
Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 1, 1–25; https://doi.org/10.14232/ejqtde.2022.1.1 www.math.u-szeged.hu/ejqtde/

New regularity coefficients

Luís BarreiraB and Claudia Valls

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,
1049-001 Lisboa, Portugal

Received 15 August 2021, appeared 11 January 2022

Communicated by Mihály Pituk

Abstract. We give two new characterizations of the notion of Lyapunov regularity in
terms of the lower and upper exponential growth rates of the singular values. These
characterizations motivate the introduction of new regularity coefficients. In particular,
we establish relations between these regularity coefficients and the Lyapunov regularity
coefficient. Moreover, we construct explicitly bounded sequences of matrices attaining
specific values of the new regularity coefficients.
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1 Introduction

The purpose of this work is twofold: to introduce new regularity coefficients and to give
new characterizations of Lyapunov regularity. The notion of regularity was introduced by
Lyapunov and plays an important role in the stability theory of differential equations and
dynamical systems. It is particularly ubiquitous in the context of ergodic theory. The new
characterizations of Lyapunov regularity are expressed in terms of the lower and upper expo-
nential growth rates of the singular values.

1.1 The notion of regularity

We start by describing the meaning and some of the implications of Lyapunov regularity. Let
(Am)m∈N be a sequence of invertible q × q matrices with real entries. We assume that both
sequences Am and A−1

m are bounded. For each m ∈ N let

Am =

{

Am−1 Am−2 · · · A1 if m > 1,

Id if m = 1.

Given a basis v1, . . . , vq for R
q, any regularity coefficient measures how much

λ(vi) := lim sup
m→∞

1
m

log ‖Amvi‖, (1.1)
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for i = 1, . . . , q, differs from being a limit, and how much

αij := lim sup
m→∞

1
m

log∠(Amvi,Amvj), (1.2)

for i 6= j, differs from zero. In particular, the Lyapunov regularity coefficient determined by the
sequence A = (Am)m∈N is defined by

σ(A) = min
q

∑
i=1

λ(vi)− lim inf
m→∞

1
m

log|detAm|, (1.3)

where the minimum is taken over all bases v1, . . . , vq for R
q. One can show that σ(A) ≥ 0 and

that σ(A) = 0 if and only if each lim sup in (1.1) is a limit and each lim sup in (1.2) vanishes
for any basis v1, . . . , vq (see [2,3]). The sequence A is said to be (Lyapunov) regular if σ(A) = 0.

More generally, a regularity coefficient is a nonnegative function on the sequences of matri-
ces A = (Am)m∈N vanishing only on the Lyapunov regular systems. Besides the Lyapunov
regularity coefficient (see [11]), other regularity coefficients were introduced already at an
early stage of the theory by Perron (see [13, 14]) and Grobman (see [6]), although for a dy-
namics with continuous time obtained from a linear ordinary differential equation. We refer
the reader to the books [2,3,6,10] for detailed accounts of various parts of the theory, both for
discrete and continuous time.

1.2 Origins and relevance of regularity

The notion of regularity first appeared in the works of Lyapunov (see [11]) and Perron [13,14],
in connection with the study of the stability of solutions of perturbations of linear ordinary
differential equations. As already described above, one can introduce a similar notion of
regularity and corresponding regularity coefficients for a dynamics with discrete time

xm+1 = Amxm for m ∈ N

on R
q, obtained from a sequence (Am)m∈N of q × q matrices. Some works that consider

the case of discrete time include [15] (see also [4]) with a study of the relation of regularity
with the exponential growth rates of the singular values, [5, 9] with descriptions of relations
between regularity coefficients, and [8] with the introduction of a new regularity coefficient.
For further references we refer the reader to [2] (see also [7]).

It turns out that Lyapunov regularity has various nontrivial applications to the stability
theory of differential equations and dynamical systems. The reason for this is that any reg-
ularity coefficient measures how much the exponential stability or conditional stability of a
given trajectory of a linear dynamics differs from being uniform on the initial time. For ex-
ample, provided that a regularity coefficient is sufficiently small, one can construct stable and
unstable invariant manifolds for any sufficiently small nonlinear perturbation when all Lya-
punov exponents are nonzero (see [3] for details). This is particularly effective in the context
of smooth ergodic theory, since a certain integrability assumption guarantees that the lin-
earizations along almost all trajectories have zero regularity coefficient, as a consequence of
Oseledets’ Multiplicative ergodic theorem [12].

1.3 Characterizations of regularity

Now we describe briefly our results. In particular, we give new characterizations of Lyapunov
regularity that are expressed in terms of the lower and upper exponential growth rates of the
singular values. This also serves as a preparation for introducing new regularity coefficients.
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Again let A = (Am)m∈N be a sequence of invertible q × q matrices with real entries. We
assume that Am and A−1

m are bounded in m. Now let

ρ1(m) ≤ · · · ≤ ρq(m)

be the eigenvalues of the positive-semidefinite matrix (A∗
mAm)1/2. The lower and upper expo-

nential growth rates of the singular values are defined by

ai = lim inf
m→∞

1
m

log ρi(m) and bi = lim sup
m→∞

1
m

log ρi(m).

In particular, we obtain new characterizations of Lyapunov regularity in terms of these num-
bers (see Theorem 2.1).

Theorem 1.1. The following properties are equivalent:

1. (Am)m∈N is regular;

2. 1
m log|detAm| → ∑

q
i=1 bi when m → ∞;

3. 1
m log|detAm| → ∑

q
i=1 ai when m → ∞.

Some arguments in the proof are inspired by work of Barabanov in [1] who considered a
corresponding problem for the case of continuous time.

Now we consider the values λ′
1 ≤ · · · ≤ λ′

q of the Lyapunov exponent determined by
the sequence A, counted with their multiplicities. If v1, . . . , vq is a basis for R

q at which the
minimum in (1.3) is attained, then λ′

i = λ(vi) for i = 1, . . . , q up to a reordering of the values.
One can show that the sequence A is regular if and only if

1
m

log|detAm| →
q

∑
i=1

λ′
i when m → ∞

(see [3]). Incidentally, we have ai ≤ bi ≤ λ′
i for i = 1, . . . , q and each of these inequalities can

be strict (see [2, 4]).
As an outcome of our approach, we also obtain a new proof of a characterization of reg-

ularity involving only the lower and upper exponential growth rates of the singular values:
namely, A is regular if and only if

ai = bi for i = 1, . . . , q. (1.4)

It follows from work of Ruelle in [15] that condition (1.4) yields the regularity of A. Bara-
banov [1] gave a new proof of this property and also obtained the other direction of the
equivalence for a dynamics with continuous time. We consider the case of discrete time and
we give a new proof of this equivalence (see [4] for a proof based on the existence of a structure
of Oseledets type that is present even for a nonregular dynamics). Again, some arguments
are inspired in [1].

1.4 New regularity coefficients

Finally, we introduce three new regularity coefficients motivated by Theorem 1.1 (see also
Theorem 2.1). Then we establish some relations between these coefficients and the Lyapunov
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regularity coefficient. Given a sequence A = (Am)m∈N of invertible q × q matrices with real
entries, we define

α(A) = max
{

bi − ai : i = 1, . . . , q
}

,

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log|detAm|,

σ(A) = lim sup
m→∞

1
m

log|detAm| −
q

∑
i=1

ai.

The advantage of having various regularity coefficients is that in each specific situation it is
often easier to compute or at least to estimate one of them. We show in Theorem 3.1 that

0 ≤ α(A) ≤ σ(A) ≤ qα(A) and 0 ≤ α(A) ≤ σ(A) ≤ qα(A).

Finally, we construct bounded sequences of matrices attaining specific values of the regularity
coefficients (see Theorem 3.3). The construction builds on former work in [5] although it
required several nontrivial modifications.

Theorem 1.2. Given numbers p, g ≥ 0 such that p ≤ g ≤ qp, there exists a bounded sequence A of
diagonal q × q matrices with α(A) = p and σ(A) = g.

In Section 4 we introduce two additional regularity coefficients. We also establish inequal-
ities between these coefficients and the former ones.

1.5 Relevance of the results

Finally, we discuss the relevance of the results obtained in the paper. As noted above, the
notion of regularity plays an important role in the stability theory of a dynamics with contin-
uous or discrete time. In fact, a vanishing or sufficiently small regularity coefficient implies
that the asymptotic stability of a trajectory a linear dynamics persists under sufficiently small
nonlinear perturbations. This leads in particular to the construction of stable and unstable
invariant manifolds, as well as to many other nontrivial properties. On the other hand, in
each specific situation it may be easier to obtain bounds for a certain regularity coefficient.
Thus, it is convenient to have additional coefficients. In particular, it may be easier in some
specific situations to use instead the new regularity coefficients introduced in our paper.

In another direction, when a dynamics is regular (when some regularity coefficient van-
ishes, in which case all regularity coefficients vanish), there is a richer structure, such as for
example the one illustrated by (1.1) and (1.2). Our work provides further additional properties
caused by regularity that in fact also provide additional structure.

2 Characterizations of regularity

In this section we give new characterizations of Lyapunov regularity that are expressed in
terms of the lower and upper exponential growth rates of the singular values. This serves as
a preparation for introducing new regularity coefficients in Section 3, although the character-
izations are also of interest by themselves.

Let (Am)m∈N be a sequence of invertible q × q matrices with real entries. We shall always
assume that there exists c ∈ R such that

‖Am‖ ≤ c and ‖A−1
m ‖ ≤ c (2.1)
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for all m ∈ N. For each m ∈ N, let

Am =

{

Am−1 Am−2 · · · A1 if m > 1,

Id if m = 1.

The Lyapunov exponent λ : R
q → R ∪ {−∞} associated with the sequence (Am)m∈N is de-

fined by

λ(v) = lim sup
m→∞

1
m

log‖Amv‖,

with the convention that log 0 = −∞. By the abstract theory of Lyapunov exponents, λ takes
at most a number s ≤ q of distinct values on R

q \ {0}, say

λ1 < λ2 < · · · < λs.

Moreover, for each i = 1, . . . , s the set

Ei =
{

v ∈ R
q : λ(v) ≤ λi

}

is a linear subspace of R
q and

{0} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Es = R
q.

We denote by λ′
1 ≤ λ′

2 ≤ · · · ≤ λ′
q the values of the Lyapunov exponent λ counted with

their multiplicities. These are obtained repeating each value λi a number of times equal to
dim Ei − dim Ei−1, with the convention that E0 = {0}. The sequence (Am)m∈N is said to be
(Lyapunov) regular if

lim
m→∞

1
m

log|detAm| =
q

∑
i=1

λ′
i (2.2)

(this includes the requirement that the limit on the left-hand side exists).
We also consider the singular values. The matrix

Tm = (A∗
mAm)

1/2 (2.3)

is symmetric and positive-semidefinite. Hence, its eigenvalues

ρ1(m) ≤ · · · ≤ ρq(m)

(counted with their multiplicities) are real and nonnegative. They are called the singular values
of the matrix Am. For i = 1, . . . , q, we define the lower and upper exponential growth rates of the
singular values, respectively, by

ai = lim inf
m→∞

1
m

log ρi(m) and bi = lim sup
m→∞

1
m

log ρi(m).

We note that
ai ≤ bi ≤ λ′

i for i = 1, . . . , q (2.4)

(see for example Proposition 6.1.2 in [2]).
The following result gives two new characterizations of Lyapunov regularity (properties

(ii) and (iii)). As an outcome of our approach, we also obtain a new proof of a character-
ization involving only the lower and upper exponential growth rates of the singular values
(property (iv)).
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Theorem 2.1. Let (Am)m∈N be a sequence of invertible q× q matrices with real entries satisfying (2.1).
Then the following properties are equivalent:

(i) (Am)m∈N is regular;

(ii) 1
m log|detAm| → ∑

q
i=1 bi when m → ∞;

(iii) 1
m log|detAm| → ∑

q
i=1 ai when m → ∞;

(iv) ai = bi for i = 1, . . . , q.

Proof. (i) ⇒ (ii). Since |detAm| = det Tm (see (2.3)), we obtain

1
m

log|detAm| =
1
m

log
q

∏
i=1

ρi(m) =
q

∑
i=1

1
m

log ρi(m) (2.5)

and so

lim
m→∞

1
m

log|detAm| = lim
m→∞

q

∑
i=1

1
m

log ρi(m) ≤
q

∑
i=1

bi.

Therefore, it follows from (2.2) that
q

∑
i=1

λ′
i ≤

q

∑
i=1

bi.

By (2.4) we have ∑
q
i=1 λ′

i = ∑
q
i=1 bi and property (ii) follows readily from (2.2).

(ii) ⇒ (iv). We proceed by contradiction. Assume that ak < bk for some k ∈ {1, . . . , q} and
take a sequence (ml)l∈N such that

ak = lim inf
m→∞

1
m

log ρk(m) = lim
l→∞

1
ml

log ρk(ml).

By (ii) and (2.5), since ak < bk we obtain

q

∑
i=1

bi = lim
m→∞

1
m

log|detAm| = lim
m→∞

q

∑
i=1

1
m

log ρi(m)

= lim
l→∞

q

∑
i=1

1
ml

log ρi(ml) = ak + lim
l→∞

∑
i 6=k

1
ml

log ρi(ml)

≤ ak + ∑
i 6=k

bi <

q

∑
i=1

bi.

This contradiction implies that (iv) holds.
Now we obtain the former implications with (ii) replaced by (iii).

(i) ⇒ (iii). Let Bm = (A∗
m)

−1 and define

Bm =

{

Bm−1Bm−2 · · · B1 if m > 1,

Id if m = 1.
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Note that Bm = (A∗
m)

−1. The Lyapunov exponent µ : R
q → R ∪ {−∞} associated with the

sequence (Bm)m∈N is defined by

µ(w) = lim sup
m→∞

1
m

log‖Bmw‖.

By the abstract theory of Lyapunov exponents, µ takes at most a number q of distinct values on
R

q \ {0} and we denote by µ′
1 ≥ µ′

2 ≥ · · · ≥ µ′
q these values counted with their multiplicities.

One can show that (Am)m∈N is regular if and only if (Bm)m∈N is regular, in which case we
have λ′

i = −µ′
i for i = 1, . . . , q (see for example Theorem 2.4.5 in [2]). Therefore,

lim
m→∞

1
m

log|detBm| =
q

∑
i=1

µ′
i.

Proceeding as in the proof of the implication (i) ⇒ (ii), one can show that

lim
m→∞

1
m

log|detBm| =
q

∑
i=1

βi, (2.6)

where

βi = lim sup
m→∞

1
m

log σi(m),

denoting by

σ1(m) ≤ · · · ≤ σq(m)

the eigenvalues of the matrix Sm = (B∗
mBm)1/2 (which is symmetric and positive-semidefinite).

Note that

σi(m) =
1

ρq−i+1(m)
for i = 1, . . . , q

and so

βi = −aq−i+1 and αi = −bq−i+1 for i = 1, . . . , q, (2.7)

where

αi = lim inf
m→∞

1
m

log σi(m).

In view of (2.6) and (2.7) we get

lim
m→∞

1
m

log|detAm| = − lim
m→∞

1
m

log|detBm| = −
q

∑
i=1

βi =
q

∑
i=1

ai,

which establishes property (iii).

(iii) ⇒ (iv). The proof is identical to the proof of the implication (ii) ⇒ (iv) using the
identities in (2.7).
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(iv) ⇒ (i). We assume that the upper exponential growth rates of the singular values take r
distinct values

c1 < · · · < cr. (2.8)

Let n1, . . . , nr be their multiplicities. Moreover, let v1(m), . . . , vq(m) be an orthonormal basis
for R

q formed by eigenvectors of the matrix Tm associated, respectively, with the eigenvalues
ρ1(m), . . . , ρq(m). For i = 1, . . . , q and m ∈ N, let

Ei(m) = span
{

vn1+···+ni−1+1(m), . . . , vn1+···+ni(m)
}

and
Fi(m) = span

{

v1(m), . . . , vn1+···+ni(m)
}

.

Since the basis v1(m), . . . , vq(m) is orthonormal, we have

Fi(m)⊥ = span
{

vn1+···+ni+1(m), . . . , vq(m)
}

. (2.9)

Considering the 2-norm for R
q, we obtain

‖Amv‖2 = v∗A∗
mAmv = v∗T2

mv = v∗T∗
mTmv = ‖Tmv‖2

and so

‖Am|Fi(m)‖ = sup
v∈Fi(m)\{0}

‖Amv‖
‖v‖

= sup
v∈Fi(m)\{0}

‖Tmv‖
‖v‖

= ρli(m), (2.10)

where li = n1 + · · ·+ ni. Moreover, for any subspace L ⊂ Fi(m)⊥, it follows from (2.9) that

ρli+1
(m) ≤ ‖Am|L‖ ≤ ρq(m). (2.11)

Properties (2.10) and (2.11) are crucial in the remainder of the proof.
Before proceeding, we recall some notions and results concerning the distance between two

linear spaces. Let ∠(v, w) be the angle between two vectors v and w. Given linear subspaces
E, F ⊂ R

q, we define
d(E, F) = sin∠(E, F),

where
∠(E, F) = max

{

θ(E, F), θ(F, E)
}

and
θ(E, F) = max

v∈E\{0}
min

w∈F\{0}
∠(v, w).

Note that
θ(E, F) = max

v∈E\{0}
∠(v, projF v),

where projF v is the orthogonal projection of v onto F.
The following result is proved in [1].

Lemma 2.2. The following properties hold:

1. If dim E = dim F, then θ(E, F) = θ(F, E) and d(E, F) = d(E⊥, F⊥).

2. If a sequence (Ek)k∈N of linear spaces of equal dimensions is a Cauchy sequence, then it converges
to a linear space E of the same dimension.
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3. Let (Ek)k∈N be a sequence of linear spaces converging to a linear space E such that Ek = Fk ⊕ Gk,
where Gk is the orthogonal complement of Fk in Ek. If the sequence (Fk)k∈N converges to a
linear space F, then F ⊂ E and the sequence (Gk)k∈N converges to a linear space G that is the
orthogonal complement of F in E.

Now let
αi(m) = ∠(Fi(m), Fi(m + 1)) for i = 1, . . . , r − 1.

Lemma 2.3. We have

lim sup
m→∞

1
m

log αi(m) ≤ ci − ci+1 for i = 1, . . . , r − 1.

Proof of the lemma. We proceed by contradiction. Assume the contrary. Then for some i ∈

{1, . . . , r − 1} there exist ε > 0 and a sequence (ml)l∈N such that

1
ml

log αi(ml) > ci − ci+1 + ε (2.12)

for l ∈ N. Take v ∈ Fi(m + 1) with ‖v‖ = 1 such that

∠(v, Fi(m)) = αi(m)

and write it in the form v = v1 + v2 with v1 ∈ Fi(m) and v2 ∈ Fi(m)⊥. By (2.12) we have
v2 6= 0. It follows from (2.10) that

‖Amv1‖ ≤ ρli(m)‖v1‖

and taking L = span{v2} in (2.11) we obtain

‖Amv2‖ ≥ ρli+1
(m)‖v2‖.

On the other hand, we have
‖v1‖ = ‖v‖ cos αi(m) ≤ ‖v‖

and

‖v2‖ = ‖v‖ sin αi(m) ≥
2
π

αi(m)‖v‖

because sin x ≥ 2
π x for x ∈ [0, π/2]. Therefore,

‖Amv‖ ≥ ‖Amv2‖ − ‖Amv1‖

≥ ρli+1
(m)‖v2‖ − ρli(m)‖v1‖

≥

(

ρli+1
(m)

2
π

αli(m)− ρli(m)

)

‖v‖.

Note that given δ > 0, by (2.8) there exists m = m(δ) such that

e(aj−δ)m ≤ ρj(m) ≤ e(aj+δ)m

for all j = 1, . . . , q and m ≥ m(δ). Hence, for m = ml we obtain

‖Aml v‖ ≥

(

e(ci+1−δ)ml
2
π

e(ci−ci+1+ε)ml − e(ci+δ)ml

)

‖v‖

=

(

2
π

e(ci−δ+ε)ml − e(ci+δ)ml

)

‖v‖.
(2.13)
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Taking δ < ε/2, we have ci − δ + ε > ci + δ. Since v ∈ Fi(ml + 1) and ‖A−1
m ‖ ≤ c, it follows

from (2.13) that

ci + δ < lim sup
l→∞

1
ml

log‖Aml v‖ ≤ lim
l→∞

1
ml + 1

log ρli(ml + 1) = ci,

which is impossible. This contradiction yields the desired result.

We proceed with the proof of the theorem. We first show that (Fi(m))m∈N is a Cauchy
sequence. By Lemma 2.3, taking ε > 0 such that ci − ci+1 + ε < 0 we have

d(Fi(m), Fi(k)) ≤
k−1

∑
j=m

d(Fi(j), Fi(j + 1))

≤
∞

∑
j=m

d(Fi(j), Fi(j + 1)) =
∞

∑
j=m

sin αi(j)

≤
∞

∑
j=m

e(ci−ci+1+ε)j =
e(ci−ci+1+ε)m

1 − eci−ci+1+ε

for all sufficiently large m and all k > m. This shows that (Fi(m))m∈N is a Cauchy sequence.
In view of Lemma 2.2 (second item), we conclude that (Fi(m))m∈N converges to some linear
space F satisfying

d(Fi(m), Fi) ≤
e(ci−ci+1+ε)m

1 − eci−ci+1+ε
. (2.14)

Moreover, also in view of Lemma 2.2 (third item), the sequence (Ei(m))m∈N also converges to
some linear space E. Indeed, since Fi+1(m) → Fi+1 when m → ∞ and

Fi+1(m) = Fi(m)⊕ Ei+1(m)

with
Ei+1(m) = Fi(m)⊥ ∩ Fi+1(m),

we conclude that (Ei(m))m∈N converges to some linear space Ei.

Lemma 2.4. For k = 1, . . . , r we have

lim
m→∞

1
m

log‖Amw‖ = ck for w ∈ Ek \ {0}

and

lim sup
m→∞

1
m

log‖Amw‖ ≤ ck−1 for w ∈ Fk−1 \ {0}.

Proof of the lemma. We proceed by backwards induction on k. Take j ∈ {0, 1, . . . , r − 2} and
given w ∈ R

q, write it in the form w = w1 + w2 with w1 ∈ Fr−j−1(m)⊥ and w2 ∈ Fr−j−1(m).
First take j = 0 and w ∈ Er \ {0}. Then w = w1 + w2 with w1 ∈ Fr−1(m)⊥ and w2 ∈

Fr−1(m). Note that w1 6= 0 for any sufficiently large m, since ∠(Er, Er(m)) → 0 when m → ∞

and Er(m) = Fr−1(m)⊥. In view of (2.11) we have

ρq−nr+1(m)‖w1‖ ≤ ‖Amw1‖ ≤ ρq(m)‖w1‖,

which implies that

lim
m→∞

1
m

log‖Amw1‖ = cr.
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Moreover, in view of (2.10) we also have

‖Amw2‖ ≤ ρq−rn(m)‖w2‖,

which implies that

lim sup
m→∞

1
m

log‖Amw2‖ ≤ cr−1.

Since Amw = Amw1 +Amw2 and cr−1 < cr, we conclude that

lim
m→∞

1
m

log‖Amw‖ = cr.

Now take w ∈ Fr−1 \ {0} and recall that w = w1 + w2 with w1 ∈ Fr−1(m)⊥ and w2 ∈

Fr−1(m). Since ∠(Fr−1, Fr−1(m)) → 0 when m → ∞, we have w2 6= 0 for any sufficiently
large m. Note that

‖w1‖ = ‖w‖ sin∠(w, w2)

and
‖w2‖ = ‖w‖ cos∠(w, w2) ≤ ‖w‖.

Since sin∠(w, w2) ≤ d(Fr−1, Fr−1(m)), it follows from (2.14) that

‖Amw‖ ≤ ‖Amw1‖+ ‖Amw2‖

≤ ρq(m)‖w1‖+ ρq−nr(m)‖w2‖

≤
e(cr−1−cr+ε)m

1 − ecr−1−cr+ε
ρq(m)‖w‖+ ρq−nr(m)‖w‖.

We have

lim
m→∞

1
m

log
(

e(cr−1−cr+ε)m

1 − ecr−1−cr+ε
ρq(m)

)

= cr−1 − cr + ε + cr = cr−1 + ε

and

lim sup
m→∞

1
m

log ρq−nr(m) = cr−1.

Therefore,

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−1 + ε

and since ε is arbitrary, we obtain

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−1.

This establishes the induction hypothesis for j = 0.
Now assume that the statement in Lemma 2.4 holds for k = r, . . . , r − j+ 1 and some j ≥ 1.

We want to show that it also holds for k = r − j. Take w ∈ Er−j \ {0}. Since Er−j \ {0} ⊂

Fr−j \ {0}, it follows from the induction hypothesis that

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−j. (2.15)

We first show that

lim inf
m→∞

1
m

log‖Amw‖ ≥ cr−j (2.16)
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for w ∈ Er−j \ {0}. Then it follows from (2.15) and (2.16) that

lim
m→∞

1
m

log‖Amw‖ = cr−j,

which establishes the first statement in the lemma.
Since Er−j \ {0} ⊂ F⊥

r−j−1 \ {0}, we take w ∈ F⊥
r−j−1 \ {0} and write it in the form w =

w1 + w2 with w1 ∈ Fr−j−1(m)⊥ and w2 ∈ Fr−j−1(m). Since

d(F⊥
r−j−1, Fr−j−1(m)⊥) → 0 when m → ∞,

we have w1 6= 0 for any sufficiently large m. Moreover,

‖w1‖ = ‖w‖ cos∠(w, w1), ‖w2‖ = ‖w‖ sin∠(w, w2). (2.17)

In view of (2.14) we have

sin∠(w, w1) ≤ d(F⊥
r−j−1, Fr−j−1(m)⊥)

= d(Fr−j−1, Fr−j−1(m))

≤
e(cr−j−1−cr−j+ε)m

1 − ecr−j−1−cr−j+ε =: αj(m).

(2.18)

Hence, by (2.10) and (2.11) together with (2.17) and (2.18), we obtain

‖Amw‖ ≥ ‖Amw1‖ − ‖Aww2‖

≥ ρlr−j
(m)‖w1‖ − ρlr−j−1

(m)‖w2‖

≥ ρlr−j
(m)

√

1 − αj(m)2‖w‖ − ρlr−j−1
(m)‖w‖.

Therefore, since αj(m) → 0 when m → ∞, we have

lim
m→∞

1
m

log
(

ρlr−j
(m)

√

1 − αj(m)2
)

= cr−j

and

lim
m→∞

1
m

log ρlr−j−1
(m) = cr−j−1.

Finally, since cr−j > cr−j−1, we conclude that

lim inf
m→∞

1
m

log‖Amw‖ ≥ cr−j,

which establishes (2.16).
Now we prove the second statement in the lemma. Take w ∈ Fr−j−1 \ {0} and write it in

the form w = w1 + w2 with w1 ∈ F⊥
r−j−1(m) and w2 ∈ Fr−j−1(m). Since

∠(Fr−j−1, Fr−j−1(m)) → 0 when m → ∞,

we have w2 6= 0 for any sufficiently large m. Note that

‖w1‖ = ‖w‖ sin∠(w, w2)

and
‖w2‖ = ‖w‖ cos∠(w, w2) ≤ ‖w‖.
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Since sin∠(w, w2) ≤ d(Fr−j−1, Fr−j−1(m)) and

d(Fr−j−1, Fr−j−1(m)) ≤ αj(m),

using (2.10) and (2.11), we conclude as above that

‖Amw‖ ≤ ‖Amw1‖+ ‖Amw2‖

≤ αj(m)ρlr−j
(m)‖w‖+ ρlr−j−1

(m)‖w‖.

We have

lim
m→∞

1
m

log
(

αj(m)ρlr−j
(m)

)

= cr−j−1 − cr−j + ε + cr−j = cr−j−1 + ε

and

lim
m→∞

1
m

log ρlr−j−1
(m) = cr−j−1.

Therefore,

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−j−1 + ε

and since ε is arbitrary, we obtain

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−j−1.

This establishes the induction hypothesis for k = r − j.

We proceed with the proof of the theorem. Note that

det Tm =
q

∏
i=1

ρi(m).

Therefore, using (2.5) we have

lim
m→∞

1
m

log|detAm| =
q

∑
i=1

lim
m→∞

1
m

log ρi(m).

Finally, in view of Lemma 2.4 we obtain

lim
m→∞

1
m

log|detAm| =
q

∑
i=1

λ′
i,

which shows that (iv) ⇒ (i). This completes the proof of the theorem.

3 New regularity coefficients

In this section we introduce three new regularity coefficients motivated by the properties (ii),
(iii) and (iv) in Theorem 2.1. We also establish some relations between these coefficients and
the Lyapunov regularity coefficient.
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3.1 Regularity coefficients

Given a sequence A = (Am)m∈N of invertible q × q matrices with real entries, we define

α(A) = max
{

bi − ai : i = 1, . . . , q
}

,

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log|detAm|,

σ(A) = lim sup
m→∞

1
m

log|detAm| −
q

∑
i=1

ai.

The following result gives some relations between these functions. In particular, together with
Theorem 2.1, it shows that the three are indeed regularity coefficients.

Theorem 3.1. For any bounded sequence A = (Am)m∈N of invertible q × q matrices, we have

0 ≤ α(A) ≤ σ(A) ≤ qα(A) (3.1)

and

0 ≤ α(A) ≤ σ(A) ≤ qα(A). (3.2)

Proof. Clearly, α(A) ≥ 0. Note that

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log
q

∏
i=1

ρi(m)

≥
q

∑
i=1

bi − lim sup
m→∞

1
m

log ∏
i 6=j

ρi(m)− lim inf
m→∞

1
m

log ρj(m)

≥
q

∑
i=1

bi − ∑
i 6=j

bi − aj = bj − aj

and so σ(A) ≥ α(A). Moreover,

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log
q

∏
i=1

ρi(m)

≤
q

∑
i=1

bi −
q

∑
i=1

ai =
q

∑
i=1

(bi − ai) ≤ qα(A),

which establishes (3.1).
On the other hand, we have

σ(A) = lim sup
m→∞

1
m

log
q

∏
i=1

ρi(m)−
q

∑
i=1

ai

≥ lim sup
m→∞

1
m

log ρj(m) + lim inf
m→∞

1
m

log ∏
i 6=j

ρi(m)−
q

∑
i=1

ai

≥ bj + ∑
i 6=j

ai −
q

∑
i=1

ai = bj − aj
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and so σ(A) ≥ α(A). Finally,

σ(A) = lim sup
m→∞

1
m

log
q

∏
i=1

ρi(m)−
q

∑
i=1

ai

≤
q

∑
i=1

bi −
q

∑
i=1

ai =
q

∑
i=1

(bi − ai) ≤ qα(A),

which establishes (3.2).

It follows readily from Theorem 3.1 that

q−1σ(A) ≤ σ(A) ≤ qσ(A)

and
q−1σ(A) ≤ σ(A) ≤ qσ(A).

We also establish some relations between these three coefficients and the Lyapunov regu-
larity coefficient. We recall that the Lyapunov regularity coefficient of a sequence A = (Am)m∈N

is defined by

σ(A) =
q

∑
i=1

λ′
i − lim inf

m→∞

1
m

log|detAm|.

Theorem 3.2. For any bounded sequence A = (Am)m∈N of invertible q × q matrices, we have

σ(A) ≤ σ(A) and σ(A) ≤ q2α(A).

Proof. The first inequality follows readily from the fact that bi ≤ λ′
i for i = 1, . . . , q and the

definitions of σ(A) and σ(A).
For the second identity, we first observe that it suffices to consider upper-triangular ma-

trices. Indeed, given a sequence A = (Am)m∈N of invertible q × q matrices, there exists a
sequence (Um)m∈N of orthogonal q × q matrices with U1 = Id such that

Cm = U∗
m+1AmUm

is upper-triangular for each m ∈ N (see Theorem 3.2.1 in [2]). Clearly, the sequence C =

(Cm)m∈N is also bounded and one can easily verify that

α(C) = α(A), σ(C) = σ(A), σ(C) = σ(A) and σ(C) = σ(A).

Without loss of generality, we assume from now on that all matrices are upper-triangular. We
also consider the Grobman regularity coefficient γ(A) that is defined by

γ(A) = min max
{

λ(vi) + µ(wi) : 1 ≤ i ≤ q
}

,

where the minimum is taken over all dual bases v1, . . . , vq and w1, . . . , wq. Denoting by aij(l)
the entries of Al , we have

γ(A) ≤
q

∑
i=1

(

lim sup
m→∞

1
m

log
m

∏
l=1

|aii(l)| − lim inf
m→∞

1
m

log
m

∏
l=1

|aii(l)|

)

(see Theorem 3.1.3 in [2]). Since the matrices Al are upper-triangular, we obtain

1
m

log
m

∏
l=1

|aii(l)| =
1
m

log ρki
(m)
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for some integer ki and so

γ(A) ≤
q

∑
i=1

(

lim sup
m→∞

1
m

log ρki
(m)− lim inf

m→∞

1
m

log ρki
(m)

)

=
q

∑
i=1

(bki
− aki

) ≤ qα(A).

Moreover, we have
σ(A)

q
≤ γ(A)

(see Theorem 7.3.2 in [2]) and so σ(A) ≤ q2α(A). This completes the proof of the theorem.

3.2 Realization problem I

In this section we construct bounded sequences of matrices A = (Am)m∈N attaining specific
values of the regularity coefficients α(A) and σ(A).

Theorem 3.3. Given numbers p, g ≥ 0 such that

p ≤ g ≤ qp,

there exists a bounded sequence A = (Am)m∈N of diagonal q × q matrices with α(A) = p and
σ(A) = g.

Proof. Note that α(A) = σ(A) = 0 for any regular sequence A. So it suffices to take p > 0. We
divide the proof into steps.

Step 1. Construction of sequences of numbers. Given r, c, d ∈ R with r > 1 and c ≥ d, for
each m ∈ N let

a(m) =

{

ed if m ∈ Sk for k ∈ N,

ec if m ∈ Tk for k ∈ N,

where
Sk =

{

m ∈ N : r2k−2 ≤ m < r2k−1}

and
Tk =

{

m ∈ N : r2k−1 ≤ m < r2k}.

The following result is taken from [5].

Lemma 3.4. For ρ(m) = ∏
m−1
j=1 a(j) we have

ρ(m) =

{

e
d+cr
r+1 (r2k−2−1)+d(m−r2k−2) if m ∈ Sk for k ∈ N,

e
d+cr
r+1 (r2k−2−1)+d(r2k−1−r2k−2)+c(m−r2k−1) if m ∈ Tk for k ∈ N.

Moreover,

lim sup
m→∞

1
m

log ρ(m) =
d + cr
r + 1

and

lim inf
m→∞

1
m

log ρ(m) =
c + dr
r + 1

.
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Step 2. Construction of sequences of matrices. We say that the sequence of matrices
(Am)m∈N, where Am = diag(a1(m), . . . , aq(m)) for m ∈ N with

ai(m) =

{

edi if m ∈ Sk for k ∈ N,

eci if m ∈ Tk for k ∈ N,
(3.3)

is r-regular if the following conditions hold:

1. ci ≥ di for i = 1, . . . , q;

2. ci ≤ ci+1 and di ≤ di+1 for i = 1, . . . , q − 1.

Lemma 3.5. For any r-regular sequence A = (Am)m∈N, we have

α(A) =
r − 1
r + 1

max
1≤i≤q

(ci − di)

and

σ(A) =
r − 1
r + 1

q

∑
i=1

(ci − di).

Proof of the lemma. It follows from Lemma 3.4 that

ρi(m) =







e
di+cir

r+1 (r2k−2−1)+di(m−r2k−2) if m ∈ Sk for k ∈ N,

e
di+cir

r+1 (r2k−2−1)+di(r2k−1−r2k−2)+ci(m−r2k−1) if m ∈ Tk for k ∈ N,

for i = 1, . . . , q. Indeed, if m ∈ Sk, then

ρi(m) = e
di+cir

r+1 (r2k−2−1)+di(m−r2k−2)

≤ e
di+1+ci+1r

r+1 (r2k−2−1)+di+1(m−r2k−2) = ρi+1(m)

and if m ∈ Tk, then

ρi(m) = e
dir
r+1 (r

2k−2−1)+di(r2k−1−r2k−2)+ci(m−r2k−1)

≤ e
di+1r
r+1 (r2k−2−1)+di+1(r2k−1−r2k−2)+ci+1(m−r2k−1) = ρi+1(m).

It also follows from Lemma 3.4 that

α(A) =
r − 1
r + 1

max
1≤i≤q

(ci − di)

and

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log detAm

=
q

∑
i=1

di + cir
r + 1

− lim inf
m→∞

1
m

log detAm.

(3.4)

We have

lim inf
m→∞

1
m

log detAm = lim inf
m→∞

1
m

log
m−1

∏
j=1

q

∏
i=1

ai(j),
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where
q

∏
i=1

ai(m) =

{

ed1+···+dq if m ∈ Sk for k ∈ N,

ec1+···+cq if m ∈ Tk for k ∈ N.

Applying Lemma 3.4 with c = c1 + · · ·+ cq and d = d1 + · · ·+ dq we obtain

lim inf
m→∞

1
m

log
m−1

∏
j=1

q

∏
i=1

ai(j) =
c1 + · · ·+ cq + (d1 + · · ·+ dq)r

r + 1

=
q

∑
i=1

ci + dir
r + 1

and it follows from (3.4) that

σ(A) =
q

∑
i=1

di + cir
r + 1

−
q

∑
i=1

ci + dir
r + 1

=
r − 1
r + 1

q

∑
i=1

(ci − di).

This completes the proof of the lemma.

Step 3. Conclusion of the argument. We first construct auxiliary sequences.

Lemma 3.6. Given cq > dq > 0, there exist an r-regular sequence C = (Cm)m∈N with

σ(C) = α(C) =
(r − 1)(cq − dq)

r + 1

and an r-regular sequence D = (Dm)m∈N with

σ(D) = qα(D) = q
(r − 1)(cq − dq)

r + 1
. (3.5)

Proof of the lemma. Let

c1 = · · · = cq−1 = d1 = · · · = dq−1 = 0

and denote the corresponding matrices Am (see (3.3)) by Cm. Then the sequence C is r-regular
and by Lemma 3.5 we have

σ(C) = α(C) =
(r − 1)(cq − dq)

r + 1
.

Now let

c1 = · · · = cq, d1 = · · · = dq

and denote the corresponding matrices Am (see (3.3)) by Dm. Then the sequence D is r-regular
and by Lemma 3.5 we have

σ(D) = q
(r − 1)(cq − dq)

r + 1
and α(D) =

(r − 1)(cq − dq)

r + 1

which gives identity (3.5).
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We use the sequences C and D to show that for each µ ∈ [1, q] there exists an r-regular
sequence E = (Em)m∈N with

σ(E) = µα(E).

First observe that replacing C by the sequence C′ = (C′
m)m∈N with C′

m = Cκ
m for some κ > 0

corresponds to replace the numbers ci and di, respectively, by κci and κdi for each i. Therefore,

α(C′) = κα(C) and σ(C′) = κσ(C).

Moreover, for each ν ∈ [0, 1], the sequence of matrices E = (Em)m∈N with Em = Cν
mD1−ν

m for
m ∈ N is r-regular, with

α(E) = να(C) + (1 − ν)α(D) and σ(E) = νσ(C) + (1 − ν)σ(D). (3.6)

Indeed, let eci(m) and edi(m) be, respectively, the entries on the diagonals of Cm and Dm. Then
the entries on the diagonal of Em are eνci(m)+(1−ν)di(m) and one can easily verify that the two
properties in the notion of r-regularity hold as well as (3.6). By Lemma 3.5 and (3.6) we obtain

α(E) = ν
(cq − dq)(r − 1)

r + 1
+ (1 − ν)

(cq − dq)(r − 1)
r + 1

=
(cq − dq)(r − 1)

r + 1

and

σ(E) = ν
(cq − dq)(r − 1)

r + 1
+ (1 − ν)

q(cq − dq)(r − 1)
r + 1

=
(ν + (1 − ν)q)(cq − dq)(r − 1)

r + 1
.

In particular,
σ(E)/α(E) = ν + (1 − ν)q.

Note that when ν goes from 0 to 1, this expression goes from q to 1 and so it takes any value
µ ∈ [1, q]. Moreover, α(E) can take any prescribed positive value by choosing cq and dq. This
completes the proof of the theorem.

3.3 Realization problem II

In this section we construct specific sequences of matrices attaining each possible value of the
regularity coefficients σ(A) and σ(A).

Theorem 3.7. Given s ≥ 0, there exists:

1. a bounded sequence of matrices A with σ(A) = s;

2. a bounded sequence of matrices A with σ(A) = s.

Proof. Note that σ(A) = σ(A) = 0 for any regular sequence A. So it suffices to take s > 0.
We first show that given s > 0, there exists a bounded sequence of matrices A with

σ(A) = s. Consider the sequence of diagonal matrices

Am = diag(a1(m), . . . , aq(m)),



20 L. Barreira and C. Valls

where

ai(m) =

{

eβi if k! ≤ m < (k + 1)! with k odd,

1 otherwise

for some nonnegative numbers
β1 ≤ β2 ≤ · · · ≤ βq

such that ∑
q
i=1 βi = s. Then ρi(m) ≤ eβim and so

bi = lim sup
m→∞

1
m

log ρi(m) ≤ βi.

On the other hand, for k odd we have

ρi((k + 1)!) ≥ eβi((k+1)!−k!)

and so

bi ≥ lim sup
k→∞

1
(k + 1)!

log ρi((k + 1)!)

≥ lim sup
k→∞

1
(k + 1)!

βi((k + 1)! − k!) = βi.

This shows that bi = βi for i = 1, . . . , q. Moreover, since ai(j) ≥ 1 we have

lim inf
m→∞

1
m

log detAm ≥ 0. (3.7)

On the other hand, denoting by e1, . . . , eq the canonical basis for R
q and writing rn = (2n+ 1)!,

we obtain

lim inf
m→∞

1
m

log detAm = lim inf
m→∞

1
m

log
q

∏
i=1

‖Amei‖

≤ lim inf
n→∞

1
rn

log
q

∏
i=1

‖Arn ei‖.

We have
q

∏
i=1

‖Arn ei‖ ≤
q

∏
i=1

eβi(2n)! = es(2n)!

and so

lim inf
m→∞

1
m

log detAm ≤ lim inf
n→∞

s(2n)!
rn

= 0.

Together with (3.7), this implies that

lim inf
m→∞

1
m

log detAm = 0

and so

σ(A) =
q

∑
i=1

βi − lim inf
m→∞

1
m

log detAm =
q

∑
i=1

βi = s.

Now we show that given s > 0, there exists a bounded sequence of matrices A with
σ(A) = s. Consider the sequence of diagonal matrices

Am = diag(a1(m), . . . , aq(m)),
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where

ai(m) =

{

es if k! ≤ m < (k + 1)! and k ≡ q mod (q + 1),

1 otherwise.

Since ai(m) ≥ 1, we have ρi(m) ≥ 1 and so

ai = lim inf
m→∞

1
m

log ρi(m) ≥ 0.

Moreover, letting rn,j = (q + n(q + 1) + j)! we have

ai ≤ lim inf
n→∞

1
rn,2

max
1≤i≤q

log
q

∏
i=1

‖Arn,2 ei‖ ≤ lim inf
n→∞

rn,1

rn,2
= 0.

Therefore, ai = 0 for i = 1, . . . , q. Moreover, detAm ≤ ems and so

lim sup
m→∞

1
m

log detAm ≤ s. (3.8)

Finally, we have

detA(k+1)! ≥
q

∏
i=1

(k+1)!−1

∏
j=k!

ai(j) = es((k+1)!−k!),

for k ≡ q mod (q + 1), which gives

lim sup
m→∞

1
m

log detAm ≥ lim sup
n→∞

s(rn,1 − rn,0)

rn,1
= s.

Together with (3.8), this implies that

lim sup
m→∞

1
m

log detAm = s

and so

σ(A) = lim sup
m→∞

1
m

log detAm −
q

∑
i=1

ai = s.

This completes the proof of the theorem.

4 Further regularity coefficients

In this section we introduce two additional regularity coefficients based on the matrices Am.
We also establish inequalities between these coefficients and the former ones.

For each k = 1, . . . , q, let (Rq)∧k be the set of alternating k-linear forms on R
q. We define

an inner product on (Rq)∧k by requiring that

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = det B,

where B is the k × k matrix with entries bij = 〈vi, wj〉 for i, j = 1, . . . , k and where 〈·, ·〉 is the
standard inner product on R

q. In particular, for k = 1 we recover the standard inner product
and so the 2-norm on R

q.
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Now let A = (Am)m∈N be a sequence of q × q matrices with real entries. For each k =

1, . . . , q, we define

ck(A) = lim inf
m→∞

1
m

log‖(Am)
∧k‖

and

dk(A) = lim sup
m→∞

1
m

log‖(Am)
∧k‖,

where
(Am)

∧k(v1 ∧ · · · ∧ vk) = Amv1 ∧ · · · ∧Amvk.

Finally, let
ε(A) = max

{

dk(A)− ck(A) : k = 1, . . . , q
}

.

Theorem 4.1. The function ε(A) is a regularity coefficient. Moreover, for each bounded sequence of
matrices A = (Am)m∈N we have

1
2

α(A) ≤ ε(A) ≤ qα(A). (4.1)

Proof. Note that it suffices to establish (4.1) since then ε(A) ≥ α(A)/2 ≥ 0 and ε(A) = 0 if
and only if α(A) = 0, that is, if and only if A is regular.

Recall that for any q × q matrix B we have

‖B∧k‖ =
k

∏
i=1

ρq−i+1,

where ρ1 ≤ · · · ≤ ρq are the (real nonnegative) eigenvalues of the matrix (B∗B)1/2. Taking
B = Am we obtain

‖(Am)
∧k‖ =

k

∏
i=1

ρq−i+1(m). (4.2)

Therefore,

ck(A) = lim inf
m→∞

1
m

log
k

∏
i=1

ρq−i+1(m)

≥
k

∑
i=1

lim inf
m→∞

1
m

log ρq−i+1(m) =
k

∑
i=1

aq−i+1(A)

and

dk(A) = lim sup
m→∞

1
m

log
k

∏
i=1

ρq−i+1(m)

≤
k

∑
i=1

lim sup
m→∞

1
m

log ρq−i+1(m) =
k

∑
i=1

bq−i+1(A).

This readily implies that

dk(A)− ck(A) ≤
k

∑
i=1

(bq−i+1(A)− aq−i+1(A)) ≤ kα(A)
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and so ε(A) ≤ qα(A). On the other hand, by (4.2) we have

ρi(m) =
‖(Am)∧(q−i+1)‖

‖(Am)∧(q−i)‖

for i = 1, . . . , q − 1 and

ρq(m) = ‖(Am)
∧1‖ = ‖Am‖.

Therefore,

ai(A) = lim inf
m→∞

1
m

log ρi(m)

≥ lim inf
m→∞

1
m

log‖(Am)
∧(q−i+1)‖+ lim inf

m→∞
−

1
m

log‖(Am)
∧(q−i)‖

= cq−i+1(A)− dq−i(A)

and

bi(A) = lim sup
m→∞

1
m

log ρi(m)

≤ lim sup
m→∞

1
m

log‖(Am)
∧(q−i+1)‖+ lim sup

m→∞

−
1
m

log‖(Am)
∧(q−i)‖

= dq−i+1(A)− cq−i(A)

for i = 1, . . . , q − 1. These inequalities also hold for i = q, with the convention that c0(A) =

d0(A) = 0. This implies that

bi(A)− ai(A) ≤ dq−i+1(A)− cq−i+1(A) + dq−i(A)− cq−i(A)

and so

α(A) ≤ max
{

dq−i+1(A)− cq−i+1(A) : i = 1, . . . , q
}

+ max
{

dq−i(A)− cq−i(A) : i = 1, . . . , q
}

≤ 2ε(A).

This completes the proof of the theorem.

We also introduce a second regularity coefficient. First recall that a bounded sequence
of matrices A = (Am)m∈N is regular if and only if the sequence of matrices (A∗

mAm)1/(2m)

converges entry by entry when m → ∞ (see [4]). Therefore, the function

µ(A) =
q

∑
i=1

q

∑
j=1

(

lim sup
m→∞

(A∗
mAm)

1/(2m)
ij − lim inf

m→∞
(A∗

mAm)
1/(2m)
ij

)

,

where Bij denotes the ij entry of a matrix B, is a regularity coefficient. Moreover, we have the
following result.

Theorem 4.2. There exists a constant Cq > 0 depending only on q such that for each bounded sequence
A = (Am)m∈N of invertible q × q matrices such that A−1 = (A−1

m )m∈N is also bounded we have

C−1
q ‖A−1‖−1

∞ α(A) ≤ µ(A) ≤ Cq‖A‖∞α(A).
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Proof. Since the matrices (A∗
mAm)1/2 are symmetric and positive definite, there exist orthogo-

nal matrices Sm such that

S−1
m (A∗

mAm)
1/(2m)Sm = diag(ρ1(m)1/m, . . . , ρq(m)1/m). (4.3)

Moreover, it is shown in [4] that one can always choose the matrices Sm so that they converge
entry by entry to some orthogonal matrix S when m → ∞. Hence, it follows from (4.3) that
there exists a constant Cq > 0 depending only on q such that

max
1≤i≤q

(

lim sup
m→∞

ρi(m)1/m − lim inf
m→∞

ρi(m)1/m
)

≤ Cq

q

∑
i=1

q

∑
j=1

(

lim sup
m→∞

(A∗
mAm)

1/(2m)
ij − lim inf

m→∞
(A∗

mAm)
1/(2m)
ij

)

.
(4.4)

Again by (4.3) we have

(A∗
mAm)

1/(2m) = Sm diag(ρ1(m)1/m, . . . , ρq(m)1/m)S−1
m

and so we also obtain
q

∑
i=1

q

∑
j=1

(

lim sup
m→∞

(A∗
mAm)

1/(2m)
ij − lim inf

m→∞
(A∗

mAm)
1/(2m)
ij

)

≤ Cq max
1≤i≤q

(

lim sup
m→∞

ρi(m)1/m − lim inf
m→∞

ρi(m)1/m
)

,

(4.5)

taking the same constant Cq without loss of generality.
Now observe that by (4.2) with k = 1, we have

‖A−1
m ‖−1 ≤ ρi(m) ≤ ‖Am‖

for each i = 1, . . . , q. Therefore,

‖A−1‖−1
∞ ≤ ρi(m)1/m ≤ ‖A‖∞

and it follows from the mean value theorem that

bi(A)− ai(A) = log lim sup
m→∞

ρi(m)1/m − log lim inf
m→∞

ρi(m)1/m

≤ ‖A−1‖∞

(

lim sup
m→∞

ρi(m)1/m − lim inf
m→∞

ρi(m)1/m
)

.

Similarly, we have

lim sup
m→∞

ρi(m)1/m − lim inf
m→∞

ρi(m)1/m = exp lim sup
m→∞

1
m

log ρi(m)− exp lim inf
m→∞

1
m

log ρi(m)

≤ ‖A‖∞(bi(A)− ai(A)).

Together with (4.4) and (4.5) this yields the desired result.
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Abstract. Consider the following higher order difference equation

x(n + 1) = ax(n) + b f (x(n)) + c f (x(n − k)), n = 0, 1, . . .

where a, b and c are constants with 0 < a < 1, 0 ≤ b < 1, 0 ≤ c < 1 and a + b + c = 1,
f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0, and k is a positive integer. Our aim in
this paper is to study the global attractivity of positive solutions of this equation and
its applications to some population models.

Keywords: higher order difference equation, positive equilibrium, global attractivity,
population models.

2020 Mathematics Subject Classification: 39A10, 92D25.

1 Introduction

Consider the following higher order difference equation

x(n + 1) = ax(n) + b f (x(n)) + c f (x(n − k)), n = 0, 1, . . . , (1.1)

where a, b and c are constants with 0 < a < 1, 0 ≤ b < 1, 0 ≤ c < 1 and a + b + c = 1,
f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0 and k is a positive integer. Our aim in this paper
is to study the global attractivity of positive solutions of Eq. (1.1) and its applications to some
population models.

In a recent paper [1], the authors study the dynamics of the following difference system














x(n + 1) = (1 − ǫ) f (x(n)) + ǫy(n),

y(n + 1) = (1 − ǫ)y(n) + ǫ f (x(n)),

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (1.2)

where 0 < ǫ < 1 is a positive constant. Sys. (1.2) is a population model proposed by New-
man et al. [14] which assumes symmetric dispersal between active population x(n) and refuge

BCorresponding author. Email: qian@math.msstate.edu
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population y(n). The function f describes density-dependent reproduction of the active pop-
ulation. Newman et al. explore the effects of coupling an otherwise chaotic population to
a refuge. Specifically, the logistic function f (x) = λx(1 − x) and the exponential function
f (x) = λx exp(−x) are studied in [14]. Using numerical simulations, it is concluded that the
presence of a passive refuge can greatly stabilize a population that would otherwise exhibit
chaotic dynamics [14]. While in [1], Chow et al. assume that the growth function f is mono-
tonically increasing to rule out the chaotic behavior explored in [14]. In particular, the authors
study the following two cases: the growth rate is of Beverton–Holt type, that is, f (x) = λx

1+kx ,

and the population is also subject to Allee effects, that is, f (x) = λx2

(1+kx)(m+x)
, where λ is the

density-independent growth rate, k relates to the population’s carrying capacity, and m is the
reciprocal of the searching efficiency of an individual when the population is subject to Allee
effects. Various properties of solutions of Sys. (1.2) are studied in [1]. Some other results on
Beverton–Holt and related equations can be found, e.g., in [15] and [16].

Motivated by these studies, in the present paper we are interested in obtaining an explicit
sufficient condition to guarantee the global stability of positive solutions of Sys. (1.2) no matter
if f is monotonic or not.

Noting that (1.2) can be converted into a second order scalar difference equation

x(n + 1) = (1 − ǫ)x(n) + (1 − ǫ) f (x(n)) + (2ǫ − 1) f (x(n − 1)), (1.3)

we are led to the more general equation (1.1). When b = 0, Eq. (1.1) reduces to the form

x(n + 1) = ax(n) + c f (x(n − k)), (1.4)

which includes several discrete models derived from mathematical biology. The global attrac-
tivity and global stability of positive solutions of Eq. (1.4) and some related forms has been
studied by many authors; see, for example, [2–13, 17] and the references cited therein.

In the present paper, we are interested in positive solutions of Eq. (1.1). Clearly, if we let

x(−k), x(−k + 1), . . . , x(0) (1.5)

be k + 1 given nonnegative constants with x(0) > 0, then Eq.(1.1) has a unique positive so-
lution {x(n)} with the initial values (1.5). In the following, we assume that f has a unique
positive fixed point x̄. It is not difficult to see that x̄ is the unique positive equilibrium of
(1.1). In the next section, we establish a sufficient condition for x̄ to be a global attractor of all
positive solutions of Eq. (1.1). Then, in Section 3, we show that our result may be applied to
Sys. (1.2) and some other difference equations derived from mathematical biology.

In the following discussion, for the sake of convenience, we adopt the notation ∏
n
i=m s(i) =

1 and ∑
n
i=m s(i) = 0 whenever {s(n)} is a real sequence and m > n.

2 Main result

In this section we establish a sufficient condition for the global attractivity of positive solutions
of Eq. (1.1). The following lemma is needed.

Lemma 2.1. Assume that f satisfies the negative feedback condition

(x − x̄)( f (x)− x) < 0, x > 0, x 6= x̄. (2.1)

Then every positive solution {x(n)} of Eq. (1.1) is bounded and persistent.
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Proof. First we show that {x(n)} is bounded. Otherwise, there is a subsequence {x(ni)} of
{x(n)} such that

x(ni) = max{x(n) : −k ≤ n ≤ ni}, i = 1, 2, . . . , and lim
i→∞

x(ni) = ∞. (2.2)

Then it follows from Eq. (1.1) that

b( f (x(ni − 1))− x(ni)) + c( f (x(ni − 1 − k))− x(ni)) = a(x(ni)− x(ni − 1)) ≥ 0,

which, together with (2.2), implies there is a subsequence {x(nij
)} of {x(ni)} such that either

f (x(nij
− 1)) ≥ x(nij

) ≥ x(nij
− 1), j = 1, 2, . . . (2.3)

or

f (x(nij
− 1 − k)) ≥ x(nij

) ≥ x(nij
− 1 − k), j = 1, 2, . . . (2.4)

Assume that (2.3) holds. Then by noting (2.1) we see that x(nij
− 1) ≤ x̄. Since f (x) is

bounded on the closed and finite interval [0, x̄], { f (x(nij
− 1))} is bounded. Clearly, this

contradicts (2.2) and (2.3). Hence, (2.3) can not hold. Similarly, we can show that (2.4) can not
hold either. Hence, {x(n)} must be bounded.

Next we show that {x(n)} is persistent. Otherwise, there is a subsequence {x(ni)} of
{x(n)} such that

x(ni) = min{x(n) : −k ≤ n ≤ ni}, i = 1, 2, . . . , and lim
i→∞

x(ni) = 0. (2.5)

Then it follows from Eq. (1.1) that

b( f (x(ni − 1))− x(ni)) + c( f (x(ni − 1 − k))− x(ni)) = a(x(ni)− x(ni − 1)) ≤ 0,

which, together with (2.5), implies there is a subsequence {x(nij
)} of {x(ni)} such that either

f (x(nij
− 1)) ≤ x(nij

) ≤ x(nij
− 1), j = 1, 2, . . . (2.6)

or

f (x(nij
− 1)− k)) ≤ x(nij

) ≤ x(nij
− 1 − k), j = 1, 2, . . . (2.7)

Assume that (2.6) holds. Then by noting (2.1) we see that x(nij
− 1) ≥ x̄. Since we

have shown that {x(n)} is bounded, {x(nij
− 1)} is bounded. Hence there is a subsequence

{x(nijm
− 1)} of {x(nij

− 1)} and a constant δ such that

lim
m→∞

x(nijm
− 1) = δ,

where δ ≥ x̄. However, from (2.6) we see that

f (x(nijm
− 1)) ≤ x(nijm

),

which implies that f (δ) ≤ 0. This contradicts the assumption f (x) > 0 for x > 0. Hence, (2.6)
can not hold. Similarly, we can show that (2.7) can not hold either. Hence, there is no such
case (2.5) and so {x(n)} is persistent. The proof is complete.
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The following theorem is our main result which establishes a sufficient condition for the
global attractivity of positive solutions of Eq. (1.1).

Theorem 2.2. Assume that ax + b f (x) is increasing, f (x) satisfies the negative feedback condition

(2.1), and f (x) is L-Lipschitz with

c(1 − ak+1)

c + akb
L < 1. (2.8)

Then every positive solution {x(n)} of Eq. (1.1) converges to x̄ as n → ∞.

Proof. First assume that {x(n)} does not oscillate about x̄. Then there are two cases : x(n)− x̄

is eventually positive or x(n)− x̄ is eventually negative. For the case that x(n)− x̄ is eventually
positive, let

lim sup
n→∞

x(n) = l.

From Lemma 2.1, we know that {x(n)} is bounded. Hence, x̄ ≤ l < ∞. We now show that
l = x̄. First assume that {x(n)} is eventually decreasing. Then limn→∞ x(n) = l. If l > x̄, it
follows from Eq. (1.1) that

a(x(n)− x(n − 1)) = (a − 1)x(n) + b f (x(n − 1)) + c f (x(n − 1 − k))

→ (a − 1)l + b f (l) + c f (l) as n → ∞. (2.9)

Noting that a + b + c = 1, and f (l) < l since l > x̄, we see that

(a − 1)l + b f (l) + c f (l) = (a − 1)(l − f (l)) < 0.

Hence, there is a positive integer N such that

a(x(n)− x(n − 1)) ≤
1
2
(a − 1)(l − f (l)), n ≥ N. (2.10)

Summing (2.10) from N + 1 to n, we find that

a(x(n)− x(N)) ≤
1
2
(a − 1)(l − f (l))(n − N) → −∞ as n → ∞,

which is a contradiction. Hence, we must have l = x̄.
Next, consider the case that {x(n)} is not eventually decreasing. Then, there is a subse-

quence {x(ni)} of {x(n)} such that

lim
i→∞

x(ni) = l and x(ni) > x(ni − 1), i = 1, 2, . . . (2.11)

Hence it follows from Eq. (1.1) that

b( f (x(ni − 1))− x(ni)) + c( f (x(ni − 1 − k))− x(ni)) = a(x(ni)− x(ni − 1)) > 0, i = 1, 2, . . .

and so there is a subsequence {x(nij
)} of {x(ni)} such that either

f (x(nij
− 1)) > x(nij

), j = 1, 2, . . . (2.12)

or

f (x(nij
− 1 − k)) > x(nij

), j = 1, 2, . . . (2.13)
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If (2.12) holds, then by noting x(nij
− 1) ≥ x̄, we have f (x(nij

− 1)) ≤ x(nij
− 1) and so it

follows that x(nij
− 1) > x(nij

), which contradicts (2.11). Hence, (2.12) can not hold and we
must have (2.13). Then, by noting x(nij

− 1− k) ≥ x̄, we have f (x(nij
− 1− k)) ≤ x(nij

− 1− k)

which yields x(nij
− 1 − k) ≥ x(nij

). Hence

lim
j→∞

x(nij
− 1 − k) = l.

Then, by taking limit on both sides of (2.13), we see that f (l) ≥ l which yields l ≤ x̄. Hence,
l = x̄.

In the above, we have shown that {x(n)} converges to x̄ when x(n) − x̄ is eventually
positive. Next we show that {x(n)} converges to x̄ also when x(n)− x̄ is eventually negative.
To this end, let

lim inf
n→∞

x(n) = r.

From Lemma 2.1, we know that {x(n)} is persistent. Hence, 0 < r ≤ x̄. We will show that
r = x̄. First assume that {x(n)} is eventually increasing. Then limn→∞ x(n) = r. If r < x̄, then
it follows from Eq. (1.1) that

a(x(n)− x(n − 1)) = (a − 1)x(n) + b f (x(n − 1)) + c f (x(n − 1 − k))

→ (a − 1)r + b f (r) + c f (r) as n → ∞. (2.14)

Noting that a + b + c = 1, and f (r) > r since r < x̄, we see that

(a − 1)r + b f (r) + c f (r) = (a − 1)(r − f (r)) > 0.

Hence, there is a positive integer N such that

a(x(n)− x(n − 1)) ≥
1
2
(a − 1)(r − f (r)), n ≥ N. (2.15)

Summing (2.15) from N + 1 to n, we find that

a(x(n)− x(N)) ≥
1
2
(a − 1)(r − f (r))(n − N) → ∞ as n → ∞,

which is a contradiction. Hence, we must have r = x̄.
Next, consider the case that {x(n)} is not eventually increasing. Then, there is a subse-

quence {x(ni)} of {x(n)} such that

lim
i→∞

x(ni) = r and x(ni) < x(ni − 1), i = 1, 2, . . . (2.16)

Hence, it follows from Eq. (1.1) that

b( f (x(ni − 1))− x(ni)) + c( f (x(ni − k))− x(ni)) = a(x(ni)− x(ni − 1)) < 0, i = 1, 2, . . .

and so there is a subsequence {x(nij
)} of {x(ni)} such that either

f (x(nij
− 1)) < x(nij

), j = 1, 2, . . . (2.17)

or

f (x(nij
− 1 − k)) < x(nij

), j = 1, 2, . . . (2.18)
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If (2.17) holds, then by noting x(nij
− 1) < x̄, we have f (x(nij

− 1)) ≥ x(nij
− 1) and so it

follows that x(nij
− 1) < x(nij

), which contradicts (2.16). Hence, (2.17) can not hold and
we must have (2.18). Then, noting that x(nij

− 1 − k) < x̄, we have f (x(nij
− 1 − k)) ≥

x(nij
− 1 − k) which yields x(nij

− 1 − k) ≤ x(nij
). Hence

lim
j→∞

x(nij
− 1 − k) = r.

Then by taking limit on both sides of (2.18), we see that f (r) ≤ r which yields r ≥ x̄. Hence,
r = x̄.

In the above, we have shown that every nonoscillatory (about x̄) positive solution of
Eq. (1.1) converges to x̄ as n → ∞. Next, consider the case that {x(n)} is a positive solu-
tion of Eq. (1.1) and oscillates about x̄, that is, x(n)− x̄ is not of eventually constant sign. We
show that x(n) converges to x̄ also as x → ∞. To this end, let y(n) = x(n)− x̄. Then {y(n)}

satisfies the equation

y(n + 1) = ay(n) + b( f (y(n) + x̄)− x̄) + c( f (y(n − k) + x̄)− x̄) (2.19)

and {y(n)} oscillates about zero. Let y(i) < y(j) be two consecutive members of the solution
{y(n)} such that

y(i) ≤ 0, y(j + 1) ≤ 0 and y(n) > 0 for i + 1 ≤ n ≤ j. (2.20)

Let

y(t) = max{y(i + 1), y(i + 2), . . . , y(j)}. (2.21)

We claim that

t − (i + 1) ≤ k. (2.22)

Otherwise t − (i + 1) > k. Then

y(t) ≥ y(t − 1) > 0 and y(t) ≥ y(t − 1 − k) > 0.

By noting y(t − 1) + x̄ > x̄ , y(t − 1 − k) + x̄ > x̄ and f (x) < x for x > x̄, we see that

b( f (y(t − 1) + x̄)− y(t)− x̄) + c( f (y(t − 1 − k) + x̄)− y(t)− x̄)

< b((y(t − 1) + x̄)− y(t)− x̄) + c((y(t − 1 − k) + x̄)− y(t)− x̄)

= b(y(t − 1)− y(t)) + c(y(t − 1 − k)− y(t))

≤ 0. (2.23)

However, on the other hand, (2.19) yields

b( f (y(t − 1) + x̄)− y(t)− x̄) + c( f (y(t − 1 − k) + x̄)− y(t)− x̄) = a(y(t)− y(t − 1)) > 0,

which contradicts (2.23). Hence, (2.22) must hold.
Now, observe that (2.19) yields

y(n + 1)
an+1 −

y(n)

an
=

b

an+1 [ f (y(n) + x̄)− x̄] +
c

an+1 [ f (y(n) + x̄)− x̄] (2.24)
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Summing (2.24) from i to t − 1, we see that

y(t)

at
−

y(i)

ai
=

t−1

∑
n=i

b

an+1 [ f (y(n) + x̄)− x̄] +
t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− x̄]

and so it follows that

y(t) = at

(

y(i)

ai
+

t−1

∑
n=i

b

an+1 [ f (y(n) + x̄)− x̄)] +
t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− x̄)]

)

= at

(

1
ai+1 (ay(i) + b f (y(i) + x̄)− bx̄) +

t−1

∑
n=i+1

b

an+1 [ f (y(n) + x̄)− x̄]

+
t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− x̄]

)

. (2.25)

Noting that ax + b f (x) is increasing, y(i) ≤ 0 , and f (x̄) = x̄, we see that

a(y(i) + x̄) + b f (y(i) + x̄) ≤ ax̄ + b f (x̄),

which yields

ay(i) + b f (y(i) + x̄)− bx̄ ≤ 0.

In addition, by noting (2.21) and the fact that 0 < y(n) ≤ y(t) for n = i + 1, i + 2, . . . , t − 1, we
see that

f (y(n) + x̄) < y(n) + x̄ ≤ y(t) + x̄, n = i + 1, i + 2, . . . , t − 1.

Hence, it follows from (2.25) that

y(t) ≤ at

(

t−1

∑
n=i+1

b

an+1 [y(t) + x̄ − x̄] +
t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− x̄]

)

= at

(

y(t)
t−1

∑
n=i+1

b

an+1 +
t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− f (x̄)]

)

=
(1 − at−i−1)b

1 − a
y(t) + at

t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− f (x̄)]

≤
(1 − ak)b

1 − a
y(t) + at

t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− f (x̄)],

which yields
(

1 −
(1 − ak)b

1 − a

)

y(t) ≤ at
t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− f (x̄)]. (2.26)

Then, by noting

1 −
(1 − ak)b

1 − a
=

c + akb

1 − a
,

it follows from (2.26) that

y(t) ≤
1 − a

c + akb
at

t−1

∑
n=i

c

an+1 [ f (y(n − k) + x̄)− f (x̄)]. (2.27)



8 A. Almaslokh and C. Qian

Since {x(n)} is bounded, there is a positive constant M such that |y(n)| = |x(n)− x̄| ≤ M, n =

0, 1, . . . Then by noting the Lipschitz property of f , we see that

| f (y(n − k) + x̄)− f (x̄)| ≤ L|y(n − k)| ≤ LM, n ≥ k.

Hence, (2.27) yields

y(t) ≤
1 − a

c + akb
at

t−1

∑
n=i

c

an+1 LM =
1 − a

c + akb

(

1 − at−i

1 − a

)

cLM ≤
1 − a

c + akb

(

1 − ak+1

1 − a

)

cLM,

that is,

y(t) ≤
c(1 − ak+1)

c + akb
LM.

It follows that

y(n) ≤
c(1 − ak+1)

c + akb
LM for i ≤ n ≤ j.

Since y(i) and y(j) are two arbitrary members of the solution with property (2.21), we see that
there is a positive integer N′

1 such that

y(n) ≤
c(1 − ak+1)

c + akb
LM, n ≥ N′

1.

Then, by a similar argument, it can be shown that there is a positive integer N′′
1 such that

y(n) ≥ −
c(1 − ak+1)

c + akb
LM, n ≥ N′′

1 .

Hence, there is a positive integer N1 such that

|y(n)| ≤
c(1 − ak+1)

c + akb
LM, n ≥ N1. (2.28)

Now, by noting (2.28) and the Lipschitz property of f (x) again, we see that

| f (y(n − k) + x̄)− f (x̄)| ≤ L|y(n − k)| ≤
c(1 − ak+1)

c + akb
L2M, n ≥ N1 + k.

Let y(i) and y(j) be two consecutive members of the solution {y(n)} with N1 + k ≤ i < j

such that (2.20) holds. Let y(t) be defined by (2.21). By a similar argument, we may show that
(2.22) holds and

y(t) ≤

(

c(1 − ak+1)

c + akb
L

)2

M.

Then it follows that

y(t) ≤

(

c(1 − ak+1)

c + akb
L

)2

M, i ≤ n ≤ j

and so again by noting y(i) and y(j) are two arbitrary members of the solution with property
(2.20), there is a positive integer N′

2 ≥ N1 + k such tat

y(n) ≤

(

c(1 − ak+1)

c + akb
L

)2

M, n ≥ N′
2.
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Similarly, it can be shown that there is a positive integer N′′
2 ≥ N1 + K such that

y(n) ≥ −

(

c(1 − ak+1)

c + akb
L

)2

M, n ≥ N′′
2 .

Hence, there is a positive integer N2 ≥ N1 + k such that

|y(n)| ≤

(

c(1 − ak+1)

c + akb
L

)2

M, n ≥ N2.

Finally, by induction, we find that for any positive integer m, there is a positive integer Nm

with Nm → ∞ as m → ∞ such that

|yn| ≤

(

c(1 − ak+1)

c + akb
L

)m

M, n ≥ Nm.

Then, by noting the hypotheses c(1−ak+1)
c+akb

L < 1, we see that y(n) → 0 as n → ∞, and so it
follows that x(n) → x̄ as n → ∞. The proof is complete.

3 Applications

In this section, we apply our result obtained in the last section to some difference equations
derived from mathematical biology.

Consider the system (1.2) which has been mentioned in Section 1. By a simple calculation,
Sys. (1.2) can be converted into the second order difference equation (1.3). Let us assume that
f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0, and f has a unique positive fixed point x̄. It is
not difficult to see that (x̄, x̄) is the unique positive equilibrium of Sys. (1.2). By Theorem 2.2,
we may have the following result.

Theorem 3.1. Assume that 1/2 ≤ ǫ < 1. Suppose also that x + f (x) is increasing, f satisfies the

negative feedback condition

(x − x̄)( f (x)− x) < 0, x > 0, x 6= x̄ (3.1)

and f is L-Lipschitz with

(2 − ǫ)(2 − 1/ǫ)L < 1. (3.2)

Then every positive solution (x(n), y(n)) of Sys. (1.2) tends to its positive equilibrium (x̄, x̄) as n →

∞. Furthermore, if f is differentiable and

(1 − ǫ)|1 + f ′(x̄)| < 1 + (1 − 2ǫ) f ′(x̄) < 2, (3.3)

then (x̄, x̄) is globally asymptotically stable.

Proof. Eq. (1.3) is in the form of (1.1) with a = b = 1 − ǫ, c = 2ǫ − 1 and k = 1. By the
hypotheses, ax + b f (x) = (1 − ǫ)(x + f (x)) is increasing. In addition,

c(1 − ak+1)

c + akb
L = (2 − ǫ)(2 − 1/ǫ)L < 1.
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Hence, by Theorem 2.2 every positive solution {x(n)} of Eq. (1.3) converges to x̄ as n → ∞.
Then from (1.2) we see that

ǫy(n) = x(n + 1)− (1 − ǫ) f (x(n)) → x̄ − (1 − ǫ) f (x̄) as n → ∞,

which yields
y(n) → x̄ as n → ∞.

Hence it follows that every positive solution (x(n), y(n)) of Sys. (1.2) converges to (x̄, x̄) as
n → ∞.

Clearly, to show that (x̄, x̄) is globally asymptotically stable when (3.3) holds, it suffices to
show that (x̄, x̄) is stable. Note that Sys. (1.2) can be converted into the scalar equation (1.3)
and the linearized equation of Eq. (1.3) about x̄ is

x(n + 1) = (1 − ǫ)x(n) + (1 − ǫ) f ′(x̄)x(n) + (2ǫ − 1) f ′(x̄)x(n − 1),

that is,

x(n + 1) + (ǫ − 1)(1 + f ′(x̄))x(n) + (1 − 2ǫ) f ′(x̄)x(n − 1) = 0. (3.4)

It is well-known (see, for example [9]) that for the linear equation

z(n + 1) + αz(n) + βz(n − 1) = 0,

where α and β are constants, a necessary and sufficient condition for the asymptotic stability
is

|α| < 1 + β < 2. (3.5)

Hence, when (3.3) holds, the zero solution of Eq. (3.4) is asymptotically stable. Then by lin-
earized stability theory, the positive equilibrium x̄ of Eq. (1.3) is asymptotically stable and so it
follows that the positive equilibrium (x̄, x̄) of Sys. (1.2) is asymptotically stable. This, together
with the global attractivity, we have shown above implies that (x̄, x̄) is globally asymptotically
stable. The proof is complete.

Sys. (1.2) is a population model proposed by Newman et al. [14] which assumes symmetri-
cal dispersal between an active population x(n) and a refuge population y(n). The exponential
function f (x) = λxe−x is a function studied in [14]. Using numerical simulations, it is con-
cluded that the presence of a passive refuge can greatly stabilize a population that would
otherwise exhibit chaotic dynamics. Now, by applying Theorem 3.1, we may get an explicit
sufficient condition for the global asymptotic stability of Sys. (1.2) when f (x) = λxe−x.

When λ > 1, x̄ = ln λ is the unique positive fixed point of f . Clearly, f satisfies the
negative feedback condition (3.1). Noting that

(x + f (x))′ = 1 + (1 − x)λe−x and (x + f (x))′′ = λ(x − 2)e−x,

we see that when λ ≤ e2,

(x + f (x))′ ≥ (x + f (x))′|x=2 = 1 − λe−2 ≥ 0,

and so x + f (x) is increasing. In addition, noting that

f ′(x) = λ(1 − x)e−x and f ′′(x) = λ(x − 2)e−x,
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we see that
f ′(0) = λ and f ′(2) = −λe−2,

and it follows that
| f ′(x)| ≤ λ, x ≥ 0.

Hence, f is L-Lipschitz with L = λ. Now observe that

f ′(x̄) = λ(1 − ln λ)e− ln λ = 1 − ln λ,

1 + (1 − 2ǫ) f ′(x̄) = 1 + (1 − 2ǫ)(1 − ln λ) < 1 + (2ǫ − 1)(ln e2 − 1) = 2ǫ < 2, λ ≤ e2

and

1 + (1 − 2ǫ) f ′(x̄) = 1 + (1 − 2ǫ)(1 − ln λ) > 1 + (1 − 2ǫ)

= 2(1 − ǫ) > (1 − ǫ)(2 − ln λ) = (1 − λ)|1 + f ′(x̄)|.

Hence, by Theorem 3.1, we have the following conclusion: if 1 < λ ≤ e2 and

(2 − ǫ)(2 − 1/ǫ)λ < 1,

then Sys. (1.2) has a unique positive equilibrium (ln λ, ln λ) that is globally asymptotically
stable.

In the above, we showed that our result can be applied to the case that f is not monotonic.
Clearly, our result can be applied to the case that f is monotonic also. The following is an
example in which the function f is decreasing. Consider the equation

x(n + 1) = ax(n) + b
q

1 + xp
+ c

q

1 + xp(n − k)
, (3.6)

where a, b and c are the same as those assumed in Eq. (1.1), and p ≥ 1, q ≥ 0 are constants. If
b = 0, (3.6) reduces to the equation of the form

x(n + 1) = ax(n) +
B

1 + xp(n − k)
, (3.7)

where B = cq. Eq. (3.7) is a discrete analogue of a model that has been used to study blood
cells production [10]. The global attractivity of positive solutions of this equation has been
studied by numerous authors, see for example, [2–4, 7–9] and the references cited therein. Let

f (x) =
q

1 + xp
.

Then f is decreasing and has a unique positive fixed point x̄. Clearly, f satisfies the feedback
condition (3.1). Now observe that

f ′(x) =
−qpxp−1

(1 + xp)2

and

f ′′(x) =
−qpxp−2((p − 1)− (p + 1)xp)

(1 + xp)3 .

We find that f ′(x) has a minimum at x∗ =
( p−1

p+1

)1/p and

f ′(x∗) = −
q

4p
(p − 1)1−1/p(1 + p)1+1/p.
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Hence, f is L-Lipschitz with

L =
q

4p
(p − 1)1−1/p(p + 1)1+1/p.

In addition, if

bq

4p
(p − 1)1−1/p(p + 1)1+1/p

< a, (3.8)

then

(ax + b f (x))′ = a + b f ′(x) ≥ a + b f ′(x∗) = a −
bq

4p
(p − 1)1−1/p(p + 1)1+1/p

> 0

and so the function ax + b f (x) is increasing, if

c(1 − ak+1)

c + akb

q

4p
(p − 1)1−1/p(p + 1)1+1/p

< 1, (3.9)

then (2.8) is satisfied. Therefore, by Theorem 2.2, if (3.8) and (3.9) hold, then every positive
solution of Eq. (3.6) tends to its positive equilibrium x̄.

When f (x) = q
1+xp , Sys. (1.2) can be converted into the second order difference equation

x(n + 1) = (1 − ǫ)x(n) + (1 − ǫ)
q

1 + xp(n)
+ (2ǫ − 1)

q

1 + xp(n − 1)
, (3.10)

which is in the form of Eq. (1.1) with a = b = 1 − ǫ, c = 2ǫ − 1 and k = 1. In this case, since

c(1 − ak+1)

c + akb
= (2 − ǫ)

(

2 −
1
ǫ

)

,

we see that (3.8) and (3.9) reduce to

q

4p
(p − 1)1−1/p(p + 1)1+1/p

< 1, (3.11)

and
(2 − ǫ)(2 −

1
ǫ
)

q

4p
(p − 1)1−1/p(p + 1)1+1/p

< 1, (3.12)

respectively. Then by noting (2 − ǫ)(2 − 1
ǫ ) < 1, we see that (3.11) yields (3.12).

From the above discussion and (3.12), we know that

− f ′(x̄) ≤ − f ′(x∗) =
q

4p
(p − 1)1−1/p(p + 1)1+1/p

< 1.

Then it follows that

1 + (1 − 2ǫ) f ′(x̄) = 1 + (2ǫ − 1)(− f ′(x̄)) ≤ 1 + (2ǫ − 1) = 2ǫ < 2

and

(1 − ǫ)|1 + f ′(x̄)| ≤ (1 − ǫ)(1 − f ′(x̄)) ≤ 2(1 − ǫ) ≤ 1 ≤ 1 + (2ǫ − 1)(− f ′(x̄)).

Hence, by Theorem 3.1, we find that if (3.11) holds, then Sys. (1.2) with f (x) = q
1+xp has a

unique positive equilibrium (x̄, x̄) which is globally asymptotically stable.



Global attractivity of a difference equation and applications 13

Acknowledgements

The authors wish to express their gratitude to the editor and the referee for carefully reading
of the manuscript and providing helpful suggestions.

References

[1] Y. Chow, S. R.-J. Jang, N. Yeh, Dynamics of a population in two patches with disper-
sal, J. Difference Equ. Appl. 24(2018), 543–563. https://doi.org/10.1080/10236198.2018.
1428962; MR3767030

[2] H. A. El-Morshedy, E. Liz, Convergence to equilibria in discrete population
models, J. Difference Equ. Appl. 11(2005), 117–131. https://doi.org/10.1080/

10236190512331319334; MR2114320

[3] J. R. Graef, C. Qian, Global stability in a nonlinear difference equation, J. Difference Equ.

