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Abstract. We are interested in the structure of the solution space of second-order
half-linear differential equations taking into account various classifications regarding
asymptotics of solutions. We focus on an exhaustive analysis of the relations among
several types of classes which include the classes constructed with respect to the values
of the limits of solutions and their quasiderivatives, the classes of regularly varying
solutions, the classes of principal and nonprincipal solutions, and the classes of the so-
lutions that obey certain asymptotic formulae. Many of our observations are new even
in the case of linear differential equations, and we provide also the revision of existing
results.
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1 Introduction

We consider the half-linear differential equation
(r(H)@ ()" + p()®(u) = 0, (1.1)

t € [a,00), a > 0, where r(t) > 0, ®(u) = |u|* 'sgnu, a > 1. By ® ! we mean the inverse of
®. Note that ®1(u) = |u|f~!sgnu, where B is the conjugate number to «, i.e.,

1l

a P
We study asymptotic properties of equation (1.1) from several points of view. We deal
with the sets of solutions classified according to the values of their limits and the limits of
their quasiderivatives, the classes of regularly varying solutions (with prescribed indices), the
classes of principal and nonprincipal solutions, and the classes of solutions satisfying quite
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2 P. Rehdk

precise asymptotic formulae. We provide an exhaustive discussion concerning the relations
among these classes and, in fact, in each setting we describe the entire solution space of (1.1).
A big part of our results is new even in the linear case (where such a comprehensive treatment
has not been known previously). In addition, we offer a revision and completion of existing
results and place them into a broader context. To be more precise, all the results where p > 0
(and L > 0) are new, with the exception of some of the inclusions involving the formulae
in terms of £, which are established in [22, Section 5]. We utilize in the proofs also another
results from [22], namely Theorem 3.3 and Lemma 3.5 on regular variation of the elements of
the solution space. As for the case p < 0, all the results where 7 < 0 (in Theorem 2.1 and
Theorem 2.2) or 6 + a < 7y (the entire Theorem 2.3) or #; < 0 (in Theorem 2.4) are new. More-
over, the results in the case p < 0 are newly supplemented by the formulae in terms of By,
and some of the known inclusions involving G, H are completed in sense of equalities. The
known results which are included in Theorem 2.1 and Theorem 2.2 (except of those involving
L) are taken from [19, Section 6] and [23, Section 4], see also Lemma 3.19. The relations with
the formulae involving £ in Theorems 2.1, 2.2, 2.4 for the case p < 0 and L < 0 are taken from
[20, Theorem 2, Theorem 4]. Thanks to the parallel analysis of the cases p < 0 and p > 0,
we can see similarities and differences between these two cases. This concerns not only the
statements, but also the proofs, some of them can be unified, some other require A different
approach. Further relations and comparisons with existing results are spread throughout the
text.

Some phenomena which can occur only in the purely half-linear case (i.e., « # 2) are
revealed. Recall that (1.1) arises out when studying radially symmetric solutions of certain
partial differential equations with p-Laplacian, thus the results can be useful in theory of
PDEs. Our observations are important also from stability point of view and can find appli-
cations in a description of Poincaré—Perron solutions which are associated to perturbations of
some autonomous nonlinear differential equations.

An important role in our theory is played by the condition

o ()

im =y = O (12)
This condition guarantees that the set of all positive solutions of (1.1) consists of regularly
varying solutions of known indices which are related to the value of the limit C, €
(—oo, (Ja =1 — y|/a)*], v being the index of regular variation of r, see Theorem 3.3. As
for the existence of a regularly varying solution of (1.1), note that there are known conditions
in certain integral (more general) forms that are not only sufficient but also necessary (1.1), see
[9,10]. Since we assume regular variation of p and r (as we wish to include precise asymptotic
formulae into our relations among the classes), the integral conditions reduce to (1.2), and
thereby (1.2) actually becomes also necessary, see Lemma 3.5. We however emphasize that
thanks to Theorem 3.3 we work with the entire solution space, and there is no sign condition
on p a-priori needed.

A deeper approach to asymptotic formulae (including the critical — double root cases,
see below) and related problems in the framework not only of Karamata theory, but also
of de Haan theory (the classes Gamma and Pi) can be found in [19,20, 22,23]. Relations of
regularly varying solutions of (1.1) to Poincaré—Perron solutions are examined in [21,22]. For
further results concerning asymptotics of half-linear differential equations in the framework of
regular variation see [6,9-11,14-17]. A very important work which shows how the Karamata
theory can be applied to study qualitative properties of various differential equations is the



Half-linear differential equations 3

monograph [12] by Mari¢, see also [18], where the progress after the year 2000 is summarized.

Recall that by the Sturm type separation theorem which extends to half-linear equations,
see [6, Chapter 1], a solution of (1.1) is oscillatory (i.e., it is not of eventually one sign) if and
only if all solutions of (1.1) are oscillatory. Hence, we can classify equation (1.1) as oscillatory
or nonoscillatory as in the linear case. We are interested in behavior of nonoscillatory solutions
of (1.1). Since the solution space (1.1) is homogeneous, without loss of generality we may
consider only the set

S = {y : y(t) is a positive solution of (1.1) for large t}.

Assuming that p is eventually of one sign we get that all solutions in & are eventually mono-
tone, thus any such a solution belongs to one of the classes

IS8 ={y € S:y'(t) > 0 for large t}, DS ={y € S:y(t) <0 for large t}.

The classes ZS, DS can further be divided into four mutually disjoint subclasses
ISp = {y €IS: }Lmy(t) =M, € (0,00)}, IS8 = {y €IS: }Lmy(t) = oo},
DSy = {y e DS : tlim y(t) =M, € (O,oo)}, DSy = {y e DS : tlim y(t) = 0}.

The so-called quasiderivative yl!l of y € S is defined by yl!l = r®(y’). We introduce the
following convention that is pertinent to the limits of solutions and their quasiderivatives:

I‘Suv - {y € IS . hm y(t) =1u, hm y[l](t) — U} ,

t—o0 t—00
_ s _ . 1] .
DS.v {y e DS : tlggloy(t) u, tlgg [yt ()] v} ;

for the subscripts of ZS and DS, by u = B and v = B we mean that the value of u and v,
respectively, is a positive number. Denote

Jp = /aoo |p(s)|ds, I = /uoo rl’ﬂ(s) ds, (1.3)

Let p < 0. Then
S=Z5UDS, wherelS # 0 # DS, (1.4)

see [5], [6, Chapter 4]. It is almost immediate (thanks to monotonicity) that
IS8 =TS0000 ULS0op UZSBo UZSpp

and
DS = DSy U DSy UDSpy U DSgg,

see also [5], [6, Chapter 4]. The solutions in ZS«e are called strongly increasing and the
solutions in DSy are called strongly decreasing, together they form extremal solutions. The
solutions in ZSp are called reqularly increasing and the solutions in DSyp are called regularly
decreasing.

Let p > 0. If |, = oo, then DS = @ while if |, = oo, then ZS = @, see [6, Chapter 4].
Note that if ], = co = ], then § = @ since (1.1) is oscillatory by the Leighton-Wintner type
criterion, see [6, Theorem 1.2.9]. Moreover, it is easy to show that if ], = co (and ], < o), then

S=Z8 =ZSwpUZSwoUZISp, (1.5)
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while if ], = oo (and ], < o0), then
S =DS = DSpoo UDSgeo UDSpp, (1.6)

see [4]. The solutions in ZS g and DS, are called dominant, the solutions in ZS ¢ and DSgeo
are called intermediate, the solutions in ZSpg and DSpp are called subdominant. An important
role in studying (non)emptiness of the subclasses ZS,, and DS, and related problems is
played by the integral conditions (3.1). Some of these relations will be used in our proofs. For
more information in this direction, see [2-6].

If (1.1) is nonoscillatory, then there exists a nontrivial solution y of (1.1) such that for every
nontrivial solution u of (1.1) with u # Ay, A # 0, we have

for large ¢,

see, e.g., [6, Section 4.2]. Such a solution is said to be principal solution. Solutions of (1.1)
which are not principal are called nonprincipal solutions. Principal solutions are unique up to
a constant multiple. We denote

P ={y € S:yis principal}.

Some characterizations of principal solutions are presented in Theorems 3.20-3.26 for the
purposes of our later use, see also [2,3,13]. Note that the situation concerning a description of
principal solutions is substantially more complicated in the case p > 0 than in the case p <0
for half-linear equations.

A measurable function f : [a,00) — (0, 00) is called reqularly varying (at infinity) of index ¥ if

tlgglo f;‘((/\tt)) =A% for every A € (0,0); (1.7)

we write f € RV(9). If & = 0, we speak about slowly varying functions; we write f € SV,
thus SV = RV(0). If f € RV(9), then relation (1.7) holds uniformly on each compact A-set
in (0,00) (the so-called Uniform Convergence Theorem, see, e.g., [1]). It follows that f € RV(9)
if and only if there exists a function L € SV such that f(t) = t?L(t) for every t. The slowly
varying component of f € RV(¢) will be denoted by Ly, i.e.,

Lf(t) = &, (18)

unless stated otherwise. We adopt notation (1.8) also for negative functions f such that |f| €
RV(8). The so-called Representation Theorem (see, e.g., [1]) says the following: f € RV(9) if
and only if

£t =gl e { [P as}, 19

t > a, for some a > 0, where ¢,{ are measurable with lim; ., ¢(t) = C € (0,00) and
lim; e ¢(t) = 0. A function f € RV(8) can alternatively be represented as

1) = { [ ast, 110)

t > a, for some a > 0, where ¢, w are measurable with lim;_,. ¢(t) = C € (0,00) and
lim_,e w(t) = 9. A regularly varying function f is said to be normalized reqularly varying, we
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write f € NRV(9), if ¢(t) = C in (1.9) or in (1.10). If (1.9) holds with 8 = 0 and ¢(t) = C, we
say that f is normalized slowly varying, we write f € N'SV. We denote

Sgy =SNsY, SRV(ﬂ)C =8N RV(&),
Sysy =SNNSY, Syry(9) :SQNRV(ﬁ);

a similar convention is used when § is replaced by DS or ZS. Some properties of regularly
varying functions are gathered in Proposition 3.1 and Theorem 3.2; for more information see
[1,8].
The condition
Ip| € RV(9), re RV(y), (1.11)

which plays an important role in our theory, in fact is not needed for showing regular variation
of solutions to (1.1), but it enables us to provide a precise asymptotic description. We will
assume that § # —1 and ¢ # a — 1 which leads to avoiding the critical (double-root — see
(2.3)) setting. The critical setting (which is considered in connection with searching precise
asymptotic formulae in [20,22] and requires a more refined approach) could be treated also in
the framework of our topic — a finer classification would however be needed. Denote

00 a—1 )
G(t) = <tf((tt))>, ]:/a |G(t)|dt, H(t) _t r(f)(t), R:/a |H(t)|dt.  (1.12)

If (1.11) holds and é + a = v, then

G(t):%d)‘l (Z’ég) and H(t) = fz((?) (1.13)

by Proposition 3.1. Observe that if & # 2, then the situation where | = o0 and R < oo (or
vice versa) can occur under the conditions (1.11) and é +a« = 7. An example can easily
be constructed via the relations in (1.13). This fact substantially affects the structure of the
solution space of (1.1) which turns out to be more complex than in the linear case. Lemma 3.7
describes a connection of |, R with the integrals in (3.1) which play a central role in studying
the existence problems in the classes ZS,,, DS,,. To simplify writing asymptotic formulae,
we adopt the notation

(0,7, K, ) = exp {/;(1+o(1))1<f(s)ds},

where 0(1) is meant either as T — oo when T < o0 or as ¢ — oo when T = oco. As usually,
for f,g which are either both positive or both negative, the relation f(t) ~ g(t) as t — oo
means lim;_,« f(t)/g(t) = 1, while f(t) = o(g(f)) as t — oo means lim;_,, f(t)/g(f) = 0. The
sets presented below are introduced for purposes of an easy and synoptic incorporation of
asymptotic formulae to other classifications; the constants M,, N, are defined by

_ 1 — 1im vyl
My = limy(t), Ny = lim y=i(t).
The sets Gi, Gy, H1, Ha, H3, Ha are pertinent to the solutions in the classes SV and RV(o),
respectively, where
_a—T1—1

1.14
e (114)
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under the condition C, = 0, and are defined by:

G ={yes yt) = &(at,~1/071(5+1),6)},
G, = {y €S y(t) = My€(t,00,1/D (6 + 1),G)},

and
Ha = {y € Ssylt) = ytt)+ [ M Ps)E(as,~(p—1)/0e) H)ds |
= {ye sy = [ ~(6 - 1)/ H)ds |,
Ha = {y € Ssyl) = y(t0) + [P0 (N e, 0, (B - 1)/(0), ) s
Hy = {y €Syt = [P (=N e(s e, (8~ 1)/9(0) H) ds .
If [ |H(s)| ds = oo, then H; = Ha = Ho (see Lemma 3.14), where

Hy = {y €S y(t) = tr'P(s)&(a,t, — (B — 1)/¢(Q),H)} .

The sets L1, £, which are designed for the case C, # 0 and for an alternative description in
the case C, = 0 with RV(o) solutions, are given by:

L1(8,1) = {y €S:y(t) =t’¢ <a, t, @(19;:2/19'L(19’17’ )> } ,

-1
Lr(8,1) = {y €S:y(t) =Dt <t,oo, 0 —C[i/l?—l—iy\ﬂ!“_z'L(ﬂ'W"))}’

where

L0 = [ti’;’t;) —Cy+ D(9) (t:/(g) - 7)] , with [L(9,7,-)] € RV(y —1),

and D = lim;_, y(t)/t%. If A is a set, then by the equality A = £(9,7) we mean that

L1(8 if f L(8,7,s)|ds = oo, (1.15)
Lo(8 1ff L(8,1,s)|ds < oo.

In view of Proposition 3.1, if # < 0 and A = L(9,7), then A = L,(8,7). Note that in our
results we actually have lim; . L(8,7,t) = 0, thus by the Representation Theorem (1.9), we
get L(8,1) CRV(9), 0 € R,y <0.1f C, =0, then

L(0,n,t) = H(t) and L(o,7,t)= EZ((?) - ®(0) iigg

The sets By, . . ., Bg are pertinent to the situations where y and/or y!/ have a real nonzero limit
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and are defined as follows:

@ 1(N
By = {y €S:My—y(t) ~ Mtrl’ﬁ(t) ast — oo} ,

0
(M
By = {y €SN, —yl(t) ~ Mtp(t) ast — oo},
M, (e —1)

B3:{VGS5My—y(t)NcD_ tG(t)ast—>oo},

To+1)(0+a—1)
Ny

d+a—17)

)ast— oo},

By = {yES:Ny—ym(t) 0 tH(t) ast—)oo},

= {y €S tG(t)| = 0(|My Y

(
(t)
Bo={y €S t|H(1)] = o(IN, —y (1)) as t — oo} .

t

2 Main results

In this section we present the main results that are formulated as four theorems; we distin-
guish, in particular, whether C, is zero or not and whether 7 is equal to § + & or not.
First note that under the assumptions of Theorems 2.1-2.4, we have, for a given ¢ € R,

Sry(9) = Snry(9), (2.1)

see Remark 3.4. Therefore we omit writing this relation in formulations of the theorems
since it holds in each case. It is worthy of noting that because of the properties of principal
solutions, in the sets that are equal to P, we have uniqueness up to a constant multiple. This,
in particular, means that, for example, in the case (i-a) of Theorem 2.1, there is only one slowly
varying solution provided we fix its value at a point.

In Theorems 2.1-2.3, we need to take 6§ # —1, v # a — 1; Theorem 2.4 does not require
an inequality. In fact, the equality in the settings of Theorems 2.1-2.3 would lead to some-
how critical cases (which correspond with double roots in (2.3) and/or border-line version
of the Karamata integration theorem). Actually, the critical cases can be treated, but a more
sophisticated approach is needed and introducing new special asymptotic subclasses is neces-
sary. The main ingredients in analyzing these cases are suitable transformations to non-critical
cases and applications of existing results (including the new ones in this paper). We will not
go further in this direction. For some considerations concerning the critical case see [20,22].

The first two theorems deal with SV and RV (¢) solutions under the condition y = ¢ + a.
Recall that ¢ is defined in (1.14).

Theorem 2.1. Let C,, = 0 and (1.11) hold, where oy = 6 + . For the relations involving the class
L(o,n) assume, in addition, |L(o,7,-)| € RV(y —1), n <0, and if the condition 6 < —1 is supposed,
let, in addition, 6 < —1+n(a —1). Then S = Sysy U Sxyry(0), Snsy # D, Syry(0) # @, and
the following hold:

(i) Assume that | = oo and R = oo,
(i-a) If p < O0and 6 < —1, then

Snsy = DS =DSp = G1 =P, Syrv(0) =ZS = LS w0 = H1 = Ho = L(0, 7).
(i-b) If p < 0and 6 > —1, then
S/\/SV =78 = ISOOOO = 91, SNRV(Q) =DS = DSO() = 7‘[2 = 7‘[0 = /:,(Q,ﬂ) =P.
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(i-c) If p > 0 and 6 < —1, then

S =18 =TS« = Sysy USnry(0), with Sysy = G1 =P, Syrv(e) = H1=Ho = L(0, 7).
(i-d) If p > 0 and § > —1, then

S =DS =DSpw = Snsy USnyrr(0), with Sysy = G1, Syrv(e) = Ha = Ho = L(e, 1) = P.

(i1) Assume that | < oo and R < oo.
(ii-a) If p < 0 and 6 < —1, then

Snsy =DS =DSpy=Go =Bs =P, Syrv(0) =ZS =LSwp = Hz = Bs = L(0,1).
(ii-b) If p < 0 and 6 > —1, then
Snsy =18 =18peo = G2 = Bs, Sxry(@) = DS =DSop = Ha =B = L(¢,17) = P-
(ii-c) If p > 0and 6 < —1, then

Snsy =IS8p = G2 =Bs =P, Syrv(0) =ISwp =Hs = Bs = L(0, 1)
(ii-d) If p > 0 and § > —1, then

Snsy = DSpeo = G2 = Bs, Snrv(@) = DSop = Ha = Bs = L(0,17) = P.

Observe that Theorem 2.1 and Theorem 2.2 have the same general assumptions. They differ
in the conditions regarding mutual behavior of | and R. We emphasize that the combinations
J] =0 AR < oand | < o AR = oo, which are assumed in Theorem 2.2, can occur only in
the purely half-linear case (i.e.,, « # 2), and that is why we separate them into a particular
theorem. In view of equalities in (1.13), it is easy to find a suitable example illustrating this
setting. Indeed, take L,(f) =1 and L,(t) =1/In“t, wherel <w <a—lora—1<w < 1.
It so arises out that the structure of the solution space in the half-linear case is generally
more complex than in the linear one under our setting. In particular, under the conditions
of Theorem 2.2, there can coexist strongly monotone solutions with non-extremal ones or
intermediate solutions with dominant or subdominant ones. See also [4,5] where the problem
of coexistence and non-linear setting is discussed in a more general context.

Theorem 2.2. Let (1.11) hold, where v = 6 + «, and C,, = 0. For the relations involving the class
Lo, 1) assume, in addition, |L(0,n,-)| € RV(y—1),n <0, and if the condition § < —1 is supposed,
let, in addition, 6 < —1+n(a —1). Then S = Sysy USary(0), Snsy # D, Syry(0) # D, and
the following hold:

(i) Assume that | = co and R < oo,
(i-a) If p < 0 and § < —1, then

Snsy =DS =DSop =G1 =P, Syrv(0) =18 =ISwp = Hs = Bs = L(0, 7).
(i-b) If p < 0 and 6 > —1, then

Snsy =18 =180 = G1, Snrv(0) = DS =DSop = Hy = B = L(0,17) = P.
(i-c) If p > 0 and § < —1, then

Snsy =LZSe0 = G1 =P, Syrv(0) = ZSwp = Ha = Bs = L(0, 7).
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(i-d) If p > 0 and 6 > —1, then
Snsy = DSoo = G1, Syrv(0) = DSop = Ha = Bs = L(0,17) = P.

(i1) Assume that | < oo and R = oo.
(ii-a) If p < 0and § < —1, then

Sysy =DS =DSpy =Gy =B5 =P, Syryv(0) =Z8 =ZS w0 = H1 = Ho = L(0,1)-
(ii-b) If p < 0 and 6 > —1, then
Snsy =Z8 =Z8pe = G2 = Bs, Syry(0) = DS = DS = Hpy = Ho = L(0,57) = P.
(ii-c) If p > 0 and 6 < —1, then

Snsy =L8po = G2 =Bs =P, Snrv(0) = LS = H1 = Ho = L(0, 7).
(ii-d) If p > 0and 6 > —1, then

Snsv = DSpeo = G2 = Bs, Syry(e) = DSop = Ho = Ho = L(o,17) = P.

The next theorem can be seen as a complement of Theorems 2.1 and 2.2 in the sense
that the condition 6 +a = < will not be satisfied. We assume J + a < < which implies
Cy =0,] < o, R < o0; this can be seen from Proposition 3.1 (see the proof of Theorem 2.3).
On the other hand, in contrast to the case of equality § + a = 7, the strict inequality allows us
to consider a richer variety of combinations of conditions § < -1, > -1,y <a—1,7v >a —1.
Observe that under the setting of Theorem 2.3, there are no extremal or intermediate solutions.
The case 6 +a > < is not considered since then there are no regularly varying solutions.
Indeed, by Proposition 3.1, we then have |C,| = co. If p < 0, then by [23], the set S is
nonempty and consists entirely of the solutions in the de Haan classes I' and I'_, which are
subsets of rapidly varying functions. If p > 0, then equation (1.1) is oscillatory by Hille—
Nehari type criteria, see [6, Chapter 3], and so S is empty. In fact, to show that there are no
RV solutions, we can argue in a alternative way, namely that the necessary condition is not
fulfilled, see Lemma 3.5.

Theorem 2.3. Let (1.11) hold, where v > & + . For the relations involving the class L(o, 1) assume,
in addition, |L(o,1,-)| € RV(y—1), y < 0, and if the condition v < a — 1 is supposed, let, in
addition, v < (x —1)(1 + 7). Then S = Sysy USvrv(0), Snsy # D, Sxyry(0) # @, and the
following hold:

(i) Assume that 6 < —1and v < a — 1.

(i-a) If p < O, then

Sysy =DS =DSpy = Go = B3 =P, Snry(0) =18 =LSwp = Hs = By = L(0,1).
(i-b) If p > 0, then
Snsy =ZSpo = G2 = B3 =P, Syrv(e) =ZS«p=Hs=DBs=L(e7).

(ii) Assume that 6 > —1 and v > a — 1.



10 P. Rehdk

(ii-a) If p < 0, then
Snsy =I8 =I8py = Gy =Bs, Syry(0) =DS =DSop =Hy=By=L(0,7) =P.
(ii-b) If p > 0O, then

Snsy = DSpeo = Go = B3, Syry(0) = DSop = Ha =By = L(0,n7) =P.

(iii) Assume that 6 < —1and v > a — 1.
(iti-a) If p < O, then

ISnsy =18 =1S8pp=B1 =B #Q,
DS sy = DSpoUDSpg, DSpy=Gr = B3 #0D, DSpp =B1 =82 #9D,
Snrv(0) = DSyry(0) = DSop = Ha = By = L(0,17) = P.

(iii-b) If p > 0, then

ISnsy =18 =18p)UZSpp, LSpy =G =Bs #D, ISpp = B1 =By # D,
DSynsy =DSpp =B1 =B, #Q,
Svrv(0) = DSnyry(0) = DSop = Ha = By = L(g,17) = P.

One can see that the case § > —1 and v < a — 1 is not considered in the previous theorem.
This is quite natural because there are no regularly varying solutions; the reasons are almost
the same as in the case « + ¢ > 7 (discussed before Theorem 2.3). Indeed, if p < 0, there are
solutions only in the de Haan classes I' and I'_, see [23]. If p > 0, then (1.1) is oscillatory by
Hille-Wintner type criterion, see [6]. Alternatively, we can again argue by Lemma 3.5 since
b+a>—-1+y+1=1.

The next theorem can be seen as a complement to the previous ones in the sense that
previously was assumed (or was guaranteed) C, = 0 and now we take C, # 0. Note that
C, #0and r € RV(y) imply |p| € RV(y — «). Indeed, from (1.2) and Proposition 3.1, we
have |p(t)| ~ |Cy|t7*r(t) € RV(—a+ ) as t — oo. In general, we do not need to exclude
the critical case vy = a« — 1. However, if we take C, > 0, then necessarily v # a — 1 since we

assume C, < K, where
e —1—9]\"

K7:<a : 2.2)
We denote

0 = @A), % < 0,
where A1 < A, are the (real) roots of

A =
a—1 +a—1

F,(A) == AP+ 0. (2.3)
If 7 = 0 in Theorem 2.4, then we do not need to assume y + a(d% — 1) + 17, > —1, since
this inequality is satisfied automatically thanks to the properties of the roots, see Lemma 3.6.
Observe that under the setting of Theorem 2.4, there are only extremal solutions (when p < 0)
or intermediate solutions (when p > 0). In the case C, = K,;, generally oscillation or nonoscil-
lation of (1.1) can occur. Nonoscillation is guaranteed e.g. by t*p(t)/r(t) < C, (this follows
from the Sturm type theorem, see [6]), or by the conditions of [9, Theorem 2.2, Theorem 3.2],
or by some suitable nonoscillation criterion, see, e.g., [6, Chapter 3].
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Theorem 2.4. Let C, € (—o0, K|\ {0} and r € NRV() N Cl, v € R. For the relations involving
the classes L(0;,1;), i = 1,2, assume, in addition, |L(9;,7;,-)| € RV (y; — 1), where 111,12 < 0, and
YH+a(®r—1)+n2 > —1. Then S = Syry(%) USyry(82), Snry(9:) # D, i = 1,2, and the
following hold:

(i) Assume that C,, < 0. Then

Syry () =DS =DSo = L(%1,m1) =P, % <0,
SNRV(ﬁZ) =78 =TS w0 = ﬁ(ﬁz,i’]z), % > 0.

(ii) Assume that 0 < C, < K,; the strict inequality C, < K, is required only when the relations
involving the classes L(9;,1;), i = 1,2, are considered. If C, = K, we assume, in addition, nonoscil-
lation of (1.1).

(ii-a) If v < o — 1, then

Syry(01) USNRrY(02) =S8 =Z8 = IS0, 1,02 >0,
Snyry(01) = L(01,11) =P, Syry(02) = L(82,12).

(ii-b) If v > a — 1, then

S./\/'RV<191) U S./\[Rv(ﬂz) =85=DS =DSp, %,% <0
Snry(81) = L(01,m) =P, Snvryv(82) = L(02,12)-

For various examples that illustrate, in particular, the asymptotic formulae in particular
settings, see [20,22]. Among others it is shown that the situation where f uoo |L(01,11,5)|ds = o0
and [ |L(82,12,5)| ds < oo (or vice versa) can occur even when 13 = 17, = 0.

In [21,22] we explore how some of the above results can be applied to the half-linear
equation of the form

(@) +a(t)@(y) + b(H)(y) =0

to analyze its Poincaré-Perron solutions (that is the solutions y such that lim;_,. y'(¢)/y(t)
exists as a finite number). The equation can be viewed as a perturbation of the equation with
constant coefficients. A key role is played by a suitable transformation, and we believe that the
new results of this paper could be extended in this sense. Another direction is an extension
to the critical (double-root) case which is roughly explained at the beginning of this section.
Since theory of regularly varying sequences is at disposal and difference equations often show
their particularities (when compared with their continuous counterparts), a discrete version
of our results is also of interest.

3 Auxiliary statements and proofs

We start with selected properties of regularly varying functions.
Proposition 3.1.

(i) If f € RV(9), then In f(t)/Int — O as t — oo. It then clearly implies that lim;_,e f(t) = 0
provided ¢ < 0, and lim;_,« f(t) = oo provided ¢ > 0.

(ii) If f € RV(9), then f* € RV (a0) for every & € R.
(le) Iffz € RV(I%), i= 1,2, fz(t) —00ast — oo, then fl sz € RV(ﬁlﬁz)
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(iv) If fi € RV(9;),1=1,2, then f1 + f» € RV (max{d, % }).

() If fi € RV(0;),i=1,2, then f1f» € RV(81 + 9).

(i) If f1,...,fun € RV, n € IN, and R(x1,...,x,) is a rational function with nonnegative coeffi-
cients, then R(f1,..., fu) € RV.

(vii) IfL € SV and ¢ > 0, then t°L(t) — oo, t °L(t) — 0as t — co.

(viii) If f € RV(9) and a measurable g is such that g(t) ~ f(t) as t — oo. Then g € RV(9).

(ix) If f € RV(8), 0 # 0, then there exists g € C' with g(t) ~ f(t) as t — oo and such
that tg'(t)/g(t) — O, whence ¢ € N'RV(8). Moreover, g can be taken such that |g'| €
NRV(®—1).

(x) Let f be eventually positive and differentiable, and let lim; o tf'(t)/f(t) = 0. Then f €
NRV(9).

(xi) If |f'| € RV(9), O # —1, with f' being eventually of one sign, then f € NRV (8 +1).

Proof. The proofs of (i)-(x) are either easy or can be found in [1,8]. For (xi) see [19]. O

The following statement (the so-called Karamata integration theorem) is of great impor-
tance in our theory.

Theorem 3.2 ([1]). Let L € SV.
) If9 < —1, then [ s°L(s)ds ~ t*TIL(t) /(=0 — 1) as t — oco.
(i) If & > —1, thenf 19L ds~tl9+1L( )/(19+1) as t — oo.

(iii) If f * L(s) /s ds converges, then L(t) = [ L(s)/sds isa SV function; if [ L(s)/s ds diverges,
then L(t f L(s)/sdsisa SVfunctzon, in both cases, L(t)/L(t) — 0 as t — 0.

Finiteness of the limit in (1.2) guarantees (in nonoscillatory case) regular variation of all
positive solutions.

Theorem 3.3 ([22]). Let r € RV(y), v € R, and C,, € (—oo,K,] be defined by (1.2), K, =
(loa =1 —7|/a)* . We assume, in addition, nonoscillation of (1.1) when C = K., with t*p(t)/ (t) £
2)

K., (in all other cases, nonoscillation is automatically guaranteed). Then S = Syrry(91) U Sarry (&
with Snry (%1) # @ # Syry(92), where Aj = ®(8;), i = 1,2, are the roots of (2.3).

Remark 3.4. In the proof of Theorem 3.3 it is actually shown that for any y € S, we have
lim; 0 ty'(t)/y(t) € {01,%2}. That is why any regularly varying solution is automatically
normalized; in other words, (2.1) holds. But even without a-priori assuming (1.2), it can be
proved that Sgy(9) C Syrry(9) under the assumption of regular variation of r, by means of
Lemma 3.5 and Proposition 3.1. Normality follows also from the asymptotic formulae or from
monotonicity of solutions and quasiderivatives with the help of the properties of regularly
varying functions.

Under our setting, condition (1.2) is necessary for the existence of a regularly varying
solution.

Lemma 3.5 ([22]). Let (1.11) hold with § # —1 and v # « — 1. If Sgy(8) # @, where A = ®(0) is
a real root of (2.3), then limy_, t*p(t) /1(t) = C,and § +a < 1.

Lemma 3.6 ([22]). Let A{™ < A3 denote the (real) roots of (2.3) when sgn(a — 1 — ) = £1 and let
A1 < Ay denote the (real) roots of (2.3) when v = a — 1. Set 97 = ®(AF) and 8; = P(A;), i =1,2.
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(i) Let v # a — 1. If C, < O, then 8505 < 0, |87 | = 0,, and [9]| = 05 > |o|. IfC, =0,
then 97 = 0, = 0and —9] = 05 = |o|. If C, € (0,K,), then 9785 > Oand 0 = |0;] <
ly+1—al/a <8 =[8;| <|o|. IfCy =K,, then —0; = =0, =0 =0 =|y+1—a|/x
(i) Let v = a — 1. Then C,, < 0 with ¢, = 8, = 0 when C, = 0 while 15, = +(|C,|/(a — 1))1/*
when C,, < 0.

Denote

I :/amvl(t)dt, ]zz/:ovz(t)dt, Ry :/mwl(t)dt, Rz:/sz(t)dt, (3.1)

a a

where

Vi(t) = AR () (/t p(s)] ds>ﬁl, Va(t) = B (1) </t°° 19(s)] ds)ﬁl,

wi) = ol ([ 150 as) " wan = ol ([T seas)

a

These integrals naturally occur when studying (non)emptiness of the classes ZS,,,, DS, and
play an important role also in characterization of principal solutions, see [2—6]. Later, in the
proofs we use some of these results.

Since we work in the framework of regular variation, some specific and useful properties
of V4, Vo, Wi, W can be derived.

Lemma 3.7. Let (1.11) hold. Then

(i) Vi(t) ~|G(t)|/]6 +1|f~1 as t — oo, where i = 1 when 6 > —1 while i = 2 when 6 < —1.

(i) Wi(t) ~ |[H(t)|/]7(1 = B) +1]* Last — oo, where i = 1 when v < a — 1 while i = 2 when
vy>a—1

(iii) If 6 < —1, then Vy(t) ~ ]57171*5(1‘) as t — oo, where J, is defined in (1.3).

(iv) If v > a — 1, then Wy (t) ~ J¥ Y p(t)| as t — oo, where J, is defined in (1.3).

Proof. The asymptotic formulae in (i) and (ii) follow from the Karamata Integration Theorem
(Theorem 3.2). The relations in (iii) and (iv) are obvious; convergence of the integrals ], and
J, respectively, is a consequence of Theorem 3.2. O

Remark 3.8. Let (1.11) hold. If § > —1, then [~ |p(s)|ds = oo, thus [ Vi(s)ds cannot
converge. If v < a — 1, then [~ r17P(s) ds = oo, thus [~ W»(s) ds cannot converge. Now from
Lemma 3.7 it easily follows that:

(i) Letd > —1. Thena) J; =00 < | =00, b) J, = oco.

(ii) Letd < —1. Thena) [ =0 & [, =00,b) , =00 & | = o0.
(iii) Lety <a —1. Thena) Ry =00 & R = 00, b) Ry = 0.

(iv) Let y >a —1. Thena) Ry = o0 & [, = 00, b) Ry = 00 & R = 0.

The first statement in the following lemma is sometimes called the reciprocity principle and
equation (3.2) is called the reciprocal equation (to equation (1.1)).
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Lemma 3.9. Let y be a solution of (1.1) with p # 0. If u = |y

(F(H)~ () + p()@ ™! (u) =0, (32)
where 7 = |p|' P and p = r'=P sgn p. In particular, ify € S, then
ue S = {u:uisan eventually positive solution of (3.2)}.

IFG(t) = ©(tH(t) /7(t)) and H(t) = t5=15(t) /7(t), then

G=H ad H=0G. (3.3)

If (1.11) holds, then
5] € RV(8) and 7 € RV(7), where § = y(1 — B) and 7 = 6(1 — B). (3.4)
Proof. Since u' = —p®(y), we get y = —|p|' PO 1 (u')sgnp. From u = r®(y’), we have
y = r'=P®d1(u). Thus we find that u satisfies (3.2). The relations in (3.3) are obvious. The
relations in (3.4) follow easily by Proposition 3.1. O

Remark 3.10. For the notation of subclasses of S we use the “circumflex analog” of the no-

tation of subclasses of S. For instance, DS and DSy mean the set of eventually decreasing

solutions of (3.2) and the subset of DS where u € Z/DTSBO tends to a positive constant with

lim 0 7(t)@ 1 (u(t)) = 0, respectively. Similarly we approach to the notation of the classes

for the solutions satisfying prescribed asymptotic formulae. For example, G, is defined as
={ue S:u(t) = M, €(t, oo,1/<I>(3\—|— 1),@) }, where M, = lim;_,co u(t).

Lemma 3.11. Let (1.11) be satisfied with 6 # —1 and v # a — 1. Then the following hold:

(1) DSy UDSBeo UZSB) UZSBeo C X, where X = Bs when 6 + a = vy, while X = B3 when
b+ <.

(ii)) DSop UZSp C X, where X = Bg when § + o = 7y, while X = By when § +a < 7.

(iii) ZSgp UDSpg C B;, i =1,2.

Proof. (i) Let y € DSpy U DS UZSpy UZSps. Then y € Ssy, and SO Y E S/\/sv, see Re-
mark 3.4. Integrating (1 1) we get y!(¢) ~ Py(t) ast — oo, where Py(t) = [~ p (s))dsor

ft )) ds according to whether 6 < —1 or 6 > —1, respectlvely Applymg
Theorem 3.2 and usrng y( ) ~ My, where M, = lim; ., y(t), in both cases we get

P ~ S (OR() ~ 7 tp(HE(M,)

as t — oo, thus y/(t) ~ —M,G(t)/P (6 + 1) as t — co. Integrating the last relation from # to

oo, we obtain
—-M 00

as t — oo. Assume that 6 +a = 7. Since |G| € RV(—1), from Theorem 3.2 we get t|G(t)| =
o (" |G(s)|ds) as t — co. Combining the last relation with (3.5), we find that y € Bs.
Assume that 6 + « < 7. Then, in view of Proposition 3.1, |G| € RV({ — 1), where { =
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(B—1)(6+1—1)+1. From 4« < 7 we have { < 0. Hence, Theorem 3.2 yields [, G(s) ds ~
—tG(t)/{ as t — oo, thus (3.5) implies y € Bs.

(ii) Let y € DSop UZSwp C X. Set u = |yl!)|. We have u = +y[!l according to whether y €
IS or y € DS, respectively. Then u satisfies (3.2), and lim; o u(t) = M, where M, = |N,/,
Ny = lim e yl(t). Since, in addition,

ull =707 1(w') = [p|" PO (£ (r@(y))') = F|p/' PO (p@(y)) = Fysgnp, (3.6)

we get
u € DSy UDSBeo UZSE) UZSBeo. (3.7)

We use the convention introduced in Lemma 3.9 and Remark 3.10. The reciprocal version of
0+a < qisd+ f < ¥;itis easy to see that the inequalities are in fact the same. In view of
(3.7), we can apply part (i) of Lemma 3.11 to the reciprocal equation. If § + « < 7, then

INy| = [y (6)] = My — u(t) ~ cp@f f)%llﬁ)— P @(f)))
Ny () Ny

GG RS |y (2§ R R 13 Bl Py s L)

as t — co. Consequently, y € By. Similarly we find that B is reciprocal version of Bs.
(iii) Let y € ZSpp U DSpp. From (1.1), (y1(¢))" ~ —M;‘lp(t) as t — co, where M, =
lim; e y(t). Theorem 3.2 yields

_ aqa—1
My

Ny = y(e) ~ =Myt [ p(s) ds e ()

as t — oo, where N, = limHooym(t). This implies ZSpp U DSpp C By. From the relation
yl(t) ~ N, as t — oo, which is equivalent to y'(t) ~ ® (N, /r(t)), by Theorem 3.2, we
obtain

PNy
T=p)y +1)
as t — oo. This implies ISBB U DSBB - 81. ]

®1(Ny)

trl =P () = — tr1 =P (1)

M, — y(t) ~ ®(N) /t°° (s ds ~

Lemma 3.12. Let (1.11) be satisfied with 6 # —1 and v # « — 1. Then the following hold:
(l) If] = 09, then (DSOO UISOOOO UISOOO U DSOOO) NSy - Ql.
(ii) If] < o0, then ZSpy U DSpyp U ZSBeo U DSBeo T Go.

Proof. Take y € Ssy. Note that in (i) slow variation is assumed, in (ii) it clearly holds, and
Ssy = Sysy, see Remark 3.4. We have |p|®(y) € RV () by Proposition 3.1. Let 6 < —1. Then
f:o |p(s)|®(y(s)) ds < oo by Theorem 3.2. Observe that the classes considered in the lemma,
which correspond to this setting, are DSp, ZS 0. Indeed, from (1.1) we have

) = )| = [ oot ds 68)

and because of the convergence of the integral we cannot have lim;_,, |y!!/(£)| = co. Assume
that y belongs to such classes. Integrating (1.1) from ¢ to co, Theorem 3.2 yields

1) = = [ pe)@(s) ds ~ PO () 9)
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ast — co. Similarly, under the condition § > —1, which corresponds to the classes DS yo0, ZS xeo
(this follows from (3.8) and the divergence of the integral), integration of (1.1) from ¢ to t and
Theorem 3.2 lead to

y) =y(t0) — [ P66 ds ~ = [ pe)@(y(s)) ds ~ — 1 ip(N(E) (310

fo to

as t — co. Consequently, no matter what § # —1 is, both (3.9) and (3.10) lead to

e ()0 () (e on

as t — co. The following observation which was established in [22] will be useful in the sequel.
Let A € R, &1(t) — 0 as t — oo, and f be a positive function such that [ f(t) dt = co. Then
there exists €,(t) — 0 as t — oo such that

A+ /at(l +€1(s))f(s)ds = /at(l +e2(s))f(s)ds. (3.12)

If ] = oo, then integration of (3.11) from ¢; to ¢ yields

Iny(t) =Iny(ty) + /t:(l +0(1))®? (5;1> G(s)ds

_ /t:(1+0(1))®_1 (5111) G(s)ds
— /at(1+0(l))<I>1 <5;11> G(s) ds

as t — oo, where we applied (3.12) twice. Taking exponential, we find that y € G;. If ] < oo,
then integration of (3.11) from f to oo yields

—lnyAEIty) = /toocbl <_<15—:_01(1))> G(s)ds

as t — oo, where My, = lim; , y(t), which leads to y € G». O

Remark 3.13. Let (1.11) hold with § # —1 and v # a — 1. Let Syrsy # @ and recall that it
implies (1.2) with C,, = 0 by Lemma 3.5. Assume that | = co and note that then necessarily
0+ a = 7. Indeed, 6 + o < 7y would imply | < co while 6 + a > 7y would imply Sysy = @.
From [19, Section 6] and [23, Section 4] it follows that if p < 0, then

Sysy € DSpp  provided 6 < —1,

Snsy € IS provided 6 > —1.
From [22, Section 5] we have, if p > 0, then

Sysy €IS« provided 6 < —1,
Sysy € DSpee  provided 6 > —1.

Assume that ] < co. From [19, Section 6], [22, Section 5], and [23, Section 4] we have, if p < 0,

then
Snysy € DSpy provided 6 < -1,y <a—1,

Sysy € IS provided 6 > —1,7 >a — 1.
From [22, Section 5] we have, if p > 0, then

Sysy €ZISpy provided 6 < -1,y <a—1,

Sysy € DSps provided 6 > —1,7 >a —1.
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Lemma 3.14. Let (1.11) be satisfied with 6 # —1 and -y # « — 1. Then the following hold:

(i) If R = oo, then (DS U DSpee) NRV(0) € Hp = Ho and (ZS oo UZSw0) N RV(0) C
Hq = Ho.

(ii) If R < oo, then DSop C H4 and ZS«p C Ha.
(iii) IfR = oo, then H1 = Hy = Ho.

Proof. We will prove the case when R < oo for the class DSp with details. The other cases in
(i) and (ii) can be proved similarly. Let y € DSpp. Set u = —y[!l. Then u satisfies reciprocal
equation (3.2) and u € §by Lemma 3.9. Since y € DSy, we get u(t) ~ M, as t — oo, where
M, = =N, = —lim; o y(£). As in (3.6), we get ulll = ysgnp, and therefore ulll(t) — 0
as t — oo. Consequently, u € DSpy or u € ISpg according to whether p < 0 or p > 0,
respectively. In view of Lemma 3.12-(ii), we get u € G,, that is

u(t) = My exp {/too qizf:s\j—(ll))@ (;ﬁ((:))) ds}

as t — oco. We use the convention from Lemma 3.9 and Remark 3.10. Thus we find that

020/ (1)) = u(t) = ~Nyexp { [~(1-+0(1)) (s ds

which yields
V() =@ (NP ep { [0 o) Bt ds)

as t — 0. Since y € DS, integration from ¢ to oo leads to y € Hy.

It remains to prove H; = Hp = Ho when R = . Take y € H;. In view of (1.13)
and representation (1.9), we have &(a,-, —(B — 1)®(0), H) € SV. Therefore, r' f&(a,-, — (B —
1)®(0),H) € RV(y(1 — B)) by Proposition 3.1. Hence, from Theorem 3.2 and thanks to
divergence of [ |H(t)| dt, utilizing (3.12), we obtain

y(B) = (140" We ( L5 H>

ol ®(e)’
140(1) — —
=t ()" W @ (a, t, —'Bl,H) =tr' P(t)e (a, t, —/H,H>
@ (o) @ (o)
as t — o0. Thus H1 C Hp. Using similar ideas, we obtain the opposite inclusion. The equality
Ho = Hop can be proved analogously. O

Remark 3.15. Let (1.11) hold with 6 # —1 and v # a — 1. From the reciprocity principle
(see Lemma 3.9) combined with the ideas of Remark 3.13, recalling the relations u = j:ym,
ulll = Fysgnp (see (3.6)) and G=H (see (3.3)), we obtain the following claims. Assume
R = oo (which implies § + a = ). Then

Snvry(0) € ZSwe provided 6 < —1,p <0,
Syry(0) CDSy provided 6 > —1,p <0,
Syry(0) CZSw provided 6 < —1,p >0,
Syry(0) € DSpo  provided 6 > —1,p > 0.
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Assume R < co. Then

Svry(0) CZSwp provided 6 < -1,y <a—1,
Syry(0) € DSpp  provided 6 > —1, 7 >a —1.

Lemma 3.16 ([22]). Let r € NRV(v) N CL, v € R, and (1.2) hold with C,, < K,, K, being defined
by (2.2). Assume that |L(9;,1;,-)| € RV(y;i —1), i = 1,2, where ®(d1) < P(02) are the roots of
(2.3), 11,112 <0, and v+ a(d — 1) + 12 > —1. Then

Snvry(9:) € Le(0,mi),  i=1,2, (3.13)

where k = 1 when [ |L(8;,1;,5)|ds = oo, while k = 2 when [ |L(8;,1;,5)|ds < oo; if C, = 0,
we consider only the nonzero root in (3.13).

Lemma 3.17. Let (1.11) be satisfied with p > 0, 6 # —1, and v # « — 1. Then the following hold:

(i) Ify € SSINRV(Y), 8 € R, where S| = TSep U DSpeo U ISpy U DSpeo, then |yl €
RV +1+ (x—1)8) and |y'| € RV(B—1)(6+1—7)+9). Ify € S;NRV(Y) and
S+ a =1, then [y'| € RV(0 —1). If, in addition 8 = o, then |y!!]| € SV.

(i) If y € SaNRV(8), where Sy = TSeop UDSpp, then ¢ = o, [yM| € SV, and |y/| €
RV(0—1).

Proof. (i) Let y € S; NRV(8). Then |y!| tends to 0 or oo and p®(y) € RV(6 + d(a — 1)) by
Proposition 3.1. Hence, integrating (1.1) from fg to ¢ or from t to oo (according to whether
6+ ®(a — 1) is positive or negative, respectively), realizing that y[! () — y[U(ty) ~ yl(¢) in the
former case, and using Theorem 3.2, we get

0] ~ s PO

as t — oo, which implies |yl!l| € RV(6 + 1+ &(a —1)). In view of Proposition 3.1, we get
V| e RV(B-1D[0+1+(a—1)8—79]) =RV({(B-1)(6+1—7)+0). If 6 +a = v, then
the last index reduces to & — 1. If & = g, then for the index associated to |y[1]| we have
S+1+0a—1)=64+a—7=0.

(i) Let y € So NRV(8). Then yll(¢) ~ Ny as t — oo, i.e.

y'(t) ~ @7 (Ny)r P (1) (3.14)

as t — co. Integrating this relation from f, to t or from ¢ to co (according to whether v < a —1
or v > a — 1, respectively), realizing that y(t) — y(to) ~ y(t) in the former case, and using
Theorem 3.2, we get

|27 (Ny)] B _
y(t) ~ m“’l € RV((1 = B)y+1) =RV(0),
thus @ = 0. In view of (3.14), we get |y'| € RV(—v(1—B)) = RV(¢ — 1). O

Lemma 3.18. Let (1.11) hold with v # a« — 1. If NSV N (DSyUZSx) # D, then v = § + a,
NSVNDSy = DSy UDSpeo, atd NSV N IS = IS w00 UZS 0.
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Proof. Takey € NSV N (DSyUZS). Then, in view of Proposition 3.1, | (r®(y))'| = |ply* ! €
RV(6). If [ |p(s)ly*~1(s) ds diverges, then lim;_,c | yl(t)| = o0, and the Karamata Integra-
tion Theorem (Theorem 3.2) applied to equation (1.1) after integration yields

MO OF ~ 0@/ 1) = O ()] ~ [ [p(s)ly(9)ds € RV +1)
as t — oco. Similarly, if [ [p(s)[y*~!(s) ds converges, then

Ol O = [ pE)ly (s ds € RV(E+1)

by Theorem 3.2. Indeed, lim;_ y!"(t) = N, would lead to y'(t) ~ @ 1(N,)r'F(t),soy €
RV(0), 0 # 0, contradiction. Thus in any case, |y'|*! € RV(6 +1— v), and therefore
lv'| € RV((64+1—1)/(a—1)) by Proposition 3.1. Since y € DSy or y € IS, in view of the
Karamata Theorem, y € RV((6+1—7)/(a —1)+1) =RV((6+a—7)(B—1)). Buty € SV,
and so it must hold that vy = 4 «. O

In spite of the fact that many of the claims which are included in the next statement were
already proved above (as it was within the more general setting), for completeness and easier
reference we prefer to present some conclusions from [19] in the form of individual lemma.

Lemma 3.19 ([19]). Let p <0, C, = 0, and (1.11) hold, where v = 6 + a.

(i) Let 6 < —1. If] = oo, then Sgy = DS = DSy C G;. If] < oo, then Ssy = DS = DSpy C
Ga. If R = oo, then Spy(0) =ZS = IS0 C Hi. If R < 00, then Sgy(0) =ZS = ZSwp C
Hs.

(ii) Let 6 > —1. If ] = oo, then Sgy = 1S = LS w000 C G1. If | < 00, then Ssy = IS = ISps C
Go. If R = oo, then Sgy(0) = DS = DSoy C Hy. If R < oo, then Sgy(0) = DS = DS C

Hy.

Theorem 3.20 ([5]). Let p < 0. Then

p_ DSp if 1 =ccand Jp < oo,
DSy otherwise.

The lower limit a in the integrals in Theorems 3.21, 3.24, 3.26 is taken such that y(t) > 0
and y'(t) # 0 for t > a. In the paper [3], an example is given showing that condition (3.15)
cannot be omitted. As we will see, in our proofs, the cases where (3.15) fails to hold can
fortunately be treated by Theorem 3.24.

Theorem 3.21 ([3,6]). Let p > 0 and (1.1) be nonoscillatory. Assume that
Jy=occanda>2 or J,=c0and1l <a <2 (3.15)

Then, fory € S,
y € P ifand only if / Flyl(t) dt = oo,

where Fly] = y'/ (y*y™).
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Theorem 3.22 ([2]). Let p > 0 and (1.1) be nonoscillatory. Assume that J, + ], = oo. Then
yeP ifandonlyif |yV|eP,
where P = {u € S : u is principal}.

For ¢ € (1,00), define the function ¢¢ : [0,1] = R by
1—#¢ -1

=2 (1-1)8 1 ifte(o,1),

t) =< -t 3.16

e (t) {g I (3.16)

Denote m := min{g@g(t) : t € [0,1]}, M := max{g@g(t) : t € [0,1]}, where B is the conjugate
number of «.

Lemma 3.23. It holds that ¢g(0) = 2, ¢g(1) = B, ¢p(1/2) =2, and m > 1. If 1 <« < 2 (i.e,
B > 2), then @ is strictly convex on [0,1] and, in particular, M = B.

Proof. The equalities @g(0) = 2, (1) = B, ¢p(1/2) = 2 are obvious. The convexity of ¢z on
[0,1] when « € (1,2) can be demonstrated via standard calculus tools. The equality M = f
follows from the convexity of @g. ]

Theorem 3.24 ([13]). Let ], = oo and y € S. Denote Tx[y] = r' Py K, K e R.
(i) Ify € P, then [ Tuly](s) ds = oo.
(i) If [ Tmly](s) ds = oo, then y € P.

Remark 3.25. By means of the reciprocity principle (see Lemma 3.9), with help of Theo-
rem 3.22, the condition ], = co in Theorem 3.24 can actually be relaxed to [, + J, = 00; Ty, T
are then appropriately modified. For details see the proofs of Theorems 2.1, 2.2, 2.3, and 2.4,
where this trick is used.

Theorem 3.26 ([2]). Let p > Oand ], + ], < co. Then

e 1
€ P ifand onl / —————— dt = 0.
yEeP dandonly | e T
In view of their common setting, it is senseful to prove Theorems 2.1 and 2.2 simultane-
ously.

Proof of Theorems 2.1 and 2.2. Let p < 0. If ] = o0 and § < —1, then Syrsy € DSy C Gy by
Lemma 3.12-(i) and Remark 3.13. Since G(t) = @~ 1(L,(t)/L,(t))/t and limy e L, (#)/L,(t) =
0, we have G; C Ssy = Sysy by the Representation Theorem (see (1.9)) and Remark 3.4.
From [23] we know that DS C NSV, thus DSyy C N'SV. In view of (1.4)

S=8ysyUSyrv(0), Snsv#D,  Swrv(e) #9 (3.17)

(which follows from Theorem 3.3), we get Sy'sy = DS = DSop = G1. Analogously we obtain
Sysy = IS = ISxw0 = Gy when | = co and § > —1. If | < oo, then in a similar manner
as above we use Lemma 3.12-(ii), the obvious fact G, C SV, (3.17), (1.4), Lemma 3.19, and,
in addition, Lemma 3.11-(i), to get Sy'sy = DS = DSpy = Go» = Bs when § < —1 and
Sysy =18 = IS8po = G2 = Bs when 6 > —1. Note that Lemma 3.11-(i) yields DSpy C Bs
and ZSpeo C Bs, respectively. The opposite inclusions are obvious, since y belonging to
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Bs is slowly varying and there are no other slowly varying solutions than DSpy and ZSpc,
respectively, see Remark 3.13. Let R = oo and § < —1. Observe that #; C RV(p). Indeed, if
y € My, then y(t) ~ [ rIF(s)€(a,s,—(B—1)/ (o), H) ds € ([y(1—B) +0] +1) = RV(o),
where we use (1.9), Proposition 3.1, and Theorem 3.2. From Lemma 3.14-(i) and Remark 3.15,
taking into account Lemma 3.19, (3.17), and (1.4), we get Syry(0) = ZS = ZSwe0 = Hi.
Lemma 3.14-(iii) gives H; = Ho. Because § +a = 7 and ¢ is the bigger root of (2.3) when
d < —1, the condition v + a(% — 1) +#, > —1 from Lemma 3.16 reads as § < —1+y(a — 1)
which is assumed in Theorems 2.1, 2.2. Since also all other assumptions of Lemma 3.16 are
satisfied, we may apply it to obtain Syry(e) € L(o,7); we use convention (1.15). Since
limy_,e tL(8,7,t) = 0, from the Representation Theorem (see (1.9)) it follows that L(o,7) C
Syry(0). Analogously we proceed when R = oo and § > —1. Let us only note that in
this case, ¢ is the lesser root of (2.3) (since ¢ < 0) and therefore we do not need to verify
the condition v + a(d — 1) + 72 > —1 from Lemma 3.16. The case R < oo can also be
treated similarly; we use, in addition, Lemma 3.14-(ii) and Lemma 3.11. Next we derive the
relations with P. If § > —1, then J, = co by Theorem 3.2, thus [, = . Hence, P = DSy
by Theorem 3.20. If § < —1, then, in view of § + & = 7, we have v < a — 1, thus r'=F €
RV((1— B)7) with the index greater than —1, and so ], = oo (see Theorem 3.2), which implies
Ji = co. Further, by Lemma 3.7, Va(t) ~ |G(t)|/]6 + 1/F~1 € RV(~1) as t — oo. Hence, in
general, J> can converge or diverge. But we see that ], = oo if and only if ] = c0. According to
Theorem 3.20, if | = oo, then P = DS, while if | < oo, then P = DSp. Adding the relations
between P and DS resp. P and DSp to the other relations we obtain the complete picture
in the case p < 0.

Let p > 0. First of all note that by Theorem 3.3, (3.17) holds. Assume that 6 < —1. Then
v < a —1, r'~P thus has the index of regular variation greater than —1, and so J, = oo by
Theorem 3.2. Hence, (1.5) holds. Note that ¢ in (3.17) is now positive. If | = co, then by
Lemma 3.12 and Remark 3.13, we get Sy'sy NZSwp € G1 and Sysy € ZSwp. In view of
G1 C Sarsy (which follows from (1.9)) and (2.1), we have Sysy = G1 = ZS 0. If R = o0, then
by Lemma 3.14 and Remark 3.15, Syry(0) N ZSw0 € H1 and Syry(0) € ZS«o. In view of
H1 C Sry(0) = Syry(e) (which follows from (1.9)), we have Syrry(0) = Hi1 = ZS«0. By
Lemma 3.14, H1 = Ho. Assume that ] = o0 and R = co. Because of (3.17), (1.5), and the
observations from the previous parts, we have S = Syrsy USAyrY(0) € ZSw0 CZS = S. If
] < oo, then by Lemma 3.12 and Remark 3.13, Syrsy € ZSpo, Snysy € Go. If y € ZSp, then it
is clearly slowly varying and we get ZSpy = Sysy. Since Go € SV and (2.1) holds, we have
Sysy = G2. In view of Lemma 3.11, we obtain Syrsy C Bs; the opposite inclusion obviously
holds as well. If R < oo, then by Lemma 3.14 and Remark 3.15 it follows that ZS.p C H3z and
Syry(0) € ZSwop. From (1.9), Proposition 3.1, and Theorem 3.2, we have Hz C Syrry(0). If
¥ € ISwp, then ylll(t) ~ N, € (0,00) as t — oo. Expressing y' and integrating, Theorem 3.2
and Proposition 3.1 yield

D(Ny)

t) ~ | |t P (1) e RV(y(1-B) +1) =RV (3.18)
Vo)~ | g [P0 € RV((1 = B) 1) = RV(@)

as t — oo. Hence, ZS«p C Syry(0). Consequently, in view of the fact that regular variation
of solutions is normalized, we have ZSp = Syry(0) = Hs. From Lemma 3.11 we get

Syry(0) € Bg. The opposite inclusion is obvious. The settings ] < co,R < o0, or | =
0, R < 00, 0r | < 00,R = 00, can be treated by suitable combinations of the above presented
observations. Similarly as in the case p < 0, with the help Lemma 3.16, we show Syry(0) =
L(o,7); we use convention (1.15).
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The case p > 0 and § > —1 can be proved analogously to the case p > 0 and § < —1 (ap-
plying again (3.17), (1.9), Lemma 3.11, Lemma 3.12, Remark 3.13, Lemma 3.14, Lemma 3.16),
and therefore it is omitted.

In the last part of the proof we will show how P is related to the other classes when p > 0.
From the above established classification we see that any y € S must belong either to S; or S,
under the assumptions of Theorem 2.1 and Theorem 2.2. By Lemma 3.17 we have that F[y] is
regularly varying. Let ) denote the index of regular variation of F|y].

Assume first that (3.15) holds. If y € Syrsy, then Q = —6 —2. If § < —1, then QO > —1,
and so [ F[y](s) ds = co by Theorem 3.2. This yields Sy'sy € P by Theorem 3.21. Similarly
we obtain Syysy NP = @ when § > —1. Take y € Syry(0). Then Q = (B—1)(6+1—
¥)+0—20 = —0—1, see Lemma 3.17. If 6 < —1, then ¢ > 0, i.e, —0 —1 < —1, which
implies [~ F[y](s)ds < oo, and we obtain Sygry(0) NP = @ by Theorem 3.21. Similarly we
get Syry(0) € P when 6 > —1. Altogether, in view of (3.17), P = Sysy when 6 < —1, while
P = Syry(o) when 6 > —1.

Assume now that (3.15) fails to hold. The constants m, M will have the same meaning
as in Theorem 3.24. Let |, = oo (this means v < a — 1, thus, § < —1 since we assume
y#a—Tland §+a = 7)and a < 2. If y € Sysy, then ' Py € RY(—v/(a — 1)) by
Proposition 3.1. In view of ¢ < & — 1, the index is greater —1, and so [~ r!7F(s)y~M(s) ds = oo
by Theorem 3.2. Hence, Sysy C P by Theorem 3.24. If y € Syry(0), then r'=Fy=—" ¢
RV(—v/(a —1) — om). It clearly holds —y/(ax — 1) — gm < —1if and only if (a —1—)(1 —
m) < 0. The latter inequality holds since m > 1, see Lemma 3.23, and « — 1 > 7. Consequently,
[Zr17P(s)y~M(s) ds < oo by Theorem 3.2, and so Theorem 3.24 yields Syry(0) NP = @. In
view of (3.17), we have Sy/sy = P.

Let J, = oo (ie,d > —1,ie,y>a—1)and a > 2. Take y € Syry(0) andnotethatg <0
and S = DS. Set u = —yl!l. Then u is positive and satisfies (3.2), thus u € S. By Lemma 3.17,
u € Sysy. Because of our assumptions we have < —-land 7 < B — 1, where 6 and 7
are defined in (3.4). Thus we can apply Theorem 3.24 to reciprocal equation (3.2). Denote
M = max{¢,(t ) t € [0,1]} and note that ¢, can be understood as a reciprocal counterpart to
¢p. Since 71 u~M ¢ RV( Y(a — 1)), where 7(a — 1) > —1, we have [~ 717%(s)u *M(s) ds =
oo, which implies u € P. In view of Theorem 3.22, we get y € P, thus Syry(0) € P.
Now take y € Syry(e) and x € Sysy. Then, since we have ty'(t)/y(t) — o0 < 0 and

x'(£)/x(t) — 0 with t — oo, we get y/(t)/y(t) < x'(t)/x(t) for large t, hence x ¢ P by
definition. Consequently, Syry(0) = P. O

Proof of Theorem 2.3. Since t*p(t)/r(t) € RV(d 4+ a — ) (by Proposition 3.1) and 6 + a < 1, we
have C, = 0. Consequently (3.17) holds. The following observation will be repeatedly utilized
in the sequel. Thanks to (1.11), |G| € RV((6+1—7)(f—1)) and |H| € RV(a =1+ — )
by Proposition 3.1. It is easy to see that § +a < < is equivalent to (6 +1—)(B—1) < —1.
Hence, both the indices of |G| and |H]| are less than —1, and so

J<oo and R < oo. (3.19)

(i-a) Letd < -1,y <a—1,and p < 0. Take y € Sy'sy. Theny € DS. Indeed, if y € S,
then y!!! is positive increasing, hence there is A > 0 such that y!!l(t) > A for large t, say t > t.
Consequently, by Theorem 3.2 and Proposition 3.1,

y(t) = y(t) + 4% [ FB(s)ds € RV(v(1 — B)) = RV (o).

fo
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Hence, y is greater than or equal to a regularly varying function with a positive index, thus
cannot be slowly varying. Using similar arguments we find that for y € DS, the quasideriva-
tive y! (which is negative increasing) must tend to zero. Moreover, y € DSpy. Indeed,
if y € DSq, then v = 6 + a (see Lemma 3.18), which contradicts to § +a < <. Hence,
Snxsy € DSpy C DS. On the other hand, if y € DS, then it cannot be in ARV (g) since ¢ > 0
(and the functions with a positive index always tend to infinity, see Proposition 3.1), conse-
quently, in view of (3.17), we get DS C Sysy. Therefore, Syrsy = DSpy = DS. Consider
the class Syry(0). From the previous part we know that slowly varying solutions cannot be
increasing. Recalling (3.17), we get ZS C Syry(0). Applying Remark 3.8 and (3.19) we obtain
J» < c0oand R; < oo. Condition v < & — 1 implies J, = co and that is why J; = co and Ry = oo,
see Remark 3.8. According to [5, Theorem 1], see also [6, Chapter 4], we get ZS = ZSup.
Moreover y € Syry(0) cannot be decreasing since ¢ > 0, thus Syry(0) € ZS. We obtain
S/\/RV(Q) = ISooB =18.

It is not difficult to see that the relations of Syrsy with Gy, B3 and of Syry(0) with
H3,Bs, L(0,1) follow similarly as they were established in the proof of Theorems 2.1 and
2.2, with the help of Lemma 3.12, Remark 3.13, Lemma 3.14, Remark 3.15, Lemma 3.11,
Lemma 3.16, formula (1.9), and [22, Section 5].

(i-b) Let6 < —1,7v <a—1,and p > 0. Thanks to 7y < & — 1 and r'F € RV (y(1 — B)), we
have J, = oo (see Theorem 3.2), which implies (1.5). Take ¥ € Syrsy. Then lim;_,c0 ym (t) = 0.
Indeed, y!! is positive decreasing and if y[!l () ~ N, > 0 as t — oo, then as in (3.18), we get
y € RV(0), contradiction with y € Syrsy. Moreover, y cannot be in 7S« otherwise we would
get v = 6 + a (see Lemma 3.18), which contradicts to § + a < 7. Consequently, Syrsy € ZSpo.
The opposite inclusion is obvious, in view of (2.1). Take y € Syrgy(0). From the previous part
we get that y € TS0 UZS«p. We claim that ZS o = @. Indeed, if y € ZS o, then as in (3.9)
we obtain Do)

1 —tp(t)P(y(t
y[ ](t) YT 51 (3.20)
as t — co, which leads to (3.11). Integration of this relation from f to oo, in view lim;_,« y(t) =
oo, would give | = co. This however contradicts to (3.19). Hence, Syry(0) € ZSwp. In fact,
we have the equality here because of Syrsy = ZSpo and (3.17). The relations of Syrsy and
Syry(0) with G, H, L, B type classes can be treated as in the part (i-a).

(ii-a) Let 6 > =1, v > a—1,and p < 0. Take y € Sysy. Then y € ZS. Indeed, if
y € DSysy, then ylll is negative increasing, thus lim; . y[/(t) € (—0c0,0]. But at the same
time, as in (3.10) we get (3.20), where |tp®(y(t))] € RV(5 +1). Hence, yl(t) € RV(6 +1),
which yields lim;_,« ym (t) = oo, contradiction with y € DS. We have ZS = ZSpeo U ZS coco-
But if y € ZSwe, then v = 6 + a by Lemma 3.18, contradiction with v > § 4+ «a. Thus
Snsy € ISBw. The opposite inclusion clearly holds as well, in view of (2.1). Consider the
class Sxyrry(0). First note that DS = DSp. Indeed, similarly as in the proof of the part (i-a),
from (3.19), Lemma 3.7, and Remark 3.8, we find that [; < o0, ], = 00, R; = o0, and R, < oo,
and the claim follows by [5, Theorem 1], see also [6, Chapter 4]. Since 0 < 0, ¥ € Syry(0)
cannot be in ZS (see Proposition 3.1), therefore Syry(0) € DSpp. On the other hand, if
y € DSop, then yl(t) ~ N, < 0 as t — oo which yields (3.18), and so DSog € Syry(0).

(ii-b) Let 6 > =1, ¥ > a—1, and p > 0. Since p € RV(J), we have ], = oo, and
so (1.6) holds. Take y € Sysy. Then y[l] is negative decreasing and from (3.20), we get
lim; oo y!!I(£) = —co. Moreover, y cannot be in DSp., otherwise we would get v = 6 + «a,
see Lemma 3.18. Consequently, Sy'sy € DSpe. The opposite inclusion is obvious. Take
y € Syry(0). We know that y € DSy UDSpp. We claim that y ¢ DSpe. Indeed, if
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Y € DSy, then from (3.10) we get (3.11). Since y(f) — 0 as t — oo, integration of (3.11) yields
J = oo, contradiction with (3.19). Thus, Syry(e) € DSpp and in view of Syrsy € DSpe and
(3.17), we get DSop C Syrry(0). The relations of Syrsy and Syry(0) with G, H, L, B type
classes in the setting of (ii-a) and (ii-b) can be treated as in the part (i).

(iii) Let 6 < —1 and v > a — 1. Then ], < oo and ], < co. Hence, clearly J; < oo, R; < o0,
i = 1,2. Assume that p < 0. By [5, Theorem 1], see also [6, Chapter 4], we get ZS = ZSp.
Hence, ZS C Ssy = Sysy, in view of (2.1). If y € IS, then from (1.1), (y!!)(t))’ ~ =M% 1p(t)
as t — oo, where M, = lim; y(t), and because of the convergence of Jp, we get LS = TSpp.
Indeed, y!' is positive increasing and if lim; o, y!!l(t) = oo, then Jp = oo, contradiction. By
[5, Theorem 1], see also [6, Chapter 4], we get DS = DSop U DS, where both subclasses are
nonempty. As in (3.18), we obtain y € RV(o) provided y € DSyp, thus DSop C Syry(0)-
Since ¢ < 0 and except of DSyp all other possible subclasses (ZSg, DSp) are subsets of SV,
we get Syry(0) € DSpp. Further, in view of [5, Theorem 1], DS = DSpy U DSpp, where
both subclasses are nonempty. Altogether we get DSpy U DSpp UZSp = Snsy-

From Lemma 3.11 we get DSop C B, DSpy C Bz, and DSpp UZSps C Bj, j = 1,2.
Lemma 3.12 yields DSpy C G,. From Lemma 3.14 and Lemma 3.16, we obtain DSop C H4 and
DSop C L(0,1), respectively. By definition, if y € B4, N DS, then y € DSop U DSpp. Suppose
by a contradiction that y € DSpp. We know that DSgp C B,. Thus, |N, — ym | € RV(6+1) by
Proposition 3.1. But at the same time we have y € By, which yields [N, —yl!/| € RV(a +5—7)
by Proposition 3.1. This implies — because of necessary equality of indices of regular variation
—that v = a — 1, contradiction. Thus B4 N DS C DSpp. By definition and because of the above
established classification, if y € B3 NDS, theny € DSpg UDSpy. Lety € DSpp. We know that
DSpp C By by Lemma 3.11. Consequently, by Proposition 3.1, |[M,, —y| € RV(1+ (1 - B)).
But at the same time we have y € B3, and so [M, —y| € RV((B—1)(6 +1—) +1). For
the indices we then get (B—1)(a —1—79) =(B—1)(6 +1— ¢+ a — 1), which gives § = —1,
contradiction. Thus B3 N DS C DSpp. By definition, Bj NZS C ZSpp and Bj NDS C DSgg,
j=121Ify € GoNDS, then y € DSp. Differentiating the relation which defines G,, applying
® to the both sides and multiplying by , we obtain, as t — oo, [ylll| ~ Kt|p(t)| € RV(6 +1),
where K is a positive constant. Consequently, in view of Proposition 3.1, y € DSpy. If y € Ha
ory € L(o,1), then clearly the only class for y among the ones that are allowed in the setting
0<—=1,vy>a—1,p<0is DSpp.

Assume that p > 0. By [4, Theorems 2 and 4 and their proofs], we have S = ZSpy UZSpp U
DSop U DSpp with all these subclasses to be nonempty. Hence, ZS U DSgp C Sprsy. In view
of (3.18), DSop C Sy ry(0). Taking into account (3.17), we get DSpp UZSpy UZSps = Sysy
and DSop = Syry(0). The relations with the classes By, By, B3, Ba, G2, H3, and L(0,7) can be
shown similarly as in the case p < 0

In the last part of this proof we establish the relations with the class P under the condition
0 4+ a < y. First consider the case p < 0. Let y < «a —1 and § < —1. Then, as it was established
in the previous parts, J; = o0 and ], < co. Theorem 3.20 now yields P = DSp. From the
previous computations we know that DSg = DS. Let v > a —1 and 6 > —1. Then, as was
established already earlier, we have J; < co. Theorem 3.20 and the equality DSy = DS (which
holds to be true) in this case yield P = DS. If § < —1and v > a — 1, then J, < o and
J» < co. Consequently, J; < oo and thus Theorem 3.20 yields P = DS,. The above established
classification implies DSy = DSgp, hence P = DSpp.

Let p > 0. If y € Sysy, then r'=Py=M € RY(—v/(a — 1)) by Proposition 3.1. If 7 < a — 1
and 6 < —1, then [~ Ty[y](s)ds = oo, and hence Sysy C P, in view of Theorem 3.24.
Since ¢ > 0, ty'(t)/y(t) — 0 and tx'(t)/x(t) — o0 as t — oo for x € Syry(0), we get
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Syry(0) NP = @ by definition. Consequently, Syy'sy = P. Assume that ¥ > a — 1 and
0 > —1. Take y € Syry(0). Then by the classification made in the previous parts, we obtain
y € Sy, S being defined in Lemma 3.17, and F[y] € RV(—o0 — 1) (see Lemma 3.17), F being
defined in Theorem 3.21. Since ¢ < 0, we have [~ F[y]ds = co. Assuming (3.15), we get
Syry(e) € P by Theorem 3.21. Further, Syysy NP = @ by definition, since for x € Sysy,
tx'(t)/t — 0ast — o0 and ¢ < 0. Thus Syry(e) = P. If (3.15) fails to hold, then we can
proceed similarly as at the end of the proof of Theorems 2.1 and 2.2, since the discussion made
there is valid no matter whether § + « = 7y or § + « < y. We again obtain Sygy(0) = P. It
remains to examine principal solutions when § < —1and v > a —1, iee, J, + J; < co under
the condition p > 0. We will use Theorem 3.26. If y € Sy'sy, then r'=Py=2 € RV(y(1 — B)).
The index is less than —1, thus [~ r17F(s)y~2(s) ds < co and Syrsy NP = @ by Theorem 3.26.
If y € Syry(o), then r'=Py=2 € RV(y(1 — B) —20) = RV(—1—0). In view of ¢ < 0, the
index is greater than —1, thus [~ r17#(s)y~2(s) ds = o0, and Syry(0) C P by Theorem 3.26.
Hence, in view of (3.17), Syry(0) = P. O

Proof of Theorem 2.4. Let p < 0. Since

S = Syry () USnvry(92), Snrv(8i) # D, i=12, (3.21)

S =IZ5UDS, and ) < 0 < &, (see Lemma 3.6), in view of Proposition 3.1, we get
ZS = Syry(%) and DS = Sygry(91). Thanks to the positivity of 9, we have ZS =
Syry(th) € IS« C IS by Proposition 3.1. Take y € Syry(%) = ZS = IS«. Since ym
is positive increasing, we have ZSw = ZSwe UZSwp. But if y € ZSp, we get y € RV (o)
by Lemma 3.17-(ii), contradiction because of ¥, # ¢ (see Lemma 3.6). Therefore ZS = ZScoco.
Similarly we find that DS C Syry(t1) € DSo = DSp UDSop = DSy C DS, and the
equalities follow. From Lemma 3.16, Syry(9;) € L(8,1;), i = 1,2. Condition (1.2) and
r € NRV(y) N C!imply lim;e tL(9;, 77;,t) = 0. Hence, by the Representation Theorem (see
(1.9)), L(8;, 1) € Syry(9;), i = 1,2. In view of Theorem 3.20, P = DS or P = DSy. But
DSp = @, thus only the latter possibility occurs. Note that [, = co by (1.2).

Let p > 0. Since we assume that C, € (0,K,], we have v # a — 1, otherwise K, would
be zero. Let v < a« —1. Then ], = co by Theorem 3.2, and so (1.5) holds. The class ZSp
is empty because of (3.21), where 01, ¢, are positive by Lemma 3.6. The class ZSp is also
empty. Indeed, if y € ZS«p, then y € RV(¢) by Lemma 3.17. But according to Lemma 3.6,
0 < % < ¥ < o, contradiction. Thus ZS C Syry(%) USyry(P2) € ZSwo C ZS. Let
v > a — 1. Then ], = oo since p(t) ~ C,t7%r(t) € RV(y — a). Thus (1.6) holds. Similarly as
before (using Lemma 3.6 and Lemma 3.17), we get DSpe = @ = DSpp. Consequently, DS C
NRV(I%) UNRV(ﬁz) c DSOOO - DS. The inclusions SNRV(ﬂz) - /:,(191',1’]1') - S/\/Ry(l%),
i = 1,2, can be proved analogously as in the case p < 0.

Finally we show the relations with the class P when p > 0. Take y € Sygy(8), where
% = % or @ = ¥». From the previous part we know that y € ZSwo U DSpee C S1. Recall that
0 =y —wand ¢y # a — 1. Assume that (3.15) holds. From Lemma 3.17 and Proposition 3.1, we
get Fly] € RV(Q), F being defined in Theorem 3.21, where Q = ¢ —1—-20 -6 —1— (a —
1) =a — vy —2—uab. Clearly, Q 2 —1if and only if ¢ 2 (a —1 — 7)/a. Since C, € (0,K,],
from Lemma 3.6 we have ¢; < (x —1—)/a < ®. Thus [~ F[y](s)ds = co when ¢ = &
while [ F[y](s) ds < co when & = 8, by Theorem 3.2. Theorem 3.21 yields Syry(¢1) € P
and Syry (%) NP = @. In view of (3.21), we get P = Syry(91). Now assume that (3.15)
fails to hold and let J, = oo (i.e., in our setting, v < a —1) and « < 2. The constant M
is defined in Theorem 3.24. If y € Syry(®1), then r'=Py=M ¢ RY(—v(B —1) — Mt;) by
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Proposition 3.1. For the index we have —y(f —1) — M®; > —1 if and only if Mt(x — 1) <
&« —1— . From Lemma 3.23 we know that M = p; recall we assume & < 2. Thus the
inequality M&;(« —1) < &« —1 — 7y reads as ¥; < (« —1 — ) /a which is true by Lemma 3.6.
Consequently, [~ Ti[y](s)ds = oo, and so Theorem 3.24 yields Sygy(%1) € P. The class
Snry(92) will be treated later. Now assume that (3.15) fails to hold in the sense that ], = o
and & > 2. Note that then 6 > —1 and v > a — 1, and so Syry(%1) USyry(8%2) = DS =
DSoo € 81, where 81, 0, are negative. Take y € SNRV(l%) and set u = —y[ I. Then u € S‘
see Lemma 3.9. We want to show that u € P; P is the set of principal solutions in S.
Denote #; = ¢ — a4 8;1(a — 1) + 1. Then, owing to Lemma 3.17, u € RV(d;). Recall that
7 is the index of regular variation of 7 and let M = max{g,(t) : t € [0,1]}. Thanks to
Proposition 3.1, we have 71~%u~M ¢ RV(¥), where ¥ = —5(x — 1) — 9; M. Since we assume
a > 2, we have f < 2, and Lemma 3.23 yields M = a. Recalling 7 = (a —)/(a — 1),
for the index ¥ we get ¥ = —a + ¢ — a(y — a + 91(x — 1) +1). It is now easy to see that
¥ > —1if and only if % < (x —1—7)/a where the last inequality is true by Lemma 3.6.
Hence, [©717%(s)u=M(s)ds = oo, and noting that [*71~%(s)ds = oo (since 7(1 —a) > —1),
applying Theorem 3.24 to reciprocal equation (3.2), we get u € P. According to Theorem 3.22
we have y € P, and so again Syry(81) € P. The rest of the observations is made under
the general assumption v # a — 1. Take y; € Syry(9;), i = 1,2. Then, no matter whether
(3.15) holds or does not hold, lim; .« tyi(t)/yi(t) = 9, i = 1,2, and since ¥ < &, we get
vi(£)/y1(t) < yh(t)/y2(t) for large t, which implies Sygry(92) NP = @. Altogether we get
S NRV(ﬁl) =P. O
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Abstract. In this article, we investigate the multiplicity results of the following bi-
harmonic Choquard system involving critical nonlinearities with sign-changing weight
function:

: 2 .
A%u = AF(x)|u|""2u+ H(x) </Q Wdy) ul%"2u  inQ,

. 2% i
A2y = ﬂG(x)|v|r_20+ H(x) (/Q H(y)u(y”dy> |v|2a—2v in Q,

|x —y|*
u=v=Vu=Vo=0 on o),
where Q) is a bounded domain in RN with smooth boundary 00, N > 5,1 <r < 2,
0 <a<N,2 = %{]V—_’f is the critical exponent in the sense of Hardy-Littlewood-

Sobolev inequality and A? denotes the biharmonic operator. The functions F, G and

H : O — R are sign-changing weight functions satisfying F, G € Lﬁ(ﬂ) and H ¢
L*®(Q) respectively. By adopting Nehari manifold and fibering map technique, we
prove that the system admits at least two nontrivial solutions with respect to parameter
(A1) € B2\ {(0,0)}.

Keywords: biharmonic system, sign-changing weight function, Nehari manifold,
Hatree-type critical nonlinearity.
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1 Introduction

We consider the following biharmonic Choquard system involving concave-convex nonlinear-
ities with critical exponent and sign-changing weight functions

/

2 )
A*u = AF(x)|u|""2u + H(x) (/Q H(y)|v(y)|dy> lu|>*2u  inQ,

[x —yl*
2 .
8o = uG(lel 2o+ () ([ T ) o2 ina, (D1)
Q _
u=v=Vu=Vo=0 on o),

™ Corresponding author. Email: sarikal.iitd@gmail.com



2 A. Rani and S. Goyal

where Q) be a bounded domain in RN with smooth boundary 0}, N >5,0<a < N,1<r<
2, 2% = 28=L s the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, A
denotes the biharmonic operator and A, u are the parameter such that (A, u) € R2 \ {(0,0)}.
We assume the following additive assumptions on the weight functions F, G and H:

(Z1) F, G € LF(Q) with B = 52— and 2* = 2, F¥ = max{+£F,0} # 0in Q and G* =
max{+G,0} # 0 in Q.

(Z2) H € L*(Q) and H" = max{H,0} # 0in Q.

Over the last many decades, biharmonic equations have been studied by many authors. These
equations have wide application in many physical problems such as phase field models of
multi-phase systems, in thin film theory, micro electro-mechanical system, nonlinear surface
diffusion on solids, interface dynamics, flow in Hele-Shaw cells, incompressible flows, in
theory of elasticity and the deformation of a nonlinear elastic beam (see [16,27,28,33,37]).

In recent years, many researchers are highly attracted to the study of nonlinear Choquard
equation because of its applications in physical models (see [35,41]). The origin of nonlinear
Choquard equation is related to the work of S. Pekar in 1976 [38] and P. Choquard. They used
the elliptic equations with Hardy-Littlewood-Sobolev type nonlinearity to describe the model
of an electron trapped in its hole in the Hartree-Fock theory of one component plasma and
the quantum theory of a polaron at rest respectively.

Here, we are interested to study the biharmonic system with Choquard type nonlinearity
because such type of equations occur in many applications. For this, consider the following
Schrodinger-Hartree equation

i0u + a(t) Au + B(H)A%u = 6(|x|™ * |ul>)u = 0, x € RV, teR
u(x, to) = up(x), x € RN,

where u(x,t) is a complex valued function in space-time RNXR,N>1,a, B are real valued
functions denoting the variable dispersion, 6 # 0 represents the focusing or defocus behaviour
and A is a positive parameter. The above model can be used in nonlinear optics for the
electromagnetic wave propagation in optical fibers exhibiting particular nonlinearities, where
there exists a repulsive (Hartree) force with strength 6, and when «, B experience variations
in time due to the need of balance effect of the nonlinearity and the dispersions ([1,2]).

Towards the study of biharmonic equations, Bernis et al. [5] have examined the following
critical biharmonic equation with Dirichlet and Navier boundary conditions

Au = Mu|T%u + |u* 2u, inQ,

(1.1)
:a—uzo or M:Auzo, OnaQ,
on

where A > 0, 2" = %. The authors proved that there exists Ag > 0 such that for 0 < A < Ao,
(1.1) has infinitely many solutions. Moreover, they also showed the existence of at least two
positive solutions of (1.1) in the critical case. We suggest some literature ([11,12,15,21,24,32,
39]) for reader’s convenience and references therein.

Starting with the work of Pekar and Choquard [30, 38], there has been a lot of work done
involving Laplace, p-Laplace and nonlocal operator with Choquard type nonlinearity (see
[9,10,29,36,43]). In [34], Moroz and Schaftingen studied the following Hartree equation (or
Choquard equation)

u

—Au4u= (I % [u|P) [ulP"u inRN, p>1, (1.2)
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where I, denotes the Riesz potential, defined as

T N—a
L(x) = BA’;QW with B, = T = ) ,
| x] r(%mza)

a € (0,N).

and the term (I, * |u|P) |u|P~2u is also known as Hartree-type nonlinearity. They proved the
existence, positivity and radial symmetry of ground state solution. In 2018, Gao and Yang [19]
investigated Brézis—Nirenberg type critical Choquard equation regarded as

2 .
—Au = (/ |Ll(y)|dy> lul>*2u+Au in Q, (1.3)
o lx—y|*
where () is an open and bounded subset in RN with Lipschitz boundary, N > 3, 25 = 2=,

a € (0,N) and A is a parameter. They established the existence and nonexistence of the
nontrivial solution for (1.3) using variational methods. For more literature in this direction,
we cite [4,17,18,20,45] and references therein. Recently, there are few works concerning the
system involving nonlinear Choquard term. In [49], You and Zhao studied the following
system with critical Choquard type nonlinearity

1 " - 1
—Au+ Mu =y <]x\ﬂ * |u|214> lul>1 4 B (

* *
‘x‘}l * ’0’2”> |u’2’4 1/ x€Q),

1 A N
wov>0 inQ, u=v=0 ond),
where p1, 2 > 0, B # 0, —A1(Q) < A1, A2 > 0, A1(€Q) is the first eigen value and 2}, = 21{]‘]7:2"

is the critical exponent in sense of Hardy-Littlewood-Sobolev inequality. The author proved
the existence of a positive ground state solution using variational methods. Moreover, for
elliptic system involving Laplace and fractional Laplacian with Choquard nonlinearity, we
cite [23,25,26,46,48] and references therein.

Recently, Sang et al. [42] examined the critical Choquard equation with weighted terms
and Sobolev-Hardy exponent in the case of Laplacian. They showed the existence of multiple
positive solutions corresponding to the problem using variational methods and Lusternik-
Schnirelmann category. Afterwards, Rani and Sarika [40] investigated the critical Choquard
equation for biharmonic operator involving sign-changing weight functions and proved the
multiplicity results analogous to the problem using the method of Nehari manifold and fiber-
ing map analysis. Considering all these facts as mentioned above, we have studied the system
of critical Choquard equation involving sign-changing weight functions for biharmonic oper-
ator and proved the multiplicity results of nontrivial solution related to the system (D, ,) with
the help of Nehari manifold and fibering map techniques ([7, 8, 13]).

To the best of our knowledge, no work has been done on biharmonic system involving
critical Choquard nonlinearity with sign-changing weight function. Apart from that, the min-
imizers for Sy 1 demonstrated here are entirely novel in the case of biharmonic system. More-
over, the results obtained in this article are completely fresh and new in the case of Laplacian
also however the approach may be familiar.

In this article, we will discuss the existence and multiplicity results of nontrivial solutions
for the system (D, ;) with respect to parameter A and p. Using the Nehari manifold and fiber-
ing map analysis [7,8,13], we establish the existence of at least two nontrivial solutions for
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system involving critical Choquard nonlinearities with sign-changing weight functions with
respect to the pair of parameters A, u belongs to a suitable subset of R?. The conspicuous
aspect of this article is the study of the critical level (c.) below which the Palais-Smale condi-
tion is satisfied. Altogether, this article amplifies the branch of knowledge and gives a novel
addition to the literature of the critical Choquard system.

In order to present our main results, we define the constant Y; as

_1
x_q ,

2
22* _2 2-r 2—7' = « | 2
Y1 = {555 HY |2 (SmL)™ S,

where S m,r and S are defined later.
Now we state our following main results.

Theorem 1.1. If1 <7 < 2,0 < a < Nand A, u > 0 satisfy 0 < (A|F||g)27 + (4] G|lp)27 < Y3,
then the system (D, ;) has at least one nontrivial solution in H3 () x H3(Q).

For multiplicity result, we need the following assumptions on F, G and H respectively:

(Z3) There exist ag, by and ro > 0 such that B(0,2r9) C Q) and F(x) > ag, G(x) > by for all
x € B(0,2ro).

(Z4) There exists &y > 222 such that |[H" | = H(0) = max,gh(x), H(x) > 0 for all
x € B(0,2rp) and
H(x) =H(0) 4o (\x|‘50> asx — 0.

Theorem 1.2. If1 < r < 2,0 < & < Nand A, u > 0 satisfy 0 < (A||F||3) 77 + (u]|G||g) 27 < Ya
(where Y, < Y1), then the system (D, ) has at least two nontrivial solution in H(Q)) x H§(Q).
Moreover, the solutions corresponding to the system (D, ,) are not semi-trivial.

Remark 1.3. We note that the multiplicity results for the system (D, ,) can be generalized to
the following polyharmonic system

Zz,m "
(—=A)"u = AF(x)|u|"2u + H(x) (/ H(y)\v(y)\dy) lul>» 2y inQ,
0

[x =yl
2;,"1 *
(=A)"v = uG(x)|o|" v + H(x) </ Wdy) lo[%n =2y in Q,
o _
Dy = Do =0 for all k| <m—1 on 0Q),

where (—A)™ denotes the polyharmonic operators, m €¢ N, N >2m+1,0<a < N,1<r <
2,20 m = 1%]1\1 5 18 the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality,
and A, y are the parameter such that (A, 1) € R3 \ {(0,0)}.

Let S be the best Sobolev constant defined as

m,, |2
ueHY' (Q)\{0} (fQ |u]2??zdx)ﬁ

where 2;, = 2. Then it is well known that S is achieved if and only if O = RY, by the
function

N—-2m
C 4m
N,m

U(x) =

N-2m

(1+|x[?) =
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(see [44]). All the minimizers of S are obtained by

CN4_2"’ N—2m
m— moe 2
ue(x) = ez zNu (E) = N’m—N—ml
e/ (@ x)
where € > 0 with Cy » := C(N, m) =TT, _,,(N — 2j).
Define Sy 1 to be the best constant as
D™u|?dx
SH,L = inf fIRN ‘ ’ -

——
20,m

llEHén (]RN)\{O} u o, m ,m
e )

One can obtain a family of minimizers for Sy in the similar manner as shown in section 2
—u)(2m—N

—~ (N—p)( ) m—
for the case m = 2 by taking Ue(x) = S N ) (C(N,oc))2<Nz+2mN—ﬂ> U (x), where € > 0 and
Ue(x) provides a family of minimizers for Sy .. Using the same approach, multiplicity results
can be established with respect to parameter A and u.

Organization of the article is as follows: In Section 2, variational setting for the problem
(D)) and some essential results are proved. Besides this, we show various asymptotic es-
timates which perform a vital role in the study of a second solution for the critical case. In
Section 3, we discuss that the Palais-Smale condition holds for the energy functional asso-
ciated with (D, ) at energy level in a suitable range related to the best Sobolev constant.
Further, Nehari manifold and fibering map analysis are discussed precisely in Section 4. In
Section 5, we prove the existence of Palais-Smale sequences and showed the existence of first
nontrivial solution by the proof of Theorem 1.1. In Section 6, we give the detail of proof of the
Theorem 1.2.

2 Preliminaries and some important results

We are using Sobolev space H = HZ(Q) x H3(Q) as alfunct1on space with standard norm
[(w,0) || = ([|ul® + ||0]|2) 2, where |Ju]| = (Jo |Aul?dx)? and ||lull, = ([, |u\”dx) be the
usual L?(Q)) norm.

Now, we state the well known Hardy-Littlewood-Sobolev inequality that plays a crucial
role in solving the problem involving Choquard type nonlinearity.

Proposition 2.1 (Hardy-Littlewood—Sobolev inequality [31]). Let t, ¢ > 1 and 0 < a« < N
with 1/t +a/N+1/q = 2, ¢ € L'(RN) and h € LI(RN). Then there exists a sharp constant
C(t,N,a,q), independent of g, h such that

(v)
/RN . ,x - y‘a T dxdy < C(E N, &, q) (181l vy 7] o (rw) - (2.1)

Ift:q—ZN - then

h(x) = A@B* +|x —a]?)~ "2,
forsomeAEC,O;ébEIRanduelRN.
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Thus, if |u* € L'(RN) for t > 1 such that 2 + £ = 2, then by the Hardy-Littlewood-
Sobolev inequality, the integral [py [gn %dxdy is well defined. Hence for u € H2(RY),
by Sobolev embedding theorems, we obtain

2N—(x< <2N—(x

2, =
@ N “—°=N_-4

. *
=: 2%,

where 2, and 2} are known as lower and upper critical exponent respectively in the sense of
Hardy-Littlewood—-Sobolev inequality.
Therefore, for all u € H>(RN), by the Hardy-Littlewood-Sobolev inequality, we have

) P e y) %
/]RN /IRN ’x_y‘lx dXdy < C(Nr“)Hqu* ’

where C(N, a) is same as defined in Proposition 2.1. One can easily see that in the Hardy-
Littlewood-Sobolev inequality, equality takes place if and only if

2N—«a
)=yt )
= (epmm)

N—

) "% if and only if

where C > 0 is fixed constant. Thus, u = C (m

2

</]RN /]RN |x‘2_|by[|a )|2* dxdy) % = (C(N/“))% </IRN ‘”(x)|2*dx> . . (2.2)

Let S be the best Sobolev constant defined as

Aul?d
5 — in fQ| u|“dx .
weHF (OO0} ([, Ju(x)|¥ dx)z
N-4
The best constant S is attained by the function U(x) = [N(N+2() (N | ‘2))5\, 15 and all the
1+|x
minimizers of S are obtained by
U (x :e%u i , wheree >0, (2.3)
€

which satisfies the equation A%u = |u|?> ~2u in RN, with

N
4

[Ue(x)[|> = [|Ue(x) )5 = S*.
Further, we define Sy 1 to be the best constant as
f]RN |Au|?dx
1
x) |2 %
f]RN f]R \x yu\”‘ dXdy>

Next, we show the relation between S and Sy ;. by the following lemma in which the leading
concept is taken from [19].

SH,L = inf
ueD2?2(RN)\{0} (
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Theorem 2.2. The constant Sy 1, is achieved if and only if

N
”_C<k2+rx—a12> :

where C > 0 is a constant, a € RN and k € R*. Furthermore

S
Sgr = —"7- (2.4)

(C(N, &)
Proof. The Hardy-Littlewood—-Sobolev inequality yields that

Aul?d
SH,L 271 inf Jwy |Aul*dx _ 5

(C(N, @))% WD RO} (o [uP)F (C(N,a))%

Further, it follows by the definition of Sy ; and (2.2) that

SH,L < f]RN |AM’2dX < f]RN \Au!zdx : < S 1
(f]RN f]RN ‘\xZ ‘;‘a Ol dXd]/) f]RN | |2 dx)7 (C(N/ “))2;
In conclusion, we obtain the required result. O

(N—a)(4—N)

Take Uc(x) = § 50+ (C(N,tx))z“jl‘ﬁ“) U, (x), then U, gives a family of minimizers for
Sh 1 and satisfies the equation

2*
Nu = </ luy)[* ) lu*"2u  inRN.
vx—ye

Moreover,

—_— 2 u
/ |Au€|2dx:/ / [ U () | Ue () dxdy = (Sp,)Nioa.
RN RN |[x —y|*

Consider the best constant Sp | given as

2
e it I(,0)]

ueH\{(0,0)}

x) 4 Jo(y) [

(o Jo M dy);z'

Now, we state an important lemma which is used to show the relation between Sy ; and Sp 1.

Lemma 2.3. For u,v € L% (RN), 0 < & < N and s € [2,,2%), the following inequality holds true

x)[*lo(y)[*
/IRN/IRN = yJ" ——————=—dxdy

< ([ MO ) (][ S )

Proof. The proof is similar as given in [22]. O

Afterwards, we build a relation that connecting Sy ; and Sy | by adopting an idea from [3].
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Lemma 2.4. The following relation holds
S, = 2SH,1.

Proof. Let {k,} C H3(Q) be a minimizing sequence for Sy ;.. Choose the sequences {u, = sk}
and {v, = tk, } in H3(Q), where s,t > 0. Then the definition of Sy ; implies that

2 2
), < H(un,mu () Il s
i () 2% [ (1) [ JLACHRILACHIES %
(fn Jo \x R dy) (fn Ja |x g dx dy)
Further, define a function f : R" — R* such that f(x) = x+ 1. Then f(§) = $+ ! and f

achieves its minimum at xy = 1. Thus, we have

min f(x) = f(x0) = 2.

xeR*

Now, choose s, t in such a way that s = t and taking n — oo in (2.5), we obtain
S_H,L S ZSH,L. (26)

At the same time, let {(u,,v,)} be a minimizing sequence of Sy ;. Take a, = s,v, for some

spn > 0 such that [, [, %dxdy Ioto | (x |\xz“\;ra( v dxdy.

This together with Lemma 2.3 implies that

|un (x |2 an(y)| %
dxd
Jols [x = yJ? /
1
)2 2 )2 2% 2
(// |Mn | |Mnlx )’ d.’Xdy) <// ‘an | |ana )‘ dxdy>
vl vl
|un (x ‘2 lun(y) %
= dxdy.
// —yl* Y

Thus we have

[ (2, vn) ||? _s, [ (2, v ||
1
un Un Mn an % 2%
(fo fQ‘ |‘x ‘y i dxdy) (fQ fQ‘ \L ‘y|"‘ = dxdy)
2 2
oLl e —

(fn fQ W);ﬂ (fO fQ b \x % = ) ;

Now passing the limit as n — oo
Sur >2SuL. (2.7)

We desire our result after combining (2.6) and (2.7). O
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Now, we prove some estimates, which are useful to obtain the critical level. Without loss
of generality, we may assume that 0 € Q) and B(0,27) C Q. Let ¢ € C(Q) be a fixed cut-off
function such that 0 < ¢ < 1in RN, ¢(x) =1 on B, = B(0,7) and ¢(x) = 0 in RN \ By, with
IVp| < C,|Ap| < C. Define

Ue(x) = ¢pUe(x),

where U, (x) is define in (2.3). Accordingly, we have the following norm estimates (see[12]).

Lemma 2.5. The following estimates are true for € > 0 small enough.

IUe(x)]|* = S5 +o0(e"™)
|Ue(x)]* = ST +o(eM).
Q
0 (€¥r> , r < N—2
/Q U (x)|"dx = { o (eN’%’| 1ne|> , r=+ (2.8)
0 (eN_T%r) , r> iy
Lemma 2.6. For Choquard term, the following estimate is true:
2(N-4) (N-4)N N—4 a
O<||H+|| ZNa( (N,“))(ZNAHLS _0(€ZNZ )
1
%Uu 2 %
</ / e(x)‘ _‘uil(y)’ dXdy)
[yl
2(N—4) (N-4)N N-4
< | HHE (C(N,0)) 5555 HLL- (29)

Proof. By assumption (Z2), there exists 0 < 7 < rg such that for all x € B(0,2v) with Jy >
2N—«
2

H(x) = H(0) 4 o(|x|%), as x — 0. (2.10)

Using the Hardy-Littlewood-Sobolev inequality and (2.4), we have

., U.(x)|% *e 2% % zl* R
(f, f, e MBI gy ) < a1 v, o 13

2(N—4) (N-4)N N-4

= [|H" ]| i (C(N, @) 2S5y +o(eM™).

Thus

o )
[ e RO duay < e o) ST + o,

Consider

—a 17 22177 2%
€a72NHH+H%o(C(N,Dc))%S;N‘lL . €“72N/ / H(X)H(y) ’ue(x)‘ ‘ue(y”
! Q

o) [x —yl*
AZN Dé/ /
RN JRN (€2 + [x[2) 77 (2 + [y[?)

a— UG(X)IZZ"UE(]/MZ;
e 2N/]RN /RN H(x)H(y) P

dxdy

-y
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:Azm[/ H(0) (H(0) ~ H(x)lp(x)|*) </ ! d>dx
R (e ) Y (2 1 y2) 5 x g
HEIWPE ([ HO - HOWWE ) .
* s, (e ey (/RN @+ ) (x— gl ) ‘
H(O) (H(0) - H(x) 1 .
T T </RN (@1 lyP)"F yl“d>d

_Hy) H(0) = Hw)lpWl* , \ ;.
I (€2 +[22) 7 (fR @+ Iy ey ) d ]

=E1+Ey+ E;+ Ey4, (2.11)

where A = [N(N +2)(N —2)(N —4)]s"
On taking E;, we have

v | [ H(O) (HO) — HE)p()%) i
n [/IRN\Bw (€2 + ¥ 7 </H<N\Bw<e2+\y\>zrx—y\“dy>dx

+/ H(0) (H(0) — H(x)|¢(x)|*) (/ 1 d )dx]
R¥\B, (2 + |x|2) 7" By (€2 +|y[2) " [x —yJo

= E11 + Eq.

Applying the Hardy-Littlewood-Sobolev inequality on E;; and E;, respectively, we get

d o d o
X Y
fea(f. ot VF( )
b= < RN\B, (€2 + !XIZ)N> ( RN\B, (€2 + [y[?)N

2N—«a 2N
_c dt =~ <C ) rN*ld N _c
=1 /IRN\BW (€2+ ’t|2)N I /), T/ZN r — L2.

and
1
Ei,<C / _ _ dxd
T ke, Ja, (@ )T (@ )yl
X y
<C / e / )
- 3( RV\B, (€2 + IXIZ)N> ( B, (€2 + [y[?)N
2N—a 2N—a
<c / dx \ ¥ /7 rN=1dr N
>~ L4 RN\B, |x|2N 0 (62_|_72)N
N«
<o <e‘2NT_“> /Z 71}1\]71‘# -
- o (1+)N
2N—ua
N ) tN—ldt 2N N-a
§O<€ 2)(/0 (1—}—1‘2>N> —0(6 2).
Thus

=Cy+o (e’m?“) .
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Further on taking E,, we obtain

E, — A2N-s [ Lo (HOc)Iqb(x)l2 ( L. (H(O)—Hz(g_)aM’(y)lzz dy> dx

€+ |x[?)" e+ yP) 7 [x—yl*

H(x) | (x) [ H(0) — H(y)|¢(y) %
' /IRN\Bv (€2 + [x2) 7 </Bv (€2 + 1y "2 x - yl”‘dy> dx]

= Ex1 + Epp.

