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Enhanced imagistic methodologies augmenting radiological image
processing in interstitial lung diseases . . . . . . . . . . . . . . . . . . . . . . . . 146

N. Baskar, T. A. Mangam, M. Acharya
On connectivity of the semi-splitting block graph of a graph . 170

IV



Acta Univ. Sapientiae Informatica 15, 1 (2023) 1–9

DOI: 10.2478/ausi-2023-0001

On domination in signed graphs

James JOSEPH
CHRIST(Deemed to be University)

Bangalore
Karnataka, India

email:
james.joseph@res.christuniversity.in

Mayamma JOSEPH
CHRIST(Deemed to be University)

Bangalore
Karnataka, India

email:
mayamma.joseph@christuniversity.in

ORCID:0000-0001-5819-247X

Abstract. In this article the concept of domination in signed graphs is
examined from an alternate perspective and a new definition of the same
is introduced. A vertex subsetD of a signed graph S is a dominating set, if
for each vertex v not inD there exists a vertex u ∈ D such that the sign of
the edge uv is positive. The domination number γ(S) of S is the minimum
cardinality among all the dominating sets of S. We obtain certain bounds
of γ(S) and present a necessary and sufficient condition for a dominating
set to be a minimal dominating set. Further, we characterise the signed
graphs having small and large values for domination number.

1 Introduction

A signed graph is an ordered pair S = (G,σ), where G = (V, E) is a simple
graph called the underlying graph of S and σ : E(G) → {−1, 1} is a func-
tion called a signing of G or the signature of S. The negative and positive
edges are depicted using dashed and solid lines respectively. The set of all
positive(negative) edges is denoted by E+(S)(E−(S)). The subgraph obtained
by removing the negative(positive) edges is denoted by S+(S−). A signed

Key words and phrases: signed graphs, dominating set, domination number, minimal
dominating set
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graph where every edge is positive(negative) is called all-positive(all-negative).
For any vertex u, N+(u) = {v ∈ N(u)|σ(uv) = 1} and N−(u) = {v ∈
N(u)|σ(uv) = −1}. The positive and negative degree of a vertex u is defined
as d+(u) = |N+(u)| and d−(u) = |N−(u)| respectively, while the degree of u
in G is dG(u) = d

+(u) + d−(u). The maximum(minimum) positive degree of
S is denoted using ∆+(S) (δ+(S)), whereas ∆−(S) (δ−(S)) denote the maxi-
mum (minimum) negative degree of S. Signed graphs provide a large scope for
researchers to investigate both theoretical and application problems in graph
theory [1, 2, 5, 7, 13, 15, 17, 18, 19].

The concept of domination in graphs is a well established research area in
graph theory [6, 8, 9, 10, 11, 12]. Although the concept of domination in graphs
was introduced by Berge [4] in the year 1962, it is to be noted that the first
article on domination in signed graphs appeared only in the year 2013. Another
interesting fact is that the idea of domination can be viewed from various
perspectives. It was Acharya[2] who made the first attempt in articulating
the concept of domination in signed graphs. He defined a dominating set of
a signed graph S = (G,σ) as a set D ⊆ V such that all the vertices of S are
either in D or there exists a function µ : V → {−1, 1} called a marking of S
such that all the vertices u ∈ V \D are adjacent to at least one vertex v ∈ D
such that σ(uv) = µ(u)µ(v). Later in the year 2020, Jeyalakshmi [13] proposed
another definition for a dominating set of a signed graph. A subset D of the
vertex set V is called a dominating set of a signed graph S if for all v ∈ V \D,
|N+(v)∩D| > |N−(v)∩D|. In this article we study the concept of domination
in signed graphs from yet another point of view.

Joseph and Joseph [14] considered the fact that in any network that can
be represented as a signed graph, a vertex dominates another vertex provided
there exist a positive edge between them. In this sense, a set D of vertices of
a signed graph S that are connected to the remaining vertices of S by positive
edges can be considered as a dominating set of S. Accordingly they presented
the following definition for a dominating set of signed graphs.

Definition 1 [14] Let S = (G,σ) be a signed graph. A set D ⊆ V is said to
be a dominating set of S if each vertex v ∈ V \ D is adjacent to at least one
vertex u ∈ D such that σ(uv) = 1. The minimum cardinality among all the
dominating sets of S is called the domination number of S, denoted by γ(S).

For a signed graph S = (G,σ), by the term γ(S)-set we mean a minimum
dominating set and γ(G)-set refers to a minimum dominating set of the un-
derlying graph G.
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Clearly, if all the edges of S are positive then the above definition reduces
to that of the domination in graphs. On the other hand, if S is all negative,
then the dominating set is trivially V.

a

b

c

d

e

f

(a)

a b

cdefgh

(b)

Figure 1

If |N+(v)∩D| > |N−(v)∩D| ∀v ∈ V \D, then we can observe that N+(v)∩D
is non-empty whenever v ∈ V \ D i.e every vertex v ∈ V \ D is adjacent to
a vertex u ∈ D such that uv ∈ E+(S). Hence, any dominating set as given
in [13] is also a dominating set as per Definition 1. For example, the signed
graph in Figure 1(a) has {a, b, c, d} as a minimum dominating set by the
definition proposed by Jeyalakshmi where as {a, b, d} is a minimum dominating
set by Definition 1. But, for the signed graph given in Figure 1(b), {a, b} is
the minimum dominating set in both the cases.

2 Preliminaries

In this section we explore some of the basic results that follow from Definition
1. A characterisation of minimal dominating sets in graphs was obtained by
Ore [16]. Analogously we present a characterisation for the minimal dominat-
ing sets of a signed graph. We omit the proof as it is similar to the correspond-
ing result in [16].

Theorem 2 Let S be a signed graph and D be a dominating set of S. Then D
is a minimal dominating set of S if and only if for each vertex v in D either
of the following conditions hold:

(i) N+(v) ⊆ V \D,

(ii) There exists a vertex u in V \D such that N+(u) ∩D = {v}.
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For any signed graph S of order n, the vertex set is a trivial dominating set.
On the other hand any dominating set of S is of cardinality at least 1 so that
we have the obvious inequality 1 ≤ γ(S) ≤ n. The upper bound is attained
by all-negative signed graphs. Moreover, for any signed graph S of order n,
γ(S) = n if and only if S is all-negative.

Remark 3 In any signed graph S, a vertex v with N+(v) = φ belongs to all
the dominating sets of S.

Note that the dominating sets of signed graphs are always the dominating
sets of their underlying graphs. Thus we have the following inequality.

Proposition 4 If S = (G,σ) is any signed graph, then γ(S) ≥ γ(G).

The following theorem characterises the signed graphs having domination
number equal to that of their underlying graphs.

Theorem 5 Let S = (G,σ) be a signed graph. Then γ(S) = γ(G) if and only
if there is a γ(G)-set D such that for very vertex u in V \D, N+(u)∩D 6= φ.

Proof. Suppose that S = (G,σ) is a signed graph such that γ(S) = γ(G).
Then there is a γ(S)-set D which is a γ(G)-set. Also, by the definition of a
dominating set of a signed graph, for every vertex u in V \D, N+(u)∩D 6= φ.

Conversely, suppose that there exists a γ(G)-setD such that for every vertex
u in V \D, N+(u)∩D 6= φ. Therefore D is a dominating set of S and γ(S) ≤
γ(G). Then from Proposition 4 it follows that γ(S) = γ(G). �

Now we examine the number of negative edges in a signed graph S = (G,σ)
such that γ(S) ≥ γ(G). Recall that the bondage number b(G) of a graph
G is defined as the minimum number of edges whose removal increases the
domination number. Let m−(S) be the number of negative edges in S. Then
we have the following proposition.

Proposition 6 Let S = (G,σ) be a signed graph.

(i) If γ(S) = γ(G), then the maximum value of m−(S) is the number of
edges between the vertices of a γ(G)-set, say D and the number of edges
between the vertices of the set V\D and |N(v)∩D|−1 edges corresponding
to each vertex v in V \D dominated by more than one vertex in D.

(ii) If γ(S) > γ(G), then m−(S) ≥ b(G).
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Proposition 7 follows from the fact that joining any two non-adjacent ver-
tices of a signed graph by a negative edge does not change the domination
number.

Proposition 7 Let S be any signed graph with a pair of non-adjacent vertices
and S ′ be the signed graph obtained from S by joining a pair non-adjacent
vertices of S by a negative edge, then γ(S) = γ(S ′).

Remark 8 From Proposition 7 it follows that γ(S) = γ(S+).

We use Ore’s theorem to obtain a bound for domination number of certain
class of signed graphs.

Theorem 9 (Ore’ s Theorem[16]) If a graph G has no isolated vertices,
then γ(G) ≤ n

2 .

The following result gives a bound similar to the bound given in Ore’s
Theorem on the domination number of signed graphs S with positive δ+(S).

Theorem 10 If S is any signed graph of order n such that δ+(S) > 0, then
γ(S) ≤ n

2 .

Proof. Given that S is any signed graph with δ+(S) > 0, then d+(v) > 0 for
every vertex v ∈ V. This implies that the subgraph S+ is a graph without any
isolates. Therefore by Ore’s Theorem γ(S+) ≤ n

2 . Now by applying Remark 8,
γ(S) ≤ n

2 . �

The corona of two graphs G and H, denoted by G◦H, is the graph obtained
by taking one copy of G and |V(G)| copies of H such that ith vertex of G is
adjacent to all the vertices of ith copy of H. We refer the following theorem to
obtain a characterisation of the signed graphs with order n having domination
number n

2 , when n is even.

Theorem 11 [11] For any graph G with even order n and no isolated vertices,
γ(G) = n/2 if and only if the components of G are the cycle C4 or the corona
H ◦ K1, where H is any connected graph.

Analogously, we have the next result that follows from Theorem 11 and
Remark 8.

Theorem 12 For any signed graph S of even order n and δ+(S) > 0, γ(S) =
n/2 if and only if the components of S+ are the cycle C4 or the corona H ◦K1,
where H is any connected graph.
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Haynes et al. [3] have defined a class of graphs G inorder to characterise the
connected graphs G with γ(G) = bn2 c and the characterisation is as follows.

Theorem 13 [3] A connected graph G have γ(G) = bn2 c if and only if G ∈ G.

In this direction, using Remark 8 and Theorem 13 we have the corresponding
result for signed graphs S with the property that S+ is connected.

Theorem 14 For any signed graph S that contains a connected S+, γ(S) =
bn2 c if and only if S+ ∈ G.

3 Main results

Now we examine the signed graphs with small and large values for domination
number. First we obtain the characterisation for signed graphs S with γ(S) = 1.
Whenever S is a signed graph with γ(S) = 1 and {v} is a γ(S)-set, then v is
a vertex with d+(v) = n − 1, where n is the order of S. This implies that
∆+(S) = n− 1. Conversely, if ∆+(S) = n− 1, then γ(S) = 1. Thus we have the
following characterisation for signed graphs with domination number equal to
1.

Theorem 15 For any signed graph S of order n, γ(S) = 1 if and only if
∆+(S) = n− 1.

From the above theorem we can see that for any signed graph S of order
n with γ(S) > 1, ∆+(S) ≤ n − 2. The following theorem characterises signed
graphs with domination number equal to 2.

Theorem 16 Let S be any signed graph of order n. Then γ(S) = 2 if and
only if ∆+(S) ≤ n − 2 and there exists a pair of vertices u and v such that
V \ {u, v} ⊆ N+(u) ∪N+(v).

Proof. Assume that γ(S) = 2 and let D = {u, v} be a γ(S)-set of S. By
Theorem 15, ∆+(S) ≤ n− 2. Since each vertex in V \D is adjacent to at least
one vertex in D by a positive edge, V \D ⊆ N+(u) ∪N+(v).

Suppose that ∆+(S) ≤ n− 2 and there exist a pair of vertices u and v such
thatV \ {u, v} ⊆ N+(u) ∪ N+(v). If D = {u, v}, then by our assumption for
every vertex w in V \D there exists a vertex in N+(w) ∩D. Therefore D is a
dominating set of S. Since ∆+(S) ≤ n− 2, γ(S) > 1 and hence γ(S) = 2. �

Using the above two characterisations we now characterise the signed graphs
with domination number equal to 3.
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Theorem 17 For any signed graph S of order n, γ(S) = 3 if and only if

(i) ∆+(S) ≤ n− 3,

(ii) for no pair of vertices u and v, V \ {u, v} ⊆ N+(u) ∪N+(v) and

(iii) there exist three vertices u, v and w such that V \ {u, v,w} ⊆ N+(u) ∪
N+(v) ∪N+(w).

Proof. To prove the necessary part suppose that γ(S) = 3. By Theorem 15 we
get ∆+(S) < n−1. Now assume that ∆+(S) = n−2 and let u be a vertex with
d+(u) = n− 2. Then the set {u, v} is a dominating set of S, where v /∈ N+(u).
This contradicts the fact that γ(S) = 3. Therefore, ∆+(S) ≤ n − 3. If there
exists a pair of vertices u and v such that V\{u, v} ⊆ N+(u)∪N+(v), then {u, v}

is a dominating set of S contradicting γ(S) = 3. Now, let D = {u, v,w} be a
γ(S)-set. Then by the definition of a dominating set we find that V \{u, v,w} ⊆
N+(u) ∪N+(v) ∪N+(w).

Conversely, assume that S is a signed graph satisfing the conditions (i), (ii)
and (iii). Then by our assumption and Theorem 16, γ(S) > 2. Now observe
that by the condition (iii) and definition of a dominating set, {u, v,w} is a
dominating set of S and hence γ(S) = 3. �

As observed earlier the signed graphs with domination number equal to n
are all-negative. Now we present a necessary and sufficient conditions for a
signed graph S to have γ(S) = n− 1.

Theorem 18 Let S be a signed graph of order n. Then γ(S) = n − 1 if and
only if S has exactly one positive edge.

Proof. Assume that S has exactly one positive edge. Then by Remark 8,
γ(S) = n− 1.

Conversly, suppose that S is a signed graph with γ(S) = n − 1. Let D be
a γ(S)-set and V \ D = {v}. Then there exists a vertex u in D such that vu
∈ E+(S). We prove that v is incident with exactly one positive edge. On the
contrary let there be another edge vw ∈ E+(S). Then the set D\ {u,w}∪ {v} is
a dominating set with cardinality less than that of D, which is a contradiction.
Hence there exists no positive edge between the sets D and V \D except the
edge uv. Now we claim that there is no positive edge between any two vertices
x, y in D where y 6= u. Suppose that xy ∈ E+(S), then the set D \ {y} is a
dominating set having cardinality less than that of D, which is a contradiction.
Therefore there are no positive edges between the vertices in D. Hence S has
only one positive edge which is the edge uv. �
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Now we characterise the signed graphs having domination number equal to
n− 2.

Theorem 19 For any signed graph S, γ(S) = n−2 if and only if the subgraph
induced by E+(S) belongs to {2K2, P3, C3, P4, C4}.

Proof.
To prove the sufficiency, suppose that the graph induced by the positive

edges belongs to the set {2K2, P3, C3, P4, C4}. Then by using Remark 8 γ(S) =
γ(S+) = n− 2.

Conversely, suppose that S is a signed graph of order n and γ(S) = n − 2.
Let D be a γ(S)-set and V \D = {p, q}. First we claim that p and q cannot
be dominated by more than one vertex in D. If possible assume that the
vertex p is dominated by two vertices u and v belonging to D. Then the set
D \ {u, v}∪ {p} is a dominating set with cardinality less than that of D, which
is a contradiction. Similarly, we can prove that q cannot be dominated by
more than one vertex in D. This shows that there are only two positive edges
between the sets D and V \D. Further, p and q are dominated by the same
vertex or by two distinct vertices.
Case 1: The vertices p and q are dominated by same vertex r in D. In
this case, the edges pr, qr ∈ E+(S). We claim that there is no positive edge
between the vertices in D. On the contrary, suppose that there exists a positive
edge between the vertices u and v in D, where v 6= r. Then observe that the
set D \ {v} is a dominating set having lesser cardinality than D, which is a
contradiction. Now observe that there is no positive edge between the sets D
and V \D other than pr and qr and between the vertices in D. Therefore the
graph induced by the positive edges is either a P3 or a C3.
Case 2: The vertices p and q are dominated by two distinct vertices r and
t belonging to D, respectively. Then the edges pr and qt belongs to E+(S).
Using similar arguments as in Case 1 we conclude that there are no positive
edges between any two vertices u and v of D, where v 6= r, t. Thus the graph
induced by the positive edges is either 2K2, P4 or C4.
Therefore the graph induced by E+(S) belongs to {2K2, P3, C3, P4, C4}. �
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Abstract. In this paper, we report on PIN-code typing behaviour on
touchscreen devices of 112 subjects. Detailed statistical analysis revealed
that the major difference between subjects is in inter-key latency. Key-
press duration variations are insignificant compared to inter-key latency
variations. Subjects were grouped into meaningful clusters using cluster-
ing. The resulting clusters were of slow, medium, and fast typists. The
dataset was split randomly into two equal size subsets. The first subset
was used to train different synthetic data generators, while the second
subset was used to evaluate an authentication attack using the generated
synthetic data. The evaluation showed that slow typists were the hardest
to attack. Both the dataset and the software are publicly available at
https://github.com/margitantal68/sapipin_paper.

1 Introduction

While the dynamics of typing a text on a usual keyboard has been shown
to be characteristic to the user, see e.g. [3, 14] and the references therein, the
dynamics of typing PIN codes on numeric keyboards is somewhat understudied
even though most of the wide-spread user authentication techniques are based

Key words and phrases: keystroke dynamics, PIN-code, synthetic attack, anomaly detec-
tion
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on (or include the use of) PIN-codes: we may use PIN-codes to unlock our
smartphone and One-Time PIN-codes (OTP) in online banking applications.
Therefore, it is important to examine the typing characteristics of people when
typing such short PIN-codes. PIN-codes are usually entered using a numeric
keypad, which may significantly affect the typing rhythm.

Unlike previous research where all participants had to type the same PIN-
code [6, 13], in our research all participants had to type a randomly generated
PIN-code 20 times without error. This made it possible to observe similarities
when typing different PIN-codes, and also made it possible to observe how a
stable typing rhythm develops for each individual.

Our main contributions are as follows:

� We present SapiPin, a new dataset, which contains PIN-code typing data
collected on mobile devices from 112 users.

� Exploratory data analysis through clustering revealed three meaningful
typist groups.

� An attack on typing rhythm was performed using several types of syn-
thetic data. We show the attack effectiveness for different typist groups.

� In order to assist reproduction of the results, we published our code in
a public GitHub repository1.

The rest of the paper is organized as follows. Section 2 provides a concise
overview of related works. Section 3 presents the SapiPin dataset with the
collection protocol and basic information about the subjects. Section 4 is de-
voted to exploratory data analysis. We begin Section 5 with a brief description
of methods used to synthesize data and to detect anomalies. This is followed
by the details of our evaluation protocol and our observations. Finally, we
conclude in Section 6.

2 Related work

Many studies have already examined the dynamics of entering passwords. Ear-
lier studies performed the experiments using a classic keyboard [11, 12], while
the more recent ones used touch-screens of mobile phones [1, 3, 4, 2]. Moreover,
Gunetti and Picardi [10] studied the usage of free text typing for continuous
authentication.

1https://github.com/margitantal68/sapipin_paper

https://github.com/margitantal68/sapipin_paper
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The dynamics of typing may be affected be various properties of the key-
board, such as its size and the placement of keys, especially whether the
keyboard is alphanumeric (QWERTY) or numeric. Therefore, additionally to
the research considering alphanumeric keyboards, it is important to study
keystroke dynamics on numerical keyboards too.

Out of the works related to numeric keyboards, we point of the experiments
of Clarke et al. [6] in which 16 subjects entered 10-digit telephone numbers
and 4-digit PIN-codes. 30 samples were collected from which 20 were used
for template creation and the remaining 10 for validation. They report 11.3%
Equal Error Rate (EER) in an user authentication study. Better performance
(8.60 % EER) was reported by Maxion and Killourhy [13] in an authenti-
cation experiment using 10-digit numbers. 28 subjects were involved in the
experiment who donated 200 samples of the same 10-digit number in 4 con-
secutive sessions. Bours and Masoudian [5] investigated the usage of 6-digit
one-time PIN- codes for user authentication. In an experiment conducted with
30 participants, they found that in the case of one-time PIN-codes the EER
of authentication was 26%.

Some studies focused on the distribution of timings of keystroke dynamics.
Dhakal et al. [8] conducted a study with 168,000 participants in order to find
keystroke patterns linked to typing performance. They found huge differences
in inter-key times between slow and fast typists, however, keypress times were
very similar across these groups. Gonzales et al. [9] compared several distribu-
tions in order to rank them according to their similarity to timing histograms
in free text keystroke dynamics. They found that log-logistic distributions are
excellent choices for modelling the shape of timing histograms.

Timing distributions are very important when the task is to generate syn-
thetic forgeries. Deian et al. [7] examined the robustness of keystroke-dynamics
based biometrics against synthetic forgeries. Their bots generate both the
keystroke duration and inter-key latency using Gaussian distributions. They
reported high True Positive and low False Positive rates on a small dataset
containing the data of 20 users. The good result is probably due to the weak at-
tack, because the inter-key latency cannot be considered normally distributed.

None of the aforementioned works examined the distribution of keystroke
timing in case of a numeric keyboard. This study aims to fill this gap.
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Personal attribute Amount

Age
21–30 years 103
40–60 years 9

Gender
Male 85
Female 27

Table 1: Personal information of the 112 subjects of the SapiPin dataset.

3 The SapiPin dataset

The SapiPin2 dataset was collected in 2021 and contains 6-digit PIN typing of
112 voluntary participants. Each subject typed a randomly generated 6-digit
PIN-code 20 times on his/her own mobile device. Only error-free typing was
saved.

We used a web application only available on touchscreen mobile devices to
collect data3. The application is implemented in PHP and JavaScript. Time-
stamps are recorded by the Date.now() JavaScript function. Subjects agree to
have their data used for scientific experiments by sending the collected data
to the email address provided for this purpose.

The keyboard layout of this data collector is shown in Fig. 1. Detailed
personal information of the subjects is presented in Table 1.

4 Preprocessing and Data Analysis

4.1 Preprocessing

The collected dataset was preprocessed to remove corrupted items. We ex-
cluded the data of a single person, the user with ID number 96, in case of
whom it happened several times that the timestamps of pressing were identi-
cal to the timestamps of release which indicates an error with recording the
data. As a result, we work with the data of 111 users from now on (The
database published in 2022 still contains the data of user with ID 96).

In the next step, we computed two types of features: (i) keypress duration,
a.k.a. hold time, and (ii) inter-key latency, i.e., the duration between releasing

2https://github.com/margitantal68/sapipin
3source code: https://github.com/gzsolt11/PinLogger.git

https://github.com/margitantal68/sapipin
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Figure 1: PIN logger.

a key and pressing the next key. Therefore, in the case of a 6-digit PIN-code,
the following features were computed: HT1, HT2, HT3, HT4, HT5, HT6 (hold
times), and RP1, RP2, RP3, RP4, RP5 (release-press times).

The next step in preprocessing was outlier detection. We found no outliers
regarding keypress duration. In contrast, there were quite a few outliers for
inter-key intervals. In such cases, users appeared to pause while typing. We
declared a value of a feature as an outlier if it was greater than µ + 10σ,
where µ and σ are the average and the standard deviation of the feature. For
the subsequent analysis, outliers were always replaced by the average of the
corresponding feature of the given user. In total, 13 outliers were replaced.
These outliers belonged to the following 11 distinct users: 2, 11, 20, 21, 25,
48, 53, 58, 73, 77, 93. In most cases, each user exhibited a single instance of
an outlier feature within their respective samples, with the exception of users
25 and 77, who each presented two instances. Of the 13 detected cases, 70%
involved the user’s first sample as the source of the outlier feature.

The final dataset contains 13320 keystrokes from 111 participants (120
keystrokes per participant). Boxplots of keypress duration and inter-key la-
tency are shown in Fig. 2.
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Figure 2: Keypress duration and inter-key latency boxplots

4.2 Data analysis

Outlier correction was followed by descriptive statistics. Keypress duration
and inter-key intervals were analyzed separately. Fig. 3 shows the histograms of
keypress duration (HT hold times) and inter-key interval (release-press times).
The average keypress duration is 76.89 ms with a standard deviation of 22.17.
The skewness of the distribution is 0.40, while its kurtosis is 0.64. In contrast,
the average inter-key interval is 269.56 ms with standard deviation, skewness
and kurtosis of 266.67, 3.78 and 21.36 respectively. It can be observed that
the inter-key interval average is more than three times higher than keypress
duration average. The high positive skewness of the inter-key interval distri-
bution is inline with the observations in [8]. However, we observed an even
higher skewness than in case of usual keyboards.

In a previous study [4], we observed that the average keypress duration,
as well as the average inter-key interval is a discriminative feature for user
authentication based on keystroke dynamics. Therefore, we computed three
new features of PIN-code typing for each user: (i) AVGHT , the average of
keypress duration, (ii) AVGRP, the average of inter-key interval, and (iii)
TOTALTIME, the duration of typing the entire PIN code. In the next step, corre-
lations were computed between these features: while the correlations between
AVGHT and the two other features are close to zero (corr(AVGHT , AVGRP) =
−0.04, corr(AVGHT , TOTALTIME) = 0.08), AVGRP strongly correlates with
TOTALTIME (corr(AVGRP, TOTALTIME) = 0.99). We can state that the typing
speed clearly depends only on the inter-key latency. Fig. 4 shows the uncorre-
lated nature of the AVGHT and AVGRP features.

We investigated how the typing rhythm of PIN code of each user evolves over
time. To this end, we computed the ratio of AVGRP to AVGHT for each PIN
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Figure 3: Keypress duration and inter-key latency histograms

Figure 4: Users AVGHT and AVGRP
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Figure 5: Rhythm of typing stabilises over time

typing. Our analysis revealed that the first two samples typically exhibited
significant differences from subsequent samples. However, once these initial
samples were completed, a more consistent rhythm emerged with relatively
smaller variations, as depicted in Figure 5.

4.3 Clustering

The objective of clustering is to find meaningful groups within a dataset. Clus-
tering belongs to unsupervised learning: unlabelled instances are grouped (or
the labels of instances are not used when the groups are determined). In our
case, we expect to see clusters of users having similar typing characteristics.
The original dataset was converted to a reduced dataset, where each user is
represented by a single aggregated instance, which contains only two features
AVGHT and AVGRP corresponding to the average hold time and average inter-
key latency of the user. K-means was used as the clustering algorithm. In
order to find the most suitable number of clusters, we used the elbow method.
Fig. 6a shows the result of the elbow method, which indicates that this dataset
contains four meaningful groups. We have one group containing only one user
(userid=93), who has extremely large inter-key latency (this can be seen in
Fig.4 too). We excluded this user from further analysis. We denote the three
other groups as slow (13 users, green dots), medium (37 users, black x marker)
and fast (60 users, yellow diamond marker) typists. It can be seen in Fig. 6b
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(a) Elbow method (b) User groups

Figure 6: K-means clustering

(a) Clusters’ AVGRP histogram. (b) Clusters’ AVGHT histogram.

Figure 7: K-means clustering

that these three groups are separated by the AVGRP feature. The typing pat-
terns of a slow typist and a fast typist are illustrated in Figure 8.

During the preprocessing phase of the data analysis, a total of 13 outliers
were identified and attributed to 11 unique users. Specifically, one of the users
(user ID=93) exhibited a significantly slow typing speed. The remaining 10
users were distributed across three typing categories, with four users catego-
rized as slow typists (IDs 21, 25, 73, and 74), four users classified as medium
typists (IDs 2, 11, 20, and 58), and two users classified as fast typists (IDs
48 and 53). These findings indicate that outliers were present across all levels
of typing proficiency. As noted in the data analysis chapter, it was observed
that outliers were more frequently detected within the initial typing pattern
of each user.
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(a) Slow typist. (b) Fast typist.

Figure 8: Typing patterns

5 Attack framework

5.1 Synthetic data generation

The SDV package was used to generate synthetic data4. We used three types
of models: Gaussian Copula, Conditionally Time Generative Adversarial Net-
work (CTGAN), and Time Variational Autoencoder (TVAE). The CTGAN
and TVAE models were proposed by Lei Xu et al. in a paper presented in 2019
at the NeurIPS conference [15].

A copula in mathematical terms is a distribution over [0, 1]d unit cube,
created by using the probability integral transform from a multivariate normal
distribution over Rd. Essentially, a copula is a mathematical function that
describes the joint distribution of multiple random variables by examining the
dependence between their marginal distributions.

CTGAN is a method that uses GANs to model the distribution of tabular
data and generate samples from it. It overcomes the issues of non-Gaussian
and multimodal distributions with mode-specific normalization. CTGAN em-
ploys a conditional generator and training-by-sampling. High-quality models
are trained with fully-connected networks and several recent techniques [15].

The third synthetic data generation method is a special variational autoen-
coder, named TVAE, as this is an adaptation of variational autoencoders to
tabular data.

Synthetic data generators must be trained and the data used for their train-
ing should not be used in further evaluations. We solved this issue by dividing
the SapiPin dataset into two subsets: we used the data of 55 randomly selected

4https://sdv.dev/

https://sdv.dev/
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Figure 9: Evaluation of PIN-code attack framework

users to train the synthetic data generator, and we evaluated our attack frame-
work on the data of the remaining 56 users (see the inital splitting of the data
in the top-left of Figure 9).

5.2 Anomaly detector

We evaluate synthetic data quality via anomaly detector. High-quality syn-
thetic data is difficult to detect. There are many different types of anomaly
detectors. In the case of keystroke dynamics-based user authentication, one of
the well-established detectors is the scaled Manhattan [12].

We trained a separate model for each user of the dataset using only real
user data, and then evaluated it on both real and synthetic data. Based on
the real and synthetic score values obtained from the evaluation results, we
calculated the area under the curve (AUC). Average and standard deviation
of these AUCs are reported for the 56 users in the evaluation dataset (see 4th
step in Figure 9).

High quality synthetic data is difficult to detect by the anomaly detector,
hence a lower AUC will be obtained in the case of better synthetic data.
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5.3 Evaluation protocol and results

Each user in the dataset has 20 typing examples. As we observed that the first
two examples are significantly different from the remaining ones, see Fig. 5,
we excluded these two from anomaly detector training. Therefore, the first
two examples were dropped, and only 8 genuine examples were used for train-
ing the anomaly detector. The remaining 10 examples were used for testing
the anomaly detector, obtaining 10 positive (genuine) scores. We randomly
selected 10 examples from the synthetic data as fraudulent examples, and pre-
sented them as an input to the anomaly detector. This resulted in 10 negative
or attack scores. Based on the negative and positive score values, we calcu-
lated the AUC value for each user. The evaluation was repeated 10 times, each
time using other randomly selected synthetic data for attack. Our synthetic
data was generated based on training data which contains typing of different
PIN-codes, therefore its samples are general typing rhythms of 6-digit PIN-
codes. In our attack model we assume that the attacker knows the subject’s
PIN-code, but does not know its typing rhythm. Therefore, it uses a random
sample from synthetic typing rhythms.

Table 2 reports the mean AUC and its standard deviation for each type of
synthetic data. These results suggest that, compared with the synthetic data
generated by CTGAN, both Gaussian Copula and TVAE generated data were
highly similar to the genuine data, because in these cases it was more difficult
to detect for the anomaly detector whether the data is real or synthetic, as
indicated by the lower AUC value of Gaussian Copula and TVAE compared
with that of CTGAN.

Synthetic data AUC (std)
generation method

Gaussian Copula 0.90 (0.10)
CTGAN 0.98 (0.03)
TVAE 0.89 (0.11)

Table 2: Synthetic attacks on the SapiPin dataset.

The present study aimed to investigate the potential relationship between
typing speed and AUC values. To this end, we analyzed the average typing time
per participant, derived from eight training samples, in conjunction with the
AUC values obtained from TVAE synthetic data (see Fig. 10). Each data point
in the figure corresponds to a specific participant. Our findings reveal that
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Figure 10: TVAE-based synthetic attack: users average typing time vs. AUC.

the AUC values attained by the slow typists were found to be comparatively
elevated and exhibit a low degree of standard deviation. Although the majority
of fast typists exhibit relatively high AUC values, there are several individuals
in this group who demonstrate lower AUC values compared to the overall
average.

5.4 Evaluation on typist groups

This section presents the outcomes of our investigation regarding three dis-
tinct typist groups, namely slow, medium, and fast typists. To this end, we
applied the protocol described in the preceding section, with the evaluations
carried out thrice, once for each typist group. Our findings, summarized in
Table 3, highlight the highest degree of detection success among the slow typ-
ists, implying that they represent the most challenging target for potential
attackers.