Appl. 5(1999), 251–270. https://doi.org/10.1080/10236199908808186; MR1697059

[4] J. R. Graef, C. Qian, Global attractivity of the equilibrium of a nonlinear differ-
ence equation, Czech. Math. J. 52(127)(2002), 757–769. https://doi.org/10.1023/B:CMAJ.
0000027231.05060.D8; MR1940057

[5] J. R. Graef, C. Qian, Global attractivity in a nonlinear difference equation and its appli-
cation, Dynam. Systems Appl. 15(2006), 89–96. MR2194095

[6] D. D. Hai, C. Qian, Global attractivity in nonlinear difference equations of higher order
with a forcing term, Appl. Math. Comput. 264(2015) 198–207. https://doi.org/10.1016/
j.amc.2015.04.086; MR3351602

[7] A. F. Ivanov, On global stability in a nonlinear discrete model, Nonlinear Anal. 23(1994),
1383–1389. https://doi.org/10.1016/0362-546X(94)90133-3; MR1306677

[8] G. Karakostas, Ch. G. Philos, Y. G. Sficas, The dynamics of some disrete population
models, Nonlinear Anal. 17(1991), 1069–1084. https://doi.org/10.1016/0362-546X(91)
90192-4; MR1136230
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[17] S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, Existence and global attractivity of
periodic solutions to some classes of difference equations, Filomat 33(2019), 3187–3201.
https://doi.org/10.2298/FIL1910187S; MR4038981



Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 3, 1–23; https://doi.org/10.14232/ejqtde.2022.1.3 www.math.u-szeged.hu/ejqtde/

Global existence and blow-up for semilinear parabolic

equation with critical exponent in R
N

Fei Fang1 and Binlin ZhangB 1, 2

1School of Mathematics and Statistics, Beijing Technology and Business University,
Beijing, 100048, China

2College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao, 266590, China

Received 24 September 2021, appeared 14 January 2022

Communicated by Roberto Livrea

Abstract. In this paper, we use the self-similar transformation and the modified poten-
tial well method to study the long time behaviors of solutions to the classical semilinear
parabolic equation associated with critical Sobolev exponent in R

N . Global existence
and finite time blowup of solutions are proved when the initial energy is in three cases.
When the initial energy is low or critical, we not only give a threshold result for the
global existence and blowup of solutions, but also obtain the decay rate of the L2 norm
for global solutions. When the initial energy is high, sufficient conditions for the global
existence and blowup of solutions are also provided. We extend the recent results which
were obtained in [R. Ikehata, M. Ishiwata, T. Suzuki, Ann. Inst. H. Poincaré Anal. Non
Linéaire 27(2010), No. 3, 877– 900].

Keywords: Semilinear parabolic equation, critical Sobolev exponent, potential well
method, blow-up.

2020 Mathematics Subject Classification: 35A01, 35K15, 35K58.

1 Introduction

This paper deals with the following classical semilinear parabolic equation associated with

critical Sobolev exponent in R
N :

{

ut − ∆u = |u|p−1u in R
N × (0, T),

u|t=0 = u0(x) in R
N ,

(1.1)

where N > 3 and p = (N + 2)/(N − 2), the critical exponent associated with the Sobolev

imbedding.

BCorresponding author. Email: zhangbinlin2012@163.com
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There is a great literature on the existence of global solutions and blow-up for the problem

(1.1) on the bounded domain (see e.g. [2, 6, 9, 13, 21, 22, 25, 27, 28]):















ut − ∆u = |u|p−2u in Ω × (0, T),

u(x, t) = 0 on ∂Ω × [0, T),

u(x, 0) = u0(x) in Ω,

(1.2)

where p > 1. It is well known that there exist choices of u0 for which the corresponding

solutions tend to zero as t → ∞ and other choices for which the solutions blow-up in finite

time (see e.g. [9]). Tan [25], R. Ikehata and T. Suzuki [6] considered critical problem (1.2).

By means of the potential well method, they established the existence of global solutions and

studied the asymptotic behavior of solutions which heavily depend on the initial data. Using

the the comparison principle and variational methods, Gazzola and Weth [2] obtained global

solutions and finite time blow-up solutions with the initial data at high energy level.

The problem (1.1) in R
N was considered by Ishiwata and Suzuki [4], Ikehata, Ishiwata, and

Suzuki [5], Mizoguchi and Yanagida [14–16]. In [14], a sufficient condition on the decay order

of initial data, which may change sign, such that the solution of (1.1) blows up infinite time,

was gived. Using self-similar transformation, Mizoguchi and Yanagida [15, 16] established

the global existence and blow-up results for problem (1.1) in the R
1. In [4, 5], the decay and

blow-up of the solution with low energy initial data were studied by means of the potential-

well and forward self-similar transformation. For a general scope of this topic, we refer the

interested readers to the monographs [23] and references therein.

In this article, we consider the problem (1.1) with low initial energy, critical initial energy

and high initial energy. The results in our paper will be obtained by the self-similar trans-

formation and the modified potential well method. Potential well method, which was first

put forward to consider semi-linear hyperbolic initial boundary value problem by Payne and

Sattinger [20, 24] around 1970s, is a powerful tool in studying the long time behaviors of so-

lutions of some evolution equations. The potential well is defined by the level set of energy

functional and the derivative functional. It is generally true that solutions starting inside the

well are global in time, solutions starting outside the well and at an unstable point blow up

in finite time. After the pioneer work of Sattinger and Payne, some authors [7, 9–12, 17–19, 26]

used the method to study the global existence and nonexistence of solutions for various non-

linear evolution equations with initial boundary value problem. In [11,12], Liu et al. modified

and improved the method by introducing a family of potential wells which include the known

potential well as a special case. The modified potential well method has been used to study

semilinear pseudo-parabolic equations [9] and fourth-order parabolic equation [3]. In this

paper, we use the modified potential well method to obtain global existence and blow up in

finite time of solutions when the initial energy is low, critical and high, respectively. When

the initial energy is low, similar results are obtained in [5], but our result is more general,

moreover, we prove a more precise decay rate of the L2 norm of global solution.

This paper is organized as follows. In Section 2, we give some notations, definitions and

lemmas concerning the basic properties of the related functionals and sets. Sections 3 and 4

will be devoted to the cases EK (v0) < d and EK (v0) = d, respectively, where EK(v) will be

introduced in Section 2. In Section 5, we consider the case when the initial energy is high, i.e.

EK (v0) > d.
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2 Preliminaries and main lemmas

In this section, we shall introduce the self-similar transformation and the modified potential

well method and give a series of their properties for problem (1.1). The self-similar transfor-

mation is defined as follow:

v(y, s) = (1 + t)1/(p−1)u(x, t), t = es − 1, x = (1 + t)1/2y.

We can easily know that











vs + Lv = |v|p−1v +
1

p − 1
v in R

N × (0, S),

v|s=0 = v0 in R
N ,

(2.1)

where S = log(1 + T) and

L f = −∆ f −
1

2
y · ∇ f .

Letting

K(y) = e|y|
2/4,

we have

L f = −
1

K
∇ · (K∇ f ).

Let

‖ f ‖2,K =

{

∫

RN
| f (y)|2K(y)dy

}1/2

< +∞.

We also take

Hm(K) =
{

f ∈ L2(K) | Dα f ∈ L2(K) for any multi-index α in |α| 6 m
}

,

where m = 1, 2, . . . It is a Hilbert space provided with the norm

‖ f ‖Hm(K) =

{

∑
|α|6m

‖Dα f ‖2
2,K

}1/2

.

The linear operator L is realized as a self-adjoint operator in L2(K) through the relation

AK(u, v) :=
∫

RN
∇u(y) · ∇v(y)K(y)dy = (Lu, v)K, u ∈ D(L) ⊂ H1(K), v ∈ H1(K),

where

(u, v)K =
∫

RN
u(y)v(y)K(y)dy.

From Lemma 2.1 of [8], the domain D(L) of this operator L is the set of v ∈ L2(K) satisfying

Lv ∈ L2(K), and we have D(L) = H2(K), It holds also that L is positive selfadjoint and has the

compact inverse, and in particular, the set of normalized eigenfunctions of L forms a complete

ortho-normal equation in L2(K). The first eigenvalue λ1 of L is given by λ1 = N/2, and hence

from Proposition 2.3 of [1]. the following Poincaré inequality holds,

λ1‖v‖2
2,K 6 ‖∇v‖2

2,K, v ∈ H1(K). (2.2)



4 F. Fang and B. Zhang

We have

λ1 =
N

2
> λ ≡

1

p − 1
=

N − 2

4
.

Then, the operator

A = L −
1

p − 1

in L2(K) is also positive self-adjoint with the domain D(A)= H2(K). The semigroup
{

e−tA
}

t
>

0 are thus defined in L2(K). These characteristics guarantee the well-posedness of (1.1) locally

in time.

Now let us define the level set

Eα =
{

v ∈ H1(K) : EK(v) < α
}

. (2.3)

Furthermore, by the definition of EK(v),N , Eα and d, we easily know that

Nα = N ∩ Eα ≡

{

v ∈ N : ‖∇v‖2
2,K − λ‖v‖2

2,K <

√

2α(p + 1)

p − 1

}

6= ∅ for all α > d. (2.4)

Let

λα = inf {‖v‖2,K : v ∈ Nα} , Λα = sup {‖v‖2,K : u ∈ Nα} for all α > d. (2.5)

It is clear that λα is nonincreasing and Λα is nondecreasing with respect to α . For 0 < δ <
p+1

2 ,

let us define the modified functional and Nehari manifold as follows:

EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K,

DK,δ(v) = δ‖∇v‖2
2,K − λδ‖v‖2

2,K − ‖v‖
p+1
p+1,K,

Nδ =
{

u ∈ H1(K) : DK,δ(v) = 0, ‖v‖ 6= 0
}

,

dδ = inf
v∈Nδ

EK(v),

r(δ) = δ
N−2

2 S
N
2

λ .

Then we can define the modified potential wells and their corresponding sets as follows:

Wδ =
{

u ∈ H1(K) : Dδ(u) > 0, E(u) < d(δ)
}

∪ {0},

Vδ =
{

u ∈ H1(K) : Dδ(u) < 0, E(u) < d(δ)
}

,

Bδ =
{

u ∈ H1(K) : ‖∇u‖2,K < r(δ)
}

,

Bc
δ =

{

u ∈ H1(K) : ‖∇u‖2,K > r(δ)
}

.

(2.6)

We also introduce the following sets

B =
{

u0 ∈ H1(K) : the solution u = u(t) of (1.2) blows up in finite time
}

,

G =
{

u0 ∈ H1(K) : the solution u = u(t) of (1.2) exists for all t > 0
}

,

Go =
{

u0 ∈ G : u(t) 7→ 0 in H1(K) as t → ∞
}

.

(2.7)
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For future convenience, we give some useful lemmas which will play an important role in

the proof of our main results.

Let Lq(K) denote the Banach space composed of measurable functions v = v(y) defined in

R
N such that

‖v‖q,K =

{

∫

RN
|v(y)|qK(y)dy

}1/q

< +∞

for q ∈ [1, ∞) and

‖v‖∞,K = ess sup
y∈RN

| f (y)| < +∞

for q = ∞. The space L∞(K) = L∞
(

R
N
)

is thus compatible to the other spaces, i.e.,

lim
q↑∞

‖v‖q,K = ‖ f ‖∞,K, v ∈ L1(K) ∩ L∞
(

R
N
)

Although the inclusion

Lp(K) ⊂ Lq(K) (1 6 q < p 6 ∞)

fails, we have

H1(K) ⊂ L2∗(K)

for 2∗ = 2N/(N − 2) = p + 1. More precisely, Corollary 4.20 of [1] guarantees the following

fact, regarded as a Sobolev–Poincaré inequality.

Lemma 2.1 ([1, Corollary 4.20]). It holds that

S0‖v‖2
p+1,K + λ∗‖v‖2

2,K 6 ‖∇v‖2
2,K, v ∈ H1(K),

where λ∗ = max(1, N/4) and S0 stands for the Sobolev constant:

S0 = inf
{

‖∇v‖2
2 | v ∈ C∞

0

(

R
N
)

, ‖v‖p+1 = 1
}

.

Lemma 2.2 ([5, p. 882]). Set

Sλ = inf

{

‖∇v‖2
2,K − λ‖v‖2

2,K

‖v‖2
p+1,K

| v ∈ H1(K)

}

,

We have Sλ = S0.

So, it holds that

‖v‖
p+1
p+1,K 6

(

1

Sλ
(‖∇v‖2

2,K − λ‖v‖2
2,K)

)

p+1
2

, v ∈ H1(K), (2.8)

and

r(δ) = δ
N−2

2 S
N
2

λ ≥ ‖∇v‖2
2,K − λ‖v‖2

2,K.

Lemma 2.3. Let u0 ∈ H1(K).

(1) If 0 < ‖∇v‖2
2,K − λ‖v‖2

2,K < r(δ), then DK,δ(u) > 0. In particular, if 0 < ‖∇v‖2
2,K −

λ‖v‖2
2,K < r(1), then DK(u) > 0;

(2) If DK,δ(u) < 0, then ‖∇v‖2
2,K − λ‖v‖2

2,K > r(δ). In particular, if DK(u) < 0, then ‖∇v‖2
2,K −

λ‖v‖2
2,K > r(1);
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(3) If DK,δ(v) = 0, then ‖∇v‖2
2,K − λ‖v‖2

2,K > r(δ) or ‖∇v‖2
2,K − λ‖v‖2

2,K = 0. In particular, if

DK(v) = 0, then ‖∇v‖2
2,K − λ‖v‖2

2,K > r(1) or ‖∇v‖2
2,K − λ‖v‖2

2,K = 0;

(4) If DK,δ(v) = 0 and ‖∇v‖2
2,K − λ‖v‖2

2,K 6= 0, then EK(v) > 0 for 0 < δ <
p+1

2 , EK(v) = 0 for

δ = p+1
2 , E(v) < 0 for δ >

p+1
2 .

Proof. (1) Since 0 < ‖∇v‖2
2,K − λ‖v‖2

2,K < r(δ), by the Lemma 2.2 and (2.8), we have from the

assumption 0 < ‖v‖ < r(δ) := δ
N−2

2 S
N
2

λ , and we obtain

DK,δ(v) = δ‖∇v‖2
2,K − λδ‖v‖2

2,K − ‖v‖
p+1
p+1,K

≥ δ‖∇v‖2
2,K − λδ‖v‖2

2,K −

(

1

Sλ
(‖∇v‖2

2,K − λ‖v‖2
2,K)

)

p+1
2

≥ (‖∇v‖2
2,K − λ‖v‖2

2,K)



δ −

(

1

Sλ

)

p+1
2

(‖∇v‖2
2,K − λ‖v‖2

2,K)
2

N−2



 > 0. (2.9)

(2) By the assumption DK,δ(v) < 0 and (2.8), we have

0 ≥ DK,δ(v) = δ‖∇v‖2
2,K − λδ‖v‖2

2,K − ‖v‖
p+1
p+1,K

≥ δ‖∇v‖2
2,K − λδ‖v‖2

2,K −

(

1

Sλ
(‖∇v‖2

2,K − λ‖v‖2
2,K)

)

p+1
2

≥ (‖∇v‖2
2,K − λ‖v‖2

2,K)



δ −

(

1

Sλ

)

p+1
2

(‖∇v‖2
2,K − λ‖v‖2

2,K)
2

N−2



 . (2.10)

Hence, ‖∇v‖2
2,K − λ‖v‖2

2,K > r(δ).

(3) By the assumption DK,δ(v) = 0 and (2.8), we have

0 = DK,δ(v) = δ‖∇v‖2
2,K − λδ‖v‖2

2,K − ‖v‖
p+1
p+1,K

≥ δ‖∇v‖2
2,K − λδ‖v‖2

2,K −

(

1

Sλ
(‖∇v‖2

2,K − λ‖v‖2
2,K)

)

p+1
2

≥ (‖∇v‖2
2,K − λ‖v‖2

2,K)



δ −

(

1

Sλ

)

p+1
2

(‖∇v‖2
2,K − λ‖v‖2

2,K)
2

N−2



 . (2.11)

Hence, ‖∇v‖2
2,K − λ‖v‖2

2,K = r(δ). or v = 0.

(4) We easily know that

EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

=

(

1

2
−

δ

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K) +
1

p + 1
DK,δ(v)

=

(

1

2
−

δ

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K). (2.12)

Then we can prove the conclusion.
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Lemma 2.4.

(1) d(δ) > a(δ)r2(δ) for a(δ) = 1
2 −

δ
p+1 , 0 < δ <

p+1
2 ,

(2) limδ→0 d(δ) = 0, d
(

p+1
2

)

= 0 and d(δ) < 0 for δ >
p+1

2 ,

(3) d(δ) is increasing on 0 < δ 6 1, decreasing on 1 6 δ 6
p+1

2 and takes the maximum d = d(1)

at δ = 1.

Proof. (1) If u ∈ Nδ, by Lemma 2.3 (3), then ‖u‖ > r(δ). Moreover, we can deduce

EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

=

(

1

2
−

δ

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K) +
1

p + 1
DK,δ(v)

=

(

1

2
−

δ

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K) ≥ a(δ)r2(δ). (2.13)

Hence, d(δ) > a(δ)r2(δ).

(2) We easily know that

EK(sv) =
s2

2
‖∇v‖2

2,K −
λs2

2
‖v‖2

2,K −
sp+1

p + 1
‖v‖

p+1
p+1,K.

Hence,

lim
s→0

EK(sv) = 0. (2.14)

And if we let sv ∈ Nδ, then sv satisfies

0 = DK,δ(sv) = δs2‖∇v‖2
2,K − λs2δ‖v‖2

2,K − sp+1‖v‖
p+1
p+1,K.

Then, we obtain

s(δ) =





δ(‖∇v‖2
2,K − λ‖v‖2

2,K)

‖v‖
p+1
p+1,K





1
p−1

, (2.15)

which yields

lim
δ→0

s(δ) = 0. (2.16)

Now (2.14) implies that

lim
δ→0

EK(sv) = lim
λ→0

EK(sv) = 0, (2.17)

and

lim
δ→0

d(δ) = 0. (2.18)

It is easy to see that from (2.13)

d

(

p + 1

2

)

= 0 and d(δ) < 0 for δ >
p + 1

2
.

The proof is complete.
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(3) We need to prove that for any 0 < δ′ < δ′′ < 1 or 1 < δ′′ < δ′ <
p+1

2 and for any w ∈ Nδ′′ ,

there is a v ∈ Nδ′ and a constant ε (δ′, δ′′) such that EK(v) < EK(w)− ε (δ′, δ′′). Indeed, by the

definition of (2.15), we easily know that DK,δ(s(δ)u) = 0 and λ (δ′′) = 1. Let h(s) = EK(sw),

we have
d

ds
h(s) =

1

s

(

(1 − δ)(‖∇sw‖2
2,K − λ‖sw‖2

2,K) + DK,δ(sw)
)

= (1 − δ)s(‖∇w‖2
2,K − λ‖w‖2

2,K).
(2.19)

Take v = s (δ′)w, then v ∈ Nδ′ .

For 0 < δ′ < δ′′ < 1, we obtain

EK(w)− EK(v) = h(1)− h
(

s
(

δ′
))

>

(

1 − δ′′
)

r2
(

δ′′
)

s
(

δ′
) (

1 − s
(

δ′
))

≡ ε
(

δ′, δ′′
)

.
(2.20)

For 1 < δ′′ < δ′ <
p+1

2 , we obtain

EK(w)− EK(v) = h(1)− h
(

s
(

δ′
))

>

(

δ′′ − 1
)

r2
(

δ′′
)

s
(

δ′′
) (

s
(

δ′
)

− 1
)

≡ ε
(

δ′, δ′′
)

.
(2.21)

Hence, the proof is complete.

Lemma 2.5. Let u0 ∈ H1(K) and 0 < δ <
p+1

2 . If EK(v) 6 d(δ), then we have

(1) If DK,δ(v) > 0, then ‖∇v‖2
2,K − λ‖v‖2

2,K <
d(δ)
a(δ)

, where a(δ) = 1
2 − δ

p+1 . In particular, if

EK(v) 6 d and DK(v) > 0, then

‖∇v‖2
2,K − λ‖v‖2

2,K <
2(p + 1)

p − 1
d. (2.22)

(2) If ‖∇v‖2
2,K − λ‖v‖2

2,K >
d(δ)
a(δ)

, then DK,δ(u) < 0. In particular, if EK(v) 6 d and

‖∇v‖2
2,K − λ‖v‖2

2,K >
2(p + 1)

p − 1
d, (2.23)

then DK(v) < 0.

(3) If DK,δ(v) = 0, then ‖∇v‖2
2,K − λ‖v‖2

2,K 6
d(δ)
a(δ)

. In particular, if EK(v) 6 d and DK(v) = 0,

then

‖∇v‖2
2,K − λ‖v‖2

2,K 6
2(p + 1)

p − 1
d. (2.24)

Proof. (1) For 0 < δ <
p+1

2 , we see that

EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

=

(

1

2
−

δ

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K) +
1

p + 1
Dδ(u)

= a(δ)‖u‖2 ≤ d(δ). (2.25)

Therefore,

‖∇v‖2
2,K − λ‖v‖2

2,K <
d(δ)

a(δ)
.

Finally, (2) and (3) follow from (2.25).
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Lemma 2.6. Let v ∈ H1(K). We have

(1) 0 is away from both N and N−, i.e. dist(0,N ) > 0, dist(0, N−) > 0.

(2) For any α > 0, the set Eα ∩N+ is bounded in H1(K).

Proof. (1) If v ∈ N , then we have

d ≤ EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

=

(

1

2
−

1

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K) +
1

p + 1
D(u)

=

(

1

2
−

1

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K).

If v ∈ N−, then we have

d ≤ EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

=

(

1

2
−

1

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K) +
1

p + 1
D(u)

≤

(

1

2
−

1

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K).

Hence, 0 is away from both N and N−, i.e. dist(0,N ) > 0, dist (0, N−) > 0.

(2) Since EK(v) < α and DK(v) > 0, we obtain

α > EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

=

(

1

2
−

1

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K) +
1

p + 1
D(u)

>

(

1

2
−

1

p + 1

)

(‖∇v‖2
2,K − λ‖v‖2

2,K).

Hence, for any α > 0, the set Eα ∩N+ is bounded in H1(K).

3 Low initial energy EK(v0) < d

The goal of this section is to prove Theorems 3.2–3.6. A threshold result for the global solutions

and finite time blowup will be given.

Theorem 3.1. Assume that v0 ∈ H1(K), T is the maximal existence time of u, and 0 < e < d, δ1 < δ2

are two roots of equation d(δ) = e. We have

(1) If DK(v0) > 0, all weak solutions u of equation (2.1) with EK (v0) = e belong to Wδ for

δ1 < δ < δ2, 0 6 t < T.

(2) If DK(v0) < 0, all weak solutions u of equation (2.1) with EK (v0) = e belong to Vδ for δ1 <

δ < δ2, 0 6 t < T.

Theorem 3.2 (Global existence). Assume that v0 ∈ H1(K), EK (u0) < d, DK (u0) > 0. Then

equation (2.1) has a global solution v(t) ∈ L∞(0, ∞; H1(K)) and v(t) ∈ W for 0 6 t < ∞.
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Remark 3.3. Result similar to Theorem 3.2 is obtained in [5]. But our proof is different to [5].

In fact, using the modified potential well method we can obtain the more general conclusion:

If the assumption DK (u0) > 0 is replaced by DK,δ2
(u0) > 0, where δ1 < δ2 are the two

roots of equation d(δ) = EK (u0) , then equation (2.1) admits a global weak solution.

The following result is obtained in [5]. But our proof is different from the proof in [5]. For

the reader’s convenience, we will give the detailed proof.

Theorem 3.4. Assume that v0 ∈ H1(K), EK (v0) < d and D (v0) < 0. Then the weak solution v(t)

of equation (2.1) blows up in finite time, that is, there exists a T > 0 such that

lim
t→T

∫ t

0
‖v(τ)‖2,Kdτ = +∞.

Remark 3.5. Assume that v0 ∈ H1(K),EK (v0) < d. When DK (u0) > 0, equation (2.1) has a

global solution. When DK (v0) < 0, equation (2.1) does not admit any global weak solution.

Theorem 3.6. Assume that v0 ∈ H1(K), EK (v0) < d and DK (v0) > 0, δ1 < δ2 are the two roots of

equation d(δ) = EK(v0). Then, for the global weak solution v of equation (2.1), it holds

‖v‖2
2,K 6 ‖v0‖

2
2,Ke−2Sλ(1−δ1)t, 0 6 t < ∞. (3.1)

Remark 3.7. In comparison with the decay rate in [5], our result concerning the decay rate of

|u|2 in Theorem 3.6 is much more precise.

In order to prove Theorems 4.1–4.4, we need the following lemmas:

Lemma 3.8. For 0 < T ≤ ∞, assume that v : Ω × [0, T) → R
3 is a weak solution to equation (2.1).

Then it holds
∫ t2

t1

‖vt‖
2
2,K dt + EK (v (t2)) = EK (v (t1)) , ∀t1, t2 ∈ (0, T). (3.2)

Proof. Multiplying (2.1) by vt and integrating over R
N via the integration by parts, we get

(3.2).

Lemma 3.9. If 0 < EK(v) < d for some v ∈ H1(K), and δ1 < 1 < δ2 are the two roots of equation

d(δ) = EK(v), then the sign of DK,δ(v) does not change for δ1 < δ < δ2 .

Proof. Since EK(v) > 0, we have ‖v‖2,K 6= 0. If the sign of DK,δ(v) is changeable for δ1 < δ < δ2,

then we choose δ̄ ∈ (δ1, δ2) such that DK,δ̄(v) = 0. Hence, by the definition of d(δ̄), we can

obtain EK(v) > d(δ̄), which contradicts EK(v) = d (δ1) = d (δ2) < d(δ̄) (by Lemma 2.4 (3)).

Definition 3.10 (Maximal existence time). Assume that v(t) is a weak solution of equation

(2.1). The maximal existence time T of v(t) is defined as follows:

(1) If v(t) exists for 0 6 t < ∞, then T = +∞.

(2) If there is a t0 ∈ (0, ∞) such that v(t) exists for 0 6 t < t0, but doesn’t exist at t = t0,

then T = t0.
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Proof of Theorem 3.1. (1) Let v(t) be any weak solution of equation (2.1) with EK (v0) = e,

DK (v0) > 0, and T be the maximal existence time of v(t). Using EK (v0) = e, DK (v0) > 0 and

Lemma 3.9, we have DK,δ (v0) > 0 and EK (v0) < d(δ). So v0(x) ∈ Wδ for δ1 < δ < δ2. We need

to prove that v(t) ∈ Wδ for δ1 < δ < δ2 and 0 < t < T. Indeed, if this is not the conclusion,

from time continuity of DK(v) we assume that there must exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, T)

such that v (t0) ∈ ∂Wδ0
, and Dδ0

(v (t0)) = 0, ‖v (t0)‖ 6= 0 or EK (v (t0)) = d (δ0) . From the

energy equality

∫ t

0

∫

Ω
|vτ|

2 + EK (v (t)) = EK(v0) < d(δ), δ1 < δ < δ2, 0 6 t < T, (3.3)

we easily know that EK (v (t0)) 6= d (δ0) . If DK,δ0
(v (t0)) = 0, ‖v (t0)‖ 6= 0, then by the defini-

tion of d(δ) we obtain EK (v (t0)) > d (δ0) , which contradicts (3.3).

(2) Let v(t) be any weak solution of equation (2.1) with EK (v0) = e, DK (v0) < 0, and T be

the maximal existence time of v(t). Using EK (v0) = e, DK (v0) < 0 and Lemma 3.9, we have

Dδ (u0) < 0 and EK (v0) < d(δ). So u0 ∈ Vδ for δ1 < δ < δ2. We need to prove that v(t) ∈ Vδ for

δ1 < δ < δ2 and 0 < t < T. Indeed, if this is not the conclusion, from time continuity of DK(v)

we assume that there must exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, T) such that v (t0) ∈ ∂Vδ0
, and

DK,δ0
(v (t0)) = 0, or EK (v (t0)) = d (δ0) . From the energy equality (3.3), we easily know that

E (v (t0)) 6= d (δ0) . If DK,δ0
(v (t0)) = 0, and t0 is the first time such that DK,δ0

(v(t)) = 0, then

DK,δ0
(v(t)) < 0 for 0 6 t < T. By Lemma (2.3) (2), we have ‖v (t0)‖ > r (δ0) for 0 6 t < T. So,

‖v (t0)‖ > r (δ0) and EK (v (t0)) 6= d (δ0) , which contradicts (3.3). As required.

Proof of Theorem 3.2. From the standard argument in [5], we can prove the local existence

result of (2.1) in a more general case of initial value v0 ∈ H1(K) and v ∈ C0
(

[0, T0] , H1(K)
)

.

Using EK (v0) < d, DK (v0) > 0 and Lemma 3.9, we have Dδ (v0) > 0 and EK (v0) < d(δ).

So v0(x) ∈ Wδ for δ1 < δ < δ2. We need to prove that v(t) ∈ Wδ for δ1 < δ < δ2 and 0 < t < T.

Indeed, if this is not the conclusion, from time continuity of DK(v) we assume that there must

exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, T) such that v (t0) ∈ ∂Wδ0
, and DK,δ0

(v (t0)) = 0, ‖v (t0)‖ 6= 0

or EK (v (t0)) = d (δ0) . From the energy equality

∫ t

0

∫

Ω
|vτ|

2 + EK (v (t)) = EK(v0) < d(δ), δ1 < δ < δ2, 0 6 t < T, (3.4)

we easily know that EK (v (t0)) 6= d (δ0) . If DK,δ0
(v (t0)) = 0, ‖v (t0)‖ 6= 0, then by the defini-

tion of d(δ) we obtain EK (v (t0)) > d (δ0) , which contradicts (3.3).

Remark 3.11. If in Theorem 3.2 the condition Dδ2
(u0) > 0 is replaced by ‖u0‖ < r (δ2) , then

equation (2.1) has a global weak solution u(t) ∈ L∞(0, ∞; H1(K)) with ut(t) ∈ L2(0, ∞; H1(K))

and the following result holds

‖u‖ <
d(δ)

a(δ)
, δ1 < δ < δ2, 0 6 t < ∞, (3.5)

∫ t

0
|uτ|

2 dτ < d(δ), δ1 < δ < δ2, 0 6 t < ∞. (3.6)

In particular

‖u‖2
<

d (δ1)

a (δ1)
, (3.7)

∫ t

0
|uτ|

2 dτ < d (δ1) , 0 6 t < ∞. (3.8)
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Proof of Theorem 3.4. We argue by contradiction. Suppose that there would exist a global

weak solution v(t). Set

f (t) =
∫ t

0
‖v‖2

2,Kdτ, t > 0. (3.9)

Multiplying (2.1) by u and integrating over RN × (0, t), we get

‖v(t)‖2
2,K − ‖v0‖

2
2,K = −2

∫ t

0
(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K). (3.10)

According to the definition of f (t), we have f ′(t) = ‖v(t)‖2
2,K and hence

f ′(t) = ‖v(t)‖2
2,K = ‖v0‖

2
2,K − 2

∫ t

0
(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K), (3.11)

and

f ′′(t) = −2(‖∇v‖2
2,K − λ‖v‖2

2,K − ‖v‖
p+1
p+1,K) = −2DK(v). (3.12)

Now using (3.2), (3.12) and

EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

=
p − 1

2(p + 1)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1

p + 1
DK(v),

we can obtain

f ′′(t) ≥ 2(p + 1)
∫ t

0
‖vτ(τ)‖

2
2,Kdτ + Sλ(p − 1)‖v‖2

2,K − 2(p + 1)EK (v0)

= 2(p + 1)
∫ t

0
‖vτ(τ)‖

2
2,Kdτ + Sλ(p − 1) f ′(t)− 2(p + 1)EK (v0) . (3.13)

Note that

f (t) f ′′(t) = f (t)

[

2(p + 1)
∫ t

0
‖vτ(τ)‖

2
2,Kdτ + Sλ(p − 1) f ′(t)− 2(p + 1)EK (v0)

]

= 2(p + 1)
∫ t

0
‖v‖2

2,Kdτ
∫ t

0
‖vτ(τ)‖

2
2,Kdτ + Sλ(p − 1) f (t) f ′(t)

−2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ. (3.14)

Hence, we have

f (t) f ′′(t)−
p + 1

2
( f ′(t))2 = 2(p + 1)

∫ t

0
‖v‖2

2,Kdτ
∫ t

0
‖vτ(τ)‖

2
2,Kdτ

−2(p + 1)
∫ t

0
(vτ, v)Kdτ + Sλ(p − 1) f (t) f ′(t)

−2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ − (p + 1) f ′(t)‖v0‖
2
2,K. (3.15)

Making use of the Schwartz inequality, we have

f (t) f ′′(t)−
p + 1

2
( f ′(t))2 ≥ C∗(p − 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖

2
2,K

−2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ. (3.16)
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Next, we distinguish two cases:

(1) If EK (u0) 6 0, then

f (t) f ′′(t)−
p + 1

2
( f ′(t))2 ≥ C∗(p − 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖

2
2,K. (3.17)

Now we prove DK(v) < 0 for t > 0. If not, we must be allowed to choose a t0 > 0 such that

DK (v (t0)) = 0 and DK(v) < 0 for 0 6 t < t0. From Lemma 2.3 (2), we have ‖u‖ > r(1) for

0 6 t < t0, ‖v (t0)‖ > r(1) and EK (v (t0)) > d, which contradicts (3.3). From (3.12) we have

f ′(t) > 0 for t > 0. From f ′(0) = ‖v(0)‖2
2,K > 0, we can know that there exists a t0 > 0 such

that f ′ (t0) > 0. For t > t0 we have

f (t) > f ′ (t0) (t − t0) > f ′(0) (t − t0) . (3.18)

Hence, for sufficiently large t , we obtain

f (t) > (p + 1)‖v0‖
2
2,K, (3.19)

then

f (t) f ′′(t)−
p + 1

2
( f ′(t))2

> 0.

(2) If 0 < EK (v0) < d, then by Theorem 3.1 we have v(t) ∈ Vδ for 1 < δ < δ2, t > 0, and

Dδ(v) < 0, ‖∇v‖2
2,K − λ‖v‖2

2,K > r(δ) for 1 < δ < δ2, t > 0, where δ2 is the larger root of

equation d(δ) = EK (v0) . Hence, Dδ2
(v) 6 0 and ‖∇v‖2

2,K − λ‖v‖2
2,K > r (δ2) for t > 0. By

(3.12), we have

f ′′(t) = −2DK(v) = 2 (δ2 − 1) (‖∇v‖2
2,K − λ‖v‖2

2,K)− 2Dδ2
(v),

> 2 (δ2 − 1) (‖∇v‖2
2,K − λ‖v‖2

2,K) > 2 (δ2 − 1) r2 (δ2) , t > 0,

f ′(t) > 2 (δ2 − 1) r2 (δ2) t + f ′(0) > 2 (δ2 − 1) r2 (δ2) t, t > 0,

f (t) > (δ2 − 1) r2 (δ2) t2, t > 0.

(3.20)

Therefore, for sufficiently large t, we infer

Sλ(p − 1)

2
f (t) > (p + 1)‖v0‖

2
2,K,

Sλ(p − 1)

2
f ′(t) > 2(p + 1)EK (v0) . (3.21)

Then, (3.16) implies that

f (t) f ′′(t)−
p + 1

2
( f ′(t))2 ≥ Sλ(p − 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖

2
2,K

− 2(p + 1) f (t)EK(v0)
∫ t

0
‖v(τ)‖2

2,K.

=

(

Sλ(p − 1)

2
f (t)− (p + 1)‖v0‖

2
2,K

)

f ′(t)

+

(

Sλ(p − 1)

2
f ′(t)− 2(p + 1)EK (v0)

)

f (t) > 0.

The remainder of the proof is the same as that in [12].
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Proof of Theorem 3.6. Multiplying (2.1) by w, w ∈ L∞
(

0, ∞; H1(K)
)

, we have

(vt, w)K + (∇v,∇w)K =

(

|v|p−1v +
v

p − 1
, w

)

K

. (3.22)

Letting w = v, (3.22) implies that

1

2

d

dt
‖v‖2

2,K + DK(v) = 0, 0 6 t < ∞. (3.23)

From 0 < EK (v0) < d, DK (v0) > 0 and Lemma 3.1, we have v(t) ∈ Wδ for δ1 < δ < δ2

and 0 6 t < ∞, where δ1 < δ2 are the two roots of equation d(δ) = EK (v0) . Hence, we obtain

DK,δ(v) > 0 for δ1 < δ < δ2 and DK,δ1
(v) > 0 for 0 6 t < ∞. So, (3.23) gives

1

2

d

dt
‖v‖2

2,K + (1 − δ1)(‖∇v‖2
2,K − λ‖v‖2

2,K) + DK,δ1
(v) = 0, 0 6 t < ∞. (3.24)

Now (3.23) implies that

1

2

d

dt
‖v‖2

2,K + Sλ(1 − δ1) ‖v‖2
2,K ≤ 0, 0 6 t < ∞. (3.25)

and

‖v‖2
2,K 6 ‖v0‖

2
2,K − 2Sλ (1 − δ1)

∫ t

0
|v(τ)|2dτ, 0 6 t < ∞. (3.26)

By Gronwall’s inequality, we have

|v|22,K 6 |v0|
2
2,K e−2Sλ(1−δ1)t, 0 6 t < ∞. (3.27)

This completes the proof.

4 Critical initial energy EK(v0) = d

The goal of this section is to prove Theorem 4.1–4.4.

Theorem 4.1 (Global existence). Assume that v0 ∈ H1(K),E (v0) = d and DK (v0) > 0. Then

equation (2.1) has a global weak solution u(t) ∈ L∞(0, ∞; H1(K)) and v(t) ∈ W = W ∪ ∂W for

0 6 t < ∞.

Lemma 4.2. Assume that v ∈ H1(K), ‖∇v‖2
2 6= 0, and DK(v) ≥ 0. Then:

(1) limµ→0 EK(λv) = 0, limµ→+∞ EK(µv) = −∞,

(2) On the interval 0 < µ < ∞, there exists a unique µ∗ = µ∗(u), such that

d

dµ
EK (µv)|µ=µ∗ = 0, (4.1)

(3) EK(µv) is increasing on 0 6 µ 6 µ∗, decreasing on µ∗ 6 µ < ∞ and takes the maximum at

µ = µ∗,

(4) DK(µv) > 0 for 0 < µ < µ∗, DK(µv) < 0 for µ∗
< µ < ∞, and DK (µ∗v) = 0.
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Proof. (1) Firstly, from the definition of EK(v), i.e.

EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

and we see that

EK(µv) =
1

2
‖∇µv‖2

2,K −
λ

2
‖µv‖2

2,K −
1

p + 1
‖µv‖

p+1
p+1,K.

Hence, we have

lim
µ→0

EK(µv) = 0 and lim
µ→+∞

EK(µu) = −∞. (4.2)

(2) It is easy to show that

d

dµ
EK(µv) = µ‖∇v‖2

2,K − µλ‖v‖2
2,K − µp‖v‖

p+1
p+1,K,

which leads to the conclusion.

(3) By Lemma 4.2 (2), one has

d

dµ
EK(µv) > 0 for 0 < µ < µ∗,

d

dµ
EK(µv) < 0 for µ∗

< µ < ∞,

(4.3)

which leads to the conclusion.

(4) The conclusion follows from

DK(µv) =
d

dµ
EK(µv) = µ‖∇v‖2

2,K − µλ‖v‖2
2,K − µp‖v‖

p+1
p+1,K.

As desired.

Proof of Theorem 4.1. Firstly, EK (v0) = d implies that ‖v0‖H1(K) 6= 0. Choose a sequence {µm}
such that 0 < µm < 1, m = 1, 2, . . . and µm → 1 as m → ∞. Let v0m = µmv0. We consider the

following initial problem











vs + Lv = |v|p−1v +
1

p − 1
v in R

N × (0, S),

v|s=0 = v0m in R
N .

(4.4)

From DK (v0) > 0 and Lemma 4.2, we have µ∗ = µ∗ (u0) > 1. Thus, we get DK (v0m) =

DK (µmv0) > 0 and EK (v0m) = EK (µmv0) < EK (v0) = d. From Theorem 3.2, it follows

that for each m problem (4.4) admits a global weak solution vm(t) ∈ L∞(0, ∞; H1(K)) with

vmt(t) ∈ L2(0, ∞; H1(K)) and vm(t) ∈ W for 0 6 t < ∞ satisfying

(vm,t, w)K + (∇vm,t,∇w)K =

(

|v|p−1v +
v

p − 1
, w

)

K

, for all w ∈ H1(K), t > 0. (4.5)

∫ t

0
‖vm,τ‖

2
2,K + EK (vm (t)) = EK(v0m) < d, 0 6 t < ∞, (4.6)
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which implies that

EK(vm) =
1

2
‖∇vm‖

2
2,K −

λ

2
‖vm‖

2
2,K −

1

p + 1
‖vm‖

p+1
p+1,K

=
p − 1

2(p + 1)
(‖∇vm‖

2
2,K − λ‖vm‖

2
2,K) +

1

p + 1
DK(vm). (4.7)

Therefore, one has
∫ T

0
‖vm,τ‖

2
2,Kdτ +

p − 1

2(p + 1)
(‖∇vm‖

2
2,K − λ‖vm‖

2
2,K) < d, 0 6 t < ∞. (4.8)

The remainder of the proof is similar to the proof of Theorem 3.2.

Theorem 4.3 (Blow-up). Assume that v0 ∈ H1(K), EK (v0) = d and D (v0) > 0, Then the existence

time of weak solution for equation (2.1) is finite.

Proof of Theorem 4.3. Let v(t) be any weak solution of equation (2.1) with EK (v0) = d and

DK (v0) < 0, T be the existence time of v(t) . We next prove T < ∞. We argue by contradiction.

Suppose that there would exist a global weak solution v(t). Set

f (t) =
∫ t

0
‖v‖2

2,Kdτ, t > 0. (4.9)

Multiplying (2.1) by u and integrating over RN × (0, t), we get

‖v(t)‖2
2,K − ‖v0‖

2
2,K = −2

∫ t

0
(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K). (4.10)

According to the definition of f (t), we have f ′(t) = ‖v‖2
2,K and hence

f ′(t) = ‖v(t)‖2
2,K = ‖v0‖

2
2,K − 2

∫ t

0
(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K), (4.11)

and

f ′′(t) = −2(‖∇v‖2
2,K − λ‖v‖2

2,K − ‖v‖
p+1
p+1,K) = −2DK(v). (4.12)

Now using (3.2), (4.12) and

EK(v) =
1

2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖

p+1
p+1,K

=
p − 1

2(p + 1)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1

p + 1
DK(v),

we can obtain

f ′′(t) ≥ 2(p + 1)
∫ t

0
‖vτ(τ)‖

2
2,Kdτ + Sλ(p − 1)‖v‖2

2,K − 2(p + 1)EK (v0)

= 2(p + 1)
∫ t

0
‖vτ(τ)‖

2
2,Kdτ + Sλ(p − 1) f ′(t)− 2(p + 1)EK (v0) . (4.13)

Note that

f (t) f ′′(t) = f (t)

[

2(p + 1)
∫ t

0
‖vτ(τ)‖

2
2,Kdτ + C∗(p − 1) f ′(t)− 2(p + 1)EK (v0)

]

= 2(p + 1)
∫ t

0
‖v‖2

2,Kdτ
∫ t

0
‖vτ(τ)‖

2
2,Kdτ + Sλ(p − 1) f (t) f ′(t)

−2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ. (4.14)
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Hence, we have

f (t) f ′′(t)−
p + 1

2
( f ′(t))2 = 2(p + 1)

∫ t

0
‖v‖2

2,Kdτ
∫ t

0
‖vτ(τ)‖

2
2,Kdτ

− 2(p + 1)
∫ t

0
(vτ, v)Kdτ + Sλ(p − 1) f (t) f ′(t)

− 2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ − (p + 1) f ′(t)‖v0‖
2
2,K. (4.15)

Hence, according to (4.15) and the Schwartz inequality, we obtain

f (t) f ′′(t)−
p + 1

2
( f ′(t))2 ≥ Sλ(p − 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖

2
2,K

− 2(p + 1) f (t)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ.

=

(

Sλ(p − 1)

2
f (t)− (p + 1)‖v0‖

2
2,K

)

f ′(t)

+

(

Sλ(p − 1)

2
f ′(t)− 2(p + 1)EK (v0)

)

f (t). (4.16)

On the other hand, from EK (v0) = d > 0, DK (v0) < 0 and the continuity of EK(v) and DK(v)

with respect to t, it follows that there exists a sufficiently small t1 > 0 such that EK (v (t1)) > 0

and DK(v) < 0 for 0 6 t 6 t1. Hence (vt, v)K = −DK(v) > 0, ‖vt‖2 > 0 for 0 6 t 6 t1. So,

using the continuity of
∫ t

0 ‖vτ‖
2
2,K dτ, we can choose a t1 such that

0 < d1 = d −
∫ t1

0
‖vτ‖

2
2,K dτ < d. (4.17)

And by (3.4), we get

0 < EK (v (t1)) = d −
∫ t1

0
‖vτ‖

2
2,k dτ = d1 < d. (4.18)

So we can choose t = t1 as the initial time, then we obtain v(t) ∈ Vδ for δ ∈ (δ1, δ2) , t1 6 t < ∞,

where (δ1, δ2) is the maximal interval including δ = 1 such that d(δ) > d1 for δ ∈ (δ1, δ2) . Thus

we get DK,δ(v) < 0 and ‖v‖ > r(δ) for δ ∈ (1, δ2) , t1 6 t < ∞, and DK,δ2
(v) 6 0, ‖∇v‖2

2,K −
λ‖v‖2

2,K > r (δ2) for t1 6 t < ∞. Thus (4.12) implies that

f ′′(t) = −2DK(v) = 2 (δ2 − 1) (‖∇v‖2
2,K − λ‖v‖2

2,K)− 2DδK,2
(v),

> 2 (δ2 − 1) r (δ2) , t > t1,

f ′(t) > 2 (δ2 − 1) r (δ2) (t − t1) + f ′(t1) > 2 (δ2 − 1) r (δ2) (t − t1), t > 0,

f (t) > (δ2 − 1) r (δ2) (t − t1)
2 + M(t1) > (δ2 − 1) r (δ2) (t − t1)

2, t > t1.

(4.19)

Therefore, for sufficiently large t, we infer

Sλ(p − 1)

2
f (t) > (p + 1)‖v0‖

2
2,K,

Sλ(p − 1)

2
f ′(t) > 2(p + 1)EK (v0) . (4.20)



18 F. Fang and B. Zhang

Then, (4.16) implies that

f (t) f ′′(t)−
p + 1

2
( f ′(t))2 ≥ Sλ(p − 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖

2
2,K

− 2(p + 1) f (t)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ.

=

(

Sλ(p − 1)

2
f (t)− (p + 1)‖v0‖

2
2,K

)

f ′(t)

+

(

Sλ(p − 1)

2
f ′(t)− 2(p + 1)EK (v0)

)

f (t) > 0.

The remainder of the proof is the same as that in [12].

Theorem 4.4. Assume that u0 ∈ H1(K), EK (v0) = d and DK (v0) > 0, δ1 < δ2 are the two roots of

equation d(δ) = EK(v0). Then, for the global weak solution v of equation (2.1), it holds

|v|22 6 |v0|
2
2 e−2Sλ(1−δ1)t, 0 6 t < ∞. (4.21)

Proof of Theorem 4.4. We first know that equation (2.1) has a global weak solution from The-

orem 4.3. Furthermore, Using Theorem 3.4, Theorem 4.3 and (3.3), if v(t) is a global weak

solution of equation (2.1) with EK(v0) = d, DK(v0) > 0, then must have DK(v) ≥ 0 for

0 ≤ t < +∞. Next, we distinguish two cases:

(1) Suppose that DK(v) > 0 for 0 6 t < ∞. Multiplying (2.1) by v, v ∈ L∞
(

0, ∞; H1(K)
)

, we

have

(vt, w)K + (∇vt,∇w)K =

(

|v|p−1v +
v

p − 1
, w

)

K

, for all w ∈ H1(K), t > 0. (4.22)

Letting w = v, (4.22) implies that

1

2

d

dt
‖v‖2

2,K = −DK(v) < 0, 0 6 t < ∞. (4.23)

Since ‖vt‖2,K > 0, we have that
∫ t

0 ‖vτ‖
2 dτ is increasing for 0 6 t < ∞. By choosing any t1 > 0

such that

0 < d1 = d −
∫ t1

0
‖vτ‖

2
2,Kdτ < d. (4.24)

From (3.3), if follows that 0 < EK (v) ≤ d1 < d, and v(t) ∈ Wδ for δ1 < δ < δ2 and

0 6 t < ∞, where δ1 < δ2 are the two roots of equation d(δ) = EK (v0) . Hence, we obtain

DK,δ1
(v) > 0 for δ1 < δ < δ2 and DK,δ1

(v) > 0 for t1 6 t < ∞. So, (4.23) gives

1

2

d

dt
‖v‖2

2,K + (1 − δ1) |v|
2
2 + DK,δ(v) = 0, t1 6 t < ∞. (4.25)

1

2

d

dt
‖v‖2

2,K + (1 − δ1)(‖∇v‖2
2,K − λ‖v‖2

2,K) + DK,δ1
(v) = 0, 0 6 t < ∞. (4.26)

Now (4.23) implies that

1

2

d

dt
‖v‖2

2,K + Sλ(1 − δ1) ‖v‖2
2,K ≤ 0, 0 6 t < ∞. (4.27)

and

‖v‖2
2,K 6 ‖v0‖

2
2,K − 2Sλ (1 − δ1)

∫ t

0
|v(τ)|2dτ, 0 6 t < ∞. (4.28)
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and By Gronwall’s inequality, we have

|v|22,K 6 |v0|
2
2 e−2Sλ(1−δ1)t, 0 6 t < ∞. (4.29)

(2) Suppose that there exists a t1 > 0 such that DK (v (t1)) = 0 and DK(v) > 0 for 0 6 t < t1.

Then, |ut|2 > 0 and
∫ t

0 |vτ|
2
2 dτ is increasing for 0 6 t < t1. By (4.24) we have

EK(v(t1)) = d −
∫ t1

0
|vτ|

2
2dτ < d, (4.30)

and ‖v (t1)‖ = 0. Then, we have that v(t) ≡ 0 for t1 6 t < ∞.

Hence, the proof is complete.

5 High initial energy EK(v0) > d

In this section, we investigate the conditions to ensure the existence of global solutions or

blow-up solutions to system (2.1) with EK(v0) > d.

Lemma 5.1. For any α > d, λα and Λα defined in (2.1) satisfy

0 < λα ≤ Λα < +∞. (5.1)

Proof. (1) By Hölder’s inequality, fundamental inequality and u ∈ N , we have

‖∇v‖2
2,K − λ‖v‖2

2,K = ‖v‖
p+1
p+1,K. (5.2)

Then from Lemma 2.6 (1), we have λα > 0.

Using Lemma 2.1 and u ∈ N , we have

‖∇v‖2
2,K − λ‖v‖2

2,K = ‖v‖
p+1
p+1,K 6

(

1

Sλ
(‖∇v‖2

2,K − λ‖v‖2
2,K)

)

p+1
2

. (5.3)

So we have ‖∇v‖2
2,K − λ‖v‖2

2,K ≤ 1
Sλ

which leads to the conclusion.

Theorem 5.2. Suppose that EK (v0) > d, then we have

(1) If v0 ∈ N+ and ‖v0‖2,k ≤ λEK(v0), then v0 ∈ G0,

(2) If v0 ∈ N− and ‖v0‖2,k ≥ ΛEK(v0), then v0 ∈ B.

Proof. The maximal existence time of the solutions to system (2.1) with initial value v0 is

denoted by T0. If the solution is global, i.e. T(v0) = +∞, the limit set of v0 is denoted by ω0.

(1) Suppose that v0 ∈ N+ with |v0|2 ≤ λEK(v0). We firstly prove that v(t) ∈ N+ for all t ∈
[0, T (v0)) . Assume, on the contrary, that there exists a t0 ∈ (0, T (v0)) such that v(t) ∈ N+ for

0 ≤ t < t0 and v (t0) ∈ N . It follows from DK(v(t)) = −
∫

Ω
vt(x, t)v(x, t)dx that vt(x, t) 6= 0

for (x, t) ∈ Ω × (0, t0) . Recording to(3.2) we then have EK (v (t0)) < EK (v0) , which implies

that u (t0) ∈ E
EK(v0)
K . Therefore, v (t0) ∈ N EK(v0). Recalling the definition of λEK(v0), we get

|u (t0)|2 ≥ λE (v0) . (5.4)
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Since DK(v(t)) > 0 for t ∈ [0, t0) , we obtain from (3.23) that

|v (t0)|2 < |v0|2 ≤ λEK(v0), (5.5)

which contradicts (5.4). Hence, v(t) ∈ N+ which shows that v(t) ∈ E
EK(v0)
K for all t ∈

[0, T (v0)) . Now Lemma 3.9 (2) implies that the orbit {v(t)} remains bounded in H1(K) for

t ∈ [0, T (v0)) so that T (v0) = ∞. Assume that ω is an arbitrary element in ω (v0) . Then by

(3.2) and (3.23) we obtain

|ω|2 > ΛEK(v0), EK(ω) < EK (v0) , (5.6)

which, according to the definition of λEK(v0) again, implies that ω (v0) ∩ N = ∅. So, ω (v0) =

{0}, i.e. v0 ∈ G0.

(2) Suppose that v0 ∈ N− with |v0|2 ≥ ΛEK(v0). We now prove that v(t) ∈ N− for all t ∈
[0, T (v0)) . Assume, on the contrary, that there exists a t0 ∈ (0, T (v0)) such that v(t) ∈ N− for

0 ≤ t < t0 and v(t0) ∈ N . Similarly to case (1), one has EK(v(t
0)) < EK (v0) , which implies

that v(t0) ∈ E
EK(v0)
K . Therefore, v(t0) ∈ N EK(v0). Recalling the definition of ΛEK(v0), we infer

|v(t0)|2 ≤ ΛEK(v0). (5.7)

On the other hand, from (3.23) and the fact that DK(v(t)) < 0 for t ∈ [0, t0), we obtain

|v(t0)|2 > |v0|2 ≥ ΛEK(v0), (5.8)

which contradicts (5.7).

Assume that T (v0) = ∞. Then for each ω ∈ ω (v0) , it follows from by (3.2) and (3.23) that

‖ω‖2 > ΛEK(v0), EK(ω) < EK (v0) . (5.9)

Noting the definition of ΛEK(v0) again, we have ω (v0) ∩ N = ∅. Hence, it is holded that

ω (v0) = {0}, which contradicts Lemma 3.9 (1). Therefore, T (v0) < ∞. This ends the proof.

Theorem 5.3. Assume that v0 ∈ H1(K) satisfies

EK(v0) ≤ ‖v0‖2,K <
p

p + 1
‖v0‖

p+1
p+1,K, (5.10)

Then, v0 ∈ N− ∩ B.

Proof. Firstly, we observe

EK(v0) =
1

2
‖∇v0‖

2
2,K −

λ

2
‖v0‖

2
2,K −

1

p + 1
‖v0‖

p+1
p+1,K

=
1

2
DK(v0) +

p

p + 1
‖v0‖

p+1
p+1,K. (5.11)

Thus, we have

EK(v0)−
p

p + 1
‖v0‖

p+1
p+1,K =

1

2
DK(v0) < 0, (5.12)
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which shows that v0 ∈ N−. Then for any v ∈ NEK(v0), one has

‖v‖
p+1
p+1,K = ‖∇v‖2

2,K − λ‖v‖2
2,K ≤ EK(v0) ≤

√

2(p + 1)

p − 1
EK(v0).

Taking supremum over NEK(v0) and (5.10), by Theorem 5.2 we can deduce

‖v0‖2 ≥ ΛEK(v0).

Thus, v0 ∈ N− ∩ B. This finishes the proof.
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Abstract. We study the isolated periodic wave trains in a class of modified generalized
Burgers–Huxley equation. The planar systems with a degenerate equilibrium arising
after the traveling transformation are investigated. By finding certain positive defi-
nite Lyapunov functions in the neighborhood of the degenerate singular points and the
Hopf bifurcation points, the number of possible limit cycles in the corresponding planar
systems is determined. The existence of isolated periodic wave trains in the equation
is established, which is universal for any positive integer n in this model. Within the
process, one interesting example is obtained, namely a series of limit cycles bifurcat-
ing from a semi-hyperbolic singular point with one zero eigenvalue and one non-zero
eigenvalue for its Jacobi matrix.

Keywords: generalized Burgers–Huxley equation, isolated periodic wave solution, pos-
itive definite Lyapunov function, degenerate singular point.

2020 Mathematics Subject Classification: 35B32, 34C07, 34D20, 37J20, 35Q51.

1 Introduction

The Burgers–Huxley equation is a well-known nonlinear partial differential equation sim-
ulating nonlinear wave phenomena in physics, biology, economics and ecology. In the rela-
tion with the in-depth study of practical problems the following generalized Burgers–Huxley
equation

ut + αunux − uxx = βu(1 − un)(un − γ) (1.1)

BCorresponding author. Emails: valerij.romanovskij@um.si (V. G. Romanovski); wqinlong@163.com (Q. Wang);
huangwentao@163.com (W. Huang)
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was introduced in [25]. In this paper we consider the further generalization of (1.1) described
by the equation

ut +

(

α0 +
n

∑
i=1

αiu
i

)

ux − uxx = βu(1 − un)(un − γ) (1.2)

where αi, β, γ are real numbers and n ∈ N. In equation (1.2) a more general version of
the convective effect is introduced. Although this modification may go beyond the actual
background, it is still related to some real models, for example, when n = 1 it corresponds
to the single-species model with density-dependent migrations [24]. Of course, we also have
to come up with some early models, for example, Burgers equations [3], Burgers–Huxley
equation [30, 32], Fitzhugh–Nagumo equation [8, 11], Newwell–Whitehead equation [19].

Regarding to the exact solutions of equation (1.1) we note that some solitary wave solu-
tions were obtained in [6, 29]. Recently via the (G′/G)-expansion method the authors of [22]
also obtained a series of exact solutions. In respect to the approximate analytical solutions
and numerical solutions of equation (1.1) we can refer to the results in [4,10,21] and the refer-
ences given there. As to the isolated periodic wave solutions, considering the bifurcations of
codimension 1 and 2 in the traveling wave system the authors of [32] determined the existence
of some bounded traveling waves for the Burgers–Huxley equation. Latter on computing the
singular point quantities of the non-degenerate center-focus type equilibrium the authors of
[26] proved the existence of the isolated periodic wave solution in the non-degenerate case for
equation (1.1).

In this paper we continue the investigation of the isolated periodic wave solutions (which
can also be called the isolated periodic wave trains, see [23]) of more general model (1.2). First,
we apply the usual approach assuming that equation (1.2) has a travelling wave solution in
the form

u(x, t) = v(ξ), ξ = x − ct (1.3)

where c is the propagation speed of the wave. Substituting (1.3) into (1.2) we obtain

v′′(ξ) = −cv′(ξ) +
(

α0 +
n

∑
i=1

αiv
i

)

v′(ξ)− βv(1 − vn)(vn − γ). (1.4)

Then setting y = v′(ξ) we reduce (1.4) to the planar dynamic system






dv
dξ = y

∆
= X(v, y),

dy
dξ = −cy + (α0 + ∑

n
i=1 αiv

i)y − βv(1 − vn)(vn − γ)
∆
= Y(v, y).

(1.5)

Applying the bifurcation theory of the planar dynamical system to system (1.5) it is possible
to investigate the existence of periodic wave trains which correspond to a family of periodic
orbits in a neighborhood of a center, the solitary wave solutions of the peak type which
correspond to the smooth homoclinic orbits, and the monotone kink solitary wave solutions
which correspond to the heteroclinic orbits. As has been indicated in [14] these cases are
usually considered for integrable systems. Integrability conditions of system (1.5) are similar
to the ones of its special case which has been investigated in [26].

In this paper we focus on the existence of isolated periodic travelling trains which are
caused by the presence of limit cycles. Our main idea is to keep track of the conditions of
limit cycle bifurcations which can occur in the vicinity of the equilibriums, in particular near
the degenerate singular points of the traveling wave system (1.5).
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Bifurcations of isolated periodic wave trains for the reaction-diffusion equation have been
extensively studied (see [12,13,23,27,28] and references therein). These bifurcations are caused
mainly by Hopf bifurcation or Poincaré bifurcation around one non-degenerate equilibrium
of the corresponding planar traveling wave system. However the bifurcations of isolated
periodic wave trains due to limit cycles bifurcating from one degenerate equilibrium are not
well investigated. In this work a particular attention is focused on the cases of a nilpotent
focus, a nilpotent node and a semi-hyperbolic singular point whose Jacobi matrix has two
eigenvalues: one is zero, another is non-zero. Our main approach is to determine the quasi-
Lyapunov constants of system (1.5) by constructing Lyapunov functions not only for the cases
of degenerate equilibriums, but also for the multiple Hopf bifurcations of non-degenerate
equilibriums.

The paper is organized as follows. In Section 2 the equilibriums and degenerate cases of
system (1.5) are determined. Section 3 is devoted to the study of the quasi-Lyapunov constants
for the nilpotent critical point of the degenerate planar system (1.5). In Section 4 we apply the
positive definite Lyapunov functions to determine the quasi-Lyapunov constants for multiple
Hopf bifurcation of the degenerate system (1.5). In the last section using the above analysis we
give a general result for the isolated periodic wave trains for any positive integer n in model
(1.2).

2 The equilibriums of system (1.5)

In this section we investigate the equilibriums of planar travelling system (1.5). Due to the
practical background, the value of u in model (1.2) is nonnegative, thus we only investigate
the dynamical behavior near the equilibrium points with v ≥ 0 for system (1.5). We will focus
on the limit cycle bifurcation in system (1.5) with one equilibrium as the degenerate singular
point. It is easy to see that when γ > 0 system (1.5) has only three nonnegative equilibrium
points: (0, 0), (1, 0) and ( n

√
γ, 0), whereas when γ ≤ 0, there exist only two nonnegative

equilibrium points: (0, 0) and (1, 0).
For the Jacobian matrix at the origin we have

[

∂X
∂v

∂X
∂y

∂Y
∂v

∂Y
∂y

]

(0,0)

=

[

0 1
βγ α0 − c

]

. (2.1)

Its two eigenvalues are

λ1,2 =
1
2

(

α0 − c ±
√

(α0 − c)2 + 4βγ

)

. (2.2)

Thus, the origin of (1.5) is either a non-degenerate center or a weak focus if and only if c = α0

and βγ < 0. If βγ = 0 then the origin is a degenerate singular point, and the two eigenvalues
are λ1 = 0, λ2 = α0 − c. When βγ = 0, according to the monographs [7, 31], we know
that if c 6= α0 then the singular point is an elementary degenerate singular point, also called
semi-hyperbolic, and when c = α0, the origin is a nilpotent critical point and the limit cycle
bifurcation may happen at (0, 0).

For the Jacobian matrix at (1, 0),

[

∂X
∂v

∂X
∂y

∂Y
∂v

∂Y
∂y

]

(1,0)

=





0 1

nβ(1 − γ)
n

∑
i=0

αi − c



 (2.3)
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we obtain

λ1,2 =
1
2





n

∑
i=0

αi − c ±

√

√

√

√

( n

∑
i=0

αi − c

)2

+ 4nβ(1 − γ)



 . (2.4)

It has a pair of conjugate pure imaginary eigenvalues and (1, 0) is either a non-degenerate
center or a weak focus if and only if c = ∑

n
i=0 αi and β(1 − γ) < 0 . If β(1 − γ) = 0 the

singular point is degenerate since at least one of its two eigenvalues is zero. In this case, when
c 6= ∑

n
i=0 αi, the singular point is semi-hyperbolic, and when c = ∑

n
i=0 αi, the equilibrium is a

nilpotent critical point and limit cycle bifurcation may happen at (1, 0).
At the point ( n

√
γ, 0)
[

∂X
∂v

∂X
∂y

∂Y
∂v

∂Y
∂y

]

(γ
1
n ,0)

=





0 1

nβγ(γ − 1)
n

∑
i=0

αiγ
i
n − c



 . (2.5)

Then the two eigenvalues are:

λ1,2 =
1
2





n

∑
i=0

αiγ
i
n − c ±

√

√

√

√

( n

∑
i=0

αiγ
i
n − c

)2

+ 4nβγ(γ − 1)



 . (2.6)

The Jacobian has a pair of conjugate pure imaginary eigenvalues and the point is non-
degenerate, either a center or a focus if and only if c = ∑

n
i=0 αiγ

i
n and βγ(γ − 1) < 0. Fur-

thermore, if βγ(γ − 1) = 0 the point is a degenerate singular point, and in this case, when
c 6= ∑

n
i=0 αiγ

i
n , the singular point is semi-hyperbolic, and when c = ∑

n
i=0 αiγ

i
n , the equilibrium

is a nilpotent critical point and the limit cycle bifurcation may occur at it.
Therefore we have the following conclusions.

Lemma 2.1. For system (1.5) there exists a degenerate nonnegative equilibrium point if and
only if β = 0, or γ = 0 or γ = 1.

Lemma 2.2. For system (1.5), when γ = 0, only the origin is degenerate, and the equilibrium
(1, 0) is non-degenerate. In this case, the origin is a nilpotent critical point if and only if c = α0,
the equilibrium (1, 0) is a center or a focus if and only if β < 0.

Lemma 2.3. For system (1.5), when γ = 1, only the equilibrium (v, y) = (1, 0) is degenerate,
and the origin is non-degenerate. In this case, the equilibrium (1, 0) is a nilpotent critical point
if and only if c = ∑

n
i=0 αi, the origin is a center or a focus if and only if β < 0.

Lemma 2.4. For system (1.5), when β = 0 the line y = 0 is a singular straight line on which
each equilibrium point is non-isolated and degenerate, and there exists a first integral

H(v, y) = (c + α0)v +
1
2

α1v2 + · · ·+ 1
n + 1

αnvn+1 − y = h. (2.7)

In this situation a limit cycle cannot exist.

3 Limit cycle bifurcations from the degenerate equilibriums

In this section we investigate the limit cycle bifurcations near the degenerate equilibriums
of system (1.5). First we consider the real polynomial differential system

{

dx
dt = y + ∑

∞
k+j=2 akjx

kyj = X(x, y),
dy
dt = λy + ∑

∞
k+j=2 bkjx

kyj = Y(x, y)
(3.1)
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where x, y, t, λ, akj, bkj ∈ R (k, j ∈ N). Obviously, when λ = 0 the origin O(0, 0) is a nilpotent
critical point and when λ 6= 0 the origin is a semi-hyperbolic singular point, whose Jacobi
matrix has two eigenvalues: one is zero, another is non-zero.

In the case λ = 0, according to the implicit function theorem there is the unique function
y = y(x) which satisfies X(x, y(x)) ≡ 0, y(0) = 0 and

Y(x, y(x)) = Akxk + o(xk), Ak 6= 0,
[

∂X

∂x
+

∂Y

∂y

]

y=y(x)

= Bjx
j + o(xj)

(3.2)

where k, j ∈ N
+. From [2, 20, 31], it is known that only when k = 2m + 1, m ∈ N

+, the origin
of (3.1)λ=0 may be a center or a focus or a node, and moreover we have

Proposition 3.1. Suppose that the origin of (3.1)λ=0 is a nilpotent singular point with multi-
plicity k = 2m + 1, m ∈ N

+ and Bj 6= 0 in (3.2). Then it is a center or a focus if and only if one
of the following two conditions is satisfied:

C1 : m < j, A2m+1 < 0;
C2 : m = j, A2m+1 < 0, B2

j + 4(m + 1)A2m+1 < 0.
(3.3)

Proposition 3.2. Suppose that the origin of (3.1)λ=0 is a nilpotent singular point with multi-
plicity k = 2m + 1, m ∈ N

+. Then it is a node if and only if Bj 6= 0 (with j = 2N, N ∈ N
+ in

(3.2)) and one of the following two conditions is satisfied:

C3 : m > j, A2m+1 < 0;
C4 : m = j, A2m+1 < 0, B2

j + 4(m + 1)A2m+1 ≥ 0.
(3.4)

For the case of Proposition 3.1 the limit cycle bifurcation can be determined by resolving
the center-focus problem for the nilpotent critical point (see e.g. [1, 5, 15–17]). For the case of
Proposition 3.2 the limit cycle bifurcation from a nilpotent node was studied in [18]. However,
when λ 6= 0, the origin of (3.1) is a semi-hyperbolic singular point and it can be either a
degenerate node or a degenerate saddle, or a saddle-node [2, 20, 31].

In our study we use the Lyapunov function method to investigate the existence of limit
cycles bifurcating from the nilpotent critical points or semi-hyperbolic singular points. As a
particular case of the Lyapunov stability theory we have the following statement.

Lemma 3.3. Suppose that the origin of system (3.1) is an isolated degenerate singular point,
and there exists a positive definite Lyapunov function V(x, y) such that

dV
dt

∣

∣

∣

(3.1)
= dV

dx
dx
dt +

dV
dy

dy
dt = y2[β2Nx2N + o(x2N)], β2N 6= 0, (3.5)

where (x, y) ∈ U(O, δ) and δ is certain positive number. Then the origin is stable when
β2N < 0 and unstable when β2N > 0.

It is easy to prove the following statement.

Theorem 3.4. Suppose that for system (3.1) there exists a positive definite Lyapunov function
V(x, y) such that

dV
dt

∣

∣

∣

(3.1)
= dV

dx
dx
dt +

dV
dy

dy
dt

= y2[
N

∑
i=0

β2i(x2i + O(x2i+1)) + o(x2N+1)] = M(x, y), β2N 6= 0,
(3.6)
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where N ∈ N
+, (x, y) ∈ U(O, δ), δ is certain positive number, X2 + Y2 is positive definite on

U(O, δ) and β2i are independent. Assume also that for a vector field χ∗ from family (3.1) with
fixed parameters aij = a∗ij, bij = b∗ij the parameters β2i in (3.6) satisfy β2 = β4 = · · · = β2N−2 =

0, β2N 6= 0. Then it is possible to perturb vector field χ∗ in such way, that the perturbed system
has N small limit cycles in a neighborhood of the origin.

Proof. Let V be the Lyapunov function corresponding to vector field χ∗. Then for sufficiently
small c the equation V(x, y) = c defines a contour Γ located in U and surrounding the origin O.
Since X2 +Y2 is positive definite we can assume that inside Γ there no limit cycles and singular
points different from O.

Assume for determinacy that β2N < 0. Then Γ bounds a positive invariant set Ω and
all trajectories in Ω tend to the origin. Note also that M(x, y)/y2

< δ < 0 on Γ. Therefore
under sufficiently small perturbations the vector field of the perturbed system is still directed
inside Γ.

Therefore, since β2i are independent we can perturb the vector field χ∗ keeping β2 = · · · =
β2N−4 = 0 and choose β2N−2 > 0 and sufficiently small such that the system still has the
positively invariant set Ω. Since as the result of the perturbation the origin is now unstable
singular point, the perturbed system has in Ω a limit cycle surrounding the origin. Repeating
the procedure we obtain N small limit cycles around the origin.

Definition 3.1. For system (3.1) with condition (3.6) satisfied if β0 = β2 = · · · = β2N−2 = 0
and β2N 6= 0, then the quantity β2N is called the N-th quasi-Lyapunov constant at the origin.

(I) When γ = 0 system (1.5) has the form
{

dv
dξ = y = X(v, y)
dy
dξ = −cy + (∑n

i=0 αiv
i)y − βvn+1(1 − vn) = Y(v, y).

(3.7)

From Lemma 2.2, only when c = α0, that is, λ = α0 − c = 0, the origin of system (3.7) is a
nilpotent critical point. From (3.2) we have

Y(v, y(v)) = Y(v, 0) = −βvn+1 + βv2n+1,
[

∂X

∂v
+

∂Y

∂y

]

y=0
= α1v + α2v2 + · · ·+ αnvn.

(3.8)

Moreover, according to Propositions 3.1 and 3.2, only when n = 2m, m ∈ N
+, that is, A2m+1 =

−β < 0, the origin is a center, or a focus or a node. When c 6= α0, that is λ = α0 − c 6= 0, the
origin of system (3.7) is a node.

When β > 0 for system (3.7) with n = 2m there exists a positive definite Lyapunov function

V(v, y) =
1
2

[

y2 + β

(

1
m + 1

− v2m

2m + 1

)

v2m+2
]

(3.9)

such that

dV

dξ

∣

∣

∣

∣

(3.7)
=

dV

dv

dv

dξ
+

dV

dy

dy

dξ
= y2[(α0 − c) + α1v + α2v2 + · · ·+ α2mv2m] (3.10)

where

|v| <
(

2m + 1
m + 1

)
1

2m

=: δm.
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Observing that δm is a strictly monotonically decreasing with respect to m ∈ N
+, we have

lim
m→∞

δm = 1 < δm ≤
√

3
2
= δ1.

Thus V(v, y) is a positive definite Lyapunov function in the neighborhood U(O, δm). Since αi

are independent, we can choose the perturbations in such way that

0 < |α0 − c| ≪ |α2| ≪ · · · ≪ |α2m| , α2iα2i+2 < 0, n = 1, 2, . . . , m − 1. (3.11)

Then from Theorem 3.4 we obtain the following conclusion.

Theorem 3.5. For system (3.7) with γ = 0, if β > 0, n = 2m, α2m 6= 0, m ∈ N
+ then for a

suitable choice of αi there exist m limit cycles in a neighborhood of origin of system (3.7).

Denote the second function in the product on the right side of (3.10) by g(v),

g(v) = (α0 − c) + α1v + α2v2 + · · ·+ α2mv2m. (3.12)

The following statement shows that m small amplitude limit cycles can appear in the system
under small perturbations.

Corollary 3.6. In Theorem 3.5, write αn = α2m = K and let

α2m−2 =
K

(2m − 2)!
f (2m−2)(0), . . . , α2j =

K

(2j)!
f (2j)(0), . . . ,

α0 = c − K f (0), α2j+1 = 0, j = 0, 1, . . . , m − 1
(3.13)

where

f (v) =
m

∏
j=1

(v2 − r2
j ε2) = (v2 − r2

1ε2)(v2 − r2
2ε2) · · · (v2 − r2

j ε2) (3.14)

where 0 < r1 < r2 < · · · < rm. When 0 < ε << |K|, there are m limit cycles in a small enough
neighborhood of the origin for system (3.7).

Proof. Substituting αj (j = 0, 1, . . . , 2m) into (3.12) we have

g(v) = K f (0) +
K

2!
f (2)(0) v2 +

K

4!
f (4)(0) v4 + · · ·+ K

(2j)!
f (2j)(0) v2j + · · ·+ Kv2m.

Note that each 1
(2j)! f (2j)(0) in the above expression corresponds to the coefficient of the term

v2j of f (v) in (3.14) and 1
(2m)! f (2m)(0) = 1. That is, g(v) = K f (v). Because f (v) has just m

simple positive roots, v = rjε, j = 1, · · · , m, the coefficients of f (v) have alternating signs,
namely α2iα2i+2 < 0. Since the other conditions of Theorem 3.5 are also satisfied, the proof is
completed.

Remark 3.1. When α0 − c = 0, the origin is a nilpotent critical point and there is one less per-
turbation coefficient, so in such situation there exist just m − 1 limit cycles in a neighborhood
of origin of system (3.7).
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Figure 3.1: (a) The phase portrait showing two limit cycles with the inner one
unstable and the outer one stable, where three trajectories have initial points
(0.205, 0), (0.23, 0), (0.42, 0) in Case (i). (b) The phase portrait showing one sta-
ble limit cycle, where two trajectories have initial points (0.3, 0) and (0.7, 0) in
Case (ii).

-0.4 -0.2 0.2 0.4
v

-0.15

-0.10

-0.05

0.05

0.10

0.15

y

(a)

-0.4 -0.2 0.2 0.4
v

-0.15

-0.10

-0.05

0.05

0.10

0.15

y

(b)

Figure 3.2: (a) The phase portrait showing one stable limit cycle, where two
trajectories have initial points (0.3, 0) and (0.5, 0) in Case (iii). (b) The phase
portrait showing one stable limit cycle, where two trajectories have initial points
(0.3, 0) and (0.45, 0) in Case (iv).

Applying Corollary 3.6, Propositions 3.1 and 3.2 we obtain several examples of system
(3.7) with α2i−1 = 0, i = 1, 2, . . . , as follows:

(i) when n = 4, setting c − α0 = −0.01, α2 = 1, α4 = K = −10 and β = 10, as a semi-
hyperbolic singular point, the origin is a stable node and there exist 2 limit cycles, where one
is stable, another is unstable, see Fig. 3.1 (a);

(ii) when n = 2, setting c − α0 = 0.1, α2 = K = −1 and β = 10, as a semi-hyperbolic
singular point, the origin is an unstable node and there exists one stable limit cycle, see
Fig. 3.1 (b);

(iii) when n = 4, setting α0 − c = 0, α2 = 0.4, α4 = K = −4 and β = 10, the origin is a
unstable nilpotent focus and there exists one stable limit cycle, see Fig. 3.2 (a);

(iv) when n = 4, setting α0 − c = 0, α2 = 5, α4 = K = −50 and β = 2, the origin is a
unstable nilpotent node and there exists one stable limit cycle, see Fig. 3.2 (b).

(II) We consider the degenerate equilibrium (1, 0) of system (1.5) in the case γ = 1. Apply-
ing the translation v 7→ v + 1 and keeping the notation v for the translated system we obtain
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from (1.5) the system

{

dx
dξ = y = X(v, y),
dy
dξ = −cy + (∑n

i=0 αi(v + 1)i)y + β(v + 1)[(v + 1)n − 1]2 = Y(v, y).
(3.15)

We see that the solution to X(v, y(v)) = 0, y(0) = 0 is y(v) = 0, thus from (3.2), we have

Y(v, y(v)) = Y(v, 0) = β(n2v2 + · · ·+ v2n+1),
[

∂X

∂v
+

∂Y

∂y

]

y=0
=

n

∑
i=0

αi(v + 1)i − c,
(3.16)

and from Lemma 2.2, we obtain that only when c = ∑
n
i=0 αi the origin of (3.15) is a nilpotent

critical point. Since n > 1 by Propositions 3.1 and 3.2, when β 6= 0 and A2 = n2β 6= 0 in (3.2),
the origin cannot be a center or a focus, or a node. When β = 0, from Lemma 2.4 there is no
limit cycle bifurcating from the degenerate equilibrium (1, 0) of system (1.5).

Remark 3.2. When β 6= 0 and c 6= ∑
n
i=0 αi we verified that there does not exist a limit cycle

bifurcating from the origin of (3.15) for some concrete values of n, for which the origin is a
degenerate point of saddle-node type. However, for general values of n the problem is open.

4 Hopf bifurcation for the non-degenerate equilibriums

In this section we apply the Lyapunov function method to investigate the Hopf bifurca-
tions in system (1.5), that is, the bifurcations of small amplitude limit cycles from the non-
degenerate equilibrium (1, 0) or the origin (0, 0) under the condition γ = 0 or γ = 1.

Consider first the real polynomial differential system
{

dx
dt = λx − y + ∑

∞
k+j=2 akjx

kyj = X(x, y),
dy
dt = x + λy + ∑

∞
k+j=2 bkjx

kyj = Y(x, y)
(4.1)

where x, y, t, λ, akj, bkj ∈ R (k, j ∈ N).
With a similar reasoning as in the proof of Theorem 3.4 we obtain the following theorem.

Theorem 4.1. Suppose that for system (4.1) there exists a positive definite function V(x, y)

such that

dV

dt

∣

∣

∣

∣

(4.1)
=

dV

dx

dx

dt
+

dV

dy

dy

dt
= y2

[ N

∑
i=0

β2i(x2i + O(x2i+1)) + o(x2N+1)

]

(4.2)

where N ∈ N
+ and (x, y) ∈ U(O, δ), δ is certain positive number and β2i are independent.

Assume also that for a vector field χ∗ from family (4.1) with fixed parameters aij = a∗ij, bij = b∗ij
the parameters β2i in (4.2) satisfy β0 = β2 = β4 = · · · = β2N−2 = 0, β2N 6= 0. Then it is possible
to perturb vector field χ∗ in such way, that the perturbed system has N small limit cycles in a
neighborhood of the origin.

Definition 4.1. For system (4.1) under condition (4.2), if β0 = β2 = · · · = β2N−2 = 0 and
β2N 6= 0, then the quantity β2N = VN is called the N-th quasi-Lyapunov constant at the origin
(N = 1, 2, . . . ).
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(I) For the case γ = 1 when β < 0 system (1.5) has a Hopf bifurcation at the singular point
(0, 0). Indeed, in this case system (1.5) has the form

{

dv
dξ = y = X(v, y),
dy
dξ = −cy + (∑n

i=0 αiv
i)y + βv(1 − vn)2 = Y(v, y).

