
Acta Polytechnica Hungarica Vol. 20, No. 8, 2023 

‒ 9 ‒ 

Computer-aided Design and Manufacturing of a 

Patented, Left Ventricle Assist Device 

Positioning Tool – 3D Navigated Surgical 

Treatment of End-Stage Heart Failure 

Imre Janos Barabas 

Heart and Vascular Center, 3D Center, Semmelweis University 
Városmajor u. 68, 1122 Budapest, Hungary 
barabas.janos_imre@med.semmelweis-univ.hu 

Bela Merkely, Istvan Hartyanszky 

Heart and Vascular Center, Semmelweis University 
Városmajor u. 68, 1122 Budapest, Hungary 
rektor@semmelweis-univ.hu; hartyanszky.istvan@med.semmelweis-univ.hu 

Daniel Palkovics 

3D Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, Hungary 
Department of Periodontology, Semmelweis University, Szentkirályi u. 47, 1088 
Budapest, Hungary 
palkovics.daniel@dent.semmelweis-univ.hu 

Abstract: The Left Ventricular Assist Device (LVAD), is a leading therapy option for patients 

with end-stage heart failure. A successful LVAD implantation is influenced by various 

factors, which are difficult or impossible to control during the operation. For optimal 

functioning of the device, its axis should be close to parallel with the septum, facing the mitral 

valve within the left ventricle. Our aim is to provide an innovative solution for these 

problems, using 3D technology and 3D printing. In our work, the production of the patented 

exoskeleton and the validation of its volumetric and surface quality, was presented, by 

comparing the virtual and 3D printed exoskeletons. 
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1 Introduction 

According to the World Health Organization (WHO), cardiovascular diseases are 
the leading cause of death worldwide. Among cardiovascular diseases, end-stage 
heart failure is one of the most severe syndromes, with constantly increasing 
morbidity- and mortality rates [1]. For patients in end-stage heart failure who are 
unresponsive to medical treatments, the gold standard therapeutic option is 
transplantation. However, the access to donor candidates for heart transplantation 
is limited [2] [3]. The implantation of a left ventricle assist device (LVAD), is a life-
saving treatment option for these patients [4]. A LVAD is a mechanical pump with 
an external battery, that helps pumping blood from the left ventricle (LV) to the 
systemic circulation, thereby capable of partially or completely replacing the 
function of a failing heart [5]. 

Figure 1 shows the four main parts of the LVAD: the pump, the inflow cannula, 
the outflow cannula and the driveline. For further information about the device 
structure and function, see the paper of Englert et al. [6], and the paper of Worku et 
al. [7]. 

 
Figure 1 

Virtual 3D model of the left ventricle assist device. A: Pump, B: Inflow cannula, C: Driveline, D: 
Outflow cannula 

Success of the LVAD implantation largely depends on the position of the device, 
however ideal positioning is determined by various factors, that cannot be or are 
difficult to influence [8] [9]. Ideally, the inflow-cannula (IC) of the LVAD should 
be parallel with the interventricular septum (IVS) and should point towards the 
center of the mitral valve (MV). Based on literature data, the ideal degree between 
the IC and the IVS should be within -7 and +7 degrees of the left ventricular septal 
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axis [8], otherwise the unfavorable postoperative fluid mechanics of the left 
ventricle may lead to life-threatening events [10]. Directly after implantation, one 
of the most severe complications is the suction event, when the pump draws the IVS 
to the IC, causing the LVAD to stop immediately [11]. 

The computational fluid dynamical simulation (CFD) is becoming a more and more 
prominently used mechanical engineering tool in the field of medicine. Using CFD, 
cardiovascular experts could gain a better knowledge of blood flow dynamics in the 
left ventricle around the IC. The CFD provides an opportunity for simulation before 
the clinical usage of new medical devices, facilitating the development of new 
medical interventions. Despite the CFD simulation advantages, the limitation must 
be considered [12]. 

In the field of dentistry and oral surgery, static prefabricated surgical guides are 
utilized to execute the navigated positioning of dental implants [13] [14]. Dentists 
and oral surgeons utilize 3D data acquired from cranio-facial computed tomography 
(CT) scans to determine implant positions and to manufacture surgical guides [15]. 
Similarly, routine presurgical computed tomography angiography (CTA) scans can 
be utilized to digitally plan LVAD positions and perform a navigated surgical 
treatment. 

Hence, the aim of this article was to describe a computer-aided design and 
computer-aided manufacturing process to produce a surgical positioning tool 
(exoskeleton) for LVADs and to validate the accuracy of the additive manufacturing 
procedure. The exoskeleton is under the process of international patent protection 
[16]. 

2 Materials and Methods 

2.1 Image Acquisition 

Prior to surgery, spiral electrocardiogram (ECG)-gated thoracic CTA scans are 
acquired utilizing a multidetector CT machine. Angiographic contrast imaging lasts 
for one cardiac cycle, during which the machine is capable to take multiple images. 
3D planning is carried out relying on images taken at the end-diastolic stage. 

Iodine-based intravenous contrast materials are utilized to enhance the visibility of 
the vessels during radiographic imaging. At the end-diastolic phase, the contrast 
agent clearly draws out the inner surface and the inner structures of the left ventricle. 
Therefore, the IVS, the MV, the mitral annulus, and the papillary muscles can be 
separated from each other. During the virtual model building process, these 
structures can be reconstructed in 3D. The given flowchart below illustrates our 
study structure (Figure 2). 
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Figure 2 

The flowchart illustrates the steps of the exoskeleton manufacturing and quality assessment process 

2.2 Radiographic Image Segmentation 

DICOM (Digital Imaging and Communications in Medicine) datasets were 
imported into an open-source medical image processing software (3D Slicer v5.4.0, 
Boston, MA, USA) [17]. During image segmentation, a binary labelmap for every 
corresponding anatomic structure is being generated on the multiplanar CTA 
images (Figure 3). Semi-automatic external heart surface segmentation consists of 
the following steps: (i) edge detection: outlining the borders of the heart on 5-7 axial 
slices of the CTA dataset, utilizing a voxel intensity level tracing tool; (ii) 
morphological contour interpolation: based on the outline of the previously 
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generated labelmaps, the algorithm calculates the labelmaps on interim slices, 
interpolating between slices drawn by free hand; (iii) Gaussian method is utilized 
to smoothen the outline of the binary labelmap. Labelmaps for the internal anatomic 
structures of the left ventricle (i.e., IVS, MV, papillary muscles) are generated 
within the area of the previously created labelmap of the heart. Local thresholding 
segmentation is applied to generate a labelmap for the cavity of the left ventricle. 
After occasional manual correction and smoothing, the labelmap representing the 
cavity of the left ventricle is subtracted from the labelmap representing the entire 
heart. All steps of the segmentation were inspected by a radiologist, a cardiologist 
and a cardiac surgeon. If necessary, the model was changed with the full agreement 
of the clinical specialist. 

 
Figure 3 

3D model of the segmented heart. A patient-specific computational model provides the possibility to 
design a personalized exoskeleton for the LVAD implantation. Neon green: right atrium, red: aorta, 

blue: pulmonary artery, orange: left atrium, brown: heart muscle (myocardium), green: papillary 
muscles, blue circle: mitral annulus. 

With real-time rendering, the software automatically generates a 3D surface 
representation of the 2D binary label map. 3D surface representation of the 
segmentation is exported as a Standard Tessellation Language (STL) file. 
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2.3 Positioning of the IC 

2.3.1 Anatomic Positioning 

A 3D model of the segmented heart (with the inner structure of the left ventricle), 
and the 3D model of the LVAD are imported into the Autodesk Fusion 360 
(AutoDesk Inc. San Rafael, CA, USA) 3D CAD software for the anatomical 
positioning of the device (Figure 4). The LVAD is placed (i) at 5-15 mm distance 
from the IVS, (ii) at equal distance from the papillary muscles and (iii) the IC should 
point towards the center of the MV. The final result of the anatomical positioning 
step is to orient the LVAD and inflow cannula inside the left ventricle. 

 
Figure 4 

Anatomic positioning of the LVAD A: the axial plane of the CT angiography shows the distance (neon 
green lines) between the inflow cannula’s axis (red line) and the interventricular septum (current 

distance: 13.2 mm); B-C: the relation of the IC long axis with the papillary muscles (green) and the 
mitral annulus (blue circle) 

2.3.2 Functional Positioning – Computational Fluid Dynamic Simulation 

During the functional positioning step, the most preferable angle was calculated, 
using CFD simulation, Ansys Fluent 2022 R1 (ANSYS Inc. Southpointe, 
Canonsburg, PA, USA). In our model the left ventricle geometry was patient 
specific, but other CFD factor was standardized. For fine-tune the IC position for 
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ideal postoperative ventricular blood flow, a CFD simulation is carried out for all 5 
different potential IC angles. A pivot point is placed at the intersection between the 
IC long axis and the heart muscle, where the LVAD will be implanted. The IC is 
then rotated into 5 different angles: the center and the four corner points of the MV. 
Subsequently, fluid mechanical analysis is performed for all 5 potential IC angles. 

Standardized fluid characteristics of blood are programmed into the CFD simulation 
software. Our fluid simulation based on the research of Chivukula et al. [8], and 
Méndez et al. [18] theoretical flow simulation setup. During the simulation 
thrombus formation factors were not conducted. Blood is treated as a non-
Newtonian fluid with a viscosity of 3.5 mPa⋅s and a density of 1050 kg/m3.  
The inlet part of the heart was the mitral valve, and the inlet boundary condition 
was specified in flow velocity as 180 m/s, with no pulsatility. Meanwhile, the outlet 
boundary condition is set on top of the IC inside the left ventricle, with the same 
conditions as at the inlet point. The inner diameter of the IC was measured as 23.5 
mm, while the outer diameter was 25 mm, maintaining a 1:1 ratio with the original 
device. The insertion depth of the IC was calculated as the difference between the 
original length of the IC (22 mm) and the thickness of the left ventricle (7.2 mm ± 
2.1 mm). The wall (heart muscle) boundary condition is defined as no-slip 
condition, wherein the normal component of velocity is fixed at zero, and the 
tangential component is set equal to the velocity of the wall. 

 
Figure 5 

Functional positioning of IC based on CFD simulation. The colormap reveals the turbulence 
differences between the proper and malpositioned LVAD flow patterns. A: turbulence in case of 

optimal angulation; B: turbulence in case of malpositioned IC inside the left ventricle. 

During CFD simulation, fluid inflow is set to the MV, whereas fluid outflow is set 
to the IC of the LVAD. For each of the 5 possible IC positions, turbulence is 
calculated. Colormap visualizes turbulence values, expressed as: m2/s2; the ideal 
turbulence value for the LV should be between 2 m2/s2 and 22 m2/s2. The angle with 
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the most ideal blood flow dynamic is selected as the final planned position of the 
LVAD (Figure 5). 

2.4 Computer-aided Design of the Exoskeleton 

The exoskeleton is designed in the Autodesk Fusion 360 (AutoDesk Inc., San 
Rafael, CA, USA) 3D CAD software, capable of free-form surface modelling 
(Figure 6). The base of the exoskeleton is designed over the outer surface at the 
apex of the heart, utilizing the heart model generated with the segmentation of the 
CTA scans. The convex surface of the exoskeleton provides an appropriate fit on 
the outer surface of the patient’s heart during the operation. The extent of the 
exoskeleton is limited as much as possible, to allow for a minimally invasive 
incision design and surgical wound, while still providing sufficient support for the 
guidance of the coring knife. The coring knife is a specific surgical instrument, that 
is used to cut out a cylindrical shape of the heart muscle for the implantation of the 
inflow cannula. The guide base spans from the apex of the heart to the IVS with a 
final leaf-like shape. 

 
Figure 6 

The exoskeleton fits precisely on the surface of the heart. Precise fitting ensures the proper positioning 
of the IC during the surgical implantation. 
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At the final position of the IC, a cylindrical guide channel (guiding tube) with a 
diameter that is capable of housing the coring knife is designed into the exoskeleton 
base, at the planned anatomical position and preferable angle of the IC. This tube 
will guide the coring knife during surgery, ensuring that the LVAD will be placed 
in the planned position. Finally, a Voronoi-pattern is applied to skeletonize the base 
of the guide, hence the name exoskeleton. The final step of CAD modelling is the 
smoothing procedure of the exoskeleton. All sharp edges are removed, avoiding any 
kind of geometry distortion around the guiding tube. At the end of the process, the 
virtual exoskeleton is suitable for 3D printing and surgical use. 

Once the design is finalized, the model of the exoskeleton is exported as a standard 
tessellation language (STL) file, and is prepared for 3D printing and quality control. 

2.5 Additive Manufacturing of the Exoskeleton 

 
Figure 7 

3D digital model, additively manufactured model and surgical implementation of the exoskeleton.  
A: guiding tube for the coring knife, B: Voronoi-pattern skirt of the exoskeleton, which ensures a clear 

view to confirm proper fit of the exoskeleton. C: Surgical use of the exoskeleton 
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The STL file of the exoskeleton is imported to the dedicated software of a 3D printer 
capable of producing devices suitable for surgical applications. A wide variety of 
printers are available on the market using stereolithography (SLA) technology, 
which can be utilized to manufacture the exoskeleton. A sterilizable medical grade 
photopolymer resin (USP class VI; ISO 10993-5, -10, -23) with adequate 
mechanical properties can be utilized to manufacture the exoskeleton (Figure 7). 
Prior to surgery, the exoskeleton is sterilized in an autoclave at 121 °C for 30 
minutes [19]. 

2.6 Outcome Measures - Quality Control of the Printed 

Exoskeleton 

Fifteen patient-specific virtual 3D exoskeleton (VE) masks were extracted, 
accompanied by the retrieval of their corresponding 3D printed exoskeleton (3DPE) 
models. The 3D scanning process was carried out using a desktop optical 3D 
scanner (Einscan-SP V2, SHINING 3D, Hangzhou, China), which ensured high-
resolution point cloud data with an exceptional single-shot accuracy of 0.05 mm, 
conforming to the ISO 12836 standard. These data were then transformed from 
‘Mask to Surface’ utilizing a 3D inspection software, Geomagic Control X (3D 
Systems, Rock Hill, SC, USA). Later it was used to generate colormaps between 
the VE STL file, and the re-scanned 3DPE, STL file (Figure 8). 

The two datasets (from VE and 3DPE) were registered. The VE was chosen as the 
fixed reference dataset and the corresponding printed model surface for the 
corresponding registration dataset. To ensure uniformity, six consistent anatomical 
landmarks were manually pinpointed on each surface. This selection comprised 
three landmarks on the convex surface and an additional three on the concave 
surface, situated within the upper, middle, and lower regions of both the VE and 
3DPE surfaces. 

The VEs were compared to the 3DPE scans, to validate the accuracy of the 
manufacturing process. The primary outcome measure was the volumetric 
difference between the VE models and the 3DPE models. 

Secondary outcome measures were: dice similarity coefficient (DSC) and 
Hausdorff-distance (HD). These metrics assessed the surface quality between the 
VE and 3DPE models. The DSC uses a reproducibility validation metric and an 
index of spatial overlap. DSC values range from 0 to 1, which denotes the entire 
spatial similarity between the two objects. The value of 1 means a total overlap 
between two 3D models [20]. 

On the other hand, the Hausdorff-distance [21] measures distance between two-
point sets. Thus, this distance can be used to determine the degree of resemblance 
between two objects that are superimposed on one another. Three different values 
were measured on the models: (i) maximum, (ii) average distance between two 
points, and (iii) the 95th percentile of measured distances. 
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Figure 8 

Comparison of the VE and 3DPE models. The surface similarity data were visualized in a deviation 
map, where the colors red, orange and yellow describe areas with negative material discrepancy, while 

cyan and blue colors describe areas with surplus material compared to the original STL object. 

In all cases, the master and scanned models were considered identical, if the DSC 
was greater than 0.9 and the HD 95th percentile was less than 1mm. 

Statistical significance between the values of each outcome measure was calculated 
paired t-test with a significance level of 0.05. Statistical evaluation was done with 
SPSS Statistics (IBM, Armonk, NY, USA). 

3 Results 

3.1 Primary Outcome – Volumetric Differences 

The volume comparison between the VE model and the 3DPE model revealed no 
statistically significant difference (p= 0.76). Volume of the VE models averaged at 
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10.81 cm3 ± 1.69 cm3, whereas average volume of the 3DPE models were 10.80 
cm3 ± 1.70 cm3. Volumetric differences are shown in Figure 9. 

 
Figure 9 

Estimation plot of the virtual exoskeleton (VE) and 3D printed exoskeleton (3DPE). 

3.2 Secondary Outcome Measures – Surface and Volumetric 

Quality Assessment 

The surface quality measurements did not show considerable differences. Spatial 
overlap between the VE and 3DPE models measured by the DSC showed an 
average 0.95 ± 0.03 value (minimum: 0.91, maximum: 0.98). The maximum HD 
value averaged at 2.83 mm ± 1.31 mm. Whereas, the mean HD distance between 
VE and 3DPE averaged at 2.17 mm ± 0.52 mm, with an average 0.16 mm ± 0.06 
mm 95th percentile HD value. The 95th percentile of the distance was less than 1mm 
in every scanned exoskeleton. DSC and HD values are shown in Table 1. 

Table 1 
Surface quality measurements of the virtual and the 3D printed exoskeleton. 

 
Dice similarity 

coefficient 
Hausdorff-distance 

 
  Maximum 

[mm] 
Average [mm] 95% [mm] 

Maximum 0.98 2.83 0.26 0.94 
Minimum 0.91 1.31 0.08 0.31 
Mean 0.95 2.17 0.16 0.60 
SD 0.03 0.52 0.06 0.21 
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4 Discussion 

The aim of the current paper was to describe the fundamental aspects of planning a 
navigated surgical LVAD implantation, and the additive manufacturing of the 
patented exoskeleton. Re-scanning of the actual 3D printed exoskeletons provides 
an ideal solution to compare the volume- and the surface stability of two 3D models. 

The implantation of an LVAD is a highly technical, sensitive procedure, that mostly 
relies on previous LVAD implantation experience. Therefore, it is implemented in 
expert and high-volume centers, as these are associated with a low risk of post-
operative bleeding, infection, RV failure and mortality [22]. Yet, even in the hands 
of an experienced surgeon, results may differ greatly, without the navigated 
placement of the device. Unfavorable postoperative IC position, caused by 
inadequate implantation, has negative consequences. The malposition of the device 
may increase the risk of postoperative complications on long term [10].  
The incidence of the complications mentioned in section introduction, arising from 
device misplacement, could potentially be diminished or entirely prevented through 
the implementation of the exoskeleton. Important to note that this study did not 
gather data on long-term postoperative complications. Therefore, additional 
research is required to prove our device positive effects on clinical outcomes. 

A case report demonstrating the clinical application of the intra-surgical application 
of the exoskeleton has previously been published by our group [19]. In that case, 
the accuracy of the LVAD position was validated by comparing angulations 
between the IVS and the IC on the preoperative plan and the postoperative control 
CT scan. The deviation between the planned position and the actual postoperative 
position of the IC was 2.6°. In a recently published article by Pearman et al., the 
authors demonstrated an average of 16.3°–23.2° deviation between the actual IC 
position and the postoperatively determined hypothetical ideal IC position (the axis 
connecting the center of the MV and the center of the IC) [23]. Although slightly 
different reference axes were utilized in the two studies, and it is difficult to compare 
one single case to a series of 42 cases, the difference in deviation from the ideal 
values is remarkable. Based on our clinical experience, and so far, unpublished data, 
high accuracy surgical results can be achieved with high reproducibility. 
Additionally, with the application of the exoskeleton, postoperative outcomes seem 
to be influenced less by the experience of the surgeon. An additional benefit of 3D 
virtual planning is that the surgeon has a more accurate insight of the patient’s 
anatomy. Besides planning, virtual and/or 3D printed anatomical models can be 
utilized during surgery to visualize anatomical relations of different structures, even 
in cases with limited direct visualization. 
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With the re-scanning process it was demonstrated that the 3D printed exoskeleton 
does not show considerable differences to the original digital model. Only the edges 
reveal more than 1 mm distance inequality, at a maximum value of 2.83 mm. This 
occurrence is most likely due to the post-processing of the 3D printed models, 
namely the removal of the support structure. During the post-process, the edges of 
the exoskeleton were rounded with a bur. This post-process step is essential to 
manufacture a safe surgical instrument, which can be used during the operation.  
On the other hand, the average 95th percentile of two points distance was 0.60 mm, 
which is noticeably less than the accepted 1mm distance difference. The distance 
observed on the concave surface of the exoskeleton measures below 0.1 mm (0.04 
± 0.038 mm). The convex surface around the guiding tube determines the accuracy 
of the implantation process. This indicates that the quality of the exoskeleton was 
sufficient for surgical application. DSC values marking the spatial overlap between 
the VE and 3DPE models averaged at 0.95 ± 0.03. Results of the volumetric 
measurements are in line with the surface assessment, with no statistically 
significant difference between the volume of the VE and the 3DPE models. 

While the medical discipline holds significant promise for the application of CFD 
simulation, establishing accurate model parameters proves to be a challenging task. 
This difficulty arises from the fact that the properties of blood undergo changes in 
varying environments [12] [24]. Consequently, the concept of simulating patient-
specific scenarios becomes a topic of discussion in existing literature, particularly 
when considering essential thrombosis-related parameters such as activated 
platelets, resting platelets, prothrombin concentration, anti-thrombin III 
concentration, and other factors. For that reason, standardized parameters were used 
in our simulation, conducting a theoretical flow simulation. 

