→−∞

αs
−t,θtωαc

t,ω = lim
t→−∞

K(ω)K(θtω) e(λ
c(ω)−λs(ω))t

⩽ lim
t→−∞

K(ω)ΛK,a(ω),ω eγ(ω)t = 0

and

lim
t→+∞

αu
−t,θtωαc

t,ω = lim
t→+∞

K(ω)K(θtω) e(λ
c(ω)−λu(ω))t

⩽ lim
t→+∞

K(ω)ΛK,b(ω),ω eγ(ω)t = 0

for all ω ∈ Ω. Therefore condition (3.5) holds. Let us check (3.6). Indeed, for every t ⩾ 0 and
every ω ∈ Ω we have

1
αc

t,ω

∫ t

0
αc

t−r,θrω Lip( fθrω)α
c
r,ω dr =

∫ t

0
K(θrω)Lip( fθrω) dr

⩽ δ
∫ +∞

−∞
G(θrω) dr

⩽ δ,

and, similarly, for every t ⩽ 0 and every ω ∈ Ω we have

1
αc

t,ω

∫ 0

t
αc

t−r,θrω Lip( fθrω)α
c
r,ω dr ⩽ δ.

Thus, σ ⩽ δ. Moreover, since K(ω) ⩽ eγ(ω)|r| ΛK,γ(ω),θrω for every ω ∈ Ω and r ∈ R, we have
∫ 0

−∞
αs
−r,θrω Lip( fθrω)α

c
r,ω dr =

∫ 0

−∞
K(ω)K(θrω) e(λ

c(ω)−λs(ω))r Lip( fθrω) dr

⩽ δ
∫ 0

−∞
a(ω) ea(ω)r dr

⩽ δ.

and
∫ +∞

0
αu
−r,θrω Lip( fθrω)α

c
r,ω dr =

∫ +∞

0
K(ω)K(θrω) e(λ

c(ω)−λu(ω))r Lip( fθrω) dr

⩽ δ
∫ +∞

0
b(ω) e−b(ω)r dr

⩽ δ.

Henceforth, σ + τ ⩽ 3δ < 1/2.
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5.2 ψ-trichotomies

Consider measurable functions

ψc, ψc, ψs, ψu : R × Ω →]0,+∞[

such that for ℓ ∈ {c, c, s, u} we have

ψℓ(t + s, ω) = ψℓ(t, θsω)ψℓ(s, ω) (5.2)

for all t, s ∈ R and all ω ∈ Ω. A ψ-trichotomy is a generalized trichotomy with bounds

αc
t,ω =

{

K(ω)ψc(t, ω), t ⩾ 0,

K(ω)ψc(t, ω), t ⩽ 0,

αs
t,ω = K(ω)ψs(t, ω), t ⩾ 0,

αu
t,ω = K(ω)ψu(t, ω), t ⩽ 0

for a random variable K : Ω → [1,+∞[.
For all ℓ ∈ {c, c, u, s} set

dψℓ(ω) = lim
h→0

ψℓ(h, ω)− 1
h

. (5.3)

Since ψℓ(0, ω) = 1, from (5.2) we have

d

dt
ψℓ(t, ω) = dψℓ(θtω)ψℓ(t, ω)

whenever limits (5.3) exist. Moreover, in this situation we also have

d

dt
ψℓ(−t, θtω) =

d

dt

1
ψℓ(t, ω)

= −dψℓ(θtω)ψℓ(−t, θtω).

From now on we also assume that for all ω ∈ Ω the following limit exists:

dK(ω) = lim
h→0

K(θhω)− K(ω)

h
. (5.4)

We notice that for all t ∈ R, d
dt K(θtω) = dK(θ

tω).

