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Abstract. We are interested in the structure of the solution space of second-order
half-linear differential equations taking into account various classifications regarding
asymptotics of solutions. We focus on an exhaustive analysis of the relations among
several types of classes which include the classes constructed with respect to the values
of the limits of solutions and their quasiderivatives, the classes of regularly varying
solutions, the classes of principal and nonprincipal solutions, and the classes of the so-
lutions that obey certain asymptotic formulae. Many of our observations are new even
in the case of linear differential equations, and we provide also the revision of existing
results.
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1 Introduction

We consider the half-linear differential equation

(r(t)Φ(u′))′ + p(t)Φ(u) = 0, (1.1)

t ∈ [a, ∞), a > 0, where r(t) > 0, Φ(u) = |u|α−1 sgn u, α > 1. By Φ−1 we mean the inverse of
Φ. Note that Φ−1(u) = |u|β−1 sgn u, where β is the conjugate number to α, i.e.,

1
α
+

1
β
= 1.

We study asymptotic properties of equation (1.1) from several points of view. We deal
with the sets of solutions classified according to the values of their limits and the limits of
their quasiderivatives, the classes of regularly varying solutions (with prescribed indices), the
classes of principal and nonprincipal solutions, and the classes of solutions satisfying quite
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precise asymptotic formulae. We provide an exhaustive discussion concerning the relations
among these classes and, in fact, in each setting we describe the entire solution space of (1.1).
A big part of our results is new even in the linear case (where such a comprehensive treatment
has not been known previously). In addition, we offer a revision and completion of existing
results and place them into a broader context. To be more precise, all the results where p > 0
(and L > 0) are new, with the exception of some of the inclusions involving the formulae
in terms of L, which are established in [22, Section 5]. We utilize in the proofs also another
results from [22], namely Theorem 3.3 and Lemma 3.5 on regular variation of the elements of
the solution space. As for the case p < 0, all the results where η < 0 (in Theorem 2.1 and
Theorem 2.2) or δ + α < γ (the entire Theorem 2.3) or ηi < 0 (in Theorem 2.4) are new. More-
over, the results in the case p < 0 are newly supplemented by the formulae in terms of Bk,
and some of the known inclusions involving Gk,Hk are completed in sense of equalities. The
known results which are included in Theorem 2.1 and Theorem 2.2 (except of those involving
L) are taken from [19, Section 6] and [23, Section 4], see also Lemma 3.19. The relations with
the formulae involving L in Theorems 2.1, 2.2, 2.4 for the case p < 0 and L < 0 are taken from
[20, Theorem 2, Theorem 4]. Thanks to the parallel analysis of the cases p < 0 and p > 0,
we can see similarities and differences between these two cases. This concerns not only the
statements, but also the proofs, some of them can be unified, some other require A different
approach. Further relations and comparisons with existing results are spread throughout the
text.

Some phenomena which can occur only in the purely half-linear case (i.e., α ̸= 2) are
revealed. Recall that (1.1) arises out when studying radially symmetric solutions of certain
partial differential equations with p-Laplacian, thus the results can be useful in theory of
PDEs. Our observations are important also from stability point of view and can find appli-
cations in a description of Poincaré–Perron solutions which are associated to perturbations of
some autonomous nonlinear differential equations.

An important role in our theory is played by the condition

lim
t→∞

tα p(t)

r(t)
= Cγ. (1.2)

This condition guarantees that the set of all positive solutions of (1.1) consists of regularly
varying solutions of known indices which are related to the value of the limit Cγ ∈
(−∞, (|α − 1 − γ|/α)α], γ being the index of regular variation of r, see Theorem 3.3. As
for the existence of a regularly varying solution of (1.1), note that there are known conditions
in certain integral (more general) forms that are not only sufficient but also necessary (1.1), see
[9,10]. Since we assume regular variation of p and r (as we wish to include precise asymptotic
formulae into our relations among the classes), the integral conditions reduce to (1.2), and
thereby (1.2) actually becomes also necessary, see Lemma 3.5. We however emphasize that
thanks to Theorem 3.3 we work with the entire solution space, and there is no sign condition
on p a-priori needed.

A deeper approach to asymptotic formulae (including the critical – double root cases,
see below) and related problems in the framework not only of Karamata theory, but also
of de Haan theory (the classes Gamma and Pi) can be found in [19, 20, 22, 23]. Relations of
regularly varying solutions of (1.1) to Poincaré–Perron solutions are examined in [21, 22]. For
further results concerning asymptotics of half-linear differential equations in the framework of
regular variation see [6, 9–11, 14–17]. A very important work which shows how the Karamata
theory can be applied to study qualitative properties of various differential equations is the
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monograph [12] by Marić, see also [18], where the progress after the year 2000 is summarized.
Recall that by the Sturm type separation theorem which extends to half-linear equations,

see [6, Chapter 1], a solution of (1.1) is oscillatory (i.e., it is not of eventually one sign) if and
only if all solutions of (1.1) are oscillatory. Hence, we can classify equation (1.1) as oscillatory
or nonoscillatory as in the linear case. We are interested in behavior of nonoscillatory solutions
of (1.1). Since the solution space (1.1) is homogeneous, without loss of generality we may
consider only the set

S = {y : y(t) is a positive solution of (1.1) for large t}.

Assuming that p is eventually of one sign we get that all solutions in S are eventually mono-
tone, thus any such a solution belongs to one of the classes

IS = {y ∈ S : y′(t) > 0 for large t}, DS = {y ∈ S : y′(t) < 0 for large t}.

The classes IS ,DS can further be divided into four mutually disjoint subclasses

ISB =

{
y ∈ IS : lim

t→∞
y(t) = My ∈ (0, ∞)

}
, IS∞ =

{
y ∈ IS : lim

t→∞
y(t) = ∞

}
,

DSB =

{
y ∈ DS : lim

t→∞
y(t) = My ∈ (0, ∞)

}
, DS0 =

{
y ∈ DS : lim

t→∞
y(t) = 0

}
.

The so-called quasiderivative y[1] of y ∈ S is defined by y[1] = rΦ(y′). We introduce the
following convention that is pertinent to the limits of solutions and their quasiderivatives:

ISuv =

{
y ∈ IS : lim

t→∞
y(t) = u, lim

t→∞
y[1](t) = v

}
,

DSuv =

{
y ∈ DS : lim

t→∞
y(t) = u, lim

t→∞
|y[1](t)| = v

}
;

for the subscripts of IS and DS , by u = B and v = B we mean that the value of u and v,
respectively, is a positive number. Denote

Jp =
∫

∞

a
|p(s)|ds, Jr =

∫
∞

a
r1−β(s)ds, (1.3)

Let p < 0. Then
S = IS ∪ DS , where IS ̸= ∅ ̸= DS , (1.4)

see [5], [6, Chapter 4]. It is almost immediate (thanks to monotonicity) that

IS = IS∞∞ ∪ IS∞B ∪ ISB∞ ∪ ISBB

and
DS = DS00 ∪DS0B ∪DSB0 ∪DSBB,

see also [5], [6, Chapter 4]. The solutions in IS∞∞ are called strongly increasing and the
solutions in DS00 are called strongly decreasing, together they form extremal solutions. The
solutions in IS∞B are called regularly increasing and the solutions in DS0B are called regularly

decreasing.
Let p > 0. If Jr = ∞, then DS = ∅ while if Jp = ∞, then IS = ∅, see [6, Chapter 4].

Note that if Jr = ∞ = Jp, then S = ∅ since (1.1) is oscillatory by the Leighton–Wintner type
criterion, see [6, Theorem 1.2.9]. Moreover, it is easy to show that if Jr = ∞ (and Jp < ∞), then

S = IS = IS∞B ∪ IS∞0 ∪ ISB0, (1.5)
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while if Jp = ∞ (and Jr < ∞), then

S = DS = DSB∞ ∪DS0∞ ∪DS0B, (1.6)

see [4]. The solutions in IS∞B and DSB∞ are called dominant, the solutions in IS∞0 and DS0∞

are called intermediate, the solutions in ISB0 and DS0B are called subdominant. An important
role in studying (non)emptiness of the subclasses ISuv and DSuv and related problems is
played by the integral conditions (3.1). Some of these relations will be used in our proofs. For
more information in this direction, see [2–6].

If (1.1) is nonoscillatory, then there exists a nontrivial solution y of (1.1) such that for every
nontrivial solution u of (1.1) with u ̸= λy, λ ̸= 0, we have

y′(t)

y(t)
<

u′(t)

u(t)
for large t,

see, e.g., [6, Section 4.2]. Such a solution is said to be principal solution. Solutions of (1.1)
which are not principal are called nonprincipal solutions. Principal solutions are unique up to
a constant multiple. We denote

P = {y ∈ S : y is principal}.

Some characterizations of principal solutions are presented in Theorems 3.20–3.26 for the
purposes of our later use, see also [2,3,13]. Note that the situation concerning a description of
principal solutions is substantially more complicated in the case p > 0 than in the case p < 0
for half-linear equations.

A measurable function f : [a, ∞) → (0, ∞) is called regularly varying (at infinity) of index ϑ if

lim
t→∞

f (λt)

f (t)
= λϑ for every λ ∈ (0, ∞); (1.7)

we write f ∈ RV(ϑ). If ϑ = 0, we speak about slowly varying functions; we write f ∈ SV ,
thus SV = RV(0). If f ∈ RV(ϑ), then relation (1.7) holds uniformly on each compact λ-set
in (0, ∞) (the so-called Uniform Convergence Theorem, see, e.g., [1]). It follows that f ∈ RV(ϑ)
if and only if there exists a function L ∈ SV such that f (t) = tϑL(t) for every t. The slowly
varying component of f ∈ RV(ϑ) will be denoted by L f , i.e.,

L f (t) :=
f (t)

tϑ
, (1.8)

unless stated otherwise. We adopt notation (1.8) also for negative functions f such that | f | ∈
RV(ϑ). The so-called Representation Theorem (see, e.g., [1]) says the following: f ∈ RV(ϑ) if
and only if

f (t) = φ(t)tϑ exp
{∫ t

a

ψ(s)

s
ds

}
, (1.9)

t ≥ a, for some a > 0, where φ, ψ are measurable with limt→∞ φ(t) = C ∈ (0, ∞) and
limt→∞ ψ(t) = 0. A function f ∈ RV(ϑ) can alternatively be represented as

f (t) = φ(t) exp
{∫ t

a

ω(s)

s
ds

}
, (1.10)

t ≥ a, for some a > 0, where φ, ω are measurable with limt→∞ φ(t) = C ∈ (0, ∞) and
limt→∞ ω(t) = ϑ. A regularly varying function f is said to be normalized regularly varying, we
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write f ∈ NRV(ϑ), if φ(t) ≡ C in (1.9) or in (1.10). If (1.9) holds with ϑ = 0 and φ(t) ≡ C, we
say that f is normalized slowly varying, we write f ∈ NSV . We denote

SSV = S ∩ SV , SRV (ϑ)c = S ∩RV(ϑ),

SNSV = S ∩NSV , SNRV (ϑ) = S ∩NRV(ϑ);

a similar convention is used when S is replaced by DS or IS . Some properties of regularly
varying functions are gathered in Proposition 3.1 and Theorem 3.2; for more information see
[1, 8].

The condition
|p| ∈ RV(δ), r ∈ RV(γ), (1.11)

which plays an important role in our theory, in fact is not needed for showing regular variation
of solutions to (1.1), but it enables us to provide a precise asymptotic description. We will
assume that δ ̸= −1 and γ ̸= α − 1 which leads to avoiding the critical (double-root – see
(2.3)) setting. The critical setting (which is considered in connection with searching precise
asymptotic formulae in [20,22] and requires a more refined approach) could be treated also in
the framework of our topic – a finer classification would however be needed. Denote

G(t) = Φ
−1

(
tp(t)

r(t)

)
, J =

∫
∞

a
|G(t)|dt, H(t) =

tα−1 p(t)

r(t)
, R =

∫
∞

a
|H(t)|dt. (1.12)

If (1.11) holds and δ + α = γ, then

G(t) =
1
t

Φ
−1

(
Lp(t)

Lr(t)

)
and H(t) =

Lp(t)

tLr(t)
(1.13)

by Proposition 3.1. Observe that if α ̸= 2, then the situation where J = ∞ and R < ∞ (or
vice versa) can occur under the conditions (1.11) and δ + α = γ. An example can easily
be constructed via the relations in (1.13). This fact substantially affects the structure of the
solution space of (1.1) which turns out to be more complex than in the linear case. Lemma 3.7
describes a connection of J, R with the integrals in (3.1) which play a central role in studying
the existence problems in the classes ISuv,DSuv. To simplify writing asymptotic formulae,
we adopt the notation

E(σ, τ, K, f ) = exp
{∫ τ

σ
(1 + o(1))K f (s)ds

}
,

where o(1) is meant either as τ → ∞ when τ < ∞ or as σ → ∞ when τ = ∞. As usually,
for f , g which are either both positive or both negative, the relation f (t) ∼ g(t) as t → ∞

means limt→∞ f (t)/g(t) = 1, while f (t) = o(g(t)) as t → ∞ means limt→∞ f (t)/g(t) = 0. The
sets presented below are introduced for purposes of an easy and synoptic incorporation of
asymptotic formulae to other classifications; the constants My, Ny are defined by

My = lim
t→∞

y(t), Ny = lim
t→∞

y[1](t).

The sets G1,G2,H1,H2,H3,H4 are pertinent to the solutions in the classes SV and RV(ϱ),
respectively, where

ϱ =
α − 1 − γ

α − 1
, (1.14)



6 P. Řehák

under the condition Cγ = 0, and are defined by:

G1 =
{

y ∈ S : y(t) = E(a, t,−1/Φ
−1(δ + 1), G)

}
,

G2 =
{

y ∈ S : y(t) = MyE(t, ∞, 1/Φ
−1(δ + 1), G)

}
,

and

H1 =

{
y ∈ S : y(t) = y(t0) +

∫ t

t0

r1−β(s)E(a, s,−(β − 1)/Φ(ϱ), H)ds

}
,

H2 =

{
y ∈ S : y(t) =

∫
∞

t
r1−β(s)E(a, s,−(β − 1)/Φ(ϱ), H)ds

}
,

H3 =

{
y ∈ S : y(t) = y(t0) +

∫ t

t0

r1−β(s)Φ−1(Ny)E(s, ∞, (β − 1)/Φ(ϱ), H)ds

}
,

H4 =

{
y ∈ S : y(t) =

∫
∞

t
r1−β(s)Φ−1(−Ny)E(s, ∞, (β − 1)/Φ(ϱ), H)ds

}
.

If
∫

∞

a |H(s)|ds = ∞, then H1 = H2 = H0 (see Lemma 3.14), where

H0 =
{

y ∈ S : y(t) = tr1−β(s)E(a, t,−(β − 1)/Φ(ϱ), H)
}

.

The sets L1,L2 which are designed for the case Cγ ̸= 0 and for an alternative description in
the case Cγ = 0 with RV(ϱ) solutions, are given by:

L1(ϑ, η) =

{
y ∈ S : y(t) = tϑ

E

(
a, t,

1 − β

Φ(ϑ)− Cγ/ϑ
, L(ϑ, η, ·)

)}
,

L2(ϑ, η) =

{
y ∈ S : y(t) = Dtϑ

E

(
t, ∞,

β − 1
Φ(ϑ)− Cγ/ϑ + η|ϑ|α−2 , L(ϑ, η, ·)

)}
,

where

L(ϑ, η, t) =
1
t

[
tα p(t)

r(t)
− Cγ + Φ(ϑ)

(
tr′(t)

r(t)
− γ

)]
, with |L(ϑ, η, ·)| ∈ RV(η − 1),

and D = limt→∞ y(t)/tϑ. If A is a set, then by the equality A = L(ϑ, η) we mean that

A =

{
L1(ϑ, η) if

∫
∞

a |L(ϑ, η, s)|ds = ∞,

L2(ϑ, η) if
∫

∞

a |L(ϑ, η, s)|ds < ∞.
(1.15)

In view of Proposition 3.1, if η < 0 and A = L(ϑ, η), then A = L2(ϑ, η). Note that in our
results we actually have limt→∞ L(ϑ, η, t) = 0, thus by the Representation Theorem (1.9), we
get L(ϑ, η) ⊂ RV(ϑ), ϑ ∈ R, η ≤ 0. If Cγ = 0, then

L(0, η, t) = H(t) and L(ϱ, η, t) =
Lp(t)

tLr(t)
− Φ(ϱ)

L′
r(t)

Lr(t)
.

The sets B1, . . . ,B6 are pertinent to the situations where y and/or y[1] have a real nonzero limit
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and are defined as follows:

B1 =

{
y ∈ S : My − y(t) ∼

Φ−1(Ny)

ϱ
tr1−β(t) as t → ∞

}
,

B2 =

{
y ∈ S : Ny − y[1](t) ∼

Φ(My)

δ + 1
tp(t) as t → ∞

}
,

B3 =

{
y ∈ S : My − y(t) ∼

My(α − 1)
Φ−1(δ + 1)(δ + α − γ)

tG(t) as t → ∞

}
,

B4 =

{
y ∈ S : Ny − y[1](t) ∼

−Ny

Φ(ϱ)(δ + α − γ)
tH(t) as t → ∞

}
,

B5 =
{

y ∈ S : t|G(t)| = o(|My − y(t)|) as t → ∞
}

,

B6 =
{

y ∈ S : t|H(t)| = o(|Ny − y[1](t)|) as t → ∞

}
.

2 Main results

In this section we present the main results that are formulated as four theorems; we distin-
guish, in particular, whether Cγ is zero or not and whether γ is equal to δ + α or not.

First note that under the assumptions of Theorems 2.1–2.4, we have, for a given ϑ ∈ R,

SRV (ϑ) = SNRV (ϑ), (2.1)

see Remark 3.4. Therefore we omit writing this relation in formulations of the theorems
since it holds in each case. It is worthy of noting that because of the properties of principal
solutions, in the sets that are equal to P , we have uniqueness up to a constant multiple. This,
in particular, means that, for example, in the case (i-a) of Theorem 2.1, there is only one slowly
varying solution provided we fix its value at a point.

In Theorems 2.1-2.3, we need to take δ ̸= −1, γ ̸= α − 1; Theorem 2.4 does not require
an inequality. In fact, the equality in the settings of Theorems 2.1-2.3 would lead to some-
how critical cases (which correspond with double roots in (2.3) and/or border-line version
of the Karamata integration theorem). Actually, the critical cases can be treated, but a more
sophisticated approach is needed and introducing new special asymptotic subclasses is neces-
sary. The main ingredients in analyzing these cases are suitable transformations to non-critical
cases and applications of existing results (including the new ones in this paper). We will not
go further in this direction. For some considerations concerning the critical case see [20, 22].

The first two theorems deal with SV and RV(ϱ) solutions under the condition γ = δ + α.
Recall that ϱ is defined in (1.14).

Theorem 2.1. Let Cγ = 0 and (1.11) hold, where γ = δ + α. For the relations involving the class

L(ϱ, η) assume, in addition, |L(ϱ, η, ·)| ∈ RV(η − 1), η ≤ 0, and if the condition δ < −1 is supposed,

let, in addition, δ < −1 + η(α − 1). Then S = SNSV ∪ SNRV (ϱ), SNSV ̸= ∅, SNRV (ϱ) ̸= ∅, and

the following hold:

(i) Assume that J = ∞ and R = ∞.

(i-a) If p < 0 and δ < −1, then

SNSV = DS = DS00 = G1 = P , SNRV (ϱ) = IS = IS∞∞ = H1 = H0 = L(ϱ, η).

(i-b) If p < 0 and δ > −1, then

SNSV = IS = IS∞∞ = G1, SNRV (ϱ) = DS = DS00 = H2 = H0 = L(ϱ, η) = P .
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(i-c) If p > 0 and δ < −1, then

S = IS = IS∞0 = SNSV ∪ SNRV (ϱ), with SNSV = G1 = P , SNRV (ϱ) = H1 = H0 = L(ϱ, η).

(i-d) If p > 0 and δ > −1, then

S = DS = DS0∞ = SNSV ∪ SNRV (ϱ), with SNSV = G1, SNRV (ϱ) = H2 = H0 = L(ϱ, η) = P .

(ii) Assume that J < ∞ and R < ∞.

(ii-a) If p < 0 and δ < −1, then

SNSV = DS = DSB0 = G2 = B5 = P , SNRV (ϱ) = IS = IS∞B = H3 = B6 = L(ϱ, η).

(ii-b) If p < 0 and δ > −1, then

SNSV = IS = ISB∞ = G2 = B5, SNRV (ϱ) = DS = DS0B = H4 = B6 = L(ϱ, η) = P .

(ii-c) If p > 0 and δ < −1, then

SNSV = ISB0 = G2 = B5 = P , SNRV (ϱ) = IS∞B = H3 = B6 = L(ϱ, η).

(ii-d) If p > 0 and δ > −1, then

SNSV = DSB∞ = G2 = B5, SNRV (ϱ) = DS0B = H4 = B6 = L(ϱ, η) = P .

Observe that Theorem 2.1 and Theorem 2.2 have the same general assumptions. They differ
in the conditions regarding mutual behavior of J and R. We emphasize that the combinations
J = ∞ ∧ R < ∞ and J < ∞ ∧ R = ∞, which are assumed in Theorem 2.2, can occur only in
the purely half-linear case (i.e., α ̸= 2), and that is why we separate them into a particular
theorem. In view of equalities in (1.13), it is easy to find a suitable example illustrating this
setting. Indeed, take Lr(t) = 1 and Lp(t) = 1/ lnω t, where 1 < ω < α − 1 or α − 1 < ω < 1.
It so arises out that the structure of the solution space in the half-linear case is generally
more complex than in the linear one under our setting. In particular, under the conditions
of Theorem 2.2, there can coexist strongly monotone solutions with non-extremal ones or
intermediate solutions with dominant or subdominant ones. See also [4,5] where the problem
of coexistence and non-linear setting is discussed in a more general context.

Theorem 2.2. Let (1.11) hold, where γ = δ + α, and Cγ = 0. For the relations involving the class

L(ϱ, η) assume, in addition, |L(ϱ, η, ·)| ∈ RV(η − 1), η ≤ 0, and if the condition δ < −1 is supposed,

let, in addition, δ < −1 + η(α − 1). Then S = SNSV ∪ SNRV (ϱ), SNSV ̸= ∅, SNRV (ϱ) ̸= ∅, and

the following hold:

(i) Assume that J = ∞ and R < ∞.

(i-a) If p < 0 and δ < −1, then

SNSV = DS = DS00 = G1 = P , SNRV (ϱ) = IS = IS∞B = H4 = B6 = L(ϱ, η).

(i-b) If p < 0 and δ > −1, then

SNSV = IS = IS∞∞ = G1, SNRV (ϱ) = DS = DS0B = H4 = B6 = L(ϱ, η) = P .

(i-c) If p > 0 and δ < −1, then

SNSV = IS∞0 = G1 = P , SNRV (ϱ) = IS∞B = H4 = B6 = L(ϱ, η).
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(i-d) If p > 0 and δ > −1, then

SNSV = DS0∞ = G1, SNRV (ϱ) = DS0B = H4 = B6 = L(ϱ, η) = P .

(ii) Assume that J < ∞ and R = ∞.

(ii-a) If p < 0 and δ < −1, then

SNSV = DS = DSB0 = G2 = B5 = P , SNRV (ϱ) = IS = IS∞∞ = H1 = H0 = L(ϱ, η).

(ii-b) If p < 0 and δ > −1, then

SNSV = IS = ISB∞ = G2 = B5, SNRV (ϱ) = DS = DS00 = H2 = H0 = L(ϱ, η) = P .

(ii-c) If p > 0 and δ < −1, then

SNSV = ISB0 = G2 = B5 = P , SNRV (ϱ) = IS∞∞ = H1 = H0 = L(ϱ, η).

(ii-d) If p > 0 and δ > −1, then

SNSV = DSB∞ = G2 = B5, SNRV (ϱ) = DS0B = H2 = H0 = L(ϱ, η) = P .

The next theorem can be seen as a complement of Theorems 2.1 and 2.2 in the sense
that the condition δ + α = γ will not be satisfied. We assume δ + α < γ which implies
Cγ = 0, J < ∞, R < ∞; this can be seen from Proposition 3.1 (see the proof of Theorem 2.3).
On the other hand, in contrast to the case of equality δ + α = γ, the strict inequality allows us
to consider a richer variety of combinations of conditions δ < −1, δ > −1, γ < α− 1, γ > α− 1.
Observe that under the setting of Theorem 2.3, there are no extremal or intermediate solutions.
The case δ + α > γ is not considered since then there are no regularly varying solutions.
Indeed, by Proposition 3.1, we then have |Cγ| = ∞. If p < 0, then by [23], the set S is
nonempty and consists entirely of the solutions in the de Haan classes Γ and Γ−, which are
subsets of rapidly varying functions. If p > 0, then equation (1.1) is oscillatory by Hille–
Nehari type criteria, see [6, Chapter 3], and so S is empty. In fact, to show that there are no
RV solutions, we can argue in a alternative way, namely that the necessary condition is not
fulfilled, see Lemma 3.5.

Theorem 2.3. Let (1.11) hold, where γ > δ + α. For the relations involving the class L(ϱ, η) assume,

in addition, |L(ϱ, η, ·)| ∈ RV(η − 1), η ≤ 0, and if the condition γ < α − 1 is supposed, let, in

addition, γ < (α − 1)(1 + η). Then S = SNSV ∪ SNRV (ϱ), SNSV ̸= ∅, SNRV (ϱ) ̸= ∅, and the

following hold:

(i) Assume that δ < −1 and γ < α − 1.

(i-a) If p < 0, then

SNSV = DS = DSB0 = G2 = B3 = P , SNRV (ϱ) = IS = IS∞B = H3 = B4 = L(ϱ, η).

(i-b) If p > 0, then

SNSV = ISB0 = G2 = B3 = P , SNRV (ϱ) = IS∞B = H3 = B4 = L(ϱ, η).

(ii) Assume that δ > −1 and γ > α − 1.
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(ii-a) If p < 0, then

SNSV = IS = ISB0 = G2 = B3, SNRV (ϱ) = DS = DS0B = H4 = B4 = L(ϱ, η) = P .

(ii-b) If p > 0, then

SNSV = DSB∞ = G2 = B3, SNRV (ϱ) = DS0B = H4 = B4 = L(ϱ, η) = P .

(iii) Assume that δ < −1 and γ > α − 1.

(iii-a) If p < 0, then

ISNSV = IS = ISBB = B1 = B2 ̸= ∅,

DSNSV = DSB0 ∪DSBB, DSB0 = G2 = B3 ̸= ∅, DSBB = B1 = B2 ̸= ∅,

SNRV (ϱ) = DSNRV (ϱ) = DS0B = H4 = B4 = L(ϱ, η) = P .

(iii-b) If p > 0, then

ISNSV = IS = ISB0 ∪ ISBB, ISB0 = G2 = B3 ̸= ∅, ISBB = B1 = B2 ̸= ∅,

DSNSV = DSBB = B1 = B2 ̸= ∅,

SNRV (ϱ) = DSNRV (ϱ) = DS0B = H4 = B4 = L(ϱ, η) = P .

One can see that the case δ > −1 and γ < α − 1 is not considered in the previous theorem.
This is quite natural because there are no regularly varying solutions; the reasons are almost
the same as in the case α + δ > γ (discussed before Theorem 2.3). Indeed, if p < 0, there are
solutions only in the de Haan classes Γ and Γ−, see [23]. If p > 0, then (1.1) is oscillatory by
Hille–Wintner type criterion, see [6]. Alternatively, we can again argue by Lemma 3.5 since
δ + α > −1 + γ + 1 = γ.

The next theorem can be seen as a complement to the previous ones in the sense that
previously was assumed (or was guaranteed) Cγ = 0 and now we take Cγ ̸= 0. Note that
Cγ ̸= 0 and r ∈ RV(γ) imply |p| ∈ RV(γ − α). Indeed, from (1.2) and Proposition 3.1, we
have |p(t)| ∼ |Cγ|t−αr(t) ∈ RV(−α + γ) as t → ∞. In general, we do not need to exclude
the critical case γ = α − 1. However, if we take Cγ > 0, then necessarily γ ̸= α − 1 since we
assume Cγ ≤ Kγ, where

Kγ =

(
|α − 1 − γ|

α

)α

. (2.2)

We denote
ϑi = Φ(λi), ϑ1 ≤ ϑ2,

where λ1 ≤ λ2 are the (real) roots of

Fγ(λ) := |λ|β +
γ + 1 − α

α − 1
λ +

Cγ

α − 1
= 0. (2.3)

If η2 = 0 in Theorem 2.4, then we do not need to assume γ + α(ϑ2 − 1) + η2 > −1, since
this inequality is satisfied automatically thanks to the properties of the roots, see Lemma 3.6.
Observe that under the setting of Theorem 2.4, there are only extremal solutions (when p < 0)
or intermediate solutions (when p > 0). In the case Cγ = Kγ, generally oscillation or nonoscil-
lation of (1.1) can occur. Nonoscillation is guaranteed e.g. by tα p(t)/r(t) ≤ Cγ (this follows
from the Sturm type theorem, see [6]), or by the conditions of [9, Theorem 2.2, Theorem 3.2],
or by some suitable nonoscillation criterion, see, e.g., [6, Chapter 3].



Half-linear differential equations 11

Theorem 2.4. Let Cγ ∈ (−∞, Kγ] \ {0} and r ∈ NRV(γ) ∩ C1, γ ∈ R. For the relations involving

the classes L(ϑi, ηi), i = 1, 2, assume, in addition, |L(ϑi, ηi, ·)| ∈ RV(ηi − 1), where η1, η2 ≤ 0, and

γ + α(ϑ2 − 1) + η2 > −1. Then S = SNRV (ϑ1) ∪ SNRV (ϑ2), SNRV (ϑi) ̸= ∅, i = 1, 2, and the

following hold:

(i) Assume that Cγ < 0. Then

SNRV (ϑ1) = DS = DS00 = L(ϑ1, η1) = P , ϑ1 < 0,

SNRV (ϑ2) = IS = IS∞∞ = L(ϑ2, η2), ϑ2 > 0.

(ii) Assume that 0 < Cγ ≤ Kγ; the strict inequality Cγ < Kγ is required only when the relations

involving the classes L(ϑi, ηi), i = 1, 2, are considered. If Cγ = Kγ, we assume, in addition, nonoscil-

lation of (1.1).

(ii-a) If γ < α − 1, then

SNRV (ϑ1) ∪ SNRV (ϑ2) = S = IS = IS∞0, ϑ1, ϑ2 > 0,

SNRV (ϑ1) = L(ϑ1, η1) = P , SNRV (ϑ2) = L(ϑ2, η2).

(ii-b) If γ > α − 1, then

SNRV (ϑ1) ∪ SNRV (ϑ2) = S = DS = DS0∞, ϑ1, ϑ2 < 0

SNRV (ϑ1) = L(ϑ1, η1) = P , SNRV (ϑ2) = L(ϑ2, η2).

For various examples that illustrate, in particular, the asymptotic formulae in particular
settings, see [20,22]. Among others it is shown that the situation where

∫
∞

a |L(ϑ1, η1, s)|ds = ∞

and
∫

∞

a |L(ϑ2, η2, s)|ds < ∞ (or vice versa) can occur even when η1 = η2 = 0.
In [21, 22] we explore how some of the above results can be applied to the half-linear

equation of the form
(Φ(y′))′ + a(t)Φ(y′) + b(t)Φ(y) = 0

to analyze its Poincaré–Perron solutions (that is the solutions y such that limt→∞ y′(t)/y(t)

exists as a finite number). The equation can be viewed as a perturbation of the equation with
constant coefficients. A key role is played by a suitable transformation, and we believe that the
new results of this paper could be extended in this sense. Another direction is an extension
to the critical (double-root) case which is roughly explained at the beginning of this section.
Since theory of regularly varying sequences is at disposal and difference equations often show
their particularities (when compared with their continuous counterparts), a discrete version
of our results is also of interest.

3 Auxiliary statements and proofs

We start with selected properties of regularly varying functions.

Proposition 3.1.

(i) If f ∈ RV(ϑ), then ln f (t)/ ln t → ϑ as t → ∞. It then clearly implies that limt→∞ f (t) = 0
provided ϑ < 0, and limt→∞ f (t) = ∞ provided ϑ > 0.

(ii) If f ∈ RV(ϑ), then f α ∈ RV(αϑ) for every α ∈ R.

(iii) If fi ∈ RV(ϑi), i = 1, 2, f2(t) → ∞ as t → ∞, then f1 ◦ f2 ∈ RV(ϑ1ϑ2).
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(iv) If fi ∈ RV(ϑi), i = 1, 2, then f1 + f2 ∈ RV(max{ϑ1, ϑ2}).

(v) If fi ∈ RV(ϑi), i = 1, 2, then f1 f2 ∈ RV(ϑ1 + ϑ2).

(vi) If f1, . . . , fn ∈ RV , n ∈ N, and R(x1, . . . , xn) is a rational function with nonnegative coeffi-

cients, then R( f1, . . . , fn) ∈ RV .

(vii) If L ∈ SV and ϑ > 0, then tϑL(t) → ∞, t−ϑL(t) → 0 as t → ∞.

(viii) If f ∈ RV(ϑ) and a measurable g is such that g(t) ∼ f (t) as t → ∞. Then g ∈ RV(ϑ).

(ix) If f ∈ RV(ϑ), ϑ ̸= 0, then there exists g ∈ C1 with g(t) ∼ f (t) as t → ∞ and such

that tg′(t)/g(t) → ϑ, whence g ∈ NRV(ϑ). Moreover, g can be taken such that |g′| ∈
NRV(ϑ − 1).

(x) Let f be eventually positive and differentiable, and let limt→∞ t f ′(t)/ f (t) = ϑ. Then f ∈
NRV(ϑ).

(xi) If | f ′| ∈ RV(ϑ), ϑ ̸= −1, with f ′ being eventually of one sign, then f ∈ NRV(ϑ + 1).

Proof. The proofs of (i)–(x) are either easy or can be found in [1, 8]. For (xi) see [19].

The following statement (the so-called Karamata integration theorem) is of great impor-
tance in our theory.

Theorem 3.2 ([1]). Let L ∈ SV .

(i) If ϑ < −1, then
∫

∞

t sϑL(s)ds ∼ tϑ+1L(t)/(−ϑ − 1) as t → ∞.

(ii) If ϑ > −1, then
∫ t

a sϑL(s)ds ∼ tϑ+1L(t)/(ϑ + 1) as t → ∞.

(iii) If
∫

∞

a L(s)/s ds converges, then L̃(t) =
∫

∞

t L(s)/s ds is a SV function; if
∫

∞

a L(s)/s ds diverges,

then L̃(t) =
∫ t

a L(s)/s ds is a SV function; in both cases, L(t)/L̃(t) → 0 as t → ∞.

Finiteness of the limit in (1.2) guarantees (in nonoscillatory case) regular variation of all
positive solutions.

Theorem 3.3 ([22]). Let r ∈ RV(γ), γ ∈ R, and Cγ ∈ (−∞, Kγ] be defined by (1.2), Kγ =

(|α − 1 − γ|/α)α . We assume, in addition, nonoscillation of (1.1) when C = Kγ with tα p(t)/r(t) ̸≤
Kγ (in all other cases, nonoscillation is automatically guaranteed). Then S = SNRV (ϑ1) ∪ SNRV (ϑ2)

with SNRV (ϑ1) ̸= ∅ ̸= SNRV (ϑ2), where λi = Φ(ϑi), i = 1, 2, are the roots of (2.3).

Remark 3.4. In the proof of Theorem 3.3 it is actually shown that for any y ∈ S , we have
limt→∞ ty′(t)/y(t) ∈ {ϑ1, ϑ2}. That is why any regularly varying solution is automatically
normalized; in other words, (2.1) holds. But even without a-priori assuming (1.2), it can be
proved that SRV (ϑ) ⊆ SNRV (ϑ) under the assumption of regular variation of r, by means of
Lemma 3.5 and Proposition 3.1. Normality follows also from the asymptotic formulae or from
monotonicity of solutions and quasiderivatives with the help of the properties of regularly
varying functions.

Under our setting, condition (1.2) is necessary for the existence of a regularly varying
solution.

Lemma 3.5 ([22]). Let (1.11) hold with δ ̸= −1 and γ ̸= α − 1. If SRV (ϑ) ̸= ∅, where λ = Φ(ϑ) is

a real root of (2.3), then limt→∞ tα p(t)/r(t) = Cγ and δ + α ≤ γ.

Lemma 3.6 ([22]). Let λ±
1 ≤ λ±

2 denote the (real) roots of (2.3) when sgn(α − 1 − γ) = ±1 and let

λ1 ≤ λ2 denote the (real) roots of (2.3) when γ = α − 1. Set ϑ±
i = Φ(λ±

i ) and ϑi = Φ(λi), i = 1, 2.
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(i) Let γ ̸= α − 1. If Cγ < 0, then ϑ±
1 ϑ±

2 < 0, |ϑ+
1 | = ϑ−

2 , and |ϑ−
1 | = ϑ+

2 > |ϱ|. If Cγ = 0,

then ϑ+
1 = ϑ−

2 = 0 and −ϑ−
1 = ϑ+

2 = |ϱ|. If Cγ ∈ (0, Kγ), then ϑ±
1 ϑ±

2 > 0 and ϑ+
1 = |ϑ−

2 | <
|γ + 1 − α|/α < ϑ+

2 = |ϑ−
1 | < |ϱ|. If Cγ = Kγ, then −ϑ−

1 = −ϑ−
2 = ϑ+

1 = ϑ+
2 = |γ + 1 − α|/α.

(ii) Let γ = α − 1. Then Cγ ≤ 0 with ϑ1 = ϑ2 = 0 when Cγ = 0 while ϑ1,2 = ±(|Cγ|/(α − 1))1/α

when Cγ < 0.

Denote

J1 =
∫

∞

a
V1(t)dt, J2 =

∫
∞

a
V2(t)dt, R1 =

∫
∞

a
W1(t)dt, R2 =

∫
∞

a
W2(t)dt, (3.1)

where

V1(t) = r1−β(t)

(∫ t

a
|p(s)|ds

)β−1

, V2(t) = r1−β(t)

(∫
∞

t
|p(s)|ds

)β−1

,

W1(t) = |p(t)|

(∫ t

a
r1−β(s)ds

)α−1

, W2(t) = |p(t)|

(∫
∞

t
r1−β(s)ds

)α−1

.

These integrals naturally occur when studying (non)emptiness of the classes ISuv,DSuv and
play an important role also in characterization of principal solutions, see [2–6]. Later, in the
proofs we use some of these results.

Since we work in the framework of regular variation, some specific and useful properties
of V1, V2, W1, W2 can be derived.

Lemma 3.7. Let (1.11) hold. Then

(i) Vi(t) ∼ |G(t)|/|δ + 1|β−1 as t → ∞, where i = 1 when δ > −1 while i = 2 when δ < −1.

(ii) Wi(t) ∼ |H(t)|/|γ(1 − β) + 1|α−1 as t → ∞, where i = 1 when γ < α − 1 while i = 2 when

γ > α − 1.

(iii) If δ < −1, then V1(t) ∼ J
β−1
p r1−β(t) as t → ∞, where Jp is defined in (1.3).

(iv) If γ > α − 1, then W1(t) ∼ Jα−1
r |p(t)| as t → ∞, where Jr is defined in (1.3).

Proof. The asymptotic formulae in (i) and (ii) follow from the Karamata Integration Theorem
(Theorem 3.2). The relations in (iii) and (iv) are obvious; convergence of the integrals Jp and
Jr, respectively, is a consequence of Theorem 3.2.

Remark 3.8. Let (1.11) hold. If δ > −1, then
∫

∞

a |p(s)|ds = ∞, thus
∫

∞

a V2(s)ds cannot
converge. If γ < α − 1, then

∫
∞

a r1−β(s)ds = ∞, thus
∫

∞

a W2(s)ds cannot converge. Now from
Lemma 3.7 it easily follows that:

(i) Let δ > −1. Then a) J1 = ∞ ⇔ J = ∞, b) J2 = ∞.

(ii) Let δ < −1. Then a) J1 = ∞ ⇔ Jr = ∞, b) J2 = ∞ ⇔ J = ∞.

(iii) Let γ < α − 1. Then a) R1 = ∞ ⇔ R = ∞, b) R2 = ∞.

(iv) Let γ > α − 1. Then a) R1 = ∞ ⇔ Jp = ∞, b) R2 = ∞ ⇔ R = ∞.

The first statement in the following lemma is sometimes called the reciprocity principle and
equation (3.2) is called the reciprocal equation (to equation (1.1)).
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Lemma 3.9. Let y be a solution of (1.1) with p ̸= 0. If u = |y[1]|, then u is a solution of

(r̂(t)Φ−1(u′))′ + p̂(t)Φ−1(u) = 0, (3.2)

where r̂ = |p|1−β and p̂ = r1−β sgn p. In particular, if y ∈ S , then

u ∈ Ŝ = {u : u is an eventually positive solution of (3.2)}.

If Ĝ(t) = Φ(tp̂(t)/r̂(t)) and Ĥ(t) = tβ−1 p̂(t)/r̂(t), then

Ĝ = H and Ĥ = G. (3.3)

If (1.11) holds, then

| p̂| ∈ RV(δ̂) and r̂ ∈ RV(γ̂), where δ̂ = γ(1 − β) and γ̂ = δ(1 − β). (3.4)

Proof. Since u′ = −pΦ(y), we get y = −|p|1−βΦ−1(u′) sgn p. From u = rΦ(y′), we have
y′ = r1−βΦ−1(u). Thus we find that u satisfies (3.2). The relations in (3.3) are obvious. The
relations in (3.4) follow easily by Proposition 3.1.

Remark 3.10. For the notation of subclasses of Ŝ we use the “circumflex analog” of the no-
tation of subclasses of S . For instance, D̂S and D̂SB0 mean the set of eventually decreasing
solutions of (3.2) and the subset of D̂S where u ∈ D̂SB0 tends to a positive constant with
limt→∞ r̂(t)Φ−1(u(t)) = 0, respectively. Similarly we approach to the notation of the classes
for the solutions satisfying prescribed asymptotic formulae. For example, Ĝ2 is defined as
Ĝ2 =

{
u ∈ Ŝ : u(t) = MuE

(
t, ∞, 1/Φ

(
δ̂ + 1

)
, Ĝ

)}
, where Mu = limt→∞ u(t).

Lemma 3.11. Let (1.11) be satisfied with δ ̸= −1 and γ ̸= α − 1. Then the following hold:

(i) DSB0 ∪ DSB∞ ∪ ISB0 ∪ ISB∞ ⊆ X, where X = B5 when δ + α = γ, while X = B3 when

δ + α < γ.

(ii) DS0B ∪ IS∞B ⊆ X, where X = B6 when δ + α = γ, while X = B4 when δ + α < γ.

(iii) ISBB ∪DSBB ⊆ Bi, i = 1, 2.

Proof. (i) Let y ∈ DSB0 ∪ DSB∞ ∪ ISB0 ∪ ISB∞. Then y ∈ SSV , and so y ∈ SNSV , see Re-
mark 3.4. Integrating (1.1) we get y[1](t) ∼ Py(t) as t → ∞, where Py(t) =

∫
∞

t p(s)Φ(y(s))ds or
Py(t) = −

∫ t
t0

p(s)Φ(y(s))ds according to whether δ < −1 or δ > −1, respectively. Applying
Theorem 3.2 and using y(t) ∼ My, where My = limt→∞ y(t), in both cases we get

y[1](t) ∼
−1

δ + 1
tp(t)Φ(y(t)) ∼

−1
δ + 1

tp(t)Φ(My)

as t → ∞, thus y′(t) ∼ −MyG(t)/Φ−1(δ + 1) as t → ∞. Integrating the last relation from t to
∞, we obtain

My − y(t) ∼
−My

Φ−1(δ + 1)

∫
∞

t
G(s)ds (3.5)

as t → ∞. Assume that δ + α = γ. Since |G| ∈ RV(−1), from Theorem 3.2 we get t|G(t)| =
o
(∫ ∞

t |G(s)|ds
)

as t → ∞. Combining the last relation with (3.5), we find that y ∈ B5.
Assume that δ + α < γ. Then, in view of Proposition 3.1, |G| ∈ RV(ζ − 1), where ζ =
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(β− 1)(δ+ 1−γ)+ 1. From δ+ α < γ we have ζ < 0. Hence, Theorem 3.2 yields
∫

∞

t G(s)ds ∼
−tG(t)/ζ as t → ∞, thus (3.5) implies y ∈ B3.

(ii) Let y ∈ DS0B ∪ IS∞B ⊆ X. Set u = |y[1]|. We have u = ±y[1] according to whether y ∈
IS or y ∈ DS , respectively. Then u satisfies (3.2), and limt→∞ u(t) = Mu where Mu = |Ny|,
Ny = limt→∞ y[1](t). Since, in addition,

u[1] = r̂Φ
−1(u′) = |p|1−β

Φ
−1(±(rΦ(y′))′) = ∓|p|1−β

Φ
−1(pΦ(y)) = ∓y sgn p, (3.6)

we get
u ∈ D̂SB0 ∪ D̂SB∞ ∪ ÎSB0 ∪ ÎSB∞. (3.7)

We use the convention introduced in Lemma 3.9 and Remark 3.10. The reciprocal version of
δ + α ≤ γ is δ̂ + β ≤ γ̂; it is easy to see that the inequalities are in fact the same. In view of
(3.7), we can apply part (i) of Lemma 3.11 to the reciprocal equation. If δ + α < γ, then

|Ny| − |y[1](t)| = Mu − u(t) ∼
Mu(β − 1)

Φ(δ̂ + 1)(δ̂ + β − γ̂)
tΦ

(
tp̂(t)

r̂(t)

)

=
|Ny|

Φ(γ(1 − β) + 1)(−γ + β/(β − 1) + δ)
tα p(t)

r(t)
=

−|Ny|

Φ(ϱ)(δ + α − γ)
tH(t)

as t → ∞. Consequently, y ∈ B4. Similarly we find that B6 is reciprocal version of B5.
(iii) Let y ∈ ISBB ∪ DSBB. From (1.1), (y[1](t))′ ∼ −Mα−1

y p(t) as t → ∞, where My =

limt→∞ y(t). Theorem 3.2 yields

Ny − y[1](t) ∼ −Mα−1
y

∫
∞

t
p(s)ds ∼

−Mα−1
y

−(δ + 1)
tp(t)

as t → ∞, where Ny = limt→∞ y[1](t). This implies ISBB ∪ DSBB ⊆ B2. From the relation
y[1](t) ∼ Ny as t → ∞, which is equivalent to y′(t) ∼ Φ−1(Ny/r(t)), by Theorem 3.2, we
obtain

My − y(t) ∼ Φ
−1(Ny)

∫
∞

t
r1−β(s)ds ∼

Φ−1(Ny)

−((1 − β)γ + 1)
tr1−β(t) = −

Φ−1(Ny)

ϱ
tr1−β(t)

as t → ∞. This implies ISBB ∪DSBB ⊆ B1.

Lemma 3.12. Let (1.11) be satisfied with δ ̸= −1 and γ ̸= α − 1. Then the following hold:

(i) If J = ∞, then (DS00 ∪ IS∞∞ ∪ IS∞0 ∪DS0∞) ∩ SV ⊆ G1.

(ii) If J < ∞, then ISB0 ∪DSB0 ∪ ISB∞ ∪DSB∞ ⊆ G2.

Proof. Take y ∈ SSV . Note that in (i) slow variation is assumed, in (ii) it clearly holds, and
SSV = SNSV , see Remark 3.4. We have |p|Φ(y) ∈ RV(δ) by Proposition 3.1. Let δ < −1. Then∫

∞

a |p(s)|Φ(y(s))ds < ∞ by Theorem 3.2. Observe that the classes considered in the lemma,
which correspond to this setting, are DS x0, IS x0. Indeed, from (1.1) we have

∣∣∣y[1](t)− y[1](t0)
∣∣∣ =

∫ t

t0

|p(s)|Φ(y(s))ds (3.8)

and because of the convergence of the integral we cannot have limt→∞ |y[1](t)| = ∞. Assume
that y belongs to such classes. Integrating (1.1) from t to ∞, Theorem 3.2 yields

−y[1](t) = −
∫

∞

t
p(s)Φ(y(s))ds ∼

1
δ + 1

tp(t)Φ(y(t)) (3.9)
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as t → ∞. Similarly, under the condition δ >−1, which corresponds to the classes DS x∞, IS x∞

(this follows from (3.8) and the divergence of the integral), integration of (1.1) from t0 to t and
Theorem 3.2 lead to

y[1](t) = y[1](t0)−
∫ t

t0

p(s)Φ(y(s))ds ∼ −
∫ t

t0

p(s)Φ(y(s))ds ∼ −
1

δ + 1
tp(t)Φ(y(t)) (3.10)

as t → ∞. Consequently, no matter what δ ̸= −1 is, both (3.9) and (3.10) lead to

y′(t)

y(t)
∼ Φ

−1
(

−1
δ + 1

)
Φ

−1
(

tp(t)

r(t)

)
= Φ

−1
(

−1
δ + 1

)
G(t) (3.11)

as t → ∞. The following observation which was established in [22] will be useful in the sequel.
Let A ∈ R, ε1(t) → 0 as t → ∞, and f be a positive function such that

∫
∞

a f (t)dt = ∞. Then
there exists ε2(t) → 0 as t → ∞ such that

A +
∫ t

a
(1 + ε1(s)) f (s)ds =

∫ t

a
(1 + ε2(s)) f (s)ds. (3.12)

If J = ∞, then integration of (3.11) from t0 to t yields

ln y(t) = ln y(t0) +
∫ t

t0

(1 + o(1))Φ−1
(

−1
δ + 1

)
G(s)ds

=
∫ t

t0

(1 + o(1))Φ−1
(

−1
δ + 1

)
G(s)ds

=
∫ t

a
(1 + o(1))Φ−1

(
−1

δ + 1

)
G(s)ds

as t → ∞, where we applied (3.12) twice. Taking exponential, we find that y ∈ G1. If J < ∞,
then integration of (3.11) from t to ∞ yields

− ln
y(t)

My
=

∫
∞

t
Φ

−1
(
−(1 + o(1))

δ + 1

)
G(s)ds

as t → ∞, where My = limt→∞ y(t), which leads to y ∈ G2.

Remark 3.13. Let (1.11) hold with δ ̸= −1 and γ ̸= α − 1. Let SNSV ̸= ∅ and recall that it
implies (1.2) with Cγ = 0 by Lemma 3.5. Assume that J = ∞ and note that then necessarily
δ + α = γ. Indeed, δ + α < γ would imply J < ∞ while δ + α > γ would imply SNSV = ∅.
From [19, Section 6] and [23, Section 4] it follows that if p < 0, then

SNSV ⊆ DS00 provided δ < −1,

SNSV ⊆ IS∞∞ provided δ > −1.

From [22, Section 5] we have, if p > 0, then

SNSV ⊆ IS∞0 provided δ < −1,

SNSV ⊆ DS0∞ provided δ > −1.

Assume that J < ∞. From [19, Section 6], [22, Section 5], and [23, Section 4] we have, if p < 0,
then

SNSV ⊆ DSB0 provided δ < −1, γ < α − 1,

SNSV ⊆ ISB∞ provided δ > −1, γ > α − 1.

From [22, Section 5] we have, if p > 0, then

SNSV ⊆ ISB0 provided δ < −1, γ < α − 1,

SNSV ⊆ DSB∞ provided δ > −1, γ > α − 1.
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Lemma 3.14. Let (1.11) be satisfied with δ ̸= −1 and γ ̸= α − 1. Then the following hold:

(i) If R = ∞, then (DS00 ∪ DS0∞) ∩ RV(ϱ) ⊆ H2 = H0 and (IS∞∞ ∪ IS∞0) ∩ RV(ϱ) ⊆
H1 = H0.

(ii) If R < ∞, then DS0B ⊆ H4 and IS∞B ⊆ H3.

(iii) If R = ∞, then H1 = H2 = H0.

Proof. We will prove the case when R < ∞ for the class DS0B with details. The other cases in
(i) and (ii) can be proved similarly. Let y ∈ DS0B. Set u = −y[1]. Then u satisfies reciprocal
equation (3.2) and u ∈ Ŝ by Lemma 3.9. Since y ∈ DS0B, we get u(t) ∼ Mu as t → ∞, where
Mu = −Ny = − limt→∞ y[1](t). As in (3.6), we get u[1] = y sgn p, and therefore u[1](t) → 0
as t → ∞. Consequently, u ∈ D̂SB0 or u ∈ ÎSB0 according to whether p < 0 or p > 0,
respectively. In view of Lemma 3.12-(ii), we get u ∈ Ĝ2, that is

u(t) = Mu exp

{∫
∞

t

1 + o(1)

Φ
(
δ̂ + 1

)Φ

(
sp̂(s)

r̂(s)

)
ds

}

as t → ∞. We use the convention from Lemma 3.9 and Remark 3.10. Thus we find that

−r(t)Φ(y′(t)) = u(t) = −Ny exp
{∫

∞

t
(1 + o(1))

1
Φ(ϱ)

H(s)ds

}
,

which yields

y′(t) = Φ
−1(Ny)r

1−β(t) exp
{∫

∞

t
(1 + o(1))

β − 1
Φ(ϱ)

H(s)ds

}
,

as t → ∞. Since y ∈ DS0, integration from t to ∞ leads to y ∈ H4.
It remains to prove H1 = H2 = H0 when R = ∞. Take y ∈ H1. In view of (1.13)

and representation (1.9), we have E(a, ·,−(β − 1)Φ(ϱ), H) ∈ SV . Therefore, r1−β
E(a, ·,−(β −

1)Φ(ϱ), H) ∈ RV(γ(1 − β)) by Proposition 3.1. Hence, from Theorem 3.2 and thanks to
divergence of

∫
∞

a |H(t)|dt, utilizing (3.12), we obtain

y(t) = (1 + o(1))
tr1−β(t)

|ϱ|
E

(
a, t,−

β − 1
Φ(ϱ)

, H

)

= tr1−β(t) eln 1+o(1)
|ϱ| E

(
a, t,−

β − 1
Φ(ϱ)

, H

)
= tr1−β(t)E

(
a, t,−

β − 1
Φ(ϱ)

, H

)

as t → ∞. Thus H1 ⊆ H0. Using similar ideas, we obtain the opposite inclusion. The equality
H2 = H0 can be proved analogously.

Remark 3.15. Let (1.11) hold with δ ̸= −1 and γ ̸= α − 1. From the reciprocity principle
(see Lemma 3.9) combined with the ideas of Remark 3.13, recalling the relations u = ±y[1],
u[1] = ∓y sgn p (see (3.6)) and Ĝ = H (see (3.3)), we obtain the following claims. Assume
R = ∞ (which implies δ + α = γ). Then

SNRV (ϱ) ⊆ IS∞∞ provided δ < −1, p < 0,

SNRV (ϱ) ⊆ DS00 provided δ > −1, p < 0,

SNRV (ϱ) ⊆ IS∞0 provided δ < −1, p > 0,

SNRV (ϱ) ⊆ DS0∞ provided δ > −1, p > 0.
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Assume R < ∞. Then

SNRV (ϱ) ⊆ IS∞B provided δ < −1, γ < α − 1,

SNRV (ϱ) ⊆ DS0B provided δ > −1, γ > α − 1.

Lemma 3.16 ([22]). Let r ∈ NRV(γ) ∩ C1, γ ∈ R, and (1.2) hold with Cγ < Kγ, Kγ being defined

by (2.2). Assume that |L(ϑi, ηi, ·)| ∈ RV(ηi − 1), i = 1, 2, where Φ(ϑ1) < Φ(ϑ2) are the roots of

(2.3), η1, η2 ≤ 0, and γ + α(ϑ2 − 1) + η2 > −1. Then

SNRV (ϑi) ⊆ Lk(ϑi, ηi), i = 1, 2, (3.13)

where k = 1 when
∫

∞

a |L(ϑi, ηi, s)|ds = ∞, while k = 2 when
∫

∞

a |L(ϑi, ηi, s)|ds < ∞; if Cγ = 0,

we consider only the nonzero root in (3.13).

Lemma 3.17. Let (1.11) be satisfied with p > 0, δ ̸= −1, and γ ̸= α − 1. Then the following hold:

(i) If y ∈ S1 ∩ RV(ϑ), ϑ ∈ R, where S1 = IS∞0 ∪ DS0∞ ∪ ISB0 ∪ DSB∞, then |y[1]| ∈
RV(δ + 1 + (α − 1)ϑ) and |y′| ∈ RV((β − 1)(δ + 1 − γ) + ϑ). If y ∈ S1 ∩ RV(ϑ) and

δ + α = γ, then |y′| ∈ RV(ϑ − 1). If, in addition ϑ = ϱ, then |y[1]| ∈ SV .

(ii) If y ∈ S2 ∩ RV(ϑ), where S2 = IS∞B ∪ DS0B, then ϑ = ϱ, |y[1]| ∈ SV , and |y′| ∈
RV(ϱ − 1).

Proof. (i) Let y ∈ S1 ∩RV(ϑ). Then |y[1]| tends to 0 or ∞ and pΦ(y) ∈ RV(δ + ϑ(α − 1)) by
Proposition 3.1. Hence, integrating (1.1) from t0 to t or from t to ∞ (according to whether
δ + ϑ(α − 1) is positive or negative, respectively), realizing that y[1](t)− y[1](t0) ∼ y[1](t) in the
former case, and using Theorem 3.2, we get

|y[1](t)| ∼
1

|δ + 1 + ϑ(α − 1)|
tp(t)Φ(y(t))

as t → ∞, which implies |y[1]| ∈ RV(δ + 1 + ϑ(α − 1)). In view of Proposition 3.1, we get
|y′| ∈ RV((β − 1)[δ + 1 + (α − 1)ϑ − γ]) = RV((β − 1)(δ + 1 − γ) + ϑ). If δ + α = γ, then
the last index reduces to ϑ − 1. If ϑ = ϱ, then for the index associated to |y[1]| we have
δ + 1 + ϑ(α − 1) = δ + α − γ = 0.

(ii) Let y ∈ S2 ∩RV(ϑ). Then y[1](t) ∼ Ny as t → ∞, i.e.

y′(t) ∼ Φ
−1(Ny)r

1−β(t) (3.14)

as t → ∞. Integrating this relation from t0 to t or from t to ∞ (according to whether γ < α − 1
or γ > α − 1, respectively), realizing that y(t) − y(t0) ∼ y(t) in the former case, and using
Theorem 3.2, we get

y(t) ∼
|Φ−1(Ny)|

|(1 − β)γ + 1|
tr1−β ∈ RV((1 − β)γ + 1) = RV(ϱ),

thus ϑ = ϱ. In view of (3.14), we get |y′| ∈ RV(−γ(1 − β)) = RV(ϱ − 1).

Lemma 3.18. Let (1.11) hold with γ ̸= α − 1. If NSV ∩ (DS0 ∪ IS∞) ̸= ∅, then γ = δ + α,

NSV ∩DS0 = DS00 ∪DS0∞, and NSV ∩ IS∞ = IS∞∞ ∪ IS∞0.
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Proof. Take y ∈ NSV ∩ (DS0 ∪IS∞). Then, in view of Proposition 3.1, |(rΦ(y′))′| = |p|yα−1 ∈
RV(δ). If

∫
∞

a |p(s)|yα−1(s)ds diverges, then limt→∞ |y[1](t)| = ∞, and the Karamata Integra-
tion Theorem (Theorem 3.2) applied to equation (1.1) after integration yields

r(t)|y′(t)|α−1 ∼ |r(t)Φ(y′(t))− r(t)Φ(y′(t0))| ∼
∫ t

t0

|p(s)|yα−1(s)ds ∈ RV(δ + 1)

as t → ∞. Similarly, if
∫

∞

a |p(s)|yα−1(s)ds converges, then

r(t)|y′(t)|α−1 =
∫

∞

t
|p(s)|yα−1(s)ds ∈ RV(δ + 1)

by Theorem 3.2. Indeed, limt→∞ y[1](t) = Ny would lead to y′(t) ∼ Φ−1(Ny)r1−β(t), so y ∈
RV(ϱ), ϱ ̸= 0, contradiction. Thus in any case, |y′|α−1 ∈ RV(δ + 1 − γ), and therefore
|y′| ∈ RV((δ + 1 − γ)/(α − 1)) by Proposition 3.1. Since y ∈ DS0 or y ∈ IS∞, in view of the
Karamata Theorem, y ∈ RV((δ + 1 − γ)/(α − 1) + 1) = RV((δ + α − γ)(β − 1)). But y ∈ SV ,
and so it must hold that γ = δ + α.

In spite of the fact that many of the claims which are included in the next statement were
already proved above (as it was within the more general setting), for completeness and easier
reference we prefer to present some conclusions from [19] in the form of individual lemma.

Lemma 3.19 ([19]). Let p < 0, Cγ = 0, and (1.11) hold, where γ = δ + α.

(i) Let δ < −1. If J = ∞, then SSV = DS = DS00 ⊆ G1. If J < ∞, then SSV = DS = DSB0 ⊆
G2. If R = ∞, then SRV (ϱ) = IS = IS∞∞ ⊆ H1. If R < ∞, then SRV (ϱ) = IS = IS∞B ⊆
H3.

(ii) Let δ > −1. If J = ∞, then SSV = IS = IS∞∞ ⊆ G1. If J < ∞, then SSV = IS = ISB∞ ⊆
G2. If R = ∞, then SRV (ϱ) = DS = DS00 ⊆ H2. If R < ∞, then SRV (ϱ) = DS = DS0B ⊆
H4.

Theorem 3.20 ([5]). Let p < 0. Then

P =

{
DSB if J1 = ∞ and J2 < ∞,

DS0 otherwise.

The lower limit a in the integrals in Theorems 3.21, 3.24, 3.26 is taken such that y(t) > 0
and y′(t) ̸= 0 for t ≥ a. In the paper [3], an example is given showing that condition (3.15)
cannot be omitted. As we will see, in our proofs, the cases where (3.15) fails to hold can
fortunately be treated by Theorem 3.24.

Theorem 3.21 ([3, 6]). Let p > 0 and (1.1) be nonoscillatory. Assume that

Jr = ∞ and α ≥ 2 or Jp = ∞ and 1 < α ≤ 2. (3.15)

Then, for y ∈ S ,

y ∈ P if and only if
∫

∞

a
F [y](t)dt = ∞,

where F [y] = y′/(y2y[1]).
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Theorem 3.22 ([2]). Let p > 0 and (1.1) be nonoscillatory. Assume that Jr + Jp = ∞. Then

y ∈ P if and only if |y[1]| ∈ P̂ ,

where P̂ = {u ∈ Ŝ : u is principal}.

For ξ ∈ (1, ∞), define the function φξ : [0, 1] → R by

φξ(t) =

{
1−tξ

1−t + (1 − t)ξ−1 if t ∈ [0, 1),

ξ if t = 1.
(3.16)

Denote m := min{φβ(t) : t ∈ [0, 1]}, M := max{φβ(t) : t ∈ [0, 1]}, where β is the conjugate
number of α.

Lemma 3.23. It holds that φβ(0) = 2, φβ(1) = β, φβ(1/2) = 2, and m > 1. If 1 < α < 2 (i.e.,

β > 2), then φβ is strictly convex on [0, 1] and, in particular, M = β.

Proof. The equalities φβ(0) = 2, φβ(1) = β, φβ(1/2) = 2 are obvious. The convexity of φβ on
[0, 1] when α ∈ (1, 2) can be demonstrated via standard calculus tools. The equality M = β

follows from the convexity of φβ.

Theorem 3.24 ([13]). Let Jr = ∞ and y ∈ S . Denote TK[y] = r1−βy−K, K ∈ R.

(i) If y ∈ P , then
∫

∞

a Tm[y](s)ds = ∞.

(ii) If
∫

∞

a TM[y](s)ds = ∞, then y ∈ P .

Remark 3.25. By means of the reciprocity principle (see Lemma 3.9), with help of Theo-
rem 3.22, the condition Jr = ∞ in Theorem 3.24 can actually be relaxed to Jr + Jp = ∞; Tm, TM

are then appropriately modified. For details see the proofs of Theorems 2.1, 2.2, 2.3, and 2.4,
where this trick is used.

Theorem 3.26 ([2]). Let p > 0 and Jr + Jp < ∞. Then

y ∈ P if and only
∫

∞

a

1
rβ−1(t)y2(t)

dt = ∞.

In view of their common setting, it is senseful to prove Theorems 2.1 and 2.2 simultane-
ously.

Proof of Theorems 2.1 and 2.2. Let p < 0. If J = ∞ and δ < −1, then SNSV ⊆ DS00 ⊆ G1 by
Lemma 3.12-(i) and Remark 3.13. Since G(t) = Φ−1(Lp(t)/Lr(t))/t and limt→∞ Lp(t)/Lr(t) =

0, we have G1 ⊆ SSV = SNSV by the Representation Theorem (see (1.9)) and Remark 3.4.
From [23] we know that DS ⊆ NSV , thus DS00 ⊆ NSV . In view of (1.4)

S = SNSV ∪ SNRV (ϱ), SNSV ̸= ∅, SNRV (ϱ) ̸= ∅ (3.17)

(which follows from Theorem 3.3), we get SNSV = DS = DS00 = G1. Analogously we obtain
SNSV = IS = IS∞∞ = G1 when J = ∞ and δ > −1. If J < ∞, then in a similar manner
as above we use Lemma 3.12-(ii), the obvious fact G2 ⊆ SV , (3.17), (1.4), Lemma 3.19, and,
in addition, Lemma 3.11-(i), to get SNSV = DS = DSB0 = G2 = B5 when δ < −1 and
SNSV = IS = ISB∞ = G2 = B5 when δ > −1. Note that Lemma 3.11-(i) yields DSB0 ⊆ B5

and ISB∞ ⊆ B5, respectively. The opposite inclusions are obvious, since y belonging to



Half-linear differential equations 21

B5 is slowly varying and there are no other slowly varying solutions than DSB0 and ISB∞,
respectively, see Remark 3.13. Let R = ∞ and δ < −1. Observe that H1 ⊆ RV(ϱ). Indeed, if
y ∈ H1, then y(t) ∼

∫ t
t0

r1−β(s)E(a, s,−(β − 1)/Φ(ϱ), H)ds ∈ ([γ(1 − β) + 0] + 1) = RV(ϱ),
where we use (1.9), Proposition 3.1, and Theorem 3.2. From Lemma 3.14-(i) and Remark 3.15,
taking into account Lemma 3.19, (3.17), and (1.4), we get SNRV (ϱ) = IS = IS∞∞ = H1.
Lemma 3.14-(iii) gives H1 = H0. Because δ + α = γ and ϱ is the bigger root of (2.3) when
δ < −1, the condition γ + α(ϑ2 − 1) + η2 > −1 from Lemma 3.16 reads as δ < −1 + η(α − 1)
which is assumed in Theorems 2.1, 2.2. Since also all other assumptions of Lemma 3.16 are
satisfied, we may apply it to obtain SNRV (ϱ) ⊆ L(ϱ, η); we use convention (1.15). Since
limt→∞ tL(ϑ, η, t) = 0, from the Representation Theorem (see (1.9)) it follows that L(ϱ, η) ⊆
SNRV (ϱ). Analogously we proceed when R = ∞ and δ > −1. Let us only note that in
this case, ϱ is the lesser root of (2.3) (since ϱ < 0) and therefore we do not need to verify
the condition γ + α(ϑ2 − 1) + η2 > −1 from Lemma 3.16. The case R < ∞ can also be
treated similarly; we use, in addition, Lemma 3.14-(ii) and Lemma 3.11. Next we derive the
relations with P . If δ > −1, then Jp = ∞ by Theorem 3.2, thus J2 = ∞. Hence, P = DS0

by Theorem 3.20. If δ < −1, then, in view of δ + α = γ, we have γ < α − 1, thus r1−β ∈
RV((1− β)γ) with the index greater than −1, and so Jr = ∞ (see Theorem 3.2), which implies
J1 = ∞. Further, by Lemma 3.7, V2(t) ∼ |G(t)|/|δ + 1|β−1 ∈ RV(−1) as t → ∞. Hence, in
general, J2 can converge or diverge. But we see that J2 = ∞ if and only if J = ∞. According to
Theorem 3.20, if J = ∞, then P = DS0, while if J < ∞, then P = DSB. Adding the relations
between P and DS0 resp. P and DSB to the other relations we obtain the complete picture
in the case p < 0.

Let p > 0. First of all note that by Theorem 3.3, (3.17) holds. Assume that δ < −1. Then
γ < α − 1, r1−β thus has the index of regular variation greater than −1, and so Jr = ∞ by
Theorem 3.2. Hence, (1.5) holds. Note that ϱ in (3.17) is now positive. If J = ∞, then by
Lemma 3.12 and Remark 3.13, we get SNSV ∩ IS∞0 ⊆ G1 and SNSV ⊆ IS∞0. In view of
G1 ⊆ SNSV (which follows from (1.9)) and (2.1), we have SNSV = G1 = IS∞0. If R = ∞, then
by Lemma 3.14 and Remark 3.15, SNRV (ϱ) ∩ IS∞0 ⊆ H1 and SNRV (ϱ) ⊆ IS∞0. In view of
H1 ⊆ SRV (ϱ) = SNRV (ϱ) (which follows from (1.9)), we have SNRV (ϱ) = H1 = IS∞0. By
Lemma 3.14, H1 = H0. Assume that J = ∞ and R = ∞. Because of (3.17), (1.5), and the
observations from the previous parts, we have S = SNSV ∪ SNRV (ϱ) ⊆ IS∞0 ⊆ IS = S . If
J < ∞, then by Lemma 3.12 and Remark 3.13, SNSV ⊆ ISB0, SNSV ⊆ G2. If y ∈ ISB, then it
is clearly slowly varying and we get ISB0 = SNSV . Since G2 ⊆ SV and (2.1) holds, we have
SNSV = G2. In view of Lemma 3.11, we obtain SNSV ⊆ B5; the opposite inclusion obviously
holds as well. If R < ∞, then by Lemma 3.14 and Remark 3.15 it follows that IS∞B ⊆ H3 and
SNRV (ϱ) ⊆ IS∞B. From (1.9), Proposition 3.1, and Theorem 3.2, we have H3 ⊆ SNRV (ϱ). If
y ∈ IS∞B, then y[1](t) ∼ Ny ∈ (0, ∞) as t → ∞. Expressing y′ and integrating, Theorem 3.2
and Proposition 3.1 yield

y(t) ∼

∣∣∣∣
Φ(Ny)

γ(1 − β) + 1

∣∣∣∣ tr1−β(t) ∈ RV(γ(1 − β) + 1) = RV(ϱ) (3.18)

as t → ∞. Hence, IS∞B ⊆ SNRV (ϱ). Consequently, in view of the fact that regular variation
of solutions is normalized, we have IS∞B = SNRV (ϱ) = H3. From Lemma 3.11 we get
SNRV (ϱ) ⊆ B6. The opposite inclusion is obvious. The settings J < ∞, R < ∞, or J =

∞, R < ∞, or J < ∞, R = ∞, can be treated by suitable combinations of the above presented
observations. Similarly as in the case p < 0, with the help Lemma 3.16, we show SNRV (ϱ) =

L(ϱ, η); we use convention (1.15).
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The case p > 0 and δ > −1 can be proved analogously to the case p > 0 and δ < −1 (ap-
plying again (3.17), (1.9), Lemma 3.11, Lemma 3.12, Remark 3.13, Lemma 3.14, Lemma 3.16),
and therefore it is omitted.

In the last part of the proof we will show how P is related to the other classes when p > 0.
From the above established classification we see that any y ∈ S must belong either to S1 or S2

under the assumptions of Theorem 2.1 and Theorem 2.2. By Lemma 3.17 we have that F [y] is
regularly varying. Let Ω denote the index of regular variation of F [y].

Assume first that (3.15) holds. If y ∈ SNSV , then Ω = −δ − 2. If δ < −1, then Ω > −1,
and so

∫
∞

a F [y](s)ds = ∞ by Theorem 3.2. This yields SNSV ⊆ P by Theorem 3.21. Similarly
we obtain SNSV ∩ P = ∅ when δ > −1. Take y ∈ SNRV (ϱ). Then Ω = (β − 1)(δ + 1 −
γ) + ϱ − 2ϱ = −ϱ − 1, see Lemma 3.17. If δ < −1, then ϱ > 0, i.e., −ϱ − 1 < −1, which
implies

∫
∞

a F [y](s)ds < ∞, and we obtain SNRV (ϱ) ∩ P = ∅ by Theorem 3.21. Similarly we
get SNRV (ϱ) ⊆ P when δ > −1. Altogether, in view of (3.17), P = SNSV when δ < −1, while
P = SNRV (ϱ) when δ > −1.

Assume now that (3.15) fails to hold. The constants m, M will have the same meaning
as in Theorem 3.24. Let Jr = ∞ (this means γ < α − 1, thus, δ < −1 since we assume
γ ̸= α − 1 and δ + α = γ) and α < 2. If y ∈ SNSV , then r1−βy−M ∈ RV(−γ/(α − 1)) by
Proposition 3.1. In view of γ < α− 1, the index is greater −1, and so

∫
∞

a r1−β(s)y−M(s)ds = ∞

by Theorem 3.2. Hence, SNSV ⊆ P by Theorem 3.24. If y ∈ SNRV (ϱ), then r1−βy−m ∈
RV(−γ/(α − 1)− ϱm). It clearly holds −γ/(α − 1)− ϱm < −1 if and only if (α − 1 − γ)(1 −
m) < 0. The latter inequality holds since m > 1, see Lemma 3.23, and α− 1 > γ. Consequently,∫

∞

a r1−β(s)y−M(s)ds < ∞ by Theorem 3.2, and so Theorem 3.24 yields SNRV (ϱ) ∩ P = ∅. In
view of (3.17), we have SNSV = P .

Let Jp = ∞ (i.e., δ > −1, i.e., γ > α − 1) and α > 2. Take y ∈ SNRV (ϱ) and note that ϱ < 0
and S = DS . Set u = −y[1]. Then u is positive and satisfies (3.2), thus u ∈ Ŝ. By Lemma 3.17,
u ∈ ŜNSV . Because of our assumptions we have δ̂ < −1 and γ̂ < β − 1, where δ̂ and γ̂

are defined in (3.4). Thus we can apply Theorem 3.24 to reciprocal equation (3.2). Denote
M̂ = max{φα(t) : t ∈ [0, 1]} and note that φα can be understood as a reciprocal counterpart to
φβ. Since r̂1−αu−M̂ ∈ RV(−γ̂(α − 1)), where γ̂(α − 1) > −1, we have

∫
∞

a r̂1−α(s)u−M̂(s)ds =

∞, which implies u ∈ P̂ . In view of Theorem 3.22, we get y ∈ P , thus SNRV (ϱ) ⊆ P .
Now take y ∈ SNRV (ϱ) and x ∈ SNSV . Then, since we have ty′(t)/y(t) → ϱ < 0 and
tx′(t)/x(t) → 0 with t → ∞, we get y′(t)/y(t) < x′(t)/x(t) for large t, hence x ̸∈ P by
definition. Consequently, SNRV (ϱ) = P .

Proof of Theorem 2.3. Since tα p(t)/r(t) ∈ RV(δ + α − γ) (by Proposition 3.1) and δ + α < γ, we
have Cγ = 0. Consequently (3.17) holds. The following observation will be repeatedly utilized
in the sequel. Thanks to (1.11), |G| ∈ RV((δ + 1 − γ)(β − 1)) and |H| ∈ RV(α − 1 + δ − γ)

by Proposition 3.1. It is easy to see that δ + α < γ is equivalent to (δ + 1 − γ)(β − 1) < −1.
Hence, both the indices of |G| and |H| are less than −1, and so

J < ∞ and R < ∞. (3.19)

(i-a) Let δ < −1, γ < α − 1, and p < 0. Take y ∈ SNSV . Then y ∈ DS . Indeed, if y ∈ IS ,
then y[1] is positive increasing, hence there is A > 0 such that y[1](t) ≥ A for large t, say t ≥ t0.
Consequently, by Theorem 3.2 and Proposition 3.1,

y(t) ≥ y(t0) + Aβ−1
∫ t

t0

r1−β(s)ds ∈ RV(γ(1 − β)) = RV(ϱ).
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Hence, y is greater than or equal to a regularly varying function with a positive index, thus
cannot be slowly varying. Using similar arguments we find that for y ∈ DS , the quasideriva-
tive y[1] (which is negative increasing) must tend to zero. Moreover, y ∈ DSB0. Indeed,
if y ∈ DS00, then γ = δ + α (see Lemma 3.18), which contradicts to δ + α < γ. Hence,
SNSV ⊆ DSB0 ⊆ DS . On the other hand, if y ∈ DS , then it cannot be in NRV(ϱ) since ϱ > 0
(and the functions with a positive index always tend to infinity, see Proposition 3.1), conse-
quently, in view of (3.17), we get DS ⊆ SNSV . Therefore, SNSV = DSB0 = DS . Consider
the class SNRV (ϱ). From the previous part we know that slowly varying solutions cannot be
increasing. Recalling (3.17), we get IS ⊆ SNRV (ϱ). Applying Remark 3.8 and (3.19) we obtain
J2 < ∞ and R1 < ∞. Condition γ < α − 1 implies Jr = ∞ and that is why J1 = ∞ and R2 = ∞,
see Remark 3.8. According to [5, Theorem 1], see also [6, Chapter 4], we get IS = IS∞B.
Moreover y ∈ SNRV (ϱ) cannot be decreasing since ϱ > 0, thus SNRV (ϱ) ⊆ IS . We obtain
SNRV (ϱ) = IS∞B = IS .

It is not difficult to see that the relations of SNSV with G2,B3 and of SNRV (ϱ) with
H3,B4,L(ϱ, η) follow similarly as they were established in the proof of Theorems 2.1 and
2.2, with the help of Lemma 3.12, Remark 3.13, Lemma 3.14, Remark 3.15, Lemma 3.11,
Lemma 3.16, formula (1.9), and [22, Section 5].

(i-b) Let δ < −1, γ < α − 1, and p > 0. Thanks to γ < α − 1 and r1−β ∈ RV(γ(1 − β)), we
have Jr = ∞ (see Theorem 3.2), which implies (1.5). Take y ∈ SNSV . Then limt→∞ y[1](t) = 0.
Indeed, y[1] is positive decreasing and if y[1](t) ∼ Ny > 0 as t → ∞, then as in (3.18), we get
y ∈ RV(ϱ), contradiction with y ∈ SNSV . Moreover, y cannot be in IS∞0 otherwise we would
get γ = δ + α (see Lemma 3.18), which contradicts to δ + α < γ. Consequently, SNSV ⊆ ISB0.
The opposite inclusion is obvious, in view of (2.1). Take y ∈ SNRV (ϱ). From the previous part
we get that y ∈ IS∞0 ∪ IS∞B. We claim that IS∞0 = ∅. Indeed, if y ∈ IS∞0, then as in (3.9)
we obtain

y[1](t) ∼
−tp(t)Φ(y(t))

δ + 1
(3.20)

as t → ∞, which leads to (3.11). Integration of this relation from t to ∞, in view limt→∞ y(t) =

∞, would give J = ∞. This however contradicts to (3.19). Hence, SNRV (ϱ) ⊆ IS∞B. In fact,
we have the equality here because of SNSV = ISB0 and (3.17). The relations of SNSV and
SNRV (ϱ) with G,H,L,B type classes can be treated as in the part (i-a).

(ii-a) Let δ > −1, γ > α − 1, and p < 0. Take y ∈ SNSV . Then y ∈ IS . Indeed, if
y ∈ DSNSV , then y[1] is negative increasing, thus limt→∞ y[1](t) ∈ (−∞, 0]. But at the same
time, as in (3.10) we get (3.20), where |tpΦ(y(t))| ∈ RV(δ + 1). Hence, y[1](t) ∈ RV(δ + 1),
which yields limt→∞ y[1](t) = ∞, contradiction with y ∈ DS . We have IS = ISB∞ ∪ IS∞∞.
But if y ∈ IS∞∞, then γ = δ + α by Lemma 3.18, contradiction with γ > δ + α. Thus
SNSV ⊆ ISB∞. The opposite inclusion clearly holds as well, in view of (2.1). Consider the
class SNRV (ϱ). First note that DS = DS0B. Indeed, similarly as in the proof of the part (i-a),
from (3.19), Lemma 3.7, and Remark 3.8, we find that J1 < ∞, J2 = ∞, R1 = ∞, and R2 < ∞,
and the claim follows by [5, Theorem 1], see also [6, Chapter 4]. Since ϱ < 0, y ∈ SNRV (ϱ)

cannot be in IS (see Proposition 3.1), therefore SNRV (ϱ) ⊆ DS0B. On the other hand, if
y ∈ DS0B, then y[1](t) ∼ Ny < 0 as t → ∞ which yields (3.18), and so DS0B ⊆ SNRV (ϱ).

(ii-b) Let δ > −1, γ > α − 1, and p > 0. Since p ∈ RV(δ), we have Jp = ∞, and
so (1.6) holds. Take y ∈ SNSV . Then y[1] is negative decreasing and from (3.20), we get
limt→∞ y[1](t) = −∞. Moreover, y cannot be in DS0∞, otherwise we would get γ = δ + α,
see Lemma 3.18. Consequently, SNSV ⊆ DSB∞. The opposite inclusion is obvious. Take
y ∈ SNRV (ϱ). We know that y ∈ DS0∞ ∪ DS0B. We claim that y ̸∈ DS0∞. Indeed, if
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y ∈ DS0∞, then from (3.10) we get (3.11). Since y(t) → 0 as t → ∞, integration of (3.11) yields
J = ∞, contradiction with (3.19). Thus, SNRV (ϱ) ⊆ DS0B and in view of SNSV ⊆ DSB∞ and
(3.17), we get DS0B ⊆ SNRV (ϱ). The relations of SNSV and SNRV (ϱ) with G,H,L,B type
classes in the setting of (ii-a) and (ii-b) can be treated as in the part (i).

(iii) Let δ < −1 and γ > α − 1. Then Jp < ∞ and Jr < ∞. Hence, clearly Ji < ∞, Ri < ∞,
i = 1, 2. Assume that p < 0. By [5, Theorem 1], see also [6, Chapter 4], we get IS = ISB.
Hence, IS ⊆ SSV = SNSV , in view of (2.1). If y ∈ IS , then from (1.1), (y[1](t))′ ∼ −Mα−1

y p(t)

as t → ∞, where My = limt→∞ y(t), and because of the convergence of Jp, we get IS = ISBB.
Indeed, y[1] is positive increasing and if limt→∞ y[1](t) = ∞, then Jp = ∞, contradiction. By
[5, Theorem 1], see also [6, Chapter 4], we get DS = DS0B ∪DSB, where both subclasses are
nonempty. As in (3.18), we obtain y ∈ RV(ϱ) provided y ∈ DS0B, thus DS0B ⊆ SNRV (ϱ).
Since ϱ < 0 and except of DS0B all other possible subclasses (ISB,DSB) are subsets of SV ,
we get SNRV (ϱ) ⊆ DS0B. Further, in view of [5, Theorem 1], DSB = DSB0 ∪ DSBB, where
both subclasses are nonempty. Altogether we get DSB0 ∪DSBB ∪ ISBB = SNSV .

From Lemma 3.11 we get DS0B ⊆ B4, DSB0 ⊆ B3, and DSBB ∪ ISBB ⊆ Bj, j = 1, 2.
Lemma 3.12 yields DSB0 ⊆ G2. From Lemma 3.14 and Lemma 3.16, we obtain DS0B ⊆ H4 and
DS0B ⊆ L(ϱ, η), respectively. By definition, if y ∈ B4 ∩DS , then y ∈ DS0B ∪DSBB. Suppose
by a contradiction that y ∈ DSBB. We know that DSBB ⊆ B2. Thus, |Ny − y[1]| ∈ RV(δ+ 1) by
Proposition 3.1. But at the same time we have y ∈ B4, which yields |Ny − y[1]| ∈ RV(α+ δ−γ)

by Proposition 3.1. This implies – because of necessary equality of indices of regular variation
– that γ = α− 1, contradiction. Thus B4 ∩DS ⊆ DS0B. By definition and because of the above
established classification, if y ∈ B3 ∩DS , then y ∈ DSBB ∪DSB0. Let y ∈ DSBB. We know that
DSBB ⊆ B1 by Lemma 3.11. Consequently, by Proposition 3.1, |My − y| ∈ RV(1 + γ(1 − β)).
But at the same time we have y ∈ B3, and so |My − y| ∈ RV((β − 1)(δ + 1 − γ) + 1). For
the indices we then get (β − 1)(α − 1 − γ) = (β − 1)(δ + 1 − γ + α − 1), which gives δ = −1,
contradiction. Thus B3 ∩ DS ⊆ DSB0. By definition, Bj ∩ IS ⊆ ISBB and Bj ∩ DS ⊆ DSBB,
j = 1, 2. If y ∈ G2 ∩DS , then y ∈ DSB. Differentiating the relation which defines G2, applying
Φ to the both sides and multiplying by r, we obtain, as t → ∞, |y[1]| ∼ Kt|p(t)| ∈ RV(δ + 1),
where K is a positive constant. Consequently, in view of Proposition 3.1, y ∈ DSB0. If y ∈ H4

or y ∈ L(ϱ, η), then clearly the only class for y among the ones that are allowed in the setting
δ < −1, γ > α − 1, p < 0 is DS0B.

Assume that p > 0. By [4, Theorems 2 and 4 and their proofs], we have S = ISB0 ∪ISBB ∪
DS0B ∪DSBB with all these subclasses to be nonempty. Hence, IS ∪ DSBB ⊆ SNSV . In view
of (3.18), DS0B ⊆ SNRV (ϱ). Taking into account (3.17), we get DSBB ∪ ISB0 ∪ ISBB = SNSV

and DS0B = SNRV (ϱ). The relations with the classes B1,B2,B3,B4,G2,H3, and L(ϱ, η) can be
shown similarly as in the case p < 0

In the last part of this proof we establish the relations with the class P under the condition
δ+ α < γ. First consider the case p < 0. Let γ < α− 1 and δ < −1. Then, as it was established
in the previous parts, J1 = ∞ and J2 < ∞. Theorem 3.20 now yields P = DSB. From the
previous computations we know that DSB = DS . Let γ > α − 1 and δ > −1. Then, as was
established already earlier, we have J1 < ∞. Theorem 3.20 and the equality DS0 = DS (which
holds to be true) in this case yield P = DS . If δ < −1 and γ > α − 1, then Jp < ∞ and
Jr < ∞. Consequently, J1 < ∞ and thus Theorem 3.20 yields P = DS0. The above established
classification implies DS0 = DS0B, hence P = DS0B.

Let p > 0. If y ∈ SNSV , then r1−βy−M ∈ RV(−γ/(α − 1)) by Proposition 3.1. If γ < α − 1
and δ < −1, then

∫
∞

a Tm[y](s)ds = ∞, and hence SNSV ⊆ P , in view of Theorem 3.24.
Since ϱ > 0, ty′(t)/y(t) → 0 and tx′(t)/x(t) → ϱ as t → ∞ for x ∈ SNRV (ϱ), we get



Half-linear differential equations 25

SNRV (ϱ) ∩ P = ∅ by definition. Consequently, SNSV = P . Assume that γ > α − 1 and
δ > −1. Take y ∈ SNRV (ϱ). Then by the classification made in the previous parts, we obtain
y ∈ S2, S2 being defined in Lemma 3.17, and F [y] ∈ RV(−ϱ − 1) (see Lemma 3.17), F being
defined in Theorem 3.21. Since ϱ < 0, we have

∫
∞

a F [y]ds = ∞. Assuming (3.15), we get
SNRV (ϱ) ⊆ P by Theorem 3.21. Further, SNSV ∩ P = ∅ by definition, since for x ∈ SNSV ,
tx′(t)/t → 0 as t → ∞ and ϱ < 0. Thus SNRV (ϱ) = P . If (3.15) fails to hold, then we can
proceed similarly as at the end of the proof of Theorems 2.1 and 2.2, since the discussion made
there is valid no matter whether δ + α = γ or δ + α < γ. We again obtain SNRV (ϱ) = P . It
remains to examine principal solutions when δ < −1 and γ > α − 1, i.e., Jp + Jr < ∞ under
the condition p > 0. We will use Theorem 3.26. If y ∈ SNSV , then r1−βy−2 ∈ RV(γ(1 − β)).
The index is less than −1, thus

∫
∞

a r1−β(s)y−2(s)ds < ∞ and SNSV ∩P = ∅ by Theorem 3.26.
If y ∈ SNRV (ϱ), then r1−βy−2 ∈ RV(γ(1 − β) − 2ϱ) = RV(−1 − ϱ). In view of ϱ < 0, the
index is greater than −1, thus

∫
∞

a r1−β(s)y−2(s)ds = ∞, and SNRV (ϱ) ⊆ P by Theorem 3.26.
Hence, in view of (3.17), SNRV (ϱ) = P .

Proof of Theorem 2.4. Let p < 0. Since

S = SNRV (ϑ1) ∪ SNRV (ϑ2), SNRV (ϑi) ̸= ∅, i = 1, 2, (3.21)

S = IS ∪ DS , and ϑ1 < 0 < ϑ2 (see Lemma 3.6), in view of Proposition 3.1, we get
IS = SNRV (ϑ2) and DS = SNRV (ϑ1). Thanks to the positivity of ϑ2, we have IS =

SNRV (ϑ2) ⊆ IS∞ ⊆ IS by Proposition 3.1. Take y ∈ SNRV (ϑ2) = IS = IS∞. Since y[1]

is positive increasing, we have IS∞ = IS∞∞ ∪ IS∞B. But if y ∈ IS∞B, we get y ∈ RV(ϱ)
by Lemma 3.17-(ii), contradiction because of ϑ2 ̸= ϱ (see Lemma 3.6). Therefore IS = IS∞∞.
Similarly we find that DS ⊆ SNRV (ϑ1) ⊆ DS0 = DS00 ∪ DS0B = DS00 ⊆ DS , and the
equalities follow. From Lemma 3.16, SNRV (ϑi) ⊆ L(ϑi, ηi), i = 1, 2. Condition (1.2) and
r ∈ NRV(γ) ∩ C1 imply limt→∞ tL(ϑi, ηi, t) = 0. Hence, by the Representation Theorem (see
(1.9)), L(ϑi, ηi) ⊆ SNRV (ϑi), i = 1, 2. In view of Theorem 3.20, P = DSB or P = DS0. But
DSB = ∅, thus only the latter possibility occurs. Note that J2 = ∞ by (1.2).

Let p > 0. Since we assume that Cγ ∈ (0, Kα], we have γ ̸= α − 1, otherwise Kα would
be zero. Let γ < α − 1. Then Jr = ∞ by Theorem 3.2, and so (1.5) holds. The class ISB0

is empty because of (3.21), where ϑ1, ϑ2 are positive by Lemma 3.6. The class IS∞B is also
empty. Indeed, if y ∈ IS∞B, then y ∈ RV(ϱ) by Lemma 3.17. But according to Lemma 3.6,
0 < ϑ1 ≤ ϑ2 < ϱ, contradiction. Thus IS ⊆ SNRV (ϑ1) ∪ SNRV (ϑ2) ⊆ IS∞0 ⊆ IS . Let
γ > α − 1. Then Jp = ∞ since p(t) ∼ Cγt−αr(t) ∈ RV(γ − α). Thus (1.6) holds. Similarly as
before (using Lemma 3.6 and Lemma 3.17), we get DSB∞ = ∅ = DS0B. Consequently, DS ⊆
NRV(ϑ1) ∪ NRV(ϑ2) ⊆ DS0∞ ⊆ DS . The inclusions SNRV (ϑi) ⊆ L(ϑi, ηi) ⊆ SNRV (ϑi),
i = 1, 2, can be proved analogously as in the case p < 0.

Finally we show the relations with the class P when p > 0. Take y ∈ SNRV (ϑ), where
ϑ = ϑ1 or ϑ = ϑ2. From the previous part we know that y ∈ IS∞0 ∪ DS0∞ ⊆ S1. Recall that
δ = γ − α and γ ̸= α − 1. Assume that (3.15) holds. From Lemma 3.17 and Proposition 3.1, we
get F [y] ∈ RV(Ω), F being defined in Theorem 3.21, where Ω = ϑ − 1 − 2ϑ − δ − 1 − (α −
1)ϑ = α − γ − 2 − αϑ. Clearly, Ω ≷ −1 if and only if ϑ ≷ (α − 1 − γ)/α. Since Cγ ∈ (0, Kα],
from Lemma 3.6 we have ϑ1 < (α − 1 − γ)/α < ϑ2. Thus

∫
∞

a F [y](s)ds = ∞ when ϑ = ϑ1

while
∫

∞

a F [y](s)ds < ∞ when ϑ = ϑ2 by Theorem 3.2. Theorem 3.21 yields SNRV (ϑ1) ⊆ P
and SNRV (ϑ2) ∩ P = ∅. In view of (3.21), we get P = SNRV (ϑ1). Now assume that (3.15)
fails to hold and let Jr = ∞ (i.e., in our setting, γ < α − 1) and α < 2. The constant M

is defined in Theorem 3.24. If y ∈ SNRV (ϑ1), then r1−βy−M ∈ RV(−γ(β − 1) − Mϑ1) by
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Proposition 3.1. For the index we have −γ(β − 1)− Mϑ1 > −1 if and only if Mϑ1(α − 1) <
α − 1 − γ. From Lemma 3.23 we know that M = β; recall we assume α < 2. Thus the
inequality Mϑ1(α − 1) < α − 1 − γ reads as ϑ1 < (α − 1 − γ)/α which is true by Lemma 3.6.
Consequently,

∫
∞

a TM[y](s)ds = ∞, and so Theorem 3.24 yields SNRV (ϑ1) ⊆ P . The class
SNRV (ϑ2) will be treated later. Now assume that (3.15) fails to hold in the sense that Jp = ∞

and α > 2. Note that then δ > −1 and γ > α − 1, and so SNRV (ϑ1) ∪ SNRV (ϑ2) = DS =

DS0∞ ⊆ S1, where ϑ1, ϑ2 are negative. Take y ∈ SNRV (ϑ1) and set u = −y[1]. Then u ∈ Ŝ ,
see Lemma 3.9. We want to show that u ∈ P̂ ; P̂ is the set of principal solutions in Ŝ .
Denote ϑ̂1 = γ − α + ϑ1(α − 1) + 1. Then, owing to Lemma 3.17, u ∈ RV(ϑ̂1). Recall that
γ̂ is the index of regular variation of r̂ and let M̂ = max{φα(t) : t ∈ [0, 1]}. Thanks to
Proposition 3.1, we have r̂1−αu−M̂ ∈ RV(Ψ̂), where Ψ̂ = −γ̂(α − 1)− ϑ̂1M̂. Since we assume
α > 2, we have β < 2, and Lemma 3.23 yields M̂ = α. Recalling γ̂ = (α − γ)/(α − 1),
for the index Ψ̂ we get Ψ̂ = −α + γ − α(γ − α + ϑ1(α − 1) + 1). It is now easy to see that
Ψ̂ > −1 if and only if ϑ1 < (α − 1 − γ)/α where the last inequality is true by Lemma 3.6.
Hence,

∫
∞

a r̂1−α(s)u−M̂(s)ds = ∞, and noting that
∫

∞

a r̂1−α(s)ds = ∞ (since γ̂(1 − α) > −1),
applying Theorem 3.24 to reciprocal equation (3.2), we get u ∈ P̂ . According to Theorem 3.22
we have y ∈ P , and so again SNRV (ϑ1) ⊆ P . The rest of the observations is made under
the general assumption γ ̸= α − 1. Take yi ∈ SNRV (ϑi), i = 1, 2. Then, no matter whether
(3.15) holds or does not hold, limt→∞ ty′i(t)/yi(t) = ϑi, i = 1, 2, and since ϑ1 < ϑ2, we get
y′1(t)/y1(t) < y′2(t)/y2(t) for large t, which implies SNRV (ϑ2) ∩ P = ∅. Altogether we get
SNRV (ϑ1) = P .
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Abstract. In this article, we investigate the multiplicity results of the following bi-
harmonic Choquard system involving critical nonlinearities with sign-changing weight
function:





∆2u = λF(x)|u|r−2u + H(x)

(∫

Ω

H(y)|v(y)|2
∗
α

|x − y|α
dy

)
|u|2

∗
α−2u in Ω,

∆2v = µG(x)|v|r−2v + H(x)

(∫

Ω

H(y)|u(y)|2
∗
α

|x − y|α
dy

)
|v|2

∗
α−2v in Ω,

u = v = ∇u = ∇v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 5, 1 < r < 2,
0 < α < N, 2∗α = 2N−α

N−4 is the critical exponent in the sense of Hardy–Littlewood–

Sobolev inequality and ∆2 denotes the biharmonic operator. The functions F, G and

H : Ω → R are sign-changing weight functions satisfying F, G ∈ L
2∗

2∗−r (Ω) and H ∈
L∞(Ω) respectively. By adopting Nehari manifold and fibering map technique, we
prove that the system admits at least two nontrivial solutions with respect to parameter
(λ, µ) ∈ R2

+ \ {(0, 0)}.

Keywords: biharmonic system, sign-changing weight function, Nehari manifold,
Hatree-type critical nonlinearity.
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1 Introduction

We consider the following biharmonic Choquard system involving concave-convex nonlinear-

ities with critical exponent and sign-changing weight functions




∆2u = λF(x)|u|r−2u + H(x)

(∫

Ω

H(y)|v(y)|2
∗
α

|x − y|α
dy

)
|u|2

∗
α−2u in Ω,

∆2v = µG(x)|v|r−2v + H(x)

(∫

Ω

H(y)|u(y)|2
∗
α

|x − y|α
dy

)
|v|2

∗
α−2v in Ω,

u = v = ∇u = ∇v = 0 on ∂Ω,

(Dλ,µ)

BCorresponding author. Email: sarika1.iitd@gmail.com
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where Ω be a bounded domain in RN with smooth boundary ∂Ω, N ≥ 5, 0 < α < N, 1 < r <

2, 2∗α = 2N−α
N−4 is the critical exponent in the sense of Hardy–Littlewood–Sobolev inequality, ∆2

denotes the biharmonic operator and λ, µ are the parameter such that (λ, µ) ∈ R2
+ \ {(0, 0)}.

We assume the following additive assumptions on the weight functions F, G and H:

(Z1) F, G ∈ Lβ(Ω) with β = 2∗

2∗−r and 2∗ = 2N
N−4 , F± = max{±F, 0} ̸≡ 0 in Ω and G± =

max{±G, 0} ̸≡ 0 in Ω.

(Z2) H ∈ L∞(Ω) and H+ = max{H, 0} ̸≡ 0 in Ω.

Over the last many decades, biharmonic equations have been studied by many authors. These

equations have wide application in many physical problems such as phase field models of

multi-phase systems, in thin film theory, micro electro-mechanical system, nonlinear surface

diffusion on solids, interface dynamics, flow in Hele–Shaw cells, incompressible flows, in

theory of elasticity and the deformation of a nonlinear elastic beam (see [16, 27, 28, 33, 37]).

In recent years, many researchers are highly attracted to the study of nonlinear Choquard

equation because of its applications in physical models (see [35, 41]). The origin of nonlinear

Choquard equation is related to the work of S. Pekar in 1976 [38] and P. Choquard. They used

the elliptic equations with Hardy–Littlewood–Sobolev type nonlinearity to describe the model

of an electron trapped in its hole in the Hartree–Fock theory of one component plasma and

the quantum theory of a polaron at rest respectively.

Here, we are interested to study the biharmonic system with Choquard type nonlinearity

because such type of equations occur in many applications. For this, consider the following

Schrödinger–Hartree equation

i∂tu + α(t)∆u + β(t)∆2u = θ(|x|−λ ∗ |u|2)u = 0, x ∈ R
N , t ∈ R

u(x, t0) = u0(x), x ∈ R
N ,

where u(x, t) is a complex valued function in space-time RN × R, N ≥ 1, α, β are real valued

functions denoting the variable dispersion, θ ̸= 0 represents the focusing or defocus behaviour

and λ is a positive parameter. The above model can be used in nonlinear optics for the

electromagnetic wave propagation in optical fibers exhibiting particular nonlinearities, where

there exists a repulsive (Hartree) force with strength θ, and when α, β experience variations

in time due to the need of balance effect of the nonlinearity and the dispersions ([1, 2]).

Towards the study of biharmonic equations, Bernis et al. [5] have examined the following

critical biharmonic equation with Dirichlet and Navier boundary conditions

∆2u = λ|u|q−2u + |u|2
∗−2u, in Ω,

u =
∂u

∂n
= 0 or u = ∆u = 0, on ∂Ω,

(1.1)

where λ > 0, 2∗ = 2N
N−4 . The authors proved that there exists λ0 > 0 such that for 0 < λ < λ0,

(1.1) has infinitely many solutions. Moreover, they also showed the existence of at least two

positive solutions of (1.1) in the critical case. We suggest some literature ([11, 12, 15, 21, 24, 32,

39]) for reader’s convenience and references therein.

Starting with the work of Pekar and Choquard [30, 38], there has been a lot of work done

involving Laplace, p-Laplace and nonlocal operator with Choquard type nonlinearity (see

[9, 10, 29, 36, 43]). In [34], Moroz and Schaftingen studied the following Hartree equation (or

Choquard equation)

−∆u + u = (Iα ∗ |u|
p) |u|p−2u in R

N , p > 1, (1.2)
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where Iα denotes the Riesz potential, defined as

Iα(x) =
Bα

|x|N−α
, with Bα =

Γ
(

N−α
2

)

Γ
(

α
2 π

N
2 2α
) , α ∈ (0, N).

and the term (Iα ∗ |u|p) |u|p−2u is also known as Hartree-type nonlinearity. They proved the

existence, positivity and radial symmetry of ground state solution. In 2018, Gao and Yang [19]

investigated Brézis–Nirenberg type critical Choquard equation regarded as

−∆u =

(∫

Ω

|u(y)|2
∗
α

|x − y|α
dy

)
|u|2

∗
α−2u + λu in Ω, (1.3)

where Ω is an open and bounded subset in RN with Lipschitz boundary, N ≥ 3, 2∗α = 2N−α
N−2 ,

α ∈ (0, N) and λ is a parameter. They established the existence and nonexistence of the

nontrivial solution for (1.3) using variational methods. For more literature in this direction,

we cite [4, 17, 18, 20, 45] and references therein. Recently, there are few works concerning the

system involving nonlinear Choquard term. In [49], You and Zhao studied the following

system with critical Choquard type nonlinearity

−∆u + λ1u = µ1

(
1

|x|µ
∗ |u|2

∗
µ

)
|u|2

∗
µ−1 + β

(
1

|x|µ
∗ |v|2

∗
µ

)
|u|2

∗
µ−1, x ∈ Ω,

−∆v + λ2v = µ1

(
1

|x|µ
∗ |v|2

∗
µ

)
|v|2

∗
µ−1 + β

(
1

|x|µ
∗ |u|2

∗
µ

)
|v|2

∗
µ−1, x ∈ Ω,

u, v ≥ 0 in Ω, u = v = 0 on ∂Ω,

(1.4)

where µ1, µ2 > 0, β ̸= 0, −λ1(Ω) < λ1, λ2 > 0, λ1(Ω) is the first eigen value and 2∗µ = 2N−µ
N−2

is the critical exponent in sense of Hardy–Littlewood–Sobolev inequality. The author proved

the existence of a positive ground state solution using variational methods. Moreover, for

elliptic system involving Laplace and fractional Laplacian with Choquard nonlinearity, we

cite [23, 25, 26, 46, 48] and references therein.

Recently, Sang et al. [42] examined the critical Choquard equation with weighted terms

and Sobolev-Hardy exponent in the case of Laplacian. They showed the existence of multiple

positive solutions corresponding to the problem using variational methods and Lusternik–

Schnirelmann category. Afterwards, Rani and Sarika [40] investigated the critical Choquard

equation for biharmonic operator involving sign-changing weight functions and proved the

multiplicity results analogous to the problem using the method of Nehari manifold and fiber-

ing map analysis. Considering all these facts as mentioned above, we have studied the system

of critical Choquard equation involving sign-changing weight functions for biharmonic oper-

ator and proved the multiplicity results of nontrivial solution related to the system (Dλ,µ) with

the help of Nehari manifold and fibering map techniques ([7, 8, 13]).

To the best of our knowledge, no work has been done on biharmonic system involving

critical Choquard nonlinearity with sign-changing weight function. Apart from that, the min-

imizers for SH,L demonstrated here are entirely novel in the case of biharmonic system. More-

over, the results obtained in this article are completely fresh and new in the case of Laplacian

also however the approach may be familiar.

In this article, we will discuss the existence and multiplicity results of nontrivial solutions

for the system (Dλ,µ) with respect to parameter λ and µ. Using the Nehari manifold and fiber-

ing map analysis [7, 8, 13], we establish the existence of at least two nontrivial solutions for
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system involving critical Choquard nonlinearities with sign-changing weight functions with

respect to the pair of parameters λ, µ belongs to a suitable subset of R2. The conspicuous

aspect of this article is the study of the critical level (c∞) below which the Palais–Smale condi-

tion is satisfied. Altogether, this article amplifies the branch of knowledge and gives a novel

addition to the literature of the critical Choquard system.

In order to present our main results, we define the constant Υ1 as

Υ1 :=

(
22∗α − 2

22∗α − r

) 2
2−r
[

2 − r

2(22∗α − r)
∥H+∥−2

∞ (S̄H,L)
2∗α

] 1
2∗α−1

S
r

2−r ,

where S̄H,L and S are defined later.

Now we state our following main results.

Theorem 1.1. If 1 ≤ r < 2, 0 < α < N and λ, µ > 0 satisfy 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1,

then the system (Dλ,µ) has at least one nontrivial solution in H2
0(Ω)× H2

0(Ω).

For multiplicity result, we need the following assumptions on F, G and H respectively:

(Z3) There exist a0, b0 and r0 > 0 such that B(0, 2r0) ⊂ Ω and F(x) ≥ a0, G(x) ≥ b0 for all

x ∈ B(0, 2r0).

(Z4) There exists δ0 >
2N−α

2 such that ∥H+∥∞ = H(0) = maxx∈Ω h(x), H(x) > 0 for all

x ∈ B(0, 2r0) and

H(x) = H(0) + o
(
|x|δ0

)
as x → 0.

Theorem 1.2. If 1 ≤ r < 2, 0 < α < N and λ, µ > 0 satisfy 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ2

(where Υ2 ≤ Υ1) , then the system (Dλ,µ) has at least two nontrivial solution in H2
0(Ω) × H2

0(Ω).

Moreover, the solutions corresponding to the system (Dλ,µ) are not semi-trivial.

Remark 1.3. We note that the multiplicity results for the system (Dλ,µ) can be generalized to

the following polyharmonic system




(−∆)mu = λF(x)|u|r−2u + H(x)

(∫

Ω

H(y)|v(y)|2
∗
α,m

|x − y|α
dy

)
|u|2

∗
α,m−2u in Ω,

(−∆)mv = µG(x)|v|r−2v + H(x)

(∫

Ω

H(y)|u(y)|2
∗
α,m

|x − y|α
dy

)
|v|2

∗
α,m−2v in Ω,

Dku = Dkv = 0 for all |k| ≤ m − 1 on ∂Ω,

where (−∆)m denotes the polyharmonic operators, m ∈ N, N ≥ 2m + 1, 0 < α < N, 1 < r <

2, 2∗α,m = 2N−α
N−2m is the critical exponent in the sense of Hardy–Littlewood–Sobolev inequality,

and λ, µ are the parameter such that (λ, µ) ∈ R2
+ \ {(0, 0)}.

Let S be the best Sobolev constant defined as

S := inf
u∈Hm

0 (Ω)\{0}

∫
Ω
|Dmu|2dx

(∫
Ω
|u|2∗m dx

) 2
2∗m

,

where 2∗m = 2N
N−2m . Then it is well known that S is achieved if and only if Ω = RN , by the

function

U(x) =
C

N−2m
4m

N,m

(1 + |x|2)
N−2m

2
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(see [44]). All the minimizers of S are obtained by

Uϵ(x) = ϵ
2m−N

2 U
( x

ϵ

)
=

C
N−2m

4m
N,m ϵ

N−2m
2

(ϵ2 + |x|2)
N−2m

2

,

where ϵ > 0 with CN,m := C(N, m) = ∏
m
j=1−m(N − 2j).

Define SH,L to be the best constant as

SH,L := inf
u∈Hm

0 (RN)\{0}

∫
RN |Dmu|2dx

(∫
RN

∫
RN

|u(x)|2
∗
α,m |u(y)|2

∗
α,m

|x−y|α dxdy

) 1
2∗α,m

.

One can obtain a family of minimizers for SH,L in the similar manner as shown in section 2

for the case m = 2 by taking Ũϵ(x) = S
(N−µ)(2m−N))
4m(N+2m−µ) (C(N, α))

2m−N
2(N+2m−µ) Uϵ(x), where ϵ > 0 and

Ũϵ(x) provides a family of minimizers for SH,L. Using the same approach, multiplicity results

can be established with respect to parameter λ and µ.

Organization of the article is as follows: In Section 2, variational setting for the problem

(Dλ,µ) and some essential results are proved. Besides this, we show various asymptotic es-

timates which perform a vital role in the study of a second solution for the critical case. In

Section 3, we discuss that the Palais–Smale condition holds for the energy functional asso-

ciated with (Dλ,µ) at energy level in a suitable range related to the best Sobolev constant.

Further, Nehari manifold and fibering map analysis are discussed precisely in Section 4. In

Section 5, we prove the existence of Palais–Smale sequences and showed the existence of first

nontrivial solution by the proof of Theorem 1.1. In Section 6, we give the detail of proof of the

Theorem 1.2.

2 Preliminaries and some important results

We are using Sobolev space H := H2
0(Ω)× H2

0(Ω) as a function space with standard norm

∥(u, v)∥ =
(
∥u∥2 + ∥v∥2

) 1
2 , where ∥u∥ =

(∫
Ω
|∆u|2dx

) 1
2 and ∥u∥p =

(∫
Ω
|u|pdx

) 1
p be the

usual Lp(Ω) norm.

Now, we state the well known Hardy–Littlewood–Sobolev inequality that plays a crucial

role in solving the problem involving Choquard type nonlinearity.

Proposition 2.1 (Hardy–Littlewood–Sobolev inequality [31]). Let t, q > 1 and 0 < α < N

with 1/t + α/N + 1/q = 2, g ∈ Lt(RN) and h ∈ Lq(RN). Then there exists a sharp constant

C(t, N, α, q), independent of g, h such that
∫

RN

∫

RN

g(x)h(y)

|x − y|α
dxdy ≤ C(t, N, α, q)∥g∥Lt(RN)∥h∥Lq(RN). (2.1)

If t = q = 2N
2N−α then

C(t, N, α, q) = C(N, α) = π
α
2

Γ
(

N
2 − α

2

)

Γ
(

N − α
2

)
{

Γ
(

N
2

)

Γ(N)

}−1+ α
N

.

In this case there is equality in (2.1) if and only if g ≡ Ch and

h(x) = A(b2 + |x − a|2)−
(2N−α)

2 ,

for some A ∈ C, 0 ̸= b ∈ R and a ∈ RN .
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Thus, if |u|s ∈ Lt(RN) for t > 1 such that 2
t +

α
N = 2, then by the Hardy–Littlewood–

Sobolev inequality, the integral
∫

RN

∫
RN

|u(x)|s|u(y)|s

|x−y|α dxdy is well defined. Hence for u ∈ H2(RN),

by Sobolev embedding theorems, we obtain

2α :=
2N − α

N
≤ s ≤

2N − α

N − 4
=: 2∗α,

where 2α and 2∗α are known as lower and upper critical exponent respectively in the sense of

Hardy–Littlewood–Sobolev inequality.

Therefore, for all u ∈ H2(RN), by the Hardy–Littlewood–Sobolev inequality, we have

∫

RN

∫

RN

|u(x)|2
∗
α |u(y)|2

∗
α

|x − y|α
dxdy ≤ C(N, α)∥u∥22∗α

2∗ ,

where C(N, α) is same as defined in Proposition 2.1. One can easily see that in the Hardy–

Littlewood–Sobolev inequality, equality takes place if and only if

h(x) = C

(
k

k2 + |x − a|2

) 2N−α
2

,

where C > 0 is fixed constant. Thus, u = C
(

k
k2+|x−a|2

) N−4
2 if and only if

(∫

RN

∫

RN

|u(x)|2
∗
α |u(y)|2

∗
α

|x − y|α
dxdy

) 1
2∗α

= (C(N, α))
1

2∗α

(∫

RN
|u(x)|2

∗
dx

) 2
2∗

. (2.2)

Let S be the best Sobolev constant defined as

S = inf
u∈H2

0 (Ω)\{0}

∫
Ω
|∆u|2dx

(
∫

Ω
|u(x)|2∗dx)

2
2∗

.

The best constant S is attained by the function U(x) = [N(N+2)(N−2)(N−4)]
N−4

8

(1+|x|2)
N−4

2
and all the

minimizers of S are obtained by

Uϵ(x) =ϵ
4−N

2 U
( x

ϵ

)
, where ϵ > 0, (2.3)

which satisfies the equation ∆2u = |u|2
∗−2u in RN , with

∥Uϵ(x)∥2 = ∥Uϵ(x)∥2∗

2∗ = S
N
4 .

Further, we define SH,L to be the best constant as

SH,L := inf
u∈D2,2(RN)\{0}

∫
RN |∆u|2dx

(∫
RN

∫
RN

|u(x)|2
∗
α |u(y)|2

∗
α

|x−y|α dxdy
) 1

2∗α

.

Next, we show the relation between S and SH,L by the following lemma in which the leading

concept is taken from [19].
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Theorem 2.2. The constant SH,L is achieved if and only if

u = C

(
k

k2 + |x − a|2

) N−4
2

,

where C > 0 is a constant, a ∈ RN and k ∈ R+. Furthermore

SH,L =
S

(C(N, α))
1

2∗α

. (2.4)

Proof. The Hardy–Littlewood–Sobolev inequality yields that

SH,L ≥
1

(C(N, α))
1

2∗α

inf
u∈D2,2(RN)\{0}

∫
RN |∆u|2dx

(
∫

RN |u|2∗)
2

2∗
=

S

(C(N, α))
1

2∗α

.

Further, it follows by the definition of SH,L and (2.2) that

SH,L ≤

∫
RN |∆u|2dx

(∫
RN

∫
RN

|u(x)|2
∗
α |u(y)|2

∗
α

|x−y|α dxdy
) 1

2∗α

≤

∫
RN |∆u|2dx

(C(N, α))
1

2∗α (
∫

RN |u(x)|2∗dx)
2

2∗

≤
S

(C(N, α))
1

2∗α

.

In conclusion, we obtain the required result.

Take Ũϵ(x) = S
(N−α)(4−N)

8(N+4−α) (C(N, α))
4−N

2(N+4−α) Uϵ(x), then Ũϵ gives a family of minimizers for

SH,L and satisfies the equation

∆2u =

(∫

RN

|u(y)|2
∗
α

|x − y|α
dy

)
|u|2

∗
α−2u in R

N .

Moreover,

∫

RN
|∆Ũϵ|

2dx =
∫

RN

∫

RN

|Ũϵ(x)|2
∗
α |Ũϵ(y)|2

∗
α

|x − y|α
dxdy = (SH,L)

2N−α
N+4−α .

Consider the best constant S̄H,L given as

S̄H,L := inf
u∈H\{(0,0)}

∥(u, v)∥2

(∫
Ω

∫
Ω

|u(x)|2
∗
α |v(y)|2

∗
α

|x−y|α dxdy
) 1

2∗α

.

Now, we state an important lemma which is used to show the relation between S̄H,L and SH,L.

Lemma 2.3. For u, v ∈ L
2N

2N−α (RN), 0 < α < N and s ∈ [2α, 2∗α], the following inequality holds true

∫

RN

∫

RN

|u(x)|s|v(y)|s

|x − y|α
dxdy

≤

(∫

RN

∫

RN

|u(x)|s|u(y)|s

|x − y|α
dxdy

) 1
2
(∫

RN

∫

RN

|v(x)|s|v(y)|s

|x − y|α
dxdy

) 1
2

.

Proof. The proof is similar as given in [22].

Afterwards, we build a relation that connecting S̄H,L and SH,L by adopting an idea from [3].
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Lemma 2.4. The following relation holds

S̄H,L = 2SH,L.

Proof. Let {kn} ⊂ H2
0(Ω) be a minimizing sequence for SH,L. Choose the sequences {un = skn}

and {vn = tkn} in H2
0(Ω), where s, t > 0. Then the definition of S̄H,L implies that

S̄H,L ≤
∥(un, vn)∥2

(∫
Ω

∫
Ω

|un(x)|2
∗
α |vn(y)|2

∗
α

|x−y|α dxdy
) 1

2∗α

=

(
s

t
+

t

s

)
∥kn∥2

(∫
Ω

∫
Ω

|kn(x)|2
∗
α |kn(y)|2

∗
α

|x−y|α dxdy
) 1

2∗α

. (2.5)

Further, define a function f : R+ → R+ such that f (x) = x + 1
x . Then f ( s

t ) = s
t +

t
s and f

achieves its minimum at x0 = 1. Thus, we have

min
x∈R+

f (x) = f (x0) = 2.

Now, choose s, t in such a way that s = t and taking n → ∞ in (2.5), we obtain

S̄H,L ≤ 2SH,L. (2.6)

At the same time, let {(un, vn)} be a minimizing sequence of S̄H,L. Take an = snvn for some

sn > 0 such that
∫

Ω

∫
Ω

|un(x)|2
∗
α |un(y)|2

∗
α

|x−y|α dxdy =
∫

Ω

∫
Ω

|an(x)|2
∗
α |an(y)|2

∗
α

|x−y|α dxdy.

This together with Lemma 2.3 implies that

∫

Ω

∫

Ω

|un(x)|2
∗
α |an(y)|2

∗
α

|x − y|α
dxdy

≤

(∫

Ω

∫

Ω

|un(x)|2
∗
α |un(y)|2

∗
α

|x − y|α
dxdy

) 1
2
(∫

Ω

∫

Ω

|an(x)|2
∗
α |an(y)|2

∗
α

|x − y|α
dxdy

) 1
2

=
∫

Ω

∫

Ω

|un(x)|2
∗
α |un(y)|2

∗
α

|x − y|α
dxdy.

Thus we have

∥(un, vn)∥2

(∫
Ω

∫
Ω

|un(x)|2
∗
α |vn(y)|2

∗
α

|x−y|α dxdy
) 1

2∗α

= sn
∥(un, vn)∥2

(∫
Ω

∫
Ω

|un(x)|2
∗
α |an(y)|2

∗
α

|x−y|α dxdy
) 1

2∗α

≥ sn
∥un∥2

(∫
Ω

∫
Ω

|un(x)|2
∗
α |un(y)|2

∗
α

|x−y|α

) 1
2∗α

+ s−1
n

∥an∥2

(∫
Ω

∫
Ω

|an(x)|2
∗
α |an(y)|2

∗
α

|x−y|α

) 1
2∗α

≥
(

sn + s−1
n

)
SH,L

≥ γ(x0)SH,L.

Now passing the limit as n → ∞

S̄H,L ≥ 2SH,L. (2.7)

We desire our result after combining (2.6) and (2.7).
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Now, we prove some estimates, which are useful to obtain the critical level. Without loss

of generality, we may assume that 0 ∈ Ω and B(0, 2γ) ⊂ Ω. Let ϕ ∈ C∞
c (Ω) be a fixed cut-off

function such that 0 ≤ ϕ ≤ 1 in RN , ϕ(x) = 1 on Bγ = B(0, γ) and ϕ(x) = 0 in RN \ B2γ with

|∇ϕ| ≤ C, |∆ϕ| ≤ C. Define

Uϵ(x) = ϕUϵ(x),

where Uϵ(x) is define in (2.3). Accordingly, we have the following norm estimates (see[12]).

Lemma 2.5. The following estimates are true for ϵ > 0 small enough.

∥Uϵ(x)∥2 = S
N
4 + o(ϵN−4).

∫

Ω
|Uϵ(x)|2

∗
= S

N
4 + o(ϵN).

∫

Ω
|Uϵ(x)|rdx =





o
(

ϵ
N−4

2 r
)

, r < N
N−4

o
(

ϵN− N−4
2 r| ln ϵ|

)
, r = N

N−4

o
(

ϵN− N−4
2 r
)

, r > N
N−4 .

(2.8)

Lemma 2.6. For Choquard term, the following estimate is true:

0 ≤ ∥H+∥
2(N−4)
2N−α

∞ (C(N, α))
(N−4)N
(2N−α)4 S

N−4
4

H,L − o
(

ϵ
2N−α

2

)

≤

(∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

) 1
2∗α

≤ ∥H+∥
2(N−4)
2N−α

∞ (C(N, α))
(N−4)N
(2N−α)4 S

N−4
4

H,L . (2.9)

Proof. By assumption (Z2), there exists 0 < γ ≤ r0 such that for all x ∈ B(0, 2γ) with δ0 >

2N−α
2

H(x) = H(0) + o(|x|δ0), as x → 0. (2.10)

Using the Hardy–Littlewood–Sobolev inequality and (2.4), we have

(∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

) 1
2∗α

≤ ∥H+∥
2

2∗α
∞ (C(N, α))

1
2∗α ∥Uϵ(x)∥2

2∗

= ∥H+∥
2(N−4)
2N−α

∞ (C(N, α))
(N−4)N
(2N−α)4 S

N−4
4

H,L + o(ϵN−4).

Thus
∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy ≤ ∥H+∥2

∞(C(N, α))
N
4 S

2N−α
4

H,L + o(ϵ2N−α).

Consider

ϵα−2N∥H+∥2
∞(C(N, α))

N
4 S

2N−α
4

H,L − ϵα−2N
∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

= A2N−α
∫

RN

∫

RN

(H(0))2

(ϵ2 + |x|2)
2N−α

2 (ϵ2 + |y|2)
2N−α

2 |x − y|α

− ϵα−2N
∫

RN

∫

RN
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
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= A2N−α

[∫

RN\Bγ

H(0)
(

H(0)− H(x)|ϕ(x)|2
∗
α
)

(ϵ2 + |x|2)
2N−α

2

(∫

RN

1

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

+
∫

RN\Bγ

H(x)|ϕ(x)|2
∗
α

(ϵ2 + |x|2)
2N−α

2

(∫

RN

H(0)− H(y)|ϕ(y)|2
∗
α

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

+
∫

Bγ

H(0) (H(0)− H(x))

(ϵ2 + |x|2)
2N−α

2

(∫

RN

1

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

+
∫

Bγ

H(x)

(ϵ2 + |x|2)
2N−α

2

(∫

RN

H(0)− H(y)|ϕ(y)|2
∗
α

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

]

= E1 + E2 + E3 + E4, (2.11)

where A = [N(N + 2)(N − 2)(N − 4)]
N−4

8 .

On taking E1, we have

E1 = A2N−α

[∫

RN\Bγ

H(0)
(

H(0)− H(x)|ϕ(x)|2
∗
α
)

(ϵ2 + |x|2)
2N−α

2

(∫

RN\Bγ

1

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

+
∫

RN\Bγ

H(0)
(

H(0)− H(x)|ϕ(x)|2
∗
α
)

(ϵ2 + |x|2)
2N−α

2

(∫

Bγ

1

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

]

= E1,1 + E1,2.

Applying the Hardy–Littlewood–Sobolev inequality on E1,1 and E1,2 respectively, we get

E1,1 ≤ C1

(∫

RN\Bγ

dx

(ϵ2 + |x|2)N

) 2N−α
2N
(∫

RN\Bγ

dy

(ϵ2 + |y|2)N

) 2N−α
2N

= C1

(∫

RN\Bγ

dt

(ϵ2 + |t|2)N

) 2N−α
N

≤ C1

(∫ ∞

γ

rN−1

r2N
dr

) 2N−α
N

= C2.

and

E1,2 ≤ C3

∫

RN\Bγ

∫

Bγ

1

(ϵ2 + |x|2)
2N−α

2 (ϵ2 + |y|2)
2N−α

2 |x − y|α
dxdy

≤ C3

(∫

RN\Bγ

dx

(ϵ2 + |x|2)N

) 2N−α
2N
(∫

Bγ

dy

(ϵ2 + |y|2)N

) 2N−α
2N

≤ C4

(∫

RN\Bγ

dx

|x|2N

) 2N−α
2N
(∫ γ

0

rN−1dr

(ϵ2 + r2)N

) 2N−α
2N

≤ o
(

ϵ−
2N−α

2

)(∫ γ
ϵ

0

tN−1dt

(1 + t2)N

) 2N−α
2N

≤ o
(

ϵ−
2N−α

2

)(∫ ∞

0

tN−1dt

(1 + t2)N

) 2N−α
2N

= o
(

ϵ−
2N−α

2

)
.

Thus

E1 = C2 + o
(

ϵ−
2N−α

2

)
.
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Further on taking E2, we obtain

E2 = A2N−α

[∫

RN\Bγ

H(x)|ϕ(x)|2
∗
α

(ϵ2 + |x|2)
2N−α

2

(∫

RN\Bγ

H(0)− H(y)|ϕ(y)|2
∗
α

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

+
∫

RN\Bγ

H(x)|ϕ(x)|2
∗
α

(ϵ2 + |x|2)
2N−α

2

(∫

Bγ

H(0)− H(y)|ϕ(y)|2
∗
α

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

]

= E2,1 + E2,2.

Now estimating E2,1 same as E1,1, we have

E2,1 ≤ C5

(∫

RN\Bγ

dx

(ϵ2 + |x|2)N

) 2N−α
2N
(∫

RN\Bγ

dy

(ϵ2 + |y|2)N

) 2N−α
2N

= C6.

Using the Hardy–Littlewood–Sobolev inequality E2,2 and (2.10), we get

E2,2 ≤ C7

(∫

RN\Bγ

dx

(ϵ2 + |x|2)N

) 2N−α
2N

(∫

Bγ

|y|
2Nδ0
2N−α

(ϵ2 + |y|2)N

) 2N−α
2N

≤ C8

(∫

RN\Bγ

dx

(ϵ2 + |x|2)N

) 2N−α
2N

(∫

Bγ

|y|
2Nδ0
2N−α

|y|2N

) 2N−α
2N

= C9.

Hence

E2 = C6 + C9.

For E3, we use the Hardy–Littlewood–Sobolev inequality with (2.10) which implies that

E3 = A2N−α

[∫

Bγ

∫

RN\Bγ

H(0) (H(0)− H(x))

(ϵ2 + |x|2)
2N−α

2 (ϵ2 + |y|2)
2N−α

2 |x − y|α
dxdy

+
∫

Bγ

∫

Bγ

H(0) (H(0)− H(x))

(ϵ2 + |x|2)
2N−α

2 (ϵ2 + |y|2)
2N−α

2 |x − y|α
dxdy

]

= E3,1 + E3,2.

E3,1 ≤ A2N−α
∫

Bγ

∫

RN\Bγ

H(0)|x|δ0

(ϵ2 + |x|2)
2N−α

2 (ϵ2 + |y|2)
2N−α

2 |x − y|α
dxdy

≤ A2N−α

(∫

Bγ

|x|
2Nδ0
2N−α dx

(ϵ2 + |x|2)N

) 2N−α
2N (∫

RN\Bγ

dy

(ϵ2 + |y|2)N

) 2N−α
2N

≤ C10

(∫

Bγ

|x|
2Nδ0
2N−α dx

|x|2N

) 2N−α
2N (∫

RN\Bγ

dy

(ϵ2 + |y|2)N

) 2N−α
2N

= C11.
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E3,2 ≤ A2N−α
∫

Bγ

∫

Bγ

H(0)|x|δ0

(ϵ2 + |x|2)
2N−α

2 (ϵ2 + |y|2)
2N−α

2 |x − y|α
dxdy

≤ A2N−α

(∫

Bγ

|x|
2Nδ0
2N−α dx

(ϵ2 + |x|2)N

) 2N−α
2N (∫

Bγ

dy

(ϵ2 + |y|2)N

) 2N−α
2N

≤ o
(

ϵ−
2N−α

2

)(∫

Bγ

|x|
2Nδ0
2N−α dx

|x|2N

) 2N−α
2N
(∫ γ

ϵ

0

rN−1dr

(1 + r2)N

) 2N−α
2N

≤ o
(

ϵ−
2N−α

2

)(∫ ∞

0

rN−1dr

r2N

) 2N−α
2N

= o
(

ϵ−
2N−α

2

)
.

Thus

E3 = C11 + o
(

ϵ−
2N−α

2

)
.

Similarly on taking E4, we have

E4 = A2N−α

[∫

Bγ

H(x)

(ϵ2 + |x|2)
2N−α

2

(∫

RN\Bγ

H(0)− H(y)|ϕ(y)|2
∗
α

(ϵ2 + |y|2)
2N−α

2 |x − y|α
dy

)
dx

+
∫

Bγ

∫

Bγ

H(x) (H(0)− H(y))

(ϵ2 + |x|2)
2N−α

2 (ϵ2 + |y|2)
2N−α

2 |x − y|α
dxdy

]

= E4,1 + E4,2.

By the same approach used in E1,2 and E3,2 respectively, we obtain

E4,1 = o
(

ϵ−
2N−α

2

)
and E4,2 = o

(
ϵ−

2N−α
2

)
.

Hence

E4 = o
(

ϵ−
2N−α

2

)
+ o

(
ϵ−

2N−α
2

)
= o

(
ϵ−

2N−α
2

)
.

Therefore

E1 + E2 + E3 + E4 = Ĉ + o
(

ϵ−
2N−α

2

)
,

where Ĉ = C2 + C9 + C12.

Using (2.11), we obtain

0 ≤ ϵα−2N∥H+∥2
∞(C(N, α))

N
4 S

2N−α
4

H,L − ϵα−2N
∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

≤ Ĉ + o
(

ϵ−
2N−α

2

)
.

This implies that

0 ≤ 1 − ∥H+∥−2
∞ (C(N, α))−

N
4 S

− 2N−α
4

H,L

∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

≤ ϵ2N−α∥H+∥−2
∞ (C(N, α))−

N
4 S

− 2N−α
4

H,L Ĉ + o
(

ϵ
2N−α

2

)
.
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Furthermore

0 ≤ 1 − ϵ2N−α∥H+∥−2
∞ (C(N, α))−

N
4 S

− 2N−α
4

H,L Ĉ − o
(

ϵ
2N−α

2

)

≤ ∥H+∥−2
∞ (C(N, α))−

N
4 S

− 2N−α
4

H,L

∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

≤ 1.

Now, choose ϵ > 0 such that ϵ2N−α∥H+∥−2
∞ (C(N, α))−

N
4 S

− 2N−α
4

H,L Ĉ < 1. Thus

0 ≤ 1 − ϵ2N−α∥H+∥−2
∞ (C(N, α))−

N
4 S

− 2N−α
4

H,L Ĉ − o
(

ϵ
2N−α

2

)

≤

(
1 − ϵ2N−α∥H+∥−2

∞ (C(N, α))−
N
4 S

− 2N−α
4

H,L Ĉ − o
(

ϵ
2N−α

2

)) 1
2∗α

≤ ∥H+∥
− 2(N−4)

2N−α
∞ (C(N, α))

− (N−4)N
(2N−α)4 S

− N−4
4

H,L

(∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

) 1
2∗α

≤ 1.

Moreover

0 ≤ ∥H+∥
2(N−4)
2N−α

∞ (C(N, α))
(N−4)N
(2N−α)4 S

N−4
4

H,L

− ϵ2N−α∥H+∥
2(4−N+α)

2N−α
∞ (C(N, α))

(α−N−4)N
(2N−α)4 S

α−N−4
4

H,L Ĉ − o
(

ϵ
2N−α

2

)

≤

(∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

) 1
2∗α

≤ ∥H+∥
2(N−4)
2N−α

∞ (C(N, α))
(N−4)N
(2N−α)4 S

N−4
4

H,L .

Thus, we can write

0 ≤ ∥H+∥
2(N−4)
2N−α

∞ (C(N, α))
(N−4)N
(2N−α)4 S

N−4
4

H,L − o
(

ϵ
2N−α

2

)

≤

(∫

Ω

∫

Ω
H(x)H(y)

|Uϵ(x)|2
∗
α |Uϵ(y)|2

∗
α

|x − y|α
dxdy

) 1
2∗α

≤ ∥H+∥
2(N−4)
2N−α

∞ (C(N, α))
(N−4)N
(2N−α)4 S

N−4
4

H,L .

Thus, the proof is complete.

Definition 2.7. A pair of functions (u, v) ∈ H is said to be a weak solution of the system (Dλ,µ)

if for all (ϕ1, ϕ2) ∈ H, the following holds
∫

Ω
∆u∆ϕ1dx +

∫

Ω
∆v∆ϕ2dx − λ

∫

Ω
F(x)|u|r−2uϕ1dx − µ

∫

Ω
G(x)|v|r−2vϕ2dx

−
∫

Ω

∫

Ω
H(x)H(y)

(
|v(x)|2

∗
α |u(y)|2

∗
α−2u(y)ϕ1(y) + |u(x)|2

∗
α |v(y)|2

∗
α−2v(y)ϕ2(y)

|x − y|α

)
= 0.

In order to prove the Palais–Smale condition, we need the following lemma which is in-

spired by the Brézis–Lieb convergence lemma (see [6]).

Lemma 2.8. Let N ≥ 5, 0 < α < N and {un} be a bounded sequence in L
2N

N−4 (RN). If un → u a.e.

in RN as n → ∞, then

lim
n→∞

(∫

RN
(|x|−α ∗ |un|

2∗α)|un|
2∗α −

∫

RN
(|x|−α ∗ |un − u|2

∗
α)|un − u|2

∗
α

)
=
∫

RN
(|x|−α ∗ |u|2

∗
α)|u|2

∗
α .
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Proof. The proof is similar to the proof of the Brézis–Lieb Lemma (see [6]) or Lemma 2.2 [19].

But for completeness, we give the detail. Consider
∫

RN
(|x|−α ∗ |un|

2∗α)|un|
2∗α −

∫

RN
(|x|−α ∗ |un − u|2

∗
α)|un − u|2

∗
α

=
∫

RN
(|x|−α ∗ (|un|

2∗α − |un − u|2
∗
α))(|un|

2∗α − |un − u|2
∗
α)

+ 2
∫

RN
(|x|−α ∗ (|un|

2∗α − |un − u|2
∗
α))|un − u|2

∗
α . (2.12)

Now by using [34, Lemma 2.5], for q = 2∗α = 2N−α
N−4 and r = 2N

2N−α 2∗α, then we obtain

|un|
2∗α − |un − u|2

∗
α → |u|2

∗
α in L

2N
2N−α (RN) as n → ∞. (2.13)

Also the Hardy–Littlewood–Sobolev inequality implies that

|x|−α ∗ (|un|
2∗α − |un − u|2

∗
α) → |x|−α ∗ |u|2

∗
α in L

2N
α (RN) as n → ∞. (2.14)

Hence with the help of [47, Proposition 5.4.7], we obtain |un − u|2
∗
α ⇀ 0 weakly in L

2N
2N−α (RN)

as n → ∞. So using this together with (2.13), (2.14), in (2.12), we obtain the required result.

Now, we define the energy functional Iλ,µ : H → R associated with the system (Dλ,µ) as

Iλ,µ(u, v) =
1

2
∥(u, v)∥2 −

1

r

∫

Ω
(λF(x)|u|r + µG(x)|v|r)

−
1

2∗α

∫

Ω

∫

Ω
H(x)H(y)

(
|u(x)|2

∗
α |v(y)|2

∗
α

|x − y|α

)
. (2.15)

Then Iλ,µ(u, v) is C1 function on H. Moreover, the critical points of the functional Iλ,µ are the

solutions of (Dλ,µ). For convenience, we define Pλ,µ(u, v) and Q(u, v) as

Pλ,µ(u, v) :=
∫

Ω
(λF(x)|u|r + µG(x)|v|r)dx,

Q(u, v) :=
∫

Ω

∫

Ω
H(x)H(y)

(
|u(x)|2

∗
α |v(y)|2

∗
α

|x − y|α

)
dxdy,

throughout the article. Then we obtain the estimates on Pλ,µ(u, v) and Q(u, v) by using

Hölder’s inequality, Sobolev’s embedding theorem and the definition of S̄H,L as follows

Pλ,µ(u, v) =
∫

Ω
(λF(x)|u|r + µG(x)|v|r)dx

≤ S− r
2
(
λ∥F∥β∥u∥r + µ∥G∥β∥v∥r

)

≤ S− r
2

((
λ∥F∥β

) 2
2−r +

(
µ∥G∥β

) 2
2−r

) 2−r
2

∥(u, v)∥r. (2.16)

Q(u, v) ≤ ∥H+∥2
∞(S̄H,L)

−2∗α∥(u, v)∥22∗α . (2.17)

Definition 2.9. Let J : X → R be a C1 functional on a Banach space X.

1. For c ∈ R, a sequence {uk} ⊂ X is a Palais–Smale sequence at level c ((PS)c) in X for J

if J(uk) = c + ok(1) and J′(uk) → 0 in X−1 as k → ∞.

2. We say J satisfies (PS)c-condition if for any Palais–Smale sequence {uk} in X for J has a

convergent subsequence.
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3 The Palais–Smale condition

In this section, we show that the energy functional Iλ satisfies the Palais–Smale condition

below a certain level i.e. c∞, which is used to prove the existence of second solution.

Lemma 3.1. Consider (Z1) and (Z2) are true. Suppose {(un, vn} ⊂ H is a (PS)c-sequence for Iλ,µ

such that (un, vn) ⇀ (u, v) weakly in H. Then I ′λ,µ(u, v) = 0. Furthermore, there exists a positive

constant K0 depending on r, α, N, 2∗α and S such that

Iλ,µ(u, v) ≥ −K0

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

)
,

where K0 =
(

22∗α−r
22∗α

) (
2−r

2

) [(
2N−α

N+4−α

) ( 22∗α−r
22∗α

)
S− r

2

] r
2−r

S− r
2 .

Proof. If {(un, vn)} be a (PS)c-sequence for Iλ,µ with (un, vn) ⇀ (u, v) weakly in H, then by

using the standard argument, we get I′λ,µ(u, v) = 0. i.e.

∥(u, v)∥2 − Pλ,µ(u, v)− 2Q(u, v) = 0.

Above with Hölder’s inequality, Sobolev embedding theorem and Young’s inequality in (2.15)

implies that

Iλ,µ(u, v) =

(
1

2
−

1

22∗α

)
∥(u, v)∥2 −

(
1

r
−

1

22∗α

) ∫

Ω
(λF(x)|u|r + µG(x)|v|r) dx

≥
N + 4 − α

2(2N − α)
∥(u, v)∥2 −

(
22∗α − r

22∗α

)(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) 2−r
2

S− r
2 ∥(u, v)∥r

≥
N + 4 − α

2(2N − α)
∥(u, v)∥2

−

(
22∗α − r

22∗α

)
S− r

2

[
2 − r

2
l

2
2−r

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

)
+

r

2
l−

2
r ∥(u, v)∥2

]

= K0

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

)
,

where, K0 =
(

22∗α−r
22∗α

) (
2−r

2

) [(
2N−α

N+4−α

) ( 22∗α−r
22∗α

)
S− r

2

] r
2−r

S− r
2 and l =

[(
2N−α

N+4−α

) ( 22∗α−r
22∗α

)
S− r

2

] r
2
.

This completes the proof.

Lemma 3.2. Assume {(un, vn)} ⊂ H is a (PS)c-sequence for Iλ,µ, then {(un, vn)} is bounded in H.

Proof. Let {(un, vn)} be a (PS)c-sequence for Iλ,µ in H, then as per the definition of (PS)c-

sequence, Iλ,µ(un, vn) → c and I′λ,µ(un, vn) → 0 in H−1 i.e.

1

2
∥(un, vn)∥

2 −
1

r
Pλ,µ(un, vn)−

1

2∗α
Q(un, vn) = c + on(1), (3.1)

∥(un, vn)∥
2 − Pλ,µ(un, vn)− Q(un, vn) = on(1). (3.2)

Now, our aim is to show that {(un, vn)} is bounded. On contrary, assume that ∥(un, vn)∥ → ∞

as n → ∞ and take (ûn, v̂n) := (un,vn)
∥(un,vn)∥

. It follows that {(ûn, v̂n)} is a bounded sequence.

Consequently, up to a subsequence (ûn, v̂n) ⇀ (û, v̂) weakly in H, (ûn, v̂n) → (û, v̂) strongly

in Lm(Ω) for all 1 ≤ m < 2∗ and (ûn(x), v̂n(x)) → (û(x), v̂(x)) pointwise a.e. in Ω × Ω.

Using (3.1) and (3.2), we have

1

2
∥(ûn, v̂n)∥

2 −
1

r
∥(un, vn)∥

r−2Pλ,µ(ûn, v̂n)−
1

2∗α
∥(un, vn)∥

22∗α−2Q(ûn, v̂n) = on(1), (3.3)
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and

∥(ûn, v̂n)∥
2 − ∥(un, vn)∥

r−2Pλ,µ(ûn, v̂n)− ∥(un, vn)∥
22∗α−2Q(ûn, v̂n) = on(1). (3.4)

From (3.3) and (3.4), we can deduce that

∥(ûn, v̂n)∥
2 =

2(2∗α − r)

r(2∗α − 2)
∥(un, vn)∥

r−2Pλ,µ(ûn, v̂n) + on(1). (3.5)

Since 1 ≤ r < 2 and ∥(un, vn)∥ → ∞, then (3.5) implies ∥(ûn, v̂n)∥2 → 0 as n → ∞, which is a

contradiction to the fact that ∥(ûn, v̂n)∥ = 1. Thus, proof is completed.

Lemma 3.3. There exists

c∞ :=
N + 4 − α

2(2N − α)

(
∥H+∥−2

∞

2

) N−4
N+4−α

S̄
2N−α

N+4−α

H,L − K0

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

)
,

such that the energy functional Iλ,µ satisfies the (PS)c-condition with c ∈ (−∞, c∞) and K0 is defined

in Lemma 3.1.

Proof. Let {(un, vn)} ⊂ H be a (PS)c-sequence for Iλ,µ with 0 < c < c∞. Then by Lemma 3.2,

{(un, vn)} is a bounded sequence in H. Thus, up to a subsequence, (un, vn) ⇀ (u, v) weakly

in H. So un ⇀ u and vn ⇀ v weakly in H2
0(Ω), un → u and vn → v strongly in Lm(Ω) for all

1 ≤ m < 2∗ and un → u, vn → v pointwise a.e. in Ω. Therefore

Pλ,µ(un, vn) = Pλ,µ(u, v) + on(1). (3.6)

Also, I′λ,µ(u, v) = 0, follows from Lemma 3.1. Now, define (ũn, ṽn), where ũn = un − u,

ṽn = vn − v. Then by the Brézis–Lieb lemma [6] and Lemma 2.8, we have

∥(ũn, ṽn)∥
2 = ∥(un, vn)∥

2 − ∥(u, v)∥2 + on(1),

Q(un, vn) = Q(ũn, ṽn) + Q(u, v) + on(1). (3.7)

Using Iλ,µ(un, vn) = c + on(1), I′λ,µ(un, vn) = on(1) and (3.6)–(3.7), we obtain

1

2
∥(ũn, ṽn)∥

2 −
1

2∗α
Q(ũn, ṽn) = c − Iλ,µ(u, v) + on(1), (3.8)

and

∥(ũn, ṽn)∥
2 − 2Q(ũn, ṽn) = ⟨I′λ,µ(u, v), (un − u, vn − v)⟩+ on(1) = on(1).

Therefore, we may assume that

∥(ũn, ṽn)∥
2 → d, and 2

∫

Ω

∫

Ω
H(x)H(y)

|ũn(x)|2
∗
α |ṽn(y)|2

∗
α

|x − y|α
→ d. (3.9)

It follows from the definition of S̄H,L that

∥(ũn, ṽn)∥
2 ≥ S̄H,L

(∫

Ω

∫

Ω

|ũn(x)|2
∗
α |ṽn(y)|2

∗
α

|x − y|α

) 1
2∗α

≥ S̄H,L∥H+∥
− 2

2∗α
∞

(∫

Ω

∫

Ω
H(x)H(y)

|ũn(x)|2
∗
α |ṽn(y)|2

∗
α

|x − y|α

) 1
2∗α

. (3.10)
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On combining (3.9) and (3.10), we have

d ≥ S̄H,L∥H+∥
− 2

2∗α
∞

(
d

2

) 1
2∗α

,

which gives either

d = 0 or d ≥


∥H+∥

− 2
2∗α

∞

2




N−4
N+4−α

S̄
2N−α

N+4−α

H,L .

Further, if d = 0 then the proof is complete. If

d ≥


∥H+∥

− 2
2∗α

∞

2




N−4
N+4−α

S̄
2N−α

N+4−α

H,L ,

then according to (3.8), (3.9) and Lemma 3.1, we get

c =

(
1

2
−

1

22∗α

)
d + Iλ,µ(u, v)

≥
N + 4 − α

2(2N − α)

(
∥H+∥−2

∞

2

) N−4
N+4−α

S̄
2N−α

N+4−α

H,L − K0

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

)
=: c∞,

a contradiction to c < c∞. Hence, d = 0 and with this we end the proof.

4 Nehari manifold and fibering map analysis

In this section, we elaborate some important results for Nehari manifold and analysis of

fibering map on Iλ,µ. Notice that the energy functional Iλ,µ is unbounded below on H. So

we restrict Iλ,µ on an appropriate subset Nλ,µ of H, called Nehari manifold and defined as

Nλ,µ :=
{
(u, v) ∈ H \ {(0, 0)} : ⟨I′λ,µ(u, v), (u, v)⟩ = 0

}
.

Thus, (u, v) ∈ Nλ,µ if and only if

⟨I′λ,µ(u, v), (u, v)⟩ = ∥(u, v)∥2 − Pλ,µ(u, v)− 2Q(u, v) = 0. (4.1)

Next, we see that Iλ,µ is bounded from below on Nλ,µ in the following lemma.

Lemma 4.1. The energy functional Iλ,µ is coercive and bounded below on Nλ,µ.

Proof. Let (u, v) ∈ Nλ,µ for λ, µ > 0, then using (4.1) and (2.16), we have

Iλ,µ(u, v) =

(
1

2
−

1

22∗α

)
∥(u, v)∥2 −

(
1

r
−

1

22∗α

)
Pλ,µ(u, v) (4.2)

≥

(
1

2
−

1

22∗α

)
∥(u, v)∥2 −

(
1

r
−

1

22∗α

)
S− r

2

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) 2−r
2
∥(u, v)∥r,

Since 1 < r < 2. Therefore, Iλ,µ is coercive.
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Now, consider the function ϱ : R → R as ϱ(t) = b1t2 − b2tr. Then one can easily see that

ϱ′(t) = 0 if and only if t =
(

b2r
2b1

) 1
2−r =: t∗ and ϱ′′(t∗) > 0. So ϱ attains its minimum at t∗.

Moreover,

ϱ(t) ≥ ϱ(t∗) := −(2 − r)

(
b2

2

) 2
2−r
(

r

b1

) r
2−r

.

Taking b1 =
(

1
2 − 1

22∗α

)
, b2 =

(
1
r −

1
22∗α

)
S− r

2

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r
) 2−r

2 and t = ∥(u, v)∥ in

the function ϱ, we obtain

Iλ,µ(u, v) ≥ ϱ(∥(u, v)∥) ≥ ϱ(t∗).

which yields the required assertion.

The Nehari manifold is intently related to the behaviour of map Ψu,v : t → Iλ,µ(tu, tv) for

t > 0, defined as

Ψu,v(t) := Iλ,µ(tu, tv) =
t2

2
∥(u, v)∥2 −

tr

r
Pλ,µ(u, v)−

t22∗α

2∗α
Q(u, v).

These maps are known as fibering maps which were introduced by Drábek and Pohozaev in

[13]. Thus, (tu, tv) ∈ Nλ,µ iff Ψ′
u,v(t) = 0. Furthermore

Ψ′
u,v(t) = t∥(u, v)∥2 − tr−1Pλ,µ(u, v)− 2t2∗α−1Q(u, v),

Ψ′′
u,v(t) = ∥(u, v)∥2 − (r − 1)tr−2Pλ,µ(u, v)− 2(22∗α − 1)t22∗α−2Q(u, v).

In particular, (u, v) ∈ Nλ,µ if and only if Ψ′
u,v(1) = 0. Therefore it is obvious to split Nλ,µ

into three parts namely N+
λ,µ, N−

λ,µ and N 0
λ,µ corresponding to local minima, local maxima and

point of inflexion respectively as:

N±
λ,µ :=

{
(u, v) ∈ Nλ,µ : Ψ′′

u,v(1) ≷ 0
}

, N 0
λ,µ :=

{
(u, v) ∈ Nλ,µ : Ψ′′

u,v(1) = 0
}

.

We note that, for (u, v) ∈ Nλ,µ, we have

Ψ′′
u,v(1) =

{
(2 − 22∗α)∥(u, v)∥2 − (r − 22∗α)Pλ,µ(u, v)

(2 − r)∥(u, v)∥2 − 2(22∗α − r)Q(u, v).
(4.3)

In next lemma, we will show that the local minimizers of Iλ,µ on Nλ,µ are the critical points

of Iλ,µ.

Lemma 4.2. If (u, v) is the local minimizer for Iλ,µ on subset of Nλ,µ, namely N+
λ,µ or N−

λ,µ such that

(u, v) /∈ N 0
λ,µ. Then I′λ,µ(u, v) = 0 in H−1, where H−1 denotes the dual space of H.

Proof. Suppose (u, v) is a local minimizer for Iλ,µ subject to the constrains Φλ,µ(u, v) :

⟨I′λ,µ(u, v), (u, v)⟩ = 0. Then by Lagrange multipliers, there exists δ ∈ R such that I′λ,µ(u, v) =

δΦ′
λ,µ(u, v). This implies that ⟨I′λ,µ(u, v), (u, v)⟩ = δ⟨Φ′

λ,µ(u, v), (u, v)⟩. As (u, v) ∈ Nλ,µ, then

⟨I′λ,µ(u, v), (u, v)⟩ = and ⟨Φ′
λ,µ(u, v), (u, v)⟩ ̸= 0 because of (u, v) /∈ N 0

λ,µ. Therefore δ = 0. This

completes the proof.

Lemma 4.3. The following hold:

(i) If (u, v) ∈ N+
λ,µ ∪N 0

λ,µ, then Pλ,µ(u, v) > 0.

(ii) If (u, v) ∈ N−
λ,µ ∪N 0

λ,µ, then Q(u, v) > 0.
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Proof. The proof follows directly from (4.3).

Before analyzing the fibering map, we define a map Su,v : R+ → R such that

Su,v(t) := t2−r∥(u, v)∥2 − 2t22∗α−rQ(u, v). (4.4)

It is noted that for t > 0, (tu, tv) ∈ Nλ,µ if and only if Su,v(t) = Pλ,µ(u, v). We will check

the behaviour of Su,v near 0 and +∞. Since 1 < r < 2 and 2 < 22∗α, this implies that

limt→0+ S(u,v)(t) = 0 and limt→+∞ Su,v(t) = −∞. Moreover, for critical points

S ′
u,v(t) = (2 − r)t1−r∥(u, v)∥2 − 2(22∗α − r)t22∗α−r−1Q(u, v).

One can easily see that S ′
u,v(t) = 0 if and only if t = tmax, where

tmax =

(
(2 − r)∥(u, v)∥2

2(22∗α − r)Q(u, v)

) 1
22∗α−2

.

Also, S ′′
u,v(t) = (2 − r)(1 − r)t−r∥(u, v)∥2 − 2(22∗α − r)(22∗α − r − 1)t22∗α−r−2Q(u, v).

S ′′
u,v(tmax) = (2 − r)(1 − r)t−r

max∥(u, v)∥2 − 2(22∗α − r)(22∗α − r − 1)t
22∗α−r−2
max Q(u, v)

= (2 − r)(1 − r)

(
2(22∗α − r)Q(u, v)

(2 − r)∥(u, v)∥2

) r
22∗α−2

∥(u, v)∥2

− 2(22∗α − r)(22∗α − r − 1)

(
(2 − r)∥(u, v)∥2

2(22∗α − r)Q(u, v)

) 22∗α−r−2

22∗α−2

Q(u, v)

=
∥(u, v)∥

2(22∗α−r−2)
22∗α−2

(Q(u, v))
− r

22∗α−2

[
(2 − r)(1 − r)

(
2(22∗α − r)

2 − r

) r
22∗α−2

− 2(22∗α − r)(22∗α − r − 1)

(
2 − r

2(22∗α − r)

)(
2(22∗α − r)

2 − r

) r
22∗α−2




=
(2 − 22∗α) (2(22∗α − r))

r
22∗α−2

(2 − r)
r+2−22∗α

22∗α−2

∥(u, v)∥
2(22∗α−r−2)

22∗α−2 (Q(u, v))
r

22∗α−2

< 0.

Thus, Su,v(t) has maximum value at tmax. Moreover, we have relation

Ψ′
u,v(t) = tr

(
Su,v(t)− Pλ,µ(u, v)

)
. (4.5)

Lemma 4.4. Assume that 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1 and (u, v) ∈ H, the following results

hold:

(i) If Q(u, v) < 0 and Pλ,µ(u, v) < 0, then there does not exists any critical point.

(ii) If Q(u, v) ≤ 0 and Pλ,µ(u, v) < 0, then there exists a unique (t+u, t+v) such that (t+u, t+v) ∈
N+

λ,µ and Iλ,µ(t
+u, t+v) = inft≥0 Iλ,µ(tu, tv).

(iii) If Q(u, v) > 0 and Pλ,µ(u, v) ≤ 0, then there exists a unique t− > tmax such that (t−u, t−v) ∈
N−

λ,µ and Iλ,µ(t
−u, t−v) = supt≥tmax

Iλ,µ(tu, tv).
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(iv) If Q(u, v) > 0 and Pλ,µ(u, v) > 0, then there exists unique t+ and t− satisfying 0 < t+ <

tmax < t− such that (t+u, t+v) ∈ N+
λ,µ and (t−u, t−v) ∈ N−

λ,µ. Moreover

Iλ,µ(t
+u, t+v) = inf

0≤t≤tmax

Iλ,µ(tu, tv); Iλ,µ(t
−u, t−v) = sup

t≥tmax

Iλ,µ(tu, tv).

Proof. Let (0, 0) ̸= (u, v) ∈ H, then we have following four possible cases:

(i) If Q(u, v) < 0 and Pλ,µ(u, v) < 0, then Ψu,v(t) = 0 at t = 0 and Ψ′
u,v(t) > 0 for all t > 0.

This implies that Φu is strictly increasing and hence no critical point.

(ii) If Q(u, v) < 0, then from (4.4) Su,v is strictly increasing for t > 0. As Pλ,µ(u, v) ≥ 0, this

implies that there exists a unique t+ such that Su,v(t+) = Pλ,µ(u, v) with Su,v(t+) > 0.

Using (4.5), we conclude that (t+u, t+v) ∈ Nλ,µ. Further, Ψ′
u,v(t) > 0 and Ψ′

u,v(t) < 0

for t > t+ and and t < t+ respectively. Also Ψ′′
u,v(t

+) = (t+)1+rS ′
u,v(t

+) > 0. Thus,

(t+u, t+v) ∈ N+
λ,µ and Iλ,µ(t

+u, t+v) = inft≥0 Iλ,µ(tu, tv).

(iii) If Q(u, v) > 0, then tmax is the point at which S ′
u,v(t) > 0 has maximum. Thus, Su,v(t)

is strictly increasing for 0 ≤ t < tmax and strictly decreasing for tmax < t < ∞. As

Pλ,µ(u, v) ≤ 0, so there is a unique t− > tmax > 0 such that Su,v(t−) = Pλ,µ(u, v) and

Su,v(t−) < 0. Further, (4.5) gives Ψ′
u,v(t

−) = 0. Thus (t−u, t−v) ∈ Nλ,µ. Also, Ψ′′
u,v(t

−) =

(t−)1+rS ′
u,v(t

−) < 0 and Ψ′
u,v(t) < 0 for t > tmax, so Ψu,v(t−) = supt≥tmax

Ψu,v(t). Hence,

(t−u, t−v) ∈ N−
λ,µ and Iλ,µ(t

−u, t−v) = supt≥tmax
Iλ,µ(tu, tv).

(iv) Since Q(u, v) > 0, Su,v(t) achieves its maximum at t = tmax. Thus

Su,v(tmax) = ∥(u, v)∥r

(
2 − r

2(22∗α − r)

) 2−r
22∗α−2

(
22∗α − 2

22∗α − r

)(
∥(u, v)∥22∗α

Q(u, v)

) 2−r
22∗α−2

≥

[(
2 − r

2(22∗α − r)

)
∥H+∥−2

∞ (S̄H,L)
2∗α

] 2−r
22∗α−2

(
22∗α − 2

22∗α − r

)
∥(u, v)∥r.

As Pλ,µ(u, v) > 0, so

Su,v(tmax)− Pλ,µ(u, v) ≥

[(
2 − r

2(22∗α − r)

)
∥H+∥−2

∞ (S̄H,L)
2∗α

] 2−r
22∗α−2

(
22∗α − 2

22∗α − r

)
∥(u, v)∥r

−
(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) 2−r
2

S− r
2 ∥(u, v)∥r

> 0,

for 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1. Thus, there exists t+ and t− with 0 < t+ <

tmax < t− satisfying

Su,v(t
+) = Pλ,µ(u, v) = Su,v(t

−) and S ′
u,v(t

+) < 0 < S ′
u,v(t

−).

Therefore, (t+u, t+v) ∈ N+
λ,µ, (t−u, t−v) ∈ N−

λ,µ. Furthermore, Ψ′
u,v(t) < 0 for t ∈ (0, t+),

Ψ′
u(t) > 0 for t ∈ (t+, t−) and Ψ′

u,v(t) < 0 for t ∈ (t−, ∞).

Hence

Iλ,µ(t
+u, t+v) = inf

0≤t≤tmax

Iλ,µ(tu, tv); Iλ,µ(t
−u, t−v) = sup

t≥tmax

Iλ,µ(tu, tv).

holds true. This completes the proof.
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Lemma 4.5. If 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1, then N 0
λ,µ is a null set.

Proof. We will prove it by contradiction. Let (u, v) ∈ N 0
λ,µ, then (4.3) implies that,

∥(u, v)∥2 =
22∗α − r

22∗α − 2
Pλ,µ(u, v) (4.6)

and

∥(u, v)∥2 =
2(22∗α − r)

2 − r
Q(u, v). (4.7)

On using (2.16) in (4.6), it is easy to calculate

∥(u, v)∥ ≤

(
22∗α − r

22∗α − 2
S− r

2

) 1
2−r (

(λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r

) 1
2

. (4.8)

Now, taking (2.17) in (4.7), we find

∥(u, v)∥2 ≤ 2

(
22∗α − r

2 − r

)
∥H+∥2

∞(S̄H,L)
−2∗α∥(u, v)∥22∗α ,

or

∥(u, v)∥ ≥

[(
2 − r

2(22∗α − r)

)
∥H+∥−2

∞ (S̄H,L)
2∗α

] 1
22∗α−2

. (4.9)

Thus, from (4.8) and (4.9), we get

(λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r ≥

(
22∗α − 2

22∗α − r

) 2
2−r
[(

2 − r

2(22∗α − r)

)
∥H+∥−2

∞ (S̄H,L)
2∗α

] 1
2∗α−1

S
r

2−r =: Υ1,

which contradicts the fact that 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1. Hence N 0
λ,µ = ϕ which

completes the proof.

Consequently, if 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1, then we have

Nλ,µ = N+
λ,µ ∪N−

λ,µ.

Now, we define

kλ,µ = inf
(u,v)∈Nλ,µ

Iλ,µ(u, v); k+λ,µ = inf
(u,v)∈N+

λ,µ

Iλ,µ(u, v); k−λ,µ = inf
(u,v)∈N−

λ,µ

Iλ,µ(u, v).

Lemma 4.6. The following facts hold:

(i) If 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1, then kλ,µ ≤ k+λ,µ < 0.

(ii) If 0 < λ <
r
2 Υ1, then k−λ,µ > d0, where d0 is a positive constant depending on λ, µ, α, r, N, S,

∥F∥α, ∥G∥α and ∥H+∥∞.
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Proof. (i) Let (u, v) ∈ N+
λ,µ, then (4.3) gives

2 − r

2(22∗α − r)
∥(u, v)∥2

> Q(u, v).

This together with (2.15) and (4.1) yield

Iλ,µ(u, v) =

(
1

2
−

1

r

)
∥(u, v)∥2 + 2

(
1

r
−

1

22∗α

)
Q(u, v) < −

(2 − r)(2∗α − 1)

r22∗α
∥(u, v)∥2

< 0.

Thus, by the definition of kλ,µ and k+λ,µ, we conclude that kλ,µ ≤ k+λ,µ < 0.

(ii) Let (u, v) ∈ N−
λ,µ. Then using (4.3) and (2.17), we have

2 − r

2(22∗α − r)
∥(u, v)∥2

< Q(u, v) ≤ ∥H+∥2
∞ (S̄H,L)

−2∗α ∥(u, v)∥22∗α .

This implies that

∥(u, v)∥ >

(
2 − r

2(22∗α − r)
∥H+∥−2

∞ (S̄H,L)
2∗α

) 1
22∗α−2

. (4.10)

On combining (4.2) and (4.10), we obtain

Iλ,µ(u, v)

≥ ∥(u, v)∥r

[(
1

2
−

1

22∗α

)
∥(u, v)∥2−r −

(
1

r
−

1

22∗α

)
S− r

2

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) 2−r
2

]

>

(
2 − r

2(22∗α − r)
∥H+∥−2

∞ (S̄H,L)
2∗α

) r
22∗α−2

[(
1

2
−

1

22∗α

)(
2 − r

2(22∗α − r)
∥H+∥−2

∞ (S̄H,L)
2∗α

) 2−r
22∗α−r

−

(
1

r
−

1

22∗α

)
S− r

2

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) 2−r
2

]

Thus, if 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r <

(
r
2

) 2
2−r Υ1, then Iλ,µ(u, v) > d0 for all (u, v) ∈ N−

λ,µ,

where d0 is a positive constant depending on λ, µ, α, r, N, S, ∥F∥α, ∥G∥α and ∥H+∥∞.

5 Existence of solution in N+

λ,µ

In this section, we show the existence of Palais–Smale sequence corresponding to energy

functional Iλ,µ in N±
λ,µ, by using the implicit function theorem.

Lemma 5.1. Suppose 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1. Then for every z = (u, v) ∈ Nλ,µ, there

exist ϵ > 0 and a differentiable mapping ζ : B(0, ϵ) ⊂ H → R+ such that ζ(0) = 1, ζ(w)(z − w) ∈
Nλ,µ and for all w = (w1, w2) ∈ H

⟨ζ ′(0), w⟩ =
2B(z, w)− rPλ,µ(z, w)− 2Q(z, w)

(2 − r)∥(u, v)∥2 − 2(22∗α − r)Q(u, v)
,

where

B(z, w) =
∫

Ω
(∆u∆w1 + ∆v∆w2) dx,

Pλ,µ(z, w) =
∫

Ω

(
λF(x)|u|r−2uw1 + µG(x)|v|r−2vw2

)
dx,

Q(z, w) =
∫

Ω

∫

Ω
H(x)H(y)

(
|v(x)|2

∗
α |u(y)|2

∗
α−2u(y)z1 + |u(x)|2

∗
α |v(y)|2

∗
α−2v(y)z2

|x − y|α

)
dxdy
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Proof. For z = (u, v) ∈ Nλ,µ, define a map ξz : R ×H → R such that

ξz(ζ, w) = ⟨I′λ,µ(ζ(z − w)), ζ(z − w)⟩ = ζ2∥(u − w1, v − w2)∥
2

− ζr
∫

Ω
(λF(x)|u − w1|

r + µG(x)|v − w2|
r)dx − 2ζ22∗α Q(u − w1, v − w2)dx

Then ξz(1, (0, 0)) = ⟨I′λ,µ(z), z⟩ = 0 and

d

dζ
ξz(1, (0, 0)) = 2∥(u, v)∥2 − r

∫

Ω
(λF(x)|u|r + µG(x)|v|r)dx − 2(22∗α)Q(u, v)

= (2 − r)∥(u, v)∥2 − 2(22∗α − r)Q(u, v) ̸= 0.

Thus, by the implicit function theorem, there exist ϵ > 0 and a differentiable mapping ζ :

B(0, ϵ) ⊂ H → R+ such that ζ(0) = 1,

⟨ζ ′(0), w⟩ =
2B(z, w)− rPλ,µ(z, w)− 2Q(z, w)

(2 − r)∥(u, v)∥2 − 2(22∗α − r)Q(u, v)
,

ξz(ζ(w), w) = 0 ∀ w ∈ B(0, ϵ). Thus,

⟨I′λ,µ(ζ(w)(z − w)), ζ(w)(z − w)⟩ = 0 ∀ w ∈ B(0, ϵ).

Therefore, ζ(w)(z − w) ∈ Nλ,µ.

The similar result is also true for (u, v) ∈ N−
λ,µ, which is as follows

Lemma 5.2. Suppose 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1. Then for every z = (u, v) ∈ N−
λ,µ,

there exist ϵ > 0 and a differentiable mapping ζ− : B(0, ϵ) ⊂ H → R+ such that ζ−(0) = 1,

ζ−(w)(z − w) ∈ N−
λ,µ and for all w = (w1, w2) ∈ H

⟨
(
ζ−
)′
(0), w⟩ =

2B(z, w)− rPλ,µ(z, w)− 2Q(z, w)

(2 − r)∥(u, v)∥2 − 2(22∗α − r)Q(u, v)
,

where B(z, w), Pλ,µ(z, w) and Q(z, w) is same as in Lemma 5.1.

Proof. By the same argument used in Lemma 5.1, there exists ϵ > 0 and a differentiable

function ζ− : B(0, ϵ) ⊂ H → R+ such that ζ−(0) = 1 and ζ−(w)(z − w) ∈ N−
λ,µ. Since

Ψ′′
(u,v)(1) = (2 − r)∥(u, v)∥2 − 2(22∗α − r)Q(u, v) < 0.

By the continuity of Ψ′′ and ζ−, we have

Ψ′′
ζ−(w)(z−w)(1) = (2 − r)∥ζ−(w)(z − w)∥2 − 2(22∗α − r)Q(ζ−(w)(z − w), ζ−(w)(z − w) < 0,

for ϵ > 0 is sufficiently small. Thus, ζ−(w)(z − w) ∈ N−
λ,µ.

Lemma 5.3. The following statements are true:

(i) If 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1, then there exists a (PS)kλ,µ
-sequence {(un, vn)} ⊂

Nλ,µ in H for Iλ,µ.

(ii) If 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r <

(
r
2

) 2
2−r Υ1, then there exists a (PS)k−λ,µ

-sequence

{(un, vn)} ⊂ N−
λ,µ in H for Iλ,µ.



24 A. Rani and S. Goyal

Proof. (i) According to Lemma 4.1 and Ekeland Variational Principle [14], there exists a mini-

mizing sequence {(un, vn)} ⊂ Nλ,µ such that

Iλ,µ(un, vn) < kλ,µ +
1

n
,

Iλ,µ(un, vn) < Iλ,µ(u, v) +
1

n
∥(u, v)− (un, vn)∥, for each (u, v) ∈ Nλ,µ. (5.1)

Using Lemma 4.6(i) and taking n large, we get

Iλ,µ(un, vn) =

(
1

2
−

1

22∗α

)
∥(un, vn)∥

2 −

(
1

r
−

1

22∗α

)
Pλ,µ(un, vn)

< kλ,µ +
1

n
<

kλ,µ

2
. (5.2)

This implies that

0 < −
r2∗αkλ,µ

22∗α − r
< Pλ,µ(un, vn) ≤ S− r

2

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) 2−r
2
∥(un, vn)∥

r. (5.3)

Wherefore, (un, vn) ̸= (0, 0). From (5.2), we have

∥(un, vn)∥ ≤

[(
22∗α − r

r(2∗α − 1)

)
S− r

2

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) 2−r
2

] 1
2−r

. (5.4)

Further, (5.3) gives us

∥(un, vn)∥ ≥

[
−

r2∗αkλ,µ

22∗α − r
S

r
2

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) r−2
2

] 1
r

.

Now, we will prove that

∥I′λ,µ(un, vn)∥H−1 → 0, as n → ∞.

Using Lemma 5.1 for each zn = (un, vn) to obtain the mapping ζn : B(0, ϵn) → R+ for some

ϵn > 0 such that ζn(w)(zn − w) ∈ Nλ,µ. Choose 0 < η < ϵn. Let z = (u, v) ∈ H with z ̸= 0

and take w∗
η = ηz

∥z∥ . We set wη = ζn(w∗
η)(zn − w∗

η). Since wη ∈ Nλ,µ, from (5.1), we get

Iλ,µ(wη)− Iλ,µ(zn) ≥ −
1

n
∥wη − zn∥.

Using mean value theorem, we obtain

⟨I′λ,µ(zn), wη − zn⟩+ o(∥wη − zn∥) ≥ −
1

n
∥wη − zn∥.

Therefore,

⟨I′λ,µ(zn),−w∗
η⟩+ (ζn(w

∗
η)− 1)⟨I′λ,µ(zn), zn − w∗

η⟩ ≥ −
1

n
∥wη − zn∥+ o(∥wη − zn∥). (5.5)

Since ζn(w∗
η)(zn − w∗

η) ∈ Nλ,µ and from (5.5), we get

−η

〈
I′λ,µ(zn),

z

∥z∥

〉
+ (ζn(w

∗
η)− 1)⟨I′λ,µ(zn − wη), zn − w∗

η⟩ ≥ −
1

n
∥wη − zn∥+ o(∥wη − zn∥).
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Thus, we have

〈
I′λ,µ(zn),

z

∥z∥

〉
≤

1

nη
∥wη − zn∥+

1

η
o(∥wη − zn∥)

+
(ζn(w∗

η)− 1)

η
⟨I′λ,µ(zn − wη), zn − w∗

η⟩.

(5.6)

As ∥wη − zn∥ ≤ η|ζn(w∗
η)| + |ζn(w∗

η) − 1|∥zn∥ and limη→0
|ζn(w∗

η)−1|

η ≤ ∥ζ ′n(0)∥, if we take

η → 0 in (5.6) for a fixed n ∈ N and using (5.4) we can find a constant A1 > 0, free from η

such that

〈
I′λ,µ(zn),

z

∥z∥

〉
≤

A1

n
(1 + ∥ζ ′n(0)∥).

Further, we will show that ∥ζ ′n(0)∥ is uniformly bounded. By Hölder’s inequality and

Sobolev’s embedding theorem, we have

∫

Ω
λF(x)|un|

r−1w1 + µG(x)|vn|
r−1w2

≤ λ∥F∥α

(∫

Ω

(
|un|

r−1w1

) 2∗

r

) r
2∗

+ µ∥G∥α

(∫

Ω

(
|vn|

r−1w2

) 2∗

r

) r
2∗

≤ λ∥F∥α∥un∥
r−1
2∗ ∥w1∥2∗ + µ∥G∥α∥vn∥

r−1
2∗ ∥w2∥2∗

≤ S− r
2 (λ∥F∥α + µ∥G∥α) ∥(un, vn)∥

r−1∥(w1, w2)∥ (5.7)

Further, using the Hardy–Littlewood–Sobolev inequality, Hölder’s inequality and Sobolev’s

embedding theorem, we obtain

∫

Ω

∫

Ω

(
|un|2

∗
α

|x − y|α

)
|vn|

2∗α−1w1dxdy

≤ C(N, α)

(∫

Ω
|un|

22∗α N
2N−α

) 2N−α
2N
(∫

Ω

(
|vn|

2∗α−1w1

) 2N
2N−α

) 2N−α
2N

= C(N, α)

(∫

Ω
|un|

2∗
) 2N−α

2N
(∫

Ω

(
|vn|

2∗α−1w1

) 2N
2N−α

) 2N−α
2N

≤ C(N, α)

(∫

Ω
|un|

2∗
) 2N−α

2N
(∫

Ω
|vn|

2∗
) N+4−α

2N−α
(∫

Ω
|w1|

2∗
) 1

2∗

≤



(

S−1
∫

Ω
|∆un|

2

) 2∗

2




2N−α
2N


(

S−1
∫

Ω
|∆vn|

2

) 2∗

2




N+4−α
2N



(

S−1
∫

Ω
|∆w1|

2

) 2∗

2




1
2∗

≤ A2∥un∥
2∗α∥vn∥

N+4−α
N−4 ∥w1∥

≤ A2∥(un, vn)∥
3N+4−2α

N−4 ∥(w1, w2)∥. (5.8)

Using the same idea, we can calculate

∫

Ω

∫

Ω

(
|vn|2

∗
α

|x − y|α

)
|un|

2∗α−1w2dxdy ≤ A3∥(un, vn)∥
3N+4−2α

N−4 ∥(w1, w2)∥. (5.9)
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Thus, on combining (5.7)–(5.9) and (5.4), we have

∣∣(ζ ′n(0), w
)∣∣ ≤ A4∥(w1, w2)∥

|(2 − r)∥(un, vn)∥2 − 2(22∗α − r)Q(un, vn)|
,

where A4 > 0 is a constant.

Now we are left to show that

∣∣(2 − r)∥(un, vn)∥
2 − 2(22∗α − r)Q(un, vn)

∣∣ ≥ A5,

for some A5 > 0 and n is taking large enough. On contradiction argue, suppose there exists a

subsequence {(un, vn)} such that

∣∣(2 − r)∥(un, vn)∥
2 − 2(22∗α − r)Q(un, vn)

∣∣ = on(1). (5.10)

From (5.10) and using (un, vn) ∈ Nλ,µ, we have

∥(un, vn)∥
2 =

22∗α − r

22∗α − 2
Pλ,µ(un, vn) + on(1),

∥(un, vn)∥
2 =

2(22∗α − r)

2 − r
Q(un, vn) + on(1).

By Hölder’s inequality, Sobolev embedding theorem and the definition of S̄H,L, we obtain

∥(un, vn)∥ ≤

(
22∗α − r

22∗α − 2
S− r

2

) 1
2−r (

(λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r

) 1
2
+ on(1),

∥(un, vn)∥ ≥

[(
2 − r

2(22∗α − r)

)
∥H+∥−2

∞ (2SH,L)
2∗α

] 1
22∗α−2

+ on(1).

This implies that (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r ≥ Υ1, which is a contradiction to the fact that

0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1. Hence,

〈
I′λ,µ(un, vn),

(u, v)

∥(u, v)∥

〉
≤

A1

n
.

Thus, proof of (i) is completed.

(ii) Using Lemma 5.2, one can prove (ii) in a similar manner.

Lemma 5.4. Let 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ1, then Iλ,µ has a minimizer (u1
λ,µ, v1

λ,µ) in N+
λ,µ

which satisfies the following:

(i) Iλ,µ(u
1
λ,µ, v1

λ,µ) = kλ,µ = k+λ,µ < 0.

(ii) (u1
λ,µ, v1

λ,µ) is a nontrivial solution of the system (Dλ,µ).

(iii) Iλ,µ(u
1
λ,µ, v1

λ,µ) → (0, 0) as λ → 0+, µ → 0+.

Proof. By Lemma 5.3 (i), there exists a minimizing sequence {(un, vn)} for Iλ,µ such that

Iλ,µ(un, vn) = kλ,µ + on(1), I′λ,µ(un, vn) = on(1) in H−1.
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Lemma 5.1 gives us that {(un, vn)} is bounded in H. So up to subsequence (un, vn) ⇀

(u1
λ,µ, v1

λ,µ) weakly in (un, vn) → H, (u1
λ,µ, v1

λ,µ) strongly in Lm(Ω) ∀1 ≤ m < 2∗ and

(un(x), vn(x)) → (u1
λ,µ(x), v1

λ,µ(x)) pointwise a.e. in Ω. Then, it is easy to see that

|un|
2∗α ⇀ |u1

λ,µ|
2∗α , |vn|

2∗α ⇀ |v1
λ,µ|

2∗α in L
2N

2N−α (Ω) and

|un|
2∗α−2un ⇀ |u1

λ,µ|
2∗α−2u1

λ,µ, |vn|
2∗α−2vn ⇀ |v1

λ,µ|
2∗α−2v1

λ,µ in L
2N

N+4−α (Ω),
(5.11)

as n → ∞. As we know that the Riesz potential defines a continuous linear map from L
2N

2N−α (Ω)

to L
2N
α (Ω) which provides

|x|−α ∗ |un|
2∗α ⇀ |x|−α ∗ |u1

λ,µ|
2∗α and |x|−α ∗ |vn|

2∗α ⇀ |x|−α ∗ |v1
λ,µ|

2∗α weakly in L
2N
α (Ω), (5.12)

as n → ∞. Thus, (5.11) and (5.12) gives us

(
|x|−α ∗ |vn|2

∗
α
)
|un|2

∗
α−2un ⇀

(
|x|−α ∗ |v1

λ,µ|
2∗α

)
|u1

λ,µ|
2∗α−2u1

λ,µ,

(
|x|−α ∗ |un|2

∗
α
)
|vn|2

∗
α−2vn ⇀

(
|x|−α ∗ |u1

λ,µ|
2∗α

)
|v1

λ,µ|
2∗α−2v1

λ,µ,



 weakly in L

2N
N+4 (Ω), (5.13)

as n → ∞. Therefore, for any (ϕ, ψ) ∈ H, we have

lim
n→∞

[∫

Ω
(∆un∆ϕ + ∆vn∆ψ) dx −

∫

Ω

(
λF(x)|un|

r−2uϕ + µG(x)|vn|
r−2vψ

)
dx

−
∫

Ω

∫

Ω
H(x)H(y)

(
|vn(x)|2

∗
α |un(y)|2

∗
α−2un(y)ϕ(y)+|un(x)|2

∗
α |vn(y)|2

∗
α−2vn(y)ψ(y)

|x−y|α

)]
= 0,

because of ∥I′λ,µ(un, vn)∥ → 0 as n → ∞. Thus, using (5.13), continuity of H and passing the

limit as n → ∞, we have

∫

Ω

(
∆u1

λ,µ∆ϕ + ∆v1
λ,µ∆ψ

)
dx −

∫

Ω

(
λF(x)|u1

λ,µ|
r−2u1

λ,µϕ + µG(x)|v1
λ,µ|

r−2v1
λ,µψ

)
dx

−
∫

Ω

∫

Ω
H(x)H(y)

(
|v1

λ,µ(x)|2
∗
α |u1

λ,µ(y)|
2∗α−2u1

λ,µ(y)ϕ(y)+|u1
λ,µ(x)|2

∗
α |v1

λ,µ(y)|
2∗α−2v1

λ,µ(y)ψ(y)

|x−y|α

)
= 0,

i.e.
〈

I′λ,µ(u
1
λ,µ, v1

λ,µ), (ϕ, ψ)
〉
→ 0. This implies that (u1

λ,µ, v1
λ,µ) is a weak solution of (Dλ,µ).

Since (un, vn) ∈ Nλ,µ. So, we have

∥(un, vn)∥
2 = Pλ,µ(un, vn) + 2Q(un, vn),

which gives

Iλ,µ(un, vn) =

(
1

2
−

1

22∗α

)
∥(un, vn)∥

2 −

(
1

r
−

1

22∗α

)
Pλ,µ(un, vn)

≥ −

(
1

r
−

1

22∗α

)
Pλ,µ(un, vn).

Taking n → ∞ together with λ, µ < 0, we obtain

Pλ,µ(u
1
λ,µ, v1

λ,µ) ≥ −
22∗αkλ,µ

(22∗α − r)
> 0. (5.14)
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Therefore, (u1
λ,µ, v1

λ,µ) is a nontrivial solution of (Dλ,µ). Afterwards, we will show that

(un, vn) → (u1
λ,µ, v1

λ,µ) strongly in H and Iλ,µ(u
1
λ,µ, v1

λ,µ) = kλ,µ. Using Fatou’s lemma, we

obtain

kλ,µ ≤ Iλ,µ(u
1
λ,µ, v1

λ,µ) =

(
1

2
−

1

22∗α

)
∥(u1

λ,µ, v1
λ,µ)∥

2 −

(
1

r
−

1

22∗α

)
Pλ,µ(u

1
λ,µ, v1

λ,µ)

≤ lim inf
n→∞

[(
1

2
−

1

22∗α

)
∥(un, vn)∥

2 −

(
1

r
−

1

22∗α

)
Pλ,µ(un, vn)

]

= lim inf
n→∞

Iλ,µ(un, vn) = kλ,µ.

This implies that Iλ,µ(u
1
λ,µ, v1

λ,µ) = kλ,µ and lim
n→∞

∥(un, vn)∥
2 = ∥(u1

λ,µ, v1
λ,µ)∥

2. Further, the

Brézis–Lieb lemma [6] contributes that (un, vn) → (u1
λ,µ, v1

λ,µ) strongly in H.

Now, we are left to show that (u1
λ,µ, v1

λ,µ) ∈ N+
λ,µ. We prove this by contradiction argument.

Suppose (u1
λ,µ, v1

λ,µ) ∈ N−
λ,µ Then, from Lemma 4.3 (ii) and (5.14), we have

Q(u1
λ,µ, v1

λ,µ) > 0 and Pλ,µ(u
1
λ,µ, v1

λ,µ) > 0.

Thus, from Lemma 4.4, there exist unique t+1 and t−1 such that (t+1 u1
λ,µ, t+1 v1

λ,µ) ∈ N+
λ,µ and

(t−1 u1
λ,µ, t−1 v1

λ,µ) ∈ N−
λ,µ. In particular, we have t+1 < t−1 = 1. Since Ψ′

(u1
λ,µ,v1

λ,µ)
(t+1 ) = 0 and

Ψ′′
(u1

λ,µ,v1
λ,µ)

(t+1 ) > 0, there exists t+1 < t̄ ≤ t−1 such that Iλ,µ(t
+
1 u1

λ,µ, t+1 v1
λ,µ) < Iλ,µ(t̄u

1
λ,µ, t̄v1

λ,µ).

On using Lemma 4.4, we obtain

Iλ,µ(t
+
1 u1

λ,µ, t+1 v1
λ,µ) < Iλ,µ(t̄u

1
λ,µ, t̄v1

λ,µ) ≤ Iλ,µ(t
−
1 u1

λ,µ, t−1 v1
λ,µ) = Iλ,µ(u

1
λ,µ, v1

λ,µ) = kλ,µ,

which is a contradiction. Therefore, (u1
λ,µ, v1

λ,µ) ∈ N+
λ,µ.

(iii) Further, from Lemma 4.6 (i) and (4.2), we have

0 > k+λ,µ ≥ kλ,µ = Iλ,µ(u
1
λ,µ, v1

λ,µ)

> −

(
1

r
−

1

22∗α

)
S− r

2

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

) 2−r
2
∥(u1

λ,µ, v1
λ,µ)∥

r,

which implies that Iλ,µ(u
1
λ,µ, v1

λ,µ) → (0, 0) as λ → 0+, µ → 0+ which completes the proof.

Proof of Theorem 1.1. From Lemma 5.4, we conclude that (Dλ,µ) has a nontrivial solution

(u1
λ,µ, v1

λ,µ) ∈ N+
λ,µ.

6 Existence of solution in N−
λ,µ

In this segment, we first prove the critical level by using few estimates which are already

proved in Section 1. Then we show the existence of a second weak solution of problem (Dλ,µ)

under the assumptions (Z1)–(Z4). At the end of this section, we give the proof of Theorem 1.2.

Lemma 6.1. Assume that (Z1)–(Z4) hold and N
N−4 ≤ r < 2, then there exist (uλ,µ, vλ,µ) in H \

{(0, 0)} and Υ > 0 such that for 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ,

sup
t≥0

Iλ,µ(tuλ,µ, tvλ,µ)

<
N + 4 − α

2(2N − α)

(
∥H+∥−2

∞

2

) N−4
N+4−α

S̄
2N−α

N+4−α

H,L − K0

(
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r

)
=: c∞.
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Furthermore, k−λ,µ < c∞ for all 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ.

Proof. For this, we first define the functional E : H → R such that

E(u, v) =
1

2
∥(u, v)∥2 −

1

2∗α
Q(u, v), ∀ (u, v) ∈ H.

Take U0 = V0 = Uϵ with (U0, V0) ∈ H. We define ϕ(t) = E(tU0, tV0). Then ϕ(t) satisfies

ϕ(0) = 0, ϕ(t) > 0 for t > 0 small and ϕ(t) < 0 for t > 0 large. Further, one can easily verify

that ϕ(t) attains its maximum at

t =

(
∥(U0, V0)∥2

2Q(U0, V0)

) 1
22∗α−2

=: t∗.

Thus from (2.9), we have

sup
t≥0

E(tU0, tV0) =
(t∗)2

2
∥(U0, V0)∥

2 −
(t∗)22∗α

2∗α
Q(U0, V0)

=
(N + 4 − α)

2N − α


 ∥Uϵ∥2

(
Q(Uϵ, Uϵ)

) 1
2∗α




2N−α
N+4−α

≤
(N + 4 − α)

2N − α




(C(N, α))
N(N−4)
4(2N−α S

N
4

H,L + o(ϵN−4)

∥H+∥
2(N−4)
2N−α

∞ (C(N, α))
N(N−4)
4(2N−α S

N−4
4

H,L − o(ϵ2N−α)− o
(

ϵ
2N−α

2

)




2N−α
N+4−α

≤
(N + 4 − α)

2N − α


∥H+∥

− 2(N−4)
2N−α

∞ SH,L + (ϵN−4)

1 − o
(

ϵ
2N−α

2

)




2N−α
N+4−α

≤
(N + 4 − α)

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞ S
2N−α

N+4−α

H,L

[
1 + o(ϵN−4) + o

(
ϵ

2N−α
2

)] 2N−α
N+4−α

≤
(N + 4 − α)

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞

(
SH,L

2

) 2N−α
N+4−α

+

{
o(ϵN−4), α ≤ 8

o(ϵ
2N−α

2 ), α > 8.
(6.1)

Further, δ1 > 0 is chosen in such a way that c∞ > 0 for all 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < δ1.

Then, the definition of Iλ,µ and λ, µ > 0 yield that Iλ,µ(tU0, tV0) ≤
t2

2 ∥(U0, V0)∥2 for t ≥ 0. This

implies that, there exists t0 ∈ (0, 1) such that

sup
t∈[0,t0]

Iλ,µ(tU0, tV0) < c∞ ∀ 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < δ1.

Moreover,

sup
t≥t0

Pλ,µ(tU0, tV0) = sup
t≥t0

(∫

Ω
λF(x)|tU0|

r + µG(x)|tV0|
r

)

= sup
t≥t0

(
tr
∫

Ω
(λF(x) + µG(x)) |Uϵ|

rdx

)

≥ (t0)
r (λa0 + µb0)

∫

B(0,2r0)
|Uϵ|

rdx

≥
ω

r
(λ + µ)

{
o(ϵN− N−4

2 r| ln ϵ|), r = N
N−4

o(ϵN− N−4
2 r), r > N

N−4 ,
(6.2)
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where ω = min{a0, b0}.

Thus, on using (2.8), (6.1) and (6.2), we have

sup
t≥t0

Iλ,µ(tU0, tV0) = sup
t≥t0

(
E(tU0, tV0)−

1

r
Pλ,µ(tU0, tV0)

)

≤
N + 4 − α

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞

(
SH,L

2

) 2N−α
N+4−α

+

{
o(ϵN−4), α ≤ 8

o(ϵ
2N−α

2 ), α > 8

−
ω

r
(λ + µ)

{
o(ϵN− N−4

2 r| ln ϵ|), r = N
N−4

o(ϵN− N−4
2 r), r > N

N−4 ,

or

sup
t≥t0

Iλ,µ(tU0, tV0) ≤
N + 4 − α

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞

(
SH,L

2

) 2N−α
N+4−α

+ o(ϵρ)

−
ω

r
(λ + µ)

{
o(ϵN− N−4

2 r| ln ϵ|), r = N
N−4

o(ϵN− N−4
2 r), r > N

N−4 ,

where ρ = min
{

N − 4, 2N−α
2

}
.

Choose δ2 > 0 in this way that 0 ≤ ϵ < δ2 and take ϵ =
[
(λ∥F∥β)

2
2−r + (µ∥G∥β)

2
2−r
] 1

ρ . Thus,

we have

sup
t≥t0

Iλ,µ(tU0, tV0) ≤
N + 4 − α

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞

(
SH,L

2

) 2N−α
N+4−α

+ o(D(λ, µ))

−
ω

r
(λ + µ)

{
o((D(λ, µ))

N
2ρ | lnD(λ, µ)|), r = N

N−4

o((D(λ, µ))
N
ρ −

N−4
2ρ r), r > N

N−4 ,

where D(λ, µ) = (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r .

Case (i): When α ≤ 8, then ρ = N − 4.

For r = N
N−4 , we can choose δ3 > 0 with 0 < D(λ, µ) < δ3 such that

o(D(λ, µ))−
ω(λ + µ)

r
o
(
(D(λ, µ))

N
2(N−4) |ln (D(λ, µ))|

)
< −K0 (D(λ, µ)) ,

as λ, µ → 0 and |ln (D(λ, µ))| → +∞.

For r > N
N−4 , we choose δ4 > 0 with 0 < D(λ, µ) < δ4 such that

o(D(λ, µ))−
ω(λ + µ)

r
o
(
(D(λ, µ))

N
N−4−

r
2

)
< −K0 (D(λ, µ)) ,

as 1 + 2
2−r

(
N

N−4 −
r
2

)
<

2
2−r for r > N

N−4 . Now, we fix Υ∗ = min{δ
2−r

2
1 , δ

(2−r)(N−4)
2

2 , δ
2−r

2
3 , δ

2−r
2

4 } > 0

such that

sup
t≥t0

Iλ,µ(tU0, tV0) ≤
N + 4 − α

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞

(
SH,L

2

) 2N−α
N+4−α

− K0(D(λ, µ)) for 0 < D(λ, µ) < Υ∗.

Case (ii): When α > 8, then ρ = 2N−α
2 .
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For r = N
N−4 , we choose δ5 > 0 with 0 < D(λ, µ) < δ5 such that

o(D(λ, µ))−
ω(λ + µ)

r
o
(
(D(λ, µ))

N
2N−α |ln (D(λ, µ))|

)
< −K0 (D(λ, µ)) ,

as λ, µ → 0 and |ln (D(λ, µ))| → +∞.

For r > N
N−4 , we choose δ6 > 0 with 0 < D(λ, µ) < δ6 such that

o(D(λ, µ))−
ω(λ + µ)

r
o
(
(D(λ, µ))

2N
2N−α−

N−4
2N−α r

)
< −K0 (D(λ, µ)) ,

as 1 + 2
2−r

(
2N

2N−α − N−4
2N−α r

)
<

2
2−r for r >

N
N−4 . Fix Υ∗∗ = min{δ

2−r
2

1 , δ
(2−r)(2N−α)

2
2 , δ

2−r
2

5 , δ
2−r

2
6 } > 0

to obtain

sup
t≥t0

Iλ,µ(tU0, tV0)

≤
N + 4 − α

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞

(
SH,L

2

) 2N−α
N+4−α

− K0(D(λ, µ)) for 0 < D(λ, µ) < Υ∗∗. (6.3)

Thereafter, we fix Υ = min{Υ∗, Υ∗∗}. Thus, we have

sup
t≥t0

Iλ,µ(tU0, tV0)

≤
N + 4 − α

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞

(
SH,L

2

) 2N−α
N+4−α

− K0(D(λ, µ)) =: c∞ for 0 < D(λ, µ) < Υ.

Later, we show that k−λ,µ < c∞ for all 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r < Υ. By using (Z2), (Z4)

and the definition of (U0, V0), we get

Pλ,µ(U0, V0) > 0 and Q(U0, V0) > 0.

Further, by Lemma 4.4, definition of k−λ,µ and (6.3), there exists t2(U0, V0) ∈ N−
λ,µ satisfying

k−λ,µ ≤ Iλ,µ(t2U0, t2V0)) ≤ Iλ,µ(tU0, tV0)

≤
N + 4 − α

2N − α
∥H+∥

− 2(N−4)
N+4−α

∞

(
SH,L

2

) 2N−α
N+4−α

− K0(D(λ, µ)) =: c∞,

for each 0 < D(λ, µ) < Υ.

Take (U0, V0) = (uλ,µ, vλ,µ) and with this we complete the proof.

Lemma 6.2. Assume that (Z1)–(Z4) hold. Then Iλ,µ satisfies the (PS)k−λ,µ
condition for all 0 <

(λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r <

(
r
2

) 2
2−r Υ1 and has a minimizer (u2

λ,µ, v2
λ,µ) in N−

λ,µ and satisfies the

following conditions:

(i) Iλ,µ(u
2
λ,µ, v2

λ,µ) = k−λ,µ > 0.

(ii) (u2
λ,µ, v2

λ,µ) is a nontrivial solution of the system (Dλ,µ).
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Proof. By virtue of Lemma 5.3 (ii), for 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r <

(
r
2

) 2
2−r Υ1, there

exists a (PS)k−λ,µ
-sequence {(un, vn)} ⊂ N−

λ,µ in H for Iλ,µ. Then, from Lemma 3.2, we

find that {(un, vn)} is bounded in H. Now, using Lemma 3.3 and Lemma 6.1, Iλ,µ satis-

fies the (PS)k−λ,µ
-condition. Then, there exists (u2

λ,µ, v2
λ,µ) ∈ H such that up to subsequence

(un, vn) → (u2
λ,µ, v2

λ,µ) in H. Moreover, Iλ,µ(u
2
λ,µ, v2

λ,µ) = k−λ,µ > 0 and (u2
λ,µ, v2

λ,µ) ∈ N−
λ,µ. Us-

ing the argument as applied in Lemma 5.4, one can easily obtain that (u2
λ,µ, v2

λ,µ) is a nontrivial

solution of system (Dλ,µ) for 0 < (λ∥F∥β)
2

2−r + (µ∥G∥β)
2

2−r <

(
r
2

) 2
2−r Υ1.

Proof of Theorem 1.2. By Lemma 5.4 and Lemma 6.2, system (Dλ,µ) has one solution

(u1
λ,µ, v1

λ,µ) ∈ N+
λ,µ and another solution (u2

λ,µ, v2
λ,µ) ∈ N−

λ,µ. Afterwards, we show that the

solutions (u1
λ,µ, v1

λ,µ) and (u2
λ,µ, v2

λ,µ) are not semi-trivial. Using Lemma 5.4 (i) and Lemma 6.2

(i) respectively, we get

Iλ,µ(u
1
λ,µ, v1

λ,µ) < 0 and Iλ,µ(u
2
λ,µ, v2

λ,µ) > 0. (6.4)

We observe that, if (u, 0) (or (0, v)) is a semi-trivial solution of system (Dλ,µ), then we have

{
∆2u = λF(x)|u|r−2u in Ω,

u = ∇u = 0 on ∂Ω.
(6.5)

Now, the energy functional Iλ,µ(u, 0) corresponding to (6.5) is

Iλ,µ(u, 0) =
1

2
∥u∥2 −

λ

r

∫

Ω
F(x)|u|rdx = −

2 − r

2r
∥u∥2

< 0. (6.6)

Thus (6.4) and (6.6), we conclude that (u2
λ,µ, v2

λ,µ) is not a semi-trivial solution. Next, we prove

that (u1
λ,µ, v1

λ,µ) is also not a semi-trivial solution. Without loss of generality, we assume that

v1
λ,µ ≡ 0. Then u1

λ,µ is a non-trivial solution of (6.5) and

∥(u1
λ,µ, 0)∥2 = ∥u1

λ,µ∥
2 = λ

∫

Ω
F(x)|u1

λ,µ|
rdx ≥ 0.

Moreover, we choose w ∈ H2
0(Ω) \ {0} such that

∥(0, w)∥2 = ∥w∥2 = µ
∫

Ω
G(x)|w|rdx > 0.

From Lemma 4.4, there exists a unique 0 < t1 < tmax(u1
λ,µ, w) such that (t1u1

λ,µ, t1w) ∈ N+
λ,µ,

where

tmax(u
1
λ,µ, w) =

(
(22∗α − r)

∫
Ω
(λF(x)|u1

λ,µ|
r + µG(x)|w|r)dx

(22∗α − 2)∥(u1
λ,µ, w)∥2

) 1
2−r

=

(
22∗α − r

22∗α − 2

) 1
2−r

> 1.

Furthermore,

Iλ,µ(t1u1
λ,µ, t1w) = inf

0≤t≤tmax

Iλ,µ(tu
1
λ,µ, tw).

This together with the fact that (u1
λ,µ, 0) ∈ N+

λ,µ imply that

µ+
λ,µ ≤ Iλ,µ(t1u1

λ,µ, t1w) ≤ Iλ,µ(u
1
λ,µ, w) < Iλ,µ(u

1
λ,µ, 0) = µ+

λ,µ,

which is a contradiction. Hence, (u1
λ,µ, v1

λ,µ) is not a semi-trivial solution.
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Abstract. In this paper, we study the existence of positive solutions for the following
generalized quasilinear Schrödinger equation

− div(gp(u)|∇u|p−2∇u) + gp−1(u)g′(u)|∇u|p + V(x)|u|p−2u

= K(x) f (u) + Q(x)g(u)|G(u)|p
∗−2G(u), x ∈ R

N ,

where N ≥ 3, 1 < p ≤ N, p∗ = Np
N−p , g ∈ C1(R, R+), V(x) and K(x) are positive con-

tinuous functions and G(u) =
∫ u

0 g(t)dt. By using a change of variable, we obtain the
existence of positive solutions for this problem by using the Mountain Pass Theorem.
Our results generalize some existing results.
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Introduction

This article is concerned with a class of generalized quasilinear Schrödinger equation

− div(gp(u)|∇u|p−2∇u) + gp−1(u)g′(u)|∇u|p + V(x)|u|p−2u

= K(x) f (u) + Q(x)g(u)|G(u)|p
∗−2G(u), x ∈ R

N , (1.1)

where N ≥ 3, 1 < p ≤ N, p∗ = pN
N−p , g ∈ C1(R, R+), V(x) and K(x) are positive continuous

functions, Q(x) ≥ 0 is a bounded continuous function and G(u) =
∫ u

0 g(t)dt.

If p = 2 , then (1.1) will be reduced to the following generalized quasilinear Schrödinger

equation

−div(g2(u)∇u)+ g(u)g′(u)|∇u|2 +V(x)u = K(x) f (u)+Q(x)g(u)|G(u)|2
∗−2G(u), x ∈ R

N .
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In nonlinear analysis, the existence of solitary wave solutions for the following quasi-linear

Schrödinger equation has been widely considered

i∂tz = −∆z + W(x)z − k(x, |z|)− ∆l(|z|2)l′(|z|2)z (1.2)

where z : R × RN → C, W : RN → R is a given potential, l : R → R and k : RN × R → R

are suitable functions. When l is different, the quasilinear equation of the form (1.2) can

express several physical phenomenon. Especially, l(s) = s was used for the superfluid film

[26, 27] equation in fluid mechanics by Kurihara [26]. For more physical background, we can

refer to [5, 6, 11, 25, 28, 36, 38, 39] and references therein. In addition, many conclusions about

the equation (1.2) with l(t) = tα for some α ≥ 1 have been studied, see [33–35, 37] and the

references therein. However, to our knowledge, only in the recent papers [20] and [40], the

equation (1.2) with a general l has been studied.

If we let z(t, x) = exp(−iEt)u(x), where E ∈ R and u is a real function, then (1.2) can be

reduce to (see [15]):

−∆u + V(x)u − ∆l(u2)l′(u2)u = h(x, u), x ∈ R
N . (1.3)

If we take

g2(u) = 1 +
[(l2(u))′]2

2
,

then (1.3) turns into quasilinear elliptic equations (see [40])

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = h(x, u), x ∈ R
N . (1.4)

Moreover, if we let

gp(u) = 1 +
[(l2(u))′]p

p
,

the (1.1) turns to the following (see [45])

−∆p + V(x)|u|p−2u − ∆p(l(u
2))l′(u2)

2u

p
= h(x, u), x ∈ R

N .

For (1.4), in [20, 21], Deng et al. proved the existence of positive solutions with critical ex-

ponents. In [20,21], they established the critical exponents, which are 2∗ and α2∗, respectively.

In [18, 19], Deng et al. established the existence of nodal solutions. Especially, in [18], the

authors gave some existence results about under critical growth condition. Moreover, in [29],

Li et al. proved the existence of ground state solutions and geometrically distinct solutions

via Nehari manifold method. In [30], the authors studied the existence of a positive solution,

a negative solution and infinitely many solutions via symmetric mountain theorem. In [9],

Chen et al. considered the existence and concentration behavior of ground state solutions for

(1.4) with subcritical growth. Afterwards, Chen et al. [10] proved the existence and concen-

tration behavior of ground state solutions for (1.4) with critical exponential 22∗ growth. For

more results, the readers can refer to [13, 14, 31, 40–43]. In 2016, Li et al. [31, 46] established

the existence of sign-changing solutions and ground state solutions with potential vanishing

at infinity as follows:

(g) g ∈ C1(R, R+) is even with g′(t) ≥ 0 for all t ∈ R+ and g(0) = 1.

(V) The potential function V is positive on RN and belongs to L∞(RN) ∩ Cα(RN) for some

α ∈ (0, 1).
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(K) K ∈ L∞(RN) ∩ Cα(RN) is positive.

(K1) If {An} ⊂ RN is a sequence of Borel sets such that |An| ≤ M, for all n and some M > 0,

then we have

lim
r→+∞

∫

An∩Bc
r (0)

K(x)dx = 0, uniformly in n ∈ N,

where Bc
r(0) = {x ∈ RN : |x| ≥ r}

(K2) The following condition holds:
K(x)

V(x)
∈ L∞(RN). (1.5)

Note that conditions (V)–(K2) are called potential vanishing at infinity. By using potential

vanishing at infinity, there are many papers (see [1, 4, 12, 23, 24, 31, 32, 43, 44, 46]) to study the

existence of solutions for different equations. Especially in [22], Deng et al. proved the exis-

tence of positive solutions with critical growth and potential vanishing at infinity by making

the change of variables v = r−1(u), where r is defined by

r′(t) =
1

(1 + 2r2(t))1/2
on [0,+∞),

r(−t) = r(t) on (−∞, 0].

However, conditions (V)–(K2) are weaker than the following well-known condition:

(VK) V, K : RN → R+ are smooth and there exist positive numbers α, β, a, b, and c such that

a

1 + |x|α
≤ V(x) ≤ b, 0 < K(x) ≤

c

1 + |x|β
, x ∈ R

3,

which was firstly introduced in [2].

Before stating our results, let us recall some basic notions. Let

D1,p(RN) =
{

u ∈ Lp∗(RN) : ∇u ∈ Lp(RN)
}

with the norm

∥u∥D1,p =

(

∫

RN
|∇u|pdx

)
1
p

.

Since the potential may vanish at infinity, it is natural to use the following working space:

E =

{

v ∈ D1,p(RN) :
∫

R3
V(x)|v|pdx < ∞

}

endowed with the norm

∥v∥ =

(

∫

RN
(|∇v|p + V(x)|v|p)dx

)
1
2

, v ∈ E.

Moreover, we define the weighted Lebesgue space

L
q
K(R

N) =

{

u : u is measurable on R
N and

∫

RN
K(x)|u|qdx < ∞

}



4 Z. Li

endowed with the norm

∥u∥L
q
K
=

(

∫

RN
(K(x)|u|q)dx

)
1
q

,

for some q ∈ (p, p∗).

By the conditions (V)–(K2), in [17], the authors got the following proposition.

Proposition 1.1 (see [17, Lemma 2.2]). Suppose that (V)–(K2) are satisfied. Then E is compactly

embedded in L
q
K(R

N) for all q ∈ (p, p∗) if (1.5) holds.

To resolve the equation (1.1), due to the appearance of the nonlocal term
∫

RN gp(u)|∇u|pdx,

the right working space seems to be

E0 =

{

u ∈ E :
∫

RN
gp(u)|∇u|pdx < ∞

}

.

But it is easy to see that E0 is not a linear space under the assumption of (g). To overcome

this difficulty, a variable substitution as follows: for any v ∈ E, Shen and Wang [40] make a

change of variable as

u = G−1(v) and G(u) =
∫ u

0
g(t)dt,

then
∫

RN
gp(u)|∇u|pdx =

∫

RN
gp(G−1(v))|∇G−1(v)|pdx := |∇v|

p
p < +∞, v ∈ E.

In such a case, we can deduce formally that the Euler–Lagrange functional associated with

the equation (1.1) is

J(u) =
1

p

∫

RN
[gp(u)|∇u|p + V(x)up]dx −

∫

RN
K(x)F(u)dx −

1

p∗

∫

RN
Q(x)|G(u)|p

∗
dx.

Therefore, by this change of variables E can be used as the working space and the equation

(1.1) in form can be transformed into

J (v) =
1

p

∫

RN
(|∇v|p + V(x)|G−1(v)|p)dx

−
∫

RN
K(x)F(G−1(v))dx −

1

p∗

∫

RN
Q(x)|v|p

∗
dx, x ∈ R

N . (1.6)

By the fact of g is a nondecreasing positive function that |G−1(v)| ≤ |v|. From this and our

hypotheses, it is clear that J is well defined in E and J ∈ C1.

Furthermore, one can easily derive that if v ∈ C2(RN) is a critical point of (1.6), then

u = G−1(v) ∈ C2(RN) is a classical solution to the equation (1.1). To obtain a critical point of

(1.6), we only need to seek for the weak solution to the following equation

−∆pv + V(x)
|G−1(v)|p−2G−1(v)

g(G−1(v))
= K(x)

f (G−1(v))

g(G−1(v))
+ Q(x)|v|p

∗−2v, x ∈ R
N . (1.7)

Here, we say that v ∈ E is a weak solution to the equation (1.7) if it holds that

⟨J ′(v), φ⟩ =
∫

RN
|∇v|p−2∇v∇φ +

∫

RN
V(x)

|G−1(v)|p−2G−1(v)

g(G−1(v))
φ

−
∫

RN
K(x)

f (G−1(v))

g(G−1(v))
φ −

∫

RN
Q(x)|v|p

∗−2vφ, φ ∈ E.



Existence of positive solutions for a class of p-Laplacian type generalized quasilinear 5

Then it is standard to obtain that v ∈ E is a weak solution to the equation (1.7) if and only if

v is a critical point of the functional J in E. To sum up, it is sufficient to find a critical point

of the functional J in E to achieve a classical solution to the equation (1.1).

Very recently, Song and Chen [45] studied the existence of weak solutions for (1.1) when

V is a positive potential bounded away from zero and h(x, u) = h(u) is a nonlinear term of

subcritical type. Now, it is natural to ask whether problem (1.1) has the existence of positive

solutions in the case where h satisfies critical growth? To the best of our knowledge, there

are few results on such above questions in current literature. Actually, this is one of the

motivations for us to study the existence of positive solutions of (1.1) with critical growth.

Motivated by the above works, in this paper, our goal is to deal with critical growth case and

give the existence of positive solutions of (1.1) with potential vanishing at infinity.

Now, we answer the question in the affirmative, which is given in the front of the article.

Before stating our results, we need to give the following assumptions on f :

( f ) f ∈ C(R, R), f (t) = 0 for t ≤ 0 and f has a “quasicritical” growth, namely

lim
|t|→∞

f (t)

g(t)|G(t)|p∗−1
= 0.

( f1) limt→0+
f (t)

g(t)|G(t)|p−1 = 0 if (1.5) holds.

( f2) There exists a µ ∈ (p, p∗) such that for any t > 0

0 < µg(t)F(t) ≤ G(t) f (t) for all s ∈ R,

where F(u) =
∫ u

0 f (t)dt.

In addition, we also assume that

(Q1) There is a point x0, such that

Q(x0) = sup
x∈RN

Q(x).

(Q2) For x close to x0, we have

Q(x) = Q(x0) + O(|x − x0|
p) as x → x0.

Now, we state our main results by the following theorems.

Theorem 1.2. Suppose that (g), (V)–(K2), (Q1)–(Q2) and ( f )–( f2) are satisfied. Then problem (1.1)

has at least one positive solution if either N ≥ p2 or p < N < p∗ and µ > p∗ − p
p−1 .

Applying Theorem 1.2 to the case when Q(x) = 1 and p = 2, we can get the following

corollary.

Corollary 1.3. Suppose that (g), (V)–(K2) and ( f )–( f2) are satisfied. Then the following problem

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = K(x) f (u) + g(u)|G(u)|2
∗−2G(u), x ∈ R

N

has at least one positive solution if either N ≥ 4 or N = 3 and µ > 2∗ − 2.

The paper is organized as follows. In Section 2, we prove a solution of (1.1) with critical

growth and potential vanishing at infinity. In Appendix A, we give some useful lemmas,

respectively.

In the following, we denote by Lp(RN) the usual Lebesgue space with norms ∥u∥p =
(∫

RN |u|pdx
)

1
p , where 1 ≤ p < ∞; for any z ∈ R2 and R > 0, BR(z) := {x ∈ R2 : |x − z| < R};

C possibly denotes the different constants in different place.



6 Z. Li

Main results

In this section, we present some useful lemmas and corollaries. Now, let us recall the following

lemma which has been proved in [30].

Lemma 2.1 ([30]). For the function g, G, and G−1, the following properties hold:

(1) the functions G(·) and G−1(·) are strictly increasing and odd;

(2) G(s) ≤ g(s)s for all s ≥ 0; G(s) ≥ g(s)s for all s ≤ 0;

(3) g(G−1(s)) ≥ g(0) = 1 for all s ∈ R;

(4) G−1(s)
s is decreasing on (0,+∞) and increasing on (−∞, 0);

(5) |G−1(s)| ≤ 1
g(0)

|s| = |s| for all s ∈ R;

(6) |G−1(s)|
g(G−1(s))

≤ 1
g2(0)

|s| = |s| for all s ∈ R;

(7) G−1(s)s
g(G−1(s))

≤ |G−1(s)|2 for all s ∈ R;

(8) lim|s|→0
G−1(s)

s = 1
g(0)

= 1 and

lim
|s|→+∞

G−1(s)

s
=

{

1
g(∞)

, if g is bounded,

0, if g is unbounded.

The next two lemmas show that the functional J verifies the mountain pass geometry.

Lemma 2.2. Suppose that (V)–(K2), (Q1)–(Q2), and ( f )–( f2)are satisfied. Then there exist α, ρ > 0

such that J (v) ≥ α for all ∥v∥ = ρ.

Proof. It follows from (1.6) that

J (v) =
1

p

∫

RN
[|∇v|p + V(x)|G−1(v)|p]dx −

∫

RN
K(x)F(G−1(v))dx

−
1

p∗

∫

RN
Q(x)|v+|p

∗
dx

=
1

p
∥∇v∥

p
p −

∫

RN

(

−
1

p
V(x)|G−1(v)|p + K(x)F(G−1(v))

)

dx

−
1

p∗

∫

RN
Q(x)|v+|p

∗
dx

≥
1

p
∥∇v∥

p
p −

∫

RN

(

−
1

p
V(x)|G−1(v)|p + K(x)F(G−1(v))

)

dx

−
1

p∗

∫

RN
Q(x)|v|p

∗
dx.

(2.1)

On the one hand, if (1.5) holds and let A(x, s) := − 1
p |G

−1(s)|p + K(x)
V(x)

F(G−1(s)), then by

Lemma 2.1-(8), we have

lim
s→0+

A(x, s)

|s|p
= lim

s→0

[

−
1

p

∣

∣

∣

∣

G−1(v)

s

∣

∣

∣

∣

p

+
K(x)

V(x)

F(G−1(s))

|s|p

]

= −
1

p
(2.2)
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and

lim
s→+∞

A(x, s)

|s|p∗
= lim

s→+∞

[

−
1

p

∣

∣

∣

∣

G−1(v)

s

∣

∣

∣

∣

p (
1

|s|p∗−p

)

+
K(x)

V(x)

F(G−1(s))

|s|p∗

]

= 0, (2.3)

since

lim
|s|→+∞

G−1(s)

s
=

{

1
g(∞)

, if g is bounded,

0, if g is unbounded.

Thus, by (2.2) and (2.3), for ε > 0 sufficiently small, there exists a constant Cε > 0 such that

V(x)A(x, s) ≤

(

−
1

p
+ ε

)

V(x)|s|p + CεV(x)|s|p
∗
. (2.4)

Then by Proposition 1.1, (2.4), (2.1) and (Q1), we have

J (v) ≥
1

p
|∇v|p −

(

−
1

p
+ ε

)

∫

RN
V(x)|v|pdx − Cε

∫

RN
V(x)|v|p

∗
dx −

1

p∗
Q(x0)

∫

RN
|v|p

∗
dx

≥
1

p
∥v∥p − C

∫

RN
|v|p

∗
dx −

1

p∗
Q(x0)

∫

RN
|v|p

∗
dx

≥

(

1

p
− εC

)

∥v∥p − C∥v∥p∗ ,

since there exists C > 0 such that 0 < K(x) ≤ C and 0 < V(x) ≤ C. It follows that

J (v) ≥ C∥v∥p − C∥v∥p∗ , (2.5)

if we choose sufficiently small ρ > 0, which implies that

J (v) ≥ Cρp − Cρp∗ =: α > 0.

This completes the proof.

Lemma 2.3. Suppose that (V)–(K2), (Q1)–(Q2), and ( f )–( f2)are satisfied. Then there exists e ∈ E

such that J (e) < 0 and ∥e∥ > ρ.

Proof. For any fixed v0 ∈ E with v0 ≥ 0 and v0 ̸≡ 0, by (1.6) and Lemma 2.1-(5) , we have

J (tv0) =
1

p

∫

RN
[|t∇v0|

p + V(x)|G−1(tv0)|
p]dx −

∫

RN
K(x)F(G−1(tv0))dx

−
1

p∗

∫

RN
Q(x)|tv0|

p∗dx

≤
tp

p
∥v0∥

p −
tp∗

p∗

∫

RN
Q(x)|v0|

p∗dx

→ − ∞, as t → +∞,

which gives that the results hold if we take e = tv0 with t sufficiently large. This completes

the proof.

As a consequence of Lemma 2.2 and Lemma 2.3, for the constant

c0 = inf
γ∈Γ

sup
t∈[0,1]

J (γ(t)) > 0,
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where

Γ = {γ ∈ C([0, 1], E), γ(0) = 0, γ(1) ̸= 0, J (γ(1)) < 0} .

Note that from Lemma 2.3, Γ ̸= ∅. By the Mountain Pass Theorem in [3], then we have the

existence of sequence {vn} ⊂ E satisfying

J (vn) → c0 and J ′(vn) → 0 n → +∞. (2.6)

The above sequence is called a (PS)c0 sequence for J .

Lemma 2.4. The sequence {vn} in (2.6) are satisfied. Then {vn} is bounded in E.

Proof. Since {vn} ⊂ E is a (PS)c0 sequence for J , we have

J (vn) =
1

p

∫

RN
(|∇vn|

p + V(x)|G−1(vn)|
p)dx −

∫

RN
K(x)F(G−1(vn))dx

−
1

p∗

∫

RN
Q(x)|v+n |

p∗dx → c0

(2.7)

and for any φ ∈ C∞
0 (RN),

⟨J ′(vn), φ⟩ =
∫

RN
|∇vn|

p−2∇vn∇φ +
∫

RN
V(x)

|G−1(vn)|p−2G−1(vn)

g(G−1(vn))
φ

−
∫

RN
K(x)

f (G−1(v))

g(G−1(vn))
φ −

∫

RN
Q(x)|v+n |

p∗−2v+n φ = o(1)∥φ∥,

(2.8)

as n → ∞. Since C∞
0 (RN) is dense in E, by choosing φ = vn we deduce that

⟨J ′(vn), vn⟩ =
∫

RN
|∇vn|

p +
∫

RN
V(x)

|G−1(vn)|p−2G−1(vn)

g(G−1(vn))
vn −

∫

RN
K(x)

f (G−1(v))

g(G−1(vn))
vn

−
∫

RN
Q(x)|v+n |

p∗−2v+n vn = o(1)∥vn∥,

as n → ∞. It follows from (2.7), (2.8) and Lemma 2.1 that

µc0 + o(1)− ⟨J ′(vn), vn⟩

≥ µJ (vn)− ⟨J ′(vn), vn⟩

=
µ − p

p

∫

RN
|∇vn|

pdx +
∫

RN
V(x)|G−1(vn)|

p−2

[

1

p
µ|G−1(vn)|

2 −
G−1(vn)

g(G−1(vn))
vn

]

dx

−
∫

RN
K(x)

(

µF(G−1(vn))−
f (G−1(vn))

g(G−1(vn))
vn

)

dx −

(

µ

p∗
− 1

)

∫

RN
Q(x)|v+n |

p∗dx

≥
µ − p

p

[

∫

RN
|∇vn|

pdx +
∫

RN
V(x)|G−1(vn)|

pdx

]

.

(2.9)

By ( f2), we have F(s) ≥ CG(s)µ ≥ CG(s)p for all s ≥ 1. Then
∫

{x:||G−1(vn)|>1}
V(x)|vn|

pdx

≤ C
∫

{x:|G−1(vn)>1}
K(x)F(G−1(vn))dx

≤ C
∫

RN
K(x)F(G−1(vn))dx +

C

p∗

∫

RN
Q(x)|v+n |

p∗dx

≤ C

[

1

p

(

∫

RN
|∇vn|

pdx +
∫

RN
V(x)|G−1(vn)|

pdx

)

− c0 + on(1)

]

.

(2.10)
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On the other hand, for the case x ∈ {x : |G−1(vn)| ≤ 1} we know that

1

gp(1)

∫

{x:||G−1(vn)|≤1}
V(x)|vn|

pdx ≤ C
∫

{x:|G−1(vn)≤1}
V(x)|G−1(vn)|

pdx

≤ C
∫

RN
V(x)|G−1(vn)|

pdx.

(2.11)

Since g(s) is nondecreasing. Combining (2.9), (2.10) with (2.11), we deduce that {vn} is

bounded in E. This completes the proof.

We are going to verify that the level value c0 is in an interval where the (PS) condition

holds. To this end, by the method developed by [8], we also introduce a well-known fact that

the minimization problem

S = inf{|∇v|
p
p : v ∈ D1,p(RN), |v|p∗ = 1}

has a solution given by

vϵ(x) =
c(N, p)ϵ(N−p)/(p2−p)

(ϵp/(p−1) + |x − x0|p/(p−1))(N−p)/p

and

|∇vϵ|
p
p = |vϵ|

p∗

p∗ = SN/p.

For small enough R > 0, define a cut-off function ψ(x) ∈ C∞
0 (RN) such that ψ(|x|) = 1

for |x − x0| ≤ R, ψ(|x|) ∈ (0, 1) for R < |x − x0| < 2R and |∇ψ| ≤ C
R , and ψ(|x|) = 0 for

|x − x0| ≥ 2R. Define

wϵ(x) = ψ(x)vϵ(x) (2.12)

and

σϵ(x) = wϵ(x)

[

∫

RN
Q(x)w

p∗

ϵ (x)dx

]− 1
p∗

. (2.13)

Denote

Vmax := max
x∈B2R(x0)

V(x),

Kmin := min
x∈B2R(x0)

K(x).

Similar to the discussion of [17, 22], by ∂vϵ/∂−→n ≤ 0, we have that

∫

BR(x0)
|∇wϵ|

pdx =
∫

BR(x0)
|∇vϵ|

pdx ≤
∫

BR(x0)
|vϵ|

p∗dx,

and by the assumption (Q2) we also have

Q(x0)
∫

BR(x0)
|∇vϵ|

p∗dx ≤ Q(x)
∫

BR(x0)
|∇vϵ|

p∗dx + O(ϵp).

Simple calculations as [16] gives that

∫

RN\BR(x0)
|vϵ|

p∗dx = O(ϵN/p−1),
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Aϵ :=
∫

RN\BR(x0)
|∇wϵ|

p∗dx = O(ϵ(N−p)/(p−1)

and

∫

RN
|σϵ|

2dx =















kϵp + O(ϵ(N−p)/(p−1)), if N > p2,

kϵp| ln ϵ|+ O(ϵ(N−p)/(p−1)), if N = p2,

O(ϵ(N−p)/(p−1)), if N < p2,

(2.14)

as ϵ → 0, where k is a positive constant. Therefore, we can get
∫

RN
|∇wϵ|

pdx =
∫

BR(x0)
|∇wϵ|

pdx + Aϵ

≤
∫

BR(x0)
|vϵ|

p∗dx + Aϵ

≤ S

[

∫

BR(x0)
|vϵ|

p∗dx

]

p
p∗

+ Aϵ

≤ S(∥Q∥L∞(RN))
− p

p∗

[

∫

BR(x0)
Q(x)|vϵ|

p∗dx

]

p
p∗

+ O(ϵp) + O(ϵ(N−p)/(p−1)).

Set Vϵ ≡
∫

RN |∇σϵ|pdx, since for small ϵ > 0, say ϵ ≤ ϵ0, it is easy to see that
∫

BR(x0)
Q(x)|wϵ|

p∗dx ≥ Cϵ0

for some positive constant Cϵ0 . The definition of Vϵ and the last two inequalities imply that

Vϵ ≤ S(∥Q∥L∞(RN))
− p

p∗ + O(ϵp) + O(ϵ(N−p)/(p−1)). (2.15)

Lemma 2.5. Suppose that (V)–(K2), (Q1)–(Q2), and ( f )–( f2)are satisfied. Then there exists v0 ∈

E \ {0} such that

0 < sup
t≥0

J (tv0) <
1

N
SN/p[∥Q∥L∞(RN)]

p−N
p (2.16)

if either N ≥ p2 or p < N < p2 and µ > p∗ − p
p−1 .

Proof. Firstly, we claim that for ϵ > 0 small enough, there exists a constant tϵ > 0 such that

J (tϵσϵ) = max
t≥0

J (tσϵ)

and

0 < A1 < tϵ < A2 < +∞ for all ϵ > 0 small enough,

where A1 and A2 are positive constants independent of ϵ.

By ( f )–( f1), for any δ > 0, there exists Cδ > 0 such that

| f (t)| ≤ δg(t)|G(t)|p−1 + Cδg(t)|G(t)|p
∗−1. (2.17)

Now, we consider

J (tσϵ) =
1

p

∫

RN
[tp|∇σϵ|

p + V(x)|G−1(tσϵ)|
p]dx −

∫

RN
K(x)F(G−1(tσϵ))dx

−
1

p∗

∫

RN
Q(x)|tσ+

ϵ |p
∗
dx

≤
tp

p
∥σϵ∥

p −
∫

RN
K(x)F(G−1(tσϵ))dx −

tp∗

p∗

∫

RN
Q(x)|σϵ|

p∗dx

→ − ∞, as t → ∞.



Existence of positive solutions for a class of p-Laplacian type generalized quasilinear 11

Clearly, limt→+∞ J (tσϵ) = −∞ for all ϵ > 0. Since J (0) = 0 and J (tσϵ) = −∞, there exists

tϵ > 0 such that

J (tϵσϵ) = max
t≥0

J (tσϵ) and
dJ (tσϵ)

dt

∣

∣

∣

∣

t=tϵ

= 0.

Thus we have

t
p−1
ϵ

∫

B2R(x0)
|∇σϵ|

pdx +
∫

B2R(x0)
V(x)

|G−1(tϵσϵ)|p−2G−1(tϵσϵ)

g(G−1(tϵσϵ))
σϵdx

=
∫

B2R(x0)
K(x)

f (G−1(tϵσϵ))

g(G−1(tϵσϵ))
σϵdx + t

p∗−1
ϵ

∫

B2R(x0)
Q(x)|σϵ|

p∗dx.

(2.18)

On the one hand, if there is a sequence tϵn → +∞, as ϵn → 0+, by the above equality,

we get

t
p−1
ϵn

∫

B2R(x0)
|∇σϵn |

pdx +
∫

B2R(x0)
V(x)

|G−1(tϵn σϵn)|
p−2G−1(tϵn σϵn)

g(G−1(tϵσϵn))
σϵn dx

≥ t
p∗−1
ϵn

∫

B2R(x0)
Q(x)|σϵn |

p∗dx.

Hence by Lemma 2.1-(7), we get

t
p−1
ϵn

[

∫

B2R(x0)
|∇σϵn |

pdx +
∫

B2R(x0)
V(x)|σϵn |

pdx

]

≥ t
p∗−1
ϵn

∫

B2R(x0)
Q(x)|σϵn |

p∗dx,

which gives a contradiction since p∗ > p.

On the other hand, we suppose there is a sequence t′ϵn
→ 0 as ϵn → 0+. If (1.5) holds, by

(2.17), for any δ > 0 there exists Cδ > 0 such that

∫

RN
K(x)

f (G−1(tϵn σϵn))

g(G−1(tϵn σϵn))
σϵn dx ≤ δt′

p−1
ϵn

∫

RN
K(x)|σϵn |

pdx + Cδ(t
′
ϵn
)p∗−1

∫

RN
K(x)|σϵn |

p∗dx

≤ δCt′
p−1
ϵn

∫

RN
(|∇σϵn |

p + V(x)|σϵn |
p) dx

+ Cδ(t
′
ϵn
)p∗−1

∫

RN
K(x)|σϵn |

p∗dx.

By (2.18), we have

t′
p−1
ϵn

(

∫

RN
|∇σϵn |

pdx

)

+
∫

RN
V(x)

|G−1(t′ϵn
σϵn)|

p−2G−1(t′ϵn
σϵn)

(t′ϵn
σϵn)g(G−1(t′ϵσϵn))

σ2
ϵn

dx

≤ δCt′
p−1
ϵn

∫

RN
(|∇σϵn |

p + V(x)|σϵn |
p) dx + (t′ϵn

)p∗−1
∫

RN
Q(x)|σϵn |

p∗dx

+ Cδ(t
′
ϵn
)p∗−1

∫

RN
K(x)|σϵn |

p∗dx.

Thus taking δ = 1
2C , we have

t′
p−1
ϵn

(

1

p

∫

RN
|∇σϵn |

pdx +
∫

RN
V(x)

[

|G−1(t′ϵn
σϵn)|

p−2G−1(t′ϵn
σϵn)

|t′ϵn
σϵn |

p−1g(G−1(t′ϵσϵn))
−

1

p

]

|σϵn |
pdx

)

≤ (t′ϵn
)p∗−1

∫

RN
Q(x)|σϵn |

p∗dx + Cδ(t
′
ϵn
)p∗−1

∫

RN
K(x)|σϵn |

p∗dx.

(2.19)
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When t′ϵn
→ 0, we have

G−1(t′ϵn
σϵn)

|t′ϵn
σϵn |

p−1g(G−1(t′ϵσϵn))
>

1

p
.

Therefore (2.19) is also impossible because of p∗ > p. So we complete the proof of our claim.

Since 0 < A1 < tϵ < A2 < +∞ for ϵ small enough, together with the definition of Vmax

and Kmin, we know that

J (tσϵ) =
1

p

∫

RN
(tp|∇σϵ|

p + V(x)|G−1(tσϵ)|
p)dx −

∫

RN
K(x)F(G−1(tσϵ))dx

−
tp∗

p∗

∫

RN
Q(x)|σϵ|

p∗dx

=
tp

p
Vϵ +

1

p

∫

B2R(x0)
V(x)|G−1(tσϵ)|

pdx −
∫

B2R(x0)
K(x)F(G−1(tσϵ))dx −

tp∗

p∗

≤
t

p
ϵ

p
Vϵ +

1

p

∫

B2R(x0)
V(x)|G−1(tϵσϵ)|

pdx −
∫

B2R(x0)
K(x)F(G−1(tϵσϵ))dx −

t
p∗

ϵ

p∗

≤
t

p
ϵ

p
Vϵ +

1

p
Vmax

∫

B2R(x0)
|G−1(tϵσϵ)|

pdx − Kmin

∫

B2R(x0)
F(G−1(tϵσϵ))dx −

t
p∗

ϵ

p∗

≤
t

p
ϵ

p
Vϵ +

t
p
ϵ

p
Vmax

∫

B2R(x0)
|σϵ|

pdx − Kmin

∫

B2R(x0)
F(G−1(tϵσϵ))dx −

t
p∗

ϵ

p∗
.

By virtue of tp

p Vϵ −
tp∗

p∗ ≤ 1
N V

N/p
ϵ for all t ≥ 0, the estimate (2.15) on Vϵ and the above inequality

imply that

sup
t≥0

J (tσϵ) = J (tϵσϵ)

≤
1

N
SN/p

[

∥Q∥L∞(RN)

]− N−p
p

+ O(ϵp) + O(ϵ(N−p)/(p−1))

+
t

p
ϵ

p
Vmax

∫

B2R(x0)
|σϵ|

pdx − Kmin

∫

B2R(x0)
F(G−1(tϵσϵ))dx

≤
1

N
SN/p

[

∥Q∥L∞(RN)

]− N−p
p

− Kmin

∫

B2R(x0)
F(G−1(tϵσϵ))dx + O(ϵp)

+ O(ϵ(N−p)/(p−1)) +















kϵp + O(ϵ(N−p)/(p−1)), if N > p2,

kϵp| ln ϵ|+ O(ϵ(N−p)/(p−1)), if N = p2,

O(ϵ(N − p)/(p − 1)), if N < p2.

(2.20)

By ( f2), we have F(s) ≥ CG(s)µ for all s > 0. Therefore

∫

B2R(x0)
F(G−1(tϵσϵ))dx ≥ C

∫

B2R(x0)
(tϵσϵ)

µdx ≥ CA
µ
1

∫

BR(x0)
(σϵ)

µdx.
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It follows from (2.20), the above inequality and the definition of σϵ that

sup
t≥0

J (tσϵ) ≤
1

N
SN/p

[

∥Q∥L∞(RN)

]− N−p
p

− CA
µ
1

∫

BR(x0)
(σϵ)

µdx + O(ϵp)

+ O(ϵ(N−p)/(p−1)) +















kϵp + O(ϵ(N−p)/(p−1)), if N > p2,

kϵp| ln ϵ|+ O(ϵ(N−p)/(p−1)), if N = p2,

O(ϵ(N − p)/(p − 1)), if N < p2,

≤
1

N
SN/p

[

∥Q∥L∞(RN)

]− N−p
p

− Cϵ
N− N−p

p µ
∫ R

ϵ

0

rN−1

(1 + rp/(p−1))
µ(N−p)

p

dr

+ O(ϵp) + O(ϵ(N−p)/(p−1)) +















kϵp + O(ϵ(N−p)/(p−1)), if N > p2,

kϵp| ln ϵ|+ O(ϵ(N−p)/(p−1)), if N = p2,

O(ϵ(N − p)/(p − 1)), if N < p2.

(2.21)

For N ≥ p2 and µ ∈ (p, p∗), there exists a constant C > 0 such that

∫

∞

0

rN−1

(1 + rp/(p − 1))
µ(N−p)

p

dr ≥ C > 0.

If N ≥ p2 and µ ∈ (p, p∗), then we have

N −
N − p

p
µ < p ≤ N − p. (2.22)

Combined (2.21) with (2.22), when ϵ → 0, we have

sup
t≥0

J (tσϵ) <
1

N
SN/p

[

∥Q∥L∞(RN)

]− N−p
p

. (2.23)

If p < N < p2 and µ ∈ (p∗ − p/(p − 1), p∗), then we know that (2.23) also holds. Then we can

get the following inequality

N −
N − p

p
µ < N − p < p.

Hence inequality (2.23) also follows from (2.21) if we choose ϵ small enough. Thus we can

imply that the inequality (2.16) holds by taking u0 = σϵ for sufficiently small ϵ.

Next, we will prove the main results in this paper.

Proof of Theorem 1.2. By Lemma 2.2 and Lemma 2.3, all conditions of Mountain Pass Lemma

in [3] are satisfied. Let {vn} be a (PS)c0 sequence of J . Then

J (vn) =
1

p

∫

RN
[|∇vn|

p + V(x)|G−1(vn)|
p]dx −

∫

RN
K(x)F(G−1(vn))dx

−
1

p∗

∫

RN
Q(x)|v+n |

p∗dx = c0 + on(1)

(2.24)

and

⟨J ′(vn), vn⟩ =
∫

RN

[

|∇vn|
p + V(x)

|G−1(vn)|p−2G−1(vn)

g(G−1(vn))
vn

]

−
∫

RN
K(x)

f (G−1(v))

g(G−1(vn))
vn

−
∫

RN
Q(x)|v+n |

p∗−2v+n vndx = on(1)∥vn∥.
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From Lemma 2.4, we know that {vn} is bounded in E. Passing to sequence, there exists a

subsequence of {vn} (still denoted by {vn}) such that

vn ⇀ v in E

vn → v in L
q
K(R

N) for p < q < p∗,

vn → v a.e. in R
N .

(2.25)

Let

f̃ (x, v) =
f (G−1(v))

g(G−1(v))
+

V(x)

K(x)
|v|p−2v −

V(x)

K(x)

|G−1(v)|p−2G−1(v)

g(G−1(v))
,

and

F̃(x, v) =
∫ v

0
f̃ (x, v)dx = F(G−1(v)) +

1

p

V(x)

K(x)
|v|p −

1

p

V(x)

K(x)
|G−1(v)|p,

then

J (v) =
1

p

∫

RN
(|∇v|p + V(x)|v|p)dx −

∫

RN
K(x)F̃(x, v)dx −

1

p∗

∫

RN
Q(x)|v+|p

∗
dx.

Similar to [43], we can verify that

lim
s→0

F̃(x, s)

|s|p
= 0, lim

s→∞

F̃(x, s)

|s|p∗
= 0, lim

s→0

f̃ (x, s)

|s|p−1
= 0, lim

s→∞

f̃ (x, s)

|s|p∗−1
= 0. (2.26)

By Corollary A.3, we can get

lim
n→∞

∫

RN
K(x)F̃(x, G−1(vn)) =

∫

RN
K(x)F̃(x, G−1(v)),

lim
n→∞

∫

RN
K(x)

f̃ (x, G−1(vn))

g(G−1(vn))
vn =

∫

RN
K(x)

f̃ (x, G−1(v))

g(G−1(v))
v. (2.27)

Since J ′(vn) → 0, by (2.27), we can get

∫

RN
(|∇v|p + V(x)|v|p)dx −

∫

RN
K(x) f̃ (x, v)vdx −

∫

RN
Q(x)|v+|p

∗
dx = 0.

Denote ϑn = vn − v, then by (2.6) and the Brézis–Lieb Lemma in [7], we have

J (v) +
1

p

∫

RN
(|∇ϑn|

p + V(x)|ϑn|
p)dx −

1

p∗

∫

RN
Q(x)|ϑn|

p∗dx = c0 + o(1) (2.28)

and
∫

RN
(|∇ϑn|

p + V(x)|ϑn|
p)dx −

∫

RN
Q(x)|ϑn|

p∗dx = o(1).

Without loss of generality we can suppose

∫

RN
(|∇ϑn|

p + V(x)|ϑn|
p)dx → l as n → ∞ (2.29)

and then we have
∫

RN
Q(x)|ϑn|

p∗dx → l, n → ∞. (2.30)
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Moreover, by Sobolev’s inequality, we know that

∫

RN
|∇ϑn|

pdx ≥ S

(

∫

RN
|ϑn|

p∗dx

)p/p∗

≥ S
[

∥Q∥L∞(RN)

]−p/p∗
(

∫

RN
Q(x)|ϑn|

p∗dx

)p/p∗

.

(2.31)

Using (2.29), (2.30), (2.31), if l > 0, then we have

l ≥ SN/p
[

∥Q∥L∞(RN)

]

p−N
p

.

By (2.28), we have

J (v) =

(

c0 −
1

p
−

1

p∗

)

l ≤ c0 −
1

N
SN/p

[

∥Q∥L∞(RN)

]

p−N
p

< 0.

On the other hand, by ( f2), we have

J (v) =
1

p

∫

RN
[|∇v|p + V(x)|G−1(v)|p]dx −

∫

RN
K(x)F(G−1(v))dx

−
1

p∗

∫

RN
Q(x)|v|p

∗
dx

=
1

p

∫

RN
V(x)|G−1(v)|p−2

[

|G−1(v)|2 −
G−1(v)v

g(G−1(v))

]

dx +

(

1

p
−

1

p∗

)

∫

RN
Q(x)|v|p

∗
dx

−
∫

RN
K(x)

[

F(G−1(v))−
f (G−1(v))

g(G−1(v))
v

]

dx

≥ 0,

which is a contradiction. It shows that l = 0. By the definition of ϑn we conclude that J

satisfies (PS)c0 condition and thus

J (v) = c0 > 0 and J ′(v) = 0.

which gives that u = G−1(v) is a positive solution of (1.1). This completes the proof.

Appendix A

In this part, we want to give some very useful lemmas.

Lemma A.1 ([17, Lemma 2.3]). Suppose that (V)–(K2) hold, and h : RN × R → R is a continuous

function, which satisfies the following conditions:

(h1) h has a quasicritical growth, that is, lim
|s|→+∞

h(x,s)

|s|p
∗−1 = 0;

(h2) if (1.5) holds, then h satisfies lim
s→0

h(x,s)
|s|p

= 0.

If a sequence {vn} converges weakly to v in E, then

lim
n→∞

∫

RN
KH(x, vn) =

∫

RN
KH(x, v),

lim
n→∞

∫

RN
Kh(x, vn)vn =

∫

RN
Kh(x, v)v,

where H(x, s) =
∫ s

0 h(x, t)dt for all s ∈ R.
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Lemma A.2. Under the assumptions of Lemma A.1, if vn ⇀ v in E, then for each ϕ ∈ E it holds that

lim
n→∞

∫

RN
K [h(x, vn)− h(x, v)] ϕdx = 0. (A.1)

Proof. Motivated by [1, 31, 46], since vn ⇀ v in E and E →֒ Lp∗(RN), then there exists M > 0

such that

∥vn∥, ∥v∥ ≤ M |v|
p∗

p∗ ≤ M, n ∈ N.

Now, we consider the case that (V)–(K1), (1.5), (h1) and (h2) hold. it follows from (h1) and

(h2) that for any ε > 0 and q ∈ (p, p∗) there exists Cε > 0 such that

h(x, s) ≤ ε(|s|p−1 + |s|p
∗−1) + Cε|s|

q−1, s ∈ R. (A.2)

By (1.5), we have that

K(x)h(x, s) ≤ ε(|K/V|∞V(x)|s|p + |K|∞|s|
p∗) + CεK(x)|s|q−1, x ∈ R

N and s ∈ R. (A.3)

According to Proposition 1.1, it holds that
∫

RN K|vn|q →
∫

RN K|v|q as n → ∞. Then there exists

R = Rε large enough such that

∫

Bc
R

K|vn|
q,
∫

Bc
R

K|v|q ≤

(

ε

Cε

)q/(q−1)

, n ∈ N. (A.4)

where Bc
R = {x ∈ RN : |x| ≥ R}. Hence, we can derive from (A.3), the Hölder inequality,

(A.2) and (A.4) that

∫

Bc
R

K|h(x, vn)ϕ| ≤
∫

Bc
R

ε(|K/V|∞V(x)|vn|
p−1 + |K|∞|vn|

p∗−1) + Cε

∫

Bc
R

K(x)|vn|
q−1|ϕ|

≤ ε
[

|K/V|∞∥vn∥∥ϕ∥+ |K|∞|vn|
p∗−1
p∗ |ϕ|p∗

]

+ Cε

(

∫

Bc
R

K(x)|vn|
q

)(q−1)/q

|ϕ|Lq
K

≤ Cε. (A.5)

where C is independent of ε. Similarly, it holds that for some constant C2 independent of ε,

∫

Bc
R

Kh(x, v)ϕ ≤ Cε. (A.6)

Next, we only need to prove that

lim
n→∞

∫

BR

Kh(x, vn)ϕ =
∫

BR

Kh(x, v)ϕ. (A.7)

In fact, since vn ⇀ v in E, then exists a subsequence of {vn} (still denoted by {vn}) such

that vn(x) → v(x) for a.e. x ∈ RN . Thus h(x, vn) → h(x, v) for a.e. x ∈ RN . Moreover, it

follows from (A.3) that {h(x, vn)} is bounded in Lp∗/(p∗−p)(BR). Hence h(x, vn) ⇀ h(v) in

Lp∗/(p∗−p)(BR) as n → ∞, and (A.7) holds as a consequence of the fact that Kϕ ∈ Lp∗(RN).

Thus we can get that

lim
n→∞

∫

BR

Kh(x, vn)ϕ =
∫

BR

Kh(x, v)ϕ.

Combining (A.5), (A.6) with (A.7), (A.1) holds. This completes the proof.
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Corollary A.3. Under the assumptions of Lemma A.1, if vn ⇀ v in E, then it holds that

lim
n→∞

∫

RN
KF̃(x, G−1(vn)) =

∫

RN
KF̃(x, G−1(v)), (A.8)

lim
n→∞

∫

RN
K

f̃ (x, G−1(vn))

g(G−1(vn))
vn =

∫

RN
K

f̃ (x, G−1(v))

g(G−1(v))
v, (A.9)

and

lim
n→∞

∫

RN
K

f̃ (x, G−1(vn))

g(G−1(vn))
ϕ =

∫

RN
K

f̃ (x, G−1(v))

g(G−1(v))
ϕ, ϕ ∈ E. (A.10)

References

[1] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger

equations with potential vanishing at infinity, J. Differential Equations 254(2013), 1977–

1991. https://doi.org/10.1016/j.jde.2012.11.013; MR3003299

[2] A. Ambrosetti, V. Felli, A. Malchiodi, Ground states of nonlinear Schrödinger equa-

tions with potentials vanishing at infinity, J. Eur. Math. Soc. 7(2005), 117–144. https:

//doi.org/10.4171/JEMS/24; MR2120993

[3] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and

applications, J. Funct. Anal. 14(1973), 349–381. https://doi.org/10.1016/0022-1236(73)

90051-7; MR0370183

[4] S. Barile, G. M. Figueiredo, Existence of least energy positive, negative and nodal solu-

tions for a class of p & q-problems with potentials vanishing at infinity, J. Math. Anal. Appl.

427(2015), 1205–1233. https://doi.org/10.1016/j.jmaa.2015.02.086; MR3323029

[5] F. G. Bass, N. N. Nasanov, Nonlinear electromagnetic-spin waves, Phys. Rep. 189(1990),

165–223. https://doi.org/10.1016/0370-1573(90)90093-H

[6] A. D. Bouard, N. Hayashi, J. Saut, Global existence of small solutions to a relativistic

nonlinear Schrödinger equation, Comm. Math. Phys. 189(1997), 73–105. https://doi.org/

10.1007/s002200050191; MR1478531

[7] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and conver-

gence of functionals, Proc. Amer. Math. Soc. 88(1983), 486–490.https://doi.org/10.1090/

S0002-9939-1983-0699419-3; MR0699419

[8] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving crit-

ical Sobolev exponents, Commun. Pure Appl. Math. 36(1983), 437–477. https://doi.org/

/10.1002/cpa.3160360405; MR0709644

[9] J. H. Chen, X. J. Huang, B. T. Cheng, X. H. Tang, Existence and concentration behavior

of ground state solutions for a class of generalized quasilinear Schrödinger equations in

RN , Acta Math. Sci. 40(2020), 1495–1524. https://doi.org/10.1007/s10473-020-0519-5;

MR4143605

[10] J. H. Chen, X. J. Huang, D. D. Qin, B. T. Cheng, Existence and asymptotic behavior

of standing wave solutions for a class of generalized quasilinear Schrödinger equations

with critical Sobolev exponents, Asymptotic Anal. 120(2020), 199–248. https://doi.org/

10.3233/ASY-191586; MR4169206



18 Z. Li

[11] X. L. Chen, R. N. Sudan, Necessary and sufficient conditions for self-focusing of short

ultraintense laser pulse in underdense plasma, Phys. Rev. Lett. 70(1993), 2082–2085. https:

//doi.org/10.1103/PhysRevLett.70.20825

[12] S. Chen, X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger–

Poisson type problems in R3, Z. Angew. Math. Phys. 67(2016), Art. 102, 18 pp. https:

//doi.org/10.1007/s00033-016-0695-2; MR3531753

[13] Y. Cheng, J. Yang, Positive solution to a class of relativistic nonlinear Schrödinger equa-

tion, J. Math. Anal. Appl. 411(2014), 665–674. https://doi.org/10.1016/j.jmaa.2013.

10.006; MR3128421

[14] Y. Cheng, J. Yang, Soliton solutions to a class of relativistic nonlinear Schrödinger equa-

tions, Appl. Math. Comput. 260(2015), 342–350. https://doi.org/10.1016/j.amc.2015.

03.055; MR3343274

[15] S. Cuccagna, On instability of excited states of the nonlinear Schödinger equation, Phys.

D 238(2009), 38–54. https://doi.org/10.1016/j.physd.2008.08.010; MR2571965

[16] Y. Deng, Z. H. Guo, G. S. Wang, Nodal solutions for p-Laplace equations with critical

growth, Nonlinear Anal. 54(2003), 1121–1151. https://doi.org/10.1016/S0362-546X(03)

00129-9; MR1993314

[17] Y. Deng, Y. Li, W. Shuai, Existence of solutions for a class of p-Laplacian type equation

with critical growth and potential vaishing at infinity, Discrete. Contin. Dyn. Syst. 36(2016),

683–699. https://doi.org/10.3934/dcds.2016.36.683; MR3392899

[18] Y. Deng, S. Peng, J. Wang, Nodal soliton solutions for quasilinear Schrödinger equa-

tions with critical exponent, J. Math. Phys. 54(2013), 011504. https://doi.org/10.1063/

1.4774153; MR3059863

[19] Y. Deng, S. Peng, J. Wang, Nodal soliton solutions for generalized quasilinear

Schrödinger equations, J. Math. Phys. 55(2014), 051501. https://doi.org/10.1063/1.

4874108; MR3390611

[20] Y. Deng, S. Peng, S. Yan, Positive solition solutions for generalized quasilinear

Schrödinger equations with critical growth, J. Differential Equations 258(2015), 115–147.

https://doi.org/10.1016/j.jde.2014.09.006; MR3271299

[21] Y. Deng, S. Peng, S. Yan, Critical exponents and solitary wave solutions for generalized

quasilinear Schrödinger equations, J. Differential Equations 260(2016), 1228–1262. https:

//doi.org/10.1016/j.jde.2015.09.021; MR3419726

[22] Y. Deng, W. Shuai, Positive solutions for quasilinear Schrödinger equations with critical

growth and potential vanishing at infinity, Commun. Pure Appl. Anal. 13(2014), 2273–2287.

https://doi.org/10.3934/cpaa.2014.13.2273; MR3248388

[23] Y. Deng, W. Shuai, Non-trivial solutions for a semilinear biharmonic problem with criti-

cal growth and potential vanishing at infinity, Proc. Roy. Soc. Edinburgh Sect. A 145(2015),

281–299. https://doi.org/10.1017/S0308210513001170; MR3327956



Existence of positive solutions for a class of p-Laplacian type generalized quasilinear 19

[24] G. M. Figueiredo, M. T. O. Pimenta, Existence of ground state solutions to Dirac equa-

tions with vanishing potentials at infinity, J. Differential Equations 262(2017), 486–505.

https://doi.org/10.1016/j.jde.2016.09.034; MR3567492

[25] R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger

equations, Z. Phys. B 37(1980), No. 1, 83–87. https://doi.org/10.1007/BF01325508;

MR0563644

[26] S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan

50(1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262

[27] E. Laedke, K. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed enve-

lope soliton solutions, J. Math. Phys. 24(1983), 2764–2769. https://doi.org/10.1063/1.

525675; MR0727767

[28] H. Lange, M. Poppenberg, H. Teismann, Nash–Moser methods for the solution of quasi-

linear Schrödinger equations, Comm. Partial Differential Equations 24(1999), 1399–1418.

https://doi.org/10.1080/03605309908821469; MR1697492

[29] Q. Li, K. Teng, X. Wu, Ground state solutions and geometrically distinct solutions for

generalized quasilinear Schrödinger equation, Math. Methods Appl. Sci. 40(2017), 2165–

2176. https://doi.org/10.1002/mma.4131; MR3624089

[30] Q. Li, X. Wu, Multiple solutions for generalized quasilinear Schrödinger equations, Math.

Methods Appl. Sci. 40(2017), 1359–1366. https://doi.org/10.1002/mma.4050; MR3622401

[31] F. Li, X. Zhu, Z. Liang, Multiple solutions to a class of generalized quasilinear

Schrödinger equations with a Kirchhoff-type perturbation, J. Math. Anal. Appl. 443(2016),

11–38. https://doi.org/10.1016/j.jmaa.2016.05.005; MR3508477

[32] Z. Liang, J. Xu, X. Zhu, Revisit to sign-changing solutions for the nonlinear Schrödinger-

Poisson system in R3, J. Math. Anal. Appl. 435(2016), 783–799. https://doi.org/10.1016/

j.jmaa.2015.10.076; MR3423428

[33] J. Liu, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations. I, Proc.

Amer. Math. Soc. 131 (2003) 441–448. https://doi.org/10.1090/S0002-9939-02-06783-

7; MR1933335

[34] J. Liu, Y. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations.

II, J. Differential Equations 187(2003), No. 2, 473–493. https://doi.org/10.1016/S0022-

0396(02)00064-5; MR1949452

[35] J. Liu, Y. Wang, Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the

Nehari method, Comm. Partial Differential Equations 29(2004), 879–901. https://doi.org/

10.1081/PDE-120037335; MR2059151

[36] V. G. Makhankov, V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional mod-

els and condensed matter theory, Phys. Rep. 104(1984), 1–86. https://doi.org/10.1016/

0370-1573(84)90106-6; MR0740342

[37] A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation

involving critical exponent in RN , J. Differential Equations 229(2006), 570–587. https:

//doi.org/10.1016/j.jde.2006.07.001; MR2263568



20 Z. Li

[38] M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutons to quasi-

linear Schrödinger equations, Calc. Var. Partial Differential Equations 14(2002), 329–344.

https://doi.org/10.1007/s005260100105; MR1899450

[39] B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interaction,

Phys. Rev. E 50(1994), 687–689. https://doi.org/10.1103/PhysRevE.50.R687

[40] Y. Shen, Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equa-

tions, Nonlinear Anal. 80(2013), 194–201. https://doi.org/10.1016/j.na.2012.10.005;

MR3010765

[41] Y. Shen, Y. Wang, Two types of quasilinear elliptic equations with degenerate co-

erciveness and slightly superlinear growth, Appl. Math. Lett. 47(2015), 21–25. https:

//doi.org/10.1016/j.aml.2015.02.009; MR3339633

[42] Y. Shen, Y. Wang, Standing waves for a class of quasilinear Schrödinger equations,

Complex Var. Elliptic Equ. 61(2016), 817–842. https://doi.org/10.1080/17476933.2015.

1119818; MR3508254

[43] H. Shi, H. Chen, Positive solutions for generalized quasilinear Schrödinger equations

with potential vanishing at infinity, Appl. Math. Lett. 61(2016), 137–142. https://doi.

org/10.1016/j.aml.2016.06.004; MR3518460

[44] H. Shi, H. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations

with critical growth, Comput. Math. Appl. 71(2016), 849–858. https://doi.org/10.1016/

j.camwa.2016.01.007; MR3457382

[45] H. Song, C. Chen, Existence of weak solutions for generalized quasilinear Schrödinger

equations, J. Dyn. Control Syst. 22(2016), 369–383. https://doi.org/10.1007/s10883-

015-9298-z; MR3459239

[46] X. Zhu, F. Li, Z. Liang, Existence of ground state solutions to a generalized quasilin-

ear Schrödinger–Maxwell system, J. Math. Phys. 57(2016), 101505. https://doi.org/10.

1063/1.4965442; MR3564317



Electronic Journal of Qualitative Theory of Differential Equations
2023, No. 4, 1–23; https://doi.org/10.14232/ejqtde.2023.1.4 www.math.u-szeged.hu/ejqtde/

Sharp results for oscillation of second-order

neutral delay differential equations

Martin BohnerB 1, Said R. Grace2 and Irena Jadlovská3

1Missouri S&T, Department of Mathematics and Statistics, Rolla, MO 65409, USA
2Department of Engineering Mathematics, Cairo University, Giza 12221, Egypt
3Mathematical Institute, Slovak Academy of Sciences, 040 01 Košice, Slovakia

Received 25 July 2022, appeared 4 January 2023

Communicated by Zuzana Došlá
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1 Introduction

In the paper, we consider the second-order half-linear neutral delay differential equation

(

r
(

z′
)α
)′

(t) + q(t)xα(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)). As in [10], we will assume

(H1) α > 0 is a quotient of odd positive integers;

(H2) r ∈ C([t0, ∞), (0, ∞)) satisfies

π(t0) :=
∫ ∞

t0

r−1/α(s)ds < ∞;

(H3) σ, τ ∈ C([t0, ∞), R), σ(t) ≤ t, and limt→∞ τ(t) = limt→∞ σ(t) = ∞;

(H4) p ∈ C([t0, ∞), [0, ∞)) and q ∈ C([t0, ∞), (0, ∞));

(H5) there exists a constant p0 ∈ [0, 1) such that

p0 ≥
{

p(t)π(τ(t))
π(t)

for τ(t) ≤ t

p(t) for τ(t) ≥ t.
(1.2)

BCorresponding author. Email: bohner@mst.edu
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Under a solution of (1.1), we mean a function x ∈ C([ta, ∞), R) with ta = min{τ(tb), σ(tb)}, for

some tb ≥ t0, which has the property z ∈ C1([ta, ∞), R), r (z′)α ∈ C1([ta, ∞), R) and satisfies

(1.1) on [tb, ∞). We only consider those solutions of (1.1) which exist on some half-line [tb, ∞)

and satisfy the condition sup{|x(t)| : tc ≤ t < ∞} > 0 for any tc ≥ tb. Oscillation and

nonoscillation of such solutions is defined in the usual way.

Oscillation theory of second-order differential equations has gained much research inter-

est in the past decades, and we refer the reader to the monographs by Agarwal et al. [1, 3, 4],

Berezansky et al. [7], and Saker [33] for recent developments and summaries of known re-

sults. Due to the importance of second-order neutral differential equations in the modeling of

various phenomena in natural sciences and engineering [12,18,33], the qualitative behavior of

solutions such equations has been intensively studied through different techniques.

This paper is the second continuation of our earlier work [9] from 2017, followed by [10]

in 2020. To start with, let us summarize briefly the two main ideas employed therein. Let x be

a nonoscillatory, say positive solution of (1.1) subject to (H1)–(H5). Then z is also positive and

either strictly increasing or strictly decreasing. These two possible classes of nonoscillatory

solutions were treated independently in the literature, see, e.g., [2,5,19,22–24,26,36–39]. In [9],

we pointed out that conditions eliminating positive solutions x with z decreasing are sufficient

for the nonexistence of those with z increasing. This observation allowed us to remove a

redundant but commonly imposed condition and formulate, in contrast with existing works,

single-condition oscillation criteria.

To eliminate the important class of positive solutions with z decreasing, the second main

idea in [9] was to sharpen the lower bound 1 of the quantity z(σ(t))/z(t) using equation (1.1)

itself, which, within the Riccati transformation technique, led to qualitatively stronger results.

However, such a lower bound strongly depended on properties of first-order delay differential

equations and required σ to be nondecreasing.

The ideas from [9] have been extended and applied in investigation of various classes of

equations, e.g., half-linear neutral differential equations with: damping term [28,35], sublinear

term [13, 15, 34], several delay arguments [30]; generalized Emden–Fowler neutral differential

equations [25,27,32], half-linear neutral difference equations [8,11,16], neutral dynamic equa-

tions on time scales [17, 31, 40, 41], and others.

In [10], we continued our work [9] by removing the restrictions (see [9, (H3)]) τ(t) ≤ t and

σ′(t) ≥ 0. For the reader’s convenience, we recall the main results from [10], formulated in

terms of the following couple of limit inferiors:

β∗ :=
1

α
lim inf

t→∞
r1/α(t)πα+1(t)q(t) and λ∗ := lim inf

t→∞

π(σ(t))

π(t)
. (1.3)

Theorem A (See [10, Theorem 1, Theorem 2]). If

β∗ >











0 for λ∗ = ∞,

max{bα(1 − b)λ−αb
∗ : 0 < b < 1}

(1 − p0)α
for λ∗ < ∞,

then (1.1) is oscillatory.

Although the obtained results can be seen as sharp in the sense that they are unimprovable

in a nonneutral case, it is easy to observe that Theorem A does not take the influence of

τ(t) ≥ t into account and becomes inefficient as p0 is close to 1. The aim of this paper is to

address these issues and to improve Theorem A when λ∗ < ∞ and p(t) ̸= 0. As in [10], we
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employ a recent method of sequentially improved monotonicities of nonoscillatory solutions

of binomial differential equations, which has been successfully applied in the investigation of

second-order half-linear functional differential equations and as well as linear differential and

difference equations of higher order. For a discussion on the results already achieved by the

method so far, we refer the reader to [21, Section 4].

For the sake of completeness, let us recall the three main steps of the method we used

in [10]: firstly, we showed that the positivity of β∗ is sufficient for the nonexistence of posi-

tive solutions x with z positive and increasing; secondly, we provided, for x positive with z

decreasing, bounds of the ratio x/z, i.e.,

1 − p0 ≤ x

z
≤ 1. (1.4)

The third step was intended to improve the lower bound 1 of the quantity z(σ(t))/z(t) so

that it was, unlike the one we used in [9], independent of the properties of first-order delay

differential equations and the monotone growth of σ. We related this problem to that of

finding an optimal value a > 0 such that

a ≤ −r1/αz′π
z

,

which corresponds to the monotonicity

( z

πa

)′
< 0,

and tackled it by building an appropriate sequence defined in terms of β∗ and λ∗. It turned out

that the convergence of the given sequence was necessary for the existence of a nonoscillatory

solution of (1.1), and Theorem A emerged as a simple consequence of this fact.

In this work, we revise the set method as follows. Firstly, we provide a sharper lower

bound of the quantity x/z than in (1.4). Secondly, we sequentially improve both lower and

upper bounds of the ratio −πr1/αz′/z up to their limit values by building two iteration pro-

cesses represented by the sequences {βk,n}n∈N0
and {γk,n}n∈N0

(see Section 2) such that

βk,n ≤ −r1/αz′π
z

≤ 1 − γk,n,

which correspond to the monotonicities

(

z

πβk,n

)′
< 0 and

(

z

π1−γk,n

)′
≥ 0,

allowing us to improve the lower bound of x/z in each iteration step. Finally, we state the

main results – sufficient conditions for (1.1) to be oscillatory – as a direct consequence of these

obtained bounds. To illustrate the applicability of the results, two examples are given.

2 Notation and preliminary results

In this section, we list all constants and functions used in the paper. For any k ∈ N0, we set

β∗
k :=

1

α
lim inf

t→∞
r1/α(t)πα+1(t)q(t) (1 + Hk(σ(t)))

α , (2.1)



4 M. Bohner, S. R. Grace and I. Jadlovská

where

Hk(t) =



































0 for k = 0,

k

∑
i=1

2i−1

∏
j=0

p(τ j(t)) for τ(t) ≤ t and k ∈ N,

k

∑
i=1

π(τ2i(t))

π(t)

2i−1

∏
j=0

p(τ j(t)) for τ(t) ≥ t and k ∈ N,

where τ0(t) = t and τ j(t) = τ(τ j−1(t)) for all j ∈ N. As in [10], we set

λ∗ := lim inf
t→∞

π(σ(t))

π(t)

and, in addition, we put

ψ∗ := lim inf
t→∞

π(τ(t))

π(t)
for τ(t) ≤ t,

ω∗ := lim inf
t→∞

π(t)

π(τ(t))
for τ(t) ≥ t.

By virtue of (H2) and (H3), it is immediate to see that {λ∗, ω∗, ψ∗} ∈ [1, ∞). Our reasoning

will often rely on the obvious fact that there is a t1 ≥ t0 large enough such that, for arbitrary

fixed βk ∈ (0, β∗
k), λ ∈ [1, λ∗), ψ ∈ [1, ψ∗), and ω ∈ [1, ω∗), we have

r1/α(t)πα+1(t)q(t) (1 + Hk(σ(t)))
α ≥ αβk,

π(σ(t))

π(t)
≥ λ,

π(τ(t))

π(t)
≥ ψ for τ(t) ≤ t,

π(t)

π(τ(t))
≥ ω for τ(t) ≥ t,

(2.2)

on [t1, ∞).

Remark 2.1. In our previous work [10], we formulated the results in terms of β∗
0 = β∗ (see

(1.3)), which we required to be positive. Clearly, for any k ∈ N, the positivity of β∗
0 is sufficient

for that of β∗
k .

Lemma 2.2. If τ(t) ≤ t and ψ∗ = ∞, or τ(t) ≥ t and ω∗ = ∞, then

lim inf
t→∞

Hk(t) = 0 for any k ∈ N

and so β∗
k = β∗

0 for any k ∈ N.

Proof. Using (H2) and (H5), the proof is obvious and hence omitted.

The method used in this paper is based on the properties of the sequences {βk,n}n∈N0
and

{γk,n}n∈N0
, which we define (as long as they exist) as follows. For positive and finite β∗

k , λ∗,

ψ∗, and ω∗, we set, for any k ∈ N0 fixed,

βk,0 := (1 − p0) α

√

β∗
k ,

γk,0 := (1 − p0)
αβ∗

k = βα
k,0,

and for n ∈ N0, we put
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1. for τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞:

βk,n+1 := λ
βk,n
∗

α

√

β∗
k

1 − βk,n
= λ

β0,n
∗

α

√

β∗
0

1 − β0,n
,

γk,n+1 := β∗
k

(

λ
βk,n
∗

1 − γk,n

)α

= β∗
0

(

λ
β0,n
∗

1 − γ0,n

)α

2. for τ(t) ≤ t and ψ∗ < ∞:

βk,n+1 :=
βk,0λ

βk,n
∗

α
√

1 − βk,n

(

1 − p0ψ
−γk,n
∗

1 − p0

)

= λ
βk,n
∗

α

√

β∗
k

1 − βk,n
(1 − p0ψ

−γk,n
∗ ),

γk,n+1 :=
γk,0λ

αβk,n
∗

(1 − γk,n)
α

(

1 − p0ψ
−γk,n
∗

1 − p0

)α

= β∗
k

(

λ
βk,n
∗

1 − γk,n

)α

(1 − p0ψ
−γk,n
∗ )α

3. for τ(t) ≥ t and ω∗ < ∞:

βk,n+1 :=
βk,0λ

βk,n
∗

α
√

1 − βk,n

(

1 − p0ω
−βk,n
∗

1 − p0

)

= λ
βk,n
∗

α

√

β∗
k

1 − βk,n
(1 − p0ω

−βk,n
∗ ),

γk,n+1 :=
γk,0λ

αβk,n
∗

(1 − γk,n)
α

(

1 − p0ω
−βk,n
∗

1 − p0

)α

= β∗
k

(

λ
βk,n
∗

1 − γk,n

)α

(1 − p0ω
−βk,n
∗ )α.

It can be easily verified by induction that if for some n ∈ N0 and k ∈ N0 fixed, βk,i < 1 and

γk,i < 1, i = 0, 1, . . . , n, then βk,n+1 and γk,n+1 exist and

βk,n+1 = ℓk,nβk,n > βk,n,

γk,n+1 = hk,nγk,n > γk,n,
(2.3)

where ℓk,n and hk,n are defined as follows:

1. for τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞:

ℓk,0 :=
λ

βk,0
∗

(1 − p0) α
√

1 − βk,0

,

ℓk,n+1 := λ
βk,n(ℓk,n−1)
∗ α

√

1 − βk,n

1 − ℓk,nβk,n

and

hk,0 :=

[

λ
βk,0
∗

(1 − γk,0)(1 − p0)

]α

,

hk,n+1 :=

[

λ
βk,n(ℓk,n−1)
∗

(

1 − γk,n

1 − hk,nγk,n

)]α

2. for τ(t) ≤ t and ψ∗ < ∞:

ℓk,0 :=
λ

βk,0
∗

α
√

1 − βk,0

(

1 − p0ψ
−γk,0
∗

1 − p0

)

,

ℓk,n+1 := λ
βk,n(ℓk,n−1)
∗ α

√

1 − βk,n

1 − ℓk,nβk,n

(

1 − p0ψ
−hk,nγk,n
∗

1 − p0ψ
−γk,n
∗

)
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and

hk,0 :=

[

λ
βk,0
∗

1 − γk,0

(

1 − p0ψ
−γk,0
∗

1 − p0

)]α

,

hk,n+1 :=

[

λ
βk,n(ℓk,n−1)
∗

(

1 − γk,n

1 − hk,nγk,n

)

(

1 − p0ψ
−hk,nγk,n
∗

1 − p0ψ
−γk,n
∗

)]α

3. for τ(t) ≥ t and ω∗ < ∞:

ℓk,0 :=
λ

βk,0
∗

α
√

1 − βk,0

(

1 − p0ω
−βk,0
∗

1 − p0

)

,

ℓk,n+1 := λ
βk,n(ℓk,n−1)
∗ α

√

1 − βk,n

1 − ℓk,nβk,n

(

1 − p0ω
−ℓk,n βk,n
∗

1 − p0ω
−βk,n
∗

)

and

hk,0 :=

[

λ
βk,0
∗

1 − γk,0

(

1 − p0ω
−βk,0
∗

1 − p0

)]α

,

hk,n+1 :=

[

λ
βk,n(ℓk,n−1)
∗

(

1 − γk,n

1 − hk,nγk,n

)

(

1 − p0ω
−ℓk,n βk,n
∗

1 − p0ω
−βk,n
∗

)]α

.

The following simple statement, resulting from the definition of the sequences {βk,n}n∈N0
and

{γk,n}n∈N0
and (2.3), will play an important role in obtaining our main results. As a matter of

fact, we will show (see Corollary 3.8) that all assumptions of Lemma 2.3 are necessary for the

existence of a nonoscillatory solution of (1.1), i.e., if (1.1) possesses a nonoscillatory solution,

then there exists a solution {b, g} ∈ (0, 1) of a particular limit system.

Lemma 2.3. Let β∗
0 > 0, λ∗ < ∞, and the sequences {βk,n}n∈N0

and {γk,n}n∈N0
be well-defined and

bounded from above for some fixed k ∈ N0. Then

lim
n→∞

βk,n = b ∈ (0, 1)

and

lim
n→∞

γk,n = g ∈ (0, 1),

where {b, g} is a solution of the system

1. for τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞:

{

β∗
0 = bα(1 − b)λ−αb

∗

β∗
0 = g(1 − g)αλ−αb

∗
(2.4)

2. for τ(t) ≤ t and ψ∗ < ∞:


























β∗
k =

bα(1 − b)λ−αb
∗

(

1 − p0ψ
−g
∗
)α

β∗
k =

g(1 − g)αλ−αb
∗

(

1 − p0ψ
−g
∗
)α

(2.5)
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3. for τ(t) ≥ t and ω∗ < ∞:


























β∗
k =

bα(1 − b)λ−αb
∗

(

1 − p0ω−b
∗
)α

β∗
k =

g(1 − g)αλ−αb
∗

(

1 − p0ω−b
∗
)α .

(2.6)

3 Main results

In the sequel, all occurring functional inequalities are assumed to hold eventually, that is, they

are satisfied for all t large enough. As usual and without loss of generality, in the proofs of

the main results, we only need to be concerned with positive solutions of (1.1) since the proofs

for eventually negative solutions are similar.

We start by recalling an important result from our previous work.

Lemma 3.1 (See [10, Lemma 2]). Let β∗
0 > 0. If x is an eventually positive solution of (1.1), then z

eventually satisfies

(i) z > 0,
(

r (z′)α)′
< 0, and x(t) ≥ z(t)− p(t)z(τ(t));

(ii) z′ < 0;

(iii) (z/π)′ ≥ 0;

(iv) x ≥ (1 − p0)z;

(v) limt→∞ z(t) = 0.

In order to improve the estimate (iv) between x and z, we need the following auxiliary

result.

Lemma 3.2. If x is an eventually positive solution of (1.1), then z eventually satisfies

x(t) ≥ z(t)− p(t)z(τ(t))

+
k

∑
i=1

(

2i−1

∏
j=0

p(τ j(t))

)

[

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t))
]

, k ∈ N.
(3.1)

Proof. It follows from the definition of z that

x(t) = z(t)− p(t)x(τ(t))

= z(t)− p(t)
[

z(τ(t))− p(τ(t))x(τ2(t))
]

= z(t)− p(t)z(τ(t)) + p(t)p(τ(t))x(τ2(t)).

(3.2)

Evaluating (3.2) in τ2(t), we get

x(τ2(t)) = z(τ2(t))− p(τ2(t))z(τ3(t)) + p(τ2(t))p(τ3(t))x(τ4(t)). (3.3)

Now using (3.3) in (3.2), we have

x(t) = z(t)− p(t)z(τ(t))

+ p(t)p(τ(t))
[

z(τ2(t))− p(τ2(t))z(τ3(t))
]

+ p(t)p(τ(t))p(τ2(t))p(τ3(t))x(τ4(t)).
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Repeating the process, it is easy to show via induction that

x(t) = z(t)− p(t)z(τ(t))

+
k

∑
i=1

(

2i−1

∏
j=0

p(τ j(t))

)

[

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t))
]

+

(

2k+1

∏
j=0

p(τ j(t))

)

x(τ2k+2(t)),

which implies (3.1). The proof is complete.

Lemma 3.3. Let β∗
0 > 0. If x is an eventually positive solution of (1.1), then z eventually satisfies

x(t) ≥ z(t)(1 − p0) (1 + Hk(t)) , k ∈ N0. (3.4)

Proof. First, let τ(t) ≤ t. Using the fact that z/π is nondecreasing (see Lemma 3.1 (iii)) and

(H5), we have

z(t)− p(t)z(τ(t)) ≥ z(t)− p(t)
π(τ(t))

π(t)
z(t) ≥ z(t)(1 − p0). (3.5)

Evaluating (3.5) in τ2i(t) and using that z is decreasing (see Lemma 3.1 (ii)), we obtain

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t)) ≥ z(τ2i(t))(1 − p0) ≥ z(t)(1 − p0). (3.6)

Using (3.5) and (3.6) in (3.1), we get

x(t) ≥ z(t)(1 − p0)

[

1 +
k

∑
i=1

2i−1

∏
j=0

p(τ j(t))

]

, k ∈ N.

and hence, (3.4) holds. Now, let τ(t) ≥ t. Again, by Lemma 3.1 (ii), (iii) and (H5), we see that

z(t)− p(t)z(τ(t)) ≥ z(t)− p(t)z(t)

≥ z(t)(1 − p0)

and

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t)) ≥ z(τ2i(t))
(

1 − p(τ2i(t))
)

≥ z(τ2i(t))(1 − p0)

≥ z(t)
π(τ2i(t))

π(t)
(1 − p0),

which in view of (3.1) yields

x(t) ≥ z(t)(1 − p0)

[

1 +
k

∑
i=1

π(τ2i(t))

π(t)

2i−1

∏
j=0

p(τ j(t))

]

, k ∈ N,

and hence, (3.4) holds in this case as well. The proof is complete.
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Remark 3.4. In [20], the authors investigated (1.1) with p(t) ≡ p > 0 and τ(t) < t, and

required, instead of (H5), that

p∗ =
(n−1)/2

∑
k=0

p2k
0

(

1 − p
π(τ2k+1)(t)

π(τ2k(t))

)

> 0, n ∈ N.

Then they proved that an eventually positive solution of (1.1) satisfies

x ≥ (1 − p∗)z. (3.7)

Note that (H5) is sufficient for the positivity of p∗ and consequently, (3.7) becomes a particular

case of (3.4).

The next step of our approach lies in improving Lemma 3.1 (ii)–(iv) by using the equation

(1.1) itself, which can be seen as an improved and extended variant of [10, Lemma 3]. While

the improved decreasing monotonicity (i)0 results from minor modification of the original

proof, the opposite monotonicity (ii)0, needed to sharpen the relation between x and z in (iii)0,

extends the original version of [10, Lemma 3].

Lemma 3.5. Assume β∗
0 > 0. If x is an eventually positive solution of (1.1), then, for any βk ∈ (0, β∗

k)

with k ∈ N0 fixed,

(i)0 (z/π
α
√

βk(1−p0))′ < 0;

(ii)0 (z/π1−βk(1−p0)
α
)′ ≥ 0;

(iii)0 x ≥ ak(1 + Hk)z, where

ak =















ε for τ(t) ≤ t, ψ∗ = ∞ or τ(t) ≥ t, ω∗ = ∞, and any ε ∈ (0, 1);

1 − p0ψ−βk(1−p0)
α

for τ(t) ≤ t, ψ∗ < ∞, and any ψ ∈ [1, ψ∗);

1 − p0ω− α
√

βk(1−p0) for τ(t) ≥ t, ω∗ < ∞, and any ω ∈ [1, ω∗),

eventually.

Proof. Pick t1 ≥ t0 such that

x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0,

z satisfies Lemma 3.1 with (iv) replaced by (3.4), and (2.2) holds for t ≥ t1. Using (3.4) in (1.1),

we have
(

r
(

z′
)α
)′

(t) + (1 − p0)
αq(t)(1 + Hk(σ(t)))

αzα(σ(t)) ≤ 0, t ≥ t1,

which in view of (2.2) implies

(

r
(

z′
)α
)′

(t) +
βkα(1 − p0)α

r1/α(t)πα+1(t)
zα(σ(t)) ≤ 0. (3.8)

Now using that z is decreasing (see Lemma 3.1 (ii)) and (H3), we find

z(σ(t))

z(t)
≥ 1. (3.9)

Hence, (3.8) becomes
(

r
(

z′
)α
)′

(t) +
βkα(1 − p0)α

r1/α(t)πα+1(t)
zα(t) ≤ 0. (3.10)
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(i)0 Integrating (3.10) from t1 to t and using again Lemma 3.1 (ii), we find

−r(t)
(

z′(t)
)α ≥ −r(t1)

(

z′(t1)
)α

+ βk(1 − p0)
α
∫ t

t1

αzα(s)

r1/α(s)πα+1(s)
ds

≥ −r(t1)
(

z′(t1)
)α

+ βk(1 − p0)
αzα(t)

∫ t

t1

α

r1/α(s)πα+1(s)
ds

= −r(t1)
(

z′(t1)
)α

+ βk(1 − p0)
αzα(t)

(

1

πα(t)
− 1

πα(t1)

)

.

(3.11)

Since limt→∞ z(t) = 0 (see Lemma 3.1 (v)), there exists t2 ≥ t1 such that

−r(t1)
(

z′(t1)
)α

>
βk(1 − p0)α

πα(t1)
zα(t), t ≥ t2.

Using this in (3.11) yields

−r1/αz′π >
α
√

βk(1 − p0)z

and so (i)0 holds.

(ii)0 Set

Z := z + r1/αz′π. (3.12)

Since z/π is nondecreasing (see Lemma 3.1 (iii)), Z is clearly nonnegative. Differentiat-

ing Z and using the chain rule

(

r(z′)α
)′
= α

(

r1/αz′
)α−1 (

r1/αz′
)′

along with (3.10), we get

Z′ =
(

r1/αz′
)′

π

=
π

α

(

r1/αz′
)1−α (

r
(

z′
)α
)′

≤ −π

α

(

r1/αz′
)1−α βkα(1 − p0)α

r1/απα+1
zα

= −βk(1 − p0)α

r1/απα

(

r1/αz′
)1−α

zα
< 0.

(3.13)

Using again Lemma 3.1 (iii) in (3.13), we obtain

Z′ ≤ −βk(1 − p0)α

r1/απα

(

r1/αz′
)1−α

(−r1/αz′)απα = βk(1 − p0)
αz′.

Integrating the above inequality from t to ∞ and using that z is decreasing and tending

to zero eventually (see Lemma 3.1 (ii) and (v)), we have

Z(t) ≥ Z(∞)− βk(1 − p0)
αz(∞) + βk(1 − p0)

αz(t) ≥ βk(1 − p0)
αz(t),

which in view of the definition of Z gives

(1 − βk(1 − p0)
α)z ≥ −r1/αz′π.

Hence, (ii)0 holds.
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(iii)0 First, let τ(t) ≤ t. Using (ii)0 and (H5), we see that

z(t)− p(t)z(τ(t)) ≥ z(t)− p(t)

(

π(τ(t))

π(t)

)1−βk(1−p0)
α

z(t)

≥ z(t)

(

1 − p0

(

π(t)

π(τ(t))

)βk(1−p0)
α)

≥ z(t)
(

1 − p0ψ−βk(1−p0)
α
)

.

(3.14)

Evaluating (3.14) in τ2i(t) and using the decreasing nature of z (see Lemma 3.1 (ii)), we

get

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t)) ≥ z(τ2i(t))
(

1 − p0ψ−βk(1−p0)
α
)

≥ z(t)
(

1 − p0ψ−βk(1−p0)
α
)

.
(3.15)

Using (3.14) and (3.15) in (3.1), we find

x(t) ≥ z(t)
(

1 − p0ψ−βk(1−p0)
α
)

[

1 +
k

∑
i=1

2i−1

∏
j=0

p(τ j(t))

]

= z(t)
(

1 − p0ψ−βk(1−p0)
α
)

(1 + Hk(t)).

If τ(t) ≥ t, then similarly as before, we get

z(t)− p(t)z(τ(t)) ≥ z(t)− p(t)

(

π(τ(t))

π(t)

) α
√

βk(1−p0)

z(t)

≥ z(t)
(

1 − p0ω− α
√

βk(1−p0)
)

,

where we used (i)0 and (H5). Evaluating the above inequality in τ2i(t) and using the

nonincreasing nature of z/π (see Lemma 3.1 (iii)), we obtain

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t)) ≥ z(τ2i(t))
(

1 − p0ω− α
√

βk(1−p0)
)

≥ z(t)
π(τ2i(t))

π(t)

(

1 − p0ω− α
√

βk(1−p0)
)

.

Then,

x(t) ≥ z(t)
(

1 − p0ω− α
√

βk(1−p0)
)

[

1 +
k

∑
i=1

π(τ2i(t))

π(t)

2i−1

∏
j=0

p(τ j(t))

]

= z(t)
(

1 − p0ω− α
√

βk(1−p0)
)

(1 + Hk(t)).

Finally, if τ(t) ≤ t and ψ∗ = ∞ [τ(t) ≥ t and ω∗ = ∞], then it follows from Lemma 2.2

that for any ε ∈ (0, 1), there is t sufficiently large such that

(

1 − p0ψ−βk(1−p0)
α
)

(1 + Hk(t)) < ε
[(

1 − p0ω− α
√

βk(1−p0)
)

(1 + Hk(t)) < ε
]

.

The proof is complete.
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The following result iteratively improves the previous one.

Lemma 3.6. Assume β∗
0 > 0. If x is an eventually positive solution of (1.1), then, for any k, n ∈ N0,

(i)n (z/πβk,n)′ < 0;

(ii)n (z/π1−γk,n)′ > 0;

(iii)n x ≥ ak,n(1 + Hk)z, where

ak =















ε for τ(t) ≤ t, ψ∗ = ∞ or τ(t) ≥ t, ω∗ = ∞, and any ε ∈ (0, 1);

1 − p0ψ−γk,n for τ(t) ≤ t, ψ∗ < ∞, and any ψ ∈ [1, ψ∗);

1 − p0ω−βk,n for τ(t) ≥ t, ω∗ < ∞, and any ω ∈ [1, ω∗),

eventually.

Proof. Pick t1 ≥ t0 large enough such that

x(t) > 0, x(σ(t)) > 0, and x(τ(t)) > 0,

z satisfies Lemma 3.1 with (iv) replaced by (3.4), and (2.2) holds for t ≥ t1. The proof will

proceed in two steps.

1. First, we are going to show via induction on n that for arbitrary βεk,n ∈ (0, 1) and

γεk,n ∈ (0, 1) one can set

β̃k,n = βεk,nβk,n

γ̃k,n = γεk,nγk,n

so that

(I)n
(

z

π β̃k,n

)′
< 0,

(II)n
(

z

π1−γ̃k,n

)′
≥ 0,

and

(III)n

x ≥ ãk,n(1 + Hk)z,

where

ãk,n =















ε for τ(t) ≤ t, ψ∗ = ∞ or τ(t) ≥ t, ω∗ = ∞;

1 − p0ψ−γ̃k,n for τ(t) ≤ t, ψ∗ < ∞;

1 − p0ω−β̃k,n for τ(t) ≥ t, ω∗ < ∞.

For n = 0, the conclusion apparently follows from (i)0–(iii)0 with

βεα
k,0 = γεk,0 =

βk

β∗
k

.

Clearly,

lim
βk→β∗

k

βεk,0 = lim
βk→β∗

k

γεk,0 = 1.

Now, assume that (I)n–(III)n hold for some n ≥ 1 and t ≥ tn ≥ t1, and we will show that

they hold for n + 1, with βεk,n+1 and γεk,n+1 defined by:
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(a) for either τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞:

βεk,n = α
√

βεk,0ε
λβ̃k,n−1

λ
βk,n−1
∗

α

√

1 − βk,n−1

1 − β̃k,n−1

,

γεk,n = γεk,0εα

[

λβ̃k,n−1

λ
βk,n−1
∗

(

1 − γk,n−1

1 − γ̃k,n−1

)

]α

(b) for τ(t) ≤ t and ψ∗ < ∞:

βεk,n = α
√

βεk,0
λβ̃k,n−1

λ
βk,n−1
∗

α

√

1 − βk,n−1

1 − β̃k,n−1

(

1 − p0ψ−γ̃k,n−1

1 − p0ψ
−γk,n−1
∗

)

,

γεk,n = γεk,0

[

λβ̃k,n−1

λ
βk,n−1
∗

(

1 − γk,n−1

1 − γ̃k,n−1

)

(

1 − p0ψ−γ̃k,n−1

1 − p0ψ
−γk,n−1
∗

)]α

(c) for τ(t) ≥ t and ω∗ < ∞:

βεk,n = α
√

βεk,0
λβ̃k,n−1

λ
βk,n−1
∗

α

√

1 − βk,n−1

1 − β̃k,n−1

(

1 − p0ω−β̃k,n−1

1 − p0ω
−βk,n−1
∗

)

,

γεk,n = γεk,0

[

λβ̃k,n−1

λ
βk,n−1
∗

(

1 − γk,n−1

1 − γ̃k,n−1

)

(

1 − p0ω−β̃k,n−1

1 − p0ω
−βk,n−1
∗

)]α

for n ∈ N. Clearly, in all three cases, we have

lim
(βk ,λ,ε)→(β∗

k ,λ∗,1)
βεk,n = lim

(βk ,λ,ε)→(β∗
k ,λ∗,1)

γεk,n = 1,

lim
(βk ,λ,ψ)→(β∗

k ,λ∗,ψ∗)
βεk,n = lim

(β,λ,ψ)→(β∗
k ,λ∗,ψ∗)

γεk,n = 1,

and

lim
(βk ,λ,ω)→(β∗

k ,λ∗,ω∗)
βεk,n = lim

(βk ,λ,ω)→(β∗
k ,λ∗,ω∗)

γεk,n = 1,

respectively.

Using (III)n in (1.1), we get

(

r
(

z′
)α
)′

(t) + q(t)ãα
k,n(1 + Hk(σ(t)))

αzα(σ(t)) ≤ 0, t ≥ tn,

which in view of (2.2) becomes

(

r
(

z′
)α
)′

(t) +
βkαãα

k,n

r1/α(t)πα+1(t)
zα(σ(t)) ≤ 0. (3.16)

Now using that z/π β̃k,n is decreasing (see (I)n), (H3) and (2.2), we find

z(σ(t))

z(t)
≥
(

π(σ(t))

π(t)

)β̃k,n

≥ λβ̃k,n .

Hence, (3.16) becomes

(

r
(

z′
)α
)′

(t) +
βkαãα

k,nλαβ̃k,n

r1/α(t)πα+1(t)
zα(t) ≤ 0. (3.17)



14 M. Bohner, S. R. Grace and I. Jadlovská

(I)n+1 Integrating (3.17) from tn to t and using (I)n, we have

−r(t)
(

z′(t)
)α ≥ −r(tn)

(

z′(tn)
)α

+βk ãα
k,nλαβ̃k,n

(

z

π β̃k,n

)α

(t)
∫ t

tn

α

r1/α(s)πα(1−β̃k,n)+1(s)
ds

= −r(tn)
(

z′(tn)
)α

+
βk ãα

k,nλαβ̃k,n

1 − β̃k,n

(

z

π β̃k,n

)α

(t)

(

1

πα(1−β̃k,n)(t)
− 1

πα(1−β̃k,n)(tn)

)

.

(3.18)

Similarly as in the proof of [10, Lemma 4, pp. 8–9], it can be shown that

lim
t→∞

z(t)

π β̃k,n(t)
= 0

and so, there exists t′n ≥ tn such that

− r(tn)
(

z′(tn)
)α

>
βk ãα

k,nλαβ̃k,n

1 − β̃k,n

(

z

π β̃k,n

)α

(t)
1

πα(1−β̃k,n)(tn)
, t ≥ t′n. (3.19)

Using (3.19) in (3.18) implies that

− πr1/αz′ > ãk,nλβ̃k,n α

√

βk

1 − β̃k,n

z = β̃k,n+1z (3.20)

and
(

z

π β̃k,n+1

)′
< 0,

which completes the induction step.

(II)n+1 Differentiating as in (3.13) and using (3.17), we get

Z′ =
(

r1/αz′
)′

π

=
π

α

(

r1/αz′
)1−α (

r
(

z′
)α
)′

≤ −π

α

(

r1/αz′
)1−α βkαãα

k,nλαβ̃k,n

r1/απα+1
zα

= −
βk ãα

k,nλαβ̃k,n

r1/απα

(

r1/αz′
)1−α

zα
< 0.

(3.21)

Using (II)n, which corresponds to

(1 − γ̃k,n)z ≥ −r1/αz′π

in (3.21), we obtain

Z′ ≤ −
βk ãα

k,nλαβ̃k,n

r1/απα

(

r1/αz′
)1−α (−r1/αz′π)α

(1 − γ̃k,n)α
=

βk ãα
k,nλαβ̃k,n

(1 − γ̃k,n)α
z′.
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Integrating the above inequality from t to ∞ and using that z is decreasing and tending

to zero eventually (see Lemma 3.1 (ii) and (v)), we have

Z(t) ≥ Z(∞)−
βk ãα

k,nλαβ̃k,n

(1 − γ̃k,n)α
z(∞) +

βk ãα
k,nλαβ̃k,n

(1 − γ̃k,n)α
z(t) ≥

βk ãα
k,nλαβ̃k,n

(1 − γ̃k,n)α
z(t),

which in view of the definition of Z (see (3.12)) gives

(

1 −
βk ãα

k,nλαβ̃k,n

(1 − γ̃k,n)α

)

z ≥ −r1/αz′π

and
(

z

π1−γ̃k,n+1

)′
≥ 0,

which completes the induction step.

(III)n+1 The proof proceeds in the same way as in the case n = 0 and hence is omitted.

2. To prove the statement, we claim that (I)n and (II)n implies (i)n−1 and (ii)n−1 for n ∈ N.

Clearly, (I)n and (II)n correspond to

β̃k,nz < −r1/αz′π (3.22)

and

(1 − γ̃k,n)z ≥ −r1/αz′π (3.23)

respectively. Then, by virtue of Lemma 3.1 (ii) and (iii), it is easy to see that

β̃k,n < 1 and γ̃k,n < 1.

Using this and (2.3), we have

1 > β̃k,n = βεk,nℓk,n−1βk,n−1 > βk,n−1 (3.24)

and

1 > γ̃k,n = γεk,nhk,n−1γk,n−1 > γk,n−1, (3.25)

where we used that βεn ∈ (0, 1) and γεn ∈ (0, 1) are arbitrary. Therefore, (3.22) and (3.23)

become

βk,n−1z ≤ −r1/αz′π

and

(1 − γk,n−1)z > −r1/αz′π,

for n ∈ N, which proves our claim. Finally, (iii)n−1 is just a consequence of (i)n−1 and

(ii)n−1.

In view of the newly obtained monotonicities (i)n and (ii)n, our first main result follows

immediately.

Theorem 3.7. Let β∗
0 > 0, λ∗ < ∞, βk,i < 1 and γk,i < 1 for i = 0, 1, . . . , n for some k, n ∈ N0. If

βk,n+1 + γk,n+1 > 1,

then (1.1) is oscillatory.
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The second main result of this work results as a simple consequence of Lemma 3.6 (see

(3.24) and (3.25)).

Corollary 3.8. Let β∗
0 > 0. If x is an eventually positive solution of (1.1), then, for some k ∈ N0,

both sequences {βk,n}n∈N0
and {γk,n}n∈N0

are well-defined and bounded from above.

Now we are prepared to state the second main result of this paper, which is a straightfor-

ward consequence of Theorem A (condition (C1)), Corollary 3.8 and Lemma 2.3 (conditions

(C2)–(C4)).

Theorem 3.9. If one of the conditions

(C1) β∗
0 > 0 and λ∗ = ∞;

(C2) β∗
0 > 0, λ∗ < ∞, either τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞, and the system (2.4)

does not have a solution {b, g} ∈ (0, 1);

(C3) β∗
0 > 0, λ∗ < ∞, τ(t) ≤ t, ψ∗ < ∞, and the system (2.5) does not have a solution

{b, g} ∈ (0, 1);

(C4) β∗
0 > 0, λ∗ < ∞, τ(t) ≥ t, ω∗ < ∞, and the system (2.6) does not have a solution

{b, g} ∈ (0, 1)

is satisfied for some k ∈ N0, then (1.1) is oscillatory.

By stating explicit conditions for the nonexistence of solutions {b, g} ∈ (0, 1) of the systems

(2.4)–(2.6), we get the following results.

Corollary 3.10. If λ∗ < ∞, either τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞, and

β∗
k > max

{

bα(1 − b)λ−αb
∗ : 0 < b < 1

}

,

then (1.1) is oscillatory.

Corollary 3.11. If β∗
0 > 0, λ∗ < ∞, τ(t) ≤ t, ψ∗ < ∞, and

β∗
k > max











bα(1 − b)λ−αb
∗

(1 − p0ψ
−g
∗ )α

: 0 < g < 1, where b = −
ln

β∗
k (1−p0ψ

−g
∗ )α

g(1−g)α

α ln λ∗











,

then (1.1) is oscillatory.

Corollary 3.12. If λ∗ < ∞, τ(t) ≥ t, ω∗ < ∞, and

β∗
k > max

{

bα(1 − b)λ−αb
∗

(1 − p0ω−b
∗ )α

: 0 < b < 1

}

,

then (1.1) is oscillatory.

The method of iteratively improved monotonicity properties gives us useful information

about the asymptotic behavior of solutions in case when (1.1) is nonoscillatory (i.e., it possesses

a nonoscillatory solution). The following results, which are a direct consequence of Lemma

3.6, improve and complement our previous statement [10, Corollary 1], and also complement

and extend the results from [6, 14] in nonneutral linear and half-linear case, respectively. It is

worth to note that in the linear case α = 1, we have βk,n = γk,n, which is stated separately for

the sake of future reference.
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Theorem 3.13. Let β∗
0 > 0 and λ∗ < ∞. If x is an eventually positive solution of (1.1), then for any

c ∈ (0, 1) and k ∈ N0,
z(σ(t))

z(t)
≥ cλ

βk,n
∗ ,

eventually.

Theorem 3.14. Let β∗
0 > 0 and λ∗ < ∞. If x is an eventually positive solution of (1.1), then there

exist ci > 0, i = 1, 2, such that

z ≤ c1πβk,n and z ≥ c2π1−γk,n , k ∈ N0,

eventually.

Corollary 3.15. Let β∗
0 > 0, λ∗ < ∞, and α = 1. If x is an eventually positive solution of (1.1), then

there exist ci > 0, i = 1, 2, such that

z ≤ c1πβk,n and z ≥ c2π1−βk,n , k ∈ N0,

eventually.

4 Examples

Finally, we illustrate the importance of our results on two examples. The first one is intended

to show the progress attained in case when p0 from (H5) is close to 1.

Example 4.1. Consider the Euler type differential equation

(

tα+1

(

(

x(t) +
0.99

t(1−λ1)/α
x
(

tλ1

)

)′)α)′

+ q0xα(λ2t) = 0, t ≥ t0 > 0, (4.1)

where α > 0 is a quotient of odd positive integers, λ1 ∈ (0, 1), λ2 ∈ (0, 1], q0 > 0. Here,

π(t) =
α

t1/α
, λ∗ =

1

λ1/α
2

, ψ∗ = lim
t→∞

t(1−λ1)/α = ∞, p0 = p(t)
π(τ(t))

π(t)
= 0.99,

and

β∗
k = β∗

0 = q0αα.

It follows from [29, Theorem 2.8] that

β∗
0 >

αα

(1 − p0)α(α + 1)α+1
= 100α αα

(α + 1)α+1
= 100α max{bα(1 − b) : 0 < b < 1} (4.2)

is sufficient for (4.1) to be oscillatory. By [9, Theorem 2.4] proved by the present authors, the

same conclusion is attained if

ρ := q1/α
0 (1 − p0)

α ln
1

λ2
>

1

e

or, if ρ ≤ 1/e and

β∗
0 >

1

(1 − p0)α f (ρ)
· αα

(α + 1)α+1
=

100α

f (ρ)
max{bα(1 − b) : 0 < b < 1}, (4.3)
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where

f (ρ) = −W0(−ρ)

ρ
, W0 is a principal branch of the Lambert function.

We have also showed in [9] that (4.3) simplifies and improves related results from [5,19,22–24,

26, 36–39].

By Theorem A (see also [10, Theorem 2]), (4.1) is oscillatory if

β∗
0 >

max{bα(1 − b)λb
2 : 0 < b < 1}

(1 − p0)α
= 100α max{bα(1 − b)λb

2 : 0 < b < 1}, (4.4)

which improves (4.3). Finally, by the newly obtained Theorem 3.9, (4.1) is oscillatory if

β∗
0 > max{bα(1 − b)λb

2 : 0 < b < 1}. (4.5)

It is obvious that (4.2) does not take λ2 into account, which is already included in (4.3)–(4.5).

Moreover, in Theorem 3.9, the impact of p0 was removed by that of λ1 and so (4.5) gives

100α-times qualitatively better result than (4.4).

Example 4.2. As in [10, Example 1], we consider

(

tα+1
(

(x(t) + p0x(λ1t))′
)α)′

+ q0xα(λ2t) = 0, t ≥ t0 > 0, (4.6)

where α > 0 is a quotient of odd positive integers, λ1 > 0, λ2 ∈ (0, 1], q0 > 0, and

p0 <

{

λ1/α
1 for λ1 ≤ 1,

1 for λ1 > 1.

Here,

π(t) =
α

t1/α
, λ∗ =

1

λ1/α
2

, ψ∗ =
1

λ1/α
1

(for λ1 ≤ 1), ω∗ = λ1/α
1 (for λ1 > 1),

and

β∗
0 = ααq0

β∗
k =































β∗
0

(

k

∑
i=0

p2i
0

)α

for λ1 ≤ 1, k ∈ N,

β∗
0





k

∑
i=0

(

p0

λ1/α
1

)2i




α

for λ1 > 1, k ∈ N.

It is easy to compute the limit

β∗ := lim
k→∞

β∗
k =



























β∗
0

(1 − p2
0)

α
for λ1 ≤ 1,

β∗
0

(

1 −
(

p0λ−1/α
1

)2
)α for λ1 > 1.
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First, assume λ1 ≤ 1. By Theorem A, (4.6) is oscillatory if

β∗
0 >

max{bα(1 − b)λb
2 : 0 < b < 1}

(

1 − p0λ−1/α
1

)α . (4.7)

Let us recall (see [10, Example 1]) that (4.6) has a nonoscillatory solution, if

β∗
0 ≤ max

{

bα(1 − b)λb
2

(

1 + p0λ−b/α
1

)α
: 0 < b < 1

}

. (4.8)

In the nonneutral case p0 = 0, Theorem A is clearly sharp. For, e.g.,

λ1 = λ2 = p0 = 0.5, α = 3, (4.9)

we conclude that, by Theorem A, (4.6) is oscillatory if

q0 > 0.0464 (4.10)

and, by (4.8), (4.6) has a nonoscillatory solution if

q0 ≤ 0.0094,

meaning that the behavior of (4.6) subject to (4.9) is unknown for q0 ∈ (0.0094, 0.0464].

By Theorem 3.9 (C3), (4.6) is oscillatory if the system























β∗
0

(1 − p2
0)

α
=

bα(1 − b)λb
2

(

1 − p0λ
−(1−g)/α
1

)α

β∗
0

(1 − p2
0)

α
=

g(1 − g)αλb
2

(

1 − p0λ
−(1−g)/α
1

)α

(4.11)

does not have a solution {b, g} on (0, 1), what happens if, by Corollary 3.11,

β∗
0

(

1 − p2
0

)α > max











bα(1 − b)λb
2

(

1 − p0λ
−(1−g)/α
1

)α : 0 < g < 1, where b =
ln

β∗
0(1−p0λ

−(1−g)/α
1 )α

(1−p2
0)

αg(1−g)α

ln λ2











. (4.12)

To show the improvement over Theorem A, assume (4.9) and

q0 > 0.0158.

Although (4.10) fails to apply, it can be verified using numerical software that (4.12) is satisfied

and the system (4.11) does not possess a positive solution, i.e., (4.6) is oscillatory. An alter-

native approach to attain the same conclusion is to use Theorem 3.7 by initiating an iterative

process (e.g., 2 iterations are needed for q0 = 0.04, 11 iterations for q0 = 0.017, 63 iterations

for q0 = 0.0158). How to fill the gap q0 ∈ (0.0094, 0.0158] remains open at the moment.

Now, assume λ1 > 1. By Theorem A, (4.6) is oscillatory if

β∗
0 >

max{bα(1 − b)λb
2 : 0 < b < 1}

(1 − p0)
α . (4.13)
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Here, we would like to point out an oversight we made in [10, Example 1], where we stated

that (4.7) (instead of (4.13)) is sufficient for oscillation of (4.6). To look at the improvement, we

find that by Corollary 3.12, (4.6) is oscillatory if

β∗
0 >

(

1 −
(

p0λ−1/α
1

)2
)α

max











bα(1 − b)λb
2

(

1 − p0λ−b/α
1

)α : 0 < b < 1











. (4.14)

It is obvious to see that, in contrast with (4.14), the criterion (4.13) does not take the influence

of λ1 into account. Clearly, for p0 ̸= 0,

max











bα(1 − b)λb
2

(

1 − p0λ−b/α
1

)α : 0 < b < 1











<
max{bα(1 − b)λb

2 : 0 < b < 1}
(1 − p0)

α

and
(

1 −
(

p0λ−1/α
1

)2
)α

< 1,

and hence the progress is observable.

Remark 4.3. For k = 0, the results established in this paper complement those from [21],

where (1.1) subject to

π(t0) = ∞

was studied. We stress that obtaining a corresponding variant of Lemma 3.3 would immedi-

ately improve oscillation criteria from [21]. Another interesting task left for further research is

to consider the same problem with p0 ≥ 1 or p0 < 0.

5 Summary

The aim of the present paper was to continue studying the oscillation problem of (1.1) under

conditions (H1)–(H5) and to provide new results which improve Theorem A when p0 ̸= 0 and

λ∗ < ∞. Our results improve all existing works (i.e., the cited related papers and references

therein) on this subject so far.
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1 Introduction

The sets of natural numbers, nonnegative integers, integers, real numbers and complex num-
bers, we denote by N, N0, Z, R and C, respectively, whereas the notation l = s, t, when
s, t ∈ Z and s ≤ t is used instead of writing s ≤ l ≤ t, l ∈ Z. By Cn

j , n ∈ N and j = 0, n, we
denote the binomial coefficients. Recall that

Cn
j =

n!
j!(n − j)!

,

where we regard that 0! = 1 (some information on the coefficients can be found, e.g., in
[4, 22, 32, 34, 43]).

Difference equations and systems naturally appear in many areas of science and mathe-
matics [9,12–14,18,19,22,26,27,29,34,43,51,59]. The problem of finding formulas for their solu-
tions in closed form appeared long time ago, and was treated by many known mathematicians
such as D. Bernoulli, de Moivre, Euler, Lagrange and Laplace (see, e.g., [9, 13–15, 17, 23–28]).
Unfortunately, for a great majority of the equations and systems it is impossible to find such

BEmail: sstevic@ptt.rs; sscite1@gmail.com
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formulas, especially if they are nonlinear. In [1,10,16,17,19,22,30,31,33–35] can be found some
classical solvable nonlinear difference equations, as well as systems of difference equations.

Several classes of solvable nonlinear difference equations can be obtained by using some
known iteration processes. Some of them can be found, for example, in [11, 12, 55, 56].

Motivated by some recent investigations on solvability of difference equations and systems
of difference equations (see, e.g., [3, 40, 42, 53, 54, 57, 58] and the references therein) and some
examples in [12], we have studied recently connections between some difference equations
obtained from known iteration processes and their solvability. Related equations and topics
such as finding invariants and studying equations obtained from solvable ones can be found
in [5–8, 21, 36–39, 46, 47, 49, 50, 52].

Here we continue the investigation of solvability of difference equations and their relation-
ships with known iteration processes. We deal with some equations of the form

xn+1 = f̂ (xn), n ∈ N0,

the autonomous difference equation of first order.
First we show that the Newton–Raphson iteration process for finding roots of quadratic

equations produces a solvable nonlinear difference equation extending a known example of
such a difference equation. Recall that the Newton–Raphson iteration process is given by

xn+1 = xn −
f (xn)

f ′(xn)
, n ∈ N0, (1.1)

(see, e.g., [12, 18]), where f is a given function.
Based on it and another known difference equation, we present a related class of solvable

nonlinear difference equations. Then we present a solvable class of nonlinear difference equa-
tions generalizing two known ones which are obtained by the Newton–Raphson iteration
process for calculating reciprocals. We also present an interesting method for constructing
a class of solvable nonlinear difference equations generalizing a solvable equation obtained
from the Halley iteration process for finding square roots. We also conduct several analy-
ses and give many comments related to solvable nonlinear difference equations and iteration
processes.

2 Some analyses and main results

In this section we conduct some analyses related to the relationships between solvable differ-
ence equations and some known iteration processes, and state and prove our main results.

2.1 Newton–Raphson iteration process for quadratic equations and solvability

Let
f (x) = x2 + px + q, (2.1)

be a quadratic function.
By using function (2.1) in (1.1) we get

xn+1 = xn −
x2

n + pxn + q
2xn + p

, n ∈ N0,



On some classes of solvable difference equations related to iteration processes 3

that is,

xn+1 =
x2

n − q
2xn + p

, n ∈ N0. (2.2)

If a solution to equation (2.2) converges to a point x∗, then it is clear that x∗ must be equal to
one of the zeros of function (2.1).

From the numerical point of view the interesting case is when q ̸= 0 (if q = 0, then the
roots of (2.1) are obviously 0 and −p). Assume additionally that p2 ̸= 4q. Then the function
has two different zeros, say, a and b, and equation (2.2) can be rewritten in the form

xn+1 =
x2

n − ab
2xn − a − b

, n ∈ N0. (2.3)

First, assume that a ̸= b. We consider the cases a + b = 0 and a + b ̸= 0 separately.

Case a + b = 0. In this case we have b = −a. Hence, equation (2.3) becomes

xn+1 =
1
2

(
xn +

a2

xn

)
, n ∈ N0. (2.4)

It is well known that the equation is solvable in closed form [12, 22], and that its general
solution is given by

xn = a
1 + ( x0−a

x0+a )
2n

1 − ( x0−a
x0+a )

2n , n ∈ N0. (2.5)

Recall that the difference equation in (2.4) serves for calculating a square root of number a2.

Case a + b ̸= 0. From (2.3) and by some simple calculations, it follows that

xn+1 − a =
x2

n − 2axn + a2

2xn − a − b
, n ∈ N0, (2.6)

and

xn+1 − b =
x2

n − 2bxn + b2

2xn − a − b
, n ∈ N0. (2.7)

From (2.6) and (2.7) we have

xn+1 − a
xn+1 − b

=

(
xn − a
xn − b

)2

, n ∈ N0,

and consequently
xn − a
xn − b

=

(
x0 − a
x0 − b

)2n

, n ∈ N0,

from which it easily follows that

xn =
b( x0−a

x0−b )
2n − a

( x0−a
x0−b )

2n − 1
, n ∈ N0. (2.8)

The sequence defined in (2.8) is a solution to equation (2.3). Indeed, let

yn :=
(

x0 − a
x0 − b

)2n

, n ∈ N0.
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Then we have

x2
n − ab

2xn − a − b
=

( byn−a
yn−1 )

2 − ab

2 byn−a
yn−1 − a − b

=
b2y2

n − 2abyn + a2 − aby2
n + 2abyn − ab

(yn − 1)(2byn − 2a − (a + b)yn + a + b)

=
b(b − a)y2

n − a(b − a)
(yn − 1)(b − a)(yn + 1)

=
by2

n − a
y2

n − 1
=

b( x0−a
x0−b )

2n+1 − a

( x0−a
x0−b )

2n+1 − 1

= xn+1

as claimed.

Remark 2.1. Note that from (2.8) with b = −a is obtained formula (2.5).

From (2.8) we easily obtain the following corollary.

Corollary 2.2. Consider equation (2.3) where a ̸= b and ab ̸= 0. Then the following statements are
true.

(a) If | x0−a
x0−b | < 1, then limn→+∞ xn = a.

(b) If | x0−a
x0−b | > 1, then limn→+∞ xn = b.

(c) If x0−a
x0−b = −1, that is, x0 = a+b

2 , then x1 is not defined.

Remark 2.3. Note that the case
x0 − a
x0 − b

= 1

is excluded, since we assume a ̸= b.

Case a = b. If a = b and x0 = a, then since in this case equation (2.3) becomes

xn+1 =
x2

n − a2

2(xn − a)
, n ∈ N0, (2.9)

we have that x1 is not defined, so that in this case the solution to the equation is not well-
defined.

If xn0 = a for some n0 ∈ N, and

xj ̸= a, j = 0, n0 − 1,

then from (2.9) we have

a = xn0 =
x2

n0−1 − a2

2(xn0−1 − a)
=

xn0−1 + a
2

,

and consequently xn0−1 = a, which is a contradiction. Therefore, if x0 ̸= a we have that

xn ̸= a for n ∈ N0. (2.10)

Hence, if a = b and x0 ̸= a, then from (2.9) and (2.10) we have that equation (2.3) becomes

xn+1 =
xn

2
+

a
2

, n ∈ N0,

from which it follows that

xn =
x0

2n + a
(

1 − 1
2n

)
, n ∈ N0, (2.11)

(for the original source see [25]; see also [10, 19, 22, 34]).
From (2.11) we easily obtain the following corollary.
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Corollary 2.4. Consider equation (2.3) where a = b and a ̸= 0. Then every solution to equation (2.3)
such that x0 ̸= a converges to a.

Remark 2.5. Equation (2.3) appeared in [55] but we did not consider it, nor did we formulate
any of the above results in the case.

Since we assume that q = ab ̸= 0, the above analysis excluded the case. However, it is of
some interest to consider equation (2.3) also in this case.

Case ab = 0. First note that, due to the symmetry of equation (2.3) with respect to parameters
a and b, we may assume b = 0. In this case the difference equation becomes

xn+1 =
x2

n

2xn − a
, (2.12)

for n ∈ N0.
If a = 0, then we have

xn+1 =
x2

n

2xn
, n ∈ N0. (2.13)

Hence, if x0 ̸= 0 we get

xn =
x0

2n , n ∈ N0,

showing the solvability of equation (2.12) in this case. If x0 = 0, then from (2.13) we see that
x1 is not defined. Therefore, the solution to equation (2.13) is also not well-defined.

Now assume that a ̸= 0. If x0 = 0, then a simple inductive argument shows that

xn = 0, n ∈ N0. (2.14)

If xn1 = 0 for some n1 ∈ N, and

xj ̸= 0, j = 0, n1 − 1, (2.15)

then from (2.12) we have xn1−1 = 0, which is a contradiction. From (2.14) and (2.15) we see
that when x0 ̸= 0 we have that xn ̸= 0 for all n ∈ N0 for which xn is defined. Hence, we can
use the change of variables

xn =
1
yn

, n ∈ N0, (2.16)

and obtain the equation
yn+1 = yn(2 − ayn), n ∈ N0.

It is well known that general solution to the equation is given by

yn =
1 − (1 − ay0)2n

a
, n ∈ N0,

(see, e.g., [11, 12]).
Hence, we have that the general solution to equation (2.12) in this case is given by the

formula

xn =
ax2n

0

x2n

0 − (x0 − a)2n , (2.17)

for n ∈ N0.
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Remark 2.6. Formula (2.17) can be also obtained from the formula (2.8) with b = 0. Indeed,
the above consideration in the case a + b ̸= 0 also holds in the case when b = 0. Note also that
if b = 0, then a + b = a ̸= 0. Hence, all the conditions there are satisfied if a ̸= 0 and b = 0.

Remark 2.7. The change of variables (2.16) is a basic one and frequently appears in the litera-
ture (see, e.g. [4, 51]). One of the basic examples of difference equations where it is applied is
the following

xn+1 =
anxn

bn + cnxn
, n ∈ N0,

which, by the change of variables, is transformed to a nonhomogeneous linear difference
equation of first order, which is theoretically solvable (this was shown first by Lagrange [26],
then by another method by Laplace [27]; see, also [10, 16, 19, 34]). For some related changes of
variables see, e.g., [40, 53, 57] and the related references therein.

2.2 A relative of equation (2.4)

The difference equation

xn+1 =
2xn

x2
n + 1

, n ∈ N0, (2.18)

is another known difference equation. The long-term behaviour of its solutions can be studied
by using standard methods to the governing function

f (t) =
2t

t2 + 1
, t ∈ R,

(see, e.g., [4, Problems 9.34, 9.35]).
However, the equation is also solvable. Indeed, first note that if x∗ is an equilibrium of

equation (2.18), then it is easy to see that

x∗ ∈ {−1, 0, 1}.

Since

xn+1 − 1 = − (xn − 1)2

x2
n + 1

and

xn+1 + 1 =
(xn + 1)2

x2
n + 1

for n ∈ N0, we have
xn+1 − 1
xn+1 + 1

= −
(

xn − 1
xn + 1

)2

, n ∈ N0,

from which it follows that

xn − 1
xn + 1

= −
(

x0 − 1
x0 + 1

)2n

, n ∈ N,

and finally

xn =
1 −

(
x0−1
x0+1

)2n

1 +
(

x0−1
x0+1

)2n , n ∈ N. (2.19)
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Remark 2.8. Solvability of equation (2.18) is not so surprising. Namely, note that by using the
change of variables (2.16) from equation (2.18) it is obtained equation (2.4) with a = 1.

By using the change of variables in (2.16) in equation (2.2) we obtain the equation

yn+1 =
py2

n + 2yn

1 − qy2
n

, n ∈ N0. (2.20)

Let p = −(a + b) and q = ab, then equation (2.20) becomes

yn+1 =
−(a + b)y2

n + 2yn

1 − aby2
n

, n ∈ N0. (2.21)

If a + b ̸= 0, then from (2.8) we obtain

yn =
( 1−ay0

1−by0
)2n − 1

b( 1−ay0
1−by0

)2n − a
, n ∈ N0, (2.22)

whereas if a = b, then from (2.11) we obtain

yn =
y02n

1 + ay0(2n − 1)
, n ∈ N0. (2.23)

From (2.22) we obtain the following corollary.

Corollary 2.9. Consider equation (2.21) where a ̸= b and ab ̸= 0. Then for well-defined solutions of
the equation the following statements are true.

(a) If | 1−ay0
1−by0

| < 1, then limn→+∞ yn = 1
a .

(b) If | 1−ay0
1−by0

| > 1, then limn→+∞ yn = 1
b .

(c) If 1−ay0
1−by0

= −1, that is, y0 = 2
a+b , then yn = 0, n ∈ N.

(d) If y0 = 0, then yn = 0, n ∈ N0.

Remark 2.10. Note that if y0 ̸= 0, the case

1 − ay0

1 − by0
= 1

is excluded, since we assume a ̸= b.

From (2.21) and (2.23) we obtain the following corollary.

Corollary 2.11. Consider equation (2.21) where a = b ̸= 0. Then every solution to equation (2.21)
such that y0 ̸= 0, y0 ̸= 1/a, and

y0 ̸= 1
a(1 − 2n)

, n ∈ N,

converges to 1
a .

Remark 2.12. Note that if a = b and y0 = 0, then yn = 0 for every n ∈ N.

Remark 2.13. Note that if a = b and y0 = 1/a or

y0 =
1

a(1 − 2n)

for some n ∈ N, then yn is not defined, and consequently the corresponding solution to
equation (2.21).
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2.3 Newton–Raphson iteration process for calculating reciprocals

It is well known that if we apply the Newton-Raphson iteration process to

f (x) = 1 − 1
ax

(2.24)

where a ̸= 0, we obtain the equation

xn+1 = 2xn − ax2
n, n ∈ N0. (2.25)

Recall that the equation is solvable in closed form [11, 12, 18, 55].
If we apply the iteration process

xn+1 = xn −
f (xn)

f ′(xn)
− f ′′(xn)

2 f ′(xn)

(
f (xn)

f ′(xn)

)2

, n ∈ N0

to the function in (2.24) we obtain the equation

xn+1 = 3xn − 3ax2
n + a2x3

n, n ∈ N0, (2.26)

see, e.g., [18], where it is suggested to show that the relation holds

1
a
− xn+1 = a2

(1
a
− xn

)3
, n ∈ N0. (2.27)

From (2.27) we see that the relation (2.26) is also solvable in closed form. Indeed, let

yn :=
1
a
− xn, (2.28)

then from (2.26) we have
yn = a2y3

n−1, n ∈ N,

which is a simple product-type difference equation (for some examples of such difference
equations and systems of equations, see, e.g., [54, 58] and the related references therein).

By iterating the last relation we get

yn = a2(a2y3
n−2)

3 = a2(1+3)y32

n−2.

By a simple inductive argument we obtain

yn = a2 ∑
n−1
j=0 3j

y3n

0 = a3n−1y3n

0 , n ∈ N0,

from which along with (2.28) it follows that

xn =
1
a
− a3n−1

(1
a
− x0

)3n

, n ∈ N0. (2.29)

Remark 2.14. The matrix counterpart of equation (2.25)

Xn+1 = (2I − AXn)Xn, n ∈ N0,

is the Schultz iteration process [48] which has been studied a lot.
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2.4 A generalization of equations (2.25) and (2.26)

Equations (2.25) and (2.26) are, among other things, obtained from two known iteration pro-
cesses by employing them to the function in (2.24). Here we show that a sequence of iteration
processes, which can be used for calculating reciprocals and containing relations (2.25) and
(2.26), can be obtained in a simple way. Moreover, we show that they all are solvable in closed
form.

If in the difference equation

yn+1 = yk
n, n ∈ N0, (2.30)

where k ∈ N \ {1} is a fixed number, we use the change of variables

yn = 1 − axn, n ∈ N0, (2.31)

where a ̸= 0, we have

1 − axn+1 =
k

∑
j=0

Ck
j (−a)jxj

n, n ∈ N0,

so after some simple calculation we obtain

xn+1 =
k

∑
j=1

Ck
j (−a)j−1xj

n, n ∈ N0. (2.32)

From (2.32) for each k ∈ N \ {1} we obtain a difference equation which can be used for
calculating reciprocals.

Now note that from (2.30) we have

yn = ykn

0 , n ∈ N0. (2.33)

By using (2.33) in (2.31) we get

xn =
1 − (1 − ax0)kn

a
, n ∈ N0. (2.34)

Formula (2.34) shows that equation (2.32) is also solvable in closed form.

Remark 2.15. Note that if in equation (2.32) we take k = 2, then we obtain equation (2.25),
whereas if we take k = 3, then we obtain equation (2.26). This means that the difference
equation is a natural generalization of the equations (2.25) and (2.26).

Remark 2.16. The matrix counterparts of equations (2.32) have been also studied considerably.
Our literature review shows that the topic has been quite popular among scientists working
on numerical mathematics for a long time, and it seems that such iteration processes are
rediscovered from time to time. There are also some operator counterparts of equations (2.25),
(2.26) and (2.32) (see, for example, [2, 41] and the references therein). So, the facts mentioned
in this subsection should be folklore. Nevertheless, the above explanation suggests a natural
way for constructing the matrix and operator iteration processes. From (2.30) we also see how
is naturally obtained an iteration process whose rate of the convergence has a given order (for
the notion see, e.g., [12, 18]).
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2.5 A relative to equation (2.32)

By using change of variables (2.16) in equation (2.32) we obtain the equation

yn+1 =
yk

n

∑
k
j=1 Ck

j (−a)j−1yk−j
n

, n ∈ N0,

that is,

yn+1 =
ayk

n

yk
n − (yn − a)k , n ∈ N0. (2.35)

Hence, from (2.34) we have that the general solution to equation (2.35) is given by

yn =
aykn

0

ykn

0 − (y0 − a)kn , n ∈ N0.

For example, if k = 3, then equation (2.35) becomes

yn+1 =
y3

n

3y2
n − 3ayn + a2 , n ∈ N0,

and its general solution is

yn =
ay3n

0

y3n

0 − (y0 − a)3n , n ∈ N0.

2.6 Newton–Raphson method for polynomials of the third degree and solvability

Here we conduct some analyses regarding solvability of difference equations obtained by
applying the Newton–Raphson iteration process to polynomials of the third degree, and gen-
eralise a class of solvable difference equations by presenting a method for constructing the
generalization.

Difference equations can be used for calculating roots of some functions, but it is quite a
rare situation that they are solvable in closed form. For example, if we want to calculate a root
of the function

f (x) = x3 − x

(we can easily find all of them by an elementary method), by using the Newton-Raphson
process we get the equation

xn+1 = xn −
x3

n − xn

3x2
n − 1

=
2x3

n

3x2
n − 1

, n ∈ N0. (2.36)

The equation frequently appears in the literature (see [20, 44]), and this explains how it can
be obtained, which is one of the reasons why we mention the equation. Another reason is
connected to the method used in dealing with equation (2.3).

Namely, from (2.36) and some calculations we get

xn+1 − 1 =
(xn − 1)2(2xn + 1)

3x2
n − 1

and

xn+1 + 1 =
(xn + 1)2(2xn − 1)

3x2
n − 1
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from which it follows that
xn+1 − 1
xn+1 + 1

=

(
xn − 1
xn + 1

)2 2xn + 1
2xn − 1

.

However, the natural change of variables

yn =
xn − 1
xn + 1

cannot show the solvability of relation (2.36).
Let us analyse the general case. If we apply the Newton–Raphson iteration process to an

arbitrary polynomial of the third order

p3(t) = t3 + pt2 + qt + r (2.37)

we get

xn+1 = xn −
x3

n + px2
n + qxn + r

3x2
n + 2pxn + q

=
2x3

n + px2
n − r

3x2
n + 2pxn + q

, (2.38)

for n ∈ N0.
If a, b and c are the roots of (2.37), then (2.38) can be written in the form

xn+1 =
2x3

n − (a + b + c)x2
n + abc

3x2
n − 2(a + b + c)xn + ab + bc + ca

, n ∈ N0, (2.39)

and by some calculations we have

xn+1 − a =
2x3

n − (4a + b + c)x2
n + 2a(a + b + c)xn − a2(b + c)

3x2
n − 2(a + b + c)xn + ab + bc + ca

, (2.40)

for n ∈ N0.
Let

q3(t) = 2t3 − (4a + b + c)t2 + 2a(a + b + c)t − a2(b + c).

Then, a direct calculation shows that q3(a) = 0, from which it follows that

q3(t) = (t − a)(2t2 − (2a + b + c)t + a(b + c)) = (t − a)2(2t − (b + c)).

Hence (2.40) can be written as follows

xn+1 − a =
(xn − a)2(2xn − (b + c))

3x2
n − 2(a + b + c)xn + ab + bc + ca

, n ∈ N0. (2.41)

Since the root of (2.37) we chose was arbitrary, we see that from (2.41) the following relations
also hold

xn+1 − b =
(xn − b)2(2xn − (a + c))

3x2
n − 2(a + b + c)xn + ab + bc + ca

, n ∈ N0, (2.42)

xn+1 − c =
(xn − c)2(2xn − (a + b))

3x2
n − 2(a + b + c)xn + ab + bc + ca

, n ∈ N0. (2.43)

From (2.41)–(2.43), we have

xn+1 − a
xn+1 − b

=

(
xn − a
xn − b

)2 2xn − (b + c)
2xn − (a + c)

, (2.44)

xn+1 − b
xn+1 − c

=

(
xn − b
xn − c

)2 2xn − (a + c)
2xn − (a + b)

, (2.45)

xn+1 − c
xn+1 − a

=

(
xn − c
xn − a

)2 2xn − (a + b)
2xn − (b + c)

, (2.46)
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for n ∈ N0.
From (2.44)–(2.46) we see that we can obtain a solvable difference equation if a + b, b + c

and c + a takes some of the values in the set {2a, 2b, 2c}. However, it is not difficult to see that
in all the cases we get a = b = c, so that the equations (2.44)–(2.46) become trivial.

This analysis shows that the method used in solving equation (2.3) cannot be applied to
equation (2.39). Nevertheless, there are some equations of the form

xn+1 =
x3

n + px2
n + qxn + r

sx2
n + uxn + v

, n ∈ N0, (2.47)

which are solvable in closed form, but are obtained by using some other iteration processes.

Example 2.17. The difference equation [20, 33, 45]

xn+1 =
x3

n + 3axn

3x2
n + a

, n ∈ N0. (2.48)

is used for finding a square root of number a. It is interesting that the difference equation is
solvable in closed form. See [56] where a class/sequence of solvable difference equations for
finding square roots is presented. Beside this, it is also interesting that the equation can be
obtained, for example, from the Halley iteration process [18]

xn+1 = xn −
2 f ′(xn) f (xn)

2 f ′(xn)2 − f ′′(xn) f (xn)
, n ∈ N0,

applied to the function
f (t) = x2 − a. (2.49)

The fact was not mentioned in [56].

A detailed analysis of the method for solving equation (2.48) given in [56], shows that one
of the most important facts used in the method is that the following relations hold

t3 + 3at −
√

a(3t2 + a) = (t −
√

a)3

and
t3 + 3at +

√
a(3t2 + a) = (t +

√
a)3.

Hence it is of interest to see for which values of parameters p, q, r, s, u and v the following
identities hold

t3 + pt2 + qt + r − a(st2 + ut + v) = (t − a)3 (2.50)

and
t3 + pt2 + qt + r − d(st2 + ut + v) = (t − d)3 (2.51)

for some given numbers a and d such that a ̸= d.
From (2.50) and (2.51) we obtain the following nonlinear algebraic system of equations

p − as = −3a, p − ds = −3d, (2.52)

q − au = 3a2, q − du = 3d2, (2.53)

r − av = −a3, r − dv = −d3. (2.54)

From (2.52) we have
−s(a − d) = −3(a − d)
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from which along with the assumption a ̸= d, it follows that s = 3. By using it in (2.52) we get
p = 0.

From (2.53) we have
−u(a − d) = 3(a − d)(a + d) (2.55)

and
2q = 3(a2 + d2) + (a + d)u. (2.56)

From (2.55) along with the assumption a ̸= d, it follows that u = −3(a + d). By using it in
(2.56) we get q = −3ad.

From (2.54) we have
v(a − d) = (a − d)(a2 + ad + d2) (2.57)

and
2r = −(a3 + d3) + (a + d)v. (2.58)

From (2.57) along with the assumption a ̸= d, it follows that v = a2 + ad + d2. By using it in
(2.58) we get r = ad(a + d).

This analysis suggests that the following special case of equation (2.47)

xn+1 =
x3

n − 3adxn + ad(a + d)
3x2

n − 3(a + d)xn + a2 + ad + d2 , n ∈ N0, (2.59)

is solvable. Indeed, the following theorem holds.

Theorem 2.18. The equation (2.59), where a, d ∈ C are such that a ̸= d is solvable in closed form.

Proof. From (2.59) and some simple calculation we have

xn+1 − a =
(xn − a)3

3x2
n − 3(a + d)xn + a2 + ad + d2 , n ∈ N0, (2.60)

and

xn+1 − d =
(xn − d)3

3x2
n − 3(a + d)xn + a2 + ad + d2 , n ∈ N0. (2.61)

From (2.60) and (2.61) we have

xn+1 − a
xn+1 − d

=

(
xn − a
xn − d

)3

, n ∈ N0,

from which it easily follows that

xn − a
xn − d

=

(
x0 − a
x0 − d

)3n

, n ∈ N0,

and consequently

xn =
d
(

x0−a
x0−d

)3n

− a
(

x0−a
x0−d

)3n

− 1
, n ∈ N0. (2.62)

By some calculations it is checked that (2.62) is a solution to equation (2.59).

Remark 2.19. Note that if d = −a equation (2.59) reduces to the equation (2.48) where a is
replaced by a2, from which its solvability again follows.
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2.7 Difference equations obtained by polynomials of the fourth degree

In [56] we have also shown that the difference equation

xn+1 =
x4

n + 6ax2
n + a2

4x3
n + 4axn

, n ∈ N0, (2.63)

is solvable in closed form.
An interesting problem is to try to find a generalization of equation (2.63) by using the

method above applied to equation (2.47), which is also solvable in closed form. The following
equation

xn+1 =
x4

n + px3
n + qx2

n + rxn + s
αx3

n + βx2
n + γxn + δ

, n ∈ N0, (2.64)

is a natural generalization of equation (2.63).
Following (2.50) and (2.51), it is of interest to see for which values of parameters p, q, r, s,

α, β, γ and δ the following identities hold

t4 + pt3 + qt2 + rt + s − a(αt3 + βt2 + γt + δ) = (t − a)4 (2.65)

and
t4 + pt3 + qt2 + rt + s − d(αt3 + βt2 + γt + δ) = (t − d)4 (2.66)

for some given numbers a and d such that a ̸= d.
From (2.65) and (2.66) we obtain the following nonlinear algebraic system of equations

p − αa = −4a, p − αd = −4d, (2.67)

q − βa = 6a2, q − βd = 6d2, (2.68)

r − γa = −4a3, r − γd = −4d3, (2.69)

s − δa = a4, s − δd = d4. (2.70)

From (2.67) we have
−α(a − d) = −4(a − d)

from which along with the assumption a ̸= d, it follows that α = 4. By using it in (2.67) we
get p = 0.

From (2.68) we have
−β(a − d) = 6(a − d)(a + d) (2.71)

and
2q = 6(a2 + d2) + (a + d)β. (2.72)

From (2.71) along with the assumption a ̸= d, it follows that β = −6(a + d). By using it in
(2.72) we get q = −6ad.

From (2.69) we have

−γ(a − d) = −4(a − d)(a2 + ad + d2) (2.73)

and
2r = −4(a3 + d3) + (a + d)γ. (2.74)

From (2.73) along with the assumption a ̸= d, it follows that γ = 4(a2 + ad + d2). By using it
in (2.74) we get r = 4ad(a + d).
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From (2.70) we have

−δ(a − d) = (a − d)(a3 + a2d + ad2 + d3) (2.75)

and

2s = a4 + d4 + (a + d)δ. (2.76)

From (2.75) along with the assumption a ̸= d, it follows that δ = −(a3 + a2d + ad2 + d3). By
using it in (2.76) we get s = −ad(a2 + ad + d2).

From the analysis we obtain the following result.

Theorem 2.20. The equation

xn+1 =
x4

n − 6adx2
n + 4ad(a + d)xn − ad(a2 + ad + d2)

4x3
n − 6(a + d)x2

n + 4(a2 + ad + d2)xn − (a3 + a2d + ad2 + d3)
, (2.77)

for n ∈ N0, where a, d ∈ C are such that a ̸= d is solvable in closed form.

Proof. From (2.77) and some simple calculation we have

xn+1 − a =
(xn − a)4

4x3
n − 6(a + d)x2

n + 4(a2 + ad + d2)xn − (a3 + a2d + ad2 + d3)
, (2.78)

for n ∈ N0, and

xn+1 − d =
(xn − d)4

4x3
n − 6(a + d)x2

n + 4(a2 + ad + d2)xn − (a3 + a2d + ad2 + d3)
, (2.79)

for n ∈ N0.
Using the relations in (2.78) and (2.79) we have

xn+1 − a
xn+1 − d

=

(
xn − a
xn − d

)4

, n ∈ N0.

Hence

xn − a
xn − d

=

(
x0 − a
x0 − d

)4n

, n ∈ N0,

and consequently

xn =
d
(

x0−a
x0−d

)4n

− a
(

x0−a
x0−d

)4n

− 1
, n ∈ N0, (2.80)

which is the general solution to equation (2.77).

Remark 2.21. Note that if d = −a equation (2.77) reduces to the equation (2.63) where a is
replaced by a2, from which its solvability again follows.
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2.8 Difference equations obtained by polynomials of the fifth degree

In [56] we have also shown that the difference equation

xn+1 =
x5

n + 10ax3
n + 5a2xn

5x4
n + 10ax2

n + a2 , n ∈ N0, (2.81)

is solvable in closed form.
Our aim is to find a generalization of equation (2.81) similar to equation (2.47), which is

also solvable in closed form. The following equation

xn+1 =
x5

n + px4
n + qx3

n + rx2
n + sxn + u

αx4
n + βx3

n + γx2
n + δxn + η

, n ∈ N0, (2.82)

is a natural generalization of (2.81).
We find the values of parameters p, q, r, s, u, α, β, γ, δ and η such that the following

identities hold

t5 + pt4 + qt3 + rt2 + st + u − a(αt4 + βt3 + γt2 + δt + η) = (t − a)5 (2.83)

and
t5 + pt4 + qt3 + rt2 + st + u − d(αt4 + βt3 + γt2 + δt + η) = (t − d)5 (2.84)

for some given numbers a and d such that a ̸= d.
From (2.83) and (2.84) we have

p − αa = −5a, p − αd = −5d, (2.85)

q − βa = 10a2, q − βd = 10d2, (2.86)

r − γa = −10a3, r − γd = −10d3, (2.87)

s − δa = 5a4, s − δd = 5d4, (2.88)

u − ηa = −a5, u − ηd = −d5. (2.89)

From (2.85) it follows that
−α(a − d) = −5(a − d)

from which along with the assumption a ̸= d, it follows that α = 5. From this and (2.85) we
get p = 0.

From (2.86) we have
−β(a − d) = 10(a − d)(a + d) (2.90)

and
2q = 10(a2 + d2) + (a + d)β. (2.91)

From (2.90) along with the assumption a ̸= d, it follows that β = −10(a + d). By using it in
(2.91) we get q = −10ad.

From (2.87) we have

−γ(a − d) = −10(a − d)(a2 + ad + d2) (2.92)

and
2r = −10(a3 + d3) + (a + d)γ. (2.93)
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From (2.92) along with the assumption a ̸= d, it follows that γ = 10(a2 + ad + d2). By using it
in (2.93) we get r = 10ad(a + d).

From (2.88) we have

−δ(a − d) = 5(a − d)(a3 + a2d + ad2 + d3) (2.94)

and
2s = 5a4 + 5d4 + (a + d)δ. (2.95)

From (2.94) along with the assumption a ̸= d, it follows that δ = −5(a3 + a2d + ad2 + d3). By
using it in (2.95) we get s = −5ad(a2 + ad + d2).

From (2.89) we have

−η(a − d) = −(a − d)(a4 + a3d + a2d2 + ad3 + d4) (2.96)

and
2u = −(a5 + d5) + (a + d)δ. (2.97)

From (2.96) along with the assumption a ̸= d, it follows that η = a4 + a3d + a2d2 + ad3 + d4.
By using it in (2.97) we get u = ad(a3 + a2d + ad2 + d3).

From the analysis we obtain the following result.

Theorem 2.22. Let

p4(t)=5t4 − 10(a+d)t3 + 10(a2+ad+d2)t2 − 5(a3+a2d+ad2+d3)t + a4+a3d+a2d2+ad3+d4.

Then the equation

xn+1=
x5

n − 10adx3
n + 10ad(a+d)x2

n − 5ad(a2+ad+d2)xn + ad(a3+a2d+ad2+d3)

p4(xn)
, (2.98)

for n ∈ N0, where a, d ∈ C are such that a ̸= d, is solvable in closed form.

Proof. From (2.98) we have

xn+1 − a =
(xn − a)5

p4(xn)
, (2.99)

for n ∈ N0, and

xn+1 − d =
(xn − d)5

p4(xn)
, (2.100)

for n ∈ N0.
Employing (2.99) and (2.100) it follows that

xn+1 − a
xn+1 − d

=

(
xn − a
xn − d

)5

, n ∈ N0.

Hence
xn − a
xn − d

=

(
x0 − a
x0 − d

)5n

, n ∈ N0,

and consequently

xn =
d
(

x0−a
x0−d

)5n

− a
(

x0−a
x0−d

)5n

− 1
, n ∈ N0, (2.101)

finishing the proof.

Remark 2.23. Note that if d = −a equation (2.98) reduces to the equation (2.81) where a is
replaced by a2, implying its solvability.
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2.9 A generalization of equations (2.63) and (2.81)

A natural question is if above theorems can be generalized to a more general difference equa-
tion. Although, at the first sight, the problem looks technically quite complex, it is interesting
that the method used in the proofs of the above theorems can be also employed for finding
the corresponding class of difference equations solvable in closed form, which are of the form

xn+1 =
xk

n + a1xk−1
n + · · ·+ ak−1xn + ak

b0xk−1
n + b1xk−2

n + · · ·+ bk−2xn + bk−1
, n ∈ N0, (2.102)

where k ∈ N and the coefficients

aj, j = 1, k, and bl , l = 0, k − 1, (2.103)

are complex numbers.
We want to find the values of the coefficients in (2.103) such that the following identities

hold

tk + a1tk−1 + · · ·+ ajt
k−j + · · ·+ ak−1t + ak

− a(b0tk−1 + b1tk−2 + · · ·+ bj−1tk−j + · · ·+ bk−2t + bk−1) = (t − a)k (2.104)

and

tk + a1tk−1 + · · ·+ ajt
k−j + · · ·+ ak−1t + ak

− d(b0tk−1 + b1tk−2 + · · ·+ bj−1tk−j + · · ·+ bk−2t + bk−1) = (t − d)k (2.105)

for some given numbers a and d such that a ̸= d.
From (2.104) and (2.105) we obtain the following nonlinear algebraic system of equations

a1 − ab0 = Ck
1(−a), a1 − db0 = Ck

1(−d)
...

...

aj − abj−1 = Ck
j (−a)j, aj − dbj−1 = Ck

j (−d)j, (2.106)

...
...

ak − abk−1 = Ck
k(−a)k, ak − dbk−1 = Ck

k(−d)k.

From (2.106) we have
−(a − d)bj−1 = Ck

j ((−a)j − (−d)j) (2.107)

and
2aj = Ck

j (−1)j(aj + dj) + (a + d)bj−1, (2.108)

j = 1, k.
From (2.107) and since a ̸= d we obtain

bj−1 = Ck
j (−1)j+1 aj − dj

a − d
, j = 1, k. (2.109)

By using (2.109) in (2.108) we have

2aj = Ck
j (−1)j(aj + dj) + (a + d)Ck

j (−1)j+1 aj − dj

a − d
,
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j = 1, k, from which it follows that

aj = adCk
j (−1)j+1 aj−1 − dj−1

a − d
, j = 1, k. (2.110)

Remark 2.24. Note that from (2.110) with j = 1 it follows that a1 = 0, whereas from (2.109)
with j = 1 it follows that b0 = Ck

1 = k. Further, from (2.109) and (2.110) it follows that

aj = adbj−1
aj−1 − dj−1

aj − dj , j = 2, k.

Now we formulate and prove the general result.

Theorem 2.25. Let equation (2.102) be such that the coefficients aj, j = 1, k, and bl , l = 0, k − 1, are
given by (2.109) and (2.110), where a, d ∈ C are such that a ̸= d. Then the equation is solvable in
closed form.

Proof. Let
pk−1(t) = b0tk−1 + b1tk−2 + · · ·+ bk−2t + bk−1.

Then from (2.102) and the choice of the coefficients aj, j = 1, k, and bl , l = 0, k − 1 (see (2.104)
and (2.105)), we have

xn+1 − a =
(xn − a)k

pk−1(xn)
, (2.111)

for n ∈ N0, and

xn+1 − d =
(xn − d)k

pk−1(xn)
, (2.112)

for n ∈ N0.
From (2.111) and (2.112) we have

xn+1 − a
xn+1 − d

=

(
xn − a
xn − d

)k

, n ∈ N0.

Hence
xn − a
xn − d

=

(
x0 − a
x0 − d

)kn

, n ∈ N0,

and finally

xn =
d
(

x0−a
x0−d

)kn

− a
(

x0−a
x0−d

)kn

− 1
, n ∈ N0,

as claimed.
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1 Introduction

Cholera is an acute water-borne infectious disease caused by Vibrio cholerae, with an estimated

disease burden of 1.3 to 4.0 million cases and 21 000 to 143 000 deaths every year world-

wide, which still affects at least 47 countries around the globe [2]. At present, there are 139

serogroups of Vibrio cholerae, of which O1 and O139 can cause cholera outbreaks. The disease

peaks in the summer and it can be transmitted to humans by pathogen in the contaminated

water and by person-to-person contact [20, 37]. Clinically, cholera can cause severe diarrhea,

and the infected person will die of dehydration within a few days without prompt treatment

[12]. In 1855, the British scholar John Snow found that the sewage in the city was the source of

the spread of cholera epidemic [36], which was a major historical event in public hygiene. In

the history of human epidemiology, cholera broke out many times in different countries and

regions. In recent years, cholera outbreaks are mainly concentrated in developing countries

with low medical and health level and lack of safe and hygienic drinking water sources. For

example, cholera broke out in Haiti in 2010, leading to more than 665000 confirmed cases and

8183 deaths [10], and one of the causal factors for this outbreak is the transmission of local

BCorresponding author. Email: ranzhang@hlju.edu.cn
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water source Artibonite river. The incidence rate of cholera will decrease in the future due

to the global economic development and the reduction in global poverty [44], however, may

increase in the next few decades due to the climate change and ocean changes caused by the

extreme weather [1]. Therefore, it is of great theoretical and practical significance to study the

transmission mechanism and development trend of cholera.

Recently, the mathematical model of cholera transmission has attracted widespread atten-

tion since the earlier study [9] on cholera modeling for the outbreak in the European Mediter-

ranean region. In the aspect of mathematical modeling, Tien and Earn [37] introduced a water

compartment into classical SIR model and established a water-borne infectious disease model

with multiple transmission routes described by ordinary differential equations. In [37], the

susceptible individual can not only be infected by the infected individual, but also be in-

fected by indirect intake of contaminated water from the environment, which could be used

to describe the transmission dynamics of cholera. By constructing an appropriate Lyapunov

function, the global asymptotical stability of the equilibria of the system was obtained. Con-

sidering the hyperinfectious state of vibrio cholerae, Hartley et al. [20] extended the model

proposed in [37] and studied the impact of hyperinfectious state on limiting the spread of

cholera. Eisenberg et al. [15] aimed to evaluate the effects of patch structure on cholera spread

and the type/target reproduction numbers were derived to quantify the strategies of cholera

prevention. Some models involving different factors of cholera can be found in [3,33,38,40,41]

and the references therein.

In modeling of epidemics, the age structure of individuals and pathogen is a significant

characteristic [4, 8, 13, 27, 42]. In [7], Brauer et al. proposed an age-structured cholera model

with multiple transmission pathways, which is






























dS(t)

dt
= Λs − µS(t)− βiS(t)

∫ ∞

0
q(b)p(t, b)db − βdS(t)

∫ ∞

0
k(a)i(t, a)da,

∂i(t, a)

∂t
+

∂i(t, a)

∂a
= −δ(a)i(t, a),

∂p(t, b)

∂t
+

∂p(t, b)

∂b
= −γ(b)p(t, b),

(1.1)

with initial condition

S(0) = S0, i(0, ·) = i0(·) ∈ L1
+(0,+∞), p(0, ·) = p0(·) ∈ L1

+(0,+∞), (1.2)

and boundary condition











i(t, 0) = βiS(t)
∫ ∞

0
q(b)p(t, b)db + βdS(t)

∫ ∞

0
k(a)i(t, a)da,

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da.

(1.3)

where S(t) is the density of the susceptible population at time t, i(t, a) and p(t, b) are the densi-

ties of the infectious population and the pathogen at time t with age a and b, respectively. The

parameters of model (1.1) are explained in Table 1.1. Brauer et al. successfully obtained the

global dynamics of model (1.1) by using the method of Lyapunov functional. Moreover, some

other results for model (1.1) can be found in the studies [7, 42], such as relative compactness

of orbits and uniform persistence.

More and more studies showed that immigration of populations has a significant impact

on the spread of cholera. Due to the drought, refugees from Mozambique poured into Zim-

babwe at the end of 1992, making Zimbabwe face the first cholera epidemic since 1985, which
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Parameter Interpretation

Λs Constant recruitment of susceptible individuals

µ Natural death rate of susceptible individuals

βd Direct transmission coefficient of cholera

βi Indirect transmission coefficient of cholera

δ(a) Age specific removal rate of the infected individuals

γ(b) Age specific removal rate of the pathogen

ξ(a) Age specific shedding rate of an infected individual

k(a) Measure the Infectivity of infected individuals

q(b) Measure the Infectivity of pathogen

Table 1.1: Parameters and their biological meaning in model (1.1).

spread to 7 provinces (Zimbabwe has 8 provinces in total) within five months [5]. Research

shows that cholera has a history of outbreak through the immigration caused by interna-

tional flights [14] and international conferences [32]. By analyzing 26 strains isolated from

the cholera outbreak in Haiti in 2010, Frerichs et al. [17] believes that this wave of cholera

outbreak was caused by the spread of Vibrio cholerae to the local drinking water source by

the UN peacekeeping force dispatched by Nepal to Haiti. In fact, for developed countries with

safe and hygienic water resources, cholera can also enter through immigration. According to

the Centers for Disease Control and Prevention of USA, there was an increase in cholera cases

reported in the United States during cholera outbreaks in Latin America in the 1990s and

countries close to the United States such as Haiti in 2010 [11]. Five European Union countries

reported 26 confirmed cholera cases in 2018, of which 22 were immigrated from India, Pak-

istan, Thailand, Bangladesh, Myanmar and Tunisia [16]. Therefore, it is urgent to explore the

impact of immigration on the development and evolution of cholera infectious disease, which

is also one of the important topics in the study of infectious disease dynamics.

From the view of mathematical modeling of infectious disease, immigration of population

was always supposed to be of constant recruitment rate in each compartment. Brauer and

van den Driessche [6] studied the threshold-like results for disease transmission model with

immigration of the infective. By using Lyapunov function, Sigdel and McCluskey [34] inves-

tigated the global stability for an SEI model with immigration. More specifically, the endemic

equilibrium for the model proposed in [34] is globally asymptotically stable. Considering the

vaccination effect in the modeling of infectious diseases, Henshaw and McCluskey [21] pre-

sented the results on the global stability of a vaccination model with immigration, by virtue of

the key method of constructing appropriate Lyapunov function. Meanwhile, age-dependent

immigration rate seems more realistic in the real world and it is meaningful to investigate the

age-structured models with immigration. In [30], McCluskey introduced an age-structured

epidemic model with immigration. With an ingenious Lyapunov functional, the stability of

endemic equilibrium for the SEI model with immigration was proved successfully. Zhang and

Liu [46] further extended the study in [30] by introducing general nonlinear incidence. More

recently, McCluskey [31] proved a general result for a Lyapunov calculation for the model

with immigration and applied the results to a multi-group SIR model.

In (1.1), the incidence rates are assumed to be bilinear. Actually, nonlinear incidence rates

are critical for accounting for a variety of nonlinear features of the corresponding biological

phenomena. For example, Beddington–DeAngelis [23], Holling type II [24], Crowley–Martin
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[45] and general incidence [18,26]. Motivated by the above studies, in this paper, we shall con-

sider a generalization of model (1.1) by taking general incidence rates into account. However,

to our best knowledge, there is no study on the age-structured cholera model with immigra-

tion. Based on model (1.1), we further introduce the immigration of infectious individuals

and pathogen into the cholera model. Let Λi(a) and Λp(b) represent the recruitment through

immigration into the infectious group and the pathogen group. Let

Q(t) =
∫ ∞

0
q(b)p(t, b)db and J(t) =

∫ ∞

0
k(a)i(t, a)da

represent the infectivity of infected individuals with infection age a and the total infectivity of

pathogen with pathogen age b. In the current paper, we focus on the following age-structured

cholera model with immigration































dS(t)

dt
= Λs − µS(t)− S(t) f (J(t))− S(t)g(Q(t)),

∂i(t, a)

∂t
+

∂i(t, a)

∂a
= Λi(a)− δ(a)i(t, a),

∂p(t, b)

∂t
+

∂p(t, b)

∂b
= Λp(b)− γ(b)p(t, b),

(1.4)

with boundary condition







i(t, 0) = S(t) f (J(t)) + S(t)g(Q(t)), t > 0,

p(t, 0) = P(t) :=
∫ ∞

0
ξ(a)i(t, a)da, t > 0,

(1.5)

and initial condition

X0 := (S(0), i(0, ·), p(0, ·)) = (S0, i0(·), p0(·)) ∈ y+, (1.6)

where y := R ×L1 (0, ∞)×L1 (0, ∞) with norm

‖(φ, ψ, ϕ)‖y := |φ|+
∫ ∞

0
|ψ(a)|da +

∫ ∞

0
|ϕ(b)|db, φ ∈ R, ψ, ϕ ∈ L1 (0, ∞)

and y+ := R+ × L1
+ (0, ∞)× L1

+ (0, ∞) is the positive cone of y. Here L1 (0, ∞) denotes the

space of L1-integrable functions from the interval (0, ∞) to itself. All the other coefficients

in system (1.4)–(1.6) and the corresponding biological interpretation are the same as those in

(1.1)–(1.3).

In the current paper, we study the global asymptotical stability of the unique positive

equilibrium, which need to construct suitable Lyapunov functional. Mathematically, the age-

based immigration rate and the indirect/direct transmission route of cholera generate a huge

difficulty in constructing the proper Lyapunov functional. Moreover, the general incidence

will bring great trouble to the calculation of the derivative of Lyapunov functional. For the

well-posedness of the Lyapunov functional, we also need verify the uniform persistence of

the system. The theoretical analysis shows that there exists a unique globally asymptotically

stable endemic equilibrium, and the disease persists at the endemic level. The results in

present paper not only serve as a supplement and generalization of the works in F. Brauer et

al. [7], but also deal with some other new epidemic models with multiple transmission routes

and immigration.
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The plan of this article is as follows. In Section 2, we make some preliminaries for the

system. In Section 3, we explore the asymptotical smoothness and global attractor. In Sec-

tion 4, we explore the existence and local stability of the positive equilibrium. In Section 5, we

construct a Lyapunov functional to discuss the global stability of the equilibrium. Numerical

simulation and a brief conclusion will be given in section 6.

2 Preliminaries

Firstly, for system (1.4)–(1.6), we give the following assumptions.

Assumption 1. Constants Λs, µ ∈ R+. For functions ξ(·), k(·), q(·), δ(·), γ(·) ∈ L∞
+(0,+∞),

Λi(·), Λp(·) ∈ L1
+(0,+∞), we make the following assumptions.

(I) For δ(·), denote δ̃ :=
∫ ∞

0 δ(τ)dτ, and denote δ̄ and δ as the essential supremum and

essential infimum of δ(·), so do ξ(·), k(·), q(·), γ(·), Λi(·) and Λp(·);

(II) ξ(·), k(·), q(·), δ(·) and γ(·) are Lipschitz continuous.

Assumption 2. For functions f (·), g(·) : R+ → R+, we introduce the following assumptions.

(I) f (·) and g(·) are Lipschitz continuous on R+ with f (0) = g(0) = 0;

(II)
f (z)

z > f ′(z) > 0,
g(z)

z > g′(z) ≥ 0 and f ′′(z) 6 0, g′′(z) 6 0, for z ∈ R+.

2.1 Existence of unique solution

Denote the following spaces

X = R × R ×L1 (R+, R)× R ×L1 (R+, R) ,

X0 = R × {0} × L1 (R+, R)× {0} × L1 (R+, R) ,

X+ = R+ × R+ ×L1 (R+, R)× R+ ×L1 (R+, R) ,

X0+ = X+ ∩ X0 = R+ × {0} × L1 (R+, R)× {0} × L1 (R+, R) ,

One defines a linear operator A : Dom(A) ⊂ X → X as follows,

A















φ1
(

0

ϕ1

)

(

0

ϕ2

)















=















−µφ1
(

−ϕ1(0)

−δ(·)ϕ1 − ϕ′
1

)

(

−ϕ2(0)

−γ(·)ϕ2 − ϕ′
2

)















with Dom(A) = R × {0} × W1,1(0, ∞) × {0} × W1,1(0, ∞), where W1,1(0, ∞) denotes the

Sobolev space of locally summable functions y : R
+ → R such that for every multi-index

α with ‖α‖ 6 1, the weak derivative Dαy ∈ L1(0, ∞) exists. Moreover, define a nonlinear

operator F : Dom(A) ⊂ X → X as

F















φ1
(

0

ϕ1

)

(

0

ϕ2

)















=















Λ − φ1 f
(∫ ∞

0 k(a)ϕ1(a)da
)

− φ1g
(∫ ∞

0 q(b)ϕ2(b)db
)

(

φ1 f
(∫ ∞

0 k(a)ϕ1(a)da
)

+ φ1g
(∫ ∞

0 q(b)ϕ2(b)db
)

Λi(a)

)

(
∫ ∞

0 ξ(a)ϕ1(a)da

Λp(b)

)















.
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Let u(t) = (S(t), (0, i(t, ·))T, (0, p(t, ·))T)T ∈ X0+, then we can write system (1.4) as the follow-

ing abstract Cauchy problem






du(t)

dt
= Au(t) + F(u(t)), ∀t > 0,

u(0) = u0 ∈ X0 ∩ X0+.

(2.1)

To show the existence of unique solutions for system (1.4), we need to prove the operator A

as a Hille–Yosida operator.

Theorem 2.1. The operator A is a Hille–Yosida operator.

Proof. In order to apply Hille–Yosida theorem [29], we need find ζ = (φ̂1, ϕ̂10, ϕ̂1, ϕ̂20, ϕ̂2) ∈ X ,

such that for (φ1, 0, ϕ1, 0, ϕ2) ∈ Dom(A), there holds

(λI − A)−1















φ̂1
(

ϕ̂10

ϕ̂1

)

(

ϕ̂20

ϕ̂2

)















=















φ1
(

0

ϕ1

)

(

0

ϕ2

)















.

From above equation, we then yield

φ̂1 = (λI − A)φ1 = λφ1 − Aφ1 = (λ + µ)φ1.

Thus, φ1 = φ̂1

λ+µ . Besides, we obtain

ϕ̂1 = (λI − A)ϕ1 = λϕ1 − Aϕ1 = λϕ1 + δ(·)ϕ1 + ϕ′
1 = (λ + δ(·))ϕ1 + ϕ′

1.

Thus, there holds

ϕ′
1 = ϕ̂1 − (λ + δ(·))ϕ1,

and we have

ϕ1(a) = ϕ̂10e−
∫ a

0 (λ+δ(s))ds +
∫ a

0
ϕ̂1(τ)e

−
∫ a

τ (λ+δ(s))dsdτ.

Similarly, we get that

ϕ2(b) = ϕ̂20e−
∫ b

0 (λ+γ(s))ds +
∫ b

0
ϕ̂2(τ)e

−
∫ b

τ (λ+γ(s))dsdτ.

Further, there holds

‖ϕ1‖L1
=

∫ ∞

0
|ϕ1(a)|da

=
∫ ∞

0

∣

∣

∣

∣

ϕ̂10e−
∫ a

0 (λ+δ(s))ds +
∫ a

0
ϕ̂1(τ)e

−
∫ a

τ (λ+δ(s))dsdτ

∣

∣

∣

∣

da

6 |ϕ̂10|
∫ ∞

0
e−

∫ a
0 (λ+δ(s))dsda +

∫ ∞

0

∫ a

0
|ϕ̂1(τ)|e

−
∫ a

τ (λ+δ(s))dsdτda

6 |ϕ̂10|
1

λ + δ
+

∫ ∞

0

∫ ∞

τ
|ϕ̂1(τ)|e

−(a−τ)(λ+δ)dadτ

= |ϕ̂10|
1

λ + δ
+

∫ ∞

0
|ϕ̂1(τ)|e

τ(λ+δ)
∫ ∞

τ
e−a(λ+δ)dadτ

= |ϕ̂10|
1

λ + δ
+

∫ ∞

0

|ϕ̂1(τ)|

λ + δ
dτ

=
|ϕ̂10|

λ + δ
+

‖ϕ̂1‖L1

λ + δ
.
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Similarly, we can obtain that

‖ϕ2‖L1
6

|ϕ̂20|

λ + γ
+

‖ϕ̂2‖L1

λ + γ
.

Let η = min{δ, γ, µ}. For any ζ = (φ̂1, ϕ̂10, ϕ̂1, ϕ̂20, ϕ̂2) ∈ X , we have

‖(λI − A)−1ζ‖ = |φ1|+ |0|+ ‖ϕ1‖L1
+ |0|+ ‖ϕ2‖L1

6
|φ̂1|

λ + µ
+

|ϕ̂10|

λ + δ
+

‖ϕ̂1‖L1

λ + δ
+

|ϕ̂20|

λ + γ
+

‖ϕ̂2‖L1

λ + γ

6
‖ζ‖

λ + η
.

Thus, the linear operator A is a Hille–Yosida operator due to [29].

Let X0 = (S(t), (0, i(t, ·))T, (0, p(t, ·))T)T ∈ X0+, thanks to [29, Theorem 5.2.7], we have the

following theorem.

Theorem 2.2. There exists a unique determined semiflow {U(t)}t>0 on X0+ such that for any X0,

a unique continuous map U ∈ C([0, ∞],X0+) exists as an integrated solution of the Cauchy problem

(2.1), that is,















∫ t

0
U(s)X0ds ∈ Dom(A),

U(t)X0 = X0 + A

∫ t

0
U(s)X0ds +

∫ ∞

0
F(U(s)X0)ds,

for all t > 0.

2.2 Dissipativeness and persistence

Combining equations (1.5) and (1.6), integrating the last two equations of (1.4) along the

characteristic lines yields

i(t, a) =















i(t − a, 0)σ1(a) +
∫ a

0
Λi(ǫ)

σ1(a)

σ1(ǫ)
dǫ, 0 6 a 6 t,

i(0, a − t)
σ1(a)

σ1(a − t)
+

∫ a

a−t
Λi(ǫ)

σ1(a)

σ1(ǫ)
dǫ, 0 6 t 6 a,

(2.2)

p(t, b) =



















p(t − b, 0)σ2(b) +
∫ b

0
Λp(ǫ)

σ2(b)

σ2(ǫ)
dǫ, 0 6 b 6 t,

p(0, b − t)
σ2(b)

σ2(b − t)
+

∫ b

b−t
Λp(ǫ)

σ2(b)

σ2(ǫ)
dǫ, 0 6 t 6 b,

(2.3)

where

σ1(a) = e−
∫ a

0 δ(τ)dτ and σ2(b) = e−
∫ b

0 γ(τ)dτ. (2.4)

Now, we are concerned with the boundedness of solutions. Let Υ1 := Λs+Λ̃i
η , Υ2 :=

ξ̄Υ1+Λ̃p

η

and

Π :=

{

(S(t), i(t, a), p(t, b)) ∈ X0+

∣

∣

∣ S(t) +
∫ ∞

0
i(t, a)da +

∫ ∞

0
p(t, b)db 6 Υ1 + Υ2

}

.

We arrive at the following theorem.
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Theorem 2.3. For (1.4), U is point dissipative, which means there is a bounded set Π that attracts all

points in X+.

Proof. Note that

∫ ∞

0
i(t, a)da =

∫ t

0
i(t, a)da +

∫ ∞

t
i(t, a)da

=
∫ t

0
i(t − a, 0)σ1(a)da +

∫ t

0

∫ a

0
Λi(ǫ)

σ1(a)

σ1(ǫ)
dǫda

+
∫ ∞

t
i(0, a − t)

σ1(a)

σ1(a − t)
da +

∫ ∞

t

∫ a

a−t
Λi(ǫ)

σ1(a)

σ1(ǫ)
dǫda.

Interchanging the order of integration for the double integrals and making change of integra-

tion variable for the two single integrals gives

∫ ∞

0
i(t, a)da =

∫ t

0
i(τ, 0)σ1(t − τ)dτ +

∫ ∞

0
i(0, τ)

σ1(t + τ)

σ1(τ)
dτ +

∫ ∞

0

∫ ǫ+t

ǫ
Λi(ǫ)

σ1(a)

σ1(ǫ)
dadǫ.

Thus, there holds

d

dt

∫ ∞

0
i(t, a)da = σ1(0)i(t, 0) +

∫ t

0
i(τ, 0)

d

dt
σ1(t − τ)dτ

+
∫ ∞

0
i(0, τ)

d
dt σ1(t + τ)

σ1(τ)
dτ +

∫ ∞

0
Λi(ǫ)

σ1(ǫ + t)

σ1(ǫ)
dǫ

= i(t, 0)−
∫ t

0
i(τ, 0)δ(t − τ)σ1(t − τ)dτ

−
∫ ∞

0
i(0, τ)

δ(t + τ)σ1(t + τ)

σ1(τ)
dτ +

∫ ∞

0
Λi(ǫ)

σ1(ǫ + t)

σ1(ǫ)
dǫ

= i(t, 0)−
∫ t

0
i(t − a, 0)δ(a)σ1(a)da

−
∫ ∞

t
i(0, a − t)

δ(a)σ1(a)

σ1(a − t)
da +

∫ ∞

0
Λi(ǫ)

σ1(ǫ + t)

σ1(ǫ)
dǫ.

Note that
∫ t

0

∫ a

0
Λi(ǫ)

σ′
1(a)

σ1(ǫ)
dǫda +

∫ ∞

t

∫ a

a−t
Λi(ǫ)

σ′
1(a)

σ1(ǫ)
dǫda =

∫ ∞

0

∫ ǫ+t

ǫ
Λi(ǫ)

σ′
1(a)

σ1(ǫ)
dadǫ

=
∫ ∞

0
Λi(ǫ)

σ1(ǫ + t)

σ1(ǫ)
dǫ −

∫ ∞

0
Λi(ǫ)dǫ,

we thus have

d

dt

∫ ∞

0
i(t, a)da = i(t, 0)−

∫ t

0
i(t − a, 0)δ(a)σ1(a)da −

∫ ∞

t
i(0, a − t)

δ(a)σ1(a)

σ1(a − t)
da

+
∫ t

0

∫ a

0
Λi(ǫ)

σ′
1(a)

σ1(ǫ)
dǫda +

∫ ∞

t

∫ a

a−t
Λi(ǫ)

σ′
1(a)

σ1(ǫ)
dǫda +

∫ ∞

0
Λi(ǫ)dǫ.

= i(t, 0)−
∫ ∞

0
δ(a)i(t, a)da + Λ̃i.

Together with the first equation of (1.4), one has

d

dt

(

S(t) +
∫ ∞

0
i(t, a)da

)

6 (Λs + Λ̃i)− η

(

S(t) +
∫ ∞

0
i(t, a)da

)

.
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Hence,

S(t) +
∫ ∞

0
i(t, a)da 6 Υ1 − e−ηt

{

Υ1 − (S(0) +
∫ ∞

0
i(0, a)da)

}

, (2.5)

for any X0 ∈ Π. Similarly, we can derive that

∫ ∞

0
p(t, b)db 6 Υ2 − e−ηt

{

Υ2 −
∫ ∞

0
p(0, b)db

}

, (2.6)

for any X0 ∈ Π. Hence, combining (2.5) and (2.6) yields

‖U(t, X0)‖X 6 Υ1 + Υ2 − e−ηt

{

Υ1 + Υ2 − (S(0) +
∫ ∞

0
i(0, a)da +

∫ ∞

0
p(0, b)db)

}

.

This implies that ‖U(t, X0)‖X 6 Υ1 + Υ2 for X0 ∈ Π, and the proof is complete.

From Theorem 2.3, we obtain the following result.

Corollary 2.4. If X0 ∈ X+ and ‖X0‖X 6 B with some constant B > Υ1 + Υ2, then for t ∈ R+, we

have the following statements

(i) 0 6 S(t),
∫ ∞

0 i(t, a)da 6 B and
∫ ∞

0 p(t, b)db 6 B;

(ii) i(t, 0) 6 (k̄ f ′(0) + q̄g′(0))B2 and p(t, 0) 6 ξ̄B.

The following corollary generates a positive asymptotical lower bound of S(t).

Corollary 2.5. If X0 ∈ X+, then

lim inf
t→∞

S(t) >
Λs

µ + f ′(0)k̄B + g′(0)q̄B
.

Proof. For any ǫ > 0, there exists a t0 ∈ R+ such that

∫ ∞

0
i(t, a)da 6 B + ε and

∫ ∞

0
p(t, b)db 6 B + ε

for t > t0. Then, for t > t0,

dS(t)

dt
= Λs − S(t)(µ + f (J(t)) + g(Q(t)))

> Λs − S(t)(µ + f ′(0)k̄(B + ε) + g′(0)q̄(B + ε)).

This implies that

lim inf
t→∞

S(t) >
Λs

µ + f ′(0)k̄(B + ε) + g′(0)q̄(B + ε)
.

Letting ǫ tend to 0 gives the required result.

Then by similar verification in [30], we obtain the following proposition.

Theorem 2.6. There exist t̃ > 0 and ǫ > 0 such that i(t, 0) > ǫ and p(t, 0) > ǫ for all t > t̃.
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3 Asymptotical smoothness and global attractor

For the existence of an attractor, the asymptotical smoothness of the semiflow U is necessary.

For this, by the similar argument in [30, Proposition 6], we claim that J(t), Q(t) and P(t)

are Lipschitz continuous with Lipschitz coefficients LJ , LQ and LP. Then we introduce the

following lemma for the asymptotical smoothness of the semiflow.

Lemma 3.1 ([35]). The semiflow U : R+ × X+ → X+ is asymptotically smooth if there exist maps

U1, U2 : R+ × X+ → X+ satisfying U(t, x) = U1(t, x) + U2(t, x), and for any bounded closed set

B ⊂ X+, which is forward invariant under U, there holds:

(i) limt→∞ diamU2(t, B) = 0;

(ii) There exists tB > 0 such that U1(t, B) has compact closure for t > tB.

For Lemma 3.1 (ii), we utilize the following lemma.

Lemma 3.2 ([35]). A set B ∈ L1
+(0, ∞) has compact closure iff the following conditions hold:

(i) sup f∈B

∫ ∞

0 f (z)dz < ∞;

(ii) limr→∞

∫ ∞

r f (z)dz → 0 uniformly in f ∈ B;

(iii) limh→0+
∫ ∞

0 | f (z + h)− f (z)|dz → 0 uniformly in f ∈ B;

(iv) limh→0+
∫ h

0 f (z)dz → 0 uniformly in f ∈ B.

Based on above lemmas, we can obtain the following result.

Theorem 3.3. The semiflow U generated by (1.4) is asymptotically smooth.

Proof. Define maps U1 and U2 such that U = U1 + U2, satisfying

{

U1(t, x0) = (S(t), ì(t, ·), p̀(t, ·)),

U2(t, x0) = (0, ϕ̀i(t, ·), ϕ̀p(t, ·)),

where

ì(t, a) =

{

i(t − a, 0)σ1(a), 0 6 a 6 t,

0, 0 6 t 6 a,

p̀(t, b) =

{

p(t − b, 0)σ2(b), 0 6 b 6 t,

0, 0 6 t 6 b,

ϕ̀i(t, a) =















∫ a

0
Λi(ǫ)

σ1(a)

σ1(ǫ)
dǫ, 0 6 a 6 t,

i(0, a − t)
σ1(a)

σ1(a − t)
+

∫ a

a−t
Λi(ǫ)

σ1(a)

σ1(ǫ)
dǫ, 0 6 t 6 a,

and

ϕ̀p(t, b) =



















∫ b

0
Λp(ǫ)

σ2(b)

σ2(ǫ)
dε, 0 6 b 6 t,

p(0, b − t)
σ2(b)

σ2(b − t)
+

∫ b

b−t
Λp(ǫ)

σ2(b)

σ2(ǫ)
dε, 0 6 t 6 b.
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Firstly, we show that U2 satisfies Lemma 3.1(i). For X1
0 , X2

0 ∈ Π, letting ε1 = a − t, we

obtain

‖ϕ̀1
i (t, ·)− ϕ̀2

i (t, ·)‖L1
=

∫ ∞

t
|i1(0, a − t)− i2(0, a − t)|

σ1(a)

σ1(a − t)
da

=
∫ ∞

0
|i1(0, ε1)− i2(0, ε1)|

σ1(t + ε1)

σ1(ε1)
dε1

6

∫ ∞

0
e−δt|i1(0, ε1)− i2(0, ε1)|dε1

6 2Be−δt.

Similarly, we have ‖ϕ̀1
p(t, ·)− ϕ̀2

p(t, ·)‖L1
6 2Be−γt. And thus, we have

∥

∥

∥
U2(t, X1

0)− U2(t, X2
0)
∥

∥

∥

L1

6 2B(e−δt + e−γt).

Hence, as t → ∞, we have that diam‖U2(t, X0)‖X → 0. This accomplishes the verification of

Lemma 3.1(i). Subsequently, we focus on the proof of Lemma 3.1(ii) by virtue of Lemma 3.2.

By Proposition 2.4, we claim that conditions (i), (ii) and (iv) of Lemma 3.2 are satisfied since

0 6 ì(t, a) = i(t − a, 0)σ1(a) 6 [ f ′(0)k̄ + g′(0)q̄]B2e−δa. It suffices to verify the condition of

Lemma 3.2 (iii). Choosing h ∈ (0, t) small enough, one has

∫ ∞

0
|ì(a, t)− ì(a + h, t)|da

6

∫ t−h

0
|S(t − a − h)( f (J(t − a − h)) + g(Q(t − a − h)))(σ1(a + h)− σ1(a))|da

+
∫ t−h

0
S(t − a − h)(| f (J(t − a − h))− f (J(t − a))|

+ |g(Q(t − a − h))− g(Q(t − a))|)σ1(a)da

+
∫ t−h

0
|S(t − a − h)− S(t − a)|( f (J(t − a)) + g(Q(t − a)))σ1(a)da

+ f ′(0)
∫ t

t−h
|S(t − a)J(t − a)σ1(a)|da

+ g′(0)
∫ t

t−h
|S(t − a)Q(t − a)σ1(a)|da

6 ( f ′(0)k̄ + g′(0)q̄)B2
∫ t−h

0
|σ1(a + h)− σ1(a)|da

+ f ′(0)
∫ t−h

0
S(t − a − h)|J(t − a − h)− J(t − a)|σ1(a)da

+ g′(0)
∫ t−h

0
S(t − a − h)|Q(t − a − h)− Q(t − a)|σ1(a)da

+
∫ t−h

0
( f ′(0)J(t − a) + g′(0)Q(t − a))|S(t − a − h)− S(t − a)|σ1(a)da

+ ( f ′(0)k̄ + g′(0)q̄)B2h.

(3.1)

From (2.4), we have

0 6

∫ t−h

0
|σ1(a + h)− σ1(a)|da =

∫ h

0
σ1(a)da −

∫ t

t−h
σ1(a)da 6 h. (3.2)
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Note that
∣

∣

∣

∣

dS(t)

dt

∣

∣

∣

∣

6 ΛS + µB + (k̄ f ′(0) + q̄g′(0))B2,

which means that S(t) is Lipschitz continuous. Then

∫ t−h

0
S(t − a − h)|J(t − a − h)− J(t − a)|σ1(a)da 6

1

δ
BLJh, (3.3)

and
∫ t−h

0
S(t − a − h)|Q(t − a − h)− Q(t − a)|σ1(a)da 6

1

δ
BLQh. (3.4)

Moreover, one has that

∫ t−h

0
( f ′(0)J(t − a) + g′(0)Q(t − a))|S(t − a − h)− S(t − a)|σ1(a)da

6
1

δ
( f ′(0)k̄ + g′(0)q̄)BLsh, (3.5)

where LS := ΛS + µB + (k̄ f ′(0) + q̄g′(0))B2. Substituting equations (3.2)–(3.5) into (3.1), one

has that

∫ ∞

0
|ì(a, t)− ì(a + h, t)|da

6 2( f ′(0)k̄ + g′(0)q̄)B2h +
1

δ
( f ′(0)LJ + g′(0)LQ)Bh +

1

δ
( f ′(0)k̄ + g′(0)q̄)BLsh. (3.6)

Thus, Lemma 3.2 holds. Hence, ì(t, a) remains in a pre-compact subset in L1
+(0, ∞). The same

arguments can be derived on p̀(t, b) and this completes the proof.

According to [19], a global attractor exists since the semiflow U is asymptotically smooth.

Theorem 3.4. The semi-flow U(t) has a global attractor in X+.

4 Local stability of the infection equilibrium

Because the model introduces immigration terms, there exists no infection-free equilibrium

for system (1.4). Assume E∗ = (S∗, i∗(a), p∗(b)) be an equilibrium for system (1.4), then it

satisfies the following equations.



















































Λs = µS∗ + S∗ f (J∗) + S∗g(Q∗),

di∗(a)

da
= Λi(a)− δ(a)i∗(a),

dp∗(b)

db
= Λp(b)− γ(b)p∗(b),

i∗(0) = S∗ f (J∗) + S∗g(Q∗),

p∗(0) =
∫ ∞

0
ξ(a)i∗(a)da,

(4.1)
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where Q∗ =
∫ ∞

0 q(b)p∗(b)db and J∗ =
∫ ∞

0 k(a)i∗(a)da. Denote

Ξ1 =
∫ ∞

0
k(a)σ1(a)da, Ξ4 =

∫ ∞

0
k(a)σ1(a)

∫ a

0

Λi(τ)

σ1(τ)
dτda,

Ξ2 =
∫ ∞

0
q(b)σ2(b)db, Ξ5 =

∫ ∞

0
q(b)σ2(b)

∫ b

0

Λp(τ)

σ2(τ)
dτdb,

Ξ3 =
∫ ∞

0
ξ(a)σ1(a)da, Ξ6 =

∫ ∞

0
ξ(a)σ1(a)

∫ a

0

Λi(τ)

σ1(τ)
dτda.

(4.2)

Owing to equations (4.1), we derive

i∗(0) = Λs − µS∗ (4.3)

and

i∗(a) = i∗(0)σ1(a) +
∫ a

0
Λi(τ)

σ1(a)

σ1(τ)
dτ,

p∗(b) = p∗(0)σ2(b) +
∫ b

0
Λp(τ)

σ2(b)

σ2(τ)
dτ.

(4.4)

Then substituting (4.3) into the first equation of (4.4) yields

i∗(a) = (Λs − µS∗)σ1(a) +
∫ a

0
Λi(τ)

σ1(a)

σ1(τ)
dτ. (4.5)

Combining (4.5) and the last equation of (4.1) yields

p∗(0) = (Λs − µS∗)Ξ3 + Ξ6. (4.6)

Further, substituting (4.6) into the second equation of (4.4), one has that

p∗(b) = (Λs − µS∗)Ξ3σ2(b) + Ξ6σ2(b) +
∫ b

0
Λp(τ)

σ2(b)

σ2(τ)
dτ. (4.7)

Thus, in order to find E∗, inspired from the first equation of (4.1), we need to search for the

zero of the following formula

h(S) = Λs − µS − S f ((Λs − µS)Ξ1 + Ξ4)− Sg((Λs − µS)Ξ2Ξ3 + Ξ2Ξ6 + Ξ5).

Since h(0) = Λs > 0 and h(Λs
µ ) < 0, by the Intermediate Vale Theorem, h(S) has one zero in

(0, Λs
µ ). Thus, there exists at least one S∗ ∈

(

0, Λs
µ

)

and thus at least one positive equilibrium

E∗ exists.

In the following, we first focus on the local stability.

Theorem 4.1. System (1.4) has one infection equilibrium E∗, which is locally asymptotically stable.

Proof. The linearization of system (1.4)–(1.5) on (S∗, i∗(a), p∗(b)) is



























































dS(t)

dt
= (−µ − f (J∗)− g(Q∗))S(t)− S∗ f ′(J∗)J − S∗(t)g′(Q∗)Q,

∂i(t, a)

∂t
+

∂i(t, a)

∂a
= −δ(a)i(t, a),

∂p(t, b)

∂t
+

∂p(t, b)

∂b
= −γ(b)p(t, b),

i(t, 0) = ( f (J∗) + g(Q∗))S + S∗ f ′(J∗)J + S∗g′(Q∗)Q,

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da.

(4.8)
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Substituting (S(t), i(t, a), p(t, b)) = (Ŝ, î(a), p̂(b))eλt into (4.8) and dropping the hat, we can

obtain


















































λS = −(µ + f (J∗) + g(Q∗))S − S∗ f ′(J∗)
∫ ∞

0
k(a)i(a)da − S∗g′(Q∗)

∫ ∞

0
q(b)p(b)db,

i(a) = i(0)e−λaσ1(a),

p(b) = p(0)e−λbσ2(b),

i(0) = ( f (J∗) + g(Q∗))S + S∗g′(Q∗)
∫ ∞

0
q(b)p(b)db + S∗ f ′(J∗)

∫ ∞

0
k(a)i(a)da,

p(0) =
∫ ∞

0
ξ(a)i(a)da.

(4.9)

Denote

Γ1(λ) =
∫ ∞

0
k(a)e−λaσ1(a)da, Γ2(λ) =

∫ ∞

0
q(b)e−λbσ2(b)db,

and

Γ3(λ) =
∫ ∞

0
ξ(a)e−λaσ1(a)da.

It follows from (4.9) that










(λ + µ + f (J∗) + g(Q∗))S + [S∗ f ′(J∗)Γ1(λ)]i(0) + [S∗g′(Q∗)Γ2(λ)]p(0) = 0,

( f (J∗) + g(Q∗))S − [1 − S∗ f ′(J∗)Γ1(λ)]i(0) + [S∗g′(Q∗)Γ2(λ)]p(0) = 0,

Γ3(λ)i(0)− p(0) = 0.

Thus, the corresponding characteristic equation of the linearization for system (1.4) at infection

equilibrium (S∗, i∗(a), p∗(b)) is

∣

∣

∣

∣

∣

∣

λ + µ + f (J∗) + g(Q∗) S∗ f ′(J∗)Γ1(λ) S∗g′(Q∗)Γ2(λ)

f (J∗) + g(Q∗) S∗ f ′(J∗)Γ1(λ)− 1 S∗g′(Q∗)Γ2(λ)

0 Γ3(λ) −1

∣

∣

∣

∣

∣

∣

= 0.

Clearly, λ = −µ is not a root of the above equation, then

(λ + µ + f (J∗) + g(Q∗))/(λ + µ) = S∗ f ′(J∗)Γ1(λ) + S∗g′(Q∗)Γ2(λ)Γ3(λ). (4.10)

Assume that equation (4.10) has one root with positive real part. The module of the left

side of the equation (4.10) is more than one. The module of the right side is

|S∗ f ′(J∗)Γ1(λ) + S∗g′(Q∗)Γ2(λ)Γ3(λ)| 6

∣

∣

∣

∣

S∗ f (J∗)

J∗
Γ1(λ) + S∗ g(Q∗)

Q∗
Γ2(λ)Γ3(λ)

∣

∣

∣

∣

.

Since

Q∗ =
∫ ∞

0
q(b)p∗(b)db = p∗(0)Ξ2 + Ξ5, J∗ =

∫ ∞

0
k(a)i∗(a)da = i∗(0)Ξ1 + Ξ4,

and

Ξ3 =
∫ ∞

0
ξ(a)σ1(a)da 6

∫ ∞

0
ξ(a)

i∗(a)

i∗(0)
da =

p∗(0)

i∗(0)
,

we have

|S∗ f ′(J∗)Γ1(λ) + S∗g′(Q∗)Γ2(λ)Γ3(λ)| 6

∣

∣

∣

∣

S∗ f (J∗)

i∗(0)
+

S∗g(Q∗)

p∗(0)
Ξ3

∣

∣

∣

∣

= 1.

This is a contradiction and we finish the proof.
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5 Global asymptotic stability of the positive equilibrium

For the global asymptotic stability of the positive equilibrium, we apply Lyapunov functional

method. For this, we introduce a function

h̄(z) = z − 1 − ln z, z ∈ R+. (5.1)

In order to ensure h̄
(

i(t,a)
i∗(a)

)

and h̄
(

p(t,b)
p∗(b)

)

well-defined, we need to show that i(t,a)
i∗(a)

and
p(t,b)
p∗(b)

are bounded by some positive constants through dissipativeness and persistence analysis in

Section 2.

For the verification of Lyapunov functional, we need the following lemmas.

Lemma 5.1. 1
Ξ3

∫ ∞

0 S∗g(Q∗)i∗(a)ξ(a)
[

1 − i(t,a)p∗(0)
i∗(a)p(t,0)

]

da = 0.

Proof. Since p(t, 0) =
∫ ∞

0 ξ(a)i(t, a)da and p∗(0) =
∫ ∞

0 ξ(a)i∗(a)da, we have

1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)

[

1 −
i(t, a)p∗(0)

i∗(a)p(t, 0)

]

da

=
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)da −

1

Ξ3

∫ ∞

0
S∗g(Q∗)ξ(a)

i(t, a)p∗(0)

p(t, 0)
da

=
1

Ξ3
S∗g(Q∗)

∫ ∞

0
i∗(a)ξ(a)da −

1

Ξ3
S∗g(Q∗)p∗(0)

1

p(t, 0)

∫ ∞

0
ξ(a)i(t, a)da

= 0.

The proof is completed.

Lemma 5.2. Define a function h not depending on a and b. Then we have

1

Ξ2

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b)hdb =

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)hda.

Proof. Since Ξ2 =
∫ ∞

0 q(b)σ2(b)db and p∗(0) =
∫ ∞

0 i∗(a)ξ(a)da, we have

1

Ξ2

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b)hdb = S∗g(Q∗)p∗(0)h =

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)hda.

This completes the proof.

Theorem 5.3. The infection equilibrium E∗ of system (1.4) is globally asymptotically stable.

Proof. We define the Lyapunov function ℓ(t) = ℓ1(t) + ℓ2(t) + ℓ3(t) with

ℓ1(t) = S∗h̄

(

S(t)

S∗

)

i∗(0), ℓ2(t) =
∫ ∞

0
Φ(a)i∗(a)h̄

(

i(t, a)

i∗(a)

)

da,

and

ℓ3(t) =
1

Ξ3

∫ ∞

0
Ψ(b)p∗(b)h̄

(

p(t, b)

p∗(b)

)

db,

where

Φ(a) =
1

Ξ1

∫ ∞

a
S∗ f (J∗)k(u)e−

∫ u
a δ(τ)dτdu +

1

Ξ3

∫ ∞

a
Ψ(0)ξ(u)e−

∫ u
a δ(τ)dτdu,
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and

Ψ(b) =
1

Ξ2

∫ ∞

b
S∗g(Q∗)q(v)e−

∫ v
b γ(τ)dτdv.

Then, calculating the derivative of ℓ1(t) along (1.4) yields

dℓ1(t)

dt
=

(

1 −
S∗

S

)

[Λ − µS − S f (J)− Sg(Q)]i∗(0).

Using the fact that Λ = µS∗ + S∗ f (J∗) + S∗g(Q∗), one has that

dℓ1(t)

dt
=

(

1 −
S∗

S

)

[µS∗ + S∗ f (J∗) + S∗g(Q∗)− µS − S f (J)− Sg(Q)]i∗(0)

=
[

−
µ

S
(S − S∗)2 + S∗ f (J∗) + S∗g(Q∗)− S f (J)− Sg(Q)

−
S∗

S
S∗ f (J∗)−

S∗

S
S∗g(Q∗) + S∗ f (J) + S∗g(Q)

]

i∗(0).

(5.2)

Define H(a) =
∫ a

0
Λi(ǫ)
σ1(ǫ)

dǫ and K(b) =
∫ b

0

Λp(ǫ)

σ2(ǫ)
dǫ. In what follows, calculating the derivative

of ℓ2(t) along (1.4) and then letting τ = t − a gives

dℓ2(t)

dt
=

d

dt

∫ ∞

0
Φ(a)i∗(a)h̄

(

i(t, a)

i∗(a)

)

da

=
d

dt

∫ t

−∞
Φ(t − τ)i∗(t − τ)h̄

(

i(τ, 0) + H(t − τ)

i∗(0) + H(t − τ)

)

dτ

= Φ(0)i∗(0)h̄

(

i(t, 0) + H(0)

i∗(0) + H(0)

)

+
∫ t

−∞

d

dt
[Φ(t − τ)i∗(t − τ)]h̄

(

i(τ, 0) + H(t − τ)

i∗(0) + H(t − τ)

)

dτ

+
∫ t

−∞
Φ(t − τ)i∗(t − τ)

d

dt

[

h̄

(

i(τ, 0) + H(t − τ)

i∗(0) + H(t − τ)

)]

dτ.

Letting a = t − τ, we have

dℓ2(t)

dt
= Φ(0)i∗(0)h̄

(

i(t, 0)

i∗(0)

)

+
∫ ∞

0

d

da
[Φ(a)i∗(a)]h̄

(

i(t, a)

i∗(a)

)

da

+
∫ ∞

0
Φ(a)i∗(a)

(

1 −
i∗(a)

i(t, a)

)

H′(a)

i∗(0) + H(a)

(

1 −
i(t, a)

i∗(a)

)

da

= Φ(0)i∗(0)h̄

(

i(t, 0)

i∗(0)

)

+
∫ ∞

0
[Φ′(a)i∗(a) + Φ(a)i∗a(a)]h̄

(

i(t, a)

i∗(a)

)

da

+
∫ ∞

0
Φ(a)i∗(a)

(

1 −
i∗(a)

i(t, a)

)(

1 −
i(t, a)

i∗(a)

)

Λi(a)

σ1(a)(i∗(0) + H(a))
da

= Φ(0)i∗(0)h̄

(

i(t, 0)

i∗(0)

)

+
∫ ∞

0
[Φ′(a)i∗(a) + Φ(a)i∗a(a)]h̄

(

i(t, a)

i∗(a)

)

da

+
∫ ∞

0
Φ(a)Λi(a)

(

1 −
i∗(a)

i(t, a)

)(

1 −
i(t, a)

i∗(a)

)

da.

Since

Φ′(a) = −
1

Ξ1
S∗ f (J∗)k(a)−

1

Ξ3
Ψ(0)ξ(a) + δ(a)Φ(a) and i∗a(a) = −i∗(a)δ(a) + Λi(a),
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we further derive

dℓ2(t)

dt
= Φ(0)i∗(0)h̄

(

i(t, 0)

i∗(0)

)

−
∫ ∞

0
Φ(a)Λi(a)h̄

(

i∗(a)

i(t, a)

)

da

−
∫ ∞

0
i∗(a)h̄

(

i(t, a)

i∗(a)

) [

1

Ξ1
S∗ f (J∗)k(a) +

1

Ξ3
S∗g(Q∗)ξ(a)

]

da.

Since

Φ(0)i∗(0) =
1

Ξ1

∫ ∞

0
S∗ f (J∗)k(a)i∗(0)σ1(a)da +

1

Ξ3

∫ ∞

0
S∗g(Q∗)ξ(a)i∗(0)σ1(a)da,

we subsequently obtain

dℓ2(t)

dt
6

1

Ξ1

∫ ∞

0
S∗ f (J∗)i∗(0)σ1(a)k(a)

[

h̄

(

i(t, 0)

i∗(0)

)

− h̄

(

i(t, a)

i∗(a)

)]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

h̄

(

i(t, 0)

i∗(0)

)

− h̄

(

i(t, a)

i∗(a)

)]

da

−
∫ ∞

0
Φ(a)Λi(a)h̄

(

i∗(a)

i(t, a)

)

da

−
∫ ∞

0
H(a)σ1(a)h̄

(

i(t, a)

i∗(a)

) [

1

Ξ1
S∗ f (J∗)k(a) +

1

Ξ3
S∗g(Q∗)ξ(a)

]

da.

(5.3)

Similarly, we have

dℓ3(t)

dt
6

1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b)

[

h̄

(

p(t, 0)

p∗(0)

)

− h̄

(

p(t, b)

p∗(b)

)]

db

−
1

Ξ3

∫ ∞

0
Ψ(b)Λp(b)h̄

(

p∗(b)

p(t, b)

)

db

−
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)q(b)σ2(b)K(b)h̄

(

p(t, b)

p∗(b)

)

db.

(5.4)

From equations (5.2), (5.3) and (5.4), we yield

dℓ(t)

dt
6

[

−
µ

S
(S − S∗)2 + S∗ f (J∗) + S∗g(Q∗)− S f (J)− Sg(Q)

−
S∗

S
S∗ f (J∗)−

S∗

S
S∗g(Q∗) + S∗ f (J) + S∗g(Q)

]

i∗(0)

+
1

Ξ1

∫ ∞

0
S∗ f (J∗)i∗(0)σ1(a)k(a)

[

i(t, 0)

i∗(0)
−

i(t, a)

i∗(a)
− ln

i(t, 0)i∗(a)

i∗(0)i(t, a)

]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

i(t, 0)

i∗(0)
−

i(t, a)

i∗(a)
− ln

i(t, 0)i∗(a)

i∗(0)i(t, a)

]

da

+
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b)

[

p(t, 0)

p∗(0)
−

p(t, b)

p∗(b)
− ln

p(t, 0)p∗(b)

p∗(0)p(t, b)

]

db

−
∫ ∞

0
Φ(a)Λi(a)h̄

(

i∗(a)

i(t, a)

)

da −
1

Ξ3

∫ ∞

0
Ψ(b)Λp(b)h̄

(

p∗(b)

p(t, b)

)

db

−
∫ ∞

0
H(a)σ1(a)h̄

(

i(t, a)

i∗(a)

) [

1

Ξ1
S∗ f (J∗)k(a) +

1

Ξ3
S∗g(Q∗)ξ(a)

]

da

−
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)q(b)σ2(b)K(b)h̄

(

p(t, b)

p∗(b)

)

db.
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Since
∫ ∞

0
k(a)σ1(a)da = Ξ1 and

∫ ∞

0
ξ(a)σ1(a)da = Ξ3, we have

1

Ξ1

∫ ∞

0
S∗ f (J∗)k(a)i∗(0)σ1(a)

[

1 −
i∗(0)S f (J)

i(t, 0)S∗ f (J∗)

]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)ξ(a)i∗(0)σ1(a)

[

1 −
i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)

]

da

= S∗ f (J∗)
1

Ξ1

∫ ∞

0
k(a)σ1(a)i∗(0)da

[

1 −
i∗(0)S f (J)

i(t, 0)S∗ f (J∗)

]

+ S∗g(Q∗)
1

Ξ3

∫ ∞

0
ξ(a)σ1(a)i∗(0)da

[

1 −
i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)

]

=

(

S∗ f (J∗)

[

1 −
i∗(0)S f (J)

i(t, 0)S∗ f (J∗)

]

+ S∗g(Q∗)

[

1 −
i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)

])

i∗(0)

=

(

S∗ f (J∗)−
i∗(0)S f (J)

i(t, 0)
+ S∗g(Q∗)−

i∗(0)Sg(Q)

i(t, 0)

)

i∗(0)

=

(

i∗(0)− i(t, 0)
i∗(0)

i(t, 0)

)

i∗(0)

= 0.