Because of this limitation, CFD was exclusively utilized to refine the positioning of 
the inflow cannula. The patient specific anatomy of the left ventricle defined the 
position of the inflow cannula. The CFD approach was aimed at demonstrating the 
future capabilities of CFD in effectively determining the optimal positioning of 
LVADs. Another drawback of the technique is the relatively long duration of the 
planning process and the fact, that the user must have a complex knowledge, in 
radiographic image processing, CAD modelling and 3D printing. Some of the steps 
(e. g., segmentation, CAD modelling of the exoskeleton) still require substantial 
human interaction. The automation of these processes shall be possible in the future 
with the development of deep learning segmentation algorithms and dedicated 
software, to reduce the duration of the planning phase and to reduce the rate of 
occasional human-made errors. 

Conclusions 

3D modeling and printing have proven to be promising technologies, with 
impressive potential applications for medicine. Among other benefits, they provide 
the possibility to plan surgical procedures, even before the first incision. In our 
ongoing study, all cases were prepared with the help of a virtual, patient-specific 
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3D model of their heart, with the surrounding vessels and organs. The overall 
responses from the operating surgeons to this technology were positive. The main 
opinion is, that 3D technology supports the success of the surgical intervention. 
However, the leading barrier for the use of 3D technology in clinical practice, is the 
accessibility of the necessary engineering knowledge (usage of different software, 
3D modeling and printing, post processing and availability of a 3D printer). With 
the enthusiasm for this technology, comes the need for the standardization of the 
technique, the establishment of a clinical facility and improved accessibility. 

It can be concluded, that, with the elaborative planning process, the LVAD can be 
implanted into an ideal position. Therefore, the complication rate of IC 
malpositioning could be reduced or completely avoided. The exoskeleton is a 
surgical instrument which provides the possibility of a personalized, calculation-
based implantation of the LVAD. One of the mayor drawbacks of the current 
planning process is the lack of a patient specific, thrombus formation simulation. 
Therefore, in the future, individualized haemostaseology processes will be 
considered, during the planning stage. In order to evaluate the clinical performance 
of the device, large sample comparative studies must also be conducted. 
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1Elektrobit Automotive Finland Oy, Elektroniikkatie 13, Oulu 90590, Finland,

peter.szalay@elektrobit.com
2Physiological Controls Research Center, Óbuda University, Bécsi Street 96/B,
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Abstract: The importance of efficient diabetes treatment and its’ reliable automation is

rising with the prevalence of this chronic condition worldwide. Robustness is one of the

enablers of the safe automation of plasma glucose control, for it can ensure consistent

behavior when the controlled dynamics are changing or partially unknown. Hence, this

work focuses on assessing the capabilities of a robust nonlinear controller framework in

a simulated environment. Linear Parameter-Varying modeling is combined with robust

control techniques, supported by an Unscented Kalman filter. These controllers are then

subjected to additional constraints in search of a practical trade-off between disturbance

rejection and the severity of transient behavior. Simulations with unannounced meal in-

takes explore and compare the effect of these additional constraints and configurations

using the virtual patients provided by a well-known in silico simulator. The simulation re-

sults indicate that this control method can ensure adequate blood glucose control and has

the potential to support other control algorithms to realize a safe and reliable artificial

pancreas.

Keywords: T1DM; Artificial pancreas; Robust control; LPV; Glycemic controller

1 Introduction

In a healthy individual, a complex endocrine system keeps the glucose concen-

tration in the blood within a narrow range (3.9 - 7.8 [mmol/L]). Diabetes Mellitus

(DM) is a collective term referring to several chronic metabolic diseases where

this system is impaired, resulting in elevated glucose levels. In particular, Type

1 Diabetes Mellitus (T1DM) is diagnosed when the β -cells in the pancreas can-

not produce insulin, a peptide hormone that plays a crucial role in decreasing

plasma glucose concentration [1]. The most common treatment for this condi-

tion includes regular insulin injections. Due to an increasing prevalence in the

population [2, 3], the recent decades saw extensive research in the automation of

insulin treatment [4, 5], commonly referred to as Artificial Pancreas (AP). Some
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AP implementations have already undergone clinical trials [6–8].

Maintaining normal glucose concentration (normoglycemia) is a challenging con-

trol problem due to the following reasons:

• Most models approved for representing a T1DM patient [9–11] are severely

nonlinear, even though they focus on only the most relevant aspects of hu-

man metabolism.

• Tuning the parameters of these models has practical limitations [12, 13].

Hence, the nominal model can deviate significantly from the actual patient

behavior [14, 15].

• The commercially available continuous glucose monitoring (CGM) sen-

sors have significant noise and drift [16–18].

• A single-hormone controller that can only administer insulin has no means

to elevate glucose levels. Therefore, the controller must be designed so that

the control signal is always non-negative. Controllers with the capability

to increase glucose concentration using glucagon [19] is outside the scope

of this work due to some practical challenges in glucagon delivery [20].

• Even rapid-acting insulin - if injected subcutaneously - has a significantly

slower effect on the plasma glucose concentration than meal intake or

physical activity [9, 10].

• The dynamics of the human metabolism concerning glucose is slower when

the glucose levels are lower compared to when they are high [21].

• The plasma glucose concentration is affected by various factors that are

difficult to measure, detect, or even quantify. These include meal intake,

physical activity, insulin administered by the patient (in a semi-automated

setting), and various other physiological conditions.

• Having glucose levels below 3.9 mmol/L or 72 mg/dL (hypoglycemia) is

a more severe acute complication than high glucose concentration (hyper-

glycemia). While reducing the latter in severity and frequency is the pri-

mary goal of AP, the former can lead to loss of consciousness, seizures,

and even death [1] and hence must be strictly avoided [22].

Numerous different approaches were presented for control algorithms [23] that

can address the above-listed particularities. These include different incarna-

tions of PID control [24, 25], adaptive controllers [26], machine learning algo-

rithms [27, 28], fractional order controllers [29] among others. One of the most

widely accepted approaches is model predictive control (MPC), which showed

remarkable results both in simulation and in practice [30, 31]. However, MPC

requires an accurate model, which is rarely available in clinical practice. Hence,

increasing the robustness of the controllers [32, 33] or making robustness the core

feature of the control algorithm [34–36] gained popularity. Despite their limited

disturbance rejection capabilities compared to MPC adjusted to individual pa-

tients, robust control methods have the potential to achieve a desirable compro-

mise between safety and the efficiency of the T1DM treatment.
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This work focuses on a class of robust nonlinear controllers aiming to ensure

normoglycemia for T1DM patients. The T1DM model presented in [37] serves

as the basis of the controller design, transformed into an LPV model, extended

with an output uncertainty model, and weighting functions representing expected

tracking performance, reference dynamics, and constraints on the control signal.

The LPV controller can ensure robustness by minimizing H∞ or H2 norms be-

tween various inputs and outputs of the extended LPV model.

2 Modeling the Human Metabolism

The following differential equations describe the 11th order Cambridge model

introduced by Hovorka et al. [9] and later updated by [37]:

Ċ(t) = −ka,intC(t)+
ka,int

VG

Q1(t)

Q̇1(t) = −

(

F01

Q1(t)+VG

+ x1(t)

)

Q1(t)+ k12Q2(t)−

−Rcl max{0,Q1(t)−RthrVG}−Phy(t)+

+EGP0 max{0,1− x3(t)}+min

{

UG,ceil ,
G2(t)

tmax

}

Q̇2(t) = x1(t)Q1(t)−
(

k12 + x2(t)
)

Q2(t)

ẋ1(t) = −kb1x1(t)+SIT kb1I(t)
ẋ2(t) = −kb2x2(t)+SIDkb2I(t)
ẋ3(t) = −kb3x3(t)+SIEkb3I(t)

İ(t) =
ka

VI

S2(t)− keI(t)

Ṡ2(t) = −kaS2(t)+ kaS1(t)
Ṡ1(t) = −kaS1(t)+u(t)

Ġ2(t) =
G1(t)−G2(t)

tabs(t)

Ġ1(t) = −
G1(t)

tabs(t)
+D(t),

(1)

where C(t) is the glucose concentration in the subcutaneous tissue [mmol/L],

Q1(t) and Q2(t) are the masses of glucose in accessible and non-accessible com-

partments [mmol], x1(t) [1/min], x2(t) [1/min], and x3(t) [-] are the remote ef-

fects of insulin on glucose distribution, disposal and endogenous glucose produc-

tion, respectively, I(t) is the insulin concentration in plasma [mU/L], S1(t) and

S2(t) are the insulin masses in the accessible and non-accessible compartments

[mU], while G1(t) and G2(t) are the masses of ingested glucose in the stom-

ach and gut [mmol/kg]. u(t) is the injected insulin flow of rapid-acting insulin

[mU/min], which is the input of the system. D(t) is the amount of ingested car-

bohydrates [mmol/min], and Phy(t) is the effect of physical activity [mmol/min].

Both are considered as disturbances. Table 1 provides details on model parame-

ters. The glucose absorption time constant tabs(t) is a function of state variables,
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Table 1

Cambridge model parameters.

Name Unit Description

ka,int 1/min transfer rate constant between the plasma and the sub-

cutaneous compartment

VG L distribution volume of glucose in the accessible com-

partment

F01 mmol/min total non-insulin dependent glucose flux

k12 1/min transfer rate constant from the non-accessible to the ac-

cessible compartment

Rcl 1/min renal clearance constant

Rthr mmol/L glucose threshold for renal clearance

EGP0 mmol/min endogenous glucose production extrapolated to the zero

insulin concentration

tmax min time-to-maximum appearance rate of glucose in the ac-

cessible compartment

UG,ceil mmol/min/kg maximum glucose flux from the gut

kb1, kb2 1/min deactivation rate constants

kb3 1/min deactivation rate constant for the insulin effect on en-

dogenous glucose production

SIT L/mU/min insulin sensitivity for transport

SID L/mU/min insulin sensitivity for distribution

SIE L/mU insulin sensitivity for endogenous glucose production

ka 1/min insulin absorption rate constant

VI L volume of distribution of rapid-acting insulin

ke 1/min fractional elimination rate from plasma

and calculated as follows:

tabs(t) = max

{

tmax,
G2(t)

UG,ceil

}

. (2)

Parameters ka,int , F01, k12, EGP0, kb1, kb2, kb3, SIT , SID, SIE , ka and ke are time-

varying with ±5% deviation. In the in silico tests, this is represented by sinu-

soidal oscillations superimposed on the nominal values with three hour period

and a randomly generated phase.

2.1 Model reduction

A high-order model is rather difficult to handle, let it be analysis, identification,

observer, or controller design, regardless of the method used. Given the limited

measurement capabilities, we can only acquire information from the dominant

components of the model dynamics. It would be advantageous to reduce the

model to one that retains the most characteristic properties, yet the error resulting

from this simplification is minimal. For example, early diabetes models used only

three state variables [38], and it is not uncommon in ICU patient models to use

only 3-5 state variables [39]. However, the errors resulting from model reduction
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must be considered in the controller design.

For the states that belong to meal absorption (which is considered disturbance),

it is easy to choose a linear substitution that represents worst-case meal intake.

Let us use the notation Wmeal(s) for the transfer function of this model:

Wmeal(s) =
UG,ceil

tmaxs+1
. (3)

It is frequent among the most commonly used T1DM models [9, 10, 37, 40, 41]

to contain a second-order nonlinear component. In the Cambridge model, these

are denoted as Q1(t) and Q2(t). Aside from this and the meal absorption, the rest

of the dynamics are entirely linear. We can distinguish two main parts: subcu-

taneous glucose transfer and insulin dynamics. The former can be neglected if

an adequate state observer can accurately estimate plasma glucose concentration.

The rest incorporates the transfer of the fast-acting insulin from the subcutaneous

regions to the plasma, insulin degradation, and insulin effect. The overall model

can be simplified by truncating this single input-multiple output linear system.

In the case of (1), the transfer speed between specific compartments is compara-

ble to the sampling time of the CGM. Hence, the states associated with them can

be eliminated. The resulting reduced model is as follows:

Q̇1(t) = −

(

F01

Q1(t)+VG

+ x1(t)

)

Q1(t)+ k12Q2(t)−

−Rcl max{0,Q1(t)−RthrVG}−Phy(t)+

+EGP0 max

{

0,1−
kaSIE

VIke

S2(t)

}

+min

{

UG,ceil ,
G2(t)

tmax

}

Q̇2(t) = x1(t)Q1(t)−

(

k12 +
kaSID

VIke

S2(t)

)

Q2(t)

ẋ1(t) = kb1

(

kaSIT

VIke

S2(t)− x1(t)

)

Ṡ2(t) = −kaS2(t)+ kaS1(t)
Ṡ1(t) = −kaS1(t)+u(t)

Ġ2(t) =
G1(t)−G2(t)

tabs(t)

Ġ1(t) = −
G1(t)

tabs(t)
+D(t)

(4)

where the output is C(t)≈ Q1(t)/VG.

Finally, considering the range of parameter k12 as presented in [37], if 1/k12

is comparable to the CGM sensor sample time, then there is a need to apply

reduction in the nonlinear dynamics as well. Section 3.1 provides details on how

to perform the necessary changes.
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3 Controller Synthesis

3.1 Linear Parameter-Varying representation

Although continuous time T1DM models can have a varying degree of nonlinear-

ity, the vast majority of them can be transformed into a linear parameter-varying

model: [42]

ẋ(t) = A(ρ(t))x(t)+B(ρ(t))u(t)
y(t) = C(ρ(t))x(t)+D(ρ(t))u(t)

A(ρ(t)) = A0 +∑
m
i=1 ρi(t)Ai B(ρ(t)) = B0 +∑

m
i=1 ρi(t)Bi

C(ρ(t)) = C0 +∑
m
i=1 ρi(t)Ci D(ρ(t)) = D0 +∑

m
i=1 ρi(t)Di,

(5)

where the scheduling variables ρi(t) are bounded, as well as their time deriva-

tives, and these bounds are known. Furthermore, the scheduling variables should

be available for measurement. For a T1DM model, the bound constraint is satis-

fied, but only estimation of the scheduling variables is available.

The chosen LPV representation of the Cambridge model is the following:

Ċ(t) = −ka,intC(t)+
ka,int

VG

Q1(t)

Q̇1(t) = −(Faρ1(t)+Fb)Q1(t)−ρ1(t)x1(t)+ k12Q2(t)−distRcl(t)−

−Phy(t)+EGP0 (1− x3(t))+
UG,ceil

tmax

G̃(t)

Q̇2(t) = ρ1(t)x1(t)− k12Q2(t)−ρ2(t)x2(t)
ẋ1(t) = −kb1x1(t)+SIT kb1I(t)
ẋ2(t) = −kb2x2(t)+SIDkb2I(t)
ẋ3(t) = −kb3x3(t)+SIEkb3I(t)

İ(t) =
ka

VI

S2(t)− keI(t)

Ṡ2(t) = −kaS2(t)+ kaS1(t)
Ṡ1(t) = −kaS1(t)+u(t)

˙̃G(t) = −
1

tmax

G̃(t)+distmeal(t),

(6)

which is constructed with the following considerations. The state variables Q1

and Q2 were chosen as scheduling variables: ρ1 = Q1 and ρ2 = Q2. The Hill

function F01(Q1(t)+VG)
−1 has a linear approximation Faρ1(t)+Fb, as presented

in [43] and [44]. The worst-case meal model (3) replaces the second-order meal

intake. Moreover, to avoid switching control, endogenous glucose production

(EGP) has no saturation, and the renal extraction (Rcl) is considered a distur-

bance: distRcl(t). In exchange, the controller must ensure that x3(t)<= 1.

If model reduction is necessary, the same method is applicable as presented in

Section 2.1. In addition, if 1/k12 is comparable to the CGM sensor sample time,

then further model reduction is possible by replacing Q1(t) and Q2(t) with Q̃(t)≈
Qt(t)− x1(t)/k12 as follows:
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Ċ(t) = −ka,intC(t)+
ka,int

VG

Q̃(t)−
ka,int

k12VG

x1(t)

˙̃Q(t) = −(Faρ1(t)+Fb) Q̃(t)+(Fcρ1(t)+Fd)x1(t)−distRcl(t)−

−Phy(t)−ρ2(t)x2(t)+EGP0 (1− x3(t))+
UG,ceil

tmax

G̃(t),

(7)

where we used the approximation Fcρ1(t) +Fd ≈ Q1(t)F01/(k12(Q1(t) +VG)).
Furthermore, the output can be approximated with

C(t)≈
1

VG

(

Q̃(t)−
1

k12
x1(t)

)

, (8)

if necessary.

Note, that even though Q1(t) and Q2(t) are not part of the model (7), the schedul-

ing variables ρ1(t) and ρ2(t) are still present, hence the state observer must pro-

vide reliable estimation, and cannot use (7) instead of (1).

Considering the nonlinearity of the Cambridge model and the presence of dis-

turbances, sigma-point filters are good candidates for estimating the scheduling

variables [45–47]. These filters provide further benefits of reducing the mea-

surement noise of CGMS, estimating the glucose flux from unannounced meal

intakes, as well as enabling state feedback control.

The state observer used in this work is the same as presented in [43], i.e., we

use unscented square-root filter with lognormal distribution for state variables

associated with glucose concentration and meal intake.

3.2 Modeling Uncertainties

Not even one of the most complex T1DM models [48] can fully capture a system

as complex as human metabolism. All models used in practice employ some level

of simplification, capturing only the most essential aspects of the glucose-insulin

interaction. Additionally, human physiology tends to change and adapt over time

and is affected by various external factors that are difficult to quantify, let alone

measure [49, 50]. No matter the model used, controller design must address

deviation from the actual dynamics. This approach uses uncertainty weighting

functions to that end. Let P denote a nominal T1DM model, with a single output

y(t), a single controlled input u(t), and a set of external disturbances d(t). Fig-

ure 1 presents a simple system that uses output uncertainty weighting functions.
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P

d(t)

u(t) y(t)

Wout,adout(t)

Wout,m ∆

Figure 1

Simple system with output uncertainty weighting functions

Wout,a and Wout,m are linear minimum-phase systems representing additive and

multiplicative output uncertainty, respectively. ∆ is an unknown linear system

that is of minimum-phase and has an H∞-norm that is less or equal to 1. din(t)
and dout(t) are considered stochastic disturbance signals, that are usually mod-

eled with distribution N (0,1) or U (−1,1).

There are other ways to model uncertainties, but this work only considers output

uncertainties. The parameters of Wout,a and Wout,m may come from the residual

error of fitting T1DM parameters or from a priori knowledge from clinical prac-

tice. Here the uncertainty model accounts for the sinusoidal changes in model

parameters presented in section 2, and any reduction ((7) and section 2.1) that

may take place.

Extending the nominal model with uncertainties is vital for both the controller

and state observer, as it can ensure robustness and stability for both control and

state estimation. However, it also poses a challenge if the control law is realized

with state feedback. In this particular case, the state variables of the uncertainty

models shall be estimated as well.

3.3 LPV Model in the Clinical Practice

Before presenting the controller synthesis, it is worth examining the LPV trans-

formed model from a different perspective. In (7), in the subsystem consisting of

Q1(t) and Q2(t), ρ1(t) defines the rate of transfer of glucose from Q1(t) to Q2(t)
compartments, and ρ2(t) is responsible for how fast glucose in Q2(t) dissipates

from the system. Since ρ1(t) is identical to Q1(t), and the output is ≈ Q1(t)/VG,

hence the larger the glucose levels are, the faster the dynamics of the system.

This is a common observation in clinical practice as well.

Consequently, this poses a challenge to controller design: Suppose the controller

injects too much insulin during hyperglycemia. In that case, it is difficult to com-

pensate for its effect once the glucose levels decrease, not only because negative

control signal is not an option but also because the system will be less sensitive

to any intervention.
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3.4 Robust Controller Synthesis

In order to address the need for robustness and stability, H∞ and hybrid H∞/H2

controllers [51] can provide a solid foundation. Let G( jω,ρ) denote the transfer

matrix of an LPV (5) closed-loop system with an H∞ controller, that was suc-

cessfully synthesized for a positive γ value. This controller ensures that ∥G∥∞,

the H∞ norm of the transfer matrix is smaller than γ:

∥G∥∞ = sup
ρ

sup
ω∈R

σmax(G( jω,ρ))< γ, (9)

where σ denotes the singular value. An H2 controller on the other hand ensures

that ∥G∥2, the H∞ norm of the transfer matrix is smaller than γ:

∥G∥2 = sup
ρ

√

√

√

√

1

2π
trace

∞
∫

−∞

G( jω,sup
ρ
)(G( jω,sup

ρ
))Hdω < γ. (10)

H∞ and H2 constraints can be imposed on the controlled system with carefully

chosen linear matrix inequalities (LMIs) [52].

Figure 2 and Figure 3 display two different schemes: LPV state feedback, de-

noted with K f b(ρ), and dynamic LPV controller, denoted with Kd(ρ).

Wu zu

Wmmeal

P(ρ)dΣ

Wre f

Wo,m S−1
c

zo
∆

do
Sc

Wo,ada r
Wnn

Wper zp

−K f b(ρ)

u

x̃ext

ρ̃

Obs

−

Figure 2

Controller realized as LPV state feedback

P(ρ) represents the LPV transformed T1DM model (6) with reduction applied

if necessary, and the meal absorption dynamics separated into Wm. Obs denote

the sigma point filter that provides state variable (x̃ext ) and scheduling variable

estimation (ρ̃). Wo,m and Wa,m are weighting functions for multiplicative and

additive output uncertainty models, respectively, with the latter driven by da.

Wper defines expected tracking performance. Wu serves two purposes:

1. it defines the maximum value for the control signal;

2. it ensures that endogenous glucose production does not saturate.
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Wu zu

Wmmeal

P(ρ)dΣ

Wre f

Wo,m S−1
c

zo
∆

do
Sc

Wo,ada r
Wnn

Wper zp

Kd(ρ)

u

Obsρ̃

+

+

−

Figure 3

Controller realized as dynamic LPV system

dΣ represents all disturbance signals affecting P(ρ) directly: Phy physical ac-

tivity, the estimation error of glucose flux from the gut, and quantization error

if the control signal has a finite resolution. Since an estimated output of Wm is

available, it is possible to define reference tracking dynamics Wre f that mimics

the behavior of a healthy patient. Using the output of Wre f instead of relying on a

constant reference signal r for feedback can potentially help avoid hypoglycemia.