Corollary 5.2. Let Φ be a Bochner measurable linear RDS exhibiting a ψ-trichotomy such that the

limits in (5.3) and (5.4) exist and satisfy

dψc(ω)− dψu(ω) <
dK(ω)

K(ω)
< dψc(ω)− dψs(ω)

for all ω ∈ Ω. Let f ∈ F
(B)
α be such that

Lip( fω) ⩽
δ

K(ω)
min

{

G(ω),
a(ω)

K(ω)
,

b(ω)

K(ω)

}

for all ω ∈ Ω, where

a(ω) =
dK(ω)

K(ω)
− dψc(ω) + dψu(ω) and b(ω) = −

dK(ω)

K(ω)
+ dψc(ω)− dψs(ω).
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Assume that Ψ is a Bochner measurable RDS such that (3.3) has unique solution Ψ(·, ω, x) for every

ω ∈ Ω and every x ∈ X. If, for all ω ∈ Ω,

lim
t→−∞

K(θtω)ψs(−t, θtω)ψc(t, ω) = lim
t→+∞

K(θtω)ψu(−t, θtω)ψc(t, ω) = 0 (5.5)

then the same conclusions of Theorem 3.1 hold.

Proof. Conditions in (5.5) are equivalent to those in (3.5), and, as in the proof of Corollary 5.1
we have σ ⩽ δ. Moreover, since

d

dt

(
ψu(−t, θtω)ψc(t, ω)

K(θtω)

)

=

(

−dψu(θtω) + dψc(t, ω)
)

K(θtω)− dK(θ
tω)

[K(θtω)]2
ψu(−t, θtω)ψc(t, ω)

= −
a(θtω)

K(θtω)
ψu(−t, θtω)ψc(t, ω),

we have
∫ +∞

0
αu
−r,θrω Lip( fθrω)α

c
r,ω dr = K(ω)

∫ +∞

0
K(θrω)ψu(−r, θrω)Lip( fθrω)ψ

c(r, ω) dr

⩽ δK(ω)
∫ +∞

0

a(θrω)

K(θrω)
ψu(−r, θrω)ψc(r, ω) dr

= δ − δK(ω) lim
r→+∞

ψu(−r, θrω)ψc(r, ω)

K(θrω)

= δ.

Similarly, since

d

dt

(
ψs(−t, θtω)ψc(t, ω)

K(θtω)

)

=

(
−dψs(θtω) + dψc(t, ω)

)
K(θtω)− dK(θ

tω)

[K(θtω)]2
ψs(−t, θtω)ψc(t, ω)

=
b(θtω)

K(θtω)
ψs(−t, θtω)ψc(t, ω),

we have
∫ 0

−∞
αs
−r,θrω Lip( fθrω)α

c
r,ω dr = K(ω)

∫ 0

−∞
K(θrω)ψs(−r, θrω)Lip( fθrω)ψ

c(r, ω) dr

⩽ δK(ω)
∫ 0

−∞

b(θrω)

K(θrω)
ψs(−r, θrω)ψc(r, ω) dr

= δ − δK(ω) lim
r→−∞

ψs(−r, θrω)ψc(r, ω)

K(θrω)

= δ.

Thus σ + τ ⩽ 3δ < 1/2.

In the following we provide a particular example of a ψ-trichotomy in R
4.

Example 5.3. Let ψc, ψc, ψs, ψu : R × Ω →]0,+∞[ be measurable functions satisfying (5.2) and
let K : Ω → [1,+∞[ be a random variable. In X = R

4, equipped with the maximum norm,
consider the projections

Pc
ω(x1, x2, x3, x4) = (0, 0, x3 + (K(ω)− 1)x4, 0)

Pc
ω(x1, x2, x3, x4) = ((1 − K(ω))x2, x2, 0, 0)

Ps
ω(x1, x2, x3, x4) = (x1 + (K(ω)− 1)x2, 0, 0, 0)

Pu
ω(x1, x2, x3, x4) = (0, 0, (1 − K(ω))x4, x4)
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For all ω′, ω ∈ Ω,

Pc
ω′Pu

ω = (0, 0, (K(ω′)− K(ω))x4, 0),

Ps
ω′P

c
ω = ((K(ω′)− K(ω))x2, 0, 0, 0)

and for all the remaining i, j ∈ {c, c, s, u}, with i ̸= j,

Pi
ω′P

j
ω = 0.