6 Conclusions

In this paper we presented SapiPin, a new dataset of 6-digit PIN-code typ-
ing on touchscreens. Data analysis revealed that the data can be divided into
meaningful groups belonging to slow, medium, and fast typists. The major
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Synthetic data AUC (std)
generation method Slow Medium Fast

Gaussian Copula 0.93 (0.08) 0.89 (0.12) 0.90 (0.09)
CTGAN 0.98 (0.03) 0.98 (0.04) 0.98 (0.03)
TVAE 0.95 (0.05) 0.89 (0.12) 0.88 (0.10)

Table 3: Synthetic attacks on the typist groups.

difference between these groups is the inter-key latency. This observation con-
firms the results of a previous study [8] in which the same observations were
reported for free text typing. Moreover, the reported timing distributions are
similar to ours, even though only a 10-digit software keyboard was used in our
study.

The dataset was split randomly into equally sized subsets. Half of the data
was used to train different synthetic data generators. The best quality syn-
thetic data (the most similar to the original one) was generated by the TVAE
method. Using the synthetic data, we performed synthetic attacks on each user
from the second half of the SapiPin dataset. Results show that slow typists are
the hardest to attack. At the same time, in this group we can see the greatest
dispersion among the typing samples of a user.

We acknowledge limitations regarding the generalizability of the results, as
young, European participants (university students) are over-represented in the
data.
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Abstract. In an isolate-free graph Z = (VZ, EZ), a set C of vertices is
termed as a connected certified dominating set of Z if, |NZ(u)∩(VZ\C)| =
0 or |NZ(u)∩ (VZ\C)| ≥ 2 ∀u ∈ C, and the subgraph Z[C] induced by C is
connected. The cardinality of the minimal connected certified dominat-
ing set of graph Z is called the connected certified domination number
of Z denoted by γccer(Z). In graph Z, if the deletion of any arbitrary
edge changes the connected certified domination number, then we call
it a connected certified domination edge critical. If the deletion of any
random edge does not affect the connected certified domination number,
then we refer to it as a connected certified domination edge stable graph.
In this paper, we investigate those graphs which are connected certified
domination edge critical and stable upon edge removal. We then study
some properties of connected certified domination edge critical and stable
graphs.

1 Introduction

Detlaff et al. [8] introduced certified domination in 2020, and it is now a
well-studied domination-related parameter in the domination theory of graphs

Key words and phrases: connected certified domination, connected certified domination
edge critical, connected certified domination edge stable.
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(see, for example, [9, 15, 16, 14] for recent literature on this topic). A set
C ⊆ VZ of a graph Z = (VZ, EZ) is called certified dominating set (CFDS) if
|NZ(u) ∩ (VZ\C)| = 0 or |NZ(u) ∩ (VZ\C)| ≥ 2 ∀u ∈ C. The cardinality of
the minimal CFDS is the certified domination number (CFDN) of the graph
Z, represented by γcer(Z) [8]. A γcer− set C is said to be a connected certi-
fied dominating set (CCDS), if the induced subgraph Z[C] is connected and
|NZ(u)∩ (VZ\C)| = 0 or |NZ(u)∩ (VZ\C)| ≥ 2 ∀u ∈ C. The connected certified
domination number (CCDN) of the graph Z is the cardinality of the smallest
CCDS and is represented by γccer(Z). An element u ∈ VZ is a γccer− good
vertex if u is in some γccer− set of the graph Z, and set of all γccer− good
vertices of the graph Z will be represented by T ccer(Z).
Criticality and stability are important considerations for a lot of graph param-
eters. It is generally essential to understand how a graphical property behaves
when the graph is altered when it is relevant in an application. Much has been
written on graphs where the deletion (addition) of an edge (vertex) affects a
parameter (such as domination number or chromatic number). The γ−critical
graphs when one edge is eliminated were examined by Walikar and Acharya
[17] and in contrast, Dutton and Brigham first studied γ− stable graphs [10].
These problems were then used to investigate critical and stable graphs with
respect to different domination variations such as, “Roman Domination”, “To-
tal Domination”, “Connected Domination”, etc. γc-critical graphs were first
studied by [5] in 2004, while γc-stable graphs were first studied by [7] in 2015.
In 2020, Detlaff et al. [8] studied the influence of edge addition and deletion
on the CFDN of graphs.
The criticality and stability of graph upon edge addition and deletion have
been studied for various domination-related parameters, for example, [6, 2, 4,
12]. In this research, we investigate those graphs where the CCDN increases
when an edge is deleted. We also study those graphs where CCDN remains
unchanged on the deletion of an edge. To analyse stable or critical graphs
when one edge is eliminated, we state that γccer(Z) = ∞ if a graph Z contains
an isolated vertex. Consequently, γccer(Z− e) = ∞ if we delete an edge e ∈ EZ
that is incident with a leaf vertex in Z. In addition, γccer(Z − e) = ∞ if edge
e ∈ EZ divides the graph Z− e into two components.
We state that a graph Z is connected certified domination edge (ccde) stable

or [γccer]
e−-stable, if γccer(Z − e) = γccer(Z) ∀e ∈ EZ. If γccer(Z) = k, and Z is

[γccer]
e−-stable, then Z is [kccer]

e−-stable. A graph Z is ccde critical or [γccer]
e−-

critical , if γccer(Z−e) 6= γccer(Z) ∀e ∈ EZ. We note that eliminating an edge of

a graph Z cannot decrease the CCDN of the graph Z. Hence if Z is [γccer]
e−-
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critical, then γccer(Z− e) > γccer(Z) for every edge e ∈ EZ. If γccer(Z) = k, and

Z is [γccer]
e−-critical, we say that Z is [kccer]

e−-critical.
An edge e ∈ EZ is a critical edge of Z if γccer(Z − e) > γccer(Z), whereas an
edge e ∈ EZ is a stable edge of Z if γccer(Z − e) = γccer(Z). Thus, if Z is

[γccer]
e−-critical graph, then every edge of the graph Z is a critical edge, while

every edge in a [γccer]
e−-stable graph is a stable edge.

1.1 Definitions and notations

We refer to [13] and [18] for general graph-theoretic definitions and notations.
Throughout this paper, by a graph Z we mean a connected, undirected, and
unweighted simple graph (i.e., graph without loops or multiple edges). A graph
Z = (VZ, EZ) with no isolated vertex is an isolate-free graph. The order of Z is
denoted by n(Z) = |VZ| and size of Z by m(Z) = |EZ|. For any vertex u ∈ Z,
dZ(u) will denote the degree of u in Z. The neighborhood of u, represented
by NZ(u), is the set of all nodes adjacent to u, and the degree of u in Z is
|NZ(u)|.

Vertex u ∈ Z is called an isolated vertex if dZ(u) = 0 and is called a pen-
dant or leaf if dZ(u) = 1. δ(Z), (∆(Z)) denotes the minimal (maximal) degree
among the vertices of Z. The diameter of a graph is the largest distance be-
tween two vertices and the maximum distance between x ∈ VZ, and all other
vertices is the eccentricity of the vertex.A universal vertex of a graph Z is a
vertex of degree |VZ| − 1. A leaf is a degree one vertex whose only neighbor
is referred to as a support vertex. A support vertex is strong if it has at least
two leaves as neighbors; otherwise, it is considered weak. We will use LZ and
S1(Z)(S2(Z), respectively) to represent the set of leaves and weak supports
(strong supports, respectively) of graph Z. For a connected graph Z, a vertex
u ∈ VZ is called a cut vertex if Z − u is not connected. The number of cut
vertices of Z is denoted by ζ(Z).
The set NZ(u)∪ {u} = NZ[u] is a closed neighborhood of u. More specifically,
the neighborhood (closed, respectively) of a subset A ⊆ VZ of vertices, rep-
resented by NZ(A) (resp. NZ[A]), is defined to be the set

⋃
u∈A

NZ(u) (resp.

NZ(A) ∪ A). Let C ⊆ VZ and u ∈ C. The C−private neighborhood of u de-
noted by pn(u, C), and is defined by pn(u, C) = NZ[u] −NZ[C − u]. Thus if
w ∈ pn(u, C), thenNZ(w)∩C = {u}. We refer to a vertexw ∈ pn(u, C) as a C−
private neighborhood of u. We construct the set epn(u, C) = pn(u, C)∩(V−C)
and designate a vertex y ∈ epn(u, C) an external C−private neighbor of u. If
the context makes the graph Z clear, we simply write N(u) and N[u] instead
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of NZ(u) and NZ[u], respectively.
The star graph S(1,r) of order n = r+1, “is a tree on n vertices with one vertex
having degree |V(S(1,r))| − 1 and the other n − 1 vertices having vertex degree
1”. Double star graph S(q,r) is a graph obtained by joining center vertex of
two star graphs S(1,q) and S(1,r) with an edge. A tree in which every vertex is
on a central spine or is just one edge away from the spine is known as a cater-
pillar graph, caterpillar tree, or simply a caterpillar (in other words, deleting
its endpoints results in a path graph). “The corona product of two graphs,
H1 and H2, is defined as the graph attained by taking one replica of H1 and
|VH1

| replicas of H2 and linking the jth vertex of H1 to every vertex in the jth

replica of H2”[1, 3, 11].

2 [γccer]
e−-critical graphs

We provide the characterization of “[γccer(Z)]
e−-critical graphs” in this section.

Before moving on to the key findings, we first define the family of trees T as
follows.
We define T as a family of trees in which each vertex is a leaf or of degree at
least 3. A tree T ∈ T , if T is a non-trivial star S(1,r), r ≥ 2, or T is double
star graph S(q,r), q, r ≥ 2, or T is a caterpillar, or if T can be constructed
by subdivided star S(1,r), r ≥ 2 by adding zero or at least two vertices to the
vertices of degree 1, or if T can be constructed by subdivided double star graph
S(q,r), q, r ≥ 2 by adding at least two vertices to the vertices of degree 1.
We begin this section with the following observation.

Figure 1: A graph T18 in the family of trees T .

Observation 1 If C is the smallest γccer−set of a graph Z, then for each vertex
u ∈ C, |epn(u, C)| ≥ 1.
Note that if C is the smallest γccer−set of a connected graph Z = (VZ, EZ) such
that C = VZ, then epn(u, C) = φ.
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Proposition 1 Let Z be an isolate free graph of order n with dia(Z) ≤ 2 and

δ(Z) = 1, then Z is [γccer]
e−-critical.

Proof. Let Z be any connected graph of order n, with dia(Z) ≤ 2 and
δ(Z) = 1, and let C be the γccer−set of the graph Z. We will prove it in two
cases.
Case 1. When dia(Z) = 2.
If a graph Z has diameter two, then every pair of non-adjacent vertices has a
common neighbor, and γccer(Z) = 1, whenever dia(Z) = 2 and δ(Z = 1. Let
e = uv ∈ Z be such that either u ∈ C or v ∈ C. Therefore, if we delete edge
e = uv from Z, then the CCDN of the graph Z− e will change, and we know
that deletion of an edge from any arbitrary graph cannot decrease its CCDN.
Therefore γccer(Z− e) > γccer(Z), implying that Z is [γccer]

e−-critical.
Case 2. When dia(Z) = 1.
If a graph Z has a diameter 1, then Z is a path graph P2 on two vertices u and
v connected with only edge e = uv ∈ Z. Now if we remove this edge e then the
resultant graph will be a disconnected graph implying that γccer(P2 − e) = ∞
and hence Z is [γccer]

e−-critical.

Hence from Case 1 and case 2, we conclude that Z is [γccer]
e−-critical. �

Proposition 2 If Z is [γccer]
e−- critical graph and dia(Z) ≤ 2, then for every

γccer(Z)−set C of Z, Z[C] is either a trivial graph or a star graph.

The CCDN of a an isolate free graph Z with dia(Z) ≤ 2 in most of the cases
is one and is two in the only case when Z u P2. So in cases when γccer(Z) = 1,
the subgraph induced by γccer−set of graph Z is a trivial graph, and when
γccer(Z) = 2 the subgraph induced by γccer−set is a star graph. Also, if a graph

Z has δ(Z) = 1, then Z is always [γccer]
e−-critical.

Corollary 3 Let T be an isolate free graph such that T ∈ T , then γccer− set
of T will be a star or double star graph.

Proposition 4 Let Z be an isolate free graph of order n and let C be the γccer−
set of Z. For any edge e = uv ∈ EZ, where u ∈ C and v /∈ C, if |N(v)∩ C| = 1,
then the graph Z is [γccer]

e−-critical.

Proof. Let Z be any isolate free graph of order n and C be the γccer−set of
graph Z. Let e = uv ∈ EZ be such that u ∈ C, v /∈ C and |N(v)∩ C| = 1. Since
C is γccer−set of the graph Z, therefore |N(w) ∩ (VZ\C)| = 0 or ≥ 2, ∀w ∈ C,
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that is, every vertex in C has 0 or at least two neighbors in VZ\C, implying that
|N(u) ∩ (VZ\C)| ≥ 2, as v is one such neighbor of u in VZ\C. By assumption,
the vertex u cannot be weak support of the graph Z. We consider two cases:
u ∈ S2(Z) and u /∈ S2(Z).
Case 1. u ∈ S2(Z).
If u ∈ S2(Z), then degZ(u) ≥ 2, and v ∈ LZ is one such neighbor of u in Z.
Also, every strong support vertex of a graph Z belongs to every γccer−set of the
graph Z. If we eliminate the edge e = uv from the graph Z then the CCDN of
the graph Z− e will change, as u is the only neibhor of v in C, implying that
Z is [γccer]

e−-critical.
Case 2. u /∈ S2(Z).
Since |N(v) ∩ C| = 1, so if u /∈ S2(Z) then its neighbor v cannot be a leaf in
the graph Z, because if v is a leaf, then the vertex u ∈ S2(Z) which will be
a contradiction to our assumption. As u is the only neighbor of the vertex
v in γccer−set C of the graph Z, therefore if we delete the edge e = uv from
the graph Z, then the vertex v ∈ Z − e will be the only vertex in the graph
Z − e which is not adjacent to any of the vertex in γccer−set C of the graph
Z, implying that the removal of the edge e = uv from the graph Z changes
the CCDN of Z − e, i.e., γccer(Z − e) > γccer(Z) as removal of an edge cannot
decrease the CCDN of a graph.
Hence from the above two cases, we conclude that for any edge e = uv such
that u ∈ C, v /∈ C and |N(v) ∩ C| = 1, then Z is [γccer]

e−-critical. �

Proposition 5 Let Z be an isolate free graph of order n, then Z is [γccer]
e−-

critical if there exists a vertex u ∈ Z such that u ∈ S2(Z).

Proof. Let C be the γccer−set of the graph Z. Suppose there exists a vertex
u ∈ Z such that u ∈ S2(Z). Let v ∈ LZ be a leaf of the graph Z adjacent to the
strong support vertex u. Since u is the only neighbor of the vertex v in graph
Z and every strong support vertex of a graph Z belongs to every γccer−set of
the graph Z. Therefore u ∈ C, v ∈ LZ i.e., v /∈ C and |N(v) ∩ C| = 1 implies

that Z is [γccer]
e−-critical by preposition 4. �

Theorem 6 A connected graph Z is [γccer]
e−-critical if and only if Z ∈ T .

Proof. Suppose that Z is [γccer]
e−-critical graph. Let C be the γccer−set of the

graph Z. If l is the leaf in the subgraph Z[C] induced by γccer− set C, then l is
adjacent to a node of degree at least 2 in Z[C] and by observation 1 |epn(l, C)| ≥
1. Thus, l is a neighbor of at least two nodes in VZ\C because l has an external
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private neighbor. The fact that Z is [γccer]
e−-critical is contradicted by the

assumption that if C is γccer−set in Z − e, ∀e ∈ Z, then γccer(Z − e) ≤ |C| =
γccer(Z). As a result, the set C is not a γccer−set in Z − e ∀e ∈ Z. Hence
VZ\C is an independent set and every node in VZ\C is adjacent to precisely
one node of C and is thus, a leaf of Z. Since C is the γccer− set of the graph
Z, the subgraph Z[C] induced by C in Z is connected. Hence Z[C] will either
be a double star or star graph, and so Z ∈ T . We may suppose that Z[C] is
a star S(1,r). As each node in the induced star Z[C] is adjacent to at least two
nodes in VZ\C. Let J denote the set of q = 2r, r ≥ 2 nodes in VZ\C that is
adjacent to the set of r leaves in Z[C], then Z[C ∪ J ] = S∗(1,r) is a subdivided
star graph and can be obtained by adding each node in C with at least two
pendant edges. Thus Z ∈ T .
Now, assume that Z = (VZ, EZ) ∈ T and let e = uv ∈ EZ be any edge in the
graph Z. If the edge e = uv is such that one of the end vertex of e is a leaf in
Z, then γccer(Z−e) = ∞, and so the edge e = uv is critical. Therefore, we may
suppose that the edge e is not a pendant edge in Z. More precisely, Z is not
a star graph S(1,r). If Z is a double-star graph S(q,r) with central vertices u1
and u2, then the edge e = u1u2 joins the two vertices u1 and u2 of Z. Thus,
γccer(Z− e) = ∞ while γccer(Z) = 2, so the edge e = uv is critical, and graph Z

is [γccer]
e−-critical. Therefore, let’s suppose Z isn’t a double star. Henceforth,

Z is the graph formed from a star S(1,r) for some r ≥ 2, by appending at least
two pendant edges to each leaf of S(1,r). In the set EZ\ES(1,r) every edge is a
pendant edge in Z. Hence, by our previous assumption e ∈ ES(1,r) . But then
γccer(Z− e) = ∞, which again implies that the edge e is critical. Therefore, Z

is [γccer]
e−-critical. �

Corollary 7 If Z is an isolate free graph of order n ≥ 4, then Z is [γccer]
e−-

critical if Z has unique minimal γccer−set.

Observation 2 If Z = H ◦ K is the corona of graphs H and K, then Z is
[γccer]

e−-critical.

3 [γccer]
e−-stable graphs

We present the characterization of [γccer]
e−-stable graphs in this section. Note

that γccer(Z) = ∞ if Z is a graph containing atleast one isolated vertex. As a
result, if we eliminate any pendant edge e from the graph Z, then γccer(Z−e) =∞.



32 A. Ilyass Lone, W. Goswami

We have observed that if δ(Z) = 1, then the graph Z is always [γccer]
e− −critical.

For a graph Z to be a [γccer]
e−-stable graph if δ(Z) ≥ 2. For this purpose, we

need the following proposition.

Proposition 8 Let Z be an isolate-free graph, then the following two condi-
tions hold:

(1) If Z is [γccer]
e−-stable, then δ(Z) ≥ 2.

(2) If the edge e ∈ EZ is stable, then every γccer(Z− e)−set is a γccer(Z)−set.

Proof.

(1) Suppose, on the contrary, that δ(Z) = 1. Then graph Z has at least
one pendant edge e incident on a leaf vertex. Since Z is an isolate-free
graph, the removal of the edge e from the graph Z will result in a graph
Z − e containing an isolated vertex and, therefore γccer(Z − e) = ∞,

implying that Z is [γccer]
e−-critical, a contradiction. Hence, δ(Z) ≥ 2 if

Z is [γccer]
e−-stable graph.

(2) Suppose e ∈ EZ is a stable edge of the graph Z; it means that the removal
of the edge e ∈ EZ from the graph Z does not change its CCDN; that is
γccer(Z − e) = γccer(Z) = |γccer(Z) − set|, which implies that every γccer−
set of the graph Z− e is a γccer−set of the graph Z

�

Proposition 9 A graph Z is [γccer]
e−-stable if and only if for each e = uv ∈ EZ

and δ(Z) ≥ 2, ∃ a γccer(Z)-set C such that:

(1) u, v /∈ C.

(2) If u, v ∈ Z, then |NZ(u) ∩ C| ≥ 2 and |NZ(v) ∩ C| ≥ 2.

(3) If u ∈ C and v /∈ C, then |NZ(v) ∩ C| ≥ 2.

Proof. Suppose that Z is [γccer]
e−-stable. By preposition 8, δ(Z) ≥ 2. Let

e = uv be any edge of the graph Z. Let Z
′
= Z − uv and let C be any γccer−

set of the graph Z
′
. By proposition 8, the set C is a γccer−set of the graph Z.

Now, if u, v ∈ Z, then condition (1) holds. Assume that u, v ∈ C, then since
C is γccer− set of the graph Z

′
, |NZ

′ (u) ∩ C| ≥ 1 and |NZ
′ (v) ∩ C| ≥ 1, and

so |NZ(u) ∩ C| ≥ 2 and |NZ(v) ∩ C| ≥ 2, thus condition (2) holds. If u ∈ C
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and v /∈ C, then since C is γccer− set of the graph Z
′
, |NZ

′ (v) ∩ C| ≥ 1, and so
|NZ(v) ∩ C| ≥ 2. Thus (3) holds. Henceforth, the set C is a γccer− set of the
graph Z such that one of the three conditions (1), (2), and (3) is satisfied.
To prove the sufficiency, assume that δ(Z) ≥ 2, and for every edge, e = uv ∈
EZ there exists a γccer−set C of the graph Z satisfying the three conditions
(1), (2), and (3). Note that in all three conditions, the set C is also a γccer−set
for Z − uv. Hence, γccer(Z) ≤ γccer(Z − uv) ≤ |C| = γccer(Z), implying that

γccer(Z) = γ
c
cer(Z− uv). Therefore, the graph Z is [γccer]

e−-stable.
�

We have the following observation as a result of proposition 9.
Observation 3. Let Z be a [γccer]

e−- stable graph, then Z has at least two
distinct γccer−sets.
Observation 4.

(a) Every cycle graph Cn is a [γccer]
e−-stable graph ∀n ≥ 4.

(b) For every integer s ≥ 4, ∃ sccer-stable graph.

Theorem 10 Let Z be a complete bipartite graph K(m,n),m, n ≥ 3, then Z is

[γccer]
e−-stable if and only if |NZ(x) ∩ T ccer(Z)| ≥ 2, ∀x ∈ Z.

Proof. Assume that Z is a complete bipartite [γccer]
e−-stable graph and x ∈

VZ. Let C be a γccer− set of the graph Z. Then, there exists a vertex y ∈ C that
is adjacent to x. Now, by definition of the set T ccer(Z), we note that C ⊆ T ccer(Z)
and so y ∈ NZ(x)∩ T ccer(Z). Let C

′
be the γccer− set of the graph Z

′
= Z−uv,

and let z be a vertex in C
′

adjacent to x. By preposition 8, C
′

is aγccer− set
of the graph Z, and so C

′ ⊆ T ccer(Z). Thus, z ∈ NZ(x) ∈ T ccer(Z). Since y /∈ z,
we have |NZ(x) ∩ T ccer(Z)| ≥ | {y, z} | = 2, as claimed.
For sufficiency, let Z be a complete bipartite graph K(m,n),m, n ≥ 3, and C be
the γccer− set of the graph Z. Suppose that |NZ(x) ∩ T ccer(Z)| ≥ 2,∀x ∈ Z. Let
y ∈ C be a vertex in the γccer− set of the graph Z adjacent to the vertex x.
Then in the graph Z

′
= Z−uv, |NZ

′ (x)∩T ccer(Z)| ≥ 1, and so |N(Z
′
)(x)∩C| ≥ 1,

implying that |NZ(x) ∩ C| ≥ 2. Hence by proposition 9, Z is [γccer]
e−-stable.

�

We have observed that the above theorem is not true for bipartite graphs, and
its converse does not hold for graphs in general. See the examples below for
demonstration.
Example 1. Let Z be a bipartite graph shown in figure 2 below. The colored
vertex set u, v form the γccer− set of the graph Z, implying that γccer(Z) = 2.
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However, γccer(Z
′
= Z − uv) = 6, which implies that γccer(Z) 6= γccer(Z

′
) and

hence Z is not [γccer]
e−-stable graph.

Example 2. If Z is a graph obtained from a 6−cycle x1x2..., x6x1 by adding the
chord x1x4 and x3x6 then Z has exactly two γccer−sets, namely the sets x1, x4
and x3, x6. Thus T ccer(Z) = {x1, x4, x3, x6} and |NZ(x) ∩ T ccer(Z)| ≥ 2,∀x ∈ Z.
However the edges x1x4 and x3x6, are both critical in Z, and so Z is not a
[γccer]

e−-stable graph.

Figure 2: Bipartite graph K3,3.

Consequently, as a direct conclusion of Theorem 10, we have the following
result.

Corollary 11 Let Z be a bipartite graph such that Z has two disjoint γccer−sets

then Z is [γccer]
e−-stable.

Next, we will show that if a graph Z has at least two disjoint γccer− sets then
Z cannot have critical edges more then γccer(Z)

Proposition 12 If Z is connected graph of order n such that Z has two dis-
joint γccer−sets, then Z has a maximum of γccer(Z) critical edges.

Proof. Suppose that X and Y be two disjoint γccer−sets of an isolate free

graph Z of order n. If the graph Z is [γccer]
e−-stable, then every edge of Z

stable, and the result is thus straightforward. Assume that Z contains at least
one [γccer]

e−-critical edge and define e = uv as such an edge. If e has no
end in the set X , then the set X is a γccer− set in Z − e, which implies that
γccer(Z− e) = γccer(Z), a contradiction. Therefore, e has at least one end in X .
Likewise, e has at least one end in Y. Thus, e = uv where u ∈ X and v ∈ Y.
If |N(v) ∩ X | ≥ 2, then X is a γccer− set in Z − e, a contradiction. Hence,
N(v)∩X = {u}, and similarly, N(u)∩Y = {v} . This means that Z has critical
edges that are at most the CCDN of the graph Z. �
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Corollary 13 For any integer t ≥ 1, ∃ a graph Z with precisely two disjoint
γccer− sets such that γccer(Z) = t and Z has precisely t critical edges.

Observation 5. The following graphs are [γccer]
e−-stable.

(1) Complete graph Kn is [γccer]
e−-stable for all n ≥ 3.

(2) Complete bipartite graph K(m,n) is [γccer]
e−-stable for all m,n ≥ 3.

(3) Bipartite graphs satisfying the corollary 11 are [γccer]
e−-stable.

(4) Cycle graph Cn is [γccer]
e−-stable for all n ≥ 4.

4 Conclusion

The study of criticality and stability of graphs upon edge removal or addition
on any graph domination parameter has exciting applications in networking.
In this article, we have initiated the study of connected certified domination
criticality and stability upon edge removal.
For connected certified domination edge critical graphs, we have proved that
every graph with dia(Z) ≤ 2 and δ(Z = 1,is [γccer]

e−-critical, and if Z is

[γccer]
e−-critical graph with dia(Z) ≤ 2, then for every γccer(Z)− set C of Z,

Z[C] is either a trivial graph or a star graph. Also, if C is the γccer− set of a
graph Z and for any edge e = uv ∈ Z, where u ∈ C and v /∈ C, if |N(v)∩C| = 1,
then the graph Z is [γccer]

e−-critical, and Z is [γccer]
e−-critical if the graph Z

contains a support vertex. We have proved a necessary and sufficient condition
that a graph Z is [γccer]

e−-critical iff Z ∈ T .
Similarly, for connected certified domination edge stable graphs, we have
proved the following results:
If a graph Z is [γccer]

e−-stable, then δ(Z) ≥ 2, and if the edge e = uv ∈ EZ is

stable, then every γccer(Z−e)− set is a γccer(Z)−set. Also, a graph Z is [γccer]
e−-

stable if and only if for each e = uv ∈ EZ and δ(Z) ≥ 2, ∃ a γccer(Z)−set C such
that: (1). u, v /∈ C. (2). If u, v ∈ C, then |NZ(u) ∩ C| ≥ 2 and |NZ(v) ∩ C| ≥ 2.
(3). If u ∈ C and v /∈ C, then |NZ(v) ∩ C| ≥ 2. We have shown that if Z is a

complete bipartite graph K(m,n),m, n ≥ 3, then Z is [γccer]
e−-stable if and only

if |NZ(x) ∩ T ccer(Z)| ≥ 2, ∀x ∈ Z, and we have justified that this result is not
true for bipartite graphs, and its converse is not valid for graphs in general.
And finally, we have shown that if Z is a connected graph of order n such
that G has precisely two disjoint γccer−sets, then Z has a maximum of γccer(Z)
critical edges.
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1 Introduction

Let G be a connected simple graph with vertex set V(G) = {v1, v2, . . . , vn})
and edges set E(G). In G, the distance d(vi, vj) between the vertices vi
and vj is the length of (number of edges) the shortest path that connects
vi and vj. The diameter of G is the maximum distance between any two
vertices of G. The distance matrix of G is an n× n matrix in which the
(i, j)th-entry is equal to the distance between vertices vi and vj, that is,
Di,j(G) = di,j = d(vi, vj). For more definitions and notations, we refer to
[10].
In G, the distance degree of a vertex v, denoted by TrG(v), is defined to
be the sum of the distances from v to all other vertices in G, that is,
TrG(v) =

∑
u∈V(G) d(u, v). We can also write TrG(vi) as Tri. A graph G is

said to be k-transmission regular if Tri = k, for each i = 1, 2, . . . , n. The
transmission degree sequence is given by {Tr1, Tr2, Tr3, . . . , Trn}. The sec-
ond transmission degree of vi, denoted by Ti, is given by Ti =

∑n
j=1 dijTrj.

The Wiener index of graph G, denoted by W(G), is the sum of the dis-
tances between all unordered pairs of vertices in G, that is,

W(G) =
1

2

∑
u,v∈V(G)

d(u, v) =
1

2

∑
u∈V(G)

TrG(v).

Let TrG = diag(Tr1, Tr2, . . . , Trn) be the diagonal matrix of vertex trans-
missions of G. Aouchiche and Hansen [5] introduced the Laplacian and
the signless Laplacian for the distance matrix of a connected graph G.
The matrix DQ(G) = Tr(G)+D(G) (or simply DQ) is called the distance
signless Laplacian matrix of G. Since DQ(G) is symmetric (positive semi-
definite), its eigenvalues can be arranged as: ∂Q

1 (G) ≥ ∂Q
2 (G) ≥ · · · ≥

∂Q
n (G), where ∂Q

1 (G) is called the distance signless Laplacian spectral ra-
dius of G. If ∂Q

i (G) is repeated p times, then we say that the multiplicity
of ∂Q

i (G) is p and we write m(∂Q
i (G)) = p. As DQ(G) is nonnegative and

irreducible, by the Perron-Frobenius theorem, ∂Q
1 (G) is positive, simple

and there is a unique positive unit eigenvector X corresponding to ∂Q
1 (G),

which is called the distance signless Laplacian Perron vector of G. The
distance signless Laplacian spread of a graph G, denoted by SDQ(G), is
defined as SDQ(G) = ∂Q

1 (G)−∂Q
n (G), where ∂Q

1 (G) and ∂Q
n (G) are respec-

tively the largest and the smallest distance signless Laplacian eigenvalues
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of G. Some recent work on distance signless Laplacian eigenvalues can
be seen in [1, 4, 8, 11, 12, 13, 14].

The rest of the paper is organized as follows. In Section 2, we obtain
lower and upper bounds for SDQ(G) in terms of the Wiener index W(G),
the transmission Tr and the order n of G.

2 Bounds for spread of distance signless

Laplacian matrix

For a graph G with n vertices, let Trmax(G) = max{Tr(v) : v ∈ V(G)}
and Trmin(G) = min{Tr(v) : v ∈ V(G)}. Whenever the graph G is under-
stood, we will write Trmax and Trmin in place of Trmax(G) and Trmin(G),
respectively. From the definitions, we have 2W(G) = ∂Q

1 +∂Q
2 + · · ·+∂Q

n .

Also, Trmax ≥ 2W(G)
n

and Trmin ≤ 2W(G)
n

, where 2W(G)
n

is the average trans-
mission degree. First we note the following observations.

Lemma 1 [2] Let G be a simple, connected graph. Then

Trmin +
√
Tr2min + 8Tmin

2
≤ ∂Q

1 (G) ≤
Trmax +

√
Tr2max + 8Tmax

2
,

equality hold if and only if the graph is transmission regular.

Lemma 2 [6] Let G be a connected graph with minimum and maximum
transmissions Trmin and Trmax. Then 2Trmin ≤ ∂Q

1 (G) ≤ 2Trmax, and the
equality hold if and only if G is transmission regular.

Now, we obtain bounds for the distance signless Laplacian spread SDQ(G)
of a graph G in terms of the Wiener index W(G), the order n, the
maximum transmission degree Trmax(G) and the minimum transmission
degree Trmin of G.

Theorem 3 Let G be a connected graph with n vertices having Wiener
index W(G). Then

n(Trmin +
√

Tr2min + 8Tmin) − 4W(G)

2(n− 1)
≤ SDQ(G)

<
n(Trmax +

√
Tr2max + 8Tmin) − 4W(G)

2
.
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Equality holds in the left if and only if G ∼= Kn.

Proof. Let ∂Q
1 (G), ∂Q

2 (G), . . . , ∂Q
n (G) be DQ(G)-eigenvalues. Then we

have

2W(G) = ∂Q
1 (G) + ∂Q

2 (G) + · · ·+ ∂Q
n (G) ≥ ∂Q

1 (G) + (n− 1)∂Q
n (G),

which implies that ∂Q
n (G) ≤ 2W(G)−∂

Q
1 (G)

n−1
, with equality if and only if

∂Q
2 (G) = ∂Q

3 (G) = · · · = ∂Q
n (G). For equality, consider the following two

cases.
Case 1. Clearly, ∂Q

1 (G) = ∂Q
2 (G) = ∂Q

3 (G) = · · · = ∂Q
n (G), is not possible,

since the spectral radius of DQ is always simple.
Case 2. ∂Q

1 (G) > ∂Q
2 (G) and ∂Q

2 (G) = ∂Q
3 (G) = · · · = ∂Q

n (G). Then
G ∼= Kn, as Kn is the unique graph having only two distinct distance
signless Laplacian eigenvalues. Therefore,

SDQ(G) = ∂Q
1 (G) − ∂Q

n (G) ≥ ∂Q
1 (G) −

2W(G) − ∂Q
1 (G)

n− 1

=
(n− 1)∂Q

1 (G) − 2W(G) − ∂Q
1 (G)

n− 1

=
n∂Q

1 (G) − 2W(G)

n− 1
.