Finally, Wn noise model is not present for state feedback control.

The state observer works with (1) instead of (6), and will use Wo,m, Wa,m, and

Wn regardless of the control method used. Section 3.5 details the role of scaling

factor Sc.

Pure H∞ controller will ensure minimal H∞ norm for the transfer to the perfor-

mance output zp and smaller than 1 H∞ norm to zo and zu from the disturbance

inputs meal, da, do, dΣ and n. The latter ensures robust stability for the controlled

system. Hybrid H∞/H2 controller minimizes the H2 norm for the performance

output instead of H∞ norm.

Finally, additional LMI constraints limit the poles of the controlled system to a

defined region, reducing oscillatory transients and rejecting poles too fast com-

pared to the sampling frequency of the CGM sensor (Figure 4).

Re

Im

1
2

fs α

Figure 4

Constraints for the poles of the controlled system: fs is the sampling frequency of the CGM sensor,

α is the maximum angle of the complex conjugate pole pairs
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The control law for LPV state feedback is as follows:

u(t) =−K f b(ρ(t))x̃ext(t), (11)

where x̃ext(t) is the estimated state variables of P(ρ), Wm, Wu, Wo,m, Wo,a, Wre f ,

and Wper.

If the controller is a dynamic LPV system (5) instead, the control signal is the

output of the following:

ẋd(t) = Ad(ρ(t))xd(t)+Bd(ρ(t))e(t)
u(t) = Cd(ρ(t))xd(t)+Dd(ρ(t))e(t).

(12)

3.5 Scaling

In order to achieve robust stability, the H∞ norm of the transfer function from

the disturbance inputs to the output of Wu and Wout,m shall be smaller than 1.

On the other hand, the glucose levels can reach up to 17 mmol/L, even with a

well-functioning artificial pancreas.

Hence, when using the multiplicative output uncertainty model, the output of

the corresponding weighting function (zo in Figure 2 and Figure 3) should be

scaled (Sc) to satisfy robust stability constraints. If Sc is too small, the controller

synthesis is infeasible. Conversely, too large scaling factor will lead to reduced

disturbance rejection performance. In this work, we used an iterative algorithm

to set a patient-specific scaling factor.

4 Results

All simulations were performed on the original eight patient parameter sets in-

troduced in [37]. The weighting functions presented in Figure 2 and Figure 3 are

as follows:

• P(ρ) is the LPV-transformed model (6), with patient-specific reduction

applied only to remove state variables that would otherwise introduce time

constants less than 20 minutes.

• Transfer function (3) is chosen as Wm in Figure 2 and Figure 3, using

patient-specific parameters.

• Wo,m is a low pass filter that represents 10% to 25% multiplicative uncer-

tainty on frequencies below 2π
120

[rad/min]:

Wo,m(s) =
0.1

120s+1
(13)

The higher uncertainty value is necessary when working with a linear

model and controller instead of LPV.
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• Wo,a assume ±0.5 [mmol/L] additive uncertainty on top of the multiplica-

tive uncertainty.

• Wu is patient-specific, ensuring that endogenous glucose production does

not reach zero and that u is smaller than 4500 [mU/min].

• The sensor noise is assumed to be Gaussian white noise with 0.1 [mmol/L]

standard deviation, hence n ≈ N (0,1) and Wn = 0.1.

• Wper specifies that the controller should only minimize tracking error be-

low 2π
180

[rad/min]:

Wper(s) =
1

180s+1
(14)

• If applicable, the reference dynamics Wre f is:

Wre f (s) =
11

UG,ceil(60s+1)
(15)

The constant reference signal is 4.5 [mmol/L] and 4.9 [mmol/L] with and

without Wre f respectively.

We used MATLAB and SIMULINK for controller synthesis and simulation, in-

cluding the CVX toolbox [53, 54]. For each controller, α = 45◦ and 5 minutes

sampling time constrain the closed-loop poles as shown in (Fig. 4).

For easier comparison with other methods, the simulations were done using two

commonly used meal intake scenarios spanning 24 hours. The controller admin-

istered the insulin without manual intervention and any meal intake announce-

ment. The meal intake scenarios were as follows:

1. 150 g of carbohydrate (CHO) intake per day. The meal intake consists of a

35 g CHO breakfast at 8:30, a 65 g CHO lunch at 13:00, and a 50 g CHO

dinner at 19:00.

2. The meal intake protocol is presented in [55]. It consists of a 45 g CHO

breakfast at 9:30, a 75 g CHO lunch at 13:30, and an 85 g CHO dinner at

19:30.

Control variability grid analysis (CVGA) [55] visualizes and compares the ca-

pabilities of different types of controller configurations on Figure 5, Figure 6,

Figure 7, and Figure 8. The x and y axis is the minimum and maximum glu-

cose levels throughout the simulations, respectively, in [mg/dL]. The aim is to

stay in the A and B zones for both meal scenarios for all virtual patients. In each

figure, two sets of simulation results are presented: black circles represent simu-

lations using a state feedback controller. In contrast, the simulations result when

a dynamic LPV controller was applied are represented with white circles.
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Figure 5 displays the CVGA of simulations results for linear H∞ controllers,

without reference dynamics Wre f . The output multiplicative uncertainty is 25%,

as ensured by (13). Both the state feedback and the dynamic controller performed

poorly, reaching only C and D zones with the majority of virtual patients.
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Figure 5

CVGA for linear H∞ controllers using (a) meal scenario 1 and (b) meal scenario 2.

Since the linearization of the model was at 4.9 [mmol/L] (≈ 90 [mg/dL]), both

controllers assume slow dynamics, which does not hold once the glucose levels

elevate after each meal intake. However, the behavior of the two controller con-

figurations is different. The state feedback controller administers more insulin

than necessary, leading to lower maximum values but severe hypoglycemia. In

contrast, the dynamic controller avoids hypoglycemia at the cost of higher maxi-

mum glucose levels.

Choosing a different working point with a higher glucose level for linearization

could improve the capabilities of both controllers. Furthermore, using hybrid

H∞/H2 norm or reference tracking dynamics can bring some minor improve-

ment. However, using a purely linear controller has its limits, and hence a non-

linear approach is necessary.

Using LPV model and LPV controllers reduce the occurrence of both hypo- and

hyperglycemia, as shown in Figure 6. Since the controllers directly address the

changing dynamics of the model, more than half of the virtual patients are kept

in the B-zone for both controller types.
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Figure 6

CVGA for LPV H∞ controllers using (a) meal scenario 1 and (b) meal scenario 2.

However, there are cases of severely low glucose concentrations for both con-

troller types. Introducing reference tracking dynamics can mitigate these hypo-

glycemic episodes, as shown in Figure 7. Instead of a constant reference signal

at 4.9 [mmol/L], the additional weighting function Wre f (s) defines the desired

disturbance rejection. The input of Wre f (s) is the estimated glucose flux resulting

from meal intake. Both the occurrence and severity of hypoglycemia decreased

for the two types of controllers compared to Figure 6, although they are not elim-

inated completely. The maximum glucose concentration is below 300 [md/dL]

for the state feedback controller but increased for the dynamic controller.
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Figure 7

CVGA for state-feedback and dynamic controllers using reference tracking dynamics Wre f for (a)

meal scenario 1 and (b) meal scenario 2.
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Finally, the results can be further improved by using H2 norm for the perfor-

mance output instead of H∞. The results are displayed in Figure 8. As a result,

the minimum glucose values in both meal scenarios and controller types have

less variance and hence lessen the chance of hypoglycemia.
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Figure 8

CVGA for LPV H∞/H2 controllers with Wre f using (a) meal scenario 1 and (b) meal scenario 2.

Conclusions

Based on the simulation results presented in section 4, a linear controller is insuf-

ficient for glycemic control. LPV controllers are more reliable than linear ones,

with less variability in both maximum and minimum glucose levels for the used

meal intake protocols. However, they are still prone to hypoglycemia. Using ref-

erence tracking dynamics instead of a constant reference signal can considerably

lessen both the occurrence and the severity of these events without compromis-

ing the severity of hyperglycemia. Moreover, using a hybrid norm for controller

synthesis: H∞ for stability and H2 for performance can provide further benefits.

Generalized H2 and L1 norm [52] was not in the scope of this work. However,

there is a significant difference between using state feedback or a dynamic con-

troller, even though the combination of a sigma point filter and an LPV state feed-

back is technically a dynamic controller as well. Using the same constraints and

extended model, the resulting dynamic controller will lead to higher minimum

and maximum glucose levels in the CVGA compared to a state feedback con-

troller. The reason is that the transfer function of the former across all scheduling

variables is akin to a high pass filter. Therefore, it will compensate low frequency

tracking errors poorly. Introducing an integrator [51] to eliminate this error will

result in an infeasible convex synthesis problem.

Even though the presented results may be satisfactory, there are still limitations

that must be addressed in future works. LPV model can represent most of the

nonlinearity present in the Cambridge model, but it does not capture the positive

nature of the system. All the measures to avoid hypoglycemia only indirectly
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addressed the constraint that the control signal is non-negative. Despite the pa-

rameter variability in the Cambridge model, changes in insulin sensitivity or us-

ing different types of insulin are not part of it. Furthermore, a robust controller

combined with an accurate meal and fault detection [56] can increase both per-

formance and safety [49, 50]. Finally, a crucial next step is to incorporate the

detection of unannounced physical activity. One potential approach is to use the

model presented by Resalat et al. [57] is an extension of the Cambridge model

that includes a dynamic physical activity subsystem. Early prediction of potential

hypoglycemic episodes is necessary since a single hormone system cannot raise

the plasma glucose concentration.

Further work shall address the limitations mentioned above and perform valida-

tion with the UVA/PADOVA simulator, which is approved by the U.S. Food and

Drug Administration (FDA) as an alternative to animal testing of Type 1 diabetes

control strategies [11].
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Abstract: Using digital microscope scanners, gigapixel-scale images for tissue samples are 

scanned in a minute, which provides an opportunity for quantitative evaluation at the 

cellular or gene level. However, to make an accurate diagnosis for clinical or research 

cases, it is necessary to make serial sections and stain them using different reagents. Since 

digital scanning and processing are preceded by manual workflows, the orientations 

between the images are lost. In the absence of adjustment, we cannot compare them to each 

other, for colocalization or correlation analysis. A registration method is needed that 

organizes the samples in the same orientation. The proposed method is inspired by the 

traditional and deep-learning based registration methods (SURF, SIFT, ORB, SuperPoint, 

SuperGlue) and further developed to manage the tearing, creasing and other deformations 

between the samples. Based on the validation results, the basic methods give moderate 

results, however, by utilizing a grid-based approach and by choosing the appropriate 

number of recursive iterations and resolution, the methods can be improved. The proposed 

stain-independent, iterative, non-rigid registration method can manage not only tears, 

creases and deformations, but also correct structural changes between series sections. 

Keywords: digital pathology; digital microscope; stain-independent; image registration; 

iterative; recursive; non-rigid; elastic; deep-learning; convolutional neural network 

1 Introduction 

The integration of digital imaging in medical diagnostics first began in radiology, 
and due to the benefits of the digital file, such as the ability to share, integrate, and 
archive, the same request has emerged in routine histopathology. The digital 
revolution began with the introduction of whole slide imaging (WSI) technology 
in pathology. Various scanner devices creating large files have been introduced, 
presenting tissue structures in an appropriate resolution with a high color fidelity 
[1] [2]. 
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In digital pathology, sections stained with different reagents are used. To examine 
these sections together, it is necessary to register them with each other. Since the 
sectioning and floating up are manual and mechanical processes, the tissue sample 
can be deformed to a great extent by the time it is placed on the slide (Figure 1). 
Furthermore, if the physical distance between the sections was too large, they may 
not have the same structure visually. Similarly, different reagents may stain 
different tissue structures. Because of all this, we need a method that is flexible 
enough to register visually slightly different and deformed tissue sections. 

 

Figure 1 

Illustration of deformations resulting from sample preparation and the required registration for 

correction: (a) source sample (MSH2 stained); (b) target sample (H&E stained); (c) difference of input 

samples; (d) Subdivided target sample; (e) registered target sample; (f) difference of registered samples 

A fundamental problem with many computer vision tasks is finding visual 
correspondence between similar images. Stereo vision [3], object recognition [4], 
image stitching [5], visual odometry [6] are tasks which need a method for the 
registration problem. The feature extraction, description, matching and 
correspondence estimator methods were highly researched areas during the last 
three decades, many methods have been proposed that have sought a solution to 
these. Basically, the registration methods can be divided into three main 
categories: traditional feature-based approaches, deep-learning feature-based 
methods and homography learning. 

Traditional feature-based algorithms, like Scale Invariant Feature Transform 
(SIFT) [7] and Speeded Up Robust Features (SURF) [8] methods are excellent 
feature detection, description, and matching algorithms, but even when an 
advanced matching process is applied, a considerable number of incorrect matches 
remains and needs to be eliminated. Random Sample Consensus (RANSAC) [9] is 
a widely used algorithm for removing false matches. 

Nowadays, state-of-the-art methods in the field of image registration concern the 
use of deep learning. The Generic Feature Learning method [10] and SuperPoint 
approach [11] are using a training step of a convolutional neural network using 
only unlabeled public image datasets. SuperGlue network [12] is based on the 
SuperPoint “keypoint” detector and descriptor, which matches two pointset with a 
combination of Graph Neural Network and Optimal Matching layer. These 
methods can outperform the traditional methods; by resulting less outliers during 
the feature matching, the homography estimation can be more accurate. 
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Homography learning methods tries to solve the tasks of the previous methods in 
one step. They use a neural network to directly learn the transformation between 
an image pair. Deep Image Homography Estimation method [13] describes a 
regression homography network, a Visual Geometry Group (VGG) style model 
which is able to learn the homography by two images. 

The previous registration methods are generally formulated as an optimization 
problem that satisfies constraints, such as coordinate displacements that are affine 
or volume preserving. Non-rigid and adaptive regularization methods [14] often 
outperform the traditional approaches in cases when the image pair contain non-
linear and elastic deformations. 

Some solutions found in the current literature try to perform the registration with a 
multi-modal approach [15] [16], with the help of which the samples with different 
colors can be registered to each other, but most of them use rigid registration and 
transformation. 

We propose a novel approach, based on these traditional, deep-learning based and 
non-rigid solutions, enhanced with iterative and adaptive enhancements 
specialized for the registration of creased and torn tissue sections. The proposed 
method can also be useful in other disciplines, where it is needed to register 
samples that contain missing image parts to each other and their correct 
registration can only be solved by applying elastic transformation. 

2 Materials and Methods 

There are methods that perform registration on images, but it is exceedingly 
difficult to find a correspondence based on macrostructures in one step, which also 
gives satisfactory results in terms of microstructures. One reason for this is the 
tissue destruction [17] that occurs during sectioning, which can result in some 
regions of the sample being distorted, and another is due to the difference in 
staining [18], each reagent amplifies the tissue structures visually and differently. 

Since there are many tissue samples that occur in real life that contain a large 
amount of tissue deficiency, according to our experience, homography learning 
approaches are not or only limitedly applicable, since these solutions can work 
well primarily when all the relevant details of the images are similar to each other. 
When there are too many torn and missing parts, they give an unsuccessful 
registration result. For this reason, the proposed approach relies more on the 
classical three-step approach, which is based on feature detection, correspondence 
and homography estimation, supplemented by a grid-based iterative method that 
ensures the flexible and non-rigid transformation (Figure 2). 
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Figure 2 

Algorithm overview of proposed method 

2.1 Preparation Method 

Since serial sections are often made to stain with different reagents, it is necessary 
to use a staining-independent preparation method to register them with each other. 
The proposed method uses an operation that tries to find visually similar-looking 
components between staining and then rely on them when registering. One of the 
most common such components is the nuclear-type structures [19] [20], which are 
present in both IHC [21] [22] (Immunohistochemistry) staining, and FISH [23] 
[24] (Fluorescence in situ hybridization) staining. 

The proposed method uses a combination of two solutions for preparation of 
brightfield slides that have been extensively researched in other applications: 
staining unmixing [25-27] and staining normalization [28-31]. Staining unmixing 
or color deconvolution is a method used in brightfield microscopy to transform 
color images of multiple stained biological samples into images representing the 
stain concentrations. Staining normalization methods are designed to compensate 
the differences in intensity, saturation, and hue between samples, using a template 
image as a target image. These methods utilize color and spatial information to 
classify the image pixels into different stain components to reduce the effect of the 
variations of color and intensities which are caused by the sample preparation. 
Because the digitized image may contain significant amounts of camera noise, 
which may impair the efficiency of the recording, noise filtering, such as a median 
filter, may be required for some samples [32]. The chromatic and density 
distributions for the stain components in the hue-saturation-intensity color model 
are normalized to match with the distributions of a template image. In the case of 
a fluorescent sample, the proposed method uses the nuclei channel. 

2.2 Keypoint Detectors and Descriptors 

One of the basic ideas is to perform the registration in an iterative way in several 
steps: first detect an approximate transformation based on the larger 
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macrostructures, then further refine the registration considering the 
microstructures, trying to improve the result of the previous iteration in each 
iteration until it is possible. 

The other basic idea is not to determine a single transformation value for the 
sample, but to assign different transformations to various parts of the sample. In 
this way, not only a rigid transformation with 6 or 8 degrees of freedom is 
performed, but an elastic deformation is used. 

One of the most widely used traditional keypoint detector and descriptor algorithm 
is the scale-invariant feature transform (SIFT) [7] method. Although it is almost 
two decades old, has proven remarkably successful in several applications using 
visual features, including image stitching, object recognition, or stereo vision. 
However, the usage of it means a large computational requirement, which can be 
critical for systems which are real-time or has limited computational power. 

This limitation was the cause of intense research in the direction of replacing it 
with a computationally more favorable alternative. One of the best alternatives are 
the Speeded Up Robust Features (SURF) [8], Features from Accelerated Segment 
Test (FAST) [33], Binary Robust Independent Elementary Features (BRIEF) [34] 
and Oriented FAST and Rotated BRIEF (ORB) [35] methods. 

The ORB method has similar matching performance (Table 1) as the SIFT and 
SURF method but computationally it is more efficient. It utilizes the FAST 
method as keypoint detector and uses the BRIEF descriptor for feature 
description. These methods have superior performance and low computational 
cost. The ORB method adds a fast and accurate orientation component to the 
FAST method, optimizes the BRIEF feature computation, analyzes the variance 
and correlation of oriented BRIEF features, and to improve the performance of 
nearest-neighbor applications it has a learning method for de-correlating BRIEF 
features under rotational invariance. 

Regarding the feature extraction and description, SuperPoint is one of the most 
state-of-the-art methods, which offers a fully convolutional model operates on 
full-sized images and computes pixel-level feature point positions together with 
their descriptions in one pass. In this study, we examine both the classical ORB 
method and the more modern SuperPoint approach as the basis of our method. 
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Table 1 

Performance of keypoint detectors and descriptors 

Method Matching Performance Computational Performance 

SIFT ���������� ���������� 

SURF ���������� ���������� 

ORB ���������� ���������� 

SuperPoint ���������� ���������� 

2.3 Feature Matching and Transformation Estimation 

After we detected features on the image pair and calculated descriptions for all of 
them, it is needed to match them. One of the simplest feature matching algorithms 
is the brute-force method [36], which takes descriptor of a feature on the first 
image and matches with all other features on the second image using distance 
calculation. It returns the closest pairs. When we matched the feature points on the 
image pair with each other, it is needed to estimate an optimal affine 
transformation (T) for them. 

The widely used random sample consensus (RANSAC) [9] [37] method is a 
simple but effective iterative algorithm; it can estimate parameters of a 
mathematical model from a data set that contains outliers, when outliers are to be 
accorded no influence on the values of the estimates. Therefore, it also can be 
interpreted as an outlier detection method. In our case, we choose three keypoint 
matches at random and solve the T affine transformation as a system of equations. 
We count the number of matches which are inliers according to T transformation 
and distance limit. Repeat these steps for N rounds and return the T transformation 
which provided the highest inlier count. 

2.4 Simple Grid-based Registration 

The computed transformation matrix (T) can provide a good registration 
estimation for image pairs that include strictly only translational, rotational, and 
scaling differences. However, if the samples contain other types of deformations, 
the result may be inaccurate, or the result of RANSAC method may fail because 
choosing any of the three points will result too many outliers. 

The proposed method utilizes grid-based registration, where we divide the image 
into smaller regions (patches), register these patches on their own, and then apply 
the separate transformations to the whole image like a grid (Algorithm 1). 
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Algorithm 1: Simple grid-based registration 

Input: matches, patches 
Output: G grid with affine transformation matrices 

1. G = patches × patches empty grid 

2. Forall i in 0..patches: 
2.1. Forall j in 0..patches: 

2.1.1. roi = Calculate ROI(i, j, patches) 

2.1.2. matches’ = Collect matches in ROI(roi) 
2.1.3. G[i, j] = Estimate transformation(matches’) 

3. Return G 

2.5 Iterative Registration 

One of the weaknesses of simple grid-based registration is that it can manage the 
non-linearity characteristics of the sample, but if we choose too large a grid size, 
there will be too little information available in a cell to perform the registration. In 
this case, we can only transform the cells by considering the local environment, so 
there may be many cells that you may not match properly or at all. If we choose a 
grid size that is too small, we will lose the ability to register nonlinear. In these 
cases, an iterative approach can help: the sample is first registered without a grid, 
in a rigid manner, considering all key points and the whole image (Figure 3). 