Notice that for all ω, ω′ ∈ Ω

Ps
ω′Ps

ω = Ps
ω, Pu

ω′Pu
ω = Pu

ω′ , Pc
ω′Pc

ω = Pc
ω and Pc

ω′P
c
ω = Pc

ω′ .

Moreover,

∥Pc
ω∥ = ∥Ps

ω∥ = K(ω)

and

∥Pc
ω∥ = ∥Pu

ω∥ = max {K(ω)− 1, 1} ⩽ K(ω).

We define Φ : R × Ω × R
4 → R

4 by

Φt
ω = ψc(t, ω) Pc

ω +
K(ω)

K(θtω)
ψc(t, ω) Pc

θtω
+ ψs(t, ω)Ps

ω +
K(ω)

K(θtω)
ψu(t, ω) Pu

θtω.

Let Pc = Pc + Pc and P = (Pc, Ps, Pu). We have that Φ is a measurable linear RDS over Σ that
admits a measurable P-invariant splitting, and

∥Φc,t
ω ∥ = max

{

ψc(t, ω)∥Pc
ω∥,

1
K(θtω)

ψc(t, ω)∥Pc
θtω

∥

}

⩽ K(ω)max
{

ψc(t, ω), ψc(t, ω)
}

,

∥Φs,t
ω ∥ = ψs(t, ω)∥Ps

ω∥ = K(ω)ψs(t, ω),

∥Φu,t
ω ∥ =

K(ω)

K(θtω)
ψu(t, ω)∥Pu

θtω∥ ⩽ K(ω)ψu(t, ω).

Hence the linear RDS Φ exhibits a generalized trichotomy with bounds

αc
t,ω = K(ω)max

{
ψc(t, ω), ψc(t, ω)

}
,

αs
t,ω = K(ω)ψs(t, ω),

αu
t,ω = K(ω)ψu(t, ω).

If we assume ψc(t, ω) ⩾ ψc(t, ω) for all t ⩾ 0 then

αc
t,ω =

{

K(ω)ψc(t, ω) if t ⩾ 0,

K(ω)ψc(t, ω) if t ⩽ 0,

and Φ exhibits a ψ-trichotomy.

Next, based on the previous example, we provide an example of a ψ-trichotomy on an
infinite dimensional Banach space.
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Example 5.4. Let Kn : Ω → [1,+∞[ be a sequence of random variables such that

K(ω) := sup
n∈N

Kn(ω) < +∞ for all ω ∈ Ω.

In ℓ∞, the space of bounded sequences equipped with the supremum norm, consider, for all
n ∈ N and for all ω ∈ Ω, the projections

Pc
n,ω, Pc

n,ω, Ps
n,ω, Pu

n,ω : ℓ∞ → ℓ∞

defined by

Pc
n,ω(x1, x2, x3, x4, x5, . . .) = (0, . . . , 0

︸ ︷︷ ︸

4n−4 zeros

, 0, 0, x4n−1 + Ln(ω)x4n, 0, 0, 0, . . .),

Pc
n,ω(x1, x2, x3, x4, x5, . . .) = (0, . . . , 0

︸ ︷︷ ︸

4n−4 zeros

,−Ln(ω)x4n−2, x4n−2, 0, 0, 0, . . .),

Ps
n,ω(x1, x2, x3, x4, x5, . . .) = (0, . . . , 0

︸ ︷︷ ︸

4n−4 zeros

, x4n−3 + Ln(ω)x4n−2, 0, 0, 0, . . .),

Pu
n,ω(x1, x2, x3, x4, x5, . . .) = (0, . . . , 0

︸ ︷︷ ︸

4n−4 zeros

, 0, 0,−Ln(ω)x4n, x4n, 0, 0, 0, . . .),

where Ln(ω) = Kn(ω)− 1. It follows that for all ω′, ω ∈ Ω, for all i, j ∈ {c, c, s, u} and for all
n, m ∈ N, we have

Pi
n,ωP

j
m,ω′ = 0 with n ̸= m,

Pi
n,ω′P

j
n,ω = 0 with i ̸= j, (i, j) ̸=(c, u) and (i, j) ̸=(s, c) ,

Pc
n,ω′Pu

n,ω = (0, . . . , 0
︸ ︷︷ ︸

4n−4 zeros

, 0, 0, (Kn(ω
′)− Kn(ω))x4n, 0, 0, 0, . . .),

Ps
n,ω′P

c
n,ω = (0, . . . , 0

︸ ︷︷ ︸

4n−4 zeros

, (Kn(ω
′)− Kn(ω))x4n−2, 0, 0, 0, . . .).