Now estimating E, ; same as E; 1, we have

2N—ua 2N—a

dx 2N dy 2N
E,1 <C / [ — / ) = Cg.
2= 5<RN\BW <e2+|x12>N> (m\m (€2 + [y[2)N ¢

Using the Hardy-Littlewood-Sobolev inequality E;» and (2.10), we get

2N—a

IN-a 2N4, N
S T
22 =7 RN\B, (€2 4+ |x|2)N B, (€2 + |y[»)N

2N—a 2Ndy 22171\7“
<o o) (e
= Uk, (€2 + [x[2)N B, |y|™N

= Cy.

Hence

Er = Cg + Co.

For E3, we use the Hardy-Littlewood-Sobolev inequality with (2.10) which implies that

_ A2N-u H(0) (H(0) — H(x))
S [/Bw /IRN\Bw (€2 + [x]2) 5 (€2 + y]2) 5" |x — yl*

H(0) (H(0) — H(x))
+ /B7 /B7 @+ ) @+ |y ) = | _y|lxdxdy]

xdy

:E3,1+E3,2.
H(0)|x|%
E3,1 S AZN_“/ / 2N—a ( )IX| 2N—a dxdy
By JRN\By (€2 + |x[2) 77 (€2 + [y[?) "2 [x —y|*
2N—a
<o x| edx ) (] dy )
- B, (€2 + [x[2)N RN\B, (€2 + [y[>)N

2N—«a
2N—a

2N&y 2N
con( [ R T () o)
=0\, PN RN\B, (€2 + [y[*)N

= Cq1.

11
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IN—« H(0)]x|%
E3,2 <A / / 2N—u 2N—a dXdy
By (€2 + [x[2)77 (2 +[y[?) 2 yl

2N—«

2N—«a

< A2N-a / Mﬁdx . </ dy > N
- B, (€24 [x[?)N B, (€24 |y|?)N

SN 2N—«a
<o) ([ BRSNS Jfan w
N B, |xN o (I+)N
2N—u
< _2N-a 0o pN=1g,\ 2V T
_0(6 2 ) '/0 7’27]\] :0<€ 2 )

Thus
E3 =Ci1+o (Gfm%“) :

Similarly on taking E4, we have

D N H(x) H(0) = H)[¢(y)* N
B [/37 (€2 +[x2) 77" </IRN\B~ (€2 + |y Wdy ) ’

H(x) (H(0) — H(y)) .
* /_m /37 EFNFDE T - dy]

= E4,1 -+ E4,2.

By the same approach used in E;; and Ej3, respectively, we obtain

Eq1 =0 (e_ZNT%) and Eg» =0 <6_2N27a> )

Hence

_2N—uw __2N—u _2N—u
E4:0<e 2 )—I—o(e 2 >:0<€ 2 )

Therefore

Ei+E+E+E=C+o (672]\]27“),

where é\ =Cy+ Co + Cqp.
Using (2.11), we obtain

—u 7 25177 2r
OSeafZNHHJngO(C(N’DC))%SZ\?L —€“_2N//H(x)H(y)|ue(x)’ |uea(]/)| dxdy
alJa |x — v
Sé%—o(e’m%).
This implies that
24177 2r
0< 1 | Ie ) s [ [ e MR g

2N—a _ «
< ENHHT | F(C(N ) ¥Sy,, C+o( ).
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Furthermore

_2N—a ~ —a
0< 1N T H2(C(N,a) ¥5,,7 C—o (e%)

2| Ue(y)|*
< ||HY|2(C(N,a)) Y55 T //H [Ue (%) |Ue dxd
< [[H"[[(C(N, &))" %Sy * oo x — yl* xay
<1

_2N—w
Now, choose € > 0 such that ezN*”‘HH+H;OZ(C(N,oc))*%SH,L‘* C < 1. Thus

_2N—-a _ —a
0<1— N4 HY||2(C(N,a)) 15,7 C—o <e2N2 )

1
_ 2N—a _ u 2%
< (1—eZN-“||H+||;2<C<N,a>>-’4”sH,L4 €0 (e ))2

1
_2N-4) 2 U (y) ]2 %
< ||H+||OO2N—0¢ (C(N,Dé)) (2N n45 (/ / |Ue(x|)x| _|lyl|€[x(]/)| dxdy)
<1
Moreover
2(N—4) (N-4)N N-4
0 < [HHIE (C(N, ) B RS
2(4—N+a) ~N—4)N a—N-4 __ —a
e S ) R Sui C—o (")
1
T (O 25T (1) 1% 2% 2N—4) Qo Nt
< (] [ remn BRI gy )™ < ) 3 (e B s
/o x =yl ’
Thus, we can write
2(N—4) (N-4)N N—4 a
0 < [H 3 (C(N,0) sy, — o (25°)
1
21U (y)]% %
< ([, . ooty BP0
[~ yl
N 22?\]1 4) (N—4)N N44
< [HT[[™ (C(N, a)) B985 7
Thus, the proof is complete. O

Definition 2.7. A pair of functions (u,v) € H is said to be a weak solution of the system (D,\,ﬂ)
if for all (¢1,¢2) € H, the following holds

/ AuA¢1dx+/ AvAchdx—A/ x)|u|"™ zugbldx—y/ x) 0| 2oprdx
- [ [ oyt (P50 + e ol _

In order to prove the Palais-Smale condition, we need the following lemma which is in-
spired by the Brézis—-Lieb convergence lemma (see [6]).

Lemma 2.8. Let N > 5,0 < o < N and {u,} be a bounded sequence in L%(IRN). Ifu, — uae.

in RN as n — oo, then
unlzz—/ (|x!_“*|Mn—u!2;)|un—ul22> =/ (|7 |u
RN RN

lim (/ (] # [t
n—oo RN

%

2;)

2;)
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Proof. The proof is similar to the proof of the Brézis—Lieb Lemma (see [6]) or Lemma 2.2 [19].
But for completeness, we give the detail. Consider

[l a2 a2 / (e = ) 1, —
RN RN

= (T o = = ) (% = it = )
42 [l g — )y @12)
Now by using [34, Lemma 2.5], for g = 2; = 20=F and r = ;2%_2% then we obtain
% — 1ty — u)® — |u|22 in Lzv=i (RY) as n — oo. (2.13)

Also the Hardy-Littlewood-Sobolev inequality implies that
x| % (| |® = g — ul®) — x| % [u% in L% (RN) as n — oo. (2.14)

Hence with the help of [47, Proposition 5.4.7], we obtain |u, — u|? — 0 weakly in Loa (RN)
as n — o0. So using this together with (2.13), (2.14), in (2.12), we obtain the required result. [J

Now, we define the energy functional I , : H — R associated with the system (D, ,) as
1 1
Tu(0,0) = 5 lw,0) P = 5 [ (FG)ul + uG () ol

—le/ﬂfﬂH(x)H(y)< (|)x|zi|;|(“)|2;). (2.15)

Then I, (1,v) is C! function on H. Moreover, the critical points of the functional I, ,, are the
solutions of (D, ,). For convenience, we define P, ,(u,v) and Q(u,v) as

Payu(u,0) := /Q(AF(X)IMV +uG(x)[v]")dx

0) Z/Q/QH(X)H(?)('u(ﬁyzi|;|(g)|2;)dxdy,

throughout the article. Then we obtain the estimates on P, ,(u,v) and Q(u,v) by using
Holder’s inequality, Sobolev’s embedding theorem and the definition of Sy ;. as follows

Py, (1,0) = /Q(AF(x)|u|r—l—yG(x)|v|r)dx
< S72 (A[|F|gllull” + p|Gllgllo|")

<7 ((AIFID) ™ + (G 19) ™) * (w2l 2.16)

Q(u,0) < [[H"|[%(Sme) | (u,0)]| . (2.17)

Definition 2.9. Let ] : X — R be a C! functional on a Banach space X.

1. For ¢ € R, a sequence {u;} C X is a Palais-Smale sequence at level ¢ ((PS).) in X for |
if J(ux) = c+o0x(1) and J'(ug) — 0in X! as k — oo.

2. We say ] satisfies (PS).-condition if for any Palais-Smale sequence {u} in X for | has a
convergent subsequence.
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3 The Palais—-Smale condition
In this section, we show that the energy functional 7, satisfies the Palais-Smale condition
below a certain level i.e. co, which is used to prove the existence of second solution.

Lemma 3.1. Consider (Z1) and (Z2) are true. Suppose {(un, vy} C H is a (PS)-sequence for I, ,
such that (un,vn) — (u,v) weakly in H. Then I}  (u,v) = 0. Furthermore, there exists a positive
constant Ky depending on r,«, N,2 and S such that

Du(,0) = =Ko (AIFlp) 7 + (ulIGllg) 77 ),

22— _ _ 20 r\ qr]ZTF ot
where Ko = ( 22;;r> (329) {(A%fz}fa) < 22;;r) 5 2} 572
Proof. If {(un,v,)} be a (PS)c-sequence for Iy, with (u,,v,) — (u,v) weakly in H, then by
using the standard argument, we get I} (1,0) = 0. ie.

(1, 0) |2 — Py (,0) —2Q(u,v) = 0.

Above with Holder’s inequality, Sobolev embedding theorem and Young’s inequality in (2.15)
implies that

taa00) = (5= 332 ) 100 = (= 555 ) [ QF Gl + 1Gx) ol

N+4—« 22 —r o NG, ,
> 22N —a) | (,0)||* — < > > ((/\||F||ﬁ)2—r + (Z,[HGHﬁ)Z—r) S5 (u,0)]|
)

> NHd-a o)
= 3N —a

(u,
(222*21 ) 5[ 22((M!Fuﬁ)zzr+<u||cuﬁ>fr)+;z%H<u,v)uz]

= Ko (AlIFllg)7 + (llGlIp)77 ),

where, Ky = (") (37) [(205%) (Z) 5787 5% and £ = [(25%) (%) 574"
This completes the proof. O

\
NI~

Lemma 3.2. Assume {(uy,v,)} C H is a (PS)c-sequence for I, then {(u,, v,)} is bounded in H.

Proof. Let {(un,vn)} be a (PS)c-sequence for Iy, in H, then as per the definition of (PS).-
sequence, Iy, (uy,v,) — c and Iglﬂ(un,vn) —0inH ie

;*Q(un,vn) =c+o0,(1), (3.1)
[ (1, ) 1> = Pa gy (14, vn) — Q(1tn, vn) = 04 (1). (3.2)

Now, our aim is to show that {(u,,v,)} is bounded. On contrary, assume that || (i, v, )| — o0

as n — oo and take (il,,0,) = HEZ:’ZZ%II' It follows that {(ii,,9,)} is a bounded sequence.

1 1
EH(”nrvn)Hz - ;PA,y(”n,Un) -

Consequently, up to a subsequence (il,, 0,) — (il,0) weakly in H, (it,,0,) — (iI,0) strongly
in L"(Q) for all 1 < m < 2* and (#i,(x), 0, (x)) — (#(x),9(x)) pointwise a.e. in Q x Q).
Using (3.1) and (3.2), we have

~ 1 ~
*H( thn, © n)HZ—*H (s, On) "2 P (i, On) — 57 |l (1tn0n) WZ72Q(Mn, 0n) = 0n(1),  (3.3)
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and
||(ﬁn/5n)||2 - ||(”nrvn)Hr_zPA,y(ﬁnrﬁn) =l (”nrvn)szz_zQ(ﬁman) = 0,(1). (3.4)
From (3.3) and (3.4), we can deduce that
PN 22y —r _ PN
180D = 2055 2 00) 17 2P (7, 5) + 00 (1), 5)
44

Since 1 < r < 2 and ||(uy,v,)|| — oo, then (3.5) implies || (i, 0,)||> — 0 as n — oo, which is a
contradiction to the fact that || (i1, 0, )|| = 1. Thus, proof is completed. O

Lemma 3.3. There exists

. N+i-a <||H+||oo2

N+Zix _I\%i\r]% L L
o () ™ 5 o () + Gl 7).
such that the energy functional I) , satisfies the (PS)c-condition with ¢ € (—o0, co) and Ky is defined

in Lemma 3.1.

Proof. Let {(uy,v,)} C H be a (PS)-sequence for I, , with 0 < ¢ < ce. Then by Lemma 3.2,
{(un,v4)} is a bounded sequence in H. Thus, up to a subsequence, (u,,v,) — (u,v) weakly
in H. So u, — u and v, — v weakly in H(Z)(Q), u, — u and v, — v strongly in L™(Q)) for all
1<m < 2" and u, = u, v, = v pointwise a.e. in Q). Therefore

Py (tn, vn) = Py (u,0) + 0, (1). (3.6)

Also, Ig,y(u, v) = 0, follows from Lemma 3.1. Now, define (i, 7,), where i, = u, — u,
0, = v, — v. Then by the Brézis-Lieb lemma [6] and Lemma 2.8, we have

1 (ttn, 3n) 12 = [t 00) 2 = 1| (1, 0) | + 00 (1),

Q(un, vn) = Qily, n) + Q(u,v) + 0,(1). (3.7)
Using I, (un, vn) = ¢ +04(1), IA,V(Mn,Un) = 0,(1) and (3.6)—(3.7), we obtain

20802 = 5 Q10 34) = € — Ly u(1,0) +0u(D), 68)

and

H(ﬁnrﬁn)Hz —2Q(ily, 0n) = <I;\,y(”/0)/ (n — 1w, 05 —0)) +0,(1) = 0,(1).

Therefore, we may assume that

" 25 2
(itn, 5)|> — d, and Z/Q/QH(x)H(y)’u"OC‘ZJ _’;Ta(y” ~d. (3.9)

It follows from the definition of Sy | that

e = )

-2 1, () |6 () %\ 2
> Syl HY o (/Q IR ("‘ZC'_';,,E” ) S G
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On combining (3.9) and (3.10), we have

1
, — (d\ %
0= Sl (5)"

which gives either
e P
o _2N-a
d=0 or d> ( ZHOO ) Sur "

Further, if d = 0 then the proof is complete. If

e N
H « _2N—a
d> ( 2”°° ) SHT

then according to (3.8), (3.9) and Lemma 3.1, we get

1 1
c = (2 - 2222) d+ I/\,y(u,v)

N+4—a (|H"|S
~ 2(2N —u)

a contradiction to ¢ < c. Hence, d = 0 and with this we end the proof.

4 Nehari manifold and fibering map analysis

m——ﬁf\’;“ 2 2
=) S~ ko (UL + (Gl ) = e,

17

In this section, we elaborate some important results for Nehari manifold and analysis of
fibering map on I, ,. Notice that the energy functional I, , is unbounded below on H. So
we restrict I , on an appropriate subset \V, , of 7, called Nehari manifold and defined as

N 1= {(,0) € H\{(0,0)} : (I}, (1,0), (w,0)) = 0}.
Thus, (u,v) € N, , if and only if

(I, (1,0), (w,0)) = ||(u,0)||* = Pau(u,0) —2Q(u,0) = 0.
Next, we see that I, , is bounded from below on N, ,, in the following lemma.

Lemma 4.1. The energy functional I, ,, is coercive and bounded below on N ,.

Proof. Let (u,v) € N, for A, > 0, then using (4.1) and (2.16), we have

11 11
Dou(,0) = (5 = o5 ) 1 0) 2 = (= = 555 ) Pau(i,0)
2 22% ro 22:

r

(4.2)

1 1 5 1 1 o, B 2 21 )
> (3732 ) 1P = (5 = 55 ) 7 (MIFL + GGl ) o),

Since 1 < r < 2. Therefore, I A is coercive.
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Now, consider the function ¢ : R — R as o(t) = b1#*> — bpt". Then one can easily see that
bz?’

1
¢'(t) = 0if and only if t = (37)>" =: " and ¢"(t") > 0. So ¢ attains its minimum at t*.
Moreover,

2-r
2

. _r 2 2 .
Taking b1 = (3= &), b2 = (2 = 54)S~H((MIFI9) + (#Gllp)™) ™" and ¢ = [|(1,0)]] in
the function ¢, we obtain

Dou(u,0) 2 o([[(w,0)]]) = o().
which yields the required assertion. O

The Nehari manifold is intently related to the behaviour of map ¥, : t — Iy ,(tu, tv) for
t > 0, defined as
tZ

tr
‘Iju,z;(t) = IM,(tu, tv) = EH(L{, Z))Hz — 7PM,(u, U) —

22%

2*

o

Q(u,v).

These maps are known as fibering maps which were introduced by Drébek and Pohozaev in
[13]. Thus, (tu,tv) € N, iff ¥} ,(t) = 0. Furthermore

¥io(t) = tl(1,0) > = 7 Py (u,0) = 28%71Q(u, ),
Yiuo(t) = 1, 0) | = (r = D) 2Pyu(u,0) = 2(22; — 1)22Q(u, ).

In particular, (1,v) € N, , if and only if ¥} ,(1) = 0. Therefore it is obvious to split N, ,

into three parts namely N )jr W N Iy p and N )(\) " corresponding to local minima, local maxima and

point of inflexion respectively as:
N/\i,y = {(u,0) e Ny, : ¥, ,(1) 20}, /\/'/(\)IV = {(u,v) e Ny, : ¥, ,(1) =0} .

We note that, for (1,v) € N, ,,, we have

' 1) {(2—2zz>||<u,v>||2— (r = 22)Py(1,0) wy

T @0l )P - 20225 - QG v)

In next lemma, we will show that the local minimizers of I , on N, , are the critical points
of I Au-
M

Lemma 4.2. If (u,0) is the local minimizer for I, on subset of N ,,, namely thy or Ny, such that
(u,v) ¢ N)?/M' Then I} ,(u,v) = 0in H 1, where H~' denotes the dual space of H.

Proof. Suppose (u,v) is a local minimizer for I, subject to the constrains @, ,(u,v) :
(I3, (u,v), (u,0)) = 0. Then by Lagrange multipliers, there exists § € R such that I} , (u,v) =
6@ ,(u,0). This implies that (I} ,(1,0), (u,0)) = &(P) ,(u,0), (u,v)). As (1,0) € N, then
(L), (w,0), (u,0)) = and (P} ,(u,0), (u,0)) # 0because of (u,v) ¢ N)(\),y. Therefore 6 = 0. This
completes the proof. O

Lemma 4.3. The following hold:
(i) If (w,v) € N UNY , then Py, (u,0) > 0.

(ii) If (u,v) € Ny, UN)?/H, then Q(u,v) > 0.



Biharmonic system with Hartree-type critical nonlinearity 19

Proof. The proof follows directly from (4.3). O
Before analyzing the fibering map, we define a map S, : R™ — R such that
Suo(t) == 27| (u,0)||*> = 26%%77Q(u, v). (4.4)

It is noted that for t > 0, (tu,tv) € N, , if and only if S,,(t) = Py, (u,v). We will check
the behaviour of S, near 0 and +co. Since 1 < r < 2 and 2 < 227, this implies that
lim; 0+ Sy, (t) = 0 and lim¢—, 10 S0 (t) = —00. Moreover, for critical points

Sio(t) = (2=t || (u,0)|2 - 2(225 — )21 Q(u, ).

One can easily see that S, ,(t) = 0 if and only if f = tax, where

_(@=n)llwo))? \ ==
fmax = <2(22;’2 _r)Q(M,U)> .

Also, S/ (1) = (2—r)(1 =)t 7"|[(u,0)]|* — 2(225 — r) (22 — r — 1)#*%"2Q(u, v).

Sl o (tmax) = (2= 1) (1 = 1)t (1, 0) |2 — 2(225 — 1) (225 — 7 — Dt Q(1,0)

- =000 () 1P

—1)|[(u,v)]]? E =
L 2(22F — ) (22F —r—1) (22222* _”'r()é(ﬂv)) Qu, )

*

S “_p)\
_ o) [(Z_rm_r) =3

(Qu,0)) = 27
; . 21 2(22; —7)\ B2
2(22F — r)(22% 1 1)(2(22z—r)>( 2 ) }
2-22;) (2(22; — 1)) % 2 2024 -2 .
= BB GV ,0))55 (Qu,0) %

(2 _ 1’) 2252
< 0.

Thus, S, ,(t) has maximum value at .. Moreover, we have relation
Y o(t) =t (Suo(t) — Pry(u,0)). (4.5)

Lemma 4.4. Assume that 0 < (A||F||,3)% + (yHGHﬁ)% <Y and (u,v) € H, the following results
hold:

(1) If Q(u,v) < 0and Py, (u,v) <O, then there does not exists any critical point.

(it) If Q(u,v) < 0and Py, (u,v) <O, then there exists a unique (t*u, t*v) such that (t*u,t"v) €
Ny and I, (Fru, 7o) = infiso I, (tu, o).

(iii) If Q(u,v) > 0and Py, (u,v) <0, then there exists a unique t~ > tmax such that (t"u,t"v) €
Ny and Dy (87 u,t70) = supys, Iy (tu, to).
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If Q(u,v) > 0 and Py, (u,v) > 0, then there exists unique t* and t~ satisfying 0 < t* <
tmax <t such that (t*u,ttv) € ./\/}jfy and (t"u,t"v) € Ny, Moreover

Lyu(tu, t70) = 0<}1<1tf Iy, (tu, to); Lyu(tu,t70) = ti?p Iy, (tu, to).

Proof. Let (0,0) # (u,v) € H, then we have following four possible cases:

(i)

(i)

(iii)

If Q(u,v) < 0and Py, (u,v) <O, then ¥, ,(t) =0att=0and ¥, ,(t) > 0forall t > 0.
This implies that &, is strictly increasing and hence no critical point.

If Q(u,v) < 0, then from (4.4) S, is strictly increasing for t > 0. As Py ,(u,v) > 0, this
implies that there exists a unique t* such that S,,(t*) = Py ,(u,v) with S,,(t*) > 0.
Using (4.5), we conclude that (t"u,t"v) € N, ,. Further, ¥} ,(t) > 0 and ¥} ,(t) < 0
for t > t* and and t < t* respectively. Also ¥/, (i7) = (t*)”’Sl’w(t*) > 0. Thus,
(ttu,tto) € Nj,'ﬂ and I, (t*u, tT0) = infi>q Iy, (tu, tv).

If Q(u,v) > 0, then fyay is the point at which ) ,(t) > 0 has maximum. Thus, S, (t)
is strictly increasing for 0 < t < tmax and strictly decreasing for tmax < t < o0. As
Py (u,v) <0, so there is a unique t~ > tmax > 0 such that S, ,(t7) = Py ,(u,v) and
Sup(t7) < 0. Further, (4.5) gives ¥, ,(t7) = 0. Thus (t"u,t"v) € N . Also, ¥}, ,(t7) =
(t7)78, () < 0and ¥, ,(t) <0 for t > tmax, 50 ¥uo(t™) = sup,s,  Yuo(t). Hence,
(tu,t v) e N):H and Iy ,(t7u, t70) = sup,5, Iy, (tu, to). -

Since Q(u,v) > 0, S, () achieves its maximum at t = fpax. Thus

_ , 2—r Prrees 22* (e, 0)||2% s
Suaton) = 1091 (3 7)™ (2 =7) (Pl )

> |Gt HH*HJ(SH,LV*} (B ) lwolr

As Py ,(u,v) >0, so

2— r
27 JEeE (225 -2
— > . HT 2; ! r
Susltmm) = Pus00) 2 | (535 ) I 120 | (23 ) o)l

2—r

~ (A1) + @Gl ) * s H w0

>0,

for 0 < ()\HFH[;)Z 7 (yHGHﬁ)ZL < Y;. Thus, there exists t* and t~ with 0 < t1 <
tmax <t~ satisfying

Suo(tT) = Pryu(u,0) = Sup(t”) and S, ,(t7) <0< S, ,(t7).

Therefore, (tTu,t™v) € N*ly, (t"u,t"v) € N . Furthermore, ¥, ,(t) <0 fort € (0,£%),
¥, (t) >0fort e (t7,t7)and ¥; ,(t) <Ofort e (t,00).

Hence

Ly (tu, t70) = 0<}I<1{ Iy (tu, to); I, (Fu, t70) = iup Iy, (tu, tv).
=t =tmax t_tmax

holds true. This completes the proof. O
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Lemma 4.5. If0 < ()\HFH[;)% + (yHGHﬁ)% <Y1, then N)?,y is a null set.
Proof. We will prove it by contradiction. Let (u,v) € N /{J,H, then (4.3) implies that,

22y —r

11,0)I12 = 25— P (,0)
and
2(227 —r
G017 = 222000

On using (2.16) in (4.6), it is easy to calculate

1
227 —1

Il < (B2s75) ™ (I + (G I )

Now, taking (2.17) in (4.7), we find

22% —r
)P <2 (%t

(u, )|,

— ) IH (|2 (Sp,)

or

1

1901 > | (5 ) 1 12|

Thus, from (4.8) and (4.9), we get

1

21

(4.7)

(4.8)

(4.9)

2
2 2 22% — 2\ 2 2—r - o Ty
2=r 2-r > a _— +1) =2 20’ 2=r —:

which contradicts the fact that 0 < ()\||PH5)% + (]/t||G||ﬁ)% < Y;. Hence /\/'/Q,y = ¢ which

completes the proof.
Consequently, if 0 < (AHFHﬁ)% + (yHGHﬁ)% <Y1, then we have
Now, we define

kr,= inf I,,(u,v); ki = inf I, ,(u,v); ky = inf I ,(u,0).
M ey, (w,0) M weny, () M wyeny, (w,2)

Lemma 4.6. The following facts hold:

(i) IFO < (A|[F|lg) 7 + (#lGllp)™* < Ya, then ky, <k, <0,

O]

(ii) If0 < A < 5Yq, then k;/u > do, where dy is a positive constant depending on A, u,a,r,N, S,

IFlla, Glla and |[H|co.
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Proof. (i) Let (u,v) € N} 1 then (4.3) gives
2—

2(22* =7
This together with (2.15) and (4.1) yield

) = (5= 1) o) P +2 (1 - 52 ) Qo) < - 2= =D, <o,

2 r 22k r22%

I, 0)]1* > Q(u, 0).

Thus, by the definition of k) , and k)t o We conclude that k, ;, < kj{,y < 0.
(ii) Let (u,v) € /\/'/\_ﬂ. Then using (4.3) and (2.17), we have

2— 2 12 -2 22
- < o« o,
sy |00 < Qo) < IR (Sua) ™ o)
This implies that
1
2 2 a2 B2
001> (e 12 5% ) @10)
On combining (4.2) and (4.10), we obtain
I (u,0)
1 1 1 v 2 2\ &
> ’ r (2 ~z P P
> 1,0l | (5= g0 ) 10002 = (5= 55 ) 78 (IFLRY + Gl ) ]

2—r

2 —r _ — 2% 22;{72 1 1 2 —7 B _ o -
- H+ 2 o - - H+ 2 S o
= (2(22; — 7’) H H°° (SH’L) ) [ (2 22;) (2(22; — 1,) H Hoo ( H,L)

(35 ) S (MRl + <m|cuﬁ>f—r)2’]

Thus, if 0 < ()\HFH[;)% + (,uHGHﬁ)% < (5 )%Yl, then I ;,(u,v) > do for all (u,v) € Ny,

where d is a positive constant depending on A, u, &, 7, N, S, ||F||a, |G|« and [|HT ||co- O

5 Existence of solution in N/ ,ty

In this section, we show the existence of Palais-Smale sequence corresponding to energy
functional I, , in N iy, by using the implicit function theorem.

Lemma 5.1. Suppose 0 < ()L||FH5)% + (y||G||/3)% < Y1. Then for every z = (u,v) € N, there
exist € > 0 and a differentiable mapping { : B(0,€) C H — R such that {(0) = 1, {(w)(z — w) €
Ny and for all w = (wq, wy) € H

2B(z,w) — 1Py u(z,w) —2Q(z, w)

00 ) =5 o) 2 — 2225 — ) Q(w, o)
where
B(z,w) = /Q (AuAwy + AvAw,) dx,
Prulz,w) = /Q (AF(x)|u|"2uwy + uG(x)|o|"2vw,) dx,

2

:/ H(x ( x)F“\M(V)WZu(y)zl+|u(x)y2ﬁyv(y)yzi2v(y)22)dxdy

o) |x —y|*
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Proof. For z = (1,0) € N, ,, define a map & : R x H — R such that
() = (1} ,(6(z = ), £z = ) = | (4 —w01,0 — wa) |
— 0 Q)= |+ pG ()| — wa] )t = 20 Q1 — 1,0 — wa)
Then (1, (0,0)) = (I} ,(z),2z) = 0 and

2.01,0,0) = 2002 = [ (FGl+ 5G] )dx — 2(222)Q(w,0)

dg
= (2= 1)l 0)|I* - 2(22; - r)Q(u,v) #0.

Thus, by the implicit function theorem, there exist € > 0 and a differentiable mapping { :
B(0,e) € H — R" such that (0) =1,

, _ 2B(z,w) =Py u(z,w) —2Q(z,w)
O = o) - 2225~ r)QGu o)

& (C(w),w) =0V w € B(0,¢). Thus,
(I (L(w)(z = w)),L(w)(z—w)) =0 Vwe B(0,e).
Therefore, {(w)(z — w) € Ny . O

The similar result is also true for (u,v) € N. o which is as follows

Lemma 5.2. Suppose 0 < ()\HFHﬁ)% + (yHGHﬁ)zZTr < Yy. Then for every z = (u,v) € N):y,
there exist € > 0 and a differentiable mapping {~ : B(0,e) C H — R such that {~(0) = 1,
¢ (w)(z—w) € Ny, and for all w = (wy,wz) € H

7, 2B(z,w) — 1Py, (z,w) —29(z, w)
(@) O =G =l - 225~ )00, o)

where B(z,w), P, (z,w) and Q(z,w) is same as in Lemma 5.1.

Proof. By the same argument used in Lemma 5.1, there exists € > 0 and a differentiable
function {~ : B(0,€) C H — IR" such that {~(0) =1 and {~ (w)(z —w) € N . Since

¥l (1) = 2 =1)l(w,0)]* - 2(22; - r)Q(u,v) < 0.
By the continuity of ¥” and {~, we have
¥ (D) = 2= 1T (@) (2 — ) = 2(22; — NQ(T~ (w)(z — w), T (w)(z — w) <,
for € > 0 is sufficiently small. Thus, ™ (w)(z —w) € N . O

Lemma 5.3. The following statements are true:

(i) If 0 < (A||P||,5)% + (pt||G||ﬁ)% < Yy, then there exists a (PS)y, -sequence {(un,vn)} C
Ny in H for I .

(ii) If0 < (/\||P||lg)% + (y||G||ﬁ)% < (%)ZE’ Y1, then there exists a (PS),— -sequence
o
{(un,on)} C Ny, inH for I .
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Proof. (i) According to Lemma 4.1 and Ekeland Variational Principle [14], there exists a mini-
mizing sequence {(u,,v,)} C N, such that

1
I/\,y(unr Op) < k?\,y + Y
1
Iy (i, 00) < Iyu(u,0) + EH(M' v) — (un,vu)||, for each (u,v) € N ,. (5.1)

Using Lemma 4.6(7) and taking n large, we get

1 1 1 1
i on) = (5 = 532 ) Mmoo = (3 = 552 ) Pastin o0
[14 [14

1 k)\ u
<kt < S (5.2)
This implies that
23k o 2 2\
0< M <y un,o0) < 75 (QAIEIRE + (Gl ) ™ Nmon)l. 63)
o
Wherefore, (u,,v,) # (0,0). From (5.2), we have
1
22—\ o 2 2\ T
o)l < | (325 ) 573 (@I + Glcl ™) T e
Further, (5.3) gives us
1
r2 k)\y 2 a2 =277
I 5}l = [~ 2225 (ELR) > + (Gl |

Now, we will prove that
HI;\,y(unlvn)HH—l —0, asn — oo.

Using Lemma 5.1 for each z, = (u,,v,) to obtain the mapping {, : B(0,e,) — R™ for some
€n > 0 such that {,(w)(z, —w) € N, ;. Choose 0 < 17 < €,. Let z = (u,v) € H with z # 0
and take w;‘] = ﬁ We set w, = gn(w;‘])(zn — wj;) Since wy, € ./\/';\,,4, from (5.1), we get

1
IA,H(wW) - I/\,],t(zn) > _EHwW - ZnH-
Using mean value theorem, we obtain

1
<I/,\,;4(Zn)/w17 —2Zn) + O(HWW —2zy||) > _EHZUW — 2z ||.

Therefore,

(D (zn), —wy) + (Zn(wy) = 1)(T) , (zn), 2 wi;)2—%qu—znl\+0(qu—an). (5.5)

Since {u(wy)(zn — wy) € Ny, and from (5.5), we get

1 (B 57 )+ @l}) = D0l =), 20— 03] 2 =y = 2+ o0y = 1),
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Thus, we have

z 1 1
(o) o ) < ooy = 2l + Lol -z
(Gulwy) =1) * (6)
+#<IA,y(zn—w,7),zn—w,7>.
. a(wi)—1 .
As [lwy — zall < 7lZu(@])] + 1Za(w)) — 1llzal| and Timy_p 0 < iz (0)]), if we take

n — 01in (5.6) for a flxed n € N and using (5.4) we can find a constant A; > 0, free from 7%
such that

/ Z Ay
<1A,H<zn> E ||> AL o).

Further, we will show that ||},(0)]| is uniformly bounded. By Holder’s inequality and
Sobolev’s embedding theorem, we have

/Q AF() | Ve0r + 4G (x) |on] s

r
0% ¥

2\ ¥ 2
< r—1 r / r—1 T
_A|\Fr|a</0(\un\ w) ) +m|cua<0(|vn\ ws) )
< ANF a5 022 + Gl ol ezl
< S B+ plIGlla) 1t 0) 7 o1, 02)| 7)

Further, using the Hardy-Littlewood-Sobolev inequality, Holder’s inequality and Sobolev’s
embedding theorem, we obtain

ZZ*N 2217130‘ 2N 22’7[;“
< C(N,DC) < o |1/ln|2N tv> </Q (|vn‘22—1w1) 2NL¥>

v () () )
2N—a L*

e ([ ) ™ (/ |vn|2*)2 (/ fwnl? )’

2* ZN 27 é?\lﬂ % 2%
: <51/|Aunr2> | [t fmn) | (G )|
O Q Q
* N+44—a
< Aol || % [[ou]| V5 [Jaon |
3N+4—2a
< Ao || (tn, v) | TN | (w1, w2) |- (5.8)

Using the same idea, we can calculate

3N+4—2«

V| %
/n/n (|3’c —‘y|“> [t | wadxdy < Agl (1, va) |7V || (01, w2) . (5.9)
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Thus, on combining (5.7)—(5.9) and (5.4), we have

Ag[ (w1, ws) ||
— 1) [[(tn, 00) (|2 = 2(225 — 1) Q(1tn, vu)|”

‘ (%(O)rw) ‘ < (2

where A4 > 0 is a constant.
Now we are left to show that

|2 = )|, o) 1P = 2(225 = 7)Q(un, v) | = As,

for some As > 0 and 7 is taking large enough. On contradiction argue, suppose there exists a
subsequence {(u,,v,)} such that

(2 = 1)l (e, o) IIP = 2(225 = 1) Q (1, v) | = 0(1). (5.10)

From (5.10) and using (u,, v,) € N ,, we have

22 — v
I, )12 = 52 Py it o) + 00 (1),
n n 2206 _2 H n n n
2(22F —r
G e0) P = 25220000 + a1

By Holder’s inequality, Sobolev embedding theorem and the definition of Sy 1, we obtain

1
2% —r _r 2—r 2 2 1
01 < (355571 ) ™ (IFIP + (IGT) )+ 0n(0),
(44

1
2—r _ ] 2=
o)l = [ (g ) I 122 | ™ + 1)

This implies that (A||F|| 5)237 + (u||G|| 5)237 > Y7, which is a contradiction to the fact that
2
2—r

0 < (A[F[l3)=7 + (1]|Gllp)=+ < Y. Hence,

, u,v A

Thus, proof of (i) is completed.

(ii) Using Lemma 5.2, one can prove (ii) in a similar manner. O

Lemma 5.4. Let 0 < (/\||F||ﬁ)% + (;4HG||!3)% <Y1, then I, has a minimizer (uj v ) in N
which satisfies the following:

(l) I)‘/.“(u}\,y’ U}\,M) = k)‘/.“ = k)tll < 0.
(i) (u},, 0} ,) is a nontrivial solution of the system (D), ,,).
(iii) IA,y(u}\,y,v}L/y) — (0,0)as A = 0", u — 0T
Proof. By Lemma 5.3 (i), there exists a minimizing sequence {(u,,v,)} for I, , such that

Iy (thn, o) = kpy + 04 (1), Igly(un,vn) =0,(1)in H L.
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Lemma 5.1 gives us that {(u,,v,)} is bounded in H. So up to subsequence (u,,v,) —
(1} 0y ,) weakly in (un,04) — H, (u},v},) strongly in L™(Q) V1 < m < 2* and

(un(x),vn(x)) — (u}w (x), U}w(x)) pointwise a.e. in (). Then, it is easy to see that

| = ud 1%, Joal% = [0} /% in L2¥5(Q) and

: (5.11)

520 — Jud 1520, o320, = [0}, B 20), in Ly (Q),

asn — 0. As we know that the Riesz potential defines a continuous linear map from L2 (Q)
2N . .
to L'« (Q)) which provides

| s Ju [P = [x| " u) , | and [x| 7% 5 o, B = x| % |0} | weakly in L% (Q), (5.12)
as n — oo. Thus, (5.11) and (5.12) gives us

(‘x’_a * ’Un|2;) |t

%2y (Jx] 7 o) ) ] 2]
) ) ¢ ) ¢ ) ¢ weakly in LI\%(Q), (5.13)
(7% 1 %) Jou 520, = (Jel = fud ) [0}, %20,

as n — oo. Therefore, for any (¢, ) € H, we have

lim [/Q (AttyAd + Av,AD) dx—/Q(AF(x)|un|f*2u¢_,_VG(XHUHVQWJ) i

n—oo

_ /Q /Q H(x)H(y) ('vn<x>22‘<|un<y)zzzun(y>¢<y)+|un<x)|zﬁ|vn<y)ZﬁZvnw)w(y))] =0,

[x—yl®

because of ||} ,(un,0u)|| — 0 as n — co. Thus, using (5.13), continuity of H and passing the
limit as n — o0, we have

[ (0} 89+ 804, 89) dx— [ (ARG ik, 2u) 1 + HG() o} 20} ) v

B / / H(x)H() <|vx,,<x>|zﬁua,,4<y>zzZui/%(y>¢<|yx>_+y||ix,4<x>2§vz,ﬂ<y>2?fZv;/%(mw)) o,
QJO

ie. <I§L/H(ui,y,v}w), (¢,9)) — 0. This implies that (u}w,v}\’y) is a weak solution of (D, ).

Since (1, vy) € N) . So, we have
||(un/ Un)||2 = P/\,y(unzvn) + ZQ(un/ Un)/

which gives

1 1 1 1
L (i, o) = (2 - 22*) (14, 0n) > = (r - 22*) Py (tn, vn)
44 o

1 1
> = (r - 22;;) PA,y(”nrvn)-

Taking n — co together with A, y < 0, we obtain

225k,
Pr (13,03 ) > —(227_;‘) > 0. (5.14)
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Therefore, (u}w,vky) is a nontrivial solution of (D, ,). Afterwards, we will show that

(up,vy) — (u}w,v}w) strongly in H and IA,y(u}\,y,v}w) = k. Using Fatou’s lemma, we

obtain

1 1 1
kau < IA,y(u}\,;trv}L,y) = <2 ) H( Upu 0 )Hz (r - 22*) PA,M(“XWUM)
(14

/11 , (11
Shgg&K2—2%>WwwwH—(r—2%>ﬁwmeﬁ

=liminfIl, ,(u,,v,) = ky .
P /\,y( n n) Au

This implies that I;\,y(u}\,y,v}w) = kyy and lim | (s, 00) |* = ||(uxﬂ,v}\,y)||2. Further, the
Brézis-Lieb lemma [6] contributes that (u,,v,) — (u}w,vky) strongly in H.

Now, we are left to show that (u} " v} V) eNY + . We prove this by contradiction argument.
Suppose (u} o 0} #) € NA Then, from Lemma 4. 3 (ii) and (5.14), we have

Q<“i,wv/\,u> >0 and PA,ﬂ(uA,ﬂ,vA,y) > 0.

Thus, from Lemma 4.4, there exist unique #; and #; such that (t]u} V,tJrv}\ y) e N , and
(tyul #,tl_v}w) € NA_,V' In particular, we have {7 < t; = 1. Since ‘I’( . )(tf) = 0 and

A M O} i
‘I”(/uw vh)(tf) > 0, there exists t{7 < F < t; such that IA,ﬂ(tI“uAlﬂ,tva,H) < IA,y(tu}l,y,tU%,y).
On using Lemma 4.4, we obtain

t+vm) < IA,;,(fu}\,y,kaH) < IA,M(t_ukV,tl_v}w) = IA,y(u}\,y,v},y) = kau

I)\,]'l ( u/\ M
which is a contradiction. Therefore, (1} " o} H) € N
(iii) Further, from Lemma 4.6 (i) and (4.2), we have

0> kI > kay = IAV(”/\H’UAH)

1 1 _r 2 2\ ,
> = (3= 53 ) ST (QIFID? + (Gl ) 10k I

r

which implies that I Ml(”}\,w vi,y) — (0,0) as A — 0%, u — 0" which completes the proof. [

Proof of Theorem 1.1. From Lemma 5.4, we conclude that (D, ;) has a nontrivial solution
(u}w,vi,y) € N)jy. O

6 Existence of solution in N/ A

In this segment, we first prove the critical level by using few estimates which are already
proved in Section 1. Then we show the existence of a second weak solution of problem (D, ,)
under the assumptions (Z1)—(Z4). At the end of this section, we give the proof of Theorem 1.2.
Lemma 6.1. Assume that (Z1)—(Z4) hold and 3 < r < 2, then there exist (up,,v),) in H \
{(0,0)} and Y > 0 such that for 0 < (AHFH[;)Z—V (;4||GH5)2 T <Y,

sup Iy, (tupu, tor )
10

N+d—a ([HSZ\V o2 2 oy
<2(2N_“)< > Sir _KO((/\HFHL%)Z (}”HGH/S)Z) ! Ceo-
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Furthermore, ky , < oo for all 0 < (A|[Fllg) = + (u[[Gllp) = < Y.
Proof. For this, we first define the functional £ : H — R such that

E(w,0) = 202~ 5-Quo), ¥ (u0) €.

Take Uy = Vp = U with (U, Vo) € H. We define ¢(t) = E(tUp, tVp). Then ¢(t) satisfies
$(0) =0, ¢(t) > 0 for t > 0 small and ¢(#) < 0 for t > 0 large. Further, one can easily verify
that ¢(t) attains its maximum at

1
- (M)
ZQ(UOI VO)

Thus from (2.9), we have

StUtV—@uvz—L)zzzUV
sup £ (tUp, Vo) = || (U, Vo) |* = == —Q(Uo, V)
>0 @
- N
_ (N+4—«) [Ue|?
— . 1
2N —« (Q(ue/ ue))zz
) 2N—a
N(N—4) N N+4—a
_(N+4-a) (C(N,a)) 5% 81, + (e 4)
> — 2(N—4) N(N-4) N—4 —a
2N e (N, 0) B 5 — ofeN—w) —o (5°)
r _ 2(N-4) 1\%54?“
_ (N+4—a) | [H o™ Sy + (N4
>~ ON — & 1_0(€2N2a)
4) 2N—u —u Lj‘a
< (I\;;\’]MHH—FHOONH aSN+4 « [1+0( 4) +o0 (6%)} A
2N—a
c Nrdoa) oy ee (S )T fo@ ), ass )
- 2N-—uw 2 o(e”="), a>8.

Further, 6; > 0 is chosen in such a way that ce, > 0 for all 0 < ()\HFHﬁ)% + (yHGHﬁ)% < 1.
Then, the definition of I, , and A, u > 0 yield that I) ,,(tUp, tVp) < %H (Uo, Vo)||? for t > 0. This
implies that, there exists ty € (0,1) such that

sup Iy, (HLo, 1Vh) < e ¥ 0 < (A|Fllg)7 + (| Gllp) ™ < &1
te[0,to]
Moreover,

sup Py, (tUp, tVp) = sup </Q AF(x)[tUp|" + yG(x)\tVo|r>

>ty t>tg

— sup <tf/Q(AF( %) + uG(x)) [T dx>

t>to

> (o)’ (Aao + jtbo) /B(O2 )\Uerdx
,210

N—N_4, N
w o(e > "nel), r=++5
> (A+m ( N_ur| D N (6.2)
o(eN" ), r> 5a
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where w = min{ay, by }.
Thus, on using (2.8), (6.1) and (6.2), we have

1
Sup I)\,y(tU(),tV()) = sup <5(tU0,tVQ) — ;P)W,(tuO, tVo))

t>tg t>tg

2N—ua
- N+4—ocHH+H—% SHr N“”‘_i_ o(eN™), a<8
- 2N —« ~ 2 0(62sz“), a>8
w o(eN " Ine|), r= g
o(e ) "> Na
or
2N—a
N+4 2(N—4) gHL N+4—u
I (fUo, 1) <~ = S 7 (2B 0
sup 1, (1l V) < N L2 | ( 1) 4 o(en)
N4
L@ gy fol€ el v g%
r o(eN*%’), r> <

where p = min {N — 4, 28-41.

1
Choose 6, > 0 in this way that 0 < € < &, and take € = [()\HFHﬁ)ZL (y||G||5)2L] ?. Thus,
we have

N+4_[X _2(N7:4) gHL N+4—a
sup Iy ,(tUp, tVp) < ——— | H ||V | === +0o(D(A,
up (1L, 1V0) < Syt ( : ) (D, 1)
N
w o((D(A,w)* [In DA, w)]), 7=
——(A+pn) N_N-4, N
r o((D(A, ) %7), r> N-a

where D(A, 1) = (A||Fllg) = + (]| Gllg) =

Case (i): When o < 8, thenp =N — 4.
For r = &, we can choose 83 > 0 with 0 < D(A, ) < 85 such that

w(A+

_wrArp), (( (A, 1)) ™9 [In (D (Mt))\) < =Ko (DA, 1)),

r

o(D(A, 1))

as A, u — 0and |In(D(A, u))| — +o0.
For r > &, we choose 65 > 0 with 0 < D(A, i) < &4 such that

o(D(a, )~ CAEEy (D2, )P < ko (DA, ),

as 1+ 7% (5 — §) < 5% forr > . Now, we fix Y, —mm{(S o, T ,07,6,2}1>0
suchthat

2N—a

o 2(N—4 N+4—a
sup Iy, (tUo, tVo) < %H HF oM (SHL) — Ko(D(A, ) for 0 < D(A, p) < Y
>t - 2

Case (ii): When a > 8, then p = 2%,



Biharmonic system with Hartree-type critical nonlinearity 31

Forr = %, we choose 5 > 0 with 0 < D(A, i) < J5 such that

o(D(a, 1))~ CAEE o (D, )™ fin (D)) < Ko (DA, ),

as A,y — 0and |[In(D(A, )| — +oo.
For r > %, we choose ¢ > 0 with 0 < D(A, u) < J6 such that

w(A+ N N-4
o(D(A, 1)) — (r”)o (D) ™="25) < —Ko (D(A, ),
2 2N N—4 2-r W 2-r  2-r
as 1+ 5= (2N7a — 2N7“r) < 5= forr > N 1+ Fix Yi = min{é,*> ,6, 2 ,05%,0,> } >0
to obtain
sup IA,y(tuO/ tVO)
>t
N -+ 4 2(N-4) Ntia
< ;TIIHWOON“ : (SI;L) —Ko(D(A, ) for0 < D(A ) < Yi. (6.3)

Thereafter, we fix Y = min{Y,, Y., }. Thus, we have

sup Iy, (tUo, tVo)
t>ty
N
N+4- Nere (S )
< ﬁHH*!IwM : ( P21L> —Ko(D(A, ) =i o for 0 < D(A,p) <Y

Later, we show that k), < ce for all 0 < (AHFHﬁ)% + (]/tHGHﬁ;)% < Y. By using (Z2), (Z4)
and the definition of (Up, V), we get

P/\,y(U(), VQ) >0 and Q(UQ, VO) > 0.

Further, by Lemma 4.4, definition of k;, " and (6.3), there exists t,(Uy, Vo) € N A p satisfying

ki < Dou(t2lo, £2V0)) < I y(tlo, Vo)

—&

N+4— _2(N-4) SHL N+4 o
< + N+4 uc _ = Coo,

foreach 0 < D(A, u) < Y.
Take (Uo, Vo) = (s, va,) and with this we complete the proof. O

Lemma 6.2. Assume that (Z1)—(Z4) hold. Then I, satisfies the (PS),- condition for all 0 <
A

(/\||F||ﬁ)% + (ptHGHﬁ)% < (%)ZL Y1 and has a minimizer (uMl,v%y) in Ny, and satisfies the
following conditions:

(i) IA/H(“%,WU%»,#) =k, >0

(i1) (ui,y, v%w) is a nontrivial solution of the system (D, ,,).
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2
Proof. By virtue of Lemma 5.3 (ii), for 0 < ()\||FH5)% + (‘u||GHﬁ)% < (5)¥7Y;, there
exists a (PS)k; -sequence {(un,vn)} C N y in H for I, ;. Then, from Lemma 3.2, we
find that {(u,,v,)} is bounded in H. Now, using Lemma 3.3 and Lemma 6.1, I, satis-

fies the (PS)k;,#—condition. Then, there exists (ugw,viy) € H such that up to subsequence
2 2

; 2 2y — k- 2 .2 —
(tn, vn) — (u)\,y,v)w) in H. Moreover, IA,M(”A,WU/\,y) = kMt > 0 and (u)w,v)\,y) € NM!' Us-
ing the argument as applied in Lemma 5.4, one can easily obtain that (13 " v} 14) is a nontrivial

solution of system (D, ,) for 0 < (A||PH5)% + (I/‘HGHB)% < (%)% Y. O

Proof of Theorem 1.2. By Lemma 54 and Lemma 6.2, system (D,,) has one solution
(u}w,vky) e N} P and another solution (u%\’y,vﬁlﬂ) e Ny v Afterwards, we show that the

solutions (u} ” vl ;4) and (u3 W o H) are not semi-trivial. Using Lemma 5.4 (i) and Lemma 6.2

(i) respectively, we get
IA,V(u}\,H,vxﬂ) <0 and IA,y(“i,yrvi,ﬂ > 0. (6.4)

We observe that, if (1,0) (or (0,v)) is a semi-trivial solution of system (D, ,), then we have

Nu = AF(x)|ul"?u inQ,
(6.5)
u=Vu=0 on dQ).
Now, the energy functional I, ,,(u,0) corresponding to (6.5) is
— 1 2 A r _ 2—r 2
L(,0) = 3wl = [ FGo)lufax = == julP <o. ©6)

Thus (6.4) and (6.6), we conclude that (u% " v%\ y) is not a semi-trivial solution. Next, we prove

1
Ay

v}w = 0. Then u}w is a non-trivial solution of (6.5) and

that (u}L w0 ) is also not a semi-trivial solution. Without loss of generality, we assume that

108} 0) 12 = skl = A [ )k, e = 0
Moreover, we choose w € H3(Q) \ {0} such that
10, w)|[? = [|w||* = #/Q G(x)|w|"dx > 0.

From Lemma 4.4, there exists a unique 0 < #; < tmax(u}\ V,w) such that (tlu}\ W hw) € ny,
where

1

1 )= ((222i—r) fQ(AF(X)IL&,er+#G(X)IWIr)dx>“ B (22;—r>21—r -

tmax (U 1, W) =

(22~ 2)[[ (s, @) 2;-2
Furthermore,
1 s 1
In, (tlu)w, tw) = Ogigtfmax In, (tu)w, tw).

This together with the fact that (u} ,,0) € NV} imply that

V?tu < IA,y(tluxﬂ,tlw) < IA,y(”i,ww) < IA/H(”}\,M'O) = VIV’

which is a contradiction. Hence, (1} " o} 14) is not a semi-trivial solution. O
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Abstract. In this paper, we study the existence of positive solutions for the following
generalized quasilinear Schrodinger equation
— div(g? (u)[VulP72Vu) + 8P~ (u)g' (1) [Vul? + V (x) |u|'2u
= K(x)f(u) + Q(x)g()|G(w)|" ?G(u), ~ x€RV,

where N >3, 1< p <N, p* = NN—_pp, ¢ € CY(R,R*), V(x) and K(x) are positive con-

tinuous functions and G(u) = [, g(t)dt. By using a change of variable, we obtain the
existence of positive solutions for this problem by using the Mountain Pass Theorem.
Our results generalize some existing results.

Keywords: generalized quasilinear Schrodinger equation, positive solutions, critical
growth; p-Laplacian.
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Introduction

This article is concerned with a class of generalized quasilinear Schrodinger equation

— div(g? (u)|[VulP72Vu) + " (u)g () [Vul? + V (x) [u|P~2u
K(x)f(u) + Q(x)g(u)|G(u)

where N > 3,1 < p <N, p* = 1\’;—5\;, ¢ € CY(R,R*), V(x) and K(x) are positive continuous

P2G(u), xeRN, (1.1)

functions, Q(x) > 0 is a bounded continuous function and G(u) = [ g(t)dt.
If p =2, then (1.1) will be reduced to the following generalized quasilinear Schrédinger
equation

— div(g?(u) Vu) +g(u)g' ()| Vu|* + V(x)u = K(x) f (1) + Q(x)g(u)|G (1) ¥ ?G(u), x € RY.
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In nonlinear analysis, the existence of solitary wave solutions for the following quasi-linear
Schrodinger equation has been widely considered

0z = —Az +W(x)z — k(x, |z|) — Al(|z)*)I'(|z)*)z (1.2)

where z : Rx RN — C, W : RN — R is a given potential, / : R -+ R and k : R¥ x R — R
are suitable functions. When [ is different, the quasilinear equation of the form (1.2) can
express several physical phenomenon. Especially, I(s) = s was used for the superfluid film
[26,27] equation in fluid mechanics by Kurihara [26]. For more physical background, we can
refer to [5,6,11,25,28,36,38,39] and references therein. In addition, many conclusions about
the equation (1.2) with [(f) = t* for some a > 1 have been studied, see [33-35,37] and the
references therein. However, to our knowledge, only in the recent papers [20] and [40], the
equation (1.2) with a general [ has been studied.

If we let z(t,x) = exp(—iEt)u(x), where E € R and u is a real function, then (1.2) can be
reduce to (see [15]):

—Au+ V(x)u — Al(u®)!'(u®)u = h(x,u), x € RV, (1.3)

If we take 0t o

[(FE(w))’]
2 7

then (1.3) turns into quasilinear elliptic equations (see [40])

gz(u) =1+

— div(g*(u)Vu) + g(u)g' (u)|Vul* + V(x)u = h(x,u), x € RN, (1.4)

Moreover, if we let

[((u))']?

P(u) =14 20
8" (u) ;
the (1.1) turns to the following (see [45])
Ay V() ) — Ap(l(uz))l’(uz)z: _h(xu), xeRV,

For (1.4), in [20,21], Deng et al. proved the existence of positive solutions with critical ex-
ponents. In [20,21], they established the critical exponents, which are 2* and a2*, respectively.
In [18,19], Deng et al. established the existence of nodal solutions. Especially, in [18], the
authors gave some existence results about under critical growth condition. Moreover, in [29],
Li et al. proved the existence of ground state solutions and geometrically distinct solutions
via Nehari manifold method. In [30], the authors studied the existence of a positive solution,
a negative solution and infinitely many solutions via symmetric mountain theorem. In [9],
Chen et al. considered the existence and concentration behavior of ground state solutions for
(1.4) with subcritical growth. Afterwards, Chen et al. [10] proved the existence and concen-
tration behavior of ground state solutions for (1.4) with critical exponential 22* growth. For
more results, the readers can refer to [13,14,31,40-43]. In 2016, Li et al. [31,46] established
the existence of sign-changing solutions and ground state solutions with potential vanishing
at infinity as follows:

(g) g € CY(R,R") is even with ¢/(t) > 0 for all t € R and g(0) = 1.

(V) The potential function V is positive on RN and belongs to L*(RN) N C*(RY) for some
a € (0,1).
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(K) K € L*(RN) N C*(RN) is positive.

(K1) If {A,} CRNisa sequence of Borel sets such that |A,| < M, for all n and some M > 0,
then we have

lim K(x)dx =0, uniformlyinn € NN,
r=+c0.JA,nB(0)

where BS(0) = {x € RN : |x| > r}
(K2) The following condition holds:

K(x)
V(x)

€ L®(RM). (1.5)

Note that conditions (V)—(K3) are called potential vanishing at infinity. By using potential
vanishing at infinity, there are many papers (see [1,4,12,23,24,31,32,43,44,46]) to study the
existence of solutions for different equations. Especially in [22], Deng et al. proved the exis-
tence of positive solutions with critical growth and potential vanishing at infinity by making
the change of variables v = r~!(u), where r is defined by

() —
(14 2r2(t))1/2
r(—t) =r(t) on (—o0,0].

on [0, +0c0),

However, conditions (V)—(K;) are weaker than the following well-known condition:

(VK) V,K: RN — R, are smooth and there exist positive numbers «, B, a, b, and c such that

a C
<V <b, 0< K < ,
(x) < () < T

R®,
T+ 2 = * e

which was firstly introduced in [2].
Before stating our results, let us recall some basic notions. Let

DYP(RN) = {u e LV (RN) : Vu ¢ LP(]RN)}

1
p
fullos = ([, 1vuax)

Since the potential may vanish at infinity, it is natural to use the following working space:

with the norm

E= {v e D'(RVN) : /3 V(x)|o|dx < oo}
JIR
endowed with the norm

[ol| = (/RN(WUV’ + V(x)|v|’”)dx>2, vcE.

Moreover, we define the weighted Lebesgue space

LT (RN) = < u : uis measurable on RN and K(x)|ul7dx < oo
K RN
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endowed with the norm X
q
lullg = f, (K uiz)
for some g € (p, p*).

By the conditions (V)—(K3), in [17], the authors got the following proposition.

Proposition 1.1 (see [17, Lemma 2.2]). Suppose that (V)—(Ky) are satisfied. Then E is compactly
embedded in L}, (RN) for all q € (p, p*) if (1.5) holds.

To resolve the equation (1.1), due to the appearance of the nonlocal term [y g7 (u)|Vu|Pdx,
the right working space seems to be

_ . p 14
Eo—{MEE./]RNg(u)’VM| dx<oo}.

But it is easy to see that Ey is not a linear space under the assumption of (g). To overcome
this difficulty, a variable substitution as follows: for any v € E, Shen and Wang [40] make a
change of variable as

u=G1v) and G(u):/ g(t)dt,
0
then
p Py — r(g-1 -1 Pdy -— p
/]RNg ()| V| dx—/]RNg (G(0))|VG 1 (0)|Pdx := |Volh < 4+, vEE.

In such a case, we can deduce formally that the Euler-Lagrange functional associated with
the equation (1.1) is
1 1 .
=— P(u)|VulP +V(x ”dx—/ K(x)F(u)dx — — x)|G(u)|P dx.
) =5 [ 8" @Vl 4 Vewlar - [ K@Fwde - [ 0|6
Therefore, by this change of variables E can be used as the working space and the equation
(1.1) in form can be transformed into

7@ =3 [ (1VoF + V)IG (0))dx

- K(x)P(G‘l(v))dx—l*/ Q)0 dx, xRV, (1.6)
RN p RN

By the fact of ¢ is a nondecreasing positive function that |G~1(v)| < |v|. From this and our
hypotheses, it is clear that J is well defined in E and J € cl.

Furthermore, one can easily derive that if v € C?(IRVN) is a critical point of (1.6), then
u = G 1(v) € C*(RN) is a classical solution to the equation (1.1). To obtain a critical point of
(1.6), we only need to seek for the weak solution to the following equation

G (@)P2G " (v) f(G"H(©))
8(G™1(v)) 8(G71(v))
Here, we say that v € E is a weak solution to the equation (1.7) if it holds that

—Apv +V(x) = K(x) + Q(x) 0| 20, xeRN.  (17)

G ()" 26 (v)
g(G 1(v))

f(G'(v) .
_/IRN K(x)g(c;,—l(v))(/f’—/]RN Q(x)|v|F"*vgp, @ €E.

(T'@),9) = [ Vel 2VoVe+ [ Vi(x)
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Then it is standard to obtain that v € E is a weak solution to the equation (1.7) if and only if
v is a critical point of the functional 7 in E. To sum up, it is sufficient to find a critical point
of the functional J in E to achieve a classical solution to the equation (1.1).

Very recently, Song and Chen [45] studied the existence of weak solutions for (1.1) when
V is a positive potential bounded away from zero and h(x,u) = h(u) is a nonlinear term of
subcritical type. Now, it is natural to ask whether problem (1.1) has the existence of positive
solutions in the case where h satisfies critical growth? To the best of our knowledge, there
are few results on such above questions in current literature. Actually, this is one of the
motivations for us to study the existence of positive solutions of (1.1) with critical growth.
Motivated by the above works, in this paper, our goal is to deal with critical growth case and
give the existence of positive solutions of (1.1) with potential vanishing at infinity.

Now, we answer the question in the affirmative, which is given in the front of the article.
Before stating our results, we need to give the following assumptions on f:

(f) f € C(R,R), f(t) =0 for t <0 and f has a “quasicritical” growth, namely
, f(t)
lim ———2—4—— = 0.
t=e0 §(B)|G(E) [P

(f1) limy_o+ W = 0 if (1.5) holds.

(f2) There exists a u € (p, p*) such that for any + > 0
0 < ug(t)F(t) < G(t)f(t) foralls € R,
where F(u) = [ f(t)dt.

In addition, we also assume that

(Q1) There is a point xg, such that
Q(xg) = sup Q(x).

x€RN

(Q2) For x close to xg, we have
Q(x) = Q(x0) + O(|Jx — x¢|?) as x — xo.

Now, we state our main results by the following theorems.

Theorem 1.2. Suppose that (g), (V)—(Kz), (Q1)—(Q2) and (f)—(f2) are satisfied. Then problem (1.1)

has at least one positive solution if either N > p? or p < N < p* and yu > p* — %.
Applying Theorem 1.2 to the case when Q(x) = 1 and p = 2, we can get the following
corollary.

Corollary 1.3. Suppose that (g), (V)—(Kz) and (f)—(f2) are satisfied. Then the following problem
—div(g* (1) Vu) + g(u)g' ()| Vul® + V(x)u = K(x)f (u) + g(u)|G(u)* ?G(u), ~ xeRY
has at least one positive solution if either N > 4 or N =3 and y > 2* — 2.
The paper is organized as follows. In Section 2, we prove a solution of (1.1) with critical
growth and potential vanishing at infinity. In Appendix A, we give some useful lemmas,

respectively.
In the following, we denote by LF(IRN) the usual Lebesgue space with norms ||ul|, =

1
(Jgn [u|Pdx)?, where 1 < p < oo; for any z € R and R > 0, Bg(z) := {x € R?: [x —z| < R};
C possibly denotes the different constants in different place.
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Main results

In this section, we present some useful lemmas and corollaries. Now, let us recall the following
lemma which has been proved in [30].

Lemma 2.1 ([30]). For the function g, G, and G, the following properties hold:
(1) the functions G(-) and G~1(-) are strictly increasing and odd;
(2) G(s) < g(s)sforalls > 0; G(s) > g(s)s forall s <0;
3) g(G71(s)) > ¢(0) =1foralls € R;
(4) @ is decreasing on (0, +o00) and increasing on (—oo,0);

(5) |G71(s)| < ﬁ\s] = |s| forall s € R;

G (s)] _ .
() g(G1(s)) = gzl(()) |s| = |s| forall s € R;

(7) Gil(S

g(G*il()si) < |G7Y(s)|* forall s € R;

(8) limg g @ = ﬁ =1and

8(e0)’
0, if gis unbounded.

lim
|s|—+o0 S

Gl(s) {1 if g is bounded,

The next two lemmas show that the functional 7 verifies the mountain pass geometry.

Lemma 2.2. Suppose that (V)—(Ky), (Q1)—(Q2), and (f)—(f2)are satisfied. Then there exist a, p > 0
such that J (v) > « for all ||v|| = p.

Proof. It follows from (1.6) that

T (0) = 1/RNHVUV’+V(x)|c—1(v)|r’]dx—/ K(x)F(G1(0))dx

p R
- ¢ Jo Qe
_ ;Hvong - <—;V(x)|G—1(v)|p+K(x)F(G—1(U))> dx .
- Jo QI d
> ;vangg -/ <—:)V(x)|G—l(v)|P+K(x)P(G—1(U))> dx
- pl [ Qo dx.
On the one hand, if (1.5) holds and let A(x,s) := —%]Gfl(s)\p + I‘j((i%F(G*l(s)), then by
Lemma 2.1-(8), we have
1) |P 1
w im0
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and ,
-1 -1
lim A(x,*S) ~ tim |16 @) 1*_ K(x) F(G SS)) _o, 23)
s> 4o00 ]sP S—y400 p s ‘sp p V(x) ‘S”
since
lim G '(s) _ sy, if gis bounded,
|s|>4c0 S 0, if gis unbounded.

Thus, by (2.2) and (2.3), for € > 0 sufficiently small, there exists a constant C, > 0 such that
V(x)A(x,s) < (—:7 +€> V(x)|s|P + CeV (x)]|s]”. (2.4)
Then by Proposition 1.1, (2.4), (2.1) and (Q;), we have
Volr — (-1 + e) [ v@lar—ce [ vl dx - 1 otx0) [ b dx
p RN RN p* RN
* 1 *

_ p_ P _ P

> loll? —C [ ol dx — 0(0) [ lol" dx

p
1
z(p—m)ww—cw

since there exists C > 0 such that 0 < K(x) < Cand 0 < V(x) < C. It follows that

J(v) >

_ g |

p*
4

J (v) = ClJol|” - Clo||"", (2.5)
if we choose sufficiently small p > 0, which implies that

J(v) > CpP — Cp?" =:a > 0.

This completes the proof. O

Lemma 2.3. Suppose that (V)—(Kz), (Q1)—(Q2), and (f)—(f2)are satisfied. Then there exists e € E
such that J (e) < 0 and |le|]| > p.

Proof. For any fixed vy € E with vgp > 0 and vy # 0, by (1.6) and Lemma 2.1-(5) , we have

T (tvg) = ;1?/ [|tVUo|p+V(x)|G_1(tvo)|p]dx—/ K(x)F(G " (tvo) )dx

RN RN

1 R
_ P
> /RN Q(x) |top| " dx

<Dl ~ 2 [ Q)
P p* JRY
— —o0o0, ast— +oo,

which gives that the results hold if we take e = tvy with t sufficiently large. This completes

the proof. O

As a consequence of Lemma 2.2 and Lemma 2.3, for the constant

co = inf sup J(y(t)) >0,
yeT te[0,1]
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where

I'={yeC([0,1],E), 7(0) =0, v(1) #0, J(7(1)) <0}.
Note that from Lemma 2.3, I' # @. By the Mountain Pass Theorem in [3], then we have the
existence of sequence {v,} C E satisfying

J(0y) —co and J'(vy) =0 1 — +oo. (2.6)
The above sequence is called a (PS)., sequence for J.
Lemma 2.4. The sequence {v,} in (2.6) are satisfied. Then {v,} is bounded in E.
Proof. Since {v,} C Eisa (PS), sequence for 7, we have

1
(o) = [ (Toul + VUG @n)P)dx — [ K)F(G (o)
2.7)
- pl [ Q@i | dx = <o
and for any ¢ € CF(RY),
, _ S G~ (@) P26 (20)
(T (on) @) = /IRN Vou""VouVe + /IRN v g(G1(vy)) (2.8)

£(G(v) 2
KO STy fo QNP a9 =01 g,

as n — oo. Since C(RYN) is dense in E, by choosing ¢ = v, we deduce that

o) o 671 (00) P26 o) £(G7 @)
e = o [V + o VO emy o e K36

- [ Q@i " 20w, = o(D)lfoull
as n — oo. It follows from (2.7), (2.8) and Lemma 2.1 that
peo +0(1) = (T (vn), vn)
> T (vn) = (T (Vn), vn)

_Hh—p P / -1 p2 |1 11 2 G '(vn)
; /RN‘W”‘ dx+ [ V)IG (o) [py\c () = — o | dx

| 3G ()
- [ K (0P o) - LM Y (L -1) [ Qoo ax
> ”;f’ U |an|pdx+/ x)|G™ (vn)|de} .
2.9)

By (f2), we have F(s) > CG(s)* > CG(s)* for all s > 1. Then

/ V(x)|on|Pdx
(]G o)1)

<C K(x)E(GY(v,))dx
{x:|G"H(vy)>1}
c . (2.10)
<C/ ))dx+p/]RNQ(X)!vn! X

sc:[l

p </ ‘anlpdx%—/ x)|G™ (vn)|de> _C0+0n(1):| .
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On the other hand, for the case x € {x : |G~ !(v,)| < 1} we know that

1
g’ (1)

Vx UndeSC Vx Gil’(jn pdx
/{x¢|G1(Un)|§1} ( )| ’ {x:|G1(vy)<1} ( )‘ ( )|

(2.11)
< C/]RN V(x)|G Y (v,)|Pdx.

Since g(s) is nondecreasing. Combining (2.9), (2.10) with (2.11), we deduce that {v,} is
bounded in E. This completes the proof. O

We are going to verify that the level value ¢j is in an interval where the (PS) condition
holds. To this end, by the method developed by [8], we also introduce a well-known fact that
the minimization problem

S =inf{|Vol,:v € DY (RN), ||, =1}
has a solution given by

C(N, p)e(pr)/(pzfp)
(ep/(Pfl) +]x — xO|P/(P*1))(N*P)/P

ve(x) =

and
\Vve\g = \%!Z* = S§N/p,

For small enough R > 0, define a cut-off function ¢(x) € C§°(RV) such that (|x|) = 1
for [x — x| < R, ¥(|x|) € (0,1) for R < |x — x9| < 2R and |Vy| < &, and ¢(|x|) = 0 for
|x — x| > 2R. Define

we(x) = P(x)ve(x) (2.12)
and X
02 (x) = we(x) [/ Qx)w! (x)dx| | . (2.13)
]RN
Denote
Viax := max  V(x),
XGBZR(XQ)
Kypin := min  K(x).
XEBZR(X())

Similar to the discussion of [17,22], by dv./ o < 0, we have that

[ vadrax= [ (vodravs [ s,
Br(xo) Br(x0) Br(x0)

and by the assumption (Q) we also have

Qo) [ |Voeldx <Q(x) [ Vool dx+O(er).
BR(X()) B 0)

R (%

Simple calculations as [16] gives that

[ Jelax =0,
RN\ Bg (xo)
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Ae = / |Vwe|P dx = O(eN=P)/(r=1)
RN\ Bg(xo)

and
ke? + O(eN-p)/(p-1)), if N > p?,
/RN 0 2dx = { ke?|Ine| + O(eN-P/(P-1)), if N = p?, (2.14)
O(eN=-p)/(p=1)), if N < p?,

as € — 0, where k is a positive constant. Therefore, we can get
/ |ng|pdx:/ |Vwe|Pdx + Ae
]RN BR(X())

g/ (e |V dx + A
BR(X())

r
3

<S [/ |ve|p*dx]p + Ae
BR(JC())

_F
¥

< S(IQl) | [ Qe

P
PF

+O(e?) + O(eN=P/(p=1)y,
Set V., = flRN |Voe|Pdx, since for small € > 0, say € < €y, it is easy to see that

| @l dx > c,,
Br(x0)
for some positive constant C,,. The definition of V. and the last two inequalities imply that

_F
Ve < S(|Qll(ry)) 7 + O(e”) +O0(eN =1/ =), (2.15)

Lemma 2.5. Suppose that (V)—(Kz), (Q1)—(Q2), and (f)—(f2)are satisfied. Then there exists vy €
E\ {0} such that

1 p=N
0 <sup J (too) < - SMP[[|Qll )] 7 (2.16)
£>0
if either N > p? or p < N < p? and p > p* — -E5.
Proof. Firstly, we claim that for € > 0 small enough, there exists a constant ¢, > 0 such that
j(teUe) = r?gox j(tUe)
and
0< A <te <Ay <+oo forall € >0 small enough,
where A; and A, are positive constants independent of e.
By (f)-(f1), for any ¢ > 0, there exists Cs; > 0 such that
F(B)] < ag(B)IG(H)P™! + Cag(HIG ()] (217)

Now, we consider

T(toe) = ;/RN[tP\we|P+V(x)yc1(ta€)|P]dx—/ K(x)F(G™(t0r))dx

RN
1 -
-1 [ QW s
2ol — [ KF(G toe)dx— 2 [ Q)i
p € RN € p* RN €

— — 00, ast— 0.

<
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Clearly, lim;_, ;o J (t0e) = —oo for all € > 0. Since J(0) = 0 and J (toe) = —oo, there exists
te > 0 such that

_ dJ (toe)
J (teoe) = rgaox J (toe) and o

t=te

Thus we have

oedx

_ G (teoe)|P2G 1 (teoe)
t?l/ Vo|Pdx + Vx| < e
Byr(xo | | Byr(xo) () g(Gil(teUe))

f(Gil(t€U€)> p*_l ‘
Bar (x0) ( )8<G_1(teae)) € € BZR(XU)Q( )|oe]

(2.18)

On the one hand, if there is a sequence t,, — +oo, as €, — 07, by the above equality,
we get

_ G te,00,) [P 2G (te,00,)
tF 1/ Vo, |Pdx + V(x | En_Cn En B
! BZR(XO)‘ | Bar(x0) ) g(G(teve,))

> [ Qe dx.
Bar(xo

O dx

n

Hence by Lemma 2.1-(7), we get

Vel [ vl 27 [ oo,
Bogr(x0) Bogr(x0) Byr(x0)

which gives a contradiction since p* > p.
On the other hand, we suppose there is a sequence t, — 0 as e, — 0". If (1.5) holds, by
(2.17), for any 0 > 0 there exists Cs > 0 such that

f<G71<t€n0'€n)) rp—1 p 1 \pr-1 p*
/R KO Gy oo < O /m K(2)[0e, [Pdx + Cs () /IR K(x)[0e, |7 dx

< sce?! /N (V06 |? + V(2)|og, |P) dx
R
FOH) [ K)o | dx.
RN

By (2.18), we have

B —1/(4 p—ZG—l(t/ o )
p—1 p / |G (ten‘Ten” e9€n) 2
O (fo Dealrie) + [ v (t,0:)8(C 1 (How,)) ™

<octtt [ (Vo 1P+ Vo M) dx+ ()7 [ Qe 7 dx
RN RN

+Colt,)" 1 [ K)o, |
RN

Thus taking § = %, we have
|G_1(tén0'€”)’p_ZG_l(tén(fe”) 1

1 (1
Pl 7/ Vo. |Pd / 1%4 - = Pd
€n (p RN Ve, |Pdx + RN (%) |tL oe,|P~1g(G 1 (toe,)) p 7|7 (2.19)

< () [ Qe P dx 4 Caltl, ) [ K(x)lor, 7 dx.
RN RN
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When t; — 0, we have

G_l (téno-en)
|, 06, P71 8(G 7 (teoe, )

1
> —.
p
Therefore (2.19) is also impossible because of p* > p. So we complete the proof of our claim.

Since 0 < A; < te < Az < 400 for € small enough, together with the definition of Viax
and Ky, we know that

J(tor) = ;/Rw(tp\wev FV)IG (tee)P)dx — [

RN

K(x)F(GY(toe))dx

" )|V d
F . Q(x)|oe X
Pyl / V(x)|G Y (to) |Pdx —/ K(x)F(G(t0))dx — -
p ‘ P JBayr(xo) ‘ Bar (%0) ¢ p*
£ 1 » . £
<ley o / V(2)|G ™ (teor) |Pdx —/ K(x)F(G 1 (teoe))dx — =
p P JBor(x0) Bogr(x0) p
p*
<ley g 1vmax/ G (£e02)|Pdx — Konin F(G™(teo2))dx — €
p BZR xo BZR(XO) p
_t tP £
V + — Vmax/ |(7€|de - Kmm/ G 1(t€(7€))dx — %
P Bar(x0) Bor(x0) p

By virtue of %Ve - %: <4 VP forall t > 0, the estimate (2.15) on V. and the above inequality
imply that

sup J (toe) = J (teve)

t>0

_N-p

< 55V [IQlsqn] 7+ O(eP) + 0P/

Z

P
ey / 10 Pdx — Konin / F(G\(teon))dx
p Bar Xo Bar xo

1 ,N (2.20)
< NS [IQlmmen] " Ko [ (G (teoe) i+ Oe)
2R xo
ke? + O(e(N=p)/(p=1)), if N> p?,
+O(eN=P/ =Dy 4 L keb|Ine| + O(eN-P/(p-1)), if N = p?,
O(eN—p)/(p-1)), if N < p2.

By (f2), we have F(s) > CG(s)" for all s > 0. Therefore

/ o FOT o) > C (teoe)'ax > CAY [ (o)t
Bar (x0

BZR(XU) BR(XO)
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It follows from (2.20), the above inequality and the definition of o that

N
sup 7 (10) < o 5™7 [ QU] T ~CAY [ (a)tdx+ O
£>0 & (¥0)
ke? + O(e(N-p)/(r-1)), if N > p?,
+O(eN=P/P=1) 4 L keb|Ine| + O(eN-P/(-1)) if N = p?,
O(eN —p)/(p—1)), if N < p?, 2o
N-p . R N—1 .
[ P
(1 47/ (P=1)) "7
ke? 4+ O(eN-p)/(p=1)), if N > p?,
+0(e) + O(eN=P/P=Dy 1 L kel | Ine| + O(eN-P/ (=D if N = p?,
O(elN = p)/(p—1)), if N < p.
For N > p? and u € (p, p*), there exists a constant C > 0 such that
) T’N_l
/0 ——dr>C>0.

(A+m/(p—1)""
If N> p?and u € (p,p*), then we have

N—N;Py<p§N—p. (2.22)
Combined (2.21) with (2.22), when € — 0, we have
1 _N-p
sup J (toe) < —SN/P [HQHLM(RN)} P (2.23)
t>0 N

Ifp<N<p?andyu € (p*—p/(p—1),p*), then we know that (2.23) also holds. Then we can
get the following inequality

N —

N — pp U< N-—-p<p.
Hence inequality (2.23) also follows from (2.21) if we choose € small enough. Thus we can
imply that the inequality (2.16) holds by taking ug = o, for sufficiently small e. O

Next, we will prove the main results in this paper.

Proof of Theorem 1.2. By Lemma 2.2 and Lemma 2.3, all conditions of Mountain Pass Lemma
in [3] are satisfied. Let {v, } be a (PS),, sequence of 7. Then

1
J (o) = (IVou|P + V(x)|G ™ (vn)[Pldx — | K(x)F(G™(vn))dx
p/ /]RN (2.24)

——/ X)[vF P dx = co+ 0,(1)

and

/ _ |G (o) P26 (vn) f(G1(0)
<j(vn),vn>_/RN[|vz;n|p+V(x) T vn]—/]RNK(x)g(Gl(vn))vn

_/]RN Q(X)|oy [P v, vpdx = 0,(1) |0y .
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From Lemma 2.4, we know that {v,} is bounded in E. Passing to sequence, there exists a
subsequence of {v,} (still denoted by {v,}) such that

vy — v InE
v, — v in LL(RN) for p < g < p*, (2.25)

Uy — U a.e.in RN,

Let
o FGT@) V@ V)G @P 6 ()
o0 =@ Tk ™ TR G T@)
and
- (7 B 1V(x) ~1V(x) ;
P0) = [ Flx,0)dx = G () + 5 ol =S 2216,
then
T(0) = ;/RN(]VU\”+V(x)|v|P)dx—/]R K(x)E(x, 0 dx——/ ot | dx.
Similar to [43], we can verify that
. F(x,s . F(x,s . f(x,s . flxs
lim |(s|P) =0, lim |(s\v*) =0 lg%f|5(|v 1) =0 Sh_%ﬁp* 2:0' (2.26)
By Corollary A.3, we can get
lim [ K@ G (0n) = [ K@FxG(@),
, fx,G (o) f(x,G™'(v))
y}gr()\o - K(X)an = /]RN K(x)Wv. (2.27)

Since J'(v,) — 0, by (2.27), we can get

/ (|Vol? +V(x)\v\”)dx—/ K(x)f(x,v)vdx—/ Q(x)|o* |7 dx = 0.
RN RN RN
Denote ¢, = v, — v, then by (2.6) and the Brézis-Lieb Lemma in [7], we have

T@+ [Vl +V@loix— [ Qe dr=a+o)  @29)

and

/ (|Vz9n|”+V(x)|z9n|”)dx—/ Q(x) |87 dx = o(1).
RN RN

Without loss of generality we can suppose
/N(|Vl9n|p+V(x)\l9n\p)dx—>l as 1 — o0 (2.29)
R

and then we have
/N Q)0 dx 1, 1 — oo, (2.30)
R
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Moreover, by Sobolev’s inequality, we know that

X p/p
/ |Vl9n]’”dx25</ 16,7 dx)
RN RN
_p/p* % p/p*
> 5 [1Qle] (o Qs ax)

Using (2.29), (2.30), (2.31), if | > 0, then we have

(2.31)

p—N
r

12 SN[ Qll ey |
By (2.28), we have

p—N

(L1 S 5
J(v) = (ao ; p*> < co— SV [[|Qllsrry] T <.
On the other hand, by (f2), we have
T = / Vol + V()G (@) dx = [ K(x)F(G(0))dx
p RN

r
/IRNQ x)|o|P dx
1

- /]R VI P [I6 @F -

8(
- [ K@) [P(G1(v)) —Wv] dx
RN
>0,

which is a contradiction. It shows that [ = 0. By the definition of ¢, we conclude that J
satisfies (PS)., condition and thus

J(@)=c>0 and J'(v)=
which gives that u = G™(v) is a positive solution of (1.1). This completes the proof. O

Appendix A

In this part, we want to give some very useful lemmas.

Lemma A.1 ([17, Lemma 2.3]). Suppose that (V)—(Kz) hold, and h : RN x R — R is a continuous
function, which satisfies the following conditions:

(h1) h has a quasicritical growth, that is, | |11m ‘h‘(’f s — 0
s|—+4o0

(hy) if (1.5) holds, then h satisfies lim " ) — .
s—0 |S|p

If a sequence {v, } converges weakly to v in E, then

z

lim [ KH(x,0,) / KH(x
RN R

n—o0

lim [ Kh(x,o0)0 :/ Kh(x
R

n—oo JRN N

where H(x,s) = [ h(x, t)dt for all s € R.
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Lemma A.2. Under the assumptions of Lemma A.1, if v, — v in E, then for each ¢ € E it holds that

lim K [h(x,v,) — h(x,v)] pdx = 0. (A1)

n—oo JRN

Proof. Motivated by [1,31,46], since v, — v in E and E < L? (RY), then there exists M > 0
such that
loall, ol <M Jol}. <M,  neN.

Now, we consider the case that (V)-(Kj), (1.5), (k1) and (hy) hold. it follows from (k) and
(hy) that for any ¢ > 0 and g € (p, p*) there exists C, > 0 such that

h(x,s) < e(|s|P~1+ |s|F" 1) 4 Cels|T7Y, s €R. (A.2)
By (1.5), we have that

K(x)h(x,5) < e(|JK/ V]V (x)|s]P + |K|oo|s|P") + CeK(x)|s]72, xcRNands € R. (A3)

According to Proposition 1.1, it holds that [y K|v4]|7 — [px K[v|7 as n — co. Then there exists
R = R, large enough such that

e \1/a-1)
/ K|vnw,/ Klo]7 < () ,  neN. (A4)
BS, B, Ce

where B = {x € RN : |x| > R}. Hence, we can derive from (A.3), the Holder inequality,
(A.2) and (A.4) that

[ KinGxo)¢l < [ e(K/VIaV () oal? ™ 4 Klaofoul” ) +C [ K()[oal]g)
By B, B

(-1)/q
K)ol
R

< Ce. (A.5)

1
<& [[K/VIslloall 91l + Kool Il | +Ce ( /.

where C is independent of . Similarly, it holds that for some constant C, independent of ¢,

/ Kh(x,v)¢ < Ce. (A.6)
By
Next, we only need to prove that
lim | Kh(x,v,)p = / Kh(x,v)¢. (A7)
n—oo BR BR

In fact, since v, — v in E, then exists a subsequence of {v,} (still denoted by {v,}) such
that v,(x) — v(x) for a.e. x € RN. Thus h(x,v,) — h(x,v) for a.e. x € RN. Moreover, it
follows from (A.3) that {h(x,v,)} is bounded in LP"/(*"~P)(Bg). Hence h(x,v,) — h(v) in
LP"/(’"=P)(Bg) as n — oo, and (A.7) holds as a consequence of the fact that K¢ € LP"(RN).
Thus we can get that

lim Kh(x,vn)(p:/B Kh(x,v)¢.

n—o00 BR

Combining (A.5), (A.6) with (A.7), (A.1) holds. This completes the proof. O
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Corollary A.3. Under the assumptions of Lemma A.1, if v, — v in E, then it holds that

lim KE(x,G Y (vy)) = /

n—oo JRN RN

i [k FG @)

KF(x,G1(v)), (A.8)
f(x,G'(v))

% Je N g (G o)) T S (G 1(0) (4.9)
and

| G lw)) . [ F(xG ()

L A (T ) B R (e ) B A (410
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Abstract. The aim of the present paper is to continue earlier works by the authors on the
oscillation problem of second-order half-linear neutral delay differential equations. By
revising the set method, we present new oscillation criteria which essentially improve
a number of related ones from the literature. A couple of examples illustrate the value
of the results obtained.
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1 Introduction

In the paper, we consider the second-order half-linear neutral delay differential equation

/
(r()") () +a(a(e(t) =0, t>t>0, (1.1)
where z(t) = x(t) + p(t)x(t(t)). As in [10], we will assume
(Hy) a« > 01is a quotient of odd positive integers;

(Hp) r € C([to, ), (0, 00)) satisfies

n(ty) := /00 r~V%(s)ds < oo;

to
(Hs) o, T € C([tp,),R), o(t) < t, and lim;_,eo T(t) = lim;_e0 0(t) = o0;
(Ha) p € C([to,0),[0,00)) and g € C([to, ), (0,0));

(Hs) there exists a constant pg € [0,1) such that

t
(1.2)
t

™ Corresponding author. Email: bohner@mst.edu
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Under a solution of (1.1), we mean a function x € C([t;, o), R) with t, = min{7(t;),0(t;)}, for
some t, > ty, which has the property z € C!([ts, ), R), r (z/)* € C!([t:, ), R) and satisfies
(1.1) on [tp, 00). We only consider those solutions of (1.1) which exist on some half-line [t;, c0)
and satisfy the condition sup{|x(t)| : t, < t < oo} > 0 for any t. > t;,. Oscillation and
nonoscillation of such solutions is defined in the usual way.

Oscillation theory of second-order differential equations has gained much research inter-
est in the past decades, and we refer the reader to the monographs by Agarwal et al. [1,3,4],
Berezansky et al. [7], and Saker [33] for recent developments and summaries of known re-
sults. Due to the importance of second-order neutral differential equations in the modeling of
various phenomena in natural sciences and engineering [12,18,33], the qualitative behavior of
solutions such equations has been intensively studied through different techniques.

This paper is the second continuation of our earlier work [9] from 2017, followed by [10]
in 2020. To start with, let us summarize briefly the two main ideas employed therein. Let x be
a nonoscillatory, say positive solution of (1.1) subject to (H;)—(Hs). Then z is also positive and
either strictly increasing or strictly decreasing. These two possible classes of nonoscillatory
solutions were treated independently in the literature, see, e.g., [2,5,19,22-24,26,36-39]. In [9],
we pointed out that conditions eliminating positive solutions x with z decreasing are sufficient
for the nonexistence of those with z increasing. This observation allowed us to remove a
redundant but commonly imposed condition and formulate, in contrast with existing works,
single-condition oscillation criteria.

To eliminate the important class of positive solutions with z decreasing, the second main
idea in [9] was to sharpen the lower bound 1 of the quantity z(c(t))/z(t) using equation (1.1)
itself, which, within the Riccati transformation technique, led to qualitatively stronger results.
However, such a lower bound strongly depended on properties of first-order delay differential
equations and required ¢ to be nondecreasing.

The ideas from [9] have been extended and applied in investigation of various classes of
equations, e.g., half-linear neutral differential equations with: damping term [28,35], sublinear
term [13,15,34], several delay arguments [30]; generalized Emden-Fowler neutral differential
equations [25,27,32], half-linear neutral difference equations [8,11,16], neutral dynamic equa-
tions on time scales [17,31,40,41], and others.

In [10], we continued our work [9] by removing the restrictions (see [9, (H3)]) 7(¢) < t and
o'(t) > 0. For the reader’s convenience, we recall the main results from [10], formulated in
terms of the following couple of limit inferiors:

N T P PR e em(o(t))
B .—ah{gglfr (O (t)g(f) and A, .—hgglf 0 (1.3)

Theorem A (See [10, Theorem 1, Theorem 2]). If
0 for Ay = oo,

B > ¢ max{b*(1-b)A;%:0<b <1}
(1= po)*

for Ay < oo,

then (1.1) is oscillatory.

Although the obtained results can be seen as sharp in the sense that they are unimprovable
in a nonneutral case, it is easy to observe that Theorem A does not take the influence of
T(t) > t into account and becomes inefficient as py is close to 1. The aim of this paper is to
address these issues and to improve Theorem A when A, < oo and p(t) # 0. As in [10], we
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employ a recent method of sequentially improved monotonicities of nonoscillatory solutions
of binomial differential equations, which has been successfully applied in the investigation of
second-order half-linear functional differential equations and as well as linear differential and
difference equations of higher order. For a discussion on the results already achieved by the
method so far, we refer the reader to [21, Section 4].

For the sake of completeness, let us recall the three main steps of the method we used
in [10]: firstly, we showed that the positivity of B, is sufficient for the nonexistence of posi-
tive solutions x with z positive and increasing; secondly, we provided, for x positive with z
decreasing, bounds of the ratio x/z, i.e.,

<1 (1.4)

The third step was intended to improve the lower bound 1 of the quantity z(o(t))/z(t) so
that it was, unlike the one we used in [9], independent of the properties of first-order delay
differential equations and the monotone growth of . We related this problem to that of
finding an optimal value a > 0 such that

1/t
-1z
a< —,
- z
which corresponds to the monotonicity
z /
(=) <o,
7-[!1

and tackled it by building an appropriate sequence defined in terms of B, and A.. It turned out
that the convergence of the given sequence was necessary for the existence of a nonoscillatory
solution of (1.1), and Theorem A emerged as a simple consequence of this fact.

In this work, we revise the set method as follows. Firstly, we provide a sharper lower
bound of the quantity x/z than in (1.4). Secondly, we sequentially improve both lower and
upper bounds of the ratio —7t7!/%z’/z up to their limit values by building two iteration pro-
cesses represented by the sequences { By, }nen, and {vi . }nen, (see Section 2) such that

1/a -1
—r zZ Tt
Bin < — T < 1-m,

which correspond to the monotonicities

/ !/
4 Z
<7’[,Bk,n ) <0 and <7‘(1_'Yk,n > = 0,

allowing us to improve the lower bound of x/z in each iteration step. Finally, we state the
main results — sufficient conditions for (1.1) to be oscillatory — as a direct consequence of these
obtained bounds. To illustrate the applicability of the results, two examples are given.

2 Notation and preliminary results

In this section, we list all constants and functions used in the paper. For any k € INg, we set

Bt = S liminfr/* (£)m (£)g(t) (1 + Hi(o(£)))", 2.1)

K t—oo
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where
0 fork =0,
k 2i-1
Y TTr(@®) for t(t) < tand k € N,
Hi(t) = 4 i=1 j=0

Lo jll p(T(t)) fort(t) >tandk € N,

where 70(t) = t and T/(t) = t(t/~1(t)) for all j € N. As in [10], we set

Ay = liminf m(o(t))
t—00 7T(t)
and, in addition, we put
. r(T(t))
* < 4
P 11{2<1xr)1f ~0) for T(t) <t
(t)

for T(t) > t.

By virtue of (H) and (Hj3), it is immediate to see that {A., ws, .} € [1,00). Our reasoning
will often rely on the obvious fact that there is a t; > t; large enough such that, for arbitrary
fixed B € (0,B5), A € [1L,A4), ¢ € [1,¢,), and w € [1,w,), we have
/(O (g (t) (1+ He(o(1)))" > apy,
me®) S 5

m(t) 02
r(x(0) 22
0 > forT(t) <t,
mi(t)
() >w forT(t) >t

on [ty,00).

Remark 2.1. In our previous work [10], we formulated the results in terms of B; = B« (see
(1.3)), which we required to be positive. Clearly, for any k € IN, the positivity of B is sufficient
for that of B;.

Lemma 2.2. If 7(t) < tand ¢, = oo, or T(t) > t and w, = oo, then
li¥n inf Hy(t) =0 foranyk € N
—00
and so B; = By for any k € N.
Proof. Using (Hy) and (Hs), the proof is obvious and hence omitted. O

The method used in this paper is based on the properties of the sequences { By , }nen, and
{Ykn tnen,, which we define (as long as they exist) as follows. For positive and finite B}, A,
Y., and w,, we set, for any k € INj fixed,

Bro = (1- PO)(//?Z'
Yro == (1= po)*Br = Bro

and for n € Ny, we put
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1. for 7(f) < tand ¢, = c0 or T(t) > t and w, = oo:

,Bkn o lBk .BOH o ﬁo
= AL \/
,Bkn-H 1_,Bkn 1_[30}1
o ﬁ Aﬁkn x B ‘B* AEO,n a
Yot =P\ T, | ~ PO T =0
2. for 7(t) < tand ¢, < oo:
Brn —Ykn *
BroAs™ (1= poyps ™ B B %
= / — )\* Mo 1 _ . M ,
:Bk,n-i-l m 1— pO 1— ,Bk,n ( pOIP )

_ o [
" s ’)’k,o)\iéﬁk'n 1— pOl/)* Ykn _ IB* /\,fk,n (1 B pOlpilYk/n)“
" (1 - 'Yk,n)a 1—po Fl1- Yin

3. for 7(t) >t and w, < oo:

ﬁkn 7,Bkn *
BroAi™" (11— pow, ™ Biwa| Pk B,
= 1k — A e 1— pocws P4,
ﬁk,n—b—l « /1 — ,Bk,n 1— Po 1— ﬁk,n ( Po )

.Bk,n 7ﬁkn a ﬁkn a
TioMs 1— pows ™ AV .
< P ) :.Bk< (1—P0w*ﬂk)~

Yintl 7= (1 - ')/k,n)lx 1-— Po 1- Ykn

It can be easily verified by induction that if for some n € INg and k € INj fixed, Bi; < 1 and
Yi <1,i=0,1,...,n, then By ,+1 and i 41 exist and

Bin+1 = LinBin > Bins 23)
Vin+1 = Mn Y > Vins
where ¢y ,, and hy ,, are defined as follows:
1. for 7(t) < tand . = c0 or 7(t) > t and w, = oo:
AL

Ek = 7
2 (1= po) Y1 —Bro

_ 1— Bx
gk e Afk/n(gkm 1) of  —  FFkn
A 1-— gk,n,Bk,n

h L )\fko @
T A=) —po) |

- 1 -7 ‘
h ‘= Afk,n (Zk,n 1) 7,71
o [ 1= o in

and

2. for 7(t) < tand ¢, < oo:

o Afk/o 1_ polp*—’mo
ko = ,
T T Bo \ 1-po

—NenYen
by e APt t) [ 1= B (1= poy.
M T bk -
1 — gk,n,Bk,n 1— Pol/«’* Ykn
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and

by im /\Ek,() 1_ polp*—’m,o &
’ 1= k0 1—po ’

—BnYien o
hiny1 := APrn (B =1) ( 1= Yin ) 1— pog, "
M 1— hk,n'Yk,n 1— polp*—’mn

3. for 7(t) >t and w, < oo:

" Afk,o 1— Pow;ﬁk'o
k0 -— 7
YT Bro 1=po

¢ n n
/\,Bk,n(gk,nfl) a 1- ﬁk,n 1-— Pow« kP,
: 1-— ek,nﬁk,n Brn

— Afk/o 1_— Pow*_ﬁk’o x
T =0 1—po ’

—{ nPkn &
I’lk 1= )\ﬁkm(ek,n*U ( 1- Yin ) 1-— Pows knbr, .
n+ 1 — B uYin 1_ pow;ﬁk,n

The following simple statement, resulting from the definition of the sequences { B , }nen, and
{Ykn tnen, and (2.3), will play an important role in obtaining our main results. As a matter of
fact, we will show (see Corollary 3.8) that all assumptions of Lemma 2.3 are necessary for the
existence of a nonoscillatory solution of (1.1), i.e., if (1.1) possesses a nonoscillatory solution,
then there exists a solution {b, g} € (0,1) of a particular limit system.

Ek,n—&—l = —
1-— Pox

and

Lemma 2.3. Let B; > 0, A, < oo, and the sequences {Bi n }neN, a1d { Yk n }nenN, be well-defined and
bounded from above for some fixed k € INg. Then

nlglolo ,Bk,n =be (0,1)
and

1}5;120 'Yk,n = g € (0/1>1
where {b, g} is a solution of the system

1. for T(t) < tand ¢, = o0 or T(t) > t and w, = oo:

By = b(1 — DA o
By = g(1—g)" A" '
2. for T(t) < tand ¢, < oco:
* b“(]' — b)A;ah
Pr="7"~%
(=) 3
* g(]‘_g)“/\;“b ( ‘ )
pi= S8

()
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3. for T(t) > tand w, < oo:
,B* _ b“(l _ b)/\*—ab

k (1 B pow;b)lx

pr = 81— A
k (1 B pow;b)zx

3 Main results

In the sequel, all occurring functional inequalities are assumed to hold eventually, that is, they
are satisfied for all t large enough. As usual and without loss of generality, in the proofs of
the main results, we only need to be concerned with positive solutions of (1.1) since the proofs
for eventually negative solutions are similar.

We start by recalling an important result from our previous work.

Lemma 3.1 (See [10, Lemma 2]). Let B > 0. If x is an eventually positive solution of (1.1), then z
eventually satisfies

(i) 2> 0, (r(2)") < 0,and x(t) > =(t) — p(B)=(x ()
(i1) z/ < 0;
(iii) (z/m) >0;
(iv) x> (1—po)z
(v) limy_e z(t) = 0.

In order to improve the estimate (iv) between x and z, we need the following auxiliary
result.

Lemma 3.2. If x is an eventually positive solution of (1.1), then z eventually satisfies

x(t) > z(t) = p(#)z(z(t))

ko [2i-1
3 (rg pw‘(t))) 2 () - p¥ )], ken. O
i= j=
Proof. It follows from the definition of z that
x(t) = z(t) — p(H)x(z(t))
— 2(8) — p(t) [2(x(8)) — pl(r(t)x(x3(e))] 62)
=z(t) — p()z(T(t)) + p(t)p(T(1))x(T*(1)).
Evaluating (3.2) in T2(t), we get
x(2(1)) = 2(T*(1)) — p(T*(1)2(T°(1) + p(T2(1)) p (T (1)) x (T(1)). (3.3)

Now using (3.3) in (3.2), we have
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Repeating the process, it is easy to show via induction that
x(t) = z(t) — p(t)z(z(t))
k (21 ‘ ‘ ‘
+;(qmwm)wﬁw%mﬁwMﬁwm}
i= j=

2k+1
+(prwﬂm#”m»
j=0

which implies (3.1). The proof is complete. O
Lemma 3.3. Let B > 0. If x is an eventually positive solution of (1.1), then z eventually satisfies
x(t) > z(£)(1 — po) (1 + Hi(t)), k€ No. (3.4)

Proof. First, let T(t) < t. Using the fact that z/ 7 is nondecreasing (see Lemma 3.1 (iii)) and
(Hs), we have

2(0) — p(0z(x(1)) = 2() — p ") (1) > 2 (01— po). (35)

Evaluating (3.5) in 7% (t) and using that z is decreasing (see Lemma 3.1 (ii)), we obtain

2(T(1)) — p(T(1)2(T* (1) > 2(*(#)) (1 — po) = 2(t)(1 — po). (3-6)
Using (3.5) and (3.6) in (3.1), we get
k 2i—1

1+Y 1 p(rf(t))] , keN.

i=1 j=0

x(#) > z(t)(1 = po)

and hence, (3.4) holds. Now, let 7(t) > t. Again, by Lemma 3.1 (ii), (iii) and (Hs), we see that

2(t) = p(B)z(x (1)) = 2(t) — p(t)z(1)
> 2(t) (1= po)
and
2(7(1) = (¥ (1)2(* (1) = 2 (1)) (1- p(x*(1)))
> 2(7(£))(1 - po)
2i
> 20" 1 - )

which in view of (3.1) yields

, .
x@zamrmw1+zmﬂH¢Wmﬂ,keN

i=1

and hence, (3.4) holds in this case as well. The proof is complete. O
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Remark 3.4. In [20], the authors investigated (1.1) with p(t) = p > 0 and 7(¢t) < t, and
required, instead of (Hs), that

(n—1)/2 2k+1
2% (T )(f)>
.= l—-p——7-) >0, necN.
= R ()
Then they proved that an eventually positive solution of (1.1) satisfies
x> (1—po)z. (3.7)

Note that (Hs) is sufficient for the positivity of p, and consequently, (3.7) becomes a particular
case of (3.4).