 

Figure 3 

Illustration of iterative grid-based method 
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We assume that we can calculate globally the best possible rigid affine 
transformation. In the next iteration, the plane is divided into four equal parts, and 
the refined transformation matrices are calculated based only on the key points 
there but using the result of the previous iteration: only key pairs are considered 
whose transformed distance is less than a certain threshold. In the second iteration, 
we redistribute the previous four subdivided regions, so we will have a total of 16 
regions, and we will also reduce the threshold used for the distance of the key 
points (Algorithm 2). 
 

Algorithm 2: Recursive registration sub-method 

Input: matches, region, depth 
Output: G grid with affine transformation matrices 

4. Filter the keypoints in the cell by their positions (region) 

5. Filter the keypoints in the cell by their distances 
6. T = Estimate transformations 

7. If T is not valid: 

7.1. Return Unit Matrix 
8. Decrease the distance limit 

9. Apply T for matches 

10. G = 2 × 2 empty subgrid 

11. Forall i, j, region’ in subdivide(region): 
11.1. G[i, j] = Recursive call with depth’ and depth+1 

12. Return G 

Utilizing the recursive sub-method, we can calculate the elastic, non-rigid, grid-
based registration (Algorithm 3). 
 

Algorithm 3: Iterative grid-based registration method 

Input: img1, img2, depth 

Output: G grid with affine transformation matrices 

1. kp1 and kp2 = Keypoint detection on img1 and img2 
2. km = Keypoint matching on kp1 and kp2 

3. G = Call the first iterative step 

Return G 

3 Validation 

Routine anonymized slides were used from the archive of the 1st Department of 
Pathology and Experimental Cancer Research of the Semmelweis University, 
Budapest, Hungary. Digital slides in digital pathology are primarily identified by 
two key data: the inscription/barcode/QR code on the label area of the glass slide 
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and the name of the slide, often serving as a unique identifier. Using either of 
these, the patient can be traced back using the hospital information system. In case 
of research samples, both of these data are always removed right after (or before) 
scanning the samples. The samples providing the basis of this study were also de-
identified and did not contain any details of the patient. The samples were used for 
a retrospective study without impacting patient care. 

The study was conducted in accordance with the Declaration of Helsinki, 
approved by the Ethics Committee of the Institutional Review Board and Regional 
Ethics Committee of Semmelweis University (permit no. 14383-2/2017/EKU 
Semmelweis University, Budapest, Hungary). 

Among the available samples, we collected cases in which there were at least 3 
serial sections. It was important that these serial sections were not too far from 
each other in terms of distance, because that would make registration impossible 
(they cannot even be reconciled by humans in this case). Another aspect was that 
they should be stained with different reagents and that they should also have 
fluorescent sections. 

A total of 268 slide pairs (53 slides from 12 cases) were selected for the validation 
and for each slide it was extracted only the scanned area in a size of 4000×4000 
pixels (16 megapixels). This image size corresponds to a resolution of 4.185 
µm/pixel on average. Images of this size clearly show larger and smaller tissue 
structures, but this resolution is too small to see cell compartments. The slides in 
the validation set were stained with 29 types of reagents. 

Experts have placed five keypoints on each slide, in the middle of relevant regions 
or a well-defined part of slides. In the images belonging to the same cases, the 
same regions were marked. These regions were defined in such a way that both 
colleagues with biological and with bioengineering experience working in the 
field could mark them. Such areas were, for example, the center of a tumor area, 
the center of glands or border of a larger tissue region. The marking was 
performed at native resolution, and compared to the accuracy of the algorithm, the 
accuracy of the marking was an order of magnitude higher, so the consistency of 
the ground truth marking was not examined separately. Altogether it means 268×5 
=1340 keypoint-pairs, they were used as a ground through during the validation. 

Since the registration of slide pairs in the sample set is strongly influenced by 
whether they are pairs with the same staining and how they are prepared, we 
divided the image pairs into four categories (Figure 4): 

a) Same staining and well prepared: Slide-pairs prepared with the same 
reagent, and they do not contain major creasing or tearing. It is usually 
easiest to register these samples together. 

b) Same staining and creased/torn: The stainings are the same but the slide-
pairs contain major tearing or creasing. With these samples, the need for an 
iterative approach can emerge. 
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c) Different staining and well prepared: The samples prepared correctly but 
the stainings are different. 

d) Different staining and creased/torn: Samples with different stainings and 
contain major creases or tears. In general, these pairs are the most difficult 
to register with each other. 

 

Figure 4 

Illustration of the four sample categories: (a) same staining and well prepared; (b) same staining and 

creased/torn; (c) different staining and well prepared; (d) different staining and creased/torn 

During validation, we examined the ideal resolution value and how the quality of 
the registration improves during the iterations. For scaling values, 1:1 resolution 
means the resolution of the input image (4.185 µm/pixel), 1:2 means half 
resolution (8.37 µm/pixel), until the 1:20 resolution (83.7 µm/pixel). Patch sizes 1, 
2, 4, 8, 16, and 32 were examined for number of iterations. For optimal iteration 
number, 1, 2, 3, 4, and 5 iterations were examined, corresponding to 1×1, 2×2, 
4×4, 8×8, 16×16, and 32×32 patches. 

By validating the proposed method with each parameter, we compared the 
position of the keypoints marked by the experts with the positions transformed by 
the registration algorithm. From the distances, an error was calculated for each 
slide-pair using root mean squared error (RMSE(c)) method, and then an average 
was calculated from them (ARMSE). 

Once the mean error (ARMSE) has been calculated for each number of scaling and 
iteration, we can determine their optimal values for our sample set. Both the mean 
error and standard deviation values are calculated back to µm/pixel. 

Knowing the ideal parameters for the sample set, the proposed method is 
compared using the classic ORB keypoint detector and descriptor, the more 
modern SuperPoint algorithm and executing the SuperGlue approach. 
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4 Results 

4.1 Optimal Number of Patches and Scale Factors 

Table 2 shows the average root mean squared errors (ARMSE) of the registration 
using different patch numbers and scale factors. The lower value means the more 
precise registration. We can see that minimal value (137.12 μm) is reached using 
the parameters patches = 16 and scale = 1:6. Without iterative method (patches = 
1) the error numbers are everywhere worse than with utilizing iterations.  
The average error (ARMSE) is the highest at 1:1 magnification without iterations 
(284.35 μm). 

Table 2 

Heatmap colorized table about the average root mean squared errors (ARMSE) using different scale 

factors and patch sizes. Lower and greener value means the more accurate registration. 

Values are in μm. 

1 2 4 8 16 32 Avg.:

1 1:1 284.35 244.05 237.55 233.11 233.34 235.34 236.68

2 1:2 233.75 195.87 187.04 184.26 181.38 169.59 183.63

3 1:3 215.32 176.27 165.27 163.02 162.99 154.67 164.44

4 1:4 196.24 159.99 150.11 148.05 147.49 142.09 149.55

6 1:6 179.83 149.22 139.19 138.70 137.12 147.50 142.35

8 1:8 179.47 152.84 141.25 141.07 139.81 147.89 144.57

10 1:10 177.67 151.22 144.31 143.05 141.41 149.37 145.87

12 1:12 180.46 157.09 145.39 144.66 146.65 144.89 147.74

14 1:14 179.80 152.63 143.38 140.37 140.19 156.43 146.60

20 1:20 182.92 161.73 152.43 153.24 154.12 153.68 155.04

Avg.: 200.98 170.09 160.59 158.95 158.45 160.14

Patches

S
ca
le

 

As can be seen, the proposed method provides the lowest error value using patch-
size 16×16 and scale factor 1:6. It corresponds to 5 iterations and 25.11 µm/pixel 
resolution. 

A distance of 137.12 μm in terms of the error value means that there is an average 
difference of 137.12 μm between the ground truth manual alignment and the 
algorithmic result. This is a distance of approximately 10-15 nuclei. At the level of 
the cell compartment, it is therefore not possible to register the different sections 
using the method, but this is not the purpose of the registration; since there is a 
depth distance of 10-50 μm between the serial sections anyway, they will not have 
common nuclei anyway. In terms of macrostructures, however, it may be 
appropriate; their size is above this error value (e.g., glands), so they can be 
matched and examined together. 
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4.2 Optimal Number of Keypoints 

Since the parameters scale = 1:6 and patches = 16 parameters proved to be the 
best, we examined the ideal keypoints number (Figure 5) with these parameters. 
The lowest number of keypoints examined was 200, while approaching a keypoint 
number of 10,000, the algorithm achieved the lowest error value: 137.12 μm. 
Using a higher keypoint count, the efficiency deteriorated again. There was no 
notable improvement in error value above 50,000 keypoints, suggesting that the 
sample contains an average of this number of usable key points. 

 

Figure 5 

Average root mean squared error values (ARMSE) of using different number of keypoints. 

Values are in μm. 

4.3 Average Error Values 

Figure 6 shows the comparison of the average error values in each sample 
category applying the ORB based keypoint detection and description, the 
SuperGlue method, and the proposed method. 

Analyzing the average error values, it can be concluded that the SuperGlue 
solution proves to be more effective in the case of well-prepared samples. 
However, in the case of samples that are not well prepared, i.e., contain creases or 
tears, the iterative nature of the proposed method can provide better results.  
The classic ORB key point detector always falls short of the results of the 
proposed method, it can only give similar results in the case of samples with same 
staining and well prepared. 
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Figure 6 

Average root mean squared error values (ARMSE) applying different methods on sample categories. 

Values are in μm. 

Looking at the results, it can be said that the proposed solution can bring better 
results mostly in the case of poorly prepared samples, under ideal conditions the 
SuperGlue solution may be sufficient. 

4.4 Results Illustrations 

To verify the robustness of image registration methods we compared the proposed 
method with the ORB keypoint detection using RANSAC matching algorithm, 
and with the SuperGlue registration method. Since the efficiency of the 
registration methods depends greatly on the quality of the sample preparation and 
staining, we separately analyzed the algorithms for identically stained and 
tear/crease-free samples and for differently stained and poorly prepared image-
pairs. For demonstration purposes, the algorithm was also executed on high-
resolution image pairs cut from whole slides. 

Figure 7 shows the matching results in the case of five well-prepared and 
identically stained sections. It can be observed that usually the ORB+RANSAC 
based method provides 10-20 percent worse results than the proposed and 
SuperGlue approaches. Since these samples do not contain major tears or creases 
and visually look the same, the iterative nature of our method could not help, so 
the proposed method and SuperGlue approach provide similar results. 
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Figure 7 

Matching results of five well-prepared and identically stained samples using the ORB+RANSAC, 

SuperGlue and proposed approaches 

Figure 8 shows five examples, where the methods are executed on smaller parts of 
a whole slide image. The magnifications of these images are ten times larger than 
in Figure 7. These samples are also well-prepared and have the same staining. It 
can be observed that all three models provide similar results, this is due to the fact 
that the reference and target images are visually very similar. 

In Figure 9, we can see the real differences between the analyzed models. In this 
picture we can see five samples, which are poorly prepared, containing tears and 
creases, and they are stained using different reagents. Since the image-pairs 
contain different tissue structures or have different colorizations, the classical 
ORB based method finds common feature points extremely hard and it matches 
them incorrectly. Compared to the proposed approach, the ORB method can 
achieve two-three times worse results on these samples than the proposed one. 
The iterative nature of the proposed approach can help these samples to a great 
extent, as in the first iteration it tries to find and match features on a low-
resolution image that can be found on both images regardless of staining and 
tissue structure, and then this found similarity is further refined by further 
iterations. Using this approach, for image pairs that are difficult to register, the 
proposed approach mostly achieved better results than the SuperGlue solution. 
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Figure 8 

Matching results of five well-prepared and identically stained high-resolution samples using the 

ORB+RANSAC, SuperGlue and proposed approaches 

 

 

Figure 9 

Matching results of five differently stained or poorly prepared samples using the ORB+RANSAC, 

SuperGlue and proposed approaches 
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From the illustration of results in Figure 10, it can be observed that the registration 
of high-resolution whole-slide parts are often unsuccessful, while the proposed 
method mostly can provide acceptable results. The reason for this is that ORB and 
SuperGlue methods do not have prior information about the approximate 
orientation of image parts and its key points, considering the whole-slide. In 
contrast to that the proposed method can know the rough position from the 
previous iterations, and it can consider the positions during the matching of 
keypoints. 

 

Figure 10 

Matching results of five differently stained or poorly prepared high-resolution samples using the 

ORB+RANSAC, SuperGlue and proposed approaches 

5 Discussion 

The purpose of this study was to investigate how different registration methods 
perform in the task of aligning tissue samples onto each other in a whole slide 
imaging system and what parameters are used to achieve the best results.  
The proposed method was examined based on three main aspects and compared 
with competing solutions. 

The first parameter examined was the value of the optimal patch number and scale 
factor, which was characterized by the mean squared error (ARMSE) metric, 
which gave the average accuracy of the registration expressed in microns. Based 
on our validation data set, the proposed solution achieved the best result using 
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16×16 patches (5 iterations) and a scale-factor value of 1:6, which resulted an 
error value of 137.12 μm. 

The second examined parameter was the optimal number of keypoints, which was 
determined using the previously established patch and scale factor values. We 
analyzed key-points between 200 and 200,000, and the best performing key-point 
number was 10,000, where the proposed method achieved the best error value of 
137.12 μm. It performed worse on fewer and more key-points than this. 

The third evaluation method was a comparison with competitive solutions, where 
we examined the performance of the algorithm separately for the four types of 
samples, in comparison with the ORB-based and SuperGlue solutions. The results 
showed that under good conditions (with well-prepared samples) the SuperGlue 
solution gave the best results, however, for various types of stains and in the 
overall comparison, the proposed solution outperformed the others. The ORB-
based solution fell short of the other two solutions in all categories. Overall, the 
recommended approach performs best in situations where an iterative approach is 
needed. 

Registration is essential for making diagnosis or conducting research in serial 
sections. Because we used ground truth keypoints for validation, which experts 
laid down by marking the middle of the relevant regions, examining the results, 
we found that the appropriate scaling factor and grid-based iterative approach 
helped to perform the correct registration, thus helping the doctoral work. 

However, it is important to mention that the parameters are strongly sample 
dependent. There are tissue samples that contain only a small amount of nonlinear 
distortion, either due to the thickness of the sample or due to better or more 
automated sample preparation. In this case, using a higher number of iterations is 
unnecessary. It is also important that some samples do not contain enough visual 
information to use the iterative method, and if you choose a patch number that is 
too high, there is a chance that they will be falsely registered, so the sample may 
be incorrectly deformed in those areas. 

Analyzing the results of the validation set, several ideas have been put forward to 
improve the proposed methods. One such enhancement may be when the sample 
does not visually carry enough information or when completely different 
structural elements are painted between stains. Recognition of different tissue 
structures is a well-studied research field in the literature, with many approaches 
and methods already available from traditional pattern recognition algorithms [38] 
to sophisticated, deep learning based convolutional neural network methods [39-
41]. By applying such methods on samples, we can detect features in the images 
that were not present locally at the pixel level and amplify similar areas of the 
different stained samples. By performing the proposed registration method on 
images prepared in this way, you can get better results. 
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Another improvement method is to try to use different magnifications between 
iterations. Initial iterations are often best recorded on low-resolution images, 
relying on macrostructures. However, this level of magnification no longer carries 
enough information in later iterations to calculate a more accurate transformation. 
To overcome this, we can try to use an increasingly high-resolution image as the 
basis between the iterations. A similar result can be obtained by using a key-point 
metric that carries information about a multi-resolution image, i.e., a multiscale 
feature. 

Conclusions 

The use of registration methods is critical for whole slide imaging (WSI), in the 
case of serial sections. In this study we collected a set of digital slides which 
required registration and after the implementation of registration method, we 
completed a validation study, to determine which model and which parameters 
provide the best results. According to the characteristics of the collected validation 
set, executing the methods, the following conclusions were drawn: 

(1)  For the registration of digital microscopic samples, the SuperPoint 
method is excellent for keypoint detection and description, supplemented 
with RANSAC-based keypoint pairing and affine transformation 
calculation. However, since not all parts of the sample are deformed in 
the same way during sample preparation, the transformation of the whole 
sample is not linear. In this case, the grid-based approach can be used to 
compute transformations for different regions of the sample separately. 

(2)  By choosing a high patch size, we can manage non-linearity, but there 
will be many patches that contain only microstructures, and without 
knowledge of the environment with macrostructures, we cannot 
accurately transform them into each other. The iterative approach can 
help the problem by initially performing the initial registration by 
choosing a low patch size and then further refining the regions by 
recursively redistributing them. The iterative approach performs non-
rigid registration with more confidence and a lower error rate. 
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Abstract: Artificial Intelligence-assisted radiology has shown to offer significant benefits in

clinical care. Physicians often face challenges in identifying the underlying causes of acute

respiratory failure. One method employed by experts is the utilization of bedside lung ultra-

sound, although it has a significant learning curve. In our study, we explore the potential of

a Machine Learning-based automated decision-support system to assist inexperienced prac-

titioners in interpreting lung ultrasound scans. This system incorporates medical ultrasound,

advanced data processing techniques, and a neural network implementation to achieve its

objective. The article provides a comprehensive overview of the steps involved in data prepa-

ration and the implementation of the neural network. The accuracy and error rate of the most

effective model are presented, accompanied by illustrative examples of their predictions. Fur-

thermore, the paper concludes with an evaluation of the results, identification of limitations,

and recommendations for future enhancements.

Keywords: AI-based image processing; Surgical Data Science; Applied medical imaging;
Deep neural networks; Lung ultrasound

1 Introduction

Over the past decade, lung ultrasound has emerged as a widely utilized diagnos-

tic tool [1–6], particularly in bedside examinations [7, 8], owing to the advent
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of portable and handheld devices, and even supporting robotic surgery applica-

tions [9–12]. Critical care [13], anesthesia [14], and emergency medicine [15] are

among the primary medical specialties that have embraced this technique. Profi-

ciency in recognizing lung ultrasound artifacts is essential for practitioners in these

fields [16]. The critical care perspective played a pivotal role in demonstrating the

utility of this technique to the medical community [17–19]. Unlike general ultra-

sonography, lung ultrasound examinations focus on identifying and analyzing pat-

terns of artifacts [20]. Therefore, lung ultrasonography has become a distinct clini-

cal modality within acute care specialties.

1.1 Sustainable Radiology

Ultrasound is also seen as an affordable, wide-spread diagnostic tool, subject to

continuous innovation, able to bring sustainability to the imaging domain of modern

medicine [21, 22].

Emergency ultrasonography has emerged as a widely researched application, sup-

porting euqal access to care. This is aligned with the United Nations’ Sustain-

able Development Goals (SDG) – especially with SDG 3 for promoting well-being

across all age groups [23].

Notably, lung emergency ultrasound offers an eco-friendly and non-ionizing imag-

ing option, particularly valuable in resource-limited regions and during pandemics

like COVID-19.

In low- and middle-income countries (LMICs), diagnostic imaging is often inad-

equate [24], but clinician-performed, hand-carried, bedside ultrasound has gained

popularity globally. Affordable, portable, and user-friendly machines have expanded

its reach, bolstering diagnostic capabilities in rural hospitals.

The use of ultrasound in LMICs has gained recognition from health ministries, non-

governmental organizations, and the World Health Organization (WHO). It sig-

nificantly improves patient diagnosis and management, particularly in remote re-

gions [25].

1.2 Automating Ultrasound Diagnostics

Our research aims to develop an automated ultrasound system, conserving resources

and aiding in training and diagnostics [26]. This innovation holds the potential to

transform healthcare delivery in resource-limited settings, empowering local prac-

titioners and enhancing patient care. Emergency lung ultrasonography represents

a powerful tool in achieving sustainable healthcare goals in underserved regions.

Through our efforts to create an automated solution, we hope to strengthen health-

care infrastructure and reduce disparities, fostering improved health outcomes for

all.

The utilization of ultrasound imaging in lung examinations presents distinct chal-

lenges. These difficulties arise from the presence of the rigid chest structure and the

unsuitability of air as an ultrasound medium. As a result, the emergence of acoustic
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shadows, a common occurrence due to the transducer’s orientation perpendicular to

the ribs, becomes noteworthy. Nevertheless, adept manipulation and positioning of

the transducer can mitigate this artifact.

In the context of air-filled lungs, the ultrasound beam experiences complete reflec-

tion at the boundary between soft tissue and air or fluid. This interaction yields a

tangible image of the chest’s soft tissues and pleural layers, accompanied by dis-

tinctive artifact patterns. The crux of lung ultrasound examinations revolves around

the detection and analysis of these artifacts. Among the array of artifacts, reverber-

ation artifacts are prominent. In physiological conditions, they are referred to as A-

lines, while in pathological contexts, they are predominantly known as B-lines. [14].

The nomenclature of these artifacts originates from the work of Lichtenstein et

al. [19, 27], and consensus has been reached regarding their application [28, 29]. An

atelectatic lung appears as a true tissue image, and the description of each significant

pathological phenomenon is provided within its respective field of application.

1.3 Technology Against a Pandemic

During the COVID-19 pandemic, there was a rapid development and deployment

of supporting technologies for diagnosis and treatment [30–33]. Lung ultrasound

emerged as a reliable alternative to chest X-rays, exhibiting comparable accuracy to

CT scans, which are considered the gold standard for lung imaging. According to a

Cochrane review on thoracic imaging tests for diagnosing COVID-19, chest CT and

lung ultrasound were found to be sensitive and moderately specific. Therefore, these

modalities may be more valuable in ruling out COVID-19 than in differentiating

SARS-CoV-2 infection from other respiratory illnesses [34].

1.4 Medical Background

Ultrasound stands as a preferred imaging modality in various scenarios owing to its

array of advantages over other methods. Foremost, its cost-effectiveness renders it

more accessible to patients. Furthermore, ultrasound furnishes real-time imaging

capabilities, enabling instantaneous observation of anatomical structures and phys-

iological dynamics. Distinct from alternative techniques like X-rays, ultrasound

circumvents the use of ionizing radiation, thereby ensuring patient safety during

recurrent examinations without the potential for adverse repercussions. [35].