Moreover, for all ω, ω′ ∈ Ω and for all n ∈ N,

Pi
n,ω′Pi

n,ω = Pi
n,ω and P

j
n,ω′P

j
n,ω = P

j
n,ω′ with i ∈ {c, s} and j ∈ {c, u} .

Let ψc
n, ψc

n, ψs
n, ψu

n : R × Ω → ]0,+∞[ be sequences of measurable functions satisfying (5.2)
and such that

ψi(t, ω) := sup
n∈N

ψi
n(t, ω) < +∞

for all ω ∈ Ω, for all t ∈ R and for all i ∈ {c, c, s, u}. If Φ : R × Ω × ℓ∞ → ℓ∞ is given by

Φt
ω =

+∞

∑
n=1

[

ψc
n(t, ω) Pc

n,ω +
Kn(ω)

Kn(θtω)
ψc

n(t, ω) Pc
n,θtω

+ ψs
n(t, ω)Ps

n,ω +
Kn(ω)

Kn(θtω)
ψu

n(t, ω) Pu
n,θtω

]

,

then Φ is a measurable linear RDS over Σ that admits a measurable (Pc, Ps, Pu) -invariant
splitting, where, for all ω ∈ Ω,

Pi
ω =

+∞

∑
n=1

Pi
n,ω, i ∈ {c, c, s, u} , and Pc

ω = Pc
ω + Pc

ω.
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Moreover, since

∥Pc
n,ω∥ = ∥Ps

n,ω∥ = Kn(ω)

and

∥Pc
n,ω∥ = ∥Pu

n,ω∥ = max {Kn(ω)− 1, 1} ,

it follows that
∥
∥Pc

ω

∥
∥ = sup

n∈N

∥
∥Ps

n,ω

∥
∥ = sup

n∈N

Kn(ω) = K(ω)

and
∥
∥Pc

ω

∥
∥ =

∥
∥Pu

n,ω

∥
∥ = sup

n∈N

(max {Kn(ω)− 1, 1}) = max {K(ω)− 1, 1} ⩽ K(ω).

Hence

∥Φc,t
ω ∥ = sup

n∈N

[

max
{

ψc
n(t, ω)∥Pc

n,ω∥,
1

Kn(θtω)
ψc

n(t, ω)∥Pc
n,θtω

∥

}]

⩽ sup
n∈N

[
Kn(ω)max

{
ψc

n(t, ω), ψc
n(t, ω)

}]

⩽ K(ω)max
{

ψc(t, ω), ψc(t, ω)
}

,

∥Φs,t
ω ∥ = sup

n∈N

[
ψs

n(t, ω)∥Ps
n,ω∥

]
= sup

n∈N

[ψs
n(t, ω)Kn(ω)] ⩽ K(ω)ψs(t, ω),

∥Φu,t
ω ∥ = sup

n∈N

[
Kn(ω)

Kn(θtω)
ψu

n(t, ω)∥Pu
n,θtω∥

]

⩽ K(ω)ψu(t, ω).

This implies that the linear RDS Φ admits a generalized trichotomy with bounds

αc
t,ω = K(ω)max

{
ψc(t, ω), ψc(t, ω)

}
,

αs
t,ω = K(ω)ψs(t, ω),

αu
t,ω = K(ω)ψu(t, ω).