Then dℓ(t)
dt 6 ∑

6
i=1 Θi, where

Θ1 :=
[

−
µ

S
(S − S∗)2 − S f (J)− Sg(Q)

]

i∗(0) +
1

Ξ1

∫ ∞

0
S∗ f (J∗)i∗(0)σ1(a)k(a)

i(t, 0)

i∗(0)
da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

i(t, 0)

i∗(0)
da,

Θ2 := −
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

i(t, a)

i∗(a)
da +

1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b)

p(t, 0)

p∗(0)
db,

Θ3 :=

[

S∗ f (J∗)−
S∗

S
S∗ f (J∗) + S∗ f (J)

]

i∗(0)

+
1

Ξ1

∫ ∞

0
S∗ f (J∗)i∗(0)σ1(a)k(a)

[

−
i(t, a)

i∗(a)
− ln

i(t, 0)

i∗(0)
+ ln

i(t, a)

i∗(a)

]

da

+
1

Ξ1

∫ ∞

0
S∗ f (J∗)i∗(0)σ1(a)k(a)

[

1 −
i∗(0)S f (J)

i(t, 0)S∗ f (J∗)

]

da,

Θ4 :=

[

S∗g(Q∗)−
S∗

S
S∗g(Q∗)

]

i∗(0) +
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a) ln

i(t, a)

i∗(a)
da

−
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b) ln

p(t, 0)

p∗(0)
db,

Θ5 := S∗g(Q)i∗(0)−
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a) ln

i(t, 0)

i∗(0)
da

+
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b)[−

p(t, b)

p∗(b)
+ ln

p(t, b)

p∗(b)
]db

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

1 −
i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)

]

da,

Θ6 := −
∫ ∞

0
Φ(a)Λi(a)h̄

(

i∗(a)

i(t, a)

)

da −
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)q(b)σ2(b)K(b)h̄

(

p(t, b)

p∗(b)

)

db

−
∫ ∞

0
H(a)σ1(a)h̄

(

i(t, a)

i∗(a)

) [

1

Ξ1
S∗ f (J∗)k(a) +

1

Ξ3
S∗g(Q∗)ξ(a)

]

da.
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Thanks to S f (J) + Sg(Q) = i(t, 0), one has

Θ1 = −
µ

S
(S − S∗)2i∗(0)− i(t, 0)i∗(0) + S∗ f (J∗)i(t, 0) + S∗g(Q∗)i(t, 0)

= −
µ

S
(S − S∗)2i∗(0).

(5.5)

By virtue of
∫ ∞

0 ξ(a)i(t, a)da = p(t, 0),
∫ ∞

0 σ2(b)q(b)db = Ξ2 and the first equation of (4.4), we

obtain that

Θ2 =
1

Ξ3
S∗g(Q∗)

(

1

Ξ2
p(t, 0)

∫ ∞

0
σ2(b)q(b)db −

∫ ∞

0
ξ(a)i(t, a)da

)

+
1

Ξ3
S∗g(Q∗)

∫ ∞

0
ξ(a)H(a)σ1(a)

i(t, a)

i∗(a)
da

=
1

Ξ3
S∗g(Q∗)

∫ ∞

0
ξ(a)H(a)σ1(a)

i(t, a)

i∗(a)
da.

(5.6)

It follows from Ξ1 =
∫ ∞

0 k(a)σ1(a)da that

Θ3 = S∗ f (J∗)
1

Ξ1

∫ ∞

0
k(a)i∗(0)σ1(a)

[

1 −
S∗

S
+

f (J)

f (J∗)

]

da

+
1

Ξ1

∫ ∞

0
S∗ f (J∗)k(a)i∗(0)σ1(a)

[

−
i(t, a)

i∗(a)
− ln

i(t, 0)

i∗(0)
+ ln

i(t, a)

i∗(a)

]

da

+
1

Ξ1

∫ ∞

0
S∗ f (J∗)k(a)i∗(0)σ1(a)

[

1 −
i∗(0)S f (J)

i(t, 0)S∗ f (J∗)

]

da

=
1

Ξ1

∫ ∞

0
S∗ f (J∗)k(a)i∗(0)σ1(a)

[

−h̄

(

S∗

S

)

− h̄

(

i∗(0)S f (J)

i(t, 0)S∗ f (J∗)

)

− h̄

(

i(t, a)

i∗(a)

)

+ h̄

(

f (J)

f (J∗)

)]

da.

(5.7)

Due to

Ξ1i∗(0) =
∫ ∞

0
k(a)σ1(a)i∗(0)da 6

∫ ∞

0
k(a)i∗(a)da = J∗

and Jensen’s inequality, we have

1

Ξ1

∫ ∞

0
k(a)i∗(a)h̄

(

i(t, a)

i∗(a)

)

da > i∗(0)
∫ ∞

0

k(a)i∗(a)

J∗
h̄

(

i(t, a)

i∗(a)

)

da

> i∗(0)h̄

(

∫ ∞

0

k(a)i∗(a)

J∗
i(t, a)

i∗(a)
da

)

=
1

Ξ1

∫ ∞

0
k(a)i∗(0)σ1(a)h̄

(

J

J∗

)

da

>
1

Ξ1

∫ ∞

0
k(a)i∗(0)σ1(a)h̄

(

f (J)

f (J∗)

)

da.

(5.8)

Then, combining (5.7) and (5.8), we have

Θ3 6
1

Ξ1

∫ ∞

0
S∗ f (J∗)k(a)i∗(0)σ1(a)

[

−h̄

(

S∗

S

)

− h̄

(

i∗(0)S f (J)

i(t, 0)S∗ f (J∗)

)]

da

+
1

Ξ1

∫ ∞

0
S∗ f (J∗)k(a)H(a)σ1(a)h̄

(

i(t, a)

i∗(a)

)

da.

(5.9)
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Recall that Ξ2 =
∫ ∞

0 σ2(b)q(b)db, p∗(0) =
∫ ∞

0 ξ(a)i∗(a)da and Lemmas 5.1 and 5.2, we derive

that

Θ4 =
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

2 −
S∗

S
+ ln

i(t, a)p∗(0)

i∗(a)p(t, 0)
−

i(t, a)p∗(0)

i∗(a)p(t, 0)

]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)H(a)σ1(a)ξ(a)

[

1 −
i(t, a)p∗(0)

i∗(a)p(t, 0)
− ln

p(t, 0)

p∗(0)

]

=
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

−h̄

(

S∗

S

)

− h̄

(

i(t, a)p∗(0)

i∗(a)p(t, 0)

)

+ ln
S

S∗

]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)H(a)σ1(a)ξ(a)

[

1 −
i(t, a)p∗(0)

i∗(a)p(t, 0)
− ln

p(t, 0)

p∗(0)

]

.

Thus, combining Θ4 and Θ5 gives

Θ4 + Θ5 6
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

−h̄

(

i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)

)]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

−h̄

(

S∗

S

)

− h̄

(

i(t, a)p∗(0)

i∗(a)p(t, 0)

)]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

g(Q)

g(Q∗)
− ln

g(Q)

g(Q∗)

]

da

+
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b)

[

ln
p(t, b)

p∗(b)
−

p(t, b)

p∗(b)

]

db

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)H(a)σ1(a)ξ(a)

[

1 −
i(t, a)p∗(0)

i∗(a)p(t, 0)
− ln

p(t, 0)

p∗(0)

]

.

Using Lemma 5.2, we further have

Θ4 + Θ5 6
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

−h̄

(

i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)

)]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

−h̄

(

S∗

S

)

− h̄

(

i(t, a)p∗(0)

i∗(a)p(t, 0)

)]

da

+
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)p∗(0)σ2(b)q(b)

[

h̄

(

g(Q)

g(Q∗)

)

− h̄

(

p(t, b)

p∗(b)

)]

db

−
1

Ξ3

∫ ∞

0
S∗g(Q∗)H(a)σ1(a)ξ(a)

[

g(Q)

g(Q∗)
− ln

g(Q)

g(Q∗)

]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)H(a)σ1(a)ξ(a)

[

1 −
i(t, a)p∗(0)

i∗(a)p(t, 0)
− ln

p(t, 0)

p∗(0)

]

.

Since

Ξ2 p∗(0) =
∫ ∞

0
q(b)σ2(b)p∗(0)db 6

∫ ∞

0
q(b)p∗(b)db = Q∗

and Jensen’s inequality, we have

1

Ξ2

∫ ∞

0
q(b)p∗(b)h̄

(

p(t, b)

p∗(b)

)

db > p∗(0)
∫ ∞

0

q(b)p∗(b)

Q∗
h̄

(

p(t, b)

p∗(b)

)

db

> p∗(0)h̄

(

∫ ∞

0

q(b)p∗(b)

Q∗

p(t, b)

p∗(b)
db

)

=
1

Ξ2

∫ ∞

0
q(b)p∗(0)σ2(b)h̄

(

Q

Q∗

)

db

>
1

Ξ2

∫ ∞

0
q(b)p∗(0)σ2(b)h̄

(

g(Q)

g(Q)∗

)

db.
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Thus, we finally have

Θ4 + Θ5 6
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

−h̄

(

i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)

)]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

−h̄

(

S∗

S

)

− h̄

(

i(t, a)p∗(0)

i∗(a)p(t, 0)

)]

da

+
1

Ξ2Ξ3

∫ ∞

0
S∗g(Q∗)K(b)σ2(b)q(b)h̄

(

p(t, b)

p∗(b)

)

db

−
1

Ξ3

∫ ∞

0
S∗g(Q∗)H(a)σ1(a)ξ(a)

[

g(Q)

g(Q∗)
− ln

g(Q)

g(Q∗)

]

da

+
1

Ξ3

∫ ∞

0
S∗g(Q∗)H(a)σ1(a)ξ(a)

[

1 −
i(t, a)p∗(0)

i∗(a)p(t, 0)
− ln

p(t, 0)

p∗(0)

]

.

(5.10)

Hence, combining (5.6), (5.9) and (5.10), we yield

dℓ(t)

dt
6−

µ

S
(S − S∗)2i∗(0)

−
∫ ∞

0
Φ(a)Λi(a)h̄

(

i∗(a)

i(t, a)

)

da −
1

Ξ3

∫ ∞

0
Ψ(b)Λp(b)h̄

(

p∗(b)

p(t, b)

)

db

−
1

Ξ1

∫ ∞

0
S∗ f (J∗)i∗(0)σ1(a)k(a)

[

h̄

(

S∗

S

)

+ h̄

(

i∗(0)S f (J)

i(t, 0)S∗ f (J∗)

)]

da

−
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

h̄

(

i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)

)]

da

−
1

Ξ3

∫ ∞

0
S∗g(Q∗)i∗(0)σ1(a)ξ(a)

[

h̄

(

S∗

S

)

+ h̄

(

i(t, a)p∗(0)

i∗(a)p(t, 0)

)]

da

−
1

Ξ3

∫ ∞

0
S∗g(Q∗)H(a)σ1(a)ξ(a)

[

h̄

(

g(Q)

g(Q∗)

)

+ h̄

(

i(t, a)p∗(0)

i∗(a)p(t, 0)

)]

da.

Consequently, from above discussion, we assert that dℓ(t)
dt 6 0 and the largest invariant subset

of set
{dℓ(t)

dt = 0
}

is E∗. Due to the invariance principle [39, Theorem 4.2], E∗ is globally

asymptotically stable.

6 Numerical simulation and conclusion

In this section, we consider a special model with nonlinear functional responses:



































dS(t)

dt
= Λs − µS(t)−

S(t)
∫ ∞

0 k(a)i(t, a)da

A
∫ ∞

0 k(a)i(t, a)da + 1
−

S(t)
∫ ∞

0 q(b)p(t, b)db

A
∫ ∞

0 q(b)p(t, b)db + 1
,

∂i(t, a)

∂t
+

∂i(t, a)

∂a
= Λi(a)− δ(a)i(t, a),

∂p(t, b)

∂t
+

∂p(t, b)

∂b
= Λp(b)− γ(b)p(t, b),

(6.1)

with initial condition (1.6) and boundary condition

i(t, 0) =
S(t)

∫ ∞

0 k(a)i(t, a)da

A
∫ ∞

0 k(a)i(t, a)da + 1
+

S(t)
∫ ∞

0 q(b)p(t, b)db

A
∫ ∞

0 q(b)p(t, b)db + 1
, t > 0,

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da, t > 0.

(6.2)
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Then, from Theorem 5.3, we obtain the following corollary:

Corollary 6.1. The infection equilibrium of system (6.1) is globally asymptotically stable.

To verify the validity of the result, we perform numerical simulations. Let Λs = 2000, µ =
1
70 and

k(a) = 0.003

(

1 + sin
(a − 5)Ξ

10

)

, q(b) = 0.01

(

1 + sin
(b − 5)Ξ

10

)

Λi(a) = 5

(

1 + sin
(a − 5)Ξ

10

)

, Λp(b) = 80

(

1 + sin
(b − 5)Ξ

10

)

δ(a) = 0.18

(

1 + sin
(a − 5)Ξ

10

)

, γ(b) = 2

(

1 + sin
(b − 5)Ξ

10

)

,

ξ(a) =

(

1 + sin
(a − 5)Ξ

10

)

,

for 0 6 a, b 6 10. Clearly, as in Figure 6.1, all the solutions converge to the positive steady

state. In Figure 6.2, we further show the distribution of i(t, a) and p(t, b) at age a = b = 5.

0 500 1000 1500 2000

Time t

0

500

1000

1500

2000

2500

S

Figure 6.1: Long-time dynamical behavior of system (6.1)–(6.2).

Now, we finish this paper with a conclusion. In this paper, we considered an age-infection

model of cholera with general infection rates. We focused on the global asymptotical stabil-

ity of the unique positive equilibrium under some assumptions. For this, we directly used

the Lyapunov functional method. It is necessarily pointed here that the uniform persistence

and asymptotical smoothness play the key role for the construction of Lyapunov functional.
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Figure 6.2: Long-time dynamical behavior of i(t, a) and p(t, b) for a = b = 5.

Finally, we performed numerical simulations. On account of the waterborne disease, we incor-

porated indirect pathogen-to-person transmission and direct person-to-person transmission.

By taking general infection rates into account, we gain a unified theoretical framework to de-

scribe the cholera propagation process. In a recent paper [25], Liu et al. proposed an age-space

structured cholera model, and studied the local stability of equilibria, disease persistence and

global attractivity of equilibria for their model. How about introducing immigration into the

age-space structured cholera model, which will be an interesting problem and we will leave it

for the future work.
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Abstract. We study positive solutions to the p–q Laplacian two-point boundary value
problem:

{

−µ[(u′)p−1]′ − [(u′)q−1]′ = λu(1 − u) on (0, 1)

u(0) = 0 = u(1)

when p = 4 and q = 2. Here λ > 0 is a parameter and µ ≥ 0 is a weight parameter
influencing the higher-order diffusion term. When µ = 0 (the Laplacian case) the exact
bifurcation diagram for a positive solution is well-known, namely, when λ ≤ π2 there
are no positive solutions, and for λ > π2 there exists a unique positive solution uλ,µ

such that ∥uλ,µ∥∞ → 0 as λ → π2 and ∥uλ,µ∥∞ → 1 as λ → ∞. Here, we will prove
that for all µ > 0 similar bifurcation diagrams preserve, and they all bifurcate from
(λ, u) = (π2, 0). Our results are established via the method of sub-super solutions and
a quadrature method. We also present computational evaluations of these bifurcation
diagrams for various values of µ and illustrate how they evolve when µ varies.

Keywords: positive solutions, p–q Laplacian, Dirichlet boundary conditions, exact bi-
furcation diagram.
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1 Introduction

We analyze positive solutions to the boundary value problem:

{

−µ[(u′)p−1]′ − [(u′)q−1]′ = λ f (u) on (0, 1),

u(0) = 0 = u(1)
(1.1)

when p = 4 and q = 2. Here we will choose f to be a smooth function such that f (0) = 0, and

λ > 0, µ ≥ 0 are parameters, with µ influencing the higher-order diffusion term. Study of p–q

BCorresponding author. Email: r_shivaj@uncg.edu
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Laplacian problems have been of interest in the literature (see [1–4, 6]) as they arise as steady

states of reaction-diffusion processes when the diffusion involved is of a certain nonlinear

class. See [6] in particular, where they note that equations of this type arise in biophysics,

plasma physics, and chemical reactor design. However, our motivation of this study is purely

mathematical. We will begin with the case µ = 0 when the exact bifurcation diagram for

positive solutions is known, and then prove that for all µ > 0 similar bifurcation diagrams

preserve, and that they all bifurcate from the branch of trivial solutions at the same point

where the bifurcation occurs in the case µ = 0. In particular, in this study we choose

f (s) = s(1 − s); s ∈ [0, 1],

for which when µ = 0 it is well-known that the bifurcation diagram of positive solutions is

exact (see [5, 7]) of the form:

Figure 1.1: A prototypical bifurcation diagram of positive solutions for (1.1)

when f (s) = s(1 − s) and µ = 0.

Namely, for λ ≤ π2 there are no positive solutions, and for λ > π2, there is a unique

positive solution uλ,0 such that ∥uλ,0∥∞ → 0 as λ → π2 and ∥uλ,0∥∞ → 1 as λ → ∞. Here, we

extend the study for the case µ > 0. In particular, we prove:

Theorem 1.1. Let µ > 0 be fixed. Then for λ ≤ π2, (1.1) has no positive solution, and for λ > π2,

(1.1) has a unique positive solution uλ,µ such that ∥uλ,µ∥∞ → 0 as λ → π2 and ∥uλ,µ∥∞ → 1 as

λ → ∞. Further, for λ > π2, if µ2 > µ1 then uλ,µ1
(x) ≥ uλ,µ2

(x) for all x ∈ [0, 1].

Remark 1.2. Theorem 1.1 establishes that for each µ > 0, a similar exact bifurcation diagram

for positive solutions to the case when µ = 0 preserves and each bifurcates from (λ, u) =

(π2, 0) (see Figure 1.2).

Remark 1.3. Our analysis uses the relationship (2.3), which determines the bifurcation dia-

gram. The derivation of (2.3) uses p = 4 and q = 2 (see the proof of Lemma 2.2). Establishing

such a result for any p > q > 1 is an open problem. Further, our analysis is restricted to the

specific f we chose.

We prove our results by the method of sub-super solutions (see [4]) and via using the

quadrature method discussed in [2] (an extension of the quadrature method first introduced

for the case µ = 0 in [5]). In Section 2 we present preliminaries, in Section 3 we prove Theorem

1.1, and in Section 4 we compute the bifurcation diagrams numerically for several values of µ

and demonstrate their evolution as µ varies.
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Figure 1.2: Prototypical bifurcation diagrams of positive solutions for (1.1) when

µ ≥ 0.

2 Preliminaries

In this section, we introduce definitions of a subsolution and a supersolution of (1.1) and

state a sub-supersolution theorem that will be used to prove our existence result for positive

solutions. We also state a result via a quadrature method which we will use in our analysis

(combined with an existence result obtained via sub-supersolutions) to establish exact details

on the bifurcation diagram for positive solutions.

By a subsolution of (1.1) we mean ψ ∈ C2((0, 1)) ∩ C([0, 1]) that satisfies

{

−µ[(ψ′)3]′ − ψ′′ ≤ λ f (ψ) on (0, 1),

ψ(0) ≤ 0, ψ(1) ≤ 0.
(2.1)

By a supersolution of (1.1) we mean Z ∈ C2((0, 1)) ∩ C([0, 1]) that satisfies

{

−µ[(Z′)3]′ − Z′′ ≥ λ f (Z) on (0, 1),

Z(0) ≥ 0, Z(1) ≥ 0.
(2.2)

Then the following result holds:

Lemma 2.1. Let ψ and Z be a subsolution and a supersolution of (1.1) respectively such that ψ ≤ Z.

Then (1.1) has a solution u ∈ C2((0, 1)) ∩ C([0, 1]) such that u ∈ [ψ, Z].

Proof. See [4].

Lemma 2.2. Let λ, µ > 0 be fixed and ρ ∈ (0, 1). Then (1.1) has a positive solution with ∥uλ,µ∥∞ = ρ

if and only if λ and ρ satisfy

G(λ, ρ) =
∫ ρ

0

ds
√
√

12µλ[F(ρ)− F(s)] + 1 − 1
=

1

2
√

3µ
, (2.3)

where F(s) =
∫ s

0 f (z)dz.
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Figure 2.1: A prototypical shape of a positive solution to (1.1).

Proof. (See also [3].) Suppose uλ,µ is a positive solution of (1.1) with ∥uλ,µ∥∞ = ρ. Since (1.1)

is autonomous, uλ,µ must be symmetric about x = 1
2 , increasing on (0, 1

2 ), and decreasing on

( 1
2 , 1). See Figure 2.1.

Multiplying the differential equation in (1.1) by u′
λ,µ(x) for x ∈ [0, 1

2 ], we get

−µu′
λ,µ(x)[(u′

λ,µ(x))3]′ − u′
λ,µ(x)[u′

λ,µ(x)]′ = u′
λ,µ(x)λ f (uλ,µ(x)), (2.4)

which can be written as

−3µ

4
[(u′

λ,µ(x))4]′ − 1

2
[(u′

λ,µ(x))2]′ = λ[F(uλ,µ(x))]′; x ∈
[

0,
1

2

]

. (2.5)

Integrating (2.5) with respect to x over
[
0, 1

2

]
, we obtain

3µ[u′
λ,µ(x)]4 + 2[u′

λ,µ(x)]2 = 4λ[F(ρ)− F(uλ,µ(x))]; x ∈
[

0,
1

2

]

. (2.6)

Solving (2.6) for [u′
λ,µ(x)]2, we obtain

[u′
λ,µ(x)]2 =

√

12µλ[F(ρ)− F(uλ,µ(x))] + 1 − 1

3µ
; x ∈

[

0,
1

2

]

.

Since u′
λ,µ(x) > 0 for x ∈

[
0, 1

2

]
, it follows that

u′
λ,µ(x) =

√
√

12µλ[F(ρ)− F(uλ,µ(x))] + 1 − 1
√

3µ
; x ∈

[

0,
1

2

]

. (2.7)

Integrating (2.7) with respect to x over
[
0, 1

2

)
, we obtain

x
√

3µ
=
∫ uλ,µ(x)

0

ds
√
√

12µλ[F(ρ)− F(s)] + 1 − 1
; x ∈

[

0,
1

2

)

, (2.8)
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and letting x →
(

1
2

)−
, we obtain (2.3):

G(λ, ρ) =
∫ ρ

0

ds
√
√

12µλ[F(ρ)− F(s)] + 1 − 1
=

1

2
√

3µ
.

Conversely, suppose λ and ρ ∈ (0, 1) are such that (2.3) is satisfied. Then for each x ∈
[
0, 1

2

)
, we can find a unique uλ,µ(x) satisfying (2.8). We can now extend this uλ,µ on [0, 1] such

that uλ,µ

(
1
2

)
= ρ and uλ,µ(x) = uλ,µ(1− x) for x ∈

(
1
2 , 1
]
. With the aid of the Implicit Function

Theorem, we can show that uλ,µ ∈ C2((0, 1)) ∩ C([0, 1]) and then it is easy to show it satisfies

(1.1). Hence, (2.3) determines the bifurcation diagram of positive solutions uλ,µ for (1.1) with

∥uλ,µ∥∞ = ρ ∈ (0, 1).

Remark 2.3. If µ = 0, (1.1) becomes the boundary value problem:

{

−u′′ = λ f (u) on (0, 1),

u(0) = 0 = u(1)
(2.9)

and by the quadrature method described in [5], the bifurcation diagram for positive solutions

of (2.9) is determined by

λ = 2

{
∫ ρ

0

ds
√

F(ρ)− F(s)

}2

; ρ ∈ (0, 1). (2.10)

3 Proof of Theorem 1.1

Claim: Nonexistence of positive solutions for λ ≤ π2.

Suppose uλ,µ > 0; (0, 1) is a solution to (1.1) for λ ≤ π2. Multiplying each term of the

differential equation by sin(πx) and integrating on (0, 1), we have

−µ

∫ 1

0
[(u′

λ,µ(x))3]′ sin(πx)dx −
∫ 1

0
u′′

λ,µ(x) sin(πx)dx = λ

∫ 1

0
uλ,µ(x)[1 − uλ,µ(x)] sin(πx)dx.

(3.1)

Equivalently, we have

−µ

∫ 1

0
[(u′

λ,µ(x))3]′ sin(πx)dx + λ

∫ 1

0
[uλ,µ(x)]2 sin(πx)dx = (λ − π2)

∫ 1

0
uλ,µ(x) sin(πx)dx.

(3.2)

Since λ ≤ π2, we have

(λ − π2)
∫ 1

0
uλ,µ(x) sin(πx)dx ≤ 0. (3.3)
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However,

− µ

∫ 1

0
[(u′

λ,µ(x))3]′ sin(πx)dx + λ

∫ 1

0
[uλ,µ(x)]2 sin(πx)dx

= −µ







sin(πx)[u′
λ,µ(x)]3

∣
∣
∣

1

0
︸ ︷︷ ︸

=0

−π

∫ 1

0
cos(πx)[u′

λ,µ(x)]3dx






+ λ

∫ 1

0
[uλ,µ(x)]2 sin(πx)dx

= µπ

[
∫ 1/2

0
cos(πx)[u′

λ,µ(x)]3
︸ ︷︷ ︸

>0

dx +
∫ 1

1/2
cos(πx)[u′

λ,µ(x)]3
︸ ︷︷ ︸

>0

dx

]

+ λ

∫ 1

0
[uλ,µ(x)]2 sin(πx)dx

︸ ︷︷ ︸

>0

> 0.

This contradicts (3.3). Hence (1.1) has no positive solution for λ ≤ π2.

Claim: Existence of a positive solution uλ,µ for λ > π2.

Consider ψ(x) = ε sin(πx) with ε > 0. Then ψ′′(x) = −επ2 sin(πx) and (ψ′(x))3 = ε3π3[cos(πx)]3.

Hence

− µ[(ψ′(x))3]′ − ψ′′(x)− λψ(x)(1 − ψ(x))

= −µ
(

− 3ε3π4 cos2(πx) sin(πx)
)

−
(

− επ2 sin(πx)
)

− λε sin(πx)[1 − ε sin(πx)]

= ε sin(πx)
(

3µε2π4 cos2(πx) + π2 − λ + λε sin(πx)
)

< 0; x ∈ (0, 1)

for ε ≈ 0 when λ > π2. Clearly the boundary conditions are satisfied by ψ. Thus, ψ is a

subsolution of (1.1) for λ > π2. Now Z ≡ 1 is a supersolution of (1.1) and ψ < Z for ε ≈ 0.

Hence by Lemma 2.1, (1.1) has a positive solution uλ,µ ∈ [ψ, Z] for all λ > π2.

Claim: Existence of a unique positive solution uλ,µ such that ∥uλ,µ∥∞ → 0 as λ → π2 and

∥uλ,µ∥∞ → 1 as λ → ∞.

Recall G(λ, ρ) from (2.3). Note that

G(λ, ρ) =
∫ ρ

0

ds
√
√

12µλ[F(ρ)− F(s)] + 1 − 1
=
∫ 1

0

ρ
√
√

12µλ[F(ρ)− F(ρv)] + 1 − 1
dv. (3.4)

Now, using (3.4) we have

Gρ(λ, ρ)=
∫ 1

0

N(v)
√

2λµρ2(2ρ(v3 − 1)− 3v2 + 3) + 1
(√

2λµρ2(2ρ(v3 − 1)− 3v2 + 3) + 1 − 1
)3/2

dv,

(3.5)

where

N(v) = λµρ2
(

ρ(v3 − 1)− 3v2 + 3
)

−
√

2λµρ2
(

2ρ(v3 − 1)− 3v2 + 3
)

+ 1 + 1.
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Clearly the denominator of (3.5) is positive. Further, N(1) = 0. Hence, if we prove that

N′(v) < 0, then N(v) has to be positive on [0, 1). Now,

N′(v) = 3λµρ2v(ρv − 2)− 6λµρ2v(ρv − 1)
√

2λµρ2
(
2ρ(v3 − 1)− 3v2 + 3

)
+ 1

,

so N′(v) < 0 provided that 2 − ρv >
2(1−ρv)√

2λµρ2σ(v)+1
, where σ(v) =

(
2ρ(v3 − 1)− 3v2 + 3

)
. But

since σ′(v) = 6v(ρv − 1) < 0 and σ(1) = 0, we must have σ(v) ≥ 0; v ∈ (0, 1). Hence,

N′(v) < 0 provided 2 − ρv > 2(1 − ρv), which is clearly true. So Gρ(λ, ρ) > 0 for λ > 0 and

ρ ∈ (0, 1). Now combining this with our existence of a positive solution for λ > π2, we see

that there exists a unique ρ ∈ (0, 1) such that G(λ, ρ) = 1

2
√

3µ
. Further, from (2.3) it is easy to

see that Gλ(λ, ρ) < 0 for λ > 0 and ρ ∈ (0, 1) (See Figure 3.1). Thus, by the Implicit Function

Theorem, there exists a unique function λ : (0, 1) → (π2, ∞) satisfying G(λ(ρ), ρ) = 1

2
√

3µ
and

dλ

dρ
= −Gρ(λ, ρ)

Gλ(λ, ρ)
> 0. (3.6)

Recall that we already established a positive solution for λ > π2. Combining this result with

(3.6) we now have a unique positive solution uλ,µ for λ > π2. Further, combining with our

nonexistence result for λ ≤ π2, we have the following:

lim
ρ→0

λ(ρ) = π2
(

lim
λ→π2

∥uλ,µ∥∞ = 0
)

lim
ρ→1

λ(ρ) = ∞

(

lim
λ→∞

∥uλ,µ∥∞ = 1
)

.

Figure 3.1: Plots of G(λ, ·) for various λ. Observe their intersections with the

level 1

2
√

3µ
when µ = 1.
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Claim: For µ2 > µ1, uλ,µ1
(x) ≥ uλ,µ2

(x) for all x ∈ [0, 1].

Let µ2 > µ1 and λ > π2 be fixed. Now, let uλ,µ1
be a positive solution to (1.1) with µ = µ1.

Then uλ,µ1
satisfies −µ1[(u

′
λ,µ1

(x))3]′ − u′′
λ,µ1

(x) = λ f (uλ,µ1
(x)); x ∈ (0, 1). We proceed by

showing that uλ,µ1
is a supersolution to (1.1) with µ = µ2. Observe that

−µ2[(u
′
λ,µ1

(x))3]′ − u′′
λ,µ1

(x) = −µ2

(

− 1

µ1

(

λ f (uλ,µ1
(x)) + u′′

λ,µ1
(x)
))

− u′′
λ,µ1

(x)

=
µ2

µ1

(

λ f (uλ,µ1
(x)) + u′′

λ,µ1
(x)
)

− u′′
λ,µ1

(x)

=
µ2

µ1
λ f (uλ,µ1

(x)) +
(µ2

µ1
− 1
)

u′′
λ,µ1

(x)

≥ λ f (uλ,µ1
(x)); x ∈ (0, 1)

provided that

(µ2

µ1
− 1
)(

λ f (uλ,µ1
(x)) + u′′

λ,µ1
(x)
)

≥ 0; x ∈ (0, 1). (3.7)

Given our assumption that µ2 > µ1, we have
µ2

µ1
− 1 > 0. By (1.1) with p = 4 and q = 2, it is

easy to see that u′′
λ,µ1

(x) =
−λ f (uλ,µ1

(x))

1+3µ1(u
′
λ,µ1

(x))2 ; x ∈ (0, 1). Hence

λ f (uλ,µ1
(x)) + u′′

λ,µ1
(x) = λ f (uλ,µ1

(x))

(

1 − 1

1 + 3µ1(u′
λ,µ1

(x))2

)

≥ 0; x ∈ (0, 1).

So (3.7) is satisfied and uλ,µ1
is a supersolution to (1.1) with µ = µ2. Recall that ψ(x) =

ε sin(πx) with ε > 0 and ε ≈ 0 is a subsolution to (1.1) for any µ > 0 when λ > π2 and clearly

ψ ≤ uλ,µ1
when ε ≈ 0. Thus, the unique positive solution uλ,µ2

to (1.1) with µ2 when λ > π2

must be such that uλ,µ2
∈ [ψ, uλ,µ1

]. Hence, uλ,µ1
(x) ≥ uλ,µ2

(x) for all x ∈ [0, 1].

4 Computation of bifurcation diagrams as µ varies

The bifurcation diagrams for µ > 0 in Figure 4.1 are computed using (2.3). In particular, for

a sequence of values ρ ∈ (0, 1), we determine the corresponding sequence of λ > 0 such

that (2.3) is satisfied using the FindRoot function in Mathematica. The bifurcation curves are

generated using linear interpolation of the points {(λ, ρ)}. Similarly, for the µ = 0 case, we

apply (2.10).

In Figure 4.2, we generate profiles of positive solutions for λ = 50, µ1 = 5, and µ2 = 30

using (2.8) for x ∈ [0, 1
2 ) and appealing to the symmetry established in Lemma 2.2. This il-

lustrates that u50,5(x) ≥ u50,30(x) for all x ∈ [0, 1] as described in Theorem 1.1 for particular

choices of µ1 and µ2. By considering a uniform sequence of x-values lying in [0, 1] and solv-

ing (2.8) with corresponding λ, ρ, µ values within a specified tolerance using FindRoot, then

linearly interpolating the points {(x, uλ,µ(x))}, we obtain the solution profiles.
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Figure 4.1: Evolution of exact bifurcation diagrams of positive solutions to (1.1)

as µ ≥ 0 varies.

Figure 4.2: Profiles of positive solutions uλ,µ1
and uλ,µ2

to (1.1) for λ = 50,

µ1 = 5, and µ2 = 30.
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For finite-dimensional linear differential systems with bounded coefficients we
prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability
on R with uniqueness. We also consider abstract non-autonomous evolution equations
which are exponentially bounded and exponentially dichotomic and prove that Ulam–
Hyers stability with uniqueness is maintained when perturbing them with a nonlinear
term having a sufficiently small Lipschitz constant.
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1 Introduction

Ulam–Hyers stability of different types of equations is intensively studied in the literature,

especially in the last years. The idea of this notion was given by Ulam in 1940. Note that there

exists generalizations of the initial notion (see [15]). As far as we know, the first studies on the

Ulam–Hyers stability of differential equations were presented by Obłoza [12, 13] in 1993 and

1997, and by Alsina–Ger [1] in 1998.

The special case of finite dimensional linear differential systems with constant and, respec-

tively, continuous periodic coefficients, was considered by Jung [10] in 2006, Bus, e–Salieri–

Tabassum [5] in 2014, Barbu–Bus, e–Tabassum [4] in 2015, and, respectively, by Buică–Tőtős

[3] in 2022. These papers emphasized the relation of Ulam–Hyers stability on unbounded

intervals of finite dimensional linear differential systems, with their exponential dichotomy.

Ulam–Hyers stability of some nonlinear differential equations were also studied, especially

on a compact interval of time. Anyway, it seems that Ulam–Hyers stability on a compact

interval is a property of any linear differential system and of the most of the nonlinear ones.

I. A. Rus proved this using the Gronwall Lemma technique and other techniques in [14]. In

[2] we showed that exponentially stable abstract linear evolution equations are Ulam–Hyers

stable on the interval [0, ∞). We also proved that this property is maintained when perturbing

this type of equations with a nonlinear term having a sufficiently small Lipschitz constant.

BEmail: abuica@math.ubbcluj.ro



2 A. Buică

In this work we show that exponentially dichotomic on R abstract linear evolution equa-

tions are Ulam–Hyers stable on R with uniqueness. We study the special case of finite dimen-

sional linear differential systems with bounded coefficients and prove that their exponential

dichotomy is equivalent to their Ulam–Hyers stability with uniqueness (Theorem 3.5 in Sec-

tion 3). We also prove that Ulam–Hyers stability with uniqueness is maintained when perturb-

ing this type of linear abstract evolution equations with a nonlinear term having a sufficiently

small Lipschitz constant (Theorem 4.2, Theorem 4.4 and Theorem 4.6 in Section 4).

2 Exponential dichotomy of an evolution family. Definition and

equivalent condition

Let (X, | · |) be a real or complex Banach space. The zero vector in X will be denoted by 0. L(X)

will stand for the space of bounded linear operators from X into itself. The corresponding

norm in L(X) will also be denoted by | · |. The identity operator on X is I ∈ L(X). For

notations, notions and results presented in this section we used [6, 11].

Definition 2.1 ([6, Definition 3.1]). A family of operators {U(θ, τ)}θ≥τ ⊂ L(X), with θ, τ ∈ R,

is called an evolution family if

(i) U(θ, s)U(s, τ) = U(θ, τ) and U(θ, θ) = I for all θ ≥ s ≥ τ; and

(ii) for each x ∈ X, the function (θ, τ) 7→ U(θ, τ)x is continuous for θ ≥ τ.

An evolution family {U(θ, τ)}θ≥τ is said to be exponentially bounded if, in addition,

(iii) there exist real constants C ≥ 1 and γ > 0 such that

|U(θ, τ)| ≤ Ceγ(θ−τ), θ ≥ τ.

We now give the definition of exponential dichotomy for an evolution family. Let P : R →

L(X) be a projection-valued function (i.e. P(θ)P(θ) = P(θ) for each θ ∈ R). The function

whose values are the complementary projections is denoted by Q(θ) = I − P(θ) for each

θ ∈ R. If, for all θ ≥ τ, we have

P(θ)U(θ, τ) = U(θ, τ)P(τ),

then we denote by

UP(θ, τ) := P(θ)U(θ, τ)P(τ), UQ(θ, τ) := Q(θ)U(θ, τ)Q(τ),

the restrictions of the operator U(θ, τ) on Im P(τ) and Im Q(τ), respectively. We stress that

UP(θ, τ) is an operator from Im P(τ) to Im(θ) while UQ(θ, τ) is an operator from Im Q(τ) to

Im Q(θ).

Definition 2.2 ([6, Definition 3.6]). An evolution family {U(θ, τ)}θ≥τ is said to have an ex-

ponential dichotomy (with constants M > 0 and ω > 0 if there exists a projection-valued

function P : R → L(X) such that, for each x ∈ X, the function θ 7→ P(θ)x is continuous and

bounded, and, for all θ ≥ τ, the following conditions hold.

(i) P(θ)U(θ, τ) = U(θ, τ)P(τ).
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(ii) UQ(θ, τ) is invertible as an operator from Im Q(τ) to Im Q(θ).

(iii) |UP(θ, τ)| ≤ Me−ω(θ−τ).

(iv) |[UQ(θ, τ)]−1| ≤ Me−ω(θ−τ).

Denote by Cb(R, X) = {g : R → X continuous and bounded}. It is known that Cb(R, X)

with the norm ‖u‖ = maxt∈R |u(t)| is a Banach space.

Condition (M). For every g ∈ Cb(R, X), there exists a unique function u ∈ Cb(R, X) such that

u(θ) = U(θ, τ)u(τ) +
∫ θ

τ
U(θ, s)g(s)ds, θ ≥ τ. (2.1)

Theorem 2.3 (Theorem 4.28 in [6]). An exponentially bounded evolution family has an exponential

dichotomy if and only if Condition (M) is satisfied. Moreover, if this is the case, for each g ∈ Cb(R, X)

the solution u∗ ∈ Cb(R, X) of the integral equation (2.1) is given by

u∗(θ) =
∫ θ

−∞

UP(θ, τ)g(τ)dτ −
∫

∞

θ
[UQ(τ, θ)]−1g(τ)dτ, θ ∈ R. (2.2)

Proposition 2.4. In the hypotheses of Theorem 2.3, the function given by (2.2) satisfies

‖u∗‖ ≤
2M

ω
‖g‖. (2.3)

When either P(t) = I for all t ∈ R, or Q(t) = I for all t ∈ R, the estimation can be improved as

‖u∗‖ ≤
M

ω
‖g‖. (2.4)

Proof. For any t ∈ R we have

|u∗(t)| ≤

∣

∣

∣

∣

∫ t

−∞

UP(t, s)g(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

∞

t
[UQ(s, t)]−1g(s)ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

−∞

|UP(t, s)| · |g(s)|ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

∞

t
|[UQ(s, t)]−1| · |g(s)|ds

∣

∣

∣

∣

≤ M‖g‖

[

∫ t

−∞

e−ω(t−s)ds +
∫

∞

t
e−ω(s−t)ds

]

=
2M

ω
‖g‖.

In each of the particular cases P = I or Q = I, only one of the two integrals appear in the

expression (2.2) of u∗. Thus, also in the last line of the display above appears only one of the

two integrals, each of them being equal to 1/ω.

3 Exponential dichotomy and Ulam–Hyers stability of finite dimen-

sional linear differential systems

Let A ∈ C(R,L(Cn)). We consider the differential system in X = Cn

x′ = A(t)x. (3.1)

We present now the notion of Ulam–Hyers stability on the time interval R of the finite dimen-

sional linear differential system (3.1).
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Definition 3.1. We say that the equation (3.1) is Ulam–Hyers stable when there exists a con-

stant m > 0 such that, for any ε > 0 and any ϕ ∈ C1(R, Cn) with

|ϕ′(t)− A(t)ϕ(t)| ≤ ε, t ∈ R,

there exists ψ ∈ C1(R, Xn) a solution of (3.1), such that (ϕ − ψ) ∈ Cb(R, Cn) and

‖ϕ − ψ‖ ≤ mε.

We say that the equation (3.1) is Ulam–Hyers stable with uniqueness when, for a given ϕ as

above, there exists a unique ψ.

Remark 3.2. Assume, in addition, that there exists T > 0 such that A(T + t) = A(t) for all

t ∈ R. It is known that, in this particular case, if equation (3.1) is Ulam–Hyers stable then it is

Ulam–Hyers stable with uniqueness. One can see, for example [3].

An important result proved in [3] is the following.

Lemma 3.3 ([3]). The equation x′ = A(t)x is Ulam–Hyers stable if and only if for any g ∈ Cb(R, Cn)

there is a solution in Cb(R, Cn) ∩ C1(R, Cn) of x′ = A(t)x + g.

Let Y(t) ∈ L(Cn) be the fundamental matrix solution of (3.1) such that Y(0) is the identity

matrix, and define

U(θ, τ) = Y(θ)Y−1(τ), θ, τ ∈ R.

It is known (or it can be easily checked) that {U(θ, τ)}θ≥τ is an evolution family and we have

[U(θ, τ)]−1 = U(τ, θ) for all θ, τ ∈ R.

We say that the equation x′ = A(t)x has an exponential dichotomy whenever {U(θ, τ)}θ≥τ

defined above has an exponential dichotomy (as in Definition 2.2).

In addition, we have the following.

Lemma 3.4 ([7]). If A is a bounded function then {U(θ, τ)}θ≥τ is exponentially bounded.

Proof. Fix τ ∈ R. Then U(·, τ) is a matrix solution of the initial value problem x′ = A(t)x,

x(τ) = In (the identity matrix). Then

U(θ, τ) = In +
∫ θ

τ
A(s)U(s, τ)ds, θ ≥ τ.

Applying the Gronwall inequality we immediately obtain |U(θ, τ)| ≤ eγ(θ−τ), θ ≥ τ, where

γ > 0 is such that |A(t)| ≤ γ for all t ∈ R.

As a consequence of Lemma 3.3, Lemma 3.4 and Theorem 2.3 we obtain the following

characterizations, which is the main result of this section.

Theorem 3.5. Let A ∈ C(R,L(Cn)) be a bounded function. The following conditions are equivalent.

(i) The equation (3.1) is Ulam–Hyers stable with uniqueness.

(ii) Condition (M) is satisfied for the equation (3.1).

(iii) The equation (3.1) has an exponential dichotomy.
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Using Remark 3.2, Theorem 3.5, and a result from [7] we obtain the following corollary. In

the statement appears the fundamental matrix solution Y(t) defined before.

Corollary 3.6. Let A ∈ C(R,L(Cn)) be a T-periodic function. The following conditions are equiva-

lent.

(i) The equation (3.1) is Ulam–Hyers stable with uniqueness.

(ii) Condition (M) is satisfied for the equation (3.1).

(iii) The equation (3.1) has an exponential dichotomy.

(iv) No eigenvalue of Y(T) lies on the unit circle.

In the case when A ∈ L(Cn) (is constant) Corollary 3.6 holds true with condition (iv)

replaced by “No eigenvalue of A has zero real part.”. These two corollaries are known, but they

were justified using other tools. One can see [3, 4].

4 Main abstract result and applications

The main result of this section concludes the Ulam–Hyers stability of mild solutions of some

nonlinear abstract nonautonomous evolution equations. We start by proving a lemma which

is essential in the proof of the main result. We present with details two applications of the

main abstract result for finite dimensional nonautonomous differential systems and for an

abstract autonomous evolution equation whose linear part is the generator of a C0-semigroup.

Lemma 4.1. Let {U(θ, τ)}θ≥τ be an exponentially bounded evolution family on X. In addition,

assume that it has an exponential dichotomy and let the constants M > 0 and ω > 0 be like in

Definition 2.2.

Let L > 0, g ∈ Cb(R, X) and F ∈ C(R × X, X) with F(s, 0) = 0 for any s ∈ R. Assume that

(i) |F(s, u1)− F(s, u2)| ≤ L|u1 − u2|, s ∈ R, u1, u2 ∈ X,

(ii) 2L < ω/M.

Then there exists a unique solution u∗ ∈ Cb(R, X) of the following integral equation.

u(t) =
∫ t

−∞

UP(t, s)[F(s, u(s)) + g(s)]ds −
∫

∞

t
[UQ(s, t)]−1[F(s, u(s)) + g(s)]ds. (4.1)

Moreover, we have

‖u∗‖ ≤
M

ω/2 − LM
‖g‖. (4.2)

When either P(t) = I for all t ∈ R, or Q(t) = I for all t ∈ R, condition (ii) can be replaced by (ii)’

L < ω/M and the estimation (4.2) can be improved as

‖u∗‖ ≤
M

ω − LM
‖g‖. (4.3)
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Proof. Consider the operator

B : Cb(R, X) → C(R, X)

defined for any u ∈ Cb(R, X) and for any t ∈ R by

B(u)(t) =
∫ t

−∞

UP(t, s)[F(s, u(s)) + g(s)]ds −
∫

∞

t
[UQ(s, t)]−1[F(s, u(s)) + g(s)]ds.

We claim that B is a contraction with the Lipschitz constant 2LM/ω. For any u1, u2 ∈ Cb(R, X)

and t ∈ R we have

|B(u1)(t)− B(u2)(t)| ≤

∣

∣

∣

∣

∫ t

−∞

UP(t, s)[F(s, u1(s))− F(s, u2(s))]ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

∞

t
[UQ(s, t)]−1[F(s, u1(s))− F(s, u2(s))]ds

∣

∣

∣

∣

≤ L

∣

∣

∣

∣

∫ t

−∞

|UP(t, s)| · |u1(s)− u2(s)|ds

∣

∣

∣

∣

+ L

∣

∣

∣

∣

∫

∞

t
|[UQ(s, t)]−1| · |u1(s)− u2(s)|ds

∣

∣

∣

∣

≤ LM‖u1 − u2‖

[

∫ t

−∞

e−ω(t−s)ds +
∫

∞

t
e−ω(s−t)ds

]

≤
2LM

ω
‖u1 − u2‖.

Then

‖B(u1)− B(u2)‖ ≤
2LM

ω
‖u1 − u2‖, u1, u2 ∈ Cb(R, X). (4.4)

Thus, the claim is proved.

By Theorem 2.3 we have B(0) ∈ Cb(R, X) since its expression is given by (2.2). Then using

(2.3) from Proposition 2.4 we have

‖B(0)‖ ≤
2M

ω
‖g‖. (4.5)

Relation (4.4) implies that

‖B(u)‖ ≤
2LM

ω
‖u‖+ ‖B(0)‖, u ∈ Cb(R, X). (4.6)

Then

Bu ∈ Cb(R, X), u ∈ Cb(R, X),

meaning that Cb(R, X) is invariant for B. The Contraction Mapping Principle assures the

existence of a unique fixed point, denoted u∗, of B in Cb(R, X). Moreover, from (4.6) we

deduce that

‖u∗‖ ≤
2LM

ω
‖u∗‖+ ‖B(0)‖,

which, together with (4.5) implies (4.2).

For the last part one needs to use (2.4) instead of (2.3).
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Theorem 4.2. Let {U(θ, τ)}θ≥τ be an exponentially bounded evolution family on X. In addition,

assume that it has an exponential dichotomy and let the constants M > 0 and ω > 0 be like in

Definition 2.2.

Let f ∈ C(R × X, X), L > 0 be such that

(i) | f (s, u1)− f (s, u2)| ≤ L|u1 − u2|, s ∈ R, u1, u2 ∈ X,

(ii) 2L < ω/M.

Let g ∈ Cb(R, X). If ϕ ∈ C(R, X) is a solution of

y(θ) = U(θ, τ)y(τ) +
∫ θ

τ
U(θ, s)[ f (s, y(s) + g(s)]ds, θ ≥ τ, (4.7)

then there exists a unique solution ψ ∈ C(R, X) of

x(θ) = U(θ, τ)x(τ) +
∫ θ

τ
U(θ, s) f (s, x(s)ds, θ ≥ τ, (4.8)

such that (ϕ − ψ) ∈ Cb(R, X) and

‖ϕ − ψ‖ ≤
M

ω/2 − LM
‖g‖. (4.9)

When either P(t) = I for all t ∈ R, or Q(t) = I for all t ∈ R, condition (ii) can be replaced by (ii)’

L < ω/M and the estimation (4.9) can be improved as

‖ϕ − ψ‖ ≤
M

ω − LM
‖g‖. (4.10)

Proof. Consider the function F : R × X → X defined by

F(s, u) = f (s, ϕ(s))− f (s, ϕ(s)− u), (s, u) ∈ R × X.

It is not difficult to see that F satisfies the hypotheses of Lemma 4.1. In fact, all the hypotheses

of this theorem are fulfilled. Then let u∗ ∈ Cb(R, X) be the unique bounded solution of

equation (4.1). Consider the function g∗(s) = F(s, u∗(s)) + g(s), s ∈ R which satisfies g∗ ∈

Cb(R, X). Then, from (4.1) we have that

u∗(θ) =
∫ θ

−∞

UP(θ, τ)g∗(τ)dτ −
∫

∞

θ
[UQ(τ, θ)]−1g∗(τ)dτ, θ ∈ R. (4.11)

By Theorem 2.3, the above relation implies that u∗ is the unique bounded solution of

u(θ) = U(θ, τ)u(τ) +
∫ θ

τ
U(θ, s)g∗(s)ds, θ ≥ τ. (4.12)

Now define

ψ = ϕ − u∗

and note that ψ ∈ C(R, X) is a solution of (4.7) which, in addition, by Lemma 4.1, satisfies

(4.9). The uniqueness of ψ with mentioned properties follows by the uniqueness of u∗ as in

Theorem 2.3.
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4.1 Application. Finite dimensional differential systems

Let A ∈ C(R,L(Cn)) and f ∈ C(R × Cn, Cn). We consider the nonlinear differential system

in X = Cn

x′ = A(t)x + f (t, x). (4.13)

Recall that we refer to the linear system x′ = A(t)x in Section 3.

Definition 4.3. We say that the equation (4.13) is Ulam–Hyers stable when there exists a

constant m > 0 such that, for any ε > 0 and any ϕ ∈ C1(R, Cn) with

|ϕ′(t)− A(t)ϕ(t)− f (t, ϕ(t)| ≤ ε, t ∈ R,

there exists ψ ∈ C1(R, Cn) a solution of (4.13), such that (ϕ − ψ) ∈ Cb(R, Cn) and

‖ϕ − ψ‖ ≤ mε.

We say that the equation (4.13) is Ulam–Hyers stable with uniqueness when, for a given ϕ as

above, there exists a unique ψ.

As a consequence of Theorem 4.2, using also Lemma 3.4, we obtain the following result.

Theorem 4.4. Assume that A is a bounded function and that the system x′ = A(t)x has an exponen-

tial dichotomy. Let M > 0 and ω > 0 be like in Definition 2.2. Assume that there exists L > 0 with

2L < ω/M and such that

| f (s, y)− f (s, x)| ≤ L|x − y|, for all s ∈ R, x, y ∈ C
n.

Then system (4.13) is Ulam–Hyers stable with uniqueness and with constant

m = M/(ω/2 − LM).

4.2 Application. Semigroups

For the definition of a C0-semigroup and other useful results we used [8, 9].

Definition 4.5. If the evolution family {U(θ, τ)}θ≥τ on the Banach space X satisfies in addition

U(θ, τ)x = U(θ − τ, 0)x, θ ≥ τ, x ∈ X,

then it is called a C0-semigroup.

Assume from now that {U(θ, τ)}θ≥τ is a C0-semigroup. An important remark is that there

exists a dense set D ⊂ X and a linear operator A : D → X such that if x ∈ D,

lim
θ↓0

U(θ, 0)x − x

θ
= Ax.

The mapping A is in general unbounded and is called the infinitesimal generator of the semi-

group. Sometimes the following notation is used

etA := U(t, 0), t ≥ 0
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and it is said that {etA}t≥0 is a one-parameter C0-semigroup.

Let f ∈ C(R × X, X) and consider the abstract evolution equation

x′ + Ax = f (t, x), (4.14)

and the abstract evolution inequation

|x′ + Ax − f (t, x)| ≤ ε. (4.15)

We say that ψ ∈ C(R, X) is a mild solution of equation (4.14) if ψ is a solution of the integral

equation (4.8).

We say that ϕ ∈ C(R, X) is a mild solution of inequation (4.15) if there exists g ∈ C(R, X)

with |g(s)| ≤ ε, s ∈ R such that ϕ is a solution of the integral equation (4.7).

Let m > 0. We say that the evolution equation (4.14) is Ulam–Hyers stable with constant m if

for any ε > 0 and for any mild solution ϕ ∈ C(R, X) of inequation (4.15) there exists a mild

solution ψ ∈ C(R, X) of (4.14) such that (ϕ − ψ) ∈ Cb(R, X) and

‖ϕ − ψ‖ ≤ mε.

We say that the equation (4.14) is Ulam–Hyers stable with uniqueness when, for a given ϕ as

above, there exists a unique ψ.

As a consequence of Theorem 4.2 we obtain the following result.

Theorem 4.6. Let A : D ⊂ X → X be the infinitesimal generator of an exponentially bounded and

exponentially dichotomic C0-semigroup {U(θ, τ)}θ≥τ. Let M and ω be like in Definition 2.2. Assume

that there exists L > 0 with 2L < ω/M such that

| f (s, y)− f (s, x)| ≤ L|x − y|, for all s ∈ R, x, y ∈ X.

Then the abstract evolution equation (4.14) is Ulam–Hyers stable with uniqueness and with con-

stant m = M/(ω/2 − LM).
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1 Introduction

In this work we derive a new Carleman estimate for the linear super strong degenerate prob-

lem














ut − (xαux)x + xα/2b1(x, t)ux + b0(x, t)u = f 1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T),

u(x, 0) = u0(x) in (0, 1),

(1.1)

where Q = (0, 1) × (0, T), ω ⊂ (0, 1) is a non-empty open interval and 1ω is its associated

characteristic function, and α ≥ 2. Also, we take b0 ∈ L∞(Q), h ∈ L2(ω × (0, T)), u0 ∈ L2(0, 1),

and b1 ∈ L∞(Q) satisfying

(xα/2b1(x, t))x ∈ L∞(Q). (1.2)

BCorresponding author. Email: reginaldodr@id.uff.br
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We also consider a geometrical condition on the control domain

∃d > 0; (0, d) ⊂ ω. (1.3)

As we will see further, (1.1) is controllable at any time T > 0, according to the following

specification:

Definition 1.1. We say that (1.1) is null controllable at T > 0 if, for any u0 ∈ L2(0, 1), there

exists h ∈ L2(ω × (0, T)) such that the solution u of (1.1) satisfies

u(x, T) = 0 in (0, 1). (1.4)

The null controllability of (1.1) is well understood for α ∈ (0, 2), see [1, 9] and references

therein. Following the terminology adopted in these works, we say that (1.1) is weakly de-

generate if α ∈ (0, 1) and strongly degenerate if α ∈ (1, 2). Despite there are many works for

the case α ∈ (0, 2), little has been done for the super strong degenerate case, i.e. when α ≥ 2,

although this is a very relevant case of the degenerate problem. Indeed, when α = 2, the

Black-Scholes equation can be obtained from (1.1) and this equation has a key role in several

financial applications.

Regarding the global null controllability of (1.1), the fact is that this problem is not null

controllable for α ≥ 2, in general. As pointed out in [9], a suitable change of variables trans-

forms (1.1) into a non-degenerate problem in an unbounded domain, which fails to be null

controllable in general, as proved in [14]. However, if the new control domain ω̃ has bounded

complement, it can be controlled, as proved in [4, 7].

Because of that, in [8], it was introduced a weaker kind of null controllability for this

problem, called regional null controllability. It means that for any u0 ∈ L2(0, T), ω = (a, b) ⊂
(0, 1) and δ ∈ (0, b − a), there exists a control f ∈ L2(Q) such that the solution u of (1.1)

satisfies

u(x, T) = 0 ∀x ∈ (a + δ, 1). (1.5)

They established regional null controllability for a linear problem like (1.1), but with b1 = 0.

In [6], this result was extended for a system like (1.1) with the first order term and a semilinar

case with a nonlinearity independent of it, i.e., regional null controllability was achieved for (1.1)

and for the following system















ut − (xαux)x + g(x, t, u) = f 1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T),

u(x, 0) = u0(x) in (0, 1).

(1.6)

Finally, in [5], those results were extended considering a nonlinearity of the type g(x, t, u, ux),

but the restriction α ∈ (0, 2) was made. These works were concerned with regional null control-

lability, more recently, in [3], the authors came up with the new geometrical condition (1.3),

which allows to prove a global null controllability result for (1.1), when α = 2. In this work,

under the same geometrical condition, we will extend that result for α > 2.

A significant number of papers on null controllability of parabolic degenerate equations

follows a standard approach based on the Hilbert Uniqueness Method (HUM). It goes through

obtaining a Carleman estimate that leads to an observability inequality. This way, the null

controllability property can be deduced from the observability inequality. The particularity of

[3] and [8] is that the authors applied a change of variables to transform the system (1.1) into



Carleman inequality for super strong degenerate equations 3

a non-degenerate problem in unbounded domains. There, a Carleman estimate is obtained

for this non-degenerate system.

Although the approach of transforming the degenerate problem into a non-degenerate

one, in an unbounded domain, works fine for linear problems, this procedure can meet dif-

ficulties to deal with some related problems. Indeed, when we work with some autonomous

semilinear problems, for example, this change of variable leads it to a nonautonomous semi-

linear problem. And, if we work with a certain nonlocal problems, it is lead to an even more

complicated one. In this work we present a Carleman estimate for (1.1), without passing by

this change of variables method. To our best knowledge, this estimate and some consequences

presented in the sequel mean some novelties for the super strong degenerate case.

The second part of the introduction is all about the presentation of our main results.

Statement of the results

First of all, let us consider the adjoint system associated to (1.1):














vt + (xαvx)x + (xα/2b1v)x − b0(x, t)v = h in Q,

v(1, t) = 0 and (xαvx)(0, t) = 0 in (0, T),

v(x, T) = vT(x) in (0, 1),

(1.7)

where h ∈ L2(Q) and vT ∈ L2(0, 1).

Now, for λ > 0, let us introduce some weight functions given by θ, p0 and σ0 with

θ(t) :=
1

(t(T − t))4
, η(x) := −x2/2, ξ(x, t) = θ(t)eλ(2|η|∞+η(x))

and σ(x, t) := θ(t)e4λ|η|∞ − ξ(x, t).

(1.8)

The assumption (1.3) and the weight function η are the key points that allow us to build

the following Carleman estimate:

Theorem 1.2. Assume (1.2) and (1.3). There exists positive constants C, s0 and λ0, depending only

on ω, ∥b0∥∞, T, d and α such that, for any s ≥ s0, any λ ≥ λ0 and any solution v to (1.7), one has:

∫∫

Q
e−2sσ

[

s−1λ−1ξ−1(|vt|2 + |(xαvx)x|2) + sλ2ξxα|vx|2 + s3λ4ξ3|v|2
]

dx dt

≤ C

[

∥e−sσh∥2 + s3λ4
∫∫

ωT

e−2sσξ3|v|2 dx dt

]

, (1.9)

where ωT := ω × (0, T).

The proof of Theorem 1.2 will be given in section 3.

As a consequence of Theorem 1.2 we have the following null controllability result:

Theorem 1.3. Assume (1.2) and (1.3). Then the system (1.1) is null controllable.

Next, the same Carleman estimate allows us to prove a null controllability result for the

following semilinear problem














ut − (xαux)x + g(x, t, u, ux) = f 1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T),

u(x, 0) = u0(x) in (0, 1),

(1.10)
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where α ≥ 2 and g : Q × R
2 → R must satisfies the following assumptions:























g is Lebesgue measurable;

g(x, t, ·, ·) ∈ C1(R2) uniformly in (x, t) ∈ Q;

g(x, t, 0, 0) = 0 ∀(x, t) ∈ Q;

∃K > 0 such that |gr(x, t, r, s)|+ x−α/2|gs(x, t, r, s)| ≤ K ∀(x, t, r, s) ∈ Q × R
2.

(1.11)

Theorem 1.4. Assume (1.3) and (1.11). Then the system (1.10) is null controllable.

In [15], a null controllability result is obtained for (1.10), when α ∈ (0, 2). In this current

work, we extend this fact for the super strong degenerate case applying a similar technique.

At this point, we recall that the classical null controllability for (1.10) does not hold in general,

but the geometrical assumption (1.3) provided the inequality (1.9), which can be applied to

prove Theorem 1.4. In other words, the obtainment of Theorem 1.4 is possible because the

degeneracy point x = 0 belongs to the boundary of the control domain ω. It is worth observe

that, Cannarsa and Fragnelli proved, in [5], regional null controllability results for (1.10), when

α ∈ (0, 2). Summarizing, we emphasize that the investigation of [5] does not rely on the

localization of ω near x = 0, as in this paper, but it only allows to find a control which drives

the state to zero in a portion of ω far from the degeneracy point x = 0.

As a second application of our Carleman estimate (1.9), we will also obtain the local null

controllability for the following degenerate nonlocal problem















ut − ℓ

(

∫ 1
0 u dx

)

(xαux)x = f 1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T),

u(x, 0) = u0(x) in (0, 1),

(1.12)

where ℓ : R → R is a C1 function with bounded derivative, with ℓ(0) = 1. At this point,

we should observe that our results remain the same if we just consider ℓ(0) > 0. The null

controllability for this problem is studied in [11], when α ∈ (0, 1), and in [10] when α ∈ [1, 2).

Under the hypotheses (1.2) and (1.3), we extend this investigation for α ∈ [2,+∞), as described

below:

Theorem 1.5. Assume (1.3). The nonlinear system (1.12) is locally null-controllable at any time

T > 0, i.e, there exists ε > 0 such that, whenever u0 ∈ H1
α and |u0|H1

α
≤ ε, there exists a control

f ∈ L2(ω × (0, T)), associated to a state u, satisfying

u(x, T) = 0, for every x ∈ [0, 1].

The rest of this paper is organized as follows. In Section 2, we state some classical

well-posedness results related to the systems (1.1) and (1.10). In Section 3, we present an

α-independent Carleman inequality for solutions of (1.7) (see Theorem 1.2), which provides

an observability estimate and, consequently, the null controllability of (1.1). Sections 4 and

5 are devoted to some applications of Theorem 1.2. More precisely, in Section 4, we use a

fixed point argument to obtain a null controllability result to the degenerate semilinear sys-

tem (1.10) (see Theorem 1.4); in Section 5, an inverse function argument allows us to prove a

local null controllability result for the degenerate nonlocal system (1.12) (see Theorem 1.5).
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2 Well-posedness results

The usual norms in L2(0, 1) and L2(Q) will be denoted by | · |2 and ∥ · ∥2, respectively, related

to the usual inner products (·, ·) and ((·, ·)). Moreover, the norms in L∞(0, 1) and in L∞(Q)

will be denoted respectively by | · |∞ and ∥ · ∥∞.

Let us consider the functional spaces

H1
α :=

{

u ∈ L2(0, 1); u is locally absolutely continuous in (0, 1], xα/2ux ∈ L2(0, 1), u(1) = 0
}

.

and

H2
α :=

{

u ∈ H1
α; xαux ∈ H1(0, 1)

}

,

with the norms

|u|H1
α

:=

[

∫ 1

0
(u2 + xα|u|2) dx

]1/2

, if u ∈ H1
α

and

|u|H2
α

:=

[

∫ 1

0
(u2 + xα|u|2 + |(xαux)x|2) dx

]1/2

, if u ∈ H2
α.

With these norms, we observe that H1
α and H2

α are two Hilbert spaces. In [8, Proposition

2.1], the authors provided the following characterization:

H2
α =

{

u ∈ L2(0, 1); u is locally absolutely continuous in (0, 1],

xαu ∈ H1
0(0, 1), xαux ∈ H1(0, 1), (xαux)(0) = 0

}

.

Now, for the reader’s convenience, let us introduce the notations

M = C(0, T; L2(0, 1)) ∩ L2(0, T; H1
α) and N = H1(0, T; L2(0, T)) ∩ L2(0, T; H2

α).

In [15], the authors proved that the embedding M →֒ N is compact (in fact, their result was

proved for α ∈ (0, 2), but the proof does not depend on α).

The next result, proved in [8], establishes the well-posedness of system (1.1).

Proposition 2.1. Assume b0, b1 ∈ L∞(Q). For any f ∈ L2(Q) and any u0 ∈ L2(0, 1), there exists

exactly one solution u ∈ M to (1.1). Furthermore, there exists a constant C > 0 only depending on T,

α, b1 and b0, such that

sup
t∈[0,T]

|u(·, t)|22 + ∥xα/2ux∥2
2 ≤ C(∥ f 1ω∥2

2 + |u0|22).

Furthermore, if u0 ∈ H1
α, then u ∈ N ∩ C0([0, T]; H1

α) and we have the following estimate:

sup
t∈[0,T]

|u(·, t)|2H1
α
+ ∥ut∥2

2 + ∥(xαux)x∥2
2 ≤ C

(

∥ f 1ω∥2
2 + |u0|2H1

α

)

.

We also state the well-posedness of (1.10), whose proof can be seen in [15, Theorem 2.1].

Proposition 2.2. Assume g satisfies (1.11). For any f ∈ L2(Q) and any u0 ∈ L2(0, 1), there exists

exactly one solution u ∈ M to the system (1.10).
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3 Carleman and observability inequalities

The aim of this section is to prove the Carleman estimate (1.9) and, as a consequence, an

observability inequality, which yields the null controllability of the linear system (1.1).

It suffices to prove Theorem 1.2 for b1 = b0 = 0, since the general case follows taking

h̃ = h − b0v − (xα/2b1v)x.

Let us take δ ∈ (0, d) and let v be the solution to (1.7) (where vT ∈ L2(0, 1) and h ∈ L2(Q)).

For any s ≥ s0 > 0, we set z = e−sσv. By a density argument we can assume without loss of

generality that v is regular enough. A simple computation gives us

vt = esσ[sσtz + zt] and (xαvx)x = esσ[s2σ2
x xαz + 2sσxxαzx + s(σxxα)xz + (xαzx)x].

Consequently,

P+z + P−z = G, (3.1)

where

P−z := −2sλ2ξxα+2z + 2sλξxα+1zx + zt := I11 + I12 + I13,

P+z := s2λ2ξ2xα+2z + (xαzx)x + sσtz := I21 + I22 + I23

and

G = e−sσh − sλ2ξxα+2z − (α + 1)sλξxαz.

From (3.1) one has

∥P−z∥2
2 + ∥P+z∥2

2 + 2((P−z, P+z)) = ∥G∥2
2. (3.2)

Now let us estimate ((P−z, P+z)). We have that

((I11, I21)) = −2s3λ4
∫∫

Q
ξ3x2α+4|z|2 dx dt,

((I12, I21)) = s3λ3
∫∫

Q
ξ3x2α+3(|z|2)x dx dt

= 3s3λ4
∫∫

Q
ξ3x2α+4|z|2 dx dt − (2α + 3)s3λ3

∫∫

Q
ξ3x2α+2|z|2 dx dt

and

((I13, I21)) =
1

2
s2λ2

∫∫

Q
ξ2xα+2(|z|2)t dx dt = −s2λ2

∫∫

Q
ξξtx

α+2|z|2 dx dt.

Thus

((P−z, I21)) = s3λ4
∫∫

Q
ξ3x2α+4|z|2 dx dt − (2α + 3)s3λ3

∫∫

Q
ξ3x2α+2|z|2 dx dt

− s2λ2
∫∫

Q
ξξtx

α+2|z|2 dx dt.
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Since |ξξt| ≤ Cξ3, for λ0 and s0 large enough, we can deduce that

((P−z, I21)) ≥ s3λ4
∫ T

0

[

∫ δ

0
ξ3x2α+4|z|2 dx +

∫ 1

δ
ξ3x2α+4|z|2 dx

]

dt

−Cs3λ3

(

(2α + 3) +
C

λ0s0

)

∫∫

Q
ξ3|z|2 dx dt

≥ s3λ4
∫ T

0

∫ 1

δ
ξ3x2α+4|z|2 dx dt − Cs3λ3

∫∫

Q
ξ3|z|2 dx dt

≥ δ2α+4s3λ4
∫ T

0

∫ 1

δ
ξ3|z|2 dx dt − Cs3λ3

∫∫

Q
ξ3|z|2 dx dt

≥ Cs3λ4
∫ T

0

∫ 1

δ
ξ3|z|2 dx dt − Cs3λ3

∫∫

Q
ξ3|z|2 dx dt

= Cs3λ4
∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt

−Cs3λ3
∫∫

Q
ξ3|z|2 dx dt

≥ Cs3λ4

(

1 − 1

λ0

)

∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt

≥ Cs3λ4
∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt.

(3.3)

Note that C depends on δ and α, where δ ∈ (0, d) is a fixed number as before.

Furthermore,

((I11, I23)) = −2s2λ2
∫∫

Q
ξσtx

α+2|z|2 dx dt,

((I12, I23)) = s2λ

∫∫

Q
ξσtx

α+1(|z|2)x dx dt

= s2λ2
∫∫

Q
ξ(σt + ξt)xα+2|z|2 dx dt − (α + 1)s2λ

∫∫

Q
ξσtx

α|z|2 dx dt

and

((I13, I23)) =
s

2

∫∫

Q
σt(|z|2)t dx dt = − s

2

∫∫

Q
σtt|z|2 dx dt.

Thus

((P−z, I23)) =− s2λ2
∫∫

Q
ξ(ξt + σt)xα+2|z|2 dx dt − (α + 1)s2λ

∫∫

Q
ξσtx

α|z|2 dx dt

− s

2

∫∫

Q
σtt|z|2 dx dt.

We can see that |ξt|, |σt| ≤ Cξ2 and |σtt| ≤ Cξ3. Hence, from (3.3), we have

((P−z, I21 + I23)) ≥ Cs3λ4
∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt − Cs2λ2

∫∫

Q
ξ3|z|2 dx dt

−C(α + 1)s2λ

∫∫

Q
ξ3|z|2 dx dt − C

s

2

∫∫

Q
ξ3|z|2 dx dt

≥ Cs3λ4

(

1 − 1

s0λ2
0

− 1

s0λ3
0

− 1

s2
0λ4

0

)

∫∫

Q
ξ3|z|2 dx dt

−Cs3λ4
∫ T

0

∫ δ

0
ξ3|z|2 dx dt.
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Therefore, for λ0 and s0 large enough, we have

((P−z, I21 + I23)) ≥ Cs3λ4
∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt. (3.4)

Moreover, we have that

((I11, I22)) = −2sλ2
∫∫

Q
ξxα+2z(xαzx)x dx dt

= 2sλ2
∫∫

Q
[−λξx2α+3zzx + (α + 2)ξx2α+1zzx + ξx2α+2|zx|2] dx dt

= sλ3
∫∫

Q
ξ[−λx2α+4 + (2α + 3)x2α+2]|z|2 dx dt

−(α + 2)sλ2
∫∫

Q
ξ[−λx2α+2 + (2α + 1)x2α]|z|2 dx dt + 2sλ2

∫∫

Q
ξx2α+2|zx|2 dx dt

and

((I13, I22)) =
∫∫

Q
zt(xαzx)x dx dt = −

∫∫

Q
z(xαztx)x dx dt =

∫∫

Q
xαzxzxt dx dt

=
1

2

∫∫

Q
(xα|zx|)t dx dt = 0.

Thus

((I11 + I13, I22)) ≥ −Csλ4
∫∫

Q
ξ3|z|2 dx dt + 2sλ2

∫∫

Q
ξx2α+2|zx|2 dx dt. (3.5)

On the other hand

2sλ2
∫∫

Q
ξx2α+2|zx|2 dx dt = 2sλ

∫ T

0

[

∫ δ

0
ξx2α+2|zx|2 dx +

∫ 1

δ
ξx2α+2|zx|2 dx

]

dt

≥ 2sλδα+2
∫ T

0

∫ T

δ
ξxα|zx|2 dx dt

= Csλ2
∫∫

Q
ξxα|zx|2 dx dt − Csλ2

∫ T

0

∫ δ

0
ξxα|zx|2 dx dt.

Hence, from (3.5) we deduce that

((I11 + I13, I22)) ≥ Csλ2
∫∫

Q
ξxα|zx|2 dx dt − Csλ2

∫ T

0

∫ δ

0
ξxα|zx|2 dx dt − Csλ4

∫∫

Q
ξ3|z|2 dx dt.

(3.6)

Finally, working as before we obtain

((I12, I22)) = 2sλ

∫∫

Q
ξxxαzx(xαzx)x dx dt = sλ

∫∫

Q
ξx(|xαzx|2)x dx dt

= sλ2
∫∫

Q
ξx2α+2|zx|2 dx dt − sλ

∫∫

Q
ξx2α|zx|2 dx dt + sλ

∫ T

0
ξ|zx(1, t)|2 dt

≥ Csλ2
∫∫

Q
ξxα|zx|2 dx dt − Csλ2

∫ T

0

∫ δ

0
ξxα|zx|2 dx dt.

Thus, from (3.6) we get

((P−z, I22)) ≥ Csλ2
∫∫

Q
ξxα|zx|2 dx dt − Csλ2

∫ T

0

∫ δ

0
ξxα|zx|2 dx dt − Csλ4

∫∫

Q
ξ3|z|2 dx dt.

(3.7)
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Combining (3.4) and (3.7) we obtain that

((P−z, P+z)) ≥ C
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt − C

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt.

Whence,

C
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

≤ 2((P−z, P+z)) + C
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt. (3.8)

From (3.2) and (3.8) we obtain

∥P−z∥2
2 + ∥P+z∥2

2 + C
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

≤ ∥P−z∥2
2 + ∥P+z∥2

2 + 2((P−z, P+z)) +
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

≤ ∥G∥2
2 +

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt.

Hence, if we set C0 = 1/ min{1, C}, we have that

1

C0

(

∥P−z∥2
2 + ∥P+z∥2

2 +
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)

≤ ∥G∥2
2 +

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt,

whence

∥P−z∥2
2 + ∥P+z∥2

2 +
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

≤ C0

(

∥G∥2
2 +

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)

. (3.9)

Using (3.9) and the definitions of P−z and P+z one has

s−1
∫∫

Q
ξ−1|zt|2 dx dt ≤ s−1

∫∫

Q
ξ−1[|P−z|2 + 4s2λ4ξ2x2α+4|z|2 + 4s2λ2ξ2x2α+2|zx|2] dx dt

≤ s−1∥P−z∥2
2 + Csλ4

∫∫

Q
ξ2|z|2 dx dt + Csλ2

∫∫

Q
ξxα|zx|2 dx dt

≤ C

(

∥G∥2
2 +

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)

(3.10)

and

s−1
∫∫

Q
ξ−1|(xαzx)x|2 dx dt ≤ s−1

∫∫

Q
ξ−1[|P+z|2 + s4λ4ξ4x2α+4|z|2 + s2ξ3|z|2] dx dt

≤ s−1∥P+z∥2
2 + Cs3λ4

∫∫

Q
ξ3|z|2 dx dt + s

∫∫

Q
ξ2|z|2 dx dt

≤ C

(

∥G∥2
2 +

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)

. (3.11)
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Combining (3.9)–(3.11) we conclude that

∫∫

Q

[

s−1ξ−1(|zt|2 + |(xαzx)x|2) + sλ2ξxα|zx|2 + s3λ4ξ3|z|2
]

dx dt

≤ C

(

∥G∥2
2 +

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)

. (3.12)

On the other hand, from the definition of g one has

∥G∥2
2 ≤ ∥e−sσh∥2

2 + Cs2λ4
∫∫

Q
ξ2|z|2 dx dt.

Hence, for s0 large enough, (3.12) gives

∫∫

Q

[

s−1ξ−1(|zt|2 + |(xαzx)x|2) + sλ2ξxα|zx|2 + s3λ4ξ3|z|2
]

dx dt

≤ C

(

∥e−sσh∥2
2 +

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)

. (3.13)

Now let us consider δ1 ∈ (δ, d) and take a cut off function ψ ∈ C∞([0, 1]) such that

0 ≤ ϕ ≤ 1, ψ = 1 in [0, δ] and ψ = 0 in [δ1, 1]. For any ϵ > 0 we have that

sλ2
∫ T

0

∫ δ

0
ξxα|zx|2 dx dt ≤ sλ2

∫ T

0

∫ δ1

0
ξψxα|zx|2 dx dt

=
∫ T

0

∫ δ1

0

[

sλ3ξψxα+1zxz − sλ2ξψ′xαzxz − sλ2ξψ(xαzx)xz
]

dx dt

≤ Cϵ−1s3λ4
∫ T

0

∫ δ1

0
ξ3|z|2 dx dt +

∫∫

Q
[s2λ4ξ2|z|2 + λ2xα|zx|2] dx dt

+ ϵs−1
∫∫

Q
ξ−1|(xαzx)x|2 dx dt.

Hence, taking ϵ small enough and s0 large enough, from (3.13) we conclude that

∫∫

Q

[

s−1ξ−1(|zt|2 + |(xαzx)x|2) + sλ2ξxα|zx|2 + s3λ4ξ3|z|2
]

dx dt

≤ C

(

∥e−sσh∥2
2 + s3λ4

∫ T

0

∫ δ1

0
ξ3|z|2 dx dt

)

.

Using classical and well known arguments, we can coming back to the original variable v

and finish the proof. □

It is well known that a observability inequality for solutions of (1.7) leads to Theorem 1.3.

So, it is sufficient to prove the following inequality:

Proposition 3.1 (Observability inequality). Assume (1.2) and (1.3). There exists a constant C > 0

such that, for any vT ∈ L2(0, 1) and v solution of (1.7) with h = 0, one has

|v(·, 0)|22 ≤ C
∫∫

ωT

e−2sσξ3|v|2 dx dt, (3.14)

where we recall that ωT = ω × (0, T).
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Proof. From Theorem 1.2 we have that

s3λ4
∫∫

Q
e−2sσξ3|v|2 dx dt ≤ Cs3λ4

∫ T

0

∫

ω
e−2sσξ3|v|2 dx dt. (3.15)

Multiplying the equation in (1.7) by v and integrating on (0, 1) we obtain that

−1

2

d

dt
|v(·, t)|22 +

∫ 1

0
xα|vx|2 dx =

∫ 1

0
b1xα/2vxv dx −

∫ 1

0
b0|v|2 dx.

Hence

−1

2

d

dt
|v(·, t)|2 + 1

2

∫ 1

0
xα|vx|2 dx ≤ C|v(·, t)|2.

Thus

|v(·, 0)|22 ≤ e2Ct|v(·, t)|2 ∀t ∈ (0, T). (3.16)

Integrating (3.16) on (T/4, 3T/4) and using (3.15) we deduce that

|v(·, 0)|22 =
2

T

∫ 3T/4

T/4
|v(·, 0)|2 dt ≤ C

∫ 3T/4

T/4

∫ 1

0
|v|2 dx dt

≤ C
∫ 3T/4

T/4

∫ 1

0
s3λ4e−2sσξ3|v|2 dx dt ≤ C

∫ T

0

∫

ω
e−2sσξ3|v|2 dx dt.

4 The degenerate semilinear problem

As we have pointed out in the introduction, in [15] the authors proved a null controllability

result for (1.10) with α ∈ (0, 2). However, most of the arguments in that work does not depend

on α. Indeed, the only result in that paper that only works for α ∈ (0, 2) is an observability

estimate for system (1.1) of [6]. In (3.14), we give such an estimate that works for α ≥ 2. So,

the majority of the arguments of [15] can now be adapted to deal with (1.10) with α ≥ 2.

For readers convenience, we will reproduce their main guideline, but we will not present the

proof of the results.

Firstly, for each w ∈ L2(0, T; H1
α), let us set the following notations

b0[w](x, t) =
∫ 1

0
gs(x, t, λw(x, t), λwx(x, t)) dλ

and

b1[w](x, t) = x−α/2
∫ 1

0
gp(x, t, λw(x, t), λwx(x, t)) dλ.

From (1.11) we have

∥b0[w]∥∞ + ∥b1[w]∥∞ ≤ 2K ∀w ∈ L2(0, T; H1
α). (4.1)

Furthermore,

g(x, t, u, ux) = b0[u](x, t)u(x, t)+ xα/2b1[u](x, t)ux(x, t) ∀u ∈ L2(0, T; H1
α) and a.e. in Q. (4.2)

As we will see, from (4.2) we can develop a fixed point argument to prove Theorem 1.4.

For now, let us assume that u0 ∈ H1
α and for each ε > 0 consider the functional Jε : L2(Q) →

R given by

Jε(h) =
1

2

∫ T

0

∫

ω
|h|2 dx dt +

1

2ε

∫ 1

0
|u(x, T)|2 dx,

where u is the solution of (1.1) with f = h. The first step is to establishes an approximate null

controllability result for the linear system:
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Proposition 4.1. Assume that u0 ∈ H1
α and (1.3). Then, there exists C > 0 (that does not depend on

ε) and hε ∈ L2(Q) such that

1. Jε(hε) ≤ Jε(h) ∀h ∈ L2(Q);

2.
∫ T

0

∫

ω
|hε|2 dx dt ≤ C|u0|2;

3. if uε is the solution of (1.1) with f = hε, then |uε(·, T)| ≤ ε.

The idea of the proof of Proposition 4.1 is to verify that the minimum point of Jε is precisely

hε = −φε1ω, where φε is the solution of the adjoint system of (1.1), with final datum φε(x, T) =
1
ε uε(x, T). Then, it is possible to work with the adjoint equation to obtain the estimates given

in the items 2 and 3.

Now, a standard argument based on the Schauder’s fixed point theorem can be applied to

obtain an approximate null controllability result for the semilinear system (1.10).

Proposition 4.2. Assume that u0 ∈ H1
α and (1.3). Then, for each ε > 0 there exists hε ∈ L2(Q) and

C > 0 (that does not depends on ε) such that:

1.
∫ T

0

∫

ω
|hε|2 dx dt ≤ C|u0|2;

2. if uε is the solution of (1.10) with f = hε, then |uε(·, T)| ≤ ε.

As we have said at the beginning of this section, the detailed proofs of Propositions 4.1

and 4.2 can be found in [15]. Proposition 4.2 allows us to prove a null controllability result for

the semilinear system (1.10), with the initial data in H1
α.

Proposition 4.3. Assume that u0 ∈ H1
α and (1.3). Then the system (1.10) is null controllable.

Proof. Given ε > 0, let us take the control hε and the solution uε given by Proposition 4.2.

From Proposition 4.2-1, there exists h̄ ∈ L2(Q) such that hε ⇀ h̄ in L2(Q). Furthermore,

using Proposition 4.2-1 and the energy estimates given in Theorem 1.2, we can deduce that

|uε|2N ≤ C|u0|2. Thus, there also exists ū ∈ N such that uε ⇀ ū in N . From the compact

embedding N →֒ M, we conclude that uε → ū in M. Then ū is the solution of (1.10) with

f = h̄ and, from Proposition 4.2-2, ū(·, T) = 0.

Finally, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let u1 be the weak solution of the following system















ut − (xαux)x + g(x, t, u, ux) = 0 in (0, 1)× (0, T0),

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T0),

u(x, 0) = u0(x) in (0, 1),

(4.3)

where T0 ∈ (0, T).

Now, let us consider the following system















ut − (xαux)x + g(x, t, u, ux) = h1ω in (0, 1)× (T0/2, T)

u(1, t) = 0 and (xαux)(0, t) = 0 in (T0/2, T),

u(x, T0/2) = u1(x, T0/2) in (0, 1).

(4.4)
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From Theorem 1.2, u1(·, T0/2) ∈ H1
α. Hence, from Proposition 4.3, there exists a control

h1 ∈ L2((0, 1)× (T0/2, T)) such that the associated weak solution u2 of (4.4) satisfies u2(·, T) =

0 in (0, 1). Now we can take u ∈ C([0, T]; L2(Q)) and h ∈ L2(Q) given by

u(x, t) =

{

u1(x, t), if t ∈ [0, T0/2],

u2(x, t), if t ∈ [T0/2, T],
and h(x, t) =

{

0, if t ∈ [0, T0/2],

h1(x, t), if t ∈ [T0/2, T].

It is easy to see that u ∈ M is the solution of (1.10), with f = h, satisfying u(·, T) = 0.

5 The degenerate nonlocal problem

In this section, we will obtain the local null controllability for the problem (1.12). The proof is

based on a meticulous inverse function argument, as specified later on.

5.1 Functional spaces

The remainder of this section is devoted to a brief explanation about the most important

strategies to prove Theorem 1.5. At this point, Lyusternik’s inverse mapping theorem (see [2, 13],

for instance) is our main tool. Let us recall its statement:

Theorem 5.1 (Lyusternik). Let E and F be two Banach spaces, consider H ∈ C1(E, F) and put

η0 = H(0). If H′(0) ∈ L(E, F) is onto, then there exist r > 0 and H̃ : Br(η0) ⊂ F → E such that

H(H̃(ξ)) = ξ, ∀ξ ∈ Br(η0),

which means that H̃ is a right inverse of H in Br(η0). In addition, there exists K > 0 such that

∥H̃(ξ)∥
E
≤ K∥ξ − η0∥F

, ∀ξ ∈ Br(η0).

To be more precise, let us indicate how the proof of Theorem 1.5 can be seen as an appli-

cation of Theorem 5.1. Even though we have not set the desired Hilbert spaces E and F yet,

let us put

H(u, h) = (H1(u, h), H2(u, h)), (5.1)

where

H1(u, h) := ut − ℓ

(

∫ 1

0
u

)

(aux)x − f χω and H2(u, h) := u(0, ·).

We should notice that, for u0 ∈ H1
α, the first and the last relations in (1.12) are satisfied if, and

only if, there exists (u, h) ∈ E solving

H(u, h) = (0, u0).

From this point, we realize that, among other properties, E and F must be built:

• considering the boundary conditions mentioned in (1.12);

• having some imposition on its elements assuring that u(·, T) ≡ 0. It is done having in

mind some modified weights which come from (5.5). We remark that these new weights

exponentially explode at t = T;
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• having in mind that we want H′(0, 0) ∈ L(E, F) to be onto.

In fact, we can see that

H′(0, 0)(u, h) = (ut − ℓ(0)(aux)x − f χω, u(0)).

Recalling we have assumed that ℓ(0) = 1, H′(0, 0) ∈ L(E, F) is onto if, and only if, given

any (g, u0) ∈ F, the linear system















ut − (xαux)x = f χω + g, (x, t) ∈ Q;

u(1, t) = (xαux)(0, t) = 0, in (0, T),

u(x, 0) = u0(x), x ∈ (0, 1),

(5.2)

is globally null-controllable at T > 0, where f ∈ L2(ω × (0, T)) is the control function.

Hence, it seems that E should contain some information involving the well-posedness

(and additional regularity) of the linear system (5.2).

From now on, we will be focused on explicitly describing the spaces E and F, as well as, their

Hilbertian norms. To do so, we consider the useful notation below.

Definition 5.2. Let δ = δ(x, t) and f = f (x, t) be two real-valued measurable functions defined

in Q, where δ is non-negative. We say that f belongs to L2(Q; δ) if
√

δ f ∈ L2(Q). Moreover, the

natural norm of L2(Q; δ) will be denoted by ∥ · ∥
δ
, that is,

∥ f ∥
δ
=

(

∫ T

0

∫ 1

0
δ f 2 dx dt

)1/2

for each f ∈ L2(Q; δ).

In order to prove the global null-controllability for the linearized system (5.2), we first

need to establish a Carleman estimate with new weight functions that do not vanish at t = 0.

Namely, consider a function m ∈ C∞([0, T]) satisfying















m(t) ≥ t4(T − t)4, t ∈ (0, T/2];

m(t) = t4(T − t)4, t ∈ [T/2, T] ;

m(0) > 0,

and define

τ(t) :=
1

m(t)
, ζ(x, t) := τ(t)eλ(1+η(x)) and A(x, t) := τ(t)

(

e2λ − eλ(1+η(x))
)

, (5.3)

where (t, x) ∈ [0, T)× [0, 1] (see Remark 5.5).

Let us note that the adjoint system associated to (5.2) is















−vt − (xαvx)x = h in Q,

v(1, t) = (xαvx)(0, t) = 0 in (0, T),

v(x, T) = vT(x) in (0, 1),

(5.4)

where h ∈ L2(Q) and vT ∈ L2(0, 1). Next, we state a very convenient Carleman estimate

verified by any solution of (5.4).
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Proposition 5.3. Assuming (1.3), there exist C > 0, λ0 > 0 and s0 > 0 such that, for any s ≥ s0,

λ ≥ λ0 and v
T
∈ L2(Q), the corresponding solution v to (5.4) satisfies

∫ T

0

∫ 1

0
e−2sA

(

sλ2ζxα|vx|2 + s3λ4ζ2|v|2
)

dx dt

≤ C

(

∫ T

0

∫ 1

0
e−2sA|h|2 dx dt + s3λ4

∫ T

0

∫

ω
e−2sAζ6|v|2 dx dt

)

. (5.5)

The obtainment of (5.5) is a consequence of (1.9), by following the same steps detailed in

[12, Proposition 4].

The factors multiplying v in (5.5) inspire the definition of the new weight functions

ρi = esAζ−i, where i = 0, 1, 2, 3. (5.6)

As a matter of fact, ρ−2
1

and ρ−2
3

appears in the two integrals involving v, while ρ2 was chosen

in order to satisfies ρ2
2
= ρ

1
ρ3 . Besides, we have ρ3 ≤ Cρ2 ≤ Cρ

1
≤ Cρ0 and, since ρ

i
≥ CT > 0

for all i = 1, 2, 3, we also know that L2(Q; ρ2
i
) →֒ L2(Q). Here, for completeness, let us state

the expected observability inequality which can be derived from (5.5).

Corollary 5.4. Assuming (1.3), there exist C > 0, λ0 > 0 and s0 > 0 with the following property:

given s ≥ s0, λ ≥ λ0 and v
T
∈ L2(Q), then the corresponding solution v to (5.4), with h ≡ 0, satisfies

|v(·, 0)|22 ≤ Cs3λ4
∫ T

0

∫

ω
ρ−2

3
|v|2 dx dt. (5.7)

Remark 5.5. In (5.3), we have redefined the functions given in (1.8), replacing θ = θ(t), which

satisfies limt→0+ θ(t) = +∞, by τ = τ(t) fulfilling limt→0+ τ(t) = τ(0) > 0. That is a crucial

point in order to guarantee that (1.12) is locally null-controllable at T > 0, as stated in Theorem

1.5. Let us clarify this point: in fact, the definition of each ρi, with i ∈ {1, 2, 3}, is based on

those weights which appear in (5.5), however, it comes from (5.3) that ρ1(t) → +∞, as t → T−,

and ρ1(0) > 0 (since m(0) > 0). Because of that, u(x, T) = 0 for any u ∈ L2(Q; ρ2
1
). Hence, it

seems reasonable to require that, if (u, h) ∈ E, then u belongs to L2(Q; ρ2
1
).

Finally, we are ready to define E and F. Let us consider

U := H1(0, T; L2(0, 1)) ∩ L2(0, T; H2
α) ∩ C0([0, T]; H1

α)

and put Lu := ut − (xαux)x for each u ∈ U . Under all these previous notations, we set the

Hilbert spaces

E :=

{

(u, h) ∈ U × L2(ωT; ρ2
3
) : u, (Lu − f χω) ∈ L2(Q; ρ2

1
)

}

,

and

F := L2(Q; ρ2
1
)× H1

α,

equipped with the norms

∥(u, h)∥E :=
(

∥u∥2
ρ2

1

+ ∥h∥2
ρ2

3

+ ∥Lu − f χω∥2
ρ2

1

+ ∥u(0, ·)∥2
H1

α

)1/2
,

and

∥(g, v)∥F :=
(

∥g∥2
ρ2

1

+ ∥v∥2
H1

α

)1/2
,

respectively. The remainder of this work is devoted to check that the mapping H : E → F

accomplishes everything which is required in order to apply Theorem 5.1.
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5.2 Global null-controllability for the linearized system

The goal of this section is to prove a global null-controllability result for the linear system

(5.2) and establish some important additional estimates. As previously discussed, the global

null-controllability will guarantee that H′(0, 0) is surjective, which is required by Lyusternik’s

theorem, and the additional estimates will allow us to prove that H is well defined and of class

C1. As the first step here, let us define what we mean by a solution to the problem (5.2).

Definition 5.6. Given u0 ∈ H1
α, f ∈ L2(ωT) and g ∈ L2(Q), we say that u ∈ L2(Q) is a solution

by transposition of (5.2) if, for each (h, vT) ∈ L2(Q)× L2(0, 1), we have

∫ T

0

∫ 1

0
uh dx dt =

∫ 1

0
u0v(x, 0) dx +

∫ T

0

∫ 1

0
( f 1ω + g)v dx dt,

for any v solution to (5.4).

The main result of this section is the following:

Proposition 5.7. Assume (1.3). If u0 ∈ H1
α and g ∈ L2(Q; ρ2

1
), then there exists a control f ∈

L2(ωT; ρ2
3
) to (5.2), with associated state u ∈ L2(Q; ρ2

1
), such that

∥u∥2

ρ2
1

+ ∥ f ∥2

ρ2
3

≤ C

(

∥u0∥2

H1
α

+ ∥g∥2

ρ2
1

)

.

In particular, it guarantees that (5.2) is globally null-controllable. Furthermore, we have

xα/2ux ∈ L2(Q; ρ2
2
), ut, (xαux)x ∈ L2(Q; ρ2

3
)

and there exists C > 0 such that

∥xα/2ux∥2

ρ2
2

+ ∥ut∥2

ρ2
3

+ ∥(xαux)x∥2

ρ2
3

≤ C

(

∥u∥2

ρ2
1

+ ∥hχω∥2

ρ2
3

+ ∥g∥2

ρ2
1

+ ∥u0∥2

H1
α

)

. (5.8)

Proof. Let us define the set

P0α = {w ∈ C2(Q̄); w(1, t) = xαwx(0, t) = 0, t ∈ (0, T)}.

Recalling the definition of L, we can see that its formal adjoint is given by L∗v = −vt −
(xαvx)x. Hence, analyzing the right-hand side of (5.5), we can define the following symmetric,

positive defined bilinear form

a(w1, w2) =
∫ T

0

∫ 1

0
ρ−2

0
L∗w1L∗w2 dx dt +

∫ T

0

∫ 1

0
ρ−2

3
w1w21ω dx dt, ∀w1, w2 ∈ P0α.

Thus, let us denote by Pα the completion of P0α with respect to the inner product defined by

a. Hence, Pα is a Hilbert space with norm given by ∥v∥
Pα
= a(v, v)1/2.

Now, let us define the continuous linear functional L : L2(Q) → R given by

Lv =
∫ 1

0
u0v(x, 0) dx +

∫ T

0

∫ 1

0
gv dx dt.

In this case, Lax–Milgram theorem yields v̂ ∈ Pα such that

a(v̂, v) = Lv, ∀v ∈ Pα,
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that is,

∫ T

0

∫ 1

0
ρ−2

0
L∗v̂L∗v2 dx dt +

∫ T

0

∫ 1

0
ρ−2

3
v̂v1ω dx dt =

∫ 1

0
u0v(x, 0) dx +

∫ T

0

∫ 1

0
gv dx dt, ∀v ∈ Pα.

According to Definition 5.6, it means that f := −ρ−2
3

v̂1ω is a control and u := ρ−2
0
L∗v̂

the associated state to the problem (5.2). Indeed, for any (h, vT) ∈ L2(Q)× L2(0, 1), if v is a

solution to (5.4), then

∫ T

0

∫ 1

0
uh dx dt =

∫ 1

0
u0v(x, 0) dx +

∫ T

0

∫ 1

0
( f 1ω + g)v dx dt.

Furthermore, from Carleman and observability inequalities, given in (5.5) and (5.7) respec-

tively, we have

∥v̂∥2
Pα
= Lv̂ ≤ ∥u0∥∥v̂(·, 0)∥+ ∥g∥

ρ2
1

(

∫ T

0

∫ 1

0
ρ−2

1
v̂2 dx dt

)1/2

≤
(

∥u0∥2 + ∥g∥2

ρ2
1

)1/2 (

∥v̂(·, 0)∥2 +
∫ T

0

∫ 1

0
ρ−2

1
v̂2 dx dt

)1/2

≤ C

(

∥u0∥2 + ∥g∥2

ρ2
1

)1/2

a(v̂, v̂)1/2

= C

(

∥u0∥2 + ∥g∥2

ρ2
1

)1/2

∥v̂∥
Pα

,

whence

∥v̂∥
Pα
≤ C

(

∥u0∥2 + ∥g∥2

ρ2
1

)1/2

.

Using the explicit expressions f = −ρ−2
3

v̂1ω and u = ρ−2
0
L∗v̂, as well as, recalling the norm

∥ · ∥
Pα

, we easily get

∥u∥2

ρ2
1

+ ∥ f ∥2

ρ2
3

≤ C
∫ T

0

∫ 1

0
ρ2

0
u2 dx dt +

∫ T

0

∫ 1

0
ρ2

3
f 2 dx dt

=
∫ T

0

∫ 1

0
ρ−2

0
|L∗v̂|2 dx dt +

∫ T

0

∫ 1

0
ρ−2

3
v̂21ω dx dt

≤ C

(

∥u0∥2 + ∥g∥2

ρ2
1

)

,

as desired.

At this moment, we would like to say that the obtainment of (5.8) will be left for the two

subsequent lemmas.

Lemma 5.8. Assume (1.3). Given u0 ∈ H1
α and g ∈ L2(Q; ρ2

1
), if (u, h) ∈ U × L2(Qω; ρ2

3
) is a

solution to (5.2), then xα/2ux ∈ L2(Q; ρ2) and there exists C > 0 such that

∥xα/2ux∥2

ρ2
2

≤ C

(

∥u∥2

ρ2
1

+ ∥hχω∥2

ρ2
3

+ ∥g∥2

ρ2
1

+ ∥u0∥2

H1
α

)

.

Proof. Multiplying the equation in (5.2) by ρ2
2
u, integrating in [0, 1] and using the two relations

1

2

d

dt

∫ 1

0
ρ2

2
u2 dx =

∫ 1

0
ρ2

2
utu dx +

∫ 1

0
ρ2(ρ2)tu

2 dx
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and
∫ 1

0
ρ2

2
(xα/2ux)xu dx = −2

∫ 1

0
ρ2(ρ2)xxαuux dx −

∫ 1

0
ρ2

2
xαu2

x dx,

we obtain

1

2

d

dt

∫ 1

0
ρ2

2
u2 dx +

∫ 1

0
ρ2

2
xαu2

x dx = −
∫ 1

0
ρ2

2
cu2 dx +

∫ 1

0
ρ2

2
uhχω dx +

∫ 1

0
ρ2

2
gu dx

+
∫ 1

0
ρ2(ρ2)tu

2 dx − 2
∫ 1

0
ρ2(ρ2)xxαuux dx

= I1 + I2 + I3 + I4 + I5. (5.9)

Now, using ρ
i
≤ Cρ

j
, for i ≥ j, and ρ

1
ρ3 = ρ2

2
, we obtain

I1 ≤ C
∫ 1

0
ρ2

1
|u|2 dx,

I2 ≤ C

(

1

2

∫ 1

0
ρ2

3
|hχω|2 dx +

1

2

∫ 1

0
ρ2

1
|u|2 dx

)

and

I3 ≤ C

(

1

2

∫ 1

0
ρ2

1
|g|2 dx +

1

2

∫ 1

0
ρ2

1
|u|2 dx

)

.

Let us estimate I4. Firstly, we will rewrite A as A(t, x) = ς(t, x)µ̄(x), where

µ̄(x) := (eMλ − eλ(1+η(x)))/µ(x).

Secondly, note that

ρ2(ρ2)t = esAς−2(sesAςtµ̄ς−2 − 2esAς−3ςt) = esAς−2(sς−2µ̄ − 2ς−3)ςt

Then, for all t ∈ [0, T],

|ρ2(ρ2)t| ≤ Cρ2
1
ς−2|ςt| ≤ Cρ2

1
,

whence

I4 ≤ C
∫ 1

0
ρ2

1
|u|2 dx.

Now, using

|(ρ2)x|2xαu2 ≤ Ce−2sAς−2
∣

∣

∣
ς−2 + ς−4

∣

∣

∣
|ς2

x|xαu2 ≤ Cρ2
1
u2,

we obtain

I5 ≤ 2
∫ 1

0
|ρ2 xα/2ux||(ρ2)xxα/2u| dx ≤ 1

2

∫ 1

0
ρ2

2
xαu2

x dx + 2
∫ 1

0
|(ρ2)x|2xαu2 dx

≤ 1

2

∫ 1

0
ρ2

2
xαu2

x dx + C
∫ 1

0
ρ2

1
u2 dx.

Hence, (5.9) gives us

d

dt

∫ 1

0
ρ2

2
|u|2 dx +

∫ 1

0
ρ2

2
xα|ux|2 dx ≤ C

(

∫ 1

0
ρ2

1
|u|2 dx +

∫ 1

0
ρ2

3
|hχω|2 dx +

∫ 1

0
ρ2

1
|g|2 dx

)

.

Integrating in time, the desired result follows.
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Lemma 5.9. Assume (1.3). Given u0 ∈ H1
α and g ∈ L2(Q; ρ2

1
), if (u, h) ∈ U × L2(Qω; ρ2

3
) is a

solution to (5.2), then ut, (aux)x ∈ L2(Q; ρ2
3
) and there exists C > 0 such that

∥ut∥2

ρ2
3

+ ∥(xαux)x∥2

ρ2
3

≤ C

(

∥u∥2

ρ2
1

+ ∥hχω∥2

ρ2
3

+ ∥g∥2

ρ2
1

+ ∥u0∥2

H1
α

)

.

Proof. In the first step, we will estimate the first term of left side of the inequality. Multiplying

equation in (5.2) by ρ2
3
ut and integrating in [0, 1], we have

∫ 1

0
ρ2

3
u2

t dx =
∫ 1

0
ρ2

3
uthχω dx +

∫ 1

0
ρ2

3
gut dx −

∫ 1

0
c(x, t)ρ2

3
uut dx +

∫ 1

0
ρ2

3
(xαux)xut dx

=: I1 + I2 − I3 + I4. (5.10)

Using Young’s inequality with ε and ρ
i
≤ Cρ

j
, for i ≥ j, we obtain

I1 ≤
∫ 1

0
ρ2

3
|hχω||ut| dx ≤ ε

∫ 1

0
ρ2

3
|ut|2 dx +

1

4ε

∫ 1

0
ρ2

3
|hχω|2 dx,

I2 ≤
∫ 1

0
ρ2

3
|gut| dx ≤ ε

∫ 1

0
ρ2

3
|ut|2 dx +

1

4ε

∫ 1

0
ρ2

3
|g|2 dx ≤ ε

∫ 1

0
ρ2

3
|ut|2 dx + C

∫ 1

0
ρ2

1
|g|2 dx

and

−I3 ≤
∫ 1

0
|c(t, x)|ρ2

3
|uut| dx ≤ ε

∫ 1

0
ρ2

3
u2

t dx + C
∫ 1

0
ρ2

1
u2 dx.

Now, integrating I4 by parts, we can see that

I4 = ρ2
3
xαuxut

∣

∣

x=1

x=0
−
∫ 1

0
(ρ2

3
ut)xxαux dx

= −2
∫ 1

0
ρ3(ρ3)xxαutux dx − 1

2

d

dt

∫ 1

0
ρ2

3
xαu2

x dx +
1

2

∫ 1

0
(ρ2

3
)tx

αu2
x dx. (5.11)

If we set

I41 :=
∫ 1

0
ρ3(ρ3)xxαutux dx and I42 :=

∫ 1

0
(ρ2

3
)tx

αu2
x dx,

we have,
∫ 1

0
ρ2

3
|ut|2 dx +

1

2

d

dt

∫ 1

0
ρ2

3
xα|ux|2 dx = I1 + I2 − I3 − 2I41 +

1

2
I42. (5.12)

Since |(ρ3)x| ≤ Cρ2 and |(ρ2
3
)t| ≤ Cρ2

2
, observe that

|ρ3(ρ3)xxαuxut| ≤ C|ρ3 ut||ρ2 xα/2ux|

and

(ρ2
3
)t| = 2|ρ3(ρ3)t| ≤ Cρ2

2
.

So that,

I41 ≤ 1

4

∫ 1

0
ρ2

3
u2

t dx + C
∫ 1

0
ρ2

2
xαu2

x dx

and

I42 ≤ C
∫ 1

0
ρ2

2
xαu2

x dx.
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Using the estimates obtained for I1, I2, I3, I41 and I42, the relation (5.12) provides

∫ 1

0
ρ2

3
u2

t dx +
1

2

d

dt

∫ 1

0
ρ2

3
xαu2

x dx

≤ C

(

∫ 1

0
ρ2

3
|hχω|2 dx +

∫ 1

0
ρ2

1
g2 dx +

∫ 1

0
ρ2

1
u2 dx +

∫ 1

0
ρ2

2
xαu2

x dx

)

,

and, consequently,

∫ T

0

∫ 1

0
ρ2

3
u2

t dx ≤ C

(

∫ T

0

∫ 1

0
ρ2

1
u2 dx +

∫ T

0

∫

ω
ρ2

3
h2 dx +

∫ T

0

∫ 1

0
ρ2

1
g2 + ∥u0∥2

H1
α

dx

)

. (5.13)

In the second part, we must estimate the term
∫ T

0

∫ 1
0 ρ2

3
|(xαux)x|2. Multiplying the equation

in (5.2) by −ρ2
3
(xαux)x and integrating in [0, 1], we take

∫ 1

0
ρ2

3
|(xαux)x|2 dx = −

∫ 1

0
ρ2

3
hχω(xαux)x dx −

∫ 1

0
ρ2

3
g(xαux)x dx

+
∫ 1

0
c(x, t)ρ2

3
u(xαux)x dx +

∫ 1

0
ρ2

3
ut(xαux)x dx

= −J1 − J2 + J3 + I4.

As earlier in this proof, applying Young’s inequality with ε, we obtain

J1 ≤
∫ 1

0
ρ2

3
|hχω||(xαux)x| dx ≤ ε

∫ 1

0
ρ2

3
|(xαux)x|2 dx +

1

4ε

∫ 1

0
ρ2

3
|hχω|2 dx,

J2 ≤
∫ 1

0
ρ2

3
|g||(xαux)x| dx ≤ ε

∫ 1

0
ρ2

3
|(xαux)x|2 dx +

1

4ε

∫ 1

0
ρ2

1
g2 dx,

J3 ≤ C

(

ε

∫ 1

0
ρ2

3
|(xαux)x|2 dx +

1

4ε

∫ 1

0
ρ2

1
u2 dx

)

.

From (5.11) and (5.13), we achieve

∫ 1

0
ρ2

3
|(xαux)x|2 dx +

1

2

d

dt

∫ 1

0
ρ2

3
xα|ux|2 dx

≤ C

(

∫ 1

0
ρ2

3
|hχω|2 dx +

∫ 1

0
ρ2

1
|g|2 dx +

∫ 1

0
ρ2

1
|u|2 dx +

∫ 1

0
ρ2

2
xα|ux|2 dx

)

Integrating in time, we conclude the proof.

5.3 Local null-controllability for the nonlinear system

In this section, our goal is to prove Theorem 1.5, which is based on Theorem 5.1. Indeed,

it will allow us to conclude that H : E → F, given in (5.1), has a right inverse mapping

defined in a small ball B ⊂ F = L2(Q; ρ2
1)× H1

a . Since Theorem 5.7 already guarantees that

H′(0, 0) ∈ L(E, F) is onto, it remains to verify that

• H is well-defined;

• H ∈ C1(E, F).

We will clarify that in Propositions 5.10 and 5.12.
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Proposition 5.10. The mapping H : E → F, given in (5.1), is well defined.

Proof. Given (u, h) ∈ E, we intend to prove that H(u, h) belongs to L2(Q; ρ2
1
) × H1

α. From

definition of E, it is clear that H2(u, h) = u(0, ·) ∈ H1
α. Let us see that H1(u, h) ∈ L2(Q; ρ2

1
).

In fact, since ℓ(0) = 1 and ℓ is Lipschitz continuous, we have

∫ T

0

∫ 1

0
ρ2

1
|H1(u, h)|2 dx dt =

∫ T

0

∫ 1

0
ρ2

1

∣

∣

∣

∣

ut − ℓ

(

∫ 1

0
u dx

)

(xαux)x − hχω

∣

∣

∣

∣

2

dxdt

≤ 4
∫ T

0

∫ 1

0
ρ2

1
|L(u)− hχω|2 dx dt + 4

∫ T

0

∫ 1

0
ρ2

1

∣

∣

∣

∣

[

ℓ

(

∫ 1

0
u dx

)

− ℓ(0)

]

(xαux)x

∣

∣

∣

∣

2

dx dt

≤ 4∥(u, h)∥2
E
+ 4

∫ T

0

∫ 1

0
ρ2

1

(

∫ 1

0
u dx

)2

|(xαux)x|2 dx dt.

Hence, we just need to prove that the last integral is bounded from above by ∥(u, h)∥2
E
.

Indeed, note that

∫ T

0

∫ 1

0
ρ2

1

(

∫ 1

0
u dx

)2

|(xαux)x|2 dx dt =
∫ T

0

∫ 1

0
ρ2

1
ρ−2

3

(

∫ 1

0
u dx

)2

ρ2
3
|(xαux)x|2 dx dt

≤ C sup
[0,T]

(

τ4

(

∫ 1

0
u dx

)2
)

∫ T

0

∫ 1

0
ρ2

3
|(xαux)x|2 dx dt

≤ C sup
[0,T]

(

τ4

(

∫ 1

0
u dx

)2
)

∥(u, h)∥2
E

≤ C∥(u, h)∥4
E
,

where the last inequality is a consequence of Lemma 5.11, since τ4 ≤ CeMs/m(t).

Lemma 5.11. Given s > 0, there exists Ms > 0 such that

sup
t∈[0,T]

{

e
Ms

m(t)

(

∫ 1

0
u dx

)2
}

≤ C∥(u, h)∥2
E
,

for all (u, h) ∈ E, where m = m(t) is the the function defined in (5.3).

Proof. Firstly, for s > 0, let us consider (u, h) ∈ E and the function q : [0, T] → R

q(t) := e
Ms

m(t)

(

∫ 1

0
u(x, t)dx

)2

,

for all t ∈ [0, T], where Ms > 0 will be specified later.

Claim 1: Given s > 0, there exist Ms > 0 and C > 0 such that

e
Ms

m(t) ≤ Cρ2
1
.

Indeed, for any K > 0, we know that

e
−k
m ≤ 2

k2
[m(t)]2 for all t ∈ [0, T].
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In particular, taking k = sβλ and Ms =
sβλ

2 , we obtain

ρ2
1
= e2sAς−2 ≥ e−2λm2e2sA ≥ e−2λk2

2
e2sA− k

m = Cλ,se
2sβλ−k

m = Cλ,se
2Ms

m , (5.14)

where Cλ,s =
e−2λs2β2

λ
2 .

Claim 2: There exist K1 = K1(λ, s) > 0 and K2 = K2(λ, s) > 0, such that

ρ2
3

m2
≤ K1ρ2

1
and e

2Ms
m ≤ K2ρ2

3
. (5.15)

As a consequence, q ∈ H1(0, T) →֒ C0([0, T]).

In fact, arguing as in Claim 1, we can get

ρ2
3

m4
=

e2sAτ−2

µ2
≤ ρ2

1

µ6
≤ K1ρ2

1

and

ρ2
3
=

e2sAm6

µ6
≥ e−6λe2sA k6

6!
e
−k
m =

e−6λk6

6!
e

2sβλ−k
m =

1

K2
e

2Ms
m ,

where we have taken k = sβλ, Ms =
sβλ

2 and K2 = 6!
e−6λ(sβλ)6 . In this case,

∫ T

0
|q|2 dt ≤

∫ T

0

∫ 1

0
e

2Ms
m |u|2 dxdt ≤ 1

Cλ,s

∫ T

0

∫ 1

0
ρ2

1
|u|2 dxdt ≤ C∥(u, h)∥2

E

and

∫ T

0
|q′|2 dt ≤ C

(

∫ T

0

∫ 1

0

M2
s (m

′)2

m4
e

2Ms
m |u|2 dxdt +

∫ T

0

∫ 1

0
e

2Ms
m |ut|2 dxdt

)

≤ C

(

∫ T

0

∫ 1

0

ρ2
3

m4
|u|2 dxdt +

∫ T

0

∫ 1

0
ρ2

3
|ut|2 dxdt

)

≤ C

(

∫ T

0

∫ 1

0
ρ2

1
|u|2 dxdt +

∫ T

0

∫ 1

0
ρ2

3
|ut|2 dxdt

)

≤ C∥(u, h)∥2
E,

following the desired result.

Proposition 5.12. The mapping H belongs to C1(E, F).

Proof. It is clear that H2 ∈ C1. We will prove that H1 has a continuous Gateaux derivative on

E. In fact, some well-known calculation allows us to see that the Gateaux derivative of H1 at

(u, h) ∈ E is given by

H′
1(u, h)(ū, h̄) := ūt − ℓ

′
(

∫ 1

0
u dx

)

∫ 1

0
ū dx (xαux)x − ℓ

(

∫ 1

0
u dx

)

(xαūx)x − h̄χω,

for each (ū, h̄) ∈ E. We just need to prove that the Gateaux derivative H′
1 : E → L(E; L2(Q; ρ2

1
))

is continuous. On this purpose, given (u, h) ∈ E, let ((un, hn))∞

n=1 be a sequence in E such that
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∥(un, hn)− (u, h)∥E → 0. We must prove that ∥H′
1(u

n, hn)− H′
1(u, h)∥L(E;L2(Q;ρ2

1
)) → 0. In fact,

taking (ū, h̄) on the unit sphere of E, we can see that

∥(H′
1(u

n, hn)− H′
1(u, h))(ū, h̄)∥2

ρ2
1

=
∫ T

0

∫ 1

0
ρ2

1

∣

∣

∣

∣

− ℓ
′
(

∫ 1

0
un dx

)

∫ 1

0
ū dx (xαun

x)x − ℓ

(

∫ 1

0
un dx

)

(xαūx)x dx dt

+ ℓ
′
(

∫ 1

0
u dx

)

∫ 1

0
ū dx (xαux)x + ℓ

(

∫ 1

0
u dx

)

(xαūx)x dx dt

∣

∣

∣

∣

2

≤ C
∫ T

0

∫ 1

0
ρ2

1

(

∫ 1

0
ū dx

)2 (

ℓ
′
(

∫ 1

0
un dx

))2

|(xα(un
x − ux))x|2 dx dt

+ C
∫ T

0

∫ 1

0
ρ2

1

(

∫ 1

0
ū dx

)2 (

ℓ
′
(

∫ 1

0
un dx

)

− ℓ
′
(

∫ 1

0
u dx

))2

|(xαun
x)x|2 dx dt

+ C
∫ T

0

∫ 1

0
ρ2

1

(

∫ 1

0
ū dx

)2 (

ℓ

(

∫ 1

0
un dx

)

− ℓ

(

∫ 1

0
u dx

))2

|(xαūx)x|2 dx dt.

Proceeding as in [12], using that ℓ ∈ C1(R, R) has bounded derivatives and applying

Lebesgue’s dominated convergence theorem, we can prove that each of these three last in-

tegral converges to zero, as n → +∞. Hence, H′
1 is continuous, as desired.

Proof of Theorem 1.4. We already know that the mapping H : E → F is well defined and

belongs to C1(E, F) (Propositions 5.10 and 5.12). We state that H′(0, 0) ∈ L(E, F) is onto.

In fact, given (g, u0) ∈ F = L2(Q; ρ2
1
) × H1

α, we apply Proposition 5.7 in order to obtain

(u, h) ∈ L2(Q; ρ2
1
)× L2(ωT; ρ2

3
) which solves (5.2) and satisfies (5.8). It means that (u, h) ∈ E

and H′(0, 0)(u, h) = (g, u0), as desired.

Hence, by Lyusternik’s inverse mapping theorem (Theorem 5.1) , there exist ε > 0 and a

mapping H̃ : Bε(0) ⊂ L2(Q; ρ2
1
)× H1

α → E such that

H(H̃(y)) = y for each y ∈ Bε(0) ⊂ L2(Q; ρ2
1
)× H1

α.

In particular, if ū0 ∈ H1
α and ∥ū0∥H1

α
< ε, we conclude that (ū, h̄) = H̃(0, ū0) ∈ E solves

H(ū, h̄) = (0, ū0). Finally, since ū ∈ L2(Q; ρ2
1
), we get ū(x, T) = 0 almost everywhere in [0, 1]

(see Remark 5.5). It completes the proof.
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Abstract. In this paper, we introduce logistic equations with Stieltjes derivatives and
provide explicit solution formulas. As an application, we present a population model
which involves intraspecific competition, periods of hibernation, as well as seasonal
reproductive cycles. We also deal with various forms of Stieltjes integral equations,
and find the corresponding logistic equations. We show that our work extends earlier
results for dynamic equations on time scales, which served as an inspiration for this
paper.
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1 Introduction

The logistic equation is ubiquitous in population dynamics. The simplest version of this
equation, which was proposed by Pierre-François Verhulst in 1838 (see [2]), has the form

x′(t) = rx(t)

(
1 − x(t)

K

)
,

where x(t) represents the size of a population at time t, r is the population growth rate, and
K is the carrying capacity of the environment, i.e., the maximum population size that can
be sustained by the environment. More realistic models assume that r and K are no longer
constants and are, in fact, functions of time, which leads to the equation

x′(t) = r(t)x(t)

(
1 − x(t)

K(t)

)
. (1.1)

BCorresponding author. Email: slavik@karlin.mff.cuni.cz
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Observe that the logistic equation above is nonlinear; however, dividing Eq. (1.1) by −x(t)2

and substituting y(t) = 1/x(t), we obtain the nonhomogeneous linear equation

y′(t) = −r(t)y(t) +
r(t)

K(t)
,

whose solution can be obtained using the variation of constants formula. Conversely, starting
with the general first-order nonhomogenous linear equation

y′(t) = p(t)y(t) + f (t)

and performing the change of variables x(t) = 1/y(t), we get the logistic equation

x′(t) = −p(t)x(t)− f (t)x(t)2.

Thus, the logistic equation can be regarded as an equation for x = 1/y, where y is a (nonzero)
solution of a first-order nonhomogenous linear equation. This idea has been employed in [3],
which deals with dynamic equations on time scales. Beginning with the first-order nonhomo-
geneous linear ∆-dynamic equation

u∆(t) = p(t)u(t) + f (t), (1.2)

the authors found that y = 1/u satisfies

y∆(t) = −(p(t) + f (t)y(t))y(σ(t)), (1.3)

where σ is the forward jump operator. Similarly, starting with the adjoint equation of Eq. (1.2),
namely,

v∆(t) = −p(t)v(σ(t)) + f (t)

they found that x = 1/v satisfies

x∆(t) = (p(t)− f (t)x(σ(t))x(t). (1.4)

Hence, it is reasonable to refer to Eq. (1.3) and Eq. (1.4) as to logistic dynamic equations.
In the present paper, we deal with two classes of equations that are more general than

dynamic equations, and whose solutions need not be continuous. First, we focus on Stieltjes
differential equations, which were introduced and studied e.g. in [7–12, 14]. The concept of
the Stieltjes derivative of a function with respect to a left-continuous nondecreasing function
g is recalled in Section 2, where we also recall some basic facts on linear Stieltjes differential
equations. In Section 3, we show that if u is a (nonzero) solution of the Stieltjes differential
equation

u′
g(t) = p(t)u(t) + f (t), (1.5)

then y = 1/u is a solution of

y′g(t)(1 + (p(t) + f (t)y(t))∆+g(t)) + p(t)y(t) + f (t)y(t)2 = 0 (1.6)

(where ∆+g(t) = g(t+)− g(t)), or equivalently

y′g(t) = −(p(t) + f (t)y(t))y(t+).
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Similarly, if v is a solution of the adjoint linear equation to Eq. (1.5), i.e.,

v′g(t) = − p(t)

1 + p(t)∆+g(t)
v(t) +

f (t)

1 + p(t)∆+g(t)
, (1.7)

then x = 1/v satisfies

x′g(t)(1 + ∆+g(t) f (t)x(t))− p(t)x(t) + f (t)x(t)2 = 0, (1.8)

or equivalently
x′g(t) = (p(t)− f (t)x(t+))x(t).

In view of these facts, we refer to Eq. (1.6) and Eq. (1.8) as to logistic equations with Stieltjes
derivatives. We provide explicit solution formulas for both equations.

In Section 4, we show that the logistic ∆-dynamic equations (1.3) and (1.4) represent special
cases of the Stieltjes differential equations (1.6) and (1.8) corresponding to a suitable function g.

Theoretical results on logistic differential equations with Stieltjes derivatives are illustrated
on an example in Section 5. It describes a simple model of grizzly bears, whose population dy-
namics involves competition between individuals, periods of hibernation, as well as a seasonal
reproductive cycle.

The second part of the paper deals with Stieltjes integral equations. In Section 6, we recall
some basic properties of Stieltjes integrals, and present a generalization of the quotient rule;
as far as we are aware, this is the first appearance of the quotient rule for Stieltjes integrals in
the literature.

In Section 7, we consider three types of linear nonhomogeneous Stieltjes integral equations,
namely

x(t) = x(t0) +
∫ t

t0

(p(s)x(s) + f (s))dg(s),

as well as the pair of dual equations

x(t) = x(t0) +
∫ t

t0

(p(s)x(s−) + f (s))dg(s),

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s+) + f (s))dg(s),

which were recently studied in [13, 20]. For each of the three equations, we find the cor-
responding logistic equation satisfied by the function y = 1/x. In comparison with earlier
sections, we only assume that g has bounded variation, and do not require left-continuity.
Because of this, the corresponding theory covers not only ∆-dynamic equations on time scales
(where the corresponding g is left-continuous), but also ∇-dynamic equations (where g is
right-continuous). These facts are utilized in Section 8, where we explore the relations be-
tween Stieltjes integral versions of the logistic equation and both types of dynamic equations.

2 Preliminaries on Stieltjes derivatives

Let g : R → R be a nondecreasing and left-continuous function. We shall denote by µg the
Lebesgue–Stieltjes measure associated to g given by

µg([c, d)) = g(d)− g(c), c, d ∈ R, c < d,
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see [6, 17, 18]. We will use the term “g-measurable” for a set or function to refer to µg-mea-
surability in the corresponding sense, and we denote by L1

g(X, R) the set of Lebesgue–Stieltjes
µg-integrable functions on a g-measurable set X with values in R, whose integral we denote
by ∫

X
f (s)dµg(s), f ∈ L1

g(X, R).

Similarly, we will talk about properties holding g-almost everywhere in a set X (shortened
to g-a.e. in X), or holding for g-almost all (or simply, g-a.a.) x ∈ X, as a simplified way to
express that they hold µg-almost everywhere in X or for µg-almost all x ∈ X, respectively.

Define

Cg = {t ∈ R : g is constant on (t − ε, t + ε) for some ε > 0},

Dg = {t ∈ R : ∆+g(t) > 0}.

Observe that, as pointed out in [9], the set Cg has null g-measure and it is open in the usual
topology, so it can be uniquely expressed as the countable union of open disjoint intervals,
say

Cg =
⋃

n∈N

(an, bn),

for some an, bn ∈ [−∞,+∞], n ∈ N. With this notation, we also define

N−
g = {an ∈ R : n ∈ N} \ Dg, N+

g = {bn ∈ R : n ∈ N} \ Dg, Ng = N−
g ∪ N+

g .

We are now in position to introduce the definition of the Stieltjes derivative of a real-valued
function as in [9, 11].

Definition 2.1. Let f : R → R and t ∈ R \ Cg. We define the Stieltjes derivative, or g-derivative,
of f at t as follows, provided the corresponding limit exists:

f ′g(t) =





lim
s→t

f (s)− f (t)

g(s)− g(t)
, t ̸∈ Dg ∪ Ng,

lim
s→t−

f (s)− f (t)

g(s)− g(t)
, t ∈ N−

g ,

lim
s→t+

f (s)− f (t)

g(s)− g(t)
, t ∈ Dg ∪ N+

g ,

In that case, we say that f is g-differentiable at t.

Remark 2.2. It is important to note that, as explained in [11, Remark 2.2], for t ∈ Ng we have

f ′g(t) = lim
s→t

f (s)− f (t)

g(s)− g(t)
,

as the domain of the quotient function gives the corresponding one-sided limit. Furthermore,
since g is a regulated function, it follows that the g-derivative of f at a point t ∈ Dg exists if
and only if f (t+) exists and, in that case,

f ′g(t) =
∆+ f (t)

∆+g(t)
.
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The following result, [11, Proposition 2.5], contains some basic properties of Stieltjes
derivatives such as linearity and the product and quotient rules.

Proposition 2.3. Let f1, f2 : [a, b] → R be two g-differentiable functions at t ∈ R \ Cg. Then:

• The function λ1 f1 + λ2 f2 is g-differentiable at t for any λ1, λ2 ∈ R and

(λ1 f1 + λ2 f2)
′
g (t) = λ1 ( f1)

′
g (t) + λ2 ( f2)

′
g (t).

• The product f1 f2 is g-differentiable at t and

( f1 f2)
′
g (t) = ( f1)

′
g (t) f2(t) + ( f2)

′
g (t) f1(t) + ( f1)

′
g (t) ( f2)

′
g (t)∆

+g(t).

• If f2(t) ( f2(t) + ( f2)′g(t)∆+g(t)) ̸= 0, the quotient f1/ f2 is g-differentiable at t and

(
f1

f2

)′

g

(t) =
( f1)

′
g (t) f2(t)− ( f2)

′
g (t) f1(t)

f2(t) ( f2(t) + ( f2)′g(t)∆+g(t))
. (2.1)

Next, we present the concept of g-absolute continuity introduced in [9], as well as some of
its properties. For simplicity, we introduce such concept as part of the following result from
[9, Proposition 5.4].

Theorem 2.4. Let F : [a, b] → R. The following conditions are equivalent:

1. The function F is g-absolutely continuous on [a, b] according to the following definition: for

every ε > 0, there exists δ > 0 such that for every open pairwise disjoint family of subintervals

{(an, bn)}m
n=1 satisfying

m

∑
n=1

(g(bn)− g(an)) < δ,

we have
m

∑
n=1

|F(bn)− F(an)| < ε.

2. The function F satisfies the following conditions:

(i) there exists F′
g(t) for g-a.a. t ∈ [a, b);

(ii) F′
g ∈ L1

g([a, b), R);

(iii) for each t ∈ [a, b],

F(t) = F(a) +
∫

[a,t)
F′

g(s)dµg(s). (2.2)

Remark 2.5. Observe that the equality in Eq. (2.2) is, indeed, true for t = a as we are consid-
ering the integral over the empty set, which makes the integral null.

We denote by ACg([a, b], R) the set of g-absolutely continuous functions in [a, b] with
values on R. With this notation, we present [9, Proposition 2.4], a result that, in a way, is the
converse of Theorem 2.4.

Theorem 2.6. Let f ∈ L1
g([a, b), R). Then, the function F : [a, b] → R defined as

F(t) =
∫

[a,t)
f (s)dµg(s),

is an element of ACg([a, b], R) and F′
g(t) = f (t) for g-a.a. t ∈ [a, b).
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We include the following lemma that, to the best of our knowledge, is not available in the
literature. (Only the fact that if f has bounded variation and is bounded away from zero, then
1/ f has bounded variation, is known; see for example [1, Exercise 1.1].) This result shows
that, under certain conditions, the multiplicative inverse of a g-absolutely continuous function
is also g-absolutely continuous.

Lemma 2.7. Let f : [a, b] → R be a regulated function such that

f (t) ̸= 0, t ∈ [a, b]; f (t+) ̸= 0, t ∈ [a, b); f (t−) ̸= 0, t ∈ (a, b].

Then, there exists M > 0 such that | f (t)| ≥ M for all t ∈ [a, b]. Furthermore:

(i) If f has bounded variation on [a, b], then so does 1/ f .

(ii) If f is g-absolutely continuous on [a, b], then so is 1/ f .

Proof. First, note that for each t ∈ (a, b), f (t−), f (t+) ̸= 0 so we can find δt > 0 such that

| f (s)| > | f (t−)|
2

, s ∈ (t − δt, t) and | f (s)| > | f (t+)|
2

, s ∈ (t, t + δt).

Consequently, | f (s)| ≥ Mt := min{| f (t−)|/2, | f (t+)|/2, | f (t)|} > 0 for all s ∈ (t − δt, t + δt).
A similar reasoning shows that there exist δa, δb > 0 such that

| f (s)| ≥ Ma := min
{ | f (a+)|

2
, | f (a)|

}
, s ∈ [a, a + δa),

| f (s)| ≥ Mb := min
{ | f (b−)|

2
, | f (b)|

}
, s ∈ (b − δb, b].

Note that the family {(t − δt, t + δt)}t∈[a,b] is an open cover of [a, b], which is compact, so there
must be a finite subcover, i.e., there exist t1, t2, . . . , tN ∈ [a, b] such that {(tk − δtk

, tk + δtk
)}N

k=1
covers [a, b]. Now, it is enough to take M = min{Mt1 , Mt2 , . . . , MtN

} to obtain the first part of
the result.

Now, in order to prove (i)–(ii), note that given c, d ∈ [a, b], c < d, we have
∣∣∣∣

1
f (d)

− 1
f (c)

∣∣∣∣ =
∣∣∣∣

f (c)− f (d)

f (d) f (c)

∣∣∣∣ ≤
| f (c)− f (d)|

M2 . (2.3)

Assume that f has bounded variation on [a, b]. Let a = t0 < t1 < · · · < tm = b be
a partition of [a, b]. Then, (2.3) yields

m

∑
i=1

∣∣∣∣
1

f (ti)
− 1

f (ti−1)

∣∣∣∣ ≤
1

M2

m

∑
i=1

| f (ti−1)− f (ti)| ≤
1

M2 var( f , [a, b]),

which shows that 1/ f has bounded variation on [a, b].
Finally, assume that f is g-absolutely continuous on [a, b] and let ε > 0. In that case, there

exists δ > 0 such that if {(an, bn)}m
n=1 is a family of open pairwise disjoint subintervals of [a, b]

satisfying that ∑
m
n=1(g(bn)− g(an)) < δ, then

m

∑
n=1

| f (bn)− f (an)| < M2ε.
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Consequently, if {(an, bn)}m
n=1 is a family of open pairwise disjoint subintervals satisfying

∑
m
n=1(g(bn)− g(an)) < δ, using (2.3) we have

m

∑
n=1

∣∣∣∣
1

f (bn)
− 1

f (an)

∣∣∣∣ ≤
1

M2

m

∑
n=1

| f (bn)− f (an)| < ε,

which proves that 1/ f ∈ ACg([a, b], R).

As shown in [8, Proposition 5.5], every g-absolutely continuous function is g-continuous
according to the following definition from [8].

Definition 2.8. A function f : [a, b] → R is g-continuous at a point t ∈ [a, b], or continuous with

respect to g at t, if for every ε > 0, there exists δ > 0 such that

| f (t)− f (s)| < ε, for all s ∈ [a, b], |g(t)− g(s)| < δ.

If f is g-continuous at every point t ∈ A ⊂ [a, b], we say that f is g-continuous on A.

The following result, [8, Proposition 3.2], describes some properties of g-continuous func-
tions, and thus, of g-absolutely continuous functions.

Proposition 2.9. If f : [a, b] → R is g-continuous on [a, b], then:

• f is continuous from the left at every t ∈ (a, b];

• if g is continuous at t ∈ [a, b), then so is f ;

• if g is constant on some [α, β] ⊂ [a, b], then so is f .

In particular, g-continuous functions on [a, b] are continuous on [a, b] when g is continuous on [a, b).

Finally, we provide some context and information on differential problems with Stieltjes
derivatives of the form

u′
g(t) = F(t, u(t)), u(t0) = u0, (2.4)

with t0, T, u0 ∈ R, T > 0, and F : [t0, t0 + T]× R → R. Let us start by clarifying the concept of
solution for this type of equations.

Definition 2.10. Given τ ∈ (0, T], a solution of Eq. (2.4) on [t0, t0 + τ] is a function u ∈
ACg([t0, t0 + τ], R) such that u(t0) = u0 and

u′
g(t) = F(t, u(t)), g-a.a. t ∈ [t0, t0 + τ).

As usual, one of the most important equations in the context of Stieltjes derivatives is the
linear differential equation, which has been deeply studied in [7,8,11]. In the following result,
which can be found in [11, Theorem 3.2] or, more generally, in [7, Theorem 4.3], we introduce
the g-exponential map, the unique solution of the homogeneous linear problem.

Theorem 2.11. Let p ∈ L1
g([t0, t0 + T), R) be such that

1 + p(t)∆+g(t) ̸= 0, for all t ∈ [t0, t0 + T) ∩ Dg. (2.5)
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Then, the set T−
p = {t ∈ [t0, t0 + T)∩ Dg : 1+ p(t)∆+g(t) < 0} has finite cardinality. Furthermore,

if T−
p = {t1, . . . , tk}, t0 ≤ t1 < t2 < · · · < tk < tk+1 = t0 + T, then the map p̂ : [t0, t0 + T) → R

defined as

p̂(t) =





p(t), if t ∈ [t0, t0 + T)\Dg,

log(1 + p(t)∆+g(t))

∆+g(t)
, if t ∈ [t0, t0 + T) ∩ Dg,

belongs to L1
g([t0, t0 + T), R); the map expg(p, ·) : [t0, t0 + T] → (0,+∞) given by

expg(p, t) =





exp
(∫

[t0,t)
p̂(s)dµg(s)

)
, if t0 ≤ t ≤ t1,

(−1)j exp
(∫

[t0,t)
p̂(s)dµg(s)

)
, if tj < t ≤ tj+1, j = 1, . . . , k,

is g-absolutely continuous on [t0, t0 + T]; and the function u(t) = u0 expg(p, t), t ∈ [t0, t0 + T], is

the unique solution of

u′
g(t) = p(t)u(t), u(t0) = u0.

Finally, in [11, Theorem 3.5] and [7, Proposition 4.12], using the method of variation of
constants, the authors obtained the explicit expression of the unique solution of the nonho-
mogeneous linear equation, which we present in the next theorem.

Theorem 2.12. Let p, f ∈ L1
g([t0, t0 + T), R) and suppose that (2.5) holds. Then, the function

u : [t0, t0 + T] → R defined as

u(t) = x0 expg(p, t) + expg(p, t)
∫

[t0,t)

f (s)

1 + p(s)∆+g(s)
expg(p, s)−1dµg(s), t ∈ [a, b], (2.6)

is the unique solution of

u′
g(t) = p(t)u(t) + f (t), u(t0) = u0. (2.7)

3 The logistic equation in the context of Stieltjes derivatives

In the setting of ordinary differential equations and dynamic equations on time scales, one
way of defining the logistic equation is to consider it as the equation for which a change of
variables of the form u(t) = (x(t))−1 yields a linear equation in the corresponding setting.
Hence, following the reasonings in [5, Section 2.4], we will obtain the form of the logistic
equation in the context of Stieltjes derivatives through the mentioned change of variables.

In what follows we assume that x0, t0, T ∈ R, T > 0. Let us start by looking at the change
of variables above. Suppose u is a function which is a solution of Eq. (2.7). If u(t) = (x(t))−1,
provided that the corresponding hypotheses are satisfied, we can compute the g-derivative
of x using Proposition 2.3. Indeed, clearly, the function 1 is g-differentiable everywhere (except
on Cg) and has null g-derivative so, under suitable conditions, (2.1) ensures that

x′g(t) = −
u′

g(t)

u(t)(u(t) + u′
g(t)∆

+g(t))
= − p(t)u(t) + f (t)

u(t)(u(t) + (p(t)u(t) + f (t))∆+g(t))

= − p(t) + f (t)(u(t))−1

1 + (p(t) + f (t)(u(t))−1)∆+g(t)

1
u(t)

= − p(t) + f (t)x(t)

1 + ∆+g(t)(p(t) + f (t)x(t))
x(t). (3.1)
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At this point, one might be inclined to define the logistic equation with Stieltjes derivatives
on [t0, t0 + T] as Eq. (3.1) as it is in the form of Eq. (2.4). However, in doing so, one needs
to require that any solution on [t0, t0 + τ) in the sense of Definition 2.10 must also satisfy
that 1 + ∆+g(t)(p(t) + f (t)x(t)) ̸= 0 for every t ∈ [t0, t0 + τ) ∩ Dg. Alternatively, instead of
Eq. (3.1), we can consider the more general equation

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, (3.2)

which no longer requires such consideration at the cost of moving away from problems of
the form (2.4). Observe that when the Stieltjes derivative coincides with the usual derivative
(namely, when g = Id), Eq. (3.2) yields the usual logistic equation.

After these considerations, we define the logistic equation with Stieltjes derivatives as the
initial value problem

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, x(t0) = x0, (3.3)

with p, f ∈ L1
g([t0, t0 + T), R). Naturally, since Eq. (3.3) is no longer in the framework of

Eq. (2.4), we need to define the concept of solution for this problem in a similar manner.

Definition 3.1. Given τ ∈ (0, T], a solution of Eq. (3.3) on [t0, t0 + τ] is a function x ∈
ACg([t0, t0 + τ], R) such that x(t0) = x0 and

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, g-a.a. t ∈ [t0, t0 + τ).

Remark 3.2. Observe that, if x0 = 0, the map x(t) = 0, t ∈ [t0, t0 + T], is a solution of Eq. (3.3)
so, without loss of generality, we shall assume that x0 ̸= 0 for the remaining of the section.

Remark 3.3. Remark 2.2 and Proposition 2.9 imply that, for any x ∈ ACg([t0, t0 + τ], R),

x′g(t)∆
+g(t) = x(t+)− x(t), t ∈ [t0, t0 + τ].

Hence, it is clear that x is a solution of Eq. (3.3) if and only if it is a solution of

x′g(t) = −(p(t) + f (t)x(t))x(t+), x(t0) = x0. (3.4)

The following result provides an explicit expression for a solution of Eq. (3.3), which is
obtained through the solution of the nonhomogeneous linear equation, Eq. (2.6).

Theorem 3.4. Let p, f ∈ L1
g([t0, t0 + T), R) be such that (2.5) holds and define

φ(t) =
1
x0

+
∫

[t0,t)

f (s)

1 + p(s)∆+g(s)
expg(p, s)−1dµg(s), t ∈ [t0, t0 + T).

If there exists τ ∈ (0, T] such that φ(t) ̸= 0 for t ∈ [t0, t0 + τ] and

φ(t) ̸= − f (t)∆+g(t)

1 + p(t)∆+g(t)
expg(p, t)−1, t ∈ [t0, t0 + τ] ∩ Dg, (3.5)

then, the map x : [t0, t0 + τ] → R defined as

x(t) =
1

expg(p, t)φ(t)
, t ∈ [t0, t0 + τ] (3.6)

is a solution of Eq. (3.3) on [t0, t0 + τ].
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Proof. Let us denote
Φ(t) = expg(p, t)φ(t), t ∈ [t0, t0 + T).

Observe that Theorem 2.12 ensures that Φ ∈ ACg([t0, t0 + T], R). Also, there exists N ⊂
[t0, t0 + τ) such that µg(N) = 0 and

Φ′
g(t) = p(t)Φ(t) + f (t), t ∈ [t0, t0 + τ) \ N.

Furthermore, for t ∈ [t0, t0 + τ), since φ(t) ̸= 0 by hypothesis and expg(p, t) ̸= 0 by definition,
we have that Φ(t) ̸= 0, which ensures that x is well-defined. Hence, in order to prove that
x ∈ ACg([t0, t0 + T], R) it is enough to show that

∃ lim
s→t−

Φ(s) ̸= 0, t ∈ (t0, t0 + τ] (3.7)

∃ lim
s→t+

Φ(s) ̸= 0, t ∈ [t0, t0 + τ) (3.8)

as in that case, Lemma 2.7 ensures the g-absolute continuity.
Since Φ ∈ ACg([t0, t0 + T], R), Φ is left-continuous at every t ∈ (t0, t0 + τ] (see Propo-

sition 2.9), so for each t ∈ (t0, t0 + τ], Φ(t−) = Φ(t) ̸= 0, which proves (3.7). Similarly, if
t ∈ [t0, t0 + τ) \ Dg, Proposition 2.9 ensures that Φ is continuous at t, so Φ(t+) = Φ(t) ̸= 0.
Finally, if t ∈ [t0, t0 + τ) ∩ Dg, then t ̸∈ N, so it follows from Remark 2.2 and (3.5) that

Φ(t+) = Φ(t) + Φ′
g(t)∆

+g(t)

= Φ(t) + (p(t)Φ(t) + f (t))∆+g(t)

= (1 + p(t)∆+g(t))Φ(t) + f (t)∆+g(t)

= (1 + p(t)∆+g(t)) expg(p, t)φ(t) + f (t)∆+g(t) ̸= 0,

which shows that (3.8) holds.
Finally, we prove that x satisfies the equation g-a.e. in [t0, t0 + τ]. Note that the reasoning

above and the fact that Φ ̸= 0 ensure that Φ(t) + Φ′
g(t)∆

+g(t) ̸= 0 for all t ∈ [t0, t0 + τ) \ N.
Hence, given that the map h(t) = 1, t ∈ [t0, t0 + τ), is g-differentiable on [t0, t0 + τ) with null
g-derivative, Proposition 2.3 guarantees that x is g-differentiable for each t ∈ [t0, t0 + τ) \ N

and

x′g(t) = −
Φ′

g(t)

Φ(t)(Φ(t) + Φ′
g(t)∆

+g(t))

= − p(t)Φ(t) + f (t)

Φ(t)(1 + (p(t)Φ(t) + f (t))∆+g(t))
= − p(t) + f (t)x(t)

1 + (p(t) + f (t)x(t))∆+g(t)
x(t), (3.9)

so we have that, for t ∈ [t0, t0 + τ) \ N,

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2

= −(p(t) + f (t)x(t))x(t) + p(t)x(t) + f (t)x(t)2 = 0,

which finishes the proof.

Remark 3.5. Let us briefly reflect on the conditions that we are requiring on the map φ in the
hypotheses of Theorem 3.4. When we ask for φ to not vanish on the interval, we are essentially
asking for the solution of the nonhomogeneous linear equation to be different from zero on
the whole interval, which allows us to properly define the map x on that set. Observe that
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this condition is also necessary in the ODE setting. Condition (3.5), on the other hand, is a
condition that is only relevant in this context (as Dg = ∅ when g = Id) and it is equivalent to
the requirements for the quotient rule in Proposition 2.3, guaranteeing that the derivative of x

exists wherever the derivative of the solution of the nonhomogeneous linear equation exists.

A careful reader might have noticed that in the proof of Theorem 3.4, we obtained (3.9).
In other words, we showed that the map x in (3.6) satisfies Eq. (3.1). This might be a bit
surprising since Eq. (3.2) is the more general equation. However, as we show in the next
result, under the assumption that (2.5) holds, Eq. (3.1) and Eq. (3.2) are equivalent problems
in the sense that a solution of one of the problems is a solution of the other one.

Proposition 3.6. Let τ ∈ (0, T] and assume that 1 + p(t)∆+g(t) ̸= 0 for all t ∈ [t0, t0 + τ) ∩ Dg.

If x : [t0, t0 + τ] → R is such that

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, g-a.a. t ∈ [t0, t0 + τ), (3.10)

then, 1 + (p(t) + f (t)x(t))∆+g(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ) and

x′g(t) = − p(t) + f (t)x(t)

1 + ∆+g(t)(p(t) + f (t)x(t))
x(t), g-a.a. t ∈ [t0, t0 + τ). (3.11)

Conversely, if x : [t0, t0 + τ] → R is such that (3.11) holds (in which case, we are implicitly

assuming that 1 + (p(t) + f (t)x(t))∆+g(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ)), then x satisfies (3.10).

Proof. First, let x : [t0, t0 + τ] → R be such that (3.10) holds. In that case, there exists N ⊂
[t0, t0 + τ) such that µg(N) = 0 and

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, t ∈ [t0, t0 + τ) \ N. (3.12)

Let us first show that

1 + (p(t) + f (t)x(t))∆+g(t) ̸= 0, t ∈ [t0, t0 + τ) \ N. (3.13)

Observe that this is clear for t ∈ [t0, t0 + τ) \ (N ∪Dg) as ∆+g(t) = 0 in that case. Thus, in order
to prove (3.13) we need to show that 1+(p(t)+ f (t)x(t))∆+g(t) ̸= 0 for all t ∈ [t0, t0 + τ)∩Dg.

Choose an arbitrary t ∈ [t0, t0 + τ) ∩ Dg and suppose for the sake of contradiction that
1 + (p(t) + f (t)x(t))∆+g(t) = 0. Then, since t ∈ Dg, we have ∆+g(t) > 0, so we can write
p(t) + f (t)x(t) = −1/∆+g(t). In that case, (3.12) yields

0 = p(t)x(t) + f (t)x(t)2 = (p(t) + f (t)x(t))x(t) = − x(t)

∆+g(t)
,

which means that x(t) = 0. Thus 0 = 1 + (p(t) + f (t)x(t))∆+g(t) = 1 + p(t)∆+g(t), which
contradicts the assumption of the result. Thus, (3.13) must hold.

Now, (3.11) is a direct consequence of (3.12) and (3.13), which finishes the proof of the first
part of the result. The second part of the result is trivial since we are implicitly assuming that
1 + (p(t) + f (t)x(t))∆+g(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ).

In [13, Section 3], the authors introduced the adjoint linear equation of Eq. (2.7) as the
equation

y′g(t) = − p(t)

1 + p(t)∆+g(t)
y(t) +

f (t)

1 + p(t)∆+g(t)
, y(t0) = y0, (3.14)
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with y0 ∈ R and p, f ∈ L1
g([t0, t0 + T], R) such that (2.5) holds. Observe that if we define

P(t) = − p(t)

1 + p(t)∆+g(t)
, F(t) =

f (t)

1 + p(t)∆+g(t)
, t ∈ [t0, t0 + T], (3.15)

then Eq. (3.14) can be rewritten as

y′g(t) = P(t)y(t) + F(t), y(t0) = y0,

i.e., it can be regarded as a particular case of Eq. (2.7) since [13, Lemma 3.4, statement (iii)]
ensures that P, F ∈ L1

g([t0, t0 + T], R) and, furthermore,

1 + P(t)∆+g(t) = 1 − p(t)

1 + p(t)∆+g(t)
∆+g(t) =

1
1 + p(t)∆+g(t)

̸= 0, t ∈ [t0, t0 + T) ∩ Dg.

Hence, we have a logistic equation associated with Eq. (3.14), which is determined by

0 = y′g(t)(1 + (P(t) + F(t)y(t))∆+g(t)) + P(t)y(t) + F(t)y(t)2

= y′g(t)
(

1 − p(t)∆+g(t)

1 + p(t)∆+g(t)
+

f (t)∆+g(t)

1 + p(t)∆+g(t)
y(t)

)
− p(t)

1 + p(t)∆+g(t)
y(t)

+
f (t)

1 + p(t)∆+g(t)
y(t)2

=
1

1 + p(t)∆+g(t)
(y′g(t)(1 + ∆+g(t) f (t)y(t))− p(t)y(t) + f (t)y(t)2).

Therefore, we define the adjoint logistic equation with Stieltjes derivatives – that is, the logistic
equation associated with the adjoint equation (3.14) – as the initial value problem

y′g(t)(1 + ∆+g(t) f (t)y(t))− p(t)y(t) + f (t)y(t)2 = 0, y(t0) = y0, (3.16)

with p, f ∈ L1
g([t0, t0 + T), R) such that (3.13) holds. This equation turns out to be a much

simpler version of Eq. (3.3).

Remark 3.7. In a similar fashion to Remark 3.3, we can see that Eq. (3.3) is equivalent to

y′g(t) = (p(t)− f (t)y(t+))y(t), y(t0) = y0. (3.17)

As a direct consequence of Theorem 3.4, we have the following result providing an explicit
solution for (3.16).

Theorem 3.8. Let p, f ∈ L1
g([t0, t0 + T), R) be such that (2.5) holds and define

ϕ(t) =
1
y0

+
∫

[t0,t)
f (s) expg(p, s)dµg(s), t ∈ [t0, t0 + T).

If there exists τ ∈ (0, T] such that ϕ(t) ̸= 0 for t ∈ [t0, t0 + τ] and

ϕ(t) ̸= − f (t) expg(p, t), t ∈ [t0, t0 + τ] ∩ Dg, (3.18)

then, the map y : [t0, t0 + τ] → R defined as

y(t) =
expg(p, t)

ϕ(t)
, t ∈ [t0, t0 + τ] (3.19)

is a solution of Eq. (3.16) on [t0, t0 + τ].
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Proof. First, observe that, given that (3.13) holds, y is a solution of Eq. (3.16) if and only if
x solves

y′g(t)(1 + (P(t) + F(t)y(t))∆+g(t)) + P(t)y(t) + F(t)y(t)2 = 0, y(t0) = y0, (3.20)

for P, F as in (3.15). Let us check that P, F satisfy the conditions of Theorem 3.4. Since we have
already shown that P, F ∈ L1

g([t0, t0 + T], R) and 1 + P(t)∆+g(t) ̸= 0, t ∈ [t0, t0 + T) ∩ Dg, all
that is left to do is check that the map φ in Theorem 3.4 satisfies the corresponding conditions
under our hypotheses.

First, observe that

F(t)

1 + P(t)∆+g(t)
=

f (t)

1 + p(t)∆+g(t)

1 − p(t)

1 + p(t)∆+g(t)
∆+g(t)

=

f (t)

1 + p(t)∆+g(t)
1

1 + p(t)∆+g(t)
∆+g(t)

= f (t)

for all t ∈ [t0, t0 + T]. Now, by definition,

φ(t) =
1
y0

+
∫

[t0,t)

F(s)

1 + P(s)∆+g(s)
expg(P, s)−1dµg(s)

=
1
y0

+
∫

[t0,t)
f (s) expg(p, s)dµg(s) = ϕ(t),

where we have used the identity expg(P, ·)−1 = expg(p, ·), see [7, Proposition 4.6]. Therefore,
Φ(t) = ϕ(t) ̸= 0 for t ∈ [t0, t0 + τ] and, using the identity expg(P, ·)−1 = expg(p, ·) once again,

φ(t) = ϕ(t) ̸= − f (t) expg(p, t) = − F(t)∆+g(t)

1 + P(t)∆+g(t)
expg(P, t)−1, t ∈ [t0, t0 + τ] ∩ Dg.

Therefore, φ satisfies the conditions in Theorem 3.4 so the map

y(t) =
1

expg(P, t)φ(t)
=

expg(p, t)

ϕ(t)
, t ∈ [t0, t0 + τ],

is a solution of Eq. (3.20) and, thus, a solution of Eq. (3.16) as we wanted to show.

Finally, note that it is possible to adapt Proposition 3.6 for (3.16) in a similar way to Theo-
rem 3.8, which yields the following result. We leave the proof to the reader.

Proposition 3.9. Let τ ∈ (0, T] and assume that 1 + p(t)∆+g(t) ̸= 0 for all t ∈ [t0, t0 + τ) ∩ Dg.

If y : [t0, t0 + τ] → R is such that

y′g(t)(1 + ∆+g(t) f (t)y(t))− p(t)y(t) + f (t)y(t)2 = 0, g-a.a. t ∈ [t0, t0 + τ), (3.21)

then, 1 + ∆+g(t) f (t)y(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ) and

y′g(t) =
p(t)− f (t)y(t)

1 + ∆+g(t) f (t)y(t)
y(t), g-a.a. t ∈ [t0, t0 + τ). (3.22)

Conversely, if y : [t0, t0 + τ] → R is such that (3.22) holds (in which case, we are implicitly

assuming that 1 + ∆+g(t) f (t)y(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ)), then y satisfies (3.21).
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4 Relations between Stieltjes differential equations and dynamic

equations

Throughout this section, we assume that the reader is familiar with time scale calculus and
dynamic equations. For more information on these topics, see [4, 5].

Let T be a time scale, t0, t0 + T ∈ T, T > 0, and denote [t0, t0 + T)T = [t0, t0 + T) ∩ T. The
aim of this section is the study of possible relations between the logistic equation with Stieltjes
derivatives, Eq. (3.3), and its corresponding counterpart in the context of dynamic equations
as described in [5],

x∆(t) = −(p(t) + f (t)x(t))x(σ(t)), t ∈ [t0, t0 + T)T, (4.1)

where x∆ denotes the ∆-derivative of x and σ : T → T is the forward jump operator. Here, we
assume that p and f are defined on the whole [t0, t0 + T) despite the fact that we only need
them to be defined on [t0, t0 + T)T for Eq. (4.1). We do this so that we can easily compare
Eq. (3.3) and Eq. (4.1). Similarly, we also want to consider the relations that might take place
between the adjoint logistic equation, Eq. (3.16), and the corresponding logistic equation that
can be deduced from the adjoint linear equation in [5], namely

y∆(t) = (p(t)− f (t)y(σ(t)))y(t), t ∈ [t0, t0 + T)T. (4.2)

In order to discuss the possible relations between the different logistic equations, we need
to consider a context in which we can compare the two types of differential problems. In
[8, Section 8.3] and [12, Section 3.3.3], it is shown that equations on time scales can be regarded
as a particular case of Stieltjes differential equations when we consider the nondecreasing and
left-continuous map g : R → R defined as

g(t) =





t0, t ≤ t0,
inf{s ∈ T : s ≥ t}, t0 < t ≤ t0 + T,
t0 + T, t > t0 + T.

(4.3)

As pointed out in [8, Section 8.3], g(t) = t for all t ∈ [t0, t0 + T)T, from which it follows that

∆+g(t) = g(t+)− g(t) = inf{s ∈ T : s > t} − t = σ(t)− t = µ(t), t ∈ [t0, t0 + T)T, (4.4)

where µ : T → T denotes the graininess function.
Theorems 3.49 and 3.51 in [12] establish the mentioned relation between Stieltjes differen-

tial problems and dynamic equations on time scales. Furthermore, a closer look at the proofs
of these results shows that, in fact, the equivalence is between the Stieltjes derivative and
the ∆-derivative. We gathered this information in the following result. Observe that, unlike
[12, Theorem 3.49] we do not require continuity from the left at right-scattered points as such
condition is always satisfied for ∆-differentiable maps, see [4, Theorem 1.16 (i)].

Theorem 4.1. If u : [t0, t0 + T)T → R is ∆-differentiable for each t ∈ [t0, t0 + T)T, then the map

ũ = u ◦ g for g as in (4.3) is g-differentiable for g-a.a. t ∈ [t0, t0 + T) and, furthermore,

ũ(t) = u(t), ũ′
g(t) = u∆(t), g-a.a. t ∈ [t0, t0 + T).

Conversely, if ũ : [t0, t0 + T] → R is a g-continuous function which is g-differentiable for each

t ∈ [t0, t0 + T)T, then u = ũ|[t0,t0+T]T is ∆-differentiable on [t0, t0 + T)T and, furthermore,

u∆(t) = ũ′
g(t), t ∈ [t0, t0 + T)T.
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Now, given Theorem 4.1, the equivalence between Eq. (3.3) and Eq. (4.1) should be clear.
Indeed, if x satisfies Eq. (4.1), [4, Theorem 1.16 (iv)] ensures that

x∆(t) = −(p(t) + f (t)x(t))(x(t) + µ(t)x∆(t)), t ∈ [t0, t0 + T)T,

or, equivalently,

x∆(t)(1 + (p(t) + f (t)x(t))µ(t)) + p(t)x(t) + f (t)x(t)2 = 0, t ∈ [t0, t0 + T)T. (4.5)

Hence, Theorem 4.1 ensures that if x̃ = x ◦ g with g as in (4.3), then for g-a.a. t ∈ [t0, t0 + T),

0 = x̃′g(t)(1 + (p(t) + f (t)x̃(t))µ(t)) + p(t)x̃(t) + f (t)x̃(t)2

= x̃′g(t)(1 + (p(t) + f (t)x̃(t))∆+g(t)) + p(t)x̃(t) + f (t)x̃(t)2,

where the last equality follows from (4.4). Hence, x̃ satisfies Eq. (3.3).
Conversely, if x̃ is a g-continuous function satisfying Eq. (3.3), then x = x̃|[t0,t0+T]T is such

that

x∆(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, t ∈ [t0, t0 + T)T,

so, once again, given (4.4), we see that (4.5) holds. Now [4, Theorem 1.16 (iv)] is enough to
guarantee that x satisfies Eq. (4.1).

The equivalence between (3.16) and (4.2) is done in an analogous manner and we leave it
to the reader.

5 Applications to population models

Impulsive differential equations and equations on time scales can be regarded as particular
cases of differential equations with Stieltjes derivatives, see [8, Section 8]. This fact was taken
into account in [8, Section 9], where the authors showed that some real-life phenomena can
be modelled in the context of Stieltjes calculus. Similarly, in [10, Sections 5 and 6], the authors
used these relations to show that Stieltjes differential equations can be a better tool than
ODEs for population models of species that exhibit very short periods of reproductions or are
subject to dormant states in which the population size is unlikely to change in a noticeable
manner. With these ideas in mind, and bearing the applications of the usual logistic equation
for population models, we want to show that the logistic equations with Stieltjes derivative
introduced above can be an adequate tool to describe the behavior of certain species.

During the winter and early spring months, the grizzly bears, like many other bears, enter
a stupor stage, during which they reduce their activity as much as possible in order to survive
that time of the year. This is possible because, in the months prior to the hibernation stage,
they build a layer of fat that they will use to sustain themself during this dormant state.
Naturally, this might cause a population of grizzly bears to compete for resources during
the months leading to winter. Interestingly, the mating of the grizzly bear occurs during
this period of time when the grizzly bear is preparing itself for the winter. However, the
development of the embryos goes on hold until the hibernation stage, which eventually leads
to the introduction of newborn cubs towards the end of the stupor stage.

We claim that a logistic equation with Stieltjes derivatives can be used to represent the
evolution of a population of grizzly bears. To that end, we shall divide years into the four
different seasons and we shall assume that one unit of time, denoted by t, represents a full
season, which leads to the following classification of time intervals:
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Season Time intervals

Winter (4k, 4k + 1], k = 0, 1, 2, . . .
Spring (4k + 1, 4k + 2], k = 0, 1, 2, . . .
Summer (4k + 2, 4k + 3], k = 0, 1, 2, . . .
Fall (4k + 3, 4k + 4], k = 0, 1, 2, . . .

With this notation, the intervals (4k, 4k + 3
2 ], k = 0, 1, 2, . . . , represent the hibernation periods

of the population and, for simplicity, we shall assume that the remaining times of the year,
namely, (4k + 3

2 , 4k + 4], k = 0, 1, 2, . . . , represent the period of time when the bears prepare
for the next winter.

The next step is to select an adequate nondecreasing and left-continuous map g : R → R

which reflects the behavior explained above, keeping in mind the information in [10, Sec-
tion 5]: “[the map g] can be regarded as a time modulator. Discontinuities correspond to
sudden changes . . . while constancy intervals correspond to dormant states . . . The greater
the slope, the more influence the corresponding times have in the process”. Hence, we would
like the map g to exhibit the following properties:

(a) On intervals of the form (4k, 4k + 3
2 ], k = 0, 1, 2, . . . , the map g should remain constant

as during these times, the population is hibernating and, thus, very unlikely to change
drastically.

(b) At times of the form 4k + 3
2 , k = 0, 1, 2, . . . , the map g should possess a jump discon-

tinuity, representing the introduction of newborns into the population, which we shall
assume to happen simultaneously so that they can be represented by impulses. The
map g must be continuous everywhere else as there are no other sudden changes in the
population.

(c) In the months directly after new individuals are born, g must have a greater slope
as newborns are weaker and, therefore, the population size is more volatile. As time
progresses, the slope of the function should flatten as new individuals get stronger. In
the times immediately prior to the hibernation periods we would want g to have a less
steep slope, representing the slowing down of the population as they approach their
dormant state.

Since we will be assuming that the evolution of the population starts at t = 0, for simplicity,
we shall assume that g is constant on (−∞, 0]. Furthermore, given the cyclical nature of the
previously described annual phenomena, we will assume that there exists c ∈ R such that

g(t)− g(t − 4) = c, t ≥ 4. (5.1)

Observe that, in particular, this implies that ∆+g(t) = ∆+g( 3
2 ) for all t ∈ Dg.

An example of a map g : R → R satisfying conditions (a)–(c) and the extra assumptions is

g(t) =





0, t ∈
(
−∞,

3
2

]
,

1 + 5 sin
(

π

5

(
t − 3

2

))
, t ∈

(
3
2

, 4
]

,
(5.2)

and g(t) = g(4) + g(t − 4) for t > 4, see Figure 5.1.
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Figure 5.1: Graph of the map g in (5.2).

We now consider the initial value problem

x′g(t) = F(t, x(t)), x(0) = x0, (5.3)

where x0 > 0 and F : [0,+∞)× R → R is defined as

F(t, x) =





−βx, if t ∈
∞⋃

k=0

[
4k, 4k +

3
2

)
, x ∈ R,

αx, if t = 4k +
3
2

, k = 0, 1, 2, . . . , x ∈ R,

−βx (1 + γx) , if t ∈
∞⋃

k=0

(
4k +

3
2

, 4k + 4
)

, x ∈ R,

where β > 0 represents the death rate of the population; α > 0, the reproduction rate; and
γ > 0 represents the competition strength. Naturally, (5.3) only represents the evolution of
a population as long as x(t) ≥ 0, which will be the case for our solution as we will show later.
Furthermore, observe that for t ̸= 4k + 3

2 , k = 0, 1, 2, . . . , and x(t) > 0, we have x′g(t) ≤ 0,
which shows that the population is bound to decay over time; while x′g(t) ≥ 0 for t = 4k + 3

2 ,
k = 0, 1, 2, . . . and x(t) > 0, which is consistent with the fact that only new members of
the population are introduced at such times. Furthermore, during intervals of the form
(4k + 3, 4k + 4], k = 0, 1, 2, . . . , the population decays faster as the population increases. The
competition term is not present in the equation on the intervals (4k, 4k + 3

2 ], k = 0, 1, 2, . . . , as
during hibernation, there is no competition for resources. Of course, given our choice of g,
this is not relevant for (4k, 4k+ 3

2 ), k = 0, 1, 2, . . . , as they belong to Cg and, thus, have measure
zero. Nevertheless, for other choices of g this might be relevant.

Consider the maps p, f : [0,+∞) → R defined as

p(t) =





−β, if t ̸= 4k +
3
2

, k = 0, 1, 2, . . . ,

α, if t = 4k +
3
2

, k = 0, 1, 2, . . . ,
(5.4)

f (t) =





βγ, if t ∈
∞⋃

k=0

(
4k +

3
2

, 4k + 4
)

,

0, otherwise.

(5.5)

We claim that (5.3) can be rewritten as

x′g(t)(1 + ∆+g(t) f (t)x(t))− p(t)x(t) + f (t)x(t)2 = 0, x(0) = x0,
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that is, it is an adjoint logistic equation with Stieltjes derivatives of the form (3.16). Indeed,
given that f (t) = 0 for t ̸∈ ⋃∞

k=0(4k + 3
2 , 4k + 4), it follows that

x′g(t)(1 + ∆+g(t) f (t)x(t))− p(t)x(t) + f (t)x(t)2

= F(t, x(t))− p(t)x(t), t ̸∈
∞⋃

k=0

(
4k +

3
2

, 4k + 4
)

.

Observe that if t = 4k + 3
2 , k = 0, 1, 2, . . . , then

F(t, x(t))− p(t)x(t) = αx(t)− αx(t) = 0;

while for t ∈ ⋃∞
k=0
[
4k, 4k + 3

2

)
,

F(t, x(t))− p(t)x(t) = −βx(t)− (−β)x(t) = 0.

Now, if t ∈ ⋃∞
k=0(4k + 3

2 , 4k + 4), then t ̸∈ Dg = {4k + 3
2 : k = 0, 1, 2, . . . }, so ∆+g(t) = 0. Thus,

for t ∈ ⋃∞
k=0(4k + 3

2 , 4k + 4),

x′g(t)(1 + ∆+g(t) f (t)x(t))− p(t)x(t) + f (t)x(t)2 = F(t, x(t))− p(t)x(t) + f (t)x(t)2

= −βx(t) (1 + γx(t))− (−βx(t)) + βγx(t)2 = 0.

Thus, we can apply Theorem 3.8 on an interval [0, T], T > 0, to obtain a solution of (5.3). To
that end, we need to check that p and f in (5.4) and (5.5) satisfy the corresponding hypotheses.

Let T > 0. First, observe that p and f are Borel-measurable maps which guarantees that
they are g-measurable. Hence, since they are bounded, it follows that p, f ∈ L1

g([0, T), R).
Furthermore, observe that (2.5) holds since

1 + p(t)∆+g(t) = 1 + α∆+g(t) > 0, t ∈ [0, T] ∩ Dg.

Observe that, in particular, this implies that expg(p, t) > 0 for all t ∈ [0, T], see Theorem 2.11.
Consider

ϕ(t) =
1
x0

+
∫

[0,t)
f (s) expg(p, s)dµg(s), t ∈ [0, T).

Given that f (t) ≥ 0 for all t ∈ [0, T), it follows that ϕ is nondecreasing. Therefore, ϕ(t) ≥
ϕ(0) = x−1

0 > 0 for all t ∈ [0, T]. In particular, this proves that ϕ(t) ̸= 0 on [0, T], which
also shows that (3.18) holds since f (t) = 0 for t ∈ Dg. Therefore, since the conditions of
Theorem 3.8 are satisfied on the whole [0, T], we know that the map

x(t) =
expg(p, t)

ϕ(t)
, t ∈ [0, T],

is a solution of (5.3). Since expg(p, t), ϕ(t) > 0 for t ∈ [0, T], it follows that x(t) > 0 for all
t ∈ [0, T] as we claimed before. Given that Theorem 3.8 can be applied for each T > 0, we can
obtain a solution on [0,+∞). The following result provides a recursive expression for such
map.

Theorem 5.1. The solution of (5.3) on [0,+∞) given by Theorem 3.8 is the map x : [0,+∞) → R

defined as x(0) = x0 and, for k = 0, 1, 2, . . . ,

x(t) =





x(4k), 4k < t ≤ 4k +
3
2

x(4k) (1 + α̃)

eβ(g(t)−g(4k+ 3
2+)) + x(4k)γ (1 + α̃)

(
eβ(g(t)−g(4k+ 3

2+)) − 1
) , 4k +

3
2
< t ≤ 4(k + 1),

with α̃ = α∆+g( 3
2 ).
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Proof. First, observe that by definition, expg(p, 0) = 1 and ϕ(0) = x−1
0 , and so x(0) = x0.

Next, note that since g is constant on each interval of the form [4k, 4k + 3
2 ], k = 0, 1, 2, . . . , and

expg(p, ·), ϕ are g-absolutely continuous maps, they are also constant on the same interval,
see Proposition 2.9. Therefore,

x(t) =
expg(p, t)

ϕ(t)
=

expg(p, 4k)

ϕ(4k)
= x(4k), t ∈

[
4k, 4k +

3
2

]
, k = 0, 1, 2, . . . .

Hence, all that is left to do is to show that, for k = 0, 1, 2, . . . ,

x(t) =
x(4k) (1 + αk)

eβ(g(t)−g(4k+ 3
2+)) + x(4k)γ (1 + αk)

(
eβ(g(t)−g(4k+ 3

2+)) − 1
) , t ∈

[
4k +

3
2

, 4(k + 1)
]

.

Let k ∈ {0, 1, 2, . . . }. Observe that, by definition, for t ∈
(
4k + 3

2 , 4(k + 1)
]
,

expg(p, t) = exp
(∫

[0,t)
p̂(s)dµg(s)

)

= expg

(
p, 4k +

3
2

)
exp

(∫

[4k+ 3
2 ,t)

p̂(s)dµg(s)

)

= expg (p, 4k) exp

(∫

[4k+ 3
2 ,t)

p̂(s)dµg(s)

)
,

ϕ(t) =
1
x0

+
∫

[0,t)
f (s) expg(p, s)dµg(s)

= ϕ

(
4k +

3
2

)
+
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s)

= ϕ (4k) +
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s).

Now, for t ∈ (4k + 3
2 , 4(k + 1)],

∫

[4k+ 3
2 ,t)

p̂(s)dµg(s) =
∫

{4k+ 3
2}

p̂(s)dµg(s) +
∫

(4k+ 3
2 ,t)

p̂(s)dµg(s)

= p̂

(
4k +

3
2

)
∆+g

(
4k +

3
2

)
+
∫

(4k+ 3
2 ,t)

p(s)dµg(s)

= log
(

1 + p

(
4k +

3
2

)
∆+g

(
4k +

3
2

))
−
∫

(4k+ 3
2 ,t)

βdµg(s)

= log
(

1 + α∆+g

(
3
2

))
+ β

(
g

(
4k +

3
2
+

)
− g(t)

)

= log (1 + α̃) + β

(
g

(
4k +

3
2
+

)
− g(t)

)
.

Hence, for t ∈ (4k + 3
2 , 4(k + 1)], we have

exp

(∫

[4k+ 3
2 ,t)

p̂(s)dµg(s)

)
= (1 + α̃) eβ(g(4k+ 3

2+)−g(t)).
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On the other hand, for t ∈ (4k + 3
2 , 4(k + 1)], since f (4k + 3

2 ) = 0, we have
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s) =
∫

(4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s)

=
∫

(4k+ 3
2 ,t)

βγ expg(p, s)dµg(s) = −γ

∫

(4k+ 3
2 ,t)

−β expg(p, s)dµg(s)

= −γ

∫

(4k+ 3
2 ,t)

p(s) expg(p, s)dµg(s) = −γ

∫

(4k+ 3
2 ,t)

(expg(p, ·))′g(s)dµg(s).

Now, using the Fundamental Theorem of Calculus, Theorem 2.6, it follows that
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s) = −γ

(
expg(p, t)− expg

(
p, 4k +

3
2
+

))

= −γ expg (p, 4k) (1 + α̃)
(

eβ(g(4k+ 3
2+)−g(t)) − 1

)

= γ expg (p, 4k) (1 + α̃)
(

1 − eβ(g(4k+ 3
2+)−g(t))

)
.

Therefore, for t ∈ (4k + 3
2 , 4(k + 1)],

x(t) =

expg (p, 4k) exp

(∫

[4k+ 3
2 ,t)

p̂(s)dµg(s)

)

ϕ (4k) +
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s)

=
expg (p, 4k) (1 + α̃) eβ(g(4k+ 3

2+)−g(t))

ϕ (4k) + γ expg (p, 4k) (1 + α̃)
(

1 − eβ(g(4k+ 3
2+)−g(t))

)

=

expg (p, 4k)

ϕ(4k)
(1 + α̃) eβ(g(4k+ 3

2+)−g(t))

1 +
expg (p, 4k)

ϕ(4k)
γ (1 + α̃)

(
1 − eβ(g(4k+ 3

2+)−g(t))
)

=
x(4k) (1 + α̃)

eβ(g(t)−g(4k+ 3
2+)) + x(4k)γ (1 + α̃)

(
eβ(g(t)−g(4k+ 3

2+)) − 1
) ,

as we needed to show.

In Figure 5.2 we have plotted the solution above for different values of γ. Observe that the
population presents the behavior we expected. Indeed, first note that the population remains
constant during the hibernation periods. Furthermore, the population decays between gener-
ations, and the rate of this decay depends on the competition strength, γ. This can be easily
observed by noting that x( 3

2+) = (1 + α)x0 = 17
10 in all the graphs in Figure 5.2, however, the

population levels at t = 4 are lower for higher values of γ.
In order to study the asymptotic behavior of the solution of (5.3), we will look at the

sequences {Pk}∞
k=0 = {x(4k + 3

2 )}∞
k=0 and {P̃k}∞

k=0 = {x(4k + 3
2+)}∞

k=0 representing the popu-
lation at the end of the hibernation period and the population after newborns are introduced,
respectively. Using the expression for x obtained in Theorem 5.1, we see that {Pk}∞

k=0 satisfies

P0 = x0, Pk+1 =
Pk(1 + α̃)

eβ(g(4k)−g(4(k−1)+ 3
2+)) + Pkγ(1 + α̃)(eβ(g(4k)−g(4(k−1)+ 3

2+) − 1)
, k = 0, 1, . . . ,
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Figure 5.2: Graphs of the solution of (5.3) for g as in (5.2), x0 = 1, α = 7
10 , β = 1

10
and different values of γ. In order, γ = 1

2 , γ = 1, γ = 2 and γ = 4.

which, thanks to (5.1), simplifies to

Pk+1 =
Pk(1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
, k = 0, 1, . . . , (5.6)

with β̃ = β(g(4) − g( 3
2+)). Furthermore, P̃k = (1 + α̃)Pk for k = 0, 1, 2, . . . . Let us rewrite

Eq. (5.6) in the form
Pk+1 = H(Pk), k = 0, 1, . . . ,

where

H(t) =
t(1 + α̃)

eβ̃ + tγ(1 + α̃)(eβ̃ − 1)
, t ∈ [0, ∞).

A simple calculation shows that the map H has, in general, two fixed points, namely zero and

L =
1 + α̃ − eβ̃

γ(1 + α̃)(eβ̃ − 1)
.

The next result shows that the asymptotic behavior of the sequences {Pk}∞
k=0 and {P̃k}∞

k=0

(and therefore of the whole solution x) depends on whether L is positive (i.e., eβ̃
< 1 + α̃) or

nonpositive (i.e., eβ̃ ≥ 1 + α̃).

Theorem 5.2. Denote α̃ = α∆+g( 3
2 ) > 0, β̃ = β(g(4)− g( 3

2+)) > 0.

(a) If eβ̃ ≥ 1 + α̃, the sequence {Pk}∞
k=0 is nonincreasing and converges to 0. As a consequence,

{P̃k}∞
k=0 has the same behavior, and limt→∞ x(t) = 0.

(b) If eβ̃
< 1 + α̃, we distinguish two cases:

(i) If x0 ≥ L, the sequence {Pk}∞
k=0 is nonincreasing and converges to L. As a consequence,

{P̃k}∞
k=0 is also nonincreasing and converges to (1 + α̃)L.
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(ii) If x0 ≤ L, the sequence {Pk}∞
k=0 is nondecreasing and converges to L. As a consequence,

{P̃k}∞
k=0 is also nondecreasing and converges to (1 + α̃)L.

Proof. We shall only prove the result for {Pk}∞
k=0 as the properties for {P̃k}∞

k=0 follow from the
relation P̃k = (1 + α̃)Pk for k = 0, 1, 2, . . . .

First, assume that eβ̃ ≥ 1 + α̃. Observe that, for k = 0, 1, 2, . . . ,

Pk+1 = H(Pk) =
Pk(1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
≤ Pk

1 + α̃

eβ̃
≤ Pk,

which proves that the sequence is nonincreasing. Furthermore, by definition, we have that
Pk > 0 for k = 0, 1, 2, . . . . Hence, the sequence {Pk}∞

k=0 is nonincreasing and bounded from
below, so it is convergent. Since the only nonnegative fixed point of H is zero, it follows that
{Pk}∞

k=0 converges to 0.

Next, we assume that eβ̃
< 1 + α̃. Standard computations show that

H′(t) =
eβ̃(1 + α̃)

(eβ̃ + tγ(1 + α̃)(eβ̃ − 1))2
, t ≥ 0,

so it follows that H is nondecreasing on [0,+∞). Recalling that H(L) = L and Pk+1 = H(Pk),
it follows that if x0 ≥ L, then Pk ≥ L, k = 0, 1, 2, . . . ; and if x0 ≤ L, then Pk ≤ L, k = 0, 1, 2, . . . .

Now, suppose that x0 ≥ L. In that case, for k = 0, 1, 2, . . .

Pk − Pk+1 = Pk −
Pk(1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
= Pk

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)− (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)

≥ Pk
eβ̃ + Lγ(1 + α̃)(eβ̃ − 1)− (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
= Pk

eβ̃ + 1 + α̃ − eβ̃ − (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
= 0.

Hence, the sequence {Pk}∞
k=0 is nonincreasing and bounded from below by the unique positive

fixed point L, so it is convergent to L.
On the other hand, if x0 ≤ L then, for k = 0, 1, 2, . . . ,

Pk − Pk+1 = Pk
eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)− (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
≤ Pk

eβ̃ + Lγ(1 + α̃)(eβ̃ − 1)− (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
= 0

In this case, the sequence {Pk}∞
k=0 is nondecreasing and bounded from above by the unique

positive fixed point L, so it is convergent to L.

Remark 5.3. Observe that, if eβ̃
< 1 + α̃ and x0 = L, then the sequences {Pk}∞

k=0 and {P̃k}∞
k=0

are constant and equal to x0 and (1 + α̃)x0, respectively. Hence, it follows from Theorem 5.1
that the solution is 4-periodic in this case.

In Figure 5.3 we can observe the different asymptotic behaviors that we can expect from
the solution of Eq. (5.3) as described by Theorem 5.2. In particular, we can see that when
eβ̃ ≥ 1 + α̃ (i.e., when the death rate is high enough) the population is bound to extinction as
presented in the first of the graphs. On the other hand, the second and third plot show that
if eβ̃

< 1 + α̃ (i.e., when the reproduction rate is high enough), we can expect the population
to approach an equilibrium state corresponding to a 4-periodic solution shown in the fourth
plot.

As a final note, observe that the example here provided is relatively simple. More compli-
cated models can be obtained if we consider the parameters α, β and K to be functions instead,
or if we relax the condition (5.1).
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Figure 5.3: Graphs of the solution of (5.3) for g as in (5.2) showing the different
asymptotic behaviors for x0 = 1, α = e− 1 and different values of the parameters
(β, γ). In order, ( 3

10 , 1
2 ), (

1
10 , 1

2 ), (
1

10 , 1) and ( 1
10 , 1√

e
).

6 Preliminaries on Stieltjes integrals

In the rest of the paper, we focus on the logistic equation in the context of Stieltjes integral
equations. We will work with Kurzweil–Stieltjes integrals (also known as Perron–Stieltjes
integrals), but we only need some basic properties of these integrals, which are summarized in
the present section. A much more comprehensive treatment is available in [15]. Alternatively,
it would be possible to work with the Young integral, which coincides with the Kurzweil–
Stieltjes integral if the integrand and integrator are regulated and one of them has bounded
variation (cf. [15, Theorem 6.13.1]).

We need the substitution theorem for the Kurzweil–Stieltjes integral (see [15, Theorem 6.6.1]).

Theorem 6.1. Assume that h : [a, b] → R is bounded and f , g : [a, b] → R are such that
∫ b

a f dg

exists. Then ∫ b

a
h(t)d

(∫ t

a
f (s)dg(s)

)
=
∫ b

a
h(t) f (t)dg(t),

whenever either side of the equation exists.

The next result describes the properties of indefinite Kurzweil–Stieltjes integrals (see [15,
Corollary 6.5.5]).

Theorem 6.2. Let f , g : [a, b] → R be such that g is regulated and
∫ b

a f dg exists. Then, for every

t0 ∈ [a, b], the function

h(t) =
∫ t

t0

f dg, t ∈ [a, b]

is regulated and satisfies

h(t+) = h(t) + f (t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f (t)∆−g(t), t ∈ (a, b].
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Moreover, if f is regulated and g has bounded variation, then h has bounded variation.

For the next result, see [15, Exercise 6.3.5].

Lemma 6.3. If f : [α, β] → R is an arbitrary function and g : [α, β] → R is such that g(t) = c for

each t ∈ (α, β), then

∫ β

α
f (t)dg(t) = f (β)g(β)− f (α)g(α)− c( f (β)− f (α)).

Our next goal is to obtain an integral version of the formula
(

1
g(t)

)′
= − g′(t)

g(t)2 .

We begin with the case when g is a step function.

Lemma 6.4. If g : [a, b] → R is a step function, which is nonzero on [a, b], then

∫ b

a
d
(

1
g(t)

)
=

1
g(b)

− 1
g(a)

= −
∫ b

a

1
g(t−)g(t+)

dg(t),

with the convention that g(a−) = g(a) and g(b+) = g(b).

Proof. The first equality is obvious from the definition of the integral; let us verify the second
one.

Since g is a step function, there exists a partition a = α0 < α1 < · · · < αm = b and constants
c1, . . . , cm ∈ R such that g(t) = cj for each t ∈ (αj−1, αj). Let us also denote c0 = g(a),
cm+1 = g(b). Then g(αj−1−) = cj−1 and g(αj−1+) = cj for each j ∈ {1, . . . , m + 1}. Applying
Lemma 6.3 to each interval [αj−1, αj], j ∈ {1, . . . , m}, we calculate

∫ b

a

1
g(t−)g(t+)

dg(t) =
m

∑
j=1

cj

(
1

g(αj−1−)g(αj−1+)
− 1

g(αj−)g(αj+)

)

+
m

∑
j=1

(
g(αj)

g(αj−)g(αj+)
− g(αj−1)

g(αj−1−)g(αj−1+)

)

=
m

∑
j=1

cj

(
1

cj−1cj
− 1

cjcj+1

)
+

g(b)

g(b−)g(b+)
− g(a)

g(a−)g(a+)

=
m

∑
j=1

1
cj−1

−
m

∑
j=1

1
cj+1

+
1

g(b−)
− 1

g(a+)

=
m

∑
j=1

1
cj−1

−
m

∑
j=1

1
cj+1

+
1

cm
− 1

c1

=
1
c0

− 1
cm+1

=
1

g(a)
− 1

g(b)
.

We now generalize Lemma 6.4 to functions of bounded variation.

Theorem 6.5. If g : [a, b] → R has bounded variation and for each t ∈ [a, b], we have g(t) ̸= 0,

g(t−) ̸= 0, and g(t+) ̸= 0, then

∫ b

a
d
(

1
g(t)

)
=

1
g(b)

− 1
g(a)

= −
∫ b

a

1
g(t−)g(t+)

dg(t),

with the convention that g(a−) = g(a) and g(b+) = g(b).
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Proof. It suffices to prove the second equality. Since g has bounded variation, there exist non-
decreasing functions g1, g2 : [a, b] → R such that g = g1 − g2. Also, for each i ∈ {1, 2}, there
exists a sequence of nondecreasing step functions {gi

n}∞
n=1 which is uniformly convergent

to gi. Without loss of generality, we can assume that these sequences are such that

gi(a) ≤ gi
n(a) ≤ gi

n(b) ≤ gi(b)

for all n ∈ N and i ∈ {1, 2}. Therefore,

var(gi
n, [a, b]) = gi

n(b)− gi
n(a) ≤ gi(b)− gi(a), n ∈ N, i ∈ {1, 2}.

Consequently, by letting gn = g1
n − g2

n for all n ∈ N, we obtain a sequence of finite step func-
tions {gn}∞

n=1, which is uniformly convergent to g, and its members have uniformly bounded
variation.

Let us again use the convention that gn(a−) = gn(a) and gn(b+) = gn(b) for each
n ∈ N. Note that gn(t−) ⇒ g(t−) and gn(t+) ⇒ g(t+) with respect to t ∈ [a, b] (see
[15, Lemma 4.2.3]).

Also, there exists an M > 0 such that

|g(t−)| ≥ M, t ∈ [a, b]

(apply Lemma 2.7 to f (t) = g(t−)). Hence, for sufficiently large n ∈ N, we have

|gn(t−)| ≥ M/2, t ∈ [a, b],

and therefore
∣∣∣∣

1
gn(t−)

− 1
g(t−)

∣∣∣∣ =
∣∣∣∣
g(t−)− gn(t−)

gn(t−)g(t−)

∣∣∣∣ ≤
2

M2 |g(t−)− gn(t−)|,

which shows that 1/gn(t−) ⇒ 1/g(t−) with respect to t ∈ [a, b]. In a similar way, one can
show that 1/gn(t+) ⇒ 1/g(t+) with respect to t ∈ [a, b]. Consequently,

1
gn(t−)gn(t+)

⇒
1

g(t−)g(t+)

with respect to t ∈ [a, b]. Thus, we conclude that

1
g(b)

− 1
g(a)

= lim
n→∞

(
1

gn(b)
− 1

gn(a)

)
= − lim

n→∞

∫ b

a

1
gn(t−)gn(t+)

dgn(t)

= −
∫ b

a

1
g(t−)g(t+)

dg(t),

where the second equality follows from Lemma 6.3 and the third from the uniform conver-
gence theorem for integrals whose integrators have uniformly bounded variation (see [15, The-
orem 6.8.8]).

Once we have Theorem 6.5, it is not difficult to obtain the following integral version of the
quotient rule, i.e., of the classical formula

(
f (t)

g(t)

)′
=

f ′(t)
g(t)

− f (t)g′(t)
g(t)2 .
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Theorem 6.6. If f , g : [a, b] → R have bounded variation and for each t ∈ [a, b], we have g(t) ̸= 0,

g(t−) ̸= 0, and g(t+) ̸= 0, then

∫ b

a
d
(

f (t)

g(t)

)
=

f (b)

g(b)
− f (a)

g(a)
=
∫ b

a

d f (t)

g(t+)
−
∫ b

a

f (t−)dg(t)

g(t−)g(t+)
,

with the convention that g(a−) = g(a) and g(b+) = g(b).

Proof. It suffices to prove the second equality. Lemma 2.7 implies that 1/g has bounded
variation. Using the integration by parts formula in the form presented in [13, Theorem B.6],
we get ∫ b

a

d f (t)

g(t+)
=

f (b)

g(b)
− f (a)

g(a)
−
∫ b

a
f (t−)d

(
1

g(t)

)
.

The definition of the integral, Theorem 6.5 and Theorem 6.1 imply

∫ b

a
f (t−)d

(
1

g(t)

)
=
∫ b

a
f (t−)d

(
1

g(t)
− 1

g(a)

)

= −
∫ b

a
f (t−)d

(∫ t

a

dg(s)

g(s−)g(s+)

)
= −

∫ b

a

f (t−)dg(t)

g(t−)g(t+)
,

which completes the proof.

Theorem 6.6 is not needed in the rest of this paper, but we hope it might be useful for
subsequent research.

7 Stieltjes-integral versions of the logistic equation

We are now ready to deal with Stieltjes integral equations. In this section, we always assume
that g : [a, b] → R has bounded variation (left-continuity is no longer required). We begin
with the linear nonhomogeneous equation

x(t) = x(t0) +
∫ t

t0

(p(s)x(s) + f (s))dg(s), t ∈ [a, b], (7.1)

and try to obtain the corresponding logistic equation as an integral equation whose solution
is the function y(t) = x(t)−1.

Theorem 7.1. Suppose that g : [a, b] → R has bounded variation, p : [a, b] → R and f : [a, b] → R

are regulated, and x : [a, b] → R satisfies Eq. (7.1). If x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all

t ∈ [a, b], then the function y(t) = x(t)−1 satisfies

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s))y(s)

(1 − (p(s) + f (s)y(s))∆−g(s))(1 + (p(s) + f (s)y(s))∆+g(s))
dg(s) (7.2)

for all t ∈ [a, b], with the convention that ∆+g(s) = 0 if s = max(t, t0), and ∆−g(s) = 0 if

s = min(t, t0).

Proof. According to Theorem 6.5, we have

y(t)− y(t0) =
1

x(t)
− 1

x(t0)
= −

∫ t

t0

1
x(s−)x(s+)

dx(s),
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with the convention that x(s−) = x(s) if s = min(t, t0), and x(s+) = x(s) if s = max(t, t0).
Using Eq. (7.1) and Theorem 6.1, we get

y(t)− y(t0) = −
∫ t

t0

p(s)x(s) + f (s)

x(s−)x(s+)
dg(s).

Theorem 6.2 yields

x(s+) = x(s) + (p(s)x(s) + f (s))∆+g(s) = x(s)(1 + (p(s) + f (s)y(s))∆+g(s)), (7.3)

x(s−) = x(s)− (p(s)x(s) + f (s))∆−g(s) = x(s)(1 − (p(s) + f (s)y(s))∆−g(s)). (7.4)

Therefore,

y(t)− y(t0) = −
∫ t

t0

(p(s) + f (s)y(s))y(s)

(1 − (p(s) + f (s)y(s))∆−g(s))(1 + (p(s) + f (s)y(s))∆+g(s))
dg(s),

with the convention that ∆+g(s) = 0 if s = max(t, t0), and ∆−g(s) = 0 if s = min(t, t0).

Remark 7.2. Theorem 7.1 requires that x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all t ∈ [a, b].
The first condition is obviously necessary, for otherwise the definition of y would not make
sense. If this condition is satisfied, then Eq. (7.3) and (7.4) show that the latter two conditions
are equivalent to

1 + (p(t) + f (t)y(t))∆+g(t) ̸= 0, (7.5)

1 − (p(t) + f (t)y(t))∆−g(t) ̸= 0 (7.6)

for all t ∈ [a, b]. Since these terms appear in the denominator on the right-hand side of
the logistic equation, it is clear that the two conditions are necessary as well. Recalling that
y(t) = 1/x(t), we can rewrite the conditions (7.5) and (7.6) as

x(t) ̸= − f (t)∆+g(t)

1 + p(t)∆+g(t)
, (7.7)

x(t) ̸= f (t)∆−g(t)

1 − p(t)∆−g(t)
(7.8)

whenever the denominators are nonzero.

Remark 7.3. In the theory of Stieltjes differential equations, it is always assumed that g is
a left-continuous nondecreasing function. In this case, Eq. (7.1) is the integral version of the
Stieltjes differential equation x′g(t) = p(t)x(t) + f (t), and Eq. (7.2) simplifies to

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s))y(s)

1 + (p(s) + f (s)y(s))∆+g(s)
dg(s), t ∈ [a, b],

which is the integral version of the Stieltjes differential equation (3.1). Thus, we see that the
form of the logistic equation (7.2) is consistent with the form obtained in Section 3. Condi-
tion (7.7) corresponds to the earlier condition (3.5), and condition (7.8) reduces to x(t) ̸= 0.

Note that Eq. (7.1) is a special case of a generalized linear differential equation, whose
solution can be explicitly expressed using the variation of constants formula (see e.g. [15,
Theorems 7.8.4 and 7.8.5]). Thus, the reciprocal of this solution is a solution of the logistic
equation given in Theorem 7.1.
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Besides Eq. (7.1), one can also investigate the linear nonhomogeneous Stieltjes equations

x(t) = x(t0) +
∫ t

t0

(p(s)x(s−) + f (s))dg(s), t ∈ [a, b], (7.9)

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s+) + f (s))dg(s), t ∈ [a, b], (7.10)

which were studied in [13, 20], and which are dual to each other. Note that the one-sided
limits x(s−) and x(s+) in the integrands have to be interpreted as x(s) when s coincides with
the lower or upper limit of the integral, respectively.

Starting with a solution x of Eq. (7.9) or Eq. (7.10), let us find the corresponding integral
equation for the function y(t) = x(t)−1. Interestingly, we will see that the resulting logis-
tic equations are simpler than the logistic equation obtained in Theorem 7.1. We need the
following modification of Theorem 6.1.

Lemma 7.4. Assume that g, h : [a, b] → R have bounded variation and k, x : [a, b] → R are regulated.

1. If

y(t) =
∫ t

t0

k(s)x(s+)dg(s), t ∈ [a, b],

with the convention that x(s+) means x(s) if s = max(t, t0), then for each t ∈ [a, b], we have

∫ t

t0

h(s)dy(s) =
∫ t

t0

h(s)k(s)x(s+)dg(s)

with the convention that x(s+) means x(s) if s = max(t, t0).

2. If

y(t) =
∫ t

t0

k(s)x(s−)dg(s), t ∈ [a, b],

with the convention that x(s−) means x(s) if s = min(t, t0), then for each t ∈ [a, b], we have

∫ t

t0

h(s)dy(s) =
∫ t

t0

h(s)k(s)x(s−)dg(s)

with the convention that x(s−) means x(s) if s = min(t, t0).

Proof. Let us prove the first statement. We will use the symbol χA to denote the characteristic
(indicator) function of a set A ⊂ R. Suppose first that t > t0. Using Theorem 6.1 and the
formula

∫ t
t0

p(s)χ{t}(s)dq(s) = p(t)∆−q(t), which holds for each t > t0 and all functions
p, q : [a, b] → R, we get
∫ t

t0

h(s)dy(s) =
∫ t

t0

h(s)d
(∫ s

t0

k(τ)(x(τ+)χ[t0,s)(τ) + x(τ)χ{s}(τ))dg(τ)

)

=
∫ t

t0

h(s)d
(∫ s

t0

k(τ)x(τ+)dg(τ)

)
−
∫ t

t0

h(s)d
(∫ s

t0

k(τ)χ{s}(τ)∆
+x(τ)dg(τ)

)

=
∫ t

t0

h(s)k(s)x(s+)dg(s)−
∫ t

t0

h(s)d
(

χ(t0,t](s)k(s)∆
+x(s)∆−g(s)

)

=
∫ t

t0

h(s)k(s)(x(s+)χ[t0,t)(s) + x(s)χ{t}(s))dg(s)

+
∫ t

t0

h(s)k(s)∆+x(s)χ{t}(s)dg(s)−
∫ t

t0

h(s)d
(

χ(t0,t](s)k(s)∆
+x(s)∆−g(s)

)
.
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The last two integrals cancel each other out, since both have the value h(t)k(t)∆+x(t)∆−g(t);
for the latter integral, this follows from [15, Lemma 6.3.16] (note that the integrand has
bounded variation, the integrator is regulated and vanishes in all points with at most count-
ably many exceptions). This settles the case t > t0. Similarly, if t < t0, we have

∫ t

t0

h(s)dy(s) =
∫ t

t0

h(s)d
(∫ s

t0

k(τ)(x(τ+)χ[s,t0)(τ) + x(τ)χ{t0}(τ))dg(τ)

)

=
∫ t

t0

h(s)d
(∫ s

t0

k(τ)x(τ+)dg(τ)

)
+
∫ t

t0

h(s)d
(∫ t0

s
k(τ)χ{t0}(τ)∆

+x(τ)dg(τ)

)

=
∫ t

t0

h(s)k(s)x(s+)dg(s) +
∫ t

t0

h(s)d
(

χ[t,t0)(s)k(t0)∆
+x(t0)∆

−g(t0)
)

=
∫ t

t0

h(s)k(s)(x(s+)χ[t,t0)(s) + x(s)χ{t0}(s))dg(s)

−
∫ t0

t
h(s)k(s)∆+x(s)χ{t0}(s)dg(s)−

∫ t0

t
h(s)d

(
χ[t,t0)(s)k(t0)∆

+x(t0)∆
−g(t0)

)
.

The last two integrals cancel each other out, since the former equals h(t0)k(t0)∆+x(t0)∆−g(t0),
while the latter has the opposite value. This completes the proof of the first statement.

The second statement can be proved in a similar way.

We can now obtain the logistic equations corresponding to Eq. (7.9) and Eq. (7.10).

Theorem 7.5. Suppose that g : [a, b] → R has bounded variation, p : [a, b] → R and f : [a, b] → R

are regulated.

1. Suppose that x : [a, b] → R satisfies Eq. (7.9). If x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all

t ∈ [a, b], then the function y(t) = x(t)−1 satisfies

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s−))y(s+)dg(s), t ∈ [a, b]. (7.11)

2. Suppose that x : [a, b] → R satisfies Eq. (7.10). If x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all

t ∈ [a, b], then the function y(t) = x(t)−1 satisfies

y(t) = y(t0)−
∫ t

t0

(−p(s) + f (s)y(s+))y(s−)dg(s), t ∈ [a, b]. (7.12)

In both cases, y(s−) or y(s+) in the integrands should be understood as y(s) when s coincides with

the lower or upper limit of the integral, respectively.

Proof. Let us prove the first statement. According to Theorem 6.5 and Eq. (7.9), we have

y(t)− y(t0) =
1

x(t)
− 1

x(t0)
= −

∫ t

t0

dx(s)

x(s−)x(s+)

= −
∫ t

t0

1
x(s−)x(s+)

d
(∫ t

t0

(p(s)x(s−) + f (s))dg(s)

)
.

Note that Eq. (7.9) implies that x has bounded variation, and by Lemma 2.7, the function 1/x

has the same property. Hence, the functions s 7→ 1/x(s−) and s 7→ 1/x(s+) as well as their
product have bounded variation. Using Lemma 7.4 and Theorem 6.1, we get

y(t)− y(t0) = −
∫ t

t0

p(s)x(s−) + f (s)

x(s−)x(s+)
dg(s) = −

∫ t

t0

(p(s) + f (s)y(s−))y(s+)dg(s),
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where the second equality follows from the fact that x(s+)−1 = y(s+) and x(s−)−1 = y(s−).
The proof of the second statement is similar.

Remark 7.6. If g is left-continuous, then a function x satisfying (7.9) or (7.10) is also left-
continuous, i.e., x(t−) = x(t) for all t. In this case, Eq. (7.9) coincides with Eq. (7.1), i.e., we
have the following pair of equations:

x(t) = x(t0) +
∫ t

t0

(p(s)x(s) + f (s))dg(s), t ∈ [a, b], (7.13)

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s+) + f (s))dg(s), t ∈ [a, b]. (7.14)

According to Theorem 7.5, if x(t) ̸= 0 and x(t+) ̸= 0 for all t, then y = 1/x satisfies one of
the following equations:

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s))y(s+)dg(s), t ∈ [a, b], (7.15)

y(t) = y(t0)−
∫ t

t0

(−p(s) + f (s)y(s+))y(s)dg(s), t ∈ [a, b]. (7.16)

These are integral versions of the Stieltjes differential equations of Eq. (3.4) and Eq. (3.17),
respectively, which are equivalent to the two logistic equations presented in Section 3.

Remark 7.7. General solution formulas for Eq. (7.9) and (7.10) were recently published in [20].
They resemble the well-known variation of constants formula, and involve solutions of the
corresponding homogenenous Stieltjes integral equations. According to Theorem 7.5, explicit
solutions of Eq. (7.9) and (7.10) immediately give rise to explicit solution formulas for the two
versions of the logistic equation.

Remark 7.8. Theorem 7.5 again requires that x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all
t ∈ [a, b]. The first condition is obviously necessary, for otherwise the definition of y would
not make sense. Let us have a closer look on the latter two conditions, trying to avoid x(t−)

and x(t+), and express both conditions in terms of x(t).
Suppose first that x : [a, b] → R satisfies Eq. (7.9). Using the properties of the Kurzweil–

Stieltjes integral and performing similar calculations as in the proof of [13, Lemma 6.5] (which
corresponds to the homogenenous case f = 0), we find that

x(t−)(1 + p(t)∆g(t)) = x(t)(1 + p(t)∆+g(t))− f (t)∆−g(t), t ∈ (a, t0), (7.17)

x(t−)(1 + p(t)∆−g(t)) = x(t)− f (t)∆−g(t), t ∈ [t0, b], (7.18)

x(t+) = x(t)(1 + p(t)∆+g(t)) + f (t)∆+g(t), t ∈ [a, t0], (7.19)

x(t+) = x(t) + x(t−)p(t)∆+g(t) + f (t)∆+g(t), t ∈ (t0, b). (7.20)

First, we deal with x(t+). Taking t ∈ [a, t0], Eq. (7.19) implies that x(t+) ̸= 0 if and only if
x(t)(1 + p(t)∆+g(t)) + f (t)∆+g(t) ̸= 0; assuming that 1 + p(t)∆+g(t) ̸= 0, this is equivalent
to

x(t) ̸= − f (t)∆+g(t)

1 + p(t)∆+g(t)
, t ∈ [a, t0]. (7.21)

For t ∈ (t0, b), if 1 + p(t)∆−g(t) ̸= 0, we can express x(t−) from Eq. (7.18) and substitute to
Eq. (7.20) to obtain

x(t+) = x(t) +
x(t)− f (t)∆−g(t)

1 + p(t)∆−g(t)
p(t)∆+g(t) + f (t)∆+g(t), t ∈ [a, t0].
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Hence, to ensure that x(t+) ̸= 0, we need

x(t)(1 + p(t)∆−g(t)) + (x(t)− f (t)∆−g(t))p(t)∆+g(t) + f (t)∆+g(t)(1 + p(t)∆−g(t)) ̸= 0,

which simplifies to
x(t)(1 + p(t)∆g(t)) + f (t)∆+g(t) ̸= 0,

and if 1 + p(t)∆g(t) ̸= 0, this is equivalent to

x(t) ̸= − f (t)∆+g(t)

1 + p(t)∆g(t)
, t ∈ (t0, b). (7.22)

Next, we focus on x(t−). If t ∈ (a, t0) and 1 + p(t)∆g(t) ̸= 0, then Eq. (7.17) implies that
x(t−) ̸= 0 if and only if

x(t)(1 + p(t)∆+g(t))− f (t)∆−g(t) ̸= 0,

and if 1 + p(t)∆+g(t) ̸= 0, this is equivalent to

x(t) ̸= f (t)∆−g(t)

1 + p(t)∆+g(t)
, t ∈ (a, t0). (7.23)

Similarly, if t ∈ [t0, b] and 1 + p(t)∆−g(t) ̸= 0, then Eq. (7.18) implies that x(t−) ̸= 0 if and
only if

x(t)− f (t)∆−g(t) ̸= 0,

or equivalently
x(t) ̸= f (t)∆−g(t), t ∈ [t0, b]. (7.24)

Thus, we have shown how to reformulate the conditions x(t+) ̸= 0 and x(t−) ̸= 0 in terms
of x(t). Note that if g is left-continuous, then the conditions in (7.22) and (7.21) coincide, and
the conditions in (7.23) and (7.24) reduce to x(t) ̸= 0.

A similar analysis can be performed for Eq. (7.10). However, it is easier to observe that
x : [a, b] → R satisfies

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s+) + f (s))dg(s), t ∈ [a, b],

if and only if the function y : [−b,−a] → R given by y(t) = x(−t) satisfies

y(t) = y(−t0) +
∫ t

−t0

( p̃(s)y(s−) + f̃ (s))dg̃(s), t ∈ [−b,−a],

where p̃(s) = p(−s), f̃ (s) = − f (−s), g̃(s) = −g(−s). The proof of the fact is similar to
the proof in [13, Remark 6.4] (which corresponds to the case f = 0). Notice that we have
x(t+) = y(−t−), x(t−) = y(−t+), ∆+g(t) = ∆−g(−t), and ∆−g(t) = ∆+g(−t). Using
these relations, it is clear that the conditions guaranteeing that x(t+) ̸= 0 and x(t−) ̸= 0
for Eq. (7.10) can obtained from the conditions derived earlier for Eq. (7.9) by interchanging
∆+g and ∆−g, f and − f , and a and b. In this way, we obtain the following counterparts to
conditions (7.21)–(7.24):

x(t) ̸= f (t)∆−g(t)

1 + p(t)∆−g(t)
, t ∈ [t0, b], (7.25)

x(t) ̸= f (t)∆−g(t)

1 + p(t)∆g(t)
, t ∈ (a, t0), (7.26)

x(t) ̸= − f (t)∆+g(t)

1 + p(t)∆−g(t)
, t ∈ (t0, b), (7.27)

x(t) ̸= − f (t)∆+g(t), t ∈ [a, t0]. (7.28)
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8 Relations between Stieltjes integral equations and dynamic

equations

It has been known for a long time that dynamic equations on time scales represent a special
case of Stieltjes integral equations (also known as measure differential equations), see [19].
Hence, it is interesting to check whether the logistic equations obtained in the previous section
are consistent with logistic dynamic equations on time scales. In comparison with Section 4,
we will discuss both ∆- and ∇-dynamic equations.

Let T be a time scale. It is convenient to work with a fixed time scale interval [a, b]T =

[a, b] ∩ T, where a, b ∈ T, a < b. We need the functions

g(t) = inf{s ∈ T : s ≥ t}, t ∈ [a, b], (8.1)

h(t) = sup{s ∈ T : s ≤ t}, t ∈ [a, b]. (8.2)

The function g is left-continuous, and h is right-continuous.
The relations between Stieltjes integral equations and dynamic equations are described

in [15, Section 8.7]. They are based on the following relation (see [15, Corollary 8.6.9]) be-
tween Kurzweil–Stieltjes integrals and Henstock–Kurzweil ∆- and ∇-integrals, which were
introduced in [16].

Theorem 8.1. Consider a function f : [a, b] → R. Then the following statements hold:

1. The Henstock–Kurzweil ∆-integral
∫ b

a f (t)∆t exists if and only if the Kurzweil–Stieltjes integral∫ b
a f (t)dg(t) exists; in this case, both integrals have the same value.

2. The Henstock-Kurzweil ∇-integral
∫ b

a f (t)∇t exists if and only if the Kurzweil-Stieltjes integral∫ b
a f (t)dh(t) exists; in this case, both integrals have the same value.

Hence, ∆-dynamic equations on time scales are special cases of Stieltjes integral equations
with the integrator g given by Eq. (8.1). In particular, the ∆-dynamic equation

x(t) = x(t0) +
∫ t

t0

(p(s)x(s) + f (s))∆s

is a special case of Eq. (7.9); note that a solution x of Eq. (7.9) satisfies x(s−) = x(s) for all
s, because g is left-continuous, and therefore x has the same property. The corresponding
logistic equation (7.11) given by Theorem 7.5 is then equivalent to the ∆-dynamic equation

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s))y(σ(s))∆s, (8.3)

where σ is the forward jump operator. Indeed, if y is a solution of Eq. (7.11), then y(s−) = y(s)

(because g is left-continuous). Moreover, g is constant on each interval (α, β] ⊂ [a, b] such that
(α, β) ∩ T = ∅. Thus, y has the same property, and y(s+) = y(σ(s)) for each s ∈ [a, b)T.

Similarly, the ∆-dynamic equation

x(t) = x(t0) +
∫ t

t0

(−p(s)x(σ(s)) + f (s))∆s

is a special case of Eq. (7.10). The corresponding logistic equation (7.12) given by Theorem 7.5
is then equivalent to the ∆-dynamic equation

y(t) = y(t0)−
∫ t

t0

(−p(s) + f (s)y(σ(s)))y(s)∆s. (8.4)
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Equations (8.3) and (8.4) are integral forms of the two versions of ∆-dynamic logistic equation
described in [3] and mentioned in the introduction of the present paper.

To deal with ∇-dynamic equations, we replace g by the integrator h given by Eq. (8.2). The
∇-dynamic equation

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s) + f (s))∇s

is then a special case of Eq. (7.10) with g replaced by h; note that a solution x of Eq. (7.10)
satisfies x(s+) = x(s) for all s, because h is right-continuous, and therefore x has the same
property. The corresponding logistic equation (7.12) given by Theorem 7.5 is then equivalent
to the ∇-dynamic equation

y(t) = y(t0)−
∫ t

t0

(−p(s) + f (s)y(s))y(ρ(s))∇s, (8.5)

where ρ is the backward jump operator. Indeed, if y is a solution of Eq. (7.12), then y(s+) =

y(s) (because h is left-continuous). Moreover, h is constant on each interval [α, β) ⊂ [a, b] such
that (α, β) ∩ T = ∅. Thus, y has the same property, and y(s−) = y(ρ(s)) for each s ∈ (a, b]T.

Similarly, the ∇-dynamic equation

x(t) = x(t0) +
∫ t

t0

(p(s)x(ρ(s)) + f (s))∇s

is a special case of Eq. (7.9). The corresponding logistic equation (7.11) given by Theorem 7.5
is then equivalent to the ∇-dynamic equation

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(ρ(s)))y(s)∇s. (8.6)

As far as we are aware, the ∇-dynamic logistic equations (8.5) and (8.6) did not appear in the
literature yet.
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Abstract. This paper is devoted to studying the following quasilinear parabolic-elliptic-
elliptic chemotaxis system











ut = ∇ · (ϕ(u)∇u − ψ(u)∇v) + au − buγ, x ∈ Ω, t > 0,

0 = ∆v − v + wγ1 , x ∈ Ω, t > 0,

0 = ∆w − w + uγ2 , x ∈ Ω, t > 0,

with homogeneous Neumann boundary conditions in a bounded and smooth domain
Ω ⊂ R

n(n ≥ 1), where a, b, γ2 > 0, γ1 ≥ 1, γ > 1 and the functions ϕ, ψ ∈ C2([0, ∞)
satisfy ϕ(s) ≥ a0(s + 1)α and |ψ(s)| ≤ b0s(1 + s)β−1 for all s ≥ 0 with a0, b0 > 0 and
α, β ∈ R. It is proved that if γ − β ≥ γ1γ2, the classical solution of system would be
globally bounded. Furthermore, a specific model for γ1 = 1, γ2 = κ and γ = κ + 1 with
κ > 0 is considered. If β ≤ 1 and b > 0 is large enough, there exist Cκ , µ1, µ2 > 0 such
that the solution(u, v, w) satisfies

∥

∥

∥

∥

∥

u(·, t)−

(

b

a

)
1
κ

∥

∥

∥

∥

∥

L∞(Ω)

+

∥

∥

∥

∥

v(·, t)−
b

a

∥

∥

∥

∥

L∞(Ω)
+

∥

∥

∥

∥

w(·, t)−
b

a

∥

∥

∥

∥

L∞(Ω)

≤

{

Cκe−µ1t, if κ ∈ (0, 1],

Cκe−µ2t, if κ ∈ (1, ∞),

for all t ≥ 0. The above results generalize some existing results.

Keywords: chemotaxis system, nonlinear indirect secretion, global boundedness, long
time behavior.
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1 Introduction

Chemotaxis is one of the basic physiological reactions of cells or organisms, which refers to

the directional movement of biological cells or organisms along the concentration gradient of

stimulants under the stimulation of some chemicals in the environment. The establishment

of chemotactic mathematical model can be traced back to the pioneering work proposed by

Keller and Segel [16] to describe the aggregation of cellular slime molds, which is given by























ut = ∇ · (ϕ(u)∇u − ψ(u)∇v) + f (u), x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω,

(1.1)

where Ω ⊂ R
n, τ ∈ {0, 1}, ν denotes the outward unit normal vector on ∂Ω, u(x, t) denotes

the cell density and v(x, t) represents the concentration of the chemical signal. Here, f (u) de-

scribes cell proliferation and death, ∇ · (ϕ(u)∇u) and −∇ · (ψ(u)∇v) represent self-diffusion

and cross-diffusion, respectively. It is well known that chemotaxis research has many impor-

tant applications in both biology and medicine so that it has been one of the hottest research

focuses in applied mathematics nowadays. In the past few decades, a large number of valu-

able theoretical results have been established. Among them, one of the main issues related to

(1.1) is to study whether there is a global in-time bounded solution or when blow-up occurs.

For τ = 1, ϕ(u) = 1, ψ(u) = χu and f (u) = 0 with χ > 0, it has been shown that the system

(1.1) has globally bounded classical solution when n = 1 [24] or n = 2 and
∫

Ω
u0dx <

4π
χ

[5, 23], whereas the system (1.1) has finite time blow-up solution in the case of n = 2 and
∫

Ω
u0dx >

4π
χ [9, 26] or in the case of n ≥ 3 [36, 39]. Inter alia, when f (u) = u − µu2 with

µ > 0, under the restrictions that τ = 1 and Ω is convex, Winkler [40] proved that if the ratio
µ
χ is sufficiently large, then the unique nontrivial spatially homogeneous equilibrium given

by u = v ≡ 1
µ is globally asymptotically stable. Later on, Cao [2] used an approach based

on maximal Sobolev regularity and improved Winkler’s results without the restrictions τ = 1

and the convexity of Ω. When the chemical substance diffuses much faster than the diffusion

of cells, the system (1.1) can be reduced to the simplified parabolic-elliptic model, i.e. τ = 0.

Such model was first studied for ϕ(u) = 1, ψ(u) = χu and f (u) = 0 in [14]. Recently, when

f (u) = Au − buα with α > 1, A ≥ 0 and b > 0, in [35], a concept of very weak solutions was

introduced, and global existence of such solutions for any nonnegative initial data u0 ∈ L1(Ω)

was proved under the assumption that α > 2 − 1
n , moreover, boundedness properties of the

constructed solutions were studied by Winkler. Thereafter various variants of (1.1) have been

considered by many other scholars [6,11,31,34]. In general, diffusion functions ϕ(u) and ψ(u)

may not be linear forms, such as diffusion in porous media and volume filling effect. When

ϕ(u), ψ(u) are nonlinear and f (u) = 0 or f (u) 6= 0, a lot of scholars have studied the finite

time blow-up of solution and the existence of globally bounded classical solution to system

(1.1). We refer the readers to [8, 12, 13, 37, 38] for more details.

With regard to the system (1.1), the term of chemotaxis signal production v is produced

directly by the cell density u. However, the mechanism of signal production might be very

complex in realistic biological processes. On the one hand, the signal generation usually

undergoes intermediate stages, i.e. signal v is not produced directly by cells u, but is governed
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by some other signal substances w. The related models can be described as



































ut = ∇ · (ϕ(u)∇u − ψ(u)∇v) + f (u), x ∈ Ω, t > 0,

τvt = ∆v − v + w, x ∈ Ω, t > 0,

τwt = ∆w − w + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.2)

where u, v, w represent the density of cells, the density of chemical substances and the con-

centration of indirect signal, respectively. Such problem has been widely studied in recent

years. For τ = 1, ϕ(u) = 1, ψ(u) = u and f (u) = µ(u − uγ), the authors in [46] proved that

if γ >
n
4 + 1

2 , then the system possesses globally bounded classical solution. Moreover, if µ is

large enough, the solution (u, v, w) converges to (1, 1, 1) in L∞-norm as t → ∞. When ϕ and ψ

satisfy some nonlinear conditions and smoothness conditions, it also has been showed that the

solution to system (1.2) is globally bounded in [30]. Recently, the authors in [18] have studied

the system (1.2) for τ = 0, where ϕ(s) ≥ a0(s + 1)α and |ψ(s)| ≤ b0s(1 + s)β−1 for all s ≥ 0

with a0, b0 > 0 and α, β ∈ R. They have proved that the nonnegative classical solution to (1.2)

is global in time and bounded. In addition, if µ satisfy some suitable conditions, the solution

(u, v, w) converges to (1, 1, 1) in L∞-norm as t → ∞. More relevant results on the system with

indirect signal production can refer to [10, 19].

One the other hand, the signal generation may be in a nonlinear form, which is given by















ut = ∇ · (ϕ(u)∇u − ψ(u)∇v) + f (u), x ∈ Ω, t > 0,

τvt = ∆v − v + g(u), x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.3)

where Ω ⊂ R
n(n ≥ 2) is a bounded, smooth domain. When τ = 0, ϕ(u) = 1, ψ(u) =

χu, f (u) = au − buθ and g(u) = uκ with χ, b, κ > 0, a ∈ R and θ > 1, Xiang [44] obtained

the global existence and boundedness of solution for (1.3) under either κ + 1 < max{θ, 1 +
2
n} or θ = κ + 1, b ≥ (κn−2)

kn χ. Besides, they studied the dynamical behavior of the solution

on the interactions among nonlinear cross-diffusion, generalized logistic source and signal

production. In addition, When τ = 1, ϕ(u) = 1, ψ(u) = χu, f (u) = 0 and g(u) ∈ C1([0, ∞))

satisfying 0 ≤ g(u) ≤ Kuα with some constants K, α > 0, Liu and Tao [21] proved that the

classical solution of the system (1.3) is globally bounded if 0 < α <
2
n . When the second

equation degenerates into an elliptic equation (i.e. τ = 0), ϕ(u) = 1, ψ(u) = χu, f (u) = 0 and

v is replaced by µ(t) = 1
|Ω|

∫

Ω
g(u), g(u) ≥ kuk for all u ≥ 0 with some k > 0, Winkler [43]

derived a blow-up critical exponent k = 2
n , which asserted that the radially symmetric solution

blows up in finite time if the parameter k satisfies k >
2
n . Conversely, when k <

2
n , they proved

that there exists suitable initial value such that the system has globally bounded classical

solution. Later on, the authors in [45] considered the case f (u) = λu − µuα with λ, µ > 0 and

α > 1, and they generalized the blow-up results developed in [43] with k + 1 > α
(

2
n + 1

)

.

Intuitively, the existing literatures show that the logistics source (i.e. f (u) = λu − µuα with

λ, µ > 0 and α > 1) and its possibly damping behavior have important influences on the

behavior of the solution. For instance, the strong logistic damping (i.e. µ is suitably large) may

ensure the system has globally bounded classical solution, especially in higher-dimensional

case. More precisely, when α = 2, Tello and Winkler [29] proved that for all suitably regular
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initial data, the system had a unique globally bounded classical solution if µ > max{0, n−2
n χ}.

Afterwards, Cao and Zheng [3] proved that such global solution to a quasilinear system (1.3) is

also known to exist for all nonnegative and smooth initial data if µ is suitably large. However,

“logistic source” does not always prevent chemotactic collapse. When α = 2, such assertion

was verified in [41] for one-dimensional case by Winkler, and also could be found in [15]

for higher-dimensional setting. Recently, Winkler [42] obtained a condition on initial data to

ensure the occurrence of finite-time blow-up to system (1.3) for

α <

{

7
6 , if n ∈ {3, 4},

1 + 1
2(n−1)

, if n ≥ 5.

Some boundedness or blow-up results to variants of system (1.3) can also be found in [20, 22,

25, 32, 33, 47].

Among the existing literatures, it is not difficult to find that there are very few papers to

study the chemotaxis system, where chemical signal production is not only indirect but also

nonlinear. Based on the complexity of biological process, such signal production mechanism

could be more in line with the actual situation. Inspired by the above works, in this paper, we

are concerned with the following system



































ut = ∇ · (ϕ(u)∇u − ψ(u)∇v) + au − buγ, x ∈ Ω, t > 0,

0 = ∆v − v + wγ1 , x ∈ Ω, t > 0,

0 = ∆w − w + uγ2 , x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.4)

where Ω ⊂ R
n(n ≥ 1) is a bounded domain with smooth boundary, ν denotes the outward

unit normal vector on ∂Ω, the parameters satisfy a, b, γ2 > 0, γ1 ≥ 1 and γ > 1, and ϕ(u), ψ(u)

are self-diffusion and cross-diffusion functions, respectively. Since from a physical point of

view, the equation modeling the migration of cells should rather be regarded as nonlinear

diffusion [27]. Thus, here we assume that the diffusion functions ϕ, ψ ∈ C2[0, ∞) fulfill

ϕ(s) ≥ a0(s + 1)α (1.5)

and

|ψ(s)| ≤ b0s(s + 1)β−1, (1.6)

for all s ≥ 0 with a0, b0 > 0 and α, β ∈ R.

The main purpose of the present paper is to explore the interplay of nonlinear diffusion

functions ϕ, ψ and logistic source term au− buγ as well as nonlinear indirect signal production

mechanism for system (1.4). To the best of our knowledge, studying the fully parabolic chemo-

taxis system need to use the method of variation-of-constants formula and heat semigroup,

which can not be applied to the system (1.4). In this paper, we shall use a different method

to reveal the influence of nonlinear diffusion functions ϕ, ψ and logistic source term au − buγ

as well as nonlinear indirect signal production mechanism on the dynamical behavior of the

solution to system (1.4).

Firstly, we state our boundedness result to system (1.4) as follows.

Theorem 1.1. Let Ω ⊂ R
n(n ≥ 1) be a bounded and smooth domain. Assume that a, b, γ2 > 0, γ >

1, γ1 ≥ 1 and functions ϕ, ψ ∈ C2[0, ∞) with ϕ(s) ≥ a0(s + 1)α and |ψ(s)| ≤ b0s(s + 1)β−1 for
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all s ≥ 0 with a0, b0 > 0 and α, β ∈ R. If γ − β ≥ γ1γ2, then for any nonnegative initial data

0 6≡ u0 ∈ C(Ω̄), the system (1.4) admits a unique nonnegative classical solution (u, v, w) belonging to

C[(Ω̄ × [0, ∞))∩C2,1(Ω̄ × (0, ∞))]. Moreover, the solution of system (1.4) is bounded in Ω × (0, ∞),

namely, there exists a constant C > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W1,∞(Ω) + ‖w(·, t)‖W1,∞(Ω) ≤ C (1.7)

for all t > 0.

In contrast to the boundedness criterion obtained in [18], the boundedness condition in

Theorem 1.1 is more generalized involving nonlinear diffusion and logistic source term as

well as nonlinear indirect signal production mechanism.

From the viewpoint of biological evolution, it has profound theoretical and practical sig-

nificance to study the long time behavior of chemotaxis system. Based on [7, 18, 44], we have

also studied the long time behavior of solution to a special case (see system (3.1) in Section 3)

of system 1.1 (i.e. γ1 = 1, γ2 = κ and γ = κ + 1 with κ > 0). Here, it should be pointed out

that from the above Theorem 1.1 if β ≤ 1, the corresponding system has globally bounded

classical solution for this case. Thus, from Theorem 1.1, there exists R > 0 independent of

a, b, α, β, a0, b0 and κ such that

u(x, t) ≤ R (1.8)

holds on Ω̄ × [0, ∞). Moreover, we can also find λ > 0 independent of a, b, a0, b0 and κ such

that

(u + 1)2β−α−2 ≤ λ (1.9)

holds on Ω̄ × [0, ∞).

Therefore, the second conclusion of this paper can be stated as

Theorem 1.2. Let 0 ≤ u0 ∈ C(Ω̄) and a, b, κ > 0. Assume that functions ϕ, ψ ∈ C2[0, ∞) with

ϕ(s) ≥ a0(s + 1)α and |ψ(s)| ≤ b0s(s + 1)β−1 for all s ≥ 0 with a0, b0 > 0 and α, β ∈ R. If β ≤ 1

and














b >
b0
4

√

λa
a0

, κ ∈ (0, 1],

b >

λb2
0

[

(κ−1)Rκ+
√

(κ−1)2R2κ+
64aa0
λb2

0

]

32a0
, κ ∈ (1, ∞),

(1.10)

then there exists Cκ > 0 large enough such that the classical solution (u, v, w) to system (3.1) satisfies

∥

∥

∥

∥

∥

u(·, t)−

(

b

a

)
1
κ

∥

∥

∥

∥

∥

L∞(Ω)

+

∥

∥

∥

∥

v(·, t)−
b

a

∥

∥

∥

∥

L∞(Ω)

+

∥

∥

∥

∥

w(·, t)−
b

a

∥

∥

∥

∥

L∞(Ω)

≤

{

Cκe−µ1t, κ ∈ (0, 1],

Cκe−µ2t, κ ∈ (1, ∞),

for all t ≥ 0, where

µ1 =
κa

(n + 2)b2

(

b2 −
λab2

0

16a0

)

(1.11)

and

µ2 =
κ( a

b )
2−κ

κ

(n + 2)

{

b −
λb2

0

16a0
[
a

b
+ (κ − 1)Rκ]

}

, (1.12)

with R > 0 and λ > 0 defined in (1.8) and (1.9), respectively.
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The results in Theorem 1.2 are similar to those in [44, Theorem 5.1(i)], but more general,

since self-diffusion, cross-diffusion and indirect secretion mechanism are involved. We need

to modify the method in [44] to overcome the difficulties from these terms (see (3.10) and

(3.25) in the proof of Lemma 3.2). In addition, our conclusion in Theorem 1.2 can also be seen

as an extension of [7] or [18]. Comparing with [7], in Theorem 1.2, we calculate the expo-

nential convergence rate explicitly in terms of the model parameters with diffusion functions,

generalized logistic source and nonlinear indirect secretion. But in [7], the convergence rate

estimates were derived but not stated explicitly (see [7, Theorem 1]) for special logistic source

and linear secretion. Comparing with [18], since our model is nonlinear indirect production,

we have to divide the range of κ into (0, 1] and (1,+∞) to construct different functionals A(t)

and H(t) (see Lemma 3.2) to prove Theorem 1.2.

Remark 1.3. It is relevant to point out that by the limitation of the method, we also have no

idea the long time behavior of solution to system (1.4) for generalized parameters γ1, γ2 and

γ satisfying the condition in Theorem 1.1.

The outline of this paper is as follows. In Section 2, the global existence and bounded-

ness of classical solution to (1.4) is proved. In Section 3, by applying the method of energy

functional, we obtain that the solution to system (3.1) exponentially converges to the point

(( a
b )

1
κ , a

b , a
b ) as t → ∞.

2 Global existence and boundedness

In this section, we will obtain the existence and boundedness of globally classical solution to

system (1.4). At the beginning, we give a statement on the local existence of classical solutions.

The proof depends on the Schauder fixed theorem. We omit it for brevity and refer the readers

to [30] for more details.

Lemma 2.1. Let a, b, γ2 > 0, γ1 ≥ 1, γ > 1 and Ω ⊂ R
n(n ≥ 1) be a bounded and smooth domain.

Assume that ϕ, ψ ∈ C2[0, ∞) satisfy (1.5) and (1.6), respectively. For any nonnegative initial data

0 6≡ u0 ∈ C(Ω̄), there exists Tmax ∈ (0, ∞] such that the system (1.4) admits a unique nonnegative

classical solution (u, v, w) belonging to C[(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax))] in Ω × (0, Tmax)

with

u, v, w ≥ 0 in Ω̄ × (0, Tmax). (2.1)

Furthermore,

if Tmax < ∞, then lim
tրTmax

sup‖u(·, t)‖L∞(Ω) = ∞. (2.2)

Lemma 2.2. Let a, b, γ2 > 0, γ1 ≥ 1, γ > 1 and (u, v, w) be a solution of system (1.4). Assume that

ϕ, ψ ∈ C2[0, ∞) satisfy (1.5) and (1.6). Then for any η1, η2 > 0 and θ > 1, there exist c0, c1 > 0

depending only on γ1, γ2, η1, η2, θ such that

∫

Ω

wθ ≤ η2

∫

Ω

(u + 1)γ2θ + c0 (2.3)

and
∫

Ω

vθ ≤ η1η2

∫

Ω

(u + 1)γ1γ2θ + c1, (2.4)

for all t ∈ (0, Tmax).
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Proof. Integrating the first equation of system (1.4) over Ω, we find

d

dt

∫

Ω

udx =
∫

Ω

au − buγ ≤ a
∫

Ω

u −
b

|Ω|γ−1

(

∫

Ω

u

)γ

for all t ∈ (0, Tmax), (2.5)

where we have used Hölder’s inequality. Thus, using a standard ODE comparison theory, it

shows that
∫

Ω

u ≤ max

{

∫

Ω

u0,
( a

b

)
1

γ−1
|Ω|

}

for all t ∈ (0, Tmax). (2.6)

Moreover, we can derive directly by integrating the third equation over Ω,

‖w‖L1(Ω) = ‖uγ2‖L1(Ω) ≤ ‖(u + 1)γ2‖L1(Ω) for all t ∈ (0, Tmax). (2.7)

Multiplying the third equation of system(1.4) with wθ−1 and integrating by parts over Ω, we

can get

4(θ − 1)

θ2

∫

Ω

|∇w
θ
2 |2 +

∫

Ω

wθ =
∫

Ω

uγ2 wθ−1 ≤
θ − 1

θ

∫

Ω

wθ +
1

θ

∫

Ω

uγ2θ (2.8)

by Young’s inequality. Hence

‖w‖Lθ(Ω) ≤ ‖uγ2‖Lθ(Ω) ≤ ‖(u + 1)γ2‖Lθ(Ω) for all t ∈ (0, Tmax) (2.9)

and

4(θ − 1)

θ

∫

Ω

|∇w
θ
2 |2 ≤

∫

Ω

uγ2θ ≤
∫

Ω

(u + 1)γ2θ for all t ∈ (0, Tmax). (2.10)

By Ehrling’s lemma, for any η2 > 0, θ > 1 and function φ ∈ W1,2(Ω), there exists C0 =

C0(η2, θ) > 0 such that

‖φ‖2
L2(Ω) ≤ η2‖φ‖2

W1,2(Ω) + C0‖φ‖θ

L
2
θ (Ω)

. (2.11)

Let φ = w
θ
2 , from (2.7),(2.9) and (2.10), there exists C1 = C1(η2, θ) > 0 such that

∫

Ω

wθ ≤ η2

∫

Ω

(u + 1)γ2θ + C1‖(u + 1)γ2‖θ
L1(Ω). (2.12)

For γ2 ∈ (0, 1], using Hölder’s inequality, one may obtain from (2.6)

‖(u + 1)γ2‖θ
L1(Ω) ≤ C2 (2.13)

with C2 = C2(η2, θ, γ2) > 0. For γ2 ∈ (1, ∞), using interpolation inequality and Young’s

inequality, from (2.6) we deduce

‖(u + 1)γ2‖θ
L1(Ω) ≤ ‖(u + 1)γ2‖θτ

Lθ(Ω)‖(u + 1)γ2‖
θ(1−τ)

L
1

γ2 (Ω)
≤ η2

∫

Ω

(u + 1)γ2θ + C3 (2.14)

where τ = γ2−1

γ2−
1
θ

∈ (0, 1) and C3 = C3(η2, θ, γ2) > 0. Thus (2.3) is the direct result of combining

(2.12)–(2.14). Similarly, multiplying the second equation of system(1.4) with vθ−1, by the same

procedure as above, we can obtain for any η1 > 0 and θ > 1
∫

Ω

vθ ≤ η1

∫

Ω

wγ1θ + C4 for all t ∈ (0, Tmax) (2.15)

with C4 = C4(η1, θ, γ1) > 0. Since γ1 ≥ 1, we can obtain from (2.3)
∫

Ω

wγ1θ ≤ η2

∫

Ω

(u + 1)γ1γ2θ + C5 for all t ∈ (0, Tmax) (2.16)

with C5 > 0. Combining (2.15)–(2.16) yields (2.4). This completes the proof of Lemma 2.2.
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Lemma 2.3. Let a, b, γ2 > 0, γ1 ≥ 1, γ > 1 and (u, v, w) be a solution of system (1.4). Assume that

functions ϕ, ψ ∈ C2[0, ∞) satisfying (1.5) and (1.6) for all s ≥ 0 with a0, b0 > 0 and α, β ∈ R. If

γ − β ≥ γ1γ2, then for any p > max{1, 1 − β}, there exists a constant C > 0 such that
∫

Ω

(u + 1)p ≤ C (2.17)

for all t ∈ (0, Tmax).

Proof. Multiplying the first equation of system (1.4) by (u + 1)p−1 and integrating by parts

over Ω, we derive

1

p

d

dt

∫

Ω

(u + 1)p = − (p − 1)
∫

Ω

(u + 1)p−2 ϕ(u)|∇u|2 + (p − 1)
∫

Ω

(u + 1)p−2ψ(u)∇u · ∇v

+ a
∫

Ω

u(u + 1)p−1 − b
∫

Ω

uγ(u + 1)p−1 (2.18)

for all t ∈ (0, Tmax). Since ϕ satisfies (1.5), we can estimate the first term on the right-hand

side of (2.18) as

−(p − 1)
∫

Ω

(u + 1)p−2 ϕ(u)|∇u|2 ≤− (p − 1)
∫

Ω

a0(1 + u)α(1 + u)p−2|∇u|2

≤−
4a0(p − 1)

(p + α)2

∫

Ω

|∇(u + 1)
p+α

2 |2 (2.19)

for all t ∈ (0, Tmax). Let Ψ(u) =
∫ u

0 (ξ + 1)p−2ψ(ξ)dξ, thus

∇Ψ(u) = (u + 1)p−2ψ(u)∇u (2.20)

and

|Ψ(u)| ≤
b0

β + p − 1
(u + 1)β+p−1 (2.21)

for all t ∈ (0, Tmax). From (2.20) and (2.21), we can get

(p − 1)
∫

Ω

(u + 1)p−2ψ(u)∇u · ∇v = (p − 1)
∫

Ω

∇Ψ(u) · ∇v = −(p − 1)
∫

Ω

Ψ(u)∆v

≤ (p − 1)
∫

Ω

Ψ(u)|∆v| ≤
b0(p − 1)

β + p − 1

∫

Ω

(u + 1)β+p−1|∆v|

(2.22)

for all t ∈ (0, Tmax). By the basic inequality (u + 1)γ
< 2γ(uγ + 1) with γ > 1, we have

−b
∫

Ω

uγ(u + 1)p−1 ≤ −
b

2γ

∫

Ω

(u + 1)p+γ−1 + b
∫

Ω

(u + 1)p−1 (2.23)

for all t ∈ (0, Tmax). Denoting m0 = max{a, b}, from (2.18)–(2.19) and (2.22)–(2.23), we can get

1

p

d

dt

∫

Ω

(u + 1)p ≤ −
4a0(p − 1)

(p + α)2

∫

Ω

|∇(u + 1)
p+α

2 |2 +
b0(p − 1)

β + p − 1

∫

Ω

(u + 1)β+p−1|∆v|

+ m0

∫

Ω

u(u + 1)p−1 −
b

2γ

∫

Ω

(u + 1)p+γ−1 + m0

∫

Ω

(u + 1)p−1

≤
b0(p − 1)

β + p − 1

∫

Ω

(u + 1)β+p−1|v − wγ1 |+ m0

∫

Ω

(u + 1)p −
b

2γ

∫

Ω

(u + 1)p+γ−1

≤
b0(p − 1)

β + p − 1

∫

Ω

(u + 1)β+p−1v +
b0(p − 1)

β + p − 1

∫

Ω

(u + 1)β+p−1wγ1

+ m0

∫

Ω

(u + 1)p −
b

2γ

∫

Ω

(u + 1)p+γ−1 (2.24)
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for all t ∈ (0, Tmax), where we have made use of the second identity 0 = ∆v − v + wγ1 in

system (1.4). In the sequel, we estimate (2.24) in two different cases.

Case 1 (γ − β > γ1γ2). In this case, using Young’s inequality, we can derive

∫

Ω

(u + 1)β+p−1wγ1 ≤
b(β + p − 1)

2γ+3b0(p − 1)

∫

Ω

(u + 1)p+γ−1 + C6

∫

Ω

w
(p+γ−1)γ1

γ−β (2.25)

with C6 =
( 2γ+3b0(p−1)

b(γ+p−1)

)

γ+p−1
γ−β . Since γ − β > γ1γ2, with applications of Young’s inequality, we

get from Lemma 2.2 with θ = p+γ−1
γ2

> 1

∫

Ω

w
(p+γ−1)γ1

γ−β ≤
b(β + p − 1)

2γ+3C6b0η2(p − 1)

∫

Ω

w
p+γ−1

γ2 + C7

≤
b(β + p − 1)

2γ+3C6b0(p − 1)

∫

Ω

(u + 1)p+γ−1 + C8, (2.26)

where C8 = C7 + c0 with C7 =
( 2γ+3C6b0η2(p−1)

b(β+p−1)

)

γ1γ2
γ−β−γ1γ2 |Ω|. Similarly, we have

∫

Ω

(u + 1)β+p−1v ≤
b(β + p − 1)

2γ+3b0(p − 1)

∫

Ω

(u + 1)p+γ−1 + C9

∫

Ω

v
p+γ−1

γ−β . (2.27)

Since γ1 ≥ 1, in view of Young’s inequality, we can obtain from Lemma 2.2 with θ = p+γ−1
γ−β > 1

∫

Ω

v
p+γ−1

γ−β ≤ η1η2

∫

Ω

(u + 1)
(p+γ−1)γ2

γ−β + c1

≤ η1η2

(

1

η1η2

∫

Ω

(u + 1)
p+γ−1

γ1 + (η1η2)
γ−β−γ1γ2

γ1γ2 |Ω|

)

+ c1

≤
∫

Ω

(u + 1)
p+γ−1

γ1 + (η1η2)
1+

γ−β−γ1γ2
γ1γ2 |Ω|+ c1

≤
b(β + p − 1)

2γ+3b0(p − 1)C9

∫

Ω

(u + 1)p+γ−1 + C10 (2.28)

with C10 =
( 2γ+3b0(p−1)C9

b(γ+p−1)

)
1

γ1−1 +(η1η2)
1+

γ−β−γ1γ2
γ1γ2 |Ω|+ c1. Since γ > 1, using Young’s inequality,

there exists C11 = b
2γ+2(m0+1)

such that

∫

Ω

(u + 1)p ≤ C11

∫

Ω

(u + 1)p+γ−1 + C12 (2.29)

with C12 =
( 2γ+2(m0+1)

b

)

p
γ−1 |Ω|. Using (2.24)–(2.29), we can obtain

1

p

d

dt

∫

Ω

(u + 1)p +
∫

Ω

(u + 1)p

≤
b0(p − 1)

β + p − 1

∫

Ω

(u + 1)β+p−1v +
b0(p − 1)

β + p − 1

∫

Ω

(u + 1)β+p−1wγ1 + (m0 + 1)
∫

Ω

(u + 1)p

−
b

2γ

∫

Ω

(u + 1)p+γ−1

≤
b0(p − 1)

β + p − 1

[

b(β + p − 1)

2γ+2b0(p − 1)

∫

Ω

(u + 1)p+γ−1 + C9

∫

Ω

v
p+γ−1

γ−β + C6

∫

Ω

w
(p+γ−1)γ1

γ−β

]

+ (m0 + 1)

(

C11

∫

Ω

(u + 1)p+γ−1 + C12

)

−
b

2γ

∫

Ω

(u + 1)p+γ−1
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≤
b0(p − 1)

β + p − 1

[

b(β + p − 1)

2γ+1b0(p − 1)

∫

Ω

(u + 1)p+γ−1 + C8 + C10

]

−
3b

2γ+2

∫

Ω

(u + 1)p+γ−1 + C12(m0 + 1)

≤ −
b

2γ+2

∫

Ω

(u + 1)p+γ−1 + (C8 + C10)
b0(p − 1)

β + p − 1
+ C12(m0 + 1) (2.30)

for all t ∈ (0, Tmax), which means that

d

dt

∫

Ω

(u + 1)p + p
∫

Ω

(u + 1)p

≤ −
bp

2γ+2

∫

Ω

(u + 1)p+γ−1 + (C8 + C10)
b0 p(p − 1)

β + p − 1
+ C12 p(m0 + 1).

(2.31)

Thus we can get the conclusion immediately by the ODE comparison principle.

Case 2 (γ − β = γ1γ2). Recalling (2.25) and (2.27), we know

∫

Ω

(u + 1)β+p−1wγ1 ≤
b(β + p − 1)

2γ+3b0(p − 1)

∫

Ω

(u + 1)p+γ−1 + C6

∫

Ω

w
(p+γ−1)γ1

γ−β (2.32)

and
∫

Ω

(u + 1)β+p−1v ≤
b(β + p − 1)

2γ+3b0(p − 1)

∫

Ω

(u + 1)p+γ−1 + C9

∫

Ω

v
p+γ−1

γ−β . (2.33)

Since γ − β = γ1γ2, for any η1, η2 > 0, we can obtain from Lemma 2.2

∫

Ω

w
(p+γ−1)γ1

γ−β =
∫

Ω

w
(p+γ−1)

γ2 ≤ η2

∫

Ω

(u + 1)p+γ−1 + c0 (2.34)

and
∫

Ω

v
p+γ−1

γ−β =
∫

Ω

v
p+γ−1
γ1γ2 ≤ η1η2

∫

Ω

(u + 1)p+γ−1 + c1 (2.35)

for all t ∈ (0, Tmax). Because of the arbitrariness of η1 and η2, we choose η2 = b(β+p−1)
2γ+3C6b0(p−1)

and

η1η2 = b(β+p−1)
2γ+3C9b0(p−1)

in (2.34) and (2.35), respectively. From (2.24), (2.29) and (2.32)–(2.35), we

can obtain

d

dt

∫

Ω

(u + 1)p + p
∫

Ω

(u + 1)p

≤ −
bp

2γ+2

∫

Ω

(u + 1)p+γ−1 + (c0C6 + c1C9)
b0 p(p − 1)

β + p − 1
+ C12 p(m0 + 1), (2.36)

for all t ∈ (0, Tmax). Using the ODE comparison principle, we can prove the conclusion. The

proof of Lemma 2.3 is completed.

Proof of Theorem 1.1. Let a, b, γ2 > 0, γ1 ≥ 1, γ > 1 and (u, v, w) be a solution of system (1.4).

From Lemma 2.3, for any p > max{1, 1 − β}, there exists C13 > 0 such that ‖u‖Lp(Ω) ≤ C13

for all t ∈ (0, Tmax). By the elliptic Lp-estimate applied to the second and third equations in

system (1.4), we have

‖w(·, t)‖W2,p/γ2 (Ω) + ‖v(·, t)‖W2,p/γ1γ2 (Ω) ≤ C14 (2.37)
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for all t ∈ (0, Tmax), with some C14 > 0. Using the Sobolev imbedding theorem, we can get

‖w(·, t)‖W1,∞(Ω) + ‖v(·, t)‖W1,∞(Ω) ≤ C15 (2.38)

for all t ∈ (0, Tmax), with some C15 > 0. Thus by standard Alikakos–Moser iteration ( [28,

Lemma A.1]), we can find a constant C16 > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C16

for all t ∈ (0, Tmax), which together with Lemma 2.1 implies that Tmax = ∞. Hence, by standard

elliptic regularity theory, we know that (u, v, w) is a globally bounded classical solution of

system (1.4). The proof of Theorem 1.1 is completed.

3 Long time behavior of the solution for a specific model

In this section, we shall study the long time behavior of the solution for a specific model (i.e.

γ1 = 1, γ2 = κ and γ = κ + 1 with κ > 0) with nonlinear indirect signal production and

logistic source as follows



































ut = ∇ · (ϕ(u)∇u − ψ(u)∇v) + u(a − buκ), x ∈ Ω, t > 0,

0 = ∆v − v + w, x ∈ Ω, t > 0,

0 = ∆w − w + uκ, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(3.1)

where Ω ⊂ R
n(n ≥ 1) is a bounded and smooth domain, the parameters a, b, κ > 0 and

functions ϕ, ψ ∈ C2[0, ∞) satisfy conditions (1.5) and (1.6), respectively.

Based on Theorem 1.1, it is easy to check that if β ≤ 1, then the system (3.1) admits a unique

globally bounded classical solution (u, v, w). Furthermore, such classical solution (u, v, w) may

be strictly positive which can be ensured by choosing some suitable 0 ≤ u0 ∈ C(Ω̄) from

Theorem 1.1. Thus let us assume that the classical solution (u, v, w) to system (3.1) is strictly

positive throughout the proof of Theorem 1.2. For the convenience, we repeat the description

stated in (1.8) and (1.9), i.e. there exists R > 0 which does not depend on a, b, α, β, a0, b0 and κ

such that

0 < u(x, t) ≤ R (3.2)

holds on Ω̄ × [0, ∞). Moreover, we can also find λ > 0 independent of a, b, a0, b0 and κ such

that

(u + 1)2β−α−2 ≤ λ (3.3)

holds on Ω̄ × [0, ∞).

In order to prove Theorem 1.2, we introduce a useful lemma.

Lemma 3.1 (cf. [1, Lemma 3.1.]). Let g : (t0, ∞) → [0, ∞) be uniformly continuous such that
∫

∞

t0
g(t)dt < ∞ with t0 > 0. Then

g(t) → 0 as t → ∞. (3.4)

The key to prove Theorem 1.2 relies on seeking so-called Lyapunov functional inspired

from [1, 7]. In the following, we need to construct appropriate energy functionals to system

(3.1), which is prepared for the proof of Theorem 1.2.
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Lemma 3.2. Let 0 ≤ u0 ∈ C(Ω̄) and a, b, κ > 0. Assume that ϕ, ψ ∈ C2[0, ∞) satisfy (1.5) and (1.6)

with a0, b0 > 0 and α, β ∈ R. If β ≤ 1 and the condition (1.10) in Theorem 1.2 holds, then the solution

(u, v, w) has the following L2−convergence

∫

Ω

(

u − (
b

a
)

1
κ

)2

+
∫

Ω

(

v −
b

a

)2

+
∫

Ω

(

w −
b

a

)2

→ 0 as t → ∞. (3.5)

Proof. For κ ∈ (0, 1], we define the functional

A(t) =
∫

Ω

u − c − c ln
(u

c

)

, t > 0, (3.6)

for u > 0, with c = ( a
b )

1
κ . By taking derivative, we can easily obtain that a(s) = s − c − c ln( s

c )

with s > 0 has global minimum zero at s = c. Hence, A(t) ≥ 0 for all t ≥ 0.

Using Young’s inequality and the fact (3.3), we deduce from the first equation of system

(3.1)

d

dt
A(t) =

∫

Ω

u − c

u
ut

=
∫

Ω

u − c

u
[∇ · (ϕ(u)∇u − ψ(u)∇v) + u(a − buκ)]

= − c
∫

Ω

ϕ(u)
|∇u|2

u2
+ c

∫

Ω

ψ(u)
∇u · ∇v

u2
− b

∫

Ω

(u − c)(uκ − cκ)

≤ − a0c
∫

Ω

(u + 1)α |∇u|2

u2
+

a0c

λ

∫

Ω

(u + 1)2β |∇u|2

u2
+

λb2
0c

4a0

∫

Ω

|∇v|2

− b
∫

Ω

(u − c)(uκ − cκ)

≤
λb2

0c

4a0

∫

Ω

|∇v|2 − b
∫

Ω

(u − c)(uκ − cκ). (3.7)

Multiplying the third equation in system (3.1) by w − cκ, we get
∫

Ω

|∇w|2 = −
∫

Ω

(w − cκ)2 +
∫

Ω

(w − cκ)(uκ − cκ). (3.8)

Similarly, multiplying the second equation in system (3.1) by v − cκ, we derive
∫

Ω

|∇v|2 = −
∫

Ω

(v − cκ)2 +
∫

Ω

(v − cκ)(w − cκ). (3.9)

Substituting (3.8) and (3.9) into (3.7), by Young’s inequality we see

d

dt
A(t) ≤− b

∫

Ω

(u − c)(uκ − cκ) +
λb2

0c

4a0

∫

Ω

|∇v|2 −
λb2

0c

4a0

∫

Ω

|∇v|2

−
λb2

0c

4a0

∫

Ω

(v − cκ)2 +
λb2

0c

4a0

∫

Ω

(v − cκ)(w − cκ)−
λb2

0c

8a0

∫

Ω

|∇w|2

−
λb2

0c

8a0

∫

Ω

(w − cκ)2 +
λb2

0c

8a0

∫

Ω

(w − cκ)(uκ − cκ)

≤− b
∫

Ω

(u − c)(uκ − cκ) +
λb2

0c

16a0

∫

Ω

(w − cκ)2 −
λb2

0c

8a0

∫

Ω

(w − cκ)2

+
λb2

0c

8a0

∫

Ω

(w − cκ)(uκ − cκ)

≤− b
∫

Ω

(u − c)(uκ − cκ) +
λb2

0c

16a0

∫

Ω

(uκ − cκ)2. (3.10)
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For κ ∈ (0, 1], we have the following basic inequality

(uκ − cκ)2 ≤ cκ−1(u − c)(uκ − cκ). (3.11)

Thus, from (3.10) and (3.11), we derive

d

dt
A(t) ≤ −(b −

λb2
0cκ

16a0
)
∫

Ω

(u − c)(uκ − cκ)

= −δ
∫

Ω

(u − c)(uκ − cκ), (3.12)

where δ = b −
λb2

0cκ

16a0
. For any t0 ≥ 0, integrating both sides of (3.12) on [t0, t], one can obtain

A(t)− A(t0) ≤ −δ
∫ t

t0

∫

Ω

(u − c)(uκ − cκ). (3.13)

Since A(t) ≥ 0 and δ is nonnegative ensured by b >
b0
4

√

λa
a0

. Thus

∫ t

t0

∫

Ω

(u − c)(uκ − cκ) ≤
A(t0)

δ
< ∞. (3.14)

From Theorem 1.1, we know that (u, v, w) is a globally bounded classical solution. Hence, by

standard parabolic regularity for parabolic equations [17], we can find σ ∈ (0, 1) and C > 0

such that

‖u‖
C2+σ,1+ σ

2 (Ω̄×[t,t+1])
+ ‖v‖

C2+σ,1+ σ
2 (Ω̄×[t,t+1])

+ ‖w‖
C2+σ,1+ σ

2 (Ω̄×[t,t+1])
≤ C, ∀t ≥ 1. (3.15)

This clearly implies that
∫

Ω
(u − c)(uκ − cκ) is globally bounded and uniformly continuous

with respect to t. Using (3.11) once again, we can obtain from Lemma 3.1

1

cκ−1

∫

Ω

(uκ − cκ)2 ≤
∫

Ω

(u − c)(uκ − cκ) → 0 as t → ∞. (3.16)

On the other hand, using Young’s inequality to (3.8), we get

∫

Ω

|∇w|2 = −
1

2

∫

Ω

(w − cκ)2 +
1

2

∫

Ω

(uκ − cκ)2 (3.17)

and so
∫

Ω

(w − cκ)2 ≤
∫

Ω

(uκ − cκ)2 → 0 as t → ∞. (3.18)

Similarly,

∫

Ω

|∇v|2 = −
1

2

∫

Ω

(v − cκ)2 +
1

2

∫

Ω

(w − cκ)2 (3.19)

and so
∫

Ω

(v − cκ)2 ≤
∫

Ω

(w − cκ)2 → 0 as t → ∞. (3.20)

Define z(s) = s
1
κ . By mean value theorem and (3.2), one may obtain

u − c = z(uκ)− z(cκ) =
1

κ
ξ

1−κ
κ (uκ − cκ) (3.21)
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for some ξ between Rκ and cκ. Thus

∫

Ω

(u − c)2 ≤
1

κ2
R

2(1−κ)
κ

∫

Ω

(uκ − cκ)2 → 0 as t → ∞. (3.22)

Therefore, from (3.18), (3.20) and (3.22), we can get (3.5) for κ ∈ (0, 1].

For κ ∈ (1,+∞), we define the following functional

H(t) =
1

κ

∫

Ω

(

uκ −
a

b
−

a

b
ln

(

buκ

a

))

, t > 0, (3.23)

for u > 0. We can easily obtain the function h(s) = s − a
b −

a
b ln( bs

a ) has global minimum zero

over (0, ∞) at s = a
b . Thus

H(t) =
1

κ

∫

Ω

h(uκ) ≥ 0 for all t ≥ 0. (3.24)

By Young’s inequality, we can obtain from (1.5)–(1.6) and (3.2)–(3.3) that

d

dt
H(t) =

∫

Ω

uκ − a
b

u
ut

=
∫

Ω

uκ − a
b

u
[∇ · (ϕ(u)∇u − ψ(u)∇v) + u(a − buκ)]

= −
a

b

∫

Ω

ϕ(u)
|∇u|2

u2
+

a

b

∫

Ω

ψ(u)
∇u · ∇v

u2
− (κ − 1)

∫

Ω

uκ−2 ϕ(u)|∇u|2

+ (κ − 1)
∫

Ω

uκ−2ψ(u)∇u · ∇v − b
∫

Ω

(

uκ −
a

b

)2

≤ −
aa0

b

∫

Ω

(u + 1)α |∇u|2

u2
+

ab0

b

∫

Ω

(u + 1)β−1∇u · ∇v

u
− (κ − 1)

∫

Ω

uκ−2ϕ(u)|∇u|2

+ (κ − 1)
∫

Ω

uκ−2ψ(u)∇u · ∇v − b
∫

Ω

(

uκ −
a

b

)2

≤
λab2

0

4ba0

∫

Ω

|∇v|2 − (κ − 1)
∫

Ω

(

√

ϕ(u)u
κ
2−1∇u −

ψ(u)

2
√

ϕ(u)
u

κ
2−1∇v

)2

+
κ − 1

4

∫

Ω

ψ2(u)

ϕ(u)
uκ−2|∇v|2 − b

∫

Ω

(

uκ −
a

b

)2

≤
λb2

0

4a0

[ a

b
+ (κ − 1)Rκ

]

∫

Ω

|∇v|2 − b
∫

Ω

(

uκ −
a

b

)2

= ϑ
∫

Ω

|∇v|2 − b
∫

Ω

(

uκ −
a

b

)2
(3.25)

where ϑ =
λb2

0
4a0

[

a
b + (κ − 1)Rκ

]

. Multiplying the second equation in system (3.1) by (v − a
b ),

we have

∫

Ω

|∇v|2 = −
∫

Ω

(

v −
a

b

)2
+
∫

Ω

(

v −
a

b

) (

w −
a

b

)

. (3.26)

Similarly, for the third equation, we get

∫

Ω

|∇w|2 = −
∫

Ω

(

w −
a

b

)2
+
∫

Ω

(

w −
a

b

) (

uκ −
a

b

)

. (3.27)
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Combining (3.26), (3.27) with (3.25) and using Young’s inequality, we obtain

d

dt
H(t) ≤ − ϑ

∫

Ω

(

v −
a

b

)2

+ ϑ
∫

Ω

(

v −
a

b

)(

w −
a

b

)

− b
∫

Ω

(uκ −
a

b
)2

−
ϑ

2

∫

Ω

|∇w|2 −
ϑ

2

∫

Ω

(

w −
a

b

)2

+
ϑ

2

∫

Ω

(

w −
a

b

)(

uκ −
a

b

)

≤
ϑ

4

∫

Ω

(

w −
a

b

)2

− b
∫

Ω

(

uκ −
a

b

)2

−
ϑ

2

∫

Ω

(

w −
a

b

)2

+
ϑ

4

∫

Ω

(

w −
a

b

)2

+
ϑ

4

∫

Ω

(

uκ −
a

b

)2

= − ǫ
∫

Ω

(uκ −
a

b
)2 (3.28)

where ǫ = b − ϑ
4 . By the assumption (1.10) in Theorem 1.2, we know that ǫ > 0. Then for any

t0 ≥ 0, an integration of the inequality (3.28) from t0 to t entails

H(t)− H(t0) ≤ −ǫ
∫ t

t0

∫

Ω

(

uκ −
a

b

)2

. (3.29)

Thus the nonnegativity of H yields

∫

∞

t0

∫

Ω

(

uκ −
a

b

)2

≤
H(t0)

ǫ
< ∞. (3.30)

From Lemma 3.1, the global boundedness and uniform continuity of
∫

Ω
(uκ − a

b )
2 in t entails

∫

Ω

(

uκ −
a

b

)2

→ 0 as t → ∞. (3.31)

A simple use of Young’s inequality to (3.27) immediately shows

∫

Ω

|∇w|2 ≤ −
1

2

∫

Ω

(

w −
a

b

)2

+
1

2

∫

Ω

(

uκ −
a

b

)2

(3.32)

and so

∫

Ω

(w −
a

b
)2 ≤

∫

Ω

(

uκ −
a

b

)2

→ 0 as t → ∞. (3.33)

Similarly, we have

∫

Ω

|∇v|2 ≤ −
1

2

∫

Ω

(

v −
a

b

)2

+
1

2

∫

Ω

(

w −
a

b

)2

. (3.34)

Thus

∫

Ω

(

v −
a

b

)2

≤
∫

Ω

(

w −
a

b

)2

→ 0 as t → ∞. (3.35)

Since κ ∈ (1, ∞), then there exists a constant M > 0 such that

M = sup
z∈(0,∞)

(

z −
(

a
b

)
1
κ

)2

(zκ − a
b )

2
< ∞. (3.36)
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Therefore

∫

Ω

(

u −
( a

b

)
1
κ

)2

≤ M
∫

Ω

(

uκ −
a

b

)2
→ 0 as t → ∞. (3.37)

This completes the proof of L2-convergence of the solution to system (3.1).

Proof of Theorem 1.2. In view of the Gagliardo–Nirenberg inequality [4], we conclude from

(3.5), (3.15), (3.22) and (3.37) that

∥

∥

∥

∥

u(·, t)−
( a

b

)
1
κ

∥

∥

∥

∥

L∞(Ω)

≤ CGN

∥

∥

∥

∥

u(·, t)−
( a

b

)
1
κ

∥

∥

∥

∥

n
n+2

W1,∞(Ω)

∥

∥

∥

∥

u(·, t)−
( a

b

)
1
κ

∥

∥

∥

∥

2
n+2

L2

≤ C

∥

∥

∥

∥

u(·, t)−
( a

b

)
1
κ

∥

∥

∥

∥

2
n+2

L2

≤ Cκ

∥

∥

∥
uκ(·, t)−

a

b

∥

∥

∥

2
n+2

L2
→ 0 as t → ∞. (3.38)

For κ ∈ (0, 1], by the L’Hospital rule, we get

lim
u→c

a(u)

(u − c)(uκ − cκ)
= lim

u→c

u − c − c ln( u
c )

(u − c)(uκ − cκ)
=

1

2κcκ
, c =

( a

b

)κ
. (3.39)

Based on (3.38) and(3.39), we choose t1 > 0 such that

1

4κcκ
(u − c)(uκ − cκ) ≤ a(u) ≤

1

κcκ
(u − c)(uκ − cκ), t ≥ t1, (3.40)

and so

1

4κcκ

∫

Ω

(u − c)(uκ − cκ) ≤ A(t) ≤
1

κcκ

∫

Ω

(u − c)(uκ − cκ), t ≥ t1. (3.41)

Using (3.12) and (3.41), we get

d

dt
A(t) ≤ −δκcκ A(t), t ≥ t1, (3.42)

thus

A(t) ≤ A(t1)e
−δκcκ(t−t1), t ≥ t1. (3.43)

From (3.11), (3.38), (3.41) and (3.42), we can deduce

‖u(·, t)− c‖L∞(Ω) ≤ Cκ‖uκ(·, t)− cκ‖
2

n+2

L2

≤ Cκ

[

∫

Ω

(uκ − cκ)2

]
1

n+2

≤ Cκ

[

∫

Ω

cκ−1(u − c)(uκ − cκ)

]
1

n+2

≤ Cκ

[

4κc2κ−1 A(u)
]

1
n+2

≤ Cκ(4κc2κ−1A(t1))
1

n+2 e−
κδcκ (t−t1)

n+2 , t ≥ t1. (3.44)
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Repeating the similar steps for w and v, we can obtain from (3.18), (3.19) and (3.44)

‖w(·, t)− cκ‖L∞(Ω) ≤ Cκ

(

4κc2κ−1 A(t1)
)

1
n+2

e−
κδcκ (t−t1)

n+2 , t ≥ t1 (3.45)

and

‖v(·, t)− cκ‖L∞(Ω) ≤ Cκ

(

4κc2κ−1 A(t1)
)

1
n+2

e−
κδcκ (t−t1)

n+2 , t ≥ t1. (3.46)

For κ ∈ (1, ∞), using the the L’Hospital rule, we deduce

lim
u→c

h(uκ)

(uκ − cκ)2κ
= lim

z→cκ

z − cκ − cκ ln( z
cκ )

(z − cκ)2κ
=

cκ−2

2κ
. (3.47)

From (3.38) and (3.47), we pick t2 ≥ 0 such that

cκ−2

4κ

∫

Ω

(uκ − cκ)2 ≤ H(t) ≤
cκ−2

κ

∫

Ω

(uκ − cκ)2, t ≥ t2. (3.48)

Using (3.28) and (3.48), we get

d

dt
H(t) ≤ −ǫκc2−κ H(t), t ≥ t2, (3.49)

which implies

H(t) ≤ H(t2)e
−ǫκc2−κ(t−t2), t ≥ t2. (3.50)

From (3.38), (3.48) and (3.50), we infer that

‖u(·, t)− c‖L∞(Ω) ≤ Cκ‖uκ(·, t)− cκ‖
2

n+2

L2

≤ Cκ(4κc2κ−1H(t2))
1

n+2 e−
ǫκc2−κ (t−t2)

n+2 , t ≥ t2. (3.51)

Analogously, taking (3.33), (3.35) and (3.51) into account, we can obtain

‖w(·, t)− cκ‖L∞(Ω) ≤ Cκ(4κc2κ−1H(t2))
1

n+2 e−
ǫκc2−κ (t−t2)

n+2 , t ≥ t2 (3.52)

and

‖v(·, t)− cκ‖L∞(Ω) ≤ Cκ(4κc2κ−1H(t2))
1

n+2 e−
ǫκc2−κ (t−t2)

n+2 , t ≥ t2. (3.53)

Finally, plugging δ and ǫ into (3.44)–(3.46) and (3.51)–(3.53), we take Cκ large enough and then

complete the proof of Theorem 1.2.
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1 Introduction

In this paper, we consider the following problem





−div [a(x,∇u(x))] = f (x, u(x)) in Ω,

u(x) = 0 on Γ1,

n(x) · a(x,∇u(x)) = g(x, u(x)) on Γ2.

(1.1)

Here Ω is a bounded domain of R
d (d ≥ 2) with a Lipschitz-continuous (C0,1 for short)

boundary Γ satisfying that

Γ1 and Γ2 are disjoint open subsets of Γ such that Γ1 ∪ Γ2 = Γ and Γ1 ̸= ∅, (1.2)

and the vector field n denotes the unit, outer, normal vector to Γ. The function a(x, ξ) is

a Carathéodory function on Ω × R
d satisfying some structure conditions associated with an

anisotropic exponent function p(x). Then the operator u 7→ div [a(x,∇u(x))] is more gen-

eral than the p(·)-Laplacian ∆p(x)u(x) = div [|∇u(x)|p(x)−2∇u(x)] and the mean curvature

BEmail: aramaki@hctv.ne.jp



2 J. Aramaki

operator div [(1 + |∇u(x)|2)(p(x)−2)/2∇u(x)]. These generalities bring about difficulties and

requires some conditions.

We impose the mixed boundary conditions, that is, the Dirichlet condition on Γ1 and the

Steklov condition on Γ2. The given data f : Ω ×R → R and g : Γ2 ×R → R are Carathéodory

functions satisfying some conditions.

The study of differential equations with p(·)-growth conditions is a very interesting topic

recently. Studying such problem stimulated its application in mathematical physics, in partic-

ular, in elastic mechanics (Zhikov [28]), in electrorheological fluids (Diening [7], Halsey [15],

Mihăilescu and Rădulescu [18], Růžička [20]).

Over the last two decades, there are many articles on the existence of weak solutions for the

Dirichlet boundary condition, that is, in the case Γ2 = ∅ in (1.1), (for example, see Mashiyev

et al. [17], Duc and Vu [10], Wei and Chen [22], Yücedağ [25], Nápoli and Mariani [19]).

However, since we can only find a few of papers associate with the problem with the

mixed boundary condition in variable exponent Sobolev space as in (1.1). See Aramaki [1–3].

We are convinced of the reason for existence of this paper.

In particular, the authors in [10] considered the problem (1.1) when p(x) = p = const.

and Γ2 = ∅, and derived the existence of a nontrivial weak solution to (1.1). This paper is

an extension of the article [10] to the case of variable exponent and mixed boundary value

problem. In the paper [10], the authors derived the weakly continuous differentiability of the

corresponding energy functional and then applied a version of the Mountain-pass lemma in-

troduced in Duc [9]. However, in this paper we show that the corresponding energy functional

is of class C1, and so it suffices to apply the standard Mountain-pass lemma.

The paper is organized as follows. Section 2 consists of two subsections. In Subsection

2.1, we recall some results on variable exponent Lebesgue-Sobolev spaces. In Subsection 2.2,

we give the assumptions to the main theorems. In Section 3, we state the main theorems

(Theorem 3.3 and Theorem 3.5) on the existence of at least one and two nontrivial weak

solutions. The proofs of the main theorems are given in Section 4.

2 Preliminaries and the main theorems

Let Ω be a bounded domain in R
d (d ≥ 2) with a C0,1-boundary Γ. Moreover, we assume that

Γ satisfies (1.2).

Throughout this paper, we only consider vector spaces of real valued functions over R.

For any space B, we denote Bd by the boldface character B. Hereafter, we use this character

to denote vectors and vector-valued functions, and we denote the standard inner product of

vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) in R
d by a · b = ∑

d
i=1 aibi and |a| = (a · a)1/2.

Furthermore, we denote the dual space of B by B∗ and the duality bracket by ⟨·, ·⟩B∗,B.

2.1 Variable exponent Lebesgue and Sobolev spaces

In this subsection, we recall some well-known results on variable exponent Lebesgue–Sobolev

spaces. See Diening et al. [8], Fan and Zhang [12], Kováčik and Rákosník [16] and refer-

ences therein for more detail. Throughout this paper, let Ω be a bounded domain in R
d

with a C0,1-boundary Γ and Ω is locally on the same side of Γ. Define P(Ω) = {p : Ω →

[1, ∞); p is a measurable function}, and for any p ∈ P(Ω), put

p+ = ess sup
x∈Ω

p(x) and p− = ess inf
x∈Ω

p(x).
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For any measurable function u on Ω, a modular ρp(·) = ρp(·),Ω is defined by

ρp(·)(u) =
∫

Ω
|u(x)|p(x)dx.

The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u; u : Ω → R is a measurable function satisfying ρp(·)(u) < ∞}

equipped with the Luxemburg norm

∥u∥Lp(·)(Ω) = inf
{

λ > 0; ρp(·)

(u

λ

)
≤ 1

}
.

Then Lp(·)(Ω) is a Banach space. We also define, for any integer m ≥ 0,

Wm,p(·)(Ω) = {u ∈ Lp(·)(Ω); ∂αu ∈ Lp(·)(Ω) for |α| ≤ m},

where α = (α1, . . . , αd) is a multi-index, |α| = ∑
d
i=1 αi, ∂α = ∂α1

1 · · · ∂αd

d and ∂i = ∂/∂xi, endowed

with the norm

∥u∥Wm,p(·)(Ω) = ∑
|α|≤m

∥∂αu∥Lp(·)(Ω).

Of course, W0,p(·)(Ω) = Lp(·)(Ω). Define

W
m,p(·)
0 (Ω) = the closure of the set of Wm,p(·)(Ω)-functions with compact supports in Ω.

The following three propositions are well known (see Fan et al. [14,22], Fan and Zhao [13],

Zhao et al. [27], and [25]).

Proposition 2.1. Let p ∈ P(Ω) and let u, un ∈ Lp(·)(Ω) (n = 1, 2, . . .) Then we have

(i) ∥u∥Lp(·)(Ω) < 1(= 1,> 1) ⇐⇒ ρp(·)(u) < 1(= 1,> 1).

(ii) ∥u∥Lp(·)(Ω) > 1 =⇒ ∥u∥
p−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥

p+

Lp(·)(Ω)
.

(iii) ∥u∥Lp(·)(Ω) < 1 =⇒ ∥u∥
p+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥

p−

Lp(·)(Ω)
.

(iv) limn→∞ ∥un − u∥Lp(·)(Ω) = 0 ⇐⇒ limn→∞ ρp(·)(un − u) = 0.

(v) ∥un∥Lp(·)(Ω) → ∞ as n → ∞ ⇐⇒ ρp(·)(un) → ∞ as n → ∞.

The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let p ∈ P+(Ω), where

P+(Ω) = {p ∈ P(Ω); 1 < p− ≤ p+ < ∞}.

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have

∫

Ω
|u(x)v(x)|dx ≤

(
1

p−
+

1

(p′)−

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω) ≤ 2∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω).

Here and from now on, p′(·) is the conjugate exponent of p(·), that is, 1
p(x)

+ 1
p′(x)

= 1.
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For p ∈ P(Ω), define

p∗(x) =

{
dp(x)

d−p(x)
if p(x) < d,

∞ if p(x) ≥ d.

Proposition 2.3. Let Ω be a bounded domain with C0,1-boundary and let p ∈ P+(Ω) and m ≥ 0 be

an integer. Then we have the following:

(i) The spaces Lp(·)(Ω) and Wm,p(·)(Ω) are separable, reflexive and uniformly convex Banach

spaces.

(i) If q(·) ∈ P+(Ω) and satisfies q(x) ≤ p(x) for all x ∈ Ω, then Wm,p(·)(Ω) →֒ Wm,q(·)(Ω),

where →֒ means that the embedding is continuous.

(i) If q(x) ∈ P+(Ω) satisfies that q(x) ≤ p∗(x) for all x ∈ Ω, then the embedding W1,p(·)(Ω) →֒

Lq(·)(Ω) is continuous. Moreover, if q(x) < p∗(x) for all x ∈ Ω, then the embedding

W1,p(·)(Ω) →֒ Lq(·)(Ω) is compact.

We say that p ∈ P(Ω) belongs to P log(Ω) if p has the log-Hölder continuity in Ω, that is,

p : Ω → R satisfies that there exists a constant Clog(p) > 0 such that

|p(x)− p(y)| ≤
Clog(p)

log(e + 1/|x − y|)
for all x, y ∈ Ω.

We also write P
log
+ (Ω) = {p ∈ P log(Ω); 1 < p− ≤ p+ < ∞}.

Proposition 2.4. If p ∈ P
log
+ (Ω) and m ≥ 0 is an integer, then D(Ω) := C∞

0 (Ω) is dense in

W
m,p(·)
0 (Ω).

For the proof, see [8, Corollary 11.2.4].

Next we consider the notion of trace. Let Ω be a domain of R
d with a C0,1-boundary Γ

and p ∈ P+(Ω). Since W1,p(·)(Ω) ⊂ W1,1
loc (Ω), the trace γ(u) = u

∣∣
Γ

to Γ of any function u in

W1,p(·)(Ω) is well defined as a function in L1
loc(Γ). We define

Tr(W1,p(·)(Ω)) = (Tr W1,p(·))(Γ) = { f ; f is the trace to Γ of a function F ∈ W1,p(·)(Ω)}

equipped with the norm

∥ f ∥(Tr W1,p(·))(Γ) = inf{∥F∥W1,p(·)(Ω); F ∈ W1,p(·)(Ω) satisfying F
∣∣
Γ
= f }

for f ∈ (Tr W1,p(·))(Γ), where the infimum can be achieved. Then (Tr W1,p(·))(Γ) is a Banach

space. More precisely, see [8, Chapter 12]. In the later we also write F
∣∣
Γ
= f by F = f on Γ.

Moreover, we denote

(Tr W1,p(·))(Γi) = { f
∣∣
Γi

; f ∈ (Tr W1,p(·))(Γ)} for i = 1, 2

equipped with the norm

∥g∥(Tr W1,p(·))(Γi)
= inf{∥ f ∥(Tr W1,p(·))(Γ); f ∈ (Tr W1,p(·))(Γ) satisfying f

∣∣
Γi
= g},

where the infimum can also be achieved, so for any g ∈ (Tr W1,p(·))(Γi), there exists F ∈

W1,p(·)(Ω) such that F
∣∣
Γi
= g and ∥F∥W1,p(·)(Ω) = ∥g∥(Tr W1,p(·))(Γi)

.
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Let q ∈ P+(Γ) := {q ∈ P(Γ); q− > 1} and denote the surface measure on Γ induced from

the Lebesgue measure dx on Ω by dσ. We define

Lq(·)(Γ) =

{
u; u : Γ → R is a measurable function with respect to dσ

satisfying
∫

Γ
|u(x)|q(x)dσ < ∞

}

equipped with the norm

∥u∥Lq(·)(Γ) = inf

{
λ > 0;

∫

Γ

∣∣∣∣
u(x)

λ

∣∣∣∣
q(x)

dσ ≤ 1

}
,

and we also define a modular on Lq(·)(Γ) by

ρq(·),Γ(u) =
∫

Γ
|u(x)|q(x)dσ.

Proposition 2.5. We have the following properties.

(i) ∥u∥Lq(·)(Γ) ≥ 1 =⇒ ∥u∥
q−

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥

q+

Lq(·)(Γ)
.

(ii) ∥u∥Lq(·)(Γ) < 1 =⇒ ∥u∥
q+

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥

q−

Lq(·)(Γ)
.

Proposition 2.6. Let Ω be a bounded domain with a C0,1-boundary Γ and let p ∈ P
log
+ (Ω). If

f ∈ (Tr W1,p(·))(Γ), then f ∈ Lp(·)(Γ) and there exists a constant C > 0 such that

∥ f ∥Lp(·)(Γ) ≤ C∥ f ∥(Tr W1,p(·))(Γ).

In particular, if f ∈ (Tr W1,p(·))(Γ), then f ∈ Lp(·)(Γi) and ∥ f ∥Lp(·)(Γi)
≤ C∥ f ∥(Tr W1,p(·))(Γ).

For p ∈ P+(Ω), define

p∂(x) =

{
(d−1)p(x)

d−p(x)
if p(x) < d,

∞ if p(x) ≥ d.

Proposition 2.7. Let p ∈ P+(Ω). Then if q(x) ∈ P+(Γ) satisfies q(x) < p∂(x) for all x ∈ Γ, then

the trace mapping W1,p(·)(Ω) → Lq(·)(Γ) is well defined and compact. In particular, the trace mapping

W1,p(·)(Ω) → Lp(·)(Γ) is compact and there exists a constant C > 0 such that

∥u∥Lp(·)(Γ) ≤ C∥u∥W1,p(·)(Ω) for u ∈ W1,p(·)(Ω).

For the proof, see Yao [24, Proposition 2.6].

Define a space by

X = {v ∈ W1,p(·)(Ω); v = 0 on Γ1}. (2.1)

Then it is clear to see that X is a closed subspace of W1,p(·)(Ω), so X is a reflexive and separable

Banach space. We show the following Poincaré type inequality (cf. Ciarlet and Dinca [6]).

Lemma 2.8. Let p ∈ P
log
+ (Ω). Then there exists a constant C = C(Ω, d, p) > 0 such that

∥u∥Lp(·)(Ω) ≤ C∥∇u∥
Lp(·)(Ω) for all u ∈ X,

where ∥∇u∥
Lp(·)(Ω) := ∥|∇u|∥Lp(·)(Ω).

In particular, the norm ∥∇u∥
Lp(·)(Ω) is equivalent to ∥u∥W1,p(·)(Ω) for u ∈ X.
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For the direct proof, see Aramaki [4, Lemma 2.5].

Thus we can define the norm on the space X defined by (2.1) so that

∥v∥X = ∥∇v∥
Lp(·)(Ω) for v ∈ X, (2.2)

which is equivalent to ∥v∥W1,p(·)(Ω) from Lemma 2.8.

2.2 Assumptions to the main theorems

In this subsection, we state the assumptions to the main theorems. Let p ∈ P
log
+ (Ω) be fixed.

Let A : Ω × R
d → R be a function satisfying that for a.e. x ∈ Ω, the function A(x, ·) :

R
d ∋ ξ 7→ A(x, ξ) is of C1-class, and for all ξ ∈ R

d, the function A(·, ξ) : Ω ∋ x 7→ A(x, ξ) is

measurable. Moreover, suppose that A(x, 0) = 0 and put a(x, ξ) = ∇ξ A(x, ξ). Then a(x, ξ)

is a Carathéodory function. Assume that there exist constants c0, k0, k1 > 0 and nonnegative

functions h0 ∈ Lp′(·)(Ω) and h1 ∈ L1
loc(Ω) with h1(x) ≥ 1 a.e. x ∈ Ω such that the following

conditions hold.

(A1) |a(x, ξ)| ≤ c0(h0(x) + h1(x)|ξ|p(x)−1) for all ξ ∈ R
d, a.e. x ∈ Ω.

(A2) A is p(·)-uniformly convex, that is,

A

(
x,

ξ + η

2

)
+ k1h1(x)|ξ − η|p(x) ≤

1

2
A(x, ξ) +

1

2
A(x, η)

for all ξ, η ∈ R
d and a.e. x ∈ Ω.

(A3) A is p(·)-subhomogeneous, that is,

0 ≤ a(x, ξ) · ξ ≤ p(x)A(x, ξ) for all ξ ∈ R
d and a.e. x ∈ Ω.

(A4) A(x, ξ) ≥ k0h1(x)|ξ|p(x) for all ξ ∈ R
d and a.e. x ∈ Ω.

Example 2.9.

(i) A(x, ξ) = h(x)
p(x)

|ξ|p(x) with p− ≥ 2, h ∈ L1
loc(Ω) satisfying h(x) ≥ 1.

(ii) A(x, ξ) = h(x)
p(x)

((1 + |ξ|2)p(x)/2 − 1) with p− ≥ 2, h ∈ Lp′(·)(Ω) satisfying h(x) ≥ 1 a.e.

x ∈ Ω.

Then A(x, ξ) and a(x, ξ) = ∇ξ A(x, ξ) satisfy (A1)–(A4).

Remark 2.10. When h(x) ≡ 1, (i) corresponds to the p(·)-Laplacian and (ii) corresponds to the

prescribed mean curvature operator for nonparametric surface.

For the function h1 ∈ L1
loc(Ω) with h1(x) ≥ 1 a.e. x ∈ Ω, we define a modular

ρp(·),h1(·)(∇v) =
∫

Ω
h1(x)|∇v(x)|p(x)dx for v ∈ W1,p(·)(Ω).

Define our basic space

Y = {v ∈ X; ρp(·),h1(·)(∇v) < ∞} (2.3)



Existence of weak solutions for nonuniformly elliptic equation 7

equipped with the norm

∥v∥Y = inf

{
λ > 0; ρp(·),h1(·)

(
∇v

λ

)
≤ 1

}
,

then Y is a Banach space (see Lemma 2.12 below). We note that C∞
0 (Ω) ⊂ Y. Since

ρp(·),h1(·)(∇v) = ρp(·)(h
1/p(·)
1 ∇v),

we have

∥v∥Y = ∥h
1/p(·)
1 ∇v∥

Lp(·)(Ω). (2.4)

Then we have the following lemma.

Lemma 2.11.

(i) Y →֒ X and ∥v∥X ≤ ∥v∥Y for all v ∈ Y.

(ii) Let v ∈ Y. Then ∥v∥Y > 1(= 1,< 1) ⇐⇒ ρp(·),h1(·)(∇v) > 1(= 1,< 1).

(iii) Let v ∈ Y. Then ∥v∥Y > 1 =⇒ ∥v∥
p−

Y ≤ ρp(·),h1(·)(∇v) ≤ ∥v∥
p+

Y .

(iv) Let v ∈ Y. Then ∥v∥Y < 1 =⇒ ∥v∥
p+

Y ≤ ρp(·),h1(·)(∇v) ≤ ∥v∥
p−

Y .

(v) Let un, u ∈ Y. Then limn→∞ ∥un − u∥Y = 0 ⇐⇒ limn→∞ ρp(·),h1(·)(∇un −∇u) = 0.

(vi) Let un ∈ Y. Then ∥un∥Y → ∞ as n → ∞ ⇐⇒ ρp(·),h1(·)(∇un) → ∞ as n → ∞.

When q ∈ P
log
+ (Ω) satisfies q(x) ≤ p∗(x) for all x ∈ Ω, define

λq = inf

{
∥v∥Y

∥v∥Lq(·)(Ω)

; v ∈ Y \ {0}

}
. (2.5)

By Proposition 2.3 and Lemma 2.11, there exists a constant c > 0 such that ∥v∥Lq(·)(Ω) ≤

c∥v∥X ≤ c∥v∥Y for all v ∈ Y, so we can see that λq > 0.

When q ∈ P
log
+ (Ω) satisfies q(x) ≤ p∂(x) for all x ∈ Γ2, define

µq = inf

{
∥v∥Y

∥v∥Lq(·)(Γ2)

; v ∈ Y with v ̸= 0 on Γ2

}
. (2.6)

By Proposition 2.7 and Lemma 2.11, there exists a constant c > 0 such that ∥v∥Lq(·)(Γ2)
≤

c∥v∥X ≤ c∥v∥Y for all v ∈ Y, so we can see that µq > 0.

Lemma 2.12. The space (Y, ∥ · ∥Y) is a reflexive Banach space.

Proof. Since ∥v∥Y = ∥h
1/p(·)
1 ∇v∥

Lp(·)(Ω) for v ∈ Y(⊂ X), it is clear that Y is a normed linear

space. Let {vn} be a Cauchy sequence in Y. Then {∥vn∥Y} is bounded, so {ρp(·),h1(·)(∇vn)} is

bounded from Lemma 2.11 (vi) and we have

lim
n→∞

lim inf
j→∞

∫

Ω
h1(x)|∇uj(x)−∇un(x)|p(x)dx = 0.
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Since ∥v∥X ≤ ∥v∥Y for all v ∈ Y, {vn} is also a Cauchy sequence in X. Hence there exists

v ∈ X such that vn → v in X, that is, ∇vn → ∇v in Lp(·)(Ω). So there exists a subsequence

{vn′} of {vn} such that ∇vn′(x) → ∇v(x) a.e. in Ω. By the Fatou lemma,
∫

Ω
h1(x)|∇v(x)|p(x)dx ≤ lim inf

n′→∞

∫

Ω
h1(x)|∇vn′(x)|p(x)dx < ∞.

Thereby v ∈ Y. Applying again the Fatou lemma,

lim
n′→∞

∫

Ω
h1(x)|∇v(x)−∇vn′(x)|p(x)dx ≤ lim

n′→∞
lim inf

j′→∞

∫

Ω
h1(x)|∇vj′(x)−∇vn′(x)|p(x)dx = 0.

This implies vn′ → v in Y. Since {vn} is a Cauchy sequence in Y, we see that vn → v in Y, so

(Y, ∥ · ∥Y) is a Banach space.

We claim that (Y, ∥ · ∥Y) is a uniformly convex Banach space. Since Lp(·)(Ω) is uniformly

convex, for any ε > 0, there exists δ > 0 such that if u, v ∈ Lp(·)(Ω) satisfy ∥u∥
Lp(·)(Ω) ≤

1, ∥v∥
Lp(·)(Ω) ≤ 1 and ∥u − v∥

Lp(·)(Ω) > ε, then ∥(u + v)/2∥
Lp(·)(Ω) < 1 − δ. Thus if u, v ∈ Y sat-

isfy ∥u∥Y ≤ 1, ∥v∥Y ≤ 1 and ∥u− v∥Y > ε, then ∥h
1/p(·)
1 ∇u∥

Lp(·)(Ω) ≤ 1, ∥h
1/p(·)
1 ∇v∥

Lp(·)(Ω) ≤ 1

and ∥h
1/p(·)
1 ∇u − h

1/p(·)
1 ∇v∥

Lp(·)(Ω) > ε from (2.4). Hence we have

∥(h
1/p(·)
1 ∇u + h

1/p(·)
1 ∇v)/2∥

Lp(·)(Ω) ≤ 1 − δ.

Therefore we get ∥(u + v)/2∥Y ≤ 1− δ. This implies the uniform convexity of Y. So it follows

from the Milman theorem (cf. Brezis [5, Theorem III.29]) that Y is reflexive.

We continue to state the assumptions of f and g in (1.1).

Let f is a real Carathéodory function on Ω × R having the following properties.

(F1) | f (x, t)| ≤ c1(1 + |t|q(x)−1) for all t ∈ R and a.e. x ∈ Ω, where c1 is a positive constant

and q ∈ P
log
+ (Ω) such that q(x) < p∗(x) for all x ∈ Ω and p+ < q−.

(F2) There exist θ > p+ and t0 > 0 such that

0 < θF(x, t) ≤ f (x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Ω,

where

F(x, t) =
∫ t

0
f (x, s)ds. (2.7)

(F3) Let λp+ be defined by (2.5). There exist λ ∈ (0, k0 p+(λp+)
p+/4) and 0 < δ < 1 such that

f (x, t)

|t|p+−2t
≤ λ for all t ∈ (−δ, δ) \ {0} and a.e. x ∈ Ω.

Let g be a real Carathéodory function on Γ2 × R having the following properties.

(G1) |g(x, t)| ≤ c2(1 + |t|r(x)−1) for all t ∈ R and a.e. x ∈ Γ2, where c2 is a positive constant

and r ∈ P
log
+ (Ω) such that r(x) < p∂(x) for all x ∈ Γ2 and p+ < r−.

(G2) Let θ and t0 be as in (F2). That is, there exist θ > p+ and t0 > 0 such that

0 < θG(x, t) ≤ g(x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Γ2,

where

G(x, t) =
∫ t

0
g(x, s)ds. (2.8)
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(G3) Let µp+ be defined by (2.6). There exist µ ∈ (0, k0 p+(µp+)
p+/4) and 0 < δ < 1 such that

g(x, t)

|t|p+−2t
≤ µ for all t ∈ (−δ, δ) \ {0} and a.e. x ∈ Γ2.

3 Main theorems

In this section, we state the main theorems.

Definition 3.1. We say u ∈ Y is a weak solution of (1.1) if u satisfies that

∫

Ω
a(x,∇u(x)) ·∇v(x)dx =

∫

Ω
f (x, u(x))v(x)dx +

∫

Γ2

g(x, u(x))v(x)dσ for all v ∈ Y. (3.1)

Remark 3.2. Since {ϕ ∈ C∞(Ω); ϕ = 0 on Γ1} ⊂ Y, if u ∈ Y satisfies (3.1), then the equation

(1.1) holds in the distribution sense.

Then we obtain the following two theorems.

Theorem 3.3. Let Ω be a bounded domain of R
d (d ≥ 2) with a C0,1-boundary Γ satisfying (1.2).

Under the hypotheses (A1)-(A4), (F1)-(F3) and (G1)-(G3), the problem (1.1) has a nontrivial weak

solution.

Remark 3.4. This theorem extends the result of [10] in which the authors considered the case

where p(x) = p = const. and Γ2 = ∅.

We impose one more assumption.

(F4) There exist a constant c > 0 and 0 < m < 1 such that f (x, t) ≥ ctm−1 for 0 < t ≤ δ and

a.e. x ∈ Ω, where δ > 0 is as in (F3).

Theorem 3.5. Addition to the hypotheses of Theorem 3.3, assume that (F4) also holds. Then the

problem (1.1) has at least two nontrivial weak solutions.

Remark 3.6. The authors in [17] considered the equation

−div [a(x,∇u(x))] = m(x)|u(x)|r(x)−2u(x) + n(x)|u(x)|s(x)−2u(x)

and Γ2 = ∅. The authors got the same result of Theorem 3.5 under stronger hypotheses than

(A1) and (A4), that is, h1(x) ≡ 1. However, they use an inequality A(x, tξ) ≤ tp(x)A(x, ξ)

for small t > 0 which does not hold for the function in Example 2.9 (ii). To overcome their

mistake, we assume a stronger condition (F4).

4 Proofs of Theorem 3.3 and Theorem 3.5

In this section, we give proofs of Theorem 3.3 and Theorem 3.5. In order to do so, we use the

variational method. Define a functional on Y

I(u) = E(u)− J(u)− K(u) (4.1)
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where

E(u) =
∫

Ω
A(x,∇u(x))dx, (4.2)

J(u) =
∫

Ω
F(x, u(x))dx, F is defined by (2.7), (4.3)

K(u) =
∫

Γ2

G(x, u(x))dσ, G is defined by (2.8). (4.4)

The proof of Theorem 3.3 consists of several lemmas and propositions.

Lemma 4.1.

(i) |A(x, ξ)| ≤ c0(h0(x)|ξ|+ h1(x)|ξ|p(x)) for all ξ ∈ R
d and a.e. x ∈ Ω.

(ii)

E

(
u + v

2

)
+ k1ρp(·),h1(·)(∇u −∇v) ≤

1

2
E(u) +

1

2
E(v) for all u, v ∈ Y

and

E((1 − τ)u + τv) ≤ (1 − τ)E(u) + τE(v) for all u, v ∈ Y and τ ∈ [0, 1].

(iii) There exists a constant c3 > 0 such that |F(x, t)| ≤ c3(1 + |t|q(x)) for all t ∈ R and a.e. x ∈ Ω.

(iv) There exists γ ∈ L∞(Ω) such that γ(x) > 0 a.e. x ∈ Ω and F(x, t) ≥ γ(x)tθ for all t ∈ [t0, ∞)

and a.e. x ∈ Ω.

(v) There exists a constant c4 > 0 such that |G(x, t)| ≤ c4(1+ |t|r(x)) for all t ∈ R and a.e. x ∈ Γ2.

(vi) There exists δ ∈ L∞(Γ2) such that δ(x) > 0 a.e. x ∈ Γ2 and G(x, t) ≥ δ(x)tθ for all t ∈ [t0, ∞)

and a.e. x ∈ Γ2.

Proof. (i) Using (A1), we have

|A(x, ξ)| = |A(x, ξ)− A(x, 0)|

=

∣∣∣∣
∫ 1

0

d

dt
A(x, tξ)dt

∣∣∣∣

=

∣∣∣∣
∫ 1

0
a(x, tξ) · ξdt

∣∣∣∣

≤ c0

∫ 1

0
(h0(x) + h1(x)tp(x)−1|ξ|p(x)−1)|ξ|dt

≤ c0(h0(x)|ξ|+ h1(x)|ξ|p(x)).

(ii) The first inequality easily follows from (A2). Since A(x, ξ) is continuous with respect

to ξ, it follows from (A2) that A(x, (1 − τ)ξ + τη) ≤ (1 − τ)A(x, ξ) + τA(x, η) for all ξ, η ∈ R
d

and τ ∈ [0, 1], so the second inequality follows from this inequality.

(iii) From (F1),

|F(x, t)| =

∣∣∣∣
∫ t

0
f (x, τ)dτ

∣∣∣∣ ≤ c1

∣∣∣∣
∫ t

0
(1 + |τ|q(x)−1)dτ

∣∣∣∣ ≤ c1

(
|t|+

1

q(x)
|t|q(x)

)
.

Since q(x) > 1, we have |t| ≤ 1 + |t|q(x), so (iii) follows.

(iv) From (F2), for t ≥ t0,

0 < θF(x, t) ≤ f (x, t)t. (4.5)
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Put γ(x) = F(x, t0)t
−θ
0 . Then γ(x) > 0 a.e. x ∈ Ω and it follows from (iii) that

γ(x) ≤ c3(1 + t
q(x)
0 )t−θ

0 ≤ c3(1 + max{t
q+

0 , t
q−

0 })t−θ
0 < ∞.

So γ ∈ L∞(Ω). From (4.5),

θ

τ
≤

f (x, τ)

F(x, τ)
=

∂F
∂τ (x, τ)

F(x, τ)
.

Integrating this inequality over (t0, t), we have

θ log
t

t0
≤ log

F(x, t)

F(x, t0)
for all t ≥ t0.

This implies F(x, t) ≥ γ(x)tθ for all t ≥ t0.

(v) and (vi) follow from the same arguments as (iii) and (iv), respectively.

Proposition 4.2. The functionals E, J, K ∈ C1(Y, R) and the Fréchet derivatives E′, J′ and K′ satisfy

the following equalities.

⟨E′(u), v⟩Y∗,Y =
∫

Ω
a(x,∇u(x)) ·∇v(x)dx, (4.6)

⟨J′(u), v⟩Y∗,Y =
∫

Ω
f (x, u(x))v(x)dx, (4.7)

⟨K′(u), v⟩Y∗,Y =
∫

Γ2

g(x, u(x))v(x)dσ (4.8)

for all u, v ∈ Y.

Proof. Step 1. We show that E is continuous on Y. Let un → u in Y as n → ∞. Then from (2.4),

∥h
1/p(·)
1 ∇un − h

1/p(·)
1 ∇u∥

Lp(·)(Ω) → 0 as n → ∞. (4.9)

From [2, Proposition A.1], there exist a subsequence {un′} of {un} and k ∈ Lp(·)(Ω) such that

h1(x)1/p(x)∇un′(x) → h1(x)1/p(x)∇u(x) a.e. x ∈ Ω, and since h1(x) ≥ 1 a.e. x ∈ Ω,

|∇un′(x)| ≤ |h1(x)1/p(x)
∇un′(x)| ≤ k(x) a.e. x ∈ Ω.

In particular, ∇un′(x) → ∇u(x) a.e. x ∈ Ω. Since A(x, ξ) is a Carathéodory function,

A(x,∇un′(x)) → A(x,∇u(x)) a.e. x ∈ Ω as n′ → ∞. By Lemma 4.1 (i),

|A(x,∇un′(x))| ≤ c0(h0(x)|∇un′(x)|+ h1(x)|∇un′(x)|p(x)) ≤ c0(h0(x)k(x) + k(x)p(x)).

Since h0 ∈ Lp′(·)(Ω) and k ∈ Lp(·)(Ω), taking the Hölder inequality (Proposition 2.2) into

consideration, we see that the last term is an integrable function independent of n′. By the

Lebesgue dominated convergence theorem, we have

lim
n′→∞

∫

Ω
A(x,∇un′(x))dx =

∫

Ω
A(x,∇u(x))dx.

By the convergent principle (cf. Zeidler [26, Proposition 10.13 (i)], for the full sequence {un},

lim
n→∞

∫

Ω
A(x,∇un(x))dx =

∫

Ω
A(x,∇u(x))dx.

This means that E(un) → E(u) as n → ∞, so the functional E is continuous in Y.
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Step 2. We derive that E is Gateaux differentiable in Y. Let u, v ∈ Y and 0 < |t| ≤ 1. By the

mean value theorem,

E(u + tv)− E(u)

t
=

∫

Ω

A(x,∇u(x) + t∇v(x))− A(x,∇u(x)

t
dx

=
∫

Ω

∫ 1

0
a(x,∇u(x) + τt∇v(x)) ·∇v(x)dτdx.

From (A1), we have

|a(x,∇u(x) + τt∇v(x)) ·∇v(x)|

= c0(h0(x) + h1(x)|∇u(x) + τt∇v(x)|p(x)−1)|∇v(x)|

≤ c0(h0(x)|∇v(x)|+ h1(x)1/p(x)|∇v(x)|h1(x)(p(x)−1)/p(x)(|∇u(x)|+ |∇v(x)|)p(x)−1)

≤ c0(h0(x)|∇v(x)|+ h1(x)1/p(x)|∇v(x)|
(
(h1(x)1/p(x)(|∇u(x)|+ |∇v(x)|)

)p(x)−1
.

Here since u, v ∈ Y, h0 ∈ Lp′(·)(Ω), h
1/p(·)
1 |∇v| ∈ Lp(·)(Ω) and

(
(h1(·)

1/p(·)|∇u(·)|+ h1(·)
1/p(·)|∇v(x)|)

)p(·)−1
∈ Lp′(·)(Ω),

it follows from the Hölder inequality (Proposition 2.2), the last term of the above inequality

is an integrable function independent of t. On the other hand, a(x, ξ) is a Carathéodory

function, we have

a(x,∇u(x) + τt∇v(x)) ·∇v(x) → a(x,∇u(x)) ·∇v(x)

as t → 0. Using again the Lebesgue dominated convergence theorem, we have

E(u + tv)− E(u)

t
→

∫

Ω
a(x,∇u(x)) ·∇v(x)dx as t → 0.

Thus E is Gateaux differentiable at u and the Gateaux derivative DE satisfies

DE(u)(v) =
∫

Ω
a(x,∇u(x)) ·∇v(x)dx.

Clearly DE(u) is linear in Y.

Step 3. We show that for every u ∈ Y, we have DE(u) ∈ Y∗. For any v ∈ Y,

DE(u)(v) =
∫

Ω
a(x,∇u(x)) ·∇v(x)dx

=
∫

Ω
h1(x)−1/p(x)

a(x,∇u(x)) · h1(x)1/p(x)
∇v(x)dx.

We note that ∥v∥Y = ∥h
1/p(·)
1 ∇v∥

Lp(·)(Ω) from (2.4). On the other hand, from (A1),

ρp′(·)(h
−1/p(·)
1 a(·, u(·)))

=
∫

Ω
h1(x)−p′(x)/p(x)|a(x,∇u(x))|p

′(x)dx

≤
∫

Ω
h1(x)−p′(x)/p(x)

(
c0(h0(x) + h1(x)|∇u(x)|p(x)−1

)p′(x)
dx

≤ max
{

c
(p′)+

0 , c
(p′)−

0

}
2(p′)+−1

∫

Ω
(h0(x)p′(x) + h1(x)|∇u(x)|p(x))dx < ∞.
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Hence h
−1/p(·)
1 a(·,∇u) ∈ Lp′(·)(Ω). By the Hölder inequality (Proposition 2.2), we have

|DE(u)(v)| ≤ 2∥h
−1/p(·)
1 a(·,∇u(·))∥

Lp′(·)(Ω)∥v∥Y for all v ∈ Y.

Hence we see that DE(u) ∈ Y∗ and

∥DE(u)∥Y∗ ≤ 2∥h
−1/p(·)
1 a(·,∇u(·))∥

Lp′(·)(Ω). (4.10)

Step 4. We derive that the map Y ∋ u 7→ DE(u) ∈ Y∗ is continuous. Let un → u in Y as

n → ∞. Then (4.9) holds. So there exist a subsequence {un′} of {un} and k̃ ∈ Lp(·)(Ω) such

that ∇un′(x) → ∇u(x) a.e. x ∈ Ω and h1(x)1/p(x)|∇un′(x)| ≤ k̃(x) a.e. x ∈ Ω and all n′. By

(4.10),

∥DE(un′)− DE(u)∥Y∗ ≤ 2∥h1(·)
−1/p(·)

(
a(·,∇un′(·))− a(·,∇u(·))

)
∥

Lp′(·)(Ω).

In order to show that the right-hand side converges to zero, taking Proposition 2.1 into con-

sideration, it suffices to derive that

ρp′(·)

(
h1(·)

−1/p(·)(a(·,∇un′(·))− a(·,∇u(·)))
)
→ 0 as n′ → ∞,

that is,
∫

Ω
h1(x)−p′(x)/p(x)|a(x,∇un′(x))− a(x,∇u(x))|p

′(x)dx → 0 as n′ → ∞. (4.11)

Since a(x, ξ) is a Carathéodory function, and ∇un′(x) → ∇u(x) a.e. x ∈ Ω, we have

h1(x)−p′(x)/p(x)|a(x,∇un′(x))− a(x,∇u(x))|p
′(x) → 0 a.e. x ∈ Ω.

As in the argument in Step 3, we have

h1(x)−p′(x)/p(x)|a(x,∇un′(x))|p
′(x) ≤ max

{
c
(p′)+

0 , c
(p′)−

0

}
2(p′)+−1(h0(x)p′(x) + k̃(x)p(x)).

The right-hand side is an integrable function in Ω independent of n′. By the Lebesgue dom-

inated convergence theorem, (4.11) holds. Thus ∥DE(un′) − DE(u)∥Y∗ → 0 as n′ → ∞. By

the convergent principle (cf. [26, Proposition 10.13 (i)], for full sequence {un} we have

∥DE(un)− DE(u)∥Y∗ → 0 as n → ∞. Therefore, since the Gateaux differential DE is contin-

uous in Y, we see that E is Fréchet differentiable and the Fréchet derivative E′ is equal to the

Gateaux derivative DE. Hence E ∈ C1(Y, R) and (4.6) holds.

Step 5. We show that J and K belong to C1(Y, R) and (4.7) and (4.8) hold. By Lemma 4.1

(iii) and [2, Proposition 2.12], the Nemytskii operator NF : Lq(·)(Ω) ∋ u 7→ F(·, u(·)) ∈ L1(Ω)

is continuous. From (F1), we have Y →֒ X →֒ Lq(·)(Ω), so NF is continuous in Y, so we see

that J is continuous in Y. Since F(x, t) is a C1-function with respect to t, clearly J is Gateaux

differentiable in Y and

DJ(u)(v) =
∫

Ω
f (x, u(x))v(x)dx for all u, v ∈ Y.

By the Hölder inequality (Proposition 2.2),

|DJ(u)(v)| ≤ 2∥ f (·, u(·))∥Lq′(·)(Ω)∥v∥Lq(·)(Ω) ≤ C∥ f (·, u(·))∥Lq′(·)(Ω)∥v∥Y for all v ∈ Y.
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Hence DJ(u) ∈ Y∗ and ∥DJ(u)∥Y∗ ≤ C∥ f (·, u(·))∥Lq′(·)(Ω). Since | f (x, t)| ≤ c1(1 + |t|q(x)−1) =

c1(1 + |t|q(x)/q′(x)) from (F1), Nemytskii operator N f : u 7→ f (·, u(·)) is continuous from

Lq(·)(Ω) to Lq′(·)(Ω) (cf. [1, Proposition 2.9]). Thus if un → u in Lq(·)(Ω), then

∥ f (·, un(·))− f (·, u(·))∥Lq′(·)(Ω) → 0 as n → ∞.

Since Y →֒ X →֒ Lq(·)(Ω), we can see that J ∈ C1(Y, R) and (4.7) holds. Similarly, we can

prove that K ∈ C1(Y, R) and (4.8) holds.

Remark 4.3. When p(·) = p = const. and Γ2 = ∅, the authors of [10] only prove the weakly

continuously differentiable on Y, and so they must use a version of the Mountain-pass lemma

introduced in [9]. However, since we derived that E belongs to C1(Y, R), it suffices to use the

standard Mountain-pass lemma later.

Proposition 4.4.

(i) The functionals J and K are weakly continuous in Y, that is, if un → u weakly in Y as n → ∞,

then J(un) → J(u) and K(un) → K(u) as n → ∞.

(ii) The functional E is weakly lower semi-continuous in Y, that is, if un → u weakly in Y as n → ∞,

then E(u) ≤ lim infn→∞ E(un).

(iii) E(u)− E(v) ≥ ⟨E′(v), u − v⟩Y∗,Y for all u, v ∈ Y.

Proof. (i) Let un → u weakly in Y as n → ∞. Since the embedding Y →֒ Lq(·)(Ω) is compact,

we see that un → u strongly in Lq(·)(Ω). Since J and K are continuous on Lq(·)(Ω), we see that

J(un) → J(u) and K(un) → K(u) as n → ∞.

(ii) A(x, ξ) is a Carathéodory function on Ω × R
d and A(x, ξ) ≥ 0 by (A4). Moreover,

from (A2), A(x, ξ) is convex with respect to ξ for a.e. x ∈ Ω. If un → u weakly in Y, then

un, u ∈ W1,1(Ω) and un → u strongly in L1(Ω) and ∇un → ∇u weakly in L1(Ω). Hence it

follows from Struwe [21, Theorem 1.6, p. 9] that E(u) ≤ lim infn→∞ E(un).

(iii) Since E is convex function in Y, for u, v ∈ Y and 0 < τ < 1,

E(v + τ(u − v))− E(v)

τ
=

E((1 − τ)v + τu)− E(v)

τ

≤
(1 − τ)E(v) + τE(u)− E(v)

τ

= E(u)− E(v).

Letting τ → +0, we get ⟨E′(v), u − v⟩Y∗,Y ≤ E(u)− E(v), so (iii) holds.

Lemma 4.5.

(i) There exist constants k3 > 0 and c3 > 0 such that

I(u) ≥ ∥u∥
p+

Y

(
k3 − c3

(
∥u∥

q−−p+

Y + ∥u∥
r−−p+

Y

))
for all u ∈ Y with ∥u∥Y < 1.

(ii) There exist constants c3 > 0 and k4 ∈ R such that

I(u) ≥ ∥u∥Y

(
c4 min

{
∥u∥

p+−1
Y , ∥u∥

p−−1
Y

}
−

1

θ
∥I′(u)∥Y∗

)
+ k4 for all u ∈ Y.
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Proof. (i) From (F3), for a.e. x ∈ Ω,

F(x, t) =
∫ t

0
f (x, s)dx ≤

λ

p+
|t|p

+
for all t ∈ (−δ, δ).

On the other hand, by Lemma 4.1 (iii), there exists c′3 > 0 such that |F(x, t)| ≤ c′3|t|
q(x) for all

t ∈ R \ (−δ, δ). Hence

F(x, t) ≤
λ

p+
|t|p

+
+ c′3|t|

q(x) for all t ∈ R and a.e. x ∈ Ω.

Therefore, we have

J(u) =
∫

Ω
F(x, u(x))dx ≤

λ

p+

∫

Ω
|u(x)|p

+
dx + c′3

∫

Ω
|u(x)|q(x)dx

≤
λ

p+
∥u∥

p+

Lp+ (Ω)
+ c′3 max

{
∥u∥

q+

Lq(·)(Ω)
, ∥u∥

q−

Lq(·)(Ω)

}
.

Similarly, there exists c′4 > 0 such that

K(u) ≤
µ

p+
∥u∥

p+

Lp+ (Γ2)
+ c′4 max

{
∥u∥

p+

Lr(·)(Γ2)
, ∥u∥r−

Lr(·)(Γ2)

}
.

Since p+ < q− ≤ q(x) < p∗(x) for all x ∈ Ω from (F1), we have Y →֒ X →֒ Lp+(Ω),

Lq(·)(Ω). By (2.5), ∥u∥
Lp+ (Ω) ≤

1
λp+

∥u∥Y and ∥u∥Lq(·)(Ω) ≤
1

λq
∥u∥Y for all u ∈ Y. Since we have

p+ < r− ≤ r(x) < p∂(x) for all x ∈ Γ2 from (G2), it follows from (2.6) that we can see that

Y →֒ X →֒ Lp+(Γ2), Lr(·)(Γ2). Thus we have ∥u∥
Lp+ (Γ2)

≤ 1
µp+

∥u∥Y and ∥u∥Lr(·)(Γ2)
≤ 1

µr
∥u∥Y

for all u ∈ Y. When ∥u∥Y < 1, there exist positive constants c5 and c6 such that

J(u) ≤
λ

p+
1

(λp+)p+
∥u∥

p+

Y + c5∥u∥
q−

Y ,

K(u) ≤
µ

p+
1

(µp+)p+
∥u∥

p+

Y + c6∥u∥r−

Y .

On the other hand, from (A4),

E(u) =
∫

Ω
A(x,∇u(x))dx ≥ k0

∫

Ω
h1(x)|∇u(x)|p(x)dx ≥ k0∥u∥

p+

Y .

Thus we have

I(u) = E(u)− J(u)− K(u) ≥
k0

2
∥u∥

p+

Y − c5∥u∥
q−

Y − c6∥u∥r−

Y

= ∥u∥
p+

Y

(
k3 − c3(∥u∥

q−−p+

Y + ∥u∥
r−−p+

Y )
)
,

where k3 = k0/2 and c3 = max{c5, c6} for all u ∈ Y with ∥u∥Y < 1.

(ii) From (A3) and (A4), for any u ∈ Y,

E(u)−
1

θ
⟨E′(u), u⟩Y∗,Y =

∫

Ω
A(x,∇u(x))dx −

1

θ

∫

Ω
a(x,∇u(x)) ·∇u(x)dx

≥
∫

Ω
A(x,∇u(x))dx −

1

θ

∫

Ω
p(x)A(x,∇u(x))dx

≥

(
1 −

p+

θ

) ∫

Ω
A(x,∇u(x))dx

≥

(
1 −

p+

θ

)
k0

∫

Ω
h1(x)|∇u(x)|p(x)dx

≥ c4 min
{
∥u∥

p+

Y , ∥u∥
p−

Y

}
,
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where c4 = k0(1 − p+/θ) > 0. Put Ωu = {x ∈ Ω; |u(x)| > t0} and Γu = {x ∈ Γ2; |u(x)| > t0}.

From (F2) and (G2),

1

θ
f (x, u(x))u(x)− F(x, u(x)) ≥ 0 for a.e. x ∈ Ωu,

1

θ
g(x, u(x))u(x)− G(x, u(x)) ≥ 0 for a.e. x ∈ Γu,

and there exists a constant M > 0 such that∣∣∣∣
1

θ
f (x, u(x))u(x)− F(x, u(x))

∣∣∣∣ ≤ M for a.e. x ∈ Ω \ Ωu,

∣∣∣∣
1

θ
g(x, u(x))u(x)− G(x, u(x))

∣∣∣∣ ≤ M for a.e. x ∈ Γ2 \ Γu.

Therefore, we have

1

θ
⟨J′(u), u⟩Y∗,Y − J(u)

=
∫

Ωu

(
1

θ
f (x, u(x))u(x)− F(x, u(x))

)
dx +

∫

Ω\Ωu

(
1

θ
f (x, u(x))u(x)− F(x, u(x))

)
dx

≥ − M|Ω \ Ωu| ≥ −M|Ω|

and

1

θ
⟨K′(u), u⟩Y∗,Y − K(u)

=
∫

Γu

(
1

θ
g(x, u(x))u(x)− G(x, u(x))

)
dσ +

∫

Γ2\Γu

(
1

θ
g(x, u(x))u(x)− G(x, u(x))

)
dσ

≥ − M|Γ2 \ Γu| ≥ −M|Γ2|.

Put k4 = −M|Ω| − M|Γ2|. Summing up, we have

I(u)−
1

θ
⟨I′(u), u⟩Y∗,Y

= E(u)−
1

θ
⟨E′(u), u⟩Y∗,Y − J(u) +

1

θ
⟨J′(u), u⟩Y∗,Y − K(u) +

1

θ
⟨K′(u), u⟩Y∗,Y

≥ c4 min
{
∥u∥

p+

Y , ∥u∥
p−

Y

}
+ k4.

Hence

I(u) ≥ c4 min
{
∥u∥

p+

Y , ∥u∥
p−

Y

}
+

1

θ
⟨I′(u), u⟩Y∗,Y + k4

≥ c4 min
{
∥u∥

p+

Y , ∥u∥
p−

Y

}
−

1

θ
∥I′(u)∥Y∗∥u∥Y + k4.

For a proof of Theorem 3.3, we apply the following standard Mountain-pass lemma

(cf. Willem [23]).

Proposition 4.6. Let (V, ∥ · ∥V) be a Banach space and I ∈ C1(V, R) be a functional satisfying the

Palais–Smale condition, that is, if a sequence {un} ⊂ V satisfies that limn→∞ I(un) = γ exists and

limn→∞ ∥I′(un)∥V∗ = 0, then {un} has a convergent subsequence. Assume that I(0) = 0, and there

exist ρ > 0 and z0 ∈ V such that ∥z0∥V > ρ, I(z0) ≤ I(0) = 0 and

α := inf{I(u); u ∈ V with ∥u∥V = ρ} > 0.

Put G = {ϕ ∈ C([0, 1], V); ϕ(0) = 0, ϕ(1) = z0} and β = inf{max I(ϕ([0, 1]); ϕ ∈ G}. Then

β ≥ α and β is a critical value of I.
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We apply Proposition 4.6 with (V, ∥ · ∥V) = (Y, ∥ · ∥Y). In order to do so, we must show

the following proposition.

Proposition 4.7.

(i) The functional I satisfies the Palais–Smale condition.

(ii) I(0) = 0.

(iii) There exists ρ > 0 such that inf{I(u); u ∈ Y with ∥u∥Y = ρ} > 0.

(iv) There exists z0 ∈ Y such that ∥z0∥Y > ρ and I(z0) ≤ 0.

(v) G ̸= ∅.

Proof. (i) Assume that a sequence {un} ⊂ Y satisfies that limn→∞ I(un) = γ exists and

limn→∞ ∥I′(un)∥Y∗ = 0.

Step 1. The sequence {un} is bounded in Y. Indeed, if {un} is unbounded, there exists a

subsequence {un′} of {un} such that ∥un′∥ ≥ n′ for any n′ ∈ N. By Lemma 4.5 (ii),

I(un′) ≥ ∥un′∥Y

(
c4∥un′∥

p−−1
Y −

1

θ
∥I′(un′)∥Y∗

)
+ k4 → ∞ as n′ → ∞.

This contradicts limn′→∞ I(un′) = γ.

Step 2. Since {un} is bounded in Y and Y is a reflexive Banach space, passing to a subsequence,

we may assume that un → u weakly in Y. By Proposition 4.4 (ii) and (iii),

E(u) ≤ lim inf
n→∞

E(un) = lim
n→∞

(J(un) + K(un) + I(un)) = J(u) + K(u) + γ.

Since {∥un − u∥Y} is a bounded sequence and limn→∞ ∥I′(un)∥Y∗ = 0, we see that ⟨I′(un),

u − un⟩Y∗,Y → 0 as n → ∞. By the Rellich–Kondrachov theorem, un → u strongly in Lq(·)(Ω)

and un → u strongly in Lr(·)(Γ2). By (F1) and (G1), | f (·, un(·))| is bounded in Lq′(·)(Ω) and

|g(·, un(·))| is also bounded in Lr′(·)(Γ2). Hence

lim
n→∞

⟨J′(un), u − un⟩Y∗,Y = lim
n→∞

∫

Ω
f (x, un(x))(u(x)− un(x))dx = 0

and

lim
n→∞

⟨K′(un), u − un⟩Y∗,Y = lim
n→∞

∫

Γ2

g(x, un(x))(u(x)− un(x))dσ = 0.

Therefore.

lim
n→∞

⟨E′(un), u − un⟩Y∗,Y

= lim
n→∞

(
⟨I′(un), u − un⟩Y∗,Y + ⟨J′(un), u − un⟩Y∗,Y + ⟨K′(un), u − un⟩Y∗,Y

)
= 0.

On the other hand, by Proposition 4.4 (iii) and the above equality,

E(u)− lim sup
n→∞

E(un) = lim inf
n→∞

(E(u)− E(un)) ≥ lim
n→∞

⟨E′(un), u − un⟩Y∗,Y = 0.

Thus by Proposition 4.4 (ii), we have limn→∞ E(un) = E(u).
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Step 3. We show that un → u strongly in Y, that is, ρp(·),h1(·)(∇un −∇u) → 0 as n → ∞. If

this is not satisfied, there exist a subsequence {un′} of {un} and ε0 > 0 such that

ρp(·),h1(·)(∇un′ −∇u) ≥ ε0 for all n′ ∈ N.

By Lemma 4.1,

1

2
E(un′) +

1

2
E(u)− E

(
un′ + u

2

)
≥ k1ρp(·),h1(·)(∇un′ −∇u) ≥ k1ε0.

Letting n′ → ∞ and using Step 2, we have

E(u)− lim inf
n′→∞

E

(
un′ + u

2

)
≥ k1ε0. (4.12)

On the other hand, since
un′+u

2 → u weakly in Y, it follows from Proposition 4.4 (ii) that

E(u) ≤ lim inf
n′→∞

E

(
un′ + u

2

)
.

This contradicts (4.12).

(ii) Since E(0) = J(0) = K(0) = 0, we have I(0) = 0.

(iii) Since k3 > 0, q− > p+ and r− > p+, there exists 0 < ρ < 1 such that

ρp+(k3 − c3ρq−−p+ − c3ρr−−p+) > 0.

By Lemma 4.5 (i),

I(u) ≥ ∥u∥
p+

Y (k3 − c3∥u∥
q−−p+

Y − c3∥u∥
r−−p+

Y )

= ρp+(k3 − c3ρq−−p+ − c3ρr−−p+) > 0

for all u ∈ Y with ∥u∥Y = ρ.

(iv) Let t > 1 and choose v0 ∈ C∞
0 (Ω)(⊂ Y) such that v0(x) ≥ 0 and W = {x ∈ Ω; v0(x) ≥

t0} has a positive measure. By (F2), F(x, v0(x)) > 0 for a.e. x ∈ Ω. If we put Wt = {x ∈

Ω; tv0(x) ≥ t0}, then W ⊂ Wt. By Lemma 4.1 (iv),

∫

Wt

F(x, tv0(x))dx ≥
∫

Wt

γ(x)tθv0(x)θdx ≥ tθ L(v0),

where L(v0) =
∫

W γ(x)v0(x)θdx > 0. By Lemma 4.1 (iii), there exists a constant M > 0 such

that |F(x, t)| ≤ M for t ∈ [0, t0] and a.e. x ∈ Ω. We note that (F2) implies that

F(x, st) ≥ F(x, t)sθ for all t ∈ R \ (−t0, t0), s > 1 and a.e. x ∈ Ω. (4.13)

Indeed, if we define g(s) = F(x, st), then

g′(s) = f (x, st)t =
1

s
f (x, st)st ≥

θ

s
F(x, st) =

θ

s
g(s).

Thus g′(s)/g(s) ≥ θ/s, so log g(s)/g(1) ≥ θ log s. This implies g(s) ≥ g(1)sθ .

On the other hand, (A3) implies that

A(x, sξ) ≤ A(x, ξ)sp(x) for all ξ ∈ R
d, a.e. x ∈ Ω and s > 1. (4.14)
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In fact, if we define g(s) = A(x, sξ), then

g′(s) = a(x, sξ) · ξ ≤
p(x)

s
A(x, sξ) =

p(x)

s
g(s).

Hence g′(s)/g(s) ≤ p(x)/s. We also get g(s) ≥ g(1)sp(x). From (4.14), we have

E(tv0) =
∫

Ω
A(x, t∇v0(x))dx ≤

∫

Ω
A(x,∇v0(x))tp(x)dx

≤ tp+
∫

Ω
A(x,∇v0(x))dx = tp+E(v0).

Since v0 ∈ C∞
0 (Ω), we have K(tv0) = 0. Therefore,

I(tv0) = E(tv0)− J(tv0)

= E(tv0)−
∫

Wt

F(x, tv0(x))dx −
∫

Ω\Wt

F(x, tv0(x))dx

≤ tp+E(v0)− tθ L(v0) + M|Ω|.

Since θ > p+ and L(v0) > 0, I(tv0) → −∞ as t → ∞. Hence there exists t1 > 1 such that

∥t1v0∥Y > ρ and I(t1v0) ≤ 0. If we put z0 = t1v0, then the conclusion of (iv) holds.

(v) If we define ϕ(t) = tz0, then ϕ ∈ G, so G ̸= ∅.

Proof of Theorem 3.3. By Propositions 4.2 and 4.7, we see that all the hypotheses in Proposition

4.6 hold. Hence there exists u0 ∈ Y such that 0 < α ≤ I(u0) = β and I′(u0) = 0, so

⟨I′(u0), v⟩Y∗,Y =
∫

Ω
a(x,∇u0(x)) ·∇v(x)dx

=
∫

Ω
f (x, u0(x))v(x)dx +

∫

Γ2

g(x, u0(x))v(x)dσ for all v ∈ Y.

Thus u0 is a weak solution of (1.1). Since I(u0) = β > I(0) = 0, u0 is a nontrivial weak

solution of (1.1).

Proof of Theorem 3.5. By (F4),

F(x, t) =
∫ t

0
f (x, τ)dτ ≥

c

m
tm for 0 ≤ t ≤ δ and a.e. x ∈ Ω.

Choose ϕ ∈ C∞
0 (Ω) so that 0 ≤ ϕ ≤ 1 and ϕ ̸≡ 0. Let 0 < t < δ(< 1). Since A(x, ξ) is convex

with respect to ξ and A(x, 0) = 0, we have A(x, tξ) = A(x, tξ + (1 − t)0) ≤ tA(x, ξ). Thus

I(tϕ) = E(tϕ)− J(tϕ)

=
∫

Ω
A(x, t∇ϕ(x))dx −

∫

Ω
F(x, tϕ(x))dx

≤ t
∫

Ω
A(x,∇ϕ(x))dx −

c

m
tm

∫

Ω
ϕ(x)mdx.

Since m < 1 and c
m

∫
Ω

ϕ(x)mdx > 0, we see that I(tϕ) < 0 for small t > 0. By Lemma 4.5 (i), I

is bounded from below on Bρ(0), where Bρ(0) = {v ∈ Y; ∥v∥Y < ρ}. Hence

−∞ < c := inf
v∈Bρ(0)

I(v) < 0.
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Let 0 < ε < infv∈∂Bρ(0) I(v)− inf
v∈Bρ(0)

I(v). Then there exists u ∈ Bρ(0) such that

inf
v∈Bρ(0)

I(v) ≤ I(u) ≤ inf
v∈Bρ(0)

I(v) + ε2.

Since inf
v∈Bρ(0)

I(v) < 0, we can choose u ∈ Bρ(0) so that I(u) < 0. Applying the Ekeland

variational principle [11, Theorem 1.1] to the complete metric space Bρ(0), there exists uε ∈

Bρ(0) such that

I(uε) ≤ I(u), (4.15)

I(uε) ≤ I(v) + ε∥v − uε∥Y for all v ∈ Bρ(0), (4.16)

∥u − uε∥Y ≤ ε. (4.17)

Define Φ : Bρ(0) → R by Φ(v) = I(v) + ε∥v − uε∥Y for v ∈ Bρ(0). Since I(uε) ≤ I(u) < 0

and I(v) > 0 for all v ∈ ∂Bρ(0), we have uε ∈ Bρ(0). Choose ρ′ > 0 small enough, so that if

w ∈ Bρ′(0), then uε + w ∈ Bρ(0). From (4.16), since Φ(uε) ≤ Φ(uε + w) for all w ∈ Bρ′(0). We

have

⟨I′(uε), w⟩Y∗,Y + ε∥w∥Y

∥w∥Y

=
⟨I′(uε), tw⟩Y∗,Y + εt∥w∥Y − (Φ(uε + tw)− Φ(uε))

t∥w∥Y
+

Φ(uε + tw)− Φ(uε)

t∥w∥Y

≥
⟨I′(uε), tw⟩Y∗,Y − (I(uε + tw)− I(uε))

t∥w∥Y
→ 0 as t → +0.

Hence ⟨I′(uε), w⟩Y∗,Y + ε∥w∥Y ≥ 0 for all w ∈ Bρ(0), so ⟨I′(uε), w⟩Y∗,Y ≥ −ε∥w∥Y. Replacing

w with −w, we have |⟨I′(uε), w⟩Y∗,Y| ≤ ε∥w∥Y for all w ∈ Bρ(0). Thus ∥I′(uε)∥Y∗ ≤ ε. Letting

ε → 0, we see that I(uε) → c and I′(uε) → 0 in Y∗. Since I satisfies the Palais–Smale

condition in Y and I ∈ C1(Y, R), there exist a subsequence {un} of {uε} and u2 ∈ Bρ(0)

such that un → u2 in Y and I′(u2) = 0. Therefore, u2 is a weak solution of (1.1). Since

I(u2) = c < 0 = I(0), u2 is a nontrivial weak solution of (1.1). Since I(u2) = c < 0 < I(u1),

we have u1 ̸= u2. This completes the proof of Theorem 3.5.
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another existence result in reflexive spaces by using the classical Hahn–Banach theorem
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1 Introduction

This research is a continuation of the recent papers [8] and [9]. In this paper we proceed
the study, started in [8], concerning the existence of mild solutions for the following problem
driven by a non-autonomous semilinear second order differential inclusion with nonlocal
conditions















x′′(t) ∈ A(t)x(t) + F(t, N(t)x), t ∈ J = [0, a]

x(0) = g(x)

x′(0) = h(x)

(P)N
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2 T. Cardinali and G. Duricchi

where {A(t)}t∈J is a family of linear operators generating a fundamental system and F :
J × X → P(X), N : J → Ĉw(C(J; X); X), g, h : C(J; X) → X are suitable maps, with X a
appropriate Banach space and

Ĉw(C(J; X); X) = { f : C(J; X) → X : f is (w-w)sequentially continuous}. (1.1)

We remember that in infinite dimensional spaces the nonlocal problems are investigated with
different kinds of approach. By using topological methods the existence of mild solutions
for these problems is studied with fixed point theorems applied to a suitable solution opera-
tor. This often requires strong compactness conditions, which are usually not satisfied in an
infinite dimensional framework (see [4, 5, 8, 10, 21]).

The purpose of this work is twofold:

(1) to obtain existence results of mild solutions for the abstract problem (P)N in the lack of
compactness,

in order to establish

(2) controllability of the problem driven by the following non-autonomous wave equation

∂2w

∂t2 (t, ξ) =
∂2w

∂ξ2 (t, ξ) + b(t)
∂w

∂ξ
(t, ξ) + f (t, ξ,

Im e(ŵ)

2e(ŵ) + 1

∫ t

0
p(s) ds) + u(t, ξ), (E)

subjected to the “mixed conditions”: the trajectory w : [0, a] × R → C satisfies, with
respect to the first variable, a “periodicity condition” and it has a fixed initial velocity.
The control u(t, ξ) belongs to a set of admissible controls. Moreover, b ∈ C1(J), p ∈ L1(J),
f : J × R × C → C, e : C(J, L2(T, C)) → C are suitable maps, while ŵ : J → L2(T, C),
is defined as ŵ(t) = w(t, ·) and Im e(ŵ) denotes the imaginary part of the complex
number e(ŵ).

The study of aim (1) in absence of the operator N is already addressed in [9] by using a
combination of two techniques: one technique is based on the concept of measure of non-
compactness, while another makes use of the weak topology. This method is also used in [3]
in order to prove the existence of mild solutions for problems monitored by semilinear first
order differential inclusions.

On the other hand the controllability of the mentioned problem governed by (E) is brought
back by using classical arguments (see, for example [42]) to purpose (1).

About the study referred in this note, let us recall that the theory of semilinear differential
inclusions is well documented in literature. Various aspects of this field catch the attention
of many researchers and are widely employed in the study of several dynamical problems
arising from physics, economics, biology, social sciences. Several authors have studied abstract
semilinear second order equations/inclusions in the autonomous case starting from the initial
researches of Kato [25–27] (see, e.g. [15,28,32,36]). On the other hand, the theory dealing with
non-autonomous second order abstract inclusions is only recently investigated, starting from
Kozak’s pioneering work [30]. On this subject we recall [8–10, 13, 21].

Moreover, with regard to nonlocal conditions we mention the reference [7] of Byszewski.
In many cases it is advantageous to treat the nonlocal conditions since they are more appro-
priate then the classical initial conditions to describe natural phenomena (see [16, 41] and the
reference therein).
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Finally, as is known, the controllability problems appear as a natural description of ob-
served evolution phenomena of the real world. The attention of the researchers to such prob-
lems is increasing in literature. For example, for the notions and facts of controllability for
first order differential equations/inclusions, the reader is referred to [1, 2, 14, 33], while we
recall [15, 34, 35, 39] for nonlinear second order differential cases.

In this paper our main contributions are the followings:

(I) a new sufficient condition for the existence of mild solutions for the nonlocal problem
(P)N in weakly compactly generated Banach spaces (see Theorem 4.7, obtained as a
consequence of our Propositions 4.3, 4.4, 4.5, 4.6);

(II) a new selection theorem for a multimap guided by an operator in reflexive Banach spaces
(see Theorem 4.10);

(III) a version of the existence result for (P)N in reflexive Banach spaces (see Theorem 4.13,
proved by using our Propositions 4.4, 4.11, 4.12);

(IV) the existence of a mild solutions for an abstract problem satisfying a “periodicity condi-
tion” and having a fixed initial velocity (see Corollary 4.16);

(V) an application of Corollary 4.16 to the study of the controllability for the perturbed
problem driven by (E) (see Theorem 5.1).

Regarding the proof of our first existence result for (P)N, in the setting of weakly compactly
generated Banach spaces, we apply a fixed point theorem for multimaps, recently proved in
[9]. This fixed point result allows us to work with weak topology and De Blasi measure of
weak noncompactness. So we can avoid requests of compactness on the family generated by
the linear part and on the multivalued term. The existence of mild solutions for the nonlocal
problem (P)N is also obtained as a consequence of a selection theorem and a containment
theorem.

Then, to study the case of reflexive Banach spaces, in addition to use the fixed point
theorem of [9], we need to achieve a new selection theorem for multimaps driven by a suitable
operator. Combining this result with the classical Hahn–Banach Theorem and the weak upper
semicontinuity property we are able to remove some assumptions required in the previous
existence Theorem 4.7.

Finally we are in a position to study the purpose (2), thanks to the definition of a suitable
operator N.

Let us note that, since we have not used the strong compactness property, our existence
results extend in a broad sense those presented in [8]. On the other hand, although it is
possible to reduce problem (P)N to the one studied in [9] by considering an appropriate
operator N (see Remark 4.15), the presence of the required boundedness property on N in our
existence theorems makes us that problem (P)N is not reduced to that examined in [9].

The paper is organized as follows. Section 2 is devoted to the collection of all notions,
propositions and theorems known in literature and used in the sequel: so that the paper
is self contained. The problem setting is presented in Section 3. Section 4 is divided into
two subsections. The first one presents an existence theorem in weakly compactly generated
Banach spaces, obtained by proving some preliminary propositions. The second one is aimed
at examining the existence of mild solutions in the setting of reflexive Banach spaces. Finally,
in Section 5 the controllability of the problem governed by (E) is given as a consequence of
the last result presented in the previous section.
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2 Preliminaries

In this section, we recall a few results, notations and definitions needed to establish our the-
orems. We introduce certain notations which are used throughout the article without any
further mention. Let (X, ‖ · ‖X) be a Banach space, X∗ be the dual space of X and τw be
the weak topology on X. In this paper BX(0, r) denotes the closed ball centered at the ori-
gin and of radius r > 0 of X. Moreover, we recall that a Banach space X is said to be
weakly compactly generated (WCG, for short) if there exists a weakly compact subset H of X

such that X = span{H} (see [20]). Let us note that every separable space is weakly compactly
generated as well as the reflexive ones (see [20]).

Now, put J = [0, a] an interval of the real line endowed with the usual Lebesgue measure
µ, we denote by M(J) the family of all Lebesgue measurable sets, by C(J; X) the space of all
continuous functions from J to X provided with the norm ‖ · ‖∞ of uniform convergence. We
precise that to define the set Ĉw(C(J; X); X), presented in (1.1), we say that f : C(J; X) → X is
(w-w)sequentially continuous if for every sequence (xn)n, xn ∈ C(J; X), xn ⇀ x, then f (xn) ⇀

f (x).
We recall the following version of Theorem 4 of [29], which characterizes the weak conver-

gence in the space C(J; X).

Proposition 2.1. Let X be a normed space, (gn)n be a sequence in C(J; X) and g ∈ C(J; X). Then

gn ⇀ g if and only if (gn − g)n is uniformly bounded and gn(t) ⇀ g(t), for every t ∈ J.

Next, if (Ω, Σ) is a measurable space, a function u : Ω → X is said to be Σ ⊗ B(X)-

measurable if, for all A ∈ B(X), u−1(A) ∈ Σ, where B(X) denotes the Borel σ-field of X (see [18,
Definition 2.1.48]). In the case (Ω, Σ) = (J,M(J)), u : J → X is said to be Bochner-measurable

(B-measurable, for short) if there is a sequence of simple functions which converges to u almost
everywhere in J (see [18, Definition 3.10.1 (a)]) and u : J → X is said to be weakly measurable if
for each l ∈ X∗, the real valued function l(u) is measurable (see [18, Definition 3.10.1 (b)]).

Proposition 2.2 ([18, Corollary 3.10.5]). If X is a separable Banach space and u : J → X, then the

following conditions are equivalent:

(a) u is B-measurable;

(b) u is weakly measurable;

(c) u is M(J)⊗B(X)-measurable.

Moreover, L1(J; X) is the space of all X-valued Bochner integrable functions on J with
norm ‖u‖L1(J;X) =

∫ a
0 ‖u(t)‖X dt and L1

+(J) = { f ∈ L1(J; R) : f (t) ≥ 0, a.e. t ∈ J}. If X = R

we put ‖ · ‖1 = ‖ · ‖L1(J;R). For L1
+-functions the following result holds.

Proposition 2.3 ([12, Lemma 3.1]). For every k > 0, ν ∈ L1
+(J), there exists n := n(k, ν) ∈ N such

that

sup
t∈J

∫ t

0
kν(ξ)e−n(t−ξ) dξ < 1.

A set A ⊂ L1(J; X) has the property of equi-absolute continuity of the integral if for every
ε > 0 there exists δε > 0 such that, for every E ∈ M(J), µ(E) < δε, we have

∫

E
‖ f (t)‖X dt < ε
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whenever f ∈ A, while A ⊂ L1(J; X) is integrably bounded if there exists ν ∈ L1
+(J) such that

‖ f (t)‖X ≤ ν(t), a.e. t ∈ J, for every f ∈ A.

Clearly every integrably bounded set has the property of equi-absolute continuity of the inte-
gral. We recall that the equi-absolute continuity of the integral is fundamental to characterize
the relative weak compactness of a bounded set in L1(J; X).

Proposition 2.4 ([38, Corollary 9]). Let A be a bounded subset of L1(J; X) such that it has the

property of equi-absolute continuity of the integral and, for a.e. t ∈ J, the set A(t) = { f (t) : f ∈ A}
is relatively weakly compact. Then A is relatively weakly compact.

Then, if H is a subset of the Banach space X, we denote by the symbol H
w

the weak
closure of H. As is well known, a bounded subset H of a reflexive space X is relatively weakly
compact. Moreover, we recall that a subset H of a Banach space X is called relatively weakly

sequentially compact if any sequence of points in H has a subsequence weakly convergent to a
point in X (see [31]). Now we recall the classical Eberlein–Šmulian result.

Proposition 2.5 ([18, Theorem 3.5.3]). A subset of a Banach space is relatively weakly compact if and

only if it is relatively weakly sequentially compact. In particular, a subset of a Banach space is weakly

compact if and only if it is weakly sequentially compact.

In the sequel we use the following version of Theorem 3 obtained by H. Vogt in [40].

Proposition 2.6. Let H be a relatively weakly compact subset of a Banach space X. Then H is weakly

closed if and only if H is weakly sequentially closed.

Further, if P(X) is the family of all nonempty subsets of X, we use the following notations:

Pb(X) = {H ∈ P(X) : H bounded},

P f (X) = {H ∈ P(X) : H closed},

Pk(X) = {H ∈ P(X) : H compact},

Pwk(X) = {H ∈ P(X) : H weakly compact}.

Now, let (An)n be a sequence, An ∈ P(X), we consider the “Kuratowski limit superior” (see
[23, Definition 7.1.3])

w − lim sup
n→+∞

An = {x ∈ X : ∃(xnk
)k, xnk

∈ Ank
, nk < nk+1, xnk

⇀ x}

Proposition 2.7 ([23, Proposition 7.3.9]). Let X be a Banach space, 1 ≤ p < ∞, G : J → Pwk(X)

and ( fn)n, fn ∈ Lp(J; X), be a sequence such that

i) there exists f ∈ Lp(J; X) such that fn ⇀ f ;

ii) fn(t) ∈ G(t) a.e. t ∈ J, n ∈ N.

Then

f (t) ∈ co w − lim sup
n→∞

{ fn(t)}, a.e. t ∈ J,

where co denotes the closure of the convex hull of a set.
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Furthermore a multimap F : Ω → P(Y), where Y is a topological space, is said to be
measurable if for every open set V ⊂ Y one has F−(V) = {x ∈ Ω F(x) ∩ V 6= ∅} ∈ Σ (see
[24, Definition 1.3.1]).

Proposition 2.8 ([18, Proposition 4.2.4]). Let (Ω, Σ) be a measurable space and Y be a separable

metric space. A multimap F : Ω → P(Y) is measurable if and only if for every y ∈ Y the function

x 7→ dist(y, F(x)) is Σ ⊗B(Y)-measurable.

Proposition 2.9 ([18, Theorem 4.3.1]). If (Ω, Σ) is a measurable space, Y is a Polish space and

F : Ω → P f (Y) is measurable, then F has a Σ ⊗B(Y)-measurable selection.

If T is a topological space, a multimap F : T → P(Y) is said to be upper semicontinuous in
T if, for every x ∈ T, it is upper semicontinuous at x, i.e. for every open W ⊂ Y such that
F(x) ⊂ W, there exists a neighborhood V(x) of x with the property F(V(x)) ⊂ W.

A multimap F : T → P(Y) has closed graph if the set graph F = {(x, y) ∈ T ×Y : y ∈ F(x)}
is closed in T × Y.

Moreover, F is said to be compact if F(T) is compact in Y, while F is said to be locally compact

if every x ∈ T there exists a neighborhood V(x) such that the restriction F|V(x) is compact.

Proposition 2.10 ([24, Theorem 1.1.5]). Let T, Y be topological spaces and F : T → Pk(Y) be a

closed and locally compact multimap. Then F is upper semicontinuos in T.

If Y is a linear topological space, F : X → P(Y) has (s-w)sequentially closed graph [(w-

w)sequentially closed graph] if for every (xn)n, xn ∈ X, xn → x [xn ⇀ x] and for every (yn)n,
yn ∈ F(xn), yn ⇀ y, we have y ∈ F(x). In the sequel, the “(w-w)sequential continuity” and
the “(w-w) sequentially closed graph property” are named “weak sequential continuity” and
"weakly sequentially closed graph property" respectively.

A multimap F : J → P(X) is said to have a B-measurable selection if there exists a B-
measurable function f : J → X such that f (t) ∈ F(t), a.e. t ∈ J.

Now, we recall the following results that ensures the existence of a B-selection for a mul-
timap.

Theorem 2.11 ([24, Theorem 1.3.5]). Let X, Y be Banach spaces and F : J × X → Pk(Y) be a

multimap such that

i) for every x ∈ X, F(·, x) : J → Pk(Y) has a B-measurable selection;

ii) for a.e. t ∈ J, F(t, ·) : X → Pk(Y) is upper semicontinuous in X.

Then for every B-measurable function q : J → Y, there exists a B-measurable selection f : J → X of

the multimap F(·, q(·)).

Let us recall that for v : J → M, where M is a metric space, the B-measurability is gen-
eralized in [22] by using again the simple functions. Thanks to this definition, the following
result holds.

Theorem 2.12 ([9, Theorem 4.2] (Selection Theorem)). Let M be a metric space, X be a Banach

space and F : J × M → P(X) be a multimap such that

f1) for a.e. t ∈ J, for every x ∈ M, the set F(t, x) is convex ;

f2) for every x ∈ M, F(·, x) : J → P(X) has a B-measurable selection;
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f3) for a.e. t ∈ J, F(t, ·) : M → P(X) has a (s-w)sequentially closed graph in M × X;

f4) there exists ϕ : J → [0, ∞), ϕ ∈ L1
+(J), such that

sup
z∈F(t,M)

‖ z ‖≤ ϕ(t), a.e. t ∈ J;

f5) for almost all t ∈ J and every convergent sequence (xn)n in M, the set
⋃

nF(t, xn) is relatively

weakly compact.

Then, for every B-measurable v : J → M, there is a B-measurable y : J → X such that y(t) ∈ F(t, v(t))

for a.e. t ∈ J.

Next, we recall that, if H is a subset of X, F : H → P(X) is a multimap and x0 ∈ H,
a closed convex set M0 ⊂ H is said to be (x0, F)-fundamental, if x0 ∈ M0 and F(M0) ⊂ M0

(see [3, p. 620]). In this setting we recall the following result which allows to characterize the
smallest (x0, F)-fundamental set

Theorem 2.13 ([3, Theorem 3.1]). Let X be a locally convex Hausdorff space, H ⊂ X and x0 ∈ H.

Let F : H → P(X) be a multimap such that co(F(H) ∪ {x0}) ⊂ H. Then

1) F = {H : H is a (x0, F)-fundamental set} 6= ∅;

2) put M0 =
⋂

H∈F H, we have M0 ∈ F and M0 = co(F(M0) ∪ {x0}).

Now we present a fixed point result and a “Containment Theorem”, which play a key role
in our existence results.

Theorem 2.14 ([9, Corollary 4.4]). Let X be a Banach space, H ⊂ X, x0 ∈ H and F : H → P(X)

be a multimap such that

i) F(x) convex, for every x ∈ H;

ii) co(F(H) ∪ {x0}) ⊂ H;

iii) M0 is weakly compact;

iv) F|M0
has weakly sequentially closed graph,

where M0 is the smallest (x0, F)-fundamental set.

Then there exists at least one point x ∈ M0 such that x ∈ F(x).

Theorem 2.15 ([3, Theorem 4.4] (Containment Theorem)). Let X be a Banach space and Gn, G :
J → P(X) be such that

α) a.e. t ∈ J, for every (un)n, un ∈ Gn(t), there exists a subsequence (unk
)k of (un)n and u ∈ G(t)

such that unk
⇀ u;

αα) there exists a sequence (yn)n, yn : J → X, having the property of equi-absolute continuity of the

integral, such that yn(t) ∈ Gn(t), a.e. t ∈ J, for all n ∈ N.

Then there exists a subsequence (ynk
)k of (yn)n such that ynk

⇀ y in L1(J; X) and, moreover, y(t) ∈
coG(t), a.e. t ∈ J.

Now, a function ω : Pb(X) → R
+
0 is said to be a measure of weak noncompactness (MwNC,

for short) if the following properties are satisfied (see [11, Definition 4.1]):
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ω1) ω is a Sadowskii functional, i.e. ω(co(H)) = ω(H), for every H ∈ Pb(X);

ω2) ω is regular, i.e. ω(H) = 0 if and only if H
w

is weakly compact.

Further, a measure of weak noncompactness ω : Pb(X) → R
+
0 is said to be:

monotone if H1, H2 ∈ Pb(X) : H1 ⊂ H2 implies ω(H1) ≤ ω(H2);
nonsingular if ω({x} ∪ H) = ω(H), x ∈ X, H ∈ Pb(X);
x0-stable if, fixed x0 ∈ X, ω({x0} ∪ H) = ω(H), H ∈ Pb(X);
invariant under closure if ω(H) = ω(H), H ∈ Pb(X);
invariant with respect to the union with compact set if ω(H ∪ C) = ω(H), for every relatively

compact set C ⊂ X and H ∈ Pb(X).

In particular in [17] De Blasi introduces the MwNC function β : Pb(X) → R
+
0 so defined

β(H) = inf{ε ∈ [0, ∞[: there exists C ⊂ X weakly compact : H ⊆ C + BX(0, ε)},

(named in literature De Blasi–MwNC) and he proves that β has all the properties mentioned
before and it is also algebrically subadditive, i.e. β (∑n

k=1 Hk) ≤ ∑
n
k=1 β(Hk), where Hk ∈ Pb(X),

k = 1, . . . , n.
Moreover, for every bounded linear operator L : X → X the following property holds (see

[19, Lemma 1])
β(L(H)) ≤ ‖L‖ β(H), H ∈ Pb(X), (2.1)

where ‖L‖ denotes the norm of the operator L.
We recall the following interesting result for the De Blasi–MwNC β : Pb(X) → R

+
0 .

Proposition 2.16 ([3, Theorem 2.7]). Let (Ω, Σ, µ) be a finite positive measure space and X be

a weakly compactly generated Banach space. Then for every countable bounded set C ⊂ L1(J; X)

having the property of equi-absolute continuity of the integral, the function β(C(·)) is M(J)⊗M(R)

measurable and

β

({

∫

Ω
x(s) ds : x ∈ C

})

≤
∫

Ω
β(C(s)) ds.

In the sequel, fixed α ∈ R, we use the following Sadowskii functional βα : Pb(C(J; X)) →
R

+
0 , so defined (see [3, Definition 3.9])

βα(M) = sup
C⊂M

countable

sup
t∈J

β(C(t))e−αt, M ∈ Pb(C(J; X)), (2.2)

where β is the De Blasi MwNC and, for every t ∈ J, C(t) = {x(t) : x ∈ C}. We recall that
the Sadowskii functional βα is x0-stable and monotone (see [3, Proposition 3.10]) and βα has the
two following properties (see [9, Remark 2.11])

(I) βα is algebraically subadditive;

(II) M ⊂ C(J; X) is relatively weakly compact ⇒ βα(M) = 0.

3 Problem setting

First of all, on the linear part of the second order differential inclusion, presented in the
nonlocal problem (P)N, we assume the following property:
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(A) {A(t)}t∈J is a family of linear operators A(t) : D(A) → X, where D(A), independent
on t ∈ J, is a subset dense in X such that, for each x ∈ D(A), the function t 7→ A(t)x is
continuous on J and generating a fundamental system {S(t, s)}t,s∈J .

The notion of fundamental system is introduced by Kozak in [30] and it is recently used in
[8–10, 21]. In some works, for every t ∈ J, the linear operator A(t) : D(A) → X is also closed
(see [21, 30]) and bounded (see [8–10]), but we leave out these properties on A(t) since they
are not necessary in order to prove the existence of mild solutions (see [37]).

Definition 3.1. A family {S(t, s)}t,s∈J of bounded linear operators S(t, s) : X → X is called a
fundamental system generated by the family {A(t)}t∈J if

S1. for each x ∈ X, the function S(·, ·)x : J × J → X is of class C1 and

a. for every t ∈ J, S(t, t)x = 0, x ∈ X;

b. for every t, s ∈ J and every x ∈ X, ∂
∂t S(t, s)

∣

∣

t=s
x = x and

∂
∂s S(t, s)

∣

∣

t=s
x = −x;

S2. for all t, s ∈ J, x ∈ D(A), then S(t, s)x ∈ D(A), the map S(·, ·)x : J × J → X is of class C2

and

a’. ∂2

∂t2 S(t, s)x = A(t)S(t, s)x;

b’. ∂2

∂s2 S(t, s)x = S(t, s)A(s)x;

c’. ∂2

∂t∂s S(t, s)
∣

∣

t=s
x = 0;

S3. for all t, s ∈ J, x ∈ D(A), then ∂
∂s S(t, s)x ∈ D(A). Moreover, there exist ∂3

∂t2∂s
S(t, s)x,

∂3

∂s2∂t
S(t, s)x such that

a”. ∂3

∂t2∂s
S(t, s)x = A(t) ∂

∂s S(t, s)x;

b”. ∂3

∂s2∂t
S(t, s)x = ∂

∂t S(t, s)A(s)x;

and, for all x ∈ D(A), the function (t, s) 7→ A(t) ∂
∂s S(t, s)x is continuous in J × J.

As in [21], a map S : J × J → L(X), where L(X) is the space of all bounded linear operators
in X with the norm ‖ · ‖L(X), is said to be a fundamental operator if the family {S(t, s)}t,s∈J is a
fundamental system.

Moreover, for every (t, s) ∈ J × J, we consider the linear operator, named “cosine operator”,
C(t, s) = − ∂

∂s S(t, s) : X → X.

In [10] it is pointed out that the Banach–Steinhaus Theorem allows to establish the exis-
tence of two constant K, K∗

> 0 such that

p1. ‖C(t, s)‖L(X) ≤ K, (t, s) ∈ J × J;

p2. ‖S(t, s)‖L(X) ≤ K|t − s|, (t, s) ∈ J × J;

p3. ‖S(t, s)‖L(X) ≤ Ka, (t, s) ∈ J × J;

p4. ‖S(t2, s)− S(t1, s)‖L(X) ≤ K∗|t2 − t1|, t1, t2, s ∈ J.
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Further, as in [10], we denote with GS : L1(J; X) → C(J; X) the fundamental Cauchy operator

defined as

GS f (t) =
∫ t

0
S(t, s) f (s) ds, t ∈ J, f ∈ L1(J; X). (3.1)

Let us note that, fixed t ∈ J, the map pt : [0, t] × X → X such that pt(ξ, x) = S(t, ξ)x,
(ξ, x) ∈ [0, t] × X, satisfies all the assumptions of Theorem 2.11 (see S1.). Hence, for every
f ∈ L1(J; X), by p3. it easy to deduce that pt(·, f (·)) is B-integrable in [0, t]. Then, by using p4.
we also have GS f ∈ C(J; X). So GS is well posed. Moreover, the fundamental Cauchy operator
has the properties declared in the following

Proposition 3.2 ([9, Proposition 4.1]). If {S(t, s)}(t,s)∈J×J is a fundamental system, then the funda-

mental Cauchy operator GS : L1(J; X) → C(J; X) is linear, bounded and weakly continuous (so it is

also weakly sequentially continuous).

We investigate the existence of mild solutions for the nonlocal problem (P)N (see [8, Defi-
nition 2.2])

Definition 3.3. A continuous function u : J → X is a mild solution for (P)N if

u(t) = C(t, 0)g(u) + S(t, 0)h(u) +
∫ t

0
S(t, ξ) f (ξ) dξ, t ∈ J,

where f ∈ S1
F(·,N(·)u) = { f ∈ L1(J; X) : f (t) ∈ F(t, N(t)u), a.e. t ∈ J}.

4 Existence results for the nonlocal problem (P)N

In this section, put X a Banach space, we consider the following properties on the multimap
F : J × X → P(X) and on the map N : J → Ĉw(C(J; X); X)

F1 for every (t, x) ∈ J × X, the set F(t, x) is convex;

F2 for every x ∈ X, F(·, x) : J → P(X) admits a B-measurable selection;

F3 for a.e. t ∈ J, F(t, ·) : X → P(X) has a weakly sequentially closed graph;

F4 there exists (ϕn)n, ϕn ∈ L1
+(J) such that

lim sup
n→∞

Ka
∫ a

0 ϕn(t) dt

n
< 1 (4.1)

and
‖F(t, BX(0, n))‖ ≤ ϕn(t), a.e. t ∈ J, n ∈ N; (4.2)

where K is the constant presented in p1. of Section 3;

FN there exists A ⊂ J, µ(A) = 0: for all n ∈ N there exists νn ∈ L1
+(J) such that, for every

t ∈ J \ A

β(C1) ≤ νn(t)β(C0(t)), (4.3)

for all countable C0, C1 with

C0 ⊆ BC(J;X)(0, n), C1 ⊆ F(t, C0(t) ∪ N(t)C0),

where β is the De Blasi measure of weak noncompactness;
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N1 for every u ∈ C(J; X), N(·)u is B-measurable;

N2 there exists c ∈ N such that ‖N(t)u‖X ≤ c, for all t ∈ J, u ∈ C(J; X).

Moreover, we consider the following properties on the functions g, h : C(J; X) → X

gh1 g, h are weakly sequentially continuous;

gh2 for every countable H ⊂ C(J; X), the sets g(H) and h(H) are relatively weakly compact;

gh3 for every bounded and closed subset M of C(J; X), the sets

C(·, 0)g(M) and S(·, 0)h(M)

are relatively weakly compact in C(J; X).

Remark 4.1. First of all we note that, under assumptions F1, F3 and FN,

F(t, N(t)x) is closed in X, for a.e. t ∈ J and for every x ∈ C(J; X).

Denoted by H∗ a null measure set such that F3 and FN hold in J \ H∗, we fix t ∈ J \ H∗ and
x ∈ C(J; X). Now we prove that the set F(t, N(t)x) is relatively w-compact. To this aim we
consider C0 = {x} and C1 = {yn : n ∈ N}, where yn ∈ F(t, N(t)x), n ∈ N. Note that
C0 ⊂ BC(J;X)(0, p), for a suitable p ∈ N, and C1 ⊂ F(t, C0(t) ∪ N(t)C0), so by (4.3) we have
β(C1) ≤ νp(t)β(C0(t)) = 0. By the regularity of β the set C1 is relatively w-compact and so
there exist (ynk

)k ⊂ (yn)n and y ∈ X such that ynk
⇀ y. Then by the arbitrariness of the

sequence (yn)n, by using the Eberlein–Šmulian Theorem we have that the set F(t, N(t)x) is
relatively weakly compact too. By virtue of F1 and F3 we also know that the set F(t, N(t)x)

is convex and weakly sequentially closed. So, by using Proposition 2.6 we have that the set
F(t, N(t)x) is closed in X.

Remark 4.2. We note that, in the setting of reflexive Banach spaces and under assumptions
F1, F3 and F4, by using again Proposition 2.6 we have

F(t, x) is closed, for a.e. t ∈ J and for every x ∈ X, (4.4)

(see the beginning of the proof of Theorem 5.3 of [9].)

4.1 Existence of mild solutions in WCG Banach spaces

In this subsection, by combining the Containment Theorem 2.15 and a selection result, which
is a consequence of Theorem 2.12, we obtain the existence of mild solutions to the nonlocal
problem (P)N, assuming that X is a WCG Banach space. Note that our technique allows us to
avoid hypotheses of compactness both on the family generated by the linear part and on the
nonlinear multivalued term. We achive our goal by applying the fixed point Theorem 2.14 to
the following multioperator T : C(J; X) → P(C(J; X)) defined as (see (3.1))

Tu = {y ∈ C(J; X) : y(t) = C(t, 0)g(u) + S(t, 0)h(u) + GS f (t), t ∈ J, f ∈ S1
F(·,N(·)u)}, (4.5)

where
S1

F(·,N(·)u) = { f ∈ L1(J; X) : f (t) ∈ F(t, N(t)u) a.e. t ∈ J}. (4.6)

To make the propositions that we will present below of greater applicability, allow us to
request, at first, that the following property holds
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(T) S1
F(·,N(·)u) 6= ∅, u ∈ C(J; X),

so we have the multioperator T is well posed.
Obviously the fixed points of the integral multioperator T are mild solutions for the prob-

lem (P)N.

At first, thanks to the Containment Theorem 2.15, we establish the following property
on T.

Proposition 4.3. Let X be a Banach space, under assumptions (A), (T), F1, F3, F4, FN, N2 and gh1,

the multioperator T has a weakly sequentially closed graph.

Proof. Let (qn)n and (xn)n be two sequences of C(J; X) such that

xn ∈ Tqn, n ∈ N (4.7)

and
qn ⇀ q, xn ⇀ x, (4.8)

where q, x ∈ C(J; X). We have to show that x ∈ Tq.
First of all, by Proposition 2.1 the weak convergence of (qn)n implies that

qn(t) ⇀ q(t), t ∈ J (4.9)

and the existence of n ∈ N such that

‖qn‖C(J;X) ≤ n, n ∈ N. (4.10)

Now we prove that Containment Theorem 2.15 can be applied to the multimaps Gn : J →
P(X), n ∈ N and G : J → P(X) respectively so defined

Gn(t) = F(t, N(t)qn), t ∈ J, (4.11)

G(t) = F(t, N(t)q), t ∈ J. (4.12)

First we establish α) of Theorem 2.15. To this aim we consider the null measure set H∗ for
which F3 and FN hold. Fixed t ∈ J \ H∗, we consider a sequence (un)n such that

un ∈ Gn(t), n ∈ N. (4.13)

Now we fix the countable subset of BC(J;X)(0, n), where n is presented in (4.10), so defined

C0 = {qn : n ∈ N} (4.14)

and the countable set of X

C1 = {un : n ∈ N}
satisfying (see (4.13), (4.11) and (4.14))

C1 ⊂ F(t, {N(t)qn}n) ⊂ F(t, C0(t) ∪ N(t)C0).

So, by FN there exists νn ∈ L1
+(J) such that

β(C1) ≤ νn(t)β(C0(t)). (4.15)



Second order nonlocal problems without compactness 13

Now, since the set C0(t) is relatively weakly sequentially compact (see (4.14) and (4.9)), by
the regularity of β we have β(C0(t)) = 0. By the virtue of (4.15) and of the Eberlein–Šmulian
Theorem, we deduce that C1 is relatively weakly sequentially compact too, i.e. there exist
(unk

)k ⊂ (un)n and u ∈ X such that
unk

⇀ u. (4.16)

Therefore, taking into account the weak sequential continuity of N(t) and F3, from (4.8), (4.11),
(4.12), (4.13) and (4.16) we have u ∈ G(t). So α) of Theorem 2.15 holds.

Next, we prove αα) of Theorem 2.15. By (4.7), (4.5) and (T), for every n ∈ N, there exists
fn ∈ S1

F(·,N(·)qn)
such that

xn(t) = C(t, 0)g(qn) + S(t, 0)h(qn) + GS fn(t), t ∈ J.

First we observe that the sequence ( fn)n, fn : J → X, is such that

fn(t) ∈ Gn(t) = F(t, N(t)qn), a.e. t ∈ J, n ∈ N. (4.17)

Moreover, thanks to (4.17) and to hypotheses N2 and F4, the sequence ( fn)n is integrably
bounded. So ( fn)n has the property of equi-absolute continuity of the integral, i.e. αα) holds.

Now we are in a position to apply the mentioned Containment Theorem, so there exists a
subsequence ( fnk

)k ⊂ ( fn)n such that

fnk
⇀ f in L1(J; X),

where (see (4.12), F1 and, taking into account F3 and FN, Remark 4.1)

f (t) ∈ coG(t) = coF(t, N(t)q) = F(t, N(t)q), a.e. t ∈ J.

Hence we can conclude that
f ∈ S1

F(·,N(·)q). (4.18)

Moreover, the weak continuity of the fundamental Cauchy operator GS (see Proposition 3.2)
implies that GS fnk

⇀ GS f . Then, by using again Proposition 2.1, hypothesis gh1, continuity
and linearity of S(t, 0) and C(t, 0), t ∈ J, we have

xnk
(t) ⇀ C(t, 0)g(q) + S(t, 0)h(q) + GS f (t) =: x̃(t), t ∈ J. (4.19)

On the other hand by (4.8) we deduce xnk
(t) ⇀ x(t), for all t ∈ J and then the uniqueness of

the weak limit implies
x(t) = x̃(t), t ∈ J. (4.20)

Finally, from (4.20), (4.19), (4.18) and (4.5) we have that x ∈ Tq. Therefore we can conclude
that T has a weakly sequentially closed graph.

Proposition 4.4. Let X be a Banach space, under assumptions (A), (T), F4, N2 and gh2, there exists

r ∈ N, r > c, such that the operator T maps the closed ball Kr = BC(J;X)(0, r) into itself, where 0
denotes the null function of C(J; X).

Proof. First of all, from N2, we know that there exists a constant c ∈ N such that ‖N(t)x‖X ≤ c,
for every t ∈ J, x ∈ C(J; X).

We show that there exists r ∈ N, r > c, such that

T(Kr) ⊂ Kr. (4.21)
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Let assume by contradiction that, for every n ∈ N such that n > c we have

T(Kn) * Kn.

Then, there exist qn ∈ C(J; X) with ‖qn‖C(J;X) ≤ n and xqn ∈ Tqn such that ‖xqn‖C(J;X) > n.
Being ‖xqn‖C(J;X) > n, there exists tn ∈ J = [0, a]: ‖xqn(tn)‖X > n. By gh2 we have that

g({qn, n ∈ N : n > c}) and h({qn, n ∈ N : n > c}) are relatively weakly compact. Hence
there exists a subsequence (qnk

)k such that (g(qnk
))k and (h(qnk

))k are weakly convergent, so
there exists Q > 0 such that (see [6], Proposition 3.5 (iii)) ‖g(qnk

)‖X ≤ Q, ‖h(qnk
)‖X ≤ Q, for

every nk ∈ N, nk > c. Now, being fqnk
∈ S1

F(·,N(·)qnk
), taking into account p1. and p3. we can

write

nk < ‖xqnk
(tnk

)‖X ≤ ‖C(tnk
, 0)‖L(X)‖g(qnk

)‖X + ‖S(tnk
, 0)‖L(X)‖h(qnk

)‖X

+
∫ tnk

0
‖S(tnk

, ξ)‖L(X)‖ fqnk
(ξ)‖X dξ ≤ KQ + KaQ + Ka

∫ a

0
‖ fqnk

(ξ)‖X dξ, (4.22)

Next, from N2 we have ‖N(t)qnk
‖X ≤ c < nk, t ∈ J. So fqnk

(t) ∈ F(t, N(t)qnk
)⊂ F(t, BX(0, nk)),

a.e. t ∈ J. Now by (4.2) of F4 there exists ϕnk
∈ L1

+(J) such that

‖ fqnk
(t)‖X ≤ ϕnk

(t), a.e. t ∈ J,

then by (4.22) the following inequality holds

nk < ‖xqnk
(tnk

)‖X ≤ KQ + KaQ + Ka
∫ a

0
ϕnk

(ξ) dξ. (4.23)

Therefore, since (4.23) is true for every natural number nk > c, we have

1 ≤ KQ + KaQ

nk
+

Ka
∫ a

0 ϕnk
(ξ) dξ

nk
, nk ∈ N, nk > c.

Hence, passing to the superior limit, by (4.1) we deduce the following contradiction

1 ≤ lim sup
k→∞

(

KQ + KaQ

nk
+

Ka
∫ a

0 ϕnk
(ξ) dξ

nk

)

≤ lim sup
n→∞

Ka
∫ a

0 ϕn(ξ) dξ

n
< 1.

Therefore we can conclude that (4.21) is true, i.e. there exists r ∈ N with r > c such that

Kr = BC(J;X)(0, r) (4.24)

is invariant under the action of the operator T.

If the Banach space X is also WCG, we have the following result for the multimap Tr =

T|Kr
: Kr → P(C(J; X)), which is the restriction of the multimap T on the set Kr defined in

(4.24).

Proposition 4.5. If X is a weakly compactly generated Banach space, under assumptions (A), (T), F4,

FN, N2, gh2 and gh3 there exists M0 the smallest (0, Tr)-fundamental set which is weakly compact,

with r > c such that T(Kr) ⊂ Kr.
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Proof. First of all, we consider x0 = 0 ∈ C(J; X) and the set Kr in the locally convex Haus-
dorff space C(J; X) equipped with the weak topology. Since Tr(Kr) ⊂ Kr, clearly we have
co(Tr(Kr) ∪ {0}) ⊂ Kr. Hence, being true the assumptions of Theorem 2.13, there exists the
smallest (0, Tr)-fundamental set M0 ⊂ C(J; X) such that

M0 ⊂ Kr = BC(J;X)(0, r) (4.25)

and
M0 = co(Tr(M0) ∪ {0}). (4.26)

Now, we prove that M0 is weakly compact.
We consider the Sadovskij functional βα, where α ∈ R+, defined in (2.2). Being βα 0-stable

we can write (see (4.26))
βα(Tr(M0)) = βα(M0). (4.27)

Hence, since βα satisfies (I) and (II), by (4.27), (4.5) and gh3 we have (see (2.2) and (3.1))

βα(M0) = βα

(

{C(·, 0)g(u) + S(·, 0)h(u) + GS f : f ∈ S1
F(·,N(·)u), u ∈ M0}

)

≤ βα(C(·, 0)g(M0)) + βα(S(·, 0)h(M0)) + βα({GS f : f ∈ S1
F(·,N(·)u), u ∈ M0})

= βα({GS f : f ∈ S1
F(·,N(·)u), u ∈ M0})

= sup
C⊂S1

F(·,N(·)M0)
C countable

sup
t∈J

β

({

∫ t

0
S(t, ξ) f (ξ) dξ : f ∈ C

})

e−αt. (4.28)

Now, fixed t ∈ J and a countable set C ⊂ S1
F(·,N(·)M0)

we define

C∗
t = {S(t, ·) f (·) : f ∈ C}.

Recalling that r > c, by using p3. and F4, we can say that the set C∗
t is integrably bounded and

so it is bounded in L1(J; X) and it has the property of equi-absolute continuity of the integral.
Then, by recalling that X is a WCG Banach space, we are in the position to apply Proposition
2.16 to the countable set C∗

t , so we have

β

({

∫ t

0
S(t, ξ) f (ξ) dξ : f ∈ C

})

≤
∫ t

0
β(C∗

t (ξ)) dξ

=
∫ t

0
β({S(t, ξ) f (ξ) : f ∈ C}) dξ. (4.29)

Further let us note that for every f ∈ C we can consider, by the Axiom of Choice, a continuous
map q f ∈ M0 such that f (ξ) ∈ F(ξ, N(ξ)q f ), a.e. ξ ∈ J. So the set CC

0 = {q f ∈ M0 : f ∈ C} is
countable too. Now, taking into account the numerability of C, there exists a null measure set
I ⊂ J containing the set A defined in FN, such that

f (ξ) ∈ F(ξ, N(ξ)q f ), ξ ∈ J \ I, f ∈ C,

where q f ∈ CC
0 .

Hence, fixed ξ ∈ J \ I, we observe that C(ξ) ⊂ F(ξ, CC
0 (ξ) ∪ N(ξ)CC

0 ). Now, since the
countable set CC

0 ⊂ M0 ⊂ Kr, by FN there exists νr ∈ L1
+(J) such that

β(C(ξ)) ≤ νr(ξ)β(CC
0 (ξ)).
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The above considerations allow us to claim that for every countable set C ⊂ S1
F(·,N(·)M0)

there

exists a countable subset CC
0 ⊂ M0 such that

∫ t

0
β(C(ξ)) dξ ≤

∫ t

0
νr(ξ)β(CC

0 (ξ)) dξ ≤
∫ t

0
νr(ξ) sup

C0⊂M0
C0 countable

β(C0(ξ)) dξ. (4.30)

Now, by using (4.28), (4.29), (2.1), p3. and (4.30) we can write (see (2.2))

βα(M0) ≤ sup
C⊂S1

F(·,N(·)M0)
C countable

sup
t∈J

(

∫ t

0
‖S(t, ξ)‖L(X)β(C(ξ)) dξ

)

e−αt

≤ sup
C⊂S1

F(·,N(·)M0)
C countable

sup
t∈J

(

Ka
∫ t

0
β(C(ξ)) dξ

)

e−αt

≤ sup
C⊂S1

F(·,N(·)M0)
C countable

sup
t∈J






Ka
∫ t

0
νr(ξ) sup

C0⊂M0
C0 countable

β(C0(ξ)) dξ






e−αt

≤ sup
t∈J






Ka
∫ t

0
e−α(t−ξ)νr(ξ) sup

C0⊂M0
C0 countable

sup
ξ∈J

e−αξ β(C0(ξ)) dξ







= βα(M0) sup
t∈J

∫ t

0
Kae−α(t−ξ)νr(ξ) dξ. (4.31)

By virtue of Proposition 2.3 we can say that there exists m ∈ N such that

sup
t∈J

∫ t

0
Kae−m(t−ξ)νr(ξ) dξ < 1. (4.32)

Now, if we assume that βm(M0) > 0, where m is the constant characterized in (4.32), from
(4.31) we have the contradiction

βm(M0) ≤ βm(M0) sup
t∈J

∫ t

0
Kae−m(t−ξ)νp(ξ) dξ < βm(M0).

So we can claim
βm(M0) = 0. (4.33)

By definition of βm(M0), we have that, for every t ∈ J, the set M0(t) is relatively weakly
sequentially compact. Indeed, fixed t ∈ J and a sequence (qn(t))n, qn(t) ∈ M0(t), n ∈ N, we
consider the countable set

C̃(t) = {qn(t) : n ∈ N}.

By (4.33) we have β(C̃(t)) = 0 and, since β is regular the set C̃(t) is relatively weakly com-
pact. So, by the Eberlein–Šmulian Theorem C̃(t) is relatively weakly sequentially compact too.
Hence there exists a subsequence (qnk

(t))k of (qn(t))n such that qnk
(t) ⇀ q(t) ∈ X. Therefore,

by the arbitrariness of the sequence (qn(t))n we can conclude that M0(t) is relatively weakly
sequentially compact, and, by using again Proposition 2.5, M0(t) is relatively weakly compact
too.
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Now, we use Proposition 2.4 to prove that the set S1
F(·,N(·)M0)

is relatively weakly compact

in L1(J; X).
First of all, since N(t)M0 ⊂ BX(0, r) for every t ∈ J (see N2 and recalling that r > c), we

prove that S1
F(·,N(·)M0)

is integrably bounded. By (4.2) of F4 we have that there exists ϕr ∈ L1
+(J)

such that
‖ f (t)‖X ≤ ϕr(t), a.e. t ∈ J, f ∈ S1

F(·,N(·)M0)
.

Therefore we can deduce that S1
F(·,N(·)M0)

is bounded in L1(J; X) and it has the property of
equi-absolute continuity of the integral.

Finally we show that S1
F(t,N(t)M0)

is relatively weakly compact in X, for a.e. t ∈ J.
Let us fix t ∈ J \ H∗, where H∗ is the null measure set containing the set A presented

in FN and such that ‖F(t, N(t)M0‖X ≤ ϕr(t), for every t ∈ J \ H∗. First of all, we note that
S1

F(t,N(t)M0)
is norm bounded in X by the constant ϕr(t).

Next, we consider a sequence (yn)n ⊂ S1
F(t,N(t)M0)

. Obviously there exists a sequence ( fn)n

such that fn ∈ S1
F(·,N(·)M0)

and fn(t) = yn, n ∈ N. So we have

yn ∈ F(t, N(t)M0), n ∈ N. (4.34)

Let us note that, for every n ∈ N, from (4.34), there exists qn ∈ M0 such that

yn ∈ F(t, N(t)qn). (4.35)

Now, by considering the two countable sets C0 = {qn : n ∈ N} ⊂ Kr (see (4.25)) and
C1 = {yn : n ∈ N} we have (see (4.35))

C1 ⊂ F(t, N(t)C0) ⊂ F(t, C0(t) ∪ N(t)C0).

So, by FN and recalling that M0(t) is relatively weakly compact, we write

0 ≤ β(C1) ≤ νr(t)β(C0(t)) ≤ νr(t)β(M0(t)) = 0,

so β(C1) = 0, i.e. C1 is relatively weakly compact. Hence there exists a subsequence (ynk
)k of

(yn)n weakly convergent.
By the arbitrariness of (yn)n in S1

F(t,N(t)M0)
, we can conclude that S1

F(t,N(t)M0)
is relatively

weakly sequentially compact. By using again the Eberlein–Šmulian Theorem the set
S1

F(t,N(t)M0)
is relatively weakly compact.

Therefore, we are in the position to apply Proposition 2.4, hence S1
F(·,N(·)M0)

is relatively

weakly compact in L1(J; X).
In order to prove the weak compactness of M0, by (4.26) it is sufficient to show that T(M0)

is relatively weakly compact.
To this aim we fix a sequence (xn)n, xn ∈ T(M0). Then there exists (qn)n, qn ∈ M0, such

that xn ∈ Tqn, n ∈ N. Hence

xn(t) = C(t, 0)g(qn) + S(t, 0)h(qn) +
∫ t

0
S(t, ξ) fn(ξ) dξ, t ∈ J,

where fn ∈ S1
F(·,N(·)qn)

⊂ S1
F(·,N(·)M0)

.

By the relative weak sequential compactness of S1
F(·,N(·)M0)

we can find a subsequence ( fnk
)k

of ( fn)n, such that fnk
⇀ f in L1(J; X) and by using the mentioned Proposition 3.2, we have

GS fnk
⇀ GS f . (4.36)



18 T. Cardinali and G. Duricchi

Moreover, if we consider the countable set {qnk
: nk ∈ N}, thanks to gh2, there exist a

subsequence of (qnk
)k, w.l.o.g we name also (qnk

)k, and x, y ∈ X such that

g(qnk
) ⇀ x and h(qnk

) ⇀ y. (4.37)

Now, let us consider the subsequence (xnk
)k of (xn)n. First of all, for every t ∈ J, since S(t, 0)

and C(t, 0) are linear and bounded, from (4.36) and (4.37) we deduce

xnk
(t) ⇀ C(t, 0)x + S(t, 0)y + GS f (t) := x(t),

where x : J → X is a continuous function.
Then, since xnk

∈ T(M0), k ∈ N, by (4.25) we can write

‖xnk
− x‖C(J;X) ≤ r + ‖x‖C(J;X),

i.e. the sequence (xnk
− x)k is uniformly bounded. So, thanks to Proposition 2.1 xnk

⇀ x. Then
we deduce that T(M0) is relatively weakly sequentially compact and so T(M0) is relatively
weakly compact.

Finally, recalling (4.26) we can conclude that M0 is weakly compact.

Now we state some conditions on F and N in order to have property (T) true in a Banach
space X, i.e. the following selection proposition.

Proposition 4.6. Let X be a Banach space, F : J × X → P(X) be a multimap having the properties

F1, F2, F3, F4 and N : J → Ĉw(C(J; X); X) be a map satisfying N1, N2. If FN holds, then for every

u ∈ C(J; X) the set S1
F(·,N(·)u) is nonempty.

Proof. First of all, fixed u ∈ C(J; X), we define the following function qu : J → X

qu(t) = N(t)u, t ∈ J (4.38)

and by N1 we say that qu is B-measurable. Moreover, in correspondence of the costant c ∈ N

of N2, there exists ru ∈ N, ru > c such that ‖u(t)‖X ≤ ru, t ∈ J. Now, we consider F|J×Mu
:

J × Mu → P(X), where
Mu = BX(0, ru). (4.39)

and we consider on Mu the metric d induced by that on the Banach space X.
We will show that this multimap satisfies all the hypotheses of Theorem 2.12.
First of all f1), f2) and f3) of Theorem 2.12 are true for the restriction F|J×Mu

(see F1, F2 and
F3 respectively).

Now, for the fixed ru in (4.39), from F4 there exists ϕru ∈ L1
+(J) such that (see (4.2))

sup
z∈F(t,Mu)

‖z‖ ≤ ϕru(t), a.e. t ∈ J,

i.e. f4) of Theorem 2.12 is true for F|J×Mu
.

Finally, fixed a sequence (un)n, un ∈ Mu, such that un → v in Mu, we consider, for every
n ∈ N, gn : J → X so defined

gn(t) = un, t ∈ J. (4.40)

Clearly gn ∈ BC(J;X)(0, ru) (see (4.39)). Then, fixed t ∈ J \ A, where A is defined in FN, we
show that

⋃

n F(t, un) is relatively weakly compact. Indeed, considering a sequence (xp)p, xp ∈
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⋃

n F(t, un), we fix the following countable sets C0 = {gn : n ∈ N} and C1 = {xp : p ∈ N}.
Now C0 ⊂ BC(J;X)(0, ru) and C1 has the property (see (4.40))

C1 ⊂
⋃

n

F(t, un) =
⋃

n

F(t, gn(t)) ⊂ F(t, C0(t) ∪ N(t)C0).

By hypothesis FN there exists νru ∈ L1
+(J) such that

β(C1) ≤ νru(t)β(C0(t)).

Recalling the convergence un → v we have β(C0(t)) = 0 and so β(C1) = 0, i.e. C1 is relatively
weakly compact. Then there exists a subsequence of (xp)p weakly convergent in X. By the
arbitrariness of (xp)p, the set

⋃

n F(t, un) is relatively sequentially weakly compact and so it is
also relatively weakly compact. Therefore property f5) of Theorem 2.12 holds for F|J×Mu

.
Hence, in correspondence of qu : J → X defined in (4.38), there exists a B-selection gqu : J →

X, for the multimap F|J×Mu
(·, qu(·)). Now, recalling that ru > c for every t ∈ J, N(t)u ∈ Mu

(see (4.39) and N2), and by (4.38) we have F|J×Mu
(t, qu(t)) = F(t, N(t)u). So

gqu(t) ∈ F(t, N(t)u), a.e. t ∈ J. (4.41)

Moreover, by using F4 there exists ϕru ∈ L1
+(J) such that (see (4.39))

‖gqu(t)‖X ≤ ϕru(t), a.e. t ∈ J.

Hence gqu ∈ L1(J; X) and, by (4.41), we have gqu ∈ S1
F(·,N(·)u), i.e. the set S1

F(·,N(·)u) is nonempty.

Finally we are in a position to establish the following existence result of mild solutions for
(P)N in weakly compactly generated Banach spaces.

Theorem 4.7. Let X be a WCG Banach space and {A(t)}t∈J a family of operators which satisfies the

property (A).
Let F : J × X → P(X) be a multimap and N : J → Ĉw(C(J; X); X) be a map satisfying F1, F2,

F3, F4 and N1, N2 respectively, and FN. Let g, h : C(J; X) → X be two functions satisfying gh1, gh2
and gh3.

Then there exists at least one mild solution for the nonlocal problem (P)N.

Proof. First of all by using Proposition 4.4 and Proposition 4.6 we can say that there exists
r > c, T(Kr) ⊂ Kr, such that the map Tr = T|Kr

: Kr → P(C(J; X)) defined as in (4.5) is well
posed, where Kr is presented in (4.24).

In order to obtain the thesis we want to apply the fixed point Theorem 2.14 to Tr. At first,
by F1 we deduce that Tr takes convex values, i.e. i) of Theorem 2.14 is satisfied.

Moreover, since Tr(Kr) ⊂ Kr, we have co(Tr(Kr ∪ {0})) ⊂ Kr, i.e. hypothesis ii) of Theo-
rem 2.14 holds.

Next, Proposition 4.5 ensures the existence and the weakly compactness of the smallest
(0, Tr)-fundamental set M0, i.e. iii) of Theorem 2.14 is true.

Finally, thanks to Proposition 4.3, the restriction of Tr to the set weakly compact set M0

has weakly sequentially closed graph, i.e. iv) of Theorem 2.14 holds.
In conclusion we can apply Theorem 2.14 to Tr. Hence the multioperator T has a fixed

point in M0, i.e. there exists x ∈ M0 such that

x(t) = C(t, 0)g(x) + S(t, 0)h(x) +
∫ t

0
S(t, ξ) f (ξ) dξ, t ∈ J

where f ∈ S1
F(·,N(·)x). Of course, x is a mild solution for (P)N.
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Clearly, an immediate consequence of Theorem 4.7 is the following existence result for
Cauchy problems.

Corollary 4.8. Let X be a WCG Banach space and x0, x1 ∈ X. Under the assumptions (A), F1, F2,

F3, F4, FN and N1, N2, there exists at least one mild solution for the Cauchy problem














x′′(t) ∈ A(t)x(t) + F(t, N(t)x), t ∈ J

x(0) = x0

x′(0) = x1.

Remark 4.9. Let us note that Theorem 4.7 extends in broad sense Proposition 4.3 of [8]. In
particular we remove the hypothesis of compactness on the operators S(t, s), (t, s) ∈ J × J,
and we use the weak topology instead of the strong one on the maps involved in the nonlocal
problem.

4.2 Existence of mild solutions in reflexive spaces

In this subsection we discuss the existence of mild solutions to the problem (P)N in the par-
ticular case of reflexive Banach spaces. In this case we are able to omit assumptions FN and
gh3 of Theorem 4.7. Let us note that the lack of these hypotheses implies that this result is
new with respect to Theorem 4.7 since the reflexivity does not imply that gh3 holds. For this
reason it is necessary to modify in some points the proof of the previous existence result and
also to prove a variant of Theorem 2.12. Let us note that the reflexivity of the space allows us
to remove hypothesis f5) of Theorem 2.12 in order to establish the existence of a selection for
multimaps perturbed by an operator.

This new proposition plays a key role in order to show the good position of the solution
multioperator in this new setting. Moreover, in order to prove the existence of at least a mild
solution for the nonlocal problem (P)N, we use again the fixed point Theorem 2.14, but instead
of the Containment Theorem, we work with the property of weak upper semicontinuity and
with the classical Hahn–Banach Theorem.

Theorem 4.10. Let J = [0, a], M be a metric space, X a reflexive Banach space, F : J × M → P(X)

a multimap having the properties f1), f2), f3), f4) of Theorem 2.12 and N : J → Ĉw(C(J; X); M) be a

map satifying N1.

Then, for every u ∈ C(J; X), there exists y ∈ L1(J; X) with y(t) ∈ F(t, N(t)u) for a.e. t ∈ J.

Proof. First of all, by f2) we easily can deduce

f2)w for every simple function s : J → M, the multimap F(·, s(·)) has a B-measurable selec-
tion.

Now, fixed u ∈ C(J; X), we define qu : J → M as

qu(t) = N(t)u, t ∈ J (4.42)

Clearly, by N1 the map qu is B-measurable and so there exists a sequence of simple functions
(su

n)n, su
n : J → M, such that

su
n(t) → qu(t), a.e. t ∈ J. (4.43)

Hence, fixed n ∈ N, in correspondence of the simple function su
n, by f2)w there exists a B-

measurable function yu
n : J → X such that

yu
n(t) ∈ F(t, su

n(t)) a.e. t ∈ J. (4.44)
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Now, let us consider A = {yu
n, n ∈ N} ⊂ L1(J; X). By f4) and (4.44) we have that

‖yu
n(t)‖X ≤ ϕ(t), a.e. t ∈ J, n ∈ N, (4.45)

i.e. A(t) is bounded in X, a.e. t ∈ J. So, since X is a reflexive Banach space, A(t) is relatively
weakly compact, for a.e. t ∈ J. Moreover, (4.45) implies that A is bounded in L1(J; X) and it
has the property of equi-absolute continuity of the integral. Therefore, since the set A satisfies
all the hypotheses of Proposition 2.4, we can conclude that A is relatively weakly compact.
Hence there exist (yu

nk
)k ⊂ (yu

n)n and y ∈ L1(J; X) such that yu
nk

⇀ y.
Now, we can apply Proposition 2.7 to the multimap G : J → Pwk(X), defined by G(s) =

A(s)
w

, for every s ∈ J, and to the sequence (yu
nk
)k of L1(J; X), so we deduce

y(t) ∈ co w − lim sup
k→∞

{yu
nk
(t)}, a.e. t ∈ J. (4.46)

Next we fix H the null measure subset of J such that (4.43), (4.44), (4.46), f1) and f3) hold for
every t ∈ J \ H. By (4.44) we can claim

co w − lim sup
k→∞

{ynk
(t)} ⊂ co w − lim sup

k→∞

F(t, su
nk
(t)), t ∈ J \ H. (4.47)

Moreover, we are able to prove

w − lim sup
k→∞

F(t, su
nk
(t)) ⊂ F(t, qu(t)), t ∈ J \ H. (4.48)

To this aim, let us fix t ∈ J \ H and z ∈ w − lim supk→∞ F(t, su
nk
(t)). Then there exists znkp

∈
F(t, su

nkp
(t)) such that znkp

⇀ z, where (nkp
)p is an increasing sequence. Now, by (4.43) we

know that
su

nkp
(t) → qu(t),

therefore, since t /∈ H, hypothesis f3) implies z ∈ F(t, qu(t)). For the arbitrariness of z we can
conclude that (4.48) is true.

In virtue of f3) the convex set F(t, qu(t)) is closed in X so, by (4.48) and (4.42) we can write

co w − lim sup
k→∞

F(t, su
nk
(t)) ⊂ F(t, N(t)u). (4.49)

Finally, thanks to (4.46), (4.47), (4.49), we can conclude that the map y ∈ L1(J; X) satisfies
y(t) ∈ F(t, N(t)u) a.e. t ∈ J, so the thesis holds.

Now we show that in reflexive Banach spaces we can omit some assumptions on the
multimap F and on the map N required in Proposition 4.3 and Proposition 4.5.

Proposition 4.11. Let X be a reflexive Banach space. Under assumptions (A), (T), F1, F3, F4, N2 and

gh1, the multioperator T has a weakly sequentially closed graph.

Proof. As in Proposition 4.3 we fix two sequences (qn)n ⊂ C(J; X) and (xn)n ⊂ C(J; X), weakly
convergent to q, x ∈ C(J; X) respectively, with xn ∈ Tqn, n ∈ N.

By (T) we can say that, for every n ∈ N, there exists (see (4.6))

fn ∈ S1
F(·,N(·)qn)

(4.50)
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such that (see (4.5))

xn(t) = C(t, 0)g(qn) + S(t, 0)h(qn) +
∫ t

0
S(t, ξ) fn(ξ) dξ, t ∈ J.

Now we want to prove that the set A = { fn : n ∈ N} satisfies all the hypotheses of Proposi-
tion 2.4. Obviously, by (4.50), A is a subset of L1(J; X) and we have

fn(t) ∈ F(t, N(t)qn) ⊂ F(t, BX(0, c)), a.e. t ∈ J, n ∈ N, (4.51)

where c is the constant presented in N2.
Now, put H the null measure set for which F4 and (4.51) hold, there exists ϕc ∈ L1

+(J)

such that (see (4.2))
‖ fn(t)‖X ≤ ϕc(t), t ∈ J \ H, n ∈ N.

So A is bounded in L1(J; X) and A has also the property of equi-absolute continuity of the
integral. Moreover, for every t ∈ J \ H, A(t) being bounded on the reflexive space X, A(t) is
relatively weakly compact.

Hence, applying Proposition 2.4, the set A is relatively weakly compact in L1(J; X). So
there exist a subsequence ( fnk

)k of ( fn)n and f ∈ L1(J; X) such that

fnk
⇀ f . (4.52)

Now, from (4.52) and by using the classical Mazur Theorem there exists a sequence ( f̃nk
)k

made up of convex combinations of fnk
’s, such that f̃nk

→ f in L1(J; X). So, up to a subse-
quence, we have

f̃nkp
(t) → f (t), a.e. t ∈ J. (4.53)

Let H∗ be the null measure set for which (4.53), (4.4), (4.51), F3 and F4 hold. In order to show
that f ∈ S1

F(·,N(·)q) we prove that

f (t) ∈ F(t, N(t)q), t ∈ J \ H∗. (4.54)

If we assume that (4.54) is false, there exists t ∈ J \ H∗ such that f (t) /∈ F(t, N(t)q).
First, we want to establish that the multimap F|BX(0,c)(t, ·) is weakly upper semicontinuous

and, to this aim, we show that all the hypotheses of Proposition 2.10 are satisfied.
For every x ∈ BX(0, c) from F4 we can write F|BX(0,c)(t, x) ⊂ BX(0, ϕc(t)). Therefore, since

X is reflexive, from (4.4) (see F1, F3 and F4) we can say that the bounded set F|BX(0,c)(t, x)

is weakly compact. Moreover, the weak compactness of BX(0, ϕc(t)) obviously implies that
the multimap F|BX(0,c)(t, ·) is weakly compact. Further, recalling hypothesis F3, from Proposi-
tion 2.6 we deduce that F|BX(0,c)(t, ·) is a weakly closed multimap.

Hence, since all the hypotheses of Proposition 2.10 are satisfied, the multimap F|BX(0,c)(t, ·)
is weakly upper semicontinuous.

Now, let us consider the convex, closed set F|BX(0,c)(t, N(t)q) and the compact set { f (t)}.
Since we have assumed that f (t) /∈ F|BX(0,c)(t, N(t)q), by the classical Hahn–Banach Theorem
there exists a weakly open convex set V ⊃ F|BX(0,c)(t, N(t)q) satisfying

f (t) /∈ V = V
w

(4.55)

Next, taking into account the weak upper semicontinuity of F|BX(0,c)(t, ·), there exists a weak
neighborhood WN(t)q of the point N(t)q such that

F|BX(0,c)(t, x) ⊂ V, x ∈ WN(t)q ∩ BX(0, c). (4.56)
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Moreover, by the weak convergence of (qn)n to q and the weak sequential continuity of N(t),
the subsequence (N(t)qnkp

)p, indexed as in (4.53), weakly converges to N(t)q. So, there exists

N ∈ N such that, for every nkp
≥ N, N(t)qnkp

∈ WN(t)q. Since from N2 N(t)qnkp
∈ BX(0, c),

nkp
≥ N, we deduce that (see (4.56))

fnkp
(t) ∈ F|BX(0,c)(t, N(t)qnkp

)) ⊂ V, nkp
≥ N.

Now, thanks to the convexity of V, we can claim that the convex combinations f̃nkp
, satisfying

(4.53), have the following property

f̃nkp
(t) ∈ V, nkp

≥ N

and so
f (t) ∈ V = V

w
,

which contradicts (4.55). Therefore (4.54) is true. By recalling that f ∈ L1(J; X) we obtain
f ∈ S1

F(·,N(·)q). Now, by using gh1 and the same technique of the final part of Proposition 4.3
we obtain x ∈ Tq.

Therefore we can conclude that T has a weakly sequentially closed graph.

Proposition 4.12. Let X be a reflexive Banach space and assumptions (A), (T), F4, N2 and gh2 hold.

If there exists r > c such that T(Kr) ⊂ Kr, where Kr = BC(J;X)(0, r), then there exists M0 the smallest

(0, Tr)-fundamental set which is weakly compact, where Tr is the restriction of T to the set Kr.

Proof. First of all, by using Theorem 2.13 and reasoning as at the beginning of Proposition 4.5,
there exists

M0 ⊂ BC(J;X)(0, r) = Kr

such that
M0 = co(Tr(M0) ∪ {0}). (4.57)

Now, we prove that M0 is weakly compact. To this end we establish that the set Tr(M0) is
relatively weakly compact.

Let (qn)n be a sequence in M0 and (xn)n be a sequence in C(J; X) such that xn ∈ Trqn, n ∈
N. Now, by (T), there exists a sequence ( fn)n, fn ∈ S1

F(·,N(·)qn)
, such that (see (4.5))

xn(t) = C(t, 0)g(qn) + S(t, 0)h(qn) +
∫ t

0
S(t, ξ) fn(ξ) dξ, t ∈ J.

Next, put A = { fn : n ∈ N}, reasoning as in Proposition 4.11, we can apply Proposition 2.4
(see N2 and F4). Therefore we have that the subset A of L1(J; X) is relatively weakly compact.
So there exist ( fnk

)k subsequence of ( fn)n and f ∈ L1(J; X) such that fnk
⇀ f .

Now, by the weak sequential continuity of GS (see Proposition 3.2), we can write

GS fnk
⇀ GS f .

Next, thanks to hypothesis gh2, reasoning as in the final part of the proof of Proposition 4.5,
the subsequence (xnk

)k of (xn)n weakly converges to a continuous function. Therefore T(M0)

is relatively weakly sequentially compact and so T(M0) is also relatively weakly compact.
Recalling (4.57) we deduce that the subset M0 of C(J; X) is weakly compact.
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Theorem 4.13. Let X be a reflexive Banach space, J = [0, a] and {A(t)}t∈J a family which satisfies

the property (A).
Let F : J × X → P(X) be a multimap and N : J → Ĉw(C(J; X); X) be a map satisfying F1, F2,

F3, F4 and N1, N2 respectively. Let g, h : C(J; X) → X be two functions having the properties gh1
and gh2.

Then there exists at least one mild solution for the nonlocal problem (P)N.