(4.3)

Thus, when n ∈ N
+, there exists a positive definite Lyapunov function

V(v, y) =
1
2

[

y2 − βv2
(

1 − 4vn

2 + n
+

v2n

1 + n

)]

, |v| <
[

2 + n

4

]
1
n

(4.4)

such that
dV

dξ

∣

∣

∣

∣

(4.3)
=

dV

dv

dv

dξ
+

dV

dy

dy

dξ
= y2

( n

∑
i=0

αiv
i − c

)

. (4.5)

Indeed, for each n ∈ N
+ we choose δn =

[ 2+n
4

]
1
n yielding 3

4 ≤ δn ≤ ( 3
2 )

2/7. Then it is easy to
verify that V(v, y) is a positive definite Lyapunov function in the neighborhood U(O, δn).

Using Theorem 4.1 we have the following conclusion.

Theorem 4.2. For system (4.3) with γ = 1, if β < 0 and α2m 6= 0 for either n = 2m or
n = 2m + 1, m ∈ N

+, we can choose perturbations such that

0 < |α0 − c| ≪ |α2| ≪ |α4| ≪ · · · ≪ |α2m| , α2i−2α2i < 0, i = 1, 2, . . . , m, (4.6)

and there exist m limit cycles in a neighborhood of origin of system (4.3).

(II) For the case of γ = 0, when β < 0 system (1.5) has the Hopf bifurcation at the singular
point (1, 0). After the translation v 7→ v + 1 keeping the notation v for the new variable we
obtain the system

{

dv
dξ = y = X(v, y),
dy
dξ = −cy + (∑n

i=0 αi(v + 1)i)y − β(v + 1)n+1[1 − (v + 1)n] = Y(v, y).
(4.7)

We show that in the neighborhood U(O, 2) of the origin there exists a positive definite
Lyapunov function

V(v, y) =
1
2

y2 − β

2

[

n

(2 + n)(1 + n)
− 2(v + 1)n+2

2 + n
+

(v + 1)2n+2

1 + n
)

]

(4.8)

such that
dV

dξ

∣

∣

∣

∣

(4.3)
=

dV

dv

dv

dξ
+

dV

dy

dy

dξ
= y2

(

n

∑
i=0

αi(v + 1)i − c

)

. (4.9)

Clearly, V(0, 0) = 0. Thus, we need to prove that when (v, y) ∈ U(O, δn) and (v, y) 6= (0, 0)
it holds that V(v, y) > 0.

Letting r = v + 1 we have

n

(2 + n)(1 + n)
− 2(v + 1)n+2

2 + n
+

(v + 1)2n+2

1 + n
=

n

(2 + n)(1 + n)
− 2rn+2

2 + n
+

r2n+2

1 + n

∆
= Lr

so we will verify that when r 6= ±1, the inequality Lr > 0 holds. From

dLr
dr = 2rn+1(rn − 1) = 0, (4.10)
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we find the stationary point. Namely, (i) if n is an odd number, only r = 0 and r = 1 are
the stationary points of Lr; (ii) if n is an even number, then only r = 0 and r = ±1 are the
stationary points of Lr.

Performing the monotonicity analysis of the function Lr we see that it has the minimum
at r = 1, i.e. Lr(1) = 0, but there is no extreme at r = 1 for the case (i). The function has a
minimum at r = ±1, i.e. Lr(1) = 0 and a local maximum at r = 1, i.e., Lr(1) = n

(2+n)(1+n)
for

the case (ii). In summary, for arbitrary n ∈ N and β < 0, when r 6= ±1, i.e., v 6= 0,−2, we
have

Lr > 0 or V(v, y) > 0. (4.11)

We now can conclude that when the conditions of Theorem 4.1 are satisfied the following
statement holds.

Theorem 4.3. For system (4.7) with γ = 0, if β < 0, n = 2m or 2m + 1, β2m 6= 0, m ∈ N
+ we

can choose perturbations such that

0 < |β0| ≪ |β2| ≪ |β4| ≪ · · · ≪ |β2m| , β2i−2β2i < 0,

β1 ≤ |β0| , |β3| ≤ |β2| , . . . , |β2i+1| ≤ |β2i| , i = 1, 2, . . . , m
(4.12)

where

β0 =
n

∑
j=0

αj − c, β1 =
n

∑
j=1

jαj, β2 =
n

∑
j=2

j(j − 1)αj, . . . , βk =
n

∑
j=k

(

k

j

)

αj, . . . , βn = αn

and there exist m limit cycles in a neighborhood of the origin of system (4.7).

5 Illustration of the quasi-Lyapunov constant and isolated periodic

wave trains

The readers may be confused by the quasi-Lyapunov constant given in the Definitions 3.1 and
4.1, what is the difference between it and the Lyapunov constant? Here we try to illustrate
this. In fact, within the above process certain positive definite Lyapunov functions V(v, y)

with finite terms are constructed to investigate limit cycle bifurcations, but these are different
from first integral or integrating factor with formal series form to be determined for the
Lyapunov constants or focus values, see e.g. [9, 17, 31]. For the later case, in general, the
formal series of first integral with infinite terms is also positive definite in the neighborhood
of the origin, which terms are derived successively, in a sense, it is a relatively complete
sequence of positive definite Lyapunov function. However, for the the former, it is not a
complete sequence necessarily. The highest order Lyapunov constant or focus value can be
determined under the later case, just at most limit cycles is revealed, while only the quasi-
Lyapunov constant are determined under the former case, and the highest order Lyapunov
constant can not be determined necessarily.

Obviously, from Theorem 4.3, for the case n = 1 in system (4.7) we cannot obtain a limit
cycle, and for the case n = 2 we can obtain only one limit cycle bifurcating from the origin.
However, we have the following complete results by utilizing method of first integral formal
series, namely determining the complete sequence of positive definite Lyapunov function.

Proposition 5.1. Under the degenerate condition of β < 0 and γ = 0, there exist at least one
limit cycle for the case n = 1 and two limit cycles for the case n = 2, respectively, bifurcating
from the origin of system (4.7) as a Hopf bifurcation point.
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Proof. (i) When n = 1, system (4.7) has the form

v̇ = y, ẏ = βv + (α0 + α1 − c)y + h1(v, y) (5.1)

where h1(v, y) = α1vy + 2βv2 + βv3. If c = α0 + α1 holds, the origin is a center or a focus. For
system (5.1) there is a formal series

H(v, y) = y2 − βx4

2
− 4βx3

3
− βx2 +

α2
1y4

2β2 − 2α1y3

3β
+ h.o.t (5.2)

such that
dH
dξ

∣

∣

∣

(4.3)
= dH

dv
dv
dξ +

dH
dy

dy
dξ = −4α1v2y2 + h.o.t. (5.3)

Thus, the first Lyapunov constant is L1 = −4α1. When c − α0 − α1 6= 0 and sufficiently small
the origin becomes a weak focus and there exists one limit cycle bifurcated in a neighborhood
of it.

(ii) When n = 2, system (4.7) becomes

v̇ = y, ẏ = 2βv + (α0 + α1 + α2 − c)y + h2(v, y) (5.4)

where h2(v, y) = βv2(7 + 9v + 5v2 + v3) + vy(α1 + 2α2 + α2v). Similarly as above there exists
a series

H(v, y) = y2 − 2βv2 − 14β
3 v3 − (α1+2α2)

3β y3 + (α1+2α2)
2

8β2 y4 − 9β
2 v4

+ 2
15 (7α2

1 + 26α2α1 + 24α2
2 − 15β)v5 + 3(α1+2α2)

2β v2y3 − (7α2
1+26α2α1+24α2

2)
6β v3y2

− 1
20β3 (α1 + 2α2)

(

α2
1 + 4α2α1 + 4α2

2 + 6β
)

y5 + 1
18 (49α2

1 + 182α2α1 + 168α2
2 − 6β)v6

+ 1
12β2 (α1 + 2α2)

(

7α2
1 + 26α2α1 + 24α2

2 + 42β
)

v3y3 − 9(α1+2α2)
2

8β2 v2y4

+ 1
48β4 (α1 + 2α2)

2 (α2
1 + 4α2α1 + 4α2

2 + 15β
)

y6 + h.o.t

such that
dH
dξ

∣

∣

∣

(4.3)
= L1v2y2 + L2v4y4 + h.o.t. (5.5)

where L1 = −(7α1 + 12α2) and L2 = − 1
6β (α1 + 2α2)(7α2

1 + 26α2α1 + 24α2
2 + 285β) are the first

and second Lyapunov constants, respectively. Similarly as above we conclude that there exists
two limit cycles bifurcated from the origin.

Next, we consider the isolated periodic wave trains of the degenerate generalized Burgers–
Huxley equation (1.2). As it is known a small amplitude limit cycle corresponds to an isolate
bounded periodic solution of system (3.7). Thus from Theorems 3.5, 4.2 and 4.3 we have the
following conclusion.

Theorem 5.2. In the Burgers–Huxley equation (1.2), for any n = 2m or 2m + 1, m ∈ N
+,

at least m isolated periodic wave trains can bifurcate from u(x, t) = 0 under the degenerate
condition of β > 0, γ = 0 or β < 0, γ = 1; at least m isolated periodic wave trains can bifurcate
from u(x, t) = 1 under the degenerate condition of β < 0, γ = 0.

Though the exact explicit expressions of the above isolated periodic wave trains cannot be
given, some approximation methods can be used. Here we apply numerical computations to
get the solutions for the four examples given in Remark 3.1 and shown in Fig. 5.1.
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Figure 5.1: The periodic waves in cases (i-1,i-2), (ii), (iii), (iv) corresponding to
the isolated periodic wave trains in Cases (i), (ii), (iii), (iv), respectively.

6 Conclusion

We studied the isolated periodic wave trains for a class of modified generalized Burgers–
Huxley equation by focusing on the limit cycle bifurcations in a neighborhood of the degener-
ate equilibrium points. For any positive integer n the number of small amplitude limit cycles
bifurcating from the nilpotent point or semi-hyperbolic singular point of system (1.5) is esti-
mated. Finally, the existences of corresponding multiple isolated periodic wave trains in the
original model (1.2) is established.
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Abstract.

We study the following class of double-phase nonlinear eigenvalue problems

−div [φ(x, |∇u|)∇u + ψ(x, |∇u|)∇u] = λ f (x, u)

in Ω, u = 0 on ∂Ω, where Ω is a bounded domain from R
N and the potential functions

φ and ψ have (p1(x); p2(x)) variable growth. The primitive of the reaction term of
the problem (the right-hand side) has indefinite sign in the variable u and allows us to
study functions with slower growth near +∞, that is, it does not satisfy the Ambrosetti–
Rabinowitz condition. Under these hypotheses we prove that for every parameter λ ∈
R

∗
+, the problem has an unbounded sequence of weak solutions. The proofs rely on

variational arguments based on energy estimates and the use of Fountain Theorem.

Keywords: double-phase differential operator, continuous spectrum, variable exponent,
multiplicity of eigenvalues, infinitely many solutions.
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1 Introduction

The study of variational problems with nonstandard growth conditions has been developed

extensively over the last years. Moreover as the technology development in some important

areas like robotics, aircraft and airspace and the image restoration was very intensive, and in

order to obtain important results, new mathematical models arose.

The p(x)-growth conditions can be regarded as a key factor in the modelling of some

fluids which have different inhomogeneities, for instance we can mention here the lithium

polymetachrylate , which is an electrorheological fluid. The main characteristic of these types

of fluids is the fact that their viscosity depends on the electric field in the fluid, that is the

viscosity of the fluid is inverse proportional to the strength of the electric field.

As new types of materials arose in the domains that we mentioned before, new problems

arose also in the field of variable exponent analysis and partial differential equations which

BEmail: uta.vasi@yahoo.com
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involve several variable exponents. Therefore in the last years, double-phase problems which

involve several variable exponents and some nonstandard (p1(x), p2(x))-growth behavior for

potential functions have been extensively studied.

In this paper we are concerned with the study of a class of non-autonomous eigenvalue

problem with variable (p1(x); p2(x))-growth rate condition in the left hand side of the problem

and a general reaction term (that is in the right-hand side of the problem), which is p+2 -

superlinear at infinity and whose primitive may be sign changing. An important characteristic

of the above mentioned problem is the fact that the associated energy density changes its

ellipticity according to the point.

The research in this paper in based on some new type of differential operators, which have

been introduced by I. H. Kim and Y. H. Kim [8], which enables us to solve some problems

which imply the possible lack of uniform convexity. In this paper we extend the results of

I. H. Kim and Y. H. Kim by studying a double-phase problem and we use a new type of

reaction term which require weaker conditions than the Ambrosetti–Rabinowitz condition

(for the sake of simplicity we will denote this condition as the (AR)-condition) and allows us

to study functions that have a p+2 -superlinear growth near infinity but the growth is too slow

to satisfy the (AR)-condition. Also,the primitive of the reaction term is allowed to be sign-

changing. An example of this type of reaction term will be presented in the last section of this

paper together with some important examples and new directions of research. Furthermore,

for the best of our knowledge for this type of operators even in the simpler cases, when the

differential operator is driven by only one potential function the possibility that the primitive

of the reaction function to be sign-changing has not been considered.

This paper also aim to extend some spectral results for some simpler cases studied in the

following works: S. Baraket, S. Chebbi, N. Chorfi, V. Rădulescu [2], M. Rodrigues [19], V. F.

Ut,ă [22] and K. Q. Wang, M. Zhou [23]. A comparison between these results will be made

later in this paper.

Hence, we consider the following double-phase nonlinear eigenvalue problem:

{

−div [φ(x, |∇u|)∇u]− div [ψ(x, |∇u|)∇u] = λ f (x, u), in Ω,

u = 0, on ∂Ω,
(P)

where Ω is a bounded domain in R
N with Lipschitz boundary and λ ∈ R is a real parameter.

These types of problems generalize a broad variety of models. We will briefly describe the

most important ones.

For instance if we may need to model a composite that changes its hardening point expo-

nent according to the point. To this end we refer to the work of M. Colombo, G. Mingione [3],

where the associated energies are of type:

u 7→
∫

Ω

|∇u|p1(x)dx +
∫

Ω

a(x)|∇u|p2(x)dx (1.1)

and

u 7→
∫

Ω

|∇u|p1(x)dx +
∫

Ω

a(x)|∇u|p2(x) log(e + |x|)dx, (1.2)

where p1(x) ≤ p2(x), p1 6= p2, for all x ∈ Ω and a(x) ≥ 0.

Also a comprehensive study of this variety of models is presented in the following sur-

vey paper of G. Mingione, V. Rădulescu [9]. For the regularity of the minimizers func-

tionals for double phase operator we recommend for more details the paper of M. Ragusa,

A. Tachikawa [15].
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The models presented above describe the behavior of two materials with variable power

hardening exponents p1(x) and p2(x), with the geometry of a composite for one of the mate-

rials described by the coefficient a(x).

As the potentials that drive our nonhomogeneous double-phase operator are very general

we will consider the following special cases:

(C1) The potential functions φ and ψ may describe a weighted p(x)-Laplacian-like operator

−div [φ(x, |∇u|)∇u]− div [ψ(x,∇u)∇u] = − div
[

a(x)|∇u|p1(x)−2∇u
]

− div
[

b(x)|∇u|p2(x)−2∇u
]

,

where the functions a(x), b(x) ∈ L∞(Ω), and there exist some constant α0 such that

a(x) ≥ α0, b(x) ≥ α0 for almost all x ∈ Ω;

(C2) The potential functions φ and ψ may describe the generalized mean curvature operator,

thus we obtain the following differential operator:

−div [φ(x, |∇u|)∇u]− div [ψ(x,∇u)∇u] = − div

[

(

1 + |∇u|2
)

p1(x)−2
2 ∇u

]

− div

[

(

1 + |∇u|2
)

p2(x)−2
2 ∇u

]

(C3) The potential functions φ and ψ may describe the differential operator that describe the

capillary phenomenon:

− div [φ(x, |∇u|)∇u]− div [ψ(x,∇u)∇u]

= − div

[(

|∇u|p1(x)−2 +
|∇u|2p1(x)−2

(

1 + |∇u|2p1(x)
)1/2

)

∇u

]

− div

[(

|∇u|p2(x)−2 +
|∇u|2p2(x)−2

(

1 + |∇u|2p2(x)
)1/2

)

∇u

]

.

Remark 1.1. Also there can be considered more complex cases where the potential functions

have different behavior, for example potential φ may describe the case (C1), and the potential

ψ could describe any of the other cases.

It is obvious that the case (C1) generalize the relation described by (1.1). In order to obtain

the case described by (1.2) we will have to study the following differential operator:

− div [φ(x, |∇u|)∇u]− div [a(x)ψ(x, |∇u|) log(e + |x|)∇u] . (1.3)

The study of the case (C3) is motivated by its important applicabilities in various fields

varying from the industrial, biomedical and pharmaceutical to the microfluidic systems. In

order to describe the capillarity phenomenon we must consider the effects of two opposing

forces: adhesion, that is, the attractive (or repulsive) force between the molecules of the liquid

and those of the container; and cohesion, that is, the attractive force between the molecules of

the liquid.

Problems involving this type of differential operator were intensely studied in the last

years. For example we consider the following works: [8, 17–19, 22]. Also, more closely related
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results for anisotropic problems with unbalanced growth may be found in [1] and for the

double phase operators with lack of compactness we refer to [20].

The main results of this paper consist in two theorems which ensures us that for every

λ > 0, λ ∈ R, the problem (P) admits an unbounded sequence of solutions with higher and

higher energies. Both of the proofs are based on variational arguments, energy estimates and

the use of the Fountain Theorem.

High energy solutions for similar problems were studied under more restrictive hypothe-

ses in the following works: [19, 22], where the reaction function is supposed to satisfy the

so called (AR)-condition, or in [23] where the differential operator enables us to study some

simple case, where in order to make connections to our problem the potential function φ is

supposed to verify just the case (C2) and the potential function ψ ≡ 0, but the nonlinearity in

the right-hand side of the problem is more general than the one used in [19] and [22]. This

generality comes at a cost, that is, the parameter λ is allowed to take values just in a bounded

interval near the origin.

In the last section of this work we give some striking examples and some remarks in order

to illustrate the validity of our results. Moreover, we draw a parallel between previous results

and the new results presented in this paper as well as some future perspectives of research in

this direction.

2 The functional framework

Through this section we will introduce the basic properties of variable exponent spaces, that

will constitute necessary the functional framework that we need in the study of problem (P).

These results are described in the following books: J. Musielak [10], L. Diening, P. Hästö,

P. Harjulehto, M. Růžička [4], V. Rădulescu and D. Repovš [17]. We also refer to the survey

paper by V. Rădulescu [16].

Let Ω be a bounded domain in R
N .

For a measurable function p : Ω → R we define:

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

Set:

C+(Ω) =
{

p ∈ C(Ω) : p(x) > 1, for all x ∈ Ω
}

.

The variable exponent Lebesgue space Lp(x)(Ω) is defined

Lp(x)(Ω) =

{

u; u : Ω → R a measurable function :
∫

Ω

|u|p(x)dx < ∞

}

,

and with the norm:

|u|p(x) = inf

{

µ > 0 :
∫

Ω

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

,

Lp(x)(Ω) becomes a Banach space whose dual is the space Lp′(x)(Ω), where 1
p(x)

+ 1
p′(x)

= 1.

Remark 2.1. If 1 < p(x) < ∞, Lp(x)(Ω) is reflexive Banach space. Moreover, if p is measurable

and bounded, then Lp(x)(Ω) is also separable.
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Remark 2.2. If 0 < |Ω| < ∞ and h(x), r(x) with h(x) < r(x) almost everywhere in Ω, are two

variable exponents then the following continuous embedding holds

Lr(x)(Ω) →֒ Lh(x)(Ω).

Let Lp′(x)(Ω) denotes the dual space of Lp(x)(Ω). For all u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω)

the following Hölder type inequality holds:

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

p′−

)

|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.1)

A key role in the studies which imply the variable exponent Lebesgue spaces is played by

the modular of Lp(x)(Ω), which is ρp(x) : Lp(x)(Ω) → R and is defined by

ρp(x)(u) =
∫

Ω

|u(x)|p(x)dx.

Remark 2.3. If p(x) 6≡ constant in Ω, for u, (un) ∈ Lp(x)(Ω), the following relations hold true:

|u|p(x) < 1 ⇒ |u|
p+

p(x)
≤ ρp(x)(u) ≤ |u|

p−

p(x)
, (2.2)

|u|p(x) > 1 ⇒ |u|
p−

p(x)
≤ ρp(x)(u) ≤ |u|

p+

p(x)
, (2.3)

|u|p(x) = 1 ⇒ ρp(x)(u) = 1, (2.4)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (2.5)

The variable exponent Sobolev space W1,p(x)(Ω) is defined by

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

.

On W1,p(x)(Ω) we may consider the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x)

and

‖u‖ = inf

{

µ :
∫

Ω

(

∣

∣

∣

∣

∇u(x)

µ

∣

∣

∣

∣

p(x)

+

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)
)

dx ≤ 1

}

.

We define W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖p(x) or

W
1,p(x)
0 (Ω) =

{

u; u|∂Ω = 0, u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)
}

.

Taking account of [8] for p ∈ C+(Ω) we have the p(·)-Poincaré type inequality

|u|p(x) ≤ C|∇u|p(x), (2.6)

where C > 0 is a constant which depends on p and Ω.

For Ω ⊂ R
N a bounded domain and p a global log-Hölder continuous function, on

W
1,p(x)
0 (Ω) we can work with the norm |∇u|p(x) equivalent with ‖u‖p(x).



6 V. F. Ut, ă

Remark 2.4. If p, q : Ω → (1, ∞) are Lipschitz continuous, p+ < N and p(x) ≤ q(x) ≤ p∗(x),

for any x ∈ Ω, where p∗(x) = Np(x)
N−p(x)

, the embedding

W
1,p(x)
0 (Ω) →֒ Lq(x)(Ω)

is compact and continuous.

Remark 2.5. If 0 < |Ω| < ∞, and p2(x) < p1(x) in Ω, then there holds the following continu-

ous embedding

W
1,p1(x)
0 (Ω) →֒ W

1,p2(x)
0 (Ω).

Remark 2.6 ([5]). Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(Ω) and

1 ≤ p(x)q(x) ≤ ∞ almost everywhere in Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

|u|p(x)q(x) ≥ 1 ⇒ |u|
p−

p(x)q(x)
≤
∣

∣

∣
|u|p(x)

∣

∣

∣

q(x)
≤ |u|

p+

p(x)q(x)

|u|p(x)q(x) ≤ 1 ⇒ |u|
p+

p(x)q(x)
≤
∣

∣

∣
|u|p(x)

∣

∣

∣

q(x)
≤ |u|

p−

p(x)q(x)
.

In particular, if p(x) = p is a constant, then ||u|p|
p

pq(x)
.

3 Basic hypotheses and auxiliary results

In this section we will give the basic properties of the potential functions φ and ψ which

drive us to the differential operator described in the first section. Also we impose the new

conditions on the reaction function and the theoretical auxiliary results we need in order to

achieve the solutions of problem (P).

Therefore, we assume that the reaction function f (x, z) satisfies the following conditions:

(R1) f : Ω × R → R is a Carathéodory function, that is:

→ f (·, z) is measurable for all z ∈ R;

→ f (x, ·) is continuous for almost all x ∈ Ω.

(R2) There exists C > 0, a nonnegative constant such that

| f (x, z)| ≤ C
(

1 + |z|q(x)−1
)

for all x ∈ Ω and z ∈ R, where q ∈ C+(Ω).

Define

F(x, z) =
∫ z

0
f (x, t)dt. (3.1)

(R3) lim|z|→∞

|F(x,z)|

|z|p
+
2

= +∞ uniformly in x, and there exists q0 > 0, such that

F(x, z) ≥ 0 for all x ∈ Ω and z ∈ R,

with |z| > q0.
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(R4) Define:

R(x, z) :=
1

p+2
f (x, z)z − F(x, z) ≥ 0

and let C1 > 0, a nonnegative constant and µ ∈ C+(Ω) with µ−
> max

{

1, N
p−1

}

such

that

|F(x, z)|µ(x) ≤ C1|z|
p−1 µ(x)R(x, z),

for all x ∈ Ω and z ∈ R, with |z| ≥ q0.

(R5) Let ω > p+2 and η > 0 two constants such that

ωF(x, z) ≤ f (x, z)z + η|z|p
−
1 ,

for all x ∈ Ω, z ∈ R.

(R6) f (x,−z) = − f (x, z), for all x ∈ Ω and z ∈ R.

Hypotheses on the potential functions that generates the double-phase differential opera-

tor are the following:

(HS1) φ, ψ : Ω × [0, ∞) → [0, ∞) and

→ φ(·, z), ψ(·, z) are measurable on Ω for all z ≥ 0;

→ φ(x, ·), ψ(x, ·) are locally absolutely continuous on [0, ∞) for almost all x ∈ Ω.

(HS2) For some functions α1 ∈ Lp′1(x)(Ω) and α2 ∈ Lp′2(x)(Ω) and a nonnegative constant ξ

we have that

→ |φ(x, |z|)z| ≤ α1(x) + ξ|z|p1(x)−1;

→ |ψ(x, |z|)z| ≤ α2(x) + ξ|z|p2(x)−1.

for almost all x ∈ Ω, and all z ∈ R
N .

(HS3) For some constant Cφ,ψ > 0, all x ∈ Ω and all z > 0 we have that:

→ φ(x, z) ≥ Cφ,ψzp1(x)−2 and z
∂φ
∂z + φ(x, z) ≥ Cφ,ψzp1(x)−2

→ ψ(x, z) ≥ Cφ,ψzp2(x)−2 and z
∂ψ
∂z + ψ(x, z) ≥ Cφ,ψzp2(x)−2.

Let S0(x, z) =
∫ z

0
φ(x, t)tdt +

∫ z

0
ψ(x, t)tdt, we define

S(u) =
∫

Ω

S0(x, |∇u|)dx. (3.2)

An important role in our variational approach is played by the fact that the following

assumption holds true for the potentials φ and ψ:

(HS4) For all x ∈ Ω, all z ∈ R
N , the following estimate is true:

0 ≤ [φ(x, z) + ψ(x, z)] |z|2 ≤ p+2 S0(x, |z|).

In order to obtain our results we must state the growth behavior of the variable exponents:

{

1 < p−1 ≤ p1(x) ≤ p+1 < p−2 ≤ p2(x) ≤ p+2 < q− ≤ q(x) ≤ q+ < p∗1(x);

p∗1(x) = Np1(x)
N−p1(x)

.
(3.3)
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Remark 3.1. Taking account on the relation (3.3) and the embedding theorems for variable

exponent Lebesgue and Sobolev spaces we will choose W
1,p2(x)
0 (Ω) as functional space for the

solutions of problem (P), and for the simplicity of the writing by ‖ · ‖ we will denote the norm

associated to W
1,p2(x)
0 (Ω) (‖ · ‖p2(x)).

We can now define the weak solution for the problem (P).

Definition 3.2. We say that u ∈ W
1,p2(x)
0 (Ω) \ {0} is a nontrivial weak solution of the problem

(P) if
∫

Ω

[φ(x, |∇u|) + ψ(x, |∇u|)]∇u∇vdx = λ
∫

Ω

f (x, u)vdx

for all v ∈ W
1,p2(x)
0 (Ω).

In order to point out the existence and multiplicity results for our problem we define the

following energy functional associated to the problem (P) as it follows:

Eλ : W
1,p2(x)
0 (Ω) → R

Eλ(z) = S(z)− λT(z),

where S(z) is defined by relation (3.2) and T(z) =
∫

Ω
F(x, z)dx, with F(x, z) defined as in

relation (3.1).

Taking account of [8, Lemmas 3.2, 3.4], some details from [2, Section 4] and of [23, Lemma

3.1] it is easily to observe that Eλ is of class C1
(

W
1,p2(x)
0 (Ω), R

)

.

In order to reveal the existence and multiplicity of eigenvalues associated to our problem,

we will point out that the critical points of the energy functional Eλ. We can observe that the

critical points of Eλ are weak solutions for the problem (P):

〈Eλ(u), ϕ〉 =
∫

Ω

[φ(x, |∇u|) + ψ(x, |∇u|)]∇u∇ϕdx

− λ
∫

Ω

f (x, u)ϕdx, for all ϕ ∈ W
1,p2(x)
0 (Ω).

Definition 3.3. We say that Eλ ∈ C1
(

W
1,p2(x)
0 (Ω), R

)

fulfills the (C)c-condition if for any se-

quence (un)n ⊂ W
1,p2(x)
0 (Ω) the following relation holds true:

Eλ(un) → c and ‖E′
λ(un)‖W−1,p′2(x)(Ω)

(1 + ‖un‖) → 0

we can find a convergent subsequence.

A central role in the proof of the main results of this paper is played by the Fountain

Theorem. As we have seen in the Section 2, the variable exponent Sobolev spaces are reflexive

and separable Banach spaces. Therefore, taking account of the Remark 3.1, we consider that

for W
1,p2(x)
0 (Ω) we have (ej)j ⊂ W

1,p2(x)
0 (Ω) and (e∗j ) ⊂ W−1,p′2(x)(Ω) such that

W
1,p2(x)
0 (Ω) = span{ej : j = 1, 2, . . . }

W−1,p′2(x)(Ω) = span{e∗j : j = 1, 2, . . . }

and

〈ei, e∗j 〉 =

{

1, if i = j

0, if i 6= j,
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where 〈·, ·〉 represents the duality product between W
1,p2(x)
0 (Ω) and W−1,p′2(x)(Ω). We define



























Xj = span{ej},

Yk =
k
⊕
j=1

Xj,

Zk =
∞

⊕
j=k

Xj.

(3.4)

Theorem 3.4 (Fountain Theorem [18]). Let E ∈ C1(X) be an even functional, where (X, ‖ · ‖)

is a separable and reflexive Banach space. Suppose that for every k ∈ N large enough, there exists

ρk > rk > 0 such that

(i) inf {E(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞,

(ii) max {E(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0,

(iii) E satisfies the Palais–Smale condition for every c > 0.

Then E has a sequence of critical values tending to +∞.

For more details and applications on the Fountain Theorem we refer to X. Fan, Q. Zhang

[6], D. Repovš [18] and V. F. Ut,ă [22]. A comprehensive study for various forms of this theorem

and its extensions can be found in the following works of Y. Jabri [7], P. Pucci, V. Rădulescu

[11], P. Pucci, J. Serrin [14] and P. Pucci, J. Serrin [13]. Also for double phase problems we

recommend the following work of P. Pucci, V. Rădulescu [12], M. Ragusa, A. Tachikawa [15],

X. Shi, V. Rădulescu, D. Repovš, Q. Zhang [20].

We proceed now to prove some helpful propositions.

Proposition 3.5. Suppose that conditions (HS1)–(HS4), (R2)–(R4) hold true, then every (C)c se-

quence associated to the energy functional Eλ is bounded.

Proof. Let (un)n ⊂ W
1,p2(x)
0 (Ω) be a (C)c sequence. In order to prove that it is bounded we

argue by contradiction and suppose that

‖un‖ → +∞ as n → ∞. (3.5)

Using the above relation and taking n large enough we obtain that:

c + 1 ≥ Eλ(un)−
1

p+2
〈E′

λ(un), un〉

=
∫

Ω

S0(x, |∇un|)dx −
1

p+2

∫

Ω

[φ(x, |∇un|) + ψ(x, |∇un|)] |∇un|
2dx

− λ
∫

Ω

F(x, un)dx +
λ

p+2

∫

Ω

f (x, |∇un|)undx (3.6)

Now using hypothesis (HS4) we get that:

c + 1 ≥
∫

Ω

(

1 −
p+2
p+2

)

S0(x, |∇un|)dx − λ
∫

Ω

F(x, un)dx +
λ

p+2

∫

Ω

f (x, un)undx

≥ −λ
∫

Ω

F(x, un)dx +
λ

p+2

∫

Ω

f (x, un)undx.
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By assumption (R4) we obtain that

c + 1 ≥ λ
∫

Ω

R(x, un)dx.

As we supposed, the relation (3.5) holds true, then for n sufficiently large we have that

‖un‖ > 1. Hence by the fact that (un)n is a (C)c-sequence we obtain that:

0 = lim
n→∞

c + o(1)

‖un‖p−1
= lim

n→∞

Eλ(un)

‖un‖p−1

≥

∫

Ω

S0(x, |∇un|)dx − λ
∫

Ω

F(x, un)dx

‖un‖p−1
. (3.7)

Now using (HS4), and (HS3) we obtain that

0 ≥

1

p+2

∫

Ω

[φ(x, |∇un|) + ψ(x, |∇un|)] |∇un|
2dx − λ

∫

Ω

F(x, un)dx

‖un‖p−1

≥

1

p+2

∫

Ω

Cφ,ψ

(

|∇un|
p1(x) + |∇un|

p2(x)
)

dx − λ
∫

Ω

F(x, un)dx

‖un‖p−1
.

Now using the modular properties (2.3), (2.4) we obtain that

S(u) ≥
Cφ,ψ

p+2

(

‖un‖
p−1
p1(x)

+ ‖un‖
p−2

)

Now taking account of the fact that by relation (3.3) p−1 < p−2 , we have that

S(u) ≥
Cφ,ψ

p+2
‖un‖

p−1 .

Hence from (3.7) we obtain that

0 ≤
Cφ,ψ

p+2

‖un‖p−1

‖un‖p−1
−

λ
∫

Ω

F(x, un)dx

‖un‖p−1
,

which yields to
Cφ,ψ

p+2 λ
≤ lim sup

n→∞

∫

Ω

|F(x, un)|

‖un‖
dx. (3.8)

Let 0 ≤ a ≤ b and Da,b
n = {z ∈ Ω : a ≤ |un(z)| < b}.

Consider in what follows wn = un

‖un‖
. It is obvious that ‖wn‖ = 1 and there exist a nonneg-

ative constant Cw such that |wn|q(x) ≤ C2‖wn‖ = Cw.

As a consequence of the above facts (passing eventually to a subsequence), we can find an

element w0 such that wn ⇀ w0 in W
1,p2(x)
0 (Ω).

Moreover,

wn → w0 in Lr(x)(Ω), 1 ≤ r(x) < p∗1(x)

wn(x) → w0(x) a.e. on Ω.
(3.9)

In what follows we have to split the proof in two cases:
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(I) w0 = 0;

(II) w0 6= 0.

Let firstly assume that w0 = 0.

We obtain that
{

wn → 0 in Lr(x)(Ω)

wn(x) → 0 a.e. on Ω

and by assumption (R2) we have that

∫

D
0,ρ
n

|F(x, un)|

‖un‖p−1
dx ≤

C(ρ + ρq)|Ω|

‖un‖p−1
→ 0, (3.10)

where q = q+ if ρ ≥ 1 and q = q− if ρ < 1.

Let µ′(x) be the conjugate exponent for µ(x), i.e., µ′(x) = µ(x)
µ(x)−1

, by hypothesis (R4) we

have that µ−
> max

{

1, N
p−1

}

, hence 1 < p−1 µ′(x) < p∗1(x). Therefore we get that wn → 0 in

Lp−1 µ′(x)(Ω) as n → ∞.

Using Remark 2.6, assumption (R4), relation (3.6) and (3.9) one have that

∫

D
ρ,+∞

n

|F(x, un)|

|un|p
−
1

|wn|
p−1 dx ≤ 2

∣

∣

∣

∣

∣

|F(x, un)|

|un|p
−
1

∣

∣

∣

∣

∣

Lµ(x)(D
ρ,+∞

n )

∣

∣

∣
|wn|

p−1

∣

∣

∣

Lµ′(x)(D
ρ,+∞

n )

≤ 2 max







(

∫

D
ρ,+∞

n

|F(x, un)|µ(x)

|un|p
−
1 µ(x)

dx

)
1

µ+

,

(

∫

D
ρ,+∞

n

|F(x, un)|µ(x)

|un|p
−
1 µ(x)

dx

)
1

µ−







· max

{

(

∫

D
ρ,+∞

n

|wn|
p−1 µ′(x)dx

)
1

(µ′)+

,

(

∫

D
ρ,+∞

n

|wn|
p−1 µ′(x)dx

)
1

(µ′)−

}

≤ 2 max

{

(

∫

D
ρ,+∞

n

R(x, un)dx

)
1

µ+

,

(

∫

D
ρ,+∞

n

R(x, un)dx

)
1

µ−

}

· max

{

(

∫

D
ρ,+∞

n

|wn|
p−1 µ′(x)dx

)
1

(µ′)−

,

(

∫

D
ρ,+∞

n

|wn|
p−1 µ′(x)dx

)
1

(µ′)+

}

(3.11)

≤ 2 max

{(

C1

λ
(c + 1)

1
µ+

)

,

(

C1

λ
(c + 1)

1
µ−

)}

· max

{

(

∫

D
ρ,+∞

n

|wn|
p−1 µ′(x)dx

)
1

(µ′)−

,

(

∫

D
ρ,+∞

n

|wn|
p−1 µ′(x)dx

)
1

(µ′)−

}

→ 0 as n → +∞.

By relations (3.10) and (3.11), one have that

∫

Ω

|F(x, un)|

‖un‖p−1
dx =

∫

D
0,ρ
n

|F(x, un)|

‖un‖p−1
dx +

∫

D
ρ,+∞

n

|F(x, un)|

‖un‖p−1
dx

=
∫

D
0,ρ
n

|F(x, un)|

‖un‖p−1
dx +

∫

D
ρ,+∞

n

|F(x, un)|

|un|p
−
1

|wn|
p−1 dx

→ 0 as n → +∞. (3.12)
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which is a contradiction with the fact that lim supn→∞

∫

Ω

|F(x,un)|

‖un‖
p−

1
dx > 0.

We proceed now to prove the second case, and assume that w0 6= 0. Therefore there exists

D∗ such that D∗ := {z ∈ Ω : w0(z) 6= 0}, with |D∗| > 0, where |D∗| is the Lebesgue measure

of D∗.

So, for almost every z ∈ D∗, we have that

lim
n→∞

|un(z)| = +∞. (3.13)

Therefore, by (3.13) we get that D∗ ⊂ D
ρ,+∞

n for n ∈ N sufficiently large.

With similar arguments as above (see relation (3.10)) it yields that

∫

D
0,ρ
n

|F(x, un)|

‖un‖p+2
dx ≤

C(ρ + ρq)|Ω|

‖un‖p+2
→ 0 as n → ∞ (3.14)

By hypotheses (R2), (R3), relation (3.14) and taking use of the Fatou’s Lemma one have

that

0 = lim
n→∞

c + o(1)

‖un‖p+2
= lim

n→∞

Eλ(un)

‖un‖p+2

≤ lim
n→∞







∫

Ω

S0(x, |∇un|)

‖un‖p+2
dx −

λ

‖un‖p+2

∫

Ω

F(x, un)dx






. (3.15)

In order to complete our proof and obtain the desired contradiction we will compute the

term of the energy functional driven by the double-phase operator and the term driven by the

reaction function separately.

We firstly compute the part driven by the differential operator. So, taking use of the

fact that ‖un‖ → ∞ as n → ∞, using hypothesis (HS2), Hölder’s inequality and the fact

that W
1,p2(x)
0 (Ω) →֒ W

1,p1(x)
0 (Ω) continuously (and one have ‖u‖p1(x) ≤ Cp1

‖u‖, for some

nonnegative constant Cp1
) we obtain that

S(x, |∇un|) =
∫

Ω

S0(x, |∇un|)dx

≤ Cφ|α1|p′1(x)‖un‖
p+1
p1(x)

+
ξ

p−1
‖un‖

p+1
p1(x)

+ Cψ|α2|p′2(x)‖un‖
p+2 +

ξ

p+2
‖un‖

p+2

≤ CM‖un‖
p+2 (3.16)

where CM =
(

Cφ|α1|p′1(x) · Cp1
+ ξ

p−1
Cp1

)

+
(

Cψ|α2|p′2(x) +
ξ

p−2

)

, and Cφ, Cψ are two nonnegative

constants, Cφ, Cψ > 0, which depend on the potential functions φ, ψ and on the continuous

embeddings: W
1,p1(x)
0 (Ω) →֒ Lp1(x)(Ω), W

1,p2(x)
0 (Ω) →֒ W

1,p1(x)
0 (Ω).

We proceed now to compute the second part of the energy functional driven by our reac-

tion function term of the problem (P).

Combining relations (3.15) and (3.16)

0 ≤ lim
n→∞

[

CM‖un‖p+2

‖un‖p+2
− λ

(

∫

D
0,ρ
n

F(x, un)

‖un‖p+2
dx +

∫

D
ρ,+∞

n

F(x, un)

‖un‖p+2
dx

)]

(3.17)

= lim
n→∞

[

CM −
λ

‖un‖p+2

(

∫

D
0,ρ
n

F(x, un)dx +
∫

D
ρ,+∞

n

F(x, un)dx

)

]
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≤ lim
n→∞

[

CM −
λ

‖un‖p+2

∫

D
ρ,+∞

n

F(x, un)dx

]

≤ lim sup
n→∞

[

CM −
λ

‖un‖p+2

∫

D
ρ,+∞

n

F(x, un)dx

]

= CM − lim inf
n→∞

λ
∫

D
ρ,+∞

n

F(x, un)

|un|p
+
2

|wn|
p+2 dx

= CM − lim inf
n→∞

λ
∫

Ω

F(x, un)

|un|p
+
2

χ
D

ρ,+∞

n
(x)|wn|

p+2 dx

≤ CM − λ
∫

Ω

lim inf
n→∞

F(x, un)

|un|p
+
2

χ
D

ρ,+∞

n
(x)|wn|

p+2 dx

→ −∞, as n → ∞,

which contradicts relation (3.17).

Therefore we obtained the fact that any (C)c-sequence is bounded, so our proof is complete.

Proposition 3.6. If assumptions (R1)–(R4) hold true, then for every (C)c-sequence of Eλ we can find

a convergent subsequence in W
1,p2(x)
0 (Ω).

Proof. Suppose that (vn)n ⊂ W
1,p2(x)
0 (Ω) is a (C)c-sequence for Eλ. Using Proposition 3.5 we

have that (vn)n is bounded in W
1,p2(x)
0 (Ω), so, passing eventually to a subsequence we obtain

the fact that vn ⇀ v0 in W
1,p2(x)
0 (Ω). Using Remark 2.6 it yields that (vn)n is bounded in

Lq(x)(Ω) and by the continuous and compact embedding W
1,p2(x)
0 (Ω) →֒ Lq(x)(Ω), we get that

vn → v0 in Lq(x)(Ω) as n → ∞.

By straightforward computations we obtain that

∫

Ω

| f (x, vn)− f (x, v0)| |vn − v0|dx

≤
∫

Ω

(| f (x, vn)|+ | f (x, v0)|) |vn − v0|dx

≤
∫

Ω

[

C(1 + |vn|
q(x)−1) + C(1 + |v0|

q(x)−1)
]

|vn − v0|dx

≤ 2C
∫

Ω

|vn − v0|dx + C
∫

Ω

|vn|
q(x)−1|vn − v0|dx +

∫

Ω

|v0|
q(x)−1|vn − v0|dx (3.18)

≤ 2C|vn − v0|L1(Ω) + 2C
∣

∣

∣
|vn|

q(x)−1
∣

∣

∣

q′(x)
· |vn − v0|q(x) + 2C

∣

∣

∣
|v0|

q(x)−1
∣

∣

∣

q′(x)
|vn − v0|q(x)

≤ 2C|vn − v0|L1(Ω) + 2C max
{

|vn|
q+−1

q(x)
, |vn|

q−−1

q(x)

}

· |vn − v0|q(x)

+ 2C max
{

|v0|
q+−1

q(x)
, |v0|

q−−1

q(x)

}

|vn − v0|q(x) → 0 as n → ∞,

where q′(x) is the conjugate exponent of q(x), i.e. 1
q(x)

+ 1
q′(x)

= 1.

Now taking account of [8, Lemma 3.2] one have that:

〈S′(vn)− S′(v0), vn − v0〉

= 〈E′
λ(vn)− E′

λ(v0), vn − v0〉+
∫

Ω

[ f (x, vn)− f (x, v0)] (vn − v0)dx (3.19)



14 V. F. Ut, ă

and by Definition 3.3, keeping in mind that (vn)n is a (C)c-sequence of the energy functional

Eλ, we get that:

lim
n→∞

〈E′
λ(vn)− E′

λ(v0), vn − v0〉 = 0. (3.20)

Now by relations (3.18), (3.19), (3.20) and taking account of [8, Lemma 3.4] we obtain the

fact that

lim
n→∞

〈S′(vn)− S′(v0), vn − v0〉 = 0,

and by the fact that S is of type (S)+ (see also [8, Lemma 3.4]) it yields that vn → v0 in

W
1,p2(x)
0 (Ω), and so, our proof is complete.

Proposition 3.7. If assumptions (R1)–(R3) and (R5) hold true, then for every (C)c-sequence of Eλ,

we can find a convergent subsequence in W
1,p2(x)
0 (Ω).

Proof. Taking use of Proposition 3.5, and keeping in mind the proof of Proposition 3.6 we only

have to prove that our sequence is bounded in W
1,p2(x)
0 (Ω).

Let (vn)n ⊂ W
1,p2(x)
0 (Ω) be a (C)c-sequence for Eλ. Arguing by contradiction we suppose

that ‖vn‖ → ∞ as n → ∞. Now, taking wn = vn

‖vn‖
, we get that ‖wn‖ = 1, for all n ∈ N,

futhermore we obtain that |wn|q(x) ≤ Cw‖wn‖, where Cw > 0 is a constant.

By the above facts and passing eventually to a subsequence we may find w0 such that

wn ⇀ w0 in W
1,p2(x)
0 (Ω), (3.21)

and by the compact embedding W
1,p2(x)
0 (Ω) →֒ Lq(x)(Ω) we obtain that

wn → w0 in Lq(x)(Ω)

wn(x) → w0(x) a.e. on Ω.
(3.22)

Now by the definition of Eλ it yields that:

c + 1 ≥ Eλ(vn)−
1

ω
〈E′

λ(vn), vn〉

=
∫

Ω

S0(x, |∇vn|)−
1

ω
[φ(x, |∇vn|)∇vn + ψ(x, |∇vn|)∇vn] dx

+ λ
∫

Ω

[

1

ω
f (x, vn)vn − F(x, vn)

]

dx.

Now by hypothesis (HS4) combined with (HS3) we get that

c + 1 ≥
∫

Ω

(

1 −
p+2
ω

)

S0(x, |∇vn|)dx + λ
∫

Ω

[

1

ω
f (x, vn)vn − F(x, vn)

]

dx

≥
∫

Ω

(

1 −
p+2
ω

)

·
Cφ,ψ

p+2

[

|∇vn|
p1(x)−2 + |∇vn|

p2(x)−2
]

|∇vn|
2dx

+ λ
∫

Ω

[

1

ω
f (x, vn)vn − F(x, vn)

]

dx

≥

(

1 −
p+2
ω

)

·
Cφ,ψ

p+2

∫

Ω

|∇vn|
p2(x)dx + λ

∫

Ω

[

1

ω
f (x, vn)vn − F(x, vn)

]

dx.
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Using assumption (R5) we obtain that:

c + 1 ≥

(

1 −
p+2
ω

)

·
Cφ,ψ

p+2
‖vn‖

p−2 −
λ

ω
η
∫

Ω

|vn|
p−1 dx

for any n ≥ 0.

Hence passing to (wn)n we obtain that:

λ

ω
η
∫

Ω

|wn|
p−1 dx ≥

(

1 −
p+2
ω

)

·
Cφ,ψ

p+2

⇒
λη

ω
·

ωp+2
(ω − p+2 )Cφ,ψ

∫

Ω

|wn|
p−1 dx ≥ 1

⇒
ληp+2

(ω − p+2 )Cφ,ψ
|wn|

p−1
p−1

≥ 1

⇒
ληp+2

(ω − p+2 )Cφ,ψ
lim sup

n→∞

|wn|
p−1
p−1

≥ 1 (3.23)

Now, keeping in mind relations (3.21) and (3.22) we have that wn → w0 in Lp−1 (Ω), more-

over by (3.23) we get that w0 6= 0.

In order to obtain the desired contradiction we apply the same technique as in the case

(I I) from the proof of Proposition 3.5 and the contradiction is obtained.

Therefore we have the fact that (vn)n is bounded in W
1,p2(x)
0 (Ω). In order to complete the

proof we only have to repeat the steps taken in the proof of Proposition 3.6 and the work is

accomplished.

4 Main results

In this section using the Fountain Theorem we will reveal the fact that the problem (P) has an

unbounded sequence of weak solutions with higher and higher energies.

We are now ready to enunciate and prove our main results.

Theorem 4.1. If assumptions (HS1)–(HS4), (R1)–(R4), (R6) and (3.3) hold true, then for every

λ > 0 the problem (P) possesses an infinite sequence of nontrivial weak solutions.

Theorem 4.2. If assumptions (HS1)–(HS4), (R1)–(R3), (R5), (R6) and (3.3) hold true, then for

every λ > 0 the problem (P) possesses an infinite sequence of nontrivial weak solutions.

Proof of Theorem 4.1. As we have seen in the previous section, as W
1,p2(x)
0 (Ω) is separable, re-

flexive Banach space, let us consider Yk and Zk denoted by relation (3.4).

Firstly we check if condition (i) from the Theorem 3.4 holds true.

Let ak := sup
{

|u|q(x) : ‖u‖ = 1, u ∈ Zk

}

. It is easily to observe the fact that ak → 0 as

k → ∞. The reasoning behind the above statement is the following. By the definition of (ak)k

we get that ak > ak+1 ≥ 0, therefore ak → a ≥ 0, as k → ∞. By the reflexivity of W
1,p2(x)
0 (Ω),

and taking uk ∈ Zk, ‖uk‖ = 1 for each k ∈ N such that

0 ≤ ak − |uk|q(x) ≤
1

k
,
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we get that (uk)k has a convergent subsequence and suppose uk ⇀ u1 in W
1,p2(x)
0 (Ω). Keeping

in mind the definition of Zk we obtain that u1 = 0. Taking account of [8, Lemma 3.4] we have

that uk → 0 in Lq(x)(Ω), so it yields that a = 0.

Now let u ∈ Zk with ‖u‖ = ρk > 1, where ρk will be specified later.

Using hypotheses (HS3) and (HS4) and (2.3) we have that

Eλ(u) =
∫

Ω

S0(x, |∇u|)dx − λ
∫

Ω

F(x, u)dx

≥
Cφ,ψ

p+2

(

∫

Ω

|∇u|p1(x)dx + ‖u‖p−2

)

− λ
∫

Ω

F(x, u)dx

≥
Cφ,ψ

p+2
‖u‖p−2 − λ

∫

Ω

F(x, u)dx. (4.1)

Now using assumption (R2) we get that

F(x, z) ≤ C(|z|+ |z|q(x)) ≤ 2C(1 + |z|q(x)) (4.2)

for all (x, z) ∈ Ω × R.

Using (4.1) and (4.2) we obtain that

Eλ(u) ≥
Cφ,ψ

p+2
‖u‖p+2 − 2λC

∫

Ω

(

1 + |u|q(x)
)

dx

≥
Cφ,ψ

p+2
‖u‖p+2 − 2λC

[

|Ω|+ max
{

|u|
q−

q(x)
, |u|

q+

q(x)

}]

(where |Ω| represents the Lebesgue measure of Ω).

Taking account of the continuous embedding W
1,p2(x)
0 (Ω) →֒ Lq(x)(Ω) we have |u|q(x) ≤

C3‖u‖ and then the above inequality becomes:

Eλ(u) ≥
Cφ,ψ

p−2
‖u‖p−2 − 2λC

[

|Ω|+ max
{

C
q−

3 ‖u‖q− , C
q+

3 ‖u‖q+
}]

≥
Cφ,ψ

p−2
‖u‖p−2 − 2λCC̃q‖u‖q+ − 2λC|Ω|

(where C̃q = max
{

C
q+

3 , C
q−

3

}

)

≥
Cφ,ψ

p−2
‖u‖p−2 − 2λCC̃qa

q+

k ‖u‖q+ − 2λC|Ω|.

It can be easily checked that if we choose

ρk =

(

2λCC̃q

Cφ,ψ
· p−2 a

p+2
k

)

1

p−2 −q+

(4.3)

combined with the fact that p−2 < q+ and ak → 0 as k → +∞, we obtain that ρk → +∞ as

k → +∞.

Taking ‖u‖ = ρk with ρk as stated in relation (4.3) we obtain that

Eλ(u) → +∞ as k → +∞,

and so, the validity of condition (i) is proved.
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We check now if the condition (ii) from the Fountain Theorem holds true.

Assume that u ∈ Yk and ‖u‖ = τk > 1, where τk will be specified later.

By hypothesis (HS2) we have that

Eλ(u) ≤ 2C4|α1|p′1(x) max
{

‖u‖
p−1
p1(x)

, ‖u‖
p+1
p1(x)

}

+
ξ

p−1
max

{

‖u‖
p−1
p1(x)

, ‖u‖
p+1
p1(x)

}

+ 2C5|α2|p′2(x)‖u‖p+2 +
ξ

p−2
‖u‖p+2 − λ

∫

Ω

F(x, u)dx,

where C4, C5 are some strictly nonnegative constants.

Taking account of the continuous embedding described in Remark 2.5 we obtain that

Eλ(u) ≤ C6‖u‖p+2 − λ
∫

Ω

F(x, u)dx (4.4)

where C6 =
(

2C4|α1|p′1(x)Cp1
+ ξ

p−1
Cp1

)

+
(

2C5|α2|p′2(x) +
ξ

p−2

)

, and Cp1
= max

{

C
p−1
2 , C

p+2
2

}

.

In order to complete the proof of condition (ii), we argue by contradiction and assume

that (ii) is not true for some given n. Hence we can find a sequence (vn)n ⊂ Yn such that

‖vn‖ → +∞ as n → +∞ and Eλ(vn) ≥ 0. (4.5)

Suppose now that wn = vn

‖vn‖
, therefore ‖wn‖ = 1. As dim Yk < +∞, then we can find

some w0 ∈ Yk \ {0} such that, passing eventually to a subsequence we get that

{

wn → w0,

wn(x) → w0(x) a.e. x ∈ Ω
as n → +∞.

As w(x) 6= 0, we get that |vn(x)| → +∞ as n → +∞. Taking account of hypothesis (R3)

we obtain that

lim
n→+∞

F(x, |vn(x)|)

‖vn‖p+2
= lim

n→+∞

F(x, vn(x))

|vn(x)|p
+
2

|wn(x)|p
+
2 = +∞

for all x ∈ D0 := {x ∈ Ω : w(x) 6= 0}. With the same arguments as in the proof of Proposition

3.6 we get that
∫

D0

F(x, vn)

‖vn‖p+2
dx → +∞ as n → +∞.

Taking n ∈ N, large enough we have that D0 ⊂ D
ρ,+∞

n (the domain considered in the proof

of Proposition 3.5), and so the following estimates hold true:

Eλ(vn) ≤ C6‖vn‖
p+2 − λ

[

∫

D
0,ρ
n

F(x, vn)dx +
∫

D
ρ,+∞

n

F(x, vn)dx

]

≤ C6‖vn‖
p+2 + C7

∫

D
0,ρ
n

(ρ + ρq) dx −
∫

D
ρ,+∞

n

F(x, vn)dx

(where C7 > 0 is some nonnegative constant)

≤ C6‖vn‖
p+2 + C7 (ρ + ρq) |Ω| −

∫

D
ρ,+∞

n ∩D0

F(x, vn)dx

≤ ‖vn‖
p+2

(

C6 +
C (ρ + ρq) |Ω|

‖vn‖p+2
−
∫

D
ρ,+∞

n ∩D0

F(x, vn)

‖vn‖p+2
dx

)

→ − ∞ as n → +∞,
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which is a contradiction with relation (4.5) and so we have completed the proof that condition

(ii) holds true.

As in Proposition 3.6 we have proved that the energy functional Eλ verifies the (C)c-

condition and by hypothesis (R6) the function that gives the reaction term of our equation is

odd we can conclude the proof of Theorem 4.1 by simply applying the Fountain Theorem.

Remark 4.3. Taking account of the above theorem we have proved that for every λ > 0 we

have an unbounded sequence of solutions obtained for higher and higher energies.

Proof of Theorem 4.2. With the same arguments as in the proof of Theorem 4.1, we can point

out that condition (i) of the Fountain Theorem is checked (as the assumptions (R4) and (R5)

plays no role in this part of the proof).

To check the validity of condition (ii) from the Fountain Theorem we combine the argu-

ments from the verification of condition (ii) of the proof to Theorem 4.1 with similar argu-

ments as in the proof of Proposition 3.7 and the condition is checked. Therefore, as in the

Proposition 3.7 we have verified the fact that our energy functional satisfies the (C)c-condition

and by (R6) the reaction term of our problem is an odd function, and as Eλ(z) = Eλ(−z) we

only have to apply the Fountain Theorem.

Hence for the energy functional Eλ we have obtained an unbounded sequence of critical

values (un)n ⊂ W
1,p2(x)
0 (Ω) such that E′

λ(un) → 0 and Eλ(un) → c as n → +∞.

5 Some examples and final remarks

As the definitions of our double phase-operator and of our reaction term are very general,

in what follows we will give some specific examples in order to illustrate the validity of our

results.

Example 5.1. Consider the following weight coefficient functions a, b : Ω → R, with a, b ∈

L∞(Ω)+ for all x ∈ Ω. Suppose there exist a constant Ca,b > 0 such that a(x), b(x) ≥ Ca,b for

all x ∈ Ω. Let f : Ω × R → R be a Carathéodory function which satisfy the assumptions

(R1) − (R6), (3.3) then the results of Theorems 4.1, 4.2 hold true for the following class of

Dirichlet problems:







−div
[

a(x)|∇u|p1(x)−2∇u + b(x)|∇u|p2(x)−2∇u
]

= λ f (x, u) in Ω,

u = 0 on ∂Ω.

It is easy to check the fact that our differential operator satisfy hypotheses (HS1)–(HS4).

Example 5.2. As we stated in the first section of this paper our potential functions φ and ψ

generalize the following type of differential operator

A(x, z) =

(

1 +
zp(x)

√

1 + z2p(x)

)

zp(x)−2 (5.1)

corresponding to the differential operator which describes the capillary phenomenon, so we
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obtain the following class of double-phase problems:



































−div

[

(

|∇u|p1(x)−2 + |∇u|2p1(x)−2

(1+|∇u|2p1(x))
1/2

)

∇u

+

(

|∇u|p2(x)−2 + |∇u|2p2(x)−2

(1+|∇u|2p2(x))
1/2

)

∇u

]

= λ f (x, u) in Ω,

u = 0 on ∂Ω,

If hypotheses (3.3), (R1)–(R6) hold true, then the results of Theorems 4.1 and 4.2 hold true

for this class of problems, i.e., this class of problems admits infinitely many nontrivial weak

solutions with high and higher energies.

By simple computations we could verify that the potential function of type A from relation

(5.1) satisfy the assumptions (HS1)–(HS4). For a thorough proof of the validity of our example

we can associate the following energy functional to our problem Eλ : W
1,p2(x)
0 (Ω) → R defined

by

Eλ(u) =
∫

Ω

1

p1(x)

[

|∇u|p1(x) +
(

1 + |∇u|2p1(x)
)1/2

]

dx+

+
∫

Ω

1

p2(x)

[

|∇u|p2(x) +
(

1 + |∇u|2p2(x)
)1/2

]

dx − λ
∫

Ω

F(x, u)dx

and recalculate the computations for this functional energy.

In what follows we will give some examples and remarks on the reaction function and the

results of this paper.

In order to prove the boundedness of the Palais–Smale sequence it is very popular in the

literature to use the (AR)-condition, i.e.,

(AR) There exist some constants A > 0, ω > p+2 such that for |z| > A and for almost every

x ∈ Ω

0 < ωF(x, z) ≤ z f (x, z)

where F(x, z) =
∫ z

0
f (x, t)dt.

Remark 5.3. The (AR)-condition described above implies the fact that our reaction function

f (x, ·) must have at least (ω − 1)-polynomial growth near +∞.

Remark 5.4. There exists an entire class of functions that are superlinear at infinity, but does

not satisfy the (AR)-condition for any ω > p+2 .

An example of this type of function is

f (x, z) = p+2 |z|
p+2 −2z ln(1 + z2), (5.2)

and we obtain that

F(x, z) = |z|p
+
2 ln

(

1 + z2
)

−
2|z|p

+
2 z

1 + z2
. (5.3)

Remark 5.5. It is easily to observe that the function defined in relation (5.2) does not satisfy the

(AR)-condition, but it satisfies conditions (R3) and (R4), therefore the results of Theorems 4.1

and 4.2 hold true.
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Remark 5.6. (i) Similar results but under the stronger hypothesis (i.e. (AR)-condition is to be

satisfied by the reaction term of the problem) where obtained for this problem in [22] and in

[8](where furthermore the differential operator is driven only by the potential function φ).

(ii) Some spectral results for this type of problem which does not use the (AR)-condition

where obtained in [22], but with the price of taking the real parameter λ in a small interval

near the origin, and the growth of the reaction function to be more general, i.e., q− < p−1 , but

in this case it is not know the behavior of the quantity supx∈Ω
q(x).

Remark 5.7. Also for the coercive case of the problem we refer to [2,21], for the double-phase

differential operator and to [8] for the simpler case were the differential operator is driven by

only one potential term.

Remark 5.8. According to the terminology used in this paper the study of integral functionals

described by relations (1.1), (1.2) correspond to differential operators described by (C1) and

relation (1.3). An interesting extension of the results obtained in this paper can be realized by

studying this problems in a more general framework of Musielak–Orlicz spaces. To this end

we refer to some results described in [17, Chapter 4].

Remark 5.9. An important role in obtaining our results is played by assumptions (3.3) which

indicates the fact that we are in the subcritical framework in the sense of Sobolev variable

exponents. No results are known in the critical or supercritical framework. Moreover, no

results are known even in the “almost critical” case with lack of compactness where (3.3) is

replaced by

p1(x) < p2(x) < q− ≤ q(x) ≤ q+ � p∗1(x) for all x ∈ Ω,

where q(x) � p∗1(x) means that there exists z ∈ Ω such that q(z) = p∗1(z) and q(x) < p∗1(x)

for all x ∈ Ω \ {z}.
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[20] Y. Shi, V. D. Rădulescu, D. Repovš, Q. Zhang, Multiple solutions of double phase

variational problems with variable exponent, Adv. Calc. Var. 13(2020), No. 4, 385–401.

https://doi.org/10.1515/acv-2018-0003; Zbl 1454.49006
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Abstract. In this paper, we present some uniqueness results for systems of ordinary
differential equations. All of them are linked by a weak transversality condition at the
initial condition, which generalizes those in the previous literature. Several examples
are also provided to illustrate our results.

Keywords: uniqueness, ordinary differential equation.

2020 Mathematics Subject Classification: 34A12.

1 Introduction

This paper considers local uniqueness of solutions for the initial value problem

x′(t) = f (t, x(t)), x(t0) = x0, (1.1)

where f : U ⊂ R
n+1 → R

n is continuous and U is a neighborhood of the point (t0, x0) ∈ R
n+1.

Hoag proved in [11] the following result concerning unique solvability of (1.1) in the scalar
case (n = 1).

Theorem 1.1. For (t0, x0) ∈ R
2 and positive numbers a and b, define

U = [t0 − a, t0 + a]× [x0 − b, x0 + b].

Let f : U → R be a continuous function satisfying the following three conditions:

BCorresponding author. Email: rodrigo.lopez@usc.es
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(i) there are constants c > 0 and r ∈ (0, 1/2) such that

| f (t, x)| ≥ c|x − x0|
r for all (t, x) ∈ U;

(ii) f (t, x0) is not identically zero on any interval (t0 − ε, t0) or (t0, t0 + ε) for 0 < ε < a;

(iii) there is a number K ≥ 0 such that for all (t, x) and (s, x) in U,

| f (t, x)− f (s, x)| ≤ K|t − s|.

Then there is a unique solution to the initial value problem (1.1) in some interval (t0 − α, t0 + α) with
α > 0.

Basically, Theorem 1.1 replaces the transversality condition f (t0, x0) 6= 0, employed in
previous papers together with the Lipschitz condition with respect to the first variable (iii),
see for instance [6, 7, 13, 14, 17], by assumptions (i) and (ii). See also [5].

On the other hand, a generalized Lipschitz condition which measures the field differences
in different directions to that given by the axis was studied and progressively improved in a
series of papers [9, 10, 16, 17]. The following result is the main uniqueness criterion in [16].

Theorem 1.2. Let D be an open neighborhood of the point (t0, x0) ∈ R
n+1 and f : D → R

n be a
continuous function. Let V ⊂ R

n+1 be a hyperspace and assume that

(i) (1, f (t0, x0)) /∈ V ,

(ii) f is Lipschitz continuous along the hyperspace V on D, i.e., there exists L ≥ 0 such that for all
(t, x), (s, y) ∈ D,

‖ f (t, x)− f (s, y)‖ ≤ L ‖(t, x)− (s, y)‖ if (t, x)− (s, y) ∈ V .

Then problem (1.1) has a unique local solution.

The aim of this paper is to extend conditions (i) and (ii) in Theorem 1.1 to the case of
systems and to combine them with different hypotheses about f , such as the generalized
Lipschitz notion in [16] or the perturbed Lipschitz assumption in [12], in order to obtain
uniqueness for (1.1).

The paper is organized as follows: in Section 2, Theorem 1.1 is extended to the case of
systems. Our result relies on the concept of Lipschitz continuous function when fixing a variable,
which was introduced in [4].

The main aim of Section 3 is to adapt the arguments in Theorem 1.1 to functions which
are Lipschitz continuous along a hyperspace V , as defined in [16, Theorem 2.1 (A2)], and thus
allowing the transversality condition (1, f (t0, x0)) /∈ V to fail. Therefore, the results in [11]
and [16] are simultaneously weakened.

In Section 4 we present a different uniqueness result which was inspired by a particular
form of expressing the function f as certain composition of functions due to Bressan and
Shen [3]. The weak Lipschitz-type condition required on f is similar to that in the classical
uniqueness criterion in [15]. It allows us to construct a set which contains all possible solutions
of problem (1.1) and where f is Lipschitz with respect to x.

We point out that all uniqueness results in this paper are connected since they require a
relaxed transversality condition at the initial point.
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2 Uniqueness via a Lipschitz condition when fixing a variable

Here we prove a relaxed version of Theorem 1.1 in the case of systems. In the sequel we use
the notation Ba(x) for the closed ball with radius a > 0 centered at x ∈ R

p, with the metric
defined by the maximum norm

∥

∥(y1, y2, . . . , yp)
∥

∥ = max{|y1| , |y2| , . . . ,
∣

∣yp
∣

∣}.

Theorem 2.1. For (t0, x0) ∈ R ×R
n, x0 = (x0,1, x0,2, . . . , x0,n), and positive numbers a and b, define

U = [t0 − a, t0 + a]× Bb(x0).

Let f : U → R
n be a continuous function satisfying the following three conditions:

(1) there is a continuous function M : [x0,n − b, x0,n + b] → (0,+∞) such that 1/M2 ∈

L1(x0,n − b, x0,n + b) and for all z ∈ [x0,n − b, x0,n + b], z 6= x0,n, we have

| fn(t, x1, x2, . . . , xn−1, z)| ≥ M(z) > 0

for all (x1, . . . , xn−1) ∈ [x0,1 − b, x0,1 + b] × · · · × [x0,n−1 − b, x0,n−1 + b] and all t ∈ [t0 −

a, t0 + a];

(2) fn(t, y1(t), . . . , yn−1(t), x0,n) is not identically zero on any interval (t0 − ε, t0) or (t0, t0 + ε) for
0 < ε < a whenever (y1, . . . , yn−1) ∈ C(t0 − ε, t0 + ε);

(3) f is Lipschitz continuous when fixing the variable xn, i.e., there exists K ≥ 0 such that

‖ f (t1, x1, . . . , xn−1, z)− f (t2, y1, . . . , yn−1, z)‖ ≤ K ‖(t1, x1, . . . , xn−1)− (t2, y1, . . . , yn−1)‖

for all (t1, x1, . . . , xn−1, z), (t2, y1, . . . , yn−1, z) ∈ U, z 6= x0,n.

Then there is a unique solution to the initial value problem (1.1) in some interval (t0 − α, t0 + α)

with α > 0.

Proof. Firstly, notice that, since f is continuous, there exists L > 0 such that ‖ f (t, x)‖ ≤ L for
all (t, x) ∈ U. Furthermore, condition (1) implies that fn(t, x) 6= 0 for any (t, x) ∈ U such that
xn 6= x0,n. Then fn has constant sign on the connected sets

U+ := {(t, x) ∈ U : xn > x0,n} and U− := {(t, x) ∈ U : xn < x0,n}.

Now, from (2) it follows that the sign of fn on both U+ and U− must be the same, so in
particular fn does not change sign on U (that is, either fn(t, x) ≥ 0 for all (t, x) ∈ U or
fn(t, x) ≤ 0 for all (t, x) ∈ U).

Let x = (x1, x2, . . . , xn) be a solution of (1.1) defined on an interval [t0 − a1, t0 + a1], with
0 < a1 < a. We will show that xn is strictly monotone on a neighborhood of t0. First, observe
that we either have x′n(t) ≥ 0 for all t ∈ I = [t0 − a1, t0 + a1] or x′n(t) ≤ 0 for all t ∈ I, hence xn

is monotone on I.
Let us prove that x′n(t) 6= 0 for all t ∈ I, t 6= t0. Reasoning by contradiction, assume without

loss of generality that for some t∗ ∈ I, t∗ > t0, we have 0 = x′n(t
∗) = fn(t∗, x(t∗)). Then we

deduce from condition (1) that xn(t∗) = x0,n. Since xn is monotone and xn(t0) = x0,n = xn(t∗),
we deduce that xn is constant between t0 and t∗, hence 0 = x′n(t) = fn(t, x(t)) for all t ∈ (t0, t∗),
but this is impossible due to condition (2).

Summing up, xn is strictly monotone on I, with nonzero derivative everywhere on
[t0 − a1, t0) and on (t0, t0 + a1]. Therefore, the function

y : J = xn(I) → [x0,1 − b, x0,1 + b]× · · · × [x0,n−1 − b, x0,n−1 + b]× I
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given by y = (x1 ◦ x−1
n , . . . , xn−1 ◦ x−1

n , x−1
n ) solves the problem

y′(r) = f̃ (r, y(r)) for r ∈ J \ {x0,n}, y(x0,n) = y0, (2.1)

where y0 = (x0,1, . . . , x0,n−1, t0) and f̃ = ( f̃1, f̃2, . . . , f̃n) with

f̃i(r, y1, . . . , yn−1, yn) =
fi(yn, y1, . . . , yn−1, r)
fn(yn, y1, . . . , yn−1, r)

if i ∈ {1, 2, . . . , n − 1}

and

f̃n(r, y1, . . . , yn−1, yn) =
1

fn(yn, y1, . . . , yn−1, r)
.

Indeed, this is a straightforward consequence of the chain rule, the formula for the derivative
of the inverse and the fact that x is a solution to (1.1).

Now, it only remains to prove that the problem (2.1) has at most one local solution. Indeed,
for all (r, y1, . . . , yn), (r, z1, . . . , zn) ∈ U, with r 6= x0,n, and for all i ∈ {1, 2, . . . , n − 1}, we have
that

∣

∣ f̃i(r, y1, . . . , yn)− f̃i(r, z1, . . . , zn)
∣

∣ =

∣

∣

∣

∣

fi(yn, y1, . . . , yn−1, r)
fn(yn, y1, . . . , yn−1, r)

−
fi(zn, z1, . . . , zn−1, r)
fn(zn, z1, . . . , zn−1, r)

∣

∣

∣

∣

≤
2L K

M2(r)
‖(y1, . . . , yn)− (z1, . . . , zn)‖ ,

and

∣

∣ f̃n(r, y1, . . . , yn)− f̃n(r, z1, . . . , zn)
∣

∣ =

∣

∣

∣

∣

1
fn(yn, y1, . . . , yn−1, r)

−
1

fn(zn, z1, . . . , zn−1, r)

∣

∣

∣

∣

≤
K

M2(r)
‖(y1, . . . , yn)− (z1, . . . , zn)‖ .

Hence, f̃ satisfies Montel–Tonelli’s uniqueness theorem, [1], so it follows the existence of a con-
stant α > 0 such that problem (2.1) has at most one solution in the interval [x0,n − α, x0,n + α].

Remark 2.2. For simplicity, in Theorem 2.1 the function f is assumed to be Lipschitz continu-
ous when fixing the last variable. However, local uniqueness for problem (1.1) is also derived
if f is Lipschitz continuous when fixing another variable i0 ∈ {1, 2, . . . , n − 1} and conditions
(1) and (2) are given for fi0 instead of fn.

Remark 2.3. Condition (2) in Theorem 2.1 is satisfied if there exists a function

h : [t0 − a, t0 + a] → [0, ∞)

such that for all t ∈ [t0 − a, t0 + a] and all (x1, . . . , xn−1) ∈ [x0,1 − b, x0,1 + b]× · · · × [x0,n−1 − b,
x0,n−1 + b], we have

| fn(t, x1, . . . , xn−1, x0,n)| ≥ h(t),

and h(t) is not identically zero on any interval (t0 − ε, t0) or (t0, t0 + ε) for 0 < ε < a.
Moreover, we emphasize that, in the scalar case, this condition (2) means that f (t, x0) is

not identically zero on any interval (t0 − ε, t0) or (t0, t0 + ε), which is exactly condition (ii) in
Theorem 1.1.
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Remark 2.4. Note that the conclusion of Theorem 2.1 and its proof remain valid if the Lipschitz
type condition (3) is replaced by the more general Montel–Tonelli condition, see [1]:

(3) There exist functions ψ : [0,+∞) → [0,+∞) continuous and p : [x0,n − b, x0,n + b] →
[0,+∞) such that for all (t1, x1, . . . , xn−1, z), (t2, y1, . . . , yn−1, z) ∈ U, z 6= x0,n,

‖ f (t1, x1, . . . , xn−1, z)− f (t2, y1, . . . , yn−1, z)‖

≤ p(z)ψ (‖(t1, x1, . . . , xn−1)− (t2, y1, . . . , yn−1)‖)

where ψ(τ) > 0 when τ > 0,
∫

0+
dτ

ψ(τ)
= +∞ and p/M2 ∈ L1(x0,n − b, x0,n + b) being M

the function in condition (1) of Theorem 2.1.

Notice that, under (3), the condition 1/M2 ∈ L1(x0,n − b, x0,n + b) in (1) is not longer
required and is replaced by p/M2 ∈ L1(x0,n − b, x0,n + b).

Theorem 2.1 increases the applicability of the main result in [4] in case that f (t0, x0) = 0,
as shown by the following example.

Example 2.5. The function f : [−1, 1]× R
2 → R

2 given by

f (t, x1, x2) =

(

sin(x1x2), |t|+ x2
1 +

4
√

|x2|

)

is not Lipschitz continuous with respect to x = (x1, x2) in any neighborhood of (0, 0) and
f (0, 0, 0) = (0, 0).

However, the initial value problem
{

x′1 = sin(x1x2), x1(0) = 0,

x′2 = |t|+ x2
1 +

4
√

|x2|, x2(0) = 0,
(2.2)

has a unique local solution, since f restricted to U = [−1, 1]3 is Lipschitz continuous when
fixing the last variable, assumption (1) in Theorem 2.1 holds with M(z) = 4

√

|z| and, moreover,
the inequality

f2(t, x1, 0) ≥ |t| for all (t, x1) ∈ [−1, 1]× R

implies that f2 satisfies condition (2). Therefore, Theorem 2.1 ensures local uniqueness for
(2.2).

3 Uniqueness via a Lipschitz condition along a hyperspace

The following result is a straightforward consequence of the chain rule for functions of several
variables.

Lemma 3.1. Let U, V ⊂ R
n+1 be open sets, p0 ∈ U, F : U ⊂ R

n+1 → R
n+1 a continuous function

and Φ : V → U a diffeomorphism.
Then x : (t0 − ε, t0 + ε) → U is a solution of the autonomous system

x′(t) = F(x(t)), x(t0) = p0, (3.1)

if and only if y := Φ
−1(x) : (t0 − ε, t0 + ε) → V is a solution of the problem

y′(t) = G(y(t)), y(t0) = Φ
−1(p0), (3.2)

where
G(y) = Φ

′(y)−1F(Φ(y)).
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Next, an extension of the main theorem in [16] is established as a consequence of The-
orem 2.1 and Lemma 3.1 applied to a linear diffeomorphism. Basically, we assume a weak
transversality condition at the initial point and a Lipschitz condition along a hyperspace for f .

Let V ⊂ R
n+1 be a hyperspace and a0 ∈ R

n+1 be a unit vector such that V = a⊥0 . Note that
R

n+1 = V ⊕ 〈a0〉, where 〈a0〉 = {a0s ∈ R
n+1 : s ∈ R}, and so there exist unique v0 ∈ V and

s0 ∈ R such that (t0, x0) = v0 + a0s0.

Theorem 3.2. Let U be a neighborhood of (t0, x0) ∈ R
n+1 and f : U → R

n be a continuous function
satisfying the following conditions:

(a) there exist constants a, b > 0 and a continuous function M : [s0 − a, s0 + a] → [0,+∞) such
that 1/M2 ∈ L1(s0 − a, s0 + a) and for all s ∈ [s0 − a, s0 + a], s 6= s0, we have

|a0 · (1, f (v + a0s))| ≥ M(s) > 0 for all v ∈ V ∩ Bb(v0);

(b) a0 · (1, f (v(s) + a0s)) is not identically zero on any interval (s0 − ε, s0) or (s0, s0 + ε) for
0 < ε < a whenever v ∈ C((s0 − ε, s0 + ε);V);

(c) f is Lipschitz continuous along the hyperspace V on U, i.e., there exists L ≥ 0 such that for all
(t, x), (s, y) ∈ U,

‖ f (t, x)− f (s, y)‖ ≤ L ‖(t, x)− (s, y)‖ if (t, x)− (s, y) ∈ V .

Then there is a unique local solution to the initial value problem (1.1).

Proof. Since V is a hyperspace in R
n+1, there exists an orthonormal set of vectors v1, v2, . . . , vn ∈

R
n+1 such that V = span{v1, . . . , vn}. Let us consider the full rank matrix

A := (v1 | v2 | · · · | vn | a0) ,

which gives the change-of-basis matrix from {v1, . . . , vn, a0} to the standard Euclidean basis.
Notice that A is an orthogonal matrix, so A−1 = AT.

Define the linear diffeomorphism

Φ(y) := Ay

and consider the map given by F(x1, . . . , xn+1) := (1, f (x1, . . . , xn+1)).
Let us show that the following autonomous initial value problem

y′ = G(y), y(t0) = p0, (3.3)

where G(y) = A−1F(Ay) and p0 = AT(t0, x0)T, is uniquely locally solvable. Indeed, we shall
prove that G satisfies assumptions (1)–(3) in Theorem 2.1. Note that

Gn+1(y) = a0 · F(Ay) = a0 · (1, f (Ay)).

Moreover, for each y ∈ R
n+1 we can express Ay = v + a0s in a unique way with v ∈ V and

s ∈ R, explicitly

v = A











y1
...

yn

0











and s = yn+1.
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Hence,
Gn+1(y) = a0 · (1, f (v + a0s)),

and thus conditions (1) and (2) in Theorem 2.1 are directly deduced for G from assumptions
(a) and (b). By assumption (c), we can deduce that G is Lipschitz continuous when fixing
the last variable: for (y, z), (y, z) ∈ V, with V a sufficiently small neighborhood of p0, we have
that

‖G(y, z)− G(y, z)‖ =
∥

∥

∥A−1
[

F(A(y, 0)T + a0z)− F(A(y, 0)T + a0z)
]∥

∥

∥

=
∥

∥

∥
f (A(y, 0)T + a0z)− f (A(y, 0)T + a0z)

∥

∥

∥

≤ L
∥

∥

∥A(y, 0)T − A(y, 0)T)
∥

∥

∥ = L
∥

∥

∥A(y − y, 0)T
∥

∥

∥ = L ‖y − y‖ .

Therefore, Theorem 2.1 implies that the initial value problem (3.3) has a unique local
solution. Finally, Lemma 3.1 ensures that (1.1) is uniquely locally solvable.

Remark 3.3. Obviously, conditions (a) and (b) in Theorem 3.2 hold if the transversality con-
dition

(1, f (t0, x0)) /∈ V (equivalently, a0 · (1, f (v0 + a0s0)) 6= 0)

is satisfied, cf. [16, Theorem 2.1].

Notice that a more general version of the previous result can be obtained with a non nec-
essarily linear diffeomorphism. The interested reader is referred to [9] for a general approach
based on this idea, which we omit here for the sake of simplicity. However, a nonlinear dif-
feomorphism will be employed in the scalar case (n = 1) in order to provide a relaxed version
of the main uniqueness criterion in [10].

Indeed, by using the diffeomorphism

Φ(x1, x2) :=
(

x1

ϕ(x1) + x2

)

,

for a continuously differentiable function ϕ, we obtain from Lemma 3.1 the following local
equivalence between two scalar initial value problems.

Corollary 3.4. Let ϕ : R → R a continuously differentiable function. Then, x is a solution of the
problem (1.1) if and only if y(t) = −ϕ(t) + x(t) is a solution of problem

y′(t) = g(t, y(t)), y(t0) = y0, (3.4)

where y0 = x0 − ϕ(t0) and g : V → R is defined as

g(t, y) = −ϕ′(t) + f (t, ϕ(t) + y)

in a neighborhood V of the point (t0, y0).