The next step of our approach lies in improving Lemma 3.1 (ii)-(iv) by using the equation
(1.1) itself, which can be seen as an improved and extended variant of [10, Lemma 3]. While
the improved decreasing monotonicity (i) results from minor modification of the original
proof, the opposite monotonicity (ii)o, needed to sharpen the relation between x and z in (iii)o,
extends the original version of [10, Lemma 3].

Lemma 3.5. Assume B > 0. If x is an eventually positive solution of (1.1), then, for any By € (0, B5)
with k € Ny fixed,

(i (z/7VP(=po)y <
(ii)y (z/ 7'~ Pll=p)") > q;
(iii)o x > ax(1+ Hy)z, where

€ for T(t) <t, . =ocoor T(t) > t, wy = o0, and any ¢ € (0,1);
a,=<1— polp*ﬁk(l*lﬂo)“ for T(t) <t, . < oo, andany P € [1,¢.);
1— pow™ YE) for T(t) > t,w, < o0, and any w € [1,w,),

eventually.
Proof. Pick t; > ty such that
x(t) >0, x(t(t)) >0, andx(c(t)) >0,

z satisfies Lemma 3.1 with (iv) replaced by (3.4), and (2.2) holds for t > t;. Using (3.4) in (1.1),
we have

(r()*) () + (1 - po)a() (1 + Hi(o()=(0() <0, t>1,

which in view of (2.2) implies

<r (z’)“)/ (1) + L2 =PO" a4y <o, (3.8)

rl/“(t)TC“H (t)

Now using that z is decreasing (see Lemma 3.1 (ii)) and (H3), we find

2(0(t) - 4. (3.9)

Hence, (3.8) becomes
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(i)o Integrating (3.10) from ¢; to t and using again Lemma 3.1 (ii), we find

—r(t) (Z'(1))" = =r(t1) (2'(1))" + Bi(1 — po)* /t mds

f

> —r(t) (2'(t))" + Br(1 = po)*z* () /t: M(S;Mds

1 1
= —r(t) (Z'(h))" + Be(1 — "‘z"‘t( - )
( 1) ( ( 1)) :Bk( Po) ( ) ﬂ“(t) ﬂ“(tl)
Since lim;_;« z(t) = 0 (see Lemma 3.1 (v)), there exists t, > t; such that

v _ Be(l—po)*
—T(tl) (Z/(tl)) > Wz“(t), t Z t2.
Using this in (3.11) yields
—r%2 > /Br(1 — po)z
and so (i)g holds.
(ii)g Set
Z:=z+r/%/nm.

(3.11)

(3.12)

Since z/ 7t is nondecreasing (see Lemma 3.1 (iii)), Z is clearly nonnegative. Differentiat-

ing Z and using the chain rule

-1
(V(Z’)“), —a (rl/azl)a (rl/uczl)/
along with (3.10), we get

AES (rl/”‘z’),n

ST e

T (rl/az/>17“ ﬁk“(l — pO)aZa
o 1/ a e+l

B =p0)* (1t
——W<r D‘Z) ZD(<0.

IN

Using again Lemma 3.1 (iii) in (3.13), we obtain

1— a 1—
7! < _ﬁkil/anp“O) <rl/azl> . (—1’1/“2/)“7(“ — ,Bk(l o PO)aZ,-

(3.13)

Integrating the above inequality from f to co and using that z is decreasing and tending

to zero eventually (see Lemma 3.1 (ii) and (v)), we have
Z(t) = Z(e0) — Bi(1 — po)*z(e0) + Br(1 — po)*z(t) = Bi(1 — po)*z(t),
which in view of the definition of Z gives
(1—Bi(1—po)*)z > —rt/*/m.

Hence, (ii)o holds.
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(iii)o First, let T(t) < t. Using (ii)o and (Hs), we see that

1B (1=po)*
2() — p(02(e(0) = 200 — () (TEEL) T gy

T Br(1—po)*
> 2(1) (1—;90 <n( T((tt)))> ' ) (314)

> 2(t) (1 poy A0,

Evaluating (3.14) in 7%(t) and using the decreasing nature of z (see Lemma 3.1 (ii)), we
get

(1) = p(e ()= (1) > 2(e2 (1)) (1= poy B )

(3.15)
> 2(t) (1 poy P00

Using (3.14) and (3.15) in (3.1), we find

x(t) > 2(t) (1= poy P00

= 2(t) (1= poy BT ) (1 + Hy(1)).

~—

If 7(t) > t, then similarly as before, we get

Y/ B(1=po)
2(6) — p(02(e(0) = 20 - () (T ) T

> 2(t) (1 — pow™ {/ﬁ(l—m)) )

where we used (i)o and (Hs). Evaluating the above inequality in 7% (t) and using the
nonincreasing nature of z/ 7 (see Lemma 3.1 (iii)), we obtain

2(23 (1) — p(e¥ (1)2(TH () 2 2(2¥ (1) (1 po VA1)

> 2(1) n(;z(it()t)) (1 — pow™ W(l—po)) ‘

Then,

x(t) 2 2(t) (1= pow™ VA=)

= 2(t) (1= pow™ VEO-1)) (14 Hy(1)).

Finally, if 7(¢) < t and ¢, = oo [T(t) > t and w, = o0], then it follows from Lemma 2.2
that for any ¢ € (0,1), there is t sufficiently large such that

(1 - poqrﬁk(lfpw“) (1+ He(t) < e {(1 — pow™ WO*PO)) (1+ H(t)) < s] .

The proof is complete. O
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The following result iteratively improves the previous one.
Lemma 3.6. Assume B > 0. If x is an eventually positive solution of (1.1), then, for any k, n € Ny,
(i) (z/7Pin) < 0;
(ii)y (z/ 7" ~en) > 0;
(iii)y x > ay,(1 + Hy)z, where
€ for T(t) <t, . =00 or T(t) >t, wy = oo, and any € € (0,1);
ar = 1 —poyp= e for T(t) <t, P, < oo, and any P € [1,9s);
1-— pgw—ﬁk,n for T(t) > t, wi < 00, and any w € [1,wy),
eventually.
Proof. Pick t; > tg large enough such that
x(t) >0, x(c(t)) >0, and x(t(t)) >0,
z satisfies Lemma 3.1 with (iv) replaced by (3.4), and (2.2) holds for ¢t > t;. The proof will
proceed in two steps.
1. First, we are going to show via induction on n that for arbitrary gex, € (0,1) and
+&kn € (0,1) one can set
Bin = peinPrn
,7](,” = v€knYkn

so that
D
> i
. <0,
< TePrn >
(), /
<Z~> >0,
7-[1_'}’k,n -
and
(II),,
X > G, (14 Hy)z,
where

€ for T(t) <t, . =ocoor T(t) > t, wy = oo;
Ak = S 1— poyp~ e for T(t) < t, Py < o0;
1— powPer for T(t) > t, w. < co.
For n = 0, the conclusion apparently follows from (i)o—(iii)o with

Br
BEkO = B;
Clearly,

lim gero = lim g0 = 1.
perbi T g

Now, assume that (I),,—(III), hold for some n > 1 and ¢ > t, > t;, and we will show that
they hold for n + 1, with gey 1 and ,€x .1 defined by:
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(a) for either 7(t) < tand i, = co or T(t) > t and w, = oo:

/\ﬁkn 1 1 — ﬁkl’l—l

gk - \/ = ’
ﬁ n /\ﬁkn 1 1 — ﬁk,i’l*l

A.Bk,nfl 1 — _ &
v€kn = 'ygk,oga < ,Zk'n 1)
2Bt \T= Fgn s
(b) for 7(t) < tand ¢, < oo:
Aﬁkn 1 1 — ,Bk n—1 1— polp*'?k,n—l
€ = Y/ BEKO = - ,
BEkn B /\ﬁk,, T poys Yen—1
€rn = -Ero /\ﬁk,n—l <1 — r)/k,n 1> 1— pol/) Vin—1
n = &k, p
Y Y /\Ek,nq 1— Fkn—1 1— pow —Ykn—1

(c) for 7(t) > t and w, < oo:

ABen1 1 — Bin-1 (1— pow—ﬁkn 1
Ekn = Y/ BEKO \ 5. '
,B " \/rAfk/n*1 1— ‘Bk,n—l 1 . Pow* ﬁkn 1

gk _ Eko ABk,nfl <1 — ’)/k,}’ll> 1 _ pow_,Bk n—1 o
TR AP \1 = g1 1 — pows Prnt

for n € IN. Clearly, in all three cases, we have

lim €kpy = lim €en =1,
BB P T e
lim Ep = lim €rn =1,
Br) = o) P A ey T
and
lim Ekn = lim €k =1,
(Bes)~ (B T (Brw) (Bt T "
respectively.

Using (II),, in (1.1), we get

a)’ ~0 w0

(7 (2)") () +9(0a, (1 + Hi(o(5))'2* (o (1) <0, >4y,
which in view of (2.2) becomes
A4 ! ﬁk[xalﬁn «
- < . .
(r () ) (t) + rl/“(t)n““(t)z (o(t)) <0 (3.16)

Now using that z/ tPin is decreasing (see (I),), (H3) and (2.2), we find

2(c(t) _ (mle@)N* _ 5
w>—<rm>> = A

Hence, (3.16) becomes

na\’ ﬁk“ﬁa,n/\a'gk'” Y
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(Dp41 Integrating (3.17) from ¢, to t and using (I),, we have
—r(t) (Z/(1)" > —r(ty) (2 (t))"

()
= —r(tn) (' (tn))"

t «
t) /fn rl/tx( )n-oc(l ﬁkn)—H( )dS

+ﬁk”?,n)‘“ﬁk'" < z )a (t) 1 B 1
1- ,gk,n 7—(‘81‘”” ﬂ“(l_ﬁk,n)(t) ﬂ“(l_Bk,n)(tn)

Similarly as in the proof of [10, Lemma 4, pp. 8-9], it can be shown that

lim Z(t)
t—oo 77Pin (t)

and so, there exists t, > t, such that

7‘[.Bk,n

g"‘ /\‘X.Bkn o
(k) (2 ()" > P ( . ) (“)na<l~l, , E> 1

1— ,Bk,n

Using (3.19) in (3.18) implies that

rt/%z > g AP ¢ P, Brn1z
1— ,Bk,n
- /
= <0,
(7'[15](,1’!+1>

(IT),+1 Differentiating as in (3.13) and using (3.17), we get
/
7' = (r”"‘z’) T

= () ()

- 1o Bt AP
i (rl/aczl> P kn™™ o
14

and

which completes the induction step.

S - rL/ e+l
Pty n/\aﬁk’” 1 1-a
_ , /ot o
= ama (r z ) z% < 0.

Using (II),,, which corresponds to
(1= )z > -1/’
in (3.21), we obtain

7 < P N (rl/ z )1 g Bt AP
B 71/“”“ (T =9%n)* (1= Frn)®

(3.18)

(3.19)

(3.20)

(3.21)
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Integrating the above inequality from f to co and using that z is decreasing and tending
to zero eventually (see Lemma 3.1 (ii) and (v)), we have

d‘x /\“Bk,n [j“ /\“Bk,n [j“ )\“Bk,n
Z(t) > Z(oo —'Bkk'”7~z 00 'Bkkf”7~z > ‘Bkk”7~
(1= Yn)® (1= Yn)® (1= Yen)®
which in view of the definition of Z (see (3.12)) gives

1— :Bkﬁlié,nj\aﬁk'" 7> ey
(1 - ’)/k,n)a

/
z
JEE— >
<7‘[1_7k,n+1> - 0’

which completes the induction step.

z(t),

and

(IT),+1  The proof proceeds in the same way as in the case n = 0 and hence is omitted.

2. To prove the statement, we claim that (I), and (II), implies (i),—1 and (ii),—1 for n € IN.
Clearly, (I); and (II),, correspond to

Binz < —rV%'m (3.22)

and
(1—Gpn)z > -1/ n (3.23)

respectively. Then, by virtue of Lemma 3.1 (ii) and (iii), it is easy to see that
;Bk,n <1 and Hr, <1

Using this and (2.3), we have

1> Bin = penlin—1Pen—1 > Bru-1 (3.24)
and
1> '7k,n = 'yek,nhk,nflf)’k,nfl > Ykn—1s (3-25)
where we used that ge, € (0,1) and ¢, € (0,1) are arbitrary. Therefore, (3.22) and (3.23)
become
Bin1z < —1/%'m
and

1— Dz > =g
( ')/k,n 1) ’

for n € IN, which proves our claim. Finally, (iii),_1 is just a consequence of (i),_1 and
(ii)n—l- O

In view of the newly obtained monotonicities (i), and (ii),, our first main result follows
immediately.

Theorem 3.7. Let B > 0, A, < oo, Bi; < land v; < 1fori=0,1,...,n for some k,n € No. If

Bin+1 + Yint1 > 1,

then (1.1) is oscillatory.
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The second main result of this work results as a simple consequence of Lemma 3.6 (see
(3.24) and (3.25)).

Corollary 3.8. Let By > 0. If x is an eventually positive solution of (1.1), then, for some k € Ny,
both sequences {Bi n }neN, and { Yk n }nenN, are well-defined and bounded from above.

Now we are prepared to state the second main result of this paper, which is a straightfor-
ward consequence of Theorem A (condition (C;)), Corollary 3.8 and Lemma 2.3 (conditions

(C2)—~(Cy)).
Theorem 3.9. If one of the conditions
(C1) By > 0and Ay = oo;

(C2) By >0, Ay < oo, either T(t) < tand P, = coor T(t) > t and w, = oo, and the system (2.4)
does not have a solution {b, g} € (0,1);

(C3) By > 0, Ay < oo, T(t) < t, o < oo, and the system (2.5) does not have a solution
{b,g} €(0,1);

(Cy) By > 0, Ay < o0, T(t) > t, wy < oo, and the system (2.6) does not have a solution
{b,g} € (0,1)

is satisfied for some k € INy, then (1.1) is oscillatory.

By stating explicit conditions for the nonexistence of solutions {b, g} € (0,1) of the systems
(2.4)-(2.6), we get the following results.

Corollary 3.10. If A, < oo, either T(t) < t and ¢, = o0 or T(t) > t and w, = oo, and
Br > max{b"‘(l — DA 0<b < 1},

then (1.1) is oscillatory.

Corollary 3.11. If B > 0, A, < oo, T(t) < t, ¢, < 00, and

1 Bi(=po )"

b (1 —b)A; g1-g)"

By > max 0 popty :0< g <1, whereb = — A A, ,
then (1.1) is oscillatory.
Corollary 3.12. If A, < o0, T(t) > t, wy < 00, and
X1 — —ab
Br > max %:O<b<l ,
(1= pows )

then (1.1) is oscillatory.

The method of iteratively improved monotonicity properties gives us useful information
about the asymptotic behavior of solutions in case when (1.1) is nonoscillatory (i.e., it possesses
a nonoscillatory solution). The following results, which are a direct consequence of Lemma
3.6, improve and complement our previous statement [10, Corollary 1], and also complement
and extend the results from [6,14] in nonneutral linear and half-linear case, respectively. It is
worth to note that in the linear case a = 1, we have B, = Yk, which is stated separately for
the sake of future reference.
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Theorem 3.13. Let B > 0 and A, < co. If x is an eventually positive solution of (1.1), then for any
c € (0,1) and k € Ny,
Z(U(t>) Z CA.fk/n,

eventually.

Theorem 3.14. Let B; > 0 and A, < oco. If x is an eventually positive solution of (1.1), then there
exist ¢; > 0,1 =1,2, such that

z<cPer and z > T, k€ Ny,
eventually.

Corollary 3.15. Let B > 0, Ay < o0, and « = 1. If x is an eventually positive solution of (1.1), then
there exist ¢; > 0,1 = 1,2, such that

z <o and z > ot Per, k€ N,

eventually.

4 Examples

Finally, we illustrate the importance of our results on two examples. The first one is intended
to show the progress attained in case when pg from (Hs) is close to 1.

Example 4.1. Consider the Euler type differential equation

!/
0.99 \°
<ta+1 ((X(t) —+ W.x (t/\l)> ) > + qua()\Zt) - O/ t Z tO > 0/ (41)

where a > 0 is a quotient of odd positive integers, A1 € (0,1), A2 € (0,1], go > 0. Here,

a 1 : —\)/a T(T(t
2

t—o0

and
Br = Bo = qoa”.
It follows from [29, Theorem 2.8] that

o o

* 44 _ ® X — 44 o _ .
Bo > R T T = 100 e = 100 max{b*(1-b):0<b<1} (42

is sufficient for (4.1) to be oscillatory. By [9, Theorem 2.4] proved by the present authors, the
same conclusion is attained if

1/«

1
P =14y e

1
1—1p9)*In—
(1= po) ny,
or,if p <1/eand

B> 1 . o _ 100%
07 (T—po)*flp) (a+1)*1 " f(p)

max{b*(1—b):0<b <1}, (4.3)
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where

flp) =— , Wy is a principal branch of the Lambert function.

We have also showed in [9] that (4.3) simplifies and improves related results from [5,19,22-24,
26,36-39].
By Theorem A (see also [10, Theorem 2]), (4.1) is oscillatory if
max{b*(1 —b)A;:0 < b <1}
(1= po)"

which improves (4.3). Finally, by the newly obtained Theorem 3.9, (4.1) is oscillatory if

Bs > = 100* max{b*(1 — b)A5 : 0 < b < 1}, (4.4)
Bi > max{b*(1—b)A5: 0 <b <1} (4.5)

It is obvious that (4.2) does not take A; into account, which is already included in (4.3)—(4.5).
Moreover, in Theorem 3.9, the impact of py was removed by that of A; and so (4.5) gives
100%-times qualitatively better result than (4.4).

Example 4.2. As in [10, Example 1], we consider
AW
(B (8 + pox(M)') ) +qox*(Aat) =0, £ =19 >0, (4.6)
where a > 0 is a quotient of odd positive integers, A1 > 0, A, € (0,1], g0 > 0, and

- AV® for A <1,
PPN for g > 1

Here,
14 1 1 1/a
ni(t) = A/a’ M= =70 Y= (for Ay 1), w. =A% (for Ay > 1),
A, M
and
Bo = a“qo
k [
Bo <E P(z)l) for Ay <1, k€N,
i=0

:Blt: k 2i\ *
% 0
ﬁo(Z(;ﬁ/a)) for A1 > 1, ke N.
i=0 1

It is easy to compute the limit

Bo
—_— for A <1,
(1-p3)
B* = lim By = Bo

k—ro0 NG
(1 ~ (poAr ") >

for A; > 1.
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First, assume Ay < 1. By Theorem A, (4.6) is oscillatory if
max{b*(1 —b)A;:0 < b < 1}

(1 _ Po/\fl/a)a

Let us recall (see [10, Example 1]) that (4.6) has a nonoscillatory solution, if

o >

By < max {b"(1— b)A} (1+p0A;b/“)“:o< b<1}. 4.8)
In the nonneutral case pg = 0, Theorem A is clearly sharp. For, e.g.,
M=A=p =05 a=3, (4.9)
we conclude that, by Theorem A, (4.6) is oscillatory if
go > 0.0464 (4.10)
and, by (4.8), (4.6) has a nonoscillatory solution if
g0 < 0.0094,

meaning that the behavior of (4.6) subject to (4.9) is unknown for g9 € (0.0094, 0.0464].
By Theorem 3.9 (C3), (4.6) is oscillatory if the system

By p(A-bA

(1— p%)tx (1 . pOA;(lfg)/a)a

Bo  _ &(1—g)*A]
(L=P)"  (1— por; T 8/)"

(4.11)

does not have a solution {b, ¢} on (0, 1), what happens if, by Corollary 3.11,
* —(1-8)/a\q
* w1 _ b In /50(1—!72021 w)
_h__ Svw > Max (1 117))\2 +:0<g<1, whereb= (17{70)}\8(173’)
(1-pp) (1 — poA; | _gw> n

To show the improvement over Theorem A, assume (4.9) and

. (4.12)

go > 0.0158.

Although (4.10) fails to apply, it can be verified using numerical software that (4.12) is satisfied
and the system (4.11) does not possess a positive solution, i.e., (4.6) is oscillatory. An alter-
native approach to attain the same conclusion is to use Theorem 3.7 by initiating an iterative
process (e.g., 2 iterations are needed for gqo = 0.04, 11 iterations for qo = 0.017, 63 iterations
for go = 0.0158). How to fill the gap go € (0.0094,0.0158] remains open at the moment.

Now, assume Ay > 1. By Theorem A, (4.6) is oscillatory if

max{b*(1 —b)A;:0 < b < 1}
(1= po)* '

Bo > (4.13)
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Here, we would like to point out an oversight we made in [10, Example 1], where we stated
that (4.7) (instead of (4.13)) is sufficient for oscillation of (4.6). To look at the improvement, we
find that by Corollary 3.12, (4.6) is oscillatory if

2\ “ b*(1 —b)A}
i > (1 - (po/\;l/“) ) max ( Z/Z _0<b<1y. (4.14)
(1= por")

It is obvious to see that, in contrast with (4.14), the criterion (4.13) does not take the influence
of A into account. Clearly, for pg # 0,

w1 _ b
max b1 b)/\za:0<b<1

- max{b*(1 —b)A;:0 < b <1}
(1 - po/\fb/lx)

(1—po)"

and

(1 — (po/\l—l/“)2>a <1,

and hence the progress is observable.

Remark 4.3. For k = 0, the results established in this paper complement those from [21],
where (1.1) subject to
1t(tp) = o0

was studied. We stress that obtaining a corresponding variant of Lemma 3.3 would immedi-
ately improve oscillation criteria from [21]. Another interesting task left for further research is
to consider the same problem with py > 1 or py < 0.

5 Summary

The aim of the present paper was to continue studying the oscillation problem of (1.1) under
conditions (H;)—(Hs) and to provide new results which improve Theorem A when py # 0 and
Ay < 00, Our results improve all existing works (i.e., the cited related papers and references
therein) on this subject so far.
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Abstract. We present several classes of nonlinear difference equations solvable in closed
form, which can be obtained from some known iteration processes, and for some of
them we give some generalizations by presenting methods for constructing them. We
also conduct several analyses and give many comments related to the difference equa-
tions and iteration processes.
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1 Introduction

The sets of natural numbers, nonnegative integers, integers, real numbers and complex num-
bers, we denote by IN, Ny, Z, R and C, respectively, whereas the notation I = s,f, when
s,t € Z and s < t is used instead of writings <[ <t, 1€ Z By C/,n € Nand | = 0,1, we
denote the binomial coefficients. Recall that

n!
Cn - N/ Ny 7
P jin =)
where we regard that 0! = 1 (some information on the coefficients can be found, e.g., in

[4,22,32,34,43]).

Difference equations and systems naturally appear in many areas of science and mathe-
matics [9,12-14,18,19,22,26,27,29,34,43,51,59]. The problem of finding formulas for their solu-
tions in closed form appeared long time ago, and was treated by many known mathematicians
such as D. Bernoulli, de Moivre, Euler, Lagrange and Laplace (see, e.g., [9,13-15,17,23-28]).
Unfortunately, for a great majority of the equations and systems it is impossible to find such

MEmail: sstevic@ptt.rs; sscitel@gmail.com
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formulas, especially if they are nonlinear. In [1,10,16,17,19,22,30,31,33-35] can be found some
classical solvable nonlinear difference equations, as well as systems of difference equations.

Several classes of solvable nonlinear difference equations can be obtained by using some
known iteration processes. Some of them can be found, for example, in [11,12,55,56].

Motivated by some recent investigations on solvability of difference equations and systems
of difference equations (see, e.g., [3,40,42,53,54,57,58] and the references therein) and some
examples in [12], we have studied recently connections between some difference equations
obtained from known iteration processes and their solvability. Related equations and topics
such as finding invariants and studying equations obtained from solvable ones can be found
in [5-8,21,36-39,46,47,49,50, 52].

Here we continue the investigation of solvability of difference equations and their relation-
ships with known iteration processes. We deal with some equations of the form

-~

Xpt1 = f(xn), n €Ny,

the autonomous difference equation of first order.

First we show that the Newton-Raphson iteration process for finding roots of quadratic
equations produces a solvable nonlinear difference equation extending a known example of
such a difference equation. Recall that the Newton-Raphson iteration process is given by

f(xn)
Xp1 = Xp — Filxn) n € Ny, (1.1)
(see, e.g., [12,18]), where f is a given function.

Based on it and another known difference equation, we present a related class of solvable
nonlinear difference equations. Then we present a solvable class of nonlinear difference equa-
tions generalizing two known ones which are obtained by the Newton-Raphson iteration
process for calculating reciprocals. We also present an interesting method for constructing
a class of solvable nonlinear difference equations generalizing a solvable equation obtained
from the Halley iteration process for finding square roots. We also conduct several analy-
ses and give many comments related to solvable nonlinear difference equations and iteration
processes.

2 Some analyses and main results

In this section we conduct some analyses related to the relationships between solvable differ-
ence equations and some known iteration processes, and state and prove our main results.

2.1 Newton-Raphson iteration process for quadratic equations and solvability

Let
f(x) =x*+px+q, 2.1)

be a quadratic function.
By using function (2.1) in (1.1) we get

X2+ pxn+q

, n €Ny,
2xn+P 0

Xn+1l = Xn —
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that is,
_ Y4
C2x,+p
If a solution to equation (2.2) converges to a point x*, then it is clear that x* must be equal to
one of the zeros of function (2.1).

From the numerical point of view the interesting case is when g # 0 (if 4 = 0, then the
roots of (2.1) are obviously 0 and —p). Assume additionally that p?> # 44q. Then the function
has two different zeros, say, a and b, and equation (2.2) can be rewritten in the form

Xnt1 n € No. (2.2)

2
_ xy,—ab
Xpi1 = 729@1 Ep— n € Np. (2.3)

First, assume that a # b. We consider the cases a + b = 0 and a + b # 0 separately.

Case a + b = 0. In this case we have b = —a. Hence, equation (2.3) becomes
1 a?
Xp+1 = E Xy + E , ne NO. (24)

It is well known that the equation is solvable in closed form [12,22], and that its general
solution is given by

n € No. (2.5)

Recall that the difference equation in (2.4) serves for calculating a square root of number a2.

Case a + b # 0. From (2.3) and by some simple calculations, it follows that

x2 — 2ax, + a*

Xpi1—a= S Ta—— n € Ny, (2.6)
and ) )
Mﬂ—b:xg;%?j;, n € No. 2.7)
From (2.6) and (2.7) we have
xn+1—a:<xn—a>2 1 € No
Xpp1—Db xp—b) '’ ’

and consequently

n

2
X, —a Xo—4a
- = (2 , 1€ Ny,
X, —b xo—Db

from which it easily follows that

b(2=5)” —
Xp = —;;‘Lab T , 1€ Ny. (2.8)
(xofb) - 1

The sequence defined in (2.8) is a solution to equation (2.3). Indeed, let

n

Xg—4a

Yn = <X0—b> , n € INpy.
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Then we have

by,—a
X2 —ab (S2=7)? —ab _ b?y% —2aby, + a® — aby? + 2aby, — ab

2xn—a—b_21;y:7:lﬂ_a_b_ (yn —1)(2byy, —2a — (a+ D)y, +a+b)

_ b(b—a)y —alb—a)  by:—a b(ig:g)zm —a
o =D —a)(ya+1)  yi—-1  (P5)?"" -1

= Xn+1

as claimed.
Remark 2.1. Note that from (2.8) with b = —a is obtained formula (2.5).
From (2.8) we easily obtain the following corollary.

Corollary 2.2. Consider equation (2.3) where a # b and ab # 0. Then the following statements are
true.

(a) If ;‘g:‘g[ <1, then lim,,_, o X, = a.

(b) If |2=5| > 1, then lim, s, o X, = b.

Xo—

(c) If 20=¢ = —1, that is, xo = 52, then xy is not defined.
Remark 2.3. Note that the case
Xo—4a -1
X0 — b a

is excluded, since we assume a # b.

Casea = b. If a = b and x¢ = g, then since in this case equation (2.3) becomes
e X2 —a

n+1 — Z(xn _ ﬂ),
we have that x; is not defined, so that in this case the solution to the equation is not well-
defined.

If x,,, = a for some np € N, and

2
n € Ny, (2.9)

xj#a, j=0,n—1,

then from (2.9) we have
x%g—l - az — xl’l()—l + a
2(xpy—1 —a) 27

and consequently x,,_1 = a, which is a contradiction. Therefore, if xo # a we have that

xp #a for n € Np. (2.10)

a:xnoz

Hence, if a = b and x¢ # 4, then from (2.9) and (2.10) we have that equation (2.3) becomes
_ 2
Xp+1 = B + 2; ne NO/

from which it follows that

o 2n
(for the original source see [25]; see also [10,19,22,34]).
From (2.11) we easily obtain the following corollary.

X = x0+u<1—1), n € Ny, 2.11)
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Corollary 2.4. Consider equation (2.3) where a = b and a # 0. Then every solution to equation (2.3)
such that xo # a converges to a.

Remark 2.5. Equation (2.3) appeared in [55] but we did not consider it, nor did we formulate
any of the above results in the case.

Since we assume that g = ab # 0, the above analysis excluded the case. However, it is of
some interest to consider equation (2.3) also in this case.

Case ab = 0. First note that, due to the symmetry of equation (2.3) with respect to parameters
a and b, we may assume b = 0. In this case the difference equation becomes

x2

T = 5 (2.12)
for n € Ny.
If a = 0, then we have )
X1 = 50, n €N (2.13)
Hence, if xo # 0 we get
Xy = ;—2, n € Ny,

showing the solvability of equation (2.12) in this case. If xo = 0, then from (2.13) we see that
x1 is not defined. Therefore, the solution to equation (2.13) is also not well-defined.
Now assume that a # 0. If xg = 0, then a simple inductive argument shows that

X, =0, n€Ny. (2.14)

If x,,, = 0 for some n; € N, and

X #0, j=0,m 1, (2.15)

then from (2.12) we have x,, 1 = 0, which is a contradiction. From (2.14) and (2.15) we see
that when xy # 0 we have that x, # 0 for all n € N for which x,, is defined. Hence, we can
use the change of variables
1
x, = —, n € Ny, (2.16)

Yn
and obtain the equation
Yn+1 :yn(z_a]/n), n € INp.

It is well known that general solution to the equation is given by

1—(1—ayy)?
yi’l: ( aayO) s nENO/

(see, e.g., [11,12]).

Hence, we have that the general solution to equation (2.12) in this case is given by the

formula

27[
axy

Xy = (2.17)

xg" — (xo —a)?"’

for n € Ny.
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Remark 2.6. Formula (2.17) can be also obtained from the formula (2.8) with b = 0. Indeed,
the above consideration in the case a + b # 0 also holds in the case when b = 0. Note also that
if b =0, then a + b = a # 0. Hence, all the conditions there are satisfied if a 7 0 and b = 0.

Remark 2.7. The change of variables (2.16) is a basic one and frequently appears in the litera-
ture (see, e.g. [4,51]). One of the basic examples of difference equations where it is applied is

the following
AnXn

—— , n €Ny,
by + cuxy

Xn+1 =

which, by the change of variables, is transformed to a nonhomogeneous linear difference
equation of first order, which is theoretically solvable (this was shown first by Lagrange [26],
then by another method by Laplace [27]; see, also [10,16,19,34]). For some related changes of
variables see, e.g., [40,53,57] and the related references therein.

2.2 A relative of equation (2.4)

The difference equation
2x,
=" No, 2.18
o = g mENo (2.18)
is another known difference equation. The long-term behaviour of its solutions can be studied
by using standard methods to the governing function

2t
H=-"—, teR,
) 241 <

(see, e.g., [4, Problems 9.34, 9.35]).
However, the equation is also solvable. Indeed, first note that if x* is an equilibrium of
equation (2.18), then it is easy to see that

x* e {-1,0,1}.

Since ( )2
Xn - 1
1=\ 2/
nt1 x2 +1
and ( )2
X, +1
1l=-———7
Xn4+1 + x% I 1

for n € Ng, we have

xn+1—1__<xn—1

2
= , n € Ny,
X1+ 1 w+&) 0

from which it follows that

21/1
Xn 1:_ xo— 1 neN,

and finally

neN. (2.19)
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Remark 2.8. Solvability of equation (2.18) is not so surprising. Namely, note that by using the
change of variables (2.16) from equation (2.18) it is obtained equation (2.4) with a = 1.

By using the change of variables in (2.16) in equation (2.2) we obtain the equation

2
nt2
Yuyr = P ]1/ - qyg %, n€No. (2.20)

Let p = —(a +b) and g = ab, then equation (2.20) becomes
—(a+Db)y; + 2yn

i1 = g n €N (2.21)
If a+ b # 0, then from (2.8) we obtain
(tzyo )2“ 1
Yo
Yn= 10— NnENy (2.22)
b(ngg)z —a

whereas if 2 = b, then from (2.11) we obtain

14 ayo(2" — 1)’

From (2.22) we obtain the following corollary.

Corollary 2.9. Consider equation (2.21) where a # b and ab # 0. Then for well-defined solutions of
the equation the following statements are true.

Yn n € INp. (2.23)

(a) If!i:g;ﬂ < 1, then limy—4e0 Y = +.

(b) If’t%g\ > 1, then limy 400 Y = ¢

(c) Iftgzg = —1, that is, yo = a%b, then y, =0, n € N.

(d) Ifyo =0, then y, =0, n € No.

Remark 2.10. Note that if yo # 0, the case
1—ayy

1—by0

is excluded, since we assume a # b.
From (2.21) and (2.23) we obtain the following corollary.

Corollary 2.11. Consider equation (2.21) where a = b # 0. Then every solution to equation (2.21)
such that yo # 0, yo # 1/a, and

1

converges to %
Remark 2.12. Note that if 2 = b and yo = 0, then y, = 0 for every n € IN.

Remark 2.13. Note thatif a = band yo = 1/a or
1
Y= a1 —om
for some n € N, then y, is not defined, and consequently the corresponding solution to
equation (2.21).
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2.3 Newton-Raphson iteration process for calculating reciprocals
It is well known that if we apply the Newton-Raphson iteration process to

1
flx)=1- o (2.24)

where a # 0, we obtain the equation
Xp1 = 2%y — ax%, n € Np. (2.25)

Recall that the equation is solvable in closed form [11,12,18,55].
If we apply the iteration process

Yot = X0 — f(xn) o f"(xn) ([ f(xn) ? n
e f'(xn)  2f"(xn) (f/(xn)> ' < Mo

to the function in (2.24) we obtain the equation

Xpp1 = 3%, — 3ax> + azxi, n € No, (2.26)

see, e.g., [18], where it is suggested to show that the relation holds
1 1 3
— —p41 = aZ(E - xn) , néeNy. (2.27)

From (2.27) we see that the relation (2.26) is also solvable in closed form. Indeed, let

1
Yn == n (2.28)

then from (2.26) we have
Yn = azyi_l, n €N,

which is a simple product-type difference equation (for some examples of such difference
equations and systems of equations, see, e.g., [54,58] and the related references therein).
By iterating the last relation we get

— 2(523 \3 — ;2(1+3), 32
Yn=a (a yan) =a ( )yan'
By a simple inductive argument we obtain

2y 3 3 31 3

Yn=a Yo =@ Yo, n€No,

from which along with (2.28) it follows that

xp=-—a> "t (f — x0>3n, n € INp. (2.29)

Remark 2.14. The matrix counterpart of equation (2.25)
Xut1 = (21 — AX,)X,, n €Ny,

is the Schultz iteration process [48] which has been studied a lot.
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2.4 A generalization of equations (2.25) and (2.26)

Equations (2.25) and (2.26) are, among other things, obtained from two known iteration pro-
cesses by employing them to the function in (2.24). Here we show that a sequence of iteration
processes, which can be used for calculating reciprocals and containing relations (2.25) and
(2.26), can be obtained in a simple way. Moreover, we show that they all are solvable in closed
form.

If in the difference equation

Yus1 =Yy, n €Ny, (2.30)

where k € N\ {1} is a fixed number, we use the change of variables
yn=1—ax,, n €Ny, (2.31)

where a # 0, we have

1—ax,.q = ch a)ix,, ne N,

so after some simple calculation we obtain
Xpi1 = Z Cf(—a)~'xh, n €Ny (2.32)

From (2.32) for each k € IN'\ {1} we obtain a difference equation which can be used for
calculating reciprocals.
Now note that from (2.30) we have

ya=Y5, n€No. (2.33)

By using (2.33) in (2.31) we get

1 _ 1 _ kl‘l
Xp = (a”xO) n € No. (2.34)

Formula (2.34) shows that equation (2.32) is also solvable in closed form.

Remark 2.15. Note that if in equation (2.32) we take k = 2, then we obtain equation (2.25),
whereas if we take k = 3, then we obtain equation (2.26). This means that the difference
equation is a natural generalization of the equations (2.25) and (2.26).

Remark 2.16. The matrix counterparts of equations (2.32) have been also studied considerably.
Our literature review shows that the topic has been quite popular among scientists working
on numerical mathematics for a long time, and it seems that such iteration processes are
rediscovered from time to time. There are also some operator counterparts of equations (2.25),
(2.26) and (2.32) (see, for example, [2,41] and the references therein). So, the facts mentioned
in this subsection should be folklore. Nevertheless, the above explanation suggests a natural
way for constructing the matrix and operator iteration processes. From (2.30) we also see how
is naturally obtained an iteration process whose rate of the convergence has a given order (for
the notion see, e.g., [12,18]).
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2.5 A relative to equation (2.32)

By using change of variables (2.16) in equation (2.32) we obtain the equation

vy

]/n+1 — X —i’ ne NO/
Z;‘Czl C;'((_“)]_ll/n !
that is,
y 2y, neN (2.35)
1= &7 % 0- .
B ek
Hence, from (2.34) we have that the general solution to equation (2.35) is given by
kVI
Yo
Yn = — —, n € No.
LW - (e
For example, if k = 3, then equation (2.35) becomes
3
Y
= 7 S N 7
I T 32 Ry 12 T
and its general solution is
y ayg" nelN
— n n’ 0-
W - w—ap

2.6 Newton-Raphson method for polynomials of the third degree and solvability

Here we conduct some analyses regarding solvability of difference equations obtained by
applying the Newton-Raphson iteration process to polynomials of the third degree, and gen-
eralise a class of solvable difference equations by presenting a method for constructing the
generalization.

Difference equations can be used for calculating roots of some functions, but it is quite a
rare situation that they are solvable in closed form. For example, if we want to calculate a root
of the function

flx)=x>—x
(we can easily find all of them by an elementary method), by using the Newton-Raphson
process we get the equation

n € No. (2.36)

X 1:x— =
" To3x2 -1 3x2-1’

The equation frequently appears in the literature (see [20,44]), and this explains how it can
be obtained, which is one of the reasons why we mention the equation. Another reason is
connected to the method used in dealing with equation (2.3).

Namely, from (2.36) and some calculations we get

(xn —1)2(2x, +1)
3x2 —1

Xn+1 — 1=

and
(xn +1)%(2x, — 1)
3x2 —1

Xn+1 +1=
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from which it follows that

Xo1—1  (xy—1\?2x,+1
xn+1+1_ xp+1 20, — 1
However, the natural change of variables
xp—1
xXp+1

Yn =

cannot show the solvability of relation (2.36).

11

Let us analyse the general case. If we apply the Newton—Raphson iteration process to an

arbitrary polynomial of the third order
ps(t) = £ +pt* +qt +r

we get
X3+ px2 4+ qxn + 7 _ 23 +px2 —r
3x2 +2px, + 4 3x% 4+ 2px, +q’

Xn+1 = Xn —

for n € Ny.
If a, b and c are the roots of (2.37), then (2.38) can be written in the form

2x3 — (a+b+c)x3 +abe

- , 1 €Ny,
¥+l 3x2 —2(a+b+c)x, +ab+bc+ca " 0

and by some calculations we have

2x3 — (da+b+c)x2 +2a(a+b+c)x, —a*(b+c)
3x2 —2(a+b+c)x, +ab+ bc+ ca

Xpnt1 — 4 =

for n € Ny.
Let
g3(t) =282 — (da+b+c)t* +2a(a+b+c)t —a*(b+c).

Then, a direct calculation shows that g3(a) = 0, from which it follows that
g3(t) = (t—a)(2t? — a+b+c)t+a(b+c)) = (t—a)*>2t — (b+c)).
Hence (2.40) can be written as follows

(xn —a)?(2x, — (b+¢))
L ) No.
¥atl — 4 3x2 —2(a+b+c)x, +ab+bc+ca e No

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Since the root of (2.37) we chose was arbitrary, we see that from (2.41) the following relations

also hold
(xn — b)?(2x, — (a+¢))

~ 3x2—2(a+b+c)xy+ab+bc+ca’
_ (xn —¢)?(2x, — (a + D))

~ 3x2—2(a+b+c)xy, +ab+bc+ca’
From (2.41)—(2.43), we have

Xp+1 — b ne NOI

n € INp.

Xp+1 — €

Xpy1—a  [(Xp—a 22xn—(b+c)
Xpi1—b (xn—b) 2x, — (a+c¢)’
xn+1_b_ Xy —b 22xn—(a+c)
Xpp1—C <xn—c> 2x, — (a+Db)’
Xps1—C  [Xp—cC 229(,1—(a+b)
Xpi1 — a4 (xn—a> 2x, — (b+c¢)’

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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for n € INp.

From (2.44)—(2.46) we see that we can obtain a solvable difference equation if a + b, b + ¢
and ¢ + a takes some of the values in the set {2a,2b,2c}. However, it is not difficult to see that
in all the cases we get a = b = ¢, so that the equations (2.44)—(2.46) become trivial.

This analysis shows that the method used in solving equation (2.3) cannot be applied to
equation (2.39). Nevertheless, there are some equations of the form

X3+ px3+qx, +r

’ € Ny, 2.47
sx2 +ux, +v " 0 (247)

Xnt1 =

which are solvable in closed form, but are obtained by using some other iteration processes.
Example 2.17. The difference equation [20,33,45]

x3 + 3ax,

S . "€ No. (2.48)

Xn+1 =
is used for finding a square root of number a. It is interesting that the difference equation is
solvable in closed form. See [56] where a class/sequence of solvable difference equations for
finding square roots is presented. Beside this, it is also interesting that the equation can be
obtained, for example, from the Halley iteration process [18]

a2
T R )2 = ) ()

applied to the function

n € Ny,

f(t) = x* —a. (2.49)
The fact was not mentioned in [56].

A detailed analysis of the method for solving equation (2.48) given in [56], shows that one
of the most important facts used in the method is that the following relations hold

£+ 3at — /a(3t> +a) = (t — /a)®
and
£+ 3at +a(3t> +a) = (t+ a)>.
Hence it is of interest to see for which values of parameters p, g, r, s, u and v the following
identities hold
£ pt>+qt+r—a(st> +ut+0) = (t—a)’ (2.50)
and
£+ pt> +qt +r—d(st* +ut +0) = (t —d)? (2.51)
for some given numbers a and d such that a # d.
From (2.50) and (2.51) we obtain the following nonlinear algebraic system of equations

p—as= —3a, p—ds = —3d, (2.52)
q — au = 3a%, q —du = 3d?%, (2.53)
r—av = —a°, r—dov=—d (2.54)

From (2.52) we have
—s(a—d)=-3(a—d)
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from which along with the assumption a # d, it follows that s = 3. By using it in (2.52) we get
p=0.
From (2.53) we have
—u(a—d)=3(a—d)(a+d) (2.55)

and
2 =3(a® +d*) + (a+d)u. (2.56)

From (2.55) along with the assumption a # d, it follows that u = —3(a + d). By using it in
(2.56) we get q = —3ad.
From (2.54) we have
v(a—d) = (a—d)(a®+ad+d?) (2.57)
and
2r = —(a® +d°) + (a + d)o. (2.58)

From (2.57) along with the assumption a # d, it follows that v = a? + ad + d*. By using it in
(2.58) we get r = ad(a +d).
This analysis suggests that the following special case of equation (2.47)

x> — 3adx, +ad(a+d)
3x2 —3(a+d)x, +a?+ad + d?’

Xyl = n € No, (2.59)

is solvable. Indeed, the following theorem holds.
Theorem 2.18. The equation (2.59), where a,d € C are such that a # d is solvable in closed form.

Proof. From (2.59) and some simple calculation we have

(xn — “)3

—a= 2.
T s St dr + @ ad @ TN (260
and ( 2
xn -
—d= . 2.61
Tl 3x2 —3(a+d)x, +a®+ ad + d?’ n € No (2.61)
From (2.60) and (2.61) we have
Xpi1—4a Xp—a\°
n n
— 7 N 7
Xp+1 —d (xn—d> e o
from which it easily follows that
371
Xp—a  (xo—a
xp—d <x0—d> » m&€No,
and consequently
37’!
d(3=g) —a
Xp = ——3——, 1 €N (2.62)
Xo—a _ 1
(%)
By some calculations it is checked that (2.62) is a solution to equation (2.59). O

Remark 2.19. Note that if d = —a equation (2.59) reduces to the equation (2.48) where a is
replaced by a?, from which its solvability again follows.
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2.7 Difference equations obtained by polynomials of the fourth degree

In [56] we have also shown that the difference equation

xp + 6ax? + a?

, No, 2.63
4x3 + 4ax, meNo (263)

Xpn+1 =
is solvable in closed form.

An interesting problem is to try to find a generalization of equation (2.63) by using the
method above applied to equation (2.47), which is also solvable in closed form. The following
equation
Xp 4+ pxd +gx3 +rx, +5

ax3 + BxZ + yx, + 6
is a natural generalization of equation (2.63).

Following (2.50) and (2.51), it is of interest to see for which values of parameters p, g, 7, s,

«, B, v and J the following identities hold

Xpt1 = , 1 € Ny, (2.64)

o+ ptP gttt +s —a(at® + B2+ 4t +0) = (t —a)* (2.65)
and
ot p gt ot +s—d(at + Byt +06) = (t—d)* (2.66)

for some given numbers a and d such that a # d.
From (2.65) and (2.66) we obtain the following nonlinear algebraic system of equations

p —aa = —4a, p—ad=—4d, (2.67)
g — pa = 642, q— Bd = 64, (2.68)
r—ya = —4a°, r—yd = —4d°, (2.69)
s —da = a*, s —0d = d*. (2.70)

From (2.67) we have
—a(a—d)=—4(a—d)

from which along with the assumption a # d, it follows that « = 4. By using it in (2.67) we
get p = 0.
From (2.68) we have
—Bla—d)=6(a—d)(a+d) (2.71)

and
2q = 6(a® +d*) + (a+4d)B. (2.72)

From (2.71) along with the assumption a # d, it follows that § = —6(a + d). By using it in
(2.72) we get g = —6ad.
From (2.69) we have

—y(a—d) = —4(a—d)(a® + ad + d%) (2.73)

and
2r = —4(a® 4+ d%) + (a+d)y. (2.74)

From (2.73) along with the assumption a # d, it follows that v = 4(a? + ad + d?). By using it
in (2.74) we get r = 4ad(a + d).
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From (2.70) we have

—6(a—d) = (a—d)(a®+a*d + ad®> + d&°)

and

2s = a* 4 d* + (a+d)o.

15

(2.75)

(2.76)

From (2.75) along with the assumption a # d, it follows that 6 = —(a® + a?d + ad® + d°). By
using it in (2.76) we get s = —ad(a® + ad + d?).
From the analysis we obtain the following result.

Theorem 2.20. The equation

X — 6adx + 4ad(a + d)x, — ad(a® + ad + d?)

Xnil = 4x3 —6(a+d)x2 + 4(a2 + ad + d2)x, — (a® + a2d + ad? + d3)’

for n € Ny, where a,d € C are such that a # d is solvable in closed form.

Proof. From (2.77) and some simple calculation we have

(0 — a)4

T T G 6(a+ d) 2 + 4(@ + ad + P)xy — (@ + 2 + ad2 + P)’

for n € Ny, and

(xn —d)*

Xpy1 —d

for n € Ny.

T4l = 6(a+d)x2 +4(a?+ ad + d?)x, — (a3 + a%d + ad? + d3)’

Using the relations in (2.78) and (2.79) we have

Hence

and consequently

4
X —a Xy —4a
ntl I< u > , n &€ Np.

Xpi1—d X, —d

n

Xy —a X0 —4a
- = (= , 1 €Ny,
X, —d Xo—d

n

d Xo—a 4 _

(5)
<x0711>4" B 1
XOfd

Xpn = ’ nENO/

which is the general solution to equation (2.77).

(2.77)

(2.78)

(2.79)

(2.80)

O

Remark 2.21. Note that if d = —a equation (2.77) reduces to the equation (2.63) where a is
replaced by a?, from which its solvability again follows.
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2.8 Difference equations obtained by polynomials of the fifth degree

In [56] we have also shown that the difference equation

x5 + 10ax3 + 5a%x,

5x% +10ax2 4 a2 ’ n € No, (2.81)

Xn+1 =

is solvable in closed form.
Our aim is to find a generalization of equation (2.81) similar to equation (2.47), which is
also solvable in closed form. The following equation

x5, + pxit 4 xS +rx2 +sx, +u
wxgy 4+ By + yxZ 4 oxy + 17

Xnt+1 = , ne NO/ (282)

is a natural generalization of (2.81).
We find the values of parameters p, q, r, s, u, «, B, v, 6 and 7 such that the following
identities hold

P +ptt+ gt +rt? +st+u—a(at* + P+ 2+ 6t +14) = (t—a)° (2.83)

and
P4ptt gt +rtPdst+u—dat + B+ + 5t + 1) = (t—d)° (2.84)

for some given numbers a and d such that a # d.
From (2.83) and (2.84) we have

p—aa = —ba, p—ad = —5d, (2.85)
q — Ba = 10a?, q — Bd = 1042, (2.86)
r—oa=—-10a°>, r—qd=—104°, (2.87)
s — da = 5a*, s —od = 5d*, (2.88)
u—na=—a, u—nd=—d. (2.89)

From (2.85) it follows that
—a(a—d) = —5(a—4d)

from which along with the assumption a # d, it follows that « = 5. From this and (2.85) we
get p = 0.
From (2.86) we have
—B(a—d)=10(a—d)(a+4d) (2.90)

and
2g =10(a* +d*) + (a +d)B. (2.91)

From (2.90) along with the assumption a # d, it follows that § = —10(a + d). By using it in
(2.91) we get g = —10ad.
From (2.87) we have

—vy(a—d) = —10(a — d)(a® + ad + d*) (2.92)

and
2r = —10(a® + d°) + (a +d)1. (2.93)
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From (2.92) along with the assumption a # d, it follows that ¢ = 10(a? + ad + d?). By using it
in (2.93) we get r = 10ad(a + d).
From (2.88) we have
—6(a—d) =5(a—d)(a® + a*d + ad* + d°) (2.94)
and
25 = 5a* + 5d* + (a + d)6. (2.95)
From (2.94) along with the assumption a # d, it follows that 6 = —5(a® + a*d + ad® + d°). By
using it in (2.95) we get s = —5ad(a® + ad + d?).
From (2.89) we have
—n(a—d)=—(a—d)(a*+a’d + a*d® + ad® + d*) (2.96)
and
2u = —(a° 4+ d°) + (a+d)s. (2.97)
From (2.96) along with the assumption a # d, it follows that 1 = a* + a®d + a%d? + ad® + d*.
By using it in (2.97) we get u = ad(a® + a®d + ad® + d°).
From the analysis we obtain the following result.

Theorem 2.22. Let
ps(t) =5t* — 10(a+d) > + 10(a®+-ad+d*)t*> — 5(a>+a’d+ad*+d°)t + a* +a*d+a*d> +ad®+-d*.
Then the equation
x, — 10adx? 4+ 10ad(a+d)x% — 5ad(a*+ad+d?)x, + ad(a®+a*d+ad*+d°)
pa(xn)
for n € Ny, where a,d € C are such that a # d, is solvable in closed form.

Proof. From (2.98) we have

. (298)

Xn4+1=

(xn — a)S
X —a= 2.99
n+1 p4(x11) ( )
for n € Ny, and
(xn — d)5
Xpa1 —d = —rnr" 2.100
n+1 p4(xn) ( )
for n € INy.
Employing (2.99) and (2.100) it follows that
5
Xp1 — 4a . Xp —4a
Xpp1—d (xn—d> ;1€ No.
Hence 5
Xpn—a _ (xo—a
xp—d (xg—d> - meNo,
and consequently
57!
d zg:; —a
Xpn = ——m——, N €Ny, (2.101)
Xo—a o 1
(35)
finishing the proof. O

Remark 2.23. Note that if d = —a equation (2.98) reduces to the equation (2.81) where a is
replaced by a?, implying its solvability.



18 S. Stevié¢

2.9 A generalization of equations (2.63) and (2.81)

A natural question is if above theorems can be generalized to a more general difference equa-
tion. Although, at the first sight, the problem looks technically quite complex, it is interesting
that the method used in the proofs of the above theorems can be also employed for finding
the corresponding class of difference equations solvable in closed form, which are of the form

XK+ apxk =+ ax, +oag

Xpp1 = , n € Ny, (2.102)
T b T bk 2 by v+ b
where k € IN and the coefficients
aj, j=1,k, and b, 1 =0,k—-1, (2.103)

are complex numbers.
We want to find the values of the coefficients in (2.103) such that the following identities
hold

Frat et T gt 4y
— ﬂ(botk_l + bltk_z + -+ b]'_ltk_j + o b ot + bkfl) = (t - El)k (2.104)

and

et et T gty
—d(bot" T+ bt P b T ot b)) = (E—d)F (2.105)

for some given numbers a and d such that a # d.
From (2.104) and (2.105) we obtain the following nonlinear algebraic system of equations

ay —abg = Cll{(—a), ap —dby = le(—d)

aj—abj 1 = Cj(—a)/,  aj—dbj 4 =Cf(—d), (2.106)

ayx — abk—l = C’,ﬁ(—a)k, aj — dbk—l = C]]g(—d)k

From (2.106) we have

—(a—d)bj_1 = Cf((—a) — (=d))) (2.107)
and o '
2a; = Cf(—1)/(d + /) + (a+d)bj_y, (2.108)
=Tk
From (2.107) and since a # d we obtain
ad—d
bj_1 = C}(—l)f“m, j=1,k (2.109)

By using (2.109) in (2.108) we have

j+1 W —d

2a; = C{ (1) (d + d/) + (a +d)CF(—1) —
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j = 1k, from which it follows that

gl g1
jad - —ae
—— j=1k (2.110)

Remark 2.24. Note that from (2.110) with j = 1 it follows that a; = 0, whereas from (2.109)
with j = 1 it follows that by = C’f = k. Further, from (2.109) and (2.110) it follows that

aj = adC]"‘(—l)

al—l —gi—-1
al —di

a]- = adb];1 P ] = 2, k.

Now we formulate and prove the general result.

Theorem 2.25. Let equation (2.102) be such that the coefficients aj, j = 1,k,and b, 1 =0,k — 1, are
given by (2.109) and (2.110), where a,d € C are such that a # d. Then the equation is solvable in
closed form.

Proof. Let
pro1(t) = bot T byt 2 b ot by

Then from (2.102) and the choice of the coefficients a;, j = 1,k,and by, I = 0,k — 1 (see (2.104)
and (2.105)), we have

(xn — ”)k
Xpy1 — a4 = —+—, 2.111
n+1 pk_l (xn) ( )
for n € Ny, and
(xn — d)*
Xyl —d=—-——, 2.112
s Prk—1 (xn) ( )

for n € Ny.
From (2.111) and (2.112) we have

k
Xy — 4 X, —a
nil = < 1 ) , n € Np.
Xp+1 —d Xy —d
Hence .
Xy, —a Xo—a
= , n € Ny,
Xp—d (xo — d> 0
and finally
kn
d (XO:Z —a
x}’l — o T ; n E NO,
(31) -1
Xg—d
as claimed. 0
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Abstract. This paper is concerned with a class of age-structured cholera model with
general infection rates. We first explore the existence and uniqueness, dissipativeness
and persistence of the solutions, and the existence of the global attractor by verifying
the asymptotical smoothness of the orbits. We then give mathematical analysis on the
existence and local stability of the positive equilibrium. Based on the preparation, we
further investigate the global behavior of the cholera infection model. Corresponding
numerical simulations have been presented. Our results improve and generalize some
known results on cholera models.

Keywords: cholera, age-structured, nonlinear incidence, global dynamics, Lyapunov
functional.
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1 Introduction

Cholera is an acute water-borne infectious disease caused by Vibrio cholerae, with an estimated
disease burden of 1.3 to 4.0 million cases and 21 000 to 143 000 deaths every year world-
wide, which still affects at least 47 countries around the globe [2]. At present, there are 139
serogroups of Vibrio cholerae, of which O1 and O139 can cause cholera outbreaks. The disease
peaks in the summer and it can be transmitted to humans by pathogen in the contaminated
water and by person-to-person contact [20,37]. Clinically, cholera can cause severe diarrhea,
and the infected person will die of dehydration within a few days without prompt treatment
[12]. In 1855, the British scholar John Snow found that the sewage in the city was the source of
the spread of cholera epidemic [36], which was a major historical event in public hygiene. In
the history of human epidemiology, cholera broke out many times in different countries and
regions. In recent years, cholera outbreaks are mainly concentrated in developing countries
with low medical and health level and lack of safe and hygienic drinking water sources. For
example, cholera broke out in Haiti in 2010, leading to more than 665000 confirmed cases and
8183 deaths [10], and one of the causal factors for this outbreak is the transmission of local

™ Corresponding author. Email: ranzhang@hlju.edu.cn
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water source Artibonite river. The incidence rate of cholera will decrease in the future due
to the global economic development and the reduction in global poverty [44], however, may
increase in the next few decades due to the climate change and ocean changes caused by the
extreme weather [1]. Therefore, it is of great theoretical and practical significance to study the
transmission mechanism and development trend of cholera.

Recently, the mathematical model of cholera transmission has attracted widespread atten-
tion since the earlier study [9] on cholera modeling for the outbreak in the European Mediter-
ranean region. In the aspect of mathematical modeling, Tien and Earn [37] introduced a water
compartment into classical SIR model and established a water-borne infectious disease model
with multiple transmission routes described by ordinary differential equations. In [37], the
susceptible individual can not only be infected by the infected individual, but also be in-
fected by indirect intake of contaminated water from the environment, which could be used
to describe the transmission dynamics of cholera. By constructing an appropriate Lyapunov
function, the global asymptotical stability of the equilibria of the system was obtained. Con-
sidering the hyperinfectious state of vibrio cholerae, Hartley et al. [20] extended the model
proposed in [37] and studied the impact of hyperinfectious state on limiting the spread of
cholera. Eisenberg et al. [15] aimed to evaluate the effects of patch structure on cholera spread
and the type/target reproduction numbers were derived to quantify the strategies of cholera
prevention. Some models involving different factors of cholera can be found in [3,33,38,40,41]
and the references therein.

In modeling of epidemics, the age structure of individuals and pathogen is a significant
characteristic [4,8,13,27,42]. In [7], Brauer et al. proposed an age-structured cholera model
with multiple transmission pathways, which is

B = a— ()~ gis) [ a®)p(e s — () [ k@itt,a)da,

8i(t,a) ai(t,ﬂ) _ . 1.1
o + 5 o(a)i(t,a), (L.1)
op(t,b)  dp(tb) _
with initial condition
$(0) = So, i(0,-) =1io(-) € LL(0,400), p(0,-) = po(-) € LL(0,+00), (1.2)

and boundary condition
i(£,0) = BiS(t) /O a(b)p(t,b)db + BaS(F) /0 " k(a)i(t,a)da,
p(t,0) = /0°° &(a)i(t a)da.

where S(t) is the density of the susceptible population at time ¢, i(t,a) and p(t,b) are the densi-
ties of the infectious population and the pathogen at time t with age a and b, respectively. The
parameters of model (1.1) are explained in Table 1.1. Brauer et al. successfully obtained the
global dynamics of model (1.1) by using the method of Lyapunov functional. Moreover, some
other results for model (1.1) can be found in the studies [7,42], such as relative compactness
of orbits and uniform persistence.

More and more studies showed that immigration of populations has a significant impact
on the spread of cholera. Due to the drought, refugees from Mozambique poured into Zim-
babwe at the end of 1992, making Zimbabwe face the first cholera epidemic since 1985, which

[ee]

(1.3)
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Parameter Interpretation
Ag Constant recruitment of susceptible individuals
U Natural death rate of susceptible individuals
Ba Direct transmission coefficient of cholera
Bi Indirect transmission coefficient of cholera

Age specific removal rate of the infected individuals
Age specific removal rate of the pathogen

Age specific shedding rate of an infected individual
Measure the Infectivity of infected individuals
Measure the Infectivity of pathogen

SN

o X e =2
N TN /N~
\_/\_/iv\_/

Table 1.1: Parameters and their biological meaning in model (1.1).

spread to 7 provinces (Zimbabwe has 8 provinces in total) within five months [5]. Research
shows that cholera has a history of outbreak through the immigration caused by interna-
tional flights [14] and international conferences [32]. By analyzing 26 strains isolated from
the cholera outbreak in Haiti in 2010, Frerichs et al. [17] believes that this wave of cholera
outbreak was caused by the spread of Vibrio cholerae to the local drinking water source by
the UN peacekeeping force dispatched by Nepal to Haiti. In fact, for developed countries with
safe and hygienic water resources, cholera can also enter through immigration. According to
the Centers for Disease Control and Prevention of USA, there was an increase in cholera cases
reported in the United States during cholera outbreaks in Latin America in the 1990s and
countries close to the United States such as Haiti in 2010 [11]. Five European Union countries
reported 26 confirmed cholera cases in 2018, of which 22 were immigrated from India, Pak-
istan, Thailand, Bangladesh, Myanmar and Tunisia [16]. Therefore, it is urgent to explore the
impact of immigration on the development and evolution of cholera infectious disease, which
is also one of the important topics in the study of infectious disease dynamics.

From the view of mathematical modeling of infectious disease, immigration of population
was always supposed to be of constant recruitment rate in each compartment. Brauer and
van den Driessche [6] studied the threshold-like results for disease transmission model with
immigration of the infective. By using Lyapunov function, Sigdel and McCluskey [34] inves-
tigated the global stability for an SEI model with immigration. More specifically, the endemic
equilibrium for the model proposed in [34] is globally asymptotically stable. Considering the
vaccination effect in the modeling of infectious diseases, Henshaw and McCluskey [21] pre-
sented the results on the global stability of a vaccination model with immigration, by virtue of
the key method of constructing appropriate Lyapunov function. Meanwhile, age-dependent
immigration rate seems more realistic in the real world and it is meaningful to investigate the
age-structured models with immigration. In [30], McCluskey introduced an age-structured
epidemic model with immigration. With an ingenious Lyapunov functional, the stability of
endemic equilibrium for the SEI model with immigration was proved successfully. Zhang and
Liu [46] further extended the study in [30] by introducing general nonlinear incidence. More
recently, McCluskey [31] proved a general result for a Lyapunov calculation for the model
with immigration and applied the results to a multi-group SIR model.

In (1.1), the incidence rates are assumed to be bilinear. Actually, nonlinear incidence rates
are critical for accounting for a variety of nonlinear features of the corresponding biological
phenomena. For example, Beddington-DeAngelis [23], Holling type II [24], Crowley-Martin
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[45] and general incidence [18,26]. Motivated by the above studies, in this paper, we shall con-
sider a generalization of model (1.1) by taking general incidence rates into account. However,
to our best knowledge, there is no study on the age-structured cholera model with immigra-
tion. Based on model (1.1), we further introduce the immigration of infectious individuals
and pathogen into the cholera model. Let A;(a) and A, (b) represent the recruitment through
immigration into the infectious group and the pathogen group. Let

Q(t):/oooq(b)p(t,b)db and ](t):/oook(a)i(t,a)da

represent the infectivity of infected individuals with infection age 2 and the total infectivity of
pathogen with pathogen age b. In the current paper, we focus on the following age-structured
cholera model with immigration

dio’i(tt) = Ay — uS(t) = S(OF(J(H)) — S(H)g(Q(1)),

di(t,a) di(t,a) _
5 T = Aila) = d(a)i(t,a), (1.4)

apgt’b) * apét,;b) = Ap(b) — v (b)p(t,b),

with boundary condition

i(t,0) = S(t)f(J(t)) + S(t)g(Q(t)), t>0,
o ) (1.5)
p(t,0) = P(t) := /0 &(a)i(t,a)da, t>0,
and initial condition
Xo := (5(0),i(0,-), p(0,-)) = (So,i0(-), po(-)) € v+, (1.6)

where 1 := R x £! (0,00) x L! (0, 0) with norm

(@0 9)ly =191+ [ Ip@lda+ [“lo®)ide, 9 R,y e L1(00)

and y; = Ry x L1 (0,00) x £1 (0,00) is the positive cone of . Here £L! (0,00) denotes the
space of Ll-integrable functions from the interval (0,00) to itself. All the other coefficients
in system (1.4)—(1.6) and the corresponding biological interpretation are the same as those in
(1.1)—(1.3).

In the current paper, we study the global asymptotical stability of the unique positive
equilibrium, which need to construct suitable Lyapunov functional. Mathematically, the age-
based immigration rate and the indirect/direct transmission route of cholera generate a huge
difficulty in constructing the proper Lyapunov functional. Moreover, the general incidence
will bring great trouble to the calculation of the derivative of Lyapunov functional. For the
well-posedness of the Lyapunov functional, we also need verify the uniform persistence of
the system. The theoretical analysis shows that there exists a unique globally asymptotically
stable endemic equilibrium, and the disease persists at the endemic level. The results in
present paper not only serve as a supplement and generalization of the works in F. Brauer et
al. [7], but also deal with some other new epidemic models with multiple transmission routes
and immigration.
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The plan of this article is as follows. In Section 2, we make some preliminaries for the
system. In Section 3, we explore the asymptotical smoothness and global attractor. In Sec-
tion 4, we explore the existence and local stability of the positive equilibrium. In Section 5, we
construct a Lyapunov functional to discuss the global stability of the equilibrium. Numerical
simulation and a brief conclusion will be given in section 6.

2 Preliminaries

Firstly, for system (1.4)—(1.6), we give the following assumptions.

Assumption 1. Constants As, y € R. For functions ¢(-), k(-), q(-), 6(-), () € LF(0,4+0),
Ai(+), Ap(+) € L1 (0, +00), we make the following assumptions.

(I) For é(-), denote § := fo 7)dt, and denote é and ¢ as the essential supremum and
essential infimum of 4(-), so do G(-), k(+), q(-), v(+), Ai(+) and Ap(-);

(I) ¢(-), k(+), q(-), 6(-) and 7(+) are Lipschitz continuous.
Assumption 2. For functions f(-), g(-) : R+ — R4, we introduce the following assumptions.
1)) f() and g(-) are Lipschitz continuous on R} with f(0) = ¢(0) = 0;

(IT) >f’( z) >0, g >¢'(z) >0and f"(z) <0,¢"(z) <0, forz € Ry.

2.1 Existence of unique solution
Denote the following spaces
X=RxRxL'(R{,R) xR x L' (R}, R),
Xp =R x {0} x £ (R,,R) x {0} x £} (R, R),
X, =R, xRy x L} (R, R) x Ry x £ (R, R),
Xoy = X NAXy =R, x {0} x £ (Ry,R) x {0} x £! (R, R),

One defines a linear operator A : Dom(A) C X — X as follows,

# —udr

A <4§1) = (—55)@;1(2—)%)
(qoz) <—7Z§042)§ 2 fp&)

with Dom(A) = R x {0} x W'1(0,00) x {0} x W1(0,00), where W'1(0,c0) denotes the
Sobolev space of locally summable functions y : R™ — R such that for every multi-index
a with |laf < 1, the weak derivative D*y € L£!(0,00) exists. Moreover, define a nonlinear
operator F: Dom(A) C X — X as

H N—pif (f k )da) g gofoooq(b)(Pz(b)db)
< 0 > <‘P1f (fo a)da) + ¢18 ([, q(b)(Pz(b)db)>
LT (A (0

§ (riis
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Let u(t) = (S(t), (0,i(t,-)T, (0, p(t,-))")T € Ay, then we can write system (1.4) as the follow-
ing abstract Cauchy problem

dt
Ll(O) =ug € AyN Aps.

{mﬁ)_AMQ+FW®% Vt >0, (2.1)

To show the existence of unique solutions for system (1.4), we need to prove the operator A
as a Hille-Yosida operator.

Theorem 2.1. The operator A is a Hille-Yosida operator.

Proof. In order to apply Hille-Yosida theorem [29], we need find { = (1, P10, $1, P20, $2) € X,
such that for (¢1,0, 91,0, ¢2) € Dom(A), there holds

$1 1

(AL—-A)"! (%11()) = <4(’)1>

o)
)
From above equation, we then yield
$1 = (ML= A)p1 = Agr — Adr = (A + )1

Thus, ¢; = Besides, we obtain

- /H-y
P1=(M—=A)p1 = A1 —Ap1 = Ap1 + (- )1 + @) = (A +0(-)) o1 + ¢7.

Thus, there holds

P1=¢1— (A+6())e1,

and we have

Further, there holds
loulle, = [ lor(@lea
= [ |pue B0y [* gy () SOy
0 0
(o] a o0 a a
< |0l / o= Jo(A+o(s)ds g 1 / / 161(T) e~ JF O+ ds qrdq
0 0 0

. 1 [ IYCS] . —(a—1
<‘¢10|m+/ / |§1(T)[e" DM dadr

+/ A T(A+5) /oo —a(A+9) qadT
= |P10l 57— ey P1(7)e” e a
[P1(

7)|
|(’)1°|/\+5+/ P

_ 1wl | NIgalle,
A+ds A+67

da
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Similarly, we can obtain that

|¢20! n [ ¢2]l 2,

Let 7 = min{4,y, u}. For any { = (¢1, P10, P1, P20, $2) € X, we have

1AL = A)7IZ] = || + [0 + @1l e, + 10+ llg2ll 2,

< 1] 419wl N9rlle | 192l | [I92lle,
A+y A+é A+ A+y Aty
el
A+17
Thus, the linear operator A is a Hille-Yosida operator due to [29]. O

Let Xo = (S(t),(0,i(t,-))%, (0, p(t,-)))T € Xy, thanks to [29, Theorem 5.2.7], we have the
following theorem.

Theorem 2.2. There exists a unique determined semiflow {{(t)}i=0 on Xoy such that for any Xo,
a unique continuous map 4 € C([0,00], Xo4) exists as an integrated solution of the Cauchy problem
(2.1), that is,

/Otil(s)XOds € Dom(A),

U(H)Xo = X0+A/ Xods+/ (5)Xo)ds,
forallt >0

2.2 Dissipativeness and persistence

Combining equations (1.5) and (1.6), integrating the last two equations of (1.4) along the
characteristic lines yields

i(t—a,0)01(a +/ 1EZ;de, 0<a<t,

i(t,a) = (a) (2.2)
] <t <K
i(0,a — —t —1—/ e) © de, 0<t<a,

)

p(t —b,0)02(b) +/ Ap(e)g Egde, 0<b<t,

p(t,b) = os(b) o7 (8) 2.3)

_ A <t <
p(0,b—t) oa(b— 1) + Ap(e) UZ(G)de, 0<t<y,
where ; .
oi(a) = e 0T and oy (b) = e o 7(MdT, (2.4)
Now, we are concerned with the boundedness of solutions. Let Y; := AS;A’ Y> &]11;/\”

and

7= {(S(t),i(t,a),p(t,b)) € X |5+ [T ithaydat [ piebab < v, +yz}.

We arrive at the following theorem.
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Theorem 2.3. For (1.4), il is point dissipative, which means there is a bounded set 11 that attracts all
points in X.

Proof. Note that

/Oooi(t,a)da = /Oti(t,a)da + /tooi(t,a)da
= [ i(t—a,0)01(a)da + Ai(e) ) deda
b bl Mg
)deda.

o€
+/tooi(0,a—t)m(&(i)t)daJr/tm/aa_tAl( o)

Interchanging the order of integration for the double integrals and making change of integra-
tion variable for the two single integrals gives

00 t )
/ i(t,a)da:/ i(T,O)O’l(t—T)dT+/ i(0,7T) Ul t+T d +/ / Z dade.
0 0 0
Thus, there holds
d [, . t, d
f/ i(t,a)da :(71(0)1(1‘,0)—1—/ i(7,0) S0y (t— T)dr
dt Jo dt
+/ dtUl t+T d +/ (71 e+t)d€
— i(t,0) —/ i(T,O)cS(t—T)Ul(t—T)dT
0
_/ooi(O’T)(S<t—|—T (o) t+T d +/ 0'1 €+t>d€
0
t
—i(t,0) — / i(t — a,O)&(a)al(a)da
0
[ (@) 01 e+t)
/t i(0,a t)al(a—t da —|—/ —————=de.
Note that

(a) deda—i— { a deda = a) dade
J [ e gaeans [ [ atag // 0

_/ Ul e+t)de—/ Ai(e)de,
0

we thus have

dt/ i(t,a)da = i(t, 0) — /t(t—a0)5() ()da—/ooz(Oa—t)

#/
—i(t,0) — /05()( a)da + A;.

Together with the first equation of (1.4), one has

i<5(t)+/o°°i(t,a)da> (As+A) ( )+ [ itta) da>

S(a)cn(a)

op(a— t) da
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Hence,

£+ /Oooz'(t,a)da <Y, e {Y1 —(5(0) + /Oooz'(O,a)da)}, 2.5)

for any Xy € II. Similarly, we can derive that

/Ooo p(t,b)db < Y, — e {Yz - /0°° p(o,b)db}, 26)

for any Xy € Il. Hence, combining (2.5) and (2.6) yields
1440, Xo) | < Y1+ Yo — et {Y1 +Ya — (5(0) +/0 i(0,a)da +/0 p(O,b)db)} .

This implies that ||£(t, Xo)||x < Y1 + Y2 for Xo € I, and the proof is complete. O

From Theorem 2.3, we obtain the following result.

Corollary 2.4. If Xy € X and || Xo||x < B with some constant B > Y1 + Y, then for t € R4, we
have the following statements

S(t), fy7i(t,a)da < Band [y p(t,b)db < B;

(ii) i(t,0) < (kf'(0) +q8'(0))B* and p(t,0) < ZB.

The following corollary generates a positive asymptotical lower bound of S(¢).

Corollary 2.5. If Xy € X4, then

o Ag
1 tS5(t) > kB + .
i () p+ f'(0)kB +g'(0)9B

Proof. For any € > 0, there exists a ty) € R such that

/i(t,a)da<B+s and /p(t,b)db<B+s
0 0

for t > ty. Then, for t > 1,

O — A= s+ 00 +8(Q)

)
> As = S(t)(u + f'(0)k(B +¢) + g'(0)7(B +¢)).

This implies that

. 7AW
liminf S(t .
RS > ORB o) 1+ (03B + o)
Letting € tend to 0 gives the required result. O

Then by similar verification in [30], we obtain the following proposition.

Theorem 2.6. There exist f > 0 and € > 0 such that i(t,0) > € and p(t,0) > € forall t > L.
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3 Asymptotical smoothness and global attractor

For the existence of an attractor, the asymptotical smoothness of the semiflow {l is necessary.
For this, by the similar argument in [30, Proposition 6], we claim that J(¢), Q(¢t) and P(t)
are Lipschitz continuous with Lipschitz coefficients L;, Lo and Lp. Then we introduce the

following lemma for the asymptotical smoothness of the semiflow.

Lemma 3.1 ([35]). The semiflow $ : Ry x Xy — X is asymptotically smooth if there exist maps
Uy, th : Ry x Xy — Xy satisfying $U(t, x) = Ly (t,x) + U (t,x), and for any bounded closed set

B C X, which is forward invariant under Y, there holds:
(i) lim; e diam $hp(t,B) = 0;
(ii) There exists tg > 0 such that Ll (t,B) has compact closure for t > tg.

For Lemma 3.1 (ii), we utilize the following lemma.

Lemma 3.2 ([35]). A set B € L1 (0, 00) has compact closure iff the following conditions hold:

() supfep Jo f(z)dz < oo;
(i) imy—eo [ f(z)dz — O uniformly in f € B;
(iii) limy o+ [ |f(z+h) — f(z)|dz — O uniformly in f € B;
(iv) limy_,p+ fohf(z)dz — 0 uniformly in f € B.
Based on above lemmas, we can obtain the following result.
Theorem 3.3. The semiflow I generated by (1.4) is asymptotically smooth.
Proof. Define maps 4l; and &, such that 4l = Ll; + &0y, satisfying

{ill(f,xo) = (S(t),i(t,-), p(t,-)),
i/[2<tz xO) = (O, gbi(t/ ')1 qbp(tf ))1

where
B i(t—a,0)o(a), 0<a<t,
Hie) = {o, 0<t<a,
R B p(t—0,0)02(b), 0<b<t,
p(t’b)_{o, 0<t<b,
a . oi(a)
gilt,a) = {/O RETC 0
A I o1 (a) a o1 (a)
i(0,a—1t) 1(11—1?) +/a_tAl(€)c71(e)d€' 0
and
b Uz(b)
op(1,) = Jo My |
' o2(b) b o2(b)
p(O,b—t)Uz(z_t) /bitAp(e Ui(e)ds, 0
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Firstly, we show that I, satisfies Lemma 3.1(i). For X}, X2 € II, letting ¢; = a — t, we
obtain

194(t) — ), = /”\ 00— 1) - #0,a—H-2@_g,

o1(a—t)
o1 (t+€1)
= Og 2(0,e1) | ———2de
g/ ~0H11(0,61) — 2(0, 1) |dex
0
< 2Be %,

Similarly, we have ||(p117(t, )= (i)f,(t, Iz, < 2Be™2'. And thus, we have

Huz(t, Xb) — (8, X3)]|

< 2B(e™ e ).
1

Hence, as t — oo, we have that diam||¢l,(¢, Xo)||x — 0. This accomplishes the verification of
Lemma 3.1(i). Subsequently, we focus on the proof of Lemma 3.1(ii) by virtue of Lemma 3.2.
By Proposition 2.4, we claim that conditions (i), (ii) and (iv) of Lemma 3.2 are satisfied since
0 < i(t,a) = i(t —a,0)o1(a) < [f(0)k + g'(0)7]B%e~. Tt suffices to verify the condition of
Lemma 3.2 (iii). Choosing h € (0, t) small enough, one has

/O°°|Z(a,t)—i‘(a+h,t)\da
< [ 8= a = WU~ a1+ g(QU —a =) (er(a+ 1)~ or(a)) e

[ S a0 ) - £ - a))
+18(Q(t —a—h)) —g(Q(t —a))|)oi(a)da
t—h
+/O |S(t—a—h)—S(t—a)|(f(J(t—a))+g(Q(t —a)))oi(a)da
+£(0) /tth]S(t—a)](t—a o (a)|da

N (3.1)
+8(0) [ 18(t=a)Q(t = a)or(a)]da

<P Ok+LONB [ loa(a+h) —s(a)lda
t—h

£11(0) [ S(t—a=n)J(t=a—h)= (= 0)|or(a)da
+¢(0) /Oth S(t—a—h)|Q(t—a—h) — Q(t —a)|oi(a)da

[P OI6 -0+ £ OQU - ISt —a—1) ~ 5 - a) o (a)da
+(f'(0)k +¢'(0)7)B?h.
From (2.4), we have

h

0< /Ot—h lov(a+h) —oi(a)|da = /0 o1(a)da — /tih o1(a)da < h. (3.2)
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Note that
’ dS(t)

| < A (R (0) + qg O

which means that S(t) is Lipschitz continuous. Then

/Oth S(t—a—h)|J(t—a—h) —J(t —a)|or(a)da < <BL;h, (3.3)

[ ] =

and
1

/Oth S(t—a—h)|Q(t—a—h)—Q(t —a)|oi(a)da < -BLgh. (34)

Moreover, one has that

[ )1~ a) + Q0 - )Is(t —a 1) - (¢ - a)er(a)da
1

<< (f'(0)k +¢'(0)7) BLsh, (3.5)

[

where Ls := Ag + uB + (kf'(0) + 4¢’(0)) B2, Substituting equations (3.2)—(3.5) into (3.1), one
has that

/ i(a,t) —i(a+ h,t)|da
0

<2(f'(0)k +&'(0)q)B*h + < (f'(0)L; + &'(0)Lg) Bl + = (f'(0)k + ¢'(0)q)BLsh. ~ (3.6)

[ =
(] =

Thus, Lemma 3.2 holds. Hence, i(t,a) remains in a pre-compact subset in £ (0,0). The same
arguments can be derived on p(t,b) and this completes the proof. O

According to [19], a global attractor exists since the semiflow il is asymptotically smooth.

Theorem 3.4. The semi-flow $\(t) has a global attractor in X,.

4 Local stability of the infection equilibrium
Because the model introduces immigration terms, there exists no infection-free equilibrium

for system (1.4). Assume E* = (5%,i*(a),p*(b)) be an equilibrium for system (1.4), then it
satisfies the following equations.

As = pS"+ S f(J7) + 57¢(Q7),

di;ia) = Ai(a) — 6(a)i*(a),
dpc;gb) = Ap(b) =7 (0)p"(b), o

i*(0) = §°£(") +5°5(Q),
prO) = [ el@)it(a)da,
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where Q* = [ 4(b)p*

—~

b)dband J* = [} k(a

[ee]

k(a By =

~—

i*(a)da. Denote

[

j&

[
I
\ 0\8 o\
Q
[x1
a1
I
S— ﬁ S~
)
S
S
=
S— hc\
ailka

Owing to equations (4.1), we derive

and

Then substituting (4.3) into the first equation of (4.4) yields

a
i*(a) = (As — uS")o(a) + /O Ai(t
Combining (4.5) and the last equation of (4.1) yields
p*(0) = (As — uS*)E3 + Ee.
Further, substituting (4.6) into the second equation of (4.4), one has that

o (b)
2 (7)

oy (a)
) 7 (0) dr.

p(6) = (A~ 18 )Z502(0) + Zg0n(0) + [ Ap(r) 2

13

(4.2)

(4.7)

Thus, in order to find E*, inspired from the first equation of (4.1), we need to search for the

zero of the following formula

h(S) = As — uS — SF((As — 1S)Z1 + E4) — Sg((As — 1S)EaE3 + EoFg + Es).

Since h(0) = As > 0 and h(%) < 0, by the Intermediate Vale Theorem, h(S) has one zero in

(0, %) Thus, there exists at least one S* € (0, %) and thus at least one positive equilibrium

E* exists.
In the following, we first focus on the local stability.

Theorem 4.1. System (1.4) has one infection equilibrium E*, which is locally asymptotically stable.

Proof. The linearization of system (1.4)—(1.5) on (S*,i*(a), p*(b)) is
ds(t)

di(t,a)  0i(t,a)

o + 5 = —6(a)i(t,a),
WD) O byt ),

i(t,0) = (f(J") +8(Q"))S+ S f(J)] +5°¢'(Q")Q,
p(t,0) = /0 &(a)i(t a)da.

—qr = Cr=fU7) = g(QN))S() = ST ()] = ST(1g'(QQ,
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obtain
() o0

AS = —(n+ () +8(QNS=SF ") | Ka)ila)da—5'¢'(Q") [~ av)p(b)a,
i(a) = i(0)e Moy (a),
p(b) = p(0)e *oa(b), (4.9)

(e ]

i(0) = (FU) +8(Q)5 +5°¢/(Q) [ a@p()db+ S [ Ka)i(a)da

T(A) = /O “k(@)e Mar(a)da,  Ta(M) = /0 " 4(b)e 0 (b)db,

and

It follows from (4.9) that

A+p+fU7) +8(Q7))S+[S"F(J)T1(A)]i(0) + [$78"(Q)T2(M)]p(0) = 0,
(fJ7) +8(Q7))S = [1 = S*f(J)I1(M)]i(0) + [S*8"(Q")T2(A)]p(0) = O,
I3(A)i(0) = p(0) = 0.
Thus, the corresponding characteristic equation of the linearization for system (1.4) at infection
equilibrium (S*%,i*(a), p*(b)) is

AtptfU)+g(Q7)  SFUINA) 57 (Q)T2(A)
FU7) +8(Q7) STF(IT(A) =1 57¢/(Q7)2(A)] = 0.
0 I'3(A) -1
Clearly, A = —pu is not a root of the above equation, then
A+p+fU)+8Q)/(A+u) =S f(T)T1(A) + 578" (Q)T2(A)T3(A). (4.10)

Assume that equation (4.10) has one root with positive real part. The module of the left
side of the equation (4.10) is more than one. The module of the right side is

5 ()T (A) + 579/ (@) < |50 () + 5288, s

J* Q*
Since
Q= /0°° q(b)p*(b)db = p*(0)Ez + Es, ' = /Ooo k(a)i*(a)da = i*(0)Z; + &y,
and o o
o — ~ ee i*(a _ p*
m = [ e@neda < [T e g = g
we have

AU, S°(Q)
RONNEO

This is a contradiction and we finish the proof. O

[S*F1 T (M) + 878" (Q)T2(M)T3(A)| <




and

where

Proof. We define the Lyapunov function ¢(t)

Age-infection structured cholera model with immigration

method. For this, we introduce a function

5 Global asymptotic stability of the positive equilibrium

In order to ensure ( ift,a)

h(z)=z—1—1Inz
Section 2

b)
“(a)

) and 7 (55

ZEIR+.

For the global asymptotic stability of the positive equilibrium, we apply Lyapunov functional
*(b)

) well-defined, we need to show that
are bounded by some positive constants through dissipativeness and persistence analysis in

For the verification of Lyapunov functional, we need the following lemmas
Lemma 5.1. 2 fo S*g(Q*)i*(a)d( )[1 —
Proof. Since p(t,0)

(5.1)
i(t,a) p(tb)
F(o and )
i(ta)p 013, —
P 41 =0
=[5 &(a)i(t,a)da and p*(0) = [, ¢ a)da, we have
1 /w * i(t,a>p*<o>]
= W @0
: [ s 2) 2P (0)
/ S5°g da g, /0 S*¢(Q ) — 7 > “da
* ok * *\ % 1 *© .
- = 2 5°9(Q") /0 *(a)¢(a)da — =S"g(Q")p <o>p(t,0) | e@itta)da
=0.
The proof is completed
Lemma 5.2. Define a function h not depending on a and b. Then we have
i o]
Ha Jo
Proof. Since E; = |,

0
0) = [, i*(a)¢(a)da, we have
(0)e

O

5°8(Q")p (O)a(b)q(B)db = [ 5g(Q")i" ()2 (@)hda
3(b)e2(b)db and p* (0)

= [ 58P 0)e2(b)a(b)hds = 5°5(Q")p* O}

This completes the proof

| s'8(Q)i (@)¢(a)hda

Theorem 5.3. The infection equilibrium E* of system (1.4) is globally asymptotically stable

6t = S <5(t)

O]
01 (t) + £o(t) + £3(t) with
o Y + it a)
- >1 0),  L(t) _/O ®(a)i (a)h<i*(a) > da,
b =g [Treon(*
P(a) = o

15
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and

¥o) = o [ 58(Q)g(0)e i,

Then, calculating the derivative of /1 (t) along (1.4) yields

dgi ) (1 B Ss> [A—uS—Sf(]) —Sg(Q)]i*(0).

B~

Using the fact that A = uS* + S*f(J*) + 5*g(Q*), one has that

Tt = (1 %) 1S S0 +59(@) -5 - SF() - 5@ )
= [-E(s— 52 +5°07) +5°8(Q") — SF()) - $3(Q) 52
-GS S @)+ ) ¢ s*g<Q>] i*(0).

Define H(a) = 0’1 {7\11((3 de and K(b) = Ob /;2”((5)) de. In what follows, calculating the derivative

of l5(t) along (1.4) and then letting T = t — a gives

Al (t a)
dt dt/ ( a))da
i(t,0)+ H(t — 1)
dt/ (t =i t_Th< i*(0) +Ht—r )dT

— ()i ( (?

Letting a = t — T, we have

d{if” — ©(0)i" (0)R (iiit('g))) + [0 < [@(a)i* @) (f(’;))) da

o " i*(a) H'(a) _i(t,a) .
+ [ D(a)i*(a) (1—- — @ (1 . )d

0 i(t,a) ) *(0)+ H z*(a).
— o) On (13 + [T1@@i + e@izn (1) an
0 #(a B i*(a) B i(t,a) Ai(a) .
wfrewr (%) (- 56 ) smrn
i(t,0) it

Since

P'(a) = 25" F()k(a) - ;T(O)C(ﬂ) +6(a)®(a) and iy(a) = —i*(a)é(a) + Ai(a),
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we further derive

déx(t) N i(t,0)
gt = ®(0)i (0)h< i ) -

Since

we subsequently obtain

) ;1 [ siroan »(For) - (7))
1 |

(5.3)

Similarly, we have

W0 < L [ ss@pr 0nwao [ (250) -1 (2] ay
o [Trma,mn ( p0) ) db (5:4)

From equations (5.2), (5.3) and (5.4), we yield

dﬁ(f) < [_g(s —§M2 £ S F(J) + 5*g(Q") — Sf(J) — S¢(Q)
- 75 (T )—S—S*g(Q*)+5*f( J)+57¢(Q)| i
+;/Sﬂ)(>(H)V

5 *0) i*(a
1 . L0) it
+a [ 58Q) On@e | -

) ln

) " F@ " EOG
Lo L) pltD) _
tam [ SEQW O |5

p

p*(0 0
- ewntan (55 ) e g [ vomon (o )@
- [ H@e (ﬂ;)[ (7 )K(@) + 3.5"3(Q)6 )| do

J
1 S p(t >
— S*g( b)h
EpH3 /0 8(Q ( p*(

~— 1
/-\
\/

t,0) i(ta

Q\_/
~.
*
—
(=)
~—
—
—~
—
[

1
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Since /Oo k(a)oy(a)da = E1 and / o1(a)da = B3, we have
1 . (T "(0)Sf(J)
)y STk O [ o 7ir7) &

. o (0)Sg(Q)
+53/o 5°8(Q")¢(a)i*(0)e (a) [1 - (tO)Sg(Q*)}

+S*g(Q*)313/0005(“)‘71(a) *(0)da [ l(to S*g% }
8

- (s - W] =550 1= e gisian | ) 7O
- (s - OO OO
~ (1O -it0 P o)
=0.
Then 948 < ¥9 | ©;, where
01 = (s =57 =871 - 5¢(Q)] @)+ 2. [0 O)n(ak(a) P
o [Ts5@)r 0 >¢<a>iit(’§)>da
0= — o [5'5(0 e a0 - [T 5@ 0 K a
0= [5'7(") = 8 A1) + 5| i0)
b [T Ok [ L)1 M g
+ :11 /0°° S ()i (0)on (a)k(a) [1 _ ((;Sf;(())] da,
0= [s79(07) - $576(0)| 10+ 3 [T 5°5@ ) O @ita) 1n L an
- o [ O n K,
0= 5°3(Q1"(0) - o [5'5(Q)i" O (@)(a) n 7 o
toe [ 59QP 0o -2 41
5[5 s@)rOa@ie) |1- eSO o
0= — [~ @@ (ii(*(“) ) do— o [ 5°5(Q )b (DK (’; (f(’:))> db
¢

- [T H@an () [ 2570k + 2 579(QEw | de
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Thanks to Sf(]) + Sg(Q) = i(t,0), one has

0, = — %(s — §%)%i*(0) —i(£,0)i*(0) + S* f(J")i(t,0) + S*g(Q*)i(t, 0)
(5.5)

By virtue of [~ &(a)i(t,a)da = p(t,0), [;” 02(b)q(b)db = E; and the first equation of (4.4), we
obtain that

0, = Lsg(Q") <3p<t,o> [ emamian- [ °°a<a>i<t,a>da>

=2

1 [ i(t,a)
+553(Q") [ d@H@)n (@) 77 da (5.6)

It follows from &y = [;° k(a)oq(a)da that

+ o [T 0@ )0 [1 - g))”f”] da 57)
0

Due to

L k@)t (i.(t’”)> da > i*(0) /0 ~ka)ia), <i.(f’”)

=1 J0

(5.8)
1 [ J
— 5/() k(a)i* (0)or (a)n (]* da
Lo ()
> :71/0 k(a)i* (0)or (a) <f(]*)> da
Then, combining (5.7) and (5.8), we have
| R S* *(0)Sf£(J)
o1 5[50 @i 0o [-n (5 ) -1 (e E )] aa .
1 i(t,a) '

+ = /Ooo S*f(J*)k(a)H(a)oq(a)h <z*(,a) ) da.

=1
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Recall that E, = [ 02(b)gq(b)db, p*(0) = [, &(a)i*(a)da and Lemmas 5.1 and 5.2, we derive
that

o4 e nar_ ]
L. i(t,a)p'(©) | p(t0)
+; ), Fs@HEa@e [1- ZE G - Ei)
-4 oo [2(2) 1 (4a8) 2]
L. i(t,a)p (©) | p(t0)
5 [T s@) @A @) 1~ R - S

Thus, combining @4 and ©s gives

on+0s < o [ 50(@)i O |- (TN ag

2 [Tss@ron@em [-n (5 ) - (RO |
/ 50, 501,

g(Q*) g(Q%)

% k() p(t,b) _p(tb)
tEE /0 578(Q%)p*(0)a2(b)q(b) [ln b (D) } db

-5 [ss@H@n e | £

Es g(Q) Q)
L o iy (), p(10)
5 [ ss@) @A @) [1 - HEEE - G
Since - -
22" (0) = [ 40)e2(0)p"(0)db < [ q(0)p* (v)b = Q°

and Jensen’s inequality, we have

LI )yt by (p(*t,b)> > ) [~ 1P ), (p(t,b)>

s Jo
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Thus, we finally have

0105 < o [ 5@ O @)@ [

[ 55 k@b (B ) o (510

Hence, combining (5.6), (5.9) and (5.10), we yield

de) . p 2
~q S g8-S )%i*(0)

“5 ks rrom@r |2 ()« (G o5 )|
- :13 /ooo 5°g(Q")i" (0)o1(a)5(a) {h (W d
-2 s o (5 ) on (0
L s @@ (S wn (080,
)

ot

Consequently, from above discussion, we assert that dT < 0 and the largest invariant subset

of set {%(:) = 0} is E*. Due to the invariance principle [39, Theorem 4.2], E* is globally
asymptotically stable. O

6 Numerical simulation and conclusion

In this section, we consider a special model with nonlinear functional responses:

T f a)da  S(t) i q(b)p(t b)db

T_AS_VS() Afo 0 tada+1 Afo 0 (tb)db+1

di(t,a) 9i(t,a) y
5 T e = Aila) —d(a)i(t,a), (6.1)

apgt’b) * apéZb) = Ap(b) — v (b)p(t,b),

with initial condition (1.6) and boundary condition

f0°° i fo p(t,b)db
Afo tada+1 Afo tbdb—l—l ' 62)

p(t,0) = /06()(ta)da £> 0.

i(t,0) =
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Then, from Theorem 5.3, we obtain the following corollary:
Corollary 6.1. The infection equilibrium of system (6.1) is globally asymptotically stable.

To verify the validity of the result, we perform numerical simulations. Let A; = 2000, y =
1

il and

k(a) = 0.003 <1 + sin (“_5):> , q(b) = 0.01 (1 +sin (b_5):>

10 10
Ai(a) =5 <1 + sin<a_105)E> , Ap(b) =80 (1 + sin(b_mS)E>
5(a) =0.18 (1 + sin (a—lg)E) , v(b) =2 (1 + sin (b—lg)E) ,
£(a) = <1+sin(a_105)E>,

for 0 < a,b < 10. Clearly, as in Figure 6.1, all the solutions converge to the positive steady
state. In Figure 6.2, we further show the distribution of i(t,a) and p(t,b) atagea = b = 5.

2500

2000

1500 [

1000 [

500 1

I T T
0 500 1000 1500 2000
Time t

10000 4000
8000 3000
6000

4000
2000 1000

10 10

p(t.b)

i(t,a)

Figure 6.1: Long-time dynamical behavior of system (6.1)—(6.2).

Now, we finish this paper with a conclusion. In this paper, we considered an age-infection
model of cholera with general infection rates. We focused on the global asymptotical stabil-
ity of the unique positive equilibrium under some assumptions. For this, we directly used
the Lyapunov functional method. It is necessarily pointed here that the uniform persistence
and asymptotical smoothness play the key role for the construction of Lyapunov functional.
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3500 T T T T T T 5000

4500
3000 [

4000 |
2500 | 1 3500
2000 [ g 3000 ¢

o
< 2500
a
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1500 - 2000 -

1000 - — 1500 1

1000

500
500

0 . . . . . . 0 . . . . . .
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time t Time t

Figure 6.2: Long-time dynamical behavior of i(t,a) and p(t,b) fora = b = 5.

Finally, we performed numerical simulations. On account of the waterborne disease, we incor-
porated indirect pathogen-to-person transmission and direct person-to-person transmission.
By taking general infection rates into account, we gain a unified theoretical framework to de-
scribe the cholera propagation process. In a recent paper [25], Liu et al. proposed an age-space
structured cholera model, and studied the local stability of equilibria, disease persistence and
global attractivity of equilibria for their model. How about introducing immigration into the
age-space structured cholera model, which will be an interesting problem and we will leave it
for the future work.
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Abstract. We study positive solutions to the p—g Laplacian two-point boundary value
problem:

{y[(u’)ﬁ—w —[()*1) = Au(1—u) on (0,1)
u(0) =0=u(l)

when p = 4 and g = 2. Here A > 0 is a parameter and y > 0 is a weight parameter
influencing the higher-order diffusion term. When u = 0 (the Laplacian case) the exact
bifurcation diagram for a positive solution is well-known, namely, when A < 7% there
are no positive solutions, and for A > 7 there exists a unique positive solution u by
such that [[uy ,[lcc — 0as A — 7% and [urulle — 1 as A — co. Here, we will prove
that for all » > 0 similar bifurcation diagrams preserve, and they all bifurcate from
(A, u) = (7%,0). Our results are established via the method of sub-super solutions and
a quadrature method. We also present computational evaluations of these bifurcation
diagrams for various values of y and illustrate how they evolve when y varies.
Keywords: positive solutions, p— Laplacian, Dirichlet boundary conditions, exact bi-
furcation diagram.

2020 Mathematics Subject Classification: 34B08, 34B18.

1 Introduction

We analyze positive solutions to the boundary value problem:

{—y[(u’w' — ()7 = Af(u) on (0,1),

1.1
u(0) =0=u(1) (1)

when p = 4 and g = 2. Here we will choose f to be a smooth function such that f(0) = 0, and
A >0, p > 0 are parameters, with u influencing the higher-order diffusion term. Study of p—q

™ Corresponding author. Email: r_shivaj@uncg.edu



2 A. Acharya, V. Munoz, D. Nichols and R. Shivaji

Laplacian problems have been of interest in the literature (see [1-4,6]) as they arise as steady
states of reaction-diffusion processes when the diffusion involved is of a certain nonlinear
class. See [6] in particular, where they note that equations of this type arise in biophysics,
plasma physics, and chemical reactor design. However, our motivation of this study is purely
mathematical. We will begin with the case p = 0 when the exact bifurcation diagram for
positive solutions is known, and then prove that for all » > 0 similar bifurcation diagrams
preserve, and that they all bifurcate from the branch of trivial solutions at the same point
where the bifurcation occurs in the case y = 0. In particular, in this study we choose

f(s) =s(1—s); s €1[0,1],

for which when p = 0 it is well-known that the bifurcation diagram of positive solutions is
exact (see [5,7]) of the form:

7.[2

Figure 1.1: A prototypical bifurcation diagram of positive solutions for (1.1)
when f(s) =s(1—s) and u = 0.

Namely, for A < 712 there are no positive solutions, and for A > 712, there is a unique
positive solution u, o such that ||u) g|lc — 0 as A — 72 and ||u) g/l — 1 as A — co. Here, we
extend the study for the case y > 0. In particular, we prove:

Theorem 1.1. Let u > 0 be fixed. Then for A < 72, (1.1) has no positive solution, and for A > 72,
(1.1) has a unique positive solution u,,, such that |[uy,llee — 0 as A — 7 and |[uy |l — 1 as
A — oo. Further, for A > 1%, if yp > py then uy p,, (X) > uy ,, (x) for all x € [0,1].

Remark 1.2. Theorem 1.1 establishes that for each y > 0, a similar exact bifurcation diagram
for positive solutions to the case when y = 0 preserves and each bifurcates from (A, u) =
(712,0) (see Figure 1.2).

Remark 1.3. Our analysis uses the relationship (2.3), which determines the bifurcation dia-
gram. The derivation of (2.3) uses p = 4 and g = 2 (see the proof of Lemma 2.2). Establishing
such a result for any p > g > 1 is an open problem. Further, our analysis is restricted to the
specific f we chose.

We prove our results by the method of sub-super solutions (see [4]) and via using the
quadrature method discussed in [2] (an extension of the quadrature method first introduced
for the case y = 0 in [5]). In Section 2 we present preliminaries, in Section 3 we prove Theorem
1.1, and in Section 4 we compute the bifurcation diagrams numerically for several values of u
and demonstrate their evolution as y varies.
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[uall.,
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Figure 1.2: Prototypical bifurcation diagrams of positive solutions for (1.1) when
u=>0.

2 Preliminaries

In this section, we introduce definitions of a subsolution and a supersolution of (1.1) and
state a sub-supersolution theorem that will be used to prove our existence result for positive
solutions. We also state a result via a quadrature method which we will use in our analysis
(combined with an existence result obtained via sub-supersolutions) to establish exact details
on the bifurcation diagram for positive solutions.

By a subsolution of (1.1) we mean ¢ € C2((0,1)) N C([0,1]) that satisfies
Wl " < Af(p) on (01), o
$(0) <0,p(1) <0 '

By a supersolution of (1.1) we mean Z € C2((0,1)) N C([0,1]) that satisfies

—ul(Z')’) = 2" = Af(Z) on (0,1), (2.2)
Z(0) >0,Z(1) > 0. .

Then the following result holds:

Lemma 2.1. Let @ and Z be a subsolution and a supersolution of (1.1) respectively such that < Z.
Then (1.1) has a solution u € C2((0,1)) N C([0,1]) such that u € [y, Z].