The portability of ultrasound devices is another significant advantage, enabling their

use at the bedside. This eliminates the need to transport patients within the hospital,

reducing the risk of spreading infectious diseases and minimizing the challenges

associated with handling critically ill and unstable patients [36]. In situations where

other scanning methods may be impractical or unsafe, bedside lung ultrasound has

emerged as a viable solution. Moreover, its diagnostic accuracy is comparable to

or even superior to conventional radiographic measures, further validating its util-

ity. However, a notable challenge with lung ultrasound lies in the interpretation of

images, which demands experienced medical professionals. Diagnosis through ul-

trasound is inherently subjective and heavily reliant on the competency, experience,

and mental state of the performing physicians. Factors like stress or exhaustion can
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impact the accuracy of interpretations [20]. Given that lung ultrasound is frequently

performed on critically ill patients, prompt and accurate diagnosis is of utmost im-

portance. As not all physicians performing the examination possess expertise in

interpreting lung ultrasound, the provision of a decision support system becomes

crucial in expediting accurate diagnoses.

Moreover, despite the generally acknowledged safety and reproducibility of ultra-

sound assessments, the fundamental ”ALARA” (As Low As Reasonably Achiev-

able) principle remains pivotal in curtailing ultrasonography exposure. Hence, ex-

pediting the diagnostic process assumes significance from a safety standpoint. Re-

grettably, the absence of uniform standards hinders the seamless comparison of ul-

trasound investigations and their outcomes. Acknowledging this concern, author-

ities within the realm of lung ultrasound have advocated for the establishment of

standardization guidelines encompassing machine configurations and scanned re-

gions. [5, 31].

In addition to machine settings, the selection of the optimal scanning technique

(such as longitudinal or transverse) remains a topic of ongoing discourse. This de-

bate can give rise to potential misinterpretations or misdiagnoses in routine clinical

settings. Such ambiguity may lead to uncertainty among medical personnel and

elongate the duration of lung ultrasound assessments, ultimately extending patient

contact time. It becomes imperative to address these challenges pertaining to stan-

dardization and scanning techniques, as doing so holds the key to enhancing the

efficiency and dependability of lung ultrasound procedures. [37].

1.5 The BLUE protocol

The BLUE (Bedside Lung Ultrasound in Emergency) protocol, developed by Daniel

Liechtenstein [19], is a clinical procedure commonly used in intensive care medicine

to rapidly diagnose the underlying causes of acute respiratory failure (Fig. ??).

When administered by skilled practitioners, the BLUE protocol has demonstrated

its efficacy and potency as a tool for assessing lung conditions in critically ill in-

dividuals. Furthermore, it is noteworthy to emphasize the exceptional adaptability

of the BLUE protocol, which readily lends itself to a seamless evolution into the

advanced semi-quantitative framework named BLUE-LUSS (Bedside Lung Ultra-

sound in Emergency-Lung UltraSound Score). This innovative concept, previously

expounded upon by the authors in a prior publication, signifies a testament to the

protocol’s progressive potential.n [37]. This remarkable evolution empowers med-

ical professionals to leverage the capabilities of numerical scoring, ushering in a

paradigm shift towards enhanced precision and objectivity within the domain of

diagnostic assessment.

Previously, the protocol relied on still frames of ultrasound images captured from

standardized locations. However, recent advancements in the field have demon-

strated the superiority of utilizing short ultrasound loops, typically ranging from 3

to 10 seconds in duration [31]. These dynamic ultrasound loops provide a more

comprehensive view of the lung, allowing for a more accurate assessment of lung

artifacts and abnormalities.
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Figure 1

The core objective of the BLUE protocol revolves around streamlining the diagnostic timeline. This is

achieved through the utilization of predefined points of analysis for ultrasound loop recording, coupled

with a straightforward decision tree catering to the primary causes of acute respiratory failure. The

protocol’s design focuses on expediting the diagnostic process and enhancing its efficiency. Adopted

from Lichtenstein et al.

The main objective of the BLUE protocol is to categorize lung artifacts into a dis-

tinct ”lung profile” based on anatomical signs and visual artifacts observed on the

ultrasound images. By following a predefined decision tree outlined in the protocol,

physicians can make on-the-spot diagnoses and identify the underlying causes of

acute respiratory failure. The protocol has shown remarkable diagnostic accuracy,

successfully identifying the six most common diseases associated with acute respi-

ratory failure in 97 percent of cases, with an overall accuracy of 90.5 percent [35].

The profiling of the lung involves detecting specific signs in the ultrasound loops.

The protocol defines ten basic signs, which can be further categorized into primary

and secondary signs. Primary signs, such as the pleural line, A-line, quad sign,

fractal sign, tissue-like sign, and B-lines or lung rockets, can be observed on single

still frames without considering the entire ultrasound loop [19]. These signs serve

as important indicators of lung pathology and assist in the diagnostic process.

In contrast, secondary signs, including lung sliding, sinusoid sign, and lung point,

require a comprehensive analysis of the entire video loop. These signs often exhibit

movement or dynamic patterns that are not discernible on still frames alone. De-

tecting these secondary signs necessitates a thorough examination of the ultrasound

loop as a whole, considering the temporal progression of lung artifacts.

To streamline the identification of initial indicators, we’ve examined different meth-

ods, such as the utilization of 2D multiclass semantic segmentation methodologies.

Through the segmentation of static frames, it becomes feasible to train deep learning
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algorithms in precisely recognizing and categorizing various pulmonary anomalies.

This automatic identification of primary indicators shows potential in accelerating

and establishing a uniform diagnostic procedure, especially for medical practition-

ers with limited experience or within scenarios requiring prompt decisions.

Concurrently, we’ve undertaken the development of a classification framework that

is specifically concentrated on discerning the presence or absence of lung sliding.

This secondary indicator holds pivotal importance in distinguishing among diverse

pulmonary conditions. Leveraging an extensive, custom-designed clinical dataset,

we’ve educated convolutional neural networks (CNNs) to scrutinize B-mode (2D

mode) image sequences and transform them into M-mode (”motion” mode) images.

These M-mode images facilitate the extraction of sample lines by proficient annota-

tors, thus facilitating the training and assessment of the CNNs. The most proficient

CNN achieved an impressive precision rate of 93.0

In summary, the BLUE protocol has risen as a valuable instrument for swiftly diag-

nosing acute respiratory failure, especially within intensive care environments. The

transition from static images to brief ultrasound sequences has notably elevated the

precision and effectiveness of lung assessments. The continuous endeavors in au-

tomating the identification of initial indicators using deep learning methodologies

demonstrate encouraging outcomes, laying the groundwork for more consistent and

easily accessible diagnostic procedures. Furthermore, the creation of a classification

network dedicated to identifying lung sliding enhances the comprehensive diagnos-

tic prowess of the BLUE protocol. These innovations hold the capacity to transform

the landscape of lung ultrasound analysis, empowering timelier and more precise

diagnoses for critically unwell patients.

2 Methods

2.1 Deep Neural Networks

In the past few years, there has been a growing trend in employing deep neural

networks for enhancing the precision and effectiveness of medical procedures within

the realm of medical imaging. These sophisticated neural networks have found

application across a range of medical imaging assignments, encompassing tasks

like object identification, segmentation, and the reconstruction of images [38, 39].

Illustratively, convolutional neural networks have found utility in discerning and

categorizing diverse irregularities present in radiological images. Noteworthy in-

stances encompass the detection of tumors within MRI scans or the identification

of lesions in dermatological images. As an illustration, a study conducted in 2020

focused on utilizing a convolutional neural network to classify chest X-ray images.

The network was primed for binary categorization and successfully achieved a com-

mendable accuracy rate of 94.6

In addition to its advantages, it’s crucial to acknowledge the challenges associated

with the application of deep learning networks in medical image analysis. Among
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the foremost hurdles is the establishment of a dataset containing a requisite quantity

and caliber of annotated medical data. The task of annotation involves the exper-

tise of medical professionals, who furnish the reference truth necessary for training

and appraising the network’s performance. Given that annotation demands the in-

volvement of these specialized medical experts, procuring a substantial volume of

annotated medical images often proves to be arduous and complex.

Deep neural networks have demonstrated their effectiveness in the scrutiny of lung

ultrasound images as well. Over the past years, a plethora of research findings

have emerged in this domain, examining the efficacy of deep neural networks in

identifying various irregularities within lung ultrasound images.

An additional instance is found in a study authored by Cheng and Lam in 2021.

In this research, a customized U-Net architecture was employed for the binary seg-

mentation of lung ultrasound images. Notably, the encoder component of the U-Net

was substituted with a VGG16 network that had been pre-trained on the ImageNet

database. This hybrid architecture was subsequently trained on a dataset compris-

ing 400 ultrasound images tailored to the specific challenge. The outcome was a

Dice score of 0.86, underscoring the success achieved in accurate binary segmenta-

tion.6 [40–42].

In a separate investigation documented in 2020, Roy et al. explored the segmenta-

tion of COVID biomarkers within lung ultrasound images. Their approach hinged

on a U-Net-based model, which underwent training using a comprehensive set of

277 annotated ultrasound loops. This concerted effort yielded a noteworthy 96

These studies unequivocally showcase the practicality and relevance of employing

deep neural networks for the realm of medical image processing.

2.2 U-Net

U-Net constitutes a fully convolutional neural network architecture that was initially

devised specifically to address medical image segmentation assignments [42]. Since

its original introduction in 2015, U-Net has persisted as the foundational frame-

work for numerous cutting-edge neural network architectures, particularly within

the sphere of medical image analysis, up until the present day. [43, 44]. The

architecture of the network employs an encoder-decoder design, enriched by skip

connections. The network’s initial segment is the encoder, often referred to as the

”contracting path,” where each stage progressively diminishes the dimensions of

the input image in terms of width and height, while simultaneously amplifying the

extracted features. Subsequently, the decoder component (termed the ”expanding

path”) methodically upscales the input and carries out additional convolutions.

A significant aspect of this architecture is the incorporation of skip connections.

These connections link the output activation map of convolutional layers in the en-

coder segment to the input of convolutional layers in the decoder segment, preserv-

ing a match in the width and height dimensions between the encoder’s output and

the decoder’s input. This strategic linkage allows the network to retain and integrate

more information from preceding layers. This encompasses retaining the original
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spatial characteristics of the input image, a pivotal attribute for segmentation under-

takings.

3 Implementation

Although the present implementation is a considerable distance from direct clinical

utilization, the chosen methodologies for its development and prototyping hold the

potential to pave the way for a more robust and diagnosis-focused decision support

system.

3.1 Approach

The central objective addressed within this paper revolves around the identification

of fundamental indicators present in lung ultrasound images, bearing significance

to the BLUE protocol. To address this objective, we employ a deep neural network

tailored for multi-class semantic segmentation. This process is executed on every

annotated frame contained within the captured ultrasound sequences. Essentially,

this undertaking can be deconstructed into two primary components, each of which

can be further subdivided into smaller constituent subtasks:

• Data Conditioning – in this step, we prepare and arrange our raw data into a

format that is suitable for network training;

• Network Implementation – the actual implementation, training, and fine tun-

ing of the neural network.

In the following sections we discuss both stages in detail.

3.2 Imaging protocol

Following the method developed by Daniel Lichtenstein, the creator of the BLUE

and PINK protocols, we adhered to his specified approach of using three designated

points on each side of the chest to gather imaging data. The imaging was integrated

into the daily medical routine. Informed by prior expert analyses and considering

the uneven and sporadic nature of COVID-19 pneumonia, we captured video loops

in both longitudinal and transverse orientations. The specific locations and orienta-

tions were systematically labeled using predetermined codes. Our protocol enabled

a single operator to conduct the assessments without the need for additional assis-

tance. Given that all the examinations were carried out by lung ultrasound (LUS)

specialists with over seven years of experience, we didn’t document the precise du-

ration of each examination, as it wasn’t deemed significant. The assessment of the

loops was generally done off-line. However, if the operator identified an urgent

situation during the analysis, such as an emergency equivalent, they immediately

communicated this to the clinical team. An example of this occurred during one

examination when an acute pneumothorax on the right side was unexpectedly de-

tected, leading to a timely intervention that ultimately saved the patient’s life.
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Basic Settings Obligatory value/range

Depth Pleural line + 3–8 cm

Focus Multifocus: OFF; Single focus: at pleural line

Gain Optimized for main artifacts (A-lines, B-lines, consolidation)

Image-processing features THI: OFF, XRes: OFF, CrossXBeam: OFF, SRI: OFF

MI < 0.7

TIs < 0.1

Table 1

Abbreviations: MI: mechanical index; TI: soft tissue thermal index; THI: tissue harmonic imaging;

XRes: speckle noise reduction; CrossXBeam: spatial compounding; SRI: speckle reduction

3.3 Ultrasound settings, data collection protocol

Our objective was to establish a consistent and comprehensive US examination pro-

cedure. Utilizing specific settings on our equipment, we successfully gathered a

collection of images that effectively depicted the pleura and underlying artifacts,

ensuring no critical observations were overlooked. Prioritizing patient safety, we

carefully regulated the thermal index (TI) and mechanical index (MI) to adhere

to global safety norms. The devices employed included a Philips CX50 (Philips

Healthcare, The Netherlands) with a Philips C5-1 convex probe (1-5 MHz) and a

GE Venue GO (GE Healthcare, IL, USA) with a C1-5-RS convex probe (1.4-5.7

MHz). Essential default settings are detailed in Table 1. Drawing from our clinical

experience and aligning with global practices in lung ultrasound (LUS), we opted

to capture video loops lasting 4–6 seconds instead of single images, for enhanced

accuracy. The operator of the equipment was not informed about the patient’s clini-

cal progress, and did not participate in their care. These loops were recorded under

a pseudo-anonymized system (using a unique patient code) and stored on the hard

drive in DICOM (Digital Imaging and Communication in Medicine) format, fully

compliant with GDPR (EU General Data Protection Regulation) guidelines. Subse-

quently, patient information was transferred to an encrypted, Microsoft Excel-based

database, through a triple-layered security protocol.

3.4 Imaging protocol

Following the method developed by Lichtenstein, the creator of the BLUE and

PINK protocols, we adhered to his specified approach of using three designated

points on each side of the chest to gather imaging data. The imaging was integrated

into the daily medical routine. Informed by prior expert analyses, and consider-

ing the uneven and sporadic nature of COVID-19 pneumonia, we captured video

loops in both longitudinal and transverse orientations. The specific locations and

orientations were systematically labeled using predetermined codes.

Our protocol enabled a single operator to conduct the assessments without the need
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for additional assistance. Given that all the examinations were carried out by LUS

specialists with over seven years of experience, we did not document the precise

duration of each examination, as it was not deemed significant. The assessment of

the loops was generally done off-line. However, if the operator identified an urgent

situation during the analysis, such as an emergency equivalent, they immediately

communicated this to the clinical team. An example of this occurred during one

examination when an acute pneumothorax on the right side was unexpectedly de-

tected, leading to a timely intervention that ultimately saved the patient’s life.

3.5 Data Conditioning

The dataset harnessed for this endeavor has been meticulously curated by medical

professionals affiliated with Semmelweis University, Budapest. In addition to sup-

plying the requisite data, these experts contributed their invaluable medical acumen

to the project. This encompassed the meticulous annotation of raw data and ensuring

that the project’s trajectory was aligned with a clinically coherent perspective.

As of the time of composing this article, our repository comprises data sourced from

22 RT-PCR confirmed SARS-CoV-2 infected patients, in addition to data extracted

from 18 RT-PCR confirmed SARS-CoV-2 negative (”non-COVID”) patients. This

data has been meticulously gathered by Semmelweis University’s Department of

Anaesthesiology and Intensive Therapy. Notably, all the data acquisition procedures

adhere rigorously to the BLUE protocol, a universally recognized and adopted stan-

dardized methodology. This meticulous adherence ensures the replicability of the

procedure and the coherence of our data.

Each patient’s dataset comprises multiple ultrasound loops, with each loop spanning

5 to 6 seconds in duration. These loops are captured from distinct points as delin-

eated by the BLUE protocol. Given the aggregate of 40 patients, the dataset encom-

passes a cumulative count of approximately 630 loops, encompassing over 200,000

individual frames. Our efforts to augment this dataset are ongoing, involving the

collaboration of additional hospitals and research establishments. To uphold the

ethical considerations, all our data is pseudonymized, and we have procured explicit

authorization from Semmelweis University’s Research Ethics Committee to utilize

this dataset. In general, most recent ethically aligned engineering design principles

(IEEE 7000, IEEE 70007 standards) were followed during the project [45].

In the process of data preparation, we extensively leverage the capabilities of the 3D

Slicer tool. [46]. Certainly, 3D Slicer stands out as an open-source, research-centric

image processing tool, primarily geared towards medical imaging tasks. While its

scope is not limited solely to medical imaging, it excels in this domain. A notable at-

tribute of 3D Slicer is its robust segmentation capabilities. Moreover, the tool offers

programmable extension capabilities and a conveniently embedded Python com-

mand line, which significantly facilitates data transformation and extraction pro-

cedures. These inherent functionalities align seamlessly with our objectives. We

adeptly harness the built-in segmentation module to annotate our raw ultrasound

loops, and the Python interface expedites the automated extraction of this annotated

data, rendering 3D Slicer an ideal fit for our requirements.
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Figure 2

A manually segmented ultrasound frame. Visible segmented classes are: thoracic wall (pale yellow), rib

(yellow), rib shadow (purple), B-line (blue), septal rockets (red), unhealthy pleural line (pale orange)

In the initial step, the raw data undergoes annotation under the supervision of med-

ical experts within the 3D Slicer platform. This process involves the manual delin-

eation of segments pertinent to our particular scenario. These encompass the pri-

mary indicators outlined earlier, accompanied by a select few supplementary land-

mark segments. The segmentation occurs on a frame-by-frame basis, with every

fifth frame within each loop being subjected to this procedure. It’s noteworthy that

the entirety of the loop doesn’t necessarily require annotation, as capturing a com-

plete breathing cycle suffices for our purposes.

Upon completion of annotation, the subsequent phase involves the extraction of data

from 3D Slicer. As not every individual frame undergoes segmentation, identifica-

tion of frames with attached segmentation data becomes imperative. Moreover, a

series of standardization and cleanup steps are necessary for each relevant frame.

Certain extraneous details, originating from the ultrasound machine itself (such as

machine settings and brand), are irrelevant to our analysis. To address this, a mask

is applied to retain solely the pertinent ultrasound image, effectively eliminating the

extraneous information. Additionally, the images are transformed into a uniform

quadratic format, specifically 256x256 pixels.

To achieve this quadratic format, an initial resizing is performed, such that the larger

dimension of the original image matches the desired 256 pixels, while maintaining

the original aspect ratio. During this resizing, linear interpolation is employed for

the ultrasound images, while nearest neighbor interpolation is used for the segmen-

tation masks. Subsequently, the smaller dimension is extended to reach 256 pixels
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using zero values, while preserving the central segment of the image.

Post-cleanup and extraction, these relevant frames are integrated to constitute a com-

prehensive dataset. This dataset is structured on a patient-specific basis, ensuring

that data from a given patient remains exclusive either to the training or validation

set. This segregation mimics real-world application scenarios, where the trained

model is applied to new, unknown patients’ BLUE ultrasound loops. This setup

ensures more realistic outcomes in model evaluation.

At present, our dataset encompasses a total of 1097 manually segmented ultrasound

frames, derived from the data of four patients.

3.6 Network Training

Our approach involved implementing a standard U-Net model, enhanced by the

incorporation of zero-padding within the convolutional layers. This modification

was strategically employed to preserve the original dimensions of the image. In

the testing phase, our network was configured with an input size of 256 by 256

pixels, and each convolutional layer was equipped with 16 filters, contributing to

the model’s feature extraction capabilities.

During the training process, we adopted a leave-one-out cross-validation technique

rooted in patient-centric segmentation. This methodology entails setting aside the

data from a single patient as the validation set in each round, while the model is

simultaneously trained on the remaining dataset. This cross-validation scheme en-

sures comprehensive validation and helps mitigate potential overfitting.

In evaluating the performance of our model, we focused on two key metrics: val-

idation accuracy and validation loss. To quantify the model’s predictive accuracy

and assess the fidelity of its output, we computed the validation accuracy. Mean-

while, the validation loss, measured using the sparse categorical cross-entropy loss

function, provides insight into the dissimilarity between predicted and actual seg-

mentation outcomes. This comprehensive approach offers a robust framework for

effectively gauging the model’s proficiency in the context of medical image analysis.

4 Results and Discussion

By employing the method outlined in the preceding section, we attained an average

validation accuracy of 87.53

At this juncture, the most pronounced challenge lies in the scarcity of available an-

notated data. With the present dataset size, the model exhibits signs of overfitting

within only a few training epochs, necessitating premature training termination. Our

forthcoming efforts will be directed towards addressing this limitation. We intend

to bolster our annotated data reservoir and explore diverse data augmentation tech-

niques to alleviate this challenge effectively.
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(a)
Ground truth

(b)
Model prediction

Figure 3

Illustrative Prediction Outcome of the Model: Noteworthy Segmentation Classes include the Thoracic

Wall (highlighted in yellow), Ribs (displayed in orange), Rib Shadows (rendered in pale orange), and

B-lines (depicted in purple).
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Once a substantial annotated dataset is amassed, our focus will shift towards con-

ducting a comprehensive hyperparameter sweep to determine the optimal config-

uration. While we’ve engaged in some level of hyperparameter optimization, the

relatively modest dataset size has somewhat limited its impact. Once segmentation

attains a satisfactory level of performance, our endeavors will extend towards iden-

tifying the secondary signs elucidated in the second chapter. Subsequently, we will

be poised to embark on the comprehensive implementation of the entire decision

tree integral to the BLUE protocol.