Proof. First of all, in the setting of theorem we have that property (T) is true. Indeed, fixed
u ∈ C(J; X), we define a function qu : J → X as in (4.38). Moreover, in correspondence of
c ∈ N, presented in N2, there exists ru ∈ N, ru > c, such that ‖u(t)‖X ≤ ru, for every
t ∈ J. Now we consider F|J×Mu

: J × Mu → P(X), where Mu = BX(0, ru), and we note that
hypotheses F1, F2, F3, F4 imply f1), f2), f3), f4) of Theorem 4.10 respectively. Moreover, the
map N satisfies N1 of Theorem 4.10. So, by considering on Mu the metric d induced by that
on X, we can conclude that there exists gu ∈ S1

F(·,N(·)u) (see (4.6)). Therefore, since (T) holds,
the map Tr = T|Kr

: Kr → P(C(J; X)), where Kr is defined in (4.24), is well posed.
Thanks to Propositions 4.4, 4.11, 4.12 and analogous arguments used in the proof of The-

orem 4.7 we are in a position to apply Theorem 2.14.
So there exists at least one one mild solution for (P)N.

Remark 4.14. Let us note that in reflexive Banach spaces we can omit hypothesis FN in Corol-
lary 4.8.

Remark 4.15. We observe that (P)N can be rewritten as the problem studied in [9]














x′′(t) ∈ A(t)x(t) + F(t, x(t)), t ∈ J

x(0) = g(x)

x′(0) = h(x)

(P)

by considering the map N : J → Ĉw(C(J; X); X) so defined

N(t)u = u(t), t ∈ J, u ∈ C(J; X).

Let us note that N is well posed by using Proposition 2.1.
Unfortunately Theorems 4.7 and 4.13 does not allow us to prove the existence of mild

solutions for (P) because the map N has not the property N2.

Finally we deduce as a consequence of Theorem 4.13 the existence of mild solutions satis-
fying a “periodicity condition” and having a fixed initial velocity.

Corollary 4.16. Let X be a reflexive Banach space and x ∈ X. Under the assumptions (A), F1, F2,

F3, F4 and N1, N2 there exists at least one mild solution for the problem














x′′(t) ∈ A(t)x(t) + F(t, N(t)x), t ∈ J = [0, a]

x(0) = x(a)

x′(0) = x.

(P)′N

Proof. By considering the maps g, h : C(J; X) → X so defined

g(x) = x(a) and h(x) = x, x ∈ C(J; X)

it is easy to see by using Proposition 2.1 that gh1 is true. Moreover, the reflexivity of X allow us
to say that gh2 holds too. Since all the hypotheses of Theorem 4.13 are satisfied, we conclude
that there exists at least one mild solution of the problem (P)′N.
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5 Controllability for a problem driven by (E)

Now, we are in a position to study the controllability for the problem mentioned in the in-
troduction, subjected to mixed conditions and governed by the wave equation (E) under the
action of a suitable operator.

First of all we use, as in [21], the identification between functions defined on the quotient
group T = R/2πZ with values in C and 2π-periodic functions from R to C. Moreover, we
consider the space L2(T, C), i.e. the space of all functions defined in R and assuming values
in C, 2-integrable in [0, 2π] and 2π-periodic, with the usual norm ‖ · ‖L2(T,C).

In particular, we want to study the following problem














































∂2w
∂t2 (t, ξ) = ∂2w

∂ξ2 (t, ξ) + b(t) ∂w
∂ξ (t, ξ) + f (t, ξ, Im e(ŵ)

2e(ŵ)+1

∫ t
0 p(s) ds) + u(t, ξ)

w(t, 0) = w(t, 2π), t ∈ J
∂w
∂ξ (t, 0) = ∂w

∂ξ (t, 2π), t ∈ J

w(0, ξ) = w(a, ξ), a.e. ξ ∈ R

∂w
∂t (0, ξ) = x0, a.e. ξ ∈ R

u(t, ξ) ∈ U(t), a.e. t ∈ J, ξ ∈ R

(C)

where x0 ∈ C, J = [0, a], a > 0, b ∈ C1(J), p ∈ L1(J), f : J ×R ×C → C, e : C(J, L2(T, C)) → C

are suitable maps, ŵ : J → L2(T, C), where ŵ(t) = w(t, ·), and U : J → P(C).
In order to rewrite problem (C) into the abstract form (P)′N, it is necessary to define the

Banach space X, the family {A(t) : t ∈ J} and the nonlinear term F.

First of all we assume the Banach space X = L2(T, C). Moreover, we denote by H1(T, C)

and by H2(T, C) respectively the following Sobolev spaces

H1(T, C) =

{

x ∈ L2(T, C) : there exists
dx

dξ
∈ L2(T, C)

}

H2(T, C) =

{

x ∈ L2(T, C) : there exist
dx

dξ
,

d2x

dξ2 ∈ L2(T, C)

}

.

Further we consider the operator A0 : H2(T, C) → L2(T, C) so defined

A0x =
d2x

dξ2 , x ∈ H2(T, C) (5.1)

and we recall that the A0 is the infinitesimal generator of a strongly continuous cosine family
{C0(t)}t∈R, where C0(t) : L2(T, C) → L2(T, C), for every t ∈ R (see [21]).

Then we fixed the function P : J → L(H1(T, C), L2(T, C)) defined as

P(t)x = b(t)
dx

dξ
, t ∈ J, x ∈ H1(T, C). (5.2)

Now we can introduce the family {A(t) : t ∈ J} where, for every t ∈ J, A(t) : D(A) =

H2(T, C) → L2(T, C) is the following operator

A(t) := A0 + P(t). (5.3)

Let us note that the family {A(t) : t ∈ J} generates a fundamental system {S(t, s)}(t,s)∈J×J

(see [21, Lemma 4.1]) and, for every x ∈ D(A), the map t 7→ A(t)x is continuous.
Moreover, let us consider e : C(J, L2(T, C)) → C an operator such that
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e)1 e linear, bounded such that e(h) 6= − 1
2 , for all h ∈ C(J, L2(T, C)),

the map f : J × R × C → C having the following properties

f)1 f (t, ξ + 2π, z) = f (t, ξ, z), for all (t, ξ, z) ∈ J × R × C;

f)2 f (t, ·, y(·)) ∈ L2(T, C), for every t ∈ J, y ∈ L2(T, C);

f)3 for every y ∈ L2(T, C), the map t 7→ f (t, ·, y(·)) is weakly measurable;

f)4 there exists α ∈ L1
+(J) such that

Ka
∫ a

0
α(θ) dθ < 1

where K is presented in Section 3 and

‖ f (t, ξ, z)− f (t, ξ, w)‖C ≤ α(t)‖z − w‖C, z, w ∈ C, ξ ∈ R, a.e. t ∈ J; (5.4)

f)5 for a.e. t ∈ J and every (yn)n, yn ∈ L2(T, C) such that yn ⇀ y, y ∈ L2(T, C), the sequence
( f (t, ·, yn(·)))n uniformly converges to f (t, ·, y(·)) in R;

f)6 for every t ∈ J, f (t, ·, 0) ∈ L2(T, C) and the map t 7→ ‖ f (t, ·, 0)‖L2(T,C) is in L1(J);

and the multimap U : J → P(C) having the following properties:

U)1 for every t ∈ J, U(t) is closed and convex;

U)2 for every y ∈ L2(T, C), the map t 7→ infz∈U(t)

( ∫ 2π
0 ‖y(ξ)− z‖2

C
dξ
)

1
2 is M(J)⊗ B(R)-

measurable.

Let us note that, since our goal is to prove the existence of a mild solution, the exis-
tence of derivatives is not necessary. So it is sufficient to consider that w(t, ·) ∈ L2(T, C),
instead of w(t, ·) ∈ H2(T, C). In that follows, we revise functions w, u : J × R → C such that
w(t, ·), u(t, ·) ∈ L2(T, C), for every t ∈ J, as two maps x, v : J → L2(T, C) respectively so
defined

x(t)(ξ) = w(t, ξ), t ∈ J, ξ ∈ R

v(t)(ξ) = u(t, ξ), t ∈ J, ξ ∈ R.

Now by using f)2 we can define the function f̃ : J × L2(T, C) → L2(T, C) such that

f̃ (t, y)(ξ) = f (t, ξ, y(ξ)), t ∈ J, ξ ∈ R, y ∈ L2(T, C). (5.5)

Next we consider the multimap Ũ : J → P(L2(T, C))

Ũ(t) = {v ∈ L2(T, C) : ∃z ∈ U(t) such that v(ξ) = z, a.e. ξ ∈ R}, t ∈ J, (5.6)

which is obviously well defined. Thanks to hypothesis U)1 we deduce that Ũ(t) is closed
and convex, for every t ∈ J. Then, taking into account U)2 and the separability of L2(T, C),
Proposition 2.8 implies the measurability of Ũ.

Moreover, we define the multimap F : J × L2(T, C) → P(L2(T, C)) in the following way

F(t, y) = { f̃ (t, y) + v : v ∈ Ũ(t)}, t ∈ J, y ∈ L2(T, C). (5.7)
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Finally, by using the linear and bounded operator e : C(J, L2(T, C)) → C and the L1-map
p : J → R, we construct N : J → Ĉw(C(J; L2(T, C)); L2(T, C)) such that, for every t ∈ J and
every h ∈ C(J; L2(T, C)), the map N(t)h is so defined (see e)1)

[N(t)h](ξ) =
Im e(h)

2e(h) + 1

∫ t

0
p(s) ds, ξ ∈ R. (5.8)

Clearly, being the map N(t)h constant on R, we have that N(t)h ∈ L2(T, C) and, for every
t ∈ J, N(t) is weakly sequentially continuous. Therefore N is correctly defined too.

So by recalling (5.1), (5.2), (5.3), (5.5), (5.6), (5.7) and (5.8), problem (C) can be rewritten in
the abstract form















x′′(t) ∈ A0x(t) + P(t)x(t) + F(t, N(t)x) = A(t)x(t) + F(t, N(t)x), t ∈ J

x(0) = x(a)

x′(0) = x̂0

where x̂0 : R → C is the function of L2(T, C) such that

x̂0(ξ) = x0, ξ ∈ R. (5.9)

At this point let us show that we can apply Corollary 4.16.
First of all, we note that the Banach space L2(T, C) is obviously reflexive. Moreover,

hypothesis (A) is clearly true thanks to the construction of the family {A(t) : t ∈ J}.
Now, let us show that hypotheses N1 and N2 are satisfied.
First of all, fixed h ∈ C(J; L2(T, C)) we note that N(·)h is a continuous map on J. Indeed,

fixed t ∈ J, we write (see (5.8))

‖N(t)h − N(t)h‖L2(T,C) =

{

∫ 2π

0
‖[N(t)h](ξ)− [N(t)h](ξ)‖2

C
dξ

}
1
2

=

∣

∣

∣

∣

∫ t

t
p(s) ds

∣

∣

∣

∣

∥

∥

∥

∥

Im e(h)

2e(h) + 1

∥

∥

∥

∥

C

√
2π

and, by the absolute continuity of the integral we have the continuity of N(·)h in t. Now,
being N(·)h ∈ C(J; L2(T, C)), obviously N satisfies hypothesis N1.

Moreover, for every t ∈ J and every h ∈ C(J; L2(T, C)), since ‖Im e(h)‖C ≤ ‖2e(h) + 1‖C,
we have

‖N(t)h‖L2(T,C) ≤
√

2π‖p‖1 := c,

i.e. hypothesis N2 holds.
Now we show that the multimap F satisfies hypotheses F1–F4.
First of all, since Ũ has convex values, we can say that F takes convex values too, i.e. F1

holds.
Next we prove that, fixed y ∈ L2(T, C), the multimap F(·, y) has a B-selection.
Since L2(T, C) is a separable Banach space and taking into account f)3, Proposition 2.2

allows us to say that f̃ (·, y) is B-measurable.
Moreover, by recalling that Ũ is measurable and takes closed values, by using Proposi-

tion 2.9 there exists a M(J)⊗B(L2(T, C))-measurable ũ : J → L2(T, C) such that ũ(t) ∈ Ũ(t),
for every t ∈ J. Then, by using the separability of the space L2(T, C), ũ is also B-measurable
(see again Proposition 2.2).
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So, qy : J → L2(T, C) so defined qy(t) := f̃ (t, y) + ũ(t), t ∈ J, is B-measurable and such
that qy(t) ∈ F(t, y), for every t ∈ J (see (5.7)). Therefore, hypothesis F2 holds.

Now, we show that also hypothesis F3 is true.
Put H the null measure set for which f)5 holds, we fix t ∈ J \ H and (yn)n, (qn)n two

sequences in L2(T, C) such that yn ⇀ y, qn ⇀ q, where y, q ∈ L2(T, C), and qn ∈ F(t, yn), for
every n ∈ N. Now, from (5.7), there exists vn ∈ Ũ(t) such that

qn = f̃ (t, yn) + vn, n ∈ N. (5.10)

Recalling f)5 we have that ( f (t, ·, yn(·)))n uniformly converges to f (t, ·, y(·)) hence, by (5.5),
we can write for every ε > 0 there exists nt = nt(

ε√
2π
) ∈ N such that, for every n ≥ nt,

‖ f̃ (t, yn)(ξ)− f̃ (t, y)(ξ)‖C <
ε√
2π

, ξ ∈ T, and so we have ‖ f̃ (t, yn)− f̃ (t, y)‖L2(T,C) < ε. Then
we can say

f̃ (t, yn) → f̃ (t, y) in L2(T, C). (5.11)

Now, by (5.10) we have
vn = qn − f̃ (t, yn), n ∈ N,

so (5.11) and the weak convergence of (qn)n imply

vn ⇀ q − f̃ (t, y) =: v,

where v ∈ L2(T, C).
Further, since (vn)n is a sequence in the weakly closed set Ũ(t), the weak limit v ∈ Ũ(t)

hence, by (5.7), we deduce q = f̃ (t, y) + v ∈ F(t, y). Therefore F3 holds.
Finally we prove that F4 is also true.
First of all, let H̃ the null measure set for which (5.4) of f)4 holds. For every n ∈ N, let us

fix y ∈ BL2(T,C)(0, n) and t ∈ J \ H̃. Now, fixed q ∈ F(t, y), by (5.7) there exists v ∈ Ũ(t) such
that q = f̃ (t, y) + v and, named z ∈ C such that v(ξ) = z a.e. ξ ∈ T (see (5.6)), we have (see
(5.5) and f)4)

‖q‖L2(T,C) ≤ ‖ f̃ (t, y)‖L2(T,C) + ‖v‖L2(T,C)

≤
{

∫ 2π

0
[α(t)‖y(ξ)‖C + ‖ f (t, ξ, 0)‖C]

2 dξ

}
1
2

+

{

∫ 2π

0
‖z‖2

C
dξ

}
1
2

≤
{

∫ 2π

0
α2(t)‖y(ξ)‖2

C
dξ

}
1
2

+

{

∫ 2π

0
‖ f (t, ξ, 0)‖2

C
dξ

}
1
2

+

{

∫ 2π

0
2α(t)‖ f (t, ξ, 0)‖C‖y(ξ)‖C dξ

}
1
2

+
√

2π‖z‖C

≤ α(t)‖y‖L2(T,C) + ‖ f (t, ·, 0)‖L2(T,C)

+
√

2α(t)
√

‖ f (t, ·, 0)‖L2(T,C)

√

‖y‖L2(T,C) +
√

2π‖z‖C.

So, recalling that y ∈ BL2(T,C)(0, n), we have

‖q‖L2(T,C) ≤ α(t)n + ‖ f (t, ·, 0)‖L2(T,C) +
√

2nα(t)
√

‖ f (t, ·, 0)‖L2(T,C) +
√

2π‖z‖C.

Therefore, put ϕn : J → R
+
0 so defined

ϕn(t) := α(t)n + ‖ f (t, ·, 0)‖L2(T,C) +
√

2n
√

α(t)
√

‖ f (t, ·, 0)‖L2(T,C) +
√

2π‖z‖C,
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by the arbitrariness of q ∈ F(t, y) and y ∈ BL2(T,C)(0, n) we deduce

‖F(t, BL2(T,C)(0, n))‖ ≤ ϕn(t) a.e. t ∈ J. (5.12)

As a consequence of f)4, f)6 and by using Hölder inequality it is easy to see that ϕn ∈ L1
+(J).

Moreover, by f)4 we also have

lim sup
n→∞

Ka
∫ a

0 ϕn(t) dt

n
= Ka

∫ a

0
α(t) dt < 1. (5.13)

So (5.12) and (5.13) establish F4.
By virtue of arguments above presented, we are in the position to apply Corollary 4.16.

Then there exists a continuous function x̂ : J → L2(T, C) such that

x̂(t) = C(t, 0)x̂(a) + S(t, 0)x̂0 +
∫ t

0
S(t, s)q̂(s) ds, t ∈ J (5.14)

x̂(0) = x̂(a) x̂′(0) = x̂0, (5.15)

where q̂ ∈ S1
F(·,N(·)x̂) = {q ∈ L1(J; L2(T, C)) : q(t) ∈ F(t, N(t)x̂) a.e. t ∈ J}.

Now we consider vx̂ : J → L2(T, C) as

vx̂(t) = q̂(t)− f̃ (t, N(t)x̂), t ∈ J. (5.16)

In order to prove that vx̂ is B-measurable, we begin by showing that f̃ (·, N(·)x̂) is B-
measurable. To this aim we consider the multimap G : J × L2(T, C) → Pk(L2(T, C)) so
defined (see (5.5))

G(t, y) = { f̃ (t, y)}, t ∈ J, y ∈ L2(T, C)

and we establish that G satisfies all the hypotheses of Theorem 2.11.
First of all, fixed y ∈ L2(T, C), thanks to hypothesis f)3 and to the separability of L2(T, C),

G(·, y) = { f̃ (·, y)} has obviously a B-measurable selection, so hypothesis i) of Theorem 2.11
holds. Next, let us fix t ∈ J \ H, where H is the null measure set for which (5.4) is true, and
y ∈ L2(T, C). Then by (5.5) we have

‖ f̃ (t, y)− f̃ (t, y)‖L2(T,C) = α(t)‖y − y‖L2(T,C), y ∈ L2(T, C).

So, passing to the limit for y → y we obtain that f̃ (t, ·) is continuous in y. Obviously, for a.e.
t ∈ J, G(t, ·) is upper semicontinuous in L2(T, C), i.e. hypothesis ii) of Theorem 2.11.

Finally, since we have already proved N1, we know that N(·)x̂ is B-measurable. By using
Theorem 2.11, f̃ (·, N(·)x̂) is B-measurable too. Therefore, being q̂ B-measurable, also vx̂ is
B-measurable.

At this point, put w : J × R → C and u : J × R → C respectively so defined

w(t, ξ) = x̂(t)(ξ), u(t, ξ) = vx̂(t)(ξ), t ∈ J, ξ ∈ R, (5.17)

we show that {w, u} is an admissible mild-pair for (C). By (5.14) and (5.15) we immediately
have that, for every ξ ∈ R, w(·, ξ) is continuous on J, w(ξ, 0) = w(ξ, a) and, for every t ∈ J,
w(t, ·) is 2-integrable on [0, 2π] and 2π-periodic. Let us note that, for every ξ ∈ R for which
w(·, ξ) is derivable at 0, we have ∂w

∂t (0, ξ) = x0 (see (5.15) and (5.9)).
Then, fixed t ∈ J \ H, where H is the null measure set such that q̂(·) ∈ F(·, N(·)x̂) in J \ H,

by (5.7) there exists vt ∈ Ũ(t) such that

q̂(t) = f̃ (t, N(t)x̂) + vt.
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On the other hand, from (5.16) we have

q̂(t) = f̃ (t, N(t)x̂) + vx̂(t).

Therefore, vx̂(t) = vt. Hence vx̂(t) ∈ Ũ(t), a.e. t ∈ J. Since by (5.6) we have vx̂(t)(ξ) ∈ U(t),
a.e. t ∈ J, ξ ∈ R, by (5.17) we can write u(t, ξ) ∈ U(t), a.e. t ∈ J, ξ ∈ R. Then, by the
B-measurability of vx̂, for a.e. ξ ∈ R, the map u(·, ξ) is B-measurable too. Clearly for every
t ∈ J, u(t, ·) is 2-integrable on [0, 2π] and 2π-periodic.

Hence, we can conclude that {w, u} is an admissible mild-pair for (C).

Finally we are able to enunciate the following result.

Theorem 5.1. In the framework above described, there exist w, u : J ×R → C satisfying the following

properties

(w1) for every t ∈ J, w(t, ·) is 2-integrable on [0, 2π] and 2π-periodic;

(w2) for every ξ ∈ R, w(·, ξ) is continuous on J;

(w3) w(0, ξ) = w(a, ξ), for every ξ ∈ R;

(w4) for every ξ ∈ R such that w(·, ξ) is derivable at 0, we have ∂w
∂t (0, ξ) = x0;

(u1) for every t ∈ J, u(t, ·) is 2-integrable on [0, 2π] and 2π-periodic;

(u2) for every ξ ∈ R, u(·, ξ) is B-measurable and such that u(t, ξ) ∈ U(t), for

a.e. t ∈ J, ξ ∈ R,

i.e. {w, u} is an admissible pair for (C) such that

w(t, ξ) = [C(t, 0)w(a, ·)](ξ) + [S(t, 0)x̂0](ξ) +
∫ t

0
[S(t, s)q(s, ·)](ξ) ds, t ∈ J, ξ ∈ R

where x̂0(ξ) = x0 for every ξ ∈ R and q : J × R → C is so defined

q(t, ξ) = f

(

t, ξ,
Im e(ŵ)

2e(ŵ) + 1

∫ t

0
p(s) ds

)

+ u(t, ξ), t ∈ J, ξ ∈ R,

being ŵ : J → L2(T, C), a map such that ŵ(t) = w(t, ·), for every t ∈ J.

6 Conclusions and future studies

In this paper, the existence of mild solutions to a nonlocal problem governed by a semilinear
second order differential inclusion in Banach spaces is investigated. The novelty with respect
to the known results of [9] is the presence of an operator which intervenes on the dynamics
described through a second order differential inclusion. Our first result is obtained with a
fixed point approach, by applying ideas about measures of weak noncompactness, a selec-
tion theorem and a containment theorem. Further, in order to analyze the case of reflexive
spaces a new selection theorem is proved and a combination of this result with the classical
Hahn–Banach Theorem and the weak upper semicontinuity property is used. The applied
method enables us obtaining the existence results without any compactness requirement both
on the family generated by the linear part and on the nonlinear multivalued term. Finally our
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theoretical theorems are applied to study the controllability of a problem driven by a wave
equation.

A possible future direction of research related to this topic could be to broaden the class
of models to which it can be applied. For example could be interesting to remove the bound-
edness type property on the perturbation operator N, perhaps using a different fixed point
theorem. As we noted in Remark 4.15, this assumption does not allow to see a non-perturbed
problem as a particular case of a perturbed one. Moreover, in a contest of lack of compactness,
this boundedness property on N does not make it possible to investigate problems involving
operators N having a stabilization effect on the solution, like those studied in [8] under strong
compactness assumptions.
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Abstract. In this article, we consider the concentration of positive solutions for the
following equation with Trudinger–Moser nonlinearity:

{
− ∆Nu − ∆qu + V(εx)(|u|N−2u + |u|q−2u) = f (u), x ∈ R

N ,

u ∈ W1,N(RN) ∩ W1,q(RN), x ∈ R
N ,

where V is a positive continuous function and has a local minimum, ε > 0 is a small
parameter, 2 ≤ N < q < +∞, f is C1 with subcritical growth. When V and f satisfy
some appropriate assumptions, we construct the solution uε that concentrates around
any given isolated local minimum of V by applying the penalization method for the
above equation.

Keywords: (N, q)-Laplacian equation, penalization method, variational methods.
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1 Introduction and main result

In this article, we consider the concentration of positive solutions for an (N, q)-Laplacian
equation with Trudinger–Moser nonlinearity:

{
− ∆Nu − ∆qu + V(εx)(|u|N−2u + |u|q−2u) = f (u), x ∈ R

N ,

u ∈ W1,N(RN) ∩ W1,q(RN), x ∈ R
N ,

(1.1)

where V : R
N 7→ R is a function that satisfies continuity and has a local minimum, ε > 0 is a

small parameter, 2 ≤ N < q < +∞, f ∈ C1 is subcritical.
We first introduce some background about (p, q)-Laplacian equation. As described in [14],

problem (1.1) originates from the following reaction-diffusion equation:

ut = C(x, u) + div(D(u)∇u), D(u) = |∇u|q−2 + |∇u|p−2.

BCorresponding author. Emails: wangli.423@163.com (L. Wang), wj2746154229@163.com (J. Wang),
zhangbinlin2012@163.com (B. Zhang).
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It is widely used in physics or chemistry, such as solid state physics, chemical reaction design,
biophysics and plasma physics. Note that, in general reaction-diffusion equation, the physical
meaning of u is concentration, and the physical meaning of div(D(u)∇u) is the diffusion
generated by D(u). C(x, u) is related to the source and loss process. Generally, C(x, u) is a
polynomial with variable coefficients related to u in chemical and biological applications.

When p < q < N, Zhang et al. in [36] studied the following double phase problem

{
(−∆)m

q u + (−∆)m
p u + V(εx)

(
|u|q−2u + |u|p−2u

)
= λ f (u) + |u|r−2u, x ∈ R

N ,

u ∈ Wm,p
(
R

N
)
∩ Wm,q

(
R

N
)

, u > 0, x ∈ R
N ,

where ε is a parameter small enough but λ is required to be large enough, 0 < m < 1, r =

q∗m = Nq/(N − mq), 2 6 p < q < N/m, (−∆)m
t is the fractional t-Laplace operator and

the potential V : R
N 7→ R is a continuous function. The authors obtained the existence and

concentration properties of multiple positive solutions to the above problem. Note that, [36]
assumed that the nonlinearity satisfies the Ambrosetti–Rabinowitz condition, that is, for all
t > 0, there is θ ∈ (q, q∗m) that satisfies 0 < θF(t) := θ

∫ t
0 f (τ)dτ 6 f (t)t. So the authors can

get the existence and concentration properties of multiple positive solutions by using Nehari
manifold.

When 1 < q < N = p, the authors in [12] investigated the existence of solutions for the
(N, q)-Laplacian equation:

− ∆qu − ∆Nu = f (u) in R
N , (1.2)

where the nonlinear term f (u) satisfies exponential critical growth in the sense of Trudinger–
Moser. In order to detect the solution, they used a variational method related to the new
Trudinger–Moser type inequality. Figueiredo and Nunes in [19] used Nehari manifold method
to studied the existence of positive solutions for the following class of quasilinear problems

{
− div(a(|∇u|p)|∇u|p−2∇u) = f (u) in Ω,

u = 0 on ∂Ω.

It is worth pointing out that Theorems 1.1 and 1.2 in [19] are valid for the problem (1.2) if R
N

is replaced by Ω which is a smooth bounded domain. In [15], Costa and Figueiredo studied a
class of quasilinear equation with exponential critical growth. They used variational methods
and del Pino and Felmer’s technique (del Pino and Felmer 1996) in order to overcome the lack
of compactness, and got the existence of a family nodal solutions, which concentrate on the
minimum points set of the potential function, changes sign exactly once in R

N .
When p = N/m < q, Nguyen in [29] studied the following Schrödinger equation involving

the fractional (N, q)-Laplace operator and Trudinger–Moser nonlinear term

(−∆)m
N/mu + (−∆)m

q u + V(εx)
(
|u|

N
m −2u + |u|q−2u

)
= f (u) in R

N ,

where ε > 0 is a parameter small enough, m ∈ (0, 1), N = pm, 2 ≤ p = N/m < q, the poten-
tial V : R

N 7→ R is a continuous function that satisfies some suitable conditions. The nonlinear
term f (u) satisfies exponential growth. In order to obtain existence and concentration proper-
ties of nontrivial nonnegative solutions, the author in [29] used the Ljusternik–Schnirelmann
theory and Nehari manifold.

It is worth mentioning that both the nonlinearities of [12] and [29] satisfy the Ambrosetti–
Rabinowitz condition. Inspired by the above works, it seems quite natural to ask if f (u) does
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not satisfy the Ambrosetti–Rabinowitz condition but satisfies Beresticky–Lions type assump-
tions, do the same results hold for (N, q)-Laplacian problem? In this paper, we give a positive
answer.

In the present paper, we assume that the potential V : R
N 7→ R is a continuous function

satisfying the following conditions which are always called del Pino–Felmer type conditions
(cf. [16]).

(V1) V ∈ C(RN , R) such that infx∈RN V(x) = V0 > 0.

(V2) There exists a bounded domain Λ ⊂ R
N satisfies

m := inf
x∈Λ

V(x) < min
x∈∂Λ

V(x).

Moreover, we can assume 0 ∈ M := {x ∈ Λ : V(x) = m}.

The nonlinear term f : R → R is a continuous function. Moreover, for t ≤ 0, we assume
that f (t) = 0. Furthermore, f (t) satisfies the following hypotheses:

( f1) limt→0
f (t)
tq−1 = 0;

( f2) ∀α > 0, for t ≥ 0, there is a Cα > 0 satisfies | f (t)| ≤ Cαeαt
N

N−1 ;

( f3) there is T > 0 satisfies F(T) > m
N TN + m

q Tq.

Next, we state the main conclusion as follows:

Theorem 1.1. If (V1)–(V2) and ( f1)–( f3) are true, for small ε > 0, equation (1.1) has a positive

solution uε which has a maximum point xε satisfying

lim
ε→0

dist (xε,M) = 0.

Moreover, for any xε, as ε → 0 (up to a subsequence), vε(x) = uε(εx + xε) converges uniformly to a

least energy solution of the following equation:

{
− ∆qu − ∆Nu + m(|u|q−2u + |u|N−2u) = f (u), x ∈ R

N ,

u ∈ W1,q(RN) ∩ W1,N(RN), x ∈ R
N .

(1.3)

Furthermore, we have

uε(x) ≤ C1e−C2|x−xε|, ∀x ∈ R
N , C1, C2 > 0.

Remark 1.2. Without loss of generality, it can be assumed that V0 = 1.

As far as we know, there is no result on the concentration of positive solutions for (N, q)-
Laplacian problems with Berestycki–Lions nonlinearity.

Finally, we point out that Theorem 1.1 is proved by variational method, and there are four
main difficulties we encounter during the preparation of manuscript:

(1) The nonlinear term f (u) does not satisfy the Ambrosetti–Rabinowitz condition, and
for u > 0, the function f (u)

uq−1 is not increasing. They both prevent us from getting the
boundedness of Palais–Smale sequence and using the Nehari manifold. Moreover, we
can not apply the method in [16].
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(2) Since R
N is unbounded, it will lead to the loss of compactness. In the later proof, we

will find that this difficulty will prevent us from directly using the variational method.

(3) When N > 2, the working space Xε is no longer a Hilbert space. This makes it more
complicated to prove the following formula in Lemma 3.11:

Jε (uε) ≥ Jε

(
u1

ε

)
+ Jε

(
u2

ε

)
+ o(1)

as ε → 0.

(4) Due to N = p < q, we can not use the method of [2] to obtain that bm ≥ cm in Lemma
3.6.

In order to overcome the above difficulties, inspired by [8, 18, 22, 25], we recover the com-
pactness by penalization method described in [10].

The plan of this paper is as follows. In Section 2, we give some definitions of function
spaces and lemmas to be used later. In Section 3, we give the proof of Theorem 1.1.

2 Preliminary

In this section, we will give some definitions of symbols, and review some existing results that
need to be used in the future.

Let u : R
N 7→ R. For 2 ≤ N < q < +∞, let us define D1,N(RN) = C∞(RN)

|∇·|N . We denote
the following fractional Sobolev space

W1,N(RN) = {u : |∇u|N < +∞, |u|N < +∞}

equipped with the natural norm

‖u‖W1,N(RN) =
(
|∇u|NN + |u|NN

)1/N
,

where | · |NN :=
∫

RN | · |Ndx.
For all u, v ∈ W1,N(RN), we define

〈u, v〉W1,N(RN) =
∫

RN
(|∇u|N−2∇u∇v + |u|N−2uv)dx.

In this article, we need to introduce a work space

X = W1,N(RN) ∩ W1,q(
R

N
)

whose norm is defined as

‖u‖X := ‖u‖W1,q(RN) + ‖u‖W1,N(RN).

When V(x) = V0, we define space

X0 :=
{

u ∈ X :
∫

RN
V0(|u|

q + |u|N)dx < +∞

}

equipped with the norm as
‖u‖X0 = ‖u‖V0,q + ‖u‖V0,N ,
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where ‖u‖r
V0,r =

∫
RN (|∇u|r + V0|u|r)dx, ∀r ∈ {N, q}. It should be noted that X0 is a separable

reflexive Banach space. Due to the Theorem 6.9 in [28], for any ν ∈ [N,+∞), it is easy to see
that the embedding from X0 into Lν

(
R

N
)

is continuous. Then for all ν ∈ [N,+∞), there exists
Aν,m > 0 satisfies

Aν,m = inf
u 6=0,u∈X0

‖u‖X0

‖u‖Lν(RN)
.

This implies
‖u‖Lν(RN) ≤ A−1

ν,m‖u‖X0 for all u ∈ X0. (2.1)

Fix ε ≥ 0, we also need to introduce the following space

Xε :=
{

u ∈ X :
∫

RN
V(εx)(|u|q + |u|N)dx < +∞

}

whose norm is defined as
‖u‖Xε := ‖u‖Vε,q + ‖u‖Vε,N ,

where ‖u‖1,r
Vε,r =

∫
RN (|∇u|r + V(εx)|u|r)dx, ∀r ∈ {N, q}. According to Lemma 10 in [31],

we obtain that Xε is uniformly convex Banach space. Moreover, for any ν ∈ [N,+∞), the
embedding

Xε →֒ Lν
(
R

N
)

is continuous. Then for all ν ∈ [N,+∞), there is Sν,ε > 0 satisfies:

Sν,ε = inf
u 6=0,u∈Xε

‖u‖Xε

‖u‖Lν(RN)
.

It can be seen that
‖u‖Lν(RN) ≤ S−1

ν,ε ‖u‖Xε , ∀u ∈ Xε. (2.2)

Finally, we consider
Xrad := {u ∈ X : u(x) = u(|x|)} .

Lemma 2.1 (see [34, Theorem 2.8]). Assume that X is a Banach space, M0 is a closed subspace of

the metric space M, Γ0 ⊂ C(M0, X). Consider

Γ := {γ ∈ C(M, X) : γ|M0 ∈ Γ0}.

Assume ϕ ∈ C1(X, R) satisfies

∞ > c := inf
γ∈Γ

sup
u∈M

ϕ(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

ϕ(γ0(u)).

For any ε ∈ (0, (c − a)/2), δ > 0 and γ ∈ Γ such that supM ϕ ◦ γ ≤ c + ε, there is u ∈ X satisfies

(a) c − 2ε ≤ ϕ(u) ≤ c + 2ε;

(b) dist(u, γ(M)) ≤ 2δ;

(c) ‖ϕ′(u)‖ ≤ 8ε
δ .

Now, we recall follow Lemma 2.2 from J. M. do Ó [17] (or see [11]). The Lemma 2.3 follows
from Adachi and Tanaka [1].
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Lemma 2.2 (see [17]). Assume N ≥ 2, u ∈ W1,N
(
R

N
)

and α > 0, we have

∫

RN

(
exp

(
α|u|N/(N−1)

)
− SN−2(α, u)

)
dx < ∞,

where

SN−2(α, u) =
N−2

∑
k=0

αk

k!
|u|

kN
(N−1) .

In addition, when α < αN , for ∀M > 0, there is C = C(α, N, M) satisfies

∫

RN

(
exp

(
α|u|N/(N−1)

)
− SN−2(α, u)

)
dx ≤ C, ∀u ∈ W1,N(

R
N
)
.

We also have ‖u‖N ≤ M and ‖∇u‖N ≤ 1.

Lemma 2.3 (see [1]). Assume N ≥ 2, α ∈ (0, αN), there is a constant Cα > 0 that satisfies

‖∇u‖N
N

∫

RN
ΨN

(
u

‖∇u‖N

)
dx ≤ Cα‖u‖N

N , ∀u ∈ W1,N(
R

N
)
\ {0}.

Here ΨN(t) = eα|t|N/(N−1)
− SN−2(α, t).

3 Proof of Theorem 1.1

For ∀B ⊂ R
N , ε > 0, Bε can be define as Bε := {x ∈ R

N : εx ∈ B}. Next, we will use the
method in [16, 21] to modify f . According to ( f1), there exists a > 0 such that

f (t) ≤
tN−1

2
, ∀t ∈ (0, a).

For t ∈ R, x ∈ R
N , assume that

g(x, t) = (1 − χΛ(x)) f̃ (t) + χΛ(x) f (t),

where

f̃ (t) =

{
f (t), t ≤ a,

min
{

f (t), 1
2 tN−1

}
, t > a

and

χΛ(x) =

{
1, x ∈ Λ,

0, x /∈ Λ.

Obviously, ∀x ∈ R
N , t ∈ [0, a], we have g(x, t) = f (t). Moreover, for ∀x ∈ R

N , t ≥ 0, we also
obtain that g(x, t) ≤ f (t). Now, considering the modified problem

{
− ∆Nu − ∆qu + Vε(|u|

N−2u + |u|q−2u) = g(εx, u), x ∈ R
N ,

u ∈ Xε, u > 0, x ∈ R
N ,

(3.1)

where g(εx, t) = (1 − χΛε
(x)) f̃ (t) + χΛε

(x) f (t). Clearly, for x ∈ R
N\Λε, if uε satisfies uε(x) ≤

a and it is a solution of (3.1), we know that uε is the solution of the original problem (1.1).



Concentration of solutions for an (N, q)-Laplacian equation 7

As to u ∈ Xε, we assume that

Iε(u) =
1
q

∫

RN
(|∇u|q + Vε|u|

q)dx +
1
N

∫

RN

(
|∇u|N + Vε|u|

N
)

dx −
∫

RN
G(εx, u)dx,

where G(x, t) =
∫ t

0 g(x, ̺)d̺. For ∀µ > 0, define

χε(x) =

{
ε−µ, x ∈ R

N\Λε,

0, x ∈ Λε,

Qε(u) =

(∫

RN
χε|u|

Ndx − 1
)2

+

.

This penalization first appeared in [10] (or see [8]). It has the advantage that it can make the
concentration phenomena to occur in Λ. Now, we define Jε : Xε → R as follows:

Jε(u) = Qε(u) + Iε(u).

Clearly, Jε ∈ C1 (Xε). Next, to find the solutions of equation (3.1) concentrated around the
local minimum of potential function as ε → 0, we will find the critical points of Jε which make
Qε zero.

3.1 Limit problem

First, considering the limit problem, i.e.
{
− ∆qu − ∆Nu + m(|u|q−2u + |u|N−2u) = f (u), x ∈ R

N ,

u ∈ X, x ∈ R
N .

(3.2)

The energy functional corresponding to (3.2) is defined as follows

Im(u) =
1
N

∫

RN

(
|∇u|N + m|u|N

)
dx +

1
q

∫

RN
(|∇u|q + m|u|q)dx −

∫

RN
F(u)dx.

In view of [30], assuming that u ∈ X0 is the weak solution of problem (3.2), it is easy to get
the Pohozǎev identity:

Pm(u) =
N − q

q

∫

RN
|∇u|qdx + m

∫

RN
|u|Ndx +

Nm

q

∫

RN
|u|qdx − N

∫

RN
F(u)dx.

Lemma 3.1. Im has the Mountain-Pass geometry.

Proof. According to ( f1), ∀|t| ≤ δ, ∃ε > 0 and δ > 0 such that

| f (t)| ≤ ε|t|q−1.

In addition, by using the condition ( f1) and f is a function that satisfies continuity, ∀τ > q,
∀|t| ≥ δ, it is easy to find a constant C = C(τ, δ) > 0 satisfies

| f (t)| ≤ C|t|τ−1ΨN (t) .

Combining the above two formulas, we get

| f (t)| ≤ ε|t|q−1 + C|t|τ−1ΨN (t) , ∀t ≥ 0.
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Then
|F(t)| ≤ ε|t|q + C|t|τΨN (t) .

So, for 2 ≤ N < q < q∗,

Im(u) =
1
q

∫

RN
(|∇u|q + m|u|q)dx +

1
N

∫

RN

(
|∇u|N + m|u|N

)
dx −

∫

RN
F(u)dx

≥
1
N

∫

RN
(|∇u|N + m|u|N)dx +

1
q

∫

RN
(|∇u|q + m|u|q)dx − ε|u|

q
q

− C
∫

RN
|t|τΨN(u)dx.

Using Hölder’s inequality, we have

∫

RN
ΨN (u) |u|τdx ≤ ‖u‖τ

Lτt′ (RN)

(∫

RN
(ΦN (u))t dx

) 1
t

,

where 1
t +

1
t′ = 1(t′ > 1, t > 1). Due to Lemma 2.3, we may find a constant D > 0 satisfies

(∫

RN
(ΦN (u))t dx

) 1
t

≤ D.

By using (2.1), we obtain that

‖u‖Lν(RN) ≤ A−1
ν,m‖u‖X0 for all u ∈ X0.

Hence, when ‖u‖X0 is small enough, we obtain that

Im(u) ≥
1
q

∫

RN
(|∇u|q + m|u|q)dx +

1
N

∫

RN
(|∇u|N + m|u|N)dx

− C
∫

RN
|t|τΨN(u)dx − ε|u|

q
q

≥
1

q · 2q−1 ‖u‖
q
X0

− εA
−q
q,m‖u‖

q
X0

− CDA−τ
τt′,m‖u‖τ

X0

= ‖u‖
q
X0

(
1

q · 2q−1 − εA
−q
q,m − CDA−τ

τt′,m‖u‖
τ−q
X0

)
.

From which we deduce that 1
q·2q−1 − εA

−q
q,m > 0 for ε small enough. Let

h(t) =
1

q · 2q−1 − εA
−q
q,m − CDA−τ

τt′,mtτ−q, t ≥ 0.

Next, we will prove there is t0 > 0 small enough such that 1
2

( 1
q·2q−1 − εA

−q
q,m
)
≤ h (t0). Obvi-

ously, if t ∈ [0,+∞), h is a continuous function. Note that limt→0+ h(t) = 1
q·2q−1 − εA

−q
q,m, then

we can find t0 that satisfies h(t) ≥ 1
q·2q−1 − εA

−q
q,m − ε1, ∀t ∈ (0, t0), t0 is small enough. Choosing

ε1 = 1
2

( 1
q·2q−1 − εA

−q
q,m
)
, we have

h(t) ≥
1
2

(
1

q · 2q−1 − εA
−q
q,m

)
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for all 0 ≤ t ≤ t0. In particularly,

h(t0) ≥
1
2

(
1

q · 2q−1 − εA
−q
q,m

)
.

So, for ‖u‖X0 = t0, we get

Im(u) ≥
t
q
0

2
·

(
1

q · 2q−1 − εA
−q
q,m

)
= ρ0 > 0.

Now, ∀R > 0, define wR(x, y) as follows:

wR(x, y) :=





T, x ∈ B+
R (0),

0, x ∈ R
N
+\B+

R+1(0),

T
(

R + 1 −
√
|x|
)

, x ∈ B+
R+1(0)\B+

R (0).

It is easy to get that wR ∈ Xrad
(
R

N
)
. It is worth noting that, for R > 0 large enough, according

to ( f3), we have that

∫

RN

[
F (wR(x))−

m

N
wN

R (x)−
m

q
w

q
R(x)

]
dx ≥ 0.

Next, consider wR,θ(x) := wR

(
x
eθ

)
. Fix R > 0, then we have

Im (wR,θ) =
1
q

e(N−q)θ
∫

RN
+

|∇u|qdx − eNθ
∫

RN

[
F (wR(x))−

m

N
wN

R (x)−
m

q
w

q
R(x)

]
dx

→ −∞ as θ → ∞.

This ends the proof.

Therefore, according to Lemma 3.1, we may define cm as follows:

cm := inf
γ∈Γm

sup
t∈[0,1]

Im(γ(t)). (3.3)

Here Γm is defined by

Γm := {γ ∈ C([0, 1], X0) : γ(0) = 0 and Im(γ(1)) < 0}. (3.4)

Clearly, cm > 0. Moreover, similar to [2], we note that

cm = cm,rad,

where
cm,rad := inf

γ∈Γm,rad

max
t∈[0,1]

Im(γ(t))

and
Γm,rad :=

{
γ ∈ C

(
[0, 1], Xrad(R

N)
)

: Im(γ(1)) < 0, γ(0) = 0
}

.

Next, we will construct a (PS) sequence {wn}∞
n=1 for Im at the level cm that satisfies

I′m(wn) → 0 as n → ∞, that is
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Proposition 3.2. There exists a sequence {wn}∞
n=1 in X0 that satisfies, as n → ∞,

Im(wn) → cm, I′m(wn) → 0, Pm(wn) → 0. (3.5)

Proof. For (θ, u) ∈ R × Xrad (RN), define Ĩm(θ, u) := (Im ◦ Φ) (θ, u), where Φ(θ, u) := u( x
eθ ).

The standard norm of R × Xrad(R
N) is defined as

‖(θ, u)‖R×X0 =
(
‖u‖2

X0
+ |θ|2

) 1
2 .

According to Lemma 3.1, Ĩm has a mountain pass geometry, so we can define c̃m as follows:

c̃m = inf
γ̃∈Γ̃m

max
t∈[0,1]

Ĩm(γ̃(t)),

where
Γ̃m =

{
γ̃ ∈ C

(
[0, 1], R × Xrad(R

N)
)

: Ĩm(γ̃(1)) < 0, γ̃(0) = (0)
}

.

It is easy to prove that c̃m = cm(see [3,23]). Then according to Lemma 2.1, we obtain that there
exists a sequence (θn, un) ⊂ R × Xrad(R

N) such that, as n → ∞,

(i) (Im ◦ Φ)(θn, un) → cm,

(ii) (Im ◦ Φ)′(θn, un) → 0,

(iii) θn → 0.

In fact, let δ = δn = 1
n , ε = εn = 1

n2 in Lemma 2.1, by using (a) and (c) in Lemma 2.1, we can
obtain (i) and (ii). Due to (3.3) and (3.4), for ε = εn = 1

n2 , it is easy to find that γn ∈ Γm such
that supt∈[0,1] Im(γn(t)) ≤ cm + 1

n2 . Now define γ̃n(t) = (0, γn(t)), we obtain

sup
t∈[0,1]

(Im ◦ Φ)(γ̃n(t)) = sup
t∈[0,1]

Im(γn(t)) ≤ cm +
1
n2 .

According to (b) in Lemma 2.1, then there is (θn, un) ∈ R × X0 such that

dist
R×X0

((0, γn(t)) , (θn, un)) ≤
2
n

,

so (iii) holds. Now, for A ⊂ R × X0, define

dist
R×X0

((θ, u), A) = inf
(τ,v)∈R×X0

(
‖u − v‖2

X0
+ |θ − τ|2

) 1
2 .

So, for (h, w) ∈ R × X0, we have
〈
(Im ◦ Φ)′ (θn, un) , (h, w)

〉
= Pm (Φ (θn, un)) h +

〈
I′m (Φ (θn, un)) , Φ′ (θn, w)

〉
. (3.6)

Now, put w = 0 and h = 1, it is easy to get

Pm (Φ (θn, un)) → 0.

Moreover, for all v ∈ X0, we only take h = 0 and w(x) = v
(
eθn x

)
in (3.6), by using (ii), (iii),

we get

o(1)‖v‖X0 = o(1)
∥∥∥v
(

eθn x
)∥∥∥

X0
=
〈

I′m (Φ (θn, un)) , v
〉

.

Hence, wn = Φ (θn, un) is just the sequence we need.
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Lemma 3.3. The sequence (wn) that satisfies (3.5) is bounded in X0.

Proof. According to (3.5), we have

cm + on(1) = Im (wn)−
1
N

Pm (wn)

=
1
N

∫

RN
|∇wn|

Ndx +
1
q

∫

RN
|∇wn|

qdx +
1
N

∫

RN
m|wn|

Ndx +
1
q

∫

RN
m|wn|

qdx

−
∫

RN
F(wn)dx −

1
N

(
N − q

q

∫

RN
|∇wn|

qdx + m
∫

RN
|wn|

pdx

+
N

q

∫

RN
m|wn|

qdx − N
∫

RN
F(wn)dx

)

=
1
N

(∫

RN
|∇wn|

Ndx +
∫

RN
|∇wn|

qdx

)
.

Hence, we get that
∫

RN |∇wn|Ndx and
∫

RN |∇wn|qdx are bounded in R. Moreover, Pm (wn) =

on(1) and ( f1)–( f2) show that

N − q

q

∫

RN
|∇wn|

qdx +
∫

RN
m|wn|

Ndx +
N

q

∫

RN
m|wn|

qdx

= on(1) + N
∫

RN
F(wn)dx

≤ on(1) + εN|wn|
q
q + NC

∫

RN
|wn|

τΨN(wn)dx.

According to the boundedness of
∫

RN |wn|τΨN(wn)dx and choosing ε > 0 small enough, we
can deduce that (|wn|N) and (|wn|q) are bounded in R. Therefore, (wn) is bounded in X0.

According to the method in [33], we have:

Lemma 3.4 (see [33]). Assume that (un) is a bounded sequence in X0, if there exist for some R >

0, t ≥ N such that

lim
n→∞

sup
y∈RN

∫

BR(y)
|un(x)|t dx = 0,

then for all ξ ∈ (t,+∞), un → 0 in Lξ(RN) .

Lemma 3.5. Assume (wn) satisfies Proposition 3.2, then there exist a sequence (xn) ⊂ R
N and

constants R > 0, β > 0 satisfy ∫

BR(xn)
w

q
n(x)dx ≥ β.

Proof. In fact, we assume that the conclusion is not true. According to Lemma 3.4, it is easy to
get

wn(·) → 0 in Lξ
(

R
N
)

, ∀ξ ∈ (t,+∞). (3.7)

Therefore, due to ( f1) and ( f2), we obtain that
∫

RN
f (wn(x))wn(x)dx = on(1).

According to 〈I′m (wn) , wn〉 = on(1), we can obtain that
∫

RN
|∇wn|

Ndx +
∫

RN
|∇wn|

qdx +
∫

RN
m|wn|

Ndx +
∫

RN
m|wn|

qdx −
∫

RN
f (wn)wndx = on(1),

and so we deduce that ‖wn‖X0
→ 0. Therefore, Im (wn) → 0 and then we get contradiction

since cm > 0.
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Next, define

Tm :=
{

u ∈ X(RN)\{0} : max
x∈RN

u(x) = u(0), I′m(u) = 0
}

,

bm := inf
u∈Tm

Im(u),

and
Sm := {u ∈ TV0 : Im(u) = bm} .

Lemma 3.6. There exists u ∈ Sm.

Proof. Assume (wn) satisfies Proposition 3.2. Let w̃n(x) := wn(xn + x), here xn comes from
Lemma 3.5. According to Lemma 3.4, we can see that (wn) is bounded in Xrad(R

N), that is,
for all n ∈ N, we have ‖wn‖Xrad(RN) ≤ C . Going if necessary to a subsequence, for some
w̃ ∈ Xrad(R

N) \ {0}, we assume that w̃n ⇀ w̃ in Xrad(R
N), then

w̃n(x) → w̃(x) in Lξ(RN), ∀ξ ∈ (N,+∞).

So ∫

RN
f (w̃n)w̃n →

∫

RN
f (w̃)w̃. (3.8)

Moreover, w̃ satisfies

(−∆)Nw̃ + (−∆)qw̃ + m(|w̃|N−2w̃ + |w̃|q−2w̃) = f (w̃) in R
N . (3.9)

From (3.8) we have
∫

RN
|∇w̃|Ndx +

∫

RN
|∇w̃|qdx +

∫

RN
m|w̃|Ndx +

∫

RN
m|w̃|qdx

≤ lim inf
n→∞

[∫

RN
|∇w̃n|

Ndx +
∫

RN
|∇w̃n|

qdx +
∫

RN
m|w̃n|

Ndx +
∫

RN
m|w̃n|

qdx

]

≤ lim sup
n→∞

[∫

RN
|∇w̃n|

Ndx +
∫

RN
m|w̃n|

Ndx +
∫

RN
|∇w̃n|

qdx +
∫

RN
m|w̃n|

qdx

]

= lim sup
n→∞

[∫

RN
|∇wn|

Ndx +
∫

RN
m|wn|

Ndx +
∫

RN
|∇wn|

qdx +
∫

RN
m|wn|

qdx

]

= lim sup
n→∞

∫

RN
f (wn)wndx

= lim sup
n→∞

∫

RN
f (w̃n)w̃ndx

=
∫

RN
f (w̃)w̃dx

=
∫

RN
|∇w̃|Ndx +

∫

RN
|∇w̃|qdx +

∫

RN
m|w̃|pdx +

∫

RN
m|w̃|qdx,

which implies that ‖w̃n‖X0
→ ‖w̃‖X0 and thus w̃n → w̃ in X0. Therefore, by Im (wn) =

Im (w̃n) → cm and I′m (wn) = I′m (w̃n) → 0, we obtain that Im(w̃) = cm and I′m(w̃) = 0. Due to
w̃ 6= 0, we get that cm ≥ bm.

Now, let w ∈ X0\{0} be an arbitrary solution of (3.2). We define

wt(x) :=

{
w
(

x
t

)
for t > 0,

0 for t = 0.
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Next, choosing the real number θ1 > t1 > 1 > t0 > 0, we denote the curve γ consisting of
three parts as follows:

γ(θ) =





θwt0 , θ ∈ [0, t0] ,

θwθ , θ ∈ [t0, t1] ,

θwt1 , θ ∈ [t1, θ1] .

Due to w is a weak solution, then
∫

RN
f (w)wdx =

∫

RN
|∇w|Ndx +

∫

RN
|∇w|qdx +

∫

RN
m|w|Ndx +

∫

RN
m|w|qdx > 0.

Hence, we can find θ1 > 1 such that
∫

RN
f (θw)wdx > 0, ∀θ ∈ [1, θ1] .

Let ϕ(s) = f (s)
sq−1 . Due to ( f1), we know that ϕ ∈ C(R, R). Hence, we have

∫

RN
ϕ(θw)wqdx > 0, ∀θ ∈ [1, θ1] . (3.10)

Moreover,

d
dθ

Im (θwt) = 〈I′m (θwt) , wt〉

= θN−1
∫

RN
|∇wt|

Ndx + θq−1
∫

RN
|∇wt|

qdx + θN−1
∫

RN
m|wt|

Ndx

+ θq−1
∫

RN
m|wt|

qdx − θq−1
∫

RN
ϕ (θwt)w

q
t dx

= θN−1
∫

RN
|∇wt|

Ndx + θq−1
∫

RN
|∇wt|

qdx + θN−1
∫

RN
m|wt|

Ndx

+ θq−1
∫

RN
m|wt|

qdx −
θq−1

2

∫

RN
ϕ (θwt)w

q
t dx −

θq−1

2

∫

RN
ϕ (θwt)w

q
t dx

= θN−1
(∫

RN
|∇w|Ndx + tN

∫

RN
m|w|Ndx −

θq−NtN

2

∫

RN
ϕ (θw)wqdx

)

+ θN−1 · tN−q

(∫

RN
|∇w|qdx + tq

∫

RN
m|w|qdx −

tq

2

∫

RN
ϕ (θw)wqdx

)
.

Selecting t0 ∈ (0, 1) small enough, we obtain

∫

RN
|∇w|Ndx + tN

0

∫

RN
m|w|Ndx −

θq−NtN
0

2

∫

RN
ϕ (θw)wqdx > 0 for all θ ∈ [1, θ1] (3.11)

and

∫

RN
|∇w|qdx + t

q
0

∫

RN
m|w|qdx −

t
q
0

2

∫

RN
ϕ (θw)wqdx > 0 for all θ ∈ [1, θ1] . (3.12)

According to (3.10), for all θ ∈ [1, θ1], we select t1 > 1 such that

∫

RN
|∇w|Ndx + tN

1

∫

RN
m|w|Ndx −

θq−NtN
1

2

∫

RN
ϕ (θw)wqdx ≤ −

N

θN
1 − 1

∫

RN
|∇w|Ndx, (3.13)
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and

∫

RN
|∇w|qdx + t

q
1

∫

RN
m|w|qdx −

t
q
1
2

∫

RN
ϕ (θw)wqdx ≤ −

Nt
q−N
1

(θN
1 − 1)

∫

RN
|∇w|qdx. (3.14)

Therefore, according to (3.11) and (3.12), we know I(γ(θ)) increases at the interval [0, t0], then
takes its maximum value at θ = 1. According to the Pohozǎev identity:

Pm(u) =
N − q

q

∫

RN
|∇u|qdx + m

∫

RN
|u|Ndx +

Nm

q

∫

RN
|u|qdx − N

∫

RN
F(u)dx.

Consequently,

Im(wt1(x)) ≤ Im(w(x))

=
1
N

∫

RN
|∇w|Ndx +

1
q

∫

RN
|∇w|qdx +

m

N

∫

RN
|w|Ndx +

m

q

∫

RN
|w|qdx

−
1
N

(
N − q

q

∫

RN
|∇w|qdx + m

∫

RN
|w|Ndx +

N

q

∫

RN
m|w|qdx

)

=
1
N

(∫

RN
|∇w|Ndx +

∫

RN
|∇w|qdx

)
.

Now by using (3.13) and (3.14), we have

Im (θ1wt1) = Im (wt1) +
∫ θ1

1

d
dθ

I (θwt1)dθ

≤
1
N

(∫

RN
|∇wn|

Ndx +
∫

RN
|∇wn|

qdx

)
−

N

θN
1 − 1

∫

RN
|∇w|Ndx

∫ θ1

1
θN−1dθ

−
Nt

q−N
1

(θN
1 − 1)

∫

RN
|∇w|qdx · t

N−q
1

∫ θ1

1
θN−1dθ

=

(
1
N

− 1
) ∫

RN
|∇wn|

Ndx +

(
1
N

− 1
) ∫

RN
|∇wn|

qdx < 0.

So we know γ(θ) ∈ Γm. According to the definition of cm, we have Im(γ(θ)) ≥ cm. Due to w is
arbitrary, we obtain that bm ≥ cm and this means bm = cm.

Selecting w− = min{w, 0} as a test function of (3.2), we infer that w ≥ 0 in R
N . Using ( f1)–

( f2) and according to the Moser iteration (see [3, 13]), it is easy to obtain that w ∈ L∞
(
R

N
)

.
By means of Corollary 2.1 in [4], we can see that w ∈ Cσ(RN) for some σ ∈ (0, 1). Similar to
the proof of Theorem 1.1-(ii) in [24], we obtain that w > 0 in R

N .

Remark 3.7. As to m > 0, we define

Im′(u) =
1
p

∫

RN
|∇u|pdx +

1
q

∫

RN
|∇u|qdx +

m′

p

∫

RN
|u|pdx +

m′

q

∫

RN
|u|qdx −

∫

RN
F(u)dx,

the mountain pass level is cm′ . By using standard method, we can prove that cm′
1
> cm′

2
when

m′
1 > m′

2.

In the following, we will prove that SV0 is compact in X0.

Lemma 3.8. SV0 is compact in X0.
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Proof. For any U ∈ SV0 , we have that

cm + on(1) = Im (U)−
1
N

Pm (U)

=
1
N

∫

RN
|∇U|Ndx +

1
q

∫

RN
|∇U|qdx +

m

N

∫

RN
|U|Ndx +

m

q

∫

RN
|U|qdx

−
∫

RN
F(U)dx −

1
N

(
N − q

q

∫

RN
|∇U|qdx + m

∫

RN
|U|pdx

+
Nm

q

∫

RN
|U|qdx − N

∫

RN
F(U)dx

)

=
1
N

(∫

RN
|∇U|Ndx +

∫

RN
|∇U|qdx

)
.

So Sm is bounded in X0.
For any sequence {Uk} ⊂ SV0 , up to a subsequence, we can find a U0 ∈ X0 satisfies

Uk ⇀ U0 in X0 (3.15)

and U0 satisfies

−∆NU0 − ∆qU0 + m(|U0|
N−2U0 + |U0|

q−2U0) = f (U0), in R
N , U0 ≥ 0.

Next, we will prove that U0 is nontrivial. Note that, up to a subsequence, we have

Uk → U0 in Lt
loc(R

N), t ∈ (N,+∞). (3.16)

By using (3.16), any bounded region in R
N , (Ut

k) is uniformly integrable. According to
Lemma 2.2 (i) in [22], ‖Uk‖L∞

loc(R
N) ≤ C. In view of [26], there exists α ∈ (0, 1) such that

‖Uk‖C1,α
loc (R

N)
≤ C. Due to (Uk) ⊂ SV0 , by Lemma 3.6, we have that Uk > 0. We can prove that

lim infk→∞ ‖Uk‖∞ > 0 because of limt→0
f (t)
tq−1 = 0. In fact, since Uk satisfies (3.1), we have that

−∆NUk − ∆qUk + m(|Uk|
N−2Uk + |Uk|

q−2Uk) = f (Uk),

that is
∫

RN
|∇Uk|

Ndx +
∫

RN
|∇Uk|

qdx + m
∫

RN
|Uk|

Ndx + m
∫

RN
|Uk|

qdx =
∫

RN
f (Uk)Ukdx.

According to limt→0
f (t)
tq−1 = 0, ∀ε > 0, we can find δ > 0 satisfies

f (t) < εtq−1, |t| < δ,

then f (Uk)Uk < ε|Uk|
q. Assume by contradiction, we have lim infk→∞ ‖Uk‖∞ = 0, then for δ

given above, we have |Uk| < δ. Therefore,
∫

RN
|∇Uk|

Ndx +
∫

RN
|∇Uk|

qdx =
∫

RN
f (Uk)Ukdx − m

∫

RN
|Uk|

Ndx − m
∫

RN
|Uk|

qdx < 0,

which leads to a contradiction. Noting that Uk(0) = ‖Uk‖∞, we get that U0 6≡ 0. Therefore,
there exists ∃C0 > 0 such that Uk(0) ≥ C0 > 0, then U0(0) ≥ C0 > 0, this means that U0 is
nontrivial. Using the same method as Lemma 3.6, we get Im (U0) = cm and Uk → U0 in X0.
Therefore, Sm is compact in X0.
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3.2 Proof of Theorem 1.1

This section will prove Theorem 1.1. For U ∈ Sm, set cm = Im(U) and 10δ = dist
{
M, R

N\Λ
}

.
Now, fix a β ∈ (0, δ) and a cut-off function ϕ ∈ C∞

c

(
R

N
)

satisfies

ϕ :=

{
1, |x| ≤ β,

0, |x| ≥ 2β

and |∇ϕ| ≤ C/β. Moreover, let y ∈ R
N , ϕε(y) = ϕ(εy). For ε > 0 small enough, we will look

for solutions of (1.1) near the set

Yε :=
{

ϕ (εy − x)U
(

y −
x

ε

)
: x ∈ Mβ, U ∈ Sm

}
,

where Mβ :=
{

y ∈ R
N : infz∈M |z − y| ≤ β

}
. Moreover, as to A ⊂ Xε, define

Aa :=
{

u ∈ Xε : inf
v∈A

‖u − v‖Xε ≤ a

}
.

For any U ∈ Sm, define Wε,t(x) := ϕ(εx)U
(

x
t

)
.

Next, we show that Jε has the Mountain-Pass geometry. Let Ut(x) := U( x
t ), by using the

same proof as in Lemma 3.1, we have

Im(Ut) =
1
N

∫

RN
|∇U|Ndx +

tN

N

∫

RN
m|U|Ndx +

tN−q

q

∫

RN
|∇U|qdx

+
tN

q

∫

RN
m|U|qdx − tN

∫

RN
F(U)dx

→ − ∞ as t → ∞.

So there exists t0 > 0 such that Im(Ut0) < −3.
Clearly, Qε(Wε,t0) = 0. As to ε > 0 sufficiently small, by using the Dominated Convergence

Theorem, one has

Jε(Wε,t0) = Iε(Wε,t0)

=
1
N

∫

RN
|∇Wε,t0 |

Ndx +
1
q

∫

RN
|∇Wε,t0 |

qdx +
1
N

∫

RN
V(εx)|Wε,t0 |

pdx

+
1
q

∫

RN
V(εx)|Wε,t0 |

qdx −
∫

RN
F(Wε,t0)dx

x̃= x
t0=

1
N

∫

RN

∣∣εt2
0∇ϕ(εt0 x̃)U(x̃) + ϕ(εx̃)∇U(x̃)

∣∣N dx̃

+
t

N−q
0
q

∫

RN

∣∣εt2
0∇ϕ(εt0 x̃)U(x̃) + ϕ(εt0 x̃)∇U(x̃)

∣∣q dx̃

+
tN
0

N

∫

RN
V(εt0 x̃)|ϕ(εt0 x̃)U(x̃)|Ndx̃

+
tN
0

q

∫

RN
V(εt0 x̃)|ϕ(εt0 x̃)U(x̃)|qdx̃

− tN
∫

RN
F(ϕ(εt0 x̃)U(x̃)dx̃

= Im(Ut0) + o(1) < −2. (3.17)
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According to ( f1) and ( f2), it is easy to see that

|F(t)| ≤ ε|t|q + C|t|τΨN (t) .

So, for 2 ≤ N < q < q∗, we get

Jε(u) ≥ Iε(u)

=
1
q

∫

RN
(|∇u|q + Vε|u|

q)dx +
1
N

∫

RN

(
|∇u|N + Vε|u|

N
)

dx −
∫

RN
F(u)dx

≥
1
N

∫

RN
(|∇u|N + Vε|u|

N)dx +
1
q

∫

RN
(|∇u|q + Vε|u|

q)dx − ε|u|
q
q − C

∫

RN
|t|τΨN(u)dx.

Using Hölder’s inequality, it is easy to get

∫

RN
|u|τΨN (u)dx ≤ ‖u‖τ

Lτt′ (RN)

(∫

RN
(ΦN (u))t dx

) 1
t

,

where 1
t +

1
t′ = 1(t′ > 1, t > 1). Due to Lemma 2.3, we can find a constant D > 0 satisfies

(∫

RN
(ΦN (u))t dx

) 1
t

≤ D.

From (2.2), we have
‖u‖Lν(RN) ≤ S−1

ν,ε ‖u‖Xε , ∀u ∈ Xε.

Hence, when ‖u‖Xε is small, we get

Jε(u) ≥
1
q

∫

RN
(|∇u|q + Vε|u|

q)dx +
1
N

∫

RN
(|∇u|N + Vε|u|

N)dx

− ε|u|
q
q − C

∫

RN
|t|τΨN(u)dx

≥
1

q · 2q−1 ‖u‖
q
Xε

− εS
−q
q,ε ‖u‖

q
Xε

− CDS−τ
τt′,ε‖u‖τ

Xε

= ‖u‖
q
Xε

(
1

q · 2q−1 − εS
−q
q,ε − CDS−τ

τt′,ε‖u‖
τ−q
Xε

)
.

We see 1
q·2q−1 − εS

−q
q,ε > 0 for ε small enough. Let

h(t) =
1

q · 2q−1 − εS
−q
q,ε − CDS−τ

τt′,εt
τ−q, t ≥ 0.

Next, we will find t0 > 0 small that satisfies h (t0) ≥
1
2

( 1
q·2q−1 − εS

−q
q,ε
)
. Clearly, limt→0+ h(t) =

1
q·2q−1 − εS

−q
q,ε and h is continuous function on [0,+∞), so there exists t0 satisfies h(t) ≥ 1

q·2q−1 −

εS
−q
q,ε − ε1, ∀t ∈ (0, t0), t0 is small enough. Choosing ε1 = 1

2

( 1
q·2q−1 − εS

−q
q,ε
)
, we get that

h(t) ≥
1
2

(
1

q · 2q−1 − εS
−q
q,ε

)

for all 0 ≤ t ≤ t0. In particularly,

h(t0) ≥
1
2

(
1

q · 2q−1 − εS
−q
q,ε

)
.
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So, for ‖u‖Xε = t0, we have

Jε(u) ≥
t
q
0

2
·

(
1

q · 2q−1 − εS
−q
q,ε

)
= ρ0 > 0.

Therefore, we can define cε as follows:

cε := inf
γ∈Γε

max
s∈[0,1]

Jε(γ(s)).

Here Γε is defined by

Γε := {γ ∈ C ([0, 1], Xε) | γ(1) = Wε,t0 , γ(0) = 0} .

Lemma 3.9. There holds

lim
ε→0

cε ≤ cm.

Proof. Denote Wε,0 = limt→0 Wε,t in Xε sense, then it is easy to get Wε,0 = 0. Consequently, let
γ(s) := Wε,st0(0 ≤ s ≤ 1 ), then γ(s) ∈ Γε, so

cε ≤ max
s∈[0,1]

Jε(γ(s)) = max
t∈[0,t0]

Jε (Wε,t) .

Now, we only need to prove
lim
ε→0

max
t∈[0,t0]

Jε (Wε,t) ≤ cm.

In fact, similar to (3.17), we obtain that

max
t∈[0,t0]

Jε (Wε,t) = max
t∈[0,t0]

Im (Ut) + o(1)

≤ o(1) + max
t∈[0,∞)

Im (Ut)

= Im (U) + o(1) = o(1) + cm.

This finishes the proof.

Lemma 3.10. There holds

lim
ε→0

cε ≥ cm.

Proof. Assuming limε→0 cε < cm, we can find δ0 > 0, γn ∈ Γεn and εn → 0 satisfy, for s ∈ [0, 1],
Jεn (γn(s)) < cm − δ0. Now, fixed an εn > 0, we have

1
N

mεn

(
1 + (1 + cm)

1/2
)
< min {δ0, 1} . (3.18)

Due to Iεn (γn(0)) = 0 and Iεn (γn(1)) ≤ Jεn (γn(1)) = Jεn (Wεn,t0) < −2, we can look for an
sn ∈ (0, 1) such that Iεn (γn(s)) ≥ −1 for s ∈ [0, sn] and Iεn (γn (sn)) = −1. Moreover, for any
s ∈ [0, sn], we have that

Qεn (γn(s)) = Jεn (γn(s))− Iεn (γn(s)) ≤ 1 + cm − δ0,

which implies that
∫

RN\(Λ/εn)
γN

n (s)dx ≤ εn

(
1 + (1 + cm)

1/2
)

for s ∈ [0, sn] .
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So for s ∈ [0, sn], we have

Iεn (γn(s))

= Im (γn(s)) +
1
N

∫

RN
(V (εnx)− m) γN

n (s)dx +
1
q

∫

RN
(V (εnx)− m) γ

q
n(s)dx

≥ Im (γn(s)) +
1
N

∫

RN\(Λ/εn)
(V (εnx)− m) γN

n (s)dx +
1
q

∫

RN\(Λ/εn)
(V (εnx)− m) γ

q
n(s)dx

≥ Im (γn(s)) +
1
N

∫

RN\(Λ/εn)
(V (εnx)− m) γN

n (s)dx

≥ Im (γn(s))−
1
N

mεn

(
1 + (1 + cm)

1/2
)

.

Then
Im (γn (sn)) ≤ Iεn (γn (sn)) +

1
N

mεn

(
1 + (1 + cm)

1/2
)

= −1 +
1
N

mεn

(
1 + (1 + cm)

1/2
)
< 0,

and recalling (3.3), we obtain that

max
s∈[0,sn]

Im (γn(s)) ≥ cm.

Therefore, we get that

cm − δ0 ≥ max
s∈[0,1]

Jεn (γn(s)) ≥ max
s∈[0,1]

Iεn (γn(s)) ≥ max
s∈[0,sn]

Iεn (γn(s))

≥ −
1
N

mεn

(
1 + (1 + cm)

1/2
)
+ max

s∈[0,sn]
Im (γn(s)) ,

that is 0 < δ0 ≤ 1
N mεn

(
1 + (1 + cm)

1/2 ), which contradicts (3.18). As desired.

By using Lemmas 3.9 and 3.10, it follows

0 = lim
ε→0

(
max
s∈[0,1]

Jε (γε(s))− cε

)
.

Here ∀s ∈ [0, 1], γε(s) = Wε,st0 . Denote

c̃ε := max
s∈[0,1]

Jε (γε(s)) .

Clearly, cε ≤ c̃ε,
cm = lim

ε→0
c̃ε = lim

ε→0
cε.

Now define
Jα
ε = {u ∈ Xε | Jε(u) ≤ α} .

For α > 0 and ∀A ⊂ Xε, set Aα =
{

u ∈ Xε | infv∈A ‖u − v‖Xε ≤ α
}

.

Lemma 3.11. Assume {ε i}
∞
i=1 satisfies limi→∞ ε i = 0, {uεi

(·)} ⊂ Yd
εi

and

lim
i→∞

J′εi
(uεi

(·)) = 0, lim
i→∞

Jεi
(uεi

(·)) ≤ cm.

Then, ∀d > 0 small enough, up to a subsequence, there exist x ∈ M, {yi}
∞
i=1 ⊂ R

N , U ∈ Sm satisfy

lim
i→∞

‖ϕεi
(· − yi)U (· − yi)− uεi

(·)‖Xεi
= 0 and lim

i→∞
|x − ε iyi| = 0.
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Proof. Now, write ε i as ε. According to

Yε :=
{

ϕ (εy − x)U
(

y −
x

ε

)
: x ∈ Mβ, U ∈ Sm

}
,

we can find {Uε} ⊂ Sm and {xε} ⊂ Mβ satisfy
∥∥∥ϕε

(
· −

xε

ε

)
Uε

(
· −

xε

ε

)
− uε(·)

∥∥∥
Xε

≤ d.

Due to Sm, Mβ are compact, there exist Z ∈ Sm, x ∈ Mβ satisfy Uε → Z in Xε and xε → x.
Hence, for ε > 0 small enough,

∥∥∥ϕε

(
· −

xε

ε

)
Z
(
· −

xε

ε

)
− uε(·)

∥∥∥
Xε

≤ 2d. (3.19)

In addition, according to ( f2), we can suppose that sup ‖uε‖Xε
≤ 1.

Step 1. First we will prove

0 = lim inf
ε→0

sup
y∈Aε

∫

B(y,1)
|uε|

N dx, (3.20)

here Aε = B
(

xε
ε , 3β

ε

)
\B
(

xε
ε , β

2ε

)
.

Assume the formula (3.20) is true, according to Lions’ lemma, for any ξ > N, we have that
uε → 0 in Lξ

(
Bε

)
, where Bε = B

(
xε
ε , 2β

ε

)
\B
(

xε
ε , β

ε

)
.

Now, we assume the formula (3.20) is not true, then we can find r > 0 that satisfies

lim inf
ε→0

sup
y∈Aε

∫

B(y,1)
|uε|

N dx = 2r > 0.

So, for ε > 0 small enough, we also can find that yε ∈ Aε satisfies
∫

B(yε,1)
|uε|

N dx ≥ r. It

is necessary to mention that, there is x0 ∈ M4β ⊂ Λ satisfying εyε → x0. Assume vε(y) =

uε (y + yε), it is easy to obtain that

− ∆Nvε − ∆qvε + Vε (y + yε) |vε|
N−2 vε − g (εy + εyε, vε) + Vε (y + yε) |vε|

q−2 vε

= hε − 2NQ1/2
ε (uε) χε (y + yε) |vε|

N−2 vε.
(3.21)

Taking ε adequately small, we have
∫

B(0,1)
|vε|

N dy ≥ r. (3.22)

Going if necessary to a subsequence, then we get vε ⇀ v in Xε, and almost everywhere in R
N .

Note that the embedding Xε →֒ LN(B(0, 1)) is compact, by using (3.22), we get v 6≡ 0. Next,
we will prove v satisfies

− ∆qv − ∆Nv + V (x0) |v|
q−2v + V (x0) |v|

N−2v = f (v) in R
N . (3.23)

Indeed, for any ϕ ∈ C∞
0

(
R

N
)
, in (3.21), we use (vε − v) ϕ as a test function. For ε small

enough, according to χ and g, we have that

χε (y + yε) |vε|
N−2 vε (vε − v) ϕ = 0, ∀y ∈ R

N ,



Concentration of solutions for an (N, q)-Laplacian equation 21

g (εy + εyε, vε) (vε − v) ϕ = f (vε) (vε − v) ϕ, ∀y ∈ R
N ,

χε (y + yε) |vε|
q−2 vε (vε − v) ϕ = 0, ∀y ∈ R

N .

∀ξ ≥ N, we know that the embedding Xε →֒ Lξ
(
R

N
)

is local compact. Hence,
∫

RN
Vε (y + yε) |vε|

N−2 vε ϕdy →
∫

RN
V (x0) |v|

N−2vϕdy

and ∫

RN
Vε (y + yε) |vε|

q−2 vε ϕdy →
∫

RN
V (x0) |v|

q−2vϕdy.

By Lemma 2.2, ( f1), and ‖ f (vε)‖N < ∞, we obtain that
∫

RN
f (vε) (vε − v) ϕdy =

∫

RN
g (εy + εyε, vε) (vε − v) ϕdy → 0.

Therefore, similar to the proof of Lemma 3 in [6], we have that
∫

RN
|∇vε|

N−2 ∇vε∇ϕdy →
∫

RN
|∇v|N−2∇v∇ϕdy

and ∫

RN
|∇vε|

q−2 ∇vε∇ϕdy →
∫

RN
|∇v|q−2∇v∇ϕdy.

According to ( f1), ( f2), the compactness lemma of Strauss [32] and Lemma 2.2, we get that
∫

RN
g (εy + εyε, vε) ϕdy →

∫

RN
f (v)ϕdy.

Therefore, (3.23) has a nontrivial solution v. According to definition, IV(x0)(v) ≥ cV(x0). For
R > 0 large enough, because of Fatou’s lemma, it is easy to get

lim inf
ε→0

∫

B(xε,R)
|∇uε|

N dy ≥
1
2

∫

RN
|∇v|Ndy, (3.24)

and
lim inf

ε→0

∫

B(xε,R)
|∇uε|

q dy ≥
1
2

∫

RN
|∇v|qdy. (3.25)

Now, recalling from Remark 3.7 that ca > cb when a > b, it is easy to see that cV(x0) ≥ cm

because of V (x0) ≥ m. According to Pohozǎev identity, for any U ∈ Sm,

1
N

(∫

RN
|∇U|Ndx +

∫

RN
|∇U|qdx

)
= Im(U). (3.26)

Thus,it follows from (3.24), (3.25) and (3.26) that

lim inf
ε→0

∫

B(yε,R)
|∇uε|

N dy + lim inf
ε→0

∫

B(yε,R)
|∇uε|

q dy ≥
N

2
IV(x0)(v) ≥

N

2
cm > 0.

When d is small enough, this is a contradiction with (3.19) .

Step 2. Define u2
ε = uε − u1

ε , where u1
ε (y) = ϕε (y − xε/ε) uε(y). For d > 0 small enough, we

will prove, Jε

(
u2

ε

)
≥ 0 and

Jε (uε) ≥ o(1) + Jε

(
u1

ε

)
+ Jε

(
u2

ε

)
as ε → 0. (3.27)
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Clearly, for small enough ε > 0, we have Qε

(
u1

ε

)
= 0 and Qε (uε) = Qε

(
u2

ε

)
. Moreover,

∀y ∈ R
N , u1

ε (y)u
2
ε (y) ≥ 0, we get

|uε(y)|
q =

(∣∣∣u1
ε (y)

∣∣∣
2
+
∣∣u2

ε (y)
∣∣2 + 2u1

ε (y)u
2
ε (y)

)q/2

≥

(∣∣∣u1
ε (y)

∣∣∣
2
+
∣∣u2

ε (y)
∣∣2
)q/2

≥
∣∣∣u1

ε (y)
∣∣∣
q
+
∣∣u2

ε (y)
∣∣q

and

|uε(y)|
N =

(∣∣∣u1
ε (y)

∣∣∣
2
+
∣∣u2

ε (y)
∣∣2 + 2u1

ε (y)u
2
ε (y)

)N/2

≥

(∣∣∣u1
ε (y)

∣∣∣
2
+
∣∣u2

ε (y)
∣∣2
)N/2

≥
∣∣∣u1

ε (y)
∣∣∣

N
+
∣∣u2

ε (y)
∣∣N .

So ∫

RN
Vε

∣∣∣u1
ε

∣∣∣
N

dy +
∫

RN
Vε

∣∣u2
ε

∣∣N dy ≤
∫

RN
Vε |uε|

N dy

and ∫

RN
Vε |uε|

q dy ≥
∫

RN
Vε

∣∣∣u1
ε

∣∣∣
q

dy +
∫

RN
Vε

∣∣u2
ε

∣∣q dy.

Moreover, it is easy to verify that

∫

RN

∣∣∣∇u1
ε

∣∣∣
N

dy =
∫

RN
ϕN

ε

(
· −

xε

ε

)
|∇uε|

N dy + o(1),

∫

RN

∣∣∇u2
ε

∣∣N dy =
∫

RN

(
1 − ϕε

(
−

xε

ε

))N
|∇uε|

N dy + o(1),
∫

RN

∣∣∇u2
ε

∣∣q dy =
∫

RN

(
1 − ϕε

(
−

xε

ε

))q
|∇uε|

N dy + o(1),
∫

RN

∣∣∣∇u1
ε

∣∣∣
q

dy =
∫

RN
ϕN

ε

(
· −

xε

ε

)
|∇uε|

q dy + o(1).

Obviously, for any y ∈ R
N , we have

ϕ2
ε (y − xε/ε) |∇uε(y)|

2 + (1 − ϕε (y − xε/ε))2 |∇uε(y)|
2 ≤ |∇uε(y)|

2 .

Therefore, we have
∫

RN
|∇uε|

N dy ≥
∫

RN

∣∣∣∇u1
ε

∣∣∣
N

dy +
∫

RN

∣∣∇u2
ε

∣∣N dy + o(1)

and ∫

RN
|∇uε|

q dy ≥
∫

RN

∣∣∣∇u1
ε

∣∣∣
q

dy +
∫

RN

∣∣∇u2
ε

∣∣q dy + o(1).

Hence, we have that

Jε (uε) ≥ o(1)−
∫

Bε

(
G (εy, uε)− G(εy, u1

ε )− G
(
εy, u2

ε

))
dy + Jε(u

1
ε ) + Jε(u

2
ε ).
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According to ( f1) and ( f2), then we obtain

ε|t|q + C|t|τΨN (t) ≥ |F(t)|. (3.28)

Using the same proof as that in Lemma 3.1, we get

∫

RN
|u|τΨN (u)dx ≤ ‖u‖τ

Lτt′ (RN)

(∫

RN
(ΦN (u))t dx

) 1
t

.

By using Step 1, we know that uε → 0 in Lq (Bε), so

lim sup
ε→0

∫

Bε

(
G (εy, uε)− G

(
εy, u2

ε

)
− G

(
εy, u1

ε

))
dy

= lim sup
ε→0

∣∣∣∣
∫

Bε

(
F (uε)− F

(
u1

ε

)
− F

(
u2

ε

))
dy

∣∣∣∣

≤ lim sup
ε→0

∫

Bε

(
C |uε|

τ
ΨN (uε) + ε |uε|

q)dy

≤ cε.

Due to ε being arbitrary, as ε → 0 we get
∫

Bε

(
F (uε)− F

(
u1

ε

)
− F

(
u2

ε

))
dy = o(1). So there is

C > 0 satisfies

Jε

(
u2

ε

)
≥ I

(
u2

ε

)
≥

1
N

∥∥u2
ε

∥∥N

Xε
+

1
q

∥∥u2
ε

∥∥q

Xε
− C

∫

RN
|uε|

τ
ΨN

(
u2

ε

)
dy − ε

∥∥u2
ε

∥∥q

Xε

≥
1

q · 2q−1 ‖u2
ε‖

q
Xε

− C
∥∥u2

ε

∥∥τ

Xε
.

Hence, by using τ > q, we get that Jε

(
u2

ε

)
≥ 0 for d > 0 small.

Step 3. Now, assume wε(y) := u1
ε

(
y + xε

ε

)
= ϕε(y)uε

(
y + xε

ε

)
. Up to a subsequence, we have

wε ⇀ w in Xε, wε → w almost everywhere in R
N . Next, we will prove that

wε → w in Lτ
(
R

N
)
,

where τ is given in (3.28). By contradiction, if there is r > 0 that satisfies

0 < 2r = lim inf
ε→0

sup
z∈RN

∫

B(z,1)
|wε − w|τ dy.

So there is zε ∈ R
N that satisfies

lim inf
ε→0

∫

B(zε,1)
|wε − w|τ > r.

It is easy to see that (zε) is unbounded. We may assume that |zε| = ∞ as ε → 0, then,

r ≤ lim inf
ε→0

∫

B(zε,1)
|wε|

τ dy,

i.e.
lim inf

ε→0

∫

B(zε,1)

∣∣∣ϕε(y)uε

(
y +

xε

ε

)∣∣∣
τ

dy ≥ r.

Using the same proof method as [9], for ε small enough, we have that |zε| ≤
β
2ε . Assume that

εzε → z0 ∈ B(0, β/2),
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w̃ε = wε (y + zε) ⇀ w̃ in Xε,

w̃ε → w̃ a.e. in R
N .

So w̃ 6≡ 0 and according to Step 1, w̃ satisfies

− ∆qw̃(y)− ∆Nw̃(y) + V (x + z0) |w̃(y)|q−2w̃(y) + V (x + z0) |w̃(y)|N−2w̃(y)

= f (w̃(y)), y ∈ R
N .

Using the same approach as Step 1, we obtain a contradiction for d > 0 small enough. There-
fore, wε → w in Lτ

(
R

N
)
.

Step 4. According to Step 3, it follows that

lim
ε→0

∫

RN
G
(

εx, u1
ε

)
dx = lim

ε→0

∫

RN
G (εx + xε, wε)dx

= lim
ε→0

∫

Λε−xε/ε
F (wε)dx =

∫

RN
F(w)dx.

(3.29)

By using wε ⇀ w in Xε, we have

lim
ε→0

Jε

(
u1

ε

)

≥ lim inf
ε→0

Iε

(
u1

ε

)

= lim inf
ε→0

1
N

∫

RN
(|∇wε(y)|

N + Vε|wε(y)|
N)dy +

1
q

∫

RN
(|∇wε(y)|

q + Vε|wε(y)|
q)dy

−
∫

RN
F (wε(y))dy

≥
1
N

∫

RN
(|∇w|N + m|w|N)dy −

∫

RN
F (w)dy +

1
q

∫

RN
(|∇w|q + m|w|q)dy

≥ cm. (3.30)

On the other hand, since limε→0 Jε (uε) ≤ cm, Jε

(
u2

ε

)
≥ 0 and (3.27), we have

lim sup
ε→0

Jε

(
u1

ε

)
≤ cm. (3.31)

Combining (3.30) and (3.31), we obtain that Jε(w) = cm. Similar to [25], we can obtain that
x ∈ M. So it is easy to see that w(y) = U(y − z), U ∈ Sm, z ∈ R

N .
Lastly, due to (3.29) and (3.31) and V(y) ≥ m on Λ, by using (3.30), we have

∫

RN

(
|∇w|N + m|w|N

)
dy ≥ lim sup

ε→0

∫

RN

(∣∣∣∇u1
ε (y)

∣∣∣
N
+ V(εy)|u1

ε (y)|
N

)
dy

≥ lim sup
ε→0

∫

RN

(∣∣∣∇u1
ε (y)

∣∣∣
N
+ m|u1

ε (y)|
N

)
dy

≥ lim sup
ε→0

∫

RN

(
|∇wε(y)|

N + m|wε(y)|
N
)

dy

and ∫

RN
(|∇w|q + m|w|q)dy ≥ lim sup

ε→0

∫

RN

(∣∣∣∇u1
ε (y)

∣∣∣
q
+ V(εy)|u1

ε (y)|
q
)

dy

≥ lim sup
ε→0

∫

RN

(∣∣∣∇u1
ε (y)

∣∣∣
q
+ m|u1

ε (y)|
q
)

dy

≥ lim sup
ε→0

∫

RN

(
|∇wε(y)|

q + m|wε(y)|
q
)

dy.
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Moreover, by using weak lower semi-continuity, we prove u1
ε → w in Xε. Especially, let

yε = z + x
ε , then u1

ε → U (· − yε) ϕε (· − yε) in Xε. So we get u1
ε → U (· − yε) ϕε (· − yε) in Xε.

In order to prove the desired conclusion, we only prove that u2
ε → 0 in Xε. Since {uε}ε is

bounded, for small ε > 0, it is easy to see from (3.19) that
∥∥u2

ε

∥∥
ε
≤ 4d. Now, using (3.27),

limε→0 Jε

(
u1

ε

)
= cm and the estimation of Jε

(
u2

ε

)
, we have that for some C > 0,

cm ≥ lim
ε→0

Jε (uε) ≥ cm +
∥∥u2

ε

∥∥q

Xε

(
1

q · 2q−1 − C(4d)τ−q

)
+ o(ε).

This proves that u2
ε → 0 in Xε, which completes the proof.

Lemma 3.12. For 0 < d2 < d1 small enough, there exist ω > 0 and ε0 > 0 that satisfy |J′ε(u)| ≥ ω,

where ε ∈ (0, ε0), u ∈ J c̃ε
ε ∩ (Yd1

ε \Yd2
ε ).

Proof. By contradiction, we can suppose 0 < d2 < d1 small enough, there are {ε i}
∞
i=1 with

limi→∞ ε i = 0 and uεi
∈ Yd1

εi
\Yd2

εi
satisfying limi→∞ Jεi

(uεi
) ≤ cm and limi→∞

∣∣J′εi
(uεi

)
∣∣ = 0. For

the convenience of description, we write ε for ε i. Due to Lemma 3.11, for some U ∈ Sm and
x ∈ M, there is {yε}ε ⊂ R

N such that

lim
ε→0

‖ϕε (· − yε)U (· − yε)− uε‖Xε
= 0 and lim

ε→0
|x − εyε| = 0.

It follows from Yε that limε→0 dist (Yε, uε)=0. Obviously contradictory because of uε /∈Yd2
ε .

According to Lemma 3.12, fix a d > 0 small enough, there exist ω > 0 and ε0 > 0 that
satisfy |J′ε(u)| ≥ ω, where ε ∈ (0, ε0), u ∈ J c̃ε

ε ∩ (Yd1
ε \ Yd2

ε ). So we have

Lemma 3.13. For ε > 0 small enough, we can find α > 0 satisfies Jε (γε(s)) ≥ cε − α, then γε(s) ∈

Yd/2
ε where γε(s) = Wε,st0(s).

Proof. For each s ∈ [0, 1], due to M
2β
ε ⊃ supp (γε(s)), we have Iε (γε(s)) = Jε (γε(s)). In

addition, it is easy to see that

Iε (γε(s)) =
1
q

∫

RN
(|∇γε(s)|

q + Vε|γε(s)|
q)dx +

1
N

∫

RN
(|∇γε(s)|

N + Vε|γε(s)|
N)dx

−
∫

RN
F(γε(s))dx

=
1
q

∫

RN
(|∇γε(s)|

q + m|γε(s)|
q)dx +

1
N

∫

RN
(|∇γε(s)|

N + m|γε(s)|
N)dx

+
1
q

∫

RN
(Vε(x)− m)|γε(s)|

q)dx +
1
N

∫

RN
(Vε(x)− m)|γε(s)|

N)dx

−
∫

RN
F(γε(s))dx

=
1
N

∫

RN
|∇U|Ndx +

(st0)
N−q

q

∫

RN
|∇U|qdx +

(st0)
N

N

∫

RN
m|U|Ndx

+
(st0)

N

q

∫

RN
m|U|qdx − (st0)

N
∫

RN
F(U)dx + O(ε).
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Using the Pohozǎev identity, we have

Jε (γε(s)) = Iε (γε(s))

=
1
N

∫

RN
|∇U|Ndx +

(st0)
N−q

q

∫

RN
|∇U|qdx −

N − q

Nq
(st0)

N
∫

RN
|∇U|qdx + O(ε)

=
1
N

∫

RN
|∇U|Ndx +

(
(st0)

N−q

q
−

N − q

Nq
(st0)

N

) ∫

RN
|∇U|qdx + O(ε).

Note that

cm =

(
tN−q

q
−

N − q

Nq
tN

) ∫

RN
|∇U|qdx +

1
N

∫

RN
|∇U|Ndx

and limε→0 cε = cm. Denote g1(t) = −N−q
Nq tN + tN−q

q , then

g′1(t)





< 0, t > 1,

= 0, t = 1,

> 0, t ∈ (0, 1).

So we have g′′1 (1) = q − N < 0, the conclusion follows.

Lemma 3.14. For ε > 0 small enough, we can find {un}
∞
n=1 ⊂ Yd

ε ∩ J c̃ε
ε satisfies as n → ∞,

J′ε (un) → 0.

Proof. According to Lemma 3.13, for ε > 0 small enough, due to ∃α > 0 satisfies Jε (γε(s)) ≥

cε − α. So γε(s) ∈ Yd/2
ε . Now, we assume that Lemma 3.14 is not true, then for ε > 0 small

enough, we can find a(ε) > 0 satisfies |J′ε(u)| ≥ a(ε) on Yd
ε ∩ J c̃ε

ε . Moreover, by using Lemma
3.12, we also can find ω > 0, independent of ε > 0, satisfies for u ∈ J c̃ε

ε ∩
(
Yd

ε \Yd/2
ε

)
, |J′ε(u)| ≥

ω. Therefore, recalling that limε→0 (cε − c̃ε) = 0, according to a deformation lemma, for ε > 0
small enough, we can construct a path γ ∈ Γε satisfying Jε(γ(s)) < cε, s ∈ [0, 1]. Obviously
contradictory.

Lemma 3.15. For ε > 0 sufficiently small, uε ∈ Yd
ε ∩ J c̃ε

ε is a critical point of Jε.

Proof. For ε > 0 sufficiently small. According to Lemma 3.14, there exists a sequence
{un,ε}∞

n=1 ⊂ Yd
ε ∩ J c̃ε

ε that satisfies, as n → ∞, |J′ε (un,ε)| → 0. Due to Yd
ε is bounded, so as

n → ∞, un,ε ⇀ uε in Xε. Using the same proof as [10, Proposition 3], we obtain that

0 = lim
R→∞

sup
n≥1

∫

|x|≥R

(
Vε |un,ε|

N + |∇un,ε|
N
)

dx (3.32)

and
0 = lim

R→∞
sup
n≥1

∫

|x|≥R

(
Vε |un,ε|

q + |∇un,ε|
q)dx, (3.33)

so as n → ∞, un,ε → uε in Lr
(
R

N
)
(N ≤ r < +∞). In addition, using ( f1)–( f2), we have

sup ‖ f (un,ε)‖ < ∞. Now, ∀ϕ ∈ C∞
0 (RN),

∫

RN
f (un,ε) (un,ε − uε) ϕdx → 0, n → ∞.

Using the same argument as in [21, Proposition 5.3], we have un,ε → uε in Xε as n → ∞.
Hence, uε ∈ Yd

ε ∩ J c̃ε
ε and J′ε (uε) = 0 in Xε. This completes the proof.
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Next, we will use Moser iteration in [27] to obtain L∞-estimate.

Lemma 3.16. Let (un) is the sequence in Lemma 3.11. Then, Jεn (un) → cm in R as n → ∞, and

there is some sequence (ŷn) ⊂ R
N that satisfies vn(·) := un (·+ ŷn) ∈ L∞

(
R

N
)

and |vn|L∞(RN) 6 C

for all n ∈ N.

Proof. Proceeding as in the proof of Lemmas 3.9 and 3.10, as n → ∞, we know that Jεn (un) →

cm in R. According to Lemma 3.11, as n → ∞, we can find (ŷn) ⊂ R
N satisfies vn(·) :=

un (·+ ŷn) → v(·) ∈ Xε and yn := εnŷn → y0 ∈ M.
For all L > 0 and β > 1, consider

φ (vn) = φL,β (vn) = vnv
N(β−1)
L,n ∈ Xε, vL,n = min {vn, L} .

Set

Φ(t) =
∫ t

0

(
φ′(t)

) 1
N dτ, Υ(t) =

|t|N

N
.

According to [5], we have

|Φ(a)− Φ(b)|N ≤ Υ′(a − b)(φ(a)− φ(b)), ∀a ∈ R, b ∈ R. (3.34)

According to (3.34), we have

|Φ (vn(x))− Φ (vn(y))|
N

≤ (vn(x)− vn(y))
((

vnv
N(β−1)
L,n

)
(x)−

(
vnv

N(β−1)
L,n

)
(y)
)
|vn(x)− vn(y)|

N−2 .
(3.35)

Therefore, taking φ (vn) = vnv
N(β−1)
L,n as a test function, we obtain that

∫

RN
|∇vn|

N−1φ (vn)dx +
∫

RN
|∇vn|

q−1φ (vn)dx

+
∫

RN
V (yn + εnx) |vn|

N−2 vnφ (vn)dx +
∫

RN
V (εnx + yn) |vn|

q−2 vnφ (vn)dx

=
∫

RN
f (εnx + yn, vn) φ (vn)dx.

Due to ( f1) and ( f2), ∀ε > 0, we can find C(ε) > 0 satisfies

| f (t)| ≤ ε|t|q−1 + C(ε)|t|N−1ΨN (t) , ∀t ∈ R.

According to method of [5], it is easy to get
∫

RN
|∇vn|

Nv
p(β−1)
L,n dx +

∫

RN
V (εnx + yn) |vn|

N v
p(β−1)
L,n dx ≤

∫

RN
f (vn) vnv

N(β−1)
L,n dx.

Since Φ (vn) ≥
1
β vnv

β−1
L,n , vnv

β−1
L,n ≥ Φ (vn) and the embedding from Xε → LN∗ (

R
N
)
(N∗

> N)
is continuous, so we can find S∗ > 0 that satifies

1
βN

S∗

∥∥∥vnv
β−1
L,n

∥∥∥
N

LN∗ (RN)
≤ S∗ ‖Φ (vn)‖

N
LN∗(RN) ≤ ‖Φ (vn)‖

N
Xε

. (3.36)

Since Xε → Lν
(
R

N
)
(ν ≥ N) is continuous, there exists Sν satisfying

Sν = inf
u 6=0,u∈Xε

‖u‖Xε

‖u‖Lν(RN)
, ν ≥ N.
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This implies
‖u‖LN(RN) ≤ S−1

N ‖u‖Xε , ∀u ∈ Xε. (3.37)

Then we obtain

‖Φ (vn)‖
N
m,X(RN) ≤ ε

∫

RN

∣∣∣vnv
β−1
L,n

∣∣∣
N

dx + C(ε)
∫

RN
ΨN (vn)

∣∣∣vnv
β−1
L,n

∣∣∣
p

dx

≤ εβN
∫

RN
|Φ (vn)|

N dx + C(ε)
∫

RN
ΨN (vn)

∣∣∣vnv
β−1
L,n

∣∣∣
N

dx

≤ εβNS−N
N ||Φ (vn) ‖

N
m,X(RN) + C(ε)

∫

RN
ΨN (vn)

∣∣∣vnv
β−1
L,n

∣∣∣
N

dx.

(3.38)

Choose 0 < ε < β−NSN
N , then (3.38) implies

1
βN

S∗

(
1 − εβNS−N

N

) ∥∥∥vnv
β−1
L,n

∥∥∥
N

LN∗ (RN)

≤ C(ε)

(∫

RN
(ΨN (vn))

q′ dx

) 1
q′
(∫

RN

∣∣∣vnv
β−1
L,n

∣∣∣
qN

dx

) 1
q

.

Now, by the Trudinger–Moser inequality with N << q such that N∗
> qN = N∗∗. Note that,

q′ near 1 but q′ > 1. So we can find D > 0 satisfies

∥∥∥vnv
β−1
L,n

∥∥∥
N

LN∗ (RN)
≤ DβN

∥∥∥vnv
β−1
L,n

∥∥∥
N

LqN(RN)
.

Let L → +∞, we obtain
‖vn‖LN∗β ≤ D

1
Nβ β

1
β ‖vn‖LN∗∗β(RN) . (3.39)

Let β = N∗

N∗∗ > 1. Then β2N∗∗ = βN∗. Replace β with β2, (3.39) holds. Hence,

‖vn‖LN∗β2 ≤ D
1

Nβ2 β
2

β2 ‖vn‖LN∗∗
β2(RN)

= D
1

Nβ2 β
2

β2 ‖vn‖LN∗β(RN)

≤ D
1
N

(
1
β+

1
β2

)

β
1
β+

2
β2 ‖vn‖LN∗∗β(RN) .

(3.40)

Now iterating the process, as shown in (3.40), for any positive integer m, we get that

‖vn‖LN∗βσ ≤ D

σ

∑
j=1

1
Nβj

β

σ

∑
j=1

jβ−j

‖vn‖LN∗∗β(RN) . (3.41)

Taking the limit in (3.41) as σ → ∞, we have

‖vn‖L∞(RN) ≤ C

for all n, where C = D

∞

∑
j=1

1
Nβj

β∑
∞
j=1 jβ−j

sup
n

‖vn‖LN∗∗β(RN) < +∞.

Proof of Theorem 1.1. For ε ∈ (0, ε0), according to Lemma 3.15, there are d, ε0 > 0 that satisfy
Jε has a critical point uε ∈ Yd

ε ∩ Γ
c̃ε
ε . Since uε satisfies

−∆Nuε − ∆quε + V(εx)(|uε|
N−2uε + |uε|

q−2uε) = f (uε) + 4
(∫

RN
χεu

p
ε dx − 1

)

+

χεuε in R
N .
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When t ≤ 0, we know f (t) = 0. So uε > 0 in R
N . In addition, by using Lemma 3.16, it is easy

to get {‖uε‖L∞}ε is bounded. Now by using Lemma 3.11, we have

lim
ε→0

[
1
N

(∫

RN\M2δ
ε

|∇uε|
N + Vε (uε)

N dx

)
+

1
q

(∫

RN\M2δ
ε

|∇uε|
q + Vε (uε)

q dx

)]
= 0.

According to elliptic estimates in [20], we know

lim
ε→0

‖uε‖L∞(RN\M2δ
ε ) = 0.

Similar to [35], there are C > 0, c > 0 that satisfy

u(x) ≤ Ce−c|x|.

In fact, by using the Radial Lemma in [7], one has

u(x) ≤ C
‖u‖LN

|x|
, ∀x 6= 0,

here C is related to N, p. Therefore, for u ∈ Sm, we have lim|x|→∞ u(x) = 0 uniformly.
According to the comparison principle, we have that C > 0, c > 0 satisfy

u(x) ≤ Ce−c|x|, ∀x ∈ R
N .

According to a comparison principle, for some C, c > 0, we obtain that

uε(x) ≤ C exp
(
−c dist

(
x,M2δ

ε

))
.

So Qε (uε) = 0, then uε satisfies (1.1). Lastly, assume uε has a maximum point xε. According
to Lemma 3.8 and Lemma 3.11, for some x ∈ M, we get that εxε → x as ε → 0. Moreover, as
to C > 0, c > 0,

uε(x) ≤ Ce−c|x−xε|.

This completes the final proof.
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Abstract. In this work we study a Nicholson-type periodic system with variable delay,
density-dependent mortality and linear harvesting rate. Using the topological degree
and Lyapunov stability theories, we obtain sufficient conditions that allow us to demon-
strate the existence of periodic solutions for the Nicholson-type system and, under suit-
able conditions, the uniqueness and local exponential stability of the periodic solution
is established. We illustrate our results with an example and numerical simulations.

Keywords: Nicholson type systems, delay differential systems, periodic solutions, ex-
ponential stability.
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1 Introduction

In recent years, the question of the existence of periodic solutions for Nicholson-type sys-
tems with periodic coefficients has received the attention of many researchers. This class of
systems of differential equations with delays was introduced as a coupled patch population
model for marine protected areas and B-cell chronic lymphocytic leukemia [7]. However, it
has been pointed out that the new models applied to the fishery must consider nonlinear
density-dependent mortality rates [6]. Consequently, research on Nicholson-type equations
and systems with density-dependent mortality has developed rapidly. But despite that, few
studies have considered periodic Nicholson models with density-dependent mortality and
harvesting. The goal of this article is to investigate the existence and stability of positive
periodic solutions for a m-dimensional Nicholson-type system with periodic coefficients, non-
linear mortality rates, and linear harvesting.

BCorresponding author. Email: daniel.sepulveda@utem.cl
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1.1 The Nicholson models

In [16] Gurney, Blythe and Nisbet proposed a model to describe the behavior of a population
of flies that had been studied in the 1950s by Nicholson [27]. The model corresponds to the
following delayed differential equation

ẋ(t) = −mx(t) + bx(t − τ) exp
{

−γ−1x(t − τ)
}

, (1.1)

where x is the density of the adult population, m is the per capita mortality rate, b the maxi-
mum birth rate, τ is the time to maturity and γ indicates where the unimodal function reaches
its maximum. Equation (1.1) is known as the Nicholson model.

In [7] Berezansky, Idels and Troib studied the dynamics of metapopulation models with
migration between two patches. Within the models studied, the authors considered a model
of a marine population, with an age structure that inhabits two areas, one protected and the
other for extraction. From this model, they obtained the system of differential equations with
delay:

ẋ1(t) = −(m1 + d1)x1(t) + b1x1(t − τ) exp
{

−γ−1
1 x1(t − τ)

}

+ d2x2(t)

ẋ2(t) = −(m2 + d2 + h)x2(t) + b2x2(t − τ) exp
{

−γ−1
2 x2(t − τ)

}

+ d1x1(t),
(1.2)

where xi corresponds to the densities of adult populations, mi are the per capita mortality
rates, di are the diffusion rates between patches, bi are the maximum birth rates, γi indicates
where the unimodal functions reaches its maximum, τ is the time to maturity, and h is the
harvesting rate. Due to the presence of a nonlinear birth rate that considers delay, models
similar to (1.2) are known as Nicholson-type systems.

The model (1.2) has been extended to the non-autonomous case to consider variations due
to the passage of time, such as the seasons of the year, which has led to the study of periodic
and almost periodic solutions, see [14, 15, 22, 28, 29, 35].

Since the model (1.2) allows predicting the dynamics of an adult population, it is relevant
to include some types of harvesting in them so that they can be applied in models of fishery or
agricultural livestock production. Different authors have considered Nicholson-type equations
and systems with linear harvesting [13,24,38] and nonlinear harvesting [1,4,5] among others.

Berezansky, Braverman, and Idels in [6] mention that for marine populations at low den-
sities it is appropriate a linear model of density-dependent mortality and that new fishery
models must consider nonlinear density-dependent mortality rates. Afterward, research on
Nicholson-type equations and systems with density-dependent mortality has been developing
rapidly, see [3, 8, 9, 19, 23, 25, 30, 33]. However, the study of periodic Nicholson models with
density-dependent nonlinear mortality and harvesting terms have not yet been sufficiently
explored and this work aims to contribute in this direction.

1.2 Novelty of this work

We consider a Nicholson-type system with nonlinear density-dependent mortality, linear har-
vesting terms, and several concentrated delays of the form

x′i(t) = −
δii(t)xi(t)

cii(t) + xi(t)
+

n

∑
j=1

bij(t)r(xi(t − τij(t))) +
m

∑
j=1,j 6=i

δij(t)xj(t)

cij(t) + xj(t)
− hi(t)xi(t) (1.3)
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where r(x) = x exp(−x), and δij , cij, bij , τij, hi : R → (0,+∞) , i = 1, . . . , m, j = 1, . . . , n, are
bounded, continuous and ω–periodic functions.

Note that the above system includes the case where each patch considers a different Ricker-
type function, namely ri(yi) = yie

−γ−1
i yi . In fact, in this case the system (1.3) is obtained by

making the change of variable yi = γixi.
Our objective is to apply topological degree and Lyapunov stability theory to the system

(1.3) to determine the conditions that guarantee the existence and exponential stability of
periodic solutions of the system.

1.3 Outline

Section 2 deals with fundamental preliminary aspects of this work, particularly the theory of
differential equations with delay and a theorem of continuation of the topological degree; In
addition, a result of the existence of solutions and a priori estimates are obtained. Section 3
establishes the main results of this work: Theorem 3.1 provides sufficient conditions for the
existence of positive periodic solutions, while Theorems 3.3 and 3.5 prove the local asymp-
totic and exponential stability, respectively. Section 4 focuses on an example and its numerical
simulations. Section 5 is dedicated to the conclusions and discussion of the results, particu-
larly the possible extension of the present study to one involving nonlinear harvesting terms
previously considered in population models, see [18, 34].

2 Preliminaries

2.1 Delay differential equations

Time delays occur naturally in many population dynamical models and their presence is due,
among others, to factors like sexual maturity or gestation. Mathematical models with time-
delays has a significant role in population dynamics, we refer the reader to [12, 26, 32, 36].
Delayed differential equations may exhibit more complex dynamics than ODE’s because of
the presence of delay may induce a Hopf bifurcation, periodic and oscillatory solutions or
chaos, see [17, 21, 36].

We introduce some definitions and notation for delay differential equations. For τ ≥ 0,
we consider C = C([−τ, 0], R

m) the Banach space with the norm ‖ϕ‖τ = sup−τ≤θ≤0 ‖ϕ(θ)‖,
where ‖ · ‖ is the maximum norm in R

m. Any vector v ∈ R
m is identified in C with the constant

function v(θ) = v for θ ∈ [−τ, 0]. A general system of functional differential equations take
the form

ẋ(t) = f (t, xt), (2.1)

where f : R × C ⊃ D 7→ R
m and xt corresponds to the translation of a function x(t) on the

interval [t − τ, t] to the interval [−τ, 0], more precisely xt ∈ C is given by xt(θ) = x(t + θ), θ ∈

[−τ, 0].
A function x is said to be a solution of system (2.1) on [−τ, A) if there is A > 0 such

that x ∈ C([−τ, A), R
m), (t, xt) ∈ D and x(t) satisfies (2.1) for t ∈ [0, A). For given φ ∈ C,

we say x(t; 0, φ) is a solution of system (2.1) with initial value φ at 0 if there is an A > 0
such that x(t; 0, φ) is a solution of equation (2.1) on [−τ, A) and x0(t; 0, φ) = φ. In addition,
for a given continuous and bounded function f ∈ C(R, R) we will denote by f+ and f−

respectively, the supremum and infimum of f over R. Now, for system (1.3) we consider
τ := max{τ+

ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
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Since nonnegative solutions are significant for population models, the following subsets of
C are often introduced :

C+ := C([−τ, 0], R
m
+), C0 := {φ ∈ C+ : φi(0) > 0, 1 ≤ i ≤ m}.

Theorem 2.1. The system (1.3) has a unique nonnegative solution defined over [−τ,+∞) for each

initial condition φ ∈ C+.

Proof. We will denote by Fi(t, x(t), x(t − τi1(t)), . . . , x(t − τij(t))) the right hand side of system
(1.3) and x(t) = (x1(t), . . . , xm(t))T, then (1.3) can be written as,

ẋ(t) = F(t, x(t), x(t − τ11(t)), . . . , x(t − τmn(t))), (2.2)

where F : R+ × (Rm
+)

mn+1 → R
m. We denote Fx to the derivative of F respect to the state x(t),

consequently the map Fx : R+ × (Rm
+)

mn+1 → M(R)m×m defined by

Fx =











F1/∂x1 F1/∂x2 . . . F1/∂xm

F2/∂x1 F2/∂x2 . . . F2/∂xm
...

... . . .
...

Fm/∂x1 Fm/∂x2 . . . Fm/∂xm











is continuous over R+× (Rm
+)

mn+1. Now, applying Theorems 3.1 and 3.2 of [36], it follows that
the system (1.3) has a unique solution defined over a maximal interval, for each initial condi-
tion φ ∈ C+. In order to show that x(t; 0, φ) takes nonnegative values, we fix i ∈ {1, . . . , m} and
t in the maximal interval, in addition we assume that entries of the function F are nonnegative
vectors while x ∈ R

m
+ is such that xi = 0, then

Fi(t, x, ·) = −
δii(t)xi

cii(t) + xi
+

n

∑
j=1

bij(t)r(·) +
m

∑
j=1,j 6=i

δij(t)xj

cij(t) + xj
− hi(t)xi

=
n

∑
j=1

bij(t)r(·) +
m

∑
j=1,j 6=i

δij(t)xj

cij(t) + xj
≥ 0.

Consequently, each nonnegative initial condition φ has a corresponding solution x(t; 0, φ) that
takes nonnegative values for t in the maximal interval. Now we will prove that the solutions
of (1.3), corresponding to nonnegative initial conditions, are defined for all t ≥ 0. Otherwise,
they would be defined over an interval [−τ, A), where 0 < A < ∞. Since x(t) is a solution of
(1.3), it follows that xi(t) satisfies

x′i(t) = −
δii(t)xi(t)

cii(t) + xi(t)
+

n

∑
j=1

bij(t)r(xi(t − τij(t))) +
m

∑
j=1,j 6=i

δij(t)xj(t)

cij(t) + xj(t)
− hi(t)xi(t)

≤
n

∑
j=1

bij(t)r(xi(t − τij(t))) +
m

∑
j=1,j 6=i

δij(t)xj(t)

cij(t) + xj(t)

≤
n

∑
j=1

b+ij e−1 +
m

∑
j=1,j 6=i

δ+ij .

Whence, integrating the above estimation we obtain

xi(t) ≤ xi(0) +

(

n

∑
j=1

b+ij e−1 +
m

∑
j=1,j 6=i

δ+ij

)

t, 0 ≤ t < A.

This estimates ensure that A = +∞, because if A < +∞ then |x(t)| → ∞ as t → A, contra-
dicting the estimates.
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2.2 Topological degree and periodic functions

We begin this subsection by recalling some definitions and notations that will be used in this
work. The closure and the boundary of a subset A of a topological space will be denoted
respectively by A and ∂A. Let

Cω := {x(t) = (xi(t)) ∈ C(R, R
m) : x(t + ω) = x(t) for all t ∈ R}

the Banach space of the continuous vector functions ω periodic with the norm

‖x‖ = max
1≤i≤m

{

sup
t∈[0,ω]

‖xi(t)‖

}

.

It is useful consider the usual notation for the natural embedding R
m → Cω given by

y → y, where y(t) = y for t ∈ R. Given a continuous function and ω periodic f ∈ C(R, R)

notice that f+ and f− coincide, respectively, with the maximum and the minimum value of f

over the interval [0, ω].
The existence of periodic solutions of the system (1.3) will be proved as a consequence of

a general continuation theorem, see [2, Theorem 6.3], in our case we consider:

Lemma 2.2. Assume there exists an open bounded Ω ⊂ Cω such that:

i) The system

x′(t) = λF(t, x(t), x(t − τ11(t)), . . . , x(t − τmn(t))) (2.3)

has no solutions on ∂Ω for λ ∈ (0, 1).

ii) g(x) 6= 0 for x ∈ ∂Ω ∩ R
m, where g = (gi) : R

m → R
m is given by

gi(x) =
1
ω

∫ ω

0

(

δii(t)xi

cii(t) + xi
−

n

∑
j=1

bij(t)r(xi)−
m

∑
j=1,j 6=i

δij(t)xj

cij(t) + xj
+ hi(t)xi

)

dt.

iii) degB(g, Ω ∩ R
m, 0) 6= 0.

Then there exist at least one solution of (1.3) in Ω.

To study conditions ii) and iii) is useful introduce additional notation, let Im = Πm
i=1[ai, bi]

be a bounded and closed subset of R
m and x = (xi) ∈ R

m, for each 1 ≤ i ≤ m let us denote

I−i := {x ∈ Im : xi = ai}, I+i := {x ∈ Im : xi = bi},

the i-th opposite faces. Condition iii) of the lemma 2.2 will be obtained by the construction of
an affine isomorphism homotopic to g combined with the homotopy invariance property of
the Brouwer degree.

2.3 A priori bounds

To prove the existence of a periodic solution of (1.3) by using the theory of topological degree
we need to find some a priori bounds for any ω-periodic solution of the system (2.3). Next,
we will state some propositions related to upper and lower a priori bounds that will be useful
when proving the existence of positive periodic solutions of (1.3). To obtain the existence of
upper bounds for the solutions of the system (2.3) we consider the following assumption:
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(H1) The coefficients of the system satisfy:

min
ξ∈[0,ω]

(

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)

)

> 0, i = 1, . . . , m.

Proposition 2.3. If (H1) holds, then every non-negative ω-periodic solution of (2.3) is bounded above

for any λ ∈ (0, 1).

Proof. Let (xi(t)) an ω-periodic solution of (2.3) and x+i = Ri ≥ x+j , for i 6= j let ξ ∈ [0, ω] such

that x+i = xi(ξ), since x′i(ξ) = 0 it follows that

0 = λ

[

−
δii(ξ)xi(ξ)

cii(ξ) + xi(ξ)
+

n

∑
j=1

bij(ξ)r(xi(ξ − τij(ξ))) +
m

∑
j=1,j 6=i

δij(ξ)xj(ξ)

cij(ξ) + xj(ξ)
− hi(ξ)xi(ξ)

]

.

Now, combining the monotonicity of the map u 7→ δu
c+u , the assumptions over the functions

bij(·), δij(·), cij(·), hi(·) and, the fact that r(u) ≤ 1
e for u ∈ R

+ we obtain

0 ≥
δii(ξ)R

cii(ξ) + R
−

1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)R

cij(ξ) + R
.

Next, adding and subtracting the terms δii(ξ) + ∑
m
j=1,j 6=i δij(ξ), we can assert that

0 ≥

(

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)

)

− δ+ii

(

1 −
R

cii(ξ) + R

)

+
m

∑
j=1,j 6=i

δ−ij

(

1 −
R

cij(ξ) + R

)

.

The above inequality implies

0 ≥

(

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)

)

− δ+ii

(

1 −
R

cii(ξ) + R

)

. (2.4)

On the other hand, (H1) and the continuity of the coefficients imply that there is ζ > 0 such
that

min
ξ∈[0,ω]

(

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)− ζ

)

> 0. (2.5)

Note that limR→∞

(

1 − R
cii(ξ)+R

)

= 0 uniformly on ξ ∈ [0, ω], so there exists R ≫ 0 such that

− ζ ≤ −δ+ii

(

1 −
R

cii(ξ) + R

)

< 0, ξ ∈ [0, ω]. (2.6)

Now, for R ≫ 0 taking the minimum in (2.4), by using the estimations (2.5) and (2.6) we obtain
the contradiction

0 ≥ min
ξ∈[0,ω]

[

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)− δ+ii

(

1 −
R

cii(ξ) + R

)

]

> 0.

Consequently there is a positive number R0 such that

xi(t) < R0, for t ∈ R and i = 1, 2, . . . , m. (2.7)
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To study the a priori lower bounds for the solutions of the system (2.3) we will proceed in a
similar way to the proof of the proposition 2.3, but this time the key hypothesis is:

(H2) For i = 1, 2, . . . , m we have:

max
η∈[0,ω]

(

δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

)

< 0.

Proposition 2.4. If (H1) and (H2) hold, then every positive ω-periodic solution of (2.3) is bounded

below by a positive constant for any λ ∈ (0, 1).

Proof. Consider ε = min{x−1 , x−2 , . . . , x−m} and, without loss of generality, we suppose that
xi(η) = ε for some η ∈ [0, ω], then we obtain x′i(η) = 0 whence

0 =
δii(η)xi(η)

cii(η) + xi(η)
−

n

∑
j=1

bij(η)r(xi(η − τij(η)))−
m

∑
j=1,j 6=i

δij(η)xj(η)

cij(η) + xj(η)
+ hi(η)xi(η). (2.8)

Since (H1) holds, proposition 2.3 implies that the periodic solutions of (2.3) are bounded from
above by R0.

We assume that R0 ≥ 1 and consider ρ0 as the unique value in (0, 1] such that r(ρ0) =

r(R0). We may suppose that ε ≤ ρ0 since otherwise, we have trivially a lower bounds for the
solutions of (2.3), from ρ0 < xi(t), for t ∈ R. Now, since ε ≤ ρ0, it follows

ε ≤ xi(η − τij(η)) ≤ R0, and r(xi(η − τij(η))) ≥ r(ε), 1 ≤ j ≤ n.

By adding and subtracting the terms δii(η)ε
cii(η)

, ∑
n
j=1 bij(η)ε, and ε ∑

m
j=1,j 6=i

δij(η)

cij(η)
to equation (2.8),

we obtain

0 =
δii(η)ε

cii(η) + ε
−

n

∑
j=1

bij(η)r(xi(η − τij(η)))−
m

∑
j=1,j 6=i

δij(η)xj(η)

cij(η) + xj(η)
+ hi(η)ε

≤
δii(η)ε

cii(η) + ε
−

n

∑
j=1

bij(η)εe−ε −
m

∑
j=1,j 6=i

δij(η)ε

cij(η) + ε
+ hi(η)ε

=
δii(η)ε

cii(η)
−

n

∑
j=1

bij(η)ε − ε
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)ε

− δii(η)ε

(

1
cii(η)

−
1

cii(η) + ε

)

+
n

∑
j=1

bij(η)ε(1 − e−ε)

+
m

∑
j=1,j 6=i

δij(η)ε

(

1
cij(η)

−
1

cij(η) + ε

)

≤
δii(η)ε

cii(η)
−

n

∑
j=1

bij(η)ε − ε
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)ε

+
n

∑
j=1

b+ij ε(1 − e−ε) +
m

∑
j=1,j 6=i

δ+ij ε

(

1
cij(η)

−
1

cij(η) + ε

)

.

Since ε > 0, the above inequality is equivalent to

0 ≤
δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

+
n

∑
j=1

b+ij (1 − e−ε) +
m

∑
j=1,j 6=i

δ+ij

(

1
cij(η)

−
1

cij(η) + ε

)

.

(2.9)
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On the other hand, (H2) and the continuity of the coefficients imply that there is ζ > 0 such
that

max
η∈[0,ω]

(

δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η) + ζ

)

< 0.

Note that there exists 0 < ε ≪ 1 such that

0 <

n

∑
j=1

b+ij (1 − e−ε) +
m

∑
j=1,j 6=i

δ+ij

(

1
cij(η)

−
1

cij(η) + ε

)

≤ ζ, η ∈ [0, ω].

Therefore, for ε > 0 arbitrarily small values we obtain

0 ≤ max
η∈[0,ω]

[

δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

+
n

∑
j=1

b+ij (1 − e−ε) +
m

∑
j=1,j 6=i

δ+ij

(

1
cij(η)

−
1

cij(η) + ε

)

]

< 0,

a contradiction. Consequently there is a positive number ε0 such that

ε0 < xi(t) < R0, for t ∈ R and i = 1, 2, . . . , m.

3 Results

In this section, we address the problem of the existence and local stability of positive periodic
solution for (1.3). We prove the existence of at least one periodic solution of the system (1.3)
under assumptions (H1) and (H2) by using the degree topological theory.

Theorem 3.1. Assume that (H1) and (H2) hold. Then system (1.3) has at least one ω-periodic positive

solution.

Proof. The proof of this result is supported by lemma 2.2. Since (H1) and (H2) hold, we apply
propositions 2.3 and 2.4 to obtain lower and upper bounds for the periodic solutions of (2.3)
for all λ ∈ (0, 1). Next define the set Ω ⊂ Cω as

Ω := {(xi(t)) ∈ Cω : ε0 < xi(t) < R0, t ∈ [0, ω], i = 1, 2, . . . , m}, (3.1)

where the positive constants R0 and ε0 are, respectively, the upper and lower bounds given
by propositions 2.3 and 2.4, we note that Ω ∩ R

m = (ε0, R0)m. As a consequence of these
propositions, it follows that the system (2.3) has no solution in ∂Ω for any λ ∈ (0, 1). We will
prove that there are positive constants ε and R such that g(x) 6= 0 for x ∈ ∂I, where I = [ε, R]m.

We recall that, for i = 1, 2, . . . , m and x = (xi) ∈ R
m, we have

gi(x) =
1
ω

∫ ω

0

(

δii(t)xi

cii(t) + xi
−

n

∑
j=1

bij(t)r(xi)−
m

∑
j=1,j 6=i

δij(t)xj

cij(t) + xj
+ hi(t)xi

)

dt. (3.2)

From the definition of gi(x), considering the notation 1 = (1, 1, . . . , 1), it follows that for
z ∈ I−i we obtain

gi(z) =
1
ω

∫ ω

0

(

δii(t)ε

cii(t) + ε
−

n

∑
j=1

bij(t)r(ε)−
m

∑
j=1,j 6=i

δij(t)zj

cij(t) + zj
+ hi(t)ε

)

dt

≤
ε

ω

∫ ω

0

(

δii(t)

cii(t) + ε
−

n

∑
j=1

bij(t)e
−ε −

m

∑
j=1,j 6=i

δij(t)

cij(t) + ε
+ hi(t)

)

dt

= gi(ε1).
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Analogously to the estimates made in the proof of proposition 2.4, we deduce that

gi(ε1) ≤ max
η∈[0,ω]

[

δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

+
n

∑
j=1

b+ij (1 − e−ε) +
m

∑
j=1,j 6=i

δ+ij

(

1
cij(η)

−
1

cij(η) + ε

)

]

.

From (H2), it follows that there exists some 0 < ε ≪ 1 such that

max
η∈[0,ω]

[

δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

+
n

∑
j=1

b+ij (1 − e−ε) +
m

∑
j=1,j 6=i

δ+ij

(

1
cij(η)

−
1

cij(η) + ε

)

]

< 0.

Therefore, there exists a positive number ε1 such that if ε ≤ ε1 we have

gi(z) ≤ gi(ε1) < 0 for z ∈ I−i . (3.3)

On the other hand, if z ∈ I+i then

gi(z) =
1
ω

∫ ω

0

(

δii(t)R

cii(t) + R
−

m

∑
j=1,j 6=i

δij(t)zj

cij(t) + zj
−

n

∑
j=1

bij(t)r(R) + hi(t)R

)

dt

≥
1
ω

∫ ω

0

(

δii(t)R

cii(t) + R
−

m

∑
j=1,j 6=i

δij(t)R

cij(t) + R
−

n

∑
j=1

bij(t)Re−R + hi(t)R

)

dt

= gi(R1).

Since r(R) ≤ 1
e for R ∈ R

+ and analogously to the estimates made in the proof of proposition
2.3, for z ∈ I+i we obtain

gi(R1) > min
ξ∈[0,ω]

[

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)− δ+ii

(

1 −
R

cii(ξ) + R

)

]

.

From (H1), it follows that there exists some R > R0 such that

min
ξ∈[0,ω]

[

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)− δ+ii

(

1 −
R

cii(ξ) + R

)

]

> 0.

Hence there is R1 > 0 such that if R ≥ R1, then

gi(z) ≥ gi(R1) > 0 for z ∈ I+i . (3.4)

We have proved that if ε < ε1 and R > R1, then g(x) 6= 0 for x ∈ ∂I, where I = [ε, R]m.
We claim that g is homotopic to an affine isomorphism. In fact we consider A : R

m → R
m

defined by

A(x) = b + Mx,
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where b ∈ R
m and the diagonal matrix M ∈ Mm×m are completely defined by the systems of

linear equation

bi + miiε = gi(ε1),

bi + miiR = gi(R1).

It follows immediately that mii = (gi(R1)− gi(ε1))/(R − ε) > 0, and bi = gi(ε1)− mii < 0.
Furthermore, there is a unique vector x = (xi) with xi ∈ (ε, R) satisfying bi + miixi = 0,
hence x is the unique vector in the interior of I such that A(x) = 0. Next we define the map
H : R

m × [0, 1] → R
m given by

H(x, σ) = σg(x) + (1 − σ)A(x),

which is a homotopy between A and g. Since sign g(I+i ) = signA(I+i ) and sign g(I−i ) =

signA(I−i ) it follows that H(·, σ) does not vanish on ∂I for any σ ∈ [0, 1], and we conclude that
g is homotopic to the affine isomorphism A. The homotopy invariance property of Brouwer
degree implies that

degB(g, Ω ∩ R
m, 0) = degB(A, Ω ∩ R

m, 0),

and by the definition of Brouwer degree it follows that

degB(A, Ω ∩ R
m, 0) = sign (det(DA(x))) = sign

(

m

∏
i=1

mii

)

= 1.

Finally we apply Lemma 2.2 to conclude that the system (1.3) has at least one solution
x(t) ∈ Ω.

Remark 3.2. Several types of delayed harvesting terms have been considered for the Nicholson
scalar equation. If we modify the harvesting terms hi(t)xi(t) in our model to delayed terms
similar to those used in the work of Qiyuan Zhou in [38], then we obtain the system

x′i(t) = −
δii(t)xi(t)

cii(t) + xi(t)
+

n

∑
j=1

bij(t)r(xi(t − τij(t)))

+
m

∑
j=1,j 6=i

δij(t)xj(t)

cij(t) + xj(t)
−

n

∑
j=1

hij(t)xi(t − τij(t)).

(3.5)

Then it is possible to obtain a result analogous to proposition 2.4 and theorem 3.1 considering
(H1) and changing (H2) by:

(H2’) There exists a positive upper bound R0 for the solutions of system (3.5), such that for
i = 1, 2, . . . , m we have:

max
η∈[0,ω]

(

δii(η)

cii(η)
−

m

∑
j=1,j 6=i

δij(η)

cij(η)
+ R0

n

∑
j=1

[

hij(η)− bij(η)e
−R0

]

)

< 0.

Next, we will address the asymptotic and exponential stability of the system (1.3). As is
common in the literature on Nicholson-type models, our results are obtained by constructing
appropriate Lyapunov functions. We define the region of stability of the solutions of our
system as the set

B = {(xi(t)) ∈ C(R, R
m) : 0 < xi(t) < Ki, i = 1, 2, . . . , m}. (3.6)

To achieve our stability results, we assume the following:
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(H3) The delays involve in the model (1.3) are continuously differentiable and satisfy:

τ′
ij(t) ≤ τ∗

ij < 1, (i, j) ∈ {1, . . . , m} × {1, . . . , n}.

(H4) For i = 1, 2, . . . , m we have

δ−ii c−ii
(c+ii + Ki)2

>

m

∑
j=1,j 6=i

δ+ij c+ij

(c−ij )
2
− h−i +

n

∑
j=1

b+ij

1 − τ∗
ij

.

Now we state and prove our first stability theorem.

Theorem 3.3. If assumptions (H1)–(H4) hold, then there is a unique asymptotically stable ω-periodic

solution of system (1.3) in B.

Proof. Let x(t) = (xi(t)) and y(t) = (yi(t)) two solutions in B of system (1.3). We consider the
functions:

Vi(t) = |yi(t)− xi(t)|+
n

∑
j=1

b+ij

1 − τ∗
ij

∫ t

t−τij(t)
|yi(s)− xi(s)|ds, i = 1, 2, . . . , m.

Calculating the upper right Dini derivative of Vi(t) along the solutions of (1.3), since 0 ≤

xi(t), yi(t) ≤ Ki and |r′(x)| ≤ 1 for x ∈ [0,+∞), then proceeding similarly to theorem 2 in [31]
we have

D+Vi(t) ≤ −
δii(t)cii(t)|yi(t)− xi(t)|

(cii(t) + yi(t))(cii(t) + xi(t))
+

m

∑
j=1,j 6=i

δij(t)cij(t)|yj(t)− xj(t)|

(cij(t) + yi(t))(cij(t) + xi(t))

+
n

∑
j=1

bij(t)|r(yi(t − τij(t)))− r(xi(t − τij(t)))| − hi(t)|yi(t)− xi(t)|

+
n

∑
j=1

b+ij

1 − τ∗
ij

|yi(t)− xi(t)| −
n

∑
j=1

b+ij

1 − τ∗
ij

|y1(t − τij(t))− xi(t − τij(t))|(1 − τ′
ij(t)).

Notice that assumption (H3) implies that

1 <
1 − τ′

ij(t)

1 − τ∗
ij

,

hence we obtain the following estimate

D+Vi(t) ≤ −
δ−ii c−ii |yi(t)− xi(t)|

(c+ii + Ki)2
+

m

∑
j=1,j 6=i

δ+ij c+ij |yj(t)− xj(t)|

(c−ij )
2

+
n

∑
j=1

b+ij |y1(t − τij(t))− xi(t − τij(t))| − h−i |yi(t)− xi(t)|

+
n

∑
j=1

b+ij
|yi(t)− xi(t)|

1 − τ∗
ij

−
n

∑
j=1

b+ij |yj(t − τij(t))− xi(t − τij(t))|

≤

(

−
δ−ii c−ii

(c+ii + Ki)2
− h−i +

n

∑
j=1

b+ij

1 − τ∗
ij

)

|yi(t)− xi(t)|

+
m

∑
j=1,j 6=i

δ+ij c+ij

(c−ij )
2
|yj(t)− xj(t)|.
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Now, we define the Lyapunov functional V(t) := ∑
m
i=1 Vi(t), and by a straightforward compu-

tation of the corresponding sums it follows

D+V(t) ≤
m

∑
i=1

(

−
δ−ii c−ii

(c+ii + Ki)2
− h−i +

n

∑
j=1

b+ij

1 − τ∗
ij

+
m

∑
j=1,j 6=i

δ+ij c+ij

(c−ij )
2

)

|yi(t)− xi(t)|.

Hypothesis (H4) ensure the existence of a positive constant µ such that

D+V(t) ≤ −µ
m

∑
i=1

|yi(t)− xi(t)|, t ≥ 0,

then we get

V(t) + µ
∫ t

0

m

∑
i=1

|yi(s)− xi(s)|ds ≤ V(0) < +∞, t ≥ 0,

and
∫ t

0

m

∑
i=1

|yi(s)− xi(s)|ds ≤
V(0)

µ
< +∞, t ≥ 0. (3.7)

It follows that Hi(s) := |yi(s)− xi(s)| ∈ L1([0,+∞]), 1 ≤ i ≤ m and, since Hi(t) are uniformly
continuous in [0,+∞), we can apply the Barbalat’s Lemma [20, Lemma 8.2] to conclude:

lim
t→+∞

m

∑
i=1

|yi(t)− xi(t)| = 0.

Therefore, all solution of the system (1.3) in B converge to an ω-periodic solution, hence there
is a unique periodic solution of (1.3) in B.

Remark 3.4. Note that in the proof of theorem (3.3), we use arguments similar to those pre-
sented in the proof of theorem (4.5) of [37]. Both results are supported by considering the
derivative of Dini and the definition of an adequate Lyapunov functional, in addition to the
uniform continuity of the integrands of (3.7) of our proof, equivalent to the integrand given
in (4.13) of the proof used in [37]. These are key aspects in the literature on stability in
Nicholson-type models, see for instance [13] and references therein.

In order to state and prove our second stability theorem we define, for i = 1, . . . , m, the
continuous functions Gi : R → R given by

Gi(ε) =
δ−ii c−ii

(c+ii + Ki)2
− ε −

m

∑
j=1,j 6=i

δ+ij c+ij

(c−ij )
2
+ h−i −

n

∑
j=1

b+ij

1 − τ∗
ij

e
ετ+

ij . (3.8)

Notice that hypothesis (H4) ensures that Gi(0) > 0 for each i = 1, . . . , m, furthermore, the
continuity of Gi guarantees the existence of positive constants ri, such that

Gi(ε) > 0, for 0 ≤ ε ≤ ri, (3.9)

and we define λ0 := min1≤i≤m{ri}, so Gi(λ0) > 0 for i = 1, . . . , m.

Theorem 3.5. If the hypotheses (H1)–(H4) hold, then all solution of system (1.3) in B converge expo-

nentially to the ω-periodic solution.
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Proof. We consider x(t) = (xi(t)) and y(t) = (yi(t)) two arbitrary solutions in B of system
(1.3) and we define the functions:

Wi(t) = |yi(t)− xi(t)|e
λt +

n

∑
j=1

b+ij
1

1 − τ∗
ij

∫ t

t−τij(t)
|yi(s)− xi(s)|e

λ(s+τ+
ij )ds .

Calculating the upper right Dini derivative of Wi(t) along the solutions of model (1.3) we have

D+Wi(t) = |yi(t)− xi(t)|λeλt + [y′i(t)− x′i(t)]× sgn{yi(t)− xi(t)} × eλt

+
n

∑
j=1

b+ij
1

1 − τ∗
ij

|yi(t)− xi(t)|e
λ(t+τ+

ij )

−
n

∑
j=1

b+ij
1

1 − τ∗
ij

|yi(t − τij(t))− xi(t − τij(t))|(1 − τ′
ij(t))e

λ(t−τij(t)+τ+
ij ) .

Replacing xi and yi given in the system, applying triangular inequality, considering (H3),
0 ≤ xi(t), yi(t) ≤ Ki, |r′(x)| ≤ 1 for x ∈ [0,+∞) and grouping we obtain

D+Wi(t) ≤ eλt

[

|yi(t)− xi(t)|λ −
δ−ii c−ii |yi(t)− xi(t)|

(c+ii + Ki)2
+

m

∑
j=1,j 6=i

δ+ij c+ij |yj(t)− xj(t)|

(c−ij )
2

+
n

∑
j=1

b+ij |r(yi(t − τij(t)))− r(xi(t − τij(t)))| − h−i |yi(t)− xi(t)|

+
n

∑
j=1

b+ij
|yi(t)− xi(t)|

1 − τ∗
ij

e
λτ+

ij −
n

∑
j=1

b+ij |yi(t − τij(t))− xi(t − τij(t))

]

D+Wi(t) ≤ eλt

[

|yi(t)− xi(t)|λ −
δ−ii c−ii |yi(t)− xi(t)|

(c+ii + Ki)2
+

m

∑
j=1,j 6=i

δ+ij c+ij |yj(t)− xj(t)|

(c−ij )
2

+
n

∑
j=1

b+ij |yi(t − τij(t))− xi(t − τij(t))| − h−i |yi(t)− xi(t)|

+
n

∑
j=1

b+ij
|yi(t)− x1(t)|

1 − τ∗
ij

e
λτ+

ij −
n

∑
j=1

b+ij |yi(t − τij(t))− xi(t − τij(t))|

]

≤ − eλt



−λ +
δ−ii c−ii

(c+ii + Ki)2
+ h−i −

n

∑
j=1

b+ij e
λτ+

ij

1 − τ∗
ij



 |yi(t)− xi(t)|

+ eλt
m

∑
j=1,j 6=i

δ+ij c+ij

(c−ij )
2
|yj(t)− xj(t)|

= − eλt







−λ +
δ−ii c−ii

(c+ii + Ki)2
+ h−i −

n

∑
j=1

b+ij e
λτ+

ij

1 − τ∗
ij



 |yi(t)− xi(t)|

−
m

∑
j=1,j 6=i

δ+ij c+ij

(c−ij )
2
|yj(t)− xj(t)|

)

.
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Extending the sum for i = 1 to m and grouping terms we obtain that the Lyapunov functional
W(t) = ∑

m
i=1 Wi(t) satisfies

D+W(t) ≤ −e−λt
m

∑
i=1

Gi(λ)|yi(t)− xi(t)|.

We fix λ = λ0 = min1≤i≤m{ri}, since (3.8) and (3.9) hold we deduce that

D+W(t) ≤ −e−λ0t
m

∑
i=1

Gi(λ0)|yi(t)− xi(t)| < 0, ∀t ∈ (0, ∞).

It follows that W(t) is decreasing for all t > 0 along the solutions of system (1.3), consequently
we have

m

∑
i=1

|yi(t)− xi(t)|e
λ0t ≤ W(t) ≤ W(0),

whence
m

∑
i=1

|yi(t)− xi(t)| ≤ W(t)e−λ0t
< W(0)e−λ0t,

and the exponential convergence it is obtained for solutions of (1.3) in B.

4 Examples

In this section we show an example of the asymptotic stability of the solution and include
numerical simulations performed in R software using the library PBSddesolve, see for instance
[11]. In this example xi is the density of biomass in patch i, s(t) = sin(2πt/365), c(t) =

cos(2πt/365), and i ∈ {1, 2, 3}.

Example 4.1. We consider the system of differential equations with delay,

x′1(t) = −
(6 + 0.5c(t))x1(t)

2 + x1(t)
+ 3(1 + 0.5s(t))r(x1(t − 60))

+

(

(1 + 0.125c(t))x2(t)

5 + x2(t)
+

1 + 0.125c(t))x3(t)

5 + x3(t)

)

− 0.1x1(t),

x′2(t) = −
(4 + 0.5c(t))x2(t)

1.5 + x2(t)
+ 3(1 + 0.5s(t))r(x2(t − 60))

+

(

(1.5 + 0.125c(t))x1(t)

35 + x1(t)
+

0.75 + 0.0625c(t))x2(t)

35 + x2(t)

)

,

x′3(t) = −
(5 + 0.5c(t))x3(t)

1 + x3(t)
+ 3(1 + 0.5s(t))r(x3(t − 60))

+

(

(1.5 + 0.125c(t))x1(t)

12 + x1(t)
+

(0.75 + 0.0625c(t))x2(t)

12 + x2(t)

)

− 0.2x3(t).

(4.1)

Hypotheses (H1)–(H4) are verified where K1 < 1.087, K2 < 1.2814, K3 < 1.1086. The numerical
simulations are presented in Figure 4.1.
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Figure 4.1: Numerical simulation of (4.1) for sixteen years. Initial
conditions: (x1(θ), x2(θ), x3(θ)) ≡ (0.05, 0.287, 0.02), θ ∈ [−60, 0] (solid
curve), (x1(θ), x2(θ), x3(θ)) ≡ (0.075, 0.2, 0.015), θ ∈ [−60, 0] (dashed curve),
(x1(θ), x2(θ), x3(θ)) ≡ (0.1, 0.15, 0.01), θ ∈ [−60, 0] (dotted curve).

5 Conclusion and further work

A Nicholson-type system with nonlinear density-dependent mortality and linear harvesting
has been studied in this paper. Based on the theory of topological degree, has been obtained
sufficient conditions for the existence of a positive periodic solution of the model. In addition,
by using the Lyapunov–Krasovskii functional method, the uniqueness, stability, and expo-
nential stability of the Nicholson-type system were addressed. Numerical simulations were
performed based on an example to illustrate the results obtained.

Among the projections of this work, we will focus on the possible extension of the present
study to one involving nonlinear harvesting terms. We recall that in the works [1,4,5] advances
in this direction have been developed. However, from the point of view of applications, it
seems more realistic to consider the harvesting terms, proposed by Clark and Mangel in [10],
of the form

h(E, x) =
qEx

cE + ℓx
,

where q is the catch coefficient, E is the external effort dedicated to the harvest, c and ℓ are
constants. Population models with terms of this type have been studied in [18,34]. Thus, a new
version of the system (1.3) naturally arises, this time with these nonlinear harvesting terms as a
new research goal. We anticipate that the main aspects to take into account when applying the
methods presented in this work to these nonlinear terms is to search for alternative hypotheses
to (H2) and (H4), which can be deduced after a careful reading of this work.
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Abstract. In this paper we investigate nonlinear systems of second order ODEs de-
scribing the dynamics of two coupled nonlinear oscillators of a mechanical system. We
obtain, under certain assumptions, some stability results for the null solution. Also, we
show that in the presence of a time-dependent external force, every solution starting
from sufficiently small initial data and its derivative are bounded or go to zero as the
time tends to +∞, provided that suitable conditions are satisfied. Our theoretical re-
sults are illustrated with numerical simulations.
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1. Introduction

Consider a mechanical system of coupled nonlinear oscillators, as shown in Figure 1.1. Specif-

ically, the block of mass m1 is anchored to a fixed horizontal wall and the block of mass m2

by springs and dampers, and the block of mass m2 is also attached to the wall by a pair of

springs and dampers. Suppose that the stiffnesses and the dampings are represented by the

functions ki : R+ → R+ and di : R+ → R+, i ∈ {1, 2, 3}, and ĝi : R+ × R × R → R, i ∈ {1, 2},

denote external forces acting on the blocks. One may also consider an external force f̂ (t)

acting on the block of mass m1, but for the moment, we restrict our attention to the case f̂ ≡ 0.

We assume that when the two blocks are in their equilibrium positions, the springs and the

dampers are also in their equilibrium positions. Let x(t) and y(t) be the vertical displacements

of the blocks from their equilibrium positions.

BCorresponding author.

Emails: morosanu@math.ubbcluj.ro (G. Moros, anu), cristian.vladimirescu@edu.ucv.ro (C. Vladimirescu).
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d2(t) k2(t)

d3(t) k3(t)

m1

x

d1(t) k1(t)

d2(t) k2(t)

Figure 1.1: A mechanical system of coupled nonlinear oscillators

Then the system of ODEs describing the motion is (see, e.g., [27])

{
m1 ẍ + k1(t)x + 2d1(t)ẋ − k3(t)(y − x)− 2d3(t)(ẏ − ẋ) = ĝ1(t, x, y),

m2ÿ + 2k2(t)y + 4d2(t)ẏ + k3(t)(y − x) + 2d3(t)(ẏ − ẋ) = ĝ2(t, x, y),

or {
ẍ + 2 f1(t)ẋ − f3(t)ẏ + β(t)x − γ1(t)y + g1(t, x, y) = 0,

ÿ + 2 f2(t)ẏ − f4(t)ẋ − γ2(t)x + δ(t)y + g2(t, x, y) = 0,
(1.1)

where

f1(t) :=
1

m1
(d1(t) + d3(t)), f2(t) :=

1

m2
(2d2(t) + d3(t)),

f3(t) :=
2

m1
d3(t), f4(t) :=

2

m2
d3(t),

β(t) :=
1

m1
(k1(t) + k3(t)), δ(t) :=

1

m2
(2k2(t) + k3(t)),

γ1(t) :=
1

m1
k3(t), γ2(t) :=

1

m2
k3(t),

g1(t, x, y) := − 1

m1
ĝ1(t, x, y), g2(t, x, y) := − 1

m2
ĝ2(t, x, y).

The general case of a single 1-D damped nonlinear oscillator is described by the following

equation which is well-known in the literature

ẍ + 2 f ∗(t)ẋ + β∗(t)x + g∗(t, x) = 0, t ∈ R+. (1.2)

T. A. Burton and T. Furumochi [2] introduced a new method, based on the Schauder fixed

point theorem, to study the stability of the null solution of Eq. (1.2) in the case β∗(t) = 1.

In [14] we reported new stability results for the same equation. Our approach was based on

elementary arguments only, involving in particular some Bernoulli type differential inequal-

ities. In [15] we considered Eq. (1.2) under more general assumptions, which required more
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sophisticated arguments. For other investigations regarding the asymptotic stability of the

equilibrium of a single damped nonlinear oscillator, we refer the reader to [7,8,10,11,24], and

the references therein.

In the present paper, in Section 2 we will study the stability of the null solution of sys-

tem (1.1), by two approaches, based on classical differential inequalities and on Lyapunov’s

method. For other results regarding the asymptotic stability of the equilibria of coupled

damped nonlinear oscillators, we refer the reader to [9, 16, 17, 20–23, 25], and the references

therein. For fundamental concepts and results in stability theory we refer the reader to

[1, 3, 5, 6, 13, 19].

In Section 3 we will consider that the block of mass m1 is subject to the action of a time

dependent external force f̂ : R+ → R. In this case, the system of ODEs describing the

dynamics of the mechanical system is

{
ẍ + 2 f1(t)ẋ − f3(t)ẏ + β(t)x − γ1(t)y − f (t) + g1(t, x, y) = 0,

ÿ + 2 f2(t)ẏ − f4(t)ẋ − γ2(t)x + δ(t)y + g2(t, x, y) = 0,
(1.3)

with the same functions as before, and f (t) := 1
m1

f̂ (t), and we will derive certain qualitative

properties of the solutions of system (1.3) with initial data small enough.

The model in Figure 1.1 could be used, e.g., to describe the dynamics in vertical direction

of vibration reduction systems for horizontal cranes with loadings suspended in two sides

[12, 28]. For other models of coupled oscillators or for models from electric circuit theory,

structural dynamics, described by systems of type (1.1) or (1.3), we refer the reader to the

monographs [4, 18, 26].

2. A stability result for the system (1.1)

In this section we shall use the following hypotheses.

(H1) fi ∈ C1(R+), f j ∈ C(R+), fi(t) ≥ 0, f j(t) ≥ 0, ∀t ∈ R+, and
∫ +∞

0 f j(t)dt < +∞,

∀i ∈ {1, 2}, ∀j ∈ {3, 4};

(H2) there exist constants h, K1, K2 ≥ 0 such that

∣∣ ḟi(t) + f 2
i (t)

∣∣ ≤ Ki f̃ (t), ∀t ∈ [h,+∞), ∀i ∈ {1, 2},

where f̃ (t) := min{ f1(t), f2(t)}, ∀t ∈ R+;

(H3)
∫ +∞

0 f̃ (t)dt = +∞.

(H4) β, δ ∈ C1(R+), β, δ are decreasing and

β(t) ≥ β0 > 0, δ(t) ≥ δ0 > 0, ∀t ∈ R+,

where β0, δ0 are constants such that

K1√
β0

+
K2√

δ0

< 1;

(H5) γi ∈ C(R+), γi(t) ≥ 0, ∀t ∈ R+, and
∫ +∞

0 γi(t)dt < +∞, ∀i ∈ {1, 2};
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(H6) gi = gi(t, x, y) ∈ C(R+ × R × R), gi are locally Lipschitzian with respect to x, y, i ∈
{1, 2}, and fulfill the relations

|g1(t, x, y)| ≤ r1(t)O(|x|), ∀t ∈ R+, ∀y ∈ R, (2.1)

|g2(t, x, y)| ≤ r2(t)O(|y|), ∀t ∈ R+, ∀x ∈ R, (2.2)

where ri ∈ C(R+), ri(t) ≥ 0, ∀t ∈ R+,
∫ +∞

0 ri(t)dt < +∞, ∀i ∈ {1, 2}, and O(|x|)
denotes the big-O Landau symbol as x → 0 (similarly for O(|y|));

(H7) There is a p > 0, such that fi(t) ≥ p, ∀t ≥ 0, ∀i ∈ {1, 2}.

Remark 2.1. If (H1) and (H2) hold, then fi, ḟi are bounded, i ∈ {1, 2}. Indeed, by (H2) we see

that

(t ≥ h, fi(t) > Ki) =⇒ ḟi(t) < 0.

This, combined with (H1), implies

fi(t) ≤ Mi := max{ fi(h), Ki}, ∀t ≥ h.

So, using again (H2), we obtain

∣∣ ḟi(t)
∣∣ ≤ 2M2

i , ∀t ≥ h.

This concludes the proof, since, by (H1), fi, ḟi ∈ C[0, h], i ∈ {1, 2}.

Remark 2.2. Since we are going to discuss the stability of the null solution of system (1.1) and

the large-time behavior of the solutions to (1.3) starting from small initial data, we can replace

the inequalities (2.1) and (2.2) by

|g1(t, x, y)| ≤ r1(t)|x|, |g2(t, x, y)| ≤ r2(t)|y|, ∀t ∈ R+, ∀x, y ∈ R, (2.3)

possibly with Miri(t) instead of ri(t), where Mi > 0, and some functions g̃i instead of gi,

∀i ∈ {1, 2}.

Indeed, from (2.1) there exist M1, a1 > 0, such that

|g1(t, x, y)| ≤ r1(t)M1|x|, if |x| < a1.

If we define the function g̃1 : R+ × R × R → R as

g̃1(t, x, y) :=





g1(t, a1, y), if x ≥ a1,

g1(t, x, y), if |x| < a1,

g1(t,−a1, y), if x ≤ −a1,

for all t ≥ 0, y ∈ R, then

|g̃1(t, x, y)| ≤ r1(t)M1|x|, ∀(t, x, y) ∈ R+ × R × R,

g̃1 ∈ C(R+ × R × R), and g̃1 is locally Lipschitzian in x, y. Similar reasonings work for the

functions g2 and r2, possibly with another constant a2.



Qualitative analysis of a system of coupled nonlinear oscillators 5

2.1. A stability result via differential inequalities

We can state and prove the following stability result.

Theorem 2.3.

a) Suppose that the hypotheses (H1), (H2), (H4)–(H6) are satisfied. Then the null solution of the

system (1.1) is uniformly stable.

b) If the hypotheses (H1)–(H6) are fulfilled, then the null solution of (1.1) is asymptotically stable.

c) If the hypotheses (H1), (H2), (H4)–(H7) are fulfilled, then the null solution of (1.1) is uniformly

asymptotically stable.

Proof. By using the following transformation (inspired from [2])




ẋ = u − f1(t)x

u̇ =
[

ḟ1(t) + f 2
1 (t)− β(t)

]
x − f1(t)u+ [γ1(t)− f2(t) f3(t)]y + f3(t)v − g1(t, x, y)

ẏ = v − f2(t)y

v̇ = [γ2(t)− f1(t) f4(t)]x + f4(t)u +
[

ḟ2(t) + f 2
2 (t)− δ(t)

]
y − f2(t)v − g2(t, x, y)

(2.4)

the system (1.1) becomes

ż = A(t)z + B(t)z + F(t, z), (2.5)

where

z =




x

u

y

v


, A(t) =




− f1(t) 1 0 0

−β(t) − f1(t) γ1(t) 0

0 0 − f2(t) 1

γ2(t) 0 −δ(t) − f2(t)


,

B(t) =




0 0 0 0

ḟ1(t) + f 2
1 (t) 0 − f2(t) f3(t) f3(t)

0 0 0 0

− f1(t) f4(t) f4(t) ḟ2(t) + f 2
2 (t) 0


, F(t, z) =




0

−g1(t, x, y)
0

−g2(t, x, y)


.

Using the boundedness of the functions fi, ḟi, f j, β, γi, δ, ri, ∀i ∈ {1, 2}, ∀j ∈ {3, 4}, we

easily deduce that our stability question of the null solution of the system (1.1) reduces to the

stability of the null solution z(t) = 0 of the system (2.5) .

Let t0 ≥ 0 and

Z(t, t0) =
(
aij(t, t0)

)
i,j∈1,4

, t ≥ t0,

be the fundamental matrix of the system

ż = A(t)z, (2.6)

which equals the identity matrix for t = t0. Then we deduce

β(t)a2
11(t, t0) + a2

21(t, t0) + δ(t)a2
31(t, t0) + a2

41(t, t0) ≤ β(t0)e

∫ t
t0

[
−2 f̃ (u)+

γ(u)√
ζ(u)

]
du

, (2.7)

β(t)a2
12(t, t0) + a2

22(t, t0) + δ(t)a2
32(t, t0) + a2

42(t, t0) ≤ e

∫ t
t0

[
−2 f̃ (u)+

γ(u)√
ζ(u)

]
du

, (2.8)

β(t)a2
13(t, t0) + a2

23(t, t0) + δ(t)a2
33(t, t0) + a2

43(t, t0) ≤ δ(t0)e

∫ t
t0

[
−2 f̃ (u)+

γ(u)√
ζ(u)

]
du

, (2.9)

β(t)a2
14(t, t0) + a2

24(t, t0) + δ(t)a2
34(t, t0) + a2

44(t, t0) ≤ e

∫ t
t0

[
−2 f̃ (u)+

γ(u)√
ζ(u)

]
du

, (2.10)
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for all t ≥ t0, where γ(t) := max{γ1(t), γ2(t)}, ζ(t) := min{β(t), δ(t)}, ∀t ∈ R+.

Indeed, from (2.6) we get the following system





ȧ11(t, t0) = − f1(t)a11(t, t0) + a21(t, t0)

ȧ21(t, t0) = −β(t)a11(t, t0)− f1(t)a21(t, t0) + γ1(t)a31(t, t0)

ȧ31(t, t0) = − f2(t)a31(t, t0) + a41(t, t0)

ȧ41(t, t0) = γ2(t)a11(t, t0)− δ(t)a31(t, t0)− f2(t)a41(t, t0).

(2.11)

From the first two equations of (2.11) and hypothesis (H4) we get

1

2

d

dt

[
β(t)a2

11(t, t0) + a2
21(t, t0)

]

≤ − f1(t)
[
β(t)a2

11(t, t0) + a2
21(t, t0)

]
+ γ1(t)a21(t, t0)a31(t, t0) (2.12)

and, similarly,

1

2

d

dt

[
δ(t)a2

31(t, t0) + a2
41(t, t0)

]

≤ − f2(t)
[
δ(t)a2

31(t, t0) + a2
41(t, t0)

]
+ γ2(t)a11(t, t0)a41(t, t0). (2.13)

By relations (2.12) and (2.13) we obtain successively

1

2

d

dt

[
β(t)a2

11(t, t0) + a2
21(t, t0) + δ(t)a2

31(t, t0) + a2
41(t, t0)

]

≤ − f1(t)
[
β(t)a2

11(t, t0) + a2
21(t, t0)

]
− f2(t)

[
δ(t)a2

31(t, t0) + a2
41(t, t0)

]

+ γ1(t)a21(t, t0)a31(t, t0) + γ2(t)a11(t, t0)a41(t, t0)

≤
[
− f̃ (t) +

γ(t)

2
√

ζ(t)

]
[
β(t)a2

11(t, t0) + a2
21(t, t0) + δ(t)a2

31(t, t0) + a2
41(t, t0)

]
,

for all t ≥ t0, and (2.7) follows immediately. The inequalities (2.8)–(2.10) can be derived in the

same way.

Let ∥·∥0 be the norm in R
4 defined by

∥z∥0 =
(

β0x2 + u2 + δ0y2 + v2
)1/2

, for z = (x, u, y, v)⊤, (2.14)

which is equivalent to the Euclidean norm.

For z0 = (x0, u0, y0, v0)
⊤ ∈ R

4, from (2.7)–(2.10) and (H4), we deduce

∥Z(t, t0)z0∥0 ≤ λ∥z0∥0

√
β(t0) + δ(t0) + 2e

∫ t
t0

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

, ∀t ≥ t0, (2.15)

where λ := max{1, 1/
√

β0, 1/
√

δ0},

∥∥∥Z(t, t0)Z(s, t0)
−1e2

∥∥∥
0
≤ e

∫ t
s

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

,

∥∥∥Z(t, t0)Z(s, t0)
−1e4

∥∥∥
0
≤ e

∫ t
s

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

,

(2.16)

for all t ≥ s ≥ t0 ≥ 0, where e2 = (0, 1, 0, 0)⊤, e4 = (0, 0, 0, 1)⊤.
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Proof of a). Let z0 ̸= 0 with ∥z0∥0 small enough, t0 ≥ 0, and z(t, t0, z0) = (x(t, t0, z0), u(t, t0, z0),

y(t, t0, z0), v(t, t0, z0))
⊤ be the unique solution of (2.5) which equals z0 for t = t0.

From the continuity and the boundedness of the functions fi, ḟi, f j, β, γi, δ, ri, ∀i ∈ {1, 2},

∀j ∈ {3, 4}, there exists ψ : R+ → R+ a continuous and bounded function, such that

∥A(t)z + B(t)z + F(t, z)∥0 ≤ ψ(t)∥z∥0, ∀(t, z) ∈ R+ × R
4.

By applying a classical result of global existence in the future to system (2.5) (see, e.g., [3,

Corollary, p. 53]) it follows that z(t, t0, z0) exists on the whole interval [t0,+∞).

We have

z(t, t0, z0) = Z(t, t0)z0 +
∫ t

t0

Z(t, t0)Z(s, t0)
−1[B(s)z(s, t0, z0) + F(s, z(s, t0, z0))]ds, (2.17)

for all t ≥ t0.

From the relations (2.15)–(2.17) we get

∥z(t, t0, z0)∥0 ≤ λ∥z0∥0

√
β(t0) + δ(t0) + 2e

∫ t
t0

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

+
∫ t

t0

e

∫ t
s

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

×
[∣∣ ḟ1(s) + f 2

1 (s)
∣∣|x(s, t0, z0)|+

∣∣ ḟ2(s) + f 2
2 (s)

∣∣|y(s, t0, z0)|
+ f1(s) f4(s)|x(s, t0, z0)|+ f2(s) f3(s)|y(s, t0, z0)|
+ f3(s)|v(s, t0, z0)|+ f4(s)|u(s, t0, z0)|
+ |g1(s, x(s, t0, z0), y(s, t0, z0))|
+ |g2(s, x(s, t0, z0), y(s, t0, z0))|

]
ds, (2.18)

for all t ≥ t0.

In what follows we consider two cases.

Case 1: 0 ≤ t0 < h. Since fi ∈ C1[t0, h], f j, β, γi, δ,∈ C[t0, h], gi ∈ C([t0, h]×R ×R), ∀i ∈ {1, 2},

∀j ∈ {3, 4}, from (2.18) it results that

∥z(t, t0, z0)∥0 ≤ λD1

√
β(t0) + δ(t0) + 2∥z0∥0 + D

∫ t

t0

∥z(s, t0, z0)∥0ds, ∀t ∈ [t0, h],

with D, D1 positive constants. Using the Gronwall lemma we get

∥z(t, t0, z0)∥0 ≤ λD1

√
β(t0) + δ(t0) + 2∥z0∥0eDh, ∀t ∈ [t0, h]. (2.19)

For all t ≥ h, from the relation (2.18) and the hypothesis (H2) we deduce

∥z(t, t0, z0)∥0 ≤ λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0e

∫ t
h

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

+
∫ t

h
e

∫ t
s

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du[

K1 f̃ (s)|x(s, t0, z0)|+ K2 f̃ (s)|y(s, t0, z0)|

+ f1(s) f4(s)|x(s, t0, z0)|+ f2(s) f3(s)|y(s, t0, z0)|
+ f3(s)|v(s, t0, z0)|+ f4(s)|u(s, t0, z0)|
+ |g1(s, x(s, t0, z0), y(s, t0, z0))|
+ |g2(s, x(s, t0, z0), y(s, t0, z0))|

]
ds. (2.20)
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By (2.3) and (2.20) we obtain

∥z(t, t0, z0)∥0 ≤ λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0e

∫ t
h

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

+
∫ t

h
e

∫ t
s

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du
[(

K1√
β0

+
K2√

δ0

)
f̃ (s)

+
f1(s) f4(s)√

β0

+
f2(s) f3(s)√

δ0

+ f3(s) + f4(s)

+
r1(s)√

β0

+
r2(s)√

δ0

]
∥z(s, t0, z0)∥0ds

=: σ(t), ∀t ≥ h. (2.21)

Straightforward calculations lead us to

σ̇(t) ≤ ω(t)σ(t), ∀t ≥ h, (2.22)

σ(h) = λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0.

where

ω(t) := −K f̃ (t) + ϕ(t), ∀t ≥ 0, K = 1 − K1√
β0

− K2√
δ0

,

ϕ(t) :=
γ(t)

2
√

ζ(t)
+

f1(t) f4(t)√
β0

+
f2(t) f3(t)√

δ0

+ f3(t) + f4(t) +
r1(t)√

β0

+
r2(t)√

δ0

, ∀t ≥ 0.

From (2.21) and (2.22) using classical differential inequalities, we obtain

∥z(t, t0, z0)∥0 ≤ λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0e−K
∫ t

h f̃ (s)dse
∫ t

h ϕ(s)ds, ∀t ≥ h. (2.23)

It is readily seen from the hypotheses (H1), (H5), (H6), and Remark 2.1, that

∫ +∞

h
ϕ(s)ds < +∞.

Let ε > 0 be arbitrary and

η = η(ε) :=
εe−

∫ +∞

h ϕ(s)dse−Dh

λ2D1

√
β(0) + δ(0) + 2

√
β(h) + δ(h) + 2

.

Then, if ∥z0∥0 < η, by (2.19) and the hypothesis (H4) it results

∥z(t)∥0 ≤ εe−
∫ +∞

h ϕ(s)ds

λ
√

β(h) + δ(h) + 2
, ∀t ∈ [t0, h]. (2.24)

From the relations (2.23), (2.24), and the hypothesis (H4), it follows that ∥z(t, t0, z0)∥0 < ε,

∀t ≥ h.

Case 2: t0 ≥ h. We similarly get

∥z(t, t0, z0)∥0 ≤ λ
√

β(t0) + δ(t0) + 2∥z0∥0e
−K

∫ t
t0

f̃ (s)ds
e
∫ t

t0
ϕ(s)ds

, (2.25)
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for all t ≥ t0. With the same η as before, if ∥z0∥0 < η, then ∥z(t, t0, z0)∥0 < ε, ∀t ≥ t0.

Therefore, the null solution of (1.1) is uniformly stable.

Proof of b). If, in addition (H3) holds, then from (2.25) we can easily obtain that the null

solution of (1.1) is asymptotically stable.

Proof of c). We know from a) that the null solution of (1.1) is uniformly stable. It remains to

prove that there exists ξ > 0, such that for every ε > 0 there exists T = T(ε) > 0, such that

∥z0∥0 < ξ implies ∥z(t, t0, z0)∥0 < ε, for all t0 ≥ 0 and t ≥ t0 + T.

Indeed, if (H7) also holds, then
∫ t

t0
f̃ (s)ds ≥ p(t − t0), ∀t ≥ t0 ≥ 0. From (2.25) we obtain

for all t ≥ t0 ≥ 0, that

∥z(t, t0, z0)∥0 ≤ λ
√

β(0) + δ(0) + 2∥z0∥0e−Kp(t−t0)N, (2.26)

where N := e
∫ +∞

0 ϕ(s)ds. Let ξ := 1

λ
√

β(0)+δ(0)+2
, ε > 0, and

T = T(ε) :=

{
1

Kp ln N
ε , if ε < N,

0, if ε ≥ N.

Consider z0 ∈ R
4, z0 ̸= 0, with ∥z0∥0 < ξ and let t0 ≥ 0. Then for all t ≥ t0 + T, by (2.26) we

successively deduce

∥z(t, t0, z0)∥0 < λ
√

β(0) + δ(0) + 2ξe−Kp(t−t0)N = Ne−Kp(t−t0) ≤ ε.

Therefore the null solution of (1.1) is uniformly asymptotically stable.

Example 2.4. An example of functions fi, f j, β, δ, γi, gi, i ∈ {1, 2}, j ∈ {3, 4}, is

f1(t) =
1

2t +
√

t2 + 2
, f2(t) =

1

t +
√

t2 + 1
, f3(t) =

1

(t + 1)4
, f4(t) =

2

(t + 1)3
, ∀t ≥ 0,

β(t) =
2t + 3

t + 1
, δ(t) =

2t3 + 5

t3 + 2
, γ1(t) =

1

t
√

t2 + 1 + 1
, γ2(t) = e−t/2, ∀t ≥ 0,

g1(t, x, y) = e−t2/2x3, g2(t, x, y) =
3

t2
√

t + 1
y4, ∀t ≥ 0, ∀x, y ∈ R.

These functions satisfy the hypotheses (H1)–(H6), with β0 = 2, δ0 = 2, K1 = 1/
√

2, K2 =(
2 +

√
3
)
×
(
3 − 2

√
2
)
, h = 1, r1(t) = e−t2/2, r2(t) =

3
t2
√

t+1
, ∀t ≥ 0. In Figure 2.1 the solution

of (1.1) and its derivative are plotted on two time intervals, for small initial data. The solution

in the planes (x, ẋ) and (y, ẏ) on the same time intervals can be observed in Figure 2.2.

Example 2.5. If in Example 2.4 one changes only f1, f2 to f1(t) = 1
10 + 1

t+1 , respectively

f2(t) =
1
5 +

2
t+1 , ∀t ≥ 0, then the hypotheses (H1), (H2), (H4)–(H7) are verified with K1 = 1/5,

K2 = 4/5, h = 7, p = 1
10 , and the same β0, δ0, r1(t), r2(t) and we obtain the solution of (1.1)

and its derivative plotted in Figure 2.3 on the same time intervals and for the same initial data.

In Figure 2.4 the solution is generated in the planes (x, ẋ) and (y, ẏ).
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Figure 2.1: The solution of system (1.1) and its derivative, with the initial data

z0 = [0.01, 0.01, 0.01, 0.01] and the functions f1, f2, f3, f4, β, δ, γ1, γ2, g1, g2 given

in Example 2.4.
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Figure 2.2: The solution of (1.1) in the planes (x, ẋ) and (y, ẏ), with the data

from Example 2.4.
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Figure 2.3: The solution of system (1.1) and its derivative, with the initial data

z0 = [0.01, 0.01, 0.01, 0.01] and the functions f1, f2, f3, f4, β, δ, γ1, γ2, g1, g2 given

in Example 2.5.
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Figure 2.4: The solution of (1.1) in the planes (x, ẋ) and (y, ẏ), with the data

from Example 2.5.

2.2. A stability result via Lyapunov’s method

We are going to use the following additional assumptions.

(H1*) fi ∈ C(R+) ∩ L∞(R+), f j ∈ C(R+), fi(t) ≥ 0, f j(t) ≥ 0, ∀t ∈ R+, and
∫ +∞

0 f j(t)dt <

+∞, ∀i ∈ {1, 2}, ∀j ∈ {3, 4};

(H3*)
∫ +∞

0 f̃ (t)dt < +∞;

(H4*) β, δ ∈ C1(R+), β, δ are decreasing and

β(t) ≥ β0 > 0, δ(t) ≥ δ0 > 0, ∀t ∈ R+.

Let us state and prove the following result.

Theorem 2.6. Suppose that the hypotheses (H1*), (H3*), (H4*), (H5), (H6) are fulfilled. Then the null

solution of the system (1.1) is uniformly stable.

Proof. Let us remark that using the classical change of variables x = x, u = ẋ, y = y, v = ẏ,

the system (1.1) becomes

ż = F(t, z), (2.27)
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where

z =




x

u

y

v


, F(t, z) =




u

−β(t)x − 2 f1(t)u + γ1(t)y + f3(t)v − g1(t, x, y)
v

γ2(t)x + f4(t)u − δ(t)y − 2 f2(t)v − g2(t, x, y)




and our stability question reduces to the stability of the null solution z(t) = 0 of the system

(2.27). Let us remark that the global existence in the future of the solutions of (2.27) follows as

in the proof of Theorem 2.3, this time the boundedness of the functions f1, f2 being ensured

by the hypothesis (H1*).

We are going to use again the norm ∥·∥0 defined by (2.14). Consider the function V :

R+ × ∆ → R,

V(t, z) =
1

2

[
β(t)x2 + u2 + δ(t)y2 + v2

]
e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

,

for z = (x, u, y, v)⊤ ∈ ∆, where ∆ ⊂ R
4 is a neighborhood of the origin of R

4,

∆ =
{

z ∈ R
4, ∥z∥0 < a

}
,

where a = min
{

a1

√
β0, a2

√
δ0

}
, a1 > 0, a2 > 0 are as in Remark 2.2, γ(t) := max{γ1(t),

γ2(t)}, ζ(t) := min{β(t), δ(t)}, ∀t ∈ R+, and r(t) := max{r1(t), r2(t)}, ∀t ≥ 0.

Obviously,

V(t, z) ≥ 1

2

(
β0x2 + u2 + δ0y2 + v2

)
e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

=
1

2
∥z∥2

0e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

,

for all (t, z) ∈ R+ × ∆.

By using hypotheses (H1*), (H3*), (H4*), (H5), (H6), we deduce

V(t, z) ≥ 1

2
∥z∥2

0e
−
[∫ +∞

0 f̃ (s)ds+
∫ +∞

0 f3(s)ds+
∫ +∞

0 f4(s)ds+
∫ +∞

0
γ(s)+r(s)√

ζ(s)
ds

]

, ∀(t, z) ∈ R+ × ∆

and so the function V is positive definite.

The function V is also decrescent. Indeed,

V(t, z) ≤ 1

2

[
β(0)x2 + u2 + δ(0)y2 + v2

]
e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

≤ 1

2
max

{
β(0)

β0
,

δ(0)

δ0

}
∥z∥2

0, ∀(t, z) ∈ R+ × ∆.

We prove that the time derivative of V along the solutions of the system (2.27) is less than



Qualitative analysis of a system of coupled nonlinear oscillators 15

or equal to 0. Indeed, for every (t, z) ∈ R+ × ∆,

dV

dt
(t, z) =

1

2

[
β̇(t)x2 + 2β(t)xẋ + 2uu̇ + δ̇(t)y2 + 2δ(t)yẏ + 2vv̇

]

× e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

≤ {γ(t)(|u||y|+ |x||v|) + [ f3(t) + f4(t)]|u||v|+ |u||g1(t, x, y)|+ |v||g2(t, x, y)|}

× e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

− 2
[

f1(t)u
2 + f2(t)v

2
]
e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z). (2.28)

From (2.28) and (2.3) for all (t, z) ∈ R+ × ∆ we successively obtain

dV

dt
(t, z) ≤

{
γ(t)(|u||y|+ |x||v|) + [ f3(t) + f4(t)]|u||v|+ [r1(t)|x||u|+ r2(t)|y||v|]

− 2
[

f1(t)u
2 + f2(t)v

2
]}

e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) + 2
γ(t) + r(t)√

ζ(t)

]
V(t, z)

≤
[

f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V − 2

[
f1(t)u

2 + f2(t)v
2
]

× e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

= − f̃ (t)V − 2
[

f1(t)u
2 + f2(t)v

2
]
e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

. (2.29)

Then, from (2.29) we easily get

dV

dt
(t, z) ≤ 0, ∀(t, z) ∈ R+ × ∆.

From Persidski’s Theorem (see, e.g., [3, second Corollary, p. 101], [17, Theorem 2.1]), it

follows that the null solution of (1.1) is uniformly stable.

Remark 2.7. Let us remark that by using the transformation (2.4) we obtained the uniform,

the asymptotic, and the uniform asymptotic stability, while by using the classical transfor-

mation (x = x, u = ẋ, y = y, v = ẏ) and the Lyapunov’s method we were only able to

achieve the uniform stability of the null solution of (1.1). Hence the first method, based on the

transformation (2.4), is more effective.
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Remark 2.8. Note that the null solution of the system (1.1) can be uniformly stable and not

asymptotically stable. Indeed, this can be seen by considering the following functions

f1(t) =
e−t

t + 1
, f2(t) =

∣∣cos3 t
∣∣

t2 + 4
, ∀t ≥ 0, f3(t) =

∣∣sin t2
∣∣

t + 2
, f4(t) =

e−t2

t + 1
, ∀t ≥ 0,

β(t) = 0.3 +
1

t2 + 1
, δ(t) = 0.2 +

1√
t2 + 2

, γ1(t) =
t

t + 2
e−t2

, γ2(t) =
3|cos t|
(t + 1)2

, ∀t ≥ 0,

g1(t, x, y) =
3x3

(t2 + 2)2
, g2(t, x, y) =

2y2

(t + 1)3
, ∀t ≥ 0, ∀x, y ∈ R.

These functions satisfy the hypotheses (H1*), (H3*), (H4*), (H5), (H6), with β0 = 0.3, δ0 = 0.2,

r1(t) = 3

(t2+2)
2 , r2(t) = 2

(t+1)3 , ∀t ≥ 0. For small initial data, the solution of (1.1) and its

derivative can be observed in Figure 2.5 on some time intervals. The plottings of the solution

in the planes (x, ẋ), (y, ẏ) are given in Figure 2.6.
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Figure 2.5: The solution of (1.1) and its derivative, with the initial data z0 =

[0.001, 0.001, 0.001, 0.001] and the functions f1, f2, f3, f4, β, δ, γ1, γ2, g1, g2 given

in Remark 2.8.
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Figure 2.6: The solution of (1.1) in the planes (x, ẋ) and (y, ẏ), with the data

from Remark 2.8.
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3. Analysis of the inhomogeneous system (1.3)

Suppose that the block of mass m1 is subject to the action of a time-dependent external force

f̂ : R+ → R. In this case, we obtain the inhomogeneous system (1.3).

We are going to use the following hypotheses.

(H8) f ∈ C(R+) and f ∈ L1(R+);

(H9) f ∈ C(R+) and limt→+∞ f (t) = 0.

3.1. Qualitative properties of solutions via differential inequalities

Theorem 3.1.

a) Suppose that the hypotheses (H1), (H2), (H4)–(H6), (H8) are fulfilled. Then every solution of the

system (1.3) starting from sufficiently small initial data and its derivative are bounded.

b) If the hypotheses (H1), (H2), (H4)–(H6), (H7) with p big enough, and (H9) are satisfied, then

for every solution (x, y) of (1.3) starting from small initial data, we have limt→+∞ x(t) =

limt→+∞ ẋ(t) = limt→+∞ y(t) = limt→+∞ ẏ(t) = 0.

Proof. This time we use the following transformation (of the same type as the one from [2])





ẋ = u − f1(t)x

u̇ = [ ḟ1(t)+ f 2
1 (t)− β(t)]x− f1(t)u+[γ1(t)− f2(t) f3(t)]y+ f3(t)v+ f (t)− g1(t, x, y)

ẏ = v − f2(t)y

v̇ = [γ2(t)− f1(t) f4(t)]x + f4(t)u +
[

ḟ2(t) + f 2
2 (t)− δ(t)

]
y − f2(t)v − g2(t, x, y)

(3.1)

and the system (1.3) becomes

ż = A(t)z + B(t)z + G(t, z), (3.2)

where

G(t, z) =




0

f (t)− g1(t, x, y)
0

−g2(t, x, y)




and A(t) and B(t) are the same as in the proof of Theorem 2.3.

Let z0 ∈ R
4\{0} with ∥z0∥0 small enough, t0 ≥ 0, and

z(t, t0, z0) = (x(t, t0, z0), u(t, t0, z0), y(t, t0, z0), v(t, t0, z0))
⊤

be the unique solution of (3.2) which is equal to z0 for t = t0.

Similarly (by applying, e.g., [3, Corollary, p. 53]) we conclude that z(t, t0, z0) exists on

[t0,+∞), this time having

∥A(t)z + B(t)z + G(t, z)∥0 ≤ ψ(t)∥z∥0 + | f (t)|, ∀(t, z) ∈ R+ × R
4.
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As before we deduce

∥z(t, t0, z0)∥0 ≤ λ∥z0∥0

√
β(t0) + δ(t0) + 2e

∫ t
t0

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

+
∫ t

t0

e

∫ t
s

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

×
[∣∣ ḟ1(s) + f 2

1 (s)
∣∣|x(s, t0, z0)|+

∣∣ ḟ2(s) + f 2
2 (s)

∣∣|y(s, t0, z0)|
+ f1(s) f4(s)|x(s, t0, z0)|+ f2(s) f3(s)|y(s, t0, z0)|
+ f3(s)|v(s, t0, z0)|+ f4(s)|u(s, t0, z0)|+ | f (s)|
+ |g1(s, x(s, t0, z0), y(s, t0, z0))|
+ |g2(s, x(s, t0, z0), y(s, t0, z0))|

]
ds, (3.3)

for all t ≥ t0.

We distinguish two cases again.

Case 1: 0 ≤ t0 < h. As in the proof of Theorem 2.3, we obtain the relation (2.19), with D,

D1 > 0.

From (3.3) and using Remark 2.2, we deduce for all t ≥ h

∥z(t, t0, z0)∥0 ≤ λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0e

∫ t
h

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du

+
∫ t

h
e

∫ t
s

[
− f̃ (u)+

γ(u)

2
√

ζ(u)

]
du
{[(

K1√
β0

+
K2√

δ0

)
f̃ (s)

+
f1(s) f4(s)√

β0

+
f2(s) f3(s)√

δ0

+ f3(s) + f4(s)

+
r1(s)√

β0

+
r2(s)√

δ0

]
∥z(s, t0, z0)∥0 + | f (s)|

}
ds

=: ρ(t), ∀t ≥ h.

Straightforward calculations lead us to
{

ρ̇(t) ≤ ω(t)ρ(t) + | f (t)|, ∀t ≥ h,

ρ(h) = λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0,

with ω(t), t ≥ 0, as in the proof of Theorem 2.3.

We easily deduce

∥z(t, t0, z0)∥0 ≤
(

ρ(h) +
∫ t

h
e−

∫ s
h [−K f̃ (u)+ϕ(u)]du| f (s)|ds

)
e
∫ t

h [−K f̃ (s)+ϕ(s)]ds

=: µ(t), ∀t ≥ h. (3.4)

Proof of a). By using the hypotheses (H1), (H5), (H6), and Remark 2.1, it is readily seen that

ϕ :=
∫ +∞

0 ϕ(t)dt < +∞. From (3.4) and the hypothesis (H8) we derive that

∥z(t, t0, z0)∥0 ≤ ρ(h)e
∫ t

h ϕ(u)du +
∫ t

h
e
∫ t

s ϕ(u)du| f (s)|ds

≤ eϕ

(
ρ(h) +

∫ t

h
| f (s)|ds

)

≤ eϕ
(

ρ(h) + ∥ f ∥L1[0,+∞)

)
< +∞, ∀t ≥ h
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and so every solution of (1.3) with initial data small enough is bounded. The boundedness of

ż(t, t0, z0) follows immediately.

Proof of b). Let us estimate the limit of µ at +∞. We have

lim
t→+∞

µ(t) = lim
t→+∞

ρ(h) +
∫ t

h e−
∫ s

h [−K f̃ (u)+ϕ(u)]du| f (s)|ds

e−
∫ t

h [−K f̃ (s)+ϕ(s)]ds
. (3.5)

If
∫ +∞

h e−
∫ s

h [−K f̃ (u)+ϕ(u)]du| f (s)|ds < +∞, then, from (3.5) and the hypothesis (H7), we

easily obtain

lim
t→+∞

µ(t) = 0.

If
∫ +∞

h e−
∫ s

h [−K f̃ (u)+ϕ(u)]du| f (s)|ds = +∞, then we estimate

lim
t→+∞

d
dt

(
ρ(h) +

∫ t
h e−

∫ s
h [−K f̃ (u)+ϕ(u)]du| f (s)|ds

)

d
dt

(
e−

∫ t
h [−K f̃ (s)+ϕ(s)]ds

) = lim
t→+∞

| f (t)|
K f̃ (t)− ϕ(t)

. (3.6)

Using the hypotheses (H1), (H5)–(H7), and Remark 2.1,

K f̃ (t)− ϕ(t) ≥ Kp − ϕ0, ∀t ≥ 0,

where ϕ0 = supt≥0{ϕ(t)}. Hence, if p >
ϕ0

K , then K f̃ (t)− ϕ(t) > 0, ∀t ≥ 0, and, from (3.6), the

hypothesis (H9), and L’Hospital’s rule, we obtain limt→+∞ µ(t) = 0. Hence, by (3.4) it follows

that limt→+∞∥z(t, t0, z0)∥0 = 0 and we also infer limt→+∞∥ż(t, t0, z0)∥0 = 0.

Case 2: t0 ≥ h. The proofs of a) and b) follow as in Case 1, this time by using the inequality

∥z(t, t0, z0)∥0 ≤
(

λ
√

β(t0) + δ(t0) + 2∥z0∥0 +
∫ t

t0

e
−
∫ s

t0
[−K f̃ (u)+ϕ(u)]du| f (s)|ds

)

× e
∫ t

t0
[−K f̃ (s)+ϕ(s)]ds

, ∀t ≥ t0.

Example 3.2. If we consider the functions

f1(t) =

{
ln t

t , t ≥ e
t

e3 (2e − t), t ∈ [0, e)
, f2(t) =





ln t
t−1 , t ≥ e

t

e(e−1)2 (2e − 1 − t), t ∈ [0, e)
,

f3(t) =
arctan t

(t + 1)2
, f4(t) =

√
t

(t + 2)2
, f (t) =

2t + 3

t + 2
e−t, ∀t ≥ 0,

β(t) =
9

e2
+

1√
t + 2

, δ(t) =
49

4(e − 1)2
+ e−2t, γ1(t) =

e−3t

t2 + 1
, γ2(t) =

sin2 t

(t + 1)3
, ∀t ≥ 0,

g1(t, x, y) =
2|sin t|x3

t
√

t + 1
, g2(t, x, y) =

3|cos t|y2

(t + 1)
√

t + 1
, ∀t ≥ 0, ∀x, y ∈ R,

then the hypotheses (H1), (H2), (H4)–(H6), (H8) are fulfilled with β0 = 9
e2 , δ0 = 49

4(e−1)2 ,

K1 = 2/e, K2 = 1/(e − 1), h = e, r1(t) = 2|sin t|
t
√

t+1
, r2(t) = 3|cos t|

(t+1)
√

t+1
, ∀t ≥ 0. In Figure 3.1 one

can observe the solution of (1.3) and its derivative, for small initial data on two time intervals

and in Figure 3.2 the solution is plotted in the planes (x, ẋ), (y, ẏ) on the same time intervals.
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Figure 3.1: The solution of (1.3) and its derivative, with the initial data z0 =

[0.01, 0.01, 0.01, 0.01] and the functions f1, f2, f3, f4, f , β, δ, γ1, γ2, g1, g2 given in

Example 3.2.
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Figure 3.2: The solution of (1.3) in the planes (x, ẋ) and (y, ẏ), with the data

from Example 3.2.

Remark 3.3. Let us remark the difference between the graphs of the first and second compo-

nents of the solution near the origin. Due to the action of the external force f̂ (t) on the first

block m1, at least near the origin, the absolute values of x = x(t) are much bigger than the

ones of y = y(t).

3.2. Boundedness of solutions

Theorem 3.4. Suppose that the hypotheses (H1*), (H4*), (H5), (H6), (H8) are fulfilled. Then every

solution of the system (1.3) with sufficiently small initial data is bounded.

Proof. Let us remark that using the classical change of variables x = x, u = ẋ, y = y, v = ẏ,

the system (1.3) becomes

ż = F(t, z), (3.7)

where

z =




x

u

y

v


 F(t, z) =




u

−β(t)x − 2 f1(t)u + γ1(t)y + f3(t)v + f (t)− g1(t, x, y)
v

γ2(t)x + f4(t)u − δ(t)y − 2 f2(t)v − g2(t, x, y)


.
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We will use again the norm ∥·∥0 defined by (2.14) and the function V : R+ × ∆ → R,

V(t, z) =
1

2

[
β(t)x2 + u2 + δ(t)y2 + v2

]
e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

,

for z = (x, u, y, v)⊤ ∈ ∆, where ∆ ⊂ R
4 is as in the proof of Theorem 2.6, γ(t) := max{γ1(t),

γ2(t)}, ζ(t) := min{β(t), δ(t)}, ∀t ∈ R+, and r(t) := max{r1(t), r2(t)}, ∀t ≥ 0.

Let us calculate the time derivative of V along the solutions of the system (3.7), whose

global existence in the future is deduced as in the proof of Theorem 2.6. For every (t, z) ∈
R × ∆ we have

dV

dt
(t, z) =

1

2

[
β̇(t)x2 + 2β(t)xẋ + 2uu̇ + δ̇(t)y2 + 2δ(t)yẏ + 2vv̇

]

× e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z).

By hypothesis (H4*) we get for every (t, z) ∈ R+ × ∆,

dV

dt
(t, z) ≤ {γ(t)(|u||y|+ |x||v|) + [ f3(t) + f4(t)]|u||v|+ |u||g1(t, x, y)|+ |v||g2(t, x, y)|

+ | f (t)||u|} × e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

− 2
[

f1(t)u
2 + f2(t)v

2
]
e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

. (3.8)

From relations (3.8) and Remark 2.2, we successively deduce

dV

dt
(t, z) ≤

{
γ(t)(|u||y|+ |x||v|) + [ f3(t) + f4(t)]|u||v|+ [r1(t)|x||u|+ r2(t)|y||v|

+ | f (t)||u|]− 2
[

f1(t)u
2 + f2(t)v

2
]}

e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

≤
[

f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z) + | f (t)||u|e

−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

− 2
[

f1(t)u
2 + f2(t)v

2
]
e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

≤− f̃ (t)V(t, z) + | f (t)||u|e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

, (3.9)
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for all (t, z) ∈ R+ × ∆. Then, from (3.9) we easily obtain ∀(t, z) ∈ R+ × ∆

dV

dt
(t, z) ≤− f̃ (t)V(t, z) + | f (t)|

√
β(t)x2 + u2 + δ(t)y + v2

× e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

≤− f̃ (t)V(t, z) + | f (t)|
√

2V(t, z)e−
1
2

∫ t
0 f̃ (s)ds,

which actually represents an inequality of Bernoulli type.

Let z0 ∈ ∆, t0 ≥ 0, and z(t, t0, z0) be the unique solution of (3.7) which is equal to z0 for

t = t0. Using classical differential estimates, we find

V(t, z(t, t0, z0)) ≤ e
−
∫ t

t0
f̃ (s)ds

[√
V(t0, z0) +

√
2

2

∫ t

t0

| f (s)|e− 1
2

∫ t0
0 f̃ (u)duds

]2

, ∀t ≥ t0.

Therefore, by using the hypotheses (H1*), (H5), (H6), it follows that

∥z(t, t0, z0)∥0 ≤ M

[√
V(t0, z0) +

√
2

2

∫ t

t0

| f (s)|e− 1
2

∫ t0
0 f̃ (u)duds

]
, ∀t ≥ t0,

where M :=
√

2e
1
2

∫ t0
0 f̃ (s)ds+ 1

2

∫ +∞

0

[
f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

. If the hypothesis (H8) comes into play,

then

∥z(t, t0, z0)∥0 ≤ M

[√
V(t0, z0) +

√
2

2
∥ f ∥L1[0,+∞)e

− 1
2

∫ t0
0 f̃ (s)ds

]
, ∀t ≥ t0.

Remark 3.5. Note that by using the classical transformation (x = x, u = ẋ, y = y, v = ẏ), we

could only deduce the boundedness of the solutions of (1.3) for initial data small enough. In

contrast, the transformation (3.1) allowed us to obtain in addition that the solutions of (1.3),

starting from sufficiently small initial data, have the limit zero at +∞.
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Abstract. In this paper, we consider the following nonlinear Klein–Gordon–Maxwell
system with a steep potential well

{
−∆u + (λa(x) + 1)u − µ(2ω + φ)φu = f (x, u), in R

3,

∆φ = µ(ω + φ)u2, in R
3,

where ω > 0 is a constant, µ and λ are positive parameters, f ∈ C(R3 × R, R) and
the nonlinearity f satisfies the Ambrosetti–Rabinowitz condition. We use parameter-
dependent compactness lemma to prove the existence of nontrivial solution for µ small
and λ large enough, then explore the asymptotic behavior as µ → 0 and λ → ∞. More-
over, we also use truncation technique to study the existence and asymptotic behavior
of positive solutions of the Klein–Gordon–Maxwell system when f (u) := |u|q−2u where
2 < q < 4.

Keywords: Klein–Gordon–Maxwell system, asymptotic behavior, variational method.
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1 Introduction

In recent years, the Klein–Gordon–Maxwell system has been widely studied. It is well known

that this type of system has a strong physical meaning, and it arises in a very interesting

physical context: as a model describing the nonlinear Klein–Gordon field interacting with the

electromagnetic field. More specifically, the model represents standing waves ψ = u(x)eiωt

in equilibrium with a purely electrostatic field E = −∇φ(x), where φ is the gauge potential.

Using the variational method, Benci and Fortunato [4, 5] first introduced the Klein–Gordon–

Maxwell equations. In addition, they first studied the following special Klein–Gordon–

Maxwell system {
−∆u + [m2

0 − (ω + φ)2]u = |u|q−2 u, in R
3,

∆φ = (ω + φ)u2, in R
3,

(1.1)

BCorresponding author. Email: ccfygd@sina.com
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where q ∈ (4, 6), m0 > 0 and ω > 0 are constants, and establish the existence of infinitely

many solitary wave solutions when 0 < ω < m0 and 4 < q < 6. D’Aprile and Mugnai in [12]

also obtained the same conclusion for system (1.1) if one of the following assumptions holds:

(i) 0 < ω <

√
(q − 2)/2m0 and q ∈ (2, 4);

(ii) q ∈ [4, 6) and 0 < ω < m0.

By a Pohozaev-type argument, D’Aprile and Mugnai in [13] showed that (1.1) only has a

trivial solution when 0 < q ≤ 2 or q ≥ 6. Inspired by [5, 12], Azzollini and Pomponio [1]

proved that (1.1) admits a ground state solution if one of the following conditions holds:

(i) 4 ≤ q < 6 and 0 < ω < m0;

(ii) 2 < q < 4 and 0 < ω <

√
(q − 2)/(6 − q)m0.

This range has been improved by authors in references [2] and [25]. We point out that the

approaches used in [1, 2, 25] are heavily dependent on the form f (u) := |u|q−2 u. After that,

many mathematicians focused on the more general system. For instance, Chen and Tang

in[10] generalized the above results to the nonlinear term f (u). They obtained a ground state

solution with positive energy under some parameter limitations and f satisfied a superlinear

condition.

It can be seen that many early articles are about Klein–Gordon–Maxwell with constant

potential, and later more and more researchers concentrated on the non-constant potential. In

recent years, there are a large number of articles concerning the existence, nonexistence and

multiplicity of nontrivial solutions for the following problem (1.2).

{
−∆u + V(x)u − (2ω + φ)φu = f (x, u), in R

3,

∆φ = (ω + φ)u2, in R
3.

(1.2)

In [16], He obtained infinitely many solutions of (1.2). Later, Li and Tang [17] improved

the results of [16]. From these two references, we can see that V(x) satisfies the following

condition:

(V̂) V(x) ∈ C(R3, R), inf
R3

V(x) > 0 and there exists a0 > 0 such that

lim
|y|→∞

meas
{

x ∈ R
3 : |x − y| ≤ a0, V(x) ≤ M

}
= 0, ∀M > 0.

Condition (V̂) plays a crucial role in guaranteeing the compactness of embedding of the

weighted Sobolev space. If V(x) is radially symmetric, we recall (see [6] or [23]) that, for

2 < s < 6, the embedding H1
r (R

3) →֒ Ls(R3) is compact. Without this conditions we can

see that the compactness is lost. It will make it more difficult for us to deal with the Klein–

Gordon–Maxwell system. In this paper we consider the potential satisfied (a1)–(a3) below.

The conditions (a1)–(a3) were first introduced in [3] and λa(x) + 1 was called a steep potential

well when λ was large. In [20], Liu, Kang and Tang studied the existence of positive solution

for the Klein–Gordon–Maxwell system with steep potential well where f ∈ C(R3 × R, R)

satisfied the following conditions:

( f ′1) There exists a C̄ > 0 such that | f (x, t)| ≤ C̄|t| for all (x, t) ∈ R
3 × R.
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( f ′2) There exists a k ∈ {1, 2, . . . } such that uniformly in x ∈ R
3,

vk < lim inf
|t|→0

f (x, t)

t
≤ lim sup

|t|→0

f (x, t)

t
< vk+1.

( f ′3) lim sup
|t|→∞

f (x,t)
t < v1.

Where 0 < v1 < v2 < v3 < · · · were the eigenvalues of the following eigenvalue problem (1.3)

and can be written as 0 < µ1 < µ2 ≤ µ3 ≤ · · · counting their multiplicity.

{
−∆u + u = µu, in Ω,

u = 0, on ∂Ω.
(1.3)

For more articles about steep potential well, readers can refer to [7–9, 11, 17, 19, 21, 22, 24]

and references therein for relevant conclusions.

In [27], Zhang and Du studied the existence and asymptotic behavior of positive solutions

for Kirchhoff type problems with steep potential well by combining the truncation technique

and the parameter-dependent compactness lemma. Motivated by the above works, one of the

purposes of this paper is to investigate the existence and asymptotic behavior of nontrivial

solution for the following Klein–Gordon–Maxwell system

{
−∆u + (λa(x) + 1)u − µ(2ω + φ)φu = f (x, u), in R

3,

∆φ = µ(ω + φ)u2, in R
3,

(1.4)

where ω > 0 is a constant, µ and λ are positive parameters, f ∈ C(R3 ×R, R) and a(x) satisfy

the following conditions:

(a1) a(x) ∈ C(R3, R) and a(x) ≥ 0 on R
3;

(a2) there exists c > 0 such that Ac := {x ∈ R
3 : a(x) < c} is nonempty and bounded;

(a3) Ω = int a−1(0) is non-empty and has smooth boundary with Ω = a−1(0);

( f1) lim
|s|→0

f (x,s)
s = 0 uniformly for x ∈ R

3;

( f2) f ∈ C(R3 × R, R) and there exist c1 > 0, and p ∈ (4, 6) such that

| f (x, s)| ≤ c1(1 + |s|p−1);

( f3) there exist α > 4 such that 0 < αF(x, s) ≤ f (x, s)s uniformly x ∈ R
3.

Remark 1.1. In [16], in order to show that the associated functional has a mountain pass geom-

etry and obtain the boundedness of Cerami sequence, the authors used a global Ambrosetti–

Rabinowitz condition ( f3). To the best of our knowledge, there are only a few articles about

the asymptotic behavior of the solution of the Klein–Gordon–Maxwell system with a steep

potential well and f satisfies the super-quartic condition.

The following results holds:
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Theorem 1.2. Suppose that (a1)–(a3) and ( f1)–( f3) are satisfied. Then there exist λ∗
1 and µ0 > 0

such that for λ > λ∗
1 and µ ∈ (0, µ0), problem (1.4) has at least a nontrivial solution uλ,µ ∈ Eλ.

Moreover, exist constants τ0, M > 0 (independent of λ and µ) such that

τ0 ≤
∥∥uλ,µ

∥∥
λ
≤ 2

√
M for all λ and µ. (1.5)

Then we show the asymptotic behavior of the nontrivial solution for system (1.4) as µ → 0

and λ → ∞. By means of Theorem 1.2, we have the following results.

Theorem 1.3. Let uλ,µ be the nontrivial solution of (1.4) obtained by Theorem 1.2. Then for each

µ ∈ (0, µ0) be fixed, uλ,µ → uµ in H1(Ω) as λ → ∞, where uµ is a nontrivial solution of





−∆u + u − µ(2ω + φ)φu = f (x, u), in Ω,

∆φ = µ(ω + φ)u2, in Ω,

u = 0, in R
3 \ Ω.

(1.6)

Theorem 1.4. Let uλ,µ be the nontrivial solution of (1.4) obtained by Theorem 1.2. Then for each

λ ∈ (λ∗
1 , ∞) be fixed, uλ,µ → uλ in Eλ as µ → 0, where uλ is a nontrivial solution of

{
−∆u + (λa(x) + 1)u = f (x, u), in R

3,

u ∈ H1(R3).
(1.7)

Theorem 1.5. Let uλ,µ be the nontrivial solution of (1.4) obtained by Theorem 1.2. Then uλ,µ → u0

in H1(Ω) as µ → 0 and λ → ∞, where u0 is a nontrivial solution of

{
−∆u + u = f (x, u), in Ω,

u = 0 on ∂Ω.
(1.8)

Remark 1.6. For Theorem 1.2, applying the Mountain Pass Theorem directly to the associated

functional Iλ,µ, we can get a Cerami sequence for µ > 0 small enough. Then we will obtain

the boundedness of this Cerami sequence.

Next, we consider the following Klein–Gordon–Maxwell system where f (u) := |u|q−2u,

{
−∆u + (λa(x) + 1)u − µ(2ω + φ)φu = |u|q−2u, in R

3,

∆φ = µ(ω + φ)u2, in R
3,

(1.9)

where ω > 0 is a constant, µ and λ are positive parameters, 2 < q < 4 and a(x) also satisfies

(a1)− (a3).

Remark 1.7. In particular, we note that the nonlinearity u 7→ f (u) := |u|q−2u with 2 < q < 4

does not satisfy the Ambrosetti–Rabinowitz type condition which would readily obtain a

bounded Palais–Smale sequence or Cerami sequence.

Then we have the following results.

Theorem 1.8. Suppose that (a1) − (a3) and 2 < q < 4 are satisfied. Then there exist λ∗
2 and

µ1, µ2 > 0 such that for λ > λ∗
2 and µ ∈ (0, min{µ1, µ2}), problem (1.9) has at least a positive

solution ûλ,µ ∈ Eλ. Moreover, exist constants τ1, T > 0 (independent of λ and µ) such that

τ1 ≤
∥∥ûλ,µ

∥∥
λ
≤ T for all λ and µ. (1.10)
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Theorem 1.9. Let ûλ,µ be the positive solution of (1.9) obtained by Theorem 1.8. Then for each

µ ∈ (0, min{µ1, µ2}) be fixed, ûλ,µ → ûµ in H1(Ω) as λ → ∞, where ûµ is a positive solution of





−∆u + u − µ(2ω + φ)φu = |u|p−2u, in Ω,

∆φ = µ(ω + φ)u2, in Ω,

u = 0, in R
3 \ Ω.

(1.11)

Theorem 1.10. Let ûλ,µ be the positive solution of (1.9) obtained by Theorem 1.8. Then for each

λ ∈ (λ∗
2 , ∞) be fixed, ûλ,µ → ûλ in Eλ as µ → 0, where ûλ is a positive solution of

{
−∆u + (λa(x) + 1)u = |u|p−2u, in R

3,

u ∈ H1(R3).
(1.12)

Theorem 1.11. Let ûλ,µ be the positive solution of (1.9) obtained by Theorem 1.8. Then ûλ,µ → û0 in

H1(Ω) as µ → 0 and λ → ∞, where û0 is a positive solution of

{
−∆u + u = |u|p−2u, in Ω,

u = 0 on ∂Ω.
(1.13)

Remark 1.12. For Theorem 1.8, if we apply the Mountain Pass Theorem directly to the asso-

ciated functional Îλ,µ , we also can get a Cerami sequence for µ > 0 small enough. But it is

difficult to obtain the boundedness of this Cerami sequence. Then we will use a new method

(refer to [27]) called truncation technique to get over this difficulty.

The remainder of this paper is organized as follows. Next Section 2 we derive a variational

setting for problems and give some preliminary lemmas. In Section 3 we will prove Theorem

1.2 to Theorem 1.5. Section 4 is devoted to the proof of Theorem 1.8 to Theorem 1.11.

2 Variational setting and preliminaries

Throughout this paper, we use the standard notations. We denote by C, ci, Ci, i = 1, 2, . . .

for various positive constants whose exact value may change from lines to lines but are not

essential to the analysis of problem. We use “→" and “⇀" to denote the strong and weak

convergence in the related function space respectively. We will write o(1) to denote quantity

that tends to 0 as n → ∞. X′ denotes the dual space of X.

|·|q denotes the usual Lebesgue space with the norm Lq(R3) for any q ∈ [1, ∞]. H1(R3)

denotes the usual Sobolev space with the standard scalar product and norm ∥·∥H1 . D1,2(R3)

is the completion of C∞

0 (R3) with respect to the norm ∥u∥D1,2 =
(∫

R3 |∇u|2dx
) 1

2 .

In the paper, we work in the following Hilbert space

E :=

{
u ∈ H1(R3) :

∫

R3
a(x)u2dx < ∞

}

with the inner product and norm

∥u∥ =

(∫

R3
(|∇u|2 + (a(x) + 1)u2dx)

) 1
2

, ∥u∥ = ⟨u, u⟩
1
2 .
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For λ > 0, we also need the following inner product and norm

∥u∥λ =

(∫

R3
(|∇u|2 + (λa(x) + 1)u2)dx

) 1
2

, ∥u∥λ = ⟨u, u⟩
1
2
λ .

It is clear that ∥u∥ ≤ ∥u∥λ for λ ≥ 1. Set Eλ = (E, ∥ · ∥λ).

Referring to [28], it is well known that E →֒ Ls(R3) is continuous for s ∈ [2, 6]. Thus,

combining Sobolev embedding, for each s ∈ [2, 6], there exists ds > 0 (independent of λ ≥ 1)

such that

|u|s ≤ ds ∥u∥ ≤ ds ∥u∥λ for u ∈ E. (2.1)

S is the best Sobolev constant for the embedding of D1,2(R3) in L6(R3) and

S = inf
u∈D1,2(R3)\{0}

|∇u|22
|u|26

.

It is easy to see that the weak solutions (u, φ) ∈ Eλ × D1,2(R3) of system (1.4) are critical

points of the functional given by

Gλ,µ(u, φ) =
1

2

∫

R3

(
|∇u|2 + (λa(x) + 1)u2 − |∇φ|2 − µ(2ω + φ)φu2

)
dx −

∫

R3
F(x, u)dx. (2.2)

The functional Gλ,µ(u, φ) is strongly indefinite, i.e., unbounded from below and from above on

infinite dimensional spaces. We need the following technical results to study of the functional

in the only variable u.

Lemma 2.1 ([4, 12]). For any u ∈ H1(R3), there exists a unique φ = φu ∈ D1,2(R3) which solves

equation

−∆φ + u2φ = −ωu2. (2.3)

Moreover, the map Φ : u ∈ H1(R3) 7→ Φ [u] := φu ∈ D1,2(R3) is continuously differentiable, and

(i) −ω ≤ φu ≤ 0 on the set {x ∈ R
3|u(x) ̸= 0};

(ii) ∥φu∥D1,2 ≤ C ∥u∥2 and
∫

R3 |φu|u2dx ≤ C ∥u∥4
12/5 ≤ C ∥u∥4.

Lemma 2.2 ([1, Lemma 2.7]). If un ⇀ u in H1(R3), then up to a subsequence, φun ⇀ φu in

D1,2(R3). As a consequence I ′(un) → I′(u) in the sense of distributions.

The following lemma is a stronger version of the Mountain Pass Theorem, so we can find

a Cerami sequence.

Proposition 2.3 ([15]). Let X be a real Banach space with its dual space X′, and suppose that J ∈
C1(X, R) satisfies

max {J(0), J(e)} ≤ µ < η ≤ inf
∥u∥X=ρ

J(u)

for some µ < η, ρ > 0 and e ∈ X with ∥e∥X > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} is the set of continuous paths joining 0 and e.

Then there exists a sequence {un} ⊂ X such that

J(un) → c ≥ η and (1 + ∥un∥X)
∥∥J′(un)

∥∥
X′ → 0 as n → ∞.
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3 The existence and concentration phenomenon of solution of (1.4)

We proof Theorem 1.2 to Theorem 1.5 in this section. By (2.3), multiplying both sides by φu

and integrating we obtain

∫

R3
|∇φ|2dx = −

∫

R3
ωφuu2dx −

∫

R3
φ2

uu2dx. (3.1)

Using (3.1), we can rewrite Gλ,µ as a C1 functional Iλ,µ : Eλ → R given by

Iλ,µ(u) =
1

2

∫

R3
(|∇u|2 + (λa(x) + 1)u2)dx − µ

2

∫

R3
ωφuu2dx −

∫

R3
F(x, u)dx. (3.2)

Moreover, for any u, v ∈ Eλ, we have

⟨I′λ,µ(u), v⟩ =
∫

R3
(∇u · ∇v + (λa(x) + 1)uv) dx − µ

∫

R3
(2ω + φu)φuuvdx −

∫

R3
f (x, u)vdx.

(3.3)

To begin with, we show that the Iλ,µ has the mountain pass geometry.

Lemma 3.1. Suppose (a1)–(a3) and ( f1)–( f3) are satisfied. There exists µ0 > 0 for each µ ∈ (0, µ0)

and λ ≥ 1. Then there exist ρ, β > 0 and e0 ∈ Eλ, ∥e0∥λ > ρ, such that

inf
∥u∥=ρ

Iλ,µ(u) ≥ β > 0 ≥ max{Iλ,µ(0), Iλ,µ(e0)}.

Proof. From ( f1) and ( f2), for each ε > 0 there exists Cε > 0 such that for all (x, s) ∈ R
3 × R

| f (x, s)| ≤ ε|s|+ Cε|s|p−1 (3.4)

and

|F(x, s)| ≤ ε

2
|s|2 + Cε

p
|s|p. (3.5)

We choose ε = 1
2d2

2
, where d2 > 0 is from (2.1). For each u ∈ Eλ, by Lemma 2.1, (2.1), (3.2) and

(3.5) we have

Iλ,µ(u) ≥
1

2
∥u∥2

λ − ε

2
|u|22 −

Cε

p
|u|pp

≥
(

1

2
− εd2

2

2

)
∥u∥2

λ − Cεd
p
p

p
∥u∥p

λ

=

(
1

4
− Cεd

p
p

p
∥u∥p−2

λ

)
∥u∥2

λ ,

where the constants dp > 0 and Cε > 0 are independent of µ and λ. Then there exist ρ > 0

small enough and β > 0, such that inf
∥u∥=ρ

Iλ,µ(u) ≥ β > 0.

Then, we define the functional Jλ : Eλ → R by

Jλ(u) =
1

2

∫

R3
(|∇u|2 + (λa(x) + 1)u2)dx −

∫

R3
F(x, u)dx.

By ( f1) and ( f3), there exist c3, c4 > 0 such that

F(x, s) ≥ c3|s|α − c4s2. (3.6)
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Let e ∈ C∞

0 (Ω) be a positive smooth function, since α > 4 then we have

Jλ(te) =
t2

2

∫

Ω

(|∇e|2 + e2)dx −
∫

Ω

F(x, te)dx

≤ t2

2

∫

Ω

(|∇e|2 + e2)dx + c4t2
∫

Ω

e2dx − c3tα
∫

Ω

|e|αdx

→ −∞,

as t → ∞. Therefore, there exist t0 > 0 large enough and let e0 := t0e such that Jλ(e0) ≤ −1

with ∥e0∥λ > ρ. From Lemma 2.1(i), then

Iλ,µ(e0) = Jλ(e0)−
µ

2

∫

R3
ωφe0 e2

0dx

≤ −1 +
µω2

2
|e0|22,

there exists µ0 := 2
ω2|e0|22

> 0 (independent of λ) such that Iλ,µ(e0) < 0 for each λ ≥ 1 and

µ ∈ (0, µ0). The proof is completed.

Then we consider the mountain pass value

cλ,µ = inf
γ∈Γ

max
t∈[0,1]

Iλ,µ(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e0}. From Proposition 2.3 and Lemma 3.1, we

can obtain that for each λ ≥ 1 and µ ∈ (0, µ0), there exists a Cerami sequence {un} ⊂ Eλ such

that

Iλ,µ(un) → cλ,µ > 0 and (1 + ∥un∥λ)
∥∥∥I′λ,µ(un)

∥∥∥
E′

λ

→ 0 as n → ∞. (3.7)

Next we prove that cλ,µ has an upper bound.

Lemma 3.2. Suppose (a1)–(a3) and ( f1), ( f3) hold. Then for each λ ≥ 1 and µ ∈ (0, µ0), there exists

M > 0 (independent of µ and λ) such that cλ,µ ≤ M.

Proof. By ( f1), ( f3), we have (3.6). Since e0 ∈ C∞

0 (Ω) and Lemma 3.1, we obtain that

Iλ,µ(te0) =
t2

2

∫

Ω

(|∇e0|2 + e2
0)dx − µ

2

∫

Ω

ωφte0(te0)
2dx −

∫

Ω

F(x, te0)dx

≤ t2

2

∫

Ω

(|∇e0|2 + e2
0)dx +

µ0ω2

2
t2
∫

Ω

e2
0dx + c4t2

∫

Ω

e2
0dx − c3tα

∫

Ω

|e0|αdx,

where α > 4. Therefore, there exists M > 0 (independent of µ and λ) such that

cλ,µ ≤ max
t∈[0,1]

Iλ,µ(te0) ≤ M.

This completes the proof.

Lemma 3.3. Assume (a1)–(a3) and ( f1)–( f3) hold, for each λ > 1, µ ∈ (0, µ0), if {un} ⊂ Eλ is a

sequence satisfying (3.7), then we have, up to a subsequence, {un} is bounded in Eλ.
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Proof. From (3.2), (3.3), ( f3), Lemma 2.1(i) and Lemma 3.2, α > 4, for n → ∞ we have

M + o(1) ≥ cλ,µ + o(1) =Iλ,µ(un)−
1

α
⟨I′λ,µ(un), un⟩

=

(
1

2
− 1

α

)
∥un∥2

λ +

(
2

α
− 1

2

)
µ
∫

R3
ωφun u2

ndx

+
µ

α

∫

R3
φ2

un
u2

ndx +
∫

R3

(
1

α
f (x, un)un − F(x, un)

)
dx

≥1

4
∥un∥2

λ,

which implies that {un} is bounded in Eλ and ∥un∥λ ≤ 2
√

M as n → ∞, where M is given by

Lemma 3.2.

Then we will give the compactness conditions for Iλ,µ. Before that, we introduce a lemma

to deal with nonlinear term.

Lemma 3.4 ([14]). Assume that ( f1) and ( f2) hold. If un ⇀ u in H1(R3), then along a subsequence

of {un},

lim
n→∞

sup
ϕ∈H1(R3),∥ϕ∥

H1≤1

∣∣∣∣
∫

R3
[ f (x, un)− f (x, un − u)− f (x, u)]ϕdx

∣∣∣∣ = 0.

Lemma 3.5. Suppose that (a1)–(a3) and ( f1)–( f3) hold. If {un} ⊂ Eλ is a sequence satisfying (3.7),

up to a subsequence, there exists λ∗
1 ≥ 1 such that for each µ ∈ (0, µ0) and λ ∈ (λ∗

1 , ∞), {un} ⊂ Eλ

contains a convergent subsequence.

Proof. By Lemma 3.3, we know that {un} is bounded. We may assume that there exists u ∈ Eλ

such that

un ⇀ u in Eλ,

un → u in Ls
loc(R

3), 2 ≤ s < 6,

un → u a.e. in R
3.

(3.8)

From Lemma 2.2 and (3.7), we have ⟨I′λ,µ(u), u⟩ = 0, i.e.,

∥u∥2
λ − 2µ

∫

R3
ωφuu2dx − µ

∫

R3
φ2

uu2dx −
∫

R3
f (x, u)udx = 0. (3.9)

Next, we prove that un → u in Eλ. Let vn = un − u, by (a2), then

|vn|22 =
∫

R3\Ac

v2
ndx +

∫

Ac

v2
ndx ≤ 1

cλ + 1
∥vn∥2

λ + o(1) ≤ 1

cλ
∥vn∥2

λ + o(1). (3.10)

It follows from Brézis–Lieb Lemma the ([26, Lemma 1.32]) that

∥un∥2
λ − ∥u∥2

λ = ∥vn∥2
λ + o(1). (3.11)

Then, by (3.10), Hölder and Sobolev inequalities, we have

|vn|p ≤ |vn|θ2|vn|1−θ
6 ≤ S

θ−1
2 |vn|θ2|∇vn|1−θ

2 ≤ S
θ−1

2 (cλ)−
θ
2 ∥vn∥λ + o(1), (3.12)

where θ = 6−p
2p > 0. Employing Lemma 3.4, we have

∣∣∣∣
1

∥un∥λ

∫

R3
[ f (x, un)− f (x, vn)− f (x, u)]undx

∣∣∣∣ = o(1).
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From (3.8), vn ⇀ 0 in Eλ, vn → 0 in Ls
loc(R

3) for 2 ≤ s < 6 and vn → 0 a.e. on R
3, there have

1

∥un∥λ

∫

R3
f (x, un)undx ≤ 1

∥un∥λ

[∫

R3
f (x, u)u + f (x, vn)vn + f (x, vn)u + f (x, u)vndx

]

+

∣∣∣∣
1

∥un∥λ

∫

R3
[ f (x, un)− f (x, vn)− f (x, u)]undx

∣∣∣∣

=
1

∥un∥λ

[∫

R3
f (x, u)udx +

∫

R3
f (x, vn)vndx

]
+ o(1).

(3.13)

From (3.5), (3.10)–(3.13), Lemma 3.3 and Fatou’s Lemma, choose ε = 1
2d2

2
, then

o(1) = ⟨I′λ,µ(un), un⟩ − ⟨I′λ,µ(u), u⟩

= ∥un∥2
λ − µ

∫

R3
(2ω + φun)φun u2

ndx −
∫

R3
f (x, un)undx

−∥u∥2
λ + µ

∫

R3
(2ω + φu)φuu2dx +

∫

R3
f (x, u)udx

≥ ∥vn∥2
λ −

∫

R3
f (x, vn)vndx + o(1)

≥ ∥vn∥2
λ − ε|vn|22 − Cε|vn|pp + o(1)

≥ [
1

2
− Cε(4dp

√
M)p−2Sθ−1(cλ)−θ ]∥vn∥2

λ + o(1).

Hence, there exists λ1 = [2Cε(4dp

√
M)p−2Sθ−1c−θ ]

1
θ such that the previous coefficient of ∥vn∥2

λ

is greater than 0 when λ > λ1, where M is given by Lemma 3.2. Then choose λ∗
1 = max{λ1, 1}

such that vn → 0 in Eλ for all λ > λ∗
1 .

Proof of Theorem 1.2. Assume (a1)–(a3) and ( f1)–( f3) are satisfied. By Lemma 3.1, there exists

µ0 > 0 such that for every λ ≥ 1 and µ ∈ (0, µ0), Iλ,µ possesses a Cerami sequence {un} at the

mountain pass level cλ,µ and satisfied

Iλ,µ(un) → cλ,µ > 0 and (1 + ∥un∥λ)∥I′λ,µ(un)∥E′
λ
→ 0, as n → ∞.

From Lemmas 3.2 and 3.3, we thus deduce that for every λ ≥ 1 and µ ∈ (0, µ0), after passing

to a subsequence, {un} is bounded in Eλ and ∥un∥λ ≤ 2
√

M as n → ∞. It follows from

Lemma 3.5 that exists λ∗
1 ≥ 1 such that for each µ ∈ (0, µ0) and λ ∈ (λ∗

1 , ∞), the sequence

{un} has a convergent subsequence in Eλ. Then there exists uλ,µ ∈ Eλ, such that un → uλ,µ as

n → ∞, and thus

∥uλ,µ∥λ ≤ 2
√

M, Iλ,µ(uλ,µ) = cλ,µ and I′λ,µ(uλ,µ) = 0.

Now we claim that uλ,µ ̸= 0. Otherwise, Iλ,µ(uλ,µ) = 0 = cλ,µ, which is a contradiction to

cλ,µ > 0. Moreover, by the Hölder inequality, Lemma 2.1(ii) and Sobolev inequality, we have

∫

R3
φ2

uλ,µ
u2

λ,µdx ≤
(∫

R3
(φ2

uλ,µ
)3dx

) 1
3
(∫

R3
(u2

λ,µ)
3
2 dx

) 2
3

≤ Cd2
3∥φuλ,µ

∥2
D1,2∥uλ,µ∥2

λ

≤ C̃∥uλ,µ∥4
λ.
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Then, since ⟨I′λ,µ(uλ,µ), uλ,µ⟩ = 0, Lemma 2.1(i) and (3.4), there exists ε = 1
2d2

2
, we have

∥uλ,µ∥2
λ = 2µ

∫

R3
ωφuλ,µ

u2
λ,µdx + µ

∫

R3
φ2

uλ,µ
u2

λ,µdx +
∫

R3
f (x, uλ,µ)uλ,µdx

≤ µ0C̃1∥uλ,µ∥4
λ + εd2

2∥uλ,µ∥2
λ + Cεd

p
p∥uλ,µ∥p

λ.

Hence, there exists τ0 > 0 (independent of µ and λ) such that ∥uλ,µ∥λ ≥ τ0 for all µ ∈ (0, µ0)

and λ ∈ (λ∗
1 , ∞). This finishes the proof.

Proof of Theorem 1.3. Let µ ∈ (0, µ0) be fixed, then for any sequence λn → +∞. Let un := uλn,µ

be the nontrivial solution of (1.4) obtained by Theorem 1.2. From Theorem 1.2 we have

0 < τ0 ≤ ∥un∥λn
≤ 2

√
M for n → ∞. (3.14)

Thus, up to a subsequence, we may assume that

un ⇀ uµ ; in E,

un → uµ in Ls
loc(R

3), 2 ≤ s < 6,

un → uµ a.e. in R
3.

It follows from (3.14), Fatou’s Lemma and (a1) that

0 ≤
∫

R3
(a(x) + 1)u2

µdx ≤ lim inf
n→∞

∫

R3
(a(x) + 1)u2

ndx ≤ lim inf
n→∞

∥un∥2
λn

λn
= 0.

Hence, uµ = 0 a.e. in R
3 \ a−1(0), and uµ ∈ H1(Ω) by the condition (a3).

Now we show that un → uµ in Ls(R3) for all s ∈ (2, 6). Otherwise, by Lions’ vanishing

Lemma ([18, 26]) there exist δ, r > 0 and xn ∈ R
3 such that

∫

Br(xn)
(un − uµ)

2dx ≥ δ.

This implies that |xn| → ∞ as n → ∞, and so |Br(xn) ∩ Ac| → 0. By the Hölder inequality, we

then conclude that ∫

Br(xn)∩Ac

(un − uµ)
2dx → 0 as n → ∞.

Consequently, we get

∥un∥2
λn

≥ (cλn + 1)
∫

Br(xn)∩{a(x)≥c}
u2

ndx = (cλn + 1)
∫

Br(xn)∩{a(x)≥c}
(un − uµ)

2dx

= (cλn + 1)

(∫

Br(xn)
(un − uµ)

2dx −
∫

Br(xn)∩Ac

(un − uµ)
2dx

)
→ ∞,

as n → ∞, which contradicts (3.14).

We then prove that un → uµ in E. Since

⟨I′λn,µ(un), un⟩ = ⟨I′λn,µ(un), uµ⟩ = 0,

we have

∥un∥2
λn

− 2µ
∫

R3
ωφun u2

ndx − µ
∫

R3
φ2

un
u2

ndx −
∫

R3
f (x, un)undx = 0,
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∫

R3

(
∇un∇uµ + (λna(x) + 1)unuµ

)
dx − 2µ

∫

R3
ωφun unuµdx

− µ
∫

R3
φ2

un
unuµdx −

∫

R3
f (x, un)uµdx = 0.

Since uµ = 0 a.e. in R
3 \ a−1(0) and by Lemma 2.1(ii), (3.14), we deduce that

∫

R3
φun un(un − uµ)dx ≤ |φun |6|un|2|un − uµ|3 ≤ C∥φun∥D1,2∥un∥λ|un − uµ|3 → 0,

∫

R3
φ2

un
un(un − uµ)dx ≤ |φun |26|un|3|un − uµ|3 ≤ C∥φun∥2

D1,2∥un∥λ|un − uµ|3 → 0,

∫

R3
f (x, un)(un − uµ)dx → 0.

Thus, limn→∞ ∥un∥2
λn

= ∥uµ∥2. Then from the weakly lower semi-continuity of norm, we have

∥uµ∥2 ≤ lim inf
n→∞

∥un∥2 ≤ lim sup
n→∞

∥un∥2 ≤ lim sup
n→∞

∥un∥2
λn

= ∥uµ∥2. (3.15)

Consequently, we yield that un → uµ in E.

Finally, we only need to show that uµ is a weak solution of (1.6). Now for any v ∈ C∞

0 (Ω),

since ⟨I′λn,µ(un), v⟩ = 0, it is easy to check that

∫

Ω

(∇uµ∇v + uµv)dx − µ
∫

Ω

(2ω + φuµ)φuµ uµvdx −
∫

Ω

f (x, uµ)vdx = 0.

i.e., uµ is a weak solution of (1.6) by the density of C∞

0 (Ω) in H1(Ω). From (3.14) and (3.15),

we can see that

∥uµ∥ = lim
n→∞

∥un∥λn
≥ τ0 > 0,

so uµ ̸= 0. Thus, uµ is a nontrivial weak solution of (1.6).

Proof of Theorem 1.4. Let λ ∈ (λ∗
1 , ∞) be fixed, then for any sequence µn → 0. Let un := uλ,µn

be the nontrivial solution of (1.4) obtained by Theorem 1.2. From Theorem 1.2, we have

0 < τ0 ≤ ∥un∥λn
≤ 2

√
M for n → ∞. (3.16)

Passing to a subsequence , we may assume that un ⇀ uλ in Eλ. Note that I′λ,µn
(un) = 0, we

can obtain that un → uλ in Eλ as the proof of Lemma 3.5.

To complete the proof, we will show that uλ is a nontrivial solution of (1.7). Now for any

v ∈ Eλ, since ⟨I′λ,µn
(un), v⟩ = 0, it is easy to check that

∫

R3
∇uλ∇v + (λa(x) + 1)uλvdx =

∫

R3
f (x, uλ)vdx,

i.e., uλ is a weak solution of (1.7). Then, by (3.16) we see that uλ ̸= 0. Therefore, uλ is a

nontrivial weak solution of (1.7). This completes the proof.

Proof of Theorem 1.5. Following the same argument as in the proof of Theorems 1.3 and 1.4, we

get the conclusion.
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4 The existence and concentration phenomenon of solution of (1.9)

In this section, we will give the asymptotic behavior of positive solution of (1.9), and de-

vote to prove Theorem 1.8 to Theorem 1.11. We will use truncation technique to obtain the

boundedness of Cerami sequence. Before that, we write the functional corresponding to (1.9).

Îλ,µ : Eλ → R given by

Îλ,µ(u) =
1

2

∫

R3
(|∇u|2 + (λa(x) + 1)u2)dx − µ

2

∫

R3
ωφuu2dx − 1

q

∫

R3
|u+|qdx (4.1)

and Îλ,µ ∈ C1. Moreover, for any u, v ∈ Eλ, we have

⟨ Î′λ,µ(u), v⟩ =
∫

R3
(∇u · ∇v + (λa(x) + 1)uv) dx − µ

∫

R3
(2ω + φu)φuuvdx −

∫

R3
|u+|q−2u+vdx.

(4.2)

Then we define a cut-off function η ∈ C1([0, ∞), R) satisfying 0 ≤ η ≤ 1, η(t) = 1 if

0 ≤ t ≤ 1, η(t) = 0 if t ≥ 2, max
t>0

|η′(t)| ≤ 2 and η′(t) ≤ 0 for each t > 0. Using η, for every

T > 0 we then consider the truncated functional ÎT
λ,µ : Eλ → R defined by

ÎT
λ,µ(u) =

1

2
∥u∥2

λ − µ

2
η

(∥u∥2
λ

T2

) ∫

R3
ωφuu2dx − 1

q

∫

R3
|u+|qdx. (4.3)

We can see that ÎT
λ,µ is of class C1, then for each u, v ∈ Eλ,

⟨( ÎT
λ,µ)

′(u), v⟩ =⟨u, v⟩λ − µ

T2
η′
(∥u∥2

λ

T2
4.1

)
⟨u, v⟩λ

∫

R3
ωφuu2dx

− µη

(∥u∥2
λ

T2

) ∫

R3
(2ω + φu)φuuvdx −

∫

R3
|u+|q−2u+vdx.

(4.4)

It is easy to see that every nontrivial critical point of Îλ,µ is a positive solution of (1.9), and

we will prove it in the following lemma.

Lemma 4.1. Suppose that 2 < q < 4 and (a1)–(a3) are satisfied. Then every nontrivial critical point

of Îλ,µ is a positive solution of (1.9).

Proof. Let u ∈ Eλ be a nontrivial critical point of Îλ,µ, then ⟨ Î′λ,µ(u), v⟩ = 0 for all v ∈ Eλ. We

have
∫

R3
(∇u · ∇v + (λa(x) + 1)uv) dx − µ

∫

R3
(2ω + φu)φuuvdx −

∫

R3
|u+|p−2u+vdx = 0. (4.5)

Taking v = u− = −min{u, 0} in (4.5), by Lemma 2.1(i) we obtain that

∥u−∥2
λ ≤ ∥u−∥2

λ − µ
∫

R3
(2ω + φu−)φu− |u−|2dx = 0

which is a contradiction. Then we can see u ≥ 0 in R
3. Hence, the strong maximum principle

and the fact u ̸= 0 imply that u > 0 in R
3, and the proof is ready.

Lemma 4.2. Suppose 2 < q < 4 and (a1)–(a3) are satisfied. There exists µ1 > 0 for each T > 0,

µ ∈ (0, µ1) and λ ≥ 1. Then there exist ρ̄, β̄ > 0 and ē0 ∈ Eλ, ∥ē0∥λ > ρ̄, such that

inf
∥u∥=ρ̄

ÎT
λ,µ(u) ≥ β̄ > 0 ≥ max

{
ÎT
λ,µ(0), ÎT

λ,µ(ē0)
}

.
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Proof. From Lemma 2.1, (2.1) and (4.3), for each u ∈ Eλ, we have

ÎT
λ,µ(u) ≥

1

2
∥u∥2

λ − 1

q
d

q
q∥u∥q

λ = ∥u∥2
λ

(
1

2
− 1

q
d

q
q∥u∥q−2

λ

)
,

where the constant dq > 0 is independent of T, µ and λ. Since q > 2, there exist ρ̄ > 0 small

enough and β̄ > 0, such that inf∥u∥=ρ̄ ÎT
λ,µ(u) ≥ β̄ > 0.

Then, we define the functional Ĵλ : Eλ → R by

Ĵλ(u) =
1

2

∫

R3
(|∇u|2 + (λa(x) + 1)u2)dx − 1

q

∫

R3
|u+|qdx.

Since 2 < q < 4, similar to Lemma 3.1, there also exist t̄0 > 0 large enough and let ē0 := t̄0e

such that Ĵλ(ē0) ≤ −1 with ∥ē0∥λ > ρ̄. From Lemma 2.1(i), then

ÎT
λ,µ(ē0) = Ĵλ(ē0)−

µ

2
η

(∥ē0∥2
λ

T2

) ∫

R3
ωφē0 ē2

0dx

≤ −1 +
µω2

2
|ē0|22,

there exists µ1 := 2
ω2|ē0|22

> 0 (independent of λ and T) such that ÎT
λ,µ(ē0) < 0 for each T, λ ≥ 1

and µ ∈ (0, µ1). The proof is completed.

Then we also can consider the mountain pass value

ĉT
λ,µ = inf

γ∈Γ

max
t∈[0,1]

ÎT
λ,µ(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = ē0}. From Proposition 2.3 and Lemma 4.2, we

obtain that for each T > 0, λ ≥ 1 and µ ∈ (0, µ1), there exists a Cerami sequence {ûn} ⊂ Eλ

such that

ÎT
λ,µ(ûn) → ĉT

λ,µ > 0 and (1 + ∥ûn∥λ)
∥∥∥( ÎT

λ,µ)
′(ûn)

∥∥∥
E′

λ

→ 0 as n → ∞. (4.6)

Since 2 < q < 4 and the definition of η(t), similar proof to Lemma 3.2, we can find a

M̄ > 0 such that ĉT
λ,µ has an upper bound, i.e.,

ĉT
λ,µ ≤ M̄. (4.7)

Lemma 4.3. Assume 2 < q < 4 and (a1)–(a3) hold, let T =
√

2q(M̄+1)
q−2 . Then there exists µ2 > 0

small enough, for each λ ≥ 1, µ ∈ (0, min{µ1, µ2}), if {ûn} ⊂ Eλ is a sequence satisfying (4.6), then

we have, up to a subsequence,

sup
n∈N

∥ûn∥λ ≤ T.

Proof. Otherwise, there exists a subsequence of {ûn}, still denoted by {ûn} such that ∥ûn∥λ >

T. It can be divided into two situations:

(i) T < ∥ûn∥λ <

√
2T; (ii) ∥ûn∥λ ≥

√
2T.
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Firstly, for the case (i), due to (4.3), (4.4) and Lemma 2.1 we have

M̄ + o(1) ≥ ĉT
λ,µ + o(1) = ÎT

λ,µ(ûn)−
1

q
⟨( ÎT

λ,µ)
′(ûn), ûn⟩

=

(
1

2
− 1

q

)
∥ûn∥2

λ +
µ

qT2
η′
(∥ûn∥2

λ

T2

)
∥ûn∥2

λ

∫

R3
ωφûn û2

ndx

+

(
2

q
− 1

2

)
µη

(∥ûn∥2
λ

T2

) ∫

R3
ωφûn û2

ndx +
µ

q
η

(∥ûn∥2
λ

T2

) ∫

R3
φ2

ûn
û2

ndx

≥
(

1

2
− 1

q

)
∥ûn∥2

λ −
(

2

q
− 1

2

)
µω2d2

2∥ûn∥2
λ

≥ (M̄ + 1)− 2(4 − q)µω2d2
2

q − 2
(M̄ + 1),

which is a contradiction when we choose µ2 := q−2

2(4−q)ω2d2
2(M̄+1)

> 0 such that µ ∈
(0, min{µ1, µ2}). Then we deduce that ∥ûn∥λ ≥

√
2T for n large enough. With the defini-

tion of η(t), we conclude that

M̄ + o(1) ≥ ĉT
λ,µ + o(1) = ÎT

λ,µ(ûn)−
1

q
⟨( ÎT

λ,µ)
′(ûn), ûn⟩

=

(
1

2
− 1

q

)
∥ûn∥2

λ

≥2(M̄ + 1),

this is obviously a contradiction. The proof of this lemma ends.

Up to now, we have proved that the sequence {ûn} given by (4.6) satisfies ∥ûn∥λ ≤ T. In

particular, this sequence {ûn} is also a Cerami sequence at level ĉT
λ,µ for Îλ,µ, i.e.,

Îλ,µ(ûn) → ĉT
λ,µ > 0 and (1 + ∥ûn∥λ)

∥∥∥ Î′λ,µ(ûn)
∥∥∥

E′
λ

→ 0 as n → ∞.

Then we will give the compactness conditions for Îλ,µ.

Lemma 4.4. Suppose that 2 < q < 4 and (a1)–(a3) hold. If {ûn} ⊂ Eλ is a sequence satisfying (4.6),

up to a subsequence, there exists λ∗
2 ≥ 1 such that for each µ ∈ (0, min{µ1, µ2}) and λ ∈ (λ∗

2 , ∞),

{ûn} ⊂ Eλ contains a convergent subsequence.

Proof. Proof is similar to Lemma 3.5, there exists λ2 = [(2dqT)q−2Sθ−1c−θ ]
1
θ where θ = 6−q

2q > 0

and choose λ∗
2 = max{λ2, 1} such that (ûn − û) → 0 in Eλ for all λ > λ∗

2 .

Proof of Theorem 1.8. Assume 2 < q < 4 and (a1)–(a3) are satisfied. By Lemma 4.2, there exists

µ1 > 0 such that for every λ ≥ 1 and µ ∈ (0, µ1), ÎT
λ,µ possesses a Cerami sequence {ûn} at the

mountain pass level ĉT
λ,µ. From (4.7) and Lemma 4.3, we thus deduce that there exist µ2 > 0

such that for every λ ≥ 1 and µ ∈ (0, min{µ1, µ2}), after passing to a subsequence, {ûn} is a

Cerami sequence of Îλ,µ satisfying ∥ûn∥λ ≤ T, i.e.,

sup
n∈N

∥ûn∥λ ≤ T, Îλ,µ(ûn) → ĉT
λ,µ and (1 + ∥ûn∥λ)∥ Î′λ,µ(ûn)∥E′

λ
→ 0, as n → ∞.
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It follows from Lemma 4.4 that exists λ∗
2 ≥ 1 such that for each µ ∈ (0, min{µ1, µ2}) and λ ∈

(λ∗
2 , ∞), the sequence {ûn} has a convergent subsequence in Eλ. Then there exists ûλ,µ ∈ Eλ,

such that ûn → ûλ,µ as n → ∞, and thus

∥ûλ,µ∥λ ≤ T, Îλ,µ(ûλ,µ) = ĉT
λ,µ and Î′λ,µ(ûλ,µ) = 0.

Similarly, we can prove that ûλ,µ ̸= 0 and there exists τ1 > 0 (independent of µ and λ) such

that ∥ûλ,µ∥λ ≥ τ1 for all µ ∈ (0, min{µ1, µ2}) and λ ∈ (λ∗
2 , ∞).

Proof of Theorem 1.9 to Theorem 1.11. Please refer to the proofs of Theorems 1.3 to 1.5. The

detailed proofs are omitted here.
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1 Introduction and setting of the problem

Integro-differential and functional-delayed equations are often used to describe phenomena

whose dynamics depends on the past states of the system of concern. We mention, in partic-

ular, scalar second order functional differential equation of the following form:

ẍ(t) = g

(
x(t), ẋ(t),

∫ t

−∞
K(t − s)ϕ(x(s), ẋ(s))ds

)
, (1.1)

where g : R
3 → R is a continuous map, ϕ : R

2 → R is continuous and K is some integral

kernel. Such equations, often studied in the first order case, have been considered in many

contexts. A comprehensive bibliography is beyond the scope of this paper, we only mention a

few relevant papers and books, e.g., [14, 22, 32, 34, 35, 40, 41].

In this paper we focus on the case when the integral kernel in (1.1) is the gamma proba-

bility distribution γb
a, for a > 0 and b ∈ N \ {0} given by

γb
a(s) =

absb−1e−as

(b − 1)!
for s ≥ 0, γb

a(s) = 0 for s < 0, (1.2)

BCorresponding author. Email: calamai@dipmat.univpm.it
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with mean b/a and variance b/a2. Namely, we study the following equation:

ẍ(t) = g

(
x(t), ẋ(t),

∫ t

−∞
γb

a(t − s)ϕ(x(s), ẋ(s))ds

)
. (1.3)

An equation as (1.3) is often called reducible because, unlike equation (1.1) whose dynamics

is, in general, infinite dimensional (see, e.g., [31]), equation (1.3) can be essentially reduced

to a system of ordinary differential equations by the so-called linear chain trick (see Section 2).

Indeed, backtracking the linear chain trick procedure, one can see how equations of the form

(1.3) may arise from the coupling of a nonlinear equation with a linear one (see, e.g., [35,

Ch. 10]). We will briefly come back on this last topic in Section 8 on perspectives and further

developments. Another of the reasons that motivates the interest in this particular type of

kernels is that, at least for some linear functional equations containing a convolution-like

term as in equation (1.1) with general kernel, it is possible to construct gamma-like kernels

such that the solutions of the corresponding equations approximate those of the equation we

started with (see [6, 9, 10]).

The particular dependence on the past of the solution that is considered in equation (1.3)

naturally arises in many contexts (not necessarily for second order equations) see, e.g., [5,

10, 21, 22, 34, 35, 40, 41]. In the equation we examine, the delay is spread along the whole

history but more concentrated at a given distance in the past. We can interpret this, from

a probabilistic point of view, as a delay that follows a gamma-type distribution with a given

mean (and variance). This approach seems to be reasonable in contexts when the delay cannot

be measured with precision, but its mean value and variance are known, or it is genuinely

spread in time as, e.g., in [18, 19]. Notice, in particular, that letting a and b tend to infinity in

such a way that the quotient r := a/b remains constant (for instance, put a = nr and b = n

and let n → ∞), one concentrates the memory effect close to the delay r. Indeed, at least in

the sense of distributions, (1.3) approximates the second order delay differential equation

ẍ(t) = g
(

x(t), ẋ(t), ϕ
(
x(t − r), ẋ(t − r)

))
.

Observe that the function γb
a defined in (1.2) is continuous for b = 2, 3, . . . but not for b = 1.

However, also in the latter case, assuming x in C1, the function

t 7→
∫ t

−∞
γ1

a(t − s)ϕ(x(s), ẋ(s))ds

is continuous. Then the right hand side of (1.3) is continuous as well; consequently, any C1

solution of (1.3) is actually of class C2. It is also worth noticing (and we will use this fact later)

that, since in the integral one has t − s ≥ 0, then

∫ t

−∞
γ1

a(t − s)ϕ(x(s), ẋ(s))ds =
∫ t

−∞
ae−a(t−s)ϕ(x(s), ẋ(s))ds,

so that the function t 7→
∫ t
−∞

γ1
a(t − s)ϕ(x(s), ẋ(s))ds is actually in C1.

Our main concern will be the structure of periodic solutions of (1.3) when subject to a

periodic forcing. Given T > 0, we consider the following T-periodic perturbation of (1.3):

ẍ(t) = g

(
x(t), ẋ(t),

∫ t

−∞
γb

a(t − s)ϕ(x(s), ẋ(s))ds

)
+ λ f

(
t, x(t), ẋ(t)

)
, (1.4)

in which we assume that the map f : R
3 → R is continuous and T-periodic in the first variable,

and λ is a nonnegative real parameter. Our main purpose is to investigate the set of T-periodic
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solutions of (1.4). Here, given λ ≥ 0, by a T-periodic solution (on R) of (1.4) we mean a C2

function x : R → R of period T that satisfies identically equality (1.4). In that case, we will

call (λ, x) a T-forced pair of (1.4). The T-forced pairs of the type (0, x) with x constant will be

called trivial.

Roughly speaking, we explicitly construct a scalar function Φ whose change of sign implies

the existence of a connected set, called a “branch”, of nontrivial pairs (λ, x) that emanates out

of the set of zeros of Φ and whose closure – in a suitable Banach space – is not compact.

We also give sufficient conditions yielding the multiplicity of T-periodic solutions of (1.4)

for λ > 0 small. Such conditions are essentially based upon the notion of ejecting set (see,

e.g., [26]).

The methods that we employ are topological in nature and are based on the Brouwer

degree. Nevertheless, the use of our main results is accessible even without a familiarity with

this notion since the application of the degree theory is restricted to the proofs and some

preliminary results proved elsewhere. This is possible since we deal with scalar equations for

which degree-theoretic assumptions can be replaced with more elementary ones. It would be

not so if the vector case was considered, see Section 8 for a brief discussion. However, for

completeness, we provide a short summary of degree theory in Section 4.

Our results are so-to-speak dual to those of [12], where periodic perturbations containing

delay terms are applied to scalar, second order ODEs. The study, by means of topological

methods, of the branching and multiplicity of periodic solutions of periodically perturbed

equations, is now a well-investigated subject in the case of ODEs both in Euclidean spaces

and on manifolds (see, e.g., [25, 28]). The case of ODEs perturbed with delayed forcing terms

is also studied in the literature, although not so broadly (see, e.g., [12, 13]). However, the

presence of delay terms in the unperturbed equation (1.3) is peculiar of the problem addressed

here. In spite of the apparent similarities, a different approach is called upon in order to

manage the unperturbed equation.

In the undelayed case, that is for periodically forced second-order scalar autonomous

ODEs, both the problems of existence and multiplicity of periodic solutions are quite clas-

sical. However, this is still the subject of active research by the mathematical community.

There are many approaches that have been successfully pursued to get multiplicity results:

among the others let us mention here, e.g., the recent contributions [3, 4, 11, 23], the survey

papers [37, 38] as well as the monograph [24] and the references therein.

The strategy adopted in this paper is inspired to [42] and can be summarized as follows.

First we construct a system of b + 2, T-periodically perturbed first-order ordinary differen-

tial equations whose T-periodic solutions correspond to that of (1.4). We then use known

results about these perturbed systems to ensure the existence of a branch as sought when the

topological degree of the unperturbed field G has nonzero degree and finally, we show, by

homotopy techniques, that the change of sign of Φ implies that G has nonzero degree.

It should be noted that the result just described does not guarantee the existence of forced

oscillations even for very small values of λ. For this reason, we also provide a nonlocal condi-

tion, based on an inequality of J. A. Yorke [43], implying that the branch projects nontrivially

onto [0, ∞).

In order to develop a better understanding of the nature of the branch of T-periodic solu-

tions and its relation with multiplicity results we discuss, following [2] and [42], a method to

visualize, in finite dimension, a homemorphic set that retains all the relevant properties. We

illustrate the procedure with a numeric example.
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2 The linear chain trick

As pointed out in the introduction, the purpose of this paper is to investigate the structure of

the set of the T-periodic solutions of the parametric ODE

ẍ(t) = g

(
x(t), ẋ(t),

∫ t

−∞
γb

a(t − s)ϕ(x(s), ẋ(s))ds

)
+ λ f

(
t, x(t), ẋ(t)

)
, (2.1)

where we make the following set of assumptions:

i. g : R
3 → R is a continuous map;

ii. ϕ : R
2 → R is a continuous map;

iii. γb
a, for a > 0 and b ∈ N \ {0}, represents the gamma probability distribu-

tion (1.2);

iv. f : R
3 → R is continuous and T-periodic in the first variable;

v. λ ≥ 0 is a real parameter.

(2.2)

We start with a crucial remark; namely, the fact that the T-periodic solutions of (2.1) and

those of the following system of b + 2 ordinary differential equations correspond in some

sense:

ξ̇ = G(ξ) + λF(t, ξ), (2.3)

where ξ = (u, v0, v1, . . . , vb) ∈ R
b+2, and the maps G : R

b+2 → R
b+2 and F : R × R

b+2 → R
b+2

are respectively defined as

G(u, v0, v1, . . . , vb) =
(

v0, g(u, v0, vb), a
(

ϕ(u, v0)− v1

)
, a(v1 − v2) . . . , a(vb−1 − vb)

)
(2.4)

and

F(t, u, v0, v1, . . . , vb) =
(

0, f (t, u, v0), 0, . . . , 0︸ ︷︷ ︸
b times

)
,

with g, ϕ and f as in equation (2.1). Clearly, G and F are continuous maps. By a T-periodic

solution (on R) of system (2.3) we mean a C1 function ξ : R → R
b+2 of period T that satisfies

(2.3) identically.

Let us show now how a “linear chain trick” (see, e.g., [41, 42]) can be used to prove the

correspondence between T-periodic solutions of the second order equation (2.1) and of the

first order system (2.3).

Let us introduce some notation. By Cn
T(R

s), n = 0, 1, 2, we will denote the Banach space of

the T-periodic Cn maps x : R → R
s with the the standard norm

∥x∥Cn =
n

∑
i=0

max
t∈R

|x(i)(t)|.

Here, x(i) denotes the i-th derivative of x, in particular x(0) coincides with x.

Theorem 2.1. Assume (2.2) and suppose x0 is a T-periodic solution of (2.1), and let
{

y0(t) := ẋ0(t),

yi(t) :=
∫ t
−∞

γi
a(t − s)ϕ(x0(s), y0(s))ds, i = 1, . . . , b

for t ∈ R. Then, (x0, y0, y1 . . . , yb) is a T-periodic solution of (2.3).
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Proof. First notice that, since x0 ∈ C2
T(R) and ϕ : R

2 → R is continuous, it is not difficult to

prove that the functions yi, i = 0, . . . , b, are in C1
T(R).

Moreover, we claim that, for any t ∈ R,





ẋ0(t) = y0(t),

ẏ0(t) = g
(

x0(t), y0(t), yb(t)
)
+ λ f

(
t, x0(t), y0(t)

)
, λ ≥ 0,

ẏ1(t) = a
(

ϕ(x0(t), y0(t))− y1(t)),

ẏi(t) = a
(
yi−1(t)− yi(t)

)
, i = 2, . . . , b.

Indeed, the first equality follows by definition. Since x0 is a solution of (2.1), for λ ≥ 0 we

have

ẏ0(t) = ẍ0(t) = g

(
x0(t), ẋ0(t),

∫ t

−∞
γb

a(t − s)ϕ(x0(s), ẋ0(s))ds

)
+ λ f

(
t, x0(t), ẋ0(t)

)

= g
(
x0(t), y0(t), yb(t)

)
+ λ f

(
t, x0(t)y0(t)

)
, ∀t ∈ R.

Now observe that, when i = 1, we have for any t ∈ R,

y1(t) :=
∫ t

−∞
γ1

a(t − s)ϕ(x0(s), y0(s))ds =
∫ t

−∞
ae−a(t−s)ϕ(x0(s), y0(s))ds.

Thus, taking the derivative under the integral sign,

d

dt
y1(t) = aϕ(x0(t), y0(t))− a2

∫ t

−∞
e−a(t−s) ϕ(x0(s), y0(s))ds

so that

ẏ1(t) = a
(

ϕ(x0(t), y0(t))− y1(t)
)
.

Also, for i = 2, . . . , b, we get for any t ∈ R,

d

dt
yi(t) = γi

a(0) ϕ(x0(t), y0(t)) +
∫ t

−∞

d

dt
γi

a(t − s) ϕ(x0(s), y0(s))ds

=
∫ t

−∞
a
(

γi−1
a (t − s)− γi

a(t − s)
)

ϕ(x0(s), y0(s))ds

= a

(∫ t

−∞
γi−1

a (t − s) ϕ(x0(s), y0(s))ds −
∫ t

−∞
γi

a(t − s) ϕ(x0(s), y0(s))ds

)

= a (yi−1(t)− yi(t))

proving our claim.

Finally, to see that (x0, y0, y1 . . . , yb) is T-periodic, observe that so are x0 and y0, and with

the change of variable σ = s − T we get

yi(t + T) =
∫ t+T

−∞
γi

a(T + t − s)ϕ(x0(s), y0(s))ds

=
∫ t

−∞
γi

a(t − σ)ϕ(x0(σ + T), y0(σ + T))dσ

=
∫ t

−∞
γi

a(t − σ)ϕ(x0(σ), y0(σ))dσ = yi(t),

for i = 1, . . . , b and any t ∈ R, and this completes the proof.
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Conversely, we have the following:

Theorem 2.2. Assume (2.2) and suppose that (x0, y0, y1 . . . , yb) is a T-periodic solution of (2.3), then

x0 is a T-periodic solution of (2.1).

The proof of Theorem 2.2 is based on the following technical lemma on linear systems of

ODEs, see [42, Lemma 3.3], cf. also [41, Prop. 7.3]. The proof is omitted.

Lemma 2.3 ([42], Lemma 3.3). Given any continuous and bounded function z0 : R → R and any

a > 0, there exists a unique C1 solution z = (z1, . . . , zb), zi : R → R, i = 1, . . . , b, of the system in

R
b

żi(t) = a
(
zi−1(t)− zi(t)

)
,

which is bounded in the C1 norm. This solution is given by

zi(t) =
∫ t

−∞
γi

a(t − s)z0(s)ds, i = 1, . . . , b.

Remark 2.4. Observe in particular that, for i = 1 in the previous lemma, one has

z1(t) =
∫ t

−∞
γ1

a(t − s)z0(s)ds = a
∫ t

−∞
e−a(t−s)z0(s)ds,

so that z1 is actually a C1 function, and thus so are all the zi’s for i = 2, . . . , b.

Proof of Theorem 2.2. Let (x0, y0, y1 . . . , yb) be a T-periodic solution of (2.3), and define z0(t) =

ϕ(x0(t), y0(t)) for t ∈ R. Observe that z0 is bounded and continuous. Thus, by Lemma 2.3,

yi(t) =
∫ t

−∞
γi

a(t − s)ϕ(x0(s), y0(s))ds, i = 1, . . . , b,

is the unique solution of class C1 of

{
ẏ1(t) = a

(
ϕ(x0(t), y0(t))− y1(t)),

ẏi(t) = a
(
yi−1(t)− yi(t)

)
, i = 2, . . . , b.

In particular, we have

yb(t) =
∫ t

−∞
γb

a(t − s)ϕ(x0(s), y0(s))ds.

Thus, from (2.3),

ẍ0(t) = ẏ0(t) = g
(

x0(t), y0(t), yb(t)
)
+ λ f

(
t, x0(t)y0(t)

)

= g

(
x0(t), ẋ0(t),

∫ t

−∞
γb

a(t − s)ϕ(x0(s), ẋ0(s))ds

)
+ λ f

(
t, x0(t), ẋ0(t)

)
, λ ≥ 0,

for all t ∈ R, whence the assertion.

3 Branches of T-pairs

This section investigates the structure of the set of T-periodic solutions of (2.1). We begin by

recalling some notation and basic facts.
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Consider the following first-order parameterized ODE on R
k:

ẋ(t) = g
(
x(t)

)
+ λf

(
t, x(t)

)
, (3.1)

where λ ≥ 0, the maps g : R
k → R

k and f : R × R
k → R

k are continuous and f is T-periodic in

the first variable.

We say that a pair (λ, x) ∈ [0, ∞)×CT(R
k) is a T-pair (for (3.1)) if x is a T-periodic solution

of (3.1) corresponding to λ. If λ = 0 and x is constant then the T-pair is said trivial. It is not

hard to see that the trivial T-periodic pairs of (3.1) correspond to the zeros of g. From now on,

given any p ∈ R
k, we will denote by p the constant map t 7→ p, t ∈ R. Given an open subset

O of [0, ∞)× CT(R
k), we will denote by Õ ⊆ R

k the open set Õ :=
{

p : (0, p) ∈ O
}

.

We have the following fact concerning the T-pairs of (3.1), see [27, Theorem 3.3]. The

statement of Theorem 3.1 involves the Brouwer degree of the map g, see Section 4 for a

definition and related notions.

Theorem 3.1 ([27]). Let O be open in [0, ∞)× CT(R
k), and assume that deg(g, Õ) is well defined

and nonzero. Then there exists a connected set Γ ⊆ O of nontrivial T-pairs whose closure in O is not

compact and meets the set of trivial T-pairs contained in O, namely the set:
{
(0, p) ∈ O : g(p) = 0

}
.

Let us now go back to the second-order equation (2.1). Roughly speaking we will state

a global bifurcation result, analogous to Theorem 3.1, whose assumptions do not involve

the topological degree, but rely only on sign-changing properties of the real-valued function

Φ : R → R, given by

Φ(u) = g(u, 0, ϕ(u, 0)). (3.2)

To make a precise statement we need some further notation. The pairs (λ, x) ∈ [0,+∞)×

C1
T(R), with x : R → R a T-periodic solution of (2.1) corresponding to λ, will be called T-

forced pairs (of (2.1)), and we denote by X the set of these pairs. Among the T-forced pairs

we shall consider as trivial those of the type (0, x) with x constant. Given an open subset Ω

of [0, ∞)× C1
T(R), we will denote by Ω̃ :=

{
u ∈ R : (0, u) ∈ Ω

}
, where by u we mean the

constant map t 7→ u, t ∈ R.

As pointed out in Section 2, there is a correspondence between T-periodic solutions of the

second order equation (2.1) and of the first order system in (2.3). A similar correspondence

holds between their “T-periodic pairs” in a sense that we are going to specify. We point out

that, since equation (2.3) can be seen as a special case of (3.1), in accordance with the notation

introduced above, a pair (λ, ξ) ∈ [0, ∞) × CT(R
b+2) is called a T-pair if ξ is a T-periodic

solution of (2.3) corresponding to λ. We also recall that the set of T-forced pairs of (2.1) is

regarded as a subset of [0,+∞)× C1
T(R).

As a first remark we relate the corresponding “trivial T-periodic pairs”. This observation

will be deduced from the following link between the zeros of the map G, defined in (2.4), and

those of Φ, introduced in (3.2).

Remark 3.2. Observe that if (ū, v0, v1, . . . , vb) ∈ G−1(0), then Φ(ū) = 0, v0 = 0 and v1 = v2 =

. . . = vb = ϕ(ū, 0). Conversely, for any ū ∈ Φ−1(0), then G(ū, 0, ϕ(ū, 0) . . . , ϕ(ū, 0)) = 0.

Remark 3.3. Observe that if (0, q), with q ∈ R, is a trivial T-forced pair of (2.1), then (0, ξ0) is

a trivial T-pair for equation (2.3), where ξ0 ∈ R
b+2 is given by

ξ0 := (q, 0, ϕ(q, 0) . . . , ϕ(q, 0)),
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that is, by Remark 3.2, ξ0 ∈ G−1(0). Conversely, any trivial T-pair of (2.3) must be of the

form (0, ξ0), where ξ0 ∈ R
b+2 is such that G(ξ0) = 0. Thus, again by Remark 3.2, we have

ξ0 = (q, 0, ϕ(q, 0) . . . , ϕ(q, 0)) for some q ∈ R, and consequently (0, q) is a trivial T-forced pair

for (2.3).

Let us now establish a general correspondence between the sets of T-forced pairs and of

T-pairs, that preserves the notion of triviality. Let J : [0,+∞)× C1
T(R) → [0, ∞)× CT(R

b+2)

be the map defined as follows:

J : (λ, x0) 7→ (λ, ξ)

where ξ := (x0, y0, y1 . . . , yb) is given by

{
y0(t) := ẋ0(t),

yi(t) :=
∫ t
−∞

γi
a(t − s)ϕ(x0(s), y0(s))ds, i = 1, . . . , b.

As above, denote by X the set of the T-forced pairs of (2.1), and let Y ⊆ [0, ∞)× CT(R
b+2) be

the set of the T-pairs of (2.3).

Lemma 3.4. Let J |X : X → Y be the restriction to X of J . Then J |X is a homeomorphism of X onto

Y, which establishes a bijective correspondence between the trivial T-forced pairs in X and the trivial

T-pairs in Y.

Proof. Since ϕ is continuous, the continuity of J is obtained by construction. Whence we get

the continuity of the restriction J |X. Injectivity and surjectivity of J |X : X → Y follow from

Theorems 2.1 and 2.2. The inverse map (J |X)
−1 can be seen merely as the projection onto

the first two components, so it is continuous. Finally the last part of the assertion follows by

Remark 3.3.

The following fact will be crucial for the proof of our main result. Its proof heavily relies

on the properties of the topological degree, it is therefore postponed to Section 4 where this

concept and its features are discussed. Given a bounded open interval (α, β) ⊆ R, define the

open subset W∗ = (α, β)× R
b+1 of R

b+2.

Theorem 3.5. Assume (2.2), let G be as in (2.4) and let Φ be the real-valued function defined in

(3.2). Suppose that Φ(α) · Φ(β) < 0. Then G is admissible for the degree in W∗ and we have

deg(G, W∗) ̸= 0.

We are now in a position to state and prove our main result concerning the set of T-forced

pairs of (2.1).

Theorem 3.6. Consider equation (2.1) and assume that (2.2) hold. Denote by X ⊆ [0, ∞)×C1
T(R) the

set of its T-forced pairs. Let Φ be the real-valued function defined in (3.2), and suppose that (α, β) ⊆ R

is such that Φ(α) · Φ(β) < 0. Let Ω ⊆ [0, ∞)× C1
T(R) be open and such that Ω̃ = (α, β). Then, in

X ∩ Ω there is a connected subset Γ of nontrivial T-forced pairs of (2.1) whose closure relative to Ω is

not compact and intersects the set

{
(0, u) ∈ Ω : u ∈ (α, β) ∩ Φ−1(0)

}
. (3.3)

Proof. Let O = Ω × CT(R × R
b). Clearly, Õ = Ω̃ × R × R

b = (α, β)× R × R
b. Thus, Theorem

3.5 implies that deg(G, Õ) is well-defined and nonzero. So, there exists a connected set Υ

of nontrivial T-pairs for (2.3) as in Theorem 3.1. Let Γ := J −1(Υ); by Lemma 3.4, this is a
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connected set, it is made up of nontrivial T-forced pairs of (2.1), and its closure relative to Ω

must intersect the set (3.3) of the trivial T-forced pairs contained in Ω. We claim that Γ is not

contained in any compact subset of Ω. By contradiction, assume that there exists a compact

set K ⊆ Ω containing Γ. Since X is closed, K ∩ X is compact. Thus, its image J (K ∩ X) is a

compact subset of O containing Υ, which is a contradiction. The assertion follows.

We remark that, as in the well-known case of the resonant harmonic oscillator

ẍ = −x + λ sin t,

this unbounded branch is possibly contained in the slice {0} × C1
T(R). We will discuss some

conditions preventing this “pathological” situation in Section 5.

4 Computation of the degree

4.1 Brouwer degree in Euclidean spaces

We will make use of the Brouwer degree in R
k in a slightly extended version (see e.g. [1,20,39]).

Let U be an open subset of R
k, f a continuous R

k-valued map whose domain contains the

closure U of U, and q ∈ R
k. We say that the triple ( f , U, q) is admissible (for the Brouwer degree)

if f−1(q) ∩ U is compact.

The Brouwer degree is a function that to any admissible triple ( f , U, q) assigns an integer,

denoted by deg( f , U, q) and called the Brouwer degree of f in U with target q. Roughly speaking,

deg( f , U, q) is an algebraic count of the solutions in U of the equation f (p) = q. In fact, one

of the properties of this integer-valued function is given by the following computation formula.

Recall that, if f : U → R
k is a C1 map, an element p ∈ U is said to be a regular point (of f ) if

the differential of f at p, d fp, is surjective. Non-regular points are called critical (points). The

critical values of f are those points of R
k which lie in the image f (C) of the set C of critical

points. Any q ∈ R
k which is not in f (C) is a regular value. Therefore, q is a regular value for f

in U if and only if det(d fp) ̸= 0, ∀p ∈ f−1(q) ∩ U. Observe, in particular, that any element of

R
k which is not in the image of f is a regular value.

Computation formula. If ( f , U, q) is admissible, f is smooth, and q is a regular value for f in

U, then

deg( f , U, q) = ∑
p∈ f−1(q)∩U

sign det(d fp). (4.1)

This formula is actually the basic definition of the Brouwer degree, and the integer associated

to any admissible triple (g, U, r) is defined by

deg(g, U, r) := deg( f , U, q),

where f and q satisfy the assumptions of the Computation Formula and are, respectively,

“sufficiently close” to g and r. It is known that this is a well-posed definition.

The more classical and well-known definition of Brouwer degree is usually given in the

subclass of triples ( f , U, q) such that f : U → R
k is continuous, U is bounded and q /∈ f (∂U).

However, all the standard properties of the degree, such as homotopy invariance, excision,

additivity, existence, are still valid in this more general context. For a detailed list of such

properties we refer, e.g., to [30, 33, 39].

Since in this paper the target point q will always be the origin, for the sake of simplicity,

we will simply write deg( f , U) instead of deg( f , U, 0). In this context, we will say that an
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element p ∈ f−1(0) is a nondegenerate zero (of f ) if det(d fp) ̸= 0; this means, equivalently, that

p is a regular point. Accordingly, we will also say that ( f , U) is an admissible pair (or that the

map f is admissible in U) if so is the triple ( f , U, 0). Observe that deg( f , U) can be regarded

also as the degree (or characteristic, or rotation) of the map f seen as a tangent vector field

on R
k.

In what follows we will make use of the following elementary fact whose proof we include

for the sake of completeness.

Lemma 4.1. Let ψ : [a, b] → R be a continuous function with ψ(a)ψ(b) < 0. Then the pair
(
ψ, (a, b)

)

is admissible and

deg
(
ψ, (a, b)

)
= sign ψ(b).

In particular deg
(
ψ, (a, b)

)
̸= 0.

Proof. It is sufficient to observe that if ψ(b) > 0 the map H : [0, 1] × [a, b] → R given by

H(λ, s) = λ
(
s − b+a

2

)
+ (1 − λ)ψ(s) is an admissible homotopy with the identity map trans-

lated by b+a
2 . Hence

deg
(
ψ, (a, b)

)
= deg

(
H(0, ·), (a, b)

)
= deg

(
H(1, ·), (a, b)

)
= +1.

If, otherwise, one has ψ(b) < 0, it is possible to define an admissible homotopy H by setting

H(λ, s) = −λ
(

s − b+a
2

)
+ (1 − λ)ψ(s). Thus, in this case, deg

(
ψ, (a, b)

)
= −1.

4.2 The degree of the map G

The last part of this section is devoted to the proof of Theorem 3.5. Roughly speaking we will

relate the degree of the map G, defined in (2.4) by

G(u, v0, v1, . . . , vb) = (v0, g(u, v0, vb), a(ϕ(u, v0)− v1), a(v1 − v2) . . . , a(vb−1 − vb)) ,

with that of the function Φ : R → R in (3.2), given by

Φ(u) = g(u, 0, ϕ(u, 0)).

To simplify the computation of the degree, it is convenient to introduce the next map on R
b+2:

G(u, v0, v1, . . . , vb) := (v0, g(u, v0, vb), a(ϕ(u, v0)− vb), a(v1 − v2) . . . , a(vb−1 − vb)) .

Remark 4.2. As in Remark 3.2, we have that the zeros of G and those of Φ correspond. In

fact, if G(ū, v0, v1, . . . , vb) = 0 then Φ(ū) = 0, v0 = 0 and v1 = v2 = . . . = vb = ϕ(ū, 0) =: w̄.

Conversely, for any ū ∈ Φ−1(0), then G(ū, 0, w̄ . . . , w̄) = 0. Indeed, G−1(0) = G−1(0).

Lemma 4.3. Let G and G be as above, and let V ⊆ R
b+2 be open. Suppose that one of the maps G

or G is admissible for the Brouwer degree in V; then, so is the other and they are admissibly homotopic

in V.

Proof. For (λ, u, v0, v1, . . . , vb) ∈ [0, 1]× V, consider the map

H(λ, u, v0, v1, . . . , vb)

= (v0, g(u, v0, vb), a(ϕ(u, v0)− [λvb + (1 − λ)v1]), a(v1 − v2) . . . , a(vb−1 − vb)) ,

and observe that H(λ, u, v0, v1, . . . , vb) = 0 if and only if (u, v0, v1, . . . , vb) ∈ V ∩ G−1(0) =

V ∩ G−1(0). Hence H is an admissible homotopy.
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Now we prove that if Φ is smooth and the zeros of Φ are nondegenerate, so are those of G.

Lemma 4.4. Assume that g and ϕ are of class C1. Then, all zeros of Φ are nondegenerate if and only

if all zeros of G are nondegenerate.

Proof. First notice that, by Remark 4.2 the zeros of G and those of Φ correspond. Assume now

that ξ̄ := (ū, 0, w̄ . . . , w̄) is a nondegenerate zero of G. We represent the differential dGξ̄ of G

at ξ̄ as the following Jacobian matrix:




0 1 0 0 . . . . . . 0 0

∂1g(ū, 0, w̄) ∂2g(ū, 0, w̄) 0 0 . . . . . . 0 ∂3g(ū, 0, w̄)

a ∂1ϕ(ū, 0) a ∂2ϕ(ū, 0) 0 0 . . . . . . 0 −a

0 0 a −a 0 . . . 0 0

0 0 0 a −a
. . . 0 0

...
...

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 . . . 0 a −a




,

where “∂i”, i = 1, 2, 3, represents the partial derivation with respect to the i-th variable. By

direct computation based on Laplace expansion we obtain

det dGξ̄ = (−a)b−1 det




0 1 0

∂1g(ū, 0, w̄) ∂2g(ū, 0, w̄) ∂3g(ū, 0, w̄)

a∂1ϕ(ū, 0) a∂2ϕ(ū, 0) −a




= −(−a)b−1 det

(
∂1g(ū, 0, w̄) ∂3g(ū, 0, w̄)

a∂1ϕ(ū, 0) −a

)

= (−1)b−1ab · [∂1g(ū, 0, w̄) + ∂3g(ū, 0, w̄) ∂1ϕ(ū, 0)] = (−1)b−1ab · Φ′(ū).

Thus ū is a nondegenerate zero of the function Φ. The proof of the converse implication is

analogous.

Let us now compute the degree of the map G in the smooth case.

Lemma 4.5. Assume that g and ϕ are of class C1. Assume further that Φ is admissible on an open set

U ⊆ R and all its zeros are nondegenerate. Then, G is admissible in U∗ = U × R
b+1 and

deg(G, U∗) = (−1)b−1 deg(Φ, U).

Proof. By Remark 4.2 we have that all zeros of G are of the form ξ̄ := (ū, 0, w̄ . . . , w̄) with

Φ(ū) = 0. Moreover, they are all nondegenerate. In particular, if Φ is admissible in U then

Φ−1(0) ∩ U is compact and so is G−1(0) ∩ U∗, whence the admissibility of G in U∗. Let now

ū ∈ Φ−1(0) ∩ U be a nondegenerate zero of Φ. As in the proof of Lemma 4.4 we have

det dGξ̄ = (−1)b−1ab · Φ′(ū)

and, consequently,

sign det
(

dGξ̄

)
= (−1)b−1 sign det Φ′(ū)
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Thus, by formula (4.1),

deg(G, U∗) = ∑
ξ̄∈G−1(0)∩U∗

sign det
(

dGξ̄

)

= ∑
ū∈Φ−1(0)∩U

(−1)b−1 sign det Φ′(ū) = (−1)b−1 deg(Φ, U),

whence the assertion.

The above lemmas imply now the assertion of Theorem 3.5.

Proof of Theorem 3.5. First notice that, by Lemma 4.1, assumption Φ(α) · Φ(β) < 0 implies that

Φ is admissible in (α, β) and deg (Φ, (α, β)) ̸= 0. Thus, if Φ is of class C1 and all zeros of Φ in

(α, β) are nondegenerate, the assertion follows from Lemmas 4.3 and 4.5.

Consider now the case in which Φ is merely continuous, or the zeros of Φ in (α, β) may

not be nondegenerate. Clearly the above Lemmas 4.4 and 4.5 are not directly applicable,

nevertheless it is possible to prove the assertion by applying some well-known approximation

theorems and the properties of the Brouwer degree. More precisely, using the so-called smooth

Urysohn Theorem and Sard’s Theorem, we will construct a real-valued function Φ̃r : R → R,

depending on a suitable small parameter r, satisfying the assumptions of Lemma 4.5 in (α, β).

For this purpose, observe first that, as a consequence of Remark 4.2, the map G is admis-

sible in W∗ so that deg(G, W∗) is well-defined. Let W ⊆ W∗ be an open relatively compact

neighborhood of the compact set G−1(0) ∩ W∗. Without loss of generality, one can choose W

with the following properties:

i. W = (α, β)× U where U ⊆ R
b+1 is open and bounded;

ii. (u, 0, ϕ(u, 0) . . . , ϕ(u, 0)) ∈ W for all u ∈ [α, β].

(4.2)

Let α′
< α and β′

> β be such that Φ does not change sign in the intervals [α′, α] and [β, β′].

Let also U ′ ⊆ R
b+1 be an open and bounded set such that U ⊆ U ′. Consider the open set

V = (α′, β′)× U ′.

Note that V is bounded and contains W ; in particular, G−1(0) ∩ W∗ ⊆ W ⊆ V .

By Lemma 4.3 and the excision property of the degree,

deg(G, W∗) = deg(G, W∗) = deg(G,W). (4.3)

Now, take δ > 0 such that

i. δ < min{|Φ(α)|, |Φ(β)|};

ii. δ < min
(u,v0,...,vb)∈V\W

∥G(u, v0, . . . , vb)∥.
(4.4)

By a smooth approximation argument similar to the one used in the definition of the degree

(cfr. [30, Ch. 5, §1], see in particular [30, Theorem. 2.6]), we can choose smooth approximations

g̃ and ϕ̃ of g and ϕ, respectively, such that, setting

G̃(u, v0, v1, . . . , vb) =
(

v0, g̃(u, v0, vb), a
(

ϕ̃(u, v0)− vb

)
, a(v1 − v2) . . . , a(vb−1 − vb)

)
,
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the map G̃ has the following properties:
(
G̃
)−1

(0) ∩ W∗ ⊆ W , all the zeros of G̃ are nonde-

generate, we have deg(G, W∗) = deg(G̃, W∗) and

max
(u,v0,...,vb)∈V

∥G(u, v0, v1, . . . , vb)− G̃(u, v0, v1, . . . , vb)∥ < δ/4. (4.5)

Let now Φ̃(u) = g̃
(
u, 0, ϕ̃(u, 0)

)
. By (4.2)–(ii) and (4.5) it follows |Φ̃(α) − Φ(α)| < δ/4 and

|Φ̃(β)− Φ(β)| < δ/4, so that from Φ(α)Φ(β) < 0 we get

Φ̃(α)Φ̃(β) < 0. (4.6)

Now, recall that by Sard’s Theorem (see, e.g., [30, Ch. 3, §1] or [29, Ch. 1, §7]) the set of the

critical values of a smooth function has Lebesgue measure zero. Thus, one can choose some

r ∈ (−δ/4, δ/4) such that 0 is a regular value of the map

u 7→ g̃
(
u, 0, ϕ̃(u, 0)

)
− r. (4.7)

In particular, for such an r, all the zeros of this map are nondegenerate. Let σ : R
b+2 → [0, 1]

be a smooth function that vanishes identically on R
b+2 \ V and is identically equal to 1 in W .

The existence of such a function follows from the so-called smooth Urysohn Theorem; see,

e.g., [29, Ch. 1, §8, Exercise 15]. Define

Φ̃r(u) = g̃
(
u, 0, ϕ̃(u, 0)

)
− σ

(
u, 0, ϕ̃(u, 0), . . . , ϕ̃(u, 0)

)
r.

Observe that (4.2)-(ii) implies that Φ̃r coincides with the map in (4.7) in [α, β]; consequently,

all of its zeros in this interval are nondegenerate. From (4.6) it follows Φ̃r(α)Φ̃r(β) < 0, which

implies that Φ̃r is admissible in (α, β). Let now

G̃r(u, v0, v1, . . . , vb)

=
(

v0, g̃(u, v0, vb)− σ(u, v0, . . . , vb)r, a
(

ϕ̃(u, v0)− vb

)
, a(v1 − v2) . . . , a(vb−1 − vb)

)
,

where σ is the scalar function introduced above. Applying Lemma 4.1, Lemma 4.4 and

Lemma 4.5 to Φ̃r and G̃r we obtain that G̃r is admissible in W∗ = (α, β) × R
b+1, meaning

that
(
G̃r

)−1
(0) ∩ W∗ is compact, and

deg(G̃r, W∗) = deg
(

Φ̃r, (α, β)
)
̸= 0. (4.8)

Furthermore, by construction, the map G̃r coincides with G̃ on R
b+2 \ V , hence the compact

set
(
G̃r

)−1
(0) ∩ W∗ is contained in V ∩ W∗. Actually, as a consequence of (4.4)-(ii), (4.5) and

the choice of r,
(
G̃r

)−1
(0)∩W∗ ⊆ W . Thus, from (4.8) and the excision property of the degree

we get

deg(G̃r,W) ̸= 0. (4.9)

Moreover, note that

max
(u,v0,...,vb)∈W

∥G(u, v0, v1, . . . , vb)− G̃r(u, v0, v1, . . . , vb)∥ < δ/2,

and consider the homotopy H : [0, 1]×W → R defined by

H(λ, u, v0, v1, . . . , vb) = λG(u, v0, v1, . . . , vb) + (1 − λ)G̃r(u, v0, v1, . . . , vb).
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Observe that, by construction,

min{∥H(λ, u, v0, v1, . . . , vb)∥ : λ ∈ [0, 1], (u, v0, . . . , vb) ∈ ∂W} > δ/2 > 0;

hence, the compact set

{
(λ, u, v0, . . . , vb) ∈ [0, 1]×W : H((λ, u, v0, . . . , vb) = 0

}
,

is contained in [0, 1]×W . Thus, H is an admissible homotopy, so that

deg(G,W) = deg(G̃r,W). (4.10)

Finally, from (4.3) and (4.10) we get

deg(G, W∗) = deg(G,W) = deg(G̃r,W)

and the assertion follows from inequality (4.9).

5 Ejecting points and small perturbations

As we have seen by the simple example at the end of Section 3, it may happen that the branch

Γ of T-forced pairs of equation (2.1), as in the assertion of Theorem 3.6, is completely contained

in the slice {0} × C1
T(R). In this section we show simple conditions ensuring that this is not

the case. Such conditions are based on the key notion of ejecting set (see, e.g., [26]).

Let us first introduce the following notation: let Υ be a subset of [0, ∞)× C1
T(R). Given

λ ≥ 0, let Υλ be the slice
{

x ∈ C1
T(R) : (λ, x) ∈ Υ

}
. Below, we adapt to our context the

definition of ejecting set of [26]:

Definition 5.1. Let X ⊆ [0, ∞)× C1
T(R) be the set of T-forced pairs of (2.1), and let X0 be the

slice of X at λ = 0. We say that A ⊂ X0 is an ejecting set (for X) if it is relatively open in X0 and

there exists a connected subset of X which meets A and is not contained in X0. In particular,

when A = {p0} is a singleton we say that p0 is an ejecting point.

We now discuss a sufficient condition for an isolated point of Φ to be ejecting for the set

X of T-forced pairs of (2.1). This condition is based on a result by J. Yorke ([43], see also

[7]) concerning the period of solutions of an autonomous ODE with Lipschitz continuous

right-hand side.

We point out that an analysis of (2.3), for λ = 0, linearized at its zeros leads to a different,

not entirely comparable, approach. A discussion of the latter technique, which is based on the

notion of T-resonance and requires the knowledge of the spectrum of the linearized equation

is outside the scope of the present paper (see, e.g., [17, Ch. 7] and [16, Ch. 2], a similar idea

can be traced back to Poincaré see, e.g., [38]; see also [2] for an application of this idea to

multiplicity results).

The aforementioned result of Yorke is the following:

Theorem 5.2 ([43]). Let ξ be a nonconstant τ-periodic solution of

ẋ = F (x)

where F : W ⊆ R
k → R

k is Lipschitz of constant L. Then the period τ of ξ satisfies τ ≥ 2π/L.
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Inequalities on the period like that of Theorem 5.2 have been object of study in different

contexts, see e.g., the introduction of [8] for an interesting discussion.

Since we are going to use Theorem 5.2, besides our standard assumptions (2.2), we need

to assume the following fact on the maps g and ϕ throughout this and the following sections:

g and ϕ are such that G, defined in (2.4), is (locally) Lipschitz. (5.1)

Observe that taking g and ϕ locally Lipschitz allows us to apply Theorem 5.2 in a suitable set

W ⊆ R
b+2. In particular, since we are going to apply such a result only to unperturbed part

of (2.3), no further hypothesis on f is necessary.

From Theorem 5.2, we immediately deduce the following facts concerning the branch of

T-forced pairs of (2.1) given by Theorem 3.6:

Corollary 5.3. Consider equation (2.1), assume that (2.2) hold and let (α, β), Ω and Φ be as in

Theorem 3.6. Suppose further that g and ϕ are such that G is Lipschitz with constant LG. If the period

T of the forcing term f satisfies T < 2π/LG, then the set Γ of Theorem 3.6 cannot intersect the slice

{0} × C1
T(R).

Proof. Assume by contradiction that there exists a nontrivial T-forced pair (0, x0) ∈ Γ. Then

x0 corresponds (in the sense of Theorem 2.1) to a T-periodic solution of ξ̇ = G(ξ) with T <

2π/LG, violating Theorem 5.2.

A similar argument yields the following result:

Corollary 5.4. Consider equation (2.1), suppose that (2.2) hold and let (α, β), Ω and Φ be as in

Theorem 3.6. Let p ∈ (α, β) be an isolated zero of Φ and assume that g and ϕ are such that G is

locally Lipschitz in a neighborhood W of the corresponding zero P =
(

p, 0, ϕ(p, 0), . . . , ϕ(p, 0)
)

of G.

Suppose that a set Υ of T-pairs for (2.3) contains
(
0, P

)
. Let Λ = J −1(Υ) be the corresponding set of

T-forced pairs of (2.1). As above, call LG the Lipschitz constant of G in W. Then, the trivial T-forced

pair (0, p̄) is isolated in the slice Λ0. In particular, if T < 2π/LG, the set Λ cannot be contained in

the slice {0} × C1
T(R).

Observe that, unlike Γ in Corollary 5.3, the set Υ in Corollary 5.4 does not necessarily

consist of nontrivial T-pairs. Consequently, Λ does not necessarily consist of nontrivial T-

forced pairs as well. Notice also that since p is an isolated zero of Φ then
(
0, P

)
is isolated in

the set of trivial T-pairs of (2.3) and, similarly, (0, p̄) is isolated in the set of trivial T-forced

pairs of (2.1).

Proof of Corollary 5.4. By construction of the map J , the T-forced pairs of (2.1) that lie in the

slice {0} × C1
T(R) corresponds bijectively to the T-pairs of (2.3) contained in {0} × CT(R

b+2).

Theorem 5.2 implies that there are not nonconstant T-periodic solutions of (2.3) contained in

W. Thus Υ cannot be contained in the slice {0} × CT(R
b+2). Hence, the same is true for

Λ = J −1(Υ).

Remark 5.5. Suppose that g and ϕ are such that G is C1 in a neighborhood of a nondegenerate

zero, then it is locally Lipschitz in this neighborhood. Then by Corollary 5.4 we have that if the

frequency of the forcing term is sufficiently high, then a nondegenerate zero of the unperturbed vector

field is necessarily an ejecting point of nontrivial T-forced pairs of (2.1).
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6 Ejecting sets and multiplicity

This section is devoted to the illustration of sufficient conditions on f , g, and ϕ yielding the

multiplicity of T-periodic solutions of (2.1) for λ > 0 small.

As above, let G be as in (2.4), and let X ⊆ [0, ∞)× C1
T(R) be the set of nontrivial T-forced

pairs of (2.1).

For brevity, we will say that a continuous function ψ : (α, β) → R changes sign at the

isolated zero p ∈ (α, β) if there exists δ > 0 such that ∀x ∈ (p − δ, p), ∀y ∈ (p, p + δ) we have

ψ(x) · ψ(y) < 0.

Corollary 5.4 and Theorem 3.6 yield the following result about multiple periodic solutions

of (2.1).

Theorem 6.1. Consider equation (2.1) and suppose that (2.2) hold. Let (α, β) ⊆ R be an open interval

and assume that Φ changes sign at the isolated zeros p1, . . . , pn ∈ (α, β). For i = 1, . . . , n, let

Pi =
(

pi, 0, ϕ(pi, 0) . . . , ϕ(pi, 0)
)
. Assume that g and ϕ are such that G is Lipschitz with constant L

on a neighborhood of {P1, . . . , Pn} and the period T of f satisfies T < 2π/L. Then:

1. for i = 1, . . . , n, there exist open subsets Ωi of [0, ∞)× C1
T(R) and connected sets Γi ⊆ Ωi of

nontrivial T-pairs of (2.1) whose closure Ξi in Ωi contains (0, p̄i) and is not compact;

2. there exists λ∗ > 0 such that the projection of each Ξi, i = 1, . . . , n, on the first component

contains [0, λ∗]. Thus, (2.1) has at least n solutions xλ
1 , . . . , xλ

n of period T for λ ∈ [0, λ∗];

3. the images of xλ
1 , . . . , xλ

n are pairwise disjoint.

Proof. Let Ii, i = 1, . . . , n, be open intervals with pairwise disjoint closures each isolating the

zero pi. Let Ui = C1
T(R, Ii) and Ωi = [0, ∞)×Ui. Then by Theorem 3.6, for each i ∈ {1, . . . , n},

there is a connected set Γi in X ∩ Ωi whose closure, Ξi := clΩi
(Γi), in Ωi is not compact and

intersect the set {
(0, u) ∈ Ωi : u ∈ Ii ∩ Φ−1(0)

}
= {(0, p̄i)}.

This proves assertion (1).

To prove assertion (2) let, for i = 1, . . . , n, Ki = {(0, p̄i)}. By Corollary 5.4, Ki is isolated in

the slice {0} × Ui. Since Ξi is not compact, it does not consist only of the singleton {(0, pi)}.

Also, since Ξi is connected it cannot be completely contained in {0} × Ui (otherwise (0, pi)

would not be an isolated point). So, the projection π1 of Ξi onto the first factor of [0, ∞) ×

C1
T(R) cannot reduce to {0}. Thus, π1 being continuous, π1

(
Ξi

)
is a nontrivial interval Ji

with 0 ∈ Ji. Let δi > 0 be such that [0, δi] ⊆ Ji. The proof is completed by taking λ∗ =

min{δ1, . . . , δn}.

To prove the last assertion, observe that by part (2) there exists λ∗ > 0 such that each

{λ} × Ui, contains at least one T-forced pair, say (λ, xλ
i ) for any λ ∈ [0, λ∗]. Hence, for

j, k = 1, . . . , n and j ̸= k, the images of xλ
j and xλ

k are confined to the disjoint sets Ii and Ik.

Restricting to a neighborhood of the set of zeros of G corresponding to p1, . . . , pn, we

can give a somewhat less technical and perhaps more elegant formulation of our multiplicity

result.

Corollary 6.2. Consider equation (2.1) and suppose that (2.2) and (5.1) hold. Assume that Φ changes

sign at the isolated zeros p1, . . . , pn ∈ (α, β). Then, for sufficiently high frequency of the perturbing

term f and sufficiently small λ > 0, equation (2.1) has at least n solutions of period T whose images

are pairwise disjoint.
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7 Visual representation of branches

We briefly discuss a method allowing to represent graphically the infinite dimensional set of

T-forced pairs of (2.1). In other words, as in [2], we create a homeomorphic finite dimensional

image of the set Γ yielded by Theorem 3.6 and show a graph of some relevant functions of the

point of Γ as, for instance, the sup-norm or the diameter of the orbit of the solution x in any

T-forced pair (λ, x).

In this section we assume g and ϕ as well as the perturbing term f to be at least Lipschitz

continuous, so that continuous dependence on initial data of (2.3) holds.

Let us consider the set

S =

{
(λ, q, p0, . . . , pb) ∈ [0, ∞)× R

b+2

∣∣∣∣
(q, p0, . . . , pb) is an initial condition at t = 0
for a T-periodic solution of (2.3)

}
.

The elements of S are called starting points for (2.3). A starting point (λ, q, p0, . . . , pb) is trivial

when λ = 0 and the solution of (2.3) starting a time t = 0 from (q, p0, . . . , pb) is constant. By

uniqueness and continuous dependence on initial data the map p : Y → S given by

(λ, x0, y0, . . . .yb) 7→
(
λ, x0(0), y0(0), . . . .yb(0)

)

is a homeomorphism that establishes a correspondence between trivial T-pairs and trivial

starting points. Thus, the composition h = p ◦ J −1 : X → S is as well a homeomorphism

that establishes a correspondence between trivial T-forced pairs and trivial starting points. In

other words, Σ := h(Γ) ⊆ [0, ∞)× R
b+2 is the desired homemorphic image of Γ.
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Figure 7.1: Sup-norm and diameter of points in Γ

Example 7.1. Consider the following scalar equation:

ẍ(t) = −x(t)

(
1 +

∫ t

−∞
γ2

2(t − s)
(
ẋ(s)− x(s)

)
ds

)
+ λ

(
1 + x(t) sin(2πt)

)
, (7.1)

with λ ≥ 0. Here, T = 1, g(ξ, η, ζ) = −ξ(1 + ζ), ϕ(p, q) = q − p, so that

Φ(u) = g
(
u, 0, ϕ(u, 0)

)
= −u(1 − u).
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Figure 7.2: Projections of Σ: Initial values and speed of x for (λ, x) ∈ Γ

One has

G(u, v0, v1, v2) =
(
v0,−u(1 + v2), 2(v0 − u − v1), 2(v1 − v2)

)
.

Note that Φ changes sign at the zeros 0 and 1, the corresponding zeros of G being P0 :=

(0, 0, 0, 0) and P1 := (1, 0,−1,−1). Observe that G is locally Lipschitz. In particular, suffi-

ciently small neighborhoods of P0 and P1 can be chosen where the Lipschitz constant L of G

is smaller than 2π. The validity of this statement can be checked by computing the operator

norms of the Jacobian matrices of G at P0 and P1 that actually turn out to be strictly smaller

than 4. Thus, by Theorem 6.1 there are connected sets Γ0 and Γ1 of nontrivial T-forced pairs

of (7.1) emanating, respectively, from (0, 0) and (0, 1). In particular, by Theorem 6.1 it follows

that there exists λ∗ > 0 such that for λ ∈ [0, λ∗) there are two periodic solutions of (7.1) with

disjoint images. Corollary 6.2 shows that the same is true (with possibly different values of

λ∗) for all perturbations with sufficiently high frequency.

Figure 7.1 shows sup-norm and diameter of the solutions of the T-forced pairs of (7.1).

Figure 7.2, instead, shows the projections of Σ on the plane (λ, q) and on the 3-dimensional

space (q, p0, λ). Indeed, Figures 7.1 and 7.2 suggest that, for Γ0 and Γ1 maximal, Γ1 = Γ0. The

figures suggest that the value of λ∗ in Theorem 6.1 is about 0.25.

8 Perspectives and future developments

The results of this paper can be naturally extended along two lines. The first and more direct

one is to consider systems of equations, say in R
n, allowing ϕ to take vector values, say in

R
k. In this case one considers (1.3) with g : R

n × R
n × R

k → R
n and ϕ : R

n × R
n → R

k.

This generalization that, for example, finds application to coupled nonlinear oscillators with

memory, has been considered in [36]. Here we only mention that the analogous of the function

Φ that has to be constructed in this more general environment is a map of an open set of R
n

in R
n, hence the sign change hypothesis has to be replaced with an assumption about the

degree.

A second extension that can be considered is the case when more than one distributed

delay is allowed. This situation is considered in some models (see, e.g., [35, 41]), indeed

it arises naturally in some situations where a nonlinear equation is coupled with a linear

“subsystem”. To illustrate this point we consider the following example:
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Example 8.1. Let f : R × R × R → R and ϕ : R → R be given continuous functions. We are

interested in the bounded (in C0) solutions, if any, of the following system of coupled scalar

differential equations

{
ẍ(t) = f

(
t, x(t), y(t)

)
,

ÿ(t) + (a + b) ẏ(t) + ab y(t) = ϕ
(
x(t)

)
,

(8.1)

with a ̸= b positive constants. It is well known that if x is a bounded function, the second

equation in (8.1) admits a unique bounded solution which, as it is easy to check, is given by

(see, e.g., [15, Lemma 4.1])

y(t) =
1

b − a

(∫ t

−∞
e−a(t−s)ϕ

(
x(s)

)
ds −

∫ t

−∞
e−b(t−s)ϕ

(
x(s)

)
ds

)

=
1

b − a

(
1

a

∫ t

−∞
γ1

a(t − s)ϕ
(
x(s)

)
ds −

1

b

∫ t

−∞
γ1

b(t − s)ϕ
(
x(s)

)
ds

)
.

Using this expression for y, one sees that the bounded solutions of (8.1) are determined by the

bounded solutions of the following equation with two distributed delays:

ẍ(t) = F

(
t, x(t),

1

a

∫ t

−∞
γ1

a(t − s)ϕ
(
x(s)

)
ds −

1

b

∫ t

−∞
γ1

b(t − s)ϕ
(
x(s)

)
ds ),

with F(t, ξ, η) = f (t, ξ, η/(b − a)). Notice that when a = b one obtains the unique bounded

solution of the second equation in (8.1) as

y(t) =
∫ t

−∞
(t − s)e−a(t−s)ϕ

(
x(s)

)
ds =

1

a2

∫ t

−∞
γ2

a(t − s)ϕ
(
x(s)

)
ds.

Hence, in this case, the bounded solutions of (8.1) are determined by the following differential

equation with a single distributed delay:

ẍ(t) = f

(
t, x(t),

1

a2

∫ t

−∞
γ2

a(t − s)ϕ
(
x(s)

)
ds

)
.

We observe that the above perspective extensions can be combined and further expanded

to the case where the ambient space is a differentiable manifold. Such generalization will be

investigated elsewhere.
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Abstract. In this paper, we study the existence and multiplicity solutions for the fol-
lowing Klein–Gordon–Maxwell system

{

−∆u + V(x)u − (2ω + ϕ)ϕu = f (x, u), x ∈ R
3,

∆ϕ = (ω + ϕ)u2, x ∈ R
3,

where ω > 0 is a constant and the nonlinearity f (x, u) is either asymptotically linear in
u at infinity or the primitive of f (x, u) is of 4-superlinear growth in u at infinity. Under
some suitable assumptions, the existence and multiplicity of solutions are proved by
using the Mountain Pass theorem and the fountain theorem, respectively.

Keywords: Klein–Gordon–Maxwell system, sign-changing potential, 4-superlinear,
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1 Introduction and main results

In this paper we consider the following nonlinear Klein–Gordon–Maxwell system

{

−∆u + V(x)u − (2ω + ϕ)ϕu = f (x, u), x ∈ R
3,

∆ϕ = (ω + ϕ)u2, x ∈ R
3,

(KGM)

where ω > 0 is a constant. We are interested in the existence and multiplicity solutions of

system (KGM) when the nonlinearity f (x, u) is either asymptotically linear in u at infinity or

the primitive of f (x, u) is of 4-superlinear growth at infinity.

Such system has been firstly studied by Benci and Fortunato [6] as a model which describes

nonlinear Klein–Gordon fields in three dimensional space interacting with the electrostatic

field. For more details on the physical aspects of the problem we refer the readers to see [7]

and the references therein.

BCorresponding author. Email: xiongcltg@126.com
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In 2002, Benci and Fortunato [7] first studied the following Klein–Gordon–Maxwell system

{

−∆u + [m2 − (ω + ϕ)2]ϕu = f (x, u), x ∈ R
3,

−∆ϕ + ϕu2 = −ωu2, x ∈ R
3,

(1.1)

with the pure power type nonlinearity, i.e. f (x, u) = |u|q−2u, where ω and m are constants.

By using a version of the mountain pass theorem, they proved that system (1.1) has infinitely

many radially symmetric solutions under |m| > |ω| and 4 < q < 6. It was complemented

and improved by [3] and [19]. Azzollini and Pomponio [2] obtained the existence of a ground

state solution for (1.1) under one of the conditions

(i) 4 ≤ q < 6 and m > ω;

(ii) 2 < q < 4 and m
√

q − 2 > ω
√

6 − q.

Soon afterwards, it is improved by Wang [33]. Motivated by the methods of [7], Cassani [9]

considered (1.1) for the critical case by adding a lower order perturbation:

{

−∆u + [m2 − (ω + ϕ)2]ϕu = µ|u|q−2u + |u|2∗−2u, x ∈ R
3,

∆ϕ = (ω + ϕ)u2, x ∈ R
3,

(1.2)

where µ > 0 and 2∗ = 6. He showed that (1.2) has at least a radially symmetric solution under

one of the following conditions:

(i) 4 < q < 6, |m| > |ω| and µ > 0;

(ii) q = 4, |m| > |ω| and µ is sufficiently large.

It is improved and generalized by the results in [10] and [32]. Recently, the authors in [11,17,37]

proved the existence of positive ground state solutions for the problem (1.2) with a periodic

potential V or V is a constant:

{

−∆u + V(x)u − (2ω + ϕ)ϕu = µ|u|q−2u + |u|2∗−2u, x ∈ R
3,

∆ϕ = (ω + ϕ)u2, x ∈ R
3.

In [23], Georgiev and Visciglia introduced a system like (1.1) with potentials, however

they considered a small external Coulomb potential in the corresponding Lagrangian density.

Inspired by these works, He [24] first considered the existence of infinitely many solutions for

system (KGM). The nonlinearity f satisfied (AR) condition:

(AR) There exists θ > 4 such that θF(x, t) ≤ t f (x, t), for all (x, t) ∈ R
3 × R, where F(x, t) =

∫ t
0 f (x, s)ds.

Very recently, Ding and Li [21] obtained the existence of infinitely many solutions for

(KGM) under the following condition:

(V) V ∈ C(R3, R) is bounded below and, for every C > 0, meas{x ∈ R
3 : V(x) ≤ C} < +∞,

where meas denotes the Lebesgue measures;

(F1) f ∈ C(R3 × R, R) and | f (x, t)| ≤ C1|t| + C2|t|p−1 for 4 ≤ p < 2∗, where C1, C2 are

positive constants, f (x, t)t ≥ 0 for t ≥ 0;
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(F2)
F(x,t)

t4 → +∞ as |t| → +∞;

(F3) Let F (x, t) := 1
4 f (x, t)t − F(x, t), there exists r0 > 0 such that if |t| ≥ r0, then F (x, t) ≥ 0

uniformly for x ∈ R
3;

(F4) f (x,−t) = − f (x, t) for any x ∈ R
3, t ∈ R.

Cunha [18] considered the existence of positive and ground state solutions for (KGM)

with periodic potential V(x). By the Ekeland variational principle and the Mountain Pass

Theorem, Li, A. Boucherif and N. D. Merzagui [27] obtained the existence of two different

solutions for (KGM). Other related results about Klein–Gordon–Maxwell system on R
3 can

be found in [16, 20, 26, 28, 35]. By the way, we recall that Klein–Gordon–Maxwell system with

nonhomogeneous nonlinearity is studied in [14,22,36,39] and the existence of infinitely many

radial solitary waves solutions are studied in [12].

Before giving our main results, we give some notations. Let H1(R3) be the usual Sobolev

space endowed with the standard scalar and norm

(u, v)H =
∫

R3
(∇u∇v + uv)dx; ∥u∥2

H =
∫

R3
(|∇u|2 + |u|2)dx.

D1,2(R3) is the completion of C∞

0 (R3) with respect to the norm

∥u∥2
D := ∥u∥2

D1,2(R3) =
∫

R3
|∇u|2dx.

The norm on Ls = Ls(R3) with 1 < s < ∞ is given by |u|ss =
∫

R3 |u|sdx.

System (KGM) has a variational structure. Indeed, we consider the functional J : H1(R3)×
D1,2(R3) → R defined by

J (u, ϕ) =
1

2

∫

R3
(|∇u|2 + V(x)u2)dx − 1

2

∫

R3
(2ω + ϕ)ϕu2dx −

∫

R3
F(x, u)dx.

The solutions (u, ϕ) ∈ H1(R3)× D1,2(R3) of system (KGM) are critical points of J . However,

the functional J is strongly indefinite and is difficult to investigate. Fortunately, this indefi-

niteness can be removed by using the reduction method described in [8]. Then we are led to

the study of a new functional I(u) which does not present such strongly indefinite nature.

Motivated by the above works, in the present paper we first consider system (KGM) with

the superlinear case, and hence make the following assumptions:

( f1) f ∈ C(R3 × R, R) and there exist C > 0 and p ∈ (4, 6) such that

| f (x, t)| ≤ C(1 + |t|p−1);

( f2) f (x, t) = o(t) uniformly in x as t → 0;

( f3)
F(x,t)

t4 → +∞ uniformly in x as |t| → +∞;

( f4) There exists a positive constant b such that F (x, t) := 1
4 f (x, t)t − F(x, t) ≥ −bt2.

Remark 1.1. We emphasize that unlike all previous results about system (KGM), see e.g.

[18, 24, 26], we have not assume that the potential V is positive. This means that we allow the

potential V be sign changing.
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Remark 1.2. It is well known that the condition (AR) is widely used in the studies of elliptic

problem by variational methods. The condition (AR) is used not only to prove that the Euler-

Lagrange function associated has a mountain pass geometry, but also to guarantee that the

Palais–Smale sequences, or Cerami sequences are bounded. Obviously, we can observe that

the condition (AR) implies the following condition:

(A1) There exist θ > 4 and C1, C2 > 0 such that F(x, t) ≥ C1|t|θ − C2, for every t sufficiently

large.

Moreover, the condition (A1) implies our condition ( f3).

Another widely employed condition is the following condition, which is first introduced

by Jeanjean [25].

(Je) There exist θ ≥ 1 such that θF (x, t) ≥ F (x, st) for all s ∈ [0, 1] and t ∈ R, where F (x, t)

is given in ( f4).

We can observe that when s = 0, then F (x, t) ≥ 0, but for our condition ( f4), F (x, t) may

assume negative values. Therefore, it is interesting to consider 4-superlinear problems under

the conditions ( f3) and ( f4).

The condition ( f4) is motivated by Alves, Soares and Souto [1]. Supposing in addition

α = inf
x∈R3

V(x) > 0 (1.3)

and b ∈ [0, α), they proved that all Cerami sequences are bounded. In 2015, Chen and Liu

[13] also used conditions ( f3) and ( f4) to show the existence of infinitely many solutions

for Schrödinger–Maxwell systems. In our case, however, many technical difficulties arise to

the presence of a non-local term ϕ, which is not homogeneous as it is in the Schrödinger–

Maxwell systems. Hence, a more careful analysis of the interaction between the couple (u, ϕ)

is required.

By (V), we know that V is bounded from below, hence we may choose V0 > 0 such that

Ṽ(x) := V(x) + V0 > 1, ∀x ∈ R
3

and define a new Hilbert space

E :=

{

u ∈ H1(R3) :
∫

R3
V(x)u2dx < ∞

}

with the inner product

⟨u, v⟩ =
∫

R3

(

∇u · ∇v + Ṽ(x)uv
)

dx

and the norm ∥u∥ = ⟨u, u⟩1/2. Obviously, the embedding E →֒ Ls(R3) is continuous, for

any s ∈ [2, 2∗]. The norm on Ls = Ls(R3) with 1 < s < ∞ is given by |u|ss =
∫

R3 |u|sdx.

Consequently, for each s ∈ [2, 6], there exists a constant ds > 0 such that

|u|s ≤ ds∥u∥, ∀u ∈ E. (1.4)

Furthermore, we have that under the condition (V), the embedding E →֒ Ls(R3) is compact

for any s ∈ [2, 6) (see [4]). By the compact embedding E →֒ L2(R3) and the standard elliptic

theory [40], it is easy to see that the eigenvalue problem

−∆u + V(x)u = λu, u ∈ E (1.5)
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possesses a complete sequence of eigenvalues

−∞ < λ1 ≤ λ2 ≤ λ3 ≤ · · · , λj → +∞.

Each λj has finite multiplicity and |λj|2 = 1. Denote ej be the eigenfunction of λj. E− is

spanned by the eigenfunctions corresponding to negative eigenvalues. Note that the negative

space E− of the quadratic part of I is nontrivial if and only if some λj is negative.

Now we can state our first result.

Theorem 1.3. Suppose (V), ( f1)–( f4) are satisfied, and f is odd in t. If 0 is not an eigenvalue

of (1.5), then (KGM) has a sequence of solutions (un, ϕn) ∈ E × D1,2(R3) such that the energy

J (un, ϕn) → +∞.

Remark 1.4. If u is a critical point of I, then I(u) = J (u, ϕu) (see (2.1)). Therefore, in order

to prove Theorem 1.1, we only need to find a sequence of critical points {un} of I such that

I(un) → +∞.

Remark 1.5. Theorem 1.3 improves the recent results in [24]. In that paper, the author assumed

in addition (1.3), and (AR) or (Je). When V is positive, the quadratic part of the functional I

(see (2.1)) is positively definite, and I has a mountain pass geometry. Therefore, the mountain

pass lemma [30] can be applied. In our case, the quadratic part may possesses a nontrivial

negative space E−, so I no longer possesses the mountain pass geometry. Therefore the

methods in [21, 24] cannot be applied. To obtain our result, we adopt a technique developed

in [13].

In the second part of this paper, we deal with the system (KGM) when the nonlinearity

f (x, t) is asymptotically linear at infinity in the second variable t. Set

Ω = inf
u∈H1(R3)\{0}

∫

R3(|∇u|2 + V(x)u2)dx
∫

R3 u2dx
,

i.e. Ω is the infimum of the spectrum of the Schrödinger operator −∆ + V.

We make the following assumptions:

(H1) V(x) ∈ C(R3, R) satisfies V(x) ≥ D0 > 0 for all x ∈ R
3;

(H2) lim|x|→+∞ V(x) = V∞ ∈ (0,+∞);

(H3) f (x, t) ∈ C(R3 × R, R) and limt→0
f (x,t)

t = 0 uniformly in x;

(H4) There exists A ∈ (Ω, V∞) such that limt→+∞

f (x,t)
t = A uniformly in x and 0 ≤ f (x,t)

t ≤ A

for all t ̸= 0.

Theorem 1.6. Assume (H1)–(H4) hold, then there exists a constant ω∗ > 0 such that (KGM) has a

positive solution for any ω ∈ (0, ω∗).

Theorem 1.7. Assume (H1)–(H4) hold, then there exists a constant ω♯ > 0 such that (KGM) has no

nontrival solution for any ω > ω♯.

Remark 1.8.

(a) It follows from the condition Ω < A < V∞ that V(x) is not a constant.
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(b) By Theorem 1.7, it is easy to know that ω∗ is finite.

Remark 1.9. To our best knowledge, it seems that there are few results for system (KGM) in

this case: the nonlinear term f (x, t) in t is asymptotically linear at infinity. In order to get our

results, we have to solve some difficulties. The first difficult is how to prove the variational

function satisfies the assumptions of the Mountain Pass Theorem. The second difficult is how

to check the (PS) condition, i.e., how to verify the boundedness and compactness of a (PS)

sequence. To overcome these difficulties we use some techniques used in [29], [31] and [34].

However, it seems difficult to use this method to the case f (x, t) is superlinear in t at infinity.

We denote by ” ⇀ ” weak convergence and by ” → ” strong convergence. Also if we take

a subsequence of a sequence {un}, we shall denote it again {un}.

The paper is organized as follows. In Section 2, we will introduce the variational setting

for the problem, give some related preliminaries and prove Theorem 1.3. We give the proofs

of Theorem 1.6 and Theorem 1.7 in Section 3.

2 Proof of Theorem 1.3

By [3], we know that the signs of ω is not relevant for the existence of solutions, so we can

assume that ω > 0. Evidently, the properties of ϕu plays an important role in the study of J .

So we need the following technical results.

Proposition 2.1. For any u ∈ H1(R3), there exists a unique ϕ = ϕu ∈ D1,2(R3) which satisfies

∆ϕ = (ϕ + ω)u2 in R
3.

Moreover, the map Φ : u ∈ H1(R3) 7→ ϕu ∈ D1,2(R3) is continuously differentiable, and

(i) −ω ≤ ϕu ≤ 0 on the set {x ∈ R
3|u(x) ̸= 0};

(ii) ∥ϕu∥2
D ≤ C∥u∥2 and

∫

R3 ϕuu2dx ≤ C|u|412/5 ≤ C∥u∥4.

The proof is similar to Proposition 2.1 in [24] by using the fact E →֒ Ls(R3), for any

s ∈ [2, 6] is continuous.

By Proposition 2.1, we can consider the functional I : H1(R3) 7→ R defined by I(u) =

J (u, ϕu).

Multiplying −∆ϕu + ϕuu2 = −ωu2 by ϕu and integration by parts, we obtain

∫

R3
(|∇ϕu|2 + ϕ2

uu2)dx = −
∫

R3
ωϕuu2dx.

By the above equality and the definition of J , we obtain a C1 functional I : H1(R3) → R

given by

I(u) =
1

2

∫

R3
(|∇u|2 + V(x)u2)dx − 1

2

∫

R3
ωϕuu2dx −

∫

R3
F(x, u)dx (2.1)

and its Gateaux derivative is

⟨I′(u), v⟩ =
∫

R3
(∇u · ∇v + V(x)uv)dx −

∫

R3
(2ω + ϕu)ϕuuvdx −

∫

R3
f (x, u)vdx

for all v ∈ H1(R3). Here we use the fact that (∆ − u2)−1[ωu2] = ϕu.
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If λ1 > 0, we can easy to prove that I has the mountain pass geometry, so we omit this case.

Since 0 is not an eigenvalue of (1.5), we assume that there exists l ≥ 1 such that 0 ∈ (λl , λl+1).

Set

E− = span{e1, . . . , el}, E+ = (E−)⊥. (2.2)

Then E− and E+ are the negative space and positive space of the quadratic form

N(u) =
1

2

∫

R3
(|∇u|2 + V(x)u2)dx

respectively, and dim E− < ∞. Moreover, there is a positive constant B such that

±N(u) ≥ B∥u∥2, u ∈ E±. (2.3)

In order to prove Theorem 1.3, we shall use the fountain theorem of Bartsch [5], see also

Theorem 3.6 in [38]. For k = 1, 2, . . ., set

Yk = span{e1, . . . , ek}, Zk = span{ek+1, . . . , }. (2.4)

Proposition 2.2 (Fountain Theorem). Assume that the even functional I ∈ C1(E, R) satisfies the

(PS) condition. If there is a positive constant K such that for any k ≥ K there exist ρk > rk > 0 such

that

(i) ak = maxu∈Yk ,∥u∥=ρk
I(u) ≤ 0,

(ii) bk = infu∈Zk ,∥u∥=rk
I(u) → +∞ as k → +∞,

then I has a sequence of critical points {uk} such that I(uk) → +∞.

In order to study the functional I, we will write the functional I in a form in which the

quadratic part is ∥u∥2. Let g(x, t) = f (x, t) + V0t. Then, by an computation, we obtain that

G(x, t) :=
∫ t

0
g(x, s)ds ≤ t

4
g(x, t) +

Ṽ0

4
t2, Ṽ0 := 4b + V0 > 0. (2.5)

By ( f3) we have

lim
|t|→∞

g(x, t)t

t4
= +∞. (2.6)

Furthermore, by ( f2) we obtain

lim
|t|→0

g(x, t)t

t4
= lim

|t|→0

(

t2

t4
· f (x, t)t + V0t2

t2

)

= +∞.

Hence there exists M > 0 such that

g(x, t)t ≥ −Mt4, ∀t ∈ R. (2.7)

With the modified nonlinearity g, the functional I : E → R can be rewritten in the following

I(u) =
1

2
∥u∥2 − ω

2

∫

R3
ϕuu2dx −

∫

R3
G(x, u)dx (2.8)

with the derivative

⟨I′(u), v⟩ = ⟨u, v⟩ −
∫

R3
(2ω + ϕu)ϕuuvdx −

∫

R3
g(x, u)vdx.
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Lemma 2.3. Suppose (V), ( f1)–( f4) are satisfied, then the function I satisfies the (PS) condition.

Proof. It follows from 1
4 t f (x, t)− F(x, t) ≥ −bt2 that the condition ( f3) is equivalent to

lim
|t|→+∞

G(x, t)

t4
= +∞.

Let {un} be a (PS) sequence, i.e.,

sup
n

|I(un)| < ∞, I′(un) → 0.

We first prove that {un} is bounded in E. Arguing by contradiction, suppose that {un} is

unbounded, passing to a subsequence, by (2.5), we obtian

4 sup
n

I(un) + ∥un∥ ≥ 4I(un)− ⟨I′(un), un⟩

= ∥un∥2 +
∫

R3
ϕ2

un
u2

ndx +
∫

R3
(g(x, un)un − 4G(x, un))dx

≥ ∥un∥2 − Ṽ0

∫

R3
u2

ndx. (2.9)

Let vn = un

∥un∥ . Then, going if necessary to a subsequence, by the compact embedding E →֒
L2(R3) we may assume that

vn ⇀ v0 in E;

vn → v0 in L2(R3);

vn(x) → v0(x) a.e. in R
3.

Dividing both sides of (2.9) by ∥un∥2, we have

Ṽ0

∫

R3
v2

0dx ≥ 1 as n → ∞.

Consequently, we have that v0 ̸= 0.

By (1.4) and (2.7), we have

∫

v0=0

g(x, un)un

∥un∥4
dx =

∫

v0=0

g(x, un)un

u4
n

v4
ndx

≥ −M
∫

v0=0
v4

ndx ≥ −M
∫

R3
v4

ndx

= −M|vn|44 ≥ −Md4
4 > −∞. (2.10)

For x ∈ {x ∈ R
3|v0 ̸= 0}, we have |un(x)| → +∞ as n → ∞. By (2.6) we have

g(x, un(x))un(x)

∥un∥4
=

g(x, un(x))un(x)

u4
n(x)

v4
n(x) → +∞. (2.11)

Hence, by (2.10) and (2.11) and Fatou’s lemma we obtain

∫

R3

g(x, un)un

∥un∥4
dx ≥

∫

v0 ̸=0

g(x, un)un

u4
n

v4
n(x)dx − Md4

4 → +∞. (2.12)
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Hence we obtain that
∫

R3

G(x, un)

∥un∥4
dx → +∞. (2.13)

Since {un} is a (PS) sequence, using Proposition 2.1 and (2.12), for n large enough, we obtain

cω + 1 ≥ 1

∥un∥4

(

1

2
∥un∥2 − ω

2

∫

R3
ϕun u2

ndx − I(un)

)

=
∫

R3

G(x, un)

∥un∥4
dx → +∞, (2.14)

which is a contradiction.

Now we have proved that {un} is bounded in E. By a similar argument in [15], the compact

embedding E →֒ L2(R3) and

E =
⋃

n∈N

En,

we can show that {un} has a subsequence converging to a critical point of I.

Lemma 2.4. Let X be a finite dimensional subspace of E, then I is anti-coercive on X, i.e.

I(u) → −∞, as ∥u∥ → ∞, u ∈ X.

Proof. If it is not true, we can choose a sequence {un} ⊂ X and ξ is a real number such that

∥un∥ → ∞, I(un) ≥ ξ. (2.15)

Let vn = un

∥un∥ . Since dim X < ∞, going if necessary to a subsequence we have

∥vn − v0∥ → 0, vn(x) → v0(x) a.e. in R
3

for every v0 ∈ X, with ∥v0∥ = 1. Since v0 ̸= 0, similar to (2.13) we obtain that

∫

R3

G(x, un)

∥un∥4
dx → +∞.

And arguing similar to (2.14), it follows from supn |I(un)| < ∞ that

I(un) = ∥un∥4

(

1

2∥un∥2
− ω

2∥un∥4

∫

R3
ϕun u2

ndx −
∫

R3

G(x, un)

∥un∥4
dx

)

→ −∞,

which is contradict with I(un) ≥ ξ. The proof is complete.

Now, we are ready to prove our main result.

Proof of Theorem 1.3. We will find a sequence of critical points {un} of I such that I(un) → +∞.

Since f (x, t) is odd in t, I is an even function. It follows from Lemma 2.3 that I satisfies

(PS) condition. Therefore, it suffices to verify (i) and (ii) of Proposition 2.2.

(i) Since dim Yk < ∞, by Lemma 2.4, we get the conclusion of (i).

(ii) By ( f1), ( f2), we have

| f (x, t)| ≤ ϵ|t|+ Cϵ|t|p−1, |F(x, t)| ≤ ϵ

2
t2 +

Cϵ

p
|t|p,
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where ϵ > 0 is very small. Then we have

|F(x, t)| ≤ B

2d2
2

t2 +
CB

p
|t|p, (2.16)

where B is defined in (2.3). We assume that 0 ∈ [λl , λl+1). Then if k > l, we have that Zk ⊂ E+,

where E+ is defined in (2.2). Now we have

N(u) ≥ B∥u∥2, u ∈ Zk (2.17)

and, as proof of Lemma 3.8 in [38],

βp(k) = sup
u∈Zk ,∥u∥=1

|u|p → 0, as k → ∞.

Let rk = (Cpβp(k))1/(2−p), where C is chosen as in (2.16). For u ∈ Zk ⊂ E+ with ∥u∥ = rk,

ϕu ≤ 0, by (2.17) we deduce that

I(u) = N(u)− 1

2
ω

∫

R3
ϕuu2dx −

∫

R3
F(x, u)dx

≥ B∥u∥2 − B

2d2
2

|u|22 − CB|u|pp

≥ B

(

1

2
∥u∥2 − Cβ

p
p∥u∥p

)

= B

(

1

2
− 1

p

)

(Cpβ
p
p)

2/(2−p),

where β
p
p := (βp(k))p. Since βp(k) → 0 and p > 2, it follows that

bk = inf
u∈Zk ,∥u∥=rk

I(u) → +∞.

We get the conclusion of (ii). The proof is complete.

3 Proofs of Theorem 1.6 and Theorem 1.7

Under the condition (H1), we define a new Hilbert space

F :=

{

u ∈ H1(R3) :
∫

R3
(|∇u|2 + V(x)u2)dx < ∞

}

.

with the inner product

(u, v)F =
∫

R3
(∇u · ∇v + V(x)uv) dx

and the norm ∥u∥F = (u, u)1/2
F , which is equivalent to the usual Sobolev norm on H1(R3).

Obviously, the embedding F →֒ Ls(R3) is continuous, for any s ∈ [2, 2∗]. Consequently, for

each s ∈ [2, 6], there exists a constant vs > 0 such that

|u|s ≤ vs∥u∥F, ∀u ∈ F. (3.1)
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Furthermore, we know that under assumption (H1), the embedding F →֒ Ls(R3) is compact

for any s ∈ [2, 2∗) (see [40]).

By Proposition 2.1, we can consider the functional Iω on (F, ∥ · ∥F):

Iω(u) =
1

2

∫

R3
(|∇u|2 + V(x)u2 − ωϕuu2)dx −

∫

R3
F(x, u)dx,

with its Gateaux derivative is

⟨I′ω(u), v⟩ =
∫

R3
[∇u∇v + V(x)uv − (2ω + ϕu)ϕuuv − f (x, u)v]dx.

Lemma 3.1. Suppose (H1)–(H4) hold. Then there exist some positive constants ρ0, α0 such that

Iω(u)|∥u∥F=ρ0
≥ α0 for all u ∈ F. Moreover, there exists a function u0 ∈ F with ∥u0∥F > ρ0 and

ω∗ > 0 such that Iω(u0) < 0 for 0 < ω < ω∗.

Proof. By (H3), (H4), for any ε > 0, there exists q with 1 < q < 5 and M1 = M1(ε, p) > 0 such

that

|F(x, t)| ≤ ε

2
t2 + M1tq+1, for all t > 0. (3.2)

By ϕu ≤ 0 and the Sobolev inequality, we get that

Iω(u) =
1

2

∫

R3
(|∇u|2 + V(x)u2 − ωϕuu2)dx −

∫

R3
F(x, u)dx

≥ 1

2
∥u∥2

F −
ε

2
v2

2∥u∥2
F − M1v

q+1
q+1∥u∥q+1

F

=

(

1

2
− ε

2
v2

2

)

∥u∥2
F − M1v

q+1
q+1∥u∥q+1

F .

Since 1 < q < 5, let ε = 1
2v2

2
and ∥u∥F = ρ0 > 0 small enough, then we can obtain

Iω(u)|∥u∥F=ρ ≥ α0 for all u ∈ F.

By (H4), we have A > Ω. From the definition of Ω, there exists a nonnegative function

u1 ∈ H1(R3) such that

∥u1∥2
F =

∫

R3
(|∇u1|2 + V(x)u2

1)dx < A
∫

R3
u2

1dx = A|u1|22.

Hence, by (H4) and Fatou’s lemma we obtain that

lim
t→+∞

I0(tu1)

t2
=

1

2
∥u1∥2

F − lim
t→+∞

∫

R3

F(x, tu1)

t2u2
1

u2
1dx

≤ 1

2
∥u1∥2

F −
A

2

∫

R3
u2

1dx

=
1

2
(∥u1∥2

F − A|u1|22) < 0.

If I0(tu1) → −∞ as t → +∞, then there is u0 ∈ F with ∥u0∥F > ρ0 such that I0(u0) < 0.

Since Iω(u0) → I0(u0) as ω → 0+. We have that there is a positive constant ω∗ > 0 such that

Iω(u0) < 0 for all 0 < ω < ω∗. The proof is complete.

Lemma 3.2. Suppose (H1)–(H4) hold. Then any sequence {un} ⊂ F satisfying

Iω(un) → c > 0, ⟨I′ω(un), un⟩ → 0

is bounded in F. Moreover, {un} has a strongly convergent subsequence in F.
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Proof. (i) We first to prove that {un} is bounded. For any fixed L > 0, let ηL ∈ C∞(R3, R) be a

cut-off function such that

ηL =

{

0, for |x| ≤ L/2,

1, for |x| ≥ L,

and |∇ηL| ≤ C
L for all x ∈ R

3 and C is a positive constant. For any u ∈ F and all L ≥ 1, there

exists a constant C0 > 0, which is independent of L, such that ∥ηLu∥F ≤ C0∥u∥F.

Since I′ω(un) → 0 as n → +∞ in H−1(R3), for n large enough we have that

⟨I′ω(un), ηLun⟩ ≤ ∥I′ω(un)∥F−1∥ηLun∥F ≤ ∥un∥F, (3.3)

and

∫

R3
(|∇un|2 + V(x)u2

n)ηLdx +
∫

R3
un∇un∇ηLdx −

∫

R3
(2ω + ϕun)ϕun ηLu2

ndx

≤
∫

R3
f (x, un)unηLdx + ∥un∥F, (3.4)

where F−1 is the dual space of F.

By assumptions (H2) and (H4), there exist γ > 0 and L1 > 0 such that V(x) ≥ A + γ

for all |x| ≥ L1. Choosing L > 2L1, since |∇ηL(x)| ≤ C
L for all x ∈ R

3, 2ω + ϕun ≥ 0 and

f (x, un(x))un(x) ≤ Au2
n(x) for all x ∈ R

3 by (H4). Following from (3.4) we get that

∫

R3
(|∇un|2 + γu2

n)ηLdx ≤ C

L

(

∫

R3
u2

ndx +
∫

R3
∇u2

ndx

)

+ ∥un∥F. (3.5)

Similar to (3.3), we have that ⟨I′ω(un), un⟩ ≤ ∥un∥F, that is

∫

R3
(|∇un|2 + V(x)u2

n − 2ωϕun u2
n − ϕ2

un
u2

n − f (x, un)un)dx ≤ ∥un∥F. (3.6)

Motivated by [31] (see also [39]), we give an inequality by using the second equality of system

(KGM). Multiplying both sides of ∆ϕun = (ω + ϕun)u
2
n by |un|,integrating by parts and using

the Young’s inequality, we have

√

3

4

∫

R3
(ω + ϕun)|un|3dx ≤ 1

4

∫

R3
|∇un|2dx +

3

4

∫

R3
|∇ϕun |2dx. (3.7)

Then by Proposition 2.1, one has

√
3
∫

R3
(ω + ϕun)|un|3dx ≤ 1

2

∫

R3
|∇un|2dx +

3

2

∫

R3
|∇ϕun |2dx

≤ 1

2

∫

R3
|∇un|2dx − 3

2

∫

R3
ωϕun u2

ndx − 3

2

∫

R3
ϕ2

un
u2

ndx

≤ 1

2

∫

R3
|∇un|2dx − 3

2

∫

R3
ωϕun u2

ndx −
∫

R3
ϕ2

un
u2

ndx. (3.8)

By (3.6), (3.7), (3.8) and V(x) > 0, ϕun ≤ 0, f (x, un(x))un(x) ≤ Au2
n(x) for all x ∈ R

3 we have
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that

1

2

∫

R3
(|∇un|2 + V(x)u2

n)dx +
∫

R3
(
√

3(ω + ϕun)|un|3 − Au2
n)dx

≤ 1

2

∫

R3
(|∇un|2 + V(x)u2

n)dx +
1

2

∫

R3
|∇un|2dx − 3

2

∫

R3
ωϕun u2

ndx

−
∫

R3
ϕ2

un
u2

ndx −
∫

R3
f (x, un)undx

=
∫

R3
(|∇un|2 + V(x)u2

n − 2ωϕun u2
n − ϕ2

un
u2

n − f (x, un)un)dx

− 1

2

∫

R3
V(x)u2

ndx +
1

2

∫

R3
ωϕun u2

ndx

≤ ∥un∥F,

that is

1

2
∥un∥2

F +
∫

R3
h(un)dx ≤ ∥un∥F, (3.9)

where h(un) =
√

3(ω + ϕun)|un|3 − Au2
n.

By (3.5), there is a positive constant C1 > 0 (independent of L) such that

∫

|x|≥L
u2

ndx ≤ C1

L
∥un∥2

F + C1∥un∥F.

Let δ = inft∈R h(t). Then δ ∈ (−∞, 0) and by above inequality we have

∫

R3
h(un)dx ≥

∫

|x|≤L
δdx +

∫

|x|≥L
(−Au2

n)dx

≥ δ|BL(0)| −
AC1

L
∥un∥2

F − AC1∥un∥F, (3.10)

where |BL(0)| denotes the volume of BL(0). It follows from (3.9) and (3.10) that

1

2
∥un∥2

F ≤ |δ||BL(0)|+
AC1

L
∥un∥2

F + AC1∥un∥F + ∥un∥F.

Since C1 is a constant independent of L, we can choose L large enough such that AC1
L < 1

2 .

Then we obtain that {un} is bounded in F by above inequality.

(ii) Now we shall show that {un} has a strongly convergent subsequence in F. From

case (i), {un} is bounded in F. Then (3.3) and (3.5) become

⟨I′ω(un), ηLun⟩ = ◦(1)

and
∫

|x|≥L
(|∇un|2 + u2

n)dx ≤ C

L
∥un∥2

F + ◦(1), (3.11)

respectively. Therefore, for any ε > 0, there exists L > 0 such that for n large enough,

∫

|x|≥L
(|∇un|2 + u2

n)dx ≤ ε. (3.12)

Since {un} is bounded in F, passing to a subsequence if necessary, there exists u ∈ F such that

un ⇀ u in F. In view of the embedding F →֒ Ls(R3) are compact for any s ∈ [2, 6), un → u



14 L. X. Wang, C. L. Xiong and P. P. Zhao

in Ls(R3) for 1 < s < 6 and un(x) → u(x) a.e. x ∈ R
3. Hence it follows from assumptions of

Lemma 3.2 and the derivative of Iω, we easily obtain

∥un − u∥2
F = ⟨I′ω(un)− I′ω(u), un − u⟩+

∫

R3
( f (x, un)− f (x, u))(un − u)dx

+2ω

∫

R3
(ϕun un − ϕuu)(un − u)dx +

∫

R3
(ϕ2

un
un − ϕ2

uu)(un − u)dx.

It is clear that

⟨I′ω(un)− I′ω(u), un − u⟩ → 0 as n → ∞.

By Proposition 2.1, the Hölder inequality and the Sobolev inequality, we have
∣

∣

∣

∣

∫

R3
ϕun un(un − u)dx

∣

∣

∣

∣

≤ |ϕun |6|un|12/5|un − u|12/5

≤ C1∥ϕun∥D|un|12/5|un − u|12/5

≤ C2|un|312/5|un − u|12/5 → 0.

Since un → u in Ls(R3) for any s ∈ [2, 2∗). We obtain
∫

R3
(ϕun − ϕu)un(un − u)dx → 0 as n → ∞

and
∫

R3
ϕu(un − u)2dx ≤ |ϕu|6|un − u|3|un − u|2 → 0 as n → ∞

Thus, we get
∫

R3
(ϕun un − ϕuu)(un − u)dx =

∫

R3
(ϕun − ϕu)un(un − u)dx +

∫

R3
ϕu(un − u)2dx

→ 0, as n → ∞.

Now, we shall prove
∫

R3
f (x, un)(un − u)dx = ◦(1) and

∫

R3
f (x, u)(un − u) = ◦(1). (3.13)

We only to prove the first one and the second one is similar. Since | f (x, un)| ≤ A|un| and

∥un∥F is bounded, by (3.12), the Hölder inequality and the Sobolev inequality, we have
∣

∣

∣

∣

∫

R3
f (x, un)(un − u)dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

|x|≤L
f (x, un)(un − u)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

|x|≥L
f (x, un)(un − u)dx

∣

∣

∣

∣

≤ C|un − u|L2(BL(0)) + C

(

∫

|x|≥L
u2

ndx

)1/2

→ 0 as n → ∞ and L → +∞.

So (3.13) hold. Therefore, ∥un − u∥F → 0 as n → ∞. The proof is complete.

Now we can prove our main results Theorem 1.6 and Theorem 1.7.

Proof of Theorem 1.6. By Lemma 3.1 and Lemma 3.2 we can obtain that u is a solution of system

(KGM). And by using bootstrap arguments and the maximum principle, we can conclude that

u is positive. The proof is complete.
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Proof of Theorem 1.7. Let (u, ϕu) ∈ F × D1,2(R3) be a solution of (KGM). Then ⟨I′ω(u), u⟩ = 0,

i.e.

⟨I′ω(u), u⟩ =
∫

R3
[|∇u|2 + V(x)u2 − (2ω + ϕu)ϕuu2 − f (x, u)u]dx = 0. (3.14)

Similar to (3.8), we deduce that

√
3
∫

R3
(ω + ϕu)|u|3dx ≤ 1

2

∫

R3
|∇u|2dx − 3

2

∫

R3
ωϕun u2dx −

∫

R3
ϕ2

uu2dx. (3.15)

By (H3) and (H4), there exists C = C(D0) such that

f (x, u)u ≤ D0u2 + C|u|3. (3.16)

Substituting (3.15) and (3.16) into (3.14), we obtain that

0 =
∫

R3
[|∇u|2 + V(x)u2 − (2ω + ϕu)ϕuu2 − f (x, u)u]dx

≥ 1

2

∫

R3
|∇u|2dx +

3

2

∫

R3
ωϕuu2dx −

∫

R3
ϕ2

uu2dx

+
∫

R3
(V(x)− D0)u

2dx −
∫

R3
C|u|3dx

≥
∫

R3
[
√

3(ω + ϕu)− C]|u|3dx +
∫

R3
(V(x)− D0)u

2dx

≥
∫

R3
[
√

3(ω + ϕu)− C]|u|3dx.

Therefore, if ω is large enough such that ω + ϕu >
√

3
3 C, system (KGM) only has the trivial

solution u ≡ 0. The proof is complete.
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Abstract. In this paper, we consider the following concave-convex semilinear elliptic
system with double critical exponents:























−∆u = |u|2∗−2u + α
2∗ |u|α−2|v|βu + λ|u|q−2u, in Ω,

−∆v = |v|2∗−2v + β
2∗ |u|α|v|β−2v + µ|v|q−2v, in Ω,

u, v > 0, in Ω,

u = v = 0, on ∂Ω,

where Ω ⊂ R
N(N ≥ 3) is a bounded domain with smooth boundary, λ, µ > 0, 1 <

q < 2, α > 1, β > 1, α + β = 2∗ = 2N
N−2 . By the Nehari manifold method and

variational method, we obtain two positive solutions which improves the recent results
in the literature.

Keywords: semilinear elliptic system, double critical exponents, positive solutions,
Nehari manifold, variational method.
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1 Introduction and main result

In this paper, we mainly study the following concave-convex semilinear elliptic system with

double critical exponents























−∆u = |u|2∗−2u + α
2∗ |u|α−2|v|βu + λ|u|q−2u, in Ω,

−∆v = |v|2∗−2v + β
2∗ |u|α|v|β−2v + µ|v|q−2v, in Ω,

u, v > 0, in Ω,

u = v = 0, on ∂Ω,

(1.1)
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where Ω ⊂ R
N(N ≥ 3) is a bounded domain with smooth boundary, λ, µ > 0, 1 < q <

2, α > 1, β > 1, α + β = 2∗ = 2N
N−2 . System (1.1) is abstracted from some physical phe-

nomenon, especially some description in nonlinear optics. As we all known, it is also a model

in Hartree–Fock theory for a double condensate, i.e., a binary mixture of Bose–Einstein con-

densates in two different hyperfine states |1⟩ and |2⟩, which was first discovered and proposed

by B.D. Esry et al in 1997. There is a lot of literatures about the origin and physical background

of system (1.1), and we refer the readers to see [5, 7, 11, 26].

It is well known that many results have been obtained in these years on critical semilinear

elliptic equation and system. For example, in 1983, Brézis and Nirenberg in reference [3]

studied the case of positive solutions of semilinear elliptic equations with critical exponent in

different dimensions and got many important results. In 1994, Ambrosetti et al in [2] showed

that some problems of critical elliptic equation with concave-convex nonlineraities. With the

development of variational methods, people gradually shifted their focus from equation to

system. In 2000, Alves et al first studied elliptic system involving subcritical or critical Sobolev

exponent in [1] as following























−∆u = au + bv + 2α
α+β u|u|α−2|v|β, in Ω,

−∆v = bu + cv + 2β
α+β |u|αv|v|β−2, in Ω,

u, v > 0, in Ω,

u = v = 0, on ∂Ω,

where Ω ⊂ R
N(N ≥ 3) with smooth boundary, and a, b, c ∈ R, α, β > 1, α + β = 2∗. They

obtained some existence results and nonexistence results for the corresponding elliptic system

with different dimensions and in different domain’s shapes. In 2009, Hsu and Lin in [19]

studied the following critical elliptic system















−∆u = λ|u|q−2u + 2α
α+β |u|α−2u|v|β, in Ω,

−∆v = µ|v|q−2v + 2β
α+β |u|α|v|β−2v, in Ω,

u = v = 0, on ∂Ω,

where 0 ∈ Ω is a bounded domain in R
N with N ≥ 3, and λ, µ > 0, α, β > 1, α + β = 2∗. For

1 < q < 2, they got two positive solutions when 0 < λ
2

2−q + µ
2

2−q < Λ, where Λ is a positive

constant. What’s more, there are some other references on semilinear elliptic system with

critical exponent, such as [5, 6, 8, 9, 12, 13, 16–18, 20–22, 24–26]. However, among the references

mentioned above, the elliptic system involving double critical exponential terms with one

strongly coupled and the other weakly coupled was studied only in [9] and [8]. Recently,

Duan, Wei and Yang in [9], on an incompressible bounded domain, studied the following

nonhomogeneous semilinear elliptic system with double critical exponents















−∆u = |u|2∗−2u + α
2∗ |u|α−2u|v|β + ε f , in Ω,

−∆v = |v|2∗−2v + β
2∗ |u|α|v|β−2v + εg, in Ω,

u = v = 0, on ∂Ω,

where α, β > 1, α + β = 2∗, ε > 0, for non-homogeneous terms f , g, which satisfy 0 ≤
f (x), g(x) ∈ L∞(Ω), f , g ̸≡ 0, and for the incompressible bounded domains with smooth

boundary Ω satisfies the following condition:
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(V) Ω ⊂ R
N(N ≥ 3), and there exist two positive constants 0 < R1 < R2 < ∞ such that

{x ∈ R
N : R1 < |x| < R2} ⊂ Ω, {x ∈ R

N : |x| < R1} ̸⊂ Ω̄.

If condition (V) holds, by splitting Nehari manifold and the knowledge of topology, they got

that there is a ε′ > 0, for any 0 < ε < ε′, such that the above system has at least three solutions

in the incompressible domain Ω, one of which is a positive ground state solution. Further-

more, if R1 in condition (V) is small enough, then there is a ε′′ such that for any 0 < ε < ε′′

there are at least four solutions on the incompressible domain Ω.

Inspired by [9], we replace the abstract inhomogeneous terms with the concave-convex

terms. In order to get a more general result, we extend the constraints of the “incompressible”

domain to the general bounded domain. So, we study system (1.1).

We denote the norm ∥u∥ =
(∫

Ω
|∇u|2dx

)
1
2 of H1

0(Ω); and E = H1
0(Ω)× H1

0(Ω) with the

norm:

∥(u, v)∥E =

[

∫

Ω

(|∇u|2 + |∇v|2)dx

]
1
2

.

Then, we use | · |p to denote the Lp(Ω)-norm, and denote S as the Sobolev optimal embedding

constant, where S is defined as follows:

S = inf
u∈H1(RN)\{0}

∫

RN |∇u|2dx
(∫

RN |u|2∗dx
)

2
2∗

= inf
u∈H1

0 (Ω)\{0}

∫

Ω
|∇u|2dx

(∫

Ω
|u|2∗dx

)
2

2∗
> 0. (1.2)

From reference [27], we know that S is achieved by the function:

U(x) =
[N(N − 2)]

N−2
4

(1 + |x|2)
N−2

2

, (x ∈ R
N) (1.3)

which is also a solution of the following equation:

{

−∆u = u2∗−1, x ∈ R
N ,

u > 0, x ∈ R
N ,

(1.4)

with |∆U|22 = |U|2∗2∗ = S
N
2 . Let

Sα,β = inf
(u,v)∈E\{(0,0)}

∫

Ω

(|∇u|2 + |∇v|2)dx

[

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx

]
2

2∗
= f (τmin)S. (1.5)

According to [9, Lemma 1], we know that Sα,β = f (τmin)S, where

f (τ) =
1 + τ2

(1 + τ2∗ + τβ)
2

2∗

and f (τmin) ∈ [2−
2

2∗ , 1] for any τ ≥ 0.

Based on (1.1), we know that the corresponding energy functional as follows:

Iλ,µ(u, v) =
1

2
∥(u, v)∥2

E − 1

2∗

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx − 1

q

∫

Ω

(λ|u|q + µ|v|q)dx (1.6)
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and (u, v) is a weak solution of system (1.1) if for any (ξ1, ξ2) ∈ E it satisfies

⟨I′λ,µ(u, v), (ξ1, ξ2)⟩

=
∫

Ω

(∇u∇ξ1 +∇v∇ξ2)dx −
∫

Ω

(

|u|2∗−2uξ1 + |v|2∗−2vξ2

)

dx

−
∫

Ω

(

α

2∗
|u|α−2|v|βuξ1 +

β

2∗
|u|α|v|β−2vξ2

)

dx −
∫

Ω

(

λ|u|q−2uξ1 + µ|v|q−2vξ2

)

dx = 0.

When (ξ1, ξ2) = (u, v), we can get:

∥(u, v)∥2
E −

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx −
∫

Ω

(λ|u|q + µ|v|q)dx = 0. (1.7)

Define Nehari manifold as follows:

Nλ,µ = {(u, v) ∈ E : ⟨I′λ,µ(u, v), (u, v)⟩ = 0}. (1.8)

Set z = (u, v), ∥z∥E = ∥(u, v)∥E =
(

∥u∥2 + ∥v∥2
)

1
2 . Define the function Ψ(z) = ⟨I′λ,µ(z), z⟩,

such that

⟨Ψ′(z), z⟩ = 2∥z∥2
E − 2∗

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx − q
∫

Ω

(λ|u|q + µ|v|q)dx

= (2 − q)∥z∥2
E − (2∗ − q)

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx

= (2 − 2∗)∥z∥2
E − (q − 2∗)

∫

Ω

(λ|u|q + µ|v|q)dx

(1.9)

for any z = (u, v) ∈ Nλ,µ. To obtain the two positive solutions, we now split Nλ,µ into three

parts as follows:

N
+

λ,µ = {z ∈ Nλ,µ : ⟨Ψ′(z), z⟩ > 0},

N
0

λ,µ = {z ∈ Nλ,µ : ⟨Ψ′(z), z⟩ = 0}, (1.10)

N
−

λ,µ = {z ∈ Nλ,µ : ⟨Ψ′(z), z⟩ < 0},

where Nλ,µ = N
+

λ,µ ∪ N 0
λ,µ ∪ N

−
λ,µ. In addition, we will prove N

±
λ,µ ̸= ∅ and N 0

λ,µ = {(0, 0)}
for 0 < λ

2
2−q + µ

2
2−q < T, where

T =

(

2 − q

2∗ − q

)
2

2∗−2
(

2∗ − 2

2∗ − q

)
2

2−q

(Sα,β)
2∗

2∗−2 S
q

2−q |Ω|−
2(2∗−q)
2∗(2−q) (1.11)

in Section 2.

Here is our main result.

Theorem 1.1. Assume that 1 < q < 2 and Ω ⊂ R
N(N ≥ 3) is a bounded domain with smooth

boundary, λ, µ > 0, α > 1, β > 1, α + β = 2N
N−2 . Then,

(i) for any λ
2

2−q + µ
2

2−q ∈ (0, T), system (1.1) has a positive ground state solution;

(ii) for any λ
2

2−q + µ
2

2−q ∈ (0, ( q
2 )

2
2−q T), system (1.1) has two positive solutions, one of which is the

positive ground state solution.
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Remark 1.2. To the best of our knowledge, our result is up to date. On the one hand, we

generalize [9] to system (1.1) on general bound domain and obtain two positive solutions. On

the other hand, noting that [9, Claim 2], that is,
∫

Ω

(u1 + tu
σ,ρ
δ )2∗ − u2∗

1 − (tu
σ,ρ
δ )2∗ − 2∗u2∗−1

1 tu
σ,ρ
δ dx ≥ O(δ

N−2
2 )

and
∫

Ω

(v1 + tv
σ,ρ
δ )2∗ − v2∗

1 − (tv
σ,ρ
δ )2∗ − 2∗v2∗−1

1 tv
σ,ρ
δ dx ≥ O(δ

N−2
2 ).

From [9] we know that [15, (4.7)] is used in the proof of Claim 2. However, [15, (4.7)] has a

restriction of q ≥ 3 on the exponential q. For 2∗ = 2N
N−2 ≥ 3, it implies that N ≤ 6. Thus,

when N > 6 the inequality in [9, Claim 2] may not hold, which may have some influence on

the estimation of corresponding energy functional. So, for N ≥ 3, we revalued [9, Claim 2],

which is important for estimating the value of corresponding energy functional Iλ,µ.

The content structure of this paper is organized as the following way. In Section 2, we will

give some important lemmas for preparation to prove our main result. In Section 3, we will

give the proof of the existence of positive ground state solutions for system (1.1). Finally, we

will prove the existence of two positive solutions in Section 4.

2 Some preliminary results

In this section, we first give some important lemmas which are valuable preparation for the

proof of our main result.

Lemma 2.1. Assume that z = (u, v) ∈ E\{(0, 0)} with
∫

Ω
(|u|2∗ + |v|2∗ + |u|α|v|β)dx > 0, then:

(i) there exist unique t+, t− with 0 < t+ < tmax < t− when λ
2

2−q + µ
2

2−q ∈ (0, T), such that

t+z ∈ N
+

λ,µ, t−z ∈ N
−

λ,µ and

Iλ,µ(t
+z) = inf

0≤t≤tmax

Iλ,µ(tz), Iλ,µ(t
−z) = sup

tmax≤t

Iλ,µ(tz); (2.1)

(ii) for λ
2

2−q + µ
2

2−q ∈ (0, T), N 0
λ,µ = {(0, 0)} and N

−
λ,µ is a closed set.

Proof. (i) For t ≥ 0, z = (u, v) ∈ E such that
∫

Ω
(|u|2∗ + |v|2∗ + |u|α|v|β)dx > 0, we have

⟨I′λ,µ(tz), tz⟩ = t2∥z∥2
E − t2∗

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx − tq
∫

Ω

(λ|u|q + µ|v|q)dx.

Then, set y1, y2 : R
+ → R,

y1(t) = t2−q∥z∥2
E − t2∗−q

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx −
∫

Ω

(λ|u|q + µ|v|q)dx, (2.2)

y2(t) = t2−q∥z∥2
E − t2∗−q

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx. (2.3)

Obviously, y1(t) = y2(t)−
∫

Ω
(λ|u|q + µ|v|q) dx. We now proceed with the analysis of y2(t),

y′2(t) = (2 − q)t1−q∥z∥2
E − (2∗ − q)t2∗−1−q

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx

= t1−q

[

(2 − q)∥z∥2
E − (2∗ − q)t2∗−2

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx

]

.
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It is easy to figure out that y′2(tmax) = 0 with

tmax =

[

(2 − q)∥z∥2
E

(2∗ − q)
∫

Ω
(|u|2∗ + |v|2∗ + |u|α|v|β)dx

]
1

2∗−2

> 0.

Moreover, y′2(t) > 0 for all 0 < t < tmax, and y′2(t) < 0 for all t > tmax. Through a simple

analysis, we can get that

y2(tmax) = max y2(t) =

[

(2 − q)∥z∥2
E

(2∗ − q)
∫

Ω
(|u|2∗ + |v|2∗ + |u|α|v|β)dx

]

2−q
2∗−2

2∗ − 2

2∗ − q
∥z∥2

E.

According to the definition of Sα,β, Hölder’s inequality and (1.2), one has

y1(tmax) = y2(tmax)−
∫

Ω

(λ|u|q + µ|v|q) dx

=

[

(2 − q)∥z∥2
E

(2∗ − q)
∫

Ω
(|u|2∗ + |v|2∗ + |u|α|v|β)dx

]

2−q
2∗−2

2∗ − 2

2∗ − q
∥z∥2

E

−
∫

Ω

(λ|u|q + µ|v|q) dx

≥
(

2 − q

2∗ − q

)

2−q
2∗−2 2∗ − 2

2∗ − q
∥z∥2

E

(

∥z∥2
E

∫

Ω
(|u|2∗ + |v|2∗ + |u|α|v|β)dx

)

2−q
2∗−2

− (λ∥u∥q + µ∥v∥q) |Ω|
2∗−q

2∗ S− q
2

≥
(

2 − q

2∗ − q

)

2−q
2∗−q 2∗ − 2

2∗ − q
∥z∥2

E

(

∥z∥2
E

∫

Ω
(|u|2∗ + |v|2∗ + |u|α|v|β)dx

)

2−q
2∗−2

−
(

λ
2

2−q + µ
2

2−q

)

2−q
2
(∥u∥2 + ∥v∥2)

q
2 |Ω|

2∗−q
2∗ S− q

2

=

(

2 − q

2∗ − q

)

2−q
2∗−q 2∗ − 2

2∗ − q
∥z∥2

E

(

∥z∥2
E

∫

Ω
(|u|2∗ + |v|2∗ + |u|α|v|β)dx

)

2−q
2∗−2

−
(

λ
2

2−q + µ
2

2−q

)

2−q
2 ∥z∥q

E|Ω|
2∗−q

2∗ S− q
2

≥
(

2 − q

2∗ − q

)

2−q
2∗−2 2∗ − 2

2∗ − q
∥z∥2

E

(

∥z∥2
E

(Sα,β)
− 2∗

2 ∥z∥2∗
E

)

2−q
2∗−2

−
(

λ
2

2−q + µ
2

2−q

)

2−q
2 ∥z∥q

E|Ω|
2∗−q

2∗ S− q
2

= ∥z∥q
E

[ (

2 − q

2∗ − q

)

2−q
2∗−2 2∗ − 2

2∗ − q
(Sα,β)

2∗(2−q)
2(2∗−2) −

(

λ
2

2−q + µ
2

2−q

)

2−q
2 |Ω|

2∗−q
2∗ S− q

2

]

> 0, (2.4)

for all λ
2

2−q +µ
2

2−q ∈ (0, T), where T is defined by (1.11). Because y1(t) is a continuous function,

according to inequality preserving for continuous functions and (2.4), there exist unique t+, t−

with 0 < t+ < tmax < t−, which makes

y1(t
+) = y1(t

−) = 0.
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So, for t+ < tmax < t−, since y′2(t
+) > 0 and y′2(t

−) < 0, we have t+z ∈ N
+

λ,µ, t−z ∈ N
−

λ,µ.

Moreover, one has

Iλ,µ(t
−z) ≥ Iλ,µ(tz) ≥ Iλ,µ(t

+z),

for each t ∈ [t+, t−], and Iλ,µ(t
+z) < Iλ,µ(tz) for each t ∈ [0, t+). Thus, one obtains

Iλ,µ(t
+z) = inf

0≤t≤tmax

Iλ,µ(tz), Iλ,µ(t
−z) = sup

tmax≤t

Iλ,µ(tz).

(ii) Set z0 = (u0, v0) ̸= (0, 0) ∈ N 0
λ,µ, from (1.9) and (1.10), we know

2∗ − 2

2∗ − q
∥z0∥2

E =
∫

Ω

(λ|u0|q + µ|v0|q) , (2.5)

2 − q

2∗ − q
∥z0∥2

E =
∫

Ω

|u0|2
∗
+ |v0|2

∗
+ |u0|α|v0|βdx. (2.6)

We can deduce from (2.4), (2.5) and (2.6) that

0 <

[

(2 − q)∥z0∥2
E

(2∗ − q)
∫

Ω
|u0|2∗ + |v0|2∗ + |u0|α|v0|βdx

]

2−q
2∗−2

2∗ − 2

2∗ − q
∥z0∥2

E

−
∫

Ω

(λ|u0|q + µ|v0|q) dx

=





(2 − q)∥z0∥2
E

(2∗ − q) 2−q
2∗−q∥z0∥2

E





2−q
2∗−2

2∗ − 2

2∗ − q
∥z0∥2

E − 2∗ − 2

2∗ − q
∥z0∥2

E

=
2∗ − 2

2∗ − q
∥z0∥2

E − 2∗ − 2

2∗ − q
∥z0∥2

E

= 0,

which is a contradiction for all λ
2

2−q + µ
2

2−q ∈ (0, T). So, for λ
2

2−q + µ
2

2−q ∈ (0, T), we obtain

N 0
λ,µ = {(0, 0)}. Then, we will prove N

−
λ,µ is a closed set when λ

2
2−q + µ

2
2−q ∈ (0, T). Assume

{zn} ⊂ N
−

λ,µ, zn → z, z ∈ E, and now we prove z ∈ N
−

λ,µ. From (1.10), we have

(2 − q)∥zn∥2
E − (2∗ − q)

∫

Ω

|un|2
∗
+ |vn|2

∗
+ |un|α|vn|βdx < 0. (2.7)

According to zn → z, z ∈ E and (2.7), one has

(2 − q)∥z∥2
E − (2∗ − q)

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx ≤ 0. (2.8)

From (2.8), we can get z ∈ N 0
λ,µ ∪ N

−
λ,µ. We already know from the above proof that N 0

λ,µ =

{(0, 0)} when λ
2

2−q + µ
2

2−q ∈ (0, T). So, if z ∈ N 0
λ,µ, then z = (0, 0). According to (1.5) and (2.7),

we obtain

∥zn∥E ≥
[

(2 − q)

(2∗ − q)
(Sα,β)

2∗
2

]
1

2∗−2

> 0,

which implies a contradiction with z = (0, 0). Thus, z ∈ N
−

λ,µ for λ
2

2−q + µ
2

2−q ∈ (0, T). So, we

can prove that N
−

λ,µ is a closed set. The proof of Lemma 2.1 is complete.
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Lemma 2.2. The energy functional Iλ,µ is coercive and bounded from below on Nλ,µ.

Proof. Assume that z = (u, v) ∈ Nλ,µ. By the Hölder inequality, (1.2) and (1.7), one has

Iλ,µ(z) =

(

1

2
− 1

2∗

)

∥z∥2
E −

(

1

q
− 1

2∗

)

∫

Ω

(λ|u|q + µ|v|q)dx

=
1

N
∥z∥2

E −
(

1

q
− 1

2∗

)

∫

Ω

(λ|u|q + µ|v|q)dx

≥ 1

N
∥z∥2

E −
(

1

q
− 1

2∗

)

(λ∥u∥q + µ∥v∥q)|Ω|
2∗−q

2∗ S− q
2

≥ 1

N
∥z∥2

E −
(

1

q
− 1

2∗

)

(

λ
2

2−q + µ
2

2−q

)

2−q
2 (∥u∥2 + ∥v∥2

)

q
2 |Ω|

2∗−q
2∗ S− q

2

=
1

N
∥z∥2

E −
(

1

q
− 1

2∗

)

(

λ
2

2−q + µ
2

2−q

)

2−q
2 ∥z∥q

E|Ω|
2∗−q

2∗ S− q
2 .

(2.9)

Because 1 < q < 2 < 2∗, from (2.9) we know that Iλ,µ is coercive and bounded from below on

Nλ,µ. The proof of Lemma 2.2 is completed.

According to Lemma 2.1 and Lemma 2.2, we set Nλ,µ = N
+

λ,µ ∪N 0
λ,µ ∪N

−
λ,µ. And we define

m = inf
z∈Nλ,µ

Iλ,µ(z), m+ = inf
z∈N

+
λ,µ

Iλ,µ(z), m− = inf
z∈N

−
λ,µ

Iλ,µ(z). (2.10)

Lemma 2.3.

(i) We have m ≤ m+
< 0, for λ

2
2−q + µ

2
2−q ∈ (0, T);

(ii) there exists a positive constant m0 depending on λ, µ, S, N, such that m− ≥ m0 > 0 for all

λ
2

2−q + µ
2

2−q ∈
(

0, ( q
2 )

2
2−q T

)

.

Proof. (i) Assume that z = (u, v) ∈ N
+

λ,µ, by (1.7), (1.9) and (1.10), we can get

2 − q

2∗ − q
∥z∥2

E >

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx. (2.11)

Then, by (2.11) we have

Iλ,µ(z) =

(

1

2
− 1

q

)

∥z∥2
E +

(

1

q
− 1

2∗

)

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx

<

(

1

2
− 1

q

)

∥z∥2
E +

(

1

q
− 1

2∗

)(

2 − q

2∗ − q

)

∥z∥2
E

=
q − 2

Nq
∥z∥2

E

< 0.

So, m = infz∈Nλ,µ
Iλ,µ(z) ≤ m+ = infz∈N

+
λ,µ

Iλ,µ(z) ≤ Iλ,µ(z) < 0.

(ii) For z = (u, v) ∈ N
−

λ,µ, we can deduce that

2 − q

2∗ − q
∥z∥2

E <

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx ≤ S
− 2∗

2
α,β ∥z∥2∗

E .
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Consequently, from (1.5), (1.9) and (1.10), one has

∥z∥E >

(

2 − q

2∗ − q

)
1

2∗−2

S
2∗

2(2∗−2)

α,β . (2.12)

By (2.9) and (2.12), for all λ
2

2−q + µ
2

2−q ∈
(

0, ( q
2 )

2
2−q T

)

, we will get

Iλ,µ(z) ≥
(

1

2
− 1

2∗

)

∥z∥2
E −

(

1

q
− 1

2∗

)

(

λ
2

2−q + µ
2

2−q

)

2−q
2 ∥z∥q

E|Ω|
2∗−q

2∗ S− q
2

= ∥z∥q
E

[ (

1

2
− 1

2∗

)

∥z∥2−q
E

−
(

1

q
− 1

2∗

)

(

λ
2

2−q + µ
2

2−q

)

2−q
2 |Ω|

2∗−q
2∗ S− q

2

]

> ∥z∥q
E

[ (

1

2
− 1

2∗

)(

2 − q

2∗ − q

)

2−q
2∗−2

S
2∗(2−q)
2(2∗−2)

α,β

−
(

1

q
− 1

2∗

)

(

λ
2

2−q + µ
2

2−q

)

2−q
2 |Ω|

2∗−q
2∗ S− q

2

]

≥ m0

> 0,

(2.13)

where m0 is a positive constant. So, m− = infz∈N
−

λ,µ
Iλ,µ(z) ≥ m0 > 0. Then, the proof of

Lemma 2.3 is complete.

Lemma 2.4. Suppose z0 ∈ E is a local minimizer of Iλ,µ on Nλ,µ, then we have I ′λ,µ(z0) = 0 in E−1.

Proof. Set z0 = (u0, v0)∈E is a local minimizer of Iλ,µ on Nλ,µ. Then, Iλ,µ(z0) = minz∈Nλ,µ
Iλ,µ(z).

According to the Lagrange multiplier theorem, there is a θ ∈ R such that I′λ,µ(z0) = θΨ′(z0),

where Ψ(z) = ⟨I′λ,µ(z), z⟩. Due to z0 ∈ Nλ,µ, we have

0 = ⟨I′λ,µ(z0), z0⟩ = θ⟨Ψ′(z0), z0⟩.

By Lemma 2.3, if z0 /∈ N 0
λ,µ, we can get ⟨Ψ′(z0), z0⟩ ̸= 0 for λ

2
2−q + µ

2
2−q ∈ (0, T) . Thus, θ =

0, I′λ,µ(z0) = 0. The Lemma 2.4 is proved.

3 The positive ground state solution

Lemma 3.1. For any λ
2

2−q + µ
2

2−q ∈ (0, T), then there exists a (PS)m-sequence {zn} = {(un, vn)} ⊂
Nλ,µ for Iλ,µ and T is defined as (1.11).

Proof. The proof process is the same as [28, Proposition 9], which is omitted here.

Lemma 3.2. The energy functional Iλ,µ has a minimizer z∗ = (u∗, v∗) ∈ N
+

λ,µ, for λ
2

2−q + µ
2

2−q ∈
(0, T). What’s more z∗ is a positive ground state solution of system (1.1), which makes Iλ,µ(z∗) = m =

m+
< 0.
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Proof. According to Lemma 3.1, there is a (PS)m-sequence, which is recorded as {zn} =

{(un, vn)} ⊂ Nλ,µ. Then, we have

Iλ,µ(zn) = m + on(1), I′λ,µ(zn) = on(1), (3.1)

where on(1) → 0 as n → ∞. Combining with (2.9) and (3.1), we can get

m + on(1) = Iλ,µ(zn)

≥ 1

N
∥zn∥2

E −
(

1

q
− 1

2∗

)

(

λ
2

2−q + µ
2

2−q

)

2−q
2 ∥zn∥q

E|Ω|
2∗−q

2∗ S− q
2 .

Thus, {zn} is bounded in E. Then, {zn} has a subsequence (still denoted by {zn}) which

weakly converges to z∗ = (u∗, v∗) ∈ E, and















un ⇀ u∗, vn ⇀ v∗, in H1
0(Ω),

un → u∗, vn → v∗, in Ls(Ω)(1 ≤ s < 2∗),

un(x) → u∗(x), vn(x) → v∗(x), a.e. in Ω.

(3.2)

According to (3.1), we have ⟨I′λ,µ(zn), ξ⟩ → 0 as n → ∞ for any ξ ∈ E. What’s more, combining

with (3.2), we have

⟨I′λ,µ(z∗), ξ⟩ = 0, for all ξ ∈ E,

which implies that z∗ is a solution of system (1.1) and z∗ ∈ Nλ,µ.

Then, we will prove zn → z∗. By using the Lebesgue dominated convergence theorem, we

can get

lim
n→∞

∫

Ω

(λ|un|q + µ|vn|q)dx =
∫

Ω

(λ|u∗|q + µ|v∗|q)dx. (3.3)

Since z∗ ∈ Nλ,µ, by Fatou’s Lemma and (3.3), one has

m ≤ Iλ,µ(z∗)

=

(

1

2
− 1

2∗

)

∥z∗∥2
E −

(

1

q
− 1

2∗

)

∫

Ω

(λ|u∗|q + µ|v∗|q)dx

=
1

N
∥z∗∥2

E − 2∗ − q

2∗q

∫

Ω

(λ|u∗|q + µ|v∗|q)dx

≤ lim
n→∞

inf

(

1

N
∥zn∥2

E − 2∗ − q

2∗q

∫

Ω

(λ|un|q + µ|vn|q)dx

)

= lim
n→∞

inf Iλ,µ(zn)

= m,

which implies Iλ,µ(z∗) = m, ∥zn∥2
E → ∥z∗∥2

E. By combining with (3.2), we can derive zn → z∗
in E. Thus, z∗ is a solution of system (1.1) that means z∗ ∈ Nλ,µ. Moreover, we are going to

prove z∗ ∈ N
+

λ,µ. Since z∗ ∈ Nλ,µ, from (1.6) and (1.7), we have

∫

Ω

(λ|u∗|q + µ|v∗|q)dx =
q(2∗ − 2)

2(2∗ − q)
∥z∗∥2

E − 2∗q

2∗ − q
m

≥ − 2∗q

2∗ − q
m

> 0.

(3.4)
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Then, z∗ ̸= (0, 0), which implies z∗ ∈ N
+

λ,µ or z∗ ∈ N
−

λ,µ. If z∗ ∈ N
−

λ,µ, by Lemma 2.1 there are

unique t+, t− with t+ < t− = 1 such that t+z∗ ∈ N
+

λ,µ, t−z∗ ∈ N
−

λ,µ. From (1.10) we know that

d

dt
Iλ,µ(t

+z∗) = 0,
d2

dt2
Iλ,µ(t

+z∗) > 0.

Moreover, according to Lemma 2.1 , for any t with t+ < t < t− = 1, one gets

m+ ≤ Iλ,µ(t
+z∗) < Iλ,µ(tz∗) ≤ Iλ,µ(t

−z∗) = Iλ,µ(z∗) = m,

which implies a contradiction. Thus, z∗ ∈ N
+

λ,µ and m = m+, and according to Lemma 2.3 (i),

we have m+ = Iλ,µ(z∗) < 0.

Finally, we are going to prove z∗ is a positive solution. We have z∗ ̸= (0, 0) from (3.4). Then,

the main purpose now is to exclude semi-trivial solutions. Assume that u∗ ̸≡ 0, v∗ ≡ 0, then

u∗ is a nontrivial solution to the following equation:















−∆u = |u|2∗−2u + λ|u|q−2u, in Ω,

u > 0, in Ω,

u = 0. on ∂Ω.

(3.5)

Because (u∗, 0) is a solution of equation (3.5), we have

∥(u∗, 0)∥2
E = W∗(u∗, 0) > 0,

where W∗(u∗, 0) =
∫

Ω
|u∗|2∗dx +

∫

Ω
λu

q
∗dx. And similarly, we could take φ ∈ H1

0(Ω)\{0} such

that

∥(0, φ)∥2
E = W∗(0, φ) > 0.

Now,

W∗(u∗, φ) = ∥(u∗, φ)∥2
E = W∗(u∗, 0) + W∗(0, φ).

According to Lemma 2.1, there exists a unique 0 < t+ < tmax such that (t+u∗, t+φ) ∈ N
+

λ,µ,

where

tmax =

[

(2∗ − q)W∗(u∗, φ)

(2∗ − 2)∥(u∗, φ)∥2
E

]
1

2−q

=

(

2∗ − q

2∗ − 2

)
1

2−q

> 1

and

Iλ,µ(t
+u∗, t+φ) = inf

0≤t≤tmax

Iλ,µ(tu∗, tφ).

Then, we can deduce the following result:

m+ ≤ Iλ,µ(t
+u∗, t+φ) ≤ Iλ,µ(u∗, φ) < Iλ,µ(u∗, 0) = m+.

It is impossible. Finally, we can know that u∗, v∗ > 0 in Ω by using the strong maximum

principle, and z∗ = (u∗, v∗) is a positive solution of system (1.1). The proof of Theorem 1.1 (i)

is complete.
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4 Proof of Theorem 1.1

In this part, we will prove Theorem 1.1 (ii), and obtain the second positive solution of system

(1.1). Before that, due to lacking of compactness condition for Iλ,µ, we first give the local (PS)c

condition which is satisfied for the corresponding energy function.

Lemma 4.1. Let {zn = (un, vn)} be a (PS)c sequence of Iλ,µ with

c < m +
1

N
S

N
2

α,β,

we can get that Iλ,µ satisfies the (PS)c condition in E.

Proof. Let {zn} = {(un, vn)} be a (PS)c-sequence for Iλ,µ such that

Iλ,µ(zn) = c + on(1), I′λ,µ(zn) = on(1). (4.1)

Combining with (2.9), we have

c + on(1) = Iλ,µ(zn)

≥ 1

N
∥zn∥2

E −
(

1

q
− 1

2∗

)

(

λ
2

2−q + µ
2

2−q

)

2−q
2 ∥zn∥q

E|Ω|
2∗−q

2∗ S− q
2 .

Since 1 < q < 2, we know that {zn} is bounded in E. Passing to a subsequence (still denoted

by {zn}), there exists z = (u, v) ∈ E such that zn ⇀ z in E, and we have















un ⇀ u, vn ⇀ v, in H1
0(Ω),

un → u, vn → v, in Ls(Ω)(1 ≤ s < 2∗),

un(x) → u(x), vn(x) → v(x), a.e. in Ω.

(4.2)

Similar to [9, Proposition 1], as n → ∞, from (4.1) and (4.2), one has

lim
n→∞

⟨I′λ,µ(zn), ξ⟩ = ⟨I′λ,µ(z), ξ⟩

=
∫

Ω

(∇u∇ξ1 +∇v∇ξ2)dx

−
∫

Ω

(

|u|2∗−2uξ1 + |v|2∗−2vξ2

)

dx

−
∫

Ω

(

α

2∗
|u|α−2|v|βuξ1 +

β

2∗
|u|α|v|β−2vξ2

)

dx

−
∫

Ω

(

λ|u|q−2uξ1 + µ|v|q−2vξ2

)

dx

= 0,

for any ξ = (ξ1, ξ2) ∈ E. Particularly, choosing ξ = z, one obtains ⟨I′λ,µ(z), z⟩=0 and z =

(u, v) ∈ Nλ,µ.

Set {(ηn, µn)} = {(un − u, vn − v)} in E, then, (ηn, µn) ⇀ (0, 0) in E. And next, we give the

following version of Brézis–Lieb Lemma from [14, Lemma 3.4]

∫

Ω

|un|α|vn|βdx =
∫

Ω

(|ηn|α|µn|β + |u|α|v|β)dx + on(1), (4.3)
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and the Brézis–Lieb Lemma for the other terms,

∫

Ω

|∇un|2dx =
∫

Ω

(|∇ηn|2 + |∇u|2)dx + on(1), (4.4)

∫

Ω

|un|2
∗
dx =

∫

Ω

(|ηn|2
∗
+ |u|2∗)dx + on(1), (4.5)

where (4.4) and (4.5) are equally applicable to vn. Moreover, according to the Lebesgue domi-

nated convergence theorem, we have

lim
n→∞

∫

Ω

(λ|un|q + µ|vn|q)dx =
∫

Ω

(λ|u|q + µ|v|q)dx. (4.6)

Then from (4.3)–(4.5), we have

on(1) = ⟨I′λ,µ(un, vn), (un, vn)⟩

= ∥(ηn, µn)∥2
E −

∫

Ω

(|ηn|2
∗
+ |µn|2

∗
+ |ηn|α|µn|β)dx + on(1).

(4.7)

Assume that there exists a constant l, which makes ∥(ηn, µn)∥2
E → l. Then, from (4.7) we can

get
∫

Ω

(|ηn|2
∗
+ |µn|2

∗
+ |ηn|α|µn|β)dx → l. According to (1.5), one obtains

Sα,β

[

∫

Ω

(|u|2∗ + |v|2∗ + |u|α|v|β)dx

]
2

2∗
≤
∫

Ω

(|∇u|2 + |∇v|2)dx.

Then, l ≥ Sα,βl
2

2∗ , which implies that l = 0 or l ≥ S
N
2

α,β. On the one hand, if l = 0, the proof is

complete. On the other hand, if l ≥ S
N
2

α,β, according to the definition of m and (u, v) ∈ N,, it

follows from (4.3)–(4.7) that

c = Iλ,µ(u, v) +
1

2
∥(ηn, µn)∥2 − 1

2∗

∫

Ω

(|ηn|2
∗
+ |µn|2

∗
+ |ηn|α|un|β)dx + on(1)

= m +

(

1

2
− 1

2∗

)

l

≥ m +
1

N
S

N
2

α,β,

which is contrary to the given condition of c < m + 1
N S

N
2

α,β. So, l = 0, i.e. (un, vn) → (u, v) in

E. The proof of Lemma 4.1 is complete.

Set ψ ∈ C∞
0 and satisfies 0 ≤ ψ ≤ 1, |∇ψ| ≤ C. The definition of ψ as follows:

ψ(x) =







1, |x| ≤ ρ0

2

0, |x| ≥ ρ0,

where ε ∈ (0, 1). Moreover, setting

uε(x) = ψ(x)Uε(x) ∈ H1
0(Ω), vε(x) = τminψ(x)Uε(x) ∈ H1

0(Ω). (4.8)

Then, we will have the following estimates.
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Lemma 4.2. Under the assumptions of Theorem 1.1 (ii), for any λ
2

2−q + µ
2

2−q ∈ (0, ( q
2 )

2
2−q T), there

exist ε0 > 0 for any ε ∈ (0, ε0) such that

sup
t≥0

Iλ,µ(u∗ + tuε, v∗ + tvε) < m +
1

N
S

N
2

α,β.

Proof. From [3], we can obtain the following classical conclusion:

|uε|22∗ = |Uε|22∗ + O(εN); (4.9)

∥uε∥2 = ∥Uε∥2 + O(εN−2). (4.10)

Then, we have

Iλ,µ(u∗ + tuε, v∗ + tvε) =
1

2
∥(u∗ + tuε, v∗ + tvε)∥2

E

− 1

2∗

∫

Ω

(u∗ + tuε)
2∗ + (v∗ + tvε)

2∗ + (u∗ + tuε)
α(v∗ + tvε)

βdx

− 1

q

∫

Ω

λ(u∗ + tuε)
q + µ(v∗ + tvε)

qdx

=
1

2
∥(u∗, v∗)∥2

E +
1

2
∥(tuε, tvε)∥2

E

+ t
∫

Ω

u2∗−1
∗ uε +

α

2∗
uα−1
∗ v

β
∗uε + λu

q−1
∗ uεdx

+ t
∫

Ω

v2∗−1
∗ vε +

β

2∗
uα
∗v

β−1
∗ vε + µv

q−1
∗ vεdx

− 1

2∗

∫

Ω

(u∗ + tuε)
2∗ + (v∗ + tvε)

2∗ + (u∗ + tuε)
α(v∗ + tvε)

βdx

− 1

q

∫

Ω

λ(u∗ + tuε)
q + µ(v∗ + tvε)

qdx.

According to [23, (4.11)]:

(a + b)q ≥ aq + qaq−1b, a, b > 0, 1 < q < 2. (4.11)

Then, we have

t
∫

Ω

u2∗−1
∗ uε +

α

2∗
uα−1
∗ v

β
∗uε + λu

q−1
∗ uεdx

+ t
∫

Ω

v2∗−1
∗ vε +

β

2∗
uα
∗v

β−1
∗ vε + µv

q−1
∗ vεdx − 1

q

∫

Ω

λ(u∗ + tuε)
q + µ(v∗ + tvε)

qdx

≤ t
∫

Ω

u2∗−1
∗ uε + v2∗−1

∗ vε +
α

2∗
uα−1
∗ v

β
∗uε +

β

2∗
uα
∗v

β−1
∗ vεdx − 1

q

∫

Ω

(λu
q
∗ + µv

q
∗)dx.

Thus,

Iλ,µ(u∗ + tuε, v∗ + tvε) =
1

2
∥(u∗, v∗)∥2

E +
1

2
∥(tuε, tvε)∥2

E

+ t
∫

Ω

u2∗−1
∗ uε +

α

2∗
uα−1
∗ v

β
∗uε + λu

q−1
∗ uεdx

+ t
∫

Ω

v2∗−1
∗ vε +

β

2∗
uα
∗v

β−1
∗ vε + µv

q−1
∗ vεdx
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− 1

2∗

∫

Ω

(u∗ + tuε)
2∗ + (v∗ + tvε)

2∗ + (u∗ + tuε)
α(v∗ + tvε)

βdx

− 1

q

∫

Ω

λ(u∗ + tuε)
q + µ(v∗ + tvε)

qdx

≤ 1

2
∥(u∗, v∗)∥2

E +
1

2
∥(tuε, tvε)∥2

E

− 1

2∗

∫

Ω

(u∗ + tuε)
2∗ + (v∗ + tvε)

2∗ + (u∗ + tuε)
α(v∗ + tvε)

βdx

+
∫

Ω

(u2∗−1
∗ tuε + v2∗−1

∗ tvε +
α

2∗
uα−1
∗ v

β
∗ tuε +

β

2∗
uα
∗v

β−1
∗ tvε)dx

− 1

q

∫

Ω

(λu
q
∗ + µv

q
∗)dx

= Iλ,µ(u∗, v∗) +
1

2
∥(tuε, tvε)∥2

E

− 1

2∗

∫

Ω

(tuε)
2∗ + (tvε)

2∗ + (tuε)
α(tvε)

βdx

− 1

2∗

∫

Ω

(u∗ + tuε)
2∗ − u2∗

∗ − (tuε)
2∗ − 2∗u2∗−1

∗ tuεdx

− 1

2∗

∫

Ω

(v∗ + tvε)
2∗ − v2∗

∗ − (tvε)
2∗ − 2∗v2∗−1

∗ tvεdx

− 1

2∗

∫

Ω

(u∗ + tuε)
α(v∗ + tvε)

β − uα
∗v

β
∗ − (tuε)

α(tvε)
β

− αuα−1
∗ v

β
∗ tuε − βuα

∗v
β−1
∗ tvεdx. (4.12)

Let Φε(t) = Φε,1(t) + Φε,2(t) + Φε,3(t) + Φε,4(t), where

Φε,1(t) =
1

2
∥(tuε, tvε)∥2

E − 1

2∗

∫

Ω

(tuε)
2∗ + (tvε)

2∗ + (tuε)
α(tvε)

βdx, (4.13)

Φε,2(t) =
1

2∗

∫

Ω

(u∗ + tuε)
2∗ − u2∗

∗ − (tuε)
2∗ − 2∗u2∗−1

∗ tuεdx, (4.14)

Φε,3(t) =
1

2∗

∫

Ω

(v∗ + tvε)
2∗ − v2∗

∗ − (tvε)
2∗ − 2∗v2∗−1

∗ tvεdx, (4.15)

Φε,4(t) =
1

2∗

∫

Ω

(u∗ + tuε)
α(v∗ + tvε)

β − uα
∗v

β
∗ − (tuε)

α(tvε)
β

− αuα−1
∗ v

β
∗ tuε − βuα

∗v
β−1
∗ tvεdx. (4.16)

Notice that Φε(0) = 0, limt→+∞ Φε(t) = −∞, and limt→0+ Φε(t) = 0 uniformly for all ε. On

the one hand, when inf supt≥0 Φε(t) ≤ 0, one has Iλ,µ(u∗ + tuε, v∗ + tvε) ≤ Iλ,µ(u∗, v∗) = m <

m+ 1
N S

N
2

α,β. Conclusion naturally holds in this case. On the other hand, when inf supt≥0 Φε(t)>

0, then, supt≥0 Φε(t) > 0 and it attains for some tε > 0, that is, supt≥0 Φε(t) = Φε(tε). Accord-

ing to the monotonicity of Φε near t = 0, we can find two positive constants T0, T0, such

that

|Φε(T0)| = |Φε(T0)− Φε(0)| < ξ =
Φε(tε)

4
.

Similarly, we can obtain tε < T0. So, T0 < tε < T0 is bounded. Now, we evaluate the four parts
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separately. Let us evaluate (4.13) first, from (4.8) we can get:

Φε,1(tε) =
t2
ε

2
∥(uε, vε)∥2

E − t2∗
ε

2∗

∫

Ω

(|uε|2
∗
+ |vε|2

∗
+ |uε|α|vε|β)dx

=
t2
ε

2

∫

Ω

(|∇uε|2 + |∇vε|2)dx − t2∗
ε

2∗

∫

Ω

(|uε|2
∗
+ |vε|2

∗
+ |uε|α|vε|β)dx

=
t2
ε

2
(1 + τ2

min)
∫

Ω

|∇uε|2dx − t2∗
ε

2∗
(1 + τ2∗

min + τ
β
min)

∫

Ω

|uε|2
∗
dx.

Then, define

J(t) =
t2

2

[

(1 + τ2
min)

∫

Ω

|∇uε|2dx

]

− t2∗

2∗

[

(1 + τ2∗
min + τ

β
min)

∫

Ω

|uε|2
∗
dx

]

.

Obviously, J′(tε
max) = 0 with

tε
max =

[

(1 + τ2
min)

∫

Ω
|∇uε|2dx

(1 + τ2∗
min + τ

β
min)

∫

Ω
|u2∗

ε |dx

]
1

2∗−2

> 0.

By simple analysis, we get that J(t) attains maximum at tε
max. Next, by using (1.5), (4.9), (4.10),

we have the following result:

J(tε
max) =

1

2

[

(1 + τ2
min)

∫

Ω
|∇uε|2dx

(1 + τ2∗
min + τ

β
min)

∫

Ω
|uε|2∗dx

]
2

2∗−2 [

(1 + τ2
min)

∫

Ω

|∇uε|2dx

]

− 1

2∗

[

(1 + τ2
min)

∫

Ω
|∇uε|2dx

(1 + τ2∗
min + τ

β
min)

∫

Ω
|uε|2∗dx

]
2∗

2∗−2 [

(1 + τ2∗
min + τ

β
min)

∫

Ω

|uε|2
∗
dx

]

=
1

N











(1 + τ2
min)

∫

Ω
|∇uε|2dx

[

(1 + τ2∗
min + τ

β
min)

∫

Ω
|uε|2∗dx

]
2

2∗











N
2

≤ 1

N
S

N
2

α,β + O(εN−2).

Then, we can get

Φε,1(tε) ≤ J(tε
max) ≤

1

N
S

N
2

α,β + O(εN−2). (4.17)

Next, let us analyze (4.14). According to [23, (4.12)]:

(a + b)γ ≥ aγ + bγ + γaγ−1b + C1abγ−1, 0 ≤ a ≤ M, b ≥ 1, M > 0, γ > 2. (4.18)

Then, according to (1.5) we can find a positive constant C2 > 1, where C2 satisfies:

S
N
2 =

(

1

f (τmin)
Sα,β

)
N
2

≤ C2S
N
2

α,β.

(4.19)
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Moreover, by the standard elliptic estimates, we know that u∗, v∗ ∈ C(Ω). Assume that

tεuε ≥ 1 for all tε ≥ 1√
C2 N(1+τ2

min)
, by using (4.18), we get

Φε,2(tε) =
1

2∗

∫

Ω

[(u∗ + tεuε)
2∗ − u2∗

∗ − (tεuε)
2∗ − 2∗u2∗−1

∗ tεuε]dx

≥ 1

2∗

∫

Ω

[u2∗
∗ + (tεuε)

2∗ + 2∗u2∗−1
∗ tεuε

− u2∗
∗ − (tεuε)

2∗ − 2∗u2∗−1
∗ tεuε + C1u∗t2∗−1

ε u2∗−1
ε ]dx

=
t2∗−1
ε

2∗

∫

Ω

C1u∗u2∗−1
ε dx

≥ O(ε
N−2

2 ).

(4.20)

By using the same method as (4.20) to (4.15), we can get

Φε,3(tε) ≥ O(ε
N−2

2 ). (4.21)

At last, let’s evaluate (4.16). First of all, we define a new function f (x, y) : [0,+∞)× [0,+∞) →
R, and

f (x, y) = (1 + x)α(1 + y)β − xαyβ − αx − βy − 1.

Since

∂ f (x, y)

∂x
= α(1 + x)α−1(1 + y)β − αxα−1yβ − α

≥ α(1 + x)α−1(1 + yβ)− αxα−1yβ − α

= α(1 + x)α−1 − α + α(1 + x)α−1yβ − αxα−1yβ

≥ 0.

We can also get
∂ f (x, y)

∂y
≥ 0 in the same way. Obviously, f (0, 0) = 0, so for any x ≥ 0, y ≥ 0,

we have f (x, y) ≥ 0. Because of u∗, v∗ > 0, we have

Φε,4(tε) =
1

2∗

∫

Ω

(u∗ + tεuε)
α(v∗ + tεvε)

β − uα
∗v

β
∗ − (tεuε)

α(tεvε)
β

− αuα−1
∗ v

β
∗ tεuε − βuα

∗v
β−1
∗ tεvεdx

≥ 0.

(4.22)

Therefore, for t = tε ≥ 1√
C2 N(1+τ2

min)
, we know that there exists a ε1 > 0 such for any

ε ∈ (0, ε1) that

Iλ,µ(u∗ + tuε, v∗ + tvε) ≤ m +
1

N
S

N
2

α,β + O(εN−2)− O(ε
N−2

2 )

< m +
1

N
S

N
2

α,β

(4.23)

by (4.17), (4.20), (4.21) and (4.22).
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When 0 < t <
1√

C2 N(1+τ2
min)

, according to (4.8)–(4.11) and (4.19), there is a ε2 > 0, when

ε ∈ (0, ε2) we have the following estimates:

Iλ,µ(u∗ + tuε, v∗ + tvε) =
1

2
∥(u∗, v∗)∥2

E +
1

2
∥(tuε, tvε)∥2

E

+ t
∫

Ω

(u2∗−1
∗ uε +

α

2∗
uα−1
∗ v

β
∗uε + λu

q−1
∗ uε)dx

+ t
∫

Ω

(v2∗−1
∗ vε +

β

2∗
uα
∗v

β−1
∗ vε + µv

q−1
∗ vε)dx

− 1

2∗

∫

Ω

[(u∗ + tuε)
2∗ + (v∗ + tvε)

2∗ + (u∗ + tuε)
α(v∗ + tvε)

β]dx

− 1

q

∫

Ω

[λ(u∗ + tuε)
q + µ(v∗ + tvε)

q]dx

= Iλ,µ(u∗, v∗) +
t2

2
∥(uε, vε)∥2

E

+
1

2∗

∫

Ω

(u2∗
∗ + v2∗

∗ + 2∗u2∗−1
∗ tuε + 2∗v2∗−1

∗ tvε)dx

− 1

2∗

∫

Ω

[(u∗ + tuε)
2∗ + (v∗ + tvε)

2∗ ]dx

+
1

2∗

∫

Ω

(uα
∗v

β
∗ + αuα−1

∗ v
β
∗ tuε + βuα

∗v
β−1
∗ tvε)dx

− 1

2∗

∫

Ω

[(u∗ + tuε)
α(v∗ + tvε)

β]dx

+
1

q

∫

Ω

(λu
q
∗ + µv

q
∗)dx

− 1

q

∫

Ω

[λ(u∗ + tuε)
q + µ(v∗ + tvε)

q]dx

≤ m +
t2

2
∥(uε, vε)∥2

E

= m +
t2

2

∫

Ω

(|∇uε|2 + |∇vε|2)dx

= m +
t2

2
(1 + τ2

min)
∫

Ω

|∇uε|2dx

= m +
t2

2
(1 + τ2

min)
[

∥Uε∥2
E + O(εN−2)

]

≤ m + t2(1 + τ2
min)S

N
2

≤ m + t2(1 + τ2
min)C2S

N
2

α,β

< m +
1

N
S

N
2

α,β. (4.24)

Therefore, choosing ε0 = min{ε1, ε2}, for any 0 < ε < ε0, we can draw a conclusion

sup
t≥0

Iλ,µ(u∗ + tuε, v∗ + tvε) < m +
1

N
S

N
2

α,β

from (4.23) and (4.24). The proof of Lemma 4.2 is finished.

Lemma 4.3. There is a t−ε (uε) > 0 such that (u∗ + t−ε uε, v∗ + t−ε vε) ∈ N
−

λ,µ, when λ
2

2−q + µ
2

2−q ∈
(

0, ( q
2 )

2
2−q T

)

. What is more, 0 < m−
< m +

1

N
S

N
2

α,β.
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Proof. According to Lemma 2.1, there is a t−(z) > 0 for any z = (u, v) ∈ E\{(0, 0)} such that

t−(z)z ∈ N
−

λ,µ. Let

E1 =

{

z ∈ E : u = 0 or ∥z∥ < t−
(

z

∥z∥E

)}

,

E2 =

{

z ∈ E : ∥z∥ > t−
(

z

∥z∥E

)}

.

Then, we have N
−

λ,µ =
{

z ∈ E : ∥z∥ = t−
(

z
∥z∥E

)}

. So, E = E1 ∪ E2 ∪ N
−

λ,µ. We have N
+

λ,µ ⊂
E1, since t+ < t−. Now, there is a positive constant M1 such that 0 < t−(z) < M1 for ∥z∥E = 1.

When t0 =

∣

∣M1−∥(u∗,v∗)∥2
E

∣

∣

1
2

∥(uε,vε)∥2
E

+ 1, we claim that

ωε = (u∗ + t0uε, v∗ + t0vε) ∈ E2,

for ε > 0 small enough. By (4.10), we can deduce that

∥(u∗ + t0uε, v∗ + t0vε)∥2
E = ∥(u∗, v∗)∥2

E + ∥(t0uε, t0vε)∥2
E

+ 2t0

∫

Ω

(u2∗−1
∗ uε +

α

2∗
uα−1
∗ v

β
∗uε + λu

q−1
∗ uε)dx

+ 2t0

∫

Ω

(v2∗−1
∗ vε +

β

2∗
uα
∗v

β−1
∗ vε + µv

q−1
∗ vε)dx

≥ ∥(u∗, v∗)∥2
E + t2

0∥(uε, vε)∥2
E + on(1)

> M2
1

≥
[

t−
(

ωε

∥ωε∥E

)]2

.

We denote h : [0, 1] → E by h(t) = u∗ + tt0vε, then there exists 0 < (tε)− < t0, which makes

(u∗ + (tε)−uε, v∗ + (tε)−vε) ∈ N
−

λ,µ. Moreover, from Lemma 4.2 and Lemma 2.3 (ii), one has

0 < m− ≤ Iλ,µ(u∗ + (tε)
−uε, v∗ + (tε)

−vε) ≤ sup
t≥0

Iλ,µ(u∗ + tuε, v∗ + tvε) < m +
1

N
S

N
2

α,β.

Thus, the proof of Lemma 4.3 is complete.

Next, for z = (u, v), ϕ = (ϕ1, ϕ2) ∈ E, we define

z − ϕ = (u − ϕ1, v − ϕ2),

⟨z, ϕ⟩ =
∫

Ω

∇u∇ϕ1 +∇v∇ϕ2dx,

Gλ,µ(z, ϕ) =
∫

Ω

(

λ|u|q−2uϕ1 + µ|v|q−2vϕ2

)

dx,

H(z, ϕ) =
∫

Ω

(

|u|2∗−2uϕ1 + |v|2∗−2vϕ2

)

dx +
∫

Ω

(

α

2∗
|u|α−2|v|βuϕ1 +

β

2∗
|u|α|v|β−2vϕ2

)

dx.

Then, we have the following conclusion.

Lemma 4.4. When λ
2

2−q + µ
2

2−q ∈ (0, ( q
2 )

2
2−q T), there exist η > 0 and a differentiable function

ζ : Bη(0) ⊂ E → R
+, for z = (u, v) ∈ N

−
λ,µ such that ζ(0) = 1, ζ(ϕ)(z − ϕ) ∈ N

−
λ,µ for any

ϕ = (ϕ1, ϕ2) ∈ Bη(0), and

⟨ζ ′(0), φ⟩ = 2⟨z, φ⟩ − 2∗H(z, φ)− qGλ,µ(z, φ)

(2 − q)∥z∥2
E − (2∗ − q)H(z, z)

for all φ = (φ1, φ2) ∈ E.
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Proof. For z ∈ N
−

λ,µ, we define a function Fz : R × E → R and

Fz(ζ, φ) =
〈

I′λ,µ(ζ(z − φ)), ζ(z − φ)
〉

= ζ2∥z − φ∥2
E − ζ2∗ H(z − φ, z − φ)− ζqGλ,µ(z − φ, z − φ).

Then, we have Fz(1, 0) = ⟨I′λ,µ(z), z⟩ = 0, moreover, from (1.8) and (1.9) we have

d

dζ
Fz(1, 0) = 2∥z∥2

E − 2∗H(z, z)− qGλ,µ(z, z)

= (2 − q)∥z∥2
E − (2∗ − q)H(z, z)

< 0.

According to the implicit function theorem, there is a η > 0 and a differential function ζ :

Bη(0) ⊂ E → R, which makes ζ(0) = 1, then, Fz(ζ(0), 0) = Fz(1, 0) = 0, one has

〈

ζ ′(0), φ
〉

=
2⟨z, φ⟩ − 2∗H(z, φ)− qGλ,µ(z, φ)

(2 − q)∥z∥2
E − (2∗ − q)H(z, z)

and

Fz(ζ(ϕ), ϕ) = 0, for all ϕ ∈ Bη(0)

which is equivalent to

〈

I′λ,µ(ζ(ϕ)(z − ϕ)), ζ(ϕ)(z − ϕ)
〉

= 0, for all ϕ ∈ Bη(0).

This means that for all ϕ ∈ Bη(0), we have ζ(ϕ)(z − ϕ) ∈ Nλ,µ. The proof of Lemma 4.4 is

complete.

4.1 The proof of Theorem 1.1

Proof. For λ
2

2−q + µ
2

2−q ∈ (0, ( q
2 )

2
2−q T), there exists a z ∈ N

−
λ,µ such that m− = inf Iλ,µ(z) > 0, by

Lemma 2.3. Setting {(un, vn)} ⊂ E, which is a minimizing sequence of Iλ,µ at m−. Now, we are

going to prove that {(un, vn)} is a (PS)m−-sequence of Iλ,µ. According to Ekeland’s variational

principle (see [10]), there exists a sequence (we still denote it as {(un, vn)}) that satisfies

(i) Iλ,µ(un, vn) < m− +
1

n
;

(ii) Iλ,µ(un, vn) ≤ Iλ,µ(w1, w2) +
∥(w1, w2)− (un, vn)∥E

n
, (w1, w2) ∈ N

−
λ,µ.

So, we only need to prove I′λ,µ(un, vn) → 0 as n → ∞ in E−1 to get that {(un, vn)} is a (PS)m−-

sequence of Iλ,µ. According to Lemma 4.4, there exist a ηn > 0 and differentiable function

ζn : B((0, 0); ηn) ⊂ E → R
+ such that ζn(0, 0) = 1, ζn(w1, w2)((un, vn)− (w1, w2)) ∈ N

−
λ,µ, for

any (w1, w2) ∈ B((0, 0); ηn). Let (ϕ1, ϕ2) ∈ E, ∥(ϕ1, ϕ2)∥E = 1, and 0 < σ < ηn. Then we

choose (w1, w2) = σ(ϕ1, ϕ2), which makes (w1, w2) = σ(ϕ1, ϕ2) ∈ B((0, 0); ηn) and ωσ,n =

ζn(σ(ϕ1, ϕ2))((un, vn) − σ(φ1, ϕ2)) ∈ N
−

λ,µ, for 0 < σ < ηn. From (ii) and the mean value



Positive solutions for elliptic systems with double critical exponents 21

theorem, let σ → 0+, we have

∥ωσ,n − (un, vn)∥E

n
≥ Iλ,µ(un, vn)− Iλ,µ(ωσ,n)

=
〈

I′λ,µ(t0(un, vn) + (1 − t0)ωσ,n), (un, vn)− ωσ,n

〉

=
〈

I′λ,µ(un, vn), (un, vn)− ωσ,n

〉

+ o(∥(un, vn)− ωσ,n∥E)

= σζn(σ(ϕ1, ϕ2))
〈

I′λ,µ(un, vn), (ϕ1, ϕ2)
〉

+ (1 − ζn(σ(ϕ1, ϕ2)))
〈

I′λ,µ(un, vn), (un, vn)
〉

+ o(∥(un, vn)− ωσ,n∥E)

= σζn(σ(ϕ1, ϕ2))
〈

I′λ,µ(un, vn), (ϕ1, ϕ2)
〉

+ o(∥(un, vn)− ωσ,n∥E),

where t0 ∈ (0, 1). Next, let σ → 0+, we have

〈

I′λ,µ(un, vn), (ϕ1, ϕ2)
〉

≤ ∥ωσ,n − (un, vn)∥E(
1
n + o(1))

σ|ζn(σ(ϕ1, ϕ2))|

≤ ∥(un, vn)(ζn(σ(ϕ1, ϕ2))− ζn(0, 0))− σ(ϕ1, ϕ2)ζn(σ(ϕ1, ϕ2))∥E(
1
n + |o(1)|)

σ|ζn(σ(ϕ1, ϕ2))|

≤ ∥(un, vn)∥E|ζn(σ(ϕ1, ϕ2))− ζn(0, 0)|+ σ∥(ϕ1, ϕ2)∥E|ζn(σ(ϕ1, ϕ2))|
σ|ζn(σ(ϕ1, ϕ2))|

(

1

n
+ |o(1)|

)

≤ C(1 + ∥ζ ′n(0, 0)∥)
(

1

n
+ |o(1)|

)

.