Proof. See [4]. O

Lemma 2.2. Let A,y > 0 be fixed and p € (0,1). Then (1.1) has a positive solution with ||u) , |l = p
if and only if A and p satisfy

ds _ 1 23)

P
G)\, - 7
o /0W12yA[F<p>—P<s>1+1—1 23

where F(s) =[5 f(z)dz.
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Figure 2.1: A prototypical shape of a positive solution to (1.1).

Proof. (See also [3].) Suppose u, , is a positive solution of (1.1) with [[u) ;|| = p. Since (1.1)
is autonomous, u, , must be symmetric about x = 1, increasing on (0, 1), and decreasing on
(3,1). See Figure 2.1.

Multiplying the differential equation in (1.1) by u) ,(x) for x € [0, 11, we get

()0 (0] — (30 [ ()] = 8, (OOAF 100 (), 24)
which can be written as
T = S0P = AFG, )]s xe (0.3 25)
Integrating (2.5) with respect to x over [0, ], we obtain
3l (1)1 + 200, (O = 4AIF(p) ~ Flanu () x € (0,5 26)

Solving (2.6) for [u/)\ly(x)]z, we obtain

12uA[F(p) — F(up ()] +1—1
1, ()] = 1#le e i xe o]

Since uﬁw(x) >0 for x € [0, %] , it follows that

12uA[F(p) — F(upu(x))] +1-1
W, (x) = \/\/ @“‘ . xe {0, ﬂ . 2.7)

Integrating (2.7) with respect to x over [0, 1), we obtain

X ds

_ “)\,y(x) ) 1
i~ h VIR — FGT+1-1 << [o2): Y
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and letting x — (3) , we obtain (2.3):

4 ds 1
G(A,p) = — .
e /0 \/x/lZM[F(p)—F(s)Hl—l 2,/3u

Conversely, suppose A and p € (0,1) are such that (2.3) is satisfied. Then for each x €
0,4), we can find a unique u, ,(x) satisfying (2.8). We can now extend this u, , on [0,1] such
that 1, ,,(3) = p and uy ,(x) = uy , (1 — x) for x € (%,1]. With the aid of the Implicit Function
Theorem, we can show that u, , € C?((0,1)) N C([0,1]) and then it is easy to show it satisfies
(1.1). Hence, (2.3) determines the bifurcation diagram of positive solutions u, , for (1.1) with
il = 0 € (0,1): .

Remark 2.3. If 4 = 0, (1.1) becomes the boundary value problem:

{—u” = Af(u) on (0,1), (2.9)

u(0) =0=u(l)

and by the quadrature method described in [5], the bifurcation diagram for positive solutions
of (2.9) is determined by

€ (0,1). (2.10)

A /N
o VEQ —Fe [ °

3 Proof of Theorem 1.1

Claim: Nonexistence of positive solutions for A < 2.

Suppose 1,, > 0;(0,1) is a solution to (1.1) for A < 7% Multiplying each term of the

differential equation by sin(7x) and integrating on (0, 1), we have

—u /01[(u’w(x))3]’sin(nx)dx — /01 uﬁ(,y(x) sin(7tx)dx = A/Ol upu(x)[1 —up,(x)] sin(rx)dx.
(3.1)

Equivalently, we have

—u /01[(u%/y(x))3]/sin(nx)dx + A/Ol [u)\,y(x)]zsin(nx)dx = (A —7?) /01 Uy (x) sin(7rx)dx.
(3.2)

Since A < 712, we have

(A — 1?) /01 uppu(x) sin(7rx)dx < 0. (3.3)
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However,

—u Al[(ugly(x))S]’sin(nx)dx + A/Ol (12,5, ()] sin(7rx)dx

=—u sin(nx)[u’Ary(x)]g"; —7'(/01 cos(nx)[u;w(x)]?’dx + /\/Ol[u)\,y(x)]zsin(nx)dx

=0

=un [ /01/2 cos(7'fx)[u§w(x)]3 dx + /112 cos(7x) [u’w(x)]3 dx

>0 >0

+A /01 [uM,(x)]2 sin(7tx)dx

>0

> 0.

This contradicts (3.3). Hence (1.1) has no positive solution for A < 72.
Claim: Existence of a positive solution u, , for A > 2.

Consider (x) = esin(7tx) with e > 0. Then ¢ (x) = —ent? sin(7tx) and (' (x))? = €273[cos(7Tx)]>.
Hence

= ul(' ()] = 9" (x) = Ap(x) (1~ p(x))
= —]/l( — 3e3 71 cos? (7rx) sin(nx)) — ( — em? sin(rcx)) — Aesin(7tx)[1 — esin(7x)]
= esin(7rx) (3]18271’4 cos?(mx) + > — A + Ae sin(nx))
<0 x€(0,1)

for ¢ ~# 0 when A > 72. Clearly the boundary conditions are satisfied by . Thus, ¥ is a
subsolution of (1.1) for A > 2. Now Z = 1 is a supersolution of (1.1) and ¢ < Z for & ~ 0.
Hence by Lemma 2.1, (1.1) has a positive solution u, ,, € [¢, Z] for all A > 7%,

Claim: Existence of a unique positive solution u, , such that |uy [l — 0 as A — 7% and
H”/\,yHoo —las A — oo.
Recall G(A, p) from (2.3). Note that
o d 1
G(A, ) = / : - / P dv. (3.4)
O VA —E®I +1-1 1\ /T2pAF() — Fpo)] +1 -1
Now, using (3.4) we have
1
Go(Ap)= | Nw) o,
V2Aup2(20(® —1) — 302 1 3) + 1 (\/2/\yp2(2p(v3 “1) =32 +3)+1— 1)
(3.5)

where

N(v) = Aup? (p(v3 —1)-30° + 3) - \/Z)Lypz <2p(v3 —1)—302+ 3) +1+1
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Clearly the denominator of (3.5) is positive. Further, N(1) = 0. Hence, if we prove that
N'(v) < 0, then N(v) has to be positive on [0,1). Now,

6Aup*v(pv — 1)
\/2/\yp2 (20(v® —1) =302 +3) +1

N'(v) = 3Aup*v(pv — 2) —

4

/ . N 2(1—pv) _ 3_ 1) — 32
so N'(v) < 0 provided that 2 — pv > VEEEIEL where 0(v) = (2p(v® — 1) — 3v* + 3). But

since ¢/(v) = 6v(pv —1) < 0 and ¢(1) = 0, we must have o(v) > 0; v € (0,1). Hence,
N'(v) < 0 provided 2 — pv > 2(1 — pv), which is clearly true. So G,(A,p) > 0 for A > 0 and
p € (0,1). Now combining this with our existence of a positive solution for A > 712, we see
that there exists a unique p € (0,1) such that G(A,p) = ﬁ Further, from (2.3) it is easy to

see that Gy (A,p) < 0for A > 0and p € (0,1) (See Figure 3.1). Thus, by the Implicit Function

Theorem, there exists a unique function A : (0,1) — (7%, o) satisfying G(A(p),p) = 2\}3? and

dA Gp(A,p)
— = ———>>0. 3.6
dp Ga(A,p) (36)

Recall that we already established a positive solution for A > 712. Combining this result with
(3.6) we now have a unique positive solution 1, , for A > 7. Further, combining with our
nonexistence result for A < 712, we have the following:

lim A(p) = 7*

I =0)
p—0 (Aimnzuu)"”Hw 0

limAp) =0 ( lim syl =1).

G4, )
1.4

1.2
—_— =1

A = 3n?
— ) = 9r?

—_— ) =27m?

1.0
0.8
0.6

0.4

— —>
2V3 0.2

Figure 3.1: Plots of G(A,-) for various A. Observe their intersections with the
level —— when u = 1.

2./3u



8 A. Acharya, V. Munoz, D. Nichols and R. Shivaji

Claim: For o > py, iy, (x) > uy 4, (x) for all x € [0,1].
Let iy > pu1 and A > 7% be fixed. Now, let Uy, be a positive solution to (1.1) with y = ;.

Then u, ,, satisfies —‘ul[(u’A,m(x))ﬂ’ —uj () = Af(upy,(x)); x € (0,1). We proceed by
showing that u, ,, is a supersolution to (1.1) with p = . Observe that

—]/12[(1/[/)\,”1 (x))?)]/ - M/)(,yl (x) = —H2 <_,ull (Af(u)\rlll (x)) + ui\/,yl (X))) - uK,yl (X)
= D2 (Mo (0) 181, () = 07, ()

= B2 ftung () + (B2 1), ()
> Af (up g (x)); x€(0,1)

provided that
& - 1 > 0
(G = 1) (Mg () + 7, (0) 20 € (©1), (3.7)
Given our assumption that y, > 1, we have % —1>0. By (1.1) withp =4and g = 2, it is
easy to see that u;(,m (x) = %; x € (0,1). Hence

1
1+ 3u(uf , (x))?

Af (uapy (%)) + 7y, (%) = Af (ua g (%)) (1 > >0, x€(01).

So (3.7) is satisfied and u,,, is a supersolution to (1.1) with u = ps. Recall that ¢(x) =
gsin(7rx) with ¢ > 0 and € ~ 0 is a subsolution to (1.1) for any u > 0 when A > 72 and clearly
Y < u),, when ¢ = 0. Thus, the unique positive solution u, ,, to (1.1) with y, when A > T2
must be such that u, ,, € [¢,un,,|. Hence, uy ,, (x) > uy 4, (x) for all x € [0,1]. O

4 Computation of bifurcation diagrams as u varies

The bifurcation diagrams for u > 0 in Figure 4.1 are computed using (2.3). In particular, for
a sequence of values p € (0,1), we determine the corresponding sequence of A > 0 such
that (2.3) is satisfied using the FindRoot function in Mathematica. The bifurcation curves are
generated using linear interpolation of the points {(A,p)}. Similarly, for the y = 0 case, we
apply (2.10).

In Figure 4.2, we generate profiles of positive solutions for A = 50, 1 = 5, and > = 30
using (2.8) for x € [0,1) and appealing to the symmetry established in Lemma 2.2. This il-
lustrates that usg5(x) > usoz0(x) for all x € [0,1] as described in Theorem 1.1 for particular
choices of y1 and p». By considering a uniform sequence of x-values lying in [0,1] and solv-
ing (2.8) with corresponding A, p, u values within a specified tolerance using FindRoot, then
linearly interpolating the points {(x,u,,(x))}, we obtain the solution profiles.
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Figure 4.1: Evolution of exact bifurcation diagrams of positive solutions to (1.1)
as yu > 0 varies.

04p

03F
— u=>5
0.2F
— u=30

0.1F

0.0 L L L L
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2: Profiles of positive solutions u, ,, and u,,, to (1.1) for A = 50,
u1 =5, and pup = 30.
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For finite-dimensional linear differential systems with bounded coefficients we
prove that their exponential dichotomy on RR is equivalent to their Ulam-Hyers stability
on R with uniqueness. We also consider abstract non-autonomous evolution equations
which are exponentially bounded and exponentially dichotomic and prove that Ulam-
Hyers stability with uniqueness is maintained when perturbing them with a nonlinear
term having a sufficiently small Lipschitz constant.

Keywords: Ulam-Hyers stability, evolution family, nonautonomous, mild solution, ex-
ponential dichotomy, small Lipschitz constant.
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1 Introduction

Ulam-Hyers stability of different types of equations is intensively studied in the literature,
especially in the last years. The idea of this notion was given by Ulam in 1940. Note that there
exists generalizations of the initial notion (see [15]). As far as we know, the first studies on the
Ulam-Hyers stability of differential equations were presented by Obtoza [12,13] in 1993 and
1997, and by Alsina—Ger [1] in 1998.

The special case of finite dimensional linear differential systems with constant and, respec-
tively, continuous periodic coefficients, was considered by Jung [10] in 2006, Buse-Salieri—
Tabassum [5] in 2014, Barbu-Buse-Tabassum [4] in 2015, and, respectively, by Buica-T6t6s
[3] in 2022. These papers emphasized the relation of Ulam-Hyers stability on unbounded
intervals of finite dimensional linear differential systems, with their exponential dichotomy.

Ulam-Hyers stability of some nonlinear differential equations were also studied, especially
on a compact interval of time. Anyway, it seems that Ulam-Hyers stability on a compact
interval is a property of any linear differential system and of the most of the nonlinear ones.
I. A.Rus proved this using the Gronwall Lemma technique and other techniques in [14]. In
[2] we showed that exponentially stable abstract linear evolution equations are Ulam-Hyers
stable on the interval [0, o). We also proved that this property is maintained when perturbing
this type of equations with a nonlinear term having a sufficiently small Lipschitz constant.

¥ Email: abuica@math.ubbcluj.ro



2 A. Buicd

In this work we show that exponentially dichotomic on R abstract linear evolution equa-
tions are Ulam-Hyers stable on R with uniqueness. We study the special case of finite dimen-
sional linear differential systems with bounded coefficients and prove that their exponential
dichotomy is equivalent to their Ulam-Hyers stability with uniqueness (Theorem 3.5 in Sec-
tion 3). We also prove that Ulam-Hyers stability with uniqueness is maintained when perturb-
ing this type of linear abstract evolution equations with a nonlinear term having a sufficiently
small Lipschitz constant (Theorem 4.2, Theorem 4.4 and Theorem 4.6 in Section 4).

2 Exponential dichotomy of an evolution family. Definition and
equivalent condition

Let (X, |- |) be a real or complex Banach space. The zero vector in X will be denoted by 0. £(X)
will stand for the space of bounded linear operators from X into itself. The corresponding
norm in £(X) will also be denoted by |- |. The identity operator on X is I € £(X). For
notations, notions and results presented in this section we used [6,11].

Definition 2.1 ([6, Definition 3.1]). A family of operators {U (0, 7) }g>r C L(X), with 6,7 € R,
is called an evolution family if

{) us,s)U(s,7) =U(f,t)and U(H,0) =1 forall 6 >s > 1; and

(i) for each x € X, the function (0, ) — U(H, T)x is continuous for 6 > 7.
An evolution family {U(6, T) }¢> is said to be exponentially bounded if, in addition,

(iii) there exist real constants C > 1 and > 0 such that

\u, )| < cer?1, 9>

We now give the definition of exponential dichotomy for an evolution family. Let P : R —
L(X) be a projection-valued function (i.e. P(6)P(0) = P(0) for each 6 € R). The function
whose values are the complementary projections is denoted by Q(f) = I — P(9) for each
0 € R. If, for all @ > 7, we have

POYUB,T) =U(,T)P(T),
then we denote by
Up(6,7) := P(O)U(6, T)P(T), Uq(6,7) := Q(O)U(F, T)Q(7),

the restrictions of the operator U (6, T) on Im P(7) and Im Q(7), respectively. We stress that
Up(6, T) is an operator from Im P(7) to Im(8) while U (6, T) is an operator from Im Q(7) to

Im Q(6).

Definition 2.2 ([6, Definition 3.6]). An evolution family {U(6, T)}g>+ is said to have an ex-
ponential dichotomy (with constants M > 0 and w > 0 if there exists a projection-valued
function P : R — L(X) such that, for each x € X, the function 6 — P(0)x is continuous and
bounded, and, for all 8 > 7, the following conditions hold.

@) P(OYU(O,T) = U(8,T)P(T).
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(ii) Up(#, 1) is invertible as an operator from Im Q(7) to Im Q(6).
(iii) |Up(,T)| < Me=@(0-7),
(i) |[Ug(0, T)]| < Me(®7).

Denote by Cy(R, X) = {g: R — X continuous and bounded}. It is known that C,(RR, X)
with the norm ||u|| = max;cr |u(t)| is a Banach space.

Condition (M). For every ¢ € Cp(IR, X), there exists a unique function u € Cy(RR, X) such that

1(8) = U(6, T)u(t) + / "U(6,5)3(s)ds, 6> . 2.1)

Theorem 2.3 (Theorem 4.28 in [6]). An exponentially bounded evolution family has an exponential
dichotomy if and only if Condition (M) is satisfied. Moreover, if this is the case, for each § € Cp(RR, X)
the solution u* € Cy(IR, X) of the integral equation (2.1) is given by

0 0
0 (0) = / Up(6,7)g(T)dT — / [Uo(t,0)] g(t)dr, 6€R. 2.2)
—0o0 0
Proposition 2.4. In the hypotheses of Theorem 2.3, the function given by (2.2) satisfies
2M
< — . .

[l = =—=llgll (2.3)

When either P(t) = I forall t € R, or Q(t) = I for all t € R, the estimation can be improved as

M
< — . .
el < gl 24

Proof. For any t € R we have
wnl< | [ ut s + | [ ot 0] g
<| [ )1 1golas] + | [ o 1)1 lg(olas

t =] 2M
<mlgl | [ et [Teretetas) = 2Mjg).

In each of the particular cases P = I or Q = I, only one of the two integrals appear in the
expression (2.2) of u*. Thus, also in the last line of the display above appears only one of the
two integrals, each of them being equal to 1/w. O

3 Exponential dichotomy and Ulam-Hyers stability of finite dimen-
sional linear differential systems
Let A € C(R, £(C")). We consider the differential system in X = C”"
x' = A(t)x. 3.1)

We present now the notion of Ulam-Hyers stability on the time interval R of the finite dimen-
sional linear differential system (3.1).
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Definition 3.1. We say that the equation (3.1) is Ulam-Hyers stable when there exists a con-
stant m > 0 such that, for any ¢ > 0 and any ¢ € C!(R,C") with

[9'() —A()e(t) <& tER,

there exists ¢ € C!(IR, X") a solution of (3.1), such that (¢ — ¢) € C,(RR,C") and

lo = ¢l < me.

We say that the equation (3.1) is Ulam-Hyers stable with uniqueness when, for a given ¢ as
above, there exists a unique .

Remark 3.2. Assume, in addition, that there exists T > 0 such that A(T +t) = A(t) for all
t € R. It is known that, in this particular case, if equation (3.1) is Ulam-Hyers stable then it is
Ulam-Hyers stable with uniqueness. One can see, for example [3].

An important result proved in [3] is the following.
Lemma 3.3 ([3]). The equation x’ = A(t)x is Ulam—Hyers stable if and only if for any g € Cy(R,C")
there is a solution in C,(R,C") N CY(R,C") of x' = A(t)x + g.

Let Y(t) € L£(C") be the fundamental matrix solution of (3.1) such that Y(0) is the identity
matrix, and define
ue,t)=y®)Y (1), 6,TcR.

It is known (or it can be easily checked) that {U(6, T) }g>+ is an evolution family and we have
[u@@,7t)]~ ' = U(r,0) forall 6,7 € R.

We say that the equation x' = A(t)x has an exponential dichotomy whenever {U(6, T)}g>+
defined above has an exponential dichotomy (as in Definition 2.2).

In addition, we have the following.

Lemma 3.4 ([7]). If A is a bounded function then {U(0, T) }o>+ is exponentially bounded.
Proof. Fix T € R. Then U(+, T) is a matrix solution of the initial value problem x’ = A(t)x,
x(7) = I (the identity matrix). Then

0

u®,7) = I + / A(s)U(s, T)ds, 0> T.

T
Applying the Gronwall inequality we immediately obtain |U(6,7)| < "7, § > 1, where
v > 01is such that |A(t)| < forall t € R. O

As a consequence of Lemma 3.3, Lemma 3.4 and Theorem 2.3 we obtain the following
characterizations, which is the main result of this section.

Theorem 3.5. Let A € C(IR, L(C")) be a bounded function. The following conditions are equivalent.
(i) The equation (3.1) is Ulam—Hyers stable with uniqueness.
(ii) Condition (M) is satisfied for the equation (3.1).

(iii) The equation (3.1) has an exponential dichotomy.
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Using Remark 3.2, Theorem 3.5, and a result from [7] we obtain the following corollary. In
the statement appears the fundamental matrix solution Y (t) defined before.

Corollary 3.6. Let A € C(R, L(C")) be a T-periodic function. The following conditions are equiva-
lent.

(i) The equation (3.1) is Ulam—Hyers stable with uniqueness.
(ii) Condition (M) is satisfied for the equation (3.1).
(iii) The equation (3.1) has an exponential dichotomy.
(iv) No eigenvalue of Y(T) lies on the unit circle.

In the case when A € L(C") (is constant) Corollary 3.6 holds true with condition (iv)
replaced by “No eigenvalue of A has zero real part.”. These two corollaries are known, but they
were justified using other tools. One can see [3,4].

4 Main abstract result and applications

The main result of this section concludes the Ulam-Hyers stability of mild solutions of some
nonlinear abstract nonautonomous evolution equations. We start by proving a lemma which
is essential in the proof of the main result. We present with details two applications of the
main abstract result for finite dimensional nonautonomous differential systems and for an
abstract autonomous evolution equation whose linear part is the generator of a Cyp-semigroup.

Lemma 4.1. Let {U(6,7)}g>r be an exponentially bounded evolution family on X. In addition,
assume that it has an exponential dichotomy and let the constants M > 0 and w > 0 be like in
Definition 2.2.

Let L >0, g € Cp(R,X) and F € C(R x X, X) with F(s,0) = 0 for any s € R. Assume that

(i) |F(s,u1) — F(s,uz)| < Lluy —us|,s € R, uy,up € X,
(i) 2L < w/M.

Then there exists a unique solution u* € C,(IR, X) of the following integral equation.

[oe]

u(t) = [ Up(t,3)[F(s,u(s) +g6)ds — [ Ugls, 0] M [FGs,u(s)) +g()lds. @D

Moreover, we have

lu”]] < (42)

M
w/a— a8l
When either P(t) = I forall t € R, or Q(t) = I for all t € R, condition (ii) can be replaced by (ii)’

L < w/M and the estimation (4.2) can be improved as

lu*]| < (4.3)
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Proof. Consider the operator
B: Gy(R,X) — C(R, X)

defined for any u € C,(R, X) and for any ¢ € R by

B@)() = [ Uplt,s)[F(s,u(s)) + g(6)1ds — [ [Uols )] [F(s,u(s)) + ()}

We claim that B is a contraction with the Lipschitz constant 2LM /w. For any u1,u; € Cy(R, X)
and t € R we have

Bn) () = Bu2) (O] < | [ Ut 5)[F(s,0(9) — F(sma(s) s

’/ [Uo (s, )] [E(s, u1(s)) — E(s, ua(s))]ds
<L ' [ 1s(e9)]- i) — a(s)lds

| [ 1ltols, 01 in(s) = el s

t
SLM||U1—M2H|:/ e tsds+/ Stds]

Then
2LM

1B(un) — B(wa) | < 222 iy — ), w1, € C(R X). (4.4

Thus, the claim is proved.
By Theorem 2.3 we have B(0) € C,(IR, X) since its expression is given by (2.2). Then using
(2.3) from Proposition 2.4 we have

2M
1BO)] < 2 ig]. 45
Relation (4.4) implies that

1B < 2Vl + [BO)], u € (R, X). (4.6)

Then
Bu € Cb(IR, X), uc Cb(R,X),

meaning that C,(IR, X) is invariant for B. The Contraction Mapping Principle assures the
existence of a unique fixed point, denoted u*, of B in Cy(R, X). Moreover, from (4.6) we

deduce that

o < 2LM,
[l = =—=llw[l + [IB(O)],

which, together with (4.5) implies (4.2).
For the last part one needs to use (2.4) instead of (2.3). O
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Theorem 4.2. Let {U(6,7)}g>r be an exponentially bounded evolution family on X. In addition,
assume that it has an exponential dichotomy and let the constants M > 0 and w > 0 be like in
Definition 2.2.

Let f € C(R x X, X), L > 0 be such that

(i) |f(s,u1) — f(s,uz2)| < Lluy —uz|, s € R, uy,up; € X,
(i1) 2L < w/ M.
Let g € Cp(R, X). If ¢ € C(IR, X) is a solution of
0
ﬂ@zquW@%ﬂLU@@U@ﬂ@+ﬂmﬁf92% (4.7)
then there exists a unique solution p € C(RR, X) of
0
X@ZU@ﬂﬂﬂ+/U@ﬂWJ@%,QZL 4.8)

such that (¢ — ) € Cp(R, X) and

M
o —yll < mllgll (4.9)

When either P(t) = I forall t € R, or Q(t) = I for all t € R, condition (ii) can be replaced by (ii)’
L < w/M and the estimation (4.9) can be improved as

M
lo =9l < === lgll (4.10)

Proof. Consider the function F : R x X — X defined by

F(s,u) = f(s,9(s)) = f(s,9(s) —u), (s,u) € Rx X

It is not difficult to see that F satisfies the hypotheses of Lemma 4.1. In fact, all the hypotheses
of this theorem are fulfilled. Then let u* € C,(RR,X) be the unique bounded solution of
equation (4.1). Consider the function g*(s) = F(s,u*(s)) + g(s), s € R which satisfies g* €
Cy(R, X). Then, from (4.1) we have that

0 o0
mw):[muﬂarm%ﬂdrié[Udtmﬁkﬂﬂdn 6 € R. 4.11)

By Theorem 2.3, the above relation implies that u* is the unique bounded solution of
0
u(0) = U(o, r)u(r) —|—/ u(e,s)g*(s)ds, 6>rt. (4.12)
T

Now define
p=¢—u
and note that ¢ € C(R, X) is a solution of (4.7) which, in addition, by Lemma 4.1, satisfies

(4.9). The uniqueness of ¢ with mentioned properties follows by the uniqueness of u* as in
Theorem 2.3. O
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4.1 Application. Finite dimensional differential systems

Let A € C(R,£(C")) and f € C(R x C",C"). We consider the nonlinear differential system
in X=C"
x'=A(t)x + f(t, x). (4.13)

Recall that we refer to the linear system x’ = A(t)x in Section 3.

Definition 4.3. We say that the equation (4.13) is Ulam-Hyers stable when there exists a
constant m > 0 such that, for any ¢ > 0 and any ¢ € C!(R,C") with

¢ (t) — A()p(t) — f(t,p(t) <&, tER,

there exists ¢ € C!(IR,C") a solution of (4.13), such that (¢ — ¢) € C»(R,C") and

| — o] < me.

We say that the equation (4.13) is Ulam-Hyers stable with uniqueness when, for a given ¢ as
above, there exists a unique .

As a consequence of Theorem 4.2, using also Lemma 3.4, we obtain the following result.

Theorem 4.4. Assume that A is a bounded function and that the system x' = A(t)x has an exponen-
tial dichotomy. Let M > 0 and w > 0 be like in Definition 2.2. Assume that there exists L > 0 with
2L < w/M and such that

If(s,y) — f(s,x)| <Llx—y|, forallseR, x,yeC".
Then system (4.13) is Ulam—Hyers stable with uniqueness and with constant

m=M/(w/2—LM).

4.2 Application. Semigroups
For the definition of a Cyp-semigroup and other useful results we used [8,9].

Definition 4.5. If the evolution family {U(6, T) }¢> on the Banach space X satisfies in addition
ue,r)x=u@—r,0x, 6>1t, x€X,
then it is called a Cop-semigroup.

Assume from now that {U(6, T) }¢>+ is a Co-semigroup. An important remark is that there
exists a dense set D C X and a linear operator A : D — X such thatif x € D,

lim uee,0)x —x _

Ax.
610 0 X

The mapping A is in general unbounded and is called the infinitesimal generator of the semi-
group. Sometimes the following notation is used

et = U(t,0), t>0
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and it is said that {e4}>¢ is a one-parameter Cy-semigroup.
Let f € C(R x X, X) and consider the abstract evolution equation

x4+ Ax = f(t,x), (4.14)
and the abstract evolution inequation
X' + Ax — f(t,x)| <. (4.15)

We say that ¢ € C(IR, X) is a mild solution of equation (4.14) if ¥ is a solution of the integral
equation (4.8).

We say that ¢ € C(RR, X) is a mild solution of inequation (4.15) if there exists ¢ € C(R, X)
with |g(s)| <& s € R such that ¢ is a solution of the integral equation (4.7).

Let m > 0. We say that the evolution equation (4.14) is Ulam—Hyers stable with constant m if
for any € > 0 and for any mild solution ¢ € C(RR, X) of inequation (4.15) there exists a mild
solution ¢ € C(RR, X) of (4.14) such that (¢ — ) € C,(R, X) and

o — || < me.

We say that the equation (4.14) is Ulam-Hyers stable with uniqueness when, for a given ¢ as
above, there exists a unique .

As a consequence of Theorem 4.2 we obtain the following result.

Theorem 4.6. Let A : D C X — X be the infinitesimal generator of an exponentially bounded and
exponentially dichotomic Co-semigroup {U(6, T) }g><. Let M and w be like in Definition 2.2. Assume
that there exists L > 0 with 2L < w /M such that

|f(s,y) — f(s,x)] < L|lx—y|, forallseR, x,y€X.

Then the abstract evolution equation (4.14) is Ulam—Hyers stable with uniqueness and with con-
stant m = M/ (w/2 — LM).
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Abstract. In this paper, we present a new Carleman estimate for the adjoint equations
associated to a class of super strong degenerate parabolic linear problems. Our ap-
proach considers a standard geometric imposition on the control domain, which can
not be removed in general. Additionally, we also apply the aforementioned main in-
equality in order to investigate the null controllability of two nonlinear parabolic sys-
tems. The first application is concerned a global null controllability result obtained for
some semilinear equations, relying on a fixed point argument. In the second one, a
local null controllability for some equations with nonlocal terms is also achieved, by
using an inverse function theorem.
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1 Introduction

In this work we derive a new Carleman estimate for the linear super strong degenerate prob-
lem

up — (X% )¢ + x%2by (x, )y +bo(x, t)u = f1, inQ,
u(1,t) = 0and (x*uy)(0,£) =0 in (0,T), (1.1)
u(x,0) = up(x) in (0,1),

where Q = (0,1) x (0,T), w C (0,1) is a non-empty open interval and 1,, is its associated
characteristic function, and « > 2. Also, we take by € L*(Q), h € L?(w x (0, T)), ug € L?(0,1),
and b; € L®(Q) satisfying

(x*2b1 (x,1))x € L™(Q). (1.2)
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We also consider a geometrical condition on the control domain
3d >0, (0,d) C w. (1.3)

As we will see further, (1.1) is controllable at any time T > 0, according to the following
specification:

Definition 1.1. We say that (1.1) is null controllable at T > 0 if, for any ug € LZ(O,l), there
exists h € L?(w x (0, T)) such that the solution u of (1.1) satisfies

u(x,T)=0 1in (0,1). (1.4)

The null controllability of (1.1) is well understood for « € (0,2), see [1,9] and references
therein. Following the terminology adopted in these works, we say that (1.1) is weakly de-
generate if &« € (0,1) and strongly degenerate if &« € (1,2). Despite there are many works for
the case & € (0,2), little has been done for the super strong degenerate case, i.e. when a > 2,
although this is a very relevant case of the degenerate problem. Indeed, when a = 2, the
Black-Scholes equation can be obtained from (1.1) and this equation has a key role in several
financial applications.

Regarding the global null controllability of (1.1), the fact is that this problem is not null
controllable for # > 2, in general. As pointed out in [9], a suitable change of variables trans-
forms (1.1) into a non-degenerate problem in an unbounded domain, which fails to be null
controllable in general, as proved in [14]. However, if the new control domain @ has bounded
complement, it can be controlled, as proved in [4,7].

Because of that, in [8], it was introduced a weaker kind of null controllability for this
problem, called regional null controllability. Tt means that for any ug € L?>(0,T), w = (a,b) C
(0,1) and 6 € (0,b — a), there exists a control f € L?(Q) such that the solution u of (1.1)
satisfies

u(x,T)y=0 Vxe (a+4,1). (1.5)

They established regional null controllability for a linear problem like (1.1), but with b; = 0.
In [6], this result was extended for a system like (1.1) with the first order term and a semilinar
case with a nonlinearity independent of it, i.e., regional null controllability was achieved for (1.1)
and for the following system

up— (x*uy)y +g(x, t,u) = f1, inQ,
u(1,t) = 0and (x*uy)(0,t) =0 1in (0,T), (1.6)
u(x,0) = up(x) in (0,1).

Finally, in [5], those results were extended considering a nonlinearity of the type g(x,t, 1, uy),
but the restriction « € (0,2) was made. These works were concerned with regional null control-
lability, more recently, in [3], the authors came up with the new geometrical condition (1.3),
which allows to prove a global null controllability result for (1.1), when & = 2. In this work,
under the same geometrical condition, we will extend that result for a > 2.

A significant number of papers on null controllability of parabolic degenerate equations
follows a standard approach based on the Hilbert Uniqueness Method (HUM). It goes through
obtaining a Carleman estimate that leads to an observability inequality. This way, the null
controllability property can be deduced from the observability inequality. The particularity of
[3] and [8] is that the authors applied a change of variables to transform the system (1.1) into
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a non-degenerate problem in unbounded domains. There, a Carleman estimate is obtained
for this non-degenerate system.

Although the approach of transforming the degenerate problem into a non-degenerate
one, in an unbounded domain, works fine for linear problems, this procedure can meet dif-
ficulties to deal with some related problems. Indeed, when we work with some autonomous
semilinear problems, for example, this change of variable leads it to a nonautonomous semi-
linear problem. And, if we work with a certain nonlocal problems, it is lead to an even more
complicated one. In this work we present a Carleman estimate for (1.1), without passing by
this change of variables method. To our best knowledge, this estimate and some consequences
presented in the sequel mean some novelties for the super strong degenerate case.

The second part of the introduction is all about the presentation of our main results.

Statement of the results
First of all, let us consider the adjoint system associated to (1.1):
O + (x%0x)x + (xlx/zblv)x —bo(x,t)p =h inQ,

v(1,t) =0 and (x*vy)(0,f) =0 in (0,7), (1.7)
v(x,T) = vr(x) in (0,1),

where h € L?(Q) and vr € L?(0,1).
Now, for A > 0, let us introduce some weight functions given by 0, pg and oy with

T == = A2l ]eo+17(x))
G —pp 10 =2 S =e(etEn= 18)

and o(x,t) := 0(t)e*Ml — & (x,1).

0(t) :=

The assumption (1.3) and the weight function 7 are the key points that allow us to build
the following Carleman estimate:

Theorem 1.2. Assume (1.2) and (1.3). There exists positive constants C, so and Ag, depending only
on w, ||bolles, T, d and « such that, for any s > s, any A > Ay and any solution v to (1.7), one has:
//Q e 20 [s’l/\’lé’l(lvtlz + [(x%0y) 2 |*) + SAZEX" |, |2 4 53}\4(53\0\2} dx dt

SC[||€WhH2+s3/\4// 625‘763\0\2dxdt], (1.9)
wr

where wr := w x (0,T).

The proof of Theorem 1.2 will be given in section 3.
As a consequence of Theorem 1.2 we have the following null controllability result:

Theorem 1.3. Assume (1.2) and (1.3). Then the system (1.1) is null controllable.
Next, the same Carleman estimate allows us to prove a null controllability result for the

following semilinear problem

up — (Xuy)x + g(x, t,u,uy) = fl, inQ,
u(1,t) =0and (x*uy)(0,t) =0 in (0,T), (1.10)
u(x,0) = up(x) in (0,1),
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where « > 2 and g : Q x R? — R must satisfies the following assumptions:

g is Lebesgue measurable;

¢(x,t,-,-) € C}(R?) uniformly in (x,t) € Q;

g(x,£0,0) =0 V(xt)eQ;

3K >0 suchthat |[g.(x,t,7,8)|+x"%2|gs(x,t,7,5) <K V(xt7rs) QxR

(1.11)

Theorem 1.4. Assume (1.3) and (1.11). Then the system (1.10) is null controllable.

In [15], a null controllability result is obtained for (1.10), when a & (0,2). In this current
work, we extend this fact for the super strong degenerate case applying a similar technique.
At this point, we recall that the classical null controllability for (1.10) does not hold in general,
but the geometrical assumption (1.3) provided the inequality (1.9), which can be applied to
prove Theorem 1.4. In other words, the obtainment of Theorem 1.4 is possible because the
degeneracy point x = 0 belongs to the boundary of the control domain w. It is worth observe
that, Cannarsa and Fragnelli proved, in [5], regional null controllability results for (1.10), when
a € (0,2). Summarizing, we emphasize that the investigation of [5] does not rely on the
localization of w near x = 0, as in this paper, but it only allows to find a control which drives
the state to zero in a portion of w far from the degeneracy point x = 0.

As a second application of our Carleman estimate (1.9), we will also obtain the local null
controllability for the following degenerate nonlocal problem

up — 4 (fol udx> (x*uy), = flp, InQ,
u(1,t) =0and (x*uy)(0,t) =0 in (0,T), (1.12)
u(x,0) = up(x) in (0,1),

where £/ : R — R is a C! function with bounded derivative, with ¢(0) = 1. At this point,
we should observe that our results remain the same if we just consider ¢(0) > 0. The null
controllability for this problem is studied in [11], when a € (0,1), and in [10] when « € [1,2).
Under the hypotheses (1.2) and (1.3), we extend this investigation for & € [2,+00), as described
below:

Theorem 1.5. Assume (1.3). The nonlinear system (1.12) is locally null-controllable at any time
T > 0, i.e, there exists ¢ > 0 such that, whenever ug € H} and |uo| H < € there exists a control
f € L?(w x (0, T)), associated to a state u, satisfying

u(x,T) =0, for every x € [0,1].

The rest of this paper is organized as follows. In Section 2, we state some classical
well-posedness results related to the systems (1.1) and (1.10). In Section 3, we present an
a-independent Carleman inequality for solutions of (1.7) (see Theorem 1.2), which provides
an observability estimate and, consequently, the null controllability of (1.1). Sections 4 and
5 are devoted to some applications of Theorem 1.2. More precisely, in Section 4, we use a
fixed point argument to obtain a null controllability result to the degenerate semilinear sys-
tem (1.10) (see Theorem 1.4); in Section 5, an inverse function argument allows us to prove a
local null controllability result for the degenerate nonlocal system (1.12) (see Theorem 1.5).
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2  Well-posedness results

The usual norms in L2(0,1) and L?(Q) will be denoted by | - |, and || - ||, respectively, related
to the usual inner products (-,-) and ((-,-)). Moreover, the norms in L*(0,1) and in L®(Q)
will be denoted respectively by | - | and || - |-

Let us consider the functional spaces

H! .= {u € L2(0,1); u is locally absolutely continuous in (0,1], x*/%u, € L2(0,1), u(1) = 0}.

and
H? = {u € HY x"uy € Hl(O,l)},

with the norms
1 1/2
ulp = [/0 (u2+x”‘\u\2)dx} , ifucH}
and

1 1/2
]u]Hvz( = [/0 (u2+x"‘\u\2—|—](x“ux)xlz)dx] , z'quHi.

With these norms, we observe that H; and Hﬁ are two Hilbert spaces. In [8, Proposition
2.1], the authors provided the following characterization:

H? = {u € L%(0,1); u is locally absolutely continuous in (0, 1],
xu € H)(0,1), x*uy € H'(0,1), (x*uy)(0) = 0}.
Now, for the reader’s convenience, let us introduce the notations
M =C(0,T;L*(0,1))NL*(0,T; HY) and N = HY(0,T;L*(0,T)) NL*(0, T; H?).

In [15], the authors proved that the embedding M — N is compact (in fact, their result was
proved for « € (0,2), but the proof does not depend on «).
The next result, proved in [8], establishes the well-posedness of system (1.1).

Proposition 2.1. Assume by, by € L*(Q). For any f € L*>(Q) and any ug € L?(0,1), there exists
exactly one solution u € M to (1.1). Furthermore, there exists a constant C > 0 only depending on T,
«, by and by, such that

sup ()3 + < < 113 + ).
tel0,T

Furthermore, if ug € H, then u € N'N C°([0, T|; H.) and we have the following estimate:

sup. (1) + B + (x4l < € (11018 + ol )
tel0, T

We also state the well-posedness of (1.10), whose proof can be seen in [15, Theorem 2.1].

Proposition 2.2. Assume g satisfies (1.11). For any f € L*(Q) and any ug € L?(0,1), there exists
exactly one solution u € M to the system (1.10).
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3 Carleman and observability inequalities

The aim of this section is to prove the Carleman estimate (1.9) and, as a consequence, an
observability inequality, which yields the null controllability of the linear system (1.1).

It suffices to prove Theorem 1.2 for by = by = 0, since the general case follows taking
h=h—bov — (x*/2b10),.

Let us take 6 € (0,d) and let v be the solution to (1.7) (where vy € L?(0,1) and h € L2(Q)).
For any s > 59 > 0, we set z = ¢~*?v. By a density argument we can assume without loss of
generality that v is regular enough. A simple computation gives us

vy =e"[soz+z] and (x"vy)y =€ [sza)%x”‘z + 250, x% 2y + 5(0x X% ) 2z + (x%24 ) o).

Consequently,
Ptz4+ P z=G, (3.1)
where
Pz .= —2s)t2§x”‘+zz + ZSA€X“+1ZX 4zt := 111 + Lip + L3,
Ptz = PA2Fx 27 4 (x%zy )y + 503z := oy + Ip + I3
and

G = e h — sA?Ex" 2z — (a + 1)sA&x"z.
From (3.1) one has
IP~z[I3 + [|P*z]|3 +2((P~z, P*z)) = ||GII3. (32)

Now let us estimate ((P~z, P*z)). We have that

«hhm»:—aéﬁ/ég%MHpFMdn

(mbm»:éﬁ[ééﬂﬁﬂmﬂﬂmﬁ
= 35374 //Q Bx? )z dxdt — (2a + 3)s°A3 //Q x|z dx dt
and
(I3, I1)) = %sz/\2 //Q ExT2(|z)?) dx dt = —s2A? //Q EEx"2|z|? dx dt.
Thus
(P~ z,In)) = s°A% //Q Ex2 4z 2 dx dt — (2a + 3)s°A3 //Q x| z|2 dx dt

— %A% // EEx" 2| z|? dx dt.
Q
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Since |¢¢| < C¢3, for Ag and s large enough, we can deduce that

T o 1
(P7z,In)) > s3A4/ [/ §3x2”‘+4]z\2dx—|—/ (§3x2“+4]z\2dx] dt
o LJo 5
—Cs3A3 ((2a+3)+c> // &|z|? dx dt
Aoso ) JJQ
T 1
> s3A4/ / EBx? |z dx dt — Cs2A3 // &|z|* dx dt
0o Js Q

T r1
> 52“+453A4/ / &|2|? dx df — Cs*A3 // & |2|? dx dt
0 J Q

T 1
2Cs3/\4/ / §3lz\zdxdt—Cs3A3// &\z|? dx dt (3.3)
0 Js Q
T 6
:CSS/\4// §3|z|2dxdt—Cs3A4/ / &|z|* dx dt
Q o Jo
—Cs3A3 // &|z|* dx dt
Q

T 6
> Cs2\* <1—1> // §3|z]2dxdt—Cs3A4/ / &\z)? dx dt
Ao Q 0o Jo

T 4
2Cs3/\4// g3|z|2dxdt—cS3A4/ / &|2[2 dx dt.
Q 0 Jo

Note that C depends on ¢ and &, where 6 € (0,d) is a fixed number as before.
Furthermore,

(I, Is)) = —25%A% // Eopx®2|z|2 dx dt,
Q
(Ia, Ls)) = s*A // Eorx* T (|z|?), dx dt
Q
= 5%)\? // E(oy + E)x" 2 |z2 dxdt — (a +1)s?A // Eox®|z|? dx dt
Q Q

and
5

_ s 2 __S 2
(s, Is)) = 2//Qotﬂz| )i dx dt 2//Qatt]z\ dxdt.
Thus

(P~ z, L)) = — s*A2 //Q E(& + o)X 2|z2 dxdt — (a +1)s’A //Q Eopx®|z|* dx dt

s
- 2//Qatt\z|2dxdt.

We can see that |&|, |o;| < C&? and |o| < C&. Hence, from (3.3), we have
(P~ z, Iy + Lz)) > Cs2A* /_/Q &|z)? dx dt — Cs*A* /OT /O(s &|z|? dx dt — Cs*A\? //Q &|z|* dx dt
—C(a+1)s*A // &\z|? dxdt — cs // &|z|* dx dt
Q 2JJg
> Cs2A* <1 - 501)% - 501/\8 — s%l)\‘é> //Q &\z|? dx dt

T 6
—C53A4/ / &|z|* dx dt.
o Jo
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Therefore, for Ag and sg large enough, we have

T o
(P~z, Iy + D)) > Cs2A* / /Q &|z|? dx dt — CsA4 /0 /0 &|2[2 dx dt. (3.4)
Moreover, we have that

(I11, Ip)) = —2sA? // Ex P2z (x%zy), dx dt
Q
= 2572 // [—AEX® P2z, + (a0 + 2)Ex® T lzz, 4 Ex?* 12|z, 2] dx dt

—sx\3// E[—Ax4 4 (20 + 3)x242)|z 2 dx dt

—(a+2)sA? // X2 (2a + 1) %% |z|* dx dt + 25A2 // EX? 2|z, |2 dx dt
and
(L3, I2)) // zp(x%zy )y dx dt = // z(x%zpy )y dx dt = // X%z Zy dx dt
Q Q
— 7// (x%|2x|)s dx dt = 0.
2J)Jg
Thus
(I + L, ) > —CsA* / / &|z|? dx dt + 2512 / / Ex2H2| 2, |2 duc dt. (3.5)
Q Q

On the other hand

T[ 6 1
252 // §x2"‘+2]zx]2dxdt:252\/ {/ Cx2“+2]zx]2dx+/ sz“z\zx\zdx] dt
Q 0 0 )
T T
22SA5“+2/ / Ex® |z, |2 dx dt
0o Jo
T 6
= CsA? // éx“|zx|2dxdt—Cs)\2/ / Ex®|zy | dx dt.
Q 0 Jo
Hence, from (3.5) we deduce that

T 6
(I + L3, I)) > CsA? //Q Cx“|zx|2dxdt—Cs)\2/0 /0 Ex®|zy|* dx dt — CsA* //Q &|z|* dx dt.

(3.6)
Finally, working as before we obtain

(hp, Ip)) = 2sA //Q Exx"zy (x%zy )y dx dt = sA //Q Ex(|xzy|?)y dx dt
=sA? //Q EX? 2|z, [P dx dt — sA //Q Ex? |z, |* dx dt + sA /OTC|zx(1,t)|2dt
> CsA? //Q Ex¥|zy|? dx dt — CsA? /OT /06 Ex¥|zy|* dx dt.
Thus, from (3.6) we get

T 6
(P2, 1)) > CsA? // Cx"‘\zx\zdxdt—CsAz/ / Ex®|zy|* dx dt — CsA* // &\z|? dx dt.
Q 0 Jo Q
3.7)
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Combining (3.4) and (3.7) we obtain that
(P2, P*2) > C / /Q A48 |2[2 + sA2Ex® |z 2] dx dt — C /O ! /O “SAE 2 + sA2x0 2, ] di dt.
Whence,
C//Q[s3/\4§3\z|2 + SAZEx|z, |?] dx dt
<2(P~z,P*2) 4+ C /O ! /0 "N 2 4 sA28x 2] drdt. (3.8)
From (3.2) and (3.8) we obtain
P23+ IP* I+ C [ [PAIal? +- oW e P vt
< NP zlB+ NP 2lB 4 2P e Pra) [ [ A sl dxa
UGB+ [ [N + sNgn |z .

Hence, if we set Cy = 1/ min{1, C}, we have that

& (1P 2B+ 124213+ [ A0 + % P it
UGB+ [ [N + N ez vt
whence
P2+ 1Pl + [ AP + 522 ol dx
< G <HGH%—|—/OT/O§[S3A4§3\ZI2+S/\2§x“]zx]2] dxdt). (3.9)
Using (3.9) and the definitions of P~z and P*z one has
s7! //Q E Nz P dxdt <s7! //Q E|P 2z + 45’ A4 @224 2|2 4 4s? A2 E2 0% 2 |2, |2 dx dt
< s Y|Pz + CsA* //Q &2|z|? dx dt + CsA? //Q EX®|zy|? dx dt
<c (ch§+ /OT /05[53/\4(33\z|2+sA2§x“]zx]2] dxdt) (3.10)
and
st //Q EN(x%2y ) [P dxdt < 571 //Q EL|PT 22 4 st At E 2 4 2|2 + 5233 |z|*] dx dt
< s U|PTz||3 + CsPAt //Q 63]z\zdxdt+s//Q &2|z|? dx dt

T (o
gc(|yG||§+/O /O[53)\4§3|z|2+s)\2§x”‘]zx]2]dxdt>. (3.11)
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Combining (3.9)—(3.11) we conclude that

//Q [s’lg’l(]zﬁz 4 [ (%22 ) x|?) 4 sAZEx" |z |2 + 53/\46312\2} dx dt
<C <||Gy|§ + /OT /05[53/\4§3|z\2 + sA2Ex% |z, |?) dx dt> . (3.12)
On the other hand, from the definition of g one has
IGIB < ll™hl3 +CA* [ &z dat

Hence, for sy large enough, (3.12) gives

// [5‘15‘1(]zt|2+ |(x%z2)x|?) +s)\2§x“|zx|2+s3)\4§3]z|2} dx dt
Q
T (o
gC(HeS“hH§+/ / 24822 4 5A28x% |2, ] dxdt). (3.13)
0 0

Now let us consider é; € (J,d) and take a cut off function ¢ € C*®([0,1]) such that
0<¢<1¢=1in[0,6] and ¢ = 01in [é1,1]. For any € > 0 we have that

2 [T 1% a2 o [T (% al. |2
SA Ex®|zy | dxdt < sA x|z, |” dx dt
o Jo o Jo
T 6
:/ / [s)\g’ggbx"‘“zxz—s)x2§1/]’x“zxz—s)\2§1p(x“zx)xz] dx dt
o Jo
T 6
§C€_153/\4/ /1§3|z|2dxdt+// [s2AYE2|z|% 4 A%x% |z, |] dx dt
0 Jo Q
tes! / / e (6% 2y )| duc dt.
Q

Hence, taking € small enough and sy large enough, from (3.13) we conclude that

/ /Q (571871 (22 4 | (r*20)2f?) + 52280 2 P + A4 2] e
T )
<C <He‘s‘7h|]%+s3)\4/ /1§3|z|2dxdt> :
0 0

Using classical and well known arguments, we can coming back to the original variable v
and finish the proof. 4

It is well known that a observability inequality for solutions of (1.7) leads to Theorem 1.3.
So, it is sufficient to prove the following inequality:

Proposition 3.1 (Observability inequality). Assume (1.2) and (1.3). There exists a constant C > 0
such that, for any vt € L2(0,1) and v solution of (1.7) with h = 0, one has

lo(-,0)]2 < C / / =278 |2 dux dt, (3.14)
JJwr

where we recall that wr = w x (0, T).



Carleman inequality for super strong degenerate equations 11

Proof. From Theorem 1.2 we have that

T
S8 / / e 27|02 dx dt < Cs3A4 / / e 278|o|? dx dt. (3.15)
Q 0 Jw

Multiplying the equation in (1.7) by v and integrating on (0,1) we obtain that

1d 1 1 1
—f—|v(-,t)]%+/ x”‘|vx\2dx:/ blx"‘/zvxvdx—/ bo|v|? dx.
2dt 0 0 0
Hence
—1£|v( t)|2+1/1x”‘|v >dx < Clo(-, t)|?
24t 2Jo 7 T T T S
Thus
o(-,0)3 < “fo(-, 1) Ve (0,T). (3.16)
Integrating (3.16) on (T/4,3T/4) and using (3.15) we deduce that
5 3T/4 3T/4 (1
o(-,0)3 = = lo(-,0)2dt < c/ / (0|2 dx dt
T Jr/a T/4 Jo
3T/4 ;1 T
<C / SAte 0B |2 dx dt < C/ / e y|? dx dt. O
T/4 Jo 0 Jw

4 The degenerate semilinear problem

As we have pointed out in the introduction, in [15] the authors proved a null controllability
result for (1.10) with « € (0,2). However, most of the arguments in that work does not depend
on «. Indeed, the only result in that paper that only works for « € (0,2) is an observability
estimate for system (1.1) of [6]. In (3.14), we give such an estimate that works for & > 2. So,
the majority of the arguments of [15] can now be adapted to deal with (1.10) with « > 2.
For readers convenience, we will reproduce their main guideline, but we will not present the
proof of the results.
Firstly, for each w € L2(0, T; H}), let us set the following notations

bo[w] (x, £) = /0 L a1, Aw(x, £), A (x, 1)) dA
and .
by[w] (x, £) = x~*/2 /0 gy (%, t, Aw(x, £), Awy (x,£)) dA.
From (1.11) we have
1bofeo]lleo + |11 [w][|lo < 2K Y € L2(0, T; Hy). (4.1)
Furthermore,
g(x, t,u,uy) = bolu] (x, )u(x, t) + x*2by [u] (x, )uy(x,t) Yu € L2(0,T; H}) and a.e.in Q. (4.2)

As we will see, from (4.2) we can develop a fixed point argument to prove Theorem 1.4.
For now, let us assume that 1y € H} and for each ¢ > 0 consider the functional J.: L?(Q) —
R given by

1 /T 1 1
]g(h):f/ /]hlzdxdt+—/ lu(x, T)[2 dx,
2o Jw 2¢ Jo

where u is the solution of (1.1) with f = h. The first step is to establishes an approximate null
controllability result for the linear system:
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Proposition 4.1. Assume that ug € H} and (1.3). Then, there exists C > 0 (that does not depend on
e) and he € L?(Q) such that

L Je(he) < Je(h) Vh e LX(Q);
2. [ [ [he? dx dt < Clugl;
3. if ug is the solution of (1.1) with f = he, then |u.(-,T)| < e.

The idea of the proof of Proposition 4.1 is to verify that the minimum point of J; is precisely
he = —@¢l,, where ¢ is the solution of the adjoint system of (1.1), with final datum ¢.(x, T) =
%ug(x, T). Then, it is possible to work with the adjoint equation to obtain the estimates given
in the items 2 and 3.

Now, a standard argument based on the Schauder’s fixed point theorem can be applied to
obtain an approximate null controllability result for the semilinear system (1.10).

Proposition 4.2. Assume that uy € H} and (1.3). Then, for each ¢ > 0 there exists he € L*(Q) and
C > 0 (that does not depends on €) such that:

1 [ [ |he|?dxdt < Clugl%
2. if u, is the solution of (1.10) with f = he, then |u.(-, T)| < €.

As we have said at the beginning of this section, the detailed proofs of Propositions 4.1
and 4.2 can be found in [15]. Proposition 4.2 allows us to prove a null controllability result for
the semilinear system (1.10), with the initial data in H.

Proposition 4.3. Assume that ug € H} and (1.3). Then the system (1.10) is null controllable.

Proof. Given & > 0, let us take the control /. and the solution u, given by Proposition 4.2.
From Proposition 4.2-1, there exists I € L?*(Q) such that h, — h in L?>(Q). Furthermore,
using Proposition 4.2-1 and the energy estimates given in Theorem 1.2, we can deduce that
lue|3, < Cluo|*>. Thus, there also exists # € N such that u, — @ in /. From the compact
embedding N' — M, we conclude that u, — i in M. Then 7 is the solution of (1.10) with
f = h and, from Proposition 4.2-2, i1(-, T) = 0. O

Finally, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let u; be the weak solution of the following system

up — (xuy)y + g(x, t,u,uy) =0 in (0,1) x (0, Tp),
u(1,t) = 0and (x*uy)(0,t) =0 in (0, Tp), 4.3)
u(x,0) = up(x) in (0,1),

where Ty € (0, T).
Now, let us consider the following system

up — (x*uy)y + g(x, t,u,uy) = hly, in (0,1) x (To/2,T)
u(1,t) =0and (x*uy)(0,t) =0 in (To/2,T), (4.4)
u(x,To/2) = ui(x, To/2) in (0,1).
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From Theorem 1.2, u;(-, To/2) € H}. Hence, from Proposition 4.3, there exists a control
hi € L2((0,1) x (Tp/2, T)) such that the associated weak solution u? of (4.4) satisfies uy (-, T) =
0in (0,1). Now we can take u € C([0, T]; L?(Q)) and h € L?(Q) given by

0, if t € [0,To/2),

h(x,t), ifte[To/2,T).

u(x, t) = ui(x,t), ifte(0,To/2),
0 \wa(xt), it e [To/2,T),

and h(x,t) = {

It is easy to see that u € M is the solution of (1.10), with f = h, satisfying u(-,T) =0. O

5 The degenerate nonlocal problem

In this section, we will obtain the local null controllability for the problem (1.12). The proof is
based on a meticulous inverse function argument, as specified later on.
5.1 Functional spaces

The remainder of this section is devoted to a brief explanation about the most important
strategies to prove Theorem 1.5. At this point, Lyusternik’s inverse mapping theorem (see [2,13],
for instance) is our main tool. Let us recall its statement:

Theorem 5.1 (Lyusternik). Let E and F be two Banach spaces, consider H € C'(E,F) and put
1o = H(0). If H'(0) € L(E, F) is onto, then there exist r > 0 and H : B,(119) C F — E such that

H(H(Z)) =¢, V¢ € By(no),

which means that H is a right inverse of H in B,(10). In addition, there exists K > 0 such that

IH@): < KIE =0l ¥E € Br(ip0)-

To be more precise, let us indicate how the proof of Theorem 1.5 can be seen as an appli-
cation of Theorem 5.1. Even though we have not set the desired Hilbert spaces E and F yet,
let us put

H(u,h) = (Hy(u, h), Hy(u, h)), (5.1)

where

Hi(u,h) :=uy— ¢ (/01 u > (auy), — fxo and Ha(u,h):=u(0,-).

We should notice that, for uy € H}U the first and the last relations in (1.12) are satisfied if, and
only if, there exists (1, h) € E solving

H(u,h) = (0, up).
From this point, we realize that, among other properties, E and F must be built:

¢ considering the boundary conditions mentioned in (1.12);

* having some imposition on its elements assuring that u(-, T) = 0. It is done having in
mind some modified weights which come from (5.5). We remark that these new weights
exponentially explode at t = T;
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e having in mind that we want H'(0,0) € L(E, F) to be onto.

In fact, we can see that
H'(0,0)(u,h) = (ur — £(0) (atx)x — fXw,u(0)).

Recalling we have assumed that ¢(0) = 1, H'(0,0) € L(E, F) is onto if, and only if, given
any (g,ug) € F, the linear system

U — (x“ux)x :wa +38 (x,t) €Q;
u(1,t) = (x*uy)(0,t) =0, in (0,T), (5.2)
u(x,0) = up(x), x€(0,1),

is globally null-controllable at T > 0, where f € L?(w x (0, T)) is the control function.
Hence, it seems that E should contain some information involving the well-posedness
(and additional regularity) of the linear system (5.2).

From now on, we will be focused on explicitly describing the spaces E and F, as well as, their
Hilbertian norms. To do so, we consider the useful notation below.

Definition 5.2. Let 6 = (x, t) and f = f(x, t) be two real-valued measurable functions defined
in Q, where ¢ is non-negative. We say that f belongs to L?(Q; ) if V/of € L*(Q). Moreover, the
natural norm of L2(Q; 8) will be denoted by || - ||, that is,

= ([ [ 5f2dxdf>l/2

for each f € L*(Q;6).

In order to prove the global null-controllability for the linearized system (5.2), we first
need to establish a Carleman estimate with new weight functions that do not vanish at t = 0.
Namely, consider a function m € C®([0, T]) satisfying

m(t) > t4(T —t)*, t€(0,T/2];
m(t) =t4T —t)*, te[T/2,T];
m(0) >0,

and define

()= ——, (0 b) = (D) and  A(x,£) == T(t) (e2A - eA<1+'7<x>>) . (53)
m(t)
where (t,x) € [0,T) x [0,1] (see Remark 5.5).
Let us note that the adjoint system associated to (5.2) is

—0; — (%) = h in Q,
v(1,t) = (x*v,)(0,t) =0 in (0,T), (5.4)
v(x,T) = vr(x) in (0,1),

where h € L?(Q) and vy € L?(0,1). Next, we state a very convenient Carleman estimate
verified by any solution of (5.4).
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Proposition 5.3. Assuming (1.3), there exist C > 0, Ag > 0 and sy > 0 such that, for any s > s,
A > Agand v, € L2(Q), the corresponding solution v to (5.4) satisfies

Tt a6a (y2ral 24 B314r2) 02
e SATX* vy |” + AT |o|” ) dx dt
0 Jo

T r1 T
<C (/ / e’ZSA]h|2dxdt+s3A4/ /625A§6]v|2dxdt>. (5.5)
0 0 0 w

The obtainment of (5.5) is a consequence of (1.9), by following the same steps detailed in
[12, Proposition 4].
The factors multiplying v in (5.5) inspire the definition of the new weight functions

pi = eSAg_i, wherei=0,1,2,3. (5.6)

As a matter of fact, p—2 and p,? appears in the two integrals involving v, while p, was chosen
in order to satisfies p? = p, p,. Besides, we have p, < Cp, < Cp, < Cp, and, since p, > Cr > 0
for all i = 1,2,3, we also know that L?(Q; plz) < L%(Q). Here, for completeness, let us state
the expected observability inequality which can be derived from (5.5).

Corollary 5.4. Assuming (1.3), there exist C > 0, Ag > 0 and so > 0 with the following property:
given s > so, A > Agand v, € LZ(Q), then the corresponding solution v to (5.4), with h = 0, satisfies

T
lo(-,0)[3 < Cs3A4/0 /wpgzmzdxdt. (5.7)

Remark 5.5. In (5.3), we have redefined the functions given in (1.8), replacing 6 = 6(t), which
satisfies lim; g+ 0(t) = +o0, by T = 7(¢) fulfilling lim; .o+ T(¢) = 7(0) > 0. That is a crucial
point in order to guarantee that (1.12) is locally null-controllable at T > 0, as stated in Theorem
1.5. Let us clarify this point: in fact, the definition of each p;, with i € {1,2,3}, is based on
those weights which appear in (5.5), however, it comes from (5.3) that pq () — +o0,ast — T,
and p1(0) > 0 (since m(0) > 0). Because of that, u(x,T) = 0 for any u € L*(Q;p?). Hence, it
seems reasonable to require that, if (1,h) € E, then u belongs to L?(Q; p?).

Finally, we are ready to define E and F. Let us consider
U :=H'(0,T;L*(0,1)) N L*(0, T; H2) N C°([0, T]; Hy)

and put Lu := uy — (x"uy )y, for each u € U. Under all these previous notations, we set the
Hilbert spaces

E.— {(u,h) cU x Lz(a)T,'pg) cu, (Lu— fxw) € LZ(Q}P5>},

and
F:=L*(Q;p?) x Hj,
equipped with the norms

1/2
o m) e s= (a3 + 112 + 160 = el + 100, 2,)

and 12
I o) e = (liglZ + llell3y)

respectively. The remainder of this work is devoted to check that the mapping H : E — F
accomplishes everything which is required in order to apply Theorem 5.1.
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5.2 Global null-controllability for the linearized system

The goal of this section is to prove a global null-controllability result for the linear system
(5.2) and establish some important additional estimates. As previously discussed, the global
null-controllability will guarantee that H'(0,0) is surjective, which is required by Lyusternik’s
theorem, and the additional estimates will allow us to prove that H is well defined and of class
C!. As the first step here, let us define what we mean by a solution to the problem (5.2).

Definition 5.6. Given u € H}, f € L?>(wr) and ¢ € L*(Q), we say that u € L?(Q) is a solution
by transposition of (5.2) if, for each (h,vr) € L>(Q) x L*(0,1), we have

1
0

T 1 T 1
/ / uhdxdt = / uov(x,0) dx +/ / (flp + g)vdxdt,
o Jo 0o Jo

for any v solution to (5.4).
The main result of this section is the following;:

Proposition 5.7. Assume (1.3). If ug € Hy and g € L*(Q;p?), then there exists a control f €
L?(wr; pf) to (5.2), with associated state u € L2(Q; p12), such that

Il + 112, < € (1ol + 112 )
In particular, it guarantees that (5.2) is globally null-controllable. Furthermore, we have
X2y, € L*(Q;02), ut, (x"uy)x € LZ(Q;pg)
and there exists C > 0 such that
I 2, ol + el < € (a2 + vl + gl + al?, ). 68
Proof. Let us define the set
Po, = {w € C*(Q); w(1,t) = x*w,(0,t) =0, t € (0, T)}.

Recalling the definition of £, we can see that its formal adjoint is given by L*v = —v; —
(x*vy)y. Hence, analyzing the right-hand side of (5.5), we can define the following symmetric,
positive defined bilinear form

T 1 T 1
a(wy, wy) = / / po’zﬁ*w1ﬁ*w2 dx dt —|—/ / p;zwlwzlw dxdt, Ywq,w, € Py,.
o Jo 0o Jo
Thus, let us denote by P, the completion of Py, with respect to the inner product defined by

a. Hence, P, is a Hilbert space with norm given by [|v[|, = a(v,v)'/2,
Now, let us define the continuous linear functional L : L2(Q) — R given by

1 T /1
Loy :/ upv(x,0) dx—l—/ / gudxdt.
0 0 Jo

In this case, Lax-Milgram theorem yields ¢ € P, such that

a(v,v) = Lv, Yv € P,
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that is,

T 1 T 1 1 T 1
/ / p;zﬁ*@ﬁ*vzdxdtJr/ / o, *001, dxdt:/ uov(x,0) dx+/ / gudxdt, Vv € P,
0o Jo 0 Jo 0 0o Jo

According to Definition 5.6, it means that f := —p; %91, is a control and u := p, 2L*D

the associated state to the problem (5.2). Indeed, for any (h,vr) € L2(Q) x L2(0,1), if v is a
solution to (5.4), then

T /1 1 T /1
/ / uhdxdt = / upv(x,0) dx + / / (fl, + g)vdxdt.
0 Jo 0 0 Jo

Furthermore, from Carleman and observability inequalities, given in (5.5) and (5.7) respec-
tively, we have

T 1 1/2
012, = L0 < ol 00 + gl ([ [ o1 dxa)
172 T 1
< (ol 41812 ) (loc 0P+ [ [ p;2eavar)
1/2
< (Jnl+ 112 ) ato,5)2

1/2
= (Il +11g12 ) loll,

1/2

whence
1/2
foll, <€ (Il + gl )

Using the explicit expressions f = —p 261, and u = p;zﬁ*ﬁ, as well as, recalling the norm
| - I, , we easily get

T /1 T /1
2 2 o 2,2 22
||u|\p% +Hf||p3 < C/O /0 piu dxdt+/0 /0 pif"dxdt

T —2| px 4|2 e —2.12
= [ [ericopaaes [ [ o2 dxar

< (Jloll+ 12 )

as desired.
At this moment, we would like to say that the obtainment of (5.8) will be left for the two
subsequent lemmas. O

Lemma 5.8. Assume (1.3). Given ug € Hy and g € L*(Q;p?), if (u,h) € U x L*(Qu;p?) is a
solution to (5.2), then x*/?u, € L*(Q; p,) and there exists C > 0 such that

/21y < € (1, + ol + 2 + ol ).

Proof. Multiplying the equation in (5.2) by p?u, integrating in [0, 1] and using the two relations

1d [t 5, e ! 2
Eﬁ/o pou dx:/o pzutudx+/0 0, (p,)su” dx
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and

1 1 1
/ P2 (x™ uy)udx = —2/ pz(pz)xx"‘uuxdx—/ p2x"u? dx,
0 0 0

we obtain
1 1 1 1
/ 0, 2u? dx +/ o2x"u? dx = —/ p2cu2dx+/ o2uhx . dx+/ p?gu dx
Zdt 0 2 0 2 0 2 0 2

1 1
+/0 pz(pz)fuzdx_z/o pz(pz)xx”‘uux dx

=L+DL+ I3+ 14+ Is. (5.9)

Now, using p, < Cp,, fori > j, and p,p, = p?, we obtain
1
L < C/ pf]u|2dx,

1
12<C( /ps\hxwlzdx +2/ p1|u|2dx>

e (s [l + 1 [ ol
3 = 2 0 p] g 2 0 pl *
Let us estimate I,. Firstly, we will rewrite A as A(t,x) = ¢(t, x)fi(x), where

M) /().

and

) = (M

Secondly, note that

0,(0,)r = ¢ 2 (se™gific™? — 26 ¢ 3¢;) = g2 (s¢ 2 — 2¢7)gy

Then, for all € [0, T},
10, (0)¢] < Co2 || < Cp?,

whence .
Iy < C/ pf]u|2dx.
0
Now, using

[(p.)xPe? < Ce4¢ 2|72 4 ¢4 |2t < Cpu?

we obtain
<2 [ ol (on)ox 2l dr < ) [ g2 +2 [ l(po)ulPtul
1 2.4, 2 2.2
< 5/0 pzx”‘uxdx+C/() psu” dx.
Hence, (5.9) gives us

1 1 1
dt/ pzru|2dx+/ 02" uy2dx < C (/O PPluldr+ [ oiedx+ [ pf|g|2dx).

Integrating in time, the desired result follows. O
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Lemma 5.9. Assume (1.3). Given ug € Hy and g € L*(Q;p?), if (u,h) € U x L*(Qu;p?) is a
solution to (5.2), then uy, (auy)x € L*(Q; p2) and there exists C > 0 such that

P+ 1t < € (IR, + Dl + g1, + ]2, )
3 3 1 3 1 s

Proof. In the first step, we will estimate the first term of left side of the inequality. Multiplying
equation in (5.2) by p?u; and integrating in [0, 1], we have

1
/ p dx—/ 0; uth)(wdx+/ 0, gutdx—/ c(x,t)p; uutdx—k/ (x%uy ) xup dx
0
= h+DL—I+ 14 (5.10)

Using Young’s inequality with e and p, < Cp]., for i > j, we obtain

L < /01p§|hxw\|ut|dx < e/()1p§|ut|2dx+41€/Olpﬂhxwﬁdx,
I < /Olpﬁlgutldx < s/olpi\utlzdwig/;p?!gfdx < s/olszlutlzdxJrC/O1 07|gl* dx
and
—I3 < /01 |c(t,x)|p§|uut|dx < s/ p us dx+C/ pzuzdx
Now, integrating I by parts, we can see that

x=1
Iy = pax uxut}

1
/(pfut)xx“uxdx
1 1
:—2/0 05 (05)xx uptty dx — Ed—/ p2x"u% dx+2/0 (p2)ex"uZdx. (5.11)

If we set ) .
Iy = /0 05 (05) X"ty dx and Iyp = /0 (02)x"u3 dx,
we have,

' 1
/0 o2 dx +§E/ X fuxdx =TI+ b —I—2ln + Sl (5.12)

Since |(p,)x| < Cp, and [(p?)¢| < Cp?, observe that

|P3 (p3)xxauxut| < C‘P3ut ’ |p2xa/21/lx‘

and
()il = 2lps(0,)el < Cp3-
So that,
Lt 2 b oan
Iy < 1/0 Py U dx+C/0 5 X"y dx
and

1
Ip < C/ pfx“u,% dx.
0
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Using the estimates obtained for Iy, I, I, Is; and Iy, the relation (5.12) provides

1
v a2
/Op u? dx —|—2dt/pxuxdx
1 1 1 1
§C</O p?\hxwlzdx—i—/o p2g* dx —1—/0 pfuzdx—i—/o pfx“uidx),

and, consequently,

T T r1
/O /putdx<C</ /puzdx—l—/ /pzhzdx +/O /Opfg2+uuoH%I;dx>. (5.13)

In the second part, we must estimate the term fOT fol 2] (x%11x ) |2

in (5.2) by —p?(x“ux) and integrating in [0, 1], we take

. Multiplying the equation

/p3|(x Uy)x | dx = — /pzh)(wxux /p3 X Uy )y

+/0 co(x, t)pZu(x"uy)x dx+/0 pZup (x“1uy)x dx
=-h—k+h+L

As earlier in this proof, applying Young’s inequality with &, we obtain

1 1 1 /1
R< [ el ()l dr < e [ o2l Pax+ oo [ o2l dx,

1 1 1 1
I2 S/O pi!g!\(x"‘ux)x\dxge/o pf!(x“ux)xlzdx—f—zs/o 0 dx,

1 1
Js<C s/ pz\(x”‘ux)x\zdx—i—l/ p?udx ).
L 4e Jo ™

From (5.11) and (5.13), we achieve

! 2 o 2 1d 1 2 2
/O p3|(x I/lx)x| dX—FEE/O p3x ’ux| dx
1 1 . )
=C </0 P§|h)(w|2dx+/o prglzdx +/0 pf|u|2dx+/o Pfxa|ux|2dx)

Integrating in time, we conclude the proof. ]

5.3 Local null-controllability for the nonlinear system

In this section, our goal is to prove Theorem 1.5, which is based on Theorem 5.1. Indeed,
it will allow us to conclude that H : E — F, given in (5.1), has a right inverse mapping
defined in a small ball B C F = L?*(Q;p?) x H.. Since Theorem 5.7 already guarantees that
H'(0,0) € L(E,F) is onto, it remains to verify that

e H is well-defined;
e He C\(E,F).

We will clarify that in Propositions 5.10 and 5.12.
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Proposition 5.10. The mapping H : E — F, given in (5.1), is well defined.

Proof. Given (u,h) € E, we intend to prove that H(u,h) belongs to L?(Q;p?) x Hi. From
definition of E, it is clear that Hy(u,h) = u(0,-) € H;. Let us see that Hy(u,h) € L*(Q; p?).
In fact, since £(0) = 1 and / is Lipschitz continuous, we have

Tl X T 1 X
/ /pllHl(u,h)| dxdtz/ /p1 ut—ﬁ(/ udx) (X*1y)x — hXew
o Jo 0 Jo 0
T /1 5 T /1 1
§4/ /pf|£(u)—h)(w| dxdt—|—4/ /plz {6 (/ udx)—f(O)] (2% Uy )y
0 0
< 4||(u,h) ||2+4/ /pl </ udx) |(x1uy) o |* dx dt.
I?

Hence, we just need to prove that the last integral is bounded from above by ||(u, )|
Indeed, note that

T ,1 1 2 T 1 1 2
/ /Pf </ udx) !(X”‘ux)dexdtz/ /prf (/ udX> 2] (x* 1) |* dox it
o Jo 0 0o Jo 0
1 2
< Csup T4</ udx) / /p3 X1ty ) |* dx dt
[0,7] 0
1 2
< Csup | T (/ udx) |(u, )2
[0,T] 0

< Cll(wm)llz

2
dxdt

2
dx dt

where the last inequality is a consequence of Lemma 5.11, since 7 < CeMs/™(t), O

Lemma 5.11. Given s > 0, there exists My > 0 such that

Ms 1 2
sup { el ( / udx) <l |,
te[0,T] 0

for all (u,h) € E, where m = m(t) is the the function defined in (5.3).

Proof. Firstly, for s > 0, let us consider (u,h) € E and the function g : [0,T] — R
M 1 2
q(t) :=em® (/ u(x,t)dx) ,
0
for all t € [0, T|, where M, > 0 will be specified later.

Claim 1: Given s > 0, there exist My > 0 and C > 0 such that

Ms

em(t) S sz

1

Indeed, for any K > 0, we know that

k 2
em < k—2[m(t)]2 forall t € [0, T].
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In particular, taking k = s, and M; = Sﬁ A, we obtain

- )‘kz 2sBy —k
2 2sA_—2 < -2\, 2 2sA < € 2sA-k bak 2Ms
p; =€l > e imte”” > TE m=_Cyse m =Cyrgem, (5.14)
—2A2R2
where C) s = ¢ 25 Ay

Claim 2: There exist K1 = K1(A,s) > 0 and K, = K3(A,s) > 0, such that

2
p 2Ms
nT32 < Kip? and e < Kpp?. (5.15)

As a consequence, g € H'(0,T) < C°([0, T]).
In fact, arguing as in Claim 1, we can get

2 p25AL—2

P P

iT o & <Kip}

m M V

and
,  e¥Amb Cor 2sa Kk k eTOME gk 1 amg
p g 5 Z e e —em — e m = —e m ,

3 U 6! 6! K>

where we have taken k = s, M; = ﬁ and K, = In this case,

S —
e % (sBr)°”

T T 1 g 1 /T g1
/ ]q\zdtg/ /eT\uFdxdtg / /pz\u|2dxdt§CH(u,h)H%
0 o Jo CrsJo Jo ™!

and
1 M2 T 1
\q |2dt<C</ / M ( Anfs\u|2dxdt—|—/ /emnfs\utlzdxdt>
c( |u]2dxdt+/ /pslut\zdxdt)
T 1
</ /p |u|2dxdt—|—/ /p?!ut|2dxdt>
0o Jo
Cll (u, W),
following the desired result. O

Proposition 5.12. The mapping H belongs to C'(E, F).

Proof. It is clear that Hy € C!. We will prove that H; has a continuous Gateaux derivative on
E. In fact, some well-known calculation allows us to see that the Gateaux derivative of H; at
(u,h) € E is given by

Hy(u,h)(ia,h) =i, — ¥ (/01 udx> /01 ddx (x*uy)y — ¢ </01 udx) (x*y)x — X,

for each (i1, 1) € E. We just need to prove that the Gateaux derivative Hj : E — L(E; L*(Q; p?))
is continuous. On this purpose, given (u,h) € E, let ((u",h"))$’_; be a sequence in E such that
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|(u", ") — (u,h)||g — 0. We must prove that ||Hj(u",h") — H{(u,h)Hﬁ(E;Lz(Q;pi)) — 0. In fact,

taking (i1, 1) on the unit sphere of E, we can see that

I CHE (e, 1) — Hy (u, 1)) (1, R) |2

/ —e’</01u dx> udx(x“uz)x—ﬁ(/olu”dx> (i1, )y dx dt
< udx> dx (x1ty)x +€</Oludx>(x“ax)xdxdt2
<c[ [e(] udx) aw dx))2|<x“<uz—ux>>x|2dxdt
e L (o) o ([ o) o ([ ) e
o[ ([aa) (e[ wras)—e([u)) twmpaca

Proceeding as in [12], using that ¢ € C!(R,R) has bounded derivatives and applying
Lebesgue’s dominated convergence theorem, we can prove that each of these three last in-
tegral converges to zero, as n — +co. Hence, H] is continuous, as desired. ]

Proof of Theorem 1.4. We already know that the mapping H : E — F is well defined and
belongs to C'(E,F) (Propositions 5.10 and 5.12). We state that H'(0,0) € L(E,F) is onto.
In fact, given (g,up) € F = L?(Q;p?) x H;, we apply Proposition 5.7 in order to obtain
(u,h) € L*(Q;p?) x L*(wr;p?) which solves (5.2) and satisfies (5.8). It means that (u,h) € E
and H'(0,0)(u,h) = (g,up), as desired.

Hence, by Lyusternik’s inverse mapping theorem (Theorem 5.1) , there exist ¢ > 0 and a
mapping H : B¢(0) C L?(Q;p?) x H} — E such that

H(H(y)) =y foreachy € B.(0) C LZ(Q;pf) X H}‘.
In particular, if #y € Hy and ||do|l;; < ¢, we conclude that (i,7) = H(0,iy) € E solves
H(ii,h) = (0,1p). Finally, since i € L?(Q;p?), we get ii(x, T) = 0 almost everywhere in [0, 1]
(see Remark 5.5). It completes the proof. ]
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Abstract. In this paper, we introduce logistic equations with Stieltjes derivatives and
provide explicit solution formulas. As an application, we present a population model
which involves intraspecific competition, periods of hibernation, as well as seasonal
reproductive cycles. We also deal with various forms of Stieltjes integral equations,
and find the corresponding logistic equations. We show that our work extends earlier
results for dynamic equations on time scales, which served as an inspiration for this
paper.

Keywords: logistic equation, Stieltjes differential equation, Stieltjes integral equation,
dynamic equation, population dynamics.
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1 Introduction

The logistic equation is ubiquitous in population dynamics. The simplest version of this
equation, which was proposed by Pierre-Francois Verhulst in 1838 (see [2]), has the form

x'(t) = rx(t) <1 — x§<t)> ,

where x(t) represents the size of a population at time ¢, r is the population growth rate, and
K is the carrying capacity of the environment, i.e., the maximum population size that can
be sustained by the environment. More realistic models assume that » and K are no longer
constants and are, in fact, functions of time, which leads to the equation

x'(t) = r(t)x(t) (1 — Ii((tt))> : (1.1)

™ Corresponding author. Email: slavik@karlin.mff.cuni.cz
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Observe that the logistic equation above is nonlinear; however, dividing Eq. (1.1) by —x(t)?
and substituting y(t) = 1/x(t), we obtain the nonhomogeneous linear equation

V(O = =100 +

whose solution can be obtained using the variation of constants formula. Conversely, starting
with the general first-order nonhomogenous linear equation

y'(8) = p(B)y(t) + £(t)

and performing the change of variables x(f) = 1/y(t), we get the logistic equation

Thus, the logistic equation can be regarded as an equation for x = 1/y, where y is a (nonzero)
solution of a first-order nonhomogenous linear equation. This idea has been employed in [3],
which deals with dynamic equations on time scales. Beginning with the first-order nonhomo-
geneous linear A-dynamic equation

ub(t) = p(thu(t) + f(1), 12)

the authors found that y = 1/u satisfies

yA(H) = = (p(t) + f(y(1)y(o (1)), (1.3)

where ¢ is the forward jump operator. Similarly, starting with the adjoint equation of Eq. (1.2),
namely,

v3(t) = —p(Ho(a(t)) + f(t)

they found that x = 1/v satisfies

x8(t) = (p(t) — f(B)x(o(t))x(t). (14)

Hence, it is reasonable to refer to Eq. (1.3) and Eq. (1.4) as to logistic dynamic equations.

In the present paper, we deal with two classes of equations that are more general than
dynamic equations, and whose solutions need not be continuous. First, we focus on Stieltjes
differential equations, which were introduced and studied e.g. in [7-12,14]. The concept of
the Stieltjes derivative of a function with respect to a left-continuous nondecreasing function
g is recalled in Section 2, where we also recall some basic facts on linear Stieltjes differential
equations. In Section 3, we show that if u is a (nonzero) solution of the Stieltjes differential
equation

ug(t) = p(t)u(t) + (1), (1.5)

then y = 1/u is a solution of

o)A+ (p() + f(Oy(5)ATg(H) + p(t)y(t) + f(H)y(£)* =0 (1.6)

(where AT¢(t) = g(t+) — g(t)), or equivalently

Yo(t) = —=(p(t) + f(O)y(£))y(t+).
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Similarly, if v is a solution of the adjoint linear equation to Eq. (1.5), i.e.,

L £
O = T marsm Y T T pnats)” a7

then x = 1/v satisfies

xg(H)(1+ AT g(t) f(1)x(t)) — p(£)x(t) + f(H)x(£)* =0, (1.8)

or equivalently
xg(t) = (p(t) = F(O)x(t+))x(8).

In view of these facts, we refer to Eq. (1.6) and Eq. (1.8) as to logistic equations with Stieltjes
derivatives. We provide explicit solution formulas for both equations.

In Section 4, we show that the logistic A-dynamic equations (1.3) and (1.4) represent special
cases of the Stieltjes differential equations (1.6) and (1.8) corresponding to a suitable function g.

Theoretical results on logistic differential equations with Stieltjes derivatives are illustrated
on an example in Section 5. It describes a simple model of grizzly bears, whose population dy-
namics involves competition between individuals, periods of hibernation, as well as a seasonal
reproductive cycle.

The second part of the paper deals with Stieltjes integral equations. In Section 6, we recall
some basic properties of Stieltjes integrals, and present a generalization of the quotient rule;
as far as we are aware, this is the first appearance of the quotient rule for Stieltjes integrals in
the literature.

In Section 7, we consider three types of linear nonhomogeneous Stieltjes integral equations,

namely
t

x(t) = x(to) + | (p(s)x(s) + f(s)) dg(s),

to

as well as the pair of dual equations

t

() = x(0) + [ (p(6)r(s=) + £(5)) dg),
() = x(t0) + [ (=p(©)r(s) + £5) dg),

which were recently studied in [13,20]. For each of the three equations, we find the cor-
responding logistic equation satisfied by the function y = 1/x. In comparison with earlier
sections, we only assume that ¢ has bounded variation, and do not require left-continuity.
Because of this, the corresponding theory covers not only A-dynamic equations on time scales
(where the corresponding ¢ is left-continuous), but also V-dynamic equations (where g is
right-continuous). These facts are utilized in Section 8, where we explore the relations be-
tween Stieltjes integral versions of the logistic equation and both types of dynamic equations.

2 Preliminaries on Stieltjes derivatives

Let ¢ : R — R be a nondecreasing and left-continuous function. We shall denote by p, the
Lebesgue-Stieltjes measure associated to g given by

ue(le,d)) =g(d) —g(c), cdeR, c<d,
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see [6,17,18]. We will use the term “g-measurable” for a set or function to refer to po-mea-
surability in the corresponding sense, and we denote by Eé(X, R) the set of Lebesgue-Stieltjes
jg-integrable functions on a g-measurable set X with values in R, whose integral we denote

by

| f6)dugls), £ € LUXR)
Similarly, we will talk about properties holding g-almost everywhere in a set X (shortened
to g-a.e. in X), or holding for g-almost all (or simply, g-a.a.) x € X, as a simplified way to

express that they hold p¢-almost everywhere in X or for pig-almost all x € X, respectively.
Define

Cy = {t € R : gis constant on (t —¢,t +¢) for some € > 0},
Dy ={teR : ATg(t) >0}

Observe that, as pointed out in [9], the set C; has null ¢g-measure and it is open in the usual
topology, so it can be uniquely expressed as the countable union of open disjoint intervals,

say

C = U (an,bn),

nelN

for some a,, b, € [—o0,+00], n € N. With this notation, we also define
Ny ={a, € R:ne€N}\Dy, Ny ={bycR:ncN}\Dg, N,=NgUN;.

We are now in position to introduce the definition of the Stieltjes derivative of a real-valued
function as in [9,11].

Definition 2.1. Let f : R — R and t € R\ C,. We define the Stieltjes derivative, or g-derivative,
of f at t as follows, provided the corresponding limit exists:

Bt
, £(s)— (1 )
=0 e N

SIS —

In that case, we say that f is g-differentiable at t.

Remark 2.2. It is important to note that, as explained in [11, Remark 2.2], for t € N, we have

as the domain of the quotient function gives the corresponding one-sided limit. Furthermore,
since ¢ is a regulated function, it follows that the g-derivative of f at a point t € D, exists if
and only if f(t+) exists and, in that case,

_ATf()
- ATg(t)

fz(®)
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The following result, [11, Proposition 2.5], contains some basic properties of Stieltjes
derivatives such as linearity and the product and quotient rules.

Proposition 2.3. Let fi, f» : [a,b] — R be two g-differentiable functions at t € R\ C. Then:
e The function M fi + Asfo is g-differentiable at t for any Ay, Az € R and
(Mfi +A2fo)y (8) = M (fi) (8) + A2 (f2)g (8)-
e The product fif is g-differentiable at t and
(fif2)g (1) = (fi)g () f2(8) + (f2)g (1) fr() + (fi)g (1) (f2)g (AT G(1).
o If Folt) (fo(t) + (o)) (£) A" g(£)) # 0, the quotient f1/ f» is g-differentiable at t and

(ﬁ)’ () = (1) (Df2(t) = (f2)g (DA1(2)
fa)g 7 R(t) (fa(t) + (f2)g(£) ATg(H))
Next, we present the concept of g-absolute continuity introduced in [9], as well as some of

its properties. For simplicity, we introduce such concept as part of the following result from
[9, Proposition 5.4].

2.1)

Theorem 2.4. Let F : [a,b] — R. The following conditions are equivalent:

1. The function F is g-absolutely continuous on [a, b] according to the following definition: for
every € > 0, there exists § > 0 such that for every open pairwise disjoint family of subintervals

{(an,by) }I"_, satisfying
;(S(bn) —g(an)) <9,

we have

i |F(b,) — F(a,)| < e.

2. The function F satisfies the following conditions:

(i) there exists Fy(t) for g-a.a. t € [a,b);
(i) F; € Lg([a,b),R);
(iii) for each t € [a,b],
F(t) = F(a) + Fo(s) dpg(s). (2.2)

[a.t)

Remark 2.5. Observe that the equality in Eq. (2.2) is, indeed, true for t = a as we are consid-
ering the integral over the empty set, which makes the integral null.

We denote by AC¢([a,b],R) the set of g-absolutely continuous functions in [a,b] with
values on R. With this notation, we present [9, Proposition 2.4], a result that, in a way, is the
converse of Theorem 2.4.

Theorem 2.6. Let f € L’é([a, b),R). Then, the function F : [a,b] — R defined as

Fi) = [ F)dugls),

is an element of ACg([a, b], R) and Fy(t) = f(t) for g-a.a. t € [a,]).
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We include the following lemma that, to the best of our knowledge, is not available in the
literature. (Only the fact that if f has bounded variation and is bounded away from zero, then
1/f has bounded variation, is known; see for example [1, Exercise 1.1].) This result shows
that, under certain conditions, the multiplicative inverse of a g-absolutely continuous function
is also g-absolutely continuous.

Lemma 2.7. Let f : [a,b] — R be a regulated function such that

f(t) #0, t €a,b]; f(t+)#0,t€ab), f(t—)F#O0, te (ab].
Then, there exists M > 0 such that |f(t)| > M for all t € [a,b]. Furthermore:
(i) If f has bounded variation on [a, b], then so does 1/ f.
(ii) If f is g-absolutely continuous on [a,b], then sois 1/ f.

Proof. First, note that for each t € (a,b), f(t—), f(t+) # 0 so we can find é; > 0 such that

]f(s)]>|f(t2_)‘,se(t—5t,t) and ]f(s)]>wt2+)’,se(t,t+§t).

Consequently, |f(s)| > M; := min{|f(t—)|/2,|f(t+)]/2,|f(t)|} > 0 for all s € (t — &, t + J).
A similar reasoning shows that there exist d,, 6, > 0 such that

F(s)] > M, := min{’f(z+)|,|f(a)|}, s € [a,a+by),

mem:mﬁwaww}saw%w

Note that the family {(t — J;,f + ) }4c[s,5) is an open cover of [a, b], which is compact, so there
must be a finite subcover, i.e., there exist t1,to,...,tN € [a,b] such that {(t — oy, tx + (5tk)},]{\7:1
covers [a,b]. Now, it is enough to take M = min{M;,, My,, ..., My, } to obtain the first part of
the result.

Now, in order to prove (i)-(ii), note that given ¢,d € [a,b], ¢ < d, we have

)| < e pl 03

'1_1:V@4u
@~ Fol = | f@fe

Assume that f has bounded variation on [a,b]. Leta =ty < fy < --- < t,, = b be
a partition of [a,b]. Then, (2.3) yields

3

i=1

1 - 1
f(ti)  f(tioa)

which shows that 1/ f has bounded variation on [g, b].

Finally, assume that f is g-absolutely continuous on [4,b] and let € > 0. In that case, there
exists § > 0 such that if {(a,,b,)}""_; is a family of open pairwise disjoint subintervals of [a, b]
satisfying that Y ;(g(b,) — g(as)) < 9, then

< 35 LI 0) ~ F0)] < gpvar(f [ 1),

il|f(bn) — f(an)| < MZe.
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Consequently, if {(a,, by)}l_; is a family of open pairwise disjoint subintervals satisfying
v 1(g(bn) — g(an)) < 4, using (2.3) we have

= 1 1 1 M
L |7 ~ Flam| < 3 15 )~ flan)l <
which proves that 1/f € ACg([a, b], R). .

As shown in [8, Proposition 5.5], every g-absolutely continuous function is g-continuous
according to the following definition from [8].

Definition 2.8. A function f : [a,b] — R is g-continuous at a point ¢ € [a, b], or continuous with
respect to g at t, if for every e > 0, there exists § > 0 such that

|f(t) — f(s)| <e forallse[ab], |g(t)—g(s)| <.
If f is g-continuous at every point t € A C [a, b], we say that f is g-continuous on A.

The following result, [8, Proposition 3.2], describes some properties of g-continuous func-
tions, and thus, of g-absolutely continuous functions.

Proposition 2.9. If f : [a,b] — R is g-continuous on [a, b], then:
e f is continuous from the left at every t € (a,b);
e if g is continuous at t € [a,b), then so is f;
e if ¢ is constant on some |«, B| C [a,b], then so is f.
In particular, g-continuous functions on [a, b] are continuous on [a,b] when g is continuous on [a,b).

Finally, we provide some context and information on differential problems with Stieltjes
derivatives of the form

Wi (t) = F(tu(t),  ulto) = uo, 24

with to, T,up € R, T >0, and F : [to,tp + T] x R — R. Let us start by clarifying the concept of
solution for this type of equations.

Definition 2.10. Given T € (0,T], a solution of Eq. (2.4) on [ty to + T] is a function u €
ACq([to, to + 7], R) such that u(ty) = up and
ug(t) = F(t,u(t)), g-aa.tc[to,to+1).

As usual, one of the most important equations in the context of Stieltjes derivatives is the
linear differential equation, which has been deeply studied in [7,8,11]. In the following result,
which can be found in [11, Theorem 3.2] or, more generally, in [7, Theorem 4.3], we introduce
the g-exponential map, the unique solution of the homogeneous linear problem.

Theorem 2.11. Let p € Ly([to, to + T), R) be such that

14 p(t)ATg(t) #0, forallt € [ty to+ T) N D. (2.5)
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Then, the set T, = {t € [to,to+ T) N Dg : 1+ p(t)A*g(t) < 0} has finite cardinality. Furthermore,
ipr_ ={t,... kb to<h <t < - <t <ty =to+T, thenthemap p: [to,to+T) - R
defined as

p(t), if t € [to, to + T)\Dy,
P(t) = log(1+ p(t)A*g(1))
Atg(t)
belongs to Ly ([to, to + T),R); the map exp,(p,-) : [to,to + T] — (0, +o0) given by

, ift € [to,tg+ T) N Dy,

exp </[ )f)(s)dyg(s)) , iftg <t<t,
fo,t

(—1)j exp </ ﬁ(s)d}%(s)) , if t]' <t S tj+1, j: 1,. . .,k,

[to,t)

expy(p, 1) =

is g-absolutely continuous on [to, to + T|; and the function u(t) = ugexpy(p,t), t € [to,to + T}, is
the unique solution of

(1) = p(Byu(t), ulto) = uo.

Finally, in [11, Theorem 3.5] and [7, Proposition 4.12], using the method of variation of
constants, the authors obtained the explicit expression of the unique solution of the nonho-
mogeneous linear equation, which we present in the next theorem.

Theorem 2.12. Let p,f € Eé([to, to+ T),R) and suppose that (2.5) holds. Then, the function
u: [to, to + T] — R defined as

{S()SA)+g(s) expy(p,s) dug(s), telab], (26)

u(t) = xoexpy(p, t) +expy(p, t) /[folf) I+p

is the unique solution of
Wl (1) = p(B)u(t) + £(), ulto) = uo. 2.7)

3 The logistic equation in the context of Stieltjes derivatives

In the setting of ordinary differential equations and dynamic equations on time scales, one
way of defining the logistic equation is to consider it as the equation for which a change of
variables of the form u(t) = (x(t))~! yields a linear equation in the corresponding setting.
Hence, following the reasonings in [5, Section 2.4], we will obtain the form of the logistic
equation in the context of Stieltjes derivatives through the mentioned change of variables.

In what follows we assume that xo,fp, T € R, T > 0. Let us start by looking at the change
of variables above. Suppose u is a function which is a solution of Eq. (2.7). If u(t) = (x(t)) 7},
provided that the corresponding hypotheses are satisfied, we can compute the g-derivative
of x using Proposition 2.3. Indeed, clearly, the function 1 is g-differentiable everywhere (except

on C,) and has null g-derivative so, under suitable conditions, (2.1) ensures that

() — g (1) - p(Hu() + £(1)
s (O87g() ~ uO(w() + (p(Ou(h) + )57 5()
IR N p() + F()x(1)
)

t
AT u(®) 14 Arg(p0) - fox) D G
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At this point, one might be inclined to define the logistic equation with Stieltjes derivatives
on [to, to + T] as Eq. (3.1) as it is in the form of Eq. (2.4). However, in doing so, one needs
to require that any solution on [ty, to + T) in the sense of Definition 2.10 must also satisfy
that 1+ A*g(t)(p(t) + f(t)x(t)) # 0 for every t € [to, to + T) N Dy. Alternatively, instead of
Eq. (3.1), we can consider the more general equation

xg () (1 + (p(t) + f()x())ATg (1)) + p()x(t) + f(1)x(t)* =0, (3.2)

which no longer requires such consideration at the cost of moving away from problems of
the form (2.4). Observe that when the Stieltjes derivative coincides with the usual derivative
(namely, when ¢ = Id), Eq. (3.2) yields the usual logistic equation.

After these considerations, we define the logistic equation with Stieltjes derivatives as the
initial value problem

xg () (1 + (p(t) + f(O)x(1))ATg(1) + p()x(t) + f(H)x(t)* =0, x(k) =x0,  (3.3)

with p, f € Eé([tg, to+ T),R). Naturally, since Eq. (3.3) is no longer in the framework of
Eq. (2.4), we need to define the concept of solution for this problem in a similar manner.

Definition 3.1. Given T € (0,T], a solution of Eq. (3.3) on [to,to + T] is a function x €
ACq([to, to + 7], R) such that x(t9) = xp and

xé(t)(l + (p(t) + F()x()AT (1)) + p(H)x(t) + f(H)x(t)> =0, g-aa. t€ [to,to+T).

Remark 3.2. Observe that, if xo = 0, the map x(¢) =0, t € [to, to + T], is a solution of Eq. (3.3)
so, without loss of generality, we shall assume that xo # 0 for the remaining of the section.

Remark 3.3. Remark 2.2 and Proposition 2.9 imply that, for any x € AC,([to, to + 7], R),
xg(H)ATg(t) = x(t+) —x(t), t€ [to,to+ Tl

Hence, it is clear that x is a solution of Eq. (3.3) if and only if it is a solution of
xg(t) = =(p(t) + f(H)x(£))x(t+), x(to) = xo. (34)

The following result provides an explicit expression for a solution of Eq. (3.3), which is
obtained through the solution of the nonhomogeneous linear equation, Eq. (2.6).

Theorem 3.4. Let p, f € L’é([to, to+ T),R) be such that (2.5) holds and define

_ 1 f(s) -1
$0 = 35+ fo T a7 PP W) e+ T)
If there exists T € (0, T] such that ¢(t) # 0 for t € [to, to + T] and
AT (t _

P(t) # 1 j—(p)(t)Ang(g)(t) exp, (p,t) 1, t€ [ty to+T]N Dy, (3.5)

then, the map x : [to, to + T] — R defined as
1
x(t) = W’ t € [to, to + 7] (3.6)

is a solution of Eq. (3.3) on [to, to + T].
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Proof. Let us denote
D(t) = exp(p, )¢(t), tE€ [to,to+T).

Observe that Theorem 2.12 ensures that ® € AC,([to, to + T],R). Also, there exists N C
[to, to 4 T) such that ¢ (N) = 0 and

@y (t) = p()@(t) + f(t), t€ [to,to+T)\N.

Furthermore, for t € [ty, to + T), since ¢(t) # 0 by hypothesis and exp g( p,t) # 0 by definition,
we have that ®(t) # 0, which ensures that x is well-defined. Hence, in order to prove that
x € ACg¢([to, to + T],R) it is enough to show that

3 111? CD(S) #0, te (to, to + T] (3.7)
s—t-

3 lim O(s) #0, t€ [to,to+T) (3.8)
s—tt

as in that case, Lemma 2.7 ensures the g-absolute continuity.

Since ® € ACq([to, to + T],R), @ is left-continuous at every t € (to,to + 7] (see Propo-
sition 2.9), so for each t € (to,to + 7], ®(t—) = ®(t) # 0, which proves (3.7). Similarly, if
t € [to,to 4+ T) \ Dy, Proposition 2.9 ensures that ® is continuous at t, so ®(t+) = ®(t) # 0.
Finally, if t € [to, to + T) N Dg, then t ¢ N, so it follows from Remark 2.2 and (3.5) that

D(t+) = D(t) + Dy (t) AT g(t)

which shows that (3.8) holds.

Finally, we prove that x satisfies the equation g-a.e. in [fo, to + T]. Note that the reasoning
above and the fact that ® # 0 ensure that ®(t) + @ (t)A*g(t) # 0 for all t € [to,to +T) \ N.
Hence, given that the map h(t) =1, t € [to, tp + T), is g-differentiable on [to, fop + T) with null
g-derivative, Proposition 2.3 guarantees that x is g-differentiable for each t € [to,to +T) \ N
and

- @, (1
0= G + eynag)
- pOD() + (1) B | DR { G2 N,
SO+ (p(OR(1) + FO)ATD) 1+ (p(6) + F(OxD)ATg(H)

so we have that, for t € [to,tp+T) \ N,

xg(H)(1+ (p(t) + f(O)x(1)ATg(H)) + p(H)x(t) + f(£)x(t)?
= —(p(t) + f(O)x(1)x(t) + p(t)x(t) + f(Dx(t)* = 0,

which finishes the proof. O

Remark 3.5. Let us briefly reflect on the conditions that we are requiring on the map ¢ in the
hypotheses of Theorem 3.4. When we ask for ¢ to not vanish on the interval, we are essentially
asking for the solution of the nonhomogeneous linear equation to be different from zero on
the whole interval, which allows us to properly define the map x on that set. Observe that
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this condition is also necessary in the ODE setting. Condition (3.5), on the other hand, is a
condition that is only relevant in this context (as Dy = @ when ¢ = Id) and it is equivalent to
the requirements for the quotient rule in Proposition 2.3, guaranteeing that the derivative of x
exists wherever the derivative of the solution of the nonhomogeneous linear equation exists.

A careful reader might have noticed that in the proof of Theorem 3.4, we obtained (3.9).
In other words, we showed that the map x in (3.6) satisfies Eq. (3.1). This might be a bit
surprising since Eq. (3.2) is the more general equation. However, as we show in the next
result, under the assumption that (2.5) holds, Eq. (3.1) and Eq. (3.2) are equivalent problems
in the sense that a solution of one of the problems is a solution of the other one.