The use of the previous change of variables is standard for instance to translate a given
periodic solution ϕ(t) to the origin and then analyze its stability as an equilibrium, [2]. How-
ever, its application to derive new uniqueness criteria as in the following result seems to have
being unnoticed.
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Theorem 3.5. Let U be a neighborhood of (t0, x0) ∈ R
2, f : U → R continuous and ϕ : R → R

a continuously differentiable function with Lipschitz derivative. Moreover, assume that f satisfies the
following conditions:

(a) f is Lipschitz along ϕ, that is, there exists L ≥ 0 such that if (t, x + ϕ(t)), (t + k,
x + ϕ(t + k)) ∈ U for some k ∈ R, then

| f (t, x + ϕ(t))− f (t + k, x + ϕ(t + k))| ≤ L |k| .

(b) For y0 := x0 − ϕ(t0) and r > 0 such that x − ϕ(t) ∈ [y0 − r, y0 + r] for all (t, x) ∈ U, there
exists a continuous function M : [y0 − r, y0 + r] → [0,+∞) such that

∣

∣−ϕ′(t) + f (t, x)
∣

∣ ≥ M(x − ϕ(t)) > 0

for all (t, x) ∈ U \ {(t, x) ∈ R
2 : t = t0 or x − ϕ(t) = y0} and 1/M2 ∈ L1(y0 − r, y0 + r).

(c) −ϕ′(t) + f (t, y0 + ϕ(t)) is not identically zero on any interval (t0 − ε, t0) or (t0, t0 + ε) for
ε > 0.

Then the scalar problem (1.1) has a unique local solution.

Proof. Let us check that the initial value problem (3.4) is under the assumptions of Theorem 2.1
(with n = 1) and, therefore, it has a unique local solution. Then Corollary 3.4 will provide
also the uniqueness of local solution for problem (1.1).

First, from assumption (b), we have

|g(t, y)| ≥ M (−ϕ(t) + y + ϕ(t)) = M(y) > 0

for all (t, y) ∈ V \ {(t, y) ∈ R
2 : t = t0 or y = y0}.

Similarly, from condition (c), it is immediate to obtain that g(t, y0) is not identically zero
on any interval (t0 − ε, t0) or (t0, t0 + ε).

In addition, g is Lipschitz with respect to the first argument. Indeed, for (t, y), (t + k, y) ∈
V, we have that

|g(t, y)− g(t + k, y)| =
∣

∣−ϕ′(t) + f (t, y + ϕ(t)) + ϕ′(t + k)− f (t + k, y + ϕ(t + k))
∣

∣

≤
∣

∣ϕ′(t + k)− ϕ′(t)
∣

∣+ | f (t, y + ϕ(t))− f (t + k, y + ϕ(t + k))|

≤ C |k|+ L |k| = (C + L) |k| ,

as a consequence of the fact that f is Lipschitz along ϕ and ϕ′ is a Lipschitz continuous
function. So condition (3) in Theorem 2.1 is clearly satisfied for K = C + L.

Remark 3.6. Note that if a function ϕ is under the hypotheses of Theorem 3.5 and ϕ(t0) =

c 6= 0, then the function ϕ̃(t) = ϕ(t)− c is also under the hypotheses of Theorem 3.5. Hence
we can just consider functions ϕ with ϕ(t0) = 0.

Remark 3.7. Observe that for (v1, v2) ∈ R
2, v1 6= 0, and the function ϕ(t) = v2

v1
t, condition (a)

in Theorem 3.5 is equal to the Lipschitz condition in the direction of the vector v = (1, v2/v1)

or, equivalently, in the direction of (v1, v2), see [10]. For this choice of ϕ, Theorem 3.5 is just
the scalar case of Theorem 3.2.

The applicability of Theorem 3.5 is shown by the following example.
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Example 3.8. Consider the initial value problem

x′ = 4
√

|x − α t − β t2|+ α + γ |t| , x(0) = 0,

where α, β and γ are constants with α, β, γ ∈ R and γ > 2 |β|.
First, observe that the function f (t, x) = 4

√

|x − α t − β t2| + α + γ |t| is continuous and
Lipschitz along the function ϕ(t) = α t + β t2 for any α, β ∈ R and γ > 0. Indeed, for
(t, x) ∈ R

2 and k ∈ R,

| f (t, x + ϕ(t))− f (t + k, x + ϕ(t + k))| = γ ||t + k| − |t|| ≤ γ |k| ,

and thus condition (a) in Theorem 3.5 is satisfied with L = γ.
Notice also that ϕ′(0) = f (0, 0) and so the transversality condition asked in [9] is not

satisfied. Nevertheless, assumptions (b) and (c) in Theorem 3.5 hold. Condition (b) can be
easily verified by using the continuous function M(y) = 4

√

|y|, which satisfies that 1/M2 ∈

L1(−ε, ε), together with the inequality γ > 2 |β|, and condition (c) follows from the fact that

−α − 2 β t + f (t, α t + β t2) = −2 β t + γ |t| > 0 for every t ∈ R \ {0},

which therefore it is not identically zero in any neighborhood of 0.
In conclusion, Theorem 3.5 ensures the uniqueness of a local solution for any α, β ∈ R and

γ > 2 |β|. Finally, observe that if α = 1 and β = γ = 0, then x1(t) = t and x2(t) =
( 3

4 t
)

4
3 + t if

t ≥ 0 and x2(t) = −
( 3

4 t
)

4
3 + t if t < 0 are two local solutions. In this case, condition (c) is no

longer true.

4 Uniqueness via perturbed Lipschitz conditions

Our next result is another local uniqueness criterion for problem (1.1) which was inspired on
a specific form of the function f considered in [3]. Basically, we shall assume that the function
f (t, x) satisfies a perturbed Lipschitz condition with respect to x outside some hypersurfaces
τi(t, x) = 0 (i = 1, 2, . . . , N) which satisfy a weak transversality condition around (t0, x0). Our
result is closely related to the uniqueness theorem proven in [15] but ours is more general
inasmuch our transversality conditions need not be satisfied at the point (t0, x0).

Let us state and prove the main result of this section.

Theorem 4.1. Let U be a neighborhood of (t0, x0) ∈ R
n+1, f : U → R

n a continuous function and
assume that:

(i) There exist a constant K > 0 and functions gi : R → R and τi : U → R, for i = 1, 2, . . . , N,
such that

‖ f (t, x)− f (t, y)‖ ≤ K ‖x − y‖+ K max
1≤i≤N

|gi(τi(t, x))− gi(τi(t, y))|,

for all (t, x), (t, y) ∈ U.

(ii) Each τi : U → R is continuously differentiable and τi(t0, x0) = 0.

(iii) (Transversality) There exists a continuous function M : R → R such that for all (t, x) ∈ U with
t 6= t0 we have

|∇τi(t, x) · (1, f (t, x))| ≥ M(t) > 0 for every i ∈ {1, 2, . . . , N}.
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(iv) Each gi : R → R is continuous on R, differentiable on R \ {0}, and there exist ρ1, ρ2 > 0 and
ψ : (0, ρ1) → R a decreasing function such that |g′i(t)| ≤ ψ(|t|) for all t ∈ (−ρ1, ρ1) \ {0} and
ψ(|

∫ ·
t0

M(s)ds|) ∈ L1(t0 − ρ2, t0 + ρ2).

Then the initial value problem (1.1) has a unique local solution.

Proof. Local existence follows from Peano’s theorem. So, let us prove local uniqueness to the
right, that is in an interval of the form [t0, t0 + α] (the proof of the local uniqueness to the left
is similar).

Take b, δ > 0 such that [t0, t0 + δ]× Bb(x0) ⊂ U and ‖z(t)− x0‖ ≤ b for all t ∈ [t0, t0 + δ]

and for any solution z(t) of (1.1).
Now, by (iii), for i = 1, 2, . . . , N and t 6= t0 we have

∣

∣

∣

∣

d
dt

τi(t, z(t))
∣

∣

∣

∣

= |∇τi(t, z(t)) · (1, f (t, z(t)))| ≥ M(t),

and thus

|τi(t, z(t))| ≥
∣

∣

∣

∣

∫ t

t0

M(s) ds
∣

∣

∣

∣

> 0,

for all t ∈ [t0, t0 + δ], t 6= t0, and i = 1, 2, . . . , N.
Define the compact set

D =

{

(t, x) ∈ [t0, t0 + δ]× Bb(x0) : |τi(t, x)| ≥
∣

∣

∣

∣

∫ t

t0

M(s) ds
∣

∣

∣

∣

for i = 1, 2, . . . , N
}

.

Notice that condition (iii) implies that for each i ∈ {1, 2, . . . , N}

∇τi(s, y) · (1, f (s, y)) > 0 for s ∈ (t0, t0 + δ) and y ∈ Bb(x0), (4.1)

or
∇τi(s, y) · (1, f (s, y)) < 0 for s ∈ (t0, t0 + δ) and y ∈ Bb(x0). (4.2)

Assume that condition (4.1) holds for all i ∈ {1, 2, . . . , N} (if not, simply replace τi with −τi

and gi(x) with gi(−x) so that (i) holds) and let z(t) be a solution of problem (1.1). Then, by
the chain rule, we deduce that

d
dt

τi(t, z(t)) = ∇τi(t, z(t)) · (1, f (t, z(t))) > 0, for all t ∈ (t0, t0 + δ).

So t 7→ τi(t, z(t)) is increasing on (t0, t0 + δ) and then

τi(t0, z(t0)) = 0 < τi(t, z(t)) for all t ∈ (t0, t0 + δ).

In conclusion, (t, z(t)) ∈ τ−1
i (0, ∞) ∩ D on (t0, t0 + δ) for all i ∈ {1, 2, . . . , N}.

Now, for (t, x), (t, y) ∈ ∩N
i=1τ−1

i (0, ∞) ∩ D, we deduce from (i), (iv) and the Mean Value
Theorem that

‖ f (t, x)− f (t, y)‖ ≤ K ‖x − y‖+ K max
1≤i≤N

|g′i(τi,t)||τi(t, x)− τi(t, y)|, (4.3)

where the last identity is valid for some real numbers τi,t located between τi(t, x) and τi(t, y).
In particular, 0 <

∣

∣

∫ t
t0

M(s) ds
∣

∣ ≤ |τi,t|, and then (iv) implies that

|g′i(τi,t)| ≤ ψ(|τi,t|) ≤ ψ

(∣

∣

∣

∣

∫ t

t0

M(s) ds
∣

∣

∣

∣

)

.
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Therefore, for (t, x), (t, y) ∈ ∩N
i=1τ−1

i (0, ∞) ∩ D, we have

‖ f (t, x)− f (t, y)‖ ≤ K ‖x − y‖+ Kψ

(

∫ t

t0

M(s) ds
)

max
1≤i≤N

|τi(t, x)− τi(t, y)|

≤ c1(t) ‖x − y‖ ,
(4.4)

for some c1 ∈ L1(t0, t0 + α) with 0 < α ≤ δ, because the τi’s are Lipschitz continuous with
respect to x on the compact set D and assumption (iv).

Finally, let x(t) and y(t) be solutions of (1.1); for t ∈ (t0, t0 + α), the previous computations
ensure that (t, x(t)), (t, y(t)) ∈ ∩N

i=1τ−1
i (0, ∞) ∩ D and thus, by (4.4), we have that

‖x(t)− y(t)‖ ≤
∫ t

t0

‖ f (s, x(s))− f (s, y(s))‖ ds ≤
∫ t

t0

c1(s) ‖x(s)− y(s)‖ ds, t ∈ (t0, t0 + α),

so we deduce from Gronwall’s inequality that ‖x(t)− y(t)‖ = 0 on (t0, t0 + α).

Remark 4.2. A particular case of Theorem 4.1, assuming the transversality condition

∇τi(t0, x0) · (1, f (t0, x0)) 6= 0, for all i = 1, 2, . . . , N, (4.5)

instead of condition (iii), was proven in [12, Corollary 4.4]. Notice that condition (i) in Theo-
rem 4.1 is satisfied in particular if f can be expressed as the composition

f (t, x) = F(t, x, g1(τ1(t, x)), g2(τ2(t, x)), . . . , gN(τN(t, x))) for some N ∈ N, (4.6)

where F : U × V ⊂ R
n+1 × R

N → R
n satisfies:

(i) There exists K > 0 such that for every (t, x, ξ), (t, y, η) ∈ U × V we have

‖F(t, x, ξ)− F(t, y, η)‖ ≤ K ‖x − y‖+ K‖ξ − η‖.

The particular form of f given by (4.6) was considered in [3]. On the other hand, the same
condition (4.5) is also a key assumption in the uniqueness result obtained in [15] which was
motivated by a certain n–body problem of classical electrodynamics.

Example 4.3. The following modification of the Example 2 in [15] illustrates how our The-
orem 4.1 can improve the applicability of previous results. Let us consider the initial value
problem

x′ = (|t|α + |x|5/3)1/3, x(0) = 0, α ≥ 1.

Note that f (t, x) = (|t|α + |x|5/3)1/3 can be expressed as f (t, x) = g(τ(t, x)) with g(τ) = τ1/3

and τ(t, x) = |t|α + |x|5/3. Hence, it is easy to check that conditions (i)–(iv) in Theorem 4.1
are satisfied for 1 < α < 3/2.

However, condition (4.5) does not hold for any 1 < α < 3/2, so neither [12, Corollary 4.4]
nor [15] are applicable.

Now we will show that Theorem 4.1 enables us to obtain also alternative uniqueness
arguments for the examples provided in [11].

Example 4.4. Consider the initial value problem

x′(t) = p(t) + q(t) |x(t)|r , x(0) = 0, (4.7)
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where 0 < r < 1, p, q are non-negative continuous functions and there exists ε > 0 such that
p(t) > 0 for all t ∈ (−ε, ε) \ {0} and

∣

∣

∣

∣

∫ t

0
p(s)ds

∣

∣

∣

∣

r−1

∈ L1(−ε, ε). (4.8)

Note that the function f (t, x) = p(t) + q(t) |x|r can be expressed in the form f (t, x) =

F(t, x, g(τ(t, x))) with τ(t, x) = x, g(τ) = |τ|r and F(t, x, ξ) = p(t) + q(t)ξ. One may easily
verify conditions (i)–(ii) in Theorem 4.1 (see also Remark 4.2). In addition,

|∇τ(t, x) · (1, f (t, x))| = f (t, x) ≥ M(t) = p(t),

so conditions (iii) and (iv) hold. Therefore, Theorem 4.1 implies local uniqueness for (4.7).
To end the example, observe that Theorem 4.1 is not applicable to problem (4.7) with

p(t) = t2, q(t) = 1 and r = 1/4 since condition (4.8) does not hold, but uniqueness still can be
directly deduced from Theorem 2.1.

Finally, we provide an example for which uniqueness is guaranteed by Theorem 4.1,
whereas the criteria in Sections 2 and 3 are not applicable.

Example 4.5. Consider the initial value problem

x′ =
√

|x − t|+
√

|t|+ 1, x(0) = 0,

which can be expressed in the form f (t, x) = F(t, x, g(τ(t, x))), F(t, x, ξ) =
√

|t| + ξ + 1,
g(r) =

√

|r| and τ(t, x) = x − t.
Observe that the functions F, g and τ are under the hypotheses of Theorem 4.1. Moreover,

for t 6= 0 we have

∇τ(t, x) · (1, f (t, x)) = −1 +
√

|x − t|+
√

|t|+ 1 ≥ M(t) =
√

|t| > 0,

so Theorem 4.1 implies the existence and uniqueness of a local solution for the initial value
problem.

We highlight that the transversality condition (4.5) is not satisfied at the initial condition
(t0, x0) = (0, 0). In addition, f is not Lipschitz along any function ϕ with ϕ(0) = 0 since

| f (0, 0)− f (k, ϕ(k))| =
√

|ϕ(k)− k|+
√

|k|,

which is not smaller than L |k| for k > 0 small enough. Hence, in virtue of Remark 3.6,
Theorem 3.5 cannot be applied here.
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scribed by families of monotone nonautonomous neutral functional differential equa-
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1 Introduction

In this work, the long-term behavior of the solutions of neutral compartmental systems is

studied. Some interesting results as to the convergence of the solutions of such systems to

their omega-limit sets are presented. These results allow for the inclusion of a significantly

wider set of possible initial data than those in the previous literature.

Compartmental systems are widely used as successful models in different fields, ranging

from physics and biology, to economics or sociology. These models appear naturally when

dealing with processes involving a local balance of mass (see e.g. Haddad and Chellaboina [7],

Jacquez [9], and Jacquez and Simon [10]).

Compartmental models with finite and infinite delay were initially studied by Győri [4],

and Győri and Eller [5]. Later on, Arino and Bourad [1], and Arino and Haourigui [2] found

almost periodic solutions for finite delay compartmental systems given by functional differ-

ential equations (FDEs for short) or neutral FDEs (NFDEs for short). Győri and Wu [6] also

BCorresponding author. Email: victor.munoz@upm.es
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studied the dynamics of infinite delay neutral compartmental systems, where the neutral term

represents the creation and destruction of material within the compartments. These systems

were studied by Wu and Freedman [26], and Wu [25] as well.

Regarding the monotone theory for NFDEs, the fact that the positive cone defined by

the exponential ordering introduced by Smith and Thieme [22] has an empty interior, poses

a special difficulty. This was overcome by Krisztin and Wu [13] in their paper on scalar

NFDEs with finite delay, where they show that the solutions with Lipschitz continuous initial

data are asymptotically periodic. More recently, the theory developed by Novo, Obaya, and

Sanz [16] gave rise to a series of papers devoted to the study of compartmental systems defined

by means of NFDEs with infinite delay, such as Novo, Obaya, and Villarragut [15, 17], and

Obaya and Villarragut [19, 20]. In these papers, the neutral part consists of a nonautonomous

operator, initial data are assumed to be Lipschitz continuous, and the usual ordering, the

exponential ordering, and a new ad hoc exponential ordering defined by means of the neutral

operator are considered. Also, these papers generalize the results included in the previous

literature.

Finally, a generalization of the results on the asymptotic behavior of NFDEs was given

in Novo, Obaya, and Villarragut [18]. In that paper, initial data are only required to have a

uniformly bounded variation on compact subintervals of (−∞, 0], which is a weaker assump-

tion than Lipschitz continuity. The present paper studies compartmental systems defined by

NFDEs with infinite delay by applying the results in [18].

Specifically, the family of systems

d

dt

[
zi(t)−

∫ 0

−∞
zi(t + s) dνi(ω·t)(s)

]

= −
m

∑
j=0

gji(ω·t, zi(t)) +
m

∑
j=1

∫ 0

−∞
gij(ω·(t + s), zj(t + s)) dµij(s) + Ii(ω·t) ,

i = 1, . . . , m, where R × Ω → Ω, (t, ω) 7→ ω·t is a minimal flow, νi(ω) and µij(ω) are

regular Borel measures, and gij : Ω × R → R, Ii : Ω → R are real functions, is considered.

For each ω ∈ Ω and each i, j ∈ {1, . . . , m}, the measures νi(ω) represent the creation and

destruction of material within each compartment, the functions g0i and Ii represent the flow

of material toward and from the environment, respectively, and the functions gij are the so-

called transport functions, modeling the flow of material among the compartments, which is

not instantaneous and is regulated by the measures µij(ω). Some particular cases of these

systems were studied by Krisztin (see e.g. [11, 12]) under weaker conditions on the transport

functions.

A more specific system of equations is also considered in this work:

d

dt
[zi(t) + c̃i(t) zi(t − αi)] = −

m

∑
j=1

g̃ji(t, zi(t)) +
m

∑
j=1

g̃ij(t − ρij, zj(t − ρij)) ,

i = 1, . . . , m. This system can be included in a family of systems like the previous one by

means of a hull construction. Notice that this system has finite delay and it is closed, in that

there is no flow of material either toward or from the environment. Specifically, for each ω ∈ Ω

and each i, j ∈ {1, . . . , m}, νi(ω) and µij(ω) are Dirac measures, and g0i = Ii ≡ 0. Besides,

a particular example of this system is also considered, and both theoretical and numerical

results related to this example are presented.

The structure of the paper is as follows. In Section 2, some preliminaries regarding the

usual concepts of topological dynamics are recalled. Section 3 addresses the study of the
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solutions of a family of compartmental systems with infinite delay with general initial data.

An application of the results of Section 3 to the study of compartmental systems with finite

delay is included in Section 4. Finally, Section 5 includes the application of the results in

Section 3 and Section 4 to a particular compartmental system, together with a numerical

simulation of the solutions of that system and their omega-limit sets.

2 Some preliminaries

Given a compact metric space Ω, a flow is a continuous mapping σ : R × Ω → Ω, (t, ω) 7→
σt(ω) which satisfies the following conditions:

(i) σ0(ω) = ω for each ω ∈ Ω, and

(ii) σt+s = σt ◦ σs for each s, t ∈ R.

It is customary to denote ω·t = σt(ω) for all (t, ω) ∈ R × Ω. Given ω ∈ Ω, its orbit or

trajectory is the set {σt(ω) | t ∈ R}. A subset A ⊂ Ω is said to be invariant if σt(A) = A for all

t ∈ R, and it is said to be minimal if it is compact, invariant, and it contains no proper subsets

with those properties apart from the empty set. Equivalently, a subset of Ω is minimal if and

only if all the trajectories are dense. Zorn’s lemma guarantees that a compact and invariant

subset of Ω always contains a minimal subset. If Ω is minimal, it is said that the flow σ is

minimal or recurrent. For example, almost periodic and almost automorphic flows are minimal

(see Ellis [3], and Shen and Yi [21] for a thorough description of almost periodic and almost

automorphic flows from a topological and ergodic perspective).

Let R
+ be the set of non-negative real numbers. Given a complete metric space X, a

semiflow is a continuous map Φ : R
+ × X → X, (t, x) 7→ Φt(x) satisfying

(i) Φ0(x) = x for all x ∈ X, and

(ii) Φt+s = Φt ◦ Φs for all t, s ∈ R
+.

Given x ∈ X, its semiorbit is the set {Φt(x) | t ≥ 0}. A subset A ⊂ X is said to be positively

invariant if Φt(A) ⊂ A for all t ≥ 0. Given x ∈ X with a relatively compact semiorbit, we

define its omega-limit set, defined by

O(x) =
⋂

s≥0

closure{Φt+s(x) | t ≥ 0} .

It is easy to check that O(x) is nonempty, compact, connected, and positively invariant. A

useful characterization of its elements is as follows: y ∈ O(x) if and only if there exists a

sequence tn ↑ ∞ such that Φtn(x) converges to y as n ↑ ∞. A subset A ⊂ X is said to be

minimal if it is compact, positively invariant, and it contains no proper subsets with those

properties apart from the empty set. If X is minimal, it is said that the semiflow Φ is minimal.

We are interested in a particular class of semiflows. Specifically, if Ω is a compact metric

space and X is a complete metric space, a skew-product semiflow is a semiflow defined on Ω× X

of the form
τ : R

+ × Ω × X −→ Ω × X

(t, ω, x) 7−→ (ω·t, u(t, ω, x)) ,

where, as before, ω·t = σt(ω) for all (t, ω) ∈ R × Ω, and σ is a flow on Ω referred to as the

base flow.
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3 Transformed exponential ordering for neutral compartmental sys-

tems

In this section, we focus on compartmental models. They are primarily used to describe the

transport of some material among compartments joined by pipes, which takes some non-

negligible time, together with the creation and destruction of material within the compart-

ments.

To this end, we consider the set X = C((−∞, 0], R
m) endowed with the compact-open

topology, which turns it into a Fréchet space. The space X is metrizable; it suffices to consider

the metric

d(x, y) =
∞

∑
n=1

1

2n

‖x − y‖n

1 + ‖x − y‖n
, x, y ∈ X ,

where ‖x‖n = sups∈[−n,0] ‖x(s)‖, and ‖ · ‖ is the maximum norm on R
m. We consider the

following phase space:

BC = {x ∈ X | x is bounded} ,

together with the supremum norm ‖·‖∞. The space (BC, ‖·‖∞) is a Banach space. Given r > 0,

let Br denote the set {x ∈ BC | ‖x‖∞ ≤ r}. Besides, we consider the following subspace of BC:

BU = {x ∈ BC | x is uniformly continuous} .

Given a, t ∈ R with t ≤ a and a continuous function x : (−∞, a] → R
m, we consider xt :

(−∞, 0] → R
m, s 7→ x(t + s). Notice that xt ∈ X. Finally, we also fix a compact metric space

(Ω, d), together with a flow σ : R × Ω → Ω, (t, ω) 7→ ω·t.
A compartmental system is a device formed by m compartments C1, . . . , Cm, connected to

one another by means of pipes, and the environment. For each i ∈ {1, . . . , m}, let zi(t) denote

the amount of material in compartment Ci at time t. There is a flow of material among com-

partments. We assume that the material leaves the compartments instantaneously. Then, for

each i, j ∈ {1, . . . , m}, the material flows from Cj to Ci according to a transit time distribution

regulated by a positive regular Borel measure µij. The volume of material being transported

is given by the transport functions gij, which depend on time and zj(t). Besides, there is a bidi-

rectional flow of material from and to the environment; namely, for each i ∈ {1, . . . , m}, some

material enters compartment Ci from the environment instantaneously, according to a func-

tion Ii depending only on time, and some material leaves compartment Ci for the environment

instantaneously, according to a transport function g0i. Finally, for each i ∈ {1, . . . , m}, the rate

of creation and destruction of material within compartment Ci is regulated by the past amount

of material in that compartment together with some regular Borel measures νi(ω), ω ∈ Ω.

The amount of material in compartment Ci, 1 ≤ i ≤ m, varies according to the difference

between the incoming material to Ci and the outgoing material from Ci. This way, our model

is given by the following family of NFDEs:

d

dt

[
zi(t)−

∫ 0

−∞
zi(t + s) dνi(ω·t)(s)

]

= −
m

∑
j=0

gji(ω·t, zi(t)) +
m

∑
j=1

∫ 0

−∞
gij(ω·(t + s), zj(t + s)) dµij(s) + Ii(ω·t) , (3.1)

ω ∈ Ω, i = 1, . . . , m, where g0i : Ω × R → R
+, gij : Ω × R → R, Ii : Ω → R and νi(ω) are and

µij are regular Borel measures on (−∞, 0], i, j = 1, . . . , m, ω ∈ Ω .
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Let G : Ω × BC → R
m be the map defined by

Gi(ω, x) = −
m

∑
j=0

gji(ω, xi(0)) +
m

∑
j=1

∫ 0

−∞
gij(ω·s, xj(s)) dµij(s) + Ii(ω) , (3.2)

(ω, x) ∈ Ω × BC, i = 1, . . . , m, and let D : Ω × BC → R
m be the map defined by

Di(ω, x) = xi(0)−
∫ 0

−∞
xi(s) dνi(ω)(s) , (ω, x) ∈ Ω × BC , i = 1, . . . , m .

We can now rewrite the family of equations (3.1) as

d

dt
D(ω·t, zt) = G(ω·t, zt) , t ≥ 0 , ω ∈ Ω . (3.3)

It is obvious that the sign of the measures νi(ω) determines different internal mechanisms

in the compartment Ci with respect to zi to produce or swallow material. Since the case in

which the measures νi(ω) are positive and the phase space is BU, the space of uniformly

continuous functions in BC, was studied in [15], [17], [19] and [20], we will focus now in the

case in which they are regular Borel negative measures. Let us make some assumptions on

the family of equations (3.1):

(C1) Ii and gij are continuous, gij is nondecreasing in its second variable, gij(·, 0) ≡ 0, and

Ω × R → R, (ω, v) 7→ ∂gij

∂v (ω, v) is well-defined and continuous for i, j ∈ {1, . . . , m};

(C2) µij is a positive regular Borel measure such that µij((−∞, 0]) = 1 and
∫ 0
−∞

|s| dµij(s) < ∞

for i, j = 1, . . . m;

(C3) for each ω ∈ Ω and i = 1, . . . , m,

• νi(ω) is a negative regular Borel measure with νi(ω)({0}) = 0,

• supi=1,...,m |νi(ω)|((−∞, 0]) < 1, where |νi(ω)| denotes the total variation of νi(ω),

and

• νi : Ω → M, ω 7→ νi(ω) is continuous when the total variation is considered as a

norm on the set M of Borel regular measures on (−∞, 0];

(C4) for each i = 1, . . . , m, there is a negative ai < 0 such that

(i) −L+
i (ω)− ai > 0 and

(ii) 1 +
∫ 0
−∞

eais dνi(ω)(s) ≥ 0 ,

for each ω ∈ Ω, where L+
i (ω) = ∑

m
j=0 supv∈R

∂gij

∂v (ω, v).

Let A be the diagonal matrix with the diagonal elements a1, . . . , am given in (C4). Let us

consider the partial order relation on BC:

x ≤A y ⇐⇒ x ≤ y and y(t)− x(t) ≥ eA(t−s)(y(s)− x(s)) ,−∞ < s ≤ t ≤ 0 ,

where ≤ denotes the componentwise partial ordering on R
m. The interior of the positive cone

BC+
A = {x ∈ BC | x ≥ 0 and x(t) ≥ eA(t−s)x(s) for − ∞ < s ≤ t ≤ 0} ,
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is empty.

Before stating and proving the main theorem, we need the following result concerning D

and its convolution operator

D̂ : Ω × BC −→ Ω × BC

(ω, x) 7−→ (ω, D̂2(ω, x)) ,

where D̂2(ω, x)) is defined for each (ω, x) ∈ Ω × BC by

D̂2(ω, x) : (−∞, 0] −→ R
m

s 7−→ D(ω·s, xs) .

Theorem 3.1. Assume that conditions (C3) and (C4)(ii) hold. For each ω ∈ Ω, let L̂ω : BC → BC be

the linear operator defined by

(L̂ω(x))i(s) =
∫ 0

−∞
xi(s + u) dνi(ω·s)(u) , x ∈ BC , s ≤ 0 , i = 1, . . . , m .

Then the following statements hold:

(i) D̂ is bijective,
(D̂−1)2(ω, x) =

∞

∑
n=0

L̂n
ω(x) , (ω, x) ∈ Ω × BC , (3.4)

and (D̂−1)2(ω, x) ≥ 0 for each (ω, x) ∈ Ω × BC+
A ;

(ii) for each r > 0, the map Ω × Br → BC, (ω, x) 7→ L̂ω(x) is uniformly continuous for the

compact-open topology on BC;

(iii) given (ω, x) ∈ Ω × BC with D(ω, x) = 0, the solution of the difference equation
{

D(ω·t, zt) = 0 , t ≥ 0 ,

z0 = x ,

satisfies ‖z(t)‖ ≤ c(t) ‖x‖∞ for all t ≥ 0, where c ∈ C([0, ∞), R) and lim t→∞ c(t) = 0. In

this situation, D is said to be stable.

Proof. Clearly, D̂2(ω, x) = (I − L̂ω)(x) for each (ω, x) ∈ Ω × BC. From condition (C3), we

deduce that supω∈Ω ‖L̂ω‖ < 1, whence D̂ is invertible and (3.4) holds. In addition, x ≥A 0

implies that xi(s) ≥ 0 and eai rxi(s) ≥ xi(s + r) for each r, s ≤ 0, i = 1, . . . , m, which, together

with the fact that νi(ω) is a negative measure for each i = 1, . . . , m and condition (C4)(ii),

provides

xi(s) + (L̂ω(x))i(s) = xi(s) +
∫ 0

−∞
xi(s + r) dνi(ω·s)(r)

≥ −
∫ 0

−∞
eai r xi(s) dνi(ω·s)(r) +

∫ 0

−∞
xi(s + r) dνi(ω·s)(r) ≥ 0 .

As a consequence, since L̂2n
ω (x) ≥ 0 for each x ≥ 0, we deduce that

(D̂−1)2(ω, x) =
∞

∑
n=0

L̂2n
ω

(
x + L̂ω(x)

)
≥ 0

for each x ≥A 0, and the proof of (i) is finished. An adaptation of the arguments in Theo-

rem 3.9(iii) and Theorem 5.2(iv)–(v) of [19] to the phase space BC yield (ii) and (iii).
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Let us define M : Ω × BC → R as follows:

M(ω, x) =
m

∑
i=1

Di(ω, x) +
m

∑
i=1

m

∑
j=1

∫ 0

−∞

(∫ 0

s
gji(ω·u, xi(u)) du

)
dµji(s) , (3.5)

for each (ω, x) ∈ Ω× BC. M is said to be the total mass of the family of equations (3.1). Thanks

to conditions (C1)–(C2), for all x ∈ BC and all i, j ∈ {1, . . . , m},
∣∣∣∣
∫ 0

s
gji(ω·u, xi(u)) du

∣∣∣∣ ≤ cji |s| ,

where cji = supΩ×[−‖x‖∞,‖x‖∞] gji. Hence, M is well-defined.

A key property of the total mass is established by our next result. Similar results can be

found in [15], [17], [19], and [26].

Proposition 3.2. Under assumptions (C1)–(C3), for each r > 0, the total mass is uniformly contin-

uous on Ω × Br when the compact-open topology is considered on Br. In addition, for all (ω, x) ∈
Ω × BC and all t ≥ 0 where the solution is defined,

M(τ(t, ω, x)) = M(ω, x) +
m

∑
i=1

∫ t

0
(Ii(ω·s)− g0i(ω·s, zi(s, ω, x))) ds . (3.6)

Proof. From (C3) and the definition of D, it is easy to deduce that D is linear and continuous in

its second variable for the norm ‖ · ‖∞, the map Ω → L(BC, R
m), ω 7→ D(ω, ·) is continuous,

and the restriction of D to Ω × Br is continuous when we take the restriction of the compact-

open topology to Br for all r > 0.

Hence, a natural generalization of Theorem 3.9 in [19] together with properties (C1)–(C2)

implies that D̂ is uniformly continuous on Ω × Br. The proof of Proposition 5.5 of Muñoz-

Villarragut [14] can be adapted to show the uniform continuity of M on Ω × Br. Finally, a

computation similar to the one given in [26] proves the variation formula (3.6).

Let us recall a regularity condition introduced in [18] concerning a class of initial data

x ∈ BC:

(R) for each i ∈ {1, . . . , n}, xi is of bounded variation on every compact subinterval of

(−∞, 0], and

sup
{

V[−k,−k+1](xi) | i ∈ {1, . . . , m}, k ≥ 1
}
< ∞ ,

where V[−k,−k+1](xi) denotes the total variation of xi on the interval [−k,−k + 1].

Notice that property (R) is satisfied by all the Lipschitz continuous elements of BC, but

not all the elements of BC satisfying (R) are Lipschitz continuous. Besides, the subspace R of

BC determined by (R) is a Banach space for the norm

‖x‖∞ + sup
{

V[−k,−k+1](xi) | i ∈ {1, . . . , m}, k ≥ 1
}

, x ∈ R .

Theorem 3.3. Assume conditions (C1)–(C4). Given (ω0, x0) ∈ Ω × BC with D̂2(ω0, x0) satisfying

property (R), if z(·, ω0, x0) is a bounded solution of (3.3)ω0 , then the omega-limit set O(ω0, x0) =

{(ω, c(ω)) | ω ∈ Ω} is a copy of the base and

lim
t→∞

d(u(t, ω0, x0), c(ω0·t)) = 0 ,

where c : Ω → BU is a continuous equilibrium, i.e. u(t, ω, c(ω)) = c(ω·t) for each ω ∈ Ω and

t ≥ 0, and it is continuous for the compact-open topology on BU.
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Proof. As above, we consider the exponential ordering ≤A. Thanks to Theorem 3.1, we are in

a position to consider the transformed exponential ordering ≤D,A introduced in [19]. It is defined

on each fiber of the product Ω × BC as follows: for each (ω, x), (ω, y) ∈ Ω × BC,

(ω, x) ≤D,A (ω, y) ⇐⇒ D̂2(ω, x) ≤A D̂2(ω, y).

Our aim is to apply Theorem 4.12 of [18] in order to complete this proof. First, as seen in

Theorem 3.1(iii) and in the proof of Proposition 3.2, D(ω, ·) is linear and continuous for the

norm for all ω ∈ Ω, the mapping Ω → L(BC, R
m), ω 7→ D(ω, ·) is continuous, the restriction

of D to Ω × Br is continuous when we consider the compact-open topology on Br for all r > 0,

and D is stable, so conditions (D1)–(D4) of [18] hold.

Besides, from assumptions (C1)–(C2), it follows that the function G defined by (3.2) is

continuous on Ω × BC. Moreover, its restriction to Ω × Br is Lipschitz continuous in its

second variable when the norm is considered on Br, and it is continuous when the compact-

open topology is considered on Br for each r > 0. This implies conditions (N1) and (N2)

of [18].

Let (ω, x), (ω, y) ∈ Ω × BC with (ω, x) ≤D,A (ω, y). From Theorem 3.1(i) we deduce

that x ≤ y. Then, from the nondecreasing character of gij, stated in (C1), the fact that µij(ω)

are positive and νi(ω) are negative measures, as assumed in (C2) and (C3) respectively, and

ai < 0, we deduce that

−
m

∑
j=0

(
gji(ω, yi(0))− gji(ω, xi(0))

)
≥ −L+

i (ω)(yi(0)− xi(0)) ,

m

∑
j=1

∫ 0

−∞

(
gij(ω·s, yj(s))− gij(ω·s, xj(s))

)
dµij(ω)(s) ≥ 0 ,

ci(x, y) := ai

∫ 0

−∞
(yi(s)− xi(s)) dνi(ω)(s) ≥ 0 , (3.7)

and, from (C4)(i), we conclude that

Gi(ω, y)− Gi(ω, x)− ai

(
Di(ω, y)− Di(ω, x)

)

≥
(
− L+

i (ω)− ai

)
(yi(0)− xi(0)) + ci(x, y) ≥ 0 . (3.8)

This guarantees that condition (N3) of [18] is satisfied.

Fix (ω, x), (ω, y) ∈ Ω × BC with (ω, x) ≤D, A (ω, y). Suppose that (ω, x) and (ω, y)

admit a backward orbit extension and there is a subset J ⊂ {1, . . . , m} such that the following

conditions hold

D̂2(ω, x)i = D̂2(ω, y)i for each i /∈ J ,

D̂2(ω, x)i(s) < D̂2(ω, y)i(s) for each i ∈ J and s ≤ 0 .

If i ∈ J, then we have D̂2(ω, x)i(s) < D̂2(ω, y)i(s), that is, Di(ω·s, xs) < Di(ω·s, ys) for each

s ≤ 0. In particular, if s = 0, we obtain

∫ 0

−∞

(
yi(s)− xi(s)

)
dνi(ω)(s) < yi(0)− xi(0) .

As before, from (ω, x) ≤D, A (ω, y), we deduce that x ≤ y and, since νi(ω) is a negative

measure, we have two options:

∫ 0

−∞

(
yi(s)− xi(s)

)
dνi(ω)(s) < 0 or yi(0)− xi(0) > 0 .
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In the first case, since ai < 0, we deduce from (3.7) that ci(x, y) > 0 and, in the second case,

from (C4)(i), we have
(
− L+

i (ω)− ai

)
(yi(0)− xi(0)) > 0. Therefore, inequality (3.8) is strict

in both cases. As a result, condition (N4) of [18] holds.

Let us check that, if (ω, x), (ω, y) ∈ Ω× BC with (ω, x) ≤D,A (ω, y) and z(t, ω, x), z(t, ω, y)

are defined, then

0 ≤ Di(τ(t, ω, y))− Di(τ(t, ω, x)) ≤ M(ω, y)− M(ω, x) , i = 1, . . . , m . (3.9)

Thanks to Theorem 4.8 of [18], the skew-product semiflow τ is monotone. As a result,

τ(t, ω, x) ≤D,A τ(t, ω, y) whenever they are defined, i.e D̂2(τ(t, ω, x)) ≤A D̂2(τ(t, ω, y)). Thus,

Theorem 3.1(i) provides zt(ω, x) ≤ zt(ω, y), and (C1) implies

gij(ω·t, zj(t, ω, x)) ≤ gij(ω·t, zj(t, ω, y)) .

Moreover, from D̂2(τ(t, ω, x)) ≤A D̂2(τ(t, ω, y)), it follows that D̂2(τ(t, ω, x)) ≤ D̂2(τ(t, ω, y)),

and we deduce that Di(τ(t, ω, x)) ≤ Di(τ(t, ω, y)) for i = 1, . . . , m.

As a consequence, (C2) and the total mass variation formula (3.6) yield

0 ≤ Di(τ(t, ω, y))− Di(τ(t, ω, x)) ≤
m

∑
i=1

[Di(τ(t, ω, y))− Di(τ(t, ω, x))]

≤ M(τ(t, ω, y))− M(τ(t, ω, x)) = M(ω, y)− M(ω, x)

+
m

∑
i=1

∫ t

0
(g0i(ω·s, zi(s, ω, x))− g0i(ω·s, zi(s, ω, y))) ds ≤ M(ω, y)− M(ω, x) ,

as claimed.

Finally, thanks to Proposition 3.2, given ε > 0 and r > 0, there exists δ > 0 such that, if

x, y ∈ Br with (ω, x) ≤D,A (ω, y) and d(x, y) < δ, then 0 ≤ M(ω, y)− M(ω, x) < ε. Conse-

quently, if x, y ∈ Br and (ω, x) ≤D,A (ω, y), from (3.9), it follows that 0 ≤ Di(ω·t, zt(ω, y))−
Di(ω·t, zt(ω, x))) < ε. Hence, the fact that νi(ω) is a negative measure implies

0 ≤ zi(t, ω, y)− zi(t, ω, x) ≤ ε +
∫ 0

−∞
(zi(t + s, ω, y)− zi(t + s, ω, x)) dνi(ω)(s) ≤ ε ,

whence, for all x, y ∈ Br with (ω, x) ≤D,A (ω, y) and d(x, y) < δ, ‖z(t, ω, y)− z(t, ω, x)‖ ≤ ε

whenever they are defined, so condition (N5) of [18] is satisfied. This property is usually

referred to as uniform stability for the ordering ≤D,A of Br and it was introduced in [19]. An

application of Theorem 4.12 of [18] finishes the proof, as expected.

Remark 3.4. In compartmental systems, one is interested in initial conditions (ω, x) for which

the solutions are bounded and positive, i.e. u(t, ω, x) ≥ 0 for each t ≥ 0. If 0 is a solution, for

instance when the compartmental systems (3.1) are closed, the set P = {(ω, x) ∈ Ω × BC |
(ω, x) ≥D,A 0} satisfies this property. Indeed, if (ω, x) ∈ P , then u(t, ω, x) ≥D,A 0 for all

t ≥ 0, whence û(t, ω, x) ≥A 0 for all t ≥ 0, and Theorem 3.1(i) provides u(t, ω, x) ≥ 0 for

all t ≥ 0. The boundedness follows from the uniform stability on each Br for the ordering

≤D, A. In addition, note that (ω, x) ≥D,A 0 means that D̂2(ω, x) ≥A 0, which implies, as

seen in Proposition 3.8 of [18], that D̂2(ω, x) satisfies (R). Summing up, the conclusions of

Theorem 3.3 state that, for closed compartmental systems, O(ω, x) is a copy of the base for all

initial data in P , those we are interested in.
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Under some conditions, in order to verify that D̂2(ω, x) satisfies the property (R), it is suffi-

cient to prove that x does. The following definition is a natural generalization of Definition 6.1

of [19]. As before, M denotes the set of Borel regular measures on (−∞, 0].

Definition 3.5. A map ν : Ω → M is said to be Lipschitz continuous along the flow σ if, for each

ω ∈ Ω, the map R → M, t 7→ ν(ω·t) is Lipschitz continuous, when the norm given by the

total variation is considered on M.

Remark 3.6. Thanks to the minimal character of the base flow on Ω, if the map R → M,

t 7→ ν(ω0·t) is Lipschitz continuous with Lipschitz constant L > 0 for one ω0 ∈ Ω, the same

holds for all the maps R → M, t 7→ ν(ω·t), ω ∈ Ω, whence ν is Lipschitz continuous along

the flow.

Proposition 3.7. Assume that νi is Lipschitz continuous along the flow and there exists a positive

measure ν with finite total variation such that |νi(ω)| ≤ ν for all i ∈ {1, . . . , m} and all ω ∈ Ω. If

(ω, x) ∈ Ω × BC and x satisfies property (R), then D̂2(ω, x) also satisfies property (R).

Proof. Let Lν > 0 be a Lipschitz constant valid for νi for all i ∈ {1, . . . , m} and

V = sup
{

V[−k,−k+1](xi) | i ∈ {1, . . . , m}, k ≥ 1
}

.

Fix i ∈ {1, . . . , m}, k ∈ N and let −k = t0 < t1 < · · · < tn = −k + 1 be a partition of the

interval [−k,−k + 1]. Then, for all s ≤ 0, the set {tj + s | j ∈ {0, . . . , n}} is included in a

partition of an interval of the form [−l,−l + 2] for some l ∈ N with l ≥ 2. From this fact, it

follows that

n

∑
j=1

∣∣∣D̂2(ω, x)i(tj)− D̂2(ω, x)i(tj−1)
∣∣∣ =

n

∑
j=1

∣∣∣Di(ω·tj, xtj
)− Di(ω·tj−1, xtj−1

)
∣∣∣

≤
n

∑
j=1

|xi(tj)− xi(tj−1)|

+
n

∑
j=1

∣∣∣∣
∫ 0

−∞
xi(tj + s) dνi(ω·tj)(s)−

∫ 0

−∞
xi(tj−1 + s) dνi(ω·tj−1)(s)

∣∣∣∣

≤ V +
n

∑
j=1

∫ 0

−∞
|xi(tj + s)− xi(tj−1 + s)| d|νi(ω·tj)|(s)

+
n

∑
j=1

∫ 0

−∞
|xi(tj−1 + s)| d|νi(ω·tj)− νi(ω·tj−1)|(s)

≤ V +
∫ 0

−∞

n

∑
j=1

|xi(tj + s)− xi(tj−1 + s)| dν(s) +
n

∑
j=1

|tj − tj−1| Lν ‖x‖∞

≤ V + 2 V ν((−∞, 0]) + Lν ‖x‖∞ ,

which is a bound independent of k and n, and D̂2(ω, x) satisfies (R), as claimed.

Finally, we remind that [19] contains a dynamical study of the compartmental systems (3.3)

on BU when the measures νi(ω) are positive for i = 1, . . . , n and ω ∈ Ω. It provides technical

assumptions under which the omega-limit set of every initial datum (ω, x), with x Lipschitz

continuous and z(·, ω, x) bounded, is a copy of the base. From the conclusions of this paper,

it follows that this result remains also valid when x satisfies condition (R).
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4 Neutral compartmental systems with finite delay

In this section, we include a nonautonomous neutral compartmental system with finite delay

satisfying some recurrence conditions on the temporal variation into a family of the form (3.3),

and we apply the conclusions of the previous section to the study of the long-term behavior

of the solutions of the initial system.

We consider the system of NFDEs with finite delay

d

dt
[zi(t) + c̃i(t) zi(t − αi)] = −

m

∑
j=1

g̃ji(t, zi(t)) +
m

∑
j=1

g̃ij(t − ρij, zj(t − ρij)) (4.1)

i = 1, . . . , m. Let us denote by g̃ = (g̃ij)i,j : R × R → R
m×m, c̃ = (ci)i : R → R

m and assume

that

(c1) g̃ is C1 in its second variable and g̃, ∂
∂v g̃ are uniformly continuous and bounded on

R × {v0} for all v0 ∈ R;

(c2) g̃ij(t, 0) = 0 and g̃ij(t, ·) is nondecreasing for all t ∈ R and i, j = 1, . . . , m;

(c3) c̃ is Lipschitz continuous, nonnegative, and sups∈R
c̃i(s) < 1, i = 1, . . . m;

(c4) letting (t, (c, g)) 7→ (ct, gt) denote the translation flow, that is, ct(s) = c(t + s) and

gt(s, v) = g(t + s, v) for all (s, v) ∈ R
2, the closure of the set {(c̃t, g̃t) | t ∈ R} for

the compact-open topology, referred to as the hull of (c̃, g̃), is minimal (in this situation,

(c̃, g̃) is said to be recurrent);

(c5) for each i = 1, . . . , m, there is a negative ai < 0 such that

(i) −L+
i − ai > 0 and

(ii) c̃i(t) ≤ eai αi , for each t ∈ R ,

where L+
i = ∑

m
j=1 sup(t, v)∈R2

∂g̃ij

∂v (t, v) .

Remark 4.1. Notice that no relation among the delays ρij and αi, i, j = 1, . . . , m, is assumed.

Conditions of the same type for the direct exponential ordering and negative coefficients c̃i

were obtained in [13], [17] and [20].

In this situation, we may include the system (4.1) in a family of nonautonomous NFDEs.

Specifically, let Ω be the hull of (c̃, g̃), as defined in (c4). Ω is a compact metric space thanks

to (c1) and (c3) (see Hino, Murakami, and Naito [8]). Let σ : R × Ω → Ω, (t, ω) 7→ ω·t be the

flow defined on Ω by translation, which is minimal, as specified in (c4). It is noteworthy that

the almost periodic and almost automorphic cases are included in this formulation.

Let us consider the continuous map (c, g) : Ω × R → R
m × R

m×m, (ω, v) 7→ ω(0, v). Let

us denote c = (ci)i, g = (gij)i,j, and define G : Ω × BC → R
m by

Gi(ω, x) = −
m

∑
j=1

gji(ω, xi(0)) +
m

∑
j=1

gij(ω·(−ρij), xj(−ρij)) , (ω, x) ∈ Ω × BC ,

and D : Ω × BC → R
m by

Di(ω, x) = xi(0) + ci(ω) xi(−αi) , (ω, x) ∈ Ω × BC , i = 1, . . . , m .
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Hence, the family
d

dt
D(ω·t, zt) = G(ω·t, zt) , t ≥ 0 , ω ∈ Ω , (4.2)

is of the form (3.1) for the negative Borel regular measure νi(ω) = −ci(ω) δ−αi
and the positive

Borel regular measure µij = δ−ρij
, i, j = 1, . . . , m, and includes system (4.1) when ω = (c̃, g̃).

Notice that the system (4.2) represents a closed compartmental system for each ω ∈ Ω, that

is, there is no flow of material from or to the environment. Consequently, from (c2), it follows

that zero is a bounded solution of all the systems of the family and, thanks to (3.6), the total

mass is constant along the trajectories.

Theorem 4.2. Assume that (c1)–(c5) hold and fix (ω0, x0) ∈ Ω × BC such that x0 satisfies prop-

erty (R). Then the solution z(·, ω0, x0) of (4.2)ω0 with initial value x0 is bounded, the omega-limit set

O(ω0, x0) = {(ω, x(ω)) | ω ∈ Ω} is a copy of the base and

lim
t→∞

d(u(t, ω0, x0), x(ω0·t)) = 0 ,

where x : Ω → BU is a continuous equilibrium.

Proof. From (c1)–(c5), νi(ω) = −ci(ω) δ−αi
and µij = δ−ρij

for i, j = 1, . . . m, it is easy to

check that (C1)–(C4) hold. Notice in particular that, from Remark 3.6, if c̃ is Lipschitz con-

tinuous, then νi is Lipschitz continuous along the flow for all i ∈ {1, . . . , m}. In addition,

since x0 satisfies property (R) and the conditions of Proposition 3.7 are clearly satisfied, then

D̂2(ω, x0) satisfies property (R) as well. Therefore, the result follows from Theorem 3.3, once

the boundedness of z(·, ω0, x0) is proved.

As shown in Theorem 3.3, each Br is uniformly stable for the ordering ≤D, A. This and

the fact that zero is a solution of (4.2) for all ω ∈ Ω allows us to deduce that each solution

z(·, ω, x) with (ω, x) ≥D,A (ω, 0) or (ω, x) ≤D,A (ω, 0) is globally defined and bounded.

Since D̂2(ω, x0) satisfies property (R), thanks to Proposition 3.8 of [18], there exists h ∈ BC

such that h ≥A 0 and h ≥A D̂2(ω, x), i.e (ω, ĥ) ≥D,A (ω, 0) and (ω, ĥ) ≥D,A (ω, x0) for

ĥ = (D̂−1)2(ω, h). Consequently, from the first inequality we deduce that z(t, ω, ĥ) is globally

defined and bounded and, hence, from the second inequality and again the uniform stability

of each Br for the ordering ≤D, A, we conclude that z(·, ω, x0) is globally defined and bounded,

as desired.

Regarding the solutions of the system (4.1), we obtain the following result, stated in the

almost periodic case, but similar conclusions hold changing almost periodicity for constancy,

periodicity, almost automorphy or recurrence. All solutions with initial data x0 satisfying

property (R), in particular those with Lipschitz continuous initial data, are asymptotically of

the same type as the transport functions and the coefficients of the neutral part.

Theorem 4.3. Under assumptions (c1)–(c5), if both c̃ and g̃ are almost periodic, then there exist

infinitely many almost periodic solutions of system (4.1). Moreover, all the solutions with initial data

x0 ∈ BC satisfying property (R) are asymptotically almost periodic.

Proof. Fix ω0 = (c̃, g̃) and x0 ∈ BC satisfying property (R). The omega-limit set O(ω0, x0) is

a copy of the base, whence, t 7→ z(t, ω0, x(ω0)) = x(ω0·t)(0) is an almost periodic solution

of (4.1) and

lim
t→∞

‖z(t, ω0, x0)− z(t, ω0, x(ω0))‖ = 0 .



Long-term behavior of neutral compartmental systems 13

Let us check that there are infinitely many minimal subsets. Let xk ∈ BC denote the constant

function xk ≡ k (1, . . . , 1). The total mass associated to (ω0, xk) is

M
(
ω0, xk

)
=

m

∑
i=1

k (1 + ci(ω0)) +
m

∑
i=1

m

∑
j=1

∫ 0

−∞

(∫ 0

s
gji(ω0·τ, k) dτ

)
dµji(s) ,

which diverges to infinity as k → ∞. Therefore, for all r > 0, there exists kr > 0 such that

M(ω0, xkr) = r. Finally, since the total mass is constant along the trajectories, O(ω0, xkr)

provides a different minimal set and, hence, a different almost periodic solution for each

r > 0.

5 Numerical experiments

In this section, we apply the results included in Section 4 and perform numerical experiments

on the neutral compartmental system:

d

dt

(
z1(t) + 0.1 (1 + cos(

√
2 (t − 0.5))) z1(t − 0.5)

)

=− 0.1 (1 + cos(
√

2 t)) tanh(z1(t))− 0.2 (1 + cos(t)) tanh(z1(t))

+ 0.1 (1 + cos(
√

2 (t − 1))) tanh(z1(t − 1))

+ 0.2 (1 + sin(
√

2 (t − 2))) tanh(z2(t − 2)) ,

d

dt

(
z2(t) + 0.05 (1 + sin((t − 1))) z2(t − 1)

)

=− 0.2 (1 + sin(
√

2 t)) tanh(z2(t))− 0.1 (1 + sin(t)) tanh(z2(t))

+ 0.2 (1 + cos((t − 0.3))) tanh(z1(t − 0.3))

+ 0.1 (1 + sin((t − 0.5))) tanh(z2(t − 0.5)) ,

(5.1)

for t ≥ 0. Clearly, the system of equations (5.1) is of the form given in (4.1). In this case,

g̃11(t, x) = 0.1 (1 + cos(
√

2 t)) tanh(x) , g̃12(t, x) = 0.2 (1 + sin(
√

2 t)) tanh(x) ,

g̃21(t, x) = 0.2 (1 + cos(t)) tanh(x) , g̃22(t, x) = 0.1 (1 + sin(t)) tanh(x) ,

ρ11 = 1 , ρ12 = 2 ,

ρ21 = 0.3 , ρ22 = 0.5 ,

c̃1(t) = 0.1 (1 + cos(
√

2 t)) , c̃2(t) = 0.05 (1 + sin(t)) ,

α1 = 0.5 , α2 = 1 .

The following result shows that the system of equations (5.1) also satisfies the conditions

assumed throughout Section 4.

Proposition 5.1. The system of equations (5.1) satisfies conditions (c1)–(c5).

Proof. Conditions (c1)–(c4) are immediate. As for condition (c5), it is trivial to check that

l+11 ≤ 0.2 and l+21 ≤ 0.4, whence L+
1 ≤ 0.6. As a result, by choosing a1 = −0.7, we obtain

ea1 α1 > 0.7, which is an upper bound of c̃1. Analogously, l+12 ≤ 0.4 and l+22 ≤ 0.2, whence

L+
2 ≤ 0.6. By choosing a2 = −0.7, we obtain ea2 α2 > 0.4, which is an upper bound of c̃2, as

wanted.
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It is noteworthy that, as in Section 4, we can define Ω as the hull of the coefficients of

the system of equations (5.1). It is well-known that the flow defined on Ω by translation is

isomorphic to the Kronecker flow defined on the 2-torus T
2 = (R/[0, 2 π])2, which is defined

by

ζ : R
+ × T

2 −→ T
2

(t, θ1, θ2) 7−→ (θ1 +
√

2 t, θ2 + t) .

Notice that ζ is a minimal flow (see e.g. Walters [23] for further details). This fact allows us to

include the system of equations (5.1) in the family of equations

d

dt

(
z1(t) + 0.1 (1 + cos(θ1 +

√
2 (t − 0.5))) z1(t − 0.5)

)
=

=− 0.1 (1 + cos(θ1 +
√

2 t)) tanh(z1(t))− 0.2 (1 + cos(θ2 + t)) tanh(z1(t))

+ 0.1 (1 + cos(θ1 +
√

2 (t − 1))) tanh(z1(t − 1))

+ 0.2 (1 + sin(θ1 +
√

2 (t − 2))) tanh(z2(t − 2)) ,

d

dt

(
z2(t) + 0.05 (1 + sin(θ2 + (t − 1))) z2(t − 1)

)
=

=− 0.2 (1 + sin(θ1 +
√

2 t)) tanh(z2(t))− 0.1 (1 + sin(θ2 + t)) tanh(z2(t))

+ 0.2 (1 + cos(θ2 + (t − 0.3))) tanh(z1(t − 0.3))

+ 0.1 (1 + sin(θ2 + (t − 0.5))) tanh(z2(t − 0.5)) ,

(5.2)

for t ≥ 0, where (θ1, θ2) ∈ T
2.

In this situation, we can apply the results obtained in Section 4 to the system of equa-

tions (5.1).

Theorem 5.2. Fix (θ1, θ2, x0) ∈ T
2 × BC such that x0 satisfies property (R). Then the solution

z(·, θ1, θ2, x0) of (5.2)(θ1,θ2) with initial value x0 is bounded, the omega-limit set O(θ1, θ2, x0) =

{(ϕ1, ϕ2, x(ϕ1, ϕ2)) | (ϕ1, ϕ2) ∈ T
2} is a copy of the base and

lim
t→∞

d(u(t, θ1, θ2, x0), x(ζt(θ1, θ2))) = 0 ,

where x : T
2 → BU is a continuous equilibrium. Moreover, there are infinitely many almost pe-

riodic solutions of system (5.1) and all the solutions with initial data x0 satisfying property (R) are

asymptotically almost periodic.

Proof. It follows immediately from Proposition 5.1, Theorem 4.2, and Theorem 4.3.

In what follows, some numerical simulations of the neutral compartmental system (5.1)

will be presented. Numerical methods for neutral differential equations with delay are well-

known (see e.g. Wen and Yu [24] and the references therein). All our computations were

carried out with the Matlab function ddensd, with a relative tolerance of 10−5 and an absolute

tolerance of 10−10.

Figure 5.1 shows the solutions of system (5.1) with the following initial data xi
0 : (−∞, 0] →

R
2, i = 1, 2, 3, which satisfy property (R):

(i) x1
0(t) = (− sin(t), max{2,

√
−t}) for all t ∈ (−∞, 0];

(ii) x2
0(t) = (0.5, 1) for all t ∈ (−∞, 0];

(iii) x3
0(t) = (0.3 et, 0.3 (1 + cos(2 t))) for all t ∈ (−∞, 0].
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Figure 5.1: First and second components of the solutions of system (5.1) with

initial data x1
0 (blue), x2

0 (red), and x3
0 (green) for t ∈ [0, 200].

Note that x1
0 is not Lipschitz continuous.

In order to approximate the omega-limit of the solution of system (5.1) with initial datum

x1
0, z : R → R

2, the system of equations (5.1) was integrated for t ∈ [0, 5000]. We considered

the time subintervals Jk = [500 k, 500 (k + 1)], k = 0, . . . , 9, and restricted the solution z to

those subintervals. Then, the graphs over the 2-torus of both components of z|Jk
,

{(
√

2 t (mod 2 π), t (mod 2 π), zi(t)) | t ∈ Jk}, i = 1, 2 ,

can be approximated by two surfaces S1
k and S2

k , respectively, for k = 0, . . . , 9. These ap-

proximated surfaces were computed by means of a cubic interpolation of the scattered data

provided by the numerical integration of z on Jk , for k = 0, . . . , 9. Finally, the distance be-

tween any two consecutive surfaces in the finite sequence Si
0, . . . , Si

9, i = 1, 2, was calculated by

comparing them on a fixed uniform grid of 32× 32 points on the 2-torus T
2, and by taking the

supremum over the whole grid. The results for both components of the solution are included

in Table 5.1.

Surfaces Distance (i = 1) Distance (i = 2)

Si
0, Si

1 8.76·10−2 1.21·10−1

Si
1, Si

2 4.32·10−6 4.81·10−6

Si
2, Si

3 4.36·10−6 5.02·10−6

Si
3, Si

4 4.40·10−6 6.21·10−6

Si
4, Si

5 4.52·10−6 4.93·10−6

Si
5, Si

6 4.32·10−6 5.03·10−6

Si
6, Si

7 4.28·10−6 7.92·10−6

Si
7, Si

8 4.32·10−6 4.58·10−6

Si
8, Si

9 4.38·10−6 5.17·10−6

Table 5.1: Distance between consecutive surfaces in the finite sequence

Si
0, . . . , Si

9, i = 1, 2.
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Clearly, the distance between two consecutive surfaces Si
k and Si

k+1, i = 1, 2, k = 0, . . . , 8,

gets close to zero very rapidly, but then stabilizes. This fact is not surprising due to the mere

uniform stability that was checked in the proof of Theorem 3.3, which does not necessarily

imply a fast convergence.

Figure 5.2 contains the omega-limit set of the solution of system (5.1) with initial datum x1
0.

Its components have been approximated by the surfaces S1
9 and S2

9, respectively. This omega-

limit set is clearly the graph of a continuous function, as proved in Theorem 5.2. Moreover,

Figure 5.3 shows the omega-limit sets of the solutions of system (5.1) with initial data x1
0, x2

0,

and x3
0. Thanks to Proposition 3.2, a similar argument to that in the proof of Theorem 4.3

implies that there is a different omega-limit set for each value of the total mass of system (5.1)

(see e.g. [15] for further results as to the comparison of different omega-limit sets in closed

compartmental systems).
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Figure 5.2: Omega-limit of the solution of system (5.1) with initial data x1
0.

0

6

0.2

0.4

7

0.6

64

5

0.8

4

1

2 3

2

1
0 0

(a) First components.

0

6

0.2

0.4

7

0.6

64

5

0.8

4

1

2 3

2

1
0 0

(b) Second components.

Figure 5.3: First and second components of the omega-limits of the solutions of

system (5.1) with initial data x1
0, x2

0, and x3
0.
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1 Introduction

Let Ω ⊂ R
N (N ≥ 2) be a smooth bounded connected domain in real N-dimensional Eu-

clidean space. We are concerned with the existence of weak solutions of the following Neu-

mann problem of semilinear elliptic systems

∆u + f (v) = h1(x), in Ω,

∆v + g(u) = h2(x), in Ω,

∂u

∂ν
=

∂v

∂ν
= 0, on ∂Ω,

(1.1)

where f , g : R → R are continuous functions, ∂
∂ν denotes the outward normal derivative on

∂Ω, the boundary of Ω, and h1, h2 ∈ L1(Ω).

The motivation for this work is the paper F. O. de Paiva, W. Rosa [12], in which the authors

showed the following resonant Neumann problems

− ∆u = (v+)p + h1(x), in Ω,

− ∆v = (u+)q + h2(x), in Ω,

∂u

∂ν
=

∂v

∂ν
= 0, on ∂Ω

(1.2)

BCorresponding author. Email: 15193193403@163.com
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has at least one solution (u, v) in H1(Ω) × H1(Ω) under the assumptions h1, h2 ∈ Lr(Ω),

r > N
2 , 1 < p, q <

N
N−2 and

∫

Ω
hi(x)dx < 0, i = 1, 2. (1.3)

We first define the bilinear form associated with the Laplacian operator. For u, v ∈

W1,1(Ω), φ, ψ ∈ W1,∞(Ω), we define B1(u, φ) and B2(v, ψ) by

B1(u, φ) = −
N

∑
i=1

∫

Ω

∂u

∂xi

∂φ

∂xi
dx,

B2(v, ψ) = −
N

∑
i=1

∫

Ω

∂v

∂xi

∂ψ

∂xi
dx,

where the derivatives are taken in the distributional sense. By a weak solution of (1.1), we mean

a pair (u, v) ∈ W1,1(Ω)× W1,1(Ω), such that f (v(·)) ∈ L1(Ω), g(u(·)) ∈ L1(Ω) and

B1(u, φ) +
∫

Ω
f (v)φdx =

∫

Ω
h1(x)φdx, ∀ φ ∈ W1,∞(Ω),

B2(v, ψ) +
∫

Ω
g(u)ψdx =

∫

Ω
h2(x)ψdx, ∀ ψ ∈ W1,∞(Ω).

Denote
f−∞ = lim sup

s→−∞

f (s), g−∞ = lim sup
s→−∞

g(s),

f+∞ = lim inf
s→+∞

f (s), g+∞ = lim inf
s→+∞

g(s).

We will make the following assumptions.

(C0) h1, h2 ∈ L1(Ω).

(Cl) There are the nonnegative constants C1, C2 ∈ (0, ∞) such that

f (t) ≥ −C1, g(t) ≥ −C2, t ∈ R

and for all t ≤ 0 we have also | f (t)| ≤ C1, |g(t)| ≤ C2.

(C2) There are the constants a, b ∈ R and p with 1 ≤ p < N/(N − 2) for N ≥ 3 and

1 ≤ p < ∞ for N = 2 such that for all t ≥ 0 the inequality

| f (t)|, |g(t)| ≤ atp + b a.e. on Ω.

(C3) We assume f , g tends to be nondecreasing in that there is a γ ∈ R and a number M ≥ 0

such that the inequalities

f (t1) ≤ f (t2) + γ, g(t1) ≤ g(t2) + γ

hold a.e. on Ω whenever t2 − t1 ≥ M.

(C4)
∫

Ω
f−∞

<

∫

Ω
h1(x)dx <

∫

Ω
f+∞,

∫

Ω
g−∞

<

∫

Ω
h2(x)dx <

∫

Ω
g+∞.
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Our main result is the following

Theorem 1.1. Under assumptions (C0)–(C4) the Neumann problem (1.1) has a weak solution (u, v) ∈

W1,1(Ω)×W1,1(Ω). Moreover the solution (u, v) ∈ W1,q(Ω)×W1,q(Ω) for all 1 ≤ q < N/(N − 1).

Remark 1.2. Obviously, (1.3) in F. O. de Paiva, W. Rosa [12] are the special case of (C0) and

(C4).

Remark 1.3. Our proof is based upon ideas found in Ward Jr [16]. He used the well-known

Mawhin’s continuation theorem to get a weak solution of the scale elliptic equation

∆u + f (x, u) = k(x), in Ω,

∂u

∂ν
= 0, on ∂Ω

(1.4)

under the conditions k ∈ L1(Ω),

| f (x, t)| ≤ α(x)|t|p + β(x), x ∈ Ω,

where p ∈ [1, N
N−2 ), α ∈ L∞(Ω), β ∈ L1(Ω), and Landesman–Lazer condition

∫

Ω
f−∞

<

∫

Ω
k(x)dx <

∫

Ω
f+∞.

Remark 1.4. Similar problems, under Dirichlet and Neumann boundary condition, can be

found in D. Arcoya and S. Villegas [2], M. Cuesta and C. De Coster [3], F. M. Ferreira, F. O. de

Paiva [4], R. Kannan and R. Ortega [6, 7], S. Kyritsi and N. S. Papageorgiou [8], D. Motreanu,

V. Motreanu, N. S. Papageorgiou [10], K. Perera [14], N. S. Papageorgiou and V. D. Rădulescu

[13], F. O. de Paiva and A. E. Presoto [11], L. Recova and A. Rumbos [15], J. R. Ward [16].

2 The preliminaries

Before proving Theorem 1.1 we will need a lemma. In the following we will write Lp for

Lp(Ω) and W1,p for W1,p(Ω). We denote the norm in Lp by | · |p, that of W1,p by | · |1,p. For

h ∈ L1. Let Qh be the projection

Qh = |Ω|−1
∫

Ω
hdx.

Lemma 2.1 ([16]). For each h ∈ L1(Ω) with Qh = 0. There is a unique w ∈ W1,1(Ω) with Qw = 0

such that

B(w, φ) =
∫

Ω
h(x)φdx,

for all φ ∈ W1,∞, where B(w, φ) = −∑
N
i=1

∫

Ω
∂w
∂xi

∂φ
∂xi

dx. Moreover w ∈ W1,q for each q satisfying

1 ≤ q < N/(N − 1) and there is a constant C(q) such that

|w|1,q ≤ C(q)|h|1.

By the Rellich–Kondrachov theorem W1,q is compactly imbedded in Lp for 1 ≤ p <
Nq

N−q

since q < N/(N − 1) ≤ N for all N ≥ 2. (e.g. see [1, p. 144]). Assume that the number p in

condition (C2) is fixed hereafter, satisfying 1 ≤ p < N/(N − 2) if N ≥ 3 and 1 ≤ p < ∞ if

N = 2.
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Choose q so that

p <
Nq

N − q
and 1 < q <

N

N − 1
.

We have that W1,q is compactly imbedded in Lp.

Let X1 denote the closed subspace of L1 defined by h ∈ X1 if and only if

Qh = 0.

Let T denotes the operator mapping X1 into W1,q ∩ X1 given by h → w where w is the unique

weak solution to
∆w = h in Ω, Qu = 0,

∂w

∂ν
= 0 on ∂Ω.

Note that W1,q = (W1,q ∩ X1)⊕ R. T maps X1 into W1,q and we see that Ψ ◦ T maps X1

compactly into Lp if Ψ is the imbedding of W1,q into Lp. Let

K = Ψ ◦ T,

and define an operator L : Lp → L1. Because L1 is not the dual space to L∞, we do not use the

usual method of defining L. Instead, we let

D(L) = Range K ⊕ R

and

L(w1 + α̃) = h,

where h ∈ X1 and Kh = w1, for w1 ∈ Range K and α̃ ∈ R. It is easy to see that L is a Fredholm

operator: it has closed range X1 and since ker(L) = R and the dimension of L1 \ X1 is clearly

1, the index of L is 0,

index(L) = dim ker L − dim coker L.

We now define the substitution operators N1, N2 : Lp → L1 by

N1v(x) = f (v(x))− h1(x), v ∈ Lp and x ∈ Ω.

N2u(x) = g(u(x))− h2(x), u ∈ Lp and x ∈ Ω.

It is well known that the conditions on f and g imply that Nj maps Lp into L1 continuously

and Nj obviously takes sets bounded in Lp into sets bounded in L1 for j = 1, 2.

A function (u, v) ∈ W1,1 × W1,1 is a weak solution of (1.1) if and only if (u, v) ∈ D(L)×

D(L) and

Lu + N1v = 0,

Lv + N2u = 0.
(2.1)

Recalling that for u ∈ L1 we have defined Qu to be the mean value of u, we have from

our remarks above that K(I − Q)Nj : Lp → Lp is compact and continuous, clearly QNj is

also compact and continuous for j = 1, 2. Thus Nj is L-compact (see [5]) on Ḡ for any open

bounded set Ḡ in Lp for j = 1, 2. We will use a well known continuation theorem of Mawhin

(see [5] and [9]).
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3 Proof of the main result

We are in the position to prove our main result.

Proof of Theorem 1.1. By one of Mawhin’s continuation theorems (see [5, p. 40] or [9, The-

orem 7.2]) and our remarks above, if we can show the existence of a bounded open set

G := Ḡ × Ḡ in Lp × Lp such that conditions (i) and (ii) below hold, then (2.1) has a solu-

tion. The conditions are:

(i) For each λ ∈ (0, 1) and each (u, v) ∈ (D(L)× D(L)) ∩ ∂G,

Lu + λN1v ̸= 0,

Lv + λN2u ̸= 0.
(3.1)

(ii) QNjw ̸= 0 for each j = 1, 2, w ∈ ker L ∩ ∂Ḡ and

d(Γ, G ∩ (ker L × ker L), 0) ̸= 0,

where Γ := (JQN1, JQN2), J : Im Q → ker L is an isomorphism, and d is the Brouwer

topological degree.

We first verify (i). We consider

Lu + λN1v = 0,

Lv + λN1u = 0
(3.2)

for 0 < λ < 1. If ((u, v), λ) is a solution of (3.2) then

B1(u, φ) + λ
∫

Ω
f (v)φ = λ

∫

Ω
h1 φ, ∀ φ ∈ W1,∞,

B2(v, ψ) + λ
∫

Ω
g(u)ψ = λ

∫

Ω
h2ψ, ∀ ψ ∈ W1,∞.

In particular by taking φ = ψ = 1, then

∫

Ω
f (v) =

∫

Ω
h1,

∫

Ω
g(u) =

∫

Ω
h2.

It follows from (Cl) that for each t ∈ R

| f (t)| ≤ f (t) + 2C1, |g(t)| ≤ g(t) + 2C2.

Thus

|N1v|1 =
∫

Ω
| f (v)− h1(x)|dx

≤
∫

Ω

(

f (v) + 2C1 + |h1(x)|
)

dx

≤
∫

Ω
h1dx + 2|C1| · |Ω|+

∫

Ω
|h1(x)|dx =: d1,
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|N2u|1 =
∫

Ω
|g(u)− h2(x)|dx

≤
∫

Ω

(

g(u) + 2C2 + |h2(x)|
)

dx

≤
∫

Ω
h2dx + 2|C2| · |Ω|+

∫

Ω
|h2(x)|dx =: d2.

Writing u = u1 + α, v = v1 + β with u1, v1 ∈ Range K and α, β ∈ R by Lemma 2.1 we have

|u1|1,q ≤ C(q)d1 =: m1,

|v1|1,q ≤ C(q)d2 =: m2,

where m1 and m2 are independently of λ ∈ (0, 1). By the Sobolev imbedding theorem

|u1|p ≤ m3, |v1|p ≤ m4

for some constants m3 and m4.

We now show that for solutions ((u, v), λ) =
(

(u1 + α, v1 + β), λ
)

that α and β are also

bounded independently of λ ∈ (0, 1).

Suppose this is not the case. Then there is a sequence ((un, vn), λn) of solutions to (3.2)

with

un = u1n + αn, vn = v1n + βn

and

|αn|+ |βn| → ∞, as n → ∞.

Suppose first that a subsequence of {αn}, relabeled as {αn}, tends to +∞. Then using

|u1n|1,q ≤ m1 is easy to show that

lim
n→∞

un(x) = +∞ a.e. (3.3)

For otherwise there is a constant k1 > 0 and sets Ω(n) in Ω for infinitely many n (without

loss of generality we assume for all n) such that |Ω(n)| ≥ δ > 0 and un(x) ≤ k1 for x ∈ Ω(n).

We have u1n + αn ≤ k1 implies

k1|Ω| ≥
∫

Ω(n)
k1dx ≥

∫

Ω(n)
u1n + αndx

≥ αn|Ω(n)| −
∫

Ω
|u1n|

≥ αnδ − C

for C, a constant, which contradicts αn → ∞. Thus (3.3) holds and

lim inf
n→∞

g(un(x)) = g+∞ a.e.

Since g(un(x)) ≥ −C2 for all n and C2 ∈ R we have by Fatou’s lemma

∫

Ω
h2 = lim inf

n→∞

∫

Ω
g(un(x))dx ≥

∫

Ω
g+∞dx

which contradicts (C4). Thus the {αn} must be bounded above.
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Suppose αn → −∞. It follows as for (3.3) that

lim
n→∞

un(x) = −∞ a.e.

Because g(t) is not everywhere bounded above by an L1 function, we cannot use the simple

Fatou’s lemma argument as in the case of αn → −∞.

We proceed as follows. Since |u1n|1,q ≤ m1, we may without loss of generality assume the

existence of ũ1 ∈ Lp such that u1n → ũ1 in Lp.

Let 0 < ϵ < |Ω| be given. Then ũ1 ∈ Lp implies that there exists an integer n(ϵ) and a

measurable set E ⊆ Ω such that if F = Ω − E then |F| < ϵ and

un(x) ≤ 0, x ∈ E, n ≥ n(ϵ),

hence

g(un(x)) ≤ C2, x ∈ E, n ≥ n(ϵ).

Moreover there exists another integer m such that for n ≥ m we have αn ≤ −M, where M

is a positive constant.

Thus, for n ≥ max{n(ϵ), m},

∫

Ω
h2 =

∫

E
g(u1n + αn) +

∫

F
g(u1n + αn)

≤
∫

E
g(u1n + αn) +

∫

F
g(u1n) +

∫

F
γ

and

∫

Ω
h2 ≤ lim sup

n→∞

[

∫

E
g(un) +

∫

F
g(u1n)

]

+
∫

F
γ

≤
∫

E
g−∞dx +

∫

F
g(ũ1)dx +

∫

F
γ

(3.4)

by Fatou’s lemma for the integral over E and by convergence in L1 for the integral over F.

Now choose η > 0 such that

∫

Ω
g−∞dx + η <

∫

Ω
h2dx. (3.5)

We may choose ϵ > 0 so small that, since |F| < ϵ,

∣

∣

∣

∣

∫

F
g−∞dx

∣

∣

∣

∣

<
η

3
,

∣

∣

∣

∣

∫

F
g(ũ1)dx

∣

∣

∣

∣

<
η

3
,

∣

∣

∣

∣

∫

F
γ

∣

∣

∣

∣

<
η

3
.

For such as ϵ we have from (3.4) and (3.5)

∫

Ω
h2 ≤

∫

Ω
g−∞dx −

∫

F
g−∞dx +

∫

F
g(ũ1)dx +

∫

F
γ ≤

∫

Ω
g−∞dx + η <

∫

Ω
h2. (3.6)

Therefore we cannot have αn → +∞ or αn → −∞ and this, combined with |u1|p ≤ m3 shows

that if ((u, v), λ) is a solution of (3.2) then |u|p = |u1 + α|p ≤ m3 + C3 for some constant C3.

Similarly, We can obtain |v|p = |v1 + α|p ≤ m4 + C4 for some constant C4.

This verifies condition (i) above for any ball G in L1 × L1, centered at the origin and with

radius larger than ρ1 = max{m3 + C3, m4 + C4}.
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The verification of condition (ii) is now straightforward. Both the range of Q and the

kernel of L may be identified with R, so that the isomorphism J in (ii) we may take to be the

identity on R. Now for α, β ∈ R,

QN1β = |Ω|−1
∫

Ω

[

f (β)− h1(x)
]

dx, QN2α = |Ω|−1
∫

Ω

[

g(α)− h2(x)
]

dx.

We may now make two simple applications of Fatou’s lemma using (Cl) to show, using (C4),

that there exists an r > 0 such that

QN1(β) > 0, QN1(−β) < 0, for α > r,

QN2(α) > 0, QN2(−α) < 0, for β > r.

Thus for r̄ ≥ r max{1, |Ω|},

d(QNj, [−r̄, r̄] ∩ ker L, 0) ̸= 0, j = 1, 2.

By the product formula of Brouwer degree, we obtain

d(Γ, [−r̄, r̄]2 ∩ (ker L × ker L), 0) ̸= 0.

Now let ρ := max{ρ1, r · max{1, |Ω|}}. Then we have that both (i) and (ii) are satisfied on

[Bρ]2, where Bρ is the ball in Lp with radius ρ centered at the origin. Thus (2.1) has a solution

(u, v) ∈ D(L)× D(L) with

|u|p ≤ ρ, |v|p ≤ ρ,

and (u, v) ∈ W1,p × W1,p and is a weak solution of (1.1). This completes the proof of Theo-

rem 1.1.
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1 Introduction

In the present paper, we are concerned with the n-dimensional diffusion (heat) equation with
continuous time and discrete space, i.e., with the equation

∂u

∂t
(x, t) = a

(

n

∑
i=1

u(x + ei, t)− 2nu(x, t) +
n

∑
i=1

u(x − ei, t)

)

, x ∈ Z
n, t ≥ 0, (1.1)

where e1, . . . , en is the canonical basis of R
n, the constant a > 0 is the diffusion strength, and

the terms inside the parentheses represent the n-dimensional discrete Laplace operator. The
study of Eq. (1.1) is meaningful not only from the viewpoint of numerical mathematics, but the
equation is of independent interest; for example, it describes the continuous-time symmetric
random walk on Z

n, with a being the intensity of transitions between two neighboring lattice
points in Z

n. In this case, the value u(x, t) is the probability that the random walk visits point
x ∈ Z

n at time t ≥ 0.
We impose the initial condition

u(x, 0) = cx, x ∈ Z
n, (1.2)

where {cx}x∈Zn is a collection of real numbers such that |cx| ≤ M for a certain M ≥ 0 and all
x ∈ Z

n, i.e., {cx}x∈Zn ∈ ℓ∞(Zn). We refer to {cx}x∈Zn as a bounded array of real numbers, and

BEmail: slavik@karlin.mff.cuni.cz



2 A. Slavík

occasionally write cx1,...,xn instead of cx if we need to refer to the components of x. According
to [13, Section 5.2], the problem (1.1)–(1.2) has a unique bounded solution, which can be
expressed in terms of the modified Bessel functions as follows (see also [9, Section 6] for
closely related results):

u(x, t) = e−2ant ∑
k∈Zn

ck Ix1−k1(2at) · · · Ixn−kn
(2at), x ∈ Z

n, t ≥ 0. (1.3)

Note that the series is absolutely convergent, because the modified Bessel functions are non-
negative, and if we replace ck with |ck|, the series represents the solution of the problem with
initial values {|ck|}k∈Zn .