Now, using Lemma 1, we get

SDQ(G) ≥
n(

Trmin+
√

Tr2min+8Tmin)

2
− 2W(G)

n− 1

=
n(Trmin +

√
Tr2min + 8Tmin) − 4W(G)

2(n− 1)
,

with equality if and only if G ∼= Kn. Also, we have 2W(G) = ∂Q
1 (G) +

∂Q
2 (G)+ · · ·+∂Q

n (G) ≤ (n−1)∂Q
1 (G)+∂Q

n (G). We observe that the above
inequality is strict as the distance signless Laplacian spectral radius is
always simple, that is, ∂Q

n (G) ≥ 2W(G) − (n− 1)∂Q
1 (G). Therefore,

SDQ(G) = ∂Q
1 (G) − ∂Q

n (G) < ∂Q
1 (G) − 2W(G) + (n− 1)∂Q

1 (G).
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By using Lemma 1, we get

SDQ(G) ≤
n(Trmax +

√
Tr2max + 8Tmin)

2
− 2W(G)

=
n(Trmax +

√
Tr2max + 8Tmax) − 4W(G)

2

and we get the desired result. �

The following lemma will be used in the next theorem.

Lemma 4 [15] Let G be a connected graph on n vertices. Then ∂Q
1 (G) ≥

4W(G)
n

with equality holding if and only if G is transmission regular.

Theorem 5 Let G be a connected graph of order n. Then SDQ(G) ≥
2W(G)
n−1

, and equality holds if and only if G ∼= Kn.

Proof. If ∂Q
1 (G), ∂Q

2 (G), . . . , ∂Q
n (G) are DQ(G)-eigenvalues, then we have

2W(G) = ∂Q
1 (G) + ∂Q

2 (G) + · · ·+ ∂Q
n (G) ≥ ∂Q

1 (G) + (n− 1)∂Q
n (G),

which implies that ∂Q
n ≤

2W(G)−∂
Q
1 (G)

n−1
, with equality if and only if G ∼= Kn.

Therefore,

SDQ(G) = ∂Q
1 (G) − ∂Q

n (G) ≥ ∂Q
1 (G) −

2W(G) − ∂Q
1 (G)

n− 1

=
(n− 1)∂Q

1 (G) − 2W(G) + ∂Q
1 (G)

n− 1

=
n∂Q

1 (G) − 2W(G)

n− 1

Using Lemma 4, we get SDQ(G) = ∂Q
1 (G)−∂Q

n (G) ≥ 2W(G)
n−1

, equality holds
if and only if G ∼= Kn. �

Since DQ(G) is nonnegative and irreducible, by the Perron-Frobenius
theorem, ∂Q

1 is positive, simple and there is a unique positive unit eigen-
vector X corresponding to ∂Q

1 . Using Lemma 4 and the fact that ∂Q
1 (G) ≥
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2
√∑n

i=1 Tr
2
i

n
, equality hold if and only if G is transmission degree regular

graph [9], we get

SDQ(G) ≥
2(n− 1)

√∑n
i=1 Tr

2
i − 2W(G)

n− 1
,

and equality holds if and only if G is transmission degree regular graph.

Lemma 6 [3] If the transmission degree sequence of G is {Tr1, Tr2 . . . , Trn},
then

n∑
i=1

∂Q
i (G)

2
= 2

∑
1≤i<j≤n

(dij)
2 +

n∑
i=1

Tri
2.

Theorem 7 Let G be a connected graph with n vertices. Then

SDQ(G) ≥ 2Trmin −

√
R1 − 4Tr2min

n− 1
,

and equality holds if and only if G ∼= Kn.

Proof. From Lemma 6, we have
∑n

i=1 ∂
Q
i (G)

2
= 2

∑
1≤i<j≤n(dij)

2 +∑n
i=1 Tri

2 = R1. Clearly, R1 =
∑n

i=1 ∂
Q
i (G)

2 ≥ ∂Q
1 (G)

2
+ (n − 1)∂Q

n (G)
2
,

which implies that ∂Q
n (G) ≤

√
R1−∂

Q
1 (G)

2

n−1
, with equality if and only if

G ∼= Kn. By using this inequality for ∂Q
n (G), we have

SDQ(G) = ∂Q
1 (G) − ∂Q

n (G) ≥ ∂Q
1 (G) −

√
R1 − ∂Q

1 (G)
2

n− 1

Now, using Lemma 2, we get

SDQ(G) ≥ 2Trmin −

√
R1 − 4Tr2min

n− 1
,

which is the required inequality. Clearly, the equality holds if and only if
G ∼= Kn. �
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Remarks. If G is a connected graph of order n, then ∂Q
n (G) ≤ Trmin,

where Trmin is the smallest transmission [7]. From Theorem 7, we have
SDQ(G) ≥ 2Trmin − ∂Q

n (G). Combining, we get ∂Q
1 (G) − ∂Q

n (G) ≥ Trmin.

If G is a connected graph of order n > 2, then ∂Q
1 (G) ≥ 2(n − 1) [9].

Using the inequality ∂Q
n (G) ≤ 2W(G)

n
., we get SDQ(G) = ∂Q

1 (G)−∂Q
n (G) ≥

2(n− 1) − 2W(G))
n

= 2(n(n−1)−W(G))
n

.
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Abstract. The energy E(G) of a graph G is the sum of the absolute
values of eigenvalues of G and the Seidel energy ES(G) is the sum of the
absolute values of eigenvalues of the Seidel matrix S of G. In this paper,
some relations between the energy and Seidel energy of a graph in terms
of different graph parameters are presented. Also, the inertia relations
between the graph eigenvalue and Seidel eigenvalue of a graph are given.
The results in this paper generalize some of the existing results.

1 Introduction

Let G be a simple, finite and undirected graph of order n with vertex set
V = {v1, v2 . . . , vn}. The adjacency matrix A = [aij] of G is a square matrix of
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order n whose (i, j)-th entry aij = 1 if vi and vj are adjacent and 0 otherwise.
The complement of a graph G is denoted by G. The degree of a vertex vi,
denoted by d(vi), is the number of edges incident with vi. A graph G is called
r- regular if d(vi) = r for all vi ∈ V. Let ∆ be the maximum degree of G. Much
like adjacency matrix, in 1966 J. H. van Lint and J. J. Seidel [24] introduced
one more real symmetric {0,±1}-matrix, called the Seidel matrix S as a tool
for studying the systems of equiangular lines in Euclidean space. Later in 1968
J. J. Seidel studied the Seidel eigenvalues of strongly regular graphs [21]. The
eigenvalues θ1 ≥ θ2 ≥ · · · ≥ θn of the adjacency matrix A are called the
eigenvalues of G. A graph is integral if its eigenvalues are integers. Similarly,
the eigenvalues λ1, λ2, . . . , λn of the Seidel matrix S of G are called the Seidel
eigenvalues ofG. For a given interval I, nθ(I) denotes the number of eigenvalues
of G which belongs to the interval I. The number of positive, negative and zero
eigenvalues of G are denoted by n+, n− and n0 respectively, called inertia of
G.

The graph energy defined by I. Gutman in 1978 [7] and gained its own
importance in the spectral graph theory. The energy of a graph G is defined
as

E(G) =

n∑
j=1

|θj|.

The graph energy has applications in chemistry [6, 12]. An equivalent definition
to the energy of a graph G is as follows:

E(G) = 2

n+∑
j=1

θj = −2

n−∑
j=1

θn−j+1 = 2 max
1≤i≤n

i∑
j=1

θj = 2 max
1≤i≤n

i∑
j=1

−θn−j+1.

Two graphs G1 and G2 of same order are said be equienergetic if E(G1) =
E(G2). Similarly, the Seidel energy ES(G) [8] of a graph G is defined as the
sum of the absolute values of eigenvalues of Seidel matrix S. The Seidel energy
is invariant under Seidel switching and complement of a graph. The Seidel en-
ergy ES(G) of a graph G introduced by W. H. Haemers in 2012 and presented
a relation between energy of a complete graph and Seidel energy of G. How-
ever, the exact relation of Seidel energy of graph and bounds for it haven’t
been much studied in the literature so far. One of the interesting problem
on graph energy is to characterize those graphs which are equienergetic with
respect to both adjacency and other matrices like distance matrix, Seidel ma-
trix etc. A weaker problem is to construct the families of graphs which are
equienergetic with respect to both the adjacency and the other matrices re-
lated to graphs. For instance, see [11, 16]. This motivates us to study some
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relations between the energy and the Seidel energy in terms of different graph
parameters. The research related to the Seidel energy and its variants, see
[2, 13, 14, 15, 18, 22, 23]. Two graphs G1 and G2 of same order are said be Sei-
del equienergetic if ES(G1) = ES(G2). Let Kn and Kn1,n2

(n = n1+n2) denote
the complete graph and the complete bipartite graph of order n respectively.
This paper is organized as follows. In section 2, basic definitions, known re-
sults on eigenvalues, energy, Seidel eigenvalues and Seidel energy of graph are
presented. In section 3, the exact relations between the Seidel energy and en-
ergy of a regular graph in terms of other graph parameters are given. Also, a
large class of Seidel equienergetic graphs are presented. The obtained results
in this section generalize some of the existing results. Section 4 provides iner-
tia relations between the graph eigenvalues and Seidel eigenvalues. Also, the
relations between the Seidel energy and energy of a graph in terms of other
graph parameters are given. As a consequence, some bounds for the Seidel
energy of a graph are obtained.

2 Preliminaries

Definition 1 [9] The line graph L(G) of a graph G is the graph with vertex
set same as the edge set of G. In the line graph L(G) any two vertices are ad-
jacent if the corresponding edges in G have a common vertex. The kth iterated
line graph of G for k ∈ {0, 1, 2, . . .} is defined as Lk(G) = L(Lk−1(G)), where
L0(G) = G and L1(G) = L(G).

Theorem 2 [3] If G is an r-regular graph of order n with the eigenvalues
r, θ2, . . . , θn, then the eigenvalues of S are n− 2r− 1,−1− 2θ2, . . . ,−1− 2θn.

Lemma 3 [10] Let P and Q be two Hermitian matrices of same order n and
R = P +Q. Then

µn−i−k(R) ≥ µn−i(P) + µn−k(Q)

µs+t+1(R) ≤ µs+1(P) + µt+1(Q)

where 0 ≤ i, k, s, i+ k+ 1, s+ t+ 1 ≤ n and µj(B) is the jth largest eigenvalue
of a Hermitian matrix B.

Theorem 4 [1] Let G be a graph of order n. Then

E(G) + E(G) − 2(n− 1) < ES(G) ≤ E(G) + E(G).

The equality in the right side holds if G ∼= Kn or G ∼= Kn.
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Proposition 5 [25] Let G be a graph of order n. Then

1. E(G) + E(G) ≤ n(
√
n+ 1)

2. E(G) + E(G) ≤ (n− 1)(
√
n+ 1+ 1) if G is a regular graph.

Lemma 6 [4] Let P, Q be two real symmetric matrices of same order n such
that R = P +Q. Then

E(R) ≤ E(P) + E(Q),

where E(P) =
∑n
j=1|µj| is the energy of P, and µj (j = 1, 2, . . . , n) are the

eigenvalues of P.

3 The exact relation between Seidel energy and en-
ergy of a regular graph

In this section, we study the relations between the Seidel energy and the
energy of a regular graph. As a consequence, the Seidel equienergetic graphs
are constructed by taking regular equienergetic graphs.

Theorem 7 Let G be an r-regular graph of order n. Then

ES(G) = |n− 2r− 1|+ n− 2r− 1− 2n− + 2E(G) + 2
∑
2≤j≤n

θj∈(−1/2,0)

(2θj + 1).

Proof. Let θ1 ≥ θ2 ≥ · · · ≥ θn and λ1, λ2, . . . , λn be the eigenvalues and the
Seidel eigenvalues of a graph G respectively. By definition of the Seidel energy
and Theorem 2, we have

ES(G) = |n− 2r− 1|+
n∑
j=2

|λj| = |n− 2r− 1|+
n∑
j=2

|−1− 2θj|

= |n− 2r− 1|+
∑
2≤j≤n
θj≤−1/2

(−1− 2θj) +
∑
2≤j≤n
θj>−1/2

(1+ 2θj)

= |n− 2r− 1|− nθ[−r,−1/2] + 2
∑
2≤j≤n
θj≤−1/2

|θj|+ nθ(−1/2, r)

+ 2
∑
2≤j≤n

θj∈(−1/2,0)

θj + 2
∑
2≤j≤n
θj≥0

|θj|. (1)
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For convenience, the energy of G can be written as

E(G) = r+
∑
2≤j≤n
θj≤−1/2

|θj|+
∑
2≤j≤n
θj≥0

|θj|+
∑
2≤j≤n

θj∈(−1/2,0)

|θj|.

With this, (1) becomes

ES(G) = |n− 2r− 1|− nθ[−r,−1/2] + nθ(−1/2, r) + 2
∑
2≤j≤n

θj∈(−1/2,0)

θj

+ 2
(
E(G) − r−

∑
2≤j≤n

θj∈(−1/2,0)

|θj|
)

= |n− 2r− 1|− nθ[−r,−1/2] + nθ(−1/2, r) + 2
∑
2≤j≤n

θj∈(−1/2,0)

θj

+ 2E(G) − 2r− 2
∑
2≤j≤n

θj∈(−1/2,0)

|θj|

= |n− 2r− 1|+ 2E(G) − 2r+ 4
∑
2≤j≤n

θj∈(−1/2,0)

θj − nθ[−r,−1/2]

+ n− 1− nθ[−r,−1/2]

= |n− 2r− 1|+ 2E(G) − 2r+ 4
∑
2≤j≤n

θj∈(−1/2,0)

θj + n− 1− 2nθ[−r,−1/2].

(2)

We have the following

nθ[−r,−1/2] = n
− − nθ(−1/2, 0).

and ∑
2≤j≤n

θj∈(−1/2,0)

(2θj + 1) =
∑
2≤j≤n

θj∈(−1/2,0)

2θj + nθ(−1/2, 0). (3)

Now, using (3) in (2)

ES(G) = |n− 2r− 1|+ n− 2r− 1− 2n− + 2E(G) + 2
∑
2≤j≤n

θj∈(−1/2),0)

(2θj + 1)

which completes the proof. �
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It is easy to see that
∑

2≤j≤n
θj∈(−1/2,0)

(2θj+1) > 0. With this we have the following:

Corollary 8 Let G be an r-regular graph of order n. Then

1. ES(G) > 2(n− 1− 2r− n− + E(G)) if r ≤ (n−1)
2

2. ES(G) > 2(E(G) − n
−) if r ≥ (n−1)

2 .

Corollary 9 Let G be an r-regular graph of order n and θj /∈ (−1/2, 0). Then

ES(G) =

{
2(n− 1− 2r− n− + E(G)) if r ≤ (n−1)

2

2(E(G) − n−) if r ≥ (n−1)
2 .

Proof. If θj /∈ (−1/2, 0) then
∑

2≤j≤n
θj∈(−1/2,0)

(2θj + 1) = 0. Now r ≤ (n−1)
2 implies

n − 2r − 1 ≥ 0 and r ≥ (n−1)
2 implies n − 2r − 1 ≤ 0. With these, Theorem 7

gives the desired results. �

Remark 10 In Theorem 3.11 of [1] it is proved that ES(G) = 2(n− 1− 2r−
n− + E(G)) if θj /∈ (−1, 0) and r ≤ n−1

2 . The Corollary 9 gives the same even
if θj /∈ (−1/2, 0), which shows that Theorem 3.11 of [1] is enriched.

Corollary 11 Let G be an r-regular integral graph of order n. Then

ES(G) =

{
2(n− 1− 2r− n− + E(G)) if r ≤ (n−1)

2

2(E(G) − n−) if r ≥ (n−1)
2 .

Corollary 12 Let G be an r-regular graph of order n. Then ES(G) = E(G) if
and only if

E(G) =


−2(n− 2r− 1− n− +

∑
2≤j≤n

θj∈(−1/2,0)

(2θj + 1)) if r ≤ (n−1)
2

−2(−n− +
∑

2≤j≤n
θj∈(−1/2,0)

(2θj + 1)) if r ≥ (n−1)
2 .
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In a particular case if θj /∈ (−1/2, 0), then ES(G) = E(G) if and only if

E(G) =

{
−2(n− 2r− 1− n−) if r ≤ (n−1)

2

2n− if r ≥ (n−1)
2 .

From the first case of above results and the fact that E(G) ≥ 0, one can easily
observe that if n − n− > 2r + 1 then there is no graph with ES(G) = E(G).
The one of interesting problem in studying the Seidel energy of graphs is to
find the Seidel equienergetic graphs. In this direction, we have the following:

Theorem 13 Let G1 and G2 be two equienergetic, r- regular graphs of same
order n with no eigenvalue in the interval (−1/2, 0). If G1 and G2 both have
same number of negative eigenvalues, then G1 and G2 are Seidel equienergetic.

Proof. Proof follows directly from Corollary 9. �

If G is an r-regular graph of order n with r ≥ 3, then the iterated line graphs
Lk(G), k ≥ 2 have all negative eigenvalues equal to −2 [17]. If G1 and G2 are
two r-regular graph of order n, where r ≥ 3 then Lk(G1), L

k(G2) have same
number of negative eigenvalues and E(Lk(G1)) = E(L

k(G2)), k ≥ 2 [20].

Remark 14 In [19] Ramane et al. studied the Seidel energy of iterated line
graphs Lk(G), k ≥ 2 of a r-regular graph, r ≥ 3 and constructed a large class
of Seidel equienergetic graphs by taking two r-regular graphs of same order. It
is noted that the results in [19] become the particular case of Theorem 13.

4 Seidel energy and energy of a graph

In this section, we study the connection between the Seidel energy and the
energy of a graph G in terms of different graph parameters. Also, obtained the
inertia relations between the graph eigenvalues and the Seidel eigenvalues of
a graph G.

Lemma 15 Let G be a graph of order n, n ≥ 2. Then for j ≥ 2,

2θj + λn−j+2 ≤ −1 ≤ 2θj + λn−j+1. (4)

Proof. By definition of Seidel matrix S = J − I − 2A or 2A + S = J − I.
In Lemma 3, by taking P = 2A, Q = S and R = J − I we have µn−i−k(J −
I) ≥ 2µn−i(A) + µn−k(S), now letting i = n − j, k = j − 2,we get µ2(J − I) ≥
2θj(A) + λn−j+2(S). But J − I has only two different eigenvalues n − 1 and −
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1 which implies 2θj+λn−j+2 ≤ −1. Similarly, by letting s = j−1 and t = n− j
in Lemma 3, we get the right side inequality of (4). �

The inertia of S is the number of positive, negative and 0 eigenvalues of S and
denoted by n+

S , n−
S and n0S respectively.

Theorem 16 Let G be a graph of order n ≥ 2. Then

(a) 1 ≤ n+
S + n+ ≤ n+ 1

(b) 0 ≤ n0S + n0 ≤ n

(c) n− 1 ≤ n−
S + n−.

Proof. The n+
S = 1 if and only if G ∼= Kn1,n2

(n1 + n2 = n) or Kn [5] which
implies λ2 ≥ 0 for remaining graphs. This shows that lower bound in (a) is
clear. The lower bound in (b) follows from the fact that many graphs are not
Seidel integral. Let us rewrite the eigenvalues of G as

θ1 ≥ · · · ≥ θn+ > 0 = θn++1 = · · · = θn++n0 = 0 > θn++n0+1 ≥ · · ·

· · · ≥ θn++n0+j > −
1

2
≥ θn++n0+j+1 ≥ · · · ≥ θn.

From the left side inequality of (4), we have 2θj + λn−j+2 ≤ −1 for j ≥ 2. And
if j ≥ 2 and θj > − 1

2 then λn−j+2 ≤ −1− 2θj < 0.
Therefore,

n−
S ≥ n

+ + n0 + j− 1 (5)

which implies

n−
S + n− ≥ n+ + n0 + j− 1+ n− = n+ j− 1 ≥ n− 1.

Now by using (5),

n+
S + n+ = n− n−

S − n0S + n
+ ≤ n− (n+ + n0 + j− 1) − n0S + n

+ ≤ n+ 1.

Next, by using above bounds

n0S + n
0 = 2n− (n+

S + n+) − (n−
S + n−) ≤ 2n− 1− (n− 1) = n.

�

In the following result we give necessary and sufficient condition to hold the
equality in left side of (4).
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Lemma 17 Let G be a graph of order n. Then 2θj + λn−j+2 = −1 for all j ∈
{2, 3, . . . , n} if and only if G is an r-regular graph with largest Seidel eigenvalue
n− 2r− 1.

Proof. If G is an r-regular graph. Then by Theorem 2 it is clear that 2θj +
λn−j+2 = −1 for all j ∈ {2, 3, . . . , n}. Conversely, assume that 2θj+λn−j+2 = −1
for all j ∈ {2, 3, . . . , n}. Let the number of edges in G and its complement G be
m and m respectively. By Rayleigh quotient with all one’s vector 1, we have

λ1 = max
x 6=0

{
xTSx

xTx
} ≥ 1T(A−A)1

1T1
≥ 2m− 2m

n
.

From the fact that
∑n
j=1 θj = 0 and

∑n
j=1 λj = 0, we have

n∑
j=1

(2θj + λj) = 0 which implies 2θ1 + λ1 = n− 1.

On the other hand, from the fact θ1 ≥
2m

n
, we have

2θ1 + λ1 ≥
4m

n
+
2m− 2m

n
= n− 1.

Now we arrive at θ1 =
2m

n
and λ1 =

2m− 2m

n
, which shows that G is an

r-regular graph with r =
2m

n
and λ1 = n− 2r− 1.

This completes the proof. �

Proposition 18 Let G be a graph of order n. Then

|ES(G) − 2E(G)| ≤ 2n− 2.

Equality holds if and only if G is a complete graph.

Proof. By definition of Seidel matrix, S = J − I − 2A. Now using Lemma 6,
we have, E(S) ≤ E(J− I) + 2E(A) and 2E(A) ≤ E(J− I) + E(S) which implies
|ES(G) − 2E(G)| ≤ 2n− 2. �

Theorem 19 Let G be a graph of order n. Then

(a) 2E(G) − ES(G) ≤ 4θ1
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(b) ES(G) − 2E(G) ≤ 2λ1.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn and θ1 ≥ θ2 ≥ · · · ≥ θn are the Seidel
eigenvalues and the eigenvalues of a graph G respectively. From the definition
of the Seidel energy and the energy of a graph G, we have

ES(G) = λ1 +

n∑
j=2

|λj|

2E(G) = 2θ1 +

n∑
j=2

|2θn−j+2|.

By combining the above two equalities we get

2E(G) − 2θ1 − ES(G) + λ1 =

n∑
j=2

(|2θn−j+2|− |λj|)

≤
n∑
j=2

|2θn−j+2 + λj|.

Now from the left side inequality of (4), we have 2θj + λn−j+2 ≤ −1 for j ≥ 2.
Therefore

n∑
j=2

|2θn−j+2 + λj| = −

n∑
j=2

2θn−j+2 + λj = 2θ1 + λ1.

With this fact we arrive at 2E(G) − ES(G) ≤ 4θ1.
Similarly one can prove (b) easily. �

Remark 20 The case (b) of Theorem 19 with the fact λ1 ≤ n− 1 gives

ES(G) − 2E(G) ≤ 2λ1 ≤ 2n− 2.

And Proposition 18 gives that ES(G)−2E(G) ≤ 2n−2 which implies the result
(b) of Theorem 19 is better than this inequality.

Theorem 21 Let G be a graph of order n with Seidel eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn. Then

2E(G) − ES(G) ≤ 4θ1 − 2n+ 2n− + 2. (6)

Equality holds if and only if G is a graph with 2θj + λn−j+2 = −1 for all
j ∈ {2, 3, . . . , z} and n− + n−

S = n− 1, where z = n+ + n0.
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Proof. Let θ1 ≥ θ2 ≥ · · · ≥ θn be the eigenvalues of G. From the definition
of energy of a graph G, we have

E(G) =

n∑
j=1

|θj| = 2
z∑
j=1

θj = 2θ1 + 2

z∑
j=2

θj

≤ 2θ1 + 2
z∑
j=2

1

2
(−1− λn−j+2) by left side of (4) (7)

= 2θ1 − z+ 1−

z−1∑
j=1

λn−j+1

≤ 2θ1 − z+ 1+ max
1≤i≤n

i∑
j=1

−λn−i+1 (8)

= 2θ1 − n+ n− + 1+
1

2
ES(G)

2E(G) − ES(G) ≤ 4θ1 − 2n+ 2n− + 2.

For equality we have the following. Let G be a complete graph of order n, then
θ1 = n − 1 and n− = n − 1. Hence equality holds in (6). Suppose G is not a
complete graph then θ2 ≥ 0, which gives z = n+ + n0 = n− n− ≥ 2.
Now, to have equality in (6) the inequalities (7) and (8) must be equalities.
Equality in (7) holds if and only if 2θj + λn−j+2 = −1 for all j ∈ {2, 3, . . . , z}.
From the energy of a graph and equality in (8) holds if and only if

n−
S ≤ z− 1 ≤ n

−
S + n0S.

Since z = n − n− we get n−
S + n− ≤ n − 1, and n−

S + n− ≥ n − 1 − n0S.
Now, from (c) of the Theorem 16, the above right side inequality is obvious.
Again using (c) of the Theorem 16 with left side inequality of above, we have
n− + n−

S = n− 1. This completes the proof. �

Corollary 22 Let G be a graph of order n. Then

2E(G) − ES(G) ≤ 4∆− 2n+ 2n− + 2.

Equality holds if and only if G is regular graph with n− + n−
S = n− 1.

Proof. Let ∆ be the maximum degree of G. It is well-known fact that θ1 ≤ ∆.
And θ1 = ∆ holds if and only if G is a regular. Using these in Theorem 21, we
arrive at required results. �
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Remark 23 From the fact that n− ≤ n− 1, Theorem 21 gives

2E(G) − ES(G) ≤ 4θ1 − 2n+ 2n− + 2 ≤ 4θ1.

And the case (a) of Theorem 19 shows that 2E(G)−ES(G) ≤ 4θ1 which implies
the result in Theorem 21 is better than this inequality.

Corollary 24 Let G be a graph of order n. Then

2E(G) − ES(G) ≤ 2(n− 1+ n−) ≤ 2(2n− 1− α). (9)

Proof. Let α be the independence number of G. Using the fact that θ1 ≤ n−1
in Theorem 21 the left side inequality in (9) is clear. Now using the well known
inequality n− ≤ n− α, we get the right side inequality in (9). �

Theorem 25 Let G be a graph of order n. Then

(a) 2(n+ + n0 − 1) ≤ ES(G) ≤ n(
√
n+ 1)

(b) 2(n+ + n0 − 1) ≤ ES(G) ≤ (n− 1)(
√
n+ 1+ 1) if G is a regular graph.

Proof. Left side inequality in (a) and (b) follows by using the fact E(G) ≥
2θ1 in (6). Now by using the right side inequality of Theorem 4 and (1) of
Proposition 5, we have the right side inequality of (a). Now by using the right
side inequality of Theorem 4 and (2) of Proposition 5, we have the right side
inequality of (b). �
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Abstract. Automatic detection of tissue types on whole-slide images
(WSI) is an important task in computational histopathology that can
be solved with convolutional neural networks (CNN) with high accu-
racy. However, the black-box nature of CNNs rightfully raises concerns
about using them for this task. In this paper, we reformulate the task of
tissue type detection to multiple binary classification problems to sim-
plify the justification of model decisions. We propose an adapted Bag-
of-local-Features interpretable CNN for solving this problem, which we
train on eight newly introduced binary tissue classification datasets. The
performance of the model is evaluated simultaneously with its decision-
making process using logit heatmaps. Our model achieves better per-
formance than its non-interpretable counterparts, while also being able
to provide human-readable justification for decisions. Furthermore, the
problem of data scarcity in computational histopathology is accounted
for by using data augmentation techniques to improve both the perfor-
mance and even the validity of model decisions. The source code and bi-
nary datasets can be accessed at: https://github.com/galigergergo/
BolFTissueDetect.
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1 Introduction

The accurate interpretation and analysis of medical images can aid in the
diagnosis of various diseases and conditions [9], provide information about the
progression of diseases [24], and assist in treatment planning [25]. In the field
of histopathological image processing, digital images are obtained as a result
of the invasive technique of removing and scanning specific tissue samples
from a patient’s body through some form of biopsy [8]. The scanned whole-
slide images (WSI) represent high-resolution images of gigapixel order, which
results in a very high computational cost of analyzing them with different
algorithms [16]. To solve the problems caused by WSI sizes, single whole-slide
images can be broken down into several smaller patches, and then processed
in adequately sized batches depending on available resources.

The introduction of WSIs made it possible to develop different computer-
aided diagnosis (CAD) and prognosis systems for automating various tasks
in the field of medical image processing [15]. The task in the field of WSI
processing examined in this paper is cancer detection, more specifically the
detection of different tissue types in WSIs of tumor microenvironments (TME).
TME has a significant impact on tumor initiation and progression [12] and also
affects the prognosis and response to therapy of cancer patients [1].

Automating different tasks of trained human pathologists using CAD sys-
tems poses a variety of different challenges by itself. For instance, machine
learning-based methods may be vulnerable to only changing a single pixel of
an image [19]. In case of WSIs different artifacts (air bubbles, dirt) may con-
taminate tissue samples, and different forms of deterioration (tears, cracks,
color variations) of the samples are also common [15], which could all bias
machine-learning models. Furthermore, creating a large, high-quality anno-
tated medical dataset, which is essential for all tasks involving supervised
learning, is also considered a difficult task. Correct annotation of WSIs is a
time-consuming, costly process that requires the involvement of a large num-
ber of trained professionals [2]. Moreover, privacy concerns may arise when
working with specific medical conditions [20]. Another major challenge of us-
ing CAD systems in the medical sector arises from the black-box nature of
the current state-of-the-art approaches [22]. Although deep learning methods
have shown promising performances in medical tasks, the inability to explain
decisions has raised concern among medical experts [21].

Due to task-related complexities, histopathological segmentation methods
might rely on additional, a-priori information besides the input images. As a
related example, in [11], the proposed state-of-the-art TME tissue segmenta-



62 G. Galiger, Z. Bodó

tion method integrates the usage of classification labels of the input images
to achieve good performance. However, no method of identifying these clas-
sification labels was introduced in this paper, the authors implying the task
to be carried out by human radiologists. Thus, the proposed method repre-
sents a semi-automated approach, which heavily relies on human pathologists
identifying different tissue types in WSIs.

The main focus of this paper is to fully automate this process by introducing
a way of identifying the TME tissue types used as inputs for the segmenta-
tion method proposed in [11]. As this approach intends to replace human
experts, the reliability of its decision-making process is of utmost importance.
Therefore, we obtain highly interpretable problems by reformulating the task
of TME tissue type detection as multiple binary classification problems. We
refer to the interpretability of model decisions as the correspondence of the
model activations and the ground truth. For solving the task of binary tissue
classification, we propose an adapted version of the explainable BagNet ar-
chitecture [5], which demonstrates matching performance compared to human
experts. Moreover, the usage of the BagNet architecture also provides a solu-
tion for the concerns regarding the black-box nature of models in the medical
field by being able to justify decisions taken. The proposed models show a
decision-making process that aligns with the expected histopathological rea-
soning of human radiologists. In addition, we solve the problem of medical
data scarcity with data augmentation techniques, the effects of which on both
the performance and validity of model decisions are further analyzed in detail.

Overall, we present four main contributions in this paper: (i) The task of
TME tissue type detection is reformulated to multiple binary classification
tasks for the sake of clear, human-readable justification of model decision-
making. (ii) The BagNet Bag-of-local-Features explainable CNN architecture
is adapted for this task and the validity of its decisions is evaluated using
logit heatmaps. (iii) Eight binary datasets are created for this task from two
publicly available ones and the effects of expanding them using data augmenta-
tion techniques are also reviewed. (iv) A detailed quantitative and qualitative
evaluation of the adapted method is performed on the newly created datasets.