Proposition 3.6. Let T € (0, T| and assume that 1+ p(t)A*g(t) # 0 for all t € [to, to + T) N Ds.
If x : [to, to + 7] — R is such that

xé(t)(l + (p(t) + fF(Ox()ATg()) + p(H)x(t) + f(H)x()*> =0, g-aa. t € [to,to+T), (3.10)
then, 1+ (p(t) + f(£)x(t))ATg(t) # 0 for g-a.a. t € [to, to + T) and

P A
) = TR (p() + fDxm)

Conversely, if x : [to,to + T| — R is such that (3.11) holds (in which case, we are implicitly
assuming that 1+ (p(t) + f(t)x(¢))ATg(t) # 0 for g-a.a. t € [to, to + T)), then x satisfies (3.10).

g-a.a. t € [to, to + T). (3.11)

Proof. First, let x : [to, tp + 7] — R be such that (3.10) holds. In that case, there exists N C
[to, to + T) such that po(N) = 0 and

xg(H)(1+ (p(t) + f()x(1))ATg (1) + p(O)x(t) + f()x(t)* =0, tE[to,to+T)\N. (312)

Let us first show that

1+ (p(t) + f(H)x(t))Atg(t) #0, t € [to,to+7T)\ N. (3.13)

Observe that this is clear for t € [ty tg+T) \ (NUDg) as AT g(t) = 0in that case. Thus, in order
to prove (3.13) we need to show that 1+ (p(t) + f(t)x(t))ATg(t) # 0 forall t € [to,to+ T) N Dj.

Choose an arbitrary t € [ty, to + T) N Dy and suppose for the sake of contradiction that
1+ (p(t) + f(t)x(t))ATg(t) = 0. Then, since t € Dy, we have ATg(t) > 0, so we can write
p(t)+ f(t)x(t) = —=1/Atg(t). In that case, (3.12) yields

0= p(H)x(t) + f(O)x(t) = (p(t) + f(H)x(1))x(t) = IOk

which means that x(t) = 0. Thus 0 = 1+ (p(t) + f(£)x(¢))ATg(t) = 1+ p(t)ATg(t), which
contradicts the assumption of the result. Thus, (3.13) must hold.

Now, (3.11) is a direct consequence of (3.12) and (3.13), which finishes the proof of the first
part of the result. The second part of the result is trivial since we are implicitly assuming that
14+ (p(t) + f(£)x(t))ATg(t) # 0 for g-a.a. t € [to, to + T). O

In [13, Section 3], the authors introduced the adjoint linear equation of Eq. (2.7) as the
equation

p(t) ) f(t)

SO =T pman? ) T Tnpmareey YW S G
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with yo € R and p, f € Ly([to, to + T],R) such that (2.5) holds. Observe that if we define

P(t) :—1+p2§2+g(0, E(t) = 1+pégtg+g(t), t € [to,to + TJ, (3.15)

then Eq. (3.14) can be rewritten as
Ye(t) = P(t)y(t) + F(t),  y(to) = o,

i.e., it can be regarded as a particular case of Eq. (2.7) since [13, Lemma 3.4, statement (iii)]
ensures that P,F € ﬁé( [to,to + T],R) and, furthermore,

1+ P(H)ATg(t) =1— p(t) ( )Ng(t) = ! #0, t€[tytg+T)ND,.

1+ p(t)Atg(t 1+ p(t)A*g(t)

Hence, we have a logistic equation associated with Eq. (3.14), which is determined by
0 =yy(5)(1+ (P(t) + F(1)y(1)ATg(t)) + P()y(t) + F(t)y(t)*

- PO F(HAtg(D) bt
=40 <1 T Ty pats® Tt pHate(D)” (”> I EEHINONC

f(t)
(
1

snarg?

= TEpBd g0 (Ve (A +ATg (D) f(Oy(1) — p()y(t) + f(Hy(t)?).

Therefore, we define the adjoint logistic equation with Stieltjes derivatives — that is, the logistic
equation associated with the adjoint equation (3.14) — as the initial value problem

e (L +ATg(t)f(Oy(1) — p(Hy(t) + f(Hy (1) =0, y(to) = o, (3.16)

with p, f € E;,([to, to+ T),R) such that (3.13) holds. This equation turns out to be a much
simpler version of Eq. (3.3).

Remark 3.7. In a similar fashion to Remark 3.3, we can see that Eq. (3.3) is equivalent to
Yg(t) = (p(5) = fF(Oy(E0))y(E),  y(to) = yo- (317)

As a direct consequence of Theorem 3.4, we have the following result providing an explicit
solution for (3.16).

Theorem 3.8. Let p, f € ﬁé([to, to+ T),R) be such that (2.5) holds and define
1

(t) = f(s)exp,(p,s)dug(s), t€ [to,to+T).
yo [tot)
If there exists T € (0, T] such that ¢(t) # 0 for t € [to, to + 7| and
o(t) # —f(t)expy(p,t), t€ [to,to+T|N Dy, (3.18)
then, the map y : [to, to + T] — R defined as
_expy(p.t)
¥ =— g tElvtotT] (3.19)

is a solution of Eq. (3.16) on [to, to + T].
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Proof. First, observe that, given that (3.13) holds, y is a solution of Eq. (3.16) if and only if
x solves

Ye() (1 + (P() + E()y(1)) A g(t)) + P(t)y(t) + F(t)y(t)* =0, y(to) = yo, (3.20)

for P, F as in (3.15). Let us check that P, F satisfy the conditions of Theorem 3.4. Since we have
already shown that P, F € Lg([to, to + T],R) and 1+ P(£)A*g(t) # 0, t € [to, to + T) N Dg, all
that is left to do is check that the map ¢ in Theorem 3.4 satisfies the corresponding conditions
under our hypotheses.

First, observe that

f) (1
(F()t) o 1 +PEt§A+g(t) 1 +1p(t)A+g(t) e
1+ P(t)A*Tg(t p(t
~ Tt 80 T pmarg® 8W

for all t € [to, to + T]. Now, by definition,

1 F(s) _
PO = 30 oy TP A5 OPePre) ()

- ylo + [ FE)expylps)dg(s) = pl0)

where we have used the identity expg(P, )l = expg(p, -), see [7, Proposition 4.6]. Therefore,
() = ¢(t) # 0for t € [to, to + 7] and, using the identity exp (P, )= exp,(p, -) once again,

00) = 9l0) £ ~F) exp(pt) =~ Hps S exp (P07,

t e [to,to —i—T] N Dg.

Therefore, ¢ satisfies the conditions in Theorem 3.4 so the map

ex Lt
)= gy P90 el

is a solution of Eq. (3.20) and, thus, a solution of Eq. (3.16) as we wanted to show. O

Finally, note that it is possible to adapt Proposition 3.6 for (3.16) in a similar way to Theo-
rem 3.8, which yields the following result. We leave the proof to the reader.

Proposition 3.9. Let T € (0, T] and assume that 1+ p(t)A*g(t) # 0 for all t € [to, to + T) N Ds.
Ify : [to, to + T] — R is such that

Yo+ ATt f(H)y(1) — p(y () + f(y(t)* =0, gaa. te [to,to+1), (3.21)
then, 1+ AT g(t)f(t)y(t) # O for g-a.a. t € [to, to + T) and

b p) = f(Dy(t)
e Y OO LA

g-a.a. t € [to, to + T). (3.22)

Conversely, if y : [to,to + T] — R is such that (3.22) holds (in which case, we are implicitly
assuming that 1 + AT g(t) f(+)y(t) # 0 for g-a.a. t € [to, to + T)), then y satisfies (3.21).
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4 Relations between Stieltjes differential equations and dynamic
equations

Throughout this section, we assume that the reader is familiar with time scale calculus and
dynamic equations. For more information on these topics, see [4,5].

Let T be a time scale, to,to+ T € T, T > 0, and denote [ty, fo + T)r = [to,to + T) NT. The
aim of this section is the study of possible relations between the logistic equation with Stieltjes
derivatives, Eq. (3.3), and its corresponding counterpart in the context of dynamic equations
as described in [5],

XA(t) = —(p(t) + fF()x(t)x(o(t), t€ [to,to+T)r, (4.1)

where x® denotes the A-derivative of x and ¢ : T — T is the forward jump operator. Here, we
assume that p and f are defined on the whole [t, to + T) despite the fact that we only need
them to be defined on [t, to + T)r for Eq. (4.1). We do this so that we can easily compare
Eq. (3.3) and Eq. (4.1). Similarly, we also want to consider the relations that might take place
between the adjoint logistic equation, Eq. (3.16), and the corresponding logistic equation that
can be deduced from the adjoint linear equation in [5], namely

yA(t) = (p(t) = f(y(a(O)y(t), t € [to,to+ T)r- (42)

In order to discuss the possible relations between the different logistic equations, we need
to consider a context in which we can compare the two types of differential problems. In
[8, Section 8.3] and [12, Section 3.3.3], it is shown that equations on time scales can be regarded
as a particular case of Stieltjes differential equations when we consider the nondecreasing and
left-continuous map g : R — R defined as

tO/ t S tO/
g(t) =« inf{seT:s>t}, to<t<ty+T, 4.3)
to+ T, t>tg+T.

As pointed out in [8, Section 8.3], g(t) =t for all t € [to, tp + T)r, from which it follows that
Ag(t)=g(t+)—gt) =inf{seT:s>tt—t=0(t)—t=u(t), teltoto+T)r, (“44)

where y : T — T denotes the graininess function.

Theorems 3.49 and 3.51 in [12] establish the mentioned relation between Stieltjes differen-
tial problems and dynamic equations on time scales. Furthermore, a closer look at the proofs
of these results shows that, in fact, the equivalence is between the Stieltjes derivative and
the A-derivative. We gathered this information in the following result. Observe that, unlike
[12, Theorem 3.49] we do not require continuity from the left at right-scattered points as such
condition is always satisfied for A-differentiable maps, see [4, Theorem 1.16 (i)].

Theorem 4.1. If u : [to,to + T)r — R is A-differentiable for each t € [to,to + T)1, then the map
i = uogfor gasin (4.3) is g-differentiable for g-a.a. t € [to, to + T) and, furthermore,

u(t) =u(t), wy(t)=u(t), gaa teltto+T)

Conversely, if u : [to,to + T] — R is a g-continuous function which is g-differentiable for each
t € [to,to + T), then u = il 4 41}, i A-differentiable on [to, to + T)r and, furthermore,

u(t) = ig(t), t€[to,to+T)r.
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Now, given Theorem 4.1, the equivalence between Eq. (3.3) and Eq. (4.1) should be clear.
Indeed, if x satisfies Eq. (4.1), [4, Theorem 1.16 (iv)] ensures that

x8(t) = = (p(t) + f(O)x(1) (x(t) + p()x2(t)),  t € [to, o+ T),

or, equivalently,

XA+ (p(t) + f()x()pu(t) + p(t)x () + f(H)x()? =0, t€toto+T)r.  (45)

Hence, Theorem 4.1 ensures that if X = x o ¢ with g as in (4.3), then for g-a.a. t € [to, to+ T),

0= X () (1+ (p(t) + F(F(0)pu(t) + p(B)X(H) + f(£)X(1)?
= X () (1 + (p(t) + F(H)X())ATg() + p(HX(E) + f(1)X(1)?,

where the last equality follows from (4.4). Hence, x satisfies Eq. (3.3).
Conversely, if X is a g-continuous function satisfying Eq. (3.3), then x = X| [t to+T)r 1S Such
that

X2+ (p(8) + f(1)x(1)ATg(1) + p(t)x(t) + f(H)x(t)* =0, t€ [to,to+ T)r,

so, once again, given (4.4), we see that (4.5) holds. Now [4, Theorem 1.16 (iv)] is enough to
guarantee that x satisfies Eq. (4.1).

The equivalence between (3.16) and (4.2) is done in an analogous manner and we leave it
to the reader.

5 Applications to population models

Impulsive differential equations and equations on time scales can be regarded as particular
cases of differential equations with Stieltjes derivatives, see [8, Section 8]. This fact was taken
into account in [8, Section 9], where the authors showed that some real-life phenomena can
be modelled in the context of Stieltjes calculus. Similarly, in [10, Sections 5 and 6], the authors
used these relations to show that Stieltjes differential equations can be a better tool than
ODE:s for population models of species that exhibit very short periods of reproductions or are
subject to dormant states in which the population size is unlikely to change in a noticeable
manner. With these ideas in mind, and bearing the applications of the usual logistic equation
for population models, we want to show that the logistic equations with Stieltjes derivative
introduced above can be an adequate tool to describe the behavior of certain species.

During the winter and early spring months, the grizzly bears, like many other bears, enter
a stupor stage, during which they reduce their activity as much as possible in order to survive
that time of the year. This is possible because, in the months prior to the hibernation stage,
they build a layer of fat that they will use to sustain themself during this dormant state.
Naturally, this might cause a population of grizzly bears to compete for resources during
the months leading to winter. Interestingly, the mating of the grizzly bear occurs during
this period of time when the grizzly bear is preparing itself for the winter. However, the
development of the embryos goes on hold until the hibernation stage, which eventually leads
to the introduction of newborn cubs towards the end of the stupor stage.

We claim that a logistic equation with Stieltjes derivatives can be used to represent the
evolution of a population of grizzly bears. To that end, we shall divide years into the four
different seasons and we shall assume that one unit of time, denoted by t, represents a full
season, which leads to the following classification of time intervals:
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’ SEASON \ TIME INTERVALS

Winter (4k, 4k + 1], k=0,1,2,...
Spring (4k +1,4k+2],k=0,1,2,...
Summer | (4k+2,4k+3],k=0,1,2,...
Fall (4k + 3,4k +4],k=0,1,2,...

With this notation, the intervals (4k, 4k + %], k=0,1,2,..., represent the hibernation periods
of the population and, for simplicity, we shall assume that the remaining times of the year,
namely, (4k + %,4]{ +4], k=0,1,2,..., represent the period of time when the bears prepare
for the next winter.

The next step is to select an adequate nondecreasing and left-continuous map ¢ : R — R
which reflects the behavior explained above, keeping in mind the information in [10, Sec-
tion 5]: “[the map g] can be regarded as a time modulator. Discontinuities correspond to
sudden changes ... while constancy intervals correspond to dormant states ... The greater
the slope, the more influence the corresponding times have in the process”. Hence, we would
like the map g to exhibit the following properties:

(a) On intervals of the form (4k, 4k + %], k=0,1,2,..., the map g should remain constant
as during these times, the population is hibernating and, thus, very unlikely to change
drastically.

(b) At times of the form 4k + %, k=0,1,2,..., the map g should possess a jump discon-

tinuity, representing the introduction of newborns into the population, which we shall
assume to happen simultaneously so that they can be represented by impulses. The
map g must be continuous everywhere else as there are no other sudden changes in the
population.

(c) In the months directly after new individuals are born, ¢ must have a greater slope
as newborns are weaker and, therefore, the population size is more volatile. As time
progresses, the slope of the function should flatten as new individuals get stronger. In
the times immediately prior to the hibernation periods we would want ¢ to have a less
steep slope, representing the slowing down of the population as they approach their
dormant state.

Since we will be assuming that the evolution of the population starts at ¢+ = 0, for simplicity,
we shall assume that g is constant on (—oo,0]. Furthermore, given the cyclical nature of the
previously described annual phenomena, we will assume that there exists ¢ € R such that

g(t)—g(t—4)=¢c, t>4. (5.1)

Observe that, in particular, this implies that A*g(t) = A*g(3) for all t € D,.
An example of a map g : R — R satisfying conditions (a)—(c) and the extra assumptions is

3
0/ t A

g(t) = (5.2)
1+ 5sin <75T <t— i)) te <z,4} ,

and ¢(t) = g(4) + g(t —4) for t > 4, see Figure 5.1.
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Figure 5.1: Graph of the map g in (5.2).

We now consider the initial value problem

xg(t) = F(t,x(t)), x(0) = xo, (5.3)

where xg > 0 and F : [0, +00) x R — R is defined as

—Bx, ifte [4k,4k+2>, x €R,
k=0
F(t,x) =< ax, ift:4k+g,k:0,1,2,..., x €R,
—Bx (14 vx), ift€U<4k+§,4k+4),xE]R,
k=0

\

where B > 0 represents the death rate of the population; « > 0, the reproduction rate; and
v > 0 represents the competition strength. Naturally, (5.3) only represents the evolution of
a population as long as x(t) > 0, which will be the case for our solution as we will show later.
Furthermore, observe that for t # 4k + %, k=0,1,2,..., and x(t) > 0, we have xig(t) <0,
which shows that the population is bound to decay over time; while x¢ () > 0 for t = 4k + 3,
k =0,1,2,... and x(f) > 0, which is consistent with the fact that only new members of
the population are introduced at such times. Furthermore, during intervals of the form
(4k + 3,4k +4], k = 0,1,2,..., the population decays faster as the population increases. The
competition term is not present in the equation on the intervals (4k, 4k + %], k=0,1,2,...,as
during hibernation, there is no competition for resources. Of course, given our choice of g,
this is not relevant for (4k, 4k + %), k=0,1,2,..., as they belong to C; and, thus, have measure
zero. Nevertheless, for other choices of g this might be relevant.
Consider the maps p, f : [0, +c0) — R defined as

—B, ift7é4k+§, k=0,1,2,...,

3
«, ift:4k—|—§,k:0,l,2,...,

« 3
By, ifte | <4k+,4k+4>,
ft) = k=0 2

0, otherwise.

(5.5)

We claim that (5.3) can be rewritten as

xg(H)(1+ATg(t) f(1)x(1)) — p()x(t) + f(Hx(t)* =0, x(0) = xq,
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that is, it is an adjoint logistic equation with Stieltjes derivatives of the form (3.16). Indeed,
given that f(t) = 0 for t & Uy (4k + 3,4k +4), it follows that

xg(H)(1+ ATg(1) f(1)x(t)) — p(£)x(t) + f()x(t)?
=F(t,x(t)) —p(t)x(t), t¢g U <4k+ > 4k+4>

k=0
Observe thatift:4k—|—%,k:0 1,2,..., then

F(t,x(t)) — p(t)x(t) = ax(t) — ax(t) = 0;
while for t € Uy, [4k, 4k + 3),

F(t, x(t)) — p(t)x(t) = —px(t) — (=p)x(t) = 0.
Now, if t € U o(4k + 3,4k +4), then t ¢ Dg = {4k+3 :k=0,1,2,...},s0 ATg(t) = 0. Thus,
for t € UpLo(4k + 3,4k +4),

xg () (1 + AT f(1)x(1)) = p(1)x(t) + f(£)x(£)* = F(t,x(£)) — p(t)x(t) + f(1)x(£)?
= —px(t) (1+yx(t)) — (=px(t)) + prx(t)* = 0.

Thus, we can apply Theorem 3.8 on an interval [0, T], T > 0, to obtain a solution of (5.3). To
that end, we need to check that p and f in (5.4) and (5.5) satisfy the corresponding hypotheses.

Let T > 0. First, observe that p and f are Borel-measurable maps which guarantees that
they are g-measurable. Hence, since they are bounded, it follows that p, f € ,Cé([O, T),R).
Furthermore, observe that (2.5) holds since

1+ p(t)ATg(t) =1+aATg(t) >0, te[0,T]NDy.

Observe that, in particular, this implies that exp (p,t) > 0 for all t € [0, T], see Theorem 2.11.

Consider .

p(t) = v on f(s)expy(p,s)dug(s), te€[0,T).
Given that f(t) > 0 for all t € [0,T), it follows that ¢ is nondecreasing. Therefore, ¢(t) >
@(0) = x;' > 0 forall t € [0,T]. In particular, this proves that ¢(t) # 0 on [0, T], which
also shows that (3.18) holds since f(tf) = 0 for t € Dg. Therefore, since the conditions of
Theorem 3.8 are satisfied on the whole [0, T|, we know that the map

expy(p, t)
)
is a solution of (5.3). Since exp,(p,t), ¢(t) > 0 for t € [0,T], it follows that x(t) > 0 for all
t € [0, T| as we claimed before. Given that Theorem 3.8 can be applied for each T > 0, we can

obtain a solution on [0, +c0). The following result provides a recursive expression for such
map.

, t€]0,T],

Theorem 5.1. The solution of (5.3) on [0, +o0) given by Theorem 3.8 is the map x : [0, +00) — R
defined as x(0) = xg and, fork =0,1,2,...,

x(4k), h<t<akt]
x(t) = x(4k) (1+ )
PEO-8(4+31)) 4 y(4k)y (1+7) (eﬂ(g(t)fg(4k+%+)) _ 1) '

with® = aA*g(3).

4k+§ <t<4(k+1),
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Proof. First, observe that by definition, exp,(p,0) = 1 and ¢(0) = x; !, and so x(0) = xo.
Next, note that since g is constant on each interval of the form [4k, 4k + %], k=0,1,2,...,and
expg(p, -), ¢ are g-absolutely continuous maps, they are also constant on the same interval,
see Proposition 2.9. Therefore,

exp(p,t)  exp,(p,4k) [ 3}
x(t) = = =x(4k), te |4k, 4k+-|, k=0,1,2,....
== T I 2

Hence, all that is left to do is to show that, for k =0,1,2,...,

x(4k) (14 ay) 3
YO ST x(aky (14 ) (PO ) 1) s gacen].

Let k € {0,1,2,...}. Observe that, by definition, for t € (4k+ 3,4(k +1)],
expylp,t) = oxp ([ 7lo)dns(o))
— ex ( 4k + 3) ex / 5(5)djie (s)
- pg p, 2 p [4k+%,t) p :ug

= exp, (p,4k) exp </[4k+3/t) ﬁ(s)dﬂg(s)> ’

1

p(t) = oot [ SO ep(p )i

¢ <4k + ;) + /[%;t) f(s) expy(p,s)dpg(s)

¢ (4k) + 4 2) f(s)exp,(p,s)dpg(s).

Now, for t € (4k + %,4(k +1)],

/[4k+;,t> F(s)dpug(s) = /{M} As)dug(s) + /(Mt) A(s)dpug(s)
=7 <4k + ;) Atg <4k + i) + /(4k+g,t) p(s)dpug(s)
=log <1 +p <4k+ ;) Atg <4k + i)) — /(4k+g,t) Bdpig(s)

= log <1 +aAtg <;>> +p <g <4k+ §+) - g(t)>

=log(l1+w)+p <g (4k+ 34—) —g(t)> :

Hence, for t € (4k + 3,4(k + 1)], we have

exp </[4k+g,t) ﬁ(s)dyg(s)> = (1 -i—&) eﬁ<g(4k+%+)fg(t)).
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On the other hand, for t € (4k + 3,4(k + 1)), since f(4k + 3) = 0, we have
fo g PO Rl = [ Fs)expy )
= /(4“%) Brexp,(p,s)dug(s) = —7/4“% —Bexp,(p,s)dug(s)
- _7/(4](4_%,,;) P< )eng(p, d“l/lg - _’)// eng p/)) ( )d.ug( )

Now, using the Fundamental Theorem of Calculus, Theorem 2.6, it follows that

/[4k+g,t) f(s) eng(p,s)dyg(s) =77 (eXPg(P/f) —exp, (p,4k+ §+>>
= —yexp, (p,4k) (1 +7) (eﬁ(g(4k+%+)—g<t>) a 1)
= yexp, (p,4k) (1+) (1 - s 34)50))

Therefore, for t € (4k + 3,4(k+1)],

exp (p,4K) exp ( [ ﬁ(s)dug(s)>

¢ (4k) + R f(s) exp,(p,s)dpg(s)

exp, (p,4k) (1+w) oPg(4k+3+)—5(1))
@ (4k) + v expy (p,4k) (1+7) (1 Pls(r+10)50))
¢ (4k)

exp, (p, 4k) _ 34 —e(t
+W7(1+M (1—eﬁ(g(4k it) g())>

x(t) =

(1+ &) Ps(3kH3+)—g(1)

(4K (1+7)
B8 —8(4k+3+)) x(4k)y (1 + &) (eﬁ(g(t)—g(4k+%+)) _ 1) ’

as we needed to show. ]

In Figure 5.2 we have plotted the solution above for different values of . Observe that the
population presents the behavior we expected. Indeed, first note that the population remains
constant during the hibernation periods. Furthermore, the population decays between gener-
ations, and the rate of this decay depends on the competition strength, . This can be easily
observed by noting that x(3+) = (14 a)xy = 15 in all the graphs in Figure 5.2, however, the
population levels at t = 4 are lower for higher values of 7.

In order to study the asymptotlc behavior of the solution of (5.3), we will look at the
sequences {P}® = {x(4k + 3)}®, and {P}, = {x(4k + 3+)}2, representing the popu-
lation at the end of the hibernation period and the population after newborns are introduced,
respectively. Using the expression for x obtained in Theorem 5.1, we see that { P }¢° , satisfies

Pe(1+ %)
PR g1 +34) 4 Py (1 + &) (ePEE—3G(—1+3+) _ 1)’

P():xO, Pk+1: kZO,l,...,
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Figure 5.2: Graphs of the solution of (5.3) for gasin (5.2), xo =1, a = %4, p = 5

and different values of <. In order, ¢ = %, y=1,v=2and v =4.

which, thanks to (5.1), simplifies to

P(1+7
Py = k(1+a) k=01,..., (5.6)

B+ Py(1+a)(ef—1)

with B = B(g(4) — g(3+)). Furthermore, Pc = (14 )P for k = 0,1,2,.... Let us rewrite
Eq. (5.6) in the form
Pey = H(PY), k=0,1,...

where -
tH(1+w)

P ty(1+7)(F—1)

A simple calculation shows that the map H has, in general, two fixed points, namely zero and

t €[0,00).

1-|-BZ—eB
y(1+7)(eP—1)

The next result shows that the asymptotic behavior of the sequences {P;}, and {P}%
(and therefore of the whole solution x) depends on whether L is positive (i.e., eP < 14+0)or
nonpositive (i.e., ef > 1+ ).

Theorem 5.2. Denote @ = aA*g(3) > 0, B = B(g(4) —g(3+)) > 0.

(@) If f > 1+, the sequence {P}{°, is nonincreasing and converges to 0. As a consequence,
{ P} has the same behavior, and lim; e x(t) = 0.

(b) If F < 1+& we distinguish two cases:

(i) If xo > L, the sequence {Py}2, is nonincreasing and converges to L. As a consequence,
{ P} is also nonincreasing and converges to (14 «)L.
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(ii) If xo < L, the sequence {Py}3 , is nondecreasing and converges to L. As a consequence,
{ P} is also nondecreasing and converges to (1 +a)L.

Proof. We shall only prove the result for { P}, as the properties for { P}, follow from the
relation P, = (1 + E)Pkaor k=0,12,....

First, assume that e? > 1+ @. Observe that, fork =0,1,2,...,
Pe(1+ @) 1+

Pey1=H(P) = — = SB—— <P,
’ ef + Pey(1+@)(ef — 1) e
which proves that the sequence is nonincreasing. Furthermore, by definition, we have that
P. > 0 for k = 0,1,2,.... Hence, the sequence {P;}{°, is nonincreasing and bounded from

below, so it is convergent. Since the only nonnegative fixed point of H is zero, it follows that
{Pe}2, converges to 0.
Next, we assume that ¢# < 1+ &. Standard computations show that

eP(1+a)
(ef + ty(1+a)(eP — 1))
so it follows that H is nondecreasing on [0, +o0). Recalling that H(L) = L and P, = H(P),

it follows thatif xo > L,then P, > L, k=0,1,2,...;andif xo < L,then P, < L,k=0,1,2,....
Now, suppose that xo > L. In that case, for k =0,1,2,...

H'(t) =

P(1+4&) P+ Py(1+@)(ef —1)— (1+7)
Py — D1 = P — — —— =P = ——=
ef + Pey(1+ &) (ef — 1) ef + Pey(1+ &) (ef — 1)
b P+ Ly(1+7)(P—1)— (1+7) b Pr1+7—eP—(1+7)
> P = = = P— = =
ef +Dey(1+a)(ef —1) ef +Dey(1+a)(ef —1)
Hence, the sequence {P;}° , is nonincreasing and bounded from below by the unique positive
fixed point L, so it is convergent to L.
On the other hand, if xo < L then, for k =0,1,2,...,

e+ Py(1+@)(ef —1)— (1+&) _ P+ Ly(1+a)(ef —1)— (1+a)

Py — Peyr = P = — < P = — =0
eP + Py(1+a)(eP —1) P+ Py(1+a)(ef —1)
In this case, the sequence {P;}{° ; is nondecreasing and bounded from above by the unique
positive fixed point L, so it is convergent to L. O

Remark 5.3. Observe that, if ¢ < 1+ & and xo = L, then the sequences {P;}® , and {P}%,
are constant and equal to xg and (1 + &)xo, respectively. Hence, it follows from Theorem 5.1
that the solution is 4-periodic in this case.

In Figure 5.3 we can observe the different asymptotic behaviors that we can expect from
the solution of Eq. (5.3) as described by Theorem 5.2. In particular, we can see that when
ef > 1+ (i.e., when the death rate is high enough) the population is bound to extinction as
presented in the first of the graphs. On the other hand, the second and third plot show that
if e# < 1+ (i.e., when the reproduction rate is high enough), we can expect the population
to approach an equilibrium state corresponding to a 4-periodic solution shown in the fourth
plot.

As a final note, observe that the example here provided is relatively simple. More compli-
cated models can be obtained if we consider the parameters «, f and K to be functions instead,
or if we relax the condition (5.1).
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Figure 5.3: Graphs of the solution of (5.3) for g as in (5.2) showing the different
asymptotic behaviors for xg = 1, « = ¢ — 1 and different values of the parameters

(B, 7). In order, (3,3), (3, 1), (1) and (3, 1),

6 Preliminaries on Stieltjes integrals

In the rest of the paper, we focus on the logistic equation in the context of Stieltjes integral
equations. We will work with Kurzweil-Stieltjes integrals (also known as Perron-Stieltjes
integrals), but we only need some basic properties of these integrals, which are summarized in
the present section. A much more comprehensive treatment is available in [15]. Alternatively,
it would be possible to work with the Young integral, which coincides with the Kurzweil-
Stieltjes integral if the integrand and integrator are regulated and one of them has bounded
variation (cf. [15, Theorem 6.13.1]).

We need the substitution theorem for the Kurzweil-Stieltjes integral (see [15, Theorem 6.6.1]).

Theorem 6.1. Assume that h : [a,b] — R is bounded and f,g : [a,b] — R are such that fabfdg
exists. Then

b t b
[rod ([ 1686) = [ noswdso,
whenever either side of the equation exists.

The next result describes the properties of indefinite Kurzweil-Stieltjes integrals (see [15,
Corollary 6.5.5]).

Theorem 6.2. Let f,g : [a,b] — R be such that g is requlated and fab f dg exists. Then, for every
to € [a,b], the function

is regulated and satisfies
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Moreover, if f is requlated and g has bounded variation, then h has bounded variation.
For the next result, see [15, Exercise 6.3.5].

Lemma 6.3. If f : [, B] — R is an arbitrary function and g : (&, ] — R is such that g(t) = c for
each t € (a, B), then

[ £(0)ds(0) = F(B)3(B) ~ Flaz(a) — £ (8) ~ f(w)

Our next goal is to obtain an integral version of the formula

(%) ~5or

We begin with the case when g is a step function.

Lemma 6.4. If ¢ : [a,b] — R is a step function, which is nonzero on [a,b], then

b 1 1 1 b 1
/a I (g(t)) “ g gla) ‘/a mdg(t),
with the convention that g(a—) = g(a) and g(b+) = g(b).

Proof. The first equality is obvious from the definition of the integral; let us verify the second
one.

Since g is a step function, there exists a partitiona = g < a1 < --- < &, = b and constants
c1,...,cm € R such that g(t) = ¢; for each t € (aj_1,4;). Let us also denote ¢y = g(a),
cmi1 = §(b). Then g(aj 1—) = c¢j_1 and g(a;_1+) = cj for each j € {1,...,m +1}. Applying
Lemma 6.3 to each interval [a;_q,4;], j € {1,...,m}, we calculate

b 1 i 1 1
= dg(”‘;"(( T S swT)
n gl glaj1)
+]§<( g g(aj_1—>g<aj_1+>>

S ) g
‘?f(cjlcj cjc]-+1)+g<b—>g<b+> S )g(ah)

o cmr1 ga)  g(b)
We now generalize Lemma 6.4 to functions of bounded variation.

Theorem 6.5. If ¢ : [a,b] — R has bounded variation and for each t € [a,b], we have g(t) # 0,
g(t—=) #0,and g(t+) # 0, then

b 1 1 1 b 1
/a d (g(t)> ~ g(b) a g(a) _/a mdg(t),
with the convention that g(a—) = g¢(a) and g(b+) = g(b).
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Proof. 1t suffices to prove the second equality. Since g has bounded variation, there exist non-
decreasing functions ¢!, ¢% : [2,b] — R such that ¢ = ¢! — ¢2. Also, for each i € {1,2}, there
exists a sequence of nondecreasing step functions {g,}°,; which is uniformly convergent
to ¢'. Without loss of generality, we can assume that these sequences are such that

forallm € N and i € {1,2}. Therefore,

var(gh, [a,b]) = gi,(b) — gi(a) < g'(b) — g'(a), neN, i€ {12},

Consequently, by letting ¢, = ¢& — ¢2 for all n € IN, we obtain a sequence of finite step func-
tions {g, }7_,, which is uniformly convergent to g, and its members have uniformly bounded
variation.

Let us again use the convention that ¢,(a—) = g¢u(a) and g,(b+) = gu(b) for each
n € N. Note that g,(t—) = g(t—) and g,(t+) = g(t+) with respect to t € [a,b] (see
[15, Lemma 4.2.3]).

Also, there exists an M > 0 such that

Ig(t=)| > M, tela,b]
(apply Lemma 2.7 to f(t) = g(t—)). Hence, for sufficiently large n € IN, we have
gn(t=)| > M/2, te€[ab],

and therefore

1 LI ’ga—) ~ gult-)

gu(t—)  g(t—) gn(t—)g(t—)

which shows that 1/g,(t—) =2 1/g(t—) with respect to t € [a,b]. In a similar way, one can
show that 1/g,(t+) = 1/g(t+) with respect to t € [a, b]. Consequently,

< 2lg(t-) — galt-)],

1 1
n(—)gn(t+) — g(t—)g(t+)

with respect to t € [a,b]. Thus, we conclude that

1 : i . ! = — lim b;
g(i)_g(i‘o_”lgr‘}" <8n@)_8n(ﬂ)> =% a Sn(t—=)gn(t+) dgn(t)

b 1 d
- [} ey s

where the second equality follows from Lemma 6.3 and the third from the uniform conver-
gence theorem for integrals whose integrators have uniformly bounded variation (see [15, The-
orem 6.8.8]). O

Once we have Theorem 6.5, it is not difficult to obtain the following integral version of the
quotient rule, i.e., of the classical formula
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Theorem 6.6. If f,q : [a,b] — R have bounded variation and for each t € [a,b], we have g(t) # 0,
g(t—=) #0,and g(t+) # 0, then

Po(fON ) fla) _ P df(8) b f(t=)dg(d)
/u I (g(t)> ~8(b)  gla) _/a g(t+) /a g(t—)g(t+)’

with the convention that g(a—) = g(a) and g(b+) = g(b).

Proof. It suffices to prove the second equality. Lemma 2.7 implies that 1/¢ has bounded
variation. Using the integration by parts formula in the form presented in [13, Theorem B.6],

we get

bdf(t) _ f(b)  fla) [P 1

[ 0= s~ 74 ()
The definition of the integral, Theorem 6.5 and Theorem 6.1 imply
b 1 b 1 1
[ fe-)a b(g(”> = [ rera (- g()b)
t d t—)dg(t
== [rea (] @ Sm) = L sty

which completes the proof. O

Theorem 6.6 is not needed in the rest of this paper, but we hope it might be useful for
subsequent research.

7 Stieltjes-integral versions of the logistic equation

We are now ready to deal with Stieltjes integral equations. In this section, we always assume
that ¢ : [2,b] — R has bounded variation (left-continuity is no longer required). We begin
with the linear nonhomogeneous equation

() = x(t0) + [ (p(o)3(s) + £(5)) dgls), #€ (o8], 7.)

and try to obtain the corresponding logistic equation as an integral equation whose solution
1

is the function y(t) = x(¢) .
Theorem 7.1. Suppose that g : [a,b] — R has bounded variation, p : [a,b] — Rand f : [a,b] - R
are regulated, and x : [a,b] — R satisfies Eq. (7.1). If x(t) # 0, x(t—) # 0, and x(t+) # O for all
t € [a, b, then the function y(t) = x(t)~! satisfies

o (p(s) + F(S)y(s)y(s) S
VO =¥0) ~ | T T O A e (Lt (s T T ETIATEE) )

or all t € [a,b], with the convention that AT¢(s) = 0 if s = max(t,ty), and A" g¢(s) = 01
8 8
s = min(t, tp).

(7.2)

Proof. According to Theorem 6.5, we have

WO~ y(t) = g~ i == [ (),
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with the convention that x(s—) = x(s) if s = min(¢,fy), and x(s+) = x(s) if s = max(t, to).
Using Eq. (7.1) and Theorem 6.1, we get

xX(s+) = x(s) + (p(s)x(s) + f(5))ATg(s) = x(s) (1 + (p(s) + f(s)y(s)) A" g(s)), (7.3)
x(s=) =x(s) — (p(s)x(s) + f(s))A7g(s) = x(s)(1 = (p(s) + f(s)y(s))A"g(s)) (7.4)
Therefore,

T (p(s) + F()y(s))y(s) S
V0 =v0) =~ | T E T IR E T ) T FOrETATEE) SO

with the convention that AT¢(s) = 0 if s = max(t,ty), and A~ g(s) = 0 if s = min(t, to). O

Remark 7.2. Theorem 7.1 requires that x(t) # 0, x(t—) # 0, and x(t+) # 0 for all t € [a,b].
The first condition is obviously necessary, for otherwise the definition of ¥ would not make
sense. If this condition is satisfied, then Eq. (7.3) and (7.4) show that the latter two conditions
are equivalent to

L+ (p(t) + f(B)y(£))ATg(t) # 0, (7.5)
1= (p(t) + f(H)y(1))A"g(t) # 0 (7.6)
for all t € [a,b]. Since these terms appear in the denominator on the right-hand side of

the logistic equation, it is clear that the two conditions are necessary as well. Recalling that
y(t) = 1/x(t), we can rewrite the conditions (7.5) and (7.6) as

IO
SO EOTSrOk @
x(t) £ DA 81) (7.8)

1—p(t)A~g(t)
whenever the denominators are nonzero.

Remark 7.3. In the theory of Stieltjes differential equations, it is always assumed that g is
a left-continuous nondecreasing function. In this case, Eq. (7.1) is the integral version of the
Stieltjes differential equation xg(t) = p(t)x(t) + f(t), and Eq. (7.2) simplifies to

o [ OO
V=)= TG+ Ay arg S e ot

which is the integral version of the Stieltjes differential equation (3.1). Thus, we see that the

form of the logistic equation (7.2) is consistent with the form obtained in Section 3. Condi-
tion (7.7) corresponds to the earlier condition (3.5), and condition (7.8) reduces to x(t) # 0.

Note that Eq. (7.1) is a special case of a generalized linear differential equation, whose
solution can be explicitly expressed using the variation of constants formula (see e.g. [15,
Theorems 7.8.4 and 7.8.5]). Thus, the reciprocal of this solution is a solution of the logistic
equation given in Theorem 7.1.
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Besides Eq. (7.1), one can also investigate the linear nonhomogeneous Stieltjes equations
x(t)) + / )+ £(s)dg(s), te€ [ab, 79)
X(t) = x(to) + [ (~p(s)x(s+) + F()) dg(s), ¢ € [a,b], (7.10)

to

which were studied in [13,20], and which are dual to each other. Note that the one-sided
limits x(s—) and x(s+) in the integrands have to be interpreted as x(s) when s coincides with
the lower or upper limit of the integral, respectively.

Starting with a solution x of Eq. (7.9) or Eq. (7.10), let us find the corresponding integral
equation for the function y(t) = x(t)~!. Interestingly, we will see that the resulting logis-
tic equations are simpler than the logistic equation obtained in Theorem 7.1. We need the
following modification of Theorem 6.1.

Lemma 7.4. Assume that g, h : [a,b] — R have bounded variation and k, x : [a,b] — R are requlated.

1. If
v(t) = [ k(s)x(s+)dg(s), € [a,b]

to
with the convention that x(s+) means x(s) if s = max (¢, to), then for each t € [a,b], we have

[ ne)dvts) = [ Bk dgto

with the convention that x(s+) means x(s) if s = max(f, to).

2. If
v(t) = [ k(s)x(s-)dg(s), € ab],

to
with the convention that x(s—) means x(s) if s = min(t, ty), then for each t € [a, b], we have

s dyts) = [ no)k(s)x(s-) dgts)

with the convention that x(s—) means x(s) if s = min(¢, tp).

Proof. Let us prove the first statement. We will use the symbol x 4 to denote the characteristic
(indicator) functlon of a set A C R. Suppose first that t > t;. Using Theorem 6.1 and the

formula ft (s)xry(s)dq(s) = p(t)A~q(t), which holds for each t > tp and all functions
p,q:[a,b] = R, we get

[ noay) = [ m)a ([ R0 (7) + 300 (1) dg0))

e ([T dgo)) - [ned ( [kon (s g
h(s)k(s)x(s+) dg(s) /t:ms)d( X(on ($)K(s)¥x(5)A78(5))

S K(S) (x50 (5) + ()00 (5)) g9

[ KA (s (5) dgl) — [ 1) d (kA x(5)878(6)).

to

I I
h =

~

t

=

_|_

o
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The last two integrals cancel each other out, since both have the value h(t)k(t)A*x(t)A~g(t);
for the latter integral, this follows from [15, Lemma 6.3.16] (note that the integrand has
bounded variation, the integrator is regulated and vanishes in all points with at most count-
ably many exceptions). This settles the case t > ty. Similarly, if t < ¢y, we have

[ ) a6) = [ 651 [ KO0 (7) 4 32t () () )

_ ["n(s)a </t:k(r)x(r+)dg(r)> +/t:h(s)d </St0k(r)x{to}(T)A+x(r) dg(r))

to
t

= [ hs)k(s)x(s+) dg(s) + [ h(s)d () (K1) (1) (1)

= | h(s)k(s)(x(sH)X[t40) (5) + x(5)X 1} (5)) A& (s)

to

— [ HOKOA xS0 (5) dg5) — [ HE) A (st (Me(10)A w1008 g (1)

Jt

The last two integrals cancel each other out, since the former equals & (t)k(to) AT x(tg) A~ g(to),
while the latter has the opposite value. This completes the proof of the first statement.
The second statement can be proved in a similar way. O

We can now obtain the logistic equations corresponding to Eq. (7.9) and Eq. (7.10).

Theorem 7.5. Suppose that g : [a,b] — R has bounded variation, p : [a,b] — Rand f : [a,b] - R
are requlated.

1. Suppose that x : [a,b] — R satisfies Eq. (7.9). If x(t) # 0, x(t—) # 0, and x(t+) # 0 for all
t € [a,b], then the function y(t) = x(t) ! satisfies

V) =ylt0) = [ () + s )y(s ) dgls), reladl (a1

2. Suppose that x : [a,b] — R satisfies Eq. (7.10). If x(t) # 0, x(t—) # 0, and x(t+) # 0 for all
t € [a,b], then the function y(t) = x(t)~! satisfies

t

y(#) = y(to) —/t (=p(s) + f(s)y(s+))y(s—) dg(s), t€ [ab]. (7.12)
0

In both cases, y(s—) or y(s+) in the integrands should be understood as y(s) when s coincides with

the lower or upper limit of the integral, respectively.

Proof. Let us prove the first statement. According to Theorem 6.5 and Eq. (7.9), we have

1t dx(s)
y(H) —ylto) = x(t)  x(ty) /tg x(s—)x(s+)

[ a ([ e+ ren ags) )

Note that Eq. (7.9) implies that x has bounded variation, and by Lemma 2.7, the function 1/x
has the same property. Hence, the functions s — 1/x(s—) and s — 1/x(s+) as well as their
product have bounded variation. Using Lemma 7.4 and Theorem 6.1, we get
t t
PE)(s—) + £(5) -
t) —y(to) = — d = d
y(t) — y(to) ey s = = [ () + fOyls)yls+) ds (o)

fo
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where the second equality follows from the fact that x(s+) ! = y(s+) and x(s—) ! = y(s—).
The proof of the second statement is similar. O

Remark 7.6. If g is left-continuous, then a function x satisfying (7.9) or (7.10) is also left-
continuous, i.e., x(t—) = x(t) for all t. In this case, Eq. (7.9) coincides with Eq. (7.1), i.e., we
have the following pair of equations:

= x(t0) + [ t<p<s>x<s> +£($)dgls), €], 713
x(ko) + / x(s+) + f(s))dg(s), te [a,b]. (7.14)

According to Theorem 7.5, if x(t) # 0 and x(t+) # 0 for all ¢, then y = 1/x satisfies one of
the following equations:

() =y(t0) = [ (&) + (s ) (o), 1 fnb], 7.15)
() =y(t0) = [ (p() + FsH)(s) dgls), 1 [ab], 7.16)

These are integral versions of the Stieltjes differential equations of Eq. (3.4) and Eq. (3.17),
respectively, which are equivalent to the two logistic equations presented in Section 3.

Remark 7.7. General solution formulas for Eq. (7.9) and (7.10) were recently published in [20].
They resemble the well-known variation of constants formula, and involve solutions of the
corresponding homogenenous Stieltjes integral equations. According to Theorem 7.5, explicit
solutions of Eq. (7.9) and (7.10) immediately give rise to explicit solution formulas for the two
versions of the logistic equation.

Remark 7.8. Theorem 7.5 again requires that x(f) # 0, x(t—) # 0, and x(f+) # 0 for all
€ [a,b]. The first condition is obviously necessary, for otherwise the definition of y would
not make sense. Let us have a closer look on the latter two conditions, trying to avoid x(t—)
and x(t+), and express both conditions in terms of x(t).
Suppose first that x : [a,b] — R satisfies Eq. (7.9). Using the properties of the Kurzweil-
Stieltjes integral and performing similar calculations as in the proof of [13, Lemma 6.5] (which
corresponds to the homogenenous case f = 0), we find that

x(t=)(1+ p(H)Ag(t)) = x(t)(1+ p(H)ATg(t)) — fF(HAg(H), € (a,to), (7.17)
x(t=)(1+ p(t)A"g(t)) = x(t) — f(¢ )Ng( ), € [to, D], (7.18)
x(t4) = x(t)(1+ p()ATg(t) + f(HATg(H), € [a,to], (7.19)

x(t4) = x(t) + x(t=)p(t)ATg(t) +f(f)A+g(f)f € (to, D). (7.20)

First, we deal with x(t+

t
x(5)(1+ p(£)ATg(t)) + f(#)

to

) =
). Taking t € [a, to], Eq. (7.19) implies that x(t+) # 0 if and only if
AT g(t) # 0; assuming that 1+ p(t)ATg(t) # 0, this is equivalent

x(t) # —1 J{(;)(A)ngg( K t € [a, to]. (7.21)

For t € (to,b), if 1+ p(t)A~g(t) # 0, we can express x(t—) from Eq. (7.18) and substitute to
Eq. (7.20) to obtain

x(t4) = x(t) + S SOB 8 ) 1 pats(e), e fan)
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Hence, to ensure that x(t+) # 0, we need

x(8)(1+ p(H)A7g(1)) + (x(t) — f(HAg(E) p()AT-(E) + f()ATZ(H) (1 + p()A™g(H) # 0,
which simplifies to
x(8)(1+ p(£)Ag(t)) + f(E)AT(t) #0,
and if 1+ p(f)Ag(t) # 0, this is equivalent to
_ fH)AT()
x(t) # — T+ p(DAg()’ t € (to,b). (7.22)

Next, we focus on x(f—). If t € (a,t9) and 1+ p(t)Ag(t) # 0, then Eq. (7.17) implies that
x(t—) # 0 if and only if

x(£)(1+ p(t)ATg() — f()ATg(t) #0,
and if 1+ p(t)ATg(t) # 0, this is equivalent to
f(HAg(t)
"7 Ty piarghy

Similarly, if t € [to,b] and 1+ p(t)A~g(t) # 0, then Eq. (7.18) implies that x(t—) # 0 if and
only if

t € (ato). (7.23)

x(t) — f())A"g(t) #0,
or equivalently
x(t) # f(HAg(), t€ [to,b]. (7.24)
Thus, we have shown how to reformulate the conditions x(t+) # 0 and x(t—) # 0 in terms
of x(t). Note that if g is left-continuous, then the conditions in (7.22) and (7.21) coincide, and
the conditions in (7.23) and (7.24) reduce to x(t) # 0.
A similar analysis can be performed for Eq. (7.10). However, it is easier to observe that
x : [a,b] — R satisfies
t

x(t) = x(to) + | (=p(s)x(s+) + f(s))dg(s), t€ [ab],

fo

if and only if the function y : [-b, —a] — R given by y(t) = x(—t) satisfies

v =y(-t0)+ [ (POY(s=)+ ) d), 1 [-b -,

where f(s) = p(—s), f(s) = —f(—s), §(s) = —g(—s). The proof of the fact is similar to
the proof in [13, Remark 6.4] (which corresponds to the case f = 0). Notice that we have
x(t+) = y(—t—), x(t—) = y(—t+), ATg(t) = A g(—t), and A~ g(t) = ATg(—t). Using
these relations, it is clear that the conditions guaranteeing that x(t+) # 0 and x(t—) # 0
for Eq. (7.10) can obtained from the conditions derived earlier for Eq. (7.9) by interchanging
Atgand A™g, f and —f, and a and b. In this way, we obtain the following counterparts to
conditions (7.21)—(7.24):

x(t) # 1 J{(;)(f);g(;( L t € [to,b], (7.25)
(t) # 1&23&%)' t e (ato), (7.26)
() # —1 Jfr(;)(f)lgf?( L t € (to,b), (7.27)

x(t) # —f(H)ATg(H), t € [a, to]. (7.28)
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8 Relations between Stieltjes integral equations and dynamic
equations

It has been known for a long time that dynamic equations on time scales represent a special
case of Stieltjes integral equations (also known as measure differential equations), see [19].
Hence, it is interesting to check whether the logistic equations obtained in the previous section
are consistent with logistic dynamic equations on time scales. In comparison with Section 4,
we will discuss both A- and V-dynamic equations.

Let T be a time scale. It is convenient to work with a fixed time scale interval [a,b]T =
[a,b] N'T, where a,b € T, a < b. We need the functions

g(f)=inf{s € T:s>t}, telab], (8.1)
h(t) =sup{s € T:s <t}, te€][ab] (8.2)

The function g is left-continuous, and & is right-continuous.

The relations between Stieltjes integral equations and dynamic equations are described
in [15, Section 8.7]. They are based on the following relation (see [15, Corollary 8.6.9]) be-
tween Kurzweil-Stieltjes integrals and Henstock-Kurzweil A- and V-integrals, which were
introduced in [16].

Theorem 8.1. Consider a function f : [a,b] — R. Then the following statements hold:

1. The Henstock—Kurzweil A-integral fab f(t) At exists if and only if the Kurzweil-Stieltjes integral
fab f(t)dg(t) exists; in this case, both integrals have the same value.

2. The Henstock-Kurzweil V-integral | ab f(t) Vt exists if and only if the Kurzweil-Stieltjes integral
/ ab f(t) dh(t) exists; in this case, both integrals have the same value.

Hence, A-dynamic equations on time scales are special cases of Stieltjes integral equations
with the integrator ¢ given by Eq. (8.1). In particular, the A-dynamic equation

(1) = x(t0) + [ (p(6)3(s) + £(5))as

is a special case of Eq. (7.9); note that a solution x of Eq. (7.9) satisfies x(s—) = x(s) for all
s, because g is left-continuous, and therefore x has the same property. The corresponding
logistic equation (7.11) given by Theorem 7.5 is then equivalent to the A-dynamic equation

y(6) = y(to) — [ (p(5) + Fy(E)y(o(s)as, ©3)

to
where 0 is the forward jump operator. Indeed, if y is a solution of Eq. (7.11), then y(s—) = y(s)
(because g is left-continuous). Moreover, g is constant on each interval (&, 8] C [a, b] such that
(a, B) N T = @. Thus, y has the same property, and y(s+) = y(c(s)) for each s € [a,b)r.
Similarly, the A-dynamic equation

t

x(t) = x(to) (=p(s)x(o(s)) + f(s))As

to
is a special case of Eq. (7.10). The corresponding logistic equation (7.12) given by Theorem 7.5
is then equivalent to the A-dynamic equation

() = y(t0) = [ (p() + F6Iwle))y(s)as 8.4
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Equations (8.3) and (8.4) are integral forms of the two versions of A-dynamic logistic equation
described in [3] and mentioned in the introduction of the present paper.

To deal with V-dynamic equations, we replace g by the integrator & given by Eq. (8.2). The
V-dynamic equation

(1) = x(0) + [ (~p(5)x(s) + £(5))Vs

is then a special case of Eq. (7.10) with g replaced by h; note that a solution x of Eq. (7.10)
satisfies x(s+) = x(s) for all s, because h is right-continuous, and therefore x has the same
property. The corresponding logistic equation (7.12) given by Theorem 7.5 is then equivalent
to the V-dynamic equation

y(t) = y(to) — /t:(—p(S) + f(s)y(s))y(p(s)) Vs, (8.5)

where p is the backward jump operator. Indeed, if y is a solution of Eq. (7.12), then y(s+) =

y(s) (because h is left-continuous). Moreover, & is constant on each interval [¢, ) C [a,b] such

that (¢, ) N'T = @. Thus, y has the same property, and y(s—) = y(p(s)) for each s € (a, b]r.
Similarly, the V-dynamic equation

t
x(t) = x(to) + | (p(s)x(p(s)) + f(s))Vs
0
is a special case of Eq. (7.9). The corresponding logistic equation (7.11) given by Theorem 7.5
is then equivalent to the V-dynamic equation

t

y(t) = y(to) —/t (p(s) + £(s)y(o(s)))y(s) Vs. (86)
0

As far as we are aware, the V-dynamic logistic equations (8.5) and (8.6) did not appear in the

literature yet.
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Long time behavior of the solution
to a chemotaxis system with nonlinear
indirect signal production and logistic source

Chang-Jian Wang™!, Ya-Jie Zhu? and Xin-Cai Zhu'

1School of Mathematics and Statistics, Xinyang Normal University, Xinyang, 464000, P.R. China
2College of Teacher Education, Xinyang Normal University, Xinyang, 464000, P.R. China

Received 28 July 2022, appeared 12 April 2023

Communicated by Dimitri Mugnai

Abstract. This paper is devoted to studying the following quasilinear parabolic-elliptic-
elliptic chemotaxis system

ur=V-(eu)Vu—¢p(u)Vo) +au —bu?, x€Q, t>0,
0=Av—v+wh, xeQ, t>0,
0=Aw—w+u"?, xeQ, t>0,

with homogeneous Neumann boundary conditions in a bounded and smooth domain
Q C R*(n > 1), where a,b,72 > 0,91 > 1,7 > 1 and the functions ¢, € C?(]0,)
satisfy @(s) > ag(s +1)* and |¢(s)| < bos(1+s)P~! for all s > 0 with ag, by > 0 and
«, B € R. It is proved that if ¥ — B > 7172, the classical solution of system would be
globally bounded. Furthermore, a specific model for 1 = 1,7, = x and v = x + 1 with
x > 0 is considered. If 3 <1 and b > 0 is large enough, there exist Cy, y1, 2 > 0 such
that the solution(u, v, w) satisfies

L=(Q)
_ Cee M, ifx € (0,1],
T | CreH, ifx € (1,00),

for all t > 0. The above results generalize some existing results.

Keywords: chemotaxis system, nonlinear indirect secretion, global boundedness, long
time behavior.
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1 Introduction

Chemotaxis is one of the basic physiological reactions of cells or organisms, which refers to
the directional movement of biological cells or organisms along the concentration gradient of
stimulants under the stimulation of some chemicals in the environment. The establishment
of chemotactic mathematical model can be traced back to the pioneering work proposed by
Keller and Segel [16] to describe the aggregation of cellular slime molds, which is given by

up=V-(pu)Vu—ypu)Vo) + f(u), x€Q, t>0,

Tor =Av—v+u, xeQ, t>0,

ou Jv (1.1)
g — 2 —, x€d), t >0,

u(x,0) = up(x),v(x,0) = vo(x) x e,

where O C R”, T € {0,1}, v denotes the outward unit normal vector on 0Q), u(x,t) denotes
the cell density and v(x, t) represents the concentration of the chemical signal. Here, f(u) de-
scribes cell proliferation and death, V - (¢(u)Vu) and —V - ((u) Vo) represent self-diffusion
and cross-diffusion, respectively. It is well known that chemotaxis research has many impor-
tant applications in both biology and medicine so that it has been one of the hottest research
focuses in applied mathematics nowadays. In the past few decades, a large number of valu-
able theoretical results have been established. Among them, one of the main issues related to
(1.1) is to study whether there is a global in-time bounded solution or when blow-up occurs.
For t =1,¢(u) =1,9(u) = xu and f(u) = 0 with x > 0, it has been shown that the system
(1.1) has globally bounded classical solution when n = 1 [24] or n = 2 and [ updx < 47”
[5, 23], whereas the system (1.1) has finite time blow-up solution in the case of n = 2 and
fQ ugdx > 47” [9,26] or in the case of n > 3 [36,39]. Inter alia, when f(u) = u — yu® with
u > 0, under the restrictions that T = 1 and ) is convex, Winkler [40] proved that if the ratio

2 is sufficiently large, then the unique nontrivial spatially homogeneous equilibrium given

X
. _ 1 - .
by u =v = 5 1s globally asymptotically stable. Later on, Cao [2] used an approach based

on maximal Sobolev regularity and improved Winkler’s results without the restrictions T =1
and the convexity of (2. When the chemical substance diffuses much faster than the diffusion
of cells, the system (1.1) can be reduced to the simplified parabolic-elliptic model, i.e. T = 0.
Such model was first studied for ¢(u) = 1,¢(u) = xu and f(u) = 0 in [14]. Recently, when
f(u) = Au —bu® withaw > 1, A > 0 and b > 0, in [35], a concept of very weak solutions was
introduced, and global existence of such solutions for any nonnegative initial data uy € L!(Q)
was proved under the assumption that & > 2 — %, moreover, boundedness properties of the
constructed solutions were studied by Winkler. Thereafter various variants of (1.1) have been
considered by many other scholars [6,11,31,34]. In general, diffusion functions ¢ (1) and ¥ (u)
may not be linear forms, such as diffusion in porous media and volume filling effect. When
¢(u),p(u) are nonlinear and f(u) = 0 or f(u) # 0, a lot of scholars have studied the finite
time blow-up of solution and the existence of globally bounded classical solution to system
(1.1). We refer the readers to [8,12,13,37,38] for more details.

With regard to the system (1.1), the term of chemotaxis signal production v is produced
directly by the cell density u. However, the mechanism of signal production might be very
complex in realistic biological processes. On the one hand, the signal generation usually
undergoes intermediate stages, i.e. signal v is not produced directly by cells u, but is governed
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by some other signal substances w. The related models can be described as

(1, =V (p(u)Vu—9(u)Vo) + f(u), xeO, t>0,

T =Av—v+w, xe ), t>0,

TWw; = Aw — w + u, xeO, t>0, (1.2)
gu—do— w_, x €90, t>0,

u(x,0) = up(x),v(x,0) =vo(x),w(x,0) =wo(x), x€Q,

where u,v, w represent the density of cells, the density of chemical substances and the con-
centration of indirect signal, respectively. Such problem has been widely studied in recent
years. For T = 1,¢(u) = 1,¢(u) = u and f(u) = p(u — u”), the authors in [46] proved that
if v > 2 + 1 then the system possesses globally bounded classical solution. Moreover, if y is
large enough, the solution (u, v, w) converges to (1,1,1) in L®-norm as t — co. When ¢ and ¢
satisfy some nonlinear conditions and smoothness conditions, it also has been showed that the
solution to system (1.2) is globally bounded in [30]. Recently, the authors in [18] have studied
the system (1.2) for T = 0, where ¢(s) > ag(s +1)* and |(s)| < bos(1 +5)P~! for all s > 0
with ag, bp > 0 and &, B € R. They have proved that the nonnegative classical solution to (1.2)
is global in time and bounded. In addition, if u satisfy some suitable conditions, the solution
(u,v,w) converges to (1,1,1) in L®-norm as t — co. More relevant results on the system with
indirect signal production can refer to [10,19].
One the other hand, the signal generation may be in a nonlinear form, which is given by

uy=V-(eu)Vu—9u)Vo) + f(u), xe€Q, t>0,
o = Av— v+ g(u), xeQ, t>0,
=%, x €00, t >0,
u(x,0) = up(x),v(x,0) = vo(x), x e,

(1.3)

where O C R"(n > 2) is a bounded, smooth domain. When 7 = 0,¢(1) = 1,¢¥(u) =
xu, f(u) = au — bu® and g(u) = u* with x,b,x > 0,a € R and 6 > 1, Xiang [44] obtained
the global existence and boundedness of solution for (1.3) under either x +1 < max{6,1 +
2y or0 =x+1,b> % X. Besides, they studied the dynamical behavior of the solution
on the interactions among nonlinear cross-diffusion, generalized logistic source and signal
production. In addition, When © = 1, ¢(u) = 1,¢(u) = xu, f(u) = 0 and g(u) € C'([0,00))
satisfying 0 < g(u) < Ku® with some constants K,a > 0, Liu and Tao [21] proved that the
classical solution of the system (1.3) is globally bounded if 0 < a < 2. When the second
equation degenerates into an elliptic equation (i.e. T =0), ¢(u) = 1,9¥(u) = xu, f(u) = 0 and
v is replaced by u(t) = ﬁ [ 8(u),g(u) > ku* for all u > 0 with some k > 0, Winkler [43]
derived a blow-up critical exponent k = 2, which asserted that the radially symmetric solution
blows up in finite time if the parameter k satisfies k > 2. Conversely, when k < 2, they proved
that there exists suitable initial value such that the system has globally bounded classical
solution. Later on, the authors in [45] considered the case f(u) = Au — pu® with A, u > 0 and
a > 1, and they generalized the blow-up results developed in [43] with k+1 > a (2 +1).
Intuitively, the existing literatures show that the logistics source (i.e. f(u) = Au — pu® with
A,u > 0 and a > 1) and its possibly damping behavior have important influences on the
behavior of the solution. For instance, the strong logistic damping (i.e. y is suitably large) may
ensure the system has globally bounded classical solution, especially in higher-dimensional
case. More precisely, when a = 2, Tello and Winkler [29] proved that for all suitably regular
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initial data, the system had a unique globally bounded classical solution if # > max{0, 2 x}.
Afterwards, Cao and Zheng [3] proved that such global solution to a quasilinear system (1.3) is
also known to exist for all nonnegative and smooth initial data if y is suitably large. However,
“logistic source” does not always prevent chemotactic collapse. When a = 2, such assertion
was verified in [41] for one-dimensional case by Winkler, and also could be found in [15]
for higher-dimensional setting. Recently, Winkler [42] obtained a condition on initial data to

ensure the occurrence of finite-time blow-up to system (1.3) for

7 if n € {3,4},
M{é 13,4}

1 .
1+m, 1f1’125.

Some boundedness or blow-up results to variants of system (1.3) can also be found in [20,22,
25,32,33,47].

Among the existing literatures, it is not difficult to find that there are very few papers to
study the chemotaxis system, where chemical signal production is not only indirect but also
nonlinear. Based on the complexity of biological process, such signal production mechanism
could be more in line with the actual situation. Inspired by the above works, in this paper, we
are concerned with the following system

uy=V-(eu)Vu—ypu)Vo) +au—bu?’, xe€Q, t>0,
0=Av—v+wh, xeO, t>0,
0=Aw—w-+ur, xeQ, t>0, (1.4)
=g =%, x €90, t >0,

u(x,0) = up(x), x €Q),

where 3 C R"(n > 1) is a bounded domain with smooth boundary, v denotes the outward
unit normal vector on 0(), the parameters satisfy a,b,2 > 0,1 > 1and v > 1, and ¢(u), (1)
are self-diffusion and cross-diffusion functions, respectively. Since from a physical point of
view, the equation modeling the migration of cells should rather be regarded as nonlinear
diffusion [27]. Thus, here we assume that the diffusion functions ¢, € C2[0, c0) fulfill

@(s) > ap(s+1)" (1.5)
and
|9(s)| < bos(s +1)P 1, (1.6)

for all s > 0 with ag,bp > 0 and &, B € R.

The main purpose of the present paper is to explore the interplay of nonlinear diffusion
functions ¢, 1 and logistic source term au — bu" as well as nonlinear indirect signal production
mechanism for system (1.4). To the best of our knowledge, studying the fully parabolic chemo-
taxis system need to use the method of variation-of-constants formula and heat semigroup,
which can not be applied to the system (1.4). In this paper, we shall use a different method
to reveal the influence of nonlinear diffusion functions ¢, and logistic source term au — bu”
as well as nonlinear indirect signal production mechanism on the dynamical behavior of the
solution to system (1.4).

Firstly, we state our boundedness result to system (1.4) as follows.

Theorem 1.1. Let Q) C R"(n > 1) be a bounded and smooth domain. Assume that a,b,y, > 0,7 >
1,91 > 1 and functions ¢, € C2[0,00) with ¢(s) > ag(s + 1)* and | (s)| < bos(s + 1)F~1 for
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all s > 0 with ap,bp > 0 and o, € R. If v — B > 7172, then for any nonnegative initial data
0 £ ug € C(Q), the system (1.4) admits a unique nonnegative classical solution (u, v, w) belonging to
C[(Qy x [0,00)) NC>(Q) x (0,00))]. Moreover, the solution of system (1.4) is bounded in Q x (0,0),
namely, there exists a constant C > 0 such that

[1C ) l[=ia) + 0GB lwres (o) + 1wl D)) < € (1.7)
forall t > 0.

In contrast to the boundedness criterion obtained in [18], the boundedness condition in
Theorem 1.1 is more generalized involving nonlinear diffusion and logistic source term as
well as nonlinear indirect signal production mechanism.

From the viewpoint of biological evolution, it has profound theoretical and practical sig-
nificance to study the long time behavior of chemotaxis system. Based on [7,18,44], we have
also studied the long time behavior of solution to a special case (see system (3.1) in Section 3)
of system 1.1 (i.e. 71 = 1,72 = x and v = x + 1 with x > 0). Here, it should be pointed out
that from the above Theorem 1.1 if § < 1, the corresponding system has globally bounded
classical solution for this case. Thus, from Theorem 1.1, there exists R > 0 independent of
a,b,«, B, a0, by and « such that

u(x,t) <R (1.8)

holds on Q) x [0, 00). Moreover, we can also find A > 0 independent of a,b, ap, by and x such
that
(u+1)%22<) (1.9)

holds on Q x [0, ).

Therefore, the second conclusion of this paper can be stated as

Theorem 1.2. Let 0 < ug € C(Q)) and a,b,x > 0. Assume that functions ¢, € C2[0,00) with
@(s) > ao(s+1)% and |¢(s)| < bos(s +1)P~! for all s > 0 with ap,by > 0and a,p € R.IfFB < 1

and
b> Y, /2 x € (0,1],

Ab2 {(K—l)RK—O— (x—1)2R2x+ 220
0

b> 32, , k€ (1,0),

(1.10)

then there exists C > 0 large enough such that the classical solution (u,v,w) to system (3.1) satisfies

1
b\ * b b Cre it x € (0,1],
ulot) = (”) i e al|p= " Hw(-,t) e = {C e tat K € (1,00)
L*(Q) L>(Q)) L*(Q) K ’ 7 ’
forall t > 0, where
_ xa »  Aabj
= (n+2)b? (b 164y (11D
and
2—x
B K(5)* )\bé a B

with R > 0.and A > 0 defined in (1.8) and (1.9), respectively.
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The results in Theorem 1.2 are similar to those in [44, Theorem 5.1(i)], but more general,
since self-diffusion, cross-diffusion and indirect secretion mechanism are involved. We need
to modify the method in [44] to overcome the difficulties from these terms (see (3.10) and
(3.25) in the proof of Lemma 3.2). In addition, our conclusion in Theorem 1.2 can also be seen
as an extension of [7] or [18]. Comparing with [7], in Theorem 1.2, we calculate the expo-
nential convergence rate explicitly in terms of the model parameters with diffusion functions,
generalized logistic source and nonlinear indirect secretion. But in [7], the convergence rate
estimates were derived but not stated explicitly (see [7, Theorem 1]) for special logistic source
and linear secretion. Comparing with [18], since our model is nonlinear indirect production,
we have to divide the range of « into (0,1] and (1, +c0) to construct different functionals A(t)
and H(t) (see Lemma 3.2) to prove Theorem 1.2.

Remark 1.3. It is relevant to point out that by the limitation of the method, we also have no
idea the long time behavior of solution to system (1.4) for generalized parameters 71,2 and
7 satisfying the condition in Theorem 1.1.

The outline of this paper is as follows. In Section 2, the global existence and bounded-
ness of classical solution to (1.4) is proved. In Section 3, by applying the method of energy
functional, we obtain that the solution to system (3.1) exponentially converges to the point
((£)%,8,4) as t — oo,

2 Global existence and boundedness

In this section, we will obtain the existence and boundedness of globally classical solution to
system (1.4). At the beginning, we give a statement on the local existence of classical solutions.
The proof depends on the Schauder fixed theorem. We omit it for brevity and refer the readers
to [30] for more details.

Lemma 2.1. Let a, b,y > 0,71 > 1,7 > 1and QO C R"(n > 1) be a bounded and smooth domain.
Assume that @, € C?[0,00) satisfy (1.5) and (1.6), respectively. For any nonnegative initial data
0 # ug € C(Q), there exists Tmax € (0,00] such that the system (1.4) admits a unique nonnegative
classical solution (u,v,w) belonging to C[(Q X [0, Tmax)) N C>(Q X (0, Tmax))] in Q x (0, Trmax)
with

u,0,w >0 inQ x (0, Tnax)- (2.1)
Furthermore,
if Tmax < 00, then t}iTr“rmlax sup|lu(-,t) || L=y = oo (2.2)

Lemma 2.2. Let a,b,7 > 0,71 > 1,9 > 1 and (u,v, w) be a solution of system (1.4). Assume that
@, € C?[0,00) satisfy (1.5) and (1.6). Then for any n1,12 > 0 and 0 > 1, there exist cy,c; > 0
depending only on 71, Y2, 11,42, 0 such that

/ w? < 172/ (u41)"% 4 ¢ (2.3)
O o)

and

0 « / 1)71720 , 2.4
/Qv <mi | (174 (2.4)

forall t € (0, Tmax)-
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Proof. Integrating the first equation of system (1.4) over (), we find

d b 7
L3 _ oyt < 7 .
5 /Q udx /Q au —bu? <a /Q u oy (/Q u> for all t € (0, Tmax), (2.5)

where we have used Holder’s inequality. Thus, using a standard ODE comparison theory, it
shows that

1
a\ -
/Q u < max { /Quo, <E> ]Q]} for all t € (0, Tax)- (2.6)

Moreover, we can derive directly by integrating the third equation over (),
[wllere) = [Pl q) < [[(w+1)"1q)  forall £ € (0, Tmax)- 2.7)

Multiplying the third equation of system(1.4) with w91 and integrating by parts over (), we

can get
62 /|V 2\2+/ w —/ urwd= 1< W 0/ u”28 (2.8)

by Young’s inequality. Hence
[wllroy < U [|poq) < [[(u+1)"|| o) forall £ € (0, Tmax) (2.9)

and

w§|2 < / um? < / (u4+1)"% forall t € (0, Tmax)- (2.10)
0

By Ehrling’s lemma, for any 7, > 0,6 > 1 and function ¢ € W12(Q), there exists Cy =
Co(12,0) > 0 such that

19112y < mll9linaca) + Collels - (2.11)

Let ¢ = w?, from (2.7),(2.9) and (2.10), there exists C; = C1(#72,6) > 0 such that

/Qwe < ﬂz/()(u + 1) 4 Col| (4 1) (2.12)
For 7, € (0,1], using Holder’s inequality, one may obtain from (2.6)
1 +1)72[1%1 ) < Co (2.13)

with C; = Ca(12,0,72) > 0. For 1, € (1,oo), using interpolation inequality and Young’s
inequality, from (2.6) we deduce

1+ 1)1 ) < Nl (e + 1)1 75 ||(M+1)”|| (T) <1 /Q(u+1)729+C3 (2.14)
Q

where T = ::22 1 €(0,1) and C3 = C3(12,6,72) > 0. Thus (2.3) is the direct result of combining
9

(2.12)—(2.14). Similarly, multiplying the second equation of system(1.4) with v*~1, by the same
procedure as above, we can obtain for any 77; > 0and 6 > 1

/ of < 171/ wn? 4+ C, forallte (0, Timax) (2.15)
O Q
with Cq = C4(71,6,71) > 0. Since 1 > 1, we can obtain from (2.3)
/ wn? < 172/ (u+ 1)71720 +Cs forallt € (0, Tmax) (2.16)
Q Q

with Cs > 0. Combining (2.15)—(2.16) yields (2.4). This completes the proof of Lemma 2.2. [
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Lemma 2.3. Let a,b,7 > 0,71 > 1,9 > 1 and (u,v,w) be a solution of system (1.4). Assume that
functions ¢, € C2[0,00) satisfying (1.5) and (1.6) for all s > 0 with ag,by > 0 and a, B € R. If
Y — B > Y172, then for any p > max{1,1 — B}, there exists a constant C > 0 such that

/Q(u +1)P<C (2.17)

forall t € (0, Tyax)-

Proof. Multiplying the first equation of system (1.4) by (u + 1)?~! and integrating by parts
over (), we derive

s e = = =1) [0 17200 [VaP £ (p =) [ (w4 D) Va- Vo
+a/0 w(u+1)P —b/u7u+1) (2.18)

for all t € (0, Tmax)- Since ¢ satisfies (1.5), we can estimate the first term on the right-hand
side of (2.18) as

~(p=1) [+ 1" 29| Vil < = (p=1) [ a0(1+w)* (142 Vuf

4(“;“(/ V(1 +1)2 P (2.19)
for all t € (0, Tmax)- Let ¥ (u) = [, (& +1)P2y(&)dE, thus
V¥ (u) = (u+1)P2p(u)Vu (2.20)
and
¥ (u)| < ﬁf:_l(u + 1)1 (2.21)

for all t € (0, Tmax ). From (2.20) and (2.21), we can get
(p—1) /Q(u+ 1P ~29(u) V- Vo = (p— 1) /va(u) Vo=—(p—1) /Q‘I’(u)Av

bo(p—1) _
< —1/‘1’ A<7/ PP
<(p=1) [ ¥lao) < 2P [ (1) a0
(2.22)
for all t € (0, Tmax)- By the basic inequality (u +1)7 < 27(u? + 1) with v > 1, we have
b
— v r—1 < _7/ ptr-1 / p—1 .
b/ou(uﬂ) <—o [0 an [ e (2.23)
for all t € (0, Tmax). Denoting my = max{a, b}, from (2.18)-(2.19) and (2.22)—(2.23), we can get

1d 4610 2 bo(p 1) _
P < _ p+p-1
pdt/(u+1) < -Brs /|Vu+1 ﬁ+p_1/( i+ 1)F71 Aol

b
p—t _ p+r—=1 p—1
—|—m0/u(u—|—1) 7/(u—|—1) —|—m0/(u—|—1)

< bolp=1) / (u+1)ﬁ+p—1,0_wvl‘+m()/ (u+1)p_b/ (1 4+ 1)1
Q 27 Ja

/3—}-;’)—1
bo( / b()( —1)
< bolp—1) 1)ptr1 P / 1)BHP-1ym
A S (u+1) w

+m0/0(u+1)17— 23 (4 1)P+71 (2.24)
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for all t € (0, Tmax), where we have made use of the second identity 0 = Av — v 4w in
system (1.4). In the sequel, we estimate (2.24) in two different cases.
Case 1 (y — B > 7172). In this case, using Young’s inequality, we can derive

+p—1 _ (ptr=1)m

. 2B (p—1) B . N , . .
with Cg = (m) 7~F . Since vy — B > 7172, with applications of Young’s inequality, we

get from Lemma 2.2 with 0 = pt? L
v b(pep=1) [ e
/ w - 2'Y+3C6b0172(p — 1) w + C7
b(p+p—1) / p+r—1
< Sy =) J T G (2.26)
where Cg = Cy + ¢o with C; = (%) RS |Q)]. Similarly, we have
+p-1) o [
U+ 1)Br- 1v<('B/ w4 1)+ —I—C/v%ﬁ. 2.27
P o < Sy e+ D) o [ 27)

Since 71 > 1, in view of Young’s inequality, we can obtain from Lemma 2.2 with § = 4 i;zgl >1

ptr-1 (ptr=11
/ v F < 171772/ (u+1) 7F 40
Q Q

ptr-1 T=B—Mr2

1
<17117 <;7;7 /(M+1) 71 (;71172) 7172 ]Q])—i—cl

pty—1 T=B—=r

M
< [+ 4 )R 0]+

b(p+p—1) 1
= 2530 (p—1)Gy AR e (2.28)

Bl o
with Cyg = ( %7’;3@) T 4 () o *1Q| +c1. Since 7 > 1, using Young's inequality,

there exists C;; = m such that

/Q(u + 1)?7 < C11 /Q(M + 1)P+’Y*1 + C]z (229)

_r
with Cpp = (2200F0) 77 |0)]. Using (2.24)~(2.29), we can obtain

;17;15 (u+1)p+/0(u+1)17
= Z“Yﬁi/ ()PP o P [ ()P g +1) [ e 1)7
b L e
( D [b(B+p—1) B o
_ﬁ+p 1 [2V£bg(pp_l)/0(u+1)17+v 1—|—C9/07/3 _|_C6/w 7P ]

¥ (mo +1) <c11/ (4 1)P7- 1+c12> 2b7/(u+1)p+7_1
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bo(p—1) [ b(B+p—1) -
S,B—FP—l [27+1b0(P—1) /Q(u—l—l)lﬂrv 1_|_C8—|—C10

3b _
T2 /Q(” + 1P 4 Cra(mo + 1)
b

_ bo(p —1
< _W/Q(MJFDPH 1+(C8+C10)0(p_i+clz(mo+1> (2.30)

p+p

for all t € (0, Tmax), which means that

;t/(wrl F’+p/ (u+1)7

bp -1 bop(p —1) 23D
N p+r— 20PAF )
S 5 Q(u+1) +(C8+C1o) ,B+p—1 +C12p(m0+1).
Thus we can get the conclusion immediately by the ODE comparison principle.
Case 2 (y — B = 7172). Recalling (2.25) and (2.27), we know
+p— 1) B (p+r=1)11
1ﬂ+lﬂ171<('3/ 1)P 71 / =B 232
/Q(u—i— ) W S b (p 1) 0(u+ ) + Cs L (2.32)
and
L bBtp-1) ]
pr—ly < / pr-1 / = .
/Q(u+1) VS iy 1) Jo @D G 00 (2.33)
Since v — B = Y172, for any 11,712 > 0, we can obtain from Lemma 2.2
1)y 1)
/ w T = / W < ;72/ (u+1)P771 + ¢ (2.34)
Q 0
and
/ o —/ o < ;71;72/ (u+1)P 14 ¢ (2.35)
Q
b(B+p—1)

for all t € (0, Tmax)- Because of the arbitrariness of 7; and 7, we choose 177, = ) and

27+3C6b0(p 1
M2 = 27+g€+(; in (2.34) and (2.35), respectively. From (2.24), (2.29) and (2.32)—(2.35), we
can obtain

;t/(u+1 p+p/ (u+1)7

bp - bop(p —1)
__r p+r-1 P\ 7
S o2 Q(u +1) + (coCs + ¢1Co) f— + Cop(mg + 1), (2.36)
for all t € (0, Tmax)- Using the ODE comparison principle, we can prove the conclusion. The
proof of Lemma 2.3 is completed. O

Proof of Theorem 1.1. Leta,b,v> > 0,1 > 1,7 > 1 and (u, v, w) be a solution of system (1.4).
From Lemma 2.3, for any p > max{1,1— B}, there exists C13 > 0 such that |[u|;rq) < Ci3
for all t € (0, Tmax)- By the elliptic LP-estimate applied to the second and third equatlons in
system (1.4), we have

Hw(‘rt)Hpr/"rz(Q) + ’|U('/t>”w2m/'rl'rz(g) < Cuy (2.37)
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for all t € (0, Tax ), with some Cy4 > 0. Using the Sobolev imbedding theorem, we can get

[w0(, )llwie ) + 00, B Iwie(a) < Cis (2.38)

for all t € (0, Tmax), with some Ci5 > 0. Thus by standard Alikakos-Moser iteration ( [28,
Lemma A.1]), we can find a constant Ci4 > 0 such that

[, t) | =) < Cie

forall t € (0, Tmax), which together with Lemma 2.1 implies that Tnax = co. Hence, by standard
elliptic regularity theory, we know that (#,v,w) is a globally bounded classical solution of
system (1.4). The proof of Theorem 1.1 is completed. ]

3 Long time behavior of the solution for a specific model

In this section, we shall study the long time behavior of the solution for a specific model (i.e.
7 = 1,7 = x and v = x + 1 with x > 0) with nonlinear indirect signal production and
logistic source as follows

.

uy=V-(p(u)Vu—9p(u)Vo) +u(a—bu*), xeQ,t>0,
0=Av—v+uw, xeQ, t>0,
0=Aw—w+u, xeO, t>0, (3.1)
%:%:%:0, x€ead), t >0,

[ u(x,0) = uo(x), xeQ,

where 3 C R"(n > 1) is a bounded and smooth domain, the parameters a,b,x > 0 and
functions ¢, ¢ € C?[0, c0) satisfy conditions (1.5) and (1.6), respectively.

Based on Theorem 1.1, it is easy to check that if < 1, then the system (3.1) admits a unique
globally bounded classical solution (u, v, w). Furthermore, such classical solution (1, v, w) may
be strictly positive which can be ensured by choosing some suitable 0 < 1y € C(Q) from
Theorem 1.1. Thus let us assume that the classical solution (#, v, w) to system (3.1) is strictly
positive throughout the proof of Theorem 1.2. For the convenience, we repeat the description
stated in (1.8) and (1.9), i.e. there exists R > 0 which does not depend on 4, b, &, B, ag, by and x
such that

0 <u(x,t) <R (3.2)

holds on ) x [0, 00). Moreover, we can also find A > 0 independent of 4, b, ag, by and x such
that
(u+1)P22<) (3.3)

holds on Q) x [0, ).
In order to prove Theorem 1.2, we introduce a useful lemma.

Lemma 3.1 (cf. [1, Lemma 3.1.]). Let g : (to,00) — [0,00) be uniformly continuous such that
Ji g(#)dt < oo with to > 0. Then

The key to prove Theorem 1.2 relies on seeking so-called Lyapunov functional inspired
from [1,7]. In the following, we need to construct appropriate energy functionals to system
(3.1), which is prepared for the proof of Theorem 1.2.
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Lemma 3.2. Let 0 < ug € C(Q) and a,b,x > 0. Assume that ¢, € C?[0, o0) satisfy (1.5) and (1.6)
with ag, by > 0and o, B € R. If B < 1 and the condition (1.10) in Theorem 1.2 holds, then the solution
(u,v,w) has the following L?—convergence

/()(u—(Z) >2+/Q(v—z>2+/0<w—2)2—>0 ast — oo. (3.5)

Proof. For x € (0,1], we define the functional

A(t)z/()bt—c—cln(%), £>0, (3.6)

Ri=

for u > 0, with c = (%)% By taking derivative, we can easily obtain that a(s) =s —c —cIn(%)
with s > 0 has global minimum zero at s = ¢. Hence, A(t) > 0 for all ¢ > 0.
Using Young’s inequality and the fact (3.3), we deduce from the first equation of system

(3.1)
%A(t): e
_ /Q”;C [V - (@) Vi — (1) Vo) + u(a — bu*))]
_ —c/Q(p(u)|V (u)v”‘u'zvv—b/ﬂ(u—c )(u* — )
< —aoc/ (u+1)“|vu“‘ +@ (w12 VHE Mo C/ [Vol?

A Ja u? 4qy
—b/ u—c)(u* —c")

_4a0/\V| b/ u—c)(u*—cv). (3.7)
Multiplying the third equation in system (3.1) by w — c¢*, we get
/ Vawl? = —/ (w—c")z—l—/ (w — ) (uF — ¢, (3.8)
Q Q Q
Similarly, multiplying the second equation in system (3.1) by v — c*, we derive
VZ:—/ _K2+/ _ K — ). 3.9
L Iver == [@=cP+ [ (0=c)w=c) 39)

Substituting (3.8) and (3.9) into (3.7), by Young’s inequality we see

2 2
—A —b/u—cu—c /\b/] zAb/\

—/\b%/(v—c")z—i—/\bg/ﬂ(v—c")( ) /\bz /‘

4ag 4ay
/;ZZO /(w—c")2+/\silic/(w—c")(u"—c’<)

<= [ (=) _c>+?§;/(w_cx)z Asf:) [w-ey
W [ oot - e

< b [ (o e 4 M [ e (310)
u C M c 165[0 u C . .
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For « € (0,1], we have the following basic inequality
(u* — c*)? < & Hu—c)(u* —c¥). (3.11)

Thus, from (3.10) and (3.11), we derive

d Ab3c*
— < _(p— 0 / _ K _ K
FAD === [ (u—c)(uw—c)
= —5/ (u—c)(u*—c"), (3.12)
Q
where 6 = b — /\12(2;: For any ty > 0, integrating both sides of (3.12) on [ty, t], one can obtain

A() — A(ty) < —6 /t:/g(u — o) — ). (3.13)

Since A(t) > 0 and J is nonnegative ensured by b > %0 A2 Thus

aop

/tt /Q(u —c)(u* —c") < A(;O) < oo. (3.14)

From Theorem 1.1, we know that (#,v,w) is a globally bounded classical solution. Hence, by
standard parabolic regularity for parabolic equations [17], we can find ¢ € (0,1) and C > 0
such that

HMHCZW'H%(()x[t,t-i-l]) + HUHCZ‘H”H'% (OX[t,H—lD + HwHCH"’H%(Qx[t,t—o—l]) S CI Vt Z 1 (315)
This clearly implies that [(u — c)(u* — c*) is globally bounded and uniformly continuous
with respect to t. Using (3.11) once again, we can obtain from Lemma 3.1

C:_l [ =< |- —c) 50 ast— o (3.16)

On the other hand, using Young’s inequality to (3.8), we get

[ 190l = 1 (w—cK)2+1/ (U — F)2 (3.17)
o) 2 Ja 2 Ja
and so
/ (w—c*)? < / (u* — )2 =0 ast— co. (3.18)
0 0
Similarly,
/ |Vo|> = —1/ (v — )+ 1/ (w — c*)? (3.19)
o) 2Ja 2 Ja
and so
/ (v—c")? < / (w—c*)? =0 ast— co. (3.20)
0 0

Define z(s) = s+. By mean value theorem and (3.2), one may obtain

u—c=z(Wu) —z(") = %(jl%((u" —c¥) (3.21)



14 C.-J. Wang, Y.-]. Zhu and X.-C. Zhu

for some ¢ between R* and c*. Thus

1 _20-0

/ (u—c)? < pRT / (u* —c*)> -0 ast— co. (3.22)
0 0

Therefore, from (3.18), (3.20) and (3.22), we can get (3.5) for « € (0,1].
For x € (1, 40), we define the following functional

1 < a a bu*
H(t):K/Q<u _b_bln<a>>’ £>0, (3.23)

for u > 0. We can easily obtain the function /(s) = s — ¢ — 2In(%) has global minimum zero

over (0,00) at s = ¢. Thus

H(t) = }{/Qh(u’{) >0 forallt>0. (3.24)

By Young’s inequality, we can obtain from (1.5)—(1.6) and (3.2)—(3.3) that

a

d i u* — 7
aH(t) = /Q y Us

K

= /Q ! . b [V (p(u)Vu—¢p(u)Vo) 4+ u(a — bu*)]
2 .
L e V(1 At
+(k—1) /Qu"’zlp(u)Vu - Vo — b/Q (u" — g>2

_aag LVul? aby g1 Vu- Vo
u

A e WA
+(K_1)/Qu1<2¢(u)Vu-VU—b/0(u"_Z)2

2
ZZSE/QWU‘Z—(K—U/Q< (p(u)u51Vu—2¢((:()u)u§1W>
B oo | (v )
ZSE[Z+(K—1)RK]/Q|Vv|2—b/0<u"—;l)2

:19/0]Vv|2—b/0(u"—z>2 (3.25)

where ¢ = %’f [# + (x — 1)R*] . Multiplying the second equation in system (3.1) by (v — %),

we have
/()yvv\zz—/()(v—;l)2+/()(v—2) (w-7)- (3.26)

Similarly, for the third equation, we get

A A AT ICEr

IN

(k=1 [ 0 2p(w)| Vuf

IN

IN
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Combining (3.26), (3.27) with (3.25) and using Young’s inequality, we obtain

o< = (o) v (o) (o=5) o
b= (o) +3h(o-5) (e5)
thle8) L) 2 (o)
(e d) )

a

_ _E/Q(ux_ ok (3.28)

IN

where e = b — % By the assumption (1.10) in Theorem 1.2, we know that € > 0. Then for any
to > 0, an integration of the inequality (3.28) from £ to t entails

t 2
H(t) — H(to) < —e/ / <u'< - ”) . (3.29)
tg JO b
Thus the nonnegativity of H yields
2
o0 H
/ / <u’< - ”) <Hlt) (3.30)
to Q b €
From Lemma 3.1, the global boundedness and uniform continuity of [, (#* — £)? in t entails
2\ 2
/ <u'< _ ) 50 ast— oo, (3.31)
0 b

A simple use of Young’s inequality to (3.27) immediately shows

/|Vw|2<—1 w— "2 2+1/ o) (3.32)
Q - 2Ja b 2 /o b

and so

)2 < 1\ L0 ase 3.33
/Q(w_b)_/()<u _b> — 0 ast— oo (3.33)
2 1 a\? 1 2\’
/Q]Vv\ §—2/0<v—b> —1—2/0<w—b). (3.34)
2 2
/()(v—t;) g/ﬂ(w—z> — 0 ast— oo. (3.35)

Since k € (1,00), then there exists a constant M > 0 such that

a\y 2
(z-(9)")
z€(0,00) (Z _E)

Similarly, we have

Thus
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Therefore

/Q(”_<Z>i>2§M/Q(MK—Z)2—>O as t — oo. (3.37)

This completes the proof of L2-convergence of the solution to system (3.1). O

Proof of Theorem 1.2. In view of the Gagliardo—Nirenberg inequality [4], we conclude from
(3.5), (3.15), (3.22) and (3.37) that

n 2
u(-,t)— (= < Con ||u(-,t) = (= u(-,t)— (=
(b) LW(Q) (b) Wl,oo(Q) <b) LZ
2
ayxl||™?
<Cllu(-,t)— (=
<c|ut.n-(3) 2
4125
< C[ur (1) — 3 Lf —0 ast— oo. (3.38)
For « € (0,1], by the L'Hospital rule, we get
: a(u) . u—c—cln(%) 1 _/an®
llir} (u—c)(ux —cx) }LILI} (u—c)(ux —c¥)  2xcr’ = (E) ' (3:39)
Based on (3.38) and(3.39), we choose t; > 0 such that
1 K K 1 K K
— — < < —(u— — > .
Tct (u—c)(u* =) <a(u) < o~ (u—c)(u*—=c), t>1t, (3.40)
and so
1 K K 1 K K
_ — < < — — — > 1. .
Tct /Q(u c)(u* —c*) < A(t) < o Q(u c)(u*—c), t>t (3.41)
Using (3.12) and (3.41), we get
%A(t) < —GkFA(H), t>Hh, (3.42)
thus
A(t) < A(t)e ) > gy (3.43)

From (3.11), (3.38), (3.41) and (3.42), we can deduce

2
4, £) = cllimay < Cellu(,) = [

< CK / (uK o CK)2:|
/o
i n+2
< Cy / & Hu— ) (u* — c")]
/o

1
n+2

_1_

< Cy 4KC2K_1A(M)}

1 Kok (t—t1)

< Ce(4xc®TA(H))m2e™ w2, > H. (3.44)
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Repeating the similar steps for w and v, we can obtain from (3.18), (3.19) and (3.44)

K8 (t—tp)

1
|w(-, t) — CKHLW(Q) < Cy <4K02K_1A(t1)) " e L t>H (3.45)

and
KoK (t—tq)

1
[0(-,#) = "l e() < Cx <4KC2K*1A(t1)> e T, t>H. (3.46)

For x € (1,0), using the the L'Hospital rule, we deduce

K _ Ak Kl % K—2
hmﬂ = lim 2= ¢ ~¢€ n(z) S (3.47)
u—c (UK — ¢*)2Kk  zoxcr (z —c*)%k 2K

From (3.38) and (3.47), we pick t, > 0 such that

CK*Z CK*Z
[P < [ @Rtz (3.48)
K JO K QO
Using (3.28) and (3.48), we get
;tH(t) < —ekc®NH(t), t>t, (3.49)
which implies
H(t) < H(ty)e < "(-h2) ¢ > ¢ (3.50)

From (3.38), (3.48) and (3.50), we infer that

_2_

1, 8) = el < Cellu () = 7

EKcZ’K(tftz)

< Ce(4kc™ 'H(ty))ze™ w2 =, > 1. (3.51)

Analogously, taking (3.33), (3.35) and (3.51) into account, we can obtain

EKCZ_K(t—tZ)

(-, £) — || () < Cx(4k® T H(by)) e w2 ©, t> 1 (3.52)

and
1 €KC27K(f7t2)

[0(-,t) = ¢*[l1o(q) < Ce(4xc™ T H(t)) e w2, t >t (3.53)

Finally, plugging 6 and € into (3.44)—(3.46) and (3.51)—(3.53), we take Cy large enough and then
y, plugging & &

complete the proof of Theorem 1.2. O
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Abstract. In this paper, we consider a mixed boundary value problem for nonuniformly
elliptic equation in a variable exponent Sobolev space containing p(-)-Laplacian and
mean curvature operator. More precisely, we are concerned with the problem with the
Dirichlet condition on a part of the boundary and the Steklov boundary condition on an
another part of the boundary. We show the existence of a nontrivial weak solution and
at least two nontrivial weak solutions according to some hypotheses on given functions.

Keywords: p(-)-Laplacian type equation, mean curvature operator, mixed boundary
value problem, Ekeland variational principle.
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1 Introduction

In this paper, we consider the following problem
—div [a(x, Vu(x))] = f(x,u(x)) inQ,
u(x) =0 on Ty, (1.1)
n(x)-a(x, Vu(x)) = g(x,u(x)) onTh.

Here Q) is a bounded domain of R? (d > 2) with a Lipschitz-continuous (C%! for short)
boundary I satisfying that

Iy and T are disjoint open subsets of T such that 1 UT, =T and I'; # @, (1.2)

and the vector field n denotes the unit, outer, normal vector to I'. The function a(x,¢) is
a Carathéodory function on Q x R? satisfying some structure conditions associated with an
anisotropic exponent function p(x). Then the operator u +— div [a(x, Vu(x))] is more gen-
eral than the p(-)-Laplacian A,(,yu(x) = div [[Vu(x)|P®¥)~2Vu(x)] and the mean curvature

®Email: aramaki@hctv.ne.jp



2 J. Aramaki

operator div [(1 4 |Vu(x)[?)(P)=2)/2¥y(x)]. These generalities bring about difficulties and
requires some conditions.

We impose the mixed boundary conditions, that is, the Dirichlet condition on I'; and the
Steklov condition on I';. The given data f : O xR — R and g : I';» x R — R are Carathéodory
functions satisfying some conditions.

The study of differential equations with p(-)-growth conditions is a very interesting topic
recently. Studying such problem stimulated its application in mathematical physics, in partic-
ular, in elastic mechanics (Zhikov [28]), in electrorheological fluids (Diening [7], Halsey [15],
Mihdilescu and Radulescu [18], Razicka [20]).

Over the last two decades, there are many articles on the existence of weak solutions for the
Dirichlet boundary condition, that is, in the case I', = @ in (1.1), (for example, see Mashiyev
et al. [17], Duc and Vu [10], Wei and Chen [22], Yiicedag [25], Napoli and Mariani [19]).

However, since we can only find a few of papers associate with the problem with the
mixed boundary condition in variable exponent Sobolev space as in (1.1). See Aramaki [1-3].
We are convinced of the reason for existence of this paper.

In particular, the authors in [10] considered the problem (1.1) when p(x) = p = const.
and I = @, and derived the existence of a nontrivial weak solution to (1.1). This paper is
an extension of the article [10] to the case of variable exponent and mixed boundary value
problem. In the paper [10], the authors derived the weakly continuous differentiability of the
corresponding energy functional and then applied a version of the Mountain-pass lemma in-
troduced in Duc [9]. However, in this paper we show that the corresponding energy functional
is of class C!, and so it suffices to apply the standard Mountain-pass lemma.

The paper is organized as follows. Section 2 consists of two subsections. In Subsection
2.1, we recall some results on variable exponent Lebesgue-Sobolev spaces. In Subsection 2.2,
we give the assumptions to the main theorems. In Section 3, we state the main theorems
(Theorem 3.3 and Theorem 3.5) on the existence of at least one and two nontrivial weak
solutions. The proofs of the main theorems are given in Section 4.

2 Preliminaries and the main theorems

Let Q) be a bounded domain in IR? (d >2)witha Cofl—boundary I'. Moreover, we assume that
I' satisfies (1.2).

Throughout this paper, we only consider vector spaces of real valued functions over R.
For any space B, we denote B? by the boldface character B. Hereafter, we use this character
to denote vectors and vector-valued functions, and we denote the standard inner product of
vectors a = (ay,...,a4) and b = (by,...,by) in R? by a-b = 2?:1 a;b; and |a| = (a-a)'/2,
Furthermore, we denote the dual space of B by B* and the duality bracket by (-, -)p- p.

2.1 Variable exponent Lebesgue and Sobolev spaces

In this subsection, we recall some well-known results on variable exponent Lebesgue-Sobolev
spaces. See Diening et al. [8], Fan and Zhang [12], Kové¢ik and Rakosnik [16] and refer-
ences therein for more detail. Throughout this paper, let Q) be a bounded domain in RY
with a C%!-boundary T and Q is locally on the same side of I'. Define P(Q) = {p : Q —
[1,00); p is a measurable function}, and for any p € P(Q2), put

pT =esssupp(x) and p~ = essinf P(x).

xeQ) xeQ)
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For any measurable function u on (), a modular p,.) = p,(.) o is defined by

oy () = [ ()"

The variable exponent Lebesgue space is defined by
LPY(Q) = {u;u : Q — R is a measurable function satisfying Pp(y (1) < oo}

equipped with the Luxemburg norm

. u
]l oy = mf{/\ > 0;0p() (X) < 1}-
Then LP()(Q) is a Banach space. We also define, for any integer m > 0,
wPO(Q) = {u e L) (Q);9%u € LPY)(Q) for |a| < m},

where &« = (a1, ...,ay) is a multi-index, |a| = Z’f’zl w;, 0% = 8‘;‘1 . -E)Dd‘d and 0; = d/dx;, endowed
with the norm

H“me,p(»)(g) = Z Ha““Hm-)(Q)-

o[ <m
Of course, WOP()(Q)) = LPO)(Q)). Define
Wy’ #0) (Q2) = the closure of the set of W"™?()(Q))-functions with compact supports in Q.

The following three propositions are well known (see Fan et al. [14,22], Fan and Zhao [13],
Zhao et al. [27], and [25]).

Proposition 2.1. Let p € P(Q) and let u,u, € L) (Q) (n =1,2,...) Then we have

@) [ullppo) <U=L>1) <= py)(u) <1U(=1,>1).
.o - -+
@) Nl ) > 1=l ) < 0pey () < Null]p -

(i) Nl < 1= 070, g < 090 () < 020,
(iv) limy—eo [[ttn — 1l 10 () = 0 <= limy—seo pp() (4 — u) = 0.
(V) Nunllpporqy = 00 asn — 00 <= py()(un) — 00 as n — oco.
The following proposition is a generalized Holder inequality.
Proposition 2.2. Let p € P, (Q), where
Pi(Q) ={peP(Q)l<p <p’ <o}

For any u € LPO)(Q) and v € LV’ () (Q), we have

,)_> HuHLP(')(Q)HUHLP'(')(Q) < zHuHLP(')(Q)HUHLFI(‘)(Q)'

1 1
ulx)o(x)|dx < | — +
[ uueolar < (= +
Here and from now on, p'(+) is the conjugate exponent of p(-), that is, ﬁ + p,%x) =1
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For p € P(Q), define

pr(x) = dtﬁgrg?ﬁ)c) if p(x) <d,
0o if p(x) > d.

Proposition 2.3. Let Q be a bounded domain with C*'-boundary and let p € P (Q) and m > 0 be
an integer. Then we have the following:

(i) The spaces LPC)(Q) and W™P()(Q) are separable, reflexive and uniformly convex Banach
spaces.

(i) If q(-) € P+ (Q) and satisfies q(x) < p(x) for all x € Q, then W™PC)(Q) — W™I0)(Q),
where — means that the embedding is continuous.
(i) Ifq( ) € Py (Q) satisfies that q(x) < p*(x) for all x € Q, then the embedding W) (Q)) <
L10)(Q) is continuous. Moreover, if q(x) < p*(x) for all x € Q, then the embedding
WO (Q) — LI (Q) is compact.

We say that p € P(Q) belongs to P'°5(Q) if p has the log-Holder continuity in Q, that is,
p: Q — R satisfies that there exists a constant Cj,(p) > 0 such that

Clo (P)
P =P < o 7

forall x,y € Q.