Our goal is to investigate the asymptotic behavior of solutions, focusing on the pointwise
limits limt→∞ u(x, t) and the question whether they are uniform with respect to x ∈ Z

n.
The asymptotic behavior of the classical diffusion equation with continuous time and space

was studied in numerous papers, see e.g. [2, 7, 11, 15] and the references therein. The one-
dimensional semidiscrete case, i.e., the equation

∂u

∂t
(x, t) = a (u(x + 1, t)− 2u(x, t) + u(x − 1, t)) , x ∈ Z, t ≥ 0,

was treated in [12], where it was shown that the solution converges to the average of the
initial values, provided that the average exists. Generalization of the results from [12] to
the multidimensional case is not completely straightforward, and we believe it will be of
interest to the readers, also in view of the recent popularity of semidiscrete evolution equations
(including those with fractional derivatives), see e.g. [1, 3–6, 8, 14], and the references therein.

2 Main results

Recall that Ik, k ∈ Z, denotes the modified Bessel function of the first kind of order k. Through-
out the paper, we use only a few basic properties of modified Bessel functions, all of which
can be found e.g. in the online handbook [10]. Thus, the exposition is accessible also to readers
with no prior knowledge of Bessel functions.

Our first goal is to transform the formula (1.3) into an alternative formula, which shows the
dependence of the solution on sums (or averages) of initial values. The following statement
corresponds to Lemma 2.1 from [12], where it was derived using summation by parts.

Lemma 2.1. Let {ck}k∈Z be an arbitrary real sequence. Then for each N ∈ N and t ≥ 0, we have

N

∑
k=−N+1

ck Ik(t) =
N−1

∑
k=0

(Ik(t)− Ik+1(t))
k

∑
l=−k

cl + IN(t)
N

∑
k=−N+1

ck.

We need the multidimensional version of Lemma 2.1, which reads as follows.

Lemma 2.2. Let n ∈ N and {ck}k∈Zn be an array of real numbers. Then for each N ∈ N and t ≥ 0,

we have

N

∑
k1,...,kn=−N+1

ck1,...,kn
Ik1(t) · · · Ikn

(t) =
N−1

∑
k1,...,kn=0

n

∏
j=1

(Ik j
(t)− Ik j+1(t))

k1

∑
l1=−k1

· · ·
kn

∑
ln=−kn

cl1,...,ln

+IN(t)
n

∑
j=1

N−1

∑
k j+1,...,kn=0

N

∑
k1,...,k j=−N+1

j−1

∏
i=1

Iki
(t)

n

∏
i=j+1

(Iki
(t)− Iki+1(t))

k j+1

∑
lj+1=−k j+1

· · ·
kn

∑
ln=−kn

ck1,...,k j,lj+1,...,ln .
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Proof. We use induction with respect to n. For n = 1, the statement reduces to Lemma 2.1.
Suppose next that the statement holds for n ∈ N and let us show that it holds for n + 1. Using
Lemma 2.1, we get

N

∑
k1,...,kn+1=−N+1

ck1,...,kn+1 Ik1(t) · · · Ikn+1(t) =
N

∑
k1,...,kn=−N+1

Ik1(t) · · · Ikn
(t)

N

∑
kn+1=−N+1

Ikn+1(t)ck1,...,kn+1

=
N

∑
k1,...,kn=−N+1

Ik1(t) · · · Ikn
(t)

(

N−1

∑
kn+1=0

(Ikn+1(t)− Ikn+1+1(t))
kn+1

∑
ln+1=−kn+1

ck1,...,kn,ln+1 + IN(t)
N

∑
kn+1=−N+1

ck1,...,kn+1

)

=
N

∑
kn+1=0

kn+1

∑
ln+1=−kn+1

(Ikn+1(t)− Ikn+1+1(t))
N

∑
k1,...,kn=−N+1

Ik1(t) · · · Ikn
(t)ck1,...,kn,ln+1

+IN(t)
N

∑
k1,...,kn+1=−N+1

Ik1(t) · · · Ikn
(t)ck1,...,kn+1 .

Using the induction hypothesis to rewrite the inner sum in the first term on the right-hand
side, we get

N

∑
kn+1=0

kn+1

∑
ln+1=−kn+1

(Ikn+1(t)− Ikn+1+1(t))

(

N−1

∑
k1,...,kn=0

n

∏
j=1

(Ik j
(t)− Ik j+1(t))

k1

∑
l1=−k1

· · ·
kn

∑
ln=−kn

cl1,...,ln+1

+IN(t)
n

∑
j=1

N−1

∑
k j+1,...,kn=0

N

∑
k1,...,k j=−N+1

j−1

∏
i=1

Iki
(t)

n

∏
i=j+1

(Iki
(t)− Iki+1(t))

k j+1

∑
lj+1=−k j+1

· · ·
kn

∑
ln=−kn

ck1,...,k j,lj+1,...,ln+1

)

+IN(t)
N

∑
k1,...,kn+1=−N+1

Ik1(t) · · · Ikn
(t)ck1,...,kn+1 .

Expanding the product inside the first term and performing some elementary manipulations,
we get:

N−1

∑
k1,...,kn+1=0

n+1

∏
j=1

(Ik j
(t)− Ik j+1(t))

k1

∑
l1=−k1

· · ·
kn+1

∑
ln+1=−kn+1

cl1,...,ln+1

+IN(t)
n

∑
j=1

N−1

∑
k j+1,...,kn+1=0

N

∑
k1,...,k j=−N+1

j−1

∏
i=1

Iki
(t)

n+1

∏
i=j+1

(Iki
(t)− Iki+1(t))

k j+1

∑
lj+1=−k j+1

· · ·
kn+1

∑
ln+1=−kn+1

ck1,...,k j,lj+1,...,ln+1

+IN(t)
N

∑
k1,...,kn+1=−N+1

Ik1(t) · · · Ikn
(t)ck1,...,kn+1 .

This completes the proof, because the third term can be incorporated into the second term as
the summand corresponding to j = n + 1.

Proposition 2.3. Let n ∈ N and {ck}k∈Zn be a bounded array of real numbers. Then the unique

bounded solution of the problem (1.1)–(1.2) is given by the formula

u(x, t) = e−2ant
∞

∑
k1,...,kn=0

(

n

∏
j=1

(Ik j
(2at)− Ik j+1(2at))

)(

x1+k1

∑
l1=x1−k1

· · ·
xn+kn

∑
ln=xn−kn

cl1,...,ln

)

for all x ∈ Z
n, t ≥ 0.
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Proof. It suffices to prove the statement for x = 0, since for a nonzero x ∈ Z
n, one can consider

the shifted solution satisfying shifted initial conditions (cf. the proof of Lemma 2.2 in [12]).
Using formula (1.3) and the fact that I−k(t) = Ik(t) for all k ∈ Z and t ≥ 0, we have

u(0, t) = e−2ant ∑
k∈Zn

ck Ik1(2at) · · · Ikn
(2at) = e−2ant lim

N→∞

N

∑
k1,...,kn=−N+1

ck1,...,kn
Ik1(2at) · · · Ikn

(2at).

The sum can be rewritten using the formula from Lemma 2.2. But let us first observe that
the second term on the right-hand of that formula tends to zero as N → ∞. To see this, we
perform some estimates. Let M ≥ 0 be such that |ck1,...,kn

| ≤ M for all k ∈ Z
n. Using the

fact that the modified Bessel functions are nonnegative and nonincreasing with respect to the
order, we get

∣

∣

∣

∣

∣

j−1

∏
i=1

Iki
(t)

n

∏
i=j+1

(Iki
(t)− Iki+1(t))

∣

∣

∣

∣

∣

≤ I0(t)
n−1.

For k j+1, . . . , kn ∈ {0, . . . , N − 1}, this implies that

∣

∣

∣

∣

∣

∣

k j+1

∑
lj+1=−k j+1

· · ·
kn

∑
ln=−kn

j−1

∏
i=1

Iki
(t)

n

∏
i=j+1

(Iki
(t)− Iki+1(t))ck1,...,k j,lj+1,...,ln

∣

∣

∣

∣

∣

∣

≤ (2N − 1)n−j I0(t)
n−1M.

Consequently,
∣

∣

∣

∣

∣

∣

IN(t)
n

∑
j=1

N−1

∑
k j+1,...,kn=0

N

∑
k1,...,k j=−N+1

k j+1

∑
lj+1=−k j+1

· · ·
kn

∑
ln=−kn

j−1

∏
i=1

Iki
(t)

n

∏
i=j+1

(Iki
(t)− Iki+1(t))ck1,...,k j,lj+1,...,ln

∣

∣

∣

∣

∣

∣

≤ IN(t)nNn−j(2N)j(2N − 1)n−j I0(t)
n−1M ≤ IN(t)nNn(2N)n I0(t)

n−1M,

which tends to zero as N → ∞, because IN(t) ∼ 1√
2πN

(

et
2N

)N for N → ∞ (see formula 10.41.1
in [10]). Returning to the beginning of the proof and applying Lemma 2.2, we now see that

u(0, t) = e−2ant lim
N→∞

(

N−1

∑
k1,...,kn=0

n

∏
j=1

(Ik j
(2at)− Ik j+1(2at))

k1

∑
l1=−k1

· · ·
kn

∑
ln=−kn

cl1,...,ln

)

= e−2ant
∞

∑
k1,...,kn=0

n

∏
j=1

(Ik j
(2at)− Ik j+1(2at))

k1

∑
l1=−k1

· · ·
kn

∑
ln=−kn

cl1,...,ln ,

and the statement for x = 0 is proved.

We need two more auxiliary lemmas to be able to prove our main result.

Lemma 2.4. For every n ∈ N and t ≥ 0, we have

e−nt
∞

∑
k1,...,kn=0

n

∏
j=1

[(Ik j
(t)− Ik j+1(t))(2k j + 1)] = 1.

Proof. According to Proposition 2.3, the formula on the left-hand side corresponds to the
unique bounded solution of the initial-value problem (1.1)–(1.2) with a = 1/2 and cx = 1 for
all x ∈ Z. But this problem admits the constant solution u(x, t) = 1 for all x ∈ Z and t ≥ 0,
and therefore the equality is proved.
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Lemma 2.5. Let n, k0 ∈ N, l ∈ {1, . . . , n}. If i1, . . . , il , j1, . . . , jn−l ∈ N are distinct integers such

that {i1, . . . , il , j1, . . . , jn−l} = {1, . . . , n}, then

lim
t→∞

k0−1

∑
ki1

,...,kil
=0

∞

∑
k j1

,...,k jn−l
=k0

e−nt
n

∏
j=1

[(Ik j
(t)− Ik j+1(t))(2k j + 1)] = 0.

Proof. We have

0 ≤
k0−1

∑
ki1

,...,kil
=0

∞

∑
k j1

,...,k jn−l
=k0

e−nt
n

∏
j=1

[(Ik j
(t)− Ik j+1(t))(2k j + 1)]

≤
k0−1

∑
ki1

,...,kil
=0
e−lt ∏

m∈{i1,...,il}
[(Ikm

(t)− Ikm+1(t))(2km + 1)]
∞

∑
k j1

,...,k jn−l
=0
e−(n−l)t ∏

m∈{j1,...,jn−l}
[(Ikm

(t)− Ikm+1(t))(2km + 1)]

=
k0−1

∑
ki1

,...,kil
=0
e−lt ∏

m∈{i1,...,il}
[(Ikm

(t)− Ikm+1(t))(2km + 1)],

where the last equality follows from Lemma 2.4 (with n replaced by n − l). Because Ik(t) ∼
et√
2πt

for t → ∞ (see formula 10.30.4 in [10]), we get limt→∞ e−t Ik(t) = 0 for each k ∈ Z. Thus,

limt→∞ e−t(Ik(t)− Ik+1(t))(2k + 1) = 0 for each fixed k ∈ N0, which completes the proof.

Here is the main result dealing with the asymptotic behavior of solutions to the problem
(1.1)–(1.2).

Theorem 2.6. Let n ∈ N and {ck}k∈Zn be a bounded array of real numbers. Denote

Ak1,...,kn
(x) =

1
∏

n
j=1(2k j + 1)

x1+k1

∑
l1=x1−k1

· · ·
xn+kn

∑
ln=xn−kn

cl1,...,ln , x ∈ Z
n, k1, . . . , kn ∈ N0. (2.1)

Then the unique bounded solution of the problem (1.1)–(1.2) has the following properties:

1. For every x ∈ Z
n,

lim inf
k1,...,kn→∞

Ak1,...,kn
(x) ≤ lim inf

t→∞
u(x, t) ≤ lim sup

t→∞

u(x, t) ≤ lim sup
k1,...,kn→∞

Ak1,...,kn
(x).

2. If x ∈ Z
n and limk1,...,kn→∞ Ak1,...,kn

(x) = d, then limt→∞ u(x, t) = d.

3. If limk1,...,kn→∞ Ak1,...,kn
(x) = d uniformly for all x ∈ Z

n, then limt→∞ u(x, t) = d uniformly

with respect to x ∈ Z
n.

Proof. Fix an arbitrary x ∈ Z
n and denote

A = lim inf
k1,...,kn→∞

Ak1,...,kn
(x), A = lim sup

k1,...,kn→∞

Ak1,...,kn
(x).

Using Proposition 2.3, we get

u(x, t) = e−2ant
∞

∑
k1,...,kn=0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)]Ak1,...,kn

(x). (2.2)
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Let M > 0 be such that |cl | ≤ M for all l ∈ Z
n. Then |Ak1,...,kn

(x)| ≤ M for all k1, . . . , kn ∈ N0.
Given an ε > 0, there exists a k0 ∈ N such that for all k1, . . . , kn ≥ k0, we have A − ε <

Ak1,...,kn
(x) < A + ε.

From Lemma 2.4, we know that for each t ≥ 0,

1 = e−2ant
∞

∑
k1,...,kn=0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)].

We split the sum in two parts, one containing all terms with k1, . . . , kn ≥ k0, and the second
one containing all remaining terms, i.e., those where l ∈ {1, . . . , n} indices, say ki1 , . . . , kil

, are
smaller than k0:

1 = e−2ant
∞

∑
k1,...,kn=k0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)]

+e−2ant
n

∑
l=1

∑
i1,...,il ,j1,...,jn−l∈{1,...,n}

{i1,...,il ,j1,...,jn−l}={1,...,n}

k0−1

∑
ki1

,...,kil
=0

∞

∑
k j1

,...,k jn−l
=k0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)].

By Lemma 2.5, the second term tends to zero as t → ∞. Thus, there exists a t0 ≥ 0 such that
for all t ≥ t0, we have

0 < e−2ant
n

∑
l=1

∑
i1,...,il ,j1,...,jn−l∈{1,...,n}

{i1,...,il ,j1,...,jn−l}={1,...,n}

k0−1

∑
ki1

,...,kil
=0

∞

∑
k j1

,...,k jn−l
=k0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)] < ε,

1 − ε < e−2ant
∞

∑
k1,...,kn=k0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)] < 1.

We now use these estimates together with |Ak1,...,kn
(x)| ≤ M and (2.2) to obtain

u(x, t) = e−2ant
∞

∑
k1,...,kn=k0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)]Ak1,...,kn

(x)

+e−2ant
n

∑
l=1

∑
i1,...,il ,j1,...,jn−l∈{1,...,n}

{i1,...,il ,j1,...,jn−l}={1,...,n}

k0−1

∑
ki1

,...,kil
=0

∞

∑
k j1

,...,k jn−l
=k0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)]Ak1,...,kn

(x)

< (A + ε)e−2ant
∞

∑
k1,...,kn=k0

n

∏
j=1

[(Ik j
(2at)− Ik j+1(2at))(2k j + 1)] + Mε.

If A + ε is nonnegative, the first term on the right-hand side is majorized by A + ε. Otherwise,
if A + ε is nonpositive, the term is majorized by (A + ε)(1 − ε) = A + ε − εA − ε2. In any case,
we get the estimate

u(x, t) < max(A + ε, A + ε − εA − ε
2) + εM = A + εM + ε + ε max(0,−A − ε), t ≥ t0.

This proves that lim supt→∞ u(x, t) ≤ A. Similarly, we have

u(x, t) > (A − ε)e−2ant
∞

∑
k1,...,kn=k0

n

∏
j=1

(Ik j
(2at)− Ik j+1(2at))(2k j + 1)− Mε.
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If A − ε is nonnegative, the first term on the right-hand side is minorized by (A − ε)(1 − ε) =

A − ε − εA + ε2. Otherwise, if A − ε is nonpositive, the term is minorized by A − ε. In any
case, we get the estimate

u(x, t) > −εM + min(A − ε − εA + ε
2, A − ε) = A − εM − ε + ε min(−A + ε, 0), t ≥ t0.

This proves that lim inft→∞ u(x, t) ≥ A.
The second statement of the theorem follows from the first one.
If limk1,...,kn→∞ Ak1,...,kn

(x) = d uniformly for all x ∈ Z, then the previous estimates are
independent of x, which proves the third statement.

The second part of Theorem 2.6 says that u(x, t) tends to the limit of averages of initial
conditions over hyperrectangles centered at x, provided that the limit exists. The next result
implies that in fact, one can consider hyperrectangles centered at an arbitrary point. The
reason is that if we take two sufficiently large hyperrectangles, then their intersection is large,
while their symmetric difference is small. We use the notation introduced in (2.1).

Proposition 2.7. Let n ∈ N and {ck}k∈Zn be a bounded array of real numbers. For every x ∈ Z
n, we

have limk1,...,kn→∞ Ak1,...,kn
(x) = limk1,...,kn→∞ Ak1,...,kn

(0) whenever at least one of the limits exists.

Proof. For each k = (k1, . . . , kn) ∈ (N0)n, let

Sk = {x1 − k1, . . . , x1 + k1} × · · · × {xn − kn, . . . , xn + kn},

Rk = {−k1, . . . , k1} × · · · × {−kn, . . . , kn}.

We need to show that

lim
k1,...,kn→∞

1
∏

n
j=1(2k j + 1)

(

∑
(l1,...,ln)∈Sk

cl1,...,ln − ∑
(l1,...,ln)∈Rk

cl1,...,ln

)

= 0.

Let M > 0 be such that |cl | ≤ M for all l ∈ Z
n. Then

1
∏

n
j=1(2k j + 1)

∣

∣

∣

∣

∣

∑
(l1,...,ln)∈Sk

cl1,...,ln − ∑
(l1,...,ln)∈Rk

cl1,...,ln

∣

∣

∣

∣

∣

≤ M · |Rk∆Sk|
∏

n
j=1(2k j + 1)

,

where Rk∆Sk = (Rk \ Sk) ∪ (Sk \ Rk) is the symmetric difference of the two hyperrectangles.
Since both have the same dimensions, it follows from symmetry that |Rk∆Sk| = 2|Rk \ Sk| =
2(|Rk| − |Rk ∩ Sk|). The intersection Rk ∩ Sk is again a hyperrectangle. For each j ∈ {1, . . . , n},
consider its orthogonal projection on the j-th coordinate axis. If xj ≥ 0 and k j is sufficiently
large, then the projection is {xj − k j, . . . , k j}. If xj ≤ 0 and k j is sufficiently large, then the
projection is {−k j, . . . , xj + k j}. In both cases, the projection contains 2k j + 1 − |xj| points.
Thus, for sufficiently large k1, . . . , kn ∈ N, we have |Rk ∩ Sk| = ∏

n
j=1(2k j + 1 − |xj|), and

|Rk∆Sk|
∏

n
j=1(2k j + 1)

= 2
∏

n
j=1(2k j + 1)− ∏

n
j=1(2k j + 1 − |xj|)

∏
n
j=1(2k j + 1)

.

In the numerator of the last fraction, note that ∏
n
j=1(2k j + 1 − |xj|) equals ∏

n
j=1(2k j + 1) plus

2n − 1 additional terms, each of which is a constant multiple of at most n − 1 terms of the
form 2k j + 1. Hence, the whole fraction tends to zero when k1, . . . , kn → ∞, and the proof is
complete.
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Proposition 2.8. If {cl}l∈Zn is an array of real numbers such that

lim
max(|l1|,...,|ln|)→∞

cl1,...,ln = d ∈ R,

then the unique bounded solution of the problem (1.1)–(1.2) satisfies limt→∞ u(x, t) = d uniformly

with respect to x. In particular, if {cl}l∈Zn ∈ ℓp(Zn) for a certain p ∈ [1, ∞), then limt→∞ u(x, t) = 0
uniformly with respect to x.

Proof. It follows from the assumption that there is an M ≥ 0 such that |cl | ≤ M for all l ∈ Z
n.

Given an ε > 0, there exists a k0 ∈ N such if max(|l1|, . . . , |ln|) > k0, then |cl1,...,ln − d| < ε.
For each x ∈ Z

n and all k1, . . . , kn ∈ N0, consider the average Ak1,...,kn
(x) given by (2.1). In

the n-fold sum, there are at most (2k0 + 1)n terms with max(|l1|, . . . , |ln|) ≤ k0; their values lie
between −M and M. The values of the remaining ∏

n
j=1(2k j + 1)− (2k0 + 1)n terms lie between

d − ε and d + ε. Thus, if at least one of k1, . . . , kn is sufficiently large, then Ak1,...,kn
(x) will lie

between d − 2ε and d + 2ε. This shows that limk1,...,kn→∞ Ak1,...,kn
(x) = d. The convergence is

uniform with respect to x, because the previous estimate does not depend on x. The third
part of Theorem 2.6 implies that limt→∞ u(x, t) = d uniformly with respect to x.
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Abstract. This paper is devoted to the study of the oscillatory behavior of half-linear
functional differential equations with deviating argument of the form

(

r(t)(y′(t))α
)′

= p(t)yα(τ(t)). (E)

We introduce new technique based on monotonic properties of nonoscillatory solutions
to offer new oscillatory criteria for (E). We will show that presented results essentially
improve existing ones even for linear differential equations.

Keywords: second order differential equations, delay, advanced, monotonic properties,
oscillation.

2020 Mathematics Subject Classification: 34K11, 34C10.

1 Introduction

We consider half-linear second order differential equations with deviating argument

(

r(t)(y′(t))α
)′
= p(t)yα(τ(t)). (E)

Throughout the paper it is assumed that

(H1) p, r ∈ C([t0, ∞)), p(t) > 0, r(t) > 0, α is the ratio of two positive odd integers,

(H2) τ(t) ∈ C1([t0, ∞)), τ′(t) ≥ 0, limt→∞ τ(t) = ∞.

By a solution of Eq. (E) we mean a function y(t) ∈ C1([Ty, ∞)), Ty ≥ t0, such that
r(t)(y′(t))α ∈ C1([Ty, ∞)) and y(t) satisfies Eq. (E) on [Ty, ∞). We consider only those so-
lutions y(t) of (E) which satisfy sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We assume that
(E) possesses such a solution. A solution of (E) is called oscillatory if it has arbitrarily large
zeros on [Ty, ∞) and otherwise it is called to be nonoscillatory. An equation itself is said to be
oscillatory if all its solutions are oscillatory.

BCorresponding author. Email: jozef.dzurina@tuke.sk
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Throughout the paper we consider (E) in canonical form, that is,

R(t) =
∫ t

t0

1
r1/α(s)

ds → ∞ as t → ∞.

The problem of establishing oscillatory criteria for various types of differential equations has
been a very active research area over the past decades (see [1–11]).

The half-linear ordinary differential equation
(

(y′(t))α
)′
= p(t)yα(t)

to which (E) reduces when τ(t) ≡ t and r(t) ≡ 1 is nonoscillatory in the sense that all of
its solutions are nonoscillatory; see Elbert [6]. However, the presence of deviating argument
τ(t) 6≡ t may generate oscillation of some or all of its solutions.

It is known that (E) may possess only two types of nonoscillatory solutions. So, if y(t) is a
nonoscillatory solution of (E) it is easy to see that y′(t) is eventually of constant sign, so that
either

y(t)y′(t) < 0 (1.1)

or
y(t)y′(t) > 0, (1.2)

eventually. Moreover, if y(t) is an eventually positive solution satisfying inequality (1.2), then
r(t)(y′(t))α

> k > 0, and an integration of y′(t) > k1/α

r1/α(t)
yields

y(t) ≥ k1/α
∫ t

t1

1
r1/α(s)

ds → ∞ as t → ∞.

Consequently, if (E) is in canonical form, then y(t) is bounded or unbounded according to
whether (1.1) or (1.2) holds. Effort of mathematicians was aimed to show that (E) admits no
bounded or unbounded nonoscillatory solutions in the case where τ(t) is retarded (τ(t) ≤ t)
or advanced argument (τ(t) ≥ t), respectively. To illustrate this we recall classical result of
Kusano and Lalli [10].

Theorem A. Suppose that

(i) τ(t) < t and

lim sup
t→∞

∫ t

τ(t)

(

1
r(u)

∫ t

s
p(s)ds

)1/α

du > 1.

Then (E) has no bounded nonoscillatory solutions.

(ii) If τ(t) > t and

lim sup
t→∞

∫ τ(t)

t

(

1
r(u)

∫ s

t
p(s)ds

)1/α

du > 1.

Then (E) has no unbounded nonoscillatory solutions.

In this paper we are interested in the situation when τ(t) is of mixed type which means
that its retarded part

Rτ = {t ∈ (t0, ∞) : τ(t) < t}

and its advanced part
Aτ = {t ∈ (t0, ∞) : τ(t) > t}
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are both unbounded subset of (t0, ∞). The presence of mixed argument may cause that (E)
has neither bounded nor unbounded nonoscillatory solutions which means oscillation of (E).
This fact has been observed by Kusano [9], who showed that the second order differential
equation

y′′(t) = p0y(t + sin t) (Ex)

is oscillatory provided that

p0 ≥
1

sin 1 − 0.5
≈ 2.9285. (1.3)

In this paper we present new technique for investigation of (E) with mixed argument and
the progress achieved will be demonstrated via equation (Ex) and its oscillatory criterion (1.3).

2 Main results

We are about to establish new criteria for (E) to do not possess neither bounded nor un-
bounded solutions. We start with some useful lemma concerning monotonic properties of
nonoscillatory solutions for studied equations.

Lemma 2.1. Let that there exist a sequence {tk} such that tk ∈ Rτ, tk → ∞ as k → ∞. Assume

that y(t) is a positive bounded solution of (E). If there exists some positive constant β such that for all

k ∈ {1, 2, . . . }
[

∫ t

τ(t)
p(s)ds

]1/α

≥ β on [τ(tk), tk], (2.1)

then y(τ(t))eβR(τ(t)) is decreasing on all [τ(tk), tk].

Proof. Assume that y(t) is a positive decreasing solution of (E) and t ∈ [τ(tk), tk]. An integra-
tion of (E) from τ(t) to t yields

r(t)
(

y′(t)
)α

− r(τ(t))
(

y′(τ(t))
)α

≥ yα(τ(t))
∫ t

τ(t)
p(s)ds ≥ βαyα(τ(t)).

That is
−r1/α(τ(t))y′(τ(t)) ≥ β y(τ(t)).

Therefore

[

y(τ(t))eβR(τ(t))
]′

=
eβR(τ(t))τ′(t)

r1/α(τ(t))

[

βy(τ(t)) + r1/α(τ(t))y′(τ(t))
]

≤ 0

and we conclude that function y(τ(t))eβR(τ(t)) is decreasing. The proof is complete.

Now we apply the above monotonicity to establish criterion for absence of decreasing
solutions.

Theorem 2.2. Let that there exist a sequence {tk} such that tk ∈ Rτ, tk → ∞ as k → ∞ and (2.1)
hold. If

lim sup
k→∞

eβR(τ(tk))
∫ tk

τ(tk)

1
r1/α(u)

[

∫ tk

u
p(s) e−αβR(τ(s)) ds

]1/α

du > 1, (2.2)

then (E) has no bounded nonoscillatory solutions.
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Proof. Assume on the contrary, that (E) possesses an eventually positive decreasing solution
y(t). We assume that u ∈ [τ(tk), tk] Integrating (E) from u to tk and using monotonic property
of eβR(τ(t))y(τ(t)), we obtain

−r(u)(y′(u))α ≥
∫ tk

u
p(s)yα(τ(s))eαβR(τ(s))e−αβR(τ(s)) ds

≥ yα(τ(tk))e
αβR(τ(tk))

∫ tk

u
p(s)e−αβR(τ(s)) ds.

Extracting the α root and integrating once more from τ(tk) to tk, we get

y(τ(tk)) ≥ eβR(τ(tk))y(τ(tk))
∫ tk

τ(tk)

1
r1/α(v)

[

∫ tk

v
p(s)e−αβR(τ(s)) ds

]1/α

dv

which contradicts to condition (2.2) and we conclude, that (E) does not possess decreasing
solutions.

Now we turn our attention to monotonic properties for possible unbounded solutions
of (E).

Lemma 2.3. Let that there exist a sequence {sk} such that sk ∈ Aτ, sk → ∞ as k → ∞. Assume that

y(t) is a positive unbounded solution of (E). If there exists some positive constant γ such that for all

k ∈ {1, 2, . . . }
[

∫ τ(t)

t
p(s)ds

]1/α

≥ γ on [sk, τ(sk)], (2.3)

then y(τ(t))e−γR(τ(t)) is increasing on all [sk, τ(sk)].

Proof. Assume that y(t) is a positive increasing solution of (E) and t ∈ [sk, τ(sk)]. An integra-
tion of (E) from t to τ(t) yields

r(τ(t))
(

y′(τ(t))
)α

≥ yα(τ(t))
∫ τ(t)

t
p(s)ds ≥ γαyα(τ(t)).

This means

r1/α(τ(t))y′(τ(t)) ≥ γ y(τ(t)).

it is easy to see that

[

y(τ(t))e−γR(τ(t))
]′

=
e−γR(τ(t))τ′(t)

r1/α(τ(t))

[

−γy(τ(t)) + r1/α(τ(t))y′(τ(t))
]

≥ 0

and we verified that function y(τ(t))e−γR(τ(t)) is increasing. The proof is complete.

Theorem 2.4. Let that there exist a sequence {sk} such that sk ∈ Aτ, sk → ∞ as k → ∞ and (2.3)
hold. If

lim sup
k→∞

e−γR(τ(sk))
∫ τ(sk)

sk

1
r1/α(u)

[

∫ u

sk

p(s) eαγR(τ(s)) ds

]1/α

du > 1, (2.4)

then (E) has no unbounded nonoscillatory solutions.
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Proof. Assume on the contrary, that (E) has an eventually positive increasing solution y(t). We
consider u ∈ [sk, τ(sk)]. Integrating (E) from sk to u and employing monotonic property of
e−γR(τ(t))y(τ(t)), one gets

r(u)(y′(u))α ≥
∫ u

sk

p(s)yα(τ(s))e−αγR(τ(s))eαγR(τ(s)) ds

≥ yα(τ(sk))e
−αγR(τ(sk))

∫ u

sk

p(s)eαγR(τ(s)) ds.

Simplifying and then integrating once more from sk to u we obtain

y(u) ≥ e−γR(τ(sk))y(τ(sk))
∫ u

sk

1
r1/α(v)

[

∫ v

sk

p(s)eαγR(τ(s)) ds

]1/α

dv.

Putting u = τ(sk), we have

y(τ(sk)) ≥ e−γR(τ(sk))y(τ(sk))
∫ τ(sk)

sk

1
r1/α(v)

[

∫ v

sk

p(s)eαγR(τ(s)) ds

]1/α

dv

which contradicts to condition (2.4) and we conclude, that (E) does not possess decreasing
solutions.

Picking up the previous results we can formulate the following oscillatory criterion.

Theorem 2.5. Assume that there exist two sequences {tk} and {sk} such that tk ∈ Rτ, sk ∈ Aτ

tk, sk → ∞ as k → ∞. Let β and γ be defined by (2.1) and (2.3), respectively. If (2.2) and (2.4) are

satisfied, then (E) is oscillatory.

3 Examples

Example 3.1. We consider the differential equation

y′′(t) = py(t + sin t), p > 0. (Ex)

We shall show that (Ex) is oscillatory provided that p ≥ p0 = 1.5955.
To verify that (Ex) has no bounded nonoscillatory solutions we set tk =

3
2 π + 2kπ. Then it

is easy to see that τ(tk) =
3
2 π − 1 + 2kπ. So condition (2.1) reduces to

−p sin(t) ≥ −p0 sin(t) ≥ β on [τ(tk), tk], k = 1, 2, . . .

Since −p0 sin(t) is increasing function on [τ(tk), tk] , we can choose

β = −p0 sin(τ(tk)) = p0 cos 1,

On the other hand, condition (2.2) for (Ex) takes the form

lim sup
k→∞

eβτ(tk)
∫ tk

τ(tk)

∫ tk

u
p0 e−βτ(s) ds du > 1. (3.1)

Changing order of integration in (3.1) we get simpler form

lim sup
k→∞

p0eβτ(tk)
∫ tk

τ(tk)
e−βτ(s)(s − τ(tk))ds > 1. (3.2)
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Setting the corresponding values into (3.2) one gets

p0eβτ(tk)
∫ tk

τ(tk)
e−βτ(s)(s − τ(tk))ds

= p0eβ( 3
2 π−1+2kπ)

∫ tk

τ(tk)
e−β(s+sin s)

(

s −

(

3
2

π − 1 + 2kπ

))

ds.

Substitution s −
( 3

2 π − 1 + 2kπ
)

= t yields

p0eβτ(tk)
∫ tk

τ(tk)
e−βτ(s)(s − τ(tk))ds = p0

∫ 1

0
te−β(t−cos(1−t)) dt

= 0.6268p0 = 1.000004 > 1,

where for evaluation of the above integral we employed Matlab. We have verified that (2.2)
holds true and by Theorem 2.2 (Ex) has no bounded solutions.

On the other hand, to ensure that (Ex) has no unbounded nonoscillatory solutions we
chose sk =

π
2 + 2kπ. Then τ(sk) =

π
2 + 1 + 2kπ. Now,condition (2.4) takes the form

p sin(t) ≥ p0 sin(t) ≥ γ on [sk, τ(sk)], k = 1, 2, . . .

Using the fact that p0 sin(t) is decreasing function on [sk, τ(sk)], we set

γ = p0 sin(τ(sk)) = p0 cos 1 = β,

Condition (2.4) reduces to

lim sup
k→∞

e−γτ(tk)
∫ τ(sk)

sk

∫ u

sk

p0 eγτ(s) ds du > 1

which is equivalent to

lim sup
k→∞

p0e−γτ(sk)
∫ τ(sk)

sk

eγτ(s)(τ(sk)− s)ds > 1,

which for parameters of (Ex) means

p0e−γτ(sk)
∫ τ(sk)

sk

eγτ(s)(τ(sk)− s)ds

= p0e−γ( π
2 +1+2kπ)

∫ τ(sk)

sk

eγ(s+sin s)
(π

2
+ 1 + 2kπ − s

)

ds.

Substitution π
2 + 1 + 2kπ − s = t provides

p0e−γτ(sk)
∫ τ(sk)

sk

eγτ(s)(τ(sk)− s)ds = p0

∫ 1

0
te−β(t−cos(1−t)) dt

= 0.6268p0 = 1.000004 > 1,

Consequently, condition (2.4) is satisfied and by Theorem 2.4 Eq. (Ex) has no unbounded
nonoscillatory solutions. By comparing with Kusano’s result mentioned in the motivation
part, our oscillatory constant is significantly better.
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4 Summary

In this paper we improved Kusano’s technique for investigation of differential equations with
mixed arguments. The progress achieved has been presented via Kusano’s differential equa-
tion.

As a matter of fact the results presented in this paper can be rewritten also for differential
equation of the form

(

r(t)|y′(t)|αsgn y′(t)
)′
= p(t)|y(τ(t))|αsgn y(τ(t)).

The details are left to the reader.
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[5] O. Došlý, P. Řehák, Half-linear differential equations, North-Holland Mathematics Studies,
Vol. 202, Elsevier Science B.V., Amsterdam, 2005. MR2158903 Zbl 1090.34001
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1 Introduction

In the article, we investigate the existence of positive solutions to the following three classes

of fourth-order boundary value problems (BVPs) with dependence on all derivatives in non-

linearities under the boundary conditions involving Stieltjes integrals

{
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u′(0) + α1[u] = 0, u′′(0) + α2[u] = 0, u(1) = α3[u], u′′′(1) = 0,
(1.1)

{
−u(4)(t) = f̃ (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = β1[u], u′(0) = β2[u], u′′(0) = β3[u], u′′′(1) = 0,
(1.2)

and {
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u(1) = η1[u], u′′(0) + η2[u] = 0, u′′(1) + η2[u] = 0,
(1.3)

where

αi[u] =
∫ 1

0
u(t)dAi(t) (i = 1, 2, 3), βi[u] =

∫ 1

0
u(t)dBi(t) (i = 1, 2, 3),

BCorresponding author. Email: gwzhang@mail.neu.edu.cn, gwzhangneum@sina.com
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ηi[u] =
∫ 1

0
u(t)dHi(t) (i = 1, 2)

are Stieltjes integrals with Ai, Bi, Hi of bounded variation.

The BVPs (1.1) and (1.2) share the common features that the derivatives of Green’s func-

tions, from first to third order in t, do not change sign, however the first-and third-order

derivatives of Green’s function for the BVP (1.3) are sign-changing. The existence of positive

solutions for the BVPs (1.1), (1.2) and (1.3) have been studied respectively in [9] and [5] with

f (t, u(t), u′′(t)). The BVP (1.3) with η1[u] = η2[u] = 0 is also considered by [16] in which the

fourth-order equation is transformed into a second-order problem by order reduction method.

The authors in [10] discuss the second-order BVP with non-local boundary conditions

{ −u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

au(0)− bu′(0) = α[u], cu(1) + du′(1) = β[u],
(1.4)

where a, b, c and d are nonnegative constants with ρ = ac + ad + bc > 0. It is supposed in

[10] that the nonlinear term has linear growth in both u and u′ and some conditions related to

the spectral radius of a related linear operator are used, moreover, the Nagumo condition is

applied in one of their results. The BVP (1.4) with a = d = 1, b = c = 0 is studied by Zhang et

al. [17], but the conditions of theorems in [10] can not contain the ones in [17], see [10, Remark

3.10, Remark 3.11].

Recently, Webb in [12] employs a Gronwall-type inequality proved in [13] to deal with a

second order equation with nonlinearity having quadratic dependence in derivative terms,

but no growth restriction in the function term. This new Gronwall inequality is used instead

of a Nagumo condition to get an a priori bound on the derivative term. The theory of fixed-

point index on suitable open sets is applied to obtain the existence of positive solutions to

second-order non-local problems.

Motivated by the works mentioned above, in the present paper we adopt the idea and the

techniques provided in [12] to consider the positive solutions of the fourth-order BVPs (1.1),

(1.2) and (1.3). The nonlinearities contain all terms of the derivatives, and there is quadratic

growth in u′′′ but no growth restriction in u, u′ and u′′. Li and Chen in [8] investigate the

nontrivial solutions to fourth-order BVP with quadratic growth subject to local boundary

conditions. In [9], the nonlinearity has linear growth in u and all derivatives with some

conditions related to the spectral radius of a related linear operator, the results are not valid for

the problems presented in this paper although the Nagumo condition also allows quadratic

growth (see Example 2.7 and Remark 2.8). Making use of several different methods, the

authors in [3, 5, 11] discuss the existence of positive solutions to some fourth-order BVPs,

however not all of the derivatives is included in the nonlinearities since some derivatives of

the Green’s functions are sign-changing. Some relevant works may refer to [1] for fourth-order

BVP with local boundary conditions via an application of contraction mapping theorem, [6]

for certain perturbed Hammerstein integral equations with first-order derivative dependence,

[7] for fourth-order BVP with local boundary conditions.

We recall the basic properties of fixed point index that we use.

Lemma 1.1 ([2, 4]). Let Ω be a bounded open set relative to a cone P in Banach space X with 0 ∈ Ω.

If A : Ω → P is a completely continuous operator, and Au 6= λu for u ∈ ∂PΩ, λ ≥ 1, then the fixed

point index i(A, Ω, P) = 1, where Ω and ∂PΩ are respectively the closure and boundary of Ω relative

to P.
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Lemma 1.2 ([2,4]). Let Ω be a bounded open set relative to a cone P in Banach space X. If A : Ω → P

is a completely continuous operator, and there exists v0 ∈ P \ {0} such that u − Au 6= σv0 for

u ∈ ∂PΩ and σ ≥ 0, then the fixed point index i(A, Ω, P) = 0.

2 Positive solutions to the BVP (1.1)

Let [α, β] ⊂ [0, 1], we write L
p
+[α, β] (1 ≤ p ≤ ∞) to denote functions that are non-negative al-

most everywhere (a.e.) and belong to Lp[α, β]. The proof of the following lemma is completely

similar to the method in [12].

Lemma 2.1. Suppose that there are a constant d0 > 0 and functions d1, d2 ∈ L1
+[α, β] such that

u ∈ L∞
+ [α, β] satisfies

u(t) ≤ d0 +
∫ β

t
d1(s)u(s)ds +

∫ β

t
d2(s)u

2(s)ds for a.e. t ∈ [α, β].

If there is a constant R > 0 such that
∫ β

α d2(s)u(s)ds ≤ R, then u(t) ≤ d0 exp(R) exp(D1(t)) for

a.e. t ∈ [α, β], where D1(t) :=
∫ β

t d1(s)ds.

Proof. Let v(t) := d0 +
∫ β

t d1(s)u(s)ds +
∫ β

t d2(s)u2(s)ds. Then v is absolutely continuous,

v(β) = d0, v(t) ≥ d0 > 0 for all t ∈ [α, β], and u(t) ≤ v(t) for a.e. t ∈ [α, β]. Moreover, we have

v′(t) = −d1(t)u(t)− d2(t)u
2(t) ≥ −d1(t)v(t)− d2(t)u(t)v(t) for a.e. t ∈ [α, β].

Then v′(t)/v(t) ≥ −d1(t)− d2(t)u(t) which can be integrated to give

ln

(
v(β)

v(t)

)
≥ −D1(t)−

∫ β

t
d2(s)u(s)ds,

hence u(t) ≤ v(t) ≤ d0 exp(R) exp(D1(t)) for a.e. t ∈ [α, β].

For BVP (1.1)

{
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u′(0) + α1[u] = 0, u′′(0) + α2[u] = 0, u(1) = α3[u], u′′′(1) = 0,

we make the following assumptions:

(C1) f : [0, 1]× [0, ∞)× (−∞, 0]3 → [0, ∞) is continuous;

(C2) Ai is of bounded variation, moreover

Ki(s) :=
∫ 1

0
G0(t, s)dAi(t) ≥ 0, ∀s ∈ [0, 1] (i = 1, 2, 3),

where

G0(t, s) =





1
2 s(1 − s) + 1

6 (s
3 − t3), 0 ≤ t ≤ s ≤ 1,

1
2 s(1 − s)− 1

2 ts(t − s), 0 ≤ s ≤ t ≤ 1;
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(C3) The 3 × 3 matrix [A] is positive whose (i, j)th entry is αi[γj], i.e., it has nonnegative

entries, where γ1(t) = 1 − t, γ2(t) = 1
2 (1 − t2) and γ3(t) = 1 are the solutions of

u(4) = 0 respectively subject to boundary conditions:

u′(0) + 1 = 0, u′′(0) = 0, u(1) = 0, u′′′(1) = 0;

u′(0) = 0, u′′(0) + 1 = 0, u(1) = 0, u′′′(1) = 0;

u′(0) = 0, u′′(0) = 0, u(1) = 1, u′′′(1) = 0.

Furthermore assume that its spectral radius r([A]) < 1.

Webb and Infante [14] in a general framework convert the BVP

{
u(4)(t) = f (t, u(t)), t ∈ [0, 1],

u′(0) + α1[u] = 0, u′′(0) + α2[u] = 0, u(1) = α3[u], u′′′(1) = 0
(2.1)

into the perturbed Hammerstein integral equation of the type

u(t) =
3

∑
i=1

γi(t)αi[u] +
∫ 1

0
G0(t, s) f (s, u(s))ds,

where G0(t, s) is the Green’s function associated with

{
u(4)(t) = f (t, u(t)), t ∈ [0, 1],

u′(0) = u′′(0) = u(1) = u′′′(1) = 0.

Immediately after this they prove that if (C1)–(C3) are satisfied, (2.1) is equivalent to

u(t) =
∫ 1

0
G1(t, s) f (s, u(s))ds,

where

G1(t, s) = 〈(I − [A])−1K(s), γ(t)〉+ G0(t, s) =
3

∑
i=1

κi(s)γi(t) + G0(t, s),

〈(I − [A])−1K(s), γ(t)〉 is the inner product in R
3, κi(s) is the ith component of (I−[A])−1K(s).

Similar to the method of Webb–Infante, we define the operator S as

(Su)(t) =
∫ 1

0
G1(t, s) f (s, u(s), u′(s), u′′(s), u′′′(s))ds.

Lemma 2.2. If (C2) and (C3) hold, then κi(s) ≥ 0 (i = 1, 2, 3) and for t, s ∈ [0, 1],

c0(t)Φ0(s) ≤ G1(t, s) ≤ Φ0(s), (2.2)

where

Φ0(s) =
3

∑
i=1

κi(s) +
1

2
s(1 − s) +

1

6
s3, c0(t) =

1

2
(1 − t2),

and

c1(t)Φ1(s) ≤ −∂G1(t, s)

∂t
≤ Φ1(s), c2(t)Φ2(s) ≤ −∂2G1(t, s)

∂t2
≤ Φ2(s), (2.3)

where
∂G1(t, s)

∂t
= −κ1(s)− tκ2(s)−

1

2

{
t2, 0 ≤ t ≤ s ≤ 1,

s(2t − s), 0 ≤ s ≤ t ≤ 1,
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∂2G1(t, s)

∂t2
= −κ2(s)−

{
t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1,

Φ1(s) =
2

∑
i=1

κi(s) +
1

2
s(2 − s), c1(t) = t2, Φ2(s) = κ2(s) + s, c2(t) = t.

Proof. κi(s) ≥ 0(i = 1, 2, 3) by hypotheses (C2) and (C3). For 0 ≤ s ≤ t ≤ 1, ∂
∂t G0(t, s) =

1
2 s(s − 2t) ≤ 0 which implies that

G0(t, s) ≤ G0(s, s) =
1

2
s(1 − s);

For 0 ≤ t < s ≤ 1, ∂
∂t G0(t, s) = − 1

2 t2 ≤ 0 which implies that

G0(t, s) ≤ G0(0, s) =
1

2
s(1 − s) +

1

6
s3.

Then G0(t, s) ≤ 1
2 s(1 − s) + 1

6 s3, ∀(t, s) ∈ [0, 1]× [0, 1].

Now we find the best function C0(t) such that G0(t, s) ≥ C0(t)
(

1
2 s(1 − s) + 1

6 s3
)

, ∀(t, s) ∈
[0, 1]× [0, 1].

For 0 ≤ s ≤ t ≤ 1, this is

1

2
s(1 − s)− 1

2
ts(t − s) ≥ C0(t)

(
1

2
s(1 − s) +

1

6
s3

)
,

thus

C0(t) ≤
3(1 − t)(1 + t − s)

3 − 3s + s2
.

Denote

g1(t, s) =
(1 − t)(1 + t − s)

3 − 3s + s2
,

from
∂

∂s
g1(t, s) =

(1 − t)(s2 − 2s(1 + t) + 3t)

(3 − 3s + s2)2
≥ 0

it follows that C0(t) ≤ 3g1(t, 0) = 1 − t2.

For 0 ≤ t < s ≤ 1, this is

1

2
s(1 − s) +

1

6
(s3 − t3) ≥ C0(t)

(
1

2
s(1 − s) +

1

6
s3

)
,

thus

C0(t) ≤
3s − 3s2 + s3 − t3

s(3 − 3s + s2)
.

Denote

g2(t, s) =
3s − 3s2 + s3 − t3

s(3 − 3s + s2)
,

from
∂

∂s
g2(t, s) =

3(1 − s)2t3

s2(3 − 3s + s2)2
≥ 0

it follows that C0(t) ≤ g2(t, t) = 3(1−t)
3−3t+t2 .
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Therefore

C0(t) = min

{
1 − t2,

3(1 − t)

3 − 3t + t2

}
= 1 − t2.

Since
1

2
(1 − t2)

3

∑
i=1

κi(s) ≤
3

∑
i=1

κi(s)γi(t) ≤
3

∑
i=1

κi(s),

1

2
(1 − t2)

(
1

2
s(1 − s) +

1

6
s3

)
≤ (1 − t2)

(
1

2
s(1 − s) +

1

6
s3

)
≤ G0(t, s) ≤ 1

2
s(1 − s) +

1

6
s3,

we know that (2.2) holds. As for (2.3), it comes directly from the inequalities

t2
2

∑
i=1

κi(s) ≤ t
2

∑
i=1

κi(s) ≤ −
3

∑
i=1

κi(s)γ
′
i(t) ≤

2

∑
i=1

κi(s),

1

2
t2s(2 − s) ≤ −∂G0(t, s)

∂t
≤ 1

2
s(2 − s),

tκ2(s) ≤ κ2(s) = −
3

∑
i=1

κi(s)γ
′′
i (t), ts ≤ −∂2G0(t, s)

∂t2
≤ s

for t, s ∈ [0, 1].

Let C3[0, 1] be the Banach space which consists of all third-order continuously differen-

tiable functions on [0, 1] with the norm ‖u‖C3 = max{‖u‖C, ‖u′‖C, ‖u′′‖C, ‖u′′′‖C}. In C3[0, 1]

we define the cone

K =
{

u ∈ C3[0, 1] : u(t) ≥ c0(t)‖u‖C, −u′(t) ≥ c1(t)‖u′‖C,

− u′′(t) ≥ c2(t)‖u′′‖C, ∀t ∈ [0, 1]; u′′′(1) = 0
}

. (2.4)

Lemma 2.3. If (C1)–(C3) hold, then S : K → K is completely continuous and the positive solutions

to BVP (1.1) are equivalent to the fixed points of S in K.

Proof. Because G1(t, s), and the first- and second-order derivatives are continuous, the third

order derivative is integrable in s, from Lemma 2.2 it is easy to prove that S : K → K is

continuous. Let F be a bounded set in K, then there exists M > 0 such that ‖u‖C3 ≤ M for all

u ∈ K. Denote

C = max
(t,x0,x1,x2,x3)∈[0,1]×[0,M]×[−M,0]3

f (t, x0, x1, x2, x3).

By (C1) and Lemma 2.2 we have that ∀u ∈ F and t ∈ [0, 1],

|(Su)(t)| ≤ C
∫ 1

0
Φ0(s)ds, |(Su)′(t)| ≤ C

∫ 1

0

∣∣∣∂G1(t, s)

∂t

∣∣∣ds ≤ C
∫ 1

0
Φ1(s)ds,

|(Su)′′(t)| ≤ C
∫ 1

0

∣∣∣∂
2G1(t, s)

∂t2

∣∣∣ds ≤ C
∫ 1

0
Φ2(s)ds, |(Su)′′′(t)| ≤ C

∫ 1

0

∣∣∣∂
3G1(t, s)

∂t3

∣∣∣ds ≤ C,

then S(F) is uniformly bounded in C3[0, 1]. Moreover ∀u ∈ F and t1, t2 ∈ [0, 1] with t1 < t2,

|(Su)(t1)− (Su)(t2)| ≤
∫ 1

0
|G1(t1, s)− G1(t2, s)| f (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0
|G1(t1, s)− G1(t2, s)|ds,
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|(Su)′(t1)− (Su)′(t2)| ≤
∫ 1

0

∣∣∣∣
∂G1

∂t
(t1, s)− ∂G1

∂t
(t2, s)

∣∣∣∣ f (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0

∣∣∣∣
∂G1

∂t
(t1, s)− ∂G1

∂t
(t2, s)

∣∣∣∣ ds,

|(Su)′′(t1)− (Su)′′(t2)| ≤
∫ 1

0

∣∣∣∣
∂2G1

∂t2
(t1, s)− ∂2G1

∂t2
(t2, s)

∣∣∣∣ f (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0

∣∣∣∣
∂2G1

∂t2
(t1, s)− ∂2G1

∂t2
(t2, s)

∣∣∣∣ ds,

|(Su)′′′(t1)− (Su)′′′(t2)|

=

∣∣∣∣
∫ 1

t1

f (s, u(s), u′(s), u′′(s), u′′′(s))ds −
∫ 1

t2

f (s, u(s), u′(s), u′′(s), u′′′(s))ds

∣∣∣∣ ≤ C(t2 − t1),

thus S(F) and S(i)(F) =: {v(i) : v(i)(t) = (Su)(i)(t), u ∈ F} (i = 1, 2, 3) are equicontinuous.

Therefore S : K → K is completely continuous by the Arzelà–Ascoli theorem. Similar to

[14], the positive solutions to BVP (1.1) are equivalent to the fixed points of S in K.

Lemma 2.4. Suppose that (C1)–(C3) hold, there exist constants p0 > 0, p3 ≥ 0 and functions p1, p2 ∈
L1
+[0, 1] such that for all (t, x0, x1, x2, x3) ∈ [0, 1]× [0, ∞)× (−∞, 0]3,

f (t, x0, x1, x2, x3) ≤ p0 + p1(t)g(x0, x1, x2) + p2(t)|x3|+ p3|x3|2, (2.5)

where g : [0, ∞)× (−∞, 0]2 → [0, ∞) is continuous, non-decreasing in the first variable, and non-

increasing in the second and third variables. Let λ ≥ 1, σ ≥ 0, r > 0, define Di :=
∫ 1

0 pi(s)ds (i =

1, 2) and

Q(r) := (p0 + g(r,−r,−r)D1) exp(D2) exp(p3r). (2.6)

If u ∈ K with ‖u‖C2 ≤ r such that λu(t) = (Su)(t) + σ, then ‖u′′′‖C ≤ Q(r).

Proof. Since u ∈ K and λu(t)=(Su)(t)+ σ, we have that λu(4)(t)= f (t, u(t), u′(t), u′′(t), u′′′(t))
and λu′′′(t) = −

∫ 1
t f (s, u(s), u′(s), u′′(s), u′′′(s))ds ≤ 0. From ‖u‖C2 ≤ r it follows that

|u′′′(t)| ≤ λ|u′′′(t)| =
∫ 1

t
f (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤
∫ 1

t

(
p0 + p1(s)g(u(s), u′(s), u′′(s)) + p2(s)|u′′′(s)|+ p3|u′′′(s)|2

)
ds

≤ (p0 + g(r,−r,−r)D1) +
∫ 1

t

(
p2(s)|u′′′(s)|+ p3|u′′′(s)|2

)
ds

and
∫ 1

0 p3|u′′′(s)|ds = −
∫ 1

0 p3u′′′(s)ds = p3(u′′(0)− u′′(1)) ≤ p3r. By Lemma 2.1, we deduce

that

|u′′′(t)| ≤ (p0 + g(r,−r,−r)D1) exp(D2) exp(p3r) = Q(r),

the proof is complete.

Let [a, b] be a subset of (0, 1) and denote

γ := min

{
min
t∈[a,b]

c0(t), min
t∈[a,b]

c1(t), min
t∈[a,b]

c2(t)

}
= min

{
1

2
(1 − b2), a2

}
,
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1

m
:= max

{∫ 1

0
Φ0(s)ds,

∫ 1

0
Φ1(s)ds,

∫ 1

0
Φ2(s)ds

}
,

1

M
:= min

{∫ b

a
Φ0(s)ds,

∫ b

a
Φ1(s)ds,

∫ b

a
Φ2(s)ds

}
,

where ci(t) and Φi(s)(i = 0, 1, 2) are provided in Lemma 2.2. Obviously, γ ∈ (0, 1/2) and

m < M.

Theorem 2.5. Suppose that (C1)-(C3) hold and f satisfies the growth assumption (2.5). The BVP

(1.1) has at least one positive solution u ∈ K if either of the following conditions (F1), (F2) holds,

where Q is given by (2.6).

(F1) There exist 0 < r1 < r2 with r1 < r2γ, such that

(F1a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r1]× [−r1, 0]2 × [−Q(r1), 0],

f (t, x0, x1, x2, x3) < mr1; (2.7)

(F1b) for (t, x0, x1, x2, x3) ∈ W1 := W1,0 ∪ W1,1 ∪ W1,2,

f (t, x0, x1, x2, x3) > Mr2, (2.8)

where

W1,0 = [a, b]× [r2γ, r2]× [−r2, 0]2 × [−Q(r2), 0],

W1,1 = [a, b]× [0, r2]× [−r2,−r2γ]× [−r2, 0]× [−Q(r2), 0],

W1,2 = [a, b]× [0, r2]× [−r2, 0]× [−r2,−r2γ]× [−Q(r2), 0].

(F2) There exist 0 < r1 < r2 with Mr1 < mr2, such that

(F2a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r2]× [−r2, 0]2 × [−Q(r2), 0],

f (t, x0, x1, x2, x3) < mr2; (2.9)

(F2b) for (t, x0, x1, x2, x3) ∈ W2 := W2,0 ∪ W2,1 ∪ W2,2,

f (t, x0, x1, x2, x3) > Mr1, (2.10)

where

W2,0 = [a, b]× [r1γ, r1]× [−r1, 0]2 × [−Q(r1), 0],

W2,1 = [a, b]× [0, r1]× [−r1,−r1γ]× [−r1, 0]× [−Q(r1), 0],

W2,2 = [a, b]× [0, r1]× [−r1, 0]× [−r1,−r1γ]× [−Q(r1), 0].

Proof. Suppose that (F1) holds. Define an open (relative to K) bounded set

Ur1
:=
{

u ∈ K : ‖u‖C2 < r1, ‖u′′′‖C < Q(r1) + 1
}

.

Then the boundary ∂KUr1
of Ur1

(relative to K) satisfies ∂KUr1
⊂ Ur1,0 ∪ Ur1,1 ∪ Ur1,2, where

Ur1,0 := {u ∈ K : ‖u‖C = r1, ‖u′‖C ≤ r1, ‖u′′‖C ≤ r1, ‖u′′′‖C ≤ Q(r1) + 1},
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Ur1,1 := {u ∈ K : ‖u‖C ≤ r1, ‖u′‖C = r1, ‖u′′‖C ≤ r1, ‖u′′′‖C ≤ Q(r1) + 1},

Ur1,2 := {u ∈ K : ‖u‖C ≤ r1, ‖u′‖C ≤ r1, ‖u′′‖C = r1, ‖u′′′‖C ≤ Q(r1) + 1}.

We will show that Su 6= λu for all u ∈ ∂KUr1
and all λ ≥ 1. If not, there exist u ∈ ∂KUr1

and

λ ≥ 1 such that λu(t) = (Su)(t). It is clear that ‖u′′′‖C ≤ Q(r1) by Lemma 2.4.

From Lemma 2.2 and (2.7) it follows that when u ∈ Ur1,0,

λu(t) =
∫ 1

0
G1(t, s) f (s, u(s), u′(s), u′′(s), u′′′(s))ds <

∫ 1

0
Φ0(s)mr1ds ≤ r1;

when u ∈ Ur1,1,

−λu′(t) = −
∫ 1

0

∂G1(t, s)

∂t
f (s, u(s), u′(s), u′′(s), u′′′(s))ds <

∫ 1

0
Φ1(s)mr1ds ≤ r1;

when u ∈ Ur1,2,

−λu′′(t) = −
∫ 1

0

∂2G1(t, s)

∂t2
f (s, u(s), u′(s), u′′(s), u′′′(s))ds <

∫ 1

0
Φ2(s)mr1ds ≤ r1.

Taking the maximum over [0, 1] we give a contradiction λr1 < r1.

By Lemma 1.1 the fixed point index i(S, Ur1
, K) = 1.

Define an open (relative to K) set

Vr2 :=

{
u ∈ K : min

t∈[a,b]
u(t) < r2γ, min

t∈[a,b]
(−u′(t))< r2γ, min

t∈[a,b]
(−u′′(t))< r2γ, ‖u′′′‖C < Q(r2) + 1

}
.

It is clear that Ur1
⊂ Vr2 by r1 < r2γ and Q(r1) < Q(r2). Since ‖u‖C2 ≤ r2 for u ∈ Vr2 by (2.4),

Vr2 is bounded. The boundary ∂KVr2 of Vr2 (relative to K) satisfies ∂KVr2 ⊂ Vr2,0 ∪ Vr2,1 ∪ Vr2,2,

where

Vr2,0 :=

{
u ∈ K : min

t∈[a,b]
u(t) = r2γ, min

t∈[a,b]
(−u′(t))≤ r2γ, min

t∈[a,b]
(−u′′(t))≤ r2γ, ‖u′′′‖C ≤ Q(r2) + 1

}
,

Vr2,1 :=

{
u ∈ K : min

t∈[a,b]
u(t)≤r2γ, min

t∈[a,b]
(−u′(t)) = r2γ, min

t∈[a,b]
(−u′′(t))≤ r2γ, ‖u′′′‖C ≤ Q(r2) + 1

}
,

Vr2,2 :=

{
u ∈ K : min

t∈[a,b]
u(t)≤r2γ, min

t∈[a,b]
(−u′(t))≤ r2γ, min

t∈[a,b]
(−u′′(t)) = r2γ, ‖u′′′‖C ≤ Q(r2) + 1

}
.

Let v0(t) ≡ 1 and note that v0 ∈ K. We claim that u 6= Su + σv0 for all u ∈ ∂KVr2 and all

σ ≥ 0. If the claim is false, there exist u ∈ ∂KVr2 and σ ≥ 0 such that u = Su + σv0. Thus

‖u′′′‖C ≤ Q(r2) for u ∈ Vr2 by Lemma 2.4. From Lemma 2.2 and (2.8) we have the following

contradictions. When u ∈ Vr2,0,

u(t) =
∫ 1

0
G1(t, s) f (s, u(s), u′(s), u′′(s), u′′′(s))ds + σ >

∫ b

a
c0(t)Φ0(s)Mr2ds + σ ≥ r2γ + σ,

taking the minimum for t ∈ [a, b] gives the contradiction r2γ > r2γ + σ. When u ∈ Vr2,1,

−u′(t) = −
∫ 1

0

∂G1(t, s)

∂t
f (s, u(s), u′(s), u′′(s), u′′′(s))ds >

∫ b

a
c1(t)Φ1(s)Mr2ds ≥ r2γ,
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taking the minimum for t ∈ [a, b] gives the contradiction r2γ > r2γ. When u ∈ Vr2,2,

−u′′(t) = −
∫ 1

0

∂2G1(t, s)

∂t2
f (s, u(s), u′(s), u′′(s), u′′′(s))ds >

∫ b

a
c2(t)Φ2(s)Mr2ds ≥ r2γ,

taking the minimum for t ∈ [a, b] also gives the contradiction r2γ > r2γ.

By Lemma 1.2 the fixed point index i(S, Vr2 , K) = 0.

From the additivity property of fixed point index we have i(S, Vr2\Ur1
, K) = −1. So there

is a fixed point of S in the set Vr2\Ur1
which is clearly nonzero and the positive solutions to

BVP (1.1) by Lemma 2.3.

Suppose that (F2) holds, notice that f is well defined since Mr1 < mr2. Define open

(relative to K) bounded sets Ur2 := {u ∈ K : ‖u‖C2 < r2, ‖u′′′‖C < Q(r2) + 1} and

Vr1
:=

{
u ∈ K : min

t∈[a,b]
u(t)< r1γ, min

t∈[a,b]
(−u′(t)) < r1γ, min

t∈[a,b]
(−u′′(t))< r1γ, ‖u′′′‖C < Q(r1) + 1

}
.

It is clear that Vr1
⊂ Ur2 . The rest of proof is similar to the above.

Example 2.6. Consider the following fourth-order boundary problems under mixed multi-

point and integral boundary conditions with sign-changing coefficients and kernel functions.





u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u′(0) + 1
4 u( 1

4 )− 1
12 u( 3

4 ) = 0, u′′(0) +
∫ 1

0 u(t) cos(πt)dt = 0,

u(1) = 1
2 u( 1

2 )− 1
4 u( 3

4 ), u′′′(1) = 0,

(2.11)

thus α1[u] =
1
4 u( 1

4 )− 1
12 u( 3

4 ), α2[u] =
∫ 1

0 u(t) cos(πt)dt, α3[u] =
1
2 u( 1

2 )− 1
4 u( 3

4 ). Then

0 ≤ K1(s) =
1
4 G0

(
1
4 , s
)
− 1

12 G0

(
3
4 , s
)

=





− 1
12 s2 + 19

192 s, 0 ≤ s ≤ 1
4 ,

1
24 s3 − 11

96 s2 + 41
384 s − 1

1536 , 1
4 < s ≤ 3

4 ,

1
36 s3 − 1

12 s2 + 1
12 s + 1

192 , 3
4 < s ≤ 1,

K2(s) =
∫ 1

0
G0(t, s) cos(πt)dt =

2s − s2

2π2
+

cos πs

π4
− 1

π4
≥ 0 (0 ≤ s ≤ 1),

0 ≤ K3(s) =
1
2 G0

(
1
2 , s
)
− 1

4 G0

(
3
4 , s
)

=





− 3
32 s2 + 17

128 s, 0 ≤ s ≤ 1
2 ,

1
12 s3 − 7

32 s2 + 25
128 s − 1

96 , 1
2 < s ≤ 3

4 ,

1
24 s3 − 1

8 s2 + 1
8 s + 11

1536 , 3
4 < s ≤ 1,

the 3 × 3 matrix

[A] =




α1[γ1] α1[γ2] α1[γ3]

α2[γ1] α2[γ2] α2[γ3]

α3[γ1] α3[γ2] α3[γ3]


 =




1
6

19
192

1
6

2
π2

1
π2 0

3
16

17
128

1
4
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and its spectral radius r([A]) ≈ 0.4479 < 1 (Some values here and later are calculated using

the mathematical software Mathematica). Therefore, (C2) and (C3) are satisfied. We choose

[a, b] = [1/4, 3/4] and note that γ = 1/16,

κ1(s) =





−74+2π4(37−30s)s+23π2s2+74 cos(πs)
4π2(−151+114π2)

, 0 ≤ s ≤ 1
4 ,

−592+π2(3−36s+328s2−192s3)+π4(−3+628s−624s2+192s3)+592 cos(πs)
32π2(−151+114π2)

, 1
4 < s ≤ 1

2 ,

−1776+π2(41−300s+1368s2−832s3)+π4(−41+2076s−2256s2+832s3)+1776 cos(πs)
96π2(−151+114π2)

, 1
2 < s ≤ 3

4 ,

−888+π2(−47+120s+324s2−256s3)+π4(47+768s−768s2+256s3)+888 cos(πs)
48π2(−151+114π2)

, 3
4 < s ≤ 1,

κ2(s) =





−114+π2(151−87s)s+114 cos(πs)
π2(−151+114π2)

, 0 ≤ s ≤ 1
4 ,

−1824+π2(−3+2452s−1536s2+192s3)+1824 cos(πs)
16π2(−151+114π2)

, 1
4 < s ≤ 1

2 ,

−5472+π2(−41+7548s−4992s2+832s3)+5472 cos(πs)
48π2(−151+114π2)

, 1
2 < s ≤ 3

4 ,

−2736+π2(47+3504s−2136s2+256s3)+2736 cos(πs)
24π2(−151+114π2)

, 3
4 < s ≤ 1,

κ3(s) =



−794+157π2s2−2π4s(−397+288s)+794 cos(πs)
32π2(−151+114π2)

, 0 ≤ s ≤ 1
4 ,

−12704+4π4(−3+3212s−2448s2+192s3)+π2(−5+60s+2272s2+320s3)+12704 cos(πs)
512π2(−151+114π2)

, 1
4 < s ≤ 1

2 ,

−38112+π2(3153−18828s+44832s2−24384s3)+4π4(−649+13476s−15024s2+5696s3)+38112 cos(πs)
1536π2(−151+114π2)

, 1
2 < s ≤ 3

4 ,

−19056+π2(−1029+1008s+8520s2−6016s3)+256π4(4+69s−69s2+23s3)+19056 cos(πs)
768π2(−151+114π2)

, 3
4 < s ≤ 1,

and hence ∫ 1

0
Φ0(s)ds =

−483264 + 96736π2 + 79071π4

57984π2 − 43776π4
,

∫ 1

0
Φ1(s)ds =

50880 + 539π2 − 16421π4

3072π2(−151 + 114π2)
,

∫ 1

0
Φ2(s)ds =

21888 + 5371π2 − 10944π4

28992π2 − 21888π4)
,

1

m
= max

{∫ 1

0
Φ0(s)ds,

∫ 1

0
Φ1(s)ds,

∫ 1

0
Φ2(s)ds

}
=

21888 + 5371π2 − 10944π4

28992π2 − 21888π4)
,

∫ 3/4

1/4
Φ0(s)ds =

−483264 + 103739π2 + 89136π4

6144π2(−151 + 114π2)
,

∫ 3/4

1/4
Φ1(s)ds =

25440 + 262π2 − 9013π4

57984π2 − 43776π4
,

∫ 3/4

1/4
Φ2(s)ds =

10944 + 2225π2 − 5472π4

28992π2 − 21888π4)
,

1

M
= min

{∫ 3/4

1/4
Φ0(s)ds,

∫ 3/4

1/4
Φ1(s)ds,

∫ 3/4

1/4
Φ2(s)ds

}
=

−483264 + 103739π2 + 89136π4

6144π2(−151 + 114π2)
,

m ≈ 1.8624, M ≈ 6.4045.
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Let f (t, x0, x1, x2, x3) = d
(
xk0

0 + (−x1)
k1 + (−x2)

k2 + x2
3

)
for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, ∞)

× (−∞, 0]3, here ki > 1 (i = 0, 1, 2), and d > 0 is a constant which is determined by the next

step. Clearly (C1) holds. For a given r1 > 0, choosing d0 > 0 and d sufficiently small such that

d

(
rk0

1 + rk1
1 + rk2

1 +
((

d0 +
(

rk0
1 + rk1

1 + rk2
1

)
d
)

exp(dr1)
)2
)
< mr1,

we have that (2.5) and (2.7) are satisfied with g(x0, x1, x2) = xk0
0 + (−x1)

k1 + (−x2)
k2 . Choosing

r2 large enough such that r2 > r1/γ and rki−1
2 > Md−1γ−ki (i = 0, 1, 2), we have that for

(t, x0, x1, x2, x3) ∈ W1,i (see Theorem 2.5),

f (t, x0, x1, x2, x3) ≥ d (r2γ)ki
> Mr2 (i = 0, 1, 2),

i.e., (2.8) is satisfied. By Theorem 2.5 the BVP (2.11) has at least one positive solution. Of course

0 is also a solution of this problem. Especially, if r1 = 0.01, d0 = 0.01 and k0 = k1 = k2 = 2, we

may take d = 20.

Example 2.7. Consider BVP (2.11) with f (t, x0, x1, x2, x3) = d
(

xk0
0 + (−x1)

k1 + (−x2)
k2 + x2

3

)

for (t, x0, x1, x2, x3) ∈ [0, 1] × [0, ∞) × (−∞, 0]3, here ki ∈ (0, 1) (i = 0, 1, 2), and d > 0 is

a constant which is determined by the next step. Clearly (C1) holds. For a given r2 > 0,

choosing d0 > 0 and d sufficiently small such that

d

(
rk0

2 + rk1
2 + rk2

2 +
((

d0 +
(

rk0
2 + rk1

2 + rk2
2

)
d
)

exp(dr2)
)2
)
< mr2,

we have that (2.5) and (2.9) are satisfied with g(x0, x1, x2) = xk0
0 + (−x1)

k1 + (−x2)
k2 . Choosing

r1 small enough such that r1 < mr2M−1 and r1−ki
1 < dγki M−1 (i = 0, 1, 2), we have that for

(t, x0, x1, x2, x3) ∈ W2,i (see Theorem 2.5),

f (t, x0, x1, x2, x3) ≥ d (r1γ)ki
> Mr1 (i = 0, 1, 2),

i.e., (2.10) is satisfied. By Theorem 2.5 the BVP (2.11) has at least one positive solution. Of

course 0 is also a solution of this problem. Especially, if r2 = 1, d0 = 0.01 and k0 = k1 = k2 =

1/2, we may take d = 7/20.

Remark 2.8. For f as in Example 2.7, if x0 = x1 = x2 = 0, x3 → −∞,

f (t, x0, x1, x2, x3) ≤ a0x0 − a1x1 − a2x2 − a3x3 + C0

does not hold; if x0 → 0+, x1 = x2 = x3 = 0,

f (t, x0, x1, x2, x3) ≤ b0x0 − b1x1 − b2x2 − b3x3

does not hold, where ai, bi(i = 0, 1, 2, 3) and C0 are positive constants. Therefore, the con-

ditions in [9, Theorem 2.1, Theorem 2.2] are not satisfied and the results in [9] can not be

applied.
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3 Positive solutions to the BVP (1.2)

For BVP (1.2)

{
−u(4)(t) = f̃ (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = β1[u], u′(0) = β2[u], u′′(0) = β3[u], u′′′(1) = 0,

we make the following assumptions:

(C̃1) f̃ : [0, 1]× [0, ∞)4 → [0, ∞) is continuous;

(C̃2) Bi is of bounded variation, moreover

K̃i(s) :=
∫ 1

0
G̃0(t, s)dBi(t) ≥ 0, ∀s ∈ [0, 1] (i = 1, 2, 3),

where

G̃0(t, s) =





1
6 t3, 0 ≤ t ≤ s ≤ 1,

1
6 s(3t2 − 3ts + s2), 0 ≤ s ≤ t ≤ 1;

(C̃3) The 3 × 3 matrix [B] is positive whose (i, j)th entry is βi[δj], where δ1(t) = 1, δ2(t) = t

and δ3(t) =
1
2 t2 are the solutions of u(4) = 0 respectively subject to boundary conditions:

u′(0) = 1, u′′(0) = 0, u(1) = 0, u′′′(1) = 0;

u′(0) = 0, u′′(0) = 1, u(1) = 0, u′′′(1) = 0;

u′(0) = 0, u′′(0) = 0, u(1) = 1, u′′′(1) = 0.

Furthermore assume that its spectral radius r([B]) < 1.

Define the operator S̃ as

(S̃u)(t) =
∫ 1

0
G2(t, s) f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds,

where

G2(t, s) = 〈(I − [B])−1K̃(s), δ(t)〉+ G̃0(t, s) =
3

∑
i=1

κ̃i(s)δi(t) + G̃0(t, s),

〈(I − [B])−1K̃(s), δ(t)〉 is the inner product in R
3, κ̃i(s) is the ith component of (I − [B])−1K̃(s).

Lemma 3.1. If (C̃2) and (C̃3) hold, then κ̃i(s) ≥ 0 (i = 1, 2, 3) and, for t, s ∈ [0, 1],

c̃0(t)Φ̃0(s) ≤ G2(t, s) ≤ Φ̃0(s), (3.1)

where

Φ̃0(s) =
3

∑
i=1

κ̃i(s) +
1

6
s3 +

1

2
s(1 − s), c̃0(t) =

1

2
t3,

and

c̃1(t)Φ̃1(s) ≤
∂G2(t, s)

∂t
≤ Φ̃1(s), c̃2(t)Φ̃2(s) ≤

∂2G2(t, s)

∂t2
≤ Φ̃2(s), (3.2)
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where
∂G2(t, s)

∂t
= κ̃2(s) + tκ̃3(s) +

1

2

{
t2, 0 ≤ t ≤ s ≤ 1,

s(2t − s), 0 ≤ s ≤ t ≤ 1,

∂2G2(t, s)

∂t2
= κ̃3(s) +

{
t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1,

Φ̃1(s) =
3

∑
i=2

κ̃i(s) +
1

2
s(2 − s), c̃1(t) = t2, Φ̃2(s) = κ̃3(s) + s, c̃2(t) = t.

Proof. κ̃i(s) ≥ 0 (i = 1, 2, 3) by hypotheses (C̃2) and (C̃3). For 0 ≤ s ≤ t ≤ 1, ∂
∂t G̃0(t, s) =

1
2 s(2t − s) ≥ 0 which implies that

G̃0(t, s) ≤ G̃0(1, s) =
1

6
s3 +

1

2
s(1 − s);

For 0 ≤ t < s ≤ 1, ∂
∂t G̃0(t, s) = 1

2 t2 ≥ 0 which implies that

G̃0(t, s) ≤ G̃0(s, s) =
1

6
s3.

Then G̃0(t, s) ≤ 1
6 s3 + 1

2 s(1 − s), ∀(t, s) ∈ [0, 1]× [0, 1].

Now we find the best function C̃0(t) such that G̃0(t, s) ≥ C̃0(t)
(

1
6 s3 + 1

2 s(1 − s)
)

, ∀(t, s) ∈
[0, 1]× [0, 1].

For 0 ≤ s ≤ t ≤ 1, this is

1

6
s(3t2 − 3ts + s2) ≥ C̃0(t)

(
1

6
s3 +

1

2
s(1 − s)

)
,

thus

C̃0(t) ≤
3t2 − 3ts + s2

3 − 3s + s2
.

Denote

g̃1(t, s) =
3t2 − 3ts + s2

3 − 3s + s2
,

from
∂

∂s
g̃1(t, s) =

3(t − 1)(s2 − 2s(1 + t) + 3t)

(3 − 3s + s2)2
≤ 0

it follows that C̃0(t) ≤ g̃1(t, t) = t2

3−3t+t2 .

For 0 ≤ t < s ≤ 1, this is

1

6
t3 ≥ C̃0(t)

(
1

6
s3 +

1

2
s(1 − s)

)
,

thus

C̃0(t) ≤
t3

s(3 − 3s + s2)
.

Denote

g̃2(t, s) =
1

s(3 − 3s + s2)
,

from
∂

∂s
g̃2(t, s) = − 3(1 − s)2

s2(3 − 3s + s2)2
≤ 0
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it follows that C̃0(t) ≤ t3 g̃2(t, 1) = t3.

Therefore

C̃0(t) = min

{
t2

3 − 3t + t2
, t3

}
= t3.

Since
1

2
t3

3

∑
i=1

κ̃i(s) ≤
1

2
t2

3

∑
i=1

κ̃i(s) ≤
3

∑
i=1

κ̃i(s)δi(t) ≤
3

∑
i=1

κ̃i(s),

1

2
t3

(
1

6
s3 +

1

2
s(1 − s)

)
≤ t3

(
1

6
s3 +

1

2
s(1 − s)

)
≤ G̃0(t, s) ≤ 1

6
s3 +

1

2
s(1 − s),

we know that (3.1) holds. As for (3.2), it comes directly from the inequalities

t2
3

∑
i=2

κ̃i(s) ≤ t
3

∑
i=2

κ̃i(s) ≤
3

∑
i=1

κ̃i(s)δ
′
i(t) ≤

3

∑
i=2

κ̃i(s),

1

2
t2s(2 − s) ≤ ∂G̃0(t, s)

∂t
≤ 1

2
s(2 − s),

tκ̃3(s) ≤ κ̃3(s) =
3

∑
i=1

κ̃i(s)δ
′′
i (t), ts ≤ ∂2G̃0(t, s)

∂t2
≤ s

for t, s ∈ [0, 1].

In C3[0, 1] we define the cone

K̃ =
{

u ∈ C3[0, 1] : u(t) ≥ c̃0(t)‖u‖C, u′(t) ≥ c̃1(t)‖u′‖C,

u′′(t) ≥ c̃2(t)‖u′′‖C, ∀t ∈ [0, 1]; u′′′(1) = 0
}

. (3.3)

Lemma 3.2. If (C̃1)–(C̃3) hold, then S̃ : K̃ → K̃ is completely continuous and the positive solutions

to BVP (1.2) are equivalent to the fixed points of S̃ in K̃.

Proof. Because G2(t, s), and the first- and second-order derivatives are continuous, the third-

order derivative is integrable in s, from Lemma 3.1 it is easy to prove that S̃ : K̃ → K̃ is

continuous. Let F be a bounded set in K̃, then there exists M > 0 such that ‖u‖C3 ≤ M for all

u ∈ K̃. Denote

C = max
(t,x0,x1,x2,x3)∈[0,1]×[0,M]4

f̃ (t, x0, x1, x2, x3).