Due to {(un, vn)} and ζ ′n(0, 0) are bounded, we could learn that I′λ,µ(un, vn) → 0 in E−1 as

n → ∞. Thus, {(un, vn)} is a (PS)m−-sequence of Iλ,µ.

In accordance with Lemma 4.1, Lemma 4.2 and Lemma 4.3, there is a list of convergent sub-

sequences {(un, vn)}, such that (un, vn) → (u∗∗, v∗∗), where (u∗∗, v∗∗) ∈ N
−

λ,µ. What’s more,

when λ
2

2−q + µ
2

2−q ∈
(

0, (
q

2
)

2
2−q T

)

, we can get Iλ,µ(u∗∗, v∗∗) = m−
> 0. Since Iλ,µ(u∗∗, v∗∗) =

Iλ,µ(|u∗∗|, |v∗∗|) and (u∗∗, v∗∗) ∈ N
−

λ,µ, we can deduce that

∫

Ω

|u∗∗|2
∗
+ |v∗∗|2

∗
+ |u∗∗|α|v∗∗|βdx >

2 − q

2∗ − q
∥(u∗∗, v∗∗)∥2

E > 0 (4.25)

from (1.9) and (1.10). So, (u∗∗, v∗∗) ̸= 0. Applying the strong maximum principle, we could

get that (u∗∗, v∗∗) is a positive solution of system (1.1). Finally, due to N
+

λ,µ ∩ N
−

λ,µ = ∅,

which implies that (u∗, v∗) and (u∗∗, v∗∗) are entirely different. The proof of Theorem 1.1 is

complete.
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Abstract. Motivated by the Q-condition result proven by Arcoya and Boccardo in
[J. Funct. Anal. 268(2015), No. 5, 1153–1166], we analyze the behaviour of the weak so-
lutions {uε} of the problems

{

−∆puε + ε| f (x)|uε = f (x) in Ω,

uε = 0 on ∂Ω,

when ε tends to 0. Here, Ω denotes a bounded open set of R
N (N ≥ 2),

−∆pu = −div(|∇u|p−2∇u) is the usual p-Laplacian operator (1 < p < ∞) and f (x)
is an L1(Ω) function.

We show that this sequence converges in some sense to u, the entropy solution of
the problem

{

−∆pu = f (x) in Ω,

u = 0 on ∂Ω.

In the semilinear case, we prove stronger results provided the weak solution of that
problem exists.

Keywords: nonlinear elliptic equations, entropy solution, Q-condition.
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1 Introduction

In this paper we develop a new method to approach solutions (in a broad sense that we will

discuss later) of a problem with data only in L1 that does not require the approximation of

such data by more regular functions. Specifically, we consider the following boundary value

problem
{

−div(a(x, u,∇u)) + b(x)g(u) = f (x) in Ω,

u = 0 on ∂Ω,
(P)

BEmail: ajmaparicio@ual.es
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where Ω is a bounded open set of R
N (N ≥ 2) and a : Ω×R×R

N → R
N is a nonlinear Leray–

Lions operator, i.e., it is a Carathéodory function such that for every s ∈ R, ξ, η ∈ R
N (ξ ̸= η),

and for almost every x ∈ Ω satisfies

a(x, s, ξ)ξ ≥ α|ξ|p, (1.1)

|a(x, s, ξ)| ≤ h(x) + β|ξ|p−1, (1.2)

(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0, (1.3)

where 1 < p < ∞, h(x) ∈ Lp′(Ω) and α, β > 0. With respect to the coefficient b(x) of the lower

order term and to the datum f (x), it assumed that

0 ≤ b(x) ∈ L1(Ω), f (x) ∈ L1(Ω), (1.4)

and g : R → R is a continuous function satisfying that

g is increasing, odd and lim
s→+∞

g(s) = +∞. (1.5)

A simple model of function g for the reader may be g(s) = |s|γ−1s for γ > 0.

We remark that the problem (P) under the previous hypotheses (1.1), (1.2), (1.3), (1.4)

and (1.5) does not always have a solution in the usual sense when f belongs to L1(Ω). More-

over, in the case in which the solution of the problem (P) exists with a right-hand side in

L1(Ω) it is not necessarily bounded; in fact, it may not even be in the W1,1
loc (Ω) space when

p ≤ 2 − 1
N . Motivated by this, many authors started to study if there was a more general

concept of solution in which existence and uniqueness were guaranteed; see, for example, the

paper [6], where they use the concept of renormalized solution, or [5], where the concept of

entropy solution is introduced.

Nevertheless, under some extra conditions the existence of a weak solution of (P) can be

ensured. In [2] (see also [1]), the authors proved that if there exists certain relation between the

coefficient b(x) of the lower order term and the datum f (x), then the existence of a bounded

weak solution is granted even if f (x) only belongs to L1(Ω). Concretely, they showed that if

the so-called Q-condition is satisfied, i.e., if there exists some Q > 0 such that

| f (x)| ≤ Qb(x), (1.6)

then the problem (P) has a unique weak solution u ∈ W
1,p
0 (Ω) ∩ L∞(Ω). Moreover, they also

gave an L∞(Ω)-estimate for u, namely

∥u∥∞ ≤ g−1(Q).

Therefore, they put in evidence that this interplay between the coefficients provides a

regularizing effect on the problem (P). After the publication of these works, several number

of papers studying this kind of regularizing effects given by the interplay between coefficients

in other types of problems were published, such as [3, 4], giving rise to a prolific and original

line of modern research.

Motivated by this result, in this paper we approach the problem (P) in such a way that the

resulting approximated problems satisfy the relation (1.6) and we study the convergence of the

sequence of solutions. Concretely, we consider the following approximated elliptic problems

{

−div(a(x, un,∇un)) +
[

b(x) + 1
n | f (x)|

]

g(un) = f (x) in Ω,

un = 0 on ∂Ω.
(Pn)
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Observe that the coefficients of these problems satisfy the relation (1.6) since

| f (x)| ≤ n
[

b(x) + 1
n | f (x)|

]

,

so, if we assume the hypotheses (1.1), (1.2), (1.3), (1.4) and (1.5), the results of [2] provide for

each n ∈ N the existence of a weak solution un ∈ W
1,p
0 (Ω)∩ L∞(Ω) of (Pn) which also satisfies

that

∥un∥∞ ≤ g−1(n). (1.7)

The purpose of this paper will be to study the behaviour of the sequence {un} when n

goes to ∞. We stress that similar studies can be done on other problems for which existence

or regularity results have been proven thanks to some Q-condition type hypothesis. Therefore,

this paper can be the beginning of a productive line of research.

The main result, stated below, is related with the entropy solution of (P), whose existence

and uniqueness is guaranteed thanks to the results of [5]. We also point out that the proof of

our theorem is, in fact, an alternative existence proof to the one given in [5], where the major

difference between both are the approximate problems considered.

Theorem 1.1. Suppose that a(x, s, ξ) satisfies (1.1), (1.2) and (1.3), that b(x) and f (x) verify (1.4)

and that g satisfies (1.5). Then the solution of (P) in the sense of Definition 2.5 exists and the sequence

{un} of weak solutions of (Pn) converges in measure to that solution.

Note that the sequence of weak solutions {un} of (Pn), in general, cannot converge weakly

in W
1,p
0 (Ω) because, in this case, that would imply the existence of a weak solution of (P).

Recall that this type of solution (see Definition 2.4) does not always exist for problem (P).

In the semilinear case, i.e., when p = 2, we study if this stronger convergence can be

proved as long as the weak solution of (P) exists. For this purpose, we consider the linear

operator a(x, s, ξ) = M(x)ξ, where M(x) is a symmetric bounded elliptic matrix, i.e., there

exist α, β > 0 such that

α|ξ|2 ≤ M(x)ξξ, (1.8)

|M(x)| ≤ β (1.9)

for every ξ ∈ R
N and for almost every x in Ω.

The mentioned result for the semilinear case is the following one.

Theorem 1.2. Suppose that a(x, s, ξ) = M(x)ξ with M(x) a symmetric matrix satisfying (1.8)

and (1.9). Assume also that b(x) and f (x) verify (1.4) and that g satisfies (1.5). If the weak solution

u ∈ H1
0(Ω) of (P) exists and it is in L∞(Ω), then {un}, the sequence of weak solutions of (Pn), verifies

that

un ⇀ u in H1
0(Ω).

We stress that, unlike Theorem 1.1, this theorem is not an existence result since we are

assuming that the weak solution of (P) exists.

In order to prove these results we will follow the next structure in the work. In Section 2

we state the theorem of [2] in which our study is motivated, we take a brief review of the

Marcinkiewicz spaces, we remind the concept of entropy solution of (P) and we give other

preliminary results. In Section 3 we prove Theorem 1.1, the main result of this paper. Finally,

in Section 4, we deal with the semilinear case and we give the proof of Theorem 1.2.
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2 Preliminaries

First of all, we state here the result of [2] that has motivated this research and then we indicate

the key of the proof. As we will see, the tools which are used in the proof are not excessively

sophisticated, so the approach we adopt in this paper is elemental.

Theorem 2.1 ([2]). Suppose that a(x, s, ξ) satisfies (1.1), (1.2) and (1.3), that b(x) and f (x) ver-

ify (1.4) and that g satisfies (1.5). If the relation (1.6) between b(x) and f (x) is verified, then there

exists a unique u ∈ W
1,p
0 (Ω) ∩ L∞(Ω) weak solution of (P) which also satisfies that

∥u∥∞ ≤ g−1(Q).

Remark 2.2. The key of the proof is to obtain an a priori L∞(Ω)-estimate. The idea is to

approximate (P) in such a way that its coefficients still satisfy the Q-condition (1.6), and this

condition allows us to prove the uniform boundedness in L∞(Ω) of the sequence of approxi-

mated solutions.

Formally speaking, this L∞(Ω)-estimate is obtained by taking as test function in (P) the

mapping Gk(u) := max{min{u + k, 0}, u − k} with k > 0. In particular, using (1.1) and (1.6)

we get that

α
∫

Ω

|∇Gk(u)|
p +

∫

Ω

b(x)g(u)Gk(u) ≤
∫

Ω

f (x)Gk(u) ≤
∫

Ω

Qb(x)|Gk(u)|,

i.e., that

α
∫

Ω

|∇Gk(u)|
p +

∫

Ω

b(x)
[

|g(u)| − Q
]

|Gk(u)| ≤ 0.

Observe that g−1 exists thanks to (1.5) and that we can choose k = g−1(Q) in the above

inequality to get that the second integral is nonnegative and, as a consequence, it is deduced

that g−1(Q) is an a priori bound in L∞(Ω).

In several parts of this paper we work with the Marcinkiewicz spaces. For the convenience

of the reader, we recall here their definition and some of their properties. For 0 < q < ∞,

we denote by Mq(Ω) the set of measurable functions v : Ω → R such that there exists C > 0

satisfying that

meas{|v| > k} ≤
C

kq
, ∀k > 0. (2.1)

This space is a complete quasi-normed space with the quasi-norm

∥v∥
q

Mq(Ω)
= inf{C > 0 : (2.1) holds}.

We also recall that, since Ω is bounded, then

Mq2(Ω) →֒ Lq1(Ω) →֒ Mq1(Ω)

for 0 < q1 < q2 < ∞.

Related with these spaces we state the following lemma whose proof can be found in [5,

Lemma 4.1]. For any k > 0 we set Tk(s) = min{k, max{s,−k}}.

Lemma 2.3 ([5]). Let u : Ω → R be a function such that Tk(u) ∈ W
1,p
0 (Ω) for every k > 0 and

1

k

∫

{|u|<k}
|∇u|p ≤ M
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for some constant M > 0 and for every k > 0. Then u ∈ Mp1(Ω) for p1 = N(p−1)
N−p if 1 < p < N and

for every p1 > 1 if p ≥ N. More precisely, there exists C = C(M, N, p) > 0 such that

meas{|u| > k} ≤
C

kp1
, ∀k > 0.

We also recall here the concepts of weak solution and entropy solution of (P).

Definition 2.4. A function u : Ω → R is a weak solution of the problem (P) if u ∈ W
1,p
0 (Ω),

b(x)g(u) ∈ L1(Ω) and

∫

Ω

a(x, u,∇u)∇ϕ +
∫

Ω

b(x)g(u)ϕ =
∫

Ω

f (x)ϕ

for every ϕ ∈ W
1,p
0 (Ω) ∩ L∞(Ω).

Definition 2.5. A function u : Ω → R is an entropy solution of (P) if Tk(u) ∈ W
1,p
0 (Ω) for every

k > 0, b(x)g(u) ∈ L1(Ω) and

∫

Ω

a(x, u,∇u)∇Tk(u − ϕ) +
∫

Ω

b(x)g(u)Tk(u − ϕ) =
∫

Ω

f (x)Tk(u − ϕ)

for every ϕ ∈ W
1,p
0 (Ω) ∩ L∞(Ω) and every k > 0.

Observe that the concept of entropy solution is more general than the concept of weak

solution, i.e., every weak solution is an entropy solution. Although the reciprocal is not true

in general, if an entropy solution of (P) is in W
1,p
0 (Ω), then is also a weak solution of (P)

(see [5, Corollary 4.3]).

Regarding the uniqueness, both types of solutions are unique (see [5, Theorem 5.1]). How-

ever, unlike the weak solution, which may not exist when p ≤ 2− 1
N , it was proved in [5, The-

orem 6.1] that the entropy solution of (P) always exists.

Finally, we end this section with a convergence lemma that we will use throughout this

paper.

Lemma 2.6. Suppose that a(x, s, ξ) satisfies (1.1), (1.2) and (1.3), that b(x) and f (x) verify (1.4) and

that g satisfies (1.5). If the sequence {un} of weak solutions of (Pn) is bounded in Mq(Ω) for some

q > 0 and satisfies that un → u a.e. in Ω for some function u, then

b(x)g(un) → b(x)g(u) in L1(Ω).

Proof. Let ψk,δ : R → R be the function given by

ψk,δ(s) =























0 if 0 ≤ s ≤ k,
1
δ (s − k) if k < s < k + δ,

1 if s ≥ k + δ,

−ψk,δ(−s) if s < 0.

Taking ψk,δ(un) ∈ W
1,p
0 (Ω)∩ L∞(Ω) as test function in (Pn) and dropping two nonnegative

terms we obtain that
∫

Ω

b(x)g(un)ψk,δ(un) ≤
∫

Ω

| f (x)| |ψk,δ(un)|,
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what implies that
∫

{k+δ≤|un|}
b(x)|g(un)| ≤

∫

{k≤|un|}
| f (x)|.

If δ → 0, Fatou Lemma gives

∫

{k≤|un|}
b(x)|g(un)| ≤

∫

{k≤|un|}
| f (x)|.

We claim that {b(x)g(un)} is uniformly integrable. Fix ε > 0. Since b(x) is nonnegative

by (1.4) and g is increasing and odd by (1.5), we deduce from the above inequality that for

every measurable set E ⊂ Ω we have

∫

E
b(x)|g(un)| =

∫

E∩{|un|≤k}
b(x)|g(un)|+

∫

E∩{k≤|un|}
b(x)|g(un)|

≤ g(k)
∫

E
b(x) +

∫

{k≤|un|}
| f (x)|.

On the one hand, since f (x) ∈ L1(Ω), thanks to the absolute continuity of the integral

there exists some δ′ > 0 such that if E ⊂ Ω is a measurable set with meas(E) < δ′ then
∫

E | f (x)| <
ε
2 . As {un} is bounded in Mq(Ω), we can fix k > 0 large enough such that

meas{|un| ≥ k} ≤ δ′ for every n ∈ N. Thus,

∫

{k≤|un|}
| f (x)| ≤

ε

2
, ∀n ∈ N.

On the other hand, since b(x) ∈ L1(Ω), again by the absolute continuity of the integral

there exists some δ > 0 such that E ⊂ Ω is a measurable set with meas(E) < δ then

∫

E
b(x) <

ε

2g(k)
.

In this way, we have that if E ⊂ Ω is a measurable set with meas(E) < δ then

∫

E
b(x)|g(un)| ≤ g(k)

∫

E
b(x) +

∫

{k≤|un|}
| f (x)| < ε, ∀n ∈ N.

Therefore, the sequence {b(x)g(un)} is uniformly integrable. As we also have that this

sequence b(x)g(un) → b(x)g(u) a.e. in Ω, we can apply Vitali’s Theorem (since meas(Ω) < ∞)

to conclude that b(x)g(u) ∈ L1(Ω) and that

b(x)g(un) → b(x)g(u) in L1(Ω).

3 Convergence to the entropy solution

In this section we give the proof of Theorem 1.1.

Proof of Theorem 1.1. First, let us remember that as un are weak solutions of (Pn), then for every

n ∈ N and for every ϕ ∈ W
1,p
0 (Ω) ∩ L∞(Ω) we have that

∫

Ω

a(x, un,∇un)∇ϕ +
∫

Ω

[

b(x) + 1
n | f (x)|

]

g(un)ϕ =
∫

Ω

f (x)ϕ. (3.1)

Now we begin with the proof.
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Step 1. {un} is bounded on some Marcinkiewicz space.

Taking Tk(un) ∈ W
1,p
0 (Ω) ∩ L∞(Ω) as test function in (3.1) we obtain for every n ∈ N and

for every k > 0 that

∫

{|un|≤k}
a(x, un,∇un)∇Tk(un) +

∫

Ω

[

b(x) + 1
n | f (x)|

]

g(un)Tk(un) =
∫

Ω

f (x)Tk(un).

Observe that the second integral is nonnegative since g(s)s ≥ 0 for every s ∈ R by (1.5) and

that we can apply (1.1) on the first integral since a(x, un,∇un) = a(x, Tk(un),∇Tk(un)) on the

set {|un| < k}. So, from the above equality we deduce that

α
∫

Ω

|∇Tk(un)|
p = α

∫

{|un|<k}
|∇un|

p ≤
∫

Ω

f (x)Tk(un) ≤ k∥ f ∥1, ∀n ∈ N, ∀k > 0. (3.2)

Thus, we can apply Lemma 2.3 to assure that there exists a constant C > 0 depending only

of N, p, α and f such that

meas{|un| > k} ≤ Ck
− N(p−1)

N−p , (3.3)

for every n ∈ N and every k > 0. As a consequence, we deduce that {un} is bounded on the

space Mp1(Ω) with p1 = N(p−1)
N−p .

Step 2. {un} converges in measure to some function u.

To show that {un} converges in measure it suffices to show that it is Cauchy in measure.

Let ε > 0 and let t > 0. As

{|un − um| > t} ⊆ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un)− Tk(um)| > t},

then

meas{|un − um| > t} ≤ meas{|un| > k}+ meas{|um| > k}+ meas{|Tk(un)− Tk(um)| > t}.

Thanks to (3.3), we can fix k0 > 0 large enough to obtain that

meas{|un| > k0} <
ε

3
, ∀n ∈ N.

By (3.2), we deduce that {Tk(un)} is bounded in W
1,p
0 (Ω) for every k > 0. Thus, for every

fixed k > 0 there exists a subsequence {uσk(n)} of {un} such that {Tk(uσk(n))} is Cauchy in

Lp(Ω). Using the Cantor’s diagonal argument, we can build a subsequence {uσ(n)} of {un}

such that {Tk(uσ(n))} is Cauchy in Lp(Ω) for every k > 0. For the sake of simplicity, we still

denote {uσ(n)} by {un}.

So, since {Tk0
(un)} is a Cauchy sequence in Lp(Ω), there exists n0 ∈ N such that

meas{|Tk0
(un)− Tk0

(um)| > t} ≤ t−p
∫

Ω

|Tk0
(un)− Tk0

(um)|
p
<

ε

3
, ∀m, n ≥ n0.

Thus, it is proven that {un} is Cauchy in measure and hence there exists some measurable

function u such that un → u in measure. As a consequence, there exists a subsequence of

{un}, still denoted by {un}, such that

un → u a.e. in Ω.
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Now, since for k > 0 fixed the sequence {Tk(un)} is bounded in W
1,p
0 (Ω) by (3.2) and Tk(u)

is its only possible almost everywhere limit because of the continuity of Tk, we can conclude

that

Tk(un) ⇀ Tk(u) in W
1,p
0 (Ω),

Tk(un) → Tk(u) in Lp(Ω),

Tk(un) → Tk(u) a.e. in Ω.

Observe that this implies that Tk(u) ∈ W
1,p
0 (Ω) for every k > 0.

Step 3. Tk(un) strongly converges to Tk(u) in W
1,p
0 (Ω) for every k > 0.

Following the ideas of [8], in order to obtain the strong convergence of the truncations in

the W
1,p
0 (Ω) space we choose

wn = T2k(un − Th(un) + Tk(un)− Tk(u))

with h > k > 0 as test function in (3.1). See that if we set M = 4k + h then we have that

∇wn = 0 on the set {|un| > M}. Thus, we can write

∫

Ω

a(x, TM(un),∇TM(un))∇wn +
∫

Ω

[

b(x) + 1
n | f (x)|

]

g(un)wn =
∫

Ω

f (x)wn. (3.4)

Now, we split the first integral on the sets {|un| < k} and {|un| ≥ k}. On the one hand,

observing that {|Tk(un)− Tk(u)| ≤ 2k} = Ω, that ∇Tk(un) = 0 on the set {|un| ≥ k} and that

a(x, s, 0) = 0 by (1.1), we obtain that

∫

{|un|<k}
a(x, TM(un),∇TM(un))∇wn

=
∫

{|un|<k}
a(x, Tk(un),∇Tk(un))∇T2k(Tk(un)− Tk(u))

=
∫

{|un|<k}
a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))

=
∫

Ω

a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u)).

(3.5)

On the other hand, using (1.1) we deduce that

a(x, TM(un),∇TM(un))∇(Gh(un)− Tk(u))

= a(x, TM(un),∇TM(un))∇Gh(un)− a(x, TM(un),∇TM(un))∇Tk(u)

≥ −a(x, TM(un),∇TM(un))∇Tk(u)

and, thus, we have

∫

{|un|≥k}
a(x, TM(un),∇TM(un))∇wn

=
∫

{|un|≥k}∩{|Gh(un)+k+Tk(u)|≤2k}
a(x, TM(un),∇TM(un))∇(Gh(un)− Tk(u))

≥ −
∫

{|un|≥k}
|a(x, TM(un),∇TM(un))| |∇Tk(u)|.

(3.6)
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From equations (3.5) and (3.6) we deduce that

∫

Ω

a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))

≤
∫

{|un|≥k}
|a(x, TM(un),∇TM(un))| |∇Tk(u)|+

∫

Ω

a(x, TM(un),∇TM(un))∇wn.

Adding −
∫

Ω
a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u)) to both sides of the previous inequality

and using (3.4) we obtain that

∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u))

≤
∫

{|un|≥k}
|a(x, TM(un),∇TM(un))| |∇Tk(u)|

−
∫

Ω

[

b(x) + 1
n | f (x)|

]

g(un)wn +
∫

Ω

f (x)wn

−
∫

Ω

a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u)).

(3.7)

Our next step will be taking limits when n → ∞ on the above inequality. First, see that

as |a(x, TM(un),∇TM(un))| is bounded in Lp′(Ω) by (1.2) and (3.2), and as χ{|un|≥k}|∇Tk(u)|

converges strongly to zero in Lp(Ω) by Lebesgue Theorem, then

lim
n→∞

∫

{|un|≥k}
|a(x, TM(un),∇TM(un))| |∇Tk(u)| = 0. (3.8)

Secondly, since {b(x)g(un)} is bounded in L1(Ω) by Lemma 2.6 and since { 1
n | f (x)|g(un)} is

also bounded in L1(Ω) because 1
n | f (x)g(un)| ≤ | f (x)| for every n ∈ N by (1.5) and (1.7),

Lebesgue Theorem easily implies that

lim
n→∞

(

−
∫

Ω

[

b(x) + 1
n | f (x)|

]

g(un)wn +
∫

Ω

f (x)wn

)

=
∫

Ω

[−b(x)g(u) + f (x)]T2k(u − Th(u)).

(3.9)

Finally, since a(x, Tk(un),∇Tk(u)) → a(x, Tk(u),∇Tk(u)) strongly in Lp′(Ω) by (1.2) and by

Lebesgue Theorem, and since ∇Tk(un) ⇀ ∇Tk(u) weakly in Lp(Ω), we deduce that

lim
n→∞

∫

Ω

a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u)) = 0. (3.10)

Observe that the first integral of (3.7) is nonnegative by (1.3). So if we take limits when

n → ∞ in (3.7) and we apply (3.8), (3.9) and (3.10) we obtain that

0 ≤ lim
n→∞

∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u))

≤
∫

Ω

[−b(x)g(u) + f (x)]T2k(u − Th(u)).
(3.11)

Now, see that b(x)g(u) ∈ L1(Ω) by Lemma 2.6, so Lebesgue Theorem implies that

lim
h→∞

∫

Ω

[−b(x)g(u) + f (x)]T2k(u − Th(u)) = 0
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and thus we can take limits when h → ∞ in (3.11) to assure that

lim
n→∞

∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u)) = 0.

This allows us to apply Lemma 5 of [7] to conclude that

Tk(un) → Tk(u) strongly in W
1,p
0 (Ω) for every k > 0.

Step 4. u is the entropy solution of (P).

Let us take Tk(un − ϕ) with ϕ ∈ W
1,p
0 (Ω) ∩ L∞(Ω) and k > 0 as test function in (3.1).

Observe that if we define L = k + ∥ϕ∥∞, then we have that ∇Tk(un − ϕ) = 0 on the set

{|un| > L}, so we can write

∫

Ω

a(x, un,∇un)∇Tk(un − ϕ) =
∫

Ω

a(x, TL(un),∇TL(un))∇Tk(un − ϕ)

and thus (3.1) with this test function can be rewritten as

∫

Ω

a(x, TL(un),∇TL(un))∇Tk(un − ϕ)

+
∫

Ω

[

b(x) + 1
n | f (x)|

]

g(un)Tk(un − ϕ) =
∫

Ω

f (x)Tk(un − ϕ).
(3.12)

Since TL(un) → TL(u) strongly in W
1,p
0 (Ω), then we have that ∇TL(un) → ∇TL(u) a.e. in

Ω and, as a consequence of (1.2) and Lebesgue Theorem, we have that

a(x, TL(un),∇TL(un)) → a(x, TL(u),∇TL(u)) in Lp′(Ω).

As we also have that ∇Tk(un − ϕ) → ∇Tk(u − ϕ) in Lp(Ω), we can assure that

∫

Ω

a(x, TL(un),∇TL(un))∇Tk(un − ϕ) →
∫

Ω

a(x, TL(u),∇TL(u))∇Tk(u − ϕ)

=
∫

Ω

a(x, u,∇u)∇Tk(u − ϕ).

If we use that b(x)g(un) → b(x)g(u) in L1(Ω) by Lemma 2.6 and that 1
n | f (x)|g(un) → 0 in

L1(Ω) thanks to the (1.7) estimate, we can easily pass to the limit in (3.12) to obtain that

∫

Ω

a(x, u,∇u)∇Tk(u − ϕ) +
∫

Ω

b(x)g(u)Tk(u − ϕ) =
∫

Ω

f (x)Tk(u − ϕ),

so we can conclude that u is the entropy solution of (P). Finally, observe that due to the

uniqueness of the entropy solution we can assert that the whole original sequence {un} con-

verges in measure to u.

4 The semilinear case

In this section we prove the Theorem 1.2 and we give some additional remarks.
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Proof of Theorem 1.2. First, let us show that the sequence {un} is bounded in H1
0(Ω). Taking

un ∈ H1
0(Ω) ∩ L∞(Ω) as test function in (Pn) and in (P), we deduce that

∫

Ω

M(x)∇un∇un +
∫

Ω

[

b(x) + 1
n | f (x)|

]

g(un)un =
∫

Ω

f (x)un

=
∫

Ω

M(x)∇u∇un +
∫

Ω

b(x)g(u)un.

Since g(s)s ≥ 0 for every s ∈ R by (1.5), then the term
∫

Ω

1
n | f (x)|g(un)un is nonnegative

and we can drop it to obtain that

∫

Ω

M(x)∇un∇un +
∫

Ω

b(x)g(un)un ≤
∫

Ω

M(x)∇u∇un +
∫

Ω

b(x)g(u)un.

We can rewrite this expression as

∫

Ω

M(x)∇
(

un −
u

2

)

∇
(

un −
u

2

)

−
1

4

∫

Ω

M(x)∇u∇u

+
∫

Ω

b(x)[g(un)− g(u)](un − u) +
∫

Ω

b(x)g(un)u −
∫

Ω

b(x)g(u)u ≤ 0.

Observe that we have used here the symmetry of the matrix M(x) to obtain the identity

M(x)∇un∇u = M(x)∇u∇un.

Now, as b(x) ≥ 0 and g is increasing by (1.5), then the term
∫

Ω
b(x)[g(un)− g(u)](un − u)

is nonnegative and we can drop it. If also we apply the ellipticity condition (1.8) of M(x), we

obtain that

α
∫

Ω

∣

∣

∣
∇

(

un −
u

2

)∣

∣

∣

2
≤

1

4

∫

Ω

M(x)∇u∇u −
∫

Ω

b(x)g(un)u +
∫

Ω

b(x)g(u)u. (4.1)

Arguing as in the beginning of the proof of the Theorem 1.1, we can deduce that {un} is

bounded in some Marcinkiewicz space and thus we can apply Lemma 2.6 to assert that

{b(x)g(un)} is bounded in L1(Ω). Thanks to this and to the fact that u ∈ H1
0(Ω) ∩ L∞(Ω),

b(x) ∈ L1(Ω), M(x) is bounded by (1.9) and g is continuous, we can assure that the right

hand side of (4.1) is bounded.

As a consequence, we obtain that {un −
u
2} is bounded in H1

0(Ω) and, since u ∈ H1
0(Ω), we

can deduce that {un} is bounded in H1
0(Ω). Thanks to this bound there exists a subsequence

of {un}, still denoted by {un}, and a function v ∈ H1
0(Ω) such that un ⇀ v in H1

0(Ω) and

un → v a.e. in Ω.

Now, if we bear in mind that b(x)g(un) → b(x)g(v) in L1(Ω) by Lemma 2.6 and that
1
n | f (x)g(un)| ≤ | f (x)| ∈ L1(Ω) by (1.7) estimate, we can easily pass to the limit in

∫

Ω

M(x)∇un∇ϕ +
∫

Ω

[

b(x) + 1
n | f (x)|

]

g(un)ϕ =
∫

Ω

f (x)ϕ, ∀ϕ ∈ H1
0(Ω) ∩ L∞(Ω)

to obtain that
∫

Ω

M(x)∇v∇ϕ +
∫

Ω

b(x)g(v)ϕ =
∫

Ω

f (x)ϕ, ∀ϕ ∈ H1
0(Ω) ∩ L∞(Ω)

and thus it is proven that v = u, i.e., that v is the weak solution of (P). Moreover, due to the

uniqueness of the solution u we can affirm that the whole original sequence {un} converges

weakly in H1
0(Ω) to u.
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Observe that if we take b(x) = 0 in (P), then the assumption u ∈ L∞(Ω) is not necessary

in the proof of this theorem. This allows us to state the following result.

Theorem 4.1. Suppose that a(x, s, ξ) = M(x)ξ with M(x) a symmetric matrix satisfying (1.8)

and (1.9). Assume also that b(x) = 0, that f (x) verifies (1.4) and that g satisfies (1.5). If the

weak solution u ∈ H1
0(Ω) of (P) exists, then {un}, the sequence of weak solutions of (Pn) given by

Theorem 2.1, verifies that

un ⇀ u in H1
0(Ω).

To end this paper, we state a remark related with the case in which f is a nonnegative

function.

Remark 4.2. If f ≥ 0 the proofs are easier and stronger results can be proven. This is mainly

due to two facts: {un} is nonnegative and increasing. The monotony of {un} assures the

existence of its a.e. limit and, by Theorem 1.1, this a.e. limit must be u, the entropy solution

of (P).

Observe that this implies that un ≤ u a.e. in Ω for every n ∈ N and thus the assumption

u ∈ L∞(Ω) on Theorem 1.2 implies that {un} is bounded in L∞(Ω). This allows us not only

to prove that theorem in simpler way, but also to show that

un → u in H1
0(Ω).
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Abstract. This paper deals with fundamental properties of Poincaré half-maps defined
on a straight line for planar linear systems. Concretely, we focus on the analyticity
of the Poincaré half-maps, their series expansions (Taylor and Newton–Puiseux) at the
tangency point and at infinity, the relative position between the graph of Poincaré half-
maps and the bisector of the fourth quadrant, and the sign of their second derivatives.
All these properties are essential to understand the dynamic behavior of planar piece-
wise linear systems. Accordingly, we also provide some of their most immediate, but
non-trivial, consequences regarding periodic orbits.

Keywords: piecewise planar linear systems, Poincaré half-maps, Taylor series expan-
sion, Newton–Puiseux series expansion.
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1 Introduction

The study of the qualitative properties of distinguished solutions of piecewise linear differen-
tial systems rests mainly on the analysis of the features of Poincaré maps, which are defined as
composition of transition maps between the separation manifolds. Sometimes these transition
maps are called Poincaré half-maps. The linearity of the system in each zone invites to its inte-
gration, which automatically causes the emergence of a wide range of cases due to the nature

BCorresponding author. Email: ddnovaes@unicamp.br
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of the different spectra of the matrices of the linear systems and the relative position between
the equilibria, if any, and the separation manifolds. The number of cases to be studied is high
even for planar systems with two zones of linearity. Moreover, the direct integration leads to
different nonlinear equations where the flight time appears as a new variable.

Since the publication of the seminal work by Freire et al. [9], a large number of interesting
papers have appeared in order to establish the dynamical behavior in planar piecewise linear
systems with two zones of linearity and, in particular, to give conditions for the existence
and stability of limit cycles and to provide an optimal bound for the number of coexisting
limit cycles (see for instance, [11, 15–21]). None of these papers considers all the possible
cases. Moreover, they are forced to use individualized approaches to study the different kind
of functions that arise due to the distinct spectra of the matrices. This causes that a same
result is usually expressed in different terms and, sometimes, it may be a hard task to obtain
a common and brief statement for it. Thus, the use of individualized techniques for each case
does not allow a unified view of several properties of the Poincaré half-maps and, when it
does, more effort is required to complete the case-by-case study and to achieve independent
statements of these cases.

This paper relies on a novel characterization of Poincaré half-maps for planar linear sys-
tems [2] which allows us to see the properties of these maps from a common point of view and
to prove the results in a simple way, without the need of making particularized case-by-case
studies. Accordingly, we will not have any of the disadvantages mentioned in the previous
paragraphs because this novel characterization does not require integration of the systems
and, therefore, the distinction of the spectra of the matrices is not needed. The strength of this
approach can be seen in [3], where the uniqueness of limit cycles for continuous piecewise
linear systems was provided in a simple and synthesized way.

In the framework of the study of Poincaré half-maps for planar linear systems, the most
relevant properties are those related to the local behavior at tangency points between the flow
and the Poincaré section, the behavior at infinity (obviously, in the case of the focus or center),
and the sign of the derivatives. Some of these properties have been proven just for concrete
cases. Even those which are valid for all situations have been proven in a large case-by-case
study. This manuscript is primarily devoted to simplifying and unifying the proofs of these
properties by considering all possible scenarios simultaneously. In addition, it will be stated
an interesting fact about the relative position between the graphs of Poincaré half-maps and
the bisector of the fourth quadrant. Among other things, from this property it is direct that
Poincaré half-maps inherit the expansion/compression behavior of the flow of the planar
linear system. Additionally, it is proven here that this relative position is also related to the
(constant) sign of its second derivative.

As might be expected from the first two paragraphs of this introduction, all the previously
commented properties have direct applications to planar piecewise linear systems; from the
analysis of stability and bifurcations of equilibria, singularities, or the infinity, to the existence
and characterization of periodic orbits and the obtention of uniform bounds to the number of
limit cycles. In this work, some straightforward conclusions concerning the periodic behavior
are obtained.

The paper is organized as follows. Section 2 presents the integral characterization of
Poincaré half-maps for planar linear systems given in [2]. Two basic consequences of this
characterization for the Poincaré half-maps are their analyticity and their understanding as
solutions of a differential equation. In Section 3, we summarize the results on analyticity of the
Poincaré half-maps given in [2] and obtain the Taylor and Newton–Puiseux series expansions
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at tangency points and infinity by means of the differential equation. Section 4 studies the
relationship between the graphs of Poincaré half-maps and the bisector of the fourth quadrant,
which is used to establish, in Section 5, the sign of the second derivatives of the Poincaré half-
maps. Finally, Section 6 addresses the analysis of the periodic behavior of planar piecewise
linear systems with two zones separated by a straight line. There, some direct consequences
of the properties of Poincaré half-maps obtained in previous sections are stated.

2 Integral characterization for the Poincaré half-maps

Let us consider, for x = (x1, x2)T, the autonomous linear system

ẋ = A x + b (2.1)

where A = (aij)i,j=1,2 is a real matrix and b = (b1, b2)T ∈ R
2. Let us choose, without loss of

generality, the Poincaré section Σ = {(x1, x2) ∈ R
2 : x1 = 0}.

Notice that if the coefficient a12 vanishes, system (2.1) is uncoupled and a Poincaré half-
map on section Σ cannot be defined. Hence, let us assume in this work that a12 ̸= 0 (observ-
ability condition [6]). On the one hand, observe that, among other configurations, this condi-
tion removes the possibility of star-nodes to appear. On the other hand, under the assumption
a12 ̸= 0, the linear change of variable x = x1, y = a22x1 − a12x2 − b1, with a = a12b2 − a22b1,
allows to write system (2.1) into the generalized Liénard form,

(

ẋ

ẏ

)

=

(

T −1
D 0

)(

x

y

)

−
(

0
a

)

, (2.2)

where T and D stand for the trace and the determinant of matrix A, respectively. In the new
coordinates, since x1 = x, Poincaré section Σ remains the same.

The first equation of system (2.2) evaluated on the section Σ is reduced to ẋ|Σ = −y.
Therefore, the flow of the system crosses Σ from the half-plane Σ+ = {(x, y) ∈ R

2 : x > 0} to
the half-plane Σ− = {(x, y) ∈ R

2 : x < 0} when y > 0, from Σ− to Σ+ when y < 0, and it is
tangent to Σ at the origin.

Since this work is devoted to Poincaré half-maps of system (2.2) corresponding to the
section Σ and due to the fact that there is no possible return to section Σ when a = D = 0, we
assume that a2 + D2 ̸= 0 throughout this work. Note that this condition avoids the existence
of a continuum of equilibria.

We are going to focus on the left Poincaré half-map (the one defined by the flow in the
closed half-plane Σ− ∪ Σ and the intersection points of its orbits with the Poincaré section
Σ). Notice that the definition of the right Poincaré half-map and their corresponding results
may be immediately obtained by the invariance of system (2.2) under the change (x, y, a) ↔
(−x,−y,−a).

The left Poincaré half-map is usually defined in the following way. Let us consider
(0, y0) ∈ Σ with y0 ⩾ 0 and let Φ(t; y0) = (Φ1(t; y0), Φ2(t; y0)) the solution of system (2.2)
that satisfies the initial condition Φ(0; y0) = (0, y0). The existence of a value τ(y0) > 0 such
that Φ1(τ(y0); y0) = 0 and Φ1(t; y0) < 0 for every t ∈ (0, τ(y0)) allows to define the image of
y0 by the left Poincaré half-map as P(y0) = Φ2(τ(y0); y0) ⩽ 0. Moreover, the value τ(y0) is
called the left flight time.

Regarding the definition of the left Poincaré half-map at the origin, P(0) cannot be defined
as above when for every τ > 0 there exists t ∈ (0, τ) such that Φ1(t; 0) > 0. However, it can
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be continuously extended as P(0) = 0 provided that for every ε > 0 there exist y0 ∈ (0, ε)

and y1 ∈ (−ε, 0) such that P(y0) = y1. This finishes the usual definition of the left Poincaré
half-map.

According to the above definition, it is natural to compute the flow of the system by means
of explicit integrations. This leads to many case-by-case studies and forces the nonlinear
appearance of the flight time. Here, we will use a characterization that avoids the computation
of the flow, as it is done in [2]. For the sake of completeness, we give a brief summary of the
main results and ideas of [2] that are going to be used in this paper.

The left Poincaré half-map P and its definition interval I are given in Theorem 19 and
Corollary 21 of [2]. By using the quadratic polynomial function

W(y) = Dy2 − aTy + a2, (2.3)

the left Poincaré half-map is the unique function P : I ⊂ [0,+∞) −→ (−∞, 0] that, for every
y0 ∈ I, satisfies

PV
{

∫ y0

P(y0)

−y

W(y)
dy

}

= cT, (2.4)

where c is given, in terms of the parameters, as follows: (i) c = 0 if a > 0, (ii) c =

π

(

D
√

4D − T2
)−1

∈ R if a = 0, and (iii) c = 2π

(

D
√

4D − T2
)−1

∈ R if a < 0. Here,

PV{·} stands for the Cauchy Principal Value at the origin (see, for instance, [14]), which is
defined as

PV
{

∫ y0

y1

−y

W(y)
dy

}

= lim
ε↘0

(

∫ −ε

y1

−y

W(y)
dy +

∫ y0

ε

−y

W(y)
dy

)

,

for y1 < 0 < y0.
As emphasized in [2], the interval I is essentially related with the roots of the quadratic

polynomial function W. In the next remark, we shall briefly comment some of those relation-
ships and other interesting properties of P which are proven in [2].

Remark 2.1. System (2.2), under the assumed condition a2 + D2 ̸= 0, has invariant straight
lines for several values of the parameters. These straight lines are either the invariant eigen-
spaces of equilibria (saddles, degenerate nodes or non-degenerate nodes) or the straight line
y = Tx + a/T in the case T ̸= 0, D = 0 (what implies a ̸= 0). In those cases, every invariant
straight line intersects the Poincaré section Σ in a point (0, µ), where µ is a root of the quadratic
polynomial function W given in (2.3). Moreover, when I ⊂ [0,+∞) is bounded, then the right
endpoint of I is a real root of W and, in the same way, if P(I) is bounded, then the left
endpoint of P(I) is also a real root of W. In Fig. 2.1 (a) and Fig. 2.1(b), we show two examples
of bounded intervals I and/or P(I), corresponding respectively to saddle and non-degenerate
node configurations.

The interval I can be unbounded. For instance, if 4D − T2
> 0, then the equilibrium

point of system (2.2) is a focus or a center, the intervals I and P(I) are unbounded, and,
obviously, P(y0) tends to −∞ as y0 → +∞. In this case, the intervals are I = [0,+∞) and
P(I) = (−∞, 0], except when the equilibrium is a focus (i.e. T ̸= 0) and it is located in the left
half-plane

{

(x, y) ∈ R
2 : x < 0

}

(i.e. a < 0). In fact, when T > 0, the interval P(I) is reduced
to (−∞, ŷ1], where ŷ1 = P(0) (see Fig. 2.1 (c)). Analogously, for T < 0, I = [ŷ0,+∞) with
ŷ0 = P−1(0) (see Fig. 2.1 (d)).

Finally, the polynomial function W is strictly positive in each set [P(y0), 0) ∪ (0, y0], with
y0 ∈ I. Besides that, since W(0) = a2, then W(0) > 0 for a ̸= 0 and W(0) = 0 for a = 0.
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(a) (b)

(c) (d)

Figure 2.1: The left Poincaré half-map P and its interval of definition I for the
cases: (a) saddle, (b) non-degenerate node, (c) unstable focus, and (d) stable
focus.

It is worth mentioning that the integral given in (2.4) diverges when a = 0 and the Cauchy
principal value is necessary to overcome this difficulty. Moreover, in this case, for y1 < 0 < y0,
the Cauchy principal value at the origin is given by

PV
{

∫ y0

y1

−y

Dy2 dy

}

= lim
ε↘0

(

∫ −ε

y1

−y

Dy2 dy +
∫ y0

ε

−y

Dy2 dy

)

=
1
D

log
∣

∣

∣

∣

y1

y0

∣

∣

∣

∣

. (2.5)

When a ̸= 0, the integrating function h(y) = −y/W(y) is continuous and, consequently, the
Cauchy principal value just takes the value of the integral.
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3 Analiticity and series expansions of Poincaré half-maps at the tan-

gency point and its preimage, and at infinity

In this section, by means of the integral characterization and a subsequent differential equa-
tion, we shall compute the first coefficients of the Taylor expansion of the left Poincaré half-
map P. Obviously, the used method does not depend on the spectrum of the matrix of the
system. Before obtaining these coefficients it is necessary to determine the analyticity of the
left Poincaré half-map P.

When P(y0) ̸= 0, it is well-known (see, for example, [7]) that the transversality between
the flow of the system and the separation line Σ ensures the analyticity of P at y0. The
analyticity for the tangency point between the flow and Σ (that is, the origin) is more intricate
and, in the literature, it has been approached with a case-by-case study (see some partial
results at [8]). However, as follows from Corollary 24 of [2], the maps P and P−1 are real
analytic functions in the open intervals int(I) and P(int(I)), respectively, and at least one of
the following statements is true:

(i) the map P is a real analytic function at the left endpoint of its domain,

(ii) the map P−1 is a real analytic function at the right endpoint of its domain.

When the equilibrium of system (2.2) is a center or a focus, the left Poincaré half-map P

can be considered also at infinity. In addition, we shall obtain the first coefficients of the Taylor
expansion of P around the infinity.

A first consequence from the definition of the left Poincaré half-map given in the integral
form (2.4) is easily deduced by computing the derivative with respect to variable y0 (see
Remark 16 of [2]). Hence, one can see that the graph of the left Poincaré half-map P and its
inverse function P−1, oriented according to increasing y0, are particular orbits of the cubic
vector field

X(y0, y1) = −
(

y1W(y0), y0W(y1)
)

= −
(

y1
(

Dy2
0 − aTy0 + a2), y0

(

Dy2
1 − aTy1 + a2)).

In fact, the left Poincaré half-map P and its inverse function P−1 are solutions of the differential
equation

y1W(y0)dy1 − y0W(y1)dy0 = 0. (3.1)

The next proposition is a direct consequence of the results in [2] and allows to obtain the
Taylor expansion of P around the origin when a ̸= 0 and P(0) = 0. Notice that for a = 0, the
existence of the left Poincaré half-map P implies 4D − T2

> 0. From Remark 2.1, the interval
of definition of P is I = [0,+∞) and, for y0 ⩾ 0, expression (2.4) can be written as

PV
{

∫ y0

P(y0)

−y

Dy2 dy

}

=
πT

D
√

4D − T2
.

Hence, by using the value for PV given in (2.5), the left Poincaré half-map P is given by

P(y0) = − exp
(

πT√
4D − T2

)

y0, for y0 ⩾ 0. (3.2)
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When a ̸= 0, by denoting I = {y ∈ R : W(y) > 0}, from Theorem 14 of [2], it is deduced
that the set

C0 =

{

(y1, y0) ∈ I2 :
∫ y0

y1

−y/W(y)dy = 0
}

can be written in the form

C0 =
{

(y1, y0) ∈ I2 : (y1 − y0)(y1 − ϕ0(y0)
}

,

where ϕ0 is a real analytic function in I which is also an involution, that is, (ϕ0(ϕ0(y0))) = y0

for all y0 ∈ I . Now, by means of Corollary 21 of [2], it follows that the left Poincaré half-
map P coincides with the function ϕ0 restricted to the interval I ∩ [0, ∞], provided 0 ∈ I and
P(0) = 0. By an abuse of notation, we say that the Poincaré half-map P is an involution when
a ̸= 0, 0 ∈ I, and P(0) = 0.

Proposition 3.1. Assume that a ̸= 0 and 0 ∈ I. If P(0) = 0, then left Poincaré half-map P is a real

analytic function in I, it is an involution and its Taylor expansion around the origin writes as

P(y0) = −y0 −
2Ty2

0

3a
− 4T2y3

0
9a2 +

2
(

9DT − 22T3
)

y4
0

135a3

+
4
(

27DT2 − 26T4
)

y5
0

405a4 − 2
(

27D2T − 176DT3 + 100T5
)

y6
0

945a5 +O
(

y7
0
)

.

(3.3)

Proof. From the hypotheses of the proposition and by means of Theorem 14 and Corollary 24
of [2], it is deduced that left Poincaré half-map P is a real analytic function in I and it is an
involution. Hence, the derivative of P at the origin is P′(0) = −1.

Now, taking into account that P is a solution of the differential equation given in (3.1), it
is easy to obtain, via undetermined coefficients, the Taylor expansion given in (3.3) and so the
proof is concluded.

Notice that the Taylor expansion around the origin given in Proposition 3.1 was already
obtained in [23]. Although the calculations are not fully detailed in that work, the authors
rely on the results given in [8], where the study requires different techniques depending on
the situations. Before [23], the same series expansion was obtained in [10], by means of an
inversion of the flight time, but only for the focus case.

When 0 ∈ I and P(0) ̸= 0, the function P is a real analytic function at the origin and it is
possible to obtain its Taylor expansion of P around the origin.

Proposition 3.2. Assume that 0 ∈ I. If P(0) = ŷ1 < 0, then a < 0, T > 0, 4D − T2
> 0, ŷ1 is the

right endpoint of the interval P(I), and the left Poincaré half-map P is a real analytic function in I and

its Taylor expansion around the origin writes as

P(y0) = ŷ1 +
W (ŷ1) y2

0

2a2ŷ1
+

TW (ŷ1) y3
0

3a3ŷ1
−
(

a2 +
(

D − 2T2
)

ŷ2
1

)

W (ŷ1) y4
0

8a4ŷ3
1

− T
(

5a2 +
(

7D − 6T2
)

ŷ2
1W (ŷ1)

)

y5
0

30a5ŷ3
1

+

(

9a4 − 6a3Tŷ1 + 2a2
(

9D − 13T2
)

ŷ2
1 +

(

9D2 − 46DT2 + 24T4
)

ŷ4
1

)

W (ŷ1) y6
0

144a6ŷ5
1

+O
(

y7
0
)

.

(3.4)
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Proof. The expression given in (3.2) provides the left Poincaré half-map for the case a = 0.
From there, one obtains P(0) = 0 when a = 0.

Suppose that 0 ∈ I and P(0) = ŷ1 < 0. Then a ̸= 0 and expression (2.4) leads us to

∫ 0

ŷ1

−y

W(y)
dy = cT.

From Remark 2.1, the polynomial W is strictly positive and, therefore, the left-hand term of
the last expression is also strictly positive. If a > 0, from expression (2.4), c = 0 and this is
impossible. Thus, it is deduced that a < 0, T > 0, and 4D − T2

> 0. Now, from Remark 2.1
again, the intervals I and P(I) are unbounded and P(y0) tends to −∞ as y0 → +∞.

Next, let us prove that ŷ1 is the right endpoint of the interval I. Let us consider y0 ⩾ 0 and
y1 ∈ (ŷ1, 0]. From the inequalities

∫ y0

y1

−y

W(y)
dy <

∫ y0

ŷ1

−y

W(y)
dy ⩽

∫ 0

ŷ1

−y

W(y)
dy = cT

one can see that no point in the interval y1 ∈ (ŷ1, 0] belongs to the interval P(I) and so the
right endpoint of interval P(I) is ŷ1.

The analyticity of P is a direct consequence of Theorem 14 and Corollary 21 of [2] and the
Taylor expansion around the origin given in (3.4) follows from the method of undetermined
coefficients applied to the differential equation (3.1).

Remark 3.3. Note that the condition P(0) = ŷ1 < 0 together with the linearity of the system
implies that there exists an unstable focus equilibrium in the left half-plane Σ− (see Fig. 2.1(c))
and so it is immediate that a < 0, T > 0, and 4D − T2

> 0. This is an alternative proof for the
inequalities of Proposition 3.2. On the other hand, the endpoints of intervals I and P(I) were
also determined in Corollary 21 of [2] in a more generic way. For the sake of completeness, in
the previous proof, we have included a different and specific reasoning for this case.

When there exists a point ŷ0 > 0 such that P (ŷ0) = 0, then left Poincaré half-map P is a
non-analytic function at ŷ0. However, in [2] it is proven that the inverse function P−1 is analytic
at the origin and so it is possible, by means of an inversion, to get a Newton–Puiseux series
expansion for the left Poincaré half-map P around ŷ0. Some results about series inversion and
Newton–Puiseux series can be found in [12] and the references therein. Also of interest are
the results included in [1] concerning the expression of the solutions of differential equations
as Newton–Puiseux series expansion and its convergence.

Proposition 3.4. Assume that there exists a value ŷ0 > 0 with P (ŷ0) = 0. Then, a < 0, T < 0,
4D − T2

> 0, ŷ0 is the left endpoint of the interval I, the inverse function P−1 is a real analytic

function, and the left Poincaré half-map P admits the Newton–Puiseux serie expansion around the

point ŷ0 given by

P(y0) = a

√

2ŷ0

W(ŷ0)
(y0 − ŷ0)

1/2 − aT

3
2ŷ0

W(ŷ0)
(y0 − ŷ0)

+
a3

72

(

9D + 2T2

a2 +
9
ŷ2

0

)

(
√

2ŷ0

W(ŷ0)

)3

(y0 − ŷ0)
3/2 +O

(

(y0 − ŷ0)
2) ,

(3.5)

which is valid for y0 ⩾ ŷ0.
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Proof. Suppose that there exists a point ŷ0 > 0 such that P(ŷ0) = 0. An analogous reasoning
to the first part of the proof of Proposition 3.2 leads to the inequalities a < 0, T < 0, and
4D − T2

> 0 and to the fact that ŷ0 is the left endpoint of the interval I.
The inverse function P−1 satisfies P−1(0) = ŷ0 and, from differential equation (3.1), it

follows that its derivative at the origin vanishes. This implies that P is a non-analytic function
at ŷ0. From Theorem 14 and Corollary 21 of [2], it follows that the inverse function P−1 is an
analytic function at the origin and P−1 admits the Taylor expansion (3.4) by changing ŷ1 by
ŷ0.

Now, the Newton–Puiseux series expansion of P is obtained by the inversion of the Taylor
expansion of P−1. Note that the direct inversion provides two possible series expansions but,
since P(y0) ⩽ 0 for all y0 ∈ I, the valid one is that given in (3.5) and the proof is finished.

An analogous comment to Remark 3.3 can be made about the inequalities of Proposition
3.4 and the left endpoint of I. The scenario described by the hypothesis stated in Proposition
3.4 is illustrated in Fig. 2.1(d).

Remark 3.5. The inversion used to obtain the Newton–Puiseux series expansion of P is equiv-
alent to the computation of the Taylor expansion of Q(z0) := P(ŷ0 + z2

0) around z0 = 0 and
the subsequent change of z0 by

√

y0 − ŷ0. In order to get this Taylor expansion it is enough
to make the change of variable y0 → ŷ0 + z2

0 in the differential equation (3.1) to achieve a
differential equation for the function Q.

Let us recall from Remark 2.1 that when 4D − T2
> 0 the domain I is unbounded with

P(y0) tending to −∞ as y0 → +∞. Thus, the study of the left Poincaré half-map around
the infinity is feasible. In fact, the first two terms of the Taylor expansion of left Poincaré
half-map P around the infinity were already obtained in [9] by means of an expression of P

parameterized by the flight time. In the following proposition, we present a simple method
to get these and others terms.

Proposition 3.6. Assume that 4D − T2
> 0.Then, the Taylor expansion of left Poincaré half-map P

around the infinity writes as

P(y0) = − exp
(

πT√
4D − T2

)

y0 +
aT

D

(

1 + exp
(

πT√
4D − T2

))

− a2

D
sinh

(

πT√
4D − T2

)

· 1
y0

−
a3e

− 2πT√
4D−T2

(

−2 + e
πT√

4D−T2

)(

1 + e
πT√

4D−T2

)2

T

6D2 · 1
y2

0
+O

(

1
y3

0

)

.

Proof. Firstly, we shall prove the equality

lim
y0→+∞

P(y0)

y0
= − exp

(

πT√
4D − T2

)

. (3.6)

If a = 0, then expression (3.2) leads us directly to equality (3.6).
If a ̸= 0, taking into account that W(y) > 0 for y ∈ R (see Remark 2.1), then relationship

(2.4) can be written as
∫ −y0

P(y0)

−y

W(y)
dy +

∫ y0

−y0

−y

W(y)
dy = cT, (3.7)
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for y0 ∈ I, being c = 0 for a > 0 and c = 2π

(

D
√

4D − T2
)−1

for a < 0.

The change of variable Y = 1/y applied to the first integral in expression (3.7) transforms
it into

∫ −1/y0

1/P(y0)

1
a2Y3 − aTY2 + DY

dY +
∫ y0

−y0

−y

W(y)
dy = cT

or, equivalently, into the expression

∫ −1/y0

1/P(y0)

1
DY

dY +
∫ −1/y0

1/P(y0)

a(T − aY)

D (a2Y2 − aTY + D)
dY +

∫ y0

−y0

−y

W(y)
dy = cT.

That is,

P(y0)

y0
= − exp

(

DcT − D
∫ y0

−y0

−y

W(y)
dy −

∫ −1/y0

1/P(y0)

a(T − aY)

a2Y2 − aTY + D
dY

)

.

Now, a direct integration provides

lim
y0→+∞

∫ y0

−y0

−y

W(y)
dy = − πTsign(a)

D
√

4D − T2
(3.8)

and taking into account that

lim
y0→+∞

∫ −1/y0

1/P(y0)

a(T − aY)

a2Y2 − aTY + D
dY = 0,

the equality (3.6) follows.
Thus, the function P̃, defined by

P̃(Y0) =











1
P(1/Y0)

if Y0 ̸= 0 and 1/Y0 ∈ I,

0 if Y0 = 0,

has derivative on the right at the origin and its value is

α1 :=
dP̃

dY0

(

0+
)

= − exp
( −πT√

4D − T2

)

. (3.9)

Moreover, it is immediate to see that the function P̃ is a solution of differential equation

(

a2Y2
0 − aTY0 + D

)

Y0dY1 −
(

a2Y2
1 − aTY1 + D

)

Y1dY0 = 0,

obtained from the differential equation (3.1) by means of the change of variables (Y0, Y1) =

(1/y0, 1/y1) (defined for y0y1 ̸= 0). From here, it is deduced that the function P̃ has derivatives
on the right of all orders at Y0 = 0 and, after a direct computation, one finds

α2 :=
d2P̃

dY2
0

(

0+
)

= −2aT

D
e
− 2πT√

4D−T2

(

e
πT√

4D−T2 + 1
)

,

α3 :=
d3P̃

dY3
0

(

0+
)

=
3a2

D2 e
− 3πT√

4D−T2

(

e
πT√

4D−T2 + 1
)(

−2T2e
πT√

4D−T2 + De
πT√

4D−T2 − D − 2T2
)

,
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and

α4 :=
d4P̃

dY4
0

(

0+
)

=
4a3T

D3 e
− 4πT√

4D−T2

(

1 + e
πT√

4D−T2

)2 (

−8D + 7De
πT√

4D−T2 − 6T2 − 6T2e
πT√

4D−T2

)

. (3.10)

Since the Taylor expansion of left Poincaré half-map P around the infinity is given by

P(y0) =
1
α1

y0 −
α2

2α2
1
+

3α2
2 − 2α1α3

12α3
1

· 1
y0

− 3α3
2 − 4α1α2α3 + α2

1α4

24α4
1

· 1
y2

0
+O

(

1
y3

0

)

, (3.11)

the proof concludes by substituting expressions (3.9)–(3.10) into (3.11).

4 The relative position between the graph of Poincaré half-maps

and the bisector of the fourth quadrant

To study the relative position between the graph of the left Poincaré half-map and the bisector
of the fourth quadrant, it is natural to analyze the sign of the difference y0 − (−P(y0)). In the
next proposition, we show the relationship between this difference and the trace T. Notice
that this relationship has been addressed via a case-by-case treatment (by distinguishing the
spectrum of the matrix of the system) in the main results of chapter 4 of [22]. Here, we provide
a concise proof by using the integral characterization of the left Poincaré half-map.

Proposition 4.1. The left Poincaré half-map P satisfies the relationship

sign (y0 + P(y0)) = −sign(T) for y0 ∈ I \ {0}.

In addition, when 0 ∈ I and P(0) ̸= 0 or when T = 0, the relationship also holds for y0 = 0.

Proof. We will prove this proposition by distinguishing the cases T = 0 and T ̸= 0.
For T = 0, the integral equation given in (2.4) is reduced to

PV

{

∫ y0

P(y0)

−y

Dy2 + a2 dy

}

= 0, for y0 ∈ I.

By taking into account that the integrating function is an odd function, it is direct to see that
P(y0) = −y0 for all y0 ∈ I and so the proposition is true for T = 0.

Now, we focus on the proof for the case T ̸= 0 and we will consider the situations a = 0
and a ̸= 0.

When a = 0, the left Poincaré half-map P is given by expression (3.2) and so the equality
sign (y0 + P(y0)) = −sign(T) holds for every y0 ∈ I.

When a ̸= 0, let us consider the interval

J = {u ∈ R : W(y) > 0, ∀ y ∈ [−|u|, |u|]}

and function g : J −→ R defined by

g(u) =
∫ u

−u

−y

W(y)
dy,
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where W is the polynomial function defined in (2.3).
Notice that function g satisfies g(0) = 0, its derivative is

g′(u) =
−2aTu2

W(u)W(−u)

and so sign(g′(u)) = −sign(aT) for every u ∈ J \ {0}. Thus, sign(g(u)) = −sign(aT) for
every u ∈ J ∩ (0,+∞) and sign(g(u)) = sign(aT) for every u ∈ J ∩ (−∞, 0).

Moreover, if J = R (i.e., when 4D − T2
> 0), then, from (3.8),

lim
u→+∞

g(u) = − πTsign(a)

D
√

4D − T2
.

The existence of the left Poincaré half-map P for the case a ̸= 0 implies a > 0 and c = 0

or a < 0 and c = 2π

(

D
√

4D − T2
)−1

∈ R. It is straightforward to see that these conditions
together with the properties of function g lead to the equality

sign(cT − g(u)) = sign(T). (4.1)

Let us consider y0 ∈ int(I) ∩ J. From equality (2.4), one gets

cT =
∫ y0

P(y0)

−y

W(y)
dy =

∫ −y0

P(y0)

−y

W(y)
dy +

∫ y0

−y0

−y

W(y)
dy,

that is,
∫ −y0

P(y0)

−y

W(y)
dy = cT − g(y0).

Thus, from (4.1),

sign
(

∫ −y0

P(y0)

−y

W(y)
dy

)

= sign(T) ̸= 0

and, taking into account that −y0 · P(y0) ⩾ 0, equality sign (y0 + P(y0)) = −sign(T) holds
for every y0 ∈ int(I) ∩ J. Therefore, the conclusion follows by using the continuity of the left
Poincaré half-map and the function y1(y0) = −y0.

The next result establishes, as a direct consequence of Proposition 4.1, the relationship
between the graph of the left Poincaré half-map and the bisector of the fourth quadrant.

Corollary 4.2. The following items are true.

1. If T = 0, then the graph of the left Poincaré half-map P of system (2.2) associated to section

Σ ≡ {x = 0}, if it exists, is included in the bisector of the fourth quadrant.

2. If T > 0 (resp. T < 0), then the graph of left Poincaré half-map P of system (2.2) associated to

section Σ ≡ {x = 0}, if it exists, is located below (resp. above) the bisector of the fourth quadrant

except perhaps at the origin.
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5 The sign of the second derivative of Poincaré half-maps

From the differential equation given in (3.1), it is easy to obtain explicit expressions for the
derivatives of P with respect to y0. The first and second derivatives are shown in the next
result. Its proof is a simple computation and so it is omitted.

Proposition 5.1. The first and second derivatives of the left Poincaré half-map P with respect to y0, in

the interval int(I), are given by
dP

dy0
(y0) =

y0W(P(y0))

P(y0)W(y0)

and

d2P

dy2
0
(y0) = −

a2
(

y2
0 − (P(y0))

2
)

W(P(y0))

(P(y0))
3 (W(y0))

2 . (5.1)

As will be stated in the next section, some interesting applications to periodic behavior
of piecewise linear systems come out from the signs of the first and the second derivatives
of P. Note that the sign of the first derivative is obvious from (5.1), because y0P(y0) < 0
for y0 ∈ int(I) and the polynomial W is positive (see Remark 2.1). Besides that, the sign of
the second derivative of left Poincaré half-map P is an immediate consequence of expression
given in (5.1) and Proposition 4.1.

Proposition 5.2. The sign of the second derivative of left Poincaré half-map P is given by

sign
(

d2P

dy2
0
(y0)

)

= −sign(a2T) for y0 ∈ int(I).

Note that a2 is written in the previous expression to include the case a = 0.
In previous works, the sign of the second derivative of the Poincaré half-maps has been

addressed via case-by-case studies (see, for instance [22]), where distinguished analyses must
be employed for different values of the parameters. Nevertheless, in Proposition 5.2, the
integral characterization has allowed to obtain a closed expression for such a sign regardless
the cases. As far as we know, this common expression has not been previously obtained in
the literature.

6 Some immediate consequences in piecewise linear systems

The previous results established some fundamental properties of Poincaré half-maps defined
on a straight line for planar linear systems. These properties are essential to understand the
dynamic behavior of planar piecewise linear systems. This section is devoted to provide some
immediate consequences regarding periodic behavior in piecewise linear systems with two
zones separated by a straight line.

From Freire et. al in [10, Proposition 3.1], we known that any piecewise linear system with
two zones separated by a straight line Σ for which a Poincaré map is well defined can be
written in the following Liénard canonical form

{

ẋ = TLx − y

ẏ = DLx − aL

for x < 0,

{

ẋ = TRx − y + b

ẏ = DRx − aR

for x > 0. (6.1)
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Note that the points (0, 0) and (0, b) are the tangency points between Σ and, respectively,
the flow of the left and right systems. When b = 0 these points coincide and the flow of system
(6.1) crosses the separation line transversally except at the origin. In this case, the system is
called sewing. On the contrary, for b ̸= 0 the flow of system (6.1) does not cross the separation
line along the segment

Σs = {(0, µ + (1 − µ)b) ∈ Σ : µ ∈ (0, 1)} ,

which is usually called the sliding region.
In order to analyze the behaviour of system (6.1) we consider two Poincaré half-maps

associated to Σ, to wit, the Forward Poincaré half-map yL : IL ⊂ [0,+∞) −→ (−∞, 0] and the
Backward Poincaré half-map yR : IR ⊂ [b,+∞) → (−∞, b]. The forward one goes in the positive
direction of the flow and maps a point (0, y0), with y0 ⩾ 0, to a point (0, yL(y0)). Analogously,
the backward one goes in the negative direction of the flow and maps a point (0, y0), with
y0 ⩾ b, to (0, yR(y0)). Notice that yL is defined by the left system and yR is defined by the
right system. Naturally, yL = P by taking T = TL, D = DL, and a = aL in system (2.2). In
addition, taking into account the change (t, x) → −(t, x), one has yR(y0) = P(y0 − b) + b by
taking T = −TR, D = DR, and a = −aR.

Evidently, the intersections between the curves y1 = yL(y0) and y1 = yR(y0), for y0 ∈
Int(IL ∩ IR), are in bijective correspondence to crossing periodic solutions of (6.1).

From Proposition 4.1,

TL = 0 (resp. TR = 0) ⇒ yL(y0) = −y0 (resp. yR(y0) = −y0 + 2b), (6.2)

when, of course, the map yL (resp. yR) exists. Therefore, the following result follows immedi-
ately.

Corollary 6.1. Assume that T2
L + T2

R = 0. If b ̸= 0, the system (6.1) does not have crossing periodic

orbits. If b = 0 and Int(IL ∩ IR) ̸= ∅, then it has a continuum of crossing periodic orbits.

It is also possible to give some results for the case T2
L + T2

R > 0. From Corollary 4.2, if
TL > 0 (resp. TL < 0), then the curve y1 = yL(y0), if it exists, is located below (resp. above) the
straight line y1 = −y0 except perhaps at the origin. Analogously, if TR > 0 (resp. TR < 0), the
curve y1 = yR(y0), if it exists, is located above (resp. below) the straight line y1 = −y0 + 2b

except perhaps at the point (b, b). Hence, also taking (6.2) into account, if TL > 0, TR ⩾ 0, and
b ⩾ 0, then

yL(y0) < −y0 ⩽ −y0 + 2b ≤ yR(y0).

Therefore, the graphs of yL and yR have no intersection points and so system (6.1) has no
crossing periodic orbits. The following result about non-existence of periodic orbits follows
immediately via a similar reasoning.

Corollary 6.2. Assume that TLTR ⩾ 0 and that one of the following two non-exclusive hypotheses

holds:

1) TL ̸= 0 and TLb ⩾ 0;

2) TR ̸= 0 and TRb ⩾ 0.

Then, system (6.1) does not have crossing periodic orbits.
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By merging the information of Corollaries 6.1 and 6.2, we get that if TLTR ⩾ 0 and TLb ⩾ 0,
then system (6.1) either does not have crossing periodic orbits or has a continuum of crossing
periodic orbits. In other words, it does not have limit cycles.

Let us add some lines regarding the condition TLTR ⩾ 0 added in Corollary 6.2. Note that
for the case b = 0 it is well known that TLTR ⩽ 0 is a necessary condition for the existence of
crossing periodic orbits (see, for instance, [10]). However, when b ̸= 0 they could exist even
for TLTR > 0. Thus, the previous result allows to remove some cases where crossing periodic
solutions do not exist.

The obtention of the previous results relies only on the relative location of the graphs of
the Poincaré half-maps, which is easily determined in terms of the basic parameters TL, TR,
and b, by using Proposition 4.1. Now, information about the shape of their graphs, revealed by
Proposition 5.2, can be used to bound the number of limit cycles of piecewise linear systems
(isolated crossing periodic solutions) in some generic cases. In fact, from Proposition 5.2, a
simple expression is obtained for the sign of the second derivatives of the Poincaré half-maps,

sign
(

d2yL

dy2
0
(y0)

)

= −sign(a2
LTL) and sign

(

d2yR

dy2
0
(y0)

)

= sign(a2
RTR).

Therefore, the concavity of the functions yL and yR is established by a2
LTL and a2

RTR, respec-
tively. Thus, the following result for limit cycles follows immediately.

Corollary 6.3. If TL TR > 0, then system (6.1) has at most two limit cycles.

The upper bound given by the corollary above is reachable. Indeed, the last example
provided by Han and Zhang in [13] satisfies TL TR > 0 and has two limit cycles near the
origin.

Concerning the series expansions of Poincaré half-maps provided by Propositions 3.1-3.6,
a natural application could consist in obtaining stability properties of some singular invariant
sets of piecewise linear systems under suitable assumptions. For instance, Proposition 3.1 can
provide whether the monodromic singularity at the separation line is attracting, repelling, or
a center; analogously, Proposition 3.6 can provide whether the infinity is attracting, repelling,
or a center in the case it is monodromic; finally, Propositions 3.2 and 3.4 can be used to study
the stability of some fold-fold connections. Mixing the stability properties above, one can
immediately get sufficient conditions for the existence of a limit cycle (forcing, for instance,
the mondromic singularity at the discontinuity line and the infinity, in the monodromic case,
to have the same stability).

7 Conclusions

In this paper we provided fundamental properties of Poincaré half-maps defined on a straight
line for planar linear systems. Our analysis was based on a novel characterization of Poincaré
half-maps [2], presented in Section 2. This characterization has proven to be an effective
method to study these maps from a common point of view and to obtain results in a simple
way, without the need of making particularized case-by-case studies.

We have focused on the analyticity of the Poincaré half-maps, their series expansions,
the relative position between the graph of Poincaré half-maps and the bisector of the fourth
quadrant, and the sign of their second derivatives. In what follows, we summarize the
obtained results. In Section 3, we addressed the series expansion of a Poincaré half-map,
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P : I ⊂ [0,+∞) −→ (−∞, 0], around the extrema of its interval of definition I, namely:
Propositions 3.1 and 3.2 provided the Taylor expansion of P around the origin when 0 ∈ I;
Proposition 3.4 provided the Newton–Puiseux series expansion of P around ŷ0 ∈ I, where
ŷ0 > 0 satisfies P (ŷ0) = 0; and Proposition 3.6 provided the Taylor series expansions of P

around the infinity when 4D − T2
> 0. In Section 4, Proposition 4.1 and Corollary 4.2 es-

tablished a relationship between the graphs of Poincaré half-maps and the bisector of the
fourth quadrant depending only on the sign of the trace T. Finally, in Section 5, Proposition
5.1 provided expressions for the first and second derivative of the Poincaré half-maps and
Proposition 5.2 determined the sign of the second derivative of the Poincaré half-maps.

All these properties are essential to understand the dynamic behavior of planar piecewise
linear systems with two zones separated by a straight line (PPWLS, for short). Thus, in
Section 6 we provided some immediate consequences regarding periodic behavior of such
systems, namely: Corollary 6.1 established non-generic conditions for a PPWLS either not
having periodic orbits and having a continuum of crossing periodic orbits; Corollary 6.2 gives
generic conditions for a PPWLS not having periodic orbits; finally, Corollary 6.3 provided
generic conditions for a PPWLS having at most two limit cycles.

The results obtained in this paper also allow deeper insights regarding periodic solutions
for piecewise linear systems. For instance, in [4], the present results among others were of
assistance in proving that PPWLS without sliding region (that is, b = 0) has at most one limit
cycles. This result was obtained without unnecessary distinctions of spectra of the matrices. In
addition, it is proven that this limit cycle, if exists, is hyperbolic and its stability is determined
by a simple condition in terms of the parameters. Also, in [5], it was provide the existence of
a uniform upper bound, L∗, for the maximum number of limit cycles of PPWLS. The present
Proposition 4.1 helped to show that L∗ ≤ 8.
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Abstract. Here, a proto-type Ermakov–Painlevé I equation is introduced and a homoge-
neous Dirichlet-type boundary value problem analysed. In addition, a novel Ermakov–
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1 Introduction

Ermakov in [13] in now classical work introduced a canonical nonlinear equation which has

subsequently been established as the base member of two and, in general, multi-component

nonlinear systems with diverse applications in both nonlinear physics and continuum me-

chanics [33]. Thus, in [16,17], what are now termed Ermakov–Ray–Reid systems were derived

which admit a distinctive integral of motion together with concomitant nonlinear superposi-

tion principles. These two-component coupled systems arise notably in nonlinear optics as

detailed in [14, 30, 31]. In [1], what constitutes a Ermakov–Ray–Reid system was derived in

an application of a variational approach to the analysis of elliptic cloud evolution in a Bose-

Einstein condensate.

In [24], a classical 2+1-dimensional rotating shallow water system with an underlying

circular paraboloidal bottom topography was shown to admit an integrable subsystem of

Ermakov–Ray–Reid type. The latter system in that context describes the time-evolution of

the semi-axes of the elliptical moving shoreline on the paraboloidal basin. It is, in addi-

tion, Hamiltonian and this integral of motion allied with the admitted Ermakov invariant

BCorresponding author. Email: pamster@dm.uba.ar
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allows exact solution of the Ermakov–Ray–Reid system. The procedure adopted in [24] had

its genesis in that applied in [18] to construct the general solution of an eight dimensional

nonlinear dynamical system descriptive of the time-evolution of upper ocean warm-core el-

liptical eddies. Therein, representation of this system in terms of modulated versions of the

divergence, spin, shear and normal deformation rates rendered the elliptic warm-core ring

system analytically tractable. Importantly, a relevant class of exact solutions with a Ermakov

connection therein termed pulsrodons was isolated which characteristically both rotate and

pulsate periodically. Lyapunov stability of such pulsrodons and their duals was subsequently

addressed via a Lagrangian treatment in [15]. In [34] pulsrodonic phenomena was exhibited

in a 2+1-dimensional nonlinear system governing rotating homentropic magnetogasdynamics

in a bounded region. In a related development [35], a 2+1-dimensional version of a non-

isothermal gasdynamic system with origin in work of Dyson [12] on spinning gas clouds was

investigated. It was established therein via an elliptic vortex ansatz that the system admits a

Hamiltonian reduction to a particular Ermakov–Ray–Reid system when the adiabatic index

σ = 2.

The preceding attest to the diverse physical applications of the two-component Ermakov–

Ray–Reid systems. In the present context, such a system will be shown in an appendix to

arise via reduction of a three-component hybrid Ermakov–Painlevé I system.

In [36], it was established that a symmetry reduction of a classical 2+1-dimensional N-layer

hydrodynamic system leads naturally to a novel multi-component Ermakov-type system. Im-

portantly, the latter was shown to be iteratively reducible to a system of N − 2 linear equations

augmented by a canonical Ermakov–Ray–Reid system. Moreover sequences of such systems

were shown to be linked via Darboux transformations. Novel links between multi-component

Ermakov systems and classes of many-body problems were subsequently established in [19].

In [29], Ermakov-type systems in two-dimensions were constructed and multi-wave solutions

of a 2+1-dimensional modulated sine-Gordon equation thereby derived. Ermakov systems of

arbitrary order and dimension were constructed in [42] which inherit key characteristics of

the canonical Ermakov–Ray–Reid system.

The connection between the classical Painlevé I–VI equations and symmetry reduction of

solitonic systems is well-documented (see e.g. [9] and literature cited therein). Indeed, the

generic properties of solitonic equations associated with admittance of linear representations

[2] and Bäcklund transformations [37, 41] are likewise possessed by these Painlevé equations.

It is remarked that such a Bäcklund transformation admitted by Painlevé II and its iteration

have application not only in soliton theory but also in the analytic treatment of important

boundary value problems for the celebrated Nernst–Planck system of ion transport [7, 10, 26].

In [20], wave packet representations inserted into a multi-component nonlinear

Schrödinger system which incorporated a de-Broglie–Bohm quantum potential term

resulted in novel hybrid Ermakov–Painlevé II reductions. Therein, a pair of Ermakov–Painlevé

II equations was derived as a reduction of a nonlinear elastodynamic system governing the

coupled stress associated with a class of shear motions. Hybrid Ermakov–Painlevé II-IV sys-

tems have subsequently been the subject of extensive investigation in [21, 22, 25, 38]. In par-

ticular, physical applications of Ermakov–Painlevé II equations have been shown to arise in

such diverse areas as cold plasma physics [28], Korteweg capillarity theory [27] and in multi-

ion Nernst-Planck systems. In the latter context, Dirichlet-type boundary value problems

were analysed in [3] for a Ermakov–Painlevé II reduction of such a three-ion electrolytic sys-

tem. Hybrid Ermakov–Painlevé IV systems were originally derived via symmetry reduction

of a multi-component resonant derivative nonlinear Schrödinger system in [21]. In subse-
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quent work [25], Bäcklund transformations were applied to generate classes of exact solutions

of the Ermakov–Painlevé IV system via the classical Painlevé IV equation. The forms of

the prototype Ermakov–Painlevé II–IV equations have been set down explicitly in [4]. Two-

point boundary value problems of Dirichlet-type for the single component base Ermakov–

Painlevé IV equation were analysed in [5]. In addition, therein it was established that admitted

Ermakov invariants can be used in the systematic generation of a coupled Ermakov–Painlevé

IV system in terms of seed solutions of the canonical Painlevé IV equation.

The nonlinear coupled systems as introduced in [16, 17] that have come to be known as

Ermakov–Ray–Reid systems adopt the form

ẍ + ω(t)x =
1

x2y
Φ(y/x),

ÿ + ω(t)y =
1

xy2
Ψ(x/y)

and admit the distinctive integral of motion

I =
1

2
(xẏ − yẋ)2 +

∫ y/x

Φ(z)dz +
∫ x/y

Ψ(w)dw

together with concomitant nonlinear superposition principles. The latter which are charac-

teristic of the system are not of the type generic in soliton theory which are generated via

invariance under Bäcklund transformations. The classical single component Ermakov equa-

tion of [13], namely

ρ̈ + ω(t)ρ = δ/ρ3

admits the nonlinear superposition principle

ρ =
√

c1α2(t) + 2c2α(t)β(t) + c3β2(t)

wherein α(t), β(t) are two linearly independent solutions of

σ̈ + ω(t)σ = 0

with corresponding constant Wronskian W = αβ̇ − βα̇ with constants c1 such that

c1c3 − c2
2 = δ/W2 .

This result and its extensions are readily derived via Lie group methods [32, 40]. The preced-

ing nonlinear superposition principle may be applied in the systematic reduction via recipro-

cal transformations of Ermakov-modulated solitonic systems to their canonical unmodulated

counterparts [39].

In [6], the Ermakov–Ray–Reid system was reduced to its associated autonomous form via

application of a novel class of involutory transformations. It was demonstrated thereby that

the system admits an underlying linear structure albeit not of the type generic to solitonic

systems.

Painlevé I has been derived in [8] via the classical Lie group procedure as a symmetry

reduction of the solitonic Boussinesq equation. The latter arises in diverse physical appli-

cations such as long wave propagation in shallow water hydrodynamics, nonlinear lattice

theory and plasma physics. Here a proto-type Ermakov–Painlevé I equation is introduced

and a homogeneous Dirichlet-type boundary value problem analysed. In addition, a novel
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Ermakov–Painlevé I system is set down which is reducible via an involutory transforma-

tion to the autonomous Ermakov–Ray–Reid system augmented by a single component hybrid

Ermakov–Painlevé equation. Hamiltonian such systems are delimited.

The paper is organised as follows. The next section is devoted to the search of classical so-

lutions to a homogeneous Dirichlet problem for a Ermakov–Painlevé I equation. Furthermore,

the order of the zeros at the endpoints is analysed and an upper bound for the distance be-

tween distinct solutions is obtained. The main tool is the method of upper and lower solutions,

combined with a Cantor diagonal argument. Finally, a two-component Ermakov–Painlevé I

system with underlying Hamiltonian structure is set down and an associated Ermakov–Ray–

Reid system constructed in the Appendix.

2 A Dirichlet problem

Here, a classical solution ρ(t) of the Ermakov–Painlevé I equation

ρ′′(t) =

[

5

(

ρ′(t)
ρ(t)

)2

− t
ρ(t)4

4

]

ρ(t)− 3

2ρ(t)3
(2.1)

is sought over the interval (0, 1) subject to the boundary conditions

ρ(0) = ρ(1) = 0. (2.2)

It is seen that the EPI equation (2.1) is invariant under ρ → −ρ and in the sequel attention is

restricted to solutions ρ(t) > 0 of the boundary value problem determined by (2.1)–(2.2).

Theorem 2.1. Boundary value problem (2.1)–(2.2) has at least one solution ρ ∈ C[0, 1] ∩ C2(0, 1)

such that ρ(t) > 0 for t ∈ (0, 1).

To establish this result, let us recall that the transformation w = ρ−4 yields the standard

Painlevé I equation

w′′(t) = 6w(t)2 + t.

The strategy shall consist in proving the existence of a monotone sequence 0 < w1 < w2 . . .

such that
w′′

n(t) = 6wn(t)2 + t, t ∈ (0, 1)

wn(0) = wn(1) = n
(2.3)

and set ρ as the limit of the sequence {w−1/4
n }. However, it is not clear a priori whether or not

the limit function w(t) := limn→∞ wn(t) is continuous and satisfies w(t) < ∞ for all t ∈ (0, 1).

In order to circumvent this impediment, we shall give a location result with the aid of the

method of upper and lower solutions. The following elementary result suffices in this regard

(see e.g. [11, Ch. 2]):

Lemma 2.2. Let f : [0, 1]× [0,+∞) → R be continuous and let R, S > 0. Assume that the smooth

functions α, β satisfy

α′′(t) > f (t, α(t)), β′′(t) < f (t, β(t)) t ∈ (0, 1)

α(0) ≤ R ≤ β(0), α(1) ≤ S ≤ β(1),
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and 0 ≤ α(t) < β(t) for all t ∈ (0, 1). Then the Dirichlet boundary value problem

u′′(t) = f (t, u(t)), u(0) = R, u(1) = S

has at least one solution u with α(t) < u(t) < β(t) for t ∈ (0, 1). If furthermore f is nondecreasing

with respect to its second variable, then the boundary value problem has no other (positive) solutions.

The next lemma provides an ordered couple (αn, βn) of positive lower and upper solutions

for (2.3).

Lemma 2.3. There exist unique αn, βn with 0 < αn(t) < βn(t) < n for t ∈ (0, 1) such that

α′′
n(t) = 6αn(t)

2 + 1, β′′
n(t) = 6βn(t)

2

αn(0) = αn(1) = βn(0) = βn(1) = n.

Moreover, mn := mint∈[0,1] β(t) satisfies mn = β
(

1
2

)

and

c ≤ mn ≤ C

for constants C > c > 0 independent of n.

Proof. Let u(t) :=
(

t − 1
2

)2
and v(t) ≡ n, then, for t ∈ (0, 1),

u′′(t) ≡ 2 > 6u(t)2 + 1, v′′(t) ≡ 0 < 6v(t)2
< 6v(t)2 + 1

and 0 ≤ u(t) < v(t). From Lemma 2.2, the existence and uniqueness of αn between u and

v follows. Next, the pair (αn, n) is adopted as an ordered couple of a lower and an upper

solution for the problem β′′ = 6β2 which, in turn, provides the existence and uniqueness of

βn, with αn < βn < n.

Next, multiplication of the equality β′′
n = 6β2

n by β′
n and integration yields

β′
n(t)

2 = 4βn(t)
3 + A

for some constant A. By virtue of convexity, it follows that βn achieves a unique minimum

value mn < n at some t0 ∈ (0, 1). It is deduced that A = −4m3
n and

β′
n(t) =

{

−2
√

βn(t)3 − m3
n, t ≤ t0

2
√

βn(t)3 − m3
n, t > t0.

Thus, for t ≤ t0 we obtain

−
∫ t

0

β′
n(s)ds

√

βn(s)3 − m3
n

= 2t

and setting u := βn(s)
mn

it follows that

m−1/2
n

∫ n/mn

βn(t)/mn

du√
u3 − 1

= 2t.

Analogously, for t > t0 it is seen that

m−1/2
n

∫ n/mn

βn(t)/mn

du√
u3 − 1

= 2(1 − t).
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In particular, letting t → t0 it follows that 2t0 = 2(1 − t0), that is, t0 = 1
2 . Furthermore,

m−1/2
n

∫ n/mn

1

du√
u3 − 1

= 1,

whence

m1/2
n =

∫ n/mn

1

du√
u3 − 1

≤
∫

∞

1

du√
u3 − 1

< ∞.

This gives the inequality mn ≤ C and, for n ≥ C + 1

m1/2
n =

∫ n/mn

1

du√
u3 − 1

≥
∫ 1+ 1

C

1

du√
u3 − 1

,

so mn ≥ c for some constant c > 0 independent of n.

Remark 2.4. With regard to the preceding, the fact that the minimum mn is achieved at t0 = 1
2

follows directly by noticing that βn is symmetric, that is, βn(t) = βn(1− t). Indeed, this is due

to uniqueness since βn(1 − t)′′ = β′′
n(1 − t) = 6βn(1 − t)2 and βn(1 − 0) = βn(1 − 1) = n. A

similar argument holds for αn.

As a corollary, we obtain:

Lemma 2.5. Boundary value problem for Painlevé I (2.3) has a unique positive solution wn with

αn < wn < βn.

Next, we shall prove a monotonicity property.

Lemma 2.6. The sequences {αn}, {βn} and {wn} are strictly nondecreasing.

Proof. The claim is here proved just for {wn}. The other cases are analogous. Assume that

wn+1 − wn achieves its absolute minimum at some t̂. If wn+1(t̂) < wn(t̂), then t̂ ∈ (0, 1) and

0 ≤ (wn+1 − wn)
′′(t̂) = 6(wn+1 + wn)(t̂)(wn+1 − wn)(t̂) < 0,

a contradiction. Furthermore, because (wn+1 − wn)′(t̂) = 0, it is deduced that the equality

wn+1(t̂) = wn(t̂) cannot hold either, due to the uniqueness of solutions of the initial value

problem for the equation w′′ = 6w2 + t.

As a consequence of the preceding lemma, we may define the functions α, β, w : [0, 1] →
[0,+∞] as the respective pointwise limits of the sequences {αn}, {βn} and {wn}. It is clear that

α ≤ w ≤ β; however, it remains to prove that w(t) is finite and satisfies the Painlevé I equation

for t ∈ (0, 1). With this in mind, it is noted that the monotone and bounded sequence {mn}
converges to a value m = β

(

1
2

)

∈ (0,+∞) and, for t ∈
(

0, 1
2

)

, the implicit formula

m−1/2
n

∫ n/mn

βn(t)/mn

du√
u3 − 1

= 2t.

implies, when passing to the limit, that

m−1/2
∫

∞

β(t)/m

du√
u3 − 1

= 2t.

This shows that β(t) is finite and the same conclusion is obtained for t ∈
(

1
2 , 1

)

; thus, w(t) <

+∞ for all t ∈ (0, 1). Moreover, the previous identity also implies that β is smooth and satisfies
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the equality β′′(t) = 6β(t)2. Next, fix n0 > m and a < b the (unique) values in (0, 1) such that

αn0(a) = αn0(b) = m. This implies that wn(t) > m for all n ≥ n0 and t /∈ [a, b]. In particular,

if the absolute minimum of wn is achieved at tn ∈ (0, 1), then tn ∈ [a, b] and we may take a

subsequence tnj
→ t∗ ∈ [a, b]. Thus, from the identity

w′
n(t) =

∫ t

tn

(6wn(s)
2 + s) ds

and by the monotone convergence theorem we obtain:

w′
nj
(t) →

∫ t

t∗
(6w(s)2 + s) ds.

Now writing wnj
(t) = wnj

(t∗) +
∫ t

t∗
w′

nj
(s) ds, it is immediately verified that w is smooth and

satisfies the Painlevé I equation for all t ∈ (0, 1). Hence ρ := w−1/4 is positive and satisfies

(2.1) for t ∈ (0, 1). It remains to prove that ρ(0+) = ρ(1−) = 0. To this end, for arbitrary

M > 0 fix n0 > M and δ > 0 such that αn0(t) > M when t < δ or t > 1 − δ. Since {αn}
is increasing, it follows that α(t) > M when t < δ or t > 1 − δ; accordingly, it has been

established that α(0+) = α(1−) = +∞ and, consequently, ρ is extended continuously to a

solution of (2.1)–(2.2).

2.1 Order of the zeros

This section is devoted to investigation of the behaviour of the classical positive solutions of

(2.1)–(2.2) in the neighbourhood of the endpoints of the interval. With this in mind, set as

before w := ρ−4 satisfying the Painlevé I equation and let tmin ∈ (0, 1) be the value in which

the absolute minimum wmin of w is achieved. For t ∈ (0, tmin), the inequalities 6w(t)2
<

w′′(t) < 6w(t)2 + 1 yield

6w(t)2w′(t) > w′′(t)w′(t) > 6w(t)2w′(t) + w′(t)

and, upon integration,

4w(t)3 − 4w3
min < w′(t)2

< 4w(t)3 + 2w(t)− [4w3
min + 2wmin].

Using the identity
√

A + B −
√

A = B√
A+B+

√
A

for A, A + B > 0, we may write

2w(t)3/2 − R(t) < −w′(t) < 2w(t)3/2 + S(t)

where, due to the continuity of the solution ρ, the positive functions R and S can be made

arbitrarily small when t is close to 0. In fact, given r ∈ (0, 1) it suffices to fix δ0 > 0 such that

R(t), S(t) < 2rw(t)3/2 for all t < δ0. This implies, for 0 < t < δ < δ0,

1 − r <
(

w−1/2
)′

(t) < 1 + r,

whence

(1 − r)(δ − t) < w−1/2(δ)− w−1/2(t) < (1 + r)(δ − t)

and letting t → 0 we obtain:

(1 − r)δ ≤ w−1/2(δ) ≤ (1 + r)δ
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that is
√

(1 − r)δ ≤ ρ(δ) ≤
√

(1 + r)δ.

Since r is arbitrary, we conclude that ρ(δ) ∼
√

δ for small values of δ. Analogously, it is

verified that ρ(ξ) ∼ √
1 − ξ when ξ is close to 1. The previous conclusions allow a more

precise computation of the solution near the endpoints of the interval. Indeed, it is observed

that the functions R and S behave respectively as

R(t) = R0(t)w(t)−3/2, S(t) = S0(t)w(t)−1/2

for some bounded positive functions R0 and S0, so for 0 < t < δ sufficiently small it is

obtained:
√

1 − O(δ4) ≤ ρ(δ)√
δ

≤
√

1 + O(δ6).

In particular, this shows that ρ(t) ∼
√

t + O(t5/2) as t ∼ 0 and, analogously, ρ(t) ∼
√

1 − t +

O((1 − t)5/2) as t ∼ 1.

2.2 The uniqueness problem

In this section, it is established that the solution given via Theorem 2.1 is maximal, that is, any

other possible solution ρ̃ of (2.1)–(2.2) such that ρ̃ 6= ρ satisfies ρ̃(t) < ρ(t) for all t ∈ (0, 1).

Furthermore, if ρ̃ is the limit of a sequence of solutions of (2.1) that are strictly positive in

[0, 1], then ρ̃ = ρ. Accordingly, the solution obtained in the preceding sections is the only one

that can be defined as the limit of approximate solutions of the non-homogeneous Dirichlet

problem.

The proof of the previous assertions is deduced in a straightforward manner from the

following:

Lemma 2.7. Let ρ1, ρ2 ∈ C2(0, 1) be distinct strictly positive solutions of (2.1). Then ρ1 and ρ2 cross

each other at most in one value t ∈ (0, 1).

Proof. Due to the uniqueness for the initial value problem, it is clear that all possible cross

points are isolated. Suppose that a < b are two consecutive cross points and, for example, that

ρ1 < ρ2 in (a, b), then the corresponding functions wj := ρ−4
j satisfy w1 > w2 and

(w1 − w2)
′′ = 6(w1 + w2)(w1 − w2) > 0

over (a, b), which contradicts the fact that w1 = w2 for t = a, b.

Proposition 2.8. Let ρ be a positive solution of (2.1)–(2.2) such that ρ is the limit of a sequence {ρn}
of solutions of (2.1) with ρn > 0 on [0, 1]. If ρ̃ is any distinct positive solution of (2.1)–(2.2), then

ρ̃(t) < ρ(t) for all t ∈ (0, 1).

Proof. Suppose that ρn(t) < ρ̃(t) for some t ∈ (0, 1). Then, because ρn(0) and ρn(1) are strictly

positive, it follows that ρn crosses ρ̃ in more than one point, a contradiction. This shows that

ρn(t) ≥ ρ̃(t) for all t and, consequently, ρ ≥ ρ̃. Furthermore, if ρ(t) = ρ̃(t) for some t, then

ρ′(t) = ρ̃′(t), whence ρ ≡ ρ̃.

In view of the latter result, it might be conjectured that the positive solution of (2.1)–(2.2) is,

indeed, unique. However, our conclusions do not exclude the existence of “small” solutions.

The next result provides a lower bound for such small solutions.
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Proposition 2.9. Let ρ be a positive solution of (2.1)–(2.2) and let β be defined as before. Then

ρ(t) > β(t)−1/4 for all t ∈ (0, 1).

Proof. Observe, at the outset, that β is the unique positive solution of the problem v′′(t) =

6v(t)2 satisfying v(0+) = v(1−) = +∞. Indeed, it is seen as before that v achieves its unique

minimum at t = 1
2 , with

v
(

1
2

)1/2
=

∫

∞

1

du√
u3 − 1

= β
(

1
2

)1/2
.

Since, furthermore, v′
(

1
2

)

= 0 = β′ ( 1
2

)

, it is deduced that v ≡ β. Next, suppose that ρ(t0) ≤
β(t0)−1/4 for some t0 ∈ (0, 1), then w := ρ−4 satisfies

w′′(t) = 6w(t)2 + t > 6w(t)2, w(0+) = w(1−) = +∞.

On the other hand, setting k ≥ 1 large enough, it is verified that

(β + kw)′′(t) = 6β(t)2 + 6kw(t)2 + kt < 6[β(t) + kw(t)]2.

Thus, (w, β + kw) is an ordered couple of a lower and an upper solution for the problem

v′′ = 6v2 and a diagonal argument proves the existence of a solution v with w(t) < v(t) <

β(t) + kw(t) for all t ∈ (0, 1). A contradiction then arises from the fact that v ≡ β.

As a consequence, a somewhat sharp bound for the distance between distinct solutions is

readily computed. Let w be the solution of the Painlevé I equation constructed in the proof of

Theorem 2.1 and define wmin as the minimum value of w. As previously, w is a lower solution

for the problem v′′ = 6v2 and setting c > 0 it is seen that

(w + c)′′(t) = 6w(t)2 + t < 6[w(t) + c]2,

provided that t < 6[c2 + 2w(t)c]. Thus, taking

c :=

√

w2
min +

1

6
− wmin

it follows that w(t) < β(t) < w(t) + c for all t ∈ (0, 1). For instance, a rough estimation shows

that, since β
(

1
2

)

is approximately equal to 5.9, then the optimal value of c is smaller than

0.015. In particular, this yields the bound

β(t)−1/4
< ρ(t) < [β(t)− c]−1/4 t ∈ (0, 1)

for all possible solutions of (2.1)–(2.2).

Appendix. A Hamiltonian hybrid Ermakov–Painlevé I system

Just as the classical Ermakov equation of [13] constitutes the base one-component reduction

of the Ermakov–Ray–Reid system of [16, 17], so the nonlinear Ermakov–Painlevé I equation,

which is the subject of the present paper, may be embedded in a two-component hybrid

Ermakov–Painlevé I system. Ermakov–Painlevé II–IV systems and their properties have been

placed in a general solitonic context in [23]. Here, by way of illustration, a two-component

Ermakov–Painlevé I system with underlying Hamiltonian structure is set down and an asso-

ciated Ermakov–Ray–Reid system constructed.
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Here, a Ermakov–Painlevé I system is introduced according to

ẍ +

[

−5

(

ρ̇

ρ

)2

+
tρ4

4
+

3

2ρ4

]

x =
1

x2y
Φ(y/x),

ÿ +

[

−5

(

ρ̇

ρ

)2

+
tρ4

4
+

3

2ρ4

]

y =
1

xy2
Ψ(x/y)

wherein ρ is governed by the single component EPI equation

ρ̈ +

[

−5

(

ρ̇

ρ

)2

+
tρ4

4
+

3

2ρ4

]

ρ = 0 .

Thus,

ρẍ − ρ̈x =
ρ

x2y
Φ(y/x), ρÿ − ρ̈y =

ρ

xy2
Ψ(x/y) .

whence, on introduction of the involutory transformation

x∗ = x/ρ , y∗ = y/ρ ,

dt∗ = ρ−2dt

ρ∗ = 1/ρ



















R

with R2 = I, reduction is made to the canonical autonomous Ermakov–Ray–Reid system

x∗t∗t∗ =
1

x∗2y∗
Φ(y∗/x∗), y∗t∗t∗ =

1

x∗y∗2
Ψ(x∗/y∗) .

If the Ermakov–Painlevé I system has the J-parametric representation

ẍ +

[

−5

(

ρ̇

ρ

)2

+
tρ4

4
+

3

2ρ4

]

x =
2

x3
J(y/x) +

y

x4
J′(y/x)

ÿ +

[

−5

(

ρ̇

ρ

)2

+
tρ4

4
+

3

2ρ4

]

y = − 1

x3
J′(y/x)

augmented by the canonical single component EPI equation, then application of the involutory

transformation R produces the parametrisation of the canonical Hamiltonian Ermakov–Ray–

Reid system as set down in a nonlinear optics context in [31]

x∗t∗t∗ =
2

x∗3
J(y∗/x∗) +

y∗

x∗4
J′(y∗/x∗) ,

y∗t∗t∗ = − 1

x∗3
J′(y∗/x∗) .

The latter admits the Hamiltonian integral of motion

H∗ =
1

2

[

x∗2
t∗ + y∗2

t∗
]

+
1

x∗2
J(y∗/x∗) .

which, together with the Ermakov invariant I∗ allows the systematic integration of the canoni-

cal Hamiltonian system. It is remarked that such Ermakov–Ray–Reid systems with underlying

Hamiltonian structure occur in diverse physical applications.
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Abstract. We are interested in nonhomogeneous problems with a nonlinearity that
changes sign and may possess a critical growth as follows

{

−div
(

a(|∇u|p)|∇u|p−2∇u
)

= λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, N ≥ 2, 1 < p ≤

q < N, q < r ≤ q∗, λ ∈ R and function W is a weight function which changes sign in
Ω. Using variational methods, we prove the existence of four solutions: two solutions
which do not change sign and two solutions which change sign exactly once in Ω.

Keywords: subcritical and critical exponents, p&q Laplacian operator, indefinite prob-
lems.

2020 Mathematics Subject Classification: 35J60, 35J10, 35J20.

1 Introduction

The goal of this paper is to find nontrivial solutions for the problem

{

−div
(

a(|∇u|p)|∇u|p−2∇u
)

= λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω,
(Pλ)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, N ≥ 2, 1 < p ≤ q < N,

q < r ≤ q∗ and λ ∈ R, where q∗ = Nq
N−q is the critical Sobolev exponent.

We introduce the hypotheses on the function a in the sequel.

(a1) Function a : [0, ∞) → R is of class C1 and there exist constants k1, k2 ≥ 0 such that

k1tp + tq ≤ a(tp)tp ≤ k2tp + tq, for all t > 0;
BCorresponding author. Email: jc.oliveira@uft.edu.br



2 G. S. A. Costa, G. M. Figueiredo and J. C. O. Junior

(a2) Define, for t ≥ 0, A(t) =
∫ t

0 a(s)ds. The mapping t 7→ A(tp) is convex on (0, ∞);

(a3) The mapping t 7→ a(tp)
tq−p is nonincreasing on (0, ∞).

(a4) If 1 < p ≤ q ≤ 2 ≤ N, then the mapping t 7→ a(t) is nondecreasing for t > 0. If

2 ≤ p ≤ q < N, the mapping t 7→ a(t)tp−2 is nondecreasing for t > 0.

As a direct consequence of (a3), we obtain that the function a and its derivative a′ satisfy

a′(t)t ≤ (q − p)

p
a(t) for all t > 0. (1.1)

Now, if we define the function h(t) = a(t)t − q
p A(t), using (1.1) we can prove that function h

is nonincreasing. Then,
1

q
a(t)t ≤ 1

p
A(t), for all t ≥ 0. (1.2)

To illustrate the degree of generality of the kind of problems studied here, and with ad-

equate hypotheses on the functions a, which will be made clear shortly, we present some

examples of problems that are also interesting from a mathematical point of view and have a

wide range of applications in physics and related sciences.

Problem 1: Let a(t) = t
q−p

p . In this case we are studying problem as

{

−∆qu = λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω,
(Pλ)

and it is related to the main result showed in [6]. See also the work [7].

Problem 2: Let a(t) = 1 + t
q−p

p . In this case we are studying problem as

{

−∆pu − ∆qu = λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω.
(Pλ)

Problem 3: Let a(t) = 1 + 1

(1+t)
p−2

p

. In this case we are studying problem















−∆pu − div

(

|∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)

= λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω.

(Pλ)

Problem 4: Let a(t) = 1 + t
q−p

p + 1

(1+t)
p−2

p

. In this case, we are studying problem















−∆pu − ∆qu − div

(

|∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)

= λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω.

(Pλ)

Such class of problems arise from applications in physics and related sciences, such as

biophysics, plasma physics and chemical reactions (for instance, see [16, 17, 24]).

The interest in studying nonlinear partial differential equations with p&q operator has

increased because many applications arising in mathematical physics may be stated with an

operator in this form. We refer the reader to the works [9–11, 15], where the authors have

considered nonhomogeneous elliptic problems involving several type of function a.



A quasilinear problem with indefinite nonlinearity with critical growth 3

Problems involving indefinite nonlinearities, that is, signal changing nonlinearities, have

attracted the attention of many researchers over the past few decades, either because of their

application in population dynamics describing the stationary behavior of a population in

a heterogeneous environment (see [1, 19, 22, 23]) or because of their mathematical relevance.

Researchers have studied this type of problem using: variational methods (see [2,3,8,12,20,21]),

sub-supersolution method (see [12, 13, 20]) and Morse theory (see [2, 19]).

This paper deals with the class of problem (Pλ) that brings important characteristics, which

are the nonlinearities that change signal (see the hypotheses on W below) with subcritical or

critical growth and the generality of the operator that includes, for instance, p−Laplacian and

p&q−Laplacian operators. These characteristics provoke some behaviors in the geometry of

the energy functional associated to problem (Pλ) which make it difficult to find nontrivial

solutions. As far as we know, this is the only work that proves existence and multiplicity of

ground state solutions of problem (Pλ) under our assumptions.

Let us consider a weight function W : Ω → R which changes sign in Ω. More specifically,

function W satisfies

(W1) W ∈ L∞(Ω) and the set Ω+ := { x ∈ Ω : W(x) > 0} has positive measure.

It follows directly of (W1) that

λ∗ := inf











∫

Ω
|∇u|q dx

∫

Ω
|u|q dx

: u ∈ W
1,q
0 (Ω) \ {0} and

∫

Ω
W(x)|u|r dx ≥ 0











< +∞. (1.3)

We are going to require another important hypothesis on W. For this, let λ1 be the first

eigenvalue of the operator (−∆q) on Ω, with zero Dirichlet boundary condition, and let ϕ1

be the first eigenfunction associated to λ1. The weight function W satisfies only one of the

following two hypotheses:

(W+
2 )

∫

Ω
W(x)|ϕ1|r dx > 0.

(W−
2 )

∫

Ω
W(x)|ϕ1|r dx < 0.

By the variational characterization of λ1, we have

i) If the weight function W satisfies (W1) and (W+
2 ), then λ∗ = λ1.

ii) If the weight function W satisfies (W1) and (W−
2 ), then λ∗

> λ1.

We are now ready to state our first main result concerning the subcritical case.

Theorem 1.1. Let r < q∗, a satisfying (a1)–(a4) and the weight function W satisfying (W1), (W
+
2 )

or (W−
2 ). Then,

i) if λ < λ1 and u is a nontrivial solution of (Pλ), then
∫

Ω
W(x)|u|rdx > 0;
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ii) if λ ∈ (−∞, λ∗), then problem (Pλ) has two least energy solutions which do not change sign in

Ω. Moreover, if λ < λ1, these two solutions are ground state solutions;

iii) if λ ∈ (−∞, λ∗), then problem (Pλ) has two least energy nodal solutions which change sign

exactly once in Ω. Moreover, if λ < λ1, these two nodal solutions are nodal ground state

solutions.

Item (i) of Theorem 1.1 provides some interesting qualitative properties on nontrivial

solutions of problem (Pλ). For example:

1) If Ω0 := { x ∈ Ω : W(x) = 0} ⊂ Ω is a domain with smooth boundary and u is a

nontrivial solution of (Pλ), then u ̸= 0 a.e in Ω \ Ω0;

2) If Ω+ := { x ∈ Ω : W(x) > 0} and Ω− := { x ∈ Ω : W(x) < 0} have positive measure,

and u is a nontrivial solution of (Pλ), then u must “belong" more to Ω+ than Ω−, that is,

∫

Ω+

W(x)|u|rdx > −
∫

Ω−
W(x)|u|rdx > 0;

3) If Ω is a symmetric set and W ∈ C(Ω) is an odd function, then a nontrivial solution u

of (Pλ) can be neither an even nor an odd function. In fact, otherwise

∫

Ω
W(x)|u|rdx =

∫

Ω+

W(x)|u|rdx +
∫

Ω−
W(x)|u|rdx = 0;

To illustrate this, consider Ω =
{

x ∈ R
N : |x| < 2π

}

and W : R
N → R given by W(x) =

cos(|x|).

To show the existence of solutions to the problem in the critical case, we will need to add

a new hypothesis on the weight function W. The new hypothesis is as follows.

(W3) There exists an open set Ω∗ ⊂⊂ Ω+ such that |Ω−| > |Ω∗|. Moreover, there exist positive

numbers W1 and W2 such that

W1 ≥ W(x) ≥ W2 > ∥W−∥∞, ∀ x ∈ Ω∗.

The above hypothesis is fundamental to overcome the lack of compactness generated by

the critical exponent r = q∗. It is important to highlight that, up to our knowledge, (W3) is a

new hypothesis in the literature, which makes it one of the relevant points of this work.

To provide an example of a function that satisfies hypothesis (W3), just consider Ω = {x ∈
R

N : 0 ≤ |x| ≤ 2π}, Ω∗ =
{

x ∈ R
N : π

4 ≤ |x| ≤ 3π
4

}

and W : Ω → R, given by

W(x) =











sin(|x|), |x| ≤ π,

sin(|x|)
2
√

2
, π ≤ |x| ≤ 2π.

Now, let S > 0 be the best constant of the Sobolev embedding W
1,q
0 (Ω) →֒ Lq∗(Ω). Our

second main result, concerning the critical case, is the following.
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Theorem 1.2. Consider r = q∗ and λ < λ1. Let a satisfy (a1)–(a4) and the weight function W satisfy

(W1), (W3) and

∫

Ω
W(x)|ϕ1|q

∗
dx <

1

N
(W2 − ∥W−∥∞)

(

S

W1

)
N
q

k2

k1 p
+

1

N

.

Then, there are two nontrivial solutions for problem (Pλ).

The paper is organized as follows: in Section 2, we will prove technical results and the first

part of Theorem 1.1. In Section 3, we will demonstrate the second part of Theorem 1.1, namely,

the existence of least energy solutions that do not change sign. Finally, in Section 4, we will

establish the last part of Theorem 1.1, that is, the existence of least energy nodal solutions that

change sign exactly once.

2 Variational framework and preliminary results

The natural space to look for weak solutions to problem (Pλ) is the Sobolev space W
1,q
0 (Ω)

with the associated norm

∥u∥ =

(

∫

RN
|∇u|qdx

)
1
q

, for u ∈ W
1,q
0 (Ω).

Since the approach is variational, consider the energy functional associated Jλ : W
1,q
0 (Ω) → R

given by

Jλ(u) :=
1

p

∫

Ω
A (|∇u|p) dx − λ

q

∫

Ω
|u|q dx − 1

r

∫

Ω
W(x)|u|r dx.

We know that Jλ is differentiable on W
1,q
0 (Ω) and, for all u, v ∈ W

1,q
0 (Ω),

J′λ(u)v :=
∫

Ω
a (|∇u|p) |∇u|p−2∇u∇v dx − λ

∫

Ω
|u|q−2uv dx −

∫

Ω
W(x)|u|r−2uv dx.

Thus, u ∈ W
1,q
0 (Ω) is a critical point of Jλ if, and only if, u is a weak solution of problem (Pλ).

Moreover, let us define the Nehari manifold

Nλ :=
{

u ∈ W
1,q
0 (Ω) : J′λ(u)u = 0

}

(2.1)

and the nodal Nehari set

N±
λ :=

{

u ∈ W
1,q
0 (Ω) : u± ̸= 0 and J′λ(u)u = 0

}

, (2.2)

where

u+(x) := max {u(x), 0} and u−(x) := min {u(x), 0} .

Notice that u = u+ + u− and N±
λ ⊂ Nλ.

Now we introduce some important subsets of Nλ. Consider

Mλ :=

{

u ∈ W
1,q
0 (Ω) : u ∈ Nλ and

∫

Ω
W(x)|u|r dx > 0

}

(2.3)



6 G. S. A. Costa, G. M. Figueiredo and J. C. O. Junior

and

M±
λ :=

{

u ∈ W
1,q
0 (Ω) : u± ∈ Nλ and

∫

Ω
W(x)|u±|r dx > 0

}

. (2.4)

Since we want to use the method of minimization, we begin to study the behavior of the

functional Jλ on Nλ.

Proposition 2.1. Assume that the function a satisfies (a1)–(a3). Then, there exist positive constants

K1, K2 and K3 such that the following properties hold:

(i) Jλ(u) ≥ K1

(λ1−λ
λ1

)

∥u∥q, for all u ∈ Nλ.

(ii) ∥u∥ ≥ K2

(λ1−λ
λ1

)
1

r−q , for all u ∈ Nλ.

(iii)
∫

Ω
W(x)|u|r dx ≥ K3

(λ1−λ
λ1

)
r

r−q , for all u ∈ Nλ.

Proof. For every u ∈ Nλ, by (1.2), we have

Jλ(u) = Jλ(u)−
1

r
J′λ(u)u

=
1

p

∫

Ω
A(|∇u|p)dx − 1

r

∫

Ω
a (|∇u|p) |∇u|pdx − λ

(

1

q
− 1

r

)

∫

Ω
|u|qdx

≥
(

1

q
− 1

r

)

∫

Ω
a (|∇u|p) |∇u|p dx − λ

(

1

q
− 1

r

)

∫

Ω
|u|qdx.

Hence, by (a1) and the Poincaré inequality,

Jλ(u) ≥
(

r − q

qr

)(

λ1 − λ

λ1

)(

∫

Ω
|∇u|qdx

)

. (2.5)

Then item (i) follows.

We now prove item (ii). Taking u ∈ Nλ, by (a1) and the Poincaré inequality, one has
∫

Ω
|∇u|q dx ≤

∫

Ω
a (|∇u|p) |∇u|p dx = λ

∫

Ω
|u|q dx +

∫

Ω
W(x)|u|r dx

≤ λ

λ1

∫

Ω
|∇u|q dx +

∫

Ω
W(x)|u|r dx.

Hence,

(

1 − λ

λ1

)

∫

Ω
|∇u|q dx ≤

∫

Ω
W(x)|u|r dx. (2.6)

Finally, using that W ∈ L∞(Ω), the Sobolev embeddings and (2.6), there exists a positive

constant C1 such that
(

1 − λ

λ1

)

∥u∥q ≤ C1∥u∥r.

This inequality proves item (ii).

Item (iii) follows directly from inequality contained in item (ii) and by (2.6). In fact,

K2

(

1 − λ

λ1

)

≤
∫

Ω
W(x)|u|r dx.
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The next result is a direct consequence of Proposition (2.1).

Corollary 2.2. If λ < λ1, then Nλ = Mλ and N±
λ = M±

λ .

Proof. By definition of Nλ and Mλ, we get Mλ ⊂ Nλ and M±
λ ⊂ N±

λ . The other inclusions

follow from item (iii) of previous proposition.

By the same arguments of Proposition 2.1, but using the definition of λ∗ instead of Poincaré

inequality, the next result follows.

Proposition 2.3. Assume that function a satisfies (a1)–(a3). Then, there exist positive constants

K1, K2 and K3 such that the following properties hold:

(i) Jλ(u) ≥ K1

(

λ∗−λ
λ∗
)

∥u∥q, for all u ∈ Mλ.

(ii) ∥u∥ ≥ K2

(

λ∗−λ
λ∗
)

1
r−q , for all u ∈ Mλ.

(iii)
∫

Ω
W(x)|u|r dx ≥ K3

(

λ∗−λ
λ∗
)

r
r−q , for all u ∈ Mλ.

Therefore, from Proposition 2.1 and Proposition 2.3, the following real numbers are well

defined:

cλ = inf
Nλ

Jλ, dλ = inf
N±

λ

Jλ, c̃λ = inf
Mλ

Jλ and d̃λ = inf
M±

λ

Jλ. (2.7)

Moreover, if λ1 > λ, notice that Corollary 2.2 allows us called a solution of (Pλ) which is a

minimizer of Mλ (or M±
λ ) of ground state solution (or nodal ground state solution).

Lemma 2.4. Consider u ∈ W
1,q
0 (Ω) \ {0} such that

∫

Ω
W(x)|u|r dx > 0. Then, there exists a unique

tu > 0 satisfying

Jλ(tuu) := max
t≥0

Jλ(tu) > 0.

Moreover, if J′λ(u)u < 0, then tu ∈ (0, 1].

Proof. Let u ∈ W
1,q
0 (Ω)\{0} and t ∈ (0,+∞). So, by (a1), we obtain

Jλ(tu) ≤ k2
tp

p

∫

Ω
|∇u|p dx +

tq

q

(

∫

Ω
|∇u|q dx − λ

∫

Ω
|u|q dx

)

− tr

r

∫

Ω
W(x)|u|r dx (2.8)

and

Jλ(tu) ≥ k1
tp

p

∫

Ω
|∇u|p dx +

tq

q

(

∫

Ω
|∇u|q dx − λ

∫

Ω
|u|q dx

)

− tr

r

∫

Ω
W(x)|u|r dx. (2.9)

Therefore,

lim sup
t→0+

Jλ(tu)

tp
> 0 and lim sup

t→+∞

Jλ(tu)

tr
= −1

r

∫

Ω
W(x)|u|r dx. (2.10)

Thus, since
∫

Ω
W(x)|u|r dx > 0, we ensure the existence of tu ∈ (0,+∞) such that

Jλ(tuu) := max
t≥0

Jλ(tu) > 0.

To guarantee that the value tu > 0 is unique, let us prove that the equation J′λ(su)su = 0 is

satisfied only for s = tu. Indeed, this equation is equivalent to

sr−q
∫

Ω
W(x)|u|r dx + λ

∫

Ω
|u|q dx =

∫

Ω

a (|∇(su)|p)
|∇(su)|q−p

|∇u|q dx.
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By (a3), the right-hand side of the equation above is a nonincreasing function on s > 0, while

the left side, an increasing function on s > 0 provided r > q and
∫

Ω
W(x)|u|r dx > 0. This

shows the uniqueness of the value tu > 0. With the same arguments, we obtain that tu > 1

implies J′λ(u)u ≥ 0, and the proof of the lemma follows.

Lemma 2.5. If q < r < q∗ and W : Ω → R satisfies (W1), then M±
λ ̸= ∅ for all λ ∈ R.

Consequently, Mλ ̸= ∅ for all λ ∈ R.

Proof. From (W1), we may consider two open balls B1 and B2 contained in Ω such that

B1 ∩ B2 = ∅, |B1 ∩ Ω+| > 0 and |B2 ∩ Ω+| > 0.

Arguing as in [6, Lemma 2.3], we have two negative solutions u1 ∈ C∞
0 (B1) and u2 ∈ C∞

0 (B2)

such that
∫

Ω
W(x)|u1|r dx > 0 and

∫

Ω
W(x)|u2|r dx > 0.

Then, by Lemma 2.4, there are t1, t2 > 0 such that J′λ(t1u1)t1u1 = 0 and J′λ(t2u2)t2u2 = 0.

Using B1 ∩ B2 = ∅, we have that

J′λ(t1u1 + t2u2)(t1u1 + t2u2) = J′λ(t1u1)t1u1 + J′λ(t2u2)t2u2 = 0.

Hence (t1u1 + t2u2) ∈ M±
λ , which implies M±

λ ̸= ∅. Since M±
λ ⊂ Mλ, we have Mλ ̸= ∅.

Proof of item (i) of Theorem 1.1

Proof. The proof follows directly from item (iii) of Proposition 2.1.

3 Existence of two least energy solutions which do not change sign

In this section, we are going to show that c̃λ is attained by some function which is a solution

of problem (Pλ). For our purposes, we write

Jλ(u) = Φλ(u)− I(u), ∀ u ∈ W
1,q
0 (Ω),

where the functionals Φλ, I ∈ C1(W
1,q
0 (Ω), R) are given by

Φλ(u) :=
1

p

∫

Ω
A(|∇u|p) dx − λ

q

∫

Ω
|u|q dx and I(u) :=

1

r

∫

Ω
W(x)|u|r dx.

Let us consider the set Y :=
{

u ∈ W
1,q
0 (Ω) :

∫

Ω
W(x)|u|r dx > 0

}

which is an open cone of

W
1,q
0 (Ω), that is, tu ∈ Y for every t > 0 and u ∈ Y.

We now present some properties of the functionals Φλ and I when λ < λ∗.

Lemma 3.1. If λ < λ∗, then the following properties hold:

(i) Φλ and u 7→ Φ′
λ(u)u are weakly lower semicontinuous and I′(un) → I′(u) in W

1,q′

0 (Ω) if

un ⇀ u in W
1,q
0 (Ω).

(ii) There exists C1 > 0 such that Φ′
λ(u)u ≥ C1∥u∥q for every u ∈ Y and I′(u) = o(∥u∥q−1) as

u → 0 in Y.
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(iii) I(u) = I′(u)u = 0 for every u ∈ ∂Y.

(iv) t 7→ Φ′
λ(tu)u

tq−1 and t 7→ I′(tu)u
tq−1 are nonincreasing and increasing, respectively, in (0,+∞) and for

every u ∈ Y. Moreover,

lim sup
t→+∞

Φλ(tu)

tq
< lim sup

t→+∞

I(tu)

tq
= +∞.

(v) If λ < λ1, then I ′(u)u ≤ 0 < Φ′
λ(u)u for all u ∈ W1,q(Ω) \ (Y ∪ {0}).

Proof. To prove (i), let us consider (un) ⊂ W
1,q′

0 (Ω) such that un ⇀ u in W
1,q′

0 (Ω). From (a2),

it follows that
∫

Ω
A(|∇u|p) dx ≤ lim inf

n→+∞

∫

Ω
A(|∇un|p) dx. (3.1)

∫

Ω
a(|∇u|p)|∇u|p dx ≤ lim inf

n→+∞

∫

Ω
a(|∇un|p)|∇u|p dx, (3.2)

Moreover, by Sobolev embeddings, (W1) and, up to a subsequence, we get

∫

Ω
|u|q dx = lim

n→+∞

∫

Ω
|un|q dx and

∫

Ω
W(x)|u|r dx = lim

n→+∞

∫

Ω
W(x)|un|r dx. (3.3)

Hence, by (3.1), (3.2) and (3.3), the first item is proved.

To prove (ii), arguing as Proposition 2.3, we have

Φλ(u) ≥
(

λ∗ − λ

λ∗

)

∥u∥q, ∀ u ∈ W
1,q
0 (Ω). (3.4)

On the other hand, by (W1),

|I′(u)v| ≤ ∥W∥∞

(

∫

Ω
|v|r dx

)
1
r
(

∫

Ω
|u|r dx

)
r−1

r

,

and then, by Sobolev embeddings,

I′(u)
∥u∥q−1

≤ C∥u∥r−q, u ̸= 0. (3.5)

From (3.4) and (3.5) the item (ii) holds. Since ∂Y = {0}, this shows that the item (iii) holds.

Now let us prove item (iv). Since q < r and u ∈ Y, we obtain

d

dt

[

I′(tu)u
tq−1

]

= (r − q)tr−q−1
∫

Ω
W(x)|u|r dx > 0, ∀ t ∈ (0,+∞),

which implies that t 7→ I′(tu)u
tq−1

is increasing in (0,+∞) and for every u ∈ Y. Moreover,

lim sup
t→+∞

I(tu)

tq
= lim sup

t→+∞

tr−q

r

∫

Ω
W(x)|u|r dx = +∞ (3.6)

On the other hand, note that

Φ′
λ(tu)u

tq−1
=
∫

Ω

a(|∇tu|p)
|∇tu|q−p

|∇u|q dx − λ
∫

Ω
|u|q dx



10 G. S. A. Costa, G. M. Figueiredo and J. C. O. Junior

is a nonincreasing function by (a3). Moreover, we also have

lim sup
t→+∞

Φλ(tu)

tq−1
≤ 1

q

(

∫

Ω
|∇u|q dx − λ

∫

Ω
|u|q dx

)

. (3.7)

Then, by (3.6) and (3.7), we conclude the proof of item (iv).

To finish, if u ∈ W1,q(Ω) \ (Y ∪ {0}), then
∫

Ω
W(x)|u|r dx ≤ 0. Hence, by (a1) and λ < λ1,

I′(u)u =
∫

Ω
W(x)|u|r dx ≤ 0 <

∫

Ω
a(|∇un|p)|∇u|p dx − λ

∫

Ω
|u|q dx = Φ′

λ(u)u

and the proof of the last item of the proposition is complete.

Using the previous lemma and [14, Corollary 3.1], we obtain the next result.

Corollary 3.2. If λ < λ∗, then there exists vλ ∈ Mλ such that

Jλ(vλ) = c̃λ := inf
u∈Mλ

Jλ(u).

We now show that problem (Pλ) has two least energy solutions when λ < λ∗.

Proposition 3.3. If λ < λ∗, then there exists a nontrivial function vλ which is a least energy solution

of (Pλ), and ṽλ := −vλ is also a least energy solution of (Pλ). Moreover, if λ < λ1 these solutions are

ground state solutions.

Proof. Let vλ be the solution found in Corollary 3.2 and let us assume by contradiction that

v±λ ̸= 0. Since vλ is a critical point of functional Jλ and the intersection of the support of the

functions v±λ is empty, we have that v±λ ∈ Nλ. Hence,

cλ ≤ Jλ(v
±
λ ). (3.8)

Since Proposition 2.3 holds, then either
∫

Ω
W(x)|v+λ |r dx > 0 or

∫

Ω
W(x)|v−λ |r dx > 0.

Without loss of generality, we can assume that
∫

Ω
W(x)|v+λ |r dx > 0. Then, v+λ ∈ Mλ and,

hence,

c̃λ ≤ Jλ(v
+
λ ). (3.9)

Therefore, by (3.8) and (3.9),

cλ + c̃λ ≤ Jλ(v
+
λ ) + Jλ(v

−
λ ) = Jλ(vλ) = c̃λ.

This contradiction proves that the least energy solution does not change sign.

We may assume that vλ is nonnegative. Then, setting ṽλ = −vλ, we have that

c̃λ = Jλ(vλ) =
1

p

∫

Ω
A (|∇(−vλ)|p) dx − λ

q

∫

Ω
|(−vλ)|q dx − 1

r

∫

Ω
W(x)|(−vλ)|r dx = Jλ(ṽλ).

Moreover, using that vλ is a critical point of Jλ, we have for all ϕ ∈ W
1,q
0 (Ω),

∫

Ω
a(|∇(−vλ)|p)|∇(−vλ)|p−2∇(−vλ)∇ϕ dx = λ

∫

Ω
|(−vλ)|q−2(−vλ)ϕ dx

+
∫

Ω
W(x)|(−vλ)|r−2(−vλ)ϕ dx.

Thus, ṽλ is a critical point of Jλ. Therefore, problem (Pλ) has a nonpositive solution and a

nonnegative solution. Furthermore, when λ < λ1, by Corollary 2.2, Mλ = Nλ. Thus, these

solutions are ground state solutions of (Pλ).
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3.1 Proof of item (ii) of Theorem 1.1

Proof. The proof follows directly from Corollary 3.2 and Proposition 3.3.

4 Existence of two nodal solutions

We begin this section by showing that d̃λ is attained by some function which is a least energy

nodal solution of problem (Pλ).

Proposition 4.1. If λ < λ∗, then there exists w̃λ ∈ M±
λ such that

dλ := Jλ(w̃λ).

Proof. Let (wn) ⊂ M±
λ be a minimizing sequence, that is, a sequence satisfying

(wn) ⊂ M±
λ and Iλ(wn) = dλ + on(1). (4.1)

By item (i) of Lemma 2.1, we obtain that functional Jλ is coercive on M±
λ , and hence (wn) is

bounded in W
1,q
0 (Ω). Then, by Sobolev embeddings and the continuity of the maps w 7→ w+

and w 7→ w− are continuous from Lr(RN) in Lr(RN) (for details, see [4, Lemma 2.3] with

suitable adaptations), there exists wλ ∈ W
1,q
0 (Ω) such that, up to a subsequence, we have















w±
n ⇀ w±

λ in W
1,q
0 (Ω),

w±
n → w±

λ a.e. in Ω,

w±
n → w±

λ in Ls(Ω), 1 ≤ s < q∗.

(4.2)

We claim that w±
λ ̸= 0 and

∫

Ω
W(x)|w±

λ |r dx > 0. Indeed, using that W ∈ L∞(Ω) and item

(iii) of Lemma 2.1, we obtain

∫

Ω
|w±

λ |r dx = lim
n→∞

∫

Ω
|w±

n |r dx ≥ K3

∥W∥∞

> 0, (4.3)

and
∫

Ω
W(x)|w±

λ |r dx = lim
n→∞

∫

Ω
W(x)|w±

n |r dx ≥ K3 > 0, (4.4)

that proves our claim. Therefore, by Lemma 2.4, there exists t±λ ∈ (0,+∞) such that t±λ w±
λ ∈

Mλ.

We claim that t±λ ∈ (0, 1). In fact, by Fatou’s Lemma and (4.2), we have

∫

Ω
a(|w±

λ |p)|w±
λ |p dx ≤ lim inf

n→+∞

∫

Ω
a(|w±

n |p)|w±
n |p dx

= lim
n→+∞

(

λ
∫

Ω
|w±

n |q dx +
∫

Ω
W(x)|w±

n |r dx

)

= λ
∫

Ω
|w±

λ |q dx +
∫

Ω
W(x)|w±

λ |r dx,

that is, J′λ(w
±
λ )w

±
λ ≤ 0. Hence, by Lemma 2.4, the claim follows.

Similarly, with the same arguments of Proposition 3.2, we obtain
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Jλ(t
±
λ w±

λ ) = Jλ(t
±
λ w±

λ )−
1

q
J′λ(t

±
λ w±

λ )t
±
λ w±

λ

=
∫

Ω

[

1

p
A(|∇(t±λ w±

λ )|p)−
1

q
a(|∇(t±λ w±

λ )|p)|∇(t±λ w±
λ )|p

]

dx

+

(

1

q
− 1

r

)

∫

Ω
W(x)|t±λ w±

λ |r dx

≤
∫

Ω

[

1

p
A(|∇w±

λ |p)−
1

q
a(|∇u±

λ |p)|∇w±
λ |p
]

dx (4.5)

+

(

1

q
− 1

r

)

∫

Ω
W(x)|w±

λ |r dx

≤ lim inf
n→+∞

[

Jλ(w
±
n )−

1

q
J′λ(w

±
n )w

±
n

]

= Jλ(w
±
n ) + on(1).

Then, setting w̃λ = t−λ w−
λ + t+λ w+

λ , from (4.4),

∫

Ω
W(x)|w̃λ|r dx =

∫

Ω
W(x)|t−λ w−

λ |r dx +
∫

Ω
W(x)|t+λ w+

λ |r dx ≥ 2K3 > 0,

that is, w̃λ ∈ M±
λ . Hence, using (4.5), we can conclude

dλ = Jλ(w̃λ) = Jλ(t
−
λ w−

λ ) + Jλ(t
+
λ w+

λ )

≤ Jλ(w
−
n ) + Jλ(w

+
n ) + on(1) = Jλ(wn) + on(1) = dλ.

Thus, the level dλ is attained by the function w̃λ ∈ M±
λ .

Corollary 4.2. Let w̃λ be a minimizer found in Propositions 4.1. Then, w̃λ is a critical point of Jλ and

has exactly two nodal domains.

Proof. The proof that w̃λ ∈ M±
λ is a critical point of Jλ is done using a suitable quantitative

deformation lemma and Brouwer’s topological degree properties. It is done, with suitable

modifications, as in [5, Lemma 4.3] and [5, Theorem 1.1]. To show that the nodal solution w̃λ

has exactly two nodal domains, or in other words it changes sign exactly once, see for instance

[5, pages 1230-1232] .

Using the same arguments as in Proposition 3.3 one can immediately prove the following

result.

Corollary 4.3. If λ < λ∗, then there exists a function w̃λ which is a nodal least energy solution of

(Pλ), and wλ := −w̃λ is also a nodal least energy solution of (Pλ). Moreover, if λ < λ1, then these

solutions are ground state solutions of (Pλ).

4.1 Proof of item (iii) of Theorem 1.1.

Proof. It follows directly from Corollaries 4.2 and 4.3.
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5 A nontrivial solution for the indefinite critical problem

In this section we consider the following critical problem

{

−div
(

a(|∇u|p)|∇u|p−2∇u
)

= λ|u|q−2u + W(x)|u|q∗−2u in Ω,

u = 0 on ∂Ω,
(Pλ)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, N ≥ 2, 1 < p ≤ q < N and

λ ∈ R, where q∗ = Nq
N−q is the critical Sobolev exponent. Here, we consider the associated

functional Iλ ∈ C1(W
1,q
0 (Ω), R) given by

Iλ(u) :=
1

p

∫

Ω
A (|∇u|p) dx − λ

q

∫

Ω
|u|q dx − 1

r

∫

Ω
W(x)|u|q∗ dx.

Let us show that the associated functional to the indefinite critical problem has a mountain

pass geometry.

Proposition 5.1. The functional Iλ : W
1,q
0 (Ω) → R satisfies the following properties:

i) There exist positive numbers α and ρ such that

Iλ(u) ≥ ρ, for all ∥u∥ = ρ.

ii) There exists a function e ∈ W
1,q
0 (Ω) such that ∥e∥ ≥ ρ and

Iλ(e) < 0.

Proof. By (a1) and the Poincaré inequality,

Iλ(u) ≥
k1

p

∫

Ω
|∇u|p dx +

1

q

∫

Ω
|∇u|q dx − λ

q

∫

Ω
|u|q dx −

∫

Ω
W(x)|u|q∗ dx

≥ 1

q

(

λ1 − λ

λ1

)

∫

Ω
|∇u|q dx −

∫

Ω
W(x)|u|q∗ dx.

Thus, by Sobolev embeddings and W ∈ L∞(Ω), there exists a positive constant C such that

Iλ(u) ≥
1

q

(

λ1 − λ

λ1

)

∥u∥q − C∥u∥q∗ = ∥u∥q

[

1

q

(

λ1 − λ

λ1

)

− C∥u∥q∗−q

]

.

Therefore, since λ < λ1, we can choose ∥u∥ = ρ small enough such that there exists α > 0

satisfying

Iλ(u) ≥ ρ, for all ∥u∥ = ρ.

To prove item (ii), let us consider a nontrivial function w ∈ C∞
0 (Ω+) \ {0} and t > 0. Then,

by (a1),

Iλ(tw) ≤ k2

p

∫

Ω
|∇(tw)|p dx +

1

q

∫

Ω
|∇(tw)|q dx − λ

q

∫

Ω
|tw|q dx −

∫

Ω
W(x)|tw|q∗ dx

< tq∗
[

tp−q∗ k2

p

∫

Ω
|∇w|p dx +

tq−q∗

q

∫

Ω
|∇w|q dx −

∫

Ω
W(x)|w|q∗ dx

]

.

Hence, letting t → +∞,

lim sup
t→∞

Iλ(tw) ≤ −∞.
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Recall that, if E is a Banach space, Φ ∈ C1(E, R) and c ∈ R we say that Φ satisfies the

Palais-Smale condition at level c (shortly: Φ satisfies (PS)c) if every sequence (un) ∈ E such

that Φ(un) → c in R and Φ′(un) → 0 in E′, as n → ∞, admits a subsequence that converges

for a critical point of Φ. This sequence is called a (PS)c sequence for Φ.

Notice that Lemma 5.1 ensures us the existence of a (PS)cλ
sequence for the functional

Iλ : W
1,q
0 (Ω) → R, where

cλ = inf
η∈Γ

max
t∈[0,1]

Iλ(η(t)) > 0,

and

Γ := {η ∈ C([0, 1], X) : η(0) = 0, Iλ(η(1)) < 0}.

Lemma 5.2. If λ < λ1 and (un) ⊂ W
1,q
0 (Ω) is a (PS)c sequence for Iλ, then (un) is bounded in

W
1,q
0 (Ω).

Proof. Let (un) ⊂ W
1,q
0 (Ω) be a (PS)c sequence for Iλ. Then, by (a1) and Poincaré inequality

for W
1,q
0 (Ω),

c + on(1)∥un∥ = Iλ(un)−
1

q∗
I′λ(un)un

=
1

p

∫

Ω
A(|∇un|p) dx − 1

q∗

∫

Ω
a(|∇un|p)|∇un|p dx − λ

(

1

q
− 1

q∗

)

∫

Ω
|un|q dx

≥
(

1

q
− 1

q∗

)(

k2

∫

Ω
|∇un|p dx +

∫

Ω
|∇un|q dx

)

− λ

λ1

(

1

q
− 1

q∗

)

∫

Ω
|∇un|q dx.

Hence,

c + on(1)∥un∥ ≥
(

1 − λ

λ1

)(

1

q
− 1

q∗

)

∥un∥q,

which implies that (un) is bounded in W
1,q
0 (Ω).

Lemma 5.3. If λ < λ1, then

i)
∫

Ω
W(x)|ϕ1|q∗ dx > 0.

ii) cλ <

(

k2
k1 p +

1
N

) ∫

Ω
W(x)|ϕ1|q∗ dx

Proof. Using Lemma 5.1, let us consider tα > 0 such that Jλ(tα ϕ1) = maxt≥0 Iλ(tϕ1). Then, by

(a1),

t
q∗
α

∫

Ω
W(x)|ϕ1|q

∗
dx =

∫

Ω
a(|∇(t

p
α ϕ1)|p)|∇(t

p
α ϕ1)|p dx − λt

q
α

∫

Ω
|ϕ1|q dx

≥ k1t
p
α

∫

Ω
|∇ϕ1|p dx + t

q
α (λ1 − λ)

∫

Ω
|ϕ1|q dx > 0.

(5.1)

This shows the first item. Moreover, with the same argument as in Lemma 2.4,

1 ≥ tα ≥







k1

∫

Ω
|∇ϕ1|p dx

∫

Ω
W(x)|ϕ1|q

∗
dx







1
q∗−q

> 0.
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Therefore, by (a1) and (5.1),

cλ ≤ Iλ(tα ϕ1)

≤ k2
t

p
α

p

∫

Ω
|∇ϕ1|p dx +

t
q
α

q
(λ1 − λ)

∫

Ω
|ϕ1|q dx − t

q∗
α

q∗

∫

Ω
W(x)|ϕ1|q

∗
dx

≤
(

k2

k1 p
+

1

q
− 1

q∗

)

t
q∗
α

∫

Ω
W(x)|ϕ1|q

∗
dx

<

(

k2

k1 p
+

1

N

)

∫

Ω
W(x)|ϕ1|q

∗
dx.

(5.2)

The proof of the theorem is complete.

Proposition 5.4. If λ < λ1 and

∫

Ω
W(x)|ϕ1|q

∗
dx <

1

N
(W2 − ∥W−∥∞)

(

S

W1

)
N
q

k2

k1 p
+

1

N

, (5.3)

where W1, W2 are positive constants given by (W3), then Iλ has a nontrivial critical point.

Proof. By Proposition 5.1, let (un) ⊂ W
1,q
0 (Ω) be a (PS)cλ

-sequence for functional Iλ which is

bounded in W
1,q
0 (Ω) by Lemma 5.2. Then, up to a subsequence,















un ⇀ u weakly in W
1,q
0 (Ω),

un → u strongly in Ls(Ω) for any 1 ≤ s < q∗,

un(x) → u(x) for a.e. x ∈ Ω,

(5.4)

for some u ∈ W
1,q
0 (Ω). From the Sobolev embeddings, we can conclude that u is a critical

point of Iλ.

Now we are going to show that u is nontrivial. Suppose, by contradiction, that u = 0 in

Ω∗ ⊂⊂ Ω+, where Ω∗ is a open set given by (W3). Since (un) is bounded in W
1,q
0 (Ω) and

using the Lions’s Concentration Compactness Principle [18], we may suppose that

|∇un|q ⇀ µ and |un|q
∗
⇀ ν,

for some measures µ and ν. Hence, we obtain an at most countable index set Γ, sequences

(xi) ⊂ Ω∗ and (µi), (νi) ⊂ (0, ∞) such that

µ ≥ |∇u|q + ∑
i∈Γ

µiδxi, ν = |u|q∗ + ∑
i∈Γ

νiδxi and Sν
q/q∗

i ≤ µi, (5.5)

for all i ∈ Γ, where δxi
is the Dirac mass at xi ∈ Ω∗ and S > 0 is the best constant of the

Sobolev embedding W
1,q
0 (Ω) →֒ Lq∗(Ω). Thus it is sufficient to show that {xi}i∈Γ ∩ Ω∗ = ∅.

Then we suppose, by contradiction, that xi ∈ Ω∗ for some i ∈ Γ. Consider R > 0 and the

function ψR(x) := ψ(xi − x), where ψ ∈ C∞
0 (Ω∗, [0, 1]) is such that ψ = 1 on BR(xi), ψ = 0

on Ω\B2R(xi) and |∇ψ|∞ ≤ 2. We suppose also that R > 0 is chosen in such way that

I′µ(un)ψRun = on(1), we obtain
∫

Ω
ψR a(|∇un|p)|∇un|p dx = −

∫

Ω
una(|∇un|p)|∇un|p−2∇un · ∇ψR dx

+ λ
∫

Ω
|un|qψR dx +

∫

Ω
W(x)|un|q

∗
ψRdx + on(1).
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One gets from the weakly convergence un ⇀ u = 0 that
∫

Ω
una(|∇un|p)|∇un|p−2∇un · ∇ψR dx = 0 and lim

n→∞
λ
∫

Ω
|un|qψR dx = 0.

Consequently, by (5) and (a1), as n → +∞,
∫

Ω
|∇un|qψR dx ≤

∫

Ω
a(|∇un|p)|∇un|pψR dx =

∫

Ω
W(x)|un|q

∗
ψRdx + on(1).

Since ψR has compact support, taking n → ∞ in the above expression, we have
∫

Ω
ψRdµ ≤

∫

Ω
ψRW(x)dν,

which implies that

µi ≤ W1νi,

where W1 ≥ W(x) ≥ W2 > 0 for all x ∈ Ω∗ ⊂⊂ Ω+. Since µi > 0, then xi ∈ Ω∗. Therefore,

from (5.5), we get
(

S

W1

)

q∗
q∗−q

≤ νi. (5.6)

On the other hand, (un) is a (PS)cλ
-sequence for functional Iλ then, arguing as Proposition

2.3, we have
∫

Ω
W(x)|un|q

∗
dx + on(1) > 0. (5.7)

Since sequence un ⇀ u = 0 weakly in W
1,q
0 (Ω), ψR ∈ C∞

0 (Ω∗; [0, 1]) and |Ω−| ≥ |Ω∗|, we

obtain

cλ = Iλ(un)−
1

q
I′λ(un)unψR + on(1)

=

(

1

q
− 1

q∗

)

∫

Ω
W(x)|un|q

∗
dx + on(1)

=
1

N

[

∫

Ω+

W(x)|un|q
∗
dx +

∫

Ω−
W(x)|un|q

∗
dx

]

+ on(1)

≥ 1

N

[

∫

Ω∗
W(x)|un|q

∗
dx − ∥W−∥∞

∫

Ω−
|un|q

∗
dx

]

+ on(1)

≥ 1

N

(

W2 − ∥W−∥∞

)

∫

Ω∗
|un|q

∗
dx + on(1)

≥ 1

N

(

W2 − ∥W−∥∞

)

∫

Ω∗
ψR|un|q

∗
dx + on(1).

Therefore, using (5.5) and (5.6), we get

cλ ≥ 1

N

(

W2 − ∥W−∥∞

)

∑
i∈Γ

ψR(xi)νi

=
1

N

(

W2 − ∥W−∥∞

)

νi

≥ 1

N

(

W2 − ∥W−∥∞

)

(

S

W1

)
N
q

.

Since (5.3) holds, we obtain a contradiction by Lemma 5.3. Hence, u ∈ W
1,q
0 (Ω) is a

nontrivial solution.
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5.1 Proof of Theorem 1.2.

Proof. If λ < λ1, by Proposition 5.1 and Lemma 5.2, we have that there exists a critical point

uλ of Iλ. Thus, if

∫

Ω
W(x)|ϕ1|q

∗
dx <

1

N
(W2 − ∥W−∥∞)

(

S

W1

)
N
q

k2

k1 p
+

1

N

,

then, by Proposition 5.4, uλ is nontrivial solution. Moreover, using the same arguments as in

Proposition 3.3, one can immediately shows that −uλ is also a nontrivial solution.
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1 Introduction

Consider differential systems of the form

{

x′ = −y + P,

y′ = x + Q,
(1.1)

where P = ∑
∞
k=2 Pk(x, y) and Q = ∑

∞
k=2 Qk(x, y) where, Pk and Qk are homogeneous polyno-

mials in x and y of degree k . If every orbit in a punctured neighbourhood of O is a nontrivial

cycle then the origin point O(0, 0) is said to be a center. In particular, if every cycle in a

punctured neighbourhood of O has the same period then this origin point is said to be an

isochronous center. Christian Huygens is credited with being one of the first scholars to study

isochronous systems in the XVII century, even before the development of the differential cal-

culus. Huygens investigated the cycloidal pendulum, which has isochronous oscillations in

opposition to the monotonicity of the period of the usual pendulum. It is probably the first

example of a nonlinear isochrone. For more details see [10, 12]. However, it is far from being

completely resolved, beside some specific families of vector fields [4, 7].

By [1], we know that for any analytic system (1.1), the existence of an analytic commu-

tator with linear part (x, y)t is a necessary and sufficient condition for the origin to be an

isochronous center. In [2,3] Algaba and Reyes have studied a particular case of this family are

the plane polynomial systems which have a center focus equilibrium at the origin and whose

angular speed is constant. In these systems, the origin is the only finite equilibrium and if

BCorresponding author. Email: zxzhou@yzu.edu.cn
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it is a center, it will be automatically isochronous. These systems, up to a linear change of

variable, have the following form:

x′ = −y + xH(x, y), y′ = x + yH(x, y), (1.2)

H(0, 0) = 0. They pointed out that if (1.2) has an analytic commutator then it is in the

form of (U, V)t = (xK(x, y), yK(x, y))t, where K and H are polynomials of the same degree.

They also characterize the system x′ = −y + Ps(x, y) + xH(x, y), y′ = x + Qs(x, y) + yH(x, y),

where H(x, y) is a polynomial with degree greater than or equal to s, if it has a polynomial

commutator, then it is in the form of (U, V)t = (us(x, y) + xK(x, y), vs(x, y) + yK(x, y))t, here

Ps, Qs, us, vs are homogeneous polynomials of degree s.

There are only a few families of polynomial differential systems in which a complete

classification of the isochronous centers is known, and almost all of them have polynomial

commutator. The quadratic isochronous centers, characterized by Loud [17]. In Pleshkan

[18], cubic isochronous centers with homogeneous nonlinear part are settled. In Christopher

and Devlin[6], the isochronous centers of the Kukles family are obtained. Commutators of

quadratic centers are computed in Sabatini [19]; commutators of cubic systems with homoge-

neous nonlinear part can be found in Gasull et al. [11]; commutators for the Kukles system

can be seen in Volokitin and Ivanov [20]. The first example of a polynomial isochronous center

without polynomial commutator is found in Devlin [8].

A center of (1.1) is called a Weak Center if the Poincaré–Liapunov first integral can be

written as H = 1
2 (x2 + y2)(1 + h.o.t.). By literature [13]-[16] we know that a center of an

analytic or polynomial differential system (1.1) is a weak center if and only if it can be written

as
{

x′ = −yΛ̄ + xΩ,

y′ = xΛ̄ + yΩ,
(1.3)

where Λ̄ = 1 + Λ(x, y) and Ω = Ω(x, y) are analytic functions or polynomials such that

Λ(0, 0) = Ω(0, 0) = 0. The class of differential systems (1.3) is called the Λ–Ω system.

The weak centers contain the uniform isochronous centers and the holomorphic isochronous

centers [13], they also contain the class of centers studied by Alwash and Lloyd [5], but they

do not coincide with all classes of isochronous centers [13], because in general weak centers

are not isochronous.

In [14, 16] Llibre et al. put forward such conjecture.

Conjecture. The polynomial differential system of degree m
{

x′ = −y(1 + µ(a2x − a1y)) + x((a1x + a2y) + Φm−1(x, y)),

y′ = x(1 + µ(a2x − a1y)) + y((a1x + a2y) + Φm−1(x, y)),
(1.4)

where (µ + m − 2)(a2
1 + a2

2) ̸= 0, and Φm−1(x, y) is a homogeneous polynomial of degree

m − 1 has a weak center at the origin if and only if system (1.4) after a linear change of

variables (x, y) → (X, Y) is invariant under the transformations (X, Y, t) → (−X, Y,−t). They

have proved the conjecture holds for m = 2, 3, 4, 5, 6. And remarked that the only difficulty

for proving conjecture for the Λ–Ω systems of degree m with m > 6 is the huge number of

computations for obtaining the conditions that characterize the centers. In [21, 22] we use a

method different from Llibre [14] and more simply, without huge number of computation, get

the necessary and sufficient conditions for the origin point of Λ–Ω systems:
{

x′ = −y(1 + µ(a2x − a1y)) + x(ν(a1x + a2y) + Ψm−1 + Ψ2m−1),

y′ = x(1 + µ(a2x − a1y)) + y(ν(a1x + a2y) + Ψm−1 + Ψ2m−1)
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and
{

x′ = −y(1 + µ(a2x − a1y)) + x(ν(a1x + a2y) + Ψ2 + Ψn),

y′ = x(1 + µ(a2x − a1y)) + y(ν(a1x + a2y) + Ψ2 + Ψn),

where m > 2, n ≥ 5 and Ψk is a homogeneous polynomial of degree k, to be a center. Of

special note is that the function Ω in the above two systems is a polynomial of missing some

terms. For the polynomial differential system of higher degree, especially when the polyno-

mial has no missing any term, it is difficult to derive the necessary conditions for the singular

point being a center by either the Lyapunov’s power series method or Poincaré’s successor

function method. Although according to Hilbert’s finite basis theory, the necessary conditions

must be obtained in finite steps, how much this finite number is very difficult to know [9]. To

avoid finding this finite number, we will find the central conditions by determining when it

has an analytic commutator.

In the following we will discuss the center problem for the Λ–Ω system (1.3) with Ω no

missing any terms. Specifically, consider Λ–Ω differential systems:

{

x′ = −y(1 + µ(a1y − a2x)) + x(λ(a1x + a2y) + H(x, y)),

y′ = x(1 + µ(a1y − a2x)) + y(λ(a1x + a2y) + H(x, y))
(1.5)

and
{

x′ = −y(1 + µ(a1y − a2x) + φ2(x, y)) + x(λ(a1x + a2y) + ψ2(x, y) + H(x, y)),

y′ = x(1 + µ(a1y − a2x) + φ2(x, y)) + y(λ(a1x + a2y) + ψ2(x, y) + H(x, y)),
(1.6)

where λ, µ, a1, a2 are real numbers such that µ(a2
1 + a2

2) ̸= 0, H(x, y) = ∑
∞
k=2 hk(x, y) or

H(x, y) = ∑
n
k=3 hk(x, y), hk(x, y) is a homogeneous polynomial of degree k. We will give

the necessary and sufficient conditions for these two families of differential systems to have

a polynomial commutator or analytic commutator, apply the obtained results to judge the

origin point of their to be a center (isochronous center, weak center).

2 Analytic commutator

As a2
1 + a2

2 ̸= 0, taking X = a1x + a2y, Y = a1y − a2x, the system (1.5) becomes

{

X′ = −Y(1 + µY) + X(λX + H(X, Y)),

Y′ = X(1 + µY) + Y(λX + H(X, Y)).

For convenience, let us consider

{

x′ = −y(1 + µy) + x(λx + H(x, y)) = P(x, y),

y′ = x(1 + µy) + y(λx + H(x, y)) = Q(x, y),
(2.1)

where µ ̸= 0, H = ∑
∞
i=2 hi(x, y), hi(x, y) is homogeneous polynomials of degree i. By [2], if

system (2.1) has an analytic commutator, then either it has the form

(U, V)t = (x + u2 + xK(x, y), y + v2 + yK(x, y))t (2.2)

or

(U, V)t = (u2 + xK(x, y), v2 + yK(x, y))t,
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where K = ∑
∞
i=2 ki(x, y), ki(x, y) is homogeneous polynomials of degree i. In this paper, we

are only interested in the center problem for system (2.1), therefore, we will only discuss when

does (2.1) have a commutator in the form of (2.2)?

Lemma 2.1. If xhn−1 + ykn−1 = 0, then

u2hn−1 − P2kn−1 − x(hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2) = µ(n − 3)(x2 + y2)kn−1, (2.3)

where u2 = 2µxy, v2 = µ(y2 − x2), P2 = µ(x2 − y2), Q2 = 2µxy.

Proof. As xhn−1 + ykn−1 = 0, xhn−1 x = −hn−1 − ykn−1 x, xhn−1 y = −kn−1 − ykn−1 y, thus

x(hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2)

= − u2(hn−1 + ykn−1 x)− v2(kn−1 + ykn−1 y)− kn−1 xP2 − kn−1 yQ2

= µ(x2 + y2)kn−1 − µ(x2 + y2)(xkn−1 x + ykn−1 y)

= (2 − n)µ(x2 + y2)kn−1, u2hn−1 − P2kn−1

= 2µxyhn−1 − µ(x2 − y2)kn−1 = −µ(x2 + y2)kn−1.

Add the above two equations, it follows that equation (2.3) is valid.

Lemma 2.2. For n-th degree homogeneous polynomial functions hn(x, y) and kn(x, y), if they satisfy

xhn + ykn = 0, (2.4)

and

x(nhn + ykn x − xkn y) = (n − 3)µ(x2 + y2)kn−1, (n = 3, 4, . . . ) (2.5)

then

hn =
n−3

∑
j=0

(−1)j+1µj+1λn−jC
j
n−3xn−1−jyj+1, (n = 3, 4, 5, . . . .) (2.6)

and

kn =
n−3

∑
j=0

(−1)jλn−jµ
jC

j
n−3xn−jyj, (n = 3, 4, 5, . . . ), (2.7)

where λi (i = 3, 4, . . . ) are real numbers.

Proof. Based on the assumptions, when n = 3 we have

xh3 + yk3 = 0, 3h3 + yk3 x − xk3 y = 0.

Putting x = cos θ, y = sin θ, the above equations become

cos θh3(cos θ, sin θ) + sin θk3(cos θ, sin θ) = 0,

dk3(cos θ, sin θ)

dθ
= −3 tan θk3(cos θ, sin θ),

solving these equations we deduce that

k3(cos θ, sin θ) = λ3 cos3 θ.

Similarly, when n = 4 we obtain

dk4(cos θ, sin θ)

dθ
= −4 tan θk4(cos θ, sin θ)− µ sec θk3(cos θ, sin θ),
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solving this linear equation we have

k4(cos θ, sin θ) = cos4 θ(λ4 − λ3µ tan θ).

Suppose that

kn(cos θ, sin θ) = cosn θ
n−3

∑
j=0

(−1)jC
j
n−3λn−jµ

j tanj θ. (2.8)

Next we will prove that (2.8) is also true when n is replaced by n + 1.

In fact, by assuming we obtain

dkn+1(cos θ, sin θ)

dθ
= −(n + 1) tan θkn+1 − (n − 2)µ sec θkn(cos θ, sin θ).

Substituting (2.8) into the above yields

dkn+1(cos θ, sin θ)

dθ
= −(n + 1) tan θkn+1 − (n − 2) cosn−1 θ

(

n−3

∑
j=0

(−1)jC
j
n−3λn−jµ

j+1 tanj θ

)

,

solving this linear equation we get

kn+1 = cosn+1 θ

(

λn+1 − (n − 2)
∫

cos−2 θ

(

n−3

∑
j=0

(−1)jC
j
n−3λn−jµ

j+1 j tanj θ

)

dθ

)

= cosn+1 θ

(

λn+1 − (n − 2)
n−3

∑
j=0

(−1)jC
j
n−3λn−j

1

j + 1
µj+1 tanj+1 θ

)

= cosn+1 θ
n−2

∑
j=0

(−1)jC
j
n−2λn+1−jµ

j tanj θ.

Therefore, by mathematical induction, the relation (2.8) is valid for any n ≥ 3. So, the relations

(2.6) and (2.7) are valid.

Theorem 2.3. The system (2.1) has an analytic commutator in the form of (2.2), if and only if

λ = µ,

u2 = 2µxy, v2 = µ(y2 − x2),

h2 = −λ2xy, k2 = λ2x2,

hn =
n−3

∑
j=0

(−1)j+1λn−jC
j
n−3xn−1−jyj+1, (n = 3, 4, 5, . . . )

kn =
n−3

∑
j=0

(−1)jλn−jC
j
n−3xn−jyj, (n = 3, 4, 5, . . . ),

where λi (i = 2, 3, 4, . . . ) are real numbers.

Moreover, the origin point of (2.1) is a center and isochronous center.
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Proof. By [2], the vector (2.2) is an commutator of system (2.1) if and only if the Lie bracket

vanishes, that is,

(

Ux Uy

Vx Vy

)

·

(

P

Q

)

−

(

Px Py

Qx Qy

)

·

(

U

V

)

= 0, (2.9)

expanding it

(

1 + u2 x +
∞

∑
i=2

(xki)x

)(

− y + P2 +
∞

∑
i=2

xhi

)

+

(

u2 y +
∞

∑
i=2

(xki)y

)(

x + Q2 +
∞

∑
i=2

yhi

)

=

(

P2 x +
∞

∑
i=2

(xhi)x

)(

x + u2 +
∞

∑
i=2

xki

)

+

(

− 1 + P2 y +
∞

∑
i=2

(xhi)y

)(

y + v2 +
∞

∑
i=2

yki

)

, (2.10)

(

v2 x +
∞

∑
i=2

(yki)x

)(

− y + P2 +
∞

∑
i=2

xhi

)

+

(

1 + v2 y +
∞

∑
i=2

(yki)y

)(

x + Q2 +
∞

∑
i=2

yhi

)

=

(

1 + Q2 x +
∞

∑
i=2

(yhi)x

)(

x + u2 +
∞

∑
i=2

xki

)

+

(

Q2 y +
∞

∑
i=2

(yhi)y

)(

y + v2 +
∞

∑
i=2

yki

)

, (2.11)

where P2 = λx2 − µy2, Q2 = (λ + µ)xy.

From the terms of degree 2 of (2.10) and (2.11) equal to zero follows that

{

v2 = P2 + yu2 x − xu2 y,

u2 = −Q2 + xv2 y − yv2 x.
(2.12)

Solving (2.12) we get

u2 = (λ + µ)xy, v2 = λy2 − µx2. (2.13)

By the terms of degree 3 of (2.10) and (2.11) equal to zero we obtain

{

u2 xP2 + u2 yQ2 − P2 xu2 − P2 yv2 = x(2h2 + yk2 x − xk2 y),

v2 xP2 + v2 yQ2 − Q2 xu2 − Q2 yv2 = y(2h2 + yk2 x − xk2 y).
(2.14)

The first equation of above multiplied by y minus the second equation multiplied by x, we

deduce that

P2(yu2 x − xv2 x) + Q2(yu2 y − xv2 y) = u2(yP2 x − xQ2 x) + v2(yP2 y − xQ2 y),

which yields µ(λ − µ) = 0, in view of µ ̸= 0, then λ = µ. Therefore,

u2 = 2µxy, v2 = µ(y2 − x2), P2 = µ(x2 − y2), Q2 = 2µxy. (2.15)

Substituting (2.15) into (2.14) which follows that

2h2 + yk2 x − xk2 y = 0. (2.16)

From the terms of degree 4 of equations (2.10) and (2.11) equal to zero follows that

u2h2 − P2k2 = x(3h3 + h2 xu2 + h2 yv2 − k2 xP2 − k2 yQ2 + yk3 x − xk3 y), (2.17)

v2h2 − Q2k2 = y(3h3 + h2 xu2 + h2 yv2 − k2 xP2 − k2 yQ2 + yk3 x − xk3 y). (2.18)
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Equation (2.17) multiplied by y minus (2.18) multiplied by x which implies that

h2(yu2 − xv2) = k2(yP2 − xQ2),

substituting (2.15) into the above equation we get

xh2 + yk2 = 0. (2.19)

Solving equations (2.16) and (2.19) we deduce that

h2 = −λ2xy, k2 = λ2x2, (2.20)

where λ2 is a constant. Substituting (2.20) into (2.17) we get

3h3 + yk3 x − xk3 y = 0. (2.21)

Similarly, by the terms of degree n + 1 of equations (2.10) and (2.11) equal to zero we

deduce that

u2hn−1 − P2kn−1 = x(nhn + hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2 + ykn x − xkn y), (2.22)

v2hn−1 − Q2kn−1 = y(nhn + hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2 + ykn x − xkn y), (2.23)

from these equations follow that

xhn−1 + ykn−1 = 0. (2.24)

Using (2.24) and Lemma 2.1 we get

u2hn−1 − P2kn−1 − x(hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2) = µ(n − 3)(x2 + y2)kn−1.

Substituting this equation into (2.22) which yields that

x(nhn + ykn x − xkn y) = (n − 3)µ(x2 + y2)kn−1. (2.25)

Similarly, using the terms of degree n + 2 of (2.10) and (2.11) equal to zero we obtain

xhn + ykn = 0. (2.26)

By equations (2.25) and (2.26) and Lemma 2.1 imply that kn, hn can be expressed by (2.6) and

(2.7).

By [1, 2], the origin point of (2.1) is a center and isochronous center.

In summary, the proof is finished.

Corollary 2.4. If in the system (2.1), H(x, y) = ∑
n
i=2 hi(x, y), hi(x, y) (i = 2, 1, . . . , n) are homoge-

neous polynomials of degree i, and it has a polynomial commutator in the form of (2.2), if and only

if,

λ = µ; u2 = 2µxy, v2 = µ(y2 − x2); h2 = −λ2xy, k2 = λ2x2; hj = k j = 0 (j = 3, 4, . . . , n).

Proof. By the proof of Theorem 2.3 we get that

λ = µ, u2 = 2µxy, v2 = µ(y2 − x2), h2 = −λ2xy, k2 = λ2x2

and

x(jhj + yk j x − xk j y) = (j − 3)µ(x2 + y2)k j−1 (j = 3, 4, . . . , n, n + 1)

and

xhj + yk j = 0, (j = 3, 4, . . . , n, n + 1).

Taking j = n + 1, we get kn = 0 and hn = 0, substituting thus into the above equations

with j = n which implies that kn−1 and hn−1 = 0, as so on we can deduce k j = 0 and

hj = 0, (j = 3, 4, . . . , n). Thus the proof is completed.
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3 Polynomial commutator

In this section we will discuss when does the system (1.6) with λ = µ ̸= 0 and h3 ̸= 0, have a

polynomial commutator in the form

(

U

V

)

=

(

x + u2 + u3 + xk3(x, y)

y + v2 + v3 + yk3(x, y)

)

, (3.1)

where ul(x, y) = ∑i+j=l uijx
iyj, vl(x, y) = ∑i+j=l vijx

iyj, (l = 2, 3); k3 = ∑i+j=3 kijx
iyj.

Without losing generality, suppose that µ = 1, otherwise taking X = µx, Y = µy.

First, let us consider system

{

x′ = −y(1 + y) + P3(x, y) + x(x + h3(x, y)) = P(x, y),

y′ = x(1 + y) + Q3(x, y) + y(x + h3(x, y)) = Q(x, y),
(3.2)

where P3 = ∑i+j=3 pijx
iyj, Q3 = ∑i+j=3 qijx

iyj, h3 = ∑i+j=3 hijx
iyj.

Theorem 3.1. The system (3.2) with P3 · h3 ̸= 0, has a polynomial commutator in the form of (3.1), if

and only if

p2
03 − p30(p12 + 2p30) = 0, (3.3)

p21 p30 + p12 p03 + 6p30 p03 = 0, (3.4)

Q3 = p03x3 − p12x2y + p21xy2 − p30y3, (3.5)

u2 = 2xy, v2 = y2 − x2, (3.6)

u3 = −(p21 + 2p03)x3 − p12x2y − 3p03xy2 − p30y3,

v3 = (2p30 + p12)x3 − p21x2y + 3p30xy2 − p03y3,
(3.7)

h3 = (p12 + 3p30)x(−(p12 + 2p30)x2 + (2p12 + 3p30)y
2)− (p21 + 3p03)y(p12x2 + p30y2), (3.8)

k3 = (p12+2p30)x2((p21+3p03)x−3(p12+2p30)y)+ p30y2(3(p21+3p03)x−(p12+3p30)y). (3.9)

Moreover, the origin point of (3.2) is a center and isochronous center.

Proof. By (2.9), the vector (3.1) is a commutator of (3.2), if and only if

(1 + u2 x + u3 x + (xk3)x)(−y + P2 + P3 + xh3) + (u2 y + u3 y + (xk3)y)(x + Q2 + Q3 + yh3)

= (P2 x + P3 x + (xh3)x)(x + u2 + u3 + xk3)

+ (−1 + P2 y + P3 y + (xh3)y)(y + v2 + v3 + yk3), (3.10)

(v2 x + v3 x + (yk3)x)(−y + P2 + P3 + xh3) + (1 + v2 y + v3 y + (yk3)y)(x + Q2 + Q3 + yh3)

= (1 + Q2 x + Q3 x + (yh3)x)(x + u2 + u3 + xk3)

+ (Q2 y + Q3 y + (yh3)y)(y + v2 + v3 + yk3), (3.11)

where P2 = x2 − y2, Q2 = 2xy.

Similar to the proof of Theorem 2.3, from the terms of degree 2 of equations (3.10) and

(3.11) equal to zero follows that (2.12) and (2.13) are valid. By the terms of degree 3 of

equations (3.10) and (3.11) equal to zero we deduce that

{

v3 + xu3 y − yu3 x − 2P3 = 0,

u3 + yv3 x − xv3 y + 2Q3 = 0.
(3.12)
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Equating the same power of x and y of (3.12) which yields that

u12 = u30 + p21 − q30, u21 = u03 − p12 − q03, (3.13)

p21 − q12 + 3(p03 − q30) = 0, p12 + q21 + 3(p30 + q03) = 0. (3.14)

v30 = −u03 + 2p30 + p12 + q03, v21 = u30 + 2q30,

v12 = −u03 − 2q03, v03 = u30 + p21 − q30 + 2p03.
(3.15)

By the terms of degree 4 of equations (3.10) and (3.11) equal to zero we get

u2 xP3+u2 yQ3+u3 xP2+u3 yQ2−u3P2 x −v3P2 y−u2P3 x −v2P3 y = x(3h3+yk3 x −xk3 y), (3.16)

v2 xP3+v2 yQ3+v3 xP2+v3 yQ2−u3Q2 x−v3Q2 y−u2Q3 x−v2Q3 y = y(3h3+yk3 x−xk3 y). (3.17)

Equation (3.16) multiplied by y minus (3.17) multiplied by x which implies that

P3(yu2 x − xv2 x) + Q3(yu2 y − xv2 y) + P2(yu3 x − xv3 y) + Q2(yu3 x − xv3 y)

= u3(yP2 x − xQ2 x) + v3(yP2 y − xQ2 y) + u2(yP3 x − xQx x) + v2(yP3 y − xQ3 y). (3.18)

Comparing the coefficients of the same power of x and y on both sides of the equation (3.18)

and (3.16) we obtain

u03 = p12 + q03 + q21, u30 = −p21 + q30 − 3p03, u30 = −3p21 − 2q30 + 2q12,

u03 = q03, 2u03 = −6p30 − 5p12 − 4q03 − 5q21, 2u30 = 2p21 + 3p03 − 4q12 − 7q30,

v30 = 2p30 − q21, u12 − 2v03 = −p03, 2v21 − 3u30 = 3p21 + 6q30 − 2q12,

2u21 − 3v12 − 6u03 = −2p12 + 3q03, 3v12 − 5v30 − 4u21 = −4p30 + 4p12 + 5q21 − 3q03,

3u30 + 4v03 − 4v21 − 5u12 = −3p21 + 5p03 + 4q12.

According to the above equations and (3.13) and (3.15) we get

p03 − q30 = 0, p30 + q03 = 0, q12 − p21 = 0, p12 + q21 = 0,

u30 = −p21 − 2p03, u21 = −p12, u12 = −3p03, u03 = −p30,

v30 = p12 + 2p30, v21 = −p21, v12 = 3p03, v03 = −p03.

Consequently, the relations (3.5) and (3.7) are valid.

Using (3.5)–(3.7) and (3.16) we deduce that

3h3 + yk3 x − xk3 y = 0. (3.19)

By this equation we get

k3 = −(h21 + 2h03)x3 + 3h30x2y − 3h03xy2 + (h12 + 2h30)y
3. (3.20)

From the terms of degree 5 of equations (3.10) and (3.11) equal to zero which follows that

u2h3 − P2k3 + u3 xP3 + u3 yQ3 − P3 xu3 − P3 yv3 = x(h3 xu2 + h3 yv2 − k3 xP2 − k3 yQ2), (3.21)

v2h3 − Q2k3 + v3 xP3 + v3 yQ3 − Q3 xu3 − Q3 yv3 = y(h3 xu2 + h3 yv2 − k3 xP2 − k3 yQ2). (3.22)
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Equation (3.21) multiplied by y minus (3.22) multiplied by x which implies that

h3(yu2 − xv2)− k3(yP2 − xQ2) + P3(yu3 x − xv3 x) + Q3(yu3 y − xv3 y)

= u3(yP3 x − xQ3 x) + v3(yP3 y − xQ3 y). (3.23)

Comparing the coefficients of the same power of x and y on both sides of equations (3.21) and

(3.23) and using (3.5)–(3.7) and (3.20) we get

4h03 + h21 = −2p21 p30 − p12 p03 − p21 p12,

2h12 + 5h30 = 2p21 p03 + 3p12 p30 + p2
12 + 6p2

03,

h21 + 5h03 = −3p30 p03 − p12 p21 − p03 p12 − 3p30 p21,

3h12 + 7h30 = 6p2
03 − 3p2

30 + p2
12 + 2p12 p30 + 2p21 p03,

h03 = −3p30 p03 − p30 p21,

h12 + 2h30 = −3p2
30 − p12 p30,

h30 = 6p2
30 + 6p2

03 + 5p30 p12 + 2p21 p03 + p2
12,

h12 + 4h30 = 9p2
30 + 12p2

03 + 9p30 p12 + 4p21 p03 + 2p2
12.

Simplifying the above equations to obtain

h30 = 6p2
30 + 6p2

03 + 5p30 p12 + 2p21 p03 + p2
12; (3.24)

h21 = 2p21 p30 − p12 p03 − p21 p12 + 12p30 p03, (3.25)

h12 = −15p2
30 − 12p2

03 − 11p30 p12 − 4p21 p03 − 2p2
12, (3.26)

h03 = −3p30 p03 − p21 p30. (3.27)

By the terms of degree 6 of equations (3.10) and (3.11) equal to zero we get

2(u3h3 − P3k3) = x(h3 xu3 + h3 yv3 − k3 xP3 − k3 yQ3), (3.28)

2(v3h3 − Q3k3) = y(h3 xu3 + h3 yv3 − k3 xP3 − k3 yQ3). (3.29)

Equation (3.28) multiplied by y minus (3.29) multiplied by x we deduce that

h3(yu3 − xv3) = k3(yP3 − xQ3). (3.30)

Equating the coefficients of the same power of x and y on both sides of the equation (3.28) we

obtain

(p21 + 5p03)h30 − (p12 + 3p30)h21 − 2p30h03 = 0,

p12h30 + (p12 + 2p30)h12 + (p21 + 3p03)h03 = 0,

2p21h30 + (p21 − p03)h12 + (p12 − 3p30)h03 = 0,

(2p12 + 3p30)h30 + (p12 + 2p30)h12 = 0,

2p03h30 + p03h12 + p30h03 = 0.

As h3 ̸= 0, the determinant of the coefficient matrix of four equations of the above is equal to

zero, that is

W1 = p30(p12 + 3p30)(p21 p30 + p12 p03 + 6p30 p03) = 0. (3.31)
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Equating the coefficients of the same power of x and y on both sides of the equation (3.30) we

get

(p12 + 2p30)h30 + p03h21 + 2p03h03 = 0,

p03h30 − p30h21 + 2(p12 + p30)h03 = 0,

2(p12 + p30)h30 + (p12 + 2p30)h12 − p03h03 = 0,

2p03h30 + p03h12 + p30h03 = 0.

The determinant of the coefficient matrix of the above equations is equal to zero, that is

W2 = −(p30(p12 + 2p30)− p2
03)

2 = 0. (3.32)

By (3.31) and (3.32) and P3 · h3 ̸= 0, which implies that p30 · p03 · (p12 + 2p30) ̸= 0 and the

relations (3.3) and (3.4) are valid and

h12 = −
2p12 + 2p30

p12 + 2p30
h30, h21 = −

p12 p30

p03(p12 + 2p30
h30, h03 = −

p03

p12 + 2p30
h30.

Using (3.4) and (3.5) and (3.24)–(3.27) we get

h30 = −(p12 + 2p30)(p12 + 3p30), h21 = −p12(p21 + 3p03),

h12 = (p12 + 3p30)(3p30 + 2p12), h03 = −p30(p21 + 3p03),

k30 = (p21 + 3p03)(p12 + 2p30), k21 = −3(p12 + 2p30)(p12 + 3p30),

k12 = 3p30(p21 + 3p03), k03 = −p30(p12 + 3p30).

Therefore, the functions u3, v3, h3, k3 are expressed by (3.7)–(3.9), respectively.

By [1] [2], the origin point of (3.2) is a center and isochronous center.

Consider Λ–Ω system
{

x′ = −y(1 + y + φ2(x, y)) + x(x + ψ2(x, y) + h3(x, y)),

y′ = x(1 + y + φ2(x, y)) + y(x + ψ2(x, y) + h3(x, y)),
(3.33)

where φ2 = a20x2 + a11xy + a02y2, ψ2 = b20x2 + b11xy + b02y2, aij, bij are real numbers.

By Theorem 3.1, taking P3 = −yφ2 + xψ2, Q3 = xφ2 + yψ2, which follows the following

corollary.

Corollary 3.2. The system (3.33) has a polynomial commutator in the form of
(

U

V

)

=

(

x + u2 + u3 + xk3(x, y)

y + v2 + v3 + yk3(x, y)

)

if and only if

a20 + a02 = 0, b20 + b02 = 0, a2
20 − b2

20 + b20a11 = 0, b11b20 − a11a20 + 4a20b20 = 0.

u2 = 2xy, v2 = y2 − x2,

u3 = −(b11 + a20)x3 + (b20 + a11)x2y − 3a20xy2 − b20y3,

v3 = (b20 − a11)x3 − (b11 − a20)x2y + 3b20xy2 − a20y3,

h3 = (2b20 − a11)((a11 − b20)x3 + (b20 − 2a11)xy2) + (b11 + 2a20)((a11 + b20)x2y − b20y3),

k3 = (2a20 + b11)((b20 − a11)x3 + 3b20xy2)− (2b20 − a11)(3(b20 − a11)x2y + b20y3).

Moreover, the origin point of (3.33) is a center and isochronous center and weak center.
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4 Examples

In Theorem 2.3, taking λ = µ = λi = 1 (i = 2, 3, . . . ) which yields the following example.

Example 4.1. Λ–Ω-differential system

{

x′ = −y(1 + y) + x(x − xy − x2y ∑
∞
j=3(x − y)j−3),

y′ = x(1 + y) + y(x − xy − x2y ∑
∞
j=3(x − y)j−3)

(4.1)

has a commutator

(

U

V

)

=

(

x + 2xy + x(x2 + x3 ∑
∞
j=3(x − y)j−3)

y + y2 − x2 + y(x2 + x3 ∑
∞
j=3(x − y)j−3)

)

and the origin point of (4.1) is a center and isochronous center and weak center.

In Theorem 3.1 taking p30 = 1, p21 = −5, p12 = −1, p03 = 1 which implies the following

example.

Example 4.2. Differential system

{

x′ = −y(1 + y) + x3 − 5x2y − xy2 + y3 + x(x − 2(x + y)(x2 − y2)),

y′ = x(1 + y) + x3 + x2y − 5xy2 − y3 + y(x − 2(x + y)(x2 − y2))
(4.2)

has a commutator

(

U

V

)

=

(

x + 2xy + 3x3 + x2y − 3xy2 − y3 − 2x(x + y)3

y + y2 − x2 + x3 + 5x2y + 3xy2 − y3 − 2y(x + y)3)

)

(4.3)

and the origin point of (4.2) is a center and isochronous center.

In Corollary 3.1 taking a20 = 1, a11 = 0, a02 = −1, b20 = 1, b11 = −4, b02 = −1 we deduce

the following example.

Example 4.3. Λ–Ω differential system

{

x′ = −y(1 + y + x2 − y2) + x(x + x2 − y2 − 4xy − 2(x + y)(x2 − y2)),

y′ = x(1 + y + x2 − y2) + y(x + x2 − y2 − 4xy − 2(x + y)(x2 − y2))
(4.4)

has a commutator (4.3) and the origin point of (4.4) is a center and weak center.

The above three examples have been verified and they are correct.
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Abstract. In this article, multiplicity of nontrivial solutions for an inhomogeneous sin-
gular biharmonic equation with Rellich potential are studied. Firstly, a negative energy
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1 Introduction

We investigate multiplicity of solutions for the following singular biharmonic equations with

inhomogeneous terms

{
∆

2u − µ u
|x|4

= |u|pα−2u
|x|α

+ λ f (x), in R
N ,

u ∈ H2
0(R

N), u > 0, in R
N ,

(1.1)

where ∆
2u = ∆(∆u), N ≥ 5, 0 < µ < µ := N2(N−4)2

16 , pα = 2(N−α)
N−4 , 0 6 α < 4, f (x) ∈ H−2

0 (RN)

is a given function and f (x) 6≡ 0, H−2
0 (RN) denotes the dual of H2

0(R
N), the singular term u

|x|4

comes from models in physics.

In the past decades, nonlinear elliptic equations involving biharmonic operator have re-

ceived much attention due to their wide application to mechanical and physical models such

as clamped plates, thin-elastic plates, and in the research of the Paneitz–Branson equation and

the Willmore equation (see [11]). Under the framework of nonlinear function analysis, there

are many results on qualitative properties, the existence and multiplicity of solutions for bihar-

monic equations with singular potential (see [1, 7, 9, 12, 14–16,19–22, 25, 26], and the references

BCorresponding author. Emails: yuyang_0522@sina.com (Y. Yu), zhaoylch@sina.com (Y. Zhao).
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therein). At the beginning, Brezis and Nirenberg [4] considered the following problems:




−∆u = λu + u
N+2
N−2 , in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1.2)

where Ω ⊂ R
N is a bounded smooth domain, and let

Sλ = inf
u∈H1

0 (Ω)

∫
Ω
|∇u|2dx −

∫
Ω
|u|2dx∫

Ω
|u|2∗dx

, λ ∈ R,

where 2∗ = 2N
N−2 as Sobolev critical exponent. They basically proved that Sλ is reachable when

N and λ satisfy different conditions. Since the seminal work of Brezis and Nirenberg, the

study of critical growth in semilinear and quasilinear problem have gradually become a hot

subject. On the basis of (1.2), Jannelli [13] studied the following semilinear elliptic equations

involving the Hardy terms and critical exponents, and obtained at least a nontrivial solution

when N ≥ 3 and

λ < λ1(µ) = min
u∈H1

0 (Ω)

∫
Ω
(|∇u|2dx − µ u2

|x|2
)dx

∫
Ω
|u|2dx

.

Furthermore, Wang and Zhou [24] considered the problem of [13] with u2∗−1 + λu being

replaced by u2∗(s)−2

|x|s
+ h(x), where N ≥ 3, 0 ≤ µ <

(N−2)2

4 , 2∗(s) = 2(N−s)
N−2 , 0 ≤ s < 2, h(x) ≥ 0.

By using the upper and lower solution method and Mountain pass theorem, they proved the

given problem has at least two nontrivial solutions.

Tarantello [23] studied the following semilinear elliptic equations involving inhomoge-

neous perturbation and critical exponential terms:
{
−∆u = u2∗−2u + f (x), in Ω,

u = 0, on ∂Ω.
(1.3)

When ‖ f ‖ is appropriately small, the author proved that problem (1.3) admits at least two

solutions by applying the Mountain pass theorem and the Ekeland’s variational principle.

By applying similar methods as in Ref. [23], Deng and Wang [8] studied the following non-

linear biharmonic problems with inhomogeneous perturbation terms and critical exponential

terms: {
∆

2u − λu = |u|2∗−2u + f (x), in Ω,

u|∂Ω = ∂u
∂Ω

|∂Ω = 0,
(1.4)

where N ≥ 5 and Ω ⊂ R
N is a bounded smooth domain, 2∗ =

2N
N−4 . They proved that problem

(1.4) has at least two solutions when ‖ f ‖ is appropriately small. Furthermore, they dealt with

the non-existence of solutions for the above studied equation under some assumptions on the

perturbation term f .

By using the strong Maximum principle and the Comparison principle, Ref. [17] discussed

the existence and nonexistence results of the following semilinear biharmonic problems with

the optimal exponent p:




∆
2u − µ u

|x|4
= λ f (x) + up, in Ω,

u > 0, in Ω,

u = −∆u = 0, on ∂Ω,
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where p > 1, µ > 0, λ > 0 and Ω ⊂ R
N(N > 4) is a smooth bounded domain and 0 ∈ Ω.

Mousomi Bhakta [2] considered the following elliptic problem with singular terms:

{
∆

2u − µ u
|x|4

= |u|pα−2u
|x|α

, in Ω,

u ∈ H2
0(Ω), u > 0, in Ω,

(1.5)

when Ω is an open subset of R
N (N ≥ 5), some nonexistence of solutions results are obtained

by applying Pohozaev identity and Nehari manifold, In addition, they further discussed the

existence of positive solutions when α = 0.

Through the analysis of the above mentioned studies, a quite natural question to ask is

whether the inhomogeneous biharmonic problem (1.1) possesses multiple nontrivial solu-

tion in R
N? As far as we know, when α 6= 0 and Ω 6= R

N in (1.5), the problem (1.5) does not

have a solution. Thanks to lack of compactness of the functional energy, the author obtain that

the non-existence result of solution in a bounded domain. Therefore, we consider adding a

perturbation term to overcome this difficulty and prove that the energy function I of problem

(1.1) admits at least two critical points. One is a negative energy solution obtained by using

Ekeland’s variational method in [10], and other is a positive energy solution achieved by ap-

plying Mountain pass theorem in [1] without Palais–Smale (PS) conditions. The main result

of this paper is the following theorem.

Theorem 1.1. Assume that N ≥ 5, 0 < µ < µ, 0 ≤ α < 4, pα = 2(N−α)
N−4 ,and f (x) ∈ H−2

0 (RN) with

f (x) 6≡ 0. Then there exists a constant λ∗
> 0 such that for any λ ∈ (0, λ∗), the problem (1.1) admits

at least two nontrivial solutions which one is of negative energy and the other solution with positive

energy, if

‖ f ‖H−2
0 (RN) <

pα − 2

2λ(pα − 1)


 pαS

pα
2

µ

2(pα − 1)




1
pα−2

,

where Sµ will be given in (2.3).

2 Preliminaries

This section will mainly give some preparation to the proof of Theorem 1.1.

Due to the fact that the space H2
0(R

N) is the closure of C∞

0 (RN) in regard to the following

norm

‖u‖H2
0 (R

N) =

(∫

RN
|∆u|2dx

)1/2

.

Note that µ < µ̄ and by the following Rellich inequality [18]

∫

RN
|∆u|2dx ≥ µ̄

∫

RN

u2

|x|4
dx, ∀u ∈ C∞

0 (RN), (2.1)

where µ̄ = N2(N−4)2

16 is optimal, then we can show that the norm

‖u‖µ =

(∫

RN
|∆u|2 − µ

u2

|x|4
dx

)1/2

is an equivalent norm to ‖u‖H2
0 (R

N).
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From [3], we have the following Caffarelli–Kohn–Nirenberg (CKN) inequality

∫

RN
|∆u|2dx ≤ C(N, α)

(∫

RN

|u|pα

|x|α
dx

)2/pα

, ∀u ∈ C∞

0 (RN), (2.2)

where the constant C(N, α) > 0. For each µ with 0 < µ < µ, the best Sobolev constant Sµ can

be given by

Sµ = inf
u∈H2

0 (R
N),u(x) 6≡0

∫
RN (|∆u|2 − µ u2

|x|4
)dx

(
∫

RN |x|−α|u|pα dx)
2

pα

, (2.3)

where Sµ is achieved in R
N . By applying (2.1) and (2.2), we know Sµ > 0.

To obtain our results, the energy function I of problem (1.1) can be defined by

I(u) =
1

2
‖u‖2

µ −
1

pα

∫

RN

|u|pα

|x|α
dx − λ

∫

RN
f (x)udx, u ∈ H2

0(R
N). (2.4)

According to f ∈ H−2
0 (RN) and (2.1)–(2.2), it is easy to obtain that the energy function I(u) is

a well defined C1 function in H2
0(R

N).

A function u ∈ H2
0(R

N) is said to be a weak solution of the equations (1.1) if u satisfies

∫

RN

(
∆u∆v − µ

uv

|x|4

)
dx =

∫

RN

|u|pα−2uv

|x|α
dx + λ

∫

RN
f (x)uvdx (2.5)

for any v ∈ H2
0(R

N).

Definition 2.1. A sequence {un}∞

n=1 ⊂ H2
0(R

N) satisfy I(un) → c (c ∈ R) and I′(un) → 0 in

H−2
0 (RN) as n → ∞. Then the sequence {un}∞

n=1 is called a (PS)c sequence.

Lemma 2.1. Assume that the sequence{un}∞

n=1 in H2
0(R

N) be a (PS)c sequence for the energy func-

tion I of problem (1.1) at level c ∈ R. Then un ⇀ u in H2
0(R

N) and I′(u) = 0.

Proof. For n sufficiently large, there hold

1

2
‖un‖

2
µ −

1

pα

∫

RN

|un|pα

|x|α
dx − λ

∫

RN
f (x)undx = c + on(1),

and

‖un‖
2
µ −

∫

RN

|un|pα

|x|α
dx − λ

∫

RN
f (x)undx = on(1),

where on(1) means that for n → ∞, on(1) → 0 . Thus, there holds

c + on(1) = I(un)−
1

pα
〈I′(un), un〉

≥

(
1

2
−

1

pα

)
‖un‖

2
µ − λ

(
1 −

1

pα

)
‖ f ‖H−2

0 (RN)‖un‖µ,

(2.6)

which means that {un}∞

n=1 is a bounded sequence in H2
0(R

N). Up to a subsequence if neces-

sary, there holds 



un ⇀ u, in H2
0(R

N),

un ⇀ u, in Lpα(R
N , |x|−α),

un → u, a.e. in R
N .

(2.7)
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Thus, it is easy to obtain that

∫

RN
(∆u∆v − µ

uv

|x|4
−

|u|pα−2uv

|x|α
− λ f (x)uv)dx = 0

for all v ∈ C∞

0 (RN \ {0}), which means I′(u) = 0.

Lemma 2.2. For some c ∈ R, let {un}∞

n=1 in H2
0(R

N) be a (PS)c sequence for the energy functional

I, that is to say I(un) → c, I′(un) → 0 in H−2
0 (RN) as n → ∞. Then there is a u0 ∈ H2

0(R
N) such

that un ⇀ u0 in H2
0(R

N) holds and

either un → u0 or c ≥ I(u0) +

(
1

2
−

1

pα

)
S

pα
pα−2
µ .

Proof. It follows from (2.6) that {un}∞

n=1 is bounded in H2
0(R

N). Due to boundedness of

{un}∞

n=1, we know that the sequence {un}∞

n=1 possesses a weak convergent subsequence, still

denoted by {un}∞

n=1, then we can get that un ⇀ u0 in H2
0(R

N), and un → u0 a.e. in R
N , as

n → ∞. Denote wn = un − u0, then we have wn ⇀ 0, as n → +∞.

On the basis of Brezis–Lieb Lemma (see [5]), we could obtain that

lim
n→∞

∫

RN

(
|un|pα

|x|α
−

|un − u0|pα

|x|α

)
dx =

∫

RN

|u0|pα

|x|α
dx.

Therefore, there holds

I(un)− I(u0) =
1

2
‖wn‖

2
µ −

1

pα

∫

RN

|wn|pα

|x|α
dx + on(1). (2.8)

And It follows from Lemma 2.1 that I′(u0) = 0, combining with (2.8) we can infer that

〈I′(un), un〉 = 〈I′(un)− I′(u0), wn + u0〉 = ‖wn‖
2
µ −

∫

RN

|wn|pα

|x|α
dx + on(1).

In this situation, we may assume that

lim
n→∞

‖wn‖
2
µ = lim

n→∞

∫

RN

|wn|pα

|x|α
dx = ξ ≥ 0.

Suppose ξ > 0, together with the definition of Sµ, we have ξ ≥ S
pα

pα−2
µ . Furthermore, by (2.8),

we obtain

c = I(u0) +

(
1

2
−

1

pα

)
ξ ≥ I(u0) +

(
1

2
−

1

pα

)
S

pα
pα−2
µ .

This ends the proof of Lemma 2.2.

3 Proof of Theorem 1.1

In this section, we first take advantage of some analytical skills and functional idea to prove

that the functional I can admit a local minimizer, which is a nontrivial negative energy solu-

tion. After that we show the existence of a nontrivial solution with positive energy via using

Mountain pass theorem without (PS) condition.
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Lemma 3.1. Suppose that 0 < µ < µ = N2(N−4)2

16 ), N ≥ 5, 0 ≤ α < 4. Then there exist constants

Λ1, η0, ξ > 0 such that for every λ ∈ (0, Λ1), there holds

I(u) ≥ ξ > 0 for ‖u‖µ = η0. (3.1)

Proof. From (2.4), Young inequality, and the definition of Sµ, we get

I(u) =
1

2
‖u‖2

µ −
1

pα

∫

RN

|u|pα

|x|α
dx − λ

∫

RN
f (x)udx

≥
1

2
‖u‖2

µ −
1

pα
S
− pα

2
µ ‖u‖

pα
µ − λ‖ f ‖H−2

0 (RN)‖u‖µ

= ‖u‖µ

(
1

2
‖u‖µ −

1

pα
S
− pα

2
µ ‖u‖

pα−1
µ − λ‖ f ‖H−2

0 (RN)

)
.

(3.2)

Set

h(z) =
1

2
z −

1

pα
S
− pα

2
µ zpα−1, z ≥ 0.

Then from h′(z0) = 0, there holds

z0 =


 pαS

pα
2

µ

2pα − 2




1
pα−2

,

which indicates that

h(z0) =
1

2


 pαS

pα
2

µ

2pα − 2




1
pα−2

−
1

pα
S
− pα

2
µ


 pαS

pα
2

µ

2pα − 2




pα−2+1
pα−2

=
pα − 2

2pα − 2


 pαS

pα
2

µ

2pα − 2




1
pα−2

> 0.

In order to obtain h(z0) > λ‖ f ‖H−2
0 (RN), we could choose

Λ1 :=
pα − 2

2pα − 2


 pαS

pα
2

µ

2pα − 2




1
pα−2

/‖ f ‖H−2
0 (RN).

(3.3)

Due to 0 ≤ α < 4, then pα > 2. Choosing η0 = z0 and ξ = z0(h(z0) − λ‖ f ‖H−2
0 (RN)), it

follows from (3.2) that there exists Λ1 > 0 (be given in (3.3)) such that

I(u) ≥ ξ > 0 for any ‖u‖µ = η0, and λ ∈ (0, Λ1),

and the conclusion is achieved.

We now show that there exists a nontrivial solution with negative solution.

On account of the continuity of f on R
N and combining with f 6≡ 0, we can choose φ ∈

C0(RN \ {0}) such that
∫

RN f (x)φdx > 0. Then for t > 0 sufficiently small with ‖tφ‖µ < η0,

there holds

I(tφ) =
t2

2
‖φ‖2

µ −
tpα

pα

∫

RN

|φ|pα

|x|α
dx − λt

∫

RN
f (x)φdx < 0.
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Therefore, we have

c1 = inf{I(u) : u ∈ Bη0} < 0, where Bη0 = {u ∈ H2
0(R

N), ‖u‖µ < η0}.

According to the complete metric space Bη0 with respect to the norm of H2
0(R

N), then

applying the Ekeland’s variational principle to I(u) in Bη0 yields that there exist a (PS)c1

sequence {un}∞

n=1 in Bη0 and a u∗ ∈ H2
0(R

N) with ‖u∗‖µ < η0, such that un ⇀ u∗.

We now turn to show that un → u∗ in H2
0(R

N) as n → ∞. Otherwise, it follows from

Lemma 2.2 that

c1 ≥ I(u∗) +

(
1

2
−

1

pα

)
S

pα
pα−2
µ ≥ c1 +

(
1

2
−

1

pα

)
S

pα
pα−2 > c1,

which is a contradiction.

Then the above proof yields that u∗ is a critical point of the functional I satisfying c1 =

I(u∗) < 0. Furthermore, it follows from (2.3) and (3.2) that

c1 =
pα − 2

2pα
‖u∗‖

2
µ −

pα − 1

pα

∫

RN
λ f (x)u∗(x)dx

≥
pα − 2

2pα
‖u∗‖

2
µ −

λ(pα − 1)

pα
‖ f ‖H−2

0 (RN)‖u∗‖µ

≥
(pα − 2)(pα − 1)2‖λ f ‖2

H−2
0 (RN)

2pα(pα − 2)2
−

λ(pα − 1)

pα
‖ f ‖H−2

0 (RN)

pα − 1

pα − 2
‖λ f ‖H−2

0 (RN)

= −
(pα − 1)2

2pα(pα − 2)
λ2‖ f ‖2

H−2
0 (RN)

.

Thus, we can deduce that the problem (1.1) possesses a nontrivial solution u∗ with negative

energy.

Lemma 3.2. Let constant Λ2 > 0 such that

(pα − 2)2S
pα

pα−2
µ − λ2(pα − 1)2‖ f ‖2

H−2
0 (RN)

> 0, for any λ ∈ (0, Λ2). (3.4)

Then there are a ũ(x) ∈ H2
0(R

N) and constant Λ3 with 0 < Λ3 ≤ Λ2 such that

sup
t≥0

I(tũ) <
pα − 2

2pα
S

pα
pα−2
µ −

λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

, for all λ ∈ (0, Λ3). (3.5)

Proof. From Theorem 2.1 of [2], we know that there is a nontrivial nonnegative solution as

λ = 0 for problem(1.1), and then denote it as z̃(x). Next, we may choose ũ(x) = z̃(x) if the

function f (x) ≥ 0 for each x ∈ R
N , ũ(x) = −z̃(x) if the function f (x) ≤ 0 for each x ∈ R

N ,

ũ(x) = z̃(x − x0) if there exists a point x0 ∈ R
N satisfying f (x0) > 0. We now claim that there

holds ∫

RN
f (x)ũ(x)dx > 0. (3.6)

Indeed, the inequality (3.6) holds obviously if the function f (x) ≥ 0 or f (x) ≤ 0 for each

x ∈ R
N . Now if there is a point x0 ∈ R

N satisfying f (x0) > 0, then by the continuity of the

function f , we can deduce that there exists an open neighborhood B(x0, τ) ⊂ R
N of x0, τ > 0,

such that the function f (x) > 0 for all x ∈ B(x0, τ). Therefore, one can deduce from the

definition of z̃(x − x0), that ∫

RN
f (x)z̃(x − x0)dx > 0.
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To prove the inequality (3.5), we discuss the functions g and g̃ defined by

g(t) := I(tũ) =
t2

2
‖ũ‖2

µ −
tpα

pα

∫

RN

|ũ|pα

|x|α
dx − λt

∫

RN
f (x)ũdx, t ≥ 0,

and

g̃(t) :=
t2

2
‖ũ‖2

µ −
tpα

pα

∫

RN

|ũ|pα

|x|α
dx, t ≥ 0.

Obviously, there holds

g(0) = 0 <
pα − 2

2pα
S

pα
pα−2
µ −

λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

for every λ ∈ (0, Λ2). Thus from the continuity of function g, there exists some t1 > 0

sufficiently small, such that

pα − 2

2pα
S

pα
pα−2
µ −

λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

> g(t)

for all t ∈ (0, t1).

For another thing, by the definition of g̃ there holds

max
t≥0

g̃(t) =
pα − 2

2pα
S

pα
pα−2
µ .

This together with the definition of g, we have

sup
t≥0

I(tũ) <

(
1

2
−

1

pα

)
S

pα
pα−2
µ − λt1

∫

RN
f (x)ũdx.

Choose λ > 0 satisfying that

λt1

∫

RN
f (x)ũdx >

λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

.

Then from (3.6), one has

0 < λ <

2pα(pα − 2)t1

∫
RN f (x)ũdx

(pα − 1)2‖ f ‖2
H−2

0 (RN)

.

Set

Λ3 := min





2pα(pα − 2)t1

∫
RN f (x)ũdx

(pα − 1)2‖ f ‖2
H−2

0 (RN)

, Λ2



 .

For all λ ∈ (0, Λ3), we conclude that

sup
t≥0

I(tũ) <
pα − 2

2pα
S

pα
pα−2
µ −

λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

,

and this ends the proof.
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Next we will show another critical point with positive energy of problem (1.1).

Since I(tũ) → −∞ as t → ∞, then one may take t∗ > 0 sufficiently large if necessary,

such that I(t∗ z̃) < 0. Taking η0 > 0, then Lemma 3.1 can show that I|∂Bη0
≥ ξ > 0 for every

λ ∈ (0, Λ1). Set

Γ = {γ ∈ C([0, 1], H2
0(R

N)), γ(0) = 0, γ(1) = t∗ũ},

and
c2 = inf

γ∈Γ

max
t∈[0,1]

I(γ(t)).

Then it follows from Mountain pass theorem without (PS) condition that there exists a (PS)c2

sequence {un}∞

n=1 in H2
0(R

N) satisfying

I(un) → c2, I′(un) → 0, in H−2
0 (RN)

as n → ∞.

Furthermore, it follows from Lemma 2.1 that there exists a subsequence of {un}∞

n=1, still

denoted by {un}∞

n=1, and a u∗ ∈ H2
0(R

N), such that un ⇀ u∗, as n → ∞. If un 9 u∗ as n → ∞,

then from Lemma 2.2 we can deduce that

c2 ≥ I(u∗) +
pα − 2

2pα
S

pα
pα−2
µ ≥

pα − 2

2pα
S

pα
pα−2
µ −

λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

. (3.7)

But Lemma 3.2 shows that

sup
t≥0

I(tũ) <
pα − 2

2pα
S

pα
pα−2
µ −

λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

, for any λ ∈ (0, Λ3).

This together with (3.7) means that un → u∗ in H2
0(R

N), as n → ∞. Taking λ∗ := min{Λ1, Λ3},

it is easy to show that for any λ ∈ (0, λ∗), the functional I has the second critical point u∗

satisfying I(u∗) > 0. Therefore the proof of Theorem 1.1 is finished.

Acknowledgements

The authors would like to thank the anonymous referee(s) for reading the manuscript care-

fully.

References

[1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and

applications, J. Funct. Anal. 14(1973), 349–381. https://doi.org/10.1016/0022-1236(73)

90051-7; Zbl 0273.49063

[2] M. Bhakta, Caffarelli–Kohn–Nirenberg type equations of fourth order with critical ex-

ponent and Rellich potential, J. Math. Anal. Appl. 433(2016), No. 1, 681–700. https:

//doi.org/10.1016/j.jmaa.2015.07.042;

[3] M. Bhakta, R. Musina, Entire solutions for a class of variational problems involving the

biharmonic operator and Rellich potentials, Nonlinear Anal. 75(2012), No. 9, 3836–3848.

https://doi.org/10.1016/j.na.2012.02.005; Zbl 1242.26020



10 Y. Yu and Y.Zhao

[4] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving

critical Sobolev exponents, Comm. Pure Appl. Math. 36(1983), No. 4, 437–477. https:

//doi.org/10.1002/cpa.3160360405

[5] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and conver-

gence of functionals, Proc. Amer. Math. Soc. 88(1983), No. 3, 486–490. https://doi.org/

10.2307/2044999

[6] P. Candito, G. Molica Bisci, Multiple solutions for a Navier boundary value problem

involving the p-biharmonic operator, Discrete Contin. Dyn. Syst. Ser. S. 5(2012), No. 4,

741–751. https://doi.org/10.1016/j.na.2009.08.011; Zbl 1258.35083

[7] G. Che, H. Chen, Nontrivial solutions and least energy nodal solutions for a class of

fourth-order elliptic equations, J. Appl. Math. Comput. 53(2017), No. 1–2, 33–49. https:

//doi.org/10.1007/s12190-015-0956-9; Zbl 1360.35055

[8] Y. Deng, G. Wang, On inhomogeneous biharmonic equations involving critical expo-

nents, Proc. Roy. Soc. Edinburgh Sect. A 129(1999), 925–946. https://doi.org/10.1017/

S0308210500031012

[9] A. Dhifli, R. Alsaedi, Existence and multiplicity of solution for a singular problem

involving the p-biharmonic operator in R
N , J. Math. Anal. Appl. 499(2021), No. 125049.

https://doi.org/10.1016/j.jmaa.2021.125049

[10] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47(1974), No. 2, 324–353.

https://doi.org/10.1016/0022-247X(74)90025-0

[11] F. Gazzola, H. C. Grunau, G. Sweers, Polyharmonic boundary value problems: Positivity

Preserving and Nonlinear higher order elliptic equations in bounded domains, Lecture Notes

in Mathematics, Vol. 1991, Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/

978-3-642-12245-3

[12] Y. Huang, X. Liu, Sign-changing solutions for p-biharmonic equations with Hardy poten-

tials, J. Math. Anal. Appl. 412(2014), No. 1, 142–154. https://doi.org/10.1016/j.jmaa.

2013.10.044

[13] E. Jannelli, The role played by space dimension in elliptic critical problems, J. Differ-

ential Equations 156(1999), No. 2, 407–426. https://doi.org/10.1006/jdeq.1998.3589;

Zbl 0938.35058

[14] X. Liu, H. Chen, B. Almuaalemi, Ground state solutions for p-biharmonic equa-

tions, Electron. J. Differential Equations 2017, No. 45, 1–9. https://doi.org/10.1007/

s00033-021-01643-2; Zbl 1377.35101

[15] D. T. Luyen, Infinitely many solutions for a fourth-order semilinear elliptic equations

perturbed from symmetry, Bull. Malays. Math. Sci. Soc. 44(2021), No. 3, 1701–1725. https:

//doi.org/10.1007/s00033-021-01643-2; Zbl 1465.35171

[16] T. Passalacqua, B. Ruf, Hardy–Sobolev inequalities for the biharmonic operator with

remainder terms, J. Fixed Point Theory Appl. 15(2014), No. 2, 405–431. https://doi.org/

10.1007/s11784-014-0187-y; Zbl 1311.35100



Biharmonic equations with inhomogeneous term and Rellich potential 11

[17] M. Pérez-Llanos, A. Primo, Semilinear biharmonic problems with a singular term,

J. Differential Equations 257(2014), No. 9, 3200–3225. https://doi.org/10.1016/j.jde.

2014.06.011; Zbl 1301.35053

[18] F. Rellich, Perturbation theory of eigenvalue problems, Courant Institut of Mathematical

Sciences, New York University, New York, 1954.

[19] Y. Sang, Y. Ren, A critical p-biharmonic system with negative exponents, Comput.

Math. Appl. 79(2020), No. 5, 1335–1361. https://doi.org/10.1016/j.camwa.2019.08.

032; Zbl 1448.35182

[20] Y. Su, H. Shi, Ground state solution of critical biharmonic equation with Hardy potential

and p-Laplacian, Appl. Math. Lett. 112(2021), No. 106802. https://doi.org/10.1016/j.

aml.2020.106802; Zbl 1454.35106

[21] J. T. Sun, T. F. Wu, Existence of nontrivial solutions for a biharmonic equation with p-

Laplacian and singular sign-changing potential, Appl. Math. Lett. 66(2017), 61–67. https:

//doi.org/10.1016/j.aml.2016.11.001; Zbl 1359.35045

[22] J. T. Sun, J. Chu, T. F. Wu, Existence and multiplicity of nontrivial solutions for

some biharmonic equations with p-Laplacian, J. Differential Equations 262(2017), 945–977.

https://doi.org/10.1016/j.jde.2016.10.001; Zbl 1354.35045

[23] G. Tarantello, On nonharmonic elliptic equations involving critical Sobolev exponent,

Ann. Inst. H. Poincaré Anal. Non. Linéaire 9(1992), 281–304. https://doi.org/10.1016/

S0294-1449(16)30238-4

[24] Z. Wang, H. Zhou, Solutions for a nonhomogeneous elliptic problem involving critical

Sobolev–Hardy exponent in RN , Acta Math. Sci. Ser. B. Engl. Ed. 26(2006), 525–536. https:

//doi.org/10.1016/S0252-9602(06)60078-7

[25] Y. Yu, Y. L. Zhao, C. L. Luo, Ground state solution of critical p-biharmonic equation

involving Hardy potential, Bull. Malays. Math. Sci. Soc. 45(2022), 501–512. https://doi.

org/10.1007/s40840-021-01192-x; Zbl 1481.35159

[26] H. B. Zhang, W. Guan, Least energy sign-changing solutions for fourth-order Kirchhoff-

type equation with potential vanishing at infinity, J. Appl. Math. Comput. 64(2020), 157–

177. https://doi.org/10.1007/s12190-016-1023-x; Zbl 1480.35238



Electronic Journal of Qualitative Theory of Differential Equations
2023, No. 27, 1–22; https://doi.org/10.14232/ejqtde.2023.1.27 www.math.u-szeged.hu/ejqtde/

Bifurcations and Turing patterns

in a diffusive Gierer–Meinhardt model

Yong WangB 1, Mengping Guo1 and Weihua Jiang2

1Institute of Science and Technology, Tianjin University of Finance and Economics, Tianjin, China
2Department of Mathematics, Harbin Institute of Technology, Harbin, China

Received 30 August 2022, appeared 19 July 2023

Communicated by Roberto Livrea

Abstract. In this paper, the Hopf bifurcations and Turing bifurcations of the Gierer–
Meinhardt activator-inhibitor model are studied. The very interesting and complex
spatially periodic solutions and patterns induced by bifurcations are analyzed from
both theoretical and numerical aspects respectively. Firstly, the conditions for the ex-
istence of Hopf bifurcation and Turing bifurcation are established in turn. Then, the
Turing instability region caused by diffusion is obtained. In addition, to uncover the
diffusion mechanics of Turing patterns, the dynamic behaviors are studied near the
Turing bifurcation by using weakly nonlinear analysis techniques, and the type of spa-
tial pattern was predicted by the amplitude equation. And our results show that the
spatial patterns in the Turing instability region change from the spot, spot-stripe to
stripe in order. Finally, the results of the analysis are verified by numerical simulations.

Keywords: Gierer–Meinhardt activator-inhibitor model, stability, Hopf bifurcation, Tur-
ing bifurcation, pattern.

2020 Mathematics Subject Classification: 34K18, 37G10, 35K57,35B36.

1 Introduction

In general, reaction-diffusion systems [4,14,15] are used to describe models in which the con-

centration of one or more substances diffuses in space and is affected by the diffusion and

inter-conversion of substances. In 1952, A. M. Turing [23] mathematically proposed the con-

clusion that the homogeneous steady state in a reaction-diffusion system becomes destabilized

under certain conditions, that is, the initial steady-state solution of the reaction-diffusion sys-

tem becomes unstable due to the introduction of a diffusion term. This instability caused by

diffusion is often referred to as Turing instability. Thereafter, Turing instability has received a

great amount of attention from a wide range of scholars and has become a typical problem in

the formation of spatio-temporal patterns [1,7,9,12,16,18,21,26]. The various results of pattern

formation in the reaction-diffusion system are specified as follows. The Turing–Murray prin-

ciple was proposed by James Murray [16], which investigated the reaction-diffusion systems

BCorresponding author. Email: ywang@tjufe.edu.cn
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of animal bodies and tails and their Turing instability. Schepers and Markus [21] demon-

strated that cellular automata can produce Turing patterns in the activator-inhibitor system

that is qualitatively consistent with various experiments in chemistry. A diffusion model with

a Degn–Harrison reaction scheme is considered by Li et al. [12], and the local and global struc-

ture of the steady-state bifurcation is established by the technique of spatial decomposition

and implicit function theorem. These works demonstrated that Turing patterns can emerge in

a number of ecological and chemical systems.

To uncover the diffusion mechanism of Turing patterns and to examine the actual format

of Turing patterns in the real world, we will select the activator-inhibitor model [6] proposed

by Gierer and Meinhardt to study the typologies of Turing patterns. The activator-inhibitor

model shows that two substances can resist each other’s action, and can also be used to

depict the formation of polar structures, animal structures, and periodic structures (dots on

animals). In recent decades, a large literature has been devoted to the study of this system, as

seen in[2, 11, 13, 20, 25] and the references therein, which can be written as















∂u

∂t
= ρ

u2

v
− µuu + Du

∂2u

∂x2
+ ρu,

∂v

∂t
= ρu2 − µvv + Dv

∂2v

∂x2
+ ρv,

(1.1)

where

(i) u and v represent the concentration of activator and inhibitor respectively, Du and Dv are

their corresponding diffusion constants, and ∂u
∂t means the change in the concentration

of the activator per unit of time.

(ii) ρu > 0, ρv > 0 represent the baseline yield of the activator and the inhibitor, separately,

and µu, µv are the decay rate.

For the Gierer–Meinhardt system (1.1), Ruan [20] demonstrated that diffusion can cause

homogeneous equilibrium solutions and homogeneous periodic solutions to become unstable.

Liu et al. [13] investigated the multiple bifurcation analysis and spatiotemporal patterns in

the one-dimensional Gierer–Meinhardt model. Wu et al. [25] performed a Hopf bifurcation

analysis of this diffusion model and studied the direction and stability of Hopf bifurcation by

standard central manifold theorem. Stability and Hopf bifurcation analysis on a simplified

Gierer–Meinhardt model were studied by Asheghi [2], and the direction of the Hopf bifurca-

tion was obtained by the normal form theory. The investigation conducted by Li et al. [11]

pertained to the analysis of Turing patterns observed in a broad-spectrum Gierer–Meinhardt

model of morphogenesis. In the particular case, when ρu = ρv = 0, a simple scale transfor-

mation model is as follows














∂u
∂t = σ1∆u + u2

v − βu (x, y) ∈ Ω, t > 0,
∂v
∂t = σ2∆v + u2 − v (x, y) ∈ Ω, t > 0,

∂νu = ∂νv = 0, (x, y) ∈ ∂Ω, t > 0,

(1.2)

where

(i) u and v stand for u(x, y, t) and v(x, y, t), (x, y) ∈ Ω ⊂ R
2, β denotes the decay rate of

the activator.
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(ii) ∆ = ∂2

∂x2 +
∂2

∂y2 is a common Laplace operator in two-dimensional space, and ∂Ω repre-

sents the homogeneous Neumann boundary condition.

None of the above-mentioned literature deals with the formation of Turing patterns on

two-dimensional space in the Gierer–Meinhardt model. However, for chemical systems, pat-

terns on a two-dimensional plane will be more realistic, more intuitive, and abundant than

those on a one-dimensional plane [17, 24]. For the one-dimensional space, only spot patterns

and strip patterns exist. However, in two dimensions, not only spots and strips but also

patterns such as spot-strip coexistence and maze shapes may appear. To more clearly un-

derstand the mechanisms of pattern formation in Gierer–Meinhardt model, we will study the

spatio-temporal evolution pattern of the system (1.2) in two dimensions space.

In this paper, the dynamical behaviors of the system (1.2) are studied by using the decay

rate of activator β as a bifurcation parameter. The existing conditions of the Hopf bifurcations

and the Turing bifurcations are established in turn. The very interesting and complex patterns

(spot patterns, spot-stripe coexistence patterns, and stripe patterns) induced by the Turing

bifurcation are analyzed from both theoretical and numerical aspects by a multi-scale method

[3, 5, 27]. And our results show that the decay rate of the activator β can affect the dynamical

behavior of the system (1.2). The system will occur Turing instability when the decay rate β is

within a certain region, the impact of diffusion on the system will be diminished as the decay

rate β increases.

The layout of this paper is organized as follows. In Section 2, the conditions for the exis-

tence of Hopf bifurcation and the Turing instability with spatial inhomogeneity are discussed

analytically. In Section 3, the amplitude equation near the instability threshold is derived

using weakly nonlinear analysis, and different solutions to the amplitude equation and its

stability are investigated. And the correctness of the theoretical part of the analysis is verified

by numerical simulations in space. In Section 4, finally, some conclusions and discussions are

given.

2 Turing instability and bifurcation analysis

In this section, the conditions for the existence of Hopf bifurcation and the Turing instability

are discussed.

The local system corresponding to the diffusion system (1.2) is
{

∂u
∂t = u2

v − βu,
∂v
∂t = u2 − v,

(2.1)

with a unique positive equilibrium

E∗ = (U∗, V∗) =
(

1

β
,

1

β2

)

, β > 0.

The Jacobian matrix computed. The Jacobi matrix taken at the positive equilibrium E∗ is

A =

(

∂ f
∂u

∂ f
∂v

∂g
∂u

∂g
∂v

)

=

(

β −β2

2
β −1

)

=

(

a11 a12

a21 a22

)

, (2.2)

and the characteristic equation is as follows

λ2 − tr(A)λ + Det(A) = 0, (2.3)
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with

tr(A) = a11 + a22 = β − 1,

Det(A) = a11a22 − a21a12 = β.

Theorem 2.1. For the local system (2.1), when 0 < β < 1, the positive equilibrium E∗ is locally

asymptotically stable, and the system (2.1) undergoes the Hopf bifurcation at β = 1.

Proof. When 0 < β < 1, obviously obtaining tr(A) < 0 and Det(A) > 0, hence, the positive

equilibrium E∗ is locally asymptotically stable. When β = 1, then tr(A) = 0 and Det(A) > 0,

the system (2.1) undergoes Hopf bifurcation. Next, we verify the transversality condition for

the Hopf bifurcation at β = 1
dReλ0(β)

dβ

∣

∣

∣

∣

β=1

=
1

2
> 0.

According to the Poincaré–Andronov–Hopf bifurcation theorem [19], the system (2.1) under-

goes a Hopf bifurcation when β = 1.

Next, we study the diffusion-driven Turing instability of the diffusion system (1.2) under

the basic assumption that the constant equilibrium E∗(u∗, v∗) of the system (1.2) is asymptot-

ically stable (0 < β < 1).

In order to study the linear stability of the constant equilibrium E∗(u∗, v∗) of (1.2), we need

to study the distribution of the roots of the characteristic equation of (1.2). The linearization

of Equation (1.2) at the constant equilibrium point E∗(u∗, v∗) is

(

∂u
∂t
∂v
∂θ

)

=

(

σ1∆ 0

0 σ2∆

)(

u

v

)

+ A

(

u

v

)

. (2.4)

Assume the solution of (2.4) is that

(

u

v

)

=

(

u∗

v∗

)

+

(

uk

vk

)

exp(λt + i(k · r)), (2.5)

where k denotes the wave number with the expression k = (kx, ky), and satisfies k = |k|.
r is the spatial vector in two dimensions whose expression is r = (x, y). We can get the

corresponding characteristic matrix is

Ak =

(

a11 − σ1k2 a12

a21 a22 − σ2k2

)

.

The characteristic equation is

Fk(λ) = λ2 − Tkλ + Dk = 0, (2.6)

where

Tk = β − 1 − k2(σ1 + σ2),

Dk = σ1σ2k4 − (−σ1 + σ2β)k2 + β.
(2.7)

Under Theorem 2.1, we have 0 < β < 1, thus for any positive natural number k, there always

exist Tk < 0. Then the instability condition of the positive equilibrium point E∗(u∗, v∗) of the

system (1.2) should be that: existing a k > 0 make Dk < 0. In other words, when Dk < 0
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(k > 0) is satisfied, there exists a diffusion-driven Turing instability. Since β > 0, the sufficient

condition for Dk < 0 is that the following two conditions H1 and H2 hold

H1 : −σ1 + σ2β > 0,

and

H2 : (σ1 − σ2β)2 − 4βσ1σ2 > 0.

Consider Dk as a quadratic function of k2, the function Dk can obtain the minimum value

at kT, where k2
T =

√

β
σ1σ2

. If H1 and H2 hold, then minDkT
< 0, which indicates the occurrence

of Turing instability.

In the following, we choose β as the parameter to study the conditions that make H1 and

H2 hold. Regarding the Turing instability of the system (1.2), we obtain the following results.

Theorem 2.2. Assume that the positive equilibrium point E∗ of the corresponding local system (2.1)

is stable, which is given by Theorem 2.1. For the reaction-diffusion system (1.2)

(I) if σ1 ≥ σ2, there is no Turing instability;

(II) if σ1 < σ2, the following results are achieved

(i) when β
(2)
T > 1, there is no Turing instability;

(ii) when β
(2)
T < 1, Turing instability occurs at β ∈ (β

(2)
T , 1) and Turing bifurcation occurs at

β = β
(2)
T ,

where

β
(2)
T =

(3 + 2
√

2)σ1

σ2
.

Proof. (I) From Theorem 2.1, we know that the positive equilibrium point E∗ is stable for

0 < β < 1. Therefore, when σ1 ≥ σ2, we have σ1
σ2

≥ 1 > β, hence H1 is not satisfied. The

conclusion (I) is proved.

(II) Under the conditions of Theorem 2.1, it is easy to get H1 equivalent to β∗ < β < 1,

where

β∗ =
σ1

σ2
, (2.8)

and H2 is equivalent to the following condition

h(β) = σ2
2 β2 − 6σ1σ2β + σ2

1 > 0. (2.9)

Let

Q1 = (−6σ1σ2)
2 − 4σ2

2 σ2
1 = 32σ2

1 σ2
2 , (2.10)

obviously, Q1 > 0. This means that h(β) = 0 has two positive roots, which are denoted as β
(1)
T

and β
(2)
T

0 < β
(1)
T =

(3 − 2
√

2)σ1

σ2
< β

(2)
T =

(3 + 2
√

2)σ1

σ2
, (2.11)

and h(β) > 0 if only and if 0 < β < β
(1)
T and β > β

(2)
T . In addition, we can get

h(β∗) = σ2
2

σ2
1

σ2
2

− 6σ1σ2
σ1

σ2
+ σ2

1 = −4σ2
1 < 0,
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hence, we have the following inequality,

0 < β
(1)
T < β∗ < β

(2)
T . (2.12)

Therefore, H1, H2 are both satisfied for β
(2)
T < β < 1, not satisfied for 0 < β < β

(1)
T , H1, H2.

Then we can conclude that Turing instability occurs only in the region β
(2)
T < β < 1, which

completes the proof of (ii) in Conclusion (II).

Furthermore, if β
(2)
T > 1, the positive equilibrium point E∗ is unstable, hence, there is no

Turing instability. The conclusion (i) in (II) is proved.

To support the previous theoretical analysis, taking σ1 = 0.3, σ2 = 5, we can obtain β
(2)
T =

0.3497. According to Theorem 2.2, we know that Turing instability occurs for β ∈ (β
(2)
T , 1).

Therefore, to investigate the Turing pattern formation of system (1.2), we need to ensure that

the control parameter β ∈ (0.3497, 1). By increasing the value of parameter β in (0.3497, 1),

we can obtain the relationship between Re(λ) and k2 (see Figure 2.1(a)) and the relationship

between Dk and k2 (see Figure 2.1(b)), where Re(λ) is the real part of λ. From Figure 2.1(a)

and Figure 2.1(b), it is easy to see that Re(λ) < 0 and Dk > 0 always hold for β < β
(2)
T , which

implies that there is no Turing instability. Therefore, β > β
(2)
T is the necessary condition for

Turing instability to occur.

0 0.5 1 1.5 2

k
2
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-0.8

-0.6

-0.4

-0.2
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0.2

0.4

0.6

0.8

1

R
e

(
)

=0.3497

=0.44

=0.61

=0.78

(a)

0 0.5 1 1.5 2 2.5

k
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0

0.5

1

1.5
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k
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=0.44

=0.61

=0.78

(b)

Figure 2.1: (a): the graph of the dispersion relation with respect to k2 for differ-

ent β; (b): the graph of Dk(β) with respect to k2 for different β.

In the following, we consider the Hopf bifurcation of the system (1.2) around E(u∗, v∗). By

Theorem 2.1, when 0 < β < 1, then T0 = β − 1 < 0 and Tk = T0 − k2(σ1 + σ2) < 0 for any

k ≥ 0. Let k = n
l , n ∈ N0, l ∈ R

+. According to [8], n-mode Hopf bifurcation means that the

characteristic equation (2.6) has a pair of purely imaginary roots, while the other roots have

non-zero real parts and satisfy the corresponding transversal conditions.

Theorem 2.3. Suppose one of the following conditions holds:

(I) 0 < β ≤ β∗;

(II) β > β
(2)
T .
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The system (1.2) occurs 0-mode Hopf bifurcation at β = βH
0 = 1, where the characteristic F0(λ) = 0

have a pair of purely imaginary roots and other roots of the characteristic Fk(λ) = 0 (k > 0) have

negative real parts. Where β∗ and β
(2)
T are defined in (2.8) and (2.11).

Proof. Since dT0
dβ = 1

2 , then T0 = 0 has a unique root β = βH
0 = 1, and obviously the transversal

conditions satisfied. Moreover, Tk < 0 (k ≥ 1) and D0 = β > 0. Since −σ1 + σ2β ≤ 0, then

0 < β ≤ β∗. It is easy to obtain that Dk > 0 always holds for 0 < β ≤ β∗. When −σ1 + σ2β > 0

, according (2.10) we know that Dk > 0 is equivalent to conditions 0 < β < β
(1)
T or β > β

(2)
T

holding. Combining (2.12), it is find that β > β
(2)
T usable Dk > 0 always satisfied. Thus the

system (1.2) occurs 0-mode Hopf bifurcation.

In the next, we find the spatially inhomogeneous Hopf bifurcation for n ∈ N. Define

βH
n = 1 +

(n

l

)2
(σ1 + σ2), (2.13)

which is the root of Tn
l
= β − 1 − ( n

l )
2(σ1 + σ2) = 0. There are the following conclusions.

Theorem 2.4. Suppose one of the following conditions holds:

(I) 0 < β ≤ β∗;

(II) β > β
(2)
T .

The system (1.2) undergoes a n-mode Hopf bifurcation around E∗(u∗, v∗) at βH
n for n ∈ N, where the

characteristic equation (2.6) has a pair of purely imaginary roots, while all the other roots of Fj(λ) = 0

(j ̸= n
l ) have non-zero real parts. Where β∗ and β

(2)
T are defined in (2.8) and (2.11).

Proof. To find the spatially inhomogeneous Hopf bifurcation points for n ∈ N, we have to

seek the roots of ( n
l )

2(σ1 + σ2) + 1 = β. Since
dTn

l
dβ = 1

2 , then Tn
l
= 0 has a unique root β = βH

n

for n ∈ N, and obviously the corresponding transversal conditions satisfied. Moreover, it is

easy to get that Tn
l

is monotonically decreasing with respect to n, therefore T j
l
(βH

n ) > 0 for

j < n and T j
l
(βH

n ) < 0 for j > n. By the proof of Theorem 2.3, we know that Dk > 0 for one

of the conditions in (I) or (II) holds. Thus the system undergoes n-mode Hopf bifurcation at

βH
n .

In addition, to more intuitively understand Theorem Theorem 2.2–Theorem 2.4, taking

σ1 = 0.4, we plot the stability regions and the existing region of Turing instability in σ2 − β

plane, as shown in Figure 2.2. According to Theorem 2.1–Theorem 2.4, in D1, the positive

equilibrium E∗ is unstable and occurs Turing instability, and β = β
(2)
T represents Turing bifur-

cation curve. In D2, the positive equilibrium E∗ is unstable but not occurs Turing instability.

In D3 and D4 the positive equilibrium E∗ is asymptotically stable. Moreover, we set σ1 = 0.4,

σ2 = 0.2, then the 0-mode Hopf bifurcation will occurs at β = βH
0 = 1. Taking β = 0.99 < βH

0 ,

the system (1.2) can occur the spatially homogeneous periodic solutions (as shown in Fig-

ure 2.3). We set σ1 = 0.4, σ2 = 3, n = 1, l = 8, thus βH
1 = 1.0531. And the 1-mode Hopf

bifurcation will occurs at β = βH
1 . Taking β = 1.01 < βH

1 , the system (1.2) can appear the

spatially inhomogeneous periodic solution (as shown in Figure 2.4).

Remark 2.5. When β ∈ (β∗, β
(2)
T ), at least one eigenvalue of Dk has positive real part, then

the Hopf bifurcating periodic solutions are always unstable. Particularly, for 0-mode Hopf

bifurcation, bifurcating periodic solutions are unstable in the interval AB in Figure 2.2.
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1.8
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T

(1)

T

(2)

*

1-mode Hopf bifurcation
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C

D
1

D
2

D
3

D
4

Turing bifurcation curve

B

Figure 2.2: When σ1 = 0.4, the Turing bifurcation curve and Hopf bifurcation

curve in σ2 − β plane. D1 is the Turing instability region, D2 denotes unstable

regions in which do not occurs Turing unstable, D3 and D4 are both stable

regions. And B represents (kT, 0)-mode Turing–Hopf bifurcation point, C stands

for (kT, 1)-mode Turing–Hopf bifurcation point.

Figure 2.3: The spatially homogeneous periodic solution with σ1 = 0.4, σ2 = 0.2,

β = 0.99. The initial values is (u0, v0)=(0.85, 0.85), and 0 ≤ x ≤ 5, 0 ≤ t ≤ 60.

Remark 2.6. In Figure 2.2, B and C denote the Turing–Hopf bifurcation points corresponding

to the (kT, 0)-mode and (kT, 1)-mode, respectively. Point B is located at the coordinates (2.33,1),

while point C is located at (2.24, 1.041). To investigate the dynamical behaviors that may occur

near these points, we performed numerical simulations. Notably, in the vicinity of point B and

C, we observe spatially homogeneous periodic solutions, non-constant steady-state solutions

and spatially homogeneous quasi-periodic solutions. These observations are visually depicted

in Figure 2.5. These results provide valuable insights into the behavior of the system near the

Turing–Hopf bifurcation point.

This section focuses on the stability, Hopf bifurcation, and Turing instability regions of the

diffusive Gierer–Meinhardt activator-inhibitor system (1.2) and obtains the conditions for the

occurrence of Turing bifurcation, 0-mode Hopf bifurcation, k-mode Hopf bifurcation. As it

is known, pattern formation can be induced by Turing instability. To uncover the diffusion

mechanics of Turing patterns, this paper requires us to investigate and analyze the dynamic

behavior of the Turing bifurcation. To solve this problem, we will employ the amplitude

equation as an effective tool. In the next section, we will consider the amplitude equation of

the system (1.2).
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Figure 2.4: The spatially inhomogeneous periodic solution with σ1 = 0.4, σ2 = 3,

β = 1.01. The initial values is (u0, v0)=(0.99, 0.99), and 0 ≤ x ≤ 50, 0 ≤ t ≤ 2000.

3 The amplitude equation and pattern formation

3.1 The amplitude equation of Turing bifurcation

In this subsection, in order to reveal the effect of diffusion on Turing patterns, the amplitude

equation of the system (1.2) near the Turing bifurcation β = β
(2)
T will be deduced by weakly

nonlinear analysis [3, 5, 27]. To begin with, we consider the third order polynomial system of

the system (1.2), which can be expressed as

∂U

∂t
= IU + S(U, U), (3.1)

where

U =

(

u

v

)

, I =

(

a11 + σ1∆ a12

a21 a22 + σ2∆

)

,

and

S =

(

fuuu2 + fuvuv + fvvv2

guvu2 + guvuv + guvv2

)

+

(

fuuuu3 + fuuvu2v + fuvvuv2 + fvvvv3

guuuu3 + guuvu2v + guvvuv2 + gvvvv3

)

+ o(4).

Applying perturbation techniques to the system (3.1), a small parameter ε is introduced near

the critical value β
(2)
T of the Turing bifurcation and satisfies the following form

β − β
(2)
T = εβ1 + ε2β2 + ε3β3 + o

(

ε3
)

.

Meanwhile, the linear operator I can be decomposed into

Iε = IT +
(

εβ1 + ε2β2 + · · ·
)

C, (3.2)

where

IT =

(

aT
11 aT

12

aT
21 aT

22

)

, (3.3)

C =

(

c11 c12

c21 c22

)

=

(

1 −2β
(2)
T

− 2

(β
(2)
T )2

0

)

,

with

aT
ij = aij|β=β

(2)
T

, cij =
aij

dβ
.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: (a) and (b) are spatially homogeneous periodic solutions with σ1 =

0.4, σ2 = 2.5, β = 1.002, and 0 ≤ x ≤ 3, 1500 ≤ t ≤ 2000; (c) and (d) represent

non-constant steady-state solutions with σ1 = 0.4, σ2 = 2.43, β = 0.99, and

0 ≤ x ≤ 8, 1000 ≤ t ≤ 1500; (e) and (f) correspond to spatially homogeneous

quasi-periodic solutions with σ1 = 0.4, σ2 = 2.25, β = 0.95, and 0 ≤ x ≤
8, 1000 ≤ t ≤ 1500. In all cases, the initial values for u and v are given by

(u0, v0) = (0.9 + 0.01 cos(2x), 0.9 + 0.01 cos(2x)).

In addition, relating the variable U to the parameter ε can be written as

U =

(

u

v

)

= ε

(

u1

v1

)

+ ε2

(

u2

v2

)

+ ε3

(

u3

v3

)

+ o
(

ε3
)

. (3.4)

Substituting (3.2) and (3.4) into system (3.1), we obtain the following equation

∂U

∂t
= IεU + S(U, ε), (3.5)
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where

Iε =

(

σ1∆ 0

0 σ2∆

)

+ Iε, S(U, ε) = ε2S2 + ε3S3 + o
(

ε3
)

, (3.6)

particularly,

I0 = IT +

(

σ1∆ 0

0 σ2∆

)

.

Accordingly, multiple time scales are introduced and the derivatives with respect to t are

converted to
∂

∂t
= ε

∂

∂T1
+ ε2 ∂

∂T2
+ ε3 ∂

∂T3
+ o(ε3). (3.7)

Substitute (3.1)-(3.7) into (3.5), then deriving the coefficients of εj (j = 1, 2, 3) satisfies the

following equation

O(ε) :

I0

(

u1

v1

)

= 0, (3.8)

O
(

ε2
)

:

I0

(

u2

v2

)

=
∂

∂T1

(

u1

v1

)

− β1C

(

u1

v1

)

− S2, (3.9)

O
(

ε3
)

:

I0

(

u3

v3

)

=
∂

∂T1

(

u2

v2

)

+
∂

∂T2

(

u1

v1

)

− β1C

(

u2

v2

)

− β2C

(

u1

v1

)

− S3, (3.10)

where

S2 =

(

s21

s22

)

, S3 =

(

s31

s32

)

,

with

s21 =
1

2
fuuu2

1 +
1

2
( fuv + fvu) u1v1 +

1

2
fvvv2

1,

s31 =
1

6
fuuuu3

1 +
1

6
fvvvv3

1 +
1

6
( fuuv + fuvu + fvuu) u2

1v1 + fuuu2u1 + fvvv2v1

+
1

6
( fuvv + fvuv + fvvu) u1v2

1 +
1

2
( fuv + fvu) (u2v1 + u1v2) ,

s22 and s32 can be obtained by replacing f by g in s21 and s31, and

fuu =
2

v
, fuv = −2u

v2
, fuuv = − 2

v2
, fuvv =

4u

v3
,

fvu = −2u

v2
, fvv =

2u2

v3
, fvvv = −6u2

v4
, guu = 2,

fuvu = − 2

v2
, fvuv =

4u

v3
, fvvu =

4u

v3
, fvuu = − 2

v2
.

Firstly, we discuss the first order of ε, while (u1, v1)
T is the linear combinations that belong

to the eigenvectors corresponding to zero eigenvalues. The general solution of equation (3.9)

can be composed in the following form

(

u1

v1

)

=

(

φ

1

)

(

3

∑
j=1

Mj exp
(

ikjr
)

+
3

∑
j=1

M̄j · exp
(

−ikjr
)

)

, (3.11)
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where the wave numbers satisfy k1 + k2 + k3 = 0, and |k| = kT. By substituting (3.11) into

(3.8), we can get

I0

(

φ

1

)

exp
(

ikjr
)

=

(

a11 − σ1k2
T a12

a21 a22 − σ2k2
T

)(

φ

1

)

= 0 (3.12)

For convenience, we define

Ck =

(

a11 − σ1k2
T a12

a21 a22 − σ2k2
T

)

.

It is clear that (φ, 1)T is a zero eigenvector of Ck, and by simple calculation, we can obtain

φ =
σ2k2

T−a22

a21
.

Using the Fredholm solvability condition for (3.10), the zero eigenvectors of the adjoint

operator I∗T of IT is orthogonal to (3.10) right-hand side, and the eigenvector corresponding to

the zero eigenvalues of I∗T is
(

1

ϕ

)

· exp
(

−ikjr
)

+ c.c., (3.13)

which follows

(1, ϕ) · CT
k = 0, (3.14)

with ϕ =
σ1k2

T−a11

a12
.

Using the Fredholm solvability condition to (3.10)

(1, ϕ) ·
[

∂

∂T1

(

u1

v1

)

− β1C

(

u1

v1

)

− S2

]

= 0. (3.15)

By moving the term, we get the following formula

(1, ϕ) · ∂

∂T1

(

u1

v1

)

= (1, ϕ) ·
[

β1C

(

u1

v1

)

+ S2

]

.

Using the orthogonality condition for (3.10), we can obtain the following equations







































(φ + ϕ)
∂M1

∂T1
=

(

φ − 2βT − 2φϕ

(βT)2

)

β1M1 + 2(1, ϕ)

(

s1

s2

)

· M̄2 · M̄3,

(φ + ϕ)
∂M2

∂T1
=

(

φ − 2βT − 2φϕ

(βT)2

)

β1M2 + 2(1, ϕ)

(

s1

s2

)

· M̄1 · M̄3,

(φ + ϕ)
∂M3

∂T1
=

(

φ − 2βT − 2φϕ

(βT)2

)

β1M3 + 2(1, ϕ) ·
(

s1

s2

)

· M̄1 · M̄2,

(3.16)

where

s1 =
fuu

2
φ2 +

( fuv + fvu)

2
φ +

fvv

2
, s2 =

guu

2
φ2 +

(guv + gvu)

2
φ +

gvv

2
.

Suppose that the solution of (3.10) has the following form

(

u2

v2

)

=

(

U0

V0

)

+
3

∑
j=1

(

Uj

Vj

)

eikjr +
3

∑
j=1

(

Ujj

Vjj

)

ei2kjr +

(

U12

V12

)

ei(k1−k2)r

+

(

U23

V23

)

ei(k2−k3)r +

(

U31

V31

)

ei(k3−k1)r + c.c.

(3.17)
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where c.c represents the complex conjugate of all the preceding terms. Substituting (3.17) into

(3.10), we can derive that

(

U0

V0

)

=

(

u0

v0

)

(

|M1|2 + |M2|2 + |M3|2
)

, Uj = φVj,

(

Ujj

Vjj

)

=

(

u11

v11

)

M2
j ,

(

Umn

Vmn

)

=

(

umn

vmn

)

Mm M̄n,

where
(

u0

v0

)

=
1

a11a22 − a12a21

( −a22s1 + a12s2

−a11s2 + a21s1

)

,

(

u11

v11

)

=
1

2

1

(a11 − 4k2
Tσ1)(a22 − 4k2

Tσ2)− a12a21

( −(a22 − 4k2
Tσ2)s1 + a12s2

−(a11 − 4k2
Tσ1)s2 + a21s1

)

,

(

umn

vmn

)

=
1

(a11 − 3k2
Tσ1)(a22 − 3k2

Tσ2)− a12a21

( −(a22 − 3k2
Tσ2)s1 + a12s2

−(a11 − 3k2
Tσ1)s2 + a21s1

)

.

Using the Fredholm solvability condition to (3.10),

(1, ϕ) ·
[

∂

∂T1

(

u2

v2

)

+
∂

∂T2

(

u1

v1

)

− β1C

(

u2

v2

)

− β2C

(

u1

v1

)

− S3

]

= 0. (3.18)

After simplification, we can obtain the following equations














































































(φ + ϕ)

(

∂V1

∂T1
+

∂M1

∂T2

)

= s3 (β1V1 + β2M1) + s4 (V̄2M̄3 + V̄3M̄2) +

(

P1 |M1|2 + P2

(

|M2|2 + |M3|2
))

M1,

(φ + ϕ)

(

∂V2

∂T1
+

∂M2

∂T2

)

= s3 (β1V2 + β2M2) + s4 (V̄1M̄3 + V̄3M̄1) +

(

P1 |M2|2 + P2

(

|M1|2 + |M3|2
))

M2,

(φ + ϕ)

(

∂V3

∂T1
+

∂M3

∂T2

)

= s3 (β1V3 + β2M3) + s4 (V̄1M̄2 + V̄2M̄1) +

(

P1 |M3|2 + P2

(

|M1|2 + |M2|2
))

M3,

(3.19)

where

s3 = φ − 2β
(2)
T − 2φϕ

(β
(2)
T )2

,

s4 = 2 (1, ϕ)

(

s1

s2

)

,

P1 =

(

m1q1 + m2b1 +
B1

2

)

+ ϕ

(

m1q2 + m2b2 +
B2

2

)

,

P2 = (n1q1 + n2b1 + B1) + ϕ (n1q2 + n2b2 + B2) ,

m1 = u0 + u11, m2 = v0 + v11,

n1 = u0 + umn, n2 = v0 + vmn,

q1 = fuuφ +
1

2
( fuv + fvu) , b1 = fvv +

1

2
( fuv + fvu) φ,

q2 = guuφ +
1

2
(guv + gvu) , b2 = gvv +

1

2
(guv + gvu) φ,



14 Y. Wang, M. Guo and W. Jiang

B1 = fuuuφ3 + ( fuuv + fuvu + fvuu) φ2 + ( fuvv + fvuv + fvvu) φ + fvvv,

B2 = guuuφ3 + (guuv + guvu + gvuu) φ2 + (guvv + gvuv + gvvu) φ + gvvv.

The solution of the reaction-diffusion system (1.2) at the Turing instability critical point

has the following form

(

u

v

)

=

(

φ

1

)

(
3

∑
j=1

Zj exp
(

ikj · r
)

+
3

∑
j=1

Z̄j exp
(

−ikj · r
)

). (3.20)

Combining (3.4), (3.11), (3.17) and (3.20), the amplitude Zj can be transformed into the follow-

ing form Zj = εMj + ε2Vj + o(ε3). Determined by the expressions of Zj and Eqs. (3.7), (3.11),

(3.16) and (3.19) we can obtain the equation for the amplitude corresponding to Z1 as follows

τ0
∂Z1

∂t
= µZ1 + dZ̄2Z̄3 −

(

w1 |Z1|2 + w2 |Z2|2 + |Z3|2
)

Z1, (3.21)

where

τ0 =
φ + ϕ

s3β
(2)
T

, µ =
β − β

(2)
T

β
(2)
T

, d =
s4

s3β
(2)
T

,

w1 = − P1

s3β
(2)
T

, w2 = − P2

s3β
(2)
T

.

Analogously, we can derive two other amplitude equations






τ0
∂Z2
∂t = µZ2 + dZ̄1Z̄3 −

(

w1 |Z1|2 + w2

(

|Z2|2 + |Z3|2
))

Z2,

τ0
∂Z3
∂t = µZ3 + dZ̄1Z̄2 −

(

w1 |Z1|2 + w2

(

|Z2|2 + |Z3|2
))

Z3.
(3.22)

Using the polar coordinate transform

Zj = ρj exp(iϕj) (j = 1, 2, 3),

where ρ =
∣

∣Zj

∣

∣, and ϕj is the polar angle. Then substituting (3.21) into (3.22), the system (3.22)

becomes






























τ0
∂θ
∂t = −d

ρ2
1ρ2

2+ρ2
1ρ2

3+ρ2
2ρ2

2
ρ1ρ2ρ3

sin θ,

τ0
∂ρ1

∂t = µρ1 + dρ2ρ3 cos θ − w1ρ3
1 − w2

(

|ρ2|2 + |ρ3|2
)

ρ1,

τ0
∂ρ2

∂t = µρ2 + dρ1ρ3 cos θ − w1ρ3
2 − w2

(

|ρ1|2 + |ρ3|2
)

ρ2,

τ0
∂ρ3

∂t = µρ3 + dρ2ρ1 cos θ − w1ρ3
3 − w2

(

|ρ1|2 + |ρ2|2
)

ρ3,

(3.23)

where

θ = θ1 + θ2 + θ3.

From the first equation of the system (3.23), there are only two conditions to consider:

θ = 0 or π. The system (3.23) is stable for θ = 0, d > 0 and θ = π, d < 0. Hence, the system

(3.23) can be reduced to the following form














τ0
∂ρ1

∂t = µρ1 + |d|ρ2ρ3 − w1ρ3
1 − w2

(

ρ2
2 + ρ2

3

)

ρ1,

τ0
∂ρ2

∂t = µρ2 + |d|ρ1ρ3 − w1ρ3
2 − w2

(

ρ2
1 + ρ2

3

)

ρ2,

τ0
∂ρ3

∂t = µρ3 + |d|ρ1ρ2 − w1ρ3
3 − w2

(

ρ2
1 + ρ2

2

)

ρ3.

(3.24)

As the results in the [17, 22, 24], by studying the existence and stability of the equilibrium

points of the amplitude system (3.24), we know that the amplitude system (3.24) has five types

of steady-state solutions with the following conclusions:
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(1) The amplitude system (3.24) has an equilibrium E1 = (0, 0, 0), which is stable for µ < µ2

and unstable for µ > µ2;

(2) When µw1 > 0, the amplitude system (3.24) has an equilibrium E2 =
(√

µ
w1

, 0, 0
)

, which

is stable for µ > µ3 with w2 > w1 > 0;

(3) When w1 + 2w2 > 0, µ1 < µ < 0 or w1 + 2w2 < 0, µ < 0, the system (3.24) has an

equilibrium E
(0)
3 = (ρ∗1 , ρ∗1 , ρ∗1) with ρ∗1 =

|d|−
√

d2+4µ(w1+2w2)

2(w1+2w2)
, which is always unstable;

(4) When w1 + 2w2 > 0, µ1 < µ, the system (3.24) has an equilibrium E
(π)
3 = (ρ∗2 , ρ∗2 , ρ∗2)

with ρ∗2 =
|d|+

√
d2+4µ(w1+w2)

2(w1+2w2)
, which is stable for −2w2 < w1 ≤ p2, µ1 < µ < µ4 or

− 1
2 w2 < w2 < w1, µ1 < µ;

(5) When w2 > w1 > 0, µ > µ3 or w1 < w2 < 0, µ < µ3, the system (3.24) has an equilibrium

E4 = (ρ∗3 , ρ∗4 , ρ∗4) with ρ∗3 =
√

|d|
w2−w1

and ρ∗4 =
√

µ−w1ρ2
1

w1+w2
, which is always unstable;

where

µ1 =
−d2

4 (w1 + 2w2)
, µ2 = 0, µ3 =

d2w1

(w2 − w1)
2

, µ4 =
2w1 + w2

(w2 − w1)
2

d2.

By Theorem 2.2, Turing instability occurs at β ∈ (β
(2)
T , 1) for the system (1.2), that is µ =

β−β
(2)
T

β
(2)
T

> 0. However, in this case, E
(0)
3 does not exist. According to the results in [17, 24], the

existence and stability of the equilibria of the amplitude system (3.24) correspond to the type

of spatial patterns of the original system (1.2). E1 and E
(π)
3 correspond to the spot patterns, E2

and E4 correspond to the the stripe patterns and the mixed patterns, respectively. In addition,

it is easy to know from the above discussion that µ1 < µ2 < µ3 < µ4. Consequently, one

obtains the following results:

(1) The system (3.24) only has a equilibrium E
(π)
3 for µ2 < µ < µ3, which is stable, therefore,

the system (1.2) only appear spot patterns;

(2) When β crosses a critical value so that µ3 < µ < µ4, the system (3.24) has two equilibria

E2 and E
(π)
3 , correspondingly, the system (1.2) can occurs mixed patterns;

(3) When µ4 < µ, the system (3.24) only has a equilibrium E2, and then, stripe patterns will

appear in the system (1.2).

Therefore, we are able to establish a connection between the initial reaction-diffusion equa-

tion and the amplitude equation presented in Table 3.1. This linkage not only sheds light on

the underlying mechanisms of these mathematical models, but also provides a valuable theo-

retical framework for further research in this field of study [17].

In this subsection, we derive the amplitude equation (3.24) of the system (1.2) using the

weakly nonlinear analysis method and obtain the conditions for the appearance of different

Turing patterns. In the next subsection, we will verify theoretical analysis by numerical simu-

lation.
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Amplitude system (3.24) The original system (1.2)

E1 Spot pattern

E2 Stripe pattern

E
(π)
3 Spot pattern

E4 Mixed pattern

Table 3.1: The correspondence between the amplitude system and the original

system.

3.2 Numerical simulations of pattern formation

In this subsection, we will perform numerical simulations to verify the last part of the theo-

retical analysis. Taking the Parameters σ1 = 0.5, σ2 = 3.6, then we have

k2
T = 0.6706, β

(2)
T = 0.8095.

According to Theorem 2.2, Turing pattern will appear when β ∈ (0.8095, 1). Then we choose

β = 0.99, and with simple calculations, the following results can be obtained

d = −0.4661, w1 = 0.2653, w2 = 0.6939,

µ1 = −0.0329, µ2 = 0, µ3 = 0.3137, µ4 = 1.4480, µ = 0.2230.

Hence, µ2 < µ < µ3, the parameter values ρ∗2 = 1.2414, −2w2 = −1.3878 < w1 < ρ2,

and E
(π)
3 = (1.2414, 1.2414, 1.2414) represent a specific range of conditions that correspond

to the fourth steady-state solution of the amplitude equation (as defined in (4)). Based on

our previous analysis, the appearance of spot patterns in the reaction-diffusion system (1.2)

is expected under these conditions (see Figure 3.1). Therefore, we can conclude that the

formation of spot patterns in the system is likely to occur under the specified parameter

values.

Next, choosing β = 0.95, we can obtain the following results

d = −0.4277, w1 = 1.7657, w2 = 3.2023,

µ1 = −0.0056, µ2 = 0, µ3 = 0.1565, µ4 = 0.5968, µ = 0.1736.

And then get µ3 < µ < µ4, ρ∗3 = 0.5456, ρ∗4 = 0.0258, w2 > w1, µ > µ3, E4 = (0.5456, 0.0258,

0.0258), which falls within (5) of the steady-state solution of the amplitude equation. Based on

the analysis in the previous section, this situation can induce the formation of the mixed pat-

terns (the coexistence of spot patterns and stripe patterns) of the system (1.2) (see Figure 3.2).

In the following, reducing β to β = 0.85, by a series of calculations, we get

d = −0.0389, w1 = 1.1113, w2 = 2.4493,

µ1 = −0.0001, µ2 = 0, µ3 = 0.0009, µ4 = 0.0039, µ = 0.0500.

And thus obtain µ > µ4. The system (1.2) exhibits stripe patterns (see Figure 3.3), as predicted

by previous theoretical findings, when the following conditions are met: ρ1 = 0.2121, µ > µ3,

w2 > w1 > 0, µw1 = 0.0556 > 0, and E2 = (0.2121, 0, 0). The corresponding steady-state

solution of the amplitude equation is denoted as (2). From the above analysis, Table 3.2 was

derived.
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Parameters of the Amplitude Equation

(σ1, σ2, β) d w1 w2 µ1 µ2 µ3 µ4 µ type

(0.5, 3.6, 0.99) −0.4661 0.2653 0.6939 −0.0329 0 0.3137 1.4480 0.2230 Spot

(0.5, 3.6, 0.95) −0.4277 1.7657 3.2023 −0.0056 0 0.1565 0.5968 0.1736 Mixed

(0.5, 3.6, 0.85) −0.0389 1.1113 2.4493 −0.0001 0 0.0009 0.0039 0.0500 Stripe

Table 3.2: Different parameters and corresponding patterns.
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Figure 3.1: The evolutionary process of concentration of the activator u with

σ1 = 0.5, σ2 = 3.6, β = 0.99 at t = 0, t = 100, 000, t = 750, 000, t = 2, 000, 000,

t = 2, 500, 000, t = 3, 000, 000, respectively.

In order to solve the system of continuous reaction-diffusion equations (1.2) with MatLab,

it is necessary to discretize the system (1.2) in space and time. Therefore, we choose Ω =

[0, 200]× [0, 200] as the discrete region, while choosing a time step ∆t = 0.0005 and a space

step ∆h = 0.5. Since the concentration spatial pattern of the activator u is similar to the

inhibitor v, we only show the concentration spatial pattern of the activator u, as shown in

Figure 3.1–Figure 3.3. Next, numerical simulations are performed in the vicinity of the Turing

bifurcation.

In Figure 3.1, β = 0.99 ∈ (0.8095, 1) and then we have µ ∈ (µ2, µ3). The results show

that the spot patterns and stripe patterns coexist as time t increases, but these patterns will
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gradually disappear as time t changes, eventually, the spot patterns will dominate the whole

region. Theoretical and numerical results are kept consistent. Here, we take t = 0, 100, 000,

750, 000, 2, 000, 000, 2, 500, 000, and 3, 000, 000, respectively, with the following initial values

{

u(x, y, 0) = u∗ − 0.0002 · randn(200)

v(x, y, 0) = u∗ − 0.0002 · randn(200)
(3.25)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Figure 3.2: The evolutionary process of concentration of the activator u with

σ1 = 0.5, σ2 = 3.6, β = 0.95 at t = 0, t = 150, 000, t = 750, 000, t = 1, 400, 000,

t = 2, 000, 000, t = 3, 000, 000, respectively.

Figure 3.2 shows the spatial pattern evolution of the activator u at t = 0, 150, 000, 750, 000,

1, 400, 000, 2, 000, 000, and 3, 000, 000 for the reaction-diffusion system (1.2) under the initial

condition (3.25), and β = 0.95 ∈ (0.8095, 1), µ ∈ (µ3, µ4). Based on the above theoretical anal-

ysis, in this case, there is the coexistence of the spot patterns and stripe patterns. Numerically,

it can be seen that this random distribution leads to the coexistence of these two patterns and

this coexistence does not change further with increasing time t.

Under the same initial value conditions as above, taking t = 0, 90, 000, 1, 550, 000,

2, 000, 000, 2, 800, 000, and 3, 000, 000, β = 0.85 ∈ (0.8095, 1), then µ ∈ (µ4, ∞). With the

increase of time t, the spot-stripe coexistence pattern starts to lose stability, and the stripe
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Figure 3.3: The evolutionary process of concentration of the activator u with

σ1 = 0.5, σ2 = 3.6, β = 0.85 at t = 0, t = 90, 000, t = 1, 550, 000, t = 2, 000, 000,

t = 2, 800, 000, t = 3, 000, 000, respectively.

pattern appears and eventually stabilizes. The numerical simulation results (as shown in

Figure 3.3) are inconsistent with the theoretical analysis.

From the results of numerical simulations, we can see that when the decay rate of the

activator β decreases from 0.99, 0.95 to 0.85 in order, the type of activator concentration u

pattern changes from spot patterns, spot-stripe patterns to stripe patterns in order. This

indicates that the decay rate of the activator β affects the type of activator concentration u

patterns. Therefore, in chemical reactions, we can adjust the decay rate of the activator β to

make the concentration of the activator u tend to different patterns at dynamic equilibrium.

4 Conclusions

In this paper, the Hopf bifurcations, Turing instability, and pattern formation of Gierer–

Meinhardt activator-inhibitor models with mutual resistance effects are investigated. The

existence and stability of the positive equilibrium point E∗ are analyzed firstly, which are in-

fluenced by the parameter β, indicating that the decay rate of the activator has an essential
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effect on the system. Then the conditions for the Hopf bifurcation as well as the Turing bi-

furcation are established theoretically, and the effects of parameter β on the Hopf bifurcation

and Turing bifurcation are discussed numerically.

It is shown that under certain conditions, a diffusion-driven Turing instability occurs at the

positive equilibrium point E∗. For a fixed σ1, the Turing instability region in the β − σ2 plane

is surrounded by the Hopf bifurcation curve and the Turing bifurcation curve (see Figure 2.2).

It can be concluded that there is no Turing instability for the higher decay rate of the activator.

For studying and analyzing the dynamic behavior near the Turing bifurcation, the cor-

responding amplitude equations are driven for the system (1.2) near the Turing bifurcation

point by the weakly nonlinear analysis method, which can be used to predict the stability of

the spatial pattern and its type. Based on theoretical analysis, the system will appear with

spot patterns, mixed patterns, and stripe patterns, which can be verified by numerical sim-

ulations in the subsection 3.2. The results show that, with β as the adjustment parameter,

the spatial patterns in the Turing instability region change from the spot patterns, and spot-

stripe coexistence patterns to stripe patterns in order. These spatial patterns can not only

simulate and explain the chemical oscillations between activator concentrations and inhibitor

concentrations in a better way but they can also be applied to medical tests [10].
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Abstract. Direct spring operated pressure relief valves connected to a constantly
charged vessel and a downstream pipe have a complex dynamics. The vessel-valve
subsystem is described with an autonomous system of ordinary differential equations,
while the presence of the pipe adds two partial differential equations to the mathe-
matical model. The partial differential equations are transformed to a delay algebraic
equation coupled to the ordinary differential equations. Due to a square root nonlin-
earity, the system is implicit. The linearized system can be transformed to a standard
system of neutral delay differential equations (NDDEs) having more elaborated litera-
ture than the delay algebraic equations. First, the different forms of the mathematical
model are presented, then the transformation of the linearized system is conducted. The
paper aims at introducing this unusual mathematical model of an engineering system
and inducing research focusing on the methodology to carry out bifurcation analysis in
implicit NDDEs.
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1 Introduction

The mathematical model in question describes the dynamics of a simplified mechanical model

consisting of a vessel charged by a constant fluid flow rate, a direct spring operated pressure

relief valve and a pipe delivering the fluid to the atmospheric pressure. Previous studies are

presented in [7] and [8] mainly focus on the engineering aspects of the valve dynamics. The

model construction and the derivation of the dimensionless mathematical model can be found

in [7] in detail, but the various simplified forms of the mathematical model are summarized

here with compressed parameters.

BCorresponding author. Email: fanni.kadar@mm.bme.hu



2 F. Kádár and G. Stépán

The dimensionless mathematical model of the vessel-valve subsystem is an autonomous

system of ordinary differential equations (ODEs):

ẏ1(t) = y2(t) , (1.1)

ẏ2(t) = −2ζy2(t)− (y1(t) + δ) + y3(t)− yout , (1.2)

ẏ3(t) = β
(

q − y1(t)
√

y3(t)− yout

)

, (1.3)

with the state variables y1,2,3 ∈ R, where dot refers to the derivative with respect to the

dimensionless time t. The appearing parameters ζ, δ, β, q are positive according their physical

meanings. The backpressure yout is usually the atmospheric backpressure that is zero for the

vessel-valve subsystem. In the followings, we investigate the dynamics of the open valve for

which the conditions y1 > 0 and y3 > 0 fulfil. The system can be linearized around its trivial

solution y∗1,2,3 , which is given as the only physically relevant non-negative solution of the

following algebraic equations depending on the parameters q and δ:

y∗3
1 + δy∗2

1 − q2 = 0 , y∗3 = y∗1 + δ , y∗2 = 0 .

For small perturbations η1,2,3 ∈ R around the equilibrium, the linearised system is:

η̇1(t) = η2(t) , (1.4)

η̇2(t) = −2ζη2(t)− η1(t) + η3(t) , (1.5)

η̇3(t) = −β

(

√

y∗3η1(t) +
y∗1

2
√

y∗3
η3(t)

)

. (1.6)

The Navier–Stokes and continuity equations of the fluid flow through the pipe serve two

dimensionless partial differential equations:

ẏ4(x, t) = −Γ1y′5(x, t) , (1.7)

ẏ5(x, t) = −Γ2y′4(x, t) , Γ2 =
1

Γ1(τ/2)2
(1.8)

where the new coordinate x denotes the dimensionless space coordinate along the pipe such

that x = 1 corresponds to the end of the pipe, while y4 is the gauge pressure distribution

and y5 is the fluid velocity distribution along the pipe. The parameters Γ1 and Γ2 are also

positive and can be calculated from the physical parameters of the system and the fluid. The

time delay τ connects the parameters Γ1 and Γ2. The time delay is the time of the wave

propagation along the pipe until the backward wave interacts with the valve dynamics. In

this case, the valve backpressure is yout = y4(0, t) in the ODEs (1.1)–(1.3). The corresponding

boundary conditions are:

y4(1, t) = 0 , (1.9)

y5(0, t) = Γ3y1(t)
√

y3(t)− y4(0, t) . (1.10)

The first boundary condition prescribes that the fluid delivers to the zero overpressure. The

second one expresses that the mass flow rate through the valve must be equal to the inlet

mass flow rate to the pipe. The parameter Γ3 > 0 can also be expressed from the physical

parameters of the system and the flow.
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The solutions of the partial differential equations in (1.7), (1.8) can be formulated in the

so-called travelling wave solution form:

y4(x, t) = f
(

T − τ

2
X
)

+ g
(

T +
τ

2
X
)

, (1.11)

y5(x, t) =
2

Γ1τ

(

f
(

T − τ

2
X
)

− g
(

T +
τ

2
X
))

, (1.12)

where f : R → R, g : R → R are unknown functions. The travelling wave solutions can

be substituted back into the boundary conditions. From the boundary condition (1.9), the

connection

g(u) = − f (u − τ) , u ∈ R. (1.13)

is obtained, which can be further substituted into the boundary condition (1.10) leading to a

nonlinear delay algebraic equation:

f (t) + f (t − τ) = φy1(t)
√

y3(t)− f (t) + f (t − τ) , (1.14)

where φ > 0 is called as pipe inlet parameter, and φ = Γ1Γ3τ/2. Note, that the differential

algebraic equation is only one possible terminology for this kind of equation, see [3], while

it can also be called as nonlinear difference equation, or shift map [4], or neutral renewal

equation [1, 2].

Finally, the whole system of delay differential algebraic equations (DDAEs) can be derived

by considering the coupling between the ODEs and the algebraic equation with y4(0, t) =

f (t)− f (t − τ) from (1.11) and (1.13):

ẏ1(t) = y2(t) , (1.15)

ẏ2(t) = −2ζy2(t)− (y1(t) + δ) + y3(t)− f (t) + f (t − τ) , (1.16)

ẏ3(t) = β
(

q − 1

φ

(

f (t) + f (t − τ)
)

)

, (1.17)

f (t) = φy1(t)
√

y3(t)− f (t) + f (t − τ)− f (t − τ) . (1.18)

This system is implicit, because of the square root nonlinearity in (1.18), thus, the algebraic

equation cannot be arranged into standard explicit NDDE form [5, 11]:

d

dt

(

y(t)− u( y(t − τ))
)

= v( y(t), y(t − τ)) , (1.19)

where y : R → R
3, u : R

3 → R
3 and v : R

3 × R
3 → R

3.

The derived implicit DDAE model is unusual in the field of engineering dynamics where

the mathematical background is not yet elaborated. As it was referred to [1–4], even the ter-

minology is not uniform and the numerical methods rarely handle neutral kind systems, es-

pecially implicit and/or algebraic ones. Paper [7] contains a thorough linear stability analysis,

mode shape calculations and a numerical validation of the time-delay model of the vessel-

valve-pipe system. The results presented in [8] mainly explain the nonlinear aspects of the

safe operation of the pressure relief valves mounted on a vessel. Based on the results of [7],

it is also shown how to use the attached downstream pipe consciously to avoid the harmful

valve vibrations. At the end, it also presents nonlinear analysis of the time delay model of

the vessel-valve-pipe system by means of DDE Biftool via creating an approximate system of
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retarded delay differential equations. Although the studies in [7, 8] provided valuable infor-

mation from engineering point of view, both analytical and numerical techniques have to be

developed for the reliable handling of implicit nonlinear delay differential algebraic equations

(DDAEs), which, to best of our knowledge, is missing from the literature.

2 Transformation to neutral delay differential equations

The presence of the pipe added one algebraic equation to the model of the vessel-valve subsys-

tem. The trivial solution y∗1,2,3 for the vessel valve system is not changed by the presence of the

pipe, but additionally the trivial solution f ∗ appears for the DDAEs (1.15)–(1.18), extending

the algebraic system of equations for the trivial solution as follows:

y∗3
1 + δy∗2

1 − q2 = 0 , y∗3 = y∗1 + δ , y∗2 = 0 , f ∗ =
φ

2
q .

The linearized system can be derived for the small perturbations η1,2,3,4 ∈ R around the trivial

solution:

η̇1(t) = η2(t) , (2.1)

η̇2(t) = −2ζη2(t)− η1(t) + η3(t)− η4(t) + η4(t − τ) , (2.2)

η̇3(t) = − β

φ
(η4(t) + η4(t − τ)) , (2.3)

η4(t) = φ
y∗1

2
√

y∗3

(

2y∗3
y∗1

η1(t) + η3(t)− η4(t) + η4(t − τ)

)

− η4(t − τ) . (2.4)

The vessel-valve dynamics around the equilibrium is described in the space of η1,2,3 in (1.4)–

(1.6). These state variables have actual physical meaning, while the pipe adds one new equa-

tion with the state variable η4 originated in the wave propagation described by the function f ,

which cannot be directly associated to a physical measure. The most convenient interpretation

from engineering point of view would be to present the vessel-valve-pipe system in a linear

form in the space of the vessel-valve subsystem, thus in a delayed differential equation form

with the variables η1,2,3. This way, the vessel gauge pressure and the disk vibrations remain in

the model, and the effect of the pipe would appear through the delayed terms only. Also, the

equilibrium of the pipe is detached from the equilibrium of the vessel-valve subsystem, while

the τ → 0 case must be the transition between the vessel-valve-pipe and vessel-valve model.

Indeed, the linearized system of DDAEs (2.1)–(2.4) can be transformed to a system of

neutral delay differential equations (NDDEs) by means of some algebraic manipulation. The

goal is to present a standard system of NNDEs in the space of the same state variables as in

case of the vessel-valve subsystem presented in (1.4)–(1.6).

First, let us rearrange (2.4) to obtain

(

1 + φ
y∗1

2
√

y∗3

)

η4(t) +

(

1 − φ
y∗1

2
√

y∗3

)

η4(t − τ) = φ

(

√

y∗3η1(t) +
y∗1

2
√

y∗3
η3(t)

)

. (2.5)
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Then take the linear combination of equation (2.2) and its τ-delayed form:

(

1 + φ
y∗1

2
√

y∗3

)

η̇2(t) +
(

1 − φ
y∗1

2
√

y∗3

)

η̇2(t − τ)

=

(

1 + φ
y∗1

2
√

y∗3

)(

− 2ζη2(t)− η1(t) + η3(t)− η4(t) + η4(t − τ)

)

+

(

1 − φ
y∗1

2
√

y∗3

)(

− 2ζη2(t − τ)− η1(t − τ) + η3(t − τ)− η4(t − τ) + η4(t − 2τ)

)

.

(2.6)

It can be done similarly for (2.3):

(

1 + φ
y∗1

2
√

y∗3

)

η̇3(t) +

(

1 − φ
y∗1

2
√

y∗3

)

η̇3(t − τ)

= − β

φ

((

1+φ
y∗1

2
√

y∗3

)(

η4(t)+η4(t − τ)

)

+

(

1−φ
y∗1

2
√

y∗3

)(

η4(t − τ)+η4(t − 2τ)

))

.

(2.7)

For both equations, (2.5) and its τ-delayed form appears. After their substitution, the follow-

ing two equations are obtained in place of (2.2)–(2.3):

(

1 + φ
y∗1

2
√

y∗3

)

η̇2(t) +

(

1 − φ
y∗1

2
√

y∗3

)

η̇2(t − τ)

= −
(

1 + φ

(

y∗1
2
√

y∗3
+
√

y∗3

))

η1(t)− 2ζ

(

1 + φ
y∗1

2
√

y∗3

)

η2(t)) + η3(t)

−
(

1 − φ

(

y∗1
2
√

y∗3
+
√

y∗3

))

η1(t − τ)− 2ζ

(

1 − φ
y∗1

2
√

y∗3

)

η2(t − τ)) + η3(t − τ)

(2.8)

(

1 + φ
y∗1

2
√

y∗3

)

η̇3(t) +

(

1 − φ
y∗1

2
√

y∗3

)

η̇3(t − τ)

= −β

(

√

y∗3(η1(t) + η1(t − τ)

)

+
y∗1

2
√

y∗3

(

η3(t) + η3(t − τ))

) (2.9)

Finally, the whole system of NDDEs is presented in a matrix form:

η̇(t) = Aη(t) + Bη(t − τ) + Cη̇(t − τ) (2.10)

where η = [η1 , η2 , η3]T, while A, B, C ∈ R
3x3 are given as follows:

C = −
1 − φ

y∗1
2
√

y∗3

1 + φ
y∗1

2
√

y∗3





0 0 0

0 1 0

0 0 1



 , (2.11)

A =
1

1 + φ
y∗1

2
√

y∗3













0 1 + φ
y∗1

2
√

y∗3
0

−1 − φ
(

√

y∗3 +
y∗1

2
√

y∗3

)

−2ζ
(

1 + φ
y∗1

2
√

y∗3

)

1

β
√

y∗3 0 β
y∗1

2
√

y∗3













, (2.12)

B =
1

1 + φ
y∗1

2
√

y∗3











0 0 0

−1 + φ
(

√

y∗3 +
y∗1

2
√

y∗3

)

−2ζ
(

1 − φ
y∗1

2
√

y∗3

)

1

β
√

y∗3 0 β
y∗1

2
√

y∗3











. (2.13)
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As conclusion, a linear system of NDDEs is derived in the presence of the pipe with the state

variables of the vessel-valve subsystem. It has a straight transition to the linearaized system

of ODEs describing the dynamics of the vassel-valve subsystem in (1.4)–(1.6) with the limit of

τ → 0. This limit case leads to the system

(I − C)η̇(t) = (A + B)η(t) (2.14)

with the identity matrix I ∈ R
3, which is, indeed, an equivalent system to (1.4)–(1.6).

2.1 Linear analysis of the DDAEs

The characteristic equation corresponding to the linearized system of NDDEs (2.1)–(2.4) can

be derived as

det(A − λI + (B + λe−λτC)) = 0 (2.15)

leading to the form of

(a3 + b3e−λτ)(a3λ3 + a2λ2 + a1λ + a0 + b3λ3e−λτ +b2λ2e−λτ + b1λe−λτ + b0e−λτ) = 0 , (2.16)

with the coefficients

a3 = 1 + φ
y∗1

2
√

y∗3
, b3 = 1 − φ

y∗1
2
√

y∗3
,

a2 = β
y∗1

2
√

y∗3
+ 2ζ

(

1 + φ
y∗1

2
√

y∗3

)

, b2 = β
y∗1

2
√

y∗3
+ 2ζ

(

1 − φ
y∗1

2
√

y∗3

)

,

a1 = 1 + φ

(

√

y∗3 +
y∗1

2
√

y∗3

)

+2ζβ
y∗1

2
√

y∗3
, b1 = 1 − φ

(

√

y∗3 +
y∗1

2
√

y∗3

)

+ 2ζβ
y∗1

2
√

y∗3
,

a0 = β

(

√

y∗3 +
y∗1

2
√

y∗3

)

, b0 = a0 .

(2.17)

Since we temporarily extended the interval of the initial data to [−2τ, 0] in the steps of deriva-

tion in (2.6) and (2.7), the term a3 + b3e−λτ appears as a multiplicator of ∑
3
i=0(aiλ

i + biλ
ie−λτ).

The 2τ-delayed term η4(t − 2τ) was eliminated in (2.8) and (2.9), so the final set of initial

data is defined again on [−τ, 0] and the factorized characteristic equation does not contain

exponential terms e−2λτ explicitly. The linear stability analysis of the system of DDAEs can

be carried out by direct substitution of an exponential trial solution into (1.15)–(1.18), see [7],

leading to the characteristic equation ∑
3
i=0(aiλ

i + biλ
ie−λτ) = 0 with the exact same coef-

ficients as in (2.17); moreover, the roots of a3 + b3eλτ = 0 assign the spectral abscissa of the

essential spectrum [9]. Because of the neutral kind of the system, infinitely many characteristic

roots may appear on the right-hand side of the complex plane causing the so-called essential

loss of stability. The condition

∣

∣

∣

∣

b3

a3

∣

∣

∣

∣

< 1 (2.18)

guarantees that the spectral abscissa of the essential spectrum is located on the left side of

the complex plane avoiding the possibility of the essential loss of stability. For the coefficients
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in (2.17), this condition always fulfils. The associated difference equation of the NDDE [9] in

(2.10) is

η(t)− Cη(t − τ) = 0 (2.19)

with the characteristic equation

(

1 +
b3

a3
e−λτ

)2

= 0 (2.20)

assigning the same spectral abscissa as the equation ∑
3
i=0(ai + bie

−λτ) = 0. Consequently, in

case of the transformations resulting (2.10), the characteristic roots of the associate difference

equation are false roots of the characteristic equation itself. If the condition (2.18) fulfils, it

leads to the same stability properties of the linear system of DDAEs (1.15)–(1.18) and NDDEs

(2.10).

2.2 Stability charts

The linear stability analysis detects the possible Hopf bifurcations in the system. The stability

properties of the trivial solution can be determined for ∑
3
i=0(aiλ

i + biλ
ie−λτ) = 0 through

the so-called D-separation method [6, 10]. The critical roots are the poor imaginary complex

conjugate ±iω, where ω ∈ R
+ is the angular frequency of the possibly emerging periodic so-

lution, which corresponds to the self-excited vibration of the valve. In this case, two solutions

exist for ω depending on the parameters ζ , δ , q. The stability boundaries βcr(τ; ω) can be

determined for both frequencies, depending on the time delay τ; for details and the closed

form solutions, see [7]. As a practically useful result, stability charts like the one in Fig. 2.1

can be presented to characterise the effects of the various sizes of the pipe and the vessel on

valve stability.

Figure 2.1: Example stability chart for q = 6 , δ = 3 , ζ = 0.39 , φ = 48.2. The

gray domains are stable, the white domains are unstable. The two types of lines

represent the stability boundaries with the two distinct vibration frequencies of

the self-excited vibrations.
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Abstract. In this article we use coincidence degree theory to study the existence of a
positive periodic solutions to the following bioeconomic model in fishery dynamics











dn
dt = n

(

r(t)
(

1 − n
K

)

− q(t)E
n+D

)

,

dE
dt = E

(

A(t)q(t)
α(t)

n
n+D − q2(t)

α(t)
n2E

(n+D)2 − c(t)
)

,

where the functions r, q, A, c and α are continuous positive T-periodic functions. This
is the model of a coastal fishery represented as a single site with n(t) is the fish stock
biomass, and E(t) is the fishing effort. Examples are given to strengthen our results.

Keywords: periodic solution, coincidence degree theory, existence of solutions.
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1 Introduction

In [17], Moussaoui and Auger introduced following system of three ordinary differential equa-

tion describing the fishery dynamics with price depending on supply and demand























dn
dτ = ε

(

rn
(

1 − n
K

)

− qnE
n+D

)

dE
dτ = ε

(

−cE + p
qnE

n+D

)

dp
dτ = ϕp

(

P(p)− qnE
n+D

)

(1.1)

n(t) is the fish stock biomass, E(t) is the fishing effort and (p(t) is the price per unit of the

resource at time t). Authors assumed that the price varies at a fast time scale τ, while fish

growth and investment in the fishery by boat owners occur at a slow time scale t = ετ, with

τ ≪ 1 being a small dimensionless parameter.

BCorresponding author. Email: satyamsrivastava983@gmail.com
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The study of existence, uniqueness and asymptotic behavior of solutions of mathematical

models can be found in all applied sciences in the recent years. Many of the mathemati-

cal models occur in terms of differential equations or a system of differential equations.The

increasing expansion of branches of system of differential equations has attracted many re-

searchers to study the dynamical nature of solutions, especially, on existence and uniqueness

of solutions. One of the models that attracts the attention of researchers in applied science is

the bioeconomic model, similar to classical bioeconomic models of fishery dynamics [1, 3].

Using regression [17], we can transform model (1.1) into the following system of two

differential equations.






dn
dt = n

(

r
(

1 − n
K

)

− qE
n+D

)

dE
dt = E

(

Aq
α

n
n+D − q2

α
n2E

(n+D)2 − c
)

.
(1.2)

Since the variation of environment, in particular the periodic variation of the environment,

play an important role in many biological and ecological system, especially, in fish stock

biomass and fishing effort, it is natural to study the existence and asymptotic behavior of

periodic solutions of the model (1.2). From the application point of view, only positive periodic

solutions are important. Hence, it is realistic to assume the periodicity of the coefficient

functions in (1.2). Thus, assuming r, q, A, c, and α to be positive T-periodic functions, we have

the following nonautonomous model







dn
dt = n

(

r(t)
(

1 − n
K

)

− q(t)E
n+D

)

dE
dt = E

(

A(t)q(t)
α(t)

n
n+D − q2(t)

α(t)
n2E

(n+D)2 − c(t)
) (1.3)

where r, q, A, c, and α are continuous positive T-periodic functions with ecological meaning

as n the fish stock biomass, E the fishing effort, r fish growth rate, K carrying capacity, q

catchability per fishing effort unit, D half saturation level, A carrying capacity of the market

or maximum demand and α slope of the linear demand function decreasing with the price.

Setting

f (t, n, E) =
r(t)

K
n2 +

q(t)En

n + D

and

g(t, n, E) =
A(t)q(t)

α(t)

nE

n + D
−

q2(t)

α(t)

n2E2

(n + D)2
,

we can express (1.3) into the following systems of equations

{

dn
dt = r(t)n(t)− f (t, n(t), E(t))
dE
dt = −c(t)E(t) + g(t, n(t), E(t)).

(1.4)

System of equations of the form (1.4) with general f and g have been studied by many

authors [2,11,14,20–25,28] using various types of fixed point theorems to study the existence of

positive T-periodic of (1.4) when f and g are positive continuous functions. Further, they were

applied to many mathematical models [11, 14, 20–25, 28] to study the existence of positive T-

periodic solutions. One may refer to [19] for applications of fixed point theorems [7,9,10,12] on

the existence of positive periodic solutions of mathematical models. As far as our knowledge

is concerned, there exist no results on the existence and uniqueness of positive T- periodic

solutions of (1.3). We have used Mawhin’s coincidence degree theory to study the existence of
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T-periodic solution of (1.3). Although there exist hundreds of research articles in the literature

on the use of Schauder’s fixed point theorem and Krasnosel’skii’s fixed point theorem, the use

of Mawhin’s coincidence degree theory to study the existence of positive T-periodic solutions

of (1.3) is relatively scarce in the literature. Previous papers based on Mawhin’s coincidence

degree theory for different biological models are [4–6, 8, 15, 26, 27, 29].

In order to obtain our results, we assume r(t), q(t), A(t), c(t) and α(t) in (1.3) are all

positive T-periodic functions. Further then we assume f and g are T-periodic functions with

respect to the first variable.

This work has been divided into four sections. Section 1 is Introduction. Basic theory and

Mawhin’s coincidence degree theory is given in Section 2. Section 3 contains the main results

of this paper. Examples are given to illustrate our results. Section 4 discusses the conclusion

of this article.

2 Preliminaries

Before presenting our results on the existence of periodic solution of system (1.3), We provide

the essentials of the coincidence degree theory. Let Z and W be the real Banach spaces, and Let

L : dom(L) ⊂ Z → W be Fredholm operator of index zero, If P : Z → Z and Q : W → W are

two continuous projectors such that Im(P) = Ker(L), Ker(Q) = Im(L), Z = Ker(L)⊕ Ker(P)

and W = Im(L)⊕ Im(Q), then the inverse operator of L|dom(L)∩Ker(P) : dom(L) ∩ Ker(P) →

Im(L) exists and is denoted by Kp (generalized inverse operator of L). If Ω is an open bounded

subset of Z such that dom(L) ∩ Ω ̸= 0, the mapping N : Z → W will be called L-compact

on Ω, if QN(Ω) is bounded and Kp(I − Q)N : Ω → Z is compact. The abstract equation

Lx = Nx is shown to be solvable in view of [16, Theorem 2.4 on p. 84].

Theorem 2.1 ([16]). Let L be a Fredholm operator of index zero and let N be the L-compact on Ω.

Assume the following conditions are satisfied:

1) Lx ̸= λNx for every (x, λ) ∈ [(dom(L)\Ker(L)) ∩ ∂Ω]× (0, 1);

2) Nx /∈ Im(L) for every x ∈ Ker(L) ∩ ∂Ω;

3) deg(QN|Ker(L), Ker(L) ∩ Ω, 0) ̸= 0, where Q : W → W is a projector as above with Im(L) =

Ker(Q).

Then, the equation Lx = Nx has at least one solution in dom(L) ∩ Ω.

3 Existence of the periodic solution

For the sake of convenience and simplicity, we use the notations:

f = 1
T

∫ T
0 f (t)dt, f L = min

t∈[0,1]
f (t), f M = max

t∈[0,1]
f (t),

where f is a continuous t-Periodic function.

Set:

mϵ = AM(K + D) + ϵ, gϵ = K

(

1 −
qMm0

DrL

)

− ϵ, hϵ =
αL

(qL)2

(

ALqLg0

αM(K + D)
− cM

)

− ϵ.

Also, there exist positive numbers Li (i = 1, 2, . . . , 4) such that L2 ≤ z1(t) ≤ L1, L4 ≤ z2(t) ≤

L3, where Li (i = 1, 2 . . . , 4) will be calculated as in the proof of following theorem.



4 S. N. Srivastava, S. Padhi and A. Domoshnitsky

Theorem 3.1. Assume the following conditions hold:

(A1) qMm0 < DrL,

(A2) cMαM(K + D) < ALqLg0,

(A3) Aq − αK < α c < Aq + Dr q.

Then, system (1.3) has at least one positive T-periodic solution

Proof. Firstly, we make a change of variables.

Consider

z1(t) = ln n(t) ⇒ n(t) = ez1(t),

z2(t) = ln E(t) ⇒ E(t) = ez2(t),

then system (1.3) becomes











dz1
dt = r(t)

(

1 − ez1(t)

K

)

− q(t)ez2(t)

ez1(t)+D
,

dz2
dt = A(t)q(t)

α(t)
ez1(t)

ez1(t)+D
− q2(t)

α(t)
e2z1(t)ez2(t)

(ez1(t)+D)2
− c(t).

(3.1)

Define Z = W = {z = (z1, z2) ∈ (R, R
2)|z(t + T) = z(t)}, Z, W are both Banach spaces

with the norm ∥ · ∥ as follows:

∥z∥ = max
t∈[0,T]

2

∑
i=1

|zi|, z = (z1, z2) ∈ Z or W.

For any z = (z1, z2) ∈ Z, the periodicity of system (3.1) implies

r(t)

(

1 −
ez1(t)

K

)

−
q(t)ez2(t)

ez1(t) + D
= Γ1(z, t),

A(t)q(t)

α(t)

ez1(t)

ez1(t) + D
−

q2(t)

α(t)

e2z1(t)ez2(t)

(ez1(t) + D)2
− c(t) = Γ2(z, t),

are T-periodic functions. In fact

Γ1(z(t + T), t + T) = r(t)

(

1 −
ez1(t)

K

)

−
q(t)ez2(t)

ez1(t) + D
.

Obviously, Γ2(z, t) is also periodic function by similar way.

Define operators L, P, Q as follows, respectively

L : dom(L) ∩ Z → W, Lz =

(

dz1

dt
,

dz2

dt

)

,

P

(

z1

z2

)

= Q

(

z1

z2

)

=

(

1
T

∫ T
0 z1(t)dt

1
T

∫ T
0 z2(t)dt

)

,

(

z1

z2

)

∈ Z = W,

where dom(L) = {z ∈ Z : z(t) ∈ C1(R, R
2)}.
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Define N : Z × [0, 1] → W

N

(

z1

z2

)

=

(

Γ1(z, t)

Γ2(z, t)

)

.

It is easy to see that

Ker(L) = {z ∈ Z | z = c0, c0 ∈ R
2},

and

Im(L) =

{

z ∈ W
∣

∣

∣

∫ T

0
z(t)dt = 0

}

is closed in W. Furthermore, both P, Q are continuous projections satisfying

Im(P) = Ker(L), Im(L) = Ker(Q) = Im(I − Q).

For any z ∈ W, let z1 = z − Qz, we can obtain that

∫ T

0
z1dp =

∫ T

0
z(p)dp −

∫ T

0

1

T

∫ T

0
z(t)dtdp = 0,

so z1 ∈ Im(L). It follows that W = Im(L) + Im(Q) = Im(L) + R
2. Since Im(L) ∪ R

2 = 0, we

conclude that W = Im(L)⊕ R
3, which means dim Ker(L) = codim Im(L) = dim (R2) = 2.

Thus, L is a Fredholm operator of index zero, which implies that L has a unique generalized

inverse operator.

Next we show that N is L-compact. Define the inverse of L as KP : Im(L) → Ker(P) ∩

dom(L) and is given by

KP(z) =
∫ t

0
z(s)ds −

1

T

∫ T

0

∫ t

0
z(s)dsdt.

Therefore, for any z(t) ∈ Z, we have

QN

(

z1

z2

)

=

(

1
T

∫ T
0 Γ1(z, t)dt

1
T

∫ T
0 Γ2(z, t)dt

)

,

and

KP(I − Q)Nz =
∫ t

0
Nz(s)ds −

1

T

∫ T

0

∫ t

0
Nz(s)dsdt −

1

T

∫ t

0

∫ T

0
QNz(s)dtds

+
1

T2

∫ T

0

∫ t

0

∫ T

0
QNz(s)dtdsdt

=
∫ t

0
Nz(s)ds −

1

T

∫ T

0

∫ t

0
Nz(s)dsdt −

(

t

T
−

1

2

)

∫ T

0
QNz(s)ds.

Clearly, QN and KP(I − Q)N are continuous. Due to Z is Banach space, using the Arzelà–

Ascoli theorem, we have that N is L-compact on U for any open bounded set U ⊂ Z. Next,

in order to apply the coincidence degree theory, we need to construct an appropriate open

bounded subset U. Therefore, the operator equation is defined by Lz = λNz, λ ∈ (0, 1), that
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is,










dz1
dt = λ

[

r(t)
(

1 − ez1(t)

K

)

− q(t)ez2(t)

ez1(t)+D

]

,

dz2
dt = λ

[

A(t)q(t)
α(t)

ez1(t)

ez1(t)+D
− q2(t)

α(t)
e2z1(t)ez2(t)

(ez1(t)+D)2
− c(t)

]

.
(3.2)

We assume that z ∈ (z1, z2)T ∈ Z is a T-periodic solution of system (3.1) for any fixed λ ∈

(0, 1). Now, integrating system (3.1) from 0 to T leads to











r̄T =
∫ T

0

[

r(t)ez1(t)

K + q(t)ez2

ez1+D

]

dt,

c̄T =
∫ T

0

[

A(t)q(t)
α(t)

ez1(t)

ez1(t)+D
− q2(t)

α(t)
e2z1(t)ez2(t)

(ez1(t)+D)2

]

dt.
(3.3)

Since (z1, z2) ∈ Z, there exist ηi, ξi ∈ [0, T] such that

zi(ηi) = max
t∈[0,T]

zi(t), zi(ξi) = min
t∈[0,T]

zi(t), i = 1, 2.

Through simple analysis, we have,

ż1(η1) = ż1(ξ1) = 0, ż2(η2) = ż2(ξ2) = 0.

If we apply previous to (3.2), we obtain

r(η1)

(

1 −
ez1(η1)

K

)

−
q(η1)e

z2(η1)

ez1(η1) + D
= 0, (3.4)

− c(η2) +
A(η2)q(η2)

α(η2)

ez1(η2)

ez1(η2) + D
−

q2(η2)

α(η2)

e2z1(η2)ez2(η2)

(ez1(η2) + D)2
= 0, (3.5)

and

r(ξ1)

(

1 −
ez1(ξ1)

K

)

−
q(ξ1)e

z2(ξ1)

ez1(ξ1) + D
= 0, (3.6)

− c(ξ2) +
A(ξ2)q(ξ2)

α(ξ2)

ez1(ξ2)

ez1(ξ2) + D
−

q2(ξ2)

α(ξ2)

e2z1(ξ2)ez2(ξ2)

(ez1(ξ2) + D)2
= 0. (3.7)

From (3.4), we obtain

r(η1)−
r(η1)e

z1(η1)

K
> 0,

which implies that

z1(η1) < ln(K) = L1. (3.8)

Considering (3.5) and (3.8), we get

q2(η2)

α(η2)

e2z1(η2)ez2(η2)

(ez1(η2) + D)2
+ c(η2) =

A(η2)q(η2)

α(η2)

ez1(η2)

ez1(η2) + D
.

So, we can obtain
q2(η2)

α(η2)

e2z1(η2)ez2(η2)

(ez1(η2) + D)2
<

A(η2)q(η2)

α(η2)

ez1(η2)

ez1(η2) + D
,
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or
qez1(η2)ez2(η2)

ez1(η2) + D
< A(η2),

or

ez2(η2) < AM(ez1(η2) + D),

or

ez2(η2) < AM(K + D),

which gives

z2(η2) < ln(AM(K + D)) = ln m0 = L3. (3.9)

From (3.6) and (3.9), we can obtain

r(ξ1)−
r(ξ1)e

z1(ξ1)

K
−

q(ξ1)m0

D
< 0,

then,
ez1(ξ!)

K
> 1 −

qMm0

DrL

which implies that

z1(ξ1) > ln

(

K

(

1 −
qMm0

DrL

))

= ln(g0) = L2. (3.10)

In view of (3.7) and (3.10), we have

q2(ξ2)

α(ξ2)

e2z1(ξ2)ez2(ξ2)

(ez1(ξ2) + D)2
=

A(ξ2)q(ξ2)

α(ξ2)

ez1(ξ2)

ez1(ξ2) + D
− c(ξ2).

Thus,
q2(ξ2)ez2(ξ2)

α(ξ2)
>

ALqLg0

αM(K + D)
− cM,

or

ez2(ξ2) >
αL

(q2)L

(

ALqLg0

αM(K + D)
− cM

)

,

that is

z2(ξ2) > ln

(

αL

(q2)L

(

ALqLg0

αM(K + D)
− cM

))

= ln(h0) = L4. (3.11)

Finally, from (3.8), (3.9), (3.10), (3.11), we get

|z1(t)| < max{|L1|, |L2|} = Λ1,

|z2(t)| < max{|L3|, |L4|} = Λ2.

where Λ1, Λ2 is independent of λ. Denote Λ = Λ1 + Λ2 + Λ3 where Λ3 is taken sufficiently

large such that each solution (z∗1 , z∗2) of following system











r − r
K ez1(t) − qez2(t)

ez1(t)+D
= 0,

Aq

α(t)
ez1(t)

ez1(t)+D
− ez1(t) + q2

α(t)
e2z1(t)ez2(t)

(ez1(t)+D)2
− c = 0,

(3.12)
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satisfies |z∗1 |+ |z∗2 | < Λ. Now we consider Ω = {(z1, z2)T ∈ Z : ∥(z1, z2)∥ < Λ} then it is clear

that Ω satisfies the first condition of Theorem 2.1.

For the second condition of Theorem 2.1, we prove that QN(z1, z2)T ̸= (0, 0)T for each

(z1, z2) ∈ ∂Ω ∩ Ker(L). When (z1, z2)T ∈ ∂Ω ∩ Ker(L) = ∂Ω ∩ R
2, (z1, z2)T is a constant

vector in R
2 and |z1|+ |z2| = Λ. If the system (3.12) has a solution, then

QN

(

z1

z2

)

=





r − r
K ez1(t) − qez2(t)

ez1(t)+D
Aq
α

ez1(t)

ez1(t)+D
− ez1(t) + q2

α
e2z1(t)ez2(t)

(ez1(t)+D)2
− c



 ̸=

(

0

0

)

.

Since, (3.12) does not have solution then, it is evident that QN(z1, z2)T ̸= 0, thus the second

condition of Theorem 2.1 is satisfied. Finally, we prove that the last condition of Theorem 2.1

is satisfied, to do so, we define the following mapping Ψµ : dom(L)× [0, 1] → Z

Ψµ

(

z1

z2

)

=





r − r
K ez1(t) − qez2(t)

µez1(t)+D
Aq
α

ez1(t)

ez1(t)+µD
− ez1(t) + q2

α
e2z1(t)ez2(t)

(ez1(t)+µD)2
− c



 .

By using the invariance property of homotopy in topological degree theory, we get,

deg(QN(z1, z2)
T, Ω ∩ Ker(L), (0, 0)T)

= deg(Ψ(z1, z2, 1)T, Ω ∩ Ker(L), (0, 0)T)

= deg(Ψ(z1, z2, µ)T, Ω ∩ Ker(L), (0, 0)T)

= deg(Ψ(z1, z2, 0)T, Ω ∩ Ker(L), (0, 0)T)

= deg

(

r −
r

K
ez1(t) −

qez2(t)

D
,

Aq

α
− ez1(t) +

q2

α
ez2(t) − c, Ω ∩ Ker(L), (0, 0)T

)

Furthermore, the system of algebraic equation







r − r
K x − qy

D = 0,

Aq
α − x + q2

α y − c = 0,
(3.13)

has a unique solution (x∗, y∗), where x∗ = r
(

1 − αK+αc−Aq
αK+Drq

)

> 0 and y∗ = Dr(αK+αc−Aq)
q(αK+Drq)

> 0.

Thus,

deg{QN(z1, z2)
T, Ω ∩ Ker(L), (0, 0)T} =

∣

∣

∣

∣

∣

− r
K

x∗ − q
D y∗

−1
q2

α y∗

∣

∣

∣

∣

∣

= sgn

[

−q

(

qrx∗y∗

αK
−

y∗

D

)]

= −1 ̸= 0.

Now, all the conditions in Theorem 2.1 have been verified. This implies that system (3.1) has at

least one T-periodic solution. Consequently, system (1.3) has at least one positive T-periodic

solution. The theorem is proved.

Corollary 3.1. If qA(K + D) < Dr, cα(K + D) < AqK
(

1 − qA(K+D)
Dr

)

, and Aq − αK < αc <
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Aq + Drq holds, then the system (1.2) has a positive T-periodic solution.

Example 3.1. By Corollary 3.1, the system of equations







dn
dt = n

(

8
(

1 − n
1

)

− E
n+1/2

)

dE
dt = E

(

1.5×1
1.5

n
n+1/2 −

12

1.5
n2E

(n+1/2)2 −
1
4

)

.
(3.14)

has a positive periodic solution.

Example 3.2. Consider the system











dn
dt = n

(

(21 + cos t)
(

1 − n
1.1

)

−
(1.15+ 1

10 cos t)E

n+ 1
4

)

dE
dt = E

(

(1.7+ 1
10 sin t)(1.15+ 1

10 cost)

(1.5+ 1
10 cos t)

n
n+ 1

4

−
(1.15+ 1

10 cos t)2

(1.5+ 1
10 cos t)

n2E
(n+ 1

4 )
2 − ( 1

4 +
1

10 sin t)
) (3.15)

It is easy to obtain q = 1.15, r = 21, A = 1.7, α = 1.5, c = 0.25, D = 0.25, K = 1.1, qL =

1.05, qM = 1.25, rL = 20, AL = 1.6, AM = 1.8, αM = 1.6, cM = 0.35, m0 = 1.8(1.1 + 0.25) =

2.43, g0 = 1.1
(

1 − 1.25×2.43
0.25×20

)

= 0.43175. Consequently, we obtain

qMm0 = 3.0375 < DrL = 5,

cMαM(K + D) = 0.7 < ALqLg0 = 0.72534,

and

Aq = 0.305 < αc = 0.525 < Aq + Drq = 7.9925.

It is clear that assumptions (A1), (A2), (A3) are satisfied. Hence, according to Theorem 3.1,

system (3.15) has at least one positive T-periodic solution.

4 Conclusion

Using Mawhin’s coincidence degree theory, we have established sufficient conditions for the

existence of positive periodic solutions of the model (1.3). By formulating the model as a

system of differential equations and introducing appropriate transformations, we were able to

apply the coincidence degree theory and obtain our main results. The conditions (A1), (A2),

and (A3) played a crucial role in establishing the existence of periodic solutions.

Set r(t) ≡ r, q(t) ≡ q, A(t) ≡ A, α(t) ≡ α and c(t) ≡ c be constants; then (1.3) reduces to







dn
dt = n

(

r
(

1 − n
K

)

− qE
n+D

)

dE
dt = E

(

Aq
α

n
n+D − q2

α
n2E

(n+D)2 − c
)

.
(4.1)

In a recent paper, Moussaoui and Auger [17], studied the equilibrium points of (4.1). They

proved that if

Aq < αc, (4.2)

then the system (4.1) has no positive equilibrium point provided that

D < K,
α

q
<

K

2
(4.3)



10 S. N. Srivastava, S. Padhi and A. Domoshnitsky

holds. It is worth noting that our conditions (A1), (A2), and (A3) are different from the

condition (4.2). By Theorem 3.1, the system (4.1) has positive T-periodic solution. We note

that the condition (4.3) can be satisfied for large K. On the other hand, by Theorem 1 b) of [17],

the system (4.1) has a unique positive equilibrium, which is a positive T-periodic solution of

(4.1). Our Theorem 3.1 strengthens this observation.

While this research paper has successfully addressed the existence of positive periodic

solutions for the bioeconomic fishery model, there are several avenues for further exploration.

It would be interesting to study global attractivity and uniqueness of the solution for the

system investigated in this paper. Another promising direction is to examine problem (1.3)

by introducing a delay in the system, such as incorporating a time lag in fish stock biomass.

Conducting further investigations in these areas have potential implications for understanding

and managing fisheries dynamics.
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Abstract. In this paper, we offer new technique for investigation of the even order linear
differential equations of the form

y(n)(t) = p(t)y(τ(t)). (E)

We establish new criteria for bounded and unbounded oscillation of (E) which improve
a number of related ones in the literature. Our approach essentially involves estab-
lishing stronger monotonicities for the positive solutions of (E) than those presented
in known works. We illustrate the improvement over known results by applying and
comparing our technique with the other known methods on the particular examples.

Keywords: higher order differential equations, delay, advanced argument, monotonic-
ity, oscillation.
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1 Introduction

We consider the general higher order differential equation with deviating argument

y(n)(t) = p(t)y(τ(t)). (E)

Throughout the paper, it is assumed that n is even and the following conditions hold

(H1) p(t) ∈ C1([t0, ∞)), p(t) > 0,

(H2) τ(t) ∈ C1([t0, ∞)), τ′(t) > 0, limt→∞ τ(t) = ∞.

By a proper solution of Eq. (E) we mean a function y : [Ty, ∞) → R which satisfies (E)

for all sufficiently large t and sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We make the standing

hypothesis that (E) does possess proper solutions.

BEmail: blanka.baculikova@tuke.sk
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As is customary, a proper solution y(t) of (E) is said to be oscillatory if it has arbitrarily

large zeros. Otherwise, it is said to be nonoscillatory. The equation itself is termed oscillatory

if all its proper solutions oscillate.

Oscillation phenomena appear in different models from real world applications; see, for

instance, the papers [15–17] for models from mathematical biology where oscillation and/or

delay actions may be formulated by means of cross-diffusion terms. The problem of estab-

lishing oscillation criteria for differential equations with deviating arguments has been a very

active research area over the past decades (see [1]–[18]) and several references and reviews of

known results can be found in the monographs by Agarwal et al. [1], Došlý and Rehák [5]

and Ladde et al. [18].

It is known that the set N of all nonoscillatory solutions of (E) has the following decom-

position

N = N0 ∪N2 ∪ · · · ∪ Nn,

where y(t) ∈ Nℓ means that there exists t0 ≥ Ty such that

y(t)y(i)(t) > 0 on [t0, ∞) for 0 ≤ i ≤ ℓ,

(−1)iy(t)y(i)(t) > 0 on [t0, ∞) for ℓ ≤ i ≤ n.
(1.1)

Such a y(t) is said to be a solution of degree ℓ.

Following Kiguradze [7], we say that equation (E) enjoys property (B) if N = N0 ∪Nn. The

reason for such definition is the observation that (E) with τ(t) ≡ t always possesses solutions

of degrees 0 and n, that is N0 ̸= ∅ and Nn ̸= ∅. The situation when τ(t) ̸≡ t is different. In

fact, it may happen that N0 = ∅ or Nn = ∅ when the deviation |t − τ(t)| is sufficiently large.

This remarkable fact was first observed by Ladas et al. [18]. Later Koplatadze and Chanturia

[11] have shown that (E) does not allow solutions of degree 0 if τ(t) ≤ t and

lim sup
t→∞

∫ t

τ(t)
(s − τ(t))n−1 p(s)ds > (n − 1)! (1.2)

and (E) does not allow solutions of degree n provided that τ(t) ≥ t and

lim sup
t→∞

∫ τ(t)

t
(τ(t)− s)n−1 p(s)ds > (n − 1)!. (1.3)

On the other hand, Koplatadze et al. [12] proved that (E) enjoys property (B) if τ(t) ≤ t and

lim sup
t→∞

{

τ(t)
∫ ∞

t
sn−3τ(s)p(s)ds +

∫ t

τ(t)
s(τ(s))n−2 p(s)ds

+
1

τ(t)

∫ τ(t)

0
s2(τ(s))n−2 p(s)ds

}

> 2(n − 2)! (1.4)

or τ(t) ≥ t and

lim sup
t→∞

{

τ(t)
∫ ∞

t
sn−3τ(s)p(s)ds +

∫ τ(t)

t
sn−2τ(s)p(s)ds

+
1

τ(t)

∫ t

0
sn−2(τ(s))2 p(s)ds

}

> 2(n − 2)!. (1.5)

Therefore conditions (1.2)–(1.5) yield stronger asymptotic behavior than property (B) claims,

namely (1.3) together with (1.5) guarantees that N = N0 for (E) with τ(t) ≥ t, i.e., every
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unbounded solution is oscillatory, while (1.2) together with (1.4) are sufficient for N = Nn for

(E) with τ(t) ≤ t, i.e., roughly speaking every bounded solution is oscillatory.

In this paper, we establish new technique that essentially improves (1.2) and (1.3), which

leads to qualitative better criteria for bounded or unbounded oscillation of (E). Our approach

essentially involves establishing stronger monotonicities for the positive solutions of (E) than

those presented in known works.

2 Main results

Now we are introduce new monotonicity for nonoscillatory solution y(t) ∈ N0 of (E).

Lemma 2.1. Assume that y(t) ∈ N0 and

∫ ∞

t0

p(s)sn−1 ds = ∞. (2.1)

Then limt→∞ y(t) = 0.

Proof. Assume on the contrary that y(t) is an eventually positive solution of (E) such that

y(t) ∈ N0, and limt→∞ y(t) = ℓ > 0. Then y(τ(t)) > ℓ, eventually, let us say for t ≥ t1. An

integration of (E) from t to ∞ yields

−y(n−1)(t) ≥
∫ ∞

t
p(s)y(τ(s))ds ≥ ℓ

∫ ∞

t
p(s)ds.

Integrating again from t to ∞ and changing the order of integration, we have

y(n−2)(t) ≥ ℓ

∫ ∞

t

∫ ∞

u
p(s)ds du = ℓ

∫ ∞

t
p(s)(s − t)ds.

Repeating this procedure, we are led to

y(t1) ≥ ℓ

∫ ∞

t1

p(s)(s − t1)
n−1

(n − 1)!
ds, (2.2)

where the last integration was from t1 to ∞. Condition (2.2) contradicts (2.1) and we conclude

that y(t) → 0 as t → ∞.

Corollary 2.2. For y(t) ∈ N0, it follows from y(t) → 0 as t → ∞ that y′(t) → 0, y′′(t) →
0, . . . , y(n−1)(t) → 0 as t → ∞.

To simplify our notation we introduce the following couple of functions

α0(t) = − p′(t)
p(t)

+ τ′(t)
∫ t

τ(t)
p(s)

(s − τ(t))n−2

(n − 2)!
ds,

β′
0(t) = α0(t).

Theorem 2.3. Let y(t) ∈ N0, τ(t) ≤ t and (2.1) hold. Then

|y(τ(t))|p(t)eβ0(t) is decreasing.



4 B. Baculíková

Proof. Assume that y(t) ∈ N0 is an eventually positive solution of (E). It follows from (E) that

y(n+1)(t) = p′(t)y(τ(t)) + p(t)y′(τ(t))τ′(t). (2.3)

In view of Corollary 2.2, an integration of (E) from t to ∞ yields

−y(n−1)(t) =
∫ ∞

t
p(s)y(τ(s))ds.

Integrating again from t to ∞ and changing the order of integration, we have

y(n−2)(t) =
∫ ∞

t

∫ ∞

u
p(s)y(τ(s))ds ds =

∫ ∞

t
p(s)y(τ(s))(s − t)ds.

Repeated reusing of this procedure yields

−y′(t) =
∫ ∞

t
p(s)y(τ(s))

(s − t)n−2

(n − 2)!
ds.

Since y(τ(t)) is decreasing, this implies

−y′(τ(t)) =
∫ ∞

τ(t)
p(s)y(τ(s))

(s − τ(t))n−2

(n − 2)!
ds

≥
∫ t

τ(t)
p(s)y(τ(s))

(s − τ(t))n−2

(n − 2)!
ds

≥ y(τ(t))
∫ t

τ(t)
p(s)

(s − τ(t))n−2

(n − 2)!
ds.

(2.4)

Setting (2.4) into (2.3) and taking (E) into account, one gets

y(n+1)(t) ≤ y(τ(t))

[

p′(t)− p(t)τ′(t)
∫ t

τ(t)
p(s)

(s − τ(t))n−2

(n − 2)!
ds

]

= y(n)(t)

[

p′(t)
p(t)

− τ′(t)
∫ t

τ(t)
p(s)

(s − τ(t))n−2

(n − 2)!
ds

]

.

Therefore

y(n+1)(t) + α0(t)y
(n)(t) ≤ 0

which means that
(

eβ0(t)y(n)(t)
)′

≤ 0

and we conclude that eβ0(t)y(n)(t) is decreasing, which is, in view of (E), equivalent to the fact

that p(t)y(τ(t))eβ0(t) is decreasing.

Employing the above-mentioned monotonicity we are prepared to present criterion for

bounded oscillation of (E).

Theorem 2.4. Assume that (2.1) holds, τ(t) ≤ t, and

lim sup
t→∞

p(t)eβ0(t)
∫ t

τ(t)
e−β0(s)(s − τ(t))n−1 ds > (n − 1)!. (2.5)

Then N0 = ∅. If in addition (1.4) holds, then all nonoscillatory solutions of (E) are of degree n, i.e.,

N = Nn.
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Proof. We argue by contradiction. Assume that (E) possesses an eventually positive solution

y(t) ∈ N0. Integrating (E) from u to t (u ≤ t) and using the monotonicity of p(t)y(τ(t))eβ0(t),

we have

−y(n−1)(u) ≥
∫ t

u
p(s)y(τ(s))ds ≥ y(τ(t))p(t)eβ0(t)

∫ t

u
e−β0(s) ds.

Integrating the above inequality from u to t and changing the order of integration leads to

y(n−2)(u) ≥ y(τ(t))p(t)eβ0(t)
∫ t

u

∫ t

x
e−β0(s) ds dx

= y(τ(t))p(t)eβ0(t)
∫ t

u
e−β0(s)(s − u)ds.

(2.6)

Proceeding in the same way (n − 2)-times, we finally get

y(u) ≥ y(τ(t))p(t)eβ0(t)
∫ t

u
e−β0(s)

(s − u)n−1

(n − 1)!
ds.

Setting u = τ(t), we obtain

y(τ(t)) ≥ y(τ(t))p(t)eβ0(t)
∫ t

τ(t)
e−β0(s)

(s − τ(t))n−1

(n − 1)!
ds

which is contraction with (2.5) and we conclude, that class N0 is empty. Moreover, thanks to

(1.4) every nonoscillatory solution of (E) is of degree n.

Example 2.5. Consider the delay differential equation

y(n)(t) = p0y(t − τ), p0 > 0, τ > 0. (Ex1)

It is easy to see that (1.4) holds true. Since α0(t) =
p0

(n−1)!
τn−1 = ω and β0(t) = ωt, condition

(2.5) takes the form

lim
t→∞

p0eωt
∫ t

t−τ
e−ωs (s − t + τ)n−1

(n − 1)!
ds > 1 (2.7)

which after substitution s − t + τ = x reduces to

p0

(n − 1)!
eωτ

∫ τ

0
e−ωxxn−1 ds > 1.

Let us denote

I(n) = eωτ
∫ τ

0
e−ωxxn−1 ds.

Then

I(n) = −τn−1

ω
+

n − 1

ω
I(n − 1), I(1) = − 1

ω
+

eωτ

ω
which implies

I(n) =
(n − 1)!eωτ

ωn
− τn−1

ω
− (n − 1)τn−2

ω2
− · · · − (n − 1)!

ωn
.

Therefore, (2.7) is equivalent to

p0

(n − 1)!

[

(n − 1)!eωτ

ωn
− τn−1

ω
− (n − 1)τn−2

ω2
− · · · − (n − 1)!

ωn

]

> 1. (2.8)

By Theorem 2.4 condition (2.8) guarantees that every nonoscillatory solution of (E) is of degree

n or in other words, every bounded solution of (E) is oscillatory. If p0 =
(π(4k+1−(−1)n/2)

2τ

)n

where k is a positive integer such that (2.8) holds, then a bounded oscillatory solution of (E)

is y(t) = sin( n
√

p0)t.
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Example 2.6. We consider the delayed Euler differential equation

y(n)(t) =
p0

tn
y(λt), p0 > 0, λ ∈ (0, 1). (Ex2)

It is easy to see that (1.4) reduces to

p0

(

λ2 − λn−2 ln λ + λn−3
)

> 2(n − 2)!. (2.9)

On the other hand,

α0(t) =
1

t

[

p0(1 − λ)n−1

(n − 1)!
+ n

]

.

Using notation

p0(1 − λ)n−1

(n − 1)!
+ n = δ0,

we obtain

β0(t) = δ0 ln t.

Therefore (2.5) is equivalent to

lim sup
t→∞

p0tδ0−n

(n − 1)!

∫ t

λt

(s − λt)n−1

sδ0
ds > 1.

Since
∫ t

λt

(s − λt)n−1

sδ0
ds =

n−1

∑
i=0

(n − 1)!(−λt)isn−δ0−i

(n − 1 − i)! i! (n − δ0 − i)

∣

∣

∣

∣

∣

t

λt

,

condition (2.5) takes the form

p0

n−1

∑
i=0

(−1)i λi − λn−δ0

(n − 1 − i)! i! (n − δ0 − i)
> 1 (2.10)

which guarantees that N0 = ∅ for (Ex2). If in addition (2.9) holds, then every nonoscillatory

solution of (Ex2) is of degree n.

For n = 2 (n = 4) and λ = 0.5 condition (2.10) is satisfied when

p0 > 3.3198 (p0 > 135.77)

while (1.2) requires p0 > 5.1774 (p0 > 226.58). So our progress is significant.

Now we turn our attention to bounded oscillation of (E). We set

αn(t) =
p′(t)
p(t)

+ τ′(t)
∫ τ(t)

t
p(s)

(τ(t)− s)n−2

(n − 2)!
ds,

β′
n(t) = αn(t).

Theorem 2.7. Let y(t) ∈ Nn, τ(t) ≥ t. Then

|y(τ(t))|p(t)e−βn(t) is increasing.
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Proof. Assume that y(t) ∈ Nn is an eventually positive solution of (E). An integration of (E)

from t1 to t yields

y(n−1)(t) ≥
∫ t

t1

p(s)y(τ(s))ds.

Integrating the last inequality from t1 to t and and changing the order of integration, we

obtain

y(n−2)(t) ≥
∫ t

t1

∫ u

t1

p(s)y(τ(s))ds du =
∫ t

t1

p(s)y(τ(s))(t − s)ds.

Repeating this procedure, we have

y′(t) ≥
∫ t

t1

p(s)y(τ(s))
(t − s)n−2

(n − 2)!
ds.

Consequently,

y′(τ(t)) ≥
∫ τ(t)

t
p(s)y(τ(s))

(τ(t)− s)n−2

(n − 2)!
ds

≥ y(τ(t))
∫ τ(t)

t
p(s)

(τ(t)− s)n−2

(n − 2)!
ds,

(2.11)

where we have used that y(τ(t)) is increasing. By combining inequalities (2.3) and (2.11), we

conclude that

y(n+1)(t) ≥ y(τ(t))

[

p′(t) + p(t)τ′(t)
∫ τ(t)

t
p(s)

(τ(t)− s)n−2

(n − 2)!
ds

]

which in view of (E) implies

y(n+1)(t) ≥ y(n)(t)

[

p′(t)
p(t)

+ τ′(t)
∫ τ(t)

t
p(s)

(τ(t)− s)n−2

(n − 2)!
ds

]

,

that is

y(n+1)(t)− αn(t)y
(n)(t) ≥ 0.

Consequently,
(

e−βn(t)y(n)(t)
)′

≥ 0

and we conclude that e−βn(t)y(n)(t) is increasing, which is in view of (E) means that

p(t)y(τ(t))e−βn(t) is increasing function. The proof is completed.

We use the above-mentioned monotonicity to establish criterion for unbounded oscillation

of (E).

Theorem 2.8. Let τ(t) ≥ t and

lim sup
t→∞

p(t)e−βn(t)
∫ τ(t)

t
eβn(s)(τ(t)− s)n−1 ds > (n − 1)!, (2.12)

then Nn = ∅. If in addition (1.5) holds, then all nonoscillatory solutions of (E) are of degree 0, i.e.,

N = N0.
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Proof. Assume on the contrary that (E) possesses an eventually positive solution y(t) ∈ Nn.

Integrating (E) from t to u (t ≤ u) and using the monotonicity of p(t)y(τ(t))e−βn(t), we have

y(n−1)(u) ≥ y(τ(t))p(t)e−βn(t)
∫ u

t
eβn(s) ds.

Integrating again from t to u and changing order of integration, we get

y(n−2)(u) ≥ y(τ(t))p(t)e−βn(t)
∫ u

t

∫ x

t
eβn(s) ds dx

= y(τ(t))p(t)e−βn(t)
∫ u

t
eβn(s)(u − s)ds.

(2.13)

Proceeding in the same way (n − 2)-times, we finally obtain

y(u) ≥ y(τ(t))p(t)e−βn(t)
∫ u

t
eβn(s) (u − s)n−1

(n − 1)!
ds.

Setting u = τ(t), we have

y(τ(t)) ≥ y(τ(t))p(t)e−βn(t)
∫ τ(t)

t
eβn(s) (τ(t)− s)n−1

(n − 1)!
ds.

This contradiction establishes the desired result and the proof is completed.

Example 2.9. Consider the advanced differential equation

y(n)(t) = p0y(t + τ), p0 > 0, τ > 0. (Ex3)

It is easy to see that (1.5) holds, αn(t) = p0

(n−1)!
τn−1 = ω and βn(t) = ωt. Condition (2.12)

yields

lim
t→∞

p0e−ωt
∫ t+τ

t
eωs (t + τ − s)n−1

(n − 1)!
ds > 1. (2.14)

Employing substitution t + τ − s = x, one gets

p0

(n − 1)!
eωτ

∫ τ

0
e−ωxxn−1 ds > 1.

Proceeding exactly as in Example 2.5 we are led to (2.8) which by Theorem 2.8 ensures that

every nonoscillatory solution of (Ex3) is of degree 0 or in other words, every unbounded

solution (if exists) of (Ex3) is oscillatory.

Example 2.10. We consider the advanced Euler differential equation

y(n)(t) =
p0

tn
y(λt), p0 > 0, λ > 1. (Ex4)

Simple calculation shows that (1.5) reduces to

p0λ (2 + ln λ) > 2(n − 2)! (2.15)

and

αn(t) =
1

t

[

p0(λ − 1)n−1

(n − 1)!
− n

]

.
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Les us denote
p0(λ − 1)n−1

(n − 1)!
− n = δn > 0,

Then

βn = δn ln t.

Therefore (2.12) is equivalent to

lim sup
t→∞

p0t−δn−n

(n − 1)!

∫ λt

t
sδn(λt − s)n−1 ds > 1.

On the other hand, as

∫ λt

t

(λt − s)n−1

s−δn
ds = −

n−1

∑
i=0

(n − 1)!(−λt)isn+δn−i

(n − 1 − i) !i !(n + δn − 1)

∣

∣

∣

∣

∣

λt

t

condition (2.12), which guaranties Nn = ∅ for equation (Ex4), takes the form

p0

n−1

∑
i=0

(−1)i+1 λn+δn − λi

(n − 1 − i)! i! (n + δn − 1)
> 1. (2.16)

Moreover, if (2.15) holds, then every nonoscillatory solution of (Ex2) is of degree 0. To see the

progress which our criteria brings, let us consider n = 2 (n = 4) and λ = 1.5. The condition

(2.16) is satisfied when

p0 > 6.56 (p0 > 304.48)

while (1.3) requires p0 > 10.58 (p0 > 535.64).

Remark 2.11. In this paper, we have introduce new technique for investigation of monotonic-

ity for nonoscillatory solutions of higher order differential equations. The monotonicities

obtained have been applied to establish new criteria for all solutions to be of degree 0 or to be

of degree n.
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1 Introduction and main results

In this paper, we consider the following second-order planar Hamiltonian systems

ü(t) +∇V(t, u(t)) = 0, (1.1)

where V : R × R
2 → R is a C1-map. We say that a solution u(t) of problem (1.1) is nontrivial

homoclinic (to 0) if u ̸≡ 0, u(t) → 0 and u̇(t) → 0 as t → ±∞. Subsequently, ∇V(t, x) denotes

the gradient with respect to the x variable, (·, ·) : R
2 × R

2 → R denotes the standard inner

product in R
2 and | · | is the induced norm.

Hamiltonian system is a classical model in celestial mechanics, fluid mechanics and so

on. Since its importance in physic fields, searching for the solutions of the Hamiltonian

systems has attracted much attention of mathematicians since Poincaré. In a remarkable

paper [31], the periodic solutions are firstly obtained for (1.1) with prescribed energy and

prescribed period cases respectively via variational methods by Rabinowitz. However, to show

homoclinic solutions via variational methods seems difficult since the lack of compactness for

BEmail: wudl2008@163.com
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the Sobolev embedding. In order to regain the compactness, different strategies are adopted.

In 1990, Rabinowitz [32] considered (1.1) with the following potentials

V(t, x) = −1

2
(a(t)x, x) + W(t, x),

where a(t) and W(t, x) are T-periodic in t and homoclinic solution are obtained as the limit

of a sequence of 2kT-periodic solutions. Without periodic hypothesis, Rabinowitz and Tanaka

[23] assumed the least eigenvalues of a(t) go to infinity as t → ∞. Under this condition,

Omana and Willem [28] obtained a compact embedding theorem and showed the multiplicity

of homoclinic solutions for problem (1.1). Without periodic or coercive hypothesis, there are

still some other conditions proposed to obtain the nontrivial homoclinic solutions. In 2007, Lv

and Tang [24] assumed that V(t, x) is even in t and obtained one homoclinic solution for (1.1)

as the limit of the solutions of nil-boundary-value problems. In 2010, Wu, Wu and Tang [43]

showed that (1.1) possesses at least one nontrivial homoclinic solution if there is a nontrivial

perturbation. In detail, they considered the following systems

ü(t)− L(t)u(t)−∇W(t, u(t)) = f (t). (1.2)

When f ̸≡ 0, the authors showed the existence of nontrivial homoclinic solutions for (1.2)

without periodic nor coercive conditions on L and W.

As we know, the growth of W is crucial in determining the geometric structure of the

corresponding functional and the boundedness of the almost critical sequence. Three typi-

cal growth cases are superquadratic, subquadratic and asymptotically quadratic cases. The

following Ambrosetti–Rabinowitz-type condition is a classical superquadratic condition.

(AR) there exists a constant υ > 2 such that

0 < υW(t, x) ≤ (∇W(t, x), x)

for every t ∈ R and x ∈ R
N \ {0}.

In 1991, Rabinowitz and Tanaka [33] also obtained the homoclinic solutions for (1.1) under

the following non-quadratic condition

(RT) s−1(∇W(t, sx), x) is an increasing function of s ∈ (0, 1] for all (t, x) ∈ R × R
N .

As shown in [25], condition (RT) implies that

(MS) there exists θ ≥ 1 such that

θW̃(t, x) ≥ W̃(t, sx)

for all (t, x) ∈ R × R
N and s ∈ [0, 1], where W̃(t, x) = (∇W(t, x), x)− 2W(t, x).

With (MS) Lv and Tang [25] obtained infinitely many homoclinic solutions for (1.1). Besides,

many superquadratic conditions are introduced. In 2004, Ou and Tang [29] considered the

following superquadratic condition

(OT) W(t, x)/|x|2 → +∞ as |x| → ∞ uniformly in t ∈ R.

Based on above results, Ding and Lee [8] introduced the following superquadratic condi-

tion
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(DL) W̃(t, x) > 0 if x ̸= 0, and there exist ϵ ∈ (0, 1) and c > 0 such that

W̃(t, x) ≥ c
(∇W(t, x), x)

|x|2−ϵ
for |x| large enough.

There are also some other superquadratic growth conditions introduced by many mathe-

maticians. The readers are referred to [6, 15, 18, 22, 23, 29, 30, 39, 40, 43–48] for more details.

In this paper, we mainly consider the asymptotically autonomous potentials without peri-

odic, coercive, even assumption or perturbations. In 1999, Carrião and Miyagaki [5] showed

the existence of homoclinic for problem (1.1) by assuming that V(t, x) converges to V∞(x) as

|t| → +∞ and V∞(x) satisfies the (AR) condition. The asymptotically autonomous Hamilto-

nian systems has also been considered by Lv, Xue and Tang [26] with asymptotically quadratic

potentials. They showed the existence of homoclinic solutions for systems (1.1) with a(t) ≡
const. being small enough. In another paper, Lv, etc. [27] also obtained ground state homo-

clinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Their

results generalized the conclusions in [1,5] by replacing the (AR) condition with strict mono-

tonic conditions on W(t, x).

In this paper, we mainly consider the combined nonlinearities. In [6, 26, 36, 37, 44, 46], the

authors also considered the following concave-convex potentials

V(t, x) = −1

2
(a(t)x, x) + λF(t, x) + G(t, x),

where a(t) is coercive, i.e. a(t) → +∞ as t → ∞, F(t, x) is subquadratic and G(t, x) is

superquadratic in x ∈ R
N . The coercivity of a(t) is an important assumption which can

guarantee the compactness of Sobolev embedding.

In [46], Yang, Chen and Sun assumed that a(t) is coercive, F(t, x) = m(t)|x|γ and G(t, x) =

d|x|p with m ∈ L
2

2−γ (R, R
+) and 1 < γ < 2, d ≥ 0, p > 2. This result is generalized by Chen

and He [6] with the following generalized superquadratic condition

(CH) There exist ρ > 2 and 1 < δ < 2 such that

ρG(t, x)− (∇G(t, x), x) ≤ h(t)|x|δ, ∀(t, x) ∈ R × R
N

where h : R → R
+ is a positive continuous function such that h ∈ L

2
2−δ (R, R

+).

Obviously, (CH) is weaker than (AR) since h(t) > 0 for all t ∈ R. In [42], Wu, Tang and Wu

generalized the above results by relaxing the conditions on G. However, a(t) is also required

to be coercive.

Without coercive assumption, there are also some other papers concerning on this case

with the steep well potentials (see [36, 37]). In [36], the nonlinearities are the combination of

subquadratic and asymptotic quadratic nonlinearities. While in [37], the nonlinearities are the

combination of superquadratic and subquadratic nonlinearities. In [46], Ye and Tang obtained

infinitely many homoclinic solutions for systems (1.1) with

V(t, x) = −1

2
(a(t)x, x) +

h(t)

p
|x|p + d(t)

ν
|x|ν, ∀(t, x) ∈ R × R

N ,

where a(t) ≥ 0 and 



h ∈ L2/(2−p) (R, R
+)

d ∈ L∞(R, R)

1 < p < 2 < ν.
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By assuming h(t) > 0, the authors in [46] constructed a sequence of negative critical values.

However, in [5, 26, 27], W(t, x) is assumed to be non-negative in R × R
N . A natural question

is whether (1.1) possesses homoclinic solutions if W(t, x) change signs without periodic or

coercive assumptions. In this paper, we partially give some answers to this question. Precisely,

we consider the sign-changing and asymptotically autonomous potentials, which have not

been considered before as we know. Hence, we cannot obtain our results as the authors

did in [6, 26, 36, 37, 44, 46]. Concentration-compactness principle(CCP) is adopted to show

the compactness. The crucial step in using the (CCP) is to exclude the dichotomy case by

estimating the critical values. This can be easily done if W satisfies the following monotonic

condition

(MC) the mapping τ →
(∇W(t,τx)

τ , x
)

is strictly increasing in τ ∈ (0, 1] for all x ̸= 0 and t ∈ R.

However, condition (MC) is not valid for our potentials. Hence we need more delicate esti-

mates for the critical values to show the contradictions. The constant for the Sobolev inequality

plays an important role in obtaining our results. In the next section, we show the best constant

for the Sobolev inequality.

2 Best constant for the Sobolev inequality

Let’s make it clear that Lp(R, R
m) and H1(R, R

m) are the Banach spaces of functions on R

valued in R
m under the norms

∥u∥p :=

(∫

R

|u|pdt

)1/p

and

∥u∥ = ∥u∥H1 =

(∫

R

(
|u̇|2 + |u|2

)
dt

)1/2

.

Moreover, let L∞(R, R
m) be the Banach space of essentially bounded measurable functions

from R into R
m under the norm

∥u∥∞ := ess sup{|u(t)| : t ∈ R}.

As we know, for any m > 1, H1(R, R
m) can be embedded into Lν(R, R

m) continuously for

any ν ∈ [2,+∞]. Then we have the following Sobolev inequality

∥u∥ν ≤ Cν∥u∥ for all u ∈ H1(R, R
m), (2.1)

where Cν is the best constant which is defined in the following proof. This inequality is

important in using variational methods to show the existence and multiplicity of differential

equations. However, since the best constant for the Sobolev inequality seems not important

in previous studies of Hamiltonian systems, as we know, there is no paper concerning on the

best constant of Sobolev inequality for (2.1). In this section, we show the best constant for

(2.1).

There have been many papers concerning on the best constant for the Sobolev inequality

in H1(R, R) (see [2–4, 12]). In a remarkable paper, Talenti [38] obtained the best constant for
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Sobolev inequality in H1(RN , R) with N > 1. In 1983, Weinstein obtained the best constant

for the following Gagliardo-Nirenberg-Sobolev inequalities

∥u∥ν
ν ≤ C∗∥∇u∥

N(ν−2)
2

2 ∥u∥ν− N(ν−2)
2

2 for u ∈ H1(RN , R), (2.2)

where N ≥ 2, 2 < ν <
2N

N−2 , C∗ = ν

2∥G∥ν−2
2

is the best constant for (2.2) and G is the unique

positive solution for the following scalar field equation

−N(ν − 2)

4
∆u +

(
1 +

ν − 2

4
(2 − N)

)
u = |u|ν−2u, x ∈ R

N .

In a recent paper, Dolbeault, etc. [10] considered the best constant for the one-dimensional

Gagliardo–Nirenberg–Sobolev inequalities in H1(R, R
m)(m = 1) and obtained

1

MGN(ν)
= inf

y∈H1(R,R)\{0}

(∫
R
|y′|2dt

) ν−2
4ν
(∫

R
|y|2dt

) ν+2
4ν

(∫
R
|y|νdt

) 1
ν

, (2.3)

where MGN(ν) is defined as

MGN(ν) = 4−
1
ν

(
(ν + 2)ν+2

(ν − 2)ν−2

) 1
4ν

(
2
√

πΓ
(

2
ν−2

)

(ν + 2)Γ
(

2
ν−2 +

1
2

)
) ν−2

2ν

. (2.4)

Moreover, MGN(ν) is attained at v⋆, which is the unique optimal function up to translations,

multiplication by a constant and scalings, defined as

v⋆(t) =
1

(cosh t)
2

ν−2

.

The following computation is made by the authors in [10]. For the reader’s convenience, we

write them here.

∫

R

|v⋆|2dt =

√
πΓ
(

2
ν−2

)

Γ
(

2
ν−2 +

1
2

) ,
∫

R

|v⋆|νdt =
4

ν + 2

∫

R

|v⋆|2dt

and
∫

R

∣∣v′
⋆

∣∣2 dt =
4

(ν − 2)(ν + 2)

∫

R

|v⋆|2dt.

Subsequently, we consider the case m > 1. For any u(t) = (u1(t), . . . , um(t)) ∈ H1(R, R
m) \

{0}, set

y(t) = |u(t)| =
√

m

∑
i=1

u2
i (t) ∈ H1(R, R) \ {0}. (2.5)

Then we have

[y′]2 =
(∑m

i=1 uiu
′
i)

2

∑
m
i=1 u2

i

. (2.6)

For any ν > 2, let

R = inf
u1,...,um∈H1(R,R)\{0}

(∫
R

(
∑

m
i=1 u′2

i

)
dt
) ν−2

4ν

(∫
R

(∑
m
i=1 uiu

′
i)

2

∑
m
i=1 u2

i

dt

) ν−2
4ν

. (2.7)
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On one hand, if we choose u1 = . . . = um, it is easy to see that R ≤ 1. On the other hand, we

can also deduce that R ≥ 1 since

(
m

∑
i=1

uiu
′
i

)2

≤
(

m

∑
i=1

u2
i

)(
m

∑
i=1

u′2
i

)
,

which implies R = 1. Therefore, by (2.3), (2.5)–(2.7), one has

inf
u∈H1(R,Rm)\{0}

(∫
R
|u̇|2dt

) ν−2
4ν
(∫

R
|u|2dt

) ν+2
4ν

(∫
R
|u|ν dt

) 1
ν

= inf
u1,...,um∈H1(R,R)\{0}

(∫
R

(
∑

m
i=1 u′2

i

)
dt
) ν−2

4ν

(∫
R

(∑
m
i=1 uiu

′
i)

2

∑
m
i=1 u2

i

dt

) ν−2
4ν

(∫
R

(∑
m
i=1 uiu

′
i)

2

∑
m
i=1 u2

i

dt

) ν−2
4ν (∫

R

(
∑

m
i=1 u2

i

)
dt
) ν+2

4ν

(∫
R

(
∑

m
i=1 u2

i

) ν
2 dt
) 1

ν

≥ inf
u1,...,um∈H1(R,R)\{0}

(∫
R

(
∑

m
i=1 u′2

1

)
dt
) ν−2

4ν

(∫
R

(∑
m
i=1 uiu

′
i)

2

∑
m
i=1 u2

i

dt

) ν−2
4ν

inf
y∈H1(R,R)\{0}

(∫
R
|y′|2dt

) ν−2
4ν
(∫

R
|y|2dt

) ν+2
4ν

(∫
R
|y|νdt

) 1
ν

=
1

MGN(ν)
.

Hence, for any ν > 2

(∫

R

|u|νdt

) 1
ν

≤ MGN(ν)

(∫

R

|u̇|2dt

) ν−2
4ν
(∫

R

|u|2dt

) ν+2
4ν

for all u ∈ H1(R, R
m),

where MGN(ν) is the best constant defined in (2.4) and attained at

V = (k1, . . . , km)v⋆ (2.8)

with ki ≥ 0 and k2
1 + . . . + k2

m = 1. Moreover, for any ∆ ⊂ R, there holds

(∫

∆
|u|νdt

) 1
ν

≤ MGN(ν)

(∫

∆
|u̇|2dt

) ν−2
4ν
(∫

∆
|u|2dt

) ν+2
4ν

for all u ∈ H1
0(∆, R

m) (2.9)

and MGN(ν) is the best constant which can be attained if and only if ∆ = R. For any u ∈
H1(R, R

m) \ {0} and τ > 0, let qτ(t) = u(τt) with

Qτ(u) =

(∫
R

(
|q̇τ|2 + |qτ|2

)
dt
) 1

2

(∫
R
|qτ|νdt

) 1
ν

and

τu =

√
(ν − 2)

∫
R
|u|2dt

(ν + 2)
∫

R
|u̇|2dt

.

It is easy to see that

inf
τ>0

Qτ(u) = Qτu(u) ≤ Q1(u) =
∥u∥
∥u∥ν

(2.10)
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and

inf
u∈H1(R,Rm)\{0}

Qτu(u) = inf
u∈H1(R,Rm)\{0}

(
ν + 2

ν − 2

) ν−2
4ν
(

2ν

ν + 2

) 1
2
(∫

R
|u̇|2dt

) ν−2
4ν
(∫

R
|u|2dt

) ν+2
4ν

(∫
R
|u|νdt

) 1
ν

=
1

MGN(ν)

(
ν + 2

ν − 2

) ν−2
4ν
(

2ν

ν + 2

) 1
2

. (2.11)

It follows from (2.10) and (2.11) that

inf
u∈H1(R,Rm)\{0}

∥u∥
∥u∥ν

≥ 1

MGN(ν)

(
ν + 2

ν − 2

) ν−2
4ν
(

2ν

ν + 2

) 1
2

(2.12)

and

∥VτV ∥
∥VτV ∥ν

=
1

MGN(ν)

(
ν + 2

ν − 2

) ν−2
4ν
(

2ν

ν + 2

) 1
2

. (2.13)

Then, we infer that (2.1) holds and

Cν = MGN(ν)

(
ν − 2

ν + 2

) ν−2
4ν
(

ν + 2

2ν

) 1
2

(2.14)

is the best constant. Moreover, we also need to consider the best constant when ν = +∞. It

follows from (2.14) that Cν → 1√
2

as ν → +∞. It has been shown by Janczewska in [16] that

C∞ = 1√
2
, which is the best constant for (2.1) when ν = ∞.

3 Solutions for the limit systems

In this section, we consider the solutions for the limit systems of (1.1). In the rest of this paper,

we only consider the systems in R
2. The potential V is defined as

V(t, x) = −1

2
a(t)|x|2 + λF(t, x) + d(t)|x|ν,

where a, d ∈ C(R, R), λ > 0, ν > 2 and the following conditions hold

(V1) there exists a0 > 0 such that a(t) ≥ a0 for all t ∈ R;

(V2) there exist a∞, d∞ > 0 such that a(t) → a∞ and d(t) → d∞ as |t| → +∞;

(V3) ∥a∥∞ ≥ 1, d(0) = ∥d∥∞;

(V4) F(t, 0) = 0 and F(t, x) ∈ C1(R × R
2, R);

(V5) for any (t, x) ∈ R × R
2, there exist 1 < r1 ≤ r2 < 2 such that

|∇F(t, x)| ≤ b1(t)|x|r1−1 + b2(t)|x|r2−1,

where b1(t) ∈ Lβ1(R, R
+) and b2(t) ∈ Lβ2(R, R

+) for some β1 ∈ (1, 2
2−r1

) and β2 ∈
(1, 2

2−r2
);

(V6) there exist t̄ ∈ R, r ∈ (1, 2) and b0 > 0 such that F(t̄, x) > b0|x|r for all x ∈ R
2.
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Here Qν : R → R
+ is the unique positive ground state solution(up to translations) for the

following equation

ü(t)− u(t) + uν−1(t) = 0 for t ∈ R. (3.1)

Let us consider the following systems





∆uj − a∞uj + νd∞

(
∑

m
i=1 u2

i

) ν−2
2 uj = 0 in R

n,

u̇j(0) = 0, j = 1, . . . , m,

uj(y) → 0 as |y| → +∞.

(3.2)

The existence of solutions for systems (3.2) has been considered by many mathematicians via

the variational methods. A solution (u1, . . . , um) for (3.2) is said to be positive if u1, . . . , um > 0.

When m = 1, (3.2) reduces to a differential equation and the uniqueness of positive ground

state solution for (3.2) has been shown by M. K. Kwong [19] with ν > 2. The readers are also

referred to [17, 34] for more general cases.

When m > 1, (3.2) is related to the coupled nonlinear Schrödinger equations. In last

decades, there have been many mathematicians devoting themselves to the uniqueness of

positive solutions for the coupled nonlinear Schrödinger equations and obtained many signif-

icant results (see [9, 19, 26, 41]). In a recent paper [41], Wei and Yao considered the following

systems 



ü(r) + n−1
ν u̇(r)− λ1u + µ1u3 + βuv2 = 0, in [0, ∞)

v̈(r) + n−1
r v̇(r)− λ2v + µ2v3 + βu2v = 0, in [0, ∞)

u(r), v(r) > 0 in [0, ∞)

u̇(0) = v̇(0) = 0, and u(r), v(r) → 0 as r → ∞.

(3.3)

When λ1 = λ2 = λ with 0 ≤ β /∈ [min {µ1, µ2} , max {µ1, µ2}], they showed the uniqueness of

positive solutions for system (3.3), defined as

(u0, v0) =

(√
λ (β − µ2)

β2 − µ1µ2
w0(

√
λx),

√
λ (β − µ1)

β2 − µ1µ2
w0(

√
λx)

)

where w0 is the unique positive solution of

∆w − w + w3 = 0 in R, w(0) = max
x∈RN

w(x), w(x) → 0 as |x| → ∞.

q When λ1 = λ2 = λ and µ1 = µ2 = β, it has also been shown in [41] that all the positive

solutions of system (3.3) have the following form

(u(x), v(x)) =

(√
λ

β
w(

√
λx) cos θ,

√
λ

β
w(

√
λx) sin θ

)
, θ ∈ (0, π/2).

For the high dimension cases, i.e. n = 2, 3 and m = 2, the readers are referred to another

paper by Dai, Tian and Zhang [11]. However, the case n = 1 is not considered. We can see

that (3.2) reduces to (3.3) if ν = 4. Motivated by above papers, we obtain the uniqueness of

solutions for (3.2) when m = 2, n = 1 and ν > 2. More precisely, we obtain the following

lemma.
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Lemma 3.1. Suppose m = 2, n = 1, a∞, d∞ > 0 and ν > 2. Then system (3.2) possesses at least

one positive solution. Let Uν : R → R
+ × R

+ be a positive solution for systems (3.2), then there exits

ω ∈ (0, π/2) such that

Uν =

(
a∞

νd∞

) 1
ν−2

Qν (
√

a∞t) (cos ω, sin ω) (3.4)

and Uν is the ground state solution for (3.2).

Proof. Since n = 1, the critical exponent equals to +∞. The existence of positive solutions for

the subcritical problems have been considered in [7, 13, 35, 41]. Subsequently, we only show

(3.4) holds and Uν is the ground state solution for (3.2). Let

Mν(t) =

(
a∞

νd∞

)− 1
ν−2

Uν

(
t√
a∞

)
.

Then Mν = (M1(t),M2(t)) is the positive solution for the following system





üj(t)− uj(t) +
(
u2

1(t) + u2
2(t)

) ν−2
2 uj(t) = 0, j = 1, 2, for t ∈ R,

u̇1(0) = u̇2(0) = 0,

u1(t), u2(t) → 0 as |t| → ∞,

which implies

M̈1 −M1 + (M2
1 +M2

2)
ν−2

2 M1 = 0, (3.5)

M̈2 −M2 + (M2
1 +M2

2)
ν−2

2 M2 = 0. (3.6)

Subtracting (3.5) by (3.6), one infers that

d

dt

(
Ṁ1M2 −M1Ṁ2

)
= 0,

which implies

Ṁ1M2 −M1Ṁ2 = C for some C ∈ R.

Since Ṁ1(0) = Ṁ2(0) = 0, we obtain

Ṁ1M2 −M1Ṁ2 = 0 for all t ∈ R.

By the ordinary differential equation theory, one can deduce

M1 = KM2 for some K > 0. (3.7)

Combining (3.6) and (3.7), we obtain

M̈2 −M2 + (K2 + 1)
ν−2

2 Mν−1
2 = 0.

Letting T(t) =
(
K2 + 1

) 1
2 M2(t), we see T(t) > 0 satisfies (3.1). By the uniqueness, one has

T = Qν, which implies M2 =
(
K2 + 1

)− 1
2 Qν. Then it follows that

Mν(t) = Qν(t)
(
K2 + 1

)− 1
2 (K, 1),



10 D.-L. Wu

which implies (3.4). We also show that Uν is a ground state solution for systems (3.2). Actually,

the corresponding functional of (3.2) is defined as

I∞(u) =
1

2

∫

R

(
|u̇|2 + a∞|u|2

)
dt − d∞

∫

R

|u|νdt.

Set N = {u ∈ H1(R, R
2) \ {0} : ⟨I′∞(u), u⟩ = 0} and c∞ = infu∈N I∞(u). Moreover, the

corresponding functional of (3.1) is defined as

J∞(q) =
1

2

∫

R

(
|q̇|2 + |q|2

)
dt − 1

ν

∫

R

|q|νdt.

Let N = {q ∈ H1(R, R) \ {0} : ⟨J′∞(q), q⟩ = 0} and C∞ = infq∈N J∞(q). By the definition of Qν,

we deduce that

J∞ (Qν) = C∞.

Obviously, for any q(t) ∈ N and e ∈ R
2 with |e| = 1, we have that

(
a∞

νd∞

) 1
ν−2 q(

√
a∞t)e ∈ N .

In turn, for any u(t) ∈ N we have
(

νd∞

a∞

) 1
ν−2
∣∣u
(

t√
a∞

)∣∣ ∈ N. Therefore, we infer that c∞ =

a
ν+2

2(ν−2)
(

1
νd∞

) 2
ν−2C∞. Moreover, it follows from (3.4) and the definition of Qν that

∫

R

(
|Q̇ν|2 + |Qν|2

)
dt =

∫

R

|Qν|νdt (3.8)

and

c∞ = I∞(Uν) =
ν − 2

2ν

(
1

νd∞

) 2
ν−2

a
ν+2

2(ν−2)
∞

∫

R

|Qν|νdt. (3.9)

Remark 3.2. When ν = 4, Theorem 3.1 reduces to the results in [41].

4 Main results

In this section, we prove our main result.

Theorem 4.1. Suppose that ν > 2, (V1)–(V5) hold. Then there exist λ0, d0 > 0 such that problem

(1.1) possesses at least one homoclinic solution for all λ ∈ (0, λ0) and d∞ ∈ (0, d0). Moreover, (1.1)

possesses another homoclinic solution if (V6) holds.

Remark 4.2. In [36, 37], Sun and Wu also considered (1.1) with mixed nonlinearities. In both

papers, the infimum of a(t) cannot be attained at infinity, which is different from our result.

Remark 4.3. In Theorem 4.1, there are no periodic, coercive or symmetric assumptions on

a(t), which is different from the results in [6, 14, 32, 39, 44]. According to our conditions, both

of the superquadratic and subquadratic parts of V can change signs, then we can not obtain

the compactness as the authors did in [46].

Remark 4.4. In [26, 27], W(t, x) is required to satisfy

(∇W(t, x), x) ≥ (∇W∞(x), x) ≥ 0 for all t ∈ R, x ∈ R
N , (4.1)
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and

(∇W(t, x), x) ≥ 2W(x) for all t ∈ R, x ∈ R
N , (4.2)

where W∞ is the limit function of W as t → ∞. In our theorem, we have

W(t, x) = λF(t, x) + d(t)|x|ν. (4.3)

Since F(t, x) and d(t) can change signs, we infer that (4.1) and (4.2) are not valid for (4.3).

Moreover, since (4.1), (4.2) and (MC) hold in [27], the authors can show that for any u ∈
H1(R, R

2), there exists unique su > 0 such that suu ∈ L and sups≥0 I(su) = I(suu), where

L = {u ∈ H1(R, R
2) \ {0} : ⟨I′(u), u⟩ = 0}. This conclusion is crucial in using the (CCP)

to show the contradictions. However, we can not obtain this conclusion by our conditions.

Therefore, the Nehari-manifold method is not applicable for our theorem.

4.1 Preliminaries

The corresponding functional of (1.1) is defined by

I(u) =
1

2

∫

R

(
|u̇|2 + a(t)|u|2

)
dt − λ

∫

R

F(t, u)dt −
∫

R

d(t)|u|νdt. (4.4)

Lemma 4.5. Under (V1)–(V5), I is of C1 class and weakly lower semi-continuous. Moreover, we

have

⟨I′(u), v⟩ =
∫

R

((u̇, v̇) + a(t)(u, v))dt − λ
∫

R

(∇F(t, u), v)dt − ν
∫

R

d(t)|u|ν−2(u, v)dt,

which implies that

⟨I′(u), u⟩ =
∫

R

(
|u̇|2 + a(t)|u|2

)
dt − λ

∫

R

(∇F(t, u), u)dt − ν
∫

R

d(t)|u|νdt.

Proof. The proof is similar to Lemma 2.3 in [6].

Lemma 4.6. The critical points of I are homoclinic solutions for problem (1.1).

Proof. Since ∥a∥∞ ≥ a(t) > a0 > 0, the proof is similar to Lemma 3.1 in [49].

We will show the existence of two critical points of I by the Mountain Pass Theorem and

the following critical point lemma respectively.

Lemma 4.7 (Lu [22]). Let X be a real reflexive Banach space and Ω ⊂ X be a closed bounded convex

subset of X. Suppose that φ : X → R is a weakly lower semi-continuous (w.l.s.c. for short) functional.

If there exists a point x0 ∈ Ω \ ∂Ω such that

φ(x) > φ(x0), ∀ x ∈ ∂Ω,

then there must be an x∗ ∈ Ω \ ∂Ω such that

φ(x∗) = inf
x∈Ω

φ(x).
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4.2 The Mountain Pass Structure

In this section, we mainly show the Mountain Pass structure of I and obtain some crucial

estimates.

Lemma 4.8. Suppose the conditions of Theorem 4.1 hold, then there exist ϱ0, α > 0 such that I|∂Sϱ0
≥

α, where Sϱ0 = {u ∈ H1 : ∥u∥ ≤ ϱ0}.

Proof. By (V4) and (V5), we can deduce that

|(∇F(t, x), x)| ≤ b1(t)|x|r1 + b2(t)|x|r2 (4.5)

and

|F(t, x)| ≤ 1

r1
b1(t)|x|r1 +

1

r2
b2(t)|x|r2 (4.6)

for all (t, x) ∈ R × R
2. By (2.1), (4.4), (4.6) and (V1), for all u ∈ ∂Sϱ, we have

I(u) =
1

2

∫

R

(
|u̇|2 + a(t)|u|2

)
dt − λ

∫

R

F(t, u)dt −
∫

R

d(t)|u|νdt

≥ min{1, a0}
2

∥u∥2 − λ

(
1

r1

∫

R

b1(t)|u|r1 dt +
1

r2

∫

R

b2(t)|u|r2 dt

)
− Cν

ν∥d∥∞∥u∥ν

≥ min{1, a0}
2

∥u∥2 − λ

(
1

r1
Cr1

r1β∗
1
∥b1∥β1

∥u∥r1 +
1

r2
Cr2

r2β∗
2
∥b2∥β2

∥u∥r2

)
− Cν

ν∥d∥∞∥u∥ν.

For any ϱ > 0, set

h(ϱ) =
min{1, a0}

2
ϱ2 − ∥d∥∞Cν

νϱν.

It is easy to see that h′(ϱ0) = 0 and ϱ0 is the unique critical point of h defined as

ϱ0 =

(
min{1, a0}
νCν

ν∥d∥∞

) 1
ν−2

.

Then there exists λ1 > 0 such that for any λ ∈ (0, λ1) with ∥u∥ = ϱ0, we have

I(u) ≥ 1

2
h(ϱ0)

.
= α.

We obtain our conclusion.

Lemma 4.9. Suppose the conditions of Theorem 4.1 hold, then for λ small enough, there exists e0 ∈ H1

such that ∥e0∥ > ϱ0 and I(e0) ≤ α, where ϱ0, α are defined in Lemma 4.8.

Proof. it follows from the definition of Qν, (3.8) and (2.14) that

J∞(Qν) = E(ν) = inf
u∈H1(R,R)\{0}

(ν − 2)
(
∥u̇∥2

2 + ∥u∥2
2

) ν
ν−2

2ν∥u∥
2ν

ν−2
ν

=
(ν − 2)

(
∥Q̇ν∥2

2 + ∥Qν∥2
2

) ν
ν−2

2ν∥Qν∥
2ν

ν−2
ν

=
ν − 2

2ν

∫

R

|Qν|νdt

≥ ν − 2

2ν
C
− 2ν

ν−2
ν ,
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which implies ∫

R

|Qν|νdt ≥ C
− 2ν

ν−2
ν .

It follows from (V3) that, there exist T > 0 such that |d(t)− ∥d∥∞| ≤ ε0 for all t ∈ (−T, T).

For any u ∈ H1
0((−T, T), R

2), let

L(u) =

(∫ T
−T

(
|u̇|2 + |u|2

)
dt
) ν

ν−2

(∫ T
−T |u|νdt

) 2
ν−2

.

Let χ ∈ H1
0((−T, T), R

2) and

u(t) = (χ(
√
∥a∥∞ + ε0t), 0),

which implies u ∈ H1(R, R
2). For any t ∈ (−T, T), it follows from ∥a∥∞ ≥ 1 that t√

∥a∥∞+ε0

∈
(−T, T). Then

I(θu) ≤ θ2
√
∥a∥∞ + ε0

2

∫ T

−T

(
|χ̇|2 + |χ|2

)
dt − θν

√
∥a∥∞ + ε0

∫ T

−T
d

(
t√

∥a∥∞ + ε0

)
|χ|νdt

− λ
∫ T

−T
F(t, θu)dt

≤ θ2
√
∥a∥∞ + ε0

2

∫ T

−T

(
|χ̇|2 + |χ|2

)
dt − (∥d∥∞ − ε0)θν

√
∥a∥∞ + ε0

∫ T

−T
|χ|νdt

+ λ

(
θr1

r1
∥a∥

− 1
2β∗

1
∞ Cr1

r1β∗
1
∥b1∥β1

∥χ∥r1 +
θr2

r2
∥a∥

− 1
2β∗2

∞ Cr2
r2β∗

2
∥b2∥β2

∥χ∥r2

)
.

Choose θ0 > 0 large enough such that I(θ0u) < 0 and θ0∥u∥ > ϱ0. Letting e0 = θ0u, we see

that there exists λ2 ∈
(
0, λ1

)
such that for any λ ∈ (0, λ2), I(e0) < 0 and ∥e0∥ > ϱ0. We obtain

the conclusion of this lemma.

By the Mountain Pass theorem, there exists a sequence {un} and c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where

Γ = {g ∈ C([0, 1], E) | g(0) = O, g(1) = e0}.

such that

I(un) → c (4.7)

and for any v ∈ H1
(
R, R

2
)

o(1)∥v∥ = ⟨I′(un), v⟩ =
∫

R

((u̇n, v̇) + a(t)(un, v))dt − λ
∫

R

(∇F(t, un), v)dt

− ν
∫

R

d(t)|un|ν−2(un, v)dt. (4.8)

Next, we show an important relation between c and c∞, which is crucial in the following

concentration compactness study.
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Lemma 4.10. Suppose λ and d∞ are small enough, then

c∞ − c ≥ 2λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1

∥vn∥r1 +
r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2

∥vn∥r2

)
. (4.9)

Proof. First, we estimate the critical value of I along the sequence {un}. For s ∈ [0, 1], set

g0(s) = se0 = sθ0u,

which implies g0(s) ∈ Γ. It follows from the definition of c that

c = inf
g∈Γ

max
s∈[0,1]

I(g(s))

≤ max
s∈[0,1]

I(g0(s))

≤ max
s∈[0,1]

[
(sθ0)2

√
∥a∥∞ + ε0

2

∫ T

−T

(
|χ̇|2 + |χ|2

)
dt − (∥d∥∞ − ε0)(sθ0)ν

√
∥a∥∞ + ε0

∫ T

−T
|χ|νdt

]

+ λ

(
θr1

0

r1
∥a∥

− 1
2β∗

1
∞ Cr1

r1β∗
1
∥b1∥β1

∥χ∥r1 +
θr2

0

r2
∥a∥

− 1
2β∗2

∞ Cr2
r2β∗

2
∥b2∥β2

∥χ∥r2

)

≤ ν − 2

2ν

(
1

ν(∥d∥∞ − ε0)

) 2
ν−2

(∥a∥∞ + ε0)
ν+2

2(ν−2) L(χ)

+ λ

(
θr1

0

r1
∥a∥

− 1
2β∗

1
∞ Cr1

r1β∗
1
∥b1∥β1

∥χ∥r1 +
θr2

0

r2
∥a∥

− 1
2β∗2

∞ Cr2
r2β∗

2
∥b2∥β2

∥χ∥r2

)
. (4.10)

Moreover, there exists d0 > 0 small enough such that for any d∞ ∈ (0, d0), one has

a
ν+2

2(ν−2)
∞

(
1

d∞

) 2
ν−2
∫

R

|Qν|νdt ≥ a
ν+2

2(ν−2)
∞

(
1

d∞

) 2
ν−2

C
− 2ν

ν−2
ν

= a
ν+2

2(ν−2)
∞

(
1

d∞

) 2
ν−2

(
MGN(ν)

(
ν − 2

ν + 2

) ν−2
4ν
(

ν + 2

2ν

) 1
2

)− 2ν
ν−2

>

(
1

∥d∥∞ − ε0

) 2
ν−2

(∥a∥∞ + ε0)
ν+2

2(ν−2) L(χ).

By (3.9) and (4.10), there exists λ3 ∈ (0, λ2) such that for any λ ∈ (0, λ3) and ε0 > small

enough

c∞ − c ≥ ν − 2

2ν

(
1

ν

) 2
ν−2

(
a

ν+2
2(ν−2)
∞

(
1

d∞

) 2
ν−2
∫

R

|Qν|νdt

−
(

1

∥d∥∞ − ε0

) 2
ν−2

(∥a∥∞ + ε0)
ν+2

2(ν−2) L(χ)

)

− λ

(
θr1

0

r1
a
− 1

2β∗
1

∞ Cr1
r1β∗

1
∥b1∥β1

∥χ∥r1 +
θr2

0

r2
a
− 1

2β∗2
∞ Cr2

r2β∗
2
∥b2∥β2

∥χ∥r2

)

> 2λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1

(4D)r1 +
r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2

(4D)r2

)

≥ 2λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1

∥vn∥r1 +
r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2

∥vn∥r2

)
.

We obtain our conclusion.
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4.3 The compactness property

In this section, we show that {un} converges to a nontrivial solution for problem (1.1). We will

utilize the concentration-compactness principle by P. L. Lions [20] to obtain the compactness.

Lemma 4.11 (See [20, Lemma1.1]). Let {ρn} be a sequence of nonnegative L1 functions on R sat-

isfying
∫

R
ρn(t)dt = κ, where κ is a fixed constant. Then there exists a subsequence which we still

denote by {ρn}, satisfying one of the three following possibilities:

(i) (Vanishing): for all R > 0, it follows

lim
n→∞

sup
y∈R

∫

BR(y)
ρndt = 0;

(ii) (Compactness): there exists {yn} ⊂ R such that, for any ε > 0, there exists R > 0 satisfying

∫

BR(yn)
ρndt ≥ κ − ε;

(iii) (Dichotomy): there exist α ∈ (0, κ), ρ1
n ≥ 0, ρ2

n ≥ 0, and ρ1
n, ρ2

n ∈ L1(R) such that

(a)
∥∥ρn −

(
ρ1

n + ρ2
n

)∥∥
L1 → 0 as n → ∞;

(b)
∫

R
ρ1

ndt → α as n → ∞;

(c)
∫

R
ρ2

ndt → κ − α as n → ∞;

(d) dist
(
supp ρ1

n, supp ρ2
n

)
→ ∞ as n → ∞.

Lemma 4.12 (See [21]). Let {un} be bounded sequence in Lq(R) for 1 ≤ q < +∞ such that {u̇n} is

bounded in Lp(R) for 1 < p ≤ +∞. If there exists R > 0 such that

sup
y∈R

∫

BR(y)
|un|qdt → 0 as n → ∞,

then un → 0 in Lr(R) for all r ∈ (q,+∞).

First, we show the boundedness of ∥un∥. It follows from (4.4), (4.5), (4.7), (4.8) and (4.10)

that

νc + o(1)

≥ νI(un)− ⟨I′(un), un⟩
=
(ν

2
− 1
) ∫

R

(
|u̇n|2 + a(t)|un|2

)
dt − λ

∫

R

((∇F(t, un), un)− νF(t, un)) dt

≥ min{1, a0}
(ν

2
− 1
)
∥un∥2 − λ

(
r1 + ν

r1
Cr1

r1β∗
1
∥b1∥β1

∥un∥r1 +
r1 + ν

r2
Cr2

r2β∗
2
∥b2∥β2

∥un∥r2

)
.

Hence there exists D > 0 such that

∥un∥ ≤ D for all n ∈ N. (4.11)

Without loss of generality, we assume that

lim
n→∞

∥un∥ =
√

κ. (4.12)



16 D.-L. Wu

We have that κ > 0. If not, assuming by contradiction that ∥un∥ → 0, there will be a contra-

diction. It follows from ∥un∥ → 0 that ∥un∥∞ → 0. It is easy to see that

∣∣∣∣λ
∫

R

F(t, un)dt +
∫

R

d(t)|un|νdt

∣∣∣∣ dt → 0 as n → ∞,

which contradicts to (4.7). Then (4.12) holds.

Lemma 4.13. The sequence {un} converges to a nontrivial function u0 in H1(R, R
2), which is the

homoclinic solution for systems (1.1).

Proof. In order to prove this lemma, we consider three cases of behavior for {un}, which are

classified in Lemma 4.11. Set ρn(t) = |u̇n(t)|2 + |un(t)|2. The proof is divided into three steps.

Step 1: Vanishing does not occur.

Suppose by contradiction, for all R > 0,

lim
n→∞

sup
y∈R

∫

BR(y)
ρndt = 0.

We deduce from Lemma 4.12 that

lim
n→∞

∫

R

|un|νdt = 0. (4.13)

By (4.8), for n large enough, we can conclude that

∫

R

(
|u̇n|2 + a(t)|un|2

)
dt ≤ λ

∫

R

(∇F(t, un), un)dt + ν
∫

R

d(t)|un|νdt +
1

2
c. (4.14)

It follows from (4.4), (4.5), (4.6), (4.7), (4.8), (4.13) and (4.14) that there exists λ4 ∈ (0, λ3) such

that for any λ ∈ (0, λ4)

0 <
1

2
c

≤ I(un)

=
1

2

∫

R

(
|u̇n|2 + a(t)|un|2

)
dt − λ

∫

R

F(t, un)dt −
∫

R

d(t)|un|νdt

≤ 1

2

(
λ
∫

R

(∇F(t, un), un)dt + ν
∫

R

d(t)|un|νdt +
1

2
c

)
− λ

∫

R

F(t, un)dt −
∫

R

d(t)|un|νdt

≤ λ

(
r1 + 2

2r1
∥b1∥β1

∥un∥r1
r1β∗

1
+

r1 + 2

2r2
∥b2∥β2

∥un∥r2
r2β∗

2

)
+ ∥d∥∞

(ν

2
− 1
) ∫

R

|un|νdt +
1

4
c

→ 1

4
c as n → ∞,

which is a contradiction. Then we see that vanishing case does not occur.

Step 2: Dichotomy does not occur.

There exist R0 > 0 and sequences {yn} ⊂ R, {Rn} ⊂ R
+, with R0 < R1 < · · · < Rn <

Rn+1 → ∞, Ωn = BRn(yn) \ BR0
(yn) such that

∫

Ωn

ρndt → 0,
∫

BR0
(yn)

ρndt → α and
∫

R\B2Rn (yn)
ρndt → κ − α (4.15)
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as n → ∞. Set ξ ∈ C1(R+, R
+) with 0 ≤ ξ ≤ 1, ξ(s) ≡ 1 for s ≤ 1; ξ(s) ≡ 0 for s ≥ 2 and

|ξ̇(s)| ≤ 2. Let

vn(t) = ξ

( |t − yn|
R0

)
un(t) and wn(t) =

(
1 − ξ

( |t − yn|
Rn

))
un(t).

On one hand, we can easily deduce that

∥wn∥2 =
∫

R

|ẇn|2dt +
∫

R

|wn|2dt

=
∫

R

(
1

R2
n

∣∣∣∣ξ̇
( |t − yn|

Rn

)
un

∣∣∣∣
2

+

∣∣∣∣
(

1 − ξ

( |t − yn|
Rn

))
u̇n

∣∣∣∣
2
)

dt

− 2

Rn

∫

R

ξ̇

( |t − yn|
Rn

)(
1 − ξ

( |t − yn|
Rn

))
(un, u̇n)dt +

∫

R

∣∣∣∣
(

1 − ξ

( |t − yn|
Rn

))
un

∣∣∣∣
2

dt

≥
∫

R\B2Rn (yn)
ρndt − 2

Rn
∥un∥2,

which implies that

lim
n→∞

∥wn∥2 ≥ κ − α.

On the other hand, it can be easily deduce from (4.15) that

∫

Ωn

d(t)|un|νdt → 0,
∫

R

[(u̇n, ω̇n)− |ω̇n|2]dt → 0 as n → ∞, (4.16)

and

∫

BRn (yn)
(∇F(t, un), wn)dt → 0,

∫

BRn (yn)
(∇F(t, wn), wn)dt → 0 as n → ∞. (4.17)

Then one has

∥wn∥2 =
∫

R

(
1

R2
n

∣∣∣∣ξ̇
( |t − yn|

Rn

)
un

∣∣∣∣
2

+

∣∣∣∣
(

1 − ξ

( |t − yn|
Rn

))
u̇n

∣∣∣∣
2
)

dt

− 2

Rn

∫

R

ξ̇

( |t − yn|
Rn

)(
1 − ξ

( |t − yn|
Rn

))
(un, u̇n)dt +

∫

R

∣∣∣∣
(

1 − ξ

( |t − yn|
Rn

))
un

∣∣∣∣
2

dt

≤ 4

R2
n

∫

Ωn

|un|2 dt +
2

Rn
∥un∥2 +

∫

Ωn

ρndt +
∫

R\B2Rn (yn)
ρndt,

which implies that

lim
n→∞

∥wn∥2 = κ − α. (4.18)

Subsequently, for any u ∈ H1(R, R
2) and t ∈ R, set

G(t, u) = |u̇|2 + a(t)|u|2 − λ(∇F(t, u), u)− νd(t)|u|ν.
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Hence, it follows from the definition of v, w and (4.16) that

∫

R

|F(t, un)− F(t, vn)− F(t, wn)| dt

=
∫

Ωn

|F(t, un)− F(t, vn)− F(t, wn)| dt

≤
∫

Ωn

|F(t, un)|dt +
∫

Ωn

|F(t, vn)|dt +
∫

Ωn

|F(t, wn)|dt

≤ 1

r1

∫

Ωn

b1(t)|un|r1 dt +
1

r2

∫

Ωn

b2(t)|un|r2 dt

+
1

r1

∫

Ωn

b1(t)|vn|r1 dt +
1

r2

∫

Ωn

b2(t)|vn|r2 dt

+
1

r1

∫

Ωn

b1(t)|wn|r1 dt +
1

r2

∫

Ωn

b2(t)|wn|r2 dt

≤ 3

r1

∫

Ωn

b1(t)|un|r1 dt +
3

r2

∫

Ωn

b2(t)|un|r2 dt

≤ 3

(∥b1∥β1

r1
+

∥b2∥β2

r2

)((∫

Ωn

|un|r1β∗
1 dt

) 1
β∗

1
+

(∫

Ωn

|un|r2β∗
2 dt

) 1
β∗2

)

→ 0 as n → ∞ (4.19)

and
∣∣∣∣
∫

R

d(t) ||un|ν − |vn|ν − |wn|ν| dt

∣∣∣∣ =
∫

Ωn

d(t) ||un|ν − |vn|ν − |wn|ν| dt

≤ 3∥d∥∞∥un∥ν−2
∞

∫

Ωn

|un|2dt

≤ 3 × 2−
ν−2

2 D
ν−2∥d∥∞

∫

Ωn

|un|2dt

→ 0 as n → ∞. (4.20)

Furthermore, we can deduce that

∣∣∥un∥2 − ∥vn∥2 − ∥wn∥2
∣∣ ≤

∫

Ωn

∣∣|u̇n|2 − |v̇n|2 − |ẇn|2
∣∣ dt +

∫

Ωn

∣∣|un|2 − |vn|2 − |wn|2
∣∣ dt

→ 0 as n → ∞. (4.21)

Together with (4.19), (4.20) and (4.21), we have

I(un) ≥ I(vn) + I(wn)− o(1). (4.22)

The discussion for this step is divided into two cases.

Case 1. {yn} ⊂ R is bounded.

First, we show the following claim.

Claim 1: I(wn) ≥ c∞ − o(1).

By (V2), for any ε > 0, there exists r∞ > 0 such that

|a(t)− a∞| ≤ ε
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for all |t| ≥ r∞. Since {yn} is bounded, then there exists y > y > 0 such that {yn} ⊂ [y, y]

for all n ∈ N and min{Rn − y, Rn + y} → +∞ as n → ∞. By the definition of wn, for n large

enough, we obtain

∣∣∣∣
∫

R

(a∞ − a(t))|wn|2dt

∣∣∣∣ ≤
∫

R\BRn (yn)
|a∞ − a(t)|

(
1 − ξ

( |t − yn|
Rn

))2

|un|2dt

≤
(∫ y−Rn

−∞
+
∫ +∞

y+Rn

)
|a∞ − a(t)||un|2dt

≤ 2ε
∫

R

|un|2dt

≤ 2εD2.

By the arbitrariness of ε, we can see that
∣∣∣∣
∫

R

(a∞ − a(t))|wn|2dt

∣∣∣∣→ 0 as n → ∞. (4.23)

Similarly, we have ∣∣∣∣
∫

R

(d∞ − d(t))|wn|νdt

∣∣∣∣→ 0 as n → ∞. (4.24)

Moreover, we have
∣∣∣∣
∫

R

F(t, wn)dt

∣∣∣∣ ≤
1

r1

∫

R

b1(t)|wn|r1 dt +
1

r2

∫

R

b2(t)|wn|r2 dt

≤ 1

r1

(∫

R\BRn (yn)
|b1|β1 dt

) 1
β1
(∫

R\BRn (yn)
|wn|r1β∗

1 dt

) 1
β∗

1

+
1

r2

(∫

R\BRn (yn)
|b2|β2 dt

) 1
β2
(∫

R\BRn (yn)
|wn|r2β∗

2 dt

) 1
β∗2

≤ 1

r1

((∫ y−Rn

−∞
+
∫ +∞

y+Rn

)
|b1|β1 dt

) 1
β1
(∫

R\BRn (yn)
|un|r1β∗

1 dt

) 1
β∗

1

+
1

r2

((∫ y−Rn

−∞
+
∫ +∞

y+Rn

)
|b2|β2 dt

) 1
β2
(∫

R\BRn (yn)
|un|r2β∗

2 dt

) 1
β∗2

→ 0 as n → ∞. (4.25)

Similarly, ∣∣∣∣
∫

R

(∇F(t, wn), wn)dt

∣∣∣∣→ 0 as n → ∞. (4.26)

Combining (4.23) and (4.25), we can obtain

I(wn) ≥ I∞(wn)− o(1). (4.27)

It follows from (4.23), (4.24), (4.26) that
∣∣⟨I′(wn), wn⟩ − ⟨I′∞(wn), wn⟩

∣∣

≤
∫

R

|a∞ − a(t)||wn|2dt + λ
∫

R

|(∇F(t, wn), wn)| dt + ν
∫

R

|d∞ − d(t)||wn|νdt

→ 0 as n → ∞. (4.28)
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We can also infer from (4.16), (4.17) that

∣∣⟨I′(un), wn⟩ − ⟨I′(wn), wn⟩
∣∣

≤
∫

R

[(u̇n, ω̇n)− |ω̇n|2]dt + λ

(∣∣∣∣
∫

Ωn

(∇F(t, ωn), ωn)dt

∣∣∣∣+
∣∣∣∣
∫

Ωn

(∇F(t, un), ωn)dt

∣∣∣∣
)

+ ν∥d∥∞

(∣∣∣∣
∫

Ωn

(1 − ξ)ν|ωn|νdt

∣∣∣∣+
∣∣∣∣
∫

Ωn

(1 − ξ)|un|νdt

∣∣∣∣
)

→ 0 as n → ∞. (4.29)

Together with (4.8), (4.18), (4.28) and (4.29), one has

⟨I′∞(wn), wn⟩ → 0 as n → ∞. (4.30)

It follows from (4.18) that

∫

R

(|ẇn|2 + a∞|wn|2)dt ≥ min{1, a∞}
2

(κ − α) > 0

for n large enough. Letting

An =
⟨I′∞(wn), wn⟩∫

R
(|ẇn|2 + a∞|wn|2)dt

and

σn =

(
1

1 − An

) 1
ν−2

,

we deduce that An → 0 and σn → 1 as n → ∞. Setting zn = σnwn(t), we have

⟨I′∞(zn), zn⟩ = σ2
n

(∫

R

|wn|2 dt +
∫

R

a∞ |wn|2 dt − σν−2
n νd∞

∫

R

|wn|νdt

)

= σ2
n

(
1 − σν−2

n (1 − An)
) (∫

R

|wn|2 dt +
∫

R

a∞ |wn|2 dt

)

= 0,

which implies zn ∈ N . Furthermore, we have

I∞(zn) =
σ2

n

2

(∫

R

|wn|2 dt +
∫

R

a∞ |wn|2 dt

)
− σν

nd∞

∫

R

|wn|νdt

=
σ2

n − σν
n

2

(∫

R

|wn|2 dt +
∫

R

a∞ |wn|2 dt

)
+ σν

n I∞(wn)

≥ c∞,

which implies

I∞(wn) ≥
σν

n − σ2
n

2σν
n

(∫

R

|wn|2 dt +
∫

R

a∞ |wn|2 dt

)
+

1

σν
n

c∞

≥ c∞ − o(1).

By (4.27), we can finish the proof of Claim 1.

Similar to (4.28), (4.29) and (4.30), we get ⟨I′(vn), vn⟩ → 0 as n → ∞. By the definition of

vn and (4.11), we have

∥vn∥ ≤ 4∥un∥ ≤ 4D.
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Therefore,

I(vn) =
1

2

∫

R

|v̇n|2dt +
1

2

∫

R

a(t)|vn|2dt − λ
∫

R

F(t, vn)dt −
∫

R

d(t)|vn|νdt

=
1

2

(∫

R

|v̇n|2dt +
∫

R

a(t)|vn|2dt

)
− λ

∫

R

F(t, vn)dt

− 1

ν

((∫

R

|v̇n|2dt +
∫

R

a(t)|vn|2dt

)
− λ

∫

R

(∇F(t, vn), vn) dt − ⟨I′(vn), vn⟩
)

≥
(

1

2
− 1

ν

)(∫

R

|v̇n|2dt +
∫

R

a(t)|vn|2dt

)

+ λ

(
1

ν

∫

R

(∇F(t, vn), vn) dt −
∫

R

F(t, vn)dt

)
+ o(1)

≥ − λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1

∥vn∥r1 +
r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2

∥vn∥r2

)
+ o(1). (4.31)

It follows from (4.7), (4.22), (4.31) and Claim 1 that

λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1

∥vn∥r1 +
r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2

∥vn∥r2

)
≥ c∞ − c − o(1). (4.32)

This is an obvious contradiction to Lemma 4.10 when λ > 0 and d∞ > 0 are small enough.

Then the dichotomy does not occur when {yn} is bounded.

Case 2: {yn} ⊂ R is unbounded. Then, passing to a subsequence if necessary, we can assume

that |yn| → ∞ as n → ∞. In this case, we can choose a suitable sequence {Rn} ⊂ R such that

Rn ± yn → +∞ as n → ∞ and arguing similarly as above. Then we conclude that dichotomy

does not occur when {yn} is unbounded.

Step 3: Compactness.

It can be see from Theorem 4.1 that there exists {yn} ⊂ R such that, for any ε > 0, there

exists R1 > 0 satisfying ∫

BR1
(yn)

ρndt ≥ κ − ε. (4.33)

Since
∫

R
ρndt = κ, then we have ∫

R\BR1
(yn)

ρndt ≤ ε

for all n ∈ N. If {yn} is unbounded, similar to the arguments in Step 2, we can obtain a

contradiction. Then we conclude that {yn} is bounded. Since {un} is bounded in H1(R, R
2),

there exists u0 in H1 such that un ⇀ u0. It follows from the continuity of the embedding

H1(R, R
2) →֒ Lν(R, R

2) for any ν ∈ [2,+∞] that there exists R2 > 0 such that
∫

R\BR2
(0)

|un|νdt ≤ ε and
∫

R\BR2
(0)

|u0|νdt ≤ ε. (4.34)

It is clear that un → u0 in Lν(BR2
(0), R

2) and it follows from (4.33) and (4.34) that
∫

R

|un − u0|νdt =
∫

BR2
(0)

|un − u0|νdt +
∫

R\BR2
(0)

|un − u0|νdt

≤
∫

BR2
(0)

|un − u0|νdt + 2ν−1

(∫

R\BR2
(0)

|u0|νdt +
∫

R\BR2
(0)

|un|νdt

)

≤
∫

BR2
(0)

|un − u0|νdt + 2νε,
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which implies that

un → u0 as n → ∞ in Lν(R) for any ν ∈ [2,+∞).

On one hand, by Lebesgue Dominated Convergence Theorem, we can deduce that

∫

R

|un|ν−2(un, u0)dt →
∫

R

|u0|νdt as n → ∞.

By ⟨I′(un), u0⟩ → 0 as n → ∞, we obtain

o(1) = ⟨I′(un), un − u0⟩
= ∥un − u0∥2 +

∫

R

(u̇0, u̇n − u̇0)dt +
∫

R

a(t)(u0, un − u0)dt −
∫

R

|un − u0|2dt

− λ
∫

R

(∇F(t, un), un − u0)dt − ν
∫

R

d(t)|un|ν−2(un, un − u0)dt. (4.35)

On one hand, for i = 1, 2, set

∆i,1 = (1, 2] , ∆i,2 =

(
2

3 − ri
,

2

2 − ri

)
.

It is easy to see that
(
1, 2

2−ri

)
= ∆i,1

⋃
∆i,2 and ∆i,1

⋂
∆i,2 ̸= ∅. Hence, we deduce that there

exists ηi ∈ [2,+∞) such that 1
βi
+ ri−1

ξi
+ 1

ηi
= 1. Moreover, let

ξi =

{
+∞ if βi ∈ ∆i,1,

2 if βi ∈ ∆i,2 \ ∆i,1.

By (V5), we show

∫

R

(∇F(t, un), un − u0)dt ≤
∫

R
∑

i=1,2

bi(t)(|un|ri−1 + |u0|ri−1)dt

≤ ∑
i=1,2

∥bi∥βi
(∥un∥ri−1

ξi
+ ∥u0∥ri−1

ξi
)∥un − u0∥ηi

→ 0 as n → ∞.

On the other hand, it is easy to see

∣∣∣∣
∫

R

d(t)|un|ν−2(un, un − u0)dt

∣∣∣∣ ≤ ∥d∥∞

∫

R

|un|ν−1 |un − u0| dt

≤ ∥d∥∞ ∥un∥ν−1
2(ν−1) ∥un − u0∥2

2

→ 0 as n → ∞.

We conclude from (4.35) that ∥un − u0∥ → 0 as n → ∞, which implies that u0 is a homoclinic

solution for problem (1.1).

4.4 Proof of Theorem 4.1

In this section, we look for the second homoclinic solution corresponding to negative critical

value with the following lemma.
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Lemma 4.14 (See [22]). Let X be a real reflexive Banach space and Ω ⊂ X be a closed bounded convex

subset of X. Suppose that φ : X → R is a weakly lower semi-continuous (w.l.s.c. for short) functional.

If there exists a point x0 ∈ Ω \ ∂Ω such that

φ(x) > φ(x0), ∀ x ∈ ∂Ω

then there must be a x∗ ∈ Ω \ ∂Ω such that

φ(x∗) = inf
x∈Ω

φ(x).

It follows from (V4) and (V6) that there exists δ > 0 such that

F(t, x) >
1

2
b0|x|r0 (4.36)

for all t ∈ (t̄ − δ, t̄ + δ) and x ∈ R
2. Choose ψ ∈ C∞

0 ((t0 − δ, t0 + δ), R
2) \ {0}. It follows from

(4.36) and r0 ∈ (0, 2) that

I(ϑψ) =
ϑ2

2
∥ψ∥2 − λ

∫

R

F(t, ψ)dt − ϑν
∫

R

d(t)|ψ|νdt

≤ ϑ2

2
∥ψ∥2 − λb0ϑr0

∫ t0+δ

t0−δ
|ψ|r0 dt − ϑνd∞

∫

R

|ψ|νdt

< 0

for ϑ > 0 small enough. By Lemma 4.14, we can see there exists a critical point of I corre-

sponding to negative critical value. □
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Abstract. The method and the formula of variation of constants for ordinary differen-
tial equations (ODEs) is a fundamental tool to analyze the dynamics of an ODE near
an equilibrium. It is natural to expect that such a formula works for delay differential
equations (DDEs), however, it is well-known that there is a conceptual difficulty in the
formula for DDEs. Here we discuss the variation of constants formula for DDEs by
introducing the notion of a mild solution, which is a solution under an initial condition
having a discontinuous history function. Then the principal fundamental matrix solution
is defined as a matrix-valued mild solution, and we obtain the variation of constants
formula with this function. This is also obtained in the framework of a Volterra con-
volution integral equation, but the treatment here gives an understanding in its own
right. We also apply the formula to show the principle of linearized stability and the
Poincaré–Lyapunov theorem for DDEs, where we do not need to assume the unique-
ness of a solution.
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1 Introduction

Studies concerning with the variation of constants formula for delay differential equations

(DDEs) have a long history of over fifty years. Nevertheless, the reason why we try to discuss

the variation of constants formula in this paper is that such a consideration gives rise to a con-

ceptual difficulty that is peculiar to the theory of DDEs. Specifically, it is usual to discuss DDEs

within the scope of continuous history functions, but a class of discontinuous history func-

tions emerges as initial conditions when we try to obtain the variation of constants formula. In

connection with this, a matrix-valued solution having a certain discontinuous matrix-valued

function as the initial condition is called the fundamental matrix solution. However, it is quite

difficult to understand why the solution is called the “fundamental matrix solution” when

compared with the theory of ordinary differential equations (ODEs).

This conceptual difficulty has arisen in the theoretical development about the variation

of constants formula in the texts [18] and [19] by Jack Hale. In the revised edition [22],

the theoretical development is rewritten based on the consideration in [34]. There also exist

studies to understand the conceptual difficulty of the variation of constants formula for DDEs
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within the framework of Functional Analysis (e.g., see [7], [12], and [13]). In this framework,

it is essential that the Banach space of continuous functions on closed and bounded interval

endowed with the supremum norm is not reflexive, and the theory is constructed by using

the so called “sun-star calculus”. See [14] for the details. See also [36] for a survey article.

The idea of discussing the variation of constants formula for DDEs in this paper is to

define a solution under an initial condition having a discontinuous history function as a mild

solution. This concept comes from the analogy of the notion of mild solutions of abstract

linear evolution equations, and its terminology also originates from this. It can be said that

the notion of mild solutions is to elevate the technique to exchange the order of integration to

a concept.

The dependence of the derivative ẋ(t) of an unknown function x on the past value of x is

abstracted to the concept of retarded functional differential equations (RFDEs). In this paper, we

consider an autonomous linear RFDE

ẋ(t) = Lxt (t ≥ 0) (1.1)

for a continuous linear map L : C([−r, 0], Kn) → Kn. Here K = R or C, n ≥ 1 is an integer,

and r > 0 is a constant, which are fixed throughout this paper. The derivative of x at 0 is

interpreted as the right-hand derivative. We are using the following notations:

• C([−r, 0], Kn) denotes the Banach space of all continuous functions from [−r, 0] to Kn

endowed with the supremum norm ∥·∥. Here a norm | · | on Kn, which is not necessarily

the Euclidean norm, is fixed throughout this paper.

• For each t ≥ 0, xt : [−r, 0] → Kn is a continuous function defined by

xt(θ) := x(t + θ) (θ ∈ [−r, 0])

when x : [−r, ∞) → Kn is continuous. See also Definition 2.1.

In addition to the linear RFDE (1.1), we also consider a non-homogeneous linear RFDE

ẋ(t) = Lxt + g(t) (a.e. t ≥ 0) (1.2)

for some g ∈ L1
loc([0, ∞), Kn). Here L1

loc([0, ∞), Kn) denotes the linear space of all locally

Lebesgue integrable functions from [0, ∞) to Kn defined almost everywhere. See also the

notations given below. We refer the reader to [32] and [30] as references of the theory of

Lebesgue integration for scalar-valued functions.

To study these differential equations, the following expression of L by a Riemann–Stieltjes

integral

Lψ =
∫ 0

−r
dη(θ)ψ(θ) (1.3)

for ψ ∈ C([−r, 0], Kn) is useful. Here η : [−r, 0] → Mn(K) is an n × n matrix-valued function

of bounded variation. The above representability is ensured by a corollary of the Riesz repre-

sentation theorem (see Corollary B.3). It is a useful convention that the domain of definition

of η is extended to (−∞, 0] by letting

η(θ) := η(−r)

for θ ∈ (−∞,−r]. See Appendix A for the Riemann–Stieltjes integrals with respect to matrix-

valued functions. For the use of Riemann–Stieltjes integrals in the context of RFDEs, see [19,
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Chapters 6 and 7], [34, Chapter 2], [24, Chapter 4], [22, Chapters 6 and 7], and [14, Chapter I],

for example.

This paper is organized as follows:

In Section 2, we introduce the notion of a history segment xt for a discontinuous function

x : [−r, ∞) ⊃ dom(x) → Kn. By using this, we also introduce the notion of a mild solution to

the linear RFDE (1.1) under an initial condition

x0 = φ ∈ M1([−r, 0], K
n). (1.4)

Here M1([−r, 0], Kn) consists of elements of L1([−r, 0], Kn) that are defined at 0. Roughly

speaking, a function x : [−r, ∞) ⊃ dom(x) → Kn is said to be a mild solution of (1.1) under

the initial condition (1.4) if it satisfies

x(t) = φ(0) + L
∫ t

0
xs ds (t ≥ 0).

Here
∫ t

0 xs ds ∈ C([−r, 0], Kn) is defined by

(∫ t

0
xs ds

)
(θ) :=

∫ t

0
x(s + θ)ds (θ ∈ [−r, 0]).

See Definitions 2.5 and 2.7 for the details. After proving the existence and uniqueness of a

mild solution of the linear RFDE (1.1) under the initial condition (1.4), we define the principal

fundamental matrix solution of (1.1) as a matrix-valued mild solution XL : [−r, ∞) → Mn(K)

under the initial condition XL
0 = Î. Here Î : [−r, 0] → Mn(K) is a discontinuous function

defined by

Î(θ) :=

{
O (θ ∈ [−r, 0)),

I (θ = 0).
(1.5)

In Section 3, we derive a differential equation

ẊL(t) =
∫ 0

−t
dη(θ)XL(t + θ)

satisfied by the principal fundamental matrix solution XL of (1.1). In the derivation, it is useful

to use the notions of Volterra operator and Riemann–Stieltjes convolution. See Subsection 3.1 for

the definitions and Subsection 3.3 for the fundamental properties. The above differential

equation is the key to obtain a variation of constants formula.

In Section 4, we consider the non-homogeneous linear RFDE (1.2). To study a mild solution

of (1.2) under the initial condition (1.4), we also consider an integral equation

x(t) = φ(0) + L
∫ t

0
xs ds + G(t) (t ≥ 0) (1.6)

for a continuous function G : [0, ∞) → Kn with G(0) = 0. We show that the above integral

equation has a unique solution xL( · ; φ, G) under the initial condition (1.4).

In Section 5, we consider a non-homogeneous linear RFDE

ẋ(t) = Lxt + f (t) (t ≥ 0) (1.7)
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for a continuous function f : [0, ∞) → Kn to motivate the use of the convolution for locally

Riemann integrable functions. We show that the function x( · ; f ) : [−r, ∞) → Kn defined by

x( · ; f )0 = 0 and

x(t; f ) :=
∫ t

0
XL(t − u) f (u)du (1.8)

for t ≥ 0 is a solution to Eq. (1.7) after developing the results of convolution for locally

Riemann integrable functions. See Subsection 5.2 for the developments.

In Section 6, we study the non-homogeneous linear RFDE (1.2) under the initial condi-

tion (1.4) and find a variation of constants formula expressed by the principal fundamental

matrix solution XL. For this purpose, we indeed consider the integral equation (1.6) for some

continuous function G : [0, ∞) → Kn with G(0) = 0. One of the main results of this paper is

that the solution xL( · ; φ, G) of (1.6) under the initial condition (1.4) satisfies

xL(t; φ, G) = XL(t)φ(0) +
[
GL(t; φ) + G(t)

]
+
∫ t

0
ẊL(t − u)

[
GL(u; φ) + G(u)

]
du (1.9)

for all t ≥ 0. Here ẊL(t) denotes the derivative of the locally absolutely continuous function

XL|[0,∞) at t ≥ 0 (when it exists), and GL( · ; φ) : [0, ∞) → Kn is a function determined by the

initial history function φ. See Subsection 6.2 for the detail of the derivation of the function

GL( · ; φ). We note that before we obtain the variation of constants formula (1.9), we show that

xL(t; 0, G) = G(t) +
∫ t

0
ẊL(t − u)G(u)du (1.10)

holds for all t ≥ 0. Then the derivation of (1.9) is performed by defining a function

zL( · ; φ) : [−r, ∞) → K
n

by zL( · ; φ)0 = 0 and

zL(t; φ) := xL(t; φ, 0)− XL(t)φ(0) (1.11)

for t ≥ 0 and showing that z := zL( · ; φ) satisfies an integral equation

z(t) = L
∫ t

0
zs ds + GL(t; φ) (t ≥ 0), (1.12)

because (1.12) shows that

zL( · ; φ) = xL( · ; 0, GL( · ; φ))

holds. Here we need to know the regularity of the function GL( · ; φ), which is discussed in

Subsection 6.3.

In Section 7, we discuss the exponential stability of the principal fundamental matrix

solution XL of the linear RFDE (1.1) and the uniform exponential stability of the C0-semigroup(
TL(t)

)
t≥0

on the Banach space C([−r, 0], Kn) defined by

TL(t)φ := xL( · ; φ, 0)t (1.13)

for (t, φ) ∈ [0, ∞)× C([−r, 0], Kn). We show that XL is α-exponentially stable if and only if(
TL(t)

)
t≥0

is uniformly α-exponentially stable. See Theorems 7.3 and 7.4 for the details.

In Section 8, we apply the obtained variation of constants formulas to a proof of the sta-

bility part of the principle of linearized stability and Poincaré–Lyapunov theorem for RFDEs.

This is indeed an appropriate modification of the proof for ODEs. However, the given proof
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makes clear the importance of the principal fundamental matrix solution. In the statement,

we do not need to assume the uniqueness of a solution. Therefore, this should be compared

with the proof relying on the nonlinear semigroup theory.

We have five appendices. In Appendix A, we collect results on Riemann–Stieltjes integrals

for matrix-valued functions that are needed for this paper. In Appendix B, we give a proof of

the representability of L by a Riemann–Stieltjes integral (1.3) because there does not seem to

be any proof of the representability in the literature. In Appendix C, we discuss Gronwall’s

inequality and its variants used in the context of RFDEs. In Appendix D, we give lemmas that

are used in the fixed point argument in this paper. In Appendix E, we continue to discuss the

convolution. The contents of this appendix will not be used in this paper, but it will be useful

to share the proofs of results on the convolution for matrix-valued locally Lebesgue integrable

functions in the literature of RFDEs.

Notations

Throughout this paper, the following notations will be used.

• Let E = (E, ∥·∥) be a Banach space. For each subset I ⊂ R, let C(I, E) denote the

linear space of all continuous functions from I to E. When the subset I is a closed

and bounded interval, the linear space C(I, E) is considered as the Banach space of

continuous functions endowed with the supremum norm ∥·∥ given by

∥ f ∥ := sup
x∈I

∥ f (x)∥

for f ∈ C(I, E).

• For each pair of Banach spaces E = (E, ∥·∥) and F = (F, ∥·∥), let B(E, F) denote the

linear space of all continuous linear maps (i.e., all bounded linear operators) from E to F.

For each T ∈ B(E, F), its operator norm is denoted by ∥T∥. Then B(E, F) is considered

as the Banach space of continuous linear maps endowed with the operator norm. When

F = E, B(E, F) is also denoted by B(E).

• An n × n matrix A ∈ Mn(K) is considered as a continuous linear map on the Banach

space Kn endowed with the given norm | · |. The operator norm of A is denoted by

|A|. The linear space Mn(K) of all n × n matrices is considered as the Banach space of

matrices endowed with the operator norm.

• Let d ≥ 1 be an integer, X be a measurable set of Rd, and Y = Kn or Mn(K).

– We say that a function f : X ⊃ dom( f ) → Y is a Lebesgue integrable function defined

almost everywhere if (i) dom( f ) is measurable, (ii) X \ dom( f ) has measure 0, and (iii)

f |dom( f ) : dom( f ) → Y is Lebesgue integrable, i.e., it is measurable and

∥ f ∥1 :=
∫

X
| f (x)|dx :=

∫

dom( f )
| f (x)|dx

is finite. We note that the function dom( f ) ∋ x 7→ | f (x)| ∈ [0, ∞) is also measurable

by the continuity of the norm | · |, and the above integral is the unsigned Lebesgue

integral.
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– Let L1(X, Y) be the set of all Lebesgue integrable functions from X to Y defined almost

everywhere. For f ∈ L1(X, Y), let
∫

X
f (x)dx :=

∫

dom( f )
f (x)dx.

Then one can prove that
∣∣∣∣
∫

X
f (x)dx

∣∣∣∣ ≤
∫

dom( f )
| f (x)|dx = ∥ f ∥1

holds.

– For f , g ∈ L1(X, Y), the addition f + g : X ⊃ dom( f ) ∩ dom(g) → Y is defined by

( f + g)(x) := f (x) + g(x)

for x ∈ dom( f ) ∩ dom(g). Then f + g ∈ L1(X, Y). The scalar multiplication α f for

α ∈ K is also defined, and it holds that α f ∈ L1(X, Y).

• Let X be an interval of R and Y = Kn or Mn(K). Let L1
loc(X, Y) be the set of all

functions f : X ⊃ dom( f ) → Y satisfying (i) dom( f ) is measurable, (ii) X \ dom( f ) has

measure 0, and (iii) for each closed and bounded interval I contained in X, the restriction

f |I : I ⊃ dom( f ) ∩ I → Y belongs to L1(I, Y).

2 Mild solutions and fundamental matrix solutions

2.1 Definitions

2.1.1 History segments and memory space

We first make clear the notion of history segments in our setting.

Definition 2.1. Let x : [−r, ∞) ⊃ dom(x) → Kn be a function. For each t ≥ 0, we define a

function xt : [−r, 0] ⊃ dom(xt) → Kn by

dom(xt) := {θ ∈ [−r, 0] : t + θ ∈ dom(x)},

xt(θ) := x(t + θ) (θ ∈ dom(xt)).

We call xt the history segment of x at t.

We note that dom(xt) is expressed by

dom(xt) = (dom(x)− t) ∩ [−r, 0],

where dom(x) is not necessarily equal to [−r, ∞).

In this paper, we need discontinuous initial history functions. For this purpose, we adopt

the following space of history functions.

Definition 2.2 (cf. [10]). We define a linear subspace M1([−r, 0], Kn) of L1([−r, 0], Kn) by

M1([−r, 0], K
n) :=

{
φ ∈ L1([−r, 0], K

n) : 0 ∈ dom(φ)
}

and call it the memory space of L1-type. We consider M1([−r, 0], Kn) as a seminormed space

endowed with the seminorm ∥·∥M1 : M1([−r, 0], Kn) → [0, ∞) defined by

∥φ∥M1 := ∥φ∥1 + |φ(0)|.
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Remark 2.3. Let 1 ≤ p < ∞ and E be a Banach space. The memory space of L1-type should

be compared with a Banach space Mp([−r, 0], E) introduced by Delfour and Mitter [10]. It is

isomorphic to the product Banach space

Lp([−r, 0], E)⊕ E.