We also write Pfg(()) ={pePls(Q);1<p <p' <o}
Proposmon 24. If p € PB(Q) and m > 0 is an integer, then D(Q) := CP(Q) is dense in

For the proof, see [8, Corollary 11.2.4].

Next we consider the notion of trace. Let Q be a domain of R? with a C%!-boundary T
and p € P, (Q). Since WP (Q) C W1 1(Q) the trace y(u) = u|, to T of any function u in
WPC)(Q)) is well defined as a function in L} (T). We define

loc

Te(W'P0)(Q)) = (Tr WPO))(T) = {f; f is the trace to T of a function F € W'()(Q)}
equipped with the norm
A1l e wron oy = IEL Il )i F € WHPO(Q) satisfying F|.= £}

for f € (Tr W'?())(T), where the infimum can be achieved. Then (Tr W'*())(T') is a Banach
space. More precisely, see [8, Chapter 12]. In the later we also write F |r: fby F=fonT.
Moreover, we denote

(Tr W) (1) = {f

equipped with the norm

1<l (T WLPO))(T;) = inf{||f]| (Tewroy(r)s f € (Te W'P0))(T) satisfying f‘ri: 8}

i f € (MWHO)T)} fori=1,2

where the infimum can also be achieved, so for any g € (Tr W'"?())(T;), there exists F €
WP (Q) such that F|. = g and || Fllyus0 0y = 18]l mwino -
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Letg € P+(T) :={g € P(T');q~ > 1} and denote the surface measure on I' induced from
the Lebesgue measure dx on Q) by do. We define

LI(T) = {u; u: T — R is a measurable function with respect to do

satisfying /\u(x)\q(x)da < oo}
r

equipped with the norm

[/l e () = inf {/\ > 0,-/r

and we also define a modular on LI0)(T) by

parr() = [ u() 1 do.

Proposition 2.5. We have the following properties.

u(x)
A

q(x)
do <1y,

. - +
1) H“HM(-)(r) >1—= H”qu«)(r) < Pq(-),l‘(”) < H”H{Zq(q(p)-

.o + -
()l ooy < 1=l ) < Pr(0) < Nl

Proposition 2.6. Let Q) be a bounded domain with a C'-boundary T and let p € P Q). If
f e (TrWWOY(T), then f € LPC)(T) and there exists a constant C > 0 such that

Hf”m(~>(r) < CHfH(TrWLp(~>)(r)~
In particular, if f € (Tt WYPO)(T), then f € LPC)(T;) and 1A oy < CUA e wrooryry-
For p € P+(Q), define

d—1)p(x .
P (x) = ot ifp( <d
00 if p(x) > d.
Proposition 2.7. Let p € P, (Q). Then if g(x) € P, (T) satisfies q(x) < p°(x) for all x € T, then

the trace mapping W-P()(Q)) — L1C)(T) is well defined and compact. In particular, the trace mapping
W) (Q) — LPUN(T) is compact and there exists a constant C > 0 such that

||u||LP(')(F) < CH”HWLP(')(Q) foru e Wl/p(‘)(ﬂ)-

For the proof, see Yao [24, Proposition 2.6].
Define a space by
X ={ve W) (Q);v=00nTy}. 2.1)

Then it is clear to see that X is a closed subspace of W' ) (Q)), so X is a reflexive and separable
Banach space. We show the following Poincaré type inequality (cf. Ciarlet and Dinca [6]).

Lemma 2.8. Let p € Plfg (Q)). Then there exists a constant C = C(Q, d, p) > 0 such that
HMHLP(‘)(Q) < CHVMHU;(‘)(Q) forallu € X,

where HV”HU(~>(Q) = H’VM|||LP<')(Q)-
In particular, the norm ||V u ||y ) is equivalent to ||ul|y1p0) ) for u € X.
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For the direct proof, see Aramaki [4, Lemma 2.5].
Thus we can define the norm on the space X defined by (2.1) so that

lollx = [IWoll oy foro e X, 22)

which is equivalent to ]|ZJHW1,,;<.)(Q) from Lemma 2.8.

2.2 Assumptions to the main theorems

In this subsection, we state the assumptions to the main theorems. Let p € PIOg( Q) be fixed.

Let A : QO x R? — R be a function satisfying that for a.e. x € Q, the function A(x,-) :
R? > &+ A(x, &) is of Cl-class, and for all & € R?, the function A(-,&) : Q 3 x — A(x, &) is
measurable. Moreover, suppose that A(x,0) = 0 and put a(x,§) = VzA(x,¢). Then a(x,{)
is a Carathéodory function. Assume that there exist constants cy, ko, k1 > 0 and nonnegative
functions hy € LF'()(Q) and hy € Ll .(Q) with hi(x) > 1 a.e. x € Q such that the following
conditions hold.

(A1) |a(x,&)| < co(ho(x) + hy(x)|E|PX)-1) for all & € RY, a.e. x € Q.

(A2) Ais p(-)-uniformly convex, that is,

+ 1 1
A E57) ()l - P < S48 + 5AGx)
for all &7 € R? and a.e. x € Q.
(A3) Ais p(-)-subhomogeneous, that is,
0<a(x,& &<px)A(x,& forallf € R and ae. x € Q.
(Ad) A(x,&) > kohi(x)|Z|P™) for all & € R? and a.e. x € Q).
Example 2.9.
(i) A(x,¢) = p \g',‘\” with p~ > 2, h € L] (Q) satisfying h(x) > 1

(ii)) A(x,¢) = h (( + |E[2)P/2 1) with p~ > 2, h € LP'()(Q) satisfying h(x) > 1 a.e.
x € (.

Then A(x,¢) and a(x,§) = VzA(x, &) satisfy (A1)—(A4).

Remark 2.10. When h(x) = 1, (i) corresponds to the p(-)-Laplacian and (ii) corresponds to the
prescribed mean curvature operator for nonparametric surface.

For the function h; € L] (Q) with h1(x) > 1 a.e. x € O, we define a modular
Pp( () (VD) = / I (x)|Vo(x)|"Mdx - for v e WO(Q).
0

Define our basic space
Y = {U S X;pp(.),hl(.)(Vv) < OO} (2.3)
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equipped with the norm

. Vo
HUHY = inf {/\ > 0;pp(~),h1(~) (/\> < 1} ,

then Y is a Banach space (see Lemma 2.12 below). We note that C3°(Q)) C Y. Since

Pu( () (V) = pyy (P W0),

we have
olly = (113" 0ll o - (2.4)

Then we have the following lemma.
Lemma 2.11.
(i) Y — Xand ||v||x < ||v||y forallv €Y.

(ii) Letv € Y. Then ||v|ly > 1(=1,< 1) <= pp() () (V0) > 1(=1,<1).
- +
(iii) Letv € Y. Then [[vlly > 1= [[o|l§ < oy (Vo) < [[0ll} .

. + -
(iv) Letv € Y. Then [[vlly < 1= [[o|l§ < ppym) (Vo) < [[0ll}
(V) Let up,u €Y. Then im0 ||ty — ully = 0 <= limy—00 0p() () ( Vit — V) = 0.

(vi) Let uy € Y. Then [[uy|ly — 00 asn — 00 <= 0, () (Vitn) — c0asn — 0.

When g € Pfg (Q) satisfies g(x) < p*(x) for all x € (), define

Aq:inf{HvHY;vEY\{O}}. (2.5)

HUHM(-)(Q)

By Proposition 2.3 and Lemma 2.11, there exists a constant ¢ > 0 such that [[v[[;4)) <
c|lvllx < cl[v]ly for all v € Y, so we can see that A; > 0.

When g € Pfg (Q) satisfies g(x) < p°(x) for all x € T, define
I O
Hg = in ;0€eYwitho#0onT) . (2.6)
||U||Lq(->(r2)

By Proposition 2.7 and Lemma 2.11, there exists a constant ¢ > 0 such that [[v[| ), <
c|lv]|x < cl|v||y for all v € Y, so we can see that y, > 0.

Lemma 2.12. The space (Y, || - ||y) is a reflexive Banach space.

Proof. Since ||v|ly = Hh}/p(')VvHL,,(‘)(Q) for v € Y(C X), it is clear that Y is a normed linear
space. Let {v,} be a Cauchy sequence in Y. Then {||v, ||y} is bounded, so {p,.) () (Von)} is
bounded from Lemma 2.11 (vi) and we have

lim liminf [ hy(x)|Vuj(x) — Vi, (x) P dx = 0.

n—00 ]’—>oo O
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Since ||v||x < ||v]]y for all v € Y, {v,} is also a Cauchy sequence in X. Hence there exists
v € X such that v, — v in X, thatis, Vv, — Vv in LF’(')(Q). So there exists a subsequence
{vw} of {v,} such that Vv, (x) — Vo(x) a.e. in Q). By the Fatou lemma,

/ I (x) | Vo(x)[PWdx < liminf / 11 (%) | Vo (x)[PXdx < co.
[9) n’—oo JO
Thereby v € Y. Applying again the Fatou lemma,

lim [ hi(x)|Vo(x) = Vo, (x)|P®dx < lim liminf hy(x)|Vop(x) — Vo, (x)|P®dx = 0.

n'—co JO) n'—oo j=oo JO

This implies v,;, — v in Y. Since {v,} is a Cauchy sequence in Y, we see that v, — vin Y, so
(Y, || - |ly) is a Banach space.

We claim that (Y, || - ||y) is a uniformly convex Banach space. Since LP()(Q)) is uniformly
convex, for any ¢ > 0, there exists 6 > 0 such that if u,v € LP()(Q) satisfy ||u]| . ) <
Lol < 1and [lu =210 ) > € then H(u+v)/2HL,, y <1-20. Thusif u,v € Y sat-

isfy [lully <1, olly < 1and [[u—o]y > &, then | 1y" W ul| o) < 1, 113" V0] o) < 1
and th/p Vu— hl/p V| 1p0)(q) > € from (2.4). Hence we have

|(hl/PC Vu+h1/” V0)/2 i) <14

Therefore we get ||(u +v) /2|y < 1— 4. This implies the uniform convexity of Y. So it follows
from the Milman theorem (cf. Brezis [5, Theorem II1.29]) that Y is reflexive. O

We continue to state the assumptions of f and g in (1.1).
Let f is a real Carathéodory function on () x R having the following properties.

(F1) |f(x, )] < c1(1+ [t]10)-1) for all t € R and a.e. x € Q, where c; is a positive constant
and g € Plfg(ﬁ) such that g(x) < p*(x) forallx € Qand p™ < g~.

(F2) There exist 0 > p™ and #; > 0 such that
0 < OF(x,t) < f(x,t)t forallt € R\ (—to,tp) and a.e. x € Q,
where
t
F(x,t) = / f(x,s)ds. (2.7)
0
(F3) Let A,+ be defined by (2.5). There exist A € (0, kop™ ()Lp+)”+ /4) and 0 < 6 < 1 such that

]Q(Pf’tz)t <A forallte (—4,6)\{0} and a.e. x € Q.

Let ¢ be a real Carathéodory function on I'; x R having the following properties.

(G1) [g(x, )| < co(1+ [t™~1) for all t € R and a.e. x € T, where ¢, is a positive constant
and r € Pfg(ﬁ) such that 7(x) < p?(x) for all x € T, and p+ < r~.

(G2) Let 0 and t be as in (F2). That is, there exist & > p™ and ¢y > 0 such that
0<0G(x,t) <g(x,t)t forallt € R\ (—to tp) and a.e. x € I'y,

where

G(x,t) = /Otg(x,s)ds. (2.8)
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(G3) Let p,+ be defined by (2.6). There exist u € (0, kop*'(y,ﬁ)iﬁ’+ /4) and 0 < 6 < 1 such that

S <y forallte (~0,0)\ {0} and ae. x €T

3 Main theorems

In this section, we state the main theorems.

Definition 3.1. We say u € Y is a weak solution of (1.1) if u satisfies that

/Q a(x, Vu(x)) - Vo(x)dx = /Qf(x,u(x))v(x)dx + /rz ¢(x,u(x))v(x)dc forallveY. (3.1)

Remark 3.2. Since {¢ € C*(Q); ¢ =0onT 1} C Y, if u € Y satisfies (3.1), then the equation
(1.1) holds in the distribution sense.

Then we obtain the following two theorems.

Theorem 3.3. Let Q) be a bounded domain of RY (d > 2) with a CO'-boundary T satisfying (1.2).
Under the hypotheses (A1)-(A4), (F1)-(F3) and (G1)-(G3), the problem (1.1) has a nontrivial weak
solution.

Remark 3.4. This theorem extends the result of [10] in which the authors considered the case
where p(x) = p = const. and I', = @.

We impose one more assumption.

(F4) There exist a constant ¢ > 0 and 0 < m < 1 such that f(x,t) > ct" ! for 0 < t < § and
a.e. x € (), where § > 0 is as in (F3).

Theorem 3.5. Addition to the hypotheses of Theorem 3.3, assume that (F4) also holds. Then the
problem (1.1) has at least two nontrivial weak solutions.

Remark 3.6. The authors in [17] considered the equation
—div [a(x, Vu(x))] = m(x) [u(x)]" " 2u(x) + n(x) [u(x) ") 2u(x)

and I', = @. The authors got the same result of Theorem 3.5 under stronger hypotheses than
(Al) and (A4), that is, h1(x) = 1. However, they use an inequality A(x,t) < tp(x)A(x, )
for small + > 0 which does not hold for the function in Example 2.9 (ii). To overcome their
mistake, we assume a stronger condition (F4).

4 Proofs of Theorem 3.3 and Theorem 3.5

In this section, we give proofs of Theorem 3.3 and Theorem 3.5. In order to do so, we use the
variational method. Define a functional on Y

I(u) = E(u) — J(u) — K(u) (41)
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where
E(u) = /Q Alx, Vu(x))dx, 4.2)
J(u) = /Q F(x,u(x))dx,  Fis defined by (2.7), 4.3)
K(u) = /r Glxu(x))do,  Gis defined by (28) (4.4)

The proof of Theorem 3.3 consists of several lemmas and propositions.

Lemma 4.1.
i) |A(x,&)| < colho(x)|E| + hy(x)|E[PX)) for all £ € RY and a.e. x € Q.

(ii)
E (qurv) gy (V= V0) € SE) + 3E(0) foralluoe Y

and
E(1—-7u+7tv) < (1—71)E(u)+7E(v) forallu,v €Y and T € [0,1].

(iii) There exists a constant c3 > 0 such that |F(x,t)| < c3(1+ [t[1™)) forall t € R and a.e. x € Q.

(iv) There exists v € L®(Q) such that y(x) > 0a.e. x € Qand F(x,t) > y(x)t® forall t € [ty, )
and a.e. x € Q).

(v) There exists a constant cy > 0 such that |G(x,t)| < cg(1+|t|"™)) forall t € R and a.e. x € T,

(vi) There exists § € L™(T) such that 5(x) > 0 a.e. x € Ty and G(x,t) > §(x)t® forall t € [to, )
and a.e. x € T'p.

Proof. (i) Using (A1), we have

|A(x, 8)| = [A(x, &) — A(x,0)]

- | dpata
:'/0 a(x,tg',‘)-{,‘dt’

< ¢ /Ol(ho(X) by ()P g PR g at
< co(ho(x)[§] + i (x)[g[P)).

(ii) The first inequality easily follows from (A2). Since A(x, ) is continuous with respect
to &, it follows from (A2) that A(x, (1 — 1)+ 1) < (1 - 1)A(x, &) + TA(x, 1) for all &5 € RY
and 7 € [0,1], so the second inequality follows from this inequality.

(iii) From (F1),
[F(x, )] = ‘/Otﬂm)dr <o (m + q(lx)yt\w)) .

<a

t
JACERL
0

Since q(x) > 1, we have |t| < 1+ |1, so (iii) follows.
(iv) From (F2), for t > tg,
0 < OF(x,t) < f(x,t)t. (4.5)
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Put y(x) = F(x,to)ty?. Then (x) > 0 a.e. x € Q and it follows from (iii) that
y(x) < c3(1+ 81950 < o5(1+max{t] ] })tg? < oo.

So v € L*(Q)). From (4.5),

T~ F(x,T) F(x,7)°
Integrating this inequality over (to,t), we have

F(x,t)
F(x, to)

0 _ flu1) _ E(x7)

for all t > tg.

flog ! <log

fo
This implies F(x,t) > (x)t? for all t > t,.
(v) and (vi) follow from the same arguments as (iii) and (iv), respectively. O

Proposition 4.2. The functionals E, |, K € C'(Y,R) and the Fréchet derivatives E',]' and K' satisfy
the following equalities.

(E'(1),0)y y = /Q a(x, Vu(x)) - Vo(x)dx, (4.6)
'), )y = [ fxu(x)o(x)dx, (4.7)
(K'(u),0)y+y = r2g(x,u(x))v(x)d(f (4.8)

forallu,v ey,

Proof. Step 1. We show that E is continuous on Y. Let u, — uin Y as n — co. Then from (2.4),
Hh}/p(')Vun — h}/p(')VuHLp(.KQ) —0 asn— oo. 4.9)

From [2, Proposition A.1], there exist a subsequence {u,/} of {u,} and k € LP)(Q) such that
I ()Y POV 1w (x) = by ()P0 Vu(x) ae. x € Q, and since by (x) > 1ae. x € Q,

Vit (x)| < |11 ()P, (x)| < k(x)  ae. x € Q.

In particular, Vu,/(x) — Vu(x) ae. x € Q. Since A(x,¢) is a Carathéodory function,
A(x, Vu,(x)) = A(x, Vu(x)) a.e. x € Q as n’ — co. By Lemma 4.1 (i),

|A(x, Vit (x))] < colho ) [ Vst () 4 Iy () | Wty () 7)) < oo (x)k(x) + K(x)7)).

Since hy € LP')(Q) and k € LP()(Q), taking the Holder inequality (Proposition 2.2) into
consideration, we see that the last term is an integrable function independent of n'. By the
Lebesgue dominated convergence theorem, we have

lim A(x,Vun/(x))dx:/ A(x, Vu(x))dx.

n’'—oo JO) Q

By the convergent principle (cf. Zeidler [26, Proposition 10.13 (i)], for the full sequence {u,},

lim [ A(x, Vi(x))dx = / A(x, Vu(x))dx.

n—oo /O JO

This means that E(u,) — E(u) as n — oo, so the functional E is continuous in Y.
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Step 2. We derive that E is Gateaux differentiable in Y. Let u,v € Y and 0 < [t| < 1. By the
mean value theorem,

E(u+tv) — E(u) :/ A(x, Vu(x) +tVo(x)) — A(x, Vu(x)
t

dx

:/Q/Ola(x,Vu(x)—thVv(x))-Vv(x)drdx.
From (A1), we have
la(x, Vu(x) +ttVo(x)) - Vo(x)|
co(ho(x) + 1 (x)| Vu(x) + Tt Vo (x) [P 1) | Wo(x)]
co(ho(x)|Vo(x)| + hy (x) /70| Wo(x) [ly () PO D/ PE) (| W u(x) | + | Vo(x) )P
co(ho(x) [ Vo) + by ()P0 [T o (x) (1 () PO (| V()| + [Vo(0)]) "

IN

IN

Here since 1,0 € Y,y € LP'0)(Q), 1P| V0| € LPO(Q) and

(1 (VPO ()| + I ()P0 9o(x))" 7 e 170(0),

it follows from the Holder inequality (Proposition 2.2), the last term of the above inequality
is an integrable function independent of t. On the other hand, a(x,¢) is a Carathéodory
function, we have

a(x, Vu(x) + ttVo(x)) - Vo(x) = a(x, Vu(x)) - Vo(x)

as t — 0. Using again the Lebesgue dominated convergence theorem, we have

E
(u+ to) — / x, Vu(x))- Vo(x)dx ast— 0.
Thus E is Gateaux differentiable at u and the Gateaux derivative DE satisfies
DE(u)(v) = / a(x, Vu(x)) - Vo(x)dx.
Q

Clearly DE(u) is linear in Y.
Step 3. We show that for every u € Y, we have DE(u) € Y*. Forany v € Y,

DE(u)(0) :/ a(x, Viu(x)) - Vo(x)dx
_/ h (x) VP a(x, Vu(x)) - (x)VPO Vo (x)dx.
We note that ||v||y = ||k 1/p0) V| 1) (q) from (2.4). On the other hand, from (A1),
oy (" a(,u(-))
:/th(x)*??'(")/’”(")]a(x,Vu(x))\”'mdx
< /Q Iy (x) P /PO (0o (g (x) + by (2) | V() [P 1P D iy

< max {cgp’ﬁ,cgp/)’}zwﬂ*—l / (ho(x)P'®) + Iy (x)| V() [P®) ) dx < oo.
QO
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Hence h; 1/t a(-, Vu) € LP')(Q). By the Holder inequality (Proposition 2.2), we have
IDE(u)(0)| < 2[l1, " a(, Vu() | proqllolly forallo e Y.
Hence we see that DE(u) € Y* and

IDE@)ly- < 2llky " a(, Vu()) oo (4.10)

)-
Step 4. We derive that the map Y > u — DE(u) € Y* is continuous. Let u, — u in Y as
n — oo. Then (4.9) holds. So there exist a subsequence {u,/} of {u,} and k € LP0)(Q) such
that Vi, (x) — Vu(x) ae x € Qand hy(x)"P0)|Vu, (x)| < k(x) ae. x € Qand all n’. By
(4.10),

IDE(u) — DE(u)]

v <20l () 7P (a(, V() = al, Vu() | o)

In order to show that the right-hand side converges to zero, taking Proposition 2.1 into con-
sideration, it suffices to derive that

0,0y ()P (e, Vit (1)) — a(, V() =0 asn’ — oo,
that is,

/Q By (x) 7P PO g (x, Vi (x)) — alx, Vi(x)) [P Pdx — 0 asn’ — c. (4.11)
Since a(x, ¢) is a Carathéodory function, and Vu, (x) — Vu(x) a.e. x € (), we have
hy(x) 7P/ P0) | a(x, Vi (x)) — alx, Vu(x))[P®) -0 ae xe Q.
As in the argument in Step 3, we have
hy(x) P @/ PO) | g (x, Vg (x))[P'®) < max {c(p/ﬁ,cép/y } 207" (g (x)P' ) 4 ke (x)P ).

The right-hand side is an integrable function in ) independent of #n’. By the Lebesgue dom-
inated convergence theorem, (4.11) holds. Thus |DE(u,) — DE(u)||y= — 0 as n’ — co. By
the convergent principle (cf. [26, Proposition 10.13 (i)], for full sequence {u,} we have
||IDE(u,) — DE(u)||y+ — 0 as n — oo. Therefore, since the Gateaux differential DE is contin-
uous in Y, we see that E is Fréchet differentiable and the Fréchet derivative E’ is equal to the
Gateaux derivative DE. Hence E € C'(Y,R) and (4.6) holds.

Step 5. We show that ] and K belong to C!(Y,R) and (4.7) and (4.8) hold. By Lemma 4.1
(iii) and [2, Proposition 2.12], the Nemytskii operator Nr : L7)(Q) > u + F(-,u(-)) € L}(Q)
is continuous. From (F1), we have ¥ — X — Lq(')(Q), so N is continuous in Y, so we see
that | is continuous in Y. Since F(x,t) is a C!-function with respect to t, clearly | is Gateaux
differentiable in Y and

DJ(u)(v) = / Fx,u(x))o(x)dx forallu,v € Y.
0
By the Holder inequality (Proposition 2.2),

IDJ(u) (@) <2[fCu()l woqyllolimo @y < CIFCu) g0 @llelly  forallv Y.
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Hence DJ(u) € Y* and |[D](u)]ly= < ClIf (-, u(-))ll 0)(q)- Since [f(x,t)] < cr(1+ 411y =
c1(1 + [¢)90)/9' X)) from (F1), Nemytskii operator N¢ @ u = f(-,u(-)) is continuous from
L10)(Q) to LT0)(Q) (cf. [1, Proposition 2.9]). Thus if u, — u in L10)(Q), then

Hf(/”n<)) _f('lu(')>HL'7’(‘>(Q) —0 asn — oo,

Since Y — X — L1)(Q), we can see that ] € C'(Y,R) and (4.7) holds. Similarly, we can
prove that K € C!(Y,R) and (4.8) holds. O

Remark 4.3. When p(-) = p = const. and I'; = @, the authors of [10] only prove the weakly
continuously differentiable on Y, and so they must use a version of the Mountain-pass lemma
introduced in [9]. However, since we derived that E belongs to Ct (Y,R), it suffices to use the
standard Mountain-pass lemma later.

Proposition 4.4.

(i) The functionals | and K are weakly continuous in Y, that is, if u, — u weakly in'Y as n — oo,
then J(u,) — J(u) and K(u,) — K(u) as n — oo.

(ii) The functional E is weakly lower semi-continuous in Y, that is, if u, — u weakly in Y as n — oo,
then E(u) < liminfy, o E(uty).

(iii) E(u) — E(v) > (E'(v),u — 0)y~y forall u,v € Y.

Proof. (i) Let u, — u weakly in Y as n — co. Since the embedding Y < L1()(Q) is compact,
we see that u, — u strongly in L10)(Q). Since | and K are continuous on L1()(Q}), we see that
J(uy) — J(u) and K(u,) — K(u) as n — oo.

(i) A(x,¢) is a Carathéodory function on ) x R? and A(x,&) > 0 by (A4). Moreover,
from (A2), A(x,¢) is convex with respect to ¢ for a.e. x € Q. If u, — u weakly in Y, then
up,u € WH(Q) and u, — u strongly in L'(Q) and Vu, — Vu weakly in L'(Q). Hence it
follows from Struwe [21, Theorem 1.6, p. 9] that E(u) < liminf, , E(uy).

(iii) Since E is convex functionin Y, foru,v € Yand 0 < 7 < 1,

E(v+t(u—v))—E(v) E((1—71)v+Tu)—E(v)

T T
(1—-71)E(v) + TE(u) — E(v)
- T
= E(u) — E(v).
Letting T — 40, we get (E'(v), u — v)y+y < E(u) — E(v), so (iii) holds. O

Lemma 4.5.

(i) There exist constants k3 > 0 and c3 > 0 such that
Pt g —p* rm—p* ;
I(u) > |Jully <k3—C3 (||u||y + ||y )) forall u € Y with ||u|ly < 1.
(ii) There exist constants c3 > 0 and ky € R such that

. +_ - 1
1) > [l (camin { g Jull "} = GG ) ks orallue Y,
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Proof. (i) From (F3), for a.e. x € ),
t
Flot) = [ flos)ix < ;:M”Jr forall t € (—5,5).
0

On the other hand, by Lemma 4.1 (iii), there exists ¢ > 0 such that |F(x,t)| < c|¢1%) for all
t € R\ (—J,6). Hence

A

P(x,t) S pj

tP" 4+ c5|¢)7™) forall t € R and ae. x € Q.

Therefore, we have

Jow = | F(m(x))dxgi ) dx o [ jut) s

N .
Lr* ot ¢, max { H”HZM-)(Q)’ HuH[Zq(‘)(Q)} '

< 7HMH
p*
Similarly, there exists cj > 0 such that
Kw) < el g+ hmax { s, Il

Since pt < g7 < g(x) < p*(x ) for all x € Q from (F1), we have Y < X < LV (Q),
L10)(Q). By (2.5), ||uHU,+( <+ - [[ully and [[ul| g0 () < iq||u||y for all u € Y. Since we have

pt < r~ < r(x) < pP(x) for all x € T; from (G2), it follows from (2.6) that we can see that
Y 5 X < L7 (52), 'O (T2). Thus we have [lulpr ) < gl and [l < & lully
for all u € Y. When ||u||y < 1, there exist positive constants c5 and ¢4 such that

A 1
J6) < e

_P‘r

. .
ully +esllully

u 1 pt —
K(u) < — u + cellU .
( ) =t ( p+)p+ || ||Y H HY

On the other hand, from (A4),
E(u) :/ Alx, Vu(x))dx > ko/ 1 () |V () PO > kol lu| .
Q Q
Thus we have

ko +

S My —eslully

—collully

= [l (ks = es(llully "+ [lully 7)),

where k3 = ko/2 and ¢3 = max{cs, cs} for all u € Y with |lu]y < 1.
(ii) From (A3) and (A4), forany u € Y,

E(u) — %(E'(u),u)wly = /QA(x,Vu(x))dx — % /Q a(x, Vu(x)) - Vu(x)dx
Z/QA(x,Vu(x))dx—é/ﬂp(x)A(x,Vu(x))dx

2( —p;—>/QA(x,Vu(x))dx
> (1— ’”g) ko/th(x)yw(xw(x)

. + -
> cqmin {[Jullf, ulf },
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where ¢y = ko(1 —p*/60) > 0. Put O, = {x € OQ;|u(x)| > to} and T, = {x € Tp; |u(x)| > to}.
From (F2) and (G2),

%f(x,u(x))u(x) —F(x,u(x)) >0 forae. x€Q,,
%g(x,u(x))u(x) —G(x,u(x)) >0 forae xecT,,
and there exists a constant M > 0 such that
1

éf(x,u(x))u(X) — P(x,u(x))’ <M forae xe€Q\Q,,

%g(x,u(x))u(x) - G(x,u(x))‘ <M forae x €T \T,.

Therefore, we have

L), wyey — 1)

6
_ <éf(x,u(x))u(x) _ F(x,u(x))) dx +

Qu
> —M|Q\ Q| > —M|Q]

(;f(x,u(x))u(x) - F(x,u(x))) dx

0\0,

and

B (K/() u)y-y — K(w)

1 1
— /r (GS(X,u(x))u(x) - G(x,u(X))> do + . (eg(x,u(x))u(x) _ G(x,u(x))> do
2 _M’r2\ru‘ > —M|F2\.
Put ky = —M|Q| — M|T'z|. Summing up, we have
1) = 30" () )y
1

= E(u) — (B (), vy — J(0) + g0 () ey = K(u) + (K (), )y v

o
> cqmin {|ull} ull} ) + k.

Hence
. + - 1
1) 2 camin {|ull}, [ull} }+ 5 (1 (w), w0y + ks
. + - 1
> cqmin {[lull}, [ull} } = 517G v ully + k. 0

For a proof of Theorem 3.3, we apply the following standard Mountain-pass lemma
(cf. Willem [23]).

Proposition 4.6. Let (V,| - ||v) be a Banach space and I € C'(V,R) be a functional satisfying the
Palais—Smale condition, that is, if a sequence {u,} C V satisfies that lim,_,c I(1,) = 7y exists and
limy, oo [|[I'(4y)||v+ = O, then {uy,} has a convergent subsequence. Assume that 1(0) = 0, and there
exist p > 0 and zg € V such that ||zo||v > p, I(z0) < I(0) = 0 and

a = inf{I(u);u € V with ||u||ly = p} > 0.

Put G = {9 € C([0,1],V); (0) = 0,¢9(1) = z0} and B = inf{maxI(¢([0,1]);¢ € G}. Then
B > w and B is a critical value of I.



Existence of weak solutions for nonuniformly elliptic equation 17

We apply Proposition 4.6 with (V, || - |[v) = (Y, || - [ly). In order to do so, we must show
the following proposition.

Proposition 4.7.

(i) The functional I satisfies the Palais—Smale condition.
(ii) I1(0) =0.
(iii) There exists p > 0 such that inf{I(u);u € Y with ||ully = p} > 0.

(iv) There exists zg € Y such that ||zo||y > p and I(zp) < 0.

(v) G #@.

Proof. (i) Assume that a sequence {u,} C Y satisfies that lim, .o I(u,) = 7 exists and
limy, o0 ||’ (14 ||y+ = 0.

Step 1. The sequence {u,} is bounded in Y. Indeed, if {u,} is unbounded, there exists a
subsequence {u,/} of {u,} such that ||u,/|| > n’ for any n’ € IN. By Lemma 4.5 (ii),

-4 1
1) 2 el (esllunl§ " = ST Gl ) ks 00 a5’ oo

This contradicts lim,; o I(1,) = 7.

Step 2. Since {u, } is bounded in Y and Y is a reflexive Banach space, passing to a subsequence,
we may assume that 1, — u weakly in Y. By Proposition 4.4 (ii) and (iii),

E(u) < timinf E(uy) = lim (J () + K(ua) + 1102)) = J () + K(u) 4 7.
Since {||u, — u||y} is a bounded sequence and lim, o ||I'(1tn)||y+ = 0, we see that (I'(uy,),
U —ty)y+y — 0 as n — co. By the Rellich-Kondrachov theorem, u, — u strongly in L10)(Q)
and u, — u strongly in L’()(T). By (F1) and (G1), |f(-, ux(-))| is bounded in L7()(Q) and
|g(-,u,(+))] is also bounded in L ()(T3). Hence

im (7' (), 1 = wa)yey = Jim [ e (2)) (0(x) = () = 0
and

Yim (K (1), ¢ — ey = Jim [ e 00 () (1(x) = ()" = 0.
Therefore.

lim (E'(uy), 4 — thy)y+y

n—00
= Jm((ﬂ(un), u—p)yey + (J' (tn), u — un)yy + (K (un), 10 — tty)y+y) = 0.

On the other hand, by Proposition 4.4 (iii) and the above equality,

E(u) — limsup E(uy,) = liminf(E(u) — E(uy)) > lim (E'(uy), u — un)y+y = 0.

n—00 n—oo n—00

Thus by Proposition 4.4 (ii), we have lim,_,c E(u,) = E(u).
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—Vu) - 0asn — oo. If

Step 3. We show that u, — u strongly in Y, that is, Op(-)n( )(Vun
this is not satisfied, there exist a subsequence {u,} of {u,} and ¢y > 0 such that

Oy () (Vi —Vu) > e foralln' € N.

By Lemma 4.1,

1 1
EE(un/) + EE(M) —E (

Uy + U
5 > > klpp(.),hl(.)(Vunf — Vu) > kiep.

Letting n’ — co and using Step 2, we have
(4.12)

E(u) —liminfE

n'—o0

<un/2+ u) > kreo.

On the other hand, since ” L su weakly in Y, it follows from Proposition 4.4 (ii) that

E(u) < liminfE (un/;—u> :

n'—oo

This contradicts (4.12).
(ii) Since E(0) = J(0) = K(0) = 0, we have I(0) = 0.
(iii) Since k3 > 0, g~ > pT and r~ > p™, there exists 0 < p < 1 such that

p”+ (ks — 03,,0‘?7_1’+ — C3pr7_”+) > 0.

By Lemma 4.5 (i),

+ - _

1) > [lull} (ks — csl|ufy —CsHuHr ")
=0 (ks —cap” P —c3p” ) >0

for all u € Y with ||lu|ly = p.

(iv) Let t > 1 and choose vy € C°(Q2)(C Y) such that vg(x) > 0and W = {x € (;v9(x) >
to} has a positive measure. By (F2), F(x,v9(x)) > 0 for a.e. x € Q. If we put Wy = {x €
O; tvg(x) > to}, then W C W;. By Lemma 4.1 (iv),

/ F(x, tvo(x))dx 2/ ()t (x)dx > t9L(vy),
Wf Wt
f x)fdx > 0. By Lemma 4.1 (iii), there exists a constant M > 0 such
for t € [0 tg] and a.e. x € (). We note that (F2) implies that

where L(vo)
|
forallt € R\ (—fo,tp),s > 1and a.e. x € Q.

that |F(x t)
(4.13)

<M
F(x,st) > F(x,t)s®

Indeed, if we define g¢(s) = F(x, st), then

¢'(s) = f(x,st)t = %f(x,st)st > gl-"(x,st) = gg(s).

Thus ¢'(s)/g(s) > 6/s, so logg(s)/g(1) > 6logs. This implies g(s)
On the other hand, (A3) implies that

A(x,s€) < A(x, {,‘)sp(x)

forall € R% ae. x € Qands > 1. (4.14)
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In fact, if we define g(s) = A(x,s¢), then

p(x)

S

g(5) = alxse) £ < PH A5y = "W).

Hence g'(s)/g(s) < p(x)/s. We also get g(s) > g(1)s?*). From (4.14), we have

Ew@:LAmm%ummgAAmv%mwmm
<t /QA(x,Vvo(x))dx =t E(vp).
Since vy € C§°(Q2), we have K(tvg) = 0. Therefore,
I(tvg) = E(tvo) — J (tvo)
— E(tv) — (ALtF(x,tvo(x))dx-—‘A;VNtF(x,tvo(x))dx

<t E(vy) — t°L(vy) + M|QY.

Since 6 > p* and L(vg) > 0, I(tvg) — —co as t — oo. Hence there exists t; > 1 such that
lt1vo|ly > p and I(t1vg) < 0. If we put zp = 100, then the conclusion of (iv) holds.
(v) If we define ¢(t) = tzp, then ¢ € G, so G # @. O

Proof of Theorem 3.3. By Propositions 4.2 and 4.7, we see that all the hypotheses in Proposition
4.6 hold. Hence there exists uy € Y such that 0 < a < I(up) = B and I'(up) =0, so

(I'(uo), >Y*Y—/ a(x, Vuy(x)) - Vo(x)dx
= / f(x, uo(x x)dx+/r g(x, up(x))v(x)do forallv € Y.

Thus u is a weak solution of (1.1). Since I(upg) = B > I(0) = 0, up is a nontrivial weak
solution of (1.1). O

Proof of Theorem 3.5. By (F4),
t

F(x,t) = / f(x,t)dt > %t’” for0<t<dandae. x € Q.
0

Choose ¢ € C3°(Q2) sothat 0 < ¢ <land ¢ #0. Let 0 < t < (< 1). Since A(x,{) is convex
with respect to ¢ and A(x,0) = 0, we have A(x,t&) = A(x,t& + (1 —1)0) < tA(x, ). Thus

WWZHW)IWO
:AA m_knmﬂmw
< t/QA(x,Vgo(x))dx— %tm/ogo(x)mdx.

Since m < 1and £ [ ¢(x)"dx > 0, we see that I(tg) < 0 for small ¢ > 0. By Lemma 4.5 (i), I
is bounded from below on B, (0), where B,(0) = {v € Y; ||[v||y < p}. Hence

—oo < ¢:= inf I(v)<D0.
vEB,(0)



20 |. Aramaki

Let 0 < & <infyepp, (o) [(v) — inf 5,0 I(v). Then there exists u € B,(0) such that

inf I(v) <I(u) < inf I(v)+ €%
v€B,(0) vEB,(0)

Since infvem I(v) < 0, we can choose u € B,(0) so that I(u) < 0. Applying the Ekeland

variational principle [11, Theorem 1.1] to the complete metric space B,(0), there exists u, €
B,(0) such that

I(ue) < I(u), (4.15)
I(ue) < I(v) +¢€||v — ue||y for all v € B,(0), (4.16)
|u —ue|ly <e. (4.17)

Define @ : B,(0) = R by ®(v) = I(v) + ¢||v — u¢||y for v € B,(0). Since I(u;) < I(u) <0
and I(v) > 0 for all v € 9B, (0), we have u, € B,(0). Choose p’ > 0 small enough, so that if

w € By(0), then u; +w € B,(0). From (4.16), since ®(u.) < ®(ue +w) for all w € By (0). We
have

{I'(ue), w) v+ y + el|w]ly

el
_ (I'(ue), tw)y-y +et|wlly — (P(ue + tw) — P(ue)) | P(ue + tw) — P(ue)
Hwlly Hwlly
S (I'(ug), tw)yy — (I(ue + tw) — I(u)) 00 ast— 40.

Hwlly

Hence (I'(u¢), w)y+y + €||w|y > 0 for all w € B,(0), so (I'(u), w)y+y > —é||wl||y. Replacing
w with —w, we have [(I'(u¢), w)y-y| < g||w||y for all w € B,(0). Thus ||I'(u¢)||y- < e. Letting
e — 0, we see that I(u;) — ¢ and I'(u;) — 0 in Y*. Since I satisfies the Palais-Smale
condition in Y and I € C!(Y,R), there exist a subsequence {u,} of {u.} and u, € B,(0)
such that u, — up in Y and I'(up) = 0. Therefore, u; is a weak solution of (1.1). Since
I(up) = ¢ < 0 = I(0), up is a nontrivial weak solution of (1.1). Since I(uz) = ¢ < 0 < I(uy),
we have 11 # u. This completes the proof of Theorem 3.5. O
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Abstract. In this note we prove the existence of mild solutions for nonlocal problems
governed by semilinear second order differential inclusions which involves a nonlinear
term driven by an operator. A first result is obtained in suitable Banach spaces in the
lack of compactness both on the fundamental operator, generated by the linear part,
and on the nonlinear multivalued term. This purpose is achieved by combining a fixed
point theorem, a selection theorem and a containment theorem. Further we provide
another existence result in reflexive spaces by using the classical Hahn-Banach theorem
and a new selection proposition, proved here, for a multimap guided by an operator.
This setting allows us to remove some assumptions required in the previous existence
theorem. As a consequence of this last result we obtain the controllability of a problem
driven by a wave equation on which an appropriate perturbation acts.

Keywords: semilinear second order differential inclusion, perturbation effect, funda-
mental system, De Blasi measure of noncompactness, controllability problem, wave
equation.
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1 Introduction

This research is a continuation of the recent papers [8] and [9]. In this paper we proceed
the study, started in [8], concerning the existence of mild solutions for the following problem
driven by a non-autonomous semilinear second order differential inclusion with nonlocal
conditions

x"(t) € A(t)x(t) + F(t,N(t)x), t € ] = [0,4]

x(0) = g(x) (P)n

x'(0) = h(x)

™ Corresponding author. Email: tiziana.cardinali@unipg.it
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where {A(f)}ic; is a family of linear operators generating a fundamental system and F :
JxX = P(X), N :J = Cu(C(];X);X), g h : C(J;X) — X are suitable maps, with X a
appropriate Banach space and

Co(C(I;X); X) ={f:C(];X) — X : fis (w-w)sequentially continuous}. (1.1)

We remember that in infinite dimensional spaces the nonlocal problems are investigated with
different kinds of approach. By using topological methods the existence of mild solutions
for these problems is studied with fixed point theorems applied to a suitable solution opera-
tor. This often requires strong compactness conditions, which are usually not satisfied in an
infinite dimensional framework (see [4,5,8,10,21]).

The purpose of this work is twofold:

(1) to obtain existence results of mild solutions for the abstract problem (P)y in the lack of
compactness,

in order to establish

(2) controllability of the problem driven by the following non-autonomous wave equation

2 2
ocw Jo“w Jw Jme+1/ §)ds)+u(t,&), (E)

S0 = SR H O 0D + 1L,

subjected to the “mixed conditions”: the trajectory w : [0,a] x R — C satisfies, with
respect to the first variable, a “periodicity condition” and it has a fixed initial velocity.
The control u(t, &) belongs to a set of admissible controls. Moreover, b € C!(]), p € L(]),
f:JxRxC — C,e:C(J,L*(T,C)) — C are suitable maps, while @ : | — L%(T,C),
is defined as W(t) = w(t,-) and Jm e(®) denotes the imaginary part of the complex
number e(®D).

The study of aim (1) in absence of the operator N is already addressed in [9] by using a
combination of two techniques: one technique is based on the concept of measure of non-
compactness, while another makes use of the weak topology. This method is also used in [3]
in order to prove the existence of mild solutions for problems monitored by semilinear first
order differential inclusions.

On the other hand the controllability of the mentioned problem governed by (E) is brought
back by using classical arguments (see, for example [42]) to purpose (1).

About the study referred in this note, let us recall that the theory of semilinear differential
inclusions is well documented in literature. Various aspects of this field catch the attention
of many researchers and are widely employed in the study of several dynamical problems
arising from physics, economics, biology, social sciences. Several authors have studied abstract
semilinear second order equations/inclusions in the autonomous case starting from the initial
researches of Kato [25-27] (see, e.g. [15,28,32,36]). On the other hand, the theory dealing with
non-autonomous second order abstract inclusions is only recently investigated, starting from
Kozak’s pioneering work [30]. On this subject we recall [8-10,13,21].

Moreover, with regard to nonlocal conditions we mention the reference [7] of Byszewski.
In many cases it is advantageous to treat the nonlocal conditions since they are more appro-
priate then the classical initial conditions to describe natural phenomena (see [16,41] and the
reference therein).
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Finally, as is known, the controllability problems appear as a natural description of ob-
served evolution phenomena of the real world. The attention of the researchers to such prob-
lems is increasing in literature. For example, for the notions and facts of controllability for
first order differential equations/inclusions, the reader is referred to [1,2,14,33], while we
recall [15,34,35,39] for nonlinear second order differential cases.

In this paper our main contributions are the followings:

(I) a new sufficient condition for the existence of mild solutions for the nonlocal problem
(P)n in weakly compactly generated Banach spaces (see Theorem 4.7, obtained as a
consequence of our Propositions 4.3, 4.4, 4.5, 4.6);

(I) anew selection theorem for a multimap guided by an operator in reflexive Banach spaces
(see Theorem 4.10);

(IIT) a version of the existence result for (P)y in reflexive Banach spaces (see Theorem 4.13,
proved by using our Propositions 4.4, 4.11, 4.12);

(IV) the existence of a mild solutions for an abstract problem satisfying a “periodicity condi-
tion” and having a fixed initial velocity (see Corollary 4.16);

(V) an application of Corollary 4.16 to the study of the controllability for the perturbed
problem driven by (E) (see Theorem 5.1).

Regarding the proof of our first existence result for (P)y, in the setting of weakly compactly
generated Banach spaces, we apply a fixed point theorem for multimaps, recently proved in
[9]. This fixed point result allows us to work with weak topology and De Blasi measure of
weak noncompactness. So we can avoid requests of compactness on the family generated by
the linear part and on the multivalued term. The existence of mild solutions for the nonlocal
problem (P)y is also obtained as a consequence of a selection theorem and a containment
theorem.

Then, to study the case of reflexive Banach spaces, in addition to use the fixed point
theorem of [9], we need to achieve a new selection theorem for multimaps driven by a suitable
operator. Combining this result with the classical Hahn—-Banach Theorem and the weak upper
semicontinuity property we are able to remove some assumptions required in the previous
existence Theorem 4.7.

Finally we are in a position to study the purpose (2), thanks to the definition of a suitable
operator N.

Let us note that, since we have not used the strong compactness property, our existence
results extend in a broad sense those presented in [8]. On the other hand, although it is
possible to reduce problem (P)n to the one studied in [9] by considering an appropriate
operator N (see Remark 4.15), the presence of the required boundedness property on N in our
existence theorems makes us that problem (P)y is not reduced to that examined in [9].

The paper is organized as follows. Section 2 is devoted to the collection of all notions,
propositions and theorems known in literature and used in the sequel: so that the paper
is self contained. The problem setting is presented in Section 3. Section 4 is divided into
two subsections. The first one presents an existence theorem in weakly compactly generated
Banach spaces, obtained by proving some preliminary propositions. The second one is aimed
at examining the existence of mild solutions in the setting of reflexive Banach spaces. Finally,
in Section 5 the controllability of the problem governed by (E) is given as a consequence of
the last result presented in the previous section.
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2 Preliminaries

In this section, we recall a few results, notations and definitions needed to establish our the-
orems. We introduce certain notations which are used throughout the article without any
further mention. Let (X, || - ||x) be a Banach space, X* be the dual space of X and T, be
the weak topology on X. In this paper Bx(0,7) denotes the closed ball centered at the ori-
gin and of radius » > 0 of X. Moreover, we recall that a Banach space X is said to be
weakly compactly generated (NCG, for short) if there exists a weakly compact subset H of X
such that X = span{H} (see [20]). Let us note that every separable space is weakly compactly
generated as well as the reflexive ones (see [20]).

Now, put | = [0,4] an interval of the real line endowed with the usual Lebesgue measure
y, we denote by M(]) the family of all Lebesgue measurable sets, by C(J; X) the space of all
continuous functions from ] to X provided with the norm || - || of uniform convergence. We
precise that to define the set C,,(C(J; X); X), presented in (1.1), we say that f : C(J; X) — X is
(w-w)sequentially continuous if for every sequence (x,)n, x» € C(J; X), x, — x, then f(x,) —
£(x).

We recall the following version of Theorem 4 of [29], which characterizes the weak conver-
gence in the space C(J; X).

Proposition 2.1. Let X be a normed space, (g)n be a sequence in C(J; X) and g € C(J; X). Then
gn — g if and only if (g, — §)n is uniformly bounded and g, (t) — g(t), for every t € J.

Next, if (), X) is a measurable space, a function u : O — X is said to be X ® B(X)-
measurable if, for all A € B(X),u"'(A) € X, where B(X) denotes the Borel o-field of X (see [18,
Definition 2.1.48]). In the case (), %) = (J, M(])), u : ] — X is said to be Bochner-measurable
(B-measurable, for short) if there is a sequence of simple functions which converges to u almost
everywhere in | (see [18, Definition 3.10.1 (a)]) and u : ] — X is said to be weakly measurable if
for each I € X*, the real valued function /(1) is measurable (see [18, Definition 3.10.1 (b)]).

Proposition 2.2 ([18, Corollary 3.10.5]). If X is a separable Banach space and u : | — X, then the
following conditions are equivalent:

(a) u is B-measurable;
(b) u is weakly measurable;
(c) uis M(J) ® B(X)-measurable.

Moreover, Ll(I;X) is the space of all X-valued Bochner integrable functions on | with
norm [|ullpyjx) = [y lu(t)||xdt and LL(]) = {f € L*(;R) : f(t) >0, ae.t € J}. f X =R
weput || - |l1 = || - |1(;r)- For L! -functions the following result holds.

Proposition 2.3 ([12, Lemma 3.1]). For every k > 0, v € LL.(]), there exists n := n(k,v) € N such
that

t
sup kv(é)e’”(t":) g < 1.
tej 70

A set A C L(J;X) has the property of equi-absolute continuity of the integral if for every
e > 0 there exists . > 0 such that, for every E € M(J), u(E) < J;, we have

LIf®)lxdt < e
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whenever f € A, while A C LY(J; X) is integrably bounded if there exists v € L' (J) such that
If(B)]lx <wv(t), ae te], forevery f € A.

Clearly every integrably bounded set has the property of equi-absolute continuity of the inte-
gral. We recall that the equi-absolute continuity of the integral is fundamental to characterize
the relative weak compactness of a bounded set in L!(J; X).

Proposition 2.4 ([38, Corollary 9]). Let A be a bounded subset of LY(J; X) such that it has the
property of equi-absolute continuity of the integral and, for a.e. t € |, the set A(t) = {f(t): f € A}
is relatively weakly compact. Then A is relatively weakly compact.

Then, if H is a subset of the Banach space X, we denote by the symbol H" the weak
closure of H. As is well known, a bounded subset H of a reflexive space X is relatively weakly
compact. Moreover, we recall that a subset H of a Banach space X is called relatively weakly
sequentially compact if any sequence of points in H has a subsequence weakly convergent to a
point in X (see [31]). Now we recall the classical Eberlein-Smulian result.

Proposition 2.5 ([18, Theorem 3.5.3]). A subset of a Banach space is relatively weakly compact if and
only if it is relatively weakly sequentially compact. In particular, a subset of a Banach space is weakly
compact if and only if it is weakly sequentially compact.

In the sequel we use the following version of Theorem 3 obtained by H. Vogt in [40].

Proposition 2.6. Let H be a relatively weakly compact subset of a Banach space X. Then H is weakly
closed if and only if H is weakly sequentially closed.

Further, if P(X) is the family of all nonempty subsets of X, we use the following notations:

Py(X) ={H € P(X) : Hbounded},

Pe(X) = {H € P(X) : H closed},

Pr(X) ={H € P(X) : H compact},
Puw(X) = {H € P(X) : H weakly compact}.

Now, let (A,), be a sequence, A, € P(X), we consider the “Kuratowski limit superior” (see
[23, Definition 7.1.3])

w—limsup A, = {x € X: I(xn )k, Xn, € An,, Mg < Ngy1, Xn, — X}
n——4oo

Proposition 2.7 ([23, Proposition 7.3.9]). Let X be a Banach space, 1 < p < 00, G : | = Pyr(X)
and (fu)n, fn € LP(J; X), be a sequence such that

i) there exists f € LP(]J; X) such that f, — f;
ii) fu(t) € G(t)ae te€ ], neN.

Then
f(t) ecow —limsup{f,(t)}, aete],

n—o0

where co denotes the closure of the convex hull of a set.
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Furthermore a multimap F : O — P(Y), where Y is a topological space, is said to be
measurable if for every open set V. C Y one has F~ (V) = {x € Q F(x) NV # @} € X (see
[24, Definition 1.3.1]).

Proposition 2.8 ([18, Proposition 4.2.4]). Let (Q),X) be a measurable space and Y be a separable
metric space. A multimap F : Q — P(Y) is measurable if and only if for every y € Y the function
x — dist(y, F(x)) is £ ® B(Y)-measurable.

Proposition 2.9 ([18, Theorem 4.3.1]). If (), X) is a measurable space, Y is a Polish space and
F:Q — P¢(Y) is measurable, then F has a ¥. @ B(Y )-measurable selection.

If T is a topological space, a multimap F : T — P(Y) is said to be upper semicontinuous in
T if, for every X € T, it is upper semicontinuous at ¥, i.e. for every open W C Y such that
F(X) C W, there exists a neighborhood V (¥) of X with the property F(V(X)) C W.

A multimap F : T — P(Y) has closed graph if the set graph F = {(x,y) € TxY: y € F(x)}
is closed in T x Y.

Moreover, F is said to be compact if F(T) is compact in Y, while F is said to be locally compact
if every x € T there exists a neighborhood V(x) such that the restriction Fy(,) is compact.

Proposition 2.10 ([24, Theorem 1.1.5]). Let T, Y be topological spaces and F : T — Pr(Y) be a
closed and locally compact multimap. Then F is upper semicontinuos in T.

If Y is a linear topological space, F : X — P(Y) has (s-w)sequentially closed graph [(w-
w)sequentially closed graph] if for every (x,)n, X, € X, X, — x [x, — x] and for every (y,)n,
Yn € F(xn), y» — y, we have y € F(x). In the sequel, the “(w-w)sequential continuity” and
the “(w-w) sequentially closed graph property” are named “weak sequential continuity” and
"weakly sequentially closed graph property" respectively.

A multimap F : | — P(X) is said to have a B-measurable selection if there exists a B-
measurable function f : ] — X such that f(t) € F(t), a.e. t € ].

Now, we recall the following results that ensures the existence of a B-selection for a mul-
timap.

Theorem 2.11 ([24, Theorem 1.3.5]). Let X, Y be Banach spaces and F : | x X — Py(Y) be a
multimap such that

i) for every x € X, F(-,x) : | = Py(Y) has a B-measurable selection;
ii) fora.e. t € J, F(t,-) : X — Pr(Y) is upper semicontinuous in X.

Then for every B-measurable function q : | — Y, there exists a B-measurable selection f : | — X of
the multimap F(-,q(-)).

Let us recall that for v : | — M, where M is a metric space, the B-measurability is gen-
eralized in [22] by using again the simple functions. Thanks to this definition, the following
result holds.

Theorem 2.12 ([9, Theorem 4.2] (Selection Theorem)). Let M be a metric space, X be a Banach
space and F : [ x M — P(X) be a multimap such that

f1) forae. t € ], for every x € M, the set F(t,x) is convex ;

12) for every x € M, F(-,x) : ] — P(X) has a B-measurable selection;
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13) forae. t € J, F(t,-) : M — P(X) has a (s-w)sequentially closed graph in M x X;
f4) there exists ¢ : | — [0,00), ¢ € LY (]), such that

sup ||z [|[< ¢(t), ae. t€];
z€F(t,M)

f5) for almost all t € | and every convergent sequence (xp), in M, the set \J,F(t, x,) is relatively

weakly compact.

Then, for every B-measurable v : | — M, there is a B-measurable y : ] — X such that y(t) € F(t,v(t))
forae. te].

Next, we recall that, if H is a subset of X, F : H — P(X) is a multimap and xp € H,
a closed convex set My C H is said to be (xo, F)-fundamental, if xo € My and F(My) C My
(see [3, p. 620]). In this setting we recall the following result which allows to characterize the
smallest (xo, F)-fundamental set

Theorem 2.13 ([3, Theorem 3.1]). Let X be a locally convex Hausdorff space, H C X and xo € H.
Let F : H — P(X) be a multimap such that ©0(F(H) U {xo}) C H. Then

1) F={H: Hisa (xo, F)-fundamental set} # &;
2) put Mo = Nger H, we have My € F and My = ¢o(F(Mp) U {xo}).

Now we present a fixed point result and a “Containment Theorem”, which play a key role
in our existence results.

Theorem 2.14 ([9, Corollary 4.4]). Let X be a Banach space, H C X, xo € Hand F : H — P(X)
be a multimap such that

i) F(x) convex, for every x € H;
ii) co(F(H)U{x0}) C H;
iit) My is weakly compact;
iv) Fu, has weakly sequentially closed graph,

where M is the smallest (xo, F)-fundamental set.
Then there exists at least one point X € My such that X € F(X).

Theorem 2.15 ([3, Theorem 4.4] (Containment Theorem)). Let X be a Banach space and G,, G :
] — P(X) be such that

a) a.e. t € ], for every (un)n, un € Gn(t), there exists a subsequence (U, )i of (Un)n and u € G(t)
such that u, — u;

aw) there exists a sequence (Yn)n, Yn : ] — X, having the property of equi-absolute continuity of the
integral, such that y,(t) € G,(t), a.e. t € ], forall n € N.

Then there exists a subsequence (yu, )i of (Yn)n such that y,, — vy in LY(J; X) and, moreover, y(t) €
coG(t), ae t €].

Now, a function w : Py(X) — IRJ is said to be a measure of weak noncompactness (MwNC,
for short) if the following properties are satisfied (see [11, Definition 4.1]):
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w1) w is a Sadowskii functional, i.e. w(co(H)) = w(H), for every H € Py(X);
wy) w is regular, i.e. w(H) = 0 if and only if H" is weakly compact.

Further, a measure of weak noncompactness w : Py(X) — ]Rar is said to be:

monotone if Hy, Hy € P,(X) : Hy C Hp implies w(H;) < w(Hy);

nonsingular if w({x} UH) = w(H), x € X, H € Py(X);

xo-stable if, fixed xp € X, w({xo} UH) = w(H), H € Py(X);

invariant under closure if w(H) = w(H), H € Py(X);

invariant with respect to the union with compact set if w(H U C) = w(H), for every relatively
compact set C C X and H € Py(X).

In particular in [17] De Blasi introduces the MwNC function 8 : Py(X) — Ry so defined
B(H) = inf{e € [0, co[: there exists C C X weakly compact: H C C+ Bx(0,¢)},

(named in literature De Blasi-MwNC) and he proves that B has all the properties mentioned
before and it is also algebrically subadditive, i.e. B (Y;_; Hy) < Y}_ B(Hx), where Hy € Py(X),
k=1,...,n.
Moreover, for every bounded linear operator L : X — X the following property holds (see
[19, Lemma 1])
B(L(H)) < LIl B(H), H € Py(X), 1)

where ||L|| denotes the norm of the operator L.
We recall the following interesting result for the De Blasi-MwNC f : P,(X) — Ry

Proposition 2.16 ([3, Theorem 2.7]). Let (Q), X, i) be a finite positive measure space and X be
a weakly compactly generated Banach space. Then for every countable bounded set C C L(J; X)
having the property of equi-absolute continuity of the integral, the function B(C(-)) is M(J) @ M(R)

measurable and 5 ({/Qx(s)dSZ = C}) < /Q‘B(C(s))ds.

In the sequel, fixed & € R, we use the following Sadowskii functional B, : Pp(C(J; X)) —
R, so defined (see [3, Definition 3.9])

Bu(M) = sup supB(C(t))e ™, M€ Py(C(];X)), (2.2)
cogr?t{avl[)le el

where B is the De Blasi MwNC and, for every t € ], C(t) = {x(t) : x € C}. We recall that
the Sadowskii functional B, is xo-stable and monotone (see [3, Proposition 3.10]) and B, has the
two following properties (see [9, Remark 2.11])

(I) Ba is algebraically subadditive;

(II) M C C(J;X) is relatively weakly compact = B,(M) = 0.

3 Problem setting

First of all, on the linear part of the second order differential inclusion, presented in the
nonlocal problem (P)y, we assume the following property:
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A) {A(t)}iey is a family of linear operators A(t) : D(A) — X, where D(A), independent
on t € ], is a subset dense in X such that, for each x € D(A), the function t — A(f)x is
continuous on | and generating a fundamental system {S(t,s) }¢s¢;.

The notion of fundamental system is introduced by Kozak in [30] and it is recently used in
[8-10,21]. In some works, for every t € ], the linear operator A(t) : D(A) — X is also closed
(see [21,30]) and bounded (see [8-10]), but we leave out these properties on A(t) since they
are not necessary in order to prove the existence of mild solutions (see [37]).

Definition 3.1. A family {S(t,s)}sc; of bounded linear operators S(t,s) : X — X is called a
fundamental system generated by the family {A(t) };¢; if

S1. for each x € X, the function S(-,-)x : | x ] — X is of class C! and

a. foreveryt € J,S(t,t)x =0, x € X;
b. for every t,5 € | and every x € X, 2S(t,s)|,_ x = x and

aSts ‘t J=x

S2. forallt,s € ], x € D(A), then S(t,s)x € D(A), the map S(-,-)x : | x | — X is of class C?
and

a’. atzS(t s)x = A(t)S(t,s)x;
b’. aaSZS(t s)x = S(t,5)A(s)x;

7

C-atas( )‘ X =0

S3. for all t,s € ], x € D(A), then a—S(t s)x € D(A). Moreover, there exist %S(t,s)x,
;’ZatS(t s)x such that

7 3

a”. 595-S(t,5)x = A(t)£S(t,5)x;
7 3

b”. 555 S(ts)x = §S(t,5)A(s)x;

and, for all x € D(A), the function (t,5) — A(t) £S(t,s)x is continuous in ] x J.

Asin[21],amap S: ] x ] = L(X), where L£(X) is the space of all bounded linear operators
in X with the norm || - || z(x), is said to be a fundamental operator if the family {S(t,s)}isc; is a
fundamental system.

Moreover, for every (t,s) € | x ], we consider the linear operator, named “cosine operator”,
C(t,s) = —2S(t,s) : X — X.

In [10] it is pointed out that the Banach-Steinhaus Theorem allows to establish the exis-
tence of two constant K, K* > 0 such that

pL. IC(ts)lex) <K (s) €T xT;

p2. [IS(ts)llcx) < Kt —=sl, (ts) € T < J;
p3. [IS(ts)llcx) < Ka, (t,5) € ] < [;
(

p4. [IS(t2,s) = S(t,8) | ox) < K*[ta —t|, ti,t2,8 € ].
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Further, as in [10], we denote with Gs : L'(J; X) — C(J; X) the fundamental Cauchy operator
defined as

Gsf(t) = [ S(t,9)f(s)ds, te ], f (1 X). (3.1)

Let us note that, fixed t € J, the map p; : [0,t] x X — X such that pi(¢,x) = S(t,¢)x,
(¢, x) € [0,t] x X, satisfies all the assumptions of Theorem 2.11 (see S1.). Hence, for every
f € LY(J; X), by p3. it easy to deduce that p;(-, f()) is B-integrable in [0, ¢]. Then, by using p4.
we also have Gsf € C(J; X). So Ggs is well posed. Moreover, the fundamental Cauchy operator
has the properties declared in the following

Proposition 3.2 ([9, Proposition 4.1]). If {S(t,5)}(1s)c)x) is a fundamental system, then the funda-
mental Cauchy operator Gs : L(J; X) — C(J; X) is linear, bounded and weakly continuous (so it is
also weakly sequentially continuous).

We investigate the existence of mild solutions for the nonlocal problem (P)n (see [8, Defi-
nition 2.2])

Definition 3.3. A continuous function u : | — X is a mild solution for (P)y if

u(t) = C(6,0)g(0) + (1,000 + [ SO ac, te ],

where f € S}(,,N(,)u) ={fe Ll (];X): f(t) € F(t, N(t)u), ae. t € J}.

4 Existence results for the nonlocal problem (P)y

In this section, put X a Banach space, we consider the following properties on the multimap
F:]x X — P(X) and on the map N : | = C,(C(]; X); X)

F1 for every (t,x) € ] x X, the set F(t,x) is convex;
F2 for every x € X, F(-,x) : ] — P(X) admits a B-measurable selection;
F3 forae. t €], F(t,-) : X — P(X) has a weakly sequentially closed graph;

F4 there exists (¢n)n, ¢n € LY (J) such that

Ka [! @u(t)dt
lim sup Ka Jo ou(t)dt <1 (4.1)
n—so0 n
and
|E(t,Bx(0,n))]| < @u(t), ae.te], neN; (4.2)

where K is the constant presented in p1. of Section 3;

FN there exists A C ], u(A) = 0: for all n € IN there exists v, € L! (]) such that, for every
teJ\A
B(C1) < va(t)B(Col(t)), (4.3)

for all countable Cy, C; with
CQ g EC(];X)(O/n)/ C1 Q F(t, Co(t) U N(t)CO),

where f is the De Blasi measure of weak noncompactness;
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N1 for every u € C(J; X), N(-)u is B-measurable;
N2 there exists ¢ € IN such that ||[N(#)ul|x <¢, forallt € J, u € C(J; X).
Moreover, we consider the following properties on the functions g, 7 : C(J; X) — X
ghl g, h are weakly sequentially continuous;
gh2 for every countable H C C(J; X), the sets g(H) and h(H) are relatively weakly compact;
gh3 for every bounded and closed subset M of C(]; X), the sets
C(-,0)g(M) and S(-,0)h(M)
are relatively weakly compact in C(J; X).

Remark 4.1. First of all we note that, under assumptions F1, F3 and FN,
F(t,N(t)x) is closed in X, for a.e. t € | and for every x € C(]; X).

Denoted by H* a null measure set such that F3 and FN hold in | \ H*, we fix t € ]\ H* and
x € C(J;X). Now we prove that the set F(t, N(t)x) is relatively w-compact. To this aim we
consider Cp = {x} and C; = {y, : n € N}, where y, € F(t,N(t)x), n € IN. Note that
Co C Be(jx)(0,p), for a suitable p € N, and C; C F(t,Co(t) UN(t)Cp), so by (4.3) we have
B(C1) < vp(t)B(Co(t)) = 0. By the regularity of B the set C; is relatively w-compact and so
there exist (yu, )x C (Yn)n and y € X such that y,, — y. Then by the arbitrariness of the
sequence (1), by using the Eberlein-Smulian Theorem we have that the set F(t, N(t)x) is
relatively weakly compact too. By virtue of F1 and F3 we also know that the set F(t, N(t)x)
is convex and weakly sequentially closed. So, by using Proposition 2.6 we have that the set
F(t,N(t)x) is closed in X.

Remark 4.2. We note that, in the setting of reflexive Banach spaces and under assumptions
F1, F3 and F4, by using again Proposition 2.6 we have

F(t,x) is closed, for a.e.t € | and for every x € X, 4.4)

(see the beginning of the proof of Theorem 5.3 of [9].)

4.1 Existence of mild solutions in WCG Banach spaces

In this subsection, by combining the Containment Theorem 2.15 and a selection result, which
is a consequence of Theorem 2.12, we obtain the existence of mild solutions to the nonlocal
problem (P)y, assuming that X is a WCG Banach space. Note that our technique allows us to
avoid hypotheses of compactness both on the family generated by the linear part and on the
nonlinear multivalued term. We achive our goal by applying the fixed point Theorem 2.14 to
the following multioperator T : C(J; X) — P(C(J; X)) defined as (see (3.1))

Tu = {y € C(J; X) : y(t) = C(1,0)(u) + S(t,0)h(u) + Gsf (1), L € [, f € Sk} 45)

where

Sk = Uf € LX)« f(£) € F(t, N(Hu) ae. t € J}. (4.6)
To make the propositions that we will present below of greater applicability, allow us to
request, at first, that the following property holds
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(T) S%(.,N(.)u) #o,uel(;X),

so we have the multioperator T is well posed.
Obviously the fixed points of the integral multioperator T are mild solutions for the prob-
lem (P)n.

At first, thanks to the Containment Theorem 2.15, we establish the following property
onT.

Proposition 4.3. Let X be a Banach space, under assumptions (A), (T), F1, F3, F4, FN, N2 and gh1,
the multioperator T has a weakly sequentially closed graph.

Proof. Let (qn)n and (x,), be two sequences of C(J; X) such that
x, € Tq,, ne€N 4.7)

and
5]n - EI/ x1’l - x/ (4:.8)

where g, x € C(J; X). We have to show that x € Tq.
First of all, by Proposition 2.1 the weak convergence of (g,), implies that

qn(t) = q(t), te] (4.9)
and the existence of 7 € IN such that
gullegx) <7, neN. (4.10)

Now we prove that Containment Theorem 2.15 can be applied to the multimaps G, : | —
P(X),n € Nand G: ] — P(X) respectively so defined

Gn(t) = F(t/N(t>qn)/ te], (4-11)

G(t) = F(t,N(t)q), te]. (4.12)

First we establish «) of Theorem 2.15. To this aim we consider the null measure set H* for
which F3 and FN hold. Fixed t € ]\ H*, we consider a sequence (u,), such that

uy, € Gy(t), neN. (4.13)
Now we fix the countable subset of EC( 1:X) (0,7), where 7 is presented in (4.10), so defined
Co={gn:n €N} (4.14)

and the countable set of X
Cy ={u,: n € N}

satisfying (see (4.13), (4.11) and (4.14))
C; C F(t,{N(t)gn}n) C F(t,Co(t) UN(t)Cp).
So, by FN there exists vy € L}F (J) such that

B(C) <va(B)B(Co(t)). (4.15)
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Now, since the set Cy(t) is relatively weakly sequentially compact (see (4.14) and (4.9)), by
the regularity of B we have B(Co(t)) = 0. By the virtue of (4.15) and of the Eberlein-Smulian
Theorem, we deduce that C; is relatively weakly sequentially compact too, i.e. there exist
(ttn, )k C (t4y)n and u € X such that

Up, — U. (4.16)

Therefore, taking into account the weak sequential continuity of N(¢) and F3, from (4.8), (4.11),
(4.12), (4.13) and (4.16) we have u € G(t). So «) of Theorem 2.15 holds.

Next, we prove an) of Theorem 2.15. By (4.7), (4.5) and (T), for every n € IN, there exists
fn € 5113(~,N(~)qn) such that

x(t) = C(t,0)g(qn) + S(£,0)h(gn) + Gsfult), te].
First we observe that the sequence (f)n, fu : ] — X, is such that
fu(t) € Gu(t) = F(t,N(t)q,), ae te], nelN. (4.17)

Moreover, thanks to (4.17) and to hypotheses N2 and F4, the sequence (f,), is integrably
bounded. So (f,), has the property of equi-absolute continuity of the integral, i.e. aa) holds.

Now we are in a position to apply the mentioned Containment Theorem, so there exists a
subsequence (fu, )k C (fu)n such that

fo = f in LY(J;X),
where (see (4.12), F1 and, taking into account F3 and FN, Remark 4.1)
f(t) € coG(t) = coF(t,N(t)q) = F(t,N(t)q), ae.te].

Hence we can conclude that
f € SN (4.18)

Moreover, the weak continuity of the fundamental Cauchy operator Gs (see Proposition 3.2)
implies that Gsf,, — Gsf. Then, by using again Proposition 2.1, hypothesis ghl, continuity
and linearity of S(¢,0) and C(t,0), t € ], we have

xn, (1) = C(t,0)g(q) + S(t,0)h(q) + Gsf(t) =: %(t), te]. (4.19)

On the other hand by (4.8) we deduce x,, (f) — x(t), for all t € ] and then the uniqueness of
the weak limit implies

x(t) =x(t), te]. (4.20)
Finally, from (4.20), (4.19), (4.18) and (4.5) we have that x € Tgq. Therefore we can conclude
that T has a weakly sequentially closed graph. O

Proposition 4.4. Let X be a Banach space, under assumptions (A), (T), F4, N2 and gh2, there exists
¥ € IN, 7 > ¢, such that the operator T maps the closed ball Kz = EC(};X)(O/ 7) into itself, where 0
denotes the null function of C(J; X).

Proof. First of all, from N2, we know that there exists a constant ¢ € IN such that | N(¢)x||x < ¢,
forevery t € J, x € C(J; X).
We show that there exists 7 € IN, 7 > ¢, such that

T(Ky) C K. (4.21)
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Let assume by contradiction that, for every n € IN such that n > ¢ we have
T(Ky) € Ky.

Then, there exist g, € C(J; X) with [|gull¢c(;.x) < 1 and xq, € Tqy, such that |[xg, [l¢(x) > 7.
Being ||x,,[lc(j;x) > n, there exists t, € ] = [0,a]: |xg,(t:)||x > n. By gh2 we have that
g({gn, n € N: n >7¢}) and h({gn, n € N : n > ¢}) are relatively weakly compact. Hence
there exists a subsequence (gy, ) such that (g(qn,))x and (h(gn,))x are weakly convergent, so
there exists Q > 0 such that (see [6], Proposition 3.5 (iii)) [|g(qx,)|lx < Q, ||h(gn)]|x < Q, for

every ny € IN, ny > ¢. Now, being fan € S}E(. N()gn, )’ taking into account p1. and p3. we can
7 'Vlk

write

e < ||xg, (n) [ x < NC(En Ol £00) 18 (@n ) + 15 (e O) | ) (4 ) 1 ¢

t”k a
[ 1St €)oo, (@)1 dE < KQ+KaQ+Ka [ [1fy, (@) x e, @22)

Next, from N2 we have ||N(t)qn,[|x <€ < g, t € J. So fg, () € F(t, N(t)gn,) C F(t, Bx(0, 1)),
a.e. t € J. Now by (4.2) of F4 there exists ¢,, € L1 (]) such that

qu;tk(t)HX < @u(t), aete],
then by (4.22) the following inequality holds

e < 5, (1) 1x < KQ+KaQ +Ka [ 1, (2) . (4.23)

Therefore, since (4.23) is true for every natural number n; > ¢, we have

_ KQ+KaQ  Ka I on () dé
Ny Ny

1 , nr €N, n>c.

Hence, passing to the superior limit, by (4.1) we deduce the following contradiction

B AL

n—oo n

<1
o3 o3

1 <limsup (KQ+K€’Q + Ka fo o () d‘§>

k—oc0

Therefore we can conclude that (4.21) is true, i.e. there exists 7 € IN with 7 > ¢ such that
K7 = Ec(],.x) (O, ?) (424)
is invariant under the action of the operator T. ]

If the Banach space X is also WCG, we have the following result for the multimap T7 =
Tik, : K — P(C(J; X)), which is the restriction of the multimap T on the set K7 defined in
(4.24).

Proposition 4.5. If X is a weakly compactly generated Banach space, under assumptions (A), (T), F4,
EN, N2, gh2 and gh3 there exists My the smallest (0, Ty)-fundamental set which is weakly compact,
with 7 > € such that T(Ky) C K5.
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Proof. First of all, we consider xp = 0 € C(J;X) and the set K5 in the locally convex Haus-
dorff space C(J; X) equipped with the weak topology. Since T#(Kr) C Ky, clearly we have
co(T#(Kr) U {0}) C K7 Hence, being true the assumptions of Theorem 2.13, there exists the
smallest (0, Tr)-fundamental set My C C(J; X) such that

My C K7 = Be(;,x)(0,7) (4.25)
and
Mo = o(T7(Mo) U {0})- (4.26)

Now, we prove that My is weakly compact.
We consider the Sadovskij functional B,, where « € R™, defined in (2.2). Being B, 0-stable
we can write (see (4.26))
Ba (T7<M0)) = ;th(MO)- (4.27)

Hence, since B, satisfies (I) and (II), by (4.27), (4.5) and gh3 we have (see (2.2) and (3.1))

Ba(Mo) = B ({C(-,0)(u) + S(-,0)h(u) + Gsf : f € Sk (s 4 € Mo})
< Ba(C(,0)g(Mp)) + Bu(S(, 0)i(Mp)) + Bu({Gsf : f € Sk y(yuys 1 € Mo})
= ‘B“({Gsfi f S S}:(,,N(A)u)r ue MU})

t
= sup sup§B <{/ S(t,&)f(E)de: fe C}) e ™, (4.28)
CCSHn(my) 1 0
C countable

Now, fixed t € | and a countable set C C 5}7(.,]\](,) ,) e define

M,
G ={St)f(): feC}

Recalling that 7 > ¢, by using p3. and F4, we can say that the set C} is integrably bounded and
so it is bounded in L!(J; X) and it has the property of equi-absolute continuity of the integral.
Then, by recalling that X is a WCG Banach space, we are in the position to apply Proposition
2.16 to the countable set C;, so we have

g <{/ot5<f'¢>f<¢>d€: fe C}) < [ bci@)a
- [Bstos@: recha @)

Further let us note that for every f € C we can consider, by the Axiom of Choice, a continuous
map gy € My such that f(&) € F(&,N(&)qf), a.e. & € ]. So the set C§ = {q7 € My : f € C}is
countable too. Now, taking into account the numerability of C, there exists a null measure set
I C ] containing the set A defined in FN, such that

f(§) € F(&,N(&)as), €I\ feC,

where g € C§.
Hence, fixed ¢ € ]\ I, we observe that C(¢) C F(& C§ (&) UN(E)CS). Now, since the
countable set Cg C My C Ky, by EN there exists vy € L}F (J) such that

B(C(§)) < v (&)B(CF(©)).
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The above considerations allow us to claim that for every countable set C C Sllc(.
exists a countable subset Cg C My such that

NC)Mo) there

[ @y < [w@pcs@)@s [w@ swp o pGEE @3
Co countable

Now, by using (4.28), (4.29), (2.1), p3. and (4.30) we can write (see (2.2))

BOw < e wpsup ([ 15(,8)ecoBC@) ) e
Ccountable

< sup sup <Ka/ B(C ) -
CSt iy H€)
C countable

< swp sup | Ka [ w(e) sup B(CoE)dE | e

ccs; te] Coc My
(-N(-)Mp)
C countable Co countable

<sup | Ka [ 00(e) sup  supeB(Co(@)) g

te] CoCMy ¢€J
Cp countable
t
= Bo(Mp) sup A Kae *=9v(&) de. (4.31)

te]

By virtue of Proposition 2.3 we can say that there exists m € IN such that

t
sup | Kae ™%y (8)dE < 1. (4.32)
te]

Now, if we assume that ,,(Mp) > 0, where m is the constant characterized in (4.32), from
(4.31) we have the contradiction

B (Mo) < s (Mo)sup [ K™y (2) dE < B Mo).

So we can claim
Bu(Mo) = 0. (4.33)

By definition of B,,(Mp), we have that, for every t € ], the set My(t) is relatively weakly
sequentially compact. Indeed, fixed t € ] and a sequence (q,(t))n, gn(t) € Mo(t), n € N, we
consider the countable set

C(t) = {gu(t) : neNY.

By (4.33) we have B(C(t)) = 0 and, since B is regular the set C(t) is relatively weakly com-
pact. So, by the Eberlein-Smulian Theorem C(t) is relatively weakly sequentially compact too.
Hence there exists a subsequence (g, (t))x of (7.(t))n such that g, (t) — q(t) € X. Therefore,
by the arbitrariness of the sequence (g,(t)), we can conclude that My(t) is relatively weakly
sequentially compact, and, by using again Proposition 2.5, My(t) is relatively weakly compact
too.
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Now, we use Proposition 2.4 to prove that the set S}T(
in L1(J; X).

First of all, since N(t)My C Bx(0,7) for every t € | (see N2 and recalling that 7 > ¢), we
prove that S}(.’N(.) Mp) 18 integrably bounded. By (4.2) of F4 we have that there exists ¢r € LY ()
such that

N()M) 18 relatively weakly compact

If(Dllx < @r(t), aete], fe Sllf(-,N(-)MO)'

Therefore we can deduce that Sllr(. N()My
equi-absolute continuity of the integral.
Finally we show that S}( EN(E)My) 1S relatively weakly compact in X, for a.e. t € J.

) is bounded in LY(J; X) and it has the property of

My)
Let us fix t € J\ H*, where H* is the null measure set containing the set A presented
in FN and such that ||[F(t, N(f)Mo||x < ¢#(t), for every t € J\ H*. First of all, we note that
S}T( | N(t)M,) 18 norm bounded in X by the constant @r(t).
Next, we consider a sequence (y), C S};( LN(6)M,)- OPviously there exists a sequence (fu)n

such that f, € S}(.,N(.)MO) and f,(t) = yu, n € IN. So we have
yn € F(t, N(t)Mp), n € NN. (4.34)
Let us note that, for every n € IN, from (4.34), there exists g, € My such that
Yn € F(t, N(t)qn). (4.35)

Now, by considering the two countable sets Cp = {g, : n € N} C Ky (see (4.25)) and
C; = {yn : n € N} we have (see (4.35))

C1 C F(t,N(t)Cp) C F(t,Co(t) UN(t)Co).
So, by FN and recalling that My(t) is relatively weakly compact, we write
<

0 < B(C1) < vr(H)B(Co(t)) < vr(t)B(Mo(t)) =0,

so B(C1) = 0, i.e. Cy is relatively weakly compact. Hence there exists a subsequence (v, )i of
(yn)n weakly convergent.
By the arbitrariness of (y,), in S;(t N(

. We can conclude that S}( 0) is relatively

)M, t,N(H)M
weakly sequentially compact. By using again the Eberlein-Smulian Theorem the set
Sllc( LN (M) 18 relatively weakly compact.

Therefore, we are in the position to apply Proposition 2.4, hence S}(_’N(.) Mo) is relatively
weakly compact in L!(J; X).

In order to prove the weak compactness of My, by (4.26) it is sufficient to show that T(M))
is relatively weakly compact.

To this aim we fix a sequence (x,)n, xn € T(Mp). Then there exists (§1)n, gn € Mo, such

that x, € Tq,, n € IN. Hence
t
xXn(t) = C(fIO)g(qn)+5(t,0)h(qn)+/0 S(t,¢)fa(8)dg, te],

where f, € S}f(-,N(-)qn) - S%(-,N(-)Mo)‘
By the relative weak sequential compactness of S1 (. N()M,) We can find a subsequence (fy, )k

of (fu)n, such that f,, — f in L'(J; X) and by using the mentioned Proposition 3.2, we have
Gank — Gsf (4.36)
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Moreover, if we consider the countable set {g,, : n; € N}, thanks to gh2, there exist a
subsequence of (g, )k, w.l.o.g we name also (gn, )i, and x,y € X such that

g(qn) — x and  h(qn) =y (4.37)

Now, let us consider the subsequence (xy, )x of (x,),. First of all, for every ¢ € ], since S(t,0)
and C(t,0) are linear and bounded, from (4.36) and (4.37) we deduce

X, (t) = C(t,0)x + S(t,0)y + Gsf(t) :=x(¢),

where x : | — X is a continuous function.
Then, since x,, € T(M)y), k € N, by (4.25) we can write

160, = Xllegix) <7+ [Fllegx),

i.e. the sequence (x,, — X) is uniformly bounded. So, thanks to Proposition 2.1 x,,, — X. Then
we deduce that T(M)) is relatively weakly sequentially compact and so T(M) is relatively
weakly compact.

Finally, recalling (4.26) we can conclude that My is weakly compact. O

Now we state some conditions on F and N in order to have property (T) true in a Banach
space X, i.e. the following selection proposition.

Proposition 4.6. Let X be a Banach space, F : ] x X — P(X) be a multimap having the properties
F1, F2, F3, F4 and N : | — Cy(C(J; X); X) be a map satisfying N1, N2. If FN holds, then for every
u € C(J; X) the set S}T(. N(-)u) 1S nonempty.

Proof. First of all, fixed u € C(J; X), we define the following function ¢q,, : ] = X
qu(t) =N(t)u, te] (4.38)

and by N1 we say that g, is B-measurable. Moreover, in correspondence of the costant ¢ € IN
of N2, there exists r, € N, r, > ¢ such that [u(t)[|x < ry, t € ]. Now, we consider Fj;, , :
J x M,, — P(X), where

M, = Bx (Or ru)- (4.39)

and we consider on M, the metric d induced by that on the Banach space X.

We will show that this multimap satisfies all the hypotheses of Theorem 2.12.

First of all f1), f2) and f3) of Theorem 2.12 are true for the restriction Fj, 5, (see F1, F2 and
F3 respectively).

Now, for the fixed r, in (4.39), from F4 there exists ¢, € L! (]) such that (see (4.2))

sup |z|| < ¢ (t), aete],
z€F(t,M,)

i.e. f4) of Theorem 2.12 is true for Fj, y,-
Finally, fixed a sequence (uy)n, tn € M,, such that u, — v in M,,, we consider, for every
n €N, g, : ] = X so defined
eu(t) =u,, te]. (4.40)

Clearly g, € EC( 1:x)(0, 1) (see (4.39)). Then, fixed t € J\ A, where A is defined in FN, we
show that U, F(t, u,) is relatively weakly compact. Indeed, considering a sequence (x,),, X, €
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U E(t, u,), we fix the following countable sets Co = {g, : n € N} and C; = {x, : p € N}.
Now Co C Bej;x)(0,7,) and Cy has the property (see (4.40))

C1 C|JF(t,un) = JF(t gu(t)) C F(t,Co(t) UN(t)Co).

By hypothesis FN there exists v,, € L1 (]) such that
B(C1) < i, (H)B(Co(h))-

Recalling the convergence u, — v we have B(Cy(t)) = 0 and so B(Cy) = 0, i.e. C; is relatively
weakly compact. Then there exists a subsequence of (x,), weakly convergent in X. By the
arbitrariness of (x,),, the set {J, F(t, u,) is relatively sequentially weakly compact and so it is
also relatively weakly compact. Therefore property f5) of Theorem 2.12 holds for Fj, , -

Hence, in correspondence of g, : ] — X defined in (4.38), there exists a B-selection g;, : | —
X, for the multimap F|]XMU(-,qu(~)). Now, recalling that r, > ¢ for every t € J, N(t)u € M,
(see (4.39) and N2), and by (4.38) we have Fj;, v, (t,q.(t)) = F(t, N(t)u). So

8q.(t) € F(t,N(t)u), ae.tec]. (4.41)
Moreover, by using F4 there exists ¢,, € L () such that (see (4.39))

184, (D)[x < 97, (1), ae te].

Hence g;, € L'(J; X) and, by (4.41), we have g,, € S}?(_/N(.)u), i.e. the set S}D(.,N(.)u) is nonempty.
O

Finally we are in a position to establish the following existence result of mild solutions for
(P)n in weakly compactly generated Banach spaces.

Theorem 4.7. Let X be a WCG Banach space and { A(t) }+cj a family of operators which satisfies the
property (A).

Let F: [ x X — P(X) be a multimap and N : ] — C,,(C(J; X); X) be a map satisfying F1, F2,
F3, F4 and N1, N2 respectively, and FN. Let g,h : C(]; X) — X be two functions satisfying ghl, gh2
and gh3.

Then there exists at least one mild solution for the nonlocal problem (P)N.

Proof. First of all by using Proposition 4.4 and Proposition 4.6 we can say that there exists
7 > ¢, T(Ky) C Ky, such that the map T; = Tik, : K& — P(C(J; X)) defined as in (4.5) is well
posed, where K7 is presented in (4.24).

In order to obtain the thesis we want to apply the fixed point Theorem 2.14 to T;. At first,
by F1 we deduce that T takes convex values, i.e. i) of Theorem 2.14 is satisfied.

Moreover, since T3(Ky) C K, we have co(T(Kr U {0})) C Ky, i.e. hypothesis ii) of Theo-
rem 2.14 holds.

Next, Proposition 4.5 ensures the existence and the weakly compactness of the smallest
(0, Ty)-fundamental set M), i.e. iii) of Theorem 2.14 is true.

Finally, thanks to Proposition 4.3, the restriction of T to the set weakly compact set M
has weakly sequentially closed graph, i.e. iv) of Theorem 2.14 holds.

In conclusion we can apply Theorem 2.14 to T;. Hence the multioperator T has a fixed
point in My, i.e. there exists x € My such that

() = C(1,0)g(x) +S(L0h(x) + [ S, 0F@ e, te]

where f € S}E(.,N(.)x). Of course, x is a mild solution for (P)y. O
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Clearly, an immediate consequence of Theorem 4.7 is the following existence result for
Cauchy problems.

Corollary 4.8. Let X be a WCG Banach space and xo, x1 € X. Under the assumptions (A), F1, F2,
F3, F4, FN and N1, N2, there exists at least one mild solution for the Cauchy problem

x"(t) € A(t)x(t) + F(t,N(t)x), te ]
x(0) = xo
x'(0) = x1.

Remark 4.9. Let us note that Theorem 4.7 extends in broad sense Proposition 4.3 of [8]. In
particular we remove the hypothesis of compactness on the operators S(t,s), (t,5) € | x ],
and we use the weak topology instead of the strong one on the maps involved in the nonlocal
problem.

4.2 Existence of mild solutions in reflexive spaces

In this subsection we discuss the existence of mild solutions to the problem (P)y in the par-
ticular case of reflexive Banach spaces. In this case we are able to omit assumptions FN and
gh3 of Theorem 4.7. Let us note that the lack of these hypotheses implies that this result is
new with respect to Theorem 4.7 since the reflexivity does not imply that gh3 holds. For this
reason it is necessary to modify in some points the proof of the previous existence result and
also to prove a variant of Theorem 2.12. Let us note that the reflexivity of the space allows us
to remove hypothesis f5) of Theorem 2.12 in order to establish the existence of a selection for
multimaps perturbed by an operator.

This new proposition plays a key role in order to show the good position of the solution
multioperator in this new setting. Moreover, in order to prove the existence of at least a mild
solution for the nonlocal problem (P)y, we use again the fixed point Theorem 2.14, but instead
of the Containment Theorem, we work with the property of weak upper semicontinuity and
with the classical Hahn—Banach Theorem.

Theorem 4.10. Let | = [0,a|, M be a metric space, X a reflexive Banach space, F : | x M — P(X)
a multimap having the properties f1), f2), f3), f4) of Theorem 2.12 and N : | — Cy,(C(J; X); M) be a
map satifying N1.

Then, for every u € C(J; X), there exists y € L'(J; X) with y(t) € F(t, N(t)u) for a.e. t € .

Proof. First of all, by f2) we easily can deduce

f2),, for every simple function s : | — M, the multimap F(-,s(-)) has a B-measurable selec-
tion.

Now, fixed u € C(J; X), we define g : ] — M as
‘(1) =N(tu, te] (4.42)

Clearly, by N1 the map ¢* is B-measurable and so there exists a sequence of simple functions
(s%)y, st : ] — M, such that

sp(t) = q"(t), ae.te]. (4.43)
Hence, fixed n € IN, in correspondence of the simple function s}, by f2),, there exists a B-
measurable function vy}, : ] — X such that

yu(t) € F(t,sp(t)) ae te]. (4.44)
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Now, let us consider A = {y", n € N} C L!(J; X). By f4) and (4.44) we have that
lyn(®)]x < @(t), aete],neN, (4.45)

i.e. A(t) is bounded in X, a.e. t € J. So, since X is a reflexive Banach space, A(t) is relatively
weakly compact, for a.e. t € J. Moreover, (4.45) implies that A is bounded in L'(J; X) and it
has the property of equi-absolute continuity of the integral. Therefore, since the set A satisfies
all the hypotheses of Proposition 2.4, we can conclude that A is relatively weakly compact.
Hence there exist (v}, ) C (y4)s and y € L'(J; X) such that yl; — v.

Now, we can apply Proposition 2.7 to the multimap G : | — Py (X), defined by G(s) =
A(s)", for every s € ], and to the sequence (vis. )k of LY(J; X), so we deduce

y(t) € ©© w—limsup{y, ()}, ae. te]. (4.46)

k— 00

Next we fix H the null measure subset of | such that (4.43), (4.44), (4.46), f1) and f3) hold for
every t € |\ H. By (4.44) we can claim

co w — limsup{yn (t)} C 0w —limsup F(t,sp, (t)), te€]\H. (4.47)

k—o0 k—o0

Moreover, we are able to prove

w — limsup F(t,s, (t)) C F(t,q"(t)), t€]\H. (4.48)
k—o0
To this aim, let us fix t € ]\ H and z € w — limsup, _, , F(t,s}; (t)). Then there exists Zn, €
F(t, s,ﬁ’kp (t)) such that Zn,, — z, where (nk,)p is an increasing sequence. Now, by (4.43) we
know that
st (1) = g'(1),

therefore, since t ¢ H, hypothesis f3) implies z € F(t,q"(t)). For the arbitrariness of z we can
conclude that (4.48) is true.
In virtue of f3) the convex set F(t,4"(t)) is closed in X so, by (4.48) and (4.42) we can write

co w — limsup F(t, sy, (t)) C F(t, N(t)u). (4.49)

k—o0

Finally, thanks to (4.46), (4.47), (4.49), we can conclude that the map y € L!(J; X) satisfies
y(t) € F(t, N(t)u) a.e. t € ], so the thesis holds. O

Now we show that in reflexive Banach spaces we can omit some assumptions on the
multimap F and on the map N required in Proposition 4.3 and Proposition 4.5.

Proposition 4.11. Let X be a reflexive Banach space. Under assumptions (A), (T), F1, F3, F4, N2 and
ghl, the multioperator T has a weakly sequentially closed graph.

Proof. As in Proposition 4.3 we fix two sequences (g,), C C(J; X) and (x,), C C(J; X), weakly
convergent to g, x € C(J; X) respectively, with x,, € Tg,, n € IN.
By (T) we can say that, for every n € IN, there exists (see (4.6))

f € Sk NGy (4:50)
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such that (see (4.5))

0(8) = C(,0)g(an) + (1 0)h(@) + [ S1OE A, e

Now we want to prove that the set A = {f, : n € IN} satisfies all the hypotheses of Proposi-
tion 2.4. Obviously, by (4.50), A is a subset of L!(J; X) and we have

fa(t) € F(t,N(t)gn) C F(t,Bx(0,¢)), ae.te], neN, (4.51)

where ¢ is the constant presented in N2.
Now, put H the null measure set for which F4 and (4.51) hold, there exists ¢z € L (])
such that (see (4.2))

Ifn(B)llx < @e(t), te]\H, neN.
So A is bounded in L'(J; X) and A has also the property of equi-absolute continuity of the
integral. Moreover, for every t € |\ H, A(t) being bounded on the reflexive space X, A(t) is
relatively weakly compact.
Hence, applying Proposition 2.4, the set A is relatively weakly compact in L!(J; X). So
there exist a subsequence (fy, )x of (fu)n and f € L!(J; X) such that

fu, — f. (4.52)

Now, from (4.52) and by using the classical Mazur Theorem there exists a sequence (fy, )k
made up of convex combinations of f, s, such that fnk — fin Ll( J; X). So, up to a subse-
quence, we have

o, (£) = f(1), aete]. (4.53)
Let H* be the null measure set for which (4.53), (4.4), (4.51), F3 and F4 hold. In order to show
that f € S}D(.,N(.)q) we prove that

f(t) e F(t,N(t)q), te]J\H". (4.54)

If we assume that (4.54) is false, there exists t € [\ H* such that f(t) ¢ F(t, N(f)q).

First, we want to establish that the multimap Fg_ (t,-) is weakly upper semicontinuous
and, to this aim, we show that all the hypotheses of Proposition 2.10 are satisfied.

For every x € Bx(0,c) from F4 we can write Fg, (- (£,x) C Bx(0, ¢c(t)). Therefore, since
X is reflexive, from (4.4) (see F1, F3 and F4) we can say that the bounded set F\EX(O,E) (t,x)
is weakly compact. Moreover, the weak compactness of Bx(0, ¢z(f)) obviously implies that
the multimap Fig, 7 (t,-) is weakly compact. Further, recalling hypothesis F3, from Proposi-
tion 2.6 we deduce that Fig, - (f ) is a weakly closed multimap.

Hence, since all the hypotheses of Proposition 2.10 are satisfied, the multimap Fg o (t,-)
is weakly upper semicontinuous.

Now, let us consider the convex, closed set Fiz, (7 (f, N(f)q) and the compact set {f()}.
Since we have assumed that f(t) € Fg, (¢ (f, N(t)q), by the classical Hahn-Banach Theorem
there exists a weakly open convex set V D Fg. (£ N(t)q) satisfying

fHegv=v" (4.55)

Next, taking into account the weak upper semicontinuity of Fg () (t,-), there exists a weak
neighborhood Wy, of the point N(#)q such that

Fig05(EX) CV, x € Wy, N Bx(0,0). (4.56)
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Moreover, by the weak convergence of (g,), to g and the weak sequential continuity of N(f),
the subsequence (N (f)anp )p, indexed as in (4.53), weakly converges to N(#)g. So, there exists
N € N such that, for every n;, > N, N(f)anp € WN(;M. Since from N2 N(f)anp € Bx(0,¢),
ny, > N, we deduce that (see (4.56))

fnkp (E) € F|§X(O/E) (E/ N(E)anp)) C V’ nkp Z N

Now, thanks to the convexity of V, we can claim that the convex combinations fnkp, satisfying
(4.53), have the following property

fnkp (%) € V, lep 2 N

and so

fHev=v"
which contradicts (4.55). Therefore (4.54) is true. By recalling that f € L!(J; X) we obtain
f e 511:(, N()q): NOW, by using ghl and the same technique of the final part of Proposition 4.3

we obtain x € Tq.
Therefore we can conclude that T has a weakly sequentially closed graph. O

Proposition 4.12. Let X be a reflexive Banach space and assumptions (A), (T), F4, N2 and gh2 hold.
If there exists 7 > € such that T(Kr) C Ky, where Kz = Be(j;x)(0,7), then there exists Mo the smallest
(0, Ty)-fundamental set which is weakly compact, where Ty is the restriction of T to the set K.

Proof. First of all, by using Theorem 2.13 and reasoning as at the beginning of Proposition 4.5,
there exists
MO C BC(],X) (0, ?) - K?

such that
Mo = & (T;(Mo) U{0}). (4.57)

Now, we prove that My is weakly compact. To this end we establish that the set Tr(M)y) is
relatively weakly compact.
Let (91)n be a sequence in My and (x,), be a sequence in C(J; X) such that x,, € Trg,, n €

IN. Now, by (T), there exists a sequence (f)n, fn € S}T(VN(,) o) such that (see (4.5))

0(6) = C(1,0)g(a) + (1 0)R(@) + [ S1OSEd, te].

Next, put A = {f,, : n € N}, reasoning as in Proposition 4.11, we can apply Proposition 2.4
(see N2 and F4). Therefore we have that the subset A of L' (J; X) is relatively weakly compact.
So there exist (fy, )x subsequence of (f,), and f € L!(J; X) such that f,, — f.

Now, by the weak sequential continuity of Gg (see Proposition 3.2), we can write

Gsfu, — Gsf.

Next, thanks to hypothesis gh2, reasoning as in the final part of the proof of Proposition 4.5,
the subsequence (x,, )x of (x,), weakly converges to a continuous function. Therefore T'(M)
is relatively weakly sequentially compact and so T(Mp) is also relatively weakly compact.
Recalling (4.57) we deduce that the subset My of C(]; X) is weakly compact. ]
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Theorem 4.13. Let X be a reflexive Banach space, | = [0,a] and {A(t) }scj a family which satisfies
the property (A).

Let F: ] x X — P(X) be a multimap and N : | — Cy,(C(J; X); X) be a map satisfying F1, F2,
E3, F4 and N1, N2 respectively. Let g,h : C(J; X) — X be two functions having the properties ghl
and gh2.

Then there exists at least one mild solution for the nonlocal problem (P).

Proof. First of all, in the setting of theorem we have that property (T) is true. Indeed, fixed
u € C(J;X), we define a function g, : | — X as in (4.38). Moreover, in correspondence of
¢ € N, presented in N2, there exists r, € N, r, > ¢, such that ||u(t)||x < r,, for every
t € J. Now we consider Fj,p, : ] X My, — P(X), where M,, = Bx(0,r,), and we note that
hypotheses F1, F2, F3, F4 imply f1), f2), f3), f4) of Theorem 4.10 respectively. Moreover, the
map N satisfies N1 of Theorem 4.10. So, by considering on M,, the metric 4 induced by that
on X, we can conclude that there exists g, € S}(,’N(,) W) (see (4.6)). Therefore, since (T) holds,
the map Ty = Tk, : K5 — P(C(J; X)), where Kj is defined in (4.24), is well posed.

Thanks to Propositions 4.4, 4.11, 4.12 and analogous arguments used in the proof of The-
orem 4.7 we are in a position to apply Theorem 2.14.

So there exists at least one one mild solution for (P)y. O]

Remark 4.14. Let us note that in reflexive Banach spaces we can omit hypothesis FN in Corol-
lary 4.8.

Remark 4.15. We observe that (P)n can be rewritten as the problem studied in [9]
x"(t) € A(H)x(t) + F(t,x(t)), te]
x(0) = g(x) (P)
x'(0) = h(x)
by considering the map N : | — C,(C(J; X); X) so defined
Nt u=u(t), te], uel(];X).

Let us note that N is well posed by using Proposition 2.1.
Unfortunately Theorems 4.7 and 4.13 does not allow us to prove the existence of mild
solutions for (P) because the map N has not the property N2.

Finally we deduce as a consequence of Theorem 4.13 the existence of mild solutions satis-
fying a “periodicity condition” and having a fixed initial velocity.
Corollary 4.16. Let X be a reflexive Banach space and x € X. Under the assumptions (A), F1, F2,
F3, F4 and N1, N2 there exists at least one mild solution for the problem
x"(t) € A(t)x(t) + F(t, N(t)x), t € ] = [0, 4]
x(0) = x(a) (P)x
x'(0) = 7.
Proof. By considering the maps g,h : C(J; X) — X so defined
g(x) = x(a) and h(x)=x, xeC(J;X)

it is easy to see by using Proposition 2.1 that gh1 is true. Moreover, the reflexivity of X allow us
to say that gh2 holds too. Since all the hypotheses of Theorem 4.13 are satisfied, we conclude
that there exists at least one mild solution of the problem (P)y. O
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5 Controllability for a problem driven by (E)

Now, we are in a position to study the controllability for the problem mentioned in the in-
troduction, subjected to mixed conditions and governed by the wave equation (E) under the
action of a suitable operator.