By (C̃1) and Lemma 3.1 we have that ∀u ∈ F and t ∈ [0, 1],

|(S̃u)(t)| ≤ C
∫ 1

0
Φ̃0(s)ds, |(S̃u)′(t)| ≤ C

∫ 1

0

∣∣∣∂G2(t, s)

∂t

∣∣∣ds ≤ C
∫ 1

0
Φ̃1(s)ds,

|(S̃u)′′(t)| ≤ C
∫ 1

0

∣∣∣∂
2G2(t, s)

∂t2

∣∣∣ds ≤ C
∫ 1

0
Φ̃2(s)ds, |(S̃u)′′′(t)| ≤ C

∫ 1

0

∣∣∣∂
3G2(t, s)

∂t3

∣∣∣ds ≤ C,

then S̃(F) is uniformly bounded in C3[0, 1]. Moreover ∀u ∈ F and t1, t2 ∈ [0, 1] with t1 < t2,

|(S̃u)(t1)− (S̃u)(t2)| ≤
∫ 1

0
|G2(t1, s)− G2(t2, s)| f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0
|G2(t1, s)− G2(t2, s)|ds,
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|(S̃u)′(t1)− (S̃u)′(t2)| ≤
∫ 1

0

∣∣∣∣
∂G2

∂t
(t1, s)− ∂G2

∂t
(t2, s)

∣∣∣∣ f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0

∣∣∣∣
∂G2

∂t
(t1, s)− ∂G2

∂t
(t2, s)

∣∣∣∣ ds,

|(S̃u)′′(t1)− (S̃u)′′(t2)| ≤
∫ 1

0

∣∣∣∣
∂2G2

∂t2
(t1, s)− ∂2G2

∂t2
(t2, s)

∣∣∣∣ f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0

∣∣∣∣
∂2G2

∂t2
(t1, s)− ∂2G2

∂t2
(t2, s)

∣∣∣∣ ds,

|(S̃u)′′′(t1)− (Su)′′′(t2)|

=

∣∣∣∣
∫ 1

t1

f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds −
∫ 1

t2

f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds

∣∣∣∣ ≤ C(t2 − t1),

thus S̃(F) and S̃(i)(F) =: {v(i) : v(i)(t) = (S̃u)(i)(t), u ∈ F} (i = 1, 2, 3) are equicontinuous.

Therefore S̃ : K̃ → K̃ is completely continuous by the Arzelà–Ascoli theorem. Similar to

[14], the positive solutions to BVP (1.2) are equivalent to the fixed points of S̃ in K̃.

Lemma 3.3. Suppose that (C̃1)–(C̃3) hold, there exist constants p̃0 > 0, p̃3 ≥ 0 and functions p̃1, p̃2 ∈
L1
+[0, 1] such that for all (t, x0, x1, x2, x3) ∈ [0, 1]× [0, ∞)4,

f̃ (t, x0, x1, x2, x3) ≤ p̃0 + p̃1(t)g̃(x0, x1, x2) + p̃2(t)x3 + p̃3x2
3, (3.4)

where g̃ : [0, ∞)3 → [0, ∞) is continuous, non-decreasing in every variable. Let λ ≥ 1, σ ≥ 0, r > 0,

define D̃i :=
∫ 1

0 p̃i(s)ds (i = 1, 2) and

Q̃(r) := ( p̃0 + g̃(r, r, r)D̃1) exp(D̃2) exp( p̃3r). (3.5)

If u ∈ K̃ with ‖u‖C2 ≤ r such that λu(t) = (S̃u)(t) + σ, then ‖u′′′‖C ≤ Q̃(r).

Let [a, b] be a subset of (0, 1) and denote

γ̃ := min

{
min
t∈[a,b]

c̃0(t), min
t∈[a,b]

c̃1(t), min
t∈[a,b]

c̃2(t)

}
=

1

2
a3,

1

m̃
:= max

{∫ 1

0
Φ̃0(s)ds,

∫ 1

0
Φ̃1(s)ds,

∫ 1

0
Φ̃2(s)ds

}
,

1

M̃
:= min

{∫ b

a
Φ̃0(s)ds,

∫ b

a
Φ̃1(s)ds,

∫ b

a
Φ̃2(s)ds

}
,

where c̃i(t) and Φ̃i(s)(i = 0, 1, 2) are provided in Lemma 3.1. Obviously, γ̃ ∈ (0, 1/2) and

m̃ < M̃.

Similar to the proof of Theorem 2.5, we have the next theorem.

Theorem 3.4. Suppose that (C̃1)-(C̃3) hold and f̃ satisfies the growth assumption (3.4). The BVP

(1.2) has at least one positive solution u ∈ K̃ either of the following conditions (F̃1), (F̃2) holds, where

Q̃ is given by (3.5).

(F̃1) There exist 0 < r1 < r2 with r1 < r2γ̃, such that
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(F̃1a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r1]
3 × [0, Q̃(r1)],

f̃ (t, x0, x1, x2, x3) < m̃r1; (3.6)

(F̃1b) for (t, x0, x1, x2, x3) ∈ W̃1 := W̃1,0 ∪ W̃1,1 ∪ W̃1,2,

f̃ (t, x0, x1, x2, x3) > M̃r2, (3.7)

where

W̃1,0 = [a, b]× [r2γ̃, r2]× [0, r2]
2 × [0, Q̃(r2)],

W̃1,1 = [a, b]× [0, r2]× [r2γ̃, r2]× [0, r2]× [0, Q̃(r2)],

W̃1,2 = [a, b]× [0, r2]
2 × [r2γ̃, r2]× [0, Q̃(r2)].

(F̃2) There exist 0 < r1 < r2 with M̃r1 < m̃r2, such that

(F̃2a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r2]3 × [0, Q̃(r2)],

f̃ (t, x0, x1, x2, x3) < m̃r2; (3.8)

(F̃2b) for (t, x0, x1, x2, x3) ∈ W̃2 := W̃2,0 ∪ W̃2,1 ∪ W̃2,2,

f̃ (t, x0, x1, x2, x3) > M̃r1, (3.9)

where

W̃2,0 = [a, b]× [r1γ̃, r1]× [0, r1]
2 × [0, Q̃(r1)],

W̃2,1 = [a, b]× [0, r1]× [r1γ̃, r1]× [0, r1]× [0, Q̃(r1)],

W̃2,2 = [a, b]× [0, r1]
2 × [r1γ̃, r1]× [0, Q̃(r1)].

Example 3.5. Consider





−u(4)(t) = f̃ (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = 1
2 u( 1

4 )− 1
160 u( 3

4 ), u′(0) =
∫ 1

0

(
t − 1

8

)
u(t)dt,

u′′(0) = 1
2 u( 1

2 )− 1
14 u( 3

4 ), u′′′(1) = 0,

(3.10)

thus β1[u] =
1
2 u( 1

4 )− 1
160 u( 3

4 ), β2[u] =
∫ 1

0

(
t − 1

8

)
u(t)dt, β3[u] =

1
2 u( 1

2 )− 1
14 u( 3

4 ). Then

0 ≤ K̃1(s) =
1
2 G̃0

(
1
4 , s
)
− 1

160 G̃0

(
3
4 , s
)

=





79
960 s3 − 77

1280 s2 + 71
5120 s, 0 ≤ s ≤ 1

4 ,

1
768 − 9

5120 s + 3
1280 s2 − 1

960 s3, 1
4 < s ≤ 3

4 ,

53
61440 , 3

4 < s ≤ 1,

K̃2(s) =
1

6

∫ s

0

(
t − 1

8

)
t3dt +

1

6

∫ 1

s

(
t − 1

8

)
s(3t2 − 3ts + s2)dt

=
1

960
s
(
100 − 130s + 60s2 + 5s3 − 8s4

)
≥ 0 (0 ≤ s ≤ 1),
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0 ≤ K̃3(s) =
1
2 G̃0

(
1
2 , s
)
− 1

14 G̃0

(
3
4 , s
)

=





1
14 s3 − 11

112 s2 + 19
448 s, 0 ≤ s ≤ 1

2 ,

1
96 − 9

448 s + 3
112 s2 − 1

84 s3, 1
2 < s ≤ 3

4 ,

29
5376 , 3

4 < s ≤ 1,

the 3 × 3 matrix

[B] =




β1[δ1] β1[δ2] β1[δ3]

β2[δ1] β2[δ2] β2[δ3]

β3[δ1] β3[δ2] β3[δ3]


 =




79
160

77
640

71
5120

3
8

13
48

5
48

3
7

11
56

19
448




and its spectral radius r([B]) ≈ 0.6600 < 1. Therefore, (C̃2) and (C̃3) hold. We choose

[a, b] = [1/4, 3/4] and note that γ̃ = 1/128,

κ̃1(s) =





s(176400−459360s+504520s2+4785s3−7656s4)
2252880 , 0 ≤ s ≤ 1

4 ,

6875+93900s−129360s2+64520s3+4785s4−7656s5

2252880 , 1
4 < s ≤ 1

2 ,

17425+165750s−214620s2+99640s3+9570s4−15312s5

4505760 , 1
2 < s ≤ 3

4 ,

22025+3828s(100−130s+60s2+5s3−8s4)
9011520 , 3

4 < s ≤ 1,

κ̃2(s) =





s(3986640−6524820s+4630400s2+171615s3−274584s4)
19900440 , 0 ≤ s ≤ 1

4 ,

36175+3552540s−4788420s2+2315200s3+171615s4−274584s5

19900440 , 1
4 < s ≤ 1

2 ,

155405+6606750s−8580180s2+3965960s3+343230s4−549168s5

39800880 , 1
2 < s ≤ 3

4 ,

181885+137292s(100−130s+60s2+5s3−8s4)
79601760 , 3

4 < s ≤ 1,

κ̃3(s) =





s(299565−649440s+553600s2+6765s3−10824s4)
2487555 , 0 ≤ s ≤ 1

4 ,

4325+247665s−441840s2+276800s3+6765s4−10824s5

2487555 , 1
4 < s ≤ 1

2 ,

66715+146940s−186900s2+89080s3+13530s4−21648s5

4975110 , 1
2 < s ≤ 3

4 ,

17900+1353s(100−130s+60s2+5s3−8s4)
2487555 , 3

4 < s ≤ 1,

and hence

∫ 1

0
Φ̃0(s)ds =

1481629721

7641768960
,

∫ 1

0
Φ̃1(s)ds =

3339971

8547840
,

∫ 1

0
Φ̃2(s)ds =

41265293

79601760
,

1

m̃
= max

{∫ 1

0
Φ̃0(s)ds,

∫ 1

0
Φ̃1(s)ds,

∫ 1

0
Φ̃2(s)ds

}
=

41265293

79601760
,

∫ 3/4

1/4
Φ̃0(s)ds =

6666545149

61134151680
,

∫ 3/4

1/4
Φ̃1(s)ds =

14676709

68382720
,

∫ 3/4

1/4
Φ̃2(s)ds =

331536539

1273628160
,

1

M̃
= min

{∫ 3/4

1/4
Φ̃0(s)ds,

∫ 3/4

1/4
Φ̃1(s)ds,

∫ 3/4

1/4
Φ̃2(s)ds

}
=

331536539

1273628160
,

m̃ ≈ 1.9290, M̃ ≈ 9.1703.
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Let f̃ (t, x0, x1, x2, x3) = d̃
(

xk0
0 + xk1

1 + xk2
2 + x2

3

)
, (t, x0, x1, x2, x3) ∈ [0, 1] × [0, ∞)4, here

ki > 1 (i = 0, 1, 2), and d̃ > 0 is a constant which is determined by the next step. Clearly (C̃1)

holds. For a given r1 > 0, choosing d̃0 > 0 and d̃ sufficiently small such that

d̃

(
rk0

1 + rk1
1 + rk2

1 +
((

d̃0 +
(

rk0
1 + rk1

1 + rk2
1

)
d̃
)

exp
(

d̃r1

))2
)
< m̃r1,

we have that (3.4) and (3.6) are satisfied with g̃(x0, x1, x2) = xk0
0 + xk1

1 + xk2
2 . Choosing r2

large enough such that r2 > r1/γ̃ and rki−1
2 > M̃d̃−1γ̃−ki (i = 0, 1, 2), we have that for

(t, x0, x1, x2, x3) ∈ W̃1,i (see Theorem 3.4),

f (t, x0, x1, x2, x3) ≥ d̃ (r2γ̃)ki
> M̃r2 (i = 0, 1, 2),

i.e., (3.7) is satisfied. By Theorem 3.4 the BVP (3.10) has at least one positive solution. Of course

0 is also a solution of this problem. Especially, if r1 = 0.01, d̃0 = 0.01 and k0 = k1 = k2 = 2, we

may take d̃ = 23.

Example 3.6. Consider (3.10) with f̃ (t, x0, x1, x2, x3) = d̃
(

xk0
0 + xk1

1 + xk2
2 + x2

3

)
, (t, x0, x1, x2, x3) ∈

[0, 1]× [0, ∞)4, here ki ∈ (0, 1) (i = 0, 1, 2), and d̃ > 0 is a constant which is determined by

the next step. Clearly (C̃1) holds. For a given r2 > 0, choosing d̃0 > 0 and d̃ sufficiently small

such that

d̃

(
rk0

2 + rk1
2 + rk2

2 +
((

d̃0 +
(

rk0
2 + rk1

2 + rk2
2

)
d̃
)

exp
(

d̃r2

))2
)
< m̃r2,

we have that (3.4) and (3.8) are satisfied with g̃(x0, x1, x2) = xk0
0 + xk1

1 + xk2
2 . Choosing r1

small enough such that r1 < m̃r2M̃−1 and r1−ki
1 < d̃γ̃ki M̃−1 (i = 0, 1, 2), we have that for

(t, x0, x1, x2, x3) ∈ W̃2,i (see Theorem 3.4),

f (t, x0, x1, x2, x3) ≥ d̃ (r1γ̃)ki
> M̃r1 (i = 0, 1, 2),

i.e., (3.9) is satisfied. By Theorem 3.4 the BVP (3.10) has at least one positive solution. Of course

0 is also a solution of this problem. Especially, if r2 = 1, d̃0 = 0.01 and k0 = k1 = k2 = 1/2, we

may take d̃ = 7/20.

Remark 3.7. For f̃ as in Example 3.6, if x0 = x1 = x2 = 0, x3 → +∞,

f̃ (t, x0, x1, x2, x3) ≤ ã0x0 + ã1x1 + ã2x2 + ã3x3 + C̃0

does not hold; if x0 → 0+, x1 = x2 = x3 = 0,

f̃ (t, x0, x1, x2, x3) ≤ b̃0x0 + b̃1x1 + b̃2x2 + b̃3x3

does not hold, where ãi, b̃i(i = 0, 1, 2, 3) and C̃0 are positive constants. Therefore, the con-

ditions in [9, Theorem 3.1, Theorem 3.2] are not satisfied and the results in [9] can not be

applied.
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4 Positive Solutions to the BVP (1.3)

For BVP (1.3)

{
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u(1) = η1[u], u′′(0) + η2[u] = 0, u′′(1) + η2[u] = 0,

we make the following assumptions:

(C1) f : [0, 1]× [0, ∞)× (−∞, ∞)× (−∞, 0]× (−∞, ∞) → [0, ∞) is continuous;

(C2) Hi is of bounded variation, moreover

Ki(s) :=
∫ 1

0
G0(t, s)dHi(t) ≥ 0, ∀s ∈ [0, 1](i = 1, 2),

where

G0(t, s) =





1
6 t(1 − s)(2s − t2 − s2), 0 ≤ t ≤ s ≤ 1,

1
6 s(1 − t)(2t − s2 − t2), 0 ≤ s ≤ t ≤ 1;

(C3) The 2× 2 matrix [H] is positive whose (i, j)th entry is ηi[ξ j], where ξ1(t) = 1 and ξ2(t) =
1
2 t(1 − t) are the solutions of u(4) = 0 respectively subject to boundary conditions:

u(0) = u(1) = 1, u′′(0) = u′′(1) = 0;

u(0) = u(1) = 0, u′′(0) = u′′(1) = −1.

Furthermore assume that its spectral radius r([H]) < 1.

Define the operator S as

(Su)(t) =
∫ 1

0
G3(t, s) f (s, u(s), u′(s), u′′(s), u′′′(s))ds,

where

G3(t, s) = 〈(I − [H])−1K(s), ξ(t)〉+ G0(t, s) =
2

∑
i=1

κi(s)ξi(t) + G0(t, s),

〈(I−[H])−1K(s), ξ(t)〉 is the inner product in R
2, κi(s) is the ith component of (I−[H])−1K(s).

Lemma 4.1. If (C2) and (C3) hold, then κi(s) ≥ 0 (i = 1, 2),

G3(0, s) = G3(1, s) = κ1(s),
∂2G3(0, s)

∂t2
=

∂2G3(1, s)

∂t2
= −κ2(s)

and for t, s ∈ [0, 1],

c0(t)Φ0(s) ≤ G3(t, s) ≤ Φ0(s), (4.1)

where

Φ0(s) = κ1(s) +
1

8
κ2(s) + Φ̂0(s),

c0(t) =





3
√

3
2 t(1 − t2), 0 ≤ t ≤ 1

2 ,

3
√

3
2 t(1 − t)(2 − t), 1

2 < t ≤ 1,
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Φ̂0(s) =





√
3

27 s(1 − s2)3/2, 0 ≤ s ≤ 1
2 ,

√
3

27 (1 − s)s3/2(2 − s)3/2, 1
2 < s ≤ 1;

and

c1(t)Φ1(s) ≤ −∂2G3(t, s)

∂t2
≤ Φ1(s) (4.2)

where
∂2G3(t, s)

∂t2
= −κ2(s)−

{
t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1,

Φ1(s) = κ2(s) + s(1 − s), c1(t) = min{t, 1 − t}.

Proof. κi(s) ≥ 0 by hypotheses (C2) and (C3), and the following inequality is proved in [15]

c0(t)Φ̂0(s) ≤ G0(t, s) ≤ Φ̂0(s).

From

G3(t, s) =
2

∑
i=1

κi(s)ξi(t) + G0(t, s) ≤ κ1(s) +
1

8
κ2(s) + Φ̂0(s) = Φ0(s)

and

G3(t, s) = κ1(s) +
1

8
× 4t(1 − t)κ2(s) + G0(t, s)

≥ 4t(1 − t)

(
κ1(s) +

1

8
κ2(s)

)
+ c0(t)Φ̂0(s)

≥ 9
√

3

4
t(1 − t)

(
κ1(s) +

1

8
κ2(s)

)
+ c0(t)Φ̂0(s) ≥ c0(t)Φ0(s),

it follows that (4.1) hold. As for (4.2), it can be checked easily.

In C3[0, 1] we define the cone

K =
{

u ∈ C3[0, 1] : u(t) ≥ c0(t)‖u‖C, −u′′(t) ≥ c1(t)‖u′′‖C, ∀t ∈ [0, 1];

u(0) = u(1), u′′(0) = u′′(1)
}

. (4.3)

Lemma 4.2. If (C1)–(C3) hold, then S : K → K is completely continuous and the positive solutions

to BVP (1.3) are equivalent to the fixed points of S in K.

Lemma 4.3. Suppose that (C1)-(C3) hold, there exist constants p0 > 0, p3 ≥ 0 and functions p1, p2 ∈
L1
+[0, 1] such that for all (t, x0, x1, x2, x3) ∈ [0, 1]× [0, ∞)× (−∞, ∞)× (−∞, 0]× (−∞, ∞),

f (t, x0, x1, x2, x3) ≤ p0 + p1(t)g(x0, x1, x2) + p2(t)|x3|+ p3|x3|2, (4.4)

where g : [0, ∞)× (−∞, ∞)× (−∞, 0] → [0, ∞) is continuous, non-decreasing in the first variable,

even and non-decreasing in [0, ∞) in the second variable, non-increasing in the third variable. Let

λ ≥ 1, σ ≥ 0, r > 0, define Di :=
∫ 1

0 pi(s)ds (i = 1, 2) and

Q(r) := (p0 + g(r, r,−r)D1) exp(D2) exp(p3r). (4.5)

If u ∈ K with ‖u‖C2 ≤ r such that λu(t) = (Su)(t) + σ, then ‖u′′′‖C ≤ Q(r).
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Proof. Since u ∈ K, there exists t0 ∈ (0, 1) such that u′′′(t0) = 0. From λu(t) = (Su)(t) + σ,

we have that λu(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)) ≥ 0. Therefore, u′′′(t) ≤ 0 (t ∈ [0, t0]),

u′′′(t) ≥ 0 (t ∈ [t0, 1]) and

λu′′′(t) =
∫ t

t0

f (s, u(s), u′(s), u′′(s), u′′′(s))ds (t ∈ [0, 1]). (4.6)

If t ≤ t0, from ‖u‖C2 ≤ r and (4.6) it follows that

|u′′′(t)| ≤ λ|u′′′(t)| =
∣∣∣∣
∫ t

t0

f (s, u(s), u′(s), u′′(s), u′′′(s))ds

∣∣∣∣

≤
∫ t0

t

(
p0 + p1(s)g(u(s), u′(s), u′′(s)) + p2(s)|u′′′(s)|+ p3|u′′′(s)|2

)
ds

≤
(

p0 + g(r, r,−r)D1

)
+
∫ t0

t

(
p2(s)|u′′′(s)|+ p3|u′′′(s)|2

)
ds.

Since ∫ t0

0
p3|u′′′(s)|ds = −

∫ t0

0
p3u′′′(s)ds = p3(u

′′(0)− u′′(t0)) ≤ p3r,

by Lemma 2.1 we deduce that

|u′′′(t)| ≤ (p0 + g(r, r,−r)D1) exp(D2) exp(p3r) = Q(r), t ∈ [0, t0].

If t ≥ t0, we change the variable from s to σ = t0 + 1− s. Denote w(σ) = u(t0 + 1− σ) and

then w′(σ) = −u′(s), w′′(σ) = u′′(s), w′′′(σ) = −u′′′(s). Setting τ = t0 + 1 − t, from ‖u‖C2 ≤ r

and (4.6) we have that

|w′′′(τ)| = | − u′′′(t)| ≤ λ|u′′′(t)| =
∣∣∣∣
∫ t

t0

f (s, u(s), u′(s), u′′(s), u′′′(s))ds

∣∣∣∣

=

∣∣∣∣−
∫ τ

1
f (t0 + 1 − σ, w(σ),−w′(σ), w′′(σ),−w′′′(σ))dσ

∣∣∣∣

≤
∫ 1

τ

(
p0 + p1(t0 + 1 − σ)g(w(σ),−w′(σ), w′′(σ)) + p2(t0 + 1 − σ)|w′′′(σ)|+ p3|w′′′(σ)|2

)
dσ

≤
(

p0 + g(r, r,−r)D1

)
+
∫ 1

τ

(
p2(t0 + 1 − σ)|w′′′(σ)|+ p3|w′′′(σ)|2

)
dσ.

Since ∫ 1

t0

p3|w′′′(σ)|dσ = −
∫ 1

t0

p3u′′′(s)ds = p3(u
′′(t0)− u′′(1)) ≤ p3r,

by Lemma 2.1 we deduce that

|w′′′(τ)| ≤ (p0 + g(r, r,−r)D1) exp(D2) exp(p3r) = Q(r), τ ∈ [t0, 1],

i.e. |u′′′(t)| ≤ Q(r), t ∈ [t0, 1].

So the proof is complete.

Let [a, b] be a subset of (0, 1) and denote

γ := min

{
min
t∈[a,b]

c0(t), min
t∈[a,b]

c1(t)

}
= min

{
3
√

3

2
a(1 − a2),

3
√

3

2
b(1 − b)(2 − b), a, 1 − b

}
,

1

m
:= max

{∫ 1

0
Φ0(s)ds,

∫ 1

0
Φ1(s)ds

}
,

1

M
:= min

{∫ b

a
Φ0(s)ds,

∫ b

a
Φ1(s)ds

}
,

where ci(t) and Φi(s)(i = 0, 1) are provided in Lemma 4.1. Obviously, γ ∈ (0, 1/2) and

m < M.
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Theorem 4.4. Suppose that (C1)–(C3) hold and f satisfies the growth assumption (4.4). The BVP

(1.3) has at least one positive solution u ∈ K if either of the following conditions (F1), (F2) holds,

where Q is given by (4.5).

(F1) There exist 0 < r1 < r2 with r1 < r2γ, such that

(F1a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r1]× [−r1, r1]× [−r1, 0]× [−Q(r1), Q(r1)],

f (t, x0, x1, x2, x3) < mr1; (4.7)

(F1b) for (t, x0, x1, x2, x3) ∈ W1 := W1,0 ∪ W1,1,

f (t, x0, x1, x2, x3) > Mr2, (4.8)

where

W1,0 = [a, b]× [r2γ, r2]× [−r2, r2]× [−r2, 0]× [−Q(r2), Q(r2)],

W1,1 = [a, b]× [0, r2]× [−r2, r2]× [−r2,−r2γ]× [−Q(r2), Q(r2)].

(F2) There exist 0 < r1 < r2 with Mr1 < mr2, such that

(F2a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r2]× [−r2, r2]× [−r2, 0]× [−Q(r2), Q(r2)],

f (t, x0, x1, x2, x3) < mr2; (4.9)

(F2b) for (t, x0, x1, x2, x3) ∈ W2 := W2,0 ∪ W2,1,

f (t, x0, x1, x2, x3) > Mr1, (4.10)

where

W2,0 = [a, b]× [r1γ, r1]× [−r1, r1]× [−r1, 0]× [−Q(r1), Q(r1)],

W2,1 = [a, b]× [0, r1]× [−r1, r1]× [−r1,−r1γ]× [−Q(r1), Q(r1)].

Proof. Suppose that (F1) holds.

Define an open (relative to K) set

Ur1
:=
{

u ∈ K : ‖u‖C < r1, ‖u′′‖C < r1, ‖u′′′‖C < Q(r1) + 1
}

.

If u ∈ Ur1
, it follows from u(0) = u(1) that there is ζ ∈ (0, 1) such that u′(ζ) = 0, and |u′(t)| =∣∣ ∫ t

ζ u′′(s)ds
∣∣ ≤ ‖u′′‖C for all t ∈ [0, 1] which implies that ‖u′‖C < r1. Thus Ur1

is bounded.

Similar to the proof of Theorem 2.5, we have that the fixed point index i(S, Ur1
, K) = 1 by

Lemma 1.1.

Define an open (relative to K) set

Vr2 :=

{
u ∈ K : min

t∈[a,b]
u(t) < r2γ, min

t∈[a,b]
(−u′′(t)) < r2γ, ‖u′′′‖C < Q(r2) + 1

}
.

If u ∈ Vr2 , it follows from (4.3) that ‖u‖C < r2 and ‖u′′‖C < r2. Since u(0) = u(1), there is

τ ∈ (0, 1) such that u′(τ) = 0, and |u′(t)| =
∣∣ ∫ t

τ u′′(s)ds
∣∣ ≤ ‖u′′‖C for all t ∈ [0, 1] which

implies that ‖u′‖C < r2. Thus Vr2 is bounded. Again similar to the proof of Theorem 2.5, we

have that the fixed point index i(S, Vr2 , K) = 0 by Lemma 1.2.

It is obvious from r1 < r2γ that Ur1
⊂ Vr2 . So there is a fixed point of S in the set Vr2 \ Ur1

which is clearly nonzero and the positive solutions to BVP (1.3) by Lemma 4.2.

The other case is proved similarly.
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Example 4.5. Consider





u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u(1) = 1
2 u( 1

4 )− 1
8 u( 1

2 ),

u′′(0) +
∫ 1

0 u(t)(t − 1
4 )dt = 0, u′′(1) +

∫ 1
0 u(t)(t − 1

4 )dt = 0,

(4.11)

thus η1[u] =
1
2 u( 1

4 )− 1
8 u( 1

2 ), η2[u] =
∫ 1

0 u(t)(t − 1
4 )dt. Then

0 ≤ K1(s) =
1
2 G0

(
1
4 , s
)
− 1

8 G0

(
1
2 , s
)

=





− 5
96 s3 + 5

256 s, 0 ≤ s ≤ 1
4 ,

1
32 s3 − 1

16 s2 + 9
256 s − 1

768 , 1
4 < s ≤ 1

2 ,

1
96 s3 − 1

32 s2 + 5
256 s + 1

768 , 1
2 < s ≤ 1,

K2(s) =
∫ 1

0
G0(t, s)

(
t − 1

4

)
dt =

1

120
s5 − 1

96
s4 − 1

144
s3 +

13

1440
s ≥ 0 (0 ≤ s ≤ 1),

the 2 × 2 matrix

[H] =


 η1[ξ1] η1[ξ2]

η2[ξ1] η2[ξ2]


 =

(
3
8

1
32

1
4

1
48

)

and its spectral radius r([H]) = 19
48 < 1. Therefore, (C2) and (C3) hold. We choose [a, b] =

[1/4, 3/4] and note that γ = 1/128,

κ1(s) =





s(3577−9440s2−60s3+48s4)
111360 , 0 ≤ s ≤ 1

4 ,

−235+6397s−11280s2+5600s3−60s4+48s5

111360 , 1
4 < s ≤ 1

2 ,

235+3577s−5640s2+1840s3−60s4+48s5

111360 , 1
2 < s ≤ 1,

κ2(s) =





s(97−160s2−60s3+48s4)
5568 , 0 ≤ s ≤ 1

4 ,

−3+133s−144s2+32s3−60s4+48s5

5568 , 1
4 < s ≤ 1

2 ,

3+97s−72s2−16s3−60s4+48s5

5568 , 1
2 < s ≤ 1,

and hence ∫ 1

0
Φ0(s)ds = − 5051

712704
+

2

45
√

3
,

∫ 1

0
Φ1(s)ds =

15151

89088
,

1

m
= max

{∫ 1

0
Φ0(s)ds,

∫ 1

0
Φ1(s)ds

}
=

15151

89088
,

∫ 3/4

1/4
Φ0(s)ds = − 248861

28508160
+

5
√

5

512
,

∫ 3/4

1/4
Φ1(s)ds =

83365

712704
,

1

M
= min

{∫ 3/4

1/4
Φ0(s)ds,

∫ 3/4

1/4
Φ1(s)ds

}
= − 248861

28508160
+

5
√

5

512
,

m ≈ 5.8800, M ≈ 76.2943.

Let f (t, x0, x1, x2, x3) = d
(
xk0

0 + x4
1 + (−x2)

k1 + x2
3

)
, (t, x0, x1, x2, x3) ∈ [0, 1] × [0, ∞) ×

(−∞, ∞) × (−∞, 0] × (−∞, ∞), here ki > 1 (i = 0, 1), and d > 0 is a constant which is
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determined by the next step. Clearly (C1) holds. For a given r1 > 0, choosing d0 > 0 and d

sufficiently small such that

d

(
rk0

1 + r4
1 + rk1

1 +
((

d0 +
(

rk0
1 + r4

1 + rk1
1

)
d
)

exp(dr1)
)2
)
< mr1,

we have that (4.4) and (4.7) are satisfied with g(x0, x1, x2) = xk0
0 + x4

1 + (−x2)
k1 . Choosing

r2 large enough such that r2 > r1/γ and rki−1
2 > Md

−1
γ−ki (i = 0, 1), we have that for

(t, x0, x1, x2, x3) ∈ W1,i,

f (t, x0, x1, x2, x3) ≥ d (r2γ)ki
> Mr2,

i.e., (4.8) is satisfied. By Theorem 4.4 the BVP (4.11) has at least one positive solution. Of

course 0 is also a solution of this problem. Especially, if r1 = 0.01, d0 = 0.01 and k0 = k1 = 2,

we may take d = 48.

Example 4.6. Consider BVP (4.11) with f (t, x0, x1, x2, x3) = d
(
xk0

0 + x4
1 + (−x2)

k1 + x2
3

)
for

(t, x0, x1, x2, x3) ∈ [0, 1] × [0, ∞) × (−∞, ∞) × (−∞, 0] × (−∞, ∞), here ki ∈ (0, 1) (i = 0, 1),

and d > 0 is a constant which is determined by the next step. Clearly (C1) holds. For a given

r2 > 0, choosing d0 > 0 and d sufficiently small such that

d

(
rk0

2 + r4
2 + rk1

2 +
((

d0 +
(

rk0
2 + r4

2 + rk1
2

)
d
)

exp(dr2)
)2
)
< mr2,

we have that (4.4) and (4.9) are satisfied with g(x0, x1, x2) = xk0
0 + x4

1 + (−x2)
k1 . Choosing

r1 small enough such that r1 < mr2M
−1

and r1−ki
1 < dγki M

−1
(i = 0, 1), we have that for

(t, x0, x1, x2, x3) ∈ W2,i,

f (t, x0, x1, x2, x3) ≥ d (r1γ)ki
> Mr1 (i = 0, 1),

i.e., (4.10) is satisfied. By Theorem 4.4 the BVP (4.11) has at least one positive solution. Of

course 0 is also a solution of this problem. Especially, if r2 = 1, d0 = 0.01 and k0 = k1 = 1/2,

we may take d = 1/2
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Abstract. The main purpose of this paper is to establish a global smooth linearization
result for two classes of nonautonomous dynamics with discrete time. More precisely,
we consider a nonlinear and nonautonomous dynamics given by a two-sided sequence
of maps as well as variational systems whose linear part is contractive, and under
suitable assumptions we construct C1 conjugacies between the original dynamics and
its linear part. We stress that our dynamics acts on a arbitrary Banach space. Our
arguments rely on related results dealing with autonomous dynamics.

Keywords: nonautonomous contractions, linearization.
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1 Introduction

One of the basic strategies when analysing a complex nonlinear system near its equilibrium is

to linearize it, i.e. to study its linear part. Such a procedure is natural since linear systems are

much easier to study. However, this strategy is useful only if one knows that a system and the

associated linear part have similar behaviour near the equilibrium since only in that case we

can conclude something meaningful about the original system by studying its linearization.

Many works have been devoted to the problem of formulating conditions under which

the system and its linear part are Cr-conjugated (or equivalent). The first contributions deal

with complex dynamics. Indeed, Poincaré [23] proved that an analytic diffeomorphism can

be analytically conjugated to its linear part near a fixed point if all eigenvalues of the linear

part lie inside the unit circle S1 (or outside S1) and satisfy the nonresonant condition. Later,

Siegel [32], Brjuno [6] and Yoccoz [37] made contributions to the case of eigenvalues on S1, in

which the small divisor problem is involved.

In the context of real dynamics, the most important result is the famous Hartman–Grobman

Theorem [17], which asserts that a C1-diffeomorphism on Rn can be C0-linearized near the

hyperbolic fixed point. Later this result was generalized (with simplified proofs) to Banach

spaces independently by Palis [21] and Pugh [24].

BEmail: ddragicevic@math.uniri.hr
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It is well-known that in general the conjugacy in the Grobman–Hartman theorem is only

locally Hölder continuous and that it may fail to be locally Lipschitz even for C∞ dynamic

(see [3] and references therein). However, C0-linearization is often not sufficient since for

example it can fail to distinguish a node from a focus as pointed out by van Strien [35].

Sternberg [33, 34] proved that Ck (k ≥ 1) diffeomorphisms can be Cr linearized near the

hyperbolic fixed points, where the integer r > k depends on k and the nonresonant con-

ditions. Hence, in order to obtain Cr-linearization, we need to require that our dynamics

exhibits higher regularity. Later Belitskii [4, 5] gave conditions for Ck linearization of Ck,1

(k ≥ 1) diffeomorphisms under appropriate nonresonant conditions. His results was partially

generalized to infinite-dimensional setting in [16, 27, 40].

The C1 linearization in the case when the linear part is a contraction (its spectrum is

contained in the unit circle) was discussed in [15, 26, 27] in the infinite-dimensional setting

as well as in [38, 39] in the finite-dimensional setting. We in particularly mention the recent

paper by H. M. Rodrigues and J. Solà-Morales [29], in which the global C1-linearization result

for contractions on Banach spaces has been established.

We emphasize that all the above mentioned results deal with autonomous dynamics. The

first contributions dealing with the linearization of nonautonomous dynamics with continu-

ous time are due to Palmer [22] and to Aulbach and Wanner [2] for dynamics with discrete

time. For more recent results we refer to the works of Jiang [18] and Lopez-Fenner and

Pinto [19]. The first results related to Cr-linearization (r ≥ 1) in the framework of nonau-

tonomous dynamics were obtained only quite recently. More precisely, a Sternberg type

theorem for nonautonomous dynamics with continuous time was established in [10]. The

C1-linearization for nonautonomous dynamics with discrete time was discussed in [13] (see

also [14] for related results for continuous time). Moreover, results related to differentiable

linearization of nonautonomous contractions were obtained in interesting papers [7, 8].

The main purpose of this paper is to formulate new conditions for C1-linearization of

nonautonomous contractions on an arbitrary Banach space. Our strategy follows very closely

the arguments developed in [13] and consist of passing from nonautonomous to the associ-

ated autonomous dynamics acting on a larger space. Then, for the autonomous dynamics we

apply results from [29] and after that we return back to the framework of our original nonau-

tonomous dynamics. However, we emphasize that the results from [13] don’t imply the results

in the present paper. Indeed, the conditions for the linear part that ensure C1-linearization

are given in terms of the spectrum of the associated Mather operator which are difficult to

verify in practice, while in the present paper the conditions are given directly in terms of the

constants in the notion of an exponential contraction (we refer to Remark 2.15 for a detailed

explanation). Furthermore, our results differ from those in [7, 8]. Indeed, besides considering

discrete (and not continuous) dynamics on an arbitrary Banach space we also don’t require

the boundedness for the nonlinearities. Furthermore, we use completely different techniques

from those developed in [7, 8].

Following similar ideas (but with substantial changes), we also discuss C1-linearization

of variational contractive dynamical systems with discrete time. We refer to [9, 30, 31] and

references therein for a detailed explanation of the relevance of variational systems in the in-

vestigation of qualitative properties of nonautonomous dynamics (and to [1] for the exposition

of the theory of closely related random dynamical systems).

We note that the main results of the present paper can be viewed as a generalization of

Hartman’s work [17] to nonautonomous contractions acting on Banach spaces.
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2 Nonuniform exponential contractions

Throughout this paper, X = (X, ‖·‖) will be an arbitrary Banach space and B(X) will denote

the space of all bounded linear operators on X. For a sequence (An)n∈Z ⊂ B(X) of invertible

operators, we set

A(m, n) =















Am−1 · · · An for m > n;

Id for m = n;

A−1
m · · · A−1

n−1 for m < n.

Let us introduce a notion of a nonuniform exponential contraction.

Definition 2.1. We say that (An)n∈Z admits a nonuniform exponential contraction if there exist

0 < λ ≤ µ and a map D : Z → (0, ∞) such that

‖A(m, n)‖ ≤ D(n)e−λ(m−n), for m ≥ n, (2.1)

and

‖A(m, n)‖ ≤ D(n)eµ(n−m), for m ≤ n. (2.2)

The following example is taken from [11].

Example 2.2. Let X = R and consider a sequence (An)n∈Z given by

An = eω+ǫ[(−1)n− 1
2 ] n ∈ Z,

where ω < 0 and ǫ ≥ 0 are some fixed numbers. Then, (An)n∈Z admits a nonuniform

exponential contraction with D being a scalar multiple of the map n 7→ eǫ|n|.

Moreover, the notion of a nonuniform exponential contraction is ubiquitous from the er-

godic theory point of view (see Remark 3.13 for details).

A sequence (An)n∈Z gives rise to a linear nonautonomous dynamics given by

xn+1 = Anxn, n ∈ Z. (2.3)

Assume that ( fn)n∈Z is a sequence of (nonlinear) maps fn : X → X, n ∈ Z. We consider also

the associated nonautonomous dynamics

xn+1 = Anxn + fn(xn), n ∈ Z. (2.4)

The following is our first result. It gives conditions under which nonlinear dynamics (2.4)

can be C1-linearized. We stress that the proof of Theorem 2.3 will follow closely the proof

of [13, Theorem 2.], but we include all details for the sake of completeness.

Theorem 2.3. Assume that (An)n∈Z ⊂ B(X) is a sequence of invertible operators that admits a

nonuniform exponential contraction and assume that 0 < λ ≤ µ and D : Z → (0, ∞) are such

that (2.1) and (2.2) hold. Furthermore, suppose that

µ < 2λ. (2.5)

In addition, assume that:

• fn is differentiable for each n ∈ Z;
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• for every n ∈ Z,

fn(0) = 0 and D fn(0) = 0; (2.6)

• there exists γ > 0 such that

‖D fn(x)− D fn(y)‖ ≤
γ

D(n + 1)
‖x − y‖, for n ∈ Z and x, y ∈ X; (2.7)

• there exists η > 0 such that

‖D fn(x)‖ ≤
η

D(n + 1)
, for n ∈ Z and x ∈ X. (2.8)

Then, if η is sufficiently small, there exists a sequence (hn)n∈Z of C1 diffeomorphisms on X such that

hn+1 ◦ (An + fn) = An ◦ hn, for n ∈ Z. (2.9)

Proof. Choose ǫ > 0 such that

ǫ < λ and µ − 2λ + 3ǫ < 0. (2.10)

Observe that such ǫ can be chosen since (2.5) holds. For n ∈ Z and x ∈ X, we define

‖x‖n =
∞

∑
m=n

‖A(m, n)x‖e(λ−ǫ)(m−n) +
n−1

∑
m=−∞

‖A(m, n)x‖e−(µ+ǫ)(n−m).

Observe that ‖x‖ ≤ ‖x‖n. Moreover, (2.1) and (2.2) imply that

‖x‖n ≤ D(n)

(

∞

∑
m=n

e−ǫ(m−n) +
n−1

∑
m=−∞

e−ǫ(n−m)

)

‖x‖.

We conclude that

‖x‖ ≤ ‖x‖n ≤ cD(n)‖x‖ for x ∈ X and n ∈ Z, (2.11)

where

c =
1 + e−ǫ

1 − e−ǫ
> 0. (2.12)

Lemma 2.4. We have that

‖Anx‖n+1 ≤ e−(λ−ǫ)‖x‖n and ‖A−1
n x‖n ≤ eµ+ǫ‖x‖n+1,

for x ∈ X and n ∈ Z.

Proof of the lemma. We have that

‖Anx‖n+1 =
∞

∑
m=n+1

‖A(m, n + 1)Anx‖e(λ−ǫ)(m−n−1) +
n

∑
m=−∞

‖A(m, n + 1)Anx‖e−(µ+ǫ)(n+1−m)

=
∞

∑
m=n+1

‖A(m, n)x‖e(λ−ǫ)(m−n−1) +
n

∑
m=−∞

‖A(m, n)x‖e−(µ+ǫ)(n+1−m)

= e−(λ−ǫ)
∞

∑
m=n

‖A(m, n)x‖e(λ−ǫ)(m−n) − e−(λ−ǫ)‖x‖

+e−(µ+ǫ)‖x‖+ e−(µ+ǫ)
n−1

∑
m=−∞

‖A(m, n)x‖e−(µ+ǫ)(n−m)

= e−(λ−ǫ)‖x‖n + (e−(µ+ǫ) − e−(λ−ǫ)) ·

(

‖x‖+
n−1

∑
m=−∞

‖A(m, n)x‖e−(µ+ǫ)(n−m)

)

.
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Since λ − ǫ < µ + ǫ, we have that e−(µ+ǫ)
< e−(λ−ǫ) and thus we obtain the first inequality in

the statement of the lemma. Moreover, since

‖x‖+
n−1

∑
m=−∞

‖A(m, n)x‖e−(µ+ǫ)(n−m) ≤ ‖x‖n,

we have that

‖Anx‖n+1 ≥ e−(λ−ǫ)‖x‖n + (e−(µ+ǫ) − e−(λ−ǫ))‖x‖n = e−(µ+ǫ)‖x‖n,

which readily implies the second inequality in the statement of the lemma.

Set

Y∞ :=

{

x = (xn)n∈Z ⊂ X : ‖x‖∞ := sup
n∈Z

‖xn‖n < ∞

}

.

Then, it is easy to verify that (Y∞, ‖·‖∞) is a Banach space. We define a linear operator

A : Y∞ → Y∞ by

(Ax)n = An−1xn−1, for n ∈ Z and x = (xn)n∈Z ∈ Y∞.

Lemma 2.5. A is a bounded operator and

‖A
m‖ ≤ e−(λ−ǫ)m, for m ∈ N.

In particular, we have that r(A) < 1, where r(A) denotes the spectral radius of A.

Proof of the lemma. It follows from Lemma 2.4 that

‖A
mx‖∞ = sup

n∈Z

‖(Amx)n‖n = sup
n∈Z

‖A(n, n − m)xn−m‖n

≤ e−(λ−ǫ)m sup
n∈Z

‖xn−m‖n−m

= e−(λ−ǫ)m‖x‖∞,

for x = (xn)n∈Z ∈ Y∞, which yields the desired conclusion.

Lemma 2.6. A is invertible and ‖A−1‖ ≤ eµ+ǫ.

Proof of the lemma. It is easy to verify that A is invertible and that its inverse is given by

(A−1x)n = A−1
n xn+1, for n ∈ Z and x = (xn)n∈Z ∈ Y∞.

Moreover, it follows from Lemma 2.5 that

‖A
−1x‖∞ = sup

n∈Z

‖(A−1x)n‖n = sup
n∈Z

‖A−1
n xn+1‖n

≤ eµ+ǫ sup
n∈Z

‖xn‖n

= eµ+ǫ‖x‖∞,

for each x = (xn)n∈Z ∈ Y∞, which yields the desired result.

Lemma 2.7. We have that

‖A‖2 · ‖A
−1‖ < 1.
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Proof of the lemma. Observe that it follows from Lemmas 2.5 and 2.6 that

‖A‖2 · ‖A
−1‖ ≤ e−2(λ−ǫ) · eµ+ǫ.

Hence, the conclusion of the lemma follows from the second inequality in (2.10).

We now define F : Y∞ → Y∞ by

(F(x))n = fn−1(xn−1), for n ∈ Z and x = (xn)n∈Z ∈ Y∞.

Lemma 2.8. F is well-defined.

Proof of the lemma. Observe that (2.6) and (2.7) imply that

‖ fn(x)‖ ≤
γ

D(n + 1)
‖x‖2, for n ∈ Z and x ∈ X. (2.13)

By (2.11) and (2.13), we have that

‖(F(x))n‖n = ‖ fn−1(xn−1)‖n ≤ cD(n)‖ fn−1(xn−1)‖

≤ cD(n)
γ

D(n)
‖xn−1‖

2

≤ cγ‖xn−1‖
2
n−1,

for n ∈ Z and therefore

‖F(x)‖∞ ≤ cγ‖x‖2
∞,

for x = (xn)n∈Z ∈ Y∞. We conclude that F is well-defined.

Lemma 2.9. F is differentiable and

(DF(x)y)n = D fn−1(xn−1)yn−1,

for n ∈ Z, x = (xn)n∈Z, y = (yn)n∈Z ∈ Y∞.

Proof of the lemma. Let us fix x = (xn)n∈Z ∈ Y∞. We define an operator L : Y∞ → Y∞ by

(Ly)n = D fn−1(xn−1)yn−1, for n ∈ Z and y = (yn)n∈Z ∈ Y∞.

Observe that (2.8) and (2.11) imply that

‖(Ly)n‖n = ‖D fn−1(xn−1)yn−1‖n ≤ cD(n)‖D fn−1(xn−1)yn−1‖

≤ cD(n)
η

D(n)
‖yn−1‖

≤ cη‖yn−1‖n−1,

for n ∈ Z and y = (yn)n∈Z ∈ Y∞. Hence,

‖Ly‖∞ ≤ cη‖y‖∞,

and we conclude that L is a bounded linear operator. Furthermore, for each h = (hn)n∈Z ∈ Y∞,

we have that

(F(x + h)− F(x)− Lh)n = fn−1(xn−1 + hn−1)− fn−1(xn−1)− D fn−1(xn−1)hn−1

=
∫ 1

0
D fn−1(xn−1 + thn−1)hn−1 dt − D fn−1(xn−1)hn−1

=
∫ 1

0

(

D fn−1(xn−1 + thn−1)hn−1 − D fn−1(xn−1)hn−1

)

dt.
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Then, (2.7) and (2.11) imply that

‖(F(x + h)− F(x)− Lh)n‖n ≤
∫ 1

0
‖D fn−1(xn−1 + thn−1)hn−1 − D fn−1(xn−1)hn−1‖n dt

≤ cD(n)
∫ 1

0
‖D fn−1(xn−1 + thn−1)hn−1 − D fn−1(xn−1)hn−1‖ dt

≤ cγ‖hn−1‖
2 ≤ cγ‖hn−1‖

2
n−1,

for n ∈ Z and h = (hn)n∈Z ∈ Y∞, and consequently

‖F(x + h)− F(x)− Lh‖∞ ≤ cγ‖h‖2
∞.

We conclude that

lim
h→0

‖F(x + h)− F(x)− Lh‖∞

‖h‖∞

= 0,

which implies the desired conclusion.

Lemma 2.10. We have that DF is uniformly continuous. Moreover,

sup
x∈Y∞\{0}

‖DF(x)‖

‖x‖∞

< ∞.

Proof of the lemma. For xi = (xi
n)n∈Z, i = 1, 2 and y = (yn)n∈Z ∈ Y∞, it follows from (2.7), (2.11)

and Lemma 2.9 that

‖(DF(x1)y)n − (DF(x2)y)n‖n = ‖D fn−1(x1
n−1)yn−1 − D fn−1(x2

n−1)yn−1‖n

≤ cD(n)‖D fn−1(x1
n−1)yn−1 − D fn−1(x2

n−1)yn−1‖

≤ cγ‖x1
n−1 − x2

n−1‖ · ‖yn−1‖

≤ cγ‖x1
n−1 − x2

n−1‖n−1 · ‖yn−1‖n−1,

for each n ∈ Z. Thus,

‖DF(x1)− DF(x2)‖∞ ≤ cγ‖x1 − x2‖∞,

which implies that DF is uniformly continuous.

In addition, by (2.6), (2.7) and (2.11) we have that

‖(DF(x)y)n‖n = ‖D fn−1(xn−1)yn−1‖n

≤ cD(n)‖D fn−1(xn−1)yn−1‖

≤ cγ‖xn−1‖ · ‖yn−1‖

≤ cγ‖xn−1‖n−1 · ‖yn−1‖n−1,

for n ∈ Z and thus

‖DF(x)‖ ≤ cγ‖x‖∞.

Consequently,

sup
x∈Y∞\{0}

‖DF(x)‖

‖x‖∞

≤ cγ < ∞.

The proof of the lemma is completed.
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Lemma 2.11. We have that

sup
x∈Y∞

‖DF(x)‖ ≤ cη.

Proof of the lemma. By (2.8), (2.11) and Lemma 2.9, we have that

‖(DF(x)y)n‖n = ‖D fn−1(xn−1)yn−1‖n ≤ cη‖yn−1‖n−1,

for n ∈ Z, x = (xn)n∈Z and y = (yn)n∈Z ∈ Y∞. Hence,

sup
x∈Y∞

‖DF(x)‖ ≤ cη.

It follows from Lemmas 2.5, 2.7, 2.10, 2.11 and [29, Theorem 3] that for η is sufficiently

small, there exists a C1-diffeomorphism H : Y∞ → Y∞ such that

H ◦ (A + F) = A ◦ H.

For n ∈ Z and v ∈ X, we define

hn(v) = (H(vn))n,

where vn = (vn
m)m∈Z ∈ Y∞ is given by

vn
m =

{

v if m = n;

0 of m 6= n.

Proceeding as in the proof of [13, Theorem 2.], one can conclude that hn is a C1-diffeomorphism

for each n ∈ Z and that (2.9) holds.

Remark 2.12. Note that (2.9) implies the following: if (xn)n∈Z solves (2.3), then (yn)n∈Z given

by yn = h−1
n (xn), n ∈ Z solves (2.4). Hence, the condition (2.9) can be interpreted as a

linearization of the nonlinear dynamics (2.4).

Let us now give an interpretation of Theorem 2.3 in the particular case of uniform expo-

nential contractions.

Definition 2.13. We say that a sequence (An)n∈Z ⊂ B(X) of invertible operators admits a uni-

form exponential contraction if it admits a nonuniform exponential contraction with a constant

function D : Z → (0, ∞).

The following result is a direct consequence of Theorem 2.3.

Corollary 2.14. Assume that (An)n∈Z is a sequence of bounded and invertible linear operators that

admits a uniform exponential contraction and assume that 0 < λ ≤ µ are such that (2.1) and (2.2)

hold (with D being a constant function). Furthermore, suppose that (2.5) holds. In addition, assume

that:

• fn is differentiable for each n ∈ Z;

• for every n ∈ Z, (2.6) holds;

• there exists γ > 0 such that

‖D fn(x)− D fn(y)‖ ≤ γ‖x − y‖, for n ∈ Z and x, y ∈ X;
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• there exists η > 0 such that

‖D fn(x)‖ ≤ η, for n ∈ Z and x ∈ X.

Then, if η is sufficiently small, there exists a sequence (hn)n∈Z of C1 diffeomorphisms on X such

that (2.9) holds.

Remark 2.15. We are now in a position to elaborate on how Theorem 2.3 and Corollary 2.14

differ from [13, Theorem 2.]. Firstly, we emphasize that [13, Theorem 2.] works under a

more general assumption that (2.3) admits an exponential dichotomy and thus is particularly

applicable to our setting when (2.3) is contractive. However, the conditions for the smooth

linearization in [13] are given in terms of the spectrum σ(A) of the operator A. More precisely,

if X = Rd one can show that

σ(A) ∩ (0, ∞) = [a1, b1] ∪ · · · ∪ [ak, bk],

with 0 < a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk. When (2.3) is contractive, we have that

bk < 1. Then [13, Theorem 2.] is applicable under suitable conditions for the quotients bj/aj,

1 ≤ j ≤ k. However, it is very difficult to verify these conditions in practice since numbers aj, bj

are difficult to compute (or even estimate). On the other hand, Theorem 2.3 and Corollary 2.14

do not require this as (2.5) is concerned only with the relationship between λ and µ.

Remark 2.16. We note that the condition (2.7) implies that D fn is a Lipschitz map for each

n ∈ Z. For certain smooth linearization results which do not require that the derivative of the

nonlinear part is Lipschitz, we refer to [25, 36].

3 Nonuniform exponential contractions for variational systems

The purpose of this section is to established result analogous to Theorem 2.3 for variational

contractive systems with discrete time. We will begin by recalling some necessary terminology.

Assume that Θ be a metric space and let σ : Θ → Θ be a homeomorphism.

Definition 3.1. A map A : Θ × Z → B(X) is said to be a linear cocycle over σ if:

• A(q, 0) = Id for q ∈ Θ;

• A(q, n + m) = A(σnq, m)A(q, n) for q ∈ Θ and n, m ∈ Z.

The map A : Θ → B(X) defined by A(q) = A(q, 1), q ∈ Θ is said to be a generator of A.

Remark 3.2. Let A be a linear cocycle over σ with generator A. We consider the discrete

variational system given by

xq(n + 1) = A(σnq)xq(n), (q, n) ∈ Θ × Z.

Observe that its solution satisfies

xq(m) = A(σnq, m − n)xq(n), for q ∈ Θ and m ≥ n.

Definition 3.3. Let Θ0 ⊂ Θ be σ-invariant, i.e. that σ(Θ0) = Θ0. A linear cocycle A is said

to be nonuniformly exponentially contractive on Θ0 if there exist a map K : Θ0 → (0, ∞) and

0 < λ ≤ µ such that:
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• ‖A(q, n)‖ ≤ K(q)e−λn for q ∈ Θ0 and n ≥ 0; (3.1)

• ‖A(q,−n)‖ ≤ K(q)eµn for q ∈ Θ0 and n ≥ 0. (3.2)

The following is a version of Theorem 2.3 for discrete variational systems.

Theorem 3.4. Assume that A is a nonuniformly exponentially contractive linear cocycle on a σ-

invariant set Θ0 ⊂ Θ. Furthermore, let K : Θ0 → (0, ∞) and 0 < λ ≤ µ be such that (3.1)

and (3.2) hold. In addition, suppose that (2.5) holds. Finally, assume that ( fq)q∈Θ0
is a family of maps

fq : X → X such that:

• fq is differentiable for each q ∈ Θ0;

• for every q ∈ Θ0,

fq(0) = 0 and D fq(0) = 0; (3.3)

• there exists γ > 0 such that

‖D fq(x)− D fq(y)‖ ≤
γ

K(σq)
‖x − y‖, for q ∈ Θ0 and x, y ∈ X; (3.4)

• there exists η > 0 such that

‖D fq(x)‖ ≤
η

K(σq)
, for q ∈ Θ0 and x ∈ X. (3.5)

Then, if η is sufficiently small, there exists a family (hq)q∈Θ0
of C1 diffeomorphisms on X such that

hσq ◦ (A(q) + fq) = A(q) ◦ hq, for q ∈ Θ0. (3.6)

Proof. We choose ǫ > 0 such that (2.10) holds. For q ∈ Θ0 and x ∈ X, set

‖x‖q :=
∞

∑
n=0

‖A(q, n)x‖e(λ−ǫ)n +
∞

∑
n=1

‖A(q,−n)x‖e−(µ+ǫ)n.

It follows easily from (3.1) and (3.2) that

‖x‖ ≤ ‖x‖q ≤ cK(q)‖x‖ for q ∈ Θ0 and x ∈ X, (3.7)

with c as in (2.12).

Lemma 3.5. We have that

‖A(q)x‖σq ≤ e−(λ−ǫ)‖x‖q and ‖A(q)−1x‖q ≤ eµ+ǫ‖x‖σq,

for x ∈ X and q ∈ Θ0.

Proof of the lemma. We have that

‖A(q)x‖σq =
∞

∑
n=0

‖A(σq, n)A(q)x‖e(λ−ǫ)n +
∞

∑
n=1

‖A(σq,−n)A(q)x‖e−(µ+ǫ)n

=
∞

∑
n=0

‖A(q, n + 1)x‖e(λ−ǫ)n +
∞

∑
n=1

‖A(q,−(n − 1))x‖e−(µ+ǫ)n

= e−(λ−ǫ)
∞

∑
n=0

‖A(q, n)x‖e(λ−ǫ)n − e−(λ−ǫ)‖x‖

+e−(µ+ǫ)‖x‖+ e−(µ+ǫ)
∞

∑
n=1

‖A(q,−n)x‖e−(µ+ǫ)n

= e−(λ−ǫ)‖x‖q + (e−(µ+ǫ) − e−(λ−ǫ)) ·

(

‖x‖+
∞

∑
n=1

‖A(q,−n)x‖e−(µ+ǫ)n

)

.
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Since λ − ǫ < µ + ǫ, we have that e−(µ+ǫ)
< e−(λ−ǫ) and thus we obtain the first inequality in

the statement of the lemma. Moreover, since

‖x‖+
∞

∑
n=1

‖A(q,−n)x‖e−(µ+ǫ)n ≤ ‖x‖q

we have that

‖A(q)x‖σq ≥ e−(λ−ǫ)‖x‖q + (e−(µ+ǫ) − e−(λ−ǫ))‖x‖q = e−(µ+ǫ)‖x‖q,

which readily implies the second inequality in the statement of the lemma.

Set

Z∞ :=

{

v : Θ0 → X : ‖v‖∞ := sup
q∈Θ0

‖v(q)‖q < ∞

}

.

Then, (Z∞, ‖·‖∞) is a Banach space. We define a linear operator B : Z∞ → Z∞ by

(Bv)(q) = A(σ−1q)v(σ−1q), for q ∈ Θ0 and v ∈ Z∞.

Lemma 3.6. B is a bounded operator and

‖B
m‖ ≤ e−(λ−ǫ)m, for m ∈ N.

In particular, we have that r(B) < 1.

Proof of the lemma. It follows from Lemma 3.5 that

‖B
mv‖∞ = sup

q∈Θ0

‖(Bmv)(q)‖q = sup
q∈Θ0

‖A(σ−mq, m)v(σ−mq)‖q

≤ e−(λ−ǫ)m sup
q∈Θ0

‖v(σ−mq)‖σ−mq

= e−(λ−ǫ)m‖v‖∞,

for v ∈ Z∞, which yields the desired conclusion.

Lemma 3.7. B is invertible and ‖B−1‖ ≤ eµ+ǫ.

Proof of the lemma. It is easy to verify that B is invertible and that its inverse is given by

(B−1v)(q) = A(q)−1v(σq), for q ∈ Θ0 and v ∈ Z∞.

Moreover, it follows from Lemma 3.5 that

‖B
−1v‖∞ = sup

q∈Θ0

‖(B−1v)(q)‖q = sup
q∈Θ0

‖A(q)−1v(σq)‖q

≤ eµ+ǫ sup
q∈Θ0

‖v(σq)‖σq

= eµ+ǫ‖v‖∞,

for each v ∈ Z∞, which yields the desired result.
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As in the proof of Lemma 2.7, it follows from (2.10) and Lemmas 3.6 and 3.7 that

‖B‖2 · ‖B
−1‖ < 1. (3.8)

We define G : Z∞ → Z∞ by

(G(v))(q) = fσ−1q(v(σ
−1q)), for q ∈ Θ0 and v ∈ Z∞.

Lemma 3.8. G is well-defined.

Proof of the lemma. Observe that (3.3) and (3.4) imply that

‖ fq(x)‖ ≤
γ

K(σq)
‖x‖2, for q ∈ Θ0 and x ∈ X. (3.9)

By (3.7) and (3.9), we have that

‖(G(v))(q)‖q = ‖ fσ−1q(v(σ
−1q))‖q ≤ cK(q)‖ fσ−1q(v(σ

−1q))‖

≤ cK(q)
γ

K(q)
‖v(σ−1q)‖2

≤ cγ‖v(σ−1q)‖2
σ−1q,

for q ∈ Θ0 and v ∈ Z∞. Hence,

‖G(v)‖∞ ≤ cγ‖v‖2
∞ for every v ∈ Z∞,

and therefore G is well-defined.

Lemma 3.9. G is differentiable and

(DG(v)w)(q) = D fσ−1q(v(σ
−1q))w(σ−1q),

for q ∈ Θ0 and v, w ∈ Z∞.

Proof of the lemma. Let us fix v ∈ Z∞. We define an operator L : Z∞ → Z∞ by

(Lw)(q) = D fσ−1q(v(σ
−1q))w(σ−1q), for q ∈ Θ0 and w ∈ Z∞.

Observe that (3.5) and (3.7) imply that

‖(Lw)(q)‖q = ‖D fσ−1q(v(σ
−1q))w(σ−1q)‖q

≤ cK(q)‖D fσ−1q(v(σ
−1q))w(σ−1q)‖

≤ cK(q)
η

K(q)
‖w(σ−1q)‖

≤ cη‖w(σ−1q)‖σ−1q,

for q ∈ Θ0 and thus

‖Lw‖∞ ≤ cη‖w‖∞,

for every w ∈ Z∞. Hence, L is a bounded linear operator.
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Furthermore, for each h ∈ Z∞, we have that

(G(v + h)− G(v)− Lh)(q)

= fσ−1q(v(σ
−1q) + h(σ−1q))− fσ−1q(v(σ

−1q))− D fσ−1q(v(σ
−1q))h(σ−1q)

=
∫ 1

0
D fσ−1q(v(σ

−1q) + th(σ−1q))h(σ−1q) dt − D fσ−1q(v(σ
−1q))h(σ−1q)

=
∫ 1

0

(

D fσ−1q(v(σ
−1q) + th(σ−1q))h(σ−1q)− D fσ−1q(v(σ

−1q))h(σ−1q)
)

dt.

Then, (3.4) and (3.7) imply that

‖(G(v + h)− G(v)− Lh)(ω)‖q

≤
∫ 1

0
‖D fσ−1q(v(σ

−1q) + th(σ−1q))h(σ−1q)− D fσ−1q(v(σ
−1q))h(σ−1q)‖q dt

≤ cK(q)
∫ 1

0
‖D fσ−1q(v(σ

−1q) + th(σ−1q))h(σ−1q)− D fσ−1q(v(σ
−1q))h(σ−1q)‖ dt

≤ cγ‖h(σ−1q)‖2 ≤ cγ‖h(σ−1q)‖2
σ−1q,

for q ∈ Θ0 and h ∈ Z∞, and consequently

‖G(v + h)− G(v)− Lh‖∞ ≤ cγ‖h‖2
∞,

which implies the desired conclusion.

Lemma 3.10. DG is uniformly continuous. Moreover,

sup
v∈Z∞\{0}

‖DG(v)‖

‖v‖∞

< ∞.

Proof of the lemma. For vi, i = 1, 2 and h ∈ Z∞, it follows from (3.4), (3.7) and Lemma 3.9 that

‖(DG(v1)h)(q)− (DG(v2)h)(q)‖q

= ‖D fσ−1q(v1(σ
−1q))h(σ−1q)− D fσ−1q(v2(σ

−1q))h(σ−1q)‖q

≤ cK(q)‖D fσ−1q(v1(σ
−1q))h(σ−1q)− D fσ−1q(v2(σ

−1q))h(σ−1q)‖

≤ cγ‖v1(σ
−1q)− v2(σ

−1q)‖ · ‖h(σ−1q)‖

≤ cγ‖v1(σ
−1q)− v2(σ

−1q)‖σ−1q · ‖h(σ−1q)‖σ−1q,

for each q ∈ Θ0. Therefore,

‖DG(v1)− DG(v2)‖∞ ≤ cγ‖v1 − v2‖∞.

In addition, by (3.3), (3.4) and (3.7) we have that

‖(DG(v)h)(q)‖q = ‖D fσ−1q(v(σ
−1q))h(σ−1q)‖q

≤ cK(q)‖D fσ−1q(v(σ
−1q))h(σ−1q)‖

≤ cγ‖v(σ−1q)‖ · ‖h(σ−1q)‖

≤ cγ‖v(σ−1q)‖σ−1q · ‖h(σ−1q)‖σ−1q,

for q ∈ Θ0 and thus

‖DG(v)‖ ≤ cγ‖v‖∞,

which completes the proof of the lemma.
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Lemma 3.11. We have that

sup
v∈Z∞

‖DG(v)‖ ≤ cη.

Proof of the lemma. By (3.5), (3.7) and Lemma 3.9, we have that

‖(DG(v)w)(q)‖q = ‖D fσ−1q(v(σ
−1q))w(σ−1q)‖q ≤ cη‖w(σ−1q)‖σ−1q,

for q ∈ Θ0, v, w ∈ Z∞. Hence,

sup
v∈Z∞

‖DG(v)‖ ≤ cη.

It follows from (3.8), Lemmas 3.6, 3.10, 3.11 and [29, Theorem 3] that for η is sufficiently

small, there exists a C1-diffeomorphism H : Z∞ → Z∞ such that

H ◦ (B + G) = B ◦ H. (3.10)

Take now q0 ∈ Θ0 and x0 ∈ X. We define vq0,x0 ∈ Z∞ by

vq0,x0(q) =

{

x0 if q = q0;

0 if q 6= q0.

Finally, we define hq0 : X → X by hq0(x0) = H(vq0,x0)(q0). Observe that

(B + G)(vq0,x0)(q) =

{

A(q0)x0 + fq0(x0) if q = σq0;

0 if q 6= σq0,

and thus

(B + G)(vq0,x0) = vσq0,A(q0)x0+ fq0
(x0).

Now we observe that it follows from (3.10) that

((H ◦ (B + G))(vq,x0))(σq0) = ((B ◦ H)(vq0,x0))(σq0),

and thus

(hσq0 ◦ (A(q0) + fq0))(x0) = (A(q0) ◦ hq0)(x0).

Since q0 ∈ Θ0 and x0 ∈ X were arbitrary, we conclude that (3.6) holds.

Furthermore, we claim that hq0 is differentiable and that

Dhq0(x0)y = (DH(vq0,x0)vq0,y)(q0). (3.11)

Indeed, we have that

‖hq0(x0 + y)− hq0(x0)− (DH(vq0,x0)vq0,y)(q0)‖

‖y‖

≤ cK(q0)
‖H(vq0,x0 + vq0,y)(q0)− H(vq0,x0)(q0)− (DH(vq0,x0)vq0,y)(q0)‖q0

‖y‖q0

≤ cK(q0)
‖H(vq0,x0 + vq0,y)− H(vq0,x0)− (DH(vq0,x0)vq0,y)‖∞

‖vq0,y‖∞

.

Letting ‖y‖ → 0, we have that ‖vq0,y‖∞ → 0 and we conclude that (3.11) holds.
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Let us show that Dhq0 is continuous. For x0 and x̃0 ∈ X, we have that

‖Dhq0(x0)− Dhω0(x̃0)‖ = sup
‖y‖≤1

‖Dhq0(x0)y − Dhq0(x̃0)y‖

= sup
‖y‖≤1

‖(DH(vq0,x0)vq0,y)(q0)− (DH(vω0,x̃0)vq0,y)(q0)‖

≤ sup
‖y‖≤1

‖(DH(vq0,x0)vq0,y)(q0)− (DH(vq0,x̃0)vq0,y)(q0)‖q0

≤ sup
‖y‖≤1

‖DH(vq0,x0)vq0,y − DH(vq0,x̃0)vq0,y‖∞

≤ cK(q0)‖DH(vq0,x0)− DH(vq0,x̃0)‖.

Letting x̃0 → x0, we have that vq0,x̃0 → vq0,x0 in Z∞ and thus since H is of class C1 we conclude

that Dhq0(x̃0) → Dhq0(x0).

Finally, it is easy to show that

h−1
q0
(x0) = H−1(vq0,x0)(q0),

and proceeding as above, one can show that h−1
q0

is of class C1.

Let us now discuss the applicability of Theorem 3.4 in the setting when we can apply the

version of the Oseledets multiplicative ergodic theorem [20] for the cocycle A.

Remark 3.12. Assume that X = Rd and that on Θ we have a Borel probability measure P such

that σ preserves P. Moreover, suppose that P is ergodic and that

∫

Θ
log+‖A(q)‖ dP(q) < ∞.

Hence, we can apply the Oseledets multiplicative ergodic theorem [20] to conclude that there

exist Lyapunov exponents

−∞ < λr < · · · < λ2 < λ1 < +∞, 1 ≤ r ≤ d,

σ-invariant Borel set Θ0 ⊂ Θ, P(Θ0) = 1 and for q ∈ Θ0, the corresponding Oseledets splitting

R
d =

r
⊕

i=1

Ei(q)

such that:

• A(q)Ei(q) = Ei(σq) for q ∈ Θ0 and 1 ≤ i ≤ r;

• for q ∈ Θ0, v ∈ Ei(q) \ {0} and 1 ≤ i ≤ r,

lim
n→∞

1

n
log‖A(q, n)v‖ = λi.

Assume now that λ1 < 0. It follows from [12, Theorem 2] that A is nonuniformly exponen-

tially contractive on Θ0. Furthermore, (3.1) and (3.2) hold with

λ = −λ1 − ǫ and µ = −λr + 2ǫ,

with any sufficiently small ǫ > 0. Hence, we conclude that in this case (2.5) holds if 2λ1 < λr.
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As we promised, we now explain why nonuniform contractions introduced in previous

section are ubiquitous from the ergodic theory point of view.

Remark 3.13. Let X and A be as in Remark 3.12. Then, it follows from [12, Theorem 3] that

for q ∈ Θ0, the sequence (An)n∈Z given by

An = A(σnq) n ∈ Z,

admits a nonuniform exponential contraction, where D is the scalar multiple of n 7→ eǫ|n| and

ǫ > 0 is arbitrary.

As in previous section, we will now formulate a direct consequence of Theorem 3.4 dealing

with uniformly exponentially contractive variational systems.

Definition 3.14. Let Θ0 ⊂ Θ be σ-invariant. A linear cocycle A over σ is said to be uniformly

exponentially contractive on Θ0 if there exist K > 0 and 0 < λ ≤ µ such that:

• for q ∈ Θ0 and n ≥ 0,

‖A(q, n)‖ ≤ Ke−λn; (3.12)

• for q ∈ Θ0 and n ≥ 0,

‖A(q,−n)‖ ≤ Keµn. (3.13)

The following is a consequence of Theorem 3.4.

Corollary 3.15. Assume that A is a uniformly exponentially contractive linear cocycle on a σ-

invariant set Θ0 ⊂ Θ and suppose that K > 0 and 0 < λ ≤ µ are such that (3.12) and (3.13) hold.

Furthermore, suppose that (2.5) holds. Finally, assume that ( fq)q∈Θ0
is a family of maps fω : X → X

such that:

• fq is differentiable for each q ∈ Θ0;

• for every q ∈ Θ0,

fq(0) = 0 and D fq(0) = 0;

• there exists γ > 0 such that

‖D fq(x)− D fq(y)‖ ≤ γ‖x − y‖, for q ∈ Θ0 and x, y ∈ X;

• there exists η > 0 such that

‖D fq(x)‖ ≤ η, for q ∈ Θ0 and x ∈ X.

Then, if η is sufficiently small, there exists a family (hq)q∈Θ0
of C1 diffeomorphisms on X such that

hσq ◦ (A(q) + fq) = A(q) ◦ hq, for q ∈ Θ0.
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Abstract. In the present paper we deal with a quasilinear problem involving a singular
term and a parametric superlinear perturbation. We are interested in the existence,
nonexistence and multiplicity of positive solutions as the parameter λ > 0 varies. In
our first result, the superlinear perturbation has an arbitrary growth and we obtain the
existence of a solution for the problem by using the sub-supersolution method. For the
second result, the superlinear perturbation has subcritical growth and we employ the
Mountain Pass Theorem to show the existence of a second solution.
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1 Introduction

This paper is concerned with the existence, nonexistence and multiplicity of solutions for the
family of quasilinear problems with singular nonlinearity















−∆u − ∆(u2)u = a(x)u−γ + λup in Ω,

u > 0 in Ω,

u(x) = 0 on ∂Ω,

(Pλ)

where 0 < γ, 3 ≤ p < ∞, 0 ≤ λ is a parameter, Ω ⊂ RN(N ≥ 3) is a bounded smooth domain
and a(x) is a positive measurable function.

We say that a function u ∈ H1
0(Ω) ∩ L∞(Ω) is a weak solution (solution, for short) of (Pλ)

if u > 0 a.e. in Ω, and, for every ψ ∈ H1
0(Ω),

au−γψ, upψ ∈ L1(Ω)

and
∫

Ω
[(1 + 2u2)∇u∇ψ + 2u|∇u|2ψ] =

∫

Ω
a(x)u−γψ + λ

∫

Ω
upψ.
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Solutions of this type are related to the existence of standing wave solutions for quasilinear
Schrödinger equations of the form

i∂tz = −∆z + V(x)z + η(|z|2)z − κ∆ρ(|z|2)ρ′(|z|2)z, (1.1)

where z : R × Ω → C, V(x) is a given potential, κ > 0 is a constant and η, ρ are real functions.
Quasilinear equations of form (1.1) appear more naturally in mathematical physics and have
been derived as models of several physical phenomena corresponding to various types of ρ.
The case of ρ(s) = s was used for the superfluid film equation in plasma physics by Kurihara
[20] (cf. [21]). In the case ρ(s) = (1 + s)1/2, equation (1.1) models the self-channeling of a
high-power ultrashort laser in matter, see [7, 9, 11, 28] and the references in [8].

Consider the following quasilinear Schrödinger equation

− ∆u − ∆(u2)u = g(x, u) in Ω, (1.2)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. When g is a singular nonlin-
earity, problems of type (1.2) was studied by Do Ó–Moameni [25], Liu–Liu–Zhao [23], Wang
[32], Dos Santos–Figueiredo–Severo [29], Alves–Reis [2] and Bal–Garain–Mandal–Sreenadh
[6]. In particular, the authors in [23] considered the problem















−∆su − s
2s−1 ∆(u2)u = a(x)u−γ + λup in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where N ≥ 3, ∆s is the s-Laplacian operator, 2 < 2s < p + 1 < ∞, 0 < γ and a ≥ 0 is a
nontrivial measurable function satisfying the following condition:

(H) There are ϕ ∈ C1
0(Ω) and q > N such that ϕ > 0 on Ω and aϕ−γ ∈ Lq(Ω).

The authors used sub-supersolution method, truncation arguments and variational meth-
ods to prove the existence of solutions for (1.3) provided λ > 0 is small enough.

In [29], Dos Santos–Figueiredo–Severo studied the problem














−∆u − ∆(u2)u = a(x)u−γ + z(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.4)

where N ≥ 3, the function a satisfies the hypothesis (H) and the nonlinearity z : Ω ×R −→ R

is continuous and satisfies (among other conditions):
There exist C > 0, r ≥ 1 and b ∈ L∞(Ω), b ≥ 0 almost everywhere in Ω, such that

|z(x, t)| ≤ C(1 + b(x)|t|r−1), ∀t ∈ R and a.e. in Ω.

By using sub-supersolution method, truncation arguments and the Mountain Pass Theo-
rem they showed the existence of solutions provided ‖b‖∞ is small enough. When z(x, t) =

λ|t|r−2t this is equivalent to the existence of solutions for λ > 0 small enough.
In this paper, our first goal is to show the existence and nonexistence of solutions for (Pλ)

without restriction on the parameter λ and exponent p ≥ 3 (see Remark 1.4). We would like
to emphasize that for 0 < p < 3 the arguments carried out in [1, 2] can be adapted to prove
that problem (Pλ) has at least one solution for all λ ∈ R (see Remark 4.1).
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It is worth pointing out that to prove our main results, we use the method of changing
variables developed in Colin–Jeanjean [13]. Thus, we reformulate problem (Pλ) into a new
one, denoted with (Qλ) (cfr. Section 2), which finds its natural setting in the Sobolev space
H1

0(Ω).
Our first result is the following.

Theorem 1.1. Under the assumptions (H) and p ≥ 3 there exists 0 < λ∗ < ∞ such that problem (Pλ)
has at least one solution vλ for 0 < λ < λ∗ and no solution for λ > λ∗. Moreover, λ∗ is characterized

variationally by (3.1) and vλ ∈ C1
0(Ω).

The proof of Theorem 1.1 is based on the method of sub-supersolutions. However, by
virtue of the arbitrary growth of the singular and superlinear terms that appear in problem
(Qλ) we cannot use directly the method of sub-supersolutions here. An additional difficulty
comes from the fact that these singular and superlinear terms are nonhomogeneous. To over-
come this difficulty we develop new arguments and a regularity result that allows us to obtain
a subsolution to problem (Qλ) for all λ > 0. In particular, we establish some preliminary re-
sults and we prove a sub-supersolution theorem (see Theorem 2.8).

To prove the multiplicity of solutions for (Pλ), with λ ∈ (0, λ∗), we need a refinement of
hypotheses (H). We introduce the following assumption:

(H)∞ There exists ϕ ∈ C1
0(Ω) such that ϕ > 0 on Ω and aϕ−1−γ ∈ L∞(Ω).

If the function ϕ satisfies (H)∞ then it satisfies (H), too (see Section 4).
We denote by 2∗ = 2N/(N − 2) the critical Sobolev exponent. Now we state our second

result.

Theorem 1.2. Under the assumptions (H)∞ and 3 < p < 22∗ − 1, problem (Pλ) has at least two

solutions for 0 < λ < λ∗ and no solution for λ > λ∗.

Example 1.3. When Ω is the unit ball, the functions a(x) = (1 − |x|2)σ, σ ≥ γ + 1 and ϕ(x) =

1 − |x|2 satisfy assumption (H)∞.

Remark 1.4. The results obtained in Theorems 1.1 and 1.2 are almost global, that is, they do
not show the existence and multiplicity of solutions only for λ = λ∗, with parameter λ∗ having
the property that problem (Pλ) has at least one solution for λ ∈ (0, λ∗) and no solutions for
λ > λ∗. Thus, in our main results we do not assume the restriction that λ is small enough
to guarantee the existence of solutions, because we prove the existence of a solution for all
λ ∈ (0, λ∗). Furthermore, when 0 < γ < 1 (weak singularity), combining Theorems 1.1, 1.2
and Proposition 4.8 we have a global result:

a) Problem (Pλ) has a solution if and only if λ ∈ (0, λ∗]. Namely, L = (0, λ∗] (see Section 3
for definition of L).

b) Problem (Pλ) has at least two solutions for λ ∈ (0, λ∗) and at least one solution for
λ = λ∗ and no solution for λ > λ∗.

Let us highlight that the hypotheses (H)∞ plays a crucial role in the proof of Theorem
1.2. Indeed, it allows us to show that vλ is a local minimum of the functional Jλ in the
topology of C1

0(Ω) and that the modified functional Jλ belongs to C1(H1
0(Ω), R) and satisfies

the assumptions of Theorem 1 in Brezis–Nirenberg [10] (see (4.2) and (4.7) in Section 4 for
definition of Jλ and Jλ, respectively ). In particular, we get that v = 0 is a local minimum of
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the functional Jλ in the H1
0(Ω) topology. Then, after fine arguments we apply the Mountain

Pass Theorem to obtain a second solution of (Pλ). It is worth pointing out that under the
assumption (H) we are not able to show Lemma 4.2 and that Jλ satisfies the assumptions of
Theorem 1 in [10].

We emphasize that Theorem 1.1 improve the works [23, 29] in the sense that we show the
existence and nonexistence of solutions for (Pλ) without restriction on the parameter λ (that
is, our results are almost global and we do not assume that λ is small enough to obtain a
solution, see Remark 1.4 ). They also did not prove a result of nonexistence of solutions. As
far as we know, Theorem 1.2 is the first result of multiplicity of H1

0(Ω)-solutions for singular
problems with strong singularity γ > 1 and without restriction on the parameter λ, that is,
we do not assume λ small enough. Notice that no restriction on the γ > 0 is assumed.