See also [3], [8], and references therein for the use of the product space.

Definition 2.4. For each φ ∈ M1([−r, 0], Kn), we will call a function x : [−r, ∞) ⊃ dom(x) →

Kn a continuous prolongation of φ if it satisfies the following properties: (i) x0 = φ, (ii) [0, ∞) ⊂

dom(x), and (iii) x|[0,∞) is continuous.

For a continuous prolongation x of φ,

dom(x) = dom(φ) ∪ [0, ∞)

holds.

2.1.2 Mild solutions

The following is the notion of a mild solution, whose introduction is one of the contributions

of this paper. We use the expression of L by the Riemann–Stieltjes integral (1.3)

Lψ =
∫ 0

−r
dη(θ)ψ(θ)

for ψ ∈ C([−r, 0], Kn).

Definition 2.5 (cf. [38]). Let φ ∈ M1([−r, 0], Kn) be given. We say that a function x : [−r, ∞) ⊃

dom(x) → Kn is a mild solution of the linear RFDE (1.1) under the initial condition x0 = φ if

the following conditions are satisfied: (i) x is a continuous prolongation of φ and (ii) for all

t ≥ 0,

x(t) = φ(0) +
∫ 0

−r
dη(θ)

(∫ t

0
x(s + θ)ds

)
(2.1)

holds. Here
∫ t

0 x(s + θ)ds is a Lebesgue integral.

Since ∫ t

0
x(s + θ)ds =

∫ t+θ

θ
x(s)ds,

the integrand in Eq. (2.1) is continuous with respect to θ ∈ [−r, 0]. Therefore, the integral in

(2.1) is meaningful as a Riemann–Stieltjes integral. Eq. (2.1) is also expressed by

x(t) = φ(0) +
∫ 0

−r
dη(θ)

(∫ 0

θ
φ(s)ds

)
+
∫ 0

−r
dη(θ)

(∫ t+θ

0
x(s)ds

)
, (2.2)

where the third term of the right-hand side may depend on φ.

Remark 2.6. Eq. (2.1) appeared at [38, (5.19) in Corollary 5.13] after developing a nonlinear

semigroup theory for some class of RFDEs. Compared with this approach, the method of this

paper is considered to be taking the notion of mild solutions as a starting point.
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2.1.3 Notation
∫ t

0 xs ds

For ease of notation, we introduce the following.

Definition 2.7. Let x ∈ L1
loc([−r, ∞), Kn) be given. For each t ≥ 0, we define

∫ t
0 xs ds ∈

C([−r, 0], Kn) by (∫ t

0
xs ds

)
(θ) :=

∫ t

0
xs(θ)ds =

∫ t+θ

θ
x(s)ds

for θ ∈ [−r, 0].

We note that
∫ t

0 xs ds ∈ C([−r, 0], Kn) introduced above is not an integral of a vector-valued

function

[0, t] ∋ s 7→ xs ∈ X

for some function space X .

2.2
∫ t

0 xs ds and its properties

We have the following lemma.

Lemma 2.8. If x ∈ L1
loc([−r, ∞), Kn), then

[0, ∞) ∋ t 7→
∫ t

0
xs ds ∈ C([−r, 0], K

n) (2.3)

is continuous.

Proof. We define a function y : [−r, ∞) → Kn by

y(t) =
∫ t

−r
x(s)ds

for t ≥ −r. Then y is continuous, and

y(t + θ) =
∫ t+θ

θ
x(s)ds +

∫ θ

−r
x(s)ds

holds for all t ≥ 0 and all θ ∈ [−r, 0]. This shows that the function (2.3) is continuous if and

only if

[0, ∞) ∋ t 7→ yt ∈ C([−r, 0], K
n)

is continuous. Since the continuity of this function is ensured by the uniform continuity of y

on any closed and bounded interval, the conclusion is obtained.

When x ∈ C([−r, ∞), Kn), the Riemann integral

(R)
∫ t

0
xs ds ∈ C([−r, 0], K

n)

of the continuous function

[0, t] ∋ s 7→ xs ∈ C([−r, 0], K
n)

exists. See Graves [16, Section 2] for the definition of the Riemann integrability of functions

on closed and bounded intervals taking values in normed spaces. We now show that when

x ∈ C([−r, ∞), Kn), the Riemann integral (R)
∫ t

0 xs ds coincides with
∫ t

0 xs ds introduced in

Definition 2.7. More generally, one can prove the following result.
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Lemma 2.9. Let E be a Banach space, [a, b] and [c, d] be closed and bounded intervals of R, and

f : [a, b] × [c, d] → E be a continuous function. For each y ∈ [c, d], let f ( · , y) ∈ C([a, b], E) be

defined by

f ( · , y)(x) := f (x, y)

for x ∈ [a, b]. Then (∫ d

c
f ( · , y)dy

)
(x) =

∫ d

c
f (x, y)dy

holds for all x ∈ [a, b]. Here
∫ d

c f ( · , y)dy is the Riemann integral of the continuous function [c, d] ∋

y 7→ f ( · , y) ∈ C([a, b], E).

We note that the continuity of [c, d] ∋ y 7→ f ( · , y) ∈ C([a, b], E) is a consequence of the

uniform continuity of f .

Proof of Lemma 2.9. We fix x ∈ [a, b]. Let T : C([a, b], E) → E be the evaluation map defined by

Tg := g(x)

for g ∈ C([a, b], E). Since T is a bounded linear operator, we have

(∫ d

c
f ( · , y)dy

)
(x) = T

∫ d

c
f ( · , y)dy =

∫ d

c
T f ( · , y)dy,

where the last term is equal to
∫ d

c f (x, y)dy. This completes the proof.

As an application of Lemma 2.9, the following result can be obtained.

Theorem 2.10. If x ∈ C([−r, ∞), Kn), then

(R)
∫ t

0
xs ds =

∫ t

0
xs ds

holds for all t ≥ 0.

Proof. Let t > 0 be given. We consider a function f : [−r, 0]× [0, t] → Kn defined by

f (θ, s) := x(s + θ).

Then the function f ( · , s) is equal to xs. By applying Lemma 2.9 with this f ,

[
(R)

∫ t

0
xs ds

]
(θ) =

∫ t

0
x(s + θ)ds

holds for all θ ∈ [−r, 0]. Since the right-hand side is equal to
(∫ t

0 xs ds
)
(θ), this shows the

conclusion.

Remark 2.11. When x ∈ C([−r, ∞), Kn), Theorem 2.10 yields that

d

dt

∫ t

0
xs ds = xt ∈ C([−r, 0], K

n)

holds by the fundamental theorem of calculus for vector-valued functions.

We have the following corollary.
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Corollary 2.12. Let F be a Banach space over K and T : C([−r, 0], Kn) → F be a bounded linear

operator. If x ∈ C([−r, ∞), Kn), then

T
∫ t

0
xs ds =

∫ t

0
Txs ds (2.4)

holds for all t ≥ 0. Here the right-hand side is the Riemann integral of the continuous function

[0, t] ∋ s 7→ Txs ∈ F.

Proof. From Theorem 2.10,

T
∫ t

0
xs ds = T

[
(R)

∫ t

0
xs ds

]
=
∫ t

0
Txs ds

holds since T is a bounded linear operator.

Remark 2.13. Corollary 2.12 yields the following: Let x : [−r, ∞) → Kn be a continuous

function satisfying x0 = φ ∈ C([−r, 0], Kn). Since L : C([−r, 0], Kn) → Kn is a bounded linear

operator, x is a mild solution of the linear RFDE (1.1) with the initial history function φ if and

only if it satisfies

x(t) = φ(0) +
∫ t

0
Lxs ds

for all t ≥ 0. This shows that a mild solution coincides with a solution in the usual sense

when the initial history function φ is continuous.

2.3 Existence and uniqueness of a mild solution

By using the contraction mapping principle with an a priori estimate, we will prove the unique

existence of a mild solution of the linear RFDE (1.1) under an initial condition (1.4)

x0 = φ ∈ M1([−r, 0], K
n).

We note that a solution of (1.1) in the usual sense is also a mild solution (see Remark 2.13).

We will use the following notation.

Notation 1. For each φ ∈ M1([−r, 0], Kn), let φ̄ : dom(φ) ∪ [0, ∞) → Kn be the function

defined by

φ̄(t) :=

{
φ(t) (t ∈ dom(φ)),

φ(0) (t ≥ 0).
(2.5)

φ̄ is a constant prolongation of φ.

Theorem 2.14. For any φ ∈ M1([−r, 0], Kn), the linear RFDE (1.1) has a unique mild solution

under the initial condition x0 = φ.

In the following, we give a proof based on an a priori estimate. See Chicone [5, Subsection

2.1] for a similar argument.

Proof of Theorem 2.14. We divide the proof into the following steps.
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Step 1: Reduction to a continuous unknown function and derivation of an a priori estimate.

For a continuous prolongation x : [−r, ∞) ⊃ dom(x) → Kn of φ, we consider the function

y : [−r, ∞) → Kn defined by

y(t) :=

{
x(t)− φ̄(t) (t ∈ dom(x)),

0 (t ̸∈ dom(x)).

Then y is a continuous function satisfying y0 = 0. The problem of finding a mild solution

x : [−r, ∞) ⊃ dom(x) → Kn of the linear RFDE (1.1) under the initial condition x0 = φ is

reduced to find a continuous function y : [−r, ∞) → Kn satisfying y0 = 0 and

y(t) = L
∫ t

0
(y + φ̄)s ds =

∫ t

0
Lys ds + L

∫ t

0
φ̄s ds (2.6)

for all t ≥ 0. Here Corollary 2.12 is used. By noticing the following estimate from above

∣∣∣∣
∫ t

0
φ̄(s + θ)ds

∣∣∣∣ ≤ ∥φ∥1 + t|φ(0)|

for t ≥ 0 and θ ∈ [−r, 0], a continuous function y : [−r, ∞) → Kn satisfying y0 = 0 and

Eq. (2.6) must satisfy

|y(t)| ≤ ∥L∥(∥φ∥1 + t|φ(0)|) +
∫ t

0
∥L∥∥ys∥ds

for all t ≥ 0. By applying Lemma C.4,

∥yt∥ ≤ ∥L∥(∥φ∥1 + t|φ(0)|)e∥L∥t

holds for all t ≥ 0.

Step 2: Setting of function space. For each γ > ∥L∥, Step 1 indicates that for a continuous

function y : [−r, ∞) → Kn satisfying y0 = 0 and Eq. (2.6), we have

e−γt∥yt∥ ≤ ∥L∥(∥φ∥1 + t|φ(0)|)e(∥L∥−γ)t.

Here the right-hand side converges to 0 as t → ∞. Therefore,

∥y∥γ := sup
t≥0

(e−γt∥yt∥) = sup
t≥0

(e−γt|y(t)|) < ∞

holds (see Lemma D.1 for the detail). For each γ > ∥L∥, let Yγ be the linear subspace of

C([−r, ∞), Kn) given by

Yγ :=
{

y ∈ C([−r, ∞), K
n) : y0 = 0, ∥y∥γ < ∞

}
,

which is considered as a normed space endowed with the norm ∥·∥γ. Then Yγ is a Banach

space (see Lemma D.2). We fix γ > ∥L∥ arbitrarily, and let Y := Yγ and ∥·∥Y := ∥·∥γ.

Step 3: Reduction to fixed point problem. We define a transformation T : Y → C([−r, ∞), Kn)

by (Ty)0 = 0 and

(Ty)(t) :=
∫ t

0
Lys ds + L

∫ t

0
φ̄s ds (t ≥ 0).
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We now claim that T(Y) ⊂ Y holds. Let y ∈ Y be given. In the same way as in Step 1,

|Ty(t)| ≤ ∥L∥(∥φ∥1 + t|φ(0)|) + ∥L∥
∫ t

0
∥ys∥ds

holds for all t ≥ 0. Since e−γt∥L∥(∥φ∥1 + t|φ(0)|) → 0 as t → ∞, we only need to show

sup
t≥0

e−γt
∫ t

0
∥ys∥ds < ∞

in order to obtain Ty ∈ Y. By the assumption of y ∈ Y, ∥yt∥ ≤ ∥y∥Yeγt holds for all t ≥ 0.

Therefore, we have

∫ t

0
∥ys∥ds ≤ ∥y∥Y

∫ t

0
eγs ds ≤

∥y∥Y

γ
eγt (t ≥ 0),

which implies supt≥0 e−γt
∫ t

0 ∥ys∥ds < ∞. Thus, Ty ∈ Y is concluded.

Step 4: Application of contraction mapping principle. We now claim that the mapping

T : Y → Y is a contraction. For any y1, y2 ∈ Y,

e−γt
∣∣∣Ty1(t)− Ty2(t)

∣∣∣ ≤ e−γt∥L∥
∫ t

0

∥∥∥y1
s − y2

s

∥∥∥ds

holds. Since we have
∥∥∥y1

s − y2
s

∥∥∥ = eγs · e−γs
∥∥∥(y1 − y2)s

∥∥∥

≤ eγs
∥∥∥y1 − y2

∥∥∥
Y

for the integrand in the right-hand side,

e−γt∥L∥
∫ t

0

∥∥∥y1
s − y2

s

∥∥∥ds ≤
∥L∥

γ
(1 − e−γt)

∥∥∥y1 − y2
∥∥∥

Y

≤
∥L∥

γ

∥∥∥y1 − y2
∥∥∥

Y

is concluded. Therefore, T : Y → Y is a contraction. By applying the contraction mapping

principle, there exists a unique y∗ ∈ Y such that

Ty∗ = y∗.

The function x∗ : [−r, ∞) ⊃ dom(φ) ∪ [0, ∞) → Kn defined by

x∗(t) := y(t) + φ̄(t) (t ∈ dom(φ) ∪ [0, ∞))

is a mild solution of the linear RFDE (1.1) under the initial condition x0 = φ. The uniqueness

follows by the above discussion.

We hereafter use the following notation.

Notation 2. For each φ ∈ M1([−r, 0], Kn), we denote the unique mild solution of the linear

RFDE (1.1) under the initial condition x0 = φ by xL( · ; φ) : dom(φ) ∪ [0, ∞) → Kn.

We have the following corollary.
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Corollary 2.15. Let α, β ∈ K and φ, ψ ∈ M1([−r, 0], Kn) be given. Then for all t ≥ 0,

xL(t; αφ + βψ) = αxL(t; φ) + βxL(t; ψ) (2.7)

holds.

Proof. Let χ := αφ + βψ ∈ M1([−r, 0], Kn) and x : [−r, ∞) ⊃ dom(x) → Kn be the function

defined by

dom(x) := dom(χ) ∪ [0, ∞), x(t) := αxL(t; φ) + βxL(t; ψ).

Since the map L and the Lebesgue integration are linear, x is a mild solution of the linear

RFDE (1.1) under the initial condition x0 = χ by the definition of mild solutions (see Defini-

tion 2.5). Therefore, (2.7) is a consequence of Theorem 2.14.

2.4 Fundamental matrix solutions

Since ODEs are special DDEs, it is natural to expect that the notions of fundamental systems of

solutions and fundamental matrix solutions for linear ODEs are meaningful for DDEs in some

way. However, the solution space of the linear RFDE (1.1) is infinite-dimensional. Therefore,

it is impossible to define these notions to (1.1) as a simple generalization.

A key to this consideration is to focus on a “finite-dimensionality”. For this purpose, we

consider an “instantaneous input” as an initial history function. We will use the following

notation.

Definition 2.16. For each ξ ∈ Kn, we define a function ξ̂ : [−r, 0] → Kn by

ξ̂(θ) :=

{
0 (θ ∈ [−r, 0)),

ξ (θ = 0).

0̂ is the constant function whose value is identically equal to the zero vector 0 ∈ Kn.

Since ξ̂ ∈ M1([−r, 0], Kn) for each ξ ∈ Kn, one can consider the mild solution

xL
(
· ; ξ̂
)

: [−r, ∞) → K
n

of the linear RFDE (1.1) under the initial condition x0 = ξ̂ from Theorem 2.14. Then Corol-

lary 2.15 yields that the subset S given by

S :=
{

xL
(
· ; ξ̂
)

: [−r, ∞) → K
n : ξ ∈ K

n
}

forms a linear space. We have the following lemma.

Lemma 2.17. Let ξ1, . . . , ξm ∈ Kn be vectors and let xj := xL
(
· ; ξ̂ j

)
: [−r, ∞) → Kn for each

j ∈ {1, . . . , m}. Then the following properties are equivalent:

(a) The system of vectors ξ1, . . . , ξm is linearly independent.

(b) The system of functions x1, . . . , xm is linearly independent.

Here the system of functions x1, . . . , xm is said to be linearly independent if for any scalars

α1, . . . , αm, α1x1 + · · ·+ αmxm = 0 implies α1 = · · · = αm = 0.
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Proof of Lemma 2.17. (a) ⇒ (b): Since α1x1 + · · ·+ αmxm = 0 implies

α1ξ1 + · · ·+ αmξm = (α1x1 + · · ·+ αmxm)(0) = 0,

this part follows by the definition of linear independence for functions.

(b) ⇒ (a): We suppose α1ξ1 + · · ·+ αmξm = 0 for α1, . . . , αm ∈ K. Since this implies

α1ξ̂1 + · · ·+ αm ξ̂m = 0̂,

(2.7) yields

α1x1 + · · ·+ αmxm = 0.

Therefore, we have α1 = · · · = αm = 0 by the assumption (b).

This completes the proof.

Theorem 2.18. The linear space S is n-dimensional.

Proof. Let b1, . . . , bn be a basis of Kn. From Lemma 2.17, the system of functions

xL
(
· ; b̂1

)
, . . . , xL

(
· ; b̂n

)
∈ S

is linearly independent. Furthermore, for any x1, . . . , xn+1 ∈ S , the system of functions is

linearly dependent from Lemma 2.17 because the system x1(0), . . . , xn+1(0) ∈ Kn of vectors is

linearly dependent. Therefore, the statement holds.

Theorem 2.18 naturally leads us to the following definition.

Definition 2.19 (cf. [18], [19]). We call a basis of the n-dimensional linear space S a fundamental

system of solutions to the linear RFDE (1.1). Equivalently, a fundamental system of solutions is

the linear independent system

xL
(
· ; b̂1

)
, . . . , xL

(
· ; b̂n

)
: [−r, ∞) → K

n

for some basis b1, . . . , bn of Kn. We call a matrix-valued function having a fundamental system

of solutions as its column vectors a fundamental matrix solution. In particular, we call the

fundamental matrix solution

X : [−r, ∞) → Mn(K)

satisfying X(0) = I the principal fundamental matrix solution. Here I denotes the identity matrix.

The above definition is considered as a natural generalization of the corresponding defini-

tion for linear ODEs (see [6, Definition 2.12 in Section 2.1 of Chapter 2]). See also [37, Defini-

tion 5.10] for a related definition.

We hereafter use the following notation.

Notation 3. Let XL : [−r, ∞) → Mn(K) denote the principal fundamental matrix solution of

the linear RFDE (1.1). By the above definition,

XL( ·) =
(

xL( · ; ê1) · · · xL( · ; ên)
)

(2.8)

holds. Here (e1, . . . , en) denotes the standard basis of Kn.
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Remark 2.20. Let ξ = (ξ1, . . . , ξn) ∈ Kn be given. From (2.8), we have

XL( ·)ξ = ξ1xL( · ; ê1) + · · ·+ ξnxL( · ; ên).

Here the right-hand side is equal to xL( · ; ξ1ê1 + · · ·+ ξn ên) from (2.7). Therefore,

XL( ·)ξ = xL
(
· ; ξ̂
)

holds.

Remark 2.21. We consider an autonomous linear ODE

ẋ = Ax (2.9)

for some A ∈ Mn(K). For a system of global solutions y1, . . . , ym : R → Kn to the linear

ODE (2.9), the following statements are equivalent:

(a) For any t ∈ R, y1(t), . . . , ym(t) ∈ Kn is linearly independent.

(b) For some t0 ∈ R, y1(t0), . . . , ym(t0) ∈ Kn is linearly independent.

(c) The system of functions y1, . . . , ym is linearly independent.

The nontrivial part is (c) ⇒ (a), which is proved by the principle of superposition and by the

unique existence of a solution of (2.9) under an initial condition

x(t0) = ξ ∈ K
n.

Compared with this situation, the linear independence of vectors x1(t0), . . . , xm(t0) ∈ Kn for

each t0 > 0 is not necessarily guaranteed for the functions x1, . . . , xm in Lemma 2.17 under the

assumption that (a) or (b) in Lemma 2.17 holds. This should be compared with an example

given by Popov [29], which is a three dimensional system of linear DDEs whose solution

values are contained in a hyperplane of R3 after a certain amount of time has elapsed. See

also [19, Section 3.5] and [22, Section 3.5].

2.5 Remarks

2.5.1 Consideration by Delfour

The definition of a mild solution in Definition 2.5 is also related to the consideration by

Delfour [8]. In that paper, the author considered a continuous linear map

L : W1,p((−r, 0), R
n) → R

n

for some p ∈ [1, ∞). Here W1,p((−r, 0), Rn) is the Sobolev space (e.g., see Brezis [4, Section

8.2]). The author used the integral representation of L given by

Lφ :=
∫ 0

−r
[A1(θ)φ(θ) + A2(θ)φ

′(θ)]dθ, (2.10)

where A1, A2 : (−r, 0) → Mn(R) are n × n real matrix-valued q-integrable functions with

(1/p) + (1/q) = 1. For the first term of the right-hand side of (2.10), we have
∫ t

0

(∫ 0

−r
A1(θ)x(s + θ)dθ

)
ds =

∫ 0

−r
A1(θ)

(∫ t

0
x(s + θ)ds

)
dθ

under the exchange of order of integration. Here we have replaced φ with xs and have in-

tegrated from 0 to t with respect to s. In view of the above equality, it can be said that the

concept of mild solutions in Definition 2.5 is also hidden in [8]. Theorem 2.14 and its proof

should be compared with the existence and uniqueness result in [8].
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2.5.2 Mild solutions for linear differential difference equations

We consider an autonomous linear differential difference equation

ẋ(t) = Ax(t) +
m

∑
k=1

Bkx(t − τk) (t ≥ 0) (2.11)

for n × n matrices A, B1, . . . , Bm ∈ Mn(K) and τ1, . . . , τm ∈ (0, r]. We refer the reader to [2] as

a general reference of the theory of differential difference equations.

The linear DDE (2.11) can be expressed in the form of the linear RFDE (1.1) by defining a

continuous linear map L : C([−r, 0], Kn) → Kn by

Lψ = Aψ(0) +
m

∑
k=1

Bkψ(−τk) (2.12)

for ψ ∈ C([−r, 0], Kn). Let φ ∈ M1([−r, 0], Kn) be given and x := xL( · ; φ) for the above

continuous linear map L. By the definition of mild solutions (see Definitions 2.5 and 2.7), x

satisfies

x(t) = φ(0) + L
∫ t

0
xs ds

= φ(0) + A
∫ t

0
x(s)ds +

m

∑
k=1

Bk

∫ t−τk

−τk

x(s)ds

for all t ≥ 0. Since the last term is equal to

φ(0) +
∫ t

0
Ax(s)ds +

m

∑
k=1

∫ t−τk

−τk

Bkx(s)ds,

x also satisfies

ẋ(t) = Ax(t) +
m

∑
k=1

Bkx(t − τk) (a.e. t ≥ 0)

by the Lebesgue differentiation theorem (see Subsection 3.1).

3 Differential equation satisfied by principal fundamental matrix

solution

In this section, we consider the linear RFDE (1.1)

ẋ(t) = Lxt (t ≥ 0)

for a continuous linear map L : C([−r, 0], Kn) → Kn. We choose a matrix-valued function

η : [−r, 0] → Mn(K) of bounded variation so that L is represented as the Riemann–Stieltjes

integral (1.3)

Lψ =
∫ 0

−r
dη(θ)ψ(θ)

for ψ ∈ C([−r, 0], Kn). We recall that the domain of definition of η is extended to (−∞, 0] by

letting η(θ) := η(−r) for θ ∈ (−∞,−r]. We will use the following notation.
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Notation 4. Let η̌ : [0, ∞) → Mn(K) be the function given by

η̌(u) := −η(−u)

for u ∈ [0, ∞).

In this paper, a function defined on [0, ∞) is said to be of locally bounded variation if it is

of bounded variation on any closed and bounded interval of [0, ∞). A function of locally

bounded variation is also called a locally BV function. Then the above function η̌ is a function

of locally bounded variation whose value is constant on [r, ∞). It is related to the reversal

formula for Riemann–Stieltjes integrals (see Theorem A.9).

It will turn out that the notions of Volterra operator and Riemann–Stieltjes convolution are

useful to deduce a differential equation that is satisfied by the principal fundamental matrix

solution XL : [−r, ∞) → Mn(K) of the linear RFDE (1.1).

3.1 Definitions

Definition 3.1. For each f ∈ L1
loc([0, ∞), Mn(K)), let V f : [0, ∞) → Mn(K) be the function

defined by

(V f )(t) =
∫ t

0
f (s)ds. (3.1)

Here the right-hand side is a Lebesgue integral. We call V the Volterra operator.

For details related to the Volterra operator as a linear operator on C([0, T], K) for each

T > 0, see [31]. By using the Lebesgue differentiation theorem (e.g., see [32, Theorem 1.3 in

Section 1 of Chapter 3]) component-wise, it holds that V f is locally absolutely continuous (i.e.,

locally absolutely continuous on any closed and bounded interval of [0, ∞)), differentiable

almost everywhere on [0, ∞), and

(V f )′(t) = f (t)

holds for almost all t ∈ [0, ∞).

Definition 3.2. For each function α : [0, ∞) → Mn(K) of locally bounded variation and for

each continuous function f : [0, ∞) → Mn(K), we define a function dα ∗ f : [0, ∞) → Mn(K)

by

(dα ∗ f )(t) :=
∫ t

0
dα(u) f (t − u).

Here the right-hand side is a Riemann–Stieltjes integral. This function is called a Riemann–

Stieltjes convolution.

See [31, Definition 10.3 in Section 10.3] for the scalar-valued case. The above definition

should be compared with the treatment in [34, Eq. (2.13) in Chapter 2] and [14, Corollary 2.5

in Section I.2 of Appendix I], where an appearing integral is not a Riemann–Stieltjes integral

but a Lebesgue–Stieltjes integral.

3.2 Motivation

The following lemma motivates the use of Volterra operator and Riemann–Stieltjes convolu-

tion.
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Lemma 3.3. If x ∈ L1
loc([−r, ∞), Kn) satisfies x0 = ξ̂ for some ξ ∈ Kn, then

L
∫ t

0
xs ds =

∫ 0

−t
dη(θ)

(∫ t+θ

0
x(s)ds

)
=
∫ t

0
dη̌(u)

(∫ t−u

0
x(s)ds

)

holds for all t ≥ 0.

Proof. Let t > 0 be fixed. By the assumption,
∫ 0

θ
x(s)ds = 0 holds for all θ ∈ [−r, 0]. Therefore,

we have

L
∫ t

0
xs ds =

∫ 0

−r
dη(θ)

(∫ t+θ

θ
x(s)ds

)
=
∫ 0

−r
dη(θ)

(∫ t+θ

0
x(s)ds

)
.

We examine the last term by dividing the consideration into the following cases:

• Case: t ∈ [0, r). In this case, t + θ ≥ 0 is equivalent to θ ≥ −t for each θ ∈ [−r, 0]. Since∫ t+θ

0 x(s)ds = 0 for θ ∈ [−r,−t),

L
∫ t

0
xs ds =

∫ 0

−t
dη(θ)

(∫ t+θ

0
x(s)ds

)

holds by the additivity of Riemann–Stieltjes integrals on sub-intervals.

• Case: t ≥ r. In this case, t + θ ≥ 0 holds for all θ ∈ [−r, 0]. Since η is constant on

[−t,−r],

L
∫ t

0
xs ds =

∫ 0

−t
dη(θ)

(∫ t+θ

0
x(s)ds

)

holds.

Therefore, the expressions of L
∫ t

0 xs ds are obtained in combination with the reversal formula

for Riemann–Stieltjes integrals (see Theorem A.9).

3.3 Properties of Volterra operator and Riemann–Stieltjes convolution

Throughout this subsection, let α : [0, ∞) → Mn(K) be a function of locally bounded variation

and f : [0, ∞) → Mn(K) be a continuous function.

3.3.1 Continuity and local integrability

The following is a simple result about the continuity of Riemann–Stieltjes convolution.

Lemma 3.4. If f (0) = O, then dα ∗ f is continuous.

Proof. We extend the domain of definition of f to R by defining f (t) := f (0) = O for t ≤ 0.

Then the obtained function f : R → Mn(K) is continuous. Let s, t ∈ [0, ∞) be given so that

s < t. By the additivity of Riemann–Stieltjes integrals on sub-intervals,

(dα ∗ f )(s) =
∫ s

0
dα(u) f (s − u)

=
∫ t

0
dα(u) f (s − u)−

∫ t

s
dα(u) f (s − u)

holds. Since ∫ t

s
dα(u) f (s − u) = [α(t)− α(s)] f (0) = O,
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we have

(dα ∗ f )(t)− (dα ∗ f )(s) =
∫ t

0
dα(u) [ f (t − u)− f (s − u)].

By combining this and the uniform continuity of f on closed and bounded intervals, the

continuity of dα ∗ f is obtained.

See [31, Lemma 10.4 in Section 10.3] for the corresponding result for scalar-valued func-

tions. In this paper, we say that a function is locally Riemann integrable if it is Riemann inte-

grable on any closed and bounded interval.

Theorem 3.5. dα ∗ f is a sum of a continuous function and a function of locally bounded variation.

Consequently, dα ∗ f is locally Riemann integrable.

Proof. By using f = ( f − f (0)) + f (0), we have

dα ∗ f = dα ∗ ( f − f (0)) + dα ∗ f (0). (3.2)

The first term in the right-hand side is continuous from Lemma 3.4. The second term is of

locally bounded variation since

(dα ∗ f (0))(t) = [α(t)− α(0)] f (0)

holds for all t ≥ 0. Therefore, the conclusion holds.

Remark 3.6. Theorem 3.5 yields that V(dα ∗ f ) makes sense. Furthermore if α is continuous,

then (3.2) shows that dα ∗ f is also continuous.

3.3.2 Riemann–Stieltjes convolution under Volterra operator

The Riemann–Stieltjes convolution and Volterra operator are related in the following way.

Theorem 3.7. The equality

V(dα ∗ f ) = dα ∗ V f (3.3)

holds. Consequently, dα ∗ V f is locally absolutely continuous, differentiable almost everywhere, and

satisfies

(dα ∗ V f )′(t) = (dα ∗ f )(t)

holds for almost all t ≥ 0.

For the proof, we need the following theorem. It contains the result on iterated Riemann

integrals for continuous functions on rectangles as a special case.

Theorem 3.8. Let [a, b] and [c, d] be closed and bounded intervals of R. If f : [a, b]× [c, d] → Mn(K)

is continuous and α : [a, b] → Mn(K) is a function of bounded variation, then

∫ b

a
dα(x)

(∫ d

c
f (x, y)dy

)
=
∫ d

c

(∫ b

a
dα(x) f (x, y)

)
dy (3.4)

holds.

See also [39, Theorem 15a in Section 15 of Chapter I]. We will give the proof in Ap-

pendix A.7.
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Proof of Theorem 3.7. We extend the domain of definition of f to R by defining f (t) := f (0) for

t ≤ 0. By the proof of Lemma 3.4, we have

V(dα ∗ f )(t) =
∫ t

0

(∫ t

0
dα(u) f (s − u)

)
ds −

∫ t

0
[α(t)− α(s)] f (0)ds

for t ≥ 0, where

∫ t

0

(∫ t

0
dα(u) f (s − u)

)
ds =

∫ t

0
dα(u)

(∫ t

0
f (s − u)ds

)

holds from Theorem 3.8. The last term is expressed by

(dα ∗ V f )(t) +
∫ t

0
dα(u)

∫ 0

−u
f (s)ds

by using the Volterra operator and the Riemann–Stieltjes convolution. Since
∫ 0
−u f (s)ds =

u f (0) for u ∈ [0, t], the proof is complete by showing

∫ t

0
[α(t)− α(s)]ds =

∫ t

0
udα(u).

This is indeed true because

∫ t

0
udα(u) = [uα(u)]tu=0 −

∫ t

0
α(u)du

= tα(t)−
∫ t

0
α(u)du

holds by the integration by parts formula for Riemann–Stieltjes integrals. See Theorem A.10

for the detail.

The following is a corollary of Theorem 3.7. It will not be used in the sequel.

Corollary 3.9. Furthermore, if f is continuously differentiable, then dα ∗ f is expressed by

dα ∗ f = (α − α(0)) f (0) + V
(
dα ∗ f ′

)
.

Consequently, dα ∗ f is of locally bounded variation, differentiable almost everywhere, and satisfies

(dα ∗ f )′(t) = α′(t) f (0) + (dα ∗ f ′)(t)

for almost all t ≥ 0.

Proof. By the fundamental theorem of calculus, f = f (0) + V f ′ holds. By combining this and

(3.3), the expression of dα ∗ f is obtained. Since V(dα ∗ f ′) is locally absolutely continuous, it

is also of locally bounded variation. Therefore, the expression of dα ∗ f yields that dα ∗ f is of

locally bounded variation. The remaining properties are consequences of the fact that matrix-

valued functions of bounded variation are differentiable almost everywhere. This is obtained

by applying the corresponding result1 for real-valued functions component-wise.

1See [32, Theorem 3.4 in Subsection 3.1 of Chapter 3], for example.
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3.4 Differential equation and principal fundamental matrix solution

As an application of Theorem 3.7, one can derive a differential equation that is satisfied by

xL
(
· ; ξ̂
)

for each ξ ∈ Kn.

Theorem 3.10. Let x := xL
(
· ; ξ̂
)

for some ξ ∈ Kn. Then x satisfies

x(t) = ξ +
∫ 0

−t
dη(θ)

(∫ t+θ

0
x(s)ds

)
= ξ +

(
dη̌ ∗ Vx|[0,∞)

)
(t) (3.5)

for all t ≥ 0. Furthermore, x|[0,∞) is locally absolutely continuous, differentiable almost everywhere,

and satisfies

ẋ(t) =
∫ 0

−t
dη(θ) x(t + θ) =

(
dη̌ ∗ x|[0,∞)

)
(t) (3.6)

for almost all t ∈ [0, ∞).

Proof. By definition, x satisfies

x(t) = ξ + L
∫ t

0
xs ds

for all t ≥ 0, and x|[0,∞) is continuous. Then Eq. (3.5) is a consequence of Lemma 3.3. Theo-

rem 3.7 and Eq. (3.5) yield that

x(t) = ξ + V
(
dη̌ ∗ x|[0,∞)

)
(t)

holds for all t ≥ 0. Therefore, it holds that x|[0,∞) is locally absolutely continuous, differen-

tiable almost everywhere, and satisfies

ẋ(t) =
(
dη̌ ∗ x|[0,∞)

)
(t)

for almost all t ≥ 0. The remaining expression in Eq. (3.6) is a consequence of the reversal

formula for Riemann–Stieltjes integrals.

The following theorem also holds.

Theorem 3.11. Let x ∈ L1
loc([−r, ∞), Kn) be given so that x0 = ξ̂ for some ξ ∈ Kn. If x satisfies

(3.5) for all t ≥ 0, then x = xL
(
· ; ξ̂
)
.

Proof. From Lemma 3.3, x satisfies

x(t) = ξ + L
∫ t

0
xs ds

for all t ≥ 0. From Lemma 2.8 and by the continuity of L, the right-hand side is continuous

with respect to t ≥ 0. Therefore, x is a mild solution of the linear RFDE (1.1) under the initial

condition x0 = ξ̂. By the uniqueness (see Theorem 2.14), the conclusion is obtained.

We obtain the following result as a direct consequence of Theorem 3.10 and (2.8). We omit

the proof.

Theorem 3.12 (cf. [34]). The principal fundamental matrix solution XL : [−r, ∞) → Mn(K) of the

linear RFDE (1.1) satisfies

XL(t) = I +
∫ 0

−t
dη(θ)

(∫ t+θ

0
XL(s)ds

)
= I +

(
dη̌ ∗ VXL|[0,∞)

)
(t) (3.7)
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for all t ≥ 0. Furthermore, XL|[0,∞) is locally absolutely continuous, differentiable almost everywhere,

and satisfies

ẊL(t) =
∫ 0

−t
dη(θ)XL(t + θ) =

(
dη̌ ∗ XL|[0,∞)

)
(t) (3.8)

for almost all t ∈ [0, ∞).

Roughly speaking, Eq. (3.8) is used as the defining equation of the fundamental matrix

solution in [34, (9.1) in Chapter 9].

4 Non-homogeneous linear RFDEs

In this section, we study a non-homogeneous linear RFDE (1.2)

ẋ(t) = Lxt + g(t) (a.e. t ≥ 0)

for a continuous linear map L : C([−r, 0], Kn) → Kn and some g ∈ L1
loc([0, ∞), Kn).

4.1 Non-homogeneous linear RFDE and mild solutions

It is natural to define the notion of mild solutions to Eq. (1.2) in the following way.

Definition 4.1. Let t0 ≥ 0 and φ ∈ M1([−r, 0], Kn) be given. We say that a function x : [t0 −

r, ∞) ⊃ dom(x) → Kn is a mild solution of Eq. (1.2) under the initial condition xt0 = φ if the

following conditions are satisfied: (i) xt0 = φ, (ii) [t0, ∞) ⊂ dom(x), (iii) x|[t0,∞) is continuous,

and (iv) for all t ≥ t0,

x(t) = φ(0) + L
∫ t

t0

xs ds +
∫ t

t0

g(s)ds

holds.

We note that
∫ t

t0
xs ds ∈ C([−r, 0], Kn) is defined by

(∫ t

t0

xs ds

)
(θ) :=

∫ t

t0

x(s + θ)ds =
∫ t+θ

t0+θ
x(s)ds

for θ ∈ [−r, 0], and

dom(x) = (t0 + dom(φ)) ∪ [t0, ∞) = t0 + (dom(φ) ∪ [0, ∞))

holds for a mild solution of Eq. (1.2) under the initial condition xt0 = φ.

Lemma 4.2. Let t0 ≥ 0 and φ ∈ C([−r, 0], Kn) be given. If x : [t0 − r, ∞) → Kn is a mild solution

of Eq. (1.2) under the initial condition xt0 = φ, then x satisfies

ẋ(t) = Lxt + g(t)

for almost all t ≥ t0.

Proof. By the translation, we may assume t0 = 0. Since L : C([−r, 0], Kn) → Kn is a bounded

linear operator,

x(t) = φ(0) +
∫ t

0
Lxs ds +

∫ t

0
g(s)ds
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holds for all t ≥ 0 from Corollary 2.12. Then the fundamental theorem of calculus and the

Lebesgue differentiation theorem yield that x|[0,∞) is differentiable almost everywhere and

ẋ(t) = Lxt + g(t)

holds for almost all t ≥ 0.

Remark 4.3. Let K = R. We assume that dom(g) = [0, ∞) and consider the function

F : [0, ∞)× C([−r, 0], Rn) → Rn defined by

F(t, φ) := Lφ + g(t).

Then F satisfies the Carathéodory condition. See [19, Section 2.6 of Chapter 2] and [22, Sec-

tion 2.6 of Chapter 2] for the detail of the Carathéodory condition for RFDEs. Lemma 4.2

shows that a mild solution x : [t0 − r, ∞) → Rn of Eq. (1.2) under the initial condition xt0 =

φ ∈ C([−r, 0], Rn) is a solution (in the Carathéodory sense).

4.2 Integral equation with a general forcing term

More generally, for a given t0 ≥ 0 and a given continuous function G : [t0, ∞) → Kn with

G(t0) = 0, we can discuss a solution of the following integral equation

x(t) = φ(0) + L
∫ t

t0

xs ds + G(t) (t ≥ t0) (4.1)

under an initial condition xt0 = φ ∈ M1([−r, 0], Kn). Here the assumption G(t0) = 0 is

natural because the right-hand side of (4.1) is equal to

φ(0) + G(t0)

at t = t0. The notion of a solution of (4.1) can be defined in a similar way as in Definition 4.1.

The following theorem holds.

Theorem 4.4. Let t0 ≥ 0 be given. Suppose that G : [t0, ∞) → Kn is a continuous function with

G(t0) = 0. Then for any φ ∈ M1([−r, 0], Kn), Eq. (4.1) has a unique solution under the initial

condition xt0 = φ.

The following proof should be compared with the proof of Theorem 2.14.

Proof of Theorem 4.4. By the translation, it is sufficient to consider the case t0 = 0. We will solve

the integral equation locally and will connect the obtained local solutions. For this purpose,

we need to consider an integral equation under the initial condition xσ = ψ for each σ ≥ 0

and each ψ ∈ M1([−r, 0], Kn). Here an appropriate forcing term is given by

G(t, σ) := G(t)− G(σ)

for t ≥ σ. Then we are going to consider an integral equation

x(t) = ψ(0) + L
∫ t

σ
xs ds + G(t, σ) (t ≥ σ) (4.2)

under the initial condition xσ = ψ. The remainder of the proof is divided into the following

steps.
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Step 1: Existence and uniqueness of a local solution. We fix the above σ and ψ. By defining

a continuous function y : [−r, ∞) → Kn by

y(s) :=

{
x(σ + s)− ψ̄(s) (σ + s ∈ dom(x)),

0 (σ + s ̸∈ dom(x)),

Eq. (4.2) is transformed into

y(s) =
∫ s

0
Lyu du + L

∫ s

0
ψ̄u du + G(σ + s, σ) (s ≥ 0),

which is an integral equation under the initial condition y0 = 0. We choose a constant a > 0

so that

∥L∥a < 1

and consider a closed subset Y of the Banach space C([−r, a], Kn) given by

Y := {y ∈ C([−r, a], K
n) : y0 = 0}.

Furthermore, we define a transformation T : Y → Y by (Ty)0 = 0 and

(Ty)(s) :=
∫ s

0
Lyu du + L

∫ s

0
ψ̄u du + G(σ + s, σ) (s ≥ 0).

Then it holds that T is contractive, and the application of the contraction mapping principle

yields the unique existence of a fixed point y∗ of T. By defining a function x∗ : [σ − r, σ + a] →

Kn by

x∗(σ + s) := y∗(s) + ψ̄(s) (s ∈ dom(ψ) ∪ [0, a]),

it is concluded that x∗ is a solution of Eq. (4.2). We note that such a local solution is unique

by the choice of the above a.

Step 2: Existence and uniqueness of a (global) solution. We note that the time a > 0 of

existence of a local solution to Eq. (4.2) in Step 1 does not depend on the considered integral

equation (4.2) and the specified initial condition xσ = ψ. In this step, we will show that by

connecting these local solutions, we obtain a global solution. For this purpose, for each σ ≥ 0

and each ψ ∈ M1([−r, 0], Kn), let

x( · ; σ, ψ) : [σ − r, σ + a] → K
n

be the obtained unique solution of Eq. (4.2) under an initial condition xσ = ψ. We fix σ and ψ.

Let

x := x( · ; σ, ψ) and y := x( · ; σ + a, xσ+a).

We now claim that the function z : [σ − r, σ + 2a] → Kn defined by

z(t) :=

{
x(t) (t ∈ [σ − r, σ + a])

y(t) (t ∈ [σ + a − r, σ + 2a])

is a solution to Eq. (4.2). We note that this definition makes sense because yσ+a = xσ+a. To

show the claim, it is sufficient to consider the case t ∈ [σ + a, σ + 2a]. In this case, we have

z(t) = y(t) = xσ+a(0) + L
∫ t

σ+a
ys ds + G(t, σ + a),
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where

xσ+a(0) = x(σ + a) = φ(0) + L
∫ σ+a

σ
xs ds + G(σ + a, σ).

In the above equations, one can replace ys and xs with zs. Therefore, in view of

G(t, σ + a) + G(σ + a, σ) = G(t, σ),

it holds that z is a solution of Eq. (4.2) under the initial condition xt0 = φ.

By repeating the above procedure, a global solution of the original integral equation (4.1)

is obtained. By the uniqueness of each local solution, such a global solution is unique.

Remark 4.5. Let K = R. In [21], Hale and Meyer studied the following equation

x(t) = φ(0) + g(t, xt)− g(t0, φ) +
∫ t

t0

f (s, xs)ds +
∫ t

t0

h(s)ds

under an initial condition xt0 = φ ∈ C([−r, 0], Rn) for each t0 ∈ R. Here

f , g : R × C([−r, 0], R
n) → R

n

are continuous maps with the properties that

C([−r, 0], R
n) ∋ φ 7→ f (t, φ) ∈ R

n and C([−r, 0], R
n) ∋ φ 7→ g(t, φ) ∈ R

n

are linear for each t ∈ R, and h : R → Rn is a locally Lebesgue integrable function. In

[21, Theorem 1 in Chapter II], it is shown that the above problem has a unique solution under

an additional assumption of the non-atomicity of g at 0. See [21, Chapter I] for the detail of

this condition. The proof of Theorem 4.4 should be compared with [21, Proof of Theorem 1 in

Chapter II].

We hereafter use the following notation.

Notation 5. Let G : [0, ∞) → Kn be a continuous function with G(0) = 0 and

φ ∈ M1([−r, 0], K
n)

be given. The unique solution of Eq. (1.6)

x(t) = φ(0) + L
∫ t

0
xs ds + G(t) (t ≥ 0)

is denoted by xL( · ; φ, G) : [−r, ∞) → Kn. Then xL( · ; φ, 0) = xL( · ; φ).

We obtain the following corollary. It will be a basics of considering a variation of constants

formula for Eq. (1.6).

Corollary 4.6. For any φ ∈ M1([−r, 0], Kn) and any continuous function G : [0, ∞) → Kn with

G(0) = 0,

xL( · ; φ, G) = xL( · ; φ, 0) + xL( · ; 0, G)

holds.
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Proof. Let x := xL( · ; φ, 0) + xL( · ; 0, G). Then x satisfies x0 = φ. Furthermore, we have

x(t) = xL(t; φ, 0) + xL(t; 0, G)

= φ(0) + L
∫ t

0
xL( · ; φ, 0)s ds + L

∫ t

0
xL( · ; 0, G)s ds + G(t)

for all t ≥ 0. Since the last term is equal to

φ(0) + L
∫ t

0
xs ds + G(t)

by the linearity of L, Theorem 4.4 yields x = xL( · ; φ, G).

In the same way as in Theorems 3.10 and 3.11 under Theorem 4.4, we obtain the following

theorems. The proof can be omitted.

Theorem 4.7. Let G : [0, ∞) → Kn be a continuous function with G(0) = 0 and x := xL
(
· ; ξ̂, G

)
for

some ξ ∈ Kn. Then x satisfies

x(t) = ξ +
∫ 0

−t
dη(θ)

(∫ t+θ

0
x(s)ds

)
+ G(t) = ξ +

(
dη̌ ∗ Vx|[0,∞)

)
(t) + G(t) (4.3)

for all t ≥ 0.

Theorem 4.8. Let G : [0, ∞) → Kn be a continuous function with G(0) = 0 and

x ∈ L1
loc([−r, ∞), K

n)

be given so that x0 = ξ̂ for some ξ ∈ Kn. If x satisfies (4.3) for all t ≥ 0, then x = xL
(
· ; ξ̂, G

)
.

5 Convolution and Volterra operator

5.1 A motivation to introduce convolution

5.1.1 Variation of constants formula for non-homogeneous linear ODEs

As a motivation to introduce convolution for locally Riemann integrable functions on [0, ∞),

we first recall the variation of constants formula for a non-homogeneous linear ODE

ẋ = Ax + f (t) (5.1)

for an n × n matrix A ∈ Mn(K) and a continuous function f : R → Kn. The unique global

solution xA( · ; t0, ξ, f ) : R → Kn of Eq. (5.1) satisfying an initial condition x(t0) = ξ ∈ Kn is

expressed by

xA(t; t0, ξ, f ) = etA

[
e−t0 Aξ +

∫ t

t0

e−uA f (u)du

]
(t ∈ R) (5.2)

with the matrix exponential. This is the variation of constants formula for (5.1), which is obtained

by finding an equation of y = y(t) under the change of variable x(t) = etAy(t). Indeed, the

function y must satisfy an initial condition y(t0) = e−t0 Aξ and

ẏ(t) = e−tA f (t) (t ∈ R).
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This procedure to derive the formula (5.2) corresponds to replacing a constant vector v ∈ Kn

in the general solution

x(t) = etAv

for the linear ODE (2.9) with a vector-valued function y = y(t). This is the reason for the

terminology of the variation of constants formula.

The above method to derive (5.2) should be called the method of variation of constants. Un-

fortunately, this method does not exist for a non-homogeneous linear RFDE (1.2) because the

solution space of the linear RFDE (1.1) is infinite-dimensional and (1.1) does not have a gen-

eral solution. Even if the method itself does not exist for (1.2), a formula similar to (5.2) if it

exists will be useful to analyze the dynamics of RFDEs near equilibria. For this purpose, a

form

xA(t; ξ, f ) = etAξ +
∫ t

0
e(t−u)A f (u)du, (5.3)

which is equivalent to (5.2) is helpful. Here the initial time t0 is set to 0, and it has been

omitted in xA(t; ξ, f ). The first term of the right-hand side of (5.3) is the solution of the linear

ODE (2.9) under the initial condition x(0) = ξ. Therefore, the second term of the right-hand

side of (5.3) is the solution of (5.1) under the initial condition x(0) = 0. This can be checked

directly by differentiating the second term as

d

dt

∫ t

0
e(t−u)A f (u)du =

d

dt

[
etA

∫ t

0
e−uA f (u)du

]

= f (t) + AetA
∫ t

0
e−uA f (u)du.

We note that this gives another proof of (5.3).

5.1.2 Convolution and non-homogeneous linear RFDEs

For a continuous linear map L : C([−r, 0], Kn) → Kn and a continuous function f : [0, ∞) →

Kn, we consider the non-homogeneous linear RFDE (1.7)

ẋ(t) = Lxt + f (t) (t ≥ 0).

Since R ∋ t 7→ etA ∈ Mn(K) is the principal fundamental matrix solution of the linear ODE (2.9)

in the sense that it is a matrix solution to (2.9) and etA|t=0 is the identity matrix, it is natural

to ask whether the function x( · ; f ) : [−r, ∞) → Kn defined by x( · ; f )0 = 0 and (1.8)

x(t; f ) :=
∫ t

0
XL(t − u) f (u)du

for t ≥ 0 is a solution to Eq. (1.7). Here XL : [−r, ∞) → Mn(K) is the principal fundamental

matrix solution of the linear RFDE (1.1)

ẋ(t) = Lxt (t ≥ 0).

In Theorem 3.12, we obtained the differential equation that is satisfied by XL. However,

one can not directly prove that the function x( · ; f ) is a solution to (1.7) by differentiating the

right-hand side of (1.8) as in the case of the non-homogeneous linear ODE (5.1) because one

cannot take the term XL(t) out of the integral. This comes from the property that initial value
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problems of RFDEs cannot be solved backward in general. Therefore, one needs to treat the

integral of the right-hand side of (1.8) as it is.

Such an integral is a convolution for locally (Riemann) integrable functions, which should

be distinguished from the convolution for integrable functions. The convolution for locally

integrable functions has been used in the literature of DDEs. For example, see [2, Chapter

1] with the context of the Laplace transform. The convolution is also used in [34] and [14],

however, the detail has been omitted there.

5.2 Convolution and Riemann–Stieltjes convolution

In this subsection, we study a convolution of the following type.

Definition 5.1. For each pair of locally Riemann integrable functions f , g : [0, ∞) → Mn(K),

we define a function g ∗ f : [0, ∞) → Mn(K) by

(g ∗ f )(t) :=
∫ t

0
g(t − u) f (u)du =

∫ t

0
g(u) f (t − u)du

for t ≥ 0. Here the above integrals are Riemann integrals. We call the function g ∗ f the

convolution of g and f .

See [31, Section 5.3] for the convolution of continuous functions. We note that when f is a

constant function,

(g ∗ f )(t) =
∫ t

0
g(u) f (0)du = (Vg)(t) f (0) (5.4)

holds for all t ≥ 0. In the same way, g ∗ f = g(0)V f holds when g is constant.

Lemma 5.2 (cf. [31]). Let f , g : [0, ∞) → Mn(K) be locally Riemann integrable functions. If f is

continuous, then g ∗ f is a sum of a continuous function and a locally absolutely continuous function.

Proof. By using (5.4),

g ∗ f = g ∗ ( f − f (0)) + (Vg) f (0)

holds. Therefore, the conclusion is obtained by showing that g ∗ f is continuous when f (0) =

O. We extend the domain of definition of f to R by defining f (t) := f (0) = O for t ≤ 0. Let

s, t ∈ [0, ∞) be given so that s < t. By the same reasoning as in the proof of Lemma 3.4, we

have

(g ∗ f )(t)− (g ∗ f )(s) =
∫ t

0
g(u)[ f (t − u)− f (s − u)]du.

By combining this and the uniform continuity of f on closed and bounded intervals, the

continuity of g ∗ f is obtained.

5.2.1 Convolution of locally BV functions and continuous functions

By using Theorem 3.7, one can obtain the following result on the regularity of convolution.

Theorem 5.3 (cf. [33]). If f : [0, ∞) → Mn(K) is continuous and g : [0, ∞) → Mn(K) is of locally

bounded variation, then

g ∗ f = g(0)V f + dg ∗ (V f ) = V(g(0) f + dg ∗ f ) (5.5)



Mild solutions and variation of constants formula for DDEs 31

holds. Consequently, the convolution g ∗ f is locally absolutely continuous, differentiable almost every-

where, and satisfies

(g ∗ f )′(t) = g(0) f (t) + (dg ∗ f )(t)

for almost all t ≥ 0.

The above result is considered as the finite-dimensional version of [33, Theorem 3.2] (i.e.,

the case that the Banach space X in [33, Theorem 3.2] is finite-dimensional) except for the

equality

g ∗ f = g(0)V f + dg ∗ (V f ).

In the following, we give a simpler proof of Theorem 5.3 based on Theorem 3.7.

Proof of Theorem 5.3. Since V f is continuously differentiable and (V f )(0) = O,

[dg ∗ (V f )](t) = [g(u)(V f )(t − u)]tu=0 +
∫ t

0
g(u) f (t − u)du

= −g(0)(V f )(t) + (g ∗ f )(t)

holds for all t ≥ 0 by the integration by parts formula for Riemann–Stieltjes integrals and from

Theorem A.19. By combining the obtained equality

g ∗ f = g(0)(V f ) + dg ∗ (V f )

and Theorem 3.7, the equality (5.5) is obtained.

Remark 5.4. Let f : [0, ∞) → Mn(K) be a continuous function and g : [0, ∞) → Mn(K) be a

function of locally bounded variation. By defining a function V(dg) : [0, ∞) → Mn(K) by

V(dg)(t) := g(t)− g(0)

for t ≥ 0, we have

V(dg ∗ f ) = dg ∗ (V f ) = V(dg) ∗ f

from Theorems 3.7 and 5.3. This formula is easy to remember. We note that the above

definition of V(dg) is reasonable because

∫ t

0
dg(u) = g(t)− g(0)

holds for all t ≥ 0.

We have the following corollaries.

Corollary 5.5. If f : [0, ∞) → Mn(K) is continuous and g : [0, ∞) → Mn(K) is of locally bounded

variation, then

V(g ∗ f ) = g ∗ (V f )

holds.

Proof. From Theorems 5.3 and 3.7, we have

V(g ∗ f ) = g(0)
(
V2 f

)
+ dg ∗

(
V2 f

)
,

where V2 f := V(V f ). Since the right-hand side is equal to g ∗ (V f ) from Theorem 5.3, the

equality is obtained.
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Corollary 5.6. Let f : [0, ∞) → Mn(K) be a continuous function and g : [0, ∞) → Mn(K) be a

function of locally bounded variation. Then the following statements hold:

1. If g is continuous or f (0) = O, then g ∗ f is continuously differentiable and

(g ∗ f )′ = g(0) f + dg ∗ f

holds.

2. If g is locally absolutely continuous, then g ∗ f is continuously differentiable and

(g ∗ f )′ = g(0) f + g′ ∗ f

holds. Here g′ ∗ f : [0, ∞) → Mn(K) is the function defined by

(g′ ∗ f )(t) :=
∫ t

0
g′(t − u) f (u)du =

∫ t

0
g′(u) f (t − u)du

for t ≥ 0, where the integrals are Lebesgue integrals.

Proof. 1. Under the assumption, dg ∗ f is continuous from Lemma 3.4 and Remark 3.6. There-

fore, the conclusion follows by the formula (5.5).

2. The continuous differentiability of g ∗ f follows by the statement 1. When g is locally

absolutely continuous,

dg ∗ f = g′ ∗ f

holds from Theorem A.20.

5.2.2 Associativity of Riemann–Stieltjes convolution

For the proof of Theorem 5.9 below, we need the following result.

Theorem 5.7 (refs. [17], [31]). Let α : [0, ∞) → Mn(K) be a function of locally bounded variation.

Then for any continuous functions f , g : [0, ∞) → Mn(K),

dα ∗ (g ∗ f ) = (dα ∗ g) ∗ f (5.6)

holds.

Remark 5.8. Both sides of Eq. (5.6) are meaningful from Lemma 5.2 and Theorem 3.5. Eq. (3.3)

is a special case of (5.6) since we have

V f = f ∗ I = I ∗ f

for any f ∈ L1
loc([0, ∞), Mn(K)). Here I : [0, ∞) → Mn(K) denotes the constant function

whose value is equal to the identity matrix I.

The above is a result on the associativity for Riemann–Stieltjes convolutions. The corre-

sponding statements in a more general setting are given in [17, Section 6 in Chapter 3]. See

also [31, Proposition D.9 in Appendix D] for a similar result to Theorem 5.7.

One can prove Theorem 5.7 by the same reasoning as in the proof of Theorem 3.7, however,

we give an outline of the proof for reader’s convenience.
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Outline of the proof of Theorem 5.7. We extend the domain of definition of g to R by defining

g(t) := g(0) for t ≤ 0. Then the obtained function g : R → Mn(K) is continuous. Let t > 0 be

fixed. By the proof of Lemma 3.4, we have

(dα ∗ g)(u) =
∫ t

0
dα(v) g(u − v)− [α(t)− α(u)]g(0)

for u ∈ [0, t]. Therefore, [(dα ∗ g) ∗ f ](t) is expressed as

[(dα ∗ g) ∗ f ](t) =
∫ t

0

(∫ t

0
dα(v) g(u − v)

)
f (t − u)du −

∫ t

0
[α(t)− α(u)]g(0) f (t − u)du.

Since

[0, t]× [0, t] ∋ (u, v) 7→ g(u − v) f (t − u) ∈ Mn(K)

is continuous, the first term of the right-hand side becomes

∫ t

0
dα(v)

(∫ t

0
g(u − v) f (t − u)du

)

from Theorem 3.8. Here the integrand also becomes

∫ t−v

−v
g(u) f (t − u − v)du = (g ∗ f )(t − v) +

∫ 0

−v
g(0) f (t − u − v)du.

Then the proof is complete by showing

∫ t

0
[α(t)− α(u)]g(0) f (t − u)du =

∫ t

0
dα(v)

(∫ 0

−v
g(0) f (t − u − v)du

)
.

One can prove this by using the integration by parts formula for Riemann–Stieltjes integrals.

5.3 A formula for non-homogeneous equations with trivial initial history

Let L : C([−r, 0], Kn) → Kn be a continuous linear map. We recall that for a continuous map

G : [0, ∞) → Kn with G(0) = 0, the function xL( · ; 0, G) : [−r, ∞) → Kn denotes the unique

solution of an integral equation

x(t) = L
∫ t

0
xs ds + G(t) (t ≥ 0) (5.7)

under the initial condition x0 = 0.

In this subsection, as an application of the results in Subsection 5.2, we show that the

function x( · ; f ) : [−r, ∞) → Kn defined by x( · ; f )0 = 0 and (1.8) is a solution to the non-

homogeneous linear RFDE (1.7).

Theorem 5.9 (cf. [35]). Let f : [0, ∞) → Kn be a continuous function. Then

xL(t; 0, V f ) =
∫ t

0
XL(t − u) f (u)du (5.8)

holds for all t ≥ 0.

We note that xL( · ; 0, V f ) is a solution to Eq. (1.7) (see Lemma 4.2).
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Proof of Theorem 5.9. Let x := x( · ; f )|[0,∞) and X := XL|[0,∞). Since X is locally absolutely

continuous (see Theorem 3.12) and X(0) = I,

x = X ∗ f = V f + Ẋ ∗ (V f )

holds from Corollary 5.6. For the term Ẋ ∗ (V f ), we have

Ẋ ∗ (V f ) = (dη̌ ∗ X) ∗ (V f )

= dη̌ ∗ [X ∗ (V f )]

= dη̌ ∗ V(X ∗ f )

from Theorems 3.12, 5.7, and Corollary 5.5. This shows that x( · ; f ) satisfies

x(t; f ) =
(
dη̌ ∗ Vx( · ; f )|[0,∞)

)
(t) + (V f )(t)

for all t ≥ 0. Therefore, the equality (5.8) is obtained from Theorem 4.8.

The above proof of Theorem 5.9 is different from the proofs in the literature (e.g., see

[35, Section 4]).

6 Variation of constants formula

Let L : C([−r, 0], Kn) → Kn be a continuous linear map and XL : [−r, ∞) → Mn(K) be the

principal fundamental matrix solution of the linear RFDE (1.1)

ẋ(t) = Lxt (t ≥ 0).

In this section, we obtain a “variation of constants formula” for the non-homogeneous linear

RFDE (1.2)

ẋ(t) = Lxt + g(t) (a.e. t ≥ 0)

for some g ∈ L1
loc([0, ∞), Kn) expressed by XL. In view of Corollary 4.6, we will divide our

consideration into the following steps:

• Step 1: To find a formula for the mild solution xL( · ; 0, Vg) of Eq. (1.2) under the initial

condition x0 = 0.

• Step 2: To find a formula for the mild solution xL( · ; φ, 0) of Eq. (1.1) under the initial

condition x0 = φ ∈ M1([−r, 0], Kn).

Then the full formula for the mild solution of (1.2) under the initial condition x0 = φ ∈

M1([−r, 0], Kn) is obtained by combining the above formulas. In Step 1, for a given continu-

ous function G : [0, ∞) → Kn with G(0) = 0, we indeed consider the integral equation (5.7)

x(t) = L
∫ t

0
xs ds + G(t) (t ≥ 0)

under the initial condition x0 = 0 and try to find a formula for the solution xL( · ; 0, G) ex-

pressed by XL.
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Remark 6.1. Since x0 = 0 = 0̂, Eq. (5.7) is equivalent to

x(t) =
∫ 0

−t
dη(θ)

(∫ t+θ

0
x(s)ds

)
+ G(t) (t ≥ 0)

from Lemma 3.3.

The following is the main result of this section.

Theorem 6.2. Let G : [0, ∞)→ Kn be a continuous function with G(0) = 0 and φ ∈M1([−r, 0], Kn)

be given. Then the solution xL( · ; φ, G) of the integral equation (1.6)

x(t) = φ(0) + L
∫ t

0
xs ds + G(t) (t ≥ 0)

under the initial condition x0 = φ satisfies (1.9)

xL(t; φ, G) = XL(t)φ(0) +
[
GL(t; φ) + G(t)

]
+
∫ t

0
ẊL(t − u)

[
GL(u; φ) + G(u)

]
du

for all t ≥ 0.

We will call the formula (1.9) the variation of constants formula for Eq. (1.6). The definition

of the function GL( · ; φ) : [0, ∞) → Kn for φ ∈ M1([−r, 0], Kn) will be given later. For this

definition, the expression of L by the Riemann–Stieltjes integral (1.3)

Lψ =
∫ 0

−r
dη(θ)ψ(θ)

for ψ ∈ C([−r, 0], Kn) is a key tool.

6.1 Motivation: Naito’s consideration

We first concentrate our consideration to the case that g ∈ C([0, ∞), Kn) and φ ∈ C([−r, 0], Kn).

From Theorem 5.9, we only need to find a formula for xL( · ; φ, 0) in this case.

Naito [26, Theorem 6.5] has discussed an expression of the form

x(t) = φ(0) +
∫ t

0
X(t − u)Lφ̄u du (t ≥ 0).

In the above formula, x : [−r, ∞) → Kn is the solution of the linear RFDE (1.1) under the initial

condition x0 = φ ∈ C([−r, 0], Kn), and φ̄ : [−r, ∞) → Kn is the function defined by

φ̄(t) :=

{
φ(t) (t ∈ [−r, 0]),

φ(0) (t ≥ 0).

See also Notation 1. Although the study of [26] is in the setting of infinite retardation, we

are now interpreting this in the setting of finite retardation (i.e., the history function space

is C([−r, 0], Kn)). We note that the matrix-valued function X : [0, ∞) → Mn(K) is defined

by using the inverse Laplace transform. See [26] for the detail. See also [27], where an

interpretation of the matrix-valued function X is given.

In our setting, a formula expressed by the principal fundamental matrix solution XL

xL(t; φ, 0) = φ(0) +
∫ t

0
XL(t − u)Lφ̄u du (t ≥ 0) (6.1)
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is true. To see this, let y(t) := xL(t; φ, 0)− φ̄(t) for t ∈ [−r, ∞). Then the function y : [−r, ∞) →

Kn satisfies y0 = 0 and

ẏ(t) = Lyt + Lφ̄t (t ≥ 0).

See also the proof of Theorem 2.14. Since the function [0, ∞) ∋ t 7→ Lφ̄t ∈ Kn is continuous,

we obtain

y(t) =
∫ t

0
XL(t − u)Lφ̄u du (t ≥ 0)

by applying Theorem 5.9.

6.2 Derivation of a general forcing term

The formula (6.1) is not sufficient for the application to the linearized stability. See Section 8

for the detail of the application of the variation of constants formula to the linearized stability.

We now introduce the following function.

Notation 6. For each φ ∈ M1([−r, 0], Kn), we define a function zL( · ; φ) : [−r, ∞) → Kn by

zL( · ; φ)0 = 0 and (1.11)

zL(t; φ) := xL(t; φ, 0)− XL(t)φ(0)

for t ≥ 0.

Remark 6.3. Since

zL(0; φ) = φ(0)− XL(0)φ(0) = 0,

the function zL( · ; φ) is continuous. In view of XL( ·)φ(0) = xL
(
· ; φ̂(0), 0

)
, we also have

zL(t; φ) = xL
(

t; φ − φ̂(0), 0
)

(t ≥ 0)

from Corollary 2.15. We note that this equality is not valid for t ∈ [−r, 0) because zL( · ; φ)0 = 0.

From the expression (2.2) for a mild solution, the function zL( · ; φ) satisfies

zL(t; φ) =
∫ 0

−r
dη(θ)

(∫ 0

θ
φ(s)ds

)
+
∫ 0

−r
dη(θ)

(∫ t+θ

0
xL
(

s; φ − φ̂(0), 0
)

ds

)

for all t ≥ 0. The second term of the right-hand side is further calculated as follows:

• When t ∈ [0, r), θ ∈ [−r, 0] satisfies t + θ ≥ 0 if and only if θ ∈ [−t, 0]. Since

xL
(

s; φ − φ̂(0), 0
)
= φ(s)

for s ∈ dom(φ) \ {0}, the second term is decomposed by

∫ −t

−r
dη(θ)

(∫ t+θ

0
φ(s)ds

)
+
∫ 0

−t
dη(θ)

(∫ t+θ

0
zL(s; φ)ds

)

by the additivity of Riemann–Stieltjes integrals on sub-intervals.

• When t ≥ r, the second term is equal to
∫ 0
−r dη(θ)

(∫ t+θ

0 zL(s; φ)ds
)
.

This leads to the following definition.
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Definition 6.4. For each φ ∈ M1([−r, 0], Kn), we define a function GL( · ; φ) : [0, ∞) → Kn by

GL(t; φ) :=
∫ 0

−r
dη(θ)

(∫ 0

θ
φ(s)ds

)
+
∫ −t

−r
dη(θ)

(∫ t+θ

0
φ(s)ds

)

for t ∈ [0, r) and

GL(t; φ) :=
∫ 0

−r
dη(θ)

(∫ 0

θ
φ(s)ds

)

for t ∈ [r, ∞).

By definition, GL(0; φ) = 0 holds. Summarizing the above discussion, we obtain the fol-

lowing lemma.

Lemma 6.5. For each φ ∈ M1([−r, 0], Kn), the function z := zL( · ; φ) is a solution of an integral

equation (1.12)

z(t) = L
∫ t

0
zs ds + GL(t; φ) (t ≥ 0)

under the initial condition z0 = 0.

6.3 Regularity of the general forcing term

To study Eq. (1.12), it is important to reveal the regularity of the function GL( · ; φ) for each

φ ∈ M1([−r, 0], Kn).

6.3.1 Forcing terms for continuous initial histories

Before we tackle this problem, we find a differential equation satisfied by z := zL( · ; φ) for

φ ∈ C([−r, 0], Kn). It should be noted that this is not straightforward because (1.11) is only

valid for t ≥ 0.

Let x := xL( · ; φ, 0) and x̃ := xL
(
· ; φ̂(0), 0

)
. In view of

Lzt =
∫ 0

−r
dη(θ) z(t + θ) =

∫ 0

−t
dη(θ) z(t + θ)

for each t ≥ 0, we express the linear RFDE (1.1) as

ẋ(t) =
∫ 0

−t
dη(θ) x(t + θ) +

∫ −t

−r
dη(θ)φ(t + θ)

by using the additivity of Riemann–Stieltjes integrals on sub-intervals. Here we are interpret-

ing that the second term of the right-hand side is equal to 0 when t ≥ r. More precisely, we

introduce the following.

Definition 6.6 (cf. [3], [9], [25]). For each φ ∈ C([−r, 0], Kn), we define a function

gL( · ; φ) : [0, ∞) → K
n

by

gL(t; φ) :=
∫ −t

−r
dη(θ)φ(t + θ)

for t ∈ [0, r) and gL(t; φ) = 0 for t ≥ r. Here the right-hand side is a Riemann–Stieltjes

integral.
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We note that similar concepts have appeared in the literature. See [3, (3.1) and (3.2)],

[9, (2.7) and (2.13)], and [25, Lemma 1.10], for example.

From Theorem 3.10, x̃ satisfies

˙̃x(t) =
∫ 0

−t
dη(θ) x̃(t + θ)

for almost all t ≥ 0. In combination with the above consideration, z satisfies

ż(t) = ẋ(t)− ˙̃x(t)

=
∫ 0

−t
dη(θ) z(t + θ) + gL(t; φ)

for almost all t ≥ 0. Here the property that t + θ ≥ 0 for all θ ∈ [−t, 0] is used.

In summary, we have the following statement.

Lemma 6.7. For each φ ∈ C([−r, 0], Kn), z := zL( · ; φ) is locally absolutely continuous, differentiable

almost everywhere, and

ż(t) = Lzt + gL(t; φ) (6.2)

holds for almost all t ≥ 0.

We note that since gL( · ; φ) is not necessarily continuous, Theorem 5.9 is not sufficient to

obtain an expression of z = zL( · ; φ) by XL.

6.3.2 Relationship with the forcing terms

Comparing (1.12) and (6.2), it is natural to expect that

GL(t; φ) =
∫ t

0
gL(s; φ)ds (6.3)

holds for all t ≥ 0 when φ ∈ C([−r, 0], Kn). We now justify this relationship.

Lemma 6.8. Suppose φ ∈ C([−r, 0], Kn). Then

gL(t; φ) = Lφ̄t − [η(0)− η(−t)]φ(0) (6.4)

holds for all t ≥ 0. Consequently, gL( · ; φ) is a locally Riemann integrable function vanishing at [r, ∞).

Proof. When t ≥ r,

Lφ̄t =
∫ 0

−r
dη(θ)φ(0) = [η(0)− η(−r)]φ(0)

holds. Therefore, the right-hand side of (6.4) is equal to 0 for all t ≥ r. We next consider the

case t ∈ [0, r). In this case, we have

gL(t; φ) =
∫ −t

−r
dη(θ) φ̄(t + θ)

=
∫ 0

−r
dη(θ) φ̄(t + θ)−

∫ 0

−t
dη(θ) φ̄(t + θ)

by the additivity of Riemann–Stieltjes integrals on sub-intervals. Since
∫ 0

−t
dη(θ) φ̄(t + θ) =

∫ 0

−t
dη(θ)φ(0) = [η(0)− η(−t)]φ(0),

the expression (6.4) is obtained. Since [0, ∞) ∋ t 7→ Lφ̄t ∈ Kn is continuous and [0, ∞) ∋ t 7→

η(−t)φ(0) is of locally bounded variation, the local Riemann integrability of gL( · ; φ) follows

by the expression (6.4).
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Remark 6.9. The expression (6.4) also shows that gL( · ; φ) is continuous if φ(0) = 0. This

should be compared with [9, Theorem 2.1(ii) and Remark 2.1].

The following theorem reveals a connection between GL( · ; φ) and gL( · ; φ).

Theorem 6.10. Let φ ∈ M1([−r, 0], Kn) be given. Then for all t ≥ 0,

GL(t; φ) = L
∫ t

0
φ̄s ds −

∫ t

0
[η(0)− η(−s)]φ(0)ds (6.5)

holds.

Proof. For the first term of the definition of GL(t; φ), we have

∫ 0

−r
dη(θ)

(∫ 0

θ
φ(s)ds

)
=
∫ 0

−r
dη(θ)

(∫ 0

θ
φ̄(s)ds

)

=
∫ 0

−r
dη(θ)

(∫ t+θ

θ
φ̄(s)ds

)
−
∫ 0

−r
dη(θ)

(∫ t+θ

0
φ̄(s)ds

)
,

where the first term of the last equation is equal to L
∫ t

0 φ̄s ds. The remainder of the proof is di-

vided into the cases t ∈ [0, r] and t ∈ (r, ∞) in order to study the term
∫ 0
−r dη(θ)

(∫ t+θ

0 φ̄(s)ds
)
.

Case 1: t ∈ [0, r]. When t = r, we have

∫ 0

−r
dη(θ)

(∫ t+θ

0
φ̄(s)ds

)
=
∫ 0

−r
dη(θ) (r + θ)φ(0)

because r + θ ≥ 0 for all θ ∈ [−r, 0]. We next consider the case t ∈ [0, r). In this case,

∫ 0

−r
dη(θ)

(∫ t+θ

0
φ̄(s)ds

)

=
∫ −t

−r
dη(θ)

(∫ t+θ

0
φ(s)ds

)
+
∫ 0

−t
dη(θ)

(∫ t+θ

0
φ̄(s)ds

)

holds by the additivity of Riemann–Stieltjes integrals on sub-intervals and by the property

that t + θ ≤ 0 for all θ ∈ [−r,−t]. Here the second term of the right-hand side is equal to

∫ 0

−t
dη(θ) (t + θ)φ(0).

Therefore, the definition of GL(t; φ) yields

GL(t; φ) = L
∫ t

0
φ̄s ds −

∫ 0

−t
dη(θ)

(∫ t+θ

0
φ̄(s)ds

)

= L
∫ t

0
φ̄s ds −

∫ 0

−t
dη(θ) (t + θ)φ(0)

including the case t = r. The proof is complete in view of

∫ 0

−t
(t + θ)dη(θ) = [(t + θ)η(θ)]0θ=−t −

∫ 0

−t
η(θ)dθ

= tη(0)−
∫ t

0
η(−s)ds,
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where the integration by parts formula for Riemann–Stieltjes integrals is used.

Case 2: t ∈ (r, ∞). Since we have shown that (6.5) holds for t = r,

GL(t; φ) = L
∫ r

0
φ̄s ds −

∫ r

0
[η(0)− η(−s)]φ(0)ds

holds for all t ≥ r. Here the property that GL( · ; φ) is constant on [r, ∞) is used. Then the

proof is complete by showing that the right-hand side of (6.5) is constant on [r, ∞). For this

purpose, we calculate

L
∫ t

0
φ̄s ds − L

∫ r

0
φ̄s ds.

By the linearity of L, it is calculated as
∫ 0

−r
dη(θ)

(∫ t+θ

r+θ
φ̄(s)ds

)
=
∫ 0

−r
dη(θ) (t − r)φ(0)

= (t − r)[η(0)− η(−r)]φ(0).

Since η is constant on (−∞,−r], the last value is expressed as
∫ t

r
[η(0)− η(−s)]φ(0)ds.

This shows that

L
∫ t

0
φ̄s ds = L

∫ r

0
φ̄s ds +

∫ t

r
[η(0)− η(−s)]φ(0)ds,

which also implies that the right-hand side of (6.5) is equal to

L
∫ r

0
φ̄s ds −

∫ r

0
[η(0)− η(−s)]φ(0)ds

for all t ≥ r.

Remark 6.11. GL(t; φ) is also expressed as

GL(t; φ) =
∫ 0

−r
[η(θ)− η(θ − t)]φ(θ)dθ.

See [14, Section I.2 of Chapter I] for the detail. See also [34, Remark 2.10(iii) in Chapter 2]. In

this paper, we do not need the above expression.

By combining the obtained results, we obtain the following result on the regularity of

GL( · ; φ). See also [34, Remark 2.10(ii) in Chapter 2].

Theorem 6.12. For any φ ∈ M1([−r, 0], Kn), the function GL( · ; φ) is continuous with GL(0; φ) =

0. Furthermore, if φ ∈ C([−r, 0], Kn), then it is locally absolutely continuous, differentiable almost

everywhere, and

ĠL(t; φ) = gL(t; φ)

holds for almost all t ∈ [0, ∞). Here ĠL(t; φ) denotes the derivative of GL( · ; φ) at t.

Proof. Let φ ∈ M1([−r, 0], Kn) be given. Then (6.5) yields the continuity of GL( · ; φ) from

Lemma 2.8 and by the continuity of L. The property GL(0; φ) = 0 follows by definition.

We next assume φ ∈ C([−r, 0], Kn). Since φ̄ : [−r, ∞) → Kn is continuous, Theorem 6.10,

Corollary 2.12, and Lemma 6.8 show that (6.3)

GL(t; φ) =
(
VgL( · ; φ)

)
(t)

holds for all t ≥ 0. This yields the properties of GL( · ; φ).
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6.4 Derivation of the variation of constants formula

6.4.1 Formulas for trivial initial histories

For the derivation of the variation of constants formula, we use the following result.

Theorem 6.13. Let [a, b] be a closed and bounded interval of R. If F, G : [a, b] → Mn(K) are abso-

lutely continuous, then
∫ b

a
F′(x)G(x)dx = [F(x)G(x)]bx=a −

∫ b

a
F(x)G′(x)dx

holds.

This should be called the integration by parts formula for matrix-valued absolutely con-

tinuous functions. We note that the above result also holds when G : [a, b] → Kn is an abso-

lutely continuous function. Since the Lebesgue integral of a matrix-valued function is defined

component-wise, Theorem 6.13 can be obtained by the corresponding result for scalar-valued

functions in combination with the linearity of Lebesgue integration. We note that the result

for scalar-valued functions is mentioned in [30, Exercise 14 of Chapter 7]. One can also give a

direct proof based on the matrix product.

By using the local absolute continuity of XL|[0,∞) (see Theorem 3.12), Theorem 6.13 shows

that
∫ t

0
XL(t − u)g(u)du = [XL(t − u)(Vg)(u)]tu=0 +

∫ t

0
ẊL(t − u)(Vg)(u)du

= (Vg)(t) +
∫ t

0
ẊL(t − u)(Vg)(u)du

holds for any g ∈ L1
loc([0, ∞), Kn). Here XL(0) = I and (Vg)(0) = 0 are also used. The

following theorem is motivated by this.

Theorem 6.14. Let G : [0, ∞) → Kn be a continuous function with G(0) = 0. Then (1.10)

xL(t; 0, G) = G(t) +
∫ t

0
ẊL(t − u)G(u)du

holds for all t ≥ 0.

Proof. Let X := XL|[0,∞). We define a function x : [−r, ∞) → Kn by x0 = 0 and

x(t) := G(t) +
(
Ẋ ∗ G

)
(t)

for t ≥ 0. By applying Corollary 5.6 in combination with the fundamental theorem of calculus,

we have Vx|[0,∞) = X ∗ G. Here (X ∗ G)(0) = 0 is also used. Furthermore, we have

x(t) = G(t) + [dη̌ ∗ (X ∗ G)](t) (t ≥ 0)

from Theorems 3.12 and 5.7. Therefore, x satisfies

x(t) = G(t) +
(
dη̌ ∗ Vx|[0,∞)

)
(t)

for all t ≥ 0. This implies that (1.10) holds by applying Theorem 4.8.

The following corollary is obtained from Theorem 6.14 by using the discussion before

Theorem 6.14. It is an extension of Theorem 5.9.

Corollary 6.15 (cf. [18], [19]). Let g ∈ L1
loc([0, ∞), Kn). Then

xL(t; 0, Vg) =
∫ t

0
XL(t − u)g(u)du (6.6)

holds for all t ≥ 0.
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6.4.2 Formulas for homogeneous equations

We next find an expression of xL( · ; φ, 0) by XL as an application of Theorem 6.14.

Theorem 6.16. Let φ ∈ M1([−r, 0], Kn). Then

xL(t; φ, 0) = XL(t)φ(0) + GL(t; φ) +
∫ t

0
ẊL(t − u)GL(u; φ)du (6.7)

holds for all t ≥ 0.

Proof. From Lemma 6.5 and Theorem 6.14 together with Theorem 6.12,

zL(t; φ) = GL(t; φ) +
∫ t

0
ẊL(t − u)GL(u; φ)du

holds for all t ≥ 0. Then the formula (6.7) is obtained in view of

zL(t; φ) = xL(t; φ, 0)− XL(t)φ(0)

for t ≥ 0.

Remark 6.17. The above proof of Theorem 6.16 is considered to be a reorganization of [14,

Section I.2 of Chapter I]. It leads us to the understanding of the variation of constants formula

for non-homogeneous linear RFDEs that does not rely on the theory of Volterra convolution

integral equations.

We have the following corollary.

Corollary 6.18 (cf. [25]). Let φ ∈ C([−r, 0], Kn). Then

xL(t; φ, 0) = XL(t)φ(0) +
∫ t

0
XL(t − u)gL(u; φ)du (6.8)

holds for all t ≥ 0.

Proof. From Theorem 6.12,

GL( · ; φ) = V
(

gL( · ; φ)
)

holds. Therefore, the formula (6.8) is obtained from (6.7) by using the integration by parts

formula for matrix-valued absolutely continuous functions.

Corollary 6.18 should be compared with [25, Theorem 1.11], where the inverse Laplace

transform is used to obtain a formula.

6.4.3 Derivation of the main result of this section

Theorem 6.2 is a combination of Theorems 6.14 and 6.16 in view of Corollary 4.6. Therefore,

the proof can be omitted. The following is a corollary of Theorem 6.2, which is a combination

of Corollaries 6.15 and 6.18 in view of Corollary 4.6. The proof can be omitted.

Corollary 6.19. If φ ∈ C([−r, 0], Kn) and G = Vg for some g ∈ L1
loc([0, ∞), Kn), then

xL(t; φ, G) = XL(t)φ(0) +
∫ t

0
XL(t − u)[gL(u; φ) + g(u)]du

holds for all t ≥ 0.
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6.5 Variation of constants formula for linear differential difference equations

We apply Theorem 6.16 to an autonomous linear differential difference equation (2.11)

ẋ(t) = Ax(t) +
m

∑
k=1

Bkx(t − τk) (t ≥ 0)

for n × n matrices A, B1, . . . , Bm ∈ Mn(K) and τ1, . . . , τm ∈ (0, r]. We recall that the linear

DDE (2.11) can be expressed in the form of the linear RFDE (1.1) by defining a continuous

linear map L : C([−r, 0], Kn) → Kn by (2.12)

Lψ = Aψ(0) +
m

∑
k=1

Bkψ(−τk)

for ψ ∈ C([−r, 0], Kn).

For the above mentioned application, we need to calculate the function GL( · ; φ) for each

φ ∈ M1([−r, 0], Kn) based on Definition 6.4. By the linearity of L 7→ GL( · ; φ), this can be

reduced to the calculation of GLk( · ; φ) for each k ∈ {0, . . . , m}, where Lk : C([−r, 0], Kn) → Kn

is the continuous linear map given by

L0ψ := Aψ(0),

and

Lkψ := Bkψ(−τk)

for k ∈ {1, . . . , m}. We have the following lemma.

Lemma 6.20. Let φ ∈ M1([−r, 0], Kn) be given. Then the following statements hold:

1. GL0( · ; φ) = 0.

2. For each k ∈ {1, . . . , m}, GLk(0; φ) = 0 and

GLk(t; φ) =

{
Bk

∫ t−τk

−τk
φ(s)ds (t ∈ (0, τk]),

Bk

∫ 0
−τk

φ(s)ds (t ∈ (τk, ∞)).

holds.

Proof. 1. Let η0 : [−r, 0] → Mn(K) be the matrix-valued function given by

η0(θ) :=

{
O (−r ≤ θ < 0),

A (θ = 0).

Then L0 is expressed as

L0ψ =
∫ 0

−r
dη0(θ)ψ(θ)

for ψ ∈ C([−r, 0], Kn). Therefore, the definition of GL( · ; φ) yields the conclusion.

2. Let k ∈ {1, . . . , m} be fixed and ηk : [−r, 0] → Mn(K) be the matrix-valued function

given by

ηk(θ) :=

{
O (−r ≤ θ ≤ −τk),

Bk (−τk < θ ≤ 0).
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Then Lk is expressed as

Lkψ =
∫ 0

−r
dηk(θ)ψ(θ)

for ψ ∈ C([−r, 0], Kn). By the definition of Lk, we have

∫ 0

−r
dηk(θ)

(∫ 0

θ
φ(s)ds

)
= Bk

∫ 0

−τk

φ(s)ds.

Furthermore, the integral
∫ −t
−r dηk(θ)

(∫ t+θ

0 φ(s)ds
)

is calculated as

∫ −t

−r
dηk(θ)

(∫ t+θ

0
φ(s)ds

)
=

{
Bk

∫ t−τk

0 φ(s)ds (t ∈ [0, τk]),

0 (t ∈ (τk, ∞)).

By combining the above expressions, the conclusion is obtained.

Theorem 6.21 (cf. [19], [22]). Let L : C([−r, 0], Kn) → Kn be the continuous linear map given by

(2.12). Then for any φ ∈ M1([−r, 0], Kn),

xL(t; φ, 0) = XL(t)φ(0) +
m

∑
k=1

∫ 0

−τk

XL(t − τk − θ)Bkφ(θ)dθ (6.9)

holds for all t ≥ 0.

Proof. Let φ ∈ M1([−r, 0], Kn) be given. From Lemma 6.20,

GL( · ; φ) =
m

∑
k=1

GLk( · ; φ)

is locally absolutely continuous. Therefore, Theorem 6.16 and the integration by parts formula

for absolutely continuous functions yield that

xL(t; φ, 0) = XL(t)φ(0) +
m

∑
k=1

∫ t

0
XL(t − u)ĠLk(u; φ)du

holds for all t ≥ 0. We now fix k ∈ {1, . . . , m} and find an expression of the integral

∫ t

0
XL(t − u)ĠLk(u; φ)du.

Lemma 6.20 shows that ĠLk(t; φ) = Bkφ(t− τk) holds for almost all t ∈ [0, τk], and ĠLk(t; φ) = 0

holds for all t ∈ (τk, ∞). Then the integral is expressed as follows:

• When t ∈ [0, τk], the integral becomes

∫ t

0
XL(t − u)Bkφ(u − τk)du =

∫ t−τk

−τk

XL(t − τk − θ)Bkφ(θ)dθ

=
∫ 0

−τk

XL(t − τk − θ)Bkφ(θ)dθ

because t − τk ≤ 0.
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• When t ∈ (τk, ∞), the integral becomes

∫ τk

0
XL(t − u)Bkφ(u − τk)du =

∫ 0

−τk

XL(t − τk − θ)Bkφ(θ)dθ.

This completes the proof.

Remark 6.22. Suppose φ ∈ C([−r, 0], R) and m = 1. In [19, Theorem 6.1 in Section 1.6] and

[22, Theorem 6.1 in Section 1.6], (6.9) is obtained by using the Laplace transform. See also

[28, Theorem 4.2], where (6.9) is obtained under different assumptions for a linear evolution

equation with commensurate delays.

6.6 Remarks on definitions of “fundamental matrix”

6.6.1 Definition by Hale

Let K = R. In [18, Theorem 16.3 and Corollary 16.1] and [19, Theorem 2.1 and Corollary 2.1

in Chapter 6], a matrix-valued function X : [0, ∞) → Mn(R) is defined by using the property

that for every t ≥ 0,

L1
loc([0, ∞), R

n) ∋ g 7→ xL(t; 0, Vg) ∈ R
n

is a bounded linear operator to show

xL(t; 0, Vg) =
∫ t

0
X(t − u)g(u)du (t ≥ 0).

Furthermore, by the formal exchange of order of integration, the function X is interpreted as

a “matrix-valued solution” to the linear RFDE (1.1). Indeed, Hale argued that X satisfies (i)

X0 = Î, (ii) X|[0,∞) is locally absolutely continuous, and (iii) X satisfies

Ẋ(t) =
∫ 0

−r
dη(θ)X(t + θ)

for almost all t ∈ [0, ∞). Here Î : [−r, 0] → Mn(R) is defined by (1.5)

Î(θ) :=

{
O (θ ∈ [−r, 0)),

I (θ = 0).

However, the above integral does not make sense in general because X is not continuous.

6.6.2 Volterra convolution integral equations and fundamental matrix solutions

Let x := xL
(
· ; ξ̂
)
|[0,∞) for some ξ ∈ Kn and suppose η(0) = O. By using the integration by

parts formula for Riemann–Stieltjes integrals and Theorem A.19 in (3.5)

x = ξ + dη̌ ∗ Vx,

we have

x(t) = ξ + [η̌(u)(Vx)(t − u)]tu=0 +
∫ t

0
η̌(u)x(t − u)du

= ξ + (η̌ ∗ x)(t)
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for all t ≥ 0. Here (Vx)(0) = 0 is also used. The above calculation shows that the function

x : [0, ∞) → Kn satisfies

x = η̌ ∗ x + ξ,

which is a Volterra convolution integral equation with the kernel function η̌ and with the

constant forcing term ξ. Therefore, X := XL|[0,∞) satisfies

X = η̌ ∗ X + I.

This means that the restriction X = XL|[0,∞) is the fundamental matrix solution for the Volterra

convolution integral equation with the kernel function η̌ under the assumption that η(0) =

O. For an approach by the Volterra convolution integral equation, see [14, Section I.2 of

Chapter I].

7 Exponential stability of principal fundamental matrix solution

For a continuous linear map L : C([−r, 0], Kn) → Kn, we consider a linear RFDE (1.1)

ẋ(t) = Lxt (t ≥ 0).

Let XL : [−r, ∞) → Mn(K) be the principal fundamental matrix solution. We use the following

terminology.

Definition 7.1. We say that the principal fundamental matrix solution XL is exponentially stable

if there exist constants M ≥ 1 and α > 0 such that
∣∣∣XL(t)

∣∣∣ ≤ Me−αt (7.1)

holds for all t ≥ 0. We also say that XL is α-exponentially stable.

In the following calculations, it is useful to extend the domain of definition of XL to R by

letting XL(t) := O for t ∈ (−∞,−r).

Lemma 7.2. If XL is α-exponentially stable for some α > 0, then there exists a constant M ≥ 1 such

that

sup
θ∈[−r,0]

∣∣∣XL(t + θ)
∣∣∣ ≤ Me−αt

holds for all t ∈ R.

Proof. By the assumption, one can choose a constant M0 ≥ 1 so that

∣∣∣XL(t)
∣∣∣ ≤ M0e−αt

holds for all t ≥ 0. Since the statement is trivial when t ≤ 0, we only have to consider the case

t > 0. Let θ ∈ [−r, 0]. When t + θ ≥ 0, we have

∣∣∣XL(t + θ)
∣∣∣ ≤ M0e−α(t+θ) ≤ M0eαre−αt.

The above estimate also holds when t + θ < 0 because XL(t + θ) = O in this case. Therefore,

the conclusion is obtained.
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Theorem 7.3 (cf. [19], [22]). If XL is α-exponentially stable for some α > 0, then the C0-semigroup(
TL(t)

)
t≥0

on C([−r, 0], Kn) defined by (1.13)

TL(t)φ := xL( · ; φ, 0)t

for (t, φ) ∈ [0, ∞) × C([−r, 0], Kn) is uniformly α-exponentially stable, i.e., there exists a constant

M ≥ 1 such that for all t ≥ 0, ∥∥∥TL(t)
∥∥∥ ≤ Me−αt

holds.

Proof. By applying Lemma 7.2, we choose a constant M0 ≥ 1 so that

sup
θ∈[−r,0]

∣∣∣XL(t + θ)
∣∣∣ ≤ M0e−αt

holds for all t ∈ R. Since the statement is trivial when t = 0, we only have to consider the

case t > 0. Let θ ∈ [−r, 0] and φ ∈ C([−r, 0], Kn) be given. Then

[
TL(t)φ

]
(θ) =

{
XL(t + θ)φ(0) +

∫ t+θ

0 XL(t + θ − u)gL(u; φ)du (t + θ ≥ 0),

φ(t + θ) (t + θ ∈ [−r, 0])

holds from Corollary 6.18 (see Definition 6.6 for the definition of gL(t; φ)). We divide the

consideration into the following cases.

Case 1: t + θ ≥ 0. For the first term of the right-hand side,

∣∣∣XL(t + θ)φ(0)
∣∣∣ ≤ M0e−αt|φ(0)| ≤ M0e−αt∥φ∥

holds. For the second term,

∣∣∣∣
∫ t+θ

0
XL(t + θ − u)gL(u; φ)du

∣∣∣∣ ≤
∫ t+θ

0

∣∣∣XL(t − u + θ)
∣∣∣
∣∣∣gL(u; φ)

∣∣∣du

≤
∫ t+θ

0
M0e−α(t−u)

∣∣∣gL(u; φ)
∣∣∣du

holds from Lemma 7.2. Since

∣∣∣gL(t; φ)
∣∣∣ =

∣∣∣∣
∫ −t

−r
dη(θ)φ(t + θ)

∣∣∣∣ ≤ Var(η)∥φ∥

holds for all t ∈ [0, r) (see Lemma A.4) and gL(t; φ) = 0 for all t ≥ r, we have

∫ t+θ

0
M0e−α(t−u)

∣∣∣gL(u; φ)
∣∣∣du ≤

∫ r

0
M0e−α(t−u) Var(η)∥φ∥du

= M0

(∫ r

0
eαu du

)
Var(η)e−αt∥φ∥.

We note that ∫ r

0
eαu du =

1

α
(eαr − 1)

holds.
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Case 2: t + θ < 0. In this case, we have

|φ(t + θ)| ≤ e−α(t+θ)|φ(t + θ)| ≤ eαre−αt∥φ∥.

By combining the estimates obtained in Cases 1 and 2, one can choose a constant M ≥ 1

so that

sup
θ∈[−r,0]

∣∣∣
[

TL(t)φ
]
(θ)
∣∣∣ ≤ Me−αt∥φ∥

holds for all (t, φ) ∈ [0, ∞)× C([−r, 0], Kn). This completes the proof.

The converse of Theorem 7.3 also holds.

Theorem 7.4 (cf. [19], [22]). If
(
TL(t)

)
t≥0

is uniformly α-exponentially stable for some α > 0, then

XL is α-exponentially stable.

Proof. By the assumption, we choose a constant M0 ≥ 1 so that
∥∥∥TL(t)

∥∥∥ ≤ M0e−αt

holds for all t ≥ 0. We fix ξ ∈ Kn and let

φξ := xL
(
· ; ξ̂
)

r
∈ C([−r, 0], K

n).

Then the map Kn ∋ ξ 7→ φξ ∈ C([−r, 0], Kn) is linear from Corollary 2.7. Since XL( ·)ξ =

xL
(
· ; ξ̂
)
, we have

∥∥φξ

∥∥ = sup
t∈[0,r]

∣∣∣xL
(
t; ξ̂
)∣∣∣ ≤

(
supt∈[0,r]

∣∣XL(t)
∣∣
)
· |ξ|.

This yields that the linear operator Kn ∋ ξ 7→ φξ ∈ C([−r, 0], Kn) is bounded.

We now show that XL is α-exponentially stable by dividing into the following cases.

Case 1: t ≥ r. From Theorem 2.14, we have

xL
(
t; ξ̂
)
= xL(t − r; φξ),

where the right-hand side is equal to [TL(t − r)φξ ](0). Therefore,
∣∣∣XL(t)ξ

∣∣∣ ≤
∥∥∥TL(t − r)

∥∥∥
∥∥φξ

∥∥

holds. Since
∥∥TL(t − r)

∥∥ ≤ M0eαre−αt, we obtain
∣∣∣XL(t)

∣∣∣ ≤
(

M0eαr supt∈[0,r]

∣∣XL(t)
∣∣
)
· e−αt

by combining the above estimate on
∥∥φξ

∥∥.

Case 2: t ∈ [0, r]. In this case,
∣∣XL(t)

∣∣ is estimated by
∣∣∣XL(t)

∣∣∣ ≤
(

eαr supt∈[0,r]

∣∣XL(t)
∣∣
)
· e−αt.

Here 1 = e−αteαt is used.

By combining the above estimates, the conclusion is obtained.

See [19, Lemmas 6.1, 6.2, and 6.3 in Chapter 6] and [22, Lemmas 5.1, 5.2, and 5.3 in

Chapter 6] for related results. We note that the statements of Theorems 7.3 and 7.4 are included

in these results, where the detailed proofs are not given.
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8 Principle of linearized stability and Poincaré–Lyapunov theorem

Throughout this section, let L : C([−r, 0], Rn) → Rn be a continuous linear map. We consider

a non-autonomous RFDE

ẋ(t) = Lxt + f (t, xt) (8.1)

for some continuous map

f : R × C([−r, 0], R
n) ⊃ dom( f ) → R

n.

Let XL : [−r, ∞)→Mn(R) be the principal fundamental matrix solution of the linear RFDE (1.1)

ẋ(t) = Lxt (t ≥ 0)

and
(
TL(t)

)
t≥0

be the C0-semigroup on C([−r, 0], Rn) generated by (1.1). See also Section 7.

We recall the definition of a solution to the RFDE (8.1). For each (t0, φ) ∈ dom( f ) and each

T > 0, a continuous function

x : [t0 − r, t0 + T] → R
n

is called a solution of (8.1) under an initial condition xt0 = φ if the following conditions

are satisfied: (i) xt0 = φ, (ii) (t, xt) ∈ dom( f ) for all t ∈ [t0, t0 + T], and (iii) x|[t0,t0+T] is

differentiable and satisfies the RFDE (8.1) for all t ∈ [t0, t0 + T]. Here the derivative of x at

t0 and t0 + T are understood as the right-hand derivative at t0 and the left-hand derivative at

t0 + T, respectively.

8.1 Variation of constants formula and nonlinear equations

Theorem 8.1. Let (t0, φ) ∈ dom( f ) and T > 0 be given. Then for a continuous function x : [t0 −

r, t0 + T] → Rn with the properties (i) xt0 = φ and (ii) (t, xt) ∈ dom( f ) for all t ∈ [t0, t0 + T], x is

a solution of the RFDE (8.1) under the initial condition xt0 = φ if and only if x satisfies

x(t) = xL(t − t0; φ, 0) +
∫ t

t0

XL(t − u) f (u, xu)du

for all t ∈ [t0, t0 + T].

We note that the above statement is not a simple application of Corollaries 4.6 and 6.15

because there is no method of variation of constants for RFDEs (see Subsection 5.1).

Proof of Theorem 8.1. Let x : [t0 − r, t0 + T] → Rn be a continuous function with the properties

(i) and (ii) in Theorem 8.1. Then it is a solution of the RFDE (8.1) under the initial condition

xt0 = φ if and only if

x(t) = φ(0) +
∫ t

t0

[Lxs + f (s, xs)]ds

holds for all t ∈ [t0, t0 + T]. Let z : [−r, T] → Rn be the function defined by

z(s) := x(t0 + s)− xL(s; φ)

for s ∈ [−r, T]. Then z satisfies z0 = 0 and an integral equation

z(s) =
∫ s

0
Lzu du +

∫ s

0
f (t0 + u, xt0+u)du
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for s ∈ [0, T]. Since [0, T] ∋ u 7→ f (t0 + u, xt0+u) ∈ Rn is continuous, z|[0,T] is expressed by

z(s) =
∫ s

0
XL(s − u) f (t0 + u, xt0+u)du (s ∈ [0, T])

from Theorem 5.9 or Corollary 6.15. Therefore, we have

x(t0 + s) = xL(s; φ) +
∫ s

0
XL(s − u) f (t0 + u, xt0+u)du

for s ∈ [0, T]. The expression of x is obtained by the change of variable t0 + s = t.

8.2 Stability part of principle of linearized stability

In this subsection, we consider a continuous map

h : R × C([−r, 0], R
n) ⊃ R × U0 → R

n

for some open neighborhood U0 of 0 in C([−r, 0], Rn) with the property that h(t, φ) = o(∥φ∥)

as ∥φ∥ → 0 uniformly in t. This means that for every ε > 0, there exists a δ > 0 such that for

all (t, φ) ∈ R × U0, ∥φ∥ < δ implies

|h(t, φ)| ≤ ε∥φ∥.

In the following theorem, we suppose that dom( f ) = R × U0 and f (t, φ) = h(t, φ) holds

for all (t, φ) ∈ R×U0 in the RFDE (8.1). Then (8.1) is considered as a perturbation of the linear

RFDE (1.1). Since f (t, 0) = 0 holds for all t ∈ R, (8.1) has the zero solution. The statement in

the following theorem is the stability part of the principle of linearized stability for RFDEs.

Theorem 8.2 (cf. [14]). If XL is exponentially stable, then there exist M ≥ 1, β > 0, and a neigh-

borhood U of 0 in C([−r, 0], Rn) such that for every t0 ∈ R, every φ ∈ U, and every non-continuable

solution x of (8.1) under the initial condition xt0 = φ, x is defined for all t ≥ t0 and satisfies

∥xt∥ ≤ Me−β(t−t0)∥φ∥

for all t ≥ t0.

Remark 8.3. See [2, Chapter 11] for the corresponding result for differential difference equa-

tions. See [11] for the general result of the principle of linearized stability in the context of

nonlinear semigroups. See also [14, Chapter VII] for a general treatment of the principle of

linearized stability and its application to RFDEs under the local Lipschitz continuity of h.

In the proof of Theorem 8.2 given below, the Peano existence theorem and the continu-

ation of solutions for RFDEs play key roles. See [19, Chapter 2] and [22, Chapter 2] for the

fundamental theory of RFDEs.

Proof of Theorem 8.2. From Lemma 7.2 and Theorem 7.3, we choose constants M ≥ 1 and α > 0

so that

sup
θ∈[−r,0]

∣∣∣XL(t + θ)
∣∣∣ ≤ Me−αt (t ∈ R)

and ∥∥∥TL(t)
∥∥∥ ≤ Me−αt (t ≥ 0)
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hold. We also choose an ε > 0 so that

−β := Mε − α < 0.

We divide the proof into the following steps.

Step 1: Choice of a neighborhood of 0 and a non-continuable solution. Since f (t, φ) =

o(∥φ∥) as ∥φ∥ → 0 uniformly in t, there exists a δ̃ > 0 for this ε > 0 with the following

properties:

(i) For all φ ∈ C([−r, 0], Rn), ∥φ∥ < δ̃ implies φ ∈ U0.

(ii) ∥φ∥ < δ̃ implies | f (t, φ)| ≤ ε∥φ∥ for all t ∈ R.

Let δ := δ̃/M. We define open sets U and Ũ by

U := {φ ∈ C([−r, 0], R
n) : ∥φ∥ < δ},

Ũ :=
{

φ ∈ C([−r, 0], R
n) : ∥φ∥ < δ̃

}
.

Then

U ⊂ Ũ ⊂ U0

holds. From now on, we fix t0 ∈ R and φ ∈ U and proceed with the discussion. By applying

the Peano existence theorem for RFDEs, the RFDE

ẋ(t) = L|Ũ(xt) + f |
R×Ũ(t, xt) (8.2)

has a solution under the initial condition xt0 = φ. Let x be a non-continuable solution of the

RFDE (8.2) under this initial condition. Then its domain of definition is written as [t0 − r, t0 +

T) for some T ∈ (0, ∞].

Step 2: Estimate by Gronwall’s inequality. Let t ∈ [t0, t0 + T) and θ ∈ [−r, 0]. By applying

Theorem 8.1,

x(t) = xL(t − t0; φ, 0) +
∫ t

t0

XL(t − u) f (u, xu)du (t ∈ [t0, t0 + T))

holds for this non-continuable solution x : [t0 − r, t0 + T) → Rn. When t + θ ≥ t0, we have

|x(t + θ)| ≤
∣∣∣xL(t + θ − t0; φ, 0)

∣∣∣+
∫ t+θ

t0

∣∣∣XL(t − u + θ)
∣∣∣| f (u, xu)|du

≤
∥∥∥TL(t − t0)φ

∥∥∥+
∫ t

t0

Me−α(t−u)| f (u, xu)|du

≤ Me−α(t−t0)∥φ∥+
∫ t

t0

Me−αteαuε∥xu∥du.

When t + θ < t0, the estimate

|x(t + θ)| ≤ Me−α(t−t0)∥φ∥+
∫ t

t0

Me−αteαuε∥xu∥du

also holds in view of

|x(t + θ)| = |φ(t − t0 + θ)| =
∣∣∣[TL(t − t0)φ](θ)

∣∣∣ ≤ Me−α(t−t0)∥φ∥.
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These estimates yield

eα(t−t0)∥xt∥ ≤ M∥φ∥+
∫ t

t0

Mεeα(u−t0)∥xu∥du,

and we obtain

eα(t−t0)∥xt∥ ≤ M∥φ∥eMε(t−t0)

by applying Gronwall’s inequality (see Lemma C.1). This means that

∥xt∥ ≤ M∥φ∥e−β(t−t0) (8.3)

holds for all t ∈ [t0, t0 + T).

Step 3: Proof by contradiction. We next show that T is equal to ∞, i.e., the non-continuable

solution x is defined on [t0 − r, ∞). We suppose T < ∞ and derive a contradiction. Since

∥xt∥ < δ̃ holds for all t ∈ [t0, t0 + T), we have

|ẋ(t)| ≤ ∥L∥∥xt∥+ | f (t, xt)|

≤ (∥L∥+ ε)δ̃

< ∞.

This shows that x|[t0,t0+T) is Lipschitz continuous. In particular, x|[t0,t0+T) is uniformly con-

tinuous, and therefore, the limit limt↑t0+T x(t) exists. Since this yields the existence of the

limit

lim
t↑t0+T

xt =: ψ ∈ C([−r, 0], R
n),

we have

∥ψ∥ ≤ M∥φ∥e−βT
< Mδ = δ̃,

i.e., ψ ∈ Ũ, by taking the limit as t ↑ t0 + T in the inequality (8.3). Then the RFDE (8.2) has a

solution under the initial condition xt0+T = ψ by the Peano existence theorem for RFDEs, and

one can construct a continuation of x. It contradicts the property that x is non-continuable.

Therefore, T should be infinity.

The above steps yield the conclusion.

The above proof of Theorem 8.2 is an appropriate modification of the stability part of the

principle of linearized stability for ODEs (e.g., see [6, Section 2.3]). It also should be compared

with [35, Theorem 2 and its proof]. We note that the continuity of the higher-order term f in

the RFDE (8.1) is sufficient for the proof.

8.3 Poincaré–Lyapunov theorem for RFDEs

In this subsection, we consider the continuous map h : R × C([−r, 0], Rn) ⊃ R × U0 → Rn

used in Subsection 8.2 and a map

N : R × C([−r, 0], R
n) → R

n

with the following properties:
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• For each t ∈ R, the map N(t) : C([−r, 0], Rn) → Rn defined by

N(t)φ := N(t, φ)

for φ ∈ C([−r, 0], Rn) is a bounded linear operator.

• R ∋ t 7→ N(t) ∈ B(C([−r, 0], Rn), Rn) is continuous.

• limt→∞ ∥N(t)∥ = 0 holds.

We note that the map N with the above properties is continuous.

Lemma 8.4. Suppose that f satisfies dom( f ) = R × U0 and f (t, φ) = N(t)φ + h(t, φ) for all

(t, φ) ∈ R × U0. Then for every ε > 0, there exist a ∈ R and δ̃ > 0 such that

| f (t, φ)| ≤ ε∥φ∥

holds for all t ≥ a and all ∥φ∥ < δ̃.

Proof. Let ε > 0 be given. Then we can choose a ∈ R and δ̃ > 0 with the following properties:

• ∥N(t)∥ < ε/2 holds for all t ≥ a.

• For all φ ∈ C([−r, 0], Rn), ∥φ∥ < δ̃ implies φ ∈ U0.

• |h(t, φ)| ≤ (ε/2)∥φ∥ holds for all t ∈ R and all ∥φ∥ < δ̃.

Then for all t ≥ a and all ∥φ∥ < δ̃,

| f (t, φ)| ≤ ∥N(t)∥∥φ∥+ |h(t, φ)| ≤ ε∥φ∥

holds.

Lemma 8.5. Suppose that f satisfies dom( f ) = R × U0 and f (t, φ) = N(t)φ + h(t, φ) for all

(t, φ) ∈ R × U0. Let σ ∈ R be given. Then for every ε > 0, there exist a ∈ R, δ̃ > 0, and a

continuous function R : [σ, ∞) → (0, ∞) with the following properties: (i) R(t) ≤ ε for all t ≥ a, (ii)

there exists an R0 > ε such that R(t) ≤ R0 holds for all t ∈ [σ, a], and (iii)

| f (t, φ)| ≤ R(t)∥φ∥

holds for all t ≥ σ and all ∥φ∥ < δ̃.

Proof. Let ε > 0 be given. In the same way as in the proof of Lemma 8.4, we choose a > 0

and δ̃ > 0. When σ ≥ a, the condition (ii) in Lemma 8.5 is vacuous, and one can choose the

constant function whose value is equal to ε as a function R. When σ < a, we choose R0 > ε so

that

sup
t∈[σ,∞)

∥N(t)∥+
ε

2
< R0.

We note that supt∈[σ,∞) ∥N(t)∥ < ∞ holds because ∥N(t)∥ < ε/2 for all t ≥ a and t 7→ ∥N(t)∥
is continuous. Then the continuous function R : [σ, ∞) → (0, ∞) given by

R(t) := ∥N(t)∥+
ε

2

satisfies the properties (i), (ii), and (iii).
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Theorem 8.6. Suppose that the map f in the RFDE (8.1) satisfies dom( f ) = R × U0 and the

conclusion of Lemma 8.5. If XL is exponentially stable, then for each given σ ∈ R, there exist M ≥ 1,

β > 0, and a neighborhood U of 0 in C([−r, 0], Rn) with the following property: for every t0 ≥ σ,

every φ ∈ U, and every non-continuable solution x of (8.1) under the initial condition xt0 = φ, x is

defined for all t ≥ t0 and satisfies

∥xt∥ ≤ Me−β(t−t0)∥φ∥

for all t ≥ t0.

Proof. From Lemma 7.2 and Theorem 7.3, we choose constants M0 ≥ 1 and α > 0 so that

sup
θ∈[−r,0]

∣∣∣XL(t + θ)
∣∣∣ ≤ M0e−αt (t ∈ R)

and ∥∥∥TL(t)
∥∥∥ ≤ M0e−αt (t ≥ 0)

hold. We also choose an ε > 0 so that

−β := M0ε − α < 0.

For this ε > 0, we choose the a ∈ R, δ̃ > 0, and the continuous function R : [σ, ∞) → (0, ∞) in

Lemma 8.5. We divide the proof into the following cases: (I) σ ≥ a, (II) σ < a.

When (I) σ ≥ a, the completely same argument as in the proof of Theorem 8.2 is valid by

choosing M0 := M. See also Lemma 8.4. Therefore, we only have to consider the case (II)

σ < a. In this case, we further divide the proof into the following steps.

Step 1: Choice of a neighborhood of 0 and a non-continuable solution. Let

M := M0eM0(R0−ε)(a−σ) and δ :=
δ̃

M
.

We define open sets U and Ũ by

U := {φ ∈ C([−r, 0], R
n) : ∥φ∥ < δ},

Ũ :=
{

φ ∈ C([−r, 0], R
n) : ∥φ∥ < δ̃

}
.

Since M > M0 ≥ 1,

U ⊂ Ũ ⊂ U0

holds. We now fix t0 ≥ σ and φ ∈ U, and let x : [t0 − r, t0 + T) → Rn be a non-continuable

solution of the RFDE (8.2)

ẋ(t) = L|Ũ(xt) + f |
R×Ũ(t, xt)

under the initial condition xt0 = φ.

Step 2: Estimate by Gronwall’s inequality. A similar argument as in Step 2 of the proof of

Theorem 8.2 yields that

eα(t−t0)∥xt∥ ≤ M0∥φ∥ exp

(∫ t

t0

M0R(u)du

)
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holds for all t ∈ [t0, t0 + T) by Gronwall’s inequality (see Lemma C.1). This is just obtained by

replacing M and ε with M0 and R(u), respectively. The above inequality means that

∥xt∥ ≤ M0∥φ∥ exp

(∫ t

t0

[M0R(u)− α]du

)

holds for all t ∈ [t0, t0 + T). We now estimate

C(t) := exp

(∫ t

t0

[M0R(u)− α]du

)

from above for t ∈ [t0, t0 + T) by dividing into the following cases:

• Case: t0 + T < a. Since t < a, we have

C(t) ≤ e(M0R0−α)(t−t0)

by the property (ii) in Lemma 8.5. Here the right-hand side is equal to

eM0(R0−ε)(t−t0)e−β(t−t0)

by the choice of β. In view of σ ≤ t0 ≤ t < a, the above is further estimated from above

by

eM0(R0−ε)(a−σ)e−β(t−t0).

Therefore, inequality (8.3)

∥xt∥ ≤ M∥φ∥e−β(t−t0)

holds for all t ∈ [t0, t0 + T) with M = M0eM0(R0−ε)(a−σ).

• Case: t0 + T ≥ a. The integral in C(t) is estimated from above by
∫ a

t0

(M0R0 − α)du +
∫ t

a
(M0ε − α)du = (M0R0 − α)(a − t0) + (−β)(t − a).

Here −β = M0ε − α is used. In view of t − a = (t − t0) + (t0 − a), the above value

becomes

(M0R0 − α + β)(a − t0) + (−β)(t − t0) = M0(R0 − ε)(a − t0) + (−β)(t − t0).

The last term is also estimated from above by

M0(R0 − ε)(a − σ) + (−β)(t − t0)

because of t0 ≥ σ and M0(R0 − ε) > 0. Therefore, inequality (8.3) holds for all t ∈

[t0, t0 + T) with M = M0eM0(R0−ε)(a−σ).

Step 3: Proof by contradiction. We next show that T is equal to ∞, i.e., the non-continuable

solution x is defined on [t0 − r, ∞). We suppose T < ∞ and derive a contradiction. Since

∥xt∥ < δ̃ holds for all t ∈ [t0, t0 + T), we have

|ẋ(t)| ≤ ∥L∥∥xt∥+ | f (t, xt)|

≤ (∥L∥+ R(t))δ̃

< ∞.

We note that the continuous function R is bounded. The remainder of the proof is completely

same as in Step 3 of the proof of Theorem 8.2.

The above steps yield the conclusion.
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As a consequence of Theorem 8.6 and Lemma 8.5, the following Poincaré–Lyapunov theorem

for RFDEs is obtained. See [6, Exercise 2.79] for the theorem for ODEs. In the theorem, we

suppose that dom( f ) = R × U0 and f (t, φ) = N(t)φ + h(t, φ) holds for all (t, φ) ∈ R × U0 in

the RFDE (8.1).

Theorem 8.7. If XL is exponentially stable, then for each given σ ∈ R, there exist M ≥ 1, β > 0,

and a neighborhood U of 0 in C([−r, 0], Rn) with the following property: for every t0 ≥ σ, every

φ ∈ U, and every non-continuable solution x of the RFDE (8.1) under the initial condition xt0 = φ, x

is defined for all t ≥ t0 and satisfies

∥xt∥ ≤ Me−β(t−t0)∥φ∥

for all t ≥ t0.
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A Riemann–Stieltjes integrals with respect to matrix-valued func-

tions

Throughout this appendix, let K = R or C, n ≥ 1 be an integer, and [a, b] be a closed and

bounded interval of R. In this appendix, we study Riemann–Stieltjes integrals with respect

to matrix-valued functions. We refer the reader to [39, Chapter 1] and [31, Appendix D] as

references of Riemann–Stieltjes integrals for scalar-valued functions. See also [24, Section 3.1]

and [14, Section I.1 in Appendix I].

A.1 Definitions

Definition A.1. A finite sequence (xk)
m
k=0 for some integer m ≥ 1 satisfying

a = x0 < x1 < · · · < xm = b

is called a partition of [a, b]. This is also denoted by a symbol P : a = x0 < x1 < · · · < xm = b.

For a finite sequence ξ := (ξk)
m
k=1 satisfying

xk−1 ≤ ξk ≤ xk (k ∈ {1, . . . , m}),

we call a pair (P, ξ) a tagged partition of [a, b]. For the tagged partition (P, ξ), let

|(P, ξ)| := |P| := max
1≤k≤m

(xk − xk−1),

which is called the norm of (P, ξ).

The above terminology of tagged partition comes from [15].
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Definition A.2. Let f , α : [a, b] → Mn(K) be functions. For a tagged partition (P, ξ) of [a, b]

given in Definition A.1, let

S( f ; α, (P, ξ)) :=
m

∑
k=1

[α(xk)− α(xk−1)] f (ξk).

We call S( f ; α, (P, ξ)) the Riemann–Stieltjes sum of f with respect to α under the tagged partition

(P, ξ).

Definition A.3. Let f , α : [a, b] → Mn(K) be functions. We say that f is Riemann–Stieltjes

integrable with respect to α if there exists a J ∈ Mn(K) with the following property: For every

ε > 0, there exists a δ > 0 such that for all tagged partition (P, ξ) of [a, b], |(P, ξ)| < δ implies

|S( f ; α, (P, ξ))− J| < ε.

We note that such a J is unique if it exists. It is called the Riemann–Stieltjes integral of f with

respect to α and is denoted by
∫ b

a dα(x) f (x).

A.1.1 Remarks

Remark A.4. One can also consider a sum

m

∑
k=1

f (ξk)[α(xk)− α(xk−1)],

which is different from S( f ; α, (P, ξ)) in general. If a limit of the above sum as |(P, ξ)| → 0

exists in the sense of Definition A.3, we will write the limit as
∫ b

a f (x)dα(x). By taking the

transpose, (∫ b

a
dα(x) f (x)

)T

=
∫ b

a
f (x)T dα(x)T

holds. Here AT denotes the transpose of a matrix A ∈ Mn(K). When n = 1,

∫ b

a
dα(x) f (x) =

∫ b

a
f (x)dα(x)

holds.

Remark A.5. The notions of the Riemann–Stieltjes sum S( f ; α, (P, ξ)) and the Riemann–Stieltjes

integrability of f with respect to α are also defined for functions

f : [a, b] → K
n and α : [a, b] → Mn(K).

In this case, the sum S( f ; α, (P, ξ)) and the integral
∫ b

a dα(x) f (x) belong to Kn.

A.2 Reduction to scalar-valued case

Since the linear space Mn(K) is finite-dimensional, the operator norm | · | on Mn(K) is equiv-

alent to the norm | · |2 on Mn(K) defined by

|A|2 :=

√
∑

i,j∈{1,...,n}

∣∣ai,j

∣∣2, (A.1)

where ai,j is the (i, j)-component of the matrix A ∈ Mn(K). This means that the notion of

convergence in Mn(K) can be treated component-wise.
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Lemma A.6. Let f , α : [a, b] → Mn(K) be functions. Then the following properties are equivalent:

(a) f is Riemann–Stieltjes integrable with respect to α.

(b) For each column vector f j : [a, b] → Kn of f = ( f1 · · · fn), it is Riemann–Stieltjes integrable

with respect to α.

Furthermore, ∫ b

a
dα(x) f (x) =

(∫ b

a
dα(x) f1(x) · · ·

∫ b

a
dα(x) fn(x)

)

holds when one of the above properties are satisfied.

The proof is based on the definition of the matrix product and on the property that the

operator norm | · | is equivalent to the norm | · |2 given in (A.1). Therefore, we omit the proof.

Lemma A.7. Let f : [a, b] → Kn and α : [a, b] → Mn(K) be functions with f = ( f1, . . . , fn) and

α = (αi,j)i,j∈{1,...,n}. If f j : [a, b] → K is Riemann–Stieltjes integrable with respect to αi,j : [a, b] → K

for every i, j ∈ {1, . . . , n}, then so is f with respect to α. Furthermore,

∫ b

a
dα(x) f (x) =

(
n

∑
j=1

∫ b

a
f j(x)dαi,j(x)

)n

i=1

holds.

Proof. By the definition of the product of a matrix and a vector, the i-th component of

S( f ; α, (P, ξ)) ∈ K
n

is equal to
n

∑
j=1

S( f j; αi,j, (P, ξ)).

Therefore, the conclusion is obtained by the triangle inequality.

The converse of Lemma A.7 does not necessarily hold as the following example shows.

Example A.8. Let n = 2 and g, β : [a, b] → K be given functions. Let

f := (g,−g) : [a, b] → K
2 and α := (β)i,j∈{1,2} : [a, b] → M2(K),

i.e., f1 = f , f2 = − f , and αi,j = β. Then the Riemann–Stieltjes sum of f with respect to

α is equal to 0 under any tagged partition of [a, b]. This means that f is Riemann–Stieltjes

integrable with respect to α for any pair (g, β) of functions.

In view of the above example, the Riemann–Stieltjes integration of vector-valued functions

with respect to matrix-valued functions is not completely reduced to that for scalar-valued

functions. However, it is often useful to reduce the integration to scalar-valued case in view

of Lemma A.7.

A.3 Fundamental results

The following are fundamental results on Riemann–Stieltjes integrals for matrix-valued func-

tions.
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A.3.1 Reversal formula

Theorem A.9. Let f , α : [a, b] → Mn(K) be functions. We define functions f̄ , ᾱ : [−b,−a] → Mn(K)

by

f̄ (y) := f (−y), ᾱ(y) := α(−y)

for y ∈ [−b,−a]. If f is Riemann–Stieltjes integrable with respect to α, then so is f̄ with respect to ᾱ.

Furthermore, ∫ −a

−b
dᾱ(y) f̄ (y) = −

∫ b

a
dα(x) f (x) (A.2)

holds.

We call Eq. (A.2) the reversal formula for Riemann–Stieltjes integrals. The proof is obtained

by returning to the definition of Riemann–Stieltjes integrals. Therefore, it can be omitted.

A.3.2 Integration by parts formula

The following is the integration by parts formula for Riemann–Stieltjes integrals with respect to

matrix-valued functions.

Theorem A.10. Let f , α : [a, b] → Mn(K) be functions. If f is Riemann–Stieltjes integrable with

respect to α, then so is α with respect to f . Furthermore,

∫ b

a
dα(x) f (x) = [α(x) f (x)]bx=a −

∫ b

a
α(x)d f (x)

holds. Here [α(x) f (x)]bx=a := α(b) f (b)− α(a) f (a).

The proof is basically same as the proof for the case n = 1 (i.e., the scalar-valued case). See

[31, Proposition D.3] for the proof of this case. See also [39, Theorems 4a and 4b in Chapter 1].

A.4 Integrability

A.4.1 Matrix-valued functions of bounded variation

We first recall the definition of matrix-valued functions of bounded variation.

Definition A.11. Let α : [a, b] → Mn(K) be a function. For each partition P : a = x0 < x1 <

· · · < xm = b of [a, b], let

Var(α; P) :=
m

∑
k=1

|α(xk)− α(xk−1)|,

which is called the variation of α under the partition P. The value

Var(α) := sup {Var(α; P) : P is a partition of [a, b]}

is called the total variation of α. α is said to be of bounded variation if Var(α) < ∞.

Since the operator norm | · | on Mn(K) and the norm | · |2 on Mn(K) given in (A.1) are

equivalent, a matrix-valued function α : [a, b] → Mn(K) is of bounded variation if and only if

each component function αi,j : [a, b] → K is of bounded variation.
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Remark A.12. Let α : [a, b] → Mn(K) be a function. Then for any c ∈ (a, b),

Var
(
α|[a,c]

)
+ Var

(
α|[c,b]

)
= Var(α) (A.3)

holds. This equality is obtained from

Var
(
α|[a,c]; P1

)
+ Var

(
α|[c,b]; P2

)
= Var(α; P),

where P1 is a partition of [a, c], P2 is a partition of [c, b], and P is the partition of [a, b] obtained

by joining P1 and P2.

Lemma A.13. Let f , α : [a, b] → Mn(K) be functions. If f is Riemann–Stieltjes integrable with

respect to α, then ∣∣∣∣
∫ b

a
dα(x) f (x)

∣∣∣∣ ≤ Var(α) · sup
x∈[a,b]

| f (x)| (A.4)

holds.

Proof. Let (P, ξ) be a tagged partition of [a, b] given in Definition A.1. Since |AB| ≤ |A||B|
holds for any A, B ∈ Mn(K), we have

|S( f ; α, (P, ξ))| ≤
m

∑
k=1

|α(xk)− α(xk−1)|| f (ξk)| ≤ Var(α) · sup
x∈[a,b]

| f (x)|.

Then the remaining proof is essentially same as the scalar-valued case.

Remark A.14. In the completely similar way, (A.4) also holds for any function f : [a, b] →

Kn which is Riemann–Stieltjes integrable with respect to α. This can also be seen from

Lemma A.13 because for any A ∈ Mn(K) of the form

A = (a 0 · · · 0) (a ∈ K
n, 0 ∈ K

n),

|A| = |a| holds.

A.4.2 Integrability of matrix-valued functions

The following is a fundamental theorem on the Riemann–Stieltjes integrability for scalar-

valued functions.

Theorem A.15. Let f , α : [a, b] → K be functions. If f is continuous and α is of bounded variation,

then f is Riemann–Stieltjes integrable with respect to α.

See [31, Theorem D.1] for a proof, which is valid for the case K = C because it does not

use the order structure. By using Theorem A.15, one can obtain the following.

Theorem A.16. Let f , α : [a, b] → Mn(K) be functions. If f is continuous and α is of bounded

variation, then f is Riemann–Stieltjes integrable with respect to α.

Proof. From Lemma A.6, the problem is reduced to the Riemann–Stieltjes integrability of each

column vector of f with respect to α. From Lemma A.7, it is sufficient to show that each

component fi,j : [a, b] → K of f is Riemann–Stieltjes integrable with respect to each component

αi,j : [a, b] → K of α. Since each fi,j is continuous and each αi,j is of bounded variation, the

conclusion is obtained from Theorem A.15.
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The following is the result on additivity of Riemann–Stieltjes integrals with respect to

matrix-valued functions on sub-intervals.

Theorem A.17. Let f : [a, b] → Mn(K) be a continuous function and α : [a, b] → Mn(K) be a

function of bounded variation. Then for any c ∈ (a, b),
∫ b

a
dα(x) f (x) =

∫ c

a
dα(x) f (x) +

∫ b

c
dα(x) f (x)

holds.

The proof is same as that for the case n = 1. See [31, Proposition D.2] for the proof. We

note that the statement can be proved by considering partitions of [a, b] with c ∈ (a, b) as an

intermediate point.

Remark A.18. In Theorem A.17, the assumptions that f is continuous and α is of bounded

variation are essential because these assumptions ensure the existence of three integrals (see

(A.3) and Theorem A.16). Without these assumptions, the integral in the left-hand side does

not necessarily exist even if the integrals in the right-hand side exist. Such a situation will

occur when the functions f and α share a discontinuity at c. See [39, Section 5 in Chapter I]

for the detail.

A.5 Integration with respect to continuously differentiable functions

The following theorem shows a relationship between Riemann–Stieltjes integrals and Riemann

integrals.

Theorem A.19. Let f : [a, b] → Mn(K) be a Riemann integrable function and α : [a, b] → Mn(K)

be a continuously differentiable function. Then f is Riemann–Stieltjes integrable with respect to α, and

∫ b

a
dα(x) f (x) =

∫ b

a
α′(x) f (x)dx

holds. Here the right-hand side is a Riemann integral.

Since the above statement is not mentioned in [39] and [31] even for the case n = 1, we

now give an outline of the proof.

Outline of the proof of Theorem A.19. Let (P, ξ) be a tagged partition of [a, b] given in Defini-

tion A.1. Let

S(α′ f ; (P, ξ)) :=
m

∑
k=1

(xk − xk−1)α
′(ξk) f (ξk).

Since

α(xk)− α(xk−1) =
∫ xk

xk−1

α′(t)dt

holds for each k ∈ {1, . . . , m} by the fundamental theorem of calculus, we have

S( f ; α, (P, ξ))− S(α′ f ; (P, ξ)) =
m

∑
k=1

∫ xk

xk−1

[α′(t)− α′(ξk)]dt · f (ξk).

From this, we also have

∣∣S( f ; α, (P, ξ))− S(α′ f ; (P, ξ))
∣∣ ≤

m

∑
k=1

∫ xk

xk−1

∣∣α′(t)− α′(ξk)
∣∣dt · | f (ξk)|.

By combining this and the uniform continuity of α′, one can obtain the conclusion.
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When n = 1 and K = R, one can use the mean value theorem for the proof of Theo-

rem A.19.

A.6 Integration with respect to absolutely continuous functions

The following theorem should be compared with Theorem A.19.

Theorem A.20. Let f : [a, b] → Mn(K) be a continuous function and α : [a, b] → Mn(K) be an

absolutely continuous function. Then

∫ b

a
dα(x) f (x) =

∫ b

a
α′(x) f (x)dx

holds. Here the right-hand side is a Lebesgue integral.

See [39, Theorem 6a in Chapter I] for the proof of the scalar-valued case. We note that the

existence of the Riemann–Stieltjes integral in the left-hand side is ensured by Theorem A.16

because the absolutely continuous function α is of bounded variation. We also note that the

function [a, b] ∋ x 7→ α′(x) f (x) ∈ Mn(K) is Lebesgue integrable because it is measurable and

∫ b

a

∣∣α′(x) f (x)
∣∣dx ≤

∫ b

a

∣∣α′(x)
∣∣| f (x)|dx ≤

∥∥α′
∥∥

1
∥ f ∥ < ∞

holds.

Since it is interesting to compare the proof of Theorem A.19 and the proof of Theorem A.20,

we now give an outline of the proof.

Outline of the proof of Theorem A.20. Let (P, ξ) be a tagged partition of [a, b] given in Defini-

tion A.1. Since α = α(0) + Vα′,

S( f ; α, (P, ξ)) =
m

∑
k=1

∫ xk

xk−1

α′(t)dt · f (ξk)

holds. Therefore, we have
∫ b

a
α′(x) f (x)dx − S( f ; α, (P, ξ)) =

m

∑
k=1

∫ xk

xk−1

α′(t)[ f (t)− f (ξk)]dt.

In combination with the uniform continuity of f , the conclusion is obtained by taking the limit

as |(P, ξ)| → 0.

A.7 Proof of the theorem on iterated integrals

In this subsection, we give a proof of Theorem 3.8.

Proof of Theorem 3.8. We define a bounded linear operator T : C([a, b], Mn(K)) → Mn(K) by

Tg :=
∫ b

a
dα(x) g(x)

for g ∈ C([a, b], Mn(K)). From Lemma 2.9, the left-hand side of (3.4) is equal to

T
∫ d

c
f ( · , y)dy,

which is also equal to
∫ d

c T f ( · , y)dy since T is a bounded linear operator. By the definition of

T, this integral is equal to the right-hand side of (3.4). This completes the proof.
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B Riesz representation theorem

Throughout this appendix, let K = R or C and let [a, b] be a closed and bounded interval of

R.

The following is the cerebrated Riesz representation theorem.

Theorem B.1. For any continuous linear functional A : C([a, b], K) → K, there exists a function

α : [a, b] → K with the following properties: (i) Var(α) = ∥A∥, (ii) every f ∈ C([a, b], K) is

Riemann–Stieltjes integrable with respect to α, and (iii)

A( f ) =
∫ b

a
f (x)dα(x)

holds for all f ∈ C([a, b], K).

In a proof of Theorem B.1 (e.g., see discussions on [31, Chapter 9]), we construct such a

function α by using a continuous linear extension

Ā : B([a, b], K) → K

of A with
∥∥Ā
∥∥ = ∥A∥. Here B([a, b], K) denotes the linear space of all bounded functions

from [a, b] to K endowed with the supremum norm. Its existence is ensured by the Hahn–

Banach extension theorem in normed spaces (see [40, Theorem 1 in Section 5 of Chapter IV]).

See also [1, Section 4 of Chapter IV].

Remark B.2. The Riemann-Stieltjes integrability of any f ∈ C([a, b], K) with respect to the

constructed function α is also obtained in the proof. This should be compared with Theo-

rem A.15.

The following is a corollary of Theorem B.1.

Corollary B.3. For any integer n ≥ 1 and any continuous linear map A : C([a, b], Kn) → Kn, there

exists a function α : [a, b] → Mn(K) of bounded variation such that

A( f ) =
∫ b

a
dα(x) f (x)

holds for all f ∈ C([a, b], Kn).

Corollary B.3 has been used in the literature of RFDEs (e.g., see [18], [19], [22], and [14]).

We now give the proof of Corollary B.3 because it is not given in these references.

Proof of Corollary B.3. Let (e1, . . . , en) be the standard basis of Kn. For each g ∈ C([a, b], K)

and each j ∈ {1, . . . , n}, let gej ∈ C([a, b], Kn) be defined by

(gej)(x) := g(x)ej

for x ∈ [a, b]. For each i, j ∈ {1, . . . , n}, we define a functional Ai,j : C([a, b], K) → K by

Ai,j(g) := A(gej)i.

Here yi denotes the i-th component of y ∈ Kn. Since Ai,j is a continuous linear functional, one

can choose a function αi,j : [a, b] → K of bounded variation so that

Ai,j(g) =
∫ b

a
g(x)dαi,j(x)
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holds for all g ∈ C([a, b], K) from Theorem B.1. By using f = ∑
n
j=1 f jej for f = ( f1, . . . , fn), we

have

A( f )i =
n

∑
j=1

A( f jej)i =
n

∑
j=1

Ai,j( f j) =
n

∑
j=1

∫ b

a
f j(x)dαi,j(x).

From Lemma A.7, this yields that

A( f ) =
∫ b

a
dα(x) f (x)

holds for all f ∈ C([a, b], Kn) by defining a matrix-valued function α : [a, b] → Mn(K) of

bounded variation by α := (αi,j)i,j. This completes the proof.

C Variants of Gronwall’s inequality

Throughout this appendix, let [a, b] be a closed and bounded interval of R.

C.1 Gronwall’s inequality and its generalization

The following is known as Gronwall’s inequality.

Lemma C.1 (ref. [20]). Let α ∈ R be a constant and β : [a, b] → [0, ∞) be a continuous function. If

a continuous function u : [a, b] → R satisfies

u(t) ≤ α +
∫ t

a
β(s)u(s)ds

for all t ∈ [a, b], then

u(t) ≤ α exp

(∫ t

a
β(s)ds

)

holds for all t ∈ [a, b].

Outline of the proof. To use a technique for scalar homogeneous linear ODEs, let

v(t) :=
∫ t

a
β(s)u(s)ds.

Then the given inequality becomes

v̇(t) ≤ β(t)[v(t) + α] (t ∈ [a, b]),

where the non-negativity of β is used. Since the left-hand side is the derivative of the function

t 7→ v(t) + α, it is natural to consider the derivative of

t 7→ exp

(
−
∫ t

a
β(s)ds

)
[v(t) + α].

Then it holds that this function is monotonically decreasing, which yields the conclusion.

The following is a generalized version of Gronwall’s inequality.
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Lemma C.2 (refs. [19], [20], [22]). Let α : [a, b] → R and β : [a, b] → [0, ∞) be given continuous

functions. If a continuous function u : [a, b] → R satisfies

u(t) ≤ α(t) +
∫ t

a
β(s)u(s)ds

for all t ∈ [a, b], then

u(t) ≤ α(t) +
∫ t

a
α(s)β(s) exp

(∫ t

s
β(τ)dτ

)
ds

holds for all t ∈ [a, b]. Furthermore, if α is monotonically increasing, then

u(t) ≤ α(t) exp

(∫ t

a
β(s)ds

)

holds.

By letting v(t) :=
∫ t

a β(s)u(s)ds, one can obtain

d

dt
exp

(
−
∫ t

a
β(s)ds

)
v(t) ≤ exp

(
−
∫ t

a
β(s)ds

)
β(t)α(t).

Then the first inequality is obtained by integrating both sides in combination with u(t) ≤

α(t) + v(t). See [20, Section I.6], [19, Lemma 3.1 in Section 1.3], and [22, Lemma 3.1 in Sec-

tion 1.3] for the detail of the proof.

C.2 Gronwall’s inequality and RFDEs

In this subsection, let r > 0 and E = (E, ∥·∥) be a normed space. For each continuous function

u : [a − r, b] → E and each t ∈ [a, b], let ut ∈ C([−r, 0], E) be defined by

ut(θ) := u(t + θ) (θ ∈ [−r, 0]).

It holds that the function [a, b] ∋ t 7→ ut ∈ C([−r, 0], E) is continuous.

In the context of RFDEs, it is often convenient to use the following result rather than to

use Gronwall’s inequality directly.

Lemma C.3 (cf. [23]). Let α ∈ R be a constant and β : [a, b] → [0, ∞) be a given continuous function.

If a continuous function u : [a − r, b] → E satisfies

∥u(t)∥ ≤ α +
∫ t

a
β(s)∥us∥ds

for all t ∈ [a, b], then

∥ut∥ ≤ max{∥ua∥, α} exp

(∫ t

a
β(s)ds

)

holds for all t ∈ [a, b].

This should be compared with [23, Lemma 2.1]. We note that the argument of the proof

has appeared in [19, Theorem 1.1 in Chapter 6] and [22, Theorem 1.1 in Chapter 6].

A generalization of Lemma C.3 is possible by using Lemma C.2.
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Lemma C.4. Let α : [a, b] → R and β : [a, b] → [0, ∞) be given continuous functions. If a continuous

function u : [a − r, b] → E satisfies

∥u(t)∥ ≤ α(t) +
∫ t

a
β(s)∥us∥ds

for all t ∈ [a, b] and α is monotonically increasing, then

∥ut∥ ≤ max{∥ua∥, α(t)} exp

(∫ t

a
β(s)ds

)

holds for all t ∈ [a, b].

Proof. Let t ∈ [a, b] be fixed and θ ∈ [−r, 0] be given. When t + θ ≥ a, we have

∥u(t + θ)∥ ≤ α(t + θ) +
∫ t+θ

a
β(s)∥us∥ds

≤ α(t) +
∫ t

a
β(s)∥us∥ds.

Here the property that α is monotonically increasing and the non-negativity of β are used.

When t + θ ≤ a, we have

∥u(t + θ)∥ ≤ ∥ua∥.

By combining the above inequalities, we obtain

∥ut∥ ≤ max{∥ua∥, α(t)}+
∫ t

a
β(s)∥us∥ds.

Since the functions [a, b] ∋ t 7→ ∥ut∥ ∈ [0, ∞) and [a, b] ∋ t 7→ max{∥ua∥, α(t)} ∈ R are

continuous, the conclusion is obtained by applying Lemma C.2.

D Lemmas on fixed point argument

Let E = (E, ∥·∥) be a normed space and r > 0 be a constant. For each γ > 0, let

Yγ :=
{

y ∈ C([−r, ∞), E) : y0 = 0, ∥y∥γ < ∞
}

be a normed space endowed with the norm ∥·∥γ given by

∥y∥γ := sup
t≥0

(e−γt∥yt∥) < ∞.

For the notation ∥yt∥, see Subsection C.2.

Lemma D.1. For any continuous function y : [−r, ∞) → E with y0 = 0,

∥y∥γ = sup
t≥0

(e−γt∥y(t)∥)

holds.
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Proof. Since ∥y(t)∥ ≤ ∥yt∥ holds for all t ≥ 0,

sup
t≥0

(e−γt∥y(t)∥) ≤ ∥y∥γ

holds. The reverse inequality also follows in view of

e−γt∥y(t + θ)∥ = e−γ(t+θ)∥y(t + θ)∥ · eγθ ≤ sup
t≥0

(e−γt∥y(t)∥)

for t ≥ 0 and θ ∈ [−r, 0]. Here y0 = 0 and eγθ ≤ 1 are used.

Lemma D.2. If E is a Banach space, then Yγ is also a Banach space.

Proof. Let (yk)∞
k=1 be a Cauchy sequence in Yγ. We choose ε > 0. Then for all sufficiently large

k, ℓ ≥ 1, we have
∥∥yk − yℓ

∥∥
γ
≤ ε. From Lemma D.1, this means that for all sufficiently large

k, ℓ ≥ 1, ∥∥∥yk(t)− yℓ(t)
∥∥∥ ≤ εeγt

holds for all t ≥ 0. This implies that (yk(t))∞
k=1 is a Cauchy sequence for each t ≥ 0, and

therefore, (yk)∞
k=1 has the limit function y : [−r, ∞) → E with y0 = 0. Since the above relation

shows that the convergence of (yk)∞
k=1 to y is uniform on each closed and bounded interval of

R by taking the limit as ℓ → ∞, the limit function y is continuous. Then it is concluded that

∥∥∥yk − y
∥∥∥

γ
≤ ε

holds for all sufficiently large k ≥ 1, which implies that (yk)∞
k=1 converges to y in Yγ.

E Convolution continued

In this appendix, we discuss the convolution for functions in L1
loc([0, ∞), Mn(K)). The purpose

is to share results on the convolution and their proofs in the literature of RFDEs. The results

discussed here extend the results in Subsection 5.2, but they will not be used in this paper.

See also [25, Proposition A.4, Theorems A.5, A.6, A.7 in Appendix A].

E.1 Convolution for locally essentially bounded functions and locally Lebesgue
integrable functions

We first recall that a function g ∈ L1
loc([0, ∞), Mn(K)) is said to be locally essentially bounded if

ess sup
t∈[0,T]

|g(t)| := inf {M > 0 : |g(t)| ≤ M holds for almost all t ∈ [0, T]}

is finite for all T > 0. Let

L∞
loc([0, ∞), Mn(K)) :=

{
g ∈ L1

loc([0, ∞), Mn(K)) : g is locally essentially bounded
}

,

which is a linear subspace of L1
loc([0, ∞), Mn(K)). As in Definition 5.1, we introduce the

following.
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Definition E.1. For each f ∈ L1
loc([0, ∞), Mn(K)) and each g ∈ L∞

loc([0, ∞), Mn(K)), we define

a function g ∗ f : [0, ∞) → Mn(K) by

(g ∗ f )(t) :=
∫ t

0
g(t − u) f (u)du =

∫ t

0
g(u) f (t − u)du

for t ≥ 0. Here the integrals are Lebesgue integrals. The function g ∗ f is called the convolution

of g and f .

We note that

|(g ∗ f )(t)| ≤ ess sup
u∈[0,t]

|g(u)| ·
∫ t

0
| f (u)|du

holds for all t ≥ 0. The following result should be compared with Lemma 5.2.

Lemma E.2. Let f ∈ L1
loc([0, ∞), Mn(K)) and g ∈ L∞

loc([0, ∞), Mn(K)). Then g ∗ f is continuous.

Outline of the proof. We show the continuity of g ∗ f on [0, T] for each fixed T > 0. We define a

function f̃ : R → Mn(K) by

f̃ (t) :=

{
f (t) (t ∈ dom( f ) ∩ [0, T]),

O (otherwise).

Then f̃ ∈ L1(R, Mn(K)), and

(g ∗ f )(t) =
∫ t

0
g(u) f̃ (t − u)du

holds for all t ∈ [0, T]. We fix t0 ∈ [0, T]. By the reasoning as in the proof of Lemma 3.4, we

have

(g ∗ f )(t)− (g ∗ f )(t0) =
∫ t0

0
g(u)

[
f̃ (t − u)− f̃ (t0 − u)

]
du +

∫ t

t0

g(u) f̃ (t − u)du

for all t ∈ [0, T]. Therefore, the continuity of g ∗ f on [0, T] is obtained by Hölder’s inequality,

the continuity of the translation in L1, and the integrability of f̃ .

E.2 Convolution for locally Lebesgue integrable functions

The notion of convolution in Definition E.1 is not satisfactory in the sense that the condi-

tion on f and g is not symmetry. To introduce the notion of convolution for functions in

L1
loc([0, ∞), Mn(K)), we need the following.

Theorem E.3. Let f , g ∈ L1
loc([0, ∞), Mn(K)) be given. Then the following statements hold:

1. For almost all t > 0, u 7→ g(t − u) f (u) belongs to L1([0, t], Mn(K)).

2. The function g ∗ f defined by

(g ∗ f )(t) :=
∫ t

0
g(t − u) f (u)du

for almost all t ≥ 0 belongs to L1
loc([0, ∞), Mn(K)).
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Figure E.1: The light gray region is the subset A.

3. For all T ≥ 0, ∫ T

0
|(g ∗ f )(t)|dt ≤

(∫ T

0
|g(t)|dt

)
·

(∫ T

0
| f (t)|dt

)

holds.

In the following, we give a direct proof of Theorem E.3 by using Fubini’s theorem and

Tonelli’s theorem for functions on the Euclidean space Rd. See [32, Theorems 3.1 and 3.2 in

Section 3 of Chapter 2] for these statements and their proofs.

A direct proof of Theorem E.3. Let f̄ : R → Mn(K) be the function defined by

f̄ (t) :=

{
f (t) (t ∈ dom( f )),

O (t ∈ R \ dom( f )).

In the same way, we define the function ḡ : R → Mn(K). Then f̄ , ḡ : R → Mn(K) are locally

Lebesgue integrable functions.

Let T > 0 be fixed. The remainder of the proof is divided into the following steps.

Step 1: Setting of triangle region and function. We consider a closed set A of R2 given by

A :=
{
(t, u) ∈ R

2 : t ∈ [0, T], u ∈ [0, t]
}

.

See Fig. E.1 for the picture of A. Then the characteristic function 1A is measurable and

1A(t, u) = 1[0,T](t)1[0,t](u) = 1[0,T](u)1[u,T](t)

holds for all (t, u) ∈ R2. We define a function h : R2 → Mn(K) by

h(t, u) := 1A(t, u)ḡ(t − u) f̄ (u).

Then h is measurable because

R
2 ∋ (t, u) 7→ ḡ(t − u) ∈ Mn(K) and R

2 ∋ (t, u) 7→ f̄ (u) ∈ Mn(K)

are measurable.2 This implies that the function R2 ∋ (t, u) 7→ |h(t, u)| ∈ [0, ∞) is also measur-

able.

Step 2: Application of Tonelli’s theorem. By applying Tonelli’s theorem, the following state-

ments hold:
2See [32, Corollary 3.7 and Proposition 3.9 in Section 3 of Chapter 2] for the results of scalar-valued case.
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• For almost all u ∈ R, the function R ∋ t 7→ |h(t, u)| ∈ [0, ∞) is measurable.

• For almost all t ∈ R, the function R ∋ u 7→ |h(t, u)| ∈ [0, ∞) is measurable.

• The functions

u 7→
∫

R

|h(t, u)|dt ∈ [0, ∞], t 7→
∫

R

|h(t, u)|du ∈ [0, ∞]

are measurable functions defined almost everywhere.

• We have
∫

R

(∫

R

|h(t, u)|dt

)
du =

∫

R

(∫

R

|h(t, u)|du

)
dt =

∫

R2
|h(t, u)|d(t, u)

including the possibility that all the unsigned Lebesgue integrals are ∞.

Step 3: Application of Fubini’s theorem. By Step 2, we have

∫

R2
|h(t, u)|d(t, u) =

∫

R

(∫

R

|h(t, u)|dt

)
du

≤
∫ T

0

(∫ T

u
|ḡ(t − u)|dt

)∣∣ f̄ (u)
∣∣du

≤

(∫ T

0
|g(t)|dt

)
·

(∫ T

0
| f (t)|dt

)
.

Since the last term is finite, it holds that h is integrable. By applying Fubini’s theorem

component-wise, the following statements hold:

• For almost all u ∈ R, the function R ∋ t 7→ h(t, u) ∈ Mn(K) is Lebesgue integrable.

• For almost all t ∈ R, the function R ∋ u 7→ h(t, u) ∈ Mn(K) is Lebesgue integrable.

• The functions

u 7→
∫

R

h(t, u)dt ∈ Mn(K), t 7→
∫

R

h(t, u)du ∈ Mn(K)

belong to L1(R, Mn(K)).

• The equalities

∫

R

(∫

R

h(t, u)dt

)
du =

∫

R

(∫

R

h(t, u)du

)
dt =

∫

R2
h(t, u)d(t, u)

hold.

Step 4: Conclusion. For each t ∈ [0, T],

h(t, u) = g(t − u) f (u)

holds for almost all u ∈ [0, t]. Therefore, for almost all t ∈ [0, T], the function u 7→ g(t− u) f (u)

belongs to L1([0, t], Mn(K)). Furthermore, we have

∫

R

h(t, u)du =
∫ t

0
g(t − u) f (u)du
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for almost all t ∈ [0, T], and it holds that the function

t 7→
∫ t

0
g(t − u) f (u)du

is a Lebesgue integrable function defined almost everywhere on [0, T]. Since T > 0 is arbitrary,

the statements 1 and 2 hold. The statement 3 also holds because we have

∫ T

0
|(g ∗ f )(t)|dt ≤

∫ T

0

(∫ t

0
|g(t − u) f (u)|du

)
dt

=
∫

R

(∫

R

|h(t, u)|du

)
dt

≤

(∫ T

0
|g(t)|dt

)
·

(∫ T

0
| f (t)|dt

)
,

where the calculation in Step 3 is used.

This completes the proof.

Another proof of Theorem E.3. Let T > 0 be fixed. We define f̃ : R → Mn(K) by

f̃ (t) :=

{
f (t) (t ∈ dom( f ) ∩ [0, T]),

O (otherwise).

In the same way, we define the function g̃ : R → Mn(K). Since f̃ , g̃ : R → Mn(K) are Lebesgue

integrable functions, one can prove the following statements as in the scalar-valued case:3

1′. For almost all t ∈ R, the function u 7→ g̃(t − u) f̃ (u) is a Lebesgue integrable function

defined almost everywhere.

2′. The function g̃ ⋆ f̃ defined by

(
g̃ ⋆ f̃

)
(t) :=

∫

R

g̃(t − u) f̃ (u)du

for almost all t ∈ R belongs to L1(R, Mn(K)).

3′. An estimate ∫

R

∣∣(g̃ ⋆ f̃
)
(t)
∣∣dt ≤ ∥g̃∥1 ·

∥∥ f̃
∥∥

1

holds.

1. For each t ∈ [0, T], we have

g̃(t − u) f̃ (u) = g(t − u) f (u)

for almost all u ∈ [0, t]. By combining this and the above statement 1′, it holds that for almost

all t ∈ [0, T], u 7→ g(t − u) f (u) is a Lebesgue integrable function defined almost everywhere

on [0, t]. Since T > 0 is arbitrary, the statement 1 holds.

2. By the definitions of f̃ and g̃,

(
g̃ ⋆ f̃

)
(t) =

∫ t

0
g̃(t − u) f̃ (u)du =

∫ t

0
g(t − u) f (u)du

3See [32, Exercise 21 in Chapter 2] and [30, 8.13 and 8.14 of Chapter 8] for the scalar-valued case.
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holds for all t ∈ dom
(

g̃ ⋆ f̃
)
∩ [0, T]. Since T > 0 is arbitrary, this shows that

t 7→
∫ t

0
g(t − u) f (u)du

is a measurable function defined almost everywhere on [0, ∞) from the statement 2′. Further-

more, we also have

∫ T

0

∣∣∣∣
∫ t

0
g(t − u) f (u)du

∣∣∣∣dt =
∫ T

0

∣∣(g̃ ⋆ f̃
)
(t)
∣∣dt < ∞.

Since T > 0 is arbitrary, the statement 2 holds.

3. By combining the proof of the statement 2 and the inequality in the statement 3′, we

have ∫ T

0
|(g ∗ f )(t)|dt ≤ ∥g̃∥1 ·

∥∥ f̃
∥∥

1

Here
∥∥ f̃
∥∥

1
=
∫ T

0
| f (t)|dt, ∥g̃∥1 =

∫ T

0
|g(t)|dt

holds since f (t) = g(t) = O for t ∈ (−∞, 0) ∪ (T, ∞). Therefore, the inequality in the state-

ment 3 is obtained.

The above proof of Theorem E.3 is not given in [34], [14], [25], and [17]. Based on Theo-

rem E.3, we introduce the following.

Definition E.4. Let f , g ∈ L1
loc([0, ∞), Mn(K)). We call g ∗ f ∈ L1

loc([0, ∞), Mn(K)) in Theo-

rem E.3 defined by

(g ∗ f )(t) :=
∫ t

0
g(t − u) f (u)du =

∫ t

0
g(u) f (t − u)du

the convolution of f and g.

E.3 Convolution under Volterra operator

The convolution for functions in L1
loc([0, ∞), Mn(K)) and the Volterra operator are related in

the following way.

Theorem E.5. For any pair of f , g ∈ L1
loc([0, ∞), Mn(K)),

V(g ∗ f ) = (Vg) ∗ f = g ∗ (V f ) (E.1)

holds.

The above theorem is an extension of Corollary 5.5.

Proof of Theorem E.5. For each t > 0,

V(g ∗ f )(t) =
∫ t

0

(∫ s

0
g(s − u) f (u)du

)
ds



Mild solutions and variation of constants formula for DDEs 73

holds by the definition of convolution for functions in L1
loc([0, ∞), Mn(K)). By applying Fu-

bini’s theorem in a similar way as in the direct proof of Theorem E.3, the right-hand side is

calculated as

∫ t

0

(∫ s

0
g(s − u) f (u)du

)
ds =

∫ t

0

(∫ t

u
g(s − u)ds

)
f (u)du

=
∫ t

0
(Vg)(t − u) f (u)du,

where the last term is equal to [(Vg) ∗ f ](t). Therefore, the integration by parts formula for

matrix-valued absolutely continuous functions (see Theorem 6.13) yields

[(Vg) ∗ f ](t) = [(Vg)(t − u)(V f )(u)]tu=0 +
∫ t

0
g(t − u)(V f )(u)du

= [g ∗ (V f )](t),

where (Vg)(0) = (V f )(0) = O is used. This completes the proof.

Remark E.6. Eq. (E.1) is a special case of the associativity of convolution

(h ∗ g) ∗ f = h ∗ (g ∗ f ) (E.2)

for f , g, h ∈ L1
loc([0, ∞), Mn(K)) because

( f ∗ I)(t) = (I ∗ f )(t) =
∫ t

0
f (s)ds = (V f )(t) (t ≥ 0)

holds for any f ∈ L1
loc([0, ∞), Mn(K)). Here I : [0, ∞) → Mn(K) denote the constant function

whose value is equal to the identity matrix.

The following is a result on the regularity of convolution. It should be compared with

Theorem 5.3.

Theorem E.7. Let f ∈ L1
loc([0, ∞), Mn(K)) and g : [0, ∞) → Mn(K) be a locally absolutely contin-

uous function. Then g ∗ f is expressed by

g ∗ f = V
(

g(0) f + g′ ∗ f
)
. (E.3)

Consequently, g ∗ f is locally absolutely continuous, differentiable almost everywhere, and satisfies

(g ∗ f )′(t) = g(0) f (t) + (g′ ∗ f )(t)

for almost all t ≥ 0.

We note that for a locally absolutely continuous function g : [0, ∞) → Mn(K), the deriva-

tive g′ belongs to L1
loc([0, ∞), Mn(K)). Therefore, the convolution g′ ∗ f makes sense from

Theorem E.3.

Proof of Theorem E.7. Since g = g(0) + Vg′, we obtain

g ∗ f = g(0)V f + (Vg′) ∗ f = g(0)V f + V(g′ ∗ f )

by using Theorem E.5. This yields the expression (E.3) because the Volterra operator is linear.

The remaining properties of g ∗ f are derived by the properties of Volterra operator.
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See also [17, 7.4 Corollary in Chapter 3] for related results.

Remark E.8. From Theorem E.7, we have

(Vg) ∗ f = V(g ∗ f )

for f , g ∈ L1
loc([0, ∞), Mn(K)). We also have

g ∗ (V f ) = V(g ∗ f )

in a similar way.

We note that the statement 2 of Corollary 5.6 also follows by Lemma E.2 and Theorem E.7.
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Abstract. In this paper we consider the Dirichlet problem for quasi-linear second-order
elliptic equation with the m(x)-Laplacian and the strong nonlinearity on the right side
in an unbounded cone-like domain. We study the behavior of weak solutions to the
problem at infinity and we find the sharp exponent of the solution decreasing rate. We
show that the exponent is related to the least eigenvalue of the eigenvalue problem for
the Laplace–Beltrami operator on the unit sphere.
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1 Introduction

In recent years there has been an increasing interest in the study of various mathematical prob-

lems with variable exponent, see e.g. [4, 16, 17, 21–23, 28, 29] and references therein. The basic

properties of variable exponent function spaces were derived by O. Kováčik and J. Rákosník

in [18] and (by different methods) by X.-L. Fan and D. Zhao in [14]. For a comprehensive

survey concerning Lebesgue and Sobolev spaces with variable exponent we refer to [12].

Differential equations and variational problems with m(x)-growth conditions arise from

the study of elastic mechanics, oscillation problem, electrorheological fluids [11,24,25], image

restoration [10], thermistor problem [31] and other. Moreover, the motion of a compressible

fluid in a nonhomogeneous anisotropic porous medium obeys to nonlinear the Darcy law [3].

The model of electrorheological fluids considered in [25] includes an integral of the symmetric

part of gradient in a variable power which is caused by the action of an electromagnetic field.

A similar structure of energy is also presented in the thermorheological model proposed in

[30] for fluids with the stress tensor depending on the temperature. This system can be

referred to as a coupled Boussinesq type sytem for a non-Newtonian fluid.

BCorresponding author. Email: dawi@matman.uwm.edu.pl
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Our interest is in the studying of the behavior of weak solutions to the Dirichlet problem

with boundary condition on the lateral surface of a cone-like unbounded domain at infinity.

For other results in unbounded and bounded cone-like domains we refer to [5–8,27]. We refer

also to some very recent works dealing with complementary aspects [20,26]. These works can

provide some ideas for further investigations in the cone-like domain too. For putting more

emphasis on the effects of a gradient dependent reaction in the principal equation we refer to

[15, 19].

This paper is organized as follows. At first, we formulate the Dirichlet problem in an

unbounded cone-like domain for second order elliptic quasilinear equations with variable

nonlinearity exponent. Then, we introduce notations and function spaces that are used in

the following sections. The main result, Theorem 1.2, is also formulated. In Section 2 we

formulate an eigenvalue problem for the Laplace–Beltrami operator on the unit sphere, a

Friedrichs–Wirtinger type inequality and some auxiliary inequalities and lemmas. In the next

sections local estimate of the weighted Dirichlet integral and local estimate of weak solutions

at infinity are investigated. Finally in Section 5 the power modulus of continuity near the

infinity for weak solutions is considered.

Let B1(O) be the unit ball in R
n, n ≥ 2 with center at the origin O and G ⊂ R

n \ B1(O)

be an unbounded domain with the smooth boundary ∂G. We assume that G ⊃ GR, where GR

is a cone-like domain, GR = {x = (r, ω) ∈ R
n | r ∈ (R, ∞), ω ∈ Ω ⊂ Sn−1, n ≥ 2}, R ≫ 1,

Sn−1 is the unit sphere (see Figure 1.1).

Figure 1.1: An unbounded cone-like domain

We consider the following Dirichlet problem for a quasi-linear elliptic equation with the

variable growth exponent:





− d
dxi

(|∇u|m(x)−2uxi
) + b(x, u,∇u) = 0, x ∈ GR,

u(x) = 0, x ∈ ΓR,

u(x) → 0, as |x| → ∞.

(QL)
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The following conditions will be needed throughout the paper:

(i) 1 < inf{m(x) : x ∈ GR} = m− ≤ m(x) ≤ m+ = sup{m(x) : x ∈ GR} < ∞;

(ii) the function m(x) is Hölder continuous in GR, i.e. there exist a positive constant M and

an exponent α ∈ (0, 1) such that

|m(x)− m(+∞)| ≤ M|x|−α, ∀x ∈ GR,

where m(+∞) = lim|x|→+∞ m(x) = 2;

(iii) b(x, u, ξ) is a Carathéodory function GR × R × R
n → R and

|b(x, u, ξ)| ≤ µ(|u|+ 1)−1|ξ|m(x), 0 ≤ µ <
1

m+
< 1;

(iv) ∂Ω ∈ C1+γ, γ ∈ (0, 1).

We introduce the following notations:

• C : a rotational cone {x1 > r cos ω0
2 };

• ∂C : the lateral surface of C : {x1 = r cos ω0
2 };

• Ω : a domain on the unit sphere Sn−1 with smooth boundary ∂Ω obtained by the inter-

section of the cone C with the sphere Sn−1;

• ∂Ω = ∂C ∩ Sn−1;

• Gb
a = {(r, ω) | a < r < b; ω ∈ Ω} ∩ G : the layer in R

n;

• Γb
a = {(r, ω) | a < r < b; ω ∈ ∂Ω} ∩ ∂G : the lateral surface of layer Gb

a , Γ̺ = Γ∞
̺

and the class of functions

Wloc(GR) = {u : u ∈ W1,1
0 (GR, ΓR), |∇u|m(x) ∈ L1(GR), ∀R ≫ 1},

where W1,1
0 (GR, ΓR) is the Sobolev space of those functions with zero trace on ΓR that, together

with all their first order distributional derivatives, are L1-integrable in GR.

We denote W1
0 (Ω) ≡ W1,2

0 (Ω).

Definition 1.1. A function u(x) ∈ Wloc(GR) such that u(x) → 0 as |x| → ∞ is said to be a

weak solution of problem (QL) provided the integral identity
∫

GR

(
|∇u|m(x)−2uxi

ηxi
+ b(x, u,∇u)η(x)

)
dx = 0 (I I)

holds for all test functions η(x) ∈ Wloc(GR) such that η(x) → 0 as |x| → ∞.

We use the Sobolev embedding theorem for functions ϕ ∈ W
1,q
0

(
G2

1

)
:

(∫

G2
1

|ϕ|ñqdx′
) 1

ñ

≤ C
∫

G2
1

|∇′ϕ|qdx′, ñ =
n

n − 1
, ∀q ≥ 1, (1.1)

where x′ = 1
̺ x, ̺ > R. Our main theorem is the following:

Theorem 1.2. Let u be a weak solution of problem (QL), l = max
{

m(x) : x ∈ G
2̺
̺

}
, λ− be as in

(2.4) and assumption (i)–(iv) be satisfied. Then there exist R ≫ 1 and a positive constant C such that

|u(x)| ≤ C · |x|λ−(1−µ) ∀x ∈ GR. (1.2)
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2 Preliminaries

2.1 Eigenvalue problem

We consider the eigenvalue problem for the Laplace–Beltrami operator ∆ω on the unit sphere

{
∆ωψ + ϑψ = 0, ω ∈ Ω;

ψ(ω) = 0, ω ∈ ∂Ω,
(EVP)

which consists of the determination of all values ϑ (eigenvalues) for which (EVP) has non-zero

weak solutions ψ(ω) 6= 0 (eigenfunctions).

Definition 2.1. A function ψ is said to be a weak solution of problem (EVP) provided that

ψ ∈ W1
0 (Ω) and satisfies the integral identity

∫

Ω

(
1

qi

∂ψ

∂ωi

∂η

∂ωi
− ϑψη

)
dΩ = 0

for all η(ω) ∈ W1
0 (Ω).

Throughout the paper we need only the least positive eigenvalue:

ϑ∗ := inf
ψ∈W1

0 (Ω)\{0}

∫
Ω
|∇ωψ|2dΩ∫
Ω
|ψ|2dΩ

.

For the existence problem of the least positive eigenvalue to problem (EVP) see for example

Section 8.2.3 [9].

2.2 The Friedrichs–Wirtinger type inequality

From the definition of ϑ∗(Ω) we obtain the following Friedrichs–Wirtinger type inequality:

Theorem 2.2. For all ψ ∈ W1
0 (Ω) the inequality

∫

Ω
|ψ|2dΩ ≤

1

ϑ∗

∫

Ω

|∇ωψ|2dΩ (2.1)

holds with the sharp constant 1
ϑ∗

.

Corollary 2.3. Let v(x) ∈ W1
0 (GR). Then for any ̺ > R and for all α

∫

G̺

rα|v|2dx ≤
1

ϑ∗

∫

G̺

rα+2|∇v|2dx (2.2)

provided that the integral on the right is finite.

Proof. Consider the inequality (2.1) for the function u(r, ω). Multiplying it by rα+n−1 and

integrating over r ∈ (̺, ∞), we obtain the desired inequality.
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2.3 Auxiliary integro-differential inequalities

Lemma 2.4 (see Lemma 2.9 in [27]). Let GR be an unbounded cone-like domain and ∇u(̺, ·) ∈
L2(Ω) for almost all ̺ ∈ (R, ∞). Suppose also that

U(̺) =
∫

G̺

r2−n|∇u|2dx < ∞.

Then ∫

Ω

(
̺u

∂u

∂r
+

n − 2

2
u2

) ∣∣∣∣∣
r=̺

dΩ ≥ −
̺

2λ−
U′(̺), (2.3)

where λ− is a negative number connected with ϑ∗ by the equality

λ− =
2 − n −

√
(n − 2)2 + 4ϑ∗

2
. (2.4)

Theorem 2.5 (see Theorem 2.10 in [27]). Suppose that U(̺) is a monotonically decreasing, nonneg-

ative differentiable function defined on [R, ∞), R ≫ 1, satisfying

{
U′(̺) + P(̺)U(̺)− Q(̺) ≤ 0, ̺ > R,

U(R) ≤ U0,
(CP)

where P(̺), Q(̺) are nonnegative continuous functions defined on [R, ∞) and U0 is a constant. Then

U(̺) ≤ U0 exp

(
−
∫ ̺

R
P(σ)dσ

)
+
∫ ̺

R
Q(t) exp

(
−
∫ ̺

t
P(σ)dσ

)
dt.

Now our aim is to estimate the gradient modulus of the problem (QL) solutions at infinity.

Lemma 2.6. Let u(x) be a weak solution of (QL) and assumptions (i)–(iv) hold. Then

|∇u(x)| ≤ M′
1|x|

−1, ∀x ∈ GR, R ≫ 1. (2.5)

We consider the solution u to the problem (QL) in the domain G
̺
̺
2

⊂ GR, ̺ > R. We make

the change of variables x = ̺x′. Then the function z(x′) = u(̺x′) satisfies the problem




− d

dx′i
(̺m−−m(̺x′)|∇′z|m(̺x′)−2zx′i

) + ̺m−b(̺x′, z, ̺−1∇′z) = 0, x′ ∈ G1
1
2

,

z(x′) = 0, x′ ∈ Γ1
1
2

.
(QL′)

We verify that function d(x′) = ̺m−−m(̺x′) is Hölder continuous at infinity.

First of all, by the mean value Lagrange theorem, we have

|̺m−−m(̺x′) − ̺m−−m(+∞)| = |m(+∞)− m(̺x′)| · ̺t ln ̺,

where t is a negative number between m− − m(̺x′) and m− − m(+∞). Hence and by the

Hölder assumption (ii), we get

|d(x′)− d(+∞)| = |̺m−−m(̺x′) − ̺m−−m(+∞)| ≤ M|x′|−α̺−α ln ̺.

Now, using first derivative test, we can conclude that

|a|δ| ln |a|| ≤
1

δe
, |a| < 1, ∀δ > 0. (2.6)
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Thus, we obtain the required

|d(x′)− d(+∞)| ≤
M

αe
|x′|−α.

Further, assumptions (i), (iii) yield:

̺m− |b(̺x′, z, ̺−1∇′z)| ≤ µ|∇′z|m(̺x′), ̺ ≫ 1

and therefore we can apply the X. Fan Theorem 1.2 and Remark 5.2 [13] about a priori estimate

of the gradient modulus of the problem (QL′) solution

max
x′∈G1

1
2

|∇′z| ≤ M′
1.

Returning to variable x and function u(x), we obtain

|∇u| ≤ M′
1̺−1, x ∈ G

̺
̺
2

, ̺ > R.

Setting now |x| = 2
3 ̺ we obtain the required (2.5).

Lemma 2.7. Let u be a weak solution of problem (QL) and assumptions (i)–(iv) be satisfied. Then we

have:
∫

G2R

r2−n|∇u|m(x)dx < ∞,
∫

G2R

r2−n|∇u|2dx < ∞ (2.7)

lim
N→+∞

N−1
∫

G
N+ 1

N
N

r2−n|∇u|m(x)−2u
∂u

∂r
dx = 0. (2.8)

Proof. At first we will show the convergence of the first integral. We set rk = 2k · R,

k = 0, 1, 2, . . . and let ηk ∈ C∞
0 (Grk

) with the following properties:

{
0 ≤ ηk ≤ 1, |∇ηk| ≤ c · r−1

k x ∈ Grk

ηk = 1 x ∈ Grk+1
.

We choose η = uηm+

k as a test function in (I I). Then we obtain:

∫

Grk

|∇u|m(x)ηm+

k dx = −
∫

Grk

(
m+u|∇u|m(x)−2∇u∇ηk · ηm+−1

k + b(x, u, ux) · u · ηm+

k

)
dx. (2.9)

Next, using the Young inequality, with q = m(x)
m(x)−1

, q′ = m(x), we get

m+|u||∇u|m(x)−1 · |∇ηk| · ηm+−1
k =

(
m+|u||∇ηk|η

m+−m(x)
m(x)

k

)
·

(
|∇u|m(x)−1η

m+(m(x)−1)
m(x)

k

)

≤
m

m(x)
+

m(x)
|u|m(x)|∇ηk|

m(x)ηm+−m
k +

m(x)− 1

m(x)
|∇u|m(x)ηm+

k .

Thus, from (2.9) we get

∫

Grk

|∇u|mηm+

k dx ≤ c(m−, m+)
∫

Grk

|u|m|∇ηk|
mη

m+−m(x)
k dx + m+

∫

Grk

|b(x, u, ux)||u|η
m+

k dx.
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Next, using assumption (iii), the inequality above yields

(1 − m+µ)
∫

Grk

|∇u|mηm+

k dx ≤ c(m−, m+)
∫

Grk

|u|m|∇ηk|
m(x)η

m+−m(x)
k dx.

In view of the choice of ηk, we get

(1 − m+µ)
∫

G
rk+2
rk+1

|∇u|mdx ≤ c̃1(m−, m+)
∫

G
rk+1
rk

|u|mr−mdx. (2.10)

We use the fact [2] that any solution u is Hölder continuous in GR:

|u| ≤ H0|x|
−α0 , ∀x ∈ GR.

Hence, by assumption (ii) and because

lim
r→+∞

rr−α
= 1, (2.11)

we can estimate

|u|m(x) ≤ (H0 + 1)m+r−2α0rα0(2−m) = (H0 + 1)m+r−2α0rα0(m(+∞)−m(x))

≤ (H0 + 1)m+r−2α0rα0 Mr−α
≤ C(H0, M, α0, α, m+) · r−2α0 , x ∈ GR;

r−m(x) = r−2 · r2−m(x) ≤ r−2 · rMr−α
≤ C(M, α)r−2.

(2.12)

Hence

|u|m(x) · r−m(x) ≤ C(H0, M, α, α0, m+)r
−2−2α0 , x ∈ GR. (2.13)

In this way, from (2.10)

∫

G
rk+2
rk+1

|∇u|mdx ≤ C2(H0, M, α, α0, m±)
∫

G
rk+1
rk

r−2(α0+1)dx. (2.14)

Multiplying both sides of (2.14) by r2−n
k , by the definition of rk, we find

∫

G
rk+2
rk+1

r2−n|∇u|mdx ≤ C2

∫

G
rk+1
rk

r−2α0−ndx.

Summing up above inequalities for all k = 0, 1, 2, . . . , we obtain

∫

G2R

r2−n|∇u|m(x) ≤ C2

∫

GR

r−2α0−ndx ≤ C2|Ω|
∫ ∞

R
r−2α0−1dr = C3 · R−2α0 . (2.15)

Thus, the convergence of the first integral in (2.7) is proved.

Now we observe that, in virtue of (2.5), (ii) and (2.11), we get

|∇u|2 = |∇u|m(x)|∇u|2−m(x) ≤ C|∇u|m(x)rMr−α
≤ C|∇u|m(x),

which, by (2.15), yields the convergence of the second integral in (2.7).

We shall prove (2.8). Applying the Young inequality with q = m(x)
m(x)−1

, q′ = m(x) we have
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∣∣∣∣
∫

G
N+ 1

N
N

r2−n|∇u|m(x)−2u
∂u

∂r
dx

∣∣∣∣

≤
∫

G
N+ 1

N
N

r2−n|∇u|m(x)−1|u|dx

=
∫

G
N+ 1

N
N

(
r
(3−n)m(x)−1

m(x) |∇u|m(x)−1

)
·

(
r

3−n−m(x)
m(x) |u|

)
dx

≤

(
N +

1

N

)(∫

G
N+ 1

N
N

r2−n|∇u|m(x)dx +
∫

G
N+ 1

N
N

r2−n−m(x)|u|m(x)dx

)
.

We can estimate the first integral using (2.5) and (2.12) in the following way:

∫

G
N+ 1

N
N

r2−n|∇u|m(x)dx ≤ c
∫

G
N+ 1

N
N

r2−n−mdx ≤ C(M, M′
1, α, |Ω|)

∫ N+ 1
N

N

1

r
dr = C ln

(
1 +

1

N 2

)
,

while the second integral using (2.13):

∫

G
N+ 1

N
N

r2−n−m(x)|u|m(x)dx ≤ C
∫ N+ 1

N

N
r2−n · r−2−2α0 · rn−1dr ≤ CN−2α0 .

From above inequalities we get

lim
N→+∞

N−1

∣∣∣∣
∫

G
N+ 1

N
N

r2−n|∇u|m(x)−2u
∂u

∂r
dx

∣∣∣∣

≤ lim
N→+∞

C ·

(
1 +

1

N 2

)
·

{
ln

(
1 +

1

N 2

)
+N−2α0

}
= 0,

which is the required (2.8).

We indicate another consequence of the integral identity (I I) for solutions u to the problem

(QL) which is essentially used in the further consideration.

Lemma 2.8. If assumptions (i)–(iv) are satisfied, then

∫

G̺

r2−n|∇u|m(x) + (2 − n)
∫

G̺

r1−n|∇u|m(x)−2u
∂u

∂r
dx

+
∫

G̺

r2−nub(x, u, ux)dx = −̺2−n
∫

Ω̺

|∇u|m(x)−2u
∂u

∂r
dΩ̺, ∀̺ ≥ 4R ≫ 1. (2.16)

Proof. Let N > ̺ ≥ 4R. On [R, ∞) we consider a Lipschitz piecewise linear function ηN (t)

defined by

ηN (t) =





0, if t ∈ [4R, ̺] ∪ [N + 1
N , ∞),

1, if t ∈ [̺ + 1
N ,N ],

N (t − ̺), if t ∈ [̺, ̺ + 1
N ],

N (N − t) + 1, if t ∈ [N ,N + 1
N ]

=⇒ η′
N (t) =





0, if t ∈ [4R, ̺) ∪ (̺ + 1
N ,N ) ∪ (N + 1

N , ∞),

N , if t ∈ (̺, ̺ + 1
N ),

−N , if t ∈ (N ,N + 1
N )
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and take a test function η(x) = r2−nηN (r)u(x) in the integral identity (I I). Calculating

ηxi
= r2−nηN (r)uxi

+ u(x) ·
(
(2 − n)r1−n xi

r
ηN (r) + r2−n xi

r
η′
N (r)

)
,

we arrive at the equality

∫

G
̺+ 1

N
̺

(
r2−n|∇u|m(x) + (2 − n)r1−n|∇u|m(x)−2u

∂u

∂r
+ r2−nub(x, u, ux)

)
N (r − ̺)dx

+
∫

GN
̺+ 1

N

(
r2−n|∇u|m(x) + (2 − n)r1−n|∇u|m(x)−2u

∂u

∂r
+ r2−nub(x, u, ux)

)
dx

+
∫

G
N+ 1

N
N

(
r2−n|∇u|m(x) + (2 − n)r1−n|∇u|m(x)−2u

∂u

∂r
+ r2−nub(x, u, ux)

)
· [N (N − r) + 1] dx

= −N
∫

G
̺+ 1

N
̺

r2−n|∇u|m(x)−2u
∂u

∂r
dx +N

∫

G
N+ 1

N
N

r2−n|∇u|m(x)−2u
∂u

∂r
dx.

First of all we observe that by assumption (iii) we have ub(x, u, ux) ≤ µ|∇u|m(x).

In virtue of (2.7) it is clearly that

lim
N→+∞

∫

G
̺+ 1

N
̺ ∪G

N+ 1
N

N

r2−n|∇u|m(x)dx = 0,

lim
N→+∞

∫

GN
̺+ 1

N

r2−n|∇u|m(x)dx =
∫

G̺

r2−n|∇u|m(x)dx.
(2.17)

Since

0 ≤
∫

G
̺+ 1

N
̺

r2−n|∇u|m(x) · N (r − ̺)dx ≤
∫

G
̺+ 1

N
̺

r2−n|∇u|m(x)dx,

0 ≤
∫

G
N+ 1

N
N

r2−n|∇u|m(x) · [N (N − r) + 1] dx ≤
∫

G
N+ 1

N
N

r2−n|∇u|m(x)dx,

by (2.17), we get

lim
N→+∞

∫

G
̺+ 1

N
̺

r2−n|∇u|m(x) · N (r − ̺)dx = lim
N→+∞

∫

G
N+ 1

N
N

r2−n|∇u|m(x) · [N (N − r) + 1] dx = 0.

Applying now the Young inequality with q = m(x)
m(x)−1

, q′ = m(x) we have

∣∣∣∣
∫

G̺

r1−n|∇u|m(x)−2u
∂u

∂r
dx

∣∣∣∣ ≤
∫

G̺

r1−n|∇u|m(x)−1|u|dx

=
∫

G̺

(
r
(2−n)m(x)−1

m(x) |∇u|m(x)−1

)
·

(
r

2−m(x)−n
m(x) |u|

)
dx

≤
∫

G̺

r2−n|∇u|m(x)dx +
∫

G̺

r2−m(x)−n|u|m(x)dx

≤ C̺−2α0 , ̺ ∈ (R, ∞),

by (2.13) and (2.15). Consequently

lim
N→+∞

∫

GN
̺+ 1

N

r1−n|∇u|m(x)−2u
∂u

∂r
dx =

∫

G̺

r1−n|∇u|m(x)−2u
∂u

∂r
dx.
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Now we consider the integral

∣∣∣∣
∫

G
N+ 1

N
N

r1−n|∇u|m(x)−2u
∂u

∂r
[N (N − r) + 1] dx

∣∣∣∣ ≤
1

N

∫

G
N+ 1

N
N

r2−n|∇u|m(x)−2|u|

∣∣∣∣
∂u

∂r

∣∣∣∣ dx

and hence, by (2.8)

lim
N→+∞

∫

G
N+ 1

N
N

r1−n|∇u|m(x)−2u
∂u

∂r
[N (N − r) + 1] dx = 0.

Next, because of (2.18),

lim
N→+∞

∫

G
̺+ 1

N
̺

r1−n|∇u|m(x)−2u
∂u

∂r
dx = 0,

and therefore we can apply the L’Hospital rule:

̺ · lim
N→+∞

N ·
∫

G
̺+ 1

N
̺

r1−n|∇u|m(x)−2u
∂u

∂r
dx = ̺ · lim

N→+∞

∫ ̺+ 1
N

̺

(∫
Ω
|∇u|m(x)−2u ∂u

∂r

)
dΩdr

N−1

= ̺2−n
∫

Ω̺

|∇u|m(x)−2u
∂u

∂r
dΩ̺

and

lim
N→+∞

N ·
∫

G
̺+ 1

N
̺

r2−n|∇u|m(x)−2u
∂u

∂r
dx = ̺2−n

∫

Ω̺

|∇u|m(x)−2u
∂u

∂r
dΩ̺.

Hence

lim
N→+∞

∫

G
̺+ 1

N
̺

r1−n|∇u|m(x)−2u
∂u

∂r
N (r − ̺)dx = 0.

3 Local estimate of the weighted Dirichlet integral

Theorem 3.1. Let u be a weak solution of problem (QL) and assumptions (i)–(iv) be satisfied. Let λ−

be as in (2.4). Then there exist R ≫ 1 and a constant C > 0 such that

∫

G̺

r2−n|∇u|2dx ≤ C̺2λ−(1−µ), ∀̺ > R.

Proof. We rewrite the inequality (2.16) in the form:

U(̺) =
∫

G̺

r2−n|∇u|2dx =
∫

G̺

r2−n(|∇u|2 − |∇u|m(x))dx −
∫

G̺

r2−nub(x, u, ux)dx

+ (2 − n)
∫

G̺

r1−n(1 − |∇u|m(x)−2)uurdx + (n − 2)
∫

G̺

r1−nuurdx (3.1)

− ̺2−n
∫

Ω̺

(|∇u|m(x)−2 − 1)uurdΩ̺ − ̺2−n
∫

Ω̺

uurdΩ̺.

Now, we observe that

∫

G̺

r1−nuurdx = −
1

2
̺1−n

∫

Ω̺

u2dΩ̺. (3.2)
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In fact, we get

∫

GN
̺

r1−nuurdx =
∫

Ω

∫ N

̺
uurdrdΩ =

1

2

∫

Ω

∫ N

̺

∂u2

∂r
drdΩ =

1

2

∫

Ω
(u2(N , ω)− u2(̺, ω))dΩ

=
1

2

∫

Ω
u2(N , ω)dΩ −

1

2
̺1−n

∫

Ω̺

u2dΩ̺.

Passing to the limit N → +∞ we obtain (3.2).

By assumption (iii), we get

∣∣∣∣
∫

G̺

r2−nub(x, u, ux)dx

∣∣∣∣ ≤ µ
∫

G̺

r2−n|∇u|2dx + µ
∫

G̺

r2−n
∣∣∣|∇u|m(x) − |∇u|2

∣∣∣ dx.

Hence and from (3.1), (3.2) it follows that

(1 − µ)U(̺) ≤ (1 + µ)
∫

G̺

r2−n
∣∣∣|∇u|m(x) − |∇u|2

∣∣∣ dx

+ (n − 2)
∫

G̺

r1−n
∣∣∣1 − |∇u|m(x)−2

∣∣∣ |u||ur|dx −
n − 2

2
̺1−n

∫

Ω̺

u2dΩ̺

+ ̺2−n
∫

Ω̺

∣∣∣|∇u|m(x)−2 − 1
∣∣∣ |u||ur|dΩ̺ − ̺2−n

∫

Ω̺

uurdΩ̺. (3.3)

Let us estimate the integrals:

I1(̺) =
∫

G̺

r2−n
∣∣∣|∇u|m(x) − |∇u|2

∣∣∣ dx,

I2(̺) =
∫

G̺

r1−n
∣∣∣1 − |∇u|m(x)−2

∣∣∣ |u||ur|dx,

I3(̺) =
∫

Ω̺

∣∣∣|∇u|m(x)−2 − 1
∣∣∣ |u||ur|dΩ̺.

To estimate them we set

F1 = {x : x ∈ G̺, |∇u| < |x|γ},

F2 = {x : x ∈ G̺, |x|γ ≤ |∇u| ≤ M′
1|x|

−1},

where the constant γ < −1 will be defined above.

By assumption (ii) and (2.11) for any x ∈ F1, we get

|∇u|2 + |∇u|m < |x|2γ + |x|γ(m−2) · |x|2γ (3.4)

≤ |x|2γ + |x|−γM|x|−α
· |x|2γ ≤ C1(M, γ, α) · |x|2γ.

In this way ∫

F1

r2−n
∣∣∣|∇u|2 − |∇u|m(x)

∣∣∣ dx ≤ C2 · ̺2γ+2.

Next, (ii) yields for x ∈ F2, that

|∇u|2 + |∇u|m(x) = |∇u|2(1 + |∇u|m(x)−2) (3.5)

≤ |∇u|2(1 + |x|−Mγ|x|−α
) ≤ C3(M, α)|∇u|2,
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because

(m(x)− 2) ln |∇u| ≤ −M|x|−α ln |∇u| ≤ −M|x|−α ln |x|γ.

Hence, once again in virtue of (ii) and by the inequality

∣∣|z|t2 − |z|t1
∣∣ ≤ 1

2
|t2 − t1|(|z|

t1 + |z|t2)| ln |z||, z ∈ R \ {0}, t1 ≥ 0, t2 ≥ 0 (3.6)

(see Proposition 2.1 in [1]), we obtain

∣∣∣|∇u|2 − |∇u|m(x)
∣∣∣ ≤ 1

2
|m(x)− 2|(|∇u|m(x) + |∇u|2)| ln |∇u|| ≤

MC3

2
|x|−α|∇u|2| ln |∇u||.

Applying inequality (2.6) with δ = − α
2γ , we get

| ln |∇u|| ≤ | ln |x|γ| ≤
−2γ

αe
|x|

α
2 x ∈ F2. (3.7)

Eventually, we find that

I1 ≤ C4̺−
α
2 U(̺) + C̺2γ+2. (3.8)

Integrals I2 and I3 are estimated similarly. Arguing as in (3.4), (3.5), we establish that

|∇u|+ |∇u|m(x)−1 ≤ C|x|γ ∀x ∈ F1, (3.9)

|∇u|+ |∇u|m(x)−1 ≤ C|∇u| ∀x ∈ F2. (3.10)

From (3.9) and by our assumption about Hölder continuity we get

∫

F1

r1−n
∣∣∣|1 − |∇u|m(x)−2

∣∣∣ |u||ur|dx ≤ C
∫

F1

r1−n|x|γ|u|dx ≤ C̺γ−α0+1, (3.11)

∫

Ω̺∩F1

∣∣∣|1 − |∇u|m(x)−2
∣∣∣ |u||ur|dΩ̺ ≤ C̺γ−α0+n−1. (3.12)

Repeating steps (3.6)–(3.7) and using (3.10), we have

||∇u|m(x)−1 − |∇u|| ≤ C5|∇u||x|−
α
2 (3.13)

on the set F2. Thus
∫

F2

r1−n
∣∣∣1 − |∇u|m(x)−2

∣∣∣ |ur||u|dx ≤ C
∫

F2

r1−n− α
2 |∇u||u|dx

≤ C̺−
α
2

∫

G̺

r1−n|∇u||u|dx = C̺−
α
2

∫

G̺

(
r1− n

2 |∇u|
)
·
(

r−
n
2 |u|

)
dx

≤ C̺−
α
2

(∫

G̺

r2−n|∇u|2dx

)1/2

·

(∫

G̺

r−nu2dx

)1/2

≤ C̺−
α
2 ·

1

ϑ∗

∫

G̺

r2−n|∇u|2dx

in virtue of the Hardy–Wirtinger inequality (2.2), where ϑ∗ is the smallest positive eigenvalue

of the Dirichlet problem for the Laplace–Beltrami operator in the domain Ω. Using (3.11), we

obtain the estimate

I2 ≤ C̺−
α
2 ·

1

ϑ∗
U(̺) + C̺γ−α0+1. (3.14)

Now, by (3.13), we have

∫

Ω̺∩F2

∣∣∣|∇u|m(x)−2 − 1
∣∣∣ |u||ur|dΩ̺ ≤ C̺−

α
2

∫

Ω̺

|ur||u|dΩ̺.
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Taking into account (3.12) we find that

I3 ≤ C̺−
α
2

∫

Ω̺

|ur||u|dΩ̺ + C̺γ−α0+n−1. (3.15)

Thus, inserting (3.8), (3.14), (3.15) into (3.3), we obtain

(
1 − µ − C̺−

α
2

)
U(̺) ≤ C̺1− α

2

∫

Ω
|ur||u|dΩ

−
n − 2

2

∫

Ω
u2dΩ − ̺

∫

Ω
uurdΩ + C(̺2γ+2 + ̺γ−α0+1). (3.16)

Now we can use Lemma 2.4. Hence, (3.16) takes the following form

(
1 − µ − C̺−

α
2

)
U(̺) ≤

̺

2λ−
U′(̺) + C̺1− α

2

∫

Ω
|∇u||u|dΩ + C(̺2γ+2 + ̺γ−α0+1).

Applying the Cauchy inequality and (2.1), we have

̺
∫

Ω
|u||∇u|dΩ ≤

1

2

∫

Ω
(̺2|∇u|2 + |u|2)dΩ ≤ −c1(ϑ∗)̺U′(̺).

Thus we get

(
1 − µ − C̺−

α
2

)
U(̺) ≤

̺

2λ−
(1 + C̺̃−

α
2 )U′(̺) + C(̺2γ+2 + ̺γ−α0+1)

or

U′(̺)−
2λ−

̺
·

1 − µ − C̺−
α
2

1 + C̺̃−
α
2

U(̺) + 2λ−C ·
̺2γ+1 + ̺γ−α0

1 + C̺̃
−α
2

≤ 0.

In this way we have the Cauchy problem (CP) with

P(̺) = −
2λ−

̺
·

1 − µ − C̺−
α
2

1 + C̺̃−
α
2

,

Q(̺) = −2λ−C ·
̺2γ+1 + ̺γ−α0

1 + C̺̃−
α
2

.

Now we show that U(R) ≤ U0 = const. We can rewrite inequality (3.16) in the following form

(
(1 − µ)− C̺−

α
2

)
U(̺) ≤ (1 + C̺−

α
2 )̺2−n

∫

Ω̺

|∇u||u|dΩ̺

+
n − 2

2
̺1−n

∫

Ω̺

u2dΩ̺ + C(̺2γ+2 + ̺γ−α0+1).

Hence

1 − C̺̃−
α
2

1 + C̺−
α
2

U(̺) ≤
1

1 − µ
̺2−n

∫

Ω̺

|∇u||u|dΩ̺ +
n − 2

2(1 − µ)
̺1−n

∫

Ω̺

u2dΩ̺ +
C̃(̺2γ+2 + ̺γ−α0+1)

1 + C̺−
α
2

.

Since γ < −1 for sufficiently large ̺ ≥ 1, we have

1 − C̺̃−
α
2

1 + C̺−
α
2

≥ 1 − ̺−
α
4 and

C̃(̺2γ+2 + ̺γ−α0+1)

1 + C̺−
α
2

≤ ̺γ+1.
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In this way

(1 − ̺−
α
4 )U(̺) ≤

1

1 − µ

∫

Ω
(̺|∇u||u|+

n − 2

2
u2)dΩ + ̺γ+1.

Hence, from (2.5) it follows that U(R) < ∞.

All assumptions of Theorem 2.5 are satisfied. Since

−P(̺) =
2λ−(1 − µ)

̺
−

2λ−(1 − µ)c2̺−1− α
2

1 + C̺̃−
α
2

≤
2λ−(1 − µ)

̺
− 2λ−(1 − µ)c2̺−1− α

2

it follows that

−
∫ ̺

R
P(σ)dσ ≤ 2λ−(1 − µ)

∫ ̺

R

(
1

σ
− c2σ− α

2 −1

)
dσ ≤ ln

( ̺

R

)2λ−(1−µ)
+ c3(λ−, µ, R, ϑ∗)

which yields

exp

(
−
∫ ̺

R
P(σ)dσ

)
≤ c4 ·

( ̺

R

)2λ−(1−µ)
.

Next, because

Q(̺) ≤ −2Cλ−(̺
2γ+1 + ̺γ−α0),

choosing γ = −1 + 2λ−(1 − µ) we have:

∫ ̺

R
Q(t) exp

(
−
∫ ̺

t
P(σ)dσ

)
dt

≤ −2λ− · c5 · ̺2λ−(1−µ)
∫ ̺

R
(t−1−α0 + t2λ−(1−µ)−1)dt ≤ c6̺2λ−(1−µ).

Eventually, by Theorem 2.5 we get

U(̺) ≤ C̺2λ−(1−µ).

4 Local estimate at infinity

The weak solution of problem (QL) is locally bounded at infinity. More precisely, we have

Theorem 4.1. Let u be a weak solution of problem (QL) and assumptions (i)–(iv) be satisfied. Then

for any k < 0, κ ∈ (1, 2), ̺ > R with R ≫ 1 the inequality

sup
x∈G

2̺
̺κ

|u| ≤ C∗
(

̺−
n
t ‖u‖

t,G
2̺
̺
+ ̺k

)
,

holds, where constant C∗ depends only m+, m−, µ, M, M′
1, α, R, k, n,κ.

Proof. Set

l = max
G

2̺
̺

m(x).

Let us consider the case t ≥ l > 1. We make the coordinate transformation x = ̺x′, ̺ > R in

the integral identity (I I). Let v(x′) = u(̺x′). We choose a test function η as

η(̺x′) = v(x′)vt−l(x′)ζ l(|x′|),
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where v = |v| + ̺k with a certain k < 0, ζ(|x′|) ∈ C∞
0 ([1, 2]) with the property that 0 ≤

ζ(x′) ≤ 1 for x′ ∈ [1, 2]. Then (I I) takes the following form

∫

G2
1

[
vt−l |∇′v|m(̺x′)̺−m(̺x′)

(
1 + (t − l)

|v|

v

)
ζ l

+ lvvt−l |∇′v|m(̺x′)−2̺−m(̺x′)ζ l−1vx′i
ζx′i

+ vvt−lb(̺x′, v, ̺−1vx′)ζ
l

]
dx′ = 0.

Now, in virtue of (t − l) |v|v ≥ 0, it follows that

∫

G2
1

vt−l |∇′v|m(̺x′)̺−m(̺x′)ζ l ≤ l
∫

G2
1

|v|vt−l |∇′v|m(̺x′)−1̺−m(̺x′)ζ l−1|∇′ζ|dx′

+
∫

G2
1

|v|vt−l |b(̺x′, v, ̺−1vx′)|ζ
ldx′.

Now, by assumption (iii) regarding that |v| < v and in virtue of ̺−m(̺x′) ≥ ̺−l we obtain

(1 − µ)
∫

G2
1

vt−l |∇′v|m(̺x′)ζ ldx′ ≤ l
∫

G2
1

vt−l+1|∇′v|m(̺x′)−1̺l−m(̺x′)ζ l−1|∇′ζ|dx′. (4.1)

Next, by assumption (ii) we can estimate for all x′, x′2 ∈ G2
1 :

l − m(̺x′) = m(̺x′2)− m(̺x′) ≤ M̺−α(|x′2|
−α + |x′|−α) ≤ 2M̺−α. (4.2)

This estimation, with regard to (2.11) implies that

̺l−m(̺x′) ≤ ̺2M̺−α
≤ C.

For estimating the integral from the right-hand side of (4.1), we apply the Young inequality

with p = m(̺x′)
m(̺x′)−1

, q = m(̺x′), δ = δ̃
l :

v|∇′v|m(̺x′)−1ζ−1|∇′ζ| =
(
|∇′v|m(̺x′)−1

) (
vζ−1|∇′ζ|

)

≤
δ̃

l
|∇′v|m(̺x′) +

(
δ̃

l

)1−m(̺x′)

· vm(̺x′)ζ−m(̺x′)|∇′ζ|m(̺x′).

Hence, (4.1) takes the following form:

(
1 − µ − δ̃

) ∫

G2
1

vt−l |∇′v|m(̺x′)ζ ldx′ ≤
∫

G2
1

δ̃1−m(̺x′) · lm(̺x′) · vt−l+m(̺x′)ζ l−m(̺x′)|∇′ζ|m(̺x′)dx′.

Choosing δ̃ = 1−µ
2 , we get

∫

G2
1

vt−l |∇′v|m(̺x′)ζ ldx′ ≤
∫

G2
1

(
2l

1 − µ

)m(̺x′)

vt−l+m(̺x′)ζ l−m(̺x′)|∇′ζ|m(̺x′)dx′.

Now we observe that ζ l−m(̺x′) ≤ 1 for x′ ∈ G2
1 , because 0 ≤ ζ ≤ 1 and

(
2l

1−µ

)m(̺x′)
≤
(

2l
1−µ

)l
.

By these arguments, we obtain

∫

G2
1

vt−l |∇′v|m(̺x′)ζ ldx′ ≤ C1

∫

G2
1

vt−l+m(̺x′)|∇′ζ|m(̺x′)dx′, (4.3)
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where C1 =
(

2l
1−µ

)l
. Now our aim is to estimate the integral from the left hand side. For this

purpose we write

|∇′v|l = |∇′v|m(̺x′) · |∇′v|l−m(̺x′).

If |∇′v| ≤ 1, then |∇′v|l ≤ |∇′v|m(̺x′). Let 1 < |∇′v| ≤ M′
1. Hence, by (4.2):

|∇′v|l−m(̺x′) ≤ |∇′v|2M̺−α
≤ M

′2M̺−α

1 ≤ C(M, M′
1, α, R).

Thus

|∇′v|l ≤ C|∇′v|m(̺x′). (4.4)

Further, in virtue of v ≥ ̺k, k < 0, by (2.11), (4.2):

vm(̺x′)−l ≤ ̺k(m−l) ≤ ̺−2M̺−αk ≤ C(M, k, α). (4.5)

From (4.3), (4.4) and (4.5) it follows that

∫

G2
1

vt−l |∇′v|lζ ldx′ ≤ C
∫

G2
1

vt|∇′ζ|m(̺x′)dx′. (4.6)

Applying now the Sobolev embedding theorem’s formula (1.1) for ϕ = v
t
l ζ, q = l, we obtain

‖vtζ l‖ñ,G2
1
≤ C

∫

G2
1

(
tlvt−l |∇′v|lζ l + vt|∇′ζ|l

)
dx′, ñ =

n

n − 1
. (4.7)

Eventually, from (4.6), (4.7):

‖vtζ l‖ñ,G2
1
≤ Ctl

∫

G2
1

vt(|∇′ζ|m(̺x′) + |∇′ζ|l)dx′. (4.8)

For any κ ∈ (1, 2) we define sets G′
(j) ≡ G2

κ−(κ−1)2−j , j = 0, 1, 2, . . . We see at once that

G2
κ
≡ G′

(∞) ⊂ . . . ⊂ G′
(j+1) ⊂ G′

(j) ⊂ . . . ⊂ G′
(0) ≡ G2

1 .

Now we consider the sequence of cut-off functions ζ j(x′) ∈ C∞(G′
(j)) such that

0 ≤ ζ j(x′) ≤ 1 in G′
(j) and ζ j(x′) ≡ 1 in G′

(j+1),

ζ j(x′) ≡ 0 for 1 < |x′| < κ − 2−j(κ − 1);

|∇ζ ′j| ≤
2j+1

κ − 1
for κ − 2−j(κ − 1) < |x′| < κ − 2−j−1(κ − 1)

and the number sequence tj = tñj, j = 0, 1, 2, . . . . We rewrite the inequality (4.8) replacing ζ

by ζ j and t by tj. As a result, by virtue of properties of functions ζ j, we obtain

(∫

G′
(j+1)

vñtj dx′

) 1
ñ

≤ Ctl
j

∫

G′
(j)

vtj

(
2j+1

κ − 1

)l

dx′.

Hence, taking tj-th root we get

‖v‖tj+1,G′
(j+1)

≤

(
C

κ − 1

) l
tj

t
l
tj

j 2
(j+1)l

tj ‖v‖tj,G
′
(j)

.
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After iteration process we find

‖v‖tj+1,G′
(j+1)

≤

(
Ct

κ − 1

)l ∑
∞
j=0

1
tj

(
n

n − 1

)l ∑
∞
j=0

j
tj

2
l

∞

∑
j=0

j+1
tj
‖v‖t,G2

1
.

The series ∑
∞
j=0

j
tj

, ∑
∞
j=0

j+1
tj

are convergent according to the d’Alembert ratio test, while the

series ∑
∞
j=0

1
tj
= 1

t · ∑
∞
j=0

(
n−1

n

)j
= n

t as a geometric series. Hence, letting j → ∞, we obtain

sup
x∈G2

κ

v ≤
C∗

(κ − 1)
l·n
t

‖v‖t,G2
1
.

Thus, by the definition of v, we obtain the required estimate.

5 The power modulus of continuity near infinity for weak solutions

By Theorem 4.1 with t = 2, we have

sup
x∈G

2̺
3
2 ̺

|u| ≤ C∗
(

̺−
n
2 ‖u‖

2,G
2̺
̺
+ ̺k

)
.

We can observe that

̺−
n
2 ‖u‖

2,G
2̺
̺
≤ 2

n
2

(∫

G
2̺
̺

r−nu2dx

) 1
2

.

Then, by (2.2) we get

sup
x∈G

2̺
3
2 ̺

|u| ≤ C∗ ·

{(∫

G
2̺
̺

r−nu2dx

) 1
2

+ ̺k

}
≤ C̃∗ ·

{(∫

G
2̺
̺

r2−n|∇u|2dx

) 1
2

+ ̺k

}
.

Next, by Theorem 3.1, choosing k = λ−(1 − µ) we obtain

sup
x∈G

2̺
3
2 ̺

|u(x)| ≤ C̺λ−(1−µ).

Putting now |x| = 7
4 ̺ we eventually obtain the desired estimate (1.2).
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1 Introduction

Singular perturbation problems with small parameters have been used in many fields such as

chemical kinetics [14], semiconductor simulation [16], and radio engineering [5, 18, 20]. The

singular perturbed differential equation considered in this paper is obtained by transforming

and dimensionless the differential equation controlling the enzyme kinetic reaction [4, 15, 18].

Using boundary layer function method [18], the first or higher order approximate solution of

the problem can provide stronger theoretical support for obtaining the approximate value of

enzyme concentration, substrate concentration and intermediate enzyme mixture concentra-

tion.

It is well known that the reduction equations for singularly perturbed systems usually

have isolated roots. However, the degenerate equation of singularly perturbed problem con-

sidered in this paper has no isolated root. Instead, it has a series of solutions that depend on

one or more parameters. This case will be called the critical case [17]. Compared with the

singularly perturbed problem in the non-critical case, the singularly perturbed problem in the

critical case is not only difficult to find, but also very complicated in the calculation process.

Its complexity lies in the need to solve the following three difficulties in the calculation pro-

cess: first, the zero-degree regular approximation solution is an unknown arbitrary function,

BCorresponding author. Email: wangna1621@126.com
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which needs to be obtained through the following conditions; secondly, the solution process

of the zero-order boundary layer is also very complicated. Finally, appropriate diagonaliza-

tion should be found for the subsequent k-order boundary layer part to reduce the coupling

degree of the equation.

The research methods of singular perturbation critical problems mainly include bound-

ary layer function method [17, 18], that is, the solution is separated by fast scale and slow

scale. The fast scale is the boundary layer part, and the slow scale is the regular part. The two

parts are solved separately to construct the formal asymptotic solution. In addition, unlike the

boundary layer function method, in the literature [9], the authors use orthogonal projectors on

ker A(t) and ker A(t)′(the prime denotes the transposition) for an asymptotic approximation,

where A(t) is a singular matrix in front of the unknown function at the right end of the singu-

lar perturbation equation. Through the theory of boundary layer function method, Vasil’eva

and Butuzov [17] were the first to study initial value problems for singularly perturbed sys-

tems in the critical case. Subsequently, Vasil’eva and Adelaida [19], Dontchev and Veliov [3],

Wang [21], Karandjulov [8], Kurina and Thi Hoai [10] generalized the results of singularly

perturbed in the critical case. As far as we know, only Dirichlet or Neumann boundary value

conditions are discussed in the above problems, and Robin boundary value conditions are

not studied. In general, Robin boundary value conditions are a combination of Dirichlet and

Neumann boundary value conditions. The singularly perturbed Robin boundary value prob-

lem in the critical case will result in that the initial value or boundary value corresponding

to the differential equation of any order asymptotic term cannot be given directly, but must

be obtained indirectly through certain techniques. In the past several decades, authors of

[1, 2, 6, 7, 11, 12, 22, 23] discussed the singularly perturbed Robin boundary value problem for

various noncritical cases.

However, until now, from what we understand, there is no literature talking about the

singular perturbation problem in critical cases with Robin boundary value conditions seri-

ously so far. Motivated by these issues, we fill in the gaps of this class of problems, giving

corresponding asymptotic expansions and numerical examples in this paper.

The structure of the paper is as follows. In Section 2 we discuss singularly perturbed crit-

ical cases with Robin boundary value conditions. In the next section, we determine all terms

of the asymptotic expansion of the system (2.1)–(2.2) using boundary layer function theory.

Based on the successive approximation principle, section 4 proves the existence, uniqueness,

and remainder estimation of the solutions to problems (2.1)–(2.2). Section 5 illustrates our

results with an example. The last section gives concluding remarks.

2 Problem formulation

We consider a class of nonlinear singularly perturbed systems in critical case



























µ
dx

dt
= A(y, µz, t)z + µB(y, z, t),

µ
dy

dt
= C(x, y, t) + µD(y, z, t), a ≤ t ≤ b,

µ
dz

dt
= F(µx, y, t)z + µH(y, z, t),

(2.1)
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then, add the corresponding Robin initial and boundary value conditions as follows

y(a, µ)− µy′(a, µ) = y0, x(b, µ) + x′(b, µ) = x1,

z(a, µ)− µz′(a, µ) = z0.
(2.2)

Where x, y, and z are scalar functions, and 0 < µ ≪ 1 is a small parameter. y0, x1, and z0 are

given known initial boundary values.

The following assumptions are theoretically some basic assumptions of questions (2.1)–

(2.2).

[H1] Suppose that the functions A, B, C, D, F, and H are sufficiently smooth for a ≤ t ≤
b, |x| ≤ l, |y| ≤ l, and |z| ≤ l, where l is some real numbers.

[H2] Suppose that Cx ̸= 0, Cy < 0, F < 0.

[H3] Suppose that the degradation equation of the system (2.1) is















A(ȳ, 0, t)z̄ = 0,

C(x̄, ȳ, t) = 0,

F(0, ȳ, t)z̄ = 0,

(2.3)

we suppose that the system (2.3) has a series of solutions

x̄(t) = ω(t), ȳ(t) = β(ω(t), t), z̄(t) = 0, (2.4)

where ω(t) is an arbitrary scalar function and β(ω(t), t) is a function with respect to

ω(t).

Set

W =





A(y, µz, t)z + µB(y, z, t)
C(x, y, t) + µD(y, z, t)

F(µx, y, t)z + µH(y, z, t)



, u = (x, y, z)T;

Then the Jacobian matrix Wu at the equilibrium point x = x∗, y = y∗, z = z∗ has the following

form

Wu =





0 0 A

Cx Cy 0

0 0 F



.

Therefore, it is easy to get the eigenvalue λ ≡ 0 of the matrix Wu and the other two

eigenvalues λ1 = Cy < 0, λ2 = F < 0. According to the eigenvalues corresponding to the

equilibrium point, λ ≡ 0 corresponds to the critical case, while the other two eigenvalues

λ1,2 < 0 correspond to the stable equilibrium position. At the same time, the above case

is called critically stable case in singular perturbation problems. Therefore, we can use the

boundary layer function method [18] in the stable case, and because λ1,2 < 0, it is easy to find

that the boundary function decays exponentially. Given the assumption that the condition [H2]
and the initial value condition (2.2) hold, the solutions x(t, µ), y(t, µ) and z(t, µ) generally only

produce boundary layers near t = a.
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3 Construction of asymptotic solution

The asymptotic approximation of problems (2.1)–(2.2) constructed by the boundary layer func-

tion method [18] will have the following form

u(t, µ) =











































x =
∞

∑
k=0

µk[x̄k(t) + Lkx(τ0)],

y =
∞

∑
k=0

µk[ȳk(t) + Lky(τ0)],

z =
∞

∑
k=0

µk[z̄k(t) + Lkz(τ0)],

(3.1)

where τ0 = t−a
µ ; x̄k(t), ȳk(t), and z̄k(t)(a < t ≤ b) are coefficients of regular terms; Lkx(τ0),

Lky(τ0), and Lkz(τ0)(τ0 ≥ 0) are coefficients of boundary layer terms at t = a; By the initial

and boundary value conditions, we obtain

x̄0(b) + x̄′0(b) = x1, x̄k(b) + x̄′k(b) = 0,

ȳ0(a) + L0y(0)− L0y′(0) = y0, ȳk(a) + Lky(0) = ȳ′k−1(a) + Lky′(0),

z̄0(a) + L0z(0)− L0z′(0) = z0, z̄k(a) + Lkz(0) = z̄′k−1(a) + Lkz′(0).

Set

x̄(t, µ) =
k

∑
i=0

µi x̄k(t), Lx(τ0, µ) =
k

∑
i=0

µiLkx(τ0);

ȳ(t, µ) =
k

∑
i=0

µiȳk(t), Ly(τ0, µ) =
k

∑
i=0

µiLky(τ0);

z̄(t, µ) =
k

∑
i=0

µi z̄k(t), Lz(τ0, µ) =
k

∑
i=0

µiLkz(τ0).

(3.2)

Substituting equations (3.2) into equations (2.1), the following form can be obtained ac-

cording to scale separation:

µ
dx̄

dt
+

dLx

dτ0
= Ā + µB̄ + LA + µLB,

µ
dȳ

dt
+

dLy

dτ0
= C̄ + µD̄ + LC + µLD,

µ
dz̄

dt
+

dLz

dτ0
= F̄ + µH̄ + LF + µLH,

with

Ā + µB̄ = A(ȳ(t, µ), µz̄(t, µ), t)z̄(t, µ) + µB(ȳ(t, µ), z̄(t, µ), t),

C̄ + µD̄ = C(x̄(t, µ), ȳ(t, µ), t) + µD(ȳ(t, µ), z̄(t, µ), t),

F̄ + µH̄ = F(µx̄(t, µ), ȳ(t, µ), t)z̄(t, µ) + µH(ȳ(t, µ), z̄(t, µ), t),

LA = A(ȳ(µτ0 + a, µ) + Ly(τ0, µ), µz̄(µτ0 + a, µ) + µLz(τ0, µ), µτ0 + a)(Lz(τ0, µ)

+z̄(µτ0 + a, µ))− A(ȳ(µτ0 + a, µ), µz̄(µτ0 + a, µ), µτ0 + a)z̄(µτ0 + a, µ),

µLB = µB(ȳ(µτ0 + a, µ) + Ly(τ0, µ), z̄(µτ0 + a, µ) + Lz(τ0, µ), µτ0 + a)

− µB(ȳ(µτ0 + a, µ), z̄(µτ0 + a, µ), µτ0 + a),
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LC = (x̄(µτ0 + a, µ) + Lx(τ0, µ), ȳ(µτ0 + a, µ) + Ly(τ0, µ), µτ0 + a)

− C(x̄(µτ0 + a, µ), ȳ(µτ0 + a, µ), µτ0 + a),

µLD = µD(ȳ(µτ0 + a, µ) + Ly(τ0, µ), z̄(µτ0 + a, µ) + Lz(τ0, µ), µτ0 + a)

− µD(ȳ(µτ0 + a, µ), z̄(µτ0 + a, µ), µτ0 + a),

LF = F(µx̄(µτ0 + a, µ) + µLx(τ0, µ), ȳ(µτ0 + a, µ) + Ly(τ0, µ), µτ0 + a)(Lz(τ0, µ)

+ z̄(µτ0 + a, µ))− F(µx̄(µτ0 + a, µ), ȳ(µτ0 + a, µ), µτ0 + a)z̄(µτ0 + a, µ),

µLH = µH(ȳ(µτ0 + a, µ) + Ly(τ0, µ), z̄(µτ0 + a, µ) + Lz(τ0, µ), µτ0 + a)

− µH(ȳ(µτ0 + a, µ), z̄(µτ0 + a, µ), µτ0 + a).

Secondly, according to the two scales t and τ0, the equations of the regular part and the

boundary layer part are written respectively:



























µ
dx̄

dt
= Ā + µB̄,

µ
dȳ

dt
= C̄ + µD̄,

µ
dz̄

dt
= F̄ + µH̄,

(3.3)































dLx

dτ0
= LA + µLB,

dLy

dτ0
= LC + µLD,

dLz

dτ0
= LF + µLH.

(3.4)

Finally, the right-hand sides of equations (3.3) and (3.4) are expanded into a power series

of µ, and then, according to the same power of µ at both ends of equations (3.3) and (3.4), the

equations for the regular terms ūk(t) (k ⩾ 0) and the boundary layer terms Lku(t) (k ⩾ 0) are

written, respectively.

We consider the zero-order regular part of the asymptotic solution of the form of problems

(2.1)–(2.2) and obtain the zero-order regular parts ū0(t) is the same as the degenerate problem

(2.3)–(2.4)

A(ȳ0, 0, t)z̄0 = 0,

C(x̄0, ȳ0, t) = 0,

F(0, ȳ0, t)z̄0 = 0,

(3.5)

the root of the system of degradation equations (3.5) is

x̄0(t) = ω(t), ȳ0(t) = β(ω(t), t), z̄0(t) = 0. (3.6)

The equations for L0u(τ0) are:

dL0x(τ0)

dτ0
= A(β(ω(a), a) + L0y(τ0), 0, a)L0z(τ0),

dL0y(τ0)

dτ0
= C(ω(a) + L0x(τ0), β(ω(a), a) + L0y(τ0), a)− C(ω(a), β(ω(a), a), a),

dL0z(τ0)

dτ0
= F(0, β(ω(a), a) + L0y(τ0), a)L0z(τ0),

(3.7)
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with the initial and boundary conditions

L0y(0) = L0y′(0)− β(ω(a), a) + y0, ω(b) + ω′(b) = x1,

L0z(0) = L0z′(0) + z0, L0u(+∞) = 0,
(3.8)

where ω(a) is unknown, and the initial value of L0u(0) is arbitrary. We will use this arbitrari-

ness to ensure that L0u(τ0) decays exponentially and satisfies L0u(+∞) = 0.

From (3.7)–(3.8), we have

L0z(τ0) =
z0e

∫ τ0
0 F(0,β(ω(a),a)+L0y(s),a)ds

1 − F(0, β(ω(a), a) + L0y(0), a)
;

L0x(τ0) =
∫ τ0

+∞
A(β(ω(a), a) + L0y(s), 0, a)

z0e
∫ s

0 F(0,β(ω(a),a)+L0y(p),a)dp

1 − F(0, β(ω(a), a) + L0y(0), a)
ds

= ϕ(L0y(τ0), ω(a), L0y(0), a).

(3.9)

At this time, substituting (3.9) into (3.7) the second differential equation and adding the initial

boundary value condition (3.8), the following form can be obtained







dL0y(τ0)

dτ0
= C(ω(a) + ϕ, β(ω(a), a) + L0y(τ0), a)− C(ω(a), β(ω(a), a), a),

L0y(0) = L0y′(0)− β + y0, L0y(+∞) = 0.
(3.10)

[H4] Suppose that equation (3.10) has a root L0y(τ0), which is denoted by

L0y(τ0) = Φ0(τ0, ω(a), L0y(0), a). (3.11)

However, neither ω(a) nor L0y(0) is known. Therefore, L0y(τ0) is not know. After ω(t) is

found, ω(a) and L0y(0) can be determined and thus known. For the currently unknown

functions ω(t) and β(ω, t), we need to determine them in the first approximation equation of

the regular part ū1(t).

For ū1(t), we get

0 = F(0, β(ω, t), t)z̄1 + H(β(ω, t), 0, t),

dω(t)

dt
= A(β(ω, t), 0, t)z̄1 + B(β(ω, t), 0, t),

dβ(ω, t)

dt
= Cx(ω, β(ω, t), t)x̄1 + D(β(ω, t), 0, t) + Cy(ω, β(ω, t), t)ȳ1,

(3.12)

the system of differential equations (3.12) can be rewritten in the following expression

z̄1(t) = − H̄

F̄
= ζ(ω, t),

dω(t)

dt
= Āz̄1 + B̄,

x̄1(t) =
β′ − Cyȳ1 − D

Cx
,

(3.13)

where Ā, B̄ and H̄ are all taken value at the point (β(ω, t), 0, t), F̄ is taken value at the point

(0, β(ω, t), t). Using (3.13) and by taking (3.5) into account, we can determine ω(b) = ω1.

According to the existence of the solution of the boundary value problem, the second first-

order differential equation in (3.13), and the known boundary value condition ω(b) = ω1,

there is a solution ω(t) for a ≤ t ≤ b. Hence, both ω(a) and ȳ0 = β(ω, t) can be determined.

At this time, ū0(t) can be completely determined.
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Substituting (3.10) into (3.8) the first initial value condition, we can determine L0y(0) = ϕ0.

Therefore, L0y(τ0) can be obtained by [H4]. By (3.9) and [H4], we obtain L0z(τ0) and L0x(τ0).

At this time, L0u(τ0) are completely determined. For the first approximation of the regular

part of the system (2.1)–(2.2), equations (3.12) has only been determined z̄1(t), while x̄1(t)
and ȳ1(t) need to be determined by the equation system of the regular parts ū2(t) and the

corresponding boundary value conditions. Next, we need to first determine the first-order

boundary layer terms L1u(τ0) of the asymptotic solution.

The equations for L1u(τ0) are:

dL1x

dτ0
=

⌢

A(β(ω, a) + L0y(τ0), 0, a)L1z(τ0) +
⌢

AyL0z(τ0)L1y(τ0)

+
⌢

AyL0zȳ1(a) + φ1,

dL1y

dτ0
= C̃x(ω(a) + L0x(τ0), β(ω, a) + L0y(τ0), a)L1x(τ0)

+ C̃yL1y(τ0) +
(

C̃x − C̄x

)

x̄1(a) +
(

C̃y − C̄y

)

ȳ1(a) + φ2,

dL1z

dτ0
=

⌣

F(0, β(ω, a) + L0y(τ0), a)L1z(τ0) +
⌣

FyL0z(τ0)L1y(τ0)

+
⌣

FyL0zȳ1(a) + φ3,

(3.14)

where

φ1 =
(

⌢

A − Ā
)

z̄1 +
[

⌢

AzL0z +
⌢

Ayβ′τ0 +
⌢

Atτ0

]

L0z + B̂ − B̄,

φ2 =
[(

C̃x − ¯̄Cx

)

ω′(a) +
(

C̃y − ¯̄Cy

)

β′ +
(

C̃t − ¯̄Ct

)]

τ0 + D̂ − D̄,

φ3 =
(

⌣

F − ¯̄̄F
)

z̄1 +
[

⌣

Fz(ω(a) + L0x) +
(

⌣

Fyβ′ +
⌣

Ft

)

τ0

]

L0z + Ĥ − H̄.

Here B̄, Ā, D̄, H̄ take values at the point (β(ω, a), 0, a), ¯̄Cx, ¯̄Cy, ¯̄Ct take values at the point

(ω(a), β(ω, a), a), ¯̄̄F take values at the point (0, β(ω, a), a),
⌣

F,
⌣

Fy,
⌣

Fz,
⌣

Ft take values at the point

(0, β(ω, a) + L0y(τ0), a),B̂, D̂, Ĥ take values at the point (β(ω, a) + L0y(τ0), L0z(τ0), a), C̃x, C̃y,

C̃t take values at the point (ω(a) + L0x(τ0), β(ω, a) + L0y(τ0), a) and
⌢

A,
⌢

Ay,
⌢

Az,
⌢

At take values

at the point (β(ω, a) + L0y(τ0), 0, a).

The initial and boundary value conditions corresponding to L1u(τ0) are

ȳ1(a) + L1y(0) = ȳ′0(a) + L1y′(0), z̄1(a) + L1z(0) = L1z′(0),

L1u(+∞) = 0, x̄1(b) + x̄′1(b) = 0.
(3.15)

Introduce a diagonal transformation

L1x(τ0) = δ1 +
L0x

L0z
δ3, L1y(τ0) = δ2, L1z(τ0) = δ3, (3.16)

we can get

dδ1

dτ0
= (

⌢

AyL0z −
⌣

FyL0x)δ2 + φ4(ȳ1(a), τ0),

dδ2

dτ0
= C̃x

(

δ1 +
L0x

L0z
δ3

)

+ C̃yδ2 +
(

C̃x − ¯̄Cx

)

x̄1(a)

+
(

C̃y − ¯̄Cy

)

ȳ1(a) + φ2,

dδ3

dτ0
=

⌣

Fδ3 +
⌣

FyL0zδ2 +
⌣

FyL0zȳ1(a) + φ3,

(3.17)
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where φ4(ȳ1(a), τ0) = (
⌢

AyL0z −
⌣

FyL0x)ȳ1(a)+φ1 − L0x
L0z φ3. The initial and boundary conditions

of δ1, δ2 and δ3 are

ȳ1(a) + δ2(0) = ȳ′0(a) + δ2
′(0), z̄1(a) + δ3(0) = δ3

′(0),

δi(+∞) = 0(i = 1, 2, 3), x̄1(b) + x̄′1(b) = 0.
(3.18)

We introduce a new transformation δ1 = δ4 +
⌢

Ay L0z−
⌣

F y L0x

⌣

F y L0z

δ3 so that the equation (3.17) changes

to the following form

dδ2

dτ0
= C̃yδ2 +

⌢

Ay

⌣

Fy

δ3 + C̃xδ4 + φ6,

dδ3

dτ0
=

⌣

Fδ3 +
⌣

FyL0zδ2 +
⌣

FyL0zȳ1(a) + φ3,

dδ4

dτ0
=











⌢

AyL0z −
⌣

FyL0x
⌣

FyL0z





′

+
(
⌢

AyL0z −
⌣

FyL0x)
⌣

F
⌣

FyL0z






δ3 + φ5,

(3.19)

where

φ5 = φ4 − (
⌢

AyL0z −
⌣

FyL0x)ȳ1(a) +

⌢

AyL0z −
⌣

FyL0x
⌣

FyL0z

φ3,

φ6 = (C̃x − ¯̄Cx)x̄1(a) + (C̃y − ¯̄Cy)ȳ1(a) + φ2.

Let us introduce the transformation δ2 = δ5 −
⌣

F
⌣

F y L0z

δ3 again, the system of differential

equations (3.19) changed to the equations (3.20)

dδ3

dτ0
=

⌣

FyL0zδ5 + φ8,

dδ4

dτ0
=

[( ⌢

AyL0z −
⌣

FyL0x
⌣

FyL0z

)′

+
(
⌢

AyL0z −
⌣

FyL0x)
⌣

F
⌣

FyL0z

]

δ3 + φ5,

dδ5

dτ0
=

[ ⌢

AyC̃xL0z − L0z
⌣

F
⌣

FyL0z

+

(

⌣

F
⌣

FyL0z

)′]

δ3 + C̃xδ4 + (C̃y +
⌣

F)δ5 + φ7,

(3.20)

where φ7 = φ6 +
⌣

Fȳ1(a) +
⌣

F
⌣

F y L0z

φ3, φ8 =
⌣

FyL0zȳ1(a) + φ3. From the above two transformations,

we find that the initial value condition (3.20) has the following form

ȳ1(a) + δ5(0) = ȳ′0(a) + δ5
′(0)−

(

⌣

F
⌣

FyL0z

)′

δ3(0)−
⌣

F
⌣

FyL0z

z̄1(a),

z̄1(a) + δ3(0) = δ3
′(0), δi(+∞) = 0 (i = 3, 4, 5), x̄1(b) + x̄′1(b) = 0.

(3.21)

We find that the right end of the first two equations of equation system (3.20) contains only

one unknown function, which greatly reduces the coupling of the right end of the original
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equation system (3.14). Thus, by the system of equations (3.20) and the initial value condition

(3.21), δ3(τ0) and δ4(τ0) can be written as

δ3(τ0) =
∫ τ0

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds,

δ4(τ0) =
∫ τ0

+∞

[( ⌢

Ay(p)L0z(p)−
⌣

Fy(p)L0x(p)
⌣

Fy(p)L0z(p)

)′
∫ p

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds

+
(
⌢

Ay(p)L0z(p)−
⌣

Fy(p)L0x(p))
⌣

F(p)
⌣

Fy(p)L0z(p)

∫ p

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds

+ φ5(ȳ1(a), p)

]

dp.

(3.22)

At the same time, we substitute the expression (3.22) into the last equation of the system of

equations (3.20), and the right end contains only the unknown function δ5(τ0). At this point,

the entire equation is a first-order integral differential equation for δ5(τ0). First, we get the

integral equation for the initial value condition δ5(0)

δ5(0) =
(
⌢

Ay(0)L0z(0)−
⌣

Fy(0)L0x(0))
⌣

F(0)
⌣

Fy(0)L0z(0)(1 − C̃y(0)−
⌣

F(0))

∫ 0

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds

+
∫ 0

+∞

[( ⌢

Ay(p)L0z(p)−
⌣

Fy(p)L0x(p)
⌣

Fy(p)L0z(p)

)′
∫ p

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds

+
(
⌢

Ay(p)L0z(p)−
⌣

Fy(p)L0x(p))
⌣

F(p)
⌣

Fy(p)L0z(p)

∫ p

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds

+ φ5(ȳ1(a), p)

]

dp
C̃x(0)

(1 − C̃y(0)−
⌣

F(0))
+

ȳ′0(a)− ȳ1(a) + φ7(0, ȳ1(a))

(1 − C̃y(0)−
⌣

F(0))
. (3.23)

[H5] Suppose that the integral equation (3.23) can be converted to δ5(0) = ς(a, ȳ1(a)).

Next, we write the integral differential equation for δ5(τ0)

δ5(τ0) =
∫ τ0

0

{[ ⌢

AyC̃xL0z − L0z
⌣

F
⌣

FyL0z

+

(

⌣

F
⌣

FyL0z

)′]
∫ q

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds

+ C̃x

∫ q

+∞

[( ⌢

Ay(p)L0z(p)−
⌣

Fy(p)L0x(p)
⌣

Fy(p)L0z(p)

)′
∫ p

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds

+
(
⌢

Ay(p)L0z(p)−
⌣

Fy(p)L0x(p))
⌣

F(p)
⌣

Fy(p)L0z(p)

∫ p

+∞

⌣

Fy(s)L0z(s)δ5(s) + φ8(ȳ1(a), s)ds

+ φ5(ȳ1(a), p)

]

dp + (C̃y(q) +
⌣

F(q))δ5(q) + φ7(q)

}

dq + ς(a, ȳ1(a)).

(3.24)
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[H6] Suppose that the integral equation (3.24) has a unique solution and can be expressed as

δ5(τ0) = Φ1(τ0, ȳ1(a), a), (3.25)

where ȳ1(a) is unknown. At this time, we can determine ȳ1(t) from the equation of the

regular parts ū2(t).

For ū2(t), we get

dx̄1

dt
= Āz̄2 + Āyȳ1z̄1 + B̄yȳ1 + B̄z z̄1,

dȳ1

dt
= ¯̄Cx x̄2 + ¯̄Cyȳ2 + g2,

dz̄1

dt
= ¯̄̄Fz̄2 +

¯̄̄Fyȳ1z̄1 +
¯̄̄Fx x̄0z̄1 + H̄yȳ1 + H̄z z̄1,

(3.26)

where g2 is known to be a composite function. As for the unknown function x̄1(t), the de-

termination of x̄1(t) is entirely similar to the of x̄0(t) = ω(t). Therefore, utilizing (3.26) and

by taking (3.21) into account, we can determine x̄1(b) = α1. According to the existence of

the solution of the boundary value problem, the first differential equation in (3.26), and the

known boundary value condition x̄1(b) = α1, there is a solution x̄1(t) for a ≤ t ≤ b, thence,

both x̄1(t) and ȳ1(t) can be determined. So far, ū1(t) can be completely determined.

Therefore, ȳ1(a) is known, δ5(τ0) can be obtained by [H6]. At the same time, δ3(τ0) and

δ4(τ0) are determined. At this point, we go backwards along the diagonalization transforma-

tion to determine L1x(τ0), L1y(τ0), and L1z(τ0).

Next, the coefficients ūk(t) and Lku(τ0)(k ≥ 2) of the higher-order asymptotic solutions

are similar to the first-order asymptotic solutions ū1(t) and L1u(τ0). At this point, we need to

write the equations and initial-boundary value conditions to determine ūk+1(t) and Lku(τ0).

The equations for Lku(τ0) are:

dLkx

dτ0
=

⌢

ALkz(τ0) +
⌢

AyL0z(τ0)Lky(τ0) +
⌢

AyL0zȳk(a) + Qk,

dLky

dτ0
= C̃xLkx(τ0) + C̃yLky(τ0) +

(

C̃x − C̄x

)

x̄k(a) +
(

C̃y − C̄y

)

ȳk(a) + Ik,

dLkz

dτ0
=

⌣

FLkz(τ0) +
⌣

FyL0z(τ0)Lky(τ0) +
⌣

FyL0zȳk(a) + Sk,

(3.27)

where Qk, Ik, and Sk are all known composite functions. The initial and boundary conditions

of Lku(τ0) are:

x̄k(b) + x̄′k(b) = 0, Lku(+∞) = 0,

Lky(0) = ȳk−1(a) + Lky′(0)− ȳk(a),

Lkz(0) = z̄k−1(a) + Lkz′(0)− z̄k(a).

(3.28)

The equations for ūk+1(t) are:

dx̄k

dt
= Āz̄k+1 + Āyȳk z̄1 + B̄yȳk + mk+1,

dȳk

dt
= ¯̄Cx x̄k+1 +

¯̄Cyȳk+1 + gk+1,

dz̄k

dt
= ¯̄̄Fz̄k+1 +

¯̄̄Fyȳk z̄1 + H̄yȳk + fk+1,

(3.29)
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where mk+1, gk+1, and fk+1 are all known composite functions. The process of solving these

problems is almost identical to the case of k = 1, so we will not repeat it here. In this way, the

asymptotic expansion (3.1) can be completely determined.

4 The existence of the solution and the remainder estimate

We first introduce a curve L0 in the space of the variables (u, t). The curve L0 is composed of

the following

L01 = {(u, t) : ū0(a) + L0u(τ0), τ0 ≥ 0, t = a}, L02 = {(u, t) : ū0(t), a ≤ t ≤ b},

we denote the projection of L0 onto the space of the variables (u, t) by L̃0.

[H7] Suppose that the functions A, B, C, D, F, and H have continuous partial derivatives con-

cerning each argument up to order (n + 2) inclusive in some δ-tube of L̃0.

We use Un(t, µ) to denote the first n + 1 terms of the series (3.1) and

Un =
n

∑
k=0

µk[ūk(t) + Lku(τ0)]. (4.1)

Theorem 4.1 ([18, 21]). When conditions [H1] ∼ [H7] are met, there must be constants µ0 > 0 and

c > 0, so that when µ ∈ (0, µ0], the solutions x(t, µ), y(t, µ) and z(t, µ) of the problems (2.1) and

(2.2) are lying in a cδ-tube of L0, is unique and satisfies the inequality

|u(t, µ)− Un(t, µ)| ≤ cµn+1, a ≤ t ≤ b. (4.2)

Proof. Let ξ = x − Xn+1, η = y − Yn+1, ρ = z − Zn+1, where (x, y, z) is an exact solution

of the problem (2.1), (2.2), and (Xn+1, Yn+1, Zn+1) is the partial sum of (4.1). Substituting

x = ξ + Xn+1, y = η + Yn+1, z = ρ + Zn+1 into (2.1), (2.2), the equations of the remainder

(ξ, η, ρ) is obtained



























µ
dξ

dt
= A(η + Yn+1, µ(ρ + Zn+1), t)(ρ + Zn+1)− µ

dXn+1

dt
µB(η + Yn+1, ρ + Zn+1, t),

µ
dη

dt
= C(ξ + Xn+1, η + Yn+1, t)− µ

dYn+1

dt
+ µD(η + Yn+1, ρ + Zn+1, t),

µ
dρ

dt
= F(µ(ξ + Xn+1), η + Yn+1, t)(ρ + Zn+1)−µ

dZn+1

dt
+ µH(η + Yn+1, ρ + Zn+1, t),

(4.3)

separating the linear part of the zeroth approximation, we obtain for (ξ, η, ρ) the boundary

value problem on the intervals [a, b], respectively, namely,



























µ
dξ

dt
= A(ȳ0 + L0y, 0, t)ρ + Ay(ȳ0 + L0y, 0, t)η + G1(η, ρ, t, µ),

µ
dη

dt
= Cx(x̄0 + L0x, ȳ0 + L0y, t)ξ + Cy(x̄0 + L0x, ȳ0 + L0y, t)η + G2(ξ, η, t, µ),

µ
dρ

dt
= F(0, ȳ0 + L0y, t)ρ + Fy(0, ȳ0 + L0y, t)η + G3(ξ, η, ρ, t, µ).

(4.4)
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The functions G1, G2 and G3 are

G1(η, ρ, t, µ) = A(η+Yn+1, µ(ρ+Zn+1), t)(ρ+Zn+1)−A(ȳ0 + L0y, 0, t)ρ

− Ay(ȳ0+L0y, 0, t)η − µ
dXn+1

dt
+ µB(η+Yn+1, ρ+Zn+1, t),

G2(ξ, η, t, µ) = C(ξ+Xn+1, η+Yn+1, t)+µD(η+Yn+1, ρ+Zn+1, t)−µ
dYn+1

dt

− Cx(x̄0 + L0x, ȳ0 + L0y, t)ξ − Cy(x̄0 + L0x, ȳ0 + L0y, t)η,

G3(ξ, η, ρ, t, µ) = F(µ(ξ+Xn+1), η+Yn+1, t)(ρ+Zn+1)−F(0, ȳ0+L0y, t)ρ

+ µH(η+Yn+1, ρ+Zn+1, t)−µ
dZn+1

dt
−Fy(0, ȳ0+L0y, t)η.

G1, G2 and G3, which we define having the following two important properties:

I. |G1,2(0, 0, t, µ)| ≤ cµn+2, |G3(0, 0, 0, t, µ)| ≤ cµn+2, where a ≤ t ≤ b, 0 < µ ≤ µ0;

II. For all ε= O(µ) > 0, there are constants δ = δ(ε) and µ0 = µ0(ε) so that as long as

|ξ1| ≤ δ, |ξ2| ≤ δ, |η1| ≤ δ, |η2| ≤ δ, |ρ1| ≤ δ, |ρ2| ≤ δ, 0 < µ ≤ µ0, then for

|G1(η1, ρ1, t, µ)− G1(η2, ρ2, t, µ)| ≤ ε(|η1 − η2|+ |ρ1 − ρ2|),
|G2(ξ1, η1, t, µ)− G2(ξ2, η2, t, µ)| ≤ ε(|ξ1 − ξ2|+ |η1 − η2|),

|G3(ξ1, η1, ρ1, t, µ)− G3(ξ2, η2, ρ2, t, µ)| ≤ ε(|ξ1−ξ2|+|η1−η2|+|ρ1−ρ2|).

Let ξ = υ + L0x
L0z ρ, convert ξ to υ and substitute it in (4.4), we have







































































µ
dυ

dt
=

(

Ay(ȳ0 + L0y, 0, t)− L0x

L0z
Fy(0, ȳ0 + L0y, t)

)

η

+ G1(η, ρ, t, µ)− L0x

L0z
G3

(

υ +
L0x

L0z
ρ, η, ρ, t, µ

)

,

µ
dη

dt
= Cx(x̄0 + L0x, ȳ0 + L0y, t)

L0x

L0z
ρ + Cx(x̄0 + L0x, ȳ0 + L0y, t)υ

+ Cy(x̄0 + L0x, ȳ0 + L0y, t)η + G2

(

υ +
L0x

L0z
ρ, η, t, µ

)

,

µ
dρ

dt
= F(0, ȳ0 + L0y, t)ρ + Fy(0, ȳ0 + L0y, t)η + G3

(

υ +
L0x

L0z
ρ, η, ρ, t, µ

)

.

(4.5)

The initial value condition for υ(t, µ) is of the same type as that for ξ(t, µ). That is, υ(a, µ) =

O
(

µn+2
)

. Then, the first differential equation in (4.5) can be rewritten as an integral equation

υ(t, µ) = O
(

µn+2
)

+
∫ t

0
µ−1

(

G1(η, ρ, s, µ)− L0x

L0z
G3(η, ρ, υ, s, µ)

)

ds

+
∫ t

0
µ−1

(

Ay(ȳ0 + L0y, 0, s)− L0x

L0z
Fy(0, ȳ0 + L0y, s)

)

η(s)ds

= H1(ρ, η, υ, t, µ).

(4.6)

It is not difficult to prove that the integral operator H1(ρ, η, υ, t, µ) has a compression coeffi-

cient of O(u) for ρ, η and υ, and satisfies H1(0, 0, 0, t, µ) = O
(

µn+1
)

.

At this time, we consider the right ends Cxυ + G2 and G3 of the last two equations of

equation (4.5) as non-homogeneous terms, and write them into the equivalent integral equa-

tions. We write the Green’s function of the first two equations in (4.5) as γ(t, s, µ). Under
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the boundary condition η(a, µ) = η(b, µ) = 0, γ is satisfied with the estimate γ(t, s, µ) =

O
(

exp
( κ|s−t|

µ

))

, a ≤ t ≤ b. By the conditions η(a, µ) = O
(

µn+2
)

and η(b, µ) = O
(

µn+2
)

, thus,

the last two equations of equation (4.5) can be replaced with the following integral equations

(

η(t, µ)
ρ(t, µ)

)

= O
(

µn+2
)

+
1

µ

∫ t

0
γ(t, s, µ)

(

Cxυ + G2

G3

)

ds =

(

λ1(ρ, η, υ, t, µ)
λ2(ρ, η, υ, t, µ)

)

, (4.7)

under (4.6) in (4.7), we get

η(t, µ) = λ1(ρ, η, υ, t, µ) ≡ H2(ρ, η, υ, t, µ),

ρ(t, µ) = λ2(ρ, η, υ, t, µ) ≡ H3(ρ, η, υ, t, µ).
(4.8)

Among them, the integral operator H2, H3 is similar to H1.

By using the successive approximation method for the system (4.6), (4.8), we can prove

that when parameter µ0 is sufficient small, there is a unique solution ξ = η = ρ = 0 in the

δ-tube, and meet the estimation of the solution ξ = O
(

µn+1
)

, η = O
(

µn+1
)

, and ρ = O
(

µn+1
)

.

Therefore, ξ = x − Xn+1, η = y − Yn+1 and ρ = z − Zn+1 are all of the order O
(

µn+1
)

.

As a result of u(t, µ)− Un(t, µ) = O
(

µn+1
)

, we obtain the inequality (4.2). This completes

the proof.

5 Illustrative example

Example 5.1. Consider the following system:

µ
dx

dt
= (µz − 1)z + µy, µ

dy

dt
= x − y + µy,

µ
dz

dt
= (µx − 2)z + µy, 0 ≤ t ≤ 1,

(5.1)

with the initial and boundary conditions

y(0, µ)− µy′(0, µ) =
1√

e
− 3

2
, x(1, µ) + x′(1, µ) =

3

2
,

z(0, µ)− µz′(0, µ) = 3.

(5.2)

According to (2.1)–(2.2), we have A = µz − 1, C = x − y, F = µx − 2, B = D = H = y, y0 =
1√

e
− 3

2 , x1 = 3
2 and z0 = 3. It is easy to see that Cx ̸= 0, Cy < 0, F < 0. Then the condition [H2]

is satisfied.

By calculation, we can get

Wu =





0 0 −1

1 −1 0

0 0 −2



,

therefore, it is easy to get the eigenvalue λ ≡ 0 of the matrix Wu and the other two eigenvalues

λ1 = −1 < 0, λ2 = −2 < 0. Thus, we get the case where the critical condition is stable.

By taking µ = 0, we obtain the solution of the degenerated problem on the interval [0, 1],

that is,

x̄0(t) = ω(t), ȳ0(t) = ω(t), z̄0(t) = 0.
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For L0u(τ0) and ū1(t), we have

dL0x

dτ0
= −L0z,

dL0y

dτ0
= L0x − L0y,

dL0z

dτ0
= −2L0z, (5.3)

dω

dt
= ȳ0 − z̄1,

dȳ0

dt
= x̄1 − ȳ1 + ȳ0, ȳ0 = 2z̄1, (5.4)

and zero-order initial boundary value conditions

ω(1) + ω′(1) =
3

2
, L0z(0) = L0z′(0) + 3,

L0y(0) = L0y′(0)− ȳ0(0) +
1√

e
− 3

2
.

(5.5)

After calculation, we can get

L0x(τ0) =
1

2
L0z(τ0) =

1

2
e−2τ0 , L0y(τ0) = −1

2
e−2τ0 ,

x̄0(t) = ȳ0(t) = e
1
2 (t−1), z̄1(t) =

1

2
e

1
2 (t−1).

(5.6)

Therefore, L0u(τ0) satisfies an exponential decay estimation |L0u(τ0)| ≤ C0e−κτ0 , for C0 and κ

are positive constants.

The system for L1u(τ0) and ū2(t), we have

dL1x

dτ0
= L2

0z − L1z + L0y,
dL1y

dτ0
= L1z − L1y + L0y,

dL1z

dτ0
= L0xL0z − 2L1z + L0y.

(5.7)

dx̄1

dt
= −z̄2 + ȳ1,

dȳ1

dt
= x̄2 − ȳ2 + ȳ1,

dz̄1

dt
= x̄0z̄1 − 2z̄2 + ȳ1,

(5.8)

and first-order initial boundary value conditions

ȳ1(0) + L1y(0) = ȳ′0(0) + L1
′y(0), x̄1(1) + x̄′1(1) = 0,

z̄1(0) + L1z(0) = L1
′z(0).

(5.9)

Through calculation, we can get

x̄1(t) = −1

2
e(t−1) +

3

8
te

1
2 (t−1) − 1

24
e

1
2 (t−1),

ȳ1(t) = −1

2
e(t−1) +

3

8
te

1
2 (t−1) +

11

24
e

1
2 (t−1), z̄1(t) =

1

2
e

1
2 (t−1),

L1x(τ0) =

(

1

8
− 1

4
√

e

)

e−2τ0 − 1

4
τ0e−2τ0 − 5

16
e−4τ0 ,

L1z(τ0) = − 1

2
√

e
e−2τ0 − 1

2
τ0e−2τ0 − 1

4
e−4τ0 ,

L1y(τ0) =

(

1

4e
− 5

48
√

e
− 103

96

)

e−τ0+

(

5

8
+

1

4
√

e
+

1

4
τ0

)

e−2τ0 +
5

48
e−4τ0 .

(5.10)
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It is easy to get that L1u(+∞) = 0. Thus, L1u(τ0) satisfies an exponential decay estimation.

Therefore, we construct the first-order approximate solution u = (x y z)T of the system (5.1)–

(5.2). Namely, we have

u(t, µ) =















x(t, µ) = x̄0(t) + L0x(τ0) + µ(x̄1(t) + L1x(τ0)) + O
(

µ2
)

,

y(t, µ) = ȳ0(t) + L0y(τ0) + µ(ȳ1(t) + L1y(τ0)) + O
(

µ2
)

,

z(t, µ) = z̄0(t) + L0z(τ0) + µ(z̄1(t) + L1z(τ0)) + O
(

µ2
)

,

(5.11)

where τ0 =
t − 0

µ
, 0 ≤ t ≤ 1.
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Figure 5.1: Contrast of the exact with the approximate solutions to (5.1) with

boundary condition (5.2) for values of the perturbing parameter µ = 0.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.2

0.4

0.6

0.8

1

1.2

S
o

lv
e

 t
h

e
 v

a
lu

e
s
 o

f 
x
, 

y
 a

n
d

 z

Exact solution x

Exact solution y

Exact solution z

Asymptotic solution x

Asymptotic solution y

Asymptotic solution z

Figure 5.2: Contrast of the exact with the approximate solutions to (5.1) with

boundary condition (5.2) for values of the perturbing parameter µ = 0.01.

Therefore, these results were obtained using the boundary layer function method in [18].

The results obtained by Matlab are given in Figures 5.1 and 5.2. Different line types corre-

sponding to exact and approximate solutions have been marked in the figure. These graphs

show that an asymptotic solution is closer to the exact one if we use higher-order asymptotics.

If we use the small parameter µ to be smaller, the formal asymptotic solution is more approx-

imate to the exact solution. The image of the solution also better illustrates the nature of the

exponential decay of the boundary function.

6 Conclusive remarks

This paper studies a class of nonlinear critical singular perturbation problems with Robin ini-

tial boundary value, the results show that how to obtain the zero-order approximate solution
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and simplify the first-order boundary layer term equation is the key to obtaining the approx-

imate solution of the system. In this paper, the successive approximation method is used to

prove the remainder estimation and the existence and uniqueness of the solution.

Finally, in the process of researching the system (2.1)–(2.2), the following situations were

discovered.

Remark 6.1. When F > 0 and F ̸= 1 in the interval [a, b] of t, the system (2.1) only produces

the right layer, but the solution method is similar to the left boundary layer. And when the

F has a zero point in the interval [a, b], the stability will be in the interval [a, b] has changed,

thus forming a very complicated nonlinear turning point problem. Since the linear turning

point problem is already very complicated, as the nonlinear strength increases, the nonlinear

turning point problem will become more complicated. So this type of problem will be very

challenging. At this time, the boundary layer function method will no longer be applicable,

and it is necessary to find a suitable method to solve it.

Remark 6.2. When the coefficients in front of y′(t, µ) and z′(t, µ) in Robin’s initial boundary

value condition (2.2) do not contain the small parameter µ when the derivative of t is cal-

culated for the boundary layer function, the µ−1 term will appear. So the right end of the

corresponding boundary condition should have the µ−1 term to perform matching, and in the

process of using the boundary layer function method to solve the problem, it should be set to

the following form






















y =
∞

∑
k=−1

[

µk+1ȳk+1(t, µ) + µkLky(τ0, µ)
]

,

z =
∞

∑
k=−1

[

µk+1z̄k+1(t, µ) + µkLkz(τ0, µ)
]

.

(6.1)

But when y and z are substituted into the system (2.1) at this time, A, B, C, D, H, and F

can’t perform Taylor expansion when µ = 0, which contradicts the boundary layer function

method. Therefore, the weak nonlinear problem generally does not produce an infinite initial

boundary value problem.

Remark 6.3. When the initial boundary values (2.2) are all Robin initial conditions, the form

is as follows

y(a, µ)− µy′(a, µ) = y0, x(a, µ) + µx′(a, µ) = x0,

z(a, µ)− µz′(a, µ) = z0,
(6.2)

the process of solving the n-order equations of problem (2.1)–(2.2) does not change, but the

corresponding initial conditions and boundary value conditions change. Through calcula-

tions, we found that the basic process of the solution does not change significantly, but from

first finding the value of x̄(t) at t = b, it becomes possible to find the value of ȳ(t) at t = a,

and L0y(τ0) at the value of τ0 = 0.

Remark 6.4. For system 2.1, because the functions B, D and H at the right end are preceded

by a small parameter µ. Therefore, no matter the form is (z, y, t), (x, y, t) or (x, z, t), system

2.1 is still a critically stable situation, and the corresponding asymptotic solution form and

solution method will not be changed.
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Abstract. We consider the Rayleigh equation ẍ + λ(ẋ2/3 − 1)ẋ + x = 0 depending on
the real parameter λ and construct a Poincaré–Bendixson annulus Aλ in the phase plane
containing the unique limit cycle Γλ of the Rayleigh equation for all λ > 0. The novelty
of this annulus consists in the fact that its boundaries are algebraic curves depending on
λ. The polynomial defining the interior boundary represents a special Dulac–Cherkas
function for the Rayleigh equation which immediately implies that the Rayleigh equa-
tion has at most one limit cycle. The outer boundary is the diffeomorphic image of the
corresponding boundary for the van der Pol equation. Additionally we present some
equations which are linearly topologically equivalent to the Rayleigh equation and pro-
vide also for these equations global algebraic Poincaré–Bendixson annuli.
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1 Introduction

The British physicist and Nobel prize winner J. W. Strutt, better known as Lord Rayleigh,

published fundamental results to a broad spectrum of physical phenomena. In his monograph

“Theory of Sounds” [18] he used the linear differential equation with constant coefficients

d2x

dt2
+ k

dx

dt
+ n2x = 0

for the description of acoustic oscillations of a clarinet. The nonlinear modification of this

equation

d2x

dt2
+ λ

[

(dx

dt

)2/

3 − 1

]

dx

dt
+ x = 0, (1.1)

BCorresponding author. Email: grin@grsu.by
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where λ is a real parameter, is known under the name Rayleigh equation [3, 17]. Its corre-

sponding system

dx

dt
= −y,

dy

dt
= x + λy − λ

y3

3
,

(1.2)

which is invariant under the transformation t → −t, y → −y, λ → −λ has been studied by

several authors [1, 2, 8, 9, 13, 15, 21–23].

The existence of a limit cycle (isolated closed orbit) of a planar autonomous system is

established usually by the construction of an annulus A in the phase plane with the follow-

ing properties: (i). A contains no equilibrium of the system under consideration. (ii). The

boundary of A consists of two simple closed curves (in what follows called ovals) such that

any trajectory of the considered system meeting the boundary of A will enter A either for

increasing or for decreasing t. An annulus with the properties (i) and (ii) is called a Poincaré–

Bendixson annulus since the application of the Poincaré–Bendixson theorem [5, 16] to that

annulus provides the existence of at least one limit cycle in A. The crucial problem in that ap-

proach is the construction of the ovals forming the boundary of A. In numerous publications

(see e.g. [5, 6, 14, 16, 19, 20]) these ovals consist of piecewise smooth curves constructed in a

sophisticated way. In this paper we are concerned with the construction of such ovals which

are differentiable curves having only a finite number of points where the trajectories of the

underlying system touch the ovals. We call such ovals as crossing ovals. Recently, two papers

have been published [7, 10] in which a procedure for the construction of algebraic crossing

ovals for planar polynomial systems is described. For both papers it is characteristic that they

need the approximation of at least one orbit by a polynomial in t. In what follows, we present

an approach to construct algebraic crossing ovales for the Rayleigh system (1.2) and some of

its topologically equivalent systems, which is completely different from that one presented in

the cited papers [7, 10].

The structure of our paper is as follows: in Section 2 we describe a method for the con-

struction of an algebraic crossing oval for a class of polynomial systems. For this reason we in-

troduce the concept of Dulac–Cherkas functions including one method for their construction.

Section 3 is devoted to the construction of a crossing oval by means of a diffeomorphically

equivalent system. In Section 4 we derive some linearly diffeomorphically equivalent systems

to the Rayleigh system (1.2) and present the corresponding Poincaré–Bendixson annuli.

2 Construction of an interior boundary for a Poincaré–Bendixson

annulus of the Rayleigh system (1.2)

Our approach to construct an interior boundary for a Poincaré–Bendixson annulus for system

(1.2) is based on the use of a Dulac–Cherkas function. For this reason we introduce in the next

subsection the definition of a Dulac–Cherkas function and compose some of its properties.

2.1 Definition and properties of Dulac–Cherkas functions

We consider the planar differential system

dx

dt
= P(x, y, λ),

dy

dt
= Q(x, y, λ) (2.1)
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under the assumption

(A) Let G be an open subset of R
2, let Λ be some open interval, let P, Q ∈ C 1 0

(x,y) λ
(G × Λ, R).

We denote by X the vector field defined by (2.1). First we recall the definition of a Dulac

function.

Definition 2.1. Suppose the assumption (A) to be valid. A function B belonging to the class

C 1 0
(x,y) λ

(G × Λ, R) is called a Dulac function of system (2.1) in G for λ ∈ Λ if the expression

div(BX) ≡ ∂(BP)

∂x
+

∂(BQ)

∂y
≡ (grad B, X) + B div X

does not change sign in G and vanishes only on a set Nλ ⊂ G of measure zero for λ ∈ Λ.

The class of Dulac functions has been generalized by L. A. Cherkas in 1997 (see [4]). The

corresponding generalized Dulac function, which is called Dulac–Cherkas function nowadays,

is defined as follows.

Definition 2.2. Suppose the assumption (A) to be valid. A function Ψ ∈ C1 0
(x,y) λ

(G × Λ, R) is

called a Dulac–Cherkas function of system (2.1) in G for λ ∈ Λ if there exists a real number

κ ̸= 0 such that

Φ := (grad Ψ, X) + κΨ div X > 0 (< 0) in G for λ ∈ Λ. (2.2)

Remark 2.3. Condition (2.2) can be relaxed by assuming that Φ may vanish in G on a set Nλ

of measure zero, and that no oval of this set is a limit cycle.

Remark 2.4. In case κ = 1, Ψ is a Dulac function.

For the sequel we introduce the subset Wλ of G defined by

Wλ := {(x, y) ∈ G : Ψ(x, y, λ) = 0}. (2.3)

From the Definition 2.2 we get immediately

Lemma 2.5. Suppose the assumption (A) to be valid. Let Ψ be a Dulac–Cherkas function of system

(2.1) in G for λ ∈ Λ. Then any oval of Wλ having only a finite number of points where (grad Ψ, X)

vanishes is a crossing oval for system (2.1) and can be used as a boundary for a Poincaré–Bendixson

annulus.

The following theorem is a special case of a more general result established in [11].

Theorem 2.6. Suppose the assumption (A) to be valid. Let G be a simply connected region, let Ψ be

a Dulac–Cherkas function of (2.1) in G for λ ∈ Λ such that Wλ contains exactly one oval Oλ in G.

Then in the case κ < 0 system (2.1) has for λ ∈ Λ at most one limit cycle in G, and if it exists, it

surrounds Wλ and is hyperbolic.

This theorem implies

Corollary 2.7. Under the assumptions of Theorem 2.6 the oval Oλ can be used as interior boundary

for a Poincaré–Bendixson annulus of system (2.1) provided it is a crossing oval.

The problem how to construct a Dulac–Cherkas function for the Rayleigh system (1.2) will

be treated in the next subsection. We note that the presented procedure can be applied to a

more general class of planar polynomial systems.
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2.2 Construction of Dulac–Cherkas functions for system (1.2)

We consider system (1.2) in R
2 for λ > 0. The corresponding vector field X reads

X(x, y, λ) := (−y, x + λy − λy3/3). (2.4)

We look for a Dulac–Cherkas function in the form

Ψ(x, y, λ) := Ψ0(y, λ) + Ψ1(y, λ)x + Ψ2(y, λ)x2, (2.5)

where we assume that for all λ > 0 the function Ψ2 is not identically zero.

Using (2.4) and (2.5) we obtain for the function Φ defined in (2.2) the representation

Φ(x, y, λ, κ) =
3

∑
k=0

Φk(y, λ, κ)xk, (2.6)

where the functions Φk are defined by the relations

Φ0 := −Ψ1y + Ψ′
0λ(y − y3/3) + κλΨ0(1 − y2), (2.7)

Φ1 := −2Ψ2y + Ψ′
0 + Ψ′

1λ(y − y3/3) + κλΨ1(1 − y2), (2.8)

Φ2 := Ψ′
1 + Ψ′

2λ(y − y3/3) + κλΨ2(1 − y2), (2.9)

Φ3 := Ψ′
2, (2.10)

where the symbol ′ indicates the differentiation with respect to y. One approach to guarantee

that Φ is a definite function in R
2 for λ > 0 is to require Φk to be identically zero for 1 ≤ k ≤ 3

and that Φ0 is definite. Applying this approach we get from (2.10) the linear differential

equation

Ψ′
2 = 0, (2.11)

such that it holds

Ψ2(y, λ, κ) ≡ c2 ̸= 0. (2.12)

Taking into account (2.11) and (2.12) we obtain from (2.9)

Ψ′
1 + κc2λ(1 − y2) = 0 (2.13)

whose solution reads

Ψ1(y, λ) = −κc2λ(y − y3/3) + c1. (2.14)

Taking into account (2.14), (2.13) and (2.12) we get from (2.8)

Ψ′
0 = 2c2y + (1 + κ)κc2λ

2(1 − y2)(y − y3/3)− κc1λ(1 − y2). (2.15)

Setting

κ = −1, c1 = 0 (2.16)

we have by (2.14)

Ψ1(y, λ) = c2λ(y − y3/3) (2.17)

and the differential equation (2.15) reads

Ψ′
0 = 2c2y (2.18)
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whose solution has the form

Ψ0(y, λ) = c2y2 + c0. (2.19)

Using (2.16)–(2.19) we obtain from (2.7)

Φ0(y, λ,−1) =
2

3
λc2

(

y4 +
3c0

2c2
y2 − 3c0

2c2

)

. (2.20)

Now we have to determine c0 and c2 such that Φ0(y, λ,−1) is a definite function and that the

corresponding Dulac–Cherkas function Ψ has the property that its zero-level set Wλ contains

an oval surrounding the origin. Setting c0 = − 8
3 c2, where by (2.12) c0 ̸= 0 holds, we have

Φ0(y, λ,−1) =
2

3
λc2(y

4 − 4y2 + 4) (2.21)

which has for λ > 0 the same sign for all y and vanishes only at y = ±
√

2. Thus it holds

Lemma 2.8. The polynomial

Ψ(x, y, λ) := c2

(

x2 + y2 − 8

3
+ λx

(

y − y3

3

))

(2.22)

is a Dulac–Cherkas function for system (1.2) in R
2 for λ > 0.

2.3 Construction of an interior boundary for a Poincaré–Bendixson annulus of
system (1.2)

The set Wλ of the Dulac–Cherkas function Ψ in (2.22) is defined by

Wλ :=

{

(x, y) ∈ R
2 : x2 + y2 − 8

3
+ λx

(

y − y3

3

)

= 0

}

. (2.23)

First we note that W0 is the circle x2 + y2 = 8/3. From (2.23) we get further that for all λ > 0

the set Wλ is symmetric with respect to the origin and that the intersection of Wλ with the

straight lines y = ±
√

3 is empty for any λ > 0. For the following we denote by S2
√

3 in R
2 the

strip symmetric to the x-axis and with thickness 2
√

3. We obtain from (2.23) the result

Lemma 2.9. The set Wλ defined in (2.23) consists in R
2 for λ > 0 of three different branches: the

oval Iλ surrounding the origin and located in the strip S2
√

3, the unbounded branch W1
λ

located in the

first quadrant in the region y >

√
3 and the symmetric branch W3

λ
in the third quadrant in the region

y < −
√

3 .

Figure 2.1 shows the branches of Wλ for λ = 1.3.

In order to prove that the oval Iλ is a crossing oval, we note that we have by (2.2)

(grad Ψ, X)
∣

∣

Ψ=0
= Φ

∣

∣

Ψ=0
= Φ0

∣

∣

Ψ=0
.

According to (2.21) there exist four points on Iλ, where the vector field X touches the oval Iλ.

Therefore, Iλ is a crossing oval and we get from Corollary 2.7

Theorem 2.10. The oval Iλ represents for λ > 0 an interior boundary for a Poincaré–Bendixson

annulus of system (1.2).
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Figure 2.1: Three branches of the set Wλ including the oval Iλ for λ = 1.3.

3 Construction of an outer boundary for a Poincaré–Bendixson an-

nulus of the Rayleigh system (1.2)

For the construction of an outer boundary of a Poincaré–Bendixson annulus for the Rayleigh

system (1.2) a similar but more sophisticated procedure could be applied as it has been used

for the van der Pol system in our paper [12]. In what follows we describe another approach

based on the concept of diffeomorphically equivalent systems. In the following subsection

we present the definition of topological equivalence of phase portraits and some important

consequence.

3.1 Definition of topological equivalence and some important consequences

Our basic assumption reads as follows

(Ã) Let G1 and G2 be open subsets of R
2, let Λ be some open interval, let P1, Q1 ∈ C 1 0

(x,y) λ
(G1 ×

Λ, R), P2, Q2 ∈ C 1 0
(x,y) λ

(G2 × Λ, R).

Consider the topological structure of the trajectories of the system

dx

dt
= P1(x, y, λ),

dy

dt
= Q1(x, y, λ) (3.1)

in G1 and the topological structure of the trajectories of the system

dx

dτ
= P2(x, y, λ),

dy

dτ
= Q2(x, y, λ) (3.2)

in G2.

Definition 3.1. Suppose assumption (Ã) to be valid. Let Λ1 be a subinterval of Λ. The

systems (3.1) and (3.2) are called topologically equivalent for λ ∈ Λ1 if for λ ∈ Λ1 there is a

homeomorphism hλ mapping G1 onto G2 and which maps the trajectories of system (3.1) onto

the trajectories of system (3.2) and there is a strictly increasing homeomorphism gλ mapping

R onto itself such that τ = gλ(t). If hλ is a diffeomorphism then the systems are called

diffeomorphically equivalent.
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The following result is a consequence of the well known fact that the composition of a

local diffeomorphism with a diffeomorphism is still a local diffeomorphism.

Theorem 3.2. Suppose that the assumption (Ã) is valid and that the systems (3.1) and (3.2) are

diffeomorphically equivalent for λ ∈ Λ1. Let Oλ be a crossing oval for system (3.1) for λ ∈ Λ1. Then

the image of Oλ under the diffeomorphism dλ is a crossing oval for system (3.2) for λ ∈ Λ1.

In order to be able to apply Theorem 3.2 for the construction of an outer boundary for a

Poincaré–Bendixson annulus for the Rayleigh system (1.2) we use the following lemma.

Lemma 3.3. The van der Pol system

du

dt
= − v,

dv

dt
= u − λ(u2 − 1)v

(3.3)

is for λ > 0 diffeomorphically equivalent to the Rayleigh system (1.2).

Proof. Applying the diffeomorphism dλ mapping R
2 onto itself defined by

x = − v + λ

(

u3

3
− u

)

,

y = u

(3.4)

we get from (3.3)

dx

dt
= − y,

dy

dt
= x + λy − λ

y3

3
,

(3.5)

which coincides with the Rayleigh system (1.2).

3.2 Construction of an outer boundary for a Poincaré–Bendixson annulus of the
Rayleigh system (1.2)

In the paper [12] we have proved the following result

Theorem 3.4. For λ > 0, the oval

Vλ :=

{

(u, v) ∈ R
2 : v2 + λvu

(

2 − u2

3

)

+ (1 + λ
2)u2 − 7

12
λ

2u4 +
λ2

18
u6 − 8 − 3λ − 18λ

2 = 0

}

(3.6)

is a crossing oval forming an outer boundary of a global algebraic Poincaré–Bendixson annulus for the

van der Pol system (3.3).

According to Lemma 3.3, the van der Pol system (3.3) is for λ > 0 diffeomorphically equiv-

alent to the Rayleigh system (1.2), where the corresponding diffeomorphism dλ is defined in

(3.4). By Theorem 3.2, the image of the crossing oval Vλ for the van der Pol system (3.3) under
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the diffeomorphism dλ is for λ > 0 a crossing oval Oλ of the Rayleigh system (1.2). From (3.4)

and (3.6) we get

Oλ :=

{

(x, y) :

(

− x + λ

(

y3

3
− y

))2

+ λ

(

− x + λ

(

y3

3
− y

))(

2y − y3

3

)

+ (1 + λ
2)y2 − 7

12
λ

2y4 +
1

18
λ

2y6 − 8 − 3λ − 18λ
2 = 0.

}

(3.7)

It can be verified that the derivative of Oλ along system (1.2) is negative on Oλ except at four

points. Thus we have the result

Theorem 3.5. The algebraic oval Oλ defined in (3.7) is for λ > 0 an algebraic crossing oval of the

Rayleigh system (1.2) forming the outer boundary of a Poincaré–Bendixson annulus. Together with

the algebraic oval Iλ it determines a global algebraic Poincaré–Bendixson annulus Aλ containing the

unique limit cycle Γλ of the Rayleigh system (1.2).

Figure 3.1 shows the Poincaré–Bendixson annulus Aλ with the limit cycle Γλ of system

(1.2) for λ = 0.1 and λ = 1.3.

Figure 3.1: Annulus Aλ with the limit cycle Γλ of system (1.2) for λ = 0.1 (left)

and λ = 1 (right).

4 Global algebraic Poincaré–Bendixson annuli for systems diffeo-

morphically equivalent to the Rayleigh system

If we apply for λ > 0 the linear diffeomorphism

u =
√

λx, v =
√

λy (4.1)

to the Rayleigh system (1.2) we obtain the system

du

dt
= − v,

dv

dt
= u + λv − v3

3
,

(4.2)
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which is diffeomorphically equivalent to system (1.2) for λ > 0. Thus, system (4.2) has for

λ > 0 a unique limit cycle Γ̄λ. According to Theorem 3.2 we obtain a global algebraic Poincaré–

Bendixson annulus for system (4.2) by applying the diffeomorphism (4.1) to the ovals Iλ and

Oλ. It holds

Theorem 4.1. The algebraic ovals

Īλ :=

{

(u, v) ∈ S2
√

3λ
: u2 + v2 + uv

(

λ − v2

3

)

− 8

3
λ = 0

}

(4.3)

and

Ōλ :=

{

(u, v) ∈ R
2 :

(

− u +

(

v3

3
− λv

))2

+

(

− u +

(

v3

3
− λv

)

v

(

2λ − v2

3

)

+ (1 + λ
2)v2 − 7

12
λv4 +

1

18
v6 − 8λ − 3λ

2 − 18λ
3 = 0

}

(4.4)

form a global algebraic Poincaré–Bendixson annulus Āλ containing the unique limit cycle Γ̄λ of system

(4.2).

If λ tends to zero we get from (4.3) and (4.4) that both ovals shrink to the origin which

reflects the property of system (4.2) that the limit cycle Γ̄λ bifurcates from the origin when λ

passes zero (Andronov–Hopf bifurcation). This distinguishes system (4.2) from the Rayleigh

system where the limit cycle Γλ bifurcates from the circle x2 + y2 = 2 when λ passes zero.

Figure 4.1 shows the Poincaré–Bendixson annulus Āλ with the limit cycle Γ̄λ of system 4.2

for λ = 0.1 and λ = 1.

Figure 4.1: Annulus Āλ with the limit cycle Γ̄λ of system (4.2) for λ = 0.1 (left)

and λ = 1 (right).

If we apply for λ > 0 the linear diffeomorphism

x = λu, y = v, t = λτ (4.5)

to the Rayleigh system (1.2) and use the notation ε = 1/λ2 we obtain the topologically equiv-

alent system

du

dτ
= − v,

ε
dv

dτ
= u + v − v3

3

(4.6)
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which is a singularly perturbed system in case of small ε. Thus, the unique limit cycle Γ̂ε

represents a relaxation oscillation for small ε. If we apply the linear diffeomorphism (4.5) to

the ovals Iλ and Oλ we obtain a global algebraic Poincaré–Bendixson annulus Âε for system

(4.6).

Theorem 4.2. The algebraic ovals

Îε :=

{

(u, v) ∈ S2
√

3 : u2 + εv2 + uv

(

1 − v2

3

)

− 8

3
ε = 0

}

(4.7)

and

Ôε :=

{

(u, v) ∈ R
2 :

(

− u + v

(

v2

3
− 1

))

(−u + v) + (1 + ε)v2 − 7

12
v4 +

1

18
v6 − 8ε − 3

√
ε − 18 = 0

}

(4.8)

form a global algebraic Poincaré–Bendixson annulus Âε containing the unique limit cycle Γ̂ε of system

(4.2).

Figure 4.2 shows the Poincaré–Bendixson annulus Âε with the limit cycle Γ̂ε of system (4.6)

for ε = 0.1 and ε = 2.

Figure 4.2: Annulus Âε with limit cycle Γ̂ε of system (4.6) for ε = 0.1 (left) and

ε = 2 (right).
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Abstract. We are concerned with the global bifurcation of positive solutions for semi-
linear elliptic systems of the form





−∆u = λ f (u, v) in Ω,

−∆v = λg(u, v) in Ω,

u = v = 0 on ∂Ω,

where λ ∈ R is the bifurcation parameter, Ω ⊂ R
N , N ≥ 2 is a bounded domain with

smooth boundary ∂Ω. We establish the existence of an unbounded branch of positive
solutions, emanating from the origin, which is bounded in positive λ-direction. The
nonlinearities f , g ∈ C1(R × R, (0, ∞)) are nondecreasing for each variable and have
superlinear growth at infinity. The proof of our main result is based upon bifurcation
theory. In addition, as an application for our main result, when f and g subject to the
upper growth bound, by a technique of taking superior limit for components, then we
may show that the branch must bifurcate from infinity at λ = 0.

Keywords: elliptic systems, positive solutions, superlinear growth, bifurcation.
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1 Introduction

Let B be the unit ball in R
N . D. D. Joseph and T. S. Lundgren [12] considered

{
−∆u = λeu, x ∈ B,

u = 0, x ∈ ∂B
(1.1)

and found a very interesting phenomenon that the behaviour of the connected component of
positive solutions of (1.1) heavily depends on the dimension N, see Figure 1.1 below.

BCorresponding author. Email: 18693761799@163.com
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Figure 1.1: Global continua for (1.1) depend on N

Fourth order analogue of (1.1), a biharmonic elliptic problem
{

∆2u = λeu, x ∈ B,

u = |∇u| = 0, x ∈ ∂B
(1.2)

has been extensively studied by several authors, see G. Arioli, F. Gazzola, H.-C. Grunau, E.
Mitidieri [2] and A. Ferrero, H.-C. Grunau [8] and the references therein.

For elliptic systems, Ph. Clément, D. G. de Figueiredo and E. Mitidieri [7] investigated the
existence of positive solution of a Dirichlet problem for

− ∆u = f (v), −∆v = f (u) (1.3)

in a bounded convex domain Ω of R
N with smooth boundary. Furthermore, the authors

considered the existence of nontrivial solutions for the biharmonic equation subject to Navier
boundary conditions. Namely

∆
2u = g(u) in Ω, u = ∆u = 0 on ∂Ω.

This problem is a special case of (1.3) when f (v) = v.
Recently, M. Chhetri, P. Girg [6] considered the elliptic system





−∆u = λ f̂ (v) in Ω,

−∆v = λĝ(u) in Ω,

u = v = 0 on ∂Ω,

(1.4)

where λ ∈ R is the bifurcation parameter and Ω ⊂ R
N , N ≥ 2, is a bounded domain with C2,η-

boundary ∂Ω for some η ∈ (0, 1). The nonlinearities f̂ , ĝ : R → (0,+∞) are nondecreasing
continuous functions and have superlinear growth at infinity, i.e.

lim
s→+∞

f̂ (s)

s
= +∞ = lim

s→+∞

ĝ(s)

s
.

Then the authors established the global structure of positive solutions for system (1.4).
Of course the natural question is whether or not we may show the global structure of

positive solutions for the more general system




−∆u = λ f (u, v) in Ω,

−∆v = λg(u, v) in Ω,

u = v = 0 on ∂Ω,

(1.5)
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where λ ∈ R is the bifurcation parameter. We make the following assumptions throughout
the paper.

(H1) f , g ∈ C1(R × R, (0,+∞)) are nondecreasing for each variable and there exists a τ >

0, satisfy

min
{

∂ f

∂s
(s, t),

∂ f

∂t
(s, t)

}
>

f (s, t)

s + t
for (s, t) ∈ R

2\Bτ,

min
{

∂g

∂s
(s, t),

∂g

∂t
(s, t)

}
>

g(s, t)

s + t
for (s, t) ∈ R

2\Bτ,

where Bτ := {(s, t) ∈ R
2 : |s|2 + |t|2 ≤ τ};

(H2) lim
s+t→+∞

f (s, t)

s + t
= lim

s+t→+∞

g(s, t)

s + t
= +∞.

Notice that the functions satisfying (H1)–(H2) are easy to illustrate, for example f (s, t) =

(s + t)5 + 1, g(s, t) = (s + t)3 + 2.

For system of equations with λ = 1, see [9–11] for N = 2 and [1, 3, 4] for N ≥ 3, where
existence results were discussed, but no any information about the Connectivity Properties of
positive solution set are provided. In fact, these positive solutions of (1.5) may not lie on one
bifurcating set.

It is the purpose of this paper to show the existence of a unbounded component of pos-
itive solutions of (1.5) by use bifurcation theory and a technique of taking superior limit for

components, see [15, 16].

In order to better state our result, we will briefly introduce the following notations that
were defined in more detail in [6] and extend the use of these definitions to all systems
throughout the paper.

Let
E := [W1,2

0 (Ω) ∩ W2,r(Ω)]2 and X := [Lr(Ω)]2

be Banach spaces endowed with norms

∥(w1, w2)∥E := ∥w1∥W2,r(Ω) + ∥w2∥W2,r(Ω) and ∥(w1, w2)∥X := ∥w1∥Lr(Ω) + ∥w2∥Lr(Ω),

respectively for r > N. By assumption r > N, W2,r(Ω) is continuously imbedded into
C1,η(Ω) for some η ∈ (0, 1). Thus there exists ξ∗ > 0 such that ∥ω∥L∞(Ω) ≤ ξ∗∥ω∥W2,r(Ω) holds
for all ω ∈ W2,r(Ω). By a solution of (1.5) we mean (λ, (u, v)) ∈ R × E which solves (1.5)
in the strong sense, that is, (u, v) ∈ W2,r(Ω) × W2,r(Ω) and (λ, (u, v)) satisfies (1.5) almost
everywhere in Ω. Now define S := {(λ, (u, v)) ∈ R × E : (λ, (u, v)) solution of (1.5)}.

Definition 1.1 ([6]).

(1) By a continuum of solutions of (1.5) we mean a subset of S which is closed and connected.

(2) By a component of solutions set S we mean a continuum which is maximal with respect
to inclusion ordering.

(3) λ∞ ∈ R is a bifurcation point from infinity if the solution set S contains a sequence
(λn, (un, vn)) such that λn → λ∞ and ∥(un, vn)∥E → +∞ as n → +∞.

The main result of the paper is the following.
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Theorem 1.2. Let (H1)–(H2) hold, then there exists an unbounded component C ⊂ S satisfying the

following:

(a) For any λ ∈ (0, λ∗), (λ, (u, v)) ∈ C is positive, i.e. u > 0 and v > 0.

(b) If λ = 0, then (0, (0, 0)) is the unique element belonging to C.

(c) Projλ∈[0,+∞) C := {λ ∈ [0,+∞) : ∃ (u, v) ∈ E with (λ, (u, v)) ∈ C} ⊂ [0, λ∗).

(d) There exists a sequence of positive solutions {(λn, (un, vn))} ∈ C satisfying λn ∈ (0, λ∗) for all

n ∈ N and limn→+∞ ∥(un, vn)∥E → +∞.

Remark 1.3. In the special case Ω is convex, M. Chhetri, P. Girg [6] show that the only
bifurcation point of positive solutions of (1.4) from infinity with f̂ (v) = vp, ĝ(u) = uq at
λ = 0 under the critical hyperbola condition

1
p + 1

+
1

q + 1
>

N − 2
N

. (1.6)

The proof of this result in [6] is deeply depend on the uniform priori bound. For system
(1.4), condition (1.6) is optimal for obtaining the priori estimate when f̂ (v) = vp, ĝ(u) = uq.
But for the more general system (1.5), the conditions for obtaining a priori bound are more
complicated, and the proof will be more difficult if we want to obtain the similar results. We
give the specific proof in Section 5.

The rest of paper is arranged as follows: In Section 2 we present the nonexistence result of
(1.5). Section 3 is devoted to asymptotically positively homogeneous system by using a global
continuation principle. In Section 4, we prove Theorem 1.2. In final section, as an application
of Theorem 1.2, by applying some priori estimates, see [17], we attempt to understand the
structure of the resulting continua of positive solutions.

2 Statement of the nonexistence result

Let µ1 > 0 be the principal eigenvalue of
{
−∆ϕ = µϕ in Ω,

ϕ = 0 on ∂Ω,

and ϕ1 ∈ W1,2
0 (Ω) be the corresponding eigenfunction, then ∂ϕ1

∂−→n
< 0 on Ω, where −→n is the

outward unit normal on ∂Ω. Without loss of generality, we normalize the eigenfunction such
that ϕ1 > 0 in Ω.

We shall prove the nonexistence result.

Theorem 2.1. Suppose there exist a1, a2, α1, α2 > 0 such that

f (s, t) > a1(s + t) + α1, g(s, t) > a2(s + t) + α2, ∀ (s, t) ∈ R
2. (2.1)

Then for λ ≥ λ∗ := µ1
2a∗ , there are no solutions for (1.5), where a∗ := min{a1, a2}.

Remark 2.2. We notice that in order to obtain the nonexistence result of solutions for (1.5), it
suffices to show that f and g satisfy (2.1), which is weaker than (H2).
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Proof. By (H1), since f , g are positive functions, all solutions (λ, (u, v)) of (1.5) with λ >

0 must satisfy u, v > 0 in Ω by the maximum principle. Let (λ, (u, v)) be a solution of
(1.5) with λ > 0. Then

−∆(u + v) > λ(a1(u + v) + α1) + λ(a2(u + v) + α2)

> 2λa∗(u + v) + 2λα∗ = 2λa∗
(

u + v +
α∗

a∗

)
in Ω,

where a∗ := min{a1, a2}, α∗ := min{α1, α2}. Therefore, we have

−∆

(
u + v +

α∗

a∗

)
> 2λa∗

(
u + v +

α∗

a∗

)
in Ω.

Denoting w := u + v + α∗

a∗ , we see that w > 0 on Ω and

−∆w > 2λa∗w in Ω.

Since −∆ϕ1 = µ1ϕ1 in Ω, ϕ1 = 0 on ∂Ω. We have
∫

Ω

(ϕ1∆w − w∆ϕ1)dx <

∫

Ω

(−2λa∗wϕ1 + wµ1ϕ1)dx = (−2λa∗ + µ1)
∫

Ω

(wϕ1)dx. (2.2)

On the other hand, since ϕ1 = 0 on ∂Ω, inf
∂Ω

w > 0 and ∂ϕ1

∂−→n
< 0 on ∂Ω, we get

∫

Ω

(ϕ1∆w − w∆ϕ1)dx =
∫

∂Ω

(ϕ1∇w − w∇ϕ1) ·
−→n dS = −

∫

∂Ω

w∇ϕ1 ·
−→n dS. (2.3)

Then we have

−
∫

∂Ω

w∇ϕ1 ·
−→n dS ≥ − inf

∂Ω

w
∫

∂Ω

∂ϕ1

∂−→n
dS > 0. (2.4)

It follows from (2.2), (2.3) and (2.4) that for (u, v) to be a solution of (1.5) for λ > 0, we must
have λ <

µ1
2a∗ . Therefore, (1.5) has no solution for λ ≥ λ∗ := µ1

2a∗ .

3 Asymptotically positively homogeneous system

In order to discuss the auxiliary result, we mention some properties of the following eigen-
value problem 




−∆w1 = λ[a11(x)w1 + a12(x)w2] in Ω,

−∆w2 = λ[a21(x)w1 + a22(x)w2] in Ω,

w1 = w2 = 0 on ∂Ω,

(3.1)

where aij : Ω → (0, ∞) are continuous function(i, j = 1, 2). It follows from [14, Theo-
rem 4.1] that (3.1) has exactly one positive principal eigenvalue λ1 and associated eigenfunc-
tion (χ1, ψ1) is positive in Ω.

Remark 3.1. If aij = constant (i, j = 1, 2), the principal eigenvalue of (3.1) and the corre-
sponding eigenfunction are related to µ1 and ϕ1 (µ1 and ϕ1 are defined in the Section 2.)

For example, let a11 = 2, a12 = 9, a21 = 4, a22 = 2, the principal eigenvalue of (3.1) is
µ1
8 and the associated eigenfunction is ( 3

2 ϕ1, ϕ1). The detailed calculation method is shown in
Appendix 2 of [5].
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Now, let us consider an asymptotically positively homogeneous system




−∆u = λ[a11(x)u+ + a12(x)v+] + λ f̃ (u, v) in Ω,

−∆v = λ[a21(x)u+ + a22(x)v+] + λg̃(u, v) in Ω,

u = v = 0 on ∂Ω,

(3.2)

where s+ := max{s, 0}, aij(i, j = 1, 2) are as in (3.1) and λ ∈ R is the bifurcation parameter.
f̃ , g̃ : R × R → R satisfy the following assumptions:

(F1) f̃ , g̃ are continuous and bounded functions;

(F2) a11s+ + a12t+ + f̃ (s, t) > 0, a21s+ + a22t+ + g̃(s, t) > 0 for all (s, t) ∈ R × R.

By a solution of (3.2) we mean (λ, (u, v)) ∈ R × E which solves (3.2) in the strong sense. Now
let T := {(λ, (u, v)) : (λ, (u, v)) solution of (3.2)}. We shall prove the following bifurcation
result.

Theorem 3.2. Let (F1)–(F2) hold. Then λ1 is the only bifurcation point from infinity for (3.2).
Moreover, there exists a component X ⊂ T bifurcating from infinity at λ1 and satisfies:

(i) for λ > 0 and (λ, (u, v)) ∈ X , then u > 0 and v > 0;

(ii) for λ = 0, (u, v) = (0, 0) is the unique solution of (3.2) and (0, (0, 0)) ∈ X ;

(iii) Projλ X := {λ ∈ R : ∃ (u, v) ∈ E with (λ, (u, v)) ∈ X} is bounded from above and unbounded

from below.

To prove this theorem, we use a variant of Krasnoselskii’s necessary condition for bifur-
cation from infinity (Lemma 3.4), Theorem 2.1 and the global continuation principle of Leray
and Schauder (Lemma 3.3) below.

Lemma 3.3 ([19]). Let Y be a Banach space with Y ̸= {0} and let F : Y → Y be compact. Then the

solution component Ĉ ⊂ R × Y of the equation

x = λF(x)

which contains (0, 0) ∈ R × Y is unbounded as are both subsets

Ĉ± := Ĉ ∩ (R± × Y),

where R+ := [0,+∞) and R− := (−∞, 0].

System (3.2) is equivalent to

(u, v) = λL+(u, v) + λH(u, v), (3.3)

where L+ : E → E is defined by

(u, v) 7→ (−∆)−1(a11(x)u+ + a12(x)v+, a21(x)u+ + a22(x)v+)

and H : E → E is defined by

(u, v) 7→ (−∆)−1( f̃ (u, v), g̃(u, v)).
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Notice that L+ is not linear but both L+ and H are continuous and compact. Moreover, since
f̃ and g̃ are bounded, H satisfies

lim
∥(u,v)∥E→+∞

∥H(u, v)∥E

∥(u, v)∥E
= 0. (3.4)

For asymptotically linear problem, a necessary condition for bifurcation from infinity was
established in [13]. Inspired by this work, we prove the following lemma to show that the
unique possible bifurcation point from infinity for (3.3) is λ1.

Lemma 3.4. If λ∞ is a bifurcation point from infinity for (3.3), then λ∞ = λ1. Moreover, for any

sequence (λj, (uj, vj)) ∈ R × E with λj → λ1 and ∥(uj, vj)∥E → +∞ as j → +∞. There exists a

subsequence (λjk , (ujk , vjk)) of (λj, (uj, vj)) such that

lim
jk→+∞

(ujk , vjk)

∥(ujk , vjk)∥E
=

(χ1, ψ1)

∥(χ1, ψ1)∥E
, (3.5)

where the convergence is in C1,η(Ω)× C1,η(Ω) for some η ∈ (0, 1).

Proof. Now by the same argument in the proof of [6, Proposition 3.1], with obvious changes,
we may deduce the desired results. Let (λj, (uj, vj)) ∈ R × E be solutions of (3.2) such that

∥(uj, vj)∥E → +∞ and λj → λ∞. Then (ûj, v̂j) =
(uj,vj)

∥(uj,vj)∥E
satisfies

ûj = λj(−∆)−1
(

a11(x)û+
j + a12(x)v̂+j +

f̃ (uj, vj)

∥(uj, vj)∥E

)
,

v̂j = λj(−∆)−1
(

a21(x)û+
j + a22(x)v̂+j +

g̃(uj, vj)

∥(uj, vj)∥E

)
,

or equivalently satisfied

(ûj, v̂j) = λjL
+(ûj, v̂j) + λj

H(uj, vj)

∥(uj, vj)∥E
.

It then follows from (3.4) that the right hand side is bounded in X (independent of j).
Hence ∥ûj∥W2,r(Ω) and ∥v̂j∥W2,r(Ω) are bounded (independent of j) and so are ∥ûj∥C1,η(Ω) and

∥v̂j∥C1,η(Ω) for some η ∈ (0, 1). Since C1,η′
(Ω) →֒ C1,η(Ω) compactly for η′ ∈ (0, η), passing to

subsequences, ûj → û, v̂j → v̂ in C1,η′
(Ω). Therefore, (λ∞, (û, v̂)) satisfies

− ∆û = λ∞[a11(x)û+ + a12(x)v̂+] in Ω, (3.6)

− ∆v̂ = λ∞[a21(x)û+ + a22(x)v̂+] in Ω, (3.7)

û = v̂ = 0 on ∂Ω.

Suppose λ∞ ≤ 0. Since û+ ≥ 0 and v̂+ ≥ 0, it follows by applying the maximum principle
to (3.6) that û ≡ 0 and hence repeating the same argument using (3.7) we get v̂ ≡ 0 as well.
This leads to a contradiction since ∥(û, v̂)∥E = 1.

For λ∞ > 0, we distinguish two cases: v̂+ ≡ 0 and v̂+ ̸≡ 0. In the first case, if û+ ≡ 0, from
(3.6), using the maximum principle, a contradiction as before. If û+ ̸≡ 0, then it follows from
(3.7) and a21 > 0 that v̂ > 0 in Ω. However, this contradicts v̂+ ≡ 0.
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In the case v̂+ ̸≡ 0, we may get û+ ̸≡ 0 in Ω from (3.6) by the maximum principle, which
in turn implies û > 0 and v̂ > 0 in Ω from (3.6) and (3.7) by the maximum principle again.
Thus λ∞ > 0 and û, v̂ > 0 in Ω satisfy the linear eigenvalue problem (3.1). However, we
already discussed that (3.1) has precisely one eigenvalue λ1 with componentwise positive
eigenfunction (χ1, ψ1). Therefore, it must be that λ∞ = λ1 and

(û, v̂) =
(χ1, ψ1)

∥(χ1, ψ1)∥E
.

Now we will complete the proof of Theorem 3.2.

Proof. (3.3) satisfies the hypotheses of Lemma 3.3 with F := L+ + H. Then there exist un-
bounded continua

X± ⊂ T̂ := {(λ, (u, v)) ∈ R × E : (λ, (u, v)) is a solution of (3.2)}

containing (0, (0, 0)). By Theorem 2.1,

X+ ⊂ ([0, λ∗)× E)

and thus X+ must be unbounded in the Banach space E-direction. Then X := X+ ∪ X− is a
component containing (0, (0, 0)). By Lemma 3.4, λ1 is the only bifurcation point from infinity
from (3.3) and X+ is unbounded in the E-direction, hence X+ must bifurcate from infinity at
λ1. By similar argument in [6], we will verify that X satisfies the properties (i)-(iii).

It follows from assumption (F2) that u, v > 0 in Ω whenever (λ, (u, v)) ∈ X and λ > 0.
This implies part (i). For λ = 0, (u, v) = (0, 0) is the only solution of (3.2) and (0, (0, 0)) ∈ X .
Hence part (ii) holds. Applying Lemma 3.3, we see that X− must be unbounded in R × E.
However, by part (ii) and the fact that λ1 is the unique bifurcation point from infinity for
(3.3), we see that X− must be unbounded in the negative λ-direction. Hence (−∞, λ1) ⊂

ProjλX .

4 Proof of main result

For n ∈ N, let
A

f
n := {(s, t) ∈ R

2
+ : f (s, t) = n(s + t)},

where R+ := [0,+∞). We shall show that A
f
n contains a curve Γ

f
n which can be (globally)

parametrized as the graph of a decreasing function.
First, we state and prove several preliminary results.

Lemma 4.1. There exists n0 > 0 such that for any n > n0, A
f
n ̸= ∅.

Proof. It follows from (H1) and (H2) that there exists n0 > 0 such that for any n > n0, there
exists (s∗n, s∗n) ∈ R

2
+ with f (s∗n, s∗n) = 2ns∗n. Consequently, A f

n ̸= ∅.

For given θ ∈ [0,+∞), let
t = θs, s ∈ [0,+∞).

Obviously, (H1) and (H2) imply that lim
s→∞

f (s,θs)
s+θs = ∞. For any n > n0, denote

A
f
n,θ :=

{
(s, θs) : (s, θs) ∈ A

f
n

}
.

Fix n > n0, analogous to proof of Lemma 4.1, it is easy to see A
f
n,θ ̸= ∅.
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Lemma 4.2. Fix n > n0, there exists Mn > 0 independent of θ ∈ [0,+∞) such that

sup
{

s + θs : (s, θs) ∈ A
f
n

}
≤ Mn.

Proof. Suppose on the contrary that there exists a sequence {(sk, θksk)} ∈ A
f
n such that

limk→∞(sk + θksk) = ∞. Then it follows from (H2) that

lim
(sk+θksk)→+∞

f (sk, θksk)

sk + θksk
= +∞.

This contradicts the fact that f (sk, θksk) = n(sk + θksk).

Fix θ ∈ [0,+∞), define

γn(θ) := max
{

s ∈ R+ : (s, θs) ∈ A
f
n,θ

}
.

Lemma 4.3. For any M > 0 and θ ∈ [0,+∞), there exists n1 > n0 > 0 such that (γn(θ))2 +

(θγn(θ))2
> M for any n > n1.

Proof. Suppose on the contrary that there exists a sequence {(θn, γn(θn))} such that (γn(θn))2+

(θnγn(θn))2 is bounded for any n > n1. After taking a subsequence if necessary, we have

(θn, γn(θn)) → (θ∗, γ∗) as n → ∞

in R
2
+. Since (γn(θn), θnγn(θn)) ∈ A

f
n, then

f (γn(θn), θnγn(θn)) = n(γn(θn) + θnγn(θn)).

It is easy to verify that

f (γ∗, θ∗γ∗) = n(γ∗ + θ∗γ∗) → ∞ as n → ∞,

this contradicts the fact that f (γ∗, θ∗γ∗) is bounded since θ∗ ∈ [0,+∞).

For (s, t) ∈ R
2
+, denote

F(s, t) := f (s, t)− n(s + t).

Let
s̃ := sup{s ∈ R+ : (s, 0) ∈ A

f
n,0}.

Then Lemma 4.2 implies s̃ < ∞.

Lemma 4.4. There exists n2 > n1 > 0 such that for n > n2, there exists a decreasing function

t = Γ
f
n(s) for s ∈ (0, s̃), which joins the point (s̃, 0) to a point (0, t̂) for some t̂ < ∞.

Proof. For given θ ∈ (0,+∞), we know that (γn(θ), θγn(θ)) ∈ A
f
n. By (H1), we have

min
{

ft(γn(θ), θγn(θ)), fs(γn(θ), θγn(θ))

}
>

f (γn(θ), θγn(θ))

γn(θ) + θγn(θ)
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if n sufficiently large. Therefore,

Ft(γn(θ), θγn(θ)) = ft(γn(θ), θγn(θ))− n

>
f (γn(θ), θγn(θ))

γn(θ) + θγn(θ)
− n

=
n(γn(θ) + θγn(θ))

γn(θ) + θγn(θ)
− n

= 0

for sufficiently large n. By similar argument, we can obtain Fs(γn(θ), θγn(θ)) > 0 for suffi-
ciently large n. Consequently, applying the implicit function existence theorem, there exists a
unique curve t = Γ

f
n(s) in (γn(θ)− δ, γn(θ) + δ) for sufficiently small δ > 0, and

(Γ
f
n(s))

′ = −
Fs(s, t)

Ft(s, t)
= −

fs(s, t)− n

ft(s, t)− n
< 0

for sufficiently large n. Thus there exists n2 > n1 > 0 such that for n > n2, Γ
f
n(s) is a

decreasing function for s ∈ (γn(θ)− δ, γn(θ) + δ). By the standard extension method, we may
get a decreasing function Γ

f
n(·) defined on (0, s̃).

By Lemma 4.2, we have {(γn(θ), θγn(θ)) : θ ∈ (0,+∞)} ⊂ A
f
n is bounded. This together

with the fact that Γ
f
n(s) is decreasing, we can deduce that limθ→0+(γn(θ), θγn(θ)) = (ŝ, 0) for

ŝ ∈ (0,+∞) and limθ→+∞(γn(θ), θγn(θ)) = (0, t̂) for some t̂ < ∞. Obviously, we have ŝ = s̃

by the definition of s̃.

It is easy to see that there exists n∗, n∗ such that for all n ≥ n∗, Γ
f
n divide R

2
+ into two

parts
R

2
+ = Ω

f
n ∪ Γ

f
n ∪ U

f
n , Ω

f
n ∩ U

f
n = ∅,

and for all n ≥ n∗, Γ
g
n divide R

2
+ into two parts

R
2
+ = Ω

g
n ∪ Γ

g
n ∪ U

g
n , Ω

g
n ∩ U

g
n = ∅,

where Ω
f
n, Ω

g
n are bounded, and U

f
n , U

g
n are unbounded.

4.1 Approximation problems

Fix n ∈ N and define fn(t, s), gn(t, s) : R
2 → (0, ∞) by

fn(s, t) =

{
f (s, t), (s, t) ∈ Ω

f
n,

n(s + t), (s, t) ∈ U
f
n ∪ Γ

f
n,

gn(s, t) =

{
g(s, t), (s, t) ∈ Ω

g
n,

n(s + t), (s, t) ∈ U
g
n ∪ Γ

g
n.

Then fn and gn are continuous functions on R
2.

For each n ∈ N, we consider the following problem




−∆u = λ fn(u, v) in Ω,

−∆v = λgn(u, v) in Ω,

u = v = 0 on ∂Ω,

(4.1)
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which approaches (1.5) as n → ∞. We will use Theorem 3.2 to treat (4.1) and thus we rewrite
(4.1) in the form of (3.2) as





−∆u = λ[nu+ + nv+] + λ f̃n(u, v) in Ω,

−∆v = λ[nu+ + nv+] + λg̃n(u, v) in Ω,

u = v = 0 on ∂Ω,

(4.2)

where
f̃n(s, t) := fn(s, t)− ns+ − nt+, g̃n(s, t) := gn(s, t)− ns+ − nt+.

We note that f̃n and g̃n are bounded in R
2. Indeed, since fn is nondecreasing for each variable

and fn(s, t) = f (s, t) > 0 for (s, t) ∈ Ω
f
n, we get

| f̃n(s, t)| ≤ sup
(s,t)∈R2

| fn(s, t)− n(s+ + t+)| ≤ sup
(s,t)∈Ω

f
n

| fn(s, t)− n(s+ + t+)|+ f (0, 0) = constant,

where the constant is independent of s, t and depends on n. We can repeat the same
argument for g̃n. Since fn(s, t), gn(s, t) > 0, it is easy to see that (4.2) satisfies the hypotheses
of Theorem 3.2 with a11 = n, a12 = n, a21 = n, a22 = n, f̃ = f̃n, g̃ = g̃n, and λ1 = λ1,A, where

A =

(
n n

n n

)
.

Then by Theorem 3.2, λ1,A is the unique bifurcation point from infinity for (4.2) and there
exists a component Cn of positive solutions of (4.2) bifurcating from infinity at λ1,A satisfying
the properties (i)–(iii) of Theorem 3.2. In particular, (0, (0, 0)) ∈ Cn, Cn is bounded above by
λ∗ × E (λ∗ is as in Theorem 2.1) and Cn does not cross {0} × E except through the point
(0, (0, 0)).

4.2 Passing to the limit

We first state some properties of the superior limit of a certain infinity collection of connected
sets.

Definition 4.5 ([18]). Let X be a Banach space and {Cn : n = 1, 2, . . . } be a certain infinite
collection of subsets of X. Then the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ X : ∃{ni} ⊂ N and xni
∈ Cni

, such that xni
→ x}.

Lemma 4.6 ([15]). Let X be a Banach space and let {Cn} be a family of closed connected subsets of X.

Assume that:

(i) there exist zn ∈ Cn, n = 1, 2, . . . , and z∗ ∈ X, such that zn → z∗;

(ii) rn = sup{∥x∥ : x ∈ Cn} = ∞;

(iii) for every R > 0, (
⋃

∞

n=1)∩ BR is a relatively compact set of X, where BR = {x ∈ X : ∥x∥ ≤ R}.

Then there exists an unbounded component C in D and z∗ ∈ C.
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By means of the corresponding auxiliary equations (4.2), we obtained a sequence of un-
bounded components Cn, and this enables us to find an unbounded component C satisfying

C ⊂ lim sup
n→∞

Cn.

It following from the existence of Γ
f
n and Γ

g
n that fn(s, t) = f (t, s), gn(s, t) = g(t, s) for

n → ∞. Thus (λ, (u, v)) ∈ C solves the original problem (1.5) when n → ∞. Now we
verify {Cn} satisfying the assumptions of Lemma 4.6. By the definition of continuum and
component, Cn is closed.

Since all of Cn contain (0, (0, 0)), we can choose zn ∈ Cn such that zn = (0, (0, 0)) for
n = 1, 2, . . . Clearly, zn → z∗ = (0, (0, 0)), the assumption (i) of Lemma 4.6 is satisfied.

By unboundedness of Cn, obviously, we have

rn = sup{|λ|+ ∥(u, v)∥E : (λ, (u, v)) ∈ Cn} = +∞.

(iii) in Lemma 4.6 can be deduced directly from the Arzelà–Ascoli theorem and the defi-
nition of fn, gn. Therefore, the superior limit of Cn contains a component C.

It follows from (H1) that u, v > 0 in Ω for λ > 0 whenever (λ, (u, v)) ∈ C, which estab-
lishes part (a), Clearly, (0, (0, 0)) ∈ C, which together with the maximum principle establish
part (b). Part (c) follows from Theorem 2.1. By construction of C, there exists a sequence
(λn, (un, vn)) ∈ C such that 0 < λn < λ∗ (λ∗ is as in Theorem 2.1 ) and un > 0, vn > 0 for all
n ∈ N, and ∥(un, vn)∥E → +∞ as n → +∞. Thus C is unbounded in the Banach space E. This
establishes part (d) and completes the proof of Theorem 1.2.

5 Application of Theorem 1.2

The unbounded component C from Theorem 1.2 may bifurcate from infinity at any or all
λ ∈ [0, λ∗]. Next, As an application of Theorem 1.2, we will show that, under additional
assumptions on f and g, the component C must approach towards the hyperplane λ = 0 as
the norm ∥(u, v)∥E grows large.

5.1 Main result

Theorem 5.1. Let (H1)–(H2) hold. Assume

f (u, v) ≤ C1(1 + vp1 + up2), u, v ≥ 0, x ∈ Ω, (5.1)

g(u, v) ≤ C1(1 + uq1 + vq2), u, v ≥ 0, x ∈ Ω, (5.2)

f (u, v) + g(u, v) ≥ κ(u + v)− C1, u, v ≥ 0, x ∈ Ω, (5.3)

here p1, q1 > 0, p1q1 > 1, p2, q2 ≥ 1, C1 > 0 and κ > µ1 (µ1 defined in Section 2). Define

α =
2(p1 + 1)
p1q1 − 1

, β =
2(q1 + 1)
p1q1 − 1

.

If

max{α, β} > N − 1 (5.4)

and

p2, q2 <
N + 1
N − 1

. (5.5)

Then λ∞ = 0 is the unique bifurcation point from infinity in [0, λ∗], for the component C ⊆ S from

Theorem 1.2. More specifically,
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(i) There exists a sequence of positive solutions (λn, (un, vn)) ∈ C with λn ∈ [0, λ∗) for all n ∈

N such that ∥(un, vn)∥E → +∞ and λn → 0+ as n → +∞.

(ii) Any sequence (λn, (un, vn)) ∈ C such that ∥(un, vn)∥E → +∞ as n → ∞ and λn > 0 must

satisfy λn → 0+ as n → +∞.

It is worth noting that for problem (1.5) satisfying (H1), (H2) and (5.1)–(5.5), the solutions
(λ, (u, v)) ∈ R × E.

Lemma 5.2. Assume (5.1)–(5.5) hold. Let λn ∈ R be a sequence with λ1 < λ∗ such that λn ↘ 0+ as

n → +∞. Then for each n ∈ N, there exists Cn := C(λn) such that any solution (λ, (u, v)) of

(1.5) satisfies

∥u∥L∞(Ω), ∥v∥L∞(Ω) ≤ Cn, for all λ ∈ [λn, λ∗)

and Cn → +∞ as n → +∞.

Proof. We begin by observing that under above hypotheses uniform a priori bound result
holds [17, Theorem 1.1] for positive solutions of (1.5). By retracing the proof of [17, Theorem
2.1, Proposition 3.1] with λ f and λg (in place of f and g) we will establish the dependence of
the uniform bounds on λ.

First, let b∗ > λ∗, we consider the system (1.5) with λ ∈ [λn, b∗] under the assumptions

|λ f (u, v)| ≤ b∗C1(|v|
p1 + |u|p2) + b∗h2(x), u, v ∈ R, x ∈ Ω, (5.6)

|λg(u, v)| ≤ b∗C1(|u|
q1 + |v|q2) + b∗h2(x), u, v ∈ R, x ∈ Ω, (5.7)

aλ f (u, v) + bλg(u, v) ≥ κλn(au + bv)− b∗C1, u, v ≥ 0, x ∈ Ω, (5.8)

with p1, q1 > 0, p1q1 > 1, p2, q2 ≥ 1, h2 ∈ Lγ(Ω), γ >
N
2 , a, b > 0, κλn > µ1 and C1 ≥ 0. By

[17, Theorem 2.1, Proposition 3.1], we know any nonnegative solution of (1.5) satisfies

∥u∥L∞(Ω), ∥v∥L∞(Ω) ≤ Cn, for all λ ∈ [λn, b∗].

The constant Cn depends only on p1, q1, p2, q2, γ, C1 and the norms of h2 in h2 ∈ Lγ(Ω).

Next, we show Cn → +∞ as n → +∞. In fact, by Theorem 1.2, we know that there
exists a sequence of positive solutions (λn, (un, vn)) ∈ C such that λn ∈ (0, λ∗) for all n ∈

N and ∥(un, vn)∥E → +∞ as n → +∞.
For n ∈ N, let

sup{∥(u, v)∥E : (λ, (u, v)) ∈ C, λn < λ < λ∗} =: Bn,

then clearly
Bn ≤ Cn.

For (λn, (un, vn)) ∈ C, we have

lim
n→+∞

∥(un, vn)∥E = ∞,

therefore,
lim

n→+∞
Bn = ∞,

thus
lim

n→+∞
Cn = ∞.
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Now we will complete the proof of Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.2, the component C must bifurcate from infinity at λ = 0 and
by construction (0, (0, 0)) ∈ C. Part (i) follows from the construction of C and the fact that
C cannot cross the hyperplane {0} × E.

Let {λn, (un, vn)} ∈ C with ∥(un, vn)∥E → +∞ as n → +∞ and λn > 0 for all n ∈ N.
Suppose to the contrary that λn → λ̃ > 0 as n → +∞. By Lemma 5.2,

∥un∥L∞(Ω), ∥vn∥L∞(Ω) ≤ Cλ̃ < +∞

for all λ ∈ [ λ̃
2 , λ∗), a contradiction to ∥(un, vn)∥E → +∞ as n → +∞. Hence part (ii) follows.

This completes the proof of Theorem 5.1.

5.2 Examples

Let f (u, v) = (u + v)τ + 1, g(u, v) = (u + 2v)τ + 1, where τ ∈ (1, N+1
N−1 ).

It is easy to see f , g satisfy (H1) and (H2). When C1 is large enough, there exist τ <

p2, q2 <
N+1
N−1 , p1, q1 > τ and p1q1 > 1, such that (5.1)–(5.5) hold. Then there exists an

unbounded continuum C and λ∞ = 0 is the unique bifurcation point from infinity in [0, λ∗].
Such as, when N = 3. Let f (u, v) = (u + v)

3
2 + 1, g(u, v) = (u + 2v)

3
2 + 1, then (H1) and

(H2) hold. We set p2, q2 = 7
4 , p1 = 7

5 , q1 = 16
7 , then (5.1)–(5.5) hold.
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Abstract. In this paper, based on a suitable fractional Trudinger-–Moser inequality,
we establish sufficient conditions for the existence result of least energy sign-changing
solution for a class of one-dimensional nonlocal equations involving logarithmic and
exponential nonlinearities. By using a main tool of constrained minimization in Ne-
hari manifold and a quantitative deformation lemma, we consider both subcritical and
critical exponential growths. This work can be regarded as the complement for some
results of the literature.
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1 Introduction

In the present paper, we investigate the existence of least energy sign-changing solution for a
Dirichlet problem driven by the 1/2-Laplacian operator of the following type:

{

(−∆)1/2u = |u|p−2u ln |u|2 + µ f (u) in (0, 1),

u = 0 in R\(0, 1),
(1.1)

where 2 < p < ∞, µ is a positive parameter and f : R → R is a C1 function with exponential
subcritical or critical growth in the sense of the fractional Trudinger–Moser inequality. The
nonlocal operator (−∆)1/2 defined on smooth functions by

(−∆)1/2u(x) = − 1
2π

∫

R

u(x + y) + u(x − y)− 2u(x)

|y|2 dy, ∀x ∈ R. (1.2)

Recently, a great attention has been focused on the study of nonlocal operators (−∆)s
p,

p > 1, s ∈ (0, 1). These arise in thin obstacle problems, optimization, finance, phase transi-
tions, stratified materials, anomalous diffusion, crystal dislocation, soft thin films, semiperme-
able membranes, flame propagation, conservation laws, water waves, etc. See for instance [8].

BEmail: zgchen2014@outlook.com
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It is natural to work on the Sobolev–Slobodeckij space

X := W1/2,2
0 (0, 1) =

{

u ∈ H1/2(R) : u = 0 a.e. in R\(0, 1)
}

with respect to the Gagliardo semi-norm

∥u∥ := [u]H1/2(R) =

[

∫

R2

(u(x)− u(y))2

|x − y|2 dx dy

]

1
2

.

The problem of type (1.1) with exponential growth nonlinearity is motivated from the frac-
tional Trudinger–Moser inequality, which specialized the results of Iannizzotto, Squassina
[14, Corollary 2.4] to the space X: there exists 0 < ω ≤ π such that for all 0 < α < 2πω, we
can find Kα > 0 such that

∫ 1

0
eαu2

dx ≤ Kα, for all u ∈ X, ∥u∥ ≤ 1. (1.3)

For more information, we refer the readers to Ozawa [21, Theorem 1], and Kozono, Sato &
Wadade [17, Theorem 1.1], and do Ó, Medeiros & Severo [11, Theorem 1.1]. Therefore, from
this result we have naturally associated notions of subcriticality and criticality, namely: we
say that a function f : R → R has subcritical growth if

lim
|t|→∞

| f (t)|
eα|t|2 = 0, ∀α > 0,

and f has critical growth if there exists α0 > 0 such that

lim
|t|→∞

| f (t)|
eα|t|2 = 0, ∀α > α0

and

lim
|t|→∞

| f (t)|
eα|t|2 = +∞, ∀α < α0.

We assume the nonlinear term f : R → R is a function with exponential growth in the
sense of Trudinger–Moser inequality. More precisely, the function f satisfies the following
conditions:

( f1) f ∈ C1(R, R) and there exists α0 ≥ 0 such that

lim
|t|→∞

| f (t)|
eα|t|2 =

{

0, if α > α0,

+∞, if α < α0;

( f2) limt→0
| f (t)|
|t| = 0;

( f3) there exists θ > p such that

0 < θF(t) ≤ t f (t) for t ∈ R\{0},

where F(t) =
∫ t

0 f (s)ds;

( f4) t f ′(t) ≥ (p − 1) f (t) for t > 0 and t f ′(t) ≤ (p − 1) f (t) for t < 0.
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Similar conditions were also used in [28]. Here we’d like to highlight that the result in this
work can be applied for the model nonlinearity f (t) = |t|θ−2teα0t2

, t ∈ R.

Remark 1.1. The condition ( f4) implies that H(s) = s f (s)− pF(s) is a nonnegative function,
increasing in |s| with

sH′(s) = s2 f ′(s)− (p − 1) f (s)s ≥ 0, for any |s| > 0.

The problem driven by the 1/2-Laplacian operator was earlier considered in [14] (see also
[13]), where the authors studied the existence of mountain-pass weak solutions to the problem

− 1
2π

∫

R

u(x + y) + u(x − y)− 2u(x)

|y|2 dy = f (u), u ∈ W1/2,2
0 (−1, 1).

We also mention [10, 11] for other investigations in the one dimensional case on the whole
space R, facing the problem of the lack of compactness. In particular in [11], the existence of
ground state solutions for the problem

− 1
2π

∫

R

u(x + y) + u(x − y)− 2u(x)

|y|2 dy + u = f (u), u ∈ W1/2,2
0 (R)

was proved, where f is a Trudinger–Moser critical growth nonlinearity. In [7], Böer and
Miyagaki investigated the existence and multiplicity of nontrivial solutions for the Choquard
logarithmic equation

(−∆)1/2u + u +
(

ln | · | ∗ |u|2
)

u = f (u), in R,

for the nonlinearity f with exponential critical growth.
For local quasilinear problems of the following type

{

−∆Nu = f (u), in Ω ⊂ R
N ,

u = 0, on ∂Ω,

where the nonlinearity f (u) behaves like exp
(

α|u|N/N−1
)

, as |u| → ∞, have been analyzed in
literature, see [1, 9, 18, 27] and the references therein.

On the other hand, the signed and sign-changing solutions for elliptic equations with log-
arithmic nonlinearities were investigated. There is an extensive bibliography on this subject.
See, for instance, Ji, Szulkin [15], Alves, Ji [2–4], Tian [23], Wen, Tang & Chen [25], Truong
[24], Liang, Rădulescu [19], and the references therein.

After a careful bibliography review, we have found only a paper is due to Zhang et al. [28],
which is dealing with the existence of sign-changing solutions for the local quasilinear N-
Laplacian problem with logarithmic and exponential critical nonlinearities

{

−∆Nu = |u|p−2u ln |u|2 + µ f (u), in Ω,

u = 0, on ∂Ω.
(1.4)

In that interesting paper, the authors applied the constrained minimization in Nehari manifold
and the quantitative deformation lemma, and obtained the existence of least energy sign-
changing solution.

Motivated by above works, especially by [14,22,28], the main goal of this paper is to show
the existence of least energy sign-changing solutions for problem (1.1). To the author’s knowl-
edge, in the framework of the Sobolev–Slobodeckij spaces W1/2,2

0 (0, 1), fractional counterparts



4 Z. Chen

of the local quasilinear N-Laplacian problem (1.4) were not previously tackled in the literature.
This is precisely the goal of this manuscript.

We give our problem a variational formulation by setting for all u ∈ X

Iµ(u) =
1
2
∥u∥2 +

2
p2

∫ 1

0
|u|p dx − 1

p

∫ 1

0
|u|p ln |u|2 dx − µ

∫ 1

0
F(u) dx.

Observe that

lim
|t|→0

|t|p−1 ln |t|2
|t| = 0,

lim
|t|→∞

|t|p−1 ln |t|2
|t|r−1 = 0, for all r ∈ (p, ∞),

since p > 2. Then for any ϵ > 0, there exists a positive constant C1 = C1(ϵ) such that

|t|p−1 ln |t|2 ≤ ϵ|t|+ C1|t|r−1, for all t ∈ R. (1.5)

By ( f1), for all α ≥ α0 there exists c2 > 0 such that

| f (t)| ≤ c2eαt2
, for all t ∈ R. (1.6)

For given ϵ > 0, ( f2) implies that there exists δ > 0 such that for all |t| < δ we have F(t) ≤
ϵ
2 |t|2. Fix q > 2, 0 < α < 2πω and r > 1 such that rα < 2πω as well. By (1.6) there exists
Cϵ > 0 such that for all |t| ≥ δ we have F(t) ≤ Cϵ|t|qeαt2

. Summarizing, we obtain

|F(t)| ≤ ϵ

2
|t|2 + Cϵ|t|qeαt2

, ∀t ∈ R. (1.7)

Using (1.5), (1.7), the Sobolev embedding theorem and the fractional Trudinger–Moser in-
equality (1.3), one can verify that Iµ is well defined, of class C1(X, R) and

⟨I′µ(u), v⟩ = ⟨u, v⟩X −
∫ 1

0
|u|p−2uv ln |u|2 dx − µ

∫ 1

0
f (u)v dx

=
∫

R2

(u(x)− u(y))(v(x)− v(y))

|x − y|2 dx dy −
∫ 1

0
|u|p−2uv ln |u|2 dx − µ

∫ 1

0
f (u)v dx

for all u, v ∈ X. From now on, ⟨·, ·⟩ denotes the duality pairing between X′ and X. Clearly, the
critical points of Iµ are exactly the weak solutions of problem (1.1).

We call u a least energy sign-changing solution to problem (1.1) if u± ̸= 0 and

Iµ(u) = inf
{

Iµ(v) : v± ̸= 0, I′µ(v) = 0
}

,

where v+ = max{v(x), 0} and v− = min{v(x), 0}. By a simple calculation, for any u =

u+ + u− with u± ̸= 0, we obtain

∥u∥2 = ∥u+∥2 + ∥u−∥2 + 2H(u),

Iµ(u) = Iµ(u
+) + Iµ(u

−) + H(u) > Iµ(u
+) + Iµ(u

−),

⟨I′µ(u), u±⟩ = ⟨I′µ(u
±), u±⟩+ H(u) > ⟨I′µ(u

±), u±⟩,

where

H(u) = −
∫ 1

0

∫ 1

0

u+(x)u−(y) + u−(x)u+(y)

|x − y|2 dx dy > 0.
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Therefore, the methods used to seek sign-changing solutions of the local problems do not
work to problem (1.1) due to the presence of the nonlocal operator (−∆)1/2. And so, a careful
analysis is necessary in a lot of estimates. Inspired by [6], our strategy consists in finding
sign-changing solutions which minimize the corresponding energy functional Iµ among the
set of all sign-changing solutions to problem (1.1). To this end, we define the sign-changing
Nehari set as

Mµ :=
{

u ∈ X : ⟨I′µ(u), u+⟩ = ⟨I′µ(u), u−⟩ = 0, u± ̸= 0
}

.

Note that u± ∈ X and u = u+ + u−. Clearly, any sign-changing solution of problem (1.1) lies
in the set Mµ.

Here are our main results.

Theorem 1.2. (Subcritical case). Assume that conditions ( f2)–( f4) and ( f1) with α0 = 0 hold.

Then problem (1.1) admits a least energy sign-changing solution uµ ∈ Mµ for µ > 0 satisfying

Iµ(uµ) = mµ, where mµ = infu∈Mµ
Iµ(u).

Theorem 1.3. (Critical case). Assume that conditions ( f2)–( f4) and ( f1) with α0 > 0 hold. Then

there exists µ∗
> 0 such that problem (1.1) has a least energy sign-changing solution uµ ∈ Mµ for

µ ≥ µ∗ satisfying Iµ(uµ) = mµ.

The inequality (3.4) or (4.3) plays a crucial role to show that the minimum mµ of the
associated energy functional Iµ is achieved. In the subcritical case, (3.4) holds due to the
positive number α can take arbitrary small, thus we can conclude that Lemma 3.2 for all
µ > 0. However, in the critical case, we can’t prove directly that (4.3) holds by the fractional
Trudinger–Moser inequality (1.3) since α > α0 for some positive number α0. Based on this
reason, we need to further analyze the asymptotic property of mµ, by utilize Lemmas 2.3(ii)
and 2.4, we can find a threshold µ∗

> 0 such that (4.3) holds for all µ ≥ µ∗. Thus, we can
conclude that Lemma 4.2 for all µ ≥ µ∗. It is quite natural to ask whether in the critical case
a least energy sign-changing solution exists even for µ ∈ (0, µ∗). This is the issue we need
to further consider in the future. Our initial idea is below: to do that, based on works such
as [29], we insert an additional condition that makes possible to get a boundedness for the
integral involving the exponential term. By utilize an argument similar to [29], we will try
to pull the energy of sign-changing solutions down below some critical value to recover the
compactness which urges us to prove that mµ can be achieved by some uµ ∈ Mµ. Finally,
followed the idea used in [30, Theorem 1.1], we shall prove that uµ is indeed a least energy
sign-changing solution of problem (1.1).

This paper is organized as follows. In Section 2, we show some technical lemmas and
estimates in both subcritical and critical cases. Then we give the proofs of Theorem 1.2 and
Theorem 1.3 in Section 3 and 4, respectively.

2 Technical lemmas

In this section, we present some extra framework information and provide very useful techni-
cal results.

We start remembering the operator (−∆)1/2, of a smooth function u : R → R is defined by

F
(

(−∆)1/2u
)

(ξ) = |ξ|F (u)(ξ),
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where F denotes the Fourier transform, that is,

F (ϕ)(ξ) =
1√
2π

∫

R

e−iξ·xϕ(x) dx

for functions ϕ in the Schwartz class. Also (−∆)1/2u can be equivalently represented as (1.2).
Now, we turn our attention to the Hilbert space

H1/2(R) =

{

u ∈ L2(R) :
∫

R2

(u(x)− u(y))2

|x − y|2 dx dy < ∞

}

endowed with the norm

∥u∥H1/2(R) =
(

∥u∥2
L2(R) + [u]2H1/2(R)

)
1
2

,

where ∥ · ∥Ls(R) denotes the standard Ls(R) norm for any s ≥ 1. We know that (H1/2(R),
∥ · ∥H1/2(R)) is a Hilbert space. Also, in light of [8, Proposition 3.6], we have

∥(−∆)1/4u∥L2(R) = (2π)−
1
2 [u]H1/2(R), for all u ∈ H1/2(R),

and, sometimes, we identify these two quantities by omitting the normalization constant 1/2π.
It follows from Proposition 2.2 in [14] to that there exists λ1 > 0 such that for all u ∈ X

∥u∥L2(0,1) ≤ λ
− 1

2
1 ∥u∥. (2.1)

Moreover, equality holds for some u ∈ X with ∥u∥L2(0,1) = 1. Due to the inequality (2.1),
we can prove further (X, ∥ · ∥) is a Hilbert space, where ∥ · ∥ is induced by an inner product,
defined for all u, v ∈ X by

⟨u, v⟩X =
∫

R2

(u(x)− u(y))(v(x)− v(y))

|x − y|2 dx dy.

Hereafter, we assume throughout, unless otherwise mentioned, that the function f satisfies
conditions ( f1) to ( f4). Now, fix u ∈ X with u± ̸= 0, and we define the function Ψu :
[0, ∞)× [0, ∞) → R and mapping Tu : [0, ∞)× [0, ∞) → R

2 as

Ψu(a, b) = Iµ

(

au+ + bu−) (2.2)

and

Tu(a, b) =
(

⟨I′µ
(

au+ + bu−) , au+⟩, ⟨I′µ
(

au+ + bu−) , bu−⟩
)

= (g1(a, b), g2(a, b)). (2.3)

Lemma 2.1. For each u ∈ X with u± ̸= 0, there exists an unique pair (au, bu) ∈ (0, ∞)× (0, ∞)

such that

auu+ + buu− ∈ Mµ.

In particular, the set Mµ is nonempty. Moreover, for all a, b ≥ 0 with (a, b) ̸= (au, bu)

Iµ

(

au+ + bu−)
< Iµ

(

auu+ + buu−)

holds.
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Proof. First we will work to obtain the existence result. From ( f1) and ( f2), given ϵ > 0, there
exists a positive constant C2 = C2(ϵ) such that

f (t)t ≤ ϵ|t|2 + C2|t|qeαt2
for all α > α0, q > 2. (2.4)

Now, given u ∈ X with u± ̸= 0, it follows from (1.5), (2.4), the Sobolev embedding theorem,
the Hölder inequality and the fractional Trudinger–Moser inequality (1.3) that when s, s′ > 1
with 1/s + 1/s′ = 1 and small a > 0 with αs ∥au+∥2 ≤ 2πω

g1(a, b) = ⟨I′µ
(

au+ + bu−) , au+⟩

=
∥

∥au+
∥

∥

2
+ abH(u)−

∫ 1

0

∣

∣au+
∣

∣

p ln
∣

∣au+
∣

∣

2 dx − µ
∫ 1

0
f
(

au+
)

au+ dx

≥
∥

∥au+
∥

∥

2 − ϵ
∫ 1

0

∣

∣au+
∣

∣

2 dx − C1

∫ 1

0

∣

∣au+
∣

∣

r dx

− µϵ
∫ 1

0

∣

∣au+
∣

∣

2 dx − µC2

∫ 1

0

∣

∣au+
∣

∣

q
eα|au+|2 dx

≥
∥

∥au+
∥

∥

2 − ϵC3
∥

∥au+
∥

∥

2 − C1C4
∥

∥au+
∥

∥

r − µϵC3
∥

∥au+
∥

∥

2

− µC2

(

∫ 1

0

∣

∣au+
∣

∣

qs′ dx

)
1
s′
(

∫ 1

0
eαs∥au+∥2(|au+|/∥au+∥)2

dx

)
1
s

≥ (1 − ϵC3 − µϵC3)
∥

∥au+
∥

∥

2 − C1C4
∥

∥au+
∥

∥

r − µC2K
αs∥au+∥2 C5

∥

∥au+
∥

∥

q

(2.5)

holds. Choose ϵ > 0 sufficiently small such that 1 − ϵC3 − µϵC3 > 0 and then it is easy to
see that ⟨I′µ (au+ + bu−) , au+⟩ > 0 for small a > 0 and all b > 0 by r, q > 2. In turn, we can
also obtain that ⟨I′µ (au+ + bu−) , bu−⟩ > 0 for b > 0 small enough and all a > 0. Hence, it is
evident that there exists δ1 > 0 such that

⟨I′µ
(

δ1u+ + bu−) , δ1u+⟩ > 0, ⟨I′µ
(

au+ + δ1u−) , δ1u−⟩ > 0 (2.6)

for all a, b > 0.
On the other hand, recall the elementary inequality

2tp − ptp ln t2 ≤ 2 (2.7)

for all t ∈ (0, ∞). From ( f3), we can deduce that there exist Cθ,1, Cθ,2 > 0 such that

F(t) ≥ Cθ,1|t|θ − Cθ,2. (2.8)

Now, choose a = δ∗2 > δ1 with δ∗2 large enough and it follows from (2.7), (2.8) and 2 < p < θ

that

g1(δ
∗
2 , b) = ⟨I′µ

(

δ∗2 u+ + bu−) , δ∗2 u+⟩

≤
∥

∥δ∗2 u+
∥

∥

2
+ δ∗2 bH(u) +

∫ 1

0

(

2
p
− 2

p

∣

∣δ∗2 u+
∣

∣

p
)

dx − µθ
∫ 1

0
Cθ,1

∣

∣δ∗2 u+
∣

∣

θ dx + µθCθ,2

≤ 0

for b ∈ [δ1, δ∗2 ]. With the similar argument, we can choose sufficiently large b = δ∗2 > δ1 such
that ⟨I′µ (au+ + δ∗2 u−) , δ∗2 u−⟩ ≤ 0 holds for a ∈ [δ1, δ∗2 ].

Hence, let δ2 > δ∗2 be large enough. Then we obtain that

⟨I′µ
(

δ2u+ + bu−) , δ2u+⟩ < 0, ⟨I′µ
(

au+ + δ2u−) , δ2u−⟩ < 0 (2.9)
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for all a, b ∈ [δ1, δ2]. Combining (2.6) and (2.9) with Miranda’s Theorem [5], there exists at least
one point pair (au, bu) ∈ (0, ∞)× (0, ∞) such that Tu (au, bu) = (0, 0), that is, auu+ + buu− ∈
Mµ.

Next we will prove the uniqueness of the pair (au, bu) . In fact, it is sufficient to show
that if u ∈ Mµ and a0u+ + b0u− ∈ Mµ with a0 > 0 and b0 > 0, then (a0, b0) = (1, 1).
Assume that u ∈ Mµ and a0u+ + b0u− ∈ Mµ. We thus obtain that ⟨I′µ (a0u+ + b0u−) , a0u+⟩ =
0, ⟨I′µ (a0u+ + b0u−) , b0u−⟩ = 0, and ⟨I′µ(u), u±⟩ = 0, namely

∥

∥a0u+
∥

∥

2
+ a0b0H(u) =

∫ 1

0

∣

∣a0u+
∣

∣

p ln
∣

∣a0u+
∣

∣

2 dx + µ
∫ 1

0
f
(

a0u+
)

a0u+ dx, (2.10)

∥

∥b0u−∥
∥

2
+ b0a0H(u) =

∫ 1

0

∣

∣b0u−∣
∣

p ln
∣

∣b0u−∣
∣

2 dx + µ
∫ 1

0
f
(

b0u−) b0u− dx, (2.11)

∥

∥u+
∥

∥

2
+ H(u) =

∫ 1

0

∣

∣u+
∣

∣

p ln
∣

∣u+
∣

∣

2 dx + µ
∫ 1

0
f
(

u+
)

u+ dx, (2.12)

∥

∥u−∥
∥

2
+ H(u) =

∫ 1

0

∣

∣u−∣
∣

p ln
∣

∣u−∣
∣

2 dx + µ
∫ 1

0
f
(

u−) u− dx. (2.13)

Without loss of generality, we may assume that 0 < a0 ≤ b0. Thus, form (2.11), we get

∥

∥b0u−∥
∥

2
+ b2

0 H(u) ≥
∫ 1

0

∣

∣b0u−∣
∣

p ln
∣

∣b0u−∣
∣

2 dx + µ
∫ 1

0
f
(

b0u−) b0u− dx. (2.14)

Combining (2.14) and (2.13), we deduce that

∫ 1

0

∣

∣u−∣
∣

p ln
∣

∣u−∣
∣

2 dx −
∫ 1

0

|b0u−|p ln |b0u−|2
b2

0
dx ≥ µ

∫ 1

0

f (b0u−) b0u−

b2
0

dx − µ
∫ 1

0
f
(

u−) u− dx,

that is,
∫ 1

0

(

∣

∣u−∣
∣

p−2 ln
∣

∣u−∣
∣

2 −
∣

∣b0u−∣
∣

p−2 ln
∣

∣b0u−∣
∣

2
)

∣

∣u−∣
∣

2 dx ≥ µ
∫ 1

0

(

f (b0u−)
b0u− − f (u−)

u−

)

(u−)
2 dx.

It follows from ( f4) and p > 2 that t 7→ f (t)
t and t 7→ tp−2 ln t2 are increasing for t > 0. If

b0 > 1, the left hand side of the above inequality is negative, which is absurd due to the right
hand side is positive. Therefore, we obtain a0 ≤ b0 ≤ 1. Similarly, from (2.10), (2.12) and
0 < a0 ≤ b0, one has
∫ 1

0

(

∣

∣u+
∣

∣

p−2 ln
∣

∣u+
∣

∣

2 −
∣

∣a0u+
∣

∣

p−2 ln
∣

∣a0u+
∣

∣

2
)

∣

∣u+
∣

∣

2 dx ≤ µ
∫ 1

0

(

f (a0u+)

a0u+
− f (u+)

u+

)

(u+)
2 dx.

Thus, we can deduce that a0 ≥ 1. So a0 = b0 = 1.
To complete the proof of this lemma, it remains to show that (au, bu) is the unique max-

imum point of Ψµ in [0, ∞) × [0, ∞). It follows from (2.7), (2.8), the Hölder inequality, the
elementary inequality and θ > p > 2 that

Ψu(a, b) = Iµ

(

au+ + bu−)

=
1
2

∥

∥au+ + bu−∥
∥

2
+

2
p2

∫ 1

0

∣

∣au+ + bu−∣
∣

p dx

− 1
p

∫ 1

0

∣

∣au+ + bu−∣
∣

p ln
∣

∣au+ + bu−∣
∣

2 dx − µ
∫ 1

0
F
(

au+ + bu−) dx

≤ a2
∥

∥u+
∥

∥

2
+ b2

∥

∥u−∥
∥

2
+

2
p2 − µCθ,1aθ

∫ 1

0

∣

∣u+
∣

∣

θ dx − µCθ,1bθ
∫ 1

0

∣

∣u−∣
∣

θ dx + 2µCθ,2,
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which implies that lim|(a,b)|→∞ Ψu(a, b) = −∞. Therefore, it suffices to show that the maxi-
mum point of Ψu cannot be achieved on the boundary of [0, ∞)× [0, ∞). Suppose, by contra-
diction, that (0, b) with b ≥ 0 is a maximum point of Ψu. Then from (2.5), we have

a
d
da

[

Iµ

(

au+ + bu−)] = ⟨I′µ
(

au+ + bu−) , au+⟩ > 0

for small a > 0, which means that Ψu is increasing with respect to a if a > 0 is small enough.
This yields a contradiction. Similarly, we can deduce that Ψu cannot achieve its global maxi-
mum on (a, 0) with a ≥ 0.

Lemma 2.2. For any u ∈ X with u± ̸= 0 such that ⟨I′µ(u), u±⟩ ≤ 0, the unique maximum point

(au, bu) of Ψu on [0, ∞)× [0, ∞) satisfies 0 < au, bu ≤ 1.

Proof. Here we will only prove 0 < au ≤ 1. The proof of 0 < bu ≤ 1 is the same. For u ∈ X

with u± ̸= 0, by Lemma 2.1, there exist unique au and bu such that auu+ + buu− ∈ Mµ.
Without loss of generality, we may assume that au ≥ bu > 0. Since auu+ + buu− ∈ Mµ. Then,
we have that

∥

∥auu+
∥

∥

2
+ a2

uH(u) ≥
∫ 1

0

∣

∣auu+
∣

∣

p ln
∣

∣auu+
∣

∣

2 dx + µ
∫ 1

0
f
(

auu+
)

auu+ dx. (2.15)

Moreover, by ⟨I′µ(u), u±⟩ ≤ 0, we have that

∥

∥u+
∥

∥

2
+ H(u) ≤

∫ 1

0

∣

∣u+
∣

∣

p ln
∣

∣u+
∣

∣

2 dx + µ
∫ 1

0
f
(

u+
)

u+ dx. (2.16)

Therefore, from (2.15) and (2.16), it follows that
∫ 1

0

|auu+|p ln |auu+|2
a2

u

dx−
∫ 1

0

∣

∣u+
∣

∣

p ln
∣

∣u+
∣

∣

2 dx ≤ µ
∫ 1

0
f
(

u+
)

u+ dx−µ
∫ 1

0

f (auu+) auu+

a2
u

dx,

that is,
∫ 1

0

(

∣

∣auu+
∣

∣

p−2 ln
∣

∣auu+
∣

∣

2 −
∣

∣u+
∣

∣

p−2 ln
∣

∣u+
∣

∣

2
)

∣

∣u+
∣

∣

2 dx ≤ µ
∫ 1

0

(

f (u+)

u+
− f (auu+)

auu+

)

(u+)
2 dx.

Now, we suppose, by contradiction, that au > 1. Since ( f4) and p > 2, then t 7→ f (t)
t and

t 7→ tp−2 ln t2 are increasing for t > 0, which implies that the last inequality is impossible.
Thus, we conclude 0 < au ≤ 1.

Lemma 2.3. For all u ∈ Mµ, there exists a positive number ρ independent of u such that

(i) ∥u±∥ ≥ ρ;

(ii) Iµ(u) ≥
(

1
2 − 1

p

)

∥u∥2.

Proof. (i) We only prove that there exists a positive constant ρ independent of u such that
∥u+∥ ≥ ρ for all u ∈ Mµ and the result for ∥u−∥ is similar. By contradiction, for arbitrary
small ε > 0, there exists {uε} ⊂ Mµ such that ∥u+

ε ∥ < ε. Letting ε = 1/n for large enough
n ∈ N, thus, we can suppose that there exists a sequence {un} ⊂ Mµ such that u+

n → 0 in X.
Since ⟨I′µ (un) , u+

n ⟩ = 0 holds. Then it follows from (1.5) and (2.4) that

∥

∥u+
n

∥

∥

2 ≤
∥

∥u+
n

∥

∥

2
+ H(un) =

∫ 1

0

∣

∣u+
n

∣

∣

p ln
∣

∣u+
n

∣

∣

2 dx + µ
∫ 1

0
f
(

u+
n

)

u+
n dx

≤ ϵ
∫ 1

0

∣

∣u+
n

∣

∣

2 dx + C1

∫ 1

0

∣

∣u+
n

∣

∣

r dx + µϵ
∫ 1

0

∣

∣u+
n

∣

∣

2 dx + µC2

∫ 1

0

∣

∣u+
n

∣

∣

q
eα|u+

n |2 dx.
(2.17)
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Let s > 1 with 1/s + 1/s′ = 1. Since u+
n → 0 in X, then there exists n0 ∈ N such that

αs ∥u+
n ∥2 ≤ 2πω for all n ≥ n0. From Hölder’s inequality and the fractional Trudinger–Moser

inequality (1.3), we have

∫ 1

0

∣

∣u+
n

∣

∣

q exp
(

α
∣

∣u+
n

∣

∣

2
)

dx ≤
(

∫ 1

0

∣

∣u+
n

∣

∣

qs′ dx

)
1
s′
(

∫ 1

0
eαs∥u+

n ∥2(|u+
n |/∥u+

n ∥)2
dx

)
1
s

≤ Kαs∥u+
n ∥2

(

∫ 1

0

∣

∣u+
n

∣

∣

qs′ dx

)
1
s′

.

Combining (2.17) with the last inequality, we can deduce from the Sobolev embedding theo-
rem that when n ≥ n0

∥

∥u+
n

∥

∥

2 ≤ (ϵ + µϵ)C6
∥

∥u+
n

∥

∥

2
+ C1C7

∥

∥u+
n

∥

∥

r
+ µC2Kαs∥u+

n ∥2 C8
∥

∥u+
n

∥

∥

q . (2.18)

Choose appropriate ϵ > 0 such that 1 − µϵC6 − ϵC6 > 0. Noticing that 2 < p < r and 2 < q,
we can deduce that (2.18) contradicts u+

n → 0 in X.
(ii) Given u ∈ Mµ, by the definition of Mµ and ( f3) we obtain

Iµ(u) = Iµ(u)−
1
p
⟨I′µ(u), u⟩

=
1
2
∥u∥2 +

2
p2

∫ 1

0
|u|p dx − µ

∫ 1

0
F(u) dx − 1

p
∥u∥2 + µ

1
p

∫ 1

0
f (u)u dx

≥
(

1
2
− 1

p

)

∥u∥2.

Thus, we finish the proof.

Lemma 2.3 tells that Iµ(u) > 0 for all u ∈ Mµ. Therefore, Iµ is bounded below in Mµ,
which means that mµ = infu∈Mµ

Iµ(u) is well-defined. The following lemma is about the
asymptotic property of mµ.

Lemma 2.4. Let mµ = infu∈Mµ
Iµ(u), then limµ→∞ mµ = 0.

Proof. Fix u ∈ X with u± ̸= 0. Then, by Lemma 2.1, for each µ > 0 there exists a point pair
(

aµ, bµ

)

such that aµu+ + bµu− ∈ Mµ. Let

Tu :=
{(

aµ, bµ

)

∈ [0, ∞)× [0, ∞) : Tu

(

aµ, bµ

)

= (0, 0), µ > 0
}

,

where Tu is defined in (2.3).
Since aµu+ + bµu− ∈ Mµ, by assumption ( f3) , (2.7) and (2.8), we have

∥

∥aµu+
∥

∥

2
+

∥

∥bµu−∥
∥

2
+ 2aµbµH(u) =

∫ 1

0

∣

∣aµu+ + bµu−∣
∣

p ln
∣

∣aµu+ + bµu−∣
∣

2 dx

+ µ
∫ 1

0
f
(

aµu+ + bµu−) (aµu+ + bµu−) dx

≥ 2a
p
µ

p

∫ 1

0

∣

∣u+
∣

∣

p dx +
2b

p
µ

p

∫ 1

0

∣

∣u−∣
∣

p dx − 2
p
− µθCθ,2

+ µθCθ,1aθ
µ

∫ 1

0

∣

∣u+
∣

∣

θ dx + µθCθ,1bθ
µ

∫ 1

0

∣

∣u−∣
∣

θ dx.
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From θ > p > 2, it follows that the set Tµ is bounded. Hence, if {µn} ⊂ (0, ∞) satisfies
µn → ∞ as n → ∞, then, up to a subsequence, there exist ā, b̄ ≥ 0 such that aµn → ā and
bµn → b̄.

Claim that ā = b̄ = 0. Suppose, by contradiction, that ā > 0 or b̄ > 0. For each n ∈
N, aµn u+ + bµn u− ∈ Mµn , we have ⟨I′µn

(

aµn u+ + bµn u−) , aµn u+ + bµn u−⟩ = 0, namely

∥

∥aµn u+ + bµn u−∥
∥

2
=

∫ 1

0

∣

∣aµn u+ + bµn u−∣
∣

p ln
∣

∣aµn u+ + bµn u−∣
∣

2 dx

+ µn

∫ 1

0
f
(

aµn u+ + bµn u−) (aµn u+ + bµn u−) dx.
(2.19)

Note that aµn u+ → āu+ and bµn u− → b̄u− in X, by (1.5) and the Lebesgue dominated conver-
gence theorem, we have that

∫ 1

0

∣

∣aµn u+ + bµn u−∣
∣

p ln
∣

∣aµn u+ + bµn u−∣
∣

2 dx →
∫ 1

0

∣

∣āu+ + b̄u−∣
∣

p ln
∣

∣āu+ + b̄u−∣
∣

2 dx. (2.20)

Once µn → ∞ as n → ∞ and
{

aµn u+ + bµn u−} is bounded in X, from (2.19), (2.20) and ( f3), it
follows that

∥

∥āu+ + b̄u−∥
∥

2
=

∫ 1

0

∣

∣āu+ + b̄u−∣
∣

p ln
∣

∣āu+ + b̄u−∣
∣

2 dx

+
(

lim
n→∞

µn

)

lim
n→∞

∫ 1

0
f
(

aµn u+ + bµn u−) (aµn u+ + bµn u−) dx,

which is impossible. Thus, ā = b̄ = 0, i.e., aµn → 0 and bµn → 0 as n → ∞. Finally, by ( f3) and
(2.19), we have 0 ≤ mµ = infMµ

Iµ(u) ≤ Iµn

(

aµn u+ + bµn u−) → 0, from which we conclude
the fact that mµ → 0 as µ → ∞.

Subsequently, we will prove that if the minimum of Iµ on Mµ is achieved in some u0 ∈
Mµ, then u0 is a critical point of Iµ. The proof of this lemma follows from some arguments
used in [12, 19], including the quantitative deformation lemma and Brouwer degree in R.

Lemma 2.5. If u0 ∈ Mµ satisfies Iµ (u0) = mµ, then I ′µ (u0) = 0.

Proof. Since u0 ∈ Mµ, we have ⟨I′µ (u0) , u+
0 ⟩ = ⟨I′µ (u0) , u−

0 ⟩ = 0. By Lemma 2.1, for (α, β) ∈
(R+ × R+) \(1, 1), we have

Iµ

(

αu+
0 + βu−

0

)

< Iµ

(

u+
0 + u−

0

)

= mµ. (2.21)

Arguing by contradiction. We assume that I′µ (u0) ̸= 0. For the continuity of I′µ, there exists
ι, δ > 0 such that

∥

∥

∥
I′µ(v)

∥

∥

∥
≥ ι, for all ∥v − u0∥ ≤ 3δ. (2.22)

Choose τ ∈ (0, min{1/2, δ/(
√

2∥u0∥)}). Let D = (1 − τ, 1 + τ)× (1 − τ, 1 + τ) and g(α, β) =

αu+
0 + βu−

0 for all (α, β) ∈ D. By virtue of (2.21), it is easy to see that

mµ := max
∂D

Iµ ◦ g < mµ. (2.23)

Indeed, let ϵ := min{(mµ − mµ)/3, ιδ/8}, Sδ := B (u0, δ) and Ic
µ := I−1

µ ((−∞, c]). And ac-
cording to the quantitative deformation lemma [26, Lemma 2.3], there exists a deformation
η ∈ C ([0, 1]× X, X) such that:
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(i) η(1, v) = v, if v /∈ I−1
µ

([

mµ − 2ϵ, mµ + 2ϵ
])

∩ S2δ,

(ii) η
(

1, I
mµ+ϵ
µ ∩ Sδ

)

⊂ I
mµ−ϵ
µ ,

(iii) Iµ(η(1, v)) ≤ Iµ(v), for all v ∈ X.

Since Iµ(g(α, β)) ≤ mµ and g(α, β) ∈ Sδ for (α, β) ∈ D, then it follows from (ii) that

max
(α,β)∈D

Iµ(η(1, g(α, β))) ≤ mµ − ϵ. (2.24)

In this way, we obtain a contradiction to (2.24) from the definition of mµ if we could prove that
η(1, g(D))∩ Mµ is nonempty. Thus we complete the proof of this lemma. To do this, we first
define

ḡ(α, β) := η(1, g(α, β)),

Ψ0(α, β) =
(

⟨I′µ(g(α, β)), u+
0 ⟩, ⟨I′µ(g(α, β)), u−

0 ⟩
)

=
(

⟨I′µ
(

αu+
0 + βu−

0

)

, u+
0 ⟩, ⟨I′µ

(

αu+
0 + βu−

0

)

, u−
0 ⟩

)

:=
(

φ1
u(α, β), φ2

u(α, β)
)

,

and

Ψ1(α, β) :=
(

1
α
⟨I′µ(ḡ(α, β)), (ḡ(α, β))+⟩, 1

β
⟨I′µ(ḡ(α, β)), (ḡ(α, β))−⟩

)

.

Moreover, a straightforward calculation, based on u0 ∈ Mµ, shows that

∂φ1
u(α, β)

∂α

∣

∣

∣

∣

(1,1)
=

∥

∥u+
0

∥

∥

2 − (p − 1)
∫

∣

∣u+
0

∣

∣

p ln
∣

∣u+
0

∣

∣

2 dx − 2
∫

∣

∣u+
0

∣

∣

p dx

− µ
∫ 1

0
f ′
(

u+
0

) ∣

∣u+
0

∣

∣

2 dx

= (2 − p)
∫ 1

0

∣

∣u+
0

∣

∣

p ln
∣

∣u+
0

∣

∣

2 dx + µ
∫ 1

0
f
(

u+
0

)

u+
0 dx

− 2
∫ 1

0

∣

∣u+
0

∣

∣

p dx − µ
∫ 1

0
f ′
(

u+
0

) (

u+
0

)2 dx − H(u)

and
∂φ1

u(α, β)

∂β

∣

∣

∣

∣

(1,1)
= H(u).

Similarly,
∂φ2

u(α, β)

∂α

∣

∣

∣

∣

(1,1)
= H(u)

and

∂φ2
u(α, β)

∂β

∣

∣

∣

∣

(1,1)
=

∥

∥u−
0

∥

∥

2 − (p − 1)
∫

∣

∣u−
0

∣

∣

p ln
∣

∣u−
0

∣

∣

2 dx − 2
∫

∣

∣u−
0

∣

∣

p dx

− µ
∫ 1

0
f ′
(

u−
0

) ∣

∣u−
0

∣

∣

2 dx

= (2 − p)
∫ 1

0

∣

∣u−
0

∣

∣

p ln
∣

∣u−
0

∣

∣

2 dx + µ
∫ 1

0
f
(

u−
0

)

u−
0 dx

− 2
∫ 1

0

∣

∣u−
0

∣

∣

p dx − µ
∫ 1

0
f ′
(

u−
0

) (

u−
0

)2 dx − H(u).
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Let

H =







∂φ1
u(α,β)
∂α

∣

∣

∣

(1,1)
, ∂φ2

u(α,β)
∂α

∣

∣

∣

(1,1)
∂φ1

u(α,β)
∂β

∣

∣

∣

(1,1)
, ∂φ2

u(α,β)
∂β

∣

∣

∣

(1,1)






.

Then we deduce that det H ̸= 0. Therefore, Ψ0 is a C1 function with the point pair (1, 1) being
the unique isolated zero point in D. By using the Brouwer’s degree in R, we deduce that
deg (Ψ0, D, 0) = 1.

Now, it follows from (2.24) and (i) that g(α, β) = ḡ(α, β) on ∂D. For the boundary depen-
dence of Brouwer’s degree (see [20, Theorem 4.5]), there holds deg (Ψ1, D, 0)=deg (Ψ0, D, 0)=
1. Therefore, there exists some (ᾱ, β̄) ∈ D such that

η(1, g(ᾱ, β̄)) ∈ Mµ.

So we obtain a contradiction to (2.24).

3 Subcritical case

Lemma 3.1 (Subcritical case). If {un} ⊂ Mµ is a minimizing sequence for mµ, then there exists

some u ∈ X such that

∫ 1

0
f
(

u±
n

)

u±
n dx →

∫ 1

0
f
(

u±) u± dx and
∫ 1

0
F
(

u±
n

)

dx →
∫ 1

0
F
(

u±) dx.

Proof. We will only prove the first result. Since the second limit is a direct consequence of the
first one, we omit it here.

Let sequence {un} ⊂ Mµ be a minimizing sequence such that limn→∞ Iµ (un) = mµ. Thus,
{un} is bounded in X by Lemma 2.3. It follows from Proposition 2.2 in [14] to that {un} is
bounded in H1/2(R) as well. By [8, Theorem 7.1 and Theorem 6.10], passing to a subsequence
we may assume that un ⇀ u weakly in both X and H1/2(R), and that un → u in Lq(0, 1) for
all q ≥ 1 and un(x) → u(x) a.e. in (0, 1). Thus,

u±
n ⇀ u± weakly in X,

u±
n → u± in Lq(0, 1) for q ∈ [1, ∞),

u±
n → u± a.e. in (0, 1).

(3.1)

Note that by (2.4), we have

f
(

u±
n (x)

)

u±
n (x) ≤ ϵ

∣

∣u±
n (x)

∣

∣

2
+ C2

∣

∣u±
n (x)

∣

∣

q
eα|u±

n (x)|2 =: h
(

u±
n (x)

)

, (3.2)

for all α > α0 = 0 and q > 2. It is sufficient to prove that sequence {h (u±
n )} is convergent in

L1(0, 1).
Choosing s, s′ > 1 with 1/s + 1/s′ = 1, by (3.1), we get that

∣

∣u±
n

∣

∣

q →
∣

∣u±∣
∣

q in Ls′(0, 1). (3.3)

In particular, there exists c5 > 0 such that ∥u±
n ∥2 ≤ c5 for all n ∈ N. Choosing 0 < α <

2πω/sc5, by the fractional Trudinger–Moser inequality (1.3), we get

∫ 1

0
eαs|u±

n |2 dx ≤
∫ 1

0
eαsc5(u

±
n /∥u±

n ∥)2
dx ≤ Kαsc5 . (3.4)



14 Z. Chen

By reflexivity of Ls(0, 1), passing to a subsequence, we have

eα|u±
n |2 ⇀ eα|u±|2 weakly in Ls(0, 1). (3.5)

Hence, by (3.3), (3.5) and [16, Lemma 4.8, Chapter 1], we conclude that

∫ 1

0
f
(

u±
n

)

u±
n dx →

∫ 1

0
f
(

u±) u± dx.

This completes the proof.

Lemma 3.2 (Subcritical case). There exists some uµ ∈ Mµ such that Iµ(uµ) = mµ.

Proof. As indicated earlier that mµ > 0. In what follows, we only need to show that mµ is
achieved. By the definition of mµ = infu∈Mµ

Iµ(u), there exists a sequence {un} ⊂ Mµ such
that

lim
n→∞

Iµ (un) = mµ.

On the one hand, (3.1) and the Vitali convergence theorem yield that

lim
n→∞

∫ 1

0
|un|p ln |un|2 dx →

∫ 1

0
|u|p ln |u|2 dx. (3.6)

On the other hand, it follows from (3.1) that un → u in Lp(0, 1), we have

lim
n→∞

∫ 1

0
|un|p dx →

∫ 1

0
|u|p dx. (3.7)

Lemma 2.1 implies Iµ (αu+
n + βu−

n ) ≤ Iµ (un) for all α, β ≥ 0. So, by using the Brezis–Lieb
Lemma, Fatou’s Lemma, (3.6), (3.7) and Lemma 3.1, we get

lim inf
n→∞

Iµ

(

αu+
n + βu−

n

)

≥ α2

2
lim
n→∞

(

∥

∥u+
n − u+

∥

∥

2
+

∥

∥u+
∥

∥

2
)

+
β2

2
lim
n→∞

(

∥

∥u−
n − u−∥

∥

2
+

∥

∥u−∥
∥

2
)

+ αβ lim inf
n→∞

H (un)− µ
∫ 1

0
F
(

αu+
)

dx − µ
∫ 1

0
F
(

βu−)dx

+
2
p2

∫ 1

0

∣

∣αu+ + βu−∣
∣

p dx − 1
p

∫ 1

0

∣

∣αu+ + βu−∣
∣

p ln
∣

∣αu+ + βu−∣
∣

2 dx

≥ Iµ

(

αu+ + βu−)+
α2

2
A1 +

β2

2
A2,

where A1 = limn→∞ ∥u+
n − u+∥2 , A2 = limn→∞ ∥u−

n − u−∥2 . So, for all α ≥ 0 and all β ≥ 0,
one has that

mµ ≥ Iµ

(

αu+ + βu−)+
α2

2
A1 +

β2

2
A2. (3.8)

Firstly, we prove that u± ̸= 0. Here we only prove u+ ̸= 0 since u− ̸= 0 is analogous, by
contradiction, we assume u+ = 0. Hence, let β = 0 in (3.8) and we have that

mµ ≥ α2

2
A1 for all α ≥ 0. (3.9)

If A1 = 0, that is, u+
n → u+ in X. Lemma 2.3(i) implies ∥u+∥ > 0, which contradicts supposi-

tion. If A1 > 0, by (3.9) we get mµ ≥ α2

2 A1 for all α ≥ 0, which is a contradiction by Lemma 2.4.
That is, we deduce that u+ ̸= 0.



Sign-changing solution for 1/2-Laplacian problem 15

Lastly, we prove that mµ is achieved. By Lemma 2.1, there exists (su, tu) ∈ (0, ∞)× (0, ∞)

such that uµ := suu+ + tuu− ∈ Mµ, that is,

⟨I′µ
(

suu+ + tuu−) , suu+⟩ = 0 = ⟨I′µ
(

suu+ + tuu−) , tuu−⟩.

We now claim that 0 < su, tu ≤ 1. Indeed, by {un} ⊂ Mµ, we have ⟨I′µ(un), u±
n ⟩ = 0, that is,

∥

∥u±
n

∥

∥

2
+ H(un) =

∫ 1

0

∣

∣u±
n

∣

∣

p ln
∣

∣u±
n

∣

∣

2 dx + µ
∫ 1

0
f
(

u±
n

)

u±
n dx.

Therefore, by the weak lower semicontinuity of norm, Fatou’s lemma, (3.6), and Lemma 3.1
we have

∥

∥u±∥
∥

2
+ H(u) ≤

∫ 1

0
|u±|p ln |u±|2 dx + µ

∫

R3
f
(

u±) u± dx.

That is,
⟨I′µ (u) , u±⟩ ≤ lim inf

n→∞
⟨I′µ (un) , u±

n ⟩ = 0. (3.10)

By (3.10) and similar to the proof in Lemma 2.2, we have su, tu ≤ 1.
Our next step is show that Iµ(uµ) = mµ. Remark 1.1 shows that H(s) := s f (s)− pF(s) is a

nonnegative function, increasing in |s|. Hence, by the weaker lower semicontinuity of norm,
(3.7), Remark 1.1, µ > 0 and Lemma 3.1, we get

mµ ≤ Iµ

(

uµ

)

= Iµ

(

uµ

)

− 1
p
⟨I′µ

(

uµ

)

, uµ⟩

=

(

1
2
− 1

p

)

∥uµ∥2 +
2
p2

∫ 1

0
|uµ|p dx +

µ

p

∫ 1

0

[

f (uµ)uµ − pF(uµ)
]

dx

=

(

1
2
− 1

p

)

∥

∥suu+
∥

∥

2
+

(

1
2
− 1

p

)

∥

∥tuu−∥
∥

2
+ 2

(

1
2
− 1

p

)

sutuH(u)

+
2
p2 s

p
u

∫ 1

0
|u+|p dx +

2
p2 t

p
u

∫ 1

0
|u−|p dx

+
µ

p

∫ 1

0

(

f
(

suu+
)

suu+ − pF
(

suu+
))

dx

+
µ

p

∫ 1

0

(

f
(

tuu−) tuu− − pF
(

tuu−)) dx

≤
(

1
2
− 1

p

)

∥u∥2 +
2
p2

∫ 1

0
|u|p dx +

µ

p

∫ 1

0
( f (u) u − pF (u)) dx

≤ lim inf
n→∞

[(

1
2
− 1

p

)

∥un∥2 +
2
p2

∫ 1

0
|un|p dx +

µ

p

∫ 1

0
( f (un) un − pF (un)) dx

]

= lim inf
n→∞

(

Iµ (un)−
1
p
⟨I′µ (un) , un⟩

)

= lim inf
n→∞

Iµ (un) = mµ,

and if su < 1 or tu < 1, then the above inequality is strict. Hence, it follows that su = tu = 1.
Thus, uµ ∈ Mµ and Iµ

(

uµ

)

= mµ. This completes the proof.

Proof of Theorem 1.2. From Lemma 2.5 and Lemma 3.2, we deduce that uµ is a least energy
sign-changing solution for problem (1.1).
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4 Critical case

Lemma 4.1 (Critical case). There exists µ∗
> 0 such that if µ ≥ µ∗ and {un} ⊂ Mµ is a minimizing

sequence for mµ, then

∫ 1

0
f
(

u±
n

)

u±
n dx →

∫ 1

0
f
(

u±) u± dx and
∫ 1

0
F
(

u±
n

)

dx →
∫ 1

0
F
(

u±) dx

hold for some u ∈ X.

Proof. Arguing as in Lemma 3.1, it is sufficient to prove that {h (u±
n )} is convergent in L1(0, 1)

for appropriate µ > 0, where {h (u±
n (x))} is defined in (3.2).

Let sequence {un} ⊂ Mµ satisfy limn→∞ Iµ (un) = mµ and ν > 0. Since Lemma 2.3(ii) and
Lemma 2.4, there exists µ∗

> 0 such that when µ ≥ µ∗, there holds

lim sup
n→∞

∥

∥u±
n

∥

∥

2
<

πω

α0 + ν
. (4.1)

Now, considering s, s′ > 1 with 1/s + 1/s′ = 1 and s close to 1 , we get that
∣

∣u±
n

∣

∣

q →
∣

∣u±∣
∣

q in Ls′(0, 1). (4.2)

Moreover, choosing α = α0 + ν, from (4.1), we get that
∫ 1

0
eαs|u±

n (x)|2 dx =
∫ 1

0
e(α0+ν)s|u±

n (x)|2 dx ≤
∫ 1

0
eπωs(|u±

n |/∥u±
n ∥)2

dx.

It follows from s > 1 close to 1 and the fractional Trudinger–Moser inequality (1.3) that there
exists Kπωs > 0 such that

∫ 1

0
eαs|u±

n (x)|2 dx ≤ Kπωs. (4.3)

Since eα|u±
n (x)|2 → eα|u±(x)|2 a.e. in (0, 1). From (4.3) and [16, Lemma 4.8, Chapter 1], we obtain

that
eα|u±

n |2 ⇀ eα|u±|2 weakly in Ls(0, 1). (4.4)

Hence, by (4.2), (4.4) and [16, Lemma 4.8, Chapter 1] again, we conclude that
∫ 1

0
f
(

u±
n

)

u±
n dx →

∫ 1

0
f
(

u±) u± dx.

Hence, we complete the proof.

Lemma 4.2 (Critical case ). If µ ≥ µ∗, then there exists some uµ ∈ Mµ such that Iµ(uµ) = mµ.

Proof. By an argument similar to Lemma 3.2, replacing Lemma 3.1 by Lemma 4.1, we can
obtain the same conclusion.

Proof of Theorem 1.3. From Lemma 2.5 and Lemma 4.2, we deduce that uµ is a least energy
sign-changing solution for problem (1.1).
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Abstract. This paper is concerned with the following nonlocal problem with combined
critical nonlinearities

(−∆)su = −α|u|q−2u + βu + γ|u|2
∗
s −2u in Ω, u = 0 in R

N\Ω,

where s ∈ (0, 1), N > 2s, Ω ⊂ R
N is a bounded C1,1 domain with Lipschitz boundary, α

is a positive parameter, q ∈ (1, 2), β and γ are positive constants, and 2∗s = 2N/(N − 2s)
is the fractional critical exponent. For γ > 0, if N ⩾ 4s and 0 < β < λ1,s, or N > 2s
and β ⩾ λ1,s, we show that the problem possesses a ground state solution when α is
sufficiently small.

Keywords: fractional problem, ground state solution, critical combined nonlinearities.
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1 Introduction

In this paper, we study ground state solution for the following fractional equation

{

(−∆)su = −α|u|q−2u + βu + γ|u|2
∗
s −2u in Ω,

u = 0 in R
N\Ω,

(1.1)

where s ∈ (0, 1), N > 2s, Ω ⊂ R
N is a bounded C1,1 domain with Lipschitz boundary, α > 0 is

a parameter, q ∈ (1, 2), β and γ are positive constants, and 2∗s = 2N/(N − 2s) is the fractional

critical exponent. The equation (1.1) is driven by the fractional Laplacian (−∆)s and exhibits

combined nonlinearities and linear perturbation. (−∆)s is the nonlocal operator defined as

follows

(−∆)su(x) := 2 lim
ε→0+

∫

RN\Bε(x)

u(x)− u(y)

|x − y|N+2s
dy, x ∈ R

N ,

where Bε(x) denotes the open ball centered at x and of radius ε > 0. The operator (−∆)s arises

in physics, biology, chemistry and finance and can be seen as the infinitesimal generators of

BCorresponding author. Email: hrsun@lzu.edu.cn
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Lévy stable diffusion process [3, 4]. And,
(

−∆ + m2
)

1
2 appears naturally in quantum mechan-

ics, where m is the mass of the particle under consideration [35]. The study of nonlinear

equations involving a fractional Laplacian has attracted much attention from many mathe-

maticians working in different fields. We refer to [5, 9, 12, 14–17, 19, 23–25, 27–33, 36, 38–43] for

more details on the fractional operator and applications.

From [42] we get that the spectrum of (−∆)s on Xs
0(Ω) consists of a sequence of eigenval-

ues
{

λj,s

}

satisfying

0 < λ1,s < λ2,s ⩽ λ3,s ⩽ . . . ⩽ λj,s ⩽ λj+1,s ⩽ . . . , λj,s → ∞ as j → ∞,

where the space Xs
0(Ω) is given in [40].

For the problem (1.1), when α = 0 and γ = 1, the equation is a fractional critical problem

with linear perturbation term. For the critical problem, due to a lack of compactness occurs,

there are serious difficulties when we try to find critical points by variational methods. Moti-

vated by the pioneering work of Brezis and Nirenberg [8], the nonlocal fractional counterpart

of the Laplacian equations involving critical nonlinearity were studied in [38–43], their model

is the equation
{

(−∆)su = βu + |u|2
∗
s −2u in Ω,

u = 0 in R
N\Ω.

(1.2)

Servadei and Valdinoci have showed that problem (1.2) admits a nontrivial solution in the

following case:

(i) N > 4s and β > 0;

(ii) N = 4s and β ̸= λk,s, k = 1, 2, . . . ;

(iii) 2s < N < 4s and β is sufficiently large.

Moreover, the multiplicity result of (1.2) was proved by Fiscella et al. [24], where it was

shown the number of solutions is at least twice the multiplicity of the λk,s, provided that β

lies in a suitable neighborhood of λk,s, the authors also gave an estimate of the length of this

neighborhood. Figueiredo et al. [23] proved the problem (1.2) has at least catΩ(Ω) nontrivial

solutions if N ⩾ 4s and β is sufficiently small. For interesting results on the fractional Brezis–

Nirenberg problem, we refer to [12, 27] and the references therein.

For the problem (1.1), when α < 0, β = 0 and γ = 1, the equation contains a sublinear

term |u|q−2u and a critical superlinear term |u|2
∗
s −2u, it belongs to the class of problems with

competing nonlinearities, for instance sublinear-superlinear. An early example in this direc-

tion was given in [26] for the p-Laplacian operator. Other results for the classical Laplacian

operator can be found in [1, 6, 13]. More generally, the problem with completely nonlinear

operators has been studied in [10]. And we observed that Barrios et al. [5] have studied the

critical fractional problem with concave-convex power nonlinearities, where they considered

the following problem

{

(−∆)su = −αuq−1 + u2∗s −1, u > 0 in Ω,

u = 0 in R
N\Ω.

(1.3)

Main results show the existence and multiplicity of solutions to problem (1.3) for different

values of α. To be more precise, assume that N > 2s, then there is α3 < 0, such that problem

(1.3):
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(i) has no solution for α < α3;

(ii) if α = α3 there exists at least one solution;

(iii) for α3 < α < 0, there are at least two solutions, one of them is a minimal solution.

We refer to [15, 16, 21, 30] and references therein for more fractional problem with competing

nonlinearities.

For the problem (1.1), if u in the critical term is the positive part of u, the problem becomes

a nonlocal Dirichlet problem with asymmetric nonlinearities, that is

{

(−∆)su = −α|u|q−2u + βu + γ(u+)2∗s −1 in Ω,

u = 0 in R
N\Ω.

(1.4)

Miyagaki et al. [36] studied the existence of at least three nontrivial solutions for problem

(1.4). The corresponding local problem was studied by de Paiva and Presoto [37]. The study of

equations with critical exponent and asymmetric nonlinearities was initiated by De Figueiredo

and Yang [18] to investigate Ambrosetti–Prodi type problems involving critical growth. The

Ambrosetti–Prodi type problems have a strong physical meaning because it appears in quan-

tum mechanics models with asymmetric nonlinearities, see for instance [9, 11, 20, 28] and ref-

erences therein. It can be seen from [36, Theorem 6], the two constant sign solutions of (1.4)

are solutions for two corresponding auxiliary problems which are similar to problem (1.1). So

solution of the problem (1.1) is valuable to study the Ambrosetti–Prodi type problem.

Motivated by the above works, in this paper, we consider the existence of ground state

solutions of (1.1) which is affected by combined nonlinearities and linear perturbation. Our

first main result can be stated as follows.

Theorem 1.1. Let γ > 0, then there exists α1 > 0, such that for any α ∈ (0, α1), problem (1.1) has a

ground state solution umα , provided that

• N ⩾ 4s and 0 < β < λ1,s or

• N > 2s and β ⩾ λ1,s.

It is well known that ground state solutions have important applications. For instance,

to obtain the optimal constant in the Sobolev inequality and the interpolation estimates of

the Gagliardo–Nirenberg inequality. To possess a global solution of nonlinear Schrödinger

equation when L2-norm of the initial value is sufficiently small. To overcome the loss of com-

pactness when we consider some Schrödinger equation with potential and so on. There are

several ways to get the ground state solution. The one in Theorem 1.1 is found by looking for

the point at which infimum of the functional on Nehari manifold is attainable. Furthermore,

under the same assumptions, we show that the functional possesses mountain pass geometry.

By estimate of the minimax level, we have the following theorem.

Theorem 1.2. Assume that the hypotheses of Theorem 1.1 are satisfied, problem (1.1) has a mountain

pass ground state solution ucα .

It is observed that there are some differences between the cases α = 0 and α > 0. Indeed,

assume that 2s < N < 4s. In case of α = 0, the problem (1.1) translates into problem

(1.2). Servadei et al. [39] have showed that problem (1.2) has a nontrivial solution when β is

sufficiently large. If α > 0 is small enough, owing to influence of sublinear term, Theorem 1.1
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and Theorem 1.2 state that the problem (1.1) has solutions as long as β ⩾ λ1,s holds. Suppose

that N = 4s, the problem (1.1) has solutions for any β > 0, which is also different from

β ̸= λk,s, k = 1, 2, . . . when α = 0.

There are some similarities between the cases α < 0 and α > 0. Note that α < 0 in problem

(1.3), Barrios et al. [5] indicate that problem (1.3) has solutions when α is close to zero. For

problem (1.1), if α < 0 and β ⩾ λ1,s, then it is easy to verify that it has no nontrivial solution

since the corresponding Nehari manifold is empty, and it is unknown whether the Nehari

manifold is nonempty in the case 0 < β < λ1,s. Thus in the present paper we study the case

of α > 0. Even though the sign of sublinearity in problem (1.1) is opposite to that of problem

(1.3), Theorem 1.1 and 1.2 show that the problem (1.1) has ground state solution when α is

small enough.

It can be seen from the comparison above, Theorem 1.1 and 1.2 are not only effective sup-

plement to the main results of Barrios et al. [5], but also have some differences with Servadei

et al. [39]. To the best of our knowledge, these results are novel and meaningful.

Since the problem (1.1) is affected by sublinearity, linearity and critical superlinearity at

the same time, we have a different situation from (1.2) or (1.3). The minimax principle used

by Servadei et al. in [38–43] and the method of obtaining the minimal solution in [5] cannot

be applied directly to problem (1.1). Some other techniques and methods are used. In the

proof of Theorem 1.1, an abstract result for existence of constrained extrema is used. So it is

necessary to obtain that the infimum of the functional on the Nehari manifold is strictly less

than admissible threshold for the (PS) condition. To confirm this result, a crucial point is to

show a sufficiently small upper bound for the quotient

∥uε∥
2 − β ∥uε∥

2
2

∥uε∥
2
2∗s

(1.5)

when ε > 0 is sufficiently small, and uε is given in [43]. The estimation of (1.5) in Lemma 3.1

is meticulous. In the proof of Theorem 1.2, due to influence of the sublinear term, it seems

impossible to prove that the functional has mountain pass geometry directly according to the

structures of the functional and the properties of Xs
0(Ω). We prove that 0 is the local minimum

point of the functional in a special subspace of Xs
0(Ω).

The organization of this paper is as follows: In Section 2, we introduce some notations and

preliminary lemmas which are needed later. Section 3 and Section 4 are devoted to the proof

of Theorems 1.1–1.2, respectively.

2 Preliminaries

In this section, we recall a few notions and results that will be used later on. Throughout the

paper, |A| denotes the N-dimensional Lebesgue measure of a measurable set A ⊂ R
N , Lr(Ω)

is usual Lebesgue space endowed with the norm ∥ · ∥r for 1 ≤ r < ∞. We recall that the

Gagliardo seminorm of a measurable function u : R
N → R is defined by

[u]s :=

(

∫

R2N

|u(x)− u(y)|2

|x − y|N+2s
dxdy

)1/2

provided the integral is finite. The fractional Sobolev space Hs
(

R
N
)

is introduced in [19] as

Hs
(

R
N
)

:=
{

u ∈ L2
(

R
N
)

: [u]s < ∞

}
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endowed with the norm ∥u∥Hs =
(

∥u∥2
2 + [u]2s

)1/2
making it a Hilbert space. The relevant

space to problem (1.1) is the closed subspace of Hs(RN) given by

Xs
0(Ω) :=

{

u ∈ Hs(RN) : u = 0 a.e. in R
N\Ω

}

,

this Hilbert space was introduced in [40] with the scalar product

⟨u, v⟩Xs
0(Ω) =

∫

R2N

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy

inducing the equivalent norm ∥ · ∥ = [·]s.
It is known from [19], the following embedding results hold true:

Xs
0(Ω) →֒ Lv (Ω) compactly for any v ∈ [1, 2∗s ) ,

Xs
0(Ω) →֒ L2∗s (Ω) continuously.

(2.1)

And the constant

Ss = inf
u∈Hs(RN)\{0}

∫

R2N
|u(x)−u(y)|2

|x−y|N+2s dxdy
(∫

RN |u(x)|2∗s dx
)2/2∗s

(2.2)

is finite, by [14, Theorem 1.1] we know that Ss is attained by the function (1/∥ũ∥2∗s )ũ with

ũ(x) = (1 + |x|2)−
N−2s

2 , x ∈ R
N . For every ε > 0, we shall use the family of functions {Uε}

introduced in [43] as

Uε(x) = ε−
N−2s

2
1

∥ũ∥2∗s

ũ

(

x

εS
1/(2s)
s

)

, x ∈ R
N ,

which is a solution of problem (−∆)su = |u|2
∗
s −2u, in R

N . Without loss of generality, we

suppose that 0 ∈ Ω, let us fix δ > 0 such that B4δ ⊂ Ω, and let η ∈ C∞(RN) be such that

0 ⩽ η ⩽ 1 in R
N , η ≡ 1 in Bδ and η ≡ 0 in R

N\B2δ, where Bδ = B(0, δ). We denote by uε the

following function

uε(x) = η(x)Uε(x). (2.3)

It is obvious that uε ∈ Xs
0(Ω), and the following estimates on the function uε were proved in

[43, Proposition 21 and 22],

∥uε∥
2
⩽ S

N
2s
s + O

(

εN−2s
)

, (2.4)

∥uε∥
2∗s
2∗s

= S
N
2s
s + O

(

εN
)

, (2.5)

∥uε∥
2
2 ⩾

{

Csε
2s + O

(

εN−2s
)

if N > 4s,

Csε
2s| log ε|+ O

(

ε2s
)

if N = 4s,
(2.6)

as ε → 0, for some positive constant Cs depending on s.

The Euler functional Iα : Xs
0(Ω) → R corresponding to problem (1.1) is given by

Iα(u) =
1

2

∫

R2N

(u(x)− u(y))2

|x − y|N+2s
dxdy +

α

q

∫

Ω

|u|qdx −
β

2

∫

Ω

u2dx −
γ

2∗s

∫

Ω

|u|2
∗
s dx. (2.7)

It is easy to verify that Iα ∈ C1(Xs
0(Ω)) with

〈

I ′
α(u), v

〉

= ⟨u, v⟩Xs
0(Ω) + α

∫

Ω

|u|q−2uvdx − β
∫

Ω

uvdx − γ
∫

Ω

|u|2
∗
s −2uvdx, (2.8)
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for v ∈ Xs
0(Ω). A direct computation shows that weak solution of (1.1) is critical point of Iα.

We say that the functional Iα satisfies the Palais–Smale ((PS) for short) condition at level

c ∈ R if any sequence {uj} ⊂ Xs
0(Ω) such that

Iα

(

uj

)

→ c (2.9)

and

sup
{∣

∣

〈

I ′
α

(

uj

)

, ϕ
〉∣

∣ : ϕ ∈ Xs
0(Ω), ∥ϕ∥ = 1

}

→ 0 as j → ∞ (2.10)

admits a subsequence which is convergent in Xs
0(Ω).

Now, we are ready to prove that the functional Iα satisfies the (PS) condition in a suitable

energy range involving the best fractional critical Sobolev constant Ss given in (2.2).

Lemma 2.1. Assume that 1 < q < 2, β and γ are positive constants, and α > 0. Then the functional

Iα satisfies the (PS) condition at any level c < s
N (Ss)

N
2s γ

2s−N
2s .

Proof. Let {uj} ⊂ Xs
0(Ω) be a (PS) sequence for Iα, first of all, we show the {uj} is bounded

in Xs
0(Ω). In fact, by (2.9) and (2.10), there is κ > 0 such that

∣

∣Iα

(

uj

)∣

∣ ≤ κ,
∣

∣

〈

Iα
′
(

uj

)

, uj

〉∣

∣ ≤
κ
∥

∥uj

∥

∥. Taking into account that 1 < q < 2 < 2∗s , we have

κ
(

1 +
∥

∥uj

∥

∥

)

⩾ Iα

(

uj

)

−
1

2

〈

I ′
α

(

uj

)

, uj

〉

= α

(

1

q
−

1

2

)

∫

Ω

∣

∣uj(x)
∣

∣

q
dx + γ

(

1

2
−

1

2∗s

)

∫

Ω

∣

∣uj(x)
∣

∣

2∗s dx

⩾
γs

N
∥uj∥

2∗s
2∗s

.

For κ := Nκ
γs > 0, hence,

∥uj∥
2∗s
2∗s
⩽ κ

(

1 +
∥

∥uj

∥

∥

)

for j ∈ N. (2.11)

Thus, by the Hölder inequality and (2.11), we get

∥

∥uj

∥

∥

2

2
⩽ |Ω|

2s
N
∥

∥uj

∥

∥

2

2∗s
⩽ κ

2
2∗s |Ω|

2s
N
(

1 +
∥

∥uj

∥

∥

)
2

2∗s ⩽ κ̂
(

1 +
∥

∥uj

∥

∥

)

(2.12)

with κ̂ := κ
2

2∗s |Ω|
2s
N . Thus, by (2.11) and (2.12) we conclude that

κ ⩾ Iα

(

uj

)

=
1

2
∥uj∥

2 +
α

q

∫

Ω

|uj|
qdx −

β

2

∫

Ω

u2
j dx −

γ

2∗s

∫

Ω

|uj|
2∗s dx

⩾
1

2
∥uj∥

2 −
β

2

∫

Ω

u2
j dx −

γ

2∗s

∫

Ω

|uj|
2∗s dx

⩾
1

2
∥uj∥

2 − (
β

2
κ̂ +

γ

2∗s
κ)
(

1 +
∥

∥uj

∥

∥

)

.

Hence, {uj} is bounded in Xs
0(Ω).

Consequently, passing to a subsequence if necessary, we may assume that

uj ⇀ u∞ in Xs
0(Ω), uj → u∞ in L2(Ω),

uj → u∞ in Lq(Ω) and uj → u∞ for a.e. x ∈ Ω with some u∞ ∈ Xs
0(Ω).

(2.13)

Next, we show that u∞ is a solution of (1.1) and Iα(u∞) ⩾ 0. Indeed, for any ϕ ∈ Xs
0(Ω), by

(2.1) and (2.13), we have that
∫

Ω

∣

∣uj(x)
∣

∣

2∗s −2
uj(x)ϕ(x)dx →

∫

Ω

|u∞(x)|2
∗
s −2 u∞(x)ϕ(x)dx, (2.14)
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and
∫

Ω

∣

∣uj(x)
∣

∣

q−2
uj(x)ϕ(x)dx →

∫

Ω

|u∞(x)|q−2 u∞(x)ϕ(x)dx,
∫

Ω

uj(x)ϕ(x)dx →
∫

Ω

u∞(x)ϕ(x)dx.
(2.15)

Thus, by (2.13), (2.14) and (2.15), we conclude that

⟨I ′
α

(

uj

)

, ϕ⟩ → ⟨I ′
α (u∞) , ϕ⟩.

In view of (2.10), we get

⟨I ′
α (u∞) , ϕ⟩ = 0, (2.16)

namely, u∞ is a solution of (1.1). Taking ϕ = u∞ as a test function in (2.16), we get

∥u∞∥
2 = −α

∫

Ω

|u∞|
qdx + β

∫

Ω

u2
∞dx + γ

∫

Ω

|u∞|
2∗s dx,

then 1 < q < 2 < 2∗s implies that

Iα (u∞) = α

(

1

q
−

1

2

)

∫

Ω

|u∞(x)|q dx + γ

(

1

2
−

1

2∗s

)

∫

Ω

|u∞(x)|2
∗
s dx ⩾ 0. (2.17)

Finally, we show that {uj} converges to u∞ in Xs
0(Ω). Note that {uj} is bounded in Xs

0(Ω),

by (2.13), (2.1) and Brezis–Lieb lemma [7, Theorem 1], for p ∈ (1, 2∗s ], we have
∫

Ω

|uj|
pdx −

∫

Ω

|uj − u∞|
pdx =

∫

Ω

|u∞|
pdx + o(1) (2.18)

The boundedness of {uj} in Xs
0(Ω), (2.1), (2.10), (2.13), (2.16) and (2.18) imply that

o(1) = ⟨I ′
α

(

uj

)

− I ′
α (u∞) , uj − u∞⟩

= ∥uj − u∞∥
2 + α

∫

Ω

(|uj|
q−2uj − |u∞|

q−2u∞)(uj − u∞)dx − β
∫

Ω

|uj − u∞|
2dx

− γ
∫

Ω

(|uj|
2∗s −2uj − |u∞|

2∗s −2u∞)(uj − u∞)dx

= ∥uj − u∞∥
2 + α

∫

Ω

|uj − u∞|
qdx − β

∫

Ω

|uj − u∞|
2dx − γ

∫

Ω

|uj − u∞|
2∗s dx + o(1),

thus, by (2.13), we deduce that

∥uj − u∞∥
2 − γ

∫

Ω

|uj − u∞|
2∗s dx = o(1). (2.19)

Since the sequence {
∥

∥uj

∥

∥} is bounded, we may assume that
∥

∥uj − u∞

∥

∥

2
→ L as j → +∞, in

view of (2.19),
∫

Ω

∣

∣uj(x)− u∞(x)
∣

∣

2∗s dx → L
γ as j → +∞. So taking into account (2.2), we get

(

L
γ

)
2

2∗s Ss ⩽ L, then L = 0 or L ⩾ (Ss)
N
2s γ

2s−N
2s . Assume that L ⩾ (Ss)

N
2s γ

2s−N
2s . Since uj ⇀ u∞, we

have

∥uj − u∞∥
2 = ∥uj∥

2 − ∥u∞∥
2 + o(1). (2.20)

So (2.13), (2.20) and (2.18) yield

Iα(uj) =
1

2
∥uj∥

2 +
α

q

∫

Ω

|uj|
qdx −

β

2

∫

Ω

u2
j dx −

γ

2∗s

∫

Ω

|uj|
2∗s dx

= Iα(u∞) +
1

2
∥uj − u∞∥

2 −
γ

2∗s

∫

Ω

|uj − u∞|
2∗s dx + o(1).

(2.21)
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By (2.21), (2.19) and (2.17), we obtain

c = lim
j→∞

Iα

(

uj

)

= Iα (u∞) +
1

2
L −

γ

2∗s

L

γ
⩾

s

N
L ⩾

s

N
(Ss)

N
2s γ

2s−N
2s

which contradicts the condition c <
s
N (Ss)

N
2s γ

2s−N
2s . Thus L = 0, and so

∥

∥uj − u∞

∥

∥ → 0 as

j → +∞.

The manifold we are interested in this paper is the Nehari manifold associated with Iα(u),

given by

Nα :=
{

u ∈ Xs
0(Ω)\{0} :

〈

I ′
α(u), u

〉

= 0
}

.

First of all, we point out that Nα is not empty.

Lemma 2.2. Nα ̸= ∅. Precisely, for every u ∈ Xs
0(Ω)\{0}, then there exists a unique tu ∈ (0,+∞),

such that tuu ∈ Nα.

Proof. Fix u ∈ Xs
0(Ω)\{0}, we consider the function ϕ : [0,+∞) → R

ϕ(t) :=
〈

I ′
α(tu), tu

〉

= t2∥u∥2 + αtq
∫

Ω

|u|qdx − βt2
∫

Ω

u2dx − γt2∗s

∫

Ω

|u|2
∗
s dx = tqφ(t),

where

φ(t) = α
∫

Ω

|u|qdx + t2−q(∥u∥2 − β
∫

Ω

u2dx)− γt2∗s −q
∫

Ω

|u|2
∗
s dx.

We have that φ ∈ C1([0,+∞)) with φ(0) = α
∫

Ω
|u|qdx > 0 and limt→+∞ φ(t) = −∞. In the

case of 0 < β < λ1,s, we have ∥u∥2 − β
∫

Ω
u2dx > 0, φ has a unique maximum point

t0 =

(

(2 − q)(∥u∥2 − β
∫

Ω
u2dx)

(2∗s − q)γ
∫

Ω
|u|2∗s dx

)
1

2∗s −2

,

φ increases on [0, t0) and decreases on (t0,+∞). In the case of β ⩾ λ1,s, we can get that

∥u∥2 − β
∫

Ω
u2dx ⩽ 0 and φ decreases on [0,+∞). Thus there is only one zero point in

(0,+∞) to φ, namely, there exists a unique tu ∈ (0,+∞), such that tuu ∈ Nα.

The Nα is a natural constraint for the functional Iα, since every constrained critical point

of Iα on Nα is indeed a critical point of Iα. Precisely, the following result holds true.

Lemma 2.3. Iα is bounded from below on Nα. And u is a critical point of Iα constrained to Nα if and

only if u is a nontrivial critical point of Iα.

Proof. Notice that on Nα the functional Iα reads as follows

Iα(u) = α

(

1

q
−

1

2

)

∫

Ω

|u|qdx + γ

(

1

2
−

1

2∗s

)

∫

Ω

|u|2
∗
s dx,

thank to 1 < q < 2 < 2∗s , so that infu∈Nα
Iα(u) ⩾ 0.

It is obvious that every nontrivial critical point of Iα belongs to Nα. Let us show the

converse. In the sequel we will denote by Gα : Xs
0(Ω) → R, the functional given by

Gα(u) :=
〈

I ′
α(u), u

〉

= ∥u∥2 + α
∫

Ω

|u|qdx − β
∫

Ω

u2dx − γ
∫

Ω

|u|2
∗
s dx.
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It is easy to verify that Gα ∈ C1 (Xs
0(Ω)) and

〈

G′
α(u), u

〉

= 2∥u∥2 + qα
∫

Ω

|u|qdx − 2β
∫

Ω

u2dx − γ2∗s

∫

Ω

|u|2
∗
s dx,

so that, taking into account the definition of Nα, we have

〈

G′
α(u), u

〉

= α(q − 2)
∫

Ω

|u|qdx + γ(2 − 2∗s )
∫

Ω

|u|2
∗
s dx < 0 for u ∈ Nα. (2.22)

Let u be a constrained critical point of Iα on Nα, namely u ∈ Nα and

I ′
α(u) = ηG′

α(u) (2.23)

for some η ∈ R. Note that (2.23) yields

〈

I ′
α(u), u

〉

= η
〈

G′
α(u), u

〉

. (2.24)

Taking into account the fact that u ∈ Nα and (2.22), by (2.24) we deduce that η = 0. Hence,

again by (2.23), we get I ′
α(u) = 0.

We say that the functional Iα constrained on Nα satisfies the (PS) condition at level c ∈ R

if any sequence
{

uj

}

⊂ Nα such that (2.9) holds and there exists
{

ηj

}

⊂ R with

sup
{∣

∣

〈

I ′
α

(

uj

)

− ηjG
′
α

(

uj

)

, ϕ
〉∣

∣ : ϕ ∈ Xs
0(Ω), ∥ϕ∥ = 1

}

→ 0 (2.25)

as j → +∞ admits a subsequence which is convergent in Xs
0(Ω).

By Lemma 2.1 we know that the functional Iα satisfies the (PS) condition at level c <

s
N (Ss)

N
2s γ

2s−N
2s . Now, we are ready to show that the functional Iα constrained on Nα satisfies

the (PS) condition at the same level.

Lemma 2.4. Assume that 1 < q < 2, β and γ are positive constants, and α > 0. Then the functional

Iα constrained on Nα satisfies the (PS) condition at any level c < s
N (Ss)

N
2s γ

2s−N
2s .

Proof. Let
{

uj

}

⊂ Nα be a sequence such that (2.9) holds and there exists
{

ηj

}

⊂ R for which

(2.25) is satisfied. First of all, we claim that
{

uj

}

is bounded in Lq(Ω) and L2∗s (Ω). Indeed, by

(2.9) there exists a positive constant M such that

∣

∣Iα

(

uj

)∣

∣ ⩽ M, (2.26)

for any j ∈ N. By (2.26) and the fact that uj ∈ Nα, we obtain that

M ⩾ Iα

(

uj

)

= Iα

(

uj

)

−
1

2

〈

I ′
α

(

uj

)

, uj

〉

= α

(

1

q
−

1

2

)

∫

Ω

|uj|
qdx + γ

(

1

2
−

1

2∗s

)

∫

Ω

|uj|
2∗s dx,

thus {uj} is bounded in Lq(Ω) and L2∗s (Ω). Hence, taking into account (2.22), we conclude that

{
〈

G′
α

(

uj

)

, uj

〉

} is bounded in R and there exists θ ∈ (−∞, 0] such that, up to a subsequence

〈

G′
α

(

uj

)

, uj

〉

→ θ, as j → ∞. (2.27)
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Now, suppose that θ < 0. Then, by (2.25), the fact that uj ∈ Nα and (2.27) we deduce that

ηj → 0 as j → ∞. Hence, again by (2.25) we obtain that (2.10) holds. So, {uj} ⊂ Nα is a PS

sequence for the functional Iα, the assertion of Lemma 2.4 follows from Lemma 2.1.

Finally, suppose that θ = 0. By (2.22) and (2.27) we get that

∫

Ω

|uj|
qdx → 0 and

∫

Ω

|uj|
2∗s dx → 0, as j → ∞,

since uj ∈ Nα, we get that ∥uj∥ → 0 as j → ∞. Thus, uj → 0 in Xs
0(Ω) as j → ∞.

In order to obtain a ground state solution of (1.1), here we will use a theory which is

introduced by Ambrosetti and Malchiodi in [2, Theorem 7.12].

Lemma 2.5. Let E be a Banach space and J ∈ C1,1(E, R). If there exist G ∈ C1,1(E, R) such that

M = G−1(0) with G′(u) ̸= 0 for any u ∈ M. Moreover, suppose that J is bounded from below on M

and satisfies (PS)m condition, where

m := inf
u∈M

J(u) > −∞.

Then the infimum m is achieved. Precisely, there is z ∈ M such that J(z) = m and ∇M J(z) = 0.

3 Proof of Theorem 1.1

In order to show that the equation (1.1) has a ground state solution, it suffices to verify that

the infimum of Iα on Nα is attainable, in which the estimation of the energy of Iα on Nα is

essential. Now, we have the following result.

Lemma 3.1. Suppose that γ > 0, Then there exists α1 > 0, such that for any α ∈ (0, α1), there holds

the estimate

inf
u∈Nα

Iα(u) <
s

N
(Ss)

N
2s γ

2s−N
2s , (3.1)

provided that

• N ⩾ 4s and 0 < β < λ1,s, or

• N > 2s and β ⩾ λ1,s.

Proof. In order to prove (3.1) it is enough to show that there exists u0 ∈ Nα such that

Iα(u0) <
s

N
(Ss)

N
2s γ

2s−N
2s . (3.2)

Firstly, let us consider the case 0 < β < λ1,s. Let ε > 0 and uε be as in (2.3). By Lemma 2.2

there exists tε > 0 such that tεuε ∈ Nα, namely, that is

〈

I ′
α (tεuε) , tεuε

〉

= αt
q
ε

∫

Ω

|uε|
qdx + t2

ε

(

∥uε∥
2 − β

∫

Ω

u2
ε dx

)

− γt
2∗s
ε

∫

Ω

|uε|
2∗s dx = 0. (3.3)

Then, in view of 0 < β < λ1,s and (2.4), we obtain that

0 < ∥uε∥
2 − β

∫

Ω

u2
ε dx ⩽ ∥uε∥

2
⩽ S

N
2s
s + O(εN−2s). (3.4)
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It follows from Hölder’s inequality and (2.5) that

0 <

∫

Ω

|uε|
qdx ⩽ |Ω|

2∗s −q

2∗s ∥uε∥
q
2∗s
⩽ |Ω|

2∗s −q

2∗s

(

S
N
2s
s + O

(

εN
)

)

q

2∗s
. (3.5)

So (3.4) and (3.5) imply that there exists K > 0 and ε0 > 0 such that

sup
ε∈(0,ε0)

max

{

∫

Ω

|uε|
qdx, ∥uε∥

2 − β
∫

Ω

u2
ε dx,

∫

Ω

|uε|
2∗s dx

}

⩽ K. (3.6)

Thank to 1 < q < 2 < 2∗s , by (3.3) and (3.6) we conclude that there exists t0 > 0 such that

tε ∈ (0, t0) for ε ∈ (0, ε0). (3.7)

Let the function f : [0,+∞) → R given by

f (t) :=
1

2
t2

(

∥uε∥
2 − β

∫

Ω

u2
ε dx

)

−
γ

2∗s
t2∗s

∫

Ω

|uε|
2∗s dx,

then f admits the maximum point

tmax =

(

∥uε∥2 − β
∫

Ω
u2

ε dx

γ
∫

Ω
|uε|2

∗
s dx

)
1

2∗s −2

with the maximum value

f (tmax) =
s

N
γ

2s−N
2s

(

∥uε∥2 − β∥uε∥2
2

∥uε∥2
2∗s

)
N
2s

. (3.8)

We note that

Iα(tεuε) =
α

q
t
q
ε

∫

Ω

|uε|
qdx +

1

2
t2
ε

(

∥uε∥
2 − β

∫

Ω

u2
ε dx

)

−
γ

2∗s
t
2∗s
ε

∫

Ω

|uε|
2∗s dx. (3.9)

From (3.9) and (3.8) it turns out

Iα(tεuε) ⩽
α

q
t
q
ε

∫

Ω

|uε|
qdx +

s

N
γ

2s−N
2s

(

∥uε∥2 − β∥uε∥2
2

∥uε∥2
2∗s

)
N
2s

. (3.10)

Suppose that N > 4s, in view of (2.4)–(2.6), and by using the mean value theorem for the



12 E. W. Xu and H. R. Sun

function (1 + t)
N−2s

N , we find that

∥uε∥
2 − β ∥uε∥

2
2

∥uε∥
2
2∗s

⩽

(

S
N
2s
s + O

(

εN−2s
)

)

− β
(

Csε
2s + O

(

εN−2s
))

(

S
N
2s
s + O (εN)

)
N−2s

N

= Ss +

S
N
2s
s

(

1 −

(

1 + S
− N

2s
s O

(

εN
)

)
N−2s

N

)

+ O
(

εN−2s
)

(

S
N
2s
s + O (εN)

)
N−2s

N

− ε2s β
(

Cs + O
(

εN−4s
))

(

S
N
2s
s + O (εN)

)
N−2s

N

= Ss +
O
(

εN
)

+ O
(

εN−2s
)

(

S
N
2s
s + O (εN)

)
N−2s

N

− ε2s β
(

Cs + O
(

εN−4s
))

(

S
N
2s
s + O (εN)

)
N−2s

N

< Ss

(3.11)

with ε > 0 sufficiently small. Now assume that N = 4s, in this case, by (2.4)–(2.6), we get

∥uε∥
2 − β ∥uε∥

2
2

∥uε∥
2
2∗s

⩽

(

S2
s + O

(

ε2s
))

− β
(

Csε
2s| log ε|+ O

(

ε2s
))

(S2
s + O (ε4s))

1
2

= Ss + ε2s

(

O
(

ε2s
)

+ O(1)
)

− β (Cs| log ε|+ O(1))

(S2
s + O (ε4s))

1
2

< Ss

(3.12)

when ε > 0 is small enough, since | log ε| → +∞ as ε → 0.