First of all we use, as in [21], the identification between functions defined on the quotient
group T = R/27tZ with values in C and 27t-periodic functions from R to C. Moreover, we
consider the space Lz(”ﬂ", C), i.e. the space of all functions defined in R and assuming values
in C, 2-integrable in [0,27] and 27r-periodic, with the usual norm || - [|;2(r,¢)-

In particular, we want to study the following problem

D0(1,8) = 22(60) +b() (L) + F(1E 32D [ p(s)ds) +u(t, )
w(t,0) =w(t2m), t€]

5 (t,0) = % (t,2m), te]

w(0,¢) =w(a, ), ae. ¢ €R

% (0,¢) = xo, ae. L €R

(u(t,§) eU(t), ae.te], C€R

where xo € C, [ = [0,a],a >0,b€ C(]),pe L}(J), f: JxRxC = C,e:C(],L*(T,C)) = C
are suitable maps, @ : | — L2(T,C), where @(t) = w(t,-),and U : | — P(C).

In order to rewrite problem (C) into the abstract form (P)y, it is necessary to define the
Banach space X, the family {A(t) : t € J} and the nonlinear term F.

First of all we assume the Banach space X = L?(T,C). Moreover, we denote by H!(T,C)
and by H?(T, C) respectively the following Sobolev spaces

HY(T,C) = {x € L*(T,C) : there exists ‘;C c L(T, C)}

d2x

dx
2 _ 2 . 2
H*(T,C) = {x € L*(T,C) : there exist — Pl d(jz € L(T, C)}

Further we consider the operator Ag : H>(T,C) — L*(T,C) so defined

d2x

Ao = T

x € H*(T,C) (6.1)

and we recall that the Ay is the infinitesimal generator of a strongly continuous cosine family
{Co(t) }ter, where Cy(t) : L?>(T,C) — L*(T,C), for every t € R (see [21]).
Then we fixed the function P : | — L(H'(T,C), L?(T,C)) defined as

Pty = b1,

Now we can introduce the family {A(t) : t € J} where, for every t € J, A(t) : D(A) =
H?(T,C) — L?(T,C) is the following operator

A(t) := Ay + DP(¢t). (5.3)

te], xe H(T,C). (5.2)

Let us note that the family {A(t) : t € ]} generates a fundamental system {S(t,5)}(;¢)cjx)
(see [21, Lemma 4.1]) and, for every x € D(A), the map t — A(t)x is continuous.
Moreover, let us consider e : C(J, L>(T,C)) — C an operator such that
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e) e linear, bounded such that e(h) # —1, for all h € C(J, L*(T, C)),
the map f : | x R x C — C having the following properties
f)1 f(t,d+2m,z) = f(t,¢,z), forall (+,¢,z) € ] x RxC;
)2 f(t,-,y(-)) € L*(T,C), for every t € ],y € L*(T,C);
f); for every y € L*(T,C), the map t — f(t,-,y(+)) is weakly measurable;

f)s there exists a € LL (]) such that
a
Ka/ w(0)do <1
0

where K is presented in Section 3 and

Lf(t,¢,2z) — f(t, ¢ w)|lc <a(t)|z—w|c, zweCl, (€ER, aete]; (5.4)

f)s fora.e. t € J and every (yu)n, yn € L?>(T,C) such thaty, — v, y € L?(T,C), the sequence
(f(t,-,yn(+)))n uniformly converges to f(t,-,y(-)) in R;

f)e forevery t € J, f(t,-,0) € L2(T,C) and the map t — || f(t, 5 0)l12(r,c) is in L'(]);
and the multimap U : ] — P(C) having the following properties:

U); forevery t € ], U(t) is closed and convex;

1
U), for every y € L*(T,C), the map t — inf,cyy(y (fozn (&) — z||& dE)? is M(]) ® B(R)-
measurable.

Let us note that, since our goal is to prove the existence of a mild solution, the exis-
tence of derivatives is not necessary. So it is sufficient to consider that w(t, ) € L?(T,C),
instead of w(t,-) € H?(T,C). In that follows, we revise functions w,u : ] x R — C such that
w(t,),u(t,-) € L*(T,C), for every t € ], as two maps x,v : | — L?(T,C) respectively so
defined

x(H)(§) =w(tE), te], fER
v(t)(§) =u(td), te], TeR
Now by using f), we can define the function f : ] x L?>(T,C) — L?(T,C) such that

FEy)(@) = f(,& (), te] ¢eR, yel*T,C). (5.5)
Next we consider the multimap U : ] — P(L*(T,C))
U(t) = {v € L*(T,C) : 3z € U(t) such that v(¢) =z, ae. E € R}, te€], (5.6)

which is obviously well defined. Thanks to hypothesis U); we deduce that U(t) is closed
and convex, for every t € J. Then, taking into account U), and the separability of L?(T,C),
Proposition 2.8 implies the measurability of U.

Moreover, we define the multimap F : ] x L?(T,C) — P(L?*(T,C)) in the following way

F(t,y) = {f(t,y) +v: veU(t)}, te], yel*T,C). (5.7)
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Finally, by using the linear and bounded operator ¢ : C(J,L?(T,C)) — C and the L'-map
p: ] — R, we construct N : | — C,,(C(J; L3(T,C)); L*(T,C)) such that, for every t € | and
every h € C(J; L*(T,C)), the map N(t)h is so defined (see e);)

Jm e(

NOHE) = s [ pls)ds, e 68)

Clearly, being the map N(#)h constant on R, we have that N(t)h € L?(T,C) and, for every
t € J, N(t) is weakly sequentially continuous. Therefore N is correctly defined too.

So by recalling (5.1), (5.2), (5.3), (5.5), (5.6), (5.7) and (5.8), problem (C) can be rewritten in
the abstract form

x"(t) € Aox(t) + P(t)x(t) + F(t, N(t)x) = A(t)x(t) + F(t, N(t)x), t € ]
x(0) = x(a)
X/(O) = f()

where %y : R — C is the function of L?(T,C) such that

£0(E) =x, CER (59)

At this point let us show that we can apply Corollary 4.16.

First of all, we note that the Banach space L?(T,C) is obviously reflexive. Moreover,
hypothesis (A) is clearly true thanks to the construction of the family {A(t) : t € J}.

Now, let us show that hypotheses N1 and N2 are satisfied.

First of all, fixed h € C(J;L?(T,C)) we note that N(-)h is a continuous map on J. Indeed,
fixed t € ], we write (see (5.8))

B 27 B %
N = NOMlLzgre = { [ INORE ~ NORE) R de
/tt p(s) ds‘ Jm E(h) \/277_[

2e(h) +1||¢
and, by the absolute continuity of the integral we have the continuity of N(-)h in . Now,
being N(-)i € C(J; L*(T,C)), obviously N satisfies hypothesis N1.
Moreover, for every t € | and every h € C(J;L?(T,C)), since |Jm e(h)|c < [[2¢e(h) + 1||c,
we have

IN(OAl ) < Varlpll =5,

i.e. hypothesis N2 holds.

Now we show that the multimap F satisfies hypotheses F1-F4.

First of all, since U has convex values, we can say that F takes convex values too, i.e. F1
holds.

Next we prove that, fixed y € L?(T,C), the multimap F(-,y) has a B-selection.

Since L2(T,C) is a separable Banach space and taking into account f);, Proposition 2.2
allows us to say that f(-,y) is B-measurable.

Moreover, by recalling that U is measurable and takes closed values, by using Proposi-
tion 2.9 there exists a M(J) ® B(L?(T,C))-measurable i : | — L?*(T,C) such that ii(t) € U(t),
for every t € J. Then, by using the separability of the space L*(T,C), 7 is also B-measurable
(see again Proposition 2.2).
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So, g, : | = L*(T,C) so defined q,(t) := f(t,y) +i(t), t € ], is B-measurable and such
that q,(t) € F(t,y), for every t € | (see (5.7)). Therefore, hypothesis F2 holds.

Now, we show that also hypothesis F3 is true.

Put H the null measure set for which f); holds, we fix t € J\ H and (y,)n, (qu)n two
sequences in L?(T,C) such that y, — vy, g, — g, where y,q € L%(T,C), and g, € F(t,yn), for
every n € IN. Now, from (5.7), there exists v, € U(t) such that

Gn = f(t,yn) +vn, neN. (5.10)

Recalling f)5 we have that (f(t, -, yx(-)))n uniformly converges to f(t,-,y(-)) hence, by (5.5),

we can write for every € > 0 there exists 1y = 71( \/‘%ﬂ) € N such that, for every n > 7,

1F (3@ — Ft 1)@l < = & € T, and so we have [ 7(t,yx) — f(t,9)lli2rc) < & Then

we can say
f(t,yn) = f(t,y) in L*(T,C). (5.11)
Now, by (5.10) we have
On =qu— f(t,yn), neN,

0 (5.11) and the weak convergence of (7,), imply
Un — 4 _f(t/y) =0,

where v € L*(T, C).

Further, since (v, ), is a sequence in the weakly closed set U(t), the weak limit v € U(t)
hence, by (5.7), we deduce q = f(t,y) + v € F(t,y). Therefore F3 holds.

Finally we prove that F4 is also true.

First of all, let H the null measure set for which (5.4) of f)4 holds. For every n € IN, let us
fix y € Bizr,c)(0,1) and ¢ € ]\ H. Now, fixed g € F(t,y), by (5.7) there exists v € U(t) such
that ¢ = f(t,y) +v and, named z € C such that v(¢) = z a.e. & € T (see (5.6)), we have (see
(5.5) and £),)

9]l r2(,c) £t Yae + lolemre

{/ o steoncrae) {1t e)
{/ e Hcdé}l+{/02n!|f(t,§,0)uédg}%

" { OIF &0 clly(E )HCdC} T V2zllc
< a(t)lyll2ere) + LFE - 02

+ 2/t 0) 2oy v lzme) + V272l

So, recalling that y € Bj2(1,¢)(0, 1), we have

lallr2ere) < a(®n+ (£t 0)l2(re) + \/ZW(O\/Hf(t, 4 0)llr2ere) + V27lz]e-

Therefore, put ¢, : ] — Ry so defined

@u(t) := a(t)n + [|f (£, -, 0)l12(mc) + @\/tx(t)\/llf(f, 40l 2re) + V27l2llc,
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by the arbitrariness of g € F(t,y) and y € B2y ¢)(0, 1) we deduce

IF(t,Bizre)Om) | < gult) aete]. (512

As a consequence of f)y, f)s and by using Holder inequality it is easy to see that ¢, € L1 (]).
Moreover, by f); we also have

Ka [ @n(t) dt
lim sup 20 Jo nll) A fo #nt)
n—+00 n
So (5.12) and (5.13) establish F4.

By virtue of arguments above presented, we are in the position to apply Corollary 4.16.
Then there exists a continuous function £ : ] — L?(T,C) such that

— Ka /anc(t) dt < 1. (5.13)

2() = C(1,0)(a) +5(1, 00 + 'S(t,5)a(s)ds, te] (5.14)
£(0) = £(a) x'(0) = %o, (5.15)

where 4 € Sy vy = {9 € LN(;LA(T,C)) = q(t) € F(t,N(t)%) ae. t € J}.
Now we consider v; : ] — L%(T,C) as

ve(t) = 4(t) — f(t, N()%), t € ]. (5.16)

In order to prove that v; is B-measurable, we begin by showing that f(-,N(-)%) is B-
measurable. To this aim we consider the multimap G : | x L*(T,C) — Pi(L*(T,C)) so
defined (see (5.5))

G(ty)={f(ty)}, te] yel*(T,C)
and we establish that G satisfies all the hypotheses of Theorem 2.11.

First of all, fixed y € L2(T, C), thanks to hypothesis f); and to the separability of L?(T,C),
G(-,y) = {f(-,y)} has obviously a B-measurable selection, so hypothesis i) of Theorem 2.11
holds. Next, let us fix t € |\ H, where H is the null measure set for which (5.4) is true, and
y € L*(T,C). Then by (5.5) we have

Ift5) = FE ) l2ere) = W7 = Yllizre), v € LA(T,C).

So, passing to the limit for y — ¥ we obtain that f(t,-) is continuous in 3. Obviously, for a.e.
t € J, G(t,-) is upper semicontinuous in L?(T,C), i.e. hypothesis ii) of Theorem 2.11.

Finally, since we have already proved N1, we know that N(-)& is B-measurable. By using
Theorem 2.11, f(-,N(-)#) is B-measurable too. Therefore, being § B-measurable, also v; is
B-measurable.

At this point, put w : | x R —+ C and u : ] x R — C respectively so defined

w(t,§) = 2()(), u(t,§) =vs(t)(¢), te] CER, (5.17)

we show that {w, u} is an admissible mild-pair for (C). By (5.14) and (5.15) we immediately
have that, for every ¢ € R, w(-,¢) is continuous on ], w(§,0) = w(¢,a) and, for every t € ],
w(t,-) is 2-integrable on [0,27] and 27r-periodic. Let us note that, for every ¢ € R for which
w(-,¢) is derivable at 0, we have %—7;’(0, &) = xo (see (5.15) and (5.9)).

Then, fixed t € ]\ H, where H is the null measure set such that §(-) € F(-, N(-)%) in J \ H,
by (5.7) there exists v; € U(t) such that

q(t) = f(t, N(t)%) + o1,
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On the other hand, from (5.16) we have

4(t) = f(t,N(t)%) + vs(t).

Therefore, v;(t) = v;. Hence vz(t) € U(t), a.e. t € J. Since by (5.6) we have v¢(t)(&) € U(t),
ae. t € ],¢€R, by (517) we can write u(t,¢) € U(t), ae. t € ], ¢ € R. Then, by the
B-measurability of v¢, for a.e. { € R, the map u(+,¢) is B-measurable too. Clearly for every
t € J, u(t,-) is 2-integrable on [0,27] and 27t-periodic.

Hence, we can conclude that {w, u} is an admissible mild-pair for (C).

Finally we are able to enunciate the following result.

Theorem 5.1. In the framework above described, there exist w,u : | x R — C satisfying the following
properties

(wl) forevery t € J, w(t,-) is 2-integrable on [0,27t] and 2mt-periodic;

(w2) forevery ¢ € R, w(-,¢) is continuous on J;

(w3) w(0,&) = w(a,(g), for every & € R;

(wd) for every & € R such that w(-, &) is derivable at 0, we have %2(0,&) = xo;
(ul) for every t € J, u(t,-) is 2-integrable on [0, 27| and 27-periodic;

(u2) for every & € R, u(-,{) is B-measurable and such that u(t, &) € U(t), for
ae.te ], eR,

i.e. {w,u} is an admissible pair for (C) such that

@(t,) = [C(1,0)(e, () + [S,05)E) + [ 15¢,9)a(s, @) ds, te], E€R

where £0(&) = xo for every ¢ € Rand q: ] x R — C is so defined

q(t,g):f< ‘“MH/ >+ut§) te], EER,

being @ : | — L*(T,C), a map such that w(t) = w(t,-), for every t € .

6 Conclusions and future studies

In this paper, the existence of mild solutions to a nonlocal problem governed by a semilinear
second order differential inclusion in Banach spaces is investigated. The novelty with respect
to the known results of [9] is the presence of an operator which intervenes on the dynamics
described through a second order differential inclusion. Our first result is obtained with a
fixed point approach, by applying ideas about measures of weak noncompactness, a selec-
tion theorem and a containment theorem. Further, in order to analyze the case of reflexive
spaces a new selection theorem is proved and a combination of this result with the classical
Hahn-Banach Theorem and the weak upper semicontinuity property is used. The applied
method enables us obtaining the existence results without any compactness requirement both
on the family generated by the linear part and on the nonlinear multivalued term. Finally our
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theoretical theorems are applied to study the controllability of a problem driven by a wave
equation.

A possible future direction of research related to this topic could be to broaden the class
of models to which it can be applied. For example could be interesting to remove the bound-
edness type property on the perturbation operator N, perhaps using a different fixed point
theorem. As we noted in Remark 4.15, this assumption does not allow to see a non-perturbed
problem as a particular case of a perturbed one. Moreover, in a contest of lack of compactness,
this boundedness property on N does not make it possible to investigate problems involving
operators N having a stabilization effect on the solution, like those studied in [8] under strong
compactness assumptions.

Author contributions

Writing-original draft preparation, T.C. and G.D.
All authors contributed equally and singnificantly in writing this article. All authors read
and approved the final manuscript.

Funding

This research is carried out within the national group GNAMPA of INdAM.

The first author is partially supported by the Department of Mathematics and Computer
Science of the University of Perugia (Italy) and by the projects “Fondi di funzionamento per la
ricerca dipartimentale-Anno 2021”7, “Metodi della Teoria dell’Approssimazione, Analisi Reale,
Analisi Nonlineare e loro applicazioni”, “Integrazione, Approssimazione, Analisi Nonlineare
e loro Applicazioni”, funded by the Fund for Basic Research 2018 and 2019 of the University
of Perugia.

Acknowledgments

The authors are very grateful to the Referee for the careful reading of this paper and for his
helpful comments, which have been very useful for improving the quality of the paper.

References

[1] K. BALACHANDRAN, J. P. DAUER, Controllability of nonlinear systems in Banach spaces:
a survey, J. Optim. Theory Appl. 115(2002), 7-28. https://doi.org/10.1023/A:
1019668728098

[2] I. BeneDETTI, V. OBUKHOVSKII, P. ZECca, Controllability for impulsive semilinear func-
tional differential inclusions with a non-compact evolution operator, Discuss. Math. Differ.
Incl. Control. Optim. 31(2011), 39-69. https://doi.org/10.7151/dmdico.1127

[3] I. BENEDETTI, M. VATH, Semilinear inclusion with nonlocal conditions without compact-
ness in non-reflexive spaces, Topol. Methods Nonlinear Anal. 48(2016), No. 2, 613-636.
https://doi.org/10.12775/TMNA.2016.061



32 T. Cardinali and G. Duricchi

[4] M. BENCHOHRA, E. P. GaTsori, S. K. Ntouyas, Controllability results for semilinear evo-
lution inclusions with nonlocal conditions, |. Optim. Theory Appl. 118(2003), 493-513.
https://doi.org/10.1023/B:JOTA.0000004868.61288.8e

[5] A. BOUCHERIF, Semilinear evolution inclusions with nonlocal conditions, Appl. Math. Lett.
22(2009), No. 8, 1145-1149. https://doi.org/10.1016/j.aml.2008.10.004

[6] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer,
New York-Dordrecht-Heidelberg—Berlin, 2010. https://doi.org/10.1007/978-0-387-
70914-7

[7] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162(1991), No. 2, 494-505. https:
//doi.org/10.1016/0022-247X(91)90164-U

[8] T. CarpinaLl, E. DE ANGELIS, Non-autonomous second order differential inclusions sub-
ject to a perturbation with a stabilizing effect, Results Math. 76(2021), No. 8. https:
//doi.org/lO.1007/s00025—O20—01305—1

[9] T. CarpiNaLL, G. DuriccHI, On nonlocal problems for semilinear second order differ-
ential inclusions without compactness, Electron. J. Qual. Theory Differ. Equ. 2021, No. 66,
1-32. https://doi.org/10.14232/ejqtde.2021.1.66

[10] T. CarDINALI, S. GENTILI, An existence theorem for a non-autonomous second order
nonlocal multivalued problem, Stud. Univ. Babes-Bolyai 62(2017), No. 1, 1-19. https://
doi.org/10.24193/subbmath.2017.0008

[11] T. CarpiNaLl, P. Russroni, Multivalued fixed point theorems in terms of weak topology
and measure of weak noncompactness, |. Math. Anal. Appl. 405(2013), No. 2. https://
doi.org/10.1016/j.jmaa.2013.03.045

[12] T. CarpinALL P. Russioni, Hereditary evolution processes under impulsive effects,
Mediterr. ]. Math. 18(2021), No. 91. https://doi.org/10.1007/s00009-021-01730-8

[13] A. CERNEA, A note on the solutions of a second-order evolution inclusion in non sep-
arable Banach spaces, Comment. Math. Univ. Carolin. 58(2017), No. 3, 307-314. https:
//doi.org/10.14712/1213-7243.2015.215

[14] Y. K. CrANG, Controllability of impulsive functional differential systems with infinite
delay in Banach spaces, Chaos Solitons Fractals 33(2007), No. 5, 1601-1609. https://doi.
org/10.1016/j.chaos.2006.03.006

[15] Y. K. CHAaNG, W. T. L1, Controllability of second-order differential and integro-differential
inclusions in Banach spaces, J. Optim. Theory Appl. 129(2006), 77-87. https://doi.org/
10.1007/s10957-006-9044-5

[16] M. CHANDRASEKARAN, Nonlocal Cauchy problem for quasilinear integrodifferential
equations in Banach spaces, Electron. |. Differential Equations 2007, No. 33, 1-6.
Zbl 1113.45015

[17] E. S. DE Bras1, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci.
Math. Roumanie (N.S.) 21(1977), 259-262. Zbl 0365.46015



Second order nonlocal problems without compactness 33

[18] Z. DENKOWSKI, S. MIGORSKI, N. S. PAPAGEORGIOU, An introduction to nonlinear analysis,
theory, Kluwen Academic Publishers, New York 2003. MR2024162

[19] M. A. Farip, K. CHAIRA, E. M. MARHRANI, M. AAMRI, Measure of weak noncompactness
and fixed point theorems in Banach algebras with applications, Axioms 8(2019), No. 4,
130. https://doi.org/10.3390/axioms8040130

[20] G. GopEerroy, S. TrovaNnski, J. H. M. WHITFIELD, V. ZI1ZLER, Smoothness in weakly
compactly generated Banach spaces, |. Funct. Anal. 52(1983), No. 3, 344-352. https:
//doi.org/10.1016/0022-1236(83)90073-3

[21] H. R. HENRIQUEZ, V. PoBLETE, ]. C. Pozo, Mild solutions of nonautonomous second order
problems with nonlocal initial conditions, . Math. Anal. Appl. 412(2014), No. 2, 1064-1083.
https://doi.org/10.1016/j.jmaa.2013.10.086

[22] C. J. HimMELBERG, F. S. VAN ViEck, K. Prikry, The Hausdorff metric and measur-
able selections, Topology Appl. 20(1985), No. 2, 121-133. https://doi.org/10.1016/0166-
8641(85)90072-0

[23] S. Hu, N. S. ParaGeoraGiou, Handbook of multivalued analysis. Volume I: Theory, Kluwer
Academic Publishers 1997. MR1485775

[24] M. KamMmensk1, V. OsukHovskll, P. Zecca, Condensing multivalued maps and semilinear
differential inclusions in Banach spaces, Walter de Gruyter, New York 2001. https://doi.
org/10.1515/9783110870893

[25] T. KaTo, Integration of the equation of evolution in a Banach space, |. Math. Soc. Japan
5(1953), No. 2, 208-234. https://doi.org/10.2969/jmsj/00520208

[26] T. Kato, On linear differential equations in Banach spaces, Commun. Pure Appl. Math.
9(1956), 479-486. https://doi.org/10.1002/cpa.3160090319

[27] T. KaTo, Linear evolution equations of hyperbolic type, J. Fac. Sci. Univ. Tokyo, Sect. 1
17(1970), No. 4, 241-258. MR279626

[28] T. D. Kg, V. OpuknHovski1l, Controllability for systems governed by second-order differ-
ential inclusions with nonlocal conditions, Topol. Methods Nonlinear Anal. 42(2013), No. 2
377-403. MR3203454

[29] S.S. KHURANA, J. VIELMA, Weak sequential convergence and weak compactness in space
of vector-valued continuous functions, |. Math. Anal. Appl. 195(1995), No. 1, 251-260.
https://doi.org/10.1006/jmaa.1995.1353

[30] M. Kozak, A fundamental solution of a second-order differential equation in Banach
space, Univ. lagel. Acta Math. (1995), No. 32, 275-289. MR1345144

[31] M. R. MEGGINSON, An introduction to Banach space theory, Springer-Verlag, New York-
Berlin-Heidelberg 1998. https://doi.org/10.1007/978-1-4612-0603-3

[32] K. S. N1sAR, V. VIJAYAKUMAR, An analysis concerning approximate controllability results
for second-order Sobolev-type delay differential systems with impulses, |. Inequal. Appl.
(2022), No. 53. https://doi.org/10.1186/s13660-022-02791-3



34 T. Cardinali and G. Duricchi

[33] V. OBuknoOvskir, P. ZEcca, Controllability for systems governed by semilinear differential
inclusions in a Banach space with a noncompact semigroup, Nonlinear Anal. 70(2009),
No. 9, 3424-3436. https://doi.org/10.1016/j.na.2008.05.009

[34] J. Y. Park, Y. C. Kwun, H. J. Leg, Controllability of second-order neutral functional
differential inclusions in Banach spaces, |. Math. Anal. Appl. 285(2003), No. 1, 37-49.
https://doi.org/lO.1016/30022—247X(O2)00503—6

[35] J. Y. Parx, S. H. Park, Y. H. Kang, Controllability of second-order impulsive neutral func-
tional differential inclusions in Banach spaces, Math. Methods Appl. Sci. 33(2010), No. 3,
249-262. https://doi.org/10.1002/mma.1165

[36] M. PavLackovA, V. Tapper, Mild solutions of second-order semilinear impulsive differ-
ential inclusions in Banach spaces, Mathematics 10(2022), No. 4, 672. https://doi.org/
10.3390/math10040672

[37] N. H. Try, B. X. D1eu, V. T. LuonNg, N. V. MiNH, Almost periodic solutions of periodic
second order linear evolution equations, Korean . Math. 28(2020), No. 2, 223-240. https:
//doi.org/10.11568/kjm.2020.28.2.223

[38] A.ULGER, Weak compactness in L'(u, X), Proc. Amer. Math. Soc. 113(1991), No. 1, 143-149.
https://doi.org/10.2307/2048450

[39] V. VijayakuMAR, R. MuruGesu, Controllability for a class of second order evolution
differential inclusions without compactness, Appl. Anal. 98(2019), No. 7, 1367-1385.
https://doi.org/10.1080/00036811.2017.1422727

[40] H. VocT, An Eberlein-Smulian type result for weak* topology, Arch. Math. (Basel)
95(2010), 31-34. https://doi.org/10.1007/s00013-010-0128-y

[41] X. XuE, Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces,
Electron. ]. Differential Equations 2005, No. 64, 1-7. Zbl 1075.34051

[42] V. ZvyaGIN, V. OBUKHOVSKII, A. ZVYAGIN, On inclusions with multivalued operators and
their applications to some optimization problem, J. Fixed Point Theory Appl. 16(2014), 27—
82. https://doi.org/10.1007/s11784-015-0219-2



2

/c

Electronic Journal of Qualitative Theory of Differential Equations
2023, No. 14, 1-32; https://doi.org/10.14232/ejqtde.2023.1.14 www.math.u-szeged.hu/ejqtde/

7R~

<

X K\
NAN

A
N\

N

Ya

N

(

>

Concentration of solutions for an (N, g)-Laplacian
equation with Trudinger-Moser nonlinearity

Li Wang!, Jun Wang! and Binlin Zhang™?

ICollege of Science, East China Jiaotong University, Nanchang, 330013, P.R. China
2College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao, 266590, P.R. China

Received 9 October 2022, appeared 4 May 2023

Communicated by Roberto Livrea

Abstract. In this article, we consider the concentration of positive solutions for the
following equation with Trudinger-Moser nonlinearity:

— Anu — Dgu+ V(ex) (JulN"2u + [u17%u) = f(u), xRV,

u € WWN(RN) nwh(RN), x € RN,
where V is a positive continuous function and has a local minimum, ¢ > 0 is a small
parameter, 2 < N < g < +oo, f is C! with subcritical growth. When V and f satisfy
some appropriate assumptions, we construct the solution u, that concentrates around

any given isolated local minimum of V by applying the penalization method for the
above equation.
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1 Introduction and main result

In this article, we consider the concentration of positive solutions for an (N, g)-Laplacian
equation with Trudinger-Moser nonlinearity:

{ — Anu— Agu+ V(ex) (JulN"2u+ [u|7%u) = f(u), x € RV, 1.1)

u € WHN(RN) n W (RN), x € RN,
where V : RN — R is a function that satisfies continuity and has a local minimum, ¢ > 0 is a
small parameter, 2 < N < g < +oo, f € C! is subcritical.

We first introduce some background about (p, )-Laplacian equation. As described in [14],
problem (1.1) originates from the following reaction-diffusion equation:

up = C(x,u) +div(D(u)Vu), D(u) = |Vul"?+|VulF~2

™ Corresponding author. Emails: wangli.423@163.com (L. Wang), wj2746154229@163.com (J. Wang),
zhangbinlin2012@163.com (B. Zhang).
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It is widely used in physics or chemistry, such as solid state physics, chemical reaction design,

biophysics and plasma physics. Note that, in general reaction-diffusion equation, the physical

meaning of u is concentration, and the physical meaning of div(D(u)Vu) is the diffusion

generated by D(u). C(x,u) is related to the source and loss process. Generally, C(x,u) is a

polynomial with variable coefficients related to u in chemical and biological applications.
When p < g < N, Zhang et al. in [36] studied the following double phase problem

(=A)7u+ (=A)pu+V(ex) (Jul7%u + [ulP72u) = Af(u) + [u]""?u, xRN,
u e WP (RN) nwma (RN) ,u >0, x e RN,

where ¢ is a parameter small enough but A is required to be large enough, 0 < m < 1, r =
g = Ng/(N—mgq), 2 < p < g < N/m, (—A)}" is the fractional t-Laplace operator and
the potential V : RN +— R is a continuous function. The authors obtained the existence and
concentration properties of multiple positive solutions to the above problem. Note that, [36]
assumed that the nonlinearity satisfies the Ambrosetti-Rabinowitz condition, that is, for all
t > 0, there is 6 € (q,4;,) that satisfies 0 < 6F(t) := 6 fotf(T)dT < f(t)t. So the authors can
get the existence and concentration properties of multiple positive solutions by using Nehari
manifold.
When 1 < g < N = p, the authors in [12] investigated the existence of solutions for the
(N, g)-Laplacian equation:
— Agu— Ayu = f(u) in R, (1.2)

where the nonlinear term f(u) satisfies exponential critical growth in the sense of Trudinger-
Moser. In order to detect the solution, they used a variational method related to the new
Trudinger-Moser type inequality. Figueiredo and Nunes in [19] used Nehari manifold method
to studied the existence of positive solutions for the following class of quasilinear problems

—div(a(|Vul|?)|Vu|~2Vu) = f(u) in Q,
u=0on 0.

It is worth pointing out that Theorems 1.1 and 1.2 in [19] are valid for the problem (1.2) if RN
is replaced by () which is a smooth bounded domain. In [15], Costa and Figueiredo studied a
class of quasilinear equation with exponential critical growth. They used variational methods
and del Pino and Felmer’s technique (del Pino and Felmer 1996) in order to overcome the lack
of compactness, and got the existence of a family nodal solutions, which concentrate on the
minimum points set of the potential function, changes sign exactly once in RM.

When p = N/m < q, Nguyen in [29] studied the following Schrodinger equation involving
the fractional (N, g)-Laplace operator and Trudinger-Moser nonlinear term

(=)t + (=) -+ V(ex) (JufF2ut [u?u) = f(u) inRY,

where ¢ > 0 is a parameter small enough, m € (0,1), N = pm, 2 < p = N/m < g, the poten-
tial V : RN — R is a continuous function that satisfies some suitable conditions. The nonlinear
term f(u) satisfies exponential growth. In order to obtain existence and concentration proper-
ties of nontrivial nonnegative solutions, the author in [29] used the Ljusternik-Schnirelmann
theory and Nehari manifold.

It is worth mentioning that both the nonlinearities of [12] and [29] satisfy the Ambrosetti—
Rabinowitz condition. Inspired by the above works, it seems quite natural to ask if f(u) does



Concentration of solutions for an (N, q)-Laplacian equation 3

not satisfy the Ambrosetti-Rabinowitz condition but satisfies Beresticky-Lions type assump-
tions, do the same results hold for (N, g)-Laplacian problem? In this paper, we give a positive
answer.

In the present paper, we assume that the potential V : RN + R is a continuous function
satisfying the following conditions which are always called del Pino-Felmer type conditions
(cf. [16]).

(V1) V € C(RV,R) such that inf,.gn V(x) = Vg > 0.
(V2) There exists a bounded domain A C RN satisfies

m := inf V(x) < min V(x).
xeEA XEIA

Moreover, we can assume 0 € M := {x € A: V(x) = m}.

The nonlinear term f : R — R is a continuous function. Moreover, for ¢ < 0, we assume
that f(t) = 0. Furthermore, f(t) satisfies the following hypotheses:

(f1) limo {% =0;

N
(f2) Va >0, fort >0, there is a C, > 0 satisfies |f(t)| < Cpe" " ;
(f3) thereis T > 0 satisfies F(T) > #TN + m,
Next, we state the main conclusion as follows:

Theorem 1.1. If (V1)—(V2) and (f1)-(f3) are true, for small ¢ > 0, equation (1.1) has a positive
solution u, which has a maximum point x, satisfying

lim dist (x., M) = 0.

e—0
Moreover, for any x¢, as € — 0 (up to a subsequence), ve(x) = ug(ex + x,) converges uniformly to a
least energy solution of the following equation:

(1.3)

— Agu — Anu+m([u]T?u+ [ulN2u) = f(u), xeRN,
u € WH(RN) n WhN(RY), x € RV,

Furthermore, we have
ue(x) < Cie =l vy e RN, ¢, C, > 0.

Remark 1.2. Without loss of generality, it can be assumed that V) = 1.

As far as we know, there is no result on the concentration of positive solutions for (N, q)-
Laplacian problems with Berestycki-Lions nonlinearity.

Finally, we point out that Theorem 1.1 is proved by variational method, and there are four
main difficulties we encounter during the preparation of manuscript:

(1) The nonlinear term f(u) does not satisfy the Ambrosetti-Rabinowitz condition, and

for u > 0, the function u((,lfz is not increasing. They both prevent us from getting the
boundedness of Palais-Smale sequence and using the Nehari manifold. Moreover, we

can not apply the method in [16].

[~ —
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(2) Since RV is unbounded, it will lead to the loss of compactness. In the later proof, we
will find that this difficulty will prevent us from directly using the variational method.

(3) When N > 2, the working space X, is no longer a Hilbert space. This makes it more
complicated to prove the following formula in Lemma 3.11:

Je (e) > Jo (1) +Je (u2) +0(1)
ase — 0.

(4) Due to N = p < g, we can not use the method of [2] to obtain that b,, > ¢, in Lemma
3.6.

In order to overcome the above difficulties, inspired by [8,18,22,25], we recover the com-
pactness by penalization method described in [10].

The plan of this paper is as follows. In Section 2, we give some definitions of function
spaces and lemmas to be used later. In Section 3, we give the proof of Theorem 1.1.

2 Preliminary

In this section, we will give some definitions of symbols, and review some existing results that
need to be used in the future.

Let u : RN +— R. For 2 < N < g < +o0, let us define DYV (RN) = C°°(1RN)W'|N
the following fractional Sobolev space

. We denote

WIN(RY) = {u: |Vuly < +oo, |uly < +oo}
equipped with the natural norm
1/N
lullw ey = (V¥ + 1)

where | - [N = [pn |- [Vdx.
For all u,v € WVN(RN), we define

(W, 0)wingy) = /RN(]VL{]N*ZVMVU + [uN"2uv)dx.
In this article, we need to introduce a work space
X = WWW(RN) n W (RY)
whose norm is defined as
[[aellx == [leell ooy + el waw ey
When V(x) = Vp, we define space

Xo = {u €X: /N Vo(Jul + |ulN)dx < —|—00}
R

equipped with the norm as
lellxo = llullve,g + lluellvo, .
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where |[u|}, , = [rn (IVul" 4 Volu|") dx, Vr € {N, g} It should be noted that X is a separable
reflexive Banach space. Due to the Theorem 6.9 in [28], for any v € [N, +00), it is easy to see
that the embedding from X, into L” (RY) is continuous. Then for all v € [N, +o0), there exists
Aym > 0 satisfies

Aym = inf w

uA0ueXo ||| Ly (rry

This implies
]| o vy < A llullx, forall u e Xo. 2.1)

Fix e > 0, we also need to introduce the following space
X, = {u €X: /N V(ex) (Jul® + JuN)dx < +00}
R
whose norm is defined as

ullx. :== llullv.g + llullv,N,

where HuH%,:r = Jgn (IVu|"+ V(ex)|u|")dx, Vr € {N,q}. According to Lemma 10 in [31],
we obtain that X, is uniformly convex Banach space. Moreover, for any v € [N, 40), the
embedding

Xe = LY(RN)

is continuous. Then for all v € [N, +c0), there is S, > 0 satisfies:

Sye = inf M
uA0ueXe ||| LRy

It can be seen that
Jul| o vy < Syellullx.,  Vu € Xe. (2.2)

Finally, we consider
Xpa = {1 € X : u(x) = u(|x])}.

Lemma 2.1 (see [34, Theorem 2.8]). Assume that X is a Banach space, My is a closed subspace of
the metric space M, Ty C C(My, X). Consider

I .= {’)/ € C(M,X) : ’)/|MO S ro}.
Assume ¢ € C1(X,R) satisfies

oo > ¢ :=inf sup ¢(y(u)) > a:= sup sup @(yo(u)).
yel ueM Yoo ueM

Foranye € (0,(c—a)/2),0 > 0and vy € T such that sup,, ¢ oy < c +¢, there is u € X satisfies
(a) c—2e < p(u) <c+2¢
(b) dist(u,y(M)) < 25;
(©) llg'(w)] < %.

Now, we recall follow Lemma 2.2 from J. M. do O [17] (or see [11]). The Lemma 2.3 follows
from Adachi and Tanaka [1].
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Lemma 2.2 (see [17]). Assume N > 2, u € W'N (RN) and a > 0, we have

/]RN <exp (a\u|N/(Nfl)> — SN*Z(“,M)) dx < oo,

where
N—2 .k L
SNfz(Dé,I/O = Z F‘u’(N—l)
k=0

In addition, when o < ay, for VM > 0, there is C = C(«, N, M) satisfies
/ (exp <0c|u|N/(N_1)> - SN_Q((x,u)) dx < C, Vue W'N(RYM).
RN o

We also have ||u||xy < M and ||Vu|ny < 1.
Lemma 2.3 (see [1]). Assume N > 2, « € (0,an), there is a constant C, > 0 that satisfies

u
|\Vu||% /]RN Yy <||VU||N> dx < CaHuH%, Yu € Wl’N(lRN) \ {0}.

Here ¥ () = "™ — 5y 5 (a,b).

3 Proof of Theorem 1.1
For VB C RN, ¢ > 0, B, can be define as B, := {x € RN : ex € B}. Next, we will use the
method in [16,21] to modify f. According to (f1), there exists a > 0 such that

N-1

f(t) < —— vVt € (0,a).

Fort € R, x € RN, assume that

g(x 1) = (1 =xa(x)) f(£) + xa(x)f (1),

where

z _ ) S, t<a,
S0 = {min {f(),AN-11 ) t>a

and

(x) = 1, x €A,
A PN

Obviously, Vx € RN, t € [0,4], we have g(x,t) = f(t). Moreover, for Vx € RV, t > 0, we also
obtain that g(x,t) < f(f). Now, considering the modified problem

{ — Ayt — Agu+ Ve(Ju|N"2u + [u]7%u) = g(ex,u), x €RY, (3.1)

ue X, u>0, x € RV,

where g(ex, t) = (1 — xa,(x)) f(t) + xa.(x) f(£). Clearly, for x € RN\ A, if u, satisfies ue(x) <
a and it is a solution of (3.1), we know that u;, is the solution of the original problem (1.1).
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As to u € X,, we assume that

1 1
I q q - N N .
Ie (u) q/RN(WuI + Ve|u|7) dx + N./]RN <|Vu\ + Velu| )dx /]RN G(ex, u)dx,

where G(x, t) fo x, 0)do. For Vuu > 0, define

0, x €A,

Qe(u) = </]RN)(€]u]Ndx— 1>i

This penalization first appeared in [10] (or see [8]). It has the advantage that it can make the
concentration phenomena to occur in A. Now, we define J, : X, — R as follows:

Je(u) = Qe(u) + Le(u).

Clearly, J. € C'(X.). Next, to find the solutions of equation (3.1) concentrated around the
local minimum of potential function as ¢ — 0, we will find the critical points of ], which make
Q; zero.

e ", x e RN\A,,
Xs(x):{ \Ae

3.1 Limit problem

First, considering the limit problem, i.e.

(3.2)

— Agu — Anu+m([u]T?u+ [ulN2u) = f(u), xeRN,
ueX, x € RN,

The energy functional corresponding to (3.2) is defined as follows
I (11) = 1/ (19u™ + mful™) dx+1/ (9ult + mlulydx — [ Flu)dx
N RN q RN RN

In view of [30], assuming that u € X is the weak solution of problem (3.2), it is easy to get
the Pohozdev identity:

Po(u) = N1 / Vultdx+m [ ulNd 4, Nm / uftdx =N [ F
Lemma 3.1. I, has the Mountain-Pass geometry.
Proof. According to (f1), V|t| <4, Fe > 0 and 6 > 0 such that
)] < eft).

In addition, by using the condition (f1) and f is a function that satisfies continuity, V7 > g,
V|t| > ¢, it is easy to find a constant C = C(7,d) > 0 satisfies

FB] < Cln ().
Combining the above two formulas, we get

IF(D)] <elt]T 4 Clt|" ¥y (1), Vi>0.
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Then
[F()| < elt|T+ Clt|"Fn (1) -

So, for2 < N < g < ¢,

1 1
1) = q/m (Vult -+ mful) s+ 55 [ (Va4 mfuY) dx — [ F(u)ds
< N N ! g g g
> N RN(\VM] + m|u| )dx+q/IRN(\Vu| + m|u|7)dx — e|ulg

_ T
C/RN 1Ty (1) dx

Using Holder’s inequality, we have

o 0 a8 = e ([ (0 ) )

where % + % =1(t > 1, t > 1). Due to Lemma 2.3, we may find a constant D > 0 satisfies

(/RN (D (u))fdxf <D.

By using (2.1), we obtain that
]| v rvy < Ay llullx, forall u e X,.

Hence, when ||u]|x, is small enough, we obtain that

1 1
- q q L N N
Ly(u) > q/}RN(]Vu] + m|u|T)dx + N/IRN(]Vu\ + m|u|")dx
—C/]RN\tF‘{’N(u)dx—e]u\Z
1

> gl —eAgillull, — CDAL, ull,

1 -
= ( i — ez~ CDAL Iul").
From which we deduce that sAq m > 0 for e small enough. Let

! A —CDA

e g
h(t) PR T ot 1 >0,

Next, we will prove there is ty > 0 small enough such that 1 (q ST — €4y, m) < h(tp). Obvi-

ously, if t € [0, +00), I is a continuous function. Note that lim; o+ h(t) = — eAgh, then

q- 72T
we can find t( that satisfies h(t) > m 21[4 T —eA,, 1 —e1,Vt € (0,tg), to is small enough. Choosing
€ = %(q;ﬁ — sAq,m), we have
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for all 0 <t < tg. In particularly,

So, for ||u||x, = to, we get

t 1 _
Ly (u) > EO- <q-2‘7_1 —sAq,fL) = po > 0.

Now, VR > 0, define wg(x,y) as follows:

=

x € B{(0),
wi(x,y) = { 0 x € RY\B{,,(0),
T(R+1-/[x[), x€Bi,(0)\B(0).

~

It is easy to get that wg € X;oq (RY). It is worth noting that, for R > 0 large enough, according
to (f3), we have that

m_ N m

/R ) [F (wr (x)) — TR (x) - qw;’z(x)} dx > 0,
Next, consider wg g(x) := wg (6%) Fix R > 0, then we have
1 m
:7(N—q)9 q _ N6 MmN 4
L (Wrp) qe /]Ri’ |Vulldx —e /]RN {F (wr(x)) wy (x) wr(x)| dx
— —o0 asf — oo,

This ends the proof. O

Therefore, according to Lemma 3.1, we may define c,, as follows:

cm = Inf sup Ly(y(t)). (3.3)
v€l, te0,1]
Here Iy, is defined by
Iy :={y€C([0,1],Xo) : v(0) =0and L,(y(1)) < 0}. (3.4)

Clearly, c;;, > 0. Moreover, similar to [2], we note that

Cm = Cirads

where

c = inf max]I t
morad YET pyrad tE[01] n(7())

and
Fnraa = {7 € € (10,1], Xpaa(RY)) : Ln(7(1)) < 0,7(0) = 0}

Next, we will construct a (PS) sequence {w,}$ ; for I, at the level ¢, that satisfies
Il,(wy,) — 0 as n — oo, that is
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Proposition 3.2. There exists a sequence {wy }°_, in Xo that satisfies, as n — oo,

Ly(wy) = cm, I, (wn) =0, Py(wy,) — 0. (3.5)
Proof. For (6,u) € R X Xpaq (RN), define I, (6, u) := (I, 0 ®) (6,u), where ®(6,u) := u(g)-
The standard norm of R x X,,q(IRY) is defined as

1
106, 1) lrscxy, = (llull, +161%)* .
According to Lemma 3.1, I, has a mountain pass geometry, so we can define &,, as follows:

&n = inf max L,(7(t)),
i ﬂ71ef,,, t€[0,1] n(7()

where
T = {7 € € (101, R x Xea(RY)) : Tu(¥(1)) < 0,7(0) = (0)}

It is easy to prove that ¢;; = cy(see [3,23]). Then according to Lemma 2.1, we obtain that there
exists a sequence (0, uy) C R x X.,q(RYN) such that, as n — oo,

(i) (Im o @) (On, 1n) — cm,

(ii) (Ly o @) (6n,uy) — 0,
(iii) 6y — 0.
In fact, let § = J,, = %,s =g, = % in Lemma 2.1, by using (a) and (c¢) in Lemma 2.1, we can
obtain (i) and (ii). Due to (3.3) and (3.4), for ¢ = ¢, = %, it is easy to find that v, € I';, such
that sup,¢ (g Lu(yn(t)) <cm+ % Now define 7, (t) = (0, v, ()), we obtain

- 1
sup (I o @) (yu(t)) = sup Lu(vu(t)) < cm+ 2
t€(0,1] te[0,1]

According to (b) in Lemma 2.1, then there is (6,, u,) € R x Xj such that

2
. <2
]Igixls);fo((or')’n(t))r(enr“n)) =0
so (iii) holds. Now, for A C R x Xy, define
1
dist ((0,u), A) = inf (|lu—ol%k, +10—1[*)*.

Rx Xo (Tw)ERxXo
So, for (h,w) € R x Xy, we have
((In 0 @) (B, 1tn) , (B, w)) = Py (P (6, ttn)) 1t + (I, (P (6, 10n)), ' (60, w)) . (3.6)
Now, put w = 0 and h = 1, it is easy to get
Py (P (0, 1)) — 0.

Moreover, for all v € X, we only take & = 0 and w(x) = v (¢x) in (3.6), by using (ii), (iii),
we get

o(1)]|v||x, = 0(1) Hv (ee”x) ‘

Hence, w, = ® (0, uy) is just the sequence we need. O

= (I, (P (On, 1)), v).

Xo
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Lemma 3.3. The sequence (wy,) that satisfies (3.5) is bounded in X,.
Proof. According to (3.5), we have

e+ 0n(1) = Ly (w0n) — — Py (w0)

N
1 Nve 1 1 Ne 1

= —/ |Vw,,| dx+f/ |an|‘7dx+—/ m|wy | dx+f/ m|wy|7dx
N JRrN N

—/ (wn)dx—i]<N q/ |an|‘7dx+m/ |w, |Pdx

—/ m|wn|‘7dx—N/ (wy dx>
1 N
= — / |Vw,| dx+/ |Vw,|Tdx | .
N \JrV RN

Hence, we get that f]RN |Vw,|Ndx and f]RN |Vw,|7dx are bounded in R. Moreover, P, (w,) =
0,(1) and (f1)-(f2) show that

N_q/ |an|‘7dx+/ m|wn|Ndx+N/ m|wy,|Tdx
q RN RN q JRN

RN

< 04(1) + &Nlw, |l + NC /RN (wn| T N ().

According to the boundedness of [ |wn|"™¥n(w,)dx and choosing ¢ > 0 small enough, we
can deduce that (|wy|y) and (|wy|,) are bounded in R. Therefore, (w;) is bounded in Xo. O

According to the method in [33], we have:

Lemma 3.4 (see [33]). Assume that (u,) is a bounded sequence in Xy, if there exist for some R >
0,t > N such that

lim su Uy (x tdx:O,
n—>00y€]£\1 BR(y)| n( )|

then for all & € (t,400), u, — 0in LE(RN) .

Lemma 3.5. Assume (w,) satisfies Proposition 3.2, then there exist a sequence (x,) C RN and
constants R > 0, B > 0 satisfy

q
wy(x)dx > B.
Jy o W= p
Proof. In fact, we assume that the conclusion is not true. According to Lemma 3.4, it is easy to
get

wa(-) — 0in L (IRN>, VE € (t, +00). (3.7)
Therefore, due to (f1) and (f2), we obtain that

]RNf (wn(x)) wy(x)dx = 0,(1).

According to (I, (wy,),w,) = 0,(1), we can obtain that
/ Vwn|Ndx + / Vw,|9dx +/ m|wn|Ndx +/ m|wy|9dx — / Flwn)wadx = 0, (1),
RN JRN RN RN JRN

and so we deduce that |wy|y, — 0. Therefore, I, (w,) — 0 and then we get contradiction
since ¢;; > 0. ]
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Next, define

x€RN

T = {u € X(RM)\{0} : max u(x) = u(0), I,(u) = 0} ,
b, = uien7f7n I (1),
and
Sm=A{u € Ty, : Lu(u) = bu}.

Lemma 3.6. There exists u € S,.

Proof. Assume (w,) satisfies Proposition 3.2. Let w,(x) := wy,(x, + x), here x,, comes from
Lemma 3.5. According to Lemma 3.4, we can see that (w;) is bounded in X,,q(RY), that is,
for all n € IN, we have [[wy| x_,wv) < C . Going if necessary to a subsequence, for some
W € Xag(RN)\ {0}, we assume that @, — @ in X,,q(RN), then

Wy(x) — @(x) in LS(RY), V&€ (N, +00).

) | f@ywm— [ f@a. G8)

Moreover, w satisfies
(—A)NT + (—A)q@ + m(|@w|N 2w + |@|7 @) = f(@) inRN. (3.9)
From (3.8) we have
/]RN |V€5|Ndx+/]RN |V@|qu+/]RNm\zB|Ndx+/]RNm|€6|"dx

Sliminf[/ \Vﬁn\Nder/ |vwn|qu+/ m|wn|Ndx+/ m!@,ﬂdx}
RN RN RN RN

n—oo

gnmsup[/ |Vz6n]Ndx+/ m|€6n|Ndx+/ |Vz’5n|"dx+/ m|@n|"dx]
RN RN RN RN

n—oo

= limsup [/ ]an]Ndx—i-/ m|wn\Ndx+/ \an|‘7dx—i—/ m]wn\qu]
RN RN RN RN

n—oo

=1i n)Wyd
Hnnjoljp ]RNf(w Jwndx

= 11r;1_)s:3p o f(wy)w,dx

= f(w)wdx
]RN

:/ |V@1Ndx+/ \Vzﬁ|‘7dx+/ m|€6|’”dx+/ m|@|dx,
RN RN RN RN

which implies that ||wy[|y, — ||@|x, and thus @, — @ in Xo. Therefore, by Iy (wn) =
Ly (Wy) — cm and I, (wy,) = I, (w,) — 0, we obtain that I,,(@) = ¢, and I, (w) = 0. Due to
w # 0, we get that c,, > by,.

Now, let w € Xo\{0} be an arbitrary solution of (3.2). We define

{w (¥) fort>0,

wi(x) =
(%) 0 fort = 0.
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Next, choosing the real number 6; > t; > 1 > ty > 0, we denote the curve y consisting of
three parts as follows:

tho, 0 e [0, to] ,
v(0) = { 0wy, 6 € [to, 1],
thl, 0 e [tl,gl] .

Due to w is a weak solution, then
f(w)wdx :/ ]Vw|Ndx+/ |Vw|‘7dx+/ m|w|Ndx—|—/ m|w|7dx > 0.
RN RN RN RN RN
Hence, we can find 6; > 1 such that

. f(w)wdx >0, VO e [l,61].
Let ¢(s) = f( *). Due to (f1), we know that ¢ € C(R,R). Hence, we have

/]R p(bw)widx >0, Y6 € [1,6)]. (3.10)

Moreover,

;91"1 (Owy) = (I, (Bw;) , wy)
=Nt /]RN |V |Ndx + 6971 ./]RN |Vaw,|1dx + N1 /]RNm]wt]Ndx
+ 6771 /]RNm|wt|‘7dx—6”"1 /]RNq)(th)wf’dx
:GN_l/ |th|Ndx+9”’_1/ |th\qu—|—9N_1/]R m|w;|Ndx
+9”7_1/ m|wt|’7dx——/ (Ow;) w dx——/ (Ow;) w

91— NN

q
= gN-1 (/IRN |Vw|Ndx+tN/]RNm|w\Ndx— 5 /]RN(p(Hw) w"dx)

N—-1 4N-q q q 1qx — & q
+0 t |Vw|Tdx + ¢ m|w|Tdx ¢ (0w) widx | .
RN RN 2 JrN

Selecting tp € (0,1) small enough, we obtain

01NN
N N Ny _ 0 q
/]RN |\Vw|Ydx + /]RNm]w| dx 5 /]RNq)(Gw)w dx>0 forallfe[l,6;] (311)
and
H
q q idx — 9 q
/]RN |Vw|Tdx + t, /IRNm|w| dx > /]RNgo(Gw)w dx >0 forallf e [1,64]. (3.12)

According to (3.10), for all 6 € [1,61], we select f; > 1 such that

01NN N
idy < —
/RN(p(Hw)wdx_ oV

/ |vw|Ndx+t{V/ mlw|Ndx — / IVw|Ndx, (3.13)
RN RN

1 JRrN
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and

Nt N
(effl—l)/nwwwwdx' (3.14)

Therefore, according to (3.11) and (3.12), we know I(-y(6)) increases at the interval [0, to], then
takes its maximum value at § = 1. According to the Pohozdev identity:

Py(u) = N = q/ |Vu|‘7dx+m/ |u|Ndx—|— / \u|‘7dx—N/

Consequently,

L (wt, (x)) < I (w(x))
= 1/ ]Vw]Ndx—i—l/ ]Vw\qu—f—E/ ]w[Ndx—i—m/ |w|Tdx
N Jrv q JRN N Jrv~ q JRN

_1<N—q/ ]Vw]qu—i—m/ ]w|Ndx—i—N/ m\wlqu>
N q RN RN q JRN

_l N q
_N</IRN|Vw| dx+/]RN|Vw| dx).

Now by using (3.13) and (3.14), we have

tq
/IRN |Vw|Tdx + ] /]RNm|w]qu— El/IRNgo(Gw) widx < —

Im (letl = wtl +/ thl do

1 N N N %N
— q —
<N(/N|an| dx+/N]an\ dx) o 1/N|Vw] dx/1 6" "do

NN [
— o [ [Vl 67 [0V de
(6 —1) Jry N

_ (1 N 1 g
_ (N 1) /H{N\an\ dx+<N 1)/]RNwany dx < 0,

So we know y(6) € I',. According to the definition of ¢,,, we have I,,(y(0)) > ¢;;. Due to w is
arbitrary, we obtain that b,, > c,, and this means b, = c.

Selecting w~ = min{w,0} as a test function of (3.2), we infer that w > 0 in RN. Using (f)-
(f2) and according to the Moser iteration (see [3,13]), it is easy to obtain that w € L® (RV).
By means of Corollary 2.1 in [4], we can see that w € C7(R") for some ¢ € (0,1). Similar to
the proof of Theorem 1.1-(ii) in [24], we obtain that w > 0 in RN, O

Remark 3.7. As to m > 0, we define

1 1 m’ m’
Ly (u) = —/ \Vu\pdx—i—f/ ]Vu\”’dx—i——/ ]u]pdx—i——/ \u]qu—/ F(u)dx,
P RN q RN p RN q RN RN

the mountain pass level is c,/. By using standard method, we can prove that c,; > ¢, when
my > mj.

In the following, we will prove that Sy, is compact in X.

Lemma 3.8. Sy, is compact in Xj.
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Proof. For any U € Sy,, we have that

em +0n(1) = I (L) — %Pm )

:1/ \Vu\Nderl/ yvuyqu+ﬂ/ |U|Ndx+T/ U|7dx
N JrN q JRN N JrvN q JRN

-/ F(U)dx — — (N_q/ vulidx+m [ |ulds
RN N q RN RN

4 Nm ]U|‘7dx—N/ P(u)dx>
g JrN RN

_ 1 (/ \VU\Ndx+/ yvuyw).
N RN RN

So S, is bounded in Xj.
For any sequence {U;} C Sy, up to a subsequence, we can find a Uy € X satisfies

Uy — Uy in Xy (3.15)
and U, satisfies
—AnUy — BUp + m(|Uo|N 72Uy + |Up|"2Up) = f(Up), inRYN, Uy > 0.
Next, we will prove that Uy is nontrivial. Note that, up to a subsequence, we have
Uy — Up in L .(RN), te€ (N,+c0). (3.16)

By using (3.16), any bounded region in RN, (U!) is uniformly integrable. According to

Lemma 2.2 (i) in [22], ||U]| 2wy < €. In view of [26], there exists a € (0,1) such that

||UkHC1,a(]RN) < C. Due to (Ug) C Sy, by Lemma 3.6, we have that U, > 0. We can prove that
loc

lim infy 4 ||Uk||e > 0 because of lim;_,o % = 0. In fact, since U} satisfies (3.1), we have that

—ANUy — AgUye + m (Ui [N 72U + [U[772Ux) = f(Uy),

that is
/RN\vuk|Ndx+/RN yvuk|‘7dx+m/RN|uk|Ndx+m/RN Uy |7dx = /]RNf(Uk)ukdx.

According to lim;_ % =0, Ve > 0, we can find § > 0 satisfies

f(t) <et’™, |t <4,

then f(Uy)Ux < e|Ug|7. Assume by contradiction, we have liminfy_, ||Uk||« = 0, then for ¢
given above, we have |Uy| < é. Therefore,

/ yvuk|Ndx+/ |vuk|qu:/ f(uk)ukdx—m/ |Uk|Ndx—m/ U |7dx < 0,
RN RN RN RN RN

which leads to a contradiction. Noting that Uy (0) = ||Uk||«, we get that Uy # 0. Therefore,
there exists 3Cp > 0 such that Ux(0) > Cy > 0, then Up(0) > Cy > 0, this means that U is
nontrivial. Using the same method as Lemma 3.6, we get I, (Uy) = ¢, and Uy — Up in Xo.
Therefore, S, is compact in Xp. O
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3.2 Proof of Theorem 1.1

This section will prove Theorem 1.1. For U € Sy, set ¢,y = I,,(U) and 106 = dist {M,]RN \A}
Now, fix a B € (0,6) and a cut-off function ¢ € C° (RV) satisfies

1, X < B,
"o, Ix =28

and |Vg| < C/B. Moreover, let y € RN, ¢.(y) = ¢(ey). For ¢ > 0 small enough, we will look
for solutions of (1.1) near the set

Y, := {go(sy—x)ll(y—%) :xEMﬁ,UESm},

where MP := {y € RN :inf,e v |z — y| < ﬁ} Moreover, as to A C X, define
At = {u € X, :inf |lu —o|x, < a}.
veEA

For any U € Sy, define We(x) := @(ex)U (¥).
Next, we show that J. has the Mountain-Pass geometry. Let U;(x) := U(}), by using the
same proof as in Lemma 3.1, we have
L(U) / VU Ndx + = / m]LI|Ndx—|—th/ IVU|7dx
! N N JrV qg JRrRN

N
+t—/ m\U]qu—tN/ F(U)dx
q JRN RN

— — 00 ast — oo.

So there exists fo > 0 such that I, (U;,) < —3.
Clearly, Q:(We¢,) = 0. As to ¢ > 0 sufficiently small, by using the Dominated Convergence
Theorem, one has

]s(we,to) = Is(weto)
N/ |vw€t0’Ndx+ / |VW€t0‘ dx+ / €x |Wgt0|de
1
+ /R V(ex) | Wiy |7dx — /R F(Wegy)dx
=

o N/ BV g (etoF)U(F) + p(e7) VU(F) |\ dF

+L/N |5V g(etoX)U (%) + (etoX) VU(X)|” dX

¢N
%/ (etoX)| @ (etoX)U(%)|NdX
¢N
o / (etoX)|p(etoX)U(X)|7dX

/ (p(etpX)U(X)dX
m(Ugy) +0o(1) < (3.17)
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According to (f1) and (f2), it is easy to see that
[E())] < eft]" + C[t]"Fn (£) -
So, for 2 < N < g < g%, we get

Je(u) > Ie(u)

1 1 r
= - q q il N N .
= o o AVt Vel a5 [ (19l Vel ¥) dx - [ G

! N N 1 q q q T
> N ]RN(\VL!’ + Velul )dx+q/]RN(\Vu’ + Ve|u| )dx—£|u]q—C/]RN\t| Yy (u)dx.

Using Holder’s inequality, it is easy to get

t

o 17 G0 < gy ([, (@ 01 x)

where % + 1L =10 > 1, t > 1). Due to Lemma 2.3, we can find a constant D > 0 satisfies

</RN (D (u))tdx>} <D.

ull vry < Sy llullx.,  Vu € Xe.

From (2.2), we have

Hence, when ||u||x, is small, we get

1 1
Jew) 2 o [ (7l Vel 5 [ (VY Vel ¥)dx

— eful? _C/]RN [T (1) dx

2 WHMHQ —eSydl|ullk, — CDS7 Jlullk,

1 - _ T—
— (g — 2532 — CDS Il

We see «12% — ¢S, 0 > 0 for e small enough. Let
n) = — Spd —CDS_ I t77, t>0
()_m_g q€ T e ’ =
Next, we will find to > 0 small that satisfies h (tp) > %(qz% — ¢S, ). Clearly, limy_,o+ h(t) =
51-21? — &S, ¢ and 1 is continuous function on [0, +-00), so there exists t, satisfies () > 17'21? —
€Sy d — €1, Vt € (0,49), to is small enough. Choosing &1 = %(oﬂ% — ¢S, 1), we get that
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So, for ||u||x, = tp, we have

t 1 -
Je(u) > — - T —€S4¢ | =po>0.

Therefore, we can define ¢, as follows:

Ce 1= ;relﬁ max Je(7v(s))-

Here I'; is defined by

L= {7 € C([0,1], Xe) | 7(1) = Wesy, 7(0) = 0}
Lemma 3.9. There holds
mcg < ¢y
e—0
Proof. Denote W, = lim;_,o W in X, sense, then it is easy to get W9 = 0. Consequently, let

Y(8) 1= West, (0 < s < 1), then y(s) € T, so

ce < max Je(y(s)) = max Jo (Wes).

s€[0,1] te[0,to]
Now, we only need to prove

lim max J. (Wes) < o
e—0 tE[O,fo]

In fact, similar to (3.17), we obtain that

W, = Im 1
e () = g o (18 4000

<o(1)+ max I (U;)
te[0,00)
=TI, (U)+0(1) =0(1) + cp.
This finishes the proof. O
Lemma 3.10. There holds

limec, > ¢y
e—0

Proof. Assuming lim._, ¢, < ¢, we can find 6y > 0, v, € I, and ¢, — 0 satisfy, for s € [0,1],
Je, (7u(s)) < cm — &p. Now, fixed an €, > 0, we have

1
N e (1 +(1+ cm)1/2> < min {do, 1} . (3.18)

Due to I, (74(0)) = 0 and I, (74(1)) < Je, (72(1)) = Je, (We, 1) < —2, we can look for an
sn € (0,1) such that I, (7n(s)) > —1 for s € [0,s,] and I, (7x (sx)) = —1. Moreover, for any
s € [0,s,], we have that

Qe (11(5)) = Jeu (71(8)) = L, (7u(s)) < 14 = do,

which implies that

N 1/2
/]RN\(A/sn) Yo (s)dx < e (1 + (14 cm) ) for s € [0,s,].
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So for s € [0,s,], we have

Le, (7n(s))
= Ly (u(s N/ (enx) —m) N (s)dx + - / (enx) —m) v} (s)dx
> I (7a(s)) + N RN (A /e, (V (enx) —m) 1y (S)d”;/mm/sn) (V (enx) — m) yh(s)dx
B )+ 37 e, (V (E05) = )22 ()l

> I (1u(s)) — %men (1 +(1+ cm)l/z) .

Then

I (i (50)) < Tey (i 50)) + e (14 (14 ) 2)

1
=-1+ N e (1 +(1+ cm)1/2> <0,
and recalling (3.3), we obtain that

max Ly (7u(s)) > cm.
s€[0,s,]

Therefore, we get that

— > ey > Ig n > IE n
5o > srél[?)f]] (Y ())—fé‘[é’,’ﬁ . (7 () max . (7 (5))

1
> —yen (1 +(1 —i—cm)l/z) + max Ly (7a(s)),

s€[0,s,
thatis 0 < &y < Nmsn (1 + (14 cm)l/2 ), which contradicts (3.18). As desired. O

By using Lemmas 3.9 and 3.10, it follows

0 = lim (max Je (7e(s)) —ce).

e—0 \s€[0,1]

Here Vs € [0,1], 7¢(s) = West,. Denote

Ce 1= max Je (7e(s)) -

Clearly, ce < ¢,

¢y = lim ¢ = lim cg.
e—0 e—0

Now define
Je ={ueXe| Je(u) <a}.
For « > 0and VA C X,, set A* = {u € X, | infyea ||u —v|/x, < a}.

Lemma 3.11. Assume {¢;}7; satisfies lim;_,co €; = 0, {ue,(-)} C Y2 and
lim ]éi (ue;(+)) =0, lim Jg, (g (+)) < cm-
1—00 1—00
Then, Vd > 0 small enough, up to a subsequence, there exist x € M, {y;}io; C RN, U € S, satisfy

lim [|ge, (- —yi) U (- —yi) —ue,()l[x, =0 and  lim [x —&;y;| = 0.
1— 00 i 1—00
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Proof. Now, write ¢; as e. According to
x
— _ R B
Y : {qo(sy x)u(y s) rxeM ,UESm},
we can find {U,} C S, and {x.} C MPF satisfy

o - 2) . 5) -0

Due to S,,, MP are compact, there exist Z € S, x € MP satisfty U, — Z in X, and x, — x.
Hence, for € > 0 small enough,

(=) 2 () -0

In addition, according to (f2), we can suppose that sup ||u,|| x. <L

<d.

Xe

< 2d. 1
S (3.19)

Step 1. First we will prove

0 = liminf sup |ue|N dx, (3.20)
e=0 yeA, /Byl

here A, = B(k ﬁ)\B(%,%)

e’ ¢
Assume the formula (3.20) is true, according to Lions’ lemma, for any ¢ > N, we have that

ue — 0in L¢(B;), where B, = B(% %)\B(%,g)

e’ ¢
Now, we assume the formula (3.20) is not true, then we can find r > 0 that satisfies

liminf sup ue)N dx = 2r > 0.
e—0 yeA, /By1)

So, for € > 0 small enough, we also can find that y. € A, satisfies f B(ye1) |u£|N dx > r. It

is necessary to mention that, there is xo € M* C A satisfying ey. — xp. Assume v¢(y) =
ue (Y + y¢), it is easy to obtain that

— AN — Dgve + Ve (v + ye) [0 200 — g (Y + eye, 0e) + Ve (y + ve) [0 0

° (3.21)
=he — ZNQg/Z (te) Xe (Y +Ye) |Ue|N 208-

Taking € adequately small, we have
/ loe|N dy > 7. (3.22)
B(0,1)

Going if necessary to a subsequence, then we get v, — v in X, and almost everywhere in RY.
Note that the embedding X, — LN(B(0,1)) is compact, by using (3.22), we get v # 0. Next,
we will prove v satisfies

— Ao — Ao+ V (x0) [0]7 20 + V (x0) [0|V 20 = f(v) in RN (3.23)

Indeed, for any ¢ € Cy° (RN), in (3.21), we use (ve —v) ¢ as a test function. For ¢ small
enough, according to x and g, we have that

Xe (Y +Ye) |U€’N_2 v (ve—0) =0, VyeRN,
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g (ey+eye,ve) (ve—v) @ = f () (v —v) @, Vy RV,
Xe (Y + Ye) |Ue|q_2 ve (v —v) 9 =0, VyeR
V¢ > N, we know that the embedding X, — LS (IRN ) is local compact. Hence,

/IRN Ve (v +ve) [0e| V2 oepdy — /RN V (x0) [0|N " 2ogdy

and

[ Ve W) o P ocpdy — [V (x0) fol" 2ogdy.
By Lemma 2.2, (f1), and ||f (v¢)||y < oo, we obtain that
o S (06) (0 —0) pdy = /]RN 8 (&y + eye, ve) (v: — 0) @dy — 0.
Therefore, similar to the proof of Lemma 3 in [6], we have that
/]RN (Vo |N? Vo, Vedy — /]RN |Vo|N"2VoV edy

and

/]RN V0|72 Vo,V ody — /]RN |Vo|172V oV edy.
According to (f1), (f2), the compactness lemma of Strauss [32] and Lemma 2.2, we get that
/nw 8 (ey + €ye, ve) pdy — /IR S (@) edy.

Therefore, (3.23) has a nontrivial solution v. According to definition, IV(XO)(Z)) > Cy(xy)- For
R > 0 large enough, because of Fatou’s lemma, it is easy to get

1
lim inf Vi N d >7/ vo|Vdy, 3.24
= B(xg,R)‘ el dy = 2 lRN‘ ol dy (3.24)
and 1
. . q > - q
limint [ Viel'dy 2 /IR [ Voldy. (3.25)

Now, recalling from Remark 3.7 that ¢, > ¢, when a > b, it is easy to see that CV(xy) = Cm
because of V (xp) > m. According to Pohozdev identity, for any U € S,

1 N -
N </]RN VUl dx+/]RN WUW?C) = Ln(U). (3.26)

Thus,it follows from (3.24), (3.25) and (3.26) that

N N
hrerEOnf BuR) |Vug| dy+11£rL1()rlf/l;(yis) |Vue|'dy > 5 Iy (xy) (0) > 5 Cm > 0.
When d is small enough, this is a contradiction with (3.19) .

Step 2. Define u? = u, — ul, where ul(y) = ¢ (y — x¢/¢) uc(y). For d > 0 small enough, we

will prove, J; (u%) > 0and

Je(e) = o(1) + Je (ul) + Je (u2)  ase—o0. (3.27)
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Clearly, for small enough ¢ > 0, we have Q, (1;) = 0 and Q; (ue) = Q. (u2). Moreover,
Vy € RN, ul(y)u?(y) >0, we get

/2
)l = ()] + 120 + 260 )
/2
> ([ + 10 P)

> [ub(n)|" + [u2)|’

and

il = (

-

a)|" + 12)

N/2
)|+ b+ 20 )s2) )

26 + o)

{ N

So

g

N N
dy+ [ VeluRlMdy < [ VelueN dy

I
RN

/Vgluglqdyz/ Ve
RN RN

Moreover, it is easy to verify that
N x
1 _ N (. _ 7 N
/]RN‘VuS dy—/}RN Pe ( €)|Vu£] dy +o(1),
Xe

/RN Vi My = | (1o (‘?))N Vue N dy +o(1),

fulvualtay= [ (=0 (-2)) 9ulay ot
fo [9[dy= [ o (=) 19ty o(1),

Obviously, for any y € RN, we have

and
1
uE

q
dy+ [ V2| dy.

9F (v = xe/€) [Vite)]* + (1 = 9e (v = xe/€))* Ve (y)|* < |Ve(y)

Therefore, we have

N
/ |Vug|Ndy2/ ‘Vui dy+/ ‘Vu?‘Ndy—i—o(l)
RN RN RN

and

1 q
/IRN |Vue|Tdy > /]RN ‘Vug dy+/]RN (Vuz|" dy +o(1).

Hence, we have that

Je () = o(1) = [ (G (eye) = Gley,ul) = G (ey,12) ) dy + Je(ud) + Je(ud).

€
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According to (f1) and (f2), then we obtain
e[t]9 -+ I (1) > ()] (3.28)
Using the same proof as that in Lemma 3.1, we get

1
f

o 7 ) = o, (f, (@00
By using Step 1, we know that u, — 0 in L7 (B;), so
lim sup (G (ey,ue) — G (ey,u2) — G (ey, ul)) dy
= limsup

e—0 B
nsup | [ (F () = F () ~F (1)) 0

< limsup [ (Clue|" ¥n (ue) + e |ue|?) dy

e—0 Be
< ce.

Due to e being arbitrary, as e — 0 we get [, (F (ue) — F (ul) = F (u?)) dy = o(1). So there is
C > 0 satisfies

|

;’(S — C/RN Jue|" N (u?) dy — € HuiHi

g l%, —C [,

1
N |
1
> i

poas|
—~
=
L)
~—
v
—~
—~
=
N
~—
v

N 1
ot gl

Hence, by using T > g, we get that J (uZ) > 0 for d > 0 small.

Step 3. Now, assume w(y) := u} (y+ %) = ¢e(y)ue (y + 2). Up to a subsequence, we have
we — w in X, we — w almost everywhere in RN. Next, we will prove that

W, — w in LT(]RN),
where T is given in (3.28). By contradiction, if there is » > 0 that satisfies

0 < 2r = liminf sup |we — w|" dy.
¢e—0 zeRN /B(z1)

So there is z. € RN that satisfies

lim inf |we — w|" > 7.
e—0 B(z¢,1)

It is easy to see that (z.) is unbounded. We may assume that |z,| = o0 as ¢ — 0, then,

< liminf “dy,

r<lminf [y ey

ie. T
im i = >r.
hl;lll()nf B Pe(y)tte (y+ - )’ dy >r

Using the same proof method as [9], for € small enough, we have that |z,| < % Assume that

eze — zo € B(0,B/2),
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We =wWe (Y+2,) ~w inX,,
W, > w ae. inRY.
So w # 0 and according to Step 1, w satisfies
— Agi(y) — ANT(y) +V (x +20) [@(y)|7*D(y) + V (x + 20) @ ()N (y)
= f@(), yeRrY.

Using the same approach as Step 1, we obtain a contradiction for 4 > 0 small enough. There-
fore, we — w in L (RV).

Step 4. According to Step 3, it follows that

lim G <sx, u}z) dx = lim G (ex + x¢, we) dx

e—0 JRN e—0 JRN (3.29)
= li F dx = :
lim N (we) dx /IRN F(w)dx

By using w, — w in X, we have

tim Je (u )

> lirerLiOnf I <ug)

| 1
= liminf 5o [ (V)N Velwely) V)dy + o [ (V)7 4+ Veleoe(y) ")y

e—0

—/RNF(we(y))dy

1 1
> N N _ / f/ q q
> & [Vl iy — [ @y T [ (7elr+mfolry
> . (3.30)

On the other hand, since lim_ J¢ (i¢) < ¢, Je (u2) > 0 and (3.27), we have
limsup], (ug) < c. (3.31)
e—0

Combining (3.30) and (3.31), we obtain that J.(w) = ¢,,. Similar to [25], we can obtain that
x € M. So it is easy to see that w(y) = U(y —z), U € Sy, z € RN.
Lastly, due to (3.29) and (3.31) and V(y) > m on A, by using (3.30), we have

N
/H{N(|Vw]N+m|w|N)dyZIimsup (]w;{(y)\ +V(ey)yug(y)|N> dy

e—0 RN

e—0 RN

. 18N 10N
> lim sup ‘Wg(y)‘ +mlue ()™ ) dy

> lim su
eaop RN
and
/N (|Vw|?+ m|w|T) dy > limsup
R

e—0 RN

e—0 RN

(
> limsup (
(

> limsup
e—0  JRN
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Moreover, by using weak lower semi-continuity, we prove u! — w in X.. Especially, let

ve=z+% thenul = U (- —ye) e (- — ye) in Xe. So we get ul — U (- — ye) @e (- — ye) in Xe.

In order to prove the desired conclusion, we only prove that u? — 0 in X,. Since {u.}, is
bounded, for small ¢ > 0, it is easy to see from (3.19) that Hu%HE < 4d. Now, using (3.27),
lim, 0 Je (u}) = ¢ and the estimation of J. (u?), we have that for some C > 0,

cm > lm Jo (ug) > cm + Hus
e—0

1

q _

b () ote

This proves that u? — 0 in X., which completes the proof. O

Lemma 3.12. For 0 < dp < dy small enough, there exist w > 0 and eg > 0 that satisfy |J;(u)| > w,
where ¢ € (0,0), u € J& N (YI\Y2).

Proof. By contradiction, we can suppose 0 < dy < dq small enough, there are {¢;};, with
lim;_,oo&; = 0 and ug, € Ygl\st satisfying lim;_,q J¢, (1te;) < ¢ and lim;_,o, Uei (ue,)| =
the convenience of description, we write ¢ for ;. Due to Lemma 3.11, for some U € S, and
x € M, there is {y.}. C RN such that

Hm || (- —ye) U (- —ye) —uel|x, =0 and lim |x —ey,| = 0.
e—0 € e—0
It follows from Y, that lim,_,o dist (Y¢, u.) =0. Obviously contradictory because of u. ¢ Ygdz. O

According to Lemma 3.12, fix a d > O~small enough, there exist w > 0 and ¢y > 0 that
satisfy |J.(u)| > w, where e € (0,¢0), u € J& N (Y31 \ Y{2). So we have

Lemma 3.13. For ¢ > 0 small enough, we can find o > 0 satisfies Jo (7ve(s)) > c. — a, then 7¢(s) €
Y42 where v,(s) = West, ().

Proof. For each s € [0,1], due to MPF > supp (7¢(s)), we have L (7:(s)) = Je (7e(s)). In
addition, it is easy to see that

() = 5 [ (V3@ + Vet 7 [ (996(0) Y + Vele(o)] e

- [ Flre()d
R

:;/Rqu%(s)wmy% (5)[7)dx + / (Vre(s)N + e (s)[N) d
2 [ @ = me@d 4 [ (V) = m) (o))

~ [ FOr(s))dx
RN
1 (stg)N ™1 (sto)N
:7/ ]VU]Ndx%—i/ vulidx + / m|U|Ndx
N JrN q RN N JrN

(StO)N
q

+ /IRN m|U|7dx — (StO)N/]RN F(U)dx + O(e).
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Using the Pohozdev identity, we have

Je (7e(s)) = Ie (7e(s))

_ 1 N (StO)N_q q N_q N q
_ N/IRN\VU\ dx+q/]RN\VU\ R ) /RNWU' dx + O(e)

_1 N (st)"" N-q, .\~ g
_N/IRN\VU\ dx+( P YLC) /RNWU' dx +0(e).

Note that
tN=1 N —gq 5 1
= (-1 q — N
em ( : th)/IRNwmdijN/RNyvuy dx
and lim,_,o ¢, = ¢y,. Denote g1 (t) = —NN—;qtN + tN%, then
<0, t>1,
>0, te(0,1).
So we have g/(1) = g — N < 0, the conclusion follows. O

Lemma 3.14. For ¢ > 0 small enough, we can find {u,}or, C YN J& satisfies as n — oo,
Ji (un) — 0.

Proof. According to Lemma 3.13, for ¢ > 0 small enough, due to Ja > 0 satisfies J; (7.(s)) >
ce — . S0 7:(s) € Y4/2. Now, we assume that Lemma 3.14 is not true, then for ¢ > 0 small
enough, we can find a(e) > 0 satisfies |J/(1)| > a(e) on Y N J&*. Moreover, by using Lemma
3.12, we also can find w > 0, independent of ¢ > 0, satisfies for u € J&* N (YA\Y#2), |Ji(u)| >
w. Therefore, recalling that lim,_,o (c; — ;) = 0, according to a deformation lemma, for ¢ > 0
small enough, we can construct a path y € T, satisfying J.(7(s)) < ¢, s € [0,1]. Obviously
contradictory. O

Lemma 3.15. For e > 0 sufficiently small, u. € Y N J& is a critical point of J..

Proof. For ¢ > 0 sufficiently small. According to Lemma 3.14, there exists a sequence
{une 3, C YN that satisfies, as n — o, |J/ (tine)| — 0. Due to Y? is bounded, so as
n — 00, Upe — Ue in X,. Using the same proof as [10, Proposition 3], we obtain that

. N N
0= 1%1_1}010 il;li) /|x|>R (V‘g el + | Vit ) dx (3.32)
and
0= lim s / Vo it e]? + Vit |7) dx, 333
R1—>oo ng}; x>k ( € | n,e| ’ n,€| ) ( )

soas n — 00, Uy — U in L' (RV) (N < r < +o0). In addition, using (f1)-(f2), we have
sup || f (une)|| < o0. Now, Vo € CF(RY),

]RNf (ne) (thne — tte) pdx — 0, n — oo.

Using the same argument as in [21, Proposition 5.3], we have u,, — u, in X, as n — oo.
Hence, 1, € Y4 N J¢* and J! (1) = 0 in X,. This completes the proof. O
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Next, we will use Moser iteration in [27] to obtain L*-estimate.

Lemma 3.16. Let (u,) is the sequence in Lemma 3.11. Then, J., () — ¢y in R as n — oo, and
there is some sequence (9,) C RN that satisfies v, () := uy (- + 9,) € L* (RN) and || o rivy < C
foralln € N.

Proof. Proceeding as in the proof of Lemmas 3.9 and 3.10, as n — oo, we know that J;, (u,) —
cm in R. According to Lemma 3.11, as n — oo, we can find (,) C RN satisfies v,(-) :=
Up (- +7n) = v(-) € Xe and y,, == €,7n — yo € M.

For all L > 0 and B > 1, consider

¢ (vn) = Prp(vn) = vnvLN’,(f_l) € Xe,vp,n =min{v,,L}.

Set

According to [5], we have
[@(a) = @B)N < Y(a—b)(p(a) —p(b), VaeR, beR. (3.34)
According to (3.34), we have
@ (0a(x)) = @ (@u(y))["
< (@a(x) = 0a)) (2w ™) () = (200 V) ) Jou) = 0a ()N

Therefore, taking ¢ (v,) = UnUIL\{ 1(1/5—1)

(3.35)

as a test function, we obtain that

/IRN Vo, [N (v,) dx —|—/ (V0,7 ¢ (v,) dx
+/ (Yn + €nx ]vn\ vnq)(vn dx+/ (€nx + Yn) ]vn\”’*zvncp (v,) dx
= /]wa (€nX 4 Yn, vn) ¢ (vy) dx.
Due to (f1) and (f2), Ve > 0, we can find C(¢) > 0 satisfies
If()] <elt]T '+ Cle) [N "¥N (t), VEER.
According to method of [5], it is easy to get

/ |an|Nv€f 1dx+/ (enx +Yn) ’Un\Nvif 1dx</ f (vn) anL,(f Yx.

Since ® (v,) > %vnvﬁ;l,vnvﬁ;l > & (v,) and the embedding from X, — LN (RN) (N* > N)
is continuous, so we can find S, > 0 that satifies

p-1||N

00 || e gy = S 19 @) 12 vy < 1@ @) (3.36)

1
P
Since X, — L (RN) (v > N) is continuous, there exists S, satisfying

S, = inf M, v > N.

uA0ueXe ||l pvry) a
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This implies
el vy < Sytllullx,  Vu € Xe. (3.37)

Then we obtain
N N
I @) sy <€ [ dx+C(e) [ ¥x (o)
N N
<ep /m'q’(”’“)' dx+C(s)/RN‘I’N(vn)

< eBVSMI (@) 1 sy +C) [ (o)

B—1 g—1|F
Un 7 Unr dx
N

dx (3.38)

N
dx.

B—1
v”vL,n

-1
vnvg

Choose 0 < ¢ < B~NSY, then (3.38) implies

N
-1
On U?/n

ék&(1—qﬂ3;ﬁ‘ -

< C(e) </IRN (T (o)) dx)ﬂl’ (/]RN qux>}'.

Now, by the Trudinger-Moser inequality with N << g such that N* > gN = N**. Note that,
g’ near 1 but g’ > 1. So we can find D > 0 satisfies

-1
vnvﬁ

p—1|IN N BN
‘ O | e vy = PP ‘ OO || Ly
Let L — +o0, we obtain
11
[onllyes < DV BE ||| s ry - (3.39)

Let B = I{\]]—; > 1. Then B2N** = BN*. Replace B with 2, (3.39) holds. Hence,

[oullsee < D B [l ey
— D B [[o | e g (3.40)
< D%(%Jrﬁ%)ﬁ%ﬂ‘% [[on [l pnes vy -

Now iterating the process, as shown in (3.40), for any positive integer m, we get that

11137]
Hvﬂ HLN**ﬁ(]RN) . (341)

gl
[hgB

1
1N»5/[B]'

|on| nepr < D
Taking the limit in (3.41) as ¢ — oo, we have
HUnHLw(RN) <C

] -

018

1 Np/ ‘62;21]"37/ Sup H’(]nHLN**ﬁ(RN) < +00. D
n

for all n, where C = D’

Proof of Theorem 1.1. For e € (0, ¢), according to Lemma 3.15, there are d, g9 > 0 that satisfy
Je has a critical point u, € Y4 NTE. Since u, satisfies

—ANue — Ague + V(esx)(|ug\1\7’2u8 + |u8\‘7’2u8) = f(ue) +4 </]RN xeul dx — 1> Xetle  in RN,
+
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When t < 0, we know f(t) = 0. So u, > 0 in RN. In addition, by using Lemma 3.16, it is easy
to get {||ue||;~ }, is bounded. Now by using Lemma 3.11, we have

lim [1 (/ ‘\Vug|N—i—Vg(ug)Ndx) 41 (/ |Vug|q—|—Vg(ug)qu)] 0.
0 [N ARV M q \JRM\ M8

According to elliptic estimates in [20], we know
Limm [fuce]] oo vy a2y = 0
Similar to [35], there are C > 0, ¢ > 0 that satisfy
u(x) < Ce M.
In fact, by using the Radial Lemma in [7], one has

[l v
[x]

u(x) <C , Vx#0,
here C is related to N, p. Therefore, for u € S, we have lim‘x‘ —oo U(x) = 0 uniformly.
According to the comparison principle, we have that C > 0, ¢ > 0 satisfy

u(x) < Ce "l vx e RV,
According to a comparison principle, for some C, ¢ > 0, we obtain that
ug(x) < Cexp (—c dist (x,/\/l?» .

So Qe (1e) = 0, then u, satisfies (1.1). Lastly, assume u, has a maximum point x,. According
to Lemma 3.8 and Lemma 3.11, for some x € M, we get that ex. — x as ¢ — 0. Moreover, as
toC>0,c>0,

ug(x) < Cem e,

This completes the final proof. O
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Existence and exponential stability of periodic
solutions of Nicholson-type systems with nonlinear
density-dependent mortality and linear harvesting
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Abstract. In this work we study a Nicholson-type periodic system with variable delay,
density-dependent mortality and linear harvesting rate. Using the topological degree
and Lyapunov stability theories, we obtain sufficient conditions that allow us to demon-
strate the existence of periodic solutions for the Nicholson-type system and, under suit-
able conditions, the uniqueness and local exponential stability of the periodic solution
is established. We illustrate our results with an example and numerical simulations.

Keywords: Nicholson type systems, delay differential systems, periodic solutions, ex-
ponential stability.

2020 Mathematics Subject Classification: 34K13, 34K60, 92D25.

1 Introduction

In recent years, the question of the existence of periodic solutions for Nicholson-type sys-
tems with periodic coefficients has received the attention of many researchers. This class of
systems of differential equations with delays was introduced as a coupled patch population
model for marine protected areas and B-cell chronic lymphocytic leukemia [7]. However, it
has been pointed out that the new models applied to the fishery must consider nonlinear
density-dependent mortality rates [6]. Consequently, research on Nicholson-type equations
and systems with density-dependent mortality has developed rapidly. But despite that, few
studies have considered periodic Nicholson models with density-dependent mortality and
harvesting. The goal of this article is to investigate the existence and stability of positive
periodic solutions for a m-dimensional Nicholson-type system with periodic coefficients, non-
linear mortality rates, and linear harvesting.

™ Corresponding author. Email: daniel.sepulveda@utem.cl
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1.1 The Nicholson models

In [16] Gurney, Blythe and Nisbet proposed a model to describe the behavior of a population
of flies that had been studied in the 1950s by Nicholson [27]. The model corresponds to the
following delayed differential equation

(1) = —max(t) + bx(t — T) exp {—’y‘lx(t . r)} , (1.1)

where x is the density of the adult population, m is the per capita mortality rate, b the maxi-
mum birth rate, T is the time to maturity and -y indicates where the unimodal function reaches
its maximum. Equation (1.1) is known as the Nicholson model.

In [7] Berezansky, Idels and Troib studied the dynamics of metapopulation models with
migration between two patches. Within the models studied, the authors considered a model
of a marine population, with an age structure that inhabits two areas, one protected and the
other for extraction. From this model, they obtained the system of differential equations with
delay:

X1(t) = —(mqy +dy)x1(t) + bix1(t — T) exp {—'yl’lxl(t — T)} + dxo (1) 12
%o(t) = = (2 + da + W) (£) + boa (£ = ) exp { =3 102t = ) b + daxa (1), '

where x; corresponds to the densities of adult populations, m; are the per capita mortality
rates, d; are the diffusion rates between patches, b; are the maximum birth rates, 7; indicates
where the unimodal functions reaches its maximum, 7 is the time to maturity, and & is the
harvesting rate. Due to the presence of a nonlinear birth rate that considers delay, models
similar to (1.2) are known as Nicholson-type systems.

The model (1.2) has been extended to the non-autonomous case to consider variations due
to the passage of time, such as the seasons of the year, which has led to the study of periodic
and almost periodic solutions, see [14,15,22,28,29,35].

Since the model (1.2) allows predicting the dynamics of an adult population, it is relevant
to include some types of harvesting in them so that they can be applied in models of fishery or
agricultural livestock production. Different authors have considered Nicholson-type equations
and systems with linear harvesting [13,24,38] and nonlinear harvesting [1,4,5] among others.

Berezansky, Braverman, and Idels in [6] mention that for marine populations at low den-
sities it is appropriate a linear model of density-dependent mortality and that new fishery
models must consider nonlinear density-dependent mortality rates. Afterward, research on
Nicholson-type equations and systems with density-dependent mortality has been developing
rapidly, see [3,8,9,19,23,25,30,33]. However, the study of periodic Nicholson models with
density-dependent nonlinear mortality and harvesting terms have not yet been sufficiently
explored and this work aims to contribute in this direction.

1.2 Novelty of this work

We consider a Nicholson-type system with nonlinear density-dependent mortality, linear har-
vesting terms, and several concentrated delays of the form

() = - 250 gbﬁ<t>r<xi<t—m(t>>>+ 3 m

—hi(t)xi(t)  (1.3)
Cl‘i(t) + Xx; [y iy Cij
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where 7(x) = xexp(—x), and d;; , cij, bi; , Tyj, hi : R = (0,+00) ,i=1,...,m,j=1,...,n, are
bounded, continuous and w-periodic functions.

Note that the above system includes the case where each patch considers a different Ricker-
type function, namely r;(y;) = ye” " Wi, In fact, in this case the system (1.3) is obtained by
making the change of variable y; = 7;x;.

Our objective is to apply topological degree and Lyapunov stability theory to the system
(1.3) to determine the conditions that guarantee the existence and exponential stability of
periodic solutions of the system.

1.3 Outline

Section 2 deals with fundamental preliminary aspects of this work, particularly the theory of
differential equations with delay and a theorem of continuation of the topological degree; In
addition, a result of the existence of solutions and a priori estimates are obtained. Section 3
establishes the main results of this work: Theorem 3.1 provides sufficient conditions for the
existence of positive periodic solutions, while Theorems 3.3 and 3.5 prove the local asymp-
totic and exponential stability, respectively. Section 4 focuses on an example and its numerical
simulations. Section 5 is dedicated to the conclusions and discussion of the results, particu-
larly the possible extension of the present study to one involving nonlinear harvesting terms
previously considered in population models, see [18,34].

2 Preliminaries

2.1 Delay differential equations

Time delays occur naturally in many population dynamical models and their presence is due,
among others, to factors like sexual maturity or gestation. Mathematical models with time-
delays has a significant role in population dynamics, we refer the reader to [12,26,32, 36].
Delayed differential equations may exhibit more complex dynamics than ODE’s because of
the presence of delay may induce a Hopf bifurcation, periodic and oscillatory solutions or
chaos, see [17,21,36].

We introduce some definitions and notation for delay differential equations. For T > 0,
we consider C = C([—T,0],R™) the Banach space with the norm ||¢||z = sup_+_,-,[¢(8)]],
where || - || is the maximum norm in R™. Any vector v € R is identified in C with the constant
function v(6) = v for 6 € [—7,0]. A general system of functional differential equations take
the form

x(t) = f(t,xt), (2.1)

where f : R xC D D — R™ and x; corresponds to the translation of a function x(¢) on the
interval [t — T, t] to the interval [T, 0], more precisely x; € C is given by x;(0) = x(t +6), 0 €
[—7,0].

A function x is said to be a solution of system (2.1) on [T, A) if there is A > 0 such
that x € C([-7,A),R™), (t,x¢) € D and x(t) satisfies (2.1) for t € [0, A). For given ¢ € C,
we say x(t0,¢) is a solution of system (2.1) with initial value ¢ at 0 if there is an A > 0
such that x(£;0,¢) is a solution of equation (2.1) on [—7, A) and x((t;0,¢) = ¢. In addition,
for a given continuous and bounded function f € C(R,RR) we will denote by f* and f~
respectively, the supremum and infimum of f over R. Now, for system (1.3) we consider
?::max{Ti;F,lgigm,lgjgn}.
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Since nonnegative solutions are significant for population models, the following subsets of
C are often introduced :

Ct:=C([-T,0,RY), Co:={peC :¢i(0)>0,1<i<m}
Theorem 2.1. The system (1.3) has a unique nonnegative solution defined over [—7T,+o0) for each
initial condition ¢ € C*.
Proof. We will denote by F;(t, x(t), x(t — Ti1(t)),..., x(t — 7;j(t))) the right hand side of system
(1.3) and x(t) = (x1(t),...,xu(t))T, then (1.3) can be written as,
x(t) = F(t,x(t), x(t —111(t)), ..., x(t — Tun(£))), (2.2)

where F : R} x (R")™+1 — R™. We denote F; to the derivative of F respect to the state x(t),
consequently the map F, : R} x (R”)™*1 — M(R)xm defined by

Fl /ax1 F1 /8x2 NN Fl/axm

F2/8x1 Fz /ax2 . Fz /axm
x = . . .

F./0ox1 F,/0xy ... FE,/0xy

is continuous over R x (R”)™" 1 Now, applying Theorems 3.1 and 3.2 of [36], it follows that
the system (1.3) has a unique solution defined over a maximal interval, for each initial condi-
tion ¢ € CT. In order to show that x(t;0, ¢) takes nonnegative values, we fixi € {1,...,m} and
t in the maximal interval, in addition we assume that entries of the function F are nonnegative
vectors while x € R is such that x; = 0, then

51'1'(t)xl' L i 51](t)x]
F(t,x,-) = ———=2—+4) bi(t)r(-)+ hi(t)x;
(t:%7) cii(t) + x; ]; () ]'_12,,;# cij(t) + x; 8
n 1 (51 (t)x]-
=Y bi()r() + — 2 >0,
jzl ] f-lZJ:#i ij(t) + %

Consequently, each nonnegative initial condition ¢ has a corresponding solution x(t;0, ¢) that
takes nonnegative values for t in the maximal interval. Now we will prove that the solutions
of (1.3), corresponding to nonnegative initial conditions, are defined for all > 0. Otherwise,
they would be defined over an interval [—T, A), where 0 < A < co. Since x(t) is a solution of
(1.3), it follows that x;(t) satisfies

v Oi(t)xi(t) < M () x(t)
xi(t) - _Cii(t) —}—xi(t) +]Zl bij(t)r(xi(t - Tl](t))) +]:;751 Clj(]t) —I—]x](t) _hi(t)xi(t)
1 it T " S;i(t)xi(t)
< ]_Zlblf(t) ( l<t l](t))) +]_1Z]7gl Cij(t) +x](t)
<Ybrel+ Y o
=1 A

Whence, integrating the above estimation we obtain

n m
xi(t) < x;(0) + <Zb;e—1 + ) 5;) t, 0<t<A.
j=1 j=Lj#

This estimates ensure that A = +o0, because if A < 4oo then |x(t)| — o0 as t — A, contra-
dicting the estimates. O
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2.2 Topological degree and periodic functions

We begin this subsection by recalling some definitions and notations that will be used in this
work. The closure and the boundary of a subset A of a topological space will be denoted
respectively by A and 0A. Let

Coo = {x(t) = (x;(t)) € C(R,R™) : x(t + w) = x(t) for all t € R}

the Banach space of the continuous vector functions w periodic with the norm

X|| = max ¢ sup ||x;(t .
| 1<i<m{te[05]u 1 )H}

It is useful consider the usual notation for the natural embedding R" — C, given by
y — y, where y(t) =y for t € R. Given a continuous function and w periodic f € C(R,R)
notice that f* and f~ coincide, respectively, with the maximum and the minimum value of f
over the interval [0, w].

The existence of periodic solutions of the system (1.3) will be proved as a consequence of
a general continuation theorem, see [2, Theorem 6.3], in our case we consider:

Lemma 2.2. Assume there exists an open bounded () C C,, such that:

i) The system
x'(t) = AF(t, x(t), x(t — 11 (t)), ..., x(t — Tun(t))) (2.3)
has no solutions on 9Q) for A € (0,1).

ii) g(x) # 0 for x € 9O NR™, where ¢ = (g;) : R™ — R™ is given by

ll xl ! i
w/ e Z;bg - ) C1] x]+h() dt.

j=Li#
iii) deggy(g, QNR™,0) # 0.
Then there exist at least one solution of (1.3) in Q.

To study conditions ii) and iii) is useful introduce additional notation, let I" = IT" [a;, bj]
be a bounded and closed subset of R” and x = (x;) € R", for each 1 < i < m let us denote
I i={xel":xj=ua;}, L':={xel":x=0b},
the i-th opposite faces. Condition iii) of the lemma 2.2 will be obtained by the construction of

an affine isomorphism homotopic to ¢ combined with the homotopy invariance property of
the Brouwer degree.

2.3 A priori bounds

To prove the existence of a periodic solution of (1.3) by using the theory of topological degree
we need to find some a priori bounds for any w-periodic solution of the system (2.3). Next,
we will state some propositions related to upper and lower a priori bounds that will be useful
when proving the existence of positive periodic solutions of (1.3). To obtain the existence of
upper bounds for the solutions of the system (2.3) we consider the following assumption:
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(H1) The coefficients of the system satisfy:

min (11 %qu Z 51’;’(@)) >0, i=1,...,m.

Zel0,w] = j=1,j#i

Proposition 2.3. If (H1) holds, then every non-negative w-periodic solution of (2.3) is bounded above
forany A € (0,1).

Proof. Let (x;(t)) an w-periodic solution of (2.3) and x;” = R; > x;“, fori # jlet ¢ € [0,w] such
that x;" = x;(¢), since x/(&) = 0 it follows that

[ BNy e+ OO,
O—)\[ cii(¢) + xi(&) +]§bz](§) (% (¢ z] +] Z]:# Cz] )+x](€) hi(&)x; ()

Now, combining the monotonicity of the map u +— - + 2%, the assumptions over the functions
bij(+),6ij(+),cij(+), hi(-) and, the fact that r(u) < 1 for u € R™ we obtain

511(€)R 1 n m . R
0> —2— — =Y by
~ ci(¢)+R e]; q ]Z]:# cij(8 +R

Next, adding and subtracting the terms 6;;(¢) + L2 j2; 0ij($), we can assert that
0> (6@ -1 b0 - Y (@) ) - ot (1 - R) Ly 6 (1 - R) -
- e =1 J j=1,#i J " Cii(g) +R i=1,j#£i g Cl](g) +R

The above inequality implies

0> (ma Iy y @;(5)) o (1 o ax)- 24

On the other hand, (H1) and the continuity of the coefficients imply that there is { > 0 such
that

¢e0,w]

min ((S”(C> - % i i 5,] ) > 0. (2.5)

j=1 j=1j#i
Note that limg e (1 — 6”(5 +R) = 0 uniformly on ¢ € [0, w], so there exists R > 0 such that
< -6t <1—R) <0, &elo,w). (2.6)
- ci(¢) + R

Now, for R > 0 taking the minimum in (2.4), by using the estimations (2.5) and (2.6) we obtain
the contradiction

1& i R
0> min |6;() — =) bii(¢) — 5ii (&) — 61 <1—> > 0.
~ cefow] [ o ]Zl i) j—12,j7éi i(6) =i ci(§) + R
Consequently there is a positive number Ry such that
xi(t) <Ry, forteRandi=12,...,m. (2.7)
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To study the a priori lower bounds for the solutions of the system (2.3) we will proceed in a
similar way to the proof of the proposition 2.3, but this time the key hypothesis is:

(H2) Fori=1,2,...,m we have:

n m ‘, 1/]
m[Ocu] (clz ]Zb” Z hi 17)) <0

j=Lj# C” 1)

()q

Proposition 2.4. If (H1) and (H2) hold, then every positive w-periodic solution of (2.3) is bounded
below by a positive constant for any A € (0,1).

Proof. Consider ¢ = min{x;,x,,...,x,,} and, without loss of generality, we suppose that
x;i(17) = € for some 77 € [O, w], then we obtain x/(#) = 0 whence

8i(n) i xj(n)
0= +xl Zbl] — (1] ] Z]‘;é 761] )+ x (1) +hi () xi (1) (28)
Since (H1) holds, proposition 2.3 implies that the periodic solutions of (2.3) are bounded from
above by Ro.