If, in addition, ψc, ψc, ψs, ψu satisfy (5.2) and ψc(t, ω) ⩾ ψc(t, ω), for all t ⩾ 0 and for all ω ∈ Ω,
then

αc
t,ω =

{

K(ω)ψc(t, ω) if t ⩾ 0,

K(ω)ψc(t, ω) if t ⩽ 0,

and Φ exhibits a ψ-trichotomy.

In the next sections we consider particular ψ-trichotomies.

5.2.1 Integral exponential trichotomy

Let

λc, λc, λs, λu : Ω → R

be random variables such that for all ω ∈ Ω and ℓ ∈ {c, c, s, u}, the map r 7→ λℓ(θrω) is
integrable in every interval [0, t] An integral exponential trichotomy is a ψ-trichotomy with

ψℓ(t, ω) = e
∫ t

0 λℓ(θrω)dr
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for all ℓ ∈ {c, c, s, u}, i.e., is a generalized trichotomy with bounds

αc
t,ω =

{

K(ω) e
∫ t

0 λc(θrω)dr, t ⩾ 0,

K(ω) e
∫ t

0 λc(θrω)dr, t ⩽ 0,

αs
t,ω = K(ω) e

∫ t
0 λs(θrω)dr, t ⩾ 0,

αu
t,ω = K(ω) e

∫ t
0 λu(θrω)dr, t ⩽ 0.

Notice that if

lim
h→0

1
h

∫ h

0
λℓ(θrω) dr = λℓ(ω) (5.6)

then dψℓ(ω) = λℓ(ω) for all ℓ ∈ {c, c, s, u}. From Corollary 5.2 we get the following.

Corollary 5.5. Let Φ be a Bochner measurable linear RDS exhibiting an integral exponential tri-

chotomy such that (5.6) holds and the limit (5.4) exists and satisfyies

λc(ω)− λu(ω) <
dK(ω)

K(ω)
< λc(ω)− λs(ω)

for all ω ∈ Ω. Let f ∈ F
(B)
α be such that

Lip( fω) ⩽
δ

K(ω)
min

{

G(ω),
a(ω)

K(ω)
,

b(ω)

K(ω)

}

for all ω ∈ Ω, where

a(ω) =
dK(ω)

K(ω)
− λc(ω) + λu(ω) and b(ω) = −

dK(ω)

K(ω)
+ λc(ω)− λs(ω).

Assume that Ψ is a Bochner measurable RDS such that (3.3) has a unique solution Ψ(·, ω, x) for every

ω ∈ Ω and every x ∈ X. If for all ω ∈ Ω,

lim
t→+∞

K(θtω) e
∫ t

0 λc(θrω)−λu(θrω) dr = lim
t→−∞

K(θtω) e
∫ t

0 λc(θrω)−λs(θrω) dr = 0,

then the same conclusions of Theorem 3.1 hold.

5.2.2 Non exponential trichotomies

We provide now a particular type of ψ-trichotomies that can be easily handled to construct
trichotomies beyhond the exponential bounds. Let

λc, λc, λs, λu : Ω → R

be random variables such that for all ℓ ∈ {c, c, s, u} the following limit exists for all ω:

dλℓ(ω) := lim
h→0

λℓ(θhω)− λℓ(ω)

h
. (5.7)

Consider a ψ-trichotomy with

ψℓ(t, ω) =
λℓ(ω)

λℓ(θtω)
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for all ℓ ∈ {c, c, s, u}, i.e., is a generalized trichotomy with bounds

αc
t,ω =







K(ω)
λc(ω)

λc(θtω)
, t ⩾ 0,

K(ω)
λc(ω)

λc(θtω)
, t ⩽ 0,

αs
t,ω = K(ω)

λs(ω)

λs(θtω)
, t ⩾ 0

αu
t,ω = K(ω)

λu(ω)

λu(θtω)
, t ⩽ 0.

(5.8)

Notice that

dψℓ(ω) = −
dλℓ(ω)

λℓ(ω)
.

for all ℓ ∈ {c, c, s, u}. From Corollary 5.2 we get the following.