Another avenue for potential enhancement lies in revisiting the roster of segmenta-

tion classes currently utilized for model training. Streamlining the model by omit-

ting or consolidating specific classes that do not contribute to relevant diagnostic

insight could potentially simplify training and expedite the annotation process. An

associated adjustment could involve modifying the loss function to facilitate the as-

signment of varying weights to individual segmentation classes. Notably, even in the

existing segmentation schema, the prominence of the background class outweighs

others. This concern could intensify with a reduced number of segments, and recal-

ibrating the significance of the background class might yield improved outcomes.

Fine-tuning the model architecture and experimenting with diverse model types to

facilitate performance comparison is another avenue for potential improvement.

However, the dearth of sufficiently annotated data has thus far hindered the pur-

suit of this optimization. Given the present stage, a meaningful model architecture

comparison might be elusive.

In addition to enhancing the current model, we intend to reevaluate our use case

scenario to explore alternative approaches beyond segmentation. Our foremost chal-

lenge is the time-consuming process of manual annotation, particularly the meticu-

lous contouring required for each frame. We’re actively considering the prospect of

leveraging object detection methods as an alternative. By employing this approach,

annotating would involve simply drawing bounding boxes around objects rather than

intricate contouring, thereby significantly expediting the annotation process. This

transition alone could prove advantageous, even if the new approach doesn’t yield

immediate tangible benefits.

Another avenue involves the integration of the segmentation model with a medical

ultrasound device, enabling real-time ultrasound image segmentation at the patient’s

bedside. While not directly leading to diagnosis, this real-time segmentation could

still furnish valuable information to the attending physician during the examination,

potentially aiding in timely decision-making.

These potential directions underscore our commitment to refining and innovating

upon our current framework to overcome existing challenges and enhance the clini-

cal utility of our approach.

Future research endeavors encompass the pursuit of full automation in image acqui-

sition by integrating a collaborative robotic arm. This innovative approach holds the

promise of enhancing data consistency, a crucial facet for accurate analysis. More-

over, such automation could prove particularly advantageous in pandemic scenar-

ios, mitigating the risk of human exposure and facilitating safe and efficient medical
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procedures. [33, 47].

5 Conclusion

Our research is dedicated to advancing computer-assisted support for the BLUE

protocol. In the initial phase, we have successfully implemented a U-Net based deep

neural network tailored for segmenting and identifying vital anatomical elements

within lung ultrasound images.

The outcomes thus far reveal a highly promising conceptual foundation. Notwith-

standing the modest count of annotated images and the brief training duration, the

model’s predictions exhibit discernible alignment with the ground truth. This align-

ment is particularly pronounced for segments that are more prevalent in nature, such

as the thoracic wall or rib shadows. This initial progress underscores the potential

of our approach to significantly enhance the diagnostic capabilities of the BLUE

protocol through computer-assisted assistance.

Future work

Our current project is an essential component of a modular decision support system,

incorporating artificial intelligence solutions. As per our vision, this system can be

immensely beneficial to our clinical colleagues. The foundation of the system relies

on well-validated and widely used emergency lung ultrasound protocols.

Our primary objective is to implement and enhance a framework that offers real-

time support to physicians during bedside examinations. Additionally, this frame-

work aims to facilitate the acquisition of lung ultrasound skills as part of structured

medical training.

We plan to further advance the system by gathering more clinical data and expand-

ing our annotated data bank. This expansion is expected to improve the system’s

metrics, making it suitable for real testing in clinical conditions.

Looking ahead, we also consider the possibility of automating and robotizing the

system in various directions. Such advancements could lead to additional cost sav-

ings in terms of human resources for healthcare systems that operate within limited

frameworks.
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Abstract: Several automatic and semi-automatic algorithms for adipose tissue (AT) 

segmentation in CT have been proposed. Our study aimed to determine the effect of the 

preselected HU range, on the resulting AT volumes and establish whether there is a 

relationship between body shape and AT values determined, from a single slice. Scans of 98 

patients acquired using two CT protocols, were used. Three axial slices were selected from 

each subject's CT data. Subcutaneous and visceral adipose tissues (SAT, VAT) were 

manually segmented and analyzed using three different HU ranges. In addition, a simple 

BMI calculation model was created by the segmented data. The areas segmented with the 

three different HU ranges, correlated well with each other in the case of SAT (r2=0.99, and 

r2=0.99) and VAT (r2=0.99, and r2=0.998). The preselected slice position had no significant 

effect on correlation; however, the absolute values of ATs were statistically different. CT 

image data acquired with higher tube current yielded a better correlation between SAT, VAT, 

and BMI. We also found that the correlation of VAT area to mass and BMI was weaker than 

the corresponding SAT correlations. The simple model-based BMI estimation is in line with 

real BMI data (males: r2=0.78, females: r2=0.841). The segmentation threshold does not 

substantially affect correlation, among the segmented AT values; however, their absolute 

values are significantly different. In addition, and interestingly, the body shape can be 

accurately described from the segmented AT data from a single CT slice. 

Keywords: CT; fat; segmentation 

1 Introduction 

It is well known that obesity is closely associated with diabetes, fatty liver, 
cardiovascular disease and various cancers [2, 17, 24, 33]. Visceral fat resides 
between organs, while subcutaneous fat is located beneath the skin. Another 
substantial difference between these two types of fat is that visceral fatty tissue 
functions as an endocrine organ, contributing to the pathogenesis of several diseases 
[5]. Particularly, VAT has a major impact on these diseases, and several articles 
underline the importance of accurately measuring visceral tissue volume [11, 28, 
35]. On the other hand, there is also increased attention on body composition in 
which SAT and VAT determination is a critical element in addition to muscle 
volume measurement. Neither X-ray nor any of the nuclear medicine techniques are 
unable to help in precisely determining the amount of fatty tissue, only MRI and 
CT can provide means to segment the adipose regions in the body [9, 12, 13, 15, 
18, 25]. Reviewing the literature, we found some articles that tried to estimate 
adipose tissue with other modalities, such as ultrasound. For example, Stolk et al. 
measured the distance between the peritoneum and the lumbar spine using 
ultrasound with a strict protocol to calculate adipose tissue volume [29] [30]. 

The numerical characterisation of adipose tissue volume calculated from CT data 
can be regarded as the most frequently used method [16, 34]. Measurement of SAT 
and VAT values is usually accomplished on a single CT slice at the level of the 
umbilicus [24] or the level of T12-L1, L2-L3, L3-L4 or L4-L5 vertebral bodies [2, 
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11, 13, 15, 16, 27, 35]. In theory, total volume measurement of VAT or SAT would 
be more advantageous than estimation from a single CT slice, however proper 
segmentation may not be automatically performed at the diaphragm or near the 
pelvis, moreover limited number of slices available at CT. Several investigators 
have suggested and have developed sophisticated automatic algorithms for the 
segmentation of adipose tissue in a large body volume [23] [31], however it has 
been shown recently that the single slice measurement can accurately predict the 
changes in VAT volume and body weight. 

Today, CT is the only clinically applied imaging modality that provides 
quantification of the different tissues based on pixels and Hounsfield unit values. 
Actually, the HU scale is relative because different X-ray beam energies result in 
different CT values, thus, it is essential to take into consideration the applied tube 
voltage. Furthermore, the mentioned scale depends on the radiologists. While CT is 
one of the most important modalities to assess adipose volume, in the literature, 
several independent segmentation algorithms have been introduced applying 
different Hounsfield Unit (HU) ranges: −190/–30 HU, −200/–10 HU, −250/–50 
HU, −195/–45 HU [5, 11, 19, 23, 24, 28, 34]. To the best of our knowledge, it has 
not been extensive investigation pertaining to how the HU range selection might 
influence the segmented SAT/VAT volumes, so we aimed to: 

i) Compare three commonly used ranges 

ii) Study how the selected slice position affects the segmented adipose tissue 
area. In addition, one of the research groups has developed a linear model to 
estimate the patient's body shape and BMI index along with the fat-tissue 
segmentation technique [10]. However, this model is rather complex, and it 
depends on at least six different parameters, and the actual formula varies 
with gender. The model also includes several arbitrary constants, depending 
on the CT scanner. 

iii) Examine these models based on our CT data and to simplify the model. 

2 Materials and Methods 

Ninety-eight human CT examinations were randomly selected from March 2012 to 
September 2013. Since all patient related data were retrospectively analyzed, 
informed consent was not obtained. All CT examinations were scanned by Philips 
Brilliance 64 CT scanner with two different protocols. However, of the 98 
participants, only 14 were tested with both protocols, where the axial length scan 
was shorter. 

The patient population included outpatients who were being assessed for several 
diseases. Participants’ anthropometric data: 51 males mean age of 59 years (range 
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31-83 years), mean weight of 87 kg (range 54-150 kg), mean height of 1.7 m (range 
1.52- 1.9 m), mean body mass index 34 kg/m2 (range 23-58 kg/m2)) and 47 females 
mean age of 62 (range 32-94 years), mean weight of 75 kg (range 44-110 kg), mean 
height of 1.62 m (range 1.5-1.77) and mean body mass index 33 kg/m2 (range 23-
55 kg/m2)). The local medical ethics committee approved the study and waived the 
requirement to obtain informed consent (DE RKEB/IKEB 6593-2023). To ensure a 
constant signal-to-noise ratio, a standard dose optimization algorithm was applied, 
in which increasing X-ray exposures were used with increasing body weight in both 
CT protocols. In Protocol-I, a larger mAs range was set (100-200 mAs) for better 
image quality, while in Protocol-II, X-ray exposures were about half of those used 
in Protocol-I. The tube voltage was set to 120 kV in all cases. 

Three axial slices (L1 vertebra and the hilar region of the right and left kidney, 
respectively) [25] [26] were selected from the sagittal reconstruction for image 
processing. Two ROIs (region of interest) were drawn on each image manually 
(Figure 1) in the MATLAB program on a diagnostic monitor by a radiographer with 
five years of professional experience in CT imaging; the larger one was defined by 
the body contour (green line), and the smaller one encompassed the abdominal 
cavity (red line). 

 
Figure 1 

The amount of subcutaneous fat tissue (SAT) is defined by the total number of segmented pixels 
within the space between the green and red ROIs, while the visceral fat tissue (VAT) is defined by 

those within the region in the red ROI 

Although several automatic adipose tissue segmentation algorithms are proposed in 
the literature [14, 23, 28, 32], they are not entirely accurate, confirmation and 
correction are usually necessary by radiologists. In our study, fat tissue 
segmentation was performed based on three different ranges of attenuation [window 
level/window width in HU]: -190/-30 HU, -150/-40 HU, -195/-45 [8] [31]. SAT and 
VAT were determined as the number of segmented pixels within the red ROI and 
between the red and green ROIs, respectively. Thus, SAT and VAT values were 
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calculated by using three different attenuation ranges. In addition, the three different 
SAT (SATi, i=1,2,3) and three different VAT (VATi, i=1,2,3) estimations were 
obtained for three different sections (Figure 2). 

 
Figure 2 

Segmentations were prepared with three different HU ranges using slices acquired at the level of the 
L.1. vertebra, and at the level of the hilum of the right and the left kidney 

In each case, we calculated the BMI as follows: 𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑡𝑡ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑡𝑡2 [

𝑘𝑘𝑏𝑏𝑚𝑚2] (1) 

The weight and height data were collected by the patients’ self-declaration. Data 
obtained from the reconstructed images allowed us to estimate the BMI by the 
following formulas [8] [10]: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵: 2.069 + (0.037 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆) − (0.05 ∙ 𝑚𝑚𝑎𝑎𝐵𝐵) + (0.984 ∙ 𝐵𝐵𝐵𝐵𝐵𝐵) −
(2.647 ∙ 𝐿𝐿1𝑆𝑆𝐴𝐴𝐵𝐵) (2) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵: − 9.163 + (0.252 ∙ 𝐵𝐵𝐵𝐵) + (10.621 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆 ) −  (0.08 ∙ 𝑚𝑚𝑎𝑎𝐵𝐵) +

(0.597 ∙ 𝐵𝐵𝑆𝑆𝐴𝐴𝐵𝐵). (3) 

These formulas require the horizontal and anteroposterior (AP) diameters of the 
body (BTD, BAPD), the diameter of the vertebral body (L1APD), the body 
circumference (BC), the total body area (BA) of the axial slice, the subcutaneous 
fatty area (SQA) and the patient's age (see Figure 3). 
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Figure 3 

Different parameters for BMI estimation on an axial CT slice. The following parameters are drawn on 
the image: horizontal and anteroposterior diameters of the body (BTD, BAPD), the diameter of the 

vertebral body (L1APD), intraabdominal adipose tissue (IAA) and total body area (BA). 

We thought the original model was too complex therefore, we tried to simplify it. 
The BMIest depends on 4-5 data, and the dependence differs for both genders. 
Furthermore, it is questionable whether constants depend on the actual CT setting. 
In the literature, we found several additional BMI models [7], and we proposed nine 
new models based on the original and the current models and labelled them from I 
to IX (see Table 1). 

Table 1 
 Nine different models were created based on the original model for both sexes 

Model 

numbers 
Female models 

I BMImodel=-9.163+(0.252 ×BC)+ �10.621× 
SQA
BA � -(0.081 ×age)+(0.597 ×BAPD) 

II BMImodel=a+(b ×BC)+ �c× 
SQA
BA � -(d ×age)+(e ×BAPD) 

III BMImodel=2.069+(0.037 ×SQA)- (0.051× age)+(0.985 ×BTD)-(2.648 ×L1APD) 
IV BMImodel=a+(b ×SQA)- (c× age)+(d ×BTD)-(e ×L1APD) 
V BMImodel=a+(b ×BC) 
VI BMImodel=a+(b ×BTD)+ (c× BAPD) 
VII BMImodel=a+(b ×BC)+c ×age 
VIII BMImodel=a+(b ×BTD)+ (c× BAPD)+ (d ×BC) 
IX BMImodel=a+(b ×BTD)+ (c× BAPD)+ (c ×BC)+ (e ×age) 

Model 

numbers 

Male models 

I BMImodel=2.069+(0.037 ×SQA)- (0.051× age)+(0.985 ×BTD)-(2.648 ×L1APD) 
II BMImodel=a+(b ×SQA)- (c× age)+(d ×BTD)-(e ×L1APD) 
III BMImodel=-9.163+(0.252 ×BC)+ �10.621× 

SQA
BA � -(0.081 ×age)+(0.597 ×BAPD) 

IV BMImodel=a+(b ×BC)+ (c×SQR)-(d ×age)+(e ×BAPD) 
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V BMImodel=a+(b ×BC) 
VI BMImodel=a+(b ×BTD)+ (c× BAPD) 
VII BMImodel=a+(b ×BC)+c ×age 
VIII BMImodel=a+(b ×BTD)+ (c× BAPD)+ (d ×BC) 
IX BMImodel=a+(b ×BTD)+ (c× BAPD)+ (c ×BC)+ (e ×age) 

We applied non-linear regression to calculate the coefficients of the nine equations 
where the following weight function was minimized for each case: ℎ(𝑚𝑚, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝐵𝐵) = ∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘−𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝐵𝐵𝑑𝑑𝐵𝐵𝑚𝑚((𝑚𝑚, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝐵𝐵))𝑘𝑘)2𝑛𝑛𝑘𝑘=1  (4) 

In Eq. 4, the BMI and BMImodel stand for the real and the model equation-based 
(presented in Table 1) BMIs, respectively. In addition, the sum runs over the whole 
male or female population (nfemale= 47, nmale= 51). 

Hypothesis tests for paired datasets were performed to compare the values obtained 
from different axial slices and different ranges. The distribution of the data was 
evaluated using the Anderson-Darling normality test. After that, the corresponding 
hypothesis test was chosen: paired t-test for normally distributed data and Wilcoxon 
signed-rank test for the rest. The datasets are considered significantly different if 
the p-value is smaller than 5%. 

All data evaluation and processing were performed using Microsoft Office EXCEL 
and MATLAB, commercially available programs. 

3 Results 

3.1 Influence of Segmentation on SAT and VAT Values 

AT data of all patients were separated according to gender, slice, X-ray exposure, 
type of adipose tissue, and applied range of HU during segmentation. First, we 
analyzed how the AT data obtained by the three segmentation methods are 
interrelated for gender and X-ray exposure. Figure 4 shows that the correlation 
coefficients are somewhat higher in the case of Protocol-I compared to Protocol-II 
for both subcutaneous fat and visceral fat AT data, furthermore, the correlations 
were independent of HU ranges. 
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Figure 4 

Correlation plots of SAT1-SAT2, SAT1-SAT3(a, c) and VAT1-VAT2, VAT1-VAT3 (b, d) for male 
and female subjects. Protocol-I was used in a, b and Protocol-II in c, d 

The role of the protocol is understandable since Protocol-I generates more photons 
that may be involved in imaging. Interestingly, the correlation coefficients and the 
regression equations are very similar for male and female patients. Although the 
correlations are close, all y axis intersections differ significantly from zero. 
Generally, the correlation between SATi values is closer as composed to those 
between VATi data. 

As a next step, hypothesis tests were performed to analyze how the predefined HU 
segmentation ranges influence the AT values obtained at different anatomical 
regions. Summary statistics for the hypothesis test are provided in Table 2. 

Table 2 
The resulting p values of the hypothesis test for paired subcutaneous and visceral adipose tissue data 

from different axial slices 

 VAT1, VAT2 VAT1, VAT3 VAT2, VAT3 

male, vertebra 5.14E-10 5.14E-10 4.17E-08 
male, left kidney 5.14E-10 5.15E-10 2.66E-07 
male, right kidney 5.14E-10 1.19E-28 1.31E-07 
female vertebra 4.09E-28 1.46E-26 5.77E-18 
female left kidney 3.31E-25 8.21E-25 7.24E-09 
female right 

kidney 

7.98E-23 1.12E-22 2.67E-15 

 SAT1, SAT2 SAT1, SAT3 SAT2, SAT3 
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male, vertebra 5.14E-10 2.77E-30 1.45E-05 
male, left kidney 5.14E-10 1.93E-30 5.24E-05 
male, right kidney 5.14E-10 1.41E-29 2.41E-05 
female vertebra 3.47E-26 2.33E-25 1.45E-05 
female left kidney 9.13E-28 4.95E-26 5.24E-05 
female right 

kidney 

1.85E-29 8.54E-28 7.23E-13 

3.2  Relation of SAT and VAT Data to Patient's Mass 

The interrelationship between the number of AT pixels and the patients' weight, or 
BMIs was also studied. Figure 5a and 5b presents data on the correlation between 
AT data and patients' weight. 

 

Figure 5 
The interrelationship between SAT or VAT and the weight, BMIest and BMI. Adipose tissue data 
determined with all three HU ranges are plotted. The regression equation, the R2 and p values are 

shown in each plot. 
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As expected, the AT pixel numbers increase as a function of body weight, but the 
correlation coefficients are rather low, especially for visceral fat. In addition, VAT 
and BMIest correlations (see Figure 5d) are definitely the lowest (r2=0.276, 
r2=0.416). The only exception is the correlation between SAT and BMIest for male 
subjects (r2=0.697) and female subjects (r2=0.691, shown in Figure 5c. SAT and 
VAT data are better correlated with real BMI data (Figure 5e, f) being characterized 
by r2 values similar to those in the correlation of AT data and real weight (Figure 
5a, b). Visceral data show a significantly poorer correlation in all cases. It can also 
be noted that the female body contains more subcutaneous fat, whereas men have 
more visceral fat. This can serve as useful information since visceral fat can function 
as an endocrine organ and produce various hormones [16]. These hormones may 
damage the body in different ways. 

3.3  Effect of X-Ray Exposure 

Correlation analysis was performed with data obtained from the investigation of the 
14 patients scanned using both protocols. The most critical difference between data 
using the two protocols, is the higher pixel number of the segmented adipose tissue 
regions yielded by Protocol-II (Figure 6). 

 
Figure 6 

Interrelationship between SAT and BMI based comparison of Protocol-I and Protocol-II.  
The numerical result of the regression (equation, the R2 and p values) are presented in each graph. 

The difference can be more than double. Displayed data also show a better 
correlation of AT data by Protocol-I with real BMI than Protocol-II, suggesting that 
the segmentation is more accurate if Protocol-I is applied. The correlation is high 
with the first protocol at real BMI (r2=0.74 and r2=0.606). The p value of regression 
analysis is almost zero (values are shown in Figure 6). Finally, it can be generally 
stated that the determination of subcutaneous adipose areas is more accurate with 
higher X-ray exposure. Plots of SAT and VAT versus body mass show an increase 
of adipose tissue with greater body mass, however, the interrelationship and the 
related correlations are less pronounced with Protocol-II (Protocol-I vs Protocol-II; 
SAT: r2 = 0.745 vs 0.248 and VAT: r2=0.606 vs 0.439). 
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3.4 Reliability of BMIest 

Additional correlation analysis was conducted to test the reliability of the formula 
used to calculate BMIest. The correlation between BMIest and real BMI data is 
displayed in Figure 7 for both male (r2=0.78 with p<0.001) and female patients 
(r2=0.841 with p<0.001) using data obtained by Protocol-I. 

 
Figure 7 

Correlation plot between BMI and BMIest. The resulted correlation parameters (equation, R2 and p) 
are also presented. 