The rest of this paper is structured as follows: Section 2 describes the spe-
cific TME binary classification task formulation and necessary adaptations
in both model architecture and dataset structure. In Section 3, we present
the experiments used to benchmark the adapted BagNet model on the bi-
nary classification task, along with an in-depth analysis of obtained results.
We conclude our findings in Section 4, where we also provide further research
directions regarding this topic.
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2 Methodology

2.1 Problem formulation

For the task of identifying patch-level labels, such as in the case of the train-
ing samples from the two presented datasets, individual patches have to be
assigned to four different classes, thus resulting in a multi-class multi-label
classification task. Successfully solving this problem, while also providing reli-
able explanations for decisions is highly difficult in the case of such a complex
classification task. Therefore, the task should be reformulated to solve one
binary classification task for each of the four classes, i.e. detecting whether or
not one type of tissue (class) is present in a certain patch. This reformulation
yields multiple significantly simpler detection problems, which in turn simplify
the interpretation process of explainable models used for solving these.

Our choice for solving these binary classification problems was the BagNet
interpretable CNN architecture, which showed promising results in a variety
of different tasks [5, 17, 18] and is inherently explainable with pixel-level ac-
tivation heatmaps. As we are using weakly-annotated datasets with fully seg-
mented validation and testing data, the exact location of tissue types in these
cases is precisely known. This implies the natural application of heatmaps
for decision interpretation since pixel activation validity can be verified using
segmentation data.

BagNets were originally proposed for single-label multi-class classification
tasks on the ImageNet dataset [7], which makes adapting it to binary clas-
sification problems a necessary procedure. This was done by changing the
output size of the linear classifier following the average pooling operator to 1
and replacing the softmax operator with sigmoid to infer the image-level class
evidence. By introducing the sigmoid operator, the independence of different
classes is assumed, which is inherent in the case of the two classes of this bi-
nary classification problem: a certain tissue type is present in a patch versus
it is not present.

2.2 Datasets

The scarcity of suitable quality datasets for medical image processing applica-
tions applies to WSIs of tumor microenvironments, which requires radiology
expertise to be correctly annotated [2], and the publication of such datasets
also raises concerns regarding patient privacy [20]. The datasets used in this
paper originate from the previously mentioned paper [11], where two different
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Binary dataset Training Testing Validation

LUAD – LYM 1400 200 100
LUAD – NEC 6000 120 40
LUAD – TE 8000 80 60
LUAD – TAS 8000 140 40
BCSS – NEC 6000 800 800
BCSS – LYM 12 000 4000 2000
BCSS – STR 16 000 4000 1600
BCSS – TUM 18 000 4000 3000

Table 1: Size distribution of the 8 binary datasets between training, testing,
and validation subsets.

weakly-annotated datasets of TMEs were created and published for further
research:

LUAD-HistoSeg (LUAD): This dataset was specifically created for train-
ing the proposed segmentation model and included patches with four tissue
categories: tumor epithelial (TE), tumor-associated stroma (TAS), necrosis
(NEC) and lymphocyte (LYM).

BCSS-WSSS (BCSS): This dataset was adapted from a previously pub-
lished fully-supervised dataset [2] and included four classes: tumor (TUM),
stroma (STR), lymphocytic infiltrate (LYM), and necrosis (NEC).

In a similar manner to the used model architecture, the two original datasets
would have been adequate for a different type of problem, a multi-class multi-
label classification task. This resulted in both of the datasets having to be
adapted to the newly formulated binary classification problems. The adapta-
tion consisted in creating a binary classification dataset for each of the classes
from the original datasets. This was done by first counting the positive and
negative examples for a given class in a dataset, i.e. the number of samples
that contained a given tissue type and the number of samples that did not.
To obtain an optimal balance between the two classes, the binary datasets
were constructed with the smaller one of the two binary classes (positive or
negative) and a randomly sampled version of the larger binary class. Applying
this method to all four classes of both datasets resulted in 8 (4 × 2) binary
datasets of varying sizes. Table 1 shows the size distribution of the 8 binary
datasets.
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Transformation Probability

Horizontal skew 1.0

Low-angle rotation 1.0

90-degree-multiple rotation 0.75

Horizontal flip 0.5

Vertical flip 0.5

Table 2: Probabilities of applying different data augmentation transformations
when expanding binary datasets.

2.3 Data augmentation

The original LUAD and BCSS datasets are relatively small for training DNNs
in a supervised manner, even for the task of binary classification. The prob-
lem of data scarcity is further accentuated by the fact that the actual datasets
used for binary classification are even smaller than the original ones. This hap-
pens because these represent subsets of the original datasets obtained by their
adaptation to the binary classification task, four binary datasets having been
created from a single original dataset. To alleviate the issue of small datasets,
we used data augmentation methods to expand all eight binary datasets to 10
times their original size.

To simulate common, practically occurring changes in WSIs such as different
rotation and skew angles of slides during the scanning procedure, only related
augmentation transformations were used. The augmentation techniques used
for the expansion of the binary datasets were limited to morphological trans-
formations, which included low-magnitude skew operations, random-angle ro-
tations by a maximum of 3 degrees, rotations with 90-degree multiples, and flip
operations. All of the listed transformations were applied with certain proba-
bilities, as shown in Table 2. These values were chosen based on the following
reasoning: skew and low-angle rotation are always applied to introduce some
level of morphological diversity in every single new image, while the remaining
three transformations further differentiate images, the probability for rotation
being higher since flip operations are twice as many in number.

2.4 Implementation details

All the convolutional neural networks analyzed in our experiments were im-
plemented in PyTorch and we used the Augmentor1 Python package for aug-

1Augmentor Python Package (https://augmentor.readthedocs.io/en/stable)

https://augmentor.readthedocs.io/en/stable
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menting the binary datasets. We trained the models using an NVIDIA Titan
Xp GPU and utilized ResNet-50 as the classification backbone for the Bag-
Net architecture. The resolution of the input patches was 224 × 224 and the
batch size was set to 29, the maximum value we could obtain before reach-
ing GPU memory limitations. The network weights were optimized for binary
cross-entropy loss using stochastic gradient descent (SGD) with a weight de-
cay of 0.0001 and a momentum of 0.9. The learning rate was set to 0.01 and
divided by 10 every 30 training epochs. These hyperparameter settings were
inspired by the ImageNet training example from the original PyTorch GitHub
repository2.

3 Experiments and results

3.1 Training process

3.1.1 Receptive field size

The main advantage of using the BagNet architecture lies in the simplicity of
explaining its decision-making process, which is a consequence of its separation
of receptive fields in inferring class evidence. From the originally proposed
BagNet–q models, with q ∈ {9, 17, 33} receptive field sizes, BagNet–17 showed
the best classification performance on the ImageNet dataset [5]. However, the
transferability of ImageNet results to WSI processing is questionable due to
the inherent differences between natural images and tissue scans. As a result,
we benchmarked all three BagNet models for binary tissue classification on
the LUAD – LYM dataset to find the most suitable receptive field size for this
application. The results of this experiment are shown in Table 3.

In contrast to the natural images from ImageNet, where the BagNet–17
model showed clearly superior classification performance, the results are less
clear in this case. The smaller receptive field size of 9 × 9 pixels leads to the
highest values in some of the calculated performance measures, although these
are not significantly better than the ones obtained with 17× 17 receptive fields,
with below 2% differences in average validation precision, recall, and specificity.
However, there are significant differences in performance in every other case
where the values obtained by BagNet–17 are highest, mostly exceeding 5%,
and even 10% in some cases. As a result of these findings, we use the BagNet–
17 model in the following experiments, which we will also refer to as BagNet.

2PyTorch GitHub Repository (https://github.com/pytorch/examples/tree/main/
imagenet)

https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/pytorch/examples/tree/main/imagenet
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Model Acc. Prec. Recall Spec.

Without data aug.
BagNet–9 0.93 0.875 0.9667 0.9459
BagNet–17 0.94 0.925 0.95 0.925
BagNet–33 0.88 0.8 0.9333 0.8889

With data aug.
BagNet–9 0.908 0.9225 0.8983 0.8581
BagNet–17 0.954 0.9175 0.9783 0.966
BagNet–33 0.873 0.7675 0.9433 0.9003

Table 3: Results of training BagNet models with different receptive field sizes.
The values shown in this table are the average validation accuracy, precision,
recall, and specificity scores obtained after training the models on the LUAD
– LYM dataset with and without using data augmentation.

3.1.2 Model backbone

Neural networks show a tendency to benefit from increasing depth in various
image processing tasks [10]. In [5], the BagNet network was proposed with the
ResNet-50 architecture as a backbone, which is considered a highly layered
architecture by current standards [13]. In order to test the necessity of such
a deep backbone architecture for the binary classification task of TME tissue
types, we trained the BagNet model on the LUAD – LYM dataset using two
different backbones: the previously mentioned ResNet-50, and a significantly
smaller CNN, which consisted of two convolutional layers of 32 and 64 neurons
respectively, followed by a ReLU activation layer.

To present the findings of this experiment, the average validation accuracy
values of the two models are illustrated on the left side of Figure 1. Using the
small CNN as a backbone, the accuracy values converge in around 30 epochs,
not improving considerably on initial values. This could be caused by the
small network’s inability to sufficiently generalize the complex image process-
ing problem. In contrast, the significantly deeper ResNet-50 backbone leads to
later conversion but shows substantially improved classification performance.
Therefore, we use the ResNet-50 as the backbone for our BagNet models in
the following experiments.
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Figure 1: Results of benchmarking small CNN and ResNet-50 backbones for
BagNet for binary classification trained on the LUAD – LYM dataset.

3.1.3 Transfer learning

Likewise to many other architectures, leveraging transfer learning, i.e. initial-
izing BagNet weights with weights originally trained on the ImageNet dataset
leads to significant performance increases in many different tasks [4, 17]. To
verify the validity of the premise for the task of TME tissue binary classifica-
tion, we evaluated three different ways of weight initialization for the adapted
BagNet model:

Default initialization: No pre-trained weights were loaded in this case,
initialization was done by the default PyTorch weight initialization process.

Loading ImageNet pre-trained weights: In this case, weights were
loaded from the original pre-trained BagNet model published with the original
paper [5]. As with the network architecture, adaptations had to be carried out
in the case of the pre-trained weights as well, since the last linear transfor-
mation layer of the architectures did not match. The adaptation consisted in
averaging the weights corresponding to the 2048 ImageNet classes in order to
obtain a single weight tensor.

Loading LUAD – NEC pre-trained weights: We managed to obtain
promising results by training the BagNet model with default initialization on
the LUAD – NEC binary dataset. The weights of this pre-trained model were
also used in this benchmark for initialization for training on binary datasets
different from LUAD – NEC.
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Figure 2: Results of training BagNet with ResNet-50 backbone on the LUAD –
LYM dataset with weight initialization using pre-trained models on ImageNet
and LUAD – NEC datasets.

These weight initialization approaches were benchmarked by using them for
training on the LUAD – LYM binary dataset. The right side of Figure 1 shows
training and validation results obtained by training the BagNet model with
no weight initialization. The model is unable to escape from a local optimum
during 100 epochs of optimization, the training values are slightly oscillating,
while the validation values stay constant. This phenomenon might be caused by
unlucky weight initialization, however, three separate runs of this experiment
showed similar behavior.

The results of training the BagNet model with the two different pre-trained
sets of weights are shown in Figure 2. Both approaches show similar behavior
in terms of accuracy and loss, both converging after approximately 60 epochs,
however, ImageNet weight initialization leads to slightly better classification
performance. This demonstrates the generalizability of deep networks such as
ResNet-50, which was able to successfully transfer knowledge learned on the
ImageNet dataset to the completely different task of WSI binary classification.
The underperformance of LUAD – NEC weights might be caused by the signif-
icantly lower training time of this model (approximately 400 epochs) compared
to the original BagNet model, which was trained for over 5000 epochs on the
ImageNet dataset [5].
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Figure 3: Results of training BagNet with ResNet-50 backbone, ImageNet
weight initialization on datasets of different sizes: LUAD – LYM with 1400
training samples and 100 validation samples, augmented LUAD – LYM with
14 000 training samples, and 1000 validation samples, BCSS – STR with 16 000
training samples, and 1600 validation samples.

3.1.4 Dataset properties

The training speed and convergence rate, as well as the ability of neural net-
works to learn generalization of task-related information, are all dependent
on the quality and size of the dataset used for training them. As the eight
binary datasets created for the task of binary TME tissue classification are
all different in size, we evaluate the effect of dataset size on the training and
validation process of the adapted BagNet model. This is done by comparing
training and validation accuracy values of three different binary datasets over
100 training epochs.

Figure 3 shows the results of the dataset size examination carried out on
LUAD – LYM, augmented LUAD – LYM and BCSS – STR, with 1400, 14 000
and 16 000 training samples respectively. By analyzing the results obtained
from this experiment, we managed to draw two different conclusions, one re-
garding the size of two completely different datasets and one regarding the
size difference obtained by using data augmentation.

On the one hand, by comparing the training process on the smallest binary
dataset, LUAD – LYM, and one of the largest non-augmented datasets, BCSS
– STR, we can observe that a larger dataset leads to a slower and more gradual
convergence both in case of training and validation. The smaller dataset ap-
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pears to show significantly better validation performance, however, this might
be heavily influenced by the significantly smaller size of the validation dataset,
100 samples versus 1600 samples for BCSS – STR. Both validation and accu-
racy metrics could also be skewed by the fact that the original BCSS dataset
was significantly less detailed since it was adapted from a more general dataset
[11].

On the other hand, the effects of data augmentation on the training pro-
cess could also be evaluated by comparing the results on the non-augmented
and augmented versions of the LUAD – LYM dataset. Augmenting this small-
sized dataset leads to faster convergence and better classification performance
including unseen data. However, the model appears to be overfitting the train-
ing data after approximately 50 epochs, where the validation accuracy starts
showing a descending trend, while the training accuracy is still increasing. This
is most likely caused by the low diversity of the augmented dataset, which is a
result of applying morphological transformations to the LUAD – LYM binary
dataset.

3.2 Quantitative evaluation

In order to benchmark the adapted BagNet architecture for the task of binary
classification of TME tissues, the model was first trained on datasets of differ-
ent sizes with and without using data augmentation, followed by an evaluation
on previously unseen data. The results of this experiment are shown in Table
4, along with the sizes of datasets the models were trained and validated on.

By analyzing the performance measure scores obtained in this experiment,
we can draw some conclusions about the usability of the BagNet architecture
for this specific binary classification task. All models trained on the binary
datasets derived from the original LUAD dataset showed promising results
with accuracy values starting at 0.94 on previously unseen data, however, the
relatively small size of the validation datasets has to be taken into account in
this case as well. In the case of the BCSS – STR dataset, which contains a
slightly larger validation subset, the BagNet model obtained significantly lower
scores than the models trained on the LUAD datasets. This might be caused
by the BCSS dataset being less detailed, a topic that is further discussed in
Section 3.3.

By comparing the results obtained on augmented datasets with their non-
augmented counterparts in the first four rows of Table 4, an increase in ac-
curacy values can be observed in both cases, which indicates that the usage
of data augmentation leads to improvements in classification performance.
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Dataset Acc. Prec. Recall Spec. Train s. Val. s.

LUAD –
LYM 0.94 0.925 0.925 0.95 1400 100
LYM aug. 0.954 0.966 0.9175 0.9783 14 000 1000
NEC 0.975 0.9091 1.0 0.9667 6000 40
NEC aug. 0.985 0.9434 1.0 0.98 60 000 400
TE aug. 0.9467 1.0 0.9135 1.0 80 000 600

BCSS –
STR 0.7888 0.8368 0.7732 0.8085 16 000 1600

Table 4: Results of training BagNet with ResNet-50 backbone with ImageNet
weight initialization on binary datasets of different sizes with and without
data augmentation. The values shown in this table are the average validation
accuracy, precision, recall, and specificity, along with training and validation
subset sizes for different binary datasets.

Moreover, the results presented in this table demonstrate comparable perfor-
mances to radiology experts, in most cases even exceeding the capabilities of
human pathologists [14], which shows real-world applicability. However, the
robustness of the model on WSI-specific artifacts, color variations, or slide
deteriorations mentioned in Section 1 has not been tested, which might limit
model usability in real-world environments.

The BagNet model has also been compared to the non-interpretable con-
volutional networks VGG19 and the backbone used for all BagNet models in
this paper, ResNet50. We trained and validated these models on the LUAD
– NEC binary dataset with and without transfer learning, and summarized
the obtained results in Table 5 using four different performance metrics. Al-
though the added interpretability of the BagNet architecture often leads to
slightly worse results compared to its backbones [5], there are cases where
interpretable models outperform their non-interpretable counterparts [6, 23].
This phenomenon can also be observed in this experiment, where the BagNet–
17 model shows the highest values across all performance measures. This could
either be caused by the simplicity of the binary classification problem, or the
different nature of tissue scans compared to natural images from ImagNet.

3.3 Qualitative evaluation and interpretability

As our approach is intended to replace human specialists in the safety-critical
healthcare industry, one of the main reasons for choosing the BagNet archi-
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Model Acc. Prec. Recall Spec.

Random weights
VGG19 0.8 0.625 0.5 0.9
ResNet50 0.925 0.8182 0.9 0.9333
BagNet–17 0.95 0.8333 1.0 0.9333

ImageNet weights
VGG19 0.925 0.7692 1.0 0.9
ResNet50 0.95 0.8333 1.0 0.9333
BagNet–17 0.975 0.9091 1.0 0.9667

Table 5: Results of training non-interpretable CNNs for the binary classifica-
tion task. The values shown in this table are the average validation accuracy,
precision, recall, and specificity scores obtained after training the models on
the LUAD – NEC dataset with and without using data augmentation.

tecture was its inherent explainability. To demonstrate expected behavior, we
hereby evaluate the decision-making process of our models, which in the case
of the adapted BagNet architecture consists in the analysis of the models’ pixel
activation heatmaps. As all of our datasets contain expert annotated segmen-
tation masks for both validation and testing, the exact location of tissue types
on WSIs can be leveraged to examine the validity of heatmap pixel activations,
thus making it possible to quantitatively measure model interpretability and
accordance with expected behavior.

In this experiment, we evaluated trained models on specific WSI patches
from the test subsets of different binary datasets and measured in what amount
the decisions were based on expected premises. This was done by identifying
the top 5% most important heatmap patches, i.e. the ones which contribute
most in inferring class evidence, and calculating what percentage of these were
located inside the corresponding segmentation mask. Representative examples
for this evaluation are shown in Figures 4 and 5. Both of these figures illustrate
model performance using four images divided clockwise as follows: the model
input WSI patch is visible on the upper left, the segmentation mask for the
specific class is shown in the upper right image, the lower right image shows
the pixel activation heatmaps for the trained model with a pale outline of the
segmentation mask, and the image on the lower left illustrates the top 5%
most influential pixels colored green if they lie inside the segmentation mask
and yellow otherwise. The most important heatmap patches are illustrated in
red.
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Specific examples from datasets of different sizes are shown in Figure 4.
The difference in WSI qualities between the LUAD and BCSS datasets is
visible when comparing segmentation masks of the BCSS – STR example
with the other examples from the LUAD datasets. The magnification of the
BCSS samples appears to be significantly greater, thus resulting in less detailed
samples and segmentation masks as well. This observation should be taken
into account when evaluating BagNets’ performance on this dataset, which
although showing 67.26% of the most important patches in their expected
location, appear to be heavily concentrated in the edge of the sample.

When evaluating the other three examples from this figure, the BagNet mod-
els appear to be showing promising behavior. The examples from the LUAD
– LYM and LUAD – TE datasets demonstrate a decision-making process that
aligns with the expected segmentation masks with 80.38% and respectively
89% of the most important patches being inside of their expected locations.
The LUAD – NEC example shows slightly weaker performance in this context,
however, this might be caused by this class being inherently more difficult to
identify than others. Therefore, because of the possible difference in classifica-
tion difficulty for different datasets, conclusions can not be drawn about the
influence of dataset size on the decision-making process of the models.

Model generalizability can be improved by augmenting training data [15].
Therefore, we examine the effects of data augmentation on the decision-making
process of the BagNet models by analyzing Figure 5, where examples for two
different classes are shown with and without data augmentation. By comparing
the two heatmaps of any one of the two classes side-by-side, the confidence-
increasing effect of using data augmentation becomes apparent. The patches
on the examples without data augmentation are significantly more blurred
than on the ones with augmentation, especially in the case of the LUAD –
NEC example. This effect might be a consequence of the low diversity dataset
expansion resulting from augmentation. Thus, the augmented dataset con-
tains multiple slightly different versions of all images, which could inherently
increase classification confidence.

In terms of the more quantitative metric of the percentage of most important
patches in their expected location the effects of data augmentation are not as
clear. In the case of the LUAD – NEC example, which showed the worst per-
formance in Figure 4, data augmentation leads to significant improvements
in terms of decision making with an increase from 39% to 62.64% of most
important patches in their expected location. However, applying data aug-
mentation on the smaller LUAD – LYM dataset leads to a slightly worse value
for this metric, with an effect of moderately spreading the most important
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patches over the image. Apart from this minor decay in expected behavior, we
overall advise the usage of data augmentation for the task of TME tissue bi-
nary classification because of the effects of increased confidence and accuracy
improvements shown in Section 3.2.

4 Conclusion and discussion

The automation of tasks performed by human pathologists poses various chal-
lenges. For instance, a machine learning model trained on data from one hos-
pital may perform poorly on data from another hospital due to differences
in scanning equipment and tissue processing protocols. Medical datasets also
require expert annotation, which is time-consuming and resource-intensive,
leading to a scarcity of high-quality annotated data. Moreover, the black-box
nature of deep learning models is also a significant challenge in medical im-
age processing, where the interpretability and explainability of algorithms are
becoming essential.

The focus of this paper lies in solving the cancer detection problem of iden-
tifying differences in tissue types of tumor microenvironments. Our approach
to TME tissue type detection involves breaking it down into multiple binary
classification problems. This method can be used in conjunction with or as
a replacement for human radiologists to label whole-slide images, which can
later be used as inputs for more complex segmentation techniques.

To accomplish binary tissue classification, we introduced a modified version
of the explainable BagNet architecture. The proposed model is capable of out-
performing human experts in different binary classification tasks, providing
a viable alternative to human-based tissue detection. Using the BagNet net-
work architecture also addresses concerns surrounding the back-box nature of
medical image processing models by being able to justify its decisions. In ad-
dition, we also demonstrated that the decision-making process of these models
is also aligned with that of human radiologists. Furthermore, we addressed the
challenge of limited medical data by augmenting our binary datasets, and we
analyzed the effects of augmentation techniques on model performance and
decision-making validity.

Being able to accurately and reliably identify TME tissue types without
the need for the involvement of human experts presents a variety of different
advantages in the field of medical imaging. Firstly, it leads to the burden of
disease diagnosis being taken off the shoulders of pathologists, them being able
to focus on patient treatment and care. Secondly, this could also lead to new
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developments in more complex classification and segmentation tasks regarding
tumor microenvironments. For instance, our trained models could also be used
for creating large datasets annotated with patch-level classification labels of
tissue types, thus providing future models with sufficiently large annotated
datasets without the necessity for human involvement. Moreover, these models
could provide a way to fully automate more complex approaches that rely on
human labeling, such as the method introduced in [11].

The first future research direction possibly worth exploring regarding the
proposed models is the evaluation of the benefits these create in terms of
new developments in this field. This could be done by using the models to
create annotated datasets, which would then be used for training and bench-
marking various state-of-the-art approaches in TME image processing. The
usability of these models as initial steps for more complex methods should
also be evaluated by carrying out experiments comparing performances with
and without using them. Another related question concerns the robustness of
the models for WSI differences caused by artifacts, discoloration, and tissue
deterioration. This characteristic could be reviewed by evaluating the models
on new datasets obtained at different laboratories with slight variations in
tissue sample acquisition pipelines.

Further research regarding this work could be carried out in the direction
of model decision analysis. Although heatmaps can be reviewed qualitatively,
there is a requirement for a more objective quantitative evaluation. The process
of location of the most relevant patches carried out in this paper represented
one quantitative evaluation method, however, more complex and representa-
tive quantities could also be analyzed, such as the relevance mass accuracy and
relevance rank accuracy metrics proposed in [3]. Moreover, model performance
could be evaluated on larger validation and testing datasets as well to further
solidify results regarding classification accuracy.
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Figure 4: Heatmap analysis of BagNet models trained on four different datasets
with varying sizes.
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Figure 5: Heatmap analysis of BagNet models trained for binary classification
of two different classes with and without data augmentation.



Bag-of-local-features for histopathology tissue type detection 79

References

[1] K. AbdulJabbar, S. E. A. Raza, R. Rosenthal, M. Jamal-Hanjani, S. Veeriah, A.
Akarca, T. Lund, D. A. Moore, R. Salgado, M. Al Bakir, L. Zapata, Geospatial
immune variability illuminates differential evolution of lung adenocarcinoma,
Nature Medicine 26(7), 2020, pp. 1054–1062. ⇒61

[2] M. Amgad, H. Elfandy, H. Hussein, L. A. Atteya, M. A. Elsebaie, L. S. Abo
Elnasr, R. A. Sakr, H. S. Salem, A. F. Ismail, A. M. Saad, J. Ahmed, Structured
crowdsourcing enables convolutional segmentation of histology images, Bioinfor-
matics 35(18), 2019, pp. 3461–3467. ⇒61, 63, 64

[3] L. Arras, A. Osman, W. Samek, CLEVR-XAI: a benchmark dataset for the
ground truth evaluation of neural network explanations, Information Fusion 81,
2022, pp. 14–40. ⇒76
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Abstract. E-super arithmetic graceful labelling of a graph G is a
bijection f from the union of the vertex set and edge set to the set
of positive integers (1, 2, 3, . . . |V(G) ∪ E(G)|) such that the edges have
the labels from the set {1, 2, 3, . . . , |E(G)|} and the induced mapping f∗

given by f∗(uv) = f(u) + f(v) − f(uv) for uv ∈ E(G) has the range
{|V(G) ∪ E(G)|+ 1, |V(G) ∪ E(G)|+ 2, . . . , |V(G)|+ 2|E(G)|}

In this paper we prove that Hi(m,m) and H
(1)
i (m,m) and chain of

even cycles C4,n, C6,n are E-super arithmetic graceful.

1 Introduction

Rosa [9] in 1967, called a function f a β-valuation of a graph G with q edges if
f is an injection from the vertices of G to the set {0, 1, . . . , q} such that when
each edge xy is assigned the label |f(x) − f(y)|, the resulting edge labels are
distinct. Golomb [3] subsequently called such labelling graceful.

Key words and phrases: E-super,Hi(m,m), H
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In 1970 Kotzig and Rosa [5] defined a magic valuation of a graph G(V, E)
as a bijection f from V ∪ E to {1, 2, . . . , |V ∪ E|} such that for all edges xy,
f(x) + f(y) + f(xy) is constant (called the magic constant).

Acharya and Hegde [1] have defined (k, d)-arithmetic graphs.
Let G be a graph with q edges and let k and d be positive integers. A la-
belling f of G is said to be (k, d)-arithmetic if the vertex labels are distinct
nonnegative integers and the edge labels induced by f(x) + f(y) for each edge
xy are k, k+ d, k+ 2d, . . . , k+ (q− 1)d. The case where k = 1 and d = 1 was
called additively graceful by Hegde [4].

J. A. Gallian [2] surveyed numerous graph labelling methods.
V. Ramachandran and C. Sekar [8] introduced ( 1,N)-arithmetic labelling.
A labelling of G(V, E) is said to be E-super if f(E(G)) = {1, 2, 3, . . . , |E(G)|}.
MacDougall, Slamin, Miller and Wallis [6] introduced the notion of a vertex-

magic total labelling in 1999. For a graph G(V, E) an injective mapping f
from V ∪ E to the set {1, 2, . . . , |V |+ |E|} is a vertex-magic total labeling if
there is a constant k, called the magic constant such that for every vertex v,
f(u) + Σf(vu) = k where the sum is taken over all vertices u adjacent to v.

Marimuthu and Balakrishnan [7] defined a graph G(V, E) to be edge magic
graceful if there exists a bijection f from V(G)∪ E(G) to {1, 2, . . . , p+ q} such
that |f(u) + f(v) − f(uv)| is a constant for all edges uv of G.

We define a graph G(p, q) to be E-super arithmetic graceful if there
exists a bijection f from V(G) ∪ E(G) to {1, 2, . . . , p+ q} such that
f(E(G)) = {1, 2, . . . , q}, f(V(G)) = {q+ 1, q+ 2, . . . , q+ p} and the induced
mapping f∗ given by f∗(uv) = f(u)+ f(v)− f(uv) for uv ∈ E(G) has the range
{p+ q+ 1, p+ q+ 2, . . . , p+ 2q} .

In this paper we prove that Hi(m,m) and H
(1)
i (m,m) and C4,n,C6,n are

E-super arithmetic graceful.

2 Preliminaries

Definition 1 A connected graph is highly irregular if each of its vertices
is adjacent only to vertices with distinct degrees. Let H denote the bipartite
graph of order n = 2m, m ≥ 2 having partite sets, V1 = {u1, u2, . . . , um} and
V2 = {v1, v2, . . . , vm} and edge set E(H) = {uivj : 1 ≤ i ≤ m, 1 ≤ j ≤ m+ 1− i}
with degH(ui) = degH(vi) = m+ 1− i for i = 1, 2, . . . ,m.
H is a irregular graph of order n = 2m, m ≥ 2. Let us denote this graph as
Hi(m,m).
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Figure 1: Hi(5, 5) – highly irregular graph of order 10

Definition 2 By subdividing the edge u2vm−1 of Hi(m,m) for m ≥ 4, we
obtain a highly irregular graph of order 2m + 1 ≥ 9. Denote this graph by

H
(1)
i (m,m).

Figure 2: H
(1)
i (4, 4) – highly irregular graph of order 9

Definition 3 Let C2k be an even cycle. Consider n copies of C2k. A chain of
even cycles C2k denoted by C2k,n is obtained by identifying the vertex uk+1 of
each copy of C2k with the vertex u1 of the successive copy of C2k.
C2k,n has (2k− 1)n+ 1 vertices and 2kn edges.
C2k,n has (k− 1)n upper nodes u1, u2, . . . , u(k−1)n ;
(k−1)n lower nodes w1, w2, . . . , w(k−1)n and (n+1) middle nodes v1, v2, . . . , vn+1.



84 S. Anubala, V. Ramachandran

Figure 3: C4,4

3 Main results

Theorem 4 Hi(m,m) is E-super arithmetic graceful for m ≥ 2.

Proof. Let G = Hi(m,m). G has 2m vertices and

(
m+ 1

2

)
= m(m+1)

2 edges.

Define f : V(G) ∪ E(G) −→ {1, 2, . . . , 2m+ m(m+1)
2

}
as follows:

f(ui) =

(
m+ 1

2

)
+ i, i = 1, 2, . . . ,m.

f(vi) =

(
m+ 1

2

)
+ 2m+ 1− i, i = 1, 2, . . . ,m

f(uivj) =

(
m+ 1

2

)
+ i−

(
i+ j

2

)
, i = 1, 2, . . . ,m; j = 1, 2, . . . , (m+ 1) − i

Clearly f is a bijection from V ∪ E to

{
1, 2, . . . ,

(
m+ 1

2

)
+ 2m

}
where

f(E) =

{
1, 2, . . . ,

(
m+ 1

2

)}
.

Also

f∗(E(Hi(m,m))) =

{(
m+ 1

2

)
+ 2m+ 1,

(
m+ 1

2

)
+ 2m+ 3, . . . ,

2

[(
m+ 1

2

)
+m

]}
Therefore, Hi(m,m) for m ≥ 2 is E-super arithmetic graceful. �
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Example 5 E-super arithmetic graceful labelling of Hi(6, 6).

Figure 4: Hi(6, 6)

Theorem 6 H
(1)
i (m,m) for m ≥ 4 is E-super arithmetic graceful.

Proof. H
(1)
i (m,m) for m ≥ 4 has 2m+ 1 vertices and

(
m+ 1

2

)
+ 1 edges.

Define

f(ui) =

(
m+ 1

2

)
+ 1+ i, i = 1, 2, . . . ,m.

f(v0) =

(
m+ 1

2

)
+m+ 2,

f(vi) =

(
m+ 1

2

)
+ 2m+ 3− i, i = 1, 2, . . . ,m

f(u1v1) = 1
f(u1vm) = 2
f(u2v0) = 3
f(v0vm−1) = m+ 2
f(uivm+1−i) = i+ 1, i = 3, 4, . . .m
For i = 1; j = 2, 3, . . . ,m− 1 and
for i = 2, 3, . . . ,m, j = 1, 2, . . . , (m+ 1) − i

f(uivj) =

(
m+ 1

2

)
+ 2+ i−

(
i+ j

2

)
Clearly f is a bijection from V ∪ E to

{
1, 2, . . . ,

(
m+ 1

2

)
+ 2m+ 2

}
where
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f(E) =

{
1, 2, . . . ,

(
m+ 1

2

)
+ 1

}
.

Also

f∗(E(H
(1)
i (m,m))) =

{(
m+ 1

2

)
+ 2m+ 3,

(
m+ 1

2

)
+ 2m+ 5, . . . ,

2

[(
m+ 1

2

)
+m

]
+ 3

}
Therefore, H

(1)
i (m,m) for m ≥ 4 is E-super arithmetic graceful. �

Example 7 E-super arithmetic graceful labelling of H
(1)
i (5, 5).

Figure 5: H
(1)
i (5, 5)

Theorem 8 C4,n are E-super arithmetic graceful.