So we can choose ε > 0 sufficiently small such that (3.11), (3.12) and ε < ε0 hold. For this

ε, let N ⩾ 4s, u0 = tεuε. By (3.6), (3.7) and (3.10), then there is α4 > 0, if 0 < α < α4, such that

(3.2) holds.

Secondly, in the case of β ⩾ λ1,s. Fix u ∈ Xs
0(Ω)\{0}, by Lemma 2.2, there exists a unique

tu ∈ (0,+∞), such that
〈

I ′
α (tuu) , tuu

〉

= 0, (3.13)

Hölder inequality and (3.13) imply that

γt
2∗s
u

∫

Ω

|u|2
∗
s dx ⩽ αt

q
u

∫

Ω

|u|qdx ⩽ α|Ω|
2∗s −q

2∗s t
q
u∥u∥

q
2∗s

,

thus

tu ⩽

(

α

γ

)
1

2∗s −q |Ω|
1

2∗s

∥u∥2∗s

. (3.14)

Hence, by the fact that β ⩾ λ1,s, (3.14) and Hölder’s inequality we conclude that

Iα(tuu) ⩽
α

q
t
q
u

∫

Ω

|u|qdx ⩽
α

q

(

α

γ

)

q

2∗s −q |Ω|
q

2∗s

∥u∥
q
2∗s

|Ω|
2∗s −q

2∗s ∥u∥
q
2∗s

=
α

2∗s
2∗s −q

qγ
q

2∗s −q

|Ω|
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So we choose u0 = tuu, there exists α5 > 0 such that (3.2) holds provided that 0 < α < α5.

Let α1 = min{α4, α5}, Assume N ⩾ 4s and 0 < β < λ1,s, or N > 2s and β ⩾ λ1,s. Then

there exists u0 ∈ Nα, if α ∈ (0, α1), such that (3.2) holds.

Finally we are ready to apply the above lemmas to prove the first main result.

Proof of Theorem 1.1. Taking into account the definitions of Iα and Nα, it is easy to verify

that Iα, Gα ∈ C1,1(Xs
0(Ω)), whose proof is similar to that of [22, 8.5.2 Theorem 3]. Lemma 2.3

imply that

Nα = G−1
α (0),

〈

G′
α(u), u

〉

< 0 for u ∈ Nα and inf
u∈Nα

Iα(u) ⩾ 0.

By Lemma 3.1, we know that there exists α1 > 0 such that

mα := inf
u∈Nα

Iα(u) <
s

N
(Ss)

N
2s γ

2s−N
2s

for α ∈ (0, α1) provided that N ⩾ 4s and 0 < β < λ1,s, or N > 2s and β ⩾ λ1,s. In view of

Lemma 2.4, we deduce that the functional Iα constrained on Nα satisfies the (PS)mα condition.

According to Lemma 2.5, let E and M be Xs
0(Ω) and Nα respectively, then there exists umα ∈

Nα such that

Iα(umα) = mα and I
′

α|Nα
(umα) = 0.

Moreover, Lemma 2.3 implies that I
′

α(umα) = 0, thus umα is a ground state solution of problem

(1.1).

4 Proof of Theorem 1.2

Proof. We first prove that the functional Iα has mountain pass geometry when the conditions

of Theorem 1.1 are satisfied. Let α1 > 0 be given in Theorem 1.1, it suffices to show that the

following assertions hold provided that 0 < α < α1.

(i) there are ρ, r > 0 such that for u ∈ Xs
0(Ω) with ∥u∥ = ρ, we have Iα(u) ⩾ r.

(ii) there exists e ∈ Xs
0(Ω) such that ∥e∥ > ρ and Iα(e) < 0.

We claim that u ≡ 0 is a strict local minimizer of the functional Iα. In virtue of [31,

Theorem 1.1], it suffices to prove this claim in the space C0
s (Ω̄) ∩ Xs

0(Ω), where

C0
s (Ω̄) =

{

w ∈ C0(Ω̄) : ∥w∥C0
s

:=
∥

∥

∥

w

δs

∥

∥

∥

L∞

< ∞

}

with δ(x) := dist(x, ∂Ω). Notice that supx∈Ω
δ(x) ⩽ diam(Ω), then for any u ∈ C0

s (Ω̄)∩Xs
0(Ω)

we have that

∫

Ω

u2dx =
∫

Ω

(

|u|

δs

)2−q

(δs)2−q |u|qdx ≤ C1∥u∥
2−q

C0
s

∫

Ω

|u|qdx (4.1)

and
∫

Ω

|u|2
∗
s dx =

∫

Ω

(

|u|

δs

)2∗s −q

(δs)2∗s −q |u|qdx ≤ C2∥u∥
2∗s −q

C0
s

∫

Ω

|u|qdx (4.2)

with positive constants C1 and C2. From (4.1) and (4.2) we obtain

Iα(u) ≥
1

2
∥u∥2 +

(

α

q
−

βC1

2
∥u∥

2−q

C0
s

−
γC2

2∗s
∥u∥

2∗s −q

C0
s

)

∫

Ω

|u|qdx. (4.3)



14 E. W. Xu and H. R. Sun

Since β and γ are positive constants and 1 < q < 2 < 2∗s , by (4.3) we deduce that u ≡ 0 is a

strict local minimizer of Iα in C0
s (Ω̄) ∩ Xs

0(Ω) for any α > 0. Thus the assertion (i) holds.

Next, we show that the assertion (ii) is true. Let umα be the ground state solution obtained

in Theorem 1.1. For t > 0, we have

Iα(tumα) =
t2

2
(∥umα∥

2 − β
∫

Ω

u2
mα

dx) +
α

q
tq
∫

Ω

|umα |
qdx −

γ

2∗s
t2∗s

∫

Ω

|umα |
2∗s dx. (4.4)

For any α ∈ (0, α1), thanks to 1 < q < 2 < 2∗s and (4.4), there is t0 ∈ (0,+∞) sufficiently

large such that ∥t0umα∥ > ρ and Iα(t0umα) < 0. So we complete the proof of (ii) by choosing

e = t0umα .

Set the minimax value

cα := inf
h∈Γ

max
t∈[0,1]

Iα(h(t)),

where

Γ = {h ∈ C ([0, 1], Xs
0(Ω)) : h(0) = 0 and h(1) = e}

where e = t0umα is given in (ii). By Lemma 2.2 and Lemma 3.1, we have that

cα ⩽ max
t∈[0,t0]

Iα (tumα) = Iα (umα) <
s

N
(Ss)

N
2s γ

2s−N
2s .

So, the functional Iα possesses mountain path geometry, by Lemma 2.1, the functional Iα

satisfies the (PS) condition at the level cα. Therefore, in view of the Mountain Pass theorem,

we conclude that cα is a critical value of Iα. According to (i), we have cα ⩾ r > 0, even

it is obvious that cα = Iα (umα). Hence problem (1.1) has a ground state solution ucα with

Iα(ucα) = cα.
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Abstract. This paper deals with the stabilization of the linear biharmonic Schrödinger
equation in an n-dimensional open bounded domain under Dirichlet–Neumann bound-
ary conditions considering three infinite memory terms as damping mechanisms. We
show that depending on the smoothness of initial data and the arbitrary growth at in-
finity of the kernel function, this class of solution goes to zero with a polynomial decay
rate like t−n depending on assumptions about the kernel function associated with the
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1 Introduction

1.1 Problem setting

The fourth-order nonlinear Schrödinger equation (4NLS) or biharmonic cubic nonlinear Schrö-

dinger equation

i∂ty + ∆y − ∆2y = λ|y|2y, (1.1)

has been introduced by Karpman [12] and Karpman and Shagalov [13] to take into account

the role of small fourth-order dispersion terms in the propagation of intense laser beams in

a bulk medium with Kerr nonlinearity. Equation (1.1) arises in many scientific fields such as

quantum mechanics, nonlinear optics, and plasma physics, and has been intensively studied

with fruitful references (see [2, 12, 16] and references therein).

Over the past twenty years, equation (1.1) has been deeply studied from a different math-

ematical viewpoint, including linear settings which can be written generically as

i∂ty + α∆y − β∆2y = f , (1.2)

BCorresponding author. Email: victor.martinez@ufpe.br
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with α, β ≥ 0 and different types of boundary conditions. For example, considering the

problem (1.2) several authors treated this equation, see, for instance, [1, 10, 17, 19, 20, 22] and

the references therein. Inspired by these results for the linear problem associated with the

4NLS, a mathematical viewpoint problem is to study the well-posedness and stabilization for

solutions of the system (1.2) in an appropriate framework.

So, consider the equation (1.2) when α = β = 1 in a n-dimensional open bounded subset

of R
n. Our goal is to consider an initial boundary value problem (IBVP) associated with (1.2)

when the source term f is viewed as an infinite memory term:

f = −(−1)ji
∫ ∞

0
f (s)∆jy(x, t − s)ds.

Thus, the goal of this manuscript is to deal with the following system







i∂ty(x, t) + ∆y(x, t)− ∆2y(x, t)+(−1)ji
∫ ∞

0
f (s)∆jy(x, t − s)ds = 0, (x, t) ∈ Ω × R+,

y(x, t) = ∇y(x, t) = 0, (x, t) ∈ Γ × R
∗
+,

y(x,−t) = y0(x, t), (x, t) ∈ Ω × R+,

(1.3)

where j ∈ {0, 1, 2}, Ω ⊂ R
n is a n-dimensional open bounded domain with a smooth bound-

ary Γ, and f : R+ := [0, ∞) → R is the kernel (or relaxation) function. We point out that for

each j the memory term present in (1.3) is modified.

In (1.3), the memory kernel f satisfies the following assumptions:

Assumption 1. Consider f ∈ C2(R+). For some positive constant c0, we have the following condi-

tions

f ′ < 0, 0 ≤ f ′′ ≤ −c0 f ′, f (0) > 0 and lim
s→∞

f (s) = 0. (1.4)

Under the Assumption 1, let us introduce the following energy functionals associated with

the solutions of (1.3)

Ej(t) =
1

2

(

∥y∥2 +
∫ ∞

0
g(s)∥∆

j
2 ηt∥2ds

)

, (1.5)

with j ∈ {0, 1, 2} and g = − f ′, so g ∈ C1 (R+) , g is non-negative and

g0 :=
∫ ∞

0
g(s)ds = f (0) ∈ R

∗
+.

It is worth mentioning that the abuse of notation ∆
j
2 in (1.5) means the identity operator for

j = 0, the ∇ operator for j = 1 and the Laplacian operator for j = 2.

Therefore, taking into account the action of the infinite memory term in (1.3), the following

issue will be addressed in this article:

Problem 1.1. Does E(t) −→ 0, as t → ∞? If so, can we provide a decay rate?

It should be noted that the answer to the above question is crucial in the understanding of

the behavior of the solutions to the fourth-order Schrödinger system when it is subject to an

infinite memory term. In other words:

Problem 1.2. Are the solutions to our problem stable despite the action of the memory term? If yes,

then how robust is the stabilization property of the solutions?
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1.2 Historical background

Distributed systems with memory have a long history and have been first introduced in vis-

coelasticity by Maxwell, Boltzmann, and Volterra [3, 4, 15, 18]. In the context of heat processes

with finite dimension speed, these systems have been introduced by Cattaneo [7] (a previous

work of Maxwell had been forgotten).

In our context, to our knowledge, there is no result considering the system (1.3) in n–

dimensional case. However, considering the fourth-order Schrödinger system

i∂tu + ∆2u = 0, (1.6)

there are interesting results in the sense of control problems in a bounded domain of R or R
n

and, more recently, on a periodic domain T and manifolds, which we will summarize below.

The first result about the exact controllability of the linearized fourth order Schrödinger

equation (1.6) on a bounded domain Ω of R
n is due to Zheng and Zhou in [21]. In this

work, using an L2-Neumann boundary control, the authors proved that the solution is exactly

controllable in Hs(Ω), s = −2, for an arbitrarily small time. They used Hilbert Uniqueness

Method (HUM) (see, for instance, [9, 14]) combined with the multiplier techniques to get the

main result of the article. More recently, in [22], Zheng proved a global Carleman estimate for

the fourth-order Schrödinger equation posed on a finite domain. The Carleman estimate is

used to prove the Lipschitz stability for an inverse problem associated with the fourth-order

Schrödinger system.

Still, on control theory Wen et al. in two works [19,20], studied well-posedness and control

problems related to the equation (1.6) on a bounded domain of R
n, for n ≥ 2. In [19], they

considered the Neumann boundary controllability with collocated observation. With this

result in hand, the stabilization of the closed-loop system under proportional output feedback

control holds. Recently, the same authors, in [20], gave positive answers when considering

the equation with hinged boundary by either moment or Dirichlet boundary control and

collocated observation, respectively.

To get a general outline of the control theory already done for the system (1.6), two in-

teresting problems were studied recently by Aksas and Rebiai [1] and Gao [10]: Uniform

stabilization and stochastic control problem, in a smooth bounded domain Ω of R
n and on

the interval I = (0, 1) of R, respectively. In the first work, by introducing suitable dissipa-

tive boundary conditions, the authors proved that the solution decays exponentially in L2(Ω)

when the damping term is effective on a neighborhood of a part of the boundary. The results

are established by using multiplier techniques and compactness/uniqueness arguments. Re-

garding the second work, the author showed Carleman estimates for forward and backward

stochastic fourth order Schrödinger equations which provided the proof of the observability

inequality, unique continuation property, and, consequently, the exact controllability for the

forward and backward stochastic system associated with (1.6).

Recently, the first author [5] showed the global stabilization and exact controllability prop-

erties of the 4NLS

{

i∂tu + ∂2
xu − ∂4

xu = λ|u|2u + f (x, t), (x, t) ∈ T × R,

u(x, 0) = u0(x), x ∈ T,
(1.7)

on a periodic domain T with internal control supported on an arbitrary sub-domain of

T. More precisely, by certain properties of propagation of compactness and regularity in
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Bourgain spaces, for the solution of the associated linear system, the authors proved that sys-

tem (1.7) is globally exponentially stabilizable, considering f (x, t) = −ia2(x)u. This property

together with the local exact controllability ensures that 4NLS is globally exactly controllable

on T.

Lastly, the first author showed in [6] the global controllability and stabilization proper-

ties for the fractional Schrödinger equation on d-dimensional compact Riemannian manifolds

without boundary (M, g),

{

i∂tu + Λσ
gu + P′(|u|2)u − a(x)(1 − ∆g)−

σ
2 a(x)∂tu = 0, on M × R+,

u(x, 0) = u0(x), x ∈ M.
(1.8)

Under the suitable assumption of the damping term a(x) they proved their result using mi-

crolocal analysis, being precise, they can prove propagation of regularity which together with

the so-called Geometric Control Condition and Unique Continuation Property, shows the main

results of the article. Is important to mention that when σ = 4 they have the equation (1.6).

1.3 Notations

Before presenting the main result let us give some notations and definitions. In what follows,

the variables x, t, and s will be suppressed, except when there is ambiguity and, throughout

this article, C will denote a constant that can be different from one step to the next in the

proofs presented here. We will use the notations ⟨·, ·⟩ and ∥ · ∥ to denote, respectively, the

complex inner product in L2(Ω) and its associated standard norm, namely

⟨u, v⟩ = Re

(∫

Ω
u(x)v(x)dx

)

and ∥u∥ =

(∫

Ω
|u(x)|2dx

) 1
2

.

Now, consider the following approximation

ηt(x, s) =
∫ t

t−s
y(x, τ)dτ and η0(x, s) =

∫ s

0
y0(x, τ)dτ, x ∈ Ω, s, t ∈ R+.

This approximation ensures that ηt satisfies







∂tη
t(x, s) + ∂sη

t(x, s) = y(x, t), x ∈ Ω, s, t ∈ R+,

ηt(x, s) = 0, x ∈ Γ, s, t ∈ R+,

ηt(x, 0) = 0, x ∈ Ω, t ∈ R+.

(1.9)

To express the memory integral in (1.3) in terms of ηt, we will denote g := − f ′. Thus,

according to (1.4), we have g ∈ C1(R+) and

g > 0, 0 ≤ −g′ ≤ c0g, g0 =
∫ ∞

0
g(s)ds = f (0) > 0 (1.10)

and

lim
s→∞

g(s) = 0. (1.11)

Now on, rewrite (1.3) into

i∂ty(x, t) + ∆y(x, t)− ∆2y(x, t) + i(−1)j
∫ ∞

0
g(s)∆jηt(x, s)ds = 0. (1.12)
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Define the following sets

Hj =







L2(Ω), if j = 0,

H1
0(Ω), if j = 1,

H2
0(Ω), if j = 2,

with natural inner product

⟨v, w⟩Hj
=







⟨v(s), w(s)⟩, if j = 0,

⟨∇v(s),∇w(s)⟩, if j = 1,

⟨∆v(s), ∆w(s)⟩, if j = 2

and norm

∥v∥Hj
=







∥v(s)∥, if j = 0,

∥∇v(s)∥, if j = 1,

∥∆v(s)∥, if j = 2,

respectively1. Consider

U = (y, ηt)T and U0(x, s) = (y0(x, 0), η0(x, s))T

where

y ∈ L2(Ω) and ηt ∈ Lj

with

Lj = L2
g(R+; Hj) :=

{

v : R+ −→ Hj;
∫ ∞

0
g(s)∥v(s)∥2

Hj
ds < +∞

}

.

Define the energy space as follows

Hj = L2(Ω)× Lj, j ∈ {0, 1, 2},

with inner product and norm

⟨(v1, v2), (w1, w2)⟩Hj
= ⟨v1, w1⟩+ ⟨v2, w2⟩Lj

and

∥(v(s), w(s))∥Hj
=
(

∥v(s)∥2 + ∥w(s)∥2
Lj

) 1
2

,

respectively. Therefore, the systems (1.3) and (1.9) can be seen as the following initial value

problem (IVP)
{

∂tU(t) = AjU

U(0) = U0.
(1.13)

Here, the operator Aj is defined by

Aj(U) =





i∆y − i∆2y + (−1)j+1
∫ ∞

0 g(s)∆jηt(·, s)ds

y − ηt
s



 (1.14)

with domain

D(Aj) = {U ∈ Hj;Aj(U) ∈ Hj, y ∈ H2
0(Ω), ηt(x, 0) = 0}. (1.15)

1Here ⟨∇v(s),∇w(s)⟩ := ∑
n
k=1⟨∂xk

v, ∂xk
w⟩ and ∥∇v(s)∥2 = ∑

n
k=1 ∥∂xk

v(s)∥2.



6 R. A. Capistrano–Filho, I. M. de Jesus and V. H. Gonzalez Martinez

Remark 1.3. Observe that for the fourth-order Schrödinger equation, the natural domain to be

considered is H2
0(Ω) ∩ H4(Ω). However, since we are working with a more general operator,

namely operator defined in (1.14) and (1.15), we need to impose Aj(U) ∈ Hj. However, note

that the inclusion below

H2
0(Ω) ∩ H4(Ω)× {ηt ∈ Lj : (−1)j+1

∫ ∞

0
g(s)∆jηt(·, s)ds ∈ L2(Ω), ηt(x, 0) = 0} ⊂ D(Aj).

is verified. So, the operator Aj(U) is well-defined.

1.4 Main result

As mentioned, some valuable efforts in the last years focus on the well-posedness and stabi-

lization problem for the fourth-order Schrödinger system. So, in this article, we present a new

way to ensure that, in some sense, the Problems 1.1 and 1.2 can be solved for the system (1.3)

in n-dimensional case. To do that, we use the ideas contained in [11], so additionally to the

Assumption 1 we have also assumed the memory kernel satisfying the following:

Assumption 2. Assume there is a positive constant α0 and a strictly convex increasing function

G : R+ −→ R+ of class C1(R+) ∩ C2(R∗
+) satisfying

G(0) = G′(0) = 0 and lim
t→∞

G′(t) = ∞ (1.16)

such that

g′ ≤ −α0g (1.17)

or
∫ ∞

0

s2g(s)

G−1(−g′(s))
ds + sup

s∈R+

g(s)

G−1(−g′(s))
< ∞. (1.18)

Additionally, when (1.17) is not verified, we will assume that y0 satisfies,

sup
t∈R+

max
k∈{0,...,n+1}

∫ ∞

t

g(s)

G−1(−g′(s))

∥
∥
∥
∥

∫ s−t

0
∆

j
2 ∂k

s y0(·, τ)dτ

∥
∥
∥
∥

2

ds < ∞. (1.19)

for j ∈ {0, 1, 2}.

The next theorem is the main result of the article.

Theorem 1.4. Assume (1.10) and that the Assumption 2 holds. Let n ∈ N
∗, U0 ∈ D(A2n

j ) when

j = 0, and U0 ∈ D(A2n+2
j ) when j ∈ {1, 2}. Thus, there exists positive constants αj,n such that the

energy (1.5) associated with (1.13) satisfies

Ej(t) ≤ αj,nGn

(
αj,n

t

)

, t ∈ R
∗
+, j ∈ {0, 1, 2}. (1.20)

Here, Gn is defined, recursively, as follows:

Gm (s) = G1(sGm−1(s)), m = 2, 3, . . . , n, G1 = G−1
0 , (1.21)

where G0(s) = s if (1.17) is verified, and G0(s) = sG′(s) if (1.18) holds.
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Remark 1.5. Let us give some remarks about the Assumption 2.

i. Thanks to the relation (1.18), we have that (1.19) is valid, for example, if

∥∆
j
2 ∂k

s y0∥
2, k = 0, 1, . . . , n + 1,

is bounded with respect to s.

ii. There are many class of function g satisfying (1.10), (1.11), (1.16), (1.17), (1.18), and (1.19).

For example, those that converge exponentially to zero as

g1(s) := d1e−q1s (1.22)

or those that converge at a slower rate, like

g2(s) := d2(1 + s)−q2 (1.23)

with d1, q1, d2 > 0, and q2 > 3. Additionally, we point out that conditions (1.10) and

(1.17) are satisfied for g1 defined by (1.22) with c0 = α0 = q1, since

g′1(s) = −q1d1e−q1s = −q1g1(s).

However, the conditions (1.10) and (1.18) are satisfied for g2 given by (1.23) with c0 = q2

and G(s) = sp, for p >
q2+1
q2−3 .

Remark 1.6. Now, we will present the following remarks related to the main result of the

article.

i. When (1.17) is verified, note that Gn(0) = 0, so (1.20) implies

lim
t→∞

Ej(t) ≤ αj,1G1

(
αj,1

t

)

= 0. (1.24)

Since we have that D(A2
j ) is dense in Hj, when j = 0, and D(A4

j ) is dense in Hj when

j = 1, 2 (see Lemma A.1 in A), we have that (1.24) is valid for any U0 ∈ Hj. Therefore, in

this case, (1.21) gives Gn(s) = sn and from (1.20) we get

Ej(t) ≤ αj,n

(
αj,n

t

)n

=
(αj,n)

n+1

tn
= β j,nt−n, (1.25)

showing that the energy (1.5) associated with the solutions of the system (1.13) have a

polynomial decay rate.

ii. Given (1.18) verified, the relation of (1.20) is weaker than the previous case. For example,

when g = g2 defined by (1.23), we see that G(s) = sp with p >
q2+1
q2−3 satisfies the

Assumption 2. Moreover,

G0(s) = sG′(s) = psp, G1(s) = p

√
s

p
,

G2(s) = G1(sG1(s)) =
p

√
√
√
√

s p

√
s
p

p
=

(
s

p

) 1
p+

1
p2

,
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G3(s) = G1(sG2(s)) =
p

√

s

p

(
s

p

) 1
p+

1
p2

=

(
s

p

) 1
p+

1
p2 +

1
p3

and so,

Gn(s) =

(
s

p

) 1
p+

1
p2 +···+ 1

pn

=

(
s

p

)pn

,

where pn = ∑
n
m=1 p−m = 1

p + 1
p2 + · · ·+ 1

pn . Therefore, the energy (1.5) associated with

the solutions of the system (1.13) satisfies

Ej(t) ≤ αj,n

(
1

p

αj,n

t

)pn

= β j,nt−pn ,

with β j,n = αj,n

( αj,n

p

)pn
> 0, showing that the decay rate of (1.20) is arbitrarily near of

t−n, when p → 1, that is, pn → n when q2 → ∞.

1.5 Novelty and structure of the work

Among the main novelties introduced in this article, we give an affirmative answer to the

Problems 1.1 and 1.2, providing a further step toward a better understanding of the stabiliza-

tion problem for the linear system associated with (1.1) in the n-dimensional case. Here, we

have used the multipliers method and some arguments devised in [11].

Since we are working with a mixed dispersion we can consider three different memory

kernels acting as damping control to stabilize equation (1.3) in contrast to [5], for example,

where interior damping is required and no memory is taken into consideration, in a one-

dimensional case. Moreover, if we also compare with the linear Schrödinger equation (see

e.g. [8]) we have more kernels acting to decay the solution of the equation (1.3) since we have

more regularity with the mixed dispersion, which is a gain due the bi-Laplacian operator.

In addition to this, recently, using another approach, the authors in [6] showed that the

system (1.8) is stable, however considering a damping mechanism and some important as-

sumptions such as the Geometric Control Condition (GCC) and Unique Continuation Prop-

erty (UCP). Here, we are not able to prove that the solutions decay exponentially, however,

with the approach of this article, the (GCC) and (UCP) are not required. The drawback is that

we only provide that the energy of the system (1.3), with memory terms, decays in some sense

as explained in the Remark 1.6.

A natural issue is how to deal with the 4NLS system given in (1.1). The main point is that

we are not able to use Strichartz estimates or Bourgain spaces to obtain more regularity for

the solution of the problem with memory terms, therefore, Theorem 1.4 for the system (1.1)

with memory terms remains open.

Now, let us present the outline of our paper. In Section 2 we prove a series of lemmas

that are paramount to prove the main result of the article. With the previous section in hand,

Theorem 1.4 is shown in Section 3. Finally, for the sake of completeness, in Appendix A, we

present the existence of a solution for the system (1.13) in the energy space Hj.

2 Auxiliary results

In this section, we will give some auxiliary lemmas that help us to prove the main result of

the article. In this way, the first result shows identities for the derivatives of Ej given by (1.5).
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Lemma 2.1. Suppose the Assumption 1. Then, the energy functional satisfies

E′
j(t) =

1

2

∫ ∞

0
g′(s)∥∆

j
2 ηt∥2ds, j ∈ {0, 1, 2}. (2.1)

Proof. Observe that (2.1) is a direct consequence of (A.3), and the result follows.

Next, we will give a H1-estimate for the solution of (1.12).

Lemma 2.2. There exist positive constants ck,j, j ∈ {0, 1, 2} and k ∈ {1, 2} such that the following

inequality

∥∇y∥2 ≤ c1,j∥ηt∥2
Lj
+ c2,j

∫

Ω
[Re(yt)Im(y)− Im(yt)Re(y)] dx, (2.2)

holds.

Proof. We use the multipliers method to prove (2.2). First, multiplying the equation (1.12) by

y, integrating over Ω and taking the real part we get

−Im

(∫

Ω
ytydx

)

− ∥∇y∥2 − ∥∆y∥2 + Re

(

(−1)ji
∫ ∞

0
g(s)

∫

Ω
∆jηtydxds

)

= 0, (2.3)

taking into account the boundary conditions in (1.3) and (1.9), for y(t, ·) ∈ H2
0(Ω), for all

t ∈ R
+.

Note that the last term of the left-hand side of (2.3) can be bounded using the generalized

Young’s inequality giving

∣
∣
∣
∣
(−1)ji

∫ ∞

0
g(s)

∫

Ω
∆jηtydxds

∣
∣
∣
∣
=
∣
∣
∣i⟨ηt, y⟩Lj

∣
∣
∣ ≤ ∥ηt∥Lj

∥y∥Lj
≤ ϵ∥y∥2

Lj
+ C(ϵ)∥ηt∥2

Lj

= g1ϵ
︸︷︷︸

=:δ

∥∆
j
2 y∥2 + C(ϵ)∥ηt∥2

Lj
= δ∥∆

j
2 y∥2 + C(δ)∥ηt∥2

Lj
,

(2.4)

for any δ > 0. In addition to that, the first term of the left-hand side of (2.3) can be viewed as

Im

(∫

Ω
ytydx

)

=
∫

Ω
(Re(y)Im(yt)− Re(yt)Im(y)) dx. (2.5)

So, replacing (2.4) and (2.5) in (2.3), yields

∥∇y∥2 ≤
∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx − ∥∆y∥2 + δ∥∆

j
2 y∥2 + C(δ)∥ηt∥2

Lj

≤
∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx + δ∥∆

j
2 y∥2 + C(δ)∥ηt∥2

Lj
.

(2.6)

We now split the remainder of the proof into three cases.

Case 1. j = 0

Poincaré’s inequality in (2.6) gives

∥∇y∥2 ≤
∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx + δc∗∥∇y∥2 + C(δ)∥ηt∥2

Lj
. (2.7)

Picking δ = 1
2c∗

> 0 in (2.7) yields

1

2
∥∇y∥2 ≤

∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx + C(δ)∥ηt∥2

Lj
,
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showing (2.2) with c1,0 = 2C(δ) and c2,0 = 2.

Case 2. j = 1

In this case (2.6) is giving by

∥∇y∥2 ≤
∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx + δ∥∇y∥2 + C(δ)∥ηt∥2

Lj

and taking δ = 1
2 > 0, the inequality (2.2) holds with c1,1 = 2C(δ) and c2,1 = 2.

Case 3. j = 2

Finally, just take any δ > 0 such that δ < 1. Therefore, using (2.6) we get (2.2) for c1,2 = C(δ)

and c2,2 = 1, achieving the result.

We need now define the following higher-order energy functionals

Ej,k(t) =
1

2

∥
∥
∥∂k

t U
∥
∥
∥

2

Hj

, (2.8)

for U0 ∈ D(A2n+2
j ) in the case when j = 1, 2, and U0 ∈ D(A2n

0 ) with n ∈ N
∗. This is possible

thanks to the Theorem A.2 in A that guarantees U ∈ Ck(R+; D(A4−k
j )) for k ∈ {1, 2, 3, 4} when

j ∈ {1, 2}, and that U ∈ Ck(R+; D(A2−k
j )) for k ∈ {1, 2} when j = 0. In addition to that, the

linearity of the operator Aj together with (2.1) gives

E′
j,k(t) =

1

2

∫ ∞

0
g′(s)∥∆

j
2 ∂k

t ηt∥2ds. (2.9)

With this in hand, let us control the last term of the right-hand side of (2.2) in terms of the E′
j,1

and the Lj-norms of the ∆
j
2 ηt

tt.

Lemma 2.3. The following estimate is valid

∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx ≤ ϵ∥∇y∥2 + cϵ

∫ ∞

0
g(s)∥∆

j
2 ηt

tt∥
2ds − cϵE′

j,1(t), (2.10)

for any ϵ > 0.

Proof. Differentiating (1.9) with respect to t, multiplying the result by g(s), and integrating on

[0, ∞) we have

yt =
1

g0

∫ ∞

0
g(s)

(
ηt

tt(s, x) + ηt
st(s, x)

)
ds,

taking into account the third relation in (1.10). So, we get

I :=
∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx

=
∫

Ω
Re

(
1

g0

∫ ∞

0
g(s)

(
ηt

tt + ηt
st

)
ds

)

Im(y)dx

−
∫

Ω
Re(y)Im

(
1

g0

∫ ∞

0
g(s)

(
ηt

tt + ηt
st

)
ds

)

dx.

(2.11)
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Now, let us bound the right-hand side of (2.11). To do that, reorganize the terms of the

(RHS) and note that

(RHS) =
1

g0

∫ ∞

0
g(s)

∫

Ω

(
Re
(
ηt

tt

)
Im(y)− Re(y)Im

(
ηt

tt

))
dxds

+
1

g0

∫ ∞

0
(−g′(s))

∫

Ω

(
Re
(
ηt

t

)
Im(y)− Re(y)Im

(
ηt

t

))
dxds

≤
1

g0

∫ ∞

0
g(s)

∫

Ω
|y||ηt

tt|dxds +
1

g0

∫ ∞

0
(−g′(s))

∫

Ω
|y||ηt

t |dxds

≤
1

g0

∫ ∞

0
g(s)∥y∥∥ηt

tt∥ds +
1

g0

∫ ∞

0
(−g′(s))∥y∥∥ηt

t∥ds.

(2.12)

The generalized Young inequality gives for any δ > 0 that

∥y∥∥ηt
t∥ ≤ δ∥y∥2 + Cδ∥ηt

t∥
2

and

∥y∥∥ηt
tt∥ ≤ δ∥y∥2 + Cδ∥ηt

tt∥
2.

Substituting both inequalities into (2.12) yields

(RHS) ≤ δ
1

g0

∫ ∞

0
g(s)∥y∥2ds + Cδ

1

g0

∫ ∞

0
g(s)∥ηt

tt∥
2ds

+ δ
1

g0

∫ ∞

0
(−g′(s))∥y∥2ds + Cδ

1

g0

∫ ∞

0
(−g′(s))∥ηt

t∥
2ds.

(2.13)

Now replacing (2.13) into (2.11) we have

I ≤ δ
1

g0

∫ ∞

0
g(s)∥y∥2ds + Cδ

1

g0

∫ ∞

0
g(s)∥ηt

tt∥
2ds

+ δ
1

g0

∫ ∞

0
(−g′(s))∥y∥2ds + Cδ

1

g0

∫ ∞

0
(−g′(s))∥ηt

t∥
2ds

= δ

(

1 +
1

g0

(∫ ∞

0
(−g′(s))ds

))

∥y∥2 + Cδ
1

g0

∫ ∞

0
g(s)∥ηt

tt∥
2ds

+ Cδ
1

g0

∫ ∞

0
(−g′(s))∥ηt

t∥
2ds

≤ c∗δ

(

1 +
1

g0

(∫ ∞

0
(−g′(s))ds

))

∥∇y∥2 + c∗∗Cδ
1

g0

∫ ∞

0
g(s)∥∆

j
2 ηt

tt∥
2ds

+ c∗∗Cδ
1

g0

∫ ∞

0
(−g′(s))∥∆

j
2 ηt

t∥
2ds,

(2.14)

thanks to Poincaré inequality. Here,

c∗∗ =







1, if j = 0,

c∗, if j = 1,

c2
∗, if j = 2,

(2.15)

and c∗ > 0 is the Poincaré constant. Finally, taking k = 1 in (2.9), we see that (2.14) leads to

(2.10) with ϵ = c∗δ
(
1 + 1

g0

( ∫ ∞

0 (−g′(s))ds
))

and cϵ = c∗∗Cδ
1
g0

.
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Now, just in the case j = 2, we need an estimate H2-for the solution of (1.12) similar to the

estimate (2.2). This estimate is reported in the following lemma.

Lemma 2.4. When j = 2, there exist positive constants ck,2, k ∈ {1, 2}, such that the following

inequality

∥∆y∥2 ≤ c1,2∥ηt∥2
L2
+ c2,2

∫

Ω
[Re(yt)Im(y)− Im(yt)Re(y)] dx (2.16)

holds.

Proof. Multiplying equation (1.12) by y, integrating over we have

0 = i
∫

Ω
ytydx − ∥∇y∥2 − ∥∆y∥2 + i

∫ ∞

0
g(s)

∫

Ω
∆2ηtydxds,

since the boundary conditions (1.3) and (1.9) are verified and y(t, ·) ∈ H2
0(Ω) for all t ∈ R

+.

Now, taking the real part in the previous equality give us

− Im

(∫

Ω
ytydx

)

− ∥∇y∥2 − ∥∆y∥2 + Re

(

i
∫ ∞

0
g(s)

∫

Ω
∆2ηtydxds

)

= 0. (2.17)

Taking into account that

Im

(∫

Ω
ytydx

)

=
∫

Ω
(Re(y)Im(yt)− Re(yt)Im(y)) dx (2.18)

and, thanks to the generalized Young inequality, we have that

∣
∣
∣
∣
i
∫ ∞

0
g(s)

∫

Ω
∆2ηtydxds

∣
∣
∣
∣
= |i⟨ηt, y⟩L2

| ≤ ∥y∥L2
∥ηt∥L2

≤ g1ϵ
︸︷︷︸

=:δ

∥∆y∥2 + C(ϵ)∥ηt∥2
L2

= δ∥∆y∥2 + C(δ)∥ηt∥2
L2

.
(2.19)

We get, putting (2.18) and (2.19) into (2.17), that

∥∆y∥2 ≤
∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx + δ∥∆y∥2 + C(δ)∥ηt∥2

L2
. (2.20)

Finally, pick δ =
1

2
> 0 in (2.20) to get

1

2
∥∆y∥2 ≤

∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx + C(δ)∥ηt∥2

L2
,

showing (2.16) with c1,2 = 2C(δ) and c2,2 = 2.

As a consequence of (2.10), the last term of the right-hand side of (2.16) can be bounded

as follows.

Lemma 2.5. For any ϵ > 0, we have the following inequality

∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx ≤ ϵ∥∆y∥2 + cϵ

∫ ∞

0
g(s)∥∆ηt

tt∥
2ds − cϵE′

2,1(t). (2.21)

Proof. Using the Poincaré inequality in the first term of the right-hand side of (2.10), and

taking ϵ = c∗ϵ, where c∗ is the Poincaré constant, the result follows.
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The next lemma combines the previous one to get an estimate in Hj for solutions of (1.12).

Lemma 2.6. There exist a positive constant c = c(j) > 0, with j ∈ {1, 2} such that

∥∆
j
2 y∥2 ≤ c(Ej(0)) + Ej,1(0) + Ej,2(0)). (2.22)

Proof. Pick ϵ =
1

2c2,j
in (2.10) and (2.21) when j = 1 and j = 2, respectively. So we have

∫

Ω
(Re(yt)Im(y)− Re(y)Im(yt)) dx ≤

1

2c2,j
∥∆

j
2 y∥2 + cϵ

∫ ∞

0
g(s)∥∆

j
2 ηt

tt∥
2ds − cϵE′

j,1(t).

Replacing the previous inequality in (2.2) and in (2.16) for j = 1 and j = 2, respectively, we

get that

∥∆
j
2 y∥2 ≤ c1,j∥ηt∥2

Lj
+

1

2
∥∆

j
2 y∥2 + c2,jcϵ

∫ ∞

0
g(s)∥∆

j
2 ηt

tt∥
2ds − c2,jcϵE′

j,1(t). (2.23)

Therefore, the properties (1.10) for the function g, together to the fact that Ej,k, given in (2.8),

is non-increasing and (2.9) give us

∥∆
j
2 y∥2 ≤2c1,j∥ηt∥2

Lj
+ 2c2,jcϵ

∫ ∞

0
g(s)∥∆

j
2 ηt

tt∥
2ds − 2c2,jcϵE′

j,1(t)

≤cj,4

(
Ej(t) + Ej,1(t) + Ej,2(t)

)

≤c
(
Ej(0) + Ej,1(0) + Ej,2(0)

)

where c = c(j) := cj,4 = max{4c1,j, 4c2,jcϵ, 2c0c2,jcϵ}, for j ∈ {1, 2}, proving the lemma.

Before presenting the main result of this section, the next result ensures that the following

norms ∥∆
j
2 ηt∥, ∥ηt∥, and ∥ηt

tt∥ can be controlled by the generalized energies Ek,j(0) and the

initial condition y0, for t ≥ s ≥ 0. The result is the following one.

Lemma 2.7. Considering the hypothesis of the Lemma 2.6, the following inequality holds

∥∆
j
2 ηt∥2 ≤ Mj,0(t, s), (2.24)

where

Mj,0(t, s) :=







c
(
Ej(0) + Ej,1(0) + Ej,2(0)

)
, if 0 ≤ s ≤ t,

∥
∥
∥
∥

∫ s−t

0
∆

j
2 y0(·, τ)dτ

∥
∥
∥
∥

2

+ 2s2c
(
Ej(0) + Ej,1(0) + Ej,2(0)

)
, if s > t ≥ 0.

(2.25)

Additionally, for j = 0, we have

∥ηt∥2 ≤ M0,0(t, s) :=







2s2E0(0), if 0 ≤ s ≤ t,

2

∥
∥
∥
∥

∫ s−t

0
y0(·, τ)dτ

∥
∥
∥
∥

2

+ 4s2E0(0), if s > t ≥ 0

(2.26)

and

∥ηt
tt∥

2 ≤ M0,2(t, s) :=







2s2E0,2(0), if 0 ≤ s ≤ t,

2

∥
∥
∥
∥

∫ s−t

0
∂2

τy0(·, τ)dτ

∥
∥
∥
∥

2

+ 4s2E0,2(0), if s > t ≥ 0.

(2.27)
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Proof. Let us first prove (2.24). Hölder inequality and (2.22), forj ∈ {1, 2}, gives that

∥∆
j
2 ηt∥2 =

∥
∥
∥
∥

∫ t

t−s
∆

j
2 y(·, τ)dτ

∥
∥
∥
∥

2

≤

(∫ t

t−s
1 · ∥∆

j
2 y(·, τ)∥dτ

)2

≤ s

(∫ t

t−s
∥∆

j
2 y(·, τ)∥2dτ

)

≤ s2c
(
Ej(0) + Ej,1(0) + Ej,2(0)

)
,

for t ≥ s ≥ 0. Analogously,

∥∆
j
2 ηt∥2 =

∥
∥
∥
∥

∫ t

t−s
∆

j
2 y(·, τ)dτ

∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥

∫ s−t

0
∆

j
2 y0(·, τ)dτ

∥
∥
∥
∥

2

+ 2s2c
(
Ej(0) + Ej,1(0) + Ej,2(0)

)
,

when s > t ≥ 0. Consequently, (2.24) is verified.

Now, for j = 0, since ∥y∥2 is part of E0 (see (1.5)), and the energy E0 is non-increasing, we

observe, using Hölder inequality, that

∥ηt∥2 =

∥
∥
∥
∥

∫ t

t−s
y(·, τ)dτ

∥
∥
∥
∥

2

≤

(∫ t

t−s
1 · ∥y(·, τ)∥dτ

)2

≤ s
∫ t

t−s
∥y(·, τ)∥2dτ

≤ s
∫ t

t−s
2E0(τ)dτ ≤ s

∫ t

t−s
2E0(0)dτ = 2s2E0(0),

for t ≥ s ≥ 0. On the other hand,

∥ηt∥2 =

∥
∥
∥
∥

∫ s−t

0
y0(·, τ)dτ +

∫ t

0
y(·, τ)dτ

∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥

∫ s−t

0
y0(·, τ)dτ

∥
∥
∥
∥

2

+ 2

∥
∥
∥
∥

∫ t

0
y(·, τ)dτ

∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥

∫ s−t

0
y0(·, τ)dτ

∥
∥
∥
∥

2

+ 4E0(0)s
2,

for s > t ≥ 0. Thus, (2.26) follows.

Finally, let us prove (2.27). To do that, observe that (1.13) is linear and V = ∂2
t U is solution

for (1.13) with initial condition V(0)(x, s) = (∂2
t y0(x, 0), ζ0(x, s)), where

ζ0(x, s) =
∫ s

0
∂2

τy0(x, τ)dτ.

Thanks to relation (2.25), for j ∈ {1, 2}, we get that

Mj,2(t, s) :=







cj,5

(
Ej,2(0) + Ej,3(0) + Ej,4(0)

)
, if 0 ≤ s ≤ t,

2

∥
∥
∥
∥

∫ s−t

0
∆

j
2 ∂2

τy0(·, τ)dτ

∥
∥
∥
∥

2

+2s2cj,5

(
Ej,2(0) + Ej,3(0) + Ej,4(0)

)
, if s > t ≥ 0,

(2.28)

and so,

∥ηt
tt∥

2 ≤ Mj,2(t, s).

Therefore, inequality (2.27) follows using the previous inequality with j = 0, and thanks to

the relation (2.26), the result is proved.

The next result is the key lemma to establish the stabilization result for the biharmonic

Schrödinger system (1.3).
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Lemma 2.8. There exist positive constants dj,k, for each j ∈ {0, 1, 2} and each k ∈ {0, 2} such that

the following inequality holds

G0(ϵ0Ej(t))

ϵ0Ej(t)

∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds ≤ −dj,kE′
j,k(t) + dj,kG0(ϵ0Ej(t)), (2.29)

for any ϵ0 > 0. Here, Ej,0 = Ej, E′
j,0 = E′

j(0) and G0 defined as in Theorem 1.4.

Proof. Suppose, first, that the relation (1.17) is satisfied. So, thanks to the relation (2.9), we

have

E′
j,k =

1

2

∫ ∞

0
g′(s)∥∆

j
2 ∂k

t ηt∥2ds ≤ −
1

2
α0

∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds,

for each j ∈ {0, 1, 2} and each k ∈ {0, 2}, that is,
∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds ≤ −
2

α0
E′

j,k,

showing (2.29) for each dj,k =
2

α0
and G0(s) = s.

On the other hand, suppose now that (1.18) and (1.11) are verified. Let us assume, without

loss of generality, that Ej(t) > 0 and g′ < 0 in R+. Let τj,k(t, s), θj(t, s), j ∈ {0, 1, 2}, k ∈ {0, 2}

and ϵ0 be a positive real number which will be fixed later on, and K(s) = s
G−1(s)

, for s > 0.

Assumption 2 implies that

lim
s→0+

K(s) = lim
s→0+

s

G−1(s)
= lim

τ=G−1(s)→0+

G(τ)

τ
= G′(0) = 0.

Additionally, thanks to the continuity of K we have K(0) = 0.

We claim that the function K is non-decreasing. Indeed, since G is convex we have that

G−1 is concave and G−1(0) = 0, implying that

K(s1) =
s1

G−1
(

s1
s2

s2 +
(

1 − s1
s2

)

· 0
) ≤

s1
s1
s2

G−1 (s2)
=

s2

G−1 (s2)
= K(s2),

for 0 ≤ s1 < s2, proving the claim.

Now, note that thanks to the fact that K is non-decreasing and by (2.24), (2.26), (2.28), and

(2.27), we get

K
(

−θj,k(t, s)g′(s)∥∆
j
2 ∂k

t ηt∥2
)

≤ K
(
−θj,k(t, s)g′(s)Mj,k(t, s)

)
. (2.30)

Inequality (2.30) yields that
∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds =
1

G′
(
ϵ0Ej(t)

)

∫ ∞

0

1

τj,k(t, s)
G−1(−θj,kg′(s)∥∆

j
2 ∂k

t ηt∥2)

×
τj,k(t, s)G′

(
ϵ0Ej(t)

)
g(s)

−θj,kg′(s)
K
(

−θj,kg′(s)∥∆
j
2 ∂k

t ηt∥2
)

ds

≤
1

G′
(
ϵ0Ej(t)

)

∫ ∞

0

1

τj,k(t, s)
G−1(−θj,kg′(s)∥∆

j
2 ∂k

t ηt∥2)

×
τj,k(t, s)G′

(
ϵ0Ej(t)

)
g(s)

−θj,kg′(s)
K
(
−Mj,kθj,kg′(s)

)
ds

≤
1

G′
(
ϵ0Ej(t)

)

∫ ∞

0

1

τj,k(t, s)
G−1(−θj,kg′(s)∥∆

j
2 ∂k

t ηt∥2)

×
Mj,k(t, s)τj,k(t, s)G′

(
ϵ0Ej(t)

)
g(s)

G−1
(
−Mj,kθj,kg′(s)

) ds.

(2.31)
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Denote the dual function of G by G∗(s) = supτ∈R+
{sτ − G(τ)}, for s ∈ R+. From the

Assumption 2 we have

G∗(s) = s(G′)−1(s)− G((G′)−1(s)), s ∈ R+.

Observe also that

s1s2 ≤ G(s1) + G∗(s2), ∀s1, s2 ∈ R+,

in particular

s1 = G−1
(

−θj,k(t, s)g′(s)∥∆
j
2 ∂k

t ηt∥2
)

and

s2 =
Mj,kτj,kG′(ϵ0Ej(t))g(s)

−Mj,k(t, s)g′(s)θj,k
.

Therefore, we obtain, by using the previous equality in (2.31), that

∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds ≤
1

G′
(
ϵ0Ej(t)

)

∫ ∞

0

1

τj,k(t, s)

(

−θj,kg′(s)∥∆
j
2 ∂k

t ηt∥2
)

ds

+
1

G′
(
ϵ0Ej(t)

)

∫ ∞

0

1

τj,k
G∗

(

Mj,kτj,kG′
(
ϵ0Ej(t)

)
g(s)

G−1
(
−Mj,kθj,kg′(s)

)

)

ds.

Using that G∗(s) ≤ s(G′)−1(s), we get

∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds ≤
1

G′
(
ϵ0Ej(t)

)

[
∫ ∞

0

1

τj,k

(

−θj,kg′(s)∥∆
j
2 ∂k

t ηt∥2
)

ds

+
∫ ∞

0

1

τj,k

Mj,kτj,kG′
(
ϵ0Ej(t)

)
g(s)

G−1
(
−Mj,kθj,kg′(s)

) (G′)−1

(

Mj,kτj,kG′
(
ϵ0Ej(t)

)
g(s)

G−1
(
−Mj,kθj,kg′(s)

)

)

ds

]

.

Pick θj,k =
1

Mj,k
, to ensure that

∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds ≤
1

G′
(
ϵ0Ej(t)

)

∫ ∞

0

1

τj,k Mj,k

(

−g′(s)∥∆
j
2 ∂k

t ηt∥2
)

ds

+
∫ ∞

0

Mj,kg(s)

G−1 (−g′(s))
(G′)−1

(

Mj,kτj,kG′
(
ϵ0Ej(t)

)
g(s)

G−1 (−g′(s))

)

ds.

Thanks to the fact that (G′)−1 is non-decreasing we get,

∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds ≤
1

G′
(
ϵ0Ej(t)

)

∫ ∞

0

1

τj,k Mj,k

(

−g′(s)∥∆
j
2 ∂k

t ηt∥2
)

ds

+
∫ ∞

0

Mj,kg(s)

G−1 (−g′(s))
(G′)−1

(
m0Mj,kτj,kG′

(
ϵ0Ej(t)

))
ds,

where m0 = sups∈R+

g(s)
G−1(−g′(s))

. Note that (1.18) and (1.19), yields that

m1 = sup
s∈R+

∫ ∞

0

Mj,k(s, t)g(s)

G−1 (−g′(s))
ds < ∞.
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Thus, using that τj,k(t, s) = 1
m0 Mj,k(t,s)

and relation (2.1), we have that

∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds ≤−
m0

G′
(
ϵ0Ej(t)

)

∫ ∞

0

(

g′(s)∥∆
j
2 ∂k

t ηt∥2
)

ds

+
(
ϵ0Ej(t)

)
∫ ∞

0

Mj,kg(s)

G−1 (−g′(s))
ds

=−
2m0

G′
(
ϵ0Ej(t)

)E′
j,k(t) + ϵ0m1Ej(t).

Finally, multiplying the previous inequality by G′
(
ϵ0Ej(t)

)
=

G0(ϵ0Ej(t))
ϵ0Ej(t)

gives

G0

(
ϵ0Ej(t)

)

ϵ0Ej(t)

∫ ∞

0
g(s)∥∆

j
2 ∂k

t ηt∥2ds ≤ −2m0E′
j,k(t) + m1G0

(
ϵ0Ej(t)

)
,

which taking dj,k = max{2m0, m1}, ensures (2.29), showing the lemma.

3 Proof of Theorem 1.4

Let us split the proof into two cases: a) n = 1 and b) n > 1.

a) n = 1

Poincaré’s inequality gives us

∥y∥2 ≤ c∗∥∇y∥2 ≤ c2
∗∥∆y∥2,

where c∗ > 0 is the Poincaré constant. Summarizing,

∥y∥2 ≤ c∗∗∥∆
j
2 y∥2,

for c∗∗ defined by (2.15). From the definition of Ej given by (1.5) we found that

2

ϵ0c∗∗
G0(ϵ0Ej(t)) ≤

G0(ϵ0Ej(t))

ϵ0Ej(t)
∥∆

j
2 y∥2 +

1

c∗∗

G0(ϵ0Ej(t))

ϵ0Ej(t)

∫ ∞

0
g(s)∥∆

j
2 ηt∥2ds.

Thanks to the inequality (2.23), we have

2

ϵ0c∗∗
G0(ϵ0Ej(t) ≤

G0(ϵ0Ej(t))

ϵ0Ej(t)

(

2c1,j∥ηt∥2
Lj
+ 2c2,jcϵ

∫ ∞

0
g(s)∥∆

j
2 ηt

tt∥
2ds − 2c2,jcϵE′

j,1(t)

)

+
1

c∗∗

G0(ϵ0Ej(t))

ϵ0Ej(t)

∫ ∞

0
g(s)∥∆

j
2 ηt∥2ds

=
G0(ϵ0Ej(t))

ϵ0Ej(t)

(

2c2,jcϵ

∫ ∞

0
g(s)∥∆

j
2 ηt

tt∥
2ds − 2c2,jcϵE′

j,1(t)

)

+

(

2c1,j +
1

c∗∗

)
G0(ϵ0Ej(t))

ϵ0Ej(t)

∫ ∞

0
g(s)∥∆

j
2 ηt∥2ds. (3.1)

Combining (3.1) with (2.29), gives

2

ϵ0c∗∗
G0(ϵ0Ej(t)) ≤− 2c2,jcϵdj,2E′

j,2(t) + 2c2,jcϵdj,2G0(ϵ0Ej(t))− 2c2,j

G0(ϵ0Ej(t))

ϵ0Ej(t)
cϵE′

j,1(t)

− dj,0

(

2c1,j +
1

c∗∗

)

E′
j(t) + dj,0

(

2c1,j +
1

c∗∗

)

G0(ϵ0Ej(t)).
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So,
(

2

ϵ0c∗∗
− 2c2,jcϵdj,2 − dj,0

(

2c1,j +
1

c∗∗

))

G0(ϵ0Ej(t))

≤ −2c2,jcϵdj,2E′
j,2(t)− 2c2,j

G0(ϵ0Ej(t))

ϵ0Ej(t)
cϵE′

j,1(t)− dj,0

(

2c1,j +
1

c∗∗

)

E′
j(t).

(3.2)

Observe that H0(s) =
G0(s)

s is non-decreasing and Ej is non-increasing for each j, thus
G0(ϵ0Ej(t))

ϵ0Ej(t)

is non-increasing for each j, and therefore by (3.2) we get

(
2

ϵ0c∗∗
− 2c2,jcϵdj,2 − dj,0

(

2c1,j +
1

c∗∗

))

G0(ϵ0Ej(t))

≤ −2c2,jcϵdj,2E′
j,2(t)− 2c2,j

G0(ϵ0Ej(0))

ϵ0Ej(0)
cϵE′

j,1(t)− dj,0

(

2c1,j +
1

c∗∗

)

E′
j(t).

(3.3)

For ϵ0 > 0 small enough we have

c1 =

(
2

ϵ0c∗∗
− 2c2,jcϵdj,2 − dj,0

(

2c1,j +
1

c∗∗

))

> 0.

Thus, dividing (3.3) by c1 > 0 yields that

G0(ϵ0Ej(t)) ≤ −c2

(

E′
j(t) + E′

j,1(t) + E′
j,2(t)

)

, (3.4)

where

c2 = max







2c2,jcϵdj,2

c1
,

2c2,j
G0(ϵ0Ej(0))

ϵ0Ej(0)
cϵ

c1
,

dj,0

(

2c1,j +
1

c∗∗

)

c1






.

Now, integrating (3.4) on [0, t], t ∈ R
∗
+, and observing that G0(ϵ0Ej(t)) is non-increasing gives

tG0(ϵ0Ej(t)) =
∫ t

0
G0(ϵ0Ej(t))ds ≤

∫ t

0
G0(ϵ0Ej(s))ds ≤ −c2

∫ t

0

(

E′
j(s) + E′

j,1(s) + E′
j,2(s)

)

ds

= − c2

(
Ej(t) + Ej,1(t) + Ej,2(t)

)
+ c2

(
Ej(0) + Ej,1(0) + Ej,2(0)

)

≤ c2

(
Ej(0) + Ej,1(0) + Ej,2(0)

)
=: c3.

Because G0 is invertible and non-decreasing, we deduce that

Ej(t) ≤
1

ϵ0
(G0)

−1
( c3

t

)

=
1

ϵ0
G1

( c3

t

)

≤ αj,1G1

(
αj,1

t

)

,

for αj,1 = max
{

1
ϵ0

, c3

}
, showing (1.20) when n = 1.

a) n > 1

Suppose, for induction hypothesis, that for some n ∈ N
∗, we have that (1.20) is verified

when U0 ∈ D(A2n+2
j ) for j ∈ {1, 2} and U0 ∈ D(A2n

j ) for j = 0. For j ∈ {1, 2}, let us take

U0 ∈ D(A
2(n+1)+2
j ) and for j = 0, take U0 ∈ D(A

2(n+1)
j ). So when j ∈ {1, 2} we have

U0 ∈ D(A
2(n+1)+2
j ) ⊂ D(A2n+2

j ), Ut(0) ∈ D(A
2(n+1)+1
j ) ⊂ D(A2n+2

j ),

and Utt(0) ∈ D(A2n+2
j ).
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Now, for j = 0, we found

U0 ∈ D(A
2(n+1)
j ) ⊂ D(A2n

j ), Ut(0) ∈ D(A2n+1
j ) ⊂ D(A2n

j ) and Utt(0) ∈ D(A2n
j ).

So, it follows from the induction hypothesis that: there exists αj,n such that

Ej(t) ≤ αj,nGn

(
αj,n

t

)

, ∀t ∈ R
∗
+.

Now, since Ut and Utt are solution of (1.13) with initial conditions Ut(0) ∈ D(A2n+2
j ) and

Utt(0) ∈ D(A2n+2
j ), respectively, the induction hypothesis guarantees the existence of βn,t > 0

and γn,t > 0, such that

Ej,1(t) ≤ β j,nGn

(
β j,n

t

)

, ∀t ∈ R
∗
+ and Ej,2(t) ≤ γj,nGn

(
γj,n

t

)

, ∀t ∈ R
∗
+,

respectively. Thus, as G′
ns are non-decreasing for d̃j,n = max{3αj,n, 3β j,n, 3γj,n}, we get

Ej(t) + Ej,1(t) + Ej,2(t) ≤ d̃j,nGn

(

d̃j,n

t

)

.

Finally, how t ∈ [T, 2T], we have

G0(ϵ0Ej(2T)) ≤ G0(ϵ0Ej(t))

and from (3.4) we found the following

TG0(ϵ0Ej(2T)) ≤
∫ 2T

T
G0(ϵ0Ej(t))dt ≤ −c2

∫ 2T

T

(

E′
j(t) + E′

j,1(t) + E′
j,2(t)

)

dt

= − c2

(
Ej(2T) + Ej,1(2T) + Ej,2(2T)

)
+ c2

(
Ej(T) + Ej,1(T) + Ej,2(T)

)

≤ c2

(
Ej(T) + Ej,1(T) + Ej,2(T)

)
≤ c2d̃j,nGn

(

d̃j,n

T

)

≤ dj,nGn

(
dj,n

T

)

,

where dj,n = max{c2d̃j,n, d̃j,n}. Moreover, as G0 is non-decreasing, G1 = G−1
0 is also non-

decreasing. Therefore,

Ej(2T) ≤
1

ϵ0
G−1

0

(
2dj,n

2T
Gn

(
2dj,n

2T

))

=
1

ϵ0
G1 (s̃Gn (s̃)) =

1

ϵ0
Gn+1 (s̃) = αj,n+1Gn+1

(
αj,n+1

2T

)

,

where αj,n+1 := max
{

1
ϵ0

, 2dj,n

}
. In other words, there is αj,n+1 > 0 such that (1.20) holds for

n + 1. By the principle of induction we have that (1.20) is verified for all n ∈ N
∗, showing

Theorem 1.4.
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A Well-posedness via semigroup theory

This section is devoted to proving that the system (1.13) is well-posed in the energy space Hj.

To do that, first, let us present some properties of Aj, defined by (1.14)–(1.15) and its adjoin

A∗
j defined by

A∗
j (V) =







−i∆v + i∆2v + (−1)j
∫ ∞

0 g(s)∆jζt(·, s)ds

ζt
s +

g′(s)

g(s)
ζt − v







(A.1)

with

D(A∗
j ) = {V = (v, ζt) ∈ Hj;A

∗
j(V) ∈ Hj, v ∈ H2

0(Ω), ζt(x, 0) = 0}, (A.2)

for j ∈ {0, 1, 2}. So, our first result in this section ensures that Aj (resp. A∗
j ) is dissipative, and

D(Aj) (resp. D(A∗
j )) is dense in the energy space2.

Lemma A.1. Aj and A∗
j are dissipative. Moreover, D(Aj) and D(A∗

j ) are dense in Hj, for j ∈

{0, 1, 2}.

Proof. Indeed, let (y, ηt) ∈ D(Aj) so

⟨Aj(y, ηt), (y, ηt)⟩ = −Re

(∫ ∞

0
g(s)

∫

Ω
∆

j
2 ηt

s∆
j
2 ηtdxds

)

.

As

∆
j
2 ηt

s∆
j
2 ηt =

1

2
(|∆

j
2 ηt|2)s + iIm(∆

j
2 ηt

s∆
j
2 ηt),

integration by parts over variable s, ensures that

⟨Aj(y, ηt), (y, ηt)⟩ = − Re

(∫ ∞

0
g(s)

∫

Ω

(
1

2
(|∆

j
2 ηt|2)s + iIm(∆

j
2 ηt

s∆
j
2 ηt)

)

dxds

)

=
1

2
Re

(∫ ∞

0
g′(s)

∫

Ω
|∆

j
2 ηt|2dxds

)

=
1

2

∫ ∞

0
g′(s)∥∆

j
2 ηt∥2ds ≤ 0,

(A.3)

since (1.10) is verified. So, Aj is dissipative. Similarly, A∗
j defined by (A.1) is dissipative.

Now, let us prove that D(Aj) is dense on Hj. Since we showed that Aj is dissipative,

we need to prove that the image of I − Aj is Hj, since Hj is reflexive. To do that, pick

( f1, f2) ∈ Hj = L2(Ω)× L2
g(R+; H

j
0(Ω)), we claim that there exists (y, ηt) ∈ D(Aj) such that

(y, ηt)− (i∆y − i∆2y + (−1)j+1
∫ ∞

0
g(s)∆jηt(·, s)ds, y − ηt

s) = ( f1, f2).

Or equivalently, we claim that there exits (y, ηt) ∈ D(Aj) satisfying







y − i∆y + i∆2y + (−1)j
∫ ∞

0
g(s)∆jηt(·, s)ds = f1

ηt − y + ηt
s = f2.

(A.4)

2Now on, we will use the following Poincaré inequality ∥y∥2 ≤ c∗∥∇y∥2, y ∈ H1
0(Ω), where c∗ > 0 is the

Poincaré constant.
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Indeed, multiplying the second equation of (A.4) by es and integrating over s, we get

ηt(x, s) = (1 − e−s)y +
∫ s

0
eτ−s f2(τ)dτ = (1 − e−s)y + f3(s). (A.5)

Since f2 ∈ L2
g(R+; H

j
0(Ω)), taking f3 =

∫ s

0
eτ−s f2(τ)dτ we have

∫ ∞

0
g(s)∥∆

j
2 f3(s)∥

2ds =
∫ ∞

0
g(s)e−2s

∫

Ω

∣
∣
∣
∣

∫ s

0
eτ∆

j
2 f2(τ)dτ

∣
∣
∣
∣

2

dxds

≤
∫ ∞

0
g(s)e−s

∫

Ω

∫ s

0
eτ|∆

j
2 f2(τ)|

2dτdxds

≤
∫ ∞

0

∫ s

0
g(s)e−seτ∥∆

j
2 f2(τ)∥

2dτds

=
∫ ∞

0

∫ ∞

τ
g(s)e−seτ∥∆

j
2 f2(τ)∥

2dsdτ

≤
∫ ∞

0

∫ ∞

τ
g(τ)e−seτ∥∆

j
2 f2(τ)∥

2dsdτ

= ∥ f2∥
2

L2
g(R+;H

j
0(Ω))

< +∞,

that is, f3 ∈ L2
g(R+; H

j
0(Ω)). Now, for y ∈ H2

0(Ω) holds that

∫ ∞

0
g(s)∥(1 − e−s)∆

j
2 y∥2ds = ∥∆

j
2 y∥2

∫ ∞

0
g(s)(1 − e−s)2ds ≤ ∥∆

j
2 y∥2g1 < +∞,

since

g1 :=
∫ ∞

0
g(s)(1 − e−s)ds ≤

∫ ∞

0
g(s)ds = g0.

So (1− e−s)y ∈ L2
g(R+; H

j
0(Ω)). Therefore, for y ∈ H2

0(Ω), choosing ηt as in (A.5), follows that

ηt ∈ L2
g(R+; H

j
0(Ω)) and, so ηt(x, 0) = 0. Thanks to (A.4) we get

ηt
s = f2 − ηt + y ∈ L2

g(R+; H
j
0(Ω)).

Finally, let us prove that y ∈ H2
0(Ω) satisfies

y − i∆y + i∆2y + (−1)j
∫ ∞

0
g(s)∆jηt(·, s)ds = f1, (A.6)

for ηt = (1− e−s)y+ f3. This is equivalent to obtain y ∈ H2
0(Ω) satisfying the following elliptic

equation

y − i∆y + i∆2y + (−1)jg1∆jy = f1 − (−1)j
∫ ∞

0
g(s)∆j f3(·, s)ds, (A.7)

which is a direct consequence of the Lax–Milgram theorem. Therefore, (y, ηt) ∈ D(Aj) is

a strong solution of (I − Aj)(y, ηt) = ( f1, f2) and I − Aj is surjective, showing the result.

Similarly, it is shown that D(A∗
j ) defined by (A.2) is dense in Hj.

The main result of this section is a consequence of the Lemma A.1 and can be read as

follows.

Theorem A.2. Suppose that Assumption 1 and (1.9) are verified. Thus, for each j ∈ {0, 1, 2},

the linear operator Aj defined by (1.14) is the infinitesimal generator of a semigroup of class C0

and, for each n ∈ N and U0 ∈ D(An
j ), the system (1.13) has unique solution in the class U ∈

⋂n
k=0 Ck(R+; D(An−k

j )).
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Abstract. In this article we consider the class CSL2r2c∞
7 of non-degenerate real planar

cubic vector fields, which possess two real and two complex distinct infinite singulari-
ties and invariant straight lines of total multiplicity 7, including the line at infinity. The
classification according to the configurations of invariant lines of systems possessing
invariant straight lines was given in articles published from 2014 up to 2022. We con-
tinue our investigation for the family CSL2r2c∞

7 possessing configurations of invariant
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1 Introduction and statement of the Main Theorem

We consider here real polynomial differential systems

dx

dt
= p(x, y),

dy

dt
= q(x, y), (1.1)

where p, q are polynomials in x, y with real coefficients, i.e. p, q ∈ R[x, y]. We call degree of a

system (1.1) max(deg(p), deg(q)). A cubic system (1.1) is of degree three. We say that a system

(1.1) is non-degenerate if the polynomials p(x, y) and q(x, y) are co-prime, i.e. gcd(p, q) =

constant.

Let

X = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y

BCorresponding author. Email: nvulpe@gmail.com
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be the polynomial vector field corresponding to a system (1.1).

In [17] Darboux introduced the notion of an algebraic invariant curve for differential equa-

tions on the complex plane. An algebraic curve f (x, y) = 0 with f (x, y) ∈ C[x, y] is an

invariant curve of a system of the form (1.1) where p(x, y), q(x, y) ∈ C[x, y] if and only if there

exists K[x, y] ∈ C[x, y] such that

X( f ) = p(x, y)
∂ f

∂x
+ q(x, y)

∂ f

∂y
= f (x, y)K(x, y)

is an identity in C[x, y]. Since R ⊂ C, any system (1.1) over R generates a system of differential

equations over C. Using the embedding C2 →֒ P2(C), (x, y) 7→ [x : y : 1] = [X : Y : Z], (x =

X/Z, y = Y/Z and Z ̸= 0), we can compactify the differential equation q(x, y)dy− p(x, y)dx =

0 to an associated differential equation over the complex projective plane. In fact the theory

of Darboux in [17] is done for differential equations on the complex projective plane.

We compactify the space of all the polynomial differential systems (1.1) of degree n on

SN−1 with N = (n + 1)(n + 2) by multiplying the coefficients of each systems with 1/(∑(a2
ij +

b2
ij))

1/2, where aij and bij are the coefficients of the polynomials p(x, y) and q(x, y), respectively.

Definition 1.1 ([36]). (1) We say that an invariant curve L : f (x, y) = 0, f ∈ C[x, y] for a poly-

nomial system (S) of degree n has multiplicity m if there exists a sequence of real polynomial

systems (Sk) of degree n converging to (S) in the topology of SN−1, N = (n + 1)(n + 2), such

that each (Sk) has m distinct invariant curves L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0

over C, deg( f ) = deg( fi,k) = r, converging to L as k → ∞, in the topology of PR−1(C), with

R = (r + 1)(r + 2)/2 and this does not occur for m + 1.

(2) We say that the line at infinity L∞ : Z = 0 of a polynomial system (S) of degree

n has multiplicity m if there exists a sequence of real polynomial systems (Sk) of degree n

converging to (S) in the topology of SN−1, N = (n + 1)(n + 2), such that each (Sk) has m − 1

distinct invariant lines L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm−1,k(x, y) = 0 over C, converging to the

line at infinity L∞ as k → ∞, in the topology of P2(C) and this does not occur for m.

In this work we consider a particular case of invariant algebraic curves, namely the invari-

ant straight lines of systems (1.1). A straight line over C is the locus {(x, y) ∈ C2| f (x, y) = 0}
of an equation f (x, y) = ux + vy + w = 0 with (u, v) ̸= (0, 0) and (u, v, w) ∈ C3. We note

that by multiplying the equation by a non-zero complex number λ, the locus of the equa-

tion does not change. So that we have an injection from the lines in C2 to the points in

P2(C)\{[0 : 0 : 1]}. This injection induces a topology on the set of lines in C2 from the

topology of P2(C) and hence we can talk about a sequence of lines convergent to a line in C2.

For an invariant line f (x, y) = ux + vy + w = 0 we denote â = (u, v, w) ∈ C3 and by

[â] = [u : v : w] the corresponding point in P2(C). We say that a sequence of straight lines

fi(x, y) = 0 converges to a straight line f (x, y) = 0 if and only if the sequence of points [âi]

converges to [â] = [u : v : w] in the topology of P2(C).

In view of the above definition of an invariant algebraic curve of a system (1.1), a line

f (x, y) = ux + vy + w = 0 over C is an invariant line if and only if it there exists K(x, y) ∈
C[x, y] which satisfies the following identity in C[x, y]:

X( f ) = up(x, y) + vq(x, y) = (ux + vy + w)K(x, y).

We point out that if we have an invariant line f (x, y) = 0 over C it could happen that mul-

tiplying the equation by a number λ ∈ C∗ = C \ {0}, the coefficients of the new equation
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become real, i.e. (uλ, vλ, wλ) ∈ R3. In this case, along with the line f (x, y) = 0 sitting in C2

we also have an associated real line, sitting in R2 defined by λ f (x, y) = 0.

Note that, since a system (1.1) is with real coefficients, if its associated complex system

has a complex invariant straight line ux + vy + w = 0, then its conjugate complex invariant

straight line ūx + v̄y + w̄ = 0 is also invariant.

A line in P2(C) is the locus in P2(C) of an equation F(X, Y, Z) = uX + vY + wZ = 0

where (u, v, w) ∈ C3 and F(X, Y, Z) ∈ C[X, Y, Z]. The line Z = 0 in P2(C) is called the line

at infinity of the affine plane C2. This line is an invariant manifold of the complex differential

equation on P2(C). Clearly the lines in P2(C) are in a one-to-one correspondence with points

[u : v : w] ∈ P2(C) and thus we have a topology on the set of lines in P2(C). We can thus talk

about a sequence of lines in P2(C) convergent to a line in P2(C).

To a line f (x, y) = ux + vy + w = 0, (u, v) ̸= (0, 0), f ∈ C[x, y], we associate its projective

completion F(X, Y, Z) = uX + vY + wZ = 0 under the embedding C2 →֒ P2(C), (x, y) 7→ [x :

y : 1] = [X, Y, Z] indicated above.

We first remark that in the above definition we made an abuse of language. Indeed, we talk

about complex invariant lines of real systems. However we already said that to a real system

one can associate a complex systems and to a differential equation q(x, y)dy − p(x, y)dx = 0

corresponds a differential equation in P2(C).

We remark that Definition 1.1 is a particular case of the definition of geometric multiplicity

given in [16], and namely the "strong geometric multiplicity" with the restriction, that the

corresponding perturbations are cubic systems.

The set CS of cubic differential systems depends on 20 parameters and for this reason

people began by studying particular subclasses of CS. Some of these subclasses are on cubic

systems having invariant straight lines.

We mention here some papers on polynomial differential systems possessing invariant

straight lines. For quadratic systems see [8, 18, 31, 32, 36–40] and [41]; for cubic systems see

[4, 5, 7, 9–14, 23, 25–27, 33, 34, 44] and [45]; for quartic systems see [43] and [47].

The existence of sufficiently many invariant straight lines of planar polynomial systems

could be used for proving the integrability of such systems. During the past 15 years several

articles were published on this theme (see for example [13, 14, 37, 39]).

According to [1, 16], for a non-degenerate polynomial differential system of degree m, the

maximum number of invariant straight lines including the line at infinity and taking into

account their multiplicities is 3m. This bound is always reached (see [16]).

In particular, the maximum number of the invariant straight lines (including the line at

infinity Z = 0) for cubic systems with a finite number of infinite singularities is 9. In [25]

the authors classified all cubic systems possessing the maximum number of invariant straight

lines taking into account their multiplicities according to their configurations of invariant lines.

The notion of configuration of invariant lines for a polynomial differential system was first

introduced in [36].

Definition 1.2 ([40]). Consider a real planar polynomial differential system (1.1). We call

configuration of invariant straight lines of this system, the set of (complex) invariant straight lines

(which may have real coefficients), including the line at infinity, of the system, each endowed

with its own multiplicity and together with all the real singular points of this system located

on these invariant straight lines, each one endowed with its own multiplicity.

In [25] the authors used a weaker notion, not taking into account the multiplicities of real

singularities. They detected 23 such configurations. Moreover, in [25] the necessary and suffi-
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cient conditions for the realization of each one of 23 configurations detected, are determined

using invariant polynomials with respect to the action of the group of affine transformations

(A f f (2, R)) and time rescaling (i.e. A f f (2, R)× R∗)). In [4] the author detected another class

of cubic systems whose configuration of invariant lines was not detected in [25].

If two polynomial systems are equivalent under the action of the affine group and time

rescaling, clearly they must have the same kinds of configurations of invariant lines. But

it could happen that two distinct polynomial systems which are non-equivalent modulo the

action of the affine group and time rescaling have “the same kind of configurations” of straight

lines. We need to say when two configurations are considered equivalent.

Definition 1.3. Suppose we have two cubic systems (S), (S′) both with a finite number of sin-

gularities, finite and infinite, a finite set of invariant straight lines Li : fi(x, y) = 0, i = 1, . . . , k,

of (S) (respectively L′
i : f ′i (x, y) = 0, i = 1, . . . , k′, of (S′)). We say that the two configurations

C, C′ of invariant lines, including the line at infinity, of these systems are equivalent if there is

a one-to-one correspondence φ between the lines of C and C′ such that:

(i) φ sends an affine line (real or complex) to an affine line and the line at infinity to the

line at infinity conserving the multiplicities of the lines and also sends an invariant line with

coefficients in R to an invariant line with coefficients in R;

(ii) for each line L : f (x, y) = 0 we have a one-to-one correspondence between the real

singular points on L and the real singular points on φ(L) conserving their multiplicities and

their order on these lines;

(iii) we have a one-to-one correspondence φ∞ between the real singular points at infinity

on the (real) lines at infinity of (S) and (S′) such that when we list in a counterclockwise

sense the real singular points at infinity on (S) starting from a point p on the Poincaré disc,

p1 = p,...,pk, φ∞ preserves the multiplicities of the singular points and preserves or reverses

the orientation;

(iv) consider the total curves

F : ∏ Fj(X, Y, Z)mi Zm = 0, F ′ : ∏ F′
j (X, Y, Z)m′

i Zm′
= 0

where Fi(X, Y, Z) = 0 (respectively F′
i (X, Y, Z) = 0) are the projective completions of Li

(respectively L′
i) and mi, m′

i are the multiplicities of the curves Fi = 0, F′
i = 0 and m, m′ are

respectively the multiplicities of Z = 0 in the first and in the second system. Then, there is a

one-to-one correspondence ψ between the real singularities of the curves F and F ′ conserving

their multiplicities as singular points of the total curves.

Remark 1.4. In order to describe the various kinds of multiplicity for infinite singular points

we use the concepts and notations introduced in [36]. Thus we denote by “(a, b)” the max-

imum number a (respectively b) of infinite (respectively finite) singularities which can be

obtained by perturbation of a multiple infinite singular point.

The configurations of invariant straight lines which were detected for some families of

systems (1.1), were instrumental for determining the phase portraits of those families. For

example, in [37,39] it was proved that we have a total of 57 distinct configurations of invariant

lines for quadratic systems with invariant lines of total multiplicity greater than or equal to 4.

These 57 configurations lead to the existence of 135 topologically distinct phase portraits. In

[33,34,44,45] it was proved that cubic systems with invariant lines of total parallel multiplicity

six or seven (the notion of “parallel multiplicity” could be found in [45]) have 113 topologi-

cally distinct phase portraits. This was done by using the various possible configurations of

invariant lines of these systems.
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In what follows we define some algebraic-geometric notions which will be needed in order

to describe the invariants used for distinguishing configurations of invariant lines.

Let V be an irreducible algebraic variety of dimension n over a field K.

Definition 1.5. A cycle of dimension r or r-cycle on V with coefficients in an Abelian group G

is a formal sum ΣWnWW, where W is a subvariety of V of dimension r which is not contained

in the singular locus of V, nW ∈ G, and only a finite number of nW are non-zero. The support

of a cycle C is the set Supp(C) = {W|nW ̸= 0}. An (n − 1)-cycle is called a divisor D.

Definition 1.6. We call type of a divisor D the set of all ordered couples (m, sm) where m is

an integer appearing as a coefficient in the divisor D and sm is the number of occurrences in

D of the coefficient m.

Clearly the notion of type of a divisor is an affine invariant.

These notions (see [21]) which occur frequently in algebraic geometry, were used for clas-

sification purposes of planar quadratic differential systems by Pal and Schlomiuk [29], [35]

and by Llibre and Schlomiuk in [24]. They are also helpful here as we indicate below.

We apply the preceding notions to planar polynomial differential systems (1.1). We denote

by PSLn,L the class of all non-degenerate planar polynomial differential systems of degree n

with a finite number of infinite singularities and possessing invariant lines, including the line

at infinity, of total multiplicity L.

We define here below an important divisor which is used in this work and which we

call the parallelism divisor. Consider a system in (S) ∈ PSLn,L. Let p1, p2, . . . , ps be the set of

all the real singular points at infinity of (S). Let jk, k ∈ {1, . . . , s} be the total multiplicity

of all invariant affine lines which cut the line at infinity at pk. Let ik, k ∈ {1, . . . , s} be the

maximum number of distinct invariant affine lines which can appear from the line at infinity

in a perturbation of (S) in the class PSLn,L and which cut the line at infinity at pk.

Definition 1.7. We call parallelism divisor on Z = 0 with coefficients in Z2 the divisor

DL(S; Z) defined as follows:

DL(S; Z) =
s

∑
k=1

(
ik

jk

)
pk.

Observation 1.8. In this definition we spell out the affine part jk (the finite parallelism index)

as well as the infinite part expressed by ik (the infinite parallelism index). We could form

another divisor on the line at infinity, namely ∑
s
k=1 (ik + jk)pk whose coefficients are the total

parallelism indices.

Definition 1.9. We define the parallelism type of the configuration (or simply type of the

configuration) of invariant lines occurring for a cubic polynomial system (S), the sequence

of non-zero numbers, τk = ik + jk, k ∈ {1, . . . , s} attached to DL(S; Z), listed according to

descending magnitudes:

T = (τ1, τ2, . . . , τl), 1 ≤ l ≤ s.

Clearly T is an affine invariant of systems in the class PSLn,L and of their configurations

of invariant lines.

Notation 1.10. As already used in the Abstract CSL2r2c∞
7 is meant to be the class of non-

degenerate cubic systems with invariant lines of total multiplicity seven which have two real

and two complex distinct singularities at infinity.
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As we have two real and two complex infinite singularities and the total multiplicity of the

invariant lines (including the line at infinity) must be 7, then the cubic systems in CSL2r2c∞
7

could only have one of the following four possible types of configurations of invariant lines:

(i) T = (3, 3); (ii) T = (3, 1, 1, 1); (iii) T = (2, 2, 2); (iv) T = (2, 2, 1, 1). (1.2)

Remark 1.11. We remark that the cubic systems in CSL2r2c∞
7 possessing the configurations of

invariant lines of the type T = (3, 3) were already investigated in [6], where the existence of

14 distinct configurations Config. 7.1a – Config. 7.14a of this type are determined.

In this article we classify the subfamily of cubic systems in CSL2r2c∞
7 , possessing config-

urations of invariant line of the type (3, 1, 1, 1), according to the relation of equivalence of

configurations. We denote this subfamily by CSL2r2c∞
(3,1,1,1).

Our main result is the following one.

Main Theorem.

(A) A non-degenerate cubic system (1.1) belongs to the class CSL2r2c∞
(3,1,1,1) if and only if D1 < 0,

V4 = U 2 = 0 and one of the following set of conditions holds:

(A1) If D7 ̸= 0, D8 ̸= 0, χ1 = 0, D6 ̸= 0 then χ3 = χ6 = 0.

(A2) If D7 ̸= 0, D8 ̸= 0, χ1 = 0, D6 = 0 then χ2 = χ3 = 0.

(A3) If D7 ̸= 0, D8 ̸= 0, χ1 ̸= 0, D4 ̸= 0 then χ7 = χ8 = χ9 = χ10 and either D5 ̸= 0,

χ11 = 0 or D5 = χ12 = 0.

(A4) If D7 ̸= 0, D8 ̸= 0, χ1 ̸= 0, D4 = 0 then χ4 = χ5 = χ7 = χ9 = χ13 = χ14 = 0.

(A5) If D7 ̸= 0, D8 = 0, D6 ̸= 0, D4 ̸= 0 then χ1 = χ3 = χ6 = 0.

(A6) If D7 ̸= 0, D8 = 0, D6 ̸= 0, D4 = 0 then χ1 = χ3 = χ8 = χ16 = 0, χ15 ̸= 0.

(A7) If D7 ̸= 0, D8 = 0, D6 = 0 then χ1 = χ2 = χ4 = χ6 = χ17 = 0, χ11 ̸= 0, ζ4 ≤ 0.

(A8) If D7 = 0, χ̃1 ̸= 0 then χ1 = χ2 = χ3 = 0.

(A9) If D7 = 0, χ̃1 = 0, χ̃2 ̸= 0 then χ1 = χ3 = χ6 = 0.

If D7 = χ̃1 = χ̃2 = 0 then a cubic system (1.1) could not belong to the class CSL2r2c∞
(3,1,1,1).

(B) Assume that a non-degenerate cubic system (1.1) belongs to the class CSL2r2c∞
(3,1,1,1), i.e. one of

the sets of conditions provided by statement (A) holds. Then this system possesses one of the

configurations Config. 7.1b – Config. 7.42b, presented in Figure 1.1. Moreover the necessary

and sufficient conditions for the realization of each one the mentioned configurations are given in

Diagrams from Figures 1.2, 1.3 and 1.4, correspondingly.

(C) In Figure 1.1 are given all the configurations that could occur for systems in the class CSL2r2c∞
(3,1,1,1).

We prove that all these configurations are realizable within CSL2r2c∞
(3,1,1,1) (see the examples given in

the proof of the statement (A)) and that these 42 configurations are distinct. This proof is done

in Subsection 3.3 using geometric invariants and it is presented in the corresponding diagram

from Figures 3.1.

Notation 1.12. We give here the directions for reading the pictures representing the config-

urations. An invariant line with multiplicity k > 1 will appear in a configuration in bold

face and will have next to it the number k. Real invariant straight lines are represented by

continuous lines, whereas complex invariant straight lines are represented by dashed lines.

The multiplicities of the real singular points of the system located on the invariant lines, will

be indicated next to the singular points.
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Figure 1.1: The configurations of invariant lines for cubic systems in the class

CSL2r2c∞
(3,1,1,1)

Since a configuration of invariant lines of a system (1.1) could contain simultaneously

real and complex invariant lines, there appears the problem of indicating these lines simul-

taneously on a picture in the Poincaré disc in order to capture and see schematically this

phenomenon. So in order to fix the positions of real lines with respect to the complex ones in
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Figure 1.1 (cont.): The configurations of invariant lines for cubic systems in the

class CSL2r2c∞
(3,1,1,1)

a coherent way, we present here the following mode of representing complex invariant lines

of systems (1.1) along with the real invariant ones on the Poincaré disc.

Convention. Assume that a system (1.1) possesses an invariant line with complex coefficients

such that we cannot multiply all its coefficients by a non-zero complex number and obtain

real coefficients. Then clearly the corresponding conjugate line is also invariant for this system

having the same property. Suppose that such invariant lines are:

L : Ax + By + C = 0, L̄ : Āx + B̄y + C̄ = 0, A, B, C ∈ C, (A, B) ̸= (0, 0).

These lines are affine lines in C2 (∼= R4) and hence planes in R4.

Without loss of generality, due to the change x ↔ y we may assume B ̸= 0 and then the

lines become:

y = (a ± bi)x + (c ± di) = (ax + c)± i(bx + d), (a, b, c, d) ∈ R
4, b2 + d2 ̸= 0. (1.3)
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Figure 1.2: Diagram of the configurations for the class CSL2r2c∞
(3,1,1,1): statement

(A1)
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Figure 1.2 (cont.): Diagram of the configurations for the class CSL2r2c∞
(3,1,1,1): state-

ment (A1)

We associate to the lines (1.3) over C the two lines with real coefficients: the real line l =

R(L, L̄): y = ax + c as well as its complexification Cl defined by the same equation but letting

x, y run over the complex plane. The real line l can be drawn on the Poincaré disk. Consider

now the two cases b ̸= 0 and b = 0.

Case b ̸= 0. In this case the two lines (1.3) intersect at the real point M0 = (−d/b,−(ad −
bc)/b) ∈ R2 that also lies on the real line l ⊂ Cl. Being at the intersection of the two complex

invariant lines (1.3) , the real point M0 is a singular point for systems (1.1). To signal the

presence of the complex lines (1.3) we make the convention to represent them on the Poincaré

disk as two dashed lines both passing through M0. Thus the real line l will appear inside

two of the four curvilinear triangles described by the dashed lines and parts of the circle at

infinity. We denote this domain by D.

Suppose now that the system S has a real invariant line l′ also passing through M0 and

consider its complexification L′ = Cl′ that is also an invariant line.

We assume that our system is included in a family of systems possessing the invariant

lines (1.3) and the line L’. If the parameters b and d tend simultaneously to zero, then it is

clear that the two complex lines tend to the complexification of the real line y = ax + c. Then

clearly this line is an invariant line that is a multiple line of multiplicity two or three. We now

distinguish two subcases: l′ = l or l′ ̸= l.

Subcase l′ = l. In this case two complex invariant lines (1.3) coalesced with the invariant

line L′ and hence this is a triple line. In this case we will draw the real line l′ inside the domain

D.

Subcase l′ ̸= l. In this case if both b and d tend to zero then the lines (1.3) will tend to a

double line, the complexification of the real line y = ax + c. In this case we draw the line l′

outside D.

Case b = 0. In this case the lines (1.3) intersect at infinity at the real point [1 : a : 0]. The

real line l : y = ax + c passes also through this point. We draw by dashed lines these two

complex lines placing inside the domain delimited by them and denoted by D′ the real line l.

Suppose the line L′ passes through the same point at infinity [1 : a : 0]. We make the following

convention:

If l′ = l then we will draw l′ inside the domain D′. If l′ ̸= l then we will draw l′ outside

the domain D′.
The work is organized as follows. In Section 2 we give some preliminary results needed
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Figure 1.3: Diagram of the configurations for the class CSL2r2c∞
(3,1,1,1): statements

(A2)–(A5)
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Figure 1.4: Diagram of the configurations for the class CSL2r2c∞
(3,1,1,1): statements

(A6)–(A9)

for this paper. In Section 3 we prove our Main Theorem considering the family of cubic

systems possessing invariant lines in the configuration of the type (3, 1, 1, 1) and having two

real and two complex distinct infinite singularities. More exactly, in Subsection 3.1 we prove

the statement (A) of the Main Theorem, constructing the canonical systems and determining



The family of cubic differential systems with invariant straight lines 13

the corresponding configurations which these systems could possess. Moreover, the neces-

sary and sufficient conditions for the realization of each one the obtained configurations are

determined. In Subsection 3.2 we prove the statement (B) of the Main Theorem. Using the

geometric invariants, we prove that all the 42 detected configurations of invariant lines for the

class of cubic systems in CSL2r2c∞
(3,1,1,1) are distinct according to Definition 1.3.

2 Preliminaries

Consider real cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P(a, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(a, x, y)
(2.1)

with variables x and y and real coefficients. The polynomials pi and qi (i = 0, 1, 2, 3) are

homogeneous polynomials of degree i in x and y:

p0 = a00, p3(x, y) = a30x3 + 3a21x2y + 3a12xy2 + a03y3,

p1(x, y) = a10x + a01y, p2(x, y) = a20x2 + 2a11xy + a02y2,

q0 = b00, q3(x, y) = b30x3 + 3b21x2y + 3b12xy2 + b03y3,

q1(x, y) = b10x + b01y, q2(x, y) = b20x2 + 2b11xy + b02y2.

Let a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) be the 20-tuple of the coefficients of systems

(2.1) and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03, x, y].

2.1 The main invariant polynomials associated to configurations of invariant lines

It is known that on the set of polynomial systems (1.1), in particular on the set CS of all cubic

differential systems (2.1), acts the group Aff (2, R) of affine transformation on the plane [40].

For every subgroup G ⊆ Aff (2, R) we have an induced action of G on CS. We can identify the

set CS of systems (2.1) with a subset of R20 via the map CS−→ R20 which associates to each

system (2.1) the 20-tuple a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) of its coefficients.

For the definitions of an affine or GL-comitant or invariant as well as for the definition of

a T-comitant and CT-comitant we refer the reader to [36]. Here we shall only construct the

necessary affine invariant polynomials which are needed to detect the existence of invariant

lines for the class of cubic systems with four real distinct infinite singularities and with exactly

seven invariant straight lines including the line at infinity and including multiplicities.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3.

As it was shown in [42] the polynomials

{
C0(a, x, y), C1(a, x, y), C2(a, x, y), C3(a, x, y), D1(a), D2(a, x, y) D3(a, x, y)

}
(2.2)

of degree one in the coefficients of systems (2.1) are GL-comitants of these systems.
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Notation 2.1. Let f , g ∈ R[a, x, y] and

( f , g)(k) =
k

∑
h=0

(−1)h

(
k

h

)
∂k f

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

( f , g)(k) ∈ R[a, x, y] is called the transvectant of index k of ( f , g) (cf. [20, 28]).

Theorem 2.2 ([46]). Any GL-comitant of systems (2.1) can be constructed from the elements of the

set (2.2) by using the operations: +, −, ×, and by applying the differential operation ( f , g)(k).

Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials P(a, x, y) and

Q(a, x, y). We obtain P̃(ã(a, x0, y0), x′, y′) = P(a, x′ + x0, y′ + y0), Q̃(ã(a, x0, y0), x′, y′) =

Q(a, x′ + x0, y′ + y0). We construct the following polynomials

Ωi(a, x0, y0) ≡ Res x′

(
Ci

(
ã(a, x0, y0), x′, y′

)
, C0

(
ã(a, x0, y0), x′, y′

))
/(y′)i+1,

Ωi(a, x0, y0) ∈ R[a, x0, y0], (i = 1, 2, 3)

and we denote

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3).

Remark 2.3. We note that the polynomials G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) are affine comi-

tants of systems (2.1) and are homogeneous polynomials in the coefficients a00, . . . , b03 and

non-homogeneous in x, y and

dega G̃1 = 3, dega G̃2 = 4, dega G̃3 = 5,

deg(x,y) G̃1 = 8, deg(x,y) G̃2 = 10, deg(x,y) G̃3 = 12.

Notation 2.4. Let Gi(a, X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y), i.e.

G1(a, X, Y, Z) = Z8G̃1(a, X/Z, Y/Z),

G2(a, X, Y, Z) = Z10G̃2(a, X/Z, Y/Z),

G3(a, X, Y, Z) = Z12G̃3(a, X/Z, Y/Z),

and H(a, X, Y, Z) = gcd
(
G1(a, X, Y, Z), G2(a, X, Y, Z), G3(a, X, Y, Z)

)
in R[a, X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following lemmas

(see [25]):

Lemma 2.5. The straight line L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an

invariant line for a cubic system (2.1) if and only if the polynomial L(x, y) is a common factor of the

polynomials G̃1(x, y), G̃2(x, y) and G̃3(x, y) over C, i.e.

G̃i(x, y) = (ux + vy + w)W̃i(x, y) (i = 1, 2, 3),

where W̃i(x, y) ∈ C[x, y].

Lemma 2.6. Consider a cubic system (2.1) and let a ∈ R20 be its 20-tuple of coefficients.
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1) If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an invariant straight line of

multiplicity k for the system associated to a then [L(x, y)]k | gcd(G̃1, G̃2, G̃3) in C[x, y], i.e.

there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux + vy + w)kWi(a, x, y), i = 1, 2, 3.

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1,G2,G3), i.e. we have

Zk−1 | H(a, X, Y, Z).

Consider the differential operator L = x · L2 − y · L1 constructed in [3] and acting on

R[a, x, y], where

L1 = 3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+

1

3
a02

∂

∂a12
+

2

3
a11

∂

∂a21
+ a20

∂

∂a30

+ 3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+

1

3
b02

∂

∂b12
+

2

3
b11

∂

∂b21
+ b20

∂

∂b30
,

L2 = 3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+

1

3
a20

∂

∂a21
+

2

3
a11

∂

∂a12
+ a02

∂

∂a03

+ 3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+

1

3
b20

∂

∂b21
+

2

3
b11

∂

∂b12
+ b02

∂

∂b03
.

Using this operator and the affine invariant µ0 = Resultantx

(
p3(a, x, y), q3(a, x, y)

)
/y9 we con-

struct the following polynomials

µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, . . . , 9,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.

These polynomials are in fact comitants of systems (2.1) with respect to the group GL(2, R)

(see [3]). The polynomial µi(a, x, y), i ∈ {0, 1, . . . , 9} is homogeneous of degree 6 in the coeffi-

cients of systems (2.1) and homogeneous of degree i in the variables x and y. The geometrical

meaning of these polynomial is revealed in the next lemma.

Lemma 2.7 ([2, 3]). Assume that a cubic system (S) with coefficients a ∈ R20 belongs to the family

(2.1). Then:

(i) The total multiplicity of all finite singularities of this system equals 9 − k if and only if for every

i ∈ {0, 1, . . . , k− 1} we have µi(a, x, y) = 0 in the ring R[x, y] and µk(a, x, y) ̸= 0. In this case

the factorization µk(a, x, y) = ∏
k
i=1(uix − viy) ̸= 0 over C indicates the coordinates [vi : ui : 0]

of singularities at infinity which in perturbations generate finite singularities of the system (S).

Moreover the number of distinct factors in this factorization is less than or equal to four (the

maximum number of infinite singularities of a cubic system) and the multiplicity of each one of

the factors uix − viy gives us the number of the finite singularities of the system (S) which have

coalesced with the infinite singular point [vi : ui : 0].

(ii) The point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 9) for the cubic system (S)

if and only if for every i such that 0 ≤ i ≤ k − 1 we have µ9−i(a, x, y) = 0 in R[x, y] and

µ9−k(a, x, y) ̸= 0.

(iii) The system (S) is degenerate (i.e. gcd(p, q) ̸= const) if and only if µi(a, x, y) = 0 in R[x, y]

for every i = 0, 1, . . . , 9.
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In order to define the invariant polynomials we need, we first construct the following

comitants of second degree with respect to the coefficients of initial systems (2.1):

S1 = (C0, C1)
(1) , S10 = (C1, C3)

(1) , S19 = (C2, D3)
(1) ,

S2 = (C0, C2)
(1) , S11 = (C1, C3)

(2) , S20 = (C2, D3)
(2) ,

S3 = (C0, D2)
(1) , S12 = (C1, D3)

(1) , S21 = (D2, C3)
(1) ,

S4 = (C0, C3)
(1) , S13 = (C1, D3)

(2) , S22 = (D2, D3)
(1) ,

S5 = (C0, D3)
(1) , S14 = (C2, C2)

(2) , S23 = (C3, C3)
(2) ,

S6 = (C1, C1)
(2) , S15 = (C2, D2)

(1) , S24 = (C3, C3)
(4) ,

S7 = (C1, C2)
(1) , S16 = (C2, C3)

(1) , S25 = (C3, D3)
(1) ,

S8 = (C1, C2)
(2) , S17 = (C2, C3)

(2) , S26 = (C3, D3)
(2) ,

S9 = (C1, D2)
(1) , S18 = (C2, C3)

(3) , S27 = (D3, D3)
(2) .

We shall use here the following invariant polynomials constructed in [25] and [10]:

D1(a) = 6S3
24 −

[
(C3, S23)

(4)
]2

,

D2(a, x, y) = − S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4),

D4(a) = (C3, D2)
(4),

D5(a) = A1 − A2,

D6(a) = 3A1 + A2,

D7(a) = − A1 − 3A2,

D8(a) = 2A3
1 − 9A2

6 + 2A1 A10 + A16,

V1(a, x, y) = S23 + 2D2
3,

V2(a, x, y) = S26,

V3(a, x, y) = 6S25 − 3S23 − 2D2
3,

V4(a, x, y) = C3

[
(C3, S23)

(4) + 36 (D3, S26)
(2)

]
,

V5(a, x, y) = 6T1(9A5−7A6) + 2T2(4T16 − T17)− 3T3(3A1+5A2)+3A2T4+36T2
5 −3T44,

U 1(a) = S24 − 4S27,

U 2(a, x, y) = 6 (S23 − 3S25, S26)
(1) − 3S23(S24 − 8S27)− 24S2

26

+ 2C3 (C3, S23)
(4) + 24D3 (D3, S26)

(1) + 24D2
3S27,

In order to characterize the cubic systems belonging to the class CSL2r2c∞
(3,1,1,1) we define here the

following new invariant polynomials:

χ1(a, x, y) = T13 − 2T11,

χ2(a, x, y) = 8A3T2 + 22A4T2 + 15T57 + 9T60 − 21T62 + 6T63 + 9T65,

χ3(a, x, y) = 2T1T8T15 + 2T5T74 + T5T75,

χ4(a) = A7 + A8 − A9,

χ5(a) = A7,

χ6(a, x, y) = 30(6A3T2
1 + 9T5T6 − 3T4T9 − T2T26)− T1(29T2T14 + 32T2T15 − 108T36 − 45T42),

χ7(a, x, y) = T12 − T13,
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χ8(a, x, y) = 10A3T2 + 30A4T2 − 6T59 + 15T60 + 15T57 − 31T62 + 17T63 + 5T64 + 5T65,

χ9(a, x, y) = 6T5(3T11 − 4T13) + 10T3T18 + 6T4T18 − 3T2T48 + 2T2(T49 + T50) + 22T1T71 + T86,

χ10(a, x, y) = 880A3T1(101T2T6−36T1T9)+337920(T11−T13)(T74+T75)− 880(5T2
2 +27T3)T

2
9

− 528T9(120A4T2
1 + 11658T5T6 + 50T2T26 − 60T1T37 + 25T76 − 80T78)

− 44T19(21442T2T15 − 259854T36 + 42588T37 + 59307T42 − 42888T38)

− 2640T26(128T25 − 3T23 + 10T24 + 24T26) + 24T4T6(344426T14 − 921997T15)

−3T6(345752T3T15−1006720T80−1019038T81+969523T82+2177623T83−11264T84),

χ11(a, x, y) = 360A7T2+3066T110−270T111+148T113−1895T114+2675T115−1176T116+3090T117

− 540T118 − 680T119 + 155T120 + 1375T121,

χ12(a, x, y) = 18T2
2 T9−T2(36T23+324T24−737T26)−T1(108T2T15−6(460T36−629T37−656T42))

− 3(29028T5T6 + 54T3T9 − 629T4T9 + 96T78),

χ13(a, x, y) = −60(2A14+47A15)T2 − 12180A4T17 + 30A3(47T16+51T17)− 105A1(T57+12T63)

− A2(1200T60 − 174T59 − 255T57 − 5754T62 + 2403T63 − 4435T64 + 7820T65),

χ14(a, x, y) = 3T1T8T15 − 3T5T75,

χ15(a, x, y) = T8,

χ16(a, x, y) = 96T6T8 + 12T133 + 9T135 + 28T2T74 + 21T2T75,

χ17(a, x, y) = 9T6T9(174T1T9 + 193T19) + T2
6 (77T2T9 + 1164T1T14 − 69T23 − 57T24)− 696T2

74,

χ̃1(a, x, y) = T13 − 2T12,

χ̃2(a, x, y) = 3T2T6 + 2T1T9 + T19,

ζ1(a, x, y) = (A1 − A2)(5A3T2 + 25A4T2 − 9T59 + 15T57 − 39T62 + 33T63),

ζ ′1(a, x, y) = 972T1(A8T2+6T107)− 5832T5(5T36+T38) + 27(14904T2
11+216T10T15−16344T8T18

− 7T2
2 T59 − 81T3T59 + 18T4T59),

ζ2(a) = 432A2A4 − 162A12 − 81A13 − 27A14 − 648A15,

ζ3(a) =A7(2A1 A9 − 3A4 A6),

ζ4(a, x, y) = T59,

ζ5(a) =36A2
1A2

4 − (A12 − 4A13 − A14 − 2A15)
2,

ζ6(a) =8A2
1A2 + 58A3

2 − 29A2
6 + 82A2 A10 + 245A16,

ζ7(a) = − (5A1 + 3A2),

ζ8(a) = A4(2A3 + 3A4),

ζ9(a) = − T9T17,

where

A1 = S24/288, A2 = S27/72, A3 =
(
72D1 A2 + (S22, D2)

(1)
)
/24,

A4 =
[
9D1S24 − 2592D1 A2 + 36(S11, D3)

(2) + 24(S18, D2)
(1) − 8(S14, D3)

(2) − 8(S20, D2)
(1)

− 32(S22, D2)
(1)

]
/27/33, A6 =

(
S26, D3

)(2)
/25/33, A7 = (T9, C3)

(4)/25/32,

A8 = (T14, D3)
(2)/12, A9 = (T15, D3)

(2)/12, A10 = [[S23, D3)
(2), D3)

(2)/29/34,

A12 = [[T9, C3)
(3), D3)

(2)/26/33, A13 = [[T9, C3)
(2), C3)

(4)/27/33,

A14 = [[T9, D3)
(2), D3)

(2)/25/32, A15 = [[T14, C3)
(2), D3)

(2)/25/32,

A16 = [[S23, C3)
(1), D3)

(2), D3)
(2), D3)

(2)/5/213/37
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are affine invariants, whereas the polynomials

T1 = C3, T2 = D3, T3 = S23/18, T4 = S25/6, T5 = S26/72,

T6 =
[
3C1(D2

3 − 9T3 + 18T4)− 2C2(2D2D3 − S17 + 2S19 − 6S21)+

+ 2C3(2D2
2 − S14 + 8S15)

]
/24/32, T7 = (S23, C3)

(1)/72,

T8 =
[
5D2(D2

3 + 27T3 − 18T4) + 20D3S19 + 12
(
S16, D3

)(1) − 8D3S17

]
/5/25/33,

T9 =
[
9D1(9T3 − 18T4 − D2

3) + 2D2(D2D3 − 3S17 − S19 − 9S21) + 18
(
S15, C3

)(1)−
− 6C2(2S20 − 3S22) + 18C1S26 + 2D3S14

]
/24/33, T10 = (S23, D3)

(1)/25/33,

T11 =
[(

D2
3 − 9T3 + 18T4, C2

)(2) − 6
(

D2
3 − 9T3 + 18T4, D2

)(1) − 12
(
S26, C2

)(1)
+

+ 12D2S26 + 432C2(A1 − 5A2)
]
/27/34,

T12 =
[(

D2
3 + 15T3 − 6T4, C2

)(2) − 6
(

D2
3 − 3T3 + 12T4, D2

)(1) − 4
(
S26, C2

)(1)
+

+ 10D2S26 − 720(A1 + 3A2)C2

]
/27/33,

T13 =
[(

D2
3+27T3−18T4, C2

)(2)−216
(
T4, D2

)(1)
+48D3S22+36D2S26−432C2(3A1+17A2)

]
/27/34,

T14 =
[(

8S19 + 9S21, D2

)(1) − D2(8S20 + 3S22) + 18D1S26 + 1296C1A2

]
/24/33,

T15 =
[
72(S19, D2)

(1)−(S17, C2)
(2)+16(S21, D2)

(1)−3(D2
3, C1)

(2)+27(T3, C1)
(2)−54(T4, C1)

(2)

+36D1S26+2160C1 A1+4752C1 A2−16D2S22+4(S14, D3)
(1)−68(S15, D3)

(1)−8(S14, C3)
(2)

−8(S15, C3)
(2)−4D2S18

]
/26/33, T16 = (S23, D2)

(2)/26/33, T17 = (S26, D3)
(1)/25/33,

T18 =
[
4
(

D2
3 + 6T4, C2

)(3)
+ 2(C2D3, C3)

(4) − 9D2(96A2 + S24),

T19 =
(
T6, C3

)(1)
/2, T23 =

(
T6, C3

)(2)
/6, T24 =

(
T6, D3

)(1)
/6,

T25 =
[
16

[
(C2, D3)

(1)
]2

+ 5184C1(3A2C3 − T5D3) + D2
2(D2

3 − 81T3 − 54T4) + 4D2(648T5C2

+ 3D3S17 + 2D3S19 − 18C3S20)
]
/26/34, T26 =

(
T9, C3

)(1)
/4, T36 =

(
T6, D3

)(2)
/12,

T37 =
(
T9, C3

)(2)
/12, T38 =

(
T9, D3

)(1)
/6, T42 =

(
T14, C3

)(1)
/2,

T44 =
(
(S23, C3)

(1), D3

)(2)
/5/26/33, T50 =

(
T12, D3

)(1)
/6,

T57 =
(
T9, D3

)(2)
/12, T59 =

(
T6, C3

)(4)
/24/32, T60 =

(
T9, C3

)(3)
/72,

T62 =
(
T14, C3

)(2)
/6, T63 =

(
T15, C3

)(2)
/6, T64 =

(
T15, D3

)(1)
/6, T65 =

(
T14, D3

)(1)
/6,

T74 =
[
18(27T3C2D1−54T4C2D1−64T6D2−3T3C1D2+6T4C1D2)D3−6(9C2D1−C1D2)D3

3

+ 27C0D4
3 + D2

3(−486T3C0 + 972T4C0 + 108C3D1D2 − 8C2D2
2 − 54C3S8 + 108C3S9

+ 27C2S11 − 27C2S12 + 4C2S14 − 32C2S15 + 54D1S16 − 3C1S17 + 6C1S19 − 18C1S21)

− 972(T3 − 2T4)C3D1D2 + 72(T3 − 2T4)C2D2
2 − 486C3(128T11C1 − T3S8 + 2T4S8

+ 2T3S9 − 4T4S9) + 20736T11C2
2 − 9C2(T3 − 2T4)(27S11 − 27S12 + 4S14 − 32S15)

+ 2187(T3 − 2T4)
2C0 + 576T6(S17 − 2S19 + 6S21)− 27T3(18D1S16 − C1S17 + 2C1S19

− 6C1S21) + 54T4(18D1S16 − C1S17 + 2C1S19 − 6C1S21)
]
/28/34,

T75 =
[
− 18(40C3D2 + 137S16)

(
D2

3, C1

)(1) − 48(4C3D2 − 3C2D3 − S16)
(
S14, C3

)(1)

− 768C3D2

(
S15, C3

)(1)
+ 9(16C3D2 − 9C2D3 + 5S16)

(
S23, C1

)(1) − 648C0D4
3

+ 162(C2D3 + 3S16)
(
S25, C1

)(1)
+ 144(9C2D1 + 2C1D2)D3

3 − 12D2
3(32C2D2

2 − 18C3S8

+ 9C2S11 − 54C2S12 + 24C2S14 − 96C2S15 − 324D1S16 − 6C1S17 + 12C1S19 − 18C0S23
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+ 216C0S25) + 8D3(64C3D3
2 + 64C3D2S14 + 16D2

2S16 + 12S14S16 − 96S15S16 − 36C2
2S18

− 96C2D2S19 + 108C2
2S20 + 240C2D2S21 − 297C2D1S23 − 24C1D2S23 + 1134C2D1S25)

+ 62208C3(3T13C1−16T8D1) + 2(1728C3D1D2+32C2D2
2+18C3S8+4176C3S9−9C2S11

− 1395C2S12 − 16C2S14 + 96C2S15 − 108D1S16 − 18C1S17 − 60C1S19 + 2160C1S21)S23

+ 54C0S2
23 + 32(5832T13C1C3 − 31104T8C3D1 − 34992T8S10 − 3C3S14S17 − 4D2S16S17

+ 3C2S2
17 + 12C2C3D2S18 − 3C2S16S18 + 16C3D2

2S19 − 2C3S14S19 + 16C3S15S19

+ 24D2S16S19 − 12C2S2
19 − 36C2C3D2S20 + 9C2S16S20 − 48C3D2

2S21 − 12C3S14S21

− 24D2S16S21 + 12C2S17S21)− 36(288C3D1D2 + 474C3S8 + 528C3S9 − 237C2S11

− 255C2S12−180D1S16−86C1S17+156C1S19+276C1S21)S25−1944C0S2
25

]
/211/34,

T76 = [[T6, C3)
(2), C3)

(1)/36, T78 =
(
T25, C3

)(1)
/2, T80 = [[T9, C3)

(2), C3)
(1)/144,

T81 = [[T6, C3)
(3), C3)

(1)/26/32, T82 = [[T6, C3)
(2), D3)

(1)/23/33, T83 = [[T6, C3)
(1), D3)

(2)/24,

T84 =
(
T25, C3

)(2)
/6, T86 = [[T11, C3)

(2), C3)
(1)/36, T107 = [[T9, D3)

(2), D3)
(1)/432,

T110 = [[T6, C3)
(4), C3)

(2)/27/33, T111 =[[T6, C3)
(3), D3)

(2)/27/33, T113 =[[T14, C3)
(2), C3)

(2)/72,

T114 = [[T14, C3)
(2), D3)

(1)/72, T115 = [[T14, C3)
(1), D3)

(2)/72, T116 = [[T15, C3)
(2), C3)

(2)/72,

T117 = [[T6, D3)
(2), D3)

(2)/25/33, T118 = [[T9, C3)
(3), C3)

(2)/25/33, T119 =
(
T25, C3

)(4)
/24/32,

T120 = [[T9, C3)
(3), D3)

(1)/25/33, T121 = [[T9, C3)
(2), D3)

(2)/24/33, T133 =
(
T74, C3

)(1)
,

T135 =
(
T75, C3

)(1)
,

are T-comitants of cubic systems (2.1) (see for details [36]). In the above list the bracket “[[”

means a succession of two or up to four parentheses “(” depending on the row in which it

appears.

We note that these invariant polynomials are the elements of the polynomial basis of T-

comitants up to degree six constructed by Iu. Calin [15].

2.2 Preliminary results

In order to determine the degree of the common factor of the polynomials G̃i(a, x, y) for i =

1, 2, 3, we shall use the notion of the kth subresultant of two polynomials with respect to a given

indeterminate (see for instance, [22, 28]).

Following [25] we consider two polynomials

f (z) = a0zn + a1zn−1 + · · ·+ an, g(z) = b0zm + b1zm−1 + · · ·+ bm,

in the variable z of degree n and m, respectively.

We say that the k–th subresultant (see for example, [28]) with respect to variable z of the

two polynomials f (z) and g(z) is the (m + n − 2k)× (m + n − 2k) determinant

R
(k)
z ( f , g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . . . . am+n−2k−1

0 a0 a1 . . . . . . am+n−2k−2

0 0 a0 . . . . . . am+n−2k−3

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 b0 . . . . . . bm+n−2k−3

0 b0 b1 . . . . . . bm+n−2k−2

b0 b1 b2 . . . . . . bm+n−2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





(m − k) times





(n − k) times

(2.3)
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in which there are m − k rows of a’s and n − k rows of b’s, and ai = 0 for i > n, and bj = 0 for

j > m.

For k = 0 we obtain the standard resultant of two polynomials. In other words we can say

that the k–th subresultant with respect to the variable z of the two polynomials f (z) and g(z)

can be obtained by deleting the first and the last k rows and the first and the last k columns

from its resultant written in the form (2.3) when k = 0.

The geometrical meaning of the subresultants is based on the following lemma.

Lemma 2.8 (see [22, 28]). Polynomials f (z) and g(z) have precisely k roots in common (considering

their multiplicities) if and only if the following conditions hold:

R
(0)
z ( f , g) = R

(1)
z ( f , g) = R

(2)
z ( f , g) = · · · = R

(k−1)
z ( f , g) = 0 ̸= R

(k)
z ( f , g).

For the polynomials in more than one variables it is easy to deduce from Lemma 2.8 the

following result.

Lemma 2.9. Two polynomials f̃ (x1, x2, . . . , xn) and g̃(x1, x2, . . . , xn) have a common factor of degree

k with respect to the variable xj if and only if the following conditions are satisfied:

R
(0)
xj
( f̃ , g̃) = R

(1)
xj
( f̃ , g̃) = R

(2)
xj
( f̃ , g̃) = · · · = R

(k−1)
xj

( f̃ , g̃) = 0 ̸= R
(k)
xj
( f̃ , g̃),

where R
(i)
xj
( f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].

In paper [25] all the possible configurations of invariant lines are determined in the case,

when the total multiplicity of these lines (including the line at infinity) equals nine. All

possible configurations of invariant lines in the case when the total multiplicity of these lines

(including the line at infinity) equals eight, are determined in [5, 9–12].

In the above mentioned articles, several lemmas are proved concerning the number of

triplets and/or couples of parallel invariant straight lines which could have a cubic system.

Taking together these lemmas produce the following theorem.

Theorem 2.10. If a cubic system (2.1) possesses a given number of triplets or/and couples of invariant

parallel lines real or/and complex, then the following conditions are satisfied, respectively:

(i) two triplets ⇒ V1 = V2 = U 1 = 0;

(ii) one triplet and one couple ⇒ V4 = V5 = U2 = 0;

(iii) one triplet ⇒ V4 = U 2 = 0;

(iv) 3 couples ⇒ V3 = 0;

(v) 2 couples ⇒ V5 = 0.

Remark 2.11. The above conditions depend only on the coefficients of the cubic homogeneous

parts of the systems (2.1).

We rewrite the systems (2.1) using a different notation for the coefficients::

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3 ≡ p(x, y),

ẏ = b + ex + f y + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3 ≡ q(x, y).
(2.4)

Let L(x, y) = Ux +Vy+W = 0 be an invariant straight line of this family of cubic systems.

Then, we have

Up(x, y) + Vq(x, y) = (Ux + Vy + W)(Ax2 + 2Bxy + Cy2 + Dx + Ey + F),
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and this identity provides the following 10 relations:

Eq1 = (p − A)U + tV = 0, Eq6 = (2h−E)U+(2m−D)V−2BW=0,

Eq2 = (3q − 2B)U + (3u − A)V = 0, Eq7 = kU + (n − E)V − CW = 0,

Eq3 = (3r − C)U + (3v − 2B)V = 0, Eq8 = (c − F)U + eV − DW = 0

Eq4 = (s − C)U + Vw = 0, Eq9 = dU + ( f − F)V − EW = 0,

Eq5 = (g − D)U + lV − AW = 0, Eq10 = aU + bV − FW = 0.

(2.5)

It is well known that in the case of the non-singular infinite invariant line the infinite

singularities (real or complex) of systems (2.4) are determined by the linear factors of the

polynomial

C3 = yp3(x, y)− xq3(x, y).

Remark 2.12. Let C3 = ∏
4
i=1(αix + βiy), i = 1, 2, 3, 4. Then [βi : αi : 0] are the singular

points at infinity. Hence the invariant affine lines must be of the form Ux + Vy + W = 0

with (U,V) among (αi, βi). In this case, for any fixed (αi, βi), for a specific value of W, six

equations among (2.5) become linear with respect to the parameters {A, B, C, D, E, F} (with

the corresponding non-zero determinant) and we can determine their values, which annihilate

some of the equations (2.5). So in what follows, for each direction given by (αi, βi), we will

examine only the non-zero equations containing the last parameter W.

For the proof of the Main Theorem it is useful to consider the following homogeneous

cubic systems associated to systems (2.4):

x′ = p3(x, y), y′ = q3(x, y). (2.6)

Clearly in the case of two real and two complex distinct infinite singularities the polyno-

mial C3(x, y) has four distinct linear factors over C: two of them being real and two complex.

The following remark concerning the associated homogeneous cubic systems (2.6) is useful.

Remark 2.13. Assume that a cubic system (2.4) in CSL2r2c∞
(3,1,1,1) possesses invariant lines of total

multiplicity three in a real direction. Then the corresponding associated homogeneous cubic

systems (2.6) has one invariant line of multiplicity three in the same direction.

Indeed, if a system (2.4) possesses a triplet of parallel invariant lines (distinct or coinciding)

in a real direction then via an affine transformation this system could be brought to the form

ẋ = x[(x + b)2 + u], ẏ = q(a, x, y).

It is clear that if u < 0 (respectively u > 0) then we have three real (respectively one real and

two complex) all distinct invariant lines. In the case u = 0 we either have one simple and

one double invariant lines if b ̸= 0, or one triple invariant line if b = 0. It remains to observe

that in all four cases the corresponding associated homogeneous cubic systems possess the

invariant line x = 0 of multiplicity at least three.

According to [9, 25] (see also [30]) we have the following result.

Lemma 2.14. A cubic system (2.4) has 2 real and two complex all distinct infinite singularities if and

only if the condition D1 < 0 holds. Moreover its associated homogeneous cubic systems (2.6) could be

brought via a linear transformation to the canonical form

(SII)

{
x′ = (1 + u)x3 + (s + v)x2y + rxy2, C3 = x(sx + y)(x2 + y2),

y′ = −sx3 + ux2y + vxy2 + (r − 1)y3.
(2.7)
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3 The proof of the Main Theorem

Considering Lemma 2.14 we deduce that for the systems in the class CSL2r2c∞
(3,1,1,1) the condition

D1 < 0 holds and these systems could be brought via a linear transformation to the family of

systems

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + (1 + u)x3 + (s + v)x2y + rxy2,

ẏ = b + ex + f y + lx2 + 2mxy + ny2 − sx3 + ux2y + vxy2 + (r − 1)y3
(3.1)

with C3 = x(sx + y)(x2 + y2). In what follows we examine cubic systems possessing configu-

rations of invariant lines of the type T = (3, 1, 1, 1).

3.1 The proof of the statement (A)

The configurations of the type T = (3, 1, 1, 1) could only have one triplet of parallel invariant

lines and clearly in the case of two real and two complex infinite singularities such triplet

could be only in a real direction.

3.1.1 Construction of the associated homogeneous systems

Since systems with the configuration of the type T = (3, 1, 1, 1) could only possess one triplet

of parallel invariant lines, according to Theorem 2.10 the conditions V4 = U 2 = 0 are necessary

for systems (3.1). Taking the corresponding associated homogeneous systems (2.7) we force

the conditions V4 = U 2 = 0.

We observe that the invariant polynomial U2 is a homogeneous polynomial of degree four

in x and y. So we shall use the following notation:

U 2 =
4

∑
j=0

U 2jx
4−jyj.

On the other hand a straightforward computation of the value of V4 for systems (2.7) yields

V4 = 9216 V̂4 C3(x, y), where

V̂4 = 6r2s + r(2su − 9s − 3v) + (s + v)(sv − 3u).

As for systems (2.7) we have C3 = x(sx + y)(x2 + y2) ̸= 0, we conclude that the condition

V4 = 0 for these systems is equivalent to V̂4 = 0.

For systems (2.7) we evaluate

U 2 = 3 · 212
4

∑
j=0

Û 2jx
4−jyj,

where Û 2j are polynomials in the parameters r, s, u and v. We have

Û 24 = r(9u − 12ru + 4r2u − 3sv + 2rsv − rv2) = 0

and we consider two cases: r ̸= 0 and r = 0.

1: The case r ̸= 0. Then we must have

9u − 12ru + 4r2u − 3sv + 2rsv − rv2 = (3 − 2r)2u + v(−3s + 2rs − rv) = 0
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and we examine two subcases: 3 − 2r ̸= 0 and 3 − 2r = 0.

1.1: The subcase 3 − 2r ̸= 0. Then the condition Û 24 = 0 gives u = 3sv−2rsv+rv2

(3−2r)2 and we

obtain:

Û 23 =
3r(3s − 2rs + v)

[
(3 − 2r)2 + v2)

2r − 3
= (3 − 2r)V̂4 = 0.

Since r(3 − 2r) ̸= 0 the above condition gives v = (2r − 3)s and this implies U 2 = V̂4 = 0.

Therefore we get the family of systems

ẋ = (1 − s2 + rs2)x3 + 2(−1 + r)sx2y + rxy2,

ẏ = − sx3 + (−1 + r)s2x2y + (−3 + 2r)sxy2 + (−1 + r)y3.
(3.2)

1.2: The subcase 3− 2r = 0. We get r = 3/2 and therefore the condition Û 24 = 0 gives v = 0.

Then we obtain V̂4 = 0 and

Û 20 = −3(s2 − 2u)
[
4s2 + (3 + 2u)2

]
/4 = 0

and we discuss two possibilities: s2 − 2u = 0 or s = 3 + 2u = 0.

1.2.1: The possibility s2 − 2u = 0. We have u = s2/2 and then U 2 = V̂4 = 0. In this case

we arrive at the family of systems

ẋ = (1 + s2/2)x3 + sx2y + 3xy2/2,

ẏ = − sx3 + 1/2s2x2y + y3/2.
(3.3)

We observe that the above family of systems is a subfamily of (3.2) defined by the value

r = 3/2.

1.2.2: The possibility s = 3 + 2u = 0. In this case we get again U 2 = V̂4 = 0 and we obtain

the system

ẋ = − x3/2 + 3xy2/2, ẏ = −3x2y/2 + y3/2. (3.4)

However for this system we calculate (see the definition of the polynomial H(X, Y, Z) on the

page 14, Notation 2.4):

H(X, Y, Z) = gcd(G1,G2,G3) = 3XY(X2 + Y2)3/4.

So system (3.4) possesses two triple invariant lines x ± iy = 0 and by Remark 2.13, systems

(3.1) could have triplets of parallel invariant lines only in these two directions. However since

these lines will be complex, we deduce that systems (3.1) with the associated homogeneous

cubic system (3.4) could not possess invariant lines with the configuration of the type T =

(3, 1, 1, 1).

2: The case r = 0. Then we calculate

Û 23 = 3(s + v)(3u − sv), V̂4 = −(s + v)(3u − sv)

and we examine two subcases: s + v = 0 or s + v ̸= 0 and 3u − sv = 0.

2.1: The subcase s + v = 0. Then v = −s and this implies U 2 = V̂4 = 0. Therefore we get the

family of systems (we set new parameters and variables: s = s1, u = u1, x = x1, y = y1)

ẋ1 =(1 + u1)x3
1, ẏ1 = −s1x3

1 + u1x2
1y1 − s1x1y2

1 − y3
1. (3.5)



24 C. Bujac, D. Schlomiuk and N. Vulpe

In this case we observe that the systems (3.2) via the transformation

x1 = −(sx + y), y1 = −x + sy, t1 = −t/(s2 + 1)

can be transformed to systems (3.5) after additional change of the parameters: s = s1 and

s2 − r(1 + s2) = u1.

2.2: The subcase 3u − sv = 0 and s + v ̸= 0. Then u = sv/3 and we calculate

Û 22 = −(s + v)(3s + v)(9 + v2).

Since s + v ̸= 0 we get v = −3s and this implies U 2 = V̂4 = 0. In this case we obtain the

family of systems

ẋ =(1 − s2)x3 − 2sx2y, ẏ = −sx3 − s2x2y − 3sxy2 − y3. (3.6)

We observe that the above family of systems is a subfamily of (3.2) defined by the value r = 0.

So we have proved the next lemma.

Lemma 3.1. If for a homogeneous cubic system (2.7) the conditions V4 = U 2 = 0 hold then this system

could be brought via a linear transformation and time rescaling to the form (3.5) with one exception:

when the conditions s = v = 0 and r = −u = 3/2 (which imply V4 = U 2 = 0) then we get the

system (3.4) that has two triple complex invariant lines x ± iy = 0.

Thus according to this lemma forcing the conditions V4 = U 2 = 0 to be satisfied for sys-

tems (3.1) we obtain two families of systems. The first one with the associated homogeneous

cubic systems of the form (3.5) and due to an additional translation having the parameter

n = 0 in the quadratic parts of systems (3.1):

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + (1 + u)x3,

ẏ = b + ex + f y + lx2 + 2mxy − sx3 + ux2y − sxy2 − y3,
(3.7)

The second family has the associated homogeneous cubic systems of the form (3.4) and

applying an additional translation we can assume that two parameters vanish: m = 0 and

n = 0. As a result we arrive at the following family of systems:

ẋ = a + cx + dy + gx2 + 2hxy + ky2 − x3/2 + 3xy2/2,

ẏ = b + ex + f y + lx2 − 3x2y/2 + y3/2.
(3.8)

As it was mentioned above, by Remark 2.13 systems (3.8) could not possess invariant lines

with the configuration of the type T = (3, 1, 1, 1). And later (see Lemma 3.25) will be proved

that none of the sets of conditions provided by the statement A) of Main Theorem could be

satisfied for systems (3.8).

Next we prove the following lemma which is the first step in the classification of the

configuration of systems in the class CSL2r2c∞
(3,1,1,1).

Lemma 3.2. Assume that for a non-degenerate cubic system (2.4) the conditions D1 < 0 and V4 =

U 2 = 0 hold. Then the infinite invariant line Z = 0 of this system has the multiplicity indicated below

if and only if the corresponding conditions are satisfied, respectively:

(i) one ⇔ D7 ̸= 0;
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(ii) two ⇔ D7 = 0 and χ̃1 ̸= 0;

(iii) three ⇔ D7 = χ̃1 = 0 and χ̃2 ̸= 0;

(iv) four ⇔ D7 = χ̃1 = χ̃2 = 0.

Moreover the maximum multiplicity which could have the line at infinity of a non-degenerate system

with D1 < 0 and V4 = U 2 = 0 is four.

Proof. First of all we mention that by Lemma 2.14 the condition D1 < 0 implies the existence

of 2 real and 2 complex infinite singularities.

On the other hand as it was mentioned earlier, according to Lemma 3.1 the conditions

V4 = U 2 = 0 lead either to the family of systems (3.7) or to (3.8).

According to Lemma 2.6 if the invariant line Z = 0 is of multiplicity k > 1 then Zk−1 is a

common factor of the invariant polynomials Gi(a, X, Y, Z), i = 1, 2, 3 defined in Notation 2.4

of the manuscript. So the existence of such a common factor of the above mentioned three

polynomials is a necessary condition for the invariant line Z = 0 of systems (3.7) to be of the

multiplicity k.

For systems (3.7) calculations yield:

G1(X, Y, Z) = (1 + u)X3(sX + Y)(X2 + Y2)(uX2 − 2sXY − 3Y2) + Z
[
Ψ1(X, Y, Z)

]
,

G2(X, Y, Z) = (1 + u)X3(sX + Y)(X2 + Y2)
[
(s2 + 2u + 2u2)X4 − 4suX3Y

+ (s2 − 3 − 6u)X2Y2 + 4sXY3 + 3Y4
]
+ Z

[
Ψ2(X, Y, Z)

]
,

G3(X, Y, Z) = 24(1 + u)X3(sX + Y)(uX2 − Y2)(X2 + Y2)
[
(1 + s2 + 2u + u2)X4

− 2suX3Y + (s2 − 1 − 2u)X2Y2 + 2sXY3 + Y4
]
+ Z

[
Ψ3(X, Y, Z)

]
,

(3.9)

where Ψj(X, Y, Z) (j = 1, 2, 3) are some polynomials in X, Y and Z.

Evidently Z will be a common factor of the polynomials Gi(X, Y, Z) (i.e. Gi(X, Y, 0) = 0

for each i = 1, 2, 3) if and only if u + 1 = 0. Since the condition D7 ̸= 0 implies u + 1 ̸= 0 we

deduce that Z could not be the needed common factor and hence the infinite invariant line

Z = 0 for systems (3.7) is of multiplicity one.

On the other hand for systems (3.8) we calculate

G1(X, Y, Z) = 6XY(X2 + Y2)3 + Z
[
Φ(X, Y, Z)

]
, D7 = 4 ̸= 0,

where Φ(X, Y, Z) is a polynomials in X, Y and Z. So we can see that the polynomial G1(X, Y, Z)

could not have as a factor Z and hence all three polynomials Gi(X, Y, Z) i = 1, 2, 3 could not

have the common factor Z. So we arrive at the following remark.

Remark 3.3. The family of systems (3.8) could not have the infinite invariant line Z = 0 of

multiplicity greater than one.

Thus we conclude that in the case D7 ̸= 0 a non-degenerate cubic system with D1 < 0

and V4 = U 2 = 0 has the line at infinity of multiplicity one. This completes the proof of the

statement (i) of the lemma.

(ii) Assume now that the condition D7 = 0 holds and taking into account Remark 3.3

we consider the family of systems (3.7). In this case the condition D7 = 0 gives us u = −1

and considering (3.9) we deduce that Z is a common factor of the polynomials Gi(X, Y, Z),

i = 1, 2, 3. We claim that the invariant line Z = 0 of systems (3.7) has multiplicity at least
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two. For this it is sufficient to apply the following perturbation to systems (3.7) with u = −1

(remaining in the class of cubic systems):

ẋ = (a + cx + dy + gx2 + 2hxy + ky2)(1 + εx), ẏ = q(x, y), |ε| ≪ 1.

It is clear that the perturbed systems possess the invariant line εx+ 1 = 0 which coalesces with

infinite one when ε tends to zero. So we deduce that the invariant line Z = 0 is of multiplicity

at least 2 and in order to determine exactly its multiplicity we calculate:

G1(X, Y, Z)/Z = − (sX + Y)(X2 + Y2)
[
(g − 2hs)X4 + 2(g − k)sX3Y

+ (3g − k + 2hs)X2Y2 + 4hXY3 + kY4
]
+ Z

[
Ψ′

1(X, Y, Z)
]
,

G2(X, Y, Z)/Z = (sX + Y)2(X2 + Y2)2
[
(g − k)sX3 + (3g − k + 2hs)X2Y

+ 6hXY2 + 2kY3
]
+ Z

[
Ψ′

2(X, Y, Z)
]
,

G3(X, Y, Z)/Z = − 24(sX + Y)3(X2 + Y2)3(gX2 + 2hXY + kY2) + Z
[
Ψ′

3(X, Y, Z)
]
,

(3.10)

where Ψ′
j(X, Y, Z) (j = 1, 2, 3) are some polynomials in X, Y and Z.

We observe that each one of the polynomials Gi(X, Y, Z)/Z, i = 1, 2, 3 has the factor Z if

and only if k = h = g = 0. This condition is governed by the invariant polynomials χ̃1 because

for systems (3.7) with u = −1 we have

Coefficient[χ̃1, xy2] = −8ks/3, Coefficient[χ̃1, y3] = 2k(s2 − 3)/9

and clearly the condition χ̃1 = 0 implies k = 0. Then we calculate

χ̃1 = 2x2
[
2(h + 2gs − 3hs2)x + (3g − 8hs − gs2)y

]
/9 = 0,

and we determine that for s = 0 we get h = g = 0. If s ̸= 0 we obtain:

h + 2gs − 3hs2 = 0 ⇒ g =
h(3s2 − 1)

2s
⇒ 3g − 8hs − gs2 = −3h(1 + s2)2

2s
= 0 ⇒ h = g = 0.

So in the case χ̃1 ̸= 0 we have k2 + h2 + g2 ̸= 0 and therefore the invariant line Z = 0 has the

multiplicity exactly two.

(iii) Admit now that the conditions D7 = 0 and χ̃1 = 0 are satisfied. This implies u = −1

and k = h = g = 0 and considering (3.10) we deduce that Z2 is a common factor of the

polynomials Gi(X, Y, Z), i = 1, 2, 3. We claim that the invariant line Z = 0 of systems (3.7)

has the multiplicity at least three. For this it is sufficient to apply to (3.7) with u = −1 and

k = h = g = 0 the following perturbation (remaining in the class of cubic systems):

ẋ = (a + cx + dy)(1 + ε1x + ε2x2), ẏ = q(x, y)

with |ε i| ≪ 1 (i = 1, 2). Clearly the perturbed systems possess the two invariant lines defined

by the equation 1 + ε1x + ε2x2 = 0 which coalesces with infinite one when ε1 and ε2 tend to

zero. So we deduce that the invariant line Z = 0 is of multiplicity at least 3 and in order to

determine precisely its multiplicity we calculate:

G1(X, Y, Z)/Z2 = − (sX + Y)(X2 + Y2)
[
(c − ds)X3 + 2csX2Y + (3c + ds)XY2

+ 2dY3
]
+ Z

[
Ψ′′

1 (X, Y, Z)
]
,

G2(X, Y, Z)/Z2 = (sX + Y)2(sX + 3Y)(cX + dY)(X2 + Y2)2 + Z
[
Ψ′′

2 (X, Y, Z)
]
,

G3(X, Y, Z)/Z2 = − 24(sX + Y)3(cX + dY)(X2 + Y2)3 + Z
[
Ψ′′

3 (X, Y, Z)
]
,

(3.11)
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where Ψ′′
j (X, Y, Z) (j = 1, 2, 3) are some polynomials in X, Y and Z. We observe that each of

the polynomials Gi(X, Y, Z)/Z2, i = 1, 2, 3 has as a factor Z if and only if c = d = 0. This

condition is governed by the invariant polynomials χ̃2 because for of systems (3.7) u = −1

and k = h = g = 0 we have

χ̃2 = 4x2(sx + y)(cx + dy)(x2 + y2)
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2

]
/3.

Evidently the condition χ̃2 = 0 is equivalent to c = d = 0. So in the case χ̃2 ̸= 0 we have

c2 + d2 ̸= 0 and therefore we deduce that the invariant line Z = 0 has the multiplicity exactly

three.

(iv) Admit now that the conditions D7 = 0 (i.e. u = −1) and χ̃1 = χ̃2 = 0 which implies

k = h = g = d = c = 0. Then considering (3.11) we deduce that Z3 is a common factor of

the polynomials Gi(X, Y, Z), i = 1, 2, 3. We claim that the invariant line Z = 0 of systems

(3.7) is of multiplicity at least four. For this it is sufficient to apply to (3.7) with u = −1 and

k = h = g = d = c = 0 the following perturbation (remaining in the class of cubic systems):

ẋ = a(1 + ε1x + ε2x2 + ε3x3), ẏ = q(x, y)

with |ε i| ≪ 1 (i = 1, 2, 3). Clearly the perturbed systems possess the three parallel invariant

lines defined by the equation 1 + ε1x + ε2x2 + ε3x3 = 0 which coalesce with the infinite one

when ε i (i = 1, 2, 3) tend to zero. So we deduce that the invariant line Z = 0 is of multiplicity

at least 4 and in order to determine precisely its multiplicity we calculate:

G1(X, Y, Z)/Z3 = −(sX + Y)(X2 + Y2)(X2 + 2sXY + 3Y2) + Z
[
Ψ′′′

1 (X, Y, Z)
]
,

where Ψ′′′
1 (X, Y, Z) (j = 1, 2, 3) is a polynomial in X, Y and Z. As we can see the polynomial

G1(X, Y, Z)/Z3 could not have Z as a factor and therefore we deduce that the maximum

multiplicity of the invariant line Z = 0 for systems (3.7) equals four.

As all the cases are examined we conclude that Lemma 3.2 is proved.

Thus considering Lemma 3.1 as well as Lemma 3.25 (which will be proved later) in what

follows we consider the family of systems (3.7), i.e. the systems

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + (1 + u)x3,

ẏ = b + ex + f y + lx2 + 2mxy − sx3 + ux2y − sxy2 − y3,
(3.12)

for which we have C3(x, y) = x(sx + y)(x2 + y2). For the corresponding associated homoge-

neous cubic systems we calculate (see the definition of the polynomial H(X, Y, Z) on the page

14, Notation 2.4):

H(X, Y, Z) = gcd(G1,G2,G3) = (1 + u)X3(sX + Y)(X2 + Y2). (3.13)

So by Remark 2.13, systems (3.12) could have one triplet of parallel invariant lines in the

direction x = 0. However for some values of the parameters u and s the common divisor

gcd(G1,G2,G3) could contain additional factors (see Notation 2.4 and Lemma 2.6). We prove

the following lemma.

Lemma 3.4. Systems (3.12) could possess a triplet of parallel invariant lines in the real direction

sx + y = 0 if and only if s = u = 0.
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Proof. Consider the corresponding homogeneous cubic systems associated to (3.12):

ẋ = (1 + u)x3, ẏ = −sx3 + ux2y − sxy2 − y3. (3.14)

It was shown above that for these systems the value of H(X, Y, Z) is given in (3.13). Since the

factor (sX + Y) in gcd(G1,G2,G3) depends on Y, according to Lemma 2.9 in order to increase

its multiplicity up to 3 it is necessary

R
(0)
Y (G2/H, G1/H) = R

(1)
Y (G2/H, G1/H) = 0.

We calculate

R
(1)
Y (G2/H, G1/H) = 6s(9 + s2)X3 = 0

which implies s = 0. Then for systems (3.14) with s = 0 we obtain

R
(0)
Y (G2/H, G1/H) = 9u2(3 + u)2X8 = 0.

Therefore this condition gives u(3 + u) = 0. If u = −3 we get the homogeneous system

ẋ = −2x3, ẏ = −y(3x2 + y2),

for which we have H(X, Y, Z) = 6X3Y(X2 + Y2)2, i.e. considering Remark 2.13 we could not

have a triplet of parallel invariant lines in he direction y = 0.

Assuming u = 0 we get the homogeneous system

ẋ = x3, ẏ = −y3, (3.15)

for which we have H(X, Y, Z) = 3X3Y3(X2 + Y2) and this completes the proof of the lemma.

3.1.2 Construction of the cubic systems possessing configuration of the type T =(3, 1, 1, 1)

In what follows we examine systems (3.12) considering each one of the cases provided by

Lemma 3.2.

1: The case D7 ̸= 0. Then by Lemma 3.2 the infinite invariant line Z = 0 of systems (3.12)

is of multiplicity one and hence, we have to detect the conditions for the existence of invariant

affine lines of total multiplicity six. Moreover these lines have to be in the configuration of the

type (3, 1, 1, 1). Since the existence of a triplet of parallel invariant lines in the real direction

x = 0 for systems (3.12) is a generic case we begin with the study of this case.

Considering the equations (2.5) and Remark 2.12 for systems (3.12) in the case of the

direction x = 0 we obtain the following non-vanishing equations Eqi:

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW + gW2 − (1 + u)W3. (3.16)

It is clear that these three equations can have three common solutions if and only if k = d =

h = 0 and since D7 = (u + 1) ̸= 0 we obtain that in this case the equation Eq10 = 0 has three

solutions. They could be real or/and complex, distinct or coinciding. This means that systems

(3.12) have in the direction x = 0 a triplet of parallel invariant lines.

Next we have to determine the conditions for the existence of three invariant lines in three

distinct directions: one real (sx + y = 0) and two complex (x ± iy = 0). Since the coefficients

of systems (3.12) are real it is clear that for the complex directions it is sufficient to examine
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only one of them: x + iy = 0. In this case we have U = 1, V = i and considering (2.5) and

Remark 2.12 we obtain

Eq7 = 2m − g − il + (3 + u − 2is)W,

Eq9 = e + i( f − c)− 2
[
l + i(m − g)

]
)W −

[
3s + i(3 + 2u)

]
W2,

Eq10 = a + ib − (c + ie)W + (g + il)W2 − (1 + u − is)W3.

(3.17)

Calculations yield

ResW(Eq7, Eq9) = H1 + iH2, ResW(Eq7, Eq10) = H3 + iH4

where

H1 = −
[
4s2 − (3 + u)2

]
e +

[
4( f − c)(3 + u)s + (g2 − 4m2)s − l2s − 2l(3g − 3m + mu)

]
,

H2 =
[
4s2 − (3 + u)2

]
(c − f ) + 2gm(u − 3)− 3l2 + 3g2 − 12es + 2lgs − 4m2u − 4esu

]

H3 = − a(3 + u)
[
12s2 − (3 + u)2

]
− 2bs

[
4s2 − 3(3 + u)2

]
+ (cg − le − 2cm)

[
4s2 − (3 + u)2

]

− l3s − 2cl2(3g − 3m + mu) + 2(g − 2m)(g2 − gm − 2m2 − 6es + gmu − 2m2u − 2esu)

− ls(12c − 3g2 + 4gm + 4m2 + 4cu),

H4 = 2as
[
4s2−3(3+u)2

]
−b(3+u)

[
12s2−(3+u)2

]
+(cl+eg−2em)

[
4s2−(3+u)2

]
−2l3

− (g − 2m)(g2 − 12c − 4m2 − 4cu)s + 2l(3g2 − 6gm − 6es + 2gmu − 4m2u − 2esu)

+ l2(3g − 2m)s. (3.18)

It is clear that for the existence of a common solution of equations Eq7 = Eq9 = Eq10 = 0 with

respect to W it is necessary and sufficient H1 = H2 = H3 = H4 = 0.

Solving the system of equations H1 = H2 = 0 with respect to the parameters e and f we

obtain:

e =
1

[
4s2+(3+u)2

]2

[
l2s(u2−27−4s2−6u)+2l

[
m(3−u)(4s2−(3+u)2)+gu(4s2+18+3u)

+ 27g
]
+ s(g − 2m)(27g − 18m + 4gs2 + 8ms2 + 6gu + 12mu − gu2 + 6mu2)

]
,

f = c+
1

[
4s2+(3+u)2

]2

[
l2(27+18u+4s2u+3u2)+2ls(27g−36m+4gs2+6gu−gu2+4mu2)

− (g − 2m)
[
4s2(6m + gu) + (3 + u)2(3g + 2mu)

]]
(3.19)

and evidently we could do this only in the case 4s2 + (3 + u)2 ̸= 0.

On the other hand for systems (3.12) we have

D8 = −8(s2 − u)
[
4s2 + (3 + u)2

]
/27 (3.20)

and as we will see later the condition s2 − u = 0 is also essential.

So in what follows we have to consider two subcases: D8 ̸= 0 and D8 = 0.

1.1: The subcase D8 ̸= 0, i.e. 4s2 + (3 + u)2 ̸= 0. Considering this condition we examine all

the needed directions.
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(i) The direction x+ iy = 0. In this case we have the conditions (3.19) and solving the system

of equations H3 = H4 = 0 with respect to the parameters a and b we obtain:

a =
(g − 2m)(3 + u)− 2ls

[
4s2 + (3 + u)2

]3

[
c(4s2 + (3 + u)2)2 +

[
4ls − 2g(3 + u) + 4m(3 + u)

]

×
[
g(3 + 2s2 + u) + (1 + u)(ls + 3m + mu)

]]
,

b =
2(g − 2m)s + l(3 + u)

[
4s2 + (3 + u)2

]3

[
c
[
4s2 + (3 + u)2

]2 − 2(g − 2m)
[
2gs2(1 + u) + m(8s2 + (3 + u)3)

]

+ 2l2(3 + u)(3 + 2s2 + u) + 8lsm(1 + u)(3 + u) + 2lgs
[
4s2 − (u − 1)(3 + u)

]]
. (3.21)

Thus if for systems (3.12) the conditions k = d = h = 0, (3.19) and (3.21) are satisfied then

these systems possess five invariant affine lines: three in the direction x = 0 and two in the

complex directions x ± iy.

(ii) The direction sx + y = 0. Then we have U = s, V = 1 and considering (2.5) and the

above conditions we obtain

Eq5 = l + gs − 2ms + (s2 − u)W (3.22)

and since the condition D8 ̸= 0 implies s2 − u ̸= 0 we deduce that the above equation is linear

with respect to the parameter W. Then the condition Eq5 = 0 gives W = (l + gs − 2ms)/(u −
s2) and we calculate:

Eq8 =
2(1 + s2) Ĥ H5

(s2 − u)2
[
4s2 + (3 + u)2

]2
, Eq10 =

(1 + s2) Ĥ H6

(s2 − u)3
[
4s2 + (3 + u)2

]3
, (3.23)

where

Ĥ = s(g − 2m)(9 + u) + l(9 − 2s2 + 3u),

H5 = ls(9 + s2)(1 + u) + m(1 + u)
[
s2(u − 9)− 3u(3 + u)

]
+ g

[
2s4 + u2(3 + u) + s2(9 + 5u)

]
,

H6 = c(s2 − u)2
[
4s2 + (3 + u)2

]2
+ l2(2s2 − 9 − 3u)(1 + u)(9 + 7s2 + 2s4 + 3u − s2u)

+ g2
[
6s4(u2 − 9 − 4u)− 4s6(3 + u)− u2(3 + u)3 − s2(81 + 99u + 55u2 + 13u3)

]

+ 2m
[
4gs6(3 + u) + 4ls5(1 + u)(3 + u) + gu2(3 + u)3 − 8ls3(1 + u)(u2 − 9 + 2u)

+ 6ls(1 + u)(3 + u)(9 + 4u + u2)− gs4(u3 − 81 − 45u + 13u2)

+ 2gs2(81 + 126u + 76u2 + 20u3 + u4)
]
+ 4m2s2(1 + u)(9 + u)(s2u−9−3s2−7u−2u2)

+2lgs
[
4s6+s4(3−10u−u2)+2s2(2u2+u3−18−23u)−(3+u)(27+39u+12u2+2u3)

]
.

(3.24)

We observe that the equations Eq8 = Eq10 = 0 imply either Ĥ = 0 or H5 = H6 = 0 and we

examine both possibilities.

First we observe that if for systems (3.12) the conditions of the existence of a triplet in

the direction x = 0 are satisfied (i.e. k = d = h = 0) then for these systems we have χ1 =

−Ĥ(g, l, m, s, u)x3/9. Therefore we conclude that the condition Ĥ = 0 is equivalent to χ1 = 0

in the case under consideration.

1.1.1: The possibility χ1 = 0, i.e. Ĥ = 0. We observe that the polynomial Ĥ is linear with

respect to the parameter l with the coefficient 2s2 − 3(u + 3) in front.
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On the other hand for systems (3.12) we have

D6 = 4
[
2s2 − 3(u + 3)

]
/9

and therefore we have to consider two cases: D6 ̸= 0 and D6 = 0.

1.1.1.1: The case D6 ̸= 0. Then 9 − 2s2 + 3u ̸= 0 and we calculate l = (g−2m)s(9+u)
2s2−3u−9

. So

considering conditions (3.19) and (3.21) we arrive at the following lemma.

Lemma 3.5. Assume that for a system (3.12) the conditions

u + 1 ̸= 0, (s2 − u)
[
4s2 + (3 + u)2

]
̸= 0, κ ≡ 2s2 − 3(u + 3) ̸= 0. (3.25)

hold. Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the

following conditions are satisfied:

k = d = h = 0, l =
s

κ
(u + 9)(g − 2m),

e =
s

κ2
(g − 2m)

[
g(s2 − 27) + 2m(s2 − 3u + 18)

]
,

f = c +
3

κ2
(g − 2m)

[
3g(s2 − 3)− 2m(s2 + 3u)

]
,

a = − 3

κ3
(g − 2m)

[
cκ2 + 6(g − 2m)(gs2 − 3g − 3m − 3mu)

]
,

b =
s

κ3
(g − 2m)

[
cκ2 + 2(g − 2m)(4gs2 − 2ms2 − 9mu − 27m)

]
.

(3.26)

Next we construct the invariant conditions corresponding to (3.26).

Lemma 3.6. Assume that for a cubic system (3.12) the conditions χ1 = 0 and D6D7D8 ̸= 0 hold. Then

this system has invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions χ3 = χ6 = 0

are satisfied.

Proof. For systems (3.12) we have D4 = 2304s(9+ s2) and we examine two possibilities: D4 ̸=0

and D4 = 0.

a) The possibility D4 ̸= 0. For systems (3.12) we calculate

Coefficient[χ1, y3] = k(1 + u)

and since D7 = 4(1 + u) ̸= 0 the condition χ1 = 0 implies k = 0. Then we get the conditions

Coefficient[χ1, xy2] =
2

9
h(s2 + 3u) = 0, Coefficient[χ1, x2y] =

4

9
hs(u − 3) = 0

and since s ̸= 0 (due to D4 = 2304s(9 + s2) ̸= 0) we obtain h = 0. In this case we calculate

χ1 =
1

9

[
l(−9 + 2s2 − 3u)− (g − 2m)s(9 + u)

]
x3 = 0

which implies l = s(u+9)(g−2m)
2s2−3(u+3)

. Thus the condition χ1 = 0 for systems (3.12) gives us the

conditions on the parameters k, h and l from (3.26).

Next assuming that these conditions are satisfied we examine the other conditions from

(3.26). Evaluating the invariant polynomial χ6 we obtain

Coefficient[χ6, xy7] = 10d(s2 − 9 − 6u), Coefficient[χ6, x2y6] =
10

3
ds(81 + 23s2 − 42u)
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and since s ̸= 0 we claim that the vanishing of these coefficients implies d = 0. Indeed

supposing d ̸= 0 we get s2 − 9 − 6u = 0 which gives u = (s2 − 9)/6. Then we obtain

81 + 23s2 − 42u = 16(9 + s2) ̸= 0 and the contradiction we obtained proves our claim.

Thus d = 0 and calculations yield

Coefficient[χ6, x3y5] = 110
[
e(s2 − 9 − 6u)− f s(3 + s2 − 2u) + cs(3 + s2 − 2u)

+
4s

κ
(g − 2m)(g − m)(9 + s2)

]
,

Coefficient[χ6, x4y4] =
10s

3

[
e(7s2 − 927 − 330u)− f s(21 + 39s2 − 110u) + cs(21 + 39s2 − 110u)

+
4s

κ2
(g−2m)(9+s2)(927m−711g+86gs2−62ms2−165gu+165mu)

]

and we observe that the above polynomials are linear with respect to the parameters e and f

with the corresponding determinant −32 f s(9 + s2)2κ3 ̸= 0. So forcing these polynomials to

vanish we get

e =
s

κ2
(g − 2m)

[
g(s2 − 27) + 2m(s2 − 3u + 18)

]
,

f = c +
3

κ2
(g − 2m)

[
3g(s2 − 3)− 2m(s2 + 3u)

]
.

Thus provided the condition χ1 = 0 is fulfilled, the condition χ6 = 0 for systems (3.12)

gives us the conditions on the parameters d, e and f from (3.26).

So it remains to determine the invariant polynomials which are responsible for the condi-

tions on the parameters a and b given in (3.26). Evaluating the invariant polynomial χ3 for

systems (3.12) for which the conditions on the parameters k, d, h, l, e and f are given in (3.26)

we have:

χ3 =
2x5

27κ3
ψ1ψ2ψ3

[
ψ4 x + ψ5 y

]
,

where
ψ1 = s(u − 3)x + (s2 + 3u)y,

ψ2 = (u2 − 3s2)x2 − 4s(3 + u)xy + (s2 − 9 − 6u)y2,

ψ3 = (6s2 + 3u + u2)x2 + 2s(9 + u)xy + (9 − 2s2 + 3u)y2,

ψ4 = − bκ3 + s(g − 2m)
[
cκ2 + 2(g − 2m)(4gs2 − 2ms2 − 9mu − 27m)

]
,

ψ5 = aκ3 + 3(g − 2m)
[
cκ2 + 6(g − 2m)(gs2 − 3g − 3m − 3mu)

]
.

It is not too difficult to see that due to s ̸= 0 the condition ψ1ψ2ψ3 ̸= 0 holds. Therefore

the condition χ3 = 0 is equivalent to ψ4 = ψ5 = 0 and solving these equations with respect

to the parameters a and b we get the expressions for these parameters given in (3.26). This

completes the proof of Lemma 3.6 as well as the statement (A1) of the Main Theorem in the

case D4 ̸= 0.

b) The possibility D4 = 0. Then s = 0 and we observe that the conditions (3.26) become of

the form:

k = d = h = l = e = b = 0, f = c − 1

(3 + u)2
(g − 2m)(3g + 2mu),

a =
1

(3 + u)3
(g − 2m)

[
c(3 + u)2 − 2(g − 2m)(g + m + mu)

]
,

(3.27)
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For systems (3.12) with s = 0 we calculate

χ1 = −1

9

[
3l(u + 3) + 2hu2

]
x3 − 1

9
k(u − 3)ux2y +

2

3
huxy2 + k(u + 1)y3

and due to the condition D7D8 = 32u(1 + u)(3 + u)2/27 ̸= 0 we deduce that the condition

χ1 = 0 is equivalent to k = h = l = 0.

On the other hand for systems (3.12) with s = k = h = l = 0 we calculate

Coefficient[χ6, xy7] = −30d(3+2u), Coefficient[χ6, x3y5] = 180d−10(3+2u)(42d+33e+40du)

and evidently the condition χ6 = 0 implies d = 0. Then we calculate again

Coefficient[χ6, x3y5] = −330e(3 + 2u), Coefficient[χ6, x5y3] = 5e
[
81 + (3 + 2u)(10u − 99)

]

and we observe that in this case the condition χ6 = 0 implies e = 0. We finally calculate

χ6 = 60u
[
(c − f )(3 + u)2 − (g − 2m)(3g + 2mu)

]
x6y2

and since u(3 + u) ̸= 0 the condition χ6 = 0 yields

f = c − 1

(3 + u)2
(g − 2m)(3g + 2mu),

i.e. we get the condition for the parameter f given in (3.27).

Next assuming the above mentioned conditions are fulfilled for systems (3.12) we calculate

χ3 =
2u

9(3 + u)2
x5y(ux2 + 3y2)(u2x2 − 9y2 − 6uy2)

×
{

b(3 + u)3x −
[
a(3 + u)3 − (g − 2m)(c(3 + u)2 − 2(g − 2m)(g + m + mu)

]
y
}
].

Therefore due to u(3 + u) ̸= 0 the condition χ3 = 0 implies

b = 0, a =
1

(3 + u)3
(g − 2m)

[
c(3 + u)2 − 2(g − 2m)(g + m + mu)

]
,

i.e. we get the two conditions for the parameters b and a given in (3.27). This completes the

proof of our claim and hence the statement (A1) the Main Theorem is valid also in the case

D4 = 0.

1.1.1.2: The case D6 = 0. This implies 9 − 2s2 + 3u = 0 and we have u = (2s2 − 9)/3.

Then we obtain:

Ĥ ≡ s(g − 2m)(9 + u) + l(9 − 2s2 + 3u) = 2(g − 2m)s(9 + s2)/3 = 0

i.e. we get s(g − 2m) = 0. On the other hand for u = (2s2 − 9)/3 we calculate (see (3.20))

D8 = −8(s2 − u)
[
4s2 + (3 + u)2

]
/27 = − 32

729
s2
(
s2 + 9

)2 ̸= 0.

So s ̸= 0 and this implies g = 2m. Considering (3.19) and (3.21) we arrive at the next lemma.
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Lemma 3.7. Assume that for a system (3.12) the conditions χ1 = 0, D7D8 ̸= 0 and D6 = 0 hold.

Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following

conditions are satisfied:

k = d = h = 0, u = (2s2 − 9)/3, g = 2m,

e =
3l
[
3l(s2 − 27) + 4ms(9 + s2)

]

4s(9 + s2)2
,

f =
81l2(s2 − 3) + 36lms(9 + s2) + 4cs2(9 + s2)2

4s2(9 + s2)2
,

a = − 9l
[
27l2(s2 − 3) + 18lms(9 + s2) + 2cs2(9 + s2)2

]

4s3(9 + s2)3
,

b =
3l
[
18l2s + 9lm(9 + s2) + cs(9 + s2)2

]

2s(9 + s2)3
.

(3.28)

Next we determine the invariant conditions equivalent to those provided in the above

lemma. More exactly we prove the following lemma.

Lemma 3.8. Assume that for a system (3.12) the conditions χ1 = 0, D7D8 ̸= 0 and D6 = 0

hold. Then this system has invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions

χ2 = χ3 = 0 are satisfied.

Proof. For systems (3.12) with u = (2s2 − 9)/3 we calculate:

D7 =
8

3
(s2 − 3), Coefficient[χ1, y3] = 2k(s2 − 3)/3, Coefficient[χ1, xy2]

∣∣
k=0

= 2h(s2 − 3)/3.

So it is clear that due to D8 ̸= 0 (i.e. s ̸= 0) the condition χ1 = 0 implies k = h = 0 and then

calculations yield:

χ1 = −2(g − 2m)s(9 + s2)x3/27, D8 = − 32

729
s2(9 + s2)2 ̸= 0.

So we conclude that the condition χ1 = 0 for systems (3.12) with D6 = 0 (i.e. u = (2s2 − 9)/3)

is equivalent to k = h = 0 and g = 2m. Assuming that these conditions are fulfilled for

systems (3.12) we obtain:

Coefficient[χ2, y2] = 56ds(9 + s2)/3 = 0 ⇔ d = 0

and then we calculate

χ2 = −8

9
ϕ′

1x2 +
16

3
ϕ′

2xy,

where
ϕ′

1 = 36es(3 + s2)− 8 f s4 + 81l2 − 36lms + 8cs4,

ϕ′
2 = 9e(s2 − 3)− f s(−27 + s2)− 18clm − 27cs + cs3.

We observe that the polynomials ϕ′
1 and ϕ′

2 are linear with respect to the parameters e and f

with the corresponding determinant 36s2(9 + s2)2 ̸= 0 and therefore the equations ϕ′
1 = ϕ′

2 =

0 give us

e =
3l

4s(9 + s2)2

[
3l(s2 − 27) + 4ms(9 + s2)

]
,

f =
1

4s2(9 + s2)2

[
81l2(s2 − 3) + 36lms(9 + s2) + 4cs2(9 + s2)2

]
.
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Thus provided χ1 = 0 is fulfilled, the condition χ2 = 0 for systems (3.12) gives us the condi-

tions on the parameters d, e and f from (3.28).

Next evaluating the invariant polynomial χ3 for systems (3.12) for which the conditions

on the parameters k, d, h, u, g, e and f are given in (3.28) we have:

χ3 =
2x6(sx + 3y)

6561s2(9 + s2)2
ψ̂1ψ̂2

[
− 2s2ψ̂3 x + ψ̂4 y

]
,

where

ψ̂1 = 2s(s2 − 9)x + 9(s2 − 3)y,

ψ̂2 = (81 − 63s2 + 4s4)x2 − 24s3xy − 27(s2 − 3)y2,

ψ̂3 = − 2bs(9 + s2)3 + 3l
[
18l2s + 9lm(9 + s2) + cs(9 + s2)2

]
,

ψ̂4 = − 4as3(9 + s2)3 − 9l
[
27l2(s2 − 3) + 18lms(9 + s2) + 2cs2(9 + s2)2

]
.

It is not too difficult to see that due to s(s2 − 3) ̸= 0 the condition ψ̂1ψ̂2 ̸= 0 holds. Therefore

the condition χ3 = 0 is equivalent to ψ̂3 = ψ̂4 = 0 and solving these equations with respect

to the parameters a and b we get the expressions for these parameters given in (3.28). This

completes the proof of Lemma 3.8 as well as the statement (A2) of the Main Theorem.

1.1.2: The possibility χ1 ̸= 0. Then considering (3.23) in order to have invariant lines of

total multiplicity seven we must force H5 = H6 = 0. Taking into account (3.24) we consider

two cases: s ̸= 0 and s = 0 and this condition is governed by the invariant polynomial

D4 = 2304s(9 + s2).

1.1.2.1: The case D4 ̸= 0. Then s ̸= 0 and solving the equations H5 = H6 = 0 with

respect to the parameters c and l we obtain:

c =
1

s2(9 + s2)2(1 + u)

[
− 27m2(s2 − 3)(1 + u)2 + 6gm(s2 − 3)(1 + u)(s2 + 3u)

− g2(2s4u − 27s2 − 7s4 − 6s2u − 9u2 + 3s2u2)
]
,

l =
1

s(9 + s2)(1 + u)

[
m(1 + u)(9s2 + 9u − s2u + 3u2)− g(9s2 + 2s4 + 5s2u + 3u2 + u3)

]
.

Thus considering the conditions k = d = h = 0 and the conditions for the parameters e

and f from (3.19) as well as for the parameters a and b from (3.21) and the above conditions

we conclude that altogether these conditions guarantee the existence of common solutions of

the equations (2.5) for each one of the four directions for invariant lines of systems (3.12). So

we arrive at the following lemma.

Lemma 3.9. Assume that for a system (3.12) the conditions χ1D7D8 ̸= 0 and D4 ̸= 0 hold. Then this

system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following conditions
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are satisfied:

k = d = h = 0,

f =
1

s2 (s2 + 9)2 (u + 1)2

[
3m2(1 + u)2(27 − 9s2 + s4 + 27u − 3s2u + 9u2)

+ 18gm(1 + u)(2s2 + s4 − 3u − 3u2 − u3)− g2(s2 + 3u)(2s2 + s4 − 3u − 3u2 − u3)
]
,

e =
1

s (s2 + 9)2 (u + 1)2

[
m2(3u − 18 − s2)(1 + u)2(s2 + 3u)

+ 6gm(1 + u)(6s2 + s4 + 9u + 4s2u + 9u2 − u3)

+ g2(−27s2 − 11s4 − s6 − 24s2u − 4s4u − 18u2 − 8s2u2 − 12u3 + u4)
]
,

a =
g(3 + s2 + 2u)− 6m(1 + u)

s2 (s2 + 9)2 (u + 1)2

[
9m2(1 + u)2 − 6gmu(1 + u) + g2(s2 + u2)

]
,

b = − m(s2 − 3u)(1 + u) + g(s2 + u2)

s3 (s2 + 9)3 (u + 1)3

[
m2(1 + u)2(81 + 81s2 + 2s4 + 81u − 3s2u + 18u2)

+ g2(3 + s2 + 2u)(9s2 + 2s4 + 5s2u + 3u2 + u3)

− 2gm(1 + u)(36s2 + 10s4 + 27u + 33s2u + 27u2 + s2u2 + 6u3)
]
,

c =
1

s2(9 + s2)2(1 + u)

[
27m2(3 − s2)(1 + u)2 + 6gm(s2 − 3)(1 + u)(s2 + 3u)

+ g2(27s2 + 7s4 + 6s2u − 2s4u + 9u2 − 3s2u2)
]
,

l = − 1

s(9 + s2)(1 + u)

[
m(1 + u)(s2u − 9s2 − 9u − 3u2) + g(9s2 + 2s4 + 5s2u + 3u2 + u3)

]

(3.29)

Next we determine the invariant conditions equivalent to those provided by the above

lemma. More exactly we prove the following lemma.

Lemma 3.10. Assume that for a system (3.12) the conditions χ1D7D8 ̸= 0 and D4 ̸= 0 hold. Then

this system has invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions χ7 = χ8 =

χ9 = χ10 = 0 and either D5 ̸= 0 and χ11 = 0 or D5 = χ12 = 0 are satisfied.

Proof. For systems (3.12) we calculate:

χ7 =
1

9
(hx + ky)

[
(3s2 + 3u + 2u2)x2 − 2s(u − 3)xy − (s2 + 3u)y2

]
.

We claim that the condition χ7 = 0 is equivalent to k = h = 0. Indeed assume that χ7 = 0

and k2 + h2 ̸= 0. Then we must have 3s2 + 3u + 2u2 = s(u − 3) = s2 + 3u = 0. However since

s ̸= 0 (due to D4 ̸= 0) we obtain u = 3 and this leads to a contradiction s2 + 9 = 0. So our

claim is proved and we conclude that the condition χ7 = 0 gives k = h = 0 from (3.29).

Assuming that for systems (3.12) the conditions k = h = 0 hold we calculate

χ8 =
160

9
d
[
s(3s2 − 9 + 4u2)x2 + 2(6s2 + 9u + s2u + 6u2)xy + s(9 + s2)y2

]

and due to s ̸= 0 we deduce that the condition χ8 = 0 is equivalent to d = 0.

Next we evaluate the invariant polynomial χ9 for systems (3.12) with the conditions k =

h = d = 0:

χ9 =− 16

9

[
ls(9 + s2)(1 + u) + m(1 + u)(s2u − 9s2 − 9u − 3u2)

+ g(9s2 + 2s4 + 5s2u + 3u2 + u3)
]
x5.
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Evidently forcing the condition χ9 = 0 to be fulfilled we get the condition for the parameter l

given in (3.29).

Assuming that for systems (3.12) the conditions under the parameters k, h, d and l provided

by Lemma 3.9 are fulfilled we calculate

χ11 = − 40

9s2(9 + s2)2(1 + u)2

[(
u11c + u12e − u13 f + Ũ(g, m, s, u)

)
x2

+
(
u21c + u22e − u23 f + Ṽ(g, m, s, u)

)
xy +

(
u31c + u32e − u33 f + W̃(g, m, s, u)

)
y2
]
,

where
u11 = s3(9 + s2)2(1 + u)2(427s2u + 912s2 − 905u2 − 237u + 2277),

u12 = s2(9 + s2)2(1 + u)2(529s2u + 1830s2 − 2103u2 − 7479u − 6831),

u13 = s3(9 + s2)2(1 + u)2(529s2u + 606s2 − 599u2 − 1155u + 2277),

u21 = 2s2(9 + s2)2(1 + u)2(332s4 − 613s2u + 996s2 − 306u2 − 459u),

u22 = 2s3(9 + s2)2(1 + u)2(383s2 − 1686u − 1611),

u23 = 2s2(9 + s2)2(1 + u)2(383s4 − 307s2u + 996s2 + 153u2 − 459u),

u31 = 843s3(9 + s2)2(1 + u)2(3 + s2 − 2u),

u32 = 843s2(9 + s2)2(1 + u)2(s2 − 6u − 9),

u33 = 843s3(9 + s2)2(1 + u)2(3 + s2 − 2u)

and

Ũ = 2s
[
m2(1 + u)2(s2 + 3u)(1058s4u + 1824s4 − 1740s2u2 + 2025s2u + 20601s2 + 459u3

− 8775u2−55080u−73872)−3gm(1+u)(427s6u2+281s6u+924s6+376s4u3+3404s4u2

+ 4065s4u − 6777s4 − 1657s2u4 − 3456s2u3 − 9999s2u2 − 50841s2u − 61479s2 + 306u5

− 12159u4 − 78084u3 − 137052u2 − 61479u) + g2(612s8 + 427s6u3 − 643s6u2 − 1805s6u

+1713s6+2658s4u3−12786s4u2−54540s4u−35424s4−1128s2u5−5259s2u4−21321s2u3

−112509s2u2−220725s2u−122958s2+153u6−9234u5−59724u4−112428u3−61479u2)
]
,

Ṽ = 2
[
m2(1 + u)2(s2 + 3u)(1532s6 − 1686s4u + 6894s4 − 1377s2u2 − 17928s2u − 24867s2

+1377u3+8262u2+12393u)−6gm(1+u)(332s8u−434s8+383s6u2+1150s6u−4599s6

−1379s4u3−1074s4u2−8055s4u−18630s4−153s2u4−9198s2u3−26919s2u2−10368s2u

+ 459u5 + 2754u4 + 4131u3) + g2(664s8u2 − 2656s8u − 1484s8 + 153s6u3 + 2298s6u2

− 30507s6u−25308s6−1992s4u4−3378s4u3−19341s4u2−99360s4u−70389s4−13338s2u4

− 37287s2u3 − 4212s2u2 + 12393s2u + 459u6 + 2754u5 + 4131u4)
]
,

W̃ = 1686(g − m)s(9 + s2)(1 + u)
[
g(s4u − 5s4 − 6s2u − 18s2 − 3u3 − 9u2)

− m(2s2 − 9 − 3u)(1 + u)(s2 + 3u)
]
.

We observe that the condition χ11 = 0 yields the equations

Coefficient[χ11, x2] = Coefficient[χ11, xy] = Coefficient[χ11, y2] = 0 (3.30)

which are linear with respect to the parameters c, e and f . Calculating the corresponding

determinant det ||uij|| (i, j = 1, 2, 3) we obtain

det ||uij|| = 26311716s7(s2 + 3u)(9 + s2)7(1 + u)6(s2 − u)
[
4s2 + (u + 3)2

]
.
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On the other hand for systems (3.12) we have

D5 =
4

9
(s2 + 3u), D4 = 2304s(9 + s2), D7 = 4(1 + u), D8 = −8(s2 − u)

[
4s2 + (3 + u)2

]
/27

and since D4D7D8 ̸= 0 we conclude that in the case D5 ̸= 0 we get det ||uij|| ̸= 0.

So assuming D5 ̸= 0 and solving the system of equations (3.30) with respect to the pa-

rameters c, e and f we get exactly the conditions provided by Lemma 3.9 for these three

parameters.

We examine now the case D5 = 0 when the invariant polynomial χ11 could not be used

for the determining the conditions under parameters c, e and f .

So assume that for systems (3.12) the conditions on the parameters k, h, d and l provided by

Lemma 3.9 are fulfilled and in addition the condition D5 = 0 holds. This implies s2 + 3u = 0

(i.e. u = −s2/3) and we calculate

χ12 =
4x2

729(s2−3)2

(
φ′

1x6+φ′
2x5y+φ′

3y4y2+φ′
4x3y3+φ′

5x2y4+φ′
6xy5+φ′

7y6
)
, D7 = −4

3
(s2−3),

where

φ′
7 = −2751246(s2 − 3)2(3 f − 3c + g2 − 2gm + cs2 − f s2).

Since D7 ̸= 0 (i.e. s2 − 3 ̸= 0) the condition φ′
7 = 0 gives us

f =
1

s2 − 3
(cs2 − 3c + g2 − 2gm) (3.31)

and then we calculate

φ′
6 = 655371(s2 − 3)

[
9e(s2 − 3)2 − gs(18m − 27g + gs2 − 6ms2)

]
.

Therefore due to s2 − 3 ̸= 0 the condition φ′
6 = 0 implies

e =
gs

7(s2 − 3)2
(gs2 − 27g − 6ms2 + 18m)

and for these values of the parameters f and e we obtain

χ12 = −432(s2 − 3)x8(sx + 3y)2
[
cs2(s2 − 3)(9 + s2)2 − 9m2(s2 − 3)3 + g2s2(9 + s2)2

]
.

Again since s2 − 3 ̸= 0 as well as s ̸= 0 (due to D4 ̸= 0) the condition χ12 = 0 yields

c =
1

s2(s2 − 3)(9 + s2)2

[
9m2(s2 − 3)3 − g2s2(9 + s2)2

]
.

So considering (3.31) we obtain

f =
m

s2(s2 − 3)(9 + s2)2

[
9m(s2 − 3)3 − 2gs2(9 + s2)2

]
.

Comparing the conditions obtained for the parameters c, e and f above with (3.29) for u =

−s2/3 we conclude that they coincide.

Thus from the conditions (3.29) it remains to construct the invariant analog for the con-

ditions on the parameters a and b and this will be done independently on the value of the

invariant polynomial D5.
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So evaluating the invariant polynomial χ10 for systems (3.12) for which the conditions on

the parameters k, d, h, l, c, e and f are given in (3.29) we have:

χ10 =
112640x6

9s4(9 + s2)4(1 + u)4
ψ′

1ψ′
2ψ′

3

[
9m(1 + u)− g(s2 + 3u)

][
ψ′

4 x + ψ′
5 y

]
,

where

ψ′
1 = (2s4 + s2u2 − 3s2u − 2u3 − 9u2 − 9u) x − s(s2 + 9)(u + 1)y,

ψ′
2 = (3s2 + 2u2 + 3u) x2 − 2s(u − 3)xy − (s2 + 3u) y2,

ψ′
3 = (3s2 − u2)x2 + 4s(3 + u)xy − (s2 − 9 − 6u)y2,

ψ′
4 = bs3(9+s2)3(1+u)3 +

[
m(s2−3u)(1+u) + g(s2+u2)

][
m2(1+u)2(81+81s2+2s4+81u

−3s2u+18u2)+g2(3+s2+2u)(9s2+2s4+5s2u+3u2+u3)−2gm(1+u)(36s2+10s4

+ 27u + 33s2u + 27u2 + s2u2 + 6u3)
]
,

ψ′
5 = − s(9 + s2)(1 + u)

[
as2(9 + s2)2(1 + u)2 − (3g − 6m + gs2 + 2gu − 6mu)

[
g2s2

+ (gu − 3m − 3mu)2
]]

.

We observe that the polynomial χ10 contains as a factor the expression 9m(1 + u) − g(s2 +

3u) which is different from zero due to the condition χ1 ̸= 0 because in the case under

consideration we have:

χ1 =
(s2 − u)

9s(9 + s2)(1 + u)

[
4s2 + (u + 3)2

][
9m(1 + u)− g(s2 + 3u)

]
.

It is evidently due to D4D7D8 ̸= 0 that the condition χ1 ̸= 0 is equivalent to 9m(1 + u) −
g(s2 + 3u) ̸= 0.

Thus due to χ1 ̸= 0 we conclude that the condition χ10 = 0 is equivalent to ψ′
4 = ψ′

5 = 0,

because for s ̸= 0 the condition ψ′
1ψ′

2ψ′
3 ̸= 0 holds. Solving the equations ψ′

4 = ψ′
5 = 0 with

respect to the parameters a and b we get exactly the expressions for these parameters given in

(3.29).

So Lemma 3.10 is proved and this means that the statement (A3) of the Main Theorem is

also proved.

1.1.2.2: The case D4 = 0. Then s = 0 and considering (3.24) and systems (3.12) with the

conditions (3.19) and (3.21) we obtain

D8 = 8u(3 + u)2/27, Ĥ = 3l(3 + u), H5 = −u(3 + u)(3m − gu + 3mu),

H6 = −(3 + u)2
[
9l2(1 + u) + g(g − 2m)u2(3 + u)− cu2(3 + u)2

]
.

Since in this case the conditions Ĥ ̸= 0 and D8 ̸= 0 imply lu(3+ u) ̸= 0, solving the equations

H5 = H6 = 0 with respect to the parameters c and g we obtain:

c =
3(1 + u)

[
3l2 + m2(3 + u)2

]

u2(3 + u)2
, g =

3m(1 + u)

u
.

So we arrive at the next lemma.
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Lemma 3.11. Assume that for a system (3.12) the conditions D7D8 ̸= 0 and D4 = 0 hold. Then this

system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following conditions

are satisfied:

k = d = h = s = 0, e =
2lm

u
, g =

3m(1 + u)

u
,

f =
1

u2(3 + u)2

[
m2u(3 + u)2 + 3l2(3 + 3u + u2)

]
,

c =
3(1 + u)

u2(3 + u)2

[
3l2 + m2(3 + u)2

]
, l(3 + u) ̸= 0,

a =
m(1 + u)

u3(3 + u)2

[
9l2 + m2(3 + u)2

]
,

b =
l

u2(3 + u)2

[
m2(3 + u)2 + l2(3 + 2u)

]
,

(3.32)

Next we determine the invariant conditions equivalent to those provided in the above

lemma. More exactly we prove the following lemma.

Lemma 3.12. Assume that for a cubic system (3.12) the conditions χ1D7D8 ̸= 0 and D4 = 0 hold.

Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions

χ4 = χ5 = χ7 = χ9 = χ13 = χ14 = 0 are satisfied.

Proof. For systems (3.12) the condition D4 = 2304s(9 + s2) = 0 gives s = 0 and we calculate:

χ7 =
1

9
u(hx + ky)

(
(3x2 + 2ux2 − 3y2)

)
.

Is evidently due to D8 ̸= 0 the condition χ7 = 0 is equivalent to k = h = 0. Assuming these

conditions to be satisfied for systems (3.12) as well as the condition s = 0 we calculate

χ4 = −2du(1 + u), χ5 = −2lm − du + eu,

χ9 = −3376

27
u(3 + u)(gu − 3m − 3mu)x5, D7 = 4(1 + u).

Therefore due to D7D8 ̸= 0 (i.e. u(u + 1)(u + 3) ̸= 0) we conclude that the condition χ4 = 0

is equivalent to d = 0 and in this case the condition χ5 = 0 gives us e = 2lm/u. Moreover the

condition χ9 = 0 implies g = 3m(1 + u)/u. So we get the conditions for the parameters d, e

and g given in (3.32).

Next provided these conditions are satisfied for systems (3.12) and evaluating the invariant

polynomial χ13 we have:

χ13 =
120

u
(θ′1x2 + θ′2y2)

where

θ′1 = − cu2(138 + 178u + 69u2)− f u2(−138 − 145u + 17u2) + 3l2u(11 + 17u)

+ 2m2(207 + 405u + 298u2 + 112u3),

θ′2 = − 3cu2(3 + 2u)− 3 f (−3 + u)u2 + 3
[
3l2u + m2(9 + 12u + 7u2)

]
.

We observe that the equations θ′1 = θ′2 = 0 are linear with respect to the parameters c and

f and the corresponding determinant equals 105u5(3 + u)2 ̸= 0. Solving these equations we

obtain:

c =
3(1 + u)

u2(3 + u)2

[
3l2 + m2(3 + u)2

]
, f =

1

u2(3 + u)2

[
m2u(3 + u)2 + 3l2(3 + 3u + u2)

]
,
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i.e. we get exactly the values for the parameters c and f presented in (3.32).

Thus from the conditions (3.32) it remains to construct the invariant analog for the condi-

tions under parameters a and b. Evaluating the invariant polynomial χ14 for systems (3.12)

for which the conditions on the parameters k, d, h, s, e, g, c and f are given in (3.32) we have:

χ14 =
2(u + 1)x5y

u2(3 + u)2
(ux2 − 3y2)

[
u2x2 − 3(3 + 2u)y2

][
uθ′′1 x + θ′′2 y

]
,

where
θ′′1 = − bu2(3 + u)2 + l

[
m2(3 + u)2 + l2(3 + 2u)

]
,

θ′′2 = au3(3 + u)2 − m(1 + u)(9l2 + 9m2 + 6m2u + m2u2).

It is clear that due to u(u + 1)(u + 3) ̸= 0 the condition χ14 = 0 is equivalent to θ′′1 = θ′′2 = 0

and this implies exactly the conditions for the parameters a and b given in (3.32).

It remains to observe that the condition l(3 + u) ̸= 0 from (3.32) is equivalent to χ1 =

−l(3 + u)x3/3 ̸= 0. This completes the proof of Lemma 3.12 as well as of the statement (A4)

of the Main Theorem.

1.2: The subcase D8 = 0, i.e. (s2 − u)
[
4s2 + (3 + u)2

]
= 0.

Remark 3.13. For systems (3.12) the condition D8 = 0 = D6 is equivalent to 4s2 + (3+ u)2 = 0.

Indeed for systems (3.12) we have D6 = 4(2s2 − 9 − 3u)/9. Assume that D8 = D6 = 0

but 4s2 + (3 + u)2 ̸= 0. Then we get u = s2 and this implies D6 = −4(9 + s2)/9 ̸= 0. This

contradiction proves the validity of the above remark. So in what follows we examine two

possibilities: D6 ̸= 0 and D6 = 0.

1.2.1: The possibility D6 ̸= 0. Then the condition D8 = 0 yields s2 − u = 0. We mention

that earlier (up to 1.1: The subcase D8 ̸= 0, see page 29) we have investigated the directions

x = 0 and x ± iy = 0. So now we examine the remaining direction for the invariant lines, i.e.

sx + y = 0.

Thus we have u = s2 and considering (3.22) for the direction sx + y = 0 the condition

Eq5 = 0 gives l = s(2m − g). In this case for the equations Eq8 = 0 and Eq10 = 0 we obtain

Eq8 =
2(2m − g)s + (9 + s2)W

(9 + s2)2
Φ1(g, m, s, W) = 0,

Eq10 =
2(2m − g)s + (9 + s2)W

(9 + s2)2
Φ2(g, m, s, W) = 0,

where Φi(g, m, s, W) is a polynomial in the parameters g, m and s and it is of degree i with

respect to the variable W.

As we can see the above equations have a common solution in variable W, i.e. in the

direction sx + y = 0 we have one invariant line and altogether we get six invariant affine lines.

Thus considering (3.19) and (3.21) in the case u = s2 as well as the condition l = s(2m − g)

we arrive at the following lemma.

Lemma 3.14. Assume that for a system (3.12) the conditions D7D6 ̸= 0 and D8 = 0 hold. Then this

system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following conditions
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are satisfied:

k = d = h = 0, l = s(2m − g), u = s2,

f = c +
3(g − 2m)

(s2 + 9)2
(3gs2 − 9g − 8ms2),

e =
s(g − 2m)

(s2 + 9)2
(gs2 − 27g − 4ms2 + 36m),

a =
3(g − 2m)

(s2 + 9)3

[
c(9 + s2)2 + 6(g − 2m)(gs2 − 3g − 3m − 3ms2)

]
,

b = − s(g − 2m)

(s2 + 9)3

[
c(9 + s2)2 + 2(g − 2m)(4gs2 − 27m − 11ms2)

]
.

(3.33)

In order to detect the corresponding invariant conditions we consider two cases: D4 ̸= 0

and D4 = 0.

1.2.1.1: The case D4 ̸= 0. We observe that the conditions (3.33) can be obtained as a

particular case from the conditions (3.26) by setting u = s2 (i.e. we allow the condition D8 = 0

to be satisfied).

On the other hand in the proof of Lemma 3.6 we did not use the condition s2 − u ̸= 0

and this means that Lemma 3.6 is valid in the case D8 = 0 too. Therefore we deduce that the

statement (A5) of the Main Theorem is true.

1.2.1.2: The case D4 = 0. Then s = 0 and we have u = 0 = s. Then according to

Lemma 3.4 we could have a triplet of invariant lines either in the direction x = 0 or in the

direction y = 0. Therefore we have to construct the affine invariant conditions taking into

consideration the second possibility for the existence of a triplet.

In the first case (i.e. when a triplet of invariant lines is in the direction x = 0) we have

constructed the corresponding conditions which coincide with (3.33) for s = 0. Now we have

to determine the conditions on the parameters of systems (3.12) in order to possess invariant

lines in the configuration (3, 1, 1, 1) with the triplet in the direction y = 0.

So we have to examine each one of the directions for the invariant lines in this case.

(i) The direction y = 0. Considering the equations (2.5) and Remark 2.12 for systems (3.12)

with s = u = 0 in the case of the direction y = 0 we obtain the following non-vanishing

equations containing the parameter W:

Eq5 = l, Eq8 = e − 2mW, Eq10 = b − f W + W3.

So it is evident that for the existence of a triplet the conditions l = e = m = 0 have to be

satisfied.

(ii) The direction x + iy = 0. In this case we have U = 1, V = i and considering (2.5),

Remark 2.12 and the conditions u = s = l = e = m = 0 we obtain

Eq7 = k − g − 2ih + 3W,

Eq9 = d + i( f − c)− 2(h − ig)W − 3iW2,

Eq10 = a + Ib − cW + gW2 − W3.

Calculations yield

ResW(Eq7, Eq9) = V1 + iV2, ResW(Eq7, Eq10) = V3 + iV4
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V1 = 3d − 2gh − 2hk, V2 = 3 f − 3c + g2 − k2

V3 = 27a − 9cg + 2g3 + 9ck − 3g2k − 12h2k + k3,

V4 = 27b − 18ch + 6g2h + 8h3 − 6hk2.

(3.34)

It is clear that for the existence of a common solution of equations Eq7 = Eq9 = Eq10 = 0 with

respect to W it is necessary and sufficient V1 = V2 = V3 = V4 = 0. Solving these equations we

get

f =
1

3
(3c − g2 + k2), d =

2h

3
(g + k), b =

2h

27
(9c − 3g2 − 4h2 + 3k2),

a =
1

27

[
9c(g − k)− 2g3 + 3(g2 + 4h2)k − k3

]

(iii) The direction x = 0. In this case considering the above already detected conditions

and (2.5) as well as Remark 2.12 we obtain Eq7 = k = 0. Hence k = 0 and we calculate the

remaining non-vanishing equations:

Eq9 =
2

3
h(g − 3W), Eq10 = − 1

27
(g − 3W)(−9c + 2g2 + 6gW − 9W2).

As we can see the equations Eq9 = 0 and Eq10 = 0 have a common solution W = g/3.

Thus we conclude that the following lemma is valid.

Lemma 3.15. Assume that for a system (3.12) the conditions D7D6 ̸= 0 and D8 = D4 = 0 hold. Then

this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if one of the following

sets of the conditions is satisfied:

– for a triplet in the direction x = 0:

u = s = k = d = h = l = e = b = 0, f = c +
g(2m − g)

3
,

a = − g − 2m

27

(
2g2 − 9c − 2gm − 4m2

)
.

(3.35)

– for a triplet in the direction y = 0:

u = s = k = l = e = m = 0, d =
2gh

3
, f = c − g2

3
,

a =
g

27
(9c − 2g2), b = −2h

27
(−9c + 3g2 + 4h2).

(3.36)

We point out that in order to construct the equivalent invariant conditions for a system

(3.12) to possess invariant lines in the configuration (3, 1, 1, 1) we have to take into consider-

ations both sets of conditions: (3.35) (when the triplet is in the direction x = 0) and (3.36)

(when the triplet is in the direction y = 0).

First of all we recall that for systems (3.12) the conditions D8 = 0 and D6 ̸= 0 yields

s2 − u = 0 (see page 41) and D4 = 0 gives s = 0, i.e. we have for systems (3.12) s = u = 0.

Considering these conditions we evaluate the invariant polynomial χ1 for systems (3.12):

χ1 = −lx3 + ky3

and evidently the condition χ1 = 0 implies k = l = 0. We observe that these conditions are

included in (3.35) as well as in (3.36). Then we calculate

χ3 = 2(mx + hy)x3y3(x2 + y2)
[
3ex2 − 2(3c − 3 f − g2 + 2gm)xy − (3d − 2gh)y2

]
,

χ8 = − 960hmxy

and we prove the next lemma.
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Lemma 3.16. Assume that for a system (3.12) are satisfied either the conditions (3.35) or (3.36) and

in addition we have h = m = 0. Then this system possess invariant lines of total multiplicity 9.

Proof. Supposing h = m = 0 a straightforward calculation shows us that the conditions (3.35)

coincide with (3.36) and have:

u = s = k = d = h = l = e = b = 0, f = c − g2/3, a = − g

27

(
2g2 − 9c

)
.

The above conditions lead to the family of systems

ẋ = − 1

27
(g + 3x)

(
2g2 − 9c − 6gx − 9x2

)
,

ẏ =
1

3
y
(
3c − g2 − 3y2

)
,

which evidently possess two triplets of parallel invariant lines: one in the direction x = 0 and

another in the direction y = 0. Moreover in addition these systems possess the following two

complex invariant lines: g + 3(x ± iy) = 0 and this completes the proof of the lemma.

Thus we conclude that in the case of the conditions (3.35) or (3.36) the conditions h2 +m2 ̸=
0 must hold. It remains to observe that this condition is governed by the invariant polynomial

χ15 because for systems (3.12) with s = u = k = l = 0 we have χ15 = x2y2(mx + hy).

So in what follows we assume that the condition χ15 ̸= 0 holds, i.e. h2 + m2 ̸= 0. Then the

condition χ3 = 0 implies

e = 0, f =
1

3
(3c − g2 + 2gm), d =

2gh

3
,

whereas the condition χ8 = 0 implies hm = 0.

In the case h = 0 we get e = d = 0 and f = (3c − g2 + 2gm)/3 and we observe that we

obtain exactly the conditions from (3.35) provided for the parameters h, e, d and f .

On the other hand if m = 0 we obtain e = 0, d = 2gh/3 and f = c − g2/3, i.e. we obtain

exactly the conditions from (3.36) provided for the parameters m, e, d and f .

We examine each one of the cases mentioned above.

α) Assume first that for systems (3.12) all the conditions (3.35) are satisfied except the

conditions on the parameters a and b. Then for these systems we calculate

χ16 = −12x5y5
[
(27a − 9cg + 2g3 + 18cm − 6g2m + 8m3)x + 27by

]

and we determine that the condition χ16 = 0 implies

a =
1

27
(g − 2m)(9c − 2g2 + 2gm + 4m2), b = 0.

So we obtain exactly the conditions on the parameters a and b given in (3.35).

β) Suppose now that for systems (3.12) all the conditions (3.36) are satisfied excepting the

conditions on the parameters a and b. Then for these systems we calculate

χ16 = −12x5y5
[
(27a − 9cg + 2g3)x + (27b − 18ch + 6g2h + 8h3)y

]

and we obtain that the condition χ16 = 0 implies in this case

a =
1

27
g(9c − 2g2), b =

2

27
h(9c − 3g2 − 4h2).

So we obtain exactly the conditions on the parameters a and b given in (3.36).

Thus we have proved the following lemma.
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Lemma 3.17. Assume that for a cubic system (3.12) the conditions D6D7 ̸= 0 and D8 = D4 = 0 hold.

Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions

χ1 = χ3 = χ8 = χ16 = 0 and χ15 ̸= 0 are satisfied.

From this lemma the validity of the statement (A6) of the Main Theorem follows.

1.2.2: The possibility D6 = 0. Since D8 = 0, according to Remark 3.13 the condition

4s2 + (3 + u)2 = 0 holds. Then s = 0, u = −3 and by Lemma 3.4 we conclude that a triplet

could be only in the direction x = 0. So considering the condition k = d = h = 0 which

guarantees the existence of a triplet of parallel invariant lines in the direction x = 0 we

examine the directions sx + y = 0 (which becomes y = 0) and x + iy = 0.

a) The direction y = 0. Considering (2.5) and Remark 2.12 we obtain

Eq5 = l + 3W, Eq8 = e − 2mW, Eq10 = b − f W + W3.

Therefore the condition Eq5 = 0 yields W = −l/3 and then we obtain

Eq8 = (3e + 2lm)/3 = 0, Eq10 = (27b − l3 + 9l f )/27 = 0.

Solving these equations with respect to the parameters b and e we get

b = l(l2 − 9 f )/27, e = −2lm/3 (3.37)

and these conditions guarantee the existence of one invariant line in the direction y = 0.

b) The direction x + iy = 0. In this case taking into account the conditions k = d = h = 0

and (3.37) we obtain

Eq7 = 2m − g − il, Eq9 = −2lm/3 + i( f − c)− 2
[
l + i(m − g)

]
)W + 3iW2,

Eq10 = a + il(l2 − 9 f )/27 − (c − 2lmi/3)W + (g + il)W2 + 2W3.

Clearly the condition Eq7 = 0 implies l = 0 and g = 2m and therefore we have

Eq9 = i(−c + f + 2mW + 3W2), Eq10 = a − cW + 2mW2 + 2W3.

Calculations yield

ResW(Eq9, Eq10) = i
[
27a2 + 2am(9c + 4m2)− (c − f )(c2 + 4c f + 4 f 2 + 4 f m2)

]
≡ iH′,

Res
(2)
W (Eq9, Eq10) = 3c + 6 f + 4m2.

(3.38)

Thus the condition H′ = 0 implies the existence of at least one common solution W = W0 of

the equations Eq9 = 0 and Eq10 = 0. Moreover in this case the condition Res
(2)
W (Eq9, Eq10) ̸= 0

must hold (i.e. 3c + 6 f + 4m2 ̸= 0), otherwise we get that the mentioned equations have

two common solutions and therefore the corresponding systems do not belong to the class

CSL2r2c∞
(3,1,1,1).

We observe that the polynomial H′ is quadratic with respect to the parameter a and we

calculate

Discrim[H′, a] = 4(3c − 3 f + m2)(3c + 6 f + 4m2)2.

Since the condition 3c + 6 f + 4m2 ̸= 0 has to be fulfilled (see the previous paragraph) we

deduce that the condition 3c − 3 f + m2 ≥ 0 must hold.

So we have proved the following lemma.
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Lemma 3.18. Assume that for a system (3.12) the conditions D7 ̸= 0 and D8 = D6 = 0 hold.

Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following

conditions are satisfied:

s = 0, u = −3, k = d = h = e = l = b = 0, g = 2m,

27a2 + 2am(9c + 4m2)− (c − f )(c2 + 4c f + 4 f 2 + 4 f m2) = 0,

3c − 3 f + m2 ≥ 0, 3c + 6 f + 4m2 ̸= 0.

(3.39)

Next we determine the invariant conditions equivalent to those provided in the above

lemma. More exactly we prove the following lemma.

Lemma 3.19. Assume that for a cubic system (3.12) the conditions D7 ̸= 0 and D8 = D6 = 0 hold.

Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions

χ1 = χ2 = χ4 = χ6 = χ17 = 0, χ11 ̸= 0 and ζ4 ≤ 0 are satisfied.

Proof. As it was mentioned earlier (see Remark 3.13) the conditions D8 = D6 = 0 imply for

systems (3.12) s = 0 and u = −3. Then for these systems we calculate:

χ1 = −2(hx + ky)(x2 + y2) = 0 ⇔ h = k = 0.

Herein calculations yield

Coefficient[χ6, xy7] = 90d, Coefficient[χ6, x4y4] = −720l2

and evidently the condition χ6 = 0 implies d = 0 and l = 0. Then we calculate again

χ6 = 90x3y
[
15ex4 + 6(g − 2m)2x3y + 26ex2y2 + 11ey4

]

and clearly the condition χ6 = 0 yields e = 0 and g = 2m. Then considering the above

detected conditions we obtain

χ11 = 4080(3c + 6 f + 4m2)xy

and we deduce that the condition 3c + 6 f + 4m2 ̸= 0 fixed in (3.39) is equivalent to χ11 ̸= 0.

Next we calculate

ζ4 = −(3c − 3 f + m2)(13x2 + 3y2)

and clearly the condition 3c − 3 f + m2 ≥ 0 given in (3.39) is equivalent to ζ4 ≤ 0.

Thus all the conditions provided by Lemma 3.18 are defined by the corresponding invari-

ant polynomials except the conditions b = 0 and H′ = 0 (see (3.38)). These conditions are

governed by the invariant polynomials χ17 which being evaluated for systems (3.12) under

the conditions (3.39) (except for b = 0 and H′ = 0) has the form

χ17 = −18792x8(x2 + y2)4
[
27b2x2 − 2b(27a + 9cm + 4m3)xy + H′y2

]
.

The condition χ17 = 0 is evidently equivalent to b = 0 = H′ and this completes the proof of

Lemma 3.19 as well as the proof of the statement (A7) of the Main Theorem.

2: The case D7 = 0. Then u = −1 and by Lemma 3.4 we could not have a triplet of parallel

invariant lines in the direction y = 0. Since for the direction x = 0 we have the equations

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW + gW2. (3.40)
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we arrive at the conditions k = d = h = 0 and considering u = −1 we have

χ̃1 = 2gx2
[
4sx + (3 − s2)y

]
/9.

According to Lemma 3.2 we consider two subcases: χ̃1 ̸= 0 and χ̃1 = 0.

2.1: The subcase χ̃1 ̸= 0. We prove the following lemma.

Lemma 3.20. Assume that for a system (3.12) the conditions D7 = 0 and χ̃1 ̸= 0 hold. Then this

system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions χ1 = χ2 =

χ3 = 0 are satisfied.

Proof. As it was mentioned above the condition χ̃1 ̸= 0 implies g ̸= 0 and according to

Lemma 3.2 the infinite line Z = 0 of systems (3.12) with the conditions u = −1 has the

multiplicity exactly 2. Moreover in the direction x = 0 we have two parallel invariant affine

lines (due to g ̸= 0).

Thus we have to examine the remaining three directions: x ± iy = 0 and sx + y = 0.

(i) The direction x + iy = 0. We repeat the examinations of the corresponding equations

(3.17) for this particular case (i.e. u = −1) and considering (3.18) we arrive at the equations

Hi|{u=−1} = 0, i = 1, 2, 3, 4.

Solving these equations with respect o the parameters a, b, e and f we obtain the values of

these parameters given in (3.19) and (3.21) for this particular case u = −1. More precisely we

get the following conditions:

a =
1

4(1 + s2)2
(g − 2m − ls)

[
2c(1 + s2)− g(g − 2m − ls)

]
,

b =
1

4(1 + s2)2
(l + gs − 2ms)

[
l2 − 2(g − 2m)m + lgs + 2c(1 + s2)

]
,

e =
1

4(1 + s2)2

[
(g − 2m)s(5g − 6m + gs2 + 2ms2)− l2s(5 + s2) + 2l(3g − 4m − gs2 + 4ms2)

]
,

f =
1

4(1+s2)2

[
4c(1+s2)2+l2(3−s2)+2ls(5g−8m+gs2)+(g−2m)(2m−3g+gs2−6ms2)

]
.

(3.41)

(ii) The direction sx + y = 0. Considering (3.22) and u = −1 for this direction we obtain

Eq5 = l + gs − 2ms + (s2 + 1)W = 0,

which yields W = −(l + gs − 2ms)/(s2 + 1). Then considering (3.23) we obtain

Eq8 =
g

2(1 + s2)

[
4(g − 2m)s + l(3 − s2)

]
,

Eq10 =
1

4(1 + s2)2
(2c − g2 + 2gm + lgs + 2cs2)

[
4(g − 2m)s + l(3 − s2)

]
.

(3.42)

Since g ̸= 0 the condition Eq8 = 0 gives 4(g − 2m)s + l(3 − s2) = 0, which implies also

Eq10 = 0, and we consider two possibilities: D4 ̸= 0 and D4 = 0.

2.1.1: The possibility D4 ̸= 0. Then s ̸= 0 and we obtain m = (3l + 4gs − ls2)/(8s). So

taking into consideration (3.41) we obtained that a system possesses invariant lines in the
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configuration (3, 1, 1, 1) if and only if the following conditions are satisfied:

u = −1, k = d = h = 0, e = − l(21l − 8gs + ls2)

64s
,

f =
24lgs + 64cs2 + 3l2(s2 − 3)

64s2
, a = −3l(3lg + 8cs)

64s2
,

b =
l
[
12lgs + 32cs2 + l2(9 + s2)

]

256s2
, m =

(3l + 4gs − ls2)

8s
.

(3.43)

Considering the conditions provided by Lemma 3.20 for systems (3.12) with u = −1 we

calculate:

Coefficient[χ1, xy2] = 2
[
4ks + h(s2 − 3)

]
/9, Coefficient[χ1, x2y] = 4

[
k(3s2 − 1)− 4hs

]
/9

and due to s ̸= 0 the condition χ1 = 0 implies k = h = 0. Then we obtain

χ1 = 2
[
l(s2 − 3)− 4(g − 2m)s

]
/9 = 0

which gives us m = (3l + 4gs − ls2)/(8s). So we deduce that forcing χ1 = 0 we get the

conditions for the parameters k, h and m given in (3.43).

Herein calculations yield

Coefficient[χ2, y2] = 56ds(9 + s2)/3 = 0 ⇔ d = 0

due to s ̸= 0. Then we obtain χ2 = ϕ̂1x2/6 + ϕ̂2xy/s, where

ϕ̂1 = 128 f s2 − 64es(15 + s2)− 128cs2 − l(9 + s2)(33l − 8gs + ls2),

ϕ̂2 = 16es(s2 − 3)− 16 f s2(5 + s2) + 16cs2(5 + s2) + l(9 + s2)(4gs − 3l + ls2).

We observe that the equations ϕ̂1 = 0 and ϕ̂2 = 0 are real with respect to the parameters e

and f and the corresponding determinant equals 1024s3(9 + s2)2 ̸= 0 due to s ̸= 0. Solving

these equations we get exactly the expressions for the parameters e and f given in (3.43).

Next supposing that for systems (3.12) the conditions on the parameters u, k, h, d, e, m and

f given in (3.43) are satisfied, we calculate

χ3 = − x5

1728s2
ϕ̂3 ϕ̂2

4(ϕ̂5x + ϕ̂6y),

where
ϕ̂3 = 4sx + (3 − s2)y, ϕ̂4 = (3s2 − 1)x2 + 8sxy + (3 − s2)y2,

ϕ̂5 = − 256bs2 + l3(9 + s2) + 4ls(3lg + 8cs),

ϕ̂6 = 4
[
64as2 + 3l(3lg + 8cs)].

We observe that due to s ̸= 0 we have ϕ̂3 ϕ̂4 ̸= 0 and therefore the condition χ3 = 0 is

equivalent to ϕ̂5 = ϕ̂6 = 0. Solving these equations with respect to the parameters a and b we

get exactly the expressions given in (3.43) for these parameters. This completes the proof of

Lemma 3.20 in the case D4 ̸= 0.

2.1.2: The possibility D4 = 0. Then s = 0 and the condition (see (3.42))

Eq8 =
g

2(1 + s2)

[
4(g − 2m)s + l(3 − s2)

]
= 0
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implies l = 0. Then considering (3.41) in the case s = 0 we arrive at the following conditions:

u = −1, k = d = h = e = b = s = l = 0,

f =
1

4
(4c − 3g2 + 8gm − 4m2), a = −1

4
(g − 2m)(−2c + g2 − 2gm).

(3.44)

Next for systems (3.12) with u = −1 and s = 0 we calculate

χ1 = −2x(3lx2 + hx2 + 2kxy + 3hy2)/9

and evidently the condition χ1 = 0 is equivalent to k = h = l = 0. Then calculations yield

χ2 = −16(2d + 3e)xy, Coefficient[χ3, x4y7] = −4dg/3,

Coefficient[χ3, x6y5] = 2(6b − 2dg − 3eg + 6em)/3

and clearly the conditions χ2 = χ3 = 0 implies to d = e = b = 0. Herein we obtain

χ3 = 2x5y(x2 − 3y2)(ψ̂1x2 + ψ̂2y2)/9,

where
ψ̂1 = − 2a + 3cg − 2 f g − 2g3 − 2cm + 6g2m − 4gm2,

ψ̂2 = 6a − cg − 2 f g + 6cm − 2g2m + 4gm2.

So the condition χ3 = 0 implies ψ̂1 = ψ̂2 = 0 and solving these two equations with respect to

the parameters a and f we obtain exactly the expressions given in (3.44) for these parameters.

This complete the proof of Lemma 3.20 as well as the proof of the statement (A8) of the Main

Theorem.

2.2: The subcase χ̃1 = 0. Then g = 0 and according to Lemma 3.2 we examine two pos-

sibilities: χ̃2 ̸= 0 and χ̃2 = 0. Since for systems (3.12) with the conditions u = −1 and

k = d = h = g = 0 we have

χ̃2 = 4cx3(sx + y)(x2 + y2)
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2

]
/3

we deduce that the condition χ̃2 = 0 is equivalent to c = 0.

2.2.1: The possibility χ̃2 ̸= 0. Then by Lemma 3.2 systems (3.12) possess a triple infinite

invariant line Z = 0 and since χ̃2 ̸= 0 implies c ̸= 0 we deduce that in the direction x = 0

systems (3.12) possess only one invariant line, which is real.

So we have to examine the remaining three directions: x ± iy = 0 and sx + y = 0.

(i) The direction x + iy = 0. We repeat the examinations of the corresponding equations

(3.17) for this particular case u = −1 and g = 0 and considering (3.18) we arrive at the

equations

Hi|{u=−1,g=0} = 0, i = 1, 2, 3, 4.

Solving these equations with respect o the parameters a, b, e and f we get the values of these

parameters given in (3.19) and (3.21) for this particular case u = −1 and g = 0. More precisely

we get the following conditions:

a = − c(2m + ls)

2(1 + s2)
, b =

(l − 2ms)

4(1 + s2)2

[
l2 + 4m2 + 2c(1 + s2)

]
,

e = − 1

4(1 + s2)2

[
4m2s(−3 + s2)− 8lm(−1 + s2) + l2s(5 + s2)

]
,

f = c− 1

4(1+s2)2

[
16lms+4m2(1−3s2)+l2(−3+s2)

]
.

(3.45)
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(ii) The direction sx + y = 0. Considering (3.22) and the conditions u = −1 and g = 0 for

this direction we obtain

Eq5 = l − 2ms + (s2 + 1)W = 0,

i.e. W = −(l − 2ms)/(s2 + 1). Then considering (3.23) we obtain

Eq8 = 0, Eq10 =
c

2(1 + s2)

[
l(3 − s2)− 8ms

]
. (3.46)

Since c ̸= 0 the condition Eq10 = 0 gives l(3 − s2) − 8ms = 0 and we consider two cases:

s ̸= 0 and s = 0. As it was mentioned earlier these conditions are governed by the invariant

polynomial D4 = 2304s(9 + s2).

2.2.1.1: The case D4 ̸= 0. Then s ̸= 0 and we obtain m = l(3 − s2)/(8s) and considering

the conditions u = −1, k = d = h = g = 0 and (3.45) we arrive at the following lemma.

Lemma 3.21. Assume that for a system (3.12) the conditions D7 = χ̃1 = 0, χ̃2 ̸= 0 and D4 ̸= 0 hold.

Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following

conditions are satisfied:

u = −1, k = d = h = g = 0, e = − l2(21 + s2)

64s
,

f =
64cs2 + 3l2(s2 − 3)

64s2
, a = −3c l

8s
,

b =
l
[
32cs2 + l2(9 + s2)

]

256s2
, m =

l(3 − s2)

8s
.

(3.47)

Next we determine the invariant conditions equivalent to those provided by the above

lemma. More exactly we prove the following lemma.

Lemma 3.22. Assume that for a system (3.12) the conditions D7 = χ̃1 = 0, χ̃2 ̸= 0 and D4 ̸= 0 hold.

Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions

χ1 = χ3 = χ6 = 0 are satisfied.

Proof. Clearly the condition D7 = 0 imply u = −1. Then for systems (3.12) we calculate

Coefficient[χ̃1, xy2] = −(8ks)/3

and clearly due to D4 ̸= 0 (i.e. s ̸= 0) the condition χ̃1 = 0 implies k = 0. Then we calculate

χ̃1 = 2x2
[
2(h + 2gs − 3hs2)x + (3g − 8hs − gs2)y

]
/9 = 0

and we claim that the condition χ̃1 = 0 implies g = h = 0. Indeed assuming h+ 2gs− 3hs2 = 0

we get g = h(3s2−1)
2s and then

χ̃1 = −h(s2 + 1)2

2s
= 0 ⇒ h = 0 ⇒ g = 0

and this completes the proof of our claim.

Thus the condition χ̃1 = 0 for systems (3.12) with u = −1 gives us k = h = g = 0. Then

calculations yield

Coefficient[χ6, x2y6] = 10ds(123 + 23s2)/3 = 0 ⇒ d = 0
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due to s ̸= 0. Herein we obtain

Coefficient[χ6, x3y5] = 110
[
e(s2 − 3)− f s(5 + s2)− (6lm − 5cs − 4m2s − cs3)

]

Coefficient[χ6, x4y4] =
10

3

[
es(7s2 − 597)− f s2(131 + 39s2)− 216l2 − 42lms

+ 131cs2 + 124m2s2 + 39cs4
]

and we observe that the above polynomials are linear with respect to the parameters e and f

with the corresponding determinant −35200s2(9 + s2)2/3 ̸= 0. So forcing these polynomials

to vanish we get

e =
1

4s(9 + s2)2
(2ms − 3l)(45l + 6ms + 9ls2 + 2ms3),

f =
1

4s2(9 + s2)2

[
4cs2(9 + s2)2 − 3(3l − 2ms)(42ms − 9l + 3ls2 + 2ms3)

]
,

(3.48)

and then calculations yield

χ6 =− 20

s2(9 + s2)2
(8ms − 3l + ls2)2x5

[
16s2(6 + s2)x3 + s(63 + 30s2 − s4)x2y

+ 9(14s2 − 3 + s4)xy2 + 12s(9 + s2)y3
]
.

Due to s ̸= 0 the condition χ6 = 0 evidently implies 8ms − 3l + ls2 = 0, and considering (3.48)

we determine:

e = − l2(21 + s2)

64s
, f =

64cs2 + 3l2(s2 − 3)

64s2
, m =

l(3 − s2)

8s
.

So we obtain exactly the expressions for the parameters e, f and m given in (3.47).

Next considering that all the conditions from (3.47) are satisfied except the conditions for

the parameters a and b we calculate:

χ3 = − 1

1728s2
x5(4sx + 3y − s2y)

[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2

]2

×
[
(9l3 − 256bs2 + 32cls2 + l3s2)x + 32s(3cl + 8as)y

]
.

Therefore due to s ̸= 0 it is simple to determine that the condition χ3 = 0 gives us exactly the

expressions for the parameters a and b given in (3.47). This completes the proof of Lemma 3.22.

2.2.1.2: The case D4 = 0. Then s = 0 and the condition Eq10 = 0 (see (3.46)) gives us

Eq10 = 3cl/2 = 0 and due to c ̸= 0 this implies l = 0. In this case considering the conditions

u = −1, k = d = h = g = s = 0 and (3.45) we arrive at the following lemma.

Lemma 3.23. Assume that for a system (3.12) the conditions D7 = χ̃1 = 0, χ̃2 ̸= 0 and D4 = 0 hold.

Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following

conditions are satisfied:

u = −1, s = 0, k = d = h = g = l = b = e = 0, a = −cm, f = c − m2. (3.49)
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Now we determine the invariant conditions equivalent to those provided by the above

lemma. We claim that Lemma 3.22 which was proved for D4 ̸= 0 is also true in the case

D4 = 0.

Indeed it is clear that the conditions D7 = D4 = 0 imply u = −1 and s = 0. Then for

systems (3.12) we calculate

χ̃1 = 2
[
2hx3 + (3g + 2k)x2y − 3ky3

]
/9

and evidently the condition χ̃1 = 0 implies k = h = g = 0. Then calculations yield

χ1 = −2lx3/3 = 0 ⇒ l = 0

and we obtain

χ6 = −10xy
[
(10d−129e)x6+72(c− f−m2)x5y+(25d+42e)x4y2−3(16d−33e)x2y4+9dy6

]
/3.

It is clear that the condition χ6 = 0 implies d = e = 0 and f = c − m2 and we observe that all

the conditions given in (3.49) are obtained except for the parameters a and b.

Finally we calculate

χ3 = 4
[
bx − (a + cm)y

]
x5y(x2 − 3y2)2/9

and evidently the condition χ3 = 0 gives us b = 0 and a = −cm. This complete the proof of

the statement (A9) of the Main Theorem.

2.2.2: The possibility χ̃2 = 0. We prove the following lemma.

Lemma 3.24. If for a system (3.12) the conditions D7 = χ̃1 = χ̃2 = 0 hold then this system could hot

have a configuration of the type (3, 1, 1, 1).

Proof. Assume that for a system (3.12) the conditions provided by this lemma are fulfilled. As

we already know the condition D7 = 0 implies u = −1 and by Lemma 3.4 we could not have

a triplet of parallel invariant lines in the direction y = 0. Since for the direction x = 0 we have

the equations (see (3.40))

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW + gW2.

we arrive at the conditions k = d = h = 0 and considering u = −1 we have

χ̃1 = 2gx2
[
4sx + (3 − s2)y

]
/9.

Therefore the condition χ̃1 = 0 implies g = 0 and evaluating the invariant polynomial χ̃2 for

systems (3.12) with u = −1 and k = d = h = g = 0 we get

χ̃2 = 4cx3(sx + y)(x2 + y2)
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2

]
/3.

It is clear that the condition χ̃2 = 0 implies c = 0 and hence we arrive at the family of systems

ẋ = a, ẏ = b + ex + f y + lx2 + 2mxy − sx3 − x2y − sxy2 − y3. (3.50)

Suppose the contrary, that these systems possess the configuration invariant lines of the type

(3, 1, 1, 1). Therefore we must have two complex invariant lines: one in the direction x + iy = 0

and another in the direction x − iy = 0.
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Thus considering the equations (2.5) and Remark 2.12 for the direction x + iy = 0 we

obtain U = 1, V = i and

Eq7 = 2m − il + 2(1 − is)W, Eq9 = e + i f − 2(l + im)W − (i + 3s)W2,

Eq10 = a + ib − ieW + ilW2 + isW3.

We calculate ResW(Eq7, Eq9) = Ĥ1 + iĤ2 where

Ĥ1 = 8lm − s(l2 − 8 f + 4m2)− 4e(s2 − 1),

Ĥ2 = 4m2 − 3l2 − 8es − 4 f (s2 − 1).

So solving the system of equations Ĥ1 = 0 and Ĥ2 = 0 which are linear with respect to the

parameters e and f we obtain:

e =− 4m2s(s2 − 3)− 8lm(s2 − 1) + l2s(5 + s2)

4(1 + s2)2
,

f =− 16lms + 4m2(1 − 3s2) + l2(s2 − 3)

4(1 + s2)2
.

Then calculations yield

ResW(Eq7, Eq10) =
(s + i)3

(1 + s2)2

[
(l2 + 4m2)(l − 2ms)− 4b(1 + s2)2 + 4ia(1 + s2)2

]
= 0

and since the parameters of the systems are real this condition implies a = 0. However in this

case systems (3.50) become degenerate and this completes the proof of the Lemma 3.24.

Since all the possibilities for cases provided by the statement (A) of the Main Theorem are

examined we conclude that this statement is proved.

As we mentioned earlier (see page 24) we have to prove the following lemma.

Lemma 3.25. None of the sets of the conditions (A1)–(A9) could be satisfied for systems (3.8).

Proof. For systems (3.8) calculations yield:

D4 = 0, D6 = −4, D7 = 4, D8 = 0

and comparing with the sets of the conditions provided by the statement (A) of the Main

Theorem we conclude that all the sets of the conditions (Ai) for i = 1, 2, . . . , 5, 7, . . . , 9 could

not be satisfied for systems (3.8). It remains to prove that set of of the conditions (A6) could

also not be satisfied for this family of systems.

Indeed for systems (3.8) we have

χ1 =
1

4

[
− (l + 2h)x3 + 3(g − k)x2y + 3(cl + 2h)xy2 + (k − g)y3

]

and therefore the condition χ1 = 0 provided by the statement (A6) gives l = −2h and g = k.

Then we calculate

χ8 = −240(h2 + k2)(x2 + y2), χ15 = −(kx − hy)(x2 + y2)2/4

and since according to the statement (A6) we must have χ8 = 0 and χ15 ̸= 0 we evidently get

a contradiction and this completes the proof of the lemma.
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3.2 The proof of the statement (B) of the Main Theorem

In this section we examine step by step each one of the statements (Ai) (i = 1, . . . , 9) of

Main Theorem and determine the possible configurations of invariant lines, correspondingly.

Moreover we find out necessary and sufficient affine invariant conditions for the realization

of each one of the configurations found.

3.2.1 The statement (A1)

It was shown in the proof of the statement (A) of the Main Theorem that the affine invari-

ant conditions provided by the statement (A1) for the family of systems (3.12) lead to the

conditions (3.26).

It is not too difficult to determine that in this cases we arrive at the family of systems

ẋ =
[

x − 3

κ
(g − 2m)

][
c +

6

κ2
(g − 2m)

(
gs2 − 3g − 3mu − 3m

)

+
2

κ
(gs2 − 3g − 3m − 3mu) x + (1 + u)x2

]
≡ L1(x)L2,3(x),

ẏ =
s

κ2
(g − 2m)

[
cκ2 + 2(g − 2m)

[
4gs2 − m(27 + 2s2 + 9u)

]]

+
s

κ2
(g − 2m)

[
g
(
s2 − 27

)
+ 2m

(
s2 − 3u + 18

) ]
x +

s

κ
(g − 2m)(9 + u) x2

+
[
c +

3

κ2
(g − 2m)

[
3g

(
s2 − 3

)
− 2m

(
s2 + 3u

) ]]
y + 2mxy − sx3 + ux2y − sxy2 − y3,

(3.51)

where κ = 2s2 − 3(u + 3) ̸= 0 and s ̸= 0 or s = 0 depending on the value of the invariant

polynomial D4.

We need to determine if the two lines defined by the equation L2,3 = 0 are real or complex

and in the case when they are real, if one of them coincides with the invariant line L1 = 0. So

we calculate

Discrim [L2,3, x] = − 4

κ2
λ(c, g, m, s, u),

Resx(L1, L2,3) =
1

κ2
µ(c, g, m, s, u)

where
λ = c(1 + u)κ2 −

[
g(s2 − 3)− 3m(1 + u)

][
g(s2 − 9 − 6u) + 9m(1 + u)

]
,

µ = cκ2 + 3(g − 2m)
[
g(4s2 − 9 + 3u)− 18m(1 + u)

]
.

(3.52)

We observe that

sign
(
Discrim [L2,3, x]

)
= −sign (λ),

i.e. the invariant lines L2,3 = 0 are real (respectively complex; coinciding) if λ < 0 (respectively

λ > 0; λ = 0). The invariant line L1 = 0 coincides with one of the lines L2,3 = 0 if and only if

µ = 0.

Evaluating for systems (3.51) the invariant polynomials ζ1 and ζ2 we obtain:

ζ1 =
80

3κ2
(s2 + 3u)2x2λ, ζ2 = 8µ, D5 = 4(s2 + 3u)/9

and therefore the condition ζ2 = 0 is equivalent to µ = 0. On the other hand we have

sign (λ) = sign (ζ1) only if D5 ̸= 0. So in what follows we examine two possibilities: D5 ̸= 0

and D5 = 0.
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1: The possibility D5 ̸= 0. Then the sign of λ is governed by the invariant polynomial ζ1

and we prove the next proposition.

Proposition 3.26. Assume that for a system (3.51) the conditions D6D7D8 ̸= 0 and D5 ̸= 0 hold.

Then this system possesses one of the configurations of invariant lines presented below if and only if the

corresponding conditions are satisfied, respectively:

D4 ̸= 0, ζ1 < 0, ζ2 ̸= 0, ζ3 < 0, D7 < 0 ⇔ Config. 7.1b;

D4 ̸= 0, ζ1 < 0, ζ2 ̸= 0, ζ3 < 0, D7 > 0 ⇔ Config. 7.2b;

D4 ̸= 0, ζ1 < 0, ζ2 ̸= 0, ζ3 > 0, D7 < 0 ⇔ Config. 7.3b;

D4 ̸= 0, ζ1 < 0, ζ2 ̸= 0, ζ3 > 0, D7 > 0 ⇔ Config. 7.4b;

D4 ̸= 0, ζ1 < 0, ζ2 = 0 ⇔ Config. 7.5b;

D4 ̸= 0, ζ1 > 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.6b;

D4 ̸= 0, ζ1 > 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.7b;

D4 ̸= 0, ζ1 > 0, ζ4 = 0, D7 < 0 ⇔ Config. 7.8b;

D4 ̸= 0, ζ1 > 0, ζ4 = 0, D7 > 0 ⇔ Config. 7.9b;

D4 ̸= 0, ζ1 = 0, ζ2 ̸= 0, D7 < 0 ⇔ Config. 7.10b;

D4 ̸= 0, ζ1 = 0, ζ2 ̸= 0, D7 > 0 ⇔ Config. 7.11b;

D4 ̸= 0, ζ1 = 0, ζ2 = 0 ⇔ Config. 7.12b;

D4 = 0, ζ1 < 0, ζ2 ̸= 0, ζ5 < 0, D7 < 0 ⇔ Config. 7.13b;

D4 = 0, ζ1 < 0, ζ2 ̸= 0, ζ5 < 0, D7 > 0 ⇔ Config. 7.14b;

D4 = 0, ζ1 < 0, ζ2 ̸= 0, ζ5 > 0, D7 < 0 ⇔ Config. 7.15b;

D4 = 0, ζ1 < 0, ζ2 ̸= 0, ζ5 > 0, D7 > 0 ⇔ Config. 7.16b;

D4 = 0, ζ1 < 0, ζ2 = 0 ⇔ Config. 7.17b;

D4 = 0, ζ1 > 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.18b;

D4 = 0, ζ1 > 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.19b;

D4 = 0, ζ1 > 0, ζ4 = 0, D7 < 0 ⇔ Config. 7.20b;

D4 = 0, ζ1 > 0, ζ4 = 0, D7 > 0 ⇔ Config. 7.21b;

D4 = 0, ζ1 = 0, ζ2 ̸= 0, D7 < 0 ⇔ Config. 7.22b;

D4 = 0, ζ1 = 0, ζ2 ̸= 0, D7 > 0 ⇔ Config. 7.23b;

D4 = 0, ζ1 = 0, ζ2 = 0 ⇔ Config. 7.24b.

Proof. Following the conditions provided by the above proposition we consider two cases:

D4 ̸= 0 and D4 = 0.

1.1: The case D4 ̸= 0. We examine three subcases: ζ1 < 0, ζ1 > 0 and ζ1 = 0.

a) The subcase ζ1 < 0 (D5 ̸= 0). Then λ < 0 and we may use a new parameter v setting

λ = −v2
< 0. Since we have D6D7 ̸= 0 (i.e. (1 + u)κ ̸= 0) considering (3.52) we obtain

c =
1

(1 + u)κ2

[
g2(s2 − 3)(s2 − 6u − 9)− 27m2(1 + u)2 + 6gm(1 + u)(s2 + 3u)− v2

]
. (3.53)

This leads to the following family of systems

ẋ = (1 + u)
[

x − 3(g − 2m)

κ

][
x +

gs2 − 3g − 3m − 3mu − v

κ(1 + u)

]
×

[
x +

gs2 − 3g − 3m − 3mu + v

(1 + u)

]
,
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ẏ =− (g − 2m)s

(1 + u)κ3

[
(2gm(27 + 7s2)(1 + u)− m2(1 + u)(81 + 8s2 + 9u)

− g2
[
s4 + 2s2(u − 2) + 9(3 + 2u)

]
+ v2)

]
+

(g − 2m)s

κ2
(36m − 27g + gs2 + 2ms2 − 6mu) x

+
1

κ2(1+u)

[
g2(s2−3)(s2+3u)−18gm(s2−3)(1+u)+3m2(1+u)(4s2−9+3u)−v2

]
y

+
s

κ
(g − 2m)(9 + u) x2 + 2mxy − sx3 + ux2y − sxy2 − y3. (3.54)

On the other hand for the value of c given in (3.53) we calculate

µ =
1

1 + u
(γ2 − v2), γ = g(s2 + 3u)− 9m(1 + u) (3.55)

and since the condition µ = 0 leads to the coalescence of two invariant lines of the triplet, we

examine two possibilities: ζ2 ̸= 0 and ζ2 = 0.

a.1) The possibility ζ2 ̸= 0. Then µ ̸= 0, i.e. (γ − v)(γ + v) ̸= 0 and setting a new parameter

a = γ+v
γ−v we observe that a − 1 ̸= 0. Indeed calculation yields: a − 1 = 2v

γ−v ̸= 0 due to v ̸= 0.

So from the relation a = γ+v
γ−v we can determine the parameter m as follows:

m =
g(a − 1)(s2 + 3u)− (a + 1)v

9(a − 1)(1 + u)
.

Then we can apply to systems (3.54) the following transformation (we recall that κ = 2s2 −
3(u + 3) ̸= 0):

x1 = αx − ν

6v
, y1 = αy +

sν

18v
, t1 =

t

α2
,

α = − (a − 1)(1 + u)κ

2v
, ν = (a − 1)gκ − 2(1 + a)v.

This transformation brings these systems to the following family of systems (we keep the old

notations for the variables):

ẋ = (1 + u)x(x − 1)(x − a),

ẏ =(1 + u)
[
a − x(a + 1)

]
y − sx3 + ux2y − sxy2 − y3,

(3.56)

for which the parameters s and u satisfy the conditions (3.25).

We detect that systems (3.56) possess six distinct invariant affine straight lines

L1 : x = 0, L2 : x = 1, L3 : x = a, L4 : y = −sx, L5,6 : y = ±ix (3.57)

and the following nine finite singularities:

M1(0, 0), M2,3

(
0,±

√
a(1 + u)

)
, M4(1,−s), M5,6(1,±i), M7(a,−as), M8,9(a,±ia). (3.58)

For systems (3.56) calculations yield

ζ1 = − 20

3
(a − 1)2(u + 1)2x2

(
s2 + 3u

)2
, ζ2 = 8aκ2(1 + u),

D5 =
4

9

(
s2 + 3u

)
, D6 =

4

9

[
2s2 − 3(u + 3)

]
≡ 4

9
κ, D7 = 4(1 + u).

Since the conditions D5 ̸= 0 and D6D7 ̸= 0 hold we obtain that the conditions ζ1 < 0 and

ζ2 ̸= 0 imply for the parameter a of systems (3.56) the condition a(a − 1) ̸= 0.
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We observe that the singular points M2 and M3 could be real (if a(1 + u) > 0) or complex

(if a(1 + u) < 0). On the other hand due to the condition a(a − 1) ̸= 0 we conclude that

the line L3 : x = a could neither coincide with L1 (for a = 0) nor with L2 (for a = 1). So

considering the condition a(a − 1) ̸= 0 we examine the following two cases: a(1 + u) > 0 and

a(1 + u) < 0.

a.1.1) The case a(1 + u) > 0. So the singular points M2,3

(
0,±

√
a(1 + u)

)
are real and we

observe that all the singularities (3.58) are located at the intersection of the invariant lines,

except for M2,3

(
0,±

√
a(1 + u)

)
which lie on the line x = 0 and are symmetric with respect to

the origin of coordinates. Moreover fixing the position of all invariant lines and moving only

the singularities M2,3 we could not obtain new configurations. So the distinct configurations

depend on the position of the invariant lines.

We deduce that only two lines are not fixed, and namely: L3 : x = a, L4 : y = −sx.

Moreover four of them (i.e. L1, L4 and L5,6) intersect at the same point (0, 0). Since this point

lies on the line L1, considering the triplet of parallel invariant lines (L1, L2 and L3) we deduce

that we could get different configurations depending on the position of the line L3 = a. More

precisely, if a < 0 then L3 is located on the left of L1 and if a > 0 then L3 is located on the

right of L1.

Regarding the invariant line L4 : y = −sx we make the following remark.

Remark 3.27. Considering our Convention on page 8 we deduce that the invariant line y =

−sx coincides with the projection of the complex invariant lines y = ±ix on the plan (x, y) if

and only if s = 0.

Since in the case under consideration we have s ̸= 0 it is not too difficult to determine that

systems (3.56) possess the configuration of invariant lines Config. 7.1b if a < 0 and Config. 7.2b

if a > 0.

a.1.2) The case a(1 + u) < 0. Then the singular points M2,3

(
0,±

√
a(1 + u)

)
are complex

and on the invariant line L1 there are no real singularities except M1(0, 0). So applying the

same argument as in the previous case above we obtain the following two configurations of

invariant lines for systems (3.56): Config. 7.3b if a > 0 and Config. 7.4b if a < 0.

Thus we obtain that in the case ζ1 < 0 and ζ2 ̸= 0 systems (3.56) could possess only four

distinct configurations Config. 7.1b - Config. 7.4b.

Next we determine the corresponding invariant conditions for distinguishing these con-

figurations of invariant lines. We evaluate for systems (3.56) the next invariant polynomials:

ζ3 = −2(a − 1)2as2(9 + s2)2(1 + u)3/81, D7 = 4(1 + u) ̸= 0, D4 = 2304s(9 + s2) ̸= 0

and due to a(a − 1)(u + 1)s ̸= 0 we have sign (ζ3) = −sign (a(u + 1)) and sign (D7) =

sign (u + 1).

Considering the conditions on the parameters a, u determined above which define the con-

figurations Config. 7.1b - Config. 7.4b for systems (3.56) in the case ζ1 < 0 and ζ2 ̸= 0 as well

as the expressions for the invariant polynomials given above we obtain the following affine

invariant conditions for distinguishing these configurations (as well as the corresponding ex-

amples of their realization):

ζ3 < 0, D7 < 0 ⇔ Config. 7.1b (a = −1, u = −2, s = 1);

ζ3 < 0, D7 > 0 ⇔ Config. 7.2b (a = 2, u = 2, s = 1);

ζ3 > 0, D7 < 0 ⇔ Config. 7.3b (a = 2, u = −2, s = 1);

ζ3 > 0, D7 > 0 ⇔ Config. 7.4b (a = −1, u = 1, s = 1).
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a.2) The possibility ζ2 = 0. Then µ = 0 and considering (3.55) we get (γ − v)(γ + v) = 0.

We may assume γ − v = 0 due to change v → −v and setting v = γ ̸= 0 in systems (3.54) we

arrive at the family of systems

ẋ = (1 + u)
[

x − 3(g − 2m)

κ

]2[
x − 12m(1 + u)− g(2s2 + 3u − 3)

κ(1 + u)

]
,

ẏ = − (g − 2m)s

(1 + u)κ3

[
(2gm(27 + 7s2)(1 + u)− m2(1 + u)(81 + 8s2 + 9u)

− g2
[
s4 + 2s2(u − 2) + 9(3 + 2u)

]
+ v2)

]
+

(g − 2m)s

κ2
(36m−27g+gs2+2ms2−6mu) x

+
1

κ2(1+u)

[
g2(s2−3)(s2+3u)− 18gm(s2−3)(1+u)+3m2(1+u)(4s2−9+3u)−v2

]
y

+
s

κ
(g − 2m)(9 + u) x2 + 2mxy − sx3 + ux2y − sxy2 − y3,

where κ = 2s2 − 3(u + 3) ̸= 0. Since γ = g(s2 + 3u) − 9m(1 + u) ̸= 0 then applying the

transformation

x1 = αx +
3(g − 2m)(1 + u)

2γ
, y1 = αy − s(g − 2m)(1 + u)

2γ
,

t1 =
t

α2
, α =

κ(1 + u)

2γ

we obtain the following 2-parameter family of systems:

ẋ = (1 + u)x2(x − 1),

ẏ =− (1 + u)xy − sx3 + ux2y − sxy2 − y3.
(3.59)

We observe that this family of systems is a subfamily of (3.56) defined by the condition a = 0.

So the above systems possess invariant lines (3.57) among which only five are distinct, because

the line L4 ≡ L1 : x = 0 is double. These systems have only 4 distinct finite singularities

because setting a = 0 in (3.58) we obtain that the five singularities M2,3

(
0,±

√
a(1 + u)

)
,

M7(a,−as) and M8,9(a,±ia) coalesce with the singular point M1(0, 0). As a result we get a

singular point of multiplicity 6 which is a point of intersection of four invariant lines: L1, L4

and L5,6. Therefore considering Remark 3.27 due to the condition s ̸= 0 we obtain the unique

configuration of singularities given by Config. 7.5b.

b) The subcase ζ1 > 0 (D5 ̸= 0). Then λ > 0 and we set λ = v2
> 0. Since (1 + u)(9 − 2s2 +

3u) ̸= 0 we obtain

c =
1

(1+u)(9−2s2+3u)2

[
g2(s2−3)(s2−6u−9)−27m2(1+u)2+6gm(1+u)(s2+3u)+ v2

]
.

This leads to the following family of systems

ẋ = (1 + u)

[
x − 3(g − 2m)

κ

] [[
g(s2 − 3)− 3m(1 + u)

]2
+ v2

κ2(1 + u)2

+
2(gs2 − 3g − 3m − 3mu)

κ(1 + u)
x + x2

]
,
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ẏ =
(g − 2m)s

κ3(1 + u)

[
m2(1 + u)(81 + 8s2 + 9u)− 2gm(27 + 7s2)(1 + u) + g2(s4 + 2s2(u − 2)

+ 9(3 + 2u)) + v2
]
+

(g − 2m)s

κ2
(36m − 27g + 36m + gs2 + 2ms2 − 6mu) x

+
1

κ2(1 + u)

[
g2(s2 − 3)(s2 + 3u) + 3m2(1 + u)(4s2 + 3u − 9)

− 18gm(s2 − 3)(1 + u) + v2
]

y +
s

κ
(g − 2m)(9 + u) x2 + 2mxy − sx3 + ux2y − sxy2 − y3.

(3.60)

In order to simplify these systems we need to use a transformation which depends on the

condition: either γ ̸= 0 or γ = 0 (we recall that γ = g(s2 + 3u)− 9m(1 + u)).

On the other hand for systems (3.60) we calculate:

ζ4 =
γ2

κ2

[
(4s2 − 13)x2 − 2sxy − 3y2

]

and therefore the condition γ = 0 is equivalent to ζ4 = 0.

b.1) The possibility ζ4 ̸= 0. Then γ ̸= 0 and setting a new parameter a = v
γ ̸= 0 we can

determine the parameter m as follows:

m =
ags2 + 3agu − v

9a(1 + u)
.

Then we can apply the following transformation

x1 = αx − ν

3v
, y1 = αy +

sν

9v
, t1 =

t

α2
, α = − a(1 + u)κ

v
, ν = agκ − 2v,

which brings systems (3.60) to the following family of systems (we keep the old notations for

the variables):

ẋ = (1 + u)x
[
(x − 1)2 + a2

]
,

ẏ =(1 + a2)(1 + u)y − 2(1 + u)xy − sx3 + ux2y − sxy2 − y3.
(3.61)

For the above systems calculations yield

ζ1 =
80

3
a2(1 + u)2(s2 + 3u)2x2, D7 = 4(1 + u)

and clearly the condition ζ1 > 0 implies a ̸= 0 and we must have u + 1 ̸= 0 (i.e. D7 ̸= 0),

otherwise we get degenerate systems.

We determine that systems (3.61) possess six distinct invariant affine straight lines

L1 : x = 0, L2,3 : x = 1 ± ia, L4 : y = −sx, L5,6 : y = ±ix

and the following nine finite singularities:

M1(0, 0), M2,3

(
0,±

√
(1 + a2)(1 + u)

)
, M4,5

(
1 + ia,±(i − a)

)
,

M6,7

(
1 − ia,±(i + a)

)
, M8,9

(
1 ± ia,−s ∓ is

)
.

(3.62)

We observe that the singular points M2 and M3 could be real (if 1 + u > 0) or complex (if

1 + u < 0), but they could not coincide due to 1 + u ̸= 0. So we consider two cases: 1 + u < 0

and 1 + u > 0, taking into account that sign (1 + u) = sign (D7).
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b.1.1) The case D7 < 0. Then 1 + u < 0 and therefore the singular points M2,3 are complex

and the unique real finite singular point of systems (3.61) is M1(0, 0) which is the point of

intersection of four invariant lines: L1, L4 and L5,6. As a result taking into consideration

Remark 3.27 due to the condition s ̸= 0 we obtain the unique configuration Config. 7.6b.

b.1.2) The case D7 > 0. Then 1 + u > 0 and hence the singular points M2,3 are real. We

observe that all the singularities (3.62) are located at the intersection of the invariant lines,

except for M2,3 which lie on the line x = 0 and are symmetric with respect to the origin of

coordinates. Therefore considering Remark 3.27 and the condition s ̸= 0 we arrive at the

configuration of invariant lines given by Config. 7.7b.

So we have proved that if ζ1 > 0, ζ4 ̸= 0 and D4 ̸= 0 systems (3.54) possess the configu-

ration Config. 7.6b (a = 1, u = −2, s = 1) if D7 < 0 and Config. 7.7b (a = 1, u = 1, s = 1) if

D7 > 0.

b.2) The possibility ζ4 = 0. This implies γ = 0 and considering (3.55) the condition γ = 0

gives us

m =
g(s2 + 3u)

9(1 + u)

Then we can apply the transformation

x1 = αx +
gκ

3v
, y1 = αy − sgκ

9v
, t1 =

t

α2
, α =

(1 + u)κ

v
.

which brings systems (3.60) to the following family of systems (we keep the old notations for

the variables):

ẋ = (1 + u)x(x2 + 1), ẏ = (1 + u)y − sx3 + ux2y − sxy2 − y3 (3.63)

with 1 + u ̸= 0. We determine that systems (3.63) possess six distinct invariant affine straight

lines

L1 : x = 0, L2,3 : x = ±i, L4 : y = −sx, L5,6 : y = ±ix

and the following nine finite singularities:

M1(0, 0), M2,3

(
0,±

√
1 + u

)
, M4,5

(
± i, 1

)
, M6,7

(
± i,−1

)
, M8,9

(
± i,∓is

)
.

We observe that the singular points M2 and M3 could be real (if 1 + u > 0) or complex (if

1 + u < 0), but they could not coincide due to 1 + u ̸= 0.

So, similarly as in the case of systems (3.61) we have two real and four complex invariant

lines. However in this case considering our Convention (see page 8) we determine that the real

invariant line x = 0 coincides with the projection of the complex invariant lines L2,3 : x = ±i

on the plane (x, y). As it was mentioned earlier the invariant line L4 : y = −sx coincides

with the projection of the complex invariant lines L5,6 : y = ±ix on the plane (x, y) (see our

Convention on page 8) if and only if s = 0. Therefore due to the condition s ̸= 0 we arrive at

the configuration Config. 7.8b if u < −1 and at Config. 7.9b if u > −1.

Since sign (u + 1) = sign (D7) we deduce that for ζ1 > 0, ζ4 ̸= 0 and D4 ̸= 0 systems (3.54)

possess the configuration Config. 7.8b (u = −2, s = 1) if D7 < 0 and Config. 7.9b (u = 1, s = 1)

if D7 > 0.

c) The subcase ζ1 = 0 (D5 ̸= 0). This implies λ = 0 and considering (3.52) and solving the

equation λ = 0 with respect to the parameter c, it is clear that we get (3.53) for v = 0. This

leads to the systems (3.54) with v = 0, which we denote by (3.54){v=0}.
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In this case for systems (3.54){v=0} we have

ζ2 =
8γ2

(1 + u)

and we again consider two possibilities: ζ2 ̸= 0 and ζ2 = 0.

c.1) The possibility ζ2 ̸= 0. This implies γ ̸= 0 and via the transformation

x1 = αx +
3ν

γ
, y1 = αy − sν

γ
, t1 =

t

α2
, α = − (1 + u)κ

γ
, ν = (g − 2m)(1 + u)

systems (3.54){v=0} can be brought to the following family of systems (we keep the old nota-

tions for the variables):

ẋ = (1 + u)x(x − 1)2,

ẏ = (1 + u)(1 − 2x)y − sx3 + ux2y − sxy2 − y3.
(3.64)

We observe that this family of systems is a subfamily of (3.56) defined by the condition a = 1.

So systems (3.64) possess invariant lines (3.57) among which only five are distinct. More

exactly the line L3 ≡ L2 : x = 1 is double.

These systems have 6 distinct finite singularities because setting a = 1 in (3.58) we obtain

that the real singularity M7 coalesces with the real singularity M4, whereas the complex sin-

gularity M8 (respectively M9) coalesces with the complex singularity M5 (respectively M6).

Moreover we observe that the simple singular point M1(0, 0) is the point of intersection of

four invariant lines: L1, L4 and L5,6. Therefore considering Remark 3.27 and the condition

s ̸= 0 we arrive at the configuration Config. 7.10b if u + 1 < 0 and at configuration Config. 7.11b

if u + 1 > 0.

So since sign (u + 1) = sign (D7) we conclude that in the case ζ1 = 0, ζ2 ̸= 0 and D4 ̸= 0

systems (3.54) possess the configuration Config. 7.10b (u = −2, s = 1) if D7 < 0 and Config.

7.11b (u = 1, s = 1) if D7 > 0.

c.2) The possibility ζ2 = 0. This implies γ = 0 and considering (3.55) we determine m =
g(s2+3u)
9(1+u)

. In this case systems (3.54) with v = 0 for this value of the parameter m become the

systems

ẋ =
(g + 3x + 3ux)3

27(1 + u)2
,

ẏ =− g3s(27 + 2s2 + 9u)

729(1 + u)3
− g2s(27 + s2 + 6u)

81(1 + u)2
x +

g2(s2 + 3u)

27(1 + u)2
y

− gs(9 + u)

9(1 + u)
x2 +

2g(s2 + 3u)

9(1 + u)
xy − sx3 + ux2y − sxy2 − y3,

and after the transformation

x1 = x +
g

3(1 + u)
, y1 = y − gs

9(1 + u)
, t1 = t

we arrive at the homogeneous systems

ẋ =(1 + u)x3, ẏ = −sx3 + ux2y − sxy2 − y3, 1 + u ̸= 0. (3.65)

These systems possess the invariant lines

L1,2,3 : x = 0, L4 : y = −sx, L5,6 : y = ±ix
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and the unique finite singularities M1(0, 0) of the multiplicity nine. As a result, taking into

consideration Remark 3.27 and the condition s ̸= 0 we obtain the unique configuration Con-

fig. 7.12b.

1.2: The case D4 = 0. Then we arrive at the family of systems (3.51) with s = 0.

So we could follow step by step the investigations given earlier for systems (3.51) but now

considering the condition s = 0. This condition is essential because considering Remark 3.27

we could obtain new configurations of invariant lines. More exactly we have the following

remark.

Remark 3.28. We observe that in the case s ̸= 0 we have constructed 6 canonical forms of

systems (3.51) depending on the the values of the invariant polynomials ζ1, ζ2 and ζ4. And the

algorithm of the construction does not depends on the value of parameter s. More precisely

we have the following canonical systems and their corresponding form in the case s = 0:

ζ1 < 0, ζ2 ̸= 0 ⇒ (3.56)
s=0⇒ (3.56){s=0};

ζ1 < 0, ζ2 = 0 ⇒ (3.59)
s=0⇒ (3.59){s=0};

ζ1 > 0, ζ4 ̸= 0 ⇒ (3.61)
s=0⇒ (3.61){s=0};

ζ1 > 0, ζ4 ̸= 0 ⇒ (3.63)
s=0⇒ (3.63){s=0};

ζ1 = 0, ζ2 ̸= 0 ⇒ (3.64)
s=0⇒ (3.64){s=0};

ζ1 = 0, ζ2 = 0 ⇒ (3.65)
s=0⇒ (3.65){s=0}.

As it was shown in the case s ̸= 0 all the canonical systems enumerated above possess among

their invariant lines the following three ones: L4 : y = −sx (or y = 0 if s = 0) and L5,6 : y =

±ix. Considering Remark 3.27 the positions of these three invariant lines in configurations in

the case s = 0 are different from that in the case s ̸= 0.

So considering the above remark we conclude that in the case s = 0 systems (3.51) possess

also 12 configurations of invariant lines which are distinct from those in the case s ̸= 0.

In order to determine the corresponding affine invariant conditions we evaluate for systems

(3.51){s=0} the invariant polynomials which distinguished the configurations Config. 7.1b –

Config. 7.12b.

Considering Remark 3.28 we observe that the invariant polynomials ζ1, ζ2 and ζ4 were

used for constructing the canonical forms mentioned in this remark. On the other hand the

invariant polynomials D7 and ζ3 were applied for distinguishing the configurations Config.

7.1b – Config. 7.12b (see the statement of Proposition 3.26, case D4 ̸= 0). Evaluating these two

polynomials for systems (3.51){s=0} we have

D7 = 4(1 + u), ζ3 = 0

and hence the invariant polynomial ζ3 could not be used for systems (3.51){s=0}.

On the other hand we observe that this invariant polynomial is applied only in the case of

systems (3.56) and in the case s ̸= 0 it is responsible for the sign of the expression a(u + 1)

because for systems (3.56) we have

ζ3 = −2(a − 1)2as2(9 + s2)2(1 + u)3/81.

Therefore for these systems in the case s = 0 we need another invariant polynomial and we

define the invariant ζ5 which for systems (3.56){s=0} has the value

ζ5 = −144(a − 1)2a(1 + u)3
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and clearly if ζ5 ̸= 0 then sign (ζ5) = −sign (a(u + 1)).

Thus considering Remark 3.28 and the first part of the statement of Proposition 3.26 corre-

sponding to the case D4 ̸= 0 as well as our Convention on page 8 and Remark 3.27, in the case

D4 = 0 we arrive at the configurations Config. 7.13b – Config. 7.24b. For the realization of each

one of these configurations it is sufficient to take the corresponding examples presented in the

proof of the case D4 ̸= 0 and substitute s = 1 by s = 0. Thus we conclude that Proposition

3.26 is completely proved.

2: The possibility D5 = 0. In this case we get u = −s2/3 and then ζ1 = 0. So we have to

detect another invariant polynomial which governs the sign of the polynomial λ. We observe

that in this particular case we have

λ = 3(s2 − 3)2(3c − g2 + m2 − cs2),

where s2 − 3 ̸= 0 due to D7 = −4(s2 − 3)/3 ̸= 0.

On the other hand for systems (3.51) with u = −s2/3 we calculate

ζ ′1 = 64s2(9 + s2)2(3c − g2 + m2 − cs2)x6, D8 = −32s2(9 + s2)2/729. (3.66)

Therefore due to D8 ̸= 0 we have s ̸= 0 and we conclude that in the case D5 = 0 we have

sign (λ) = sign (ζ ′1).
We prove the following proposition.

Proposition 3.29. Assume that for a system (3.51) the conditions D6D7D8 ̸= 0 and D5 = 0 hold.

Then this system possesses one of the configurations of invariant lines presented below if and only if the

corresponding conditions are satisfied, respectively:

ζ ′1 < 0, ζ2 ̸= 0, ζ3 < 0, D7 < 0 ⇔ Config. 7.1b;

ζ ′1 < 0, ζ2 ̸= 0, ζ3 < 0, D7 > 0 ⇔ Config. 7.2b;

ζ ′1 < 0, ζ2 ̸= 0, ζ3 > 0, D7 < 0 ⇔ Config. 7.3b;

ζ ′1 < 0, ζ2 ̸= 0, ζ3 > 0, D7 > 0 ⇔ Config. 7.4b;

ζ ′1 < 0, ζ2 = 0 ⇔ Config. 7.5b;

ζ ′1 > 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.6b;

ζ ′1 > 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.7b;

ζ ′1 > 0, ζ4 = 0, D7 < 0 ⇔ Config. 7.8b;

ζ ′1 > 0, ζ4 = 0, D7 > 0 ⇔ Config. 7.9b;

ζ ′1 = 0, ζ2 ̸= 0, D7 < 0 ⇔ Config. 7.10b;

ζ ′1 = 0, ζ2 ̸= 0, D7 > 0 ⇔ Config. 7.11b;

ζ ′1 = 0, ζ2 = 0 ⇔ Config. 7.12b.

Proof. First of all we observe that for systems (3.51) with u = −s2/3 according to (3.66) the

condition D8 ̸= 0 implies s ̸= 0 (i.e. D4 ̸= 0).

On the other hand, the proof of Proposition 3.26 for the case D4 ̸= 0 was performed for

the condition u = −s2/3 inclusively, because this condition is not essential for the proof.

Therefore a system (3.51) with u = −s2/3 could possess only one of the configurations Config.

7.1b–Config. 7.12b provided by Proposition 3.26 in the case D4 ̸= 0. We claim that each one of

these 12 configurations is realizable in the case u = −s2/3.
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Indeed for systems (3.51) with u = −s2/3 we have

ζ1 = 0, ζ2 = −72(s2 − 3)(3c − g2 + m2 − cs2),

ζ3 = − 8s2(9 + s2)2

243(−3 + s2)
(3c − g2 + m2 − cs2)(3c − g2 + 4m2 − cs2),

ζ4 = m2(4s2x2 − 13x2 − 2sxy − 3y2), D7 = −4(s2 − 3)/3, D8 = −32s2(9 + s2)2/729

and to prove the compatibility of the conditions provided by Proposition 3.29 it is sufficient

to present the examples of the realizations of the corresponding configurations for systems

(3.54) with u = −s2/3 in terms of the parameters (c, g, m, s) = (c0, g0, m0, s0) with s0 ̸= 0. So

we have

Config. 7.1b: (c0, g0, m0, s0) = (1, 1, 0,−2);

Config. 7.2b: (c0, g0, m0, s0) = (−1, 0, 1,−1);

Config. 7.3b: (c0, g0, m0, s0) = (2, 0, 1,−2);

Config. 7.4b: (c0, g0, m0, s0) = (0, 1, 0,−1);

Config. 7.5b: (c0, g0, m0, s0) = (4, 0, 1, 2);

Config. 7.6b: (c0, g0, m0, s0) = (−1, 0,−2,−2);

Config. 7.7b: (c0, g0, m0, s0) = (−1, 0,−2,−1);

Config. 7.8b: (c0, g0, m0, s0) = (−1, 0, 0,−2);

Config. 7.9b: (c0, g0, m0, s0) = (1, 0, 0,−1);

Config. 7.10b: (c0, g0, m0, s0) = (0, 1, 1,−2);

Config. 7.11b: (c0, g0, m0, s0) = (0, 1, 1,−1);

Config. 7.12b: (c0, g0, m0, s0) = (0, 0, 0, 1).

This completes the proof of Proposition 3.29.

3.2.2 The statement (A2)

As it was shown in the proof of statement (A) of the Main Theorem the affine invariant con-

ditions provided by the statement (A2) for the family of systems (3.12) lead to the conditions

(3.28).

Assuming these conditions to be fulfilled for systems (3.12) we arrive at the family of

systems

ẋ =
[

x − 9l

2s(9 + s2)

][27l2(s2 − 3) + 18lms(9 + s2) + 2cs2(9 + s2)2

2s2(9 + s2)2

+
3l(s2 − 3) + 2ms(9 + s2)

s(9 + s2)
x + 2(s2 − 3)x2/3

]
≡ L

(1)
1 (x)L

(1)
2,3 (x),

ẏ =
3l
[
18l2s + 9lm(9 + s2) + cs(9 + s2)2

]

2s(9 + s2)3
+

3l
[
3l(s2 − 27) + 4ms(9 + s2)

]

4s(9 + s2)2
x

+
81l2(s2 − 3) + 36lms(9 + s2) + 4cs2(9 + s2)2

4s2(9 + s2)2
y + lx2 + 2mxy

− sx3 + (2s2 − 9)x2y/3 − sxy2 − y3,

(3.67)

for which we have

D7 =
8

3

(
s2 − 3

)
̸= 0, D8 = − 32

729
s2(9 + s2)2 ̸= 0.
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We need to determine if the two lines defined by the equation L
(1)
2,3 = 0 are real or complex

and in the case when they are real, if one of them coincides with the invariant line L
(1)
1 = 0.

So we calculate

Discrim [L
(1)
2,3 , x] = − 1

3s2(9 + s2)2
λ(1)(c, l, m, s),

Resx(L
(1)
1 , L

(1)
2,3 ) =

1

2s2(9 + s2)2
µ(1)(c, l, m, s)

where

λ(1) = 81l2(s2 − 3)2 + 36lms(s2 − 3)(9 + s2) + 4s2(9 + s2)2(2cs2 − 6c − 3m2),

µ(1) = 81l2(s2 − 3) + 36lms(9 + s2) + 2cs2(9 + s2)2.
(3.68)

We observe that

sign
(
Discrim [L

(1)
2,3 , x]

)
= −sign (λ(1)),

i.e. the invariant lines L
(1)
2,3 = 0 are real (respectively complex; coinciding) if λ(1)

< 0 (respec-

tively λ(1)
> 0; λ(1) = 0). Moreover, the invariant line L

(1)
1 = 0 coincides with one of the lines

L
(1)
2,3 = 0 if and only if µ(1) = 0.

On the other hand for systems (3.67) calculations yield:

ζ1 =
20λ(1)

(
s2 − 3

)2
x2

s2 (s2 + 9)2
, χ5 = − µ(1)

9s (s2 + 9)

and hence due to D7 ̸= 0 we have sign (λ(1)) = sign (ζ1). Moreover we observe that the

condition µ(1) = 0 is equivalent to χ5 = 0.

Proposition 3.30. Assume that for a system (3.67) the condition D7D8 ̸= 0 holds. Then this system

possesses one of the configurations of invariant lines presented below if and only if the corresponding

conditions are satisfied, respectively:

ζ1 < 0, ζ5 ̸= 0, ζ3 < 0, D7 < 0 ⇔ Config. 7.1b ;

ζ1 < 0, ζ5 ̸= 0, ζ3 < 0, D7 > 0 ⇔ Config. 7.2b;

ζ1 < 0, ζ5 ̸= 0, ζ3 > 0, D7 < 0 ⇔ Config. 7.3b ;

ζ1 < 0, ζ5 ̸= 0, ζ3 > 0, D7 > 0 ⇔ Config. 7.4b;

ζ1 < 0, ζ5 = 0 ⇔ Config. 7.5b;

ζ1 > 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.6b;

ζ1 > 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.7b;

ζ1 > 0, ζ4 = 0, D7 < 0 ⇔ Config. 7.8b;

ζ1 > 0, ζ4 = 0, D7 > 0 ⇔ Config. 7.9b;

ζ1 = 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.10b;

ζ1 = 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.11b;

ζ1 = 0, ζ4 = 0 ⇔ Config. 7.12b.

Proof. We examine three cases: ζ1 < 0, ζ1 > 0 and ζ1 = 0.

a) The case ζ1 < 0. This implies λ(1)
< 0 and we may set λ(1) = −3v2

< 0. We observe

that the polynomial λ(1) is linear with respect to the parameter c with the coefficient 8s2(s2 −
3)(9 + s2)2 ̸= 0 (due to D7D8 ̸= 0).
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Thus solving the equation λ(1) = −3v2 we obtain

c =− 3

8s2(s2 − 3)(9 + s2)2

[[
9l(s2 − 3)− 2ms(9 + s2)

][
3l(s2 − 3) + 2ms(9 + s2)

]
+ v2

]
.

(3.69)

This leads to the following family of systems

ẋ =
2(s2 − 3)

3

[
x − 9l

2s(9 + s2)

][
x +

3(18ms − 9l + 3ls2 + 2ms3 − v)

4s(s2 − 3)(9 + s2)

]
×

[
x +

3(18ms − 9l + 3ls2 + 2ms3 + v)

4s(s2 − 3)(9 + s2)

]
,

ẏ =
9l

16s2(s2 − 3)(9 + s2)3

[
12lms(s2 − 3)(9 + s2) + 4m2(9s + s3)2

+ 3l2(6s2 − 81 + 7s4)− v2
]
+

3l

4s(9 + s2)2
(36ms − 81l + 3ls2 + 4ms3) x

+
3

8s2(s2 − 3)(9 + s2)2

[
27l2(s2 − 3)2 + 12lms(s2 − 3)(9 + s2)

+ 4m2(9s + s3)2 − v2
]

y + lx2 + 2mxy − sx3 + (2s2 − 9)x2y/3 − sxy2 − y3.

(3.70)

On the other hand for the value of c given in (3.69) we calculate

µ(1) =
3
[
(γ(1))2 − v2

]

4(s2 − 3)
, γ(1) = 9l(s2 − 3) + 2ms(9 + s2) (3.71)

and since the condition µ(1) = 0 (i.e. χ5 = 0) leads to the coalescence of two invariant lines of

the triplet, we examine two possibilities: χ5 ̸= 0 and χ5 = 0.

a.1) The possibility χ5 ̸= 0. Then µ(1) ̸= 0, i.e. (γ(1) − v)(γ(1) + v) ̸= 0 and setting a new

parameter a = γ(1)+v

γ(1)−v
we observe that a − 1 ̸= 0. Indeed calculation yields: a − 1 = 2v

γ(1)−v
̸= 0

due to v ̸= 0. So from the relation a = γ(1)+v

γ(1)−v
we can determine the value of the parameter m:

m =
−9l(a − 1)(s2 − 3) + (a + 1)v

2s(a − 1)(9 + s2)
.

Then we can apply the following transformation

x1 = αx +
3ν

v
, y1 = αy − sν

v
, t1 =

t

α2
,

α =
2(1 − a)s(s2 − 3)(9 + s2)

3v
, ν = l(a − 1)(s2 − 3),

which brings systems (3.70) to the family of systems (we keep the old notations for the vari-

ables)

ẋ =
2

3
(s2 − 3)x(x − 1)(x − a),

ẏ =
2

3
(s2 − 3)

[
a − x(a + 1)

]
y − sx3 +

1

3
(2s2 − 9)x2y − sxy2 − y3.

(3.72)

It remains to observe that this family of systems is a subfamily of systems (3.56) defined by

the condition u = (2s2 − 9)/3. This family was investigated earlier and since u = (2s2 − 9)/3

is not a point of bifurcation, we deduce that there are no new configurations. However we
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have to determine the conditions for the realization of the corresponding configurations of

invariant lines in this case.

For systems (3.72) we calculate:

ζ1 = −80

3
(a − 1)2

(
s2 − 3

)4
x2, χ5 = − 4

27
as

(
s2 − 3

) (
s2 + 9

)
,

ζ3 = − 16

2187
(a − 1)2a

(
s2 − 3

)3
s2
(
s2 + 9

)2
.

Since the condition D7D8 ̸= 0 is satisfied we conclude that the condition ζ1 < 0 gives us

a − 1 ̸= 0 and the condition χ5 ̸= 0 implies a ̸= 0.

As it was shown earlier systems (3.56) in the case a(a− 1) ̸= 0 and s ̸= 0 could possess only

4 configurations Config. 7.1b – Config. 7.4b. More precisely for systems (3.56) we have obtained

the following configurations when the corresponding conditions are satisfied, respectively:

Config. 7.1b ⇔ a(a − 1) > 0, a < 0;

Config. 7.2b ⇔ a(a − 1) > 0, a > 0;

Config. 7.3b ⇔ a(a − 1) < 0, a > 0;

Config. 7.4b ⇔ a(a − 1) < 0, a < 0.

On the other hand for systems (3.72) we have s ̸= 0 due to D8 ̸= 0 and furthermore we

have

sign (a(u + 1)) = sign (a(s2 − 3)) = sign (ζ3), sign (u + 1) = sign (s2 − 3) = sign (D7).

Therefore we conclude that in the case ζ1 < 0 and χ5 ̸= 0 the statement of Proposition 3.30 is

valid.

a.2) The possibility χ5 = 0. Then µ(1) = 0 and considering (3.71) we get (γ(1) − v)(γ(1) +

v) = 0. So we may assume γ(1) − v = 0 due to change v → −v and setting v = γ(1) ̸= 0 in

systems (3.70) we arrive at the family of systems

ẋ =
2(s2 − 3)

3

[
x − 9l

2s(9 + s2)

]2[
x +

3(9ms − 9l + 3ls2 + ms3)

s(s2 − 3)(9 + s2)

]
,

ẏ =− 27l2(18ms − 27l + 5ls2 + 2ms3)

4s2(9 + s2)3
+

3l

4s(9 + s2)2
(36ms − 81l + 3ls2 + 4ms3) x

− 9l

4s2(9 + s2)2

[
36ms − 27l + 9ls2 + 4ms3

]
y + lx2 + 2mxy

− sx3 + (2s2 − 9)x2y/3 − sxy2 − y3

So since γ(1) = 9l(s2 − 3) + 2ms(9 + s2) ̸= 0 then applying the transformation

x1 = αx +
3l(s2 − 3)

γ(1)
, y1 = αy − ls(s2 − 3)

γ(1)
, t1 =

t

α2
, α = −2s(s2 − 3)(9 + s2)

3γ(1)
,

we obtain the following 1-parameter family of systems:

ẋ =
2

3
(s2 − 3)x2(x − 1),

ẏ =− 2

3
(s2 − 3)xy − sx3 +

1

3
(2s2 − 9)x2y − sxy2 − y3.
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We again observe that the above family of systems is a subfamily of systems (3.59) defined by

the condition u = (2s2 − 9)/3. This family was investigated earlier and it was shown that it

possesses the unique configuration Config. 7.5b including the case u = (2s2 − 9)/3.

b) The case ζ1 > 0. Then λ(1)
> 0 and we set λ(1) = 3v2

> 0 and since s(s2 − 3) ̸= 0 (due to

D7D8 ̸= 0) we obtain

c =− 3

8s2(s2 − 3)(9 + s2)2

[[
9l(s2 − 3)− 2ms(9 + s2)

][
3l(s2 − 3) + 2ms(9 + s2)

]
− v2

]
.

This leads to the following family of systems

ẋ =
[

x − 9l

2s(9 + s2)

][9v2 +
[
9l(s2 − 3) + 2s(9 + s2)(3m + 2(s2 − 3)x)

]2

24s2(s2 − 3)(9 + s2)2

]
,

ẏ =
9l

16s2(s2 − 3)(9 + s2)3

[
12lms(s2 − 3)(9 + s2) + 4m2(9s + s3)2

+ 3l2(6s2 − 81 + 7s4) + v2
]
+

3l

4s(9 + s2)2
(36ms − 81l + 3ls2 + 4ms3) x

+
3

8s2(s2 − 3)(9 + s2)2

[
27l2(s2 − 3)2 + 12lms(s2 − 3)(9 + s2)

+ 4m2(9s + s3)2 + v2
]

y + lx2 + 2mxy − sx3 + (2s2 − 9)x2y/3 − sxy2 − y3.

(3.73)

In order to simplify these systems we need to use a transformation which depends on the

condition: either γ(1) ̸= 0 or γ(1) = 0. Since for the above systems we have

ζ4 =

(
γ(1)

)2

4s2(9 + s2)2

[
(4s2 − 13)x2 − 2sxy − 3y2

]

we conclude that the condition γ(1) = 0 is equivalent to ζ4 = 0. So we discuss two possibilities:

ζ4 ̸= 0 and ζ4 = 0.

b.1) The possibility ζ4 ̸= 0. This implies γ(1) ̸=0 and setting a new parameter a= v
γ(1) ̸=0 we

have v = aγ(1). Then we can apply to systems (3.73) the following transformation

x1 = αx +
6l(s2 − 3)

γ(1)
, y1 = αy − 2ls(s2 − 3)

γ(1)
, t1 =

t

α2
, α = −4s(s2 − 3)(9 + s2)

3γ(1)
,

which brings these systems to the following family of systems (we keep the old notations for

the variables):

ẋ =
2

3
(s2 − 3)x

[
(x − 1)2 + a2

]
,

ẏ =
2

3
(s2 − 3)(1 + a2)y − 4

3
(s2 − 3)xy − sx3 +

1

3
(2s2 − 9)x2y − sxy2 − y3.

(3.74)

It remains to observe that this family of systems is a subfamily of systems (3.61) defined by

the condition u = (2s2 − 9)/3. The family (3.61) was investigated earlier and it was proved

the existence of only two configurations of the invariant lines: Config. 7.6b if D7 < 0 and

Config. 7.7b if D7 > 0.

Since for systems (3.74) we have D7 = 8
(
s2 − 3

)
/3 we deduce that both configurations

are also realizable in the case under consideration.
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b.2) The possibility ζ4 = 0. This implies γ(1) = 0 and considering (3.71) the condition

γ(1) = 0 gives

m = − 9l(s2 − 3)

2s(9 + s2)

Then we can apply to systems (3.73) the transformation

x1 = αx − 6l(s2 − 3)

v
, y1 = αy +

2ls(s2 − 3)

v
, t1 =

t

α2
, α =

4s(s2 − 3)(9 + s2)

3v
,

which brings these systems to the following family of systems (we keep the old notations for

the variables):

ẋ =
2

3
(s2 − 3)x(x2 + 1), ẏ =

2

3
(s2 − 3)y − sx3 +

1

3
(2s2 − 9)x2y − sxy2 − y3. (3.75)

It is easy to observe that this family is a subfamily of systems (3.63) defined by the condition

u = (2s2 − 9)/3. The family (3.63) was investigated earlier and we have proved the existence

of two configurations: Config. 7.8b if D7 < 0 and Config. 7.9b if D7 > 0. So by the same reasons

as in the possibility b.1) above we conclude that in the case ζ1 > 0 and ζ4 = 0 the statement

of Proposition 3.30 is valid.

c) The case ζ1 = 0. This implies λ(1) = 0 and considering (3.68) and solving the equation

λ(1) = 0 with respect to the parameter c, it is clear that we get (3.69) for v = 0. This leads to

the systems (3.70) with v = 0, which we denote by (3.70){v=0} and for these systems we have

ζ4 =

(
γ(1)

)2

4s2(9 + s2)2

[
(4s2 − 13)x2 − 2sxy − 3y2

]

and we again consider two possibilities: ζ4 ̸= 0 and ζ4 = 0.

c.1) The possibility ζ4 ̸= 0. Then γ(1) ̸= 0 and via the transformation

x1 = αx +
6l(s2 − 3)

γ(1)
, y1 = αy − 2ls(s2 − 3)

γ(1)
, t1 =

t

α2
, α = −4s(s2 − 3)(9 + s2)

3γ(1)
,

systems (3.70){v=0} can be brought to the following family of systems (we keep the old nota-

tions for the variables):

ẋ =
2

3
(s2 − 3)x(x − 1)2,

ẏ =
2

3
(s2 − 3)y − 4

3
(s2 − 3)xy − sx3 +

1

3
(2s2 − 9)x2y − sxy2 − y3.

(3.76)

We observe that this family of systems is a subfamily of systems (3.64) defined by the condition

u = (2s2 − 9)/3. This family was investigated earlier and we have detected Config. 7.10b if

D7 < 0 and Config. 7.11b if D7 > 0. Clearly we get the same configurations in the case

u = (2s2 − 9)/3, i.e. when D6 = 0.

c.2) The possibility ζ4 = 0. Then γ(1) = 0 and considering (3.71) we determine m =

− 9l(s2−3)
2s(9+s2)

. In this case systems (3.70) with v = 0 for this value of the parameter m after

the transformation

x1 = x − 9l

2s(9 + s2)
, y1 = y +

3ls

2(9 + s2)
, t1 = t

we will be brought to the homogeneous systems (3.65) with u = (2s2 − 9)/3. However these

systems are already examined and we found only the configuration Config. 7.12b.

Since all the cases are examined we conclude that Proposition 3.30 is proved.
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3.2.3 The statement (A3)

According to the proof of the statement (A) of the Main Theorem the affine invariant condi-

tions provided by this statement for the family of systems (3.12) lead to the conditions (3.29).

Next we determine the canonical form of the systems (3.12) subject to the conditions (3.29).

Assuming these conditions to be fulfilled for systems (3.12) we arrive at the following family

of systems

ẋ = (1 + u)
[

x +
3g − 6m + gs2 + 2gu − 6mu

(9 + s2)(1 + u)

][ g2s2 +
[
gu − 3m(1 + u)

]2

s2(9 + s2)(1 + u)2

− 2(gu − 3g − 3m − 3mu)

(9 + s2)(1 + u)
x + x2

]
≡ (1 + u)L

(2)
1 (x)L

(2)
2,3 (x),

ẏ =Q̃(x, y),

(3.77)

where the polynomial Q̃(x, y) depends on the parameters g, m, s and u and it is determined

by the conditions (3.29). According to the statement (A3) of the Main Theorem for the above

systems the conditions D7D8D4 ̸= 0 and χ1 ̸= 0 must hold. So calculations yield:

D7 = 4(1 + u) ̸= 0, D8 = −8(s2 − u)
[
4s2 + (3 + u)2

]
/27 ̸= 0, D4 = 2304s(9 + s2) ̸= 0,

χ1 =
1

9s(9 + s2)(1 + u)
(s2 − u)

[
9m(1 + u)− g(s2 + 3u)

][
4s2 + (u + 3)2

]
̸= 0.

Considering the first equation of systems (3.77) we observe that

Discrim [L
(2)
2,3 , x] = − 4(γ(2))2

s2(9 + s2)2
, Resx(L

(2)
1 , L

(2)
2,3 ) =

(s2 + 1)(γ(2))2

s2(9 + s2)2

where

γ(2) = 9m(1 + u)− g(s2 + 3u) ̸= 0

due to the condition χ1 ̸= 0.

Thus we deduce that the invariant lines L
(2)
2,3 = 0 are complex and they could not coalesce.

Moreover all three invariant lines are distinct.

Since γ(2) ̸= 0 applying the transformation

x1 = αx − 3g − 6m + gs2 + 2gu − 6mu

γ(2)
, α = − (u + 1)(9 + s2)

γ(2)
,

y1 = αy +
m(1 + u)(9 + s2 + 6u)− gu(3 + s2 + 2u)

sγ(2)
, t1 =

t

α2
,

to systems (3.77) we arrive at the family of systems

ẋ = (1 + u)x
[
(x − 1)2 +

1

s2

]
, s(1 + u) ̸= 0,

ẏ = (1 + u)2x/s − (1 + u)(2 + s2 + u)y/s2 + (s2 − 2u − u2)x2/s

+ (3 + s2 + 2u)y2/s − sx3 + ux2y − sxy2 − y3.

(3.78)

We determine that systems (3.78) possess six distinct invariant affine straight lines

L1 : x = 0, L2,3 : x = 1 ± i/s, L4 : y = −sx + (s2 + u + 2)/s, L5,6 : y = ±ix + (1 + u)/s
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and the following nine finite singularities:

M1(0, 0), M2

(
0, (1 + u)/s

)
, M3

(
0, (2 + s2 + u)/s

)
, M4,5

(
1 ± i/s, 1/s ∓ i

)
,

M6,7

(
1 ± i/s, u/s ± i

)
, M8,9

(
1 ± i/s, (2 + u)/s ∓ i

)
,

(3.79)

which due to s(1 + u) ̸= 0 are all distinct except for the case 2 + s2 + u = 0 which implies the

coalescence of the real singular point M3 with M1.

We observe that all the singularities (3.79) are located at the intersections of the invariant

lines, except for the real singularity M1(0, 0) and the complex singularities M4,5

(
1± i/s, 1/s∓

i
)
. Moreover we have exactly three real singularities, which are all located on the invariant

line x = 0. We note that the real singularity M2 (respectively M3) is the point of intersection

of the invariant line L1 with the two complex lines L5,6 (respectively with the real line L4).

On the other hand the complex singularity M6 (respectively M7) is a point of intersection

of two invariant lines L2 and L5 (respectively L3 and L6), whereas the complex singularity M8

(respectively M9) is a point of intersection of three invariant lines L2, L4 and L6 (respectively

L3, L4 and L5).

So, considering the fact that we have exatly three real finite singularities M1, M2 and M3

and all of them are located on the invariant line x = 0 we conclude that we could obtain three

distinct configurations of invariant lines defined by the distinct positions of the free point M1

with respect to the other two real singularities (M2 and M3).

In order to describe the positions of the finite real singularities located on the same invari-

ant line we use the following notations.

Notation 3.31. Assume that two finite real singular points M̃1(x1, y1) and M̃2(x2, y2) of a cubic

system are located on the real invariant line ax + by + c = 0 of this system. Then:

(α) in the case a ̸= 0 we say that the singular point M̃1 is located below (respectively above)

or coincides with, the singularity M̃2 if y1 ≤ y2 (respectively y2 < y1) and we denote this

position by M̃1 ⪯ M̃2 (respectively M̃2 ≺ M̃1);

(β) in the case a = 0 (then y1 = y2) we say that the singular point M̃1 is located on the left

(respectively on the right) or coincides with, the singularity M̃2 if x1 ≤ x2 (respectively x2 < x1)

and we again denote this position by M̃1 ⪯ M̃2 (respectively M̃2 ≺ M̃1).

Since y3 − y2 = (1 + s2)/s it is easy to determine that the positions of the real singularities

on the line x = 0 are determined by the following conditions:

M2 ≺ M1 ⇔ (1 + u)s < 0; M3 ⪯ M1 ⇔ (2 + u + s2)s ≤ 0; M3 ⪯ M2 ⇔ s < 0.

Therefore considering these conditions we obtain the following conditions for the realiza-

tion of the corresponding configurations of invariant lines:

1 + u < 0, 2 + u + s2
< 0 ⇒ M2 ≺ M3 ≺ M1 ⇒ Config. 7.25b; (s = 1, u = −7/2)

1 + u < 0, 2 + u + s2
> 0 ⇒ M2 ≺ M1 ≺ M3 ⇒ Config. 7.26b; (s = 1, u = −3/2)

1 + u < 0, 2 + u + s2 = 0 ⇒ M2 ≺ M3 ≡ M1 ⇒ Config. 7.27b; (s = 1, u = −3)

1 + u > 0 ⇒ M1 ≺ M2 ≺ M3 ⇒ Config. 7.28b. (s = 1, u = 0)

In order to determine the corresponding invariant conditions we evaluate for systems

(3.78) the following invariant polynomials:

D4 = 2304s(9 + s2), D7 = 4(1 + u), ζ6 = 8(2 + u + s2)
[
4s2 + (u − 1)2

]
.
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So due to the condition s ̸= 0 (as D4 ̸= 0) we have sign (ζ6) = sign (2+ u+ s2) and sign (D7) =

sign (1 + u).

Considering the conditions for the configurations of invariant lines presented above we

arrive at the following proposition.

Proposition 3.32. Assume that for a system (3.77) the condition D7D8χ1 ̸= 0 and D4 ̸= 0 holds.

Then this system possesses one of following four configurations of invariant lines if and only if the

corresponding conditions are satisfied, respectively:

D7 < 0, ζ6 < 0 ⇔ Config. 7.25b;

D7 < 0, ζ6 > 0 ⇔ Config. 7.26b;

D7 < 0, ζ6 = 0 ⇔ Config. 7.27b;

D7 > 0 ⇔ Config. 7.28b.

3.2.4 The statement (A4)

As it was shown in the proof of the statement (A) of the Main Theorem the affine invari-

ant conditions provided by the statement (A4) for the family of systems (3.12) lead to the

conditions (3.32).

Assuming these conditions to be fulfilled for systems (3.12) we arrive at the family of

systems

ẋ = (1 + u)
(

x +
m

u

)[ 9l2

u2(3 + u)2
+

(
x +

m

u

)2]
,

ẏ =
(l + uy)

u2

[ l2(3 + 2u)

(3 + u)2
+ (ux + m)2 + ly − uy2

]
.

(3.80)

According to the statement (A4) of the Main Theorem for the above systems the conditions

D7D8 ̸= 0 and χ1 ̸= 0 must hold. So calculations yield:

D7 = 4(1 + u) ̸= 0, D8 = 8u(3 + u)2/27 ̸= 0, χ1 = −l(3 + u)x3/3 ̸= 0

and hence for systems (3.80) the condition lu(3 + u) ̸= 0 holds. Then via the transformation

x1 = αx +
m(3 + u)

3l
, y1 = αy +

3 + u

3
, t1 =

t

α2
, α =

u(3 + u)

3l

systems (3.80) can be brought to the systems

ẋ = (1 + u)x(x2 + 1), ẏ = y
[
− 2 − u + (3 + u)y + ux2 − y2

]
, (3.81)

for which we have D7 = 4(1 + u) ̸= 0 and D8 = 8u(3 + u)2/27 ̸= 0. Therefore for the above

systems the condition u(1 + u)(3 + u) ̸= 0 is satisfied.

We determine that systems (3.81) possess six distinct invariant affine straight lines

L1 : x = 0, L2,3 : x = ±i, L4 : y = 0, L5,6 : y = 1 ± ix

and the following nine finite singularities:

M1(0, 0), M2(0, 1), M3(0, 2 + u), M4,5(±i, 0), M6,7(±i, 2), M8,9(±i, 1 + u).

We observe that we could have multiple singularities for some values of the parameter u.

More exactly, in the case u = −2 the singular point M3 coalesces with M1 and we obtain a
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double singular point (0, 0). On the other hand we determine that for u = 1 the complex

singular point M8(i, 1 + u) (respectively M9(−i, 1 + u) coalesces with the complex singular

point M6(i, 2) (respectively M7(−i, 2). As a result we get two double complex singular points,

however according to Definition 1.2 this fact is irrelevant for a configuration because we take

into consideration only real singularities located on the invariant lines.

We remark that we have only three real singularities and all of them are located on the

invariant line x = 0. Two among these real singularities are fixed: M1(0, 0) (which is a point

of the intersection of the invariant lines L1 and L4) and M2(0, 1) (which is a point of the

intersection of the invariant lines L1, L5 and L6). The singular point M3(0, u + 2) depends on

the parameter u and hence could change its position with respect to the singularities M1 and

M2.

Thus, since we have M1 ≺ M2, taking into consideration our Convention (see page 8 ) we

conclude that the position of M3(0, u + 2) leads to the following four distinct configurations

of invariant lines:

u < −2 ⇒ M3 ≺ M1 ≺ M2 ⇒ Config. 7.29b;

u = −2 ⇒ M3 = M1 ≺ M2 ⇒ Config. 7.30b;

−2 < u < −1 ⇒ M1 ≺ M3 ≺ M2 ⇒ Config. 7.31b;

u > −1 ⇒ M1 ≺ M2 ≺ M3 ⇒ Config. 7.32b.

On the other hand for systems (3.81) we have

D7 = 4(1 + u), ζ7 = 4(2 + u)

and evidently we arrive at the following proposition.

Proposition 3.33. Assume that for a system (3.80) the conditions D7D8 ̸= 0 and χ1 ̸= 0 hold. Then

this system possesses one of the following four configurations of the invariant lines if and only if the

corresponding conditions are satisfied, respectively:

ζ7 < 0 ⇔ Config. 7.29b;

ζ7 = 0 ⇔ Config. 7.30b;

ζ7 > 0, D7 < 0 ⇔ Config. 7.31b;

ζ7 > 0, D7 > 0 ⇔ Config. 7.32b.

3.2.5 The statement (A5)

According to the proof of the statement (A) of the Main Theorem the affine invariant condi-

tions provided by the statement (A5) for the family of systems (3.12) lead to the conditions

(3.33).

Remark 3.34. We observe that the conditions (3.33) can be obtained as a particular case from

the conditions (3.26) by setting u = s2 (i.e. we allow the condition D8 = 0 to be satisfied). This

means that we could follow all the steps we have done in the case of the conditions (3.26) if

these steps do not depend on the condition u = s2.

Thus applying the conditions (3.33) to systems (3.12) we arrive at the family of systems

(3.51){u=s2} which is a subfamily of (3.51) defined by the condition u = s2.
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We remark that all the configurations of the family (3.51) were investigated and Proposition

3.26 provides the necessary and sufficient affine invariant conditions for the realization of each

one of the possible 12 possible configurations in the case D4 ̸= 0.

Thus we have to determine which sets of the conditions provided by Proposition 3.26 (for

D4 ̸= 0) are compatible in the case u = s2 ̸= 0. We prove the following proposition.

Proposition 3.35. Assume that for a system (3.51){u=s2} the conditions D7D6 ̸= 0 and D4 ̸= 0 hold.

Then this system possesses one of the configurations of the invariant lines presented below if and only

if the corresponding conditions are satisfied, respectively:

ζ1 < 0, ζ2 ̸= 0, ζ3 < 0 ⇔ Config. 7.2b;

ζ1 < 0, ζ2 ̸= 0, ζ3 > 0 ⇔ Config. 7.4b;

ζ1 < 0, ζ2 = 0 ⇔ Config. 7.5b;

ζ1 > 0, ζ4 ̸= 0 ⇔ Config. 7.7b;

ζ1 > 0, ζ4 = 0 ⇔ Config. 7.9b;

ζ1 = 0, ζ2 ̸= 0 ⇔ Config. 7.11b;

ζ1 = 0, ζ2 = 0 ⇔ Config. 7.12b.

Proof. Evaluating for systems (3.54){u=s2} the invariant polynomials ζ1, ζ2, ζ3, ζ4, D4 and D7

which are involved in Proposition 3.26 (for D4 ̸= 0) we obtain:

ζ1 =
1280s4

3(s2 + 9)2
κ1x2, ζ2 = 8κ2, ζ3 =

8s2

81(s2 + 9)2
κ1κ2, D4 = 2304s(9 + s2)

ζ4 =
1

(s2 + 9)2
κ2

3

[
(4s2 − 13)x2 − 2sxy − 3y2

]
, D7 = 4(1 + s2), D6 = −4(9 + s2)/9,

where

κ1 = c(1 + s2)(9 + s2)2 + (9g − 9m + 5gs2 − 9ms2)(gs2 − 3g − 3m − 3ms2),

κ2 = c(9 + s2)2 + 3(g − 2m)(7gs2 − 9g − 18m − 18ms2),

κ3 = 9m − 4gs2 + 9ms2.

As we can see the condition D7 > 0 holds. Therefore we conclude that the configurations

Configs. 7.1b, 7.3b, 7.6b, 7.8b, 7.10b which correspond to the case D7 < 0 and are realizable for

systems (3.54) (see Proposition 3.26), could not be realizable for systems (3.54){u=s2}.

To prove the compatibility of other conditions provided by Proposition 3.26 it is sufficient

to present the examples of the realizations of the corresponding configurations for systems

(3.54){u=s2} in terms of the parameters (c, g, m, s) = (c0, g0, m0, s0) with s0 ̸= 0. So we have

Config. 7.2b: (c0, g0, m0, s0) = (−1, 1, 1,−1);

Config. 7.4b: (c0, g0, m0, s0) = (−2, 1, 1,−1);

Config. 7.5b: (c0, g0, m0, s0) = (−57/50, 1, 1,−1);

Config. 7.7b: (c0, g0, m0, s0) = (0, 1, 1,−1);

Config. 7.9b: (c0, g0, m0, s0) = (1, 0, 0,−1);

Config. 7.11b: (c0, g0, m0, s0) = (0,−3, 1, 1);

Config. 7.12b: (c0, g0, m0, s0) = (0, 0, 0, 1)

This completes the proof of Proposition 3.35.
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3.2.6 The statement (A6)

As it was shown in the proof of the statement (A) of the Main Theorem the affine invariant

conditions provided by the statement (A6) for the family of systems (3.12) according to Lemma

3.15 lead either to the conditions

u = s = k = d = h = l = e = b = 0, f = c +
g(2m − g)

3
,

a = − g − 2m

27

(
2g2 − 9c − 2gm − 4m2

)
.

(3.82)

(for a triplet in the direction x = 0), or to the conditions

u = s = k = l = e = m = 0, d =
2gh

3
, f = c − g2

3
,

a =
g

27
(9c − 2g2), b = −2h

27
(−9c + 3g2 + 4h2)

(3.83)

(for a triplet in the direction y = 0).

It is not too difficult to detect that when conditions (3.82) are satisfied then (3.12) become

the systems

ẋ =
1

27
(g − 2m + 3x)(9c − 2g2 + 2gm + 4m2 + 6gx + 6mx + 9x2),

ẏ =
1

3
y
(
3c − g2 + 2gm + 6mx − 3y2

)
.

(3.84)

On the other hand, if conditions (3.83) are satisfied then we arrive at the family of systems

ẋ = − 1

27
(g + 3x)

(
−9c + 2g2 − 6gx − 18hy − 9x2

)
,

ẏ =− 1

27
(2h + 3y)

(
−9c + 3g2 + 4h2 − 6hy + 9y2

)
.

(3.85)

We claim that systems (3.84) and (3.85) are affinely equivalent. Indeed since some parameters

of the two systems coincide we set for systems (3.85) free parameters c̃ = c, g̃ = g and h̃ = h.

Then the transformation

x1 = y − g̃/3, y1 = −x − g̃/3, t1 = −t

leads to the systems

ẋ1 =
1

27
(g1 − 2m1 + 3x)

(
9c1 − 2g2

1 + 2g1m1 + 4m2
1 + 6g1x1 + 6m1x1 + 9x2

1

)
,

ẏ1 =
1

3
y1

(
3c1 − g2

1 + 2g1m1 + 6m1x − 3y2
1

)

with g1 = g̃, m1 = −h̃ and c1 = (−3c̃ + 2g̃2)/3. In other words we have obtained exactly

systems (3.84) with new parameters c1, g1, m1. This completes the proof of our claim.

Thus in this case either the conditions (3.82) or (3.83) are satisfied in both cases using an

affine transformation and time rescaling we arrive at the same family of systems (3.84).

We observe that the family of systems (3.84) is a subfamily of (3.51) defined by the con-

dition u = s = 0. We have shown that systems (3.51) possess three parallel invariant lines

in the direction x = 0 and the kind of these lines (real, complex, distinct or coinciding) are
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determined by the polynomials λ and µ given in (3.52). For the particular case u = s = 0 (i.e.

for systems (3.84)) these polynomials become

λ
∣∣
{u=s=0} = 27(3c − g2 + m2), µ

∣∣
{u=s=0} = 27(3c − g2 + 4m2).

On the other hand we observe that the sign of the polynomial λ as well as the the value of the

polynomial µ are governed by the invariant polynomials ζ1 and ζ2 which for systems (3.51)

have the form (see page 54)

ζ1 =
80

3κ2
(s2 + 3u)2x2λ, ζ2 = 8µ.

As we can see for u = s = 0 the invariant ζ1 vanishes, i.e. it could not be used to define the

sign of λ
∣∣
{u=s=0}, i.e. the sign of the polynomial 3c − g2 + m2.

Thus we have to define another invariant polynomial which captures the sign of 3c − g2 +

m2. Such a polynomial could be ζ8 which for systems (3.84) has the value

ζ8 = 8m2(3c − g2 + m2).

On the other hand according to the conditions provided by the statement (A6) of the Main

Theorem the condition χ15 ̸= 0 must hold. For systems (3.84) we calculate χ15 = mx3y2 ̸= 0,

i.e. m ̸= 0 and we have

sign (ζ8) = sign (3c − g2 + m2) = sign (λ
∣∣
{u=s=0}).

Thus substituting the invariant polynomial ζ1 (which vanishes) by ζ8 we could determine

which sets of the conditions provided by Proposition 3.26 are compatible in the case D8 =

D4 = 0 (i.e. u = s = 0).

Proposition 3.36. Assume that for a system (3.84) the condition χ15 ̸= 0 (i.e. m ̸= 0) holds. Then

this system possesses one of the configurations of the invariant lines presented below if and only if the

corresponding conditions are satisfied, respectively:

ζ8 < 0, ζ2 ̸= 0, ζ5 < 0 ⇔ Config. 7.14b;

ζ8 < 0, ζ2 ̸= 0, ζ5 > 0 ⇔ Config. 7.16b;

ζ8 < 0, ζ2 = 0 ⇔ Config. 7.17b;

ζ8 > 0 ⇔ Config. 7.19b;

ζ8 = 0 ⇔ Config. 7.23b.

Proof. Considering Proposition 3.26 we evaluate for systems (3.84) the invariant polynomials

ζ8 (instead of ζ1), ζ2, ζ4, ζ5 and D7 which are involved in Proposition 3.26 in the case D4 = 0.

The calculations yield:

ζ8 = 8m2(3c − g2 + m2), ζ2 = 216(3c − g2 + 4m2), ζ4 = −m2(13x2 + 3y2),

ζ5 = −64(3c − g2 + 4m2)(3c − g2 + m2), D4 = 0, D7 = 4, D6 = −4.

As we can see the conditions D7 > 0 and ζ4 ̸= 0 (due to χ15 ̸= 0, i.e. m ̸= 0) hold.

Therefore we conclude that the configurations Configs. 7.13b, 7.15b, 7.18b, 7.20b, 7.21b, 7.22b

which correspond to the case D7 < 0 (or ζ4 = 0) and are realizable for systems (3.54) (see

Proposition 3.26) could not be realizable for systems (3.84). Moreover the configuration Con-

figs. 7.24b is defined by the conditions ζ8 = ζ2 = 0, however these conditions are incompatible
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with χ15 ̸= 0. Indeed, assuming ζ8 = 0 we get c = (g2 − m2)/3 and then ζ2 = 648m2 ̸= 0 (due

to χ15 ̸= 0). Hence Configs. 7.24b could also not be realizable for systems (3.84).

To prove the compatibility of other conditions provided by Proposition 3.36 it is sufficient

to present the examples of the realization of the corresponding configurations for systems

(3.84) in terms of the parameters (c, g, m) = (c0, g0, m0). So we have

Config. 7.14b: (c0, g0, m0) = (−3/2, 1,−1);

Config. 7.16b: (c0, g0, m0) = (−1/2, 1,−1);

Config. 7.17b: (c0, g0, m0) = (−1, 1,−1);

Config. 7.19b: (c0, g0, m0) = (1, 1,−1);

Config. 7.23b: (c0, g0, m0) = (0, 1, 1).

This completes the proof of Proposition 3.36.

3.2.7 The statement (A7)

According to the proof of the statement (A) of the Main Theorem the affine invariant condi-

tions provided by the statement (A7) for the family of systems (3.12) lead to the conditions

(3.39). We observe that these conditions contain the equality H′ = 0 where the polynomial

H′ = 27a2 + 2am(9c + 4m2)− (c − f )(c2 + 4c f + 4 f 2 + 4 f m2)

is quadratic with respect to parameter a. So in order to construct the canonical form of systems

(3.12) subject to conditions (3.39) we have to examine this polynomial. We observe that

Discrim[H′, a] = 4(3c − 3 f + m2)(3c + 6 f + 4m2)2

and since according to the conditions (3.39) we must have 3c + 6 f + 4m2 ̸= 0 and 3c − 3 f +

m2 ≥ 0 we set a new parameter v as follows: 3c − 3 f + m2 = v2 ≥ 0. Then we obtain

f = (3c + m2 − v2)/3 and this implies

H′ =
[
27a + 9cm + 4m3 + 3(3c + 2m2)v − 2v3

][
27a + 9cm + 4m3 − 3(3c + 2m2)v + 2v3

]
/27 = 0.

Due to the change v → −v we may assume that the first factor vanishes and we obtain

a = −(m + v)(9c + 4m2 + 2mv − 2v2)/27.

This leads to the family of systems

ẋ = (3x − m − v)(9c + 4m2 + 2mv − 2v2 + 12mx − 6vx − 18x2)/27

≡ 1

27
L̃1(x)L̃2,3(x),

ẏ =y(3c + m2 − v2 + 6mx − 9x2 − 3y2)/3.

(3.86)

We need to determine if the two lines defined by the equation L̃2,3 = 0 are real or complex

and in the case when they are real, if one of them coincides with the invariant line L̃1 = 0 or

not. So we calculate

Discrim [L̃2,3, x] = 108(6c + 4m2 − v2) ≡ 108λ̃, Resx(L̃1, L̃2,3) = 27(3c + 2m2 − 2v2) ≡ 27µ̃

(3.87)
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and clearly the invariant lines L̃2,3 = 0 are real (respectively complex; coinciding) if λ̃ > 0

(respectively λ̃ < 0; λ̃ = 0). Moreover the invariant line L̃1 = 0 coincides with one of the lines

L̃2,3 = 0 if and only if µ̃ = 0.

On the other hand for systems (3.86) we calculate

ζ1 = −720λ̃x2, ζ5 = 64λ̃µ̃

and evidently we have sign (ζ1) = −sign (λ̃) and in the case ζ1 ̸= 0 the condition µ̃ = 0 is

equivalent to ζ5 = 0.

Proposition 3.37. Assume that for a system (3.86) the condition χ11 ̸= 0 holds. Then this system

possesses one of the configurations of the invariant lines presented below if and only if the corresponding

conditions are satisfied, respectively:

ζ1 < 0, ζ5 < 0 ⇔ Config. 7.13b;

ζ1 < 0, ζ5 > 0 ⇔ Config. 7.15b;

ζ1 < 0, ζ5 = 0 ⇔ Config. 7.17b;

ζ1 > 0, ζ4 ̸= 0 ⇔ Config. 7.18b;

ζ1 > 0, ζ4 = 0 ⇔ Config. 7.20b;

ζ1 = 0, ζ5 ̸= 0 ⇔ Config. 7.22b;

ζ1 = 0, ζ5 = 0 ⇔ Config. 7.24b.

Proof. Considering the above proposition we consider three cases: ζ1 < 0, ζ1 > 0 and ζ1 = 0.

a) The case ζ1 < 0. This implies λ̃ > 0 and we may set λ̃ = 3w2
> 0. Then we obtain

c = (v2 + 3w2 − 4m2)/6 and this leads to the factorization

L̃2,3 = −(2m − v − 3w − 6x)(2m − v + 3w − 6x)/2

and since the condition µ̃ = 0 implies the coalescence of two invariant lines from the triplet

we examine two subcases: ζ5 ̸= 0 and ζ5 = 0.

a.1) The subcase ζ5 ̸= 0. Then µ̃ ̸= 0 and for the value of the parameter c given above we

calculate: µ̃ = 3(w − v)(w + v)/2 ̸= 0 and we can apply to systems (3.86) the transformation

x1 =
2

(w − v)
x − 2(m + v)

3(w − v)
, y1 =

2

(w − v)
y, t1 = t(w − v)2/4.

Then setting an additional parameter a = (v + w)/(v − w) ̸= 0, 1 (because µ̃ ̸= 0 and a − 1 =

2w/(v − w) ̸= 0), we arrive at the following family of systems (we keep the old notations for

the variables):
ẋ = − 2x(x − 1)(x − a),

ẏ = y(−2a + 2x + 2ax − 3x2 − y2).
(3.88)

with a(a − 1) ̸= 0. It remains to observe that this family of systems is a subfamily of systems

(3.56) defined by the conditions u = −3 and s = 0. The canonical form (3.56) was obtained

from (3.51) via an affine transformation and time rescaling in the case ζ1 < 0 and ζ2 ̸= 0

(which imply λ > 0 and µ ̸= 0, respectively) and therefore all the invariant lines from the

triplet are real and distinct.

In the proof of Proposition 3.26 it was shown that systems (3.56) with s = 0 and a(a −
1)(u + 1) ̸= 0 possess the following configurations of invariant lines if and only if the corre-

sponding conditions are satisfied, respectively:
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a(1 + u) > 0, 1 + u < 0 ⇔ Config. 7.13b ;

a(1 + u) > 0, 1 + u > 0 ⇔ Config. 7.14b;

a(1 + u) < 0, 1 + u < 0 ⇔ Config. 7.15b ;

a(1 + u) < 0, 1 + u > 0 ⇔ Config. 7.16b.

Since for the systems (3.88) is a subfamily of systems (3.56) defined by the conditions u = −3

and s = 0 we have 1 + u = −2 < 0. Therefore we conclude that systems (3.88) could not

possess configurations Config. 7.14b and Config. 7.16b.

On the other hand for these systems we have

ζ5 = −1152a(a − 1)2 ⇒ sign (ζ5) = −sign (a)

and hence we arrive at Config. 7.13b if ζ5 < 0 and at Config. 7.15b if ζ5 > 0. So we deduce that

in the case ζ1 < 0 and ζ5 ̸= 0 systems Proposition 3.37 is true.

a.2) The subcase ζ5 = 0. Then µ̃ = 0 and we get (w − v)(w + v) = 0. We may assume

w − v = 0 due to change w → −w. So setting v = w ̸= 0 we obtain c = −2(m − w)(m + w)/3

and therefore systems (3.86) become as systems

ẋ = 2(m − 2w − 3x)(m + w − 3x)2/27,

ẏ = y
[
− (m − w)(m + w)y/3 + 2mxy − 3x2y − y3

]
.

We observe that the above systems via the transformation

x1 = − 1

w
x +

m + w

3w
, y1 = − 1

w
y, t1 = tw2

can be brought to the system

ẋ = − 2x2(x − 1), ẏ = y(2x − 3x2 − y2).

This system is contained in the family (3.59) for u = −3 and s = 0. Since systems (3.59) in

the case s = 0 possess the unique configuration of invariant line given by Config. 7.17b we

conclude that Proposition 3.37 is true also in the case ζ1 < 0 and ζ5 = 0.

b) The case ζ1 > 0. This implies λ̃ < 0 and we may set λ = −3w2
< 0. So we obtain

c = (v2 − 3w2 − 4m2)/6 and this leads to the family of systems

ẋ = (m + v − 3x)
[
9w2 + (−2m + v + 6x)2

]
/54,

ẏ =− y(2m2 + v2 + 3w2 − 12mx + 18x2 + 6y2)/6,
(3.89)

for which we examine two subcases: v ̸= 0 and v = 0. These conditions are governed by the

invariant polynomial ζ4 = −v2(13x2 + 3y2).

b.1) The subcase ζ4 ̸= 0. Then v ̸= 0 and via the transformation

x1 = −2

v
x +

2(m + w)

3v
, y1 = −2

v
y, t1 = tv2/4

after the additional setting of the parameter a = w/v ̸= 0 systems (3.89) can be brought to the

systems

ẋ = − 2x
[
(x − 1)2 + a2

]
, ẏ = y(−2 − 2a2 + 4x − 3x2 − y2). (3.90)

So we get a subfamily of systems (3.61) defined by the conditions u = −3 and s = 0. We

observe that systems (3.61) in the case s = 0 possess 2 configurations: Config. 7.18b if u + 1 < 0
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and Config. 7.19b if 1 + u > 0. However for systems (3.90) we have 1 + u = −2 < 0 and

therefore we obtain the unique configuration Config. 7.18b.

b.2) The subcase ζ4 = 0. Then v = 0 and since w ̸= 0 in this case we apply to systems (3.89)

the transformation

x1 = − 2

w
x − 2m

3w
, y1 = − 2

w
y, t1 = tw2/4

obtaining the following system

ẋ = − 2x(1 + x2), ẏ = −y(2 + 3x2 + y2).

which is contained in the family (3.63) for u = −3 and s = 0. Since for this system we have

D4 = 0, ζ1 > 0, ζ4 = 0 and D7 = −8 < 0, according to Proposition 3.26 we deduce that the

above system possesses the unique configuration given by Config. 7.20b.

c) The case ζ1 = 0. This implies λ̃ = 0 and considering (3.87) we obtain c = (v2 − 4m2)/6

and this leads to the systems

ẋ = (2m − v − 6x)2(m + v − 3x)/54,

ẏ =− y(2m2 + v2 − 12mx + 18x2 + 6y2)/6,

for which we calculate ζ4 = −v2(13x2 + 3y2).

c.1) The subcase ζ4 ̸= 0. Then v ̸= 0 and via the transformation

x1 = −2

v
x +

2(m + v)

3v
, y1 = −2

v
y, t1 = tv2/4

we arrive at the following system

ẋ = − 2(x − 1)2x, ẏ = y(−2 + 4x − 3x2 − y2)

which belongs to the family (3.63) for u = −3 and s = 0 already examined. We observe that

systems (3.63) in the case s = 0 possess 2 configurations: Config. 7.22b if u + 1 < 0 and Config.

7.23b if u + 1 > 0. However for the above system we have 1 + u = −2 < 0 and therefore we

obtain the unique configuration Config. 7.22b.

c.1) The subcase ζ4 = 0. Then v = 0 and we get the systems

ẋ = 2(m − 3x)3/27, ẏ = −y(m2 − 6mx + 9x2 + 3y2)/3

which via the transformation x1 = x − m/3, y1 = y, t1 = t will be brought to the homoge-

neous systems

ẋ = − 2x3, ẏ = −y(3x2 + y2).

This system belongs to the family (3.65) for u = −3 and s = 0 already examined and in the

case s = 0 it was determined that we have the unique configuration Config. 7.24b.

As all the cases are examined we deduce that Proposition 3.37 is proved.

3.2.8 The statement (A8)

We prove the following proposition.

Proposition 3.38. Assume that for a system (3.12) the conditions provided by the statement (A8) of

the Main Theorem are satisfied. Then this system possesses one of the configurations of the invariant

lines presented below if and only if the corresponding conditions are satisfied, respectively:
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D4 ̸= 0, χ5 ̸= 0, ζ3 < 0 ⇔ Config. 7.33b;

D4 ̸= 0, χ5 ̸= 0, ζ3 > 0 ⇔ Config. 7.34b;

D4 ̸= 0, χ5 = 0 ⇔ Config. 7.35b;

D4 = 0, ζ2 ̸= 0, ζ5 < 0 ⇔ Config. 7.36b;

D4 = 0, ζ2 ̸= 0, ζ5 > 0 ⇔ Config. 7.37b;

D4 = 0, ζ2 = 0 ⇔ Config. 7.38b.

Proof. As it was proved in the proof of the statement (A) of the Main Theorem the affine

invariant conditions provided by the statement (A8) for the family of systems (3.12) lead to

the conditions (3.43) in the case D4 ̸= 0 and to the conditions (3.44) in the case D4 = 0. So we

consider two cases: D4 ̸= 0 and D4 = 0.

1: The case D4 ̸= 0. Then for the family of systems (3.12) the conditions (3.43) are satisfied

and we arrive at the systems

ẋ =
1

64s2
(8sx − 3l)(8gsx + 3lg + 8cs) ≡ 1

64s2
L
(1)
1 L

(1)
2 ,

ẏ =
l

256s2
(9l2 + 12lgs + 32cs2 + l2s2)− l

64s
(21l − 8gs + ls2)x + lx2

+
1

64s2
(3l2s2 − 9l2 + 24lgs + 64cs2)y − 1

4s
(ls2 − 3l − 4gs)xy − sx3 − x2y − sxy2 − y3.

(3.91)

Next we investigate if the invariant lines L
(1)
1 = 0 and L

(1)
2 = 0 could coincide. So we calculate

Resx(L
(1)
1 , L

(1)
2 ) = 16s(3lg + 4cs) ≡ 16sµ(1)

and since s ̸= 0 we conclude that these two parallel invariant lines could coincide if and only

if µ(1) = 0. We determine that this condition is governed by the invariant polynomial χ5

because for systems (3.91) we have

χ5 = −(3lg + 4cs)(9 + s2)/18.

a) The case χ5 ̸= 0. Then µ(1) ̸= 0 and due to gs ̸= 0 via the transformation

x1 = − 4gs

µ(1)
x +

3lg

2µ(1)
, y1 = − 4gs

µ(1)
y − lgs

2µ(1)
, t1 =

[
µ(1)

]2

16g2s2
t,

after the additional setting of a new parameter a = − 4g2s

µ(1) we arrive at the systems

ẋ = ax(x − 1), ẏ = −ay + axy − sx3 − x2y − sxy2 − y3 (3.92)

for which we have χ5 = 2as(9 + s2)/9 ̸= 0, i.e. as ̸= 0.

We determine that systems (3.92) possess five distinct invariant affine straight lines

L1 : x = 0, L2 : x = 1, L3 : y = −sx, L4,5 : y = ±ix

and by Lemma 3.2 the line at infinity is of multiplicity 2. On the other hand these systems

possess the following six finite singularities:

M1(0, 0), M2,3

(
0,±

√
−a

)
, M4,5(1,±i), M6(1,−s).
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We observe that the singular points M2,3 could be real (if a < 0) or complex (if a > 0), but they

could not coincide due to a ̸= 0. We draw attention to the fact that all these finite singularities

are simple, because three finite singular points coalesced with infinite singularities.

Indeed considering Lemma 2.7 for systems (3.92) we calculate

µ0 = µ1 = µ2 = 0, µ3 = a3(sx + y)(x2 + y2) ̸= 0.

So by Lemma 2.7 (see statement (i)) considering the factorization of the invariant polynomial

µ3 we deduce that one real finite singular point coalesced with the real infinite singularity

N[1 : −s : 0] which becomes of the multiplicity (1, 1) (see Remark 1.4). And simultaneously

two complex finite singularities coalesced with the complex infinite singularities located at the

intersection of the complex lines y = ±ix with the line at infinity Z = 0 (however according

to Definition 1.2 of a configuration, we do not consider the complex singularities).

On the other hand all the invariant lines of systems (3.92) are fixed, except for the invariant

line L3 : y = −sx. Moreover we will determine according to our Convention (see page 8) the

position of this line with respect to the complex lines L4,5 : y = ±ix . Since s ̸= 0, according to

Remark 3.27 the invariant line y = −sx does not coincide with the projection of the complex

invariant lines y = ±ix on the plane (x, y).

We remark that the singular point M1(0, 0) is a point of intersection of four invariant lines:

L1, L3, L4 and L5 and that in the case a < 0 the real singular points M2,3

(
0,±

√
−a

)
, located

on the invariant line x = 0, are symmetric with respect to the origin of coordinates. As a result

we arrive at the following two distinct configurations of invariant lines for systems (3.92) with

as ̸= 0: Config. 7.33b if a < 0 and Config. 7.34b if a > 0.

On the other hand for systems (3.92) we calculate ζ3 = 2a3s2(9 + s2)2/81 and hence

sign (a) = sign (ζ3). So we deduce that systems (3.92) possess the configuration Config. 7.33b

if ζ3 < 0 and Config. 7.34b if ζ3 > 0.

b) The case χ5 = 0. This implies µ(1) = 0 and this means that the invariant line L
(1)
1

coalesces with L
(1)
2 and we have a double invariant line in the direction x = 0. The condition

µ(1) = 0 yields 3lg + 4cs = 0, i.e. c = −3lg/(4s). In this case systems (3.91) can be brought

via the transformation

x1 =
1

g
x − 3l

8gs
, y1 =

1

g
y +

l

8g
, t1 = g2 t,

to the family of systems

ẋ = x2, ẏ = xy − sx3 − x2y − sxy2 − y3 (3.93)

with s ̸= 0 (due to D4 ̸= 0). We determine that the above systems possess four distinct

invariant affine straight lines

L1,2 : x = 0, L3 : y = −sx, L4,5 : y = ±ix.

We observe that the line x = 0 as well as the line at infinity are of multiplicity 2 (see Lemma

3.2). On the other hand these systems possess the unique singularity M1(0, 0) which is of the

multiplicity six. Indeed considering Lemma 2.7 for systems (3.93) we calculate

µ0 = µ1 = µ2 = 0, µ3 = (sx + y)(x2 + y2) ̸= 0, µ4 = µ5 = µ6 = µ7 = µ8 = µ9 = 0.

Therefore by Lemma 2.7 (see statement (ii)) the above finite singularity has multiplicity six.

On the other hand by the same arguments which we provided for systems (3.92) we deduce

that the infinite singularity N[1 : −s : 0] is of the multiplicity (1, 1).
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So taking into account the condition s ̸= 0 and Remark 3.27 as well as the fact that all

the invariant affine lines of systems (3.93) intersect at the same singular point M1(0, 0) (of

multiplicity 6) we arrive at the unique configuration Config. 7.35b.

2: The case D4 = 0. Then for the family of systems (3.12) the conditions (3.44) are satisfied

and we arrive at the systems

ẋ =
1

4
(g − 2m + 2x)(2c − g2 + 2gm + 2gx) ≡ 1

4
L
(2)
1 L

(2)
2 ,

ẏ =
1

4
(4c − 3g2 + 8gm − 4m2)y + 2mxy − x2y − y3.

(3.94)

We calculate

Resx(L
(2)
1 , L

(2)
2 ) = 4(c − g2 + 2gm) ≡ 4µ(2)

and clearly the parallel invariant lines L
(1)
1 = 0 and L

(1)
2 = 0 could coincide if and only if

µ(2) = 0.

On the other hand for systems (3.94) we have ζ2 = 288µ(2) and therefore the condition

µ(2) = 0 is equivalent to ζ2 = 0.

a) The case ζ2 ̸= 0. Then since g ̸= 0 (due to χ̃1 = 2gx2y/3 ̸= 0) via the transformation

x1 = − g

µ(2)
x − g(g − 2m)

2µ(2)
, y1 = − g

µ(2)
y, t1 =

[
µ(2)

]2

g2
t,

after the additional setting of a new parameter a = − g2

µ(2) we arrive at the systems

ẋ = ax(x − 1), ẏ = −ay + axy − x2y − y3.

So we get a subfamily of systems (3.92) defined by the condition s = 0 and considering the

investigation of systems (3.92) and Remark 3.27 we deduce that the above systems possess the

configuration Config. 7.36b if a < 0 and Config. 7.37b if a > 0.

We observe that in the case s = 0 the invariant polynomial ζ3 vanishes because it contains

as a factor s2. In this case for determining the sign of the parameter a we apply the invariant

ζ5 that for the above systems has the value ζ5 = −144a3. Hence we have sign (a) = −sign (ζ5)

and consequently we get the configuration Config. 7.36b if ζ5 > 0 and Config. 7.37b if ζ5 < 0.

b) The case ζ2 = 0. Then µ(2) = 0 and this means that the invariant line L
(2)
1 coalesces with

L
(2)
2 and we have a double invariant line in the direction x = 0. The condition µ(2) = 0 yields

c = g(g − 2m) and then systems(3.94) via the transformation

x1 =
x

g
+

g − 2m

2g
, y1 =

y

g
y, t1 = g2 t,

can be brought to the system

ẋ = x2, ẏ = xy − x2y − y3,

which belongs to the family (3.93) defined by the condition s = 0. Considering Remark 3.27

we deduce that the above system possesses the configuration Config. 7.38b.

Since all the cases are examined we conclude that Proposition 3.38 is proved.
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3.2.9 The statement (A9)

We prove the following proposition.

Proposition 3.39. Assume that for a system (3.12) the conditions provided by the statement (A9) of

the Main Theorem are satisfied. Then this system possesses one of the configurations of the invariant

lines presented below if and only if the corresponding conditions are satisfied, respectively:

D4 ̸= 0, ζ9 < 0 ⇔ Config. 7.39b;

D4 ̸= 0, ζ9 > 0 ⇔ Config. 7.40b;

D4 = 0, ζ9 < 0 ⇔ Config. 7.41b;

D4 = 0, ζ9 > 0 ⇔ Config. 7.42b;

Proof. According to the proof of the statement (A) of the Main Theorem the affine invariant

conditions provided by the statement (A9) for the family of systems (3.12) lead either to the

conditions (3.47) in the case D4 ̸= 0 or to the conditions (3.49). So we examine these two cases.

1: The case D4 ̸= 0. Then we have the conditions (3.47) and in this case we arrive at the

systems

ẋ = cx − 3cl

8s
,

ẏ =
l

256s2
(9l2 + 32cs2 + l2s2)− l2

64s
(21 + s2) x +

1

64s2
(3l2s2 − 9l2 + 64cs2) y

+ lx2 − l

4s
(s2 − 3) xy − sx3 − x2y − sxy2 − y3.

For these systems we have

χ̃2 = 4cx3(sx + y)(x2 + y2)
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2

]
/3, D4 = 2304s(9 + s2)

and therefore the condition χ̃2D4 ̸= 0 implies cs ̸= 0. Then the above systems could be

brought via the transformation

x1 = x − 3l

8s
, y1 = y +

l

8
, t1 = t

to the following family of systems

ẋ = cx, ẏ = cy − sx3 − x2y − sxy2 − y3 (3.95)

with cs ̸= 0. We determine that systems (3.95) possess four distinct invariant affine straight

lines

L1 : x = 0, L2 : y = −sx, L3,4 : y = ±ix.

Moreover the line at infinity has multiplicity 3 (see Lemma 3.2, statement (iii)). On the other

hand these systems possess the following three singularities:

M1(0, 0), M2,3

(
0,±

√
c
)

and the singular points M2 and M3 could be real (if c > 0) or complex (if c < 0). We draw

attention to the fact that all these finite singularities are simple, because six finite singularities

coalesced with infinite singularities.
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Indeed considering Lemma 2.7 for systems (3.95) we calculate

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = −c3(sx + y)2(x2 + y2)2 ̸= 0.

So by Lemma 2.7 (see statement (i)) considering the factorization of the invariant polynomial

µ6 we deduce that two real finite singular point coalesced with the real infinite singularity

N1[1 : −s : 0] and this infinite singularity becomes of the multiplicity (2, 1) (see Remark

1.4), whereas four complex finite singularities coalesced with complex singularities at infinity.

More exactly, two of them with N[1 : +i : 0] and other two with N̄[1 : −i : 0]. However

according to Definition 1.2 this fact is irrelevant for a configuration.

So taking into account our Convention (see page 8) and the fact that all the invariant affine

lines of systems (3.95) intersect at the same singular point M1(0, 0) (of multiplicity 6) we arrive

at the following two configurations:

Config. 7.39b ⇔ c > 0; Config. 7.40b ⇔ (c < 0).

On the other hand for systems (3.95) we calculate

ζ9 = −2cx2
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2

]2
/27

and hence sign (ζ9) = −sign (c). Therefore we get Config. 7.39b if ζ9 < 0 and Config. 7.40b if

ζ9 > 0.

2: The case D4 = 0. Then s = 0 and in this case the conditions (3.49) hold for systems

(3.12). In this case we arrive at the systems

ẋ = − cm + cx, ẏ = (c − m2)y + 2mxy − x2y − y3

applying the transformation (x, y, t) 7→ (x + m, y, t) we arrive at the systems (3.95) with s = 0.

Thus considering our Convention (see page 8) and the sign of the invariant polynomial ζ9

we arrive at the configuration of invariant lines given by Config. 7.41b if ζ9 < 0 and by Config.

7.42b if ζ9 > 0. This completes the proof of Proposition 3.39.

Since all the cases provided by the statement (A) are examined we conclude that the

statement (B) of the Main Theorem is proved completely.

3.3 Geometric invariants and the proof of the statement (C)

In this subsection we complete the proof of the Main Theorem by showing that all 42 con-

figurations of invariant lines we constructed are non-equivalent according to Definition 1.3.

For this we define the invariants that split the configurations of this family into the 42 dis-

tinct ones. We would like these invariants to be among those best suited for describing the

geometric phenomena that are specific to this class.

The basic algebraic-geometric definitions of use here are the notion of an integer valued

r-cycle and its type i.e. we take G = Z in the Definitions 1.5 and 1.6 and we have:

Definition 3.40. Let V be an irreducible algebraic variety of dimension n over a field K. A

cycle of dimension r or r-cycle on V is a formal sum ∑W m(W)W where W is a subvariety of V

of dimension r which is not contained in the singular locus of V, m(W) ∈ Z, and only a finite

number of m(W)’s are non-zero. We call degree of an r-cycle the sum ∑W . An (n − 1)-cycle is

called a divisor.
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Definition 3.41. We call type of an r-cycle the set of all ordered couples (n1, n2) where n1 is

a coefficient, n1 = m(W) appearing in the r − cyle and n2 is the number of W’s in the cycle

whose coefficient is m(W).

We denote the type of an r-cycle C by T (C). We use the following notations:

CS =

{
(S)

∣∣∣∣
(S) is a system (2.1) such that gcd(P(x, y), Q(x, y)) = 1

and max
(

deg(P(x, y)), deg(Q(x, y))
)
= 3

}
;

CSL =

{
(S) ∈ CS

∣∣∣∣
(S) possesses at least one invariant affine line or

the line at infinity with multiplicity at least two

}
.

Notation 3.42. Let

P̃(X, Y, Z) = p0(a)Z2 + p1(a, X, Y)Z + p2(a, X, Y);

Q̃(X, Y, Z) = q0(a)Z2 + q1(a, X, Y)Z + q2(a, X, Y);

C̃(X, Y, Z) = YP̃(X, Y, Z)− XQ̃(X, Y, Z);

σ(p, q) = {w ∈ R
2)| p(w) = q(w) = 0};

DS(P̃, Q̃) = ∑
w∈σ(P̃,Q̃)

Iw(P̃, Q̃)w;

DS(C̃, Z) = ∑
w∈{Z=0}

Iw(C̃, Z)w if Z ∤ C̃(X, Y, Z);

DS(P̃, Q̃; Z) = ∑
w∈{Z=0}

Iw(P̃, Q̃)w;

D̂S(P̃, Q̃, Z) = ∑
w∈{Z=0}

(
Iw(C̃, Z), Iw(P̃, Q̃)

)
w,

where Iw(F, G) is the intersection number (see [19]) of the curves defined by homogeneous

polynomials F, G ∈ C[X, Y, Z] and deg(F), deg(G) ≥ 1.

The set σ(p, q) is thus formed by the finite (or affine) singularities of a polynomial system

defined by p(x, y), q(x, y). The multiplicity of a finite singular point w is the number Iw(p, q)

which is the intersection number of the affine curves defined by p and q. The total multiplicity

of a point at infinity, i.e. located on Z = 0 is Iw(P̃, Q̃) and it is the sum Iw(C̃, Z) + Iw(P̃, Q̃)

of the two multiplicities appearing in the last divisor above. A complex projective line uX +

vY + wZ = 0 in P2(C) is invariant for a system (S) if it either coincides with Z = 0 or it is the

projective completion of an invariant affine line ux + vy + w = 0.

Notation 3.43. Let (S) ∈ CSL. Let us denote

IL(S) =

{
l

∣∣∣∣
l is a line in P2(C) such

that l is invariant for (S)

}
;

M(l) = the multiplicity of the invariant line l of (S).

In defining M(l) we assume, of course, that (S) has a finite number of invariant lines.

Remark 3.44. We note that the line L∞ : Z = 0 is included in IL(S) for any (S) ∈ CSL.

Assuming we have a finite number of invariant lines, let li : fi(x, y) = ax + by + c = 0,

i = 1, . . . , k, be all the distinct invariant affine lines (real or complex) of a system (S) ∈ CSL.

Let Li : Fi(X, Y, Z) = aX + bY + cZ = 0 be the complex projective completion of li. Let Mi

be the multiplicity of the line Li and let M be the multiplicity of the line at infinity Z = 0.
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Notation 3.45.

G : ∏
i

Fi(X, Y, Z)Mi ZM = 0; SingG = {w ∈ G | w is a singular point of G} ;

m(w) = the multiplicity of the point w, as a point of G.

We call G the total curve.

Suppose that a system (2.1) possesses a finite number of invariant lines L1, . . . Lk, including

the line at infinity. Sometimes it is convenient to consider in our discussion a number of

these invariant lines say Li1 , . . . Lil
of a system (S). We call marked system (S) by the lines

Li1 , . . . Lil
the object denoted by (S, Li1 , . . . Lil

) of the system (S) in which we singled out the

lines Li1 , . . . Lil
. We shall consider invariants attached to such marked systems.

Because in this paper we are concerned with triplets of parallel lines, the affine plane clearly

plays an important role. This needs to be reflected in our choice of invariants. We now define

an invariant that captures the most basic geometric distinctions of the configurations in this

family:

Definition 3.46. Let M be the ordered couple (MAff , M(l∞)), where MAff is the maximum

multiplicity of the invariant affine lines of the system and M(l∞) is the multiplicity of the line

at infinity. Clearly M is an invariant.

Using M we split the 42 configurations in 6 classes: three with M(l∞) = 1 and three with

M(l∞) > 1.

We describe now the way the invariant M captures the geometry of the configurations

related to the parallel lines by letting M run through all its six possible values: the generic

case and five limiting cases:

M = (1, 1) This is the generic case with 3 (distinct) parallel lines;

M = (2, 1) is a first limit case of the preceding one, where two of the three parallel lines

coalesced yielding just two parallel lines, one of them double;

M = (3, 1) is a second limit case where the three parallel lines coalesced yielding a triple

line;

M = (1, 2) is a third limit case where a line of the triplet coalesced with the line at infinity

yielding a double line at infinity;

M = (1, 3) is a fourth limit case where two lines of the triplet disappeared at infinity

yielding a triple line at infinity;

M = (2, 2) is a fifth limit case when one one line of the triplet went to infinity and the

other two lines of the triplet coalesced.

It is clear that we also need to define invariants that relate to the real singularities of the

systems located on the configurations. We first observe that all the real singularities of the

systems are located on the invariant lines of the configurations, occasionally even on a single

line.

We encapsulate in two zero-cycles CR

Sing = ∑w ν(w)w and CR
G = ∑w m(w)w the multiplicity

properties of the real singularities of the systems located on the configurations. In the first

cycle we denoted by ν(w) the multiplicity of the real singular point w and in the second cycle

we denoted by m(w) the multiplicity of the real singular point w this time regarded as a

simple or multiple point of the total curve G. We denote their respective types by T R

Sing and

T R

G . In view of the geometry of the systems we actually only need to consider the restriction

of these two invariants on the affine plane and we denote them by T R,aff
Sing and T R,aff

G . If anyone

of these two invariants, say T R,aff
G yields the same value for two or more configurations, to be
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Figure 3.1: Diagram of non-equivalent configurations

able to distinguish we shall need to restrict its value to a single affine line L and in this case

the resulting invariant will be denoted by T R

G,L.

Assume that for a marked system (S, Lr, Lc, L̄c) with a real invariant line Lr and a complex

invariant line Lc together with its conjugate line L̄c these three invariant lines intersect at the

same real point which could be finite or infinite.

Considering our Convention (see page 8) we define an invariant T fin
L for such marked

systems (S, Lr, Lc, L̄c) in the case when the intersection point is finite:

T fin
L = 1 if and only if the real invariant line Lr coincides with the line R(Lc, L̄c) : y = ax+ c
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Figure 3.1 (cont.): Diagram of non-equivalent configurations

defined in our Convention on page 6;

T fin
L = 0 if and only if the the real invariant line Lr does not coincide with R(Lc, L̄c).

Let us now consider the generic case M = (1, 1) which is the more complex one. This class

contains 30 configurations i.e. all Config. 7.jb with j ≤ 32 with two exceptions: Config. 7.12b and

Config. 7.22b. To distinguish the corresponding configurations the first one of the invariants we

use is T R,aff
Sing and its values for this class are: T R,aff

Sing : {(1, 1)}, {(1, 1), (2, 1)}, {(1, 3)}, {(1, 5)}.

For the second case we then only need to apply T R

G,Lm
while for the first and last case to

distinguish further the configurations we need to apply first T R

G,Lm
, where Lm is the middle

line in the triplet of parallel lines and secondly the invariant T fin
L . In the third case, i.e.

T R,aff
Sing = {(1, 3)} we first use T R,aff

G which has three values and for two of them T R

G,Lm
together

with T fin
L distinguish the configurations. For the value T R,aff

G = {(1, 1), (2, 1), (3, 1)} we need

a new invariant which we denote by T≺ and define as follows:

We first observe that for all six configurations occurring for T R,aff
G = {(1, 1), (2, 1), (3, 1)}

all real affine singularities are located on a single real affine line and they are three in number

determining a closed interval on this line. Based on this observation we introduce this new
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invariant. We consider these three real singular points and their associated multiplicities as

simple or multiple points of the curve G. We first note that the maximum multiplicity of the

three points in all six cases is either 3 or 4 and this maximum multiplicity corresponds to a

uniquely determined point. We then list the multiplicities m(w) in an ordered sequence in

the following way. If we have an end point of the segment determined by the three points

which is of maximum multiplicity, we initiate the sequence with its multiplicity and we folow

with the multiplicity of the middle point and end with the multiplicity of the other end point

of the segment. If none of the end points has maximum multiplicity then we start with

the multiplicity of the end point of maximum multiplicity among the two and follow with

the multiplicity of the middle point and finally with the multiplicity of the other end point.

In case the two end points have equal multiplicity we start with the common multiplicity

followed by the multiplicity of the middle point and end with the common multiplicity of the

end points. This order is clearly preserved as the multiplicities are preserved. So this is an

invariant which we denote by T≺. The case T R,aff
G = {(1, 1), (2, 1), (3, 1)} is the only one where

this invariant occurs. For the remaining values of M to distinguish the configurations the two

invariants T R,aff
Sing and T fin

L do the job as we see in the bifurcation diagram for the configurations

which gives all the explicit calculations of the invariants (see Figure 5).
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1 Introduction

In this paper, we consider the diffusive Holling–Tanner predator–prey model:



































ut − d1∆u = au − u2 −
uv

m + u
, x ∈ Ω, t > 0,

vt − d2∆v = bv −
v2

γu
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

(1.1)

Here u and v are the density of prey and predator, respectively, Ω ⊂ R
N is a bounded domain

with smooth boundary ∂Ω, ν is the outward unit normal vector on ∂Ω, and the parameters

d1, d2, a, b, m, γ are positive constants. The initial data u0 and v0 are C1(Ω) functions satisfying

∂νu0 = ∂νv0 = 0 on ∂Ω. The model describes real ecological interactions of various popula-

tions such as lynx and hare, sparrow and sparrow hawk (cf. [7, 13, 15]), and the Neumann

boundary condition means that no species can pass across the boundary ∂Ω. We note that

problem (1.1) has a unique positive global solution, see the Appendix for the proof.
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It is easy to verify that system (1.1) has a unique positive equilibrium E∗ = (u∗, v∗), where

u∗ =
1

2

[

a − m − bγ +
√

(a − m − bγ)2 + 4am

]

and v∗ = bγu∗.

System (1.1) had been extensively investigated, see [1, 2, 4, 5, 9–11] and the references

therein. In particular, Peng and Wang [10], Chen and Shi [1], Duan, Niu and Wei [2], and

Qi and Zhu [11] proved some stability results that are collected as follows.

Theorem 1.1. Suppose d1, d2, a, m, b, γ are positive constants. Then the following statements hold.

(a) (See [10]). The positive equilibrium E∗ is locally asymptotically stable if m2 + 2(a + bγ)m +

a2 − 2abγ > 0.

(b) (See [1]). The positive equilibrium E∗ is globally asymptotically stable if m > bγ.

(c) (See [2]). The positive equilibrium E∗ is globally asymptotically stable if u∗ ≥ m and m ≥ a− u∗.

(d) (See [11]). limt→+∞(u(x, t), v(x, t)) = E∗ uniformly on Ω if d1 = d2 and γ−1
>

a
m+a .

Motivated by the above works in [1,2,10,11], in the present paper, we first study the global

stability of the positive equilibrium E∗, and obtain the following result.

Theorem 1.2. Suppose d1, d2, a, m, b, γ are positive constants. Then the positive equilibrium E∗ is

globally asymptotically stable if m > max{M1, M2}, where

M1 =
abγ

a + bγ
and M2 =

1

2

[

(bγ − 2a)+ +
√

bγ(bγ − 2a)+

]

.

Here s+ = max{0, s}.

Obviously, M1, M2 < bγ. Then Theorem 1.2 is an improvement to Theorem 1.1(b). Since

a − u∗ = v∗
m+u∗

= bγu∗
m+u∗

, we see that a − u∗ < m ⇔ bγu∗ < m(m + u∗), so a − u∗ < m ⇔

m > M1 according to Lemma 2.1(a). On the other hand, since the condition m ≤ u∗ implies
am

a+2m < u∗, it also implies m > M2 because am
a+2m < u∗ ⇔ m > M2 according to Lemma 2.1(b).

Thus, Theorem 1.2 is also an improvement to Theorem 1.1(c).

Note that for fixed a, b and m, every global result in Theorems 1.1 and 1.2 excludes the

case where γ is large. In this paper, we prove the following result that covers the case.

Theorem 1.3. Suppose d1, d2, a, m, b, γ are positive constants with d1 = d2, b > a, m > M1 = abγ
a+bγ ,

and

2am

[

a + 2m +
2m(b − a)

m + a
γ

]−1

< a − m − bγ +
√

(a − m − bγ)2 + 4am. (1.2)

Then the positive equilibrium E∗ is globally asymptotically stable.

Remark 1.4. Let m > a and b >
2am
m−a . Then m > M1 and (1.2) hold for any sufficiently large γ.

Indeed, we have

lim
γ→+∞

γ

[

a − m − bγ +
√

(a − m − bγ)2 + 4am −
2am

a + 2m + 2m(b−a)
m+a γ

]

= lim
γ→+∞

[

4amγ
√

(a − m − bγ)2 + 4am − (a − m − bγ)
−

2amγ

a + 2m + 2m(b−a)
m+a γ

]

=
a(m − a)

b(b − a)

(

b −
2am

m − a

)

> 0.

Then, as a consequence of Theorem 1.3, we obtain immediately
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Corollary 1.5. Suppose d1, d2, a, m, b, γ are positive constants with d1 = d2, m > a and b >
2am
m−a .

Then there exists a positive constant γ0 depending only on b, a, m such that E∗ is globally asymptotically

stable for any γ ≥ γ0.

The steady-states of system (1.1) satisfy















−d1∆u = au − u2 − uv
m+u , x ∈ Ω,

−d2∆v = bv − v2

γu , x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω.

(1.3)

Theorems 1.1–1.3 obviously imply some conditions for the non-existence of positive non-

constant solutions of system (1.3), which are independent of the coefficients d1 and d2. In [9],

Peng and Wang gave some conditions for the non-existence of positive non-constant solutions

of system (1.3), which depend on d1 and d2, see [9, Theorems 3.1 and 3.5]. For example, they

proved that system (1.3) has no positive non-constant solution if d1 and d2 are sufficiently

large, see [9, Theorems 3.1]. By using a different approach from those in literature (see e.g.

[8, 10]), we prove the following result on the non-existence of positive non-constant solutions.

Theorem 1.6. Suppose m ≥ a. Then system (1.3) has no positive non-constant solution.

We point out that the approach used to show Theorem 1.6 can be applied to some inter-

esting models to discuss non-existence of positive non-constant solutions, for instance, the

steady-state Sel’kov model (see [12]):











− θ∆u = λ(1 − uvp), x ∈ Ω,

− ∆v = λ(uvp − v), x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω,

(1.4)

where θ, λ, p are positive constants, which had been studied in [6, 8, 14]. For the case when

0 < p ≤ 1, Peng [8] proved the non-existence of positive non-constant solutions of system

(1.3) if θ is sufficiently large. In the present paper, we remove the restriction on θ and obtain

Theorem 1.7. Suppose θ, λ, p are positive constants. If 0 < p ≤ 1, then system (1.4) has no positive

non-constant solution.

The rest of this paper is organized as follows. In Section 2, we will prove Theorems 1.2

and 1.3 by using Lyapunov function method. In Section 3, we will prove Theorems 1.6 and

1.7 by a novel approach. Finally, our conclusions are given in Section 4.

2 Proofs of Theorems 1.2 and 1.3

We begin with the following lemma.

Lemma 2.1. The following statements hold.

(a) m(m + u∗) > bγu∗ if and only if m > M1 = abγ
a+bγ .

(b) am
a+2m < u∗ if and only if m > M2 = 1

2

[

(bγ − 2a)+ +
√

bγ(bγ − 2a)+
]

, where s+ =

max{0, s}.
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Proof. As for the conclusion (a), it it clear to see that the case where m ≥ bγ is trivial. We now

suppose m < bγ. For the case, if m(m + u∗) > bγu∗, i.e., m2
> (bγ − m)u∗, then

2m2 − (bγ − m)(a − m − bγ) > (bγ − m)
√

(a − m − bγ)2 + 4am, (2.1)

and then taking the square on the two sides of (2.1) yields m >
abγ

a+bγ . Note that the above

reasoning process is also inverse since m >
abγ

a+bγ implies

2m2 − (bγ − m)(a − m − bγ) = m2 + (bγ)2 + ma − abγ

> mbγ + ma − abγ

> 0.

Thus the conclusion (a) is valid.

As for the conclusion (b), a simple calculation gives

(a + 2m)u∗ − am > 0 ⇔ bγ <
2(a + m)2

a + 2m

⇔ 2m2 + 2(2a − bγ)m + a(2a − bγ) > 0.

Solving the latter gives m > M2. This completes the proof of the lemma.

Proof of Theorem 1.2. Let (u, v) be a positive solution of system (1.1). Adapting the Lyapunov

function in [2, 3], we define

V(u, v) =
∫ u

u∗

η − u∗

ηg(η)
dη +

γu∗

v∗

∫ v

v∗

η − v∗
η

dη, where g(u) =
u

m + u
;

W(t) =
∫

Ω

V(u(x, t), v(x, t))dx.

(2.2)

Denote g1(u, v) = au − u2 − g(u)v and g2(u, v) = bv − v2

γu . Some calculations give

∫

Ω

Vu(u, v)utdx =
∫

Ω

u − u∗

ug(u)
[d1∆u + g1(u, v)]dx

= − d1

∫

Ω

[u∗(g(u) + ug′(u))− u2g′(u)]
|∇u|2

[ug(u)]2
dx

+
∫

Ω

u − u∗

g(u)

[

u∗ − u +
( g(u∗)

u∗
−

g(u)

u

)

v∗ +
g(u)

u
(v∗ − v)

]

dx

= − d1

∫

Ω

(u∗ − m)u2 + 2mu∗u

(m + u)2

|∇u|2

[ug(u)]2
dx −

∫

Ω

(u − u∗)(v − v∗)

u
dx

−
∫

Ω

(u − u∗)2

g(u)

[

1 −
bγu∗

(m + u)(m + u∗)

]

dx (note that v∗ = bγu∗),

and
∫

Ω

Vv(u, v)vtdx =
γu∗

v∗

∫

Ω

v − v∗
v

[d2∆v + g2(u, v)]dx

= −γd2u∗

∫

Ω

|∇v|2

v2
dx +

u∗

v∗

∫

Ω

(v − v∗)

(

v∗
u∗

−
v

u

)

dx

= −γd2u∗

∫

Ω

|∇v|2

v2
dx +

u∗

v∗

∫

Ω

(v − v∗)

(

v∗
u∗

−
v∗
u

+
v∗
u

−
v

u

)

dx

= −γd2u∗

∫

Ω

|∇v|2

v2
dx +

∫

Ω

(v − v∗)(u − u∗)

u
dx −

u∗

v∗

∫

Ω

(v − v∗)2

u
dx.
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It follows that

W ′(t) = − d1

∫

Ω

(u∗ − m)u2 + 2mu∗u

(m + u)2

|∇u|2

[ug(u)]2
dx − γd2u∗

∫

Ω

|∇v|2

v2
dx

−
∫

Ω

(u − u∗)2

g(u)

[

1 −
bγu∗

(m + u)(m + u∗)

]

dx −
u∗

v∗

∫

Ω

(v − v∗)2

u
dx

≤ − d1

∫

Ω

(u∗ − m)u2 + 2mu∗u

(m + u)2

|∇u|2

[ug(u)]2
dx − γd2u∗

∫

Ω

|∇v|2

v2
dx

−

[

1 −
bγu∗

m(m + u∗)

]

∫

Ω

(u − u∗)2

g(u)
dx −

u∗

v∗

∫

Ω

(v − v∗)2

u
dx.

(2.3)

We now assume that m > max{M1, M2}. Then, 1 − bγu∗

m(m+u∗)
> 0 by Lemma 2.1(a), and

am
a+2m < u∗ by Lemma 2.1(b), so there exists a constant ε > 0 such that

(a + ε)m

a + ε + 2m
< u∗. (2.4)

On the other hand, from (1.1), we have

ut − d1∆u ≤ u(a − u), ∀(x, t) ∈ Ω × (0,+∞).

It follows from the comparison principle that lim sup
t→+∞

max
x∈Ω

u(x, t) ≤ a, and hence there exists

some T > 0, such that

u(x, t) < a + ε, ∀(x, t) ∈ Ω × [T,+∞). (2.5)

Combining (2.4) and (2.5) gives

(u∗ − m)u2(x, t) + 2mu∗u(x, t) = u(x, t)[u(x, t) + 2m]

[

u∗ −
mu(x, t)

u(x, t) + 2m

]

> u(x, t)[u(x, t) + 2m]

[

u∗ −
m(a + ε)

a + ε + 2m

]

> 0, ∀(x, t) ∈ Ω × [T,+∞),

therefore, W ′(t) ≤ 0 for all t ≥ T, and equality holds if and only if (u, v) = E∗, so E∗ is

globally attractive. Since m > M1 (i.e., m(a + bγ) > abγ), E∗ is locally asymptotically stable

according to Theorem 1.1(a), so is globally asymptotically stable. The proof of the theorem is

complete.

We now are ready to show Theorem 1.3, whose proof is based on the following lemma.

Lemma 2.2. Suppose d1 = d2 and b > a. Then

lim sup
t→+∞

max
x∈Ω

u(x, t) ≤ a

(

1 +
b − a

m + a
γ

)−1

.

Proof. Like in [11], we set ϕ = v
u . Then a simple calculation gives

ϕt =
1

u
vt −

v

u2
ut, ∇ϕ =

1

u
∇v −

v

u2
∇u,
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and

∆ϕ =
1

u
∆v −

v

u2
∆u −

2

u
∇u · ∇ϕ,

so that

ϕt −
2d1

u
∇u · ∇ϕ − d1∆ϕ = ϕ

(

b − a −
1

γ
ϕ + u +

v

m + u

)

≥ ϕ

(

b − a −
1

γ
ϕ

)

,

therefore, from the comparison principle, for any 0 < ε ≪ 1 there exists some constant Tε
1 ≫ 1

such that

ϕ(x, t) ≥ (b − a)γ − ε > 0, ∀(x, t) ∈ Ω × [Tε
1,+∞). (2.6)

By a similar argument to (2.5), there exists some constant Tε
2 > Tε

1 such that

u(x, t) < a + ε, ∀(x, t) ∈ Ω × [Tε
2,+∞). (2.7)

Combining (2.6), (2.7) and (1.1)1, we obtain

ut − d1∆u ≤ u

[

a −

(

1 +
(b − a)γ − ε

m + a + ε

)

u

]

, ∀(x, t) ∈ Ω × [Tε
2,+∞).

This implies lim supt→+∞
maxx∈Ω

u(x, t) ≤ a

1+ (b−a)γ−ε
m+a+ε

. Then, letting ε → 0 gives the desired

result.

Proof of Theorem 1.3. We adapt the same Lyapunov function as that in (2.2).

From Lemma 2.2 and (1.2), there exist some constants 0 < ε ≪ 1 and T ≫ 1 such that

u(x, t) ≤ a

[

1 +
(b − a)γ − ε

m + a

]−1

, ∀(x, t) ∈ Ω × [T, ∞), (2.8)

and

2am

{

a + 2m +
2m[(b − a)γ − ε]

m + a

}−1

< a − m − bγ +
√

(a − m − bγ)2 + 4am

= 2u∗.

(2.9)

Since F(x) = x/(2m + x) is increasing in [0, ∞), it follows from (2.8) and (2.9) that

mu(x, t)

2m + u(x, t)
≤

am

a + 2m + 2m[(b−a)γ−ε]
m+a

< u∗, ∀(x, t) ∈ Ω × [T,+∞).

That is,

(u∗ − m)u2 + 2muu∗ = u
[

u∗(u + 2m)− mu
]

> 0, ∀(x, t) ∈ Ω × [T,+∞).

Combining this and (2.3) with d1 = d2 yields W ′(t) ≤ 0 for all t ≥ T, and equality holds if and

only if (u, v) = E∗, so E∗ is globally attractive. Since m > M1, E∗ is locally asymptotically stable

according to Theorem 1.1(a), so is globally asymptotically stable. The proof is complete.
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3 Proofs of Theorems 1.6 and 1.7

We first show Theorem 1.6.

Proof of Theorem 1.6. Assume that (u, v) is a positive solution of system (1.3). Multiplying

(1.1)1 by [(a − u)(m + u)− v] and integrating by parts over Ω, we have

d1

∫

Ω

∇u · ∇[(a − u)(m + u)− v]dx =
∫

Ω

u

m + u
[(a − u)(m + u)− v]2dx,

that is,

d1

∫

Ω

(a − m − 2u)|∇u|2dx − d1

∫

Ω

∇u · ∇vdx =
∫

Ω

u

m + u
[(a − u)(m + u)− v]2dx. (3.1)

Multiplying (1.1)2 by (u − v
bγ ) and integrating over Ω, we obtain

d2

∫

Ω

∇u · ∇vdx −
d2

bγ

∫

Ω

|∇v|2dx =
∫

Ω

bv

u

(

u −
v

bγ

)2
dx. (3.2)

We first multiply (3.2) by d1/d2, and then add the resulting equation and (3.1) to get

d1

∫

Ω

(a − m − 2u)|∇u|2dx −
d1

bγ

∫

Ω

|∇v|2dx

−
∫

Ω

{

u

m + u
[(a − u)(m + u)− v]2 +

d1bv

d2u

(

u −
v

bγ

)2
}

dx = 0.

(3.3)

Since m ≥ a, the first term on the left hand side of (3.3) is non–positive and hence u and v

must be constants. The proof is complete.

Proof of Theorem 1.7. Assume that (u, v) is a positive solution of system (1.4). Multiplying (1.4)

by ( 1
u − vp) and (uvp−1 − 1), respectively, and integrating by parts over Ω, we have

−θ
∫

Ω

|∇u|2

u2
dx − θ

∫

Ω

∇u · ∇vpdx = λ
∫

Ω

u
( 1

u
− vp

)2
dx, (3.4)

and

(p − 1)
∫

Ω

uvp−2|∇v|2dx +
1

p

∫

Ω

∇u · ∇vpdx = λ
∫

Ω

v(uvp−1 − 1)2dx. (3.5)

We first multiply (3.5) by pθ, and then add the resulting equation and (3.4) to obtain

∫

Ω

[

θ
|∇u|2

u2
+ θp(1 − p)uvp−2|∇v|2

]

dx + λ
∫

Ω

[

u
( 1

u
− vp

)2
+ pθv(uvp−1 − 1)2

]

dx = 0.

Consequently, u and v must be constants if p ∈ (0, 1]. The proof is complete.

Remark 3.1. In [14, Remark 2.1], the authors pointed out that it is difficult to expect the

bifurcation of (1.4) near (u, v) = (1, 1) if 0 < p ≤ 1 since the constant positive solution

(u, v) = (1, 1) is uniformly asymptotically stable for the corresponding reaction–diffusion

system to (1.4) for the case. Our Theorem 1.7 shows that no bifurcation will happen for

system (1.4) provided that 0 < p ≤ 1.
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4 Conclusions

In this paper, we prove some new global stability results. In particular, the works by Chen

and Shi [1] and Duan, Niu and Wei [2], mentioned above, have been improved. In addition,

we derive a non-existence result of the positive non-constant steady-states for system (1.1) by

using a different approach from those in literature. By virtue of the approach, we also obtain

a complete understanding of the steady-state Sel’kov model for the case when 0 < p ≤ 1.
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Appendix

In this part, we will only prove the global existence of positive solutions of problem (1.1)

since the proof to uniqueness is standard. To this end, we will use the regularization method.

In what follows, we assume that the initial data u0 and v0 are C1(Ω) functions satisfying

u0, v0 > 0 on Ω and ∂νu0 = ∂νv0 = 0 on ∂Ω.

Let ε ∈ (0, 1) be a constant. Consider the regularized problem:



































ut − d1∆u = au − u2 −
uv

m + u
, x ∈ Ω, t > 0,

vt − d2∆v = bv −
v2

γ(u + ε)
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(P)ε

From the standard theory of parabolic equations, system (P)ε has a unique nonnegative global

solution (uε, vε) for any given ε ∈ (0, 1).

Let u(t) be a solution of the following problem:











du

dt
= au − u2, t > 0,

u(0) = max
Ω

u0(x) =: M > 0.

It is easy to check that u(t) = eat

M−1+
∫ t

0 easds
≤ M1 on [0,+∞) for some constant M1 independent

of ε. Note that uε satisfies

(uε)t − d1∆uε ≤ uε(a − uε), x ∈ Ω, t > 0.

It follows from the comparison principle that uε(x, t) ≤ u(t) ≤ M1 on Ω × [0,+∞). Conse-

quently, we have

(vε)t − d2∆vε ≤ bvε −
v2

ε

γ(M1 + 1)
, x ∈ Ω, t > 0.
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Similarly, there exists some constant M2 > 0, independent of ε, such that vε(x, t) ≤ M2 on

Ω × [0,+∞). Hence,

(uε)t − d1∆uε ≥ −(M1 + M2m−1)uε =: −C1uε, x ∈ Ω, t > 0.

By the comparison principle, uε(x, t) ≥ u(t) on Ω × [0,+∞), where u(t) = (min
Ω

u0)e−C1t

satisfies
{

du
dt = −C1u, t > 0,

u(0) = min
Ω

u0 > 0.

It follows that

(vε)t − d2∆vε ≥ −
M2eC1t

γ min
Ω

u0
vε =: −C2eC1tvε, x ∈ Ω, t > 0.

Again using the comparison principle, we see that vε(x, t) ≥ v(t) on Ω × [0,+∞), where

v(t) = (min
Ω

v0)e
−C2

∫ t
0 eC1sds satisfies

{

dv
dt = −C2eC1tv, t > 0,

v(0) = min
Ω

v0 > 0.

In summary, we have, for all ε ∈ (0, 1),

M1 ≥ uε(x, t) ≥ u(t), M2 ≥ vε(x, t) ≥ v(t), ∀(x, t) ∈ Ω × [0,+∞).

Then, by a standard compactness argument, one can obtain a positive global solution of sys-

tem (1.1). This proof is complete.
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Abstract. In this paper, we look for solutions to the following critical Schrödinger
system

{

−∆u + (V1 + λ1)u = |u|2∗−2u + |u|p1−2u + βr1|u|r1−2u|v|r2 in R
N ,

−∆v + (V2 + λ2)v = |v|2∗−2v + |v|p2−2v + βr2|u|r1 |v|r2−2v in R
N ,

having prescribed mass
∫

RN u2 = a1 > 0 and
∫

RN v2 = a2 > 0, where λ1, λ2 ∈ R

will arise as Lagrange multipliers, N > 3, 2∗ = 2N/(N − 2) is the Sobolev critical
exponent, r1, r2 > 1, p1, p2, r1 + r2 ∈ (2 + 4/N, 2∗) and β > 0 is a coupling constant.
Under suitable conditions on the potentials V1 and V2, β∗ > 0 exists such that the above
Schrödinger system admits a positive radial normalized solution when β > β∗. The
proof is based on comparison argument and minmax method.

Keywords: Schrödinger systems, weakly attractive potentials, normalized solutions,
positive solutions.

2020 Mathematics Subject Classification: 35J20, 35J60.

1 Introduction and main results

We study the following critical Schrödinger system

{

−∆u + (V1 + λ1)u = |u|2∗−2u + |u|p1−2u + βr1|u|r1−2u|v|r2 in R
N ,

−∆v + (V2 + λ2)v = |v|2∗−2v + |v|p2−2v + βr2|u|r1 |v|r2−2v in R
N ,

(1.1)

with prescribed mass
∫

RN
u2 = a1 > 0 and

∫

RN
v2 = a2 > 0, (1.2)

where λ1, λ2 ∈ R will arise as Lagrange multipliers, N > 3, 2∗ = 2N/(N − 2) is the Sobolev

critical exponent, r1, r2 > 1, p1, p2, r1 + r2 ∈ (2 + 4/N, 2∗), V1 and V2 are the potentials and

β > 0 is a coupling constant. Solutions of (1.1) with prescribed mass (1.2) are called as the

normalized solutions in the literature.

BCorresponding author. Email: fengxj@sxu.edu.cn
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The problem (1.1) comes from the research of solitary waves to the following system














−∆Φ1 + V1Φ1 − i ∂
∂t Φ1 = |Φ1|2

∗−2Φ1 + |Φ1|p1−2Φ1 + βr1|Φ1|r1−2Φ1|Φ2|r2

−∆Φ2 + V2Φ2 − i ∂
∂t Φ2 = |Φ2|2

∗−2Φ2 + |Φ2|p2−2Φ2 + βr2|Φ1|r1 |Φ2|r2−2Φ2

Φj = Φj(x, t), (x, t) ∈ R
N × R+, j = 1, 2,

(1.3)

where t denotes the time, i is imaginary unit, Φj is the wave function of the jth component,

β is a coupling constant which describes the scattering length of the attractive and repulsive

interaction. If β > 0, then the interaction is attractive; if β < 0, then the interaction is repulsive.

Set Φ1(x, t) = eiλ1tu(x) and Φ2(x, t) = eiλ2tv(x). It is easy to see that a couple (Φ1, Φ2) is the

solution of (1.3) if and only if (u, v) is the solution of (1.1). The system (1.3) appears in

many physical problems, especially in nonlinear optics and the mean-field models for binary

mixtures of Bose-Einstein condensation, see [1, 13, 14] and reference therein for more physical

background. An important, of course well known, feature of (1.3) is conservation of mass:
∫

RN
|Φj(x, t)|2dx =

∫

RN
|Φj(x, 0)|2dx, t ∈ R+.

Physically, the mass represents the number of particles of each component in Bose–Einstein

condensates.

The presence of the mass constraint makes some methods developed to deal with uncon-

strained problems unavailable, and a new critical exponent appears, the mass critical exponent

2 + 4/N ∈ (2, 2∗). In the mass subcritical case, the Schrödinger equation are usually consid-

ered by the minimization arguments, we refer the readers to [8, 9, 29]. As far as we are aware,

the mass supercritical case was first considered by Jeanjean in [21], for the Schrödinger equa-

tion. The key idea is to obtain mountain pass solution on Sa by constructing the mountain pass

structure on a natural constraint related to the Pohozaev identity. Much work has been done

extensively on the normalized solutions to the Schrödinger equation in in the last decades

by variational methods. Since numerous contributions flourished within this topic and we

just mention, among many possible numerous choices, [23, 30, 31]. For the nonautonomous

Schrödinger equations, we refer the readers to [20, 33] when mass subcritical case occurs and

[5, 12, 28] when mass supercritical case occurs.

The existence and multiplicity of normalized solutions to the Schrödinger systems also

attracted much attention of researchers in recent decades, see [2–4,6,7,10,17,18,22,25–27] and

reference therein. In particular, for the Schrödinger system

{

−∆u + λ1u = µ1|u|p−2u + ν1|u|p1−2u + βr1|u|r1−2u|v|r2 in R
N ,

−∆v + λ2v = µ2|v|p−2v + ν2|v|p2−2v + βr2|u|r1 |v|r2−2v in R
N ,

(1.4)

when N > 3, ν1 = ν2 = 0, p = 4 and r1 = r2 = 2, the existence and multiplicity of normalized

solutions to (1.4) are studied in [4, 6, 7]; when N = 3, 4, µ1 = µ2 = 0, r1, r2 > 1, p1, r1 + r2 ∈
(2, 2∗) and p2 ∈ (2, 2∗], Li and Zou in [22] studied the geometry of the associated Pohozaev

manifold and obtained a normalized solution to (1.4); when N = 4, p = 3, p1, p2 ∈ (2, 4) and

r1 = r2 = 2, the coupling terms are the Sobolev critical case, Luo et al. in [27] considered

the existence, nonexistence and asymptotic behavior of normalized solutions to (1.4); when

N = 3, 4, r1, r2 > 1, p = 2∗ and p1, p2, r1 + r2 ∈ (2 + 4/N, 2∗], recently, Liu and Fang in [26]

obtained the existence and nonexistence of normalized solutions to system (1.4).

To the best of our knowledge, a few studies have addressed the existence of normalized so-

lutions to Schrödinger system with potential. We know only [10,25], in which they considered
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the mass subcritical case. There is no work concerning normalized solutions to Schrödinger

systems with mass supercritical, Sobolev critical and potential. This problem is more com-

plicated and stimulating by the fact that both the potential and the critical term are present,

which is the focus of this article. Specifically, in this paper, we consider Schrödinger system

(1.1) with weakly attractive potentials, that is,

Vi(x) 6 lim sup
|x|→∞

Vi(x) < ∞, i = 1, 2,

and obtain a positive radial normalized solution. For the weakly repulsive potentials, that is,

Vi(x) > lim inf
|x|→∞

Vi(x) > −∞, i = 1, 2,

does the system (1.1) have a normalized solution? This still is an open problem.

Precisely, Vi ∈ C1(RN) fulfills

(H1) lim|x|→∞ Vi(x) = supx∈RN Vi(x) = 0 and there exists τi ∈ [0, 1/2) such that |Vi|N/2 6 τiS,

where

S = inf
u∈D1,2(RN)\{0}

∫

RN |∇u|2
(∫

RN |u|2∗
)2/2∗ ; (1.5)

(H2) set Wi(x) := (∇Vi(x) · x)/2, Wi ∈ C1(RN), lim|x|→∞ Wi(x) = 0 and there exists θi ∈ [0, 1)

with (1 − τi)/2 − (1 + θi)/(min{γp1
p1, γp2 p2, γrr}) > 0 such that |Wi|N/2 6 θiS, where

γq = N(q − 2)/(2q).

(H3) set Yi(x) := γpi
piWi(x) + Zi(x), where Zi(x) := ∇Wi(x) · x and Zi ∈ Ls(RN) for some

s ∈ [N/2, ∞], there exists ρi ∈ [0, γpi
pi − 2) such that |Yi,+|N/2 6 ρiS for any u ∈ Ei,

where Yi,+ = max{Yi, 0}.

An example satisfying the conditions (H1)–H3) is Vi(x) = − b
|x|c+1

, x ∈ R
N with constant c > 2

and suitable small constant b. Obviously, V = 0 also satisfies the conditions (H1)–(H3). Hence,

the following theorem includes the autonomous case V = 0.

Normalized solutions of (1.1) can be found as critical points of the C1 functional

I(u, v) =
1

2

∫

RN
(|∇u|2 + |∇v|2 + V1u2 + V2v2)− 1

2∗

∫

RN
(|u|2∗ + |v|2∗)

− 1

p1

∫

RN
|u|p1 − 1

p2

∫

RN
|v|p2 − β

∫

RN
|u|r1 |v|r2 , (u, v) ∈ E1 × E2,

on

Sa1
× Sa2 :=

{

(u, v) ∈ E1 × E2 :
∫

RN
u2 = a1,

∫

RN
v2 = a2

}

,

with Lagrange multipliers λ1, λ2 ∈ R. Here

Ei :=

{

u ∈ H1
r (R

N) :
∫

RN
Viu

2
< ∞

}

, i = 1, 2

and H1
r (R

N) is the usual radial Sobolev space. The norm of Ei is defined by

‖u‖i =

(

∫

RN
(|∇u|2 + Viu

2 + u2)

)1/2

, u ∈ Ei, i = 1, 2,
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which is equivalent to the usual norm ‖u‖H1(RN) =
(∫

RN (|∇u|2 + u2)
)1/2

due to the condition

(H1). The solution (u, v) ∈ Sa1
× Sa2 is called a positive radial normalized solution of (1.1) if

u > 0 and v > 0.

Now we state our main results.

Theorem 1.1. Let N = 3, 4, r1, r2 > 1, p1, p2, r1 + r2 ∈ (2 + 4/N, 2∗), β > 0 and (H1)–(H3)

hold. Then there exists β∗ > 0 such that the system (1.1) has a positive radial normalized solution

(u, v) ∈ Sa1
× Sa2 with λ1, λ2 > 0 when β > β∗.

Remark 1.2.

(i) This seems to be the first study to consider the existence of normalized solutions to

Schrödinger system with critical exponent and weakly attractive potentials;

(ii) To simplify, note that r := r1 + r2. In the proof of Theorem 1.1, we discuss three cases,

that is, p1 = min{p1, p2, r}, p2 = min{p1, p2, r} and r = min{p1, p2, r}.

Since the scalar setting will of course be relevant when dealing with system, it is necessary

to study firstly some related results of scalar equations. When β = 0, (1.1) turns to be the

scalar equations

− ∆u + (Vi + λi)u = |u|2∗−2u + |u|pi−2u in R
N , i = 1, 2. (1.6)

Normalized solutions of (1.6) can be found as critical points of the C1 functional

JVi
(u) =

1

2

∫

RN
(|∇u|2 + Viu

2)− 1

2∗

∫

RN
|u|2∗ − 1

pi

∫

RN
|u|pi , u ∈ Ei,

on

Sai
:=

{

u ∈ Ei :
∫

RN
u2 = ai

}

.

Moreover, uai
is a ground state normalized solution to (1.6) on Sai

if JVi
|′Sai

(uai
) = 0 and

JVi
(uai

) = inf{JVi
(v) : v ∈ Sai

, JVi
|′Sai

(v) = 0}.

Here comes our second main result.

Theorem 1.3. Let N = 3, 4, i = 1 or i = 2, pi ∈ (2 + 4/N, 2∗) and (H1)–(H3) hold. Then the

equation (1.6) has a positive radial ground state normalized solution uai
∈ Sai

with λi > 0.

Remark 1.4. This is probably the first result to consider the existence of normalized solutions

to Schrödinger equation with critical exponent and weakly attractive potentials.

To obtain normalized solution of (1.6), as [12, 21, 23], we introduce the Pohozaev set

Pai ,Vi
= {u ∈ Sai

: PVi
(u) = 0},

where

PVi
(u) =

∫

RN
|∇u|2 −

∫

RN
Wiu

2 −
∫

RN
|u|2∗ − γpi

∫

RN
|u|pi , u ∈ Ei.

As a matter of fact, the condition PVi
(u) = 0 obtained in Lemma 2.1 is the linear combination

of Nehari and Pohozaev identities. Furthermore, J is bounded from below on Pai ,Vi
, see

Lemma 2.5 (iv). Hence, for ai > 0, define

mVi
(ai) := inf

Pai ,Vi

JVi
(1.7)
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and consider the reachability of mVi
(ai). Inspired by [12, 33], we need use the comparison

arguments between mVi
(ai)and that to the limit equation

− ∆u + λiu = |u|2∗−2u + |u|pi−2u in R
N . (1.8)

The analogue corresponding (1.8) are denoted by J∞, P∞, Pai ,∞ and m∞(ai). Soave in [31,

Theorem 1.1 and Section 6] obtained that m∞(ai) ∈ (0, SN/2/N) can be reached by uai
when

N = 3, 4, ai > 0 and pi ∈ (2 + 4/N, 2∗), furthermore, uai
is a real-valued, positive and radial.

The Gagliardo–Nirenberg inequality is the key point to study the above problems varia-

tionally. For q ∈ [1, ∞), |u|q =
(∫

RN |u|q
)1/q

stands for the norm in Lq(RN).

Proposition 1.5. Let N > 3 and u ∈ H1(RN). Then there exists a constant C(N, q) > 0 such that,

for any q ∈ [2, 2∗], we have

|u|q 6 C(N, q)|∇u|θ2|u|1−θ
2 ,

where θ ∈ [0, 1] satisfies 1/q = θ/2∗ + (1 − θ)/2. In particular, when q = 2∗, C(N, q) = S−1/2.

In this article, BR denotes an open ball at 0 with radius of R > 0 and C, C1, C2, . . . denote

various positive constants whose exact values are irrelevant.

The paper is organized as follows. In Sections 2 and 4, we give some preliminary results

about the scalar equation (1.6) and the system (1.1), respectively. The proofs of Theorems 1.3

and 1.1 are given in Sections 3 and 5, respectively.

2 Preliminaries about the scalar equation

In this section, without loss of generality, we may assume that i = 1 and the potential V1

satisfies (H1)–(H3).

Lemma 2.1. If u ∈ E1 is a weak solution to (1.6), then PV1
(u) = 0.

Proof. Let u ∈ E1 be a weak solution of (1.6). We see that the following Nehari and Pohozaev

identities hold

|∇u|22 +
∫

RN
(V1 + λ1)u

2 − |u|2∗2∗ − |u|p1
p1
= 0, (2.1)

N − 2

2
|∇u|22 +

N

2

∫

RN
(V1 + λ1)u

2 +
∫

RN
W1u2 − N

2∗
|u|2∗2∗ −

N

p1
|u|p1

p1
= 0. (2.2)

Combining (2.1) and (2.2), we obtain PV1
(u) = 0.

Lemma 2.2. Assume that N = 3, 4 and u ∈ E1 is a nonnegative solution of (1.6). Then, u > 0 and

u 6= 0 implies that λ1 > 0.

Proof. Since u 6= 0 satisfies

−∆u = −(V1 + λ1)u + |u|2∗−2u + |u|p1−2u in R
N ,

it follows from u > 0 that the right hand side is nonnegative if λ1 6 0, and by [19, Lemma

A.2], we obtain u = 0, which contradicts to the assumption u 6= 0. Hence, λ1 > 0.
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For u ∈ E1 and t ∈ R, we introduce the transformation ut(x) := eNt/2u(etx), x ∈ R
N , it is

easy to check that |ut|2 = |u|2. We fix u 6= 0 and consider the continuous real valued function

fu : R → R with

fu(t) := JV1
(ut) =

1

2
e2t|∇u|22 +

1

2

∫

RN
V1(e

−tx)u2 − 1

2∗
e2∗t|u|2∗2∗ −

1

p1
eγp1

p1t|u|p1
p1

,

and

PV1
(ut) = e2t|∇u|22 −

∫

RN
W1(e

−tx)u2 − e2∗t|u|2∗2∗ − γp1
eγp1

p1t|u|p1
p1

.

By a simple calculation, we see that PV1
(ut) = f ′u(t).

Lemma 2.3. Fix u ∈ Sa1
. Then JV1

(ut) → 0+ as t → −∞ and JV1
(ut) → −∞ as t → ∞.

Proof. By the condition (H1), we have

JV1
(ut) >

1 − τ1

2
e2t|∇u|22 −

1

2∗
e2∗t|u|2∗2∗ −

1

p1
eγp1

p1t|u|p1
p1

and

JV1
(ut) 6

1

2
e2t|∇u|22 −

1

2∗
e2∗t|u|2∗2∗ −

1

p1
eγp1

p1t|u|p1
p1

,

it is easy to see that the conclusion holds.

Lemma 2.4. Let Dk := {u ∈ Sa1
: |∇u|22 6 k}. Then there exists k0 > 0 such that JV1

(u) > 0 and

PV1
(u) > 0 when u ∈ Dk0

.

Proof. By the conditions (H1) and (H2), (1.5) and the Gagliardo–Nirenberg inequalities, we

have

JV1
(u) >

1 − τ1

2
|∇u|22 −

1

2∗
S−2∗/2|∇u|2∗2 − 1

p1
C(N, p1)a(1−γp1

)p1/2|∇u|γp1
p1

2

and

PV1
(u) > (1 − τ2)|∇u|22 − S−2∗/2|∇u|2∗2 − γp1

C(N, p1)a(1−γp1
)p1/2|∇u|γp1

p1

2 ,

it is easy to see that there exists k0 > 0 small enough such that JV1
(u) > 0 and PV1

(u) > 0 for

all u ∈ Dk0
.

Hence, we can define

m̄V1
(a1) := inf

γ∈Γ
max
t∈[0,1]

JV1
(γ(t)) > 0,

where Γ = {γ ∈ C([0, 1], Sa1
) : γ(0) ∈ Dk0

, JV1
(γ(1)) 6 0}, k0 is given by Lemma 2.4.

Consider the decomposition of Pa1,V1
= P+

a1,V1
∪ P0

a1V1
∪ P−

a1,V1
and

P+
a1,V1

:= {u ∈ Pa1,V1
: f ′′u (0) > 0},

P0
a1,V1

:= {u ∈ Pa1,V1
: f ′′u (0) = 0},

P−
a1,V1

:= {u ∈ Pa1,V1
: f ′′u (0) < 0}.

Lemma 2.5.

(i) Pa1,V1
= P−

a1,V1
;

(ii) for any u ∈ Sa1
, there exists a unique tu := t(u) ∈ R such that utu ∈ Pa1,V1

, moreover,

JV1
(utu) = maxt∈R JV1

(ut);
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(iii) JV1
is coercive on Pa1,V1

, that is, JV1
(u) → ∞ for any u ∈ Pa1,V1

with ‖u‖ → ∞;

(iv) there exist constants δ, σ > 0 such that |∇u|2 > δ and JV1
(u) > σ for all u ∈ Pa1,V1

.

Proof. (i) Using PV1
(u) = 0 and the conditions (H2) and (H3), we have

f ′′u (0) = 2|∇u|22 +
∫

RN
Z1u2 − 2∗|u|2∗2∗ − γ2

p1
p1|u|p1

p1

=
∫

RN
Y1u2 + (2 − γp1

p1)|∇u|22 + (γp1
p1 − 2∗)|u|2∗2∗

6 (ρ1 + 2 − γp1
p1)|∇u|22 < 0.

Hence, P+
a1,V1

= P0
a1,V1

= ∅, which implies that Pa1,V1
= P−

a1,V1
.

(ii) By Lemmas 2.3 and 2.4, we know that maxt∈R JV1
(ut) is achieved at tu ∈ R and

JV1
(utu) > 0. In view of ∂t JV1

(ut) = PV1
(ut), we see PV1

(utu) = 0. Hence, utu ∈ Pa1,V1
.

Suppose that there exists another t′u ∈ R such that ut′u ∈ Pa1,V1
. Then by Lemma 2.5 (i), we see

that tu and t′u are strict local maximum points of fu(t) := J(ut). Without loss of generality, we

assume that tu < t′u. Hence, there exists t′′u ∈ (tu, t′u) such that fu(t′′u) = mint∈[tu,t′u] fu(t), and

we have f ′u(t
′′
u) = 0 and f ′′u (t

′′
u) > 0. Thus, ut′′u ∈ P+

a1,V1
∪ P0

a1,V1
, which contradict to (i).

(iii) For u ∈ Pa1,V1
, by the conditions (H1) and (H2), we have

JV1
(u) = JV1

(u)− 1

γp1
p1

PV1
(u)

>

(

1

2
− 1

γp1
p1

)

|∇u|22 +
1

2

∫

RN
V1u2 +

1

γp1
p1

∫

RN
W1u2

>

(

1 − τ1

2
− 1 + θ1

γp1
p1

)

|∇u|22. (2.3)

Hence, JV1
is coercive on Pa1,V1

.

(iv) If

|∇u|2 < min







(

1 − θ1

3S2∗/2

)1/(2∗−2)

,

(

1 − θ1

3γp1
C(N, p1)a(1−γp1

)p1/2

)1/(γp1
p1−2)







,

using the condition (H2) and Proposition 1.5, we have

Ψ(u) :=
∫

RN
W1u2 + |u|2∗2∗ + γp1

|u|p1
p1

6

(

θ1 + S−2∗/2|∇u|2∗−2
2 + γp1

C(N, p1)a(1−γp1
)p1/2|∇u|γp1

p1−2

2

)

|∇u|22

6
2 + θ1

3
|∇u|22.

Now, we prove that there exists δ > 0 such that |∇u|2 > δ for all u ∈ Pa1,V1
. On the contrary,

there exists {un} ⊂ Pa1,V1
such that |∇un|2 → 0, then, for n large enough, we have

0 = PV1
(un) = |∇un|22 − Ψ(un) >

1 − θ1

3
|∇un|22 > 0,

which is a contradiction. In view of (2.3), we see that there exists σ > 0 such that JV1
(u) > σ

for all u ∈ Pa1,V1
.
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Lemma 2.6. mV1
(a1) = m̄V1

(a1) > 0. Moreover, there exist {vn} ⊂ Sa1
such that, as n → ∞,

JV1
(vn) → mV1

(a1), JV1
|′Sa1

(vn) → 0, PV1
(vn) → 0, (2.4)

and v−n → 0 a.e. in R
N .

Proof. For any v ∈ Pa1,V1
, there exist t1, t2 ∈ R such that vt1 ∈ Dk0

and JV1
(vt2) 6 0. Set

γ0(t) := v(1−t)t1+tt2 , t ∈ [0, 1],

then γ0 ∈ Γ and maxt∈[0,1] JV1
(γ0(t)) = JV1

(v) by Lemma 2.5 (ii), which implies m̄V1
(a1) 6

mV1
(a1). Now, we prove that any path γ in Γ crosses Pa1,V1

. Using Lemma 2.4, for any γ ∈ Γ,

PV1
(γ(0)) > 0. On the other hand, by (2.3), PV1

(γ(1)) 6 γp1
p1 JV1

(γ(1)) 6 0. Therefore,

there exists t0 ∈ (0, 1] such that PV1
(γ(t0)) = 0, which implies m̄V1

(a1) > mV1
(a1). Thus,

m̄V1
(a1) = mV1

(a1). In view of Lemma 2.5 (iv), we see that m̄V1
(a1) = mV1

(a1) > 0.

Now, we recall the stretched functional introduced first in [21]:

J̃V1
: E1 × R → R, (u, t) 7→ JV1

(ut)

and define

Γ̃ = {g ∈ C([0, 1], Sa1
× R) : g(0) ∈ Dk0

× {0}, g(1) ∈ J0 × {0}},

where k is given by Lemma 2.4 and J0 := {u ∈ E1 : JV1
(u) 6 0}. If γ ∈ Γ, then g := (γ, 0) ∈ Γ̃

and J̃V1
(g(t)) = JV1

(γ(t)), t ∈ [0, 1]. And if g = (g1, g2) ∈ Γ̃, then γ := g
g2

1 ∈ Γ and JV1
(γ(t)) =

J̃V1
(g(t)), t ∈ [0, 1]. Hence, we have

inf
g∈Γ̃

max
t∈[0,1]

J̃V1
(g(t)) = m̄V1

(a1) = mV1
(a1).

Thus, using the Ekeland variational principle as in [21, Lemma 2.3], it follows that there exists

a sequence {(un, tn)} ⊂ Sa1
× R such that, as n → ∞,

J̃V1
(un, tn) → mV1

(a1), J̃V1
|′Sa1

×R
(un, tn) → 0, tn → 0.

Note vn := utn
n . For any w ∈ {z ∈ H1(RN) :

∫

RN vnz = 0}, setting wn := w−tn , then (wn, 0) ∈
{(z, t) ∈ H1(RN)× R :

∫

RN unz = 0}. Hence,

JV1
(vn) → mV1

(a1), 〈JV1
|′Sa1

(vn), w〉 = 〈 J̃V1
|′Sa×R

(un, tn), (wn, 0)〉.

and by‖wn‖ 6 2‖w‖ for n enough large due to tn → 0, we have JV1
|′Sa1

(vn) → 0. Moreover,

by 〈 J̃V1
|′Sa1

×R
(un, tn), (0, 1)〉 → 0, we see PV1

(vn) → 0. Hence, (2.4) holds. Since JV1
(vn) =

JV1
(|vn|), v−n → 0 a.e. in R

N .

3 Proof of Theorem 1.3

In this section, the potential V1 6= 0 and V1 satisfies (H1)–(H3). When V1 = 0, we denote

JV1
, PV1

, Pa1,V1
, and mV1

(a1) by J∞, P∞,Pa1,∞, and m∞(a1), respectively.

Before proving Theorem 1.1, we first consider the monotonicity of m∞(·).

Lemma 3.1. The map m∞(·) is decreasing on R+ \ {0}.
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Proof. Fix a > a1 > 0. By [31, Theorem 1.1 and Section 6], there exists u ∈ Pa1,∞ such that

J∞(u) = m∞(a1). Set v := (a1/a)(N−2)/4u((a1/a)1/2·). Then |v|22 = a, and by Lemma 2.5 (ii),

there exists tv ∈ R such that vtv ∈ Pa,∞. Moreover,

|∇vtv |22 = e2tv |∇v|22 = e2tv |∇u|22 = |∇utv |22,

|vtv |2∗2∗ = e2∗tv |v|2∗2∗ = e2∗tv |u|2∗2∗ = |utv |2∗2∗ ,

|vtv |p1
p1
= eγp1

p1tv |v|p1
p1
= eγp1

p1tv(a1/a)p1(γp1
−1)/2|u|p1

p1
= (a1/a)p1(γp1

−1)/2|utv |p1
p1

.

Let

Ψ(u, tv) :=
1

p1
eγp1

p1tv

(

1 − (a1/a)p1(γp1
−1)/2

)

|u|p1
p1
< 0.

Then, we can deduce that

m∞(a) 6 J∞(v
tv) = J∞(u

tv) + Ψ(u, tv) < J∞(u) = m∞(a1),

which indicate m∞(·) is decreasing on R+ \ {0}.

Now, we present a key estimate for mV1
(a1).

Lemma 3.2. One has that mV1
(a1) < m∞(a1).

Proof. By [31, Theorem 1.1 and Section 6], there exists a positive radial va1
∈ Pa1,∞ such that

J∞(va1
) = m∞(a1). Using Lemma 2.5 (ii), there exists tva1

:= t(va1
) > 0 such that v

tva1
a1

∈ Pa1,V1
.

Since V1 6 0 and V1 6= 0, it is easy to check that

mV1
(a1) 6 J(v

tva1
a1

) < J∞(v
tva1
a1

) 6 max
t>0

J∞(v
t
a1
) = J∞(va1

) = m∞(a1).

Proof of Theorem 1.3. In view of Lemma 2.6, we can obtain a sequence {un} ⊂ Sa1
satisfying

JV1
(un) → m(a1), JV1

|′Sa1
(un) → 0, PV1

(un) → 0, n → ∞,

and u−
n → 0 a.e. in R

N , and by Lemma 2.5 (iii), it is easy to see that {un} is bounded in E1.

Up to a subsequence, we assume that un ⇀ ua1
in E1, un → ua1

in Ls(RN), s ∈ (2, 2∗), a.e. in

R
N and ua1

> 0 a.e. in R
N . Moreover, since JV1

|′Sa1
(un) → 0, by [32, Proposition 5.12], there

exists λn ∈ R such that, for any ϕ ∈ H1(RN),
∫

RN
[∇un · ∇ϕ + (V1 + λn)un ϕ − |un|2

∗−2un ϕ − |un|p1−2un ϕ] = on(1)‖ϕ‖. (3.1)

Choosing ϕ = un, we deduce that {λn} is bounded in R, and hence up to a subsequence,

λn → λ1 ∈ R. Now, we prove ua1
6= 0. If not, then un ⇀ 0 in H1

r (R
N) and un → 0 in

Ls(RN), s ∈ (2, 2∗). By Lemma 2.5 (ii), there exists tn := t(un) ∈ R such that P∞(u
tn
n ) = 0 and

utn
n ∈ Pa1,∞. By PV1

(un) → 0 and JV1
(un) → m(a1), we see that there exists δ > 0 such that

|∇un|2 > δ for sufficient large n. Using PV1
(un) → 0 again, we can assume that |un|2∗2∗ > δ2 for

sufficient large n. In view of Lemma 2.5 (iv), we see that lim infn→∞ etn > 0. If tn → ∞, then,

0 6 e−2tn J∞(u
tn
n )

=
1

2
|∇un|22 −

1

2∗
e(2

∗−2)tn |un|2
∗

2∗ −
1

p1
e(γp1

p1−2)tn |un|p1
p1

6
1

2
C − 1

2∗
e(2

∗−2)tn δ2 → −∞, (3.2)
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which is a contradiction. Hence, {tn} is bounded in R and we can assume that tn → t∗ ∈
(−∞, ∞). Since un → 0 in L2

loc(R
N) and lim|x|→∞ W1(x) = 0, we can obtain that

lim
n→∞

∫

RN
W1u2

n = 0,

and by PV1
(un) → 0, we have

0 = P∞(u
tn
n )

= e2tn

∫

RN
W1u2

n + (e2tn − e2∗tn)|un|2
∗

2∗ + γp1
(e2tn − eγp1

p1tn)|un|p1
p1
+ on(1)

= (e2tn − e2∗tn)|un|2
∗

2∗ + on(1) (3.3)

which implies t∗ = 0. Therefore,

m∞(a1) 6 J∞(u
tn
n ) = JV1

(un) + on(1) = mV1
(a1) + on(1),

that is, m∞(a1) 6 mV1
(a1), this is impossible, and thus ua1

6= 0. Moreover, passing to the limit

in (3.1) by the weak convergence, we infer that ua1
solves (1.6) with λ = λ1, and by Lemma

2.2, we see that λ1 > 0. Hence, 〈J′V1
(ua1

), ua1
〉+ λ1|ua1

|22 = 0 and PV1
(ua1

) = 0, and by (2.3), we

have JV1
(ua1

) > 0.

Set a := |ua1
|22. We claim that a = a1. If not, then b := a1 − a ∈ (0, a1) due to a 6 a1.

Let vn := un − ua1
, then vn ⇀ 0 in E1 and vn → 0 in L2

loc(R
N), and by lim|x|→∞ V1(x) =

lim|x|→∞ W1(x) = 0, we have

lim
n→∞

∫

RN
V1v2

n = lim
n→∞

∫

RN
W1v2

n = 0.

From the Brezis–Lieb lemma and (3.1), one have |vn|22 = b + on(1) and

J∞(vn) = JV1
(vn) + on(1) = JV1

(un)− JV1
(ua1

) + on(1) = mV1
(a1)− JV1

(ua1
) + on(1), (3.4)

〈J′∞(vn), vn〉 = 〈J′V1
(vn), vn〉+ on(1)

= 〈J′V1
(un), un〉 − 〈J′V1

(ua1
), ua1

〉+ on(1)

= −λ1a1 − 〈J′V1
(ua1

), ua1
〉+ on(1)

= −λ1a1 + λ1a + on(1) = −λ1b + on(1), (3.5)

P∞(vn) = PV1
(vn) + on(1) = PV1

(un)− PV1
(ua1

) + on(1) = on(1). (3.6)

We claim that

lim inf
n→∞

|∇vn|22 > 0. (3.7)

As a matter of fact, if not, then we may assume that vn → 0 in D1,2(RN) and hence in L2∗(RN)

by the Sobolev inequality. We also have |vn|p1
→ 0 by the Gagliardo–Nirenberg inequality.

Therefore, 〈J′∞(vn), vn〉 → 0, and by (3.5), we have b = 0, this is a contradiction. Thus, (3.7)

holds. Using Lemma 2.5 (ii) again, there exists tn := t(vn) ∈ R such that P∞(v
tn
n ) = 0 and

vtn
n ∈ P|vn|22,∞. By Lemma 2.5 (iv) and (3.7), it is easy to see that lim infn→∞ etn > 0. Since

(3.6) and P∞(v
tn
n ) = 0, by a similar proof as (3.2) and (3.3), we know that {tn} is bounded and

tn → 0. Hence, by (3.4), we have

m∞(|vn|22) 6 J∞(v
tn
n ) = J∞(vn) + on(1) = mV1

(a1)− JV1
(ua1

) + on(1).
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Noting that m∞(·) is decreasing in R+ \ {0} by Lemma 3.1, we have, for n large enough,

m∞(a1) < m∞(|vn|22) 6 mV1
(a1)− JV1

(ua) + on(1) < m∞(a1)− JV1
(ua1

) + on(1),

which implies that JV1
(ua1

) 6 0 contradicting to JV1
(ua1

) > 0. Hence, |ua1
|22 = a = a1. Using

un → ua1
in L2

loc(R
N) and lim|x|→∞ V1(x) = lim|x|→∞ W1(x) = 0, we have

lim
n→∞

∫

RN
V1u2

n =
∫

RN
V1u2

a1
, lim

n→∞

∫

RN
W1u2

n =
∫

RN
W1u2

a1
,

and by PV1
(ua1

) = 0, we deduce that

JV1
(ua1

)

= JV1
(ua1

)− 1

γp1
p1

PV1
(ua1

)

=

(

1

2
− 1

γp1
p1

)

|∇ua1
|22 +

1

2

∫

RN
V1u2

a1
+

1

γp1
p1

∫

RN
W1u2

a1
+

(

1

γp1
p1

− 1

2∗

)

|ua1
|2∗2∗

6 lim inf
n→∞

[(

1

2
− 1

γp1
p1

)

|∇un|22 +
1

2

∫

RN
V1u2

n +
1

γp1
p1

∫

RN
W1u2

n +

(

1

γp1
p1

− 1

2∗

)

|un|2
∗

2∗

]

= lim
n→∞

JV1
(un) = m(a1),

in view of mV1
(a1) 6 JV1

(ua1
), consequently, JV1

(ua1
) = mV1

(a1). Using the strong maximum

principle [16, Theorem 8.19], we see that ua1
> 0. Therefore, ua1

is a positive radial ground

state normalized solution of (1.6).

4 Preliminaries about the system

In this section, we may assume that the potentials Vi, i = 1, 2 satisfy (H1)–(H3).

First, we prove the following monotonicity result.

Lemma 4.1. The map mVi
(·) is nonincreasing on R+ \ {0}, where mVi

(a) is defined in (1.7), i=1,2.

Proof. Here, we only consider the case i = 1. The case i = 2 is similar to the case i = 1. Fix

a > a1 > 0. By the definition of mV1
(a1), there exists u0 ∈ Pa1,V1

such that

JV1
(u0) 6 mV1

(a1) + ε/3. (4.1)

Let φ ∈ C∞
0 (RN) be a radial cut off function such that φ(x) = 1 when x ∈ B1, φ(x) = 0

when x ∈ Bc
2. Set uδ(x) := φ(δx)u0(x), x ∈ R

N , δ > 0. Then uδ ∈ E1 \ {0} and uδ → u0

in E1 as δ → 0+. It follows from Lemma 2.5 (ii) that, for any u ∈ Sa1
, there exists a unique

tu := t(u) ∈ R such that utu ∈ Pa1,V1
. Moreover, the map u 7→ tu is C1 by the Implicit Function

Theorem. Hence, t(uδ) → t(u0) = 0 in R and u
t(uδ)
δ → u0 in E1 as δ → 0+. Take a fixed δ > 0

small enough such that

JV1
(u

t(uδ)
δ ) 6 JV1

(u0) + ε/3 (4.2)

and take ζ ∈ C∞
0 (RN) such that supp(ζ) ⊂ B1+4/δ \ B4/δ. Set ζ̄ := (a − |uδ|22)/|ζ|22ζ. Then

|ζ̄|22 = a − |uδ|22 and supp(ζ̄) ∩ supp(uδ) = ∅. For every s 6 0, let ws := uδ + ζ̄s, then ws ∈ Sa

and there exists t(ws) ∈ R such that w
t(ws)
s ∈ Pa,V1

. We claim that t(ws) is bounded from above

as s → −∞. Suppose by contradiction that t(ws) → ∞ as s → −∞, and by ws → uδ 6= 0 a.e.



12 L. Long and X. J. Feng

in R
N , we deduce that JV1

(w
t(ws)
s ) → −∞ as s → −∞. However, JV1

(w
t(ws)
s ) > 0 by Lemma 2.5

(ii). This is absurd. Hence, the claim holds. Since s + t(ws) → −∞ as s → −∞, we have, as

s → −∞,

|∇ζ̄s+t(ws)|2 → 0,
∫

RN
V1(e

−(s+t(ws)))ζ̄2 → 0,

|ζ̄s+t(ws)|2∗ → 0, |ζ̄s+t(ws)|p1
→ 0.

Consequently, JV1
(ζ̄s+t(ws)) 6 ε/3 when s < 0 small enough. Thus, by (4.2) and (4.1),

mV1
(a) 6 JV1

(w
t(ws)
s )

= JV1
(u

t(ws)
δ ) + JV1

(ζ̄s+t(ws))

6 JV1
(u

t(uδ)
δ ) + JV1

(ζ̄s+t(ws))

6 JV1
(u0) + 2ε/3 6 mV1

(a1) + ε,

which implies mV1
(a) 6 mV1

(a1). Hence, the conclusion holds.

Lemma 4.2. Assume that N = 3, 4 and (u, v) ∈ E1 × E2 is a nonnegative solution of (1.1). Then,

u > 0 and u 6= 0 imply that λ1 > 0; v > 0 and v 6= 0 imply that λ2 > 0.

Proof. Since u 6= 0 satisfies

−∆u = −(V1 + λ1)u + |u|2∗−2u + |u|p1−2u + βr1|u|r1−2u|v|r2 in R
N ,

it follows from u > 0 that the right hand side is nonnegative if λ1 6 0, and by [19, Lemma

A.2], we obtain u = 0, which contradicts to the assumption u 6= 0. Hence, λ1 > 0. Similarly,

we also can obtain that v > 0 and v 6= 0 implies that λ2 > 0.

The following lemma is a version of the Brezis–Lieb lemma.

Lemma 4.3. Suppose that N > 3, r1, r2 > 1 and r ∈ (2, 2∗]. If (un, vn) ⇀ (u, v) in E1 × E2, then,

up to a subsequence if you need,

lim
n→∞

∫

RN
(|un|r1 |vn|r2 − |un − u|r1 |vn − v|r2 − |u|r1 |v|r2) = 0.

Proof. See [11, Lemma 2.3] for the proof of the lemma.

Let η : R × E1 × E2 → E1 × E2,

η(t, u, v) := (ut, vt) = (eNt/2u(et·), eNt/2v(et·)).

Then

I(η(t, u, v)) =
e2t

2

(

|∇u|22 + |∇v|22
)

+
1

2

∫

RN

(

V1(e
−tx)u2 + V2(e

−tx)v2
)

− e2∗t

2∗

(

|u|2∗2∗ + |v|2∗2∗

)

− eγp1
p1t

p1
|u|p1

p1
− eγp2

p2t

p2
|v|p2

p2
− βeγrrt

∫

RN
|u|r1 |v|r2 .

Lemma 4.4. Fix (u, v) ∈ Sa1
× Sa2 . Then I(η(t, u, v)) → 0+ as t → −∞ and I(η(t, u, v)) → −∞

as t → ∞.

Proof. The proof is standard, therefore it is omitted here.
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Lemma 4.5. Let Dk := {(u, v) ∈ Sa1
× Sa2 : |∇u|22 + |∇v|22 6 k}. Then there exists k0 > 0

sufficiently small such that

0 < sup
(u,v)∈Dk0

I < inf
(u,v)∈∂D2k0

I.

Proof. For any (u, v) ∈ Sa1
× Sa2 , using the condition (H1), (1.5), the Gagliardo–Nirenberg and

Hölder inequalities, we have
∫

RN
(V1u2 + V2v2) > −max{τ1, τ2}

(

|∇u|22 + |∇v|22
)

,

1

2∗

(

|u|2∗2∗ + |v|2∗2∗

)

6
1

2∗S2∗/2

(

|∇u|22 + |∇v|22
)2∗/2

,

1

p1
|u|p1

p1
6 C1|∇u|γp1

p1

2 6 C1

(

|∇u|22 + |∇v|22
)γp1

p1/2
,

1

p2
|v|p2

p2
6 C2|∇v|γp2

p2

2 6 C2

(

|∇u|22 + |∇v|22
)γp2

p2/2

and

β
∫

RN
|u|r1 |v|r2 6 β|u|r1

r |v|r2
r 6 βC3

(

|∇u|22 + |∇v|22
)γrr/2

, (4.3)

where C1 = C(N, p1, a1), C2 = C(N, p2, a2) and C3 = C(N, r1, r2, a1, a2). Set d := |∇u|22 + |∇v|22.

Then

I(u, v) >
1

2
(1 − max{τ1, τ2}) d − 1

2∗S2∗/2
d2∗/2 − C1dγp1

p1/2 − C2dγp2
p2/2 − βC3dγrr/2.

Since 2∗, γp1
p1, γp2 p2, γrr > 2, it is easy to see that there exists k0 > 0 small enough such that

I(u, v) > 0 for all (u, v) ∈ D2k0
. Fixing (u1, v1) ∈ Dk0

and (u2, v2) ∈ ∂D2k0
, we have

I(u2, v2)− I(u1, v1)

>
1

2
(|∇u2|22 + |∇v2|22) +

1

2

∫

RN
(V1u2

2 + V2v2
2)−

1

2∗
(|u2|2

∗
2 + |v2|2

∗
2 )

− 1

p1

∫

RN
|u2|p1 − 1

p2

∫

RN
|v2|p2 − β

∫

RN
|u2|r1 |v2|r2 − 1

2

∫

RN
(|∇u1|2 + |∇v1|2)

>

(

1

2
− max{τ1, τ2}

)

k0 −
1

2∗S2∗/2
(2k0)

2∗/2 − C1(2k0)
γp1

p1/2 − C2(2k0)
γp2

p2/2 − βC3(2k0)
γrr/2

>
1

4

(

1

2
− max{τ1, τ2}

)

k0,

for k0 > 0 small enough. Thus, we can choose a sufficient small k0 > 0 to satisfy the desired

result.