3.5 Effect of Segmentation Levels 

In the study, we also examined the segmentation differences due to the three 
selected regions (L.1 vertebra, left and right kidney). The results are illustrated in 
Figures 8 and 9. High correlations are shown at both fat tissues by the large r2 value 
(Figs. 8 and 9) with a definite positive intersection at the Y axes. 
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The interrelationship between the VAT values originated from the L.1vertebra and the left and the 
right kidney 

 

Figure 9 
Correlation between the SAT values selected from L1 vertebra and left and right kidney 

 

Hypothesis tests were also performed to compare the AT values obtained from 
different axial regions (Table 3). 
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Table 3 
Summary of paired hypothesis test for subcutaneous and visceral adipose tissue data from different 

anatomical ranges. If p is larger than 0.05, the value is presented in red color 

 vertebra, left 

kidney 

vertebra, right 

kidney 

left kidney, 

right kidney 

male VAT1 1.82E-02 2.45E-02 2.69E-01 
male VAT2 3.18E-02 2.19E-02 4.59E-01 
male VAT3 2.83E-02 2.63E-02 3.03E-01 
female, VAT1 1.33E-01 2.52E-06 2.30E-06 
female, VAT2 1.74E-01 4.66E-06 4.82E-06 
female, VAT3 2.05E-01 4.85E-06 3.52E-06 

 

vertebra, left 

kidney 

vertebra, right 

kidney 

left kidney, 

right kidney 

male SAT1 7.06E-08 4.57E-06 8.52E-01 
male SAT2 5.95E-08 4.18E-06 8.62E-01 
male SAT3 3.75E-08 3.82E-06 8.11E-01 
female, SAT1 3.66E-01 3.23E-06 2.05E-07 
female, SAT2 3.48E-01 3.19E-06 1.93E-07 
female, SAT3 3.52E-01 2.72E-06 1.82E-07 

3.6 BMI Estimation by Models 

In this section, we show the BMIs calculated by the 9 different models and then 
compare them. Models are shown in Table 1. The constants of models (a, b, c, d, e) 
are estimated by non-linear regression, and the resulting values are presented in 
Table 4 for men (n=51) and Table 5 for women (n=47). 

Table 4 
Model parameters (a, b, c, d, e) are estimated by non-linear regression, and the estimated values are 

presented. The h is the resulting value of the weight function used in the non-linear regression. 

Male 

constants 

a b c d e h 

Model I 2.069 0.037 0.051 0.985 2.648 125.89 
Model II -18.275 0.010 3x10-5 1.116 -1.505 92.72 
Model III -9.163 0.253 10.621 0.081 0.597 616.80 
Model IV -0.26 0.114 2.9x10-4 0.021 0.489 97.30 
Model V -3.22 0.249 - - - 103.23 
Model VI -15.799 0.911 0.395 - - 80.46 

Model 

VII 

-3.19 0.248 2.8x10-4 - - 103.23 

Model 

VIII 

-12.75 0.844 3.3x10-4 0.092 - 85.04 

Model IX -13.42 0.900 3x10-4 0.085 -0.007 85.04 
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Table 5 
Parameters of female models (a, b, c, d, e) are estimated by non-linear regression, and the estimated 

values are presented. The h stands for the resulting value of the weight function 

Female 

constants 

a b c d e h 

Model I -9.163 0.253 10.621 0.081 0.597 390.14 
Model II -5.087 0.187 11.525 0.055 0.390 72.95 

Model III 2.069 0.037 0.051 0.985 2.648 91.68 
Model IV 0.110 0.014 0.045 0.953 1.114 65.26 
Model V -9.680 0.324 - - - 79.93 
Model VI -12.38 1.002 0.262 - - 72.56 
Model VII -7.500 0.334 -0.060 - - 71.23 
Model VIII -12.864 1.129 0.469 -0.082 - 71.48 
Model IX 0.002 0.234 0.001 0.208 -0.069 83.65 

In the last column of both tables, the value of the weight function of the non-linear 
regression (see Eq. 4) can also be seen. In general, the h value may depend on the 
number of cases and the goodness of the fitted model, thus we need to consider it 
when interpreting the results. Fortunately, our two groups contain almost the same 
number of cases, thus the h value will be comparable between the two gender 
groups. In the case of Table 4 the highest h value (meaning the worst model) belongs 
to Model III, which is the original model for the other sex (women). In this case, 
the h value is 616.8, approximately five times greater than Model I. The best model 
is Model VI, where only the AP and horizontal diameters are included. There are 
reduced differences among the remaining models, thus there is no need to use a 
complicated, multifactorial model for BMI estimation. The h values of women are 
in a similar range as those of men, which is probably explained by the similar 
number of patients in both groups (Table 5). The best h value belongs to Model IV 
(h=65.26) which is based on Model I of man. The worst case is Model I, which is 
the original model of women, and this conclusion is the same for both sexes. There 
are minor differences among the resting models, and especially Model VI-VIII are 
very close to each other because the h value differences are less than 1. Considering 
all models, the Model VI seems to be the most optimal for both genders because the 
h values are low and comprise only two distance data (BTD and BAPD). 

The results of correlation analysis between the model based and real BMI are 
presented in Figures 10 and 11, showing the data for men and women. 
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Figure 10 

Regression analysis between BMI (kg/m2) and models in the case of males, the regression data are in 
the table below the figure 

 
Figure 11 

Regression analysis between BMI (kg/m2) and models in the case of females; the regression data are in 
the table below the figure 
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The points overlap in both figures. Results of regression analysis are similar in all 
cases because all the regression coefficients are larger than 0.8, and the ranges for 
women and men are 0.828-0.880 and 0.838-0.899, respectively. In addition, all 
correlations were significant, which is explained by the small p values (< 0.001) in 
the hypothesis tests. 

Discussion 

Determination of the amount and localization of adipose tissue plays an essential 
role in several diseases [20]. Several study groups have developed methods to assay 
tissue volume and explore the interrelationship between bariatrics and the 
development of defined diseases. Davies and co-workers developed an application 
that can successfully calculate the amount of adipose tissue in polytraumatic 
patients from routinely used CT scans [6]. These methods may be helpful in 
intensive care units for COVID-19 patients because obesity is a major risk factor 
and may result in a worse prognosis, mostly among young patients [4] [26]. Sala 
and co-workers investigated the correlation between adipose tissue distribution and 
cardiometabolic diseases using adipose tissue volume and distribution data obtained 
from CT [22]. They applied an automatic tool that could recognize fat tissue and set 
the Hounsfield units of fat between -150 and -30 HU and the axial slices were 
selected from the level of the 5th lumbar vertebra. 

After the literature review, we did not find gold standard for the segmentation 
method. The accuracy of the segmented areas could only be verified quantitatively 
using phantoms, where the volume of adipose tissue or adipose tissue equivalent 
material in the phantom is known. Such a study was performed by Yoon et al. where 
they compared phantom and human CT and MR scans [9], however, in this study 
the main focus was the effect of varying tube current on segmentation. However, 
our results definitely show that image quality (influenced by the scan setup 
parameters), the chosen HU range and the segmentation region affect the final 
result. We applied the manual delineating technique and three previously published 
HU ranges to segment the visceral and subcutaneous areas in this study. Usually, 
part of the lumbal spine is the base for the adipose tissue determination, however 
some groups choose the level of the umbilicus [24]. In our study, adipose areas were 
measured on each slice acquired at the level of L1, hilar region of left and right 
kidney. We chose the hila of the kidneys because these are usually located between 
L1 and L3. The volume of subcutaneous and visceral adipose tissue was defined by 
these HU ranges using two different X-ray tube currents. We found that the volume 
of adipose tissue obtained with the higher X-ray tube current (Protocol-I) by 
segmentation based on different HU ranges was in good correlation (r2≥0.998) for 
both male and female subjects. Remarkable differences were detected between 
images and correlation analysis data applying different protocols. Images obtained 
with a lower (≈ 50 % lower) tube current were less reliable, and the correlations 
between the adipose tissue volume data segmented using different segmentation 
procedures were not as close as between those obtained with a larger tube current 
(r2>0.967). Troschel and co-workers showed a similar tendency [3] changing the 
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tube current–exposure time product values in their work. In Table 2, we presented 
the p values for the hypothesis test, which investigated the possible effect between 
the segmented AT areas and predefined HU ranges at each possible region (L1 
vertebra, right and left kidney level). It is visible that all p values are less than 0.05, 
thus it can be stated that the three different HU ranges of the segmentation affect 
the amount of adipose tissue segmented. This does not contradict the fact that the 
different AT values correlate well for each HU range, as the correlation equations' 
axis intercept is not zero (Fig. 4). Thus, the segmented AT values obtained with the 
three distinct HU ranges are not proportional to each other, only an excellent linear 
relationship is between them. 

We were also curious about how the extent of segmented AT pixels is affected by 
the preselected anatomical areas (L1 vertebra, left and right kidney). The results are 
presented in Figures 8 and 9. Good correlations and linear relationships could be 
observed among each ATs, with non-zero intersections of the linear equations in 
every analysis. The results of the associated hypothesis tests are demonstrated in 
Table 3, where the p value was larger than 0.05 the text was colored in red. In the 
case of male and both adipose tissues, there were no significant differences between 
the right and left kidney level (VAT: p>0.269, p>0.4591, p>0.303, SAT: p>0.852, 
0.862, 0.811), while in the case of female the vertebra and left kidney region gave 
same result (p>0.133, p>0.174, p>0.205, SAT: 0.3663, 0.348, 0.352. In all other 
cases, there is a difference between the segmented SAT and VAT values. 

In the last step, we examined the relationship between the amount of segmented 
adipose tissues and the measured and estimated body shape BMI parameters.  
The highest correlation between segmented volume and BMIest was found with  
r2 = 0.69 for male and female data. Comparison of the same parameters using a high 
and a low tube current protocol resulted in significant dissimilarities.  
The correlation between SAT and BMIest was characterized with r2 = 0.7445 using 
Protocol-I and r2 = 0.2477 using Protocol-II. Correlation coefficients between 
segmented adipose tissue and BMI or BMIest are closer if we use images obtained 
by the higher tube current. Studying CV data of SAT and VAT data revealed that 
the volume of both kinds of adipose tissue can be estimated with a CV≤ 10 % if the 
axial slice is chosen from a 5 cm wide area of the lumbal region. 

CT-based determination of body mass index can be useful in two cases. One is in 
clinical practice, when the patient is unconscious and height and weight data are 
unavailable. The other is in research where no BMI or other anthropometric data 
are available. The latter was the case in an article by O'Leary and colleagues 
published in 2012. In their research, they performed adipose tissue segmentation in 
patients with severe acute pancreatitis without anthropometric data, so they used the 
BMI estimator model created by Geraghty and colleagues in 2003. In Geraghty's 
study, in addition to BMI, height, weight and body surface area were estimated 
using a single abdominal CT image. 
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Analyzing the nine proposed BMI models, we found that the calculated BMIest 
values agreed with the real BMI data (males: r2 = 0.7802, females: r2 = 0.841), and 
7 out of the 9 models gave excellent accuracy to estimate the body shape.  
In addition, we found that having these seven models, the simpler ones (V, VI and 
VII) gave similar reliability to the original equations (I and III), so it follows that 
there is no need to use a complex, multifactorial model for BMI estimation. 

There are some limitations to our study. First, based on the previous article, we 
selected the slices including the L1 [1] [8] and hila of the kidneys for adipose tissue 
segmentation. At the same time, other authors prefer L2-L3 or the level of umbilicus 
as reference [21, 24, 32]. The second limitation was the relatively few numbers of 
patients involved in Protocol-II. Third, we did not utilize an automatic method for 
segmentation, a better way could be to develop an algorithm to reduce the adipose 
tissue segmentation time. However, the segmentation time was not a critical aspect 
of our study. Finally, our study did not investigate the effects of other setting 
parameters on segmentation, such as the reconstruction kernel or slice thickness. 

Conclusions 

As three specific objectives have been identified in the introduction, we can state 
the following: 

i) In our study, we found a good correlation between the three HU ranges, 
without proportionality, thus, the segmented SAT and VAT areas are actually 
different. 

ii) The chosen anatomical level of segmentation significantly affects the VAT 
and SAT values. 

iii) For the 98 patients, model-based BMI and real BMI were determined and 
compared. 

We have simplified the model-based BMI estimation and as a result, we have shown 
that a complex multivariate model is not necessary, for CT-based BMI calculations. 
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Abstract: Patients suffering from spinal cord injury (SCI) have shown a growing number in 

recent times. The effects of SCI have severe consequences, not only to the individual but their 

family and close surroundings too. The secondary medical issues related to SCIs have further 

negative effects, thus the rehabilitation of locomotion is becoming a key element for patients 

with SCI. Numerous devices are being tested and used to assist locomotion and gait therapy, 

one of them being exoskeletons. Lower extremity exoskeletons (LEE) have shown growing 

interest within health professionals, industrial and military stakeholders and of course SCI 

patients. This article documents 2 SCI patients using a LEE for gait training. Firstly, a 

literature review demonstrates the scientific relevance of the topic. Secondly, presentation of 

the study. Thirdly, the demonstration of the case studies, changes of the 2 SCI patients’ 

functional and physiological parameters during the process. The aim of the study is to show 

the effects and efficacy of intensive gait training with LEE of SCI patients. 

Keywords: Medical rehabilitation; Lower extremity exoskeleton; Spinal cord injuries 
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1 Introduction 

The field of medical rehabilitation is beginning to involve automated 
technologies at a growing rate, with the social robotics sector 
seemingly growing faster than other areas [1]. Exoskeletons are 
revolutionizing medical rehabilitation with biomechanics, robotics, and healthcare. 
They help individuals with mobility impairments regain independence and 
functional mobility. This study explores exoskeleton's historical evolution, 
biomechanical foundations, technological advancements, clinical efficacy, patient 
outcomes, practical implementation challenges, and knowledge gaps in medical 
rehabilitation. 

1.1 Historical Trajectory: Pioneering Visionaries to Real-
World Applications 

The concept of exoskeletons dates back to 1890 with Nicholas Yagn's patent 
"Apparatus for facilitating walking, running, and jumping" [2]. The Hardiman 
exoskeleton developed by General Electric in the 1960s aimed to enhance industrial 
labor, but technical limitations such as power supply constraints and complex 
controls limited practical applications [3]. The 21st Century saw advancements in 
materials, robotics, and control systems, leading to the development of the Berkeley 
Lower Extremity Exoskeleton (BLEEX) by Kazerooni et al. BLEEX bridged the 
gap between concept and reality [4]. Today, exoskeletons are revolutionizing 
medical rehabilitation and transforming the landscape of mobility challenges. 

1.2 Biomechanical Fundamentals: Fusing Human Physiology 
with Technological Innovation 

A nuanced understanding of human biomechanics is crucial for exoskeleton 
efficacy. Replicating and augmenting natural movements requires a delicate 
comprehension of joint mechanics, muscle coordination, and gait dynamics. Key 
biomechanical studies by Winter and Cappellini have shed light on human 
locomotion [5, 6]. These biomechanical foundations support exoskeletons that 
seamlessly integrate with the body, mitigate disparities, and enhance comfort.  

1.3 Technological Strides: Precision and Adaptation 

Exoskeletons have evolved with advancements in materials, actuators, and control 
systems. Durable yet comfortable materials, such as lightweight alloys and carbon 
fiber composites have been developed. Various actuation mechanisms are available, 
including electric motors and hydraulic, and pneumatic systems, which enable 
exoskeletons to mimic natural joint movements and provide support [7]. 
Sophisticated control algorithms and sensor integration strategies have been created 
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for adaptability, allowing exoskeletons to navigate different terrains and respond to 
user intent [8]. 

1.4 Clinical Efficacy: Accelerating Recovery and Fostering 
Independence 

Exoskeletons are making a significant shift in medical rehabilitation, offering new 
methods for recovery and functional augmentation. In neurorehabilitation, 
exoskeleton-assisted gait training benefits individuals with spinal cord injuries, 
stroke survivors, and neuromuscular disorders. Esquenazi's work has demonstrated 
the potential of exoskeletons to hasten recovery and restore ambulation [9]. A meta-
analysis by Liu suggests that exoskeleton robotic training improves ambulation 
recovery in patients with spinal cord injuries, particularly in those with an injury 
[10]. Exoskeletons are also making a mark in pediatric rehabilitation, as evidenced 
by devices such as the PediAnklebot, which holds promise for enhancing motor 
outcomes in children with cerebral palsy [11]. Beyond physical recovery, 
exoskeletons foster psychological well-being and a renewed sense of 
accomplishment. 

1.5 Measurement of Patient Outcomes and Compliance:  
A Pathway to Objective Progress 

The effectiveness of exoskeletons depends on measuring patient outcomes and 
adherence to treatment using metrics such as objective assessment, gait parameters, 
energy expenditure, and functional independence. Real-time observations can be 
obtained through wearable sensors, as demonstrated by Kim et al [12]. However, 
the limited number of high-quality studies on exoskeletons makes it difficult to draw 
general conclusions, as pointed out in the systematic review by Tamburella et al. 
[13]. Additionally, user feedback and wearable devices are crucial for monitoring 
compliance, providing valuable data to refine exoskeleton interventions and 
optimize rehabilitation protocols. 

1.6 Patient Outcomes and Compliance: A Holistic Perspective 

The successful use of exoskeletons requires understanding patient outcomes and 
compliance. Research emphasizes the significance of patient satisfaction and 
acceptance, such as the systematic review by Cumplido-Trasmonte et al. in 
neurological pathology [14]. Combining objective measurements with patient-
reported outcomes provides a comprehensive understanding of the impact of 
exoskeleton interventions on patients' lives. 
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1.7 Practical Implementation Challenges: Navigating Real-
world Complexities 

Exoskeletons in clinical practice face challenges such as ensuring proper fit, 
customizing settings, and user training to optimize user experience and 
rehabilitation outcomes. A systematic review by Charette et al. found that the 
implementation of exoskeleton locomotor training programs for individuals with 
spinal cord injuries (SCI) is hindered by gaps in knowledge in the context and 
implementation process domains [15]. In upper limb rehabilitation, traditional 
methods can be costly, limiting the amount of time patients can spend on exercises. 
Bauer et al. introduced a hand rehabilitation module with a direct drive and force 
measurement for patients with spastic hemiplegia [16]. To maximize the potential 
of exoskeleton technologies, safety considerations, user education, and integration 
into rehabilitation settings are crucial. 

1.8 Knowledge Gaps and Future Exploration 

There is significant potential for exoskeletons, but gaps in knowledge remain, 
particularly in the areas of physiological changes during exoskeleton-assisted 
walking, long-term effects of exoskeleton training, and the interaction between 
exoskeletons and the neuromuscular system [17]. Yip et al. found that underground 
exoskeletons can help individuals with spinal cord injuries maintain healthy 
lifestyles and improve their quality of life. Additionally, there are secondary health 
complications associated with prolonged immobilization, and individuals with 
spinal cord injuries are interested in the potential to reintegrate into the community 
[18]. To improve rehabilitation protocols and realize the full potential of 
exoskeleton interventions, it is crucial to address these knowledge gaps. 

1.9 Cost-effectiveness Analysis: Balancing Clinical Gains and 
Economic Realities 

Exoskeletons can improve medical rehabilitation cost-effectiveness. Consider long-
term financial implications, insurance coverage, and societal benefits for fair access 
and sustainable integration into healthcare systems. A study by Pinto et al. found 
that cost-effectiveness of training strategies varies depending on the completeness 
of SCI. Conventional training was more cost-effective for incomplete SCI, while 
overground robotic training was more cost-effective for complete SCI [19]. 
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2 A Lower Extremity Exoskeleton Study with SCI 
Patients 

2.1 Summary 
In 2018, the University of Pécs won a European Union tender that enabled the 
purchase of two ReWalk 6.0 lower extremity exoskeletons (LEE) and the 
establishment of a research project in collaboration with the National Institute of 
Medical Rehabilitation. The objective of this study was to evaluate the effectiveness 
of exoskeletons in the rehabilitation of patients with SCI. The investigation also 
encompassed the indications for the therapeutic use of the exoskeleton, its 
physiological effects, and its role in ambulatory rehabilitation. 

In December 2019, official training of the ReWalk company took place at the 
National Institute of Medical Rehabilitation. Nine movement therapists and five 
medical doctors attended and received certificates to operate and use the ReWalk 
6.0 lower extremity exoskeleton. 

Six patients from the spinal cord injury patient database at the National Institute of 
Medical Rehabilitation were selected for the study, which was originally planned to 
commence in the spring of 2020. However, the COVID-19 pandemic forced the 
postponement of this study. Due to the continuously changing medical protocols 
related to the pandemic, the study could not be resumed in autumn 2020. 

The University of Pécs had already been using a device for gait training of an SCI 
patient before the start of the study; however, no patients from this institution were 
included in the study. Therefore, our work exclusively presents case studies of two 
individuals with SCI at the National Institute of Medical Rehabilitation. 

2.2 Objectives and Method 
The purpose of this study was to evaluate the effects of gait therapy on certain 
functional and physiological parameters in patients who had suffered an injury four 
months prior. To achieve this, we conducted a prospective, controlled trial over a 
six-month period, during which we registered and followed these parameters in 
patients who received traditional rehabilitation. The parameters included DEXA 
scans for determining bone density and body composition, body impedance 
measurement for analyzing gastrointestinal and urogenital functions, and 
questionnaires about general well-being and compliance. 
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2.3 The Device 
To ensure the user's safety, comfort, and functionality, the ReWalk 6.0 Personal 
Exoskeleton was tailored to their body (Figure 1). The battery-powered system 
includes a wearable exoskeleton that can support its own weight, with motors at the 
knee and hip joints, and adjustable ankle joints that allow the user to stand up, sit 
down, and walk in a natural gait pattern. ReWalkers use buttons on a wristband to 
control the movement of their exoskeletons and make subtle adjustments to their 
trunk motion during walking. The body of the device shifts repeatedly, generating 
a series of steps that simulate a natural and functional gait. Customizable ankle 
joints and software settings allow clinicians to adjust the gait pattern of each patient 
for efficiency and comfort. The device is designed for use with crutches, and users 
can navigate the curbs and stairs using wrist-based controls or hip-mounted buttons 
[20]. 