Proof. C4,n has 3n+ 1 vertices and 4n edges.
Let u1, u2, . . . , un be the upper nodes,w1, w2, . . . , wn be the lower nodes and
v1, v2, . . . , vn+1 be the middle nodes.
Define f(ui) = 4n+ i, i = 1, 2, . . . , n.
f(vi) = 5n+ i, i = 1, 2, . . . , n+ 1.
f(wi) = 6n+ 1+ i, i = 1, 2, . . . , n.
f(u1v1) = n+ 1
f(uivi) = 2n+ i, i = 2, . . . , n
f(uivi+1) = i, i = 1, 2, . . . , n
f(viwi) = 3n+ i, i = 1, 2, . . . , n
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f(vi+1wi) = n+ 1+ i, i = 1, 2, . . . , n
f∗ (u1v1) = 8n+ 1

{f∗ (uivi) | i = 1, 2, 3, . . . , n} = {7n+ 2, 7n+ 3, . . . , 8n}

{f∗ (uivi+1) | i = 1, 2, 3, . . . , n} = {9n+ 2, 9n+ 3, . . . , 10n+ 1}

{f∗ (viwi) | i = 1, 2, 3, . . . , n} = {8n+ 2, 8n+ 3, . . . , 9n+ 1}

{f∗ (vi+1wi) | i = 1, 2, 3, . . . , n} = {10n+ 2, 10n+ 3, . . . , 11n+ 1}

Thus f∗(E(C4,n)) = {7n+ 2, 7n+ 3, . . . , 11n+ 1}.
Therefore, C4,n is E-super arithmetic graceful. �

Example 9 E-super arithmetic graceful labelling of C4,5.

Figure 6: C4,5

Theorem 10 C6,n is E-super arithmetic graceful for all n.

Proof. Let G = C6,n. Let u
(1)
1 , u

(2)
1 , u

(1)
2 , u

(2)
2 , . . . , u

(1)
n , u

(2)
n be the upper level

vertices of G.
Let w1, w2, . . . , wn+1 be the middle level vertices of G.

Let v
(1)
1 , v

(2)
1 , v

(1)
2 , v

(2)
2 , . . . , v

(1)
n , v

(2)
n be the upper level vertices of G.
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Illustration: C6,4

Figure 7: C6,4

C6,n has 5n+1 vertices and 6n edges.
Define f : V(G) ∪ E(G) −→ {1, 2, 3, . . . , 11n+ 1} as follows:

f(u
(1)
i ) = 6n+ i, i = 1, 2, . . . , n

f(u
(2)
i ) = 7n+ i, i = 1, 2, . . . , n

f(wi) = 8n+ i, i = 1, 2, . . . , n+ 1

f(v
(1)
i ) = 9n+ 1+ i, i = 1, 2, . . . , n

f(v
(2)
i ) = 10n+ 1+ i, i = 1, 2, . . . , n

f(u
(1)
i u

(2)
i ) = i, i = 1, 2, . . . , n

f(u
(2)
i wi+1) = n+ i, i = 1, 2, . . . , n

f(wiu
(1)
i ) = 3n− 1i, i = 1, 2, . . . , n

f(v
(2)
i wi+1) = 2n+ i, i = 1, 2, . . . , n− 1

f(v
(1)
i v

(2)
i ) = 4n− 1+ i, i = 1, 2, . . . , n− 1

f(v
(1)
n v

(2)
n ) = 6n

f(wiv
(1)
i ) = 5n+ i, i = 1, 2, . . . , n− 1

f(wnv
(1)
n ) = 5n

f(v
(2)
n wn+1) = 5n− 1

Clearly f is a bijection and f(E(G)) = {1, 2, . . . , 6n}{
f∗(u

(1)
i u

(2)
i ) | i = 1, 2, . . . , n

}
= {13n+ 1, 13n+ 2, . . . , 14n}{

f∗(u
(2)
i wi+1) | i = 1, 2, . . . , n

}
= {14n+ 2, 14n+ 3, . . . , 15n+ 1}{

f∗(wiu
(1)
i ) | i = 1, 2, . . . , n

}
= {11n+ 2, 11n+ 3, . . . , 12n+ 1}{

f∗(wiv
(1)
i ) | i = 1, 2, . . . , n− 1

}
= {12n+ 2, 12n+ 3, . . . , 13n}
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f∗(v

(2)
i wi+1) | i = 1, 2, . . . , n− 1

}
= {16n+ 3, 16n+ 4, . . . , 17n+ 1}{

f∗(v
(1)
i v

(2)
i ) | i = 1, 2, . . . , n− 1

}
= {15n+ 4, 15n+ 5, . . . , 16n+ 2}{

f∗(wnv
(1)
n )
}
= 14n+ 1{

f∗(v
(1)
n v

(2)
n )
}
= 15n+ 2{

f∗(v
(2)
n wn+1)

}
= 15n+ 3

Combining all the above we have f∗(E(G)) = {11n+ 2, 11n+ 3, . . . , 17n+ 1}
Therefore, G is E-super arithmetic graceful. �

Example 11 E-super arithmetic graceful labelling of C6,6.

Figure 8: C6,6

Conjecture: Chains of all even cycles C2m,k are E-super arithmetic graceful.
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Abstract. Text mining is an intriguing area of research, considering
there is an abundance of text across the Internet and in social medias.
Nevertheless outliers pose a challenge for textual data processing. The
ability to identify this sort of irrelevant input is consequently crucial
in developing high-performance models. In this paper, a novel unsuper-
vised method for identifying outliers in text data is proposed. In order to
spot outliers, we concentrate on the degree of similarity between any two
documents and the density of related documents that might support in-
tegrated clustering throughout processing. To compare the effectiveness
of our proposed approach with alternative classification techniques, we
performed a number of experiments on a real dataset. Experimental find-
ings demonstrate that the suggested model can obtain accuracy greater
than 98% and performs better than the other existing algorithms.
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1 Introduction

Countless specialists in data analysis are required for the precise processing
and interpretation of data [21, 8, 33, 13, 37, 3]. In contrast, the influence of
the Internet of Things (IoT) and social media has led to an enormous rise
in the accumulation of data [13], [34]. Generally, data generation is prone to
noise and unwanted changes. Since there is a lot of dirty data due to misinfor-
mation, disinformation, or bugs in data gathering, storage or call procedures,
data cleansing can aid data analysts in achieving their objectives to create
high accuracy models. Finding outliers is a proactive data-cleaning method.
It is defined as an algorithm which tries to probe abnormal data [23]. Abnor-
mal data represents information that deviates from the dataset’s predominant
patterns [22, 42]. In certain circumstances, system designers target finding out-
liers to study why these abnormal data are available in the system [38]. The
significance of identifying outliers is demonstrated in credit fraud prevention
and intrusion detection in computer networks [41, 24]. Because these sorts of
complicated data need a lot of processing, spotting outliers in data can assist
data scientists in improving the performance of their models [13, 24, 11]. Text
data outliers can take on a variety of forms, and it might be challenging to
identify them in this application.

On the identification of outliers in texts, numerous researchers have con-
centrated. As consequence, multiple aspects of the text’s qualities are taken
into account. A few, for instance, converted language into numbers and ap-
plied methods that are suitable for numerical data. Additionally, a number of
research efforts exploited restricted phrases, such as document titles, to seek
out patterns in datasets as well as recognize outliers. Plenty of studies have
been conducted on dynamic datasets, such as social media, and the detec-
tion of anomalous data in such circumstances. It additionally addresses how
significant knowledge is before any analysis ([23, 11, 20, 2, 30, 12, 35, 16]).

In this paper, our goal is to identify documents that do not follow the
primary patterns of datasets in order to develop a high-performance text pro-
cessing model from the total clusters that can be flexible in various situations,
appropriate for text features, and implementation-unrestricted.

The remainder of the paper is structured as follows. The different kinds of
methods for identifying outliers are discussed in Section 2. The solution we
propose is elaborated in Section 3. Section 4 highlights our findings under
various circumstances. Ultimately, Section 5 serves as the conclusion.
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2 Related works

In general, there are several distinct types of outlier detection techniques.
The classification-based algorithms are the subject of the first. Data in this
situation ought to be labeled and utilized to train classification systems [17]. In
contrast, the input to a clustering algorithm is not labeled, and the algorithm
learns by solving problems similar to those it will face in the future as part of
a training schedule. This makes a clustering algorithm an unsupervised model
[28, 18].

Outlier detection is also possible with the clustering technique. Outlier de-
tection based on clustering that comes following aims detection of ”abnormal
data”. These algorithms identify outliers—those data that do not follow the
typical data’s patterns—as the data. Nearest neighbor is taken into account
by several algorithms. The nearest neighbor plays a key role in these algo-
rithms. Here, the term ”abnormal data” refers to data that do not resemble
their neighbors in any way [17, 25].

Other methods compute the probability of data being in a particular area
employing probabilities and statistical models; if data exist in a region where
this likelihood is low, the data is considered an outlier [17, 6, 5].

Subsequently, a few techniques are used for datasets that are dispersed
throughout several platforms, like big data. These algorithms are made to
look for outliers by taking into account the patterns of all the data in all
systems [41, 31].

The remaining part of this section represents two well-known algorithms
that we tested. One of them is a member of the clustering group, whereas the
other one views the other as nearby neighbors.

2.1 Density-based spatial clustering of applications with noise
(DBSCAN)

DBSCAN is one of the density-based clustering algorithms [10]. In this algo-
rithm, two parameters are inputs (µ, ε), and points or data are categorized as
core points, reachable points, and outliers. They are defined as follows:

� Core points are the points with at least µ neighbors in the border of ε
from itself

� Reachable points are those points which are not core points but are
located on the border of ε from one or more than one core point

� Outliers are those points that are not core or reachable points
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Figure 1 demonstrates the differences between these kinds of points.

Figure 1: Core, reachable, and outlier points in DBSCAN

2.2 The improved Local Outlier Factor (LOF)

The goal of LOF which is based on the local density and nearest neighbors,
is computing the local outlier factor which is the outliers’ determination [40].
For computing the LOF of each point, calculating the reachability distance
between the points and their k nearest neighbors, and also the Local Reach-
ability Density (LRD) of the points are necessary. The reachability distance
between two points (p, q) is defined as [12]:

reach dist(p, q) = max(k− distance(q), d(p, q)) (1)

In Equation (1), k − distance(q) is the distance between q and its k’th
nearest neighbor, and d(p, q) is the distance between p and q. The concept of
reachability distance is shown in Figure 2.

And local reachability density of each point is defined as follows [12]:

LRDk(p) = K

∑
q∈knn(p) reach− dist(p.q)

||k− neighborhood||
(2)

In Equation 2, q is the neighbor of p, reach−dist(p, q) is the reachability
distance between p and q, and k-neighborhood is the number of p’s neighbors.
Finally, the Local Outlier Factor of each point is defined as [12]:
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Figure 2: Reachability distance between two points [37]

LOFk(p) = K

∑
q∈knn(p)

LRD(q)
LRD(p)

||k− neighborhood||
(3)

In Equation 3, q is the neighbor of p, LRD(p) and LRD(q) are the local
reachability density of p and local reachability density of q respectively. Fur-
thermore, k-neighborhood is the number of p’s neighbors. Whatever LOF is
higher, the point is more abnormal.

3 Methodology

As we present in Section 2, the clustering algorithm is one of the groups of
outlier detection, and this kind of algorithm can help to find abnormal data
and the patterns of datasets. As mentioned before, the center of each cluster
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is the point with a higher density than its neighbors and more different from
the points with higher densities. In this case, the measurement of similarity is
the distance between two points, but we prepare the algorithm for text data,
therefore, cosine similarity is used. As a result, we propound local density for
each document, denoting the number of text data or documents that are sim-
ilar to this data. For this purpose, threshold and local density are considered
as follows:

ρi =
∑
j

X(ti.tj), X(a, b) =

{
1, if Similarity(a, b) > threshold
0, if Similarity(a, b) < threshold

(4)

In Equation 4, ρi is the local density of document i, and j is the number of
the documents in a dataset, and tj is an ith document in the dataset. Figure
3 demonstrates computing ρi.

Figure 3: The local density of a document

δi is the similarity between document i and the most similar document with
higher local density. For example, as we can see in Figure 4, δ for the black
document is the similarity between the gray document and itself.

Eventually, we suggest outliers that are more different from the behavior of
central data. In other words, outliers are texts with less ρi and fewer δi.

Considering the purpose of finding outliers in text data and density peak,
the rest of this section explains our new method. First of all, the similarity of
each pair of texts is calculated and saved in a matrix (See Figure 5).
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Figure 4: The computing of δi

Figure 5: The computing of similarity matrix

Then a threshold should be set for the similarity between documents. Now
for each document, ρi is computed and saved in the ρ array. Afterward, δi
should be recognized for all documents and saved in the δ array. Finally,
outliers are searched as the ρi and δi are lower than the thresholds. We can
see the steps of the algorithm in Algorithm 1.

Algorithm 1
Input: documents, TS, Td, TS1
Output: Outliers
1. Calculate the similarity index
2. Set the ρ array
3. Set the δ array
4. Print the number of documents in which the ρi < Td and δi < TS1 as outliers
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3.1 Dataset

BBC dataset is utilised in our experiment to evaluate the performance of our
suggested method for outlier spotting in the text. Different scenarios are used
to test each dataset. First, several outlier identification methods prepare them
for entrance into categorization algorithms. In these situations, data identified
using our suggested approach, LOF, and DBSCAN is cleaned; otherwise, the
datasets remain untouched. The accuracy of four distinct categorization meth-
ods is then calculated, and they are contrasted. These tests are designed to
find out how our strategy of eliminating outliers affects classification algorithm
performance.

3.2 Classification algorithms

In our experiments, four different classification algorithms (K Nearest Neigh-
bor, Decision Tree, Random Forest, and Näıve Bayes) are implemented to
compare different situations. Furthermore, Term Frequency (TF) [27], Term
Frequency-Inverse Document Frequency(TF-IDF) [36], and 3-gram [9] are used
for the inputs of these algorithms. We briefly describe these four algorithms
in the rest of this section.

3.2.1 K-nearest neighbor (KNN)

The k nearest neighbor classifier is a classification algorithm based on the dis-
tance between the input sample and the training samples. The algorithm will
find the k objects which are closest to the input data, and the value of the input
will be predicted according to the values of these neighbors. For instance, xi
is input, and (xi1 , xi2, ..., xip) are its features. The Euclidean distance between
xi and xl is computed as:

d(xi, xl) =
√
(xi1 − xl1)

2 + (xi2 − xl2)
2 + ...+ (xi2 − xl2)

2 (5)

This distance is computed between xi and every training sample to find the
nearest neighbors and the value of xi is considered regarding its K nearest
neighbors [19, 29], as shown in Figure 6.

3.2.2 Decision Tree (DT)

One of the flowchart-like structure methods is a decision tree. It makes a tree
based on training data when new data enters into the training model which is
similar to the yes and no question game, predicts the input value. Each tree
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Figure 6: The vote for the unknown sample values recognition [26]

composes of nodes and branches. The nodes show features of classes, and they
can get values by using branches. Figure 7 represents the decision tree as an
example. Decision trees have found many fields of implementation due to their
simple analysis [32].

3.2.3 Random Forest (RF)

Random Forest is an ensemble learning method for classification, regression,
and other learning that builds a large number of decision trees during train-
ing. This algorithm makes a number of random decision trees with different
properties, then the value of new data is decided by the voting of these trees
[15]. Figure 8 illustrates the logic of the random forest algorithm.
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Figure 7: The example of a decision tree [7]

3.2.4 Näıve Bayes

Despite the simple design and assumptions, Näıve Bayes classifiers have worked
very well in many complex real-world situations. Näıve Bayes is a probability
model based on Bayes’ theorem which is defined as:

P(A|B) =
p(B|A).p(A)

p(B)
(6)

This algorithm calculates the probability of each input feature in each class
by considering the training data and selects the most likely class as the value
of the input sample. In this method, X is the input, and (x1, x2, . . . , xi) are its
features. The values or classes are defined as (C1, C2, . . . , Ci). Now for each
input, the probability of each class for the input is predicted by Equation 7
[14].

P(Ci|X) =
p(X|Ci).p(Ci)

p(X)
(7)
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Figure 8: The process of decision in the Random Forest [39]

That p(X|Ci) is calculated as:

P(X|Ci) = p(X|Ci) =

n∏
k=1

p(xk|Ci) = P(x1|Ci).P(X2|Ci)...P(xn|Ci) (8)

4 Experimental results

According to Table 1, the proposed model was implemented using the Python
programming language. To implement the models, two parts of the dataset
were used for model training and evaluation. There is the 80% training dataset
and the 20% evaluation dataset.
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OS Windows 10-64bit

CPU Intel(R) Core (TM)i7-7700HQ 2.8GHz

GPU NVIDIA Tesla P100

RAM 16 GB

Programming language Python 3.9

Software libraries TensorFlow, Keras, OpenCV, and Scikit-Learn

Table 1: Hardware & software environments deployed in this study

4.1 Evaluation metrics for classification problems

Evaluation of any machine learning model’s performance is the most crucial
step in model construction. So, the question of how to evaluate a machine
learning model’s performance arises. Machine learning tasks are connected
to evaluation measures. Regression and classification tasks each have their
own metrics. Before we put our model into production on untested data, we
should be able to increase its overall predictive power by evaluating its per-
formance using several criteria. When a machine learning model is applied to
unexplored data, failing to properly evaluate it using a variety of assessment
measures and relying simply on accuracy can result in inaccurate predictions.
Accuracy, confusion matrix, precision, recall, F1-score, sensitivity, specificity,
and AUC are major performance measures for classification problems that are
most frequently employed. Following equations represent these metrics:

Accuracy =
TP + TN

TP + TN+ FP + FN
(9)

Precision =
TP

TP + FP
(10)

F1-score =
2× Precision× Recall
Precision+ Recall

(11)

Sensitivity = Recall =
TP

TP + FN
(12)

Specificity =
TN

FP + TN
(13)

Instances where the model accurately predicts a positive class are referred to as
TPs (True Positives). This is taken to be true since the input really corresponds
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to the positive class that the model predicted would exist. FP (False Positive)
is the term for when a positive class is falsely predicted by a model, even if
it can be perceived as the model doing so. FN (False Negative) is the term
used when a model predicts a negative class wrongly, which is untrue but can
be read as a negative class being predicted by the model. When the model
properly predicts a negative class, this is known as a TN (True Negative),
and is taken to be true because the input really corresponds to the predicted
negative class.

Classification accuracy is the most often used performance metric for eval-
uating classification models. Due to the fact that it can be stated as a single
number that encapsulates the model’s capabilities and is straightforward to
compute and comprehend, it is widely used. Therefore, in our simulations,
accuracy was the performance indicator we used.

4.2 Simulation results

As can be seen in Table 2, all algorithms, including Decision Tree, Random
Forest, and Näıve Bayes, performed better once outliers were removed using
our method. Therefore, our approach significantly impacts when used as a
pre-processing algorithm during text processing. Results demonstrate that our
strategy improves the accuracy of the Nave Bayes classifier by more than 98%.

Table 3 compares the accuracy of our method with DBSCAN, and LOF for
Random Forest algorithm. It constructs a forest using a collection of decision
trees. Random Forests produce uncorrelated decision trees and execute fea-
ture selection implicitly. To accomplish, it constructs each decision tree using
a random collection of features. This makes it a great model for working with
data that has a lot of different properties. The results show that when Ran-
dom Forests were used, our method’s accuracy increased from 90% to 92.5%,
despite the fact that Random Forests are not much influenced by outliers. This
highlights how effective our approach is at detecting outliers.

The performance of our suggested detection of outliers technique will then
be assessed when used for The K-Nearest Neighbor (KNN). The KNN machine
learning technique is flexible. It is employed in a variety of contexts, including
handwriting recognition, picture recognition, and video recognition. In a wide
range of prediction problems, it can achieve high accuracy. KNN is a method
that is used to learn an unknown function with the appropriate precision,
and accuracy. It is based on the local minimum of the target function. The
algorithm also determines a parameter’s range or distance from an unknown
input as well as its surroundings. Based on the ”information gain” theory, the
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Algorithm Decision Tree

Outlier detection Without deleting outliers Our method

Accuracy TF 0.8071 0.8669
TF IDF 0.8071 0.8394

N-gram (n=3) 0.7533 0.7114

Algorithm Random Forest

Outlier detection Without deleting outliers Our method

Accuracy TF 0.8917 0.9149
TF IDF 0.9058 0.9278

N-gram (n=3) 0.8466 0.8522

Algorithm Näıve Bayes

Outlier detection Without deleting outliers Our method

Accuracy TF 0.9596 0.9862
TF IDF 0.9686 0.9816

N-gram (n=3) 0.9327 0.9633

Table 2: The accuracy of Decision Tree, Random Forest, and Näıve Bayes
algorithms on the BBC dataset

Technique With outliers LOF (k=7) DBSCAN (3,2) Proposed

TF 0.8917 0.9197 0.9548 0.9149

TF IDF 0.9058 0.9217 0.9031 0.9278

N-gram 0.8466 0.8235 0.8463 0.8522

Table 3: Comparing the accuracy of our method with DBSCAN, and LOF for
Random Forest algorithm

algorithm determines which method is best suited to forecast an unknowable
value. Figures 9, 10, and 11 demonstrate that our method along with KNN
can get an accuracy more than 96% for K=10 and TF-IDF. It strongly outper-
forms other existing approaches presented in these figures in particular when
an outlier detector was not implemented.

Using a k-fold cross-validation approach, we expanded our experimental
findings and verified the effectiveness of our model. Our dataset was separated
into k subsets (k = 5), the model was trained on k-1 subsets, and it was then
assessed on the final subset. A new subset was tested in each of the k iterations
of this process which was repeated. The performance of the model was then
estimated by averaging the findings. The outcomes of our tests revealed that,
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Figure 9: The accuracy of KNN using TF and k between 4 and 14 on the BBC
dataset

when tested using cross-validation, our model had somewhat enhanced the
performance to reach 98.92% accuracy.

5 Conclusion

Today, many applications leverage data mining and machine learning ap-
proaches ([1, 4, 11]). Given the fierce competition to obtain ever-increasing
accuracy, any beneficial pre-processing procedures, such as outlier detection,
would be taken into consideration in real systems. Additionally, text features
indicate that processing this kind of data is challenging. Nevertheless, pro-
cessing can be made smoother by spotting anomalous data. In this research,
we have presented a unique method for identifying anomalous data in text
datasets. The characteristics of the texts that we uncovered did not match
those in the clusters’ center. We created the density-based method in keep-
ing with this idea. Then, we conducted a number of experiments to evaluate
how well our approach performed compared to two popular outlier detectors
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Figure 10: The accuracy of KNN on the BBC dataset with k between 4 to 14
with TF-IDF

(LOF and DBSCAN). For our tests, we used the BBC dataset. In the ma-
jority of cases, our recommended approach outperformed LOF and DBSCAN
techniques. After pre-processing with our technique, the accuracy is shown to
rise and the KNN algorithm performs better overall. It maintains first place
with a significant disparity.

Ultimately, our proposed approach can be used for both short and lengthy
texts and can be applied to most datasets without taking into account the
system knowledge. Ultimately, the versatility of our approach may be increased
by making use of additional similarity methods, such semantic similarity.
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Figure 11: The accuracy of KNN on the BBC dataset with k between 4 to 14
with N-gram vectors
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Abstract. Let G be a connected graph with vertex set V(G)and edge set
E(G). The eccentric connectivity index of G is defined as

∑
v∈V(G)

ec(v)deg(v)

where ec(v) the eccentricity of a vertex v and deg(v)is its degree and de-
noted by εc(G). In this paper, we investigate the eccentric connectivity
index of the transformation graph Gxy+.

1 Introduction

A topological index is a number that describes a molecular structure and is
obtained from the associated (hydrogen-depleted) molecular graph. Topologi-
cal indices are mathematical properties of graphs that are utilized to establish
relationships between the structural properties of chemical molecules and their
physical attributes. The aforementioned indices are extensively utilized in the
fields of quantitative structure-activity relationship (QSAR) and quantitative
structure-property relationship (QSPR), chemical documentation and drug
design studies [6, 7, 8, 11, 13, 15].

Key words and phrases: Distance, eccentricity, eccentric connectivity index, transforma-
tion graph.
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In pharmaceutical research, QSAR data is utilized to identify the most viable
compounds with respect to a specific property, thereby reducing the number of
compounds that must be synthesized in the process of designing new drugs. De-
spite the fact that many topological indices have been described, only a small
number of them have been used effectively in QSAR investigations. These
include Wiener’s index, Balaban’s index, Hosoya’s index, Randic’s molecular
connectivity index, and the eccentric connectivity index [2, 10, 9, 21]. Eccen-
tricity has been used to create a variety of indexes [3, 12, 4, 5, 14, 20] . Some
of these are eccentric connectivity index, graph shape index, and connective
eccentricity index. In this study, we discussed the index which is defined, in
1997, by Sharma et al., as eccentric connectivity [14]. The eccentric connec-
tivity index εc(G) of G is defined as εc(G) =

∑
v∈V(G)

ec(v) deg(v).

Consider a simple connected graph denoted by G with its set of vertices
represented as V(G) and the set of edges as E(G). The metric that quantifies
the distance between two vertices u and v in a graph G, denoted by dG(u, v),
is defined as the minimum number of edges that must be traversed in order
to travel from u to v along the shortest path in G. The vertex eccentricity,
denoted as ecG(u), in a graph G refers to the greatest distance between vertex
u and any other vertex in G. The mathematical definition of the diameter,
denoted as d, of a graph G is the largest possible value of the eccentricities
of all vertices in G. The definition of the radius of a graph G is such that
it corresponds to the minimum value of the eccentricities of the vertices that
comprise G. In graph theory, a vertex in a graph G is considered to be central
if its eccentricity is equivalent to the radius of G. The number of edges that
are connected to a vertex w ∈ V(G) is defined as the degree of the vertex,
denoted by degG(w). A graph theory term for a vertex with only one adjacent
vertex is a pendant vertex, also known as a leaf vertex, of a given graph G.
The open neighborhood and closed neighborhood of a vertex v in a graph G

are defined as NG (v) = {u ∈ V (G) : uv ∈ E (G)} and NG [v] = NG (v) ∪ {v},
respectively. Let the set Ni

G(v) be the set of vertices where the vertex v is at
a distance i in the graph G. That is, Ni

G(v) = {u ∈ V(G) |d(v, u) = i }. Thus,
we have N(v) = NG(v) = N1

G(v) and N [v] = NG [v] = N1
G(v) ∪ {v} [16].

The vertex set of the complement Ḡ of a graph G consists of the same
vertices as G, but in Ḡ, two vertices are adjacent if and only if they are not
adjacent in G. On the other hand, the line graph L(G) of G is a graph whose
vertex set is composed of the edges of G, and two vertices in L(G) are adjacent
if and only if the corresponding edges are adjacent in G [16].
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The transformation graph Gxyz is a graph whose vertex set is V(G)∪ E(G),
and s, t ∈ V (Gxyz). The vertices s and t are adjacent in Gxyz if and only if
one of the following properties holds [1, 19, 18, 17]:

(P1) Consider s, t ∈ V(G). If x = +, then t ∈ NG(s); while if x = −, then
t /∈ NG(s).
(P2) Consider s, t ∈ E(G). If y = +, then t ∈ NG(s); while if y = −, then

t /∈ NG(s).
(P3) Consider s ∈ V(G), t ∈ E(G). If z = +, then s is the end-vertex of t;

while if z = −, then s is not the end-vertex of t.

In this paper, we study about eccentric connectivity index of the transforma-
tion graph Gxy+. Various notations are employed to enhance the comprehen-
sibility of the proofs of the aforementioned theorems. Consider two arbitrary
vertices s and t in the graph G. In the context of graph theory, it is customary
to denote the edge between two adjacent vertices s and t in a graph G as
est. Moreover, the aforementioned edge is denoted by the vertex st within the
graph Gxyz.

Theorem 1 [22] Let G be a connected graph with m edges. Then,

2m(rad(G)) ≤ εc(G) ≤ 2m(diam(G)).

2 Eccentric connectivity index for the graph Gxy+

We begin this subsection by determining the eccentric connectivity index of
the transformation graph Gxy+ when G is a specified family of graphs.

Theorem 2 When xyz = +−+, let the transformation graph of the graph G

be G+−+ and q is the number of edges of the graph G+−+.

(a) If G ∼= Pn (n ≥ 6), then εc(G+−+) = 2n2 + 6n− 4;

(b) If G ∼= Cn (n ≥ 6), then εc(G+−+) = 2n2 + 10n;

(c) If G ∼= Kn (n ≥ 4), then εc(G+−+) = (n− 1)
(
n3−5n2+18n

2

)
= 4q;

(d) If G ∼= K1,n (n ≥ 3), then εc(G+−+) = 10n;

(e) If G ∼= W1,n (n ≥ 3), then εc(G+−+) = 6n2 + 10n = 4q;

(f) If G ∼= Km,n (m,n ≥ 2), then εc(G+−+) = 2mn(mn−m− n+ 7);
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Proof. (a) Let x and y be the pendant vertices of the graph G. It is easily seen
that degG+−+(x) = degG+−+(y) = 2 and for all v ∈ V(G) − {x, y} degG+−+(v) =
4. Furthermore, degG+−+(xNG(x)) = degG+−+(yNG(y)) = n − 1 and for uv ∈
V(L(G)) − {xNG(x), yNG(y)) degG+−+(uv) = n− 2. The eccentricity value of
the vertices of the graph is calculated according to the vertices as follows.

� e(u) value of for all u ∈ V(G):
Let A = NG(u), B = V(G) −NG[u], C = uNG(u), D = V(L(G)) − C.
The shortest distance between the vertex u and the vertices in A∪C, in
D ∪ N2

G(u) and in V(G) − (NG[u] ∪ N2
G(u)) is 1, 2 and 3, respectively.

Thus, we get e(u) = 3.

� e(uv) value of for all uv ∈ V(L(G)):
Let A = N

L(G)
(uv) and B = V(L(G)) −N

L(G)
[uv]. The shortest distance

between the vertex uv and the vertices in A ∪ {u, v}, in NG(u) − {v} ∪
NG(v) − {u} ∪ NG(A) and in B = N

L(G)
(A) − N

L(G)
[uv] is 1, 2 and 2,

respectively. Thus, we get e(uv) = 2.
With the results we found, we get, for n ≥ 6,

εc
(
G+−+

)
=
∑

deg(v)e(v)

= 2 · 2 · 3+ (n− 2) · 4 · 3+ 2 · (n− 1) · 2+ (n− 3)(n− 2) · 2
= 2n2 + 6n− 4.

(b) We can easily observe that for ∀v ∈ V(G)degG++(v) = 4 and for uv ∈
V(L(G)) degG+(uv) = n − 1. The eccentricity value of the vertices of the
graph is calculated according to the vertices as follows.

� e(u) value of ∀u ∈ V(G) : Let A = NG(u), B = V(G) − NG[u], C =
uNG(u) and D = V(L(G))−C. The shortest distance between the vertex
u and the vertices in A∪C, in D∪N2

G(u) and in V(G)−
(
NG[u] ∪N2

G(u)
)

is 1, 2 and 3, respectively. Thus, we get e(u) = 3.

� e(uv) value of ∀uv ∈ V(L(G)) : Let A = N
L(G)

(uv) and B = V(L(G)) −

N
L(G)

[uv]. The shortest distance between the vertex uv and the vertices

in A∪ {u, v}, in NG(u)− {v}∪NG(v)− {u}∪NG(A) and in B = N
L(G)

(A)−

N
L(G)

[uv] is 1, 2 and 2, respectively. Thus, we get e(uv) = 2.

With the results we found, we get, for n ≥ 6,

εc (G+−+) =
∑

deg(v)e(v) = n · 4 · 3+ n · (n− 1) · 2 = n2 + 10n.
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(c) It can easily be observed that for ∀v ∈ V(G) degG+−+(v) = 2(n − 1)

and for uv ∈ V(L(G)) degG+−+(uv) = n2−5n+10
2 . The eccentricity value of the

vertices of the graph is calculated according to the vertices as follows.

� e(u) value of ∀u ∈ V(G) : Let A = NG(u), B = V(G) −NG[u] = ∅, C =
uNG(u) and D = V(L(G))−C. The shortest distance between the vertex
u and the vertices in A∪C and in D = N

L(G)
(C) is 1 and 2, respectively.

Thus, we get e(u) = 2.

� e(uv) value of ∀uv ∈ V(L(G)) : Let A = N
L(G)

(uv), B = V(L(G)) −

N
L(G)

[uv], C = NG(uv) and D = V(G) − C. The shortest distance be-

tween the vertex uv and the vertices in A∪C, in B = N
L(G)

(A)−N
L(G)

[uv]

and D is 1, 2 and 1, respectively. Thus, we get e(uv) = 2. With the results
we found, we get, for n ≥ 4,

εc
(
G+−+

)
=
∑

deg(v)e(v) = n.2(n− 1).2+
n(n− 1)

2
.
n2 − 5n+ 10

2
.2

= (n− 1)

(
n3 − 5n2 + 18n

2

)
Furthermore, since the graph’s vertices have an eccentricity value of 2,
according to Theorem 1, εc (G+−+) = 4q where q is the number of edges
of the graph G+−+.