Let us compare our parameter λ∗ and results with the parameters and results obtained in
[6, 29].

• Let ǫ0 and ǫ1 be the parameters obtained in Theorem 1.2 and 1.3, respectively, in [29]
when h(x, t) = λ|t|r−2t. Then, we will prove in Remark 3.3 that ǫ1 ≤ ǫ0 < λ∗.

• When 0 < γ < 1 and 3 < p < 22∗ − 1 problem (Pλ) was also studied in [6]. As
mentioned by the authors of that work, using the Nehari manifold method they proved
the existence of two solutions for λ sufficiently small. More precisely, they proved that
there is a parameter ν > 0 such that problem (Pλ) has two solutions for 0 < λ < ν and
N 0

λ = ∅ for 0 < λ < ν (here we use ν to avoid confusion with our Λ of Theorem 3.2 and
see page 4 of [6] for the definition of N 0

λ ). In our work we are assuming arbitrary γ > 0,
unlike [6] which assumes 0 < γ < 1. Furthermore the technique used in [6] cannot be
used when γ ≥ 1, because they need the continuity of the energy functional associated
with the problem and use that 0 < 1 − γ < 1 to get estimates (at this point they need
Sobolev embeddings and therefore it is very important that 0 < 1 − γ < 1). For γ ≥ 1
these facts are not true and therefore for γ ≥ 1 the results obtained in [6] cannot be
compared with our results obtained here (in particular with Theorem 1.1 where we
assume that p can be supercritical, that is, 22∗ − 1 < p).

• When 0 < γ < 1 and p < 22∗ − 1, combining Theorem 1.1 and Proposition 4.8 of our
work we have that problem (Pλ) has a solution if and only if λ ∈ (0, λ∗] . Thus, our result
is global in this case. As a consequence ν ≤ λ∗ (see previous paragraph for the definition
of ν). In [6] they did not prove the existence of a solution for λ = ν, that is, they obtained
a local result. Therefore, even in this case our work improves the result of [6] in the sense
that we prove that problem (Pλ) has a solution if and only if λ ∈ (0, λ∗] (in particular
for λ = λ∗), and therefore we do not have the restriction that λ is small enough as in
[6]. Finally, we emphasize that a similar problem, but without the term ∆(u2)u, was
studied in [3] using the Nehari manifold method and in that work the authors obtained
solutions for parameters λ > 0 such that N 0

λ 6= ∅. This result suggests that parameter ν

obtained in [6] is small enough and satisfies ν < λ∗.

There is a wide literature dealing with existence and multiplicity results for problems
involving both the p-Laplacian operator and singular nonlinearities. The reader who wishes to
broaden his/her knowledge on these topics is referred to [3,15–18,26,27], and to the references
therein.

The paper is structured as follows: In Section 2, we reformulate problem (Pλ) into a new
one which finds its natural setting in the Sobolev space H1

0(Ω) and we present some results
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that will be important for our work. In particular, we prove a nonexistence result and a sub-
supersolution theorem. In Section 3, we prove Theorem 1.1 and Section 4 is devoted to prove
Theorem 1.2.

Notation. Throughout this paper, we make use of the following notations:

• Lq(Ω), for 1 ≤ q ≤ ∞, denotes the Lebesgue space with usual norm denoted by ‖u‖q.

• H1
0(Ω) denotes the Sobolev space endowed with inner product

(u, v) =
∫

Ω
∇u∇v, ∀u, v ∈ H1

0(Ω).

The norm associated with this inner product will be denoted by ‖ ‖.

• W
2,q
0 (Ω) denotes the Sobolev space with norm

‖u‖ =

(

∑
|α|≤2

‖Dαu‖q
q

)1/q

.

• Let us consider the space C1
0(Ω) =

{

u ∈ C1(Ω) : u = 0 on ∂Ω
}

equipped with the norm
‖u‖C1 = maxx∈Ω |u(x)|+maxx∈Ω |∇u(x)|. If on C1

0(Ω) we consider the pointwise partial
ordering (i.e., u ≤ v if and only if u(x) ≤ v(x) for all x ∈ Ω), which is induced by the
positive cone

C1
0(Ω)+ =

{

u ∈ C1
0(Ω) : u ≥ 0 for all x ∈ Ω

}

,

then this cone has a nonempty interior given by

int(C1
0(Ω)+) =

{

u ∈ C1
0(Ω) : u > 0 for all x ∈ Ω and

∂u

∂ν
(x) < 0 for all x ∈ ∂Ω

}

,

where ν is the outward unit normal vector to ∂Ω at the point x ∈ ∂Ω.

• Br(v) denotes the ball centered at v ∈ C1
0(Ω) with radius r > 0 (with respect to the

topology of C1
0(Ω)).

• The function d(x) = d(x, ∂Ω) denotes the distance from a point x ∈ Ω to the boundary
∂Ω, where Ω = Ω ∪ ∂Ω is the closure of Ω ⊂ RN .

• We denote by φ1 the L∞(Ω)-normalized (that is, ‖φ1‖∞ = 1) positive eigenfunction for
the smallest eigenvalue λ1 > 0 of

(

−∆, H1
0(Ω)

)

.

• If u is a measurable function, we denote the positive and negative parts by u+ =

max {u, 0} and u− = max {−u, 0}, respectively.

• If A is a measurable set in RN , we denote by |A| the Lebesgue measure of A.

• k, c, c1, c2, . . . and C denote (possibly different from line to line) positive constants.

• The arrow ⇀ (respectively, →) denotes weak (respectively strong) convergence.
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2 Preliminaries

In this section, we will establish some preliminaries which will be important for our work.
We reduce the study of the existence of positive solutions for (Pλ) to the existence of positive
solutions of a singular elliptic problem. In particular, we will prove a nonexistence result and
a sub-supersolution theorem.

We denote by φ1 the L∞(Ω)-normalized positive eigenfunction for the smallest eigenvalue
λ1 > 0 of

(

−∆, H1
0(Ω)

)

. We start by proving that φ1 satisfies the assumption (H). We consider
the following assumption.

(H′) There is q > N such that aφ
−γ
1 ∈ Lq(Ω).

Lemma 2.1. Assumptions (H) and (H′) are equivalent.

Proof. Suppose that (H) holds. One has φ1 ∈ int(C1
0(Ω)+) and ϕ ∈ C1

0(Ω)+. Then, from
Proposition 1 in [24] there exists k > 0 such that φ1 ≥ kϕ in Ω and hence aφ

−γ
1 ≤ k−γaϕ−γ ∈

Lq(Ω), proving (H
′
).

If (H
′
) holds, then the function ϕ = φ1 and q satisfy (H). This concludes the proof.

Remark 2.2.

a) The arguments in the proof of Lemma 2.1 can be used to prove that if (H) holds, then
any function u ∈ int(C1

0(Ω)+) satisfies the assumption (H), too.

b) If ϕ satisfies the assumption (H) then aϕ1−γ, a ∈ Lq(Ω). Indeed, a = aϕ−γ ϕγ ≤
‖ϕ‖γ

∞aϕ−γ ∈ Lq(Ω) and aϕ1−γ ≤ ‖ϕ‖∞aϕ−γ ∈ Lq(Ω).

c) It is well known that φ1 ∈ C1(Ω) and satisfies cd(x) ≤ φ1(x) ≤ Cd(x), x ∈ Ω, for some
constants c, C > 0 (see [31]).

Now, we observe that the natural energy functional corresponding to the problem (Pλ) is
the following:

Q(u) =
1
2

∫

Ω
(1 + 2u2)|∇u|2 + 1

γ − 1

∫

Ω
a(x)F(|u|)− λ

p + 1

∫

Ω
|u|p+1, u ∈ A(Q),

where

A(Q) =

{

u ∈ H1
0(Ω) :

∫

Ω
a(x)F(|u|) < ∞ and

∫

Ω
|u|p+1

< ∞

}

and the function F : [0, ∞) → [0, ∞] satisfies F′(s) = s−γ for s > 0 (see [1] for a complete
definition of F).

However, this functional is not well defined, because
∫

Ω
u2|∇u|2dx is not finite for all

u ∈ H1
0(Ω), hence it is difficult to apply variational methods directly. In order to overcome this

difficulty, we use the following change of variables introduced by [13], namely, v := g−1(u),
where g is defined by







g′(t) = 1

(1+2|g(t)|2)
1
2

in [0, ∞),

g(t) = −g(−t) in (−∞, 0].
(2.1)

We list some properties of g, whose proofs can be found in [2, 13, 22, 30].

Lemma 2.3. The function g satisfies the following properties:
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(1) g is uniquely defined, C∞ and invertible;

(2) g(0) = 0;

(3) 0 < g′(t) ≤ 1 for all t ∈ R;

(4) 1
2 g(t) ≤ tg′(t) ≤ g(t) for all t > 0;

(5) |g(t)| ≤ |t| for all t ∈ R;

(6) |g(t)| ≤ 21/4|t|1/2 for all t ∈ R;

(7) (g(t))2 − g(t)g′(t)t ≥ 0 for all t ∈ R;

(8) There exists a positive constant C such that |g(t)| ≥ C|t| for |t| ≤ 1 and |g(t)| ≥ C|t|1/2 for

|t| ≥ 1;

(9) g′′(t) < 0 when t > 0 and g′′(t) > 0 when t < 0;

(10) the function (g(t))1−γ for γ > 1 is decreasing for all t > 0;

(11) the function (g(t))−γ is decreasing for all t > 0;

(12) |g(t)g′(t)| < 1/
√

2 for all t ∈ R;

(13) g2(ts) ≥ tg2(s) for all t ≥ 1 and s ≥ 0.

Corollary 2.4. For each s > 0 there exists a constant K > 0 such that |tγ ln(g(t))| ≤ K for all

0 < t ≤ s.

Proof. Since h(t) = tγ ln(g(t)), t > 0, is a continuous function it is sufficient to show that
limt→0 tγ ln(g(t)) = 0. From Lemma 2.3 (8) one has

|tγ ln(g(t))| ≤ |C−γgγ(t) ln(g(t))|,

for all 0 < t ≤ 1, which implies that limt→0 tγ ln(g(t)) = 0, because limt→0 tγ ln(t) = 0 and
limt→0 g(t) = 0.

After a change of variable v = g−1(u), we define an associated problem














−∆v = [a(x)(g(v))−γ + λ(g(v))p] g′(v) in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω.

(Qλ)

We say that a function v ∈ H1
0(Ω) ∩ L∞(Ω) is a weak solution (solution, for short) of (Qλ)

if v > 0 a.e. in Ω, and, for every ψ ∈ H1
0(Ω),

a(x)(g(v))−γg′(v)ψ, (g(v))pg′(v)ψ ∈ L1(Ω)

and
∫

Ω
∇v∇ψ =

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ.

It is easy to see that problem (Qλ) is equivalent to our problem (Pλ), which takes u =

g(v) as its solutions. Thus, our goal is reduced to proving the existence, nonexistence and
multiplicity of solutions for the family of problems (Qλ).

In order to study problem (Qλ), one introduces the assumption:



8 R. L. Alves

(H)d There are ϕ ∈ C1
0(Ω) and q > N such that ϕ > 0 on Ω and ag−γ(ϕ)g′(ϕ) ∈ Lq(Ω) .

The following lemma show the relation between the assumptions (H) and (H)d.

Lemma 2.5. Suppose that the function ϕ satisfies (H). Then ϕ satisfies (H)d. Moreover, ag1−γ(ϕ) ∈
Lq(Ω) if γ 6= 1 and a(x) ln(g(ϕ)) ∈ Lq(Ω) if γ = 1.

Proof. Let 0 < ǫ < 1 such that ǫ‖ϕ‖∞ < 1 holds. By using (3), (8), (9) and (11) of Lemma 2.3
and Corollary 2.4 (if γ = 1) we find

ag−γ(ϕ)g′(ϕ) ≤ ag−γ(ǫϕ)g′(ǫϕ) ≤ C−γǫ−γaϕ−γ ∈ Lq(Ω),

ag1−γ(ϕ) ≤ g(‖ϕ‖∞)ag−γ(ǫϕ) ≤ g(‖ϕ‖∞)ǫ
−γC−γaϕ−γ ∈ Lq(Ω)

and
|a(x) ln(g(ϕ))| = |a(x)ϕ−γ ϕγ ln(g(ϕ))| ≤ Ka(x)ϕ−γ ∈ Lq(Ω),

namely, ag−γ(ϕ)g′(ϕ) ∈ Lq(Ω) and ag1−γ(ϕ) ∈ Lq(Ω) and a(x) ln(g(ϕ)) ∈ Lq(Ω) if γ = 1.

To prove the nonexistence of solutions for (Qλ) we define the function m(x)=min{a(x), 1}∈
L∞(Ω) and we will denote by λ1[m] the principal eigenvalue of

{

−∆u = λm(x)u in Ω,

u(x) = 0 on ∂Ω.
(A)

It is known that λ1[m] is simples, λ1[m] > 0, and the associated eigenfunction φ̃1 can be
chosen such that φ̃1 > 0 in Ω (see [14, Theorem 6.2.9]).

Next, we prove the nonexistence of positive solutions for (Qλ).

Lemma 2.6. There exists a constant λ∗
> 0 such that problem (Qλ) has no solution for all λ ∈

(λ∗, ∞).

Proof. Let us start by defining the function jλ(t) = (g−γ(t)g′(t) + λgp(t)g′(t))/t for t > 0.
Using (4) of Lemma 2.3 we have that

jλ(t) ≥
g1−γ(t)

2t2 + λ
gp+1(t)

2t2 , t > 0.

We now distinguish two cases:

Case γ > 1. From (5) and (8) of Lemma 2.3 we get

jλ(t) ≥















t−1−γ

2
+ λ

Cp+1tp−1

2
if 0 < t ≤ 1,

t−1−γ

2
+ λ

Cp+1t(p−3)/2

2
if t ≥ 1.

(2.2)

In order to find a lower bound for the function jλ we observe that the function

f̃ (t) =
t−1−γ

2
+ λ

Cp+1tp−1

2
, t > 0,

has a global minimizer

tλ =

[

(1 + γ)

λ(p − 1)Cp+1

]

1
p + γ ,
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such that tλ < 1 for λ large enough and

min
t>0

f̃ (t) = f̃ (tλ) =
1
2

[

λ(p − 1)Cp+1

1 + γ

]

1 + γ

p + γ
(

p + γ

p − 1

)

. (2.3)

Hereafter, we fix λ such that tλ < 1. Then, by using (2.2) and (2.3), we infer that

min
t>0

jλ(t) ≥ min















1
2

[

λ(p − 1)Cp+1

1 + γ

]

1 + γ

p + γ
(

p + γ

p − 1

)

, λ
Cp+1

2















and as a consequence there exists λ∗ such that

jλ∗(tλ∗) := min
t>0

jλ∗(t) ≥ λ1[m]. (2.4)

Case γ ≤ 1. From (8) of Lemma 2.3 we get

jλ(t) ≥















C1−γt−1−γ

2
+ λ

Cp+1tp−1

2
if 0 < t ≤ 1,

C1−γt(−3−γ)/2

2
+ λ

Cp+1t(p−3)/2

2
if t ≥ 1.

(2.5)

In order to find a lower bound for the function jλ we observe that the function

h̃(t) =
C1−γt−1−γ

2
+ λ

Cp+1tp−1

2
, t > 0,

has a global minimizer

tλ =

[

(1 + γ)

λ(p − 1)Cp+γ

]

1
p + γ ,

such that tλ < 1 for λ large enough and

min
t>0

h̃(t) = h̃(tλ) =
C2

2

[

λ(p − 1)
1 + γ

]

1 + γ

p + γ
[

p + γ

p − 1

]

. (2.6)

Hereafter, we fix λ such that tλ < 1. Then, by using (2.5) and (2.6), we infer that

min
t>0

jλ(t) ≥ min











C2

2

[

λ(p − 1)
1 + γ

]

1 + γ

p + γ
(

p + γ

p − 1

)

, λ
Cp+1

2











and as a consequence there exists λ∗ such that

jλ∗(tλ∗) := min
t>0

jλ∗(t) ≥ λ1[m]. (2.7)

Now, arguing by contradiction, we suppose that for some λ > λ∗ problem (Qλ) has a
solution vλ, where λ∗ is defined in (2.4) (if γ > 1) and (2.7) (if γ ≤ 1). By taking φ̃1 as a test
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function in the equation satisfied by vλ and vλ in the equation satisfied by φ̃1 we obtain
∫

(a(x)g−γ(vλ) + λ∗gp(vλ))g′(vλ)φ̃1 ≥
∫

m(x)(g−γ(vλ) + λ∗gp(vλ))g′(vλ)φ̃1

≥
∫

m(x)jλ∗(tλ∗)vλφ̃1

≥
∫

λ1[m]m(x)vλφ̃1

=
∫

∇φ̃1∇vλ

=
∫

(a(x)g−γ(vλ) + λgp(vλ))g′(vλ)φ̃1

and hence λ∗ ≥ λ, which is impossible by the choice of λ. By virtue of the relation between
(Pλ) and (Qλ) we deduce that problem (Pλ) has no solution for λ > λ∗.

Now, we define the notions of subsolution and supersolution and prove a sub-supersolution
theorem.

Definition 2.7. We say that v is a subsolution of problem (Qλ) if v ∈ H1
0(Ω) ∩ L∞(Ω), v > 0

in Ω, a(x)(g(v))−γg′(v)ψ, (g(v))pg′(v)ψ ∈ L1(Ω) and
∫

Ω
∇v∇ψ ≤

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω. Similarly, v ∈ H1

0(Ω) ∩ L∞(Ω), v > 0 in Ω, is a supersolution
of (Qλ) if a(x)(g(v))−γg′(v)ψ, (g(v))pg′(v)ψ ∈ L1(Ω) and

∫

Ω
∇v∇ψ ≥

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω.

Theorem 2.8. Let v and v be a subsolution respectively a supersolution of problem (Qλ) such that

v ≤ v in Ω. Then there exists a solution v ∈ H1
0(Ω) ∩ L∞(Ω) of (Qλ) such that v ≤ v ≤ v in Ω.

Proof. We define a truncated function g̃ : Ω × R → R by letting,

g̃(x, t) =















gp(v(x))g′(v(x)) if t ≤ v(x),

gp(t)g′(t) if v(x) ≤ t ≤ v(x),

gp(v(x))g′(v(x)) if v(x) ≤ t.

Clearly, g̃ is a Carathéodory function. Moreover, (3) and (5) of Lemma 2.3 imply that

|g̃(x, t)| ≤ |v(x)|p ≤ ‖v‖p
∞ =: c, (2.8)

for all (x, t) ∈ Ω × R. We denote by G̃(x, t) =
∫ t

0 g̃(x, s)ds the primitive of g̃ such that
G̃(x, 0) = 0.

Now, we consider the auxiliary singular elliptic problem














−∆v = a(x)(g(v))−γg′(v) + λg̃(x, v) in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω.

(Aλ)
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We will show that problem (Aλ) has a solution v such that v ≤ v ≤ v in Ω. Thus, from
definition of g̃ we obtain that v is a solution of (Qλ). Define the function G as it follows:

if 0 < γ < 1, G(t) = g1−γ(|t|)
1−γ and t ∈ R,

if γ = 1,

G(t) =

{

ln g(t), if t > 0,

+∞, if t = 0,

if γ > 1,

G(t) =

{

g1−γ(t)
1−γ , if t > 0,

+∞, if t = 0.

We can associate to problem (Aλ) the following energy functional

Iλ(v) =
1
2
‖v‖2 −

∫

Ω
a(x)G(|v|)− λ

∫

Ω
G̃(x, v), (2.9)

for every v ∈ D, where

D =

{

v ∈ H1
0(Ω) :

∫

Ω
a(x)G(|v|) ∈ R

}

(2.10)

is the effective domain of Iλ. As we known, the functional Iλ fails to be Gâteaux differentiable
because of the singular term, then we can not apply the critical point theory for functionals of
class C1.

The assumption (H) and Lemmas 2.1 and 2.5 imply that aG(φ1) ∈ Lq(Ω). In particular, one
has φ1 ∈ D and hence D 6= ∅. Then, using (2.8) and arguing as in the proof of Theorems 1.1
and 1.2 of [1] we can show that there exists a solution v of (Aλ) and it satisfies

Iλ(v) = inf
z∈D

Iλ(z).

It remains to check that v ≤ v ≤ v in Ω. We set (v − v)− = max {−(v − v), 0}. Using that
v is a subsolution and v is a solution, we have

∫

Ω
∇v∇(v − v)− ≤

∫

Ω
a(x)(g(v))−γg′(v)(v − v)− + λ

∫

Ω
(g(v))pg′(v)(v − v)−,

∫

Ω
∇v∇(v − v)− =

∫

Ω
a(x)(g(v))−γg′(v)(v − v)− + λ

∫

Ω
g̃(x, v)(v − v)−,

and applying (9), (10) and (11) of Lemma 2.3, we find

−
∫

Ω
|∇(v − v)−|2 ≥

∫

{v<v}
a(x)((g(v))−γg′(v)− (g(v))−γg′(v))(v − v)−

+ λ
∫

{v<v}
(g̃(x, v)− (g(v))pg′(v))(v − v)−

≥ λ
∫

{v<v}
(g̃(x, v)− (g(v))pg′(v))(v − v)−

= λ
∫

{v<v}
((g(v))pg′(v)− (g(v))pg′(v))(v − v)−

= 0,

namely ‖(v − v)−‖ = 0, which means that v ≤ v in Ω.
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Similarly, setting (v − v)+ = max {v − v, 0} and using that v is a supersolution and v is a
solution, jointly with (9), (10) and (11) of Lemma 2.3, we get

∫

Ω
|∇(v − v)+|2 ≤

∫

{v<v}
a(x)((g(v))−γg′(v)− (g(v))−γg′(v))(v − v)+

+ λ
∫

{v<v}
(g̃(x, v)− (g(v))pg′(v))(v − v)+

≤ λ
∫

{v<v}
(g̃(x, v)− (g(v))pg′(v))(v − v)+

= λ
∫

{v<v}
((g(v))pg′(v)− (g(v))pg′(v))(v − v)+

= 0,

namely ‖(v − v)+‖ = 0, which means that v ≤ v in Ω. This completes the proof of the
theorem.

Remark 2.9.

a) Arguing as in the proof of Lemmas 2.1 and 2.5 we can show that int(C1
0(Ω)+) ⊂ D (see

(2.10)). Hence it makes sense to consider the local minimum obtained in Lemma 4.2,
because vλ ∈ int(C1

0(Ω)+) ⊂ D.

b) If 0 < γ < 1 holds, then Iλ(v) < 0. Indeed, applying Lemma 2.6 (8) we obtain

Iλ(v) ≤ Iλ(tφ1) ≤
t2

2
‖φ1‖2 − C1−γt1−γ

1 − γ

∫

Ω
a(x)φ1−γ

1 < 0,

provided 0 < t < 1 is small enough.

The following lemma shows the existence of a subsolution of (Qλ) for all λ > 0.

Lemma 2.10. If v0 ∈ H1
0(Ω) is the unique weak solution of (Q0), then v0 ∈ C1

0(Ω) and v0(x) ≥
Cd(x) in Ω for some constant C > 0. Moreover, a(x)(g(v0))−γg′(v0) ∈ Lq(Ω) and v0 is a subsolu-

tion of (Qλ) for all λ > 0.

Proof. From Lemma 2.1 and Remark 2.2 b) one has a(x)φ1−γ
1 ∈ Lq(Ω), q > 1, and hence, the

existence of a unique weak solution v0 ∈ H1
0(Ω) of (Q0) follows from Theorem 1.3 in [2].

Now we want to show that v0 ∈ C1
0(Ω). Using Theorem 3 of Brezis–Nirenberg [10] there

exist constants c1, c2 > 0 such that v0(x) ≥ c2d(x) ≥ c1φ1(x) in Ω and c1φ1(x) < 1 in Ω. By
Lemma 2.3 (3), (8), (11) and Lemma 2.1,

a(x)(g(v0))
−γg′(v0) ≤ C−γc

−γ
1 a(x)φ−γ

1 ∈ Lq(Ω),

that is, a(x)(g(v0))−γg′(v0) ∈ Lq(Ω) with q > N. Thus, by elliptic regularity, v0 ∈ W
2,q
0 (Ω),

and then by the Sobolev embedding theorem we have v0 ∈ C1
0(Ω). Finally, from the fact that

v0 is a solution of (Q0) and v0 ∈ C1
0(Ω) one deduces that v0 is a subsolution of (Qλ) for all

λ > 0. This completes the proof.

We end this section with the following lemma.
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Lemma 2.11. Let v ∈ H1
0(Ω), v > 0 in Ω, and suppose that

∫

Ω
∇v∇ψ ≥

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ C1
0(Ω), ψ ≥ 0, holds. Then

∫

Ω
∇v∇ψ ≥

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω, holds. In particular, v ≥ v0 in Ω, where v0 is the unique solution

of (Q0).

Proof. Let ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω, then from the proof of Theorem 4.4 of [12] there exists

ψn ∈ C∞
0 (Ω), ψn ≥ 0 such that ψn → ψ in H1

0(Ω) and ψn → ψ a.e. in Ω. Hence,
∫

Ω
∇v∇ψn ≥

∫

Ω
a(x)(g(v))−γg′(v)ψn + λ

∫

Ω
(g(v))pg′(v)ψn,

and using the Fatou lemma we deduce that
∫

Ω
∇v∇ψ ≥

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ,

proving the first statement of the lemma.
It remains to show that v ≥ v0 in Ω. For this, we take (v − v0)− as a test function in the

equation satisfied by v0 and in the inequality satisfied by v, and arguing as in Theorem 2.8
one finds v ≥ v0 in Ω. The proof is complete.

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In the rest of this paper we will use the
same notation introduced in the previous section.

Let us define

L = {λ > 0 : problem (Qλ) has at least one solution}
= {λ > 0 : problem (Pλ) has at least one solution}

and set
Λ = supL.

We start by proving the following lemma.

Lemma 3.1. The set L is nonempty and Λ is finite.

Proof. Let v = v0 and consider the problem














−∆v = a(x)(g(v))−γg′(v) + 1 in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω.

(T)

By using Lemma 2.10 we infer that a(x)(g(v))−γg′(v) + 1 ∈ Lq(Ω). Therefore problem (T) has
a solution v ∈ W2,q(Ω) and by the Sobolev embedding theorem, v ∈ C1

0(Ω). Moreover,

−∆v ≥ a(x)(g(v))−γg′(v) = −∆v in Ω,
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which implies that v ≥ v in Ω. From this and Lemmas 2.3 (9), (11) and 2.10 we get that
∫

Ω
∇v∇ψ ≥

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω, and for λ > 0 satisfying λ‖(g(v))pg′(v)‖∞ ≤ 1. For such

values of λ, we can apply Theorem 2.8 to deduce the existence of a solution v of (Qλ) such
that v ≤ v ≤ v in Ω (and consequently v ∈ L∞(Ω)). Therefore L 6= ∅.

By Lemma 2.6 we obtain that Λ is finite. The proof is complete.

Following [19] we introduce

λ∗ = sup
v∈S

inf
ψ∈Φ

{L(v, ψ)} (3.1)

where

L(v, ψ) :=

∫

Ω
∇v∇ψ −

∫

Ω
a(x)(g(v))−γg′(v)ψ

∫

Ω
(g(v))pg′(v)ψ

is the extended functional and

Φ =
{

ψ ∈ C1
0(Ω)\{0} : ψ ≥ 0 in Ω

}

,

S =
{

v ∈ H1
0(Ω) ∩ L∞(Ω) : v ≥ C(v)d(x) in Ω

}

,

where 0 < C(v) < ∞ is a positive constant which can depend on v. If v ∈ S then v ≥ kφ1 in Ω

for some k > 0 (see Remark 2.2 c)), and from Lemmas 2.1, 2.3 and 2.5 it follows that L is well
defined.

Some properties of λ∗ are stated in the following theorem.

Theorem 3.2. The following properties hold true:

a) 0 < λ∗ < ∞.

b) λ∗ = Λ.

Proof. a) From Lemma 3.1 there exist λ > 0 and v ∈ H1
0(Ω) ∩ L∞(Ω), v > 0 in Ω, such that

∫

Ω
∇v∇ψ =

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), which together with Theorem 3 of Brezis–Nirenberg [10] implies that v ∈ S

and 0 < λ = L(v, ψ) for all ψ ∈ Φ. As a consequence we get

0 < λ = inf
ψ∈Φ

{L(v, ψ)} ≤ λ∗.

To prove that λ∗ < ∞, we argue by contradiction. Assume that λ∗ = ∞. Then, by the
definition of λ∗ there exists v ∈ S such that Λ < λ := infψ∈Φ {L(v, ψ)}, that is,

∫

Ω
∇v∇ψ ≥

∫

Ω
a(x)(g(v))−γg′(v)ψ + λ

∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ Φ. By using Lemma 2.11 we deduce that v is a supersolution of (Qλ) and v ≥ v0 in
Ω. Moreover, from Lemma 2.10 one has that v0 is a subsolution of (Qλ). As a consequence we
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can apply Theorem 2.8, with v = v0 and v = v, to deduce the existence of a solution of (Qλ),
which implies λ ≤ Λ, contradicting the fact that λ > Λ. Therefore λ∗ < ∞.

b) Let v ∈ S such that 0 < λ = infψ∈Φ {L(v, ψ)}. Arguing as in a) we can prove
that problem (Qλ) has a solution, namely, λ ∈ L and since λ is arbitrary, we have λ∗ =

supv∈S infψ∈Φ {L(v, ψ)} ≤ Λ. We claim that λ∗ = Λ. Otherwise, λ∗ < Λ and by the definition
of Λ there exists λ > λ∗ such that problem (Qλ) has a solution v. Again, arguing as in a) we
find that v ∈ S and λ = infψ∈Φ {L(v, ψ)} ≤ λ∗, contradicting the fact that λ > λ∗. Therefore
λ∗ = Λ. This finishes the proof.

Remark 3.3. We will compare parameter λ∗ with parameters ǫ0 and ǫ1 obtained in Theorems
1.2 and 1.3 of [29]. First, note that when h(x, t) = λ|t|r−1t the hypothesis (h2) in [29] is
satisfied with b(x) := λ, C = 1 and in our notation r − 1 = p. Hence b(x) := λ is the
parameter and problem (Qλ) (or equivalently problem (Pλ)) has a solution for all 0 < λ ≤ ǫ0.
As a consequence, by the definition of Λ = λ∗ (see Theorem 3.2), one has ǫ0 ≤ λ∗. Let us
remark that ǫ1 ≤ ǫ0, because one of the solutions obtained in Theorem 1.3 is the same as in
Theorem 1.2 (both theorems mentioned here are from [29]).

We claim that ǫ0 < λ∗. To show this, we will use some notations and results obtained in
Lemma 2.3 of [29]. Let v, v ∈ C1

0(Ω) be the sub and supersolution, respectively, obtained in
Lemma 2.3 of [29]. Then, 0 < v ≤ v in Ω and v satisfies















−∆v = a(x)(g(v))−γg′(v) + 2C in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω,

(F)

which together with Theorem 3 of Brezis–Nirenberg [10] implies that v ∈ S.
Moreover, ǫ0 satisfies (see end of proof Lemma 2.3 of [29])

1 − ǫ0(g(v))p ≥ 0

and since 0 < g′(t) ≤ 1 for all t > 0, this implies

ǫ0‖(g(v))pg′(v)‖∞ ≤ 1. (3.2)

Let us evaluate L(v, ψ), ψ ∈ Φ. From (F), v ≤ v in Ω and Lemma 2.3 (9), (11) we get

L(v, ψ) =

∫

Ω
∇v∇ψ −

∫

Ω
a(x)(g(v))−γg′(v)ψ

∫

Ω
(g(v))pg′(v)ψ

=

∫

Ω
a(x)(g(v))−γg′(v)ψ −

∫

Ω
a(x)(g(v))−γg′(v)ψ + 2C

∫

Ω
ψ

∫

Ω
(g(v))pg′(v)ψ

≥ 2C
∫

Ω
ψ

‖(g(v))pg′(v)‖∞

∫

Ω
ψ

,

whence

L(v, ψ) ≥ 2C

‖(g(v))pg′(v)‖∞

.

Since C = 1 and v ∈ S, this implies

λ∗ = sup
v∈S

inf
ψ∈Φ

{L(v, ψ)} ≥ inf
ψ∈Φ

{L(v, ψ)} ≥ 2
‖(g(v))pg′(v)‖∞
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and therefore
λ∗‖(g(v))pg′(v)‖∞ > 1. (3.3)

From λ∗ ≥ ǫ0, (3.2) and (3.3) one deduces that ǫ1 ≤ ǫ0 < λ∗.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let us show that problem (Qλ) has a solution for λ ∈ (0, λ∗) and no
solution for λ ∈ (λ∗, ∞), where λ∗ is defined in (3.1). Let λ ∈ (0, λ∗). Then, by the definition
of λ∗, there exists z ∈ S such that λ ≤ L(z, ψ) for all ψ ∈ Φ. We deduce from this inequality
and Lemma 2.11 that z is a supersolution of (Qλ) with z ≥ v0 in Ω. Applying Theorem 2.8
with v = v0 and v = z we obtain that problem (Qλ) has a solution vλ with v ≤ vλ ≤ v in Ω.
To show that vλ ∈ C1

0(Ω) we follow [2]. By Lemma 2.3 (3), (5), (9), (11) and Lemma 2.10 we
infer

a(x)g−γ(vλ)g′(v) ≤ a(x)g−γ(v)g′(v) ∈ Lq(Ω)

and
gp(vλ)g′(v) ≤ |v|p ≤ ‖v‖p

∞ ∈ L∞(Ω)

and as a consequence there exist z1, z2 ∈ C1,α
0 (Ω), for some α ∈ (0, 1), satisfying

∫

Ω
∇z1∇ψ =

∫

Ω
a(x)(g(vλ))

−γg′(vλ)ψ and
∫

Ω
∇z2∇ψ = λ

∫

Ω
(g(vλ))

pg′(vλ)ψ,

for all ψ ∈ H1
0(Ω). From this we get

∫

Ω
∇vλ∇ψ =

∫

Ω
∇z1∇ψ +

∫

Ω
∇z2∇ψ,

for all ψ ∈ H1
0(Ω), which implies vλ = z1 + z2, and hence vλ ∈ C1,α

0 (Ω). Furthermore, by the
strong maximum principle and the Hopf lemma we find that vλ ∈ int(C1

0(Ω)+).
Finally, from Theorem 3.2 we have λ∗ = Λ and by the definition of Λ problem (Qλ) has no

solution for λ > λ∗ = Λ. This completes the proof of the theorem.

4 Proof of Theorem 1.2

In this section we are going to prove Theorem 1.2. In order to do this, we adapt the arguments
carried out in [4]. From now on, we will assume (H)∞ and 3 < p < 22∗ − 1 hold. Proceeding
as in Section 1 we can prove that:

• aφ
−1−γ
1 , aφ

−γ
1 ∈ L∞(Ω).

• ag−1−γ(ϕ)g′(ϕ), ag−1−γ(φ1)g′(φ1) ∈ L∞(Ω) and ag1−γ(ϕ) ∈ L∞(Ω) if γ 6= 1, and
a(x) ln(g(ϕ)) ∈ L∞(Ω) if γ = 1.

• if vλ is the solution obtained in Theorem 1.1, then

a(x)g−γ(vλ)g′(vλ) ∈ L∞(Ω). (4.1)

We start by defining the functional

Jλ(v) =
1
2
‖v‖2 −

∫

Ω
a(x)G(|v|)− λ

p + 1

∫

Ω
gp+1(v), v ∈ D. (4.2)

It is worth recalling that int(C1
0(Ω)+) ⊂ D (see (2.10) and Remark 2.9 ). The functional Jλ fails

to be Fréchet differentiable in H1
0(Ω) because of the singular term, then critical point theory

could not be applied to obtain the existence of solutions directly.
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Remark 4.1. Let (H) and 0 < p < 3 hold. Denote by D+ = {u ∈ D : u ≥ 0 a.e. in Ω}. Then,
by Lemma 2.5 one has D+ 6= ∅. The arguments carried out in [1, 2] can be adapted to prove
that problem (Pλ) has at least one solution for all λ ∈ R.

a) Assume that λ ≥ 0. By Lemma 2.3 (6)

Jλ(v) ≥
1
2
‖v‖2 −

∫

Ω
a(x)G(|v|)− λ2

p + 1
4

p + 1

∫

Ω
|v|

p + 1
2

≥ 1
2
‖v‖2 −

∫

Ω
a(x)G(|v|)− C‖v‖

p + 1
2 ,

for all v ∈ D+ and for some constant C > 0. Hence, since 1/2 < (p + 1)/2 < 2, we
argue in a similar way to the proof of Lemma 2.1 of [1] to show that Jλ is coercive on D+

and there exists vλ ∈ D+ such that

Jλ(vλ) = inf
v∈D+

Jλ(v).

Finally, considering the cases γ ≥ 1 and 0 < γ < 1 respectively, we argue in a similar
way to the first part of the proof of Theorems 1.1 and 1.2 of [1] to show that vλ is a
solution of (Qλ) (and consequently uλ = g(vλ) is a solution of (Pλ)).

For λ ≤ 0 we get

Jλ(v) ≥
1
2
‖v‖2 −

∫

Ω
a(x)G(|v|)

for all v ∈ D+. We argue in the same way as in the case λ ≥ 0 to show that there exists
a solution vλ of (Qλ) (and consequently uλ = g(vλ) is a solution of (Pλ)).

b) We define the following constraint sets

N1 =

{

v ∈ D+ : ‖v‖2 −
∫

Ω
(g(v))pg′(v)v ≥

∫

Ω
a(x)(g(v))−γg′(v)v

}

and

N2 =

{

v ∈ D+ : ‖v‖2 −
∫

Ω
(g(v))pg′(v)v =

∫

Ω
a(x)(g(v))−γg′(v)v

}

.

Since 1 < p + 1 < 4, by Lemma 2.3 (6) we have limt→∞ Jλ(tv) = ∞ for all v ∈ D+.
Moreover, limt→0+ Jλ(tv) = ∞ if γ ≥ 1 and limt→0+ Jλ(tv) = 0 if 0 < γ < 1. Therefore,
for all v ∈ D+ there exists a t(v) > 0 such that Jλ(t(v)v) = inft>0 Jλ(tv) and t(v)v ∈ N2.
Using this fact, Lemma 2.3 (6) and that 1 < p + 1 < 4 we show that Jλ is coercive on
N1 and there exists vλ ∈ N1 such that Jλ(vλ) = infv∈N1 Jλ(v) = infv∈N2 Jλ(v). Finally, we
argue in a similar way to the first part of the proof of Theorem 1.1 of [2] to show that vλ

is a solution of (Qλ) (and consequently uλ = g(vλ) is a solution of (Pλ)).

In this section, we denote by Iλ the functional defined in (2.9) of Theorem 2.8.
An important property of the solution obtained in Theorem 1.1 is the following.

Lemma 4.2. Let 0 < λ < λ∗. If vλ is the solution of (Qλ) obtained in Theorem 1.1, then vλ is a local

minimum of Jλ in the C1
0(Ω) topology.
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Proof. Without loss of generality, we can assume that v is a solution of (Qµ) for some µ ∈
(λ, λ∗). Hence, arguing as in Theorem 1.1 one has v ∈ C1

0(Ω) and by the strong maximum
principle and the Hopf lemma we infer that v ∈ int(C1

0(Ω)+). Now, the proof is based on the
following claims.
Claim 1. v − vλ ∈ int(C1

0(Ω)+). We have

−∆(v − vλ) ≥ a(x)((g(v))−γg′(v)− (g(vλ))
−γg′(vλ)) + λ(g(v))pg′(v)− (g(vλ))

pg′(vλ))

and by the mean value theorem there exist measurable functions θ1(x) and θ2(x) such that
vλ(x) ≤ θ1(x), θ2(x) ≤ v(x) for all x ∈ Ω and

−∆(v − vλ) ≥ a(x)((g(θ1(x)))−γg′(θ1(x)))′(v(x)− vλ(x)) (4.3)

+ λ((g(θ2(x))))pg′(θ2(x))))′(v(x)− vλ(x)).

From the definition of g′ and Lemma 2.3 (3), it follows that

(g−γ(t)g′(t))′ ≥ −g−1−γ(t)(γ + 2g2(t)), t > 0, (4.4)

|(gp(t)g′(t))′| ≤ pgp−1(t) + 2gp+1(t), t > 0,

hold. Then, again by Lemma 2.3 (3), (11) one has

(g−γ(θ1(x))g′(θ1(x)))′ ≥ −g−1−γ(vλ(x))(γ + 2g2(‖v‖∞)),

|(gp(θ2(x))g′(θ2(x)))′| ≤ pgp−1(‖v‖∞) + 2gp+1(‖v‖∞),

for all x ∈ Ω. We set

c1 = ‖ag−1−γ(vλ)‖∞(γ + 2g2(‖v‖∞)), c2 = pλgp−1(‖v‖∞) + 2λgp+1(‖v‖∞)

and c = c1 + c2. With these estimates and definitions, in view of (4.3), we get

−∆(v − vλ) ≥ (−c1 − c2)(v − vλ) = −c(v − vλ)

that is
−∆(v − vλ) + c(v − vλ) ≥ 0 in Ω,

and since v − vλ 6= 0, we can apply Theorem 3 of [10] to deduce the existence of constants
c3, c4 > 0 such that

v − vλ ≥ c3d(x) ≥ c4φ1(x) in Ω.

As a consequence we obtain

∂(v − vλ)

∂ν
≤ c4

∂φ1

∂ν
< 0 on ∂Ω,

which jointly with v − vλ > 0 in Ω means that v − vλ ∈ int(C1
0(Ω)+), and this proves Claim 1.

Claim 2. vλ − v ∈ int(C1
0(Ω)+). The proof is essentially equal to the one of Claim 1. Indeed,

we set
c1 = ‖ag−1−γ(v)‖∞(γ + 2g2(‖v‖∞)),

and from (4.4) and mean value theorem one has

−∆(vλ − v) ≥ a(x)((g(θ1(x)))−γg′(θ1(x)))′(vλ − v) + λ(g(vλ))
pg′(vλ)

≥ −c1(vλ − v)
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in Ω, because v(x) ≤ θ1(x) ≤ vλ(x), and since vλ − v 6= 0, we can apply Theorem 3 of [10] to
deduce the existence of constants c3, c4 > 0 such that

vλ − v ≥ c3d(x) ≥ c4φ1(x) in Ω.

As a consequence we obtain

∂(vλ − v)

∂ν
≤ c4

∂φ1

∂ν
< 0 on ∂Ω,

which jointly with vλ − v > 0 in Ω means that vλ − v ∈ int(C1
0(Ω)+), and this proves Claim 2.

Claim 3. There exists a ball B = Bǫ(vλ) in the C1
0(Ω) topology satisfying

B ⊂ [v, v] :=
{

v ∈ C1
0(Ω) : v ≤ v ≤ v in Ω

}

.

From Claims 1 and 2 there exists ǫ > 0 such that the balls B1 = Bǫ(v − vλ), B2 = Bǫ(vλ − v) ⊂
int(C1

0(Ω)+). We define B = Bǫ(vλ). Let v ∈ B. Notice that

v − B1 = Bǫ(vλ) and v + B2 = Bǫ(vλ),

and as a consequence there exist z ∈ B1, w ∈ B2 with

v + w = v = v − z,

which implies v < v < v in Ω, that is, v ∈ [v, v]. Hence B ⊂ [v, v].
We can finally complete the proof of the lemma. Let B as in Claim 3 and consider v ∈ B.

Then,

Jλ(v)− Iλ(v) = − λ

p + 1

∫

Ω
gp+1(v) + λ

∫

Ω
G̃(x, v)

= − λ

p + 1

∫

Ω
gp+1(v) + λ

∫

Ω

∫ v(x)

0
g̃(x, t)dtdx + λ

∫

Ω

∫ v(x)

v(x)
g̃(x, t)dtdx

= − λ

p + 1

∫

Ω
gp+1(v) + λ

∫

Ω

∫ v(x)

0
gp(v(x))g′(v(x))dtdx

+ λ
∫

Ω

∫ v(x)

v(x)
gp(t)g′(t)dtdx

= λ
∫

Ω
gp(v(x))g′(v(x))v(x)dx − λ

p + 1

∫

Ω
gp+1(v(x))dx =: c

where c is a constant.
By virtue of the above equality, we obtain that vλ is a C1

0(Ω)-local minimizer of Jλ. This
finishes the proof.

Remark 4.3. Since v, v ∈ int(C1
0(Ω)+), it follows that [v, v] ⊂ int(C1

0(Ω)+) and then, by Re-
mark 2.9, Jλ(v), Iλ(v) ∈ R for all v ∈ [v, v]. Furthermore, arguing as in Lemma 2.5 we infer

{

v ∈ H1
0(Ω) : v ≤ v ≤ v in Ω

}

⊂ D.

Corollary 4.4. Let B = Bǫ(0) + vλ be as in the proof of Lemma 4.2. Then for all v ∈ Bǫ(0) we have

Jλ(vλ + v+)− Jλ(vλ) ≥ 0,

holds.
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Proof. As we have seen in the proof of Lemma 4.2,

v < vλ + v < v in Ω, (4.5)

for all v ∈ Bǫ(0). We claim that

v < vλ + v+ < v in Ω,

for all v ∈ Bǫ(0). Indeed, by using (4.5) one has

v < vλ + v = vλ + v+ − v− ≤ vλ + v+ in Ω.

Now, let us show that vλ + v+ < v in Ω. Arguing by contradiction, suppose that there
exists x ∈ Ω such that vλ(x) + v+(x) ≥ v(x). Then, from vλ(x) < v(x) we infer that v(x) > 0,
and therefore v−(x) = 0. Thus, the inequality (4.5) implies

v(x) ≤ vλ(x) + v+(x) = vλ(x) + v+(x)− v−(x) = vλ(x) + v(x) < v(x),

a contradiction.
Finally, we can argue as in the proof of Lemma 4.2 to get

Jλ(vλ + v+)− Iλ(vλ + v+) = c,

where c is a constant, and since vλ + v+ ∈ H1
0(Ω), by Theorem 2.8, we deduce that

Jλ(vλ + v+)− Jλ(vλ) = Iλ(vλ + v+)− Iλ(vλ) ≥ 0,

proving the corollary.

For fixed λ ∈ (0, λ∗), we look for a second solution in the form z = w + v, where v 	 0
and w = vλ is the solution found in the preceding lemma. A straight calculation shows that v

satisfies

−∆v = a(x)((g(w + v))−γg′(w + v)− (g(w))−γg′(w)) (4.6)

+ λ((g(w + v))pg′(w + v)− (g(w))pg′(w)).

Denote by gλ(x, t) the right hand side of the preceding equation (with gλ(x, t) = 0 for t ≤ 0)
and set

Jλ(v) =
1
2
‖v‖2 −

∫

Ω
Gλ(x, v), (4.7)

where

Gλ(x, t) =
∫ t

0
gλ(x, s)ds =

{

0 if t ≤ 0,

H1(x, t) + H2(x, t) + H3(x, t) if t ≥ 0,

and

H1(x, t) = a(x)(G(w + t)− G(w)),

H2(x, t) =
λ

p + 1
(gp+1(w + t)− gp+1(w)),

H3(x, t) = −a(x)g−γ(w)g′(w)t − λ(g(w))pg′(w)t,
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for t ≥ 0.
We observe that by (H)∞, Lemma 2.3 (3), (6), (11), (12) and (4.1) one has

|gλ(x, t)| ≤ c1 + 2(p−3)/4λc2|t|(p−1)/2, (4.8)

where c1, c2 > 0 are constants which depends of ‖ag−γ(w)g′(w)‖∞, ‖w‖∞ and p. From this it
follows that Jλ ∈ C1(H1

0(Ω), R).
We shall use the Mountain Pass Theorem to prove the existence of a nontrivial solution to

(4.6). In order to do this, we need some preliminary lemmas.

Lemma 4.5. v = 0 is a local minimum of Jλ in H1
0(Ω).

Proof. We write v = v+ − v−. Using the fact that w is a solution of (Qλ) and G(x, t) = 0 for
t ≤ 0 we get

Jλ(v) =
1
2
‖v+‖2 +

1
2
‖v−‖2 −

∫

Ω
Gλ(x, v+) +

1
2
‖w + v+‖2 − 1

2
‖w + v+‖2

=
1
2
‖v−‖2 −

∫

Ω
∇w∇v+ +

∫

Ω
a(x)(g(w))−γg′(w)v+ + λ

∫

Ω
(g(w))pg′(w)v+

+
1
2
‖w + v+‖2 −

∫

Ω
a(x)G(w + v+)− λ

p + 1

∫

Ω
gp+1(w + v+)

− 1
2
‖w‖2 +

∫

Ω
a(x)G(w) +

λ

p + 1

∫

Ω
gp+1(w)

=
1
2
‖v−‖2 + Jλ(w + v+)− Jλ(w).

This and Corollary 4.4 imply that Jλ(v) ≥ 0 for all v ∈ Bǫ(0), where Bǫ(0) is as in Corollary
4.4. This proves that v = 0 is a local minimum in the C1

0(Ω) topology. Therefore, in view of
(4.8), Theorem 1 in [10] applies and v = 0 is a local minimum of Jλ in the H1

0(Ω) topology.
This finishes the proof.

Lemma 4.6. If v, w ∈ L∞(Ω) ∩ D are positive functions, then

lim
t→∞

∫

Ω

a(x)G(v + tw)

t(p+1)/2
= 0

and
∫

Ω
gp+1(v + tw) ≥ t(p+1)/2

∫

Ω
gp+1(

v

t
+ w),

for all t > 1.

Proof. First we prove the limit. We divide the proof into three cases.

Case 1. γ < 1. In this case, by Lemma 2.3 (5) one has

0 <
a(x)G(v + tw)

t(p+1)/2
=

a(x)g1−γ(v + tw)

(1 − γ)t(p+1)/2
≤

a(x)(
v

t
+ w)1−γ

(1 − γ)t((p+1)/2)+γ−1
≤ a(x)(v + w)1−γ

1 − γ
,

for all t ≥ 1. Then taking the limit as t → ∞ we get

a(x)G(v + tw)

t(p+1)/2
→ 0,
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and from the Lebesgue dominated convergence theorem we find

lim
t→∞

∫

Ω

a(x)G(v + tw)

t(p+1)/2
= 0.

This proves the case 1.

Case 2. γ = 1. By Lemma 2.3 (3), (5)

a(x) ln(g(v))

t(p+1)/2
≤ a(x)G(v + tw)

t(p+1)/2
=

a(x) ln(g(v + tw))

t(p+1)/2
≤

a(x)
(v

t
+ w

)

t((p+1)/2)−1
≤ a(x)(v + w)

for all t ≥ 1, and thus

∣

∣

∣

∣

a(x)G(v + tw)

t(p+1)/2

∣

∣

∣

∣

≤ max {|a(x) ln(g(v))|, a(x)(v + w)} .

Again, by the Lebesgue dominated convergence theorem we have

lim
t→∞

∫

Ω

a(x)G(v + tw)

t(p+1)/2
= 0.

Case 3. γ > 1. By Lemma 2.3 (3), (10) one has

0 <

∣

∣

∣

∣

a(x)G(v + tw)

t(p+1)/2

∣

∣

∣

∣

=
a(x)g1−γ(v + tw)

|1 − γ|t(p+1)/2
≤ a(x)g1−γ(v)

|1 − γ|t(p+1)/2
≤ a(x)g1−γ(v)

|1 − γ| ,

for all t ≥ 1. By the Lebesgue dominated convergence theorem one finds

lim
t→∞

∫

Ω

a(x)G(v + tw)

t(p+1)/2
= 0.

We now fix t > 1. Then, from Lemma 2.3 (13) we have

gp+1(v + tw) =
[

g2
(

t
(v

t
+ w

))](p+1)/2
≥
[

tg2
(v

t
+ w

)](p+1)/2
= t(p+1)/2gp+1

(v

t
+ w

)

,

and this implies that

∫

Ω
gp+1(v + tw) ≥ t(p+1)/2

∫

Ω
gp+1

(v

t
+ w

)

,

for all t > 1. The lemma is proved.

Lemma 4.7. Let 2 < θ < p + 1. Then, for all t ≥ 0,

a) −Gλ(x, t) + θ
p+1 gλ(x, t)t ≥ c − a(x)

1−γ t1−γ for some constant c ∈ R, if 0 < γ < 1;

b) −Gλ(x, t) + θ
p+1 gλ(x, t)t ≥ c − a(x)t + a(x) ln(g(w)) for some constant c ∈ R, if γ = 1;

c) −Gλ(x, t) + θ
p+1 gλ(x, t)t ≥ c + a(x)

1−γ g1−γ(w) for some constant c ∈ R, if γ > 1.
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Proof. For convenience of notation we write

h1(x, t) = a(x)(g(w + t))−γg′(w + t),

h2(x, t) = λ(g(w + t))pg′(w + t),

h3(x, t) = −a(x)(g(w))−γg′(w)− λ(g(w))pg′(w),

for t ≥ 0. Thus,

−Gλ(x, t) +
θ

p + 1
gλ(x, t)t = − H1(x, t) +

θ

p + 1
h1(x, t)t

− H2(x, t) +
θ

p + 1
h2(x, t)t

− H3(x, t) +
θ

p + 1
h3(x, t)t

for t ≥ 0.
a) In this case, from Lemma 2.3 (5) we have

−H1(x, t) +
θ

p + 1
h1(x, t)t ≥ −H1(x, t) ≥ − a(x)

1 − γ
g1−γ(w + t)

≥ − a(x)

1 − γ
(w + t)1−γ

≥ − a(x)

1 − γ
(w1−γ + t1−γ)

≥ −‖aw1−γ‖∞

1 − γ
− a(x)

1 − γ
t1−γ

and since p + 1 > θ,

− H3(x, t) +
θ

p + 1
h3(x, t)t =

(

1 − θ

p + 1

)

(a(x)(g(w))−γg′(w) + λ(g(w))pg′(w))t ≥ 0. (4.9)

Let us observe that this inequality is valid for all γ > 0.
Now, let us estimate −H2(x, t) + θ

p+1 h2(x, t)t. From Lemma 2.3 (4) one has

−H2(x, t) +
θ

p + 1
h2(x, t)t =

λ

p + 1
(−gp+1(w + t) + gp+1(w))

+
θλ

p + 1
(g(w + t))pg′(w + t)t

≥ λ

p + 1

[

−gp+1(w + t) +
θ

2
gp+1(w + t)t

w + t
+ gp+1(w)

]

≥ λ

p + 1

[

gp+1(w + t)

(

−1 +
θ

2
t

‖w‖∞ + t

)

+ gp+1(w)

]

,

and therefore

−H2(x, t) +
θ

p + 1
h2(x, t)t > 0,

for all t > t := (2‖w‖∞)/(θ − 2).
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Moreover, for 0 ≤ t ≤ t, by using Lemma 2.3 (5) we get

−H2(x, t) +
θ

p + 1
h2(x, t)t ≥ − λ

p + 1
gp+1(w + t)

≥ − λ

p + 1
(w + t)p+1 ≥ − λ

p + 1
(‖w‖∞ + t)p+1.

By setting c1 = − λ
p+1 (‖w‖∞ + t)p+1, we have proved that

− H2(x, t) +
θ

p + 1
h2(x, t)t ≥ c1, for all t ≥ 0. (4.10)

Let us observe that this inequality is valid independent of γ > 0.
In view of the above inequalities we deduce that

−Gλ(x, t) +
θ

p + 1
gλ(x, t)t ≥ c − a(x)

1 − γ
t1−γ for all t ≥ 0,

where c = − ‖aw1−γ‖∞

1−γ + c1.

b) When γ = 1, by Lemma 2.3 (5), one has the inequality

−H1(x, t) +
θ

p + 1
h1(x, t)t ≥ −H1(x, t) = −a(x) ln(g(w + t)) + a(x) ln(g(w))

≥ −a(x)(w + t) + a(x) ln(g(w))

≥ −‖aw‖∞ − a(x)t + a(x) ln(g(w)),

which combined with (4.9) and (4.10) yield

−Gλ(x, t) +
θ

p + 1
gλ(x, t)t ≥ c − a(x)t + a(x) ln(g(w))

for some constant c ∈ R.

c) Indeed, the inequality

−H1(x, t) +
θ

p + 1
h1(x, t)t ≥ −H1(x, t) = − a(x)

1 − γ
g1−γ(w + t) +

a(x)

1 − γ
g1−γ(w)

≥ a(x)

1 − γ
g1−γ(w),

combined with (4.9) and (4.10) yield

−Gλ(x, t) +
θ

p + 1
gλ(x, t)t ≥ c +

a(x)

1 − γ
g1−γ(w)

for some constant c ∈ R. This concludes the proof.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 4.5 u0 = 0 is a local minimizer of Jλ with respect to the
topology of H1

0(Ω). In the case where u0 is not a strict local minimizer of Jλ, we deduce the
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existence of further critical points of Jλ, and then we are done. In this way, we may assume
that

u0 = 0 is a strict local minimizer of Jλ. (4.11)

For all t > 1 we have
Jλ(tφ1) = Jλ(w + tφ1)− Jλ(w)

and by Lemma 4.6 it follows that

Jλ(tφ1) ≤
1
2
‖w + tφ1‖2 −

∫

Ω
a(x)G(w + tφ1)−

t(p+1)/2λ

p + 1

∫

Ω
gp+1

(w

t
+ φ1

)

− Jλ(w)

and using again Lemma 4.6 and the Lebesgue dominated convergence theorem we yield
limt→∞ J (tφ1) = −∞. From this and (4.11), we conclude that Jλ has the mountain pass geom-
etry (see [5, Theorem 2.1]). It remains to prove the Palais–Smale condition. Let 4 < 2θ < p+ 1.
Let vn ∈ H1

0(Ω) be such that Jλ(vn) → c (c ∈ R) and J ′
λ(vn) → 0. From the former, respec-

tively the latter multiplied by θvn/(p + 1), we get

1
2
‖vn‖2 −

∫

Ω
Gλ(x, vn) = c + o(1),

o(1)‖vn‖ ≥ | θ

p + 1
‖vn‖2 − θ

p + 1

∫

Ω
gλ(x, vn)vn| ≥

−θ

p + 1
‖vn‖2 +

θ

p + 1

∫

Ω
gλ(x, vn)vn,

and therefore (remember that Gλ(x, t) = gλ(x, t)t = 0 for t ≤ 0),

c + o(1) + o(1)‖vn‖ ≥
(

1
2
− θ

p + 1

)

‖vn‖2 +
∫

Ω
(−Gλ(x, v+n ) +

θ

p + 1
gλ(x, v+n )v

+
n ).

From this and Lemma 4.7 we deduce that

c+ o(1)+ o(1)‖vn‖ ≥



































(

1
2
− θ

p + 1

)

‖vn‖2 + c|Ω| −
∫

Ω

a(x)

1 − γ
(v+n )

1−γ if γ < 1,
(

1
2
− θ

p + 1

)

‖vn‖2 + c|Ω| −
∫

Ω
a(x)v+n +

∫

Ω
a(x) ln(g(w)) if γ = 1,

(

1
2
− θ

p + 1

)

‖vn‖2 + c|Ω|+
∫

Ω

a(x)

1 − γ
g1−γ(w) if γ > 1.

Thus, in any case, by the Sobolev embedding theorem we have that the sequence {vn} is
bounded in H1

0(Ω) and a standard argument shows that, up to a subsequence, there exists
v ∈ H1

0(Ω) such that vn → v in H1
0(Ω). Therefore, the Palais–Smale condition has been

verified.
Finally, an application of the mountain pass theorem yields a nontrivial critical point v of

Jλ (see [5, heorem 2.1]) and by elliptic regularity v ∈ C1
0(Ω). Moreover, since gλ(x, t) = 0 for

t ≤ 0 one has −‖v−‖2 = 0, which implies that v 	 0 and z = w + v ∈ C1
0(Ω) is a second

solution of (Qλ). This finishes the proof of Theorem 1.2.

We end this section with the following proposition.

Proposition 4.8. Suppose that (H)∞ and 3 < p < 22∗ − 1 hold. If 0 < γ < 1, then λ∗ ∈ L.

Proof. In order to prove the proposition one uses the following properties:
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• if vλ is the solution obtained in Theorem 1.1, then Jλ(vλ) < c for some constant c > 0
independent of λ ∈ (0, λ∗). Indeed, as we have seen in the proof of Lemma 4.2,

Jλ(vλ) = Iλ(vλ) + λ
∫

Ω
gp(v(x))g′(v(x))v(x)dx − λ

p + 1

∫

Ω
gp+1(v(x))dx,

which, jointly with Remark 2.9 b), gives

Jλ(vλ) ≤ λ∗
∫

Ω
gp(v(x))g′(v(x))v(x)dx =: c.

• −gp+1(t)
p+1 + θ

p+1 gp(t)g′(t)t ≥ 0 for all t > 0 and 4 < 2θ < p + 1. Indeed, from Lemma 2.3
(4) we get

−gp+1(t)

p + 1
+

θ

p + 1
gp(t)g′(t)t ≥ gp+1(t)

p + 1

(

−1 +
θ

2

)

> 0, (4.12)

for all t > 0.

Now, let λn ∈ (0, λ∗) be an increasing sequence such that λn → λ∗ as n → ∞ and let vn := vλn

be a solution of (Qλ) obtained in Theorem 1.1 for λ = λn. Then

Jλn
(vn) =

1
2
‖vn‖2 −

∫

Ω
a(x)G(vn)−

λn

p + 1

∫

Ω
gp+1(vn) < c,

for some constant c > 0 independent of λn and

‖vn‖2 −
∫

Ω
a(x)(g(vn))

−γg′(vn)vn − λn

∫

Ω
(g(vn))

pg′(vn)vn = 0.

Thus, by using (4.12), one deduces
(

1
2
− θ

p + 1

)

‖vn‖2 − 1
1 − γ

∫

Ω
a(x)g1−γ(vn) +

θ

p + 1

∫

Ω
a(x)(g(vn))

−γg′(vn)vn < c,

whence, by Lemma 2.3 (3),
(

1
2
− θ

p + 1

)

‖vn‖2
<

1
1 − γ

∫

Ω
a(x)g1−γ(vn) + c ≤ ‖a‖∞

1 − γ

∫

Ω
v

1−γ
n + c.

From the previous relation it is easy to see that {vn} is bounded in H1
0(Ω). Thus, there exists

v∗ ∈ H1
0(Ω) such that, up to a subsequence, we have as n → ∞

vn ⇀ v∗ in H1
0(Ω),

vn → v∗ a.e. in Ω.

Remember that vn ≥ v = v0 in Ω and thus, by Lemma 2.3 (9), (11),

|a(x)(g(vn))
−γg′(vn)ψ| ≤ |a(x)(g(v0))

−γg′(v0)ψ| in Ω.

Because vn is a solution of (Qλn
), we have

∫

Ω
∇vn∇ψ =

∫

Ω
a(x)(g(vn))

−γg′(vn)ψ + λn

∫

Ω
(g(vn))

pg′(vn)ψ,

for all ψ ∈ H1
0(Ω). Passing to the limit in the previous equality and using Lebesgue’s theorem,

we deduce that v∗ is a weak solution of (Qλ∗). Finally, we can adapt the arguments in the
proof of Theorem 1 c) in [1] to obtain v∗ ∈ C1

0(Ω). This ends the proof of the proposition.

Proposition 4.8 suggests that λ∗ ∈ L for arbitrary γ > 0. However, for γ > 1 and λ ∈
(0, λ∗) one has Jλ(v) > 0 for any solution v of (Qλ), and thus the proof of Proposition 4.8
cannot be applied to deduce that λ∗ ∈ L.
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Abstract. This paper is considered with a scalar delay Nicholson’s blowflies equation
in periodic environment. By taking advantage of some novel differential inequality
techniques and the fluctuation lemma, we set up the sharp condition to characterize
the global asymptotic stability of positive periodic solutions on the addressed equation.
The obtained results improve and supplement some existing ones in recent literature,
and then give a more perfect answer to an open problem proposed by Berezansky et al.
in [Appl. Math. Model. 34(2010), 1405–1417]. In particular, two numerical examples are
provided to verify the reliability and feasibility of the theoretical findings.

Keywords: positive periodic solution, global asymptotic stability, scalar delay Nichol-
son’s blowflies equation, sharp condition.
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1 Introduction

Classical population dynamics model

x′(t) = −δx(t) + βx(t − τ)e−x(t−τ), δ, β, τ ∈ (0, +∞), (1.1)

is known as Nicholson’s blowflies equation [1, 8, 14]. Here x(t) stands for the population of

blowflies at time t, δ represents the average daily mortality of adult blowflies, β describes the

maximum average daily egg laying rate, and τ denotes mature time delay. Over the past 40

years, plenty of research results have been obtained on the qualitative behaviour and stability

of (1.1) (see [1, 3, 4, 10, 11] and their references). In particular, it has been successively shown

in [3, 4, 10, 11] that the zero equilibrium point of equation (1.1) possesses global asymptotic

stability when
β
δ ≤ 1 and its positive equilibrium point has global asymptotic stability under

1 <
β
δ < e2. Meanwhile, it was proved in [15] that the positive equilibrium point of (1.1)

BCorresponding author. Email: dingxiaodanmath@126.com
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possesses global attractivity when the delay τ is small and 1 <
β
δ . Recently, references [2] and

[19] substantiate that the positive equilibrium point of (1.1) is globally asymptotically stable

when the condition

1 <
β

δ
≤ e2, (1.2)

holds. It is worth pointing out that Yang and So [18] demonstrate the instability of the positive

equilibrium and the existence of a Hopf bifurcation when
β
δ > e2 and the delay τ is large. This

implies that (1.2) is the sharp stability condition on the positive equilibrium points of the

autonomous delay Nicholson’s blowflies model (1.1).

In general, the external environment of actual organisms often vary periodically with

seasonal changes and climate. Therefore, (1.1) can be normally generalized to the following

non-autonomous equation:

x′(t) = −δ(t)x(t) + β(t)x(t − τ(t))e−x(t−τ(t)), (1.3)

where t ≥ t0, δ(t) > 0, β(t) > 0 and τ(t) ≥ 0 are continuous ω-periodic functions (ω > 0). As

we all know, the periodic population dynamics model often generates a globally stable positive

periodic solution. Based on this, the authors of [1] proposed an open problem: Establish

global asymptotic stability findings on positive periodic solutions of non-autonomous delay

Nicholson’s blowflies equation. Subsequently, the global attractivity of the positive periodic

solutions of (1.3) is established in [12] when the following condition

κ ≈ 0.7215355,
1 − κ

eκ
=

1

e2
and eκ

< min
t∈[t0, t0+ω]

β(t)

δ(t)
≤ max

t∈[t0, t0+ω]

β(t)

δ(t)
< e2 (1.4)

is obeyed, which gives an answer for the above open problem. Recently, [6] studied the

periodicity of the delay Nicholson’s blowflies system accompanying patch structure, where

the main results involving the periodic scalar Nicholson’s blowflies case can be described as

follows.

Theorem 1.1. Suppose m is a nonnegative integer, and

τ(t) ≡ mω, and 1 < min
t∈[t0, t0+ω]

β(t)

δ(t)
≤ max

t∈[t0, t0+ω]

β(t)

δ(t)
< e2, (1.5)

then the positive periodic solution of the scalar Nicholson’s blowflies equation (1.3) is globally attractive.

As in [12], the author of [6] have neither analysed the local stability of positive periodic

solutions, nor have they given opinions about the sharp conditions which ensure the global

asymptotic stability of positive periodic solutions of (1.3). Therefore, a notable problem nat-

urally arises: What is the sharp condition guaranteeing the globally asymptotic stability of

the positive periodic solutions of (1.3)? Because (1.2) is the sharp stability condition on the

positive equilibrium points of the autonomous delay Nicholson’s blowflies model (1.1), it is

reasonable to assert:

1 < min
t∈[t0, t0+ω]

β(t)

δ(t)
≤ max

t∈[t0, t0+ω]

β(t)

δ(t)
≤ e2, (1.6)

is the sharp condition ensuring the globally asymptotic stability on the periodic solutions of

(1.3). To prove this assertion, the ultimate intention of this work is to develop a new strategy to

gain the existence and globally asymptotic stability of positive periodic solutions of equation

(1.3) under the assumption (1.6) without any other conditions. Meanwhile, we will establish

some completely new results on periodic stability of (1.3) without assuming τ = mω, and

then a more complete answer is given to the open problem on the global periodic stability

conditions of Nicholson’s blowflies equation in [1].
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2 Some lemmas

For convenience, denote

τ̄ = max
t∈∈[t0, t0+ω]

τ(t), B = C([−τ̄, 0], R), B+ = {ϕ ∈ B|ϕ(θ) ≥ 0, ∀θ ∈ [−τ̄, 0]},

and let xt(t0, ϕ)(x(t; t0, ϕ)) be the solution of (1.3) satisfying the admissible initial conditions:

xt0 = ϕ, ϕ ∈ B+ with ϕ(0) > 0. (2.1)

According to the conclusions of Example 2.8 in [7], we have

Lemma 2.1. If 1 < mint∈[t0,t0+ω]
β(t)
δ(t)

, then x(t; t0, ϕ) exists and possesses uniqueness on [t0,+∞).

Moreover, x(t; t0, ϕ) has positiveness and persistence.

Lemma 2.2 ([5, Lemma 2.3]). Assume a ∈ (0, 2], then

∣

∣

∣
be−b − ae−a

∣

∣

∣
< e−a|b − a| for all b > 0 and b 6= a.

Lemma 2.3 ([6, Corollary 3.1]). If 1 < mint∈[t0, t0+ω]
β(t)
δ(t)

, then equation (1.3) has a positive ω-

periodic solution x∗(t).

Lemma 2.4. Suppose that (1.6) holds, and equation (1.3) has a positive ω-periodic solution x∗(t)

satisfying maxt∈[t0, t0+ω] x∗(t) ≤ 2, then x∗(t) is globally asymptotically stable.

Proof. Obviously,

0 < k∗ := min
t∈[t0, t0+ω]

x∗(t) ≤ max
t∈[t0, t0+ω]

x∗(t) ≤ 2. (2.2)

For all t ∈ [t0 − τ̄, +∞), let us introduce the notations

x(t) = x(t; t0, ϕ) and w(t) =
x(t)

x∗(t)
− 1.

Then, for all t ≥ t0,

w′(t) =
β(t)

x∗(t)

{

− x∗(t − τ(t))e−x∗(t−τ(t))w(t)

+
[

x∗(t − τ(t))(w(t − τ(t)) + 1)e−x∗(t−τ(t))(w(t−τ(t))+1)

− x∗(t − τ(t))e−x∗(t−τ(t))
]

}

. (2.3)

Now, we prove the local stability of x∗(t).

For arbitrary ε > 0, let H = k∗ε
2 and ‖ϕ − x∗‖ < H with ‖ · ‖ denoting the supremum

norm, we shall reveal |x(t)− x∗(t)| < ε for all t ∈ [t0 − τ̄,+∞). Noting that

|w(t)| =

∣

∣

∣

∣

ϕ(t)− x∗(t)

x∗(t)

∣

∣

∣

∣

<
H

x∗(t)
≤

H

k∗
for arbitrary t ∈ [t0 − τ̄, t0] ,

we assert that

|w(t)| <
H

k∗
for arbitrary t > t0. (2.4)
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Otherwise, there exists S1 > t0 such that either

w(S1) =
H

k∗
and |w(t)| <

H

k∗
for arbitrary t ∈ [t0 − τ̄, S1) (2.5)

or

w(S1) = −
H

k∗
and |w(t)| <

H

k∗
for arbitrary t ∈ [t0 − τ̄, S1) (2.6)

holds.

Assuming that (2.5) holds, from Lemma 2.2, we acquire that for w(S1 − τ(S1)) 6= 0,

0 ≤ w′(S1)

≤
β(S1)

x∗(S1)

{

− x∗(S1 − τ(S1))e
−x∗(S1−τ(S1))w(S1) + |x∗(S1 − τ(S1))(w(S1 − τ(S1)) + 1)

× e−x∗(S1−τ(S1))(w(S1−τ(S1))+1) − x∗(S1 − τ(S1))e
−x∗(S1−τ(S1))|

}

<
β(S1)

x∗(S1)

{

− x∗(S1 − τ(S1))e
−x∗(S1−τ(S1))

H

k∗
+ x∗(S1 − τ(S1)) |w(S1 − τ(S1))| e−x∗(S1−τ(S1))

}

=
β(S1)

x∗(S1)
x∗(S1 − τ(S1))e

−x∗(S1−τ(S1))

[

−
H

k∗
+ |w(S1 − τ(S1))|

]

≤ 0,

which is an obvious contradiction. Similarly, one can derive a contradiction from the situation

(2.6). Moreover, when w(S1 − τ(S1)) = 0, one can also derive the above contradiction. Thus,

the assertion (2.4) is true and

|x(t)− x∗(t)| < x∗(t)
H

k∗
≤ ε for all t ∈ [t0, +∞),

which follows that x∗(t) is locally stable.

Next, we demonstrate the global attractivity of x∗(t). Let

µ = lim sup
t→+∞

ω(t) and λ = lim inf
t→+∞

ω(t).

Clearly, the global attractivity of x∗(t) is equivalent to show max {|µ| , |λ|} = 0. In or-

der to obtain a contradiction, we just assume max {|µ| , |λ|} = µ > 0 (the situation of

max {|µ| , |λ|} = −λ > 0 is similar). According to the fluctuation lemma [16, Lemma A.1.],

one can find a sequence {sk}
+∞

k=1 obeying

lim
k→+∞

sk = +∞, lim
k→+∞

w(sk) = µ, and lim
k→+∞

w′(sk) = 0.

Without any loss of generality, we may also assume that limk→+∞
β(sk), limk→+∞

δ(sk),

limk→+∞
w(sk − τ(sk)), limk→+∞

x∗(sk − τ(sk)) and limk→+∞
x∗(sk) exist. It follows from (2.3)

and Lemma 2.2 that for limk→+∞
w(sk − τ(sk)) 6= 0,

0 = lim
k→+∞

w′(sk)

=
limk→+∞

β(sk)

limk→+∞
x∗(sk)

{

− e− limk→+∞
x∗(sk−τ(sk)) lim

k→+∞

x∗(sk − τ(sk)) lim
k→+∞

w(sk)

+
[

lim
k→+∞

x∗(sk − τ(sk))(1 + lim
k→+∞

w(sk − τ(sk)))e
− limk→+∞

x∗(sk−τ(sk))(1+limk→+∞
w(sk−τ(sk)))

− lim
k→+∞

x∗(sk − τ(sk))e
− limk→+∞

x∗(sk−τ(sk))
]}
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<
limk→+∞

β(sk)

limk→+∞
x∗(sk)

{

− e− limk→+∞
x∗(sk−τ(sk)) lim

k→+∞

x∗(sk − τ(sk)) lim
k→+∞

w(sk)

+ e− limk→+∞
x∗(sk−τ(sk)) lim

k→+∞

x∗(sk − τ(sk)) lim
k→+∞

|w(sk − τ(sk))|
}

≤ 0,

which leads to a contradiction. Especially, if limk→+∞
w(sk − τ(sk)) = 0, the above contradic-

tion is obvious. This yields max {|µ| , |λ|} = 0, and the proof of Lemma 2.4 is finished.

3 Globally asymptotic stability of positive periodic solutions

Theorem 3.1. Let (1.6) be satisfied, and m be a nonnegative integer obeying τ(t) ≡ mω. Then,

equation (1.3) possesses a globally asymptotically stable positive periodic solution.

Proof. On account of Lemma 2.3, one can discover that equation (1.3) possesses a positive ω-

periodic solution x∗(t). In view of Lemma 2.4, to finish the proof of Theorem 3.1, we only

need to reveal that maxt∈[t0, t0+ω] x∗(t) ≤ 2. For this purpose, let

σ ∈ (0, 1), σe−σ = 2e−2, and η = sup
{

ρ | β(t)e−ρ
> δ(t), t ∈ [0, ω], ρ > 0

}

. (3.1)

We claim that

k∗∗ := min{σ, η} ≤ x∗(t) ≤ 2 for arbitrary t ∈ R.

In fact, let t1, t2 ∈ [ω, 2ω] such that

x∗(t1) = max
t∈R

x∗(t) and x∗(t2) = min
t∈R

x∗(t),

then

0 = −δ (ti) x∗ (ti) + β (ti) x∗ (ti) e−x∗(ti) (i = 1, 2).

Hence, from (1.6) and (3.1), we acquire

ex∗(t1) =
β (t1)

δ (t1)
≤ e2 with x∗(t1) ≤ 2, and

δ(t2) = β (t2) e−x∗(t2) with x∗(t2) ≥ η ≥ k∗∗,

(3.2)

which finishes the proof.

Remark 3.2. Evidently, Theorem 1.1 as a main conclusion in [6] is a direct corollary of Theo-

rem 3.1 in this present paper, and the proof of our conclusion is only established under sharp

condition (1.6). Meanwhile, we present a detailed proof of the local stability of positive peri-

odic solutions, which is not involved in the existing literature [6,12]. Therefore, the conclusion

of this paper improves and generalizes the corresponding ones of the above literature, which

provides a more perfect answer to the open problem in [1] which has been mentioned in the

Introduction section of this article.

Theorem 3.3. Assume β+ = maxt∈[t0, t0+ω] β(t) and

1 < min
t∈[t0, t0+ω]

β(t)

δ(t)
≤ max

t∈[t0, t0+ω]

β(t)

δ(t)
≤ max

t∈[t0, t0+ω]

β(t)

δ(t)− τ(t)β(t)β+
≤ e2. (3.3)

Then, equation (1.3) possesses a globally asymptotically stable positive periodic solution.
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Proof. As is seen from Lemma 2.3 and Lemma 2.4, we only need to verify that the positive

ω-periodic solution x∗(t) of (1.3) satisfies maxt∈[t0, t0+ω] x∗(t) ≤ 2. In order to do this, denote

x(t) = x(t; t0, ϕ) for arbitrary t ∈ [t0 − τ̄, +∞), and

L = lim sup
t→+∞

x(t), l = lim inf
t→+∞

x(t). (3.4)

Apparently, Lemma 2.1 yields l > 0. Now, we verify L ≤ 2. Again from the fluctuation lemma

[16, Lemma A.1.], one can pick {tk}
+∞

k=1 such that

lim
k→+∞

tk = +∞, lim
k→+∞

x′(tk) = 0, lim
k→+∞

x(tk) = L. (3.5)

Also, we suppose that limk→+∞
δ(tk), limk→+∞

β(tk) and limk→+∞
τ(tk) exist.

For any ε > 0, it is easy to find N > 0 satisfying that x(t) < L + ε for arbitrary t > N, and

hence for arbitrary t ∈ (N + τ̄, +∞),

−δ(t)(L + ε) < −δ(t)x(t) + β(t)x(t − τ(t))e−x(t−τ(t))
< β(t)(L + ε).

Furthermore,

|x′(t)| < β(t)(L + ε), t ∈ (N + τ̄, +∞),

and

x′(tk) = −δ(tk)x(tk) + β(tk)x(tk)e
−x(tk) + β(tk)[x(tk − τ(tk))e

−x(tk−τ(tk)) − x(tk)e
−x(tk)]

≤ −δ(tk)x(tk) + β(tk)x(tk)e
−x(tk) + β(tk)|(1 − θ)e−θ ||x(tk)− x(tk − τ(tk))|

≤ −δ(tk)x(tk) + β(tk)x(tk)e
−x(tk) + β(tk)

∫ tk

tk−τ(tk)
|x′(s)|ds

≤ −δ(tk)x(tk) + β(tk)x(tk)e
−x(tk) + β+β(tk)τ(tk)(L + ε), tk > N + τ̄, (3.6)

where θ is the mean value in the Differential Mean Value Theorem. From (3.5), taking the

limits on both sides of (3.6) leads to

eL ≤
lim

k→+∞

β(tk)

lim
k→+∞

δ(tk)− lim
k→+∞

β+β(tk)τ(tk)
L+ε

L

.

Let ε → 0, from (3.3), we derive

eL ≤ lim
k→+∞

β(tk)

δ(tk)− β+β(tk)τ(tk)
≤ max

t∈[t0, t0+ω]

β(t)

δ(t)− τ(t)β(t)β+
, and L ≤ 2.

Thus, the positive ω-periodic solution x∗(t) of system (1.3) obeys maxt∈[t0, t0+ω] x∗(t) ≤ 2. The

verification of Theorem 3.3 is completed.