 
Figure 1 

ReWalk 6.0. lower extremity exoskeleton 

2.4 Inclusion Criteria 
The inclusion criteria for the study were established in accordance with the ReWalk 
Robotics. These criteria included  

• spinal cord injury (SCI) with paraplegia or paraparesis below the 4th 
thoracic vertebrae, 

• a minimum of 4 months since the injury,  
• functional use of the hand, shoulder complex and upper extremity to use 

mandatory crutches,  
• a hip T-score ≤ -3.5 on a DEXA test,  
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• an intact skeleton with only stable or stabilized spine injuries and no other 
unstable fractures,  

• the ability to stand with the device similar to Easystand,  
• good general health,  
• a height of 160-190 cm, 
• an upper leg length (hip axis to knee axis) of 36-48.5 cm and a lower leg 

length (knee axis to bottom of foot) of 43.5-56 cm, 
• a maximum body weight of 100 kg,  
• and sufficient physiological lower extremity range of motion without 

contractures.  

27 patients were identified as eligible from the SCI patient database at the National 
Institute of Medical Rehabilitation, of which 6 agreed to participate in the study. 

2.5 Protocol 
• Each patient was accompanied by at least two certified therapists during 

sessions. 
• The therapy program was divided into four stages, with the first three 

stages consisting of intensive training five times a week for, 60-90 minutes 
each. The last stage offered lower-intensity training to maintain safe and 
functional gait. 

• Patient training was scheduled for a period of 6 months. 
• Psychologists were available during the study and the follow-up periods to 

monitor for any psychological issues. 

However, due to practical constraints, we found that it was difficult to maintain the 
original schedule. Five sessions per week proved to be too much time off work for 
both patients and physiotherapists, so we adjusted to three sessions per week. 

2.6 Therapy, Gait Training 
The gait training with the ReWalk LEE was divided into 4 phases: 

• 1.: Personalized preparatory therapy improves sitting balance and upper 
extremity strength if needed. This phase also included learning to use the 
device and transferring it in and out of the wheelchair. 

• 2.: Independent application of the device, stand-up and sitting-down 
maneuvers, and sufficient use of crutches. The patient should be safe in a 
standing position and able to shift body weight in all directions. 
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• 3.: Independent walking, ability to use the controller alone. The patient 
should be able to safely manage starting and stopping walking as desired. 

• 4.: Lower intensity, sustaining gait therapy. 

2.7 Limitations 
The study had several limitations, including: 

• Limited access to transport services for SCI patients makes it difficult for 
them to attend institutes.  

• The lack of financial reimbursement and time off work made the initial 
phase of intensive gait training (5 times a week, 60-90 minutes/session) 
unmanageable. This was the main reason why the patients did not 
participate in the study. 

• The COVID-19 pandemic and related restrictions on patients, therapists, 
and regulatory agencies affected the progress of the study. 

• Patients' health issues and lack of continuity also presented challenges. 

3 Case Studies 
Due to the pandemic, the commencement of this study was delayed. However, the 
National Institute for Medical Rehabilitation successfully mobilized two 
hospitalized patients, who attempted to use of the device on three separate 
occasions. Although we were able to use the device with another SCI patient who 
was originally enrolled in the study, medical adverse events ultimately led to the 
cessation of further training. 

3.1 Case Study 1 
K.Á. 

• 2017: fracture of 4th and 5th thoracic vertebrae, complete SCI, underwent 
rehabilitation at the National Institute of Medical Rehabilitation 

• 2019 autumn: Conducted an exoskeleton study. 
• 2021 autumn: After 30 successful sessions, reached a maximum of 288 

steps per session. 
• 2022 February: Experienced left leg spasms that restricted gait training 

with LEE. 
• 2022 March: Infected with COVID, suffered from post-COVID 

symptoms, underwent pulmonology control. Additionally, the patient had 
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severe toenail and prolonged skin injuries, which prevented further LEE 
training. 

• 2023 May: Reopened the exoskeleton study (Figure 2). 

 
Figure 2 

K.Á. exoskeleton gait training 

3.2 Case Study 2 
A.Á. 

• 2022 June: The patient was diagnosed with polytrauma, including bilateral 
pneumothorax, lung and liver contusion, fractured ribs, an unstable 
fracture of the vertebral body at the level of the 12th thoracic vertebrae, a 
fracture of the transverse process of the vertebral column at the level of the 
11th thoracic to 2nd lumbar vertebrae, and a fracture of the pelvic bone. 
Surgical intervention involved spinal stabilization, and vertebral 
decompression, and laminectomy. 

• 2022 July: the patient underwent complex rehabilitation at the National 
Institute of Medical Rehabilitation, where they learned to use wheelchairs 
and perform intermittent catheterization independently. 

• 2022 September: continues rehabilitation at the National Institute of 
Medical Rehabilitation 

• Status:  
o Sensorium: anaesthesia below the 12th thoracic vertebrae on the 

right side and below the 11th thoracic vertebrae on the left side of 
the trunk. 
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o Motorium: Complete on the upper extremities (UE), no voluntary 
movements in the lower extremities (LE). 

o Vegetativum: daily 5x clean intermittent self-catheterization 
(CISC), sufficient bowel management  

o Muscle tone: moderate spasticity in lower extremities 
o Reflexes: UE: normal, LE: increased patellar and foot reflexes, 

bilateral positive Babinski reflex 
o No contractures, sitting posture maintained, self-sufficient. 

• 2023 May: the patient participates in an exoskeleton study (Figure 3) 

 
Figure 3 

A.Á. exoskeleton gait training 

4 Results 

4.1 Bone Density 
Bone density data were measured using DEXA. All scans were performed by the 
team of Prof. Dr. Csaba Horváth at Semmelweis University - Department of Internal 
Medicine and Oncology. A DEXA is a type of medical imaging test. It uses very 
low levels of X-rays to measure bone density. DEXA stands for “dual-energy X-
ray absorptiometry.” Medical experts consider it to be the most useful, quick, and 
painless test for diagnosing osteoporosis [21]. 
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K.Á.’s BMD measurements for 2nd to 4th lumbar vertebrae showed a 4.6% decrease, 
a decrease of 1.6% in the left side femur and a 1.1% increase in the left side radius 
(Table 1). 

A.Á.’s datasets recorded a 1.8% increase in BMD values for 2nd to 4th lumbar 
vertebrae, a 0.9% decrease at the left side of the femur neck, while a 4.7% increase 
was noted at the left side radius (Table 2). 

Table 1 
K.Á. osteodensitometry data 

Osteodensitometry  K.Á. 

  28.03.2023  04.08.2023 

2nd-4th lumb.vert. BMD [g/cm2] 1,558 1,487 
2nd-4th lumb.vert. Z-Score 2,3 1,3 
Left side femur neck BMD [g/cm2] 1,079 1,062 
Left side femur neck Z-Score -0,4 -0,8 
Hip BMD [g/cm2] 0,954 0,966 
Hip Z-Score -1,5 -1,6 
Left side radius BMD [g/cm2] 1,035 1,046 
Left side radius Z-Score 0,5 0,6 

Table 2 
A.Á. osteodensitometry data 

Osteodensitometry  A.Á. 

  08.03.2023  04.08.2023 

2nd-4th lumb.vert. BMD [g/cm2] 1,049 1,068 
2nd-4th lumb.vert. Z-Score -1,2 -1,2 
Left side femur neck BMD [g/cm2] 1,096 1,086 
Left side femur neck Z-Score 0,0 -0,2 
Hip BMD [g/cm2] 0,872 0,846 
Hip Z-Score -1,7 -2,0 
Left side radius BMD [g/cm2] 0,974 1,020 
Left side radius Z-Score - - 

4.2 Body Composition 
Bioelectrical impedance analysis (BIA) is a technique used to determine body 
composition by measuring the rate at which a painless low-level electrical current 
travels through the body. Different tissues in the body allow electrical currents to 
travel at different speeds, with fat being more resistant than muscle or water. 
Therefore, a higher resistance (impedance) indicates higher body fat percentage. 
Most BIA scales estimate the total fat, muscle, water, and bone weight and 
percentage based on this rate and use other data such as height, sex, and weight 
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measurements to determine the body’s fat percentage. To improve the accuracy of 
the BIA scale, patients were advised to fast overnight before the test, as suggested 
by the institute’s dietician. Other studies have found that a training program using 
exoskeletons is effective in preventing continuous muscle loss in patients with SCI 
and reducing body fat to maintain health [22]. 

K.Á.’s initial BIA was performed at the start of the original study, and the 
measurements were repeated after a 3-month period of LEE gait training. Overall, 
his data showed a decline in weight value (2.1%), fat-free mass index value 
(0.47%), and visceral adipose tissue value (1.2%). An increase in absolute fat mass 
(1.14%) was observed, whereas skeletal muscle mass decreased by 1.21%. 

The body composition measurements of A.Á. showed a lower absolute fat mass 
value of 0.14%, and an increase in skeletal muscle mass value (0.45%) and weight 
value (1.6%). However, the FFMI value dropped by 0.47% and the visceral adipose 
tissue value decreased by 0.32%. 

4.3 Gastrointestinal and Urogenital Changes 
Urodynamic testing is a diagnostic procedure that evaluates the functioning of the 
lower urinary tract, including the bladder, sphincters, and urethra, in relation to the 
storage and release of urine. The focus of these tests is on the bladder's ability to 
store and empty urine, as well as to monitor bladder contractions [23]. We observed 
an improvement in bladder compliance and subsequently prescribed antimuscarinic 
medications. Interestingly, there was no significant change in the patient's stool 
type, as measured using the Bristol stool form scale. 

4.4 Questionnaires Related to the Patients' General Condition 
and Compliance 

Questionnaires were used for both patients, focusing on well-being, functionality, 
movement, and gastrointestinal functions. The recording dates of the questionnaires 
were marked as follows unless marked otherwise. 

• K.Á.: T1.1.: 27.09.2021; T1.2.: 03.08.2023 
• A.Á.: T2.1.: 08.05.2023; T2.2.: 31.07.2023 

4.4.1 Trunk Control Test 

The Trunk Control Test (TCT) was used to evaluate the trunk movements in patients 
with neurological disorders. The test was conducted on a bed and consisted of four 
tasks: rolling to the weak side, rolling to the strong side, maintaining balance in a 
sitting position on the edge of the bed with both feet off the ground for at least 30 
seconds, and sitting up from a lying down position. The TCT score was determined 
by adding the scores obtained from each of the four tasks (ranging from 0 to 100). 
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Both patients displayed equal performance at the beginning and end of the three-
month period, with a score of 74. 

4.4.2 Spinal Cord Independence Measure 

The Spinal Cord Independence Measure (SCIM) was created to evaluate the 
function of patients with spinal cord injuries in three specific areas: self-care 
(feeding, grooming, bathing, and dressing), respiration and sphincter management, 
and mobility (bed and transfer abilities both indoors and outdoors). The scores 
ranged from 0 to 100, with a score of 0 indicating total dependence and a score of 
100 indicating complete independence. SCIM can also aid clinicians in setting 
treatment goals and objectives for patients with SCI [24]. Both patients showed 
similar test outcomes and changes. 

4.4.3 Barthel Index 

The Barthel Index for Activities of Daily Living (ADL) is an ordinal scale that 
measures a person's ability to complete activities of daily living [25]. The guidelines 
for interpreting Barthel scores are as follows [26]. 

• Scores of 0-20 indicate "total" dependency 
• Scores of 21-60 indicate "severe" dependency 
• Scores of 61-90 indicate "moderate" dependency 
• Scores of 91-99 indicate "slight" dependency. 

K.Á. performed equally at the beginning and at the end of the study. A.Á. reported 
on minor changes in toilet use and bathing, improved bladder function, and a total 
score improvement of 1. Both cases indicate moderate dependency. 

4.4.4 Berg Balance Scale 

The Berg Balance Scale (BBS) is used to measure a patient's ability to balance 
safely during a series of predetermined tasks. It is a 14-item list, with each item 
having a five-point ordinal scale ranging from 0 to 4, with 0 indicating the lowest 
level of function and 4 indicating the highest level of function [27]. A score of  

• 0 to 20 indicates that the person will likely need assistance from a 
wheelchair to move around safely, while a score of  

• 21 to 40 indicates that the person will need some type of walking 
assistance, such as a cane or walker. 

In this case, minor improvements were seen in both patients, with K.Á. improving 
by 1 point (22-›23) and A.Á. improving by 2 points (20-›22). 
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4.4.5 36-Item Short Form Survey 

The 36-Item Short Form Survey (SF-36) is a widely used self-reported measure of 
health that was originally developed as a tool for assessing quality of life in the 
Medical Outcomes Study [28]. It comprises 36 questions that cover eight domains 
of health [29], and scores for each domain range from 0 to 100, with higher scores 
indicating better health. Scores for the different domains were converted and pooled 
using a scoring key, and the total score provided an overall measure of quality of 
life (QOL), ranging from low to high. The total score can be divided into two parts: 
a physical component summary and a mental component summary. Research 
suggests that interpreting SF-36 scores can be difficult and should be done in 
comparison to the overall score or profile [30] and that SF-36 cannot be used as a 
single index of overall health-related QOL because it measures two dimensions 
(physical and mental) [31]. In this study, the SF-36 outcome had a lower score on 
most dimensions of the questionnaire with a minor reduction particularly in the 
areas of mental health (Table 3). 

Table 3 
SF-36 scores for K.Á. and A.Á. 

SF-36 K.Á. A.Á. 

0-100 scores mean 0-100% T.1.1. T1.2. T2.1. T2.2. 

physical functioning  35 10 55 55 
bodily pain  100 100 90 90 
role limitations due to physical health  75 50 25 25 
role limitations due to emotional problems  100 0 100 66,7 
emotional well-being  92 72 64 60 
social functioning  75 37,5 75 75 
energy/fatigue  80 50 55 50 
general health perceptions  85 75 90 90 

4.4.6 WHOQOL-BREF Questionnaire 

The WHOQOL-BREF is a 26-item version of the WHOQOL-100 that assesses the 
quality of life, health, and well-being of people with and without disease as well as 
health professionals. Each item on the WHOQOL-BREF was scored from 1 to 5 on 
a response scale and the scores were then converted to a 0-100 scale. A score of 0 
represents the worst possible health state, whereas a score of 100 represents the best 
possible health state in the respective domain. The physical, psychological, social, 
and environmental health status of the patients was assessed separately [32].  
The WHOQOL-BREF showed that K.Á. experienced a 4-point improvement, while 
A.Á. indicated a 10-point decrease in the total score (Table 4). 

 
Table 4 
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WHOQOL-BREF Questionnaire scores for K.Á. and A.Á. 

WHOQOL-BREF K.Á. A.Á. 

1: very poor; 2: poor; 3: neither poor nor good; 
4: good; 5: very good 

T.1.1. T1.2. T2.1. T2.2. 

How would you rate your quality of life? 4 4 4 5 
How satisfied are you with your health? 3 4 4 3 
To what extent do you feel that physical pain 
prevents you from doing what you need to do?  

1 1 1 3 

How much do you need any medical treatment 
to function in your daily life? 

1 1 1 2 

How much do you enjoy life? 4 4 3 1 
To what extent do you feel your life to be 
meaningful? 

5 4 3 2 

How well are you able to concentrate?  4 4 4 3 
How safe do you feel in your daily life?  5 5 4 4 
How healthy is your physical environment?  5 4 4 4 
Do you have enough energy for everyday life?  4 4 5 4 
Are you able to accept your bodily appearance?  5 4 3 3 
Have you enough money to meet your needs?  4 5 4 4 
How available to you is the information that 
you need in your day-to-day life?  

4 5 3 2 

To what extent do you have the opportunity for 
leisure activities?  

2 3 4 4 

How well are you able to get around? 2 1 5 4 
How satisfied are you with your sleep? 3 4 4 3 
How satisfied are you with your ability to 
perform your daily living activities?  

4 4 3 3 

How satisfied are you with your capacity for 
work?  

4 4 4 2 

How satisfied are you with yourself?  4 4 3 2 
How satisfied are you with your personal 
relationships?  

4 4 3 2 

How satisfied are you with your sex life?  4 4 2 2 
How satisfied are you with the support you get 
from your friends?  

4 5 2 2 

How satisfied are you with the conditions of 
your living place?  

5 4 5 5 

How satisfied are you with your access to 
health services?  

2 4 3 2 

How satisfied are you with your transport?  3 4 4 3 
How often do you have negative feelings such 
as blue mood, despair, anxiety, depression?  

1 1 3 4 

Total 91 95 88 78 



B. Shenker et al. Examining the Efficacy of Lower Extremity Exoskeletons in  
 the Rehabilitation Process of Spinal Cord Injury Patients – Case Studies 

‒ 126 ‒ 

4.4.7 Beck’s Depression Inventory 

The Beck Depression Inventory Short Form (BDI-SF) is a 13-item self-report rating 
scale that measures the characteristic attitudes and symptoms of depression [33]. 
The scoring system for the BDI-SF was as follows: 

• 1-10:  These ups and downs are considered normal  
• 11-16:  Mild mood disturbance  
• 17-20:  Borderline clinical depression  
• 21-30: Moderate depression  
• 31-40: Severe depression 
• 40 < : Extreme depression [34] 

In the case of K.Á., their BDI-SF score remained within the normal range before 
and after LEE gait training and increased by 3 points (0-›3).  

Meanwhile, A.Á.'s evaluation showed an initial score of 9, which increased to a 
score of 12 by the end of the 3-month trial period. According to the BDI-SF scoring 
system, A.Á.'s score increased from the normal range to mild mood disturbances 
(9-›12). 

4.4.8 Beck Anxiety Inventory 

The Beck Anxiety Inventory (BAI) was used to measure the severity of anxiety. It 
is a 21-question multiple-choice self-report inventory that focuses on an individual's 
feelings in the previous week, primarily on somatic symptoms [35]. The total score 
was calculated by summing up the 21 items. 

• Score of 0 – 21 = low anxiety.  
• Score of 22 – 35 = moderate anxiety.  
• Score of 36 and above = potentially concerning levels of anxiety [36]. 

During the trial period, both patient scores changed, but they remained within the 
range of low anxiety (0-21). 

4.5 Gait Training Outcomes 
The patient's pulse and blood pressure were measured using the exoskeleton before, 
during, and after each session of the 3-month gait training period. The number of 
steps taken with the device's assistance was also registered, and any adverse events 
were documented. K.Á. had 17 sessions, twice a week, each lasting approximately 
60 minutes. A maximum of 640 steps were achieved in session 12, with an average 
of 301 steps performed per session. The peak heart rate was measured at 127 during 
session 16. The 10 metre walking test time was 32.44 seconds. A.Á. had 14 sessions, 
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twice a week. The maximum heart rate observed was 112 in session 6 and 12 in 
session 12, with high blood pressure recorded in sessions 6 (162/95) and 14 
(143/93). The patient experienced vertigo and gait training was not possible at those 
times. The maximum step count was 1727 in session 12, with an average of 480 
steps taken during the training period. The 10 metre walking test time was 26.39 
seconds. 

Conclusions 

In conclusion, the body composition data indicated a decrease in weight and visceral 
adipose tissue for K.Á. due to the long-lasting COVID-19 and post-COVID 
syndrome. The patient's immobility contributed to a more sedentary lifestyle. 
Further BIA tests are planned for this patient. A.Á.'s skeletal muscle mass and 
weight increased, suggesting the benefits of LEE gait training. 

Regarding bone density, the changes were minimal due to the brief trial period.  

The first stage of hyperactive detrusor syndrome showed improvement in bladder 
compliance. Both patients experienced an increase in the volume of involuntary 
detrusor contractions; however, the administration of antimuscarinic medication 
was justified.  

We found no significant differences in the TCT, SCIM, Barthel index, and BBS 
scores among the patients. This may have contributed to the successful 
rehabilitation, as sufficient mobility was achieved. However, decreasing scores on 
the SF-36, WHOQOL-BREF, BDI-SF, and BAI tests suggest a lower mental health 
state. A.Á.'s data showed an improvement in physical parameters, but a decrease in 
mental health measures, which may be related to the documented suicidal ideation 
at the time of SCI. 

The patients showed significant improvements in LEE gait training, and their 
motivation remained high throughout the trial period. Seeing the patients evolve 
and mastering the basic skills of LEE training is a motivating experience. The next 
chapter of LEE training involved stair climbing. 

The experiences obtained from our work highlight the need to explore patients’ and 
their caregivers’ attitudes towards exoskeletons, to determine the minimum number 
of weekly treatments needed to achieve clinically significant efficacy on the 
primary and secondary outcomes, and to investigate whether inpatient versus 
ambulatory care would be a better form of exoskeleton treatment for SCI patients 
in a given jurisdiction and infrastructure. The study included multiple outcome 
measures to track patient parameters, such as physiological indicators, mobility, 
functioning, health status, and quality of life. The connection between digitally 
measured parameters and patient-reported outcomes has not been thoroughly 
explored. An important point to consider is which outcomes should be recorded at 
which intervals, considering the measurement properties of the measurement tools, 
the human/technical resource needs for a comprehensive measurement, and 
patients’ tolerance for a comprehensive measurement. Identifying highly relevant 
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outcomes for patients and caregivers and developing a standardized set of primary 
and secondary outcomes for clinical trials and practice are crucial. This set can then 
be customized according to the specific study requirements. 

The case studies demonstrated the potential for SCI patients to use robotic 
rehabilitation devices independently, and the indirect success of the project was the 
modification of the social security funding regulation for national health care [37]. 
New therapeutic modalities, including ambulatory gait training with LEE have been 
accepted, moving Hungary closer to countries that use robotic technology in their 
therapeutic practice. 

Future plans 

Our future plans involve exploring the adaptability of LEE gait training in the 
rehabilitation process of patients with SCI with the aim of including more patients 
and identifying more effective evaluation methods. This also allows us to examine 
the financial viability and feasibility of implementing such devices. 
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