Let ũ ∈ Sa1
be the positive radial ground state normalized solution of (1.6) with i = 1 and

ṽ ∈ Sa2 be the positive radial ground state normalized solution of (1.6) with i = 2. By Lemmas

4.4 and 4.5, there exist t1, t2 ∈ R with t1 < −1 < 1 < t2 such that

e2t1
(

|∇ũ|22 + |∇ṽ|22
)

< k, I(η(t1, ũ, ṽ)) > 0,

and

e2t2
(

|∇ũ|22 + |∇ṽ|22
)

> 2k, I(η(t1, ũ, ṽ)) 6 0.

Set

Γ0 := {h ∈ C([0, 1], Sa1
× Sa2) : h(0) = η(t1, ũ, ṽ), h(1) = η(t2, ũ, ṽ)}.



14 L. Long and X. J. Feng

Then Γ0 6= ∅. In fact, set h0(t) = η((1 − t)t1 + tt2, ũ, ṽ), then h0 ∈ Γ0. Thus, we can define

cβ(a1, a2) := inf
h∈Γ0

max
t∈[0,1]

I(h(t)).

Clearly, cβ(a1, a2) > 0.

Lemma 4.6. limβ→∞ cβ(a1, a2) = 0.

Proof. Since h0 ∈ Γ0, we have

cβ(a1, a2) 6 max
t∈[0,1]

I(h0(t))

6 max
t>0

(

1

2
t2(|∇ũ|22 + |∇ṽ|22)− βtγrr

∫

RN
|ũ|r1 |ṽ|r2

)

= Cβ−2/(γrr−2) → 0, β → ∞,

where C is a positive constant independent of β.

5 Proof of Theorem 1.1

In order to construct a bounded PS sequence of I at the level cβ(a1, a2). Adapting the approach

from [21], we introduce the C1-functional Φ : E1 × E2 × R → R with Φ(u, v, t) := I(η(t, u, v))

and define

c̃β(a1, a2) := inf
h̃∈Γ̃0

max
t∈[0,1]

Φ(h̃(t)),

where Γ̃0 = {h̃ ∈ C([0, 1], Sa1
× Sa2 × R) : h̃(0) = (η(t1, ũ, ṽ), 0), h̃(1) = (η(t2, ũ, ṽ), 0)}. It is

easy to prove that cβ(a1, a2) = c̃β(a1, a2). The next lemma is special case of [15, Theorem 4.5].

Lemma 5.1. Let X be a Hilbert manifold, F ∈ C1(X, R) be a given functional, K ⊂ X be compact and

consider a subset

D ⊂ {E ⊂ X : E is compact, K ⊂ E},

which is homotopy-stable, that is, it is invariant with respect to deformations leaving K fixed. Assume

that

max
u∈K

F(u) < c := inf
E∈D

max
u∈E

F(u) ∈ R.

Let εn ∈ R, εn → 0 and En ∈ D be a sequence such that

0 6 max
u∈En

F(u)− c 6 εn.

Then there exists a sequence un ∈ X such that, for some constant C > 0,

|F(un)− c| 6 εn, ‖F|′X(un)‖ 6 C
√

εn, dist(un, En) 6 C
√

εn.

Lemma 5.2. Let {h̃n} ⊂ Γ̃0 be a sequence such that

max
t∈[0,1]

Φ(h̃n(t)) 6 cβ(a1, a2) +
1

n
.

Then there exist a sequence (un, vn, tn) ∈ Sa1
× Sa2 × R such that, as n → ∞,

Φ(un, vn, tn) → cβ(a1, a2), Φ|′Sa1
×Sa2

×R
(un, vn, tn) → 0, (5.1)

and

min
t∈[0,1]

‖(un, vn, tn)− h̃n(t)‖H1(RN)×R → 0. (5.2)
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Proof. This lemma follows directly from Lemma 5.1 applied to Φ with

X := Sa1
× Sa2 × R, K := {(η(t1, ũ, ṽ), 0), (η(t2, ũ, ṽ), 0)},

D := {h̃([0, 1]) : h̃ ∈ Γ̃0}, En := {h̃n(t) : t ∈ [0, 1]}.

Indeed, c := infE∈D max(u,v,t)∈E Φ(u, v, t) = infE∈D max(u,v,t)∈E I(η(t, u, v)) = cβ(a1, a2). On the

one hand, for any h ∈ Γ0, h̃([0, 1]) = (h([0, 1]), 0) ∈ D. Hence,

c 6 max
(u,v,t)∈h̃([0,1])

I(η(t, u, v)) = max
(u,v)∈h([0,1])

I(u, v) = max
t∈[0,1]

I(h(t)).

Thus, c 6 cβ(a1, a2). On the other hand, we show that cβ(a1, a2) 6 c. Suppose by contra-

diction that c < cβ(a1, a2). Then max(u,v,t)∈E I(η(t, u, v)) < cβ(a1, a2) for some E ∈ D, hence

sup(u,v,t)∈Bδ(E) I(η(t, u, v)) < cβ(a1, a2) for some δ > 0, where Bδ(E) is the δ neighborhood of

E. Moreover, Bδ(E) is open and connected, so it is path connected. Therefore, there exists a

path h̃0 ∈ Γ̃0 such that maxt∈[0,1] Φ(h̃0(t)) < cβ(a1, a2). This is impossible.

Lemma 5.3. There exists a bounded sequence {(wn, zn)} ⊂ Sa1
× Sa2 such that, as n → ∞,

I(wn, zn) → cβ(a1, a2), I|′Sa1
×Sa2

(wn, zn) → 0, (5.3)

P(wn, zn) := |∇wn|22 + |∇zn|22 −
∫

RN
(W1w2

n + W2z2
n)− |wn|2

∗
2∗ − |zn|2

∗
2∗

− γp1
|wn|p1

p1
− γp2 |zn|p2

p2
− βγrr

∫

RN
|wn|r1 |zn|r2 → 0, (5.4)

w−
n → 0 a.e. in R

N and z−n → 0 a.e. in R
N .

Proof. First, by the definition of cβ(a1, a2), there exists a sequence {hn} ⊂ Γ0 such that

max
t∈[0,1]

I(hn(t)) 6 cβ(a1, a2) +
1

n
.

We observe that, since I(u, v) = I(|u|, |v|) for any (u, v) ∈ E1 × E2, we can take hn(t) > 0

a.e. in R
N for every t ∈ [0, 1] and n ∈ N. Applying Lemma 5.2 to h̃n := (hn, 0) ∈ Γ̃0, we see

that there exists a sequence {(un, vn, tn)} ⊂ Sa1
× Sa2 × R such that (5.1) and (5.2) hold. Note

(wn, zn) := (utn
n , vtn

n ). By hn(t) > 0 a.e. in R
N and (5.2), we see that, up to a subsequence,

u−
n → 0 a.e. and v−n → 0 a.e.. Hence, w−

n → 0 a.e. and z−n → 0 a.e.. For any

(w1, w2) ∈ {(u, v) ∈ E1 × E2 :
∫

RN
wnu =

∫

RN
znv = 0},

setting (wn
1 , wn

2 ) := (w−tn
1 , w−tn

2 ), then

(wn
1 , wn

2 , 0) ∈
{

(u, v, t) ∈ E1 × E2 × R :
∫

RN
unu =

∫

RN
vnv = 0

}

.

Hence,

I(wn, zn) → cβ(a1, a2), tn → 0

and

〈I|′Sa1
×Sa2

(wn, zn), (w1, w2)〉 = 〈Φ|′Sa1
×Sa2

×R
(un, vn, tn), (w

n
1 , wn

2 , 0)〉.
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Since ‖(wn
1 , wn

2 )‖ 6 4‖(w1, w2)‖ for n enough large, we have I|′Sa1
×Sa2

(wn, zn) → 0. Therefore,

(5.3) hold. Moreover, by 〈Φ|′Sa1
×Sa2

×R
(un, vn, tn), , (0, 0, 1)〉 → 0, we see P(wn, zn) → 0. Hence,

(5.4) hold.

Now, we prove that {(wn, zn)} ⊂ Sa1
× Sa2 is bounded in E1 × E2. By (H1) and (H2), if

r = min{p1, p2, r}, then, for sufficiently large n,

cβ(a1, a2) + 1

> I(wn, zn)−
1

γrr
P(wn, zn)

>

(

1

2
− 1

γrr

)

(

|∇wn|22 + |∇zn|22
)

+
1

2

∫

RN
(V1w2

n + V2z2
n) +

1

γrr

∫

RN
(W1w2

n + W2z2
n)

>

(

1 − τ1

2
− 1 + θ1

γrr

)

|∇wn|22 +
(

1 − τ2

2
− 1 + θ2

γrr

)

|∇zn|22;

if p1 = min{p1, p2, r}, then, for sufficiently large n,

cβ(a1, a2) + 1

> I(wn, zn)−
1

γp1
p1

P(wn, zn)

>

(

1

2
− 1

γp1
p1

)

(

|∇wn|22 + |∇zn|22
)

+
1

2

∫

RN
(V1w2

n + V2z2
n) +

1

γp1
p1

∫

RN
(W1w2

n + W2z2
n)

>

(

1 − τ1

2
− 1 + θ1

γp1
p1

)

|∇wn|22 +
(

1 − τ2

2
− 1 + θ2

γp1
p1

)

|∇zn|22;

if p2 = min{p1, p2, r}, then, for sufficiently large n,

cβ(a1, a2) + 1

> I(wn, zn)−
1

γp2 p2
P(wn, zn)

>

(

1

2
− 1

γp2 p2

)

(

|∇wn|22 + |∇zn|22
)

+
1

2

∫

RN
(V1w2

n + V2z2
n) +

1

γp2 p2

∫

RN
(W1w2

n + W2z2
n)

>

(

1 − τ1

2
− 1 + θ1

γp2 p2

)

|∇wn|22 +
(

1 − τ2

2
− 1 + θ2

γp2 p2

)

|∇zn|22.

In these three cases, we conclude that {(w,zn)} is bounded in E1 × E2.

It follows from Lemma 5.2 that there exists a nonnegative (w0, z0) ∈ E1 × E2 such that, up

to a subsequence,






















(wn, zn) ⇀ (w0, z0) in E1 × E2,

(wn, zn) ⇀ (w0, z0) in Lq1(RN)× Lq2(RN), q1, q1 ∈ [2, 2∗],

(wn, zn) → (w0, z0) in Lq1(RN)× Lq2(RN), q1, q1 ∈ (2, 2∗),

(wn, zn) → (w0, z0) a.e. in R
N .

(5.5)

Since I|′Sa1
×Sa2

(wn, zn) → 0, by the Lagrange multipliers rule, there exists a sequence

{(λn
1 , λn

2)} ⊂ R × R such that

I′(wn, zn) + λn
1(wn, 0) + λn

2(0, zn) → 0, in (E1 × E2)
∗. (5.6)

Take (wn, 0) and (0, zn) as test functions in (5.6), we see that {(λn
1 , λn

2)} is bounded in R × R.

Then there exists (λ1, λ2) ∈ R × R such that, up to a subsequence, (λn
1 , λn

2) → (λ1, λ2).
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Lemma 5.4. There exists β∗ > 0 sufficiently large such that (wn, zn) → (w0, z0) in L2∗(RN) ×
L2∗(RN) when β > β∗, moreover, (w0, z0) 6= 0.

Proof. We firstly prove that wn → w0 in L2∗(RN). Using the concentration-compactness prin-

ciple [24], we see that there exist finite nonnegative measure µ and ν, and a most countable

index set Λ such that |∇wn|2 ⇀ µ in sense of measure, |wn|2∗ ⇀ ν in sense of measure and















µ > |∇w0|2 + ∑j∈Λ µjδxj
µj > 0,

ν = |w0|2
∗
+ ∑j∈Λ νjδxj

νj > 0,

νj 6 S−2∗/2µ2∗/2
j j ∈ Λ,

(5.7)

where xj ∈ R
N and δxj

is the Dirac measure at xj. Let χR ∈ C∞
0 (RN) be a cut off function

satisfying χR(x) = 1 in BR(xj), χR(x) = 0 in Bc
2R(xj) and |∇χR| 6 2/R. It follows from

Lemma 5.2 that {χRwn} is bounded in E1. Now, take (χRwn, 0) as a test function in (5.6), then

lim
n→∞

〈I′(wn, zn) + λn
1(wn, 0) + λn

2(0, zn), (χRwn, 0)〉 = 0. (5.8)

By (5.5), the absolute continuity of integral and the Hölder inequality, we can deduce that

lim
R→0

lim
n→∞

∫

RN
V1w2

nχR = lim
R→0

∫

RN
V1w2

0χR = 0, (5.9)

lim
R→0

lim
n→∞

∫

RN
λn

1 w2
nχR = λ1 lim

R→0

∫

RN
w2

0χR = 0, (5.10)

lim
R→0

lim
n→∞

∫

RN
wn∇wn · ∇χR = lim

R→0

∫

RN
w0∇w0 · ∇χR = 0, (5.11)

lim
R→0

lim
n→∞

∫

RN
|wn|p1 χR = lim

R→0

∫

RN
|w0|p1 χR = 0, (5.12)

and

lim
R→0

lim
n→∞

∫

RN
|wn|r1 |zn|r2 χR = lim

R→0

∫

RN
|w0|r1 |z0|r2 χR = 0. (5.13)

It follows from (5.8) and (5.9)–(5.13) that

lim
R→0

lim
n→∞

∫

RN
|∇wn|2χR = lim

R→0
lim
n→∞

∫

RN
|wn|2

∗
χR,

that is,

lim
R→0

∫

RN
χRdµ = lim

R→0

∫

RN
χRdν. (5.14)

Using (5.7) and (5.14), we can obtain νj > µj, furthermore, either µj = 0 or µj > SN/2 for

j ∈ Λ. Observe that, for any j ∈ Λ, µj = 0 if and only if νj = 0. If µj = 0, then νj = 0

and |wn|2∗2∗ → |w0|2
∗

2∗ by (5.7), combining wn ⇀ w0 in L2∗(RN), we conclude that wn → w0 in

L2∗(RN). If µj > SN/2, then we split three cases.

If r = min{r, p1, p2}, then, by Lemma 4.6, there exists β1 > 0 sufficiently large such that,

for β > β1,

cβ(a1, a2) <

(

1 − τ1

2
− 1 + θ1

γrr

)

SN/2. (5.15)
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It follows from (5.7) that

cβ(a1, a2) = lim
n→∞

I(wn, zn)−
1

γrr
P(wn, zn)

>

(

1 − τ1

2
− 1 + θ1

γrr

)

∫

RN
|∇wn|2χRdx

=

(

1 − τ1

2
− 1 + θ1

γrr

)

∫

RN
χRdµ

>

(

1 − τ1

2
− 1 + θ1

γrr

)

µj >

(

1 − τ1

2
− 1 + θ1

γrr

)

SN/2,

which contradicts to (5.15). If p1 = min{r, p1, p2} or p2 = min{r, p1, p2}, similarly as the case

r = min{r, p1, p2}, them also yields a contradiction.

In summary, going if necessary to replace a larger β∗, we obtain µj = νj = 0 for all j ∈ Λ

and β > β∗. Consequently, wn → w0 in L2∗(RN) when β > β∗. zn → z0 in L2∗(RN) can be

obtained in the similar way.

By Lemma 5.3, we know that (w0, z0) is a nonnegative solution of (1.1). Suppose that by

contradiction (w0, z0) = 0, and by (4.3),
∫

RN W1w2
n → 0,

∫

RN W2z2
n → 0, the strong convergence

of L2∗ , Lp1 , Lp2 , Lr and P(wn, zn) → 0, we see that

lim
n→∞

∫

RN
(|∇wn|2 + |∇zn|2) = 0.

Hence, by
∫

RN V1w2
n → 0,

∫

RN V2z2
n → 0, we have cβ(a1, a2) = limn→∞ I(wn, zn) = 0, which

contradicts to cβ(a1, a2) > 0. Hence, (w0, z0) 6= 0.

Lemma 5.5. If cβ(a1, a2) < min{mV1
(a1), mV2

(a2)}, then (wn, zn) → (w0, z0) in E1 ×E2. Moreover,

(u0, v0) ∈ Sa1
× Sa2 is a positive radial normalized solution of (1.1) with λ1 > 0 and λ2 > 0.

Proof. We know from Lemmas 5.3 and 5.4 that (w0, z0) is nonnegative and (w0, z0) 6= 0.

If w0 6= 0 and z0 = 0, then w0 is a nontrivial radial solutions of (1.6) with i = 1 and w0 > 0

by the maximum principle, where |w0|22 = a 6 a1. By Lemma 4.1 and Theorem 1.3, we see

that mV1
(a1) 6 mV1

(a) 6 JV1
(w0) = I(w0, 0). It follows from the conditions (H1) and (H2) that

lim
n→∞

∫

RN
V1

[

w2
n − (wn − w0)

2 − w2
0

]

= 0, lim
n→∞

∫

RN
V1(wn − w0)

2 = 0 (5.16)

and

lim
n→∞

∫

RN
W1

[

w2
n − (wn − w0)

2 − w2
0

]

= 0, lim
n→∞

∫

RN
W1(wn − w0)

2 = 0. (5.17)

Applying the Brezis–Lieb lemma, Lemma 4.3, (5.17), (5.16) and the Lp1 , Lp2 , L2∗ , Lr strong con-

vergence, we deduce that

on(1) = P(wn, zn)

= P(wn − w0, zn) + P(w0, 0) + on(1)

=
∫

RN
(|∇(wn − w0)|2 + |∇zn|2) + on(1) (5.18)
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and

cβ(a1, a2) = lim
n→∞

I(wn, zn)

= lim
n→∞

I(wn − w0, zn) + I(w0, 0) + on(1)

>
1

2
lim
n→∞

∫

RN
(|∇(wn − w0)|2 + |∇zn|2) + mV1

(a1) > mV1
(a1), (5.19)

which contradicts to cβ(a1, a2) < mV1
(a1).

If w0 = 0 and z0 6= 0, then z0 is a nontrivial radial solutions of (1.6) with i = 2 and z0 > 0

by the maximum principle, where b = |z0|22 6 a2 and mV2
(a2) 6 mV2

(b) 6 JV2
(z0) = I(0, z0).

Similarly as (5.18) and (5.19), we also can derive a contradiction.

Hence, (w0, z0) is nonnegative, w0 6= 0 and z0 6= 0, and by Lemma 4.2, we can obtain

λ1 > 0 and λ2 > 0. By the Pohozaev and Nehari identities, it is easy to see that

λ1|w0|22 + λ2|z0|22 = −
∫

RN
(V1w2

0 + V2z2
0)−

∫

RN
(W1w2

0 + W2z2
0)

+ (1 − γp1
)|w0|p1

p1
+ (1 − γp2)|z0|p2

p2
+ βr(1 − γr)

∫

RN
|w0|r1 |z0|r2 ,

and combining P(wn, zn) → 0, we have

λ1a1 + λ2a2 = lim
n→∞

(

λn
1 |wn|22 + λn

2 |zn|22
)

= lim
n→∞

[

−
∫

RN
(V1w2

n + V2z2
n)−

∫

RN
(W1w2

n + W2z2
n)

+ (1 − γp1
)|wn|p1

p1
+ (1 − γp2)|zn|p2

p2
+ βr(1 − γr)

∫

RN
|wn|r1 |zn|r2

]

= −
∫

RN
(V1w2

0 + V2z2
0)−

∫

RN
(W1w2

0 + W2z2
0)

+ (1 − γp1
)|w0|p1

p1
+ (1 − γp2)|z0|p2

p2
+ βr(1 − γr)

∫

RN
|w0|r1 |z0|r2

= λ1|w0|22 + λ2|z0|22,

which implies that |w0|22 = a1 and |z0|22 = a2, that is, (wn, zn) → (w0, z0) in L2(RN)× L2(RN).

Therefore, from (5.5), (5.6) and Lemma 5.4, we know that

lim
n→∞

(|∇wn|22 + λ1|wn|22) = lim
n→∞

(

−
∫

RN
V1w2

n + |wn|2
∗

2∗ + |wn|p1
p1
+ βr1

∫

RN
|wn|r1 |zn|r2

)

= −
∫

RN
V1w2

0 + |w0|2
∗

2∗ + |w0|p1
p1
+ βr1

∫

RN
|w0|r1 |z0|r2

= |∇w0|22 + λ1|w0|22,

that is ‖wn‖1 → ‖w0‖1 as n → ∞. Similarly, we also have ‖zn‖2 → ‖z0‖2. Hence, it is easy to

see that (wn, zn) → (w0, z0) in E1 × E2. This completes the proof.

Proof of Theorem 1.1. By Lemmas 5.3, 5.4 and 5.5, we complete the proof of Theorem 1.1.
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After the completion of [2] we learned about a few works of L. Backes, D. Dragičević et al.

In particular, they work with the notion of Lipschitz shadowing property that coincides with the

notion of Ulam–Hyers stability used in [2]. Theorem 4.4 in [2] is a particular case of Theorem 6

in [1], where the linear part admits an exponential trichotomy. Also, note that the hypothesis

that the evolution family is exponentially bounded is not used in the proofs of Theorems 4.2

and 4.4 in [2].

We also learned about the paper [3] by S. Elaydi and O. Hájek whose Theorem 5.3 can be

used to generalize Theorem 3.5 in [2]. The statement of the new result is mainly obtained by

replacing “Ulam–Hyers stability with uniqueness” and “exponential dichotomy” in Theorem

3.5 [2] with “Ulam–Hyers stability” and “exponential trichotomy”, respectively.

We apologize for any inconvenience caused by our omissions.
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1 Introduction

The system of difference equations is the subject of numerous publications, and it is impossible

to analyse all of them in detail. In this article we develop constructive methods of analysis of

linear and weakly nonlinear boundary-value problems for difference equations, which occupy

a central place in the qualitative theory of dynamical systems. We consider such problems

that the operator of the linear part of the equation does not have an inverse. Such problems

include the so called critical (or resonance) problems (when the considered problem can have

non unique solution and not for any right-hand sides). We use the well-known technique

of generalised inverse operators [4] and the notion of a strong generalised solution of an

operator equation developed in [20]. In such way, one can prove the existence of solutions

of different types for the system of operator equations in the Hilbert spaces. There exist

three possible types of solutions: classical solutions, strong generalised solutions, and strong

pseudo solutions [32]. For the analysis of a weakly nonlinear system, we develop the well-

known Lyapunov–Schmidt method. This approach gives possibility to investigate a lot of

problems in difference equations and mathematical biology from a single point of view.

BCorresponding author. Email: alex_poker@imath.kiev.ua, lenasas@gmail.com
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2 Statement of the problem

Consider the following boundary-value problem

x(n + 1, ε) = a(n)x(n, ε) + b(n)y(n, ε) + εZ1(x(n, ε), y(n, ε), n, ε) + f1(n); (2.1)

y(n + 1, ε) = c(n)x(n, ε) + d(n)y(n, ε) + εZ2(x(n, ε), y(n, ε), n, ε) + f2(n); (2.2)

l

(

x(·, ε)

y(·, ε)

)

= α, (2.3)

where operators {a(n), b(n), c(n), d(n) ∈ L(H), n ∈ J ⊂ Z}, L(H) is the space of linear and

bounded operators which acts from H into itself, vector-functions f1(n), f2(n) ∈ l∞(J,H),

l∞(J,H) =
{

f : J → H, ∥ f ∥l∞ = supn∈J ∥ f (n)∥H < ∞
}

,

Z1, Z2 are smooth nonlinearities; a linear and bounded operator l translates solutions of (2.1),

(2.2) into the Hilbert space H1, α is an element of the space H1, α ∈ H1 (instead of l∞(J,H)

we can consider another functional space T (J,L(H))).

We find solutions of the boundary-value problem (2.1)–(2.3) which for ε = 0 turns in one

of solutions of generating boundary-value problem

x0(n + 1) = a(n)x0(n) + b(n)y0(n) + f1(n); (2.4)

y0(n + 1) = c(n)x0(n) + d(n)y0(n) + f2(n); (2.5)

l

(

x0(·)

y0(·)

)

= α. (2.6)

3 Results

3.1 Linear case

Consider the following vector z0(n) = (x0(n), y0(n)), sequence of operator matrices

An =

(

a(n) b(n)

c(n) d(n)

)

,

and sequence of vector–functions f (n) = ( f1(n), f2(n)). Then we can rewrite the generating

boundary-value problem (2.4)–(2.6) in the following form

z0(n + 1) = Anz0(n) + f (n), (3.1)

lz0(·) = α. (3.2)

Define an operator Φ(m, n) = Am+1Am...An+1, m > n, Φ(m, m) = I. The operator U(m) =

Φ(m, 0) is an evolution operator [6]. General solution z0(n) of (3.1) can be represented in the

following form

z0(n) = Φ(n, 0)z0 + g(n), (3.3)

where

g(n) =
n

∑
i=0

Φ(n, i) f (i).
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Remark 3.1. It should be noted that if the sequence of operator matrices An each has bounded

inverse A−1
n ∈ L(H), then general solution of (3.1) can be represented in the following form

z0(n) = U(n)z0 +
n

∑
i=0

U(n)U−1(i) f (i).

Substituting representation (3.3) in the boundary condition (3.2) we obtain the following

operator equation

Qz0 = h, (3.4)

where the operator Q and the element h have the following form

Q = lΦ(·, 0), Q : H → H1, h = α − lg(·).

According to the theory of generalised solutions which was represented in [2] and theory

of Moore–Penrose pseudo invertible operators [4] for the equation (3.4) we have the following

variants:

1) Suppose that R(Q) = R(Q) (R(Q) is the image of the operator Q). In this case we have

that the equation (3.4) is solvable if and only if the following condition is hold [4]:

PYh = 0, H1 = R(Q)⊕ Y. (3.5)

Here PY is an orthoprojector onto subspace Y. Under condition (3.5) the set of solutions of

(3.4) has the following form:

z0 = Q+h + PN(Q)c, ∀c ∈ H,

where Q+ is Moore–Penrose pseudo inverse [4,24,29] to the operator Q, PN(Q) is orthoprojector

onto the kernel of the operator Q.

2) Consider the case when R(Q) ̸= R(Q). In this case there is strong Moore–Penrose

pseudo inverse Q
+

[2] to the operator Q (Q : H → H1 is extension of the operator Q onto

extended space H ⊂ H [2]). Condition of generalised solvability has the following form:

PYh = 0, H1 = R(Q)⊕ Y. (3.6)

Condition (3.6) guarantees only that h ∈ R(Q). Under condition (3.6) the set of strong gener-

alised solutions of the equation (3.4) has the following form:

z0 = Q
+

h + PN(Q)c, ∀c ∈ H. (3.7)

If h ∈ R(Q) then strong generalised solutions are classical.

3) Suppose that R(Q) ̸= R(Q) and h /∈ R(Q). It means that the following condition is hold

PYh ̸= 0. (3.8)

Under condition (3.8) the set of strong generalised quasisolutions [2,4] has the following form:

z0 = Q
+

h + PN(Q)c, ∀c ∈ H.

Using the notion presented above, we obtain the following theorem.
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Theorem 3.2. Boundary value problem (3.1), (3.2) is solvable.

a1) There are strong generalised solutions of (3.1), (3.2) if and only if

PY

{

α − l
·

∑
i=0

Φ(·, i) f (i)

}

= 0, (3.9)

if the element (α − l ∑
·
i=0 Φ(·, i) f (i)) ∈ R(Q) then solutions are classical;

b1) under condition (3.9) the set of generalised solutions of the boundary-value problem (3.1), (3.2)

has the following form

z0(n, c) = G[ f , α](n) + PN(Q)c, ∀c ∈ H,

where the generalised Green operator has the form

G[ f , α](n) = Φ(n, 0)Q
+

{

α − l
·

∑
i=0

Φ(·, i) f (i)

}

;

a2) There are strong quasisolutions of (3.1), (3.2) if and only if the following condition is hold

PY

{

α − l
·

∑
i=0

Φ(·, i) f (i)

}

̸= 0; (3.10)

b2) Under condition (3.10) the set of strong quasisolutions of the boundary-value problem (3.1),

(3.2) has the following form

z0(n, c) = G[ f , α](n) + PN(Q)c, ∀c ∈ H.

3.2 Nonlinear case

Consider the nonlinear boundary-value problem (2.1)–(2.3). Using the introduced notations

we can rewrite this problem in the following form

z(n + 1, ε) = Anz(n, ε) + εZ(z(n, ε), n, ε), (3.11)

lz(·, ε) = α. (3.12)

Theorem 3.3 (Necessary condition). Suppose that the boundary value problem (3.11), (3.12) has

solution z(n, ε) which for ε = 0 turns in one of solutions z0(n, c) with element c ∈ H (z(n, 0) =

z0(n, c))). Then c satisfies the following operator equation for generating elements

F(c) = PYl
·

∑
i=0

Φ(·, i)Z(z0(i, c), i, 0) (3.13)

= PYl
·

∑
i=0

Φ(·, i)Z(G[ f , α](i) + PN(Q)c, ·, 0) = 0. (3.14)

Proof. According to Theorem 3.3, the boundary value problem (3.11), (3.12) has solution if and

only if the following condition is true:

PY

{

α − l
·

∑
i=0

Φ(·, i)( f (i) + εZ(z(i, ε), i, ε))

}

= 0. (3.15)

From the condition (3.15) follows condition (3.13).
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Remark 3.4. It should be noted that theorem 3.2 is hold when the nonlinearities Z1, Z2 are

continuous in the neighborhood of generating solution z0(n, c0).

Now, we propose the following change of variables:

z(n, ε) = z0(n, c0) + u(n, ε),

where the element c0 satisfies the operator equation (3.13). Then we can rewrite the boundary

value problem (3.11), (3.12) in the following form

u(n + 1, ε) = Anu(n, ε) + ε{Z(z0(n, c0), n, 0) + Z′
u(z0(n, c0), n, 0)u(n, ε) +R(u(n, ε), n, ε)},

(3.16)

lu(·, ε) = 0. (3.17)

Here Z′
u is the Fréchet derivative,

R(0, 0, 0) = R′
u(0, 0, 0) = 0.

Boundary value problem (3.16), (3.17) has solutions if and only if the following condition is

true:

PYl
·

∑
i=0

Φ(·, i)(Z(z0(i, c0), i, 0) + Z′
u(z0(i, c0), i, 0)u(i, ε) +R(u(i, ε), i, ε)) = 0. (3.18)

Under this condition the set of solutions of boundary value problem (3.16), (3.17) has the

following form

u(n, ε) = PN(Q)c + u(n, ε), (3.19)

where

u(n, ε) = εG[Z(z0(·, c0), ·, 0) + Z′
u(z0(·, c0), ·, 0)u(·, ε) +R(u(·, ε), ·, ε), 0](n). (3.20)

Substituting (3.19) in (3.18) we obtain the following operator equation

B0c = r, (3.21)

where the operator

B0 = −PYl
·

∑
i=0

Φ(·, i)Z′
u(z0(i, c0), i, 0)PN(Q),

r = PYl
·

∑
i=0

Φ(·, i)(Z′
u(z0(i, c0), i, 0)u(i, ε) +R(u(i, ε), i, ε)).

Condition PN(B∗
0 )

PY = 0 guarantees that equation (3.21) is solvable and has at least one gen-

eralized solution in the following form c = B
+
0 r. For a small enough ε considered operator

system (3.19)–(3.21) has a contracting operator in the right-hand side and using contraction

mapping principle [2] we have the following assertion.

Theorem 3.5 (Sufficient condition). Suppose that the following condition is true: PN(B
∗
0)

PY = 0.

(PN(B
∗
0)

is an orthoprojector onto the kernel of adjoint to the operator B0). Then the boundary value

problem (3.11), (3.12) has generalised solutions which can be found with using of iterative processes:

uk+1(n, ε) = PN(Q)ck + uk(n, ε),
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ck+1 = B
+
0 PYl

·

∑
i=0

Φ(·, i)(Z′
u(z0(i, c0), i, 0)uk(i, ε) +R(uk(i, ε), i, ε)),

uk+1(n, ε) = εG[Z(z0(·, c0), ·, 0) + Z′
u(z0(·, c0), ·, 0)uk(·, ε) +R(uk(·, ε), ·, ε), 0](n),

where

R(uk(n, ε), n, ε) = Z(z0(n, c0) + uk(n, ε), n, ε)− Z(z0(n, c0), n, 0)− Z′
u(z0(n, c0), n, 0)uk(n, ε),

u0 = c0 = y0 = 0.

4 Applications

It is well-known that systems like a Lotka–Volterra [34, 35] plays an important role in the

dynamics of population [26, 27] (mathematical biology). There exist many papers which are

dedicated to investigation of such problems in continuous and discrete cases (see for example

the recent works [1, 5, 7, 9–19, 21–23, 25, 28, 30, 31, 33]). As a rule such problems are regular. We

consider some examples of systems with different type of boundary conditions in the critical

case. We show that the operator which generates considering problem can be Fredholm. We

find bifurcation conditions of solutions with using of the equation for generating constants

[3]. It should be noted that the proposed method also works in the case of boundary-value

problems with fractional derivative [8].

4.1 Examples

4.1.1 Example 1

Consider the following periodic boundary-value problem in the finite dimensional case:

xi(n + 1, ε) = ai(n)xi(n, ε) + bi(n)yi(n, ε)

+ εg1
i (n)xi(n, ε)

(

1 −
t

∑
j=1

aij(n)yj(n, ε)

)

+ f i
1(n), (4.1)

yi(n + 1, ε) = ci(n)xi(n, ε) + di(n)yi(n, ε)

+ εg2
i (n)yi(n, ε)

(

1 −
t

∑
j=1

bij(n)xj(n, ε)

)

+ f i
2(n), (4.2)

xi(0, ε) = xi(m, ε), (4.3)

yi(0, ε) = yi(m, ε), i = 1, p. (4.4)

Here xi(n, ε), yi(n, ε), ai(n), bi(n), ci(n), di(n), g1
i (n), g2

i (n), aij(n), bij(n) ∈ R, i = 1, p, j = 1, t.

For ε = 0 we obtain the following generating boundary-value problem

x0
i (n + 1) = ai(n)x0

i (n) + bi(n)y
0
i (n) + f i

1(n), (4.5)

y0
i (n + 1) = ci(n)x0

i (n) + di(n)y
0
i (n) + f i

2(n), (4.6)

x0
i (0) = x0

i (m), (4.7)

y0
i (0) = y0

i (m). (4.8)

l

(

x0(·)

y0(·)

)

=

(

x0
i (m)− x0

i (0)

y0
i (m)− y0

i (0)

)

i=1,p

=

(

0

0

)

.

For the vector z0
i (n) = (x0

i (n), y0
i (n)) we can write the following assertion.
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Corollary 4.1. The boundary value problem (4.5)–(4.8) has periodic solutions if and only if

PYd

m

∑
k=0

Φ(m, k) f (k) = 0, (4.9)

where Q = Φ(m, 0)− I , d is a number of linearly independent columns of Q; under condition (4.9)

the set of solutions has the form

z0
i (n, cr) = (G[ f , 0])(n) + PQr

cr, cr ∈ R
r, (4.10)

where the generalised Green’s operator (G[ f , 0])(n) has the following form

(G[ f , 0])(n) = −Φ(n, 0)Q+
m

∑
k=0

Φ(m, k) f (k),

r is a number of linearly independent rows of Q (PQr
is an orthoprojector onto the kernel of matrix Q).

Remark 4.2. It should be noted that in the considered above case index of an operator S can

be calculated in the following way

indS = r − d,

where the operator S with boundary conditions has the following form

S

(

x0
i (n)

y0
i (n)

)

:=

(

x0
i (n + 1)− ai(n)x0

i (n)− bi(n)y
0
i (n)

y0
i (n + 1)− ci(n)x0

i (n)− di(n)y
0
i (n)

)

.

It means that the operator S is Fredholm [4].

For the nonlinear boundary value problem (4.1)–(4.4) we obtain the following assertions.

Corollary 4.3 (Necessary condition). If the boundary value problem (4.1)–(4.4) has solution, then

the element cr = c0
r satisfies the following equation for generating constants:

F(cr) = PYd

m

∑
i=0

Φ(m, i)Z(z0(i, cr), i, 0) = 0,

where

Z(z0(n, cr), n, 0) =

(

g1
i (n)x0

i (n, cr)(1 − ∑
t
j=1 aij(n)y

0
j (n, cr))

g2
i (n)y

0
i (n, cr)(1 − ∑

t
j=1 bij(n)x0

j (n, cr))

)

.

Corollary 4.4 (Sufficient condition). Suppose that the following condition is true:

PN(B∗
0 )

PQ∗
d
= 0.

Then the boundary value problem (4.1)–(4.4) has generalized solutions which can be found using of

iterative processes:

uk+1(n, ε) = PN(Q)r
ck + uk(n, ε),

ck+1 = B+
0 PN(Q∗)

m

∑
i=0

Φ(m, i)(Z′
u(z0(i, c0), i, 0)uk(i, ε) +R(uk(i, ε), i, ε)),

uk+1(n, ε) = εG[Z(z0(·, c0), ·, 0) + Z′
u(z0(·, c0), ·, 0)uk(·, ε) +R(uk(·, ε), ·, ε), 0](n),
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where

R(uk(n, ε), n, ε) = Z(z0(n, c0) + uk(n, ε), n, ε)− Z(z0(n, c0), n, 0)− Z′
u(z0(n, c0), n, 0)uk(n, ε),

u0 = c0 = y0 = 0,

Z′
u(z0(n, c0), n, 0)uk(n, ε)

=

(

g1
i (n)x0

i (n, c0
r )(1 − ∑

t
j=1 aij(n)u

2
jk(n)) + g1

i (n)u
1
ik(n)(1 − ∑

t
j=1 aij(n)y

0
j (n, c0

r ))

g2
i (n)y

0
i (n, c0

r )(1 − ∑
t
j=1 bij(n)u

1
jk(n)) + g2

i (n)u
2
ik(n)(1 − ∑

t
j=1 bij(n)x0

j (n, c0
r ))

)

.

4.1.2 Example 2

Suppose that ai(n) = bi(n) = ci(n) = g1
i (n) = g2

i (n) = aij(n) = bij(n) = 1, di(n) = 0. In this

case

An = A =

(

1 1

1 0

)

, n ∈ N.

Then for the linear boundary value problem (4.5)–(4.8) we obtain that the evolution operator

Φ(m, n) has the following form

Φ(m, n) = Am−n+1 =

(

Fm−n+2 Fm−n+1

Fm−n+1 Fm−n

)

.

Here F0 = 1, F1 = 1, Fn+2 = Fn + Fn+1, n ≥ 0 are Fibonacci numbers. In this case the matrix

Q is nondegenerate (Q+ = Q−1, PN(Q) = I, PY = I, I is an identity matrix) and we obtain the

following corollary.

Corollary 4.5. The boundary value problem (4.1)–(4.4) has periodic solution if and only if

m

∑
k=0

Am−k+1 f (k) =
m

∑
k=0

(

Fm−k+2 Fm−k+1

Fm−k+1 Fm−k

)(

f i
1(k)

f i
2(k)

)

= 0; (4.11)

under condition (4.11) the solution of the boundary value problem (4.1)–(4.4) has the form

z0
i (n) = (G[ f , 0])(n) = −An+1Q−1

m

∑
k=0

Am−k+1 f (k)

= −
1

∆(m)

m

∑
k=0

(

a11(n, m, k) f i
1(k) + a12(n, m, k) f i

2(k)

a21(n, m, k) f i
1(k) + a22(n, m, k) f i

2(k)

)

,

where

∆(m) = (Fm+2 − 1)(Fm − 1)− F2
m+1;

a11(n, m, k) = Fn+2(FmFm−k+2 − Fm+1Fm−k+1)− (Fn+2Fm−k+2 + Fn+1Fm−k+1)

+ Fn+1(Fm+2Fm−k+1 − Fm+1Fm−k+2);

a12(n, m, k) = Fn+2(FmFm−k+1 − Fm+1Fm−k)− (Fn+2Fm−k+1 + Fn+1Fm−k)

+ Fn+1(Fm+2Fm−k − Fm+1Fm−k+1);

a21(n, m, k) = Fn+1(FmFm−k+2 − Fm+1Fm−k+1)− (Fn+1Fm−k+2 + Fn+1Fm−k+1)

+ Fn(Fm+2Fm−k+1 − Fm+1Fm−k+2);

a22(n, m, k) = Fn+1(FmFm−k+1 − Fm+1Fm−k)− (Fn+2Fm−k+1 + Fn+1Fm−k)

+ Fn+1(Fm+2Fm−k − Fm+1Fm−k+1).
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In this case the necessary condition of solvability for the nonlinear boundary-value prob-

lem (4.1)–(4.4) has the form
(

∑
m
i=0 Fm−i+2x0

i (n)(1 − ∑
n
j=1 y0

j (n)) + Fm−i+1y0
i (n)(1 − ∑

n
j=1 x0

j (n))

∑
m
i=0 Fm−i+1x0

i (n)(1 − ∑
n
j=1 y0

j (n)) + Fm−iy
0
i (n)(1 − ∑

n
j=1 x0

j (n))

)

= 0.

Fréchet derivate Z′
u has the following form

Z′
u(z0(n), n, 0)uk(n, ε) =

(

x0
i (n)(1 − ∑

n
j=1 u2

jk(n, ε)) + u1
ik(n, ε)(1 − ∑

n
j=1 y0

j (n))

y0
i (n)(1 − ∑

n
j=1 u1

jk(n, ε)) + u2
ik(n, ε)(1 − ∑

n
j=1 x0

j (n))

)

.

4.1.3 Example 3

Consider the following boundary value problem

xi(n + 1, ε) = ai(n)xi(n, ε) + bi(n)yi(n, ε)

+ εg1
i (n)xi(n, ε)

(

1 −
n

∑
j=1

aij(n)yj(n, ε)

)

+ f i
1(n), (4.12)

yi(n + 1, ε) = ci(n)xi(n, ε) + di(n)yi(n, ε)

+ εg2
i (n)yi(n, ε)

(

1 −
n

∑
j=1

bij(n)xj(n, ε)

)

+ f i
2(n), (4.13)

with the following boundary conditions

l

(

xi(·, ε)

yi(·, ε)

)

=

(

∑
p1

k=0 xi(nk, ε)

∑
p2

l=0 yi(nl , ε)

)

i=1,p

=

(

α1

α2

)

. (4.14)

Here nk, k = 0, p1, nl , l = 0, p2 are finite sequences of integer numbers. In this case we obtain

the multi-point boundary-value problem.

4.1.4 Example 4

Suppose that xi(n), yi(n) ≥ 0 and boundary condition has the following form

l

(

xi(·, ε)

yi(·, ε)

)

=

(

∑
p
i=0 xi(0, ε)

∑
p
i=0 yi(0, ε)

)

=

(

1

1

)

. (4.15)

Such condition has practical meaning. It means the population distribution at the initial time

(the proportion of the population in species).

5 Conclusion

Proposed in the given article approach gives possibility to investigate a lot of biological prob-

lems.
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Abstract. In this article, the following Kirchhoff-type fractional Laplacian problem with
singular and critical nonlinearities is studied:











(

a + b∥u∥2µ−2
)

(−∆)s u = λl(x)u2∗s −1 + h(x)u−γ, in Ω,

u > 0, in Ω,

u = 0, in R
N\Ω,

where s ∈ (0, 1), N > 2s, (−∆)s is the fractional Laplace operator, 2∗s = 2N/(N − 2s)
is the critical Sobolev exponent, Ω ⊂ R

N is a smooth bounded domain, l ∈ L∞(Ω)

is a non-negative function and max {l(x), 0} ̸≡ 0, h ∈ L
2∗s

2∗s +γ−1 (Ω) is positive almost
everywhere in Ω, γ ∈ (0, 1), a > 0, b > 0, µ ∈ [1, 2∗s /2) and parameter λ is a positive
constant. Here we utilize a special method to recover the lack of compactness due to
the appearance of the critical exponent. By imposing appropriate constraint on λ, we
obtain two positive solutions to the above problem based on the Ekeland variational
principle and Nehari manifold technique.

Keywords: fractional Laplacian problem, singular, critical nonlinearity, Kirchhoff-type
problem.
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1 Introduction

This paper is concerned with the existence and multiplicity of positive solutions for the fol-

lowing Kirchhoff-type problem with singular nonlinearity and critical exponent driven by
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fractional Laplacian operator:















M
(

∫∫

R2N
|u(x)−u(y)|2

|x−y|N+2s dxdy
)

(−∆)s u = λl(x)u2∗s −1 + h(x)u−γ, in Ω,

u > 0, in Ω,

u = 0, in R
N\Ω,

(1.1)

where 0 < s < 1, N > 2s, 2∗s = 2N/(N − 2s) is the fractional critical Sobolev exponent,

M(t) = a + btµ−1, a > 0, b > 0, µ ∈ [1, 2∗s /2), l(x) is non-negative and l(x) ∈ L∞(Ω) satisfies

l(x) ̸≡ 0 in Ω, 0 < γ < 1 and h ∈ L
2∗s

2∗s +γ−1 (Ω) is positive almost everywhere in Ω, parameter

λ > 0 and (−∆)s is the fractional Laplace operator which defined up to normalization factors

as

(−∆)s
Ψ(x) = 2 lim

τ→0+

∫

RN\Bτ(x)

Ψ(x)− Ψ(y)

|x − y|N+2s
dy, x ∈ R

N , (1.2)

for any Ψ ∈ C∞
0 (RN), where Bτ(x) is the ball with radius τ and center x ∈ R

N . For more

details, we can refer to [25] and references therein. The fractional elliptic problem appeared in

many different practical applications and phenomena, such as resilience, phase transformation

and minimal surface problems, etc. For more related introduction, see [1, 2, 6, 20, 29].

Above all, let us review the relevant progress on Kirchhoff-type equation. The Kirchhoff-

type equation is a generalization of the classical D’Alembert wave equation, which was raised

by Kirchhoff to describe the lateral vibration of stretched strings in [17]. The basic model for

problem (1.1) can be summarized as follows:

ρutt − M

(

∫ L

0
u2

xdx

)

uxx = 0,

where ρ, a, b, L are constants, M(
∫ L

0 u2
xdx) := a + b(

∫ L
0 u2

xdx)µ−1 describes the tension changes

arise from changes in string length during the vibrations. Concerning the Kirchhoff term M,

we consider a specific version of M,

M(t) = a + btµ−1, a, b > 0, 1 ≤ µ < 2∗s /2. (1.3)

Where, a represents the initial tension while b is related to the inherent properties of string

(such as Young’s modulus). In particular, in the case of M(0) = 0 while M(t) > 0 for all

t ∈ R
+, Kirchhoff-type equation is often referred as degenerate. If M(t) ≥ c > 0 for all t ∈ R

+
0

and some constant c, equation is commonly known as non-degenerate. For some advance

of degenerate Kirchhoff-type problems, see for instance [3, 7, 32]. In addition, we refer to

[8, 10, 13, 31, 33] about some existence results of non-degenerate Kirchhoff-type problems.

Next, let us present some progress of Laplacian equations involving singular terms. A

general version of this type of problem can be formed as follows:















−∆u = λm(x)u−γ + h(x)uq, inΩ

u > 0, in Ω

u = 0, in ∂Ω.

(1.4)

In the early days, when λ ≡ 1 and h(x) = 0, the existence and regularity results of the

solutions to problem (1.4) were studied by Boccardo et al. in [5]. The difference in results

depends on the summability of m in some Lebesgue function spaces and on the value range
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of γ (which can be smaller, equal or larger than 1). When 0 < γ < 1, in the case of m(x) ≡ 1

and h(x) ≡ 0, Crandall et al. solved problem (1.4) in [9] and learned that it has a unique weak

solution. Subsequently, the multiplicity of solutions to such problems was obtained by Sun et

al. in [28]. Moreover, Liu and Sun solved the Kirchhoff equation involving singular terms and

Hardy potential in [23]. For equations involving the critical case, we may refer to [12, 15, 16].

To be specific, the author in [12] solved the Kirchhoff equation involving the critical exponent

and obtained two different solutions. In [15], when m(x), h(x) ≡ 1, the authors obtained that if

λ is less than a positive constant, then problem (1.4) has two positive solutions. Furthermore,

Yang in [16] studied the multiplicity and asymptotic behavior of positive solutions to problem

(1.4), where 0 < γ < 1 < q ≤ (N + 2)/(N − 2). By applying variational method and sub-

supersolution technique, the author learned what happens to the number and properties of

solutions for the equation with different values of λ. In the setting of γ = 1, minimization

theory is used by the authors in [31] to obtain a unique positive solution in the subcritical case.

Regarding γ > 1, in the case of h(x) ≡ 0 and λ ≡ 1, the authors in [18] also got the unique

solution. It is worth mentioning that Wang et al. used Ekeland’s variational principle and the

Nehari method to prove the existence of a unique positive solution for a Kirchhoff equation

involving strong singularity in [30]. Besides, there are equations for (1.4) with Kirchhoff terms

that we can refer to [19, 21, 22]. In [19], the authors obtained two different positive solutions

through the variational and perturbation methods. Liao et al. in [22] studied the solutions of

equation (1.4) in the weak singular case under different constraints. On the basis of [22], they

solved the critical case in [21] and got the unique positive solution.

In the above context, the following class of singular Kirchhoff problem with fractional

Laplace operators has been extensively studied:














M(
∫

Ω
|∇u(x)|2)(−∆)su = λ f (x)u−γ + g(x)u2∗s −1, in Ω

u > 0, in Ω

u = 0, in R
N\Ω,

(1.5)

in the setting of M ≡ 1. Mukherjee and Sreenadh in [24] studied a singular problem with

critical growth and obtained two solutions, where γ can be equal to 1. In the case of γ > 0,

Barrios et al. discussed the existence of solutions to the equation 1.5 in two cases: g(x) = 0 and

g(x) = 1. Besides, the authors in [14] solved a variant of problem (1.5) in which λ is multiplied

to the critical term. Through the variational method, they learned about the existence and

multiplicity of solutions to the equation when λ takes different values. For such problems

with different Kirchhoff terms, we may consult [11–13] and the references therein. Equation

(1.5) was discussed in [12], where there is no weight function and the Kirchhoff term may

be degenerate, the variational method and appropriate truncation theory were used to obtain

two solutions. In [13], Fiscella et al. proved that equation (1.5) of the non-degenerate type has

two distinct solutions by using the Nehari method. At last, the authors in [11] considered a

critical degenerate Kirchhoff problem with strong singularity, and the only positive solution

was obtained.

In view of the aforementioned works, in particular, according to [11–13,30], we are inspired

to investigate the existence and multiplicity of solutions to problem (1.1) under appropriate

assumptions. The most significant difficulty lies in the lack of compactness caused by the

presence of critical term. For this, we use the method of [13] to recover compactness. Es-

pecially, we are interested in a natural problem: whether problem (1.1) can be solved in the

strong singular case? We will try our best to study this situation in the future.

Here is the main result we obtain.
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Theorem 1.1. Let s ∈ (0, 1), N > 2s, 0 < γ < 1, a be small enough and h ∈ L
2∗s

2∗s +γ−1 (Ω) be positive

a.e. in Ω. Then there exists Γ0 > 0, when 0 < λ < Γ0, then problem (1.1) has at least two positive

solutions with negative energies.

Remark 1.2. Compared to the fundamental conclusion in [11], there are three main differences:

(i) The range of M(t) is different, in this paper we only consider non-degenerate case. (ii) We

utilize a different method to recover the lack of compactness caused by the critical term. (iii)

By controlling the range of λ in the weak singular case, we obtain two positive solutions.

Remark 1.3. Compared to [13], our result refines and improves the main result of [13] from

the following aspects: (i) We do not need to control b to be as small as possible but we need to

control a > 0 small enough to ensure that λ is positive in order to obtain the second positive

solution. (ii) Our nonlinearities do not involve sign changing functions and we don’t need to

control l(x) = ∥l∥∞ in Bρ0(0) for some ρ0 > 0.

2 Variational setting

Regarding problem (1.1), we mainly solve it in fractional Sobolev space, which is specifically

defined by

M =

{

Φ | Φ : R
N → R is measureable, Φ|Ω ∈ L2(Ω),

Φ(x)− Φ(y)

|x − y|
N+2s

2

∈ L2(G)

}

, (2.1)

where G = R
2N\(Ωc ×Ωc), with Ωc = R

N\Ω. Moreover, M0 is defined as the linear subspace

of M, which is

M0 :=
{

Φ ∈ M : Φ = 0 a.e. in R
N\Ω

}

.

As for the norm of two spaces, the norm of the space M is given as shown below:

∥Φ∥M = ∥Φ∥L2(Ω) +

(

∫∫

G

|Φ(x)− Φ(y)|2

|x − y|N+2s
dxdy

)1/2

. (2.2)

Besides, we confirm the following norm on M0:

∥Φ∥M0
:=

(

∫∫

G

|Φ(x)− Φ(y)|2

|x − y|N+2s
dxdy

)1/2

. (2.3)

According to Lemma 6 in [26], it is easy to know that (2.2) and (2.3) are equivalent. In addition,

it is standard to verify that (M0, ∥.∥M0) is a Hilbert space and the form of scalar product in

M0 is as follows:

⟨ı, ȷ⟩ : ⟨ı, ȷ⟩M0
=
∫∫

G

(ı(x)− ı(y))(ȷ(x)− ȷ(y))

|x − y|N+2s
dxdy, for ı, ȷ ∈ M0, (2.4)

see for example Lemma 7 in [26]. The embedding M0 →֒ Lη(Ω) is compact and continuous

for 2 ≤ η < 2∗s , see [26, Lemma 8]). Then, an appropriate selection linked to the best Sobolev

constant can be defined as

Ss = inf
Φ∈M0\{0}

Ss(Φ) =

∫∫

G
|Φ(x)−Φ(y)|2

|x−y|N+2s dxdy
(∫

Ω
|Φ(x)|2∗s dx

)2/2∗s
. (2.5)
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In what follows, for the sake of simplicity of notations, we shall denote ∥ · ∥M0
and ∥ · ∥Lη(Ω)

by ∥ · ∥ and ∥ · ∥η for any η ∈ [2, ∞].

In the process of obtaining multiple solutions, we will use Nehari manifold method and

fibering maps. Before this, let us first introduce the definition of weak solutions to problem

(1.1).

Definition 2.1. u ∈ M0 is a weak solution of problem (1.1) if for all ℓ ∈ M0 the following

weak formulation is satisfied:

a⟨u, ℓ⟩+ b∥u∥2µ−2⟨u, ℓ⟩ − λ
∫

Ω

l(x)|u|2
∗
s −1ℓdx −

∫

Ω

h(x)|u|−γℓdx = 0.

The energy functional associated to problem (1.1): I : M0 → R is defined as

I(u) =
a

2
∥u∥2 +

b

2µ
∥u∥2µ −

λ

2∗s

∫

Ω

l(x)|u|2
∗
s dx −

1

1 − γ

∫

Ω

h(x)|u|1−γdx. (2.6)

3 Fibering maps analysis

For any u ∈ M0, we first introduce the fibering map: ϕu(t) : (0, ∞) → R, defined as

ϕu(t) = I(tu) =
a

2
t2∥u∥2 +

b

2µ
t2µ∥u∥2µ − λ

t2∗s

2∗s

∫

Ω

l(x)|u|2
∗
s dx −

t1−γ

1 − γ

∫

Ω

h(x)|u|1−γdx.

Through simple calculation, we get

ϕ′
u(t) = at∥u∥2 + bt2µ−1∥u∥2µ − λt2∗s −1

∫

Ω

l(x)|u|2
∗
s dx − t−γ

∫

Ω

h(x)|u|1−γdx,

where in particular

ϕ′
u(1) = a∥u∥2 + b∥u∥2µ − λ

∫

Ω

l(x)|u|2
∗
s dx −

∫

Ω

h(x)|u|1−γdx. (3.1)

From this, we may define the constrained set as

X =

{

u ∈ M0 : a∥u∥2 + b∥u∥2µ − λ
∫

Ω

l(x)|u|2
∗
s dx −

∫

Ω

h(x)|u|1−γdx = 0

}

. (3.2)

Furthermore,

ϕ
′′

u(t) = a∥u∥2 + (2µ− 1)bt2µ−2∥u∥2µ − λ(2∗s − 1)t2∗s −2
∫

Ω

l(x)|u|2
∗
s dx +γt−γ−1

∫

Ω

h(x)|u|1−γdx.

Apparently,

ϕ
′′

u(1) = a∥u∥2 + (2µ − 1)b∥u∥2µ − λ(2∗s − 1)
∫

Ω

l(x)|u|2
∗
s dx + γ

∫

Ω

h(x)|u|1−γdx. (3.3)

As a matter of fact, the two weak solutions we want are in X. In order to better explore the

existence of solutions, X can be further decomposed into X
+, X

− and X
0:

X
+=

{

u∈X : a(1 + γ)∥u∥2 + b(2µ − 1 + γ)∥u∥2µ − λ(2∗s − 1 + γ)
∫

Ω

l(x)|u|2
∗
s dx > 0

}

, (3.4)

X
−=

{

u∈X : a(1 + γ)∥u∥2 + b(2µ − 1 + γ)∥u∥2µ − λ(2∗s − 1 + γ)
∫

Ω

l(x)|u|2
∗
s dx < 0

}

, (3.5)

X
0=

{

u∈X : a(1 + γ)∥u∥2 + b(2µ − 1 + γ)∥u∥2µ − λ(2∗s − 1 + γ)
∫

Ω

l(x)|u|2
∗
s dx = 0

}

. (3.6)
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4 Technical lemmas

In this section, we shall present several relevant lemmas in this section, which will be helpful

for the proof of Theorem 1.1.

Lemma 4.1. When 0 < λ < Γ1 hold, where

Γ1 =

(

1 + γ

2∗s − 2

)(

a(2∗s − 2)

2∗s + γ − 1

)

2∗s +γ−1
1+γ

S
2∗s −1+γ

1+γ
s ∥h∥

2−2∗s
1+γ

2∗s
2∗s +γ−1

∥l∥−1
∞ ,

there exist unique t0 = t0(u) > 0, t− = t−(u) > 0, t+ = t+(u) > 0, with t− < t0 < t+, such that

t+u ∈ X
+, t−u ∈ X

−.

Proof. For any u ∈ M0, we may write ψu(t) in the form

ψu(t) = at2−2∗s ∥u∥2 + bt2µ−2∗s ∥u∥2µ − t1−γ−2∗s

∫

Ω

h(x)|u|1−γdx, t > 0. (4.1)

It is noticeable that if ψu(t) = λ
∫

Ω
l(x)|u|2

∗
s dx, that is

at2−2∗s ∥u∥2 + bt2µ−2∗s ∥u∥2µ − t1−γ−2∗s

∫

Ω

h(x)|u|1−γdx = λ
∫

Ω

l(x)|u|2
∗
s dx, (4.2)

multiplying t2∗s on the both sides of the equation, one has

a∥tu∥2 + b∥tu∥2µ −
∫

Ω

h(x)|tu|1−γdx = λ
∫

Ω

l(x)|tu|2
∗
s dx, (4.3)

then we can deduce that tu ∈ X.

We can easily infer from (4.1) that limt→0+ ψu(t) = −∞ and limt→∞ ψu(t) = 0. Further-

more, one step derivative calculation can get

ψ′
u(t) = a(2 − 2∗s )t

1−2∗s ∥u∥2 + b(2µ − 2∗s )t
2µ−1−2∗s ∥u∥2µ

+ (2∗s + γ − 1)t−γ−2∗s

∫

Ω

h(x)|u|1−γdx.
(4.4)

Based on the fact that 1 < 2µ < 2∗s and 0 < γ < 1, one can obtain that limt→0+ ψ′
u(t) > 0 and

limt→∞ ψ′
u(t) < 0.

Rewrite ψ′
u(t) = t2µ−1−2∗s gu(t), where

gu(t) = a(2 − 2∗s )t
2−2µ∥u∥2 + b(2µ − 2∗s )∥u∥2µ + (2∗s + γ − 1)t1−γ−2µ

∫

Ω

h(x)|u|1−γdx.

If

g′u(t) = a(2 − 2∗s )(2 − 2µ)t1−2µ∥u∥2 − (1 − γ − 2∗s )(1 − γ − 2µ)t−γ−2µ
∫

Ω

h(x)|u|1−γdx = 0,

then it could be seen that there exists a unique

t1 =

(

(2∗s − 1 + γ)(2µ − 1 + γ)
∫

Ω
h(x)|u|−γdx

a(2∗s − 2)(2µ − 2)∥u∥2

) 1
1+γ

> 0

such that g′u(t1) = 0. Similarly, since 1 < 2µ < 2∗s and 0 < γ < 1, we have limt→0+ gu(t) = +∞

and limt→+∞ gu(t) = b(2µ − 2∗s )∥u∥2µ < 0. Also, limt→0+ g′u(t) < 0 and limt→+∞ g′u(t) > 0.
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Subsequently, we infer that there is only one t0 > 0 that satisfies gu(t0) = 0. Actually, it

follows from ψ′
u(t) = t2µ−1−2∗s gu(t) that t0 is a unique critical point of ψu(t), which is the

global maximum point. In another word, this means that when 0 < t < t0, ψu(t) is increasing.

ψu(t) is decreasing in the range greater than t0 and ψ′
u(t0) = 0. We define

ψu(t0) = max
t>0

ψu(t) = max
t>0

(b∥u∥2µt2µ−2∗s + φu(t)) ≥ max
t>0

φu(t), (4.5)

where

φu(t) = at2−2∗s ∥u∥2 − t1−γ−2∗s

∫

Ω

h(x)|u|1−γdx.

With respect to φu(t), there holds

φ′
u(t) = a(2 − 2∗s )t

1−2∗s ∥u∥2 − (1 − γ − 2∗s )t
−γ−2∗s

∫

Ω

h(x)|u|1−γdx,

we observe that limt→0+ φ′
u(t) > 0 and limt→+∞ φ′

u(t) < 0,

max
t>0

φu(t) =

(

1 + γ

2∗s − 2

)(

2∗s − 2

2∗s + γ − 1

)

2∗s +γ−1
1+γ (a∥u∥2)

2∗s +γ−1
1+γ

(∫

Ω
h(x)|u|1−γdx

)

2∗s −2
1+γ

. (4.6)

Hence by (4.5) and (4.6), we obtain

ψu(t0)− λ
∫

Ω

l(x)|u|2
∗
s dx

≥

(

1 + γ

2∗s − 2

)(

2∗s − 2

2∗s + γ − 1

)

2∗s +γ−1
1+γ (a∥u∥2)

2∗s +γ−1
1+γ

(
∫

Ω
h(x)|u|1−γdx)

2∗s −2
1+γ

− λ
∫

Ω

l(x)|u|2
∗
s dx

≥

(

1 + γ

2∗s − 2

)(

a(2∗s − 2)

2∗s + γ − 1

)

2∗s +γ−1
1+γ ∥u∥

22∗s +2γ−2
1+γ

[(

∫

Ω
h(x)

2∗s
2∗s −1+γ

)

2∗s −1+γ

2∗s

(
∫

Ω
|u|2∗s dx)

1−γ
2∗s

]

2∗s −2
1+γ

− λ∥l∥∞S
−

2∗s
2

s ∥u∥2∗s

≥ ∥u∥2∗s

(

1 + γ

2∗s − 2

)(

a(2∗s − 2)

2∗s + γ − 1

)

2∗s +γ−1
1+γ

S
(1−γ)(2∗s −2)

2(1+γ)
s ∥h∥

2−2∗s
1+γ

2∗s
2∗s +γ−1

− λ∥l∥∞S
−

2∗s
2

s ∥u∥2∗s

> 0,

(4.7)

for all 0 < λ <
( 1+γ

2∗s −2

)( a(2∗s −2)
2∗s +γ−1

)

2∗s +γ−1
1+γ S

2∗s −1+γ
1+γ

s ∥h∥
2−2∗s
1+γ

2∗s
2∗s +γ−1

∥l∥−1
∞ = Γ1. From (4.7), we can observe

that there are unique t+ = t+(u) < t0 and t− = t−(u) > t0 satisfying

ψu(t+) = λ
∫

Ω

l(x)|u|2
∗
s dx = ψu(t−).

Similar to (4.2) and (4.3), we confirm that t+u ∈ X and t−u ∈ X. Since ψ′
u(t+) > 0 and

ψ′
u(t−) < 0, we can get t+u ∈ X

+ and t−u ∈ X
−. Specifically,

ψ′
u(t+)= a∥u∥2(2− 2∗s )t

1−2∗s
+ + b∥u∥2µ(2µ− 2∗s )t

2µ−1−2∗s
+ − (1−γ− 2∗s )t

−γ−2∗s
+

∫

Ω

h(x)|u|1−γdx>0
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multiplying t
2∗s +1
+ on the both sides of the inequation, one has

a∥t+u∥2(2 − 2∗s ) + b∥t+u∥2µ(2µ − 2∗s )− (1 − γ − 2∗s )
∫

Ω

h(x)|t+u|1−γdx > 0. (4.8)

As to the definition of X
+, the prerequisite is u ∈ X,

ϕ′′
t (1) = a∥u∥2 + (2µ − 1)b∥u∥2µ − λ(2∗s − 1)

∫

Ω

l(x)|u|2
∗
s dx + γ

∫

Ω

h(x)|u|1−γdx

= a∥u∥2 + (2µ − 1)b∥u∥2µ − (2∗s − 1)
(

a∥u∥2 + b∥u∥2µ

−
∫

Ω

h(x)|u|1−γdx
)

+ γ
∫

Ω

h(x)|u|1−γdx

= a∥u∥2(2 − 2∗s ) + b(2µ − 2∗s )∥u∥2µ − (1 − γ − 2∗s )
∫

Ω

h(x)|u|1−γdx.

Therefore, another expression of X
+ can be written as

X
+=

{

u ∈ X : a∥u∥2(2 − 2∗s ) + b(2µ − 2∗s )∥u∥2µ − (1 − γ − 2∗s )
∫

Ω

h(x)|u|1−γdx>0

}

. (4.9)

Similarly,

X
−=

{

u∈X : a∥u∥2(2 − 2∗s ) + b(2µ − 2∗s )∥u∥2µ − (1 − γ − 2∗s )
∫

Ω

h(x)|u|1−γdx<0

}

, (4.10)

X
0=

{

u ∈ X : a∥u∥2(2 − 2∗s ) + b(2µ − 2∗s )∥u∥2µ − (1 − γ − 2∗s )
∫

Ω

h(x)|u|1−γdx=0

}

. (4.11)

Because (4.8) is established, we know that t+u ∈ X
+. At the same time, t−u ∈ X

− can be

obtained using the same method.

Lemma 4.2. There is Γ2 > 0 satisfies X
0 = {0} for all 0 < λ < Γ2, where

Γ2 =
2
[

(1 + γ)(2µ − 1 + γ)ab
]

1
2

(2∗s + γ − 1)∥l∥∞

S
(µ+1)(2∗s +γ−1)

2(µ+γ)
s

[ (2∗s +γ−1)∥h∥ 2∗s
2∗s −1+γ

2
[

(2∗s −2)(2∗s −2µ)ab
]

1
2

]

2∗s −µ−1
µ+γ

.

Proof. We can prove it in two cases.

Case 1: u ∈ X\ {0} and
∫

Ω
l(x)|u|2

∗
s dx = 0.

According to the definition of X, it follows that (3.2) that

a∥u∥2 + b∥u∥2µ −
∫

Ω

h(x)|u|1−γdx = 0.

On account of 0 < γ < 1, we extrapolate that

ϕ′′
u (1) = a∥u∥2 + b(2µ − 1)∥u∥2µ + γ

∫

Ω

h(x)|u|1−γdx

= a∥u∥2 + b(2µ − 1)∥u∥2µ + γ(a∥u∥2 + b∥u∥2µ)

= a(1 + γ)∥u∥2 + (2µ − 1 + γ)b∥u∥2µ > 0.

(4.12)

From this, we can learn that u /∈ X
0.
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Case 2: u ∈ X\ {0} and
∫

Ω
l(x)|u|2

∗
s dx ̸= 0.

We may paradoxically assume there exists u ∈ X
0 and u ̸≡ 0. On the basis of (3.2) and (3.3),

we obtain

a(1 + γ)∥u∥2 + b(2µ − 1 + γ)∥u∥2µ − (2∗s − 1 + γ)λ
∫

Ω

l(x)|u|2
∗
s dx = 0 (4.13)

and

a(2 − 2∗s )∥u∥2 + b(2µ − 2∗s )∥u∥2µ − (1 − γ − 2∗s )
∫

Ω

h(x)|u|1−γdx = 0. (4.14)

Inspired by (4.13), we may define H : X → R as

H(u) =
a(1 + γ)∥u∥2 + b(2µ − 1 + γ)∥u∥2µ

(2∗s + γ − 1)λ
−
∫

Ω

l(x)|u|2
∗
s dx.

Obviously, if u ∈ X
0, then H(u) = 0. Using (2.5) and the basic inequality (ϱ + κ) ≥ 2(ϱκ)

1
2 ,

for any ϱ, κ ≥ 0, we conclude that

H(u) ≥
2
[

(1 + γ)(2µ − 1 + γ)ab
]

1
2

(2∗s + γ − 1)λ
∥u∥µ+1 − ∥l∥∞S

−
2∗s
2

s ∥u∥2∗s

≥ ∥u∥2∗s





2
[

(1 + γ)(2µ − 1 + γ)ab
]

1
2

(2∗s + γ − 1)λ

1

∥u∥2∗s −µ−1
− ∥l∥∞S

−
2∗s
2

s



 .

Besides, by (2.5), (4.14) and the Hölder inequality, we know

2
[

(2∗s − 2µ)(2∗s − 2)ab
]

1
2 ∥u∥µ+1 ≤ (2∗s + γ − 1)

(

∫

Ω

h(x)
2∗s

2∗s −1+γ dx

)

2∗s −1+γ

2∗s

(

∫

Ω

|u|2
∗
s dx

)
1−γ
2∗s

≤ (2∗s + γ − 1)∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s ∥u∥1−γ.

Therefore,

∥u∥ ≤









(2∗s + γ − 1)∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s

2
[

(2∗s − 2µ)(2∗s − 2)ab
]

1
2









1
µ+γ

.

We control

2
[

(1 + γ)(2µ − 1 + γ)ab
]

1
2

(2∗s + γ − 1)λ

1

∥u∥2∗s −µ−1
− ∥l∥∞S

−
2∗s
2

s > 0,

which leads to the following conclusion

λ <
2
[

(1 + γ)(2µ − 1 + γ)ab
]

1
2

(2∗s + γ − 1)∥l∥∞

S
2∗s
2

s







(2∗s +γ−1)∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s

2
[

(2∗s −2)(2∗s −2µ)ab
]

1
2







2∗s −µ−1
µ+γ

=
2
[

(1 + γ)(2µ − 1 + γ)ab
]

1
2

(2∗s + γ − 1)∥l∥∞

S
(µ+1)(2∗s +γ−1)

2(µ+γ)
s





(2∗s +γ−1)∥h∥ 2∗s
2∗s −1+γ

2
[

(2∗s −2)(2∗s −2µ)ab
]

1
2





2∗s −µ−1
µ+γ

= Γ2.
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Since 2∗s > 2µ, H(u) > 0 for all u ∈ X
0\ {0} can be confirmed. This causes the desired

contradiction.

Lemma 4.3. I , in addition to being coercive, is bounded from below on X.

Proof. For all u ∈ X, we can deduce that

I(u) =
a

2
∥u∥2 +

b

2µ
∥u∥2µ −

1

1 − γ

∫

Ω

h(x)|u|1−γdx −
1

2∗s

(

a∥u∥2 + b∥u∥2µ −
∫

Ω

h(x)|u|1−γdx
)

=

(

1

2
−

1

2∗s

)

a∥u∥2 +

(

1

2µ
−

1

2∗s

)

b∥u∥2µ −

(

1

1 − γ
−

1

2∗s

)

∫

Ω

h(x)|u|1−γdx

≥

(

1

2
−

1

2∗s

)

a∥u∥2 −

(

1

1 − γ
−

1

2∗s

)

∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s ∥u∥1−γ

from the condition that 2µ < 2∗s and (2.5). Based on the fact of 1− γ < 2, it can be determined

that I is coercive. In addition, we may define

Ga(q) =

(

1

2
−

1

2∗s

)

aq2 −

(

1

1 − γ
−

1

2∗s

)

∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s q1−γ,

then

G′
a(q) =

2∗s − 2

2∗s
aq −

2∗s − 1 + γ

2∗s
∥h∥ 2∗s

2∗s −1+γ

S
γ−1

2
s q−γ,

G′′
a (q) =

2∗s − 2

2∗s
a +

2∗s − 1 + γ

2∗s
∥h∥ 2∗s

2∗s −1+γ

S
γ−1

2
s γq−γ−1.

We can obtain a unique stationary point qmin, where

qmin =









(2∗s − 1 + γ)∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s

(2∗s − 2)a









1
1+γ

,

and

G′′
a (qmin) =

a(2∗s − 2)(1 + γ)

2∗s
> 0.

Then Ga(q) attains its minimum at qmin. Accordingly,

I(u) ≥

(

(2∗s − 2)a
)

γ−1
γ+1

22∗s

(

(2∗s − 1 + γ)∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s

) 2
1+γ

−
1

2∗s (1 − γ)

(

(2∗s − 2)a
)

γ−1
γ+1

(

(2∗s − 1 + γ)∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s

) 2
1+γ

=
γ + 1

22∗s (γ − 1)

(

(2∗s − 2)a
)

γ−1
γ+1

(

(2∗s − 1 + γ)∥h∥ 2∗s
2∗s −1+γ

S
γ−1

2
s

) 2
1+γ

> −C0

for some constant C0 > 0. This proof is completed.

Lemma 4.4. Let λ ∈ (0, Γ2), assume that γ ∈ (0, 1), then ∥u∥ > ρ for all u ∈ X
−, where

ρ =





2
√

(1 + γ)(2µ − 1 + γ)ab

(2∗s + γ − 1)λ∥l∥∞S
−

2∗s
2

s





1
2∗s −µ−1

.
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Proof. If u ∈ X
− ⊂ X, from (3.3), then we are sure that

a∥u∥2 + b∥u∥2µ − λ
∫

Ω

l(x)|u|2
∗
s dx −

∫

Ω

h(x)|u|1−γdx = 0

and

a∥u∥2 + (2µ − 1)b∥u∥2µ − (2∗s − 1)λ
∫

Ω

l(x)|u|2
∗
s dx + γ

∫

Ω

h(x)|u|1−γdx < 0,

which yields

a(1 + γ)∥u∥2 + (2µ − 1 + γ)b∥u∥2µ

< (2∗s + γ − 1)λ
∫

Ω

l(x)|u|2
∗
s dx ≤ (2∗s + γ − 1)λ∥l∥∞S

−
2∗s
2

s ∥u∥2∗s .

Hence, we infer that ρ < ∥u∥.

Lemma 4.5. Assume that un → u in M0, then

lim
n→+∞

∫

Ω

l(x)|un|
2∗s dx =

∫

Ω

l(x)|u|2
∗
s dx, (4.15)

and

lim
n→+∞

∫

Ω

h(x)|un|
1−γdx =

∫

Ω

h(x)|u|1−γdx. (4.16)

Proof. Let {un} ⊂ M0 and un → u in M0. Due to l ∈ L∞(Ω) and un → u, we deduce that

there must be C1 > 0 and C2 > 0 satisfying ∥un∥ ≤ C1 and |l(x)| ≤ C2 a.e. in Ω. Set

kn(x) = l(x)
1

2∗s un, k(x) = l(x)
1

2∗s u, then

(

∫

Ω

|kn(x)|2
∗
s dx

) 1
2∗s

=

(

∫

Ω

l(x)|un|
2∗s dx

) 1
2∗s

≤ C2

1
2∗s

(

∫

Ω

|un|
2∗s dx

) 1
2∗s

≤ C2

1
2∗s S

− 1
2

s C1. (4.17)

It can be clearly determined from this that

{

{kn} is bounded in L2∗s (Ω),

kn → k a.e. in Ω.

Moreover,
∫

Ω

|kn(x)− k(x)|2
∗
s dx =

∫

Ω

l(x)|un − u|2
∗
s dx ≤ C2

∫

Ω

|un − u|2
∗
s dx

≤ C2∥un − u∥
2∗s
2∗s

→ 0,
(4.18)

for n large enough. All prerequisites have been met, and the Brézis–Lieb lemma can be used

to obtain

lim
n→+∞

(

∫

Ω

|kn(x)|2
∗
s dx

) 1
2∗s

=

(

∫

Ω

|k(x)|2
∗
s dx

)2∗s

+ lim
n→+∞

(

∫

Ω

|kn(x)− k(x)|2
∗
s dx

) 1
2∗s

.

On account of (4.18), we obtain (4.15). Using the same method, we can prove that (4.16) is

valid.

Lemma 4.6. For all 0 < λ < Γ2, X
+ ∪ X

0 and X
− are closed sets in G0-topology.
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Proof. We prove this lemma in two parts. Let us first prove that X
+ ∪ X

0 is a closed set.

Part 1: Suppose {un} ⊂ X
+ ∪ X

0 and un → u0 in M0, we need to prove that u0 ∈ X
+ ∪ X

0.

Since {un} ⊂ X
+ ∪ X

0, we get

a(1 + γ)∥un∥
2 + b(2µ − 1 + γ)∥un∥

2µ − (2∗s + γ − 1)λ
∫

Ω

l(x)|un|
2∗s dx ≥ 0.

Since |∥un∥ − ∥u0∥| ≤ ∥un − u0∥ → 0 as n → ∞, we obtain

lim
n→∞

∥un∥
2 = ∥u0∥

2, lim
n→∞

∥un∥
2µ = ∥u0∥

2µ.

Then, letting n → ∞, it follows from Lemma 4.5 that

a(1 + γ)∥u0∥
2 + b(2µ − 1 + γ)∥u0∥

2µ − (2∗s + γ − 1)λ
∫

Ω

l(x)|u0|
2∗s dx ≥ 0.

Therefore, X
+ ∪ X

0 is a closed set.

Part 2: Suppose that {un} ⊂ X
− such that un → u0 in M0. We infer that u0 ∈ X− = X

− ∪ {0}.

By using Lemma 4.4, we have

∥u0∥ = lim
n→∞

∥un∥ ≥ ρ > 0. (4.19)

Therefore u0 ̸= 0, which implies u0 ∈ X
−. This proof in completed.

Lemma 4.7. Let u ∈ X
+(respectively X

−) with u ≥ 0, 0 < γ < 1 and h ∈ L
2∗s

2∗s +γ−1 (Ω). Subse-

quently, there exist ε > 0 and the continuous function ς : Bε(0) → R
+ satisfying

ς(z) > 0, ς(0) = 1, ς(z)(u + z) ∈ X
±

for any z ∈ Bε(0), where Bε(0) = {z ∈ M0 : ∥z∥ < ε}.

Proof. With regard to any u ∈ X
+ ⊂ X, define Q : M0 × R

+ → R as follows

Q(z, ω) = ω1+γa∥u + z∥2 + ω2µ−1+γb∥u + z∥2µ

− ω2∗s −1+γλ
∫

Ω

l(x)|u + z|2
∗
s dx −

∫

Ω

h(x)|u + z|1−γdx.

Differentiating the above equation, we determine that

∂Q

∂ω
= a(1 + γ)ωγ∥u + z∥2 + b(2µ − 1 + γ)ω2µ−2+γ∥u + z∥2µ

− (2∗s − 1 + γ)λω2∗s −2+γ
∫

Ω

l(x)|u + z|2
∗
s dx.

Due to u ∈ X
+ ⊂ X, it is clear that

Q(0, 1) = a∥u∥2 + b∥u∥2µ −
∫

Ω

h(x)|u|1−γdx − λ
∫

Ω

l(x)|u|2
∗
s dx = 0 (4.20)

and

∂Q

∂ω
(0, 1) = a(1 + γ)∥u∥2 + b(2µ − 1 + γ)∥u∥2µ − (2∗s − 1 + γ)λ

∫

Ω

l(x)|u|2
∗
s dx > 0. (4.21)
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The implicit function theorem applies to Q at the point (0, 1). A continuous function ω =

ς(z) > 0 can be got, it can be seen that ς(0) = 1 from (4.20). There is ε∗ > 0. So Q(z, ς(z)) = 0

for any z ∈ M0 with ∥z∥ < ε∗.

Q(z, w) = Q(z, ς(z))

= ς1+γ(z)a∥u + z∥2 + ς2µ−1+γ(z)b∥u + z∥2µ

−ς2∗s −1+γ(z)λ
∫

Ω

l(x)|u + z|2
∗
s dx −

∫

Ω

h(x)|u + z|1−γdx

=
[

a∥ς(z)(u + z)∥2 + b∥ς(z)(u + z)∥2µ

−λ
∫

Ω

l(x)|ς(z)(u + z)|2
∗
s dx −

∫

Ω

h(x)|ς(z)(u + z)|1−γdx
]

/ς1−γ(z)

= 0,

(4.22)

that is ς(z)(u + z) ∈ X for any z ∈ M0 with ∥z∥ < ε∗.

∂Q

∂ω
(z, ς(z))

=
a(γ+1)∥ς(z)(u+z)∥2+b(2µ−1+γ)∥ς(z)(u+z)∥2µ−(2∗s −1+γ)λ

∫

Ω
l(x)|ς(z)(u+z)|2

∗
s dx

ς2−γ(z)
.

Taking sufficiently small ε > 0 so that ε < ε∗, we determine that

ς(z)(u + z) ∈ X
+, ∀z ∈ M0, ∥z∥ < ε.

As for u ∈ X
−, we can proceed similarly to arrive at the same conclusion.

5 Proof of Theorem 1.1

At present, let us show that problem (1.1) has a positive solution on each of X
+ and X

−,

respectively. From Lemma 4.1, when 0 < λ < Γ1, one has X
± ̸= ∅. We complete this proof in

two steps.

Step 1: We analyze problem (1.1) on X
+ ∪ X

0.

According to Lemma 4.6, for 0 < λ < Γ2, we know X
+ ∪ X

0 must be a closed set in M0.

In the light of Lemma 4.3, I can be determined to be coercive and bounded below, c+ =

infu∈X+∪X0 I can be clearly defined. Then, this minimization problem can be handled by

Ekeland’s variational principle. Then, a sequence {uk} ⊂ X
+ ∪ X

0 exists and satisfies the

following properties:

(i) I(uk) < inf
u∈X+∪X0

I(u) +
1

k
, (ii) I(uk) ≤ I(u) +

1

k
∥uk − u∥, ∀u ∈ X

+ ∪ X
0. (5.1)

By means of I(u) = I(|u|), we know that uk(x) ≥ 0 almost everywhere in Ω. Significantly,

{uk} must be bounded in M0, going to a subsequence if necessary, let us represent the subse-

quence in terms of {un}. There exists u0 satisfies

un ⇀ u0 in M0,

un → u0 a.e. in Ω,

un ⇀ u0 in L2∗s ,

un → u0 in Lr(Ω) for 2 ≤ r < 2∗s ,

(5.2)
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as n → ∞. For all u ∈ X
+, it follows from (3.4) and 2µ < 2∗s that

I =
a

2
∥u∥2 +

b

2µ
∥u∥2µ −

1

2∗s
λ
∫

Ω

l(x)|u|2
∗
s dx −

1

1 − γ

∫

Ω

h(x)|u|1−γdx

= −
a(1 + γ)

2(1 − γ)
∥u∥2 −

2µ + γ − 1

2µ(1 − γ)
b∥u∥2µ +

γ − 1 + 2∗s
2∗s (1 − γ)

λ
∫

Ω

l(x)|u|2
∗
s dx

< −
a(1 + γ)

2(1 − γ)
∥u∥2 −

2µ + γ − 1

2µ(1 − γ)
b∥u∥2µ +

a(1 + γ)

2∗s (1 − γ)
∥u∥2 +

2µ + γ − 1

2∗s (1 − γ)
b∥u∥2µ

< −
a(1 + γ)

(1 − γ)

(2∗s − 2)

22∗s
∥u∥2

< 0.

(5.3)

So we are sure that infu∈X+ I(u) < 0. Thus, c+ = infu∈X+ I(u) < 0, which in particular implies

we might as well consider a subsequence {un} ⊂ X
+. As to this fact, in terms of Lemma 4.7

with u = un, a series of functions ςn satisfying ςn(0) = 1 can be obtained. Meanwhile, for

φ ∈ M0 with φ ≥ 0 and ℘ > 0 sufficiently small, the fact that ςn(℘φ)(un + ℘φ) ∈ X
+ holds

can be established. With these basic facts in mind, it is easy to know

a∥un∥
2 + b∥un∥

2µ − λ
∫

Ω

l(x)|un|
2∗s dx −

∫

Ω

h(x)|un|
1−γdx = 0 (5.4)

and

aς2
n(℘φ)∥un + ℘φ∥2 + bς

2µ
n (℘φ)∥un + ℘φ∥2µ

− ς
2∗s
n (℘φ)λ

∫

Ω

l(x)|un + ℘φ|2
∗
s dx − ς

1−γ
n (℘φ)

∫

Ω

h(x)|un + ℘φ|1−γdx = 0.
(5.5)

It should be noted that ς′n(0) is treated by us as the derivative of ςn at zero, and its specific

representation is as follows:

ς′n(0) = (ς′n, φ) := lim
℘→0

ςn(℘φ)− 1

℘
∈ [−∞,+∞],

for all φ ∈ M0. Now let us prove when λ < Γ1, {un} ⊂ X
± satisfies (5.1). Then, (ς′n, φ)

must be uniformly bounded for all φ ∈ M0 with φ ≥ 0. In particular, here we just consider

{un} ⊂ X
+, the case on X

− can be proved in the same way.

It follows from (5.4) and (5.5) that

0 = a[(ς2
n(℘φ)− 1)∥un + ℘φ∥2 + ∥un + ℘φ∥2 − ∥un∥

2]

+ b[(ς
2µ
n (℘φ)− 1)∥un + ℘φ∥2µ + ∥un + ℘φ∥2µ − ∥un∥

2µ]

− (ς
2∗s
n (℘φ)− 1)λ

∫

Ω

l(x)|un + ℘φ|2
∗
s dx − λ

∫

Ω

l(x)(|un + ℘φ|2
∗
s − |un|

2∗s )dx

− (ς1−γ
n (℘φ)− 1)

∫

Ω

h(x)|un + ℘φ|1−γ −
∫

Ω

h(x)(|un + ℘φ|1−γ − |un|
1−γ)dx

≤ a(ς2
n(℘φ)− 1)∥un + ℘φ∥2 + a(∥un + ℘φ∥2 − ∥un∥

2)

+ b(ς
2µ
n (℘φ)− 1)∥un + ℘φ∥2µ + b(∥un + ℘φ∥2µ − ∥un∥

2µ)

− (ς
2∗s
n (℘φ)− 1)λ

∫

Ω

l(x)|un + ℘φ|2
∗
s dx − λ

∫

Ω

l(x)(|un + ℘φ|2
∗
s − |un|

2∗s )dx

− (ς1−γ
n (℘φ)− 1)

∫

Ω

h(x)|uk + ℘φ|1−γ.



Kirchhoff-type fractional Laplacian problems with critical and singular 15

Afterwards, dividing the above inequation by ℘ > 0, we get

ςn(℘φ)− 1

℘

[

a(ςn(℘φ) + 1)∥un + ℘φ∥2 + b
ς

2µ
n (℘φ)− 1

ςn(℘φ)− 1
∥un + ℘φ∥2µ

−
ς

2∗s
n (℘φ)− 1

ςn(℘φ)− 1
λ
∫

Ω

l(x)|un + ℘φ|2
∗
s dx −

ς
1−γ
n (℘φ)− 1

ςn(℘φ)− 1

∫

Ω

h(x)|un + ℘φ|1−γdx
]

+ a
∥un + ℘φ∥2 − ∥un∥2

℘
+ b

∥un + ℘φ∥2µ − ∥un∥2µ

℘
− λ

∫

Ω

l(x)
|un + ℘φ|2

∗
s − |un|2

∗
s

℘
dx ≥ 0.

Letting ℘ → 0, we extrapolate that

(ς′n, φ)
[

2a∥un∥
2 + 2µb∥un∥

2µ − 2∗s λ
∫

Ω

l(x)|un|
2∗s dx − (1 − γ)

∫

Ω

h(x)|un|
1−γdx

]

+ 2a⟨un, φ⟩+ 2µb∥un∥
2µ−2⟨un, φ⟩ − 2∗s λ

∫

Ω

l(x)|un|
2∗s −1 φdx ≥ 0.

(5.6)

According to {un} ∈ X, using (5.4) in (5.6), we have

(ς′n, φ)
[

a(1 + γ)∥un∥
2 + (2µ − 1 + γ)b∥un∥

2µ − (2∗s − 1 + γ)λ
∫

Ω

l(x)|un|
2∗s dx

]

+ 2a⟨un, φ⟩+ 2µb∥un∥
2µ−2⟨un, φ⟩ − 2∗s λ

∫

Ω

l(x)|un|
2∗s −1φdx ≥ 0,

(5.7)

that is

(ς′n, φ) ≥
−(2a⟨un, φ⟩+ 2µb∥un∥2µ−2⟨un, φ⟩ − 2∗s λ

∫

Ω
l(x)|un|2

∗
s −1 φdx)

a(1 + γ)∥un∥2 + (2µ − 1 + γ)b∥un∥2µ − (2∗s − 1 + γ)λ
∫

Ω
l(x)|un|2

∗
s dx

.

Since {un} is bounded in M0, the above inequality means that (ς′n, φ) is bounded from below

uniformly for any φ ∈ M0 with φ ≥ 0, that is (ς′n, φ) ̸= −∞.

Now we have to prove that (ς′n, φ) is bounded from above. By (5.1)-(ii), we have

∥un − ςn(℘φ)(un + ℘φ)∥

n
≥ I(un)− I [ςn(℘φ)(un + ℘φ)] (5.8)

and
∥un − ςn(℘φ)(un + ℘φ)∥

n
=

∥(1 − ςn(℘φ))un − ςn(℘φ)℘φ∥

n

≤
∥(1 − ςn(℘φ))un∥

n
+

∥ − ςn(℘φ)℘φ∥

n

≤ |ςn(℘φ)− 1|
∥un∥

n
+ ℘ζn(℘φ)

∥φ∥

n
,

(5.9)

which implies

∣

∣

∣
ςn(℘φ)− 1

∣

∣

∣

∥un∥

n
+ ℘ςn(℘φ)

∥φ∥

n
≥ I(un)− I [ςn(℘φ)(un + ℘φ)]

=
a(1 + γ)

2(1 − γ)

[

(ς2
n(℘φ)− 1)∥un + ℘φ∥2 + (∥un + ℘φ∥2 − ∥un∥

2)
]

+
b(2µ − 1 + γ)

2µ(1 − γ)

[

(ς
2µ
n (℘φ)− 1)∥un + ℘φ∥2µ + (∥un + ℘φ∥2µ − ∥un∥

2µ)
]

−
2∗s − 1 + γ

2∗s (1 − γ)
λ
[

(ς
2∗s
n (℘φ)− 1)

∫

Ω

l(x)|un + ℘φ|2
∗
s +

∫

Ω

l(x)|un + ℘φ|2
∗
s − l(x)|un|

2∗s dx
]

.

(5.10)
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Dividing (5.10) by ℘ > 0, and letting ℘ → 0, we deduce

∣

∣

∣
(ς′n, φ)

∣

∣

∣

∥un∥

n
+ lim

℘→0
ςn(℘φ)

∥φ∥

n

≥ a
1 + γ

1 − γ

[

(ς′n, φ)∥un∥
2 + ⟨un, φ⟩

]

+ b
2µ − 1 + γ

1 − γ

[

(ς′n, φ)∥un∥
2µ + ∥un∥

2µ−2⟨un, φ⟩
]

−
2∗s − 1 + γ

1 − γ
λ

[

(ς′n, φ)
∫

Ω

l(x)|un|
2∗s dx +

∫

Ω

l(x)|un|
2∗s −1φdx

]

.

So

∣

∣

∣(ς′n, φ)
∣

∣

∣

∥un∥

n
+

∥φ∥

n

≥ (ς′n, φ)

[

a
1 + γ

1 − γ
∥un∥

2 + b
2µ − 1 + γ

1 − γ
∥un∥

2µ −
2∗s − 1 + γ

1 − γ
λ
∫

Ω

l(x)|un|
2∗s dx

]

+ a
1 + γ

1 − γ
⟨un, φ⟩+ b

2µ − 1 + γ

1 − γ
∥un∥

2µ−2⟨un, φ⟩

−
2∗s − 1 + γ

1 − γ
λ
∫

Ω

l(x)|un|
2∗s −1 φdx.

If (ς′n, φ) ≥ 0, then

(ς′n, φ) ≤

∥φ∥
n −

(

a 1+γ
1−γ ⟨un, φ⟩+ b

2µ−1+γ
1−γ ∥un∥2µ−2⟨un, φ⟩ − 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s −1 φdx

)

[

a 1+γ
1−γ∥un∥2 + b

2µ−1+γ
1−γ ∥un∥2µ + 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s dx
]

− ∥un∥
n

≤

∥φ∥
n +

∣

∣

∣a
1+γ
1−γ ⟨un, φ⟩+ b

2µ−1+γ
1−γ ∥un∥2µ−2⟨un, φ⟩ − 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s −1φdx

∣

∣

∣

[

a 1+γ
1−γ∥un∥2 + b

2µ−1+γ
1−γ ∥un∥2µ + 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s dx
]

− ∥un∥
n

.

(5.11)

If (ς′n, φ) < 0, that is

(ς′n, φ) ≤

∥φ∥
n −

(

a 1+γ
1−γ ⟨un, φ⟩+ b

2µ−1+γ
1−γ ∥un∥2µ−2⟨un, φ⟩ − 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s −1 φdx

)

[

a 1+γ
1−γ∥un∥2 + b

2µ−1+γ
1−γ ∥un∥2µ + 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s dx
]

+ ∥un∥
n

≤

∥φ∥
n +

∣

∣

∣a
1+γ
1−γ ⟨un, φ⟩+ b

2µ−1+γ
1−γ ∥un∥2µ−2⟨un, φ⟩ − 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s −1φdx

∣

∣

∣

[

a 1+γ
1−γ∥un∥2 + b

2µ−1+γ
1−γ ∥un∥2µ + 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s dx
]

+ ∥un∥
n

.

(5.12)

Combining (5.11) and (5.12), we deduce that

(ς′n, φ) ≤

∥φ∥
n +

∣

∣

∣
a 1+γ

1−γ ⟨un, φ⟩+ b
2µ−1+γ

1−γ ∥un∥2µ−2⟨un, φ⟩ − 2∗s −1+γ
1−γ λ

∫

Ω
l(x)|un|2

∗
s −1φdx

∣

∣

∣

[

a 1+γ
1−γ∥un∥2 + b

2µ−1+γ
1−γ ∥un∥2µ + 2∗s −1+γ

1−γ λ
∫

Ω
l(x)|un|2

∗
s dx
]

− ∥un∥
n

.

By the boundedness of {un}, the above inequality can already explain (ς′n, φ) ̸= +∞. In

summary, there is a positive constant C3 such that |(ς′n, φ)| ≤ C3.
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At present, again we use (5.8) and (5.9) in combination and divide by ℘ > 0.

∣

∣

∣

ςn(℘φ)− 1

℘

∣

∣

∣

∥un∥

n
+ ςn(℘φ)

∥φ∥

n

≥
I(un)− I [ςn(℘φ)(un + ℘φ)]

℘

= −
ςn(℘φ)− 1

℘

[

a(ςn(℘φ) + 1)

2
∥un + ℘φ∥2 +

b(ς
2µ
n (℘φ)− 1)

2µ(ςn(℘φ)− 1)
∥un + ℘φ∥2µ

−
ς

2∗s
n (℘φ)− 1

2∗s (ςn(℘φ)− 1)
λ
∫

Ω

l(x)|un + ℘φ|2
∗
s dx −

ς
1−γ
n (℘φ)− 1

(1 − γ)(ςn(℘φ)− 1)

∫

Ω

h(x)|uk + ℘φ|1−γdx

]

−

[

a(∥un + ℘φ∥2 − ∥un∥2)

2℘
+

b(∥un + ℘φ∥2µ − ∥un∥2µ)

2µ℘

− λ
∫

Ω

l(x)|un + ℘φ|2
∗
s − l(x)|un|2

∗
s

2∗s℘
−
∫

Ω

h(x)|un + ℘φ|1−γ − h(x)|un|1−γ

(1 − γ)℘
dx

]

. (5.13)

Based on the above inequality, now we let ℘ → 0. With the help of Fatou’s lemma, we infer

∣

∣(ς′n, φ)
∣

∣

∥un∥

n
+ lim

℘→0
ςn(τφ)

∥φ∥

n
= |(ς′n, φ)|

∥un∥

n
+

∥φ∥

n

≥ − (ςn, φ)

[

a∥un∥
2 + b∥un∥

2µ − λ
∫

Ω

l(x)|un|
2∗s dx −

∫

Ω

h(x)|un|
1−γdx

]

−

[

a⟨un, φ⟩+ b∥un∥
2µ−2⟨un, φ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1 φdx

−
∫

Ω

lim inf
℘→0

h(x)|un + ℘φ|1−γ − h(x)|un|1−γ

(1 − γ)℘
dx

]

= −

[

a⟨un, φ⟩+ b∥un∥
2µ−2⟨un, φ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1φdx −

∫

Ω

h(x)|un|
−γ φdx

]

,

owing to un ∈ X and |(ς′n, φ)| ≤ C3 uniformly for large n. Consequently,

(a + b∥un∥
2µ−2)⟨un, φ⟩ −

∫

Ω

l(x)|un|
2∗s −1φdx +

|(ς′n, φ)∥un∥+ ∥φ∥|

n

≥
∫

Ω

h(x)|un|
−γ φdx, (5.14)

which implies that as n → ∞

a⟨un, φ⟩+ b∥un∥
2µ−2⟨un, φ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1φdx −

∫

Ω

h(x)|un|
−γ φdx ≥ on(1), (5.15)

for any φ ∈ M0 with φ ≥ 0.

After that, our purpose is to prove that (5.15) applicable to any arbitrary ℓ ∈ M0. We set

ψε = un + εℓ with ε > 0 and ℓ ∈ M0. Denoting Ωε =
{

x ∈ R
N : ψε(x) ≤ 0

}

. Afterwards,
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letting φ = ψ+
ε in (5.15), we confirm

on(1) ≤ (a + b∥un∥
2µ−2)⟨un, ψ+

ε ⟩ − λ
∫

Ω

l(x)|un|
2∗s −1ψ+

ε dx −
∫

Ω

h(x)|un|
−γψ+

ε dx

= (a + b∥un∥
2µ−2)⟨un, ψε + ψ−

ε ⟩ − λ
∫

Ω

l(x)|un|
2∗s −1(ψε + ψ−

ε )dx

−
∫

Ω

h(x)|un|
−γ(ψε + ψ−

ε )dx

= (a + b∥un∥
2µ−2)⟨un, un + εℓ⟩+ (a + b∥un∥

2µ−2)⟨un, ψ−
ε ⟩

−
(

∫

Ω

−
∫

Ωε

)

[

λl(x)|un|
2∗s −1(un + εℓ) + h(x)|un|

−γ(un + εℓ)
]

dx

=
[

a∥un∥
2 + b∥un∥

2µ − λ
∫

Ω

l(x)|un|
2∗s dx −

∫

Ω

h(x)|un|
1−γdx

]

+ ε
[

(a + b∥un∥
2µ−2)⟨un, ℓ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1ℓdx −

∫

Ω

h(x)|un|
−γℓdx

]

+ (a + b∥un∥
2µ−2)⟨un, ψ−

ε ⟩+
∫

Ωε

[

λl(x)|un|
2∗s −1(un + εℓ) + h(x)|un|

−γ(un + εℓ)]dx

=
[

a∥un∥
2 + b∥un∥

2µ − λ
∫

Ω

l(x)|un|
2∗s dx −

∫

Ω

h(x)|un|
1−γdx

]

+ ε
[

(a + b∥un∥
2µ−2)⟨un, ℓ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1ℓdx −

∫

Ω

h(x)|un|
−γℓdx

]

+ (a + b∥un∥
2µ−2)⟨un, ψ−

ε ⟩+ λ
∫

Ωϵ

l(x)|un|
2∗s −1(un + εℓ)dx

+
∫

Ωϵ

h(x)|un|
−γ(un + εℓ)dx.

Note that un ∈ X and un + εℓ ≤ 0 in Ωε, thus

∫

Ωε

h(x)|un|
−γ(un + εℓ)dx < 0.

Considering these facts, we deduce that

on(1) ≤ ε
[

(a + b∥un∥
2µ−2)⟨un, ℓ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1ℓdx −

∫

Ω

h(x)|un|
−γℓdx

]

+ (a + b∥un∥
2µ−2)⟨un, ψ−

ε ⟩+ λ
∫

Ωε

l(x)|un|
2∗s −1(un + εℓ)dx

+
∫

Ωε

h(x)|un|
−γ(un + εℓ)dx

≤ ε
[

(a + b∥un∥
2µ−2)⟨un, ℓ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1ℓdx −

∫

Ω

h(x)|un|
−γℓdx

]

+ (a + b∥un∥
2µ−2)⟨un, ψ−

ε ⟩+ λ
∫

Ωε

l(x)|un|
2∗s −1(un + εℓ)dx.

(5.16)

Then, denote

ℑε(x, y) =
(un(x)− un(y))(ψ−

ε (x)− ψ−
ε (y))

|x − y|N+2s

and

ℑ(x, y) =
(un(x)− un(y))(ℓ(x)− ℓ(y))

|x − y|N+2s
.
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The definition of scalar products and the symmetry of the fraction kernel can be used here.

Therefore, we may write

⟨un, ψ−
ε ⟩ =

∫∫

G

(un(x)− un(y))(ψ−
ε (x)− ψ−

ε (y))

|x − y|N+2s
dxdy

=
∫∫

(RN×RN)\(Ωc×Ωc)
ℑε(x, y)dxdy

=

(

∫∫

Ω×Ω

+
∫∫

Ω×(RN\Ω)
+
∫∫

(RN\Ω)×Ω

)

ℑε(x, y)dxdy

=
∫∫

Ω×Ω

ℑε(x, y)dxdy + 2
∫∫

Ω×(RN\Ω)
ℑε(x, y)dxdy.

It is worth noting that ψ−
ε = 0 in the case of ψε is not in Ωε. From this, we

∫∫

Ω×Ω

ℑε(x, y)dxdy + 2
∫∫

Ω×(RN\Ω)
ℑε(x, y)dxdy

=

(

∫∫

Ωε×Ωε

+2
∫∫

Ωε×(Ω\Ωε)
+2

∫∫

Ωε×(RN\Ω)

)

ℑε(x, y)dxdy

=
∫∫

Ωε×Ωε

ℑε(x, y)dxdy + 2
∫∫

Ωε×(RN\Ωε)
ℑε(x, y)dxdy.

Next,
∫∫

Ωε×Ωε

(un(x)− un(y))(ψ−
ε (x)− ψ−

ε (y))

|x − y|N+2s
dxdy

=
∫∫

Ωε×Ωε

(un(x)− un(y))(ψ+
ε (x)− ψ+

ε (y))

|x − y|N+2s
dxdy

−
∫∫

Ωε×Ωε

(un(x)− un(y))(ψε(x)− ψε(y))

|x − y|N+2s
dxdy

= −
∫∫

Ωε×Ωε

(un(x)− un(y))2

|x − y|N+2s
dxdy − ε

∫∫

Ωε×Ωε

(un(x)− un(y))(ℓ(x)− ℓ(y))

|x − y|N+2s
dxdy

≤ − ε
∫∫

Ωε×Ωε

ℑ(x, y)dxdy.

In the same way,

2
∫∫

Ωε×(RN\Ωε)
ℑε(x, y)dxdy ≤ −2ε

∫∫

Ωε×(RN\Ωε)
ℑ(x, y)dxdy.

In combination with the above, we can obtain

⟨un, ψ−
ε ⟩ ≤ −ε

(

∫∫

Ωε×Ωε

+2
∫∫

Ωε×(RN\Ωε)

)

ℑ(x, y)dxdy ≤ 2ε
∫∫

Ωε×RN
|ℑ(x, y)|dxdy. (5.17)

Apparently, ℑ(x, y) ∈ L1(RN × R
N). Besides, for any σ > 0, there exists Rσ sufficiently large.

From the basic definition of Ωε, we infer Ωε ⊂ supp ℓ.

Since
∫∫

Ωε×RN
|ℑ(x, y)|dxdy =

∫∫

Ωε×(RN\BRσ )
|ℑ(x, y)|dxdy +

∫∫

Ωε×BRσ

|ℑ(x, y)|dxdy,

for the first item, we may obtain
∫∫

Ωε×(RN\BRσ )
|ℑ(x, y)|dxdy <

∫∫

(suppℓ)×(RN\BRσ )
|ℑ(x, y)|dxdy <

σ

2
.
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Also, we know that |Ωε × BRσ | → 0 as ε → 0+. The absolute continuity of the integral can be

used, so there exists δσ and εσ such that for any ε ∈ (0, εσ],

|Ωε × BRσ | < δσ, and
∫∫

Ωε×BRσ

|ℑ(x, y)|dxdy <
σ

2
.

Accordingly, for all ε ∈ (0, εσ],
∫∫

Ωε×RN
|ℑ(x, y)|dxdy < σ,

lim
ε→0+

∫∫

Ωε×RN
|ℑ(x, y)|dxdy = 0.

Thus, according to (5.17), we get

lim
ε→0+

1

ε
⟨un, ψ−

ε ⟩ = 0. (5.18)

With respect to
∫

Ωε
l(x)|un|2

∗
s −1(un + εℓ)dx, since {un + εℓ ≤ 0} → 0 as ε → 0, we obtain

lim
ε→0

∫

Ωε

l(x)|un|
2∗s −1(un + εϕ)dx = 0. (5.19)

Finally, dividing by ε and letting ε → 0 in (5.16), for n large enough, we get from (5.18) and

(5.19) that

a⟨un, ℓ⟩+ b||un||
2µ−2⟨un, ℓ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1ℓdx −

∫

Ω

h(x)|un|
−γℓdx ≥ on(1). (5.20)

Replace ℓ in (5.20) with −ℓ, and the inequality is also true. Thus it can be seen that

a⟨un, ℓ⟩+ b∥un∥
2µ−2⟨un, ℓ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1ℓdx −

∫

Ω

h(x)|un|
−γℓdx = on(1) (5.21)

as n → ∞.

Step 2: We analyze problem (1.1) on X
−.

We have learned that I is bounded from below on X
− and coercive from Lemma 4.3. And it

turns out that X
− is a closed set. Ekeland’s variational principle can also be used. We may

define c− = infu∈X− I accordingly. There exists a ξ ∈ X
−, we deduce that

a(1 + γ)∥ξ∥2 + b(2µ − 1 + γ)∥ξ∥2µ − λ(2∗s − 1 + γ)
∫

Ω

l(x)|ξ|2
∗
s dx < 0.

From (3.5) it follows that

b∥ξ∥2µ < λ
2∗s − 1 + γ

2µ − 1 + γ

∫

Ω

l(x)|ξ|2
∗
s dx − a

1 + γ

2µ − 1 + γ
∥ξ∥2.

I(ξ) =
2∗s − 2

22∗s
a∥ξ∥2 +

2∗s − 2µ

2µ2∗s
b∥ξ∥2µ −

2∗s + γ − 1

2∗s (1 − γ)

∫

Ω

h(x)|ξ|1−γdx

<
2∗s − 2

22∗s
a∥ξ∥2 +

2∗s − 2µ

2µ2∗s

[

λ
2∗s − 1 + γ

2µ − 1 + γ

∫

Ω

l(x)|ξ|2
∗
s dx − a

1 + γ

2µ − 1 + γ
∥ξ∥2

]

−
2∗s + γ − 1

2∗s (1 − γ)

∫

Ω

h(x)|ξ|1−γdx

<
µ

2µ − 1 + γ
a∥ξ∥2 + λ

(

2∗s − 2µ

2µ2∗s

)(

2∗s − 1 + γ

2µ − 1 + γ

)

∫

Ω

l(x)|ξ|2
∗
s dx

−
2∗s + γ − 1

2∗s (1 − γ)

∫

Ω

h(x)|ξ|1−γdx.



Kirchhoff-type fractional Laplacian problems with critical and singular 21

Let

µ

2µ − 1 + γ
a∥ξ∥2 + λ

(

2∗s − 2µ

2µ2∗s

)(

2∗s − 1 + γ

2µ − 1 + γ

)

∫

Ω

l(x)|ξ|2
∗
s dx

−
2∗s + γ − 1

2∗s (1 − γ)

∫

Ω

h(x)|ξ|1−γdx < 0. (5.22)

Then (5.22) implies that

0 < λ <

(

2∗s + γ − 1

2∗s (1 − γ)

∫

Ω

h(x)|ξ|1−γdx −
µ

2µ − 1 + γ
a∥ξ∥2

)

2µ2∗s (2µ − 1 + γ)

(2∗s − 2µ)(2∗s − 1 + γ)
∫

Ω
l(x)|ξ|2∗s dx

= Γ∗.

In order to guarantee that λ is positive, we have to make a sufficiently small. Hence, when

0 < λ < Γ∗, I(ξ) < 0. Furthermore, we know that c− < 0.

Based on what is explained above, there exists a sequence {vk} ⊂ X
− satisfies the following

properties

(i) I(vk) < c− +
1

k
, (ii) I(vk) ≤ I(v) +

1

k
∥vk − v∥, ∀v ∈ X

−. (5.23)

Similarly, let us assume that vk(x) ≥ 0 for all x ∈ Ω. Because X
− does not contain {0}. So

vk(x) > 0 for all x ∈ Ω. Apparently, {vk} is bounded in M0, we use {vn} to represent its

subsequence, so there will be v0 > 0 such that

vn ⇀ v0 in M0,

vn ⇀ v0 in L2∗s ,

vn → v0 a.e. in Ω,

vn → v0 in Lη(Ω) for 2 ≤ η < 2∗s ,

(5.24)

owing to X
− is a closed set. Applying Lemma 4.7 with u = vn, φ ∈ M0, φ ≥ 0 and ℘ > 0 small

enough. A series of continuous functions satisfying ςn(0) = 1 and ςn(℘φ)(vn +℘φ) ∈ X
− can

certainly be obtained. The proof procedure in Step 1 can be used again to obtain

a⟨vn, ℓ⟩+ b||vn||
2µ−2⟨vn, ℓ⟩ − λ

∫

Ω

l(x)|vn|
2∗s −1ℓdx −

∫

Ω

h(x)|vn|
−γℓdx ≥ on(1) (5.25)

as n → ∞.

Lemma 5.1. For 0 < λ < Γ1, let {uk} ⊂ X
+ in Step 1 and {vk} ⊂ X

− in Step 2 respectively

satisfying (5.1) and (5.23) and simultaneously satisfying I → c < Cλ as k → ∞, where

Cλ =
s

N
S

N
2s
s

(

a
2∗s
2

∥l∥
∞

)
2

2∗s −2

λ
2

2−2∗s −
2µ − 1 + γ

2∗s (1 − γ)2µ

(

(2∗s + γ − 1)∥h∥ 2∗s
2∗s +γ−1

S
γ−1

2
s

)

2µ
2µ−1+γ

[b(2∗s − 2µ)]
1−γ

2µ−1+γ

.

Then, both {uk} and {vk} have strongly convergent subsequences in M0.

Proof. Let us just think about {uk} ⊂ X
+, the case {vk} ⊂ X

− can be obtained in the same

way. Note that {uk} is bounded in M0 and uk ≥ 0. Furthermore, there is a subsequence {un}
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that satisfies
un ⇀ u0 in M0,

un ⇀ u0 in L2∗s ,

un → u0 a.e. in Ω,

un ≤ h̄ a.e. in Ω,

un → u0 in Lr(Ω) for 2 ≤ r < 2∗s ,

∥un∥ → ζ,

(5.26)

as n → ∞, with h̄ ∈ Lr(Ω) for a fixed r ∈ [1, 2∗s ) and u0 ≥ 0. If ζ = 0, that is ∥un − 0∥ → 0

as n → 0, which implies un → 0 in M0 as n → ∞. The situation of ζ > 0 will be considered

below.

According to (5.26), we get

2⟨un, u0⟩ = 2⟨u0, u0⟩+ o(1)

= ⟨un, un⟩ − ⟨un, un⟩+ 2⟨u0, u0⟩+ o(1),

as n → ∞, which implies

∥un∥
2 = ∥un − u0∥

2 + ∥u0∥
2 + o(1) (5.27)

as n → ∞. Applying the Brézis–Lieb lemma and the process in Lemma 4.5, we have

∫

Ω

l(x)|un|
2∗s dx =

∫

Ω

l(x)|un − u0|
2∗s dx +

∫

Ω

l(x)|u0|
2∗s dx + o(1) (5.28)

as n → ∞. We infer from (5.21), (5.27) and (5.28) that, as n → ∞

o(1) = (a + b∥un∥
2µ−2)⟨un, un − u0⟩ − λ

∫

Ω

l(x)|un|
2∗s −1(un − u0)dx

−
∫

Ω

h(x)|un|
−γ(un − u0)dx

= (a + bζ2µ−2)(ζ2 − ∥u0∥
2)− λ

∫

Ω

l(x)|un|
2∗s dx

+ λ
∫

Ω

l(x)|u0|
2∗s dx −

∫

Ω

h(x)|un|
−γ(un − u0)dx + o(1)

= (a + bζ2µ−2)∥un − u0∥
2 − λ

∫

Ω

l(x)|un − u0|
2∗s dx −

∫

Ω

h(x)|un|
−γ(un − u0)dx + o(1).

Consequently,

(a + bζ2µ−2) lim
n→∞

∥un − u0∥
2

= lim
n→∞

λ
∫

Ω

l(x)|un − u0|
2∗s dx + lim

n→∞

∫

Ω

h(x)|un|
1−γdx − h(x)|un|

−γu0dx. (5.29)

By (5.26), we have u
1−γ
n ≤ h̄1−γ a.e. in Ω. Then, the dominated convergence theorem can be

used, that is

lim
n→∞

∫

Ω

h(x)|un|
1−γdx =

∫

Ω

h(x)|u0|
1−γdx. (5.30)

In the light of (5.20), we know that h(x)u−γ
n u0dx ∈ L1(Ω). Then Fatou’s lemma yields

lim inf
n→∞

∫

Ω

h(x)u−γ
n u0dx ≥

∫

Ω

h(x)u1−γ
0 dx. (5.31)
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For convenience, we define

ℵ2∗s = lim
n→∞

∫

Ω

l(x)|un − u0|
2∗s dx. (5.32)

Combining (5.29), (5.30) and (5.31), we get

(a + bζ2µ−2) lim
n→∞

∥un − u0∥
2 ≤ λℵ2∗s , (5.33)

which means that 0 ≤ ℵ. If ℵ = 0, we can immediately infer that un → u0 in M0 owing to

ζ > 0. Let us paradoxically say that ℵ > 0 to complete this proof. From (5.32), as n → ∞, we

obtain

ℵ2∗s ≤ ∥l∥∞S
−

2∗s
2

s lim
n→∞

∥un − u0∥
2∗s ,

which implies that

∥l∥
− 2

2∗s
∞ ℵ2Ss ≤ lim

n→∞
∥un − u0∥

2. (5.34)

Combining (5.33) and (5.34), we have

ℵ2∗s −2 ≥ (a + bζ2µ−2)∥l∥
− 2

2∗s
∞ Ssλ

−1. (5.35)

As n → ∞, it is easy to get

ℵ2∗s ≥ (a + bζ2µ−2)(ζ2 − ∥u0∥
2)λ−1 (5.36)

from (5.33). Using (5.34) and (5.35) in (5.36), we have

(ℵ2∗s )
2∗s −2

2 ≥ (a + bζ2µ−2)
2∗s −2

2 (ζ2 − ∥u0∥
2)

2∗s −2
2 λ

2−2∗s
2

= (a + bζ2µ−2)
2∗s −2

2 ( lim
n→∞

∥un − u0∥
2)

2∗s −2
2 λ

2−2∗s
2

≥ (a + bζ2µ−2)
2∗s −2

2 (∥l∥
− 2

2∗s
∞ Ss)

2∗s −2
2 ℵ2∗s −2λ

2−2∗s
2

≥ (a + bζ2µ−2)
2∗s
2 S

2∗s
2

s ∥l∥−1
∞ λ−

2∗s
2 .

(5.37)

At the same time, according to (5.34) and (5.35), we get

(ζ2 − ∥u0∥
2)

2∗s −2
2 ≥ ∥l∥

−
2∗s −2

2∗s
∞ ℵ2∗s −2S

2∗s −2
2

s

≥ (a + bζ2µ−2)∥l∥−1
∞ S

2∗s
2

s λ−1

(5.38)

as n → ∞. Consequently, we have

(ζ2)
2∗s −2

2 ≥ (ζ2 − ∥u0∥
2)

2∗s −2
2 ≥ (a + bζ2µ−2)∥l∥−1

∞ S
2∗s
2

s λ−1, (5.39)

that is

ζ2 ≥ S
N
2s
s ∥l∥

− 2
2∗s −2

∞ (a + bζ2µ−2)
2

2∗s −2 λ
2

2−2∗s ≥ S
N
2s
s ∥l∥

− 2
2∗s −2

∞ a
2

2∗s −2 λ
2

2−2∗s . (5.40)

We define

F(un, ϕ) = (a + b∥un∥
2µ−2)⟨un, ϕ⟩ − λ

∫

Ω

l(x)|un|
2∗s −1ϕdx −

∫

Ω

h(x)|un|
−γϕdx (5.41)
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for any ϕ ∈ M0. Subsequently,

I(un)−
1

2∗s
F(un, un)

=

(

1

2
−

1

2∗s

)

a∥un∥
2 +

(

1

2µ
−

1

2∗s

)

b∥un∥
2µ −

(

1

1 − γ
−

1

2∗s

)

∫

Ω

h(x)|un|
1−γdx

≥

(

1

2
−

1

2∗s

)

a∥un∥
2 +

(

1

2µ
−

1

2∗s

)

b∥un∥
2µ

−

(

1

1 − γ
−

1

2∗s

)

S
γ−1

2
s ∥h∥ 2∗s

2∗s +γ−1

∥un∥
1−γ.

(5.42)

Define

P(t) =

(

1

2µ
−

1

2∗s

)

bt2µ −

(

1

1 − γ
−

1

2∗s

)

S
γ−1

2
s ∥h∥ 2∗s

2∗s +γ−1

t1−γ,

P′(t) =

(

1

2µ
−

1

2∗s

)

2µbt2µ−1 −

(

1

1 − γ
−

1

2∗s

)

S
γ−1

2
s ∥h∥ 2∗s

2∗s +γ−1

(1 − γ)t−γ.

When p′(t) = 0, we can get

t =

[

2∗s − 1 + γ

b(2∗s − 2µ)

] 1
2µ−1+γ

S
γ−1

2(2µ−1+γ)
s ∥h∥

1
2µ−1+γ

2∗s
2∗s +γ−1

.

Hence we have

P(t) ≥
2∗s − 2µ

2µ2∗s
b

[

2∗s − 1 + γ

b(2∗s − 2µ)

]

2µ
2µ−1+γ

S
(γ−1)µ

2µ−1+γ
s ∥h∥

2µ
2µ−1+γ

2∗s
2∗s +γ−1

−
2∗s − 1 + γ

(1 − γ)2∗s
S

γ−1
2

s ∥h∥ 2∗s
2∗s +γ−1

[

2∗s − 1 + γ

b(2∗s − 2µ)

]
1−γ

2µ−1+γ

S
−γ2+2γ−1
2(2µ−1+γ)
s ∥h∥

1−γ
2µ−1+γ

2∗s
2∗s +γ−1

= −
2µ − 1 + γ

2∗s (1 − γ)2µ

(

(2∗s + γ − 1)∥h∥ 2∗s
2∗s +γ−1

S
γ−1

2
s

)

2µ
2µ−1+γ

[b(2∗s − 2µ)]
1−γ

2µ−1+γ

.

(5.43)

Then, from (5.42), we have

I(un)−
1

2∗s
F(un, un) ≥

(

1

2
−

1

2∗s

)

a∥un∥
2

−
2µ − 1 + γ

2∗s (1 − γ)2µ

(

(2∗s + γ − 1)∥h∥ 2∗s
2∗s +γ−1

S
γ−1

2
s

)

2µ
2µ−1+γ

[b(2∗s − 2µ)]
1−γ

2µ−1+γ

.

(5.44)

Letting n → ∞, we get

c ≥
s

N
S

N
2s
s

(

a
2∗s
2

∥l∥
∞

)
2

2∗s −2

λ
2

2−2∗s −
2µ − 1 + γ

2∗s (1 − γ)2µ

(

(2∗s + γ − 1)∥h∥ 2∗s
2∗s +γ−1

S
γ−1

2
s

)

2µ
2µ−1+γ

[b(2∗s − 2µ)]
1−γ

2µ−1+γ

,

which contradicts the assumption c < Cλ. This proof is completed.
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Let us fix λ < Γ0 = min {Γ1, Γ2, Γ3, Γ∗}, with Γ1 and Γ2 given respectively in Lemma 4.1

and Lemma 4.2, and

Γ3 =
a

2∗s
2

∥l∥
∞

(

s

N
S

N
2s
s

2∗s (1 − γ)2µ

2µ − 1 + γ

)

2∗s −2
2









[b(2∗s − 2µ)]
1−γ

2µ−1+γ

(2∗s − 1 + γ)∥h∥ 2∗s
2∗s +γ−1

S
γ−1

2
s









2∗s −2
2

,

which shows that Cλ > 0. From (5.3) and (5.22), we know that c+ < 0 < Cλ and c− < 0 < Cλ.

Applying the Lemma 5.1, the minimization sequence {un} will satisfy un → u0 in M0, and

the minimization sequence {vn} will satisfy vn → v0 in M0. According to (5.20) and (5.25), we

can separately obtain

a⟨u0, ℓ⟩+ b∥u0∥
2µ−2⟨u0, ℓ⟩ − λ

∫

Ω

l(x)|u0|
2∗s −1ℓdx −

∫

Ω

h(x)|u0|
−γℓdx ≥ 0,

and

a⟨v0, ℓ⟩+ b||v0||
2µ−2⟨v0, ℓ⟩ − λ

∫

Ω

l(x)|v0|
2∗s −1ℓdx −

∫

Ω

h(x)|v0|
−γℓdx ≥ 0

for any ℓ ∈ M0. From the two inequalities above, we know h(x)|u0|−γℓ and h(x)|v0|−γℓ are

integrable, which imply that u0 ̸≡ 0 and v0 ̸≡ 0 in Ω, then the strong maximum principle (see

Proposition 2.2.8 in [27]) yields that u0 > 0 and v0 > 0 in Ω. According to the arbitrariness of

ℓ, we know that (5.20) fits any ℓ ∈ M0. It follows that

a⟨u0, ℓ⟩+ b∥u0∥
2µ−2⟨u0, ℓ⟩ − λ

∫

Ω

l(x)|u0|
2∗s −1ℓdx −

∫

Ω

h(x)|u0|
−γℓdx = 0,

and

a⟨v0, ℓ⟩+ b||v0||
2µ−2⟨v0, ℓ⟩ − λ

∫

Ω

l(x)|v0|
2∗s −1ℓdx −

∫

Ω

h(x)|v0|
−γℓdx = 0

as n → ∞. This indicates that problem (1.1) has a positive solution on both X
+ and X

−,

respectively.
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Abstract. In this article we revisit a method of topological linearization for nonau-
tonomous and uniformly asymptotically stable ordinary differential equations deve-
loped by Kenneth J. Palmer and Faxing Lin. In particular, sufficient conditions are
obtained ensuring the smoothness of the above mentioned topological linearization.
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1 Introduction

The smoothness of the topological equivalence or topological conjugacy is a classical topic
on autonomous dynamical systems and we refer the reader to [16] for an overview on the
latest advances. Nevertheless, the nonautonomous case is considerably less developed than
the autonomous one; and the first results go back to the last decade. In this note, we will
continue this study in the nonautonomous case.

More specifically, we obtain sufficient conditions ensuring the differentiability of the topo-
logical equivalence for certain families of nonautonomous systems

ẋ = F1(t, x) for any t ∈ J, (1.1)

and
ẏ = F2(t, y) for any t ∈ J, (1.2)

where J ⊆ R is an upperly unbounded interval while the functions Fi : J × R
n → R

n are such
that the existence and uniqueness of the solutions on J is ensured. In addition, the solutions
of (1.1) and (1.2) passing through x0 and y0 at t = τ ∈ J will be denoted respectively by
t 7→ x(t, τ, x0) and t 7→ y(t, τ, y0).

BCorresponding author. Email: david.urrutia@ug.uchile.cl
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The above systems are J-topologically equivalent when there exists a family of homeomor-
phisms parametrized by J mapping solutions of a system into solutions of the other one and
viceversa; this property is described formally as follows:

Definition 1.1 ([21]). The systems (1.1) and (1.2) are J-topologically equivalent if there exists
a function H : J × R

n → R
n such that:

i) For any fixed τ ∈ J, x0 7→ Hτ(x0) := H(τ, x0) is a homeomorphism of R
n, whose inverse

is denoted by y0 7→ Gτ(y0) := G(τ, y0).

ii) If t 7→ x(t, τ, x0) is a solution of (1.1) then t 7→ H(t, x(t, τ, x0)) is a solution of (1.2).
Similarly, if t 7→ y(t, τ, y0) is a solution of (1.2), then t 7→ G(t, y(t, τ, y0)) is a solution of
(1.1). That is, for any t, τ ∈ J it follows:

{

H(t, x(t, τ, x0)) = y(t, τ, H(τ, x0))

G(t, y(t, τ, y0)) = x(t, τ, G(τ, y0)).
(1.3)

iii) For any fixed τ ∈ J, it is verified that the norms

∥H(τ, x0)∥ → +∞ and ∥G(τ, y0)∥ → +∞ as ∥x0∥, ∥y0∥ → +∞.

Altough there is not a universally accepted definition of topological equivalence, the state-
ments i) and ii) hold consistently in the specialized literature, while the asymptotic property
iii) can be replaced by other types of conditions; see e.g. [18, p. 12], [19, p. 357] and [21] for
details.

In the nonautonomous framework, the problem of search sufficient conditions ensuring the
differentiability properties of a topological equivalence is relatively recent. In addition, there
are diverse approaches to construct the homeomorphisms stated in Definition 1.1. Having this
in mind, in Section 2 we describe the two main strategies: the use of the Green’s function and
the crossing time function.

The rest of the article is organized as follows: Sections 3 and 4 focus on deducting the
differentiability for the R-topological equivalence between uniformly asymptotically stable
systems (1.1)–(1.2), obtained by F. Lin [14] and K. J. Palmer [18] by using a crossing time appro-
ach. Section 5 addresses the higher order differentiability. Section 6 provides an additional
result and compares it with the current literature.

Last but not least, we point out that, to the best of our knowledge, there are no smoothness
results for the crossing time approach in the nonautonomous context, which is the main
novelty and contribution of this article.

2 The topological equivalence problem

The topological equivalence problem can be understood as the research of sufficient conditions
on the vector fields Fi with i = 1, 2 such that (1.1) and (1.2) are J-topologically equivalent. In
this article, we will distinguish some approaches carried out to cope with this problem: the
Green’s function approach and the crossing time approach. Nevertheless, it is important to
emphasize that this distinction is not exhaustive.

From now on, the symbol ∥ · ∥ denotes either the euclidean vector norm or its induced
matrix norm. The particular context of its appearance will indicate what its meaning is. In
addition, u = o(v) is the classical Landau’s little-o notation.
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2.1 The Green’s function approach

The topological equivalence problem is studied for the particular case of systems (1.1)–(1.2),
described by the linear system

ẋ = A(t)x for any t ∈ J, (2.1)

and a family of quasilinear perturbations, such as:

ẏ = A(t)y + f (t, y) for any t ∈ J, (2.2)

which is to say F1(t, x) = A(t)x and F2(t, y) = A(t)y + f (t, y) with J = R or J = [0,+∞).
A pivotal assumption of this approach is that (2.1) has a dichotomy property on J, which is

defined as follows:

Definition 2.1. The system (2.1) has a dichotomy on J if there exist a projector t 7→ P(t) ∈

Mn(R), positive constants K, α and two functions h, µ : J → [1,+∞) continuous, increasing
and verifying µ = o(hα) such that any fundamental matrix t 7→ Φ(t) of (2.1) verifies:

P(t)Φ(t, s) = Φ(t, s)P(s) for any t, s ∈ J

and 





∥Φ(t, s)P(s)∥ ≤ Kµ(|s|)
(

h(t)
h(s)

)−α
for any t ≥ s with t, s ∈ J,

∥Φ(t, s)Q(s)∥ ≤ Kµ(|s|)
(

h(s)
h(t)

)−α
for any s ≥ t with t, s ∈ J,

where Φ(t, s) := Φ(t)Φ−1(s) and Q(t) = I − P(t).

Note that any nontrivial solution t 7→ x(t, τ, x0) = Φ(t, τ)x0 of (2.1) can be splitted as

x(t, τ, x0) = Φ(t, τ)P(τ)x0
︸ ︷︷ ︸

=x+(t,τ,x0)

+Φ(t, τ)Q(τ)x0
︸ ︷︷ ︸

=x−(t,τ,x0)

,

where t 7→ x+(t, τ, x0) := x+(t) and t 7→ x−(t, τ, x0) := x−(t) verify

∥x+(t)∥ ≤ K∥P(τ)x0∥µ(|τ|)

(
h(t)

h(τ)

)−α

and
(

h(t)

h(τ)

)α ∥Q(τ)x0∥

Kµ(|t|)
≤ ∥x−(t)∥,

for any t ≥ τ.
The above mentioned properties of µ,h and α allow to deduce that x+(t) is a forward

contraction and x−(t) is a forward expansion. This splitting and its dichotomic asymptotic
behavior motivate the use of the name dichotomy.

There exist several kinds of dichotomies describing the contractions and expansions at a
specific rate; we refer the reader to the Table 1 from [23] and references therein for a detailed
description.

The Green’s function associated to the above mentioned dichotomy property is

G(t, s) =

{

Φ(t, s)P(s) if t ≥ s,

−Φ(t, s)Q(s) if t < s,

and allows an explicit construction of the homeomorphisms Ht and their inverses Gt men-
tioned on Definition 1.1.
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The first homeomorphism was established by K. J. Palmer [17], which was constructed
under the following assumptions: (2.1) has an exponential dichotomy on R, namely h(t) = et

and µ(t) = 1, the function f is uniformly bounded on R × R
n and x 7→ f (t, x) is uniformly

Lipschitz with respect to t.
The first improvement of Palmer´s result was done by J. Shi and K. Xiong in [21], who

demonstrated that the maps ξ 7→ Ht(ξ) and ξ 7→ Gt(ξ) are uniformly continuous with respect
to t.

There exist a vast corpus of literature devoted to the topological equivalence problem by
following this approach. In general, the problem is addressed by considering dichotomies
more general than the exponential one; and, at the same time, imposing more restrictive
assumptions on the perturbation f . In this context, we highlight the work of L. Barreira and
C. Valls [2], which assumes that (2.1) has a nonuniform exponential dichotomy on R, that is,
h(t) = et and µ(t) = eε|t|. We refer the reader again to the Table 1 from [23] and [19] for more
results.

2.2 The crossing time approach

In the work [18] of K. J. Palmer, the topological equivalence problem is considered for systems
(1.1)–(1.2), where the maps F1 : R × R

n → R
n and F2 : R × R

n → R
n satisfy the following

properties:

(P1) The origin is an equilibrium for any t ∈ R, that is

F1(t, 0) = F2(t, 0) = 0 for any t ∈ R,

(P2) There exists L > 0 such that, given any t ∈ R and x, x̃ ∈ R
n,

∥F1(t, x)− F1(t, x̃)∥ ≤ L∥x − x̃∥ and ∥F2(t, x)− F2(t, x̃)∥ ≤ L∥x − x̃∥.

(P3) There exists a continuous function V : R × R
n → R and positive constants C1, C2 and β

such that

C1∥x∥β ≤ V(t, x) ≤ C2∥x∥β for any t ∈ R and x ∈ R
n.

(P4) There exists η > 0 such that any solution t 7→ φ(t) either of (1.1) or (1.2) verifies

DV−(t, φ(t)) := lim inf
h→0+

V(t, φ(t))− V(t − h, φ(t − h))

h
≤ −η∥φ(t)∥β.

A consequence of (P3) and (P4) is that V is a Lyapunov function for the systems (1.1)
and (1.2). Then, classical results of Lyapunov’s stability [13, Theorem 4.9], [20, Chapter 1]
imply that the origin is a globally uniformly asymptotically stable equilibrium of (1.1) and
(1.2), which also implies the existence and uniqueness of the crossing times T := T(τ, x0) and
S := S(τ, y0), namely, the unique times such that

V(T, x(T, τ, x0)) = V(S, y(S, τ, y0)) = 1. (2.3)

We now state the following result obtained by K. J. Palmer in [18, Lemma]:



Smoothness of topological equivalence 5

Proposition 2.2. If the systems (1.1) and (1.2) verify (P1)–(P4), then, (1.1) and (1.2) are R-topologi-

cally equivalent with H and G defined by:

H(τ, x0) =

{

y(τ, T(τ, x0), x(T(τ, x0), τ, x0)) x0 ̸= 0,

0 x0 = 0,
(2.4)

and

G(τ, y0) =

{

x(τ, S(τ, y0), y(S(τ, y0), τ, y0)) y0 ̸= 0,

0 y0 = 0.
(2.5)

From now on, for each τ ∈ R, the maps Hτ and Gτ will be called as the Palmer’s homeo-

morphism.
A strong assumption of Palmer’s result is that (1.1) and (1.2) must have the same Ly-

paunov’s function; a particular example of this result is studied by F. Lin [14], which considers
the linear diagonal system

ẋ = −
δ

2
x, (2.6)

and also the quasilinear system

ẏ = C(t)y + B(t)y + g(t, y), (2.7)

such that x, y ∈ R
n, δ > 0 while the functions C : R → Mn(R), B : R → Mn(R) and g : R ×

R
n → R

n are continuous and also verify:

(L1) The function t 7→ C(t) = {cij(t)}
n
i,j=1 is bounded in R and C(t) is a diagonal matrix with

cii(t) ≤ −δ for any t ∈ R,

(L2) For any t ∈ R, it follows that ∥B(t)∥ ≤ δ
4 ,

(L3) For any t ∈ R and any couple y, ỹ ∈ R
n, it is satisfied that

∥g(t, y)− g(t, ỹ)∥ ≤
δ

4
∥y − ỹ∥ and g(t, 0) = 0.

A careful reading of [14, Proposition 7, p. 41] allows us to deduce that a consequence
of (L1)–(L3) is that the systems (2.6) and (2.7) have the same Lyapunov function and, conse-
quently, the origin is a uniformly asymptotically stable equilibrium, emulating the properties
(P3) and (P4) considered by Palmer.

The following result is obtained by F. Lin in [14, Lemma 1]:

Proposition 2.3. If the systems (2.6)–(2.7) verify (L1)–(L3), then, (2.6)–(2.7) are R-topologically

equivalent with H and G defined by:

H(τ, x0) =







y
(

τ, T(τ, x0), e−
δ
2 (T(τ,x0)−τ)x0

)

x0 ̸= 0,

0 x0 = 0,
(2.8)

and

G(τ, y0) =

{

y(S(τ, y0), τ, y0)e−
δ
2 (τ−S(τ,y0)) y0 ̸= 0,

0 y0 = 0,
(2.9)

where T := T(τ, x0) and S := S(τ, y0) are the unique times such that the euclidean norm of its

solutions verify

∥x(T(τ, x0), τ, x0)∥
2 = ∥y(S(τ, y0), τ, y0)∥

2 = 1. (2.10)
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From now on, for each τ ∈ R, the maps Hτ and Gτ will be called as the Lin’s homeomor-

phism.

Remark 2.4. If x0 ̸= 0 and y0 ̸= 0, the identity x(t, t0, x0) = e−
δ
2 (t−t0)x0 implies that H(τ, x0)

and G(τ, y0) have the alternative characterizations:

H(τ, x0) = y(τ, T(τ, x0), x(T(τ, x0), τ, x0)),

and
G(τ, y0) = x(τ, S(τ, y0), y(S(τ, y0), τ, y0)),

which coincide with (2.4)–(2.5) and also implies the identities

y(T(τ, x0), τ, H(τ, x0)) = x(T(τ, x0), τ, x0),

and
x(S(τ, y0), τ, G(τ, y0)) = y(S(τ, y0), τ, y0).

It is important to emphasize that the literature devoted to the crossing time based homeo-
morphisms is considerably less developed in comparison with the Green’s function approach.
In fact, while the topological linearization via the Green’s function has become an interesting
topic in itself, the linearization via crossing time has been used as a technical step inside more
general results. For example, in [18] the crossing time is used to relate topological equivalence
with exponential dichotomy; furthermore, in [14] is a tool employed to obtain a topological
equivalence result for a more general family of systems that can be reduced to (2.6)–(2.7).

2.3 The smoothness of the topological equivalence and the main novelty of this
work

While the topological equivalence problem goes back to the 70’s, the study of the differen-
tiability properties of the homeomorphisms Ht and Gt of Definition 1.1 started in the 2010’s
decade and, obviously, is considerably less studied.

The first results on the smoothness of the maps Ht and Gt were based on the Green’s
function approach and were obtained for the contractive case in [4–7], while the contrac-
tive/expansive case is treated later in [11] under strong assumptions on the quasilinear per-
turbation.

It is important to stress that less restrictive smoothness results have recently been obtained
in the contractive/expansive case by Cuong et al. and Dragičević et al. both cases are inspired
by the ideas developed by Sternberg’s, and considering resonance conditions described in
terms of the spectra associated to the uniform exponential dichotomy [8] and the nonuniform
exponential dichotomy [9, 10]. In this context, we also highlight the noticeable contributions
of Backes & Dragičević in [1], Barreira & Valls in [3] and Lu et al. in [15].

Surprisingly, and to the best of our knowledge; there are no studies about the smoothness
properties of homeomorphisms Ht and Gt when considering the crossing time approach and
this work can be seen as a contribution on this subject.

3 Smoothness of Lin’s homeomorphism

Throughout this section, we will assume that the conditions (L1)–(L3) of the Proposition 2.3
are verified and, in consequence, the systems (2.6) and (2.7) are R-topologically equivalent
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with maps H and G described respectively by (2.8) and (2.9). Moreover, as a convenient
shorthand, we will refer to R

n
0 rather than R

n \ {0} (n ≥ 1) in all that follows.
Firstly, we will study the smoothness properties of the crossing time function S stated in

(2.9). In order to do that, it will be useful to introduce the map F : R × R
n → R

n given by

F (s, y) = C(s)y + B(s)y + g(s, y), (3.1)

and, if y 7→ F (s, y) is derivable on R
n, its jacobian matrix for any fixed s ∈ R will be denoted

by DyF (s, y).

Lemma 3.1. If the system (2.7) satisfies (L1)–(L3) and the maps (t, y) 7→ g(t, y), (t, y) 7→ C(t)y and

(t, y) 7→ B(t)y belong to C 1(R × R
n, R

n) then the crossing time S : R × R
n
0 → R is continuously

differentiable on its domain of definition.

Moreover, for any fixed τ ∈ R, the partial derivative of S with respect to ξ is given explicitly by

Dξ S(τ, ξ) = −
Dξ y(S(τ, ξ), τ, ξ)y(S(τ, ξ), τ, ξ)

F (τ, y(S(τ, ξ), τ, ξ)) · y(S(τ, ξ), τ, ξ)
. (3.2)

Proof. As a first step, let us define the auxiliary map ψ : R × R
n × R → R by:

ψ(τ, ξ, t) = ∥y(t, τ, ξ)∥2 − 1.

The above assumptions imply that F ∈ C 1(R × R
n, R

n). Therefore, the differentiability of
the solutions of (2.7) with respect to the initial conditions [22, Theorem 6.1, p. 89] states that
(t, τ, ξ) 7→ y(t, τ, ξ) ∈ C 1(R ×R ×R

n, R
n) and Dξ y(t, τ, ξ) is solution of the linear variational

equation
Y′ = DyF (t, y(t, τ, ξ))Y with Y(τ) = I,

which leads to
Dξ ψ(τ, ξ, t) = 2Dξ y(t, τ, ξ) y(t, τ, ξ). (3.3)

Moreover, by (2.7) it is straightforward to verify that

Dt ψ(τ, ξ, t) = 2F (t, y(t, τ, ξ)) · y(t, τ, ξ), (3.4)

where F is defined in (3.1). By gathering the above derivatives and recalling the assumptions,
we have that ψ ∈ C 1(R × R

n × R, R).
As a second step, let us consider the Banach spaces X = (R × R

n, | · |X) and Y = Z =

(R, | · |), where |(t, x)|X = ∥x∥+ |t|.
Given the open set O = R × R

n
0 × R ⊆ X × Y, we define F as the restriction of ψ into the

set O, namely, F : O → R is defined by

F(τ, ξ, t) = ψ(τ, ξ, t) = ∥y(t, τ, ξ)∥2 − 1,

which belongs to C 1(O, R). Moreover, by (2.10), it follows that

F(τ0, ξ0, S(τ0, ξ0)) = 0 for any ξ0 ̸= 0 and τ0 ∈ R. (3.5)

The next step applies a Lin’s estimation, namely, (2.10) and the proof of [14, Proposition 7,
p. 41–42], which allow us to deduce that

DtF(τ0, ξ0, S(τ0, ξ0)) ≤ −δ ∥y(S(τ0, ξ0), τ0, ξ0)∥
2

︸ ︷︷ ︸

=1

= −δ < 0. (3.6)
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By using (3.5) combined with the implicit function theorem [22, Theorem 5.7, p. 82] applied
to F, we can prove the existence of ϕ ∈ C 1(U, W), where U is a neighborhood of (τ0, ξ0) while
W is one of S(τ0, ξ0), such that ϕ(τ0, ξ0) = S(τ0, ξ0) with U × W ⊆ O and

F(τ, ξ, ϕ(τ, ξ)) = 0 for any (τ, ξ) ∈ U,

which is equivalent to

∥y(ϕ(τ, ξ), τ, ξ)∥2 = 1 = ∥y(S(τ, ξ), τ, ξ)∥2 for any (τ, ξ) ∈ U,

then, the uniqueness of S implies S(τ, ξ) = ϕ(τ, ξ) on U and S ∈ C 1(U, W).
In particular, we have that S is continuously differentiable on each (τ0, ξ0) ∈ R ×R

n
0 and it

follows that S ∈ C 1(R × R
n
0 , R). In addition, the partial derivative can be explicitly computed

as
DξS(τ, ξ) = − [DtF(τ, ξ, S(τ, ξ))]−1 Dξ F(τ, ξ, S(τ, ξ)).

As a final step, the identity F = ψ on O combined with (3.1) imply that the above partial
derivatives coincides with those described by (3.3)–(3.4), then the above identity becomes (3.2)
and the result follows.

Corollary 3.2. The crossing time T corresponding to the solutions of (2.6) verifies T ∈ C 1(R×R
n
0 , R)

and the partial derivative of T with respect to ξ satisfies

Dξ T(τ, ξ) =
2
δ

ξ

∥ξ∥2 (3.7)

for any ξ ̸= 0 and any fixed τ ∈ R.

Proof. Let us define C0, B0 : R → Mn(R) and g0 : R × R
n → R

n by

C0(t) = −δI, B0(t) =
δ

4
I and g0(t, x) =

δ

4
x.

For any t ∈ R and x ∈ R
n, we have

C0(t)x + B0(t)x + g0(t, x) = −
δ

2
x,

and the matrix functions C0, B0 verify (L1) and (L2), while g0 verifies (L3) of the Proposi-
tion 2.3. Moreover, we have that (t, x) 7→ C0(t)x, B0(t)x and (t, x) 7→ g0(t, x) are maps of
class C 1(R × R

n, R
n). Then, Lemma 3.1 implies that the crossing time T is a function of class

C 1(R × R
n
0 , R).

In order to verify (3.7), let us remember that

x(t, τ, ξ) = e−
δ
2 (t−τ)ξ,

and we can obtain an explicit description for the crossing time:

∥x(T(τ, ξ), τ, ξ)∥2 = 1 ⇐⇒ T(τ, ξ) =
2
δ

ln(∥ξ∥) + τ (3.8)

and (3.7) follows by calculating the derivative of (τ, ξ) 7→ 2
δ ln(∥ξ∥) + τ with respect to ξ.

The results of continuous differentiability for the crossing time functions will be useful to
achieve the following result:
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Theorem 3.3. If the systems (2.6)–(2.7) satisfy (L1)–(L3) and the maps (t, y) 7→ g(t, y), (t, y) 7→

C(t)y and (t, y) 7→ B(t)y belong to C 1(R × R
n, R

n), the Lin’s homeomorphism Hτ is a diffeomor-

phism of class C 1(Rn
0 , R

n
0) for any fixed τ ∈ R.

Moreover, the derivative of Hτ := H(τ, ·) with respect to ξ is given by

Dξ H(τ, ξ) =
2
δ

{

DT yi

(

τ, T(τ, ξ),
ξ

∥ξ∥

)
ξ j

∥ξ∥2

}n

i,j=1

+ Dξy

(

τ, T(τ, ξ),
ξ

∥ξ∥

)

Dξ

[
ξ

∥ξ∥

]

,

(3.9)

while the derivative of G(τ, ·) := H−1
τ with respect to ξ is

Dξ G(τ, ξ) = e
δ
2 (S(τ,ξ)−τ)

[
δ

2
G(τ, ξ) + V(τ, ξ) + Dξy(S(τ, ξ), τ, ξ)

]

(3.10)

where G and V are n-th order matrices with

Gi,j(τ, ξ) :=
∂S(τ, ξ)

∂ξ j
yi(S(τ, ξ), τ, ξ) and Vi,j(τ, ξ) := Fi(S, y(S, τ, ξ))

∂S(τ, ξ)

∂ξ j

for any i, j ∈ {1, . . . , n} and Fi is the i-th coordinate of F defined in (3.1).

Proof. By Lemma 3.1 and Corollary 3.2, the crossing time functions S and T are of class C 1(R×

R
n
0 , R), whose proofs used that the map (t, τ, ξ) 7→ y(t, τ, ξ) is of class C 1(R × R × R

n, R
n).

The above facts combined with (2.8) imply that, for any fixed τ ∈ R, the map 0 ̸= ξ 7→

Hτ(ξ) = y(τ, T(τ, ξ), e−
δ
2 (T(τ,ξ)−τ)ξ) can be seen as a composition of functions of class C 1,

which leads to Hτ ∈ C 1(Rn
0 , R

n
0).

Similarly, by using (2.9), the map 0 ̸= ξ 7→ Gτ(ξ) = y(τ, S(τ, ξ), ξ)e−
δ
2 (τ−S(τ,ξ)) is a compo-

sition and product of functions of class C 1. In consequence, we have Gτ ∈ C 1(Rn
0 , R

n
0) and Hτ

is a diffeomorphism of class C 1(Rn
0 , R

n
0).

In order to verify (3.9), the explicit characterization of the crossing T given by (3.8) allows
to obtain a simpler expression

H(τ, ξ) = y
(

τ, T(τ, ξ), e−
δ
2 (T(τ,ξ)−τ)ξ

)

= y

(

τ, T(τ, ξ),
ξ

∥ξ∥

)

.

Let Hi(τ, ξ) be the i-th coordinate of the map H(τ, ·). By using ∂τ
∂ξ j

= 0 combined with the
chain rule and (3.7), we can deduce that the partial derivatives are

∂Hi(τ, ξ)

∂ξ j
=

∂

∂ξ j

{

yi

(

τ, T(τ, ξ),
ξ

∥ξ∥

)}

=
∂yi

(

τ, T(τ, ξ), ξ
∥ξ∥

)

∂τ

∂τ

∂ξ j
︸︷︷︸

=0

+
∂yi

(

τ, T(τ, ξ), ξ
∥ξ∥

)

∂T(τ, ξ)

∂T(τ, ξ)

∂ξ j

+
n

∑
k=1

∂yi

(

τ, T(τ, ξ), ξ
∥ξ∥

)

∂ξk

∂

∂ξ j

{
ξk

∥ξ∥

}

=
2
δ

∂yi

(

τ, T(τ, ξ), ξ
∥ξ∥

)

∂T

ξ j

∥ξ∥2 +
n

∑
k=1

∂yi

(

τ, T(τ, ξ), ξ
∥ξ∥

)

∂ξk

∂

∂ξ j

{
ξk

∥ξ∥

}

,



10 G. Robledo and D. Urrutia-Vergara

which corresponds to the (i, j)-coefficient of (3.9).

In order to verify the identity (3.10), if Gi(τ, ξ) is the i-th coordinate of G(τ, ·), notice that

∂Gi(τ, ξ)

∂ξ j
=

∂

∂ξ j

[

yi(S(τ, ξ), τ, ξ)e−
δ
2 (τ−S(τ,ξ))

]

=
δ

2
e

δ
2 (S(τ,ξ)−τ) ∂S(τ, ξ)

∂ξ j
yi(S(τ, ξ), τ, ξ)

+ e
δ
2 (S(τ,ξ)−τ)








∂yi(S(τ, ξ), τ, ξ)

∂S
︸ ︷︷ ︸

=Fi(S,y(S,τ,ξ))

∂S(τ, ξ)

∂ξ j
+

∂yi(S(τ, ξ), τ, ξ)

∂ξ j








= e
δ
2 (S(τ,ξ)−τ)

{
δ

2
Gi,j(τ, ξ) + Vi,j(τ, ξ) +

∂yi(S(τ, ξ), τ, ξ)

∂ξ j

}

and similarly, we can verify that it corresponds to the (i, j)-coefficient of (3.10), and the Theo-
rem follows.

Corollary 3.4. Under the assumptions of Theorem 3.3, the Lin’s homeomorphism Gτ : R
n
0 → R

n
0 is a

preserving orientation diffeomorphism for n ≥ 2.

Proof. Let τ ∈ R fixed. Firstly, as Hτ is a bijective map with inverse Gτ, it follows that

Hτ(Gτ(ξ)) = ξ for any ξ ∈ R
n
0 .

Then, by the Theorem 3.3, we have that Hτ is a diffeomorphism of R
n
0 on itself and

DG Hτ(Gτ(ξ)) Dξ Gτ(ξ) = I =⇒ det[DG Hτ(Gτ(ξ))] det[Dξ Gτ(ξ)] = 1,

where det[Dξ Gτ(ξ)] ̸= 0 for any ξ ∈ R
n
0 .

Therefore, we only have to verify that det[Dξ Gτ(ξ)] > 0 for any ξ ∈ R
n
0 . In order to prove

this property, we construct the function Γ : R
n
0 → R \ {0} defined by Γ(ξ) = det[Dξ Gτ(ξ)].

Note that Γ can be seen as a composition of continuous maps described by:

R
n
0

Dξ Gτ
−−−→ GLn(R)

det
−→ R \ {0}

ξ 7−→ Dξ Gτ(ξ) 7−→ det[Dξ Gτ(ξ)] = Γ(ξ).

By the continuity of Γ on the connected set R
n
0 for n ≥ 2, we have that Γ(Rn

0) is connected,
then we have that

either Γ(Rn
0) ⊆ ]−∞, 0[ or Γ(Rn

0) ⊆ ]0,+∞[ . (3.11)

Hence, in order to prove that det Dξ G(τ, ξ) > 0 for any ξ ∈ R
n
0 , we have to show that

Γ(Rn
0) ⊆ ]0,+∞[. By the above paragraph, we only need to show that det Dξ Gτ(ξ) > 0 for

some specific ξ ∈ R
n
0 . Indeed, we will verify this property for ξ = (1, 0, . . . , 0) ∈ R

n
0 .

Now, as ∥ξ∥ = 1, we have that

∥y(τ, τ, ξ)∥2 = ∥ξ∥2 = 1 = ∥y(S(τ, ξ), τ, ξ)∥2,

which implies that S(τ, ξ) = τ by the uniqueness of S. In addition, by [22, Theorem 6.1,
p. 189], we have that t 7→ Dξy(t, τ, ξ) is solution of the linear variational equation

dY

dt
= DyF (t, y(t, τ, ξ))Y with Y(τ) = I,
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and (3.2) combined with S(τ, ξ) = τ imply that

Dξ S(τ, ξ) = −
Dξ y(S(τ, ξ), τ, ξ) y(S(τ, ξ), τ, ξ)

F (τ, y(S(τ, ξ), τ, ξ)) · y(S(τ, ξ), τ, ξ)
= −

ξ

F (τ, ξ) · ξ

then we have
∂S(τ, ξ)

∂ξ j
= −

ξ j

F (τ, ξ) · ξ
for any 1 ≤ j ≤ n. (3.12)

On the other hand, we have that ∂yi(τ,τ,ξ)
∂ξ j

= δij where δij is the Kronecker delta. Then,

(3.10), (3.12) and S(τ, ξ) = τ imply that the i, j-coordinate of Dξ Gτ(ξ) is

∂Gi(τ, ξ)

∂ξ j
=

δ

2
e

δ
2 (S(τ,ξ)−τ) ∂S(τ, ξ)

∂ξ j
yi(S(τ, ξ), τ, ξ)

+ e
δ
2 (S(τ,ξ)−τ)

{

Fi(S(τ, ξ), y(S(τ, ξ), τ, ξ))
∂S(τ, ξ)

∂ξ j
+

∂yi(S(τ, ξ), τ, ξ)

∂ξ j

}

=
∂S(τ, ξ)

∂ξ j

{
δ

2
yi(S(τ, ξ), τ, ξ) +Fi(S(τ, ξ), y(S(τ, ξ), τ, ξ))

}

+
∂yi(S(τ, ξ), τ, ξ)

∂ξ j

= −
ξ j

F (τ, ξ) · ξ

{
δ

2
ξi +Fi(τ, ξ)

}

+ δij.

By considering ξ = (1, 0, 0 . . . , 0) = (ξ1, ξ2, . . . , ξn), we can deduce that

∂Gi(τ, ξ)

∂ξ j
=







−
Fi(τ, ξ)

F1(τ, ξ)
j = 1 ̸= i,

0 j ̸= i, j ̸= 1,

−
δ

2F1(τ, ξ)
i = j = 1

1 i = j, i ̸= 1,

and the derivative Dξ Gτ(ξ) is described by the block matrix

Dξ Gτ(ξ) =

[

− δ
2F1(τ,ξ) 01×n

D In−1

]

where D =










−F2(τ,ξ)
F1(τ,ξ)

−F3(τ,ξ)
F1(τ,ξ)

...
−Fn(τ,ξ)

F1(τ,ξ)










,

and In−1 ∈ Mn−1(R) is the identity matrix. That is, Dξ Gτ(ξ) is a lower triangular matrix
where its diagonal terms are

∂Gi(τ, ξ)

∂ξi
=







−
δ

2F1(τ, ξ)
i = 1,

1 i ̸= 1,

and we can explicitely see that det[Dξ Gτ(ξ)] = − δ
2F1(τ,ξ) .
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Let us recall that, in the proof of the Lemma 3.1, we constructed the function F : R × R
n ×

R → R defined by

F(τ, ξ, t) = ∥y(t, τ, ξ)∥2 − 1 for any (τ, ξ, t) ∈ R × R
n × R,

which satisfies (3.6). This property combined with S(τ, ξ) = τ lead to

F1(τ, ξ) =
n

∑
i=1

Fi(τ, ξ)ξi = F (τ, ξ) · ξ

= F (S(τ, ξ), y(S(τ, ξ), τ, ξ)) · y(S(τ, ξ), τ, ξ)

=
1
2

DtF(τ, ξ, S(τ, ξ)) ≤ −
δ

2
< 0,

then we have that F1(τ, ξ) < 0 and consequently det[Dξ Gτ(ξ)] = − δ
2F1(τ,ξ) > 0.

We have verified the existence of ξ ∈ R
n
0 such that det[Dξ Gτ(ξ)] = Γ(ξ) > 0. The connect-

edness of Γ(Rn
0) and (3.11) imply that Γ(Rn

0) ⊆ ]0,+∞[, or equivalently, det[Dξ Gτ(ξ̃)] > 0 for
every ξ̃ ∈ R

n
0 and we have proved that Gτ is a preserving orientation diffeomorphism of R

n
0

on itself for any n ≥ 2.

The connectedness of R
n
0 with n ≥ 2 played a key role in the above proof. Nevertheless,

we will make minor adaptations to cope with the case n = 1.

Corollary 3.5. Under the assumptions of Theorem 3.3, the Lin’s homeomorphism Gτ : R
n
0 → R

n
0 is

also a preserving orientation diffeomorphism for n = 1.

Proof. Let be Γ : R0 → R0 as in the previous proof, where R0 is the disconnected set

R0 := R \ {0} = ]−∞, 0[ ∪ ]0,+∞[ .

However, we will emulate the proof of the Corollary (3.4) in the connected components of
R0, namely, C+ := ]0,+∞[ and C− := ]−∞, 0[.

Let us consider ξ+ := 1 ∈ C+ and ξ− := −1 ∈ C−. Then we have |ξ−| = |ξ+| = 1, which
leads to

S(τ, ξ−) = τ = S(τ, ξ+).

By replying the proof of the Corollary 3.4, we have that

∂S(τ, ξ+)

∂ξ
=

−1
F (τ, 1)

and det[Dξ Gτ(ξ
+)] = Dξ Gτ(ξ

+) = −
δ

2F (τ, 1)
,

and we verify, similarly as in the previous result, that det Dξ [Gτ(ξ+)] = Γ(ξ+) > 0, which
implies Γ(C+) ∈ ]0,+∞[ and it follows that det[Dξ Gτ(ξ)] = Γ(ξ) > 0 for any ξ ∈ C+.

By proceeding analogously, we also can verify that

∂S(τ, ξ−)

∂ξ
=

−1
F (τ,−1)

and Dξ Gτ(ξ
−) =

δ

2F (τ,−1)
.

Now, let us recall that F (t, ξ) = C(t)ξ + B(t)ξ + g(t, ξ) where C, B : R → R and g :
R × R → R satisfy the properties (L1)–(L3) stated in Section 2 with n = 1, then, we have

C(τ)ξ− = −C(τ) ≥ δ, B(τ)ξ− = −B(τ) ≥ −
δ

4
, and g(τ, ξ−) ≥ −

δ

4
,
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which implies that F (τ, ξ−) = −C(τ)− B(τ) + g(τ, ξ−) ≥ δ
4 > 0 and we have that

Γ(ξ−) = det[Dξ Gτ(ξ
−)] = Dξ Gτ(ξ

−) =
δ

2F (τ, ξ−)
> 0.

By the connectedness of Γ(C−), we have that Γ(C−) ⊆ ]0,+∞[ and det[Dξ Gτ(ξ)] = Γ(ξ) >

0 for any ξ ∈ C− and the result holds.

4 Smoothness of Palmer’s homeomorphism

This section studies the differentiability properties of the homeomorphisms Ht and Gt defined
by (2.4) and (2.5) in the Proposition 2.2.

Lemma 4.1. If the systems (1.1) and (1.2) verify (P1)–(P4) while the functions F1, F2 : R × R
n → R

n

are of class C 1(R × R
n, R

n) and the Lyapunov function V is of class C 1(R × R
n, R), the crossing

times T and S of (2.3) are of class C 1(R × R
n
0 , R).

Moreover, the derivative of T := T(τ, ·) with respect to ξ ∈ R
n
0 verifies

Dξ T(τ, ξ) = −
Dξ x(T, τ, ξ) DξV(T, x(T, τ, ξ))

DTV(T, x(T, τ, ξ)) + DξV(T, x(T, τ, ξ)) · F1(T, x(T, τ, ξ))
. (4.1)

while, the derivative of S := S(τ, ·) with respect to ξ ∈ R
n
0 is given by

DξS(τ, ξ) = −
Dξy(S, τ, ξ) DξV(S, y(S, τ, ξ))

DSV(S, y(S, τ, ξ)) + DξV(S, y(S, τ, ξ)) · F2(S, y(S, τ, ξ))
. (4.2)

Proof. We will work with the same Banach spaces X, Y and Z and the same open set O ⊆

X × Y of the proof of the Lemma 3.1.
Moreover, we will construct a C 1(O, Z)-map φ verifying φ(τ, ξ, T(τ, ξ)) = 0 in order to

apply the implicit function theorem for Banach spaces [22, Theorem 5.7, p. 82].
Firstly, let us define the auxiliary map ν : R × R

n × R → R as follows:

ν(τ, ξ, t) = V(t, x(t, τ, ξ))− 1.

As F1 ∈ C 1(R × R
n, R

n), the differentiability of the solutions of (1.1) with respect to the
initial conditions states that (t, τ, ξ) 7→ x(t, τ, ξ) ∈ C 1(R × R × R

n, R
n) and t 7→ Dξ x(t, τ, ξ)

is solution of the linear variational equation

X′ = Dx F1(t, x(t, τ, ξ))X with X(τ) = I.

By hypothesis, (t, x) 7→ V(t, x) is of class C 1(R × R
n, R

n), which leads to

Dξ ν(τ, ξ, t) = DxV(t, x(t, τ, ξ))Dξ x(t, τ, ξ). (4.3)

Moreover, by (1.1) it is straightforward to verify that

Dt ν(τ, ξ, t) = DtV(t, x(t, τ, ξ)) + DxV(t, x(t, τ, ξ))F1(t, x(t, τ, ξ)), (4.4)

and, by recalling the above assumptions, we can see that ν ∈ C 1(R × R
n × R, R).

Now, let us construct the restriction on ν into O, namely, φ : O → R defined by

φ(τ, ξ, t) = ν(τ, ξ, t) = V(t, x(t, τ, ξ))− 1,
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which clearly belongs to C 1(O, R). In addition, (2.3) implies that

φ(τ0, ξ0, T(τ0, ξ0)) = 0 for any ξ0 ̸= 0 and τ0 ∈ R. (4.5)

By the assumptions (P3)–(P4) of the Proposition 2.2 we can deduce that

Dtφ(τ, ξ, t) = Dtν(τ, ξ, t) = Dt{V(t, x(t, τ, ξ))− 1}

= DtV(t, x(t, τ, ξ)) ≤ −η∥x(t, τ, ξ)∥β,

for all (τ, ξ, t) ∈ O. Moreover, by (P1), (P2) and [14, Prop 2, p. 40], we have the inequality
∥ξ∥e−L|t−τ| ≤ ∥x(t, τ, ξ)∥, obtaining the sharper estimation:

Dtφ(τ0, ξ0, T(τ0, ξ0)) ≤ −ηe−Lβ|T(τ0,ξ0)−τ0|∥ξ0∥
β
< 0, (4.6)

then, the implicit function theorem and (4.5) establish the existence of C 1(U, W)-map ϕ, where
U is a neighborhood of (τ0, ξ0) while W is one of T(τ0, ξ0), which verifies

ϕ(τ0, ξ0) = T(τ0, ξ0) with U × W ⊆ O and φ(τ, ξ, ϕ(τ, ξ)) = 0 for any (τ, ξ) ∈ U,

which also can be written as

V(ϕ(τ, ξ), x(ϕ(τ, ξ), τ, ξ)) = 1 = V(T(τ, ξ), x(T(τ, ξ), τ, ξ)) on U,

which leads to T(τ, ξ) = ϕ(τ, ξ) for any (τ, ξ) ∈ U by the uniqueness of T, which also implies
that T ∈ C 1(U, W).

In particular, we have the continuous differentiability of T on each arbitrary (τ0, ξ0) ∈

R × R
n
0 , this implies that T ∈ C 1(R × R

n
0 , R). The partial derivative is obtained explicitly as

Dξ T(τ, ξ) = − [Dtφ(τ, ξ, T(τ, ξ))]−1 Dξ φ(τ, ξ, T(τ, ξ)).

By using that ν |O= φ, the above partial derivatives coincides with (4.3)–(4.4) and the
above identity becomes (4.1).

Finally, in order to show (4.2) and S ∈ C 1, we can make an identical proof to the previous
one by using the maps F2 and t 7→ y(t, τ, ξ) instead of F1 and t 7→ x(t, τ, ξ), respectively, and
the result follows.

The above result of continuous differentiability for the crossing times will be useful to
achieve the continuous differentiability of the Palmer’s homeomorphisms Hτ and Gτ.

Theorem 4.2. Under the assumptions of the Lemma 4.1, the Palmer’s homeomorphism Hτ described

in (2.4) is a diffeomorphism of class C 1(Rn
0 , R

n
0) for any fixed τ ∈ R.

Moreover, if we use the notation S := S(τ, ξ) and T := T(τ, ξ), the derivative of Hτ := H(τ, ·),
with respect to ξ is given by

Dξ H(τ, ξ) = V(τ, ξ) + Dξy(τ, T, x(T, τ, ξ))[A(τ, ξ) + Dξ x(T, τ, ξ)]. (4.7)

where the (i, j)-coordinates of V(τ, ξ) and A(τ, ξ) are given by

Vi,j(τ, ξ) = DT yi(τ, T, x(T, τ, ξ)) Dξ j
T(τ, ξ), Ai,j(τ, ξ) = DTxi(T, τ, ξ)Dξ j

T(τ, ξ),

while the derivative of G(τ, ·) := H−1
τ with respect to ξ is

Dξ G(τ, ξ) = W(τ, ξ) + Dξ x(τ, S, x(S, τ, ξ))[B(τ, ξ) + Dξy(S, τ, ξ)] (4.8)

where the (i, j)-coordinates of W(τ, ξ) and B(τ, ξ) are given by

Wi,j(τ, ξ) = DS xi(τ, S, x(S, τ, ξ)) Dξ j
S(τ, ξ), Bi,j(τ, ξ) = DSyi(S, τ, ξ)Dξ j

S(τ, ξ).
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Proof. Note that S, T ∈ C 1(R × R
n
0 , R) by Lemma 4.1, whose proof used that the maps

(t, τ, ξ) 7→ y(t, τ, ξ) and (t, τ, ξ) 7→ x(t, τ, ξ) are of class C 1(R × R × R
n, R

n).
The above paragraph together with (2.4) imply that the map

0 ̸= ξ 7→ Hτ(ξ) = y(τ, T(τ, ξ), x(T(τ, ξ), τ, ξ)),

is a composition of C 1 maps, and we have that Hτ ∈ C 1(Rn
0 , R

n
0) for any fixed τ ∈ R.

To verify (4.7), let Hi(τ, ξ) be the i-th coordinate of the map H(τ, ·). By using (2.4) and the
chain’s rule, we can deduce that the partial derivatives are

∂Hi(τ, ξ)

∂ξ j
=

∂

∂ξ j
{yi (τ, T(τ, ξ), x(T(τ, ξ), τ, ξ))}

=
∂yi(τ, T(τ, ξ), x(T(τ, ξ), τ, ξ))

∂T

∂T(τ, ξ)

∂ξ j

+
n

∑
k=1

∂yi (τ, T(τ, ξ), x(T(τ, ξ), τ, ξ))

∂xk

∂xk(T(τ, ξ), τ, ξ)

∂T

∂T(τ, ξ)

∂ξ j

+
n

∑
k=1

∂yi (τ, T(τ, ξ), x(T(τ, ξ), τ, ξ))

∂xk

∂xk(T(τ, ξ), τ, ξ)

∂ξ j

= Vi,j(τ, ξ) +
n

∑
k=1

∂yi (τ, T, x(T, τ, ξ))

∂xk

{

Ak,j(τ, ξ) +
∂xk(T, τ, ξ)

∂ξ j

}

,

where the last equation is due by using T = T(τ, ξ). Then, we can verify that it corresponds
to the (i, j)-coefficient of (4.7).

In a similar way, by (2.5), the map 0 ̸= ξ 7→ Gτ(ξ) = x(τ, S(τ, ξ), y(S(τ, ξ), τ, ξ)) is a com-
position of continuously differentiable functions. In consequence, Gτ is also a continuously
differentiable map of R

n
0 on itself. Therefore, Hτ is a diffeomorphism of class C 1(Rn

0 , R
n
0).

The proof of the identity (4.8) is similar to (4.7) by using (t, τ, ξ) 7→ y(t, τ, ξ) and (τ, ξ) 7→

S(τ, ξ) instead of (t, τ, ξ) 7→ x(t, τ, ξ) and (τ, ξ) 7→ T(τ, ξ), respectively. Therefore, we can
prove that it corresponds to the (i, j)-coefficient of the identity (4.8), and the Theorem follows.

5 The smoothness of class C k for the Palmer’s and Lin’s homeomor-

phism

Throughout this section, we will see that; provided some additional properties; the Palmer’s
and Lin’s homeomorphisms via crossing times are diffeomorphisms of class C k for any fixed
τ ∈ R and k ≥ 2.

We will start by studying the Palmer’s homeomorphism:

Lemma 5.1. If the systems (1.1) and (1.2) verify (P1)–(P4), F1 and F2 are in C k(R × R
n, R

n) while

the Lyapunov function V verifies V ∈ C k(R ×R
n, R), then, the crossing times S and T of (2.3) verify

T, S ∈ C k(R × R
n
0 , R).
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Proof. We will consider the Banach spaces X, Y and Z together with the open set O ⊆ X × Y

and the functions ν and φ := ν|O of the proof of Lemma 4.1.
By [22, Cor. 6.1, p. 92], (t, τ, ξ) 7→ x(t, τ, ξ) is of class C k(R × R × R

n, R
n). In addition,

ν is a composition of C k-maps, which implies that ν ∈ C k(X × Y, Z), and we conclude that
φ ∈ C k(O, Z).

By (4.5), we have that φ(τ0, ξ0, T(τ0, ξ0)) = 0 while Dtφ(τ0, ξ0, T(τ0, ξ0)) ̸= 0 by (4.6).
Hence, the implicit function theorem for maps in C k [22, Cor. 5.1, p. 84] implies the existence
of ϕ : U0 → V0 of class C k, where U0 and V0 are neighborhoods of (τ0, ξ0) and T(τ0, ξ0),
respectively, and φ verifies

φ(τ, ξ, ϕ(τ, ξ)) = 0 for any (τ, ξ) ∈ U0.

Moreover, the definition of T and the above property of ϕ establish that

V(ϕ(τ, ξ), x(ϕ(τ, ξ), τ, ξ)) = 1 = V(T(τ, ξ), x(T(τ, ξ), τ, ξ)),

and the uniqueness of T implies that ϕ(τ, ξ) = T(τ, ξ) for any (τ, ξ) ∈ U0. Then, T has
continuous k-th derivatives on any (τ0, ξ0) ∈ R × R

n
0 , which implies that T ∈ C k(R × R

n
0 , R).

By using (t, τ, ξ) 7→ y(t, τ, ξ), F2 and S instead of (t, τ, ξ) 7→ x(t, τ, ξ), F1 and T respectively,
we have that S ∈ C k(R × R

n
0 , R).

Theorem 5.2. If the systems (1.1) and (1.2) verify (P1)–(P4), F1, F2 are in C k(R × R
n, R

n) and the

Lyapunov function also verifies that V ∈ C k(R × R
n, R), then the Palmer’s homeomorphism Hτ is a

diffeomorphism of class C k(Rn
0 , R

n
0) for any fixed τ ∈ R.

Proof. The crossing time functions S and T are of class C k(R × R
n
0 , R) by Lemma 5.1, whose

proof used that (t, τ, ξ) 7→ y(t, τ, ξ) and (t, τ, ξ) 7→ x(t, τ, ξ) are of class C k(R × R × R
n, R

n).
A byproduct of the above facts combined with (2.4) is that, for any fixed τ ∈ R, the map

0 ̸= ξ 7→ Hτ(ξ) = y(τ, T(τ, ξ), x(T(τ, ξ), τ, ξ)) can be seen as a composition of function of
class C k, which leads to Hτ := H(τ, ·) ∈ C k(Rn

0 , R
n
0).

Similarly, we have that 0 ̸= ξ 7→ Gτ(ξ) = x(τ, S(τ, ξ), y(S(τ, ξ), τ, ξ)) is a composition of
C k-functions, leading to Gτ := G(τ, ·) ∈ C k(Rn

0 , R
n
0). This implies that each Hτ is a diffeo-

morphism of class C k(Rn
0 , R

n
0).

As a byproduct of the above result, we can study the smoothness properties for the Lin’s
homeomorphism:

Corollary 5.3. Under the assumptions of Lemma 3.1, if the maps (t, ξ) 7→ C(t)ξ, (t, ξ) 7→ B(t)ξ and

g are of class C k(R × R
n, R

n), the crossing times T and S of (2.10) are of class C k(R × R
n
0 , R).

Moreover, for all τ ∈ R fixed, the Lin’s homeomorphism Hτ is a diffeomorphism of class

C k(Rn
0 , R

n
0).

Proof. Let us define the functions F1, F2 : R × R
n → R

n by

F1(t, ξ) = C(t)ξ + B(t)ξ + g(t, ξ), and F2(t, ξ) = −
δ

2
Iξ for any (t, ξ) ∈ R × R

n,

and we will verify the properties (P1)–(P4).
Firstly, note that F1(t, 0) = F2(t, 0) = 0 for any t ∈ R. In fact, one identity is trivial while

the other one is by (L3), then, (P1) follows.
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To verify (P2), note that t 7→ C(t) is a bounded matrix function by (L1), then, we can
define M = supt∈R

∥C(t)∥ and L := M + δ
2 . Now, by (L1)–(L3), we can deduce that for any

ξ1, ξ2 ∈ R
n and t ∈ R

∥F1(t, ξ1)− F1(t, ξ2)∥ ≤ L∥ξ1 − ξ2∥ and ∥F2(t, ξ1)− F2(t, ξ2)∥ ≤ L∥ξ1 − ξ2∥

and we have verified (P2).
We will see that (P3) and (P4) are verified if we consider V : R × R

n → R defined by

V(t, ξ) := ∥ξ∥2 =
n

∑
i=1

ξ2
i .

In fact, if C1 = C2 = 1 and β = 2, we have that

C1∥ξ∥β ≤ ∥ξ∥2 = V(t, ξ) ≤ C2∥ξ∥β

for any t ∈ R and ξ ∈ R
n, this proves (P3).

The last step consists in verify the existence of η > 0 such that

DV(t, γ(t)) ≤ −η∥γ(t)∥β,

for any solution t 7→ γ(t) either of (2.6) or (2.7). But, let us define η = δ > 0. By the proof of
[14, Proposition 7, p. 41], any solution t 7→ y(t, τ, ξ) of (2.7) satisfies

DV(t, y(t, τ, ξ)) =
d

dt

(
∥y(t, τ, ξ)∥2) ≤ −δ∥y(t, τ, ξ)∥2,

and any solution t 7→ x(t, τ, ξ) can be written as a solution of (2.7) with the maps

C0(t) = −δI, B0(t) =
δ

4
I and g0(t, ξ) =

δ

4
Iξ for any (t, ξ) ∈ R × R

n,

then
DV(t, x(t, τ, ξ)) ≤ −δ∥x(t, τ, ξ)∥2,

and we proved (P4).
Now, the function F1 is a sum of functions of class C k(R × R

n, R
n) which implies that

F1 ∈ C k(R × R
n, R

n).
On the order hand, we have that F2 = − δ

2 Iξ belongs to C ∞(R × R
n, R

n) which leads to
F2 ∈ C k(R × R

n, R
n).

In addition, we have that V is a quadratic polinomial map of n variables, then V ∈ C k(R ×

R
n, R) and we have that T and S are in C k(R × R

n
0 , R) by Lemma 5.1.

Finally, the Lin’s homeomorphism can be seen as a Palmer homeomorphism’s between the
systems (2.6) and (2.7) by Remark 2.4, then the Lin’s homeomorphism is a diffeomorphism of
class C k(Rn

0 , R
n
0) by the Theorem 5.2.

6 A generalization of Theorem 3.3

Under the assumption that the properties (L1) and (L2) are verified, let us consider the diag-
onal dominant linear system:

ẏ = [C(t) + B(t)]y. (6.1)
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By the variation of parameters method, we have that any solution t 7→ x(t, t0, ξ) of (6.1)
passing by ξ at t = t0 verifies

x(t, t0, ξ) = ΦC(t, t0)ξ +
∫ t

t0

ΦC(t, s)B(s)x(s, t0, ξ) ds,

where t 7→ ΦC(t, s) is a transition matrix of z′ = C(t)z.
On the other hand, we have that x(t, t0, ξ) = ΦC+B(t, t0)ξ where ΦB+C(t, t0) is a transition

matrix of (6.1). In addition, by considering

ΦC(t, s) = Diag
{

e
∫ t

s cii(τ) dτ
}n

i=1
,

and (L1), we can deduce that ∥ΦC(t, s)∥ ≤ e−δ(t−s) for any t ≥ s. The estimate of ΦC combined
with (L2) imply that

eδt∥ΦB+C(t, t0)ξ∥ = eδt∥x(t, t0, ξ)∥ ≤ eδt0∥ξ∥+
∫ t

t0

δ

4
eδs∥x(s, t0, ξ)∥ ds

= eδt0∥ξ∥+
∫ t

t0

δ

4
eδs∥ΦC+B(s, t0)ξ∥ ds

then, by using the classical Gronwall’s inequality, it is straightforward to infer that

∥ΦB+C(t, t0)∥ ≤ e−
δ
2 (t−t0) for any t ≥ t0, (6.2)

namely, the linear system (6.1) is R-uniformly exponentially stable.
Similarly, as it was stated in the subsection 2.2, the properties (L1)–(L3) imply that any

solution t 7→ y(t, t0, y0) of (2.7) verifies

∥y(t, t0, y0)∥ ≤ ∥y0∥e−
δ
2 (t−t0) for any t ≥ t0.

A nice consequence of the Lin’s homeomorphism is that the linear system (6.1) is topolog-
ically equivalent to its quasilinear perturbation (2.7) by the proof of [14, Lemma 2].

A direct byproduct of our previous results is the smoothness of the above mentioned
topological equivalence

Theorem 6.1. If (L1)–(L3) are satisfied and the maps (t, y) 7→ g(t, y), (t, y) 7→ C(t)y and (t, y) 7→

B(t)y belong to C 1(R × R
n, R

n), then the linear system (6.1) and its quasilinear perturbation (2.7)
are R-topologically equivalent via a function P : R × R

n → R
n which, for any fixed t, is a preserving

orientation diffeomorphism of class C 1 on R
n
0 .

Proof. By Theorem 3.3 and Corollary 3.4, the quasilinear system (2.7) and the diagonal au-
tonomous system (2.6) are R-topologically equivalent via the function H : R × R

n → R
n

described by (2.8), which is a preserving orientation diffeomorphism of class C 1 on R
n
0 for

any fixed t.
On the other hand, as pointed out by Lin in [14], the function (t, x) 7→ g(t, x) ≡ 0 sat-

isfies (L3) and belongs to C 1(R × R
n, R

n), then, the linear system (6.1), and the diagonal
autonomous system (2.6), are R-topologically equivalent via a function Q : R × R

n → R
n

which for any fixed t, is a preserving orientation diffeomorphism of class C 1 on R
n
0 .

Finally, as the R-topological equivalence is an equivalence relation; it follows that the
linear system (6.1) and its quasilineal perturbation (2.7), are R-topologically equivalent via a
function P = H ◦ Q : R × R

n → R
n which, for any fixed t, is a composition of two preserving

orientation diffeomorphisms of class C 1 on R
n
0 .
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It is of interest to point out that the Theorem 6.1 has a similar structure that a result
obtained in [6] by following a Green’s function approach. Both results are about the smooth-
ness of a R-topological equivalence between a uniformly exponentially stable linear system
and a quasilinear perturbation. Now, it is interesting for us to describe the advantages and
drawbacks of our result compared with the one obtained in [6].

A difference at first glance is that the Theorem 6.1 does not assumes that the quasilinear
perturbation g is bounded on R ×R

n. For example, a linear perturbation g(t, x) = H(t)x with
∥H(t)∥ ≤ δ

4 is covered by our result when t 7→ H(t) is continuously differentiable. On the
other hand, in [6] the global boundedness of the perturbation is an essential assumption to
the construction of the homeomorphism; nevertheless, Theorem 6.1 assumes that g(t, 0) = 0
for any t ∈ R, which is not necessary in [6].

A second difference is that Theorem 6.1 allows an easier generalization to derivatives of
higher order, which is not the case in [6]. From this perspective, our approach has a clear
advantage.

Finally, the result of [6] only assumes that the linear part is a uniformly asymptotically
stable linear system, while in Theorem 6.1 this assumption is restricted for the special case of
linear systems with diagonal dominance, making our result a more restrictive one.
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Abstract. We study the number of rational limit cycles of the Abel equation x′ =
A(t)x3 + B(t)x2, where A(t) and B(t) are real trigonometric polynomials. We show
that this number is at most the degree of A(t) plus one.
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1 Introduction

The Abel differential equation

x′ = A(t)x3 + B(t)x2 + C(t)x,

where A(t), B(t) and C(t) are trigonometric polynomials has been studied by many authors,
either for its relation to higher degree phenomena (see e.g. [11]), for applications to real-world
models (see e.g. [2]), or for its own intrinsic interest (see e.g. [7]).

In this paper we consider Abel differential equations without linear term, that is,

x′ = A(t)x3 + B(t)x2, (1.1)

with A(t) and B(t) being real trigonometric polynomials.
Among the main problems related to this equation, we could name the Smale–Pugh [16]

problem, which is considered as a particular case of the 16th Hilbert problem. The problem
consists in bounding the number of limit cycles of (1.1), that is, the number of isolated periodic
solutions in the set of periodic solutions of the equation. In connection with this problem, Lins
Neto [11] proved that there is no upper bound on the number of limit cycles of (1.1).

Another important problem often mentioned in the literature is the Poincaré center-focus
problem applied to this setting. Trivially, x(t) = 0 is a solution of the equation. The problem
asks when the equation 1.1 has a center at x(t) = 0, i.e., all solutions in a neighborhood of the
solution x(t) = 0 are closed. This problem for (1.1) was proposed by Briskin, Françoise, and

BCorresponding author. Email: l.calderon@uib.es
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Yondim [4, 5]. There are some progresses in solving this problem, for example, it has been
proved that the composition condition determine certain parametric centers when the coeffi-
cients are polynomials [13], but the problem is open for trigonometric coefficients. Moreover,
it is conjectured that the converse is true when A(t) and B(t) are polynomials, with some
relevant evidences that support it. For more more details, the reader may refer to [7, 10].

When faced with the Smale–Pugh problem, one of the most common strategies for obtain-
ing upper bounds on the number of limit cycles is to impose some additional restrictions on
A(t) and B(t). For example, it has been shown that if A(t) ̸= 0 or B(t) ̸= 0 does not change
sign, or if there exist α, β ∈ R such that αA(t) + βB(t) ̸= 0 does not change sign, then the
equation has at most three limit cycles [1, 8]. See [7] for more information.

Another strategy is to focus on the problem for limit cycles of a certain form or with
certain properties that may be of particular interest. An example of such a result is that the
generalized Abel equation with polynomial coefficients and degree n has at most n polynomial
limit cycles, see [9].

Also, the number of rational solutions of (1.1) when A(t), B(t) are polynomials has been
profusely studied. For instance, in [15] the authors obtain upper bounds on the number
of rational periodic solutions of (1.1) under certain conditions on the degrees of A(t), B(t),
and in [3], a general, non-optimal upper bound has been obtained. It has been also studied
for A(t), B(t) trigonometric polynomials, in [17]. Note that the rational solutions are not
necessarily limit cycles, as they may be part of a centre.

In this paper we obtain an upper bound on the number of rational limit cycles of the
equation (1.1), i.e., limit cycles of the form x(t) = Q(t)/P(t), where P(t) and Q(t) are real
trigonometric polynomials and P(t) ̸= 0 for all t ∈ R. Recall that a real trigonometric polyno-
mial of degree n is an expression of the form

n

∑
k=0

ak cos(kt) + bk sin(kt), ak, bk ∈ R

with an · bn ̸= 0. As usual, we write R[cos(t), sin(t)] for the ring of real trigonometric polyno-
mials.

Using this notation, our main result is as follows.

Theorem 1.1. Let A(t), B(t) ∈ R[cos(t), sin(t)]. If the degree of A(t) is odd or less than twice the

degree of B(t), then (1.1) has at most two non-trivial rational limit cycles. Otherwise, the number of

non-trivial rational limit cycles of equation (1.1) is at most the degree of A(t) plus one.

To prove this result, we consider each rational limit cycle x(t) = Q(t)/P(t) as an invariant
trigonometric algebraic curve of degree one in x with real trigonometric coefficients (Propo-
sition 2.2), that is, an invariant curve of (1.1) of the form Q(t)− P(t)x = 0, where P(t) and
Q(t) are real trigonometric polynomials and P(t) ̸= 0 for all t ∈ R. Therefore, to bound the
number of limit rational cycles, we bound the number of invariant algebraic curves of degree
one in x with real trigonometric coefficients of (1.1) such that (1.1) has no center at the origin.
In particular, to prove the second part of Theorem 1.1, we bound the maximum number of
invariant curves of this type such that (1.1) does not have a Darboux first integral.

The study of invariant curves of degree one in x is interesting in itself, regardless of
whether they correspond to rational limit cycles or not. Therefore, we include a method
to parameterize the Abel equations 1.1 that have at least two non-trivial invariant algebraic
curves of degree one in x with real trigonometric coefficients.
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The structure of the paper is as follows. In the first section we characterize the invariant
algebraic curves of degree one in x with real trigonometric coefficients such that the equation
(1.1) has and we show some of their properties. Then we prove the first part of Theorem 1.1
and give the parameterization mentioned above. In the second section, we apply Darboux’s
integrability theory to this situation, which allows us to complete the proof of the main result
of the paper.

Due to the fact that R[cos(t), sin(t)] is not a unique factorization domain, some necessary
facts and results about factorization in these rings are collected in Appendix A.

2 Real trigonometric invariant algebraic curves of degree one in x

Consider the Abel equation (1.1), set g(t, x) := A(t)x3 + B(t)x2 and denote the associated
vector field by X , that is,

X =
∂

∂t
+ g

∂

∂x
.

Fixed f ∈ C1, the curve f (t, x) = 0 is said to be an invariant curve of (1.1) if there exists
K ∈ C0, called the cofactor of f (t, x), such that

(X f ) (t, x) =

(

∂ f

∂t
+ g

∂ f

∂x

)

(t, x) = K(t, x) f (t, x).

Note that f0(t, x) := x = 0 is always an invariant curve of (1.1) with the cofactor K0(t, x) =

A(t)x2 + B(t)x.
If f (t, x) = 0 is invariant and x(t) is a solution of (1.1), then, for any t0 in the domain of

the solution,

f (t, x(t)) = f (t0, x(t0)) exp
(

∫ t

t0

K(s, x(s))ds

)

.

Therefore, if f (t0, x(t0)) = 0, then f (t, x(t)) = 0 for all t. Consequently f (t, x) = 0 consists of
trajectories of solutions of the equation.

From now on, unless otherwise stated, A(t) and B(t) are real trigonometric polynomials,
that is, A(t), B(t) ∈ R[cos(t), sin(t)].

The first objective of this section is to characterize the invariant algebraic curves f (t, x) = 0
of (1.1) such that f (t, x) = Q(t)− P(t)x ∈ R[cos(t), sin(t)][x] with P(t) ̸= 0, for all t ∈ R.

Let P(t) and Q(t) be real trigonometric polynomials with P(t) ̸= 0, for all t ∈ R. If R(t) ∈
R[cos(t), sin(t)] is a common factor of P(t) and Q(t), meaning that there exist factorizations of
P(t) and Q(t) in which R(t) appears (see Appendix A for details), we have that Q(t)− P(t)x =

0 is an invariant curve of (1.1) if and only if Q(t)/R(t) − (P(t)/R(t))x = 0 is an invariant
curve of (1.1). Thus, in what follows, we always assume that P(t) and Q(t) have no common
factors, that is, Q(t) − P(t)x is irreducible in R[cos(t), sin(t)][x] and, by Corollary A.4, in
C[cos(t), sin(t)][x].

Remark 2.1. To simplify the exposition from now on, we simply say invariant curves of (1.1)
to refer to invariant curves of (1.1) of the form Q(t)− P(t)x = 0, where P(t) ̸= 0, for all t ∈ R,
and Q(t)− P(t)x is irreducible.

The following result establishes the relationship between rational limit cycles x(t) =

Q(t)/P(t) and invariant curves of (1.1).
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Proposition 2.2. Let P(t) and Q(t) be real trigonometric polynomials. If P(t) ̸= 0 for all t ∈ R, then

x(t) = Q(t)/P(t) is a solution of (1.1) if and only if Q(t)− P(t)x = 0 is an invariant curve of (1.1).

Proof. Since R[cos(t), sin(t)] is a domain (see [14, Theorem 3.1]) its field of fractions, Σ, is
well-defined. Thus, we can perform the Euclidean division of (X f )(t, x) = Q′(t)− P′(t)x −
P(t)

(

A(t)x3 + B(t)x2
)

by f (t, x) := Q(t) − P(t)x in Σ[x], so that there exist unique K(t, x)

and Z(t, x) ∈ Σ[x] such that

(X f )(t, x) = K(t, x)(Q(t)− P(t)x) + Z(t).

Concretely,

Z(t) = P(t)

(

(

Q(t)

P(t)

)′
− A(t)

(

Q(t)

P(t)

)3

− B(t)

(

Q(t)

P(t)

)2
)

and

K(t, x) = A(t)x2 +

(

A(t)

(

Q(t)

P(t)

)

+ B(t)

)

x

+ A(t)

(

Q(t)

P(t)

)2

+ B(t)

(

Q(t)

P(t)

)

+
P′(t)
P(t)

.

Note that K(t, x) ∈ C0 because P(t) ̸= 0 for all t ∈ R. Therefore, we conclude that the
necessary and sufficient condition for Q(t) − P(t)x = 0 to be an invariant curve of (1.1) is
Z(t) = 0, which, given the expression of Z(t), is equivalent to x(t) = Q(t)/P(t) being a
solution of (1.1).

Now, our approach is as follows: instead of directly bounding the number of rational limit
cycles of (1.1), we bound the number of invariant curves of degree one in x such that (1.1)
has not a center. According to Proposition 2.2, this will be an upper bound on the number of
rational limit cycles.

Next we give a condition so that Q(t)− P(t)x = 0 is an invariant curve of (1.1). But first
we need a lemma.

Lemma 2.3. Let P(t) and Q(t) be real trigonometric polynomials with P(t) ̸= 0 for all t ∈ R. If

Q(t)− P(t)x = 0 is an invariant curve of (1.1), then the corresponding cofactor is a polynomial in x

with real trigonometric polynomial coefficients.

Proof. Let f (t, x) := Q(t)− P(t)x. Arguing as in the proof of Proposition 2.2, we obtain that
there exists K̃(t, x) ∈ R[cos(t), sin(t)][x] such that P(t)2(X f )(t, x) = K̃(t, x) f (t, x).

By Corollary A.4, f (t, x) is irreducible in C[cos(t), sin(t)][x]. Moreover, as C[cos(t), sin(t)]
is an Euclidean domain (see [14, Theorem 2.1]), it is an unique factorization domain and
therefore C[cos(t), sin(t)][x] is also an unique factorization domain. Thus, we have that P(t)2

or (X f )(t, x) are divisible by f (t, x) which necessarily implies that there exists H(t, x) ∈
C[cos(t), sin(t)][x] such that (X f )(t, x) = H(t, x) f (t, x) for degree reasons.

Finally, since both (X f )(t, x) and f (t, x) are polynomials in x with real trigonometric poly-
nomial coefficients, we conclude that H(t, x) is also a polynomial in x with real trigonometric
polynomial coefficients.

The next result gives the condition for Q(t)− P(t)x = 0 to be an invariant curve of (1.1).
This result is proved in [12] for the polynomial case. Moreover, since rational solutions are
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equivalent to the invariant curves of degree one in x, as mentioned in the introduction, the
following result can also be obtained from those of [17] for the trigonometric case. Here, we
provide a simplified proof.

Proposition 2.4. The curve Q(t)− P(t)x = 0 is an invariant curve of (1.1) if and only if Q(t) =

c ∈ R and there exists a trigonometric polynomial R(t) such that

A(t) = (P(t)/c)R(t), B(t) = −P′(t)/c − R(t).

In this case, the corresponding cofactor is equal to A(t)x2 − (P′(t)/c)x.

Proof. Let f (t, x) := Q(t) + P(t)x = 0 be an invariant curve of (1.1). Arguing as in the proof
of Proposition 2.2 and taking advantage of the fact that x(t) = Q(t)/P(t) is a solution of (1.1),
we have that the corresponding cofactor can be written as

K(t, x) = A(t)x2 −
(

P(t)

Q(t)

)′
x +

Q′(t)
Q(t)

.

Since, by Lemma 2.3, K(t, x) ∈ R[cos(t), sin(t)][x], we have in particular that Q′(t) is equal
to K0(t)Q(t) for some K0(t) ∈ R[cos(t), sin(t)]. Comparing degrees, either Q(t) = 0 or K0 is
constant. In the latter case,

|Q(t)| = e
∫

K0dt.

Thus we conclude that K0 = 0, and Q(t) = c ∈ R. Note that, in this case, K(t, x) = A(t)x2 −
(P′(t)/c)x.

Finally, noting that

−P′(t)
c

= A(t)

(

c

P(t)

)

+ B(t)

we conclude that B(t) = −P′(t)/c − R(t) where R(t) = cA(t)/P(t) ∈ R[cos(t), sin(t)].
The converse follows by direct checking.

As mentioned in the proof of Proposition 2.4, the curve c − P(t)x = 0 is an invariant curve
of the equation (1.1) if and only if

−P′(t)
c

= A(t)

(

c

P(t)

)

+ B(t).

Without loss of generality, we can assume c = 1, so that

P(t)P′(t) + P(t)B(t) + A(t) = 0. (2.1)

Note that if equation (1.1) has an invariant curve of the form 1− Kx = 0 with K a non-zero
constant, then the Abel equation becomes the separated variable equation x′ = B(t)x2(−Kx +

1) with constant solutions 0 and 1/K. If
∫ 2π

0 B(t) dt ̸= 0 these constant solutions are the

unique limit cycles, while if
∫ 2π

0 B(t) dt = 0 every bounded solution is periodic, so it has no
limit cycles. Hence, we consider only the case deg(P) ≥ 1.

We will say that an invariant curve 1 − P(t)x = 0 has degree n if deg(P) = n. Next we
prove that the sum of the degrees of two invariant curves is the degree of A.

Proposition 2.5. If 1 − P1(t)x = 0 and 1 − P2(t)x = 0 are two different invariant curves of

(1.1), then deg(P1) + deg(P2) = deg(A). Consequently, if deg(P1) = deg(P2), then deg(P1) =

deg(P2) = deg(A)/2.
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Proof. By Proposition 2.4, there exist trigonometric polynomials R1(t) and R2(t) such that
P1(t)R1(t) = A(t) = P2(t)R2(t) and −P′

1(t)− R1(t) = B(t) = −P′
2(t)− R2(t). Thus,

P1(t)(P′
2(t) + R2(t)− P′

1(t)) = A(t) = P2(t)R2(t).

Therefore

P1(t)(P2(t)− P1(t))
′ = P1(t)(P′

2(t)− P′
1(t)) = R2(t)(P2(t)− P1(t)).

Now, since deg(P2(t)− P1(t)) = deg((P2(t)− P1(t))
′), we conclude that deg(P1) = deg(R2) =

deg(A)− deg(P2), from which our claim follows.

The following example shows that (1.1) can have two limit cycles of different degrees.

Example 2.6. Let P1(t) = 2(cos(t)+ 2)(sin(t)+ 2) and P2(t) = (cos(t)+ 2)(sin(t)+ 2)(sin(t)+
4). By Proposition 2.4, we have that 1 − Pi(t)x, i = 1, 2 are invariant curves of (1.1) for

A(t) = (cos(t) + 2)(sin(t) + 2)(sin(t) + 4)(3 cos(2t) + 8 cos(t)− 4 sin(t) + 1)

and

B(t) = −3/4 sin(3t)− 9 cos(2t)− 2 sin(2t)− 20 cos(t) + 49/4 sin(t)− 1.

Note that 5 = deg(A) = deg(P1) + deg(P2) = 2 + 3. Moreover, since
∫ 2π

0 B(t) dt = −2π ̸= 0,
(1.1) does not have a center (see, for instance, [1, Lemma 7]), so the solutions x(t) = 1/P1(t)

and x(t) = 1/P2(t) are limit cycles.

Remember that x(t) = 0 is always an invariant curve of (1.1). It corresponds to the case
Q(t) = 0 and we call it a trivial invariant curve.

Corollary 2.7. If equation (1.1) has three or more non-trivial invariant curves, then they all have

degree deg(A)/2.

Proof. Suppose that equation (1.1) has three invariant curves 1 − P1(t)x = 0, 1 − P2(t)x = 0
and 1 − P3(t)x = 0. Then, by Proposition 2.5, deg(P1) + deg(P2) = deg(P1) + deg(P3) =

deg(P2) + deg(P3) = deg(A), which implies deg(P1) = deg(P2) = deg(P3) = deg(A)/2.

Now, it is easy to give two conditions for equation (1.1) to have at most two non-trivial
invariant curves, which proves the first part of the main theorem (Theorem 1.1).

Corollary 2.8. If deg(A) is odd or if deg(B) > deg(A)/2, then (1.1) has has at most two non-trivial

invariant curves.

Proof. If deg(A) is odd the claim follows directly from Corollary 2.7.
So, suppose that deg(A) is even and deg(B) > deg(A)/2. If 1 − P(t)x = 0 is an in-

variant curve of (1.1), then by Proposition 2.4 there exists R(t) ∈ R[cos(t), sin(t)] such that
A(t) = P(t)R(t) and B(t) = −P′(t)− R(t), then deg(B) ≤ max{deg(P) = deg(P′), deg(A)−
deg(P)}. Thus if deg(P) = deg(A)/2, then deg(B) ≤ deg(A)/2, contradicting the hypoth-
esis. This fact, together with Proposition 2.5 and Corollary 2.7, completes the proof of the
claim.

We can now write this last result in terms of rational limit cycles.
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Corollary 2.9. If deg(A) is odd or if deg(B) > deg(A)/2, then (1.1) has has at most two non-trivial

rational limit cycles.

In [3] a parameterization is given for all cases of equations x′ = A(t)x3 + B(t)x2, with
A(t), B(t) ∈ C[t] which have at least two non-trivial polynomial polynomial invariant curves.
Before we finish proving the main result of the paper in the next section, let us see that a
similar parametrization of the rational limit cycles can be obtained in this case.

Proposition 2.10. Equation (1.1) has two different non-trivial invariant curves if and only if there exist

G(t), Ĝ(t), S1(t) ∈ R[cos(t), sin(t)] and k ∈ R \ {0}, such that G(t), S1(t), S1(t) + kĜ(t) ̸= 0 for

all t ∈ R, every irreducible factor of Ĝ(t) divides G(t), and the functions A, B satisfy

A(t) = G(t)S1(t)(S1(t) + kĜ(t))

(

G′(t) +
G(t)Ĝ′(t)

Ĝ(t)

)

,

B(t) = −(G(t)S1(t))
′ − (S1(t) + kĜ(t))

(

G′(t) +
G(t)Ĝ′(t)

Ĝ(t)

)

,

Furthermore, in this case the two different invariant curves are

1 − G(t)S1(t)x = 0 and 1 − G(t)(S1(t) + kĜ(t))x = 0.

Proof. Assume 1 − P1(t)x = 0, 1 − P2(t)x = 0 are two different non-trivial invariant curves
of (1.1). Recall that by Remark 2.1, P1(t) ̸= 0 and P2(t) ̸= 0, for all t ∈ R, so they have
unique decomposition (see Corollary A.2). Thus there exists their greatest common divisor.
Set G(t) := gcd(P1(t), P2(t)), S1(t) := P1(t)/G(t) and S2(t) := P2(t)/G(t). Moreover, since,
by Proposition 2.4, P1(t) and P2(t) divide A(t), there exists S(t) ∈ R[cos(t), sin(t)] such that

A(t) = G(t)S1(t)S2(t)S(t)

and, by Proposition 2.4,

B(t) = −(G(t)S1(t))
′ − S2(t)S(t) = −(G(t)S2(t))

′ − S1(t)S(t).

Thus,
(

G(t)(S2(t)− S1(t))
)′

= (S2(t)− S1(t))S(t).

Let Ĝ(t) be the product of all the factors of S2(t) − S1(t) that divide G(t); note that Ĝ(t)

is well-defined by Proposition A.1 because G(t) ̸= 0 for all t ∈ R. Set H(t) := (S2(t) −
S1(t))/Ĝ(t).H(t) does not necessarily have a unique decomposition; however, by construction,
no irreducible factor of H(t) (in any of its factorizations) can divide G(t). Now, from

G′(t)H(t)Ĝ(t) + G(t)(H(t)Ĝ(t))′ = (G(t)(S2(t)− S1(t)))

= (S2(t)− S1(t))S(t)

= H(t)Ĝ(t)S(t),

it follows that G(t)H′(t)Ĝ(t) + G(t)H(t)Ĝ′(t) = H(t)Ĝ(t)(S(t)− G′(t)). So,

G(t)H′(t)Ĝ(t) = H(t)
(

Ĝ(t)(S(t)− G′(t))− G(t)Ĝ′(t)
)

. (2.2)

Therefore, since G(t)Ĝ(t) have no real zeros and no common irreducible factors with H(t), by
Corollary A.3, G(t)Ĝ(t) divides R(t) := Ĝ(t)(S(t) − G′(t)) − G(t)Ĝ′(t). Moreover, noticing
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that deg(R(t)) ≤ deg(Ĝ(t)G′(t)) = deg(Ĝ(t)G(t)), we have that R(t)/(G(t)Ĝ(t)) = k0 ∈
R[cos(t), sin(t)]. Therefore, H′(t) = H(t)R(t)/(Ĝ(t)G(t)) = H(t)k0 and we conclude that
H(t) = k, for some k ∈ R, and that S2(t) = S1(t) + kĜ(t). Now, since P1(t) ̸= P2(t), we have
that k ̸= 0. So, replacing H(t) by k in (2.2), we obtain that S(t) = G′(t) + (G(t)Ĝ′(t))/Ĝ(t) as
claimed.

Finally, since S1(t) ̸= S2(t), The opposite is deduced by direct verification using Proposi-
tion 2.4.

Example 2.11. In order to obtain Example 2.6, it suffices to apply Proposition 2.10 with G(t) =

(cos(t) + 2)(sin(t) + 2), Ĝ(t) = sin(t) + 2, S1(t) = sin(t) + 4, and k = −1.

3 Darboux first integrals and proof of the main result

In this section, we use Darboux integrability theory to bound the maximum number of invari-
ant curves that (1.1) can have without forcing the existence of a center.

We say that f (t, x), smooth enough and not identically constant, is a first integral of (1.1)
if X f = 0, that is, f (t, x) = 0 is an invariant curve of (1.1) with zero cofactor. Equivalently,
f (t, x(t)) = 0 is constant if x(t) is a solution of the equation.

We say that a first integral f of (1.1) is of Darboux type if

f (t, x) =
r

∏
i=0

fi(t, x)αi ,

where fi(t, x) = 0 are invariant curves of the equation and αi ∈ C.
First, we present Darboux’s general result that relates the existence of a first Darboux

integral with the linear dependence of the cofactors of the invariant curves. We have adapted
its statement to our situation

Theorem 3.1 (Darboux’s Theorem, [6]). Let f0(t, x) = 0, . . . , fr(t, x) = 0 be invariant curves

of (1.1) with cofactors K0(t, x), . . . , Kr(t, x), respectively. If there exist α0, . . . , αr ∈ C such that

∑
r
i=0 αiKi(t, x) = 0 then f (t, x) = ∏

r
i=0 fi(t, x)αi is a first integral of (1.1).

The following result is a direct application of Theorem 3.1 for the case where the invariant
curves f0(t, x) = 0, . . . , fr(t, x) = 0 are all non-trivial and have the form described in Remark
2.1.

Proposition 3.2. Let αi ∈ R, i = 1, . . . , r, and α0 := −∑
r
i=1 αi. If 1 − Pi(t)x = 0, i = 1, . . . , r

are invariant curves of (1.1), then f (t, x) := xα0 ∏
r
i=1(1 − Pi(t)x)αi is a first integral of (1.1) if and

only if
r

∑
i=1

αi
A(t)

Pi(t)
= 0. (3.1)

Proof. First, we recall that f0(t, x) = x = 0 is always an invariant curve of (1.1) with co-
factor K0(t, x) = A(t)x2 + B(t)x. Furthermore, by Proposition 2.4, we have the cofactor of
1 − Pi(t)x = 0 is Ki(t, x) = A(t)x2 − P′

i (t)x for each i = 1, . . . , r. Therefore,

(X f )(t, x) =

(

α0A(t)x2 + α0B(t)x +
r

∑
i=1

αi

(

A(t)x2 − P′
i (t)x

)

)

f (t, x)

= −
(

r

∑
i=1

αi

(

B(t) + P′
i (t)

)

x

)

f (t, x).
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Moreover, by Proposition 2.4, B(t) = −P′
i (t)−

A(t)
Pi(t)

, i = 1, . . . , r. So, we conclude that

(X f )(t, x) =

(

r

∑
i=1

αi
A(t)

Pi(t)
x

)

f (t, x)

Now, by the definition of first integral and Theorem 3.1, our claim follows.

Note that, as we have seen in the proof of the previous result, (3.1) is a necessary and
sufficient condition for the cofactors to be linearly dependent.

We can now complete the proof of the main result (Theorem 1.1).
Proof of Theorem 1.1. If (1.1) has less than three non-trivial rational limit cycles, then the
number of rational limit cycles is bounded by deg(A) + 1 because deg(A) ≥ 1. Thus, we
assume that (1.1) has r ≥ 3 non-trivial rational limit cycles, corresponding to the invariant
curves 1 − P1(t)x = 0, . . . , 1 − Pr(t)x = 0 of (1.1) by Proposition 2.2.

Since r ≥ 3, by Corollary 2.7 we know that deg(Pi) = deg(A)/2, i = 1, . . . , r, and con-
sequently deg(A/Pi) = deg(A)/2 for all i by Proposition 2.4. Moreover, by Proposition 3.2,
the trigonometric polynomials A/Pi, i = 1, . . . , r, are linearly independent. Otherwise, there
would be a Darboux first integral and thus a center.

Finally, since the R−vector space of trigonometric polynomials of degree deg(A)/2 has
dimension deg(A) + 1, we conclude that r ≤ deg(A) + 1.

A On factorization issues in the ring of real trigonometric polyno-
mials

It is well known that the ring of real trigonometric polynomials is not a unique factorization
domain. However, it is a Dedekind half-factorial domain ([14, Theorem 3.1]). Therefore, every
non-zero non-unit is a finite product of irreducible elements, and any two factorizations into
irreducibles of an element in R[cos(t), sin(t)] have the same number of irreducible factors.
This allows us to consider the irreducible factors of a given real trigonometric polynomial or
to use expressions such us “P(t) and Q(t) have no common irreducible factors”, regardless of
the fact that the greatest common divisor is not defined in half-factorial domains in general.

Recall that, given a non-zero real trigonometric polynomial

P(t) =
n

∑
k=0

a0 cos(kt) + b0 sin(kt), ak, bk ∈ R

the degree of P(t), deg(P), is the biggest k such that ak · bk ̸= 0. Note that deg(PQ) =

deg(P) + deg(Q) and, if deg(P) > 0, then deg(P′) = deg(P). In particular, P′ = 0 if and only
if P ∈ R.

Furthermore, since the irreducible elements of R[cos(t), sin(t)] are those of the form

a cos(t) + b sin(t) + c, a, b, c ∈ R, (a, b) ̸= (0, 0)

by [14, Theorem 3.4], we have that the degree of a non-zero non-unit element of the ring
R[cos(t), sin(t)] is the number of its irreducible factors.

Given z ∈ R[cos(t), sin(t)], in the following we write ⟨z⟩ for the principal ideal of the ring
R[cos(t), sin(t)] generated by z.

The irreducible factors of real trigonometric polynomials without real zeros are character-
ized by the following proposition.
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Proposition A.1. Let P(t) ∈ R[cos(t), sin(t)] be non-zero and non-unit. The following statements

are equivalent.

1. P(t) ̸= 0 for all t ∈ R.

2. Any irreducible factor of P(t) can be written (up to units) in the form a cos(t) + b sin(t) + c

where a, b, c ∈ R, (a, b) ̸= (0, 0) and c2
> a2 + b2.

3. If z is an irreducible factor of P(t), then ⟨z⟩ is a maximal ideal of R[cos(t), sin(t)].

4. Every maximal ideal of R[cos(t), sin(t)] containing ⟨P(t)⟩ is principal.

Proof. (1) ⇐⇒ (2). Let zi ∈ R[cos(t), sin(t)], i = 1, . . . , n, be irreducible elements such that
P = u z1 · · · zn for some u ∈ R. Obviously, P(t) ̸= 0 for all t ∈ R if and only if zi(t) ̸= 0 for
all t ∈ R and all i ∈ {1, . . . , n}. Since irreducible elements in R[cos(t), sin(t)] have the form
a cos(t) + b sin(t) + c with a, b, c ∈ R and (a, b) ̸= (0, 0), and a cos(t) + b sin(t) + c has no real
zeros if and only if c2

> a2 + b2, we are done.
(2) ⇐⇒ (3). Let z = a cos(t) + b sin(t) + c ∈ R[cos(t), sin(t)] with (a, b) ̸= (0, 0). Since, by
[14, Theorem 3.8], ⟨z⟩ is a maximal ideal if and only if c2

> a2 + b2, we have the desired
equivalence.
(3) =⇒ (4). Let m be a maximal ideal of R[cos(t), sin(t)] such that P(t) ∈ m. Since m is a
prime ideal, there exists an irreducible factor z of P(t) such that z ∈ m; equivalently, ⟨z⟩ ⊆ m.
From the maximality of ⟨z⟩ follows that m = ⟨z⟩.
(4) =⇒ (3). Let z be an irreducible factor of P(t) and let m be a maximal ideal of the ring
R[cos(t), sin(t)] containing ⟨z⟩. Since m is principal, there exists w ∈ R[cos(t), sin(t)] such
that m = ⟨w⟩; in particular, w divides z and the irreducibility of z implies ⟨z⟩ = m.

Corollary A.2. Let P(t) ∈ R[cos(t), sin(t)] be non-zero and non-unit. If P(t) ̸= 0 for all t ∈ R,

then P(t) has a unique factorization except for order of factors or product by units.

Proof. Let u z1 · · · zn = v w1 · · ·wn be two factorizations of P into irreducibles, zi, wi, i =

1, . . . , n, for some u, v ∈ R. Since, by Proposition A.1, ⟨w1⟩ is maximal and u z1 · · · zn =

P(t) ∈ ⟨w1⟩, we have that there exists j such that zj ∈ ⟨w1⟩. So it follows from the irreducibil-
ity of zj that zj = u1w1 for some u1 ∈ R. Now it is sufficient to repeat the same argument with
uu1 z1 · · · zj−1zj+1 · · · zn = v w2 · · ·wn, and so on, to get the desired result.

Clearly, the converse of the previous corollary is not true, since there are many real irre-
ducible trigonometric polynomials with real zeros.

Corollary A.3. Let P(t), H(t) and R(t) ∈ R[cos(t), sin(t)] be non-zero and non-units. If P(t) ̸= 0,

for every t ∈ R, P(t) = H(t)R(t) and no irreducible factor of P(t) divides H(t), then P(t) divides

R(t).

Proof. By Corollary A.2, there exist unique irreducible real trigonometric polynomials z1, . . . ,
zn such that P(t) = u z1 · · · zn for some u ∈ R. If z1 is an irreducible factor of P(t), then
H(t)R(t) = P(t) ∈ ⟨z1⟩. By Proposition A.1, ⟨z1⟩ is maximal. Therefore, H(t) ∈ ⟨z1⟩ or R(t) ∈
⟨z1⟩. However, since no irreducible factor of P(t) divides H(t), we conclude that R(t) ∈ ⟨z1⟩
and therefore R(t) = R̃(t)z1 for some R̃(t) ∈ R[cos(t), sin(t)]. Now, if we repeat the same
argument with P̃(t) = u z2 · · · zn, R̃(t) and z2, and so on, we get the desired result.

Now, it is convenient to recall that C[cos(t), sin(t)] is an Euclidean domain (see [14, Theo-
rem 2.1]. In particular, it is a unique factorization domain.



Rational limit cycles of Abel differential equations 11

Corollary A.4. Let P(t) and Q(t) ∈ R[cos(t), sin(t)] be non-zero and non-units. If P(t) ̸= 0, for

all t ∈ R, then P(t) and Q(t) are coprime in C[cos(t), sin(t)] if and only if they have no common

irreducible factors in R[cos(t), sin(t)].

Proof. If P(t) and Q(t) have common irreducible factors in R[cos(t), sin(t)], then they have
common irreducible factors in C[cos(t), sin(t)].

Conversely, let us suppose that P(t) and Q(t) have no common irreducible factors in
R[cos(t), sin(t)]. If z ∈ C[cos(t), sin(t)] is an irreducible factor of P(t) and Q(t), then P(t) and
Q(t) belong to ⟨z⟩ ∩ R[cos(t), sin(t)]. Thus there exists a maximal ideal m of R[cos(t), sin(t)]
such that P(t) ∈ m and Q(t) ∈ m. Since, by Proposition A.1, m is principal, we conclude that,
contrary to the hypothesis, P(t) y Q(t) have a real common factor.

Note that for the above corollary to hold, the condition P(t) ̸= 0, for all t ∈ R, is manda-
tory.

Example A.5. The trigonometric polynomials P(t) =
√

2 sin(t)− 1 and Q(t) = −
√

2 cos(t)+ 1
are irreducible in R[cos(t), sin(t)] and their respective factorizations in C[cos(t), sin(t)] are

(

(i − 1) sin (t) + (i − 1) cos (t)−
√

2i

2

)

(

i sin (t) + cos (t)− i√
2
− 1√

2

)

and

−
(

(i + 1) sin (t) + (i − 1) cos (t) +
√

2
2

)

(

i sin (t) + cos (t)− i√
2
− 1√

2

)

.

Note that they both have the same last irreducible complex factor.
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Abstract. In this paper, we study the following quasilinear Schrödinger–Poisson system
in R

3 {
−∆u + V(x)u + λϕu = f (x, u), x ∈ R

3,

−∆ϕ − ε4
∆4ϕ = λu2, x ∈ R

3,

where λ and ε are positive parameters, ∆4u = div(|∇u|2∇u), V is a continuous and
periodic potential function with positive infimum, f (x, t) ∈ C(R3 × R, R) is periodic
with respect to x and only needs to satisfy some superquadratic growth conditions with
respect to t. One nontrivial solution is obtained for λ small enough and ε fixed by a
combination of variational methods and truncation technique.

Keywords: quasilinear Schrödinger–Poisson system, periodic potential, variational
methods, truncation technique, nontrivial solution.
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1 Introduction and main result

In this paper, we consider the following system

{
−∆u + V(x)u + λϕu = f (x, u), x ∈ R

3,

−∆ϕ − ε4
∆4ϕ = λu2, x ∈ R

3,
(1.1)

where λ and ε are positive parameters, ∆4u = div(|∇u|2∇u), V is a continuous and peri-

odic potential function with positive infimum, f is a continuous function defined on R
3 × R

which is periodic with respect to the first variable and satisfies some superquadratic growth

conditions with respect to the second variable. Precisely, we assume that

(V) V ∈ C(R3, R) with infx∈R3 V(x) = V0 > 0 and it is a 1-periodic potential function, that is,

V(x + y) = V(x), for every x ∈ R
3 and y ∈ Z

3.
BCorresponding author. Email: anran0200@163.com
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( f1) f is 1-periodic with respect to x. There exist positive constants C and p ∈ (2, 6) such

that

| f (x, t)| ≤ C(1 + |t|p−1), for (x, t) ∈ R
3 × R.

( f2) lim|t|→0
f (x,t)

t = 0, uniformly for x ∈ R
3.

( f3) There exist α ∈ (2, 6) and R > 0 such that

inf
x∈R3, |t|≥R

F(x, t) > 0, f (x, t)t ≥ αF(x, t), for (x, t) ∈ R
3 × R,

where F(x, t) =
∫ t

0 f (x, s)ds.

This class of system appears by studying a quantum mechanical model of extremely small

devices in semiconductor nanostructures taking into account quantum structure and the lon-

gitudinal field oscillations during the beam propagation, for more details on the physical

background of this class of system see [19]. Although this class of system has been well-

known among the physicists, it has never been considered before [12, 13] in the mathematical

literature. One of them is something of type
{
−∆u + ωu + (ϕ + ϕ̃)u = 0,

−∆ϕ − ε4
∆4ϕ = u2 − n∗,

(1.2)

where u and ϕ represent the modulus of the wave function and the electrostatic potential

respectively, n∗ and ϕ̃ are given data of the problem which represent respectively the dopant

density and the effective external potential. System (1.2) with some periodicity conditions was

studied in [12] by the Krasnoselskii genus. Under minimal summability conditions on the data

n∗ and ϕ̃, existence of ground state solutions for system (1.2) was proved in [3] by means of

minimization techniques, and the behaviour of these solutions whenever ε → 0+ was studied:

these solutions converge to a ground state solution of Schrödinger–Poisson system associated

with ε = 0 in system (1.2). A quasilinear Schrödinger–Poisson system in the unitary cube

under periodic boundary conditions was studied in [13], the global existence and uniqueness

of solution was obtained by using Galerkin scheme. There are also some studies on quasilinear

Schrödinger–Poisson system with nonlinearities by variational methods. In [8], a class of

quasilinear Schrödinger–Poisson system with an asymptotically linear term was studied, the

existence and behaviour of ground state solutions as ε → 0+ were given. Recently, [11] studied

the existence and asymptotic behaviour of solutions for a class of quasilinear Schrödinger–

Poisson system with a critical nonlinearity combining with a 4-suplinear nonlinearity. Similar

results were obtained in [10] in the two-dimensional case. In [21], we also got the existence

and asymptotic behaviour of solutions for a class of quasilinear Schrödinger–Poisson system

with coercive potential by variational methods and a truncation technique.

Formally, system (1.1) is the well-known Schrödinger–Poisson system if ε = 0 which has

been given extensive attention and research in the last few decades. We mention that a re-

duction procedure for this class of system was proposed in [2] and an eigenvalue problem

in bounded domains was considered. Schrödinger–Poisson system with general nonlinearity

was first studied in [6] and later studied in many literatures, see for example [1, 5, 7, 17, 20, 23]

and the references therein. More recently, [9] studied the following quasilinear elliptic system

by variational methods
{
−∆pu + |u|p−2u + λϕ|u|p−2u = |u|q−2u, x ∈ R

3,

−∆ϕ = |u|p, x ∈ R
3,

(1.3)
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where 1 < p < 3, p < q <
3p

3−p , ∆pu = div(|∇u|p−2∇u) and λ > 0 is a parameter. The

existence of nontrivial solutions for system (1.3) is obtained by the Mountain Pass theorem.

According to the range of q, the scaling technique [14] and the truncation technique [15] were

used to obtain a bounded Palais–Smale sequence respectively in [9].

From a mathematical point of view, on the one hand, the main novelty of system (1.1) is

that the equation of the electrostatic potential in the system is not linear, that is, it is not the

classical Poisson equation. Contrast to the classical Poisson equation or the second equation

in system (1.3), the solution of the second equation in system (1.1) has neither an explicit

formula nor homogeneity properties. It leads to that the scaling technique [14] is no longer

applicable. It is natural to ask whether the truncation technique [15] can be used to deal with

system (1.1), especially for the case α ∈ (2, 4]. One the other hand, since under our assump-

tions there is no compact embedding between the main working spaces, we can not prove

that the variational functional associated to system (1.1) satisfies (PS) condition directly. Lions

vanishing lemma[18] will be applied to prove that system (1.1) enjoys at least one nontrivial

solutions whenever the positive parameter λ is small enough. In this process, the weak con-

vergence property of the solutions for the second equation in system (1.1) plays an important

role. However, due to the “bad” properties of those solutions, this weak convergence property

of them is not apparent. We will follow the arguments of [4, 9], together with the uniqueness

of the solution for the second equation in system (1.1), to solve this key technique problem,

for more details, see Lemma 2.2.

Before stating our main result, we give several notations. For any q ∈ [1,+∞], we denote

by | · |q the norm of the Lebesgue space Lq(R3). D1,2(R3) is the Hilbert space defined as the

completion of the test functions C∞

0 (R3) with respect to the L2 norm of the gradient. We

denote by X the completion of the functions C∞

0 (R3) with respect to the norm |∇ · |2 + |∇ · |4,

which is a reflexive Banach space. Under assumption (V), let H1
V(R

3) be H1(R3) equipped

with the following norm and inner product

∥u∥ =

(∫

R3
(|∇u|2 + V(x)u2) dx

) 1
2

, (u, v) =
∫

R3
(∇u∇v + V(x)uv)dx.

Assumption (V) also guarantees the continuous embedding from H1
V(R

3) to Lq(R3), q ∈ [2, 6]

and local compact embedding from H1
V(R

3) to L
q
loc(R

3), q ∈ [1, 6).

As usual, a weak solution for system (1.1) is a pair (uλ,ε, ϕλ,ε) ∈ H1
V(R

3)× X such that





∫

R3
(∇uλ,ε∇v + V(x)uλ,εv + λϕλ,εuλ,εv)dx =

∫

R3
f (x, uλ,ε)vdx, v ∈ H1

V(R
3),

∫

R3
(∇ϕλ,ε + ε4|∇ϕλ,ε|2∇ϕλ,ε)∇φdx = λ

∫

R3
u2

λ,ε φdx, φ ∈ X.

Our main result is as follows.

Theorem 1.1. Under the assumptions (V) and ( f1)–( f3), there exists λ0 > 0 such that system (1.1)

has at least one nontrivial solution (uλ,ε, ϕλ,ε) ∈ H1
V(R

3) × X for all (λ, ε) ∈ (0, λ0) × (0, ∞).

Moreover, ϕλ,ε is nonnegative.

Remark 1.2. Compared with our last result in [21], the main difficulty here is the lack of

compactness. In particular, the weak convergence property of the solutions for the second

equation in system (1.1) is the key to obtaining a nontrivial solution for system (1.1).

Remark 1.3. The constraint on λ is mainly used to guarantee the variational functional as-

sociated to system (1.1) enjoys a (PS) sequence with a prior bound. If α ∈ (4, 6), due to (i)
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of Lemma 2.2, it is easy to obtain a bounded (PS) sequence of the variational functional as-

sociated to system (1.1) with (λ, ε) ∈ (0, ∞)× (0, ∞) by using standard methods. Thus, the

constraint that λ < λ0 can be got rid of in this case. We leave details of the proof to the

interested readers.

Throughout the paper, we denote Cq the constant of Sobolev imbedding from H1
V(R

3)

to Lq(R3) for q ∈ [2, 6]. S = infφ∈D1,2(R3))\{0}
|∇φ|22
|φ|26

is the optimal constant in the Sobolev

inequality. The rest of the paper is organized as follows. We give some preliminaries in

Section 2. The proof of Theorem 1.1 is given in Section 3.

2 Preliminaries

First, under our assumptions, system (1.1) has a variational structure. Formally, its corre-

sponding functional is defined by

Jλ,ε(u, ϕ) =
1

2
∥u∥2 +

λ

2

∫

R3
ϕu2dx − 1

4

∫

R3
|∇ϕ|2dx − ε4

8

∫

R3
|∇ϕ|4dx −

∫

R3
F(x, u)dx.

It is not difficult to see that the critical points of Jλ,ε are the weak solutions of system (1.1).

Since the functional Jλ,ε is strongly indefinite, the reduction procedure which is successfully

used to study the classical Schrödinger–Poisson system will be applied to deal with system

(1.1). Similar to Lemma 2.1 of [21] or Lemma 2.2 of [8], we have the following result.

Lemma 2.1. For any u ∈ H1
V(R

3) and λ, ε > 0, there exists a unique nonnegative weak solution

ϕλ,ε(u) ∈ X for

− ∆ϕ − ε4
∆4ϕ = λu2, x ∈ R

3. (2.1)

That is, for any φ ∈ X, we have

∫

R3
(∇ϕλ,ε(u) + ε4|∇ϕλ,ε(u)|2∇ϕλ,ε(u))∇φdx = λ

∫

R3
u2 φdx.

Next, we give some properties of the weak solution ϕλ,ε(u) for equation (2.1).

Lemma 2.2. For every λ, ε > 0, ϕλ,ε(u) enjoys the following properties.

(i) For every u ∈ H1
V(R

3),

|∇ϕλ,ε(u)|22 + ε4|∇ϕλ,ε(u)|44 = λ
∫

R3
ϕλ,ε(u)u

2dx ≤ λ2S−1C4
12
5
∥u∥4;

(ii) if {un} is bounded in H1
V(R

3), then there exist a subsequence still denoted by {un} and u ∈
H1

V(R
3) such that

ϕλ,ε(un) ⇀ ϕλ,ε(u) in X,
∫

R3
ϕλ,ε(un)unυdx →

∫

R3
ϕλ,ε(u)uυdx, for υ ∈ H1

V(R
3);

(iii) ϕλ,ε(uy)(·) = ϕλ,ε(u)(·+ y), for every y ∈ R
3, where uy(·) = u(·+ y).

Proof. (1) By the definition of ϕλ,ε(u), the first equality in (i) is true. Then by the Hölder

inequality and the Sobolev embedding theorem, we can get that the first conclusion is true.
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(2) Since {un} is bounded in H1
V(R

3), going if necessary to a subsequence, there exists

u ∈ H1
V(R

3) such that un ⇀ u in H1
V(R

3). By the Sobolev embedding theorem and the local

compact embedding theorem, we can assume that

un ⇀ u in Lp(R3), p ∈ [2, 6];

un → u in L
p
loc(R

3), p ∈ [1, 6);

un(x) → u(x), a.e. x ∈ R
3.

Since (i) leads to that {ϕλ,ε(un)} is bounded in X, going if necessary to a subsequence, there

exists ϕλ,ε ∈ X such that

ϕλ,ε(un) ⇀ ϕλ,ε in X (which is also valid in D1,2(R3)).

Furthermore, we can also assume that

ϕλ,ε(un) ⇀ ϕλ,ε in L6(R3);

ϕλ,ε(un) → ϕλ,ε in L
p
loc(R

3), p ∈ [1, 6);

ϕλ,ε(un)(x) → ϕλ,ε(x), a.e. x ∈ R
3.

On the one hand, by Lemma 2.1, we have

∫

R3
(∇ϕλ,ε(un)∇φ + ε4|∇ϕλ,ε(un)|2∇ϕλ,ε(un)∇φ)dx = λ

∫

R3
u2

n φdx, (2.2)

and
∫

R3
(∇ϕλ,ε(u)∇φ + ε4|∇ϕλ,ε(u)|2∇ϕλ,ε(u)∇φ)dx = λ

∫

R3
u2 φdx, for φ ∈ X. (2.3)

Set φ = (ϕλ,ε(un)− ϕλ,ε)ψR in (2.2), where ψR ∈ C∞

0 (R3, [0, 1]) is a cut-off function such that

ψR|BR(0) = 1, supp ψR ⊂ B2R(0) and |∇ψR| ≤ 2
R , we can get

0 =
∫

R3
(1 + ε4|∇ϕλ,ε(un)|2)∇ϕλ,ε(un)∇(ϕλ,ε(un)− ϕλ,ε)ψRdx

+
∫

R3
(1 + ε4|∇ϕλ,ε(un)|2)∇ϕλ,ε(un)∇ψR(ϕλ,ε(un)− ϕλ,ε)dx

− λ
∫

R3
u2

n(ϕλ,ε(un)− ϕλ,ε)ψRdx.

(2.4)

On the other hand, by the definition of weak convergence in X, we have

∫

R3
(1 + ε4|∇ϕλ,ε|2)∇ϕλ,ε∇(ϕλ,ε(un)− ϕλ,ε)ψRdx → 0, as n → ∞.

The local compact embedding theorem implies that

∫

R3
∇ϕλ,ε∇ψR(ϕλ,ε(un)− ϕλ,ε)dx → 0,

∫

R3
|∇ϕλ,ε|2∇ϕλ,ε∇ψR(ϕλ,ε(un)− ϕλ,ε)dx → 0,

as n → ∞. Then

on(1) =
∫

R3
(1 + ε4|∇ϕλ,ε|2)∇ϕλ,ε∇(ϕλ,ε(un)− ϕλ,ε)ψRdx

+
∫

R3
(1 + ε4|∇ϕλ,ε|2)∇ϕλ,ε∇ψR(ϕλ,ε(un)− ϕλ,ε)dx.

(2.5)
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By calculating (2.4) minus (2.5), we deduce that

on(1) =
∫

R3
|∇ϕλ,ε(un)−∇ϕλ,ε|2ψRdx

+ ε4
∫

R3
(|∇ϕλ,ε(un)|2∇ϕλ,ε(un)− |∇ϕλ,ε|2∇ϕλ,ε)∇(ϕλ,ε(un)− ϕλ,ε)ψRdx

+
∫

R3
(∇ϕλ,ε(un)−∇ϕλ,ε)∇ψR(ϕλ,ε(un)− ϕλ,ε)dx

+ ε4
∫

R3
(|∇ϕλ,ε(un)|2∇ϕλ,ε(un)− |∇ϕλ,ε|2∇ϕλ,ε)∇ψR(ϕλ,ε(un)− ϕλ,ε)dx

− λ
∫

R3
u2

n(ϕλ,ε(un)− ϕλ,ε)ψRdx.

(2.6)

Since ϕλ,ε(un) → ϕλ,ε in L
p
loc(R

3), p ∈ [1, 6), by the Hölder inequality and the definition of ψR,

we can get that
∫

R3
∇ϕλ,ε(un)∇ψR(ϕλ,ε(un)− ϕλ,ε)dx → 0, as n → ∞, (2.7)

∫

R3
|∇ϕλ,ε(un)|2∇ϕλ,ε(un)∇ψR(ϕλ,ε(un)− ϕλ,ε)dx → 0, as n → ∞. (2.8)

In fact, by the Hölder inequality, we have

∣∣∣∣
∫

R3
∇ϕλ,ε(un)∇ψR(ϕλ,ε(un)− ϕλ,ε)dx

∣∣∣∣ ≤ C|∇ϕλ,ε(un)|2
(∫

B2R(0)
|ϕλ,ε(un)− ϕλ,ε|2dx

) 1
2

→ 0, as n → ∞,

∣∣∣∣
∫

R3
|∇ϕλ,ε(un)|2∇ϕλ,ε(un)∇ψR(ϕλ,ε(un)− ϕλ,ε)dx

∣∣∣∣

≤ C|∇ϕλ,ε(un)|34
(∫

B2R(0)
|ϕλ,ε(un)− ϕλ,ε|4dx

) 1
4

→ 0, as n → ∞.

Similarly, we can also get that
∫

R3
∇ϕλ,ε∇ψR(ϕλ,ε(un)− ϕλ,ε)dx → 0,

∫

R3
|∇ϕλ,ε|2∇ϕλ,ε∇ψR(ϕλ,ε(un)− ϕλ,ε)dx → 0,

and ∫

R3
u2

n(ϕλ,ε(un)− ϕλ,ε)ψRdx → 0, as n → ∞.

Thus, it follows from (2.6)–(2.8) that

on(1) =
∫

R3
[ε4(|∇ϕλ,ε(un)|2∇ϕλ,ε(un)− |∇ϕλ,ε|2∇ϕλ,ε)∇(ϕλ,ε(un)− ϕλ,ε)

+ |∇(ϕλ,ε(un)− ϕλ,ε)|2]ψRdx.

Then the Simon inequality leads to that
∫

R3
(|∇(ϕλ,ε(un)− ϕλ,ε)|2 + ε4|∇(ϕλ,ε(un)− ϕλ,ε)|4)ψRdx → 0, as n → ∞.

Thus, ∫

BR(0)
|∇(ϕλ,ε(un)− ϕλ,ε)|2dx → 0, as n → ∞.
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Up to a subsequence, we have

∇ϕλ,ε(un)(x) → ∇ϕλ,ε(x), a.e. x ∈ BR(0), as n → ∞.

The arbitrariness of R implies that, going to a subsequence,

∇ϕλ,ε(un)(x) → ∇ϕλ,ε(x), a.e. x ∈ R
3, as n → ∞.

The boundedness of {|∇ϕλ,ε(un)|} in L4(R3) ensures that {|∇ϕλ,ε(un)|3} is also bounded in

L
4
3 (R3). Thus, it follows from [22, Proposition 5.4.7] that

|∇ϕλ,ε(un)|2Diϕλ,ε(un) ⇀ |∇ϕλ,ε|2Diϕλ,ε in L
4
3 (R3), i = 1, 2, 3.

Therefore, for every φ ∈ X,
∫

R3
|∇ϕλ,ε(un)|2Diϕλ,ε(un)Di φdx →

∫

R3
|∇ϕλ,ε|2Diϕλ,εDi φdx, i = 1, 2, 3.

Then ∫

R3
|∇ϕλ,ε(un)|2∇ϕλ,ε(un)∇φdx →

∫

R3
|∇ϕλ,ε|2∇ϕλ,ε∇φdx, as n → ∞.

It follows from ϕλ,ε(un) ⇀ ϕλ,ε in D1,2(R3) that
∫

R3
∇ϕλ,ε(un)∇φdx →

∫

R3
∇ϕλ,ε∇φdx, as n → ∞.

Since φ ∈ L6(R3) and u2
n ⇀ u2 in L

6
5 (R3) by [22, Proposition 5.4.7], we have

∫

R3
u2

n φdx →
∫

R3
u2φdx, as n → ∞.

Therefore, by taking limits as n → ∞ on both sides of (2.2), we can obtain that
∫

R3
(∇ϕλ,ε∇φ + ε4|∇ϕλ,ε|2∇ϕλ,ε∇φ)dx = λ

∫

R3
u2 φdx, for φ ∈ X.

The uniqueness of solution for equation (2.1) with given u and (2.3) result that ϕλ,ε = ϕλ,ε(u).

By [22, Proposition 5.4.7] again, we can get that ϕλ,ε(un)un ⇀ ϕλ,ε(u)u in L
3
2 (R3). Then for

every υ ∈ H1
V(R

3), we have
∫

R3
ϕλ,ε(un)unυdx →

∫

R3
ϕλ,ε(u)uυdx, as n → ∞.

(3) The uniqueness of solution for equation (2.1) and the translation invariance of Lebesgue

integral on R
3 also guarantee that (iii) is true. In fact, for every φ ∈ X and y ∈ R

3,
∫

R3
(1 + ε4|∇ϕλ,ε(u)(x)|2)∇ϕλ,ε(u)(x)∇φ(x − y)dx = λ

∫

R3
u2(x)φ(x − y)dx.

By the translation invariance of Lebesgue integral on R
3, we have

∫

R3
(1 + ε4|∇ϕλ,ε(u)(x + y)|2)∇ϕλ,ε(u)(x + y)∇φ(x)dx

= λ
∫

R3
u2(x + y)φ(x)dx

= λ
∫

R3
u2

y(x)φ(x)dx.

The uniqueness of solution for equation (2.1) leads to ϕλ,ε(uy)(·) = ϕλ,ε(u)(·+ y).
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As shown in [11], the functional

Jλ,ε(u) := Jλ,ε(u, ϕλ,ε(u))

=
1

2
∥u∥2 +

1

4

∫

R3
|∇ϕλ,ε(u)|2dx +

3ε4

8

∫

R3
|∇ϕλ,ε(u)|4dx −

∫

R3
F(x, u)dx, u ∈ H1

V(R
3)

is of class C1. Its Fréchet derivative at u ∈ H1
V(R

3) is given by

⟨J′λ,ε(u), v⟩ = ⟨∂uJλ,ε(u, ϕλ,ε(u)), v⟩

=
∫

R3
(∇u∇v + V(x)uv + λϕλ,ε(u)uv)dx −

∫

R3
f (x, u)vdx.

Lemma 2.3 ([11, Lemma 4]). Let λ, ε > 0 be fixed, the following statements are equivalent:

(i) the pair (uλ,ε, ϕλ,ε) ∈ H1
V(R

3)× X is a critical point of Jλ,ε;

(ii) uλ,ε ∈ H1
V(R

3) is a critical point of Jλ,ε and ϕλ,ε = ϕλ,ε(uλ,ε).

For convenience, we set the functional

Iλ,ε(u) =
1

4

∫

R3
|∇ϕλ,ε(u)|2dx +

3ε4

8

∫

R3
|∇ϕλ,ε(u)|4dx, u ∈ H1

V(R
3).

It follows from [3, Proposition 4.1] that Iλ,ε ∈ C1(H1
V(R

3), R) and

⟨I′λ,ε(u), v⟩ = λ
∫

R3
ϕλ,ε(u)uvdx, for v ∈ H1

V(R
3).

In such a way, Jλ,ε can be rewritten as

Jλ,ε(u) =
1

2
∥u∥2 + Iλ,ε(u)−

∫

R3
F(x, u)dx.

In view of the above facts, in order to obtain a weak solution for system (1.1), it is sufficient

to find a critical point of the functional Jλ,ε in H1
V(R

3).

3 Proof of our main result

In this section, we complete the proof of our main result. It is a difficult task to get a bounded

Palais–Smale sequence for the functional Jλ,ε directly due to the presence of nonlocal term for

the case α ∈ (2, 4] in ( f3). We use a truncation method which has been widely used [1,9,15–17]

to deal with it. Precisely, we define a truncation for the functional Jλ,ε in the following way.

Let χ ∈ C∞([0,+∞), [0, 1]) satisfy





χ(s) = 1, s ∈ [0, 1],

0 ≤ χ(s) ≤ 1, s ∈ (1, 2),

χ(s) = 0, s ∈ [2,+∞),

−2 ≤ χ′(s) ≤ 0.

For each T > 0, we define hT(u) = χ( ∥u∥2

T2 ) for u ∈ H1
V(R

3) and the truncated functional

JT
λ,ε(u) =

1

2
∥u∥2 + hT(u)Iλ,ε(u)−

∫

R3
F(x, u)dx. (3.1)
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The functional JT
λ,ε ∈ C1(H1

V(R
3), R) with Fréchet derivative at u given by

⟨JT
λ,ε

′
(u), v⟩ =

(
1 +

2

T2
χ′(

∥u∥2

T2
)Iλ,ε(u)

) ∫

R3
(∇u∇v + V(x)uv)dx + λhT(u)

∫

R3
ϕλ,ε(u)uvdx

−
∫

R3
f (x, u)vdx, v ∈ H1

V(R
3).

Then uλ,ε ∈ H1
V(R

3) is a critical point of JT
λ,ε if and only if (uλ,ε, ϕλ,ε(uλ,ε)) ∈ H1

V(R
3)× X is a

weak solution of




(
1 + 2

T2 χ′( ∥u∥2

T2 )Iλ,ε(u)
)
(−∆u + V(x)u) + λhT(u)ϕu = f (x, u), x ∈ R

3,

−∆ϕ − ε4
∆4ϕ = λu2, x ∈ R

3.

From the definition of χ, for given T, we have

JT
λ,ε(u) = Jλ,ε(u) and JT

λ,ε
′
(u) = J′λ,ε(u), if ∥u∥ ≤ T.

Thus, if {un} is a (PS) sequence of JT
λ,ε with ∥un∥ ≤ T, then it is also a bounded (PS) sequence

of Jλ,ε.

We firstly prove that the truncated functional JT
λ,ε enjoys the mountain pass geometry

structure.

Lemma 3.1. For every fixed (λ, ε) ∈ (0, ∞)× (0, ∞), there exist ρ > 0 and eT ∈ H1
V(R

3) such that

∥eT∥ > ρ and

inf
u∈H1

V(R
3), ∥u∥=ρ

JT
λ,ε(u) > JT

λ,ε(0) = 0 > JT
λ,ε(eT).

Proof. On the one hand, it follows from ( f1) and ( f2) that there exists a1 > 0 such that

| f (x, t)| ≤ V0

2
|t|+ a1|t|p−1, |F(x, t)| ≤ V0

4
t2 +

a1

p
|t|p, for (x, t) ∈ R

3 × R. (3.2)

Then (3.1) and (3.2) imply that

JT
λ,ε(u) =

1

2
∥u∥2 + hT(u)Iλ,ε(u)−

∫

R3
F(x, u)dx

≥ 1

4
∥u∥2 − a1

p

∫

R3
|u|pdx

≥ 1

4
∥u∥2 − a1

p
C

p
p∥u∥p.

We conclude that there exists ρ > 0 small enough such that for any u ∈ H1
V(R

3) with 0 <

∥u∥ ≤ ρ, it results that JT
λ,ε(u) > 0. In particular, we have

JT
λ,ε(u) ≥

1

4
ρ2 − a1

p
C

p
pρp

> 0, for u ∈ H1
V(R

3) with ∥u∥ = ρ.

On the other hand, by ( f1)–( f3), there exist a2, a3 > 0 such that

F(x, t) ≥ a2|t|α − a3t2, for (x, t) ∈ R
3× ∈ R. (3.3)
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Then for u ∈ H1
V(R

3) with ∥u∥ = 1 fixed and s >

√
2T, by (3.3) and the definition of hT, we

have

JT
λ,ε(su) =

s2

2
∥u∥2 + hT(su)Iλ,ε(su)−

∫

R3
F(x, su)dx

≤
(

1

2
+ a3

)
s2∥u∥2 − a2|s|α

∫

R3
|u|αdx

→ −∞, s → +∞.

Thus, by choosing sT > max{ρ,
√

2T} large enough, we can get JT
λ,ε(sTu) < 0. So we can set

eT = sTu.

Then it follows from Lemma 3.1 and the Mountain Pass lemma that there exists a (PS)cT

sequence {un} for JT
λ,ε in H1

V(R
3), where

cT = inf
γ∈Γ

max
t∈[0,1]

JT
λ,ε(γ(t)),

with

Γ := {γ ∈ C([0, 1], H1
V(R

3)) : γ(0) = 0, γ(1) = eT}.

From the proof of Lemma 3.1, we can also get that cT > 0, for every T > 0.

Second, we study the boundedness of the (PS)cT
sequence {un} of JT

λ,ε which has been

obtained by the Mountain Pass lemma. In this process, the truncation of the nonlocal term

plays an important role.

Lemma 3.2. For T > 0 sufficiently large, there exists λT > 0 such that for any λ ∈ (0, λT) and

ε > 0,

lim sup
n→∞

∥un∥ < T

holds, where {un} is the (PS)cT
sequence of JT

λ,ε obtained above.

Proof. If ∥un∥ → ∞, as n → ∞, then hT(un) = χ
( ∥un∥2

T2

)
→ 0, as n → ∞. Thus, for all n ∈ N

large enough

JT
λ,ε(un) =

1

2
∥un∥2 −

∫

R3
F(x, un)dx, ⟨JT

λ,ε
′
(un), un⟩ = ∥u∥2 −

∫

R3
f (x, un)undx.

Then, by ( f3), for n ∈ N large enough

cT + 1 + ∥un∥ ≥ JT
λ,ε(un)−

1

α
⟨JT

λ,ε
′
(un), un⟩

=

(
1

2
− 1

α

)
∥un∥2 −

∫

R3

(
F(x, un)−

1

α
f (x, un)un

)
dx

≥
(

1

2
− 1

α

)
∥un∥2,

which is impossible, since ∥un∥ → ∞, n → ∞. Therefore, {un} is bounded in H1
V(R

3) which

may be dependent on T.
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On the contrary, we assume that lim supn→∞
∥un∥ ≥ T. Up to a subsequence and still

denoted by {un}, we have limn→∞ ∥un∥ ≥ T. By ( f3), we obtain that

JT
λ,ε(un)−

1

α
⟨JT

λ,ε
′
(un), un⟩ =

[
1

2
− 1

α

(
1 +

2

T
χ′(

∥un∥2

T2
)Iλ,ε(un)

)]
∥un∥2

+ hT(un)

(
Iλ,ε(un)−

λ

α

∫

R3
ϕλ,ε(un)u

2
ndx

)

−
∫

R3

(
F(x, un)−

1

α
f (x, un)un

)
dx

≥
(

1

2
− 1

α

)
∥un∥2 − λ

α
hT(un)

∫

R3
ϕλ,ε(un)u

2
ndx.

Then (
1

2
− 1

α

)
∥un∥2 +

1

α
⟨JT

λ,ε
′
(un), un⟩ ≤ JT

λ,ε(un) +
λ

α
hT(un)

∫

R3
ϕλ,ε(un)u

2
ndx. (3.4)

By the definition of Iλ,ε and (i) of Lemma 2.2,

0 ≤ Iλ,ε(v) ≤
3

8
λ2S−1C4

12
5
∥v∥4, v ∈ H1

V(R
3). (3.5)

By (3.3), (3.5) and the definitions of cT and eT, we have

cT ≤ max
t∈[0,1]

JT
λ,ε(teT)

≤ max
t∈[0,1]

(
t2

2
∥eT∥2 −

∫

RN
F(x, teT)dx

)
+ max

t∈[0,1]
hT(teT)Iλ,ε(teT)

≤ max
t∈[0,1]

(
(sTt)2

2
(1 + 2a3C2

2)∥u∥2 − a2|u|αα(sTt)α

)
+

3

2
λ2S−1C4

12
5

T4

≤ max
t∈[0,∞)

(
t2

2
(1 + 2a3C2

2)∥u∥2 − a2|u|ααtα

)
+

3

2
λ2S−1C4

12
5

T4

=: c∗ +
3

2
λ2S−1C4

12
5

T4.

(3.6)

It should be pointed out that c∗ > 0 is independent of T and λ. It follows from the definition

of hT and (i) of Lemma 2.2 that

hT(un)
∫

R3
ϕλ,ε(un)u

2
ndx ≤ 4λS−1C4

12
5

T4. (3.7)

By taking upper limits as n → ∞ on both sides of (3.4), (3.6) and (3.7) lead to

(
1

2
− 1

α

)
T2 ≤ c∗ +

(
3

2
+

4

α

)
λ2S−1C4

12
5

T4.

For every T large enough such that
(

1
2 − 1

α

)
T2

> c∗ + 1, we can obtain λT > 0 small such that(
3
2 +

4
α

)
λT

2S−1C4
12
5

T4 ≤ 1. Therefore, we can get a contradiction for every λ ∈ (0, λT).

It follows from Lemma 3.2 that there exists a (PS)cT
sequence of JT

λ,ε still denoted by {un}
with ∥un∥ ≤ T for every T >

√
2α(c∗+1)

α−2 and λ ∈ (0, λT). By the definition of hT again, we can

get that

Jλ,ε(un) = JT
λ,ε(un) → cT, J′λ,ε(un) = JT

λ,ε
′
(un) → 0, as n → ∞.
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That is, for every fixed T >

√
2α(c∗+1)

α−2 , {un} is also a bounded (PS)cT
of Jλ,ε for λ ∈ (0, λT).

By using Lemma 2.2, we can obtain the following lemma which plays a crucial role in

finding a nontrivial solution of system (1.1).

Lemma 3.3. Let {un} be a bounded (PS)c sequence of Jλ,ε with c > 0, then there exists ũ ∈ H1
V(R

3) \
{0} such that J′λ,ε(ũ) = 0.

Proof. Let {un} be a bounded (PS)c sequence of Jλ,ε. That is,

Jλ,ε(un) → c > 0, J′λ,ε(un) → 0 in H−1
V (R3), as n → ∞. (3.8)

It is clear that {un} is either

(i) vanishing: for each r > 0, limn→∞ supy∈R3

∫
Br(y)

u2
ndx = 0, or

(ii) non-vanishing: there exist r, η > 0 and a sequence {yn} ⊂ R
3 such that

lim sup
n→∞

∫

Br(yn)
u2

ndx ≥ η.

If {un} is vanishing, then it follows from Lemma I.1 in [18] that un → 0 in Ls(R3) whenever

2 < s < 6. By [11, Lemma 2], we have
∫

R3
ϕλ,ε(un)u

2
ndx → 0, n → ∞. (3.9)

It follows from ( f1) and ( f2) that for every ϵ > 0 there exists Cϵ > 0 such that

| f (x, t)| ≤ ϵ|t|+ Cϵ|t|p−1, for (x, t) ∈ R
3× ∈ R. (3.10)

Then ∣∣∣∣
∫

R3
f (x, un)undx

∣∣∣∣ ≤
∫

R3
(ϵu2

n + Cϵ|un|p)dx.

By the arbitrariness of ϵ and un → 0 in Lp(R3), we have
∫

R3
f (x, un)undx → 0, n → ∞. (3.11)

It follows from (3.9), (3.11) and ⟨J′λ,ε(un), un⟩ → 0 that un → 0 in H1
V(R

3). Then Jλ,ε(un) → 0,

which is a contradiction with the fact that c > 0 in (3.8). Therefore, {un} must be non-

vanishing. Furthermore, we can assume that {yn} ⊂ Z
3 since Br(yn) ⊂ Br+1(zn) for some

zn ∈ Z
3.

Let ũn(x) := un(x + yn). (iii) of Lemma 2.2 and the periodic assumptions of V and f

guarantee that ∥ũn∥ = ∥un∥ and ∥J′λ,ε(ũn)∥ = ∥J′λ,ε(un)∥. Since {ũn} is bounded in H1
V(R

3),

there exists ũ ∈ H1
V(R

3), which is nonzero due to the fact that lim supn→∞

∫
Br(0)

ũ2
ndx ≥ η,

such that ũn ⇀ ũ in H1
V(R

3) after passing to a subsequence. A direct computation shows that

J′λ,ε(ũ) = 0. In fact, for every v ∈ H1
V(R

3),

on(1) = ⟨J′λ,ε(ũn), v⟩ =
∫

R3
(∇ũn∇v + V(x)ũnv + ϕλ,ε(ũn)ũnv − f (x, ũn)v)dx.

The weak convergence in H1
V(R

3) leads to
∫

R3
(∇ũn∇v + V(x)ũnv)dx →

∫

R3
(∇ũ∇v + V(x)ũv)dx, as n → ∞.
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By (ii) of Lemma 2.2, we can get that ϕλ,ε(ũn) ⇀ ϕλ,ε(ũ) in X and

∫

R3
ϕλ,ε(ũn)ũnvdx →

∫

R3
ϕλ,ε(ũ)ũvdx, as n → ∞.

It follows from (3.10) that

| f (x, ũn)v| ≤ |ũn||v|+ C|ũn|p−1|v|, for some C > 0.

By the definitions of weak convergence in L2(R3) and L
p

p−1 (R3), we can get that

∫

R3
(|ũn||v|+ C|ũn|p−1|v|)dx →

∫

R3
(|ũ||v|+ C|ũ|p−1|v|)dx, for v ∈ H1

V(R
3).

Then, by applying the Fatou lemma twice, we have

∫

R3
f (x, ũn)vdx →

∫

R3
f (x, ũ)vdx, n → ∞.

Thus, ⟨J′λ,ε(ũ), v⟩ = 0. That is, ũ is a nontrivial critical point of Jλ,ε.

Proof of Theorem 1.1. Let T0 >

√
2α(c∗+1)

α−2 and λ0 := λT0
be chosen as in Lemma 3.2. By

Lemma 3.2 and Lemma 3.3, for every λ ∈ (0, λ0) and ε > 0, Jλ,ε has at least one nontrivial

critical point uλ,ε ∈ H1
V(R

3). Lemma 2.3 indicates that (uλ,ε, ϕλ,ε(uλ,ε)) is a nontrivial solution

of system (1.1). The proof is completed.
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Abstract. In this paper, we study the bifurcation of limit cycles from a class of cubic
integrable non-Hamiltonian systems under arbitrarily small piecewise smooth pertur-
bations of degree n. By using the averaging theory and complex method, the lower
and upper bounds for the maximum number of limit cycles bifurcating from the pe-
riod annulus of the unperturbed systems are given at first order in ε. It is also shown
that in this case, the maximum number of limit cycles produced by piecewise smooth
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produced by smooth perturbations for the considered systems.
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1 Introduction

Non-smooth phenomena widely exists in real world and scientific fields, such as dynamic

compensation of inertial element error in autonomous navigation of high dynamic aircraft,

the non-smooth switching between modules in multi-source information fusion, electronic

relays, mechanical impact, neuronal networks and etc., see for instance [1, 14, 16, 27]. Gen-

erally, it can be modeled by non-smooth differential systems. Piecewise smooth differen-

tial systems, served as one of the most important non-smooth dynamical systems, attracts

many researcher’s interest. In recent years, more attention focuses on studying dynamical

behaviors, especially the bifurcation theory of limit cycles in piecewise smooth systems, see

[5, 7, 11, 17, 18, 34, 39, 42, 43]. There are quite a few innovative methods which have been pro-

posed and some theoretical results were established. For example, the conjecture that a class

of piecewise Liénard equations with n + 1 intervals has up to 2n limit cycles was proved in

BCorresponding author. Email: penglp@buaa.edu.cn
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[44]. Through analyzing the Lyapunov constants, Hopf bifurcation of non-smooth systems

was presented in [10,12,23]. The Melnikov method for Hopf and homoclinic bifurcations was

applied to non-smooth systems [2,19,25,31,32]. In addition, the first order Melnikov function

for planar piecewise smooth Hamiltonian systems was derived to study Poincaré bifurcation

[33], while the averaging theory of discontinuous dynamical systems was developed to find

limit cycles of piecewise continuous dynamical systems [35].

It is well known that the simplest piecewise smooth systems are the piecewise linear ones

with two zones separated by a straight line. Lum and Chua [40, 41] conjectured that such

a continuous piecewise linear differential system in the plane has at most one limit cycle,

which was proved by Freire et al. [21]. While for the planar discontinuous piecewise linear

differential systems with two zones separated by a straight line, Han and Zhang [25] showed

that such systems may have two limit cycles. Huan and Yang [26] provided a numerical

example which possesses three limit cycles. Llibre and Ponce [38] presented three nested

limit cycles in discontinuous piecewise linear differential systems with two zones. Some

results on other discontinuous piecewise linear differential systems with two zones separated

by a straight line exhibiting three limit cycles can also be seen in [7, 8, 28] etc. There are

also some works concerning the limit cycles bifurcation from a linear center under piecewise

smooth perturbations. For example, the nth degree piecewise polynomial perturbations of

a linear center were considered in [6], and an upper bound of no more than Nn − 1 limit

cycles appearing up to a study of order N was presented. Cen et al. [9] studied quadratic

isochronous centers S1, S2, S3 and S4 under the piecewise polynomial perturbations of degree

n by applying the first order averaging theory, and found the sharp upper bound for the first

three isochronous centers and an upper bound for the last center. More results on this topic

can be found in [15, 20, 22, 24, 29, 30, 36, 37] and the references therein.

In the present paper, we focus our attention on the study of limit cycle bifurcation from a

class of planar cubic integrable non-Hamilton differential system.

(ẋ, ẏ) = (−y(x + a)(y + b), x(x + a)(y + b)), (1.1)

which has

H(x, y) = x2 + y2 = h, h ∈ (0, min{a2, b2})
as its first integral with the integrating factor µ = 2/((x + a)(y + b)), and (0, 0) is the unique

center.

Consider arbitrarily small piecewise smooth perturbations of system (1.1)

(ẋ, ẏ) =

{
(−y(x + a)(y + b) + ε f+(x, y), x(x + a)(y + b) + εg+(x, y)), x > 0,

(−y(x + a)(y + b) + ε f−(x, y), x(x + a)(y + b) + εg−(x, y)), x < 0,
(1.2)

where the polynomials f±(x, y), g±(x, y), i = 1, 2 are given by

f+(x, y) =
n

∑
i+j=0

ai,jx
iyj, g+(x, y) =

n

∑
i+j=0

bi,jx
iyj,

f−(x, y) =
n

∑
i+j=0

ci,jx
iyj, g−(x, y) =

n

∑
i+j=0

di,jx
iyj,

with any real coefficients ai,j, bi,j, ci,j and di,j, and |ε| ̸= 0 is a small parameter. By using

the first order averaging theory for discontinuous systems and complex method, we study the

maximum number, denoted by H(n), of limit cycles of system (1.2) bifurcating from the period

annulus around the center of system (1.1). The main results are summarized as follows.



Limit cycles in piecewise smooth perturbations 3

Theorem 1.1. For system (1.2) with |ε| ̸= 0 sufficiently small, we have

(i) If |a| > |b| ̸= 0, then 2[ n
2 ] + 2n + 3 ≤ H(n) ≤ 2[ n

2 ] + 4n + 14;

(ii) If |b| > |a| ̸= 0, then 2[ n
2 ] + 2n + 3 ≤ H(n) ≤ 4[ n

2 ] + 3n + 14;

(iii) If |a| = |b| ̸= 0, then [ n
2 ] + 2n + 3 ≤ H(n) ≤ 3n + 6;

(iv) If b = 0, a ̸= 0, then H(n) = 2[ n
2 ] + n + 1,

where [·] is the integer function, and H(n) denotes the maximum number of limit cycles of system (1.2)

bifurcating from the period annulus of the unperturbed system (1.1) at first order in ε.

Remark 1.2. It is noted that the limit cycle bifurcation from the unperturbed system (1.1) with

a, b ∈ R\{0} under arbitrarily small smooth polynomial perturbations of degree n is studied in

[4], which shows that 3[(n− 1)/2] + 4 if a ̸= b and, respectively, 2[(n− 1)/2] + 2 if a = b, up to

first order in ε, are upper bounds for the number of the limit cycles bifurcating from the period

annulus of the cubic center (1.1). Comparing Theorem 1.1 with the results in [4], we obtained

that at first order in ε, the lower bound of the maximum number of limit cycles produced by

piecewise smooth perturbations is almost twice the upper bound of the maximum number of

limit cycles produced by smooth perturbations. Hence, for one differential system, piecewise

smooth perturbations generally produce more limit cycles than smooth ones.

The organization of this paper is as follows. In Section 2, we present some preliminary

results, including the first order averaging theory for discontinuous systems and the method

estimating the number of zeros of some functions. The explicit expression and properties of

the averaged function are derived in Section 3. Sections 4-6 are dedicated to the investigation

of the lower and upper bounds for the maximum number of the zeros of the averaged function,

respectively. Finally we prove Theorem 1.1 in Section 7.

2 Preliminary results

In this section, we briefly introduce the first order averaging theory for discontinuous systems

and the method concerning the estimate of the number of zeros of some functions, which will

be used in the proof of our main results.

Lemma 2.1 ([34]). Consider the following discontinuous differential systems

dr

dθ
= εF(θ, r) + ε2R(θ, r, ε), (2.1)

with

F(θ, r) = F1(θ, r) + sign(h(θ, r))F2(θ, r),

R(θ, r, ε) = R1(θ, r, ε) + sign(h(θ, r))R2(θ, r, ε),

where F1, F2 : R × D → Rn, R1, R2 : R × D × (−ε0, ε0) → Rn and h : R × D → R are continuous

functions, T-periodic in the first variable θ and D is an open subset of Rn. We also suppose that h is a

C1 function having zero as a regular value, and the sign function sign(u) is given by

sign(u) =





1, u > 0,

0, u = 0,

−1, u < 0.
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Define the averaged function f : D → Rn as

f (r) =
∫ T

0
F(θ, r) dθ. (2.2)

Assume that the following hypotheses (i), (ii) and (iii) hold.

(i) F1, F2, R1, R2 and h are locally Lipschitz with respect to r.

(ii) There exists an open bounded subset C ⊂ D such that for the sufficiently small |ε| > 0, every

orbit starting in C reaches the set of discontinuity only at its crossing regions.

(iii) For a ∈ C with f (a) = 0, there exists a neighborhood V of a such that f (z) ̸= 0 for all

z ∈ V \ {a} and the Brouwer degree function dB( f , V, a) ̸= 0.

Then, for the sufficiently small |ε| > 0 there exists a T-periodic solution r(θ, ε) of system (2.1) such

that r(0, ε) → a as ε → 0.

The result from [3] is often used to replace the condition (iii) in Lemma 2.1, which is stated

as follows.

Remark 2.2. (ĩii) Let f : D → R be a C1 function with f (a) = 0, where D is an open subset

of R and a ∈ D. Whenever the Jacobian determinant J f (a) ̸= 0, there exists a neighborhood

V of a such that f (r) ̸= 0 for all r ∈ V\{a}. Then dB( f , V, 0) ̸= 0.

To estimate the number of zeros of some functions, we recall an important result from [13].

Lemma 2.3. Consider p + 1 linearly independent analytical functions fi : U → R, i = 0, 1, . . . , p,

where U ⊂ R is an interval. Suppose that there exists j ∈ {0, 1, . . . , p} such that f j has constant

sign. Then there exists p + 1 constants Ci, i = 0, 1, . . . , p such that f (x) = ∑
p
i=0 Ci fi(x) has at least p

simple zeros in U.

3 Explicit expression of averaged function

This section is devoted to the derivation and simplification of the expression for the averaged

function.

After making the polar coordinate transformations x = r cos θ and y = r sin θ, system (1.2)

becomes the following

dr

dθ
=

{
εX+(θ, r) + ε2Y+(θ, r, ε), cos θ > 0,

εX−(θ, r) + ε2Y−(θ, r, ε), cos θ < 0,
(3.1)

where

X+(θ, r) =
P+(θ, r)

(r cos θ + a)(r sin θ + b)
, X−(θ, r) =

P−(θ, r)

(r cos θ + a)(r sin θ + b)
,

Y+(θ, r, ε) = − X+(θ, r)Q+(θ, r)

r(r cos θ + a)(r sin θ + b) + εQ+(θ, r)
,

Y−(θ, r, ε) = − X−(θ, r)Q−(θ, r)

r(r cos θ + a)(r sin θ + b) + εQ−(θ, r)
,

with

P±(θ, r) = cos θ f±(r cos θ, r sin θ) + sin θg±(r cos θ, r sin θ),
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Q±(θ, r) = cos θg±(r cos θ, r sin θ)− sin θ f±(r cos θ, r sin θ).

Denote

r1 =

{
−a, a < 0,

+∞, a > 0,
r2 =

{
a, a > 0,

+∞, a < 0,
r3 =

{
b, b > 0,

−b, b < 0,

then the functions X+(θ, r) and Y+(θ, r, ε) (X−(θ, r) and Y−(θ, r, ε), resp.) are well defined in

(0, r1) ∩ (0, r3) ((0, r2) ∩ (0, r3), resp.) for ab ̸= 0, while X+(θ, r) and Y+(θ, r, ε) (X−(θ, r) and

Y−(θ, r, ε), resp.) are well defined in (0, r1) ((0, r2), resp.) for b = 0, a ̸= 0.

We rewrite system (3.1) as the form

dr

dθ
= εF(θ, r) + ε2R(θ, r, ε), (3.2)

where

F(θ, r) =

{
X+(θ, r), cos θ > 0,

X−(θ, r), cos θ < 0,

R(θ, r, ε) =

{
Y+(θ, r, ε), cos θ > 0,

Y−(θ, r, ε), cos θ < 0.

By Lemma 2.1, the averaged function of system (3.2) can be expressed as

f (r) =
∫ 2π

0
F(θ, r) dθ

=
∫ π

2

− π
2

F(θ, r) dθ +
∫ 3π

2

π
2

F(θ, r) dθ =
∫ π

2

− π
2

X+(θ, r) dθ +
∫ 3π

2

π
2

X−(θ, r) dθ

=
n+1

∑
i+j=1

ωi,jr
i+j−1

∫ π
2

− π
2

cosi θ sinj θ

(r cos θ + a)(r sin θ + b)
dθ

+
n+1

∑
i+j=1

τi,jr
i+j−1

∫ 3π
2

π
2

cosi θ sinj θ

(r cos θ + a)(r sin θ + b)
dθ,

(3.3)

where ωi,j = ai−1,j + bi,j−1, τi,j = ci−1,j + di,j−1, and ω0,0 = τ0,0 = 0 provided that a−1,j =

bi,−1 = c−1,j = di,−1 = 0.

Define

Ii,j(r) =
∫ π

2

− π
2

cosi θ sinj θ

(r cos θ + a)(r sin θ + b)
dθ,

Ji,j(r) =
∫ 3π

2

π
2

cosi θ sinj θ

(r cos θ + a)(r sin θ + b)
dθ

(3.4)

for i, j ≥ 0.

Remark 3.1. Note that in the interval ∩3
i=1(0, ri) = (0, min{|a|, |b|}) ((0, |a|), resp.) for ab ̸= 0

(b = 0, a ̸= 0, resp.), the zeros of the function f (r) coincide with the non-zero zeros of

F(r) = r f (r). To make the calculation easier, we investigate the zeros of the function F(r)

instead of f (r) in the subsequent sections.
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Lemma 3.2. The function F(r) = r f (r) defined above can be expressed as

F(r) = r f (r) = F1(r) + F2(r), (3.5)

where

F1(r) =
n+1

∑
i=0

ri Ii,0(r)
[ n+1−i

2 ]

∑
j=0

Pi,jr
2j +

n

∑
i=0

ri+1 Ii,1(r)
[ n−i

2 ]

∑
j=0

Qi,jr
2j,

F2(r) =
n+1

∑
i=0

ri Ji,0(r)
[ n+1−i

2 ]

∑
j=0

P̃i,jr
2j +

n

∑
i=0

ri+1 Ji,1(r)
[ n−i

2 ]

∑
j=0

Q̃i,jr
2j,

with

Pi,j =
[ i

2 ]

∑
k=0

(−1)kCk
k+jωi−2k,2k+2j, Qi,j =

[ i
2 ]

∑
k=0

(−1)kCk
k+jωi−2k,2k+2j+1,

P̃i,j =
[ i

2 ]

∑
k=0

(−1)kCk
k+jτi−2k,2k+2j, Q̃i,j =

[ i
2 ]

∑
k=0

(−1)kCk
k+jτi−2k,2k+2j+1.

Moreover, P0,0 = P̃0,0 = 0, Ck
k+j is the combinatorial number, and the other coefficients Pi,j, Qi,j, P̃i,j

and Q̃i,j are independent.

Proof. From (3.3) and (3.4), we have

F(r) =
n+1

∑
i+j=1

ωi,jr
i+j Ii,j(r) +

n+1

∑
i+j=1

τi,jr
i+j Ji,j(r)

=
n+1

∑
i=1

ri
i

∑
j=0

ωi−j,j Ii−j,j(r) +
n+1

∑
i=1

ri
i

∑
j=0

τi−j,j Ji−j,j(r)

=
n+1

∑
i=1

ri
[ i

2 ]

∑
j=0

ωi−2j,2j Ii−2j,2j(r) +
n+1

∑
i=1

ri
[ i−1

2 ]

∑
j=0

ωi−2j−1,2j+1 Ii−2j−1,2j+1(r)

+
n+1

∑
i=1

ri
[ i

2 ]

∑
j=0

τi−2j,2j Ji−2j,2j(r) +
n+1

∑
i=1

ri
[ i−1

2 ]

∑
j=0

τi−2j−1,2j+1 Ji−2j−1,2j+1(r).

(3.6)

On the other hand, some computations shows that

Ii,2j(r) =
j

∑
k=0

(−1)kCk
j Ii+2k,0(r), Ii,2j+1(r) =

j

∑
k=0

(−1)kCk
j Ii+2k,1(r),

Ji,2j(r) =
j

∑
k=0

(−1)kCk
j Ji+2k,0(r), Ji,2j+1(r) =

j

∑
k=0

(−1)kCk
j Ji+2k,1(r).

(3.7)

Putting (3.7) into (3.6), we can get (3.5). The independence of Pi,j, Qi,j, P̃i,j and Q̃i,j follows from

their definitions.

This completes the proof of Lemma 3.2.

Define

Yi,j(r) =
∫ π

2

− π
2

cosi θ sinj θ

a + r cos θ
dθ, Zi,j(r) =

∫ π
2

− π
2

cosi θ sinj θ

b + r sin θ
dθ,

Ỹi,j(r) =
∫ 3π

2

π
2

cosi θ sinj θ

a + r cos θ
dθ, Z̃i,j(r) =

∫ 3π
2

π
2

cosi θ sinj θ

b + r sin θ
dθ,

(3.8)
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for i, j ≥ 0, then a straightforward computation yields Lemma 3.3 below.

Lemma 3.3. For (3.4) and (3.8), the following equalities hold.

(i) Ii,0(r) =
1
r [Zi−1,0(r)− aIi−1,0(r)] for i ≥ 1.

(ii) Zi,0(r) = − 1
r2 [(b

2 − r2)Zi−2,0(r)− b∗mi−2] for i ≥ 2.

(iii) Ii,1(r) =
1
r [Yi,0(r)− bIi,0(r)] for i ≥ 0.

(iv) Yi,0(r) =
1
r [c

∗mi−1 − aYi−1,0(r)] for i ≥ 1.

(v) Ji,0(r) =
1
r [Z̃i−1,0(r)− aJi−1,0(r)] for i ≥ 1.

(vi) Z̃i,0(r) = − 1
r2 [(b

2 − r2)Z̃i−2,0(r)− b̃∗mi−2] for i ≥ 2.

(vii) Ji,1(r) =
1
r [Ỹi,0(r)− bJi,0(r)] for i ≥ 0.

(viii) Ỹi,0(r) =
1
r [c̃

∗mi−1 − aỸi−1,0(r)] for i ≥ 1,

where mi =
(i−1)!!

i!! , m0 = m1 = 1, and

b∗ =

{
πb, i is even,

2b, i is odd,
c∗ =

{
π, i is odd,

2, i is even,

b̃∗ =

{
πb, i is even,

−2b, i is odd,
c̃∗ =

{
π, i is odd,

−2, i is even.

Moreover, we have

(
− a2 − b2 + r2

)
I0,0(r) = −bY0,0(r) + rZ1,0(r)− aZ0,0(r),

(
− a2 − b2 + r2

)
J0,0(r) = −bỸ0,0(r)− rZ1,0(r)− aZ0,0(r).

Now, we start with simplifying F(r). Firstly, substituting Lemma 3.3 into (3.5), we get

F1(r) =
[ n+1

2 ]

∑
i=0

W0,ir
2i I0,0(r) +

[ n
2 ]

∑
i=0

Z2i,0(r)r
2i

[ n
2 ]−i

∑
j=0

W2i+1,jr
2j +

[ n−1
2 ]

∑
i=0

Z2i+1,0(r)r
2i+1

[ n−1
2 ]−i

∑
j=0

W2i+2,jr
2j

− b
[ n

2 ]

∑
i=0

T0,ir
2i I0,0(r)− b

[ n−1
2 ]

∑
i=0

Z2i,0(r)r
2i

[ n−1
2 ]−i

∑
j=0

T2i+1,jr
2j

− b
[ n

2 ]−1

∑
i=0

Z2i+1,0(r)r
2i+1

[ n
2 ]−1−i

∑
j=0

T2i+2,jr
2j +

[ n
2 ]

∑
i=0

T0,ir
2iY0,0(r) +

[ n−1
2 ]

∑
i=0

m2ic
∗r2i

[ n−1
2 ]−i

∑
j=0

T2i+1,jr
2j

+
[ n

2 ]−1

∑
i=0

m2i+1c∗r2i+1
[ n

2 ]−1−i

∑
j=0

T2i+2,jr
2j, (3.9)

where

Wi,j =
n+1−2j

∑
k=i

Pk,j(−a)k−i, Ti,j =
n−2j

∑
k=i

Qk,j(−a)k−i.
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And F2(r) can be similarly expressed as

F2(r) =
[ n+1

2 ]

∑
i=0

W̃0,ir
2i J0,0(r) +

[ n
2 ]

∑
i=0

Z̃2i,0(r)r
2i

[ n
2 ]−i

∑
j=0

W̃2i+1,jr
2j +

[ n−1
2 ]

∑
i=0

Z̃2i+1,0(r)r
2i+1

[ n−1
2 ]−i

∑
j=0

W̃2i+2,jr
2j

− b
[ n

2 ]

∑
i=0

T̃0,ir
2i J0,0(r)− b

[ n−1
2 ]

∑
i=0

Z̃2i,0(r)r
2i

[ n−1
2 ]−i

∑
j=0

T̃2i+1,jr
2j

− b
[ n

2 ]−1

∑
i=0

Z̃2i+1,0(r)r
2i+1

[ n
2 ]−1−i

∑
j=0

T̃2i+2,jr
2j +

[ n
2 ]

∑
i=0

T̃0,ir
2iỸ0,0(r) +

[ n−1
2 ]

∑
i=0

m2i c̃
∗r2i

[ n−1
2 ]−i

∑
j=0

T̃2i+1,jr
2j

+
[ n

2 ]−1

∑
i=0

m2i+1c̃∗r2i+1
[ n

2 ]−1−i

∑
j=0

T̃2i+2,jr
2j,

where

W̃i,j =
n+1−2j

∑
k=i

P̃k,j(−a)k−i, T̃i,j =
n−2j

∑
k=i

Q̃k,j(−a)k−i.

Obviously, Wi,j, Ti,j, W̃i,j and T̃i,j are independent.

From Lemma 3.3, we have when k ≥ 1

r2k I0,0(r) =
(

a2 + b2
)k

I0,0(r)− b
k−1

∑
i=0

(
a2 + b2

)k−1−i
r2iY0,0(r)

+
k−1

∑
i=0

(
a2 + b2

)k−1−i
r2i+1Z1,0(r)− a

k−1

∑
i=0

(
a2 + b2

)k−1−i
r2iZ0,0(r).

(3.10)

Noting W0,0 = −aW1,0 and substituting (3.10) into (3.9), we have

F1(r) =



[ n−1

2 ]

∑
i=0

T2i+1,0(−b2)i − 1

b

[ n
2 ]

∑
i=1

W2i+1,0(−b2)i


 (π − bZ0,0(r))

+


T0,0 − b

[ n+1
2 ]

∑
j=1

(a2 + b2)j−1W0,j + b2
[ n

2 ]

∑
j=1

T0,j(a2 + b2)j−1


 (Y0,0(r)− bI0,0(r))

+


W1,0 − a

[ n+1
2 ]

∑
j=1

(a2 + b2)j−1W0,j + ab
[ n

2 ]

∑
j=1

T0,j(a2 + b2)j−1


 (Z0,0(r)− aI0,0(r))

+




[ n
2 ]

∑
i=1

T0,i − b
[ n+1

2 ]−1

∑
i=1

[ n+1
2 ]

∑
j=i+1

(a2 + b2)j−i−1W0,j + b2
[ n

2 ]−1

∑
i=1

[ n
2 ]

∑
j=i+1

(a2 + b2)j−i−1T0,j


 r2iY0,0(r)

+




[ n
2 ]

∑
i=1

[ n
2 ]−i

∑
t=0

∑
k+j=i

W2k+2t+1,jC
t
k+t(−b2)t − b

[ n−1
2 ]

∑
i=1

[ n−1
2 ]−i

∑
t=0

∑
k+j=i

T2k+2t+1,jC
t
k+t(−b2)t

−a
[ n+1

2 ]−1

∑
i=1

[ n+1
2 ]

∑
j=i+1

(a2 + b2)j−i−1W0,j + ab
[ n

2 ]−1

∑
i=1

[ n
2 ]

∑
j=i+1

(a2 + b2)j−i−1T0,j


 r2iZ0,0(r)
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+



[ n−1

2 ]

∑
i=0

[ n−1
2 ]−i

∑
t=0

∑
k+j=i

W2k+2t+2,jC
t
k+t(−b2)t − b

[ n
2 ]−1

∑
i=0

[ n
2 ]−1−i

∑
t=0

∑
k+j=i

T2k+2t+2,jC
t
k+t(−b2)t

+
[ n+1

2 ]−1

∑
i=0

[ n+1
2 ]

∑
j=i+1

(a2 + b2)j−i−1W0,j − b
[ n

2 ]−1

∑
i=0

[ n
2 ]

∑
j=i+1

(a2 + b2)j−i−1T0,j


 r2i+1Z1,0(r)

+



[ n−1

2 ]

∑
i=1

∑
k+j=i

T2k+1,jc
∗m2k +

[ n
2 ]−1

∑
i=1

[ n
2 ]−i

∑
h=1

∑
k+j=i

W2k+2h+1,j(−b2)h−1b∗
k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t−1)

−b
[ n−1

2 ]−1

∑
i=1

[ n−1
2 ]−i

∑
h=1

∑
k+j=i

T2k+2h+1,j(−b2)h−1b∗
k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t−1)


 r2i

+



[ n

2 ]−1

∑
i=0

∑
k+j=i

T2k+2,jc
∗m2k+1

+
[ n−1

2 ]−1

∑
i=0

[ n−1
2 ]−i

∑
h=1

∑
k+j=i

W2k+2h+2,j(−b2)h−1b∗
k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t)−1

−b
[ n

2 ]−2

∑
i=0

[ n
2 ]−1−i

∑
h=1

∑
k+j=i

T2k+2h+2,j(−b2)h−1b∗
k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t)−1


 r2i+1.

Moreover, F1(r) can be expressed as

F1(r) =A
(1)
1

(
π − bZ0,0(r)

)
+ A2

(
Z0,0(r)− aI0,0(r)

)
+ A3

(
Y0,0(r)− bI0,0(r)

)
+

[ n
2 ]

∑
i=1

Bir
2iY0,0(r)

+
[ n

2 ]

∑
i=1

D
(1)
i r2iZ0,0(r) +

[ n−1
2 ]

∑
i=0

E
(1)
i r2i+1Z1,0(r) +

[ n−1
2 ]

∑
i=1

F
(1)
i r2i +

[ n
2 ]−1

∑
i=0

G
(1)
i r2i+1.

Similarly, due to W̃0,0 = −aW̃1,0, F2(r) takes the form

F2(r) =A
(2)
1

(
π − bZ̃0,0(r)

)
+ A4

(
Z̃0,0(r)− aJ0,0(r)

)
+ A5

(
Ỹ0,0(r)− bJ0,0(r)

)
+

[ n
2 ]

∑
i=1

Cir
2iỸ0,0(r)

+
[ n

2 ]

∑
i=1

D
(2)
i r2iZ̃0,0(r) +

[ n−1
2 ]

∑
i=0

E
(2)
i r2i+1Z̃1,0(r) +

[ n−1
2 ]

∑
i=1

F
(2)
i r2i +

[ n
2 ]−1

∑
i=0

G
(2)
i r2i+1.

Recalling that Z0,0 = Z̃0,0, Z1,0 = −Z̃1,0, we get

F(r) = A1

(
π − bZ0,0(r)

)
+ A2

(
Z0,0(r)− aI0,0(r)

)

+ A3

(
Y0,0(r)− bI0,0(r)

)
+ A4

(
Z0,0(r)− aJ0,0(r)

)

+ A5

(
Ỹ0,0(r)− bJ0,0(r)

)
+

[ n
2 ]

∑
i=1

Bir
2iY0,0(r) +

[ n
2 ]

∑
i=1

Cir
2iỸ0,0(r) +

[
n
2

]

∑
i=1

Dir
2iZ0,0(r)

+
[ n−1

2 ]

∑
i=0

Eir
2i+1Z1,0(r) +

[ n−1
2 ]

∑
i=1

Fir
2i +

[ n
2 ]−1

∑
i=0

Gir
2i+1.

(3.11)
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where the coefficients Ai(i = 1, 2 . . . , 5), Bi, Ci, Di

(
i = 1, . . . , [ n

2 ]
)

, Ei

(
i = 0, 1, . . . , [ n−1

2 ]
)

,

Fi

(
i = 1, . . . , [ n−1

2 ]
)

and Gi

(
i = 0, 1, . . . , [ n

2 ]− 1
)

are listed in Appendix.

In particular, for b = 0, a ̸= 0, recall Ii,0(r) = Ji,0(r) = 0, Ii,1(r) = 1
r Yi,0(r), and Ji,1(r) =

1
r Ỹi,0(r) for i ≥ 0, then F(r) takes the form

F(r) =
[ n

2 ]

∑
i=0

Bir
2iY0,0(r) +

[ n
2 ]

∑
i=0

Cir
2iỸ0,0(r) +

[ n−1
2 ]

∑
i=0

Fir
2i +

[ n
2 ]−1

∑
i=0

Gir
2i+1, (3.12)

where Bi, Ci, Fi and Gi are given by taking b = 0 in the corresponding coefficient formulas of

(3.11).

Choosing the appropriate parameter variables from (3.11) and (3.12), respectively, we can

get the following Jacobian determinants
∣∣∣∣∣∣

∂
(

A4,A3,B1,...,B[ n
2 ]

,A5,C1,...,C[ n
2 ]

,A2,D1,...,D[ n
2 ]

,E0,...,E
[ n−1

2 ]
,A1,F1,...,F

[ n−1
2 ]

,G0,...,G[ n
2 ]−1

)

∂
(

W̃1,0,T0,0,T0,1...,T0,[ n
2 ]

,T̃0,0,,T̃0,1 ...,T̃0,[ n
2 ]

,W1,0,W1,1,...,W1,[ n
2 ]

,W2,0,...,W
2,[ n−1

2 ]
,T1,0,T1,1,...,T

1,[ n−1
2 ]

,T2,0,...,T2,[ n
2 ]−1

)

∣∣∣∣∣∣

= (c∗)n−1 ̸= 0,

and ∣∣∣∣∣∣

∂
(

B0,B1,...,B[ n
2 ]

,C0,C1,...,C[ n
2 ]

,F0,F1,...,F
[ n−1

2 ]
,G0,G1,...,G[ n

2 ]−1

)

∂
(

T0,0,T0,1 ...,T0,[ n
2 ]

,T̃0,0,,T̃0,1 ...,T̃0,[ n
2 ]

,T1,0,T1,1,...,T
1,[ n−1

2 ]
,T2,0,...,T2,[ n

2 ]−1

)

∣∣∣∣∣∣
= (c∗)n ̸= 0,

which imply Lemma 3.4 below.

Lemma 3.4. For the functions F(r) in (3.11) and (3.12), their coefficients are independent, respectively.

4 Properties of some integrals

In this section, we study the properties of some integrals defined in Section 3, which play the

important roles in the proof of Theorem 1.1.

A straightforward computation yields Lemma 4.1 below.

Lemma 4.1. For the integrals I0,0(r), J0,0(r), Y0,0(r) and Ỹ0,0(r) with ab ̸= 0, the following equalities

hold.

I0,0(r) =





−4b
√

b2−r2 arctan
√

a−r
a+r +

√
a2−r2

√
b2−r2 ln b+r

b−r −aπ
√

a2−r2

(−a2−b2+r2)
√

a2−r2
√

b2−r2
, a > 0, r ∈ (0, a),

−2b
√

b2−r2 ln r+
√

r2−a2

a +
√

r2−a2
√

b2−r2 ln b+r
b−r −aπ

√
r2−a2

(−a2−b2+r2)
√

r2−a2
√

b2−r2
, a > 0, r ∈ (a,+∞),

2
ab − 1

b2 ln a+b
b−a +

aπ
b2
√

b2−a2
, a > 0, r = a,

4b
√

b2−r2 arctan
√

a−r
a+r +

√
a2−r2

√
b2−r2 ln b+r

b−r −aπ
√

a2−r2

(−a2−b2+r2)
√

a2−r2
√

b2−r2
, a < 0, r ∈ (0,−a).

J0,0(r) =





−4b
√

b2−r2 arctan
√

a+r
a−r +

√
a2−r2

√
b2−r2 ln b−r

b+r −aπ
√

a2−r2

(−a2−b2+r2)
√

a2−r2
√

b2−r2
, a > 0, r ∈ (0, a),

2b
√

b2−r2 ln r+
√

r2−a2

−a +
√

r2−a2
√

b2−r2 ln b−r
b+r −aπ

√
r2−a2

(−a2−b2+r2)
√

r2−a2
√

b2−r2
, a < 0, r ∈ (−a,+∞),

2
ab − 1

b2 ln a+b
b−a +

aπ
b2
√

b2−a2
, a < 0, r = −a,

4b
√

b2−r2 arctan
√

a+r
a−r +

√
a2−r2

√
b2−r2 ln

b−r
b+r−aπ

√
a2−r2

(−a2−b2+r2)
√

a2−r2
√

b2−r2
, a < 0, r ∈ (0,−a).
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Y0,0(r) =





−4√
a2−r2

arctan
√

a−r
a+r , a < 0, r ∈ (0,−a),

2√
r2−a2

ln
(

r+
√

r2−a2

a

)
, a > 0, r ∈ (a,+∞),

2
a , a > 0, r = a,

4√
a2−r2

arctan
√

a−r
a+r , a > 0, r ∈ (0, a).

Ỹ0,0(r) =





4√
a2−r2

arctan
√

a+r
a−r , a > 0, r ∈ (0, a),

−2√
r2−a2

ln
(

r+
√

r2−a2

−a

)
, a < 0, r ∈ (−a,+∞),

2
a , a < 0, r = −a,

−4√
a2−r2

arctan
√

a+r
a−r , a < 0, r ∈ (0,−a).

Z0,0(r) = Z̃0,0(r) =
π√

b2 − r2
, b > 0, r ∈ (0, b) or b < 0, r ∈ (0,−b).

Z1,0(r) = −Z̃1,0(r) =
1

r
ln

b + r

b − r
, b > 0, r ∈ (0, b) or b < 0, r ∈ (0,−b).

Moreover, we have

Lemma 4.2. For the integrals Y0,0(r), Ỹ0,0(r), Z0,0(r) and Z1,0(r), the statements given below are true.

1. If a > 0, then Y0,0(r) can be analytically extended to the interval (−a,+∞). Furthermore, when

r → (−a)+, Y0,0(r) ∼
√

2π√
a(a+r)

; when r → +∞, Y0,0(r) ∼ 2 ln(r)
r .

2. If a > 0, then Ỹ0,0(r) can be analytically extended to the interval (−∞, a). Furthermore, when

r → a−, Ỹ0,0(r) ∼
√

2π√
a(a−r)

; when r → −∞, Ỹ0,0(r) ∼ − 2 ln(−r)
r .

3. If b > 0, then Z0,0(r) and Z1,0(r) can be analytically extended to the interval (−b, b). Further-

more, when r → b−, Z0,0(r) ∼ π√
2b(b−r)

, Z1,0(r) ∼ 1
b ln 2b

b−r ; when r → (−b)+, Z0,0(r) ∼
π√

2b(b+r)
, Z1,0(r) ∼ 1

b ln 2b
b+r .

And other cases can be discussed similarly.

Proof. For a > 0, when θ ∈ (−π
2 , π

2 ), the function 1
a+r cos θ is an analytic function of r in

(−a,+∞), so Y0,0(r) =
∫ π

2

− π
2

1
a+r cos θ dθ is also analytic.

For r ∈ (−a, 0), Y0,0(r) takes the same form as given for r ∈ (0, a). Thus we have that

when r → (−a)+,

Y0,0(r) ∼
√

2π√
a(a + r)

,

when r → +∞,

Y0,0(r) ∼
2 ln r

r
.

Similarly, we can prove other results.
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Lemma 4.3.

1. If a > 0, then Y0,0(r) can be analytically extended to the complex domain D1 = C \ {r ∈ R |
r ≤ −a}.

2. If a > 0, then Ỹ0,0(r) can be analytically extended to the complex domain D2 = C \ {r ∈ R |
r ≥ a}.

3. If b > 0, then Z0,0(r) and Z1,0(r) can be analytically extended to the complex domain D3 =

C \ {r ∈ R | r ≤ −b, r ≥ b}.

And other cases can be discussed similarly.

Proof. It is not difficult to know that Y0,0(r) takes the form

Y0,0(r) =
1√

a2 − r2

(
π −

∫ r

0

2√
a2 − z2

dz

)
.

The function
√

a2 − r2 is analytic in the domain D∗ = C \ {r ∈ R | r2 − a2 ≥ 0}, so Y0,0(r) is

analytic in the domain D∗. Together with Lemma 4.2, Y0,0(r) is analytic in D1 = C \ {r ∈ R |
r ≤ −a}.

The other results can be obtained in a similar way.

For r ≤ −a with a > 0, denote by Y+
0,0(r) (Y−

0,0(r), resp.) the analytic continuation of Y0,0(r̄)

along an arc such that Im(r̄) > 0 (Im(r̄) < 0, resp.) for r̄ ∈ D1. Similarly, we can define

Ỹ±
0,0(r), Z±

0,0(r) and Z±
1,0(r) for r ∈ C \ D2 and r ∈ C \ D3, respectively.

Lemma 4.4.

1. If a > 0, then the functions Y±
0,0(r) defined in (−∞,−a) satisfy

Y+
0,0(r)− Y−

0,0(r) =
c1i√

r2 − a2
,

2. If a > 0, then the functions Ỹ±
0,0(r) defined in (a,+∞) satisfy

Ỹ+
0,0(r)− Ỹ−

0,0(r) =
c2i√

r2 − a2
,

3. If b > 0, then the functions Z±
0,0(r) defined in (−∞,−b) ∪ (b,+∞) satisfies

Z+
0,0(r)− Z−

0,0(r) =
2iπ√

r2 − b2
, r ∈ (b,+∞),

Z+
0,0(r)− Z−

0,0(r) =
−2iπ√
r2 − b2

, r ∈ (−∞,−b).

4. If b > 0, then the functions Z±
1,0(r) defined in (−∞,−b) ∪ (b,+∞) satisfy

Z+
1,0(r)− Z−

1,0(r) =
2iπ

r
,

where c1 and c2 are all nonzero real numbers and i2 = −1.
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Proof. 1. A straightforward computation shows
(

a2 − r2
)

Y
′
0,0(r) = rY0,0(r)− 2.

Noting that Y±
0,0(r) are the analytic continuation of Y0,0(r) for r ∈ (−∞,−a), we have

(
a2 − r2

)
Y±

0,0

′
(r) = rY±

0,0(r)− 2,

which leads to (
a2 − r2

)(
Y+

0,0(r)− Y−
0,0(r)

)′

= r
(

Y+
0,0(r)− Y−

0,0(r)
)

.

Solving the equation, we get that

Y+
0,0(r)− Y−

0,0(r) =
c∗1√

r2 − a2
,

where c∗1 = c1i, c1 is a nonzero real number. Otherwise, −a is the analytic point or the pole of

Y0,0(r), which contradicts with the fact

Y0,0(r) ∼
√

2π√
a(a + r)

as r → (−a)+.

The second result can be proved in a similar way.

2. Note that Z±
0,0(r) are both analytic continuation of Z0,0(r) for r ∈ (b,+∞), where b is not an

analytic point, so we have

Z+
0,0(r)− Z−

0,0(r) =
π√

b + r
|b − r|− 1

2 ei π
2 − π√

b + r
|b − r|− 1

2 e−i π
2

=
2iπ√

r2 − b2
.

In a similar way, we can get the other results.

Hence we complete the proof of Lemma 4.4.

5 Lower bound for the maximum number of zeros of averaged

function

In this section we firstly prove the linearly independence of the generating functions of F(r),

then give the estimate on the lower bound for the maximum number of zeros of the averaged

function f (r).

Lemma 5.1. For the function F(r), we have

1. If ab ̸= 0 and |a| ̸= |b|, then the generating functions of the function F(r) in (3.11) are the

following 4[ n
2 ] + 2[ n−1

2 ] + 6 linearly independent functions:

π − bZ0,0(r), Z0,0(r)− aI0,0(r), Z0,0(r)− aJ0,0(r), Y0,0(r)− bI0,0(r), Ỹ0,0(r)− bJ0,0(r),

r2Y0,0(r), r4Y0,0(r), . . . , r2[ n
2 ]Y0,0(r), r2Ỹ0,0(r), r4Ỹ0,0(r), . . . , r2[ n

2 ]Ỹ0,0(r),

r2Z0,0(r), r4Z0,0(r), . . . , r2[ n
2 ]Z0,0(r), rZ1,0(r), r3Z1,0(r), r5Z1,0(r), . . . , r2[ n−1

2 ]+1Z1,0(r),

r2, . . . , r2[ n−1
2 ], r, r3, . . . , r2[ n

2 ]−1. (5.1)
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2. If |a| = |b| ̸= 0, then the generating functions of the function F(r) in (3.11) are the following

3[ n
2 ] + 2[ n−1

2 ] + 6 linearly independent functions:

π − bZ0,0(r), Z0,0(r)− aI0,0(r), Z0,0(r)− aJ0,0(r), Y0,0(r)− bI0,0(r), Ỹ0,0(r)− bJ0,0(r),

r2Y0,0(r), r4Y0,0(r), . . . , r2[ n
2 ]Y0,0(r), r2Z0,0(r), r4Z0,0(r), . . . , r2[ n

2 ]Z0,0(r),

rZ1,0(r), r3Z1,0(r), r5Z1,0(r), . . . , r2[ n−1
2 ]+1Z1,0(r),

r2, . . . , r2[ n−1
2 ], r, r3, . . . , r2[ n

2 ]−1.

3. If b = 0, a ̸= 0, then the generating functions of the function F(r) in (3.12) are the following

3[ n
2 ] + [ n−1

2 ] + 3 linearly independent functions:

Y0,0(r), r2Y0,0(r), r4Y0,0(r), . . . , r2[ n
2 ]Y0,0(r),

Ỹ0,0(r), r2Ỹ0,0(r), r4Ỹ0,0(r), . . . , r2[ n
2 ]Ỹ0,0(r),

1, r2, . . . , r2[ n−1
2 ], r, r3, . . . , r2[ n

2 ]−1.

where Y0,0(r), Ỹ0,0(r), Z0,0(r) and Z1,0(r) are given by (3.8).

Proof. We only prove the first result, the other ones are similar.

From (3.11), we can analytically extend the domain of F(r) to the complex plane C \ {r ∈
R | |r| ≥ min{|a|, |b|}} for ab ̸= 0, and suppose that there exist some coefficients such that

F(r) ≡ 0, that is

F(r) = a1

(
π − bZ0,0(r)

)
+ a2

(
Z0,0(r)− aI0,0(r)

)

+ a3

(
Y0,0(r)− bI0,0(r)

)
+ a4

(
Z0,0(r)− aJ0,0(r)

)

+ a5

(
Ỹ0,0(r)− bJ0,0(r)

)
+

[ n
2 ]

∑
i=1

bir
2iY0,0(r) +

[ n
2 ]

∑
i=1

cir
2iỸ0,0(r) +

[ n
2 ]

∑
i=1

dir
2iZ0,0(r)

+
[ n−1

2 ]

∑
i=0

eir
2i+1Z1,0(r) +

[ n−1
2 ]

∑
i=1

fir
2i +

[ n
2 ]−1

∑
i=0

gir
2i+1 ≡ 0,

(5.2)

we just need to prove ai = 0 (i = 1, 2 . . . , 5), bi = ci = di = 0
(
i = 1, . . . , [ n

2 ]
)

, ei =

0
(
i = 0, 1, . . . , [ n−1

2 ]
)

, fi = 0
(
i = 1, . . . , [ n−1

2 ]
)
, and gi = 0

(
i = 0, 1, . . . , [ n

2 ]− 1
)
.

Obviously, F(r) ≡ 0 is equivalent to

V∗(r) := (−a2 − b2 + r2)F(r) ≡ 0

for r ∈ C \ {r ∈ R||r| ≥ min{|a|, |b|}} and ab ̸= 0.

From (5.2), we have

V∗(r) =
[ n+2

2 ]

∑
i=0

Air
2iY0,0(r) +

[ n+2
2 ]

∑
i=0

Bir
2iỸ0,0(r) +

[ n+2
2 ]

∑
i=0

Cir
2iZ0,0(r)

+
[ n+1

2 ]

∑
i=0

Dir
2i+1Z1,0(r) +

[ n−1
2 ]+1

∑
i=0

Eir
2i +

[ n
2 ]

∑
i=0

Fir
2i+1,
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where

A0 = aba2 − a2a3, A1 = a3 − (a2 + b2)b1, Ai = bi−1 − (a2 + b2)bi, A[ n+2
2 ] = b[ n

2 ]
,

B0 = aba4 − a2a5, B1 = a5 − (a2 + b2)c1, Bi = ci−1 − (a2 + b2)ci, B[ n+2
2 ] = c[ n

2 ]
,

C0 = b(a2 + b2)a1 − b2(a2 + a4) + ab(a3 + a5), C1 = −ba1 + a2 + a4 − (a2 + b2)d1,

Ci = di−1 − (a2 + b2)di, C[ n+2
2 ] = d[ n

2 ]
,

D0 = a(a4 − a2) + b(a5 − a3)− (a2 + b2)e0, Di = ei−1 − (a2 + b2)ei, D[ n+1
2 ] = e[ n−1

2 ],

E0 = (−a2 − b2)a1π, E1 = a1π − (a2 + b2) f1, Ei = fi−1 − (a2 + b2) fi, E[ n−1
2 ]+1 = f[ n−1

2 ],

F0 = (−a2 − b2)g0, Fi = gi−1 − (a2 + b2)gi, F[ n
2 ]
= g[ n

2 ]−1. (5.3)

If a > b > 0, then V∗(r) are analytic in D = D1 ∩ D2 ∩ D3 = C \ {r ∈ R|r ≥ b, r ≤ −b}.

Similarly, we can define the functions V±
∗ (r) as the analytic continuation of V∗(r) to

(−∞,−b) ∪ (b,+∞) from the upper and lower half planes, respectively.

By Lemma 4.4, when r ∈ (b, a), we have

V+
∗ (r)− V−

∗ (r) =
2iπ√

r2 − b2

[ n+2
2 ]

∑
i=0

Cir
2i +

2iπ

r

[ n+1
2 ]

∑
i=0

Dir
2i+1.

Thus V+
∗ (r)− V−

∗ (r) ≡ 0 yields

1√
r2 − b2

[ n+2
2 ]

∑
i=0

Cir
2i +

[ n+1
2 ]

∑
i=0

Dir
2i ≡ 0,

which implies that Ci = 0
(
i = 0, 1, 2, . . . , [ n+2

2 ]
)

, Di = 0
(
i = 0, 1, 2, . . . , [ n+1

2 ]
)
.

Similarly, when r ∈ (a,+∞),

V+
∗ (r)− V−

∗ (r) =
c∗2√

r2 − a2

[ n+2
2 ]

∑
i=0

Bir
2i ≡ 0

if and only if Bi = 0
(
i = 0, 1, 2, . . . , [ n+2

2 ]
)
.

And when r ∈ (−∞,−a),

V+
∗ (r)− V−

∗ (r) =
c∗1√

r2 − a2

[ n+2
2 ]

∑
i=0

Air
2i ≡ 0

if and only if Ai = 0
(
i = 0, 1, 2, . . . , [ n+2

2 ]
)
.

Consequently, V∗(r) ≡ 0 becomes

[ n−1
2 ]+1

∑
i=0

Eir
2i +

[ n
2 ]

∑
i=0

Fir
2i+1 ≡ 0,

so we get Ei = 0
(
i = 0, 1, 2, . . . , [ n−1

2 ] + 1
)

and Fi = 0
(
i = 0, 1, 2, . . . , [ n

2 ]
)
.

The above results lead to ai = 0 (i = 1, 2, . . . , 5), bi = ci = di = 0
(
i = 1, . . . , [ n

2 ]
)

, ei =

0
(
i = 0, 1, . . . , [ n−1

2 ]
)

, fi = 0
(
i = 1, . . . , [ n−1

2 ]
)
, and gi = 0

(
i = 0, 1, . . . , [ n

2 ]− 1
)
.

Hence, for the case a > b > 0, the functions listed in (5.1) are 4[ n
2 ] + 2[ n−1

2 ] + 6 linearly

independent generating ones of F(r).

The other cases for ab ̸= 0, |a| ̸= |b| can be investigated in the similar way.

This completes the proof of the first result in Lemma 5.1.



16 D. Sun, Y. Gao, L. Peng and F. Li

Recall that [ n
2 ] + [ n−1

2 ] = n − 1, then Lemma 5.2 follows from Remark 3.1, Lemmas 2.3

and 5.1.

Lemma 5.2. Denoting by N( f ) the maximum number of simple zeros of the averaged function f (r)

in r ∈ (0, min{|a|, |b|}) for ab ̸= 0 or r ∈ (0, |a|) for b = 0, a ̸= 0, we have

1. when ab ̸= 0 and |a| ̸= |b|, N( f ) ≥ 2
[

n
2

]
+ 2n + 3;

2. when |a| = |b| ̸= 0, N( f ) ≥
[

n
2

]
+ 2n + 3;

3. when b = 0, a ̸= 0, N( f ) ≥ 2
[

n
2

]
+ n + 1,

where [·] denotes the integer function.

6 Upper bound for the number of zeros of averaged function

In this section, we extend the variable r to the complex plane to investigate the upper bound

for the number of zeros of the function F(r), which is closely related to that of the averaged

function f (r).

Here, we look r as the complex number.

Lemma 6.1. For the complex variable r, we have

1. If a > 0, then when r → (−a)+, Y0,0(r) ∼
√

2π√
a(a+r)

; when r → ∞, Y0,0(r) ∼ 2 ln(r)
r .

2. If a > 0, then when r → a−, Ỹ0,0(r) ∼
√

2π√
a(a−r)

; when r → ∞, Ỹ0,0(r) ∼ − 2 ln(−r)
r .

3. If b > 0, then when r → b−, Z0,0(r) ∼ π√
2b(b−r)

, Z1,0(r) ∼ 1
b ln 2b

b−r ; when r → (−b)+,

Z0,0(r) ∼ π√
2b(b+r)

, Z1,0(r) ∼ 1
b ln 2b

b+r .

And other cases can be discussed similarly.

Proof. For Y0,0(r), we have

(
a2 − r2

)
Y

′
0,0(r) = rY0,0(r)− 2,

(
a2 − r2

)
Y

′′
0,0(r)− 3rY

′
0,0(r)− Y0,0(r) = 0.

(6.1)

It is easy to check that ∞ and −a are the regular singular points (see [27]) of the second

equation in (6.1), so when the complex variable r → −a and ∞, the solution Y0,0(r) has the

same properties as for the real number r. This fact together with Lemma 4.2 yields the first

results.

Similarly, the other results can be proved.

The results concerning the number of zeros of F(r) are given as follows.

Lemma 6.2. When |a| > |b| ̸= 0, we have

N∗(F) ≤ 2
[n

2

]
+ 4n + 14,

where N∗(F) denotes the maximum number of non-zero simple zeros of F(r) in D = D1 ∩ D2 ∩ D3 =

C \ {r ∈ R | |r| ≥ |b|}, and [·] is the integer function.
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Proof. We only give the detailed proof for the case a > b > 0, other results can be proved in a

similar way.

Let 0 < ε ≪ 1 ≪ R and Dε,R be the domain obtained by removing four small discs

Cb,ε = {r ∈ C | |r − b| ≤ ε}, Ca,ε = {r ∈ C | |r − a| ≤ ε},

C−b,ε = {r ∈ C | |r + b| ≤ ε}, C−a,ε = {r ∈ C | |r + a| ≤ ε}

and four real intervals

L1 = [b + ε, a − ε], L2 = [a + ε, R],

L3 = [−a + ε,−b − ε], L4 = [−R,−a − ε]

from CR = {r ∈ C | |r| ≤ R}, L±
i be the upper and lower bounds of Li for i = 1, 2, 3, 4, see

Figure 6.1.

Figure 6.1: The domain Dε,R

Recalling F(r) in (3.11), we define

V(r) :=
(

r2 − a2 − b2
)

F(r)

=
[ n+2

2 ]

∑
i=0

Ãir
2iY0,0(r) +

[ n+2
2 ]

∑
i=0

B̃ir
2iỸ0,0(r) +

[ n+2
2 ]

∑
i=0

C̃ir
2iZ0,0(r)

+
[ n+1

2 ]

∑
i=0

D̃ir
2i+1Z1,0(r) +

[ n−1
2 ]+1

∑
i=0

Ẽir
2i +

[ n
2 ]

∑
i=0

F̃ir
2i+1,

where Ãi, B̃i, C̃i, D̃i, Ẽi and F̃i are similar to the coefficients of (5.3), with ai (i = 1, 2 . . . , 5), bi,

ci, di

(
i = 1, . . . , [ n

2 ]
)

, ei

(
i = 0, 1, . . . , [ n−1

2 ]
)

, fi

(
i = 1, . . . , [ n−1

2 ]
)

and gi

(
i = 0, 1, . . . , [ n

2 ]− 1
)

being replaced by Ai (i = 1, 2 . . . , 5), Bi, Ci, Di

(
i = 1, . . . , [ n

2 ]
)

, Ei

(
i = 0, 1, . . . , [ n−1

2 ]
)
,

Fi

(
i = 1, . . . , [ n−1

2 ]
)

and Gi

(
i = 0, 1, . . . , [ n

2 ]− 1
)

in (3.11), respectively.

Since the zeros of F(r) coincide with those of V(r) for r ∈ D, we investigate the latter

instead of the former. Now consider the change of the argument of V(r) along the boundary

of the domain Dε,R.

On ∂Cb,ε, V(r) ∼ C∗√
b−r

, where C∗ is a constant. This means that the argument of V(r)

increases by π + o(1). Since V(b − ε) is a real number, it intersects the real axis only once.
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On L+
1 , V(r) is real if and only if Im V(r) = 0, that is

0 = V+(r)− V−(r) =
2iπ√

r2 − b2

[ n+2
2 ]

∑
i=0

Cir
2i +

2iπ

r

[ n+1
2 ]

∑
i=0

Dir
2i+1,

where V±(r) denote the analytic continuation of V(r) to (−∞,−b) ∪ (b,+∞) from the upper

and lower half planes, respectively. Then letting u = r2, we can get that

[ n+2
2 ]

∑
i=0

Ciu
i +

√
u − b2

[ n+1
2 ]

∑
i=0

Diu
i = 0.

Define

V1(u) =
[ n+2

2 ]

∑
i=0

Ciu
i +

√
u − b2

[ n+1
2 ]

∑
i=0

Diu
i = 0,

and denote by n1 the number of the root of the function V1(u). Then V(u) intersects the

real axis exactly n1 times, which holds for L−
1 . So the argument of V(r) increases by at most

2(n1 + 1)π + o(1) on ∂Cb,ε ∪ L±
1 .

Similarly, the argument of V(r) increases by at most 2(n2 + 1)π + o(1) on ∂C−b,ε ∪ L±
3 ,

where n2 is the number of zeros of the function V2(u) defined by

V2(u) = −
[ n+2

2 ]

∑
i=0

Ciu
i +

√
u − b2

[ n+1
2 ]

∑
i=0

Diu
i.

On ∂Ca,ε, V(r) ∼ C∗∗√
a−r

for some constant C∗∗, which implies that the argument of V(r)

increases by at most π + o(1).

On L+
2 , V(r) is real if and only if Im V(r) = 0, that is

0 =
V+(r)− V−(r)

i
=

c2√
r2 − a2

[ n+2
2 ]

∑
i=0

Bir
2i +

2π√
r2 − b2

[ n+2
2 ]

∑
i=0

Cir
2i +

2π

r

[ n+1
2 ]

∑
i=0

Dir
2i+1

=
1√

r2 − a2

[ n+2
2 ]

∑
i=0

B∗
i r2i +

1√
r2 − b2

[ n+2
2 ]

∑
i=0

C∗
i r2i +

[ n+1
2 ]

∑
i=0

D∗
i r2i,

(6.2)

where B∗
i = c2Bi, C∗

i = 2πCi, D∗
i = 2πDi. Let u = r2, then the function (6.2) becomes

1√
u − a2

[ n+2
2 ]

∑
i=0

B∗
i ui +

1√
u − b2

[ n+2
2 ]

∑
i=0

C∗
i ui +

[ n+1
2 ]

∑
i=0

D∗
i ui = 0. (6.3)

By the Argument Principle, the number of roots of (6.3) is not greater than n + [ n
2 ] + 4 on

L+
2 . So V(r) intersects the real axis at most n + [ n

2 ] + 4 times, which is true for L−
2 . Then the

argument of V(r) totally increases by at most 2
(
n + [ n

2 ] + 5
)

π + o(1) on Ca,ε ∪ L±
2 .

In a similar way, we get that the argument of V(r) increases by at most 2
(
n + [ n

2 ] + 5
)

π +

o(1) on C−a,ε ∪ L±
4 .

On CR, we have

r2[ n+2
2 ]Y0,0(r) ∼ r2[ n+2

2 ]−1 ln r, r2[ n+2
2 ]Ỹ0,0(r) ∼ r2[ n+2

2 ]−1 ln(−r),

r2[ n+2
2 ]Z0,0(r) ∼ r2[ n+2

2 ]−1, r2[ n+1
2 ]+1Z1,0(r) ∼ r2[ n+1

2 ],
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then the corresponding arguments of these terms increase by 2
(
2[ n+2

2 ]− 1
)

π + o(1),

2
(
2[ n+2

2 ]− 1
)

π + o(1), 2
(
2[ n+2

2 ]− 1
)

π, 2
(
2[ n+1

2 ]
)

π, respectively. And the argument of rn+1

increases by 2(n + 1)π. Since 2[ n+2
2 ] − 1 ≤ n + 1, 2[ n+1

2 ] ≤ n + 1, the argument of V(r) in-

creases by at most 2(n + 1)π + o(1).

So along the boundary of Dε,R, the arguments of V(r) increase by at most

2(n1 + 1)π + 2
(

n +
[n

2

]
+ 5

)
π + 2(n2 + 1)π + 2

(
n +

[n

2

]
+ 5

)
π + 2(n + 1)π + o(1)

= 2
(

3n + n1 + n2 + 2
[n

2

]
+ 13

)
π + o(1).

On the other hand, a straightforward computation yields

V1(u) · V2(u) =




[ n+2
2 ]

∑
i=0

Ciu
i +

√
u − b2

[ n+1
2 ]

∑
i=0

Diu
i


 ·


−

[ n+2
2 ]

∑
i=0

Ciu
i +

√
u − b2

[ n+1
2 ]

∑
i=0

Diu
i




= (u − b2)
2[ n+1

2 ]

∑
i=0

D̃iu
i −

2[ n+2
2 ]

∑
i=0

C̃iu
i,

which implies that V1(u) ·V2(u) = 0 has at most n+ 2 zeros, taking into account the multiplici-

ties. Thus we have n1 + n2 ≤ n+ 2. By the Argument Principle, V(r) has at most 4n+ 2[ n
2 ] + 15

zeros in Dε,R.

Let ε → 0 and R → +∞, then we have that V(r) has at most 4n + 2
[

n
2

]
+ 15 zeros in

D = D1 ∩ D2 ∩ D3 obtained by removing two real intervals (−∞,−b] and [b,+∞) from C.

Since V(0) = 0, we get that

N∗(V) ≤ 2
[n

2

]
+ 4n + 14,

where N∗(V) denotes the maximum number of the non-zero simple zeros of V(r). Thus we

also have

N∗(F) ≤ 2
[n

2

]
+ 4n + 14.

This completes the proof of Lemma 6.2 for the case a > b > 0.

Similarly, we have

Lemma 6.3.

1. When |b| > |a| ̸= 0, N∗(F) ≤ 4[ n
2 ] + 3n + 14.

2. When |a| = |b| ̸= 0, N∗(F) ≤ 3n + 6.

3. When b = 0, a ̸= 0, N∗(F) ≤ 2[ n
2 ] + n + 1, where N∗(F) denotes the maximum number of

non-zero simple zeros of F(r) in r ∈ (0, min{|a|, |b|}) for ab ̸= 0 or r ∈ (0, |a|) for b = 0, a ̸= 0.

Based on Remark 3.1, we get the upper bound of zeros of the averaged function f (r),

which is stated as follows.

Lemma 6.4. Let N( f ) be the maximum number of simple zeros of f (r) in r ∈ (0, min{|a|, |b|}) for

ab ̸= 0 or r ∈ (0, |a|) for b = 0, a ̸= 0, then the following statements hold.

1. When ab ̸= 0 and |a| > |b|, N( f ) ≤ 2[ n
2 ] + 4n + 14;

2. When ab ̸= 0 and |a| < |b|, N( f ) ≤ 4[ n
2 ] + 3n + 14;
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3. When |a| = |b| ̸= 0, N( f ) ≤ 3n + 6;

4. When b = 0, a ̸= 0, N( f ) ≤ 2[ n
2 ] + n + 1,

where [·] is the integer function.

7 Proof of Theorem 1.1

Following Lemmas 5.2 and 6.4, we obtain Lemma 7.1 below.

Lemma 7.1. The following statements are true.

1. When |a| > |b| ̸= 0, 2[ n
2 ] + 2n + 3 ≤ N( f ) ≤ 2[ n

2 ] + 4n + 14;

2. When |b| > |a| ̸= 0, 2[ n
2 ] + 2n + 3 ≤ N( f ) ≤ 4[ n

2 ] + 3n + 14;

3. When |a| = |b| ̸= 0, [ n
2 ] + 2n + 3 ≤ N( f ) ≤ 3n + 6;

4. When b = 0, a ̸= 0, N( f ) = 2[ n
2 ] + n + 1,

where N( f ) is the same as defined by Lemma 6.4.

Proof of Theorem 1.1. By the first order averaging theory, the number of non-zero simple zeros

of the averaged function f (r) corresponds to that of limit cycles bifurcating from the period

annulus around the center of the unperturbed systems (1.1). Then Theorem 1.1 follows from

Lemmas 7.1 and 2.1.

This completes the proof of Theorem 1.1.
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Appendix. Coefficients of the function F(r) in (3.11)

For the odd number n, the coefficients in (3.11) take the form

A1 =

n−1
2

∑
i=0

(
T2i+1,0 + T̃2i+1,0

) (
− b2

)i
− 1

b

n−1
2

∑
i=1

(
W2i+1,0 + W̃2i+1,0

)(
− b2

)i
,

A2 = W1,0 − a

n+1
2

∑
j=1

W0,j

(
a2 + b2

)j−1
+ ab

n−1
2

∑
j=1

T0,j

(
a2 + b2

)j−1
,

A3 = T0,0 − b

n+1
2

∑
j=1

W0,j

(
a2 + b2

)j−1
+ b2

n−1
2

∑
j=1

T0,j

(
a2 + b2

)j−1
,

A4 = W̃1,0 − a

n+1
2

∑
j=1

W̃0,j

(
a2 + b2

)j−1
+ ab

n−1
2

∑
j=1

T̃0,j

(
a2 + b2

)j−1
,
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A5 = T̃0,0 − b

n+1
2

∑
j=1

W̃0,j

(
a2 + b2

)j−1
+ b2

n−1
2

∑
j=1

T̃0,j

(
a2 + b2

)j−1
,

Bi = T0,i − b

n+1
2

∑
j=i+1

W0,j

(
a2 + b2

)j−i−1
+ b2

n−1
2

∑
j=i+1

T0,j

(
a2 + b2

)j−i−1
,

B[ n
2

] = T0, n−1
2
− bW0, n+1

2
,

Ci = T̃0,i − b

n+1
2

∑
j=i+1

W̃0,j

(
a2 + b2

)j−i−1
+ b2

n−1
2

∑
j=i+1

T̃0,j

(
a2 + b2

)j−i−1
,

C[ n
2

] = T̃0, n−1
2
− bW̃0, n+1

2
,

Di =

n−1
2 −i

∑
t=0

∑
k+j=i

(
W2k+2t+1,j + W̃2k+2t+1,j

)
Ct

k+t

(
− b2

)t
− a

n+1
2

∑
j=i+1

(
W0,j + W̃0,j

)(
a2 + b2

)j−i−1

− b

n−1
2 −i

∑
t=0

∑
k+j=i

(
T2k+2t+1,j + T̃2k+2t+1,j

)
Ct

k+t

(
− b2

)t
+ ab

n−1
2

∑
j=i+1

(
T0,j + T̃0,j

)(
a2 + b2

)j−i−1
,

D[
n
2

] = ∑
k+j= n−1

2

(
W2k+1,j + W̃2k+1,j

)
− b ∑

k+j= n−1
2

(
T2k+1,j + T̃2k+1,j

)
− a

(
W0, n+1

2
+ W̃0, n+1

2

)
,

Ei =

n−1
2 −i

∑
t=0

∑
k+j=i

(
W2k+2t+2,j − W̃2k+2t+2,j

)
Ct

k+t

(
− b2

)t
+

n+1
2

∑
j=i+1

(
W0,j − W̃0,j

)(
a2 + b2

)j−i−1

− b

n−1
2 −i−1

∑
t=0

∑
k+j=i

(
T2k+2t+2,j − T̃2k+2t+2,j

)
Ct

k+t

(
− b2

)t
− b

n−1
2

∑
j=i+1

(
T0,j − T̃0,j

)(
a2 + b2

)j−i−1
,

E[ n−1
2

] = ∑
k+j= n−1

2

(
W2k+2,j − W̃2k+2,j

)
+

(
W0, n+1

2
− W̃0, n+1

2

)
,

Fi = ∑
k+j=i

(
T2k+1,jc

∗ + T̃2k+1,j c̃
∗
)

m2k

+

n−1
2 −i

∑
h=1

∑
k+j=i

(−b2)h−1
(

W2k+2h+1,jb
∗ + W̃2k+2h+1,jb̃

∗
) k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t−1)

− b

n−1
2 −i

∑
h=1

∑
k+j=i

(
T2k+2h+1,jb

∗ + T̃2k+2h+1,jb̃
∗
)(

− b2
)h−1 k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t−1),

F[ n−1
2

] = ∑
k+j= n−1

2

(
T2k+1,jc

∗ + T̃2k+1,j c̃
∗
)

m2k,

Gi = ∑
k+j=i

(
T2k+2,jc

∗+T̃2k+2,j c̃
∗
)

m2k+1

+

n−1
2 −i

∑
h=1

∑
k+j=i

(−b2)h−1
(

W2k+2h+2,jb
∗+W̃2k+2h+2,jb̃

∗
) k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t)−1

− b

n−3
2 −i

∑
h=1

∑
k+j=i

(−b2)h−1
(

T2k+2h+2,jb
∗ + T̃2k+2h+2,jb̃

∗
) k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t)−1,
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G[
n
2

]
−1

= ∑
k+j= n−3

2

(
T2k+2,jc

∗ + T̃2k+2,j c̃
∗
)

m2k+1 + ∑
k+j= n−3

2

(
W2k+4,jb

∗ + W̃2k+4,jb̃
∗
) k

∑
t=0

m2(k−t)+1.

For the even number n, the coefficients in (3.11) take the form

A1 =

n
2 −1

∑
i=0

(
T2i+1,0 + T̃2i+1,0

)(
− b2

)i
− 1

b

n
2

∑
i=1

(
W2i+1,0 + W̃2i+1,0

)(
− b2

)i
,

A2 = W1,0 − a

n
2

∑
j=1

W0,j

(
a2 + b2

)j−1
+ ab

n
2

∑
j=1

T0,j

(
a2 + b2

)j−1
,

A3 = T0,0 − b

n
2

∑
j=1

W0,j

(
a2 + b2

)j−1
+ b2

n
2

∑
j=1

T0,j

(
a2 + b2

)j−1
,

A4 = W̃1,0 − a

n
2

∑
j=1

W̃0,j

(
a2 + b2

)j−1
+ ab

n
2

∑
j=1

T̃0,j

(
a2 + b2

)j−1
,

A5 = T̃0,0 − b

n
2

∑
j=1

W̃0,j

(
a2 + b2

)j−1
+ b2

n
2

∑
j=1

T̃0,j

(
a2 + b2

)j−1
,

Bi = T0,i − b

n
2

∑
j=i+1

W0,j

(
a2 + b2

)j−i−1
+ b2

n
2

∑
j=i+1

T0,j

(
a2 + b2

)j−i−1
,

B[ n
2

] = T0, n
2
,

Ci = T̃0,i − b

n
2

∑
j=i+1

W̃0,j

(
a2 + b2

)j−i−1
+ b2

n
2

∑
j=i+1

T̃0,j

(
a2 + b2

)j−i−1
,

C[ n
2

] = T̃0, n
2
,

Di =

n
2 −i

∑
t=0

∑
k+j=i

(
W2k+2t+1,j + W̃2k+2t+1,j

)
Ct

k+t

(
− b2

)t
− a

n
2

∑
j=i+1

(
W0,j + W̃0,j

)(
a2 + b2

)j−i−1

− b

n
2 −i−1

∑
t=0

∑
k+j=i

(
T2k+2t+1,j + T̃2k+2t+1,j

)
Ct

k+t

(
− b2

)t
+ ab

n
2

∑
j=i+1

(
T0,j + T̃0,j

)(
a2 + b2

)j−i−1
,

D[ n
2 ]
= ∑

k+j= n
2

(
W2k+1,j + W̃2k+1,j

)
,

Ei =

n
2 −1−i

∑
t=0

∑
k+j=i

(
W2k+2t+2,j − W̃2k+2t+2,j

)
Ct

k+t

(
− b2

)t
+

n
2

∑
j=i+1

(
a2 + b2

)j−i−1(
W0,j − W̃0,j

)

− b

n
2 −i−1

∑
t=0

∑
k+j=i

(
T2k+2t+2,j − T̃2k+2t+2,j

)
Ct

k+t

(
− b2

)t
− b

n
2

∑
j=i+1

(
a2 + b2

)j−i−1(
T0,j − T̃0,j

)
,

E[ n−1
2

] = ∑
k+j= n

2 −1

(
W2k+2,j−W̃2k+2,j

)

− b ∑
k+j= n

2 −1

(
T2k+2,j−T̃2k+2,j

)
+
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W0, n
2
−W̃0, n

2

)
− b

(
T0, n

2
−T̃0, n

2

)
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Fi = ∑
k+j=i

(
T2k+1,jc

∗+T̃2k+1,j c̃
∗
)

m2k

+

n
2 −i

∑
h=1

(
− b2

)h−1

∑
k+j=i

(
W2k+2h+1,jb

∗+W̃2k+2h+1,jb̃
∗
) k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t−1)

− b

n
2 −1−i

∑
h=1

∑
k+j=i

(
T2k+2h+1,jb

∗ + T̃2k+2h+1,jb̃
∗
)(

− b2
)h−1 k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t−1),

F[ n−1
2

] = ∑
k+j= n

2 −1

(
T2k+1,jc

∗ + T̃2k+1,j c̃
∗
)

m2k + ∑
k+j= n

2 −1

(
W2k+3,jb

∗ + T̃2k+3,jb̃
∗
) k

∑
t=0

m2(k−t),

Gi = ∑
k+j=i

(
T2k+2,jc

∗+T̃2k+2,j c̃
∗
)

m2k+1

+

n
2 −1−i

∑
h=1

(
− b2

)h−1

∑
k+j=i

(
W2k+2h+2,jb

∗+W̃2k+2h+2,jb̃
∗
) k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t)−1

− b

n
2 −1−i

∑
h=1

(
− b2

)h−1

∑
k+j=i

(
T2k+2h+2,jb

∗ + T̃2k+2h+2,jb̃
∗
) k+h−1

∑
t=h−1

Ct−h+1
t m2(k+h−t)−1,

G[
n
2

]
−1

= ∑
k+j= n

2 −1

(
T2k+2,jc

∗ + T̃2k+2,j c̃
∗
)

m2k+1.
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1 Introduction and the main result

In this paper, we consider the class of second-order nonlinear ordinary differential equations

of the form

xtt + f3(x)x3
t + f2(x)x2

t + f1(x)xt + f0(x) = 0, (1.1)

where fi ̸= 0, i = 0, 1, 2, 3 are smooth real functions of the variable x = x(t). In the (x, ẋ)

phase plane, equation (1.1) is equivalent to

{

ẋ = y,

ẏ = f3(x)y3 + f2(x)y2 + f1(x)y + f0(x),
(1.2)

where the dot is the derivative with respect to the independent variable t. This kind of os-

cillator arises in modeling physical, chemical or electronic processes [3, 13]. The qualitative

behavior of the solutions of such oscillators is very important and complicated. Various meth-

ods have been proposed in the literature to examine the global dynamics of these solutions.

Analytical methods, such as the integrability method, attempt to transform the differential

system (1.2) into a known differential equation (linear, Bernoulli, Riccati, Abel). This method

is used to obtain the solutions explicitly. However, this method may not be sufficient to charac-

terize all the features of the system, especially when the solutions are not analytically known.

BCorresponding author. Email: meryem.belattar@univ-setif.dz
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On the other hand, some mathematicians have introduced new tools allowing to obtain the

maximum qualitative information about the dynamics of planar differential systems in gen-

eral. The tool relies on geometric characteristics is called the classification of phase portraits

in the Poincaré disk.

A significant number of papers regarding limit cycles, first integrals and invariants curves

[9, 16, 18, 20, 22, 24, 31] has been published, where the main goal was studying the qualitative

behavior of these solutions.

Starting with [7], Chandrasekar et al. investigated the integrability of a class of oscillators,

described by the generalized second-order nonlinear ordinary differential equation

ẍ + (k1xq + k2)ẋ + k3x2q+1 + k4xq+1 + λ1x = 0, (1.3)

where the parameters λ1, q and ki, i = 1, 2, 3, 4 are real. Using the extended Prelle–Singer

method, the authors were able to determine the first integrals and general solutions for the

integrable cases.

In [27], Sinelshchikov proved that two subfamilies of the following family of oscillators

yzz + k(y)y3
z + h(y)y2

z + f (y)yz + g(y) = 0, (1.4)

with k, h, f and g ̸= 0 are arbitrary sufficiently smooth functions, are integrable and each

subfamily possesses an autonomous parametric first integral and two autonomous invariant

curves.

In [28], the same author, along with Guha and Choudhury, studied a family of non-

autonomous second-order differential equations of the type

yzz + a3(z, y)y3
z + a2(z, y)y2

z + a1(z, y)yz + a0(z, y) = 0, (1.5)

where ai, i = 0, 1, 2, 3 are smooth functions such that a3 ̸= 0 and |a2|2 + |a1|2 + |a0|2 ̸= 0. The

authors showed that equations from (1.5) with a Lax representation admit a quadratic rational

first integral.

As a continuation of [7], Jibin and Han [17] showed that the oscillator considered in [7]

has a unique and stable limit cycle and they gave its exact parametric representation. In fact,

this limit cycle was obtained explicitly a long time before (see [1, 4] and references therein).

Naturally, the following question arises: is there an integrable polynomial planar oscillator

of the form (1.1) with an explicit algebraic limit cycle? To the best of our knowledge, we have

not encountered such an example in the literature. In this paper, we provide the answer

to this question. Moreover, since autonomous rational first integrals and limit cycles are

incompatible, in the sense that a planar vector field may have at most one of them. We

think that it is interesting to provide an example in which algebraic limit cycles and non-

autonomous first integrals can coexist. We consider the class of autonomous oscillators of the

form (1.2), where

f3(x) = − w

2h
,

f2(x) = −3w2(x3 − hx)

4h2
,

f1(x) = −3

8

(w

h

)3
x6 +

3

4

w3

h2
x4 − 1

8

w

h
(3w2 + 20)x2 + w,

f0(x) = − x

16h4
h1(x)h2(x),
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with

h1(x) = w2x4 − hw2x2 + 4h2,

h2(x) = w2x4 − 2hw2x2 + h2w2 + 4h2,

are smooth real functions of the variable x ∈ R, while h ∈ R∗ and w ∈ R are parameters.

Our main result is the following.

Theorem 1.1. Let X be the vector field given by (1.2) and let Γ be the set
{

(x, y) ∈ R
2 : x2 +

(

y +
w

2h
(x2 − h)x

)2
= h

}

.

Then the following statements hold:

(a) X has a non-autonomous first integral given by

H(x, y, t) =
x2+(y+ w

2h (w
2−h)x)

2−h

x2+(y+ w
2h (w

2−h)x)
2 ewt, ∀(x, y, t) ∈ R3.

(b) If h > 0 and w > 0 (resp. w < 0), then Γ is a global sink (resp. source) of X.

(c) If h > 0 and 0 < w < 4 (resp. −4 < w < 0), then Γ is a hyperbolic stable (resp. unstable)

algebraic limit cycle of X. Moreover, Γ is the unique limit cycle of X and is a global sink (resp.

source) of X.

Moreover, the phase portraits of X in the Poincaré disk are topologically equivalent to those given in

Figure 1.1.

h > 0

|w| > 4.

h > 0

|w| = 4.

h > 0

0 < |w| < 4.

h < 0

w ̸= 0.

h ̸= 0

w = 0.

Figure 1.1: The topological distinct phase portraits of X.

The paper is organized as follows. In Section 2, we introduce some preliminary results.

Theorem 1.1 is proved in Section 3.

2 Preliminary results

2.1 First integrals and invariant algebraic curves

Let X = (P, Q) be a polynomial vector field. We say that X is integrable if and only if there

exists a non-constant C1 function H : R2 → R such that

P(x, y)
∂H

∂x
(x, y) + Q(x, y)

∂H

∂y
(x, y) = 0, (2.1)
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for all (x, y) ∈ R2. Therefore the function H is constant along the trajectories (x(t), y(t)) of X,

i.e., if I ⊂ R is an interval, then there exists c ∈ R : H(x(t), y(t)) = c, for all t ∈ I. In such

a case the function H is called first integral and the trajectories of X are contained in the level

sets of H. If the first integral depends on the time t, i.e., H = H(x, y, t), thus we say that H is

a non-autonomous first integral of X if

P(x, y)
∂H

∂x
(x, y, t) + Q(x, y)

∂H

∂y
(x, y, t) +

∂H

∂t
(x, y, t) = 0, (2.2)

for all (x, y, t) ∈ R2 × I. Let F : R2 → R be a real polynomial. We say that F is an invariant for

X if it satisfies

P(x, y)
∂F

∂x
(x, y) + Q(x, y)

∂F

∂y
(x, y) = K(x, y)F(x, y), (2.3)

for all (x, y) ∈ R2. Here, K : R2 → R, which is the cofactor of F, is a real polynomial and its

degree is at most n − 1, where n represents the maximum of the degrees of P and Q. It can be

observed that the set defined by the equation F(x, y) = 0 is invariant under the flow of X. In

this case, this set may contain ovals, which can be algebraic limit cycles. For more details about

first integrals, invariant algebraic curves and algebraic limit cycles, see [4,6,8,10,21,23,32] and

Chapter 8 of [11] and the references therein.

2.2 Singular points

Let X = (P, Q) be a polynomial vector field. We say q ∈ R2 is a singularity of X if P(q) =

Q(q) = 0. The Jacobian matrix J of the vector field X at q is given by

J(q) =











∂P

∂x
(q)

∂P

∂y
(q)

∂Q

∂x
(q)

∂Q

∂y
(q)











. (2.4)

Let D(q) = λ1λ2 be the determinant and T(q) = λ1 + λ2 the trace of J(q), where λ1 and λ2

are the eigenvalues of J(q), that are the solutions of the characteristic equation

λ2 − T(q)λ + D(q) = 0.

The singularity q is:

(a) Hyperbolic if both eigenvalues have real parts different from zero. Here, we distinguish:

(i) If D(q) < 0, then q is a saddle.

(ii) If D(q) > 0 and T(q) > 0, then q is an unstable focus/node.

(iii) If D(q) > 0 and T(q) < 0, then q is a stable focus/node.

(b) Degenerate monodromic if D(q) > 0 and T(q) = 0. In this case, q is a weak focus or a

center.

(c) Semi-hyperbolic if D(q) = 0 and T(q) ̸= 0.

(d) Nilpotent if D(q) = T(q) = 0 and J(q) is not identically zero.

(e) Degenerate if D(q) = T(q) = 0 and J(q) is identically zero.

We characterize the local phase portraits at hyperbolic, semi-hyperbolic and nilpotent singular

points using Theorems 2.15, 2.19 and 3.5 of [11], respectively. For the degenerate singularities,

we employ the blow-up technique, see [2] for details.
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2.3 The blow-up technique

Consider X a planar polynomial vector field with an isolated singularity at the origin, then we

can apply the change of coordinates φ : S1 × R+ → R2 given by φ(θ, r) = (r cos θ, r sin θ) =

(x, y), where R+ = {r ∈ R : r ≥ 0}. Consequently, we can induce the vector field X0 in

S1 × R+ by pullback, i.e., X0 = Dφ−1X. One can see that if the k-jet of X (i.e., the Taylor

expansion of order k of X, denoted by jk) is zero at the origin, then the k-jet of X0 is also

zero at every point in S1 × {0}. Thus, taking the first k ∈ N satisfying jk(X(0, 0)) = 0 and

jk+1(X(0, 0)) ̸= 0, we can define the vector field X̂ = 1
rk X0. Therefore, it follows that the

behavior of X̂ near S1 is the same as that of X near the origin. One can also see that S1 is

invariant under the flow of X̂. For a more detailed study of this technique, see [2] or Chapter

3 of [11]. The vector field X̂ can be also expressed as

ṙ =
xẋ + yẏ

rk+1
, θ̇ =

xẏ − yẋ

rk+2
.

The blow-up technique has a generalization called the quasihomogeneous blow-up. In this

case, we consider the change of coordinates ψ(θ, r) = (rα cos θ, rβ sin θ) = (x, y) for (α, β) ∈
N2. In a similar way, we can induce the vector field X0 in S1 × R+. For some k ∈ N maximal,

one can define Xα,β = 1
rk X0 and such a vector field is given by

ṙ = ξ(θ)
cos θ rβ ẋ + sin θ rαẏ

rα+β+k−1
, θ̇ = ξ(θ)

α cos θ rαẏ − β sin θ rβ ẋ

rα+β+k
,

where ξ(θ) = (β sin2 θ + α cos2 θ)−1. Since ξ(θ) > 0 for all θ ∈ S1, therefore it can be eliminated

by a change in the time variable. Thus, it follows then

ṙ =
cos θ rβ ẋ + sin θ rαẏ

rα+β+k−1
, θ̇ =

α cos θ rαẏ − β sin θ rβ ẋ

rα+β+k
,

As in the previous technique, the behavior of Xα,β near S1 (which is invariant) is similar to the

behavior of X near the origin.

2.4 The Poincaré compactification

To study the behavior of the trajectories of a planar vector field near infinity, we will employ

the Poincaré compactification (for more details, see [30] or Chapter 5 of [11]).

Let X = (P, Q) be a planar polynomial vector field of degree n ∈ N. We identify R2

with the plane (x1, x2, 1) in R3 and define the Poincaré sphere as S2 = {(y1, y2, y3) ∈ R3 :

y2
1 + y2

2 + y2
3 = 1}. We denote the northern hemisphere, the southern hemisphere and the equator by

H+ = {y ∈ S2 : y3 > 0}, H− = {y ∈ S2 : y3 < 0} and S1 = {y ∈ S2 : y3 = 0}, respectively. The

Poincaré compactified vector field p(X) associated with X is an analytic vector field generated on

S2 by the central projections f± : R2 → H±, given by f±(x1, x2) = ±∆(x1, x2)(x1, x2, 1), where

∆(x1, x2) = (x2
1 + x2

2 + 1)−
1
2 . These two maps define two symmetric copies of X, one copy

X+ in H+ and the other copy X− in H−. In brief, we obtain the vector field X′ = X+ ∪ X−

defined on S2\S1. Note that the equator S1 of the sphere S2 corresponds with the infinity of R2.

The analytic extension of X′ from S2\S1 to S2, given by yn−1
3 X′, is the Poincaré compactified

vector field p(X). The Poincaré disk D is the projection of the closed northern hemisphere

on y3 = 0 under (y1, y2, y3) 7→ (y1, y2) (the vector field given by this projection will also be

denoted by p(X)). The behavior of p(X) near S1 is the same as the behavior of X near infinity
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of R2. We define the local charts of S2 by Ui = {y ∈ S2 : yi > 0}, Vi = {y ∈ S2 : yi < 0}
for i ∈ {1, 2, 3} and their corresponding local maps by φi : Ui → R2, ψi : Vi → R2 with

φi(y1, y2, y3) = −ψi(y1, y2, y3) =
( ym

yi
,

yn

yi

)

, where m ̸= i, n ̸= i and m < n. Denoting by (u, v)

the image of φi and ψi, for i = 1, 2, in each chart. The expression of p(X) in the local chart U1

is

u̇ = vn

[

Q

(

1

v
,

u

v

)

− uP

(

1

v
,

u

v

)]

, v̇ = −vn+1P

(

1

v
,

u

v

)

,

and in the local chart U2, it is given by

u̇ = vn

[

P

(

u

v
,

1

v

)

− uQ

(

u

v
,

1

v

)]

, v̇ = −vn+1Q

(

u

v
,

1

v

)

.

The expression of p(X) in V1 and V2 is the same as that for U1 and U2, except by a multiplica-

tive factor of (−1)n−1. In these local charts for i ∈ {1, 2}, the coordinate v = 0 represents the

points of S1. Thus, the singularities at infinity of R2. Note that S1 is invariant under the flow

of p(X).

2.5 The Markus–Neumann theorem

Let X be a polynomial vector field and p(X) be its compactification defined on D. Consider

φ the flow associated to p(X). The separatrices of p(X) are orbits, which can be:

1. All the orbits contained in S1, i.e., at infinity;

2. All the singular points;

3. All the trajectories that are located on the boundaries of the hyperbolic sectors of the

finite and infinite singular points;

4. All the limit cycles of X.

The set of all separatrices, denoted by S is closed. Each connected component of D\S is called

a canonical region of the flow (D, φ).

The separatrix configuration Sc of the flow (D, φ), is the union of all the separatrices S of

the flow, together with one orbit from each canonical region.

Two separatrix configurations Sc and S∗
c of the flow (D, φ) are topologically equivalent if

there exists a homeomorphism from D to D that transforms orbits of Sc into those of S∗
c

while preserving or reversing the orientation of all these orbits.

Theorem 2.1 (Markus–Neumann). Let p(X) and p(Y) be two Poincaré compactifications in the

Poincaré disk D of two polynomial vector fields X and Y, with finitely many singularities. Then the

phase portraits of p(X) and p(Y) are topologically equivalent if and only if their separatrix configura-

tions are topologically equivalent.

Proof. See [5, 25, 26] and Section 1.9 of [11].

2.6 The solutions of the quartic algebraic equation of degree four

It is well known that the quartic equation

ax4 + bx3 + cx2 + d = 0, (2.5)
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where a ̸= 0, can be transformed via the change of variable x 7→ x − b
4a into the equation

x4 + px2 + qx + r = 0. (2.6)

The discriminant of equation (2.6) is given by

∆ = 16p4r − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3.

Suppose ∆ > 0. Then the following statements hold (see [19] or Chapter 12 of [12]).

(i) If p < 0 and 4r < p2, then all roots of (2.6) are simple and real.

(ii) If p ⩾ 0 or 4r ⩾ p2, then all roots of (2.6) are simple and complex.

Moreover, we observe that if q = 0, then ∆ = 16(p2 − 4r)2r.

3 Proof of Theorem 1.1

Let us look at statement (a). To see that

H(x, y, t) =
x2 +

(

y + w
2h (w

2 − h)x
)2 − h

x2 +
(

y + w
2h (w

2 − h)x
)2

ewt, (3.1)

is a non-autonomous first integral of X, it is sufficient to observe that the equation

P(x, y)
∂H

∂x
(x, y, t) + Q(x, y)

∂H

∂y
(x, y, t) +

∂H

∂t
(x, y, t) = 0,

is satisfied. We now look at statement (b). Suppose w > 0 and let

H1(x, y) =
x2 +

(

y + w
2h (w

2 − h)x
)2 − h

x2 +
(

y + w
2h (w

2 − h)x
)2

.

We want to prove that

Γ =

{

(x, y) ∈ R
2 : x2 +

(

y +
w

2h
(x2 − h)x

)2
= h

}

,

is a global sink of X. It follows from (3.1) that H(x, y, t) = H1(x, y)ewt.

Let (x(t), y(t)) ∈ R2 be an orbit of X. Since w > 0, observe that if t → +∞, then ewt → +∞.

However, it follows from statement (a) that H(x(t), y(t), t) is constant, for every t ∈ R. There-

fore, we have H1(x(t), y(t)) → 0 as t → +∞. The statement now follows from the fact that

Γ coincides with the set
{

(x, y) ∈ R2 : H1(x, y) = 0
}

. For w < 0, the proof follows straight-

forwardly from the fact that X is invariant under the change of variables and parameters

(x, t, w) 7→ (−x,−t,−w).

Let us look at statement (c). First, let

F(x, y) = x2 +
(

y +
w

2h
(x2 − h)x

)2
− h. (3.2)

Notice that if h > 0, then

P(x, y)
∂F

∂x
(x, y) + Q(x, y)

∂F

∂y
(x, y) = K(x, y)F(x, y), (3.3)
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where

K(x, y) = − w

4h3
(w2x6 − 2hw2x4 + 4hwx3y + h2(w2 + 4)x2 − 4h2wxy + 4h2y2). (3.4)

Therefore, if h > 0, the curve F = 0 is an invariant algebraic curve of X.

We claim that if 0 < |w| < 4, then the origin is the unique finite singularity of X. Indeed,

it follows from (1.2) that the finite singularities of X, other then the origin, are of the form

(xi, 0), i ∈ {1, 2, 3, 4} where xi are the real solutions of h1(x)h2(x) = 0, with

h1(x) = w2x4 − hw2x2 + 4h2, h2(x) = w2x4 − 2hw2x2 + h2w2 + 4h2.

Let ∆i denote the discriminant of hi, i ∈ {1, 2}. It follows from Subsection 2.6 that

∆1 = 64h6w6(w2 − 16)2, ∆2 = 4096h6w6(w2 + 4).

Therefore, we conclude that if w ̸= 0 and h ̸= 0, then h2 always has a positive discrimi-

nant. Hence, all its singularities are either real or complex. Since h2 satisfies statement (ii) of

Subsection 2.6, we conclude that h2 never has real solutions.

Similarly, it can be seen that if h > 0 and 0 < |w| < 4, then h1 also does not have real

solutions. Thus, if h > 0 and 0 < |w| < 4, then the origin is the unique finite singularity of X.

Since it does not lie on the curve F−1(0) = Γ, we conclude that Γ is an algebraic limit cycle.

Moreover, the limit cycle Γ is hyperbolic (for more details, see [14]) if only if

I(Γ) =
∫ T

0
K(γ(t))dt ̸= 0,

where T > 0 is the period of Γ, γ(t) is the parameterization of Γ and the cofactor K is given

by (3.3) and (3.4), hence

• if I(Γ) < 0, Γ is a stable limit cycle;

• if I(Γ) > 0, Γ is an unstable limit cycle.

It follows from (3.4) that K(x, y) < 0 (resp. K(x, y) > 0) if w > 0 (resp. w < 0). Consequently,

Γ is a hyperbolic limit cycle. In particular, it follows from statement (b) that Γ is the unique

limit cycle of X and that it is stable if w > 0 and unstable if w < 0.

We now look to the phase portraits of X. If w = 0 then

ẋ = y, ẏ = −x,

and thus X has a global center. In the sequel, we assume w ̸= 0. Since X is invariant under

the change of variables (x, t, w) 7→ (−x,−t,−w), it is enough to assume w > 0. Similarly to

the previous analysis on the roots of h1 and h2, one can see that:

(a) All the roots of h2 are complex;

(b) If h < 0, then all roots of h1 are complex;

(c) If h > 0 and 0 < w < 4, then all the roots of h1 are complex;

(d) If h > 0 and w = 4, then h1 has two real solutions of multiplicity two, given by x± =

±
√

h
2 ;
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(e) If h > 0 and w > 4, then h1 has four distinct real solutions, given by

x1 = − 1√
2

√

√

√

√h

(

1 +

√
w2 − 16

w2

)

, x2 = − 1√
2

√

√

√

√h

(

1 −
√

w2 − 16

w2

)

,

x3 =
1√
2

√

√

√

√h

(

1 −
√

w2 − 16

w2

)

, x4 =
1√
2

√

√

√

√h

(

1 +

√
w2 − 16

w2

)

.

Let pi = (xi, 0), i ∈ {1, 2, 3, 4} be the singularities associated to xi and let O denote the

origin. Calculations show that the origin is always a hyperbolic unstable focus. Moreover, if

w > 4 then p1 and p4 are hyperbolic stable nodes, while p2 and p3 are hyperbolic saddles.

Furthermore, if w = 0 then p1 = p2 and p3 = p4 are semi-hyperbolic saddle-nodes.

We now look at the infinity. The unique singularity at infinity is the origin of the second

chart of the Poincaré compactification. In this case, after performing two quasihomogeneous

blow-ups, with weights (α1, β1) = (2, 3) and (α2, β2) = (2, 1) respectively, we obtain the local

phase portraits as illustrated in Figure 3.1.

h > 0. h < 0.

Figure 3.1: Local phase portrait at the origin of the second chart of the Poincaré

compactification.

We now study the phase portrait for the case w > 4. In this case, the local phase portrait

is shown in Figure 3.2.

1

2

3

4

5

6

7

8

9

10

p1

p4

Figure 3.2: Uncompleted phase portrait for w > 4.
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Observe that the invariant algebraic curve F(x, y) = 0 is given by the union of the curves

y± =
w

2h
(h − x2)x ±

√

h − x2, (3.5)

for |x| <
√

h. It follows that separatrix 10 goes to the stable node p4, while separatrix 8 goes

to the stable node p1. Since X is invariant under the change of variables (x, y) 7→ (−x,−y),

it follows that separatrix 5 goes to p1 and separatrix 3 goes to p4. Separatrices 7 and 2 are

now enclosed in the bounded region delimited by Γ and thus have no other option than to be

generated at the origin. See Figure 3.3.

1

4

6

9

p1

p4

Figure 3.3: Uncompleted phase portrait for w > 4.

We now have numerical evidence, according to software P4 (see Chapters 9 and 10 of [11]),

that separatrix 1 goes to p1. Therefore, it follows from the invariance of X under the change

of variables (x, y) 7→ (−x,−y) that separatrix 6 goes to p4. Hence, separatrix 9 must be born

at the north pole, while separatrix 4 must be born at the south pole. The other phase portraits

can be obtained in a similar manner.

Acknowledgment

The authors would like to thank the Editor-in-Chief and anonymous referee(s) for reading

the manuscript carefully. This work has been realized as part of a research project under the

code: PRFUNCOOLO3UN190120220004. We would like to thank the Algerian Ministry of

Higher Education and Scientific Research (MESRS) and the General Directorate of Scientific

Research and Technological Development (DGRSDT) for their financial support. Paulo San-

tana is supported by São Paulo Research Foundation (FAPESP), under grants 2019/10269-3

and 2021/01799-9.

Declarations

Conflicts of interest The authors declare that they have no conflicts of interest.



A class of oscillators with non-autonomous first integrals and algebraic limit cycles 11

References

[1] M. A. Abdelkader, Relaxation oscillators with exact limit cycles, J. Math. Anal. Appl.

218(1998), No. 1, 308–312. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✻✴❥♠❛❛✳✶✾✾✼✳✺✼✹✻; MR1601905

[2] M. Alvarez, A. Ferragut, J. Xavier, A survey on the blow up technique, Internat. J.

Bifur. Chaos Appl. Sci. Engrg. 21(2011), No. 11, 3103–3118. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✷✴

❙✵✷✶✽✶✷✼✹✶✶✵✸✵✹✶; MR2871964

[3] A. A. Andronov, A. A. F. Vitt, S. E. Khaikin, Theory of oscillators, International Series

of Monographs in Physics, Vol. 4, Pergamon Press, Oxford, 1966. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳

✶✵✵✷✴③❛♠♠✳✶✾✻✼✵✹✼✵✼✷✵; MR198734; Zbl 0188.56304

[4] A. Bendjeddou, R. Cheurfa, On the exact limit cycle for some class of planar differential

systems, NoDEA Nonlinear Differential Equations Appl. 14(2007), No. 5, 491–498. ❤tt♣s✿

✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✵✵✵✸✵✲✵✵✼✲✹✵✵✺✲✽; MR2374196

[5] J. G. E. Buendía, V. J. López, On the Markus–Neumann theorem, J. Differential

Equations 265(2018), No. 11, 6036–6047. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥❞❡✳✷✵✶✽✳✵✼✳✵✷✶;

MR3857505

[6] J. Cao, H. Jiang, Planar polynomial vector fields having first integrals and algebraic limit

cycles, J. Math. Anal. Appl. 361(2010), No. 1, 177–186. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥♠❛❛✳

✷✵✵✾✳✵✾✳✵✵✼; MR2567292

[7] V. K. Chandrasekar, S. N. Pandey, M. Senthilvelan, M. Lakshmanan, A simple and

unified approach to identify integrable nonlinear oscillators and systems, J. Math. Phys.

47(2006), No. 2, 37 pp. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✻✸✴✶✳✷✶✼✶✺✷✵; MR2208170

[8] J. Chavarriga, H. Giacomini, J. Llibre, Uniqueness of algebraic limit cycles for

quadratic systems, J. Math. Anal. Appl. 261(2001), No. 1, 85–99. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳

✶✵✵✻✴❥♠❛❛✳✷✵✵✶✳✼✹✼✻

[9] V. Cheresiz, E. Volokitin, The algebraic curves of planar polynomial differential systems

with homogeneous nonlinearities, Electron. J. Qual. Theory Differ. Equ. 2021, No. 51, 1–12.

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✹✷✸✷✴❡❥qt❞❡✳✷✵✷✶✳✶✳✺✶; MR4287686
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Abstract. For each fixed integer N ≥ 2 let Ω ⊂ R
N be an open, bounded and convex

set with smooth boundary. For each real number p ∈ (1, ∞) define

M(p; Ω) = inf
u∈W2,∞

C (Ω)\{0}

∫

Ω
(exp(|∆u|p)− 1) dx

∫

Ω
(exp(|u|p)− 1) dx

,

where W2,∞
C (Ω) := ∩1<p<∞{u ∈ W

2,p
0 (Ω) : ∆u ∈ L∞(Ω)}. We show that if the radius

of the largest ball which can be inscribed in Ω is strictly larger than a constant which
depends on N then M(p; Ω) vanishes while if the radius of the largest ball which can be
inscribed in Ω is strictly less than 1 then M(p; Ω) is a positive real number. Moreover,
in the latter case when p is large enough we can identify the value of M(p; Ω) as being
the principal frequency of the p-Bilaplacian on Ω with coupled Dirichlet–Neumann
boundary conditions.

Keywords: p-Bilaplacian, principal frequency, Dirichlet–Neumann boundary condi-
tions.

2020 Mathematics Subject Classification: 35P30, 47J05, 47J20, 49J40, 49S05.

1 Introduction

1.1 Notations

For each integer N ≥ 1 we denote by R
N the N-dimensional Euclidean space. Let | · | denote

the modulus on R and for each integer N ≥ 2 let | · |N denote the Euclidean norm on R
N . For

BCorresponding author. E-mails: farcaseanu.maria@yahoo.com (M. Fărcăs, eanu), mmihailes@yahoo.com (M.

Mihăilescu), denisa.stancu@yahoo.com (D. Stancu-Dumitru).
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each open and bounded subset Ω of R
N denote by RΩ the inradius of Ω (that is the radius of

the largest ball which can be inscribed in Ω). Finally, for each integer N ≥ 1 define

P
N := {Ω ⊂ R

N : Ω is an open, bounded, convex set with smooth boundary ∂Ω}.

1.2 Statement of the problem

For each Ω ∈ P
N and each real number p ∈ (1, ∞) we define

M(p; Ω) := inf
u∈W2,∞

C (Ω)\{0}

∫

Ω
(exp(|∆u|p)− 1)dx

∫

Ω
(exp(|u|p)− 1)dx

(1.1)

where W2,∞
C (Ω) := ∩1<p<∞{u ∈ W

2,p
0 (Ω) : ∆u ∈ L∞(Ω)}. The goal of this paper is to

emphasize the following phenomena which appear in relation with the minimization problem

(1.1): if RΩ is large enough then M(p; Ω) = 0 for each p ∈ (1, ∞) while if RΩ is small enough

then M(p; Ω) > 0 for each p ∈ (1, ∞). Moreover, in the latter case we can identify the value

of M(p; Ω) for each p large enough as being equal with the following quantity

ΛC(p; Ω) := inf
u∈W

2,p
0 (Ω)\{0}

∫

Ω
|∆u|pdx

∫

Ω
|u|pdx

, (1.2)

(see Theorem 1.1 for the precise result on problem (1.1)). Regarding ΛC(p; Ω) we recall the

well-known fact that it represents the principal eigenvalue of the p-Bilaplacian with coupled

Dirichlet–Neumann boundary conditions (see, e.g., N. Katzourakis & E. Parini [5, relation

(1.6)]). In other words, ΛC(p; Ω) is the smallest real number Λ for which the following equa-

tion has a nontrivial solution
{

∆2
pu = Λ|u|p−2u, in Ω,

u = |∇u|N = 0, on ∂Ω,
(1.3)

where ∆2
pu := ∆(|∆u|p−2∆u) stands for the p-Bilaplacian. At this point we consider impor-

tant to recall the fact that problem (1.3) with p = 2 represents the famous “clamped plate”

problem, which was initially studied by Lord J. W. S. Rayleigh in his famous book The Theory

of Sound (1877), and subsequently deeply investigated by G. Szegö (1950), G. Talenti (1981),

M. Ashbaugh & R. Benguria (1995) and N. Nadirashvili (1995) from an isoperimetric point of

view.

1.3 Motivation

For each Ω ∈ P
N and each real number p ∈ (1, ∞) we recall the eigenvalue problem for the

p-Laplacian under homogeneous Dirichlet boundary conditions

{

−∆pu = λ|u|p−2u, in Ω,

u = 0, on ∂Ω,
(1.4)

where λ is a real parameter and ∆pu := div(|∇u|
p−2
N ∇u) is the p-Laplace operator. It is well-

known (see, e.g., P. Lindqvist [7]) that the first eigenvalue of problem (1.4) has the following
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variational characterization

λ1(p; Ω) := inf
u∈W

1,p
0 (Ω)\{0}

∫

Ω
|∇u|

p
Ndx

∫

Ω
|u|pdx

.

Defining

Λ1(p; Ω) := inf
u∈X0(Ω)\{0}

∫

Ω
(exp(|∇u|

p
N)− 1) dx

∫

Ω
(exp(|u|p)− 1) dx

, (1.5)

where X0(Ω) := W1,∞(Ω) ∩
(

∩1<p<∞ W
1,p
0 (Ω)

)

, we recall that by [2, Theorem 2] (see also [1]

for similar results) we know that Λ1(p; Ω) = 0 if RΩ > 1 while Λ1(p; Ω) > 0 if RΩ ≤ 1.

Moreover, there exists a constant M ∈ [e−1, 1] such that if RΩ ≤ M we have Λ1(p; Ω) =

λ1(p; Ω), for all p ∈ (1, ∞). Furthermore, by [1, Theorem 2] we have that if RΩ < 1 then there

exists a constant P ∈ (1, ∞) such that Λ1(p; Ω) = λ1(p; Ω), for all p ∈ [P, ∞).

Motivated by these results regarding Λ1(p; Ω) and λ1(p; Ω) in this paper we show that we

can arrive to a similar conclusion in relation with M(p; Ω) and ΛC(p; Ω).

1.4 Main result

The main result of this paper is given by the following theorem.

Theorem 1.1. Assume N ≥ 2 is a given integer and let CN be the constant given by

CN :=















4

ln 2
, if N = 2,

2
2
N (N − 2)

1 − 2
2
N −1

, if N ≥ 3 .

(1.6)

Then for each Ω ∈ P
N and each p ∈ (1, ∞) we have that M(p; Ω) > 0, if RΩ < 1 and M(p; Ω) = 0

if RΩ > C1/2
N . Moreover, if Ω ∈ P

N with RΩ < 1 then there exists a constant P⋆
> 1 such that

M(p; Ω) = ΛC(p; Ω) for all p ∈ [P⋆, ∞).

Actually, a careful look at the proof of Theorem 1.1 (more precisely, observing the fact that

relation (3.1) holds true for a ball with the radius strictly smaller that C1/2
N ) shows that it can

be improved in the particular case when Ω is a ball, in the following sense.

Corollary 1.2. Assume N ≥ 2 is a given integer and let BR be a ball of radius R from R
N centered

at the origin. Then for each p ∈ (1, ∞) we have that M(p; BR) > 0, if R < C1/2
N and M(p; BR) = 0

if R > C1/2
N . Moreover, if R < C1/2

N then there exists a constant P⋆
> 1 such that M(p; BR) =

ΛC(p; BR) for all p ∈ [P⋆, ∞).

Note that, unfortunately, our proof of Theorem 1.1 cannot fill the gap which occurs when

RΩ ∈ [1, C1/2
N ]. In the case of Corollary 1.2 this gap reduces to an uncovered case when

R = C1/2
N .

The rest of the paper comprises two more sections offering the following pieces of infor-

mation: in Section 2 we recall the asymptotic behaviour of ΛC(p; Ω)1/p, as p → ∞, and we

give a lower bound for ΛC(p; Ω); Section 3 is devoted to the proof of the main result.
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2 Auxiliary results on ΛC(p; Ω)

2.1 The asymptotic behaviour of ΛC(p; Ω)1/p, as p → ∞

Define

ΛC
∞(Ω) := inf

u∈W2,∞
C (Ω)\{0}

∥∆u∥L∞(Ω)

∥u∥L∞(Ω)
. (2.1)

By [5, Theorem 1.1] we know that

lim
p→∞

ΛC(p; Ω)1/p = ΛC
∞(Ω) . (2.2)

Note that in general an explicit expression of ΛC
∞(Ω) is not available in the literature but when

Ω = BR, where BR stands for a ball of radius R from R
N centered at the origin, we have (by

[5, Proposition 3.5]) that ΛC
∞(BR) = CN R−2, where CN is given by relation (1.6). Moreover,

by [5, Proposition 3.5] we have that the minimizer realising the infimum in the definition of

ΛC
∞(BR) is the positive, radially symmetric function u0(x) := w1

(

x
R

)

with w1 being the solution

of the problem
{

−∆w1(x) = f (x), for x ∈ B1,

w1(x) = 0, for x ∈ ∂B1,

where

f (x) :=

{

1, if |x|N ≤ 2−
1
N ,

−1, if 2−
1
N < |x|N < 1 .

Actually, by [5, Lemma 3.3]) we know that for N = 2 we have

w1(x) =















ln 2

4
−

|x|22
4

, for |x|2 ≤ 2−
1
2 ,

|x|22
4

−
ln(|x|2)

2
−

1

4
, for 2−

1
2 < |x|2 < 1,

while for N ≥ 3 we have

w1(x) =



















2−
2
N

N
−

1

2N
−

1

N(N − 2)
+

21− 2
N

N(N − 2)
−

|x|2N
2N

, for |x|N ≤ 2−
1
N ,

|x|2N
2N

+
|x|2−N

N

N(N − 2)
−

1

2N
−

1

N(N − 2)
, for 2−

1
N < |x|N < 1 .

Consequently, we have that the function u0 : BR → R, given by u0(x) := w1

(

x
R

)

, has the

following expressions:

• if N = 2 then

u0(x) =















ln 2

4
−

|x|22
4R2

, for |x|2 ≤ 2−
1
2 R,

|x|22
4R2

−
ln(|x|2)− ln(R)

2
−

1

4
, for 2−

1
2 R < |x|2 < R.

• if N ≥ 3 then

u0(x) =



















1 − 2
2
N −1

2
2
N (N − 2)

−
|x|2N

2NR2
, for |x|N ≤ 2−

1
N R,

|x|2N
2NR2

+
|x|2−N

N

N(N − 2)R2−N
−

1

2N
−

1

N(N − 2)
, for 2−

1
N R < |x|N < R.
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Remark 2.1. Simple computations show that when N = 2 the function u0 satisfies ∥u0∥L∞(BR)=
ln 2

4 and ∥∆u0∥L∞(BR) = R−2. Similarly, when N ≥ 3 the function u0 verifies ∥u0∥L∞(BR) =

1−2
2
N −1

2
2
N (N−2)

and ∥∆u0∥L∞(BR) = R−2. Consequently, in both cases u0 is a minimizer for ΛC
∞(BR)

with ∥u0∥L∞(BR) = C−1
N , where CN is given by relation (1.6).

2.2 A lower bound for ΛC(p; Ω)

The goal of this section is to prove the following result:

Proposition 2.2. Let N ≥ 2 be an integer and Ω ∈ P
N be a set. Then we have

ΛC(p; Ω) ≥ p−1R
−2p
Ω

, ∀ p ∈ (1, ∞) .

The main ingredient in proving Proposition 2.2 is a Hardy-type inequality due to E. Miti-

dieri [8, Corollary 2.2]. We recall this inequality below.

Theorem 2.3. If Ω ⊂ R
N is a bounded domain with smooth boundary and ϕ : Ω → (0, ∞) is a

superharmonic function such that ϕ ∈ C2(Ω) and it satisfies −∆ϕ ≥ a|∇ϕ|2Nϕ−1, in Ω, for some

constant a > 0 then for each real number p ∈ (1, ∞) the following inequality holds true

(p − 1)a + p

p2

∫

Ω
|∆ϕ||u|pdx ≤

∫

Ω
ϕp|∆ϕ|1−p|∆u|pdx, ∀ u ∈ C∞

0 (Ω) . (2.3)

2.2.1 Proof of Proposition 2.2.

For each Ω ∈ P
N let v be the unique function satisfying

{

−∆v = 1, in Ω,

v = 0, on ∂Ω.

In particular, we have that v ∈ C2(Ω). Letting M2(Ω) := maxx∈Ω v(x), we have by [4, Theorem

1.2 with p = q = 2] that

M2(Ω) ≤
R2

Ω

2
.

On the other hand, by [4, Theorem 3.2] (with p = 2 and F being the Euclidean norm on R
N)

we know that

2−1|∇v(x)|2N + v(x) ≤ M2(Ω), ∀ x ∈ Ω .

Thus, defining ϕ : Ω → (0, ∞) by

ϕ(x) := v(x) + M2(Ω), ∀ x ∈ Ω ,

we have that ϕ ∈ C2(Ω) and since −∆ϕ(x) = −∆v(x) = 1 for all x ∈ Ω, by the above estimate

we deduce that

2−1ϕ−1(x)|∇ϕ(x)|2N ≤ −∆ϕ(x), ∀ x ∈ Ω .

In other words, ϕ given above satisfies the hypothesis from Theorem 2.3 with a = 2−1 and,

consequently, the following inequality holds true

3p − 1

2p2

∫

Ω
|u|p dx ≤

∫

Ω
(v + M2(Ω))p|∆u|p dx, ∀ u ∈ C∞

0 (Ω) . (2.4)

Since v(x) ≤ M2(Ω) ≤ 2−1R2
Ω for each x ∈ Ω inequality (2.4) implies the conclusion of

Proposition 2.2.
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3 Proof of the main result

We start by establishing three lemmas which will be helpful in the proof of our main result.

Lemma 3.1. Assume N ≥ 2 is an integer. For each Ω ∈ P
N and each p ∈ (1, ∞) we have M(p; Ω) ≤

ΛC(p; Ω).

Proof. Assume p ∈ (1, ∞) is arbitrary but fixed. Taking into account relation (1.1) for any

u ∈ C∞
0 (Ω) \ {0} ⊂ W2,∞

C (Ω) \ {0} and t ∈ (0, 1) we have

M(p; Ω) ≤

∫

Ω
(exp(|∆(tu)|p)− 1)dx
∫

Ω
(exp(|tu|p)− 1)dx

=

∫

Ω
|∆u|pdx +

∞

∑
k=2

t(k−1)p
∫

Ω

|∆u|kp

k!
dx

∫

Ω
|u|pdx +

∞

∑
k=2

t(k−1)p
∫

Ω

|u|kp

k!
dx

.

Letting t → 0+ in the above inequality we get

M(p; Ω) ≤

∫

Ω
|∆u|p dx

∫

Ω
|u|p dx

, ∀ u ∈ C∞
0 (Ω) \ {0} .

Since C∞
0 (Ω) is dense in W

2,p
0 (Ω) and ΛC(p; Ω) is defined by relation (1.2) we deduce that the

conclusion of Lemma 3.1 holds true.

Lemma 3.2. Assume N ≥ 2 is an integer. For each Ω ∈ P
N and each p ∈ (1, ∞) we have M(p; Ω) ≥

infk∈N\{0} ΛC(kp; Ω).

Proof. Assume p ∈ (1, ∞) is arbitrary but fixed. Using the definition of ΛC(p; Ω) given by

relation (1.2) we deduce that for each u ∈ W2,∞
C (Ω) \ {0} (which, in particular, ensures that

u ∈ W
2,q
0 (Ω) \ {0} for any q > 1), we have

∫

Ω
(exp(|∆u|p)− 1) dx

∫

Ω
(exp(|u|p)− 1) dx

≥

∞

∑
k=1

ΛC(kp; Ω)

k!

∫

Ω
|u|kp dx

∞

∑
k=1

1

k!

∫

Ω
|u|kp dx

≥ inf
k∈N\{0}

ΛC(kp; Ω) .

Passing above to the infimum over all u ∈ W2,∞
C (Ω) \ {0}, we arrive at the conclusion of

Lemma 3.2.

Lemma 3.3. Assume that Ω ∈ P
N satisfies ΛC

∞(Ω) > 1. Define

O := {p ∈ (1, ∞) : ΛC(p; Ω) ≤ ΛC(kp; Ω), ∀ k ≥ 1} .

Then there exists an integer L ≥ 1 such that (L, ∞) ⊂ O.

Proof. The proof of this lemma follows the ideas used in the proof of Step 5 from the proof of

Theorem 2 in [1, p. 10]. We recall it just for the reader’s convenience.

We argue by contradiction. Indeed, assume that for each integer m ≥ 1 there exists a real

number pm ≥ m and an integer km ≥ 2 such that ΛC(pm; Ω) > ΛC(km pm; Ω). Since ΛC
∞(Ω) > 1

it follows that ΛC
∞(Ω)−

√

ΛC
∞(Ω) > 0. Let us now fix ε ∈ (0, ΛC

∞(Ω)−
√

ΛC
∞(Ω)). It is clear
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that (ΛC
∞(Ω)− ε)2

> ΛC
∞(Ω). On the other hand, by (2.2), limq→∞

q
√

ΛC(q; Ω) = ΛC
∞(Ω), and

thus there exists a positive integer Aε such that 1 < ΛC
∞(Ω)− ε < q

√

ΛC(q; Ω), for all q ≥ Aε.

Then,

(ΛC
∞(Ω)− ε)2pm ≤ (ΛC

∞(Ω)− ε)km pm
< ΛC(km pm; Ω) < ΛC(pm; Ω), ∀ m > Aε .

Hence, using again (2.2), we conclude that

(ΛC
∞(Ω)− ε)2 ≤ lim

m→∞

pm

√

ΛC(pm; Ω) = ΛC
∞(Ω) ,

which is a contradiction. The proof of Lemma 3.3 is complete.

Proof of Theorem 1.1.

• Step 1. We show that M(p; Ω) = 0, for each Ω ∈ P
N with RΩ > C1/2

N and each p ∈ (1, ∞).

Assume that p ∈ (1, ∞) is arbitrary but fixed. Firstly, note that for each Ω ∈ P
N we may

assume without loss of generality, by a translation of the domain, that 0 ∈ Ω is exactly the

center of the largest ball which can be inscribed in Ω, in other words BRΩ
⊂ Ω. Next, let u0

be a minimizer for ΛC
∞(BRΩ

) with ∥u0∥L∞(BRΩ
) = C−1

N , where CN is given by relation (1.6), and

∥∆u0∥L∞(BRΩ
) = R−2

Ω
(see Remark 2.1 for details). Then we can define U0 : Ω → R by

U0(x) :=

{

u0(x), if x ∈ BRΩ
,

0, if x ∈ Ω \ BRΩ
.

Since u0 ∈ W2,∞
C (BRΩ

) it follows that u0 ∈ W
2,q
0 (BRΩ

) for each q ∈ (1, ∞) and by [6, Lemma

5.2.5 & Theorem 5.4.4 & Section 5.5] we deduce that U0 ∈ W
2,q
0 (Ω) for each q ∈ (1, ∞). It

follows that, actually, we have nU0 ∈ W2,∞
C (Ω) \ {0}, for each positive integer n. Testing

with nU0 in the definition of M(p; Ω), and taking into account that |∆U0(x)| ≤ R−2
Ω

, for a.a.
x ∈ BRΩ

, we get

M(p; Ω) ≤

∫

Ω
[exp(|∆(nU0(x))|p)− 1] dx
∫

Ω
[exp(|nU0(x)|p)− 1] dx

≤

∫

BRΩ

[exp(|nR−2
Ω

|p)− 1] dx

∫

BRΩ

[exp(np|u0(x)|p)− 1] dx
.

On the other hand, we recall that by Remark 2.1 we know that ∥u0∥L∞(BRΩ
) = C−1

N , where

CN is given by relation (1.6). We deduce that if we assume RΩ > C1/2
N , then letting ϵ0 > 0 be

such that ϵ0 + R−2
Ω

< C−1
N , we get that there exists a subset ω ⊂ BRΩ

with |ω| > 0 such that

|u0(x)| > ϵ0 + R−2
Ω

, for all x ∈ ω. It follows that, for each positive integer n we have

M(p; Ω) ≤
|BRΩ

|[exp(|nR−2
Ω

|p)− 1]
∫

ω
[exp(np|u0(x)|p)− 1] dx

≤
|BRΩ

|[exp(|nR−2
Ω

|p)− 1]

|ω|
[

exp
[

np
(

ϵ0 + R−2
Ω

)p]

− 1
] .

Letting n → ∞ we find M(p; Ω) = 0.

• Step 2. We show that M(p; Ω) > 0, for each Ω ∈ P
N with RΩ < 1 and each p ∈ (1, ∞).

Moreover, there exists P⋆
> 1 such that M(p; Ω) = ΛC(p; Ω) for all p ≥ P⋆.

Let Ω ∈ P
N with RΩ < 1 and p ∈ (1, ∞) be arbitrary but fixed. By Proposition 2.2 we

know that

ΛC(q; Ω) ≥ q−1R
−2q
Ω

, ∀ q ∈ (1, ∞) .
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That fact and relation (2.2) yield

ΛC
∞(Ω) = lim

q→∞
ΛC(q; Ω)1/q ≥ lim

q→∞

q

√

q−1R
−2q
Ω

= R−2
Ω > 1 . (3.1)

Since ΛC
∞(Ω) > 1 the hypothesis of Lemma 3.3 is fulfilled. Let L ≥ 1 be the smallest integer

number for which Lemma 3.3 holds true. It follows that

ΛC(q; Ω) ≤ ΛC(kq; Ω), ∀ k ≥ 1, ∀ q > L .

Taking k0 :=
[

Lp−1
]

+ 2 we get k0 p > L and consequently, by the above inequality we find

that

ΛC(k0 p; Ω) ≤ ΛC(kp; Ω) ,

for each integer k ≥ k0. Thus,

ΛC(k0 p; Ω) ≤ inf
k≥k0

ΛC(kp; Ω) .

On the other hand, by Lemma 3.2 we know that

M(p; Ω) ≥ inf
k∈N\{0}

ΛC(kp; Ω) .

All the above pieces of information imply that

M(p; Ω) ≥ inf
k∈{1,2,...,k0}

ΛC(kp; Ω) > 0 .

Finally, if we assume, in addition, that p > L then similar arguments as above yield

M(p; Ω) ≥ ΛC(p; Ω). On the other hand, by Lemma 3.1 we have M(p; Ω) ≤ ΛC(p; Ω), and,

consequently, we conclude that M(p; Ω) = ΛC(p; Ω), for all p ≥ P⋆ := L + 1. The proof of

Theorem 1.1 is now complete.
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Abstract. We provide a criterion for instability of equilibria of equations in the form
ẋ(t) = g(x′t, xt), which includes neutral delay equations with state-dependent delay.
The criterion is based on a lower bound ∆ > 0 for the delay in the neutral terms, on
regularity assumptions of the functions in the equation, and on spectral assumptions on
a semigroup used for approximation. The spectral conditions can be verified studying
the associated characteristic equation. Estimates in the C1-norm, a manifold containing
the state space X2 of the equation and another manifold contained in X2, and an invari-
ant cone method are used for the proof. We also give mostly self-contained proofs for
the necessary prerequisites from the constant delay case, and conclude with an appli-
cation to a mechanical example.

Keywords: neutral delay equations, dependence on past derivative, state-dependent
delay, linearized instability.
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1 Introduction

Functional differential equations with constant delays, distributed delays, time-dependent de-

lays, and state-dependent delays are all special cases of a dependence of the present derivative

ẋ(t) on the past history ẋ
∣∣
(−∞, t]. (Some models also include dependence on the future.) A

basic theory for equations with a general past dependence, following a generally familiar dy-

namical systems framework, is still in development, see e.g. the work of Nishiguchi [41]. The

present paper is a contribution in this sense. We consider neutral equations ẋ(t) = g(ẋt, xt)

with dependence on a bounded past interval, and with a lower bound of the delay in the

derivative terms on the rght hand side. This includes neutral equations with a state-dependent

point delay.

Equations with state-dependent retarded and advanced terms appear already in work of

Poisson [44] from 1806. Papers by Driver [10] going back to the 1960s (on the particularly

BCorresponding author. Email: Bernhard.Lani-Wayda@math.uni-giessen.de
*Partially supported by FAPDF grant 0193.000866/2016.



2 B. Lani-Wayda and J. Godoy Mesquita

difficult case of the two-body problem of electrodynamics), or by Grimm [18] from 1971 are

among the earliest that consider models with state-dependent time shift. But it seems that a

systematic treatment by a larger number of authors started not earlier than in the late 1980s,

for example, Jackiewicz 1987 [31], Mallet-Paret, Nussbaum and Paraskevopoulos [40], Jack-

iewicz 1995 [32], Hartung, Herdman and Turi [24], Krisztin [36] and Walther [49]. The article

[25] gives an impression of the history of the subject. In models for real-world phenomena,

state-dependent time shifts arise from position-dependent signal (or force, in the electrody-

namics problem) propagation times, or from threshold conditions in mathematical biology.

The resulting time shifts are sometimes implicitly defined via properties of the system state,

and then a solution theory has to take the solvability of these implicit equations into account.

Neutral differential equations (i.e., the time derivative of the solution appears also on the

right hand side of the equation ẋ(t) = . . . ) arise in the famous two-body problem of electro-

dynamics, as well as in models of biological and mechanical systems, see for example [37],

Chapter 9, [52] and [38]. Constant delays in such models certainly result from simplification,

so it seems desirable to have a basic theory that covers also state-dependent variable delays,

or, more general forms of dependence on the past derivative.

We introduce some notational conventions: Let n ∈ N and h > 0 be given. We assume that

all delays are bounded above by h, so that the system state at time t is given by the segment

xt ∈ (C0[−h, 0], Rn), xt(s) = x(t + s), s ∈ [−h, 0]. By C0 we briefly denote the Banach space of

continuous functions C0([−h, 0], Rn) with the norm given by |φ|C0 = max−h≤t≤0 |φ(t)|, here

| | is the 1-norm given by |z| = maxj=1,...,n |zj| on Cn, which also induces the 1-norm on Rn.

More generally, Ck denotes the Banach space of k-times continuously differentiable functions

φ : [−h, 0] → Rn, with the Ck-norm given by |φ|Ck = |φ|C0 + |φ′|C0 + · · ·+ |φ(k)|C0 . We write

Ck
C

for the complexified spaces, which we identify with Ck([−h, 0], Cn). For functions defined

on a different domain, e.g., an interval of the form [−h,−∆], the corresponding notation

is used. Sometimes balls are indexed with the intended norm, for example B| |
C2
(0, δ) ={

ψ ∈ C2
∣∣ |ψ|C2 < δ

}
. We also use the index C for canonical complexifications of linear

operators, in particular, for semigroups and their generators.

In the present paper we adopt the framework of equations of the form

ẋ(t) = g(x′t, xt) (1.1)

introduced by Walther in [55]. We use the notation ψ′, ψ′′ etc. (instead of ∂ψ, ∂∂ψ etc. as in

[55]), and we write a dot for derivatives at specific times. Note that (x′)t = (xt)′ if x
∣∣
[t − h, t] is

of class C1.

In eq. (1.1), the functional g : W ⊂ C0 × C1 → Rn is continuous on an open neighborhood

W of zero in the product space C0 × C1 (with | |C0 in the first and | |C1 in the second factor),

and with an equilibrium at zero: g(0, 0) = 0. For real numbers t0, T with t0 < T, a function

x : [t0 − h, T) → Rn is a solution of equation (1.1) if it is of class C1, satisfies (x′t, xt) ∈ W for

t ∈ [t0, T), and (1.1) is true for t ∈ [t0, T).

This setting includes state dependent point delays of the form τ(xt) as a special case. One

main assumption is that the dependence of g on the first argument (the derivative history) has

a minimal delay ∆ > 0, meaning that one stays in safe distance to implicit differential equa-

tions. Similar conditions were used in [31](p. 10, before Section 2), [45](condition (H), Section

4, p. 3980), and [23](condition (A4), p. 6), but, for example, not in [32]. This property (and

also the presence of delayed, but not advanced terms) excludes the classical electrodynamics

problem, as also remarked at the end of the introduction to [55]. A typical example class that
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does fit our framework is the Rn valued version

ẋ(t) = A[x′(t − d(x(t)))] + f [x(t − r(x(t)))], (1.2)

of the example class from [54] (details in Section 2).

The purpose of the present work is to complement the linearized stability results from the

papers [53] and [54], and also those from [2] and [22], with a linearized instability result. As

in [54], one difficulty lies in the fact that the ‘obvious candidate’ for linearization at the zero

solution, given by a semigroup {S0(t)}t≥0 of linear operators, does not have the usual quality

of approximation for the full nonlinear equation.

The further organization of the paper is as follows: Section 2 lists the essential assumptions

and gives a class of typical examples where they hold. Then Section 3 studies the linearization

equation, associated semigroups on spaces of C0 and C1 functions, and spectral properties of

generators and semigroups. The second part of Section 3 then prepares the study of the

nonlinear equation, in particular, by a variation of constants formula from [53]. Properties

related to the minimal value ∆ of the delay in the derivative become important here. In

Section 4, we introduce the nonlinear semiflow and preparatory estimates for solutions in the

C1-norm. The state space X2 of the semiflow is contained in a manifold M2, which is tangent

at zero to the state space of a semigroup obtained from linearization.

In Section 5 we use the manifold M2 to obtain a splitting of solutions into three terms, the

first of which is given by a linear semigroup on a space of C1 functions (namely, the so-called

extended tangent space of M2 at zero), the second corresponds to the deviation between M2

and its tangent space, and the third to the nonlinear part of the equation.

For each of the three terms, C1-estimates are possible for short time. In Lemma 5.4 we

obtain the decisive estimate that expresses smallness of the nonlinear effects w.r. to the C1-

norm. In the following part of Section 5 we employ the additional smoothness condition

(D2g2) to construct a manifold M4 contained in X2, and describe its tangent space at to zero.

A part of this manifold is then used to provide initial functions which will have an unstable

evolution under the semiflow.

Section 6 contains the main theorem. Based on spectral assumptions, the estimate on the

deviation between linear approximation and ‘remainder terms’, and the presence of suitable

initial functions, an appropriate invariant cone method allows to prove the ‘linearized insta-

bility’ result.

Finally, in Section 7, we consider an example from [38] which models mechanical systems

coupled to computer simulations. We show that generalizations of the equations considered

in [38], in the sense of equations with state-dependent delay and nonlinear dependence of the

delayed derivative, fit in our framework. The linearization at zero and its characteristic equa-

tion remain unchanged for these generalizations. Compared to [38] we give some additional

analysis of the characteristic equation, and obtain an instability result for suitable values of

the parameters, in particular, large enough values of the delay functional at zero.

2 Assumptions and typical examples

We adopt the general setting from [53–55]; in particular, we now list a number of hypotheses

from these papers with the same numbering as in [53, 55], but in some cases described in

slightly different notation. Conditions (g̃1) and (g̃8) are stronger versions of (g1) and (g8)

from [54]; we comment on the assumptions in detail below.
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Consider eq. (1.1), and define U1 :=
{

ψ ∈ C1
∣∣ (ψ′, ψ) ∈ W

}
; this is an open subset of C1.

We shall use the term ‘bounding function’ for any nondecreasing function ϕ : [0, ∞) → [0, ∞)

with ϕ(0) = 0 = lim
t→0

ϕ(t). Such bounding functions appear in several assumptions.

(g0) g is continuous (w.r. to | |C0 in the first and | |C1 in the second argument).

(g̃1) (The delay in the neutral term of (1.1) has a lower bound.) There exists ∆ ∈ (0, h) such

that for (φ1, ψ), (φ2, ψ) ∈ W ⊂ C0 × C1, one has the implication

∀t ∈ [−h,−∆] : φ1(t) = φ2(t) =⇒ g(φ1, ψ) = g(φ2, ψ). (2.1)

(g2) For every ψ ∈ U1 ⊂ C1, there exists L2 ≥ 0 and a neighborhood N ⊂ W of (ψ′, ψ) in

C0 × C1 such that for all (φ1, ψ1), (φ2, ψ2) in N, with φ2 Lipschitz continuous and best

possible Lipschitz constant Lip(φ2), we have:

|g(φ2, ψ2)− g(φ1, ψ1)| ≤ L2(|φ2 − φ1|C0 + (Lip(φ2) + 1)|ψ2 − ψ1|C0).

(g3) The restriction g1 of g to the open subset W1 = W ∩ (C1 × C1) of the space C1 × C1 is

continuously differentiable, and hence also has continuous partial derivatives

D1g1, D2g1 : W1 → Lc(C1, Rn). Every derivative Dg1(φ, ψ) : C1 × C1 → Rn, (φ, ψ) ∈ W1,

has a continuous linear extension: Deg1(φ, ψ) ∈ Lc(C0 × C0, Rn), and the map

W1 × C0 × C0 ∋ (φ, ψ, χ, ρ) 7→ Deg1(φ, ψ)(χ, ρ) ∈ R
n

is continuous. The corresponding properties then hold for the partial derivatives and

their extensions D1,eg1, D2,eg1 : W1 → Lc(C0, Rn).

(g4) (‘Linear’ case.) This condition was used in [53] and essentially requires g to be linear in

the first argument; we do not use this assumption.

(g5) (is an additional condition on Deg1(φ, ψ) which we do not use.)

(g6) (Recall that (0, 0) ∈ W1, g(0, 0) = 0). The map

C1 × C1 ⊃ W1 ∋ (φ, ψ) 7→ ∥D1,eg1(φ, ψ)∥Lc(C0,Rn) ∈ R

(see (g3)) is upper semicontinuous at (0, 0).

(g7) There exist c7 > 0 and a bounding function ζ7 so that for every (φ, ψ) ∈ W1 with

max{|φ|C0 , |ψ|C0} ≤ 1 and for all ρ ∈ C1, we have

|[D2g1(φ, ψ)− D2g1(0, 0)]ρ| ≤ ζ7(|φ|C1 + |ψ|C1)|ρ|C0 + c7 · |ρ|C1 |ψ|C0 .

(g̃8) (‘Nonlinear’ case.) There exist a constant c8 > 0, and a bounding function α such that,

with W1 as in (g3) and ∆ from (g1), one has for φ, ψ ∈ W1 with max{|φ|C0 , |ψ|C0} ≤ 1 and

χ ∈ C1:

|[D1g1(φ, ψ)− D1g1(0, 0)]χ| ≤ c8|χ′|C0 · |ψ|C0 + α(|φ|C0) · |χ∣∣[−h,−∆]|C0 .
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(g9) There exist a convex neighborhood U2 ⊂ U1 ∩ C2 of 0 in C2, a constant c9 > 0 and a

bounding function ζ9 such that for ψ ∈ U2 one has

max
0≤s≤1

|[D2g1(sψ′, sψ)− D2g1(0, 0)]ψ| ≤ ζ9(|ψ|C2)|ψ|C0 + c9|ψ|C1 |ψ|C0 .

Comments on the above hypotheses:

1) Define

X1 :=
{

ψ ∈ U1

∣∣ ψ̇(0) = g(ψ′, ψ)
}

, and

X1+ :=
{

ψ ∈ X1

∣∣ ψ′ is Lipschitz continuous
}

.

Note that the condition defining X1 is satisfied by any segment ψ = xt of a solution x of

equation (1.1), if x
∣∣
t − h, t] is of class C1. Under assumptions (g0), (g̃1), (g2), equation (1.1)

defines a (local, in time) semiflow on the set X1+ which is continuous with respect to the

topology from R
+
0 × C1 (see [55], Section 4, in particular, Corollary 4.6). Semiflows on smaller

sets, with additional smoothness properties, are restrictions of this one.

2) Condition (g̃1) expresses that the values of g(x′t, xt) do not depend on the ‘recent past’

of ẋ, namely, on the values of ẋ on [t − ∆, t]. (Our assumption is apparently stronger than the

corresponding assumption (g1) from [54, 55], since we assume ∆ to exist uniformly for W. It

was, however, shown in Proposition 2.7 of [55] that ∆ can be chosen locally uniformly, so that

the difference is actually minimal.)

This condition excludes, in particular, implicit differential equations. This restriction and

also the upper bound h on the delay exclude, for example, the famous two-body-problem of

electrodynamics, as considered by Driver e.g. in [10, 11], from the framework chosen here.

3) The extension property (g3) can be seen as saying that Dg1(φ, ψ)(χ, ρ) does not de-

pend on χ′ and ρ′. Such conditions in the context of state-dependent delay equations were

employed, e.g., in [36, 49, 53], and seem to go back to Definition 3.2 in [40]. There a corre-

sponding property was called ‘almost Fréchet differentiable’ and defined as differentiability

from a subspace with stronger norm to an ambient space with weaker norm. Extensibility

of the derivative to a linear map continuous w.r. to the weaker norm was not part of the

definition in [40], but was present in the applications there.

4) With X1 from above, define M2 := X1 ∩ C2; this set is called X2 in [55]. It is shown in

Proposition 5.1 of that reference that if g satisfies (g0), (g1), (g3), then M2 is a C1-submanifold

of C2 with codimension n; its tangent spaces are given by

TψM2 =
{

χ ∈ C2
∣∣ χ′(0) = Dg1(ψ

′, ψ)(χ′, χ)
}

.

Note that the condition determining these tangent spaces involves only the first derivative of

χ, and using the extension property (g1), one can define the so-called extended tangent spaces

Te,ψM2 =
{

χ ∈ C1
∣∣ χ′(0) = Deg1(ψ

′, ψ)(χ′, χ)
}

. (2.2)

The set M2 is not invariant under the semiflow on X1, because the property of being C2 is

not, but the following subset of M2, which is characterized by a second order compatibility

condition, (called X2∗ in [55]) is invariant:

X2 :=
{

ψ ∈ M2

∣∣ ψ′ ∈ Te,ψM2

}
.
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Combining the definitions, one gets the following explicit description of X2:

X2 =
{

ψ ∈ C2
∣∣ (i) ψ̇(0) = g(ψ′, ψ);

(ii) ψ̈(0) = Deg1(ψ
′, ψ)(ψ′′, ψ′)

} (2.3)

Under assumptions (g0)–(g3), the semiflow induced on X2 is continuous w.r. to the topol-

ogy from R
+
0 × C2, as shown in Section 6 of [55]. It has differentiability properties under the

linearity assumption (g4) (in brief: differentiation w.r. to initial values is possible w.r. to di-

rections tangent to X2, is given by a variational equation, and has continuity properties under

an additional assumption (g5)). Condition (g5) is not required for the stability results in the

papers [53] and [54], and (g4) is assumed in [53], but not in [54]. For the instability result of

the present paper we assume neither of these two conditions.

The set X2 ⊂ X1,+ is invariant under the semiflow, but no smooth submanifold of C2, and

we prove in Section 4 that M4 := X2 ∩ C4 is a C1-submanifold of C4, under an additional

condition on g. We employ that manifold in order to get initial values exhibiting instability.

5) Assumptions (g6) and (g7) are from the paper [53] on linearized stability – except that

here ζ7 is required to be nondecreasing (clearly, if this would not hold, it could be achieved

achieved replacing ζ7 with ζ̃7(s) := sup
{

ζ7(t)
∣∣ t ∈ [0, s]

}
), and that the statement here uses

the partial derivative. These conditions are used, in particular, to estimate the ‘nonlinear part’

rg(ψ) = g1(ψ
′, ψ)− Dg1(0, 0)(ψ′, ψ) of equation (1.1).

Condition (g7) is slightly stronger than (g9) from the paper [54](because the arguments

φ, ψ, ρ are independent in (g7)), but we keep this condition in the present paper (see Prop. 2.1

below).

6) Our condition (g̃8) is easily seen to imply condition (g8) from the ‘nonlinear’ paper

[54], by specialization to the case φ := sψ′, ψ := sψ, where s ∈ [0, 1], and χ := ψ′. On the

other hand, the equations of the primary example class from [54] also satisfy (g̃8), as we prove

below.