Corollary 5.6. Let Φ be a Bochner measurable linear RDS exhibiting an α-trichotomy, with

bounds (5.8) and such that (5.7) and (5.4) exist and satisfy

dλu(ω)

λu(ω)
−

dλc(ω)

λc(ω)
<

dK(ω)

K(ω)
<

dλs(ω)

λs(ω)
−

dλc(ω)

λc(ω)
.

Let f ∈ F
(B)
α be such that for all ω ∈ Ω we have

Lip( fω) ⩽
δ

K(ω)
min

{

G(ω),
a(ω)

K(ω)
,

b(ω)

K(ω)

}

,

where

a(ω) =
dK(ω)

K(ω)
+

dλc(ω)

λc(ω)
−

dλu(ω)

λu(ω)
and b(ω) = −

dK(ω)

K(ω)
−

dλc(ω)

λc(ω)
+

dλs(ω)

λs(ω)
.

Assume that Ψ is a Bochner measurable RDS such that (3.3) has a unique solution Ψ(·, ω, x) for every

ω ∈ Ω and every x ∈ X. If for all ω ∈ Ω,

lim
t→+∞

K(θtω)
λs(θtω)

λc(θtω)
= lim

t→+∞
K(θtω)

λu(θtω)

λc(θtω)
= 0

then the same conclusions of Theorem 3.1 hold.

Example 5.7 (Non exponential trichotomy). Consider for the driving system the horizon-
tal flow in R

2 given by θt(x, y) = (x + t, y), which preserves the Lebesgue measure. Let
C, ξc, ξc, ξs, ξu and ε be some real constants with C ⩾ 1 and ε ⩾ 0, and set:

λℓ(x, y) = (1 + x2)−(1+y2)ξℓ , ℓ ∈ {c, c, s, u} ,

K(x, y) = C(1 + x2)(1+y2)ε.
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In this case we obtain a polynomial type trichotomy. Let us assume λc ⩾ λc. Thus we have a
trichotomy with

αc
t,(x,y) =







C

(
1 + (x + t)2

1 + x2

)(1+y2)ξc

(1 + x2)(1+y2)ε, t ⩾ 0,

C

(
1 + (x + t)2

1 + x2

)(1+y2)ξc

(1 + x2)(1+y2)ε, t ⩽ 0,

αs
t,(x,y) = C

(
1 + (x + t)2

1 + x2

)(1+y2)ξs

(1 + x2)(1+y2)ε, t ⩾ 0,

αu
t,(x,y) = C

(
1 + (x + t)2

1 + x2

)(1+y2)ξu

(1 + x2)(1+y2)ε, t ⩽ 0.

Notice that dλℓ(x, y) = ∂
∂x λℓ(x, y).

6 Discrete-time examples

In this section we assume T = Z and provide some corollaries to Theorem 4.1. Let X be a Ba-
nach space and let Σ ≡ (Ω,F , P, θ) be a measure-preserving dynamical system. Throughout
this subsection we consider a real number δ ∈ ]0, 1/6[ and a random variable G : Ω → ]0,+∞[

such that for all ω ∈ Ω we have
+∞

∑
k=−∞

G(θkω) ⩽ 1.

6.1 Tempered exponential trichotomies

Consider θ-invariant random variables

λc, λc, λs, λu : Ω → R.

We say that a measurable linear RDS Φ on X over Σ exhibits an exponential trichotomy if it
admits a generalized trichotomy with bounds

αc
n,ω =

{

K(ω) eλc(ω)n, n ⩾ 0,

K(ω) eλc(ω)n, n ⩽ 0,

αs
n,ω = K(ω) eλs(ω)n, n ⩾ 0,

αu
n,ω = K(ω) eλu(ω)n, n ⩽ 0

for some random variable K : Ω → [1,+∞[. If the random variable K is tempered we say
that Φ exhibits an tempered exponential trichotomy. Notice that in the discrete-time case the
condition (5.1) is equivalent to

lim
n→±∞

1
|n|

log K(θnω) = 0 for all ω ∈ Ω.