(d) Let c be the central vertex of the graph G. It is easily seen that degG+−+(c)
= 2n and for ∀v ∈ V(G)− {c} degG+−+(v) = 2. Since the structure of L (K1,n)
consists of n isolated vertices, degG+−+ (cNG(c)) = 2. Also, e(c) = 1 and for
∀w ∈ V (G+−+) − {c}, e(w) = 2.

With the results we found, we get, for n ≥ 3,
εc (G+−+) =

∑
deg(v)e(v) = 2 · n+ 2 · n · 2 · 2 = 10n.

(e) Let c be the central vertex of the graph G. It is easy to see that
degG+−+(c) = 2n and for ∀v ∈ V(G) − {c} degG+−+(v) = 6. For the ver-
tices corresponding to the edges connecting the central vertex and the ver-
tices on the cycle graph, degG+−+ (cNG(c)) = n and for ∀uv ∈ V(L(G)) −
{cNG(c)}degG+(uv) = 2n− 3. The graph’s vertices have an eccentricity value
of 2.

With the results we found, we get, for n ≥ 3,

εc
(
G+−+

)
=
∑

deg(v)e(v) = 1·2n·2+n·6·2+n·n·2+n·(2n−3)·2 = 6n2+10n.
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Furthermore, since the graph’s vertices have an eccentricity value of 2, ac-
cording to Theorem 1, εc (G+−+) = 4q where q is the number of edges of the
graph G+−+.

(f) While the degree of m vertices in the graph G is degG+−+(v) = 2n,
the degree of n vertices is degG+−+(v) = 2m. Since an edge in the graph G

is connected to (m − 1) + (n − 1) edges, each vertex in the graph L(G) is
adjacent to (m − 1) + (n − 1) vertices. Therefore, in the graph L(G), each
vertex is adjacent to mn − 1 − (m + n − 2) vertices. Therefore, for ∀uv ∈
V(L(G)) degG+−+(uv) = mn − m − n + 3. The graph’s vertices have an
eccentricity value of 2.

With the results we found, we get, for m,n ≥ 2

εc
(
G++

)
=
∑

deg(v)e(v)

= m · 2n · 2+ n · 2m · 2+m · n(mn−m− n+ 3) · 2
= 2mn(mn−m− n+ 7).

Furthermore, since the graph’s vertices have an eccentricity value of 2, accord-
ing to Theorem 1, εc (G++) = 4q where q is the number of edges of the graph
G+−+.

The theorem is thus proved. �

Theorem 3 When xyz = −++, let the transformation graph of the graph G

be G−++ and q is the number of edges of the graph G−++.

(a) If G ∼= Pn (n ≥ 6), then εc(G−++) = 2n2 + 10n− 18;

(b) If G ∼= Cn (n ≥ 6), then εc(G−++) = 2n2 + 10n;

(c) If G ∼= Kn (n ≥ 3), then εc(G−++) = 2n2(n− 1) = 4q;

(d) If G ∼= W1,n (n ≥ 3), then εc(G−++) = 4n2 + 26n;

(e) If G ∼= Km,n (m,n ≥ 2), then εc(G−++) = 2(m+n)(mn+m+n−1) = 4q.

Proof. (a) Let x and y be the pendant vertices of the graph G. It is easily
seen that for ∀v ∈ V(Ḡ) degG++(v) = n−1. Furthermore, degG−++ (xNG(x)) =
degG−++ (yNG(y)) = 3 and for uv ∈ V(L(G))− {xNG(x), yNG(y)}degG−++(uv)
= 4. The eccentricity value of the vertices of the graph is calculated according
to the vertices as follows.
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� e(u) value of ∀u ∈ V(Ḡ) : Let A = NḠ(u), B = V(Ḡ) − NḠ[u], C =
NL(G)(u) and D = V(L(G)) − C. The shortest distance between the
vertex u and the vertices in A∪C and in B∪D is 1 and 2, respectively.
Thus, we get e(u) = 2.

� e(uv) value of ∀uv ∈ V(L(G)) : Let A = NḠ(uv), B = V(Ḡ) − NḠ(uv)
and C = NL(G)(uv). The shortest distance between the vertex uv and

the vertices in A∪C, in B and in V(L(G)) −
{
NL(G)[uv] ∪N2

L(G)(uv)
}

is

1, 2 and 3, respectively. Thus, we get e(uv) = 3.

With the results we found, we get, for n ≥ 6, we have

εc
(
G−++

)
=
∑

deg(v)e(v) = n·(n− 1)·2+ 2·3·3+ (n− 1− 2)·4·3

= 2n2 + 10n− 18.

(b) It is easily seen that for ∀v ∈ V(Ḡ) degG−++(v) = n − 1 and for ∀uv ∈
L (Pn) degG−++(uv) = 4. As in Theorem 2 (a), we get eccentricity value for
∀u ∈ V(Ḡ) and ∀uv ∈ V(L(G)) is e(u) = 2 and e(uv) = 3, respectively.

With the results we found, we get, for n ≥ 6, we have
εc (G−++) =

∑
deg(v)e(v) = n(n− 1)2+ n · 4.3 = 2n2 + 10n.

(c) We can easily observe that for ∀v ∈ V(Ḡ) degG−++(v) = n− 1 and for
all uv ∈ L(G) degG−++(uv) = 2n− 2. It is also seen that he eccentricity value
of ∀u ∈ V (G−++)is e(u) = 2. With the results we found, we get, for n ≥ 5,

εc (G−++) =
∑

deg(v)e(v) = n(n− 1)2+ n(n−1)
2 2(n− 1)2 = 2n2(n− 1).

Furthermore, since the graph’s vertices have an eccentricity value of 2, ac-
cording to Theorem1, εc (G−++) = 4q where q is the number of edges of the
graph G−++.

(d) Let c be the central vertex of the graph G. It is easy to see that
degG−++(c) = n and for ∀v ∈ V(Ḡ) − {c}degG−++(v) = n. For the vertices
corresponding to the edges connecting the central vertex and the vertices
on the cycle graph, degG−++ (cNG(c)) = n + 3 and for ∀uv ∈ V(L(G)) −
{cNG(c)}degG−++(uv) = 6. The graph’s vertices have an eccentricity value of
2.

With the results we found, we get, for n ≥ 3,

εc (G−++) =
∑

deg(v)e(v) = (n+1) ·n ·2+n(n+3)2+n ·6 ·3 = 4n2+26n.
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(e) In the graph Ḡ, the degree of each vertex v is degG−++(v) = m+ n− 1.
Since an edge in the graph G is connected to (m − 1) + (n − 1) edges, each
vertex in the graph L(G) is adjacent to (m−1)+(n−1) vertices. Therefore,
for ∀uv ∈ V(L(G)) degG−++(uv) = (m − 1) + (n − 1) + 2 = m + n. The
graph’s vertices have an eccentricity value of 2.

With the results we found, we get, for m,n ≥ 2,
εc (G−++) =

∑
deg(v)e(v) = 2(m+ n)(mn+m+ n− 1).

Furthermore, since the graph’s vertices have an eccentricity value of 2, ac-
cording to Theorem 1, εc (G−++) = 4q where q is the number of edges of the
graph G−++.

The theorem is thus proved. �

Theorem 4 When xyz = −−+, let the transformation graph of the graph G

be G−−+, and q is the number of edges of the graph G−−+.

(a) If G ∼= Pn (n ≥ 3), then εc (G−−+) = 4
(
n2 − 2n+ 2

)
= 4q;

(b) If G ∼= Cn (n ≥ 4), then εc (G−−+) = 4
(
n2 − n

)
= 4q;

(c) If G ∼= Kn (n ≥ 4), then εc (G−−+) = n(n− 1)(n− 7)(n+ 2)/2 = 4q;

(d) If G ∼= K1,n (n ≥ 3), then εc (G−−+) = 2n2 + 6n = 4q;

(e) If G ∼= W1,n (n ≥ 4), then εc (G−−+) = 8n2 − 4n = 4q.

Proof. (a) Let x and y be the pendant vertices of the graph G. It is easily seen
that for ∀v ∈ V(Ḡ) degG−−+(v) = n − 1. Furthermore, degG−−+ (xNG(x)) =
degG−−+ (yNG(y)) = (n − 2 − 1) + 2 = n − 1 and for ∀uv ∈ V(L(G)) −
{xNG(x), yNG(y)} degG(uv) = n− 2. The graph’s vertices have an eccentricity
value of 2.

With the results we found, we get, for n ≥ 3, we have

εc
(
G−−+

)
=
∑

deg(v)e(v) = n · (n− 1) · 2+ 2 · (n− 1) · 2+ (n− 3)(n− 2)2

= 4
(
n2 − 2n+ 2

)
.

(b) We can easily observe that for ∀v ∈ V (G−−+) degG−−+(v) = n − 1. The
graph’s vertices have an eccentricity value of 2. With the results we found, we
get, for n > 3,

εc (G−−+) =
∑

deg(v)e(v) = 2n(n− 1)2 = 4n(n− 1).
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(c) We get for ∀v ∈ V(Ḡ) degG−−+(v) = n − 1 and ∀uv ∈ V(L(G))
degG−−+(uv) =

(
n2 − 5n+ 10

)
/2. The graph’s vertices have an eccentricity

value of 2. With the results we found, we get, for n > 3,

εc
(
G−−+

)
=
∑

deg(v)e(v) = n(n− 1)2+ n(n− 1)/2.
(
n2 − 5n+ 10

)
/2.2

= n(n− 1)(n− 7)(n+ 2)/2.

(d) Let c be the central vertex of the graph G. It is easy to see that
degG−−+(c) = n and for ∀v ∈ V(Ḡ) − {c}degG−−+(v) = n. Since L (K1,n)
contains n isolated peaks, for ∀uv ∈ V(L(G)) degG−−+(uv) = 2. The graph’s
vertices have an eccentricity value of 2. With the results we found, we get, for
n ≥ 3,

εc (G−−+) =
∑

deg(v)e(v) = (n+ 1) · n · 2+ n · 2 · 2 = 2n2 + 6n.

(e) Let c be the central vertex of the graph G. It is easy to see that ∀v ∈ V(Ḡ)
degG−−+(v) = n. For the vertices corresponding to the edges connecting the
central vertex and the vertices on the cycle graph, degG−−+ (cNG(c)) = n and
for ∀uv ∈ V(L(G)) − {cNG(c)} degG−−+(uv) = 2n − 3. The graph’s vertices
have an eccentricity value of 2.

With the results we found, we get, for n ≥ 4,

εc (G−−+) =
∑

deg(v)e(v) = (n+1)·n·2+n·n·2+n·(2n−3)2 = 2n(4n−2).

Because of the form of the graph G−−+ (G ∼= Pn, Cn, Kn, K1,n,W1,n), it can
be easily seen from above that the graph’s vertices have an eccentricity value
of 2. According to Theorem 1, we get εc (G−−+) = 4q where q is the number
of edges of the graph G−−+.

The theorem is thus proved. �

Theorem 5 When xyz = +++, let the transformation graph of the graph G

be G+++and q is the number of edges of the graph G+++.

(a) If G ∼= Cn (n ≥ 3), then εc (G+++) = 8n
⌈
n
2

⌉
;

(b) If G ∼= Pn (n ≥ 5), then εc (G+++) = 6(n− 1)2;

(c) If G ∼= Kn (n ≥ 3), then εc (G+++) = 2
(
n2 + n

)
(n− 1) = 4q;

(d) If G ∼= K1,n (n ≥ 3), then εc (G+++) = 2n2 + 8n;

(e) If G ∼= W1,n (n ≥ 5), then εc (G+++) = 2n2 + 46n.
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Proof. (a) The graph G+++ is a 4-regular graph. We get that the graph’s
vertices have an eccentricity value of

⌈
n
2

⌉
. With the results we found, we get,

for n ≥ 3, εc (G++) =
∑

deg(v)e(v) = 8n
⌈
n
2

⌉
.

(b) Let x and y be the pendant vertices of the graph G. It is easily seen
that degG+++(x) = degG+++(y) = 2 and for ∀v ∈ V(G)− {x, y} degG+++(v) =
4. Furthermore, degG+++ (xNG(x)) = degG+++ (yNG(y)) = 3 and for
∀uv ∈ V(L(G)) − {xNG(x), yNG(y)) degG+++(uv) = 4. There occur two cases
depending on n for the graph’s vertices’ eccentricity values.

To make the proof clearer, let the n vertices of G be v1, v2, v3 . . . vn−1,, vn
and the n− 1 vertices of L(G) be v1v2, v2v3, v3v4, . . . , vn−1vn.
Case 1. For n even. By the definition of the eccentricity value, for every

vertex of G, it can easily be observed that,

e
(
vn

2

)
=e
(
vn

2
+1

)
, e
(
vn

2
−1

)
= e
(
vn

2
+2

)
, . . . , e (v2)= e(vn−1) , e (v1) = e (vn) .

Thus, we have e (vi) = e
(
vn−(i−1)

)
= n− i, where i ∈ {1, 2, . . . , n/2}.

For every vertex of L(G), we receive the following equalities.

e
(
vn

2
−1vn

2

)
= e

(
vn+2

2
vn+4

2

)
, e
(
vn−4

2
vn−2

2

)
= e

(
vn+4

2
vn+6

2

)
, . . . , e (v2v3) =

e (vn−2vn−1) , e (v1v2) = e (vn−1vn). These value are e (vjvj+1)=e
(
vn−jvn−(j−1)

)
= n− j, where j ∈ {1, 2, . . . , (n/2) − 1} and e

(
vn

2
vn

2
+1

)
= n− n

2 .

With the results we found, we get, for n ≥ 6,

εc
(
G+++ = 2

2(n− 1) +

n−2∑
i=n/2

4i

+ 2

3(n− 1) +

n−2∑
j=(n+2)/2

4j

+ 4
n

2

= 6n2 − 12n+ 6 = 6(n− 1)2.

Case 2. For n odd. The eccentricity values for every vertex of G are

e
(
vn−1

2

)
= e

(
vn+1

2
+1

)
, e
(
vn−3

2

)
= e

(
vn+1

2
+2

)
, . . . , e (v2) = e (vn−1) ,

e (v1) = e (vn) .
It is easy to see that e (vi) = e

(
vn−(i−1)

)
= n − i where i ∈

{
1, 2, . . . , n−1

2

}
and e

(
vn+1

2

)
= n − n+1

2 . Since the vertices in the L(G) subgraph are even

with degrees, the eccentricity values of the vertices are as in Case 1.
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With the results we found, we get, for n ≥ 5,

εc
(
G+++

)
=2

2(n− 1)+

n−2∑
i=(n+1)/2

4i

+4
n− 1

2
+2

3(n− 1)+

n−2∑
i=(n+1)/2

4i


= 6n2 − 12n+ 6 = 6(n− 1)2.

(c) We get for ∀v ∈ V(G) degG+++(v)=2(n−1) and ∀uv∈V(L(G)) degG+++(uv)
= 2(n− 1). The graph’s vertices have an eccentricity value of 2. With the re-
sults we found, we get, for n ≥ 3,

εc (G+++) =
∑

deg(v)e(v) = 2
(
n2 + n

)
(n− 1).

Furthermore, since the graph’s vertices have an eccentricity value of 2, ac-
cording to Theorem 1, εc (G+++) = 4q where q is the number of edges of the
graph G+++.

(d) Let c be the central vertex of the graph G. It is easy to see that
degG+++(c) = 2n and for ∀v ∈ V(G) − {c} degG+++(v) = 2. Since the struc-
ture of the L(G) subgraph is a complete graph with n vertices, for ∀uv ∈
V(L(G)) degG+++(uv) = n + 1. Also, it is easily seen that e(c) = 1 and for
∀v ∈ V (G+++) − {c} e(v) = 2.

With the results we found, we get, for n ≥ 3,

εc (G+++) =
∑

deg(v)e(v) = 2n+ n · 2 · 2+ n · (n+ 1)2 = 2n2 + 8n.

(e) The vertex set of G+++ can be partitioned into four subsets as

V1 (G
+++); central vertex c of G. degG+++(c) = 2n.

V2 (G
+++) = V(G) − {c}. For ∀u ∈ V2 (G

+++) , degG+++(u) = 6.

V3 (G
+++): the {cNG(c)} vertices in L(G). For ∀xy ∈ V3 (G

+++) degG+++(xy)
= n+ 3.

Furthermore, the vertices of V3 (G
+++) are a complete graph in themselves.

V4 (G
+++); the vertices in L(G) formed by the edges of the graph Cn. For

∀xy ∈ V4 (G
+++) degG+++(xy) = 6.
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The eccentricity values of the vertices are as follows: If the central vertex c,
then for ∀u ∈ V2 (G

+++)d(c, u) = 1, for ∀xy ∈ V3 (G
+++)d(c, xy) = 1 and for

∀xy ∈ V4 (G
++)d(c, xy) = 2. Thus, we get e(c) = 2.

If v ∈ V2 (G
+++), then d(c, v) = 1, for ∀u ∈ V2 (G

+++)−NG[v] d(v, u) = 2,
for ∀xy ∈ V3 (G

++) d(v, xy) ≤ 2 and for ∀xy ∈ V4 (G
+++)d(v, xy) ≤ 3. Hence,

we have e(v) = 3. Similarly, we have e(xy) = 2 for ∀xy ∈ V3 (G
+++) and

e(xy) = 3 for ∀xy ∈ V4 (G
+++). With the results we found, we get, for n ≥ 5,

εc (G+++) =
∑

deg(v)e(v) = 4n+ 18n+ n(n+ 3)2+ 18n = 2n2 + 46n. �
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Abstract. The rupture degree is one the most important vulnerability
parameter in networks which are modelled by graphs. Let G(V (G),E (G))
be a simple undirected graph. The rupture degree is defined by r(G) =
max{w(G–S )–|S |–m(G–S ):S⊂V (G) and w(G–S )>1} where m(G–S ) is
the order of a largest connected component in G–S and w(G–S ) is the
number of components of G–S, respectively. In this paper, we consider the
vertex contraction method based on the network agglomeration operation
for each vertex of G. Then, we have presented two graph vulnerability
parameters called by agglomeration rupture degree and average lower ag-
glomeration rupture degree. Furthermore, the exact values of them for
some graph families are given. Finally, we proposed a polynomial time
heuristic algorithm to obtain the values of agglomeration rupture degree
and average lower agglomeration rupture degree.

1 Introduction

Networks can be modeled with graphs. The servers or hubs are illustrated by
vertices and edges are connecting medium between them in any graph G. The

Key words and phrases: graphs, network design and communication, complex networks,
connectivity, vulnerability, rupture degree, agglomeration.
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vulnerability of a network is of main significance to network planners accord-
ing to the nodes and links [7, 12]. Recently, networks vulnerability has been
studied in widespread multidisciplinary area such as informatics, mathematics,
computer science, chemistry and many other applied science and engineering
science. The vulnerability value of networks is defined as the durability of the
network after the breakdown of some vertices or edges until a communication
disruption [12, 22].

In this paper, we consider only simple graphs. Now, some notations will
be given. Let G(V (G),E (G)) be a simple connected graph whose vertex
and edge sets are denoted by V (G) and E (G), where V (G)={v1,v2,. . . ,vn},
E (G)={e1,e2,. . . ,em}, |V (G)|=n and |E (G)|=m. Let u∈V (G).The set
N (u)={v∈V (G)|(u,v)∈E (G)} is called the open neighborhood of u. Further-
more, the number of |N (u)| is called the degree of vertex u and is denoted by
dG(u). The maximum degree of G is denoted by ∆(G) is defined by max{dG(v)
| v∈V (G)}. Similarly, the minimum degree of G is denoted by δ(G) is defined
by min{dG(v) | v∈V (G)} [18, 33]. The set N [u]={u}∪N (u) is called the closed
neighborhood of the vertex u. The d(u,v) represents the distance between two
vertices as u and v. Furthermore, the distance is defined as the length of a
shortest path between them [18, 33].

The connectivity value of any graph G is the best-known vulnerability mea-
sures in the literature. It is defined that to obtain disconnected graph after
the minimum number of vertices are deleted from the given graph, also is
denoted by k(G) for any graph G [16]. The connectivity of any graph G is
computed with polynomial time. There are many vulnerability measures for
the networks. For example, integrity [9], toughness [12], tenacity [13], global
distribution number [14] are considered and studied in many areas. Further-
more, there are many average vulnerability parameters are proposed to obtain
the vulnerability values of the networks. For example, the average lower dom-
ination number [17], the average lower independence number [6], the average
lower bondage number [32], the average lower reinforcement number [31], the
average lower residual domination number [29], the average lower link residual
domination numbers [30] etc. are considered and studied in many areas. The
values of these parameters are not computed in polynomial time. Because they
are classes of NP-Hard or NP-Complete.

The rupture degree is other best known vulnerability parameter. It is de-
fined by Li et al. in [23] and the definition of it as the following:

r(G) = max{w(G–S )–|S |–m(G–S ):S⊂V (G) and w(G–S )>1},
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where m(G–S ) and w(G–S ) denote the is the largest connected component
in G–S and the number of components of the graph G–S, respectively.

Let C6 be a cycle graph. It is showed by in Figure 1. The alternative rupture-
sets of C6 are showed with the set of darkened vertices. Clearly, |S |=3, w(C6−
S) = 3 and m(C6 − S) = 1. As a result,r(C6)=1 is obtained.

Figure 1: The rupture-set of the graph C6

In [26], the authors showed that calculating the rupture degree problem is
an NP-complete problem. However, it is possible to determine the rupture
degree of large classes of graphs. For more results on rupture degree, we refer
the readers to see [1, 2, 3, 4, 5, 8, 20, 21, 25, 27]. Furthermore, Li gave an
algorithm whose complexity is O(n2) for isolating rupture degree in Trees
of order n [24]. Another interesting study about the rupture degree is the
references [15] by Durgut et al. In [15], a heuristic algorithm is given to find
the rupture degree for any graph G. A similar study is in [11], where Berberler
et al. gave a polynomial time heuristic algorithm for computing the integrity
of any given graph G.

When investigating the vulnerability of complex networks, the finding node
importance is used for each node recently. There are some different methods
for determining importance of each node. In this paper, we use node contrac-
tion method based on network agglomeration. Then, new two vulnerability
parameter definitions have been made by combining node contraction method
based on network agglomeration method and the rupture degree. By using
methods based on agglomeration, more efficient results can be obtained in
terms of vulnerability. Let vi∈V (G). The node contraction is defined as fol-
lows: the node vi and other dG(vi) nodes connected with vi into a new node
v
′
i, which takes place of the primary dG(vi)+1 nodes, and links connected with
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dG(vi)–1 nodes originally turn to the new node v
′
i now. For example, if the

center node is contracted in a star-network, the network is agglomerated to
one node. Another example can be seen in Figure 2.

The agglomeration operation has been used in different network vulnera-
bility measures, some of these can be seen in [10, 19, 28]. In this paper, we
incorporate the concept of the rupture degree and agglomeration operation,
as well as the idea of the average vulnerability parameters, to introduce new
graph parameters called the agglomeration rupture degree (ARD), denoted by
ragg(G), and the average lower agglomeration rupture degree (ALARD), de-
noted by raggav (G), for any given graph G. Furthermore, we consider the ARD
and ALARD to be two metrics for network vulnerability.

Figure 2: The agglomeration operation on the vertex w.

In this paper, there are 6-Sections. The ARD and ALARD are defined in
Section 2. In Section 3, the difference of the ARD and ALARD is shown with
different examples. The values of ARD and ALARD are obtained some well-
known graph families in Section 4. In Section 5, we give a polynomial time
heuristic algorithm to compute the values of ARD and ALARD, then the
computational test results are presented. Finally, we give our conclusions in
Section 6.
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2 The definitions of the ARD and ALARD

The definitions of ARD and ALARD are given in this section. For a vertex
vk of a graph G, the lower agglomeration rupture degree, denoted by raggvk (G),
is the minimum cardinality of the rupture set in G derived from the graph G
after the agglomeration operation for the vertex vk. The agglomeration rupture
degree of a graph G is defined as:

ragg(G) = maxvk∈V (G){raggvk
(G)}.

Furthermore, the average lower rupture degree of G is defined by

raggav (G) =
1

|V (G)|
∑

vk∈V (G)

raggvk
(G).

Example 1.1. Let the graph G, which are showed in Figure3, be a graph
with 6-vertices and 6-edges. Clearly, the connectivity number and the rupture
degree of G is one. The rupture set of G is {v1,v4} and r(G)=1.

Figure 3: The graph G whose number of vertices and edges is 6.

Vertices raggvk (G)

v1 -1

v2 0

v3 1

v4 1

v5 1

v6 0

Table 1: The lower agglomeration rupture degree of every vertex vk ∈ V (G)
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The lower agglomeration rupture degree of every vertex vk ∈ V (G) is pre-
sented in Table 1.

Clearly, we have raggv1 (G)=-1, raggv2 (G)=0, raggv3 (G)=1, raggv4 (G)=1, raggv5 (G)=1,
and raggv6 (G)=0. Thus, ragg(G)=1 and raggav (G)=(-1+0+1+1+1+0)/6=2/6=0.33
are obtained.

3 Vulnerability examples of the ARD and ALARD

The ARD and ALARD can be more efficient than the connectivity and the
rupture degree in measuring the vulnerability of some graphs. In this section,
this situation is showed with different two examples.

In the first example, we consider the graphs G1 and G2 that are presented
in Figure 4. Then, we want to show the values of ARD and ALARD can be
used to distinguish between two given graphs. Clearly, the values of connec-
tivity and domination number, and also the numbers of vertices and edges of
the graphs G1 and G2 are equal. That is, k(G1)=k(G2)=1, r(G1)=r(G2)=1,
|V (G1)|=|V (G2)|=8 and |E (G1)|=|E (G2)|=8.

Figure 4: The graphs G1 and G2 with 8-vertices and 8-edges

The ARD of the graphs G1 and G2 are ragg(G1)=2 and ragg(G2)=1, while
the ALARDs of these two graphs G1 and G2 are raggav (G1) = 1

2 and raggav (G2)
= 1

4 , respectively.
In the second example, we consider the graphs G3 and G4 that are presented

in Figure 5. Then, we want to show the value of ALARD can be used to
distinguish between two given graphs. Clearly, the values of connectivity, the
rupture degree and the agglomeration rupture degree of the graphs G3 and G4

are equal, with k(G3)=k(G4)=1, r(G3)=r(G4)=1 and ragg(G3)= ragg(G4)=1.
Additionally, the numbers of vertices and edges of the graphs G3 and G4 are
equal as like |V (G3)|=|V (G4)|=6 and |E (G3)|=|E (G4)|=6.



130 M. Ağtaş, T. Turacı

Figure 5: The graphs G3 and G4 with 6-vertices and 6-edges

The ALARD of the graphs G3 and G4 are raggav (G3) = 1
3 and raggav (G4) = 0,

respectively.
With these examples, we can say that these two new parameters ARD and

ALARD may be more distinctive than other vulnerability parameters.

4 Computing the ARD and ALARD of well-known
graphs

In this section, we compute the values of ARD and ALARD of well-known
graphs such as the path graph Pn, the cycle graph Cn , the complete graph
Kn, the star graph K1,n-1, the wheel graph W1,n and complete bipartite graph
Kn,m.

Theorem 1 Let G ∼= Pn be a path graph of order n, where n ≥ 4. Then,

(a) ragg(Pn) = 0 (b) raggav (Pn) =

{
−2/n, if n is odd;

(2− n)/n, if n is even.

Proof. We know that r(Pn) = -1 if n is even; r(Pn) = 0 if n is odd (see
[23]), and let {v1,v2,. . . ,vn-1,vn} be vertices of Pn. In here, we say that the
vertices v1 and vn are minor vertices, remaining vertices are called major ver-
tices. Clearly, number of minor and major vertices are 2 and n-2, respectively.
While we are calculating the ARD and ALARD of the path graph Pn, we have
two cases depending on n.
Case 1. Let n be even. We distinguish two sub cases depending on the ver-
tices of Pn.

Subcase 1.1. If a minor vertex is agglomerated, then a path Pn-1 is obtained.
Due to n is even, we have r(Pn-1) = 0. So, we obtain raggv1 (G)=0 and raggvn (G)=0.
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Subcase 1.2. If a major vertex is agglomerated, then a path Pn-2 is obtained.
Due to n is even, we have r(Pn-2) = -1. So, we obtain raggvk (G)=-1, where k ∈
{2,3,. . . ,n-1}.

Finally, we get ragg(Pn)=0 by the definition of ARD and the Subcases 1.1
and 1.2.

Furthermore, we get

raggav (G) =
1

|V (G)|

 ∑
vk∈V (G)

raggvk (G)


=

1

n

(
raggv1 (G) + raggvn (G) +

n−1∑
k=2

raggvk
(G)

)
=

1

n

(
2(0) + (−1(n− 2))

)
=

2− n
n

.

Case 2. Let n be odd. We distinguish two sub cases depending on the vertices
of Pn.

Subcase 2.1. If a minor vertex is agglomerated, then a path Pn-1 is ob-
tained. Due to n is odd, we have r(Pn-1) = −1. So, we obtain raggv1 (G)=−1
and raggvn (G)=−1.

Subcase 2.2. If a major vertex is agglomerated, then a path Pn-2 is obtained.
Due to n is odd, we have r(Pn-2) = 0. So, we obtain raggvk (G)=0, where k ∈
{2,3,. . . ,n-1}.

Finally, we get ragg(Pn)=0 by the definition of ARD and the Subcases 2.1
and 2.2.

Furthermore, we get

raggav (G) =
1

|V (G)|

( ∑
vk∈V (G)

raggvk (G)

)

=
1

n

(
raggv1 (G) + raggvn (G) +

n−1∑
k=2

raggvk
(G)

)
=

1

n

(
2(−1) + (0(n− 2))

)
=
−2

n
.
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By the Cases 1 and 2, the proof is completed. �

Theorem 2 Let G ∼= Cn be a cycle graph of order n, where n ≥ 5. Then,

ragg(Cn) = raggav (Cn) =

{
−2, if n is odd;
−1, if n is even.

Proof. We know that r(Cn) = -1 if n is even; r(Cn) = -2 if n is odd (see [23]),
and let {v1,v2,. . . ,vn-1,vn} be vertices of Cn. If a vertex is agglomerated in the
graph Cn, then a cycle Cn-2 is obtained. We have two cases depending on n.

Case 1. Let n be even. Due to n is even, we have r(Cn-2) = -1. So, we
obtain raggvk (G)=-1, where k ∈ {1,2,. . . ,n}.

Case 2. Let n be odd. Due to n is odd, we have r(Cn-2) = -2. So, we obtain
raggvk (G)=-2, where k ∈ {1,2,. . . ,n}.

Finally, we get

ragg(Cn) = raggav (Cn) =

{
−2, if n is odd ;
−1, if n is even.

By the Cases 1 and 2, the proof is completed. �

Theorem 3 Let G ∼= Kn be a complete graph of order n, where n ≥ 3. Then,

ragg(Kn) = raggav (Kn) = 0.

Proof. The rupture degree of Kn is defined as r(Kn)=1−n [23]. Let {v1,v2,. . . ,
vn-1,vn} be vertices of Kn. If a vertex is agglomerated in the graph Kn, then
the graph K1 is obtained. Clearly, r(K1)=0. So, we get raggvk (G)=0, where k ∈
{1,2,. . . ,n}. Thus, ragg(Kn)=raggav (Kn)=0 is obtained. �

Theorem 4 Let G ∼= K1,n−1 be a star graph of order n, where n ≥ 4. Then,

(a) ragg(K1,n−1) = n− 4 (b) raggav (K1,n−1) =
n2 − 5n+ 4

n
.
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Proof. The rupture degree of K1,n-1 is defined as r(K1,n-1)=n-3 [23]. Let
{vc,v1,v2,. . . ,vn-2,vn-1} be vertices of K1,n-1, where the vertex vc is the cen-
ter vertex of K1,n-1. We distinguish two cases depending on the vertices of
K1,n-1.

Case 1. If the center vertex vc is agglomerated, then the complete graph
K1 is obtained. We know r(K1)=0 [23]. So, we obtain raggvc (G) = 0.

Case 2. If a vertex vk, where k ∈ {2,3,. . . ,n-1}, is agglomerated, then a star
graph K1,n-1 is obtained. Thus, we get raggvk (G) = n− 4 for k ∈ {2,3,. . . ,n-1}.

Finally, we have ragg(K1,n-1)=0 by the definition of ARD and the Cases 1
and 2.

Furthermore, we get

raggav (G) =
1

|V (G)|

( ∑
vk∈V (G)

raggvk (G)

)

=
1

n

(
raggvc (G) +

n−1∑
k=1

raggvk
(G)

)
=

1

n

(
(n− 1)(n− 4)

)
=
n2 − 5n+ 4

n
.

By the Cases 1 and 2, the proof is completed. �

Theorem 5 Let G ∼= W1,n be a wheel graph of order n+1, where n ≥ 5. Then,

(a) ragg(W1,n) = 0 (b) raggav (W1,n) =

{
−2n/(n+ 1), if n is odd;
−n/(n+ 1), if n is even.