We assume that Ry > 1 and consider py as the unique value in (0, 1] such that r(py) =
r(Ro). We may suppose that ¢ < pg since otherwise, we have trivially a lower bounds for the
solutions of (2.3), from pg < x;(t), for t € R. Now, since ¢ < py, it follows

e < x(y—t(n) <Ry, and r(xi(y— (1) 2 r(e), 1<j<n

By adding and subtracting the terms 2 , Z] 1 bl]( )¢, and SZ] 1jAi o E ; to equation (2.8),

we obtain
511(’7)8 . & B r(x: N U —7’]) ‘
0 O j;bz;(ﬂ) (xi(n — Ty ]—1;# e )+x](17)+h(17)e
z Cféz,%?fs = Y bij(pee— 3 ”(;71: + hi)

<
cailn) i3 j=1,#i Cii\l
+ibl+e(1—e*£)+ i 5i+s< 1 ! >
/ i—1j4i / Cl](’7) Cij(’7) +e
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On the other hand, (H2) and the continuity of the coefficients imply that there is { > 0 such

that
n m ;7
ma bii(n
n€l0, w] (Cu( ]Z; M j Z]:# C” ) o g)

Note that there exists 0 < ¢ < 1 such that

()q

m

. 1 1
O<Zb+1—e + Y 5; <Cij(77)_cij(7’])+5>§g’ 7 € [0,w].

j=Lj#
Therefore, for e > 0 arbitrarily small values we obtain

0 < max [c ibu i i(17)
ll

1€[0,] j=1 j=1,j#i CZ] 77

‘?"

hi(n)

n m 1 1
FY B — )+ 5#( _ ) <0,
]g ’ f—lz,j#i T \eii(n) eln) +e
a contradiction. Consequently there is a positive number &g such that
eo < xi(t) <Ry, forte Randi=1,2,...,m. O

3 Results

In this section, we address the problem of the existence and local stability of positive periodic
solution for (1.3). We prove the existence of at least one periodic solution of the system (1.3)
under assumptions (H1) and (H2) by using the degree topological theory.

Theorem 3.1. Assume that (H1) and (H2) hold. Then system (1.3) has at least one w-periodic positive
solution.

Proof. The proof of this result is supported by lemma 2.2. Since (H1) and (H2) hold, we apply
propositions 2.3 and 2.4 to obtain lower and upper bounds for the periodic solutions of (2.3)
for all A € (0,1). Next define the set ) C C,, as

Q= {(xi(t)) € Cp:e0 < xi(t) <Ry, t € [0,w], i=1,2,...,m}, (3.1)

where the positive constants Ry and ¢ are, respectively, the upper and lower bounds given
by propositions 2.3 and 2.4, we note that Q NR™ = (g9, Rp)". As a consequence of these
propositions, it follows that the system (2.3) has no solution in 9Q) for any A € (0,1). We will

prove that there are positive constants ¢ and R such that g(x) # 0 for x € 91, where I = [¢, R]"™.
We recall that, fori =1,2,...,m and x = (x;) € R™, we have

8il w/ (c,,” +lxl 2 bii( Z +x] hl(t)xz) dt. (3.2)

j=1 j=Li# C’J
From the definition of g;(x), considering the notation 1 = (1,1,...,1), it follows that for
z € I; we obtain

o= [ (@t B - B 22 s a
RO - e v %0
S ; 0 <Cii( )-{-E_Jzibl](t)e _j_gj:# cij(;)+€+hl(t)> dt
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Analogously to the estimates made in the proof of proposition 2.4, we deduce that

gi(e1) < max |20 oy =y G

n€0,w] Cii(ﬂ) j=1 j=1,j#i Cl](ﬂ)
n m 1 1

+ Y bi(1—ef)+ o ( - )
LE et L et et e

nelow] | ci(1) =1 =1, #i Czj(’?)
! f) i 1
Pt ) o <%wf%¢m+3 <
Therefore, there exists a positive number &1 such that if ¢ < &; we have
gi(z) < gi(el) < Oforz e I . (3.3)

On the other hand, if z € I then

= gi(R1).

Since (R) < 1 for R € R* and analogously to the estimates made in the proof of proposition
2.3, for z € I we obtain

gi(R1) > min [51‘1‘(5) L > bij() - i %) = & <1 - sz(ér];‘FR>

Ze(0,w] =1 j=1,j#i
From (H1), it follows that there exists some R > R such that

min [51-1‘(6) — % ibz](@ — i 51‘]'(6) - (SijiL <1 - CZZ(CI):_R>

ge(0,w] j=1 j=1,j#i

> 0.

Hence there is Ry > 0 such that if R > Ry, then
gi(z) > gi(R1) >0 forze L. (3.4)

We have proved that if ¢ < &1 and R > Rj, then g(x) # 0 for x € 9I, where I = [¢, R]".
We claim that g is homotopic to an affine isomorphism. In fact we consider A : R" — R™
defined by

A(x) = b + Mx,
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where b € R" and the diagonal matrix M € IM,,, are completely defined by the systems of
linear equation

€l),

R1).

bi + mize = gi(

bi +m;iR = gi(
It follows immediately that m; = (g;(R1) — gi(e1)) /(R —¢€) > 0, and b; = g;(e1) — m;; < 0.
Furthermore, there is a unique vector X = (X;) with X; € (¢ R) satisfying b; + m;;x; = 0,
hence X is the unique vector in the interior of I such that .A(X) = 0. Next we define the map
H:R™ x [0,1] = R™ given by

H(x,0) =0g(x) + (1 —0)A(x),

which is a homotopy between A and g. Since signg(I") = sign A(L") and signg(l”) =
sign A(I.") it follows that H(-, o) does not vanish on dI for any ¢ € [0, 1], and we conclude that
g is homotopic to the affine isomorphism A. The homotopy invariance property of Brouwer
degree implies that

degp(g, QNR™,0) = degyz (A QNR",0),

and by the definition of Brouwer degree it follows that

degy (A, QNR™,0) = sign (det(D.A(X))) = sign (ﬁ mii> =1

Finally we apply Lemma 2.2 to conclude that the system (1.3) has at least one solution
x(t) € Q. O

Remark 3.2. Several types of delayed harvesting terms have been considered for the Nicholson
scalar equation. If we modify the harvesting terms h;(#)x;(f) in our model to delayed terms
similar to those used in the work of Qiyuan Zhou in [38], then we obtain the system

gy i -
0=~ s Zi ) .,
m ( n ’
© L s ]Zh” S

Then it is possible to obtain a result analogous to proposition 2.4 and theorem 3.1 considering
(H1) and changing (H2) by:

(H2’) There exists a positive upper bound Ry for the solutions of system (3.5), such that for
i=1,2,...,m we have:

U 2 i) n Tk
o 7+ Ro ) i) = bis()e™ ] ) <0,
nelo,w] <Cu(77 j ZJ# cl] 1) 0};{ 1(77) ](’7) ])

Next, we will address the asymptotic and exponential stability of the system (1.3). As is
common in the literature on Nicholson-type models, our results are obtained by constructing
appropriate Lyapunov functions. We define the region of stability of the solutions of our
system as the set

B={(x;(t)) € C(R,R") : 0 < xi(t) < Ki, i =1,2,...,m}. (3.6)

To achieve our stability results, we assume the following:
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(H3) The delays involve in the model (1.3) are continuously differentiable and satisfy:
Tt <<l (i) e{l...,m}x{L...n}

(H4) Fori=1,2,...,m we have
f n bt

0. C.. if _ ij
) +.Z]—T.*.'

m
11 i1 > Z
(cii +Ki)2 J:117é

Now we state and prove our first stability theorem.

Theorem 3.3. If assumptions (H1)—-(H4) hold, then there is a unique asymptotically stable w-periodic
solution of system (1.3) in B.

Proof. Let x(t) = (x;(t)) and y(t) = (y;(t)) two solutions in B of system (1.3). We consider the
functions:

n bt ¢
Vile) = () (0 + L [ e~ i=1,2,m,
j=

1- Tz] T; ()

Calculating the upper right Dini derivative of V;(t) along the solutions of (1.3), since 0 <
xi(t),yi(t) < Kjand |r'(x)| <1 for x € [0, +00), then proceeding similarly to theorem 2 in [31]
we have
DVi(t) < — Sii (t)cii (1) lyi(t) — xi + i (£)cii(£)ly; () — x;(8)]
(cii () + vi(£)) (cii(t )+xz iz (e )+yz( ) (cij(t )+xi(t))

+ ibij(t)’r(yi(t = j(t))) — r(xi(t = 5i(£))] = k() |yi(t) — xi (b))
=

b
+ 3 T i) — x| = T v i) — xi(t = (1) [(1 - (1)

Notice that assumption (H3) implies that

1-— T t
1-— T;;
hence we obtain the following estimate
+ .+
D+Vl(t) < _ zz Cii ‘yl )‘ + i (5 ’y]( ) (t)‘
> (C.. —|—K) =LA ( Z;)2

Zb i (t =7 (1)) — xi(t — 7 ()| = by [yi(t) — xi(8)]

n

+zb+\%—T Zb1]|y] —1i(1)) — 2t — (1))

j=1 ij

o cC;
< ii i . e
< ( 7@ e h + E ]) |y1 xl(t)|

(5++

f Ly 6) = (0

1211#1
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Now, we define the Lyapunov functional V (t) := Y"1, V;(t), and by a straightforward compu-
tation of the corresponding sums it follows

m STco n bIL m i +
DTV(t Z( ﬁ—hHZl Z )\yz t) — xi(t)].

=1 j=1 Tj =1 J#
Hypothesis (H4) ensure the existence of a positive constant y such that

m

DTV(t) < —p ) lyi(t) —xi(t)|, t=0,

i=1
then we get

t)+ﬂ/2|yz —xi(s)|ds < V(0) < +o0, t2>0,

and

/Ot i lyi(s) — xi(s)|ds < V;O) < 400, t>0. 3.7)
i=1

It follows that H;(s) := |y;(s) — x;(s)| € L'([0, +0]),1 < i < m and, since H;(t) are uniformly
continuous in [0, +00), we can apply the Barbalat’s Lemma [20, Lemma 8.2] to conclude:

lim Z:|yZ ()| =0.

t—H—oo

Therefore, all solution of the system (1.3) in B converge to an w-periodic solution, hence there
is a unique periodic solution of (1.3) in B. O

Remark 3.4. Note that in the proof of theorem (3.3), we use arguments similar to those pre-
sented in the proof of theorem (4.5) of [37]. Both results are supported by considering the
derivative of Dini and the definition of an adequate Lyapunov functional, in addition to the
uniform continuity of the integrands of (3.7) of our proof, equivalent to the integrand given
in (4.13) of the proof used in [37]. These are key aspects in the literature on stability in
Nicholson-type models, see for instance [13] and references therein.

In order to state and prove our second stability theorem we define, for i = 1,...,m, the
continuous functions G; : R — R given by

Gile) = i f ” ” L+ — i P et (3.8)
1 — 1 1\ " . .
(ci +K)? =i ( al-T

Notice that hypothesis (H4) ensures that G;(0) > 0 for each i = 1,...,m, furthermore, the
continuity of G; guarantees the existence of positive constants r;, such that

Gi(e) >0, for0<e<r;, (3.9)
and we define Ay := minj<;<, {r;}, so Gi(Ag) >0fori=1,...,m.

Theorem 3.5. If the hypotheses (H1)-(H4) hold, then all solution of system (1.3) in B converge expo-
nentially to the w-periodic solution.
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Proof. We consider x(t) = (x;(t)) and y(t) = (yi(t)) two arbitrary solutions in B of system
(1.3) and we define the functions:

- 1 f s+T7
Wilt) = Il = sl + Vb= [ () = x(s)[} T s,
R 0

Calculating the upper right Dini derivative of W;(t) along the solutions of model (1.3) we have

DY Wi(t) = lyi(t) - xi(t mw [i(t) = 2] x sgn{yi(t) — x(1)} x
+Z b1 T!%) ()]

)
n

T o+
2 |y1 — (1)) — xi(t — ()| (1 — (1)) IO
=1

Replacing x; and y; given in the system, applying triangular inequality, considering (H3),
0 < x;(f),yi(t) <K, |r'(x)] <1for x € [0,+00) and grouping we obtain

t 11 Cii |yl( ) uu (S+ +‘y]( ) (t)’
DYWi(t) < eM | |yi(t) —xi(t)M— G; +I<1) +] Z]:#l o

+ Z lr(yi(t — (1)) — r(xi(t — i (8))| — by |yi(t) — xi(t)]

+Zb+u A zb it = (6)) — it — (1))

DFWi(t) <M

. —x _ 11 Cii ’yl( ) )| & 5Z}LC;]r|y](t)_x](t)|
lyi(t) — xi()[A G +Kz) +]-_1X,];# ik

+ qu lyi(t — () — xi(t — i ()| = By |yi(t) — xi(8)]

n ZbJFM At _ ib;\yi(t —7;(t)) — xi(t — Tl’f(t))‘]

i j=1
AT
STco n bretl
< At i ~ii h — Y ; f
— e ( +(C +K) + 1 ]g 1_,[.;; ‘yl() xl()’
m 1]
Z 5 lyi(t) — x;(t)]
lej#z
_ + AT
_ (511 Cll — z bije !

f ” 1y;(6) <t>\>.

J=117é
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Extending the sum for i = 1 to m and grouping terms we obtain that the Lyapunov functional
W(t) = Yi"; Wi(t) satisfies

DIW(t) < —e MY Gi(A)|yi(t) — xi(1)]-
i=1
We fix A = Ag = minj<<,,{r;}, since (3.8) and (3.9) hold we deduce that
D+W(t) < —e Mot Z Gi()to)‘yi(ﬂ — xi(t)\ <0, Vte (0,00)

i=1

It follows that W(t) is decreasing for all t > 0 along the solutions of system (1.3), consequently
we have

Z [yi(t) = xi(t)|e™" < W(t) < W(0),
whence
Z lyi(t) — xi(t)] < W(t)e —Aot W(O)e‘AUt,
and the exponential convergence it is obtained for solutions of (1.3) in B. O
4 Examples

In this section we show an example of the asymptotic stability of the solution and include
numerical simulations performed in R software using the library PBSddesolve, see for instance
[11]. In this example x; is the density of biomass in patch i, s(t) = sin(27t/365), c(t) =
cos(27t/365), and i € {1,2,3}.

Example 4.1. We consider the system of differential equations with delay,

() = — +20f6x(23)’”(t) +3(1+ 055(8))r(x1 (¢ — 60))
(14+0.125¢(E)xa(F) 1 +0.125¢(¢))xs(t)
" ( 54 xa(t) — 5+ x3(t) 3 ) ~01nlh),
ity = — BHOSO)X2E) | 501 4 o551y )r(xa(t — 60))
15+ XZ( ) (4.1)
(1.540.125¢(¢))x1(t) ~ 0.75+ 0.0625¢(t) ) x2(t) '
* 35 + x1(t) * 35 + x2(t) )’
) = - O +10 j’cx(sz)) ) 43014 0.55(8)r(xs(t — 60))
(15 +0.125¢(£))x1(£)  (0.75 + 0.0625¢(t))xa (1)
( 5 5 () ! RO 2 > — 0.2x3(1).

Hypotheses (H1)-(H4) are verified where K; < 1.087, K, < 1.2814, K3 < 1.1086. The numerical
simulations are presented in Figure 4.1.
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Numerical approximation

Patch 1

v
0.2 I
I

0.1 i

0.0

Patch 2

0.6

Densities

0.4

0.2

Patch 3

0.03
0.02
0.01

Time (years)
Figure 4.1: Numerical simulation of (4.1) for sixteen vyears. Initial
conditions:  (x1(0),x2(0),x3(0)) = (0.05,0.287,0.02),6 €< [—60,0] (solid

curve), (x1(0),x2(0),x3(0)) = (0.075,0.2,0.015),6 € [—60,0] (dashed curve),
(x1(0),x2(0),x3(8)) = (0.1,0.15,0.01), 0 € [—60,0] (dotted curve).

5 Conclusion and further work

A Nicholson-type system with nonlinear density-dependent mortality and linear harvesting
has been studied in this paper. Based on the theory of topological degree, has been obtained
sufficient conditions for the existence of a positive periodic solution of the model. In addition,
by using the Lyapunov-Krasovskii functional method, the uniqueness, stability, and expo-
nential stability of the Nicholson-type system were addressed. Numerical simulations were
performed based on an example to illustrate the results obtained.

Among the projections of this work, we will focus on the possible extension of the present
study to one involving nonlinear harvesting terms. We recall that in the works [1,4,5] advances
in this direction have been developed. However, from the point of view of applications, it
seems more realistic to consider the harvesting terms, proposed by Clark and Mangel in [10],

of the form
gEx

h(E, x) = cE + ¢x’

where g is the catch coefficient, E is the external effort dedicated to the harvest, c and /¢ are
constants. Population models with terms of this type have been studied in [18,34]. Thus, a new
version of the system (1.3) naturally arises, this time with these nonlinear harvesting terms as a
new research goal. We anticipate that the main aspects to take into account when applying the
methods presented in this work to these nonlinear terms is to search for alternative hypotheses
to (H2) and (H4), which can be deduced after a careful reading of this work.
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Abstract. In this paper we investigate nonlinear systems of second order ODEs de-
scribing the dynamics of two coupled nonlinear oscillators of a mechanical system. We
obtain, under certain assumptions, some stability results for the null solution. Also, we
show that in the presence of a time-dependent external force, every solution starting
from sufficiently small initial data and its derivative are bounded or go to zero as the
time tends to +oo, provided that suitable conditions are satisfied. Our theoretical re-
sults are illustrated with numerical simulations.

Keywords: coupled oscillators, uniform stability, asymptotic stability, uniform asymp-
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1. Introduction

Consider a mechanical system of coupled nonlinear oscillators, as shown in Figure 1.1. Specif-
ically, the block of mass m; is anchored to a fixed horizontal wall and the block of mass m,
by springs and dampers, and the block of mass m; is also attached to the wall by a pair of
springs and dampers. Suppose that the stiffnesses and the dampings are represented by the
functions k; : Ry - Ry andd;: Ry - R4, i€ {1,2,3},and §i: Ry x RxR = R, i€ {1,2},
denote external forces acting on the blocks. One may also consider an external force f(t)
acting on the block of mass m, but for the moment, we restrict our attention to the case J? =0.
We assume that when the two blocks are in their equilibrium positions, the springs and the
dampers are also in their equilibrium positions. Let x () and y(t) be the vertical displacements
of the blocks from their equilibrium positions.

™ Corresponding author.
Emails: morosanu@math.ubbcluj.ro (G. Morosanu), cristian.vladimirescu@edu.ucv.ro (C. Vladimirescuy).
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di(t) ky(t)

wOf] Seo | m Tz<t>F:| = k0
X

ds(t) ks (t)

nip
‘11

Figure 1.1: A mechanical system of coupled nonlinear oscillators

Then the system of ODEs describing the motion is (see, e.g., [27])

{mlx +ky ()x +2dy ()% — ks(t) (y — x) — 2d5(t) (y — %) = G1(£, %, ),
maij + 2ky (£)y + 4da()y + k3 (t) (y — x) + 2d3(t) (y — %) = &2(t, x,Y),

{55 +2f1(t)x — fa(t)y + B(t)x — 1 (t)y +g1(t, x,y) =0, (1.1)
G+ 2605 — fa()E — 1a(E)x + 6(8)y + g2t 1, y) = 0,
where , ,

A= @ T d(0), () = 20 + ()

fo(t) = nflda(t), falt) = nidgu),

BO) = o) +hat), 8= o (ha(t) + Ka(t),

nit) = k), 7(l) = (D),

|

|
IS
~—~
-
Ry
<
SN—

1
gi(t,x,y) = —Egl(t, X, Y), $(t,x,y) =

The general case of a single 1-D damped nonlinear oscillator is described by the following
equation which is well-known in the literature

X¥+2f (H)x+p*(H)x+g%(t,x) =0, teRy. (1.2)

T. A. Burton and T. Furumochi [2] introduced a new method, based on the Schauder fixed
point theorem, to study the stability of the null solution of Eq. (1.2) in the case g*(t) = 1.
In [14] we reported new stability results for the same equation. Our approach was based on
elementary arguments only, involving in particular some Bernoulli type differential inequal-
ities. In [15] we considered Eq. (1.2) under more general assumptions, which required more
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sophisticated arguments. For other investigations regarding the asymptotic stability of the
equilibrium of a single damped nonlinear oscillator, we refer the reader to [7,8,10,11,24], and
the references therein.

In the present paper, in Section 2 we will study the stability of the null solution of sys-
tem (1.1), by two approaches, based on classical differential inequalities and on Lyapunov’s
method. For other results regarding the asymptotic stability of the equilibria of coupled
damped nonlinear oscillators, we refer the reader to [9,16,17,20-23,25], and the references
therein. For fundamental concepts and results in stability theory we refer the reader to
[1,3,5,6,13,19].

In Section 3 we will consider that the block of mass m; is subject to the action of a time
dependent external force f : Ry — R. In this case, the system of ODEs describing the
dynamics of the mechanical system is

1.3
2100 A% () + oy + (b Ty) =0 )
with the same functions as before, and f(f) := m%f(t), and we will derive certain qualitative
properties of the solutions of system (1.3) with initial data small enough.

The model in Figure 1.1 could be used, e.g., to describe the dynamics in vertical direction
of vibration reduction systems for horizontal cranes with loadings suspended in two sides
[12,28]. For other models of coupled oscillators or for models from electric circuit theory,
structural dynamics, described by systems of type (1.1) or (1.3), we refer the reader to the
monographs [4,18,26].

{x’ +2f1()x — f5(H)y + B(H)x — 1 ()y — f(t) + g1(t, x,y) =0,

2. A stability result for the system (1.1)

In this section we shall use the following hypotheses.

(H].) fl S Cl(R+),ﬂ € C(R+), fz(t) Z O, f](t) > O Vt € IR+, and f dt < +o00,
Vi e {1,2},V] € {3,4};

(H2) there exist constants &, K7, K, > 0 such that
|fi(t) + f2(t)| < Kif(t), Vt € [h,+o0), Vi € {1,2},
where f(t) := min{f(t), f2(£)}, Vt € Ry;
(H3) [, f(Hdt =
(H4) B, 6 € C}(Ry), B, § are decreasing and
B(t) > Bo >0, 6(t) > >0, VieRy,

where By, Jp are constants such that

K K
KK

VBo Vo

(H5) 7; € C(Ry), 7i(t) > 0,Vt € R4, and f t)dt < +oo, Vi € {1,2};
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(H6) gi = gi(t,x,y) € C(Ry x R xR), g; are locally Lipschitzian with respect to x, y, i €
{1,2}, and fulfill the relations

1g1(tx,y)| < (t)O(|x]), VteRy, Vy €R, (2.1)

l22(t, x,v)| <ra(t)O(ly|), Vte Ry, Vx €R, (2.2)

where r; € C(Ry), ri(t) > 0, Vi € Ry, 0+°°ri(t)dt < 400, Vi € {1,2}, and O(]x|)
denotes the big-O Landau symbol as x — 0 (similarly for O(|y|));

(H7) There is a p > 0, such that f;(t) > p, Vt >0, Vi € {1,2}.

Remark 2.1. If (H1) and (H2) hold, then f;, f; are bounded, i € {1,2}. Indeed, by (H2) we see
that

(t>h, fi(t) > K;) = f;(t) <O.
This, combined with (H1), implies
fi(t) < M; := max{f;(h),K;}, Vt>h.
So, using again (H2), we obtain
fi(t)| <2M?, Vt>h
This concludes the proof, since, by (H1), f;, f; € C[0,h], i € {1,2}.

Remark 2.2. Since we are going to discuss the stability of the null solution of system (1.1) and
the large-time behavior of the solutions to (1.3) starting from small initial data, we can replace
the inequalities (2.1) and (2.2) by

g1t xy)l <n)lxl, g2t xy)| <ra(t)lyl, VEe Ry, Vx, y €R, (2.3)
possibly with M;r;(t) instead of r;(t), where M; > 0, and some functions g; instead of g;,
Vie {1,2}.
Indeed, from (2.1) there exist M1, a1 > 0, such that

lg1(t, x,y)| < r(H)M|x|, if |x] < ay.

If we define the function g7 : R X R xR — R as

gi1(t,m,y), if x > ay,
gi(t,x,y) = ¢ q1(t, x,y), if |x| < ay,
gl(t/ —511/]/)/ lfx S —ai,

forallt > 0,y € R, then
1g1(t, x,y)| < r(H)Mi)x|, V(t,x,y) e Ry x RxR,

21 € C(Ry xR x R), and g7 is locally Lipschitzian in x, y. Similar reasonings work for the
functions g, and r;, possibly with another constant a;.
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2.1. A stability result via differential inequalities
We can state and prove the following stability result.
Theorem 2.3.

a) Suppose that the hypotheses (H1), (H2), (H4)—(H6) are satisfied. Then the null solution of the
system (1.1) is uniformly stable.

b) If the hypotheses (H1)-(H6) are fulfilled, then the null solution of (1.1) is asymptotically stable.

c) If the hypotheses (H1), (H2), (H4)—(H7) are fulfilled, then the null solution of (1.1) is uniformly
asymptotically stable.

Proof. By using the following transformation (inspired from [2])

x=u-— fi(t)x
i = [A0)+ ) = B3 = A+ () = OAO+ AP -t xy)
y=v—falt)y '
0= [12(t) = A fa(B)]x + fa(hu+ [fo(t) + (1) — (1) ]y — fa(t)o — g2(t,x,y)
the system (1.1) becomes
z=A(t)z+ B(t)z+ F(t,z), (2.5)
where
X —f1(#) 1 0 0
z=| " ( —B(t) —filt) m#) 0
y 0 0 —fa(t) 1 ’
v Y0 0 =4(t) —f(t)
0 0 0 0 0
By = | HOFAO 0 —pOp6) A0 | g [ ety
—AMfs(t)  fut) falt )+f2( ) 0 —&(t,x,y)

Using the boundedness of the functions f;, f,-, fir B, vi, 6, 1, Vi € {1,2}, Vj € {3,4}, we
easily deduce that our stability question of the null solution of the system (1.1) reduces to the
stability of the null solution z(t) = 0 of the system (2.5) .

Let tg > 0 and

Z(t,to) = (as(t, to))i,jeﬁ, t > to,
be the fundamental matrix of the system
z = A(t)z, (2.6)

which equals the identity matrix for t = t5. Then we deduce

ﬁ(t)ai(tm+a%1<t,to>+5<t>a%1<t,to>+ail<t,to>smto)e%[‘zﬂ“) Wl @)

! —2f (1) du
Bt 1)+ dha(h o) + S(0)aRa(t o) - aa(tfo) < ol T 28)

27 d
ﬁ(t)aﬁ(t»@+a%3<t,to>+a<t>a%3<t,to>+aia<t,to>s5<to>eﬁ°[ Fordile g

T2 )+ 2 g
BB b 10) + By (1 o)+ (0)aRa (1 o) - (1 t) < ol T (2.10)
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for all t > tg, where y(t) := max{y1(t), v2(t)}, (t) := min{B(t), ()}, Vt € Ry.
Indeed, from (2.6) we get the following system

au(t to) = _fl( )llll(t, to) +l121(t, tO)
a21(t to) = (t)all(t, to) — fl(t)llzl(t, to) + ’yl(t)a31(t, to) (2 11)
a31(t to) = —fz( )a31(t, to) —|—El41(t, to) ’
a41(t to) = ’)’2( )an(t, t()) — 5(t)£l31(t, fo) — fz(t)a41(t, to).
From the first two equations of (2.11) and hypothesis (H4) we get
d
2 S IBWa (1 1) + i (1, 10)]
—fi(t) [B(£)aty (¢ to) + a5y (L, to)] + 1 (t)az (t, to)az (¢, to) (2.12)
and, similarly,
3 53[50, t0) + a1, o)
< —fa(t) [6(t)adi (t to) + aZy (, to)] + Y2 (t)ari (£, to)aar (L, to). (2.13)

By relations (2.12) and (2.13) we obtain successively

%% [B(t)aty (t,to) + ax, (. to) + 6()a3; (1, to) + afy (¢ to)]

< — fi() [B(t)aty(t,to) + a3y (1, to)] — fa(t) [0(£)a5, (¢ ko) + aiy (¢, to)]
+ ’h(t)a21<t, t0>a31(t, to) + ’Yz(t)llll(t, to)a41(t, to)
iy v(H)
f(t) + NAO]

for all t > t, and (2.7) follows immediately. The inequalities (2.8)—(2.10) can be derived in the
same way.
Let |-||, be the norm in R* defined by

] [B(t)at (t,to) + a3y (¢, to) + 0(t)a3 (£, to) + afy (, to)],

|zl = ([Box2 +u?+ 50y2 + 7}2)1/2, for z = (x, u,y,v)T, (2.14)

which is equivalent to the Euclidean norm.
For zg = (xo, to, Yo, Uo)T € R%, from (2.7)-(2.10) and (H4), we deduce

El_ 7 7(u) d
128, to)zolly < Mzollyy/B(to) + (o) R o VP
where A := max{1,1//Bo, 1/},

(2.16)

forall t > s >ty > 0, where ex = (0, 1,O,O)T, ey = (O,O,O,l)T.
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Proof of a). Let zg # 0 with ||zo]|, small enough, ty > 0, and z(t, ty, z0) = (x(t,to, z0), u(t, to, zo),
y(t, to,20), v(t, to,2))" be the unique solution of (2.5) which equals z, for t = t.

From the continuity and the boundedness of the functions f;, f,-, fir B, vi, 6, 7i, Vi € {1,2},
Vj € {3,4}, there exists ¢ : R4 — R a continuous and bounded function, such that

IA(H)z + B(t)z + F(t,2) g < 9p(t)]lzllo,  V(tz) € Ry x R

By applying a classical result of global existence in the future to system (2.5) (see, e.g., [3,
Corollary, p. 53]) it follows that z(t, to, z9) exists on the whole interval [tp, +0).
We have
t
z2(t,to,20) = Z(t to)zo+ | Z(t,t0)Z(s,to) [B(s)z(s, to, 20) + E(s,z(s, to, z0))]ds,  (2.17)

fo
for all t > to.
From the relations (2.15)—(2.17) we get

AR ’ 1|4,
12(£, o, 20) [lg < Mlzollo\/ﬁ(fo) +4(to) +2eft°{ 1 ZF} " [ o “”J

to

< |[fi(s) + F2(5)]1x(5, o, 20)| + [ fols) + F3(5)| (s, to, o))

+ f1(s) fa(s)[x(s, to, z0) | + f2(s) f3(s) [y (s, to, z0) |
+ f3(s)|v(s, to, zo)| + fa(s)[u(s, to, z0)|

+ ’g1(S X(S tQ,Zo) (S tQ,ZQ))‘
+ |g2(s, x(s, to, 20), y(s, to,zo))ﬂds, (2.18)

for all t > ty.
In what follows we consider two cases.

Case 1: 0 < ty < h. Since f; € C! [to,h],f]-,,B, vi, 6, € Clto, h], gi € C([to, h] x R x R), Vi € {1,2},
Vj € {3,4}, from (2.18) it results that

t
1z(t, to, z0) [lo < )\Dl\/ﬁ(fo) +6(to) + 2|zollo + D/t 1z(s, to, zo) lods, ¥Vt € [to, h],
0

with D, D positive constants. Using the Gronwall lemma we get

HZ(t, tO/ZO)Ho < AD; \/,B(to) + (5(1‘0) —|—2||ZoHoeDh, Vt € [to,h]. (2.19)

For all t > h, from the relation (2.18) and the hypothesis (H2) we deduce

h’ —flu)+ du
W@mJMMSA¢Mm+Mm+HMhmmmﬁWf(zf}

t : —f(u)-i— 1) |4y
+AeW ] (K, F5) (5, to,20)] + Ka (&)l y(s, 0, 20)|

+ f1(s) fa(s)[x(s, to, z0) | + f2(s) f3(s) |y (s, to, 20)|

+ fa(s)[v(s, to, zo)| + fa(s)|u(s, to, z0)|

+181(s, x(s, to,z0),y(s, to, 20))
)

(s, x(
(s,x(s,to,z0),y(s, to, z0)

|
+1g y] (2.20)
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By (2.3) and (2.20) we obtain

.l[ 7"" )+
l2(t, to,z0) Iy < Ay/B(A) +5< )+2Hz o o)l T

+/” ot (Kf 5i>~<>

fi(8)fa(s) | fa(s)fs(s)
+ \/‘% \/* +f( )+f4(5)

ﬁ% + rf/%)] (s, to, 20) ol
—o(t), Vt>h (2.21)

Straightforward calculations lead us to

o(t) < w(t)o(t),  VE>h, (2.22)

= Ay/BU) +8(1) +2]}2(h, to, z0) .

where
— KT K K
w(t) := =Kf(t) +¢(t), Vt>0,K=1 NG 5
() f (1) fa(t) | fat)fa(t) ri(t) | ra(t)
p(t) == ZF o + N + f3(t) + fa(t) + \/E‘F NS vt > 0.

From (2.21) and (2.22) using classical differential inequalities, we obtain

2t to,20) I < Ay/B(R) + 8(h) +2l|z(, b0, z0) g < F el o8> h (229)

It is readily seen from the hypotheses (H1), (H5), (H6), and Remark 2.1, that

+00
/h p(s)ds < +oo0.
Let € > 0 be arbitrary and

co fh s)dsq—Dh
A2Dy/B(0) +2\/5 (W) +o(h) +2
Then, if ||zo||, < #, by (2.19) and the hypothesis (H4) it results

n=rn(e) =

ge— Ji " 9ls)ds

o< A/B() +6(h) +2

From the relations (2.23), (2.24), and the hypothesis (H4), it follows that ||z(f, to,z0) ||, < &,
vVt > h.

|z(t) Vt € [to, h]. (2.24)

Case 2: tg > h. We similarly get

l2(t, fo,20)lly < Ay/B(to) +8(t0) + 2|20 lge oD ¥eho 7%, (2.25)
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for all t > to. With the same 7 as before, if ||zo||, < 7, then ||z(t, to, z0) ||, < &, VI > to.
Therefore, the null solution of (1.1) is uniformly stable.

Proof of b). If, in addition (H3) holds, then from (2.25) we can easily obtain that the null
solution of (1.1) is asymptotically stable.

Proof of c). We know from a) that the null solution of (1.1) is uniformly stable. It remains to
prove that there exists ¢ > 0, such that for every € > 0 there exists T = T(¢) > 0, such that
l|lzolly < ¢ implies ||z(t, fo,20)||, < & forall tg > 0and t > to+ T.

Indeed, if (H7) also holds, then |, tz f(s)ds > p(t —to), Vt > tg > 0. From (2.25) we obtain
forall t > ty > 0, that

I2(t, to, 20) lg < A4/B(0) +6(0) +2zolge <P )N, (2.26)

where N := efo+°o P(s)ds et ¢ = — 1 __ ¢>0,and
A/B(0)+3(0)+2

e 4

1 1. N
T = T(e) i K—pln— ife <N,
0, if e > N.

Consider zg € R*, zg # 0, with |zol|p < ¢ and let ty > 0. Then for all t > ty + T, by (2.26) we
successively deduce

2t to,20) I < Ay/B(0) +5(0) +25e KPIIN = Ne Ko=) < ¢,
Therefore the null solution of (1.1) is uniformly asymptotically stable. O

Example 2.4. An example of functions f;, fj, B, 6, vi, gi, i € {1,2}, j € {3,4}, is

1 1 1 2
He ) ()= ———), f5(t) = L falt) = —=—, vt >0,
h = vey PV = e AW (t+1)* fu®) (t+1)°
2t +3 234+5 1 _
H="" 6= ()= ———\, () =e 2 VE>0,
) =7 ) ="455, nl) ETI 1 m2(t) = e >

2
/2,3

3 4
t,x,y) =e , t,x,y) = ——vy°, Vt>0,Vx, yeR.
81(t,x,y) 82(t,x,y) pir! y
These functions satisfy the hypotheses (H1)-(H6), with o = 2, 60 = 2, K1 = 1/ V2, Ky =
2+V3) x(3-2v2),h=1,r(t) = e /2, ry(t) = aurmi ¥t > 0. In Figure 2.1 the solution
of (1.1) and its derivative are plotted on two time intervals, for small initial data. The solution
in the planes (x, %) and (y, ) on the same time intervals can be observed in Figure 2.2.

Example 2.5. If in Example 2.4 one changes only fi, fo to fi(t) = 7 + t%l’ respectively
fa(t) = % + t%l' Vt > 0, then the hypotheses (H1), (H2), (H4)-(H?7) are verified with K; = 1/5,
Ky=4/5h=7p= 11—0, and the same By, do, 71(t), r2(t) and we obtain the solution of (1.1)
and its derivative plotted in Figure 2.3 on the same time intervals and for the same initial data.
In Figure 2.4 the solution is generated in the planes (x, x) and (v, ).
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t € [0,50] t € [0,200]
UW\f\f\f\f\f\f\/\!\l\l\)w\NWWV\NWvW\ivwwv\!w\
t € [0,50] t € [0,200]

Figure 2.1: The solution of system (1.1) and its derivative, with the initial data
zp = [0.01,0.01,0.01,0.01] and the functions fi, f2, f3, f1, B, 6, Y1, Y2, §1, &2 given
in Example 2.4.
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Figure 2.2: The solution of (1.1) in the planes (x,x) and (y,y), with the data
from Example 2.4.
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%107
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t € [0,200]

0.5

y(t)
y(t)

50 100 150 200

t € [0,200]

Figure 2.3: The solution of system (1.1) and its derivative, with the initial data
zp = [0.01,0.01,0.01,0.01] and the functions fi, f2, f3, f1, B, 6, Y1, Y2, §1, &2 given

in Example 2.5.
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-3 -3
410 . . 4210 , , , : :
(@(1), #(1)), t € [0,50] (@(®), 5(1)), t € [0,200]
2f 2r / \
\
\
o o
\
| \ |
& 2r T 2r 1
/
-4t /- -4t / 4
6 / B 6 / 4
- - \\'—\;,,7% _—

8 — ‘ 8 ‘ ‘ ‘ — ‘

-4 2 0 2 4 6 8 10 -4 2 0 2 4 6 8 10

z %107 z %107
-3 -3
210 : : 5 %10 : : ;
(y(®), (1)), t € [0,50] (y(t),5(1)), t € [0,200]
o o
2t 2
-4t 4t
-6 -6
-8 -8
10} 10
12 ‘ ‘ ‘ ‘ ‘ 12 ‘ ‘ ‘ ‘ ‘
2 0 2 4 6 8 10 2 0 2 4 6 8 10

Yy %107 v %107

Figure 2.4: The solution of (1.1) in the planes (x,x) and (y,y), with the data
from Example 2.5.

2.2. A stability result via Lyapunov’s method

We are going to use the following additional assumptions.

(H¥) f; € C(Ry.) NL2(Ry), f; € C(R+), fi(t) > 0, fi(t) = 0, % € Ry, and [[" fi(t)dt <
+o0, Vi € {1,2}, V] € {3,4};

(H3%) f,™ f(£)dt < +oo;
(H4*) B, 6 € CY(R), B, J are decreasing and

B(t) = Bo >0, 6(t) > >0, VteR,.

Let us state and prove the following result.

Theorem 2.6. Suppose that the hypotheses (H1%), (H3%), (H4*), (H5), (H6) are fulfilled. Then the null
solution of the system (1.1) is uniformly stable.

Proof. Let us remark that using the classical change of variables x = x, u = %, y =y, v =y,
the system (1.1) becomes

2= F(tz), 2.27)
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where
X u
|| pen o | POT 2RO Al
v Y2(t)x + fa(t)u — 5(t)y — 2f2(t)o — ga2(t, x, y)

and our stability question reduces to the stability of the null solution z(f) = 0 of the system
(2.27). Let us remark that the global existence in the future of the solutions of (2.27) follows as
in the proof of Theorem 2.3, this time the boundedness of the functions f;, f, being ensured
by the hypothesis (H1%).

We are going to use again the norm |-||, defined by (2.14). Consider the function V :
Ry x A = R,

19+16) | 4
V(t,z) = [ﬁ(t)x2+u2+(5(t>y2+vz] fo{ SIS +Hfale)+ (:,) S,

N =

forz = (x,u,y, U)T € A, where A C R*is a neighborhood of the origin of R,
p={zeRY, ||z], <a},
where a = min{a1/Bo, 42v/%}, a1 > 0, a > 0 are as in Remark 2.2, y(t) := max{7y1(t),

72(£)}, ¢(t) :== min{B(t),d(¢)}, YVt € Ry, and r(t) := max{ri (), r2(t)}, Vt > 0.
Obviously,

V(t,z) > (ﬁox +u? + 6oy* + 0%)e

~ [T e fale 2 as

N\P—‘ I\J\

lzllge

for all (t,z) € R4 X A.
By using hypotheses (H1*), (H3%), (H4*), (H5), (H6), we deduce

(s)ds+ [yT fa(s)ds+ [y fa(s)ds+ [ 1) g

V(tz) > szHO |17 w© } V(tz) € Ry x A

and so the function V is positive definite.
The function V is also decrescent. Indeed,

2641 |
V(tz) < %[,3(0)3(2 +u? +5(0)y* + o*]e f"[ HEHAE |9
< 1max{’3(0), 3(0) }||z||§, V(tz) € Ry x A.
2 Bo = o

We prove that the time derivative of V along the solutions of the system (2.27) is less than



Qualitative analysis of a system of coupled nonlinear oscillators 15

or equal to 0. Indeed, for every (t,z) € Ry x A,

%(M) = % [B(t)x* + 2B(t)xx + 2ul + S()y* + 25(t)yy + 200]

_ 1(s)+r(s)
o Bi[Fer @A o

t)+r
VE(t)
< {v@®(ullyl + [x[|o]) + [f3(t) + fa()]|ullo| + [u|[g1(t, x, y)| + [v]|g2(t, x, y) [}

- [T+ ale) 4 20 s

R0 + )+ falry + LDy

xe 70)
20 + fo(He? ]—fo[ EACRARIEI!
B f<t>+f3(t)+f4(f)+’W);<;(t) V(t,z). 228)

From (2.28) and (2.3) for all (f,z) € Ry x A we successively obtain

Cgt/(t/Z) < {V(t)(lullyl +|x[[o]) + [fs(8) + fa(®)]|ullo] 4 [ra (&) [x][u] +r2(8) [y[[0]]

ol ey e BT o
~|F+ A0+ A + 2% vit,2)
< s(t)+f4(t)+% V2[00 + fat)e?]
o T e+ 1 s
- [f(t) w0+ £+ T v
— _FOV —2[A0d + eyl H OO e 2.29)

Then, from (2.29) we easily get

‘fi‘t/(t 2)<0, ¥(tz) € R, X A.

From Persidski’s Theorem (see, e.g., [3, second Corollary, p. 101], [17, Theorem 2.1]), it
follows that the null solution of (1.1) is uniformly stable. O

Remark 2.7. Let us remark that by using the transformation (2.4) we obtained the uniform,
the asymptotic, and the uniform asymptotic stability, while by using the classical transfor-
mation (x = x, u = %, ¥y = y, v = y) and the Lyapunov’s method we were only able to
achieve the uniform stability of the null solution of (1.1). Hence the first method, based on the
transformation (2.4), is more effective.
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Remark 2.8. Note that the null solution of the system (1.1) can be uniformly stable and not
asymptotically stable. Indeed, this can be seen by considering the following functions

et |cos® t| |sin 2 et
= > = >
A= PO ="grg, Y120 S)="77 Al =7g 20
1 1 t e 3|cos t|
=03 5(t) =02 , t) = F, 5, VE>0,
B(t) tap 00 s nt) =5 72(t) = (i1 1) >
3x3 2y?
bxy) = ——, Lxy)=—2—, Vt>0, VxyeR
81(t,x,y) 2127 82(t,x,y) (117 y

These functions satisfy the hypotheses (H1%*), (H3*), (H4*), (H5), (H6), with By = 0.3, Jp = 0.2,
ri(t) = (t2i2)2' r(t) = (t+1)3’ Vt > 0. For small initial data, the solution of (1.1) and its

derivative can be observed in Figure 2.5 on some time intervals. The plottings of the solution
in the planes (x, x), (y,y) are given in Figure 2.6.

4 2207 . . . . 4 2107 . . . .
() —a(t)
s ilt) 5 Gl
2 2+
‘\H ““\“‘H‘H
1 HI I \ | I
| HH‘H\“MHHH‘\H“\“HWH”\H\ |
0 0 ‘“M”‘\”HH “\H“““\“\““““\H\‘
AR RO (R ‘
‘ "“‘\W \”‘H“\H“H”””\‘ |
\“““\M“HU‘”
2 2
3 3
4 : 4 :
0 20 40 60 80 100 0 100 200 300 400 500
€ [0,100] t € [0,500]
4 <10 ‘ ‘ ‘ ‘ . <102

()

7 0 26 46 60 86 100 7 0 1 (;O 2(;0 3(;0 4(;0 500
€ [0,100] t € [0,500]

Figure 2.5: The solution of (1.1) and its derivative, with the initial data zy =
[0.001,0.001,0.001,0.001] and the functions fi, f2, f3, fa, B, 4, 71, Y2, 1, £2 given
in Remark 2.8.
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x10°
((t),&(t)), t €[0,100]
. . . ) ) ‘ ‘
¢ 8 2 1 0 1 2 3 4
* %10
%107
, , ,
(y(1), 9(1)), t € [0,100]
. . . ) ) ‘ ‘
4 3 2 1 0 1 2 3 4

y %1073

Figure 2.6: The solution of (1.1) in
from Remark 2.8.

2 T T T
(y(®),9(t), t € [0,500]

05 T

-0.5 b

Yy %107

the planes (x,%) and (y,y), with the data

17
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3. Analysis of the inhomogeneous system (1.3)

Suppose that the block of mass m; is subject to the action of a time-dependent external force
f : Ry — RR. In this case, we obtain the inhomogeneous system (1.3).
We are going to use the following hypotheses.

(H8) f € C(Ry) and f € LY(R;);

(H9) f € C(Ry) and lim; 1 f(f) = 0.

3.1. Qualitative properties of solutions via differential inequalities

Theorem 3.1.

a) Suppose that the hypotheses (H1), (H2), (H4)—(H6), (H8) are fulfilled. Then every solution of the
system (1.3) starting from sufficiently small initial data and its derivative are bounded.

b) If the hypotheses (H1), (H2), (H4)—(H6), (H7) with p big enough, and (H9) are satisfied, then
for every solution (x,y) of (1.3) starting from small initial data, we have lim;_, o x(t) =

Proof. This time we use the following transformation (of the same type as the one from [2])
x=u— fi(t)x
= [fi(t) + f7() = B(B)]x = fr(Bu+[11() = o) s(O)ly + f()o + f (1) = g1 (t %, y) 3.1)

y=v—fa(t)y
o= [12(t) = i) fa(®)]x + fa(hu + [fa(t) + fF(t) = 6(8)]y — fa(t)o — ga(t, %, y)

and the system (1.3) becomes

z=A(t)z+ B(t)z + G(t,z), 32)
where
0
Gt z) = f(t) _%(t,x,y)
—&(t,x,y)

and A(t) and B(t) are the same as in the proof of Theorem 2.3.
Let zg € R*\{0} with ||zo||, small enough, t; > 0, and

z(t, to, z0) = (x(t, to, 20), u(t, to, 20), y(t, to, 20), v(t, to, 20)) |

be the unique solution of (3.2) which is equal to zg for t = t,.
Similarly (by applying, e.g., [3, Corollary, p. 53]) we conclude that z(t, ty,zg) exists on
[to, +00), this time having

|A()z + B(Hz + G2y < 9(O)zllo + IF(B)], ¥(t2) € Ry x R
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As before we deduce

lz(t, to, zo) ||y < AHZOHO\/ﬁ(tO) +5(to) +2efti’ {7f(u)+2\7/(g()—u)}du N ttefst[f(u)+2v<u> }du
< L) + ()] Ix(s, 0, 20) | + | fals) + F3(5) (s, o, 20)]|
+ f1(s) fa(s)|x(s, to, z0)| + f2(s) f3(s)|y(s, to, z0)|
+ f3(s)|v(s, to, 20)| + fa(s)|u(s, to, z0)| + [ £(5)]
+|81(s, x(s, to, z0), ¥ (s, to, 20)
(

)|
+ |g2(s, x(s, to, 20), y(s, to,zo))ﬂds, (3.3)

for all t > tg.

We distinguish two cases again.

Case 1: 0 < ty < h. As in the proof of Theorem 2.3, we obtain the relation (2.19), with D,
D7 > 0.
From (3.3) and using Remark 2.2, we deduce for all t > h

I {717(1‘)*27(;(),,)} du

HA@MaMbSA¢Mm+vw»+m4hmsze

ERforla [ K Ko )
f1(s)fa(s) | fa(s)f3(s)
\/‘370 + \/% +f3(5) —|—f4(5)

+”®+m@1W@Mm%+V@@“

+

VB Voo
=:p(t), Yt > h.

Straightforward calculations lead us to
{mw U()+VU| vt > h,
A

VB(h) + (1) +2||z(h, to, z0) |

with w(t), t > 0, as in the proof of Theorem 2.3.
We easily deduce

Eor s s
et o0}l < (p(h) + [ e KEKT 00k (g )l
—u(t), Vt>h (3.4)

Proof of a). By using the hypotheses (H1), (H5), (H6), and Remark 2.1, it is readily seen that
Q= fo t)dt < 4-o0. From (3.4) and the hypothesis (H8) we derive that

t t t
I2(t to 20l < pljeli 79 4 [Tl P () s

<& (o) + [ 1£)1as)

< e (p(h) + 1 lisjg.se) ) < o0, VEZ
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and so every solution of (1.3) with initial data small enough is bounded. The boundedness of
Z(t, to, z0) follows immediately.

Proof of b). Let us estimate the limit of y at +co. We have

h) + fht e S [-Kf(w)+@(u)]du |£(s)|ds

li t) = li — 3.5
t%lrfooy( ) t%HJPoo e—j}:[—Kf(s)—&-q)(s)]ds (35
If [ A ]d”\ f(s)|ds < 4o, then, from (3.5) and the hypothesis (H7), we
easily obtam
tgrfooy(t) =0
If [*Te i [KF ol ]d”]f( s)|ds = 400, then we estimate
' di( + f fh Kf )+o(u ]du|f( )’dS) ' ‘f(t)‘
lim = lim ——————. (3.6)
oo 4 (e*fh [-KF(s +<o<s)]ds) t=teo Kf (1) — (t)

Using the hypotheses (H1), (H5)—-(H7), and Remark 2.1,
KF(t) = ¢(t) = Kp— g0, V20,

where ¢y = suptzo{(p(t)}. Hence, if p > %2, then Kf(t) —¢(t) > 0,Vt >0, and, from (3.6), the
hypothesis (H9), and L'Hospital’s rule, we obtain lim;_, 1« y(t) = 0. Hence, by (3.4) it follows
that limy_, 1.||z(t, fo, 20) ||, = 0 and we also infer lim;_, | ||2(¢, fo, 20)||, = O.

Case 2: tg > h. The proofs of a) and b) follow as in Case 1, this time by using the inequality

Izttt )l < (Ay/Blo0) +0000) 2l + [ & ol 7190 )

w ey [TKFO+eEds gy sy
O
Example 3.2. If we consider the functions
Int Int
-, t>e t>e
=<' , t) =
Al) {eg(ze—t, te[oe) £l {e(el) (26 —1-1) [0,e)
arctan t Vit 2t+3
t) = —, t) = , t)=——e ', Vt>0,
f3() (t—|—1)2 f4() (t+2)2 f() t4+2
9 1 49 e’3t sin” t
t) = =+ ,0(t) = —— , t , Vt >0,
2|sin ¢|x3 3|cos t|y?
tx,y) =———, t,x,y) = ————F——, Vt>0,Vx,yeR,
st xy) =T galtxy) P Vit y
then the hypotheses (H1), (H2), (H4)—(H6), (HS8) are fulfilled with By = g%, by = I (e4_91)2,
Ki=2/e, Kx=1/(e—1), h = e, r(t) = 25N 4 (¢) = 3ty > 0. In Figure 3.1 one

NS (t+1)Vt+1’
can observe the solution of (1.3) and its derivative, for small initial data on two time intervals

and in Figure 3.2 the solution is plotted in the planes (x, X), (y,7) on the same time intervals.
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0.8 08
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) )
06, ,‘”\ 1 06 7\’\ 1
I \f
04t | 0.4 H
| I
02 ‘J‘ ‘ 02 \‘
| | i I
o[ \‘ ,/\\/\7\7f>—v———7 o—““‘/“\/\z\,/»
\[/ |
| \// Lj’
02F | 021
]
0.4+ 04
0.6 : : : : 0.6 : : : :
0 10 20 30 40 50 0 20 40 60 80 100
t € [0,50] t € [0,50]
0.03 0.03
0.02
0.01
0
0.01 F
-0.02
0.03 - 4
—y(t)
y(t)
-0.04 :
0 20 40 60 80 100
t € [0,100] t € 0,100]

Figure 3.1: The solution of (1.3) and its derivative, with the initial data zy =
[0.01,0.01,0.01,0.01] and the functions fi, f2, f3, f1, f, B, 8, 71, Y2, €1, §2 given in
Example 3.2.
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0.6 — 0.6

/ T T T
047 04
021 1 2

|

\\ _r) (1)), t € [0,100]
w0 ] 1 ‘| r
/,‘
0.2 0.2
0.4 0.4

-0.6 ! ! ! -0.6 ! ! !
-0.2 -0. 0.1 .2 0.3 0.4 0.5 . 0.7 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x xT
0.03 T T T 0.03 T T T
W0.50), 105
0.02 0.02
0.01 - 0.01 -
0r 0r
= =
-0.01 -0.01
-0.02 -0.02
-0.03 -0.03
-0.04 -0.04
-0.02 -0.015 -0.01 -0.005 0.005 0.01 0.015 0.02 0.025 -0.02 -0.015 -0.01 -0.005 0.005 0.01 0.015 0.02 0.025

Figure 3.2: The solution of (1.3) in the planes (x,x) and (y,y), with the data
from Example 3.2.

Remark 3.3. Let us remark the difference between the graphs of the first and second compo-
nents of the solution near the origin. Due to the action of the external force f(t) on the first
block m, at least near the origin, the absolute values of x = x(t) are much bigger than the
ones of y = y(t).

3.2. Boundedness of solutions

Theorem 3.4. Suppose that the hypotheses (H1*), (H4%), (H5), (H6), (H8) are fulfilled. Then every
solution of the system (1.3) with sufficiently small initial data is bounded.

Proof. Let us remark that using the classical change of variables x = x, u =%, y =y, v =y,
the system (1.3) becomes

z=F(t,z), (3.7)
where
N I e L e GRS A CER O R AR %Y
y v
v Y2(t)x + fa(t)u — 6(t)y — 2fo(t)v — ga(t, x, )



Qualitative analysis of a system of coupled nonlinear oscillators 23

We will use again the norm ||-||, defined by (2.14) and the function V : Ry x A = R,

=t 7 ) g )4 fa ()4 20220 ] g
Vib2) = LTB(2 442 4 6(0)2 4 P [Fors6rfatoy+ 122

N —

for z = (x, u,y,v)T € A, where A C R* is as in the proof of Theorem 2.6, y(t) := max{71(t),
v2(£)}, ¢(f) :== min{B(t),d(¢)}, Vt € Ry, and r(t) := max{r (), r2(t)}, Vt > 0.

Let us calculate the time derivative of V along the solutions of the system (3.7), whose
global existence in the future is deduced as in the proof of Theorem 2.6. For every (t,z) €
R x A we have

- (t2) = % [B(£)x + 2B(t)xt + 2utl + S()y* + 25(t)yy + 200]

ds

_ 4+ 26)4r(s)
X e fo[ Jrf?v +f() \/@

R0 + S0+ fale) + YO

0 V(t,z).

By hypothesis (H4*) we get for every (t,z) € Ry x A,

(il‘t/(t’z) < L@ (ullyl + |x[[o]) + [fs(8) + fa(®)][u][0] + [ullg1(t %, y) | + |v]|g2(t %, y)]

{f( )+f3(s )+f4(s)+7(s)€+(z()s)}ds

+fOflul} xe

- f<t>+f3<t>+f4<t>+"“);([)(”

] fo{ (s)+fa(s +f4(5)+%+<';;)

V(t,z)

ds

—2[fi(u® + fo(t)
From relations (3.8) and Remark 2.2, we successively deduce

%‘:(LZ) < {W(t)(lully\ + |x[fo]) + [fs(8) + fa(®)][ul o] + [ () [x][u] +r2(8)]yl]0]

~ [T e ale) L0 as

+ Al = 2L + (52 fe

— () + f2(t) + fa(t) + 'Y(t)g\/%)(t)

v(8) +r(t)
V()

e ~ B [T Ao+ 250 as

V(t,z)

3(8) + fa(t) + V(tz) + |f(1)|[ule

(s)

—2[fi()u® + fa(t)v
— [F(t) + fs(t) + fu(t) + W

- fot {J?(S)+f3(s)+f4(s)+%} ds

V(t,z)

IN

— OV (t2) + (1)l |ule
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for all (f,z) € Ry x A. Then, from (3.9) we easily obtain V(f,z) € Ry x A

W (b2) <= FOV(2) + 01 BOR + i + 50y +

~ [Tl A+ 250 as

X e
<~ F(OV(t2) + |F(0)] 2V (t,2)e B %

which actually represents an inequality of Bernoulli type.
Let zo € A, tg > 0, and z(t, ty,zg) be the unique solution of (3.7) which is equal to z for
t = to. Using classical differential estimates, we find

V2

2
V(b 2(t to,20)) < e 0 /C vw@fo umy ﬂwmr VE > b,

Therefore, by using the hypotheses (H1*), (H5), (H6), it follows that

\/V(to,Zo + 7/ ‘f | _7f0 dudS] YVt > ty,

s)ds 116) | g
= /2’ L et Iy { RAEARAR 0 } . If the hypothesis (H8) comes into play,

1z(t, to, 20) |lg < M

where M :
then

1z(£, to, z0) [lp < M

2 ty 7,
V(to,z0) + \Z[HfHLl[O,Jroo)e_; foof(s)dS] , YVt >t O]

Remark 3.5. Note that by using the classical transformation (x = x, u =%, y =y, v = y), we
could only deduce the boundedness of the solutions of (1.3) for initial data small enough. In
contrast, the transformation (3.1) allowed us to obtain in addition that the solutions of (1.3),
starting from sufficiently small initial data, have the limit zero at +co.

Acknowledgements

We are grateful for the remarks and suggestions of the anonymous reviewer and editor Bo
Zhang, which led to an improved version of the paper.

References

[1] R. BELLMAN, Stability theory of differential equations, McGraw-Hill, New York, 1953.
MR0061235; Zbl 0053.24705

[2] T. A. BurtoN, T. FuRUMOCHI, A note on stability by Schauder’s theorem, Funkcial. Ekvac.
44(2001), No. 1, 73-82. MRR1847837; Zbl 1158.34329

[3] C. CorpUNEANU, Principles of differential and integral equations, Allyn and Bacon, Boston,
Mass., 1971. MR0276520; Zbl 0208.10701

[4] R. R. CrAIG JR., A. ]J. KURDILA, Fundamentals of structural dynamics, Wiley, Hoboken, 2006.
Zbl 1118.70001



Qualitative analysis of a system of coupled nonlinear oscillators 25

[5] J. K. HALE, Ordinary differential equations [2nd edition], Krieger, Florida, 1980. MR0587488;
Zbl 0433.34003

[6] P. HARTMAN, Ordinary differential equations, Wiley, New York, 1964. MR0171038;
Zbl 0125.32102

[7] L. Hatvani, On the stability of the zero solution of certain second order non-linear dif-
ferential equations, Acta Sci. Math. (Szeged) 32(1971), 1-9. MR0306639; Zbl 0216.11704

[8] L. Hatvant, On the asymptotic behaviour of the solutions of (p(t)x")" +q(t)f(x) = 0,
Publ. Math. Debrecen 19(1972), 225-237 (1973). MR0326064; Zbl 0271.34061

[9] L. HaTvan, A generalization of the Barbashin-Krasovskij theorems to the partial stabi-
lity in nonautonomous systems, Qualitative theory of differential equations, Vol. I, II (Szeged,
1979), pp. 381-409, Collog. Math. Soc. Janos Bolyai, 30, North-Holland, Amsterdam-New
York, 1981. MR0680604; Zbl 0486.34044

[10] L. Harvani, T. KriszTiN, V. TOTIK, A necessary and sufficient condition for the asymptotic
stability of the damped oscillator, J. Differential Equations 119(1995), No. 1, 209-223. https:
//doi.org/10.1006/jdeq.1995.1087; MR1334491; Zbl 0831.34052

[11] L. Hatvani, Integral conditions on the asymptotic stability for the damped linear os-
cillator with small damping, Proc. Amer. Math. Soc. 124(1996), No. 2, 415-422. https:
//doi.org/10.1090/S0002-9939-96-03266-2; MR1317039; Zbl 0844.34051

[12] S. H. Ju, H. H. Kuo, S. W. Yu, Investigation of vibration induced by moving cranes in
high-tech factories, J: Low Frequency Noise, Vibration and Active Control 39(2019), No. 1,
84-97. https://doi.org/10.1177/1461348419837416

[13] V. LAKSHMIKANTHAM, S. LEELA, Differential and integral inequalities. Theory and applications,
Vol. I: Ordinary differential equations, Mathematics in Science and Engineering, Vol. 55-1.
Academic Press, New York-London, 1969. MR0379933; Zbl 0177.12403

[14] G. Morosanu, C. VLADIMIRESCU, Stability for a nonlinear second order ODE, Funk-
cial. Ekvac. 48(2005), No. 1, 49-56. https://doi.org/10.1619/fesi.48.49; MR2154377;
Zbl 1122.34324

[15] G. Morosanu, C. VLADIMIRESCU, Stability for a damped nonlinear oscillator, Non-
linear Anal. 60(2005), No. 2, 303-310. https://doi.org/10.1016/j.na.2004.08.027;
MR2101880; Zbl 1071.34049

[16] G. MorosaNnu, C. VLADIMIRESCU, Stability for a system of two coupled nonlinear oscil-
lators with partial lack of damping, Nonlinear Anal. Real World Appl. 45(2019), 609-619.
https://doi.org/10.1016/j.nonrwa.2018.07.026; MR3854325; Zbl 1418.34085

[17] G. Morosanu, C. VLADIMIRESCU, Stability for systems of 1-D coupled nonlinear oscil-
lators, Nonlinear Anal. Real World Appl. 59(2021) 103242. https://doi.org/10.1016/].
nonrwa.2020.103242; MR4170813; Zbl 1469.34055

[18] M. Paz, W. LE1GH, Structural dynamics: theory and computation [5th edition], Springer, New
York, 2004. https://doi.org/10.1007/978-1-4615-0481-8



26 G. Morosanu and C. Vladimirescu

[19] L. C. PicciNning, G. StampraccHIA, G. VipossicH, Ordinary differential dquations in R"™. Pro-
blems and methods, Applied Mathematical Sciences, Vol. 39, Springer-Verlag, New York,
1984. https://doi.org/10.1007/978-1-4612-5188-0; MR0740539; Zbl 0535.34001

[20] P. Puccr, J. SERRIN, Precise damping conditions for global asymptotic stability for non-
linear second order systems, Acta Math. 170(1993), No. 2, 275-307. https://doi.org/10.
1007/BF02392788; MR1226530; Zbl 0797.34059

[21] P. Puccr, ]J. SERRIN, Precise damping conditions for global asymptotic stability for non-
linear second order systems, II, J. Differential Equations 113(1994), No. 2, 505-534. https:
//doi.org/10.1006/jdeq.1994.1134; MR1297668; Zbl 0814.34033

[22] P. Puccr, ]. SERRIN, Asymptotic stability for intermittently controlled nonlinear os-
cillators, SIAM ]. Math. Anal. 25(1994), No. 3, 815-835. https://doi.org/10.1137/
S0036141092240679; MR1271312; Zbl 0809.34067

[23] P. Puccr, J. SERRIN, Asymptotic stability for ordinary differential systems with time
dependent restoring potentials, Arch. Rational Mech. Anal. 132(1995), No. 3, 207-232.
https://doi.org/10.1007/BF00382747; MR1365829; Zbl 0861.34034

[24] R. A. SmitH, Asymptotic stability of x” + a(t)x’ +x = 0, Quart. J. Math. Oxford
Ser. 12(1961), No. 2, 123-126. https://doi.org/10.1093/qmath/12.1.123; MR0124582;
Zbl 0103.05604

[25] J. Sucte, Asymptotic stability of coupled oscillators with time-dependent damping, Qual.
Theory Dyn. Syst. 15(2016), No. 2, 553-573. https://doi.org/10.1007/s12346-015-0175-
7; MR3563436; Zbl 1364.34085

[26] G. R. TomLINsON, K. WORDEN, Nonlinearity in structural dynamics: detection, identification
and modelling, Institute of Physics Publishing, Bristol, 2000. Zbl 0990.93508

[27] UNKNOWN AUTHOR, https://www.sharetechnote.com/html/DE_Modeling_ Example_
SpringMass.html.

[28] Y. X1N, G. Xu, N. Su, Dynamic optimization design of cranes based on human—crane-rail
system dynamics and annoyance rate, Shock and Vibration 2017(2017), 8376058. https:
//doi.org/10.1155/2017/8376058



2

/c

Electronic Journal of Qualitative Theory of Differential Equations
2023, No. 17, 1-18; https://doi.org/10.14232/ejqtde.2023.1.17 www.math.u-szeged.hu/ejqtde/

7R~

<

X K\
NAN

A
N\

N

Ya

N

(

>

Existence and asymptotic behavior of nontrivial
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with steep potential well
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Abstract. In this paper, we consider the following nonlinear Klein-Gordon-Maxwell
system with a steep potential well

—Au+ (Aa(x) +Du — u(2w + ¢)pu = f(x,u), inR3,
AP = p(w +P)u?, inRR3,

where w > 0 is a constant, # and A are positive parameters, f € C(R®> x R,R) and
the nonlinearity f satisfies the Ambrosetti-Rabinowitz condition. We use parameter-
dependent compactness lemma to prove the existence of nontrivial solution for y small
and A large enough, then explore the asymptotic behavior as 4 — 0 and A — co. More-
over, we also use truncation technique to study the existence and asymptotic behavior
of positive solutions of the Klein-Gordon-Maxwell system when f (u) := |u|7~2u where
2<g <4

Keywords: Klein-Gordon-Maxwell system, asymptotic behavior, variational method.

2020 Mathematics Subject Classification: 35]60, 35]20.

1 Introduction

In recent years, the Klein-Gordon-Maxwell system has been widely studied. It is well known
that this type of system has a strong physical meaning, and it arises in a very interesting
physical context: as a model describing the nonlinear Klein-Gordon field interacting with the
electromagnetic field. More specifically, the model represents standing waves 1 = u(x)e™*
in equilibrium with a purely electrostatic field E = —V¢(x), where ¢ is the gauge potential.
Using the variational method, Benci and Fortunato [4, 5] first introduced the Klein-Gordon-
Maxwell equations. In addition, they first studied the following special Klein-Gordon-
Maxwell system

{—Au+ (M3 — (w+¢)2u = [u" u, inR® (1.1)

Ap = (w + ¢p)u?, inR3,

™ Corresponding author. Email: ccfygd@sina.com
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where g € (4,6), mp > 0 and w > 0 are constants, and establish the existence of infinitely
many solitary wave solutions when 0 < w < mg and 4 < g < 6. D’Aprile and Mugnai in [12]
also obtained the same conclusion for system (1.1) if one of the following assumptions holds:

(i) 0<w<+/(q—2)/2mgand q € (2,4);
(i) g € [4,6) and 0 < w < my.

By a Pohozaev-type argument, D’Aprile and Mugnai in [13] showed that (1.1) only has a
trivial solution when 0 < g < 2 or g > 6. Inspired by [5,12], Azzollini and Pomponio [1]
proved that (1.1) admits a ground state solution if one of the following conditions holds:

(i) 4<g<6b6and 0 < w < my;

(i) 2<g<4and 0 < w < /(g —2)/(6— q)my.

This range has been improved by authors in references [2] and [25]. We point out that the
approaches used in [1,2,25] are heavily dependent on the form f(u) := lul"?u. After that,
many mathematicians focused on the more general system. For instance, Chen and Tang
in[10] generalized the above results to the nonlinear term f(u). They obtained a ground state
solution with positive energy under some parameter limitations and f satisfied a superlinear
condition.

It can be seen that many early articles are about Klein-Gordon-Maxwell with constant
potential, and later more and more researchers concentrated on the non-constant potential. In
recent years, there are a large number of articles concerning the existence, nonexistence and
multiplicity of nontrivial solutions for the following problem (1.2).

—Au+V(x)u — 2w+ ¢)pu = f(x,u), inR3, 1.2)
Ap = (w + ¢)u?, in IR3. '

In [16], He obtained infinitely many solutions of (1.2). Later, Li and Tang [17] improved
the results of [16]. From these two references, we can see that V(x) satisfies the following
condition:

(V) V(x) € C(R3,R), iﬂ%f V(x) > 0 and there exists ay > 0 such that

lim meas{x eR3: |x —y| <ap, V(x) < M} =0, VM >0.

y|—o00

Condition (V) plays a crucial role in guaranteeing the compactness of embedding of the
weighted Sobolev space. If V(x) is radially symmetric, we recall (see [6] or [23]) that, for
2 < s < 6, the embedding H}(R3) < L5(IR®) is compact. Without this conditions we can
see that the compactness is lost. It will make it more difficult for us to deal with the Klein-
Gordon-Maxwell system. In this paper we consider the potential satisfied (a;)—(a3) below.
The conditions (a7)—(a3) were first introduced in [3] and Aa(x) + 1 was called a steep potential
well when A was large. In [20], Liu, Kang and Tang studied the existence of positive solution
for the Klein-Gordon-Maxwell system with steep potential well where f € C(R® x R,R)
satisfied the following conditions:

(f]) There exists a C > 0 such that |f(x, )| < C|t| for all (x,t) € R? x R.
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(f3) There exists a k € {1,2,...} such that uniformly in x € R?,

v < liminff(x’t) < lim sup flxt)
t=0 -0 f

< Uk41-

(f3) limsup f—(f’t) < 1.

[t|—00

Where 0 < v; < v, < v3 < --- were the eigenvalues of the following eigenvalue problem (1.3)
and can be written as 0 < pq < pp < puz < - - - counting their multiplicity.

{—Au +u=puu, in(), (13)

u=20, on 0Q).

For more articles about steep potential well, readers can refer to [7-9,11,17,19,21,22,24]
and references therein for relevant conclusions.

In [27], Zhang and Du studied the existence and asymptotic behavior of positive solutions
for Kirchhoff type problems with steep potential well by combining the truncation technique
and the parameter-dependent compactness lemma. Motivated by the above works, one of the
purposes of this paper is to investigate the existence and asymptotic behavior of nontrivial
solution for the following Klein-Gordon-Maxwell system

—Au+ (Aa(x) +1)u — u(Rw + ¢)pu = f(x,u), inR3, (1.4)
Ap = plw + )i, inR?, '

where w > 0 is a constant, u and A are positive parameters, f € C(R> x R,R) and a(x) satisfy
the following conditions:

(a1) a(x) € C(R% R) and a(x) > 0 on R
(a2) there exists ¢ > 0 such that A. := {x € R®: a(x) < c} is nonempty and bounded;
(a3) Q = inta~1(0) is non-empty and has smooth boundary with Q = a~1(0);

X,)

(f1) lim % = 0 uniformly for x € R5;

|s|—0
(f2) f € C(R®x R,R) and there exist c; > 0, and p € (4,6) such that

fxs)] < er(1+[sP7h);

(f3) there exist & > 4 such that 0 < aF(x,s) < f(x,s)s uniformly x € R5.

Remark 1.1. In [16], in order to show that the associated functional has a mountain pass geom-
etry and obtain the boundedness of Cerami sequence, the authors used a global Ambrosetti-
Rabinowitz condition (f3). To the best of our knowledge, there are only a few articles about
the asymptotic behavior of the solution of the Klein-Gordon-Maxwell system with a steep
potential well and f satisfies the super-quartic condition.

The following results holds:
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Theorem 1.2. Suppose that (a1)—(az) and (f1)—(f3) are satisfied. Then there exist AT and po > 0
such that for A > Ay and p € (0, po), problem (1.4) has at least a nontrivial solution u,, € E,.
Moreover, exist constants 1y, M > 0 (independent of A and ) such that

T < Hu)‘/HHA <2vVM forall A and p. (1.5)

Then we show the asymptotic behavior of the nontrivial solution for system (1.4) as y — 0
and A — co. By means of Theorem 1.2, we have the following results.

Theorem 1.3. Let u,, be the nontrivial solution of (1.4) obtained by Theorem 1.2. Then for each
€ (0, po) be fixed, uy, — uy in H'(Q) as A — oo, where u,, is a nontrivial solution of

—Au+u— 2w+ ¢)pu = f(x,u), inQ,
Ap = u(w + ¢)u?, in Q, (1.6)
u=0, in R3\ Q.

Theorem 1.4. Let u,, be the nontrivial solution of (1.4) obtained by Theorem 1.2. Then for each
A € (A],00) be fixed, up, — uy in Ey as yp — 0, where u, is a nontrivial solution of

{—Au +(Aa(x) + Vu = f(x,u), inR, (1.7)

u € H'(R3).

Theorem 1.5. Let u, , be the nontrivial solution of (1.4) obtained by Theorem 1.2. Then u, , — g
in HY(Q)) as p — 0 and A — oo, where uy is a nontrivial solution of

{—Au tu=fxu), inQ, (18)

u=20 on 9Q).

Remark 1.6. For Theorem 1.2, applying the Mountain Pass Theorem directly to the associated
functional I, ;,, we can get a Cerami sequence for p > 0 small enough. Then we will obtain
the boundedness of this Cerami sequence.

Next, we consider the following Klein-Gordon-Maxwell system where f(u) := |u|1"2u,

(1.9)

—Au+ (Aa(x) +Vu — uRw + ¢)pu = |u|17%u, in R?,
Ap = p(w + ¢)u?, in R,

where w > 0 is a constant, y and A are positive parameters, 2 < g < 4 and a(x) also satisfies
(a1) — (a3).

Remark 1.7. In particular, we note that the nonlinearity u — f(u) := |u|172u with 2 < q < 4
does not satisfy the Ambrosetti-Rabinowitz type condition which would readily obtain a
bounded Palais-Smale sequence or Cerami sequence.

Then we have the following results.

Theorem 1.8. Suppose that (a1) — (az) and 2 < q < 4 are satisfied. Then there exist A} and
pa, M2 > 0 such that for A > A and p € (0,min{pq, po}), problem (1.9) has at least a positive
solution 1), € E). Moreover, exist constants 11, T > 0 (independent of A and p) such that

T < HﬁM,H/\ < T forall Aand . (1.10)
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Theorem 1.9. Let 1y, be the positive solution of (1.9) obtained by Theorem 1.8. Then for each
p € (0,min{py, po}) be fixed, iy, — 0, in H'(Q) as A — oo, where 1, is a positive solution of

—Au+u—puQRw + ¢)pu = [ulP~2u, in Q,
Ap = p(w + ¢)u?, in Q, (1.11)
u=0, in R\ Q.

Theorem 1.10. Let 1), be the positive solution of (1.9) obtained by Theorem 1.8. Then for each
A € (A3, 00) be fixed, iy, — 1y in Ey as y — 0, where i1, is a positive solution of

{—Au +(Aa(x) + D = [u]P~2u, in R?, (1.12)

u € H'(R®).

Theorem 1.11. Let i1 ;, be the positive solution of (1.9) obtained by Theorem 1.8. Then i1, ,, — tlo in
HY(Q) as u — 0 and A — oo, where 1l is a positive solution of

—Au+u=ulP2u, inQ,
{ +u =y (1.13)

u=20 on 0Q).

Remark 1.12. For Theorem 1.8, if we apply the Mountain Pass Theorem directly to the asso-
ciated functional | Au - We also can get a Cerami sequence for ¢ > 0 small enough. But it is
difficult to obtain the boundedness of this Cerami sequence. Then we will use a new method
(refer to [27]) called truncation technique to get over this difficulty.

The remainder of this paper is organized as follows. Next Section 2 we derive a variational
setting for problems and give some preliminary lemmas. In Section 3 we will prove Theorem
1.2 to Theorem 1.5. Section 4 is devoted to the proof of Theorem 1.8 to Theorem 1.11.

2 Variational setting and preliminaries

Throughout this paper, we use the standard notations. We denote by C,c;,C;,i = 1,2,...
for various positive constants whose exact value may change from lines to lines but are not
essential to the analysis of problem. We use “—" and “—" to denote the strong and weak
convergence in the related function space respectively. We will write 0(1) to denote quantity
that tends to 0 as n — co. X’ denotes the dual space of X.

||, denotes the usual Lebesgue space with the norm L(R®) for any g € [1,00]. H'(R3)
denotes the usual Sobolev space with the standard scalar product and norm ||-|| ;. DV?(IR%)
is the completion of C{°(IR®) with respect to the norm ||u|p12 = ([gs \Vu]zdx)%.

In the paper, we work in the following Hilbert space

E:= {u € H'(R®) : /Rsa(x)uzdx < oo}

with the inner product and norm

= ([ (VP + (o) + D))l =
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For A > 0, we also need the following inner product and norm

Julla = (V82 o) + 00l = 3.

It is clear that ||u|| < ||u|[x for A > 1. Set Ey = (E, || - ||1)-

Referring to [28], it is well known that E < L5(R3) is continuous for s € [2,6]. Thus,
combining Sobolev embedding, for each s € [2,6], there exists d; > 0 (independent of A > 1)
such that

luls < ds||u|| <ds|lul|, forueckE. (2.1)

S is the best Sobolev constant for the embedding of D?(IR%) in L%(R%) and

[Vul3

S = in >
ueD2(R3)\{0} |u|2

It is easy to see that the weak solutions (u,¢) € E) x D?*(IR%) of system (1.4) are critical
points of the functional given by

Gapulu, ¢) = ;/]RS (IVul* + (Aa(x) + 1)u — |[V¢|* — u(2w + ¢)pu?) dx — /RS F(x,u)dx. (2.2)

The functional G, , (1, ¢) is strongly indefinite, i.e., unbounded from below and from above on
infinite dimensional spaces. We need the following technical results to study of the functional
in the only variable u.

Lemma 2.1 ([4,12]). For any u € H'(R®), there exists a unique ¢ = ¢, € DV?(R3) which solves
equation
—Ap + utp = —wu. (2.3)

Moreover, the map ® : u € H (R3) — ® [u] := ¢, € DV?(R3) is continuously differentiable, and
(i) —w < ¢, <0on theset {x € R3u(x) #0};
(i) ullpna < CllalP and fo Iguludx < C [lully 5 < C ul*

Lemma 2.2 ([1, Lemma 2.7]). If u, — u in H'(R3), then up to a subsequence, ¢, — ¢, in
D'2(IR3). As a consequence I'(u,) — I'(u) in the sense of distributions.

The following lemma is a stronger version of the Mountain Pass Theorem, so we can find
a Cerami sequence.

Proposition 2.3 ([15]). Let X be a real Banach space with its dual space X', and suppose that | €
CY(X,R) satisfies
max {J(0),J(e)} <u <y < inf J(u)

[ullx=p

for some u < 1, p > 0and e € X with |||y > p. Let ¢ > 1 be characterized by

— inf 1),
c ;relrg[%](’r( )

where T = {y € C([0,1], X) : v(0) =0, (1) = e} is the set of continuous paths joining 0 and e.
Then there exists a sequence {u,} C X such that

Jun) > c>n and (14 [Jun]|y) H]’(un)HX,—>O as n — oo.
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3 The existence and concentration phenomenon of solution of (1.4)

We proof Theorem 1.2 to Theorem 1.5 in this section. By (2.3), multiplying both sides by ¢,
and integrating we obtain

/]1{3 IVp|2dx = — /]R3 wyutdx — /]1{3 P2utdx. (3.1)

Using (3.1), we can rewrite G, , as a C' functional I, , : Ey — R given by

Iy (u 2/ (|Vul® + (Aa(x) + 1)u? x——/ Wyl de—/]R F(x,u)dx. (3.2)

Moreover, for any u,v € E,, we have

(I (u),0) = /]1{3 (Vu-Vo+ (Aa(x) +1)uv)dx — u /Rs(Zw + ¢y ) pyuvdx — /Raf(x,u)vdx.
(3.3)
To begin with, we show that the I, ;, has the mountain pass geometry.

Lemma 3.1. Suppose (a1)—(az) and (f1)—(f3) are satisfied. There exists pg > 0 for each u € (0, po)
and A > 1. Then there exist p, p > 0 and ey € E,, |leg||, > p, such that

Hllzﬂlfphy( ) > B >02>max{I),(0),I),(e)}

Proof. From (f;) and (f2), for each € > 0 there exists C; > 0 such that for all (x,s) € R® x R
£ (x,8)] < els| + Cels|P~! (34)

and c
Fx)] < s + =l (35)

We choose ¢ =
(3.5) we have

2d2’ where d; > 0 is from (2.1). For each u € E), by Lemma 2.1, (2.1), (3.2) and

D) 2 5 Dl = 1 = el
1 ed3 Ced)y
> (55 ) Il = =5 i

1 ngp -2 2
:<4— ) el

where the constants d, > 0 and C. > 0 are independent of  and A. Then there exist p > 0

small enough and > 0 such that Hlﬂlf Inu(u) > B> 0.

Then, we define the functional J, : Ey — R by

Ja(u) = ;/}R3(]Vu|2+ (Aa(x) +1)u?)dx —/ F(x,u)dx.

R3

By (f1) and (f3), there exist ¢3,c4 > 0 such that

F(x,s) > c3ls|® — cys>. (3.6)
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Let e € C°(Q2) be a positive smooth function, since a > 4 then we have

2
Ja(te) = tz/Q(!Ve!%rez)dx—/nlf(x,te)dx

t2
—/ (|Ve!2+ez)dx+c4t2/ ezdx—c3t"‘/ le|*dx
2 Jo o} Q

— —o00,

IN

as t — oo. Therefore, there exist ty > 0 large enough and let ey := fge such that J)(ep) < —1
with [|eg||, > p. From Lemma 2.1(i), then

Iy u(eo) = Ja(eo) — g /11{3 Wepe,e5dx
2
< -1+ B jeol,

there exists o = w% el > 0 (independent of A) such that I) ,(eg) < 0 for each A > 1 and

1 € (0, po). The proof is completed. O
Then we consider the mountain pass value

CAp = %2%533’1(] Luu(v (1)),

where I' = {7y € C([0,1],X) : 7(0) =0, v(1) = eo}. From Proposition 2.3 and Lemma 3.1, we
can obtain that for each A > 1 and y € (0, j49), there exists a Cerami sequence {u,} C E, such
that

D) = €2, >0 and (14 ) || 24, (00)

—0 asn— oo. (3.7)
E\

Next we prove that c, ;, has an upper bound.

Lemma 3.2. Suppose (a1)—(az) and (f1), (f3) hold. Then for each A > 1 and u € (0, po), there exists
M > 0 (independent of u and A) such that c, , < M.

Proof. By (f1), (f3), we have (3.6). Since ey € C°(Q2) and Lemma 3.1, we obtain that

Iy, (teg) = 2/ (|Veo|> +e5)dx — & /wqbteo teg) dx—/Q (x, teg)dx
2
How? /e%dx+64t2/ e%dx—c;,t”‘/ leg|*dx,
2 Q Q Q

2
where a > 4. Therefore, there exists M > 0 (independent of y and A) such that

Ve 1 +e5)

cry < max I ,(teg) < M.
At = te[0,1] M( 0) =

This completes the proof. O

Lemma 3.3. Assume (a1)—(az) and (f1)—(f3) hold, for each A > 1, u € (0, o), if {un} C Erisa
sequence satisfying (3.7), then we have, up to a subsequence, {u, } is bounded in E,.
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Proof. From (3.2), (3.3), (f3), Lemma 2.1(i) and Lemma 3.2, « > 4, for n — oo we have

M+o0(1) > CAu +0(1) :I/\,y(un) - <IAy( n)s U

:(;_ ) | n”A“’( ) / Wy, 12dx
+g/]RS(pu”u%dx+/ < fx,uy)u F(X,Mn)> dx

>l

which implies that {u, } is bounded in E, and ||u,||» < 2vM as n — oo, where M is given by
Lemma 3.2. 0

Then we will give the compactness conditions for I ,. Before that, we introduce a lemma
to deal with nonlinear term.

Lemma 3.4 ([14]). Assume that (f1) and (f2) hold. If u, — u in H'(IR®), then along a subsequence

of {un},

lim sup
n—oo
geH! (R?), 9] n <1

[ o) £ =) — e ) gae| =0

Lemma 3.5. Suppose that (aq1)—(az) and (f1)—(f3) hold. If {u,} C E, is a sequence satisfying (3.7),
up to a subsequence, there exists A} > 1 such that for each y € (0, uo) and A € (Aj, 00), {u,} C E,
contains a convergent subsequence.

Proof. By Lemma 3.3, we know that {u,} is bounded. We may assume that there exists u € E,
such that

u, =~ u inkE,,
up, —u inL (R®,2<s<6, (3.8)

U, —> u ae.in R3.

From Lemma 2.2 and (3.7), we have (I} ,(u),u) =0, ie,

H”H%\—Zﬂ/ we,u>d y/ P>uldx — / f(x,u)udx = 0. (3.9)
R3 R3
Next, we prove that u,, — u in E). Let v, = u, — u, by (a2), then
1 1
2 _ 2 2 2 s
ould = [, dhet [ dhdx < ool o) < Grlleali +o(0). (310

It follows from Brézis-Lieb Lemma the ([26, Lemma 1.32]) that
lunll = lell = lloallX +o(D). (3.11)
Then, by (3.10), Holder and Sobolev inequalities, we have
[Only < loul8lonls™" < 872 [on§|Voul3™* < S (cA) Fflonfla +o(1),  (3.12)
where 6 = 62_7’7 > 0. Employing Lemma 3.4, we have

1
[z

[ o) = F(x,0) = Fx,w)]ntx| = o(1),
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From (3.8), v, = 0in E,, v, — 0 in LfOC(IR3) for2 <s < 6 and v, — 0 a.e. on R3, there have

Hun||A/ f e, ttn Jundx < {/ flx,u)u+ f(x,00)00 + f(x,00)u+ f(x, u)vndx]

Hunlh

+ HuiHA /]1{3 [f(x,un) — f(x,0n) — f(x,u)]u,dx (3.13)
’MnHA [/ flou udx+/ f(x,vn vndx} +o0(1).

From (3.5), (3.10)—(3.13), Lemma 3.3 and Fatou’s Lemma, choose ¢ = then

dZ/

0(1) = (I, (un), un) = (I, (u), u)

= unlt =1 [ 20+ u ) i3x = [ fr ) nd
—ul 1 [ @+ gu)puridx+ [ flxujudx

> ol = [, £ on)oudx +o(1)

> ||Un||%\ - 5|Un|% - C6|Un|§ +o(1)
1

> [5 = Ce(4dyV'M)P 251 (eA) w13 + 0(1).

Hence, there exists A1 = [2C,(4d, VM)P~259-1c70]4 such that the previous coefficient of ||v, 13

is greater than 0 when A > A;, where M is given by Lemma 3.2. Then choose A} = max{A,1}
such that v, — 0in E, for all A > AJ. O

Proof of Theorem 1.2. Assume (a1)—(a3) and (f1)—(f3) are satisfied. By Lemma 3.1, there exists
po > 0 such that for every A > 1 and u € (0, o), Ip, possesses a Cerami sequence {u,} at the
mountain pass level ¢, , and satisfied

Iyu(up) = crp >0 and (14 Hun||/\)||lgry(un)||E/A — 0, asn — oo.

From Lemmas 3.2 and 3.3, we thus deduce that for every A > 1 and u € (0, o), after passing
to a subsequence, {u,} is bounded in E, and |u,|[y < 2v/M as n — co. It follows from
Lemma 3.5 that exists A} > 1 such that for each u € (0,9) and A € (A}, c0), the sequence
{uy} has a convergent subsequence in E,. Then there exists u, , € Ej, such that u, — u, , as
n — oo, and thus

||uA,y’|A <2vM, I)\,y(u/\,y) = Cru and I;\,H(u/\'l/l) =0.

Now we claim that u,, # 0. Otherwise, Iy ,(u,) = 0 = c),, which is a contradiction to
cru > 0. Moreover, by the Holder inequality, Lemma 2.1(ii) and Sobolev inequality, we have

ottt ([ rae) ([ one)

< Celi||pu, , I Dozl eI
< Clluaull3-
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Then, since <I§W(u Au)stry) = 0, Lemma 2.1(i) and (3.4), there exists ¢ = we have

1

2437

fonulld =20 [ gy +p [ 67 03 x4 [ e i
< poCrllunpull} + ed5luppll3 + Cedblltunpllh-

Hence, there exists 79 > 0 (independent of y and A) such that ||u, ,||x > 10 for all u € (0, o)
and A € (A}, 00). This finishes the proof. O

Proof of Theorem 1.3. Let u € (0, o) be fixed, then for any sequence A, — +oo. Let u,, := u,,
be the nontrivial solution of (1.4) obtained by Theorem 1.2. From Theorem 1.2 we have

0 <1 < ||un|lp, <2VM forn — oo. (3.14)
Thus, up to a subsequence, we may assume that

Uy —~uy ;inkE,

uy — uy, in L (R?), 2 <5 <6,

Up — Uy ae.in R3.

It follows from (3.14), Fatou’s Lemma and (a7) that

=0.

413
< 2 < Tlimi 2 < Timi An
0< /Rs(a(x) + Duydx < hrrlrl)g}f ]RS(a(x) + 1usdx < hﬂglf -
Hence, u, = 0 a.e. in R*\ a71(0), and u,, € H'(Q) by the condition (a3).
Now we show that u, — 1, in L¥(R®) for all s € (2,6). Otherwise, by Lions’ vanishing
Lemma ([18,26]) there exist §,7 > 0 and x,, € R3 such that

w— Uy )2dx > 6.
/Br(xﬂ)(u u‘u) g -

This implies that |x,| — co as n — oo, and so |B,(x,) N Ac| — 0. By the Holder inequality, we
then conclude that

(up —uy)?dx — 0 as n — co.
B, (xy)NA.

Consequently, we get

2> (cA, 1/
lually, 2 (cAn+1) By (x,)N{a(x)>c}

= (C)Ln + 1) (/By(xn)(un — uy)2dx — /Br(xn)ﬂAC (Mn — uy)zd_’X) — 00,

as n — oo, which contradicts (3.14).
We then prove that u, — u, in E. Since

24x = (cAy 1/ y—11,)?d
Ui = (At D) f ntatayzg T )

<I§\n,y(un)luﬂ> = <I;Ln,y(un)/ uy> =0,

we have

Il =20 [ wpuiddr—p [ @ uddx— [ Fxun)undx =0,
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/]Ra (Vuﬂv”y T (Aualx) + 1)14”1,[”) dx — 2y /]Rs Wy, Uty dx
— ]’l /]R3 (Pinunuﬂdx - ‘/1;3 f(x, Lln)uydx — 0'

Since 1, = 0 a.e. in R® \ 271(0) and by Lemma 2.1(ii), (3.14), we deduce that
/1R3 Puu, i (U — ”y)dx < |Pu, |6lttn|2|un — ”;4|3 < Cllgu, |l pra a2 |tn — ”;4|3 — 0,
/1R3 ‘Pi,,”n(”n - ”y)dx < |‘Pun|%|”n|3|”n - ”y‘3 < CH(/’unHZDLZHMnHA’”n - “y|3 — 0,

/]Rsf(x, Up)(un — uy)dx — 0.

Thus, limy, . ||y ||%n = ||uy||*>. Then from the weakly lower semi-continuity of norm, we have
[ty ||* < Hminf [|u,||* < limsup [u,||* < limsup [|uq |3 = |lu]/* (3.15)
n—re0 1300 1300 "

Consequently, we yield that u, — u, in E.
Finally, we only need to show that u, is a weak solution of (1.6). Now for any v € C3°(Q2),

since <I§\n,y(u”)' v) = 0, it is easy to check that

/()(Vuva +uyuv)dx — /Q(Zw + Pu,, ) Pu, upvdx — /Qf(x, uy)vdx = 0.

i.e., uy is a weak solution of (1.6) by the density of C§°(Q)) in H'(Q). From (3.14) and (3.15),
we can see that

[upll = Hm [Junl|p, > 0 >0,
n—oo
so uy # 0. Thus, u, is a nontrivial weak solution of (1.6). O

Proof of Theorem 1.4. Let A € (A}, o) be fixed, then for any sequence y, — 0. Let u, := u,,
be the nontrivial solution of (1.4) obtained by Theorem 1.2. From Theorem 1.2, we have

0< 1 <|unllp, <2VM forn — oo. (3.16)

Passing to a subsequence , we may assume that u, — u, in E,. Note that ijﬂ (un) = 0, we
can obtain that u, — u, in E, as the proof of Lemma 3.5.

To complete the proof, we will show that u, is a nontrivial solution of (1.7). Now for any
v € E,, since <I§wn (un),v) =0, it is easy to check that

/ Vu Vo + (Aa(x) + 1)uyvdx :/ f(x,up)vdx,
R3 R3

i.e., u, is a weak solution of (1.7). Then, by (3.16) we see that u, # 0. Therefore, u, is a
nontrivial weak solution of (1.7). This completes the proof. O

Proof of Theorem 1.5. Following the same argument as in the proof of Theorems 1.3 and 1.4, we
get the conclusion. O
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4 The existence and concentration phenomenon of solution of (1.9)

In this section, we will give the asymptotic behavior of positive solution of (1.9), and de-
vote to prove Theorem 1.8 to Theorem 1.11. We will use truncation technique to obtain the
boundedness of Cerami sequence. Before that, we write the functional corresponding to (1.9).
fMl : Ex — R given by

Dyu(u 2/ (IVul* + (Aa(x) + 1)u? x——/ Wy 2dx—q/3]u+|‘7dx (4.1)
and IAM, € C!. Moreover, for any u,v € E,, we have

(I, (u),0) = /]R3 (Vu-Vo+ (Aa(x) +1)uv)dx — u /IRS(Zw + ¢u ) pyuvdx — /}Rs |t 2uTvdx.

4.2)

Then we define a cut-off function 7 € C'([0,00),R) satisfying 0 < 1 < 1, 5(t) = 1 if

0<t<1n(t)=0ift > 2, r?a0x|77’(t)] < 2 and 5/(t) < 0 for each t > 0. Using 7, for every
>

T > 0 we then consider the truncated functional IAAT,V : Ex — R defined by

L (e A AT 43

We can see that IAAT " is of class C1, then for each u,v € E,

(0,0 =i~ Fo (100) 00 [ cop
(4.4)

i3 oz
wy( /]R3(2w+¢u)4>uuvdx—/]R3 |u™ |7 *u"vdx.
It is easy to see that every nontrivial critical point of [ A 18 a positive solution of (1.9), and
we will prove it in the following lemma.

Lemma 4.1. Suppose that 2 < q < 4 and (a1)—(as) are satisfied. Then every nontrivial critical point
of IAM, is a positive solution of (1.9).

Proof. Let u € E, be a nontrivial critical point of [, ,, then <I}/H(u),v) =0forallv € Ey. We
have

/3 (Vu-Vo+ (Aa(x) + 1)uv)dx — u / (2w + ) puuvdx — /3 lut|P2uTvdx = 0. (4.5)
R R R
Taking v = u~ = —min{u,0} in (4.5), by Lemma 2.1(i) we obtain that

IR < 1 =g [ 20+ @ ) u P =0

which is a contradiction. Then we can see u > 0 in R®. Hence, the strong maximum principle
and the fact u # 0 imply that u > 0 in R3, and the proof is ready. O

Lemma 4.2. Suppose 2 < q < 4 and (a1)—(a3) are satisfied. There exists y; > 0 for each T > 0,
u € (0,p1) and A > 1. Then there exist p, p > 0 and & € Ej, ||&||, > p, such that

inf I7 (1) > p > 0> max {IA}{P(O),T){H(EO)} .
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Proof. From Lemma 2.1, (2.1) and (4.3), for each u € E), we have

A 1 2 1 2 1 1 -2
) 2 3 Dol = 2l =l (5~ Sl ),

where the constant d; > 0 is independent of T, p and A. Since q > 2, there exist o > 0 small
enough and B > 0, such that inf|,_; IAAT’H(L{) > B> 0.
Then, we define the functional [, : E; — R by

A

fa(u) = ;/H{s(|w|2+ (Aa(x) —I—l)uz)dx—;/w 7,

Since 2 < q < 4, similar to Lemma 3.1, there also exist fy > 0 large enough and let &) := fpe
such that [, (&) < —1 with ||&||, > p. From Lemma 2.1(i), then

I . (20) = Ja(20) — (” OHA>/ Wepe,Eodx
.”

w?
!€o|2,

there exists yq := 2|e g 0 (independent of A and T) such that [T M(eo) <OforeachT, A >1

and u € (0, p1). The proof is completed. O

Then we also can consider the mountain pass value

N : 7T
¢y, = inf max [ t)),
At Yer ielo] A,y(’Y( )

where I' = {7y € C([0,1], X) : 7(0) =0, v(1) = & }. From Proposition 2.3 and Lemma 4.2, we
obtain that for each T > 0, A > 1 and p € (0, 1), there exists a Cerami sequence {1, } C E,
such that

Hu() =&, >0 and (14 ll,) | (0,0 (2)

—0 asn — oo. (4.6)
E\

Since 2 < g < 4 and the definition of #(t), similar proof to Lemma 3.2, we can find a
M > 0 such that CAK,V has an upper bound, i.e.,

< M. 4.7)
Lemma 4.3. Assume 2 < q < 4 and (a1)—(a3) hold, let T = (M+1) Then there exists pp > 0

small enough, for each A > 1, y € (0, min{uy, po}), if {in} CEyisa sequence satisfying (4.6), then
we have, up to a subsequence,

sup [[d,]|x < T.

neN

Proof. Otherwise, there exists a subsequence of {il,}, still denoted by {7, } such that ||7,|/, >
T. It can be divided into two situations:

(i) T < ||tta]|x < V2T; (i) ||@iq][n > V2T.
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Firstly, for the case (i), due to (4.3), (4.4) and Lemma 2.1 we have

} 1 o
M+o(1) > ¢, +o(1) = I} , (1) — 5((1;{”)'(%)/%)

— 1_1 A2 " |2 nHZ
- (2 q>HunHA+qT217( 00l [ o,
2
+<2—;>M<HWHA>/ s, Wl + 77(” el >/ 93, i

1 1\, » <2 1) )
>z ==l = | = — 5 |uw?d;||d,
> (50 )1l = (3= 3w ln
. 4 243
> (1) - 202V 1),

q—2
(A=) PRV > 0 such that y €

(0, min{puq, pi2}). Then we deduce that ||i,|, > /2T for n large enough. With the defini-
tion of 7(t), we conclude that

which is a contradiction when we choose >

- R A . 1, . A
M+o(1) 2 &5, +o(1) =1} , (it) — §<(I{y)’(un)1un>
1 1Y\, .
(377 )l
>2(M+1),
this is obviously a contradiction. The proof of this lemma ends. ]

Up to now, we have proved that the sequence {1, } given by (4.6) satisfies ||id,||, < T. In
particular, this sequence {1, } is also a Cerami sequence at level Cﬁ,y for I Agr 1€,
Dou(n) = €5, >0 and (14 [|a]],) =0 asn — oo

1)
A

Then we will give the compactness conditions for A

Lemma 4.4. Suppose that 2 < q < 4 and (a1)—(a3) hold. If {i1,} C E, is a sequence satisfying (4.6),
up to a subsequence, there exists Ay > 1 such that for each € (0, min{uy, pu2}) and A € (A3, 0),
{61,} C E, contains a convergent subsequence.

Proof. Proof is similar to Lemma 3.5, there exists A, = [(quT)‘?dSe*lc*Q]% where 6 = 62;{; >0
and choose A = max{Ay,1} such that (i1, — 1) = 0in E, for all A > AJ. O

Proof of Theorem 1.8. Assume 2 < g < 4 and (a;)—(a3) are satisfied. By Lemma 4.2, there exists
#1 > 0 such that for every A > 1 and u € (0, 1), f){y possesses a Cerami sequence {il,,} at the
mountain pass level 63{,]4. From (4.7) and Lemma 4.3, we thus deduce that there exist yo > 0
such that for every A > 1 and p € (0, min{, y2}), after passing to a subsequence, {il,} is a
Cerami sequence of [, satisfying [|,][, < T, i.e.,

sup||dn|r < T, IAM!(L?”) — é{u and (1+ Hﬁn||A)HIA§\,,4(ﬁn)HE/A — 0, asn — oo.
nelN



16 X. Wen and C. Chen

It follows from Lemma 4.4 that exists A5 > 1 such that for each p € (0, min{yuy,p2}) and A €
(A3,00), the sequence {il,} has a convergent subsequence in E,. Then there exists 71, , € E,,
such that i, — i), as n — oo, and thus

7 < 7 ] — AT i ] —
7 — 4 7 ’ ” ” ’
[Arullr < T, Dyu(iia,) =6, and I, (i) =0.

Similarly, we can prove that ) , # 0 and there exists 77 > 0 (independent of y and A) such
that ||, ,,||» > 7 for all y € (0, min{py, p2}) and A € (A3, ). O

Proof of Theorem 1.9 to Theorem 1.11. Please refer to the proofs of Theorems 1.3 to 1.5. The
detailed proofs are omitted here.
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