Corollary 6.1. Let Φ be a measurable linear RDS exhibiting a tempered exponential trichotomy such

that, for all ω ∈ Ω, satisfies

λc(ω) > λs(ω) and λc(ω) < λu(ω)
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and let f ∈ F . Consider a θ-invariant random variable γ(ω) > 0 satisfying for all ω ∈ Ω

a(ω) := λc(ω)− λs(ω)− γ(ω) > 0 and b(ω) := λu(ω)− λc(ω)− γ(ω) > 0.

If

Lip( fω) ⩽
δ

K(θω)
min

{

emin{λc(ω),λc(ω)} G(ω), eλu(ω) ea(ω) −1
ΛK,γ(ω),ω

, eλs(ω) 1 − e−b(ω)

ΛK,γ(ω),ω

}

for all ω ∈ Ω then the same conclusions of Theorem 3.1 hold.

6.2 ψ-trichotomies

Consider measurable functions

ψc, ψc, ψs, ψu : Z × Ω →]0,+∞[

such that for ℓ ∈ {c, c, s, u} we have

ψℓ(t + s, ω) = ψℓ(t, θsω)ψℓ(s, ω)

for all t, s ∈ Z and all ω ∈ Ω. A ψ-trichotomy is a generalized trichotomy with bounds

αc
n,ω =

{

K(ω)ψc(n, ω), t ⩾ 0,

K(ω)ψc(n, ω), t ⩽ 0,

αs
t,ω = K(ω)ψs(n, ω), t ⩾ 0,

αu
t,ω = K(ω)ψu(n, ω), t ⩽ 0

where K : Ω → [1,+∞[ is a random variable. We notice that, as in the continuous-time case,
we may consider different growth rates along the central directions Ec

ω, depending if we are
looking to the future (n → +∞) or to the past (n → −∞).

Corollary 6.2. Let Φ be a measurable linear RDS exhibiting a ψ-trichotomy such that

ψc(1, ω)

ψu(1, ω)
<

K(θω)

K(ω)
<

ψc(1, ω)

ψs(1, ω)
. (6.1)

Let f ∈ F be such that

Lip( fω) ⩽
δ

K(θω)
min

{
ψc(1, ω)G(ω), ψc(1, ω)G(ω), a(ω), b(ω)

}
,

where

a(ω) =
ψu(1, ω)

K(ω)
−

ψc(1, ω)

K(θω)
and b(ω) =

ψc(1, ω)

K(θω)
−

ψs(1, ω)

K(ω)
.

If

lim
n→−∞

K(θnω)ψs(−n, θnω)ψc(n, ω) = lim
n→+∞

K(θnω)ψu(−n, θnω)ψc(n, ω) = 0

for all ω ∈ Ω, then the same conclusion of Theorem 4.1 holds.
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Proof. We will check that we are in conditions to apply Theorem 4.1. Notice that from (6.1) we
conclude a(ω), b(ω) > 0. We have

σ−
ω = sup

n∈N

1
ψc(−n, ω)

−1

∑
k=−n

K(θk+1ω)ψc(−n − k − 1, θk+1ω)Lip( fθkω)ψ
c(k, ω)

⩽ δ
+∞

∑
k=−∞

G(θkω) ⩽ δ,

and, similarly, σ+
ω ⩽ δ. Thus σ ⩽ δ. Moreover,

τ+
ω =

+∞

∑
k=0

K(θk+1ω)ψu(−k − 1, θk+1ω)Lip( fθkω)K(ω)ψc(k, ω)

⩽ δK(ω)
+∞

∑
k=0

[
ψu(−k, θkω)ψc(k, ω))

K(θkω)
−

ψu(−(k + 1), θk+1ω)ψc(k + 1, ω))

K(θk+1ω)

]

⩽ δK(ω)

(
1

K(ω)
− lim

k→+∞

ψu(−k, θkω)ψc(k, ω))

K(θkω)

)

= δ.

Similarly we get τ−
ω ⩽ δ. Therefore σ + τ ⩽ 3δ < 1/2.

In the following we consider particular ψ-trichotomies.