Remark 3.4. Theorem 3.3 is established without the assumption of τ(t) ≡ mω, and it is easy to

verify the feasibility of the conditions (3.3) when the delay is small. Meanwhile, the condition

(3.3) is equivalent to the sharp condition (1.6) when the delay vanishes to zero.
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4 Numerical simulations

Regard the following scalar delay Nicholson’s blowflies equation:

x′(t) = −(1 + | sin t|)x(t) + (1 + | sin t|)(1.01 + (e2 − 1.01)| cos t|)x(t − 2π)e−x(t−2π), (4.1)

and

x′(t) = −(1+ | sin t|)x(t)+ (1+ | sin t|)(1.05+(e2 − 1.1)| cos t|)x
(

t− 1
50e4 | cos t|

)

e
−x(t− 1

50e4 | cos t|)
,

(4.2)

where t ≥ t0 = 0. It is easy to verify that (4.1) and (4.2) satisfy

τ(t) ≡ 2π, 1.01 = min
t∈[t0, t0+π]

β(t)

δ(t)
≤ max

t∈[t0, t0+π]

β(t)

δ(t)
= e2, (4.3)

and

1.05 = min
t∈[t0, t0+π]

β(t)

δ(t)
≤ max

t∈[t0, t0+π]

β(t)

δ(t)
≤ max

t∈[t0, t0+π]

β(t)

δ(t)− τ(t)β(t)β+
≈ e2 − 0.02, (4.4)

respectively. Therefore, from Theorems 3.1 and 3.3, we know that the above two scalar Nichol-

son’s blowflies models possess global asymptotic stable positive π-periodic solutions. The

numerical simulation results of the two examples are shown in Figures 4.1–4.2, and the trajec-

tories of the solutions strongly confirm the correctness and validity of the results in this paper.

0 5 10 15 20 25 30 35 40 45 50

t

0

0.5

1

1.5

2

2.5

3

3.5

x
(t
)

Figure 4.1: Numerical state trajectories of model (4.1) involving the initial val-

ues: 1, 2, π, respectively.

Remark 4.1. Nicholson’s blowflies equation (4.1) does not satisfy the condition (1.4), equation

(4.2) does not obey the conditions (1.4) and (1.5), which have been adopted as fundamental

assumptions for the considered periodicity of (1.3) in [6, 12]. Consequently, the conclusions

in [6, 12] can not be directly employed to illustrate the globally asymptotic stability of the
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0 5 10 15

t

1

2

3

4

5

6

7

x
(t
)

Figure 4.2: Numerical state trajectories of model (4.2) involving the initial val-

ues: 2, 5, 7, respectively.

positive periodic solutions for (4.1) and (4.2), which indicates that the results of this paper

improve and extend the corresponding ones of [6,9,12,13,17] and the references cited therein.

It is noteworthy that, the method presented in this article can be used to explore the sharp

condition of the existence and global asymptotic stability of positive periodic solutions to the

scalar Nicholson’s blowflies models involving multiple time-varying delays in [12] and the

delay Nicholson’s blowflies systems accompanying patch structure in [6].
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Abstract. We establish the expansion of positivity of the nonnegative, local, weak solu-
tions to the class of doubly nonlinear parabolic equations

∂t(u
q)− div (|Du|p−2Du) = 0, p > 1 and q > 0

considering separately the two possible cases q + 1 − p > 0 and q + 1 − p < 0. The
proof relies on the procedure presented by DiBenedetto, Gianazza and Vespri for both
the degenerate and the singular parabolic p-Laplacian equation.
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1 Introduction

In this work we consider the class of doubly nonlinear parabolic equations

∂t(u
q)− div (|Du|p−2Du) = 0, in ΩT, p > 1 and q > 0, (1.1)

where ΩT = Ω × (0, T], being Ω a bounded domain in R
N and T a real positive number;

which models, for instance, the turbulent filtration of non-Newtonian fluids through a porous

media (see [4]).

Along the past years many authors have studied this class of evolutionary equations: the

simpler case q = 1 was widely study (see for instance [2, 3] and the references therein); the

Trudinger’s equation, corresponding to q = p− 1, is still object of intensive study (cf. [16,18,19]

and more recently [5]; and, for the general case, there are already some results (see [12–14]).

In a certain extend, this class of doubly nonlinear equations can be seen as

∂tu − div (|u|m−1|Du|p−2Du) = 0, in ΩT, p > 1

BEmail: eurica@utad.pt
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and many are the works concerning its weak solutions (just to mane a few, we refer to [6–10,

15, 20–22]).

The doubly nonlinear equation (1.1) presents several difficulties: for q > 1 (0 < q < 1)

equation (1.1) has a degeneracy (singularity) in time, since uq−1 is zero (explodes) at the

points where u = 0; while for 1 < p < 2 (p > 2) (1.1) exhibits a singularity (degeneracy) in

space, since the modulus of ellipticity |Du|p−2 explodes (is zero) at the points where Du = 0.

One aspect to always have into consideration is that in order to compensate the degradation

of equation’s parabolic structure one needs to consider proper cylinders within which the

equation behaves as the heat equation – this is known as intrinsic scaling.

The main goal of this work is to give one more contribution to the study of the properties

of the weak solutions to this class of doubly nonlinear evolutionary equations (1.1), for p > 1

and q > 0, namely to present the expansion of positivity for its nonnegative bounded weak

solutions, which roughly speaking means that the information on the measure of the positivity

set of u, at a certain time level s over a cuber Kρ(y), can be expanded to the measure of

the positivity set of u both in space (say from Kρ(y) to K2ρ(y)) and in time (from the time

level s to all further time levels s + θρp). The proof relies on energy estimates and DeGiorgi-

type lemmas and comprehends two steps. The first step consists on the propagation of the

positivity information known at a cube located in some time level, say Kρ(y)× {s}, to upper

times levels. Not only this is the easiest step but also it holds for all values of p > 1 and q > 0.

As for the second (more demanding and crucial) one, the spacial propagation of positivity

is derived from the cube Kρ(y) to the bigger cube K2ρ(y): the proof is more evolving and

requires the cases q + 1 − p > 0 and q + 1 − p < 0 to be studied separately.

The expansion of positivity is the key ingredient to derive Harnack estimates and it can

also be an important tool to prove local regularity of the weak solutions. If not only for the

mathematical interest per si, these two arguments give extra and relevant reasons for the study

at hands.

The paper is organized as follows. In Section 2, we present the notation and some known

results needed along the sections to come. In Section 3, we deduce the energy estimates and

prove two DeGiorgi-type lemmas which are the core results for the expansion of positivity. The

proofs of the main results, that is of the expansion of positivity, both for q + 1 − p > 0 and

q + 1 − p < 0, are presented in Section 4.

2 Setting the framework

Notation and known results

We start by presenting some notation and some already known results just to keep the text as

self contained as possible.

Due to the parabolic nature of our evolutionary equation, we will work with parabolic

cylinders and parabolic Sobolev spaces. For that purpose let (x0, t0) be an interior point in

the space-time domain Ω × (0, T]. For a cylinder with vertex at (x0, t0), of radius R > 0 and

height τ we can define: the backward cylinder

(x0, t0) + Q−(τ, R) := KR(x0)× (t0 − τ, t0)
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the forward cylinder

(x0, t0) + Q+(τ, R) := KR(x0)× (t0, t0 + τ),

where

KR(x0) = {x ∈ Ω : max |x − x0| < R} .

Let p ≥ 1. The Sobolev space H1,p(Ω) is defined to be the completion of C∞(Ω) with

respect to the Sobolev norm

‖u‖1,p,Ω =

(

∫

Ω

(|u|p + |Du|p)

)1/p

.

A function u belongs to the local Sobolev space H
1,p
loc (Ω) if it belongs to H1,p(K) for every

compactly contained subset K of Ω. Moreover, the Sobolev space with zero boundary values

H
1,p
0 (Ω) is defined as the completion of C∞

0 (Ω) with respect to the Sobolev norm.

The parabolic Sobolev space Lp(t1, t2; H1,p(Ω)), with t1 < t2, is the space of functions

u(x, t) such that, for almost every t ∈ (t1, t2) the function u(·, t) belongs to H1,p(Ω) and

∫ t2

t1

∫

Ω

(|u|p + |Du|p) < ∞.

The following result establishes an estimate for the gradient of a certain regular function

v at the points where k < v < l, k, l ∈ R.

Lemma 2.1. Let v ∈ H1,1(K) ∩ C(K) and k, l ∈ R, k < l. There exists a positive constant γ,

depending only on N and p, such that

(l − k) |K ∩ [v > l] | ≤ γ
|K|

|K ∩ [v < k]|

∫

K∩[k<v<l]
|∇v|. (2.1)

The result to come establishes a Sobolev embedding.

Proposition 2.2. There exists a positive constant γ, depending on N, p, and m, such that

∫∫

ΩT

|v|p
N+m

N ≤ γp N+m
N

{

∫∫

ΩT

|Dv|p
}

×

{

ess sup
0<t<T

∫

Ω

|v|m
}

p
N

, (2.2)

for v ∈ L∞(0, T; Lm(Ω)) ∩ Lp(0, T; W
1,p
0 (Ω)).

The next result concerns algebraic geometric convergence.

Lemma 2.3. Let (Yn)n be a sequence of positive numbers satisfying

Yn+1 ≤ CbnY1+α
n ,

where C, b > 1 and α > 0. Then (Yn)n converges to zero as n → ∞, provided

Y0 ≤ C−1/αb−1/α2
.

All these results can be found in [2]. The following algebraic result can be found in [1] and

in [11], for 0 < q < 1 and q > 1, respectively.
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Lemma 2.4. For any q > 0, there exists a positive constant γ, depending on q, such that for all

a, b ∈ R

1

γ
|bq − aq| ≤ (|a|+ |b|)q−1 |b − a| ≤ γ |bq − aq| , (2.3)

where

bq =

{

|b|q−1b, b 6= 0,

0, b = 0.

As it will be made clearer in the section to come, in order to deduce appropriate energy

estimates we’ll have to work with the functions

g±(u, k) = ±q
∫ u

k
|s|q−1(s − k)± ds,

for which we need lower and upper bounds. This is the content of the next result (although

the proof follows quite closely the one presented in [5] we decided to presented it for the sake

of completeness).

Lemma 2.5. There exists a positive constant γ, depending on q, such that for all u, k ∈ R, the following

holds
1

γ
(|u|+ |k|)q−1 (u − k)2

± ≤ g±(u, k) ≤ γ (|u|+ |k|)q−1 (u − k)2
±. (2.4)

Proof. We will present the proof for g+(u, k), the other case can be treated in an analogous

way.

Observe that it is enough to considere u, k ∈ R, with u > k, since otherwise g+(u, k) = 0.

So, considering u > k, on the one hand

g+(u, k) = q
∫ u

k
|s|q−1(s − k)+ ds

≥ q
∫ u

k+u
2

|s|q−1(s − k) ds

≥ q
u − k

2

∫ u

k+u
2

|s|q−1 ds

=
u − k

2

(

|u|q−1 u −

∣

∣

∣

∣

k + u

2

∣

∣

∣

∣

q−1 k + u

2

)

≥
(u − k)2

γ

(∣

∣

∣

∣

k + u

2

∣

∣

∣

∣

+ |u|

)q−1

≥
1

γ
(u − k)2

+ (|u|+ |k|)q−1 ;

on the other hand

g+(u, k) ≤ (u − k) q
∫ u

k
|s|q−1 ds

≤ γ(u − k)2
+(|u|+ |k|)q−1.

The last inequalities in both lower and upper estimates were obtained realizing that

|u|+ |k|

2
≤

∣

∣

∣

∣

k + u

2

∣

∣

∣

∣

+ |u| ≤ 2(|u|+ |k|)

and using (2.3).
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Definition of weak solution and Notion of parabolicity

In what follows we state what we mean by a local weak solution to (1.1).

Definition 2.6. A measurable function

u ∈ C(0, T; L
q+1
loc (Ω)) ∩ L

p
loc(0, T; H

1,p
loc (Ω))

is a weak sub(super)solution to equation (1.1) in Ω × (0, T] if, for any compact K ⊂ Ω and for

almost every 0 < t1 < t2 < T, it satisfies

∫

K
[uq ϕ (x, t)]t2

t1
+
∫ t2

t1

∫

K

(

|Du|p−2Du · Dϕ − uq ϕt

)

≤ (≥) 0, (2.5)

for every nonnegative test function

ϕ ∈ H
1,q+1
loc (0, T; Lq+1(K)) ∩ L

p
loc(0, T; H

1,p
0 (K)).

A weak solution to (1.1) is a function that is both a weak subsolution and a weak supersolution

to (1.1).

Remark 2.7. Observe that the regularity assumption on u and on test functions η guarantee

the convergence of the integrals appearing in (2.5).

In the case 0 < q < 1, one can consider, and thereby recover, the regularity assumption on

u presented for the p-Laplacian, that is, u ∈ C(0, T; L2
loc(Ω)) ∩ L

p
loc(0, T; H

1,p
loc (Ω)).

Equation (1.1) presents two interesting and relevant features: one is that the nonlinearity

exhibit by the time derivative part does not allow us to add constants to the solution and

still have a solution; the other one regards the notion of parabolicity (which does not come

directly from the differential equation). Taking this into account, we say that equation (1.1) is

parabolic if

for all k ∈ R, whenever u is a weak sub(super)solution, the function k ± (u − k)± is a

local weak sub(super)solution,

where

(u − k)− = max{0, k − u}, (u − k)+ = max{0, u − k},

and

k − (u − k)− = min{u, k}, and k + (u − k)+ = max{u, k}.

The following result asserts that equation (1.1) is a parabolic equation. The proof follows

closely the one presented in [2], for the p-Laplacian equation, and also the one presented in

[5] for the Trudinger’s equation.

Lemma 2.8. Let u be a local weak sub(super)solution to (1.1). Then for all k ∈ R, the truncated

functions k ± (u − k)± are local weak sub(super)solutions to (1.1).

Proof. Let (x0, t0) be an interior point of ΩT, which by translation we will assume (x0, t0) =

(0, 0). Let u be a subsolution to (1.1) and consider a real number k ∈ R (the case of a superso-

lution can be treat analogously).
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It is well known that the time derivative ∂tu has to be avoided (its notion may not even

exist in a Sobolev sense) and so we use the regularization, proposed by Kinnunen and

Lindqvist [17],

u⋆(x, t) =
1

σ

∫ t

0
e

s−t
σ u(x, s) ds, σ > 0, (2.6)

to overcome this difficulty.

The mollified version of (2.5) is then given by
∫∫

ΩT

∂t ((u
q)⋆) ϕ +

(

|Du|p−2Du
)⋆

· Dϕ ≤
∫

Ω

uq(x, 0)

(

1

σ

∫ T

0
e−

s
σ ϕ(x, s) ds

)

(2.7)

for all 0 ≤ η ∈ Lp(0, T; W
1,p
0 (Ω)) ∩ Lq+1(ΩT).

Consider the test function

ϕ(x, t) = ξ p(x, t)ψǫ(t)
(u − k)+

(u − k)+ + h
, h, ǫ > 0,

being ξ ∈ C1(Q(τ, R)), verifying 0 ≤ ξ ≤ 1 and vanishing on the lateral boundary of Q(τ, R);

and ψǫ(t) a piecewise smooth cutoff function defined by

ψǫ(t) =



































0, −τ ≤ t ≤ t1 − ǫ,

1 + t−t1
ǫ , t1 − ǫ ≤ t ≤ t1,

1, t1 ≤ t ≤ t2,

1 − t−t2
ǫ , t2 ≤ t ≤ t2 + ǫ,

0, t2 + ǫ ≤ t ≤ 0.

Let vσ be such that (vœ)
q = (uq)⋆.

The parabolic and elliptic terms appearing in (2.7) will be treated separately. As for the

parabolic term
∫∫

ΩT

∂t ((u
q)⋆) ϕ =

∫∫

Q(τ,R)
∂t

(

(vœ)
q) ξ pψǫ

(

(vσ − k)+
(vσ − k)+ + h

)

+
∫∫

Q(τ,R)
∂t

(

(vœ)
q) ξ pψǫ

(

(u − k)+
(u − k)+ + h

−
(vσ − k)+

(vσ − k)+ + h

)

.

By observing that

∂t

(

∫ (vœ)q

kq

(s
1
q − k)+

(s
1
q − k)+ + h

ds

)

= ∂t

(

(vœ)
q) (vσ − k)+

(vσ − k)+ + h

and

∂t

(

(vœ)
q) = ∂t ((u

q)⋆) =
uq − (vœ)

q

σ
,

the second integral appearing in the right hand side of the previous integral identity is non-

negative, since both factors have the same signal due the fact that f (s) = (s1/q−k)+
(s1/q−k)++h

is a mono-

tone nondecreasing function. As for the first integral, note that

∂t

(

(vœ)
q)
(

(vσ − k)+
(vσ − k)+ + h

)

= ∂t

(

∫ (vœ)q

kq

(s
1
q − k)+

(s
1
q − k)+ + h

ds

)

= ∂t

(

kq + q
∫ vσ

k

(s − k)+
(s − k)+ + h

|s|q−1 ds

)

def
= ∂t (I(vσ, k, h,+)) .
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Gathering these informations we arrive at

∫∫

ΩT

∂t ((u
q)⋆) ϕ ≥

∫∫

Q(τ,R)
∂t (I(vœ, k, h,+)) ξ pψǫ

= −
∫∫

Q(τ,R)
I(vœ, k, h,+)

{

ξ pψ′
ǫ + ∂t (ξ

p)ψǫ

}

.

The regularity assumptions considered allow us to, first pass to limit as σ → 0, and then let

ǫ → 0, getting thereby the inferior bound

−
∫∫

Q(τ,R)
I(u, k, h,+)∂t (ξ

p)−
∫

KR×{t2}
I(u, k, h,+)ξ p +

∫

KR×{t1}
I(u, k, h,+)ξ p.

As for the elliptic term, we start by letting σ → 0 and then ǫ → 0 to arrive at

∫ t2

t1

∫

KR

|Du|p−2Du ·

(

ξ p (u − k)+
(u − k)+ + h

)

=
∫ t2

t1

∫

KR

|Du|p−2Du · D(ξ p)
(u − k)+

(u − k)+ + h

+
∫ t2

t1

∫

KR

|D(u − k)+|
p h

((u − k)+ + h)2
ξ p

≥
∫ t2

t1

∫

KR

|Du|p−2Du · D(ξ p)
(u − k)+

(u − k)+ + h
,

since the last integral appearing in the integral identity is nonnegative. The proof is complete

once we let h → 0; just take notice that

I(vσ, k, h,+) →

(

kq + q
∫ u

k
sq−1 ds

)

χ[u>k] = (k + (u − k)+)
q , as h → 0

Remark 2.9. The purpose of this work is to present (and prove) the expansion of positivity

for the nonnegative, local, weak solutions to (1.1). The results to come will be stated in this

context (note that for u ≥ 0, uq = uq).

3 Energy estimates and DeGiorgi-type lemmas

The following result comprehends local integral estimates that are the starting point to the

proof of the expansion of positivity, the so called energy estimates.

Proposition 3.1. Let u be a nonnegative, local, weak sub(super)solution to (1.1) in ΩT in the sense

of (2.5). There exists a positive constant C, depending on N, p and q, such that for every cylinder

(xo, to) + Q−(τ, R) ⊂ ΩT, every real number k ∈ R and every piecewise smooth nonnegative cutoff

function ξ vanishing on the the lateral boundary of (x0, t0) + Q(τ, R) one has

ess sup
t0−τ<t<t0

∫

KR(x0)
g±(u, k)ξ p +

∫∫

(x0,t0)+Q(τ,R)
|D(u−k)±|

pξ p

≤
∫

KR(x0)×{t0−τ}
g±(u, k)ξ p + C

∫∫

(x0,t0)+Q(τ,R)

{

(u−k)
p
±|Dξ|p + g±(u, k) |∂t (ξ

p)|
}

.

(3.1)

Proof. The proof follows quite closely the one presented in Lemma 2.8. In fact, we start

by considering a nonnegative, local, weak subsolution u to (1.1) and then work with the

mollified version (2.7), taking as test function ϕ(x, t) = ξ p(x, t)ψǫ(t)(u − k)+, where ξ and
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ψǫ are precisely the same as before. Observe that ϕ is an admissible test function due to the

regularity assumptions on u.

By considering vσ to be such that (vσ)
q = (uq)⋆ we get

∫∫

ΩT

∂t

(

(vσ)
q) ϕ +

(

|Du|p−2Du
)⋆

· Dϕ ≤
∫

Ω

uq(x, 0)

(

1

σ

∫ T

0
e−

s
σ ϕ(x, s) ds

)

.

The left-hand side is estimated as follows. The term evolving the time derivative

∫∫

ΩT

∂t

(

(vσ)
q) ϕ =

∫∫

Q(τ,R)
∂t

(

(vσ)
q) ξ pψǫ(vσ − k)+

+
∫∫

ΩT

∂t

(

(vσ)
q) ((u − k)+ − (vσ − k)+) ξ pψǫ

=
∫∫

ΩT

∂t (g+(vσ, k)) ξ pψǫ

+
∫∫

ΩT

uq − (vσ)q

σ
((u − k)+ − (vσ − k)+) ξ pψǫ

≥
∫∫

ΩT

∂t (g+(vσ, k)) ξ pψǫ

= −
∫∫

ΩT

g+(vσ, k)∂t (ξ
p)ψǫ −

∫∫

ΩT

g+(vσ, k)ξ pψ′
ǫ

The inequality relies on the fact that f1(s) = (s − k)+ and f2(s) = sq, q > 0, are monotone

increasing functions. We now let σ → 0 and thereby get

−
∫ t2+ǫ

t1−ǫ

∫

KR(x0)
g+(u, k)∂t (ξ

p)ψǫ −
1

ǫ

∫ t1

t1−ǫ

∫

KR(x0)
g+(u, k)ξ p +

1

ǫ

∫ t2+ǫ

t2

∫

KR(x0)
g+(u, k)ξ p,

since u ∈ Lq+1 ⊃ Lq we have (vσ) → u in Lq. We then pass to the limit as ǫ goes to zero,

obtaining

−
∫ t2

t1

∫

KR(x0)
g+(u, k)∂t (ξ

p)−
∫

KR(x0)×{t1}
g+(u, k)ξ p +

∫

KR(x0)×{t2}
g+(u, k)ξ p

and this completes the estimate of the parabolic term. As for the integral evolving the space

derivatives, we start by letting σ → 0, then we apply Young’s inequality to get the inferior

estimate
1

2

∫∫

ΩT

|D(u − k)+|
pξ pψǫ − (2(p − 1))p−1

∫∫

ΩT

(u − k)
p
+|Dξ|pψǫ

and finally, by letting ǫ → 0, we obtain

1

2

∫ t2

t1

∫

KR(x0)
|D(u − k)+|

pξ p − (2(p − 1))p−1
∫ t2

t1

∫

KR(x0)
(u − k)

p
+|Dξ|p.

As for the right-hand side,

∫

Ω

uq(x, 0)

(

1

σ

∫ T

0
e−

s
σ ϕ(x, s) ds

)

→
∫

Ω

uq(x, 0)ϕ(x, 0) = 0, as σ → 0.

Combining all the previous estimates we have
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∫

KR(x0)×{t2}
g+(u, k)ξ p +

1

2

∫ t2

t1

∫

KR(x0)
|D(u − k)+|

pξ p

≤
∫

KR(x0)×{t1}
g+(u, k)ξ p +

∫ t2

t1

∫

KR(x0)
g+(u, k)∂t (ξ

p)

+ (2(p − 1))p−1
∫ t2

t1

∫

KR(x0)
(u − k)

p
+|Dξ|p

≤
∫

KR(x0)×{t1}
g+(u, k)ξ p +

∫ t0

t0−τ

∫

KR(x0)
g+(u, k)|∂t (ξ

p) |

+ (2(p − 1))p−1
∫ t0

t0−τ

∫

KR(x0)
(u − k)

p
+|Dξ|p.

By letting t1 → t0 − τ and recalling u ∈ C(Lq+1), we have
∫

KR(x0)×{t1}
g+(u, k)ξ p →

∫

KR(x0)×{t0−τ}
g+(u, k)ξ p;

as for the left-hand side of the previous inequality we reason as follows: on the one hand, for

t0 − τ < t2 < t0,
∫

KR(x0)×{t2}
g+(u, k)ξ p +

1

2

∫ t2

t0−τ

∫

KR(x0)
|D(u − k)+|

pξ p ≥
∫

KR(x0)×{t2}
g+(u, k)ξ p,

and we then take the essential supremum over the set t0 − τ < t2 < t0; on the other hand,

∫

KR(x0)×{t2}
g+(u, k)ξ p +

1

2

∫ t2

t0−τ

∫

KR(x0)
|D(u − k)+|

pξ p

≥
1

2

∫ t2

t0−τ

∫

KR(x0)
|D(u − k)+|

pξ p →
1

2

∫ t0

t0−τ

∫

KR(x0)
|D(u − k)+|

pξ p,

as t2 → t0.

A final remark: to prove the estimate for supersolutions it suffices to take ϕ(x, t) =

ξ p(x, t)ψǫ(t)(u − k)− and proceed in a similar way.

The next two results are DeGiorgi-type lemmas, being the second one a variant involving

information concerning initial data. They are presented for nonnegative, locally bounded,

weak supersolutions to (1.1), however, one can state (and prove) similar results for nonnega-

tive, locally bounded, weak subsolutions to (1.1). We recall that the local boundedness of the

nonnegative, local, weak solutions u to (1.1) was obtained in [13] and [14].

To simplify the writing consider

(y, s) + Q−(λ(2ρ)p, 2ρ) = (y, s) + Q−
2ρ(λ)

(y, s) + Q+(λ(2ρ)p, 2ρ) = (y, s) + Q+
2ρ(λ)

Lemma 3.2. Let u be a nonnegative, locally bounded, weak supersolution to (1.1) in ΩT. Let M̃ be a

positive number. There exists a constant ν̃ depending on the N, p, q and on M̃ and λ, such that, if
∣

∣

∣(y, s) + Q−
2ρ(λ) ∩

[

u < M̃
]

∣

∣

∣ ≤ ν̃
∣

∣

∣Q−
2ρ(λ)

∣

∣

∣

then

u ≥
M̃

2
a.e. in (y, s) + Q−

ρ (λ).
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Proof. Without loss of generality take (y, s) = (0, 0). Construct decreasing sequences of num-

bers (radii and levels, respectively), for n = 0, 1, . . . ,

ρn = ρ

(

1 +
1

2n

)

, kn =
M̃

2

(

1 +
1

2n

)

and define Qn = Q−
ρn
(λ) and Kn = Kρn . Consider the cutoff function 0 ≤ ξ(x, t) = ξ1(x)ξ2(t) ≤

1 defined in Qn and such that

ξ1(x) = 1 in Kn+1; ξ1(x) = 0 in R
N \ Kn; |Dξ| ≤

2n+1

ρ
;

ξ2(t) = 1 for t ≥ −λρ
p
n+1; ξ2(t) = 0 for t ≤ −λρ

p
n; 0 ≤ ∂tξ2 ≤

2p(n+1)

λρp
.

From the energy estimates (3.1) written over Qn for the truncated functions (u − kn)−, and

recalling the estimates for g−(u, kn) given in (2.4), we obtain

M̃q−1

γ(q)
ess sup
−λρ

p
n<t≤0

∫

Kn×{t}
(u − kn)

2
−ξ p +

∫∫

Qn

|D(u−kn)−|
pξ p

≤ ess sup
−λρ

p
n<t≤0

∫

Kn×{t}
g−(u, kn)ξ

p +
∫∫

Qn

|D(u−kn)−|
pξ p

≤ C(p, q) 2p(n+1) k
p
n

ρp

{

1 +
k

q+1−p
n

λ

}

|An|

≤ C(p, q) 2p(n+1) M̃p

ρp

{

1 +
M̃q+1−p

λ

}

|An|,

for |An| = |Qn ∩ [u < kn]|.

Observe that, by means of Hölder’s inequality together with the Sobolev embedding (2.2),

M̃

2n+2
|An+1| = (kn − kn+1)|An+1| ≤

∫∫

Qn+1

(u − kn)−

≤ C(N, p)

(

∫∫

Qn

|D(u − kn)−ξ|p
) N

p(N+2)

×



 ess sup
−λρ

p
n<t≤0

∫

Kn×{t}
(u − kn)

2
−ξ p





1
N+2

|An|
1− N

p(N+2)

and then, recalling the previous estimates and taking Yn = |An|
|Qn|

, we get the recursive algebraic

estimate

Yn+1 ≤ C(N, p, q)
(

M̃p−(q+1)λ
) 1

N+2

(

1 +
M̃q+1−p

λ

)

N+p
p(N+2)

bn Y
1+ 1

N+2
n , for b = 2

2N+p+2
N+2 .

The conclusion follows from the fast convergence Lemma 2.3 once we consider

ν̃ = C(N, p, q)−(N+2)b−(N+2)2
M̃q+1−p

λ
(

1 + M̃q+1−p

λ

)

N+p
p

.
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Lemma 3.3. Let u be a nonnegative, locally bounded, weak supersolution to (1.1) in ΩT. Let M̃ be a

positive number such that

u(x, s) ≥ M̃ for a.e. x ∈ K2ρ(y) (3.2)

and
∣

∣

∣(y, s) + Q+
2ρ(λ) ∩ [u < M̃]

∣

∣

∣ ≤ ν0
M̃q+1−p

λ

∣

∣

∣Q+
2ρ(λ)

∣

∣

∣ (3.3)

for ν0 depending only upon N, p and q. Then

u ≥
M̃

2
a.e. in Kρ(y) + (s, s + λ(2ρ)p].

Proof. Take (y, s) = (0, 0), construct decreasing sequences of numbers (radii and levels, re-

spectively),

ρn = ρ

(

1 +
1

2n

)

, kn =
M̃

2

(

1 +
1

2n

)

, n = 0, 1, . . .

and take a time independent cutoff function 0 ≤ ξ(x) ≤ 1 defined in Kρn and, such that, ξ = 1

in Kρn+1
and |Dξ| ≤ 2n+1/ρ.

Keeping in mind that u verifies (3.2), from the energy estimates (3.1) written over Qn =

Kρn × (0, λ(2ρ)p], for the truncated functions (u − kn)−, we obtain, for all t ∈ (0, λ(2ρ)p]

M̃q−1

γ(q)

∫

Kρn×{t}
(u − kn)

2
−ξ p +

∫∫

Qn

|D(u−kn)−|
pξ p

≤
∫

Kρn×{t}
g−(u, kn)ξ

p +
∫∫

Qn

|D(u−kn)−|
pξ p

≤ C(p)
∫∫

Qn

(u−kn)
p
−|Dξ|p ≤ C(p) 2np M̃p

ρp
|An|,

for |An| = |Qn ∩ [u < kn]|. Arguing in a similar way as in the proof of Lemma 3.2, we deduce

M̃

2n+2
|An+1| ≤ C(N, p)

(

∫∫

Qn

|D(u − kn)−ξ|p
) N

p(N+2)

×

(

ess sup
0<t<λ(2ρ)p

∫

Kρn×{t}
(u − kn)

2
−ξ p

) 1
N+2

|An|
1− N

p(N+2)

and then, recalling the previous estimates and considering Yn = |An|
|Qn|

, we arrive at

Yn+1 ≤ C(N, p, q) M̃
p−(q+1)

N+2 λ
1

N+2 bn Y
1+ 1

N+2
n , b = 2

2N+p+2
N+2 .

The proof is completed once we take ν0 = C(N, p, q)−(N+2)b−(N+2)2
.

4 Expansion of positivity

As it is now well known the expansion of positivity is a property of nonnegative supersolutions,

to both stationary and evolutionary equations, that allows one to get Harnack inequalities

and to prove regularity results. Heuristically speaking it asserts that the information on the

measure of the positivity set of u, at a certain time level s over a cuber Kρ(y), can be expanded
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to the measure of the positivity set of u both in space (say from Kρ(y) to K2ρ(y)) and in time

(from the time level s to all further time levels till s + θρp).

The expansion of positivity is based on energy estimates and DeGiorgi-type lemmas and

comprehends two steps. The first step consists on the propagation of the positivity informa-

tion on a cube Kρ(y)× {s} to upper times levels. Not only this is the easiest step but also it

holds for all values of p > 1 and q > 0. On the second step, one derives spacial propagation

of positivity from the cube Kρ(y) to the bigger cube K2ρ(y). This is much more demanding

and the proof has to be performed separately for the cases q + 1 − p > 0 and q + 1 − p < 0.

In what follows we adopt the technical scheme devised by DiBenedetto, Gianazza and

Vespri for degenerate and singular p-Laplacian parabolic equations – the results can be found

in [3]: Chapter 4, Sections 4 and 5, respectively.

Along this section we will assume that u is a nonnegative, locally bounded, weak super-

solution to (1.1) in ΩT, for p > 1 and q > 0.

Lemma 4.1. Assume that, for some (y, s) ∈ ΩT and some ρ > 0,

∣

∣Kρ(y) ∩ [u(·, s) > M]
∣

∣ ≥ α
∣

∣Kρ(y)
∣

∣ , (4.1)

for some M > 0 and some 0 < α < 1. Then there exist ǫ, δ ∈ (0, 1), depending on α and on N, p and

q, such that
∣

∣Kρ(y) ∩ [u(·, t) > ǫM]
∣

∣ ≥
α

2

∣

∣Kρ(y)
∣

∣ , (4.2)

for all t ∈ (s, s + δMq+1−pρp].

Proof. Without loss of generality we may take (y, s) = (0, 0). Consider the cylinder Q =

Kρ × (0, δMq+1−pρp] and assume Q ⊂ ΩT (take ρ as smaller as needed). Write the energy

estimates (3.1) for the cylinder Q, the level k = M and the smooth time independent cutoff

function 0 ≤ ξ = ξ(x) ≤ 1 defined in Kρ, vanishing on the boundary of Kρ and verifying, for

some σ ∈ (0, 1),

ξ = 1 in K(1−σ)ρ and |Dξ| ≤
1

σρ
.

We then have, for all t ∈ (0, δMq+p−1ρp],

∫

K(1−σ)ρ×{t}

g−(u, k) ≤
∫

Kρ×{t}
g−(u, k)ξ p

≤
∫

Kρ×{0}
g−(u, k)ξ p + C(p)

∫∫

Q
(u − k)

p
−|Dξ|p

≤
∫

Kρ×{0}

(

q
∫ M

u
sq−1(M − s) ds

)

ξ pχ[u<M] + C(p)
Mp

σpρp
|Q|.

The left-hand side is estimated by considering the integration over the smaller cube K(1−σ)ρ ∩

[u(·, t) < ǫM]

∫

K(1−σ)ρ×{t}

g−(u, k) =
∫

K(1−σ)ρ×{t}

(

q
∫ M

u
sq−1(M − s) ds

)

χ[u<M]

≥
∫

K(1−σ)ρ×{t}

(

q
∫ M

u
sq−1(M − s) ds

)

χ[u<ǫM]
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≥
∫

K(1−σ)ρ×{t}

(

q
∫ M

ǫM
sq−1(M − s) ds

)

χ[u<ǫM]

=
∣

∣

∣K(1−σ)ρ ∩ [u(·, t) < ǫM]
∣

∣

∣×

(

q
∫ M

ǫM
sq−1(M − s) ds

)

and then, for all t ∈ (0, δMq+p−1ρp],

∣

∣

∣
K(1−σ)ρ ∩ [u(·, t) < ǫM]

∣

∣

∣
≤

∫

Kρ×{0}

(

q
∫ M

u sq−1(M − s) ds
)

ξ pχ[u<M]

q
∫ M

ǫM sq−1(M − s) ds

+ C(p)
δMq+1

σp

1

q
∫ M

ǫM sq−1(M − s) ds
|Kρ|

≤

{

(γ(q)ǫq + 1)(1 − α) + C(p, q)
δ

σp

}

|Kρ|.

These inequalities were obtained arguing as follows: due to (2.4) and considering 0 < ǫ <
1
2

q
∫ M

ǫM
sq−1(M − s) ds ≥

1

2γ(q)
Mq+1(1 − ǫ)2(1 + ǫ)q−1 ≥

Mq+1

γ(q)
;

and by making use of the same inequality (2.4) and recalling (4.1)

∫

Kρ×{0}

(

q
∫ M

u sq−1(M − s) ds
)

ξ pχ[u<M]

q
∫ M

ǫM sq−1(M − s) ds

=

∫

Kρ×{0}

(

q
∫ ǫM

u sq−1(M − s) ds
)

ξ pχ[u<M]

q
∫ M

ǫM sq−1(M − s) ds
+
∫

Kρ×{0}
χ[u<M]

≤

{
∫ ǫM

0 sq−1M ds
∫ M

ǫM sq−1(M − s) ds
+ 1

}

(1 − α)|Kρ|

≤ (γ(q)ǫq + 1)(1 − α)|Kρ|.

Therefore, for all t ∈ (0, δMq+p−1ρp],

∣

∣Kρ ∩ [u(·, t) < ǫM]
∣

∣ ≤

{

(γ(q)ǫq + 1)(1 − α) + C(p, q)
δ

σp
+ σN

}

|Kρ|.

The proof is complete once we choose σ ∈ (0, 1) such that Nσ ≤ α
8 ; then choose

δ ∈ (0, 1) such that C(p, q)
δ

σp
≤

α

8

and finally choose

ǫ ∈

(

0,
1

2

)

such that (γ(q)ǫq + 1)(1 − α) ≤ 1 −
3

4
α.

Observe that, with theses choices, the parameters δ and ǫ depend only on α and on N, p, q.
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Expansion of positivity when q + 1 − p > 0

Consider a point (y, s) ∈ ΩT and let ρ > 0 be such that

K16ρ(y)× (s, s + δMq+1−pρp] ⊂ ΩT,

where δ and M are the same positive real numbers presented in Lemma 4.1.

Consider that (4.1) holds. In order to obtain the expansion of positivity, we start to consider

the change of variables: in space, given by z = x−y
ρ and in time, given by

−e−τ =
t − (s + δMq+1−pρp)

δMq+1−pρp
,

which maps the original cylinder K16ρ(y)× (s, s + δMq+1−pρp] into K16 × (0,+∞).

Introduce the new function

v(z, τ) =
u(x, t)

M
e

τ
q+1−p

which verifies

∂τ(v
q)− div

(

δ|Dv|p−2Dv
)

=
q

q + 1 − p
vq (4.3)

where D denotes de space derivates of v with respect to z.

Keeping in mind that δ and ǫ are already determined and depend only on N, p, q and on

α, the conclusion of Lemma 4.1 now reads
∣

∣

∣
K1 ∩ [v(·, τ) > ǫ e

τ
q+1−p ]

∣

∣

∣
≥

α

2
|K1| , ∀τ > 0

and therefore, once we take τ0 > 0 and consider the level k0 = ǫ e
τ0

q+1−p , we have

|K1 ∩ [v(·, τ) ≥ k0]| ≥
α

2
|K1| , ∀τ ≥ τ0

and then, for all k ≤ k0,

|K8 ∩ [v(·, τ) ≥ k]| ≥ |K8 ∩ [v(·, τ) ≥ k0]| ≥
α

2
|K1| =

α

21+3N
|K8| , ∀τ ≥ τ0. (4.4)

With the time level τ0 and the level k0 we construct the cylinders

Qτ0 = K8 ×
(

τ0 + k
q+1−p
0 , τ0 + 2k

q+1−p
0

]

⊂ Q̃τ0 = K8 ×
(

τ0, τ0 + 2k
q+1−p
0

]

and introduce smaller levels

k j =
k0

2j
, for j = 0, 1, . . . , s∗,

where s∗ is to be chosen.

Consider a piecewise smooth cutoff 0 ≤ ξ(x, t) = ξ1(x)ξ2(t) ≤ 1 defined in Q̃τ0 and such

that

ξ1(x) =

{

1 in K8,

0 in R
N \ K8,

and |Dξ1| ≤
1

8

and

ξ2(x) =

{

0 τ < τ0,

1 τ ≥ τ0 + k
q+1−p
0 ,

and 0 ≤ ∂τξ2 ≤
1

k
q+1−p
0

.
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At this stage we perform formally (the accurate way to proceed follows the procedure pre-

sented before when deducing the energy estimates): we start by multiplying (4.3) by

(v − k j)−ξ p and then integrate over Q̃τ0 . Note that the right-hand side is nonnegative, since

v ≥ 0 and q + 1 − p > 0, and therefore we have

∫∫

Q̃τ0

∂τ (v
q) (v − k j)−ξ p + δ

∫∫

Q̃τ0

|Dv|p−2Dv · D
(

(v − k j)−ξ p
)

≥ 0.

This integral inequality is equivalent to

∫∫

Q̃τ0

∂τ

(

g−(v, k j)
)

ξ p + δ
∫∫

Q̃τ0

|D(v − k j)−|
p−2D(v − k j)− · D

(

(v − k j)−ξ p
)

≤ 0

from which we get, for all τ ∈ (0, τ0 + 2k
q+1−p
0 ],

∫∫

Q̃τ0

|D(v − k j)−|
pξ p ≤

1

δ

∫

K8×{τ0}
g−(v, k j)ξ

p +
C(p)

δ

∫∫

Q̃τ0

{

(v − k j)
p
−|Dξ|p + g−(v, k j)∂τ (ξ

p)
}

≤
C(p, q)

δ
k

p
j |Q̃τ0 |.

We have used (2.4) to obtain an upper bound to g−(v, k j)

g−(v, k j) ≤ γ(q)(v − k j)
2
−(k j + v)q−1 ≤ γ(q)(k j + v)q+1 ≤ γ(q)k

q+1
j

≤ γ(q) k
p
j (2k0)

q+1−p.

We now apply inequality (2.1), for the levels k j and k j+1 to arrive at

k j

2

∣

∣K8 ∩ [v(·, τ < k j+1]
∣

∣ ≤
γ(N)

∣

∣K8 ∩ [v(·, τ) > k j]
∣

∣

∫

K8∩[k j+1<v(·,τ)<k j]
|Dv|.

By integrating the previous inequality in time over (τ0 + k
q+1−p
0 , τ0 + 2k

q+1−p
0 ], then making

use of Hölder’s inequality and the estimate obtained previously to
∫∫

Q̃τ0
|D(v − k j)−|

pξ p, we

get

∣

∣Qτ0 ∩ [v < k j+1]
∣

∣ ≤
γ(N)

α

(

γ(p, q)

δ

)
1
q

|Qτ0 |
1
p
∣

∣Qτ0 ∩ [k j+1 < v < k j]
∣

∣

p−1
p .

Take the power
p

p−1 and add this inequality for j = 0, 1, . . . , s∗ − 1

∣

∣

∣

∣

Qτ0 ∩

[

v <
k0

2s∗

]∣

∣

∣

∣

≤
γ(N, p, q)

α δp

1

s
p−1

p
∗

|Qτ0 |. (4.5)

The “natural” thought now would be to argue in a DeGiorgi fashion (something like what was

done in Lemma 3.2) to conclude that, for an appropriate choice of s∗, this measure theoretical

information (4.5) implies that

v ≥
k0

2s∗+1
in a smaller cylinder,

say K4 × (τ0 + λk
q+1−p
0 , τ0 + 2k

q+1−p
0 ], for some λ ∈ (0, 1). However, the cylinder’s length

k
q+1−p
0 is too big for the level k0

2s∗ at hands; and that is the reason why one needs to work
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within thinner cylinders with length
(

k0
2s∗

)q+1−p
. That is precisely our purpose in what is to

come.

Assume for now that s∗ is determined. Consider the cylinder Qτ0 sliced into (2s∗)q+1−p

subcylinders of length
(

k0
2s∗

)q+1−p
(if necessary take a bigger s∗ so that (2s∗)q+1−p is an integer)

Qτ0 =
(2s∗ )q+1−p−1

⋃

i=0

Qi

where

Qi = K8 ×

(

Ti
0, Ti

0 +

(

k0

2s∗

)q+1−p
]

for

Ti
0 = τ0 + k

q+1−p
0 + i

(

k0

2s∗

)q+1−p

.

In at least one of these subcylinders, say Qi, the previous measure theoretical information (4.5)

holds, that is
∣

∣

∣

∣

Qi ∩

[

v <
k0

2s∗

]∣

∣

∣

∣

≤
γ(N, p, q)

α δp

1

s
p−1

p
∗

|Qi|,

for some i = 0, 1, . . . , (2s∗)q+1−p − 1 . Our goal now is to get a lower bound for v in a cylinder

contained in the upper half of the cylinder Qi, via a DeGiorgi argument. For that purpose, we

consider decreasing sequences of radii, cylinders and levels given by, for n = 0, 1, . . .

4 < Rn = 4

(

1 +
1

2n

)

≤ 8,

Qn = KRn ×

(

Ti
0 +

1

2

(

1 −
1

2n

)(

k0

2s∗

)q+1−p

, Ti
0 +

(

k0

2s∗

)q+1−p
]

⊂ Qi,

and
k0

2s∗+1
< kn =

k0

2s∗+1

(

1 +
1

2n

)

≤
k0

2s∗

and cutoff function ξ defined in Qn and such that: 0 ≤ ξ ≤ 1, in Qn, ξ = 0 on parabolic

boundary of Qn, ξ = 1 in Qn+1 and

|Dξ| ≤ 2n and |∂τξ| ≤ 2n+2

(

2s∗

k0

)q+1−p

.

We then write the energy estimates (3.1) for v, over Qn, with k = kn

ess sup

Ti
0<τ<Ti

0+
(

k0
2s∗

)q+1−p

∫

KRn{τ}
g−(v, kn)ξ

p +
∫∫

Qn

|D(v − kn)−|
pξ p

≤ C(p, q)
∫∫

Qn

{

(v − kn)
p
−|Dξ|p + g−(v, kn) |∂t (ξ

p)|
}

≤ C(p, q) 2np k
p
n |An|,
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where |An| = |Qn ∩ [v < kn]. The last inequality was obtained recalling estimate (2.4). To

estimate from below the integral term presenting g−(v, kn), we use again (2.4) and the fact

that k0

2s∗+1 < kn ≤ k0
2s∗ to arrive at

∫

KRn{τ}
g−(v, kn)ξ

p ≥
1

γ(q)

(

k0

2s∗

)q−1 ∫

KRn{τ}
(v − kn)

2
−ξ p.

The previous estimate together with the energy estimates, Hölder’s inequality and the

Sobolev embedding (2.2), with m = 2, allows us to get

(kn − kn+1)|An+1| ≤
∫∫

Qn+1

(v − kn)− ≤
∫∫

Qn

(v − kn)−ξ

≤

{

∫∫

Qn

((v − kn)−ξ)p N+2
N

} N
p(N+2)

|An|
1− N

p(N+2)

≤ C(N, p, q) 2
N+p
(N+2)

n
k

N+p
N+2
n

(

2s∗

k0

)

q−1
N+2

|An|
1+ 1

N+2

and from here, by considering Yn =
|An|

|Qn|
, we deduce the algebraic estimate

Yn+1 ≤ C(N, p, q) bn Y
1+ 1

N+2
n , for b = 2

2N+p+2
N+2 > 1.

The algebraic convergence Lemma 2.3 says that

if Y0 ≤ C(N.p, q)−(N+2)b−(N+2)2
, then Yn → 0, as n → +∞;

so we just need to choose s∗ such that

γ(N, p, q)

α δp

1

s
p

p−1
∗

= C(N, p, q)−(N+2)b−(N+2)2
.

Remark 4.2. Observe that with this choice, s∗ only depends on N, p, q and α (since δ is already

determined and depends on these parameters as well).

The length of the cylinder Qi is exactly the one needed so that, when arguing in a DeGiorgi

fashion, given by Lemma 3.2, there is an independence of ν0 on the levels M̃ and the cylinder’s

length λ. In fact, in our case M̃ = k0
2s∗ and λ =

(

k0
2s∗

)q+1−p
.

We thereby obtain the lower bound

v ≥
k0

2s∗+1
a.e. in K4 ×

(

Ti
0 +

1

2

(

k0

2s∗

)q+1−p

, Ti
0 +

(

k0

2s∗

)q+1−p
]

;

in particular

v(, τ1) ≥
k0

2s∗+1
a.e. in K4,

for

τ0 + k
q+1−p
0 < Ti

0 +
1

2

(

k0

2s∗

)q+1−p

< τ1 ≤ Ti
0 +

(

k0

2s∗

)q+1−p

< τ0 + 2k
q+1−p
0 .

Returning to the original coordinates and function, we may conclude that

u(, t1) ≥ e
−

τ1
q+1−p

k0

2s∗+1
M =

ǫ

2s∗+1
e

τ0−τ1
q+1−p M a.e. in K4ρ(y)
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where t1 is defined by

−e−τ1 =
t1 − (s + δMq+1−pρp)

δMq+1−pρp
⇐⇒ t1 = s + (1 − e−τ1)δMq+1−pρp.

We are two steps away to conclude the expansion of positivity. First, by considering M̃ =
ǫ

2s∗+1 e
τ0−τ1
q+1−p M and choosing λ = ν0M̃q+1−p, where ν0 = ν0(N, p, q), the assumptions of the

variant DeGiorgi-type Lemma 3.3 are verified and we may conclude

u ≥
M̃

2
=

ǫ

2s∗+2
e

τ0−τ1
q+1−p M a.e. in K2ρ(y)

for all times

t1 ≤ t ≤ t1 + λ(2ρ)p.

Finally, we choose τ0 such that

t1 + λ(2ρ)p = s + δMq+1−pρp,

that is, keeping in mind the expressions of t1 and of λ,

eτ0 = δCN+22(N+2)2−p

(

2s∗+1

ǫ

)q+1−p

and from the range of τ1 we have

t1 < s +
(

1 − e−τ0 − 2ǫq+1−peτ0

)

δMq+1−pρp ≤ s +
δ

2
Mq+1−pρp.

Gathering these last estimates, we get

u(·, t) ≥
ǫ

2s∗+2
e
−

2k
q+1−p
0

q+1−p M a.e. in K2ρ(y),

for all

t ∈
(

s + (1 − λ)δMq+1−pρp, s + δMq+1−pρp
]

.

We have proved

Proposition 4.3. Let u is a nonnegative, local, weak supersolution to (1.1) in ΩT. Assume that, for

some (y, s) ∈ ΩT and some ρ > 0,

∣

∣Kρ(y) ∩ [u(·, s) ≥ M]
∣

∣ ≥ α
∣

∣Kρ(y)
∣

∣ ,

for some M > 0 and some α ∈ (0, 1). Then there exist δ, λ, η ∈ (0, 1), depending on N, p, q and α,

such that

u(·, t) ≥ ηM a.e. in K2ρ(y)

and for all t ∈
(

s + (1 − λ)δMq+1−pρp, s + δMq+1−pρp
]

.
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Expansion of positivity when q + 1 − p < 0

Consider a point (y, s) ∈ ΩT and let ρ > 0 be such that

K8ρ(y)×

(

s, s + δ
bp−(q+1)

(ηM)p−(q+1)
ρp

]

⊂ ΩT,

where M is a given positive number and δ, η, b are positive numbers to be determined.

Proposition 4.4. Let u is a nonnegative, local, weak supersolution to (1.1) in ΩT. Assume that (4.1)

holds, for some (y, s) ∈ ΩT, ρ > 0 and α ∈ (0, 1). Then there exist δ, η, b ∈ (0, 1), depending on

N, p, q and α, such that

u(·, t) ≥ ηM a.e. in K2ρ(y)

and for all t ∈ (s + δ
2

bp−(q+1)

(ηM)p−(q+1) ρp, s + δ bp−(q+1)

(ηM)p−(q+1) ρp].

Proof. Assume that (4.1) is verified. Then, for all 0 < σ0 ≤ 1, one also has

∣

∣Kρ(y) ∩ [u(·, s) > σ0M]
∣

∣ ≥ α
∣

∣Kρ(y)
∣

∣ .

Consider the energy estimates written over

Kρ(y)× (s, s + δ(σ0M)q+1−pρp]

for the levels k = σ0M. By proceeding as in the proof of Lemma 4.1, we obtain the same

parameters ǫ and δ, depending on N, p, q and α, for which

∣

∣Kρ(y) ∩ [u(·, t) > ǫ σ0M]
∣

∣ ≥
α

2

∣

∣Kρ(y)
∣

∣ , (4.6)

for all t ∈ (s, s + δ (σ0M)q+1−pρp].

For τ ≥ 0, consider the number

στ = e
− τ

p−(q+1) ≤ 1.

Since (4.6) holds for all 0 < σ0 ≤ 1, it also holds for στ

∣

∣Kρ(y) ∩ [u(·, t) > ǫ στ M]
∣

∣ ≥
α

2

∣

∣Kρ(y)
∣

∣ , ∀t ∈ (s, s + δ (στ M)q+1−pρp]

and, in particular,

∣

∣

∣
Kρ(y) ∩ [u(·, s + δ (στ M)q+1−pρp) > ǫ στ M]

∣

∣

∣
≥

α

2

∣

∣Kρ(y)
∣

∣ .

Introduce the change of variable

eτ = (t − s)
Mp−(q+1)

δρp

and the define the new function

v(x, τ) =
e

τ
p−(q+1)

M
(δρp)

1
p−(q+1) u(x, t).
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In this new setting, v is a solution to

∂τ (v
q)− div

(

|Dv|p−2Dv
)

=
q

p − (q + 1)
vq ≥ 0

and the measure theoretical information on u is translated into the following measure theo-

retical information on v
∣

∣

∣
Kρ(y) ∩

[

v(·, τ) > ǫ (δρp)
1

p−(q+1)

]∣

∣

∣
≥

α

2

∣

∣Kρ(y)
∣

∣ , τ ≥ 0.

Therefore one gets, for all τ ≥ 0

∣

∣K4ρ(y) ∩ [v(·, τ) > k0]
∣

∣ ≥
α

2 4N

∣

∣K4ρ(y)
∣

∣ ,

for

k0 = ǫ (δρp)
1

p−(q+1) (completely determined).

Consider the smaller levels

k j =
k0

2j
, for j = 0, 1, . . . s∗ (s∗ to be chosen),

take the stretching factor θ as

θ =

(

k0

2s∗

)q+1−p

≥ k
q+1−p
j , for all j = 0, 1, . . . , s∗, (4.7)

construct the cylinders

Q = (y, 0) + Q+
8ρ(θ) and Q̃ = K4ρ(y)× (θ(4ρ)p, θ(8ρ)p], Q̃ ⊂ Q

and take ϕ = (v− k)−ξ p as a test function, where ξ ∈ [0, 1] is a smooth cutoff function defined

in Q, vanishing on its parabolic boundary and verifying

ξ = 1 in Q̃, |Dξ| ≤
1

4ρ
and |∂τξ| ≤

1

θ(4ρ)p
.

For these choices the arrive at
∫∫

Q̃
|D(v − k j)−|

p ≤
∫∫

Q
|D(v − k j)−|

pξ p

≤ C(p)
k

p
j

(4ρ)p







1 +
k

q+1−p
j

θ







|Aj| ≤ C(p)
k

p
j

(4ρ)p
|Aj|

due to the definition of θ and taking |Aj| = |Q ∩ [v < k j]|. We then proceed in a similar way

as in the case q + 1 − p > 0, to find out that
∣

∣

∣

∣

Q̃ ∩

[

v <
k0

2s∗

]∣

∣

∣

∣

≤
C(N, p, q)

α

1

(s∗)
p−1

p

∣

∣Q̃
∣

∣ .

This estimate on the measure of the set where v is below the level k0

2s∗ will be the starting point

to argument in a DeGiorgi fashion in a backward cylinder, like in Lemma 3.2. Along the way,

the length θ of the cylinder will be determined. More precisely, consider the cylinder

(y, τ∗) + Q−
4ρ(θ) = K4ρ(y)× (τ∗ − θ(4ρ)p, τ∗] ⊂ Q̃ for τ∗ = θ(8ρ)p
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and the sequences of numbers

2ρ < ρn = 2ρ

(

1 +
1

2n

)

≤ 4ρ,
k0

2s∗+1
< kn =

k0

2s∗+1

(

1 +
1

2n

)

≤
k0

2s∗

and of nested and shrinking cylinders

Q−
n = (y, τ∗) + Q−

ρn
(θ),

for n = 0, 1, . . . Take a cutoff function 0 ≤ ξ ≤ 1 defined in Q−
n and such that: ξ = 0 on the

parabolic boundary of Q−
n , ξ = 1 in Q−

n+1 and

|Dξ| ≤
2n+1

ρ
and |∂τξ| ≤ C

2np

θρp

and write the energy estimates (3.1) for v, over Q−
n , with k = kn. Recalling the estimates (2.4)

on g−(v, kn) and the definition (4.7) of θ, we obtain

ess sup
τ∗−θ(ρn)p

<τ<τ∗

∫

Kρn×{τ}
g−(v, kn)ξ

p +
∫∫

Q−
n

|D(v − kn)−|
pξ p

≤ C(p, q)
∫∫

Q−
n

{

(v − kn)
p
−|Dξ|p + g−(v, kn) |∂τ (ξ

p)|
}

≤ C(p, q) 2np k
p
n

ρp

{

1 +
k

q+1−p
n

θ

}

|An| ≤ C(p, q) 2np k
p
n

ρp
|An|,

where, as usually, |An| = |Q−
n ∩ [v < kn]|. Observe that, on the one hand

∫∫

Q−
n

(v − kn)−ξ ≥
∫∫

Q−
n+1

(v − kn)− ≥ (kn − kn+1)|An+1| =
k0

2s∗
1

2n+2
|An+1|

and, on the other hand, by applying Hölder’s inequality with exponent p N+2
N , together with

Sobolev’s embedding, we get

∫∫

Q−
n

(v − kn)−ξ ≤ C(N, p, q)

(

2n

ρ

)

N+p
N+2

k
N+p+1−q

N+2
n |An|

1+ 1
N+2 .

Consider the numbers Yn = |An|
|Q−

n |
. From the previous estimates we deduce

Yn+1 ≤ C(N, p, q) bn Y
1+ 1

N+2
n , for b = 2

2N+p+2
N+2 > 1

and we may conclude that Yn goes to zero as n → +∞ once we have

∣

∣

∣
(y, τ∗) + Q−

4ρ(θ) ∩
[

v <
k0

2s∗

]∣

∣

∣

∣

∣

∣(y, τ∗) + Q−
4ρ(θ)

∣

∣

∣

= Y0 ≤ C(N, p, q)−(N+2)2−(2N+p+2)(N+2).

Recall that, under our hypothesis, we have (y, τ∗) + Q−
4ρ(θ) ⊂ Q̃ and

∣

∣

∣

∣

Q̃ ∩

[

v <
k0

2s∗

]∣

∣

∣

∣

≤
C(N, p, q)

α

1

(s∗)
p−1

p

∣

∣Q̃
∣

∣
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and thereby

Y0 ≤

∣

∣

∣Q̃ ∩
[

v <
k0

2s∗

]∣

∣

∣

∣

∣Q̃
∣

∣

∣

∣Q̃
∣

∣

∣

∣

∣
(y, τ∗) + Q−

4ρ(θ)
∣

∣

∣

≤
γ(N, p, q)

α

1

(s∗)
p−1

p

.

We determine the parameter s∗, and therefore the length of the cylinder, so that

γ(N, p, q)

α

1

(s∗)
p−1

p

= C(N, p, q)−(N+2)2−(2N+p+2)(N+2).

This implies

v(·, τ) ≥
k0

2s∗ + 1
a.e. in K2ρ

for all τ ∈ (τ∗ − θ(2ρ)p, τ∗] .

Returning to the original time variable t and function u(x, t) we get

u(x, t) ≥ η M a.e. in K2ρ(y)

for all t ∈ (s + δ
2

bp−(q+1)

(ηM)p−(q+1) ρp, s + δ bp−(q+1)

(ηM)p−(q+1) ρp], where

η =
ǫ

2s∗+1
e
−
(

ǫ

2s∗+1

)q+1−p
8p

δ (p−q−1) .

This time interval was obtained from the previous range of τ and realizing that, on such a

range,

b1 = e
−
(

ǫ

2s∗+1

)q+1−p
8p

δ (p−q−1) ≤ e
− τ

p−q−1 < e
−
(

ǫ

2s∗+1

)q+1−p
6p

δ (p−q−1) = b2

and taking

b =
ǫ

2s∗+1
.
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Abstract. We classify the global dynamics of a family of Kolmogorov systems depend-
ing on three parameters which has ecological meaning as it modelizes a predator–prey
system. We obtain all their topologically distinct global phase portraits in the positive
quadrant of the Poincaré disc, so we provide all the possible distinct dynamics of these
systems.
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disc.
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1 Introduction

Rosenzweig and MacArthur introduced in [25] the following predator–prey model

ẋ = rx
(

1 − x

K

)

− y
mx

b + x
,

ẏ = y

(

−δ + c
mx

b + x

)

,

where the dot as usual denotes derivative with respect to the time t, x ≥ 0 denotes the
prey density (#/unit of area) and y ≥ 0 denotes the predator density (#/unit of area), the
parameter δ > 0 is the death rate of the predator, the function mx/(b + x) is the # prey caught
per predator per unit time, the function x → rx(1 − x/K) is the growth of the prey in the
absence of predator, and c > 0 is the rate of conversion of prey to predator.

The Rosenzweig and MacArthur system is a particular system of the general predator–prey
systems with a Holling type II, see [12, 13].

In [14] Huzak reduced the study of the Rosenzweig and MacArthur system to study a poly-
nomial differential system. In order to do that the first step is to do the rescaling (x, y, b, c, δ) =

(x/K, (m/rK)y, b/K, cm/r, δ/r). After denoting again (x, y, b, c, δ) by (x, y, b, c, δ) and doing

BCorresponding author. Email: erikadiz.pita@usc.gal
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a time rescaling multiplying by b + x, the obtained polynomial differential system of degree
three is

ẋ = x(−x2 + (1 − b)x − y + b),

ẏ = y((c − δ)x − δb),
(1.1)

where b, c and δ are positive parameters. This system is studied in the positive quadrant of
the plane R2 where it has ecological meaning. See systems (1.1) and (2.2) of [14].

Huzak [14] focuses his work in the study of the periodic sets that can produce the canard
relaxation oscillations after perturbations. He finds three types of limit periodic sets and
studies their cyclicity by using the geometric singular perturbation theory and the family
blow-up at (x, y, δ) = (0, br/m, 0), where δ is the singular perturbation parameter. He proves
that the upper bound on the number of limit cycles of the system is 1 or 2 depending on the
parameters.

Systems (1.1) are particular Kolmogorov systems. These systems were proposed in 1936,
see [15], as an extension of the Lotka–Volterra systems to arbitrary dimension and arbitrary
degree.

We want to complete the study of the dynamics of systems (1.1) and classify all their phase
portraits on the closed positive quadrant of the Poincaré disc, in this way we also can control
the dynamics of the system near the infinity. This classification is given in the following result,
except for the case with the parameters satisfying 0 < bδ < c − δ, δ(δ(b + 1) + c(b − 1))2 −
4c(c − δ)2(c − δ(b − 1)) < 0 and 1 + c − δ − b − bδ > 0, in which we make a conjecture about
the expected global phase portrait.

Theorem 1.1. The global phase portrait of system (1.1) in the closed positive quadrant of the Poincaré

disc is topologically equivalent to one of the 3 phase portraits of Figure 1.1 in the following way:

• If bδ ≥ c − δ the phase portrait is equivalent to phase portrait (A).

• If 0 < bδ < c − δ and δ(δ(b + 1) + c(b − 1))2 − 4c(c − δ)2(c − δ(b − 1)) ≥ 0 the phase

portrait is equivalent to phase portrait (B).

• If 0 < bδ < c − δ and δ(δ(b + 1) + c(b − 1))2 − 4c(c − δ)2(c − δ(b − 1)) < 0 and 1 + c −
δ − b − bδ < 0 the phase portrait is equivalent to phase portrait (C).

(A) (B) (C)

Figure 1.1: Phase portraits of system (1.1) in the positive quadrant of the
Poincaré disc.

Conjecture. The global phase portrait of system (1.1) in the closed positive quadrant of the Poincaré

disc if 0 < bδ < c − δ and δ(δ(b + 1) + c(b − 1))2 − 4c(c − δ)2(c − δ(b − 1)) < 0 and 1 + c − δ −
b − bδ > 0 is also topologically equivalent to the one in Figure 1.1(C).
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Figure 1.2: The regions I, II-a, II-b, III and the surfaces separating the different
phase portraits: S1 : {δ = c/(b + 1) | b, c ≥ 0}, S2 : {δ = (1 + c − b)/(b + 1) |
b, c ≥ 0, (1+ c− b)/(b+1) < c/(b+1)} and S3 : {δ = c(1− b)/(1+ b) | b, c ≥ 0}.

In Figure 1.2 are represented the regions and surfaces in the parameters space in which
each one of the phase portraits are realised. In the region I and over the surface S1 the phase
portrait is the one in Figure 1.1(A) and in the region III the phase portrait is the one in Figure
1.1(B). In region II there are two subregions, II-a and II-b. It is proved that in the region II-a
the phase portrait is the one in Figure 1.1(C) and we conjecture that the phase portrait is the
same in the region II-b and over the surfaces S2 and S3.

2 Preliminaries

Here we introduce the Poincaré compactification, as it allows to control the dynamics of a
polynomial differential system near the infinity.

Consider a polynomial system in R2

ẋ1 = P(x1, x2),

ẋ2 = Q(x1, x2),

of degree d; the sphere S2 =
{

y ∈ R3 : y2
1 + y2

2 + y2
3 = 1

}

, which we will call the Poincaré sphere,
and its tangent plane at the point (0, 0, 1) which we identify with R2.

We can obtain an induced vector field in S2 \ S1 by means of central projections f+ : R2 →
S2 and f− : R2 → S2, which are defined as

f+(x) =

(

x1

∆(x)
,

x2

∆(x)
,

1
∆(x)

)

and f−(x) =

( −x1

∆(x)
,
−x2

∆(x)
,
−1

∆(x)

)

,

where ∆(x) =
√

x2
1 + x2

2 + 1. The differential D f+ and D f− provide a vector field in the
northern and southern hemisphere respectively. The points of the equator S1 of S2 correspond
with the points at infinity of R2, and we can extend analytically the vector field to these
points of the equator multiplying the field by yd

3. This extended field is called the Poincaré
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compactification of the original vector field. Then we must study the dynamics of the Poincaré
compactification near S1, for studying the dynamics of the original field in the neighborhood
of the infinity.

We will work in the local charts (Ui, φi) and (Vi, ψi) of the sphere S2, where Ui =
{

y ∈ S2 : yi > 0
}

, Vi =
{

y ∈ S2 : yi < 0
}

, φi : Ui −→ R2 and ψi : Vi −→ R2 for i = 1, 2, 3
with φi(y) = ψi(y) = (ym/yi, yn/yi) for m < n and m, n 6= i.

The expression of the Poincaré compactification in the local chart (U1, φ1) is

u̇ = vd

[

−u P

(

1
v

,
u

v

)

+ Q

(

1
v

,
u

v

)]

, v̇ = −vd+1 P

(

1
v

,
u

v

)

, (2.1)

in the local chart (U2, φ2) is

u̇ = vd

[

P

(

u

v
,

1
v

)

− uQ

(

u

v
,

1
v

)]

, v̇ = −vd+1 Q

(

u

v
,

1
v

)

, (2.2)

and in the local chart (U3, φ3) the expression is

u̇ = P(u, v), v̇ = Q(u, v). (2.3)

The expression for the Poincaré compactification in the local charts (Vi, ψi), with i = 1, 2, 3
is the same as in the charts (Ui, φi) multiplied by (−1)d−1.

As we want to study the behaviour near the infinity, we must study the infinite singular

points, i.e., the singular points of the Poincaré compactification which lie in the equator S1.
Note that it will be enough to study the infinite points on the local chart U1 and the origin of
the local chart U2, because if y ∈ S1 is an infinite singular point, then −y is also an infinite
singular point and they have the same or opposite stability depending on whether the system
has odd or even degree.

We shall present the phase portraits of the polynomial differential systems (1.1) in the
Poincaré disc, i.e. the orthogonal projection of the closed northern hemisphere of S2 onto the
plane y3 = 0. This will be enough since the orbits of the Poincaré compactification on S2 are
symmetric with respect to the origin of R3 so we only need to consider the flow in the closed
northern hemisphere.

See chapter 5 of [8] for more details about the Poincaré compactification.

3 Finite singular points

First we study the finite singular points of system (1.1) in the closed positive quadrant. The
origin P0 = (0, 0) and the point P1 = (1, 0) are singular points for any values of the parameters,
and P2 =

(

bδ/(c − δ), (−bc(δ + bδ − c))/(c − δ)2
)

is a positive singular point if c 6= δ and
0 < bδ < c − δ. Note that if bδ = c − δ then P1 = P2.

Now we study the local phase portraits at these singular points. The origin is a saddle
point, as the eigenvalues of the Jacobian matrix at this point are b and −δb. At the point P1

the eigenvalues are −b − 1 and −δb + c − δ. The first eigenvalue is always negative, but we
distinguish three cases depending on the second one. If c − δ < bδ then P1 is a stable node;
if c − δ > bδ then P1 is a saddle (this was the case in [14] because there δ > 0 was kept very
small). If c − δ = bδ, then P1 is a semi-hyperbolic singular point, so from [8, Theorem 2.19] we
obtain that P1 = P2 is a saddle-node.
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At the singular point P2 the eigenvalues of the Jacobian matrix are

λ1,2 =
2

(c − δ)2 (A ±
√

δB),

where

A = δ(c − δ)− bδ(c + δ) and B = δ(δ(b + 1) + c(b − 1))2 − 4c(c − δ)2(c − δ(b − 1)).

If B < 0 then the eigenvalues are complex. In this case for A > 0 the singular point P2 is
an unstable focus, and for A < 0 it is a stable focus. We deal with this case B < 0 in Section 6,
where we study the Hopf bifurcation which takes place at P2.

If B = 0 we have λ1 = λ2 = A/(c − δ)2 and in this case A cannot be zero, because if A = 0
then b = (c − δ)/(c + δ), and replacing this expression B = −4c2(c − δ)3/(c + δ), so one of
the conditions c = 0 or c − δ = 0 must hold, but this is a contradiction as c > 0 from the
hypotheses, and if c = δ then b = 0 again in contradiction with the hypotheses. Then A 6= 0
and its sign determines if the singular point is either a stable or an unstable node.

If B > 0 both eigenvalues are real. The determinant of the Jacobian matrix is

− b2cδ

(c − δ)2 (bδ + δ − c),

which is positive because the singular point P2 exists only if condition bδ < c − δ holds. Then
both eigenvalues are nonzero and have the same sign, particularly, if A > 0 both are positive
and P2 is an unstable node, and if A < 0 both are negative and P2 is a stable node.

The local phase portrait of the singular point P2 in the case with A = 0 will be proved in
Subsection 6.1.

In summary, we describe in Table 3.1 the finite singular points according the values of the
parameters b, c and δ.

Case Conditions Finite singular points

1 bδ > c − δ. P0 saddle, P1 stable node.
2 bδ = c − δ. P0 saddle, P1 saddle-node.
3 0 < bδ < c − δ, B ≥ 0, A > 0. P0 saddle, P1 saddle, P2 unstable node.
4 0 < bδ < c − δ, B ≥ 0, A < 0. P0 saddle, P1 saddle, P2 stable node.
5 0 < bδ < c − δ, B < 0, A > 0. P0 saddle, P1 saddle, P2 unstable focus.
6 0 < bδ < c − δ, B < 0, A < 0. P0 saddle, P1 saddle, P2 stable focus.
7 0 < bδ < c − δ, B < 0, A = 0. P0 saddle, P1 saddle, P2 weak stable focus.

Table 3.1: The finite singular points in the closed positive quadrant.

4 Infinite singular points

In this section we will consider the Poincaré compactification of system (1.1) as it allows to
study the behavior of the trajectories near infinity.

In the chart U1 system (1.1) writes

u̇ = uv2 − b(δ + 1)uv2 + (b + c − δ − 1)uv + u,

v̇ = uv2 − bv3 + (b − 1)v2 + v.
(4.1)
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The only singular point over v = 0 is the origin of U1, which we denote by O1. The linear
part of system (4.1) at the origin is the identity matrix, so O1 is an unstable node.

In the chart U2 system (1.1) writes

u̇ = −u3 + (δ + 1 − b − c)u2v + b(δ + 1)uv2 − uv,

v̇ = (δ − c)uv2 + bδv3.
(4.2)

The origin of U2 is a singular point, O2, and the linear part of system (4.2) at O2 is identi-
cally zero, so we must use the blow-up technique to study it. We do a horizontal blow up
introducing the new variable w1 by means of the variable change vw1 = u, and get the system

ẇ1 = v2w3
1 + (1 − b)v2w2

1 + bw1v2 − w1v,

v̇ = (δ − c)w1v3 + bδv3.
(4.3)

Now rescaling the time variable we cancel the common factor v, getting the system

ẇ1 = vw3
1 + (1 − b)vw2

1 + bw1v − w1,

v̇ = (δ − c)w1v2 + bδv2.
(4.4)

The only singular point on v = 0 is the origin, which is semi-hyperbolic. Applying [8, Theo-
rem 2.19] we conclude that it is a saddle-node. Studying the sense of the flow over the axis we
determine that the phase portrait around the origin of system (4.4) is the one on Figure 4.1(a).
If we multiply by v the sense of the orbits on the third and fourth quadrants changes and
all the points of the w1-axis become singular points. With these modifications we obtain the
phase portrait for system (4.3), given in Figure 4.1(b). Then we undo the blow up going back
to the (u, v)-plane. We must swap the third and fourth quadrants and shrink the exceptional
divisor to the origin. The phase portrait obtained for system (4.2) is not totally determined in
the shaded regions of the third and fourth quadrants, see Figure 4.1(c). This can be solved by
doing a vertical blow up but, in our case, it is not necessary because we only need to know
the phase portrait of O2 in the positive quadrant of the Poincaré disc, which corresponds with
the positive quadrant in the plane (u, v), in which the phase portrait is well determined.

v

w
1

(a) Local phase portrait at
the origin of system (4.4)

v

w
1

(b) Local phase portrait at
the origin of system (4.3)

v

u

(c) Local phase portrait at
the origin of system (4.2)

Figure 4.1: Desingularization of the origin of system (4.2).

As a conclusion the local phase portrait at the infinite singular points is the same indepen-
dently of the values of the parameters, so in all cases of Table 3.1 the origin of the chart U1,
i.e. the singular point O1, is an unstable node and the origin of the chart U2, i.e. the singular
point O2 has only one hyperbolic sector on the positive quadrant of the Poincaré disc being
one separatrix at infinity and the other on x = 0.
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5 Cases with no singular points in the positive quadrant

In the two first cases of Table 3.1 there is no singular points in the positive quadrant. The finite
singular points are the origin P0 and P1 which are both over the axes. The axes are invariant
lines so there cannot exist a limit cycle surrounding these singular points. Therefore as we
have determined the local phase portrait at the finite and infinite singularities, and we know
there are no limit cycles, we can study the global portrait in the first quadrant of the Poincaré
disc.

In both cases we obtain the same result since in the case in which P1 is a saddle-node,
studying the sense of the flow we determine that the parabolic sector of the saddle-node is
always on the positive quadrant of the Poincaré disc. Analysing all the possible alpha and
omega-limits, the only possibility is that all the orbits leave the infinite singular point O1 and
go to the finite singular point P1. This phase portrait is given in Figure 1.1(A).

6 Cases with singular points in the positive quadrant

6.1 Existence of limit cycles

Theorem 6.1. If 0 < bδ < c − δ and A > 0, then there exists at least one limit cycle surrounding

singular point P2.

Proof. If conditions 0 < bδ < c − δ and A > 0 hold, then we have case 3 or 5 of Table 3.1.
In both cases singular point P1 is a saddle which has an unstable separatrix on the positive
quadrant, P2 is either an unstable node or an unstable focus, and O1 is an unstable node. By
Poincaré–Bendixson theorem, there must exists at least one limit cycle which is the ω-limit
of the orbits leaving O1, the orbits leaving P2 and the separatrix of P1, as there are no other
singular points that can be the ω-limit of all these orbits.

In cases 5, 6 and 7 of Table 3.1 the Jacobian matrix at the point P2 has complex eigenvalues
because B < 0. In these cases we study the existence of Hopf bifurcation, leading to the
following result.

Theorem 6.2. The equilibrium P2 of system (1.1) undergoes a supercritical Hopf bifurcation at b0 =

(c − δ)/(c + δ). For b > b0 the system has a unique stable limit cycle bifurcating from the equilibrium

point P2.

Proof. The Jacobian matrix at this equilibrium is

A(b) =









−bδ(c(b − 1) + δ(b + 1))
(c − δ)2 − bδ

c − δ

−bc(bδ + δ − c)

c − δ
0









,

and it has eigenvalues µ(b)± ω(b)i, where

µ(b) =
b

2(c − δ)2 A and ω(b) =
b

2(c − δ)2

√
−δB. (6.1)

We get µ(b0) = 0 for

b0 =
c − δ

c + δ
. (6.2)
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We are working under condition B < 0 and from this condition it can be deduced that
c − δ > 0, so the expression of b0 obtained is positive. Therefore at b = b0 the equilibrium
point P2 has a pair of pure imaginary eigenvalues ±iω(b) and the system will have a Hopf
bifurcation if some Lyapunov constant is nonzero and (dµ/db)(b0) 6= 0.

The equilibrium is stable for b > b0 (i.e. for A < 0) and unstable for b < b0 (i.e. for A > 0).
In order to analyze this Hopf bifurcation we will apply [16, Theorem 3.3], so we must prove
if the genericity conditions are satisfied. We check that the transversality condition is satisfied
as

dµ

db
(b0) = − δ

2(c − δ)
< 0, (6.3)

and the sign is determined because c − δ > 0.
To check the second condition we must compute the first Lyapunov constant. We fix the

value b = b0 and then the equilibrium P2 has the expression

P2 =

(

δ

c + δ
,

c2

(c + δ)2

)

. (6.4)

We translate P2 to the origin of coordinates obtaining the system

ε̇1 = −ε3
1 −

δ

c + δ
ε2

1 − ε1ε2 −
δ

c + δ
ε2,

ε̇2 = (c − δ)ε1ε2 +
c2(c − δ)

(c + δ)2 ,

(6.5)

which can be represented as

ε̇ = Aε +
1
2

B(ε, ε) +
1
6

C(ε, ε, ε), (6.6)

where A = A(b0) and the multilinear functions B and C are given by

B(ε, η) =







− 2δ

c + δ
ε1η1 − ε1η2 − ε2η1

(c − δ)ε1η2 + (c − δ)ε2η1






,

C(ε, η, ζ) =





6ε1η1ζ1

0



 .

We need to find two eigenvectors p, q of the matrix A verifying

Aq = iωq, AT p = −iωp, and 〈p, q〉 = 1,

as for example

q =







− δ

c + δ

iω






and p =











− c + δ

2δ

iω
(c + δ)3

2c2δ(c − δ)











. (6.7)

Now we compute

g20 = 〈p, B(q, q)〉 = ω2(c + δ)5 − c2δ2(c + δ)

2δc4(c − δ)
+

ω(c + δ)3

2c2δ(c − δ)
i,
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g11 = 〈p, B(q, q)〉 = − δ(c + δ)

2c2(c − δ)
, g21 = 〈p, C(q, q, q)〉 = − 3(c + δ)4

4c4(c − δ)2 ,

and the first Lyapunov coefficient

ℓ1 =
1

2ω2 Re(ig20g11 + ωg21) = − (c + δ)4

4c4ω(c − δ)2 ,

which is negative for any values of the parameters, and so the second condition of the theorem
we are applying is satisfied and we can conclude that a unique stable limit cycle bifurcates
from the equilibrium point P2 through a Hopf bifurcation for b < b0 with b0 − b sufficiently
small.

Proposition 6.3. If 0 < bδ < c − δ and A > 0, the limit cycle surrounding singular point P2 is

unique.

Proof. This result follows from [18] by proving that system (1.1) with 0 < bδ < c − δ and
A > 0 satisfies conditions (i)–(iv) in Section 2 of [18].

Condition (i) holds taking g(x) = (c − δ)x which verifies g(0) = 0 and g′(x) > 0 for all
x ≥ 0 as we have assumed c − δ > 0.

Condition (ii) holds for f (x) = −x2 + (1 − b)x + b, K = 1 and a = (1 − b)/2. From
condition A > 0 we deduce that

δ(c − δ)− bδ(c + δ) > 0 ⇒ c − δ

c + δ
>

bδ

δ
⇒ 1 >

c − δ

c + δ
> b,

and condition b < 1 guarantees that a > 0.
Condition (iii) holds for λ = bδ and x∗ = δb/(c − δ). It can be proved that with the

expressions chosen for a and x∗ the condition x∗ < a, is equivalent to the condition A > 0:

x∗ < a ⇔ δb

c − δ
<

1 − b

2
⇔ 2δb < (1 − b)(c − δ) ⇔ δb + bc < c − δ ⇔ b <

c − δ

c + δ
⇔ A > 0.

Condition (iv) is satisfied with

x∗ =
δb

c − δ
and x∗ = 1 − bc

c − δ
.

We have
d

dx

x f ′(x)

g(x)− λ
=

−2x2(c − δ) + 4xδb(b − 1)
((c − δ)x − δb)2 , (6.8)

which is always negative as the polynomial in the numerator is negative in x = 0 and has no
real roots.

Then, as conditions (i)–(iv) hold for our systems, we can conclude that the limit cycle is
unique.

Remark 6.4. Theorem 6.2 proves that the unique limit cycle of system (1.1) appears from the
equilibrium point P2 in a Hopf bifurcation. From the proof of Theorem 6.2 the singular point
P2 when B < 0 and A = 0 is a weak stable focus.

So far we have not proved if in cases 4, 6, and 7 of Table 3.1 there are or not limit cycles.
The following result proves that in some subcases there are not limit cycles.
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Theorem 6.5. If 0 < bδ < c − δ, A < 0 and 