7) Condition (g9) above is easily seen to be equivalent with condition (g9) from [54]: The

max
0≤s≤1

from [54] disappears in our case since we assume that ζ9 is a bounding function, and

thereby nondecreasing. Therefore we use the same symbol for ‘our’ condition (g9).

8) One concrete type of ‘linear’ equation (meaning linear in the delayed derivative) which

was shown to satisfy (g1)–(g7) in [55] is the scalar equation

ẋ(t) = aẋ(t − d(x(t))) + f [x(t)− r(x(t))], (2.4)

if a ∈ R and, for example, d ∈ C2(R, [∆, h]), r ∈ C2(R, [0, h]), and f ∈ C2(R, R), f (0) = 0.

(Note only that in the notation of the present paper the delays appear with a minus sign.)

Correspondingly, the example class from [54] is

ẋ(t) = A[ẋ(t − d(x(t))] + f [x(t − r(x(t)))], (2.5)

with a nonlinear C2 function A and d ∈ C2(R, [∆, h]), r ∈ C2(R, [0, h]), and f ∈ C2(R, R), and

A(0) = f (0) = 0.

We introduce the additional hypothesis on g, mentioned in point 4) above:

(D2g2) The map g2 := g1
∣∣
W1 ∩ (C2 × C2) : W1 ∩ (C2 × C2) → Rn induced by g1 is C2 on C2 × C2,

and for (ψ, φ) ∈ W1 ∩ (C2 × C2), the continuous bilinear form D2g2(ψ, φ) : C2 × C2 →
Rn has a continuous extension D2

e g2(ψ, φ) to C1 × C1.
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Proposition 2.1.

a) Under conditions (g0) – (g3), (g6), and (g7), (g̃8) (instead of (g8), (g9) from [54]), the results

from [54] remain valid.

b) If ∆ ∈ (0, h] and A ∈ C2(Rn, Rn), d ∈ C2(Rn, [−h,−∆]), r ∈ C2(Rn, [−h, 0]), and f ∈
C2(Rn, Rn), then equation (2.5) (written in the form (1.1)) satisfies conditions (g0)–(g3), (g6),

(g7), (g̃8) from above, and also condition (D2g2).

Proof. a) We show that (g7) implies (g9) from the present paper, and hence also (g9) from [54]:

There exists a convex neighborhhod U2 ⊂ U1 of 0 in C2 such for ψ ∈ U2 and s ∈ [0, 1] one has

(sψ′, sψ) ∈ W1, and max{|sψ′|C0 , |sψ|C0} ≤ 1 for s ∈ [0, 1]. Then (g7) gives

max
0≤s≤1

|[D2g1(sψ′, sψ)− D2g1(0, 0)]ψ| ≤ max
0≤s≤1

[ζ7(|sψ′|C1 + |sψ|C1) · |ψ|C0 + c7|ψ|C1 |sψ|C0 ].

Using that ζ7 is nondecreasing, we can estimate the last expression by

ζ7(2|ψ|C2) · |ψ|C0 + c7|ψ|C1 |ψ|C0 = ζ9(|ψ|C2) · |ψ|C0 + c9|ψ|C1 |ψ|C0 ,

where c9 := c7 and ζ9(r) := ζ7(2r). This estimate has the form required in (g9).

It was already remarked that (g̃8) implies (g8), so the assertion of a) follows.

Ad b): We can set W = C0 × C1 and then have

g(φ, ψ) = A[φ(−d(ψ(0)))] + f [ψ(−r(ψ(0)))] for (φ, ψ) ∈ W = C0 × C1. (2.6)

The calculation from p. 321 and formula (2.1) on p. 322 from [54] carry over to the n-

dimensional case to show that (g0) is satisfied, that the restriction g1 is of class C1 on W1 =

C1 × C1, and that for (φ, ψ) ∈ W1, χ, ρ ∈ C1 one has

Dg1(φ, ψ)(χ, ρ) = DA[φ(−d(ψ(0)))] [−φ̇(−d(ψ(0)))Dd(ψ(0))ρ(0) + χ(−d(ψ(0)))] (2.7)

+ D f [ψ(−r(ψ(0)))] [−ψ̇(−r(ψ(0)))Dr(ψ(0)))ρ(0) + ρ(−r(ψ(0)))].

In particular,

D1g1(φ, ψ)χ = DA[φ(−d(ψ(0)))]χ(−d(ψ(0))), (2.8)

D2g1(φ, ψ)ρ = DA[φ(−d(ψ(0)))] [−φ̇(−d(ψ(0)))Dd(ψ(0))ρ(0)] (2.9)

+ D f [ψ(−r(ψ(0)))] [−ψ̇(−r(ψ(0)))Dr(ψ(0))ρ(0) + ρ(−r(ψ(0)))].

Property (g̃1) is a direct consequence of formula (2.6) and the assumption that d(v) ∈ [∆, h]

for all v ∈ Rn. The proof of (g2) is analogous to the corresponding proof in Proposition 2.1,

p. 322 of [54], with one-dimensional balls replaced by n-dimensional balls.

The extension property from (g3) and the associated continuity property for Deg1 are seen

from (2.7), mainly since no derivatives of χ and ρ are used. As in [54], p. 323, property (g6) is

true since, in view of (2.8), for (φ, ψ) ∈ W1

∥D1,eg1(φ, ψ)∥Lc(C0,Rn) = sup
|χ|

C0≤1

|DA[φ(−d(ψ(0)))]χ(−d(ψ(0)))|

≤ ∥DA[φ(−d(ψ(0)))]∥Lc(Rn,Rn),

with equality for appropriately chosen χ, so that the map mentioned in (g6) is even continu-

ous.
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Proof of (g7): (We use the notation ∥ f ∥∞,M for supx∈M ∥ f (x)∥ for several functions f with

values in normed spaces.) For φ, ψ and ρ as in (g7), we have from (2.9)

|[D2g1(φ, ψ)− D2g1(0, 0)]ρ|
= |DA[φ(−d(ψ(0)))] [−φ̇(−d(ψ(0)))Dd(ψ(0))ρ(0)]

+ D f [ψ(−r(ψ(0)))] [−ψ̇(−r(ψ(0)))Dr(ψ(0))ρ(0) + ρ(−r(ψ(0)))]

− DA(0) · 0 − D f (0)ρ(−r(0))|
≤ ∥DA∥∞,B(0,1) · ∥Dd∥∞,B(0,1) · |φ|C1 · |ρ|C0

+ ∥D f ∥∞,B(0,1) · ∥Dr∥∞,B(0,1) · |ψ|C1 · |ρ|C0

+ |D f [ψ(−r(ψ(0)))]ρ(−r(ψ(0)))− D f (0)ρ(−r(0))|.

The last term can be estimated by

|D f [ψ(−r(ψ(0)))− D f (0)]ρ(−r(ψ(0)))|+ |D f (0)[ρ(−r(ψ(0)))− ρ(−r(0))]|
≤ sup

|v|≤|ψ|
C0

|D f (v)− D f (0)| · |ρ|C0 + |D f (0)| · |ρ|C1 · ∥Dr∥∞,B(0,1) · |ψ|C0

≤ sup
|v|≤|ψ|

C1

|D f (v)− D f (0)| · |ρ|C0 + |D f (0)| · ∥Dr∥∞,B(0,1)|ρ|C1 · |ψ|C0 .

Dropping the index B(0, 1) now, we have with c7 := |D f (0)| · ∥Dr∥∞ and

ζ7(u) := max{∥DA∥∞ · ∥Dd∥∞, ∥D f ∥∞ · ∥Dr∥∞} · u + sup
|v|≤u

|D f (v)− D f (0)|

that |[D2g1(φ, ψ)− D2g1(0, 0)]ρ| ≤ ζ7(|φ|C1 + |ψ|C1) · |ρ|C0 + c7 · |ρ|C1 · |ψ|C0 .

Proof of (g̃8): For φ, ψ and χ as in (g̃8) we obtain from (2.8), using that d has values in [∆, h]:

|[D1g1(φ, ψ)− D1g1(0, 0)]χ| = |DA[φ(−d(ψ(0)))]χ(−d(ψ(0)))− DA(0)χ(−d(0))|
≤ |DA[φ(−d(ψ(0)))] [χ(−d(ψ(0)))− χ(−d(0))]|

+ |{DA[φ(−d(ψ(0)))]− DA(0)}χ(−d(0))|
≤ ∥DA∥∞,B(0,1) · |χ′|C0 · ∥Dd∥∞,B(0,1)|ψ|C0 + sup

|v|≤|φ|
C0

|DA(v)− DA(0)|
︸ ︷︷ ︸

=: α(|φ|C0)

·|χ∣∣[−h,−∆]|C0

= c8 · |χ′|C0 · |ψ|C0 + α(|φ|C0) · |χ∣∣[−h,−∆]|C0 ,

with c8 := ∥DA∥∞,B(0,1) · ∥Dd∥∞,B(0,1) and the indicated bounding function α.

Proof of (D2g2): The evaluation map ev : (t, ψ) 7→ ψ(t) is of class C2 on [−h, 0]× C2. Denoting

partial derivatives w.r. to the scalar argument t by ∂1 and identifying them with vectors, one

has for t ∈ [−h, 0], ψ, χ ∈ C2

∂2
1ev(t, ψ) = ψ̈(t), D2

2ev(t, ψ) = 0, ∂1D2ev(t, ψ)χ = χ̇(t).

With the evaluation at zero ev0 and the canonical projections, g can be represented as on p. 321

of [54]:

g = A ◦ ev ◦ ((−d ◦ ev0 ◦ pr2)× pr1) + f ◦ ev ◦ ((−r ◦ ev0 ◦ pr2)× pr2),

which shows that under our assumptions the induced map g2 is C2 on W1 ∩ (C2 × C2), as

composition of C2 maps. To prove the extension property, we first compute an expression for
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D2g2, based on (2.7). (Below, vectors in Rn are sometimes also multiplied by numbers from

the right.) For (φ, ψ) ∈ W1 ∩ (C2 × C2) and (χ1, ρ1), (χ2, ρ2) ∈ C2 × C2,

D2g2(φ, ψ)[(χ1, ρ1), (χ2, ρ2)] = lim
ε→0

1

ε
[Dg2(φ + εχ2, ψ + ερ2)− Dg2(φ, ψ)](χ1, ρ1)

= D2A(φ(−d(ψ(0))))
[
− φ̇(−d(ψ(0)))Dd(ψ(0))ρ1(0) + χ1(−d(ψ(0))),

− φ̇(−d(ψ(0)))Dd(ψ(0))ρ2(0) + χ2(−d(ψ(0)))
]

+ DA(φ(−d(ψ(0)))){−χ̇2(−d(ψ(0))Dd(ψ(0))ρ1(0)

+ φ̈(−d(ψ(0)))[Dd(ψ(0))ρ2(0)] · [Ddψ(0)ρ1(0)]

− φ̇(−d(ψ(0)))D2d(ψ(0))[ρ1(0), ρ2(0)]

− χ̇1(−d(ψ(0)))Dd(ψ(0))ρ2(0)}
+ (a similar expression involving f and r, namely:)

D2 f (ψ(−r(ψ(0))))
[
− ψ̇(−r(ψ(0)))Dr(ψ(0))ρ1(0) + ρ1(−r(ψ(0))),

− ψ̇(−r(ψ(0)))Dr(ψ(0))ρ2(0) + ρ2(−r(ψ(0)))
]

+ D f (ψ(−r(ψ(0)))){−ρ̇2(−r(ψ(0))Dr(ψ(0))ρ1(0)

+ ψ̈(−r(ψ(0)))[Dr(ψ(0))ρ2(0)] · [Dr(ψ(0))ρ1(0)]

− ψ̇(−r(ψ(0)))D2r(ψ(0))[ρ1(0), ρ2(0)]

− ρ̇1(−r(ψ(0)))Dr(ψ(0))ρ2(0)}.

One sees from the above expressions that D2g2(φ, ψ) has a continuous extension to C1 × C1,

mainly because no second derivatives of χ1, ρ1, χ2, ρ2 appear.

The formal linearization of equation (1.1) at zero, using the extension property (g3), is

ẏ(t) = Deg1(0, 0)(y′t, yt), which can also be written as

ẏ(t) = D1,eg1(0, 0)y′t + D2,eg1(0, 0)yt, (2.10)

Remark 2.2. In the special case of equation (2.5) (but n-dimensional, as in Prop. 2.1 b)), the

formal linearization in the sense of equation (2.10) is given by

ẏ(t) = DA(0)ẏ(t − d(0)) + D f (0)y(t − r(0)), (2.11)

i.e., by the ‘frozen delay principle’ (linearizing in the same way as if the delays were constant,

with the values at equilibrium).

Proof. From the expressions for the partial derivatives in (2.8) and (2.9) we see that for χ, ρ ∈ C0

one has D1,eg1(0, 0)χ = DA(0)χ(−d(0)) and

D2,eg1(0, 0)ρ = DA(0)[0] + D f (0)[0 + ρ(−r(0)] = D f (0)ρ(−r(0)).

Applying this with χ = y′t and ρ = yt shows that in this case (2.10) and (2.11) are equivalent.

(See also the remarks at the beginning of Section 3.4, p. 472 in [25], which however refer to

the non-neutral case.)

3 Semigroups, spectra, growth estimates and fundamental matrix

We define L := D1,eg1(0, 0) ∈ Lc(C
0, R

n), R := D2,eg1(0, 0) ∈ Lc(C
0, R

n), and then rewrite the

linearization equation (2.10), shifting the derivative-dependent part to the left-hand side, and
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writing Y for the phase curve t 7→ yt ∈ C0:

d

dt
(y − L ◦ Y)(t) = Ryt. (3.1)

Complexifications LC, RC ∈ Lc(C0
C

, Cn) are obtained in the obvious way. It turns out that the

latter equation generates a semigroup even on the space C0, and that this semigroup serves

as a kind of linearized approximation of the nonlinear semiflow, but in a sense that must

be treated with caution: The domains of the semigroup and of the semiflow are different,

and for the error made in approximation by the semigroup to be small in the C1-norm, the

trajectory has to stay in small ball w.r. to the C2-norm. By a solution of (3.1) we mean a

continuous function y on, e.g., [−h, T) such that, with the corresponding phase curve Y, the

function (y − L ◦ Y) : [0, T) → Rn is of class C1 (meaning the right-hand derivative at t = 0),

and satisfies the equation. Such a solution of equation (3.1) is in general not necessarily

differentiable, only the difference y − L ◦ Y is.

Lemma 3.1 (The semigroup S0, see [53, Corollary 6.2, p. 457]). For every χ ∈ C0, there is a

uniquely determined continuous solution yχ : [−h, ∞) → Rn of (3.1) with y
χ
0 = χ. Each linear map

S0(t) : C0 ∋ χ 7→ y
χ
t ∈ C0, t ≥ 0 is continuous, and the operators S0(t), t ≥ 0, form a strongly

continuous semigroup {S0(t)}t≥0 of operators in Lc(C0, C0).

A large part of this section is concerned with deriving growth estimates for the semigroup

S0 from spectral assumptions on its generator A0. As always for translation semigroups,.

A0 ϕ = ϕ′ for ϕ ∈ D(A0). Since equation (3.1) is a neutral equation without state-dependent

delay, this is not a new topic, but we found that the treatment in the literature does not always

provide comfortable reading, and try to improve this in the present paper.

For a complex valued function f , we use the notation Z( f ) for the zero set of f .

Lemma 3.2 (Spectrum of the generator A0 of S0). The spectrum of its infinitesimal generator

A0 (that is, the spectrum of the complexification A0
C

) consists only of isolated eigenvalues of finite

multiplicity. These eigenvalues coincide with the solutions of the characteristic equation

χ(λ) := det(∆(λ)) = 0

where ∆(λ) ∈ Cn×n (λ ∈ C) is a so-called characteristic matrix, obtained from the exponential ansatz

y(t) = exp(λt) · y(0) for solutions of equation (3.1). Thus we have

σ(A0) = Z(χ).

Proof. We can write equation (3.1) as d
dt [(ev0 − L)yt] = Ryt, where ev0 denotes the evaluation

at zero. The operator ev0 − L corresponds to the operator M in formula (3.1) on p. 510 of

[33], and also to the operator M in formula (6.3) on p. 396 of [34]. It satisfies the condition

(3.4) on p. 511 from [33] (in the language of [21], p. 6: ‘µ uniformly non-atomic at 0’), and

the corresponding condition (6.3) from [34]: In our case L and R are given (in the sense of the

Riesz representation theorem) by Riemann–Stieltjes integrals of the form

Lϕ =
∫ 0

−h
dµ(θ) · ϕ(θ), Rϕ =

∫ 0

−h
dη(θ) · ϕ(θ),

with matrix valued functions µ, η having entries of bounded variation, and defining Borel

measures on [−h, 0] (see also [46], Theorem 2.14, p. 40). In our situation, µ is constant (in
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particular, continuous) on [−∆, 0] (compare here part b) of Lemma 3.18 below). The assertions

now follow from Corollary 3.3 on p. 512 of [33], together with the definition of the character-

istic matrix ∆(λ) as introduced in Theorem 3.2 of that reference.

Alternatively, the statements of the present Lemma follow from Theorem 2.1, p. 109 of

[26], or from Theorem 1 on p. 17, Section III of [21]. In the latter reference the corresponding

condition on the behavior of µ at zero is found in (5) on p. 6, as mentioned above.

Note that with the representations of L and R as in the above proof, one has

∆(λ) = λI − λ
∫ 0

−h
dµ(θ) exp(λθ)−

∫ 0

−h
dη(θ) exp(λθ)

= λ ·
[

I −
∫ 0

−h
dµ(θ) exp(λθ)

]
−
∫ 0

−h
dη(θ) exp(λθ). (3.2)

Remark 3.3. In the reference [33], which was employed in the above proof, the resolvent set

ρ(A) of a closed operator A : X ⊃ D(A) → X with domain D(A) in a complex Banach space

X is described in Section I.1.1 on p. 482 as ‘. . . the set of complex numbers λ for which the

resolvent R(λ, A) = (λ − A)−1 exists.’ – taken literally, this would include cases where for

example the range of λ − A is a closed proper subspace U ⊊ X. It is however obvious from

the subsequent text on p. 482 of [33] that the existence of the resolvent is understood as an

operator in Lc(X, X), i.e., λ ∈ ρ(A) if and only if λ − A : D(A) → X is an isomorphism with

continuous inverse. For a closed operator A in a Banach space, this is equivalent to demanding

that λ − A is bijective onto its image, with a continuous inverse, and that the image is dense

in X (it is then automatically all of X).

Lemma 3.4 (The semigroup S1). The solutions of equation (3.1) also induce a C0-semigroup

{S1(t)}t≥0 of linear operators on the space

T1 =
{

χ ∈ C1
∣∣ χ′(0) = Deg1(0, 0)(χ′, χ)

}

with the | |C1-norm (this is the domain of the generator A0 of the semigroup {S0(t)}t≥0 on C0, with the

graph norm). The space T1 coincides with the extended tangent space Te,0M2 of M2 at zero (see (2.2)).

The infinitesimal generators A0 (of the semigroup S0) and A1 (of the semigroup S1) have the same

spectra (again, these are the spectra of A0
C

, A1
C

). For both operators, these consist only of eigenvalues

λ of finite type, which are obtained from the exponential ansatz as in Lemma 3.2. The corresponding

(finite dimensional) generalized eigenspaces Gλ of A0
C

and A1
C

coincide.

Proof. From [53], especially the remark on p. 442 preceding condition (g4) there, and from [25],

Proposition 3.4.1, p. 473, one sees that T1 coincides with the domain of the ‘real’ generator A0,

that the restriction of S0 to T1 defines a C0-semigroup with respect to the C1-topology, and

that the spectra/ resolvent sets of the infinitesimal generator A1 of {S1(t)} and A0 of {S0(t)}
(here we mean the complexified versions) satisfy

σ(A1) ⊂ σ(A0), and ρ(A1) ⊂ ρ(A0) ∪
{

λ ∈ C
∣∣ λ − A0 is injective, not surjective

}
. (3.3)

It is clear from (2.2) that T1 = Te,0M2. Now, from Lemma 3.2, the spectrum of A0 consists only

of eigenvalues of finite type, which are obtained from the exponential ansatz. This shows that

the set in brackets in (3.3) above is empty, so ρ(A1) ⊂ ρ(A0). Together with the first inclusion

in (3.3) we conclude σ(A1) = σ(A0). The assertion on the eigenspaces follows from part (ii)

of Proposition 3.4.1, p. 474 in [25].
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We shall need results expressing how spectral properties of the generator influence growth

properties of the semigroup, in particular, to have a separation between different growth rates

on complementary subspaces. The difficulty here lies, in principle, in the nontrivial relation

between the so-called spectral bound

s(A) := sup Re(σ(A))

of the generator A and the growth bound

ω0(T) := inf
{

β ∈ R
∣∣ ∃M > 0 : ∀t ≥ 0 : ∥T(t)∥ ≤ Meβt

}

of a C0-semigroup {T(t)}t≥0 of operators in Lc(X, X), where X is a Banach space (see, e.g.,

[13], Section 2 of Chapter IV). In general, one only has s(A) ≤ ω0(T) instead of equality, and

for the spectral radius r(T(t)) (which is again defined as r(T(t)C), if necessary):

∀t ≥ 0 : r(T(t)) = exp(ω0(T)t) (3.4)

(see e.g. [13], Chapter IV, Prop. 2.2, p. 251, and the counterexample 2.7 on p. 253, where

s(A) = −1 and ω0(T) = 0). A frequently quoted example (in the Hilbert space ℓ2) is given in

the paper by Zabczyk, [57], which mentions the earlier result by Foias, [14]. See also Lemma 4.2

from Section 74, p. 180 in [20], where the growth bound is called the order of {T(t)}. Thus,

the growth bound for a semigroup is controlled by the spectral radius of one particular T(t0)

with t0 > 0:

Proposition 3.5. If ω ∈ R satisfies r(T(t0)) < exp(ωt0) for some t0 > 0 then there exists M ≥ 1

with

∥T(t)∥Lc(X,X) ≤ M exp(ωt) for all t ≥ 0.

Proof. Since r(T(t)) ≤ ∥T(t)∥Lc(X,X) (see e.g. Cor. 1.4, p. 241 of [13]), such an ω must be larger

than the growth bound ω0(T), in view of (3.4). The estimate then follows from the definition

of ω0(T).

We employ the usual notation ρ(. . . ) for the resolvent set and Pσ(. . . ), Cσ(. . . ), Rσ(. . . ) for

the point spectrum, i.e., the continuous spectrum and the residual spectrum of an operator,

compare e.g. [28], Definition 2.16.1, p. 54. The problem of controlling the spectral radius

r(T(t)) in turn by the spectrum of the generator A stems from the fact that in general one has

Pσ(T(t)) ⊂ {0} ∪ exp[t · Pσ(A)] and Rσ(T(t)) ⊂ {0} ∪ exp[t · Rσ(A)]

(spectral mapping theorems for the point and residual spectrum, see [13], Theorem 3.7, p. 277),

but no corresponding control over possible continuous spectrum Cσ(T(t)). See [28], p. 54 for

this subdivision of the spectrum σ(T(t)), and also Theorems 16.7.2 and 16.7.2 on pages 467

and 469 of [28].

The idea of controlling the spectrum of the semigroup S0(t) (which is if interest for us) as

used in [20], in [26], and also in [17], is to treat S0(t) as a compact perturbation of a ‘simpler’

semigroup. For this ‘simpler’ semigroup an appropriate spectral mapping theorem is known,

and then a result for compact perturbations can be used. We start carrying out this approach

now.

The operator L = D1,eg1(0, 0) ∈ Lc(C0, Rn) from equation (3.1) has a representation as

Lϕ =
∫ 0
−h dµ(θ)ϕ(θ) in the sense of the Riesz representation theorem. For simplicity, we

introduce assumptions on L which are slightly stronger than needed.
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Assumption on L: There exist k ∈ N and Aj ∈ Rn×n, τj ∈ (0, h], j = 1, . . . , k, and an L1

function A : [−h, 0] → Rn×n such that L has the form

Lϕ =
k

∑
j=1

Aj ϕ(−τj) +
∫ 0

−h
A(θ)ϕ(θ)dθ (ϕ ∈ C0). (3.5)

This condition implies the ‘non-atomic at zero’ and ‘no singular part’ assumptions made in

[21] (Section IV there) and in [26] (assumptions (i) and (ii) on p. 108 there). (In combination

with the presently not needed condition (g̃1), Lemma 3.18 below shows that even A(θ) = 0

for almost all θ in [−∆, 0].) With the difference operator D0 : C0 → C0 defined by

D0 ϕ := ϕ(0)−
k

∑
j=1

Aj ϕ(−τj), (3.6)

equation (3.1) takes the form d
dt [D0yt −

∫ 0
−h A(θ)yt(θ)dθ] = Ryt, and is therefore (remotely)

related to the difference equation D0yt = 0, as we see below. In order to use this relation, the

next result will be important. It is known, and we include a proof for completeness.

Proposition 3.6. For fixed t ≥ 0, consider the continuous linear operator

K(t) : C0 → C0([0, t], R
n), φ 7→ H(·, φ), where

H(s, φ) :=
∫ 0

−h
A(θ)yφ(s + θ)dθ −

∫ 0

−h
A(θ)φ(θ)dθ +

∫ s

0
R(y

φ
σ) dσ

and y
φ
s := S0(s)φ. This operator is compact.

Proof. Continuity of K(t) is obvious. The middle term in the formula for H just defines

a continuous linear functional into Rn, and hence certainly a compact operator. The C0-

semigroup S0 satisfies an exponential growth estimate of the form |S0(t)φ|C0 ≤ c(t)|φ|C0 , with

c nondecreasing. Using this for the last term in the definition of H shows that this part even

produces functions bounded in C1, if |φ|C0 ≤ 1. It follows from the Arzelà–Ascoli theorem

that this third part defines a compact operator.

Abbreviating the first term with U(s, φ), considering s ∈ [0, t] and τ ∈ [0, h] with s + τ ∈
[0, t], and extending A to an L1 function on all of R (by zero), we obtain for φ with |φ|C0 ≤ 1:

|U(s + τ, φ)− U(s, φ)| =
∣∣∣∣
∫ 0

−h
A(θ)[yφ(s + τ + θ)− yφ(s + θ)]dθ

∣∣∣∣

=

∣∣∣∣
∫ τ

−h+τ
A(θ − τ)yφ(s + θ) dθ −

∫ 0

−h
A(θ)yφ(s + θ)]dθ

∣∣∣∣

≤
∫ τ

−h+τ
|A(θ − τ)− A(θ)| · |yφ(s + θ)| dθ

≤ c(t) · |φ|C0

∫ τ

−h+τ
|A(θ − τ)− A(θ)| dθ ≤ c(t) ·

∫

R

|A(θ − τ)− A(θ)| dθ.

Now translation R ∋ τ 7→ A(·+ τ) ∈ L1(R, Rn×n) is continuous, as follows from approxima-

tion by continuous functions with compact support and the Lebesgue convergence theorem.

Thus the last term goes to zero as |τ| → 0. This proves that the functions U(·, φ), |φ|C0 ≤ 1

are a (bounded) and equicontinuous set in C0([0, t], Rn), and hence the compactness of also

the first part of K(t) follows again from the Arzelà–Ascoli theorem.



14 B. Lani-Wayda and J. Godoy Mesquita

We turn to the analysis of characteristic functions now. For L as in (3.5), the characteristic

matrix (compare (3.2)) takes the form

∆(λ) = λ ·
[

I −
k

∑
j=1

Aj exp(−λτj)−
∫ 0

−h
A(θ) exp(λθ)dθ

]
−
∫ 0

−h
dη(θ) exp(λθ). (3.7)

In this context, the following functions and sets are important:

Define ∆0(λ) := I − ∑
k
j=1 Aj exp(−λτj) and

χ0(λ) := det ∆0(λ), (3.8)

with the zero set Z(χ0) =
{

λ ∈ C
∣∣ det ∆0(λ) = 0

}
, and

Z0 := Re(Z(χ0)) =
{

Re(λ)
∣∣ det ∆0(λ) = 0

}
. (3.9)

With M1(λ) :=
∫ 0
−h A(θ) exp(λθ)dθ, M2(λ) :=

∫ 0
−h dη(θ) exp(λθ) one has ∆(λ) = λ · [∆0(λ)−

M1(λ)]− M2(λ), so for λ ̸= 0: ∆(λ) = λ · [∆0(λ)− M1(λ)− 1
λ M2(λ)], and

χ(λ) = det(∆(λ)) = λn · det

[
∆0(λ)− M1(λ)−

1

λ
M2(λ)

]
.

It follows that the function defined by χ̃(λ) := χ(λ)/λn for λ ̸= 0 satisfies

χ̃(λ) = det

[
∆0(λ)− M1(λ)−

1

λ
M2(λ)

]
. (3.10)

For intervals I ⊂ R, we shall consider χ, χ̃ and χ0 in vertical strips of the form

SI :=
{

r + is
∣∣ r ∈ I, s ∈ R

}
.

Note that if I = (α, β) then the function χ0 is holomorphic and almost periodic in the strip SI .

(The almost periodicity in the vertical direction corresponds to the definition of H. Bohr in [7],

section 104, p. 86, which includes uniformity w.r. to the real part. Sometimes it is also defined

correspondingly for horizontal strips, see e.g. formula (6.09), p. 266 in [39].) The approach in

the subsequent results, based on almost periodicity, is essentially contained in [26] and also in

sections 12.3 and 12.10 of [20], but we include proofs for completeness.

Lemma 3.7. Consider a vertical strip S(α,β), where α, β ∈ R, and holomorphic functions f0, f1 :

S(α,β) → C, with f0 almost periodic, and such that f1(r + is) → f0(r + is) as s → ∞, uniformly w.r.

to r ∈ (α, β).

a) If z0 = r0 + is0 is a zero of f0 in S(α,β) then there exists a sequence (zj) = (rj + isj) in Z( f0)

with rj → r0 and sj → ∞ as j → ∞.

b) If z0 and the sequence (zj) ⊂ Z( f0) are as in a) then there exists a subsequence (zψ(j)) ⊂ (zj) and

a sequence (ζ j) of zeroes of f1 such that |ζ j − zψ(j)| → 0 as j → ∞, in particular, Re(ζ j) → r0.

Proof. Ad a): Assume the opposite; then there exist δ > 0 and S > 0 such that the set{
z = r + is

∣∣ |r − r0| ≤ δ, s ≥ S
}

is contained in S(α,β), and disjoint to Z( f0). Then all points

of the form r0 + is with s ≥ S + δ would be at least a distance δ away from Z( f0). It follows
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now from the fact that f0 is both almost periodic and holomorphic that there exists a number

m(δ) > 0 such that

∀s ≥ S + δ : | f0(r0 + is)| ≥ m(δ).

[See Lemma 3.1, part (ii) on p. 111 of [26], and Lemma 1 in Section 2 of Chapter VI [39], p. 268.

The proof there (stated for horizontal strips) employs the characterization of almost periodic

functions (due to Bochner) by the fact that the set of translates of such a function is relatively

compact with respect to uniform convergence, see [39], p. 266, and [6], Satz XII on p. 143,

where this property is called „Normaleigenschaft”.]

Now associated to ε := m(δ)/2 there exists an ε-almost period T > 0 of f0(r0 + i·) which

satisfies s0 + T > S + δ, and hence with s := s0 + T one has

m(δ) ≤ | f0(r0 + is)| = | f0(r0 + i(s0 + T))|
≤ | f0(r0 + is0)|︸ ︷︷ ︸

=0

+ | f0(r0 + is0)− f0(r0 + i(s0 + T))|︸ ︷︷ ︸
≤ε

≤ ε = m(δ)/2,

a contradiction.

Ad b): Assume that the sequence (zj) = (rj + isj) is as in a). Since rj → r0, we can

pick δ0 > 0 is such that ∀j ∈ N : B(zj, δ0) ⊂ S(α,β). Next, for j, k ∈ N, the circular rings

Rj,k :=
{

z ∈ C
∣∣ δ0/(k + 1) < |z − zj| < δ0/k

}
are also contained in S(α,β).

Claim: There exists k0 ∈ N such that ∀j0 ∈ N ∃j ≥ j0 : Rj,k0
∩ Z( f0) = ∅.

Proof: The opposite of the claim is

∀k0 ∈ N ∃j0 ∈ N ∀j ≥ j0 : Rj,k ∩ Z( f0) ̸= ∅. (∗)

Assume that (∗) holds, and fix N ∈ N, and take numbers j0(1), . . . , j0(N) corresponding to

k0 = 1, 2, . . . , N according to (∗), and set j∗ := max{j0(1), . . . , j0(N)}. Then one has Rj∗,k ∩
Z( f0) ̸= ∅ for k = 1, . . . , N, i.e., f0 has at least N zeroes in B(zj∗, δ0). This argument works for

every N ∈ N, which contradicts the fact that there exists N∗ ∈ N such that in each rectangle

of the form
{

z = r + is ∈ C
∣∣ r ∈ (α, β), s ∈ (t, t + 1]

}
(where t ∈ R), the almost periodic

holomorphic function f0 has at most N∗ zeroes. (See [39], Lemma 2, p. 269; the proof again

uses Bochner’s compactness theorem. See also [26], p. 111, Lemma 3.1, part (i).) The claim is

proved.

The above claim allows us to choose a subsequence (zϕ(j)) ⊂ (zj) such that

∀j ∈ N : Rϕ(j),k0
∩ Z( f0) = ∅.

With δ∗ := 1
2 (δ0/(k0 + 1) + δ0/k0), the central circular lines ∂B(zϕ(j), δ∗) of the rings Rϕ(j),k0

all

have distance at least δ∗ − δ0/(k0 + 1) > 0 from Z( f0). As above, it follows from Lemma 1 on

p. 268 of [39] that there exists a number m > 0 such that | f0| ≥ m on ∂B(zϕ(j), δ∗) for every

j ∈ N. The assumed uniform convergence of f1(r + is) to f0(r + is) as s → ∞ implies that for

all large enough j, | f1 − f0| < m on ∂B(zϕ(j), δ∗). Then the Rouché theorem implies that f1 and

f0 have the same number of zeroes in B(zϕ(j), δ∗), in particular, f1 has a zero in this set.

Together we have proved that, with δ0 as above, there exists a subsequence (zϕ(j)) ⊂ (zj)

and j0 ∈ N such that

∀j ≥ j0 : Z( f1) ∩ B(zϕ(j), δ0) ̸= ∅.

In particular, there exist arbitrarily large j ∈ N with Z( f1) ∩ B(zϕ(j), δ0) ̸= ∅.
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Since this argument also works for every smaller positive value of δ0, we can pick a se-

quence of numbers δj > 0 with δ0 ≥ δj → 0 and associated indices ψ(j) with ψ(j + 1) > ψ(j)

(so that (zψ(j)) is a subsequence of (zj)) such that Z( f1) ∩ B(zψ(j), δj) ̸= ∅ for all j ∈ N.

Choosing ζ j from the last set for every j, we obtain (ζ j) ⊂ Z( f1) and |ζ j − zψ(j)| < δj → 0 as

j → ∞.

We have the following relation between χ0 and χ̃, which will allow us to apply the last

proposition:

Proposition 3.8. In a vertical strip S(α,β), where α, β ∈ R, χ̃(r + is) → χ0(r + is) as s → ∞,

uniformly w.r. to r ∈ (α, β).

Proof. Recall from (3.8) and (3.10) that

χ0(λ) = det ∆0(λ) and χ̃(λ) = det[∆0(λ)− M1(λ)−
1

λ
M2(λ)].

We claim that M1(r + is) → 0 as s → ∞, uniformly w.r. to r ∈ (α, β). The proof is mainly

a Riemann–Lebesgue-type argument which we include for completeness. (We choose a ma-

trix norm ∥ ∥ on Cn×n, and use the corresponding C0- and L1-norms.) Set µ := max{|α|, |β|}
and let ε > 0 be given. Choose a matrix-valued function Ã ∈ C1([−h, 0], Rn×n) with

eµh · ∥Ã − A∥L1([−h,0]) ≤ ε/2. Then one has for r ∈ (α, β)

M1(r + is) =
∫ 0

−h
A(θ)e(r+is)θ dθ =

∫ 0

−h
Ã(θ)e(r+is)θ dθ +

∫ 0

−h
[A(θ)− Ã(θ)]e(r+is)θ dθ.

The second term can be estimated by eµh∥Ã − A∥L1([−h,0]) < ε/2.

The first term equals, by partial integration,

[
Ã(θ)

1

r + is
e(r+is)θ

]θ=0

θ=−h

− 1

r + is

∫ 0

−h
Ã′(θ) · e(r+is)θdθ,

which for s > 0 can be estimated by 1
s [2eµh∥Ã∥C0 + eµh∥Ã′∥L1([−h,0])], and the latter is less than

ε/2 for all large enough s. This proves the asserted uniform convergence.

Since M2(λ) is uniformly bounded for λ ∈ S(α,β), we also have 1
r+is M2(r + is) → 0 as

s → ∞, uniformly w.r. to r ∈ (α, β).

Note that the matrix ∆0(λ) is bounded for λ ∈ S(α,β). It follows from the convergence

of M1(λ) and 1
λ M2(λ) to zero as s → ∞ (λ = r + is, r ∈ (α, β)) that all matrices ∆0(λ) and

∆0(λ)− M1(λ)− 1
λ M2(λ) for s ≥ 1 are contained in a ball in Cn×n, on which the determinant

function det is uniformly continuous, so that |det(A)− det(B)| ≤ ρdet(∥A − B∥) for A, B in

that ball, with a bounding function ρdet. It follows then that for λ = r + is ∈ S(α,β) with s ≥ 1

one has

|χ0(r + is)− χ̃(r + is)| ≤ ρdet

(∥∥∥∥M1(r + is) +
1

r + is
M2(r + is)

∥∥∥∥
)
→ 0 (s → ∞),

uniformly w.r. to r ∈ (α, β).

Corollary 3.9.

a) If z0 = r0 + is0 is a zero of χ0 then there exist sequences (zj = rj + isj) in Z(χ0) and (ζ j =

ρj + iσj) in Z(χ) such that rj → r0, sj → ∞, and |ζ j − zj| → 0 as j → ∞.



Linearized instability 17

b) For the real parts of the zero sets Z0 := Re(Z(χ0)) and Z := Re(Z(χ)) we have

Z0 ⊂ Z.

Proof. Part a) with χ̃ in place of χ follows directly from Proposition 3.8 and from Lemma 3.7,

since χ0 is holomorphic and almost periodic in very strip S(α,β) containing z0. We may assume

that all ζ j of χ̃ are different from 0, and then they are also zeroes of χ, which proves part a).

Part b) is a direct consequence of a), since we also have ρj → r0.

For a subset I ⊂ R we define the corresponding ‘circular ring’ in C by

RI :=
{

z ∈ C
∣∣ |z| ∈ exp(I)

}
,

so RI is the image of the ‘vertical strip’ SI = I + R · i under the exponential map. The next

auxiliary result has an early precursor in Lemma 5.2 on p. 16 of [19].

Lemma 3.10.

a) With D0 from (3.6), the corresponding difference equation D0xt = 0 or x(t) = ∑
k
j=1 Ajx(t −

τj) generates a C0-semigroup {TD0
(t)}t≥0 on the kernel of D0 (a subspace of C0 with finite

codimension).

b) With Z0 = Re(Z(χ0)) from Corollary 3.9 we have for the spectra:

σ(TD0
(t)) ⊂ {0} ∪ RZ0t (t ≥ 0).

c) If prD0
∈ Lc(C0, C0) is a projection onto ker(D0), the semigroup {S0(t)} generated by equation

(3.1) can be written as

S0(t) = TD0
(t) ◦ prD0

+ K(t),

with compact operators K(t) ∈ Lc(C0, C0). (Here, formally, TD0
(t) ∈ Lc(ker(D0), ker(D0))

should be followed by the inclusion map from ker(D0) to C0, which we omit.)

Proof. Part a) is stated (not proved) in [26], Section 3, p. 110, and follows from much more

general existence results in Chapter 12 of [20]. For D0 as considered here, and assuming that τ1

is minimal among the discrete delays τj (j = 1, . . . , k), the forward solution of D0xt = 0 (given

x0 ∈ ker(D0)) can be directly obtained by stepwise forward definition: x(t) := ∑
k
j=1 Ajx(t− τj)

on [0, τ1], then by the same formula on [τ1, τ1 + 2τ1], etc.

Part b) is proved in [26], Theorem 3.2, p. 114, based on exponential estimates for ∥TD0
(t)∥

obtained by Laplace transform methods. The proof in [26] (Lemma 3.4, p. 111) quotes refer-

ence [12] of that paper, which apparently was never published. Another proof is given in [17],

Theorem 2.1, p. 209. Both proofs use Laplace transform methods and a result due to Cameron

and Pitt [8, 43] on exponential expansion 1/h(z), if h is almost periodic and holomorphic.

Part c) is proved in [26], Lemma 4.1, p. 116. We sketch the idea: For φ ∈ C0 and φ0 :=

prD0
φ, yt := S0(t)φ it follows from equations (3.1), (3.5) and (3.6) that

D0yt −
∫ 0

−h
A(θ)yt(θ)dθ −

[
D0φ −

∫ 0

−h
A(θ)φ(θ)dθ

]
=
∫ t

0
Rys ds,

and hence, with H from Proposition 3.6,

D0(yt − φ) =
∫ 0

−h
A(θ)yt(θ)dθ −

∫ 0

−h
A(θ)φ(θ)dθ +

∫ t

0
Rys ds = H(t, φ).
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Thus, setting φ1 := φ − φ0 = (id − prD0
)φ, D0(yt − φ) = D0(yt − φ1), and defining z :

[−h, ∞) → Rn by zt := yt − φ1, we have z0 = φ0, so D0z0 = 0, and z solves D0zt = H(t, φ) (t ≥
0), an inhomogeneous version of the equation generating TD0

. The solution theory for this

equation implies that, for fixed t ≥ 0, zt = TD0
(t)z0 +K(t)H(·, φ)

∣∣
[0, t], with a continuous and

linear operator K(t) : C0([0, t], Rn) → C0. It follows that

S0(t)φ = yt = zt + φ1 = TD0
(t)prD0

φ +K(t)H(·, φ)
∣∣
[0, t],

and from Proposition 3.6 we know that the operator C0 ∋ φ 7→ H(·, φ)
∣∣
[0, t] ∈ C0([0, t], Rn) is

compact. The assertion of c) follows.

We need some functional analytic results of general nature, in particular, a ‘compact per-

turbation’ result. The version below suffices for our purposes. (As above, we write ρ(. . .) for

the resolvent set and Pσ(. . .) for the point spectrum, i.e., the eigenvalues of an operator.)

Lemma 3.11. Assume that X is a real or complex Banach space, and U, K ∈ Lc(X, X), with K

compact.

(i) If G ⊂ C satisfies

(1) G ⊂ ρ(U) and (2) G ∩ Pσ(U + K) = ∅, (3.11)

then also G ⊂ ρ(U + K).

(ii) If µ ∈ ρ(U) ∩ σ(U + K) is an isolated spectral value, then it is an eigenvalue of U + K of finite

multiplicity (in the sense that the spectral subspace of XC associated to µ is finite-dimensional).

Proof. We can assume that X is a C-Banach space, otherwise we would have to consider

the complexifications of spaces and operators, We write GL(X, X) for the topological linear

isomorphisms of X.

Ad (i): For λ ∈ G, condition (1) gives that λ − U ∈ GL(X, X), and one has

λ − (U + K) = (λ − U) ◦ [idX − (λ − U)−1K)]︸ ︷︷ ︸
=:Fλ

= (λ − U) ◦ Fλ. (3.12)

The operators Fλ are of the form idX − Kλ with compact operators Kλ, and hence Fredholm

operators of index zero (see [29], Korollar 25.3., p. 109). This property implies that Fλ ∈
GL(X, X) if and only if kerFλ = {0}. Now assumption (2) shows that the operators λ − (U +

K) are injective for all λ ∈ G, and hence also Fλ is injective, and thereby in GL(X, X) for λ ∈ G.

It follows that for these λ also λ − (U + K) ∈ GL(X, X), so λ ∈ ρ(U + K).

Ad (ii): (The proof here follows the proof of Lemma 5.2, p. 22 in [15].) Assume that µ is as

in (ii). Part (i) applied to G := ρ(U) \ Pσ(U + K) shows that we must have µ ∈ Pσ(U + K),

so µ is an eigenvalue of U + K. For λ close enough to µ, but different from µ, we have

λ ∈ ρ(U + K) ∩ ρ(U). Thus, for small enough r > 0, the spectral projection associated to

the spectral set {µ} of U + K is given by prµ = 1
2πi

∮
|λ−µ|=r(λ − (U + K))−1 dλ, and from

(3.12) we see that (λ − (U + K))−1 = F−1
λ ◦ (λ − U)−1, if λ ∈ ρ(U + K) ∩ ρ(U). Switching to

resolvent notation we obtain Fλ ◦ R(λ; U + K) = R(λ; U) and hence, using the definition of

Fλ = idX − R(λ; U)K,

R(λ; U + K) = R(λ; U) ◦ K ◦ R(λ; U + K) + R(λ; U).
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Using this in the spectral projection formula we obtain

prµ =
1

2πi

∮

|λ−µ|=r

{R(λ, U) ◦ K ◦ R(λ; U + K) + R(λ; U)} dλ.

The second term under the integral is holomorphic in the neighborhood of µ and hence con-

tributes zero; the first term consists of compact operators, and so we conclude that prµ is com-

pact, which (for a projection) means it has finite-dimensional range. (From which it follows

again that µ must be an eigenvalue, since U + K induces a finite dimensional endomorphism

of image(prµ) with spectrum {µ}.)

Remark 3.12. Assume that µ is an isolated eigenvalues with finite-dimensional spectral sub-

space of the operator T ∈ Lc(X, X), where X is a complex Banach space (in particular T :=

U + K and µ as above). Then the space of generalized eigenvectors Gµ :=
⋃∞

j=1 ker (µ − T)j

equals the image of the spectral projection prµ, and with its dimension ν(µ) one has Gµ,T =

ker (µ − T)ν(µ), and the direct sum decomposition

X = ker(µ − T)ν(µ) ⊕ image(µ − T)ν(µ) = image(prµ)⊕ ker(prµ), (3.13)

with both decompositions coinciding.

Proof. For the first decomposition and the identity image(prµ) = ker(µ − T)ν(µ), see [15],

Theorem 2.1, p. 9, and the passage preceding it. Note that these results are independent of

the Hilbert space setting of [15], like many results of Chapter I of that reference, see also the

first sentence on p. 1 there. The existence of the second decomposition is clear, since prµ is

a projection, and it remains to prove equality of the spaces to the right of the ⊕-signs. If

v ∈ image(µ − T)ν(µ), there exists w ∈ X with v = (µ − T)ν(µ)w, and then for small r > 0

prµv =
1

2πi

∮

|λ−µ|=r

R(λ; T)v dλ =
1

2πi

∮

|λ−µ|=r

R(λ; T)(µ − T)ν(µ)w dλ = 0,

since ν(µ) equals the pole order of R(·; T) at µ (see e.g. Theorem 10.1, p. 330 in [47] or formula

(2.3) on p. 9 of [15]), and hence the integrand has a holomorphic extension at µ. This shows

that image(µ − T)ν(µ) ⊂ ker(prµ). Since both are direct complements of the same space,

equality follows.

We will need another result of general nature. In the lemma below, the restriction T
∣∣
Y

of an operator T to an invariant subspace Y of T is meant as simultaneous restriction in the

domain and the image space.

Lemma 3.13.

a) Let X be a complex Banach space and A a closed operator with domain D(A) and range in X,

and let Σ be a bounded spectral subset of A. Then the associated spectral subspace XΣ (with

the corresponding projection given by a contour integral with contour enclosing Σ) satisfies

XΣ ⊂ D(A), and A
∣∣

XΣ
is bounded.

b) Assume that {S(t)}t≥0 is a C0-semigroup of operators in Lc(X, X), with generator A, and let

Σ be a bounded subset of the spectrum σ(A), with complement Σ′ := σe(A) \ Σ, where σe(A)

denotes the extended spectrum of A (i.e., σ(A) ∪ {∞} in case A is unbounded). Then the

corresponding spectral decomposition X = XΣ′ ⊕ XΣ is invariant under all S(t) (t ≥ 0).
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c) The spectral projections prM,S(t), associated to the operator S(t) and some spectral subset M of

S(t) for some t ≥ 0, and prΣ,A, associated to A and Σ, commute.

d) If for some t > 0 one has

exp(tΣ) ∩ σ(S(t)
∣∣

XΣ′
) = ∅, (3.14)

then the disjoint sets in (3.14) are spectral sets for the operator S(t). In this case the spectral

projection for S(t) corresponding to the set exp(tΣ) coincides with the spectral projection for A

corresponding to Σ:

prexp(tΣ),S(t) = prΣ,A.

Proof. For a), see [47], Theorem 9.2, p. 322.

Ad b): For t ≥ 0, one has S(t) ◦ A = A ◦ S(t) on D(A) (see [42], Theorem 2.4 c, p. 5),

which implies (λ − A)S(t) = S(t)(λ − A) on D(A) for all λ ∈ C, and hence for λ ∈ ρ(A):

S(t) = R(λ; A)S(t)(λ − A) and finally S(t)R(λ; A) = R(λ; A)S(t) on the dense subspace

D(A), hence on all of X. Since the spectral projection prΣ,A associated to A and Σ is given by

a contour integral over of R(λ; A), it follows that also prΣ,A and S(t) commute, which proves

the invariance.

Ad c): For z ∈ ρ(S(t)) and w ∈ ρ(A), the fact that R(w, A) and S(t) commute implies

R(w; A) = R(w; A)(z − S(t))R(z; S(t)) = (z − S(t))R(w; A)R(z; S(t)),

and hence R(z; S(t)R(w; A) = R(w; A)R(z; S(t)) (the resolvents commute). Now

prM,S(t) =
1

2πi

∫

ΓM

R(z; S(t)) dz and prΣ,A =
1

2πi

∫

ΓΣ

R(w; A) dw

with appropriate cycles ΓM and ΓΣ, and the fact that both projections commute is obtained

from Fubini’s theorem and the commuting property of the resolvents.

Ad d): Assume condition (3.14) for some t > 0. Since A
∣∣

XΣ
is bounded and obviously

the generator of the semigroup {S(t)
∣∣

XΣ
}, the latter semigroup is uniformly continuous (i.e.,

continuous with respect to ∥ ∥Lc(X,X)), see [42], Theorem 1.2, p. 2. The spectral mapping

theorem for uniformly continuous semigroups ([13], Lemma 3.1.3, p. 19) shows that exp(tΣ) =

σ(S(t)
∣∣

XΣ
). This set is compact and, in view of (3.14), disjoint to the as well compact set

σ(S(t)
∣∣

XΣ′
), but since (in view of b)) S(t) is completely reduced by the subspaces XΣ and XΣ′ ,

the union of both sets gives σ(S(t)) (see [47], Theorem 5.4, p. 289), so both are spectral sets for

S(t). Hence the spectral projection prexp(tΣ),S(t) is well- defined. We briefly write prA for prΣ,A

and prS for prexp(tΣ),S(t). As above, both are given by appropriate contour integrals over cycles

ΓΣ and Γexp(tΣ) enclosing the respective sets. Note that prS

∣∣
XΣ

= 1
2πi

∫
Γexp(tΣ)

R(z; S(t)
∣∣

XΣ
) dz =

idXΣ
, since S(t)

∣∣
XΣ

has only spectrum in the interior of Γexp(tΣ) (namely, the set exp(tΣ)).

Hence XΣ ⊂ image(prS). Further, R(·; S(t)
∣∣

XΣ′
) is a holomorphic function in the interior of

Γexp(tΣ), due to condition (3.14). It follows that prS

∣∣
XΣ′

= 0, or XΣ′ ⊂ ker(prS). Now from

X = ker(prA)⊕ image(prA) = XΣ′ ⊕ XΣ;

X = ker(prS)⊕ image(prS)

and the inclusions between the subspaces of both decompositions, equality follows, and hence

prS = prA.
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We want to obtain an exponential dichotomy (or pseudo-hyperbolicity) result for the semi-

group {S0(t)}t≥0 from assumptions on the spectrum of the generator A0, i.e., on σ(A0) =

Z(χ), see Lemma 3.2. The lemma below is a main step.

Lemma 3.14. Assume L is as in (3.5), and that there exist real numbers α, β with α < β such that the

spectrum of A0 decomposes as

σ(A0) = σ(A0
C
) =

(
σ(A0

C
) ∩ S(−∞,α]

)

︸ ︷︷ ︸
=:Σ′

∪
(

σ(A0
C
) ∩ S(β,∞)

)

︸ ︷︷ ︸
=:Σ

,

with the set Σ nonempty and finite. Then

(i) For t ≥ 0, σ(S0(t)C) ⊂ {0} ∪ R(−∞,tα] ∪ R(tβ,∞).

(ii) For t > 0, σ(S0(t)C) ∩ R(tβ,∞) =
{

exp(tλ)
∣∣ λ ∈ σ(A0

C
) ∩ S(β,∞)

}
, and all of these finitely

many numbers are eigenvalues of finite multiplicity for S0(t).

(iii) If µ is one of the finitely many spectral values of S0(t)C in R(tβ,∞), then the associated spectral

space of S0(t) is given by

Gµ,S0(t)C
=

⊕

λ ∈ σ(A0) ∩ S(β,∞),

exp(tλ) = µ

Gλ,A0
C

, (3.15)

where Gλ,A0
C

denotes the associated finite-dimensional spectral space of A0
C

associated with λ.

(iv) For every t > 0, condition (3.14) from Lemma 3.13 is satisfied with Σ from above.

Proof. In the proof, we omit the subscript C. From the assumptions, σ(A0) ∩ S(α,∞) = σ(A0) ∩
S(β,∞) is finite. Since σ(A0) = Z(χ) (Lemma 3.2), we see from Corollary 3.9 that Z(χ0) ∩
S(α,∞) = ∅, since any number in this set would imply the existence of infinitely many numbers

in Z(χ)∩S(α,∞). It follows that, with the notation from Corollary 3.9, Z0 ⊂ (−∞, α] and hence

also Z0 ⊂ (−∞, α]. We obtain for t ≥ 0 that t · Z0 ⊂ (−∞, tα], and Lemma 3.10 b) shows that

σ(TD0
(t)) ⊂ {0} ∪ R(−∞,tα]. Since σ[TD0

(t) ◦ prD0
] = {0} ∪ σ(TD0

(t)), we conclude that

∀t ≥ 0 : σ[TD0
(t) ◦ prD0

] ⊂ {0} ∪ R(−∞,tα]. (3.16)

For t ≥ 0, Lemma 3.10 c) allows us to apply Lemma 3.11 with U := TD0
(t) ◦prD0

and K := K(t)

(so that U + K = S0(t)), and with G := R(tα,∞) \ Pσ(U + K), which obviously satisfies the

second condition in (3.11). We see from (3.16) that the first condition in (3.11) also holds, and

so we can conclude that G ⊂ ρ(S0(t)). It follows that

σ(S0(t)) ⊂ {0} ∪ R(−∞,tα] ∪ Pσ(S0(t)). (3.17)

Now the spectral mapping theorem for the point spectrum (see Theorem 16.7.2 on page 467 of

[28], or Theorem 3.7 on p. 277 of [13]) gives Pσ(S0(t)) \ {0} = exp(t · Pσ(A0)). Since Pσ(A0) =

σ(A0) and A0 has no spectrum in S(α,β], we conclude that σ(S0(t)) ⊂ {0} ∪ R(−∞,tα] ∪ R(tβ,∞),

and assertion (i) is proved.

Ad (ii): Assume t > 0. We also see from (3.17) and the spectral mapping theorem for the

point spectrum that

σ(S0(t)) ∩ R(tβ,∞) = Pσ(S0(t)) ∩ R(tβ,∞)

= exp(t · Pσ(A0)) ∩ R(tβ,∞) = exp[t · (Pσ(A0) ∩ S(β,∞))].
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(Note that exp(tλ) ∈ R(tβ,∞) if and only if Re(tλ) > tβ, which means Re(λ) > β.) Thus

we obtain that σ(S0(t)) ∩ R(tβ,∞) =
{

exp(tλ)
∣∣ λ ∈ σ(A0) ∩ S(β,∞)

}
, and that these numbers

are all eigenvalues of S0(t). Finite multiplicity can be seen as follows: Consider a spectral

value µ = exp(λt) of S0(t), where λ ∈ σ(A0) ∩ S(β,∞). Then, with U and K defined as above,

µ is obviously an isolated spectral value of U + K and (3.16) shows that µ ∈ ρ(U). Finite

multiplicity now follows from part (ii) of Lemma 3.11.

Ad (iii): We briefly write G for Gµ,S0(t). Remark 3.12 shows that G = ker (µ − S0(t))ν(µ),

and this space is invariant under all S0(s), since the null space of an operator T1 is invariant

under a second operator T2 that commutes with T1. Hence {S0(s)
∣∣G}s≥0 is a semigroup on the

finite dimensional space G. Its generator is defined on all of G and coincides with A0∣∣G. Since

the spectrum is natural with respect to restriction to spectral subspaces (see [47], Theorem 9.2

and Corollary 9.3, pp. 322-323), we have σ(S0(t)
∣∣G) = {µ}, and the finite-dimensional spectral

mapping theorem for exp(t·) (which follows easily from the Jordan canonical form theorem,

but also e.g. from Lemma 3.13 on p. 19 of [13]) gives

σ(S0(t)
∣∣G) = exp[t · σ(A0∣∣G)].

It follows that σ(A0∣∣G) ⊂
{

λ ∈ C
∣∣ exp(tλ) = µ

}
, and since µ ∈ R(tβ,∞), we conclude

σ(A0∣∣G) ⊂ σ(A0) ∩ S(β,∞) ∩
{

λ ∈ C
∣∣ exp(tλ) = µ

}
. It follows now from the Jordan canonical

form theorem, with the obvious notation for the generalized eigenspaces of A0∣∣G, that

G =
⊕

λ∈σ(A0
∣∣G)

Gλ,A0
∣∣G =

⊕

λ ∈ σ(A0) ∩ S(β,∞),

exp(tλ) = µ

Gλ,A0
∣∣G ⊂

⊕

λ ∈ σ(A0) ∩ S(β,∞),

exp(tλ) = µ

Gλ,A0 ,

where the last inclusion is obvious. This proves the inclusion ‘⊂’ in (3.15). To prove the

inclusion ‘⊃’, it suffices to prove that for λ as on the right hand side one has Gλ,A0 ⊂ Gµ,S0(t).

For such λ, the space Gλ,A0 is finite dimensional, contained in the domain of A0 and invariant

under A0, and A0
∣∣Gλ,A0

= λ + Nλ, with a nilpotent operator Nλ. Further,

S0(t)
∣∣Gλ,A0

= exp[tA0
∣∣Gλ,A0

] = exp[t(λ + Nλ)] = exp(tλ) ◦ exp(tNλ) = µ ◦ [idG
λ,A0

+ Ñ]

= µ + N̂,

where N̂ is also a nilpotent endomorphism of Gλ,A0 . It follows that (µ − S0(t))k∣∣Gλ,A0
= 0 for

some k ∈ N (certainly for k = dimGλ,A0), and hence Gλ,A0 ⊂ ⋃∞
j=1 ker (µ − S0(t))j = Gµ,S0(t),

see Remark 3.12.

Ad (iv): Consider µ ∈ exp(tΣ). To the isolated eigenvalue µ of S0(t) corresponds a spectral

projection prµ, and from Lemma 3.13 c) we see that it commutes with prΣ,A0 . From (3.15) we

see that Gµ,S0(t) ⊂ C0
Σ (where the last symbol denotes the spectral subspace of A0 correspond-

ing to Σ), which implies that

prΣ,A0 ◦ prµ = prµ. (3.18)

The operator µ − S0(t) induces an isomorphism on ker(prµ), since µ ̸∈ σ(S0(t)
∣∣

ker(prµ)
). We

show that C0
Σ′ ⊂ ker(prµ): Since C0

Σ′ = ker(prΣ,A0), we obtain using the commuting property

and (3.18):

prµ

∣∣
C0

Σ′
= prµ(id − prΣ,A0)

∣∣
C0

Σ′
= (prµ − prΣ,A0prµ)

∣∣
C0

Σ′
= 0.



Linearized instability 23

Thus, µ − S0(t) also induces an isomorphism on the space C0
Σ′ (which, as we know from

Lemma 3.13b), is invariant under S0(t)), and we conclude µ ̸∈ σ(S0(t)
∣∣
C0

Σ′
), so condition (3.14)

holds.

Putting together the above results on spectra and characteristic functions, we arrive at the

theorem below.

Theorem 3.15 (Exponential separation for S0). Assume L is as in (3.5), and that there exist real

numbers α, β with α < β such that the spectrum σ(A0) of the generator of S0 can be split as in Lemma

3.14:

σ(A0
C
) =

(
σ(A0

C
) ∩ S(β,∞)

)
∪
(

σ(A0
C
) ∩ S(−∞,α]

)
, (3.19)

and
(
σ(A0

C
) ∩ S(β,∞

)
is a nonempty finite set. Then the following hold:

a) For t > 0, the decomposition C0
C
= E+

C
⊕ E−

C
into spectral subspaces of A0

C
according to (3.19) is

invariant under S0(t)C. These spaces coincide with the spectral subspaces of S0(t)C coming from

the spectral sets σ(S0(t)C) ∩ R(tβ,∞) and σ(S0(t)C) ∩
(
{0} ∪ R(−∞,tα]

)
(see Lemma 3.14 (i)).

b) Analogous to a), setting E± := Re(E±
C
), the ‘real’ decomposition C0 = E+ ⊕ E− is invariant

under the ‘real’ operator family {S0(t)}t≥0.

c) There exists a constant K > 0 such that for all t ≥ 0

|S0(t)ϕ|C0 ≥ K−1 exp(βt)|ϕ|C0 for ϕ ∈ E+. (3.20)

d) If α̃ ∈ (α, β), then there exists K̃ > 0 such that for all t ≥ 0

|S0(t)ϕ|C0 ≤ K̃ exp(α̃t)|ϕ|C0 for ϕ ∈ E−. (3.21)

Proof. Ad a): Fix t > 0. Lemma 3.13 b) applied to the semigroup S0(·)C and with Σ :=

σ(A0
C
) ∩ S(β,∞) and Σ′ as in Lemma 3.14 gives the invariance of the spaces E±

C
under S0(t)C.

Further, we see from Lemma 3.14(ii) that exp(Σt) = σ(S0(t)C ∩R(tβ,∞) and from part (iv) of the

same lemma that condition (3.14) holds. Hence part d) of Lemma 3.13 gives that the spectral

projections prexp(tΣ),S0(t)C
and prΣ,A0

C

onto E+
C

coincide, and hence the complementary spectral

subspaces (corresponding to the set {0} ∪ R(−∞,tα] for S0(t)C and to Σ′ for A0
C

) also coincide,

namely, with E−
C

.

b) Follows from a) taking real parts of the involved spaces; noting that S0(t) is the restriction

of S0(t)C to C0, and the analogous property for the spaces E±
C

and E±.

Ad c): E+ is finite-dimensional, with

min
{

Re(λ)
∣∣ λ is eigenvalue of A0

C

∣∣
E+

C

}
> β.

Hence estimate (3.20) for S0(t)
∣∣

E+ with respect to the C0-norm is obtained in a standard

way, as for ordinary differential equations (even in the case of possible multiple eigenval-

ues, since their minimal real part is larger than β). Alternatively, one can also use that

σ(S0(t)C

∣∣
E+

C

) ⊂ R(tβ,∞) for t > 0 implies σ([S0(t)C

∣∣
E+

C

]−1) ⊂
{

z ∈ C
∣∣ |z| < exp(−βt)

}
and

then use Proposition 3.5 for the semigroup t 7→ σ([S0(t)C

∣∣
E+

C

]−1) of inverse operators. The

analogous ‘real’ estimate is then obtained by restriction.
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Ad d): From a), we have σ(S0(t)C

∣∣
E−

C

) ⊂ {0} ∪ R(−∞,tα], which for α̃ ∈ (α, β) implies that

the spectral radius satisfies r(S0(t)C

∣∣
E−

C

) < exp(α̃t). Proposition 3.5 applied to the semigroup

{S0(s)C

∣∣
E−

C

}s≥0 gives estimate (3.21) first for the complexification, and the real version follows.

We can now easily obtain a result corresponding to the above theorem for the semigroup

S1 on the space T1 = D(A0) from Lemma 3.4, which is what we actually need later.

Corollary 3.16 (Exponential separation for S1). Under the assumptions and with the notation of

Theorem 3.15, one has E+ ⊂ T1 and the S1-invariant decomposition

T1 = E+ ⊕ (T1 ∩ E−) (3.22)

With respect to the C1-norm, the semigroup S1 satisfies estimates analogous to (3.20) and (3.21) on

these spaces.

Proof. 1. From Lemma 3.13, applied with Σ as in Lemma 3.14, we see that E+
C

⊂ D(A0
C
),

which implies E+ = Re(E+
C
) ⊂ Re(D(A0

C
)) = D(A0) = T1. The complex spectral projection

prΣ,A0
C

∈ LC(C
0
C

, C0
C
) onto E+

C
induces a projection prΣ,A0 ∈ LC(C

0, C0) onto E+ which corre-

sponds to the decomposition in Theorem 3.15b). For ϕ ∈ T1 one has also ϕ − prΣ,A0 ϕ ∈ T1

(and certainly ϕ − prΣ,A0 ϕ ∈ E−), so we have the decomposition T1 = E+ ⊕ (T1 ∩ E−). It is

invariant under all S1(t) (t ≥ 0), since the spaces E± are invariant under S0(t), of which S1(t)

is a restriction.

2. On the finite-dimensional space E+ all norms are equivalent, hence it is clear that an

estimate analogous to (3.20) also holds w.r. to the C1-norm, and hence for S1(t) restricted to

this space.

3. Since T1 = D(A0) and since S0(t) and A0 commute on D(A0) ([42], Theorem 2.4 c, p. 5),

we have for ϕ ∈ T1 and t ≥ 0 in view of (3.21):

|(S1(t)ϕ)′|C0 = |(S0(t)ϕ)′|C0 = |A0S0(t)ϕ|C0 = |S0(t)A0ϕ|C0 = |S0(t)ϕ′|C0 ≤ K̃ exp(α̃t)|ϕ′|C0 .

In combination with estimate (3.21) for the C0-norm, it is now obvious that we obtain an

analogous estimate for the C1-norm:

|S1(t)ϕ|C1 = |S1(t)ϕ|C0 + |(S1(t)ϕ)′|C0 ≤ K̃ exp(α̃t)|ϕ|C0 + K̃ exp(α̃t)|ϕ′|C0 = K̃ exp(α̃t)|ϕ|C1 .

The remark below may explain why we decided to give proofs for Theorem 3.15 and its

prerequisites, although a number of related references exist.

Remark 3.17 (on related literature). a) Recall the sets Z0 and Z from Corollary 3.9 (in [26],

Theorem 4.1, p. 117, the set Z0 is named Z). In Theorem 4.2 of [26], which essentially describes

consequences of a splitting of the spectrum at real part = α ∈ R, there is no assumption like

α ̸∈ Z (in the notation from that paper), which one would expect, in view of the preparations

leading to that theorem. The proof of Theorem 4.2 in [26] uses Theorem 4.1 of the same

reference, and that does have assumptions on Z, so their absence from the hypotheses of

Theorem 4.2 is surprising. This can be explained using ideas sketched in the first remark on

p. 18 of [26], but such an explanation is not given in [26]. We tried to carry this out in the

proof of Lemma 3.14 above.
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b) Some results of [26] take reference to the paper of the same author titled ‘Adjoint theory and

boundary value problems for neutral linear FDEs’, which apparently was never published.

c) Contrary to Theorem 4.2 in [26], the somewhat analogous Theorem 6.1 of [34] contains

assumptions on both the zeroes of λ 7→ det ∆(λ) and λ 7→ det ∆0(λ) – this is apparently

due to the more general form of the operator L considered in [34]; compare the remark after

condition (J) on p. 397 of [34].

d) Theorem 6.4 from the section with application to neutral delay equations from [34] would

allow to transfer the hyperbolic splitting from Theorem 6.1 of the same paper to a splitting

by some growth rate exp(αt) for nonzero α, but the proof contains an unclear point: It uses a

rescaling argument familiar in semigroup theory (see e.g. Section 2 of Chapter II in [13]). But

the rescaled semigroup and its generator are not necessarily obtained from a neutral delay

equation as the original ones.

e) Above we proved and used the ‘compact perturbation’ result Lemma 3.11. It is a simpler

form of Lemma 5.2 from p. 22 of [15], which however is stated in a Hilbert space context, and

also a simpler form of Lemma 4.2 from p. 117 of [26], where it is claimed that the proof can be

obtained by modification of the proof from [15]. In the corresponding passage of [17] (Lemma

2.4 on p. 211), a reference from the well-known book of Kato [35] is quoted with a misleading

number, and the result of Theorem 5.26 from Chapter IV of that book (which was possibly

meant) does not seem to fit well. In the book [20], the reader is referred to Section 12.12 of

[20] for references concerning the ‘compact perturbation’ result, (Lemma 3.4 of Section 12.3,

p. 285), but Section 12.12 does not seem to contain such references.

The last part of this section prepares the treatment of nonlinear equations in Section 3. It

will be important later that for particular solutions y of equation 3.1 and short time intervals,

on which the phase curve Y satisfies L ◦Y = 0, y will still be C1 on a short interval to the right

of zero.

For ν ∈ (0, h) we define the space

Nν :=
{

ϕ ∈ C0
∣∣ ϕ = 0 on [−h,−ν]

}
.

Recall the set W1 from condition (g3). Condition (g̃1) implies the following property:

Lemma 3.18. Assume (ψ, φ) ∈ W1, further that χ1, χ2,∈ C0, that χ̂ ∈ N∆ and ψ̂ ∈ C1 ∩N∆, and

that also (ψ + ψ̂, φ) ∈ W1.

a) Then Deg1(ψ + ψ̂, φ)(χ1 + χ̂, χ2) = Deg1(ψ, φ)(χ1, χ2).

b) In particular, D1,eg1(0, 0) = 0 on N∆, and hence also L = 0 on N∆.

Proof. Property (g̃1) implies

g(ψ̃ + ψ̂, φ̃) = g(ψ̃, φ̃)

for (ψ̃, φ̃) in a neighborhood of (ψ, φ) in C1 × C1. Hence,

Dg1(ψ + ψ̂, φ) = Dg1(ψ, φ), and consequently Deg1(ψ + ψ̂, φ) = Deg1(ψ, φ).

(Note that the extensions to C0 × C0 are unique, due to density of C1 in (C0, | |C0).)
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It follows that

Deg1(ψ + ψ̂, φ)(χ1 + χ̂, χ2) = Deg1(ψ, φ)(χ1 + χ̂, χ2)

= Deg1(ψ, φ)(χ1, χ2) + Deg1(ψ, φ)(χ̂, 0).
(3.23)

In case χ̂ ∈ C1 ∩N∆, the last term equals lims→0
1
s [g1(ψ + sχ̂, φ)− g1(ψ, φ)] = 0, since g1(ψ +

sχ̂, φ)− g1(ψ, φ) = 0 for s sufficiently small. By density, it follows that Deg1(ψ, φ)(χ̂, 0) = 0

for χ̂ ∈ N∆. Assertion a) then follows from (3.23).

Proof of b): Assertion a), specialized to the case ψ = ψ̂ = φ = χ1 = χ2 = 0, gives

D1,eg1(0, 0)χ̂ = Deg1(0, 0)(χ̂, 0) = Deg1(0, 0)(0, 0) = 0 if χ̂ ∈ N∆, which shows b).

Associated to equation (3.1), there are not only the semigroups {S0(t)}t≥0 and {S1(t)}t≥0,

but also the so-called fundamental solution X : [−h, ∞) → Cn×n; the column functions t 7→
Xj(t) (j = 1, . . . , n) are zero on [−h, 0), equal to the j-th unit vector ej at t = 0, continuous

on [0, ∞), and solve equation (3.1) on [0, ∞) in the ‘integral’ sense of formula (3.24) explained

below (see Section 6 of [53]): The description of the operators L and R in Lc(C0, Rn) by

integrals can be naturally extended from continuous functions to bounded Borel-measurable

functions, leading to extended operators L̂ and R̂. The Xj then satisfy

Xj(t)− L̂Xj,t = ej +
∫ t

0
R̂Xj,s ds (t ≥ 0), (3.24)

where Xj,t = Xj(t + ·)∣∣[−h, 0] denotes the segment of Xj at time t, and the integral is a Lebesgue

integral. Compare Prop. 6.7, p. 459 in [53]. In this sense the fundamental solution can be seen

as an extension of the solution operators to discontinuous initial segments (which are zero on

[−h, 0)), and it is helpful for the description of solutions to inhomogeneous equations.

Lemma 3.19 ([53, Corollary 6.8]). Let c ≥ 1, ω ∈ R be given with

|S0(t)χ|C0 ≤ ceωt|χ|C0 , for all t ≥ 0, χ ∈ C0. (3.25)

Then the columns Xj of the fundamental matrix satisfy

|Xj(t)| ≤ ceωt for all j ∈ {1, . . . , n} and t ≥ 0. (3.26)

It will be important how the semigroup S0 acts on functions in the space N∆/2, because

such functions span an n-dimensional complement of T1 = Te,0M2 in C2. Although we cannot

expect a general solution of the linear equation (3.1) to be of class C1, it will be important that

such solutions for special initial functions (namely, in the space N∆/2) are C1 when restricted

to the time interval [0, ∆/2]. We shall see that a similar property holds for the additional

term present in solutions of the nonlinear equation 1.1, which term involves the fundamental

matrix.

Lemma 3.20. Assume ψ ∈ N∆/2.

a) The restriction of the solution y of equation (3.1) with y0 = ψ (i.e., yt = S0(t)ψ) to [0, ∆/2] is

of class C1 (at t = 0, this refers to the right hand derivative), and satisfies ẏ(0+) = Rψ, and

there exists a constant M1 ≥ 1 such that for all such ψ and t ∈ [0, ∆/2], one has

max{|ẏ(t)|, |y(t)|} ≤ M1 · |ψ|C0 .



Linearized instability 27

b) The fundamental matrix X is absolutely continuous on [0, ∆/2] (right-continuous at 0), hence dif-

ferentiable Lebesgue-almost everywhere on [0, ∆/2], and satisfies |X(t)| ≤ M̃1 for t ∈ [0, ∆/2],

with an appropriate M̃1 ≥ 1.

Proof. Solutions y of equation (3.1) with y0 = ψ ∈ N∆/2 actually follow the non-neutral re-

tarded equation ẏ(t) = Ryt on [0, ∆/2], since the segments yt satisfy yt ∈ N∆ ⊂ ker (L) for

t ∈ [0, ∆/2]. For the semigroup S0, there exist constants M ≥ 1 and Ω > 0 such that for all

t ≥ 0 one has ∥S0(t)∥Lc(C0,C0) ≤ M · exp(Ωt) (see [42], Theorem 2.2, p. 4, or Proposition 3.5 of

the present paper). Writing ∥R∥ for ∥R∥Lc(C0,Rn), it follows that for such y and t ∈ [0, ∆/2] one

has

|ẏ(t)| = |Ryt| ≤ ∥R∥ · |yt|C0 ≤ ∥R∥ · M · exp(Ωt) · |ψ|C0 ≤ ∥R∥ · M · exp(Ω∆/2) · |ψ|C0 ,

and clearly |y(t)| ≤ |yt|C0 ≤ M · exp(Ω∆/2)|ψ|C0 . Set M1 := max{∥R∥, 1}M · exp(Ω∆/2).

Ad b): Continuity on [0, ∞) was already remarked above, and the estimate with M̃1 := M ·
exp(Ω∆/2) follows from Lemma 3.19. Further, the segments Xj,t are zero on [−h,−∆] (even

on [−h,−∆/2)) for t ∈ [0, ∆/2], and the operator L̂ is zero on such segments, as extension of

L which is zero on N∆ (see also [56], Prop. 5.3). In view of equation (3.24), we see that the Xj

actually satisfy

Xj(t) = ej +
∫ t

0
R̂Xj,s ds (t ∈ [0, T])

(compare also formula (6.2) in [56]). The integrand here is of class L1, and it follows that Xj is

absolutely continuous, with derivative R̂Xj,t for Lebesgue-almost every t ∈ [0, ∆/2] (see [27],

Satz 131.2, p. 113, and [16], Theorem 29, Chap. X, p. 208).

We turn to inhomogeneous equations now.

Lemma 3.21 (Variation of constants, Corollary 6.12, p. 460 in [53]). For every φ∈C0([−h, 0], Cn)

and every continuous function f : [0, ∞) → Cn there is a unique continuous solution of the inhomo-

geneous equation
d

dt
(y − LC ◦ Y)(t) = RCyt + f (t), t > 0, (3.27)

with y0 = φ. (The notion of a solution here is analogous to the case f = 0.) For all t ≥ 0, one has with

vt := S0(t)Cφ (i.e., v is the solution of the homogeneous equation (3.1) with v0 = φ) the representation

y(t) = v(t) +
∫ t

0
X(t − s) f (s) ds.

4 Solutions of the nonlinear equation

Recall the set X2 from the introduction, described in (2.3).

Theorem 4.1 (Semiflow on X2). Assume (g0)–(g3). For each ϕ ∈ X2, the corresponding solution

xϕ of (1.1) is twice continuously differentiable, and for all t in the maximal existence interval

[0, tϕ), one has x
ϕ
t ∈ X2. These solutions define a semiflow Φ on X2 by setting Φ(t, ϕ) := x

ϕ
t

(a restriction of the semiflow on X1+), which is continuous w.r. to the obvious topology on

[0, ∞)× C2 induced by | |C2 on C2.

Proof. See Propositions 6.1 and 6.2, and the passage before condition (g4) in [55].
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Recall the set W1 from condition (g3). As indicated in point 5) of the comments on the

hypotheses, we define the map

rg : {ψ ∈ C2 : (ψ′, ψ) ∈ W1} ∋ ψ 7→ g1(ψ
′, ψ)− Dg1(0, 0)(ψ′, ψ) ∈ R

n. (4.1)

This map is continuously differentiable w.r. to | |C2 on its domain (and the ordinary topology

on Rn).

Lemma 4.2 ([53, Proposition 3.3]). The twice continuously differentiable solutions y : [−h, tϕ) →
Rn of (1.1) with y0 = ϕ ∈ X2 as in Theorem 4.1 are also solutions of the inhomogeneous equation

d

dt
(y − L ◦ Y)(t) = Ryt + rg(yt). (4.2)

Corollary 4.3. If t0 > 0 and x : [−h, t0] → Rn is a C2 solution of (1.1) as in Lemma 4.2, then for

t ∈ [0, t0] one has

xt = S0(t)x0 + Nt, (4.3)

where N(t) = 0 for t ∈ [−h, 0] and N(t) =
∫ t

0 X(t − s)rg(xs) ds for t ∈ [0, t0].

Proof. The proof follows from Lemma 4.2 and Lemma 3.21.

For the term N in formula (4.3), we have a result similar to part a) of Lemma 3.20.

Lemma 4.4. With x and N as in Corollary 4.3, and T ∈ (0, ∆] ∩ (0, t0], the function N restricted to

[0, T] is of class C1, satisfies Ṅ(t) = RNt + rg(xt) for t ∈ [0, T], and in particular Ṅ(0+) = rg(x0).

Proof. N is continuous, and one sees from formula (6.2) in Prop. 6.2 of [56] that N satisfies the

integral equation

N(t)− LNt =
∫ t

0
RNs ds +

∫ t

0
rg(xs) ds.

Now for t ∈ [0, T], the segments Nt are in N∆, so that LNt = 0, and N actually satisfies

N(t) =
∫ t

0
RNs ds +

∫ t

0
rg(xs) ds (t ∈ [0, T]).

Both integrands here are continuous, since s 7→ Ns is continuous, and since the map s 7→
(x′s, xs) ∈ C1 × C1 is continuous (compare formula (4.1)). Observe here that x is C2, which (us-

ing locally uniform continuity of ẍ) implies that, in particular, s 7→ (xs)′′ ∈ C0 is continuous,

and hence s 7→ (xs)′ ∈ C1 is continuous. It follows from the fundamental theorem of calculus

that N is C1 on [0, T], with Ṅ(t) = RNt + rg(xt), in particular, Ṅ(0+) = 0 + rg(x0).

We turn to an estimate for the nonlinear term rg in equation (4.2) now.

Lemma 4.5. Assume (g̃1)–(g3), (g6), (g7) and (g̃8). Then there exists a neighborhood U2 in C2 of 0

and a bounding function ζ̃ such that for ψ ∈ U2 the following estimate holds:

|rg(ψ)| ≤ ζ̃(|ψ|C2) · |ψ|C0 + α(|ψ|C1)|ψ′∣∣
[−h,−∆]

|C0 .
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Proof. (The proof follows the proof of part (v) of Proposition 3.1, p. 324 in [54].) With W1

from assumption (g3), there exists a neighborhood U2 in C2 of 0 such that for ψ ∈ U2 one has

(ψ′, ψ) ∈ W1. For such ψ one has

rg(ψ) =
∫ 1

0
[Dg1(sψ′, sψ)− Dg1(0, 0)](ψ′, ψ)) ds =

=
∫ 1

0
[D1g1(sψ′, sψ)− D1g1(0, 0)]ψ′ ds +

∫ 1

0
[D2g1(sψ′, sψ)− D2g1(0, 0)]ψ ds.

Using (g̃8) and that α is nondecreasing, the first term can be estimated by

max
0≤s≤1

c8|ψ′′|C0 |sψ|C0 + α(|sψ′|C0) · |ψ′∣∣
[−h,−∆]|C0 ≤ c8|ψ′′|C0 |ψ|C0 + α(|ψ′|C0) · |ψ′∣∣

[−h,−∆]|C0 .

In a similar way, using (g7), the second term is estimated by

ζ7(|ψ′|C1 + |ψ|C1) · |ψ|C0 + c7|ψ|C1 |ψ|C0 .

Adding both estimates gives

|rg(ψ)| ≤
[
c8|ψ′′|C0 + ζ7(|ψ′|C1 + |ψ|C1) + c7|ψ|C1

]
· |ψ|C0 + α(|ψ′|C0) · |ψ′∣∣

[−h,−∆]|C0

≤ [c8|ψ|C2 + ζ7(2|ψ|C2) + c7|ψ|C2 ] · |ψ|C0 + α(|ψ|C1) · |ψ′∣∣
[−h,−∆]|C0 .

The assertion follows by defining ζ̃(s) := (c8 + c7)s + ζ7(2s) for s ∈ [0, ∞).

The following coarser estimate for rg will be convenient to use.

Corollary 4.6. Under the assumptions of Lemma 4.5, there exists a bounding function ρg such that

∀ψ ∈ U2 : |rg(ψ)| ≤ ρg(|ψ|C2) · |ψ|C1 .

(The proof is obvious, setting ρg(|ψ|C2) := ζ̃(|ψ|C2) + α(|ψ|C2).)

Under more restrictive assumptions than in the present paper (in particular, the linearity

condition (g4)), it is possible to show that the nonlinearity rg satisfies an estimate of the form

|rg(ψ)| ≤ const · |ψ|C2 · |ψ|C0 , see Proposition 3.2, p. 448 in [53]. In the present work (in view

of the estimate in Corollary 4.6) we have to work with the C1-norm. For this purpose we will

replace the decomposition in formula (4.3) by a more suitable one, using that X2 ⊂ M2, and

the local graph representation of M2 at zero.

As another consequence of condition (g̃1) (together with continuity properties of Dg1) we

shall next obtain an estimate of |xt|C1 in terms of |x0|C1 for solutions of (1.1), if t ∈ [0, ∆]. It

follows from assumptions (g6) and (g7) that there exists a ball B2 around zero in C2 such that

B2 ⊂ U2, and

∥D1,eg1∥∞,B2
:= sup

{
∥D1,eg1(ψ)∥Lc(C0,Rn)

∣∣ ψ ∈ B2

}
< ∞,

∃D̃2 > 0 ∀ψ ∈ B2 ∀s ∈ [0, 1] : |D2g1(sψ′, sψ)ψ| < D̃2|ψ|C0 , and hence

D̄ := max{∥D1,eg1∥∞,B2
, D̃2, 1} < ∞.

(Note that the property concerning ∥D1,eg1∥∞,B2
would even hold on a ball in C1 around zero.)
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Lemma 4.7. Assume that B2 ⊂ C2 and D̄ are as described above, and that x : [−h, t1] → Rn is a

solution of (1.1) with segments xt ∈ X2 ∩ B2, and with t1 ∈ (0, ∆].

Then, setting C1 := D̄[1 + (1 + ∆ · D̄) · exp(D̄∆)], one has

∀t ∈ [0, t1] : |xt|C1 ≤ C1|x0|C1 .

Proof. Set ϕ := x0 ∈ X2, and (as in [55], Proposition 2.3) define the affine-linear C1 extension

ϕd : [−h, ∆] → Rn by ϕd(t) := ϕ(0) + tϕ̇(0) (t ∈ [0, ∆]). For t ∈ [0, t1] we have ẋ(t + θ) =

ϕ̇(t + θ) = ϕ̇d(t + θ) if θ ∈ [−h,−∆] and hence

x′t − (ϕd)′t ∈ N∆.

Using Lemma 3.18 a) we obtain for these t

ẋ(t) = g(x′t, xt) =
∫ 1

0
[Dg1(sx′t, sxt)(x′t, xt) ds =

∫ 1

0
[Deg1(sx′t, sxt)(x′t, xt) ds

=
∫ 1

0
Deg1(sx′t, sxt)(ϕd)′t, xt) ds =

∫ 1

0
[D1,eg1(sx′t, sxt)(ϕd)′t + D2g1(sx′t, sxt)xt] ds,

and hence

|ẋ(t)| ≤ ∥D1,eg1∥∞,B2
|(ϕd)′t|C0 + D̃2|xt|C0

≤ ∥D1,eg1∥∞,B2
|ϕ′|C0 + D̃2|xt|C0 ≤ D̄(|ϕ|C1 + |xt|C0).

(4.4)

It follows that for t ∈ (0, t1] ⊂ [0, ∆]

|x(t)| ≤ |ϕ(0)| +
∫ t

0
|ẋ(s)| ds ≤ |ϕ(0)|+ ∆ · D̄|ϕ|C1 + D̄

∫ t

0
|xs|C0 ds.

Setting µ(t) := maxs∈[−h,t] |x(s)| for t ∈ [0, ∆], we see that

µ(t) ≤ (1 + ∆ · D̄)|ϕ|C1 + D̄
∫ t

0
µ(s) ds,

and Gronwall’s lemma gives

µ(t) ≤ (1 + ∆ · D̄)|ϕ|C1 exp[D̄t] ≤ [1 + ∆ · D̄] · exp[D̄∆] · |ϕ|C1 .

Since D̄ ≥ 1, the last estimate and the definition of C1 imply

|xt|C0 ≤ [1 + ∆ · D̄] · exp[D̄∆] · |ϕ|C1 ≤ C1|ϕ|C1 for t ∈ [0, t1]. (4.5)

Combining the first inequality in (4.5) with (4.4) we conclude

|ẋ(t)| ≤ D̄[|ϕ|C1 + (1 + ∆ · D̄) · exp(D̄∆) · |ϕ|C1 ] = D̄[1 + (1 + ∆ · D̄) · exp(D̄∆)] · |ϕ|C1

= C1|ϕ|C1 .

This estimate together with the second inequality in (4.5) gives the result.
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5 Manifolds, graph representation, and decomposition of solutions.

Recall the set U1 from the beginning of Section 2, and consider the map F2 : U1 ∩ C2 → Rn,

F2(ψ) := ψ̇(0)− g1(ψ
′, ψ). This map is of class C1 (when considered with | |C2 on its domain).

It is shown in [55, Proposition 5.1] that, if g satisfies (g̃1) and (g3), then M2 := F−1
2 (0) (called

X2 in the mentioned reference) is a submanifold of class C1 of the space C2. The proof in

[55] is based on the fact that the differential DF2(ψ) at every point of M2 is surjective. In

particular, DF2(0) is surjective, and given by

DF2(0)χ = χ̇(0)− Dg1(0, 0)(χ′, χ) = χ̇(0)− Lχ′ − Rχ.

It is also shown in part 2 of the proof of [55, Proposition 5.1] that even DF2(0)
∣∣N∆

is surjective,

and hence there exist functions ψ1, . . . , ψn ∈ N∆ ∩ C2 with

DF2(0)ψj = ej (the j-th unit vector), j = 1, . . . , n. (5.1)

It is clear that one can also choose the ψj such that ψj ∈ N∆/2, which we assume from now

on. Since L = 0 on N∆, we have ψ̇j(0)− Rψj = ej, j = 1, . . . , n. The tangent space T0M2 sat-

isfies T0M2 = ker DF2(0) =
{

χ ∈ C2
∣∣ χ′(0) = Dg1(0, 0)(χ′, χ)

}
, and the so-called extended

tangent space to M2 at zero is

Te,0M2 =
{

χ ∈ C1
∣∣ χ′(0) = Deg1(0, 0)(χ′, χ)

}
= T1

(see Lemma 3.4). We have the decompositions

C2 = ker DF2(0)⊕
n⊕

j=1

R · ψj, (5.2)

and correspondingly also

C1 = T1 ⊕
n⊕

j=1

R · ψj, (5.3)

since T1 is the kernel of the continuous linear functional C1 ∋ χ 7→ χ′(0)− Deg1(0, 0)(χ′, χ),

and the ψj also span its n-dimensional complement in C1. Recall also that T1 is the domain

of the generator of the semigroup S0, which induces the C0-semigroup S1 on (T1, | |C1) (see

Lemma 3.4).

Segments ϕ ∈ M2 close to zero w.r. to | |C2 , say, with |ϕ|C2 < δ2, have a graph represen-

tation ϕ = ϕ̄ + ∑
n
j=1 mj(ϕ̄) · ψj, with the projection ϕ̄ ∈ T0M2 ⊂ Te,0M2 = T1 of ϕ to T0M2

according to the decomposition (5.2), and with real-valued functions mj defined on a neighbor-

hood of zero in T0M2 and of class C1 w.r. to the C2-topology, satisfying mj(0) = 0, Dmj(0) = 0.

Clearly we can choose δ2 > 0 such that B| |
C2
(0, δ2) ⊂ B2 ⊂ U2, with B2 as in Lemma 4.7.

For segments in the state space X2 of the semiflow from Theorem 4.1(recall X2 ⊂ M2)

we have the following close relation between the functions mj and the components rj of the

nonlinear term rg in equation (4.2):

Lemma 5.1. For ϕ ∈ X2 ⊂ M2 with |ϕ|C2 < δ2 one has

ϕ = ϕ̄︸︷︷︸
∈T1

+
n

∑
j=1

mj(ϕ̄) · ψj = ϕ̄ +
n

∑
j=1

rj(ϕ) · ψj

︸ ︷︷ ︸
=:ϕ∗

= ϕ̄ + ϕ∗, (5.4)

and |ϕ∗|C1 ≤ ρ∗(|ϕ|C2) · |ϕ|C1 , with a bounding function ρ∗.
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Proof. For ϕ as in the statement of the lemma, the first equality is clear from the above remarks.

Further,
0 = F2(ϕ) = ϕ̇(0)− g1(ϕ′, ϕ) = ϕ̇(0)− Dg1(0, 0)(ϕ′, ϕ)− rg(ϕ)

= DF2(0)ϕ − rg(ϕ) = DF2(0)[ϕ̄ +
n

∑
j=1

mj(ϕ̄) · ψj]− rg(ϕ)

= DF2(0)ϕ̄︸ ︷︷ ︸
=0

+
n

∑
j=1

mj(ϕ̄) · DF2(0)ψj︸ ︷︷ ︸
=ej

−rg(ϕ)

=
n

∑
j=1

[mj(ϕ̄)− rj(ϕ)] · ej,

so rj(ϕ) = mj(ϕ̄)), j = 1, . . . , n, which shows the second equality in (5.4). Finally (recall that

we use the 1-norm on Rn), from Corollary 4.6 we get

|ϕ∗|C1 ≤
n

∑
j=1

|rj(ϕ)| · |ψj|C1 ≤ |rg(ϕ)| · max
j

|ψj|C1 ≤ ρg(|ϕ|C2) · max
j

|ψj|C1

︸ ︷︷ ︸
=:ρ∗(|ϕ|C2 )

·|ϕ|C1 ,

so the stated estimate follows with the indicated definition of ρ∗.

The decomposition of solutions from Corollary 4.3 is now replaced by the subsequent one

(recall the semiflow Φ from Theorem 4.1).

Corollary 5.2. For ϕ and ϕ̄ as in Lemma 5.1 and t ≥ 0 such that Φ(t, ϕ) is defined, one has for the

corresponding solution xϕ of eq. (1.1)

x
ϕ
t = Φ(t, ϕ) = S1(t)ϕ̄ +

n

∑
j=1

rj(ϕ) · S0(t)ψj + Nt. (5.5)

Proof. Using Corollary 4.3 and Lemma 5.1 one gets

x
ϕ
t = S0(t)[ϕ̄ +

n

∑
j=1

rj(ϕ) · ψj] + Nt = S1(t)ϕ̄ +
n

∑
j=1

rj(ϕ) · S0(t)ψj + Nt.

Remark 5.3. Note that in this decomposition, since x
ϕ
t is of class C1 (even C2), and S1(t)ϕ̄ is

of class C1, the remaining sum of two terms ∑
n
j=1 rj(ϕ) · S0(t)ψj + Nt is also of class C1. This

is not true for the parts ∑
n
j=1 rj(ϕ) · S0(t)ψj and Nt as defined in Corollary 4.3, but as long as

t < ∆/2, we have the ‘partial smoothness’ results from Lemmas 3.20 and 4.4, since the ψj are

in N∆/2. It is also instructive to see how the jump discontinuities at 0 in the derivatives of

the middle and the last term in (5.5) cancel (as it must be, since the sum of both terms is C1

on [−h, t]): We have Ṅ(0+) = rg(ϕ), Ṅ(0−) = 0, hence Ṅ(0+)− Ṅ(0−) = rg(ϕ). For the

middle term one has, setting µ(t) := [∑n
j=1 rj(ϕ) · S0(t)ψj](0) ∈ Rn,

µ̇(0−) =
n

∑
j=1

rj(ϕ)ψ̇j(0) =
n

∑
j=1

rj(ϕ)(Rψj + ej) = [
n

∑
j=1

rj(ϕ) · Rψj] + rg(ϕ), while

µ̇(0+) = (L + R)[
n

∑
j=1

rj(ϕ) · ψj] = R[
n

∑
j=1

rj(ϕ) · ψj] =
n

∑
j=1

rj(ϕ) · Rψj,

so that µ̇(0+)− µ̇(0−) = −rg(ϕ), which just cancels the jump of Ṅ at 0.
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Lemma 5.4. There exists a bounding function ρ such that for every δ ∈ (0, δ2] and every solution

x = xϕ with segments xt ∈ X2 ∩ B| |
C2
(0; δ) for t ∈ [0, ∆/2] and ϕ̄ as in Lemma 5.1 , one has

∀t ∈ [0, ∆/2] : |xϕ
t − S1(t)ϕ̄|C1 ≤ ρ(δ) · |ϕ|C1 .

Proof. For δ ∈ (0, δ2] (with δ2 as in Lemma 5.1), the conclusion of Lemma 4.7 holds with an

appropriate number C1 for solutions with segments in X2 ∩ B| |
C2
(0, δ) ⊂ X2 ∩ B2. Corollary

4.6 and the choice of δ2 show that

∀ϕ ∈ B| |
C2
(0, δ2) : |rg(ϕ)| ≤ ρg(|ϕ|C2) · |ϕ|C1 . (5.6)

Set M∗ := max
j=1,...,n

|ψj|C1 , and with M1, M̃1 as in Lemma 3.20, and set

C := max
{

M1M∗, C1M̃1 · (∆/2), ∥R∥Lc(C0,Rn) · C1M̃1 · (∆/2) + C1

}
.

Consider now a solution x as in the assertion, which then has a decomposition according to

formula (5.5). From Lemma 3.20 a) and Lemma 4.4 we see that the functions yj defined by

(yj)t := [S0(t)ψj], j = 1, . . . , n, as well as the function N, are C1 when restricted to [0, ∆/2] and

to [−h, 0], with a jump discontinuity of the first derivative at t = 0. With z(t) := ∑
n
j=1 rj(ϕ) ·

yj(t) for t ∈ [−h, ∆/2] we have from formula (5.5)

xϕ(t)− (S1(t)ϕ̄)(0) = z(t) + N(t) (t ∈ [0, ∆/2]),

and x
ϕ
0 − ϕ̄ = ϕ − ϕ̄ = ∑

n
j=1 rj(ϕ) · ψj = z0.

For t ∈ [0, ∆/2] we see from Lemma 3.20 that max{|ẏj(t)|, |yj(t)|} ≤ M1 · |ψj|C0 , j =

1, . . . , n. Since we use the 1-norm on Rn, it follows from (5.6) and the definition of M∗ that for

these t

max{|ż(t)|, |z(t)|} ≤
(

n

∑
j=1

|rj(ϕ)|
)
· M1 · max

j
|ψj|C0 = |rg(ϕ)|M1 max

j
|ψj|C0

≤ ρg(|ϕ|C2) · M1M∗|ϕ|C1 ≤ C · ρg(δ)|ϕ|C1 .

For t ∈ [−h, 0] we have max{|ż(t)|, |z(t)|} ≤ |rg(ϕ)|M∗ ≤ ρg(|ϕ|C2)M∗|ϕ|C1 , so that the last

estimate holds also for these t, since M1 ≥ 1.

Now N = 0 on [−h, 0], and for t ∈ [0, ∆/2] we obtain, using Lemma 3.20 b), again estimate

(5.6), and Lemma 4.7:

|N(t)| =
∣∣∣∣
∫ t

0
X(t − s)rg(xs) ds

∣∣∣∣ ≤ M̃1

∫ t

0
ρg(|xs|C2)|xs|C1 ds

≤ M̃1ρg(δ)
∫ t

0
C1|ϕ|C1 ds ≤ C1M̃1 · (∆/2)ρg(δ)|ϕ|C1

≤ Cρg(δ)|ϕ|C1 .

Further, for t ∈ [0, ∆/2], Lemma 4.4, the second last inequality in the last estimate, and

Lemma 4.7 (again) give

|Ṅ(t)| ≤ ∥R∥Lc(C0,Rn)|Nt|C0 + |rg(xt)| ≤ ∥R∥Lc(C0,Rn)C1M̃1(∆/2)ρg(δ)|ϕ|C1 + ρg(δ)C1|ϕ|C1

=
[
∥R∥Lc(C0,Rn)C1M̃1(∆/2) + C1

]
· ρg(δ)|ϕ|C1 ≤ Cρg(δ)|ϕ|C1 .
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Combining the above estimates for z, ż, N, and Ṅ we see that for t ∈ [0, ∆/2]

|xϕ
t − S1(t)ϕ̄|C1 ≤ max

t∈[−h,0]∪[0,∆/2]

{
|z(t)|+ |N(t)|+ |ż(t)|+ |Ṅ(t)|

}
≤ 4C · ρg(δ)|ϕ|C1 ,

which proves the assertion with ρ(δ) := 4C · ρg(δ).

We now use condition (D2g2) from Section 2 to obtain a manifold containing initial values

with unstable behavior.

The proof of the lemma below is methodically similar to the proof that M2 (called X2 in

[55]) is a submanifold of C2 in Proposition 5.1 of [55].

Lemma 5.5. Under the additional assumption (D2g2), the set M4 := X2 ∩ C4 is a C1-submanifold

of C4. The tangent space at 0 ∈ C4 to M4 satisfies

T0M4 =
{

χ ∈ C4
∣∣ χ̇(0) = Dg1(0, 0)(χ′, χ),

χ̈(0) = Dg1(0, 0)(χ′′, χ′)
}

.

Proof. From (2.3), we have

M4 =
{

ψ ∈ U1 ∩ C4
∣∣ (i) ψ̇(0) = g(ψ′, ψ);

(ii) ψ̈(0) = Deg1(ψ
′, ψ)(ψ′′, ψ′)

}

Note that for ψ ∈ C4, we can write g1 instead of g and Dg2 instead of Deg1 in the definition of

X2 and the description of M4. Thus, with F4 : U1 ∩ C4 → Rn × Rn given by

F4(ψ) := [ψ̇(0)− g1(ψ
′, ψ), ψ̈(0)− Dg2(ψ

′, ψ)(ψ′′, ψ′)],

we have M4 = F−1
4 {(0, 0)}. F4 is of class C1, because the maps

C4 ∋ ψ 7→ (ψ′′, ψ′) ∈ C2 × C3 ⊂ C2 × C2

and C4 ∋ ψ 7→ (ψ′, ψ) ∈ C3 × C4 ⊂ C2 × C2 are linear and continuous, the latter maps U1 ∩ C4

into W1, and Dg2 is C1 on W1 ∩ (C2 × C2), due to assumption (D2g2).

Further, for ψ ∈ U1 ∩ C4 and χ ∈ C4, we calculate

DF4(ψ)χ =
[
χ̇(0)− Dg1(ψ

′, ψ)(χ′, χ), χ̈(0)

− Dg2(ψ
′, ψ)(χ′′, χ′)− D2g2(ψ

′, ψ)[(ψ′′, ψ′), (χ′, χ)]
]
.

(5.7)

(Note that in the term with Dg2 of the last formula, it makes no difference if we use Dg1 or

Dg2.) If χ ∈ C4 ∩N∆ (then also χ′ ∈ N∆ and χ′′ ∈ N∆), Lemma 3.18 implies

Dg2(ψ
′, ψ)(χ′, χ) = Dg1(ψ

′, ψ)(χ′, χ) = Dg1(ψ
′, ψ)(0, χ) = Deg1(ψ

′, ψ)(0, χ),

and

Dg1(ψ
′, ψ)(χ′′, χ′) = Dg1(ψ

′, ψ)(0, χ′) = Deg1(ψ
′, ψ)(0, χ′).
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Further, using χ′ ∈ N∆ and Lemma 3.18 again, one obtains

D2g2(ψ
′, ψ)[(ψ′′, ψ′), (χ′, χ)] = lim

s→0

1

s
Dg2(ψ

′ + sχ′, ψ + sχ)(ψ′′, ψ′)

=
1

s
Dg1(ψ

′ + sχ′, ψ + sχ)(ψ′′, ψ′)

= lim
s→0

1

s
Dg1(ψ

′, ψ + sχ)(ψ′′, ψ′)

= D2g2(ψ
′, ψ)[(ψ′′, ψ′), (0, χ)]

= D2
e g2(ψ

′, ψ)[(ψ′′, ψ′), (0, χ)].

Thus, for χ ∈ C4 ∩N∆, we obtain

DF4(ψ)χ =
[
χ̇(0)− Deg1(ψ

′, ψ)(0, χ), χ̈(0)− Deg1(ψ
′, ψ)(0, χ′)

− D2
e g2(ψ

′, ψ)[(ψ′′, ψ′), (0, χ)]
]
.

(5.8)

Take now j ∈ {1, . . . , n}. Slightly modifying the argument from the proof of [55, Propo-

sition 5.1] to C4-smoothness, one can find a sequence (χ
(j)
m )m∈N ⊂ C4 ∩N∆ with χ̇

(j)
m (0) = ej

(the j-th unit vector in Rn) and

χ̇
(j)
m (0)− Deg1(ψ

′, ψ)(0, χ
(j)
m ) → ej (m → ∞).

(Here |χ(j)
m |C0 → 0 as m → ∞, which together with the continuity property of Deg1 implies

Deg1(ψ
′, ψ)(0, χ

(j)
m ) → 0. This is why we use the notation Deg1(ψ

′, ψ) here, although χ
(j)
m ∈

C3 ⊂ C1.)

(χ
(j)
m ) can be also chosen such that the sequences (χ

(j)
m ) ⊂ C1 and (χ̈

(j)
m (0)) ⊂ Rn are

bounded, so that the sequence

χ̈
(j)
m (0)− Deg1(ψ

′, ψ)(0, (χ
(j)
m )′)− D2

e g2(ψ
′, ψ)[(ψ′′, ψ′), (0, χ

(j)
m )]

is bounded in Rn. Hence we can assume that this sequence converges to a vector f j ∈ Rn.

Together we obtain

DF4(ψ)χ
(j)
m → (ej, f j) as m → ∞. (5.9)

Next, we find a sequence (ζ
(j)
m ) ⊂ C4 ∩N∆ such that ζ̇

(j)
m (0) = 0, |ζ(j)

m |C1 → 0, ζ̈
(j)
m (0) = ej. With

the ‘minimal delay’ ∆, it suffices to define ζ
(j)
m for m with 1/m < ∆. Take for example

ζ
(j)
m (t) =





0, − h ≤ t ≤ − 1

m

m5

2
· t2

(
t +

1

m

)5

· ej, − 1

m
≤ t ≤ 0.

Then

|ζ(j)
m |C0 ≤ m5

2
· 1

m2
· 1

m5
|ej| → 0 (m → ∞),

|(ζ(j)
m )′|C0 ≤ m5

2
·
[

2

m

(
1

m

)5

+
1

m2
· 5

m4

]
· |ej| → 0 (m → ∞),

ζ̈
(j)
m (0) =

m5

2
· 2 · 1

m5
· ej = ej.
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Therefore, we have for the first part in expression (5.8) for DF4(ψ)ζ
(j)
m :

ζ̇
(j)
m (0)− Deg1(ψ

′, ψ)(0, ζ
(j)
m ) → 0 as m → ∞,

and for the second part

ζ̈
(j)
m (0)− Deg1(ψ

′, ψ)(0, (ζ
(j)
m )′)− D2

e g2(ψ
′, ψ)[(ψ′′, ψ′), (0, ζ

(j)
m )]

= ej − Deg1(ψ
′, ψ)(0, (ζ

(j)
m )′)− D2

e g2(ψ
′, ψ)[(ψ′′, ψ′), (0, ζ

(j)
m )] → ej as m → ∞,

since (ζ
(j)
m )′ → 0 in C0 and |ζ(j)

m |C1 → 0 (m → ∞)), in view of the continuity properties of

Deg1(ψ
′, ψ) and D2

e g2(ψ′, ψ). We see now that

DF4(ψ)ζ
(j)
m → (0, ej) as m → ∞. (5.10)

From (5.9) and (5.10), one sees that the 2n vectors (ej, f j) and (0, ej), j = 1, . . . , n, which

are a basis of R2n, are in the closure of the image of DF4(ψ). It follows that DF4(ψ) : C4 →
Rn × Rn ≈ R2n is surjective. As in the proof of [55, Proposition 5.1], this is sufficient to show

that M4 is a C1–submanifold of C4, with codimension 2n.

We prove the statement about T0M4 now: For v ∈ T0M4 there exists ε > 0 and a curve

γ : (−ε, ε) → M4 differentiable at 0, with γ(0) = 0, γ̇(0) = v. It follows that

0 =
d

dt

∣∣
t = 0

F4(γ(t)) = DF4(0)γ̇(0) = DF4(0)v.

Hence T0M4 ⊂ ker DF4(0). Since both spaces have codimension 2n in C3, they are equal.

Now since D2g2(0, 0)[(0, 0), (χ′′, χ′)] = 0 for all χ ∈ C4, we have (see (5.7))

T0M4 = ker DF4(0)

=
{

χ ∈ C4
∣∣ χ̇(0) = Dg1(0, 0)(χ̇, χ), χ̈(0) = Dg1(0, 0)(χ′′, χ′)

}
.

Remark 5.6.

1) The continuous extension property for D2g2 that is actually used in the proof of (5.10)

above is weaker than assumption (D2g2), because the proof uses only that

D2
e g2(ψ′, ψ)[(ψ′′, ψ′), (0, δm)] → 0 as |δm|C1 → 0.

2) Convenient application of the chain rule to obtain C1 smoothness of the map F4 above

was the main reason for constructing the manifold M4 as a subset of C4.

3) With the last lemma, we have

X1 ⊃ X1,+ ⊃ X1 ∩ C2 = M2 ⊃ X2 ⊃ X2 ∩ C4 = M4,

where the Xj are invariant, but not smooth submanifolds of Cj, and the Mj are C1-sub-

manifolds of Cj, but not invariant under the semiflow on X1,+. It seems that, based

on increasingly higher smoothness assumptions on g, one could continue this construc-

tion to obtain a decreasing sequence of invariant subsets Xj containing (non-invariant)

submanifolds Mj, such that the semiflow restricted to Xj has higher order smoothness

properties with increasing j. We do not pursue this here.
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Recall the semigroup {S0(t)}t≥0 defined by the solutions of (3.1). Of course, a Cn-valued

solution a + ib of (3.1) is to be understood in the sense that its real part a and its imaginary

part b are Rn-valued solutions of (3.1).

Proposition 5.7. Assume (D2g2). If y : R → Cn is a C4 solution of equation (3.1) then ζ := Re(y)

solves also ζ̇(t) = Dg1(0, 0)[(ζ̇)t, ζt] (t ∈ R), and all segments ζt are contained in T0M4.

Proof. Set ζ := Re(y). The maps p0 : t 7→ ζt ∈ C1 and p1 : t 7→ ζ̇t ∈ C1 are of class C1, with

ṗ0(t) = (ζ̇)t, ṗ1(t) = (ζ̈)t, and in the equation d
dt (ζ(t)− Lζt) = Rζt, the terms in the bracket

are both individually differentiable w.r. to t. Thus we have

ζ̇(t) = L(ζ̇)t + Rζt = D1,eg1(0, 0)(ζ̇)t + D2,eg1(0, 0)(ζ)t

= Deg1(0, 0)[(ζ̇)t, ζt] = Dg1(0, 0)[(ζ̇)t, ζt],
(5.11)

where the last equality holds because (ζ̇)t and ζt are in C1 (even in C3). Since ζ is of class C4,

differentiation of (5.11) gives for t ∈ R: ζ̈(t) = Dg1(0, 0)[(ζ̈)t, (ζ̇)t]. It follows that for t ∈ R

the segment χ := ζt satisfies

χ̇(0) = Dg1(0, 0)(χ′, χ) and χ̈(0) = Dg1(0, 0)(χ′′, χ′).

We also have χ ∈ C4, and from Lemma 5.5 we see that χ ∈ T0M4.

Corollary 5.8. Under assumption (D2g2), the following hold:

a) If λ ∈ C is an eigenvalue of the infinitesimal generator A0
C

of the (complexified) semigroup

{S0(t)}t≥0 then the corresponding finite-dimensional generalized eigenspace Gλ,A0
C

(see Lemma

3.2 and Lemma 3.14) satisfies

Re (Gλ,A0
C

) ⊂ T0M4.

b) In the situation of Corollary 3.16, one has E+ ⊂ T0M4.

Proof. Ad a): (We omit the subscript C in the proof.) For ϕ ∈ Gλ,A0 there exists a solution

y : R → Cn of equation 3.1 of the form y(t) = eλt · p(t), where p is a polynomial with

coefficients in Cn, with y0 = ϕ. (A solution of the finite-dimensional ODE generated by

A0∣∣Gλ,A0
on Gλ,A0 .) Application of Proposition 5.7 to y at t = 0 gives Re(ϕ) = Re(y0) ∈ T0M4.

Assertion b) follows from a) since E+ = Re
[ ⊕

λ∈σ(A0)∩S(β,∞)

Gλ,A0

]
.

Under assumption (D2g2), the submanifold M4 of C4 is locally a graph over its tangent

space. Hence there exist neighborhoods W4 of zero in C4, U4 of zero in T0M4, and a C1

function (w.r. to | |C4) m4 : U4 → C4 with m4(0) = 0, Dm4(0) = 0 such that

M4 ∩ W4 =
{

ψ + m4(ψ)
∣∣ ψ ∈ U4

}
.

If we add the assumptions of Corollary 3.16, so the space E+ is defined, then E+ ⊂ T0M4

(Corollary 5.8 b)), and the set U4 ∩ E+ is a neighborhood of zero in E+. We can then set

m+
4 := m4

∣∣
U4 ∩ E+ and define

M+
4 :=

{
ψ + m+

4 (ψ)
∣∣ ψ ∈ U4 ∩ E+

}
,
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which is a submanifold of M4 tangent to E+ at zero in the C4-topology. Clearly M4 ⊂ C1,

and in view of the decompositions (5.3) and (3.22), we have

C1 = E+ ⊕ (T1 ∩ E−)⊕ C1
∗, (5.12)

where C1
∗ :=

⊕n
j=1 R ·ψj. Hence we can assume that m+

4 is a map m+
4 : U4 ∩ E+ → (T1 ∩ E−)⊕

C1
∗.

Corollary 5.9. Assume (D2g2) and the conditions of Corollary 3.16. There exists a bounding function

ρ4 such that all ϕ ∈ M+
4 have a representation (in the sense of (5.12))

ϕ = ϕ+ + ϕ− + ϕ∗, with max{|ϕ−|C1 , |ϕ∗|C1} ≤ ρ4(|ϕ+|C1) · |ϕ+|C1 .

Proof. First, the properties m+
4 (0) = 0 and Dm+

4 (0) = 0 imply that for ϕ ∈ M+
4 , ϕ =

ϕ+ + ϕ− + ϕ∗, where ϕ− + ϕ∗ = m+
4 (ϕ+), one has |ϕ− + ϕ∗|C4 = ρ̃4(|ϕ+|C4) · |ϕ+|C4 , with

a bounding function ρ̃4. Equivalence of the C4 and the C1 norms on the finite dimensional

space E+ gives a related bounding function ρ̂4 such that

|ϕ− + ϕ∗|C1 ≤ |ϕ− + ϕ∗|C4 ≤ ρ̂4(|ϕ+|C1) · |ϕ+|C1 .

Since the spaces in (5.12) are closed subspaces w.r. to | |C1 , the corresponding projections are

continuous w.r. to this norm, and the C1-norm on (T1 ∩ E−)⊕ C1
∗ is equivalent to the norm

defined by ψ− + ψ∗ 7→ max{|ψ−|C1 , |ϕ∗|C1} on this space. The asserted estimate with a third

bounding function ρ4 follows.

6 The linearized instability theorem

Before using the preparations from the previous sections to prove our main theorem, we found

it worth while to state an ‘abstract’ version of the main arguments in the lemma below, which

reveals the essential structures. It is an adapted version of Lemma 3.3 from [30], p. 5389 and,

like the latter, inspired by [3].

Lemma 6.1. Let (E, | |) be a Banach space. We make the subsequent assumptions:

(i) E has a decomposition E = Eu ⊕ Es ⊕ E∗ into subspaces closed w.r. to | |, so the corresponding

projections πu, πs, π∗ are continuous as maps from (E, | |) into itself. (We use the notation

x = xu + xs + x∗ in obvious meaning.)

(ii) X ⊂ E is a subset and P : X → E is a map which takes the form

P(x) = PL(πux + πsx) + PN(x), with a map PL : Eu ⊕ Es → Eu ⊕ Es

satisfying the subsequent properties.

(iii) There exist a norm ∥ ∥ on Eu ⊕ Es equivalent to | |∣∣
Eu ⊕ Es

and numbers a, b with a < b and

b > 1 such that for xu ∈ Eu, xs ∈ Es one has ∥xu + xs∥ = max{∥xu∥, ∥xs∥}, and

∥πuPL(xu + xs)∥ ≥ b∥xu∥, ∥πsPL(xu + xs)∥ ≤ a∥xs∥.
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Under these assumptions there exists c > 0 such that for xs ∈ Es, xu ∈ Eu and x ∈ E one has

∥xs∥ ≤ c|xs|, ∥xu∥ ≤ c|xu|, |xu + xs| ≤ c∥xu + xs∥, and |πux| ≤ c|x|, |πsx| ≤ c|x|.

With such a number c, define now κ := min
{

1/2, b−a
4c3 , b−1

4c3

}
.

If then x = xs + xu + x∗ ∈ X satisfies

∥xu∥ ≥ ∥xs∥ and max{|π∗x|, |PN(x)|} ≤ κ · |x|, (6.1)

and y = P(x) = yu + ys + y∗, then also ∥yu∥ ≥ ∥ys∥ (cone invariance), and with q := b+1
2 one has

∥yu∥ ≥ q∥xu∥ (expansion).

Proof. The existence of c > 0 as above is clear from equivalence of the norms and continuity

of the projections. For x as in the assertion one has

|x| = |xs + xu + π∗x| ≤ |xs + xu|+ |π∗x| ≤ |xs + xu|+ κ|x|,

so κ ≤ 1/2 and (6.1) imply

|x| ≤ 1

1 − κ
|xs + xu| ≤ 2|xs + xu| ≤ 2c∥xs + xu∥ = 2c max{∥xu∥, ∥xs∥} = 2c∥xu∥. (6.2)

Further,

∥yu∥ = ∥πuP(x)∥ = ∥πuPL(xu + xs) + πuPN(x)∥ ≥ b∥xu∥ − ∥πuPN(x)∥
≥ b∥xu∥ − c|πuPN(x)| ≥ b∥xu∥ − c2|PN(x)| ≥ b∥xu∥ − c2κ|x|
≥ (b − 2κc3)∥xu∥,

where we used (6.2) in the last estimate. Similarly,

∥ys∥ ≤ a∥xs∥+ 2κc3∥xs + xu∥ = a∥xs∥+ 2κc3∥xu∥ ≤ (a + 2κc3)∥xu∥.

The choice of κ implies that b − 2κc3 ≥ a + 2κc3 and also b − 2κc3 ≥ b − (b − 1)/2 =

(b + 1)/2 = q, from which the assertions follow.

For simplicity, we chose the cone defined by ∥xu∥ ≥ γ∥xs∥ with γ = 1 above; similar

arguments are possible with different cones. The theorem below is the main result of the

present work:

Theorem 6.2 (Linearized Instability Principle). Consider equation (1.1), and assume that g satisfies

conditions (g0), (g̃1), (g2), (g3),(g6), (g7), (g̃8), and (D2g2).

Further, assume that the operator L is as in (3.5), and that with appropriate numbers α < β,

the spectrum of the generator A0
C

(given by the zeroes of the characteristic function χ) splits into

σ(A0
C
) ∩ S(−∞,α] and σ(A0

C
) ∩ S(β,∞) as in Theorem 3.15. With M+

4 as in Corollary 5.9, the zero

equilibrium is then unstable for the semiflow Φ on X2 in the following sense:

There exists a ball B2 around zero in C2 such that for all nonzero ϕ ∈ B2 ∩M+
4 ⊂ B2 ∩ X2, there

exists a time t(ϕ) > 0 with Φ(t(ϕ), ϕ) ̸∈ B2.

Proof. 1. in view of the spectral splitting assumption, Corollary 3.16 gives the decomposition

T1 = E+ ⊕ (T1 ∩ E−), and choosing α̃ ∈ (α, β) we have estimates analogous to (3.20) and

(3.21) for the semigroup S1 and | |C1 . There exists a norm ∥ ∥ equivalent to | |C1

∣∣
T1 such that

the estimates hold with K and K̃ replaced by 1 w.r. to this norm, and that ∥ϕ+ + ϕ−∥ =
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max{∥ϕ+∥, ∥ϕ−∥} for ϕ+ ∈ E+, ϕ− ∈ E− ∩ T1. (Extend S1 to a group on E+, define ∥ϕ+∥ :=

sup
t≤0

exp(β|t|)|S1(t)ϕ+|C1 for ϕ+ ∈ E+, and ∥ϕ−∥ := sup
t≥0

exp(−α̃t)|S1(t)ϕ+|C1 for ϕ+ ∈ T1 ∩

E−. Compare e.g. [3], Lemma 2.1, p. 10.) In particular, for t := ∆/2 we obtain for the

linear map PL := S1(∆/2), which has E+ and T1 ∩ E− as invariant subspaces, and with

b := exp(β∆/2) > 1, a := exp(α̃∆/2) < b that

∥PL ϕ+∥ ≥ b∥ϕ+∥ for ϕ+ ∈ E+, ∥PL ϕ−∥ ≤ a∥ϕ−∥ for ϕ− ∈ T1 ∩ E−. (6.3)

2. We want to apply Lemma 6.1 with (C1, | |C1) in place of (E, | |), and with the decompo-

sition (5.12) in place of E = Eu ⊕ Es ⊕ E∗. We see from (6.3) that the new norm, PL, a and b are

as required in Lemma 6.1. Thus we obtain numbers c, κ > 0 as in that lemma. Consider now

δ2 and the bounding function ρ from Lemma 5.4, and the bounding function ρ∗ from Lemma

5.1. Choose δ∗2 ∈ (0, δ2] such that

ρ(δ∗2 ) ≤ κ and ρ∗(δ∗2 ) ≤ κ.

Next choose δ̂2 ∈ (0, δ∗2 ] such that with B := B| |
C2
(0, δ̂2), for every ϕ ∈ B ∩ X2, the corre-

sponding solution xϕ (with segments x
ϕ
t ∈ X2) is defined at least on [−h, ∆/2], and satisfies

|xϕ
t |C2 < δ∗2 (t ∈ [0, ∆/2]). (6.4)

This is possible since the semiflow is continuous w.r. to | |C2 (Theorem 4.1); see also e.g. [1],

Lemma (10.5), p. 125 and the obvious modification for semiflows, for the lower semicontinuity

of the existence time. Then the map

P : B ∩ X2 → X2 ⊂ C1, ϕ 7→ x
ϕ
∆/2

is well-defined. For ϕ ∈ B ∩ X2 we have, in view of Lemma 5.1, ϕ = ϕ̄ + ϕ∗ ∈ T1 ⊕ C1
∗, with

|ϕ∗|C1 ≤ ρ∗(|ϕ|C2) · |ϕ|C1 ≤ ρ∗(δ∗2 ) · |ϕ|C1 ≤ κ|ϕ|C1 .

Further, for such ϕ = ϕ̄ + ϕ∗, property (6.4) and Lemma 5.4 show that

P(ϕ) = x
ϕ
∆/2 = S1(∆/2)ϕ̄ + PN(ϕ) = PL(ϕ̄) + PN(ϕ),

with |PN(ϕ)|C1 ≤ ρ(δ∗2 ) · |ϕ|C1 ≤ κ|ϕ|C1 .

3. We have proved in step 2 that for all ϕ ∈ B ∩ X2 the second condition in (6.1) is satisfied.

In order to find initial functions ϕ = ϕ+ + ϕ− + ϕ∗ ∈ B which also satisfy the first condition in

(6.1), that is, ∥ϕ+∥ ≥ ∥ϕ−∥, we employ Corollary 5.9, which first shows that for ϕ ∈ B ∩M+
4

one has |ϕ−|C1 ≤ ρ4(|ϕ+|C1) · |ϕ+|C1 . The equivalence of the norms ∥ ∥ and | |C1 on T1 implies

that, with a related bounding function ρ̃4, one also has ∥ϕ−∥ ≤ ρ̃4(|ϕ+|C1) · ∥ϕ+∥ for these

ϕ. Now we can choose a ball B2 ⊂ B w.r. to | |C2 such that for ϕ ∈ B2 ∩ M+
4 one has

ρ̃4(|ϕ|C1) ≤ 1. For these ϕ then ∥ϕ−∥ ≤ ∥ϕ+∥, i.e., the first condition in (6.1) also holds.

4. We prove now that the subset B2 ∩M+
4 of X2 has the asserted property: For ϕ ̸= 0 in

this set, P(ϕ) is defined, invariance of X2 under the semiflow gives that also ψ := P(ϕ) ∈ X2,

and Lemma 6.1 shows that ψ = ψ+ + ψ− + ψ∗ again satisfies the first condition in (6.1), and

∥ψ+∥ ≥ q∥ϕ+∥. In case that still ψ ∈ B2, also the second condition from (6.1) holds for ψ, and

we can apply Lemma 6.1 again to obtain P(ψ) = P2(ϕ) with ∥P(ψ)+∥ ≥ q∥ψ+∥ ≥ q2∥ϕ+∥,

and P(ψ) again allows application of that lemma, in case P(ψ) ∈ B2. As long as this iteration is

possible, we obtain a sequence Pj(ϕ), j = 1, 2, . . . with exponentially growing E+- component.

Thus there must exist a j ∈ N such that Pj(ϕ) is defined, but not in B2, which implies the

assertion.
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Remark 6.3.

1. In the above proof the manifold M+
4 was needed only to satisfy the first condition in

(6.1) in the beginning – it is then preserved under iteration. The proof also shows that

for nonzero ϕ ∈ B2 ∩M+
4 , the corresponding trajectory has to leave the ball B (not only

B2).

2. It would be interesting to know if in the situation of Theorem 6.2 solutions can stay in

small C0-neighborhood of zero, with only the C2-norm growing such that the ball B2

from above is left; for example, solutions with segments xt even going to zero in the

C0-norm, but the C2-norm growing (which would require rapid oscillations). We do at

present not have an example.

0

E+

E−

M2

T 1

M+

4

E∗

Cone around E+

Figure 6.1: Symbolic illustration of some of the geometric objects
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7 Application to examples

We show that generalizations of the mechanical example from [38] fit into our framework.

In [38], the system below was considered as a model for hybrid experimental testing of a

mechanical system, built by suspending a pendulum on a mass-spring-damper (MSD) system.

The ‘hybrid’ testing consists of replacing the MSD by a computer simulation plus an actuator,

which exerts the calculated force upon the pendulum, and is the source of delay in the system.

y(t) describes the (calculated, vertical) motion of the MSD system, while θ(t) describes the

(angular) motion of the pendulum, see Fig. 1 in [38].

The equations used were (in the absence of external forcing)

Mÿ(t) + Cẏ(t) + Ky(t) + mÿ(t − τ) + mℓ[θ̈(t − τ) sin(θ(t − τ)) + θ̇2(t − τ) cos(θ(t − τ))] = 0,

mℓ
2θ̈(t − τ) + κθ̇(t − τ) + mgℓ sin(θ(t − τ)) + mℓÿ(t − τ) sin(θ(t − τ)) = 0.

This corresponds to eq. (2.2) on p. 1274 in [38] with k = 0, with positive constants M, C, K,

m, ℓ, κ. Here C and κ are friction coefficients, M and m are the masses of the MSD system

and the pendulum, and ℓ is the pendulum length. The terms with a factor m in the first

equation represent the inertial reaction force, the force from the angular acceleration, and

from the radial acceleration of the pendulum mass, in this order. In the second equation, the

first three terms correspond to the pendulum with fixed point of suspension, and the last term

represents the force coming from the (in this case, simulated) MSD system. Obviously, t − τ

may be replaced by t in all terms of the second equation.

So far, the delay τ is a fixed number, but one can imagine situations where it is state-

dependent and of the form τ = τ(y(t), θ(t), ẏ(t), θ̇(t)), with a maximal value h > 0 and

a minimal value ∆ ∈ (0, h]. In addition, the coupling terms with delayed derivatives may

involve nonlinearities, for example present in the devices providing measurements to the

simulating computer. Then, rewriting the above system as a four-dimensional system of first

order, one could for example obtain





ẏ(t) = v(t)

θ̇(t) = ω(t)

Mv̇(t) = − Cv(t)− Ky(t)− m f1(v̇(t − τ))

− mℓ f2[ω̇(t − τ) sin(θ(t − τ)), ω2(t − τ) cos(θ(t − τ))],

mℓ
2ω̇(t) = − κω(t)− mgℓ sin(θ(t))− mℓv̇(t) sin(θ(t)),

(7.1)

with suitably smooth functions τ = τ[y(t), θ(t), v(t), ω(t)] and f1 : R → R, f2 : R2 → R,

with f1(0) = f2(0, 0) = 0. The function f2 would be irrelevant for the linear approximation,

and we can assume f ′1(0) = 1. (The terms −Cv(t)− Ky(t) could also be replaced by corre-

sponding nonlinear terms with derivative −C and −K at zero; we do not pursue this obvious

generalization.)

System (7.1) is then an equation of the class as described in equation (2.5), with dimension

n = 4. Formal linearization of that system at the zero solution y(t) = θ(t) = v(t) = ω(t) = 0

in the sense of Remark 2.2 (using the ‘frozen delay principle’) gives a linear system, with y and

v decoupled from θ, ω, since all terms in (2.5) coupling these variables are of second order.

The y-equation of that system, written again as second order equation, is the neutral equation

with constant delay

Mÿ(t) + Cẏ(t) + Ky(t) + mÿ(t − τ0) = 0, (7.2)
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where τ0 = τ(0, 0, 0, 0) (the value of the state-dependent delay at (0, 0, 0, 0) ∈ R4). The second

equation of the linearized system is just the equation of a harmonic oscillator with friction,

hence contributes only to the stable part of the spectrum and will not be considered.

The first-order version of eq. (7.2) is





ẏ(t) = v(t)

v̇(t) =
1

M
[−Cv(t)− Ky(t)− m · v̇(t − τ0)]

(7.3)

and generates a semigroup S0 on C0([−h, 0], R2). In analogy to eq. (3.1) the last equation can

be rewritten as

d

dt

[(
y

v

)
(t) +

(
0 0

0 m/M

)
·
(

y

v

)
(t − τ0)

]
=

(
0 1

−K/M −C/M

)(
y

v

)
(t). (7.4)

We see from Lemma 3.2 that the spectrum of its infinitesimal generator A consists only

of isolated eigenvalues of finite multiplicity, and that these eigenvalues coincide with the

solutions of the characteristic equation obtained from the exponential ansatz y(t) = exp(λt) ·
y(0) for solutions of equation (7.2). As in [38], we introduce the positive parameters

ω2 :=
√

K/M, p := m/M, ζ :=
C

2
√

MK
, τ̂ := ω2τ0 (7.5)

and set z(t) := y(t/ω2). Then equation (7.2) is equivalent to the equation

z̈(t) + 2ζ ż(t) + z(t) + pz̈(t − τ̂) = 0, (7.6)

and the characteristic equation associated to the latter is

χ(λ) := λ2 + 2ζλ + 1 + pλ2 exp(−λτ̂) = 0 (eq. (3.3) in [38]). (7.7)

This equation is analyzed in detail in [38], with a number of precursors, e.g. [4], [5] and [9].

We repeat some results from [38], adding additional pieces of information. For a nonzero

complex number w we denote by arg(w) the unique angle ϕ ∈ [0, 2π) with w = |w| exp(iϕ).

From now on we make the following assumptions on the parameters:

p < 1, ζ < 1/
√

2 and 1 − p2
< (1 − 2ζ2)2, (7.8)

so that with the abbreviations z := 1 − 2ζ2, q := 1 − p2 we have

z > 0, q < z2. (7.9)

First we show that for fixed parameters C, M, m, K, and hence for fixed ω2, p and ζ, the

following is true: For all small enough τ0 > 0, all zeroes of χ have negative real part. This

is natural because equation (7.6) for τ0 = 0 is a harmonic oscillator with friction (see the

corresponding remark after formula (3.3) on p. 1275 of [38]). However, the perturbation from

delay zero to positive delay is not completely harmless, so we include a proof here.

Lemma 7.1. For τ0 > 0 close enough to zero, all zeroes of χ have negative real part.
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Proof. Choose R1 > 0 such that

R1(R1(1 − p)− 2ζ)− 1 > 0. If Re(λ) ≥ 0 and |λ| > R1 then for all τ ≥ 0 one has

|χ(λ)| ≥ |λ|2(1 − p)− 2ζ|λ| − 1 ≥ R1(R1(1 − p)− 2ζ)− 1 > 0.

Choose r1 ∈ (0, R1) such that 1 − [r2
1(1 + p) + 2ζr1] > 0. If Re(λ) ≥ 0 and |λ| < r1 then for all

τ ≥ 0

|χ(λ)| ≥ 1 − [r2
1(1 + p) + 2ζr1] > 0.

On the compact set K1 :=
{

λ ∈ C
∣∣ Re(λ) ≥ 0, r1 ≤ |λ| ≤ R1

}
the function χ converges

uniformly to the function χ∗ given by χ∗(λ) = λ2(1 + p) + 2ζλ + 1 as τ̂ → 0, and hence also

as τ0 → 0. The zeroes of χ∗ have negative real parts (depending on p and ζ), so it follows that

for all sufficiently small τ0 the characteristic function χ also has no zeroes in K1, and hence no

zeroes in the closed right half plane.

Lemma 7.2. Assume the inequalities (7.8). Then

(i) λ = iω is a purely imaginary zero of the characteristic function χ with ω > 0 if and only if

ωτ̂ = arg(1−ω2 − 2iζω)+ 2πn for some n ∈ N0, and (1− p2)ω4 +(4ζ2 − 2)ω2 + 1 = 0.

(ii) In the situation of (i) one has χ′(iω) ̸= 0, so that the eigenvalue λ = iω can be locally continued

as a C1 function of the parameters, in particular, of τ̂.

(iii) The second equation in (i) has exactly two positive solutions ω+ > ω− > 0 (depending on p and

ζ, but not on τ̂), and Re(λ(·)) has a positive derivative with respect to τ̂ at τ̂, if λ(τ̂) = iω+,

and a negative derivative if λ(τ̂) = iω−.

(iv) In the situation of (iii), the angles

ϕ± := arg(1 − ω2
± − 2iζω±) are equal to 2π − arccos

(
1 − ω2

±
pω2

±

)

and both contained in (π, 2π), with ϕ− > ϕ+. The corresponding τ̂-values obtained from the

first equation in (i) are

τ±(n) :=
ϕ± + 2πn

ω±
, n = 0, 1, 2, . . .

Proof. Ad (i): For ω > 0, χ(iω) = 0 is equivalent to −ω2 + 2ζiω + 1 − pω2 exp(−iωτ̂) = 0,

and hence to

ωτ̂ = arg(1 − ω2 − 2iζω)︸ ︷︷ ︸
∈(π,2π)

+2πn, n ∈ {0, 1, 2, 3, . . . }, and (7.10)

p2ω4 = (1 − ω2)2 + 4ζ2ω2, or (1 − p2)ω4 + (4ζ2 − 2)ω2 + 1 = 0. (7.11)

Ad (ii): We have for λ ∈ C

χ′(λ) = 2λ + 2ζ + 2λp exp(−λτ̂)− τ̂pλ2 exp(−λτ̂)

= 2(λ + ζ) + pλ(2 − λτ̂) exp(−λτ̂). (7.12)



Linearized instability 45

If χ(λ) = 0 then λ ̸= 0 and pλ2 exp(−λτ̂) = −(λ2 + 2ζλ + 1), and hence pλ exp(−λτ̂) =

−(λ2 + 2ζλ + 1)/λ and χ′(λ) = 2(λ + ζ)− (λ2+2ζλ+1)(2−λτ̂)
λ , so if also χ′(λ) = 0 then

2(λ2 + λζ) = (λ2 + 2ζλ + 1)(2 − λτ̂), and hence

0 = 2λζ + 2 − λτ̂(λ2 + 2ζλ + 1).

In particular, if this would occur for λ = iω then (from the real part) 0 = 2 + 2ζω2τ̂, which is

impossible. Thus χ′(iω) ̸= 0 if χ(iω) = 0; the remaining statement follows from the implicit

function theorem.

Ad (iii): Writing u for ω2, equation (7.11) gives (1 − p2)u2 + (4ζ2 − 2)u + 1 = 0. With the

notation from (7.9), we obtain the solutions

u± =
1 − 2ζ2 ±

√
(1 − 2ζ2)2 − (1 − p2)

1 − p2
=

z ±
√

z2 − q

q
, (7.13)

and thus the corresponding two solutions ω± =
√

u± with

0 < ω− < ω+.

In view of (ii), if χ(iω∗) = 0 (where ∗ = + or ∗ = −) for some values of the parameters

τ̂, ζ and p, then, in particular, this eigenvalue can be locally viewed as a C1 function of τ̂, so

we can consider d
dτ̂ Re(λ(τ̂)). The assertion that the sign of this expression coincides with

∗ is contained in [38] (proof of Lemma 3.2, p. 1277 there), with the details of the calculation

omitted, and with a misprint (e−λτ instead of eλτ) in the formula for
(

dλ
dτ

)−1
. Therefore we

show the main steps, and for this purpose we omit the hat in the symbol τ̂. Whenever

an eigenvalue λ( ̸= 0) satisfies χ′(λ) ̸= 0 and is hence locally a unique C1 function of τ,

differentiation of the characteristic equation gives

0 = χ′(λ)
dλ

dτ
+ pλ2(−λ)e−λτ, so

dλ

dτ
=

pλ3e−λτ

χ′(λ)
.

Then, using (7.12), one gets

(
dλ

dτ

)−1

=
2(λ + ζ) + pλ(2 − τλ)e−λτ

pλ3e−λτ
= 2

(λ + ζ)eλτ + pλ

pλ3
− τ

λ

= 2

[
(λ + ζ)

eλτ

pλ3
+

1

λ2

]
− τ

λ
(compare also formula (3.9), p. 75 in [37]).

Since for a complex number w ̸= 0 one has sign( Re(w)) = sign( Re(w−1)), and since for

λ = iω the term τ/λ is imaginary, we get (omitting the factor 2)

sign Re

(
dλ

dτ

) ∣∣
λ = iω

= sign Re

(
dλ

dτ

)−1 ∣∣
λ = iω

= sign Re

(
(λ + ζ)

eλτ

pλ3
+

1

λ2

) ∣∣
λ = iω

.

Substituting eλτ by
−pλ2

λ2+2ζλ+1
(from the characteristic equation), inserting λ = iω, and multi-

plying by ω > 0, the last expression is transformed to

sign

{−ω(1 − ω2) + 2ζ2ω

(1 − ω2)2 + 4ζ2ω2
− 1

ω

}
.
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In view of eq. (7.11), the denominator of the first fraction equals p2ω4 (if χ(iω) = 0), and so

multiplying with this factor one obtains

sign{−ω(1 − ω2) + 2ζ2ω − p2ω3} = sign{2ζ2 − 1 + ω2(1 − p2)}.

According to whether ω = ω+ or ω = ω−, the last expression equals in the notation of (7.13)

sign{−z + q · u±} = sign{±
√

z2 − q}. It is now obvious that this sign is positive for ω = ω+

and negative for ω = ω−.

Ad (iv): Since the imaginary parts are negative, the angles ϕ± = arg(1 − ω2
± − 2iζω±) are

given by (consider the antipodal complex numbers)

ϕ± = arccos


 ω2

± − 1√
(ω2

± − 1)2 + 4ζ2ω2
±


+ π ∈ (π, 2π),

which in view of equation (7.11) coincides with

ϕ± = arccos

(
ω2
± − 1

pω2
±

)
+ π = 2π − arccos

(
1 − ω2

±
pω2

±

)
.

(Compare [38], the passage after formula (3.7) on p. 1276 there.) Now since arccos is strictly

decreasing and d
du

[
u−1
pu

]
= 1

pu2 > 0, we see that ω− < ω+ implies ϕ+ < ϕ−. The assertion on

the corresponding τ̂-values is clear.

Corollary 7.3. Assume in addition to (7.8) the followimg condition (which is more restrictive than the

second inequality of (7.9)):
q

z2
<

17

81
, i.e.,

1 − p2

(1 − 2ζ2)2
<

17

81
. (7.14)

Then the numbers τ±(n) from Lemma 7.2 satisfy

τ+(n) < τ+(n + 1) < τ−(n) < τ−(n + 1) (n ∈ N0),

where the first and last inequality are true independently of (7.14).

Proof.
q
z2 <

17
81 implies

√
1 − q

z2 >

√
64
81 = 8/9, and hence

u+

u−
=

z +
√

z2 − q

z −
√

z2 − q
=

1 +
√

1 − q/z2

1 −
√

1 − q/z2
>

1 + 8/9

1 − 8/9
= 17,

so with ϕ± ∈ (π, 2π) one sees that

ω+

ω−
=

√
u+

u−
> 4 =

4π

π
>

ϕ+ + 2π

ϕ−
,

or ω−(ϕ+ + 2π) < ω+ϕ−, which in view of 0 < ω− < ω+ implies for n ∈ N0

ω−ϕ+ + ω−2π + ω−2πn < ω+ϕ− + ω+2πn.

Thus we obtain
ω−(ϕ+ + 2π(n + 1)) < ω+(ϕ− + 2πn), or

τ+(n + 1) =
ϕ+ + 2π(n + 1)

ω+
<

ϕ− + 2πn

ω−
= τ−(n).

The remaining two inequalities are obvious since τ±(n) =
ϕ±+2πn

ω±
.
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Corollary 7.4 (Instability). Under the conditions of Corollary 7.3, the total number N+(τ̂) of zeroes

of χ in the right half plane (counted with multiplicity) is even and satisfies

N+(τ̂) ≥ 2 if τ̂ > τ+(0) =
ϕ+

ω+
.

Proof. We know from Lemma 7.1 that for τ0 > 0 close to zero, and correspondingly, τ̂ > 0

close to zero, all zeroes lie in the left half plane. If we keep p and ζ satisfying the conditions

of Lemma 7.2 fixed and increase τ̂ from zero to positive values, we obtain the following from

Lemma 7.2: At every value τ+(n) (n ∈ N0) a simple eigenvalue (and its conjugate) cross the

imaginary axis from left to right at ±iω+, and at every value τ−(n) (n ∈ N0) a zero and

its conjugate cross the imaginary axis from right to left at ±ω−, and these are the only τ̂-

values where such crossings happen. Corollary 7.3 shows that, in particular, τ+(0) < τ−(0).

If τ̂ ∈ (τ+(0), τ−(0)) then N+(τ̂) ≥ 2. For τ̂ ≥ τ−(0) the set
{

n ∈ N0

∣∣ τ−(n) ≤ τ̂
}

is not

empty, and Corollary 7.3 shows that it is contained in the set
{

n ∈ N0

∣∣ τ+(n) ≤ τ̂
}

. We can

thus define c−(τ̂) := max
{

n ∈ N0

∣∣ τ−(n) ≤ τ̂
}

. Then one sees from Corollary 7.3 that the

number c+(τ̂) := max
{

n ∈ N0

∣∣ τ+(n) ≤ τ̂
}

satisfies c+(τ̂) ≥ c−(τ̂) + 1, and hence we have

N+(τ̂) = 2(c+(τ̂)− c−(τ̂)) ≥ 2.

Remark 7.5. The situation described in Corollary 7.4 corresponds to p-values larger than p1

in Figure 2 on p. 1276 of [38], and to τ̂-values larger than τ+(0) (calculated for p and ζ with

(7.8) and (7.14)), so that the point (τ̂, p) lies in the non-shaded region of Figure 2 of [38]. The

lower estimate for p corresponding to condition (7.14) is explicit, but will be larger than p1

from [38].

For the statement of the theorem below we recollect the assumptions on the parameters,

expressing them in a fashion slightly closer to the original parameters. Recall that τ̂ = ω2τ0 =√
K/Mτ0. In this notation, the assumptions made above read as follows:

m < M, and that q := 1 −
( m

M

)2
and z := 1 − C2

2MK
satisfy z > 0 and

q

z2
<

17

81
.

Further, setting

u+ :=
z +

√
z2 − q

q
and ϕ+ := arccos

[
M(u+ − 1)

mu+

]
+ π

we assume that with the delay function τ one has

τ0 = τ(0, 0, 0, 0) >
ϕ+√

u+

√
K/M

.

Theorem 7.6. Consider system (7.1) with f1, f2 and the delay function τ of class C2, and with f1(0) =

f2(0) = 0, f ′1(0) = 1. Also assume the above conditions on the parameter values. Then the spectrum

of the infinitesimal generator of the semigroup generated by eq. (7.3) splits as required in Theorem 6.2,

with an even number of eigenvalues in the right half plane. Hence the zero solution of system (7.1) is

then unstable as described in that theorem.
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Proof. We see from Corollary 7.4 that under the given assumptions we can split the zeroes of χ

in the ones with real part less or equal zero, and the even nonzero number of zeroes with real

part larger than, e.g., β̃ := 1
2 min

{
Re(λ)

∣∣ χ(λ) = 0, Re(λ) > 0
}

. Due to the time rescaling

in going from eq. (7.3) to eq. (7.6), the eigenvalues of the generator of the semigroup S0 differ

from the zeros of χ only by the factor ω2 =
√

K/M, and hence allow a splitting as required

in Theorem 6.2 with α := 0 and β := ω2 β̃. Next, by restricting to a suitable neighborhood, we

can assume that τ takes values only in an interval of the form [∆, h], where 0 < ∆ < τ0 < h.

Also, in view of Prop 2.1 b), system (7.1) fits in the framework of Theorem 6.2, from which

the result follows.
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Abstract. In this paper, we study the following fractional Kirchhoff type equation



















(

a + b
∫

RN

∫

RN

|u(x)− u(y)|p

|x − y|N+ps
dxdy

)

(−∆)s
pu = |u|q−2u ln |u|2 + λ

uγ , in Ω,

u > 0, in Ω,

u = 0, in R
N\Ω,

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary, 0 < s < 1 < p, 0 <

γ < 1, a > 0, b ≥ 0, N > ps, 2p < q < q + 2 < p∗s , p∗s = Np
N−ps is the fractional critical

exponent, λ > 0 is a real parameter. By using the critical point theory for nonsmooth
functionals and analytic techniques, the existence and multiplicity of positive solutions
are obtained.

Keywords: Kirchhoff type equation, singular nonlinearity, positive solution.
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1 Introduction and main result

We consider the following fractional Kirchhoff type equation involving singular nonlinearity



















(

a + b
∫

RN

∫

RN

|u(x)− u(y)|p

|x − y|N+ps
dxdy

)

(−∆)s
pu = |u|q−2u ln |u|2 + λ

uγ , in Ω,

u > 0, in Ω,

u = 0, in R
N\Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary, 0 < s < 1 < p, 0 < γ < 1,

a > 0, b ≥ 0, N > ps, 2p < q < q + 2 < p∗s , p∗s = Np
N−ps is the fractional critical exponent, λ > 0

is a real parameter.

BEmail: junlgzu@sina.cn
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Problem (1.1) was proposed by Kirchhoff in [12] as an extension of the classical

D’Alembert’s wave equation for free vibrations of elastic strings, which have the following

stationary analogue of the Kirchhoff equation

−

(

a + b
∫

Ω

|∇u|2dx

)

∆u = f (x, u).

Recently a great attention has been focused on studying the fractional problems, which

are derived from the study of optimization, finance, phase transitions, stratified materials,

anomalous diffusion, ultra-relativistic limits of quantum mechanics, water waves and so on,

we can see [19] for more details. Many authors are interested in the existence of solutions for

the fractional Kirchhoff type equation with logarithmic or singular terms. In [6], the authors

dealt with the fractional p-Laplacian Choquard logarithmic equation involving critical and

subcritical nonlinearities, they proved the existence and multiplicity of nontrivial solutions by

using genus theory and the mountain pass lemma. Fan et al. in [7, 8] studied the fractional

critical Schrödinger equation with logarithmic nonlinearity, by applying the Nehari manifold

and the variational methods, the existence of positive ground state solutions and ground state

sign-changing solutions were showed. Truong studied the fractional p-Laplacian equation

with logarithmic nonlinearity on whole space, by the Nehari manifold method, the author

obtained the existence of nontrivial solutions in [23].

In particular, the authors considered the following fractional Kirchhoff equation with log-

arithmic and critical nonlinearities
{

M([u]
p
s,p)(−∆)s

pu = λh(x)|u|q−2u ln |u|2 + |u|p
∗
s −2u, in Ω,

u = 0, in R
N\Ω,

(1.2)

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary, N > ps with s ∈ (0, 1), p > 1

and

[u]
p
s,p =

∫

RN

∫

RN

|u(x)− u(y)|p

|x − y|N+ps
dxdy.

When M([u]
p
s,p) = a + b[u]

p
s,p and h(x) = 1, by using constraint variational methods, Liang

and Rădulescu in [15] dealt with the existence and least energy sign-changing solutions of

(1.2). Under some assumptions on M and p ≥ 2, the authors [14] obtained the existence of

solutions in the case of high perturbations of (1.2) for λ sufficiently large. When h(x) > 0, Lv

and Zheng in [17] showed the existence of a nontrivial ground state solution for λ sufficiently

small. When M([u]
p
s,p) = [u]

(θ−1)p
s,p with θ ≥ 1, the authors [24] established the least energy

solutions for (1.2) with θp < q < p∗s and h(x) > 0 and two local least energy solutions with

1 < q < θp and h(x) is a sign-changing function by the Nehari manifold approach.

In [9], Fiscella and Mishra studied the following fractional Kirchhoff type equation with

singular and critical growths











M

(

∫

RN

∫

RN

|u(x)− u(y)|2

|x − y|N+2s
dxdy

)

(−∆)su = λ f (x)u−γ + g(x)|u|2
∗
s −2u, in Ω,

u = 0, in R
N\Ω,

(1.3)

where N > 2s with s ∈ (0, 1), 0 < γ < 1, 2∗s = 2N
N−2s is the fractional critical Sobolev exponent,

by the Nehari manifold method, they proved that (1.3) has at least two positive solutions for λ

sufficiently small. In [21], by the variational methods and truncation arguments, the authors
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obtained the existence of multiple positive solutions for (1.3) with singular and Choquard crit-

ical nonlinearities. In addition, the existence of positive solutions for the fractional problems

involving singular nonlinearity has been paid much attention by many authors, we can see

[1, 3, 10, 11, 22, 25, 26] and so on.

Recently, Lei et al. in [13] investigated the following logarithmic elliptic equation with

singular nonlinearity














−∆u = u log |u|2 + λ
uγ , in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

where Ω is a smooth bounded domain in R
N (N ≥ 3), γ ∈ (0, 1), by using the variational

methods and the critical point theory for a nonsmooth functional, they obtained the existence

of two positive solutions. In [20], the authors proved the existence of positive solutions for a

logarithmic Schrödinger–Poisson system with singular nonlinearity.

Define the fractional Sobolev space Ws,p(Ω) is given by

Ws,p(Ω) =

{

u ∈ Lp(Ω) :
∫

Ω

∫

Ω

|u(x)− u(y)|p

|x − y|N+ps
dxdy < ∞

}

,

with respect to the norm

∥u∥Ws,p(Ω) =

(

∥u∥
p

Lp(Ω)
+
∫

Ω

∫

Ω

|u(x)− u(y)|p

|x − y|N+ps
dxdy

)
1
p

.

Let Q = R
2N \ (CΩ × CΩ) with CΩ = R

N \ Ω, we define

X =

{

u : R
N → R measurable, u|Ω ∈ Lp(Ω) and

∫

Q

|u(x)− u(y)|p

|x − y|N+ps
dxdy < ∞

}

.

The space X is endowed with the norm

∥u∥X = ∥u∥Lp(Ω) +

(

∫

Q

|u(x)− u(y)|p

|x − y|N+ps
dxdy

)
1
p

,

where the norm in Lp(Ω) is denoted by ∥ · ∥p. The space X0 is defined as X0 = {u ∈ X : u =

0 on CΩ}, for all p > 1, it is a uniformly convex Banach space endowed with the norm

∥u∥ := ∥u∥X0
=

(

∫

RN

∫

RN

|u(x)− u(y)|p

|x − y|N+ps
dxdy

)
1
p

. (1.4)

The dual space of X0 will be denoted by X∗
0 . Since u = 0 in R

N \ Ω, the integral in (1.4) can be

extended to R
N × R

N . We denote by Sρ (respectively, Bρ) the sphere (respectively, the closed

ball) of center zero and radius ρ, i.e. Sρ = {u ∈ X0 : ∥u∥ = ρ}, Bρ = {u ∈ X0 : ∥u∥ ≤ ρ}.

Let S be the best fractional Sobolev constant

S = inf
u∈X0\{0}

∫

RN

∫

RN

|u(x)− u(y)|p

|x − y|N+ps
dxdy

(

∫

Ω

|u|p
∗
s dx

)p/p∗s
.
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The energy functional associated with (1.1) has the form

Iλ(u) =
a

p
∥u∥p +

b

2p
∥u∥2p +

2

q2

∫

Ω

|u|qdx −
1

q

∫

Ω

|u|q ln |u|2dx −
λ

1 − γ

∫

Ω

|u|1−γdx.

Since the energy functional fails to be finite and loses C1 smoothness on its natural Sobolev

spaces, the classical critical point theory can not be applied directly, we overcome this hur-

dle by the critical point theory for nonsmooth functionals. Moreover, logarithmic nonlinear-

ity is sign-changing, it becomes much more difficult than usual to obtain estimates of the

energy functional. Our difficulties are as follows: (i) The singular term leads to the non-

differentiability of the energy functional Iλ corresponding to (1.1) in [13]; (ii) The appearance

of logarithmic and singular nonlinearities makes it more difficult for us to prove the con-

vergence of the (PS) sequence; (iii) The fractional p-Laplacian operators also cause great

difficulties for the existence of positive solutions.

Now we state our main result.

Theorem 1.1. Assume that 0 < γ < 1 and 2p < q < q + 2 < p∗s hold, there exists Λ0 > 0 such that

for all λ ∈ (0, Λ0), equation (1.1) has at least two positive solutions.

2 Preliminaries

In this section, we first recall some concepts adapted from critical point theory for nonsmooth

functionals in [4, 16].

Definition 2.1. Let (Y, d) be a complete metric space, f : Y → R be a continuous functional in

Y. Denote by |D f |(u) the supremum of κ in [0, ∞) such that there exist δ > 0 and a continuous

map σ : Bδ(u)× [0, δ] → Y satisfying

{

f (σ(z, t)) ≤ f (z)− κt, (z, t) ∈ Bδ(u)× [0, δ],

d(σ(z, t), z) ≤ t, (z, t) ∈ Bδ(u)× [0, δ].
(2.1)

The extended real number |D f |(u) is called the weak slope of f at u.

Definition 2.2. A sequence {un} of Y is called (PS) sequence of the functional f , if |D f |(un) →

0 as n → ∞ and f (un) is bounded. We say that u ∈ Y is a critical point of f if |D f |(u) = 0.

Since u → |D f |(u) is lower semicontinuous, any accumulation point of a (PS) sequence is

clearly a critical point of f .

Since we are looking for positive solutions of (1.1), we consider the functional Iλ as defined

on the closed positive cone P of X0

P = {u | u ∈ X0, u(x) ≥ 0, a.e. x ∈ Ω}.

P is a complete metric space and Iλ is a continuous functional on P. Then we have the

following lemma.

Lemma 2.3. Suppose that |DIλ|(u) < +∞ holds, then for all v ∈ P such that

(a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))[(v − u)(x)− (v − u)(y)]

|x − y|N+ps
dxdy

−
∫

Ω

|u|q−2u(v − u) ln |u|2dx + |DIλ|(u)∥v − u∥ ≥ λ
∫

Ω

(v − u)

uγ
dx.

(2.2)
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Proof. Let |DIλ|(u) < µ, δ <
1
2∥v − u∥, v ∈ P and v ̸= u. Define the mapping σ : Bδ(u) ×

[0, δ] → P by

σ(z, t) = z + t
v − z

∥v − z∥
.

Thus, we have ∥σ(z, t)− z∥ = t, by (2.1), there exists a pair (z, t) ∈ Bδ(u)× [0, δ] such that

Iλ(σ(z, t)) > Iλ(z)− µt.

Consequently, we assume that there exist sequences {un} ⊂ P and {tn} ⊂ [0, ∞), such that

un → u, tn → 0+, and

Iλ

(

un + tn
v − un

∥v − un∥

)

≥ Iλ(un)− µtn,

that is

Iλ(un + sn(v − un)) ≥ Iλ(un)− µsn∥v − un∥, (2.3)

where sn = tn

∥v−un∥
→ 0+ as n → ∞. Divided by sn in (2.3), we have

a

p

∥un + sn(v − un)∥p − ∥un∥p

sn
+

b

2p

∥un + sn(v − un)∥2p − ∥un∥2p

sn

+
∫

Ω

f (un + sn(v − un))− f (un)

sn
dx + µ∥v − un∥

≥
λ

1 − γ

∫

Ω

|un + sn(v − un)|1−γ − |un|1−γ

sn
dx,

where

f (un) =
2

q2

∫

Ω

|un|
qdx −

1

q

∫

Ω

|un|
q ln |un|

2dx.

Notice that

lim
n→∞

∫

Ω

f (un + sn(v − un))− f (un)

sn
dx

= lim
n→∞

2

q2

∫

Ω

|un + sn(v − un)|q − |un|q

sn
dx

− lim
n→∞

1

q

∫

Ω

(|un + sn(v − un)|q − |un|q) ln |un + sn(v − un)|2

sn
dx

− lim
n→∞

1

q

∫

Ω

|un|q(ln |un + sn(v − un)|2 − ln |un|2)

sn
dx

=
2

q

∫

Ω

|u|q−2u(v − u)dx −
∫

Ω

|u|q−2u(v − u) ln |u|2dx −
2

q

∫

Ω

|u|q−2u(v − u)dx

= −
∫

Ω

|u|q−2u(v − u) ln |u|2dx.

In fact, from [15], for all r ∈ (q, p∗s ) and 2p < q < p∗s , we have that

lim
t→0

|t|q−1 ln |t|2

|t|p−1
= 0, and lim

t→∞

|t|q−1 ln |t|2

|t|r−1
= 0.

Then, for any ε > 0, there exists Cε > 0 such that

|t|q−1 ln |t|2 ≤ ε|t|p−1 + Cε|t|
r−1. (2.4)
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It follows from un(x) → u(x) a.e in Ω and un → |un|q ln |un|2 is continuous that

|un(x)|q ln |un(x)|2 → |u(x)|q ln |u(x)|2, a.e. in Ω.

Thus, by the Lebesgue dominated convergence theorem and (2.4), we get

∫

Ω

|un|
q ln |un|

2dx →
∫

Ω

|u|q ln |u|2dx, as n → ∞.

Set

I1,n =
∫

Ω

|un + sn(v − un)|1−γ − |(1 − sn)un|1−γ

sn(1 − γ)
dx,

and

I2,n =
(1 − sn)1−γ − 1

sn(1 − γ)

∫

Ω

|un|
1−γdx.

Notice that

I1,n =
∫

Ω

ξ
−γ
n snv

sn
dx =

∫

Ω

ξ
−γ
n vdx,

where ξn ∈ (un − snun, un + sn(v − un)), which implies that ξn → u (un → u) as sn → 0+.

Since I1,n ≥ 0 for all n, by the Fatou lemma, we obtain that

lim inf
n→∞

I1,n ≥
∫

Ω

v

uγ
dx,

for all v ∈ P. For I2,n, by the Lebesgue dominated convergence theorem, we have

lim
n→∞

I2,n = −
∫

Ω

u1−γdx.

From the above information, we get

(a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))[(v − u)(x)− (v − u)(y)]

|x − y|N+ps
dxdy

−
∫

Ω

|u|q−2u(v − u) ln |u|2dx + µ∥v − u∥

≥ lim inf
n→∞

(I1,n + I2,n) ≥ λ
∫

Ω

(v − u)

uγ
dx,

for every v ∈ P. Since |DIλ|(u) < µ is arbitrary. The proof is complete.

Lemma 2.4. Let 2p < q < q + 2 < p∗s , there exist constants α, ρ, Λ0 > 0, for all λ ∈ (0, Λ0). Then

the functional Iλ satisfies the following conditions:

(i) Iλ|u∈Sρ
≥ α > 0; inf

u∈Bρ
Iλ(u) < 0;

(ii) There exists e ∈ X0 with ∥e∥ > ρ such that Iλ(e) < 0.
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Proof. (i) Since ln |u|2 ≤ |u|2, by the Hölder and Sobolev inequalities, we have

Iλ(u) =
a

p
∥u∥p +

b

2p
∥u∥2p +

2

q2

∫

Ω

|u|qdx −
1

q

∫

Ω

|u|q ln |u|2dx −
λ

1 − γ

∫

Ω

|u|1−γdx

≥
a

p
∥u∥p −

1

q

∫

Ω

|u|q+2dx −
λ

1 − γ

∫

Ω

|u|1−γdx

≥
a

p
∥u∥p −

1

q
|Ω|

p∗s −q−2

p∗s

(

∫

Ω

|u|p
∗
s dx

)

q+2

p∗s
−

λ

1 − γ
|Ω|

p∗s −1+γ

p∗s

(

∫

Ω

|u|p
∗
s dx

)

1−γ
p∗s

≥
a

p
∥u∥p −

1

q
|Ω|

p∗s −q−2

p∗s S
− q+2

p ∥u∥q+2 −
λ

1 − γ
|Ω|

p∗s −1+γ

p∗s S
− 1−γ

p ∥u∥1−γ

= ∥u∥1−γ

(

a

p
∥u∥p−1+γ −

1

q
|Ω|

p∗s −q−2

p∗s S
− q+2

p ∥u∥q+1+γ −
λ

1 − γ
|Ω|

p∗s −1+γ

p∗s S
− 1−γ

p

)

.

Set

h(t) =
a

p
tp−1+γ −

1

q
|Ω|

p∗s −q−2

p∗s S
− q+2

p tq+1+γ

for t > 0, thus, there exists a constant

ρ =





aq(p − 1 + γ)S
q+2

p

p(q + 1 + γ)|Ω|
p∗s −q−2

p∗s





1
q+2−p

> 0,

such that maxt>0 h(t) = h(ρ) > 0. Let

Λ0 =
h(ρ)(1 − γ)S

1−γ
p

|Ω|
p∗s −1+γ

p∗s

,

thus, Iλ|u∈Sρ
≥ α > 0 for all λ ∈ (0, Λ0). Moreover, for u ∈ X0\{0}, we get

lim
t→0+

Iλ(tu)

t1−γ
= −

λ

1 − γ

∫

Ω

|u|1−γdx < 0.

Therefore, we obtain that Iλ(tu) < 0 for t small enough. Consequently, for ∥u∥ small enough,

we have

d ≜ inf
u∈Bρ

Iλ(u) < 0. (2.5)

(ii) For all u ∈ X0\{0} and t > 0, we have

Iλ(tu) =
atp

p
∥u∥p +

bt2p

2p
∥u∥2p +

2tq

q2

∫

Ω

|u|qdx −
tq

q

∫

Ω

|u|q ln |tu|2dx

−
λt1−γ

1 − γ

∫

Ω

|u|1−γdx

=
atp

p
∥u∥p +

bt2p

2p
∥u∥2p +

2tq

q2

∫

Ω

|u|qdx −
2tq

q

∫

Ω

|u|q ln |u|dx

−
2tq

q

∫

Ω

|u|q ln tdx −
λt1−γ

1 − γ

∫

Ω

|u|1−γdx → −∞

as t → +∞, which implies that Iλ(tu) < 0 for t > 0 large enough. Thus, we can find e ∈ X0

with ∥e∥ > ρ such that Iλ(e) < 0. The proof is complete.
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Lemma 2.5. Suppose that 2p < q < p∗ and 0 < γ < 1 hold, the functional Iλ satisfies the (PS)

condition.

Proof. Let {un} ⊂ P be a (PS) sequence for Iλ at the level c, that is

Iλ(un) → c, and |DIλ|(un) → 0 as n → ∞. (2.6)

It follows from (2.2) and (2.6) that

(a + b∥un∥
p)
∫

RN

∫

RN

|un(x)− un(y)|p−2(un(x)− un(y))

|x − y|N+ps

× [(v − un)(x)− (v − un)(y)]dxdy

−
∫

Ω

|un|
q−2un(v − un) ln |un|

2dx + |DIλ|(un)∥v − un∥

≥ λ
∫

Ω

(v − un)

u
γ
n

dx.

(2.7)

Choosing v = 2un ∈ P in (2.7), we obtain that

(a + b∥un∥
p)∥un∥

p −
∫

Ω

|un|
q ln |un|

2dx + |DIλ|(un)∥un∥ ≥ λ
∫

Ω

u
1−γ
n dx. (2.8)

Combining with (2.6), (2.8) and the Hölder inequality, there exists a constant C > 0, we get

c + 1 + o(∥un∥) ≥ Iλ(un) +
1

q
|DIλ|(un)∥un∥

≥ a

(

1

p
−

1

q

)

∥un∥
p + b

(

1

2p
−

1

q

)

∥un∥
2p +

2

q2

∫

Ω

|un|
qdx

− λ

(

1

1 − γ
−

1

q

)

∫

Ω

|un|
1−γdx

≥ a

(

1

p
−

1

q

)

∥un∥
p − λ

(

1

1 − γ
−

1

q

)

|Ω|
p∗s −1+γ

p∗s S
− 1−γ

p ∥un∥
1−γ.

Since 1 − γ < 1 < p, we deduce that {un} is bounded in X0. Therefore, we may assume up to

a subsequence, still denoted by {un}, there exists u ∈ X0 such that















un ⇀ u, weakly in X0,

un → u, strongly in Lr(Ω) (1 ≤ r < p∗s ),

un(x) → u(x), a.e. in Ω,

(2.9)

as n → ∞. Taking v = um in (2.7), we have

(a + b∥un∥
p)
∫

RN

∫

RN

|un(x)− un(y)|p−2(un(x)− un(y))

|x − y|N+ps

× [(um − un)(x)− (um − un)(y)]dxdy

−
∫

Ω

|un|
q−2un(um − un) ln |un|

2dx + o(1)∥um − un∥

≥ λ
∫

Ω

(um − un)

u
γ
n

dx.

(2.10)
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By changing the role of um and un in (2.10), we have a similar inequality. By adding the two

inequalities, we get

∫

RN

∫

RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]

|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy

≤
∫

Ω

(

|un|q−2un ln |un|2

a + b∥un∥p
−

|um|q−2um ln |um|2

a + b∥um∥p

)

(un − um)dx

+ λ
∫

Ω

(

u
−γ
n

a + b∥un∥p
−

u
−γ
m

a + b∥um∥p

)

(un − um)dx + o(1)∥um − un∥

≤
∫

Ω

(

|un|q−2un ln |un|2

a + b∥un∥p
−

|um|q−2um ln |um|2

a + b∥um∥p

)

(un − um)dx + o(1)∥um − un∥.

(2.11)

With the help of (2.4), (2.9) and {un} is bounded in X0, for all r ∈ (q, p∗s ), we have

∣

∣

∣

∣

∫

Ω

|un|q−2un ln |un|2

a + b∥un∥p
(un − um)dx

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∫

Ω

|un|
q−2un ln |un|

2(un − um)dx

∣

∣

∣

∣

≤ Cε
∫

Ω

|un|
p−1|un − um|dx + Cε

∫

Ω

|un|
r−1|un − um|dx

≤ Cε

(

∫

Ω

|un|
pdx

)

p−1
p
(

∫

Ω

|un − um|
pdx

)
1
p

+ Cε

(

∫

Ω

|un|
rdx

)
r−1

r
(

∫

Ω

|un − um|
rdx

)
1
r

≤ Cε∥un − um∥p + Cε∥un − um∥r → 0,

(2.12)

as n → ∞. By a similar calculation in (2.12), one has

∣

∣

∣

∣

∫

Ω

|um|q−2um ln |um|2

a + b∥um∥p
(un − um)dx

∣

∣

∣

∣

≤ Cε∥un − um∥p + Cε∥un − um∥r → 0, (2.13)

as n → ∞. It follows from (2.12) and (2.13) that

lim
n→∞

∫

Ω

(

|un|q−2un ln |un|2

a + b∥un∥p
−

|um|q−2um ln |um|2

a + b∥um∥p

)

(un − um)dx = 0. (2.14)

Therefore, by (2.11) and (2.14), we have

lim
n→∞

∫

RN

∫

RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]

|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy = 0. (2.15)

Let us now recall the well-known Simon inequalities, for all ξ, ζ ∈ R such that

|ξ − ζ|p ≤

{

cp(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), for p ≥ 2,

Cp[(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)]
p
2 (|ξ|p + |ζ|p)

2−p
2 , for 1 < p < 2,

(2.16)
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where cp, Cp > 0 depending only on p. From which we distinguish two cases:

Case (i): if p ≥ 2, it follows from (2.15) and (2.16) as n → ∞ that

∥un − um∥
p

=
∫

RN

∫

RN

|(un − um)(x)− (un − um)(y)|p

|x − y|N+ps
dxdy

≤ cp

∫

RN

∫

RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]

|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy → 0.

Case (ii): if 1 < p < 2, since ∥un∥p and ∥um∥p are bounded in X0, by the subadditivity

inequality, for all ξ, ζ ≥ 0, we have

(ξ + ζ)
2−p

2 ≤ ξ
2−p

2 + ζ
2−p

2 .

Letting ξ = un(x)− un(y) and ζ = um(x)− um(y) in (2.16) as n → ∞, we obtain

∥un − um∥
p

≤ Cp

[

∫

RN

∫

RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]

|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy

]

p
2

(∥un∥
p + ∥um∥

p)
2−p

2

≤ Cp

[

∫

RN

∫

RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]

|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy

]

p
2

(∥un∥
p(2−p)

2 + ∥um∥
p(2−p)

2 )

≤ C

[

∫

RN

∫

RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]

|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy

]

p
2

→ 0,

where the constant C > 0. Thus, we can deduce that un → u in X0. The proof is complete.

Lemma 2.6. If |DIλ|(u) = 0, then u is a weak solution of (1.1). That is, u−γ ϕ ∈ L1(Ω) for all

ϕ ∈ X0 such that

(a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x − y|N+ps
dxdy

=
∫

Ω

|u|q−2uϕ ln |u|2dx + λ
∫

Ω

u−γ ϕdx.

(2.17)

Proof. Since |DIλ|(u) = 0, by Lemma 2.3, for all v ∈ P, we have

(a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))[(v − u)(x)− (v − u)(y)]

|x − y|N+ps
dxdy

−
∫

Ω

|u|q−2u(v − u) ln |u|2dx ≥ λ
∫

Ω

(v − u)

uγ
dx.

(2.18)
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Letting t ∈ R, ϕ ∈ X0, and taking v = (u + tϕ)+ ∈ P in (2.18), for any ϕ ∈ X0, we get

0 ≤ (a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))

|x − y|N+ps

× [((u + tϕ)+ − u)(x)− ((u + tϕ)+ − u)(y)]dxdy

−
∫

Ω

|u|q−2u((u + tϕ)+ − u) ln |u|2dx − λ
∫

Ω

((u + tϕ)+ − u)

uγ
dx

≤ t

[

(a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))[ϕ(x)− ϕ(y)]

|x − y|N+ps
dxdy

−
∫

Ω

|u|q−2uϕ ln |u|2dx − λ
∫

Ω

ϕ

uγ
dx

]

− (a + b∥u∥p)
∫

u+tϕ<0

∫

u+tϕ<0

|u(x)− u(y)|p−2(u(x)− u(y))

|x − y|N+ps

× [(u + tϕ)(x)− (u + tϕ)(y)]dxdy

+
∫

u+tϕ<0
|u|q−2u(u + tϕ) ln |u|2dx + λ

∫

u+tϕ<0

u + tϕ

uγ
dx

≤ t

[

(a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))[ϕ(x)− ϕ(y)]

|x − y|N+ps
dxdy

−
∫

Ω

|u|q−2uϕ ln |u|2dx − λ
∫

Ω

ϕ

uγ
dx

]

− t(a + b∥u∥p)
∫

u+tϕ<0

∫

u+tϕ<0

|u(x)− u(y)|p−2(u(x)− u(y))[ϕ(x)− ϕ(y)]

|x − y|N+ps
dxdy

+
∫

u+tϕ<0
|u|q−2u(u + tϕ) ln |u|2dx.

Since u(x) = 0 for a.e. x ∈ Ω and

meas{x ∈ Ω|u(x) + tϕ(x) < 0, u(x) > 0} → 0, as t → 0,

we have

(a + b∥u∥p)
∫

u+tϕ<0

∫

u+tϕ<0

|u(x)− u(y)|p−2(u(x)− u(y))[ϕ(x)− ϕ(y)]

|x − y|N+ps
dxdy

= (a + b∥u∥p)
∫

u+tϕ<0,u>0

∫

u+tϕ<0,u>0

|u(x)− u(y)|p−2(u(x)− u(y))[ϕ(x)− ϕ(y)]

|x − y|N+ps
dxdy

→ 0,

and
∫

u+tϕ<0
|u|q−2u(u + tϕ) ln |u|2dx =

∫

u+tϕ<0,u>0
|u|q−2u(u + tϕ) ln |u|2dx → 0,

as t → 0. Therefore, we have that

0 ≤ t

[

(a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))[ϕ(x)− ϕ(y)]

|x − y|N+ps
dxdy

−
∫

Ω

|u|q−2uϕ ln |u|2dx − λ
∫

Ω

ϕ

uγ
dx

]

+ o(t).
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Consequently, one has

(a + b∥u∥p)
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))[ϕ(x)− ϕ(y)]

|x − y|N+ps
dxdy

−
∫

Ω

|u|q−2uϕ ln |u|2dx − λ
∫

Ω

ϕ

uγ
dx ≥ 0.

By the arbitrariness of the sign of ϕ, we can obtain that (2.18) holds. The proof is complete.

3 Proof of Theorem 1.1

Theorem 3.1. Suppose that 0 < λ < Λ0 (Λ0 is as in Lemma 2.4), then equation (1.1) has a positive

solution u∗ satisfying Iλ(u∗) < 0.

Proof. According to Lemma 2.4 and the definition of d in (2.5), there exists a minimizing

sequence {un} ⊂ Bρ ⊂ P such that limn→∞ Iλ(un) = d < 0. Obviously, {un} is bounded in Bρ,

up to a subsequence, still denoted by {un}, there exists u∗ ∈ X0 such that















un ⇀ u∗, weakly in X0,

un → u∗, strongly in Lr(Ω), 1 ≤ r < p∗s ,

un(x) → u∗(x), a.e. in Ω,

as n → ∞. Next, we prove that un → u∗ as n → ∞ in X0. Let wn = un − u∗, by the Brézis–Lieb

lemma, there holds

∥un∥
p = ∥wn∥

p + ∥u∗∥
p + o(1).

Therefore, by Lemma 2.5, we have

d = lim
n→∞

Iλ(un)

= Iλ(u∗) + lim
n→∞

[

a

p
∥wn∥

p +
b

2p
(∥wn∥

2p + 2∥wn∥
p∥u∗∥

p)

]

≥ Iλ(u∗) ≥ d,

which implies that ∥wn∥ → 0 as n → ∞. Since Bρ is closed and convex, we have u∗ ∈ Bρ.

Thus, we can deduce that Iλ(u∗) = d < 0, which implies that u∗ is a local minimizer of Iλ and

u ̸≡ 0 in Ω. For v ∈ P and t > 0 small enough such that u∗ + t(v − u∗) ∈ Bρ, similar to the

proof of Lemma 2.6, we get

(a + b∥u∗∥
p)
∫

RN

∫

RN

|u∗(x)− u∗(y)|p−2(u∗(x)− u∗(y))[(v − u∗)(x)− (v − u∗)(y)]

|x − y|N+ps
dxdy

−
∫

Ω

|u∗|
q−2u∗(v − u∗) ln |u∗|

2dx

≥ λ
∫

Ω

(v − u∗)

u
γ
∗

dx.

Therefore, u∗ is a critical point of Iλ, by Lemma 2.6, we obtain that u∗ ∈ P is a solution of (1.1)

with Iλ(u∗) = d < 0, which implies that u∗ ≥ 0 and u∗ ̸≡ 0. We claim that

g(t) = 2 ln t +
λ

tq−1+γ
.
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Notice that

lim
t→0+

g(t) = +∞, and lim
t→+∞

g(t) = +∞.

Therefore, g achieves its minimum at

t∗ =

[

λ(q − 1 + γ)

2

]
1

q−1+γ

,

which implies that

min
t>0

g(t) = g(t∗) =
2

q − 1 + γ
ln

λ(q − 1 + γ)

2
+

2

q − 1 + γ
≜ C.

Consequently, we obtain that

(−∆)s
pu∗ =

1

a + b∥u∗∥p

(

u
q−1
∗ ln u2

∗ +
λ

u
γ
∗

)

≥
Cu

q−1
∗

a + b∥u∗∥p
≥ 0,

where a > 0, b ≥ 0. By using the strong maximum principle in [5, 18], we deduce that u∗ ∈ P

is a positive solution of (1.1). The proof is complete.

Theorem 3.2. Suppose that 0 < λ < Λ0, then equation (1.1) has a positive solution v∗ such that

Iλ(v∗) > 0.

Proof. Applying the mountain pass lemma in [2] and Lemma 2.4, there exists a sequence

{un} ⊂ X0 such that

Iλ(un) → c, and |DIλ|(un) → 0 as n → ∞,

where

c = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

and

Γ = {γ ∈ C([0, 1], X0) : γ(0) = 0, γ(1) = e} .

According to Lemma 2.5, we know that {un} ⊂ X0 has a convergent subsequence, still denoted

by {un}, we may assume that un → v∗ in X0 as n → ∞, we have

Iλ(v∗) = lim
n→∞

Iλ(un) ≥ α > 0,

which implies that v∗ ̸≡ 0. It is similar to Theorem 3.1 that v∗ > 0, we obtain that v∗ is

a positive solution of equation (1.1) such that Iλ(v∗) > 0. Combining the above facts with

Theorem 3.1 the proof of Theorem 1.1 is complete.
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[14] S. Liang, H. Pu, V. D. Rădulescu, High perturbations of critical fractional Kirchhoff

equations with logarithmic nonlinearity, Appl. Math. Lett. 116(2021), 107027. https://

doi.org/10.1016/j.aml.2021.107027; MR4205121; Zbl 1462.35444
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Abstract. In this paper, we prove the structural stability for a family of scalar reaction-
diffusion equations. Our arguments consist of using invariant manifold theorem to
reduce the problem to a finite dimension and then, we use the structural stability of
Morse–Smale flows in a finite dimension to obtain the corresponding result in infinite
dimension. As a consequence, we obtain the optimal rate of convergence of the attrac-
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1 Introduction and statement of the results

The continuity of attractors is an important feature to study the stability of the semilinear

evolution equations. For a family of attractors {Aε}ε∈[0,1] the continuity at ε = 0 means that

the symmetric Hausdorff distance dH(Aε,A0) → 0 as ε → 0. The work [8] obtained positive

results in the class of gradient systems, assuming structural conditions on the unperturbed

attractor, together with information on the continuity of unstable manifolds of equilibria. In

particular, if {uε
∗}ε∈[0,1] is the family of equilibrium points then d(uε

∗, u0
∗) → 0 as ε → 0 for the

phase space metric d.

There is a natural question, as follows.

Question 1. Is the order in which dH(Aε,A0) goes to zero the same as d(uε
∗, u0

∗)?

There are many works concerning the rate of convergence of attractors to different situ-

ations, as we can see in [1, 3, 6] and [7]. The case of reaction-diffusion equation in a smooth

domain, [1] has been shown that

d(uε
∗, u0

∗) ∼ ε and dH(Aε,A0) ∼ εβ, 0 < β < 1. (1.1)

BCorresponding author. Email: lpires@uepg.br
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In [3], the authors have analyzed the reaction-diffusion equation in a thin domain under

perturbations, where they have obtained

d(uε
∗, u0

∗) ∼ ε and dH(Aε,A0) ∼ ε| ln(ε)|. (1.2)

Notice that booth above problems does not provide an answer to Question 1 because the

rate of convergence of attractors is worse than equilibria.

The work [6] was able to answer Question 1 considering the reaction-diffusion equation

where the diffusion coefficient becomes large in all domains when ε → 0. The optimal rate

state

d(uε
∗, u0

∗) ∼ ε and dH(Aε,A0) ∼ ε. (1.3)

The figure below shows (1.2) is better than (1.1) and (1.3) improves (1.2) as the parameter

ε goes to zero.
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The main argument to obtain (1.2) and (1.3) is the existence of a finite-dimensional in-

variant manifold that allows us to reduce the problem to finite dimension and, then we can

use properties of Morse–Smale dynamical systems in finite-dimensional closed manifolds.

For instance, [3] have used that in a neighborhood of the attractor, a Morse–Smale flow has

the Lipschitz Shadowing property to estimate dH(Aε,A0) by the continuity of the solution

Tε(·) → T0(·) in a neighborhood of the ∪εAε.

The purpose of this paper is to prove that the rate of convergence of the attractors for

the scalar reaction-diffusion equations is optimal. Inspired by the optimal rate obtained in

[6] and using the framework proposed by [3] we can reduce the problem to Morse–Smale

flows in finite dimension and we use the structural stability of Morse–Smale flows in a finite

dimension to obtain the corresponding result in infinite dimension. As a consequence, we

obtain the optimal rate of convergence of the attractors. We observe that our arguments

can be carried over to the problem addressed in [3] under appropriate adaptations. Another

consequence of the structural stability is the estimate of the Gromov–Hausdorff distance of

the attractors dGH(Aε,A0). This subject has been introduced by reaction-diffusion equation

under perturbation of the domain in the paper [10]. Since structural stability means that there

is a topological equivalence κε : Aε → A0 close to identity conjugating the flows, we have κε

a continuous ε-isometry between the attractors. This is enough requirement that we need to

estimate dGH(Aε,A0).
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Consider the following family of scalar reaction-diffusion equations














uε
t − (aε(x)uε

x)x = f (uε), (t, x) ∈ (0, ∞)× (0, π)

uε(t, 0) = 0 = uε(t, π), t ∈ (0, ∞),

uε(0, x) = uε
0(x), x ∈ (0, π),

(1.4)

where ε ∈ [0, ε0] is a parameter, 0 < ε0 < 1, the diffusion coefficients aε ∈ C1([0, π], [m0, M0]),

m0, M0 > 0, are continuous functions satisfying

∥aε − a∥∞ := ∥aε − a∥L∞(0,π) → 0 as ε → 0 (1.5)

and the nonlinearity f : R → R is a continuously differentiable function such that,

lim sup
|s|→∞

f (s)
s

< 0. (1.6)

It follows from [5, Theorem 14.2] that for each ε ∈ [0, ε0], the solutions of (1.4) defines a

nonlinear gradient semigroup Tε(·) having a global attractor Aε such that

sup
ε∈[0,ε0]

sup
w∈Aε

∥w∥H1
0 (0,π) < ∞ and sup

ε∈[0,ε0]

sup
w∈Aε

∥w∥L∞(0,π) < ∞. (1.7)

Moreover, we assume that the equilibrium points of (1.4) with ε = 0 is hyperbolic. Hence,

there are finitely many equilibrium points and we denote them by E0 = {u1,0
∗ , . . . , up,0

∗ }.

Under the above assumption, we have from [5, Chapter 14] that, for ε0 sufficiently small,

the semigroup Tε(·) has exactly p equilibria that we denote Eε = {u1,ε
∗ , . . . , up,ε

∗ } and the global

attractors are given by Aε = ∪
p
i=1Wu(ui,ε

∗ ) and A0 = ∪
p
i=1Wu(ui,0

∗ ), where Wu denotes the

unstable manifold. The main results of [5, Chapter 14] and [1] state that the convergence of

equilibria can be estimate by

∥ui,ε
∗ − ui,0

∗ ∥H1
0 (0,π) ≤ C∥aε − a0∥∞ (1.8)

and the continuity of the global attractors can be estimated by

dH(Aε,A0) ≤ C∥aε − a0∥
β
∞, (1.9)

where C > 0 and 0 < β < 1 are constants independent of ε and dH denotes the Hausdorff

distance in H1
0(0, π), that is,

dH(Aε,A0) = max

{

sup
uε∈Aε

inf
u0∈A0

∥uε − u0∥H1
0 (0,π), sup

u0∈A0

inf
uε∈Aε

∥uε − u0∥H1
0 (0,π)

}

. (1.10)

Finally, we assume that Tε(·)|Aε
is a group. It is well-known that under standard conditions

the solutions of (1.4) are backward uniquely defined inside the attractor.

The main result of this paper states as follows.

Theorem 1.1. The equation (1.4) is structurally stable at ε = 0. That is, given η > 0 there is εη > 0

such that for ε ∈ (0, εη ], there is a homeomorphism κϵ : Aε → A0 such that

sup
uε∈Aε

∥κε(uε)− uε∥H1
0 (0,π) < C(∥aε − a0∥∞ + η) and κε(Tε(τε(t, uε))uε) = T0(t)κε(uε),

where t ∈ R, uε ∈ Aε, C > 0 is a constant independent of ε and τε : R ×Aε → R is a function such
that, τε(0, uε) = 0 and τε(·, uε) is a increasing function mapping R onto R.
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As an immediate consequence of the Theorem 1.1 and (1.10) we have the following result.

Corollary 1.2. For η > 0 there is εη > 0 such that for ε ∈ (0, εη ], the Hausdorff distance between the
attractors can be estimated by

dH(Aε,A0) ≤ C(∥aε − a0∥∞ + η), (1.11)

where C is a constant independent of ε.

We say that a map iε : Aε → A0 is a ε-isometry between Aε and A0 if

∣

∣

∣
∥iε(uε)− iε(vε)∥H1

0 (0,π) − ∥uε − vε∥H1
0 (0,π)

∣

∣

∣
≤ ε, uε, vε ∈ Aε (1.12)

and B(iε(Aε), ε) = A0, where B(iε(Aε), ε) = {u0 ∈ A0 : ∥iε(uε) − u0∥H1
0 (0,π) ≤ ε, for some

uε ∈ Aε}. Analogously we can define a ε-isometry between A0 and Aε. The Gromov–

Hausdorff distance dGH(Aε,A0) between Aε and A0 is defined as the infimum of ε > 0 for

which there are ε-isometries iε : Aε → A0 and lε : A0 → Aε.

We have the following result as an immediate consequence of the Theorem 1.1.

Corollary 1.3. For η > 0 there is εη > 0 such that for ε ∈ (0, εη ], the Gromov–Hausdorff distance
between the attractors can be estimated by

dGH(Aε,A0) ≤ C(∥aε − a0∥∞ + η), (1.13)

where C is a constant independent of ε.

This paper is organized as follows. In Section 2 we introduce the functional setting to deal

with (1.4). In Section 3 we use invariant manifolds to reduce the problem to finite dimension.

In Section 4 we prove the Theorem 1.1.

2 Functional setting and technical results

Let ε ∈ [0, ε0]. We define the operator Aε : D(Aε) ⊂ L2(0, π) → L2(0, π) by

{

D(Aε) = H2(0, π) ∩ H1
0(0, π),

Aεu = −(aε(x)ux)x, u ∈ D(Aε).
(2.1)

It is well-known that Aε is a self-adjoint operator with compact resolvent. Hence, we can

define the fractional power spaces Xα
ε , 0 < α ≤ 1, where X0

ε = L2(0, π), X1
ε = D(Aε) and

X
1
2
ε = H1

0(0, π) with the inner product

⟨u, v⟩
X

1
2
ε

=
∫ π

0
aε(x)uxvx dx (2.2)

which produces norms uniformly equivalent to the standard H1
0(0, π) norm, since aε is uni-

formly bounded in ε. Therefore, estimates on X
1
2
ε are transported to H1

0(0, π) uniformly in ε.

Since there are many estimates in the paper, we will let C be a generic constant which is

independent of ε, but which may depend on m0, M0, u0
0, E0.

We summarize in the next theorem some useful estimates that can be proved as in [1] and

[5, Chapter 14].
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Theorem 2.1. Let ε ∈ [0, ε0]. The operators Aε satisfy the following properties.

(i) supε∈[0,ε0]
∥A−1

ε ∥L(L2(0,π),H1
0 (0,π)) ≤ C.

(ii) ∥A−1
ε uε − A−1

0 u0∥H1
0 (0,π) ≤ C(∥uε − u0∥L2(0,π) + ∥aε − a0∥∞), uε, u0 ∈ L2(0, π).

(iii) ∥(µ + Aε)−1uε − (µ + A0)−1u0∥H1
0 (0,π) ≤ C(∥uε − u0∥L2(0,π) + ∥aε − a0∥∞), for µ in the

resolvent set of Aε and A0 and uε, u0 ∈ L2(0, π).

Here, C > 0 is a constant independent of ε.

Proof. The proof has been done in [1, Section 3] and [5, Chapter 14]. Since there is a difference

between these works due to the presence of an exponent 1
2 , we outline the proof of item (ii)

here.

Let uε, u0 ∈ L2(0, π) and let vε, v0 be the respective solution of Aεvε = uε and A0v0 = u0.

Then,
∫ π

0
aεvε

x φx dx =
∫ π

0
uε φ dx, and

∫ π

0
a0v0

x φx dx =
∫ π

0
u0φ dx, φ ∈ H1

0(0, π). (2.3)

Taking φ = vε − v0, we obtain

∫ π

0
aεvε

x(v
ε
x − v0

x) dx −
∫ π

0
a0v0

x(v
ε
x − v0

x) dx =
∫ π

0
(uε − u0)(vε − v0) dx.

which implies

∫ π

0
aε(vε

x − v0
x)

2 dx +
∫ π

0
(aε − a0)v0

x(v
ε
x − v0

x) dx =
∫ π

0
(uε − u0)(vε − v0) dx.

By (2.2) and the uniformity between the X
1
2
ε norm and H1

0(0, π) norm, we get

∥vε − v0∥H1
0 (0,π) ≤ C(∥uε − u0∥L2(0,π) + ∥aε − a0∥∞),

for some positive constant C independent of ε.

Finishing we notice that Aεvε = uε and A0v0 = u0 implies vε = A−1
ε uε and v0 = A−1

0 u0.

We write (1.4) as an evolution equation in L2(0, π) in the following way

{

uε
t + Aεuε = f (uε),

uε(0) = uε
0,

(2.4)

where we have used the same notation f for the nonlinearity of (1.4) and its functional f I :

H1
0(0, π) → L2(0, π) given by f I(u)(x) = f (u(x)).

We denote the spectra of the divergence operator −Aε, ε ∈ [0, ε0], ordered and counting

multiplicity by

· · · < −λε
m < −λε

m−1 < · · · < −λε
1

and we let {φε
i}

∞
i=1 be the corresponding eigenfunctions.

The resolvent convergence ∥A−1
ε − A−1

0 ∥L(L2(0,π),H1(0,π)) → 0 as ε → 0 imply the conver-

gence of eigenvalues, that is, λε
m → λ0

m as ε → 0, m = 1, 2, . . . as we can see in [1, Proposi-

tion 3.3]. Moreover, by [1, Corollary 3.6], we obtain a constant C > 0 independent of ε such

that,

|λε
m − λ0

m| ≤ C∥aε − a∥∞, m = 1, 2, . . . (2.5)



6 J. Lee and L. Pires

We take a closed curve Γm contained in the resolvent set of −A0 around {−λ0
1, . . . ,−λ0

m}.

By (2.5) we can take ε sufficiently small for that Γm be contained in the resolvent set of −Aε

around {−λε
1, . . . ,−λε

m}. Thus, we can define

Pm
ε =

1

2πi

∫

Γm

(µ + Aε)
−1 dµ, ε ∈ [0, ε0], (2.6)

which is the spectral projection onto the space generated by the first m eigenfunctions of Aε.

It follows from (2.6) and Theorem 2.1 that there is a constant C > 0 independent of ε such

that,

∥Pm
ε uε − Pm

0 u0∥H1
0 (0,π) ≤ C(∥uε − u0∥L2(0,π) + ∥aε − a0∥∞), uε, u0 ∈ H1

0(0, π) (2.7)

and

sup
ε∈[0,ε0]

sup
uε∈L2(0,π)

∥Pm
ε uε∥H1

0 (0,π) ≤ C.

In the next section, we will fix m sufficiently large to obtain conditions for the invariant

manifold theorem. Thus, to avoid heavy notation, we omit the dependency of m on Pm
ε and

we denote Qε = (I − Pε) the projection over its orthogonal complement.

3 Invariant manifold and reduction of the dimension

The resolvent convergence ∥A−1
ε − A−1

0 ∥L(L2(0,π),H1(0,π)) → 0 as ε → 0 guarantees the spectral

convergence of the eigenvalues λε
m → λ0

m as ε → 0, m = 1, 2, . . . . But, the operator A0 has a gap

on its eigenvalues, that is, λ0
m+1 − λ0

m → ∞ as m → ∞. Thus, for ε0 sufficiently small, we have

a similar gap on the eigenvalues of Aε. This fact, enables us to construct inertial manifolds of

the same dimension given by rank(Pε) = span[φε
1, . . . , φε

m], where according with the previous

section, φε
i is the associated eigenfunction to the eigenvalue λε

i , m = 1, 2, . . . .

For each ε ∈ [0, ε0], we decompose H1
0(0, π) = Yε ⊕ Zε, where Yε = Pε(H1

0(0, π)) and

Zε = Qε(H1
0(0, π)) and we define A+

ε = Aε|Yε
and A−

ε = Aε|Zε . Using this decomposition we

rewrite (2.4) as the following coupled equation

{

vε
t + A+

ε vε = Pε f (vε + zε) := Hε(vε, zε),

zε
t + A−

ε zε = Qε f (vε + zε) := Gε(vε, zε).
(3.1)

The invariant manifold theorem whose proof can be found in [5, Chapter 8], states as

follows.

Theorem 3.1. For sufficiently large m and ε0 > 0 small, there is an invariant manifold Mε for (2.4)

given by
Mε = {uε ∈ H1

0(0, π) ; uε = Pεuε + sε
∗(Pεuε)}, ε ∈ [0, ε0],

where sε
∗ : Yε → Zε is a Lipschitz continuous map satisfying

∥sε
∗(ṽ

ε)− s0
∗(ṽ

0)∥H1
0 (0,π) ≤ C(∥ṽε − ṽ0∥H1

0 (0,π) + ∥aε − a0∥∞| log(∥aε − a0∥∞)|), (3.2)

where ṽε ∈ Yε, ṽ0 ∈ Y0 and C is a positive constant independent of ε. The invariant manifold Mε

is exponentially attracting and the global attractor Aε of the problem (2.4) lies in Mε. The flow of
uε

0 ∈ Mε is given by
Tε(t)uε

0 = vε(t) + sε
∗(v

ε(t)), t ∈ R, (3.3)
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where vε(t) satisfies
{

vε
t + A+

ε vε = Hε(vε, sε
∗(v

ε)), t ∈ R,

vε(0) = Pεuε
0 ∈ Yε.

(3.4)

For the proof of Theorem 3.1 we refer [5]. To see how obtain the estimate (3.2), we refer

[1, 4].

Now, we use the theory developed in [4] to identify (3.4) as an ordinary differential equa-

tion in R
m. This identification is made by an isomorphism between Yε and R

m. Since our aim

in the next section will be to construct a ε-isometry between the attractors, it is convenient to

make the isomorphism Yε ≈ R
m an isometry. To accomplish this we follow the ideas of [4]

that modify the basis of Yε.

Let ε ∈ [0, ε0]. We consider in Yε the following set {Pε φ0
1, . . . , Pε φ0

m}. It has been proved in

[4] that this set is a basis for Yε. We define Lε : Yε → R
m by Lε(∑

m
i=1 αiPε φ0

i ) = ∑
m
i=1 αiei, where

{ei}
m
i=1 is the canonical basis of R

m. This choices make Lε a isometry between Yε and R
m and

if we denote R
m
ε the R

m with the norm ∥x∥Rm
ε
= (∑m

i=1 x2
i λε

i )
1
2 , then ∥ũ0∥H1

0 (0,π) = ∥L0ũ0∥R
m
0

.

Proposition 3.2. The following statements hold true:

(i) If ũε ∈ Yε and ũ0 ∈ Y0 are such that ∥ũε∥H1
0 (0,π) < C̄ and ∥ũε∥H1

0 (0,π) < C̄, where C̄ is a

constant independent of ε. Then ∥Lεũε − L0ũ0∥Rm ≤ C(∥ũε − ũ0∥H1
0 (0,π) + ∥aε − a0∥∞), for a

constant C > 0 independent of ε.

(ii) If ūε, ū0 ∈ R
m are such that ∥ūε∥Rm < C̄ and ∥ūε∥Rm < C̄, where C̄ is a constant independent

of ε. Then ∥L−1
ε ūε − L−1

0 ū0∥H1
0 (0,π) ≤ C(∥ūε − ū0∥Rm + ∥aε − a0∥∞), for a constant C > 0

independent of ε.

Proof. The proof of item (i) follows as Lemma 5.4 of [4]. We prove (ii) using similar arguments.

Let ūε = (αε
1, . . . , αε

m) and ū0 = (α0
1, . . . , α0

m) in R
m. Then,

L−1
ε ūε − L−1

0 ū0 =
m

∑
i=1

αε
i Pε φ0

i −
m

∑
i=1

α0
i P0 φ0

i

= (Pε − P0)
m

∑
i=1

αε
i φ0

i +
m

∑
i=1

(αε
i − α0

i )P0 φ0
i

which implies,

∥L−1
ε ūε − L−1

0 ū0∥H1
0 (0,π) ≤ C∥aε − a0∥∞ + ∥ūε − ū0∥R

m
0

The map sε
∗ : Yε → Zε is obtained as the fixed point of the contraction Φε : Σε → Σε given

by











Σε =
{

sε : Yε → Zε ; ∥sε∥∞ ≤ D and ∥sε(v)− sε(ṽ)∥H1
0 (0,π) ≤ ∆∥v − ṽ∥H1

0 (0,π)

}

,

Φε(sε)(η) =
∫ 0

−∞
e−A−

ε rGε(vε(r), sε(vε(r))) dr,

where D and ∆ are positive constants independent of ε and vε(r) ∈ Yε is the global solution

of (3.4) with η = Pεuε
0. With the aid of Lε, we can define new invariant manifolds Nε, given by

Nε = {L−1
ε (x) + θε(x) : x ∈ R

m},
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where θ : R
m → Zε is given by θε

∗ = sε
∗ ◦ L−1

ε . Therefore, θε
∗ is a fixed point of

θε
∗(x) =

∫ 0

−∞
e−A−

ε rGε(vε(r), θε
∗(Lεvε(r))) dr,

such that

∥θε
∗ − θ0

∗∥∞ ≤ C∥aε − a0∥∞| log(∥aε − a0∥∞)|,

for some constant C > 0 independent of ε.

By Theorem 3.1 the semigroup Tε(·) restrict to Mε is a flow whose behavior is dictate by

solutions of (3.4) that can be transposed to R
m as

{

xε
t + Lε A+

ε L−1
ε (xε) = LεHε(L−1

ε (xε), θε
∗(xε)), t ∈ R,

xε(0) = LεPεuε
0 := xε

0 ∈ R
m.

(3.5)

Theorem 3.3. The solutions of (3.5) generate a Morse–Smale flow in R
m.

Proof. Since all equilibrium points of (1.4) are hyperbolic, the author in [9] has proved that the

semigroup Tε(·) is Morse–Smale. Therefore, Tε(·)|Nε
is a Morse–Smale semigroup. Following

[12, Chapter 3] we obtain that the projected semiflow T̄ε(·) of Tε(·) in R
m is Morse–Smale.

In what follows we prove several technical results that will be essential to prove the results

in the next section. Here is the moment that we take a different way of [3].

Proposition 3.4. The projection Pε restrict to Mε is an injective map and P−1
ε |Mε

restrict to the set
Ãε := PεAε is uniformly bounded in ε and

∥P−1
ε ũε − P−1

0 qε(ũε)∥ ≤ C(∥ũε − qε(ũε)∥L2(0,π) + ∥aε − a0∥∞), ũε ∈ Ãε, (3.6)

for any homeomorphism qε : Ãε → Ã0.

Proof. Let uε, vε ∈ Mε such that Pεuε = Pεvε, then uε = Pεuε + sε
∗(Pεuε) = Pεvε + sε

∗(Pεvε) = vε.

By (1.7), we have a positive constant C independent of ε such that,

sup
ε∈[0,ε0]

sup
ũεÃε

∥P−1
ε ũε∥H1(0,π) ≤ sup

ε∈[0,ε0]

sup
uε∈Aε

∥uε∥H1(0,π) ≤ C.

Finally, if ũε ∈ Ãε and qε : Ãε → Ã0 is a homeomorphism, then

∥P−1
ε ũε − P−1

0 qε(ũε)∥H1
0 (0,π) = ∥P−1

0 P0P−1
ε ũε − P−1

0 qε(ũε)∥H1
0 (0,π)

≤ ∥P−1
0 ∥L(H1

0 (0,π),L2(0,π))∥P0P−1
ε ũε − qε(ũε)∥H1

0 (0,π)

≤ ∥P−1
0 ∥L(H1

0 (0,π),L2(0,π))∥P0P−1
ε ũε − PεP−1

ε ũε + PεP−1
ε ũε − qε(ũε)∥H1

0 (0,π)

≤ ∥P−1
0 ∥L(H1

0 (0,π),L2(0,π))∥(P0 − Pε)P−1
ε ũε∥H1

0 (0,π) + ∥P−1
0 ∥L(H1

0 (0,π),L2(0,π))∥ũε − qε(ũε)∥H1
0 (0,π)

≤ C(∥aε − a0∥∞ + ∥ũε − qε(ũε)∥L2(0,π)),

where we have used (2.7) to obtain a positive constant C independent of ε.

In what follows, we denote P−1
ε the inverse of Pε|Mε

: Mε → Yε.

Proposition 3.5. Let T̄ε(·) be the flow given by solutions of (3.5) and T̃ε(·) be the flow given by
solutions of (3.4). Then, it is valid the following properties
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(i) L−1
ε T̄ε(t)ūε = T̃ε(t)L−1

ε ūε, ūε ∈ R
m, t ∈ R.

(ii) T̄ε(t)Lεũε = LεT̃ε(t)ũε, ũε ∈ Yε, t ∈ R.

(iii) PεTε(t)uε = T̃ε(t)Pεuε, uε ∈ H1
0(0, π), t ≥ 0.

(iv) P−1
ε T̃ε(t)ũε = Tε(t)P−1

ε ũε, ũε ∈ Yε, t ≥ 0.

(v) Given a function τε : R ×Aε → R such that, τε(0, uε) = 0 and τε(·, uε) is a increasing function
mapping R onto R, there exist a function τ̃ε : R × Ãε → R such that, τ̃ε(0, Pεuε) = 0 and
τ̃ε(·, Pεuε) is a increasing function mapping R onto R such that

PεTε(τε(t, uε))uε = T̃ε(τ̃ε(t, Pεuε))Pεuε, uε ∈ Aε, t ∈ R.

(vi) Given a function τ̃ε : R × Ãε → R such that, τ̃ε(0, ũε) = 0 and τ̃ε(·, ũε) is a increasing function
mapping R onto R, there exist a function τ̄ε : R × Āε → R such that, τ̄ε(0, Lεũε) = 0 and
τ̄ε(·, Lεũε) is a increasing function mapping R onto R such that

LεT̃ε(τ̃ε(t, ũε))ũε = T̄ε(τ̄ε(t, Lεũε))Lεũε, ũε ∈ Ãε, t ∈ R.

Proof. Let ūε ∈ R
m, then L−1

ε ūε ∈ Yε and T̃ε(t)L−1
ε ūε is a solution of

{

vε
t + A+

ε vε = Hε(vε, sε
∗(v

ε)), t ∈ R,

vε(0) = L−1
ε ūε ∈ Yε.

(3.7)

Defining φε(t) = L−1
ε T̄ε(t)ūε, we have φε(0) = L−1

ε T̄ε(0)ūε = L−1
ε ūε and

φε
t + A+

ε φε(t) = L−1
ε

∂

∂t
T̄ε(t)ūε + A+

ε L−1
ε T̄ε(t)ūε

= L−1
ε (

∂

∂t
T̄ε(t)ūε + Lε A+

ε L−1
ε T̄ε(t)ūε).

Since xε(t) := T̄ε(t)ūε is a solution of

{

xε
t + Lε A+

ε L−1
ε (xε) = LεHε(L−1

ε (xε), θε
∗(xε)), t ∈ R,

xε(0) = ūε ∈ R
m,

(3.8)

we obtain

φε
t + A+

ε φε(t) = Hε(φε(t), θε
∗(φε(t))).

The bijection between θε
∗ and sε

∗ enables us to conclude that φε(t) is also a solution of (3.7).

The result follows from the well-posedness of (3.7).

In the same way, we proof item (ii).

Item (iii) is immediate from (3.3) and (3.4) by noticing that PεTε(t)uε = vε(t) and we

are denoting vε(t) = T̃ε(t)Pεuε. Item (iv) follows from (iii) using that Pεuε = ũε if only if

uε = P−1
ε ũε, for some ũε ∈ Yε. Item (v) follows from (iii) defining τ̃ε(t, Pεuε) = τε(t, uε). In the

same way, we obtain (vi).

Proposition 3.6. The set Ãε = PεAε is the global attractor for the semigroup T̃ε(·) given by solutions
of (3.4).
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Proof. Since Aε is compact and Pε is continuous, we have Ãε = PεAε a compact set in Yε.

Proving the attraction, let B ⊂ Yε a bounded set and let vε ∈ B. Then vε + sε
∗(v

ε) ∈ Mε and

Tε(t)wε = T̃ε(t)vε + sε
∗(T̃ε(t)vε), for t > 0 and wε ∈ P−1

ε (vε). But Tε(t) is a gradient semigroup,

then there is uε ∈ Aε such that, ∥Tε(t)wε − uε∥H1
0 (0,π) → 0 as t → ∞. In fact, the attraction

property of the global attractor is uniform for the solutions starting at B. Hence, there is a

neighborhood of Aε containing all trajectory starting at B after a time tB. We take ũε ∈ Ãε

such that ũε = Pεuε. Thus,

∥T̃ε(t)vε − ũε∥H1
0 (0,π) ≤ ∥T̃ε(t)vε − ũε∥H1

0 (0,π) + ∥sε
∗(T̃ε(t)vε)− sε

∗(ũ
ε)∥H1

0 (0,π)

= C∥T̃ε(t)vε + sε
∗(T̃ε(t)vε)− Pεuε − sε

∗(Pεuε)∥H1
0 (0,π)

= C∥Tε(t)wε − uε∥H1
0 (0,π) → 0 as t → ∞,

for a constant C > 0 independent of ε, where the attraction property is also uniform for the

solutions starting at bounded sets.

It remains to prove that Ãε is invariant. Let ũε ∈ Ãε and t ≥ 0. Writing wε = Pεũε for some

wε ∈ Aε, we have by the invariance of Aε, that there is ŵε ∈ Aε such that Tε(t̄)ŵε = wε, for

some t̄ ≥ 0. Thus,

ũε + sε
∗(ũ

ε) = Pεwε + sε
∗(Pεwε) = wε = Tε(t̄)ŵε = T̃ε(t̄)Pεŵε + sε

∗(T̃ε(t̄)Pεŵε),

which implies ũε = T̃ε(t̄)Pεŵε, where Pεŵε ∈ Ãε.

Proposition 3.7. The set Āε = LεPεAε is the global attractor for the semigroup T̄ε(·) given by
solutions of (3.5).

Proof. Since Lε is continuous and PεAε is compact, we have Āε = LεPεAε a compact set in R
m.

Let B a bounded set in R
m and ūε ∈ B, then L−1

ε ūε ∈ L−1
ε B which is a bounded set in Yε. Since

T̃ε(·) is gradient, there is w̃ε ∈ Ãε such that, ∥T̃ε(t)L−1
ε ūε − w̃ε∥H1

0 (0,π) → 0 as t → ∞, where the

attraction property is uniform for the solutions starting at bounded sets. Hence, Lεw̃ε ∈ Āε is

such that,

∥T̄ε(t)ūε − Lεw̃ε∥R
m
0
= ∥L−1

ε T̄ε(t)ūε − w̃ε∥H1
0 (0,π)

= ∥T̃ε(t)L−1
ε ūε − w̃ε∥H1

0 (0,π) → 0, as t → ∞,

where we have used that Lε is a isometry and Proposition 3.5.

It remains to prove that Āε is invariant. Let ūε ∈ Āε. Then L−1
ε ūε ∈ Ãε which is invariant.

Thus, there is w̃ε ∈ Ãε and t̄ > 0 such that T̃ε(t̄)w̃ε = L−1
ε ūε. Thus, LεT̃ε(t̄)w̃ε = ūε and by

Proposition 3.5, we have T̃ε(t̄)Lεw̃ε = ūε.

4 Proof of Theorem 1.1

In this section, we prove the main result of this paper, the Theorem 1.1.

Theorem 4.1. The equation (3.5) is structurally stable at ε = 0. That is, for each η > 0 there is εη > 0

and for ε ∈ (0, εη ] there is a homeomorphism hε : Āε → Ā0 such that,

sup
ūε∈Āε

∥hε(ūε)− ūε∥Rm < η and hε(T̄ε(τ̄ε(t, ūε))ūε) = T̄0(t)hε(ūε), (4.1)

where ūε ∈ Āε, t ∈ R and τ̄ε : R × Āε → R is function such that, τ̄ε(0, ūε) = 0 and τ̄ε(·, ūε) is a
increasing function mapping R onto R.
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Proof. The works [1] and [5, Chapter 14] have obtained the continuity of the semigroups

Tε(·) → T0(·) as ε → 0 in the H1
0(0, π) norm. Following [2] we obtain T̄ε(·) → T̄0(·) as ε → 0

in the C1 norm, since the invariant manifolds Mε and M0 are close in the C1 topology. Thus,

T̄ε(·) is a small C1 perturbation of T̄0(·) which is a Morse–Smale semigroup R
m. The main

property of Morse–Smale flows in finite dimension stated in [11, 14] and [13] is the structural

stability, that is, for each η > 0 there is εη > 0 and for ε ∈ (0, εη ] there is a homeomorphism

hε : Āε → Ā0 such that, (4.1) is valid.

Theorem 4.2. The equation (3.4) is structurally stable at ε = 0. That is, for each η > 0 there is εη > 0

and for ε ∈ (0, εη ] there is a homeomorphism jε : Ãε → Ã0 such that,

sup
ũε∈Ãε

∥jε(ũε)− ũε∥H1
0 (0,π) < C(∥aε − a0∥∞ + η) and jε(T̃ε(τ̃ε(t, ũε))ũε) = T̃0(t)jε(ũε), (4.2)

where ũε ∈ Ãε, t ∈ R and τ̃ε : R × Ãε → R is function such that, τ̃ε(0, ũε) = 0 and τ̃ε(·, ũε) is a
increasing function mapping R onto R.

Proof. We define the map jε : Ãε → Ã0 by jε = L−1
0 ◦ hε ◦ Lε. Then, for ũε ∈ Ãε it follows from

Proposition 3.2 and (4.1) that

∥jε(ũε)− ũε∥H1
0 (0,π) = ∥L−1

0 hε(Lε(ũε))− ũε∥H1
0 (0,π)

= ∥L−1
0 hε(Lε(ũε))− L−1

ε Lεũε∥H1
0 (0,π)

≤ C(∥hε(Lε(ũε))− Lεũε∥Rm + ∥aε − a0∥∞)

≤ C(η + ∥aε − a0∥∞).

Moreover, by (4.1) and Proposition 3.5, we obtain

jε(T̃ε(τ̃ε(t, ũε))ũε) = L−1
0 ◦ hε ◦ Lε(T̃ε(τ̃ε(t, ũε))ũε)

= L−1
0 (hε(T̄ε(τ̄ε(t, Lεũε))Lεũε))

= L−1
0 T̄0(t)hε(Lεũε)

= T̃0(t)L−1
0 hε(Lεũε)

= T̃0(t)jε(ũε).

Hence, jε is a homeomorphism between Ãε and Ã0 satisfying (4.2).

Now, we are in a condition to prove the Theorem 1.1.

Proof. of Theorem 1.1. We define the map κε : Aε → A0 by κε = P−1
0 ◦ jε ◦ Pε. Similarly to the

proof of Theorem 4.2, we can prove that κε is a homeomorphism between Aε and A0 satisfying

∥κε(uε)− uε∥H1
0 (0,π) ≤ C(η + ∥aε − a0∥∞)

and

κε(Tε(τε(t, uε))uε) = T0(t)κε(uε).
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1 Introduction

In this paper, we are concerned with the fourth-order parabolic problem


















ut

|x|4
+ ∆

2u − ∆ut = |u|p−2u ln |u| , (x, t) ∈ Ω × (0, T);

u(x, t) = ∆u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T);

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ RN (N > 4) is a bounded domain with smooth boundary ∂Ω, 0 < T ≤ ∞,

u0 ∈ H2
0(Ω), x = (x1, x2, . . . , xN) ∈ RN with |x| =

√

x2
1 + x2

2 + · · ·+ x2
N , and parameter p

satisfies the following

2 < p < p̄ =











8

N
+ 2, N ≥ 8,

4

N − 4
+ 2, 4 < N < 8.
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Many scholars have been devoted to the topic on the global existence and blow-up phe-

nomena of the second-order partial differential equations (or a system of partial differential

equations) and there have been fruitful results (see [1–4,7,10]). However, there are fewer stud-

ies on higher order equations (see [6,15] and references therein). In particular, the fourth-order

parabolic partial differential equations have some applications in the fields such as materials

science, engineering, biological mathematics, image analysis, etc.

King et al. [11] investigated the fourth-order semilinear parabolic equation modeling epi-

taxial thin film growth

ut + ∆
2u −∇ · ( f (∇u)) = g, (x, t) ∈ Ω × (0,+∞) ,

by using the technique of semi-discrete approximation, they obtained existence, uniqueness

and regularity of the weak solutions under appropriate conditions and derived the long-time

asymptotic behavior.

The authors of [5, 16] considered the following p-biharmonic parabolic equation with log-

arithmic nonlinearity















ut − ∆ut + ∆

(

|∆u|p−2
∆u
)

= |u|q−2u ln u, x ∈ Ω, t > 0;

u (x, t) = ∆u (x, t) = 0, x ∈ ∂Ω, t > 0;

u(x, 0) = u0(x), x ∈ Ω.

Cömert and Pişkin [5] considered the case of 2 < p < q < p
(

1 + 4
N

)

, they obtained the

existence of the unique global weak solutions and decay polynomially of solutions by using

the potential wells method and logarithmic Sobolev inequality. For max
{

1, 2N
N+4

}

< p ≤ q <

p
(

1 + 4
N

)

, Liu and Fang [16] established the local and global solvability, infinite and finite

time blow-up phenomena of weak solutions in different energy levels. Moreover, the life span

in different energy cases and extinction phenomenon are discussed.

Do et al. [8] considered the following higher-order reaction-diffusion parabolic problem



















ut

|x|4
+ ∆

2u = k(t)|u|p−1u, x ∈ Ω, t > 0;

u (x, t) = ∆u (x, t) = 0, x ∈ ∂Ω, t > 0;

u(x, 0) = u0(x), x ∈ Ω.

The main difficulty is that the methods of [9,14,19] are no longer valid due to the presentation

of singular potential. To overcome this difficulty, the authors of [8] combined the technique

of cut-off with Hardy–Sobolev inequality and Faedo–Galerkin approximation to establish the

local well-posedness. They also obtained the existence and decay estimation of a global weak

solution. What is more, they discussed the upper and lower bounds on the blow-up time of a

weak solution in [18].

In view of the works mentioned above, we consider the problem (1.1) with strong damping

and logarithmic nonlinearity. In fact, the third derivative term ∆ut can be regarded as a

damping term, which has effect on the qualitative properties such as blow-up, decay and

so on. Mathematically, the logarithmic nonlinearity does not satisfy monotonicity and may

change signs, thus the problem with logarithmic nonlinearity is more difficult than the one

with power source. To the best our knowledge, this is the first work in the literature that

takes into account a singular fourth-order equation with strong damping and logarithmic

nonlinearity.
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The paper is organized as follows. In Section 2, we introduce some potential wells, basic

definitions and important lemmas. In section 3, we prove the local existence and uniqueness

theorem. In Section 4, we prove the global existence and discuss the asymptotic behavior of

solutions. Finally, in Section 5, we discuss the finite time blow-up of weak solutions and give

the upper and lower bounds for blow-up time.

2 Preliminaries

In this section, we introduce some notations, basic definitions and lemmas that will be used

throughout the paper. For convenience, we denote the norms

∥u∥p := ∥u∥Lp(Ω), ∥u∥2 := ∥u∥L2(Ω), ∥∆u∥2 := ∥u∥H2
0 (Ω).

For u ∈ H2
0(Ω), we define the potential energy functional and Nehari functional as

J(u) =
1

2
∥∆u∥2

2 +
1

p2
∥u∥p

p −
1

p

∫

Ω

|u|p ln |u| dx, (2.1)

I(u) = ∥∆u∥2
2 −

∫

Ω

|u|p ln |u| dx. (2.2)

Then it follows from (2.1) and (2.2) that

J(u) =
1

p
I(u) +

(

1

2
−

1

p

)

∥∆u∥2
2 +

1

p2
∥u∥p

p . (2.3)

Furthermore, we introduce the following sets

W1 =
{

u ∈ H2
0(Ω) | J(u) < d

}

, W2 =
{

u ∈ H2
0(Ω) | J(u) = d

}

, W = W1 ∪ W2,

W+
1 =

{

u ∈ H2
0(Ω) | J(u) < d, I(u) > 0

}

, W+
2 =

{

u ∈ H2
0(Ω) | J(u) = d, I(u) > 0

}

,

W−
1 =

{

u ∈ H2
0(Ω) | J(u) < d, I(u) < 0

}

, W−
2 =

{

u ∈ H2
0(Ω) | J(u) = d, I(u) < 0

}

,

W+ = W+
1 ∪ W+

2 , W− = W−
1 ∪ W−

2 ,

and the Nehari manifold

N =
{

u ∈ H2
0(Ω)\{0}, I(u) = 0

}

.

The depth of potential well is defined as

d = inf
u∈N

J(u).

Next, we give some definitions.

Definition 2.1 (Weak solution). Let T > 0, the function u ∈ L∞(0, T; H2
0(Ω)) is a weak solution

of problem (1.1) on Ω × [0, T), if

ut ∈ L2(0, T; H1
0(Ω)),

ut

|x|2
∈ L2(0, T; L2(Ω)),

u (x, 0) = u0 (x) ∈ H2
0 (Ω) and u(x, t) satisfies

〈

ut

|x|4
, v

〉

+ ⟨∆u, ∆v⟩+ ⟨∇ut,∇v⟩ =
〈

|u|p−2u ln |u| , v
〉

,

for any v ∈ H2
0(Ω) and t ∈ [0, T).
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Definition 2.2 (Maximal existence time [20]). Let u(x, t) be a weak solution of problem (1.1),

we define the maximal existence time Tmax as follows

Tmax = sup {T > 0; u(x, t) exists on [0, T]} .

(i) If Tmax = +∞, we say that the solution u(t) is global;

(ii) If Tmax < +∞, we say that the solution u(t) blows up in finite time and Tmax is the

blow-up time.

Definition 2.3 (Finite time blow-up). Let u (x, t) is a weak solution of problem (1.1). We say

u (x, t) blows up in finite time if the maximal existence time Tmax is finite and

lim
t→Tmax

−

∫ t

0





∥

∥

∥

∥

∥

u (τ)

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇u (τ)∥2
2



dτ = +∞.

In order to deal with the singular potential, we introduce the cut-off function

ρn (x) = min
{

|x|−4, n
}

, n ∈ N+,

and the following Lemma 2.4.

Lemma 2.4 (Rellich’s inequality [8]). Let N > 4 and u ∈ H2
0(Ω). Then u

|x|2
∈ L2(Ω) and there

exists a constant RN > 0 such that

∫

Ω

|u|2

|x|4
dx ≤

16

N2(N − 4)2

∫

Ω

|∆u|2dx =: RN

∫

Ω

|∆u|2dx.

Next, in Lemma 2.5, we describe some basic properties of the fiber mapping J (λu) that

can be verified directly.

Lemma 2.5 ([5]). Assume that u ∈ H2
0(Ω)\{0}, then

(i) limλ→0+ J(λu) = 0, limλ→+∞ J(λu) = −∞.

(ii) There exists a unique λ∗ = λ∗(u) > 0 such that d
dλ J(λu)

∣

∣

λ=λ∗ = 0.

(iii) J(λu) is increasing on 0 < λ < λ∗, decreasing on λ∗
< λ < +∞, and attains the maximum at

λ = λ∗.

(iv) I(λu) > 0 for 0 < λ < λ∗, I(λu) < 0 for λ∗
< λ < +∞, and I(λ∗u) = 0.

We introduce the following inequality to deal with the logarithmic nonlinearity.

Lemma 2.6. Let µ be a positive number. Then we have the following inequalities:

sp ln s ≤ (eµ)−1sp+µ, for all s ≥ 1,

and

|sp ln s| ≤ (ep)−1, for all 0 < s < 1.

The next result is the Gagliardo–Nirenberg inequality.
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Lemma 2.7. For any u ∈ H2
0(Ω), it holds that:

∥u∥
p+µ
p+µ ≤ CG ∥∆u∥

(p+µ)θ
2 ∥u∥

(1−θ)(p+µ)
2 ,

where θ ∈ (0, 1) is determined by θ = N(p+µ−2)
4(p+µ)

, 0 < µ <
8
N + 2 − p, and the constant CG > 0

depends on N, p.

In order to prove the decay estimation of weak solutions, we will introduce the following

lemma.

Lemma 2.8 ([12]). let f : R+ → R+ be a nonincreasing function and σ be a positive constant such

that:
∫ +∞

t
f 1+σ(s)ds ≤

1

ω
f σ(0) f (t), ∀ t ≥ 0.

Then we have

(i) f (t) ≤ f (0)e1−ωt, for all t ≥ 0, whenever σ = 0.

(ii) f (t) ≤ f (0)
(

1+σ
1+ωσt

)
1
σ , for all t ≥ 0, whenever σ > 0.

The following is the concavity lemma.

Lemma 2.9 ([13]). Suppose that a positive, twice-differentiable function Ψ(t) satisfies the inequality

Ψ
′′(t)Ψ(t)− (1 + θ)(Ψ′(t))2 ≥ 0,

where θ > 0 . If Ψ(0) > 0 and Ψ
′(0) > 0, then Ψ(t) → ∞ as

t → t∗ ≤ t∗ =
Ψ(0)

θΨ′(0)
.

3 Local existence

In this section, we prove the local existence and uniqueness of weak solution to problem (1.1).

Lemma 3.1 ([16]). Let N > 4, 2 < p < p̄. Then, for any n ∈ N+ and any initial date un0 ∈ C∞

0 (Ω),

there exists a unique weak solution un ∈ L∞(0, T; H2
0(Ω)) and unt ∈ L2(0, T; H1

0(Ω)) satisfying the

following equation















ρn (x) (un)t + ∆
2un − ∆(un)t = |un|

p−2un ln |un|, x ∈ Ω, t > 0;

un(x, t) = ∆un(x, t) = 0, x ∈ ∂Ω, t > 0;

un (x, 0) = un0, x ∈ Ω.

(3.1)

Theorem 3.2. Let u0 ∈ H2
0(Ω)\ {0}, 2 < p < p̄. Then there exist T > 0 and a unique weak solution

u(x, t) ∈ L∞(0, T; H2
0(Ω)) of problem (1.1) with ut ∈ L2(0, T; H1

0(Ω)), ut

|x|2
∈ L2(0, T; L2(Ω))

satisfying u (x, 0) = u0 (x). Moreover, u(x, t) satisfies the energy equality

∫ t

0

(

∥

∥

∥|x|
−2 ut

∥

∥

∥

2

2
+ ∥∇ut∥

2
2

)

dτ + J(u(t)) = J(u0), 0 ≤ t ≤ T.
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Proof. We divide the proof of Theorem 3.2 into 3 steps.

Step 1. Local existence

We use Lemma 3.1 and approximation to prove the local existence of weak solutions to prob-

lem (1.1).

By Lemma 3.1, we know that un0 ∈ C∞

0 (Ω) such that

un0 → u0 (x) strongly in H2
0 (Ω) , (3.2)

and

⟨ρn(x)unt, ϕ⟩+ ⟨∆un, ∆ϕ⟩+ ⟨∇unt,∇ϕ⟩ =
〈

|un|
p−2un ln |un| , ϕ

〉

. (3.3)

Especially, taking ϕ = un in (3.3), we get

⟨ρn(x)unt, un⟩+ ⟨∆un, ∆un⟩+ ⟨∇unt,∇un⟩ =
〈

|un|
p−2un ln |un| , un

〉

. (3.4)

Integrating the above equation over [0, t], we have

1

2

∥

∥

∥|ρn (x)|
1
2 un (t)

∥

∥

∥

2

2
+
∫ t

0
∥∆un (τ)∥

2
2 dτ +

1

2
∥∇un (t)∥

2
2

=
1

2

∥

∥

∥|ρn (x)|
1
2 un (0)

∥

∥

∥

2

2
+

1

2
∥∇un (0)∥

2
2 +

∫ t

0

∫

Ω

|un (τ)|
p ln |un (τ)|dxdτ.

Let

Sn (t) =
1

2

∥

∥

∥|ρn(x)|
1
2 un (t)

∥

∥

∥

2

2
+

1

2
∥∇un (t)∥

2
2 +

∫ t

0
∥∆un (τ)∥

2
2 dτ. (3.5)

We observe that

Sn (t) = Sn (0) +
∫ t

0

∫

Ω

|un|
p ln |un| dxdτ. (3.6)

From Lemma 2.6, we get
∫

Ω

|un|
p ln |un| dx =

∫

Ω1={x∈Ω;|un(x)|≥1}
|un|

p ln |un| dx

+
∫

Ω2={x∈Ω;|un(x)|<1}
|un|

p ln |un| dx

≤ (eµ)−1
∫

Ω1={x∈Ω;|un(x)|≥1}
|un|

p+µdx

≤ (eµ)−1 ∥un∥
p+µ
p+µ .

(3.7)

Then, by Lemma 2.7, Young’s inequality and (3.7), we obtain
∫

Ω

|un|
p ln |un| dx ≤ (eµ)−1 ∥un∥

p+µ
p+µ

≤ (eµ)−1CG ∥∆un∥
θ(p+µ)
2 ∥un∥

(1−θ)(p+µ)
2

≤ (eµ)−1CGε ∥∆un∥
2
2 + (eµ)−1CGC (ε) ∥un∥

2(1−θ)(p+µ)
2−θ(p+µ)

2

≤ (eµ)−1CGε ∥∆un∥
2
2 + (eµ)−1CGC (ε) B1 ∥∇un∥

2(1−θ)(p+µ)
2−θ(p+µ)

2 ,

(3.8)

where B1 is the best constant of the Sobolev embedding H1
0(Ω) →֒ L2(Ω), ε ∈ (0, 1), and we

choose µ > 0 with 2 < p + µ <
8
N + 2. Substituting (3.8) into (3.6), we get

Sn (t) ≤ C1 + C2

∫ t

0
[Sn (τ)]

αdτ, (3.9)
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where C1 = Sn(0)

1−(eµ)−1CGε
, C2 = (eµ)−1CGC(ε)2αB1

1−(eµ)−1CGε
, α = 4p+4µ−Np−Nµ+2N

8−N(p+µ−2)
= 1 + 4(p+µ)−8

2(4+N)−N(p+µ)
> 1.

By direct calculation, we obtain

Sn (t) ≤ CT, (3.10)

where CT is a positive constant dependent on T.

Now, multiplying the first equation of problem (1.1) by unt and integrating on Ω × (0, t),

we obtain
∫ t

0

(

∥

∥

∥|ρn(x)|
1
2 unt

∥

∥

∥

2

2
+ ∥∇unt∥

2
2

)

dτ + J (un (t)) = J (un0) , 0 ≤ t ≤ T. (3.11)

By the continuity of the functional J (u) in H2
0 (Ω) and (3.2), there exists a constant C > 0

satisfying

J(un0) ≤ C, for any positive integer n. (3.12)

Applying (2.1), (3.5), (3.8), (3.11) and (3.12), we obtain

C ≥ J (un0) ≥ J (un (t)) =
1

2
∥∆un∥

2
2 +

1

p2
∥un∥

p
p −

1

p

∫

Ω

|un|
p ln |un| dx

≥
1

2
∥∆un∥

2
2 +

1

p2
∥un∥

p
p −

CGε

peµ
∥∆un∥

2
2 −

CGC (ε) B1

peµ
∥∇un∥

2α
2

≥

(

1

2
−

CGε

peµ

)

∥∆un∥
2
2 +

1

p2
∥un∥

p
p −

CGC (ε) B12α

peµ
(CT)

α,

namely

∥∆un∥
2
2 + ∥un∥

p
p ≤ C. (3.13)

From (3.11)–(3.13), it follows that

∥un(t)∥L∞(0,T;H2
0 (Ω)) ≤ C, for any positive integer n, (3.14)

∥un(t)∥L∞(0,T;Lp(Ω)) ≤ C, for any positive integer n, (3.15)

∥unt(t)∥L2(0,T;H1
0 (Ω)) ≤ C, for any positive integer n, (3.16)

∥

∥

∥|ρn (x)|
1
2 unt

∥

∥

∥

L2(0,T;L2(Ω))
≤ C, for any positive integer n. (3.17)

By (3.14), (3.16) and the Aubin–Lions–Simon lemma (see [17], Corollary 4), we get

un → u in C(0, T; L2(Ω)). (3.18)

Therefore, un(x, 0) → u(x, 0) = u0 (x) in L2(Ω). By (3.18), we have un → u a.e. (x, t) ∈
Ω × (0, T), this implies

|un|
p−2 un ln |un| → |u|p−2 u ln |u| a.e. (x, t) ∈ Ω × (0, T).

On the other hand, by a direct calculation and the Sobolev inequality, we have

∫

Ω

∣

∣

∣|un|
p−2un ln |un|

∣

∣

∣

2
dx =

∫

Ω1={x∈Ω;|un(x)|≥1}

∣

∣

∣|un|
p−2un ln |un|

∣

∣

∣

2
dx

+
∫

Ω2={x∈Ω;|un(x)|<1}

∣

∣

∣|un|
p−2un ln |un|

∣

∣

∣

2
dx

≤ (eµ)−2 ∥un∥
2(p−1+µ)
2(p−1+µ)

+ [e (p − 1)]−2 |Ω|

≤ (eµ)−2B2 ∥∆un∥
2(p−1+µ)
2 + [e (p − 1)]−2 |Ω| < C,
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where B2 is the best constant of the Sobolev embedding H2
0(Ω) →֒ L2(p−1+µ)(Ω). Here we

choose 0 < µ ≤ 4
N−4 + 2 − p, p <

4
N−4 + 2, we know that

∥

∥

∥|un|
p−2un ln |un|

∥

∥

∥

L∞(0,T;L2(Ω))
≤ C, for any positive integer n. (3.19)

By (3.14)–(3.19), there exist functions u and a subsequence of {un}
∞

n=1 which we still denote

it by {un}
∞

n=1 such that

un → u weakly star in L∞(0, T; H2
0(Ω)), (3.20)

unt → ut weakly star in L2(0, T; H1
0(Ω)), (3.21)

|ρn(x)|
1
2 unt → |x|−2ut weakly star in L2(0, T; L2(Ω)), (3.22)

|un|
p−2un ln |un| → |u|p−2u ln |u| weakly star in L∞(0, T; L2(Ω)). (3.23)

By (3.20)–(3.23), passing to the limit in (3.3), as n → +∞, it follows that u satisfies the initial

condition u(0) = u0,
〈

|x|−4ut, ϕ
〉

+ ⟨∆u, ∆ϕ⟩+ ⟨∇ut,∇ϕ⟩ =
〈

|u|p−2u ln |u| , ϕ
〉

,

for all ϕ ∈ H2
0(Ω), and for a.e. t ∈ [0, T].

Step 2. Uniqueness

Suppose there are two solutions u1 and u2 to the problem (1.1) with the same initial condition

u1 (x, 0) = u2 (x, 0) = u0 (x) ∈ H2
0(Ω), we have

〈

|x|−4u1t, v
〉

+ ⟨∆u1, ∆v⟩+ ⟨∇u1t,∇v⟩ =
〈

|u1|
p−2u1 ln |u1| , v

〉

, (3.24)

and
〈

|x|−4u2t, v
〉

+ ⟨∆u2, ∆v⟩+ ⟨∇u2t,∇v⟩ =
〈

|u2|
p−2u2 ln |u2| , v

〉

. (3.25)

Let w = u1 − u2 and w(0) = 0, then by subtracting the (3.24) and (3.25), we can derive
∫

Ω

|x|−4wtvdx +
∫

Ω

∆w∆vdx +
∫

Ω

∇wt∇vdx =
∫

Ω

(

|u1|
p−2u1 ln |u1| − |u2|

p−2u2 ln |u2|
)

vdx,

Let v = w and integrating it on [0, t], we obtain

1

2

∥

∥

∥|x|
−2w

∥

∥

∥

2

2
+
∫

Ω

∥∆w∥2
2 dx +

1

2
∥∇w∥2

2 =
∫ t

0

∫

Ω

|u1|
p−2u1 ln |u1| − |u2|

p−2u2 ln |u2|

w
w2dxdτ,

then

∥∇w∥2
2 ≤ 2

∫ t

0

∫

Ω

f (u1)− f (u2)

w
w2dxdτ,

where f (s) = |s|p−2 s ln |s|. By the Lipschitz continuity of f : R+ → R+, we have

∥∇w∥2
2 ≤ 2CU

∫ t

0
∥∇w∥2

2 dτ.

Employing the Gronwall’s inequality, the above inequality yields that ∥∇w∥2
2 = 0. Thus, we

have w = 0 a.e. in Ω × (0, T). Therefore, the uniqueness of problem (1.1) can be deduced.

Step 3. Energy equality

Multiplying (1.1) with ut and integrating over Ω × (0, t) to obtain the energy equality
∫ t

0

(

∥

∥

∥|x|
−2ut

∥

∥

∥

2

2
+ ∥∇ut∥

2
2

)

dτ + J (u (t)) = J (u0) , 0 ≤ t ≤ T. (3.26)

The proof of Theorem 3.2 is completed
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4 Global existence and decay rate

In this section, we are concerned with the existence of global weak solutions to problem (1.1)

and show that the norm ∥u(t)∥H2
0 (Ω) decays exponentially.

Theorem 4.1. Assume that u0 ∈ W+, then problem (1.1) admits a global weak solution u ∈
L∞(0, ∞; H2

0(Ω)), ut ∈ L2(0, ∞; H1
0(Ω)) with ut

|x|2
∈ L2(0, ∞; L2(Ω)), and u(t) ∈ W+ for 0 ≤

t ≤ ∞. Moreover, if u0 ∈ W1
+, then

∥∆u∥2
2 ≤ ∥∆u0∥

2
2 e

1−
C3
C4

t
, t ≥ 0,

where C3 = 1 −
(

d
J(u0)

)
2
p−1

, C4 = RN+B1
2 , B1 is the best embedding constant.

Step 1. Global existence

Proof. In order to prove the existence of global weak solutions, we consider two following

cases.

Case 1. The initial data u0 ∈ W+
1 .

Combining J(u0) < d with (3.26), then we get

∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



 dτ + J (u (t)) = J (u0) < d, 0 ≤ t ≤ Tmax, (4.1)

where Tmax is the maximal existence time of solution u(t), we shall prove that Tmax = +∞.

Next, we will show that

u(x, t) ∈ W+
1 for all 0 ≤ t ≤ Tmax. (4.2)

In fact, assume that (4.2) does not hold and let t∗ be the smallest time for which u(t∗) /∈ W+
1 .

Then, by the continuity of u(t), we have u(t∗) ∈ ∂W+
1 . Hence, it follows that

J (u (t∗)) = d, (4.3)

or

I (u (t∗)) = 0. (4.4)

Nevertheless, it is clear that (4.3) is invalid by (4.1). On the other hand, if (4.4) holds, by the

definition of d, we have

J (u (t∗)) ≥ inf
u∈N

J(u) = d,

which also contradicts with (4.1). Hence, we have u(x, t) ∈ W+
1 such that I (u (t)) > 0.

Consequently, it follows from this fact and (2.3) that

∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



dτ +
1

p
I (u) +

(

1

2
−

1

p

)

∥∆u∥2
2 +

1

p2
∥u∥p

p < d, (4.5)

namely
∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



dτ +

(

1

2
−

1

p

)

∥∆u∥2
2 +

1

p2
∥u∥p

p < d. (4.6)
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This estimation allows us to take Tmax = +∞. Hence, we can conclude that there is a unique

global weak solution u(t) ∈ W+
1 of the problem (1.1).

Case 2. The initial data u0 ∈ W+
2 .

Firstly, we choose a sequence {θm}
∞

m=1 ⊂ (0, 1) such that lim
m→∞

θm = 1. Then we consider the

following problem



















ut

|x|4
+ ∆

2u − ∆ut = |u|p−2u ln |u| , (x, t) ∈ Ω × (0, T);

u(x, t) = ∆u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T);

u (x, 0) = u0m = θmu0(x), x ∈ Ω.

(4.7)

Due to I (λ (u0)) = I (u0) > 0, we have λ = 1. From lemma 2.5, it follows that λ∗
> λ = 1.

Hence, from θm < 1 < λ∗ we can deduce that I(u0m) = I(θmu0) > 0 and J(u0m) = J(θmu0) <

J(u0) = d, which means u0m ∈ W+
1 . Using the similar arguments as the Case 1. We find that

problem (4.7) admits a global weak solution u.

Step 2. Decay estimate

From u0 ∈ W+
1 and the conclusions of the global weak solutions, we know that u(t) ∈ W+

1 .

Hence, by (2.3), we have

(

1

2
−

1

p

)

∥∆u∥2
2 +

1

p2
∥u∥p

p ≤ J(u(t)) ≤ J(u0) < d. (4.8)

Through a direct calculation, we arrive that

λ0

[(

1

2
−

1

p

)

∥∆u∥2
2 +

1

p2
∥u∥p

p

]

≥ J (λ∗u (t)) ≥ d, (4.9)

where λ0 = max{(λ∗)2, (λ∗)p}. Combining with (4.8), we get

λ0 ≥
d

J (u0)
> 1, (4.10)

so we can infer that λ∗ > 1, it implies

λ∗ ≥

(

d

J (u0)

) 1
p

> 1. (4.11)

From (2.2), we have

0 = I(λ∗u) = (λ∗)2 ∥∆u∥2
2 − (λ∗)p

∫

Ω

|u|p ln |u| dx − (λ∗)p ln(λ∗) ∥u∥p
p

= (λ∗)p I(u)−
[

(λ∗)p − (λ∗)2
]

∥∆u∥2
2 − (λ∗)p ln(λ∗) ∥u∥p

p .
(4.12)

In view of (4.11) and (4.12) we have

I (u) = ∥u∥p
p ln (λ∗) +

[

1 − (λ∗)
2−p
]

∥∆u∥2
2 ≥ C3 ∥∆u∥2

2 , (4.13)

where C3 = 1 −
(

d
J(u0)

)
2
p−1

.
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According to equation (2.2) and lemma 2.4, we obtain

∫ T

t
I (u) ds =

∫ T

t

(

∥∆u∥2
2 −

∫

Ω

|u|p ln |u| dx

)

ds

= −
1

2

∫ T

t





d

dt

∥

∥

∥

∥

∥

u

|x|2

∥

∥

∥

∥

∥

2

2

+
d

dt
∥∇u∥2

2



 ds

=
1

2





∥

∥

∥

∥

∥

u (t)

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇u (t)∥2
2



−
1

2





∥

∥

∥

∥

∥

u (T)

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇u (T)∥2
2





≤
1

2





∥

∥

∥

∥

∥

u (t)

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇u (t)∥2
2





≤

(

RN + B

2

)

∥∆u (t)∥2
2 = C4 ∥∆u (t)∥2

2 ,

(4.14)

where C4 = RN+B1
2 , B1 is the best embedding constant.

By (4.13) and (4.14), we get

∫ T

t
∥∆u(s)∥2

2ds ≤
C4

C3
∥∆u(t)∥2

2 , for all t ∈ [0, T], (4.15)

let T → +∞ in (4.15), by virtue of lemma 2.8, it follows that

∥∆u (t)∥2
2 ≤ ∥∆u0∥

2
2 e

1−
C3
C4

t
.

The proof of Theorem 4.1 is completed.

5 Blow-up phenomena of weak solutions

In this section, we consider the finite time blow-up results of weak solutions with u0 ∈ W−,

and give the upper and lower bounds for blow up time to problem (1.1). For simplicity, we

shall write

L(t) =
1

2





∥

∥

∥

∥

∥

u(t)

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇u (t)∥2
2



 .

5.1 Upper bound for blow-up time

Theorem 5.1. Assume that u0 ∈ W−, 2 < p < p̄. Then the weak solution u(t) of problem (1.1) blows

up in finite time, the upper bound for blow-up time Tmax is given by

Tmax ≤
βb2

(p − 2) βb −

(

∥

∥

∥

u0

|x|2

∥

∥

∥

2

2
+ ∥∇u0∥

2
2

) ,

where

β ∈

(

0,
p (d − J (u0))

p − 1

]

, b > max











0,

∥

∥

∥

u0

|x|2

∥

∥

∥

2

2
+ ∥∇u0∥

2
2

(p − 2) β











.
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Proof. We will divide the proof into two cases.

Case 1: u0 ∈ W−
1 .

We claim that u(t) ∈ W−
1 for t ∈ [0, Tmax] provided that u0 ∈ W−

1 . Indeed, by contradiction,

there exists a t0 ∈ (0, Tmax) such that I(u(t)) > 0 for t ∈ [0, t0) and I(u(t0)) = 0. Recalling the

definition of d, it is clear that J(u(t0)) ≥ d which contradicts with J(u(t)) ≤ J(u0) < d. Hence,

we get u(t) ∈ W−
1 for t ∈ [0, Tmax].

From lemma 2.5, as I(u(t)) < 0, there is a λ∗
< 1 such that I(λ∗u) = 0. Then

d ≤ J (λ∗u) =
1

p
I (λ∗u) + (λ∗)2

(

1

2
−

1

p

)

∥∆u∥2
2 +

(λ∗)p

p2
∥u∥p

p

<

(

1

2
−

1

p

)

∥∆u∥2
2 +

1

p2
∥u∥p

p .

(5.1)

We show that Tmax < +∞. For any T ∈ [0, Tmax), define the positive function

F (t) =
∫ t

0
L (t) dτ + (T − t) L (0) +

β

2
(t + b)2, (5.2)

where β > 0, b > 0. We compute the first-order differential and second-order differential of

F(t), respectively, as follows:

F′ (t) = L (t)− L (0) + β (t + b)

=
∫ t

0

d

dt
L (t) dτ + β (t + b)

=
∫ t

0

(

∫

Ω

u · ut

|x|4
dx +

∫

Ω

∇u · ∇utdx

)

dτ + β (t + b) ,

(5.3)

and

F′′ (t) = L′ (t) + β = −I (u) + β

= − pJ (u) +
( p

2
− 1
)

∥∆u∥2
2 +

1

p
∥u∥p

p + β.
(5.4)

From (5.2)–(5.4), through a direct calculation, we have

F (t)F′′ (t)− (1 + θ)
[

F′ (t)
]2

= F (t) F′′ (t)

+ (1 + θ)







H (t)− [2F (t)− 2 (T − t) L (0)]





∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



dτ + β











,
(5.5)

the definition of H(t) is following

H (t) =





∫ t

0





∥

∥

∥

∥

∥

u

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇u∥2
2



 dτ + β(t + b)2



 ·





∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



 dτ + β





−

[

∫ t

0

∫

Ω

(

uut

|x|4
+∇u · ∇ut

)

dxdτ + β (t + b)

]2

.
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Applying the Cauchy–Schwarz inequality, Young’s inequality and Hölder’s inequality, it is

easy to verify that H(t) ≥ 0 for any t ∈ (0, T). Therefore, choosing θ = p−2
2 > 0, there are

F (t) F′′ (t)−
p

2

[

F′ (t)
]2

≥ F (t) F′′ (t)−
p

2
[2F (t)− 2 (T − t) L (0)]





∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



 dτ + β





≥ F (t)



F′′ (t)− p
∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



 dτ − pβ





= F (t)



−pJ (u) +
( p

2
− 1
)

∥∆u∥2
2 +

1

p
∥u∥p

p

−p
∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



 dτ + (1 − p)β





= F (t) ς (t) ,

we denote ς (t) as follows

ς (t) = −pJ (u) +
( p

2
− 1
)

∥∆u∥2
2 +

1

p
∥u∥p

p − p
∫ t

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



 dτ + (1 − p) β.

From (5.1) and u(t) ∈ W−
1 , when we chose β ∈

(

0,
p(d−J(u0))

p−1

]

, we have

ς (t) = − pJ (u0) +
( p

2
− 1
)

∥∆u∥2
2 +

1

p
∥u∥p

p + (1 − p) β

≥ p (d − J (u0)) + (1 − p) β ≥ 0.

Hence, by the above discussions, (5.5) becomes that

F (t) F′′ (t)− (1 + θ)
[

F′ (t)
]2

≥ 0.

Therefore, Lemma 2.9 guarantees that F(0) > 0, F′(0) = βb > 0, then there is a T1 satisfies

0 < T1 <
2F(0)

(p−2)F′(0)
such that F(t) → ∞, t → T1, we can obtain that

Tmax ≤
βb2

(p − 2) βb −

(

∥

∥

∥

u0

|x|2

∥

∥

∥

2

2
+ ∥∇u0∥

2
2

) ,

where

b > max











0,

∥

∥

∥

u0

|x|2

∥

∥

∥

2

2
+ ∥∇u0∥

2
2

(p − 2) β











.



14 X. Wu, Y. Zhao and X. Yang

Case 2: u0 ∈ W−
2

By the similar arguments as those in the proof of Case 1. When u0 ∈ W−
2 , by continuity we see

that there exists a t1 > 0 such that I(u(t1)) < 0,
∥

∥

ut

|x|2

∥

∥

2

2
> 0 and ∥∇ut∥

2
2 > 0 for all t ∈ [0, t1).

From energy equality we get

J (u (t1)) ≤ J(u0)−
∫ t1

0





∥

∥

∥

∥

∥

ut

|x|2

∥

∥

∥

∥

∥

2

2

+ ∥∇ut∥
2
2



dτ < J(u0) = d.

The remainder of the proof is the same as Case 1.

5.2 Lower bound for blow-up time

In this subsection, we shall derive a lower bound for the blow-up time Tmax.

Theorem 5.2. Assume that u0 ∈ W−, 2 < p < p̄. Then the weak solution u(t) of problem (1.1) blows

up in finite time, the lower bound for blow-up time Tmax is given by

Tmax ≥
L1−α(0)

CL(α − 1)
,

where CL = 2α(eµ)−1CGC (ε) B2, α = 4p+4µ−Np−Nµ+2N
8−N(p+µ−2)

> 1.

Proof. According to the proof proof of Theorem 5.1, we can get u(t) ∈ W−. From problem

(1.1) and equation (2.2), we obtain

L′ (t) =
∫

Ω

u · ut

|x|4
dx +

∫

Ω

∇u · ∇utdx

= − ∥∆u∥2
2 +

∫

Ω

|u|p ln |u| dx

= − I (u) > 0.

(5.6)

Recalling the inequality (3.8) and combining (3.8) and (5.6), it follows that

L′ (t) ≤
[

(eµ)−1CGε − 1
]

∥∆u∥p
p + (eµ)−1CGC (ε) B2 ∥∇u∥2α

2 . (5.7)

In view of (eµ)−1CGε − 1 < 0, α = 4p+4µ−Np−Nµ+2N
8−N(p+µ−2)

> 1 and the definition of L(t), we get

L′ (t) ≤ (eµ)−1CGC (ε) B2 ∥∇u∥2α
2 ≤ CLLα (t) , (5.8)

where CL = 2α(eµ)−1CGC (ε) B2. Integrating (5.8) over [0, t), we get

1

1 − α

[

L1−α(t)− L1−α(0)
]

≤ CLt.

Since α > 1, letting t → Tmax in the above inequality and recalling that limt→Tmax L(t) =

+∞, we obtain

Tmax ≥
L1−α(0)

CL(α − 1)
.

The proof of Theorem 5.1 and Theorem 5.2 are finished.
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1 Introduction and main result

In many evolution processes, the states of systems are changed abruptly at certain instants,

which leads to impulsive behaviors in dynamical systems [2, 11, 13]. In recent years, the in-

vestigation of differential equations with impulses got particular attention by a lot of scholars,

because of the widespread application of these impulsive differential systems in biology, me-

chanics, engineering and chaos theory, etc. [5, 6, 13, 21, 22].

Some classical approaches, such as the method of upper and lower solutions with the

monotone iterative technique, the coincidence degree theory of Mawhin and the fixed point

theory, were used to study impulsive problems [2, 11]. Especially, in the remarkable work of

Nieto and O’Regan [13], by constructing a variational structure, they converted the problem

of finding solutions for a second order impulsive equation to that of the existence of critical

points for the corresponding energy functional [19]. After that, the variational methods and

critical point theory were applied to prove the existence and multiplicity of solutions for

second order, fourth order and fractional order impulsive differential equations by more and

more researchers, see [1–4, 7–11, 13, 14, 16–20].

BEmail: ouhx2020@163.com



2 H. Ou

Our purpose is to investigate the existence of multiple subharmonic solutions for the fol-

lowing second order impulsive systems














ẍ(t) +∇V(t, x(t)) = 0,

∆
(

ẋi
(

tj

)

)

= ẋi
(

t+j

)

− ẋi
(

t−j

)

= Iij

(

xi
(

tj

)

)

, i = 1, 2, . . . , N, j = 1, 2, . . . , l,

x(0) = x(pT), ẋ(0) = ẋ(pT),

(1.1)

where x ∈ R
N , ∇V ∈ C([0, T]× R

N , R
N) denotes the gradient of V in x, Iij ∈ C

(

R
N , R

)

and

impulses occur at instants tj with j ∈ Z
∗ = Z\{0}, 0 < t1 < · · · < tl < T and tj+l = tj.

In [11], Luo, Xiao and Xu studied the existence of subharmonic solutions for the equation

with non-negative impulses as follows
{

ẍ(t) + f (t, x(t)) = 0, a.e. t ∈ R\{tk | k ∈ Z
∗},

∆ẋ(tk) = x(t+k )− x(t−k ) = Ik(x(tk)), k ∈ Z
∗,

where f ∈ C(R × R, R) and Ik ≥ 0 are impulses that happen at instants tk. Bai and Wang [2]

generalized the results in [11] to allow a negative impulse term. Here, motivated by [2,11], we

investigate the existence of multiple subharmonic solutions for system (1.1).

By a classical solution of (1.1), we mean a function

x ∈
{

w ∈ C([0, pT], R
N) : w|[tj,tj+1] ∈ H2([tj, tj+1], R

N), j = 1, 2, . . . , l
}

,

which satisfies the differential equation in (1.1) and the boundary conditions x(0) = x(pT),

ẋ(0) = ẋ(pT), the limits ẋi
(

t+j
)

, ẋi
(

t−j
)

, i = 1, 2, . . . , N, j = 1, 2, . . . , l, exist and verify the

impulsive conditions in (1.1).

Now we state our main result.

Theorem 1.1. Suppose that V(t, x) and Iij(x) satisfy the following conditions.

(H1) V(t, x) = V(−t, x) = V(t,−x) = V(t + T
2 , x) for every (t, x) ∈ [0, T]× R

N .

(H2) For every x ∈ R
N , t ∈ [0, T], there exist constants δ > 0 and A > Ā > 0 such that

V(t, x) ≥
Ā

2
|x|2, |x| ≤ δ

and

V(t, x)− (∇V(t, 0), x) ≤
A

2
|x|2.

(H3) For i = 1, 2, . . . , N, j = 1, 2, . . . , l, there exist constants dij ≥ 0 such that

Iij(x) ≤ dij|x|, x ∈ R
N .

(H4) There exists an integer p > 1 such that

1 − 2ρp2T > 0,
4ω2

Ā − 4D/T
< p2

<

ω2s2
p

2ρTω2s2
p + A + 2ρ/T

and
(

ω2

2p2
− ρTω2 −

ρ

T

)

|x|2 − V(t, x) → +∞, as |x| → ∞,

where ω = 2π
T , ρ = ∑

l
j=1 ∑

N
j=1 dij, D = ∑

l
j=1

(

∑
N
i=1 d2

ij

)
1
2 and sp is the smallest prime factor

of p.
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(H5) ∇V satisfies

∫ T

0
|∇V(t, 0)|2 dt < δ2 min

{

K1(K2 − K3),

(

K1 −
3ω2T

p2

)

(4K2 − K3)

}

,

K1 = T

(

Ā −
ω2

p2

)

− 4D, K2 =
ω2s2

p

2p2

(

1 − 2ρp2T
)

, K3 =
A

2
+

ρ

T
.

(H6) Suppose that q0 is rational. If both x(t) and ∇V(t, x) have minimal period
q0T

2 , then q0

is an integer.

Then the impulsive system (1.1) possesses at least three periodic solutions. Two of them have

minimal period pT and the other one has minimal period
pT
2 .

Remark 1.2. In [11], Luo, Xiao and Xu investigated second order impulsive differential equa-

tions with a non-negative impulse term and obtained the existence of at least one solution

with minimal period pT. Bai and Wang [2] generalized the results of [11] by proving the

existence of at least one solution with prescribed minimal period for second order impulsive

systems allowing negative impulse terms. Here, we also do not have to assume that the im-

pulse term is non-negative. Giving a suitable range of p and
∫ T

0 |∇V(t, 0)|2dt, we find three

solutions with prescribed minimal periods for system (1.1).

2 Proof of the theorem

In the first place, we recall some basic notations. Let p > 1 is an integer, T > 0. We denote the

inner product on R
N by (·, ·). H1

pT(R
N) is a Hilbert space, which defined as

H1
pT = {x : [0, pT] → R

N | x is absolutely continuous, x(0) = x(pT), ẋ ∈ L2(0, pT; R
N)}.

Let ⟨·, ·⟩ be the inner product on H1
pT, i.e.

⟨x, y⟩ =
∫ pT

0
(ẋ, ẏ)dt +

∫ pT

0
(x, y)dt, x, y ∈ H1

pT,

which induces the norm ∥x∥ = ⟨x, x⟩. Additionally, the energy functional corresponds to

system (1.1) is

ϕ(x) =
∫ pT

0

[

1

2
|ẋ|2 − V(t, x)

]

dt +
pl

∑
j=1

N

∑
i=1

∫ xi(tj)

0
Iij(s)ds, x ∈ H1

pT.

It follows that
〈

ϕ′(x), y
〉

=
∫ pT

0
(ẋ, ẏ)dt −

∫ pT

0
(∇V(t, x), y)dt

+
pl

∑
j=1

N

∑
j=1

Iij

(

xi
(

tj

)

)

yi(tj), x, y ∈ H1
pT.

(2.1)

Definition 2.1. A function x is called a weak pT-periodic solution of (1.1) if and only if the

following equation holds

∫ pT

0
(ẋ, ẏ)dt +

pl

∑
j=1

N

∑
j=1

Iij

(

xi
(

tj

)

)

yi(tj) =
∫ pT

0
(∇V(t, x), y)dt, ∀y ∈ H1

pT.
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The critical points of ϕ correspond to periodic solutions of impulsive system (1.1). Indeed,

suppose x is a critical point of ϕ, by (2.1) and the Definition 2.1, x is a weak pT-periodic

solution of (1.1). Moreover, for every y ∈ H1
pT, we have

〈

ϕ′(x), y
〉

=
∫ pT

0
(ẋ, ẏ)dt −

∫ pT

0
(∇V(t, x), y)dt +

pl

∑
j=1

N

∑
j=1

Iij

(

xi(tj)
)

yi
(

tj

)

=−
∫ pT

0
(ẍ, y)dt −

∫ pT

0
(∇V(t, x), y)dt.

(2.2)

It follows from (2.2) that

ẍ(t) +∇V(t, x) = 0, a.e. t ∈ [tj, tj+1].

Then we get x ∈ H2([tj, tj+1], R
N) and

ẍ(t) +∇V(t, x) = 0, a.e. t ∈ [0, pT].

Multiplying the above equation by y ∈ H1
pT and integrating over [0, pT], we obtain

pl

∑
j=1

N

∑
j=1

∆
(

ẋi
(

tj

)

)

yi(tj) =
pl

∑
j=1

N

∑
j=1

Iij

(

xi
(

tj

)

)

yi(tj).

Thus, ∆
(

ẋi
(

tj

))

= Iij

(

xi
(

tj

))

for i = 1, 2, . . . , N, j = 1, 2, . . . , l, and the impulsive conditions

in (1.1) are verified.

For the sake of convenience, let us define a couple of subspaces of H1
pT. Set

X =
{

x ∈ H1
pT | x(t) = −x(−t)

}

, Y =

{

x ∈ H1
pT | x

(

t +
pT

2

)

= −x(t)

}

,

then we can define

X1 = X ∩ Y, X2 = X ∩ Y⊥,

Y1 = X⊥ ∩ Y, Y2 = X⊥ ∩ Y⊥.

Clearly, we have H1
pT = X1 ⊕ X2 ⊕ Y1 ⊕ Y2. In the following, we denote the norm of x on L2

pT

and L∞
pT by ∥x∥L2 and ∥x∥∞ respectively.

Lemma 2.2 ([12]). Suppose that W is a reflexive Banach space, ϕ : W → R is weakly lower

semi-continuous and coercive on W, then ϕ attains its minimum on W.

Lemma 2.3. Under condition (H1), critical points of ϕ on X1 (or X2, Y1, Y2) are also critical

points of ϕ on H1
pT. The minimal period of such a critical point is an integer multiple of T

2 .

Proof. On the one hand, if x is a critical point of ϕ on X, then

⟨ϕ′(x), y⟩ = 0, ∀y ∈ X.
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Let y ∈ X⊥, it can be deduced from (H1) and (2.2) that

⟨ϕ′(x), y⟩ = −
∫

pT
2

− pT
2

(ẍ, y)dt −
∫

pT
2

− pT
2

(∇V(t, x), y)dt

= −
∫

pT
2

0
(ẍ, y)dt −

∫

pT
2

0
(∇V(t, x), y)dt

−
∫

pT
2

0
(ẍ(−t), y(−t))dt −

∫

pT
2

0
(∇V(−t, x(−t)), y(−t))dt

= −
∫

pT
2

0
(ẍ, y)dt −

∫

pT
2

0
(∇V(t, x), y)dt

−
∫

pT
2

0
(−ẍ(t), y(t))dt −

∫

pT
2

0
(−∇V(t, x(t)), y(t))dt

= 0.

(2.3)

Thus, ⟨ϕ′(x), y⟩ = 0, for all y ∈ H1
pT.

On the other hand, providing that x is a critical point of ϕ on X1, set y ∈ X2, we find

〈

ϕ′(x), y
〉

= −
∫

pT
2

− pT
2

(ẍ, y)dt −
∫

pT
2

− pT
2

(∇V(t, x), y)dt

= −
∫

pT
2

0
(ẍ, y)dt −

∫

pT
2

0
(∇V(t, x), y)dt

−
∫

pT
2

0

(

ẍ

(

t −
pT

2

)

, y

(

t −
pT

2

))

dt

−
∫

pT
2

0

(

∇V

(

t −
pT

2
, x

(

t −
pT

2

))

, y

(

t −
pT

2

))

dt

= −
∫

pT
2

0
(ẍ, y)dt −

∫

pT
2

0
(∇V(t, x), y)dt

−
∫

pT
2

0
(−ẍ(t), y(t))dt −

∫

pT
2

0
(∇V(t,−x(t)), y(t))dt

= 0.

It follows that x is a critical point of ϕ on X. From (2.3) we know that x is a critical point of ϕ

on H1
pT.

By a similar discussion, one can prove the cases of X2, Y1, Y2 alike.

If the minimal period of x(t) is
pT
2q , where q is an integer. From (1.1) we have

ẍ

(

t +
pT

2q

)

+∇V

(

t +
pT

2q
, x

(

t +
pT

2q

))

= 0. (2.4)

It follows from (2.4) that ∇V(t, x(t)) has minimal period
pT
2q . Then by (H6), p

q is an integer,

which means that the minimal period of x(t) is an integer multiple of T
2 .

Lemma 2.4 ([15]). Suppose that H(t, x) ∈ C1([0, T]× R
N , R) with H(t, x) → +∞ as |x| → ∞

uniformly in t ∈ [0, T], then there exist a real function γ ∈ L1([0, T], R) and a subadditive

function G : R
N → R, i.e.

G(x + y) ≤ G(x) + G(y), x, y ∈ R
N , (2.5)
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such that

H(t, x) ≥ G(x) + γ(t), x ∈ R
N , (2.6)

G(x) → +∞ as |x| → ∞, (2.7)

0 ≤ G(x) ≤ |x|+ 1, x ∈ R
N . (2.8)

Lemma 2.5. Under condition (H4), ϕ is coercive on X1 (or X2, Y1).

Proof. From Lemma 2.4 and (H4), there exist G(x) and γ(t) ∈ L1([0, T], R) such that

(

ω2

2p2
− ρTω2 −

ρ

T

)

|x|2 − V(t, x) ≥ G(x) + γ(t). (2.9)

To begin with, we claim that
∫ pT

0 G(x)dt is coercive on

X1
1 =

{

r sin
ωt

p
| r ∈ R

N

}

⊂ X1.

Providing that {xn} is a sequence in X1
1 with ∥xn∥ → ∞ as n → ∞, we can set xn(t) = rn sin ωt

p ,

where rn ∈ R
N and |rn| → +∞ as n → ∞. By (2.7), for every L > 0, there exists M > 0 such

that

G(x) ≥ L, |x| ≥ M. (2.10)

Since |rn| → +∞ as n → ∞, there exists N0 > 0 such that |rn| > 2M for n > N0. Furthermore,

it is clear that

|xn(t)| > M, ∀t ∈

[

pT

12
,

5pT

12

]

∪

[

7pT

12
,

11pT

12

]

, n > N0. (2.11)

From (2.10) and (2.11) we have

∫ pT

0
G(xn)dt >

2pLT

3
, n > N0.

The coercivity of
∫ pT

0 G(x)dt follows from the arbitrariness of L and {xn}.

Let x ∈ X1 and x = x1 + x2, where x1 ∈ X1
1 , x2 ∈ (X1

1)
⊥ ∩ X1. By the Parseval equality,

∥ẋ1∥
2
L2 =

ω2

p2
∥x1∥

2
L2 , ∥ẋ2∥

2
L2 ≥

9ω2

p2
∥x2∥

2
L2 , ∥ẋ2∥

2
L2 ≥

9ω2

9ω2 + p2
∥x2∥

2. (2.12)

Additionally, (2.5) implies that

G(x1) = G(x − x2) ≤ G(x) + G(−x2). (2.13)

It can be deduced from (H3) that

∣

∣

∣

∣

∣

pl

∑
j=1

N

∑
i=1

∫ yi(tj)

0
Iij(s)ds

∣

∣

∣

∣

∣

≤
pl

∑
j=1

N

∑
i=1

1

2
dij

∣

∣y
(

tj

)∣

∣

2

≤
pl

∑
j=1

N

∑
i=1

dij

(

∥y∥2
L2

pT
+ pT∥ẏ∥2

L2

)

≤
ρ

T
∥y∥2

L2 + ρp2T∥ẏ∥2
L2 , y ∈ H1

pT.

(2.14)
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To the best of our knowledge, the formula (2.14) was first proved in [2]. For more details,

please refer to (2.9) in [2]. From (H4), (2.9), (2.12), (2.13) and (2.14), we have

ϕ(x) =
1

2

∫ pT

0
|ẋ|2dt −

∫ pT

0
V(t, x)dt +

pl

∑
j=1

N

∑
i=1

∫ xi(tj)

0
Iij(s)ds

≥

(

1

2
− ρp2T

)

∫ pT

0
|ẋ|2dt −

ρ

T

∫ pT

0
|x|2dt −

∫ pT

0
V(t, x)dt

=

(

1

2
− ρp2T

)

∫ pT

0

(

|ẋ1|
2 + |ẋ2|

2 −
ω2

p2
|x1|

2 −
ω2

p2
|x2|

2

)

dt

+
∫ pT

0

[(

ω2

2p2
− ρω2T −

ρ

T

)

|x|2 − V(t, x)

]

dt

≥
8

9

(

1

2
− ρp2T

)

∫ pT

0
|ẋ2|

2 dt +
∫ pT

0
[G (x) + γ(t)]dt

≥
8

9

(

1

2
− ρp2T

)

∥ẋ2∥
2
L2 +

∫ pT

0
G (x1)dt −

∫ pT

0
G (−x2)dt +

∫ pT

0
γ(t)dt

≥
8

9

(

1

2
− ρp2T

)

∥ẋ2∥
2
L2
+
∫ pT

0
G (x1)dt − pT(1 + ∥x2∥∞ + ∥γ∥∞)

≥
8ω2

9ω2 + p2

(

1

2
− ρp2T

)

∥x2∥
2 +

∫ pT

0
G (x1)dt − C1∥x2∥ − C2,

(2.15)

where C1 and C2 are positive constants. With
∫ pT

0 G(x1)dt being coercive on X1 and

∥x∥ → ∞ if and only if (∥x1∥
2 + ∥x2∥

2)
1
2 → ∞,

it follows from (2.15) that ϕ(x) is coercive on X1.

Through replacing X1
1 with

X1
2 =

{

b sin
2ωt

p
| b ∈ R

N

}

,

Y1
1 =

{

c cos
ωt

p
| c ∈ R

N

}

,

repeating the above arguments with a small modification, one can prove the coercivity of ϕ

on X2 and Y1.

Proof of Theorem 1.1. According to Lemma 2.2, Lemma 2.3 and Lemma 2.5, there exists x∗1 ∈ X1

such that

⟨ϕ′(x∗1), y⟩ = 0, ∀y ∈ H1
pT. (2.16)

In what follows, we show that the minimal period of x∗1 is pT by contradiction. Suppose

that x∗1 has minimal period
pT
q1

, where q1 > 1 is an integer. From Lemma 2.3, the minimal

period of x∗1 is multiple of T
2 , which means that q1 = 2 or q1 ≥ sp.

If q1 = 2, by Fourier expansion,

x∗1 =
+∞

∑
k=1

a∗k sin
2kωt

p
, a∗k ∈ R

N .



8 H. Ou

However, for every x ∈ X1, we have

x =
+∞

∑
k=1

ak sin
(2k − 1)ωt

p
, ak ∈ R

N ,

which implies x∗1 = 0. It contradicts that x∗1 has minimal period
pT
2 . So we get q1 ≥ sp and

x∗1 =
+∞

∑
k=1

a∗k sin
kq1ωt

p
, a∗k ∈ R

N . (2.17)

It can be deduced from Parseval’s equality and (2.17) that

∥ẋ∗1∥L2 ≥
q1ω

p
∥x∗1∥L2 . (2.18)

Now, from (H2), (H4), (2.14) and (2.18), we have

ϕ(x∗1) =
1

2

∫ pT

0
|ẋ∗1 |

2dt −
∫ pT

0
V(t, x∗1)dt −

pl

∑
j=1

N

∑
i=1

∫ (x∗1)
i(tj)

0
Iij(s)ds

≥
1

2
∥ẋ∗1∥

2
L2 −

∫ pT

0
[V(t, x∗1)− (∇V(t, 0), x∗1)]dt −

∫ pT

0
(∇V(t, 0), x∗1)dt

−
ρ

T
∥x∗1∥

2
L2 − ρp2T∥ẋ∗1∥

2
L2

≥

(

1

2
− ρp2T

)

∥ẋ∗1∥
2
L2 −

(

A

2
+

ρ

T

)

∥x∗1∥
2
L2 − ∥∇V(t, 0)∥L2 ∥x∗1∥L2

≥

(

ω2q2
1

2p2
− ρTω2q2

1 −
A

2
−

ρ

T

)

∥x∗1∥
2
L2 − ∥∇V(t, 0)∥L2 ∥x∗1∥L2 .

(2.19)

It follows from (H4) and q1 ≥ sp that

ω2q2
1

2p2
− ρTω2q2

1 −
A

2
−

ρ

T
> 0,

which combined with (2.19) yields to

ϕ(x∗1) ≥ −
1

4

(

ω2q2
1

2p2
− ρTω2q2

1 −
A

2
−

ρ

T

)−1

∥∇V(t, 0)∥2
L2 . (2.20)

Choosing x̄1(t) = (δ sin ωt
p , 0, . . . , 0) ∈ X1, where δ defined in (H2), the minimal period of

x̄1(t) is pT. According to mean value theorem, the Cauchy–Schwarz inequality and (H3), we

have

pl

∑
j=1

N

∑
i=1

∫ (x̄1)
i(tj)

0
Iij(s)ds ≤

pl

∑
j=1

N

∑
i=1

dij|θ|

∣

∣

∣

∣

δ sin
ωtj

p

∣

∣

∣

∣

≤ pδ2
l

∑
j=1

(

N

∑
i=1

d2
ij

)
1
2

, (2.21)
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where θ ∈
(

0, δ sin
ωtj

p

)

. In view of (2.21) and (H2), we get

ϕ(x̄1) =
1

2

∫ pT

0
| ˙̄x1|

2dt −
∫ pT

0
V(t, x̄1)dt +

pl

∑
j=1

N

∑
i=1

∫ (x̄1)
i(tj)

0
Iij(s)ds

≤
1

2

∫ pT

0
δ2 ω2

p2
cos2 ωt

p
dt −

∫ pT

0
V

(

t, δ sin
ωt

p

)

dt + pδ2
l

∑
j=1

(

N

∑
i=1

d2
ij

)
1
2

≤
1

4
δ2 ω2

p
T −

∫ pT

0

Ā

2
δ2 sin2 ωt

p
dt + pδ2

l

∑
j=1

(

N

∑
i=1

d2
ij

)
1
2

=
1

4
δ2 ω2

p
T −

Ā

4
δ2 pT + pδ2

l

∑
j=1

(

N

∑
j=1

d2
ij

)
1
2

= −
1

4



δ2 pT

(

Ā −
ω2

p2

)

− 4pδ2
l

∑
j=1

(

N

∑
i=1

dij
2

)
1
2



 .

(2.22)

By (H4), (H5), (2.16), (2.20) and (2.22), we find

inf
x∈X1

ϕ(x) = ϕ(x∗1) > ϕ(x̄1).

That is a contradiction. Hence, there exists a critical point x∗1 ∈ X1 of ϕ with minimal period

pT.

Similarly, we can find x∗2 ∈ X2 such that ⟨ϕ′(x∗2), y⟩ = 0, for every y ∈ H1
pT. If the minimal

period of x∗2 is not equal to
pT
2 , then there exists q2 > 1 such that x∗2 has minimal period

pT
2q2

.

Lemma 2.3 implies that q2 ≥ sp. Additionally, we have

x∗2 =
+∞

∑
k=1

b∗k sin
2kq2ωt

p
, b∗k ∈ R

N

and

∥ẋ∗2∥L2 ≥
2q2ω

p
∥x∗2∥L2 . (2.23)

It follows from (H2), (H4), (2.14) and (2.23) that

ϕ (x∗2) =
1

2

∫ pT

0
|ẋ∗2 |

2dt −
∫ pT

0
V(t, x∗2)dt −

pl

∑
j=1

N

∑
i=1

∫ (x∗2)
i(tj)

0
Iij(s)ds

≥ −
1

4

(

2ω2q2

p2
− 4ρTω2q2 −

A

2
−

ρ

T

)−1

∥∇V (t, 0) ∥2
L2 .

(2.24)

Let x̄2(t) =
(

δ sin 2ωt
p , 0, . . . , 0

)

∈ X2, then x̄2(t) has minimal period
pT
2 . After a computation

like (2.22), we get

ϕ(x̄2) ≤ −
1

4



δ2 pT

(

Ā −
4ω2

p2

)

− 4pδ2
l

∑
j=1

(

N

∑
i=1

dij
2

)
1
2



 . (2.25)

Taking (H4), (H5), (2.24) and (2.25) into consideration, we obtain

inf
x∈X2

ϕ(x) = ϕ(x∗2) > ϕ(x̄2).
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This contradiction leads to the fact that the minimal period of x∗2 is
pT
2 .

Using a similar argument, a critical points y∗1 of ϕ with minimal period pT can be found

on Y1. It is clear that x∗1 , x∗2 and y∗1 are nonzero, which combines with H1
pT = X1 ⊕ X2 ⊕Y1 ⊕Y2

to give that three points are different.

3 Example

To show how our theorem applies in practice, we give the following example.

Example 3.1. Consider the impulsive system (1.1) with T = 1, N = l = p = 3,

Iij(s) =
|s|

3240
, i, j ∈ {1, 2, 3},

and

V(t, x) =



























7−cos 4πt
18 ω2|x|2, |x| ≤ 1,

(

68π2−1
162 − 7−cos 4πt

18 ω2 − 1
2

)

|x|2

+
(

7−cos 4πt
9 ω2 − 68π2−1

162 + 1
2

)

(2|x| − 1), 1 < |x| ≤ 2,

68π2−1
324 |x|2 − ln |x|2 + 7−cos 4πt

9 ω2 − 68π2−1
162 + 2 ln 2 − 1

2 , |x| > 2.

We can take

ω = 2π, ρ =
1

4p2s2
p

=
1

324
,

then
(

1 − 2ρp2T
) ω2

2p2
−

ρ

T
=

68π2 − 1

324
.

It is easy to verify that V(t, x) satisfies (H1). Let

dij =
ρ

9
, i, j ∈ {1, 2, 3},

and

A =
8

9
ω2, Ā =

2

3
ω2, δ = 1,

then D = ρ
3 . One can easily check that (H3) is true and V(t, x) satisfies (H2), (H4) and (H5).

By Theorem 1.1, Example 3.1 possesses at least three periodic solutions. Two of them have

minimal period 3 and the other one has minimal period 1.5.
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1 Introduction

We consider the following one-dimensional nonlocal elliptic equation















−(b∥u′∥2
2 + 1)u′′(x) = λ(u(x)p + u(x) sin2 u(x)), x ∈ I := (0, 1),

u(x) > 0, x ∈ I,

u(0) = u(1) = 0,

(1.1)

where p > 1, b ≥ 0 are given constants, λ > 0 is a bifurcation parameter and ∥ · ∥2 denotes the

usual L2-norm.

The purpose of this paper is to establish the asymptotic formulas for bifurcation curves

λ = λ(α) of (1.1) as α → ∞ to understand well how the oscillatory term gives effect to the

bifurcation curves. Here α := ∥uλ∥∞ and uλ is a solution of (1.1) associated with λ > 0. When

we consider the case where b = 0, we use the following notation to avoid the confusion:















−v′′(x) = µ(v(x)p + v(x) sin2 v(x)), x ∈ I,

v(x) > 0, x ∈ I,

v(0) = v(1) = 0,

(1.2)

BEmail: tshibata@hiroshima-u.ac.jp



2 T. Shibata

where µ > 0 is the bifurcation parameter. A solution pair of (1.2) is usually represented

as (µ, vµ) ∈ R+ × C2( Ī), where vµ is a solution of (1.2) associated with µ. In this paper,

we adopt the explicit expression of the solution pair of (1.2), which was introduced in [12,

Theorem 2.1]. That is, the solution pair (µ, vµ) ∈ R+ × C2( Ī) of (1.2) is parametrized by using

a new parameter α > 0. More precisely, let α > 0 be an arbitrary given constant. Then by using

the time map argument, we are able to obtain the unique solution pair (µ, vµ) ∈ R+ × C2( Ī)

of (1.2) satisfying α = ∥vµ∥∞. Besides, µ is parametrized by α, namely, µ = µ(α) and it is

a continuous function of α. The important point is that the solution pair (µ, vµ) satisfying

α = ∥vµ∥∞ is parametrized by the supremum norm α = ∥vµ∥∞ such as (µ(α), vµ(α)). For

simplicity, we write vα := vµ(α) in what follows.

Equation (1.1) is the nonlocal elliptic problem of Kirchhoff type motivated by the problem

in [7]:






−A

(

∫ 1

0
(u′(x))qdx

)

u′′(x) = λ f (u(x)), x ∈ I,

u(0) = u′(1) = 0,

(1.3)

where A = A(y), which is called Kirchhoff function (cf. [10, 15]), is a continuous function

of y ≥ 0. Nonlocal problems have been investigated by many authors and there are quite

many manuscripts which treated the problems with the backgrounds in physics, biology,

engineering and so on. We refer to [1–4, 6–9, 11, 13, 14], and the references therein. One of

the main interests there are existence, nonexistence and the number of positive and nodal

solutions. However, there seems to be a few works which considered (1.3) from a view-point

of bifurcation problems. We refer to [16–21] and the references therein. As far as the author

knows, there are no works which treat the nonlinear oscillatory eigenvalue problem such

as (1.2). Therefore, there seems no works which treat nonlocal bifurcation problems with

oscillatory nonlinear term, so our results here seem to be novel. Our approach are mainly the

time-map method and the complicated calculation of definite integrals.

The relationship between λ(α) and µ(α) is as follows. Let α > 0 be an arbitrary given

constant. Assume that there exists a solution pair (λ(α), uα) ∈ R × C2( Ī) with ∥uα∥∞ = α.

Then we have

− u′′
α(x) =

λ(α)

b∥u′
α∥2

2 + 1
(uα(x)p + uα(x) sin2 uα(x)). (1.4)

We note that ∥uα∥∞ = α. Then we find that uα = vα and λ(α)
b∥u′

α∥2
2+1

= µ(α), since the solution

pair (µ(α), vα) ∈ R+ × C2( Ī) of (1.2) with ∥vα∥∞ = α is unique (cf. [12]). This implies

λ(α) = (b∥v′α∥2 + 1)µ(α). (1.5)

Therefore, to obtain λ(α), we need to obtain both µ(α) and ∥v′α∥2.

Now we state our results. We first consider the case p > 2.

Theorem 1.1. Consider (1.2). Let p > 2. Then as α → ∞,

µ(α) = 2(p + 1)α1−p

{

C0,p +

(

C1 +
1

2
C11

)

α1−p (1.6)

+
1

2
(C12 + C21)α

−p +
1

2
C22α−(p+1) + (C2 + C3)α

2(1−p) + o(α2(1−p))

}2

,

where
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C0,p :=
∫ 1

0

1√
1 − sp+1

ds, (1.7)

C1 := − p + 1

8

∫ 1

0

1 − s2

(1 − sp+1)3/2
ds,

C11 :=
2

p + 1

∫ π/2

0
cos(2α sin2/(p+1 θ) sin(3−p)/(p+1) dθ,

C12 :=
p − 1

2(p + 1)

∫ π/2

0
(sin 2α − sin(2α sin2/(p+1) θ)) sin(1−p)/(p+1) θdθ

+
p + 1

4

∫ 1

0

1 − s

(1 − sp+1)3/2
sin(2αs)ds,

C21 := − 1

p + 1

∫ π/2

0
sin(2α sin2/(p+1) θ) sin(3−p)/(p+1) θdθ

C22 :=
4(p − 1)

p + 1

∫ π/2

0
(cos 2α − cos(2α sin2/(p+1) θ)) sin(1−p)/(p+1) θdθ,

C2 :=
3(p + 1)2

128

∫ 1

0

(1 − s2)2

(1 − sp+1)5/2
ds,

C3 := − 3

32
(p + 1)2

∫ 1

0

(

∫ s

0

1 − y2

(1 − yp+1)5/2
dy

)

cos(2αs)ds.

Theorem 1.2. Consider (1.2). Let p > 2 and α ≫ 1. Then the following asymptotic formula for ∥v′α∥2
2

holds.

∥v′α∥2
2 = 4α2{G0 + G1α1−p + G2α−p + G3α−(p+1) + G4α2(1−p) + o(α2(1−p))},

where

G0 := C0,pE0,p,

G1 := C0,pE1 +

(

C1 +
1

2
C11

)

E0,p,

G2 :=
1

2
(C12 + C12) E0,p + C0,pE2,

G3 :=
1

2
C22E0,p + C0,pE3,

G4 := (C2 + C3)E0,p + C0,pE4 +

(

C1 +
1

2
C11

)

E1,

E0,p :=
∫ 1

0

√

1 − sp+1ds,

E1 :=
p + 1

8

∫ 1

0

1 − s4

√
1 − sp+1

ds,

E2 := −1

4

∫ π/2

0
{sin 2α − sin2/(p+1) θ sin(2α sin2/(p+1) θ)} sin(1−p)/(p+1) θdθ,

E3 := −1

8

∫ 1

0
{cos 2α − cos(2α sin2/(p+1) θ)} sin(1−p)/(p+1) dθ,

E4 := − (p + 1)2

128

∫ 1

0

(1 − s2)2

(1 − sp+1)3/2
ds,

E5 :=
2

p + 1

∫ 1

0

1 − sp+1

√
1 − s4

ds.
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Remark 1.3. We should note that the order of the lower terms of µ(α) in (1.6) changes accord-

ing to p. Indeed, if we expand the bracket of the r.h.s. of (1.6), then the terms with

C2
0,p, α1−p, αp, α−(p+1), α2(1−p), α1−2p

appear. Then for α ≫ 1, clearly, the first term is C2
0,p and the second is α1−p. Besides, we have



































α2(1−p) ≫ α−p ≫ α1−2p ≫ α−(p+1) (1 < p < 2),

α−p ∼ α2(1−p) ≫ α−(p+1) ∼ α1−2p (p = 2),

α−p ≫ α2(1−p) ≫ α−(p+1) ≫ α1−2p (2 < p < 3),

α−p ≫ α−(p+1) ∼ α2(1−p) ≫ α1−2p (p = 3),

α−p ≫ α−(p+1) ≫ α2(1−p) ≫ α1−2p (p > 3).

(1.8)

Therefore, if p > 2, then the third term in the bracket of the r.h.s. of (1.6) is α−p. However,

if 1 < p < 2, then the third term is α2(1−p). Moreover, if p is very close to 1, then 1 − p + 0.

Therefore, we have the sequence of the lower term, which are greater than α−p in (1.6). In

principle, it is possible to calculate them precisely. However, since the calculation is long and

tedious, we do not carry out here.

Theorem 1.4. Consider (1.2).

(i) Let 1 < p < 2. Then as α → ∞,

µ(α) = 2(p + 1)α1−p

{

C0,p +

(

C1 +
1

2
C11

)

α1−p + (C2 + C3)α
2(1−p) + o(α2(1−p))

}2

.

(ii) Let p = 2. Then as α → ∞,

µ(α) = 6α−1

{

C0,p +

(

C1 +
1

2
C11

)

α−1 +

(

1

2
C12 +

1

2
C21 + C2 + C3

)

α−2 + o(α2(1−p))

}2

.

Theorem 1.5. Consider (1.2).

(i) Let 1 < p < 2. Then as α → ∞,

∥v′α∥2
2 = 4α2{G0 + G1α1−p + G4α2(1−p) + G2α−p + o(α2(1−p))}.

(ii) Let p = 2. Then as α → ∞,

∥v′α∥2
2 = 4α2{G0 + G1α−1 + (G2 + G4)α

−2 + o(α−2)}.

Theorems 1.4 and 1.5 are obtained directly from Theorems 1.1 and 1.2. So we omit the

proofs.

We now consider (1.1).

Theorem 1.6. Consider (1.1) with b > 0.

(i) Let p > 2 and α ≫ 1. Then the following asymptotic formula for λ(α) holds.

λ(α) = 2(p + 1)α1−p

{

C0,p +

(

C1 +
1

2
C11

)

α1−p

+
1

2
(C12 + C21)α

−p +
1

2
C22α−(p+1) + C2α2(1−p) + o(α2(1−p))

}2

×
{

4bα2{G0 + G1α1−p + G2α−p + G3α−(p+1) + G4α2(1−p) + o(α2(1−p))}+ 1
}

.
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(ii) Let p = 2. Then as α → ∞,

λ(α) = 6α−1

{

C0,p +

(

C1 +
1

2
C11

)

α−1 +

(

1

2
C12 +

1

2
C21 + C2 + C3

)

α−2 + o(α2(1−p))

}2

×
{

4bα2{G0 + G1α−1 + (G2 + G4)α
−2 + o(α−2)}+ 1

}

.

(iii) Let 1 < p < 2 Then as α → ∞,

λ(α) = 2(p + 1)α1−p

{

C0,p +

(

C1 +
1

2
C11

)

α1−p + C2α2(1−p) + o(α2(1−p))

}2

×
{

4bα2{G0 + G1α1−p + G4α2(1−p) + o(α2(1−p))}+ 1
}

.

We see from Theorem 1.6 that, roughly speaking, the asymptotic behaviors of λ(α) as

α → ∞ are:

λ(α) ∼ α3−p.

We obtain Theorem 1.6 immediately by (1.5), Theorems 1.1, 1.2, 1.4 and 1.5. So we omit

the proof.

Now we establish the asymptotic formulas for µ(α) as α → 0 to understand the entire

structure of µ(α). We put

H2 := − 2

p + 1

∫ 1

0

1 − sp+1

(1 − s4)3/2
ds,

Hn := −22n−2(−1)n

{

1

(2n − 1)!

∫ 1

0

1 − s2n−1

(1 − s4)3/2
ds − 1

(2n)!

∫ 1

0

1 − s2n

(1 − s4)3/2
ds

}

for n ≥ 3. Furthermore, let

L1 := − p + 1

8

∫ 1

0

1 − s4

(1 − sp+1)3/2
ds, (1.9)

L2 := −1

2

∫ 1

0

1√
1 − sp+1

K(s)ds, (1.10)

K(s) := −23(p + 1)

{

1

5!

1 − s5

1 − sp+1
− 1

6!

1 − s6

1 − sp+1
+ O(α7−p)

}

. (1.11)

Theorem 1.7. Consider (1.2).

(i) Let 1 < p < 3. Then as α → 0,

µ(α) = 2(p + 1)α1−p
{

C0,p + L1α3−p + L2α5−p + O(α7−p)
}2

. (1.12)

(ii) Let p = 3. Then as α → 0,

µ(α) = 4α−2

{

C0,3 +
1

2
H3α2 + O(α4)

}2

. (1.13)

(iii) Let 3 < p ≤ 5. Then as α → 0,

µ(α) = 8α−2
{

C0,3 + H2αp−3 + H3α2 + O(α4)
}2

. (1.14)
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(iv) Assume that p > 5. Then as α → 0,

µ(α) = 8α−2
{

C0,3 + H3α2 + o(α2)
}2

. (1.15)

Finally, we establish the asymptotic formulas for λ(α) as α → 0.

Theorem 1.8. Consider (1.1).

(i) Let 1 < p < 3. Then as α → 0,

λ(α) = 2(p + 1)α1−p
{

C0,p + L1α3−p + L2α5−p + O(α7−p)
}2

×
{

4bα2
{

E0,pC0,p + (E0,pL1 + C0,pE1)α
3−p + o(α3−p)

}

+ 1
}

.

(ii) Let p = 3. Then as α → 0,

λ(α) = 4α−2(1 + 4bE0.3C0,3α2 + o(α2))

{

C0,3 +
1

2
H3α2 + O(α4)

}2

.

(iii) Let 3 < p ≤ 5. Then as α → 0,

λ(α) = 8α−2
{

C0,3 + H2αp−3 + H3α2 + O(α4)
}2

×
[

4bα2
{

C0,3 + H2αp−3 + H3α2 + O(α4)
}

{

E0,3 + E5αp−3(1 + o(1))
}

+ 1
]

.

(iv) Let p > 5. Then as α → 0,

λ(α) = 8α−2
{

C0,3 + H3α2 + o(α2)
}2

×
[

4bα2
{

C0,3 + H3α2 + o(α2)
} {

E0,3 + E5αp−3(1 + o(1))
}

+ 1
]

.

By Theorem 1.8, we see that as α → 0,

λ(α) ∼
{

α1−p (1 < p ≤ 3),

α−2 (p > 3).

By Theorems 1.1, 1.4, 1.6 and 1.7, we obtain the qualitative shapes of µ(α) and λ(α).

α

µ

o

Figure 1.1: The graph of µ(α)

α

λ

o

Figure 1.2: The graph of λ(α) (1 < p < 3)
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α

λ

o

Figure 1.3: The graph of λ(α) (p = 3)

α

λ

o

Figure 1.4: The graph of λ(α) (p > 3)

2 Proofs of Theorems 1.1 and 1.2

In this section, let p > 2 and we consider (1.2). In what follows, C denotes various positive

constants independent of α ≫ 1. By [5], we know that if vα is a solution of (1.2), then vα

satisfies

vα(x) = vα(1 − x), 0 ≤ x ≤ 1

2
, (2.1)

α := ∥vα∥∞ = vα

(

1

2

)

, (2.2)

v′α(x) > 0, 0 ≤ x <
1

2
. (2.3)

We put

f (θ) := θp + θ sin2 θ, (2.4)

F(θ) :=
∫ θ

0
f (y)dy =

1

p + 1
θp+1 +

1

4
θ2 − 1

4
θ sin 2θ − 1

8
cos 2θ +

1

8
. (2.5)

Let α > 0 be an arbitrary given constant. We write µ = µ(α) and vα := vµ(α) in what follows.

By (1.2), for x ∈ Ī, we have

{v′′α(x) + µ f (vα(x)}v′α(x) = 0.

By this and (2.2), for x ∈ Ī, we have

1

2
v′α(x)2 + µF(vα(x)) = constant = µF

(

vα

(

1

2

))

= µF(α).

By this and (2.3), for 0 ≤ x ≤ 1/2, we have

v′α(x) =
√

2µ(F(α)− F(vα(x))) (2.6)

=

√

2µ

p + 1

√

(αp+1 − vα(x)p+1) +
p + 1

4
(α2 − vα(x)2)− Aα(vα(x))− Bα(vα(x)),

where

Aα(vα(x)) :=
p + 1

4
(α sin 2α − vα(x) sin(2vα(x))), (2.7)

Bα(vα(x)) :=
p + 1

8
(cos 2α − cos(2vα(x))). (2.8)
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Note that Aα(vα(x)) ≪ α2, Bα(vα(x)) ≪ α2. By this and putting vα(x) = αs, we have

1

2
=

∫ 1/2

0
1dx

=

√

p + 1

2µ

∫ 1/2

0

v′α(x)dx
√

(αp+1 − vα(x)p) + p+1
4 (α2 − vα(x)2)− Aα(vα(x))− Bα(vα(x))

=

√

p + 1

2µ
α(1−p)/2

∫ 1

0

ds
√

(1 − sp+1) + p+1
4 α1−p(1 − s2)− 1

αp+1 Aα(αs)− 1
αp+1 Bα(αs)

=

√

p + 1

2µ
α(1−p)/2

∫ 1

0

1√
1 − sp+1

ds
√

1 + p+1
4 α1−p 1−s2

1−sp+1 − 1
αp+1

Aα(αs)
1−sp+1 − 1

αp+1

Bα(αs)
1−sp+1

.

This along with Taylor expansion implies that

√
µ =

√

2(p + 1)α(1−p)/2 (2.9)

×
∫ 1

0

1√
1 − sp+1

{

1 − p + 1

8
α1−p 1 − s2

1 − sp+1
+

1

2

1

αp+1

Aα(αs)

1 − sp+1
+

1

2

1

αp+1

Bα(αs)

1 − sp+1

+
3

8

(

p + 1

4
α1−p 1 − s2

1 − sp+1

)2

− 3

16
(p + 1)α−2p 1 − s2

(1 − sp+1)2
Aα(αs) + o(α2(1−p))

}

ds

=
√

2(p + 1)α(1−p)/2
[

C0,p + C1α1−p + I + II + C2α2(1−p) + III + o(α2(1−p))
]

,

where

I =
1

2
α−(p+1) I1 :=

1

2
α−(p+1)

∫ 1

0

Aα(αs)

(1 − sp+1)3/2
ds, (2.10)

II =
1

2
α−(p+1)II1 :=

1

2
α−(p+1)

∫ 1

0

Bα(αs)

(1 − sp+1)3/2
ds, (2.11)

III = − 3

16
(p + 1)α−2p

∫ 1

0

1 − s2

(1 − sp+1)5/2
Aα(αs)ds. (2.12)

Lemma 2.1. Let α ≫ 1. Then

I1 =
∫ 1

0

Aα(αs)

(1 − sp+1)3/2
ds = C11α2 + C12α, (2.13)

II1 =
∫ 1

0

Bα(αs)

(1 − sp+1)3/2
ds = C21α + C22. (2.14)

Proof. We first note that the definite integrals C11, C12, C21, C22 exist, since we have

−1 < (1 − p)/(p + 1) < (3 − p)/(p + 1). We first prove (2.13). We put s := sin2/(p+1) θ.
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Then by integration by parts, we have

I1 =
p + 1

4
α

∫ 1

0

1√
1 − sp+1

sin 2α − sin(2αs)

1 − sp+1
ds (2.15)

+
p + 1

4
α

∫ 1

0

(1 − s)

(1 − sp+1)3/2
sin(2αs)ds

=
1

2
α

∫ π/2

0

1

cos2 θ

[{

sin 2α − sin(2α sin2/(p+1) θ)
}

sin(1−p)/(p+1) θ
]

dθ

+
p + 1

4
α

∫ 1

0

(1 − s)

(1 − sp+1)3/2
sin(2αs)ds

=
1

2
α

∫ π/2

0
(tan θ)′

[{

sin 2α − sin(2α sin2/(p+1) θ)
}

sin(1−p)/(p+1) θ
]

dθ

+
p + 1

4
α

∫ 1

0

(1 − s)

(1 − sp+1)3/2
sin(2αs)ds

=
1

2
α
[

tan θ
[{

sin 2α − sin(2α sin2/(p+1) θ
}

sin(1−p)/(p+1) θ
]]π/2

0
(∗)

− 1

2
α

∫ π/2

0

sin θ

cos θ

{

− 4

p + 1
α cos(2α sin2/(p+1 θ) sin(2−2p)/(p+1) θ cos θ

− p − 1

p + 1
(sin 2α − sin(2α sin2/(p+1) θ)) sin−2p/(p+1) θ cos θ

}

dθ

+
p + 1

4
α

∫ 1

0

(1 − s)

(1 − sp+1)3/2
sin(2αs)ds

=
2

p + 1
α2

∫ π/2

0
cos(2α sin2/(p+1 θ) sin(3−p)/(p+1) dθ

+
p − 1

2(p + 1)
α

∫ π/2

0
(sin 2α − sin(2α sin2/(p+1) θ)) sin(1−p)/(p+1) θdθ

+
p + 1

4
α

∫ 1

0

(1 − s)

(1 − sp+1)3/2
sin(2αs)ds

=: C11α2 + C12α.

We remark that by l’Hôpital’s rule and direct calculation, we easily obtain that (∗) in (2.15)

and (∗∗) in (2.16) below are equal to 0. Next, we put s := sin2/(p+1) θ. Then by integration by

parts, we have

II1 =
1

4

∫ π/2

0

1

cos2 θ

{

cos 2α − cos(2α sin2/(p+1) θ)
}

sin(1−p)/(p+1) θdθ (2.16)

=
1

4

∫ π/2

0
(tan θ)′

{

cos 2α − cos(2α sin2/(p+1) θ)
}

sin(1−p)/(p+1) θdθ

=
1

4

[

tan θ
{

cos 2α − cos(2α sin2/(p+1) θ)
}

sin(1−p)/(p+1) θ
]π/2

0
(∗∗)

− 1

p + 1
α

∫ π/2

0
sin(2α sin2/(p+1) θ) sin(3−p)/(p+1) θdθ

+
4(p − 1)

p + 1

∫ π/2

0
(cos 2α − cos(2α sin2/(p+1) θ)) sin(1−p)/(p+1) θdθ

=: C21α + C22.

Thus the proof is complete.
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Lemma 2.2. Let α ≫ 1. Then

III = C3α2(1−p) + o(α2(1−p)). (2.17)

Proof. by (2.7) and (2.12), we have

III = − 3

64
(p + 1)2α−2p

∫ 1

0

1 − s2

(1 − sp+1)5/2
{α sin 2α − αs sin(2αs)} ds (2.18)

= − 3

64
(p + 1)2α−2p+1

∫ 1

0

1 − s2

(1 − sp+1)5/2
{sin 2α − sin(2αs)} ds

− 3

64
(p + 1)2α−2p+1

∫ 1

0

(1 − s2)(1 − s)

(1 − sp+1)5/2
sin(2αs)ds.

=: − 3

64
(p + 1)2α−2p+1III1 + O(α−2p+1).

We show that III1 ∼ α. We note that (1 − y2)/(1 − yp+1)5/2 ≤ (1 − y2)−3/2 for 0 ≤ y ≤ 1. By

this and integration by parts, we have

III1 = lim
ϵ→0

∫ 1−ϵ

0

d

ds

(

∫ s

0

1 − y2

(1 − yp+1)5/2
dy

)

{sin 2α − sin(2αs)} ds

= lim
ϵ→0

[(

∫ s

0

1 − y2

(1 − yp+1)5/2
dy

)

{sin 2α − sin(2αs)}
]1−ϵ

0

+ 2α lim
ϵ→0

∫ 1−ϵ

0

(

∫ s

0

1 − y2

(1 − yp+1)5/2
dy

)

cos(2αs)ds

= 2α(1 + o(1))
∫ 1

0

(

∫ s

0

1 − y2

(1 − yp+1)5/2
dy

)

cos(2αs)ds.

By this and (2.18), we have (2.17). Thus the proof is complete.

Proof of Theorem 1.1. By (2.9) and Lemma 2.1, for α ≫ 1, we obtain

√
µ =

√

2(p + 1)α(1−p)/2

{

C0,p + (C1 +
1

2
C11)α

1−p (2.19)

+
1

2
(C12 + C21)α

−p +
1

2
C22α−(p+1) + (C2 + C3)α

2(1−p) + o(α2(1−p))

}

.

By this, we obtain Theorem 1.1. Thus the proof is complete.

We next prove Theorem 1.2.

Lemma 2.3. Let vα be the solution of (1.2) associated with µ > 0 such that ∥vα∥∞ = α > 0. Then for

α ≫ 1

∥v′α∥2
2 = 4α2{G0 + G1α1−p + G2α−p + G3α−(p+1) + G4α2(1−p) + o(α2(1−p))}. (2.20)
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Proof. By (2.6), putting vα(x) = αs and Taylor expansion, we obtain

∥v′α∥2
2 = 2

∫ 1/2

0
v′α(x)v′α(x)dx (2.21)

= 2

√

2µ

p + 1

×
∫ 1/2

0

√

(αp+1 − vα(x)p) +
p + 1

4
(α2 − vα(x)2)− Aα(vα(x))− Bα(vα(x))v′α(x)dx

= 2

√

2µ

p + 1
α(p+3)/2

∫ 1

0

√

1 − sp+1

×
√

1 +
p + 1

4
α1−p 1 − s2

1 − sp+1
− 1

αp+1

Aα(αs)

1 − sp+1
− 1

αp+1

Bα(αs)

1 − sp+1
ds

= 2

√

2µ

p + 1
α(p+3)/2

∫ 1

0

√

1 − sp+1

{

1 +
p + 1

8
α1−p 1 − s2

1 − sp+1
− 1

2αp+1

Aα(αs)

1 − sp+1

− 1

2αp+1

Bα(αs)

1 − sp+1
− (p + 1)2

128
α2(1−p)

(

1 − s2

1 − sp+1

)2

+
1

64
(p + 1)2α−2p 1 − s2

1 − sp+1
(α sin 2α − αs sin(2αs)) + o(α2(1−p))

}

ds.

By putting s = sin2/(p+1) θ, we have

∫ 1

0

Aα(αs)√
1 − sp+1

ds =
p + 1

4
α

∫ 1

0

sin 2α − s sin(2αs)√
1 − sp+1

ds (2.22)

=
1

2
α

∫ π/2

0
{sin 2α − sin2/(p+1) θ sin(2α sin2/(p+1) θ)} sin(1−p)/(p+1) θdθ,

∫ 1

0

Bα(αs)√
1 − sp+1

ds =
p + 1

8

∫ 1

0

cos 2α − cos(2αs)√
1 − sp+1

ds (2.23)

=
1

4

∫ 1

0
{cos 2α − cos(2α sin2/(p+1) θ)} sin(1−p)/(p+1) dθ.

By (2.21)–(2.23), we have

∥v′α∥2
2 = 2

√

2µ

p + 1
α(p+3)/2

{

E0,p +E1α1−p +E2α−p +E3α−(p+1)+E4α2(1−p)+ o(α2(1−p))
}

. (2.24)

By this, (2.19)–(2.24), we have

∥v′α∥2
2 = 4α2

{

C0,p +

(

C1 +
1

2
C11

)

α1−p +
1

2
(C12 + C21)α

−p

+
1

2
C22α−(p+1) + (C2 + C3)α

2(1−p) + o(α2(1−p))

}

×
{

E0,p + E1α1−p + E2α−p + E3α−(p+1) + E4α2(1−p) + o(α2(1−p))
}

= 4α2{G0 + G1α1−p + G2α−p + G3α−(p+1) + G4α2(1−p) + o(α2(1−p))}.

This implies (2.20). Thus the proof is complete.
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3 Proof of Theorem 1.7

In this section, let 0 < α ≪ 1. We put wα := vα/α. By (2.5) and Taylor expansion, we have

F(α) =
1

p + 1
αp+1 +

1

4
α2 − 1

4
α

{

2α − 1

3!
(2α)3 +

∞

∑
n=3

(−1)n−1

(2n − 1)!
(2α)2n−1

}

− 1

8

{

1 − 1

2!
(2α)2 +

1

4!
(2α)4 +

∞

∑
n=3

(−1)n

(2n)!
(2α)2n

}

+
1

8
,

F(vα) =
1

p + 1
αp+1w

p+1
α +

1

4
α2wα(x)2

− 1

4
αwα

{

2αwα −
1

3!
(2αwα)

3 +
∞

∑
n=3

(−1)n−1

(2n − 1)!
(2αwα)

2n−1

}

− 1

8

{

1 − 1

2!
(2αwα)

2 +
1

4!
(2αwα)

4 +
∞

∑
n=3

(−1)n

(2n)!
(2αwα)

2n

}

+
1

8
.

By the same argument as that to obtain (2.6), for 0 ≤ x ≤ 1, we have

1

2
α2w′

α(x)2 = µ

{

1

p + 1
αp+1(1 − wα(x)p+1) +

1

4
α4(1 − wα(x)4)

+
1

4
α

∞

∑
n=3

(−1)n

(2n − 1)!
22n−1α2n−1(1 − wα(x)2n−1)

− 1

8

∞

∑
n=3

(−1)n

(2n)!
22nα2n(1 − wα(x)2n)

}

.

We put

Hα(wα) :=
1

4

∞

∑
n=3

(−1)n

(2n − 1)!
22n−1α2n(1 − wα(x)2n−1)

=
∞

∑
n=3

(−1)n

(2n − 1)!
22n−3α2n(1 − wα(x)2n−1),

Jα(wα) = − 1

8

∞

∑
n=3

(−1)n

(2n)!
22nα2n(1 − wα(x)2n)

= −
∞

∑
n=3

(−1)n

(2n)!
22n−3α2n(1 − wα(x)2n).

We put

Mα(wα) := Hα(wα) + Jα(wα(x))

=
∞

∑
n=3

(−1)n22n−3

{

1

(2n − 1)!
(1 − wα(x)2n−1)− 1

(2n)!
(1 − wα(x)2n)

}

α2n.

By this and (2.3), for 0 ≤ x ≤ 1/2, we have

w′
α(x) =

√

2µα−1

√

1

p + 1
αp+1(1 − wα(x)p+1) +

1

4
α4(1 − wα(x)4) + Mα(wα). (3.1)
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(i) Let 1 < p < 3. Then by (3.1), we have

w′
α(x) =

√

2µα−2

√

αp+1

p + 1

√

1 − wα(x)p+1

√

1 +
p + 1

4
α3−p 1 − wα(x)4

1 − wα(x)p+1
+ K(wα)α5−p, (3.2)

where

K(wα(x)) := −23(p + 1)

{

1

5!

1 − wα(x)5

1 − wα(x)p+1
− 1

6!

1 − wα(x)6

1 − wα(x)p+1

}

.

By (3.2) and Taylor expansion, we have

√

µ

2(p + 1)
α(p−1)/2 =

∫ 1/2

0

w′
α(x)

√

1 − wα(x)p+1
√

1 + p+1
4 α3−p 1−wα(x)4

1−wα(x)p+1 + K(wα(x))α5−p
dx

=
∫ 1

0

1√
1 − sp+1

{

1 − p + 1

8
α3−p 1 − s4

1 − sp+1
− 1

2
K(s)α5−p + O(α5−p)

}

ds.

This implies from (1.7), (1.9) and (1.10) that

√
µ =

√

2(p + 1)α−(p−1)/2
{

C0,p + L1α3−p + L2α5−p + O(α7−p)
}

. (3.3)

This implies (1.12).

(ii) Let p = 3. Then by (3.1), we have

w′
α(x) =

√

2µα−1

√

1

2
α4(1 − wα(x)4) + Mα(wα(x))

=
√

µα
√

1 − wα(x)4

√

1 + 2α−4
Mα(wα(x))

1 − wα(x)4
.

This along with Taylor expansion implies that

1

2

√
µ = α−1

∫ 1/2

0

w′
α(x)

√

1 − wα(x)4
√

1 + 2α−4 Mα(wα(x))
1−wα(x)4

dx

= α−1
∫ 1

0

1√
1 − s4

{

1 − α−4 Mα(s)

1 − s4
+ O(α4)

}

ds.

By this, we obtain

√
µ = 2α−1

∫ 1

0

1√
1 − s4

{

1 + 8α2

(

1

5!

1 − s5

1 − s4
− 1

6!

1 − s6

1 − s4

)

+ O(α4)

}

ds

= 2α−1

{

C0,3 +
1

2
H3α2 + O(α4)

}

.

This implies (1.13).

(iii) Let 3 < p ≤ 5. Then by (3.1), we have

1

2

√

2µ = 2α

∫ 1/2

0

w′
α(x)

α2
√

1 − wα(x)4
√

1 + 4
p+1 αp−3 1−wα(x)p+1

1−wα(x)4 + Qα(wα(x))
dx,



14 T. Shibata

where

Qα(wα) := 4α−4 Mα(wα)

1 − wα(x)4
.

By this and Taylor expansion, we have

√

µ

2
= 2α−1

∫ 1

0

1√
1 − s4

(3.4)

×
{

1 − 2

p + 1
αp−3 1 − sp+1

1 − s4
+ α2 24

5!

1 − s5

1 − s4
− α2 24

6!

1 − s6

1 − s4
+ O(α4)

}

ds

= 2α−1
{

C0,3 + H2αp−3 + H3α2 + O(α4)
}

.

This implies (1.14).

(iv) Assume that p > 5. Then by (3.4), we have

√

µ

2
= 2α−1

{

C0,3 + H3α2 + o(α2)
}

. (3.5)

This implies (1.15). Thus the proof of Theorem 1.7 is complete.

4 Proof of Theorem 1.8

In this section, we assume that 0 < α ≪ 1. By Taylor expansion, we have

vα(x) sin2 vα(x) =
∞

∑
n=1

(−1)n−122n−1

(2n)!
vα(x)2n+1 (4.1)

= vα(x)3 − 1

3
vα(x)5 +

2

45
vα(x)7 + O(vα(x)9).

(i) Let 1 < p < 3. Then by (2.6), (4.1), Taylor expansion and putting vα = θ = αs, we have

∥v′α∥2
2 = 2

∫ 1/2

0
v′α(x)v′α(x)dx (4.2)

= 2
√

2µ

∫ 1/2

0

√

1

p + 1
(αp+1 − vα(x)p+1) +

1

4
(α4 − vα(x)4)(1 + o(1))v′α(x)dx

= 2
√

2µ

∫ α

0

√

1

p + 1
(αp+1 − θp+1) +

1

4
(α4 − θ4)(1 + o(1))dθ

= 2

√

2µ

p + 1
α(p+3)/2

∫ 1

0

√

1 − sp+1

√

1 +
p + 1

4
α3−p 1 − s4

1 − sp+1
(1 + o(1))ds

= 2

√

2µ

p + 1
α(p+3)/2

∫ 1

0

√

1 − sp+1

{

1 +
p + 1

8
α3−p 1 − s4

1 − sp+1
(1 + o(1))

}

ds

= 2

√

2

p + 1

√
µα(p+3)/2

{

E0,p + E1α3−p + o(α3−p)
}

.
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By this and (3.3), we have

∥v′α∥2
2 = 2

√

2

p + 1
α(p+3)/2

{

E0,p + E1α3−p + o(α3−p)
}

×
√

2(p + 1)α−(p−1)/2
{

C0,p + L1α3−p + L2α5−p + O(α7−p)
}

= 4α2
{

E0,pC0,p + (E0,pL1 + C0,pE1)α
3−p + o(α3−p)

}

.

By this, (1.5) and Theorem 1.7 (i), we have

λ(α) = 2(p + 1)α1−p
{

C0,p + L1α3−p + L2α5−p + O(α7−p)
}2

×
{

4bα2
{

E0,pC0,p + (E0,pL1 + C0,pE1)α
3−p + o(α3−p)

}

+ 1
}

.

(ii) Let p = 3. Then by (4.2) and putting s = vα(x)/α, we have

∥v′α∥2
2 = 2

√
µ(1 + o(1))

∫ 1/2

0

√

α4 − vα(x)4v′α(x)dx

= 2
√

µ(1 + o(1))α3
∫ 1

0

√

1 − s4ds

= 2
√

µα3E0,3(1 + o(1)).

By this, (1.5) and Theorem 1.7 (ii), we have

∥v′α∥2
2 = 2α3E0,3(1 + o(1))2α−1

{

C0,3 +
1

2
H3α2 + O(α4)

}

= 4α2E0,3C0,3(1 + o(1)).

By this and Theorem 1.7 (ii), we have

λ(α) = 4α−2(1 + 4bE0.3C0,3α2 + o(α2))

{

C0,3 +
1

2
H3α2 + O(α4)

}2

.

We next consider the case p > 3. By (4.1), for 0 < x < 1/2, we have

1

2
v′α(x)2 + µ

{

1

4
vα(x)4 +

1

p + 1
vα(x)p+1(1 + o(1))

}

= µ

{

1

4
α4 +

1

p + 1
αp+1(1 + o(1))

}

.

By this, for 0 ≤ x ≤ 1/2, we have

v′α(x) =

√

µ

2

√

α4 − vα(x)4

√

1 +
4

p + 1

αp+1 − vα(x)p+1

α4 − vα(x)4
(1 + o(1)).

By this, (3.5) and the same calculation as that of (4.2) and putting vα(x) = αs, we have

∥v′α∥2
2 =

√

2µα3
∫ 1

0

√

1 − s4

√

1 +
4

p + 1
αp−3 1 − sp+1

1 − s4
(1 + o(1))ds (4.3)

=
√

2µα3
{

E0,3 + E5αp−3(1 + o(1))
}

= 4α2
{

C0,3 + H2αp−3 + H3α2 + O(α4)
}

{

E0,p + E5αp−3(1 + o(1))
}

.
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(iii) Let 3 < p ≤ 5. Then by (1.5), (3.5) and (4.3), we have

λ(α) = 8α−2
{

C0,3 + H2αp−3 + H3α2 + O(α4)
}2

×
[

4bα2
{

C0,3 + H2αp−3 + H3α2 + O(α4)
}

{

E0,3 + E5αp−3(1 + o(1))
}

+ 1
]

.

(iv) Let p > 5. Then by (1.8), (3.5) and (4.3), we have

λ(α) = 8α−2
{

C0,3 + H3α2 + o(α2)
}2

×
[

4bα2
{

C0,3 + H3α2 + o(α2)
} {

E0,3 + E5αp−3(1 + o(1))
}

+ 1
]

.

Thus the proof of Theorem 1.8 is complete.
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Abstract. This paper is concerned with a predator-prey model with cannibalism and
prey-evasion. The global existence and boundedness of solutions to the system in
bounded domains of 1D and 2D are proved for any prey-evasion sensitivity coefficient.
It is also shown that prey-evasion driven Turing instability when the prey-evasion co-
efficient surpasses the critical value. Besides, the existence of Hopf bifurcation, which
generates spatiotemporal patterns, is established. And, numerical simulations demon-
strate the complex dynamic behavior.
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1 Introduction

Cannibalism, adult preying on juveniles of the same species, has an effective impact on the

regulation and equilibration of population density [7, 23]. Numerous mathematical modeling

and analysis of cannibalism have been developed rapidly over the past few decades [5, 8].

These analyses focused mainly on the stabilizing-destabilizing effect of cannibalism, which

seems to strongly depend on the form of the model. For example, Kohlmeier and Ebenhöh

[13] found that cannibalism can stabilize population cycles. A high cannibalism rate may

cause the internal steady state to change from being unstable to stable due to the interac-

tion between logistic population growth of the prey and a Beddington–DeAngelis functional

response. In 1999, Magnússon [18] proposed an age-structured predator-prey model and

showed that cannibalism has a destabilizing effect. If the mortality rate of juveniles is high

and/or the recruitment rate to the mature population is low, then the equilibrium will be

stable for low levels of cannibalism. However, a loss of stability by the Hopf bifurcation will

take place as the level of cannibalism increases, and numerical studies indicate that a stable

limit cycle exists.

BCorresponding author. Email: chenmeijun@nwnu.edu.cn
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In 2006, Buonomo and Lacitignola [3] introduced a predator-prey model with age structure

and cannibalism in the predator population



























dA

dt
= MJ − dA A,

dJ

dt
= η1δAP − (1 − ηc)σAJ − (M + dJ)J,

dP

dt
= r1P − r2P2 − δAP,

(1.1)

where A(t) and J(t) represent the densities of individuals of mature and immature preda-

tor populations at time t, respectively, and P(t) denotes the number of individuals of prey

population. Further, M is the constant maturation rate from juveniles to adults; δ is the inter-

specific competition rate; σ is the cannibalism attack rate; η1 and ηc denote the coefficients in

converting preys into new immature predators (juveniles), and juveniles into new juveniles,

respectively. r1 and r2 are the logistic coefficients, dA and dJ are the death rates.

By the following non-dimensional variables

u = δA/dA, v = MδJ/d2
A, w = r2P/dA, τ = dAt,

and denoting τ by t again, system (1.1) becomes



























du

dt
= v − u,

dv

dt
= auw − γuv − cv,

dw

dt
= rw − w2 − uw,

(1.2)

where a = η1 Mδ
r2dA

, γ = σ(1−ηc)
δ , c =

M+dJ

dA
, r = r1

dA
. Obviously, if ar > c, then system (1.2) has a

unique positive equilibrium point ũ = (ũ, ṽ, w̃), where

ũ =
ar − c

a + γ
, ṽ =

ar − c

a + γ
, w̃ =

γr + c

a + γ
. (1.3)

Buonomo and Lacitignola derived that cannibalism is a stabilizing mechanism in the model

(1.2). That is, when cannibalism attack rate increases to a level that exceeds the critical value,

the coexistence steady state changes from being unstable to stable. Moreover, they provided

numerical simulations to demonstrate the mathematical analysis. The same conclusion has

been pointed out by Buonomo and coauthors [4]. They also found that the effects of cannibal-

ism and prey growth are opposite. Besides, numerical simulations showed that the higher the

uptake of prey by predators, the higher the critical value of cannibalism.

Recently, Jia et al. [10] discussed the corresponding pure diffusion system of (1.2) and ob-

tained the result that the effects of prey growth and predator cannibalism rate on the stability

of nonnegative constant steady state are opposite. They also proved the nonexistence and exis-

tence of nonconstant positive solutions and found that diffusion can cause a periodic solution

of spatial inhomogeneity which occurs in unstable area (also the unstable area of ODE). Very

recently, in another paper, we investigated the temporal, spatial and spatiotemporal patterns

of the corresponding cross-diffusion system of (1.2) in detail. We showed that cannibalism is

no longer a stabilizing effect, and cross-diffusion is the decisive factor of destabilizing positive

steady state.
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From biological characteristics, it can be seen that in addition to the random diffusion

of predators, the spatial movements between predators and prey can also be pursuit and

evasion,that is to say, predators pursuing preys and preys escaping from predators. Such

movement is not random but directed, that is predators move toward the gradient direction of

prey distribution (called “prey-taxis”), and/or preys move opposite to the gradient of predator

distribution (called “prey-evasion” or “predator-taxis”) [28]. These processes are well known

to be important in biological control and ecological balance such as regulating prey (pest)

population or incipient outbreaks of prey or forming large scale aggregation for survival

[20, 31].

Tsyganov and coauthors [22] proposed a predator-prey model with both prey-taxis and

predator-taxis, and found that the taxis terms change the shape of the propagating waves and

increase the propagation speed. Since then, there are many mathematical literatures demon-

strating and explaining the pursuit-evasion phenomenon. Meanwhile, various reaction-

diffusion models with prey-taxis and (or) predator-taxis have been proposed to study global

existence, traveling wave, pattern formation, and bifurcation analysis [11, 12, 14, 15, 17, 19, 24,

27, 30]. Recently, Wu and coauthors [28] considered a reaction-diffusion predator-prey model

system with predator-taxis, which is a similar situation occurs when susceptible population

avoids the infected ones in epidemic spreading. They proved the global existence and bound-

edness of solutions in bounded domains of arbitrary spatial dimension and any predator-taxis

sensitivity coefficient. It is also shown that a smaller predator-taxis effect can destabilize the

positive constant steady state and generate non-constant spatial pattern.

Inspired by the above discussion, the main aim of this paper is to investigate the global

existence and dynamical behavior in a predator-prey model with both cannibalism and prey-

evasion






































ut − d1∆u = −u + v, x ∈ Ω, t > 0,

vt − d2∆v = auw − γuv − cv, x ∈ Ω, t > 0,

wt − d3∆w − ξ∇ · (w∇u) = rw − w2 − uw, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.4)

where −ξ∇ · (w∇u) is prey-evasion, which shows the tendency of prey moving toward the

opposite direction of the increasing predator gradient direction. Ω ⊂ R
n is a bounded domain

with smooth boundary ∂Ω. ν is the outer normal directional derivative on ∂Ω. The homo-

geneous Neumann boundary condition indicates that this system is self-contained with zero

population flux across the boundary. The initial values u0(x), v0(x), w0(x) are nonnegative

smooth functions which are not identically zero.

Our main results on the global existence and boundedness of solutions of system (1.4) are

as follows.

Theorem 1.1. Let n = {1, 2} and Ω ⊂ R
n be a bounded domain with smooth boundary. For any

(u0, v0, w0) ∈ [W1,p(Ω)]3 where p > n, satisfying u0(x) ≥ 0, v0(x) ≥ 0, w0(x) ≥ 0 for x ∈ Ω, the

system (1.4) has a unique nonnegative and bounded global classical solution (u(x, t), v(x, t), w(x, t)),

and (u, v, w) ∈
(

C([0, ∞); W1,p(Ω)) ∩ C2,1(Ω × (0, ∞))
)3

.

The rest of the paper is organized as follows. In Section 2, we obtain some preliminary

results. Section 3 is devoted to prove the global existence and uniform boundedness of the

classical solution of (1.4). The dynamical behavior and pattern formation of the prey-evasion
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system are studied in Section 4. And, numerical simulations are emphasized the theoretical

results. The last section is a brief discussion.

2 Preliminaries

2.1 Existence and uniqueness of local solutions

We first give a claim concerning the local-in-time existence of a classical solution to (1.4).

Lemma 2.1. Assume that the initial data u0, v0, and w0 be nonnegative and satisfy (u0, v0, w0) ∈

[W1,p(Ω)]3 for p > n. Then the following statements for the model (1.4) hold.

(1) There exists a positive constant Tmax (the maximal existence time) such that the problem (1.4)

has a unique local in time classical solution (u(x, t), v(x, t), w(x, t)) satisfying

(u, v, w) ∈
(

C([0, Tmax); W1,p(Ω)) ∩ C2,1(Ω × (0, Tmax))
)3

.

Moreover, u, v, and w satisfy the inequalities

u > 0, v > 0, w > 0 in Ω × (0, Tmax). (2.1)

(2) If for each T > 0 there exists a constant C(T) (depending on T and ∥(u0, v0, w0)∥W1,p(Ω) only)

such that

∥(u(t), v(t), w(t))∥L∞ ≤ C(T), 0 < t < min{T, Tmax}, (2.2)

then Tmax = +∞.

(3) The total mass of u(x, t), v(x, t) and w(x, t) satisfies

∫

Ω
wdx ≤ m1 := max

{

∫

Ω
w0dx, r|Ω|

}

, t ∈ (0, Tmax), (2.3)

∫

Ω
vdx ≤ m2 := max

{

∫

Ω
(v0 + aw0)dx,

a(r + c)

c
m1

}

, t ∈ (0, Tmax), (2.4)

∫

Ω
udx ≤ m3 := max

{

∫

Ω
u0dx, m2

}

, t ∈ (0, Tmax). (2.5)

Proof. We first let η = (u, v, w)T, then the system (1.4) can be reformulated as the abstract

form














ηt −∇ · (A(η)∇η) = F (η), x ∈ Ω, t > 0,

∂η
∂ν = 0, x ∈ ∂Ω, t > 0,

η(·, 0) = (u0, v0, w0)
T, x ∈ Ω,

(2.6)

where

A(η) =





d1 0 0

0 d2 0

ξw 0 d3



 , F (η) =





−u + v

auw − γuv − cv

rw − w2 − uw



 .

System (2.6) is normally parabolic since all the eigenvalues of A(η) are positive. Then from

Theorem 7.3 and Corollary 9.3 in Ref. [1] or Theorem 14.4 and 14.6 in Ref. [2], we obtain that

there exists a unique classical solution. Next, the estimates (2.1) follow from the maximum

principle.
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Furthermore, since the system (2.6) is a lower triangular system, then we can invoke The-

orem 15.5 of Ref. [2] to conclude that Tmax = ∞ if (2.2) holds.

Finally, we show that the solution (u(x, t), v(x, t), w(x, t)) is bounded in L1(Ω). Integrating

the third equation in (1.4) over Ω and using the Cauchy–Schwarz inequality we have

d

dt

∫

Ω
wdx = r

∫

Ω
wdx −

∫

Ω
w2dx −

∫

Ω
uwdx

≤ r
∫

Ω
wdx −

1

|Ω|

(

∫

Ω
wdx

)2

, t ∈ (0, Tmax).

By an ODE comparison principle, we derive

∫

Ω
wdx ≤ max

{

∫

Ω
w0dx, r|Ω|

}

=: m1.

Then we have
∫

Ω
(vt + awt)dx =

d

dt

∫

Ω
(v + aw)dx

=
∫

Ω
[d2∆v + d3a∆w + ξa∇ · (w∇u)]dx +

∫

Ω
(raw − aw2 − γuv − cv)dx

=
∫

Ω
[raw + acw − aw2 − γuv − c(v + aw)]dx

≤
∫

Ω
[aw(r + c)− c(v + aw)]dx

since
∫

Ω
wdx ≤ m1, it gets

∫

Ω
vdx ≤

∫

Ω
(v + aw)dx ≤ max

{

∫

Ω
(v0 + aw0)dx,

a(r + c)

c
m1

}

=: m2.

Similarly, it can be derived

∫

Ω
udx ≤ max

{

∫

Ω
u0dx, m2

}

=: m3.

This completes the proof of part (3).

2.2 Relationship between bounds for u, ∇v and w in the case n ≥ 2

In this subsection, by using appropriate smoothing estimates for the Neumann heat semigroup

to the system (1.4), which have been inspired by Winkler [26], we establish some relationships

between the quantities

sup
s∈(0,t)

∥u(·, s)∥L∞ , sup
s∈(0,t)

∥∇v(·, s)∥Lq , sup
s∈(0,t)

∥w(·, s)∥Lp , t ∈ (0, Tmax),

for suitably wide ranges of the free parameters p ∈ (1, ∞] and q ∈ (1, ∞) when n ≥ 2.

Lemma 2.2. Assume that n ≥ 2 and q > max{1, n
3}. Then for any ε > 0, there exists C(ε, q) > 0

such that

∥u(·, t)∥L∞(Ω) ≤ C(ε, q) + C(ε, q) ·
{

sups∈(0,t) ∥∇v(·, s)∥Lq(Ω)

} n−2
n+1− n

q
+ε

, t ∈ (0, Tmax). (2.7)
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Proof. Since q >
n
3 , without loss of generality we may assume that ε satisfies (n + 1 − n

q )ε < 2

and (n + 1 − n
q )qε < 3q − n. Here the former property ensures that

r ≡ r(ε, q) :=
n

2 − (n + 1 − n
q )ε

is a positive number satisfying r > n
2 ≥ 1 as well as

(n − q)r

n
=

n − q

2 − (n + 1 − n
q )ε

<
n − q

2 − 3q−n
q

= q.

Hence, the Gagliardo–Nirenberg inequality gives c1 = c1(ε, q) > 0 such that with a :=

a(ε, q) :=
n− n

r
n+1− n

q
∈ (0, 1) we have

∥φ∥Lr(Ω) ≤ c1∥∇φ∥a
Lq(Ω)∥φ∥1−a

L1(Ω)
+ c1∥φ∥L1 , φ ∈ W1,q(Ω), (2.8)

and moreover we can employ smoothing estimates for the Neumann heat semi-group (et∆)t≤0

[25] to find c2 = c2(ε, q) > 0 fulfilling

∥et∆φ∥L∞(Ω) ≤ c2(1 + t−
n
2r )∥φ∥Lr(Ω), t > 0, φ ∈ Lr(Ω). (2.9)

As Lemma 2.1 provides that with some m2 > 0 we have ∥v(·, t)∥L1(Ω) ≤ m2 for all t ∈ (0, Tmax),

based on a variation-of-constants representation we can combine (2.8) with (2.9) to see that

due to the maximum principle,

∥u(·, t)∥L∞(Ω)

= ∥et(d1∆−1)u0 +
∫ t

0
e(t−s)(d1∆−1)v(·, s)ds∥L∞(Ω)

≤ e−t∥u0∥L∞(Ω) + c2

∫ t

0
(1 + (t − s)−

n
2r )e−(t−s)∥v(·, s)∥Lr(Ω)ds

≤ ∥u0∥L∞(Ω) + c1c2

∫ t

0
(1 + (t − s)−

n
2r )e−(t−s)∥∇v(·, s)∥a

Lq(Ω)∥v(·, s)∥1−a
L1(Ω)

ds

+ c1c2

∫ t

0
(1 + (t − s)−

n
2r )e−(t−s)∥v(·, s)∥L1 ds

≤ ∥u0∥L∞(Ω) + {c1c2m1−a
2 ∥∇v∥a

L∞((0,t);Lq(Ω)) + c1c2m2} ·
∫ t

0
(1 + (t − s)−

n
2r )e−(t−s)ds

≤ ∥u0∥L∞(Ω) + {c1c2m1−a
2 ∥∇v∥a

L∞((0,t);Lq(Ω)) + c1c2m2} ·
(

1 + Γ
(

1 −
n

2r

))

for all t ∈ (0, Tmax). Here Γ(1 − n
2r ) is the Gamma function which is positive and real-valued

according to r > n
2 , this already entails (2.7) due to the fact that

a =
n − (2 − (n + 1 − n

q )ε)

n + 1 − n
q

=
n − 2

n + 1 − n
q

+ ε

by definition of a and r.

A similar argument shows that the regularity of ∇v depends on Lp bounds for w and L∞

bounds for u.
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Lemma 2.3. Let n ≥ 2. Assume that p ∈ (1, ∞] and q >
n

n−1 be such that (n − p)q < np. Then for

each ε > 0 there exists C(ε, p, q) > 0 such that

∥∇v(·, t)∥Lq(Ω)

≤ C(ε, p, q) + C(ε, p, q) ·

{

1 + sup
s∈(0,t)

∥w(·, s)∥Lp(Ω)

}

n−1− n
q

n(1− 1
p )
+ε

· sup
s∈(0,t)

∥u(·, s)∥L∞(Ω)

+ C(ε, p, q) ·

{

1 + sup
s∈(0,t)

∥∇v(·, s)∥Lq(Ω)

} n−2
n+1− n

q
+ε

· sup
s∈(0,t)

∥u(·, s)∥L∞(Ω)

+ C(ε, p, q) ·

{

1 + sup
s∈(0,t)

∥∇v(·, s)∥Lq(Ω)

} n−2
n+1− n

q
+ε

, t ∈ (0, Tmax). (2.10)

Proof. Since (n − p)q < np and thus 1
q +

1
n − 1

p > 0, we assume that apart from (1 − 1
p )ε <

1
n

the inequality (1 − 1
p )ε <

1
q +

1
n − 1

p holds about ε, so that

λ ≡ λ(ε, p, q) :=
1

1
q +

1
n − (1 − 1

p )ε

is a positive number satisfying λ < q. Moreover

λ >
1

1
q +

1
n

> 1 (2.11)

thanks to the condition q >
n

n−1 .

By applying Duhamel representation and smoothing properties of the Neumann heat

semigroup, for all t ∈ (0, Tmax) one can estimate

∥∇v(·, t)∥Lq(Ω)

= ∥∇et(d2∆−1)v0 + a
∫ t

0
∇e(t−s)(d2∆−1)u(·, s)w(·, s)ds − γ

∫ t

0
∇e(t−s)(d2∆−1)u(·, s)v(·, s)ds

+ (1 − c)∇e(t−s)(d2∆−1)v(·, s)ds∥Lq(Ω)

≤ c1e−t∥v0∥Lq(Ω) + c2a
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)∥u(·, s)w(·, s)∥Lλ(Ω)ds

+ c2γ
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)∥u(·, s)v(·, s)∥Lλ(Ω)ds

+ c2|1 − c|
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)∥v(·, s)∥Lλ(Ω)ds. (2.12)

Furthermore, by the Hölder inequality, since λ < p we have

∥u(·, s)w(·, s)∥Lλ(Ω) ≤ ∥w(·, s)∥a1

Lp(Ω)
∥w(·, s)∥1−a1

L1 ∥u(·, s)∥L∞(Ω)

≤ m1−a1
1 ∥w(·, s)∥a1

Lp(Ω)
∥u(·, s)∥L∞(Ω), s ∈ (0, Tmax)
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with a1 = a1(ε, p, q) :=
1− 1

λ

1− 1
p

∈ (0, 1), and with m1 := supt∈(0,Tmax)
∥w(·, t)∥L1(Ω) being finite

according to Lemma 2.1. And the Gagliardo–Nirenberg inequality yields

∥v(·, s)∥Lλ(Ω) ≤ ∥v(·, s)∥Lr(Ω)

≤ c3∥∇v(·, s)∥a2

Lq(Ω)
∥v(·, s)∥1−a2

L1(Ω)
+ c3∥v(·, s)∥L1(Ω)

≤ c3m1−a2
2 ∥∇v(·, s)∥a2

Lq(Ω)
+ c3m2

with a2 ≡ a2(ε, p, q) :=
n− n

λ
n+1− n

q
∈ (0, 1), and λ < r which is given in Lemma 2.7.

Therefore, for all t ∈ (0, Tmax), (2.12) can be simplified as follows

∥∇v(·, t)∥Lq(Ω) ≤ c1∥v0∥W1,∞(Ω) + ac2m1−a1
3 ·

{

sups∈(0,t) ∥w(·, s)∥Lp(Ω)

}a1

·
{

sups∈(0,t) ∥u(·, s)∥L∞(Ω)

}

·
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)ds

+ (c2γ + c2|1 − c|)
(

c3m1−a2
2 sups∈(0,t) ∥∇v(·, s)∥a2

Lq(Ω)
+ c3m2

)

·
{

sups∈(0,t) ∥u(·, s)∥L∞(Ω)

}

·
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)ds.

Noting that for all t > 0 we have

∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)ds ≤ c4(ε, p, q) :=

∫ t

0
(1 + σ

− 1
2−

n
2 (

1
λ−

1
q ))e−σdσ

= Γ

(

1

2
−

n

2

(

1

λ
−

1

q

))

,

that c4 < ∞ thanks to the inequality 1
λ <

1
q +

1
n contained in (2.11), and then

a1 =
1 −

{

1
q +

1
n −

(

1 − 1
p

)

ε
}

1 − 1
p

=
n − 1 − n

q

n
(

1 − 1
p

) + ε,

we conclude as intended.

Combining the previous two lemmata allows us to eliminate the dependence on u in (2.10)

as follows.

Lemma 2.4. Let 2 ≤ n < 5. Assume that p ∈ (1, ∞] and that q >
n

n−1 satisfy q >
n

5−n and

(n − p)q < np. Then for all ε > 0 there exists C(ε, p, q) > 0 with the property that

∥∇v(·, t)∥Lq(Ω) ≤ C(ε, p, q) ·
{

1 + sups∈(0,t) ∥u(·, s)∥Lp(Ω)

}

(n−1− n
q )(n+1− n

q )

n(1− 1
p )(5−n− n

q )
+ε

, t ∈ (0, Tmax).

(2.13)

Proof. We note that n + 1 − n
q > 2(n − 2) since the assumption that q >

n
5−n , and that n − 1 −

n
q > 0 due to q >

n
n−1 . Then, there exists ε̃ = ε̃(p, q) > 0 such that

θ(ε1) :=

{

n − 1 − n
q

n(1 − 1
p )

+ ε

}

·
n + 1 − n

q
(

n + 1 − n
q

)

(1 − 2ε1)− 2(n − 2)
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is well-defined for all ε1 ∈ (0, ε̃), with

θ(ε1) → θ0 :=
(n − 1 − n

q )(n + 1 − n
q )

n(1 − 1
p )(5 − n − n

q )
as ε1 ↘ 0.

For ε > 0, we can find ε1 = ε1(ε, p, q) ∈ (0, ε̃) such that

θ(ε1) ≤ θ0 + ε, (2.14)

and then from Lemma 2.2 and Lemma 2.3 provide c1 = c1(ε, q) > 0 and c2 = c2(ε, p, q) > 0

such that

L(t) := 1 + sup
s∈(0,t)

∥w(·, s)∥Lp(Ω), t ∈ (0, Tmax),

and

M(t) := sup
s∈(0,t)

∥∇v(·, s)∥Lq(Ω), t ∈ (0, Tmax),

as well as

N(t) := sup
s∈(0,t)

∥u(·, s)∥L∞(Ω), t ∈ (0, Tmax),

satisfy

N(t) ≤ c1 + c1M
n−2

n+1− n
q
+ε1

(t), t ∈ (0, Tmax) (2.15)

and

M(t) ≤ c2 + c2L

n−1− n
q

n(1− 1
p )
+ε1

(t)M(t) + c2M
n−2

n+1− n
q
+ε1

N(t) + c2M
n−2

n+1− n
q
+ε1

, t ∈ (0, Tmax). (2.16)

In the case of t ∈ (0, Tmax) and M(t) ≥ 1, from (2.15) we obtain that

N(t) ≤ 2c1M
n−2

n+1− n
q
+ε1

(t)

and by (2.16),

M(t) ≤ c2 + 2c1c2L

n−1− n
q

n(1− 1
p )
+ε1

(t)M
n−2

n+1− n
q
+ε1

(t) + 2c1c2M
2(n−2)
n+1− n

q
+2ε1

(t) + c2M
n−2

n+1− n
q
+ε1

(t)

≤ (2c2 + 4c1c2)L

n−1− n
q

n(1− 1
p )
+ε1

(t)M
2(n−2)
n+1− n

q
+2ε1

(t),

because L(t) ≥ 1 by definition. Since for any such t we therefore have

M
1−2ε1−

2(n−2)
n+1− n

q (t) ≤ (2c2 + 4c1c2)L

n−1− n
q

n(1− 1
p )
+ε1

(t),

and since

1 − 2ε1 −
2(n − 2)

n + 1 − n
q

=
(n + 1 − n

q )(1 − 2ε1)− 2(n − 2)

n + 1 − n
q

> 0

by positivity of θ(ε1), from this we can infer that actually for arbitrary t ∈ (0, Tmax), regardless

of the sign of M(t)− 1,

M(t) ≤ c3Lθ(ε1)(t)

with c3 ≡ c3(ε, p, q) := max
{

1, (2c2 + 4c1c2)

n+1− n
q

(n+1− n
q )(1−2ε1)−2(n−2)

}

> 0. Once again since L(t) ≥ 0

for all t ∈ (0, Tmax), in view of (2.14) this establishes (2.13).
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Lemma 2.5. Let n = 2. Then whenever p ∈ ( n
n−1 , ∞] and q > n, for all ε > 0 there exists

C(ε, p, q) > 0 such that

∥w(·, t)∥Lp(Ω) ≤ C(ε, p, q) + C(ε, p, q) ·
{

sups∈(0,t) ∥∇v(·, s)∥Lq(Ω)

}

1− 1
p

2
n − 1

q
+ε

(2.17)

for all t ∈ (0, Tmax).

Proof. Firstly, we observe that 1
q <

1
n <

1
n + 1

p < 1 thanks to the assumption that p >
n

n−1 and

q > n. Then the interval J1 :=
(

1
q , 1

n + 1
p

]

is not empty and

ψ1(ζ) :=
1

ζ − 1
q

, ζ ∈ J1,

defines a positive function ψ1 on J1 which satisfies

ψ1

(

1
n + 1

p

)

p
=

1
p

1
n + 1

p −
1
q

<

1
p

1
q +

1
p −

1
q

= 1. (2.18)

Next, since q > n together with the inequality p ≥ 1 infer that 1
p + 1

q <
1
n + 1

p , similarly, it

follows that J2 :=
(

1
p +

1
q , 1

n + 1
p

]

̸= ∅, and

ψ2(ζ) :=
1 − 1

p

ζ − 1
p −

1
q

, ζ ∈ J2,

is well-defined and nonnegative with

ψ2

(

1

n
+

1

p

)

=
1 − 1

p

1
n − 1

q

. (2.19)

According to (2.18), (2.19) and continuity of ψ1 and ψ2, we thereby see that for any ε > 0 it is

possible to pick ζ = ζ(ε, p, q) ∈ J1 ∩ J2 = J2 such that ζ <
1
n + 1

p and that ψ1(ζ) < p as well as

ψ2(ζ) ≤
1− 1

p
2
n−

1
q

+ ε, where we can clearly moreover achieve that ζ >
1
p .

Setting µ ≡ µ(ε, p, q) := 1
ζ , we can find a positive number µ simultaneously fulfilling

µ < p, µ < q,
1

µ
>

1

p
+

1

q
,

1

µ
<

1

n
+

1

q
, and

1

µ
<

1

n
+

1

p
(2.20)

as well as
qµ

q − µ
< p (2.21)

and
1 − 1

p

1
µ − 1

p −
1
q

≤
1 − 1

p

2
n − 1

q

+ ε. (2.22)

Furthermore, µ > 1 since p >
n

n−1 and the rightmost property in (2.20).
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Keeping this parameter µ fixed henceforth, using a Duhamel representation, for all t ∈

(0, Tmax), we can estimate

∥∇u(·, t)∥Lq(Ω)

= ∥∇et(d1∆−1)u0 +
∫ t

0
∇e(t−s)(d1∆−1)v(·, s)ds∥Lq(Ω)

≤c2e−t∥u0∥Lq(Ω) + c3

∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
µ−

1
q ))e−(t−s)∥v(·, s)∥Lµ(Ω)ds

≤ c4 +
{

c4 sups∈(0,t) ∥∇v(·, s)∥a0

Lq(Ω)
∥v(·, s)∥1−a0

L1(Ω)
+ c4∥v(·, s)∥L1(Ω)

}

·

(

1 + Γ

(

1

2
−

n

2

(

1

µ
−

1

q

)))

≤ c4 +
(

c4m1−a0
2 sups∈(0,t) ∥∇v(·, s)∥a0

Lq(Ω)
+ c4m2

)

(

1 + Γ

(

1

2
−

n

2

(

1

µ
−

1

q

)))

≤ c5

(

1 + sups∈(0,t) ∥∇v(·, s)∥a0

Lq(Ω)

)

≤ c6

(

1 + sups∈(0,t) ∥∇v(·, s)∥Lq(Ω)

)a0

≤ c6 + c6 sups∈(0,t) ∥∇v(·, s)∥Lq(Ω)

where a0 =
n− n

µ

n+1− n
q
∈ (0, 1) since q > n, and Γ

(

1
2 −

n
2

(

1
µ − 1

q

))

< ∞ due to 1
µ <

1
n + 1

q . Apart

from that, by the first inequality in (2.20) and regularization features of the Neumann heat

semigroup ([25, Lemma 1.3], [29, Lemma 3.3]) one can pick c1 = c1(ε, p, q) > 0 satisfying

∥et∆∇ · φ∥Lp(Ω) ≤ c1

(

1 + t
− 1

2−
n
2 (

1
µ−

1
p )
)

∥φ∥Lµ(Ω)

for all t > 0 and each φ ∈ C1(Ω̄; R
n) such that φ · ν = 0 on ∂Ω, which shows that for all

t ∈ (0, Tmax),

∫ t

0
∥e(t−s)(d3∆−1)∇ · (w(·, s)∇u(·, s))∥Lp(Ω)ds

≤ c1

∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
µ−

1
p ))e−(t−s)∥w(·, s)∇u(·, s)∥Lµ(Ω)ds. (2.23)

Hence due to the second relation in (2.20), we may employ the Hölder inequality shows

that again writing L(t) := 1 + sups∈(0,t) ∥w(·, s)∥Lp(Ω) and M(t) := sups∈(0,t) ∥∇v(·, s)∥Lq(Ω),

t ∈ (0, Tmax), for any such t we have

∥w(·, s)∇u(·, s)∥Lµ(Ω) ≤ ∥w(·, s)∥α
Lp(Ω)∥w(·, s)∥1−α

L1(Ω)
∥∇u(·, s)∥Lq(Ω)

≤ m1−α
1 ∥w(·, s)∥α

Lp(Ω)(c6 + c6∥∇v(·, s)∥Lq(Ω))

≤ c6m1−α
1 Lα(t) + c6m1−α

1 Lα(t)M(t), s ∈ (0, t)
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with α = α(ε, p, q) :=
1+ 1

q−
1
µ

1− 1
p

∈ (0, 1).

The relation (2.23) indicates that with some c7 = c7(ε, p, q) > 0,

∫ t

0
∥e(t−s)(d3∆−1)∇ · (w(·, s)∇u(·, s))∥Lp(Ω)ds ≤ c7L

1+ 1
q −

1
µ

1− 1
p (t) + c7L

1+ 1
q −

1
µ

1− 1
p (t)M(t) (2.24)

for all t ∈ (0, Tmax). In order to make appropriate use of this, we observe that from the third

equation of (1.4),

wt ≤ d3∆w − w + ξ · ∇(w∇u) + (r + 1)w in Ω × (0, Tmax).

In view of the nonnegativity of w and an associated variation-of-constants formula, one can

obtain that

∥w(·, t)∥Lp(Ω)

≤

∥

∥

∥

∥

et(d3∆−1)w0 + ξ
∫ t

0
e(t−s)(d3∆−1)∇ · (w(·, s)∇u(·, s))ds + (r + 1)

∫ t

0
e(t−s)(d3∆−1)wds

∥

∥

∥

∥

Lp(Ω)

≤ e−t∥w0∥Lp(Ω) + |ξ|
∫ t

0
∥e(t−s)(d3∆−2)∇ · (w(·, s)∇u(·, s))∥Lp(Ω)ds

+ (r + 1)c8

∫ t

0
(1 + t

− n
2 (

1
µ−

1
p ))e−(t−s)∥w(·, s)∥Lµ(Ω)ds, t ∈ (0, Tmax). (2.25)

Using the Hölder inequality, we have

∥w(·, s)∥Lµ(Ω) ≤ ∥w(·, s)∥
β

Lp(Ω)
∥w(·, s)∥

1−β

L1(Ω)
≤ m

1−β
1 ∥w(·, s)∥

β

Lp(Ω)
,

where β =
1− 1

µ

1− 1
p

. Therefore, by the Young inequality, we obtain that

(r + 1)c8

∫ t

0
(1 + t

− n
2 (

1
µ−

1
p ))e−(t−s)∥w(·, s)∥Lµ(Ω)ds

≤ (r + 1)c8m
1−β
1

{

sup
s∈(0,t)

∥w(·, s)∥Lp(Ω)

}β
(

1 + Γ

(

1 −
n

2

(

1

µ
−

1

p

)))

≤
1

2
sup

s∈(0,t)

∥w(·, s)∥Lp(Ω) + c9

where c9 = 1
2 (r + 1)c8m

1−β
1 (1 + Γ(1 − n

2 (
1
µ − 1

p ))) and Γ(1 − n
2 (

1
µ − 1

p )) is positive and real-

valued due to 1
µ <

2
n + 1

p .

In conjunction with (2.25) and (2.24), this infers the existence of c10 = c10(ε, p, q) > 0 such

that

L(t) ≤ c10 + c10L

1+ 1
q −

1
µ

1− 1
p (t) + c10L

1+ 1
q −

1
µ

1− 1
p (t)M(t), t ∈ (0, Tmax),

where the third inequality in (2.20) ensures that
1+ 1

q−
1
µ

1− 1
p

< 1 and Young inequality so as to

provide

c10L

1+ 1
q −

1
µ

1− 1
p ≤

1

4
L(t) + c11,
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and

c10L

1+ 1
q −

1
µ

1− 1
p M(t) ≤

1

4
L(t) + c12M

1− 1
p

1
µ − 1

p − 1
q (t), t ∈ (0, Tmax).

In light of (2.22), this yields (2.17).

3 Proof of Theorem 1.1

3.1 Boundedness when n = 2

Lemma 3.1. Let n = 2. Then there exists C > 0 such that

∥u(·, t)∥L∞(Ω) ≤ C, t ∈ (0, Tmax). (3.1)

Proof. Without loss of generality assuming that p < n. Let

θ(ζ, ε) :=

{

1 − 1
p

2
n − ζ

+ ε

}{

(n − 1 − nζ)(n + 1 − nζ)

n(1 − 1
p )(5 − n − nζ)

+ ε

}

,

ζ ∈ J :=

(

0,
n − 1

n

]

, ε > 0,

noting that θ is well-defined because n−1
n <

5−n
n . Since evidently θ( n−1

n , 0) = 0, and since

apart from that clearly 1
p −

1
n <

n−1
n , by means of a continuity argument we can choose ζ ∈ J

and ε > 0 such that ζ <
n−1

n and

ζ >
1

p
−

1

n
(3.2)

and that

θ(ζ, ε) < 1, (3.3)

and thus ζ <
1
n . Writing q := 1

ζ , therefore one can find that q >
n

n−1 and (n − p)q < np

as well as q > n, where the latter relation together with the inequality p >
n

n−1 enables

us to invoke Lemma 2.5, thus inferring the existence of c1 > 0 such that for L(t) := 1 +

sups∈(0,t) ∥w(·, s)∥Lp(Ω) and M(t) := sups∈(0,t) ∥∇v(·, s)∥Lq(Ω), t ∈ (0, Tmax), we have

L(t) ≤ c1 + c1M

1− 1
p

2
n − 1

q
+ε
(t), t ∈ (0, Tmax). (3.4)

On the other hand, using that (n − p)q < np and q >
n

n−1 , and that thus also q >
n

5−n , we may

employ Lemma 2.4 to find c2 > 0 such that

M(t) ≤ c2L

(n+1− n
q )(n−1− n

q )

n(1− 1
p )(5−n− n

q )
+ε
(t), t ∈ (0, Tmax). (3.5)

Combined with (3.4), this provides that

L(t) ≤ c1 + c1c

1− 1
p

2
n − 1

q

2 L
θ( 1

q ,ε)(t), t ∈ (0, Tmax)

and thus shows that with some c3 > 0 we have

L(t) ≤ c3, t ∈ (0, Tmax),

because θ( 1
q , ε) < 1 by (3.3). Through (3.5), the latter entails boundedness of (0, Tmax) ∋ t 7→

∥∇v(·, t)∥Lq(Ω), so that Lemma 2.2 establishes the claim.



14 M. Chen and S. Fu

Lemma 3.2. Let n = 2. Then for all q > n there exists C(q) > 0 fulfilling

∥w(·, t)∥L∞(Ω) + ∥∇v(·, t)∥Lq(Ω) ≤ C(q), t ∈ (0, Tmax). (3.6)

Proof. For each fixed q > n,
n − 1 − n

q

n( 2
n − 1

q )
=

n − 1 − n
q

2 − n
q

< 1,

by a continuity argument we can pick ε = ε(q) > 0 appropriately small such that still

θ :=

{

1
2
n − 1

q

+ ε

}

·

{

n − 1 − n
q

n
+ ε

}

< 1.

Then from Lemma 3.1, we may employ Lemma 2.3 with p := ∞ to find c1 = c1(q) > 0 such

that L(t) := 1 + sups∈(0,t) ∥w(·, s)∥Lp(Ω) and M(t) := sups∈(0,t) ∥∇v(·, s)∥Lq(Ω), t ∈ (0, Tmax),

satisfy

M(t) ≤ c1L
n−1− n

q
n (t), t ∈ (0, Tmax) (3.7)

which we combine with the outcome of Lemma 2.5, applicable since the inequality q > n,

which namely yields c2 = c2(q) > 0 fulfilling

L(t) ≤ c2 + c2M
1

2
n − 1

q
+ε
(t), t ∈ (0, Tmax).

Therefore

L(t) ≤ c2 + c

1
2
n − 1

q
+ε

1 c2Lθ(t), t ∈ (0, Tmax),

so that the inequality θ < 1 guarantees boundedness of L and thus, by (3.7), also derives

boundedness of M.

3.2 Boundedness in the one-dimensional case

Lemma 3.3. Let n = 1. Then for all q > 1 there exists C(q) > 0 such that

∥u(·, t)∥L∞(Ω) + ∥∇v(·, t)∥Lq(Ω) + ∥w(·, t)∥L∞(Ω) ≤ C(q), t ∈ (0, Tmax). (3.8)

Proof. In view of the boundedness of (0, Tmax) ∋ t 7→ ∥v(·, t)∥L1(Ω) asserted by Lemma 2.1,

straightforward application of L1–L∞ smoothing estimates for the Neumann heat semigroup

in the present one-dimensional situation entails c1 > 0 such that

∥u(·, t)∥L∞(Ω) ≤ c1, t ∈ (0, Tmax), (3.9)

which again thanks to Lemma 2.1 ensures boundedness of (0, Tmax) ∋ t 7→ ∥u(·, t)w(·, t)∥L1(Ω)

and (0, Tmax) ∋ t 7→ ∥u(·, t)v(·, t)∥L1(Ω). Accordingly, standard L∞–W1,q regularization prop-

erties of (et∆)t≥0 guarantee the existence of c2 = c2(q) > 0 fulfilling

∥vx(·, t)∥Lq(Ω) ≤ c2, t ∈ (0, Tmax), (3.10)

therefore ∥ux(·, t)∥Lq(Ω) ≤ c3.
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To establish L∞(Ω) bound for w, we can find some µ = µ(q) ∈ (1, q) for any q, and again

combine the maximum principle with a known smoothing feature of the heat semigroup to

fix c4, c5 > 0 such that

∥w(·, t)∥L∞(Ω) ≤ ∥et(d3∆−1)w0∥L∞(Ω) +
∫ t

0
∥e(t−s)(d3∆−1)∂x(w(·, s)ux(·, s)∥L∞(Ω)ds

+ (r + 1)
∫ t

0
∥e(t−s)(d3∆−1)w(·, s)∥L∞(Ω)ds

≤ e−t∥w0∥L∞(Ω) + c4

∫ t

0
(1 + (t − s)−

1
2−

1
2µ )e−(t−s)∥w(·, s)ux(·, s)∥Lµ(Ω)ds

+ c5

∫ t

0
(1 + (t − s)−

n
2µ )e−(t−s)∥w(·, s)∥Lµ(Ω)ds, t ∈ (0, Tmax), (3.11)

where by the Hölder inequality, for all s ∈ (0, Tmax) one can estimate

∥w(·, s)ux(·, s)∥Lµ(Ω) ≤ ∥w(·, s)∥
L

µq
q−µ (Ω)

∥ux(·, s)∥Lq(Ω)

≤ ∥w(·, s)∥γ
L∞(Ω)

∥w(·, s)∥1−γ
L1(Ω)

∥ux(·, s)∥Lq(Ω)

with γ := µq−q+µ
µq ∈ (0, 1) since q > µ. And

∥w(·, s)∥Lµ(Ω) ≤ ∥w(·, s)∥δ
L∞(Ω)∥w(·, s)∥1−δ

L1(Ω)
≤ c6∥w(·, s)∥L∞(Ω) + c7

where c6 := 1
2c5m1−δ(1+Γ(1− n

2µ ))
, c7 := 1

4c6
. In view of (3.10) and Lemma 2.1, from (3.11) we thus

infer the existence of c8, c9 > 0 such that if now we let L(t) := 1 + sups∈(0,t) ∥w(·, s)∥L∞(Ω),

t ∈ (0, Tmax), then

L(t) ≤ c8 + c8 ·

{

∫ t

0
(1 + (t − s)−

1
2−

1
2µ )e−(t−s)ds

}

· Lγ(t) +
1

2
L(t)

thus

L(t) ≤ 2c8 + 2c8c9Lδ(t), t ∈ (0, Tmax),

where c9 ≤
∫ ∞

0 (1 + σ
− 1

2−
1

2µ )e−σdσ = 1 + Γ( 1
2 − 1

2µ ) is finite since µ > 1. As γ < 1, this

indicates boundedness of w and hence completes the proof.

3.3 Proof of Theorem 1.1

Proof of Theorem 1.1. Using (2.3)–(2.5) and Lemma 3.3 when n = 1; combining Lemma 3.1 and

Lemma 3.2 when n = 2, the conclusion of Theorem 1.1 is obtained immediately.

4 Dynamical behavior of prey-evasion system

In this section, we investigate the dynamic behavior of the system (1.4). We first consider the

local stability of the constant equilibrium solutions by linearized stability analysis. According

to the principle of linearized stability for quasi-linear parabolic problems (see [21] Th 8.6, [6]

Th 5.2), we know that the constant equilibrium (ũ, ṽ, w̃) is locally asymptotically stable with

respect to (1.4) if and only if all the eigenvalues of the linearized elliptic problem of (1.4) at

an equilibrium are of negative real parts. To this end, we introduce the asymptotic stability of

(ũ, ṽ, w̃) of kinetic system (1.2) in [3].
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Proposition 4.1. Suppose that ar > c. Let

f (w̃) = a(a + 1)w̃3 + (a2 + 3a + 1)w̃2 + (a + 1 − ac − ar)w̃ − c. (4.1)

Then there exists a unique γ∗, such that ũ is asymptotically stable if γ > γ∗ and is unstable if

0 < γ < γ∗, where γ∗ = aw̄−c
r−w̄ , f (w̄) = 0.

Linearizing the system (1.4) at an equilibrium solution (u, v, w), we obtain that





ϕt

φt

ψt



 = L(ξ)





ϕ

φ

ψ



 = D





∆ϕ

∆φ

∆ψ



+ J(u,v,w)





ϕ

φ

ψ



 (4.2)

where

D =





d1 0 0

0 d2 0

ξw 0 d3



 , J(u,v,w) =





−1 1 0

aw − γv −γu − cv au

−w 0 r − 2w − u



 . (4.3)

The stability of ũ is determined by the following eigenvalue problem

L





ϕ

φ

ψ



 = λ





ϕ

φ

ψ



 ,

that is


























d1∆ϕ − ϕ + φ = λϕ, x ∈ Ω,

d2∆φ + (aw − γv)ϕ − (γu + c)φ + auψ = λφ, x ∈ Ω,

ξw∆ϕ + d3∆ψ − wϕ + (r − 2w − u)ψ = λψ, x ∈ Ω,

∂ϕ

∂ν
=

∂φ

∂ν
=

∂ψ

∂ν
= 0, x ∈ ∂Ω.

(4.4)

Let −∆ have eigenvalues 0 = µ0 < µ1 ≤ µ2 ≤ · · · and limi→∞ = ∞ under the Neumann

boundary condition, and let yi(x) be the normalized eigenfunction corresponding to µi. Sup-

pose that λ is an eigenvalue of (4.4) with corresponding eigenfunction (ϕ, φ, ψ), therefore

according to the Fourier expansion, there exists {ai}, {bi}, {ci} such that

ϕ(x) =
∞

∑
i=0

ai ϕi(x), φ(x) =
∞

∑
i=0

biφi(x), ψ(x) =
∞

∑
i=0

ciψi(x).

By a straightforward computation, we have

Li(ξ)





ai

bi

ci



 = λ





ai

bi

ci



 , i = 0, 1, 2, . . .

with

Li(ξ) =





−d1µi − 1 1 0

aw − γv −d2µi − γu − c au

−ξwµi − w 0 −d3µi + r − 2w − u



 . (4.5)

Therefore, the local stability of positive constant steady states of the system (1.4) is given by

the following lemma.
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Lemma 4.2. Assume that ar > c, γ > γ∗, di > 0 (i = 1, 2, 3), ξ > 0. Then for system (1.4), (ũ, ṽ, w̃)

is locally asymptotically stable if 0 < ξ < ξ0 and is unstable if ξ > ξ0, where

ξ0 =
1

aũw̃µi
(β1µ3

i + β2µ2
i + β3µi + β4) > 0,

βi (i = 1, 2, 3, 4) will be given in the following proof.

Proof. If constant equilibrium solution (u, v, w) = (ũ, ṽ, w̃), then

Li(ξ) =





−d1µi − 1 1 0

c −d2µi − aw̃ aũ

−ξw̃µi − w̃ 0 −d3µi − w̃



 , (4.6)

and the characteristic equation of Li is

Φ(λ) = |λI −Li| = λ3 + α1(ξ)λ
2 + α2(ξ)λ + α3(ξ) = 0 (4.7)

with

α1 = (d1 + d2 + d3)µi + aw̃ + w̃ + 1,

α2 = (d1d2 + d1d3 + d2d3)µ
2
i + ((d1 + d3)aw̃ + (d1 + d2)w̃ + d2 + d3)µi + aw̃2 + γũ + w̃, (4.8)

α3 = d1d2d3µ3
i + (d1d3aw̃ + d1d2w̃ + d2d3)µ

2
i + (d1aw̃2 + aũw̃ξ + d3γũ + d2w̃)µi + (ar − c)w̃.

Obviously, αj > 0 (j = 1, 2, 3) for all i = 0, 1, 2, . . . , and

B(ξ) := α1α2 − α3 = β1µ3
i + β2µ2

i + (β3 − aũw̃ξ)µi + β4,

where

β1 = (d1 + d3)(d1 + d2)(d2 + d3),

β2 = (d1 + d3)(d1 + 2d2 + d3)aw̃ + (d1 + d2)(d1 + d2 + 2d3)w̃ + (d2 + d3)(2d1 + d2 + d3),

β3 = (d1 + d3)a2w̃2 + 2(d1 + d2 + d3)aw̃2 + (d1 + d2 + 2d3)aw̃ + (d1 + d2)(γũ + w̃2)

+ 2(d1 + d2 + d3)w̃ + d2 + d3,

β4 = a(a + 1)w̃3 + (a2 + 3a + 1)w̃2 + (a + 1 − ac − ar)w̃ − c.

It is easy to see that B(ξ) is monotonically decreasing with respect to ξ, that is B(ξ) > 0 if

ξ < ξ0, on the contrary B(ξ) < 0 if ξ > ξ0, where B(ξ0) = 0 with

ξ0 =
1

aũw̃µi
(β1µ3

i + β2µ2
i + β3µi + β4) > 0 (4.9)

thanks to β4 = f (w̃) > 0 when γ > γ∗. By the Routh–Hurwitz criterion or Corollary 2.2 in

[16], the proof is completed, that is (ũ, ṽ, w̃) is locally asymptotically stable if 0 < ξ < ξ0 and

is unstable if ξ > ξ0.

To illustrate our analysis of Lemma 4.2, we present the following numerical example.

Example 4.3. For (1.4), let n = 1, Ω = (0, 7) and set

a = 2, c = 1, r = 2, γ = 0.5, d1 = 0.3, d2 = 0.2, d3 = 0.3.

Then the equilibrium point (ũ, ṽ, w̃) = (1.2, 1.2, 0.8). According to the Lemma 4.2, (ũ, ṽ, w̃)

is asymptotically stable if ξ < ξ0 = 8.06 (k = 3), see Figure 4.1, and (ũ, ṽ, w̃) is unstable if

ξ > ξ0 = 8.06 (k = 3), see Figure 4.2.
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Figure 4.1: Stable behavior with χ = 7 < χ0 = 8.06 for the model (1.4).

Figure 4.2: Unstable behavior with χ = 9 > χ0 = 8.06 for the model (1.4).

Remark 4.4. Lemma 4.2 illustrates that prey-evasion has a destabilizing effect.

Remark 4.5. Lemma 4.2 implies that there is no steady state bifurcation curve near (ũ, ṽ, w̃)

since α3 > 0.

According to the proof of Lemma 4.2, we know that the linearized equation (4.4) has a

pair of purely imaginary eigenvalues at ξ = ξ0, then a Hopf bifurcation generating a family

of periodic orbits of (1.4) occurs if some transversality conditions are met. We next show that

the existence of periodic orbits of (1.4) for a certain parameter range.

To apply the Hopf bifurcation theorem (Theorem 6.1 of [16]), we first let the three roots of

(4.6) be θ1,2 = σ(ξ)± iδ(ξ) and θ3 satisfying σ(ξ0) = 0, δ(ξ0) > 0 when ξ ∈ (ξ0 − ε, ξ0 + ε).

From (4.7), we have














−α1(ξ) = 2σ(ξ) + θ3(ξ),

α2(ξ) = σ2(ξ) + δ2(ξ) + 2σ(ξ)θ3(ξ),

−α3(ξ) = (σ2(ξ) + δ2(ξ))θ3(ξ).

(4.10)

Differentiating (4.10) with respect to ξ and using (4.8), we obtain

2σ′(ξ) + θ′3(ξ) = 0,

2σ(ξ)σ′(ξ) + 2δ(ξ)δ′(ξ) + 2σ′(ξ)θ3(ξ) + 2σ(ξ)θ′3(ξ) = 0,

(2σ(ξ)σ′(ξ) + 2δ(ξ)δ′(ξ))θ3(ξ) + (σ2(ξ) + δ2(ξ))θ′3(ξ) = −aũw̃µi.

(4.11)

Solving (4.11) with ξ = ξ0 by Cramer’s rule, we derive that

θ′3(ξ0) = −
aũw̃µi

δ2 + θ2
3

< 0,

and

σ′(ξ0) = −
1

2
θ′3(ξ0) > 0. (4.12)
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Moreover, it is easy to see that α3 > 0 for all i ∈ N if ξ > 0, then 0 cannot be an eigenvalue

for (4.4) when ξ = ξ0. Besides, in order to illustrate that θ = ±iδ(ξ0) are a pair of simple

eigenvalues of (4.4) for δ(ξ0) > 0, we need to assume that ξ0k ̸= ξ0j, j ̸= k. Then this shows

that (4.4) has no eigenvalues of the form kδ(ξ0)i for k ∈ Z \ {±1}.

Therefore the existence of nontrivial periodic orbits of (1.4) would be stated in the follow-

ing theorem.

Theorem 4.6. Let ar > c, γ > γ∗ and ξ0k ̸= ξ0j, j ̸= k. For some i ∈ N, assume that µi is a simple

eigenvalue of −∆ in Ω with Neumann boundary condition, and the corresponding eigenfunction is

yi(x). Then

i) (1.4) has a unique one-parameter family {p(τ) : 0 < τ < ε} of nontrivial periodic orbits

near (ξ, u, v, w) = (ξ0, ũ, ṽ, w̃). More precisely, there exist ε > 0 and C∞ function τ 7→

(ui(τ), Ti(τ), ξi(τ)) from τ ∈ (−ε, ε) to C1(R, X3)× (0, ∞, R) satisfying

(ui(0), Ti(0), ξi(0)) = ((ũ, ṽ, w̃), 2π/δ0, ξ0),

and

ui(τ, x, t) = (ũ, ṽ, w̃) + τyi(x)
(

V+
i eiδ0t + V−

i e−iδ0t
)

+ o(τ), (4.13)

where

δ0 =
√

(d1d2 + d1d3 + d2d3)µ2
i + ((d1 + d3)aw̃ + (d1 + d2)w̃ + d2 + d3)µi + aw̃2 + γũ + w̃,

and V±
i is an eigenvector satisfying Li(ξ)V

±
i = iδ0V±

i ;

ii) for 0 < |τ| < ε, p(τ) = p(ui(τ)) = {ui(τ, ·, t) : t ∈ R} is a nontrivial periodic orbit of (1.4)

of period Ti(τ);

iii) if 0 < τ1 < τ2 < ε, then p(τ1) ̸= p(τ2);

iv) there exists ι > 0 such that if (1.4) has a nontrivial periodic solution ū(x, t) of period T for some

ξ ∈ R with

|ξ − ξ0i| < ι, |T − 2π/δ0| < ι, max
t∈R,x∈Ω̄

|ū(x, t)− (ũ, ṽ, w̃)| < ι,

then ξ = ξ0(τ) and ū(x, t) = ui(τ, x, t + ω) for some τ ∈ (0, ε) and some ω ∈ R.

We carry out numerical simulation in one-dimension to demonstrate the analytical results

of Theorem 4.6.

Example 4.7. For (1.4), let n = 1, Ω = (0, 8), and choose a = 2, r = 2, c = 0.1, γ = 0.5, d1 =

0.3, d2 = 0.2, d3 = 0.3. Then the equilibrium point (ũ, ṽ, w̃) = (1.56, 1.56, 0.44). It can be

calculated that Hopf bifurcation value ξ = 5.33(k = 3). This parameter set shows that the

occurrence of a Hopf bifurcation at (ũ, ṽ, w̃, ξ), and the expression (4.13) gives the oscillation

frequency, the eigenfunction yi(x) = cos
π jx

l gives the spatial profile of the oscillation, see

Figure 4.3.
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u(x, t) v(x, t) w(x, t)

Figure 4.3: Spatiotemporal patterns of (1.4).

5 Conclusions

In this paper, a predator-prey system with both cannibalism and prey-evasion is considered.

We first investigate the global existence and boundedness of the unique classical solution in

1D and 2D. The core steps are to establish some inequalities relating certain powers of the

quantities

sup
s∈(0,t)

∥u(·, s)∥L∞ , sup
s∈(0,t)

∥∇v(·, s)∥Lq , sup
s∈(0,t)

∥w(·, s)∥Lp , t ∈ (0, Tmax),

for suitably wide ranges of the free parameters p ∈ (1, ∞] and q ∈ (1, ∞) when n ≥ 2.

Then we obtain the result that Turing instability occurs when prey-evasion sensitive coeffi-

cient ξ surpasses the threshold value ξ0. We also show the existence of periodic orbits of (1.4)

by treating prey-evasion ξ as a bifurcation parameter, which gives spatiotemporal patterns.

This means that prey-evasion is the decisive factor in destabilizing positive steady state and

cannibalism is no longer a stabilizing effect.
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Abstract. Let m ≥ 2 and a, b, c > 0. We consider the existence and uniqueness of
solutions for the fourth order iterative boundary value problem,

x(4)(t) = − f (t, x(t), x[2](t), . . . , x[m](t)), −a ≤ t ≤ a

where x[2](t) =x
(

x(t)
)

and for j = 3, . . . , m, x[j](t) = x
(

x[j−1](t)
)

, with solutions satisfy-
ing one of the following sets of conjugate boundary conditions:

x(−a) = −a, x′(−a) = b, x′′(−a) = c, x(a) = a,

x(−a) = −a, x(a) = a, x′(a) = b, x′′(a) = c.

The main tool used is the Schauder fixed point theorem.

Keywords: differential equations, iterative differential equations, boundary value prob-
lems.

2020 Mathematics Subject Classification: 34B15, 34K10, 39B05.

1 Introduction

In this paper we consider existence and uniqueness of solutions for the fourth-order iterative
boundary value problem,

x(4)(t) = − f (t, x(t), x[2](t), . . . , x[m](t)), −a ≤ t ≤ a (1.1)

where x[2](t) = x
(

x(t)
)

, and for j = 3, . . . , m, x[j](t) = x
(

x[j−1]
)

(t), with solutions satisfying
one of the boundary conditions:

x(−a) = −a, x′(−a) = b, x′′(−a) = c, x(a) = a, (1.2)

x(−a) = −a, x(a) = a, x′(a) = b, x′′(a) = c. (1.3)

BCorresponding author. Email:zswhaley@ualr.edu
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We assume throughout that f : [−a, a]× R → R is continuous.
Iterative differential equations are a special case of state-dependent differential equations.

They have applications in a wide variety of fields, including climate change [12], economics
[6], electrodynamics [4], infectious diseases [8], mechanical models [9], neural networks [2],
and population dynamics [13].

One of the earliest works in iterative differential equations was by Petuhov [14] who,
in 1965, studied existence and uniqueness of solutions of x′′(t) = λx(x(t)) with the con-
dition x maps the interval [−T, T] into itself, and that x(0) = x(T) = α. Eder [5] then
studied the existence, uniqueness, and analyticity of solutions of x′(t) = x(x(t)), proving
that every solution is either monotonic or vanishes. In 1990, Wang [16] obtained a solu-
tion to x′(t) = f (x(x(t))), x(a) = a using Schauder’s fixed point theorem, and in 1993
Fečkan [7] used the Contraction Mapping Principle to show existence of local solutions of
x′(t) = f (x(x(t)), x(0) = 0.

More recently, Kaufmann [10] established existence and uniqueness results for the second-
order boundary value problem x′′(t) = f (t, x(t), x[m](t)), x(a) = a, x(b) = b using Schauder’s
fixed point theorem and the Contraction Mapping Principle. In 2020, Cheraiet, Bouakkaz,
and Khemis [3] studied the third-order equation x′′(t) + f (t, x(t), x[2](t) . . . , x[n](t)) = 0 with
conditions x(0) = x′′(0) = 0, α

∫ η

0 x(t) dt = x(T) with η ∈ (0, T). Meanwhile, in 2022, Kauf-
mann [11] considered the fourth-order equation x(4)(t) = f (t, x(t), x[2](t), . . . , x[m](t)) subject
to the Lidstone conditions x(a) = x(−a) = x′′(a) = x′′(−a) = 0, establishing conditions for
existence and uniqueness of solutions. The main goal of this paper is to further the results
of [11].

In Section 2, we will rewrite (1.1), (1.2) as an integral equation, and state conditions under
which the solution of the integral equation will be a solution of the boundary value problem.
We will also state properties of the Green’s function and of the norm of the difference of two
iterative functions. In Section 3, we will state and prove results concerning the existence and
uniqueness of solutions of (1.1), (1.2). In Section 4, we present the equivalent inversion of (1.1),
(1.3) and state, without proof, the analogous existence and uniqueness results. Examples will
be included to illustrate results.

2 Preliminaries

Our main goal of Section 2 is to invert (1.1), (1.2) into an integral equation. We will ac-
complish this by first inverting the non-homogeneous equation with homogeneous boundary
conditions, and then solving the homogeneous equation with non-homogeneous boundary
conditions. The inversion of (1.1), (1.2) will be the sum of the two expressions. We will end
the section with a lemma on the Green’s function and the norm of the difference of iterations,
and then a statement of Schauder’s fixed point theorem.

We will begin the inversion by considering

x(4)(t) = −g(t), −a ≤ t ≤ a, (2.1)

x(−a) = x′(−a) = x′′(−a) = x(a) = 0. (2.2)

Integrate x(4)(t) = −g(t)) from −a to t twice and apply the boundary condition x′′(−a) = 0.

x′′(t) = x′′′(−a)(t + a)−
∫ t

−a
(t − s)g(s) ds. (2.3)
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Integrating (2.3) and applying the condition x′(−a) = 0 yields,

x′(t) = x′′′(−a)
(t + a)2

2
−
∫ t

−a

(t − s)2

2
g(s) ds.

When we integrate once more and apply the condition x(−a) = 0, we obtain,

x(t) = x′′′(−a)
(t + a)3

6
−
∫ t

−a

(t − s)3

6
g(s) ds. (2.4)

The constant x′′′(−a) is found by applying the condition x(a) = 0,

x′′′(−a) =
∫ a

−a

(a − s)3

8a3 g(s) ds. (2.5)

When we plug (2.5) into (2.4) we get,

x(t) =
∫ a

−a

(a − s)3(t + a)3

48a3 g(s) ds −
∫ t

−a

(t − s)3

6
g(s) ds.

Finally, we can split the first integral and combine it with the second to obtain

x(t) =
∫ t

−a

(a − s)3(t + a)3 − 8a3(t − s)3

48a3 g(s) ds +
∫ a

t

(a − s)3(t + a)3

48a3 g(s) ds.

Thus, we have shown that if x is a solution to (2.1), (2.2), then x satisfies the integral equation

x(t) =
∫ a

−a
G(t, s)g(s) ds (2.6)

where

G(t, s) =
1

48a3

{

(a − s)3(t + a)3 − 8a3(t − s)3, −a ≤ s ≤ t ≤ a,

(a − s)3(t + a)3, −a ≤ t ≤ s ≤ a.
(2.7)

It is easy to show that if x is a solution of

x(4)(t) = 0,

x(−a) = −a, x′(−a) = b, x′′(−a) = c, x(a) = a,

then x is given by

x(t) = −a + b(t + a) +
c

2
(t + a)2 +

1 − b − ac

4a2 (t + a)3. (2.8)

Consequently, if x is a solution of (1.1), (1.2), then x will then be the sum of (2.7) and (2.8).
That is, x is a solution of the integral equation

x(t) =
∫ a

−a
G(t, s) f (s, x(s), x[2](s), . . . , x[m](s)) ds

− a + b(t + a) +
c

2
(t + a)2 +

1 − b − ac

4a2 (t + a)3,

where G(t, s) is given in (2.7).
In order for solutions to be well-defined, we also require the image of x be in the interval

[−a, a]; that is, in order for x(x[m])(t) to be defined, we need −a ≤ x(t) ≤ a for all t ∈ [−a, a].
Knowing this, we can show that if x ∈ C[−a, a], satisfies −a ≤ x(t) ≤ a for all t, and satisfies
the integral equation (??), then it satisfies (1.1), (1.2). This gives us the following lemma.
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Lemma 2.1. The function x ∈ C4[−a, a] is a solution of (1.1), (1.2) if and only if x ∈ C[−a, a]

satisfies −a ≤ x(t) ≤ a, and the integral equation

x(t) =
∫ a

−a
G(t, s) f (s, x(s), x[2](s), . . . , x[m](s)) ds

− a + b(t + a) +
c

2
(t + a)2 +

1 − b − ac

4a2 (t + a)3,

where G(t, s) is defined in (2.7).

In order to prove the existence and uniqueness of solutions of (1.1), (1.2), we will need to
have a bound for our Green’s functions. For that, we will use the following lemma.

Lemma 2.2. The Green’s function given in (2.7) satisfies the following inequality:

0 ≤ G(t, s) ≤
4a3

3
.

Proof. First note that (a − s)3(t + a)3 is an increasing function of t, so (a − s)3(t + a)3 ≤

(a − s)3(s + a)3. Since maxs∈[−a,a](a − s)3(s + a)3 occurs when s = 0, and equals a6, then
(a−s)3(t+a)3

48a3 ≤ a3

48 .
Now consider the function (a − s)3(t + a)3 − 8a3(t − s)3, s ≤ t. Since (t − s)3 is positive

when s ≤ t, then (a − s)3(t + a)3 − 8a3(t − s)3 ≤ (a − s)3(t + a)3. Now, (a − s)3(t + a)3 is
an increasing function of t, so (a − s)3(t + a)3 ≤ 8a3(a − s)3. But, 8a3(a − s)3 is a decreasing

function of s for −a ≤ s, so 8a3(a − s)3 ≤ 64a6. That is, (a−s)3(t+a)3−8a3(t−s)3

48a3 ≤ 64a6

48a3 = 4a3

3 .

Finally, since a3

48 <
4a3

3 , we obtain that the upper bound on our Green’s function is 4a3

3 .
Similar procedures can be used to obtain the lower bound on our Green’s function, that

0 ≤ G(t, s).

We will use the Banach space Φ = (C[−a, a], ∥ · ∥) with the norm ∥x∥ = maxt∈[−a,a] |x(t)|.
Define the operator T : C[−a, a] → C[−a, a] by

(Tx)(t) =
∫ a

−a
G(t, s) f (s, x(s), x[2](s), . . . , x[m](s)) ds

− a + b(t + a) +
c

2
(t + a)2 +

1 − b − ac

4a2 (t + a)3
(2.9)

where G(t, s) is defined in (2.7).
We will also need the subspace

Φ(J, M) = {x ∈ Φ : ∥x∥ ≤ J, |x(t2)− x(t1)| ≤ M|t1 − t2|, t1, t2 ∈ [−a, a]}.

as well as the following lemma, which is proved in [17], [15].

Lemma 2.3. If x, y ∈ Φ(J, M), then

|x[m](t1)− x[m](t2)| ≤ Mm|t1 − t2|, m = 0, 1, 2, . . . ,

for all t1, t2 ∈ [−a, a] and

∥x[m](t1)− x[m](t2)∥ ≤
m−1

∑
k=0

Mk∥x − y∥.

We end this section by stating Schauder’s fixed point theorem [1].

Theorem 2.4 (Schauder). Let A be a nonempty compact convex subset of a Banach space and let

T : A → A be continuous. Then T has a fixed point in A.
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3 Existence and uniqueness results for (1.1), (1.2)

In this section, we will state and prove our existence and uniqueness results for (1.1), (1.2).
Let T : C[−a, a] → C[−a, a] be defined as (2.9). Throughout the section we will assume the
following conditions hold.

(H1) There exists an αℓ ∈ L[−a, a], ℓ = 1, 2, . . . , m + 1, such that

| f (t, x1, . . . , xm+1)− f (t, y1, . . . , ym+1)| ≤
m+1

∑
ℓ=1

αℓ(t)∥xℓ − yℓ∥

for all t ∈ [−a, a] and xi, yi ∈ R, i = 1, 2, . . . , m + 1.

(H2) There exists a K ∈ R such that 0 < K <
3(1−b−ac)

a3 and

−K ≤ f
(

t, x(t), x[2](t), . . . , x[m](t)
)

< 0

for all t ∈ [−a, a].

Notice that (H2) puts further conditions on b and c, namely that 1 > b + ac > 0.

Theorem 3.1. Suppose that condition (H1) and (H2) holds. Then there exists a solution to (1.1), (1.2).

Proof. Consider the convex, compact nonempty set Φ(a, M), where

M = |3 − 2b − ac|+ K

(

6a3 +
1
18

)

.

To use the Schauder fixed point theorem, we need for T : Φ(a, M) → Φ(a, M). We first show
that −a ≤ (Tx)(t) ≤ a for all t ∈ [−a, a].

(Tx)′(t) =
1

16a3

∫ a

−a
(a − s)3(t + a)2 f (s) ds −

1
2

∫ a

−a
(t − s)2 f (s) ds

+
3(1 − b − ac)

4a2 (t + a)2 + c(t + a) + b

≥
−K

16a3

∫ a

−a
(a − s)3(t + a)2 ds +

3(1 − b − ac)

4a2 (t + a)2 + c(t + a) + b

≥
−Ka

4
(t + a)2 +

3(1 − b − ac)

4a2 (t + a)2 + c(t + a) + b

=
−Ka3 + 3(1 − b − ac)

4a2 (t + a)2 + c(t + a) + b.

Since (H2) holds, then

−Ka3 + 3(1 − b − ac)

4a2 (t + a)2 + c(t + a) + b > 0

for all t ∈ [−a, a]. That is, (Tx)′(t) > 0 and hence (Tx)(t) is a strictly increasing function of t.
Since (Tx)(±a) = ±a, then −a ≤ (Tx)(t) ≤ a and furthermore ∥Tx∥ ≤ a.
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We need to show that for given t1, t2 ∈ [−a, a],
∣

∣(Tx)(t2)− (Tx)(t1)
∣

∣ ≤ M|t2 − t1|, where
M is defined as above. We may assume, without loss of generality, that t2 ≤ t1. To this end
we first note that

|(Tx)(t2)− (Tx)(t1)| =
∫ a

−a

∣

∣G(t2, s)− G(t1, s)
∣

∣| f (s, x(s), x[2](s), . . . , x[m](s)| ds

+ b
(

(t2 + a)− (t1 + a)
)

+
c

2

(

(t2 + a)2 − (t1 + a)2)

+
1 − b − ac

4a2

(

(t2 + a)3 − (t1 + a)3)

≤ K
∫ a

−a

∣

∣G(t2, s)− G(t1, s)
∣

∣ ds

+ b|t2 − t1|+ 2ac|t2 − t1|+
12a2(1 − b − ac)

4a2 |t2 − t1|

≤ K
∫ a

−a
|G(t2, s)− G(t1, s)| ds + (3 − 2b − ac)|t2 − t1|.

Now consider
∫ a
−a |G(t2, s)− G(t1, s)| ds. Since t2 ≤ t1, we can rewrite the integral as

∫ a

−a

∣

∣G(t2, s)− G(t1, s)
∣

∣ ds ≤
∫ t1

−a

∣

∣G(t2, s)− G(t1, s)
∣

∣ ds +
∫ t2

t1

∣

∣G(t2, s)− G(t1, s)
∣

∣ ds

+
∫ a

t2

∣

∣G(t2, s)− G(t1, s)
∣

∣ ds.

Given that t1 ≤ t2, the first term on the right satisfies

∫ t1

−a
|G(t2, s)− G(t1, s)| ds

≤
1

48a3

∫ t1

−a

∣

∣(a − s)3((t2 + a)3 − (t1 + a)3)
∣

∣+ 8a3
∣

∣(t2 − s)3 − (t1 − s)3
∣

∣ ds

≤
1

48a3

((

4a4 −
(a − t1)

4

4

)

(12a2)

)

|t2 − t1|+
1

48a3 (192a6)|t2 − t1|

≤ 5a3|t2 − t1|.

Also, due to the bound on our Green’s function,

∫ t2

t1

∣

∣G(t2, s)− G(t1, s)
∣

∣ ds ≤
1

48a3

(

8a3

3

)

|t2 − t1|

≤
1
18

|t2 − t1|.

And finally,
∫ a

t2

|G(t2, s)− G(t1, s)| ds ≤
1

48a3

∫ a

t2

∣

∣(a − s)3((t2 + a)3 − (t1 + a)3)
∣

∣ ds

≤
1

48a3

(

(a − t2)4

4
(12a2)

)

|t2 − t1|

≤ a3|t2 − t1|.

That is,
∫ a

−a
|G(t2, s)− G(t1, s)| ds ≤

(

6a3 +
1
18

)

|t2 − t1|.
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Consequently,

|(Tx)(t2)− (Tx)(t1)| ≤

(

|3 − 2b − ac|+ K

(

6a3 +
1
18

))

|t2 − t1|

= M|t2 − t1|.

Therefore, T : Φ(a, M) → Φ(a, M).
Lastly, it can be shown through standard arguments that T is continuous. Hence, by

Schauder’s fixed point theorem, there is a fixed point x of T, (Tx)(t) = x(t), which by
Lemma 2.1 is a solution of (1.1), (1.2).

Example 3.2. Consider the following boundary value problem with parameter k.

x(4)(t) = kt2 cos(x[2](t)) (3.1)

x
(

−
π

3

)

= −
π

3
, x

(π

3

)

=
π

3
, (3.2)

x′
(

−
π

3

)

=
2
3

, x′′
(

−
π

3

)

=
1

π2 . (3.3)

Here, m = 2 and f (t, x, x[2]) = −kt2 cos(x[2]). Let α(t) = kt2. Then,

| f (t, x1, x2)− f (t, y1, y2)| ≤ α(t)|x2 − y2| (3.4)

for all t ∈ [−π
3 , π

3 ]. Also, −k ≤ f (t, x, x[2]) ≤ 0. So, for all 0 < k <
3(1−b−ac)

a3 = 27(π−1)
π4 ≈

0.5936099, there exists a solution to (3.1), (3.2), (3.3), according to Theorem 3.1.

We are now ready for our uniqueness result.

Theorem 3.3. Suppose that (H1) and (H2) hold and that

4a3

3

m+1

∑
ℓ=1

∫ a

−a
αℓ(s) ds

ℓ−1

∑
k=0

Mk
< 1. (3.5)

Then, there exists a unique solution to (1.1), (1.2).

Proof. By Theorem 3.1 and Lemma 2.1, there exists a solution of (1.1), (1.2), which is a fixed
point of T. Assume x and y are two distinct fixed points of T. Then,

∥x − y∥ = |(Tx)(t)− (Ty)(t)|

≤
4a3

3

∫ a

−a

m+1

∑
ℓ=1

αℓ(s)∥x[ℓ] − y[ℓ]∥ ds

≤

(

4a3

3

∫ a

−a

m+1

∑
ℓ=1

αℓ(s)
l−1

∑
k=0

Mk ds

)

∥x − y∥

< ∥x − y∥

This contradiction implies x = y, and our fixed point is unique.

It should be noted that the results in Theorem 3.3 can also be obtained using the Banach
fixed point theorem.
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Example 3.4. To illustrate our uniqueness result, again consider the boundary value problem
(3.1), (3.2), (3.3). Again, note that

| f (t, x1, x2)− f (t, y1, y2)| ≤ kt2|x2 − y2|

for all t ∈ [−π
3 , π

3 ]. So, α0(t) = α1(t) = 0 and α2(t) = kt2. The left side of (3.5) becomes

4a3

3

m+1

∑
ℓ=1

∫ a

−a
αℓ(s) ds

ℓ−1

∑
k=0

Mk =
4(π

3 )
3

3

∫ π
3

− π
3

ks2 ds
(

1 + M + M2)

=
4π3

81
2kπ3

81

(

1 + M + M2)

=
8π6

6561

(

1 + M + M2) k.

In our case, M < 5.8958889. So, whenever k <
6561

8π6(1+M+M2)
≈ 0.020478, there exists a unique

solution to (3.1), (3.2), (3.3) according to Theorem 3.3.

4 Other results

In this section, we give the corresponding results from Section 3 for (1.1), (1.3). The proof of
the results in this section are similar to those found in Section 3. As such, we only point out
the main differences. We begin by considering the boundary value problem (1.1), (1.3).

As in Section 2, we can show that if x is a solution of (1.1), (1.3), then x(t) satisfies the
integral equation

x(t) =
∫ a

−a
G(t, s) f (s, x(s), x[2](s), . . . , x[m](s)) ds

+ a − b(a − t) +
c

2
(a − t)2 −

1 − b + ac

4a2 (a − t)3,
(4.1)

where

G(t, s) =
1

48a3

{

(a − t)3(s + a)3, −a ≤ s ≤ t ≤ a,

(a − t)3(s + a)3 − 8a3(s − t)3, −a ≤ t ≤ s ≤ a.
(4.2)

The Green’s function G(t, s) in (4.2) satisfies Lemma 2.2.
In addition to (H1), we will need the following condition.

(H3) There exists an L ∈ R such that 0 < L <
3(1−b+ac)

a3 and

0 < f (t, x(t), x[2](t), . . . , x[m](t)) < L

for all t ∈ [−a, a].

Notice that (H3) puts further conditions on b and c, namely that 1 + ac > b > 0.

Theorem 4.1. Suppose that conditions (H1) and (H3) hold. Then there exists a solution to (1.1),
(1.3).

Proof. For this proof, the space Φ(a, M) where M = |b| + L
( 1

18

)

is needed. The rest of the
proof follows the sames steps as Theorem 3.1.
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Example 4.2. Consider the following boundary value problem with parameter k.

x(4)(t) = −kt2 cos(x[2](t)) (4.3)

x
(

−
π

3

)

= −
π

3
, x

(π

3

)

=
π

3
, (4.4)

x′
(π

3

)

=
1
2

, x′′
(π

3

)

=
1

π2 . (4.5)

Here, m = 2 and f (t, x, x[2]) = kt2 cos(x[2]). Let α(t) = kt2. Then,

| f (t, x1, x2)− f (t, y1, y2)| ≤ α(t)|x2 − y2|

for all t ∈ [−π
3 , π

3 ]. Also, 0 ≤ f (t, x, x[2]) ≤ L. So, for all 0 < k <
3(1−b+ac)

a3 = 243π+162
6π4 ≈ 1.583369,

there exists a solution to (4.3), (4.4), (4.5), according to Theorem 4.1.

Theorem 4.3. Suppose that (H1) and (H3) hold and that

4a3

3

m+1

∑
ℓ=1

∫ a

−a
αℓ(s) ds

l−1

∑
k=0

Mk
< 1. (4.6)

Then, there exists a unique solution to (1.1), (1.3).

Example 4.4. To illustrate our uniqueness result, again consider the boundary value problem (4.3),
(4.4), (4.5). Again, note that

| f (t, x1, x2)− f (t, y1, y2)| ≤ kt2|x2 − y2|

for all t ∈ [−π
3 , π

3 ]. So, α0(t) = α1(t) = 0 and α2(t) = kt2. The left side of (4.6) becomes

4a3

3

m+1

∑
ℓ=1

∫ a

−a
αℓ(s) ds

ℓ−1

∑
k=0

Mk =
4(π

3 )
3

3

∫ π
3

− π
3

ks2 ds
(

1 + M + M2)

=
4π3

81
2kπ3

81

(

1 + M + M2)

=
8π6

6561

(

1 + M + M2) k.

In this example, M < .5879649. So, whenever k <
6561

8π6(1+M+M2)
≈ 0.4411629, there exists a unique

solution to (4.3), (4.4), (4.5) according to Theorem 4.3.
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