Proof. The rupture degree of W1,n is defined as r(W1,n) = -2 if n is even,
and r(W1,n) = -3 if n is odd (see [23]). Let {vc,v1,v2,. . . ,vn-1,vn} be vertices
of W1,n, where the vertex vc is the center vertex of W1,n. We distinguish two
cases depending on the vertices of W1,n.

Case 1. If the center vertex vc is agglomerated, then the complete graph K1

is obtained. We know r(K1)=0 [23]. So, we obtain raggvc (G)=0.
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Case 2. If a vertex vk, where k ∈ {1,2,. . . ,n}, is agglomerated, then a join
graph K1+Pn−3 is obtained. We distinguish two sub cases depending on the
number of n.

Subcase 2.1. If n is even, then n-3 will be odd. Due to is n−3 odd, then we
get r(K1+Pn−3)=−1 [23]. That is raggvk (G)=−1, where k ∈ {1,2,. . . ,n}.
Subcase 2.2. If n is odd, then n−3 will be even. Due to is n−3 even, then
we get r(K1+Pn−3)=−2 [23]. That is raggvk (G)=−2, where k ∈ {1,2,. . . ,n}.
Finally, we get ragg(W1,n)=0 by the definition of ARD and the Cases 1 and 2.
Thus, we get

raggav (G) =
1

|V (G)|

 ∑
vk∈V (G)

raggvk (G)

 =
1

n

(
raggvc (G) +

n−1∑
k=1

raggvk
(G)

)

=
1

n+ 1
(n)(−1) =

−n
n+ 1

, if n is even.

If n is odd, then we have

raggav (G) =
1

|V (G)|

 ∑
vk∈V (G)

raggvk (G)

 =
1

n

(
raggvc (G) +

n−1∑
k=1

raggvk
(G)

)

=
1

n+ 1
(n)(−2) =

−2n

n+ 1
.

By the Cases 1 and 2, the proof is completed. �

Theorem 6 Let G ∼= Kn,m be a complete bipartite graph of order n + m,
where 1 < n ≤ m. Then,

(a) ragg(Kn,m) = m− 3 (b) raggav (Kn,m) =
m2 + n2 − 3m− 3n

n+m
.

Proof. The rupture degree of Kn,m is defined as r(Kn,m)=1−m−n [23].
Let {v1,v2,. . . ,vn,v′1, v

′
2,. . . ,v′n} be vertices of Kn,m. We distinguish two cases

depending on the vertices of Kn,m.

Case 1. If a vertex vk, where k ∈ {1,2,. . . ,n}, is agglomerated, then a star
graph K1,n−1 is obtained. We have r(K1,n−1)=n−3. Thus, we get raggvk (G)=n−3
for k ∈ {1,2,. . . ,n}.
Case 2. If a vertex v′k, where k ∈ {1,2,. . . ,m}, is agglomerated, then a star
graph K1,m−1 is obtained. We have r(K1,m−1)=m−3. Thus, we get raggvk (G)=
m−3 for k ∈ {1,2,. . . ,m}.
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We have r(Kn,m)=max{n−3,m−3}. Due to n≤m, we obtain r(Kn,m)=m−3
by Cases 1 and 2.

Furthermore, we get

raggav (G) =
1

|V (G)|

( ∑
vk∈V (G)

raggvk (G)

)

=
1

n+m

( n∑
k=1

raggvk
(G) +

m∑
k=1

ragg
v′k

(G)

)

=
1

n+m

(
(n)(n− 3) + (m)(m− 3)

)

=
m2 + n2 − 3m− 3n

n+m
.

By the Cases 1 and 2, the proof is completed. �

5 A heuristic algorithm for computing the ARD
and ALARD

In this section, firstly we give the pseudocode of heuristic algorithm for ARD
and ALARD in Appendix A. This algorithm runs polynomial time to find
the ARD and ALARD of an arbitrary graph G. We give an example how the
proposed algorithm works on the following graph P4.

Let P4 be a path graph and the node array(labelled of nodes) is [0, 1, 2, 3]
into the operation function. This graph showed in the Figure 6.

Figure 6: The graph P4 whose vertices labelled by [0,1,2,3]

Let the vertex 1 and graph go to Agglomeration function in our Algorithm.
The content of our neighbors array will be [[1], [0,2], [1,3], [2]]. For example,
the content of the zeroth index is 1. So, the neighbor of node 0 will be 1.
The content of aggCluster array is also [0,2]. Then we add the corresponding
node and sort it from the largest number to the smallest number. The con-
tent would be [2, 1, 0]. Now we need to delete the row and column from the
two-dimensional graph array. This process is also based on aggCluster. After
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deletion, our components array is created, then we have components = [[0],
[1], [2,3]] as like the following Figure 7.

Figure 7: The graph P4 after the first deletion.

Now the neighbors are deleted from the array of components. In summary,
this is the function of keeping vertices that are not adjacent to the agglomer-
ation vertex in the array of components. Now, we have components = [[3]].

Then, labeledComponents = components has been made. Furthermore,
tag number is 1 in the loop. Since labeledComponents is single content, the
loop returns one and labeledComponents [0][0] = label number. In other words,
label 1 is given to the neighbor of the merged nodes(0) and the newGraf be-
comes P2 as like the following Figure 8.

Figure 8: The graph P2

The created newGraph is sent to the Rupture function which is proposed in
[15] and then returns -1. The Agglomeration function also returns this Integer
value. The Integer value from the operation function is added to the ruptures
sequence. This event is made for all nodes and ruptures = [0, -1, -1, 0] is
obtained. As a result, the maximum value will be ARD and its arithmetic
average will be ALARD, that is ragg(P4)=0 and raggav (P4) = −1

2 are obtained.

5.1 Computational tests

In this section, the datasets of the references [11] and [15] have been used to
perform our proposed algorithm. In the following tables, |V| is the number
of vertices; ARD is the Heuristic result of Agglomeration Rupture Degree;
ARDopt displays the Brute Force result of Agglomeration Rupture Degree;
ALARD is the Heuristic result of the Average Lower Agglomeration Rupture
Degree; ALARDopt, Brute Force result of Average Lower Agglomeration Rup-
ture Degree; t(s) represents the running time in seconds. Error is the absolute
gap, which is the magnitude of the difference between the values of ARD,
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ALARD and the results of ARD, ALARD obtained by the proposed algo-
rithm. Furthermore, 25%, 50%, 75% and 100% indicate the edge density of
the graph G.

The proposed algorithm is implemented in JAVA and tested on i5-7600U
machine with 2.9 GHz processor and 8 GB RAM. Clearly, we can see that the
results of the actual ARD and ALARD is almost similar the result of ARD and
ALARD obtained by proposed algorithm in Tables 2 and 3. We also tested our
algorithm for the medium size graphs whose numbers of vertices more than
100. Since we don’t know actual values of ARD and ALARD, we give only
heuristic result of ARD and ALARD with CPU time in the Tables 4 and 5.
As a result, we have tested the algorithm on some graph families which are
used in Theorems 1–6. Then, same values of ARD and ALARD are obtained
as given Theorems 1–6.

Table 2: Computational experiments on small-sized graphs for ARD.
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Table 3: Computational experiments on small-sized graphs for ALARD



On agglomeration-based rupture degree in networks 139

Table 4: Computational experiments on medium-sized graphs.
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Table 5: Computational experiments on medium-sized graphs.
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6 Conclusion

In this paper, we considered agglomeration-based rupture degree in graphs.
We define and investigate the agglomeration rupture degree ragg(G) and the
average lower agglomeration rupture degree raggav (G), then these values have
been computed for well-known families of graphs. Finally, we proposed a poly-
nomial time heuristic algorithm to find the set of the lower agglomeration
rupture degree raggvk (G) for every vertex and also the values of ragg(G) and
raggav (G) for any graph G. Then, we present the results of computational
experiments on graphs with up to 200 vertices. The results show that the
proposed heuristic algorithm efficiently computes the values of ragg(G) and
raggav (G) of a given graph G. Developing of several heuristics for computing
the other agglomeration-based graph parameters of graphs are the subjects of
future work.
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APPENDIX

Void function Process(graph parameter mainGraph, node array parameter
arrayNode) {
ruptures[] � Ø
for i � 0 to arrayNode’s length {

ruptures[i] � Agglomeration(mainGraph, arrayNode[i]) }
Integer ARD � largest value of array ruptures
Double ALARD � sum of all ruptures array elements / arrayNode’s length
}. # end function

Integer function Agglomeration(graph parameter mainGraph, node parameter
Node) {
Graph � mainGraph # Cloning the master graph to avoid corruptions.
neighbors � neighboring nodes corresponding to each index.
aggCluster � neighbors[Node] # Finding the neighbors of the node.
for i � 0 to aggCluster’s length { # aggCluster nodes find their neighbors.

temp[i] � neighbors[aggCluster[i]]
for j � 0 to temp’s length {

if temp[i] isn’t equal to Node {

https://doi.org/10.3233/FI-2019-1806
https://doi.org/10.3233/FI-2019-1806
https://doi.org/10.3233/FI-2020-1930
https://doi.org/doi:10.1051/ita/2016015
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add temp[j] to neighbors } } }

add Node to aggCluster
sort aggCluster by contents from largest to smallest
for i � 0 to aggCluster’s length { # Reset row and column.

for j � 0 to Graph’s length {
Graph[j][aggCluster[i]] � 0
Graph[aggCluster[i]][j] � 0 } }

components[][] � newly formed graph sets # add new graphs.
for i � 0 to length of components { # deleting the neighborhood from the
components array.

for j � 0 to length of components[i] {
if aggCluster contains components[i][j] {

components[i][0] � Ø } } }
for i � 0 to length of components {

if the length of components[i] is 0 {
remove the i. variable from components } }

# Creating tagged component _
labeledComponents[][] � Ø
labeledComponents � components

# new tags _
Integer tag number � 0
for i � 0 to length of labeledComponents {

for j � 0 to length of labeledComponents[i] {
tag number � tag number + 1
labeledComponents[i][j] � tag number } }

# remove if empty _
for i � 0 to length of labeledComponents {

if the length of labeledComponents[i] is 0 {
remove the i. variable from labeledComponents
remove the i. variable from components } }

# create new graph _
Integer value � Graph’s length – aggCluster’s length + 1
newGraph[value][value] � Ø # newGraph is the matrix with value*value
length.
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for i � 0 to length of labeledComponents {
for j � 0 to length of labeledComponents[i] {

if neighbors contain components[i][j] {
newGraph[0][labeledComponents[I][j]] � 1
newGraph[labeledComponents[I][j]][0] � 1 } } }

for i � 0 to length of components {
for j � 0 to length of components[i] {

for k � j to length of components[i] {
Integer a � Graph[components[i][j]][components[i][k]]
newGraph[labeledComponents[i][j]][labeledComponents[i][k]]� a
Integer b � Graph[components[i][k]][components[i][j]]
newGraph[labeledComponents[i][k]][labeledComponents[i][j]]� b

} } }

return function Rupture(newGraph) # Branched into the heuristic rupture
algorithm.
}. # end function

Received: April 27, 2023 • Revised: July 16, 2023
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Abstract. Interstitial Lung Diseases (ILDs) represent a heterogeneous
group of several rare diseases that are difficult to predict, diagnose and
monitor. There are no predictive biomarkers for ILDs, clinical signs are
similar to the ones for other lung diseases, the radiological features are
not easy to recognize, and require manual radiologist review. Data-driven
support for ILD prediction, diagnosis and disease-course monitoring are
great unmet need. Numerous image processing techniques and computer-
aided diagnostic and decision-making support methods have been devel-
oped over the recent years. The current review focuses on such solutions,
discussing advancements on the fields of Quantitative CT, Complex Net-
works, and Convolutional Neural Networks.

1 Introduction

Interstitial lung diseases (ILDs) refer to a group of over 200 diverse disorders
that involve inflammation and progressive fibrosis of lung interstitium, rep-
resenting an important morbidity and mortality cause. The incidence of ILD
ranges from 1 to 31.5 per 100,000 person-years and prevalence ranged from
6.3 to 71 per 100,000 people [20]. It is more common in the elderly population,
median age at diagnosis is over 60 years [26].

ILD causes inflammation and scarring (fibrosis) of the interstitium, making
the oxygen difficult to pass into the bloodstream. This can result in symptoms
such as shortness of breath, cough, fatigue, and chest pain. ILD can also cause
a decreased tolerance for physical activity, and in more advanced cases, can
lead to respiratory failure; besides being seriously debilitating, it is significantly
affecting the patients’ quality of life.

There are many different types of ILD, with overlapping clinical, radiologi-
cal, and pathological features. The most common type is idiopathic pulmonary
fibrosis (IPF), which is of unknown cause. Other ones that are more preva-
lent are: connective tissue disease-associated ILD in people with autoimmune
diseases (e.g. rheumatoid arthritis and scleroderma), hypersensitivity pneu-
monitis, sarcoidosis, and drug-induced ILD (DIILD).

ILD is known to be difficult to diagnose and treat, and management typi-
cally involves a multidisciplinary approach made of medications, oxygen ther-
apy, pulmonary rehabilitation, and lung transplantation. Treatment efficacy
is usually measured by changes in pulmonary function (forced vital capacity
– FVC), more precisely the reduction of FVC decline over time, changes of
exercise tolerance, or progression-free survival.
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Beyond the individual patient burden, the economic impact of ILD is also
significant, both on a personal and societal level. Here are some factors that
contribute to the economic burden of ILD.

1. Healthcare costs: ILD often requires a suite of highly specific diagnostic
tools, including radiographic imaging, lung function tests, bronchoscopy,
and sometimes lung biopsy. For the progressive nature of the disease,
ongoing monitoring, medication management, and specialist oversight is
necessary. The costs associated with these medical services, including
hospitalizations, medications, and regular follow-up visits, contribute to
the economic burden. The home care for these patients is also substantial
(assistance with daily activities, transportation to medical appointments,
and emotional support).

2. Treatment expenses: ILD treatment may involve a combination of med-
ications, such as corticosteroids, immunosuppressants, and antifibrotic
drugs, depending on the specific type of ILD. These medications can be
costly, and the duration of treatment may extend over a long period,
further increasing the financial impact. In severe cases of ILD, where
conservative treatment options have been exhausted, lung transplanta-
tion remains the only option. Lung transplantation is a complex and
expensive procedure with substantial associated costs.

3. Lost productivity: ILD can significantly impact a person’s ability to work
and engage in daily activities. Consequently, individuals with ILD may
experience decreased work hours, reduced productivity, or even complete
disability, leading to income loss and further diminished quality of life.

The drug-induced interstitial lung disease is a specific type of ILDs that
deserves a separate evaluation. This is a heterogenous group of pulmonary
parenchymal diseases that occur in relation to exposure to certain drugs. To-
date 1,653 drugs and procedures are associated with ILDs, and the list is
increasing. Medicines used in several disease areas are on the list including
many highly promising oncology products that are meant to cover areas of
great unmet need [11]. DIILDs are an outcome of a medication administered
to patients, hence keeping it at lowest possible incidence is a moral obligation
for the physicians and drug-makers. Furthermore, DIILDs are darkening the
results of certain drugs that are otherwise highly successful (e.g. trastuzumab
deruxtecan (T-DXd), Enhertu®, the most successful oncology product dis-
covered in the recent years [25]) and are seriously limiting their use and their
therapeutic potential.
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2 Predicting, diagnosing and monitoring ILDs

Despite the recent advancements of technology and medicinal science, the
effective management of patients with ILDs is still insufficient at three main
levels: the early detection of ILD, accurate prognostication using baseline data,
and accurate and precise monitoring of disease response to therapy through
high-resolution computer tomography (HRCT) [6].

The diagnosis of ILDs is based on integrated clinical evaluation, pulmonary
function tests, radiological assessments, lab tests and, in some cases, histopatho-
logical examination that involves the collaboration of a large multidisciplinary
team.

ILDs should be considered in the differential diagnosis of adults presenting
with unexplained exertional shortness of breath, chronic cough, and/or crack-
les on chest auscultation, especially when the common pulmonary disorders
can be ruled out. ILDs classically produce the “3Cs”: cough, clubbing of the
nails, and coarse crackles on auscultation [32]. At clinical evaluation a detailed
medical history is obtained, including environmental and drug exposure his-
tory, full body examination with focus on clinical signs on the patients’ hand,
joint, and skin. A review of the patients’ medication is needed in search of
agents that are known to cause DIILDs. Common drugs associated with ILD
are cancer therapies (i.e., bleomycin, immune checkpoint inhibitors), rheuma-
tologic agents, amiodarone, and antibiotics (i.e., nitrofurantoin) and several
others. A thorough family history focusing on idiopathic interstitial pneumonia
and autoimmune disease should also be performed.

Pulmonary function tests (PFTs) are done to assess lung function and
help determine the presence and severity of restrictive or obstructive lung
disease. They typically include measurements of lung volumes, and of the
maximum amount of air a person can forcefully exhale after taking a deep
breath (forced vital capacity – FVC); as well as diffusing capacity for car-
bon monoxide (DLCO), and spirometry. Patients with ILDs typically exhibit
reduced FVC, reduced total lung volume, and reduced diffusing capacities,
though these values may appear normal early in the disease course, and when
combined pulmonary fibrosis and emphysema is present [8].

High-resolution computed tomography (HRCT) is a key imaging modality
for evaluating ILDs. HRCT scans provide detailed images of lung structures,
allowing the detection of characteristic patterns associated with different ILD
subtypes. Radiological features, such as ground-glass opacities, reticular or
honeycomb patterns, nodules, and distribution patterns, help guide the diag-
nosis and classification of ILDs. Computer-aided evaluation of HRCT images,
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in support of ILD diagnosis is a rapidly developing area, but the breakthrough
has not yet been achieved [30].

Serological and immunological blood tests may be conducted to assess mark-
ers, autoantibodies, or immunological abnormalities that could indicate an un-
derlying connective tissue disease associated with ILDs, such as rheumatoid
arthritis, systemic sclerosis, or sarcoidosis.

Cytological, or histopathological examination may be required to establish
a definitive diagnosis and determine the underlying histopathological features.
Bronchoalveolar lavage material or lung tissue obtained through biopsy helps
identify the characteristics of the interstitial inflammation, fibrosis, or other
specific changes, aiding in the classification of ILDs. Recently whole transcrip-
tome RNA sequencing of the biopsy tissue sample was found successful in
classifying ILDs. Gene expression analyses can help to distinguish between
types of ILDs. These are areas of intensive ongoing research [26].

2.1 Clinical challenges

The prevalence of ILDs is low, and this already makes it difficult to be rec-
ognized. Their clinical features (such as shortness of breath, cough, and re-
strictive lung function patterns) are similar to those seen in common lung
diseases, therefore the early diagnosis is a challenge. Some patients present
for evaluation of cough and dyspnea several years before being diagnosed with
ILD, after receiving initial diagnoses of chronic obstructive pulmonary disease,
heart failure or other diseases.

Besides of the low prevalence, ILDs have no known clinical or radiologi-
cal predictive biomarkers, only risk factors of low specificity associated with
this disease have been identified (age, male sex, cigarette smoking, hepatitis
C infection, history of tuberculosis, history of pneumonia, COPD, exposure
to toxic substances [13]). Unless there is a specific suspicion for ILDs, the
diagnosis can be easily overlooked. The incorrect or delayed diagnosis leads
to worsening of the disease and the use of invasive and/or costly diagnostic
procedures (like biopsies) of questionable value.

Accurate diagnosis and classification of ILDs often require input from var-
ious medical specialists, including pulmonologists, radiologists, pathologists,
and rheumatologists. Coordinating and integrating the expertise of multiple
disciplines is not easy, particularly in regions with limited access to special-
ized medical resources. Management of ILDs and care for patients with ILDs
remain a challenge throughout the course of their disease for lack of disease-
modifier treatment options.
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2.2 Radiological challenges

The role of HRCT is critical for diagnosing ILDs. The different types of ILDs
express specific imaging features like reticulation, consolidation, micronod-
ules, emphysema, honeycombing, ground-glass opacity and a combination of
these, that are essential for diagnosis. Interpreting radiological findings can
be challenging as there is substantial inter-observer variability even between
experienced radiologists, and the imaging patterns often are mixed, and the
features observed overlap among different ILD subtypes. On the other hand,
visual evaluation of ILD by HRCT has little sensitivity to objective changes
in disease severity over short follow-up periods.

Image standardization is difficult to achieve, for normal lung tissue idiosyn-
crasy and artifacts, caused by patient movement during scanning, different
types of breathing. Though HRCT is the accepted standard to be used when
ILD is suspected, there are inconsistencies between CT technical character-
istics, different scanner manufacturers, models, acquisition protocols, and re-
construction algorithms. International collaborations would be very important
between Academia, Pharma Industry and Healthcare to develop comprehen-
sive guidelines for imaging standards and basic image-processing algorithms.

The most clinically meaningful information hiding within the very large
medical imaging datasets is generally unstructured, and require extensive pre-
processing (including segmentation, filtering, registration, and labeling) before
further analysis can occur. Defining the segment of interest for evaluation re-
quires manual or semi-manual annotation.

2.3 Image processing challenges

Image standardization is difficult to achieve, for normal lung tissue idiosyn-
crasy, and artifacts caused by patient movement during scanning, different
types of breathing. Though HRCT is the accepted standard to be used when
ILD is suspected, there are inconsistencies between CT technical character-
istics, different scanner manufacturers, models, acquisition protocols, and re-
construction algorithms. International collaborations would be very important
between Academia, Pharmacological Industry and Healthcare to develop com-
prehensive guidelines for imaging standards and image-processing algorithms.

The most clinically meaningful information hiding within the very large
medical imaging datasets is generally unstructured, and require extensive pre-
processing (including filtering, registration, and labeling) before further anal-
ysis can occur. Defining the segment of interest for evaluation requires manual



152 J. Palatka et al.

or semi-manual annotation, therefore until the machine-learning mechanisms
reach their advanced stage of development, human pre-processing remains es-
sential.

The algorithms developed for image recognition still need to improve for
the precise classification of the patterns seen (honeycombing, reticulation and
ground glass opacity, etc.), especially when they appear mixed on the im-
ages studied. Multiple methods have been proposed for computer-aided object
recognition and classifying (multi-scale rotation invariant algorithms with eg.
Gabor filter, patch-based image representation methods and others), the op-
timal tool is yet to be found.

There is a pronounced need for a computer-based tool that operates on data
from radiological images and clinical data, that predicts ILDs and/or reliably
detects them at earlies (even subclinical) stages of the disease, and enables
monitoring of disease response to therapy.

3 Digital techniques for ILD diagnosis and monitor-
ing

There is a pronounced need for computer-based tools that operate on data
from radiological images and clinical domain, that predict ILDs and/or reliably
detect them at earlier (even subclinical) stages of the disease and enables their
longitudinal follow up and assessing the treatment outcomes.

A few decades ago only simple image analytics were used for image process-
ing purposes. The novel biomarkers based on radiography images have only
started to become available recently, their numbers are steadily increasing
with the implementation of complex image analysis based on machine learn-
ing techniques.

3.1 Quantitative CT

Quantitative CT (QCT) provides an alternative to the visual evaluation, that
is objective and reproducible by the use of computer-based techniques to ana-
lyze HRCT images. This method is based on simple statistical analysis of CT
attenuation values of each targeted pixel of the lung images, without studying
the correlation between them [4].

The only method commercialized and widely used to-date to quantify the
pulmonary tissue is CALIPER (Computer Aided Lung Informatics for Pathol-
ogy Evaluation and Rating), developed by Mayo Clinic of USA. The im-
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age quantification done by CALIPER is based on histogram signature map-
ping techniques trained through datasets confirmed by expert radiologists. As
part of the development for ILDs, the local histograms computed from the
15 × 15 × 15 neighborhood of each of the parenchymal voxel were compared
against the histogram of exemplars identified in the training phase, divided in 5
classes (emphysema, ground glass opacity, honeycombing, reticular infiltrates
and normal tissue). Quantitative discriminability of a number of pairwise dis-
similarity metrics based on the volume of interest histograms was examined
using multi-dimensional scaling. Of several techniques Cramer Von Mises Dis-
tance was found to be most consistent with the expert grouping. CALIPER
is easy to use and provides good support for ILD diagnosis and disease course
monitoring, its performance however leaves room for improvement. The corre-
lation of CALIPER results with physiologic parameters was generally strong
but the correlation with the radiologist assessment of disease type and severity
was only around 50%, hence can only be used in the context of clinical data
[7].

3.2 Complex networks

The new methods of computer aided diagnosis (CAD) for lung HRCTs only
provide a static evaluation of the images and require extensive computing
skills and infrastructure. In response to this challenge, a novel technique was
developed by Truşculescu et al. [31], built on a CN analytic approach for
imagistic aided diagnosis fitness for the possibility of achieving relevant data
for ILD management.

The method was developed on HRCT images from 65 patients with ILD and
31 with normal lung, acquired from Clinical Hospital of Infectious Diseases and
Pneumophysiology Dr. Victor Babes, of Timisoara, Romania. Regions of inter-
est were marked by a radiologist with high experience in imagistic diagnosing
of ILDs. Three non-overlapping separate bands of Hounsfield Units (HU) have
been created in line with the categories of the characteristic attenuations of
the lung alterations. The images were then transformed into complex networks
according to specific predefined attachment rules, based on the HU values of
each pixel. Network nodes and connections have been defined based on the
similarities in HU values of neighboring pixels. CN measurements were done
for interconnectedness and size. Maximum degree number, total degree count
and average degree count were evaluated.

The method was successful for early disease detection in one of the three
bands (the one corresponding to ground glass opacity), partially successful in
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the other (reticulation) and not successful in the third (emphysema). When
used to assess disease course on sequential image sets for the same patient, the
method was highly successful by showing close correlation with the changes of
the clinical parameters [31].

3.3 Convolutional neural network-based methods

Substantial progress has been made in image recognition, with the advent of
CNN-based solutions following the availability of large-scale annotated datasets
like ImageNet which offered very comprehensive database of more than 1.2
million categorized natural images of 1000+ classes [15]. Obtaining datasets
as comprehensively annotated as ImageNet in the medical imaging domain
remains a challenge however, as data acquisition is difficult, and quality an-
notation is costly.

The implementation of machine-learning-based image analysis in the clinical
management of ILDs requires extensive data sets for training purposes. Given
the rarity of ILD access to high-quality medical images and clinical data is
costly and difficult.

Tables 1 and 2 summarize the results achieved by a selection of CNN-based
methods deployed in ILD prediction and diagnosis, presenting details of the
application, information on the used data volume, and the main performance
benchmark values claimed by the authors.

The solutions developed for detecting ILD patterns are broadly divided into
two categories: patch-based methods and slice-based methods, with the desire
to trend towards the latter, which allows a more generalized processing of
images, without the tedious manual work of the patch-based techniques.

3.3.1 Patch-based methods

A plethora of published works refer to patch-based classification of ILD pat-
terns, after manual extraction of patches by radiologists [29]. Informative fea-
tures are extracted from several ILD patches with the help of different feature
extraction techniques for the classification of ILD patterns. The selection of an
appropriate classifier is very important. Common methods used are k-nearest
neighbors [24], artificial neural network, and support vector machines [19].

The classification accuracy of these methods steadily increased over time.
An early method involving near-affine-invariant texture-based feature descrip-
tor based on wavelet transformation used to classify the five ILD patterns
(healthy, emphysema, GGO, fibrosis, and micronodules) showed a classifica-
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Figure 1: The structure of the CNN used for patch-based recognition of ILD,
adapted from [2].

tion accuracy of 76.9% [16]. Another method based on texture and gradient
features for patch-based classification of the ILD patterns using support vector
machine, reported F1-scores (F1 = 2× (precision× recall)/(precision+ recall))
for healthy, emphysema, GGO, fibrosis, and micronodules are 84%, 75.3%,
78.2%, 84.1%, and 85.7%, respectively [28].

The first deep CNN designed for lung pattern classification achieved an av-
erage F1-score of 85.47% across 7 classes of CT image patches (6 typical ILD
patterns and healthy tissue). The network, shown in Figure 1, was built of 5
convolutional layers, each of them used kernels of 2 × 2 and Leaky ReLU as
activation function. The method used three dense layers with 7 outputs, in line
with the ILD image classes targeted: ground glass opacity, micronodules, con-
solidation, reticulation, honeycombing and a combination of GGO/reticulation
and healthy tissue. Training was done on a dataset of 14,696 image patches
extracted from 120 HRCT images obtained from healthcare institutions [2].

More recently, another such method reported F1-score of 97.91%. This was
achieved with a deep CNN architecture built from six different convolutional
layers followed by batch normalization layers and ending with a fully connected
layer. The network used input patches of size 32 × 32 extracted from ILD
HRCT images. Each layer worked with kernel size of 2 × 2, with number of
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kernels gradually increasing layer to layer from 32 to 192. ReLU was employed
as activation function. The learning of unlabeled data was done through an
unsupervised method. The results showed that the proposed CNN architecture
outperforms most of the state-of-the-art ones [19].

Another promising method has been recently reported to identify radio-
graphic patterns that precede the development of ILD with an average sensi-
tivity of 91.41% and average specificity of 98.18% across 8 classes of HRCT
pattern (healthy tissue, five interstitial features subtypes and two emphyse-
matous classes), on 37,424 radiographic tissues extracted from 208 CT images.
Deep learning approach was used on a highly complex ensemble of CNN archi-
tecture that comprises three different architectures such as 2D, 2.5D, and 3D
for the classification of ILD abnormalities. Each individual network was trained
from scratch from the database, the outputs of the networks are summed up in
a weighted manner and combined to form the overall output of the ensemble.
The resulting ensemble achieved a higher performance compared to each of the
individual models, and the reported CNN methods of the domain, showing the
potential of combined use of a suite of classifiers [9]. The network architectures
involved in this study are depicted in Figure 2.

The results achieved with patch-based classification methods are remark-
able, however their use is limited by computational challenges, the manual
annotation involved and their limitation to be used for screening of HRCT
patterns at slice level.

3.3.2 Slice-based methods

Early attempts to classify HRCT slices depending on the presence of pathol-
ogy used pretrained AlexNet, but reported poor classification results. More
complex solutions testing multiple systems (Cifarnet, AlexNet, GoogLeNet)
showed improved slice level classification accuracy of ILD patterns on HRCT
slices, the highest F1-Score achieved being with GoogLeNet, of 92% [27]. De-
tails of the deployed network structures are given in Figure 3.

Deep CNN network with dilated filters were reported to be successful to seg-
mentation of ILD patterns. The network proposed used input images of any
arbitrary size of lung HRCT and the generated outputs were label maps. The
network, as shown in Figure 4, consisted of eight convolutional layers having
different dilation rates that increase exponentially. This helped to increase the
receptive field while linearly growing the number of parameters. The perfor-
mance was evaluated on 172 HRCT slices collected from two hospitals such
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as Geneva University Hospital and Bern University Hospital. This network
achieved an accuracy of 81.8% [3].

Agarwala et al. [1] proposed a solution for localization of the typical ILD
patterns in a HRCT slice using a more efficient region-based convolutional
network (R-CNN) driven object detection network. GoogLeNet architecture
has been modified for lower complexity by using only 5 inception blocks instead
of 9 and used to extract the image features for faster object detection. The
features provided by the fifth inception block were used as proposal for finding
the targeted region. To overcome the limited amount of annotated training
data, data augmentation techniques (flip, rotation, change of contrast, and
addition of Gaussian noise) have been used. Six ILD patterns have been used
(Consolidation, Emphysema, Fibrosis, GGO, Micronodule and healthy tissue).
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The above-oultined method performed very well across all patterns, little less
for fibrosis, achieving F1-scores between 0.55 and 0.86. It is fast and accurate,
avoids the hassles of lung field segmentation and could be used in the screening
of ILD using HRCT image slices.

4 Public datasets of ILD-related images

Beyond the private datasets of Healthcare institutions, there are multiple data
sources and registries for ILD patients that provide access to radiography
images (mostly HRCT) and clinical data points for research purposes. The
most widely used open data sources are discussed below.

4.1 Lung Tissue Research Consortium database

The Lung Tissue Research Consortium database (LTRC-DB1) was a resource
program of the National Heart, Lung, and Blood Institute that provides CT
scans, as well as biospecimens to researchers of the domain. The LTRC was
established in 2005 by the National Institutes of Health based on a coalition
of 4 major clinical centers from the USA: Mayo Clinic Rochester, University
of Michigan–Ann Arbor, University of Pittsburgh, and Temple University.
During its active years between 2005 to 2019, the LTRC’s main task was
to collect, store, and make available imaging samples and clinical data from
patients with various types of lung diseases. The LTRC sample and data set
was sourced from more than 4,200 patients, with over 100 of cases with one of
the several forms of ILDs.

4.2 Multimedia database of Interstitial Lung Diseases

The multimedia database for ILDs (MD-ILD2) was developed as part of the
Talisman project at the University Hospital of Geneva and is made publicly
available. This highly valuable database is specific to ILDs, and contains stan-
dard HRCT image series of 10-mm slice spacing. Annotations of pathological
lung segments together with clinical parameters from patients with patholog-
ically proven diagnoses of ILDs have been obtained from expert radiologists
and treating clinicians. There are 128 ILD cases in the database with one
of the 13 histological diagnoses of ILDs, 108 image series are available with

1https://ltrcpublic.com
2http://medgift.hevs.ch/wordpress/databases/ild-database/
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1,946 delineated polygons of annotated lung parenchyma patterns, along a
comprehensive dataset of 99 clinical parameters related to ILDs.