6.2.1 Summable exponential trichotomies

We start by considering the integral (or summable) exponential trichotomies, which are a
generalization of the exponential trichotomies and can be seen as the discrete counterpart of
those in Section 5.2.1. Let

λc, λc, λs, λu : Ω → R

be random variables and set For all ℓ ∈ {c, c, s, u} we set

Sℓ(n, ω) =







λℓ(ω) + · · ·+ λℓ(θn−1ω), n ⩾ 1,

0, n = 0,

−λℓ(θnω)− · · · − λℓ(θ−1ω), n ⩽ −1.

A summable exponential trichotomy is a ψ-trichotomy with

ψℓ(t, ω) = eSℓ(n,ω)

for all ℓ ∈ {c, c, s, u}, i.e., is a generalized trichotomy with bounds

αc
n,ω =

{

K(ω) eSc(n,ω), n ⩾ 0,

K(ω) eSc(n,ω), n ⩽ 0,

αs
n,ω = K(ω) eSs(n,ω), n ⩾ 0,

αu
n,ω = K(ω) eSu(n,ω), n ⩽ 0

for some tempered random variable K : Ω → [1,+∞[.
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Corollary 6.3. Let Φ be a measurable linear RDS exhibiting a summable exponential trichotomy such

that
eλc(ω)

eλu(ω)
<

K(θω)

K(ω)
<

eλc(ω)

eλs(ω)
.

Let f ∈ F be such that

Lip( fω) ⩽
δ

K(θω)
min

{

eλc(ω) G(ω), eλc(ω) G(ω), a(ω), b(ω)
}

,

where

a(ω) =
eλu(ω)

K(ω)
−

eλc(ω)

K(θω)
and b(ω) =

eλc(ω)

K(θω)
−

eλs(ω)

K(ω)
.

If

lim
n→−∞

K(θnω) eSs(−n,θnω)+Sc(n,ω) = lim
n→+∞

K(θnω) eSu(−n,θnω)+Sc(n,ω) = 0

for all ω ∈ Ω, then the same conclusion of Theorem 4.1 holds.

6.2.2 Non exponential trichotomies

We provide a particular type of ψ-trichotomies that can be easily handled to construct tri-
chotomies beyhond the exponential bounds in the discrete-time scenario. Consider a ψ-tri-
chotomy with

ψℓ(n, ω) =
λℓ(ω)

λℓ(θnω)

for all ℓ ∈ {c, c, s, u}, i.e., is a generalized trichotomy with bounds

αc
n,ω =







K(ω)
λc(ω)

λc(θnω)
, n ⩾ 0,

K(ω)
λc(ω)

λc(θnω)
, n ⩽ 0,

αs
n,ω = K(ω)

λs(ω)

λs(θnω)
, n ⩾ 0,

αu
n,ω = K(ω)

λu(ω)

λu(θnω)
, n ⩽ 0.

(6.2)

For future use let us define

a(ω) =
λu(ω)

λu(θω)K(ω)
−

λc(ω)

λc(θω)K(θω)
and b(ω) =

λc(ω)

λc(θω)K(θω)
−

λs(ω)

λs(θω)K(ω)
.

Corollary 6.4. Let Φ be a measurable linear RDS exhibiting an α-trichotomy with bounds (6.2) and

such that
λc(ω)λu(θω)

λc(θω)λu(ω)
<

K(θω)

K(ω)
<

λc(ω)λs(θω)

λc(θω)λs(ω)
.

Let f ∈ F be such that

Lip( fω) ⩽
δ

K(θω)
min

{
λc(ω)

λc(θω)
G(ω),

λc(ω)

λc(θω)
G(ω), a(ω), b(ω)

}

.

If

lim
n→−∞

K(θnω)λs(θnω)

λc(θnω)
= lim

n→+∞

K(θnω)λu(θnω)

λc(θnω)
= 0

for all ω ∈ Ω, then the same conclusion of Theorem 4.1 holds.
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We may consider Example 5.7 with T = Z to get an apllication of this result in a non
exponential trichotomy situation.
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