4.3 Inselspital Interstitial Lung Diseases database

The Inselspital ILD database (INSEL-DB) is a smaller but very well structured
library, which has two main parts, based on the accompanying annotations.
The first part consists of 60 HRCT image series of 9-mm slice spacing lung
scans with annotated tissue from 2 radiologists (INSEL-DB-Seg), and the sec-
ond consists of 105 HRCT lung scans provided by the ILD board of Bern
University Hospital. The HRCT scans have been collected retrospectively, be-
tween October 2015 and June 2017. Demographic, clinical and laboratory data
for each patient (e.g. sex, age, smoking history, duration of illness, lung func-
tion tests, results of blood tests) was also collected and made available to
researchers.

4.4 AIFPR: Australian Idiopathic Pulmonary Fibrosis reg-
istry

A large regional library of patients data has been developed in Australia by
University of Sydney3. AIPFR has been developed in Australia by University
of Sydney3 with IPF cases recorded between February 2011 and December
2020. A total of 21 sites participated across Australia and New Zealand col-
lecting impressively large datasets from over 2,700 patients enrolled in the
program. Longitudinal follow-up data was also collected every 6 months when
possible. The dataset collected includes clinical parameters (PFT), patient re-
ported outcome (PRO) data, HRCT images and blood samples data. Data
collection finished on 31 December 2021, the data continues to be available for
research.

4.5 Open Source Imaging Consortium (OSIC) data repository

OSIC, an international group of leading experts, established OSIC Data Repos-
itory4 on 22nd of May, 2019. This global, not-for-profit organization is a co-
operative and open-source effort between academia, healthcare and industry
to enable rapid advances in the detection and diagnosis of these conditions
through digital imaging and machine learning.

3https://www.sydney.edu.au/medicine-health/our-research/research-centres/aildr.html
4https://www.osicild.org/
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OSIC was created to drive collaboration between distant partners and to
unite their capabilities. It was created to use artificial intelligence and other
technological advances to build, and learn from, the largest and most diverse
image and clinical database for fibrotic lung diseases. To-date OSCI has over
15,000 anonymized scans with accompanying clinical data, with over 106,000
anonymized data points from 1,843 patients with various forms of ILD. The
enrollment of participants is ongoing.

5 Discussion

Over the recent years a myriad of computational techniques emerged in the
support of radiographic image processing for ILDs. The example solutions dis-
cussed in the earlier sections outline encouraging trends, but the breakthrough
has not yet been achieved. Many of the developed tools are highly performing,
the competition for finding the optimal method is advanced and still ongoing.
An ultimate breakthrough might not be possible however without addressing
the key needs in image standardization, harmonization of definitions and clas-
sifications. This is not uncommon in the field of digital image-processing. For
example, the automatic segmentation of brain tumors based on MRI data has
been a widely researched topic for at least three decades. The development of
segmentation methodology in the beginnings was similar to the current case of
ILD: research groups were elaborating methods and techniques based on own
data collections, usually captured by a low number of medical devices. Conse-
quently their methods may have learned specific features of tumors together
with parameters of the imaging equipment. Further on, the accuracy bench-
mark values were not objectively comparable with each other, because not
even the testing data differed from team to team, but also the goals of the seg-
mentation. Some were using single channel MRI volumes or only slices (cross
sections), others lately turned to multi-spectral volumetric MRI data [17]. It
is also necessary to mention, that this field grew together with the spectacu-
lar advances in the available computation speed and dynamic storage space,
and the latest revolution of artificial intelligence brought by CNNs and deep
learning. But the greatest factor in the development of brain tumor segmenta-
tion techniques represents the Brain Tumor Segmentation (BraTS) challenge
[22, 5] organized yearly since 2012 by the Medical Image Computation and
Computer-Assisted Interventions (MICCAI5) conference, which provided the
common data, common goals and a common evaluation framework. BraTS

5https://www.miccai.org

https://www.miccai.org


Radiological image processing in interstitial lung diseases 165

thus provoked the explosion in the field that is directly responsible for thou-
sands of methods and works elaborated in this field. The amount of training
and testing data, and also the variability of data sources widened year by
year, and new questions or secondary goals were defined (e.g. give an estimate
of the time the patient lived after the MRI data were recorded). The initial
training dataset contained only 30 records, and they were not even format-
ted to the same volume size. The experience accumulated year by year made
the BraTS challenge an easily accessible research for all, and this led to the
exponential growth of developed methods. The whole arsenal of artificial in-
telligence got involved in various solutions not only in the direct classification
of pixels, superpixels or patches, but also in the preprocessing of the data and
postprocessing of the classification outcome to optimize the accuracy of the
final result [18].

The history of BraTS could be considered a guideline in the field of auto-
matic processing of ILD-related image and medical data. An open challenge
could bring considerable advancement in the development of segmentation
methods. The most appropriate goal to set could be the automatic segmenta-
tion (localization and quantification) of fibrotic tissues from series of chest CT
scans that come from the same patient during observation time, and eventually
to give some prognosis of the illness using further available medical data. As
it was already stated, the organization of this challenge would require estab-
lishing a collection of ILD patient records, image data collected from multiple
institutions and various CT scanners, each record accompanied by the same set
of medical parameters, and a ground truth established by competent human
experts. Building up these foundations could help the scientific community in
understanding the background of ILDs and could cause spectacular advances
in the methodology of ILD treatment.

6 Conclusion

Research on imaging biomarkers in ILD is advancing rapidly. Machine learning
stands at the core of this process, supported by on deep-learning-based image
analysis. Several clinical challenges could be addressed by this technology like
the prediction, early detection and precise categorisation of ILDs, along the
improved monitoring of the disease’s natural course and response to therapy.
The results seen with Quantitative CT, Complex Networks, and Convolutional
Neural Networks hold the promise of a brighter future.
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The accuracy of recognizing ILD features in HRCT images already exceeds
90% in some of the methods, however, the most precise techniques are still ex-
perimental and need advanced computational resources and substantial man-
ual work for training and annotations. In an ideal world the image recognition
techniques should be integrated onto the everyday Radiology and Pulmonology
practice to operate on entire CT slices, without any specific pre-work from the
radiologists. There are still unmet needs both to increase sensitivity and speci-
ficity of the methods, as well as to achieve solutions that run seamlessly on
regular healthcare IT infrastructure. The integration of rapidly evolving digital
biomarkers with the physiological, proteomic, and genomic data for patients
will offer the greatest patient benefit.
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Óbuda University.

References

[1] S. Agarwala, A. Kumar, A.K. Dhara, S.B. Thakur, A. Sadhu, D. Nandi, Special
Convolutional Neural Network for Identification and and Positioning of Intersti-
tial Lung Disease Patterns in Computed Tomography Images, Pattern Recogni-
tion and Image Analysis 31, 4 (2021) 730-738. ⇒155, 161

[2] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, S. Mougiakakou
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convo-
lutional Neural Network, IEEE Transactions on Medical Imaging 35, 5 (2016)
1207-1216. ⇒155, 157

[3] M. Anthimopoulos, S. Christodoulidis, L. Ebner, T. Geiser, A. Christe, S.
Mougiakakou, Semantic Segmentation of Pathological Lung Tissue with Dilated
Fully Convolutional Networks, IEEE Journal of Biomedical and Health Infor-
matics 23, 2 (2018) 714-722. ⇒155, 161

[4] S.Y. Ash, R. Harmouche, D.L. Lopez Vallejo, J.A. Villalba, K. Ostridge, R.
Gunville, C.E. Come, J.O. Onieva, J.C. Ross, G.M. Hunninghake, S.Y. El-
Chemaly, T.J. Doyle, P. Nardelli, G.V. Sanchez-Ferrero, H.J. Goldberg, I.O.
Rosas, R. San Jose Estepar, G.R. Washko, Densitometric and local histogram
based analysis of computed tomography images in patients with idiopathic pul-
monary fibrosis, Respiratory Research 18 (2017) 45. ⇒152

[5] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, M. Prastawa,
et al., Identifying the best machine learning algorithms for brain tumor segmen-
tation, progression assessment, and overall survival prediction in the BRATS
challenge, arXiv (2019) 1181.02629v2. ⇒164

https://link.springer.com/article/10.1134/S1054661821040027
https://link.springer.com/article/10.1134/S1054661821040027
https://link.springer.com/article/10.1134/S1054661821040027
https://www.springer.com/journal/11493
https://www.springer.com/journal/11493
https://ieeexplore.ieee.org/document/7422082
https://ieeexplore.ieee.org/document/7422082
https://www.embs.org/tmi/
https://ieeexplore.ieee.org/document/8325482
https://ieeexplore.ieee.org/document/8325482
https://www.embs.org/jbhi/
https://www.embs.org/jbhi/
https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-017-0527-8
https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-017-0527-8
https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-017-0527-8
https://respiratory-research.biomedcentral.com
https://arxiv.org/abs/1811.02629
https://arxiv.org/abs/1811.02629
https://arxiv.org/abs/1811.02629


Radiological image processing in interstitial lung diseases 167

[6] H. Barnes, S.M. Humphries, P.M. George, D. Assayag, I. Glaspole, J.A. Mack-
intosh, T.J. Corte, M. Glassberg, K.A. Johannson, L. Calandriello, F. Felder, A.
Wells, S. Walsh, Digital Technology and the Future of Interstitial Lung Diseases,
Lancet Digit Health 5 (2023) e41-50. ⇒149

[7] B.J. Bartholmai, S. Raghunath, R.A. Karwoski, T. Moua, S. Rajagopalan, F.
Maldonado, P.A. Decker, R.A. Robb, Quantitative CT Imaging of Interstitial
Lung Diseases, Journal of Thoracic Imaging 28, 5 (2013) 298-307. ⇒153

[8] K. Berger, R.J. Kaner, Diagnosis and Pharmacologic Management of Fibrotic
Interstitial Lung Disease, Life (Basel) 13, 3 (2023) 599. ⇒149
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Pescaru, E. Vas,tag, C.I. Oancea, Enhancing Imagistic Interstitial Lung Disease
Diagnosis by Using Complex Networks, Medicina (Kaunas) 58, 9 (2022) 1288.⇒153, 154

[32] A. Wallis, K. Spinks, The diagnosis and management of interstitial lung diseases,
BMJ 2015 (2015) 350:h2072. ⇒149

Received: June 29, 2023 • Revised: July 20, 2023

https://www.mdpi.com/1648-9144/58/9/1288
https://www.mdpi.com/1648-9144/58/9/1288
https://www.mdpi.com/journal/medicina
https://www.bmj.com/content/350/bmj.h2072.long
https://www.bmj.com


Acta Univ. Sapientiae Informatica 15, 1 (2023) 170–180

DOI: 10.2478/ausi-2023-0012

On connectivity of the semi-splitting block

graph of a graph

Nivedha BASKAR
CHRIST(Deemed to be University)

Bengaluru, India
email: nivedha.b@res.christuniversity.in

Tabitha Agnes MANGAM
CHRIST(Deemed to be University)

Bengaluru, India
email:

tabitha.rajashekar@christuniversity.in

Mukti ACHARYA
CHRIST(Deemed to be University)

Bengaluru, India
email: mukti1948@gmail.com

Abstract. A graph G is said to be a semi-splitting block graph if there
exists a graphH such that SB(H) ∼= G. This paper establishes a character-
isation of semi-splitting block graphs based on the partition of the vertex
set ofG. The vertex (edge) connectivity and p-connectedness (p-edge con-
nectedness) of SB(G) are examined. For all integers a, b with 1 < a < b,
the existence of the graph G for which κ(G) = a, κ(SB(G)) = b and
λ(G) = a, λ(SB(G)) = b are proved independently. The characterization
of graphs with κ(SB(G)) = κ(G) and a necessary condition for graphs
with κ(SB(G)) = λ(SB(G)) are achieved.

1 Introduction

Graph theory has a wide range of applications in communication networks.
An interconnection network can be represented as a simple connected graph
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G = (V, E), where V represents the set of memory modules and E represents
the communication links. The vertex cut of a graph G is the set of vertices
whose removal gives a disconnected or trivial graph. The minimum cardinality
of the vertex cut of the graph is called the vertex connectivity of the graph G,
denoted by κ(G). If G−v has more than one component then v is a cut vertex
of G. A maximal connected subgraph of the graph G which has no cut vertex
is called a block of G. The edge cut of a graph G is the set of edges whose
removal gives a disconnected graph. The minimum cardinality of the edge cut
of the graph is called the edge connectivity of the graph G, denoted by λ(G).
A graph G is p-connected (p-edge connected) if κ(G) ≥ p (λ(G) ≥ p).

Many results have been established regarding the connectivity of simple
graphs, derived graphs and digraphs over many decades. This paper focuses on
analyzing a derived graph’s vertex(edge) connectedness, defined in [4], which
is stated as follows.

Definition 1 The semi-splitting block graph SB(G) of a graph of order n is a
graph with V (SB (G)) = V (G) ∪ V1 (G) ∪ B (G), where
V (G) = {vi | 1 ≤ i ≤ n},
V1 (G) = {ui | 1 ≤ i ≤ n, vi ∈ V (G)},
B(G) = {bl | 1 ≤ l ≤ k, Bl is a block in G}.

E (SB (G)) =


vivj | 1 ≤ i, j ≤ n, vivj ∈ E (G)
uivj | 1 ≤ i, j ≤ n, vivj ∈ E (G)
vibl | 1 ≤ i ≤ n, 1 ≤ l ≤ k, vi ∈ Bl in G

where vi, vj ∈ V (G), ui ∈ V1 (G) and bl ∈ B (G).

Since every edge is a block in a tree, the graph P3 has 2 blocks say, B1 = {v1, v2}

and B2 = {v2, v3}. Figure 1, shows the semi-splitting block graph of P3.
The study on the planarity of SB(G) has been carried out extensively in [4].

The scope of this paper is limited to simple, finite and undirected graphs. For
terminology in graph theory, refer to [1, 2, 3].

2 Structural properties of SB (G)

In this section, the structural properties of semi-splitting block graph of a
graph are examined. If G is a disconnected graph with non trivial compo-
nents G1, G2, . . . , Gm, then SB(G) has SB(G1), SB(G2), . . . , SB(Gm) as its com-
ponents.
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v1 v2 v3 v1

v2
v3

u2

u3u1

b1 b2

Figure 1: P3 and SB(P3)

Theorem 2 Let SB (G) be the semi-splitting block graph of G of order n,
n ≥ 2, and k blocks. Then,

(i) For each ui ∈ V1 (G), degSB(G) (ui) = degG (vi) , vi ∈ V (G), 1 ≤ i ≤ n,

(ii) For each bl ∈ B (G), degSB(G) (bl) = |V (Bl)|, where 1 ≤ l ≤ k and
V(Bl) ⊂ V(G),

(iii) For each vi ∈ V (G), degSB(G) (vi) = 2 degG (vi) + s, where s is the
number of blocks containing vi in G and 1 ≤ i ≤ n.

Proof. Clearly, NSB(G)(vi) = NG(vi) ∪ {uj : vj ∈ NG(vi)} ∪ {bl : vi ∈ Bl in G}.
NSB(G)(ui) = {vj : vj ∈ NG(vi)} and NSB(G)(bl) = V(Bl), where V(Bl) ⊂ V(G).
Hence the theorem follows. �

Corollary 3 For a non-cut vertex vm of the graph G,
degSB(G) (vm) = 2 degG (vm) + 1.

Corollary 4 If G is a block of order n, n ≥ 2, then

(i) For each vi ∈ V (G), degSB(G) (vi) = 2 degG (vi) + 1, 1 ≤ i ≤ n,

(ii) For b1 ∈ B (G), degSB(G) (b1) = n.

Remark 5 SB (G) is always non-regular, for any graph G, for all vi ∈ V(G),
degSB(G) (vi) > degSB(G) (ui), 1 ≤ i ≤ n.

The characterization of semi-splitting block graph based on the partition of
the vertex set of the graph is given in the following theorem.
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Theorem 6 The following statements are equivalent.

1. A graph G of order n is a semi-splitting block graph.

2. The vertex set of a graph G can be partitioned into three subsets namely
V1, V2, V3 such that

(a) i. There is a bijective mapping f : V1 → V2 such that f(v1) = v2,
where v1 ∈ V1, v2 ∈ V2.

ii. N (v2) = N (v1) ∩ V1
(b) For each v3 ∈ V3, < N (v3) > is a block of < V1 >.

Proof. (1) =⇒ (2) . Let G be a semi-splitting block graph of order n. Then
for some H, G ∼= SB (H). By definition, adjacency between two vertices in
SB (H) is as follows:

I. adjacent vertices in H are adjacent in SB (H).

II. for each vertex vi of V (H), a new vertex ui being adjacent to NH (v) is
added.

III. for each block in H, a new vertex bl adjacent to all the vertices of the
respective block is added.

Let V1 = V (H), V2 = {ui}
|V(H)|
i=1 and V3 = {bl}

k
l=1. For each vi ∈ V1, let ui ∈ V2

be the corresponding new vertex added in SB (H). Then, f : V1 → V2 is a
bijective mapping such that f(vi) = ui and N (ui) = N (vi) ∩ V1. Since, each
bl ∈ V3 is adjacent only to vertices of the corresponding block, N (bl) = Bl,
where 1 ≤ l ≤ k and Bl is a unique block of < V1 >.
(2) =⇒ (1) . Suppose (2) is true. Let H =< V1 >. Then, G ∼= SB (H).
Therefore, G is a semi-splitting block graph.
Hence the theorem. �

Theorem 7 For any graph G of order n, n ≥ 2, with k blocks, δ (SB (G)) =
min{|V(Bl)| , δ (G)}, where Bl, 1 ≤ l ≤ k is a block of G.

Proof. It is evident from Theorem 2 that in SB(G), for any vi ∈ V(G),
deg(ui) = degG(vi) and deg(vi) > 2 degG(vi). The following cases are con-
sidered.

Case 1 Suppose G is a block. By Corollary 4, deg(b1) = n > δ(G) in SB(G).
Therefore, δ(SB(G)) = δ(G).
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Case 2 Suppose G is not a block. Then there exist at least two blocks in G.
This implies that |V(Bl)| ≥ 2, for 1 ≤ l ≤ k and k ≥ 2.
Thus, δ(SB(G)) = min{δ(G), |V(Bl)|}.

Therefore, it inferred that, δ(SB(G)) = min{δ(G), |V(Bl)|}.
Hence the theorem. �

Corollary 8 For any graph G, δ(SB(G)) = δ(G) if and only if G is a block or
G is not a block with |V(Bl)| ≥ δ(G) for all 1 ≤ l ≤ k .

Corollary 9 For integers a, b with a > b > 1, there exists a graph G with
δ(G) = a and δ(SB(G)) = b if and only if there exists at least one block Bl in
G whose |V(Bl)| < δ(G), where 1 ≤ l ≤ k.

3 Connectedness of SB(G)

In this section, the vertex (edge) connectedness of semi-splitting block graph
of a connected graph is examined. Let va ∈ V(G) such that deg(va) = δ(G).
Since, κ(G) ≤ λ(G) ≤ δ(G), N(va) = {vs|1 ≤ s ≤ δ(G)} is a vertex cut of G
and Y = {(va, vs)|vs ∈ N(va)} is an edge cut in G.

Theorem 10 If G is a block with deg(va) = δ(G), then the following state-
ments are true in SB(G).

1. N(ua) is a vertex cut.

2. Y ′ = {(ua, vs)|vs ∈ NG(va)} is an edge cut.

Proof. Consider G to be a block such that deg(va) = δ(G). By Theorem 2
and Corollary 8, deg(ua) = δ(SB(G)). As κ(SB(G)) ≤ λ(SB(G) ≤ δ(SB(G))
and N(ua) = NG(va), N(ua) is a vertex cut and Y ′ = {(ua, vs)|vs ∈ N(ua)} is
an edge cut in SB(G).
Hence the theorem. �

Let S = {vj|1 ≤ j ≤ t} be a minimum vertex cut of G. As G is an induced
subgraph of SB(G), S is the subset of a vertex cut of SB(G). The following
theorem gives the vertex connectivity of SB(G).

Theorem 11 For a connected graph G with order n, n ≥ 2,

κ(SB(G)) =

{
min{δ(G), 2κ(G) + 1} when G is a block

min{2, δ(G)} otherwise
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Proof. Let G be a connected graph of order n ≥ 2. The following cases are
considered:

Case 1 Suppose G is not a block.
Let vc be a cut vertex in G. In SB(G), the vertices of NG(vc) are adjacent to
vc and uc. Thus, uc is the cut vertex in SB(G) if and only if vc is a pendant
vertex in G. In all other cases, removing the vertices {vc, uc} disconnects the
graph SB(G). Thus, κ(SB(G)) = 1, if δ(G) = 1 and κ(SB(G)) = 2, otherwise.
Hence, κ(SB(G)) = min{2, δ(G)}.

Case 2 Suppose G is a block.
In SB(G), there exists exactly one block vertex b1 adjacent to all the vertices
of G. Thus, S ′ = S ∪ {uj, b1|1 ≤ j ≤ t} and by Theorem 10, N(ua) are vertex
cuts in SB(G). Here, |S ′| = 2κ(G) + 1 and |N(ua)| = δ(SB(G)) = δ(G).
Hence, κ(SB(G)) = min{δ(G), 2κ(G) + 1}.

Hence the theorem. �

Corollary 12 For a connected graph G, κ(SB(G)) = κ(G) if and only if
κ(G) = δ(G).

Proof. Suppose κ(G) = δ(G).
Suppose G is a block. As δ(G) < 2δ(G) + 1, by Theorem 11, κ(SB(G)) =
δ(G) = κ(G). If G is not a block, then κ(G) = 1. By Theorem 11, κ(SB(G)) =
δ(G) = κ(G). The converse can also be proved in the same manner.
Hence the theorem. �

The following theorem gives the necessary and sufficient condition for the
existence of a graph whose vertex connectivity is a and the vertex connectivity
of its SB(G) is b, for all a, b such that 1 < a < b.

Theorem 13 For integers a, b with 1 < a < b, there exists a graph G with
κ(G) = a and κ(SB(G)) = b if and only if b ≤ 2a+ 1.

Proof. Assume that b ≤ 2a + 1. Consider G1 and G2 as any two connected
block graphs each of minimum degree b. The following assumptions are made.

1. V(G1) = {v1r |1 ≤ r ≤ s, s > b} and
V(G2) = {v2w |1 ≤ w ≤ t, t > b}.

2. Let deg(vxy) = b, where vxy ∈ V(G1 ∪G2).
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The graph G is formed from G1 and G2 by adding (v1q , v2q) new edges such
that v1q , v2q 6= vxy and 1 ≤ q ≤ a. Here, G is a block with deg(vxy) = b.
The removal of vertices v1q , 1 ≤ q ≤ a, disconnects the graph G. Thus,
X = {v1q |1 ≤ q ≤ a} and NG(vxy) are the vertex cuts of G which implies,
κ(G) = min{|X|, |NG(vxy)|}. As |X| = a and |NG(vxy)| = b > a, we get κ(G) =
|X| = a. Hence, X ′ = X ∪ {u1q , b1|1 ≤ q ≤ a} and by Theorem 10, N(uxy) are
the vertex cuts in SB(G), where deg(uxy) = δ(SB(G)). Therefore, κ(SB(G)) =
min{|X ′|, |N(uxy)|}. Since, |X ′| = 2a+1 and |N(uxy)| = b ≤ 2a+1, we conclude
that κ(SB(G)) = b.
On the contrary, consider b > 2a + 1. Let G be a graph as defined above,
then κ(G) = a and κ(SB(G)) = min{|X ′|, |N(uxy)|}. Here, |X ′| = 2a + 1 and
|N(uxy)| = b > 2a+ 1, which implies that κ(SB(G)) = 2a+ 1.
Therefore, κ(SB(G)) 6= b.
Hence the theorem. �

Let λ(G) = t, i.e., T = {(ve, vf)|(ve, vf) ∈ E(G), e 6= f} be a minimum edge cut
of G. Since G is an induced subgraph of SB(G), T is the subset of an edge cut
of SB(G). The edge connectivity of SB(G) is discussed in the next theorem.

Theorem 14 For a connected graph of order n, n ≥ 2,

1. If G has a bridge, then λ(SB(G)) = min{2, δ(G)}.
2. If G is a block, then λ(SB(G)) = δ(G).

Proof. Let G be a connected graph with n ≥ 2. The following cases are
considered:

Case 1 Suppose G has a bridge.
Let em = {vg, vh} be a bridge. As every bridge is a block, let Bm be a block
with V(Bm) = {vg, vh}. Thus, U = {(bm, vg), (bm, vh)} is an edge cut in SB(G),
where bm ∈ V(SB(G))) and |U| = 2. By Theorem 7, em is a bridge in SB(G)
if and only if δ(G) = 1, which implies that λ(SB(G)) = 1, when δ(G) = 1.
Suppose δ(G) ≥ 2, then δ(SB(G)) ≥ 2. Hence, U is the minimum edge cut in
SB(G), for δ(G) ≥ 2. Therefore, it is concluded that λ(SB(G)) = min{2, δ(G)}.

Case 2 Suppose G is a block.
Then, λ(G) ≥ 2. In SB(G), b1 is the only block vertex such that |N(b1)| = n.
Thus, T ′ = T ∪ {(ue, vf), (ve, uf), (b1, vi)|1 ≤ i ≤ n} and by Theorem 10, Y ′ =
{(ua, vk)|vk ∈ NG(va)} are edge cuts in SB(G). Hence, λ(SB(G)) = {|T ′|, |Y ′|}.
Here, |T ′| = 3λ(G) + n and |Y ′| = δ(G) < n. Therefore, λ(SB(G)) = δ(G).

Hence the theorem. �
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Note that from Theorem 14 (2), λ(G) = a ≥ 2 and λ(SB(G)) = δ(G) ≥ a.
This leads to the following corollary.

Corollary 15 For integers a, b with 1 < a ≤ b, there exists a graph G with
λ(G) = a and λ(SB(G)) = b.

Theorem 16 Let G be a connected graph which is bridgeless and not a block.
If G has T = {(vc, vf)|1 ≤ f ≤ t, vc is a cut vertex} as a minimum edge cut,
then λ(SB(G)) = min{δ(SB(G)), 3λ(G) + 1}.

Proof. Consider G to be a connected graph which is bridgeless and not a block.
Let T be a minimum edge cut. Thus in SB(G), T

′ = T∪{(vc, uf), (uc, vf), (vc, bx)},
where vc, vf ∈ Bx and by Theorem 10, Y ′ = {(va, vs)|vs ∈ N(va), deg(va) =
δ(G)} are edge cuts. Here, |T ′| = 3λ(G) + 1.
Therefore, λ(SB(G)) = min{δ(SB(G)), 3λ(G) + 1}. �

For any block Bl, 1 ≤ l ≤ k, in G, |V(Bl)| ≥ 2 if G has a bridge and |V(Bl)| ≥ 3,
otherwise. The following theorem gives a necessary condition for SB(G) for
which its vertex and edge connectivity are equal.

Theorem 17 If ∆(G) ≤ 3, then κ(SB(G)) = λ(SB(G)).

Proof. Let G be a connected graph of order n ≥ 2 and ∆(G) ≤ 3. The
following cases are considered:

Case 1 Suppose δ(G) ≤ 2.
By Theorem 11, κ(SB(G))) = δ(G). When G is bridgeless and is not a block,
by Theorem 14, λ(SB(G)) = δ(G). Consider a graph G which is bridgeless and
has a cut vertex then, λ(G) ≥ 2. Since λ(G) ≤ δ(G), λ(G) = δ(G) = 2. As
|V(Bl)| ≥ 3, for all 1 ≤ l ≤ k, by Theorem 7, δ(SB(G)) = δ(G) in SB(G). Since
λ(SB(G)) ≤ δ(SB(G)), it implies that λ(SB(G)) ≤ 2. The graph G being an
induced subgraph of SB(G), λ(G) ≤ λ(SB(G)) and λ(SB(G)) = 2 = δ(G).
Therefore, κ(SB(G)) = λ(SB(G)).

Case 2 Since ∆(G) = 3, G is 3-regular. If G is a block, then by Theorems 11
and 14, κ(SB(G)) = λ(SB(G)) = δ(G). When G is 3-regular, G has a bridge if
and only if G has a cut vertex. So, if G is not a block, then G has a bridge.
Thus, by Theorems 11 and 14, κ(SB(G)) = λ(SB(G)) = 2.

Therefore, κ(SB(G)) = λ(SB(G)).
Hence the theorem. �
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A graph G is p-connected (p-edge connected) if and only if every pair of
vertices is joined by at least p vertex (edge) disjoint paths. Also, every p-
connected graph is p-edge connected. Further, G is p-edge connected if and
only if each of its blocks is p-edge connected. It follows that G is p-connected if
and only if each of its blocks is p-edge connected. So, λ(Bl) ≥ k, which implies
δ(Bl) ≥ k, where 1 ≤ l ≤ k. Now, the p-connectedness (p-edge connected) of
SB(G) is discussed.

Theorem 18 If G is p-connected (p-edge connected) with p ≥ 1, then SB(G)
is also p-connected (p-edge connected).

Proof. Let G be a p-connected (p-edge connected) graph with p ≥ 1. To prove
SB(G) is p-connected (p-edge connected) it is enough to show that between any
two vertices of SB(G), there exist p-vertex (edge) disjoint paths. The following
cases are considered:

Case 1 Let va, vb ∈ V(G)
Then, va and vb have at least p vertex (edge) disjoint paths between them.
Since G is an induced subgraph of SB(G), in SB(G) there exist at least p
disjoint paths between the vertices va and vb.

Case 2 Let va ∈ V(G) and ub ∈ V1(G)
Since p ≤ κ(G) ≤ δ(G), there exist at least p vertices adjacent to va. Assume
that va1 , va2 , . . . , vap are the vertices adjacent to va in G. Then in SB(G), by
Case 1 that there exist p vertex (edge) disjoint paths between va and vai
(1 ≤ i ≤ p). In addition, the vertices uai ∈ V1(G), 1 ≤ i ≤ p, are adjacent to
the vertex va. As ub ∈ V1(G), by Theorem 6, N(ub) = N(vb)∩V(G) for some
vb ∈ V(G). Since |N(vb)| ≥ p, let vb1 , . . . , vbp ∈ V(G) such that vbi ∈ N(vb)
for 1 ≤ i ≤ p, which implies in SB(G), vbi ∈ N(ub). As va, vbi ∈ V(G), by
Case 1 in SB(G) there exist p vertex (edge) disjoint paths between them. In
conclusion, the vertices va, ub are joined by p vertex (edge) disjoint paths
between them in SB(G).

Case 3 Let va ∈ V(G), bm ∈ B(G).
As defined in Case 2, let vai ∈ N(va), 1 ≤ i ≤ p. Since δ(Bm) ≥ k , we have
|V(Bm)| > k. Let vx1 , . . . , vxp ∈ V(G) such that vxi ∈ N(bm), 1 ≤ i ≤ p.
It follows from Case 1 that in SB(G), the vertices va and vxi have p vertex
(edge) disjoint paths between them as va, vxi ∈ V(G). Therefore, in SB(G), the
vertices va, bm are joined by p vertex (edge) disjoint paths between them.
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Case 4 Let ua, ub ∈ V1(G)
As defined in Case 2, let vai ∈ N(ua) and vbi ∈ N(ub), 1 ≤ i ≤ p. Since
vai , vbi ∈ V(G) and by Case 1, the theorem follows.

Case 5 Let ua ∈ V1(G), bm ∈ B(G)
It follows from Case 2 and 3, let vai ∈ N(ua) and vxi ∈ N(bm), 1 ≤ i ≤ p,
respectively. As vai , vxi ∈ V(G) and by Case 1, the theorem follows.

Case 6 Let bm, bs ∈ B(G)
It follows from Case 3, let vxi ∈ N(bm) and vyi ∈ N(bs), 1 ≤ i ≤ p. As
vxi , vyi ∈ V(G) and by Case 1, the theorem follows.

Hence the theorem. �

If G is p-connected, then G+K1 is (p+ 1)-connected. This result leads to the
following theorem.

Theorem 19 If G is p-connected, then the following statements are true:

1. SB(G+ K1) is (p+ 1)-connected.

2. SB(G) + K1 is (p+ 1)-connected.

Proof. Consider the graph G to be a p-connected. Then, G + K1 is (p + 1)-
connected. Also, by Theorem 18, SB(G) is p-connected.
Hence the theorem follows. �

Conclusion

The structural properties of SB(G) have been investigated which helped to
determine the results on the vertex and edge connectivity of SB(G). The semi-
splitting block graph has been characterized based on its vertex set. A neces-
sary condition for p-connectedness (p-edge connectedness) of SB(G) has been
established. The scope of future work is to characterize graphs whose SB(G)
is (p+ 1)-connected ((p+ 1)-edge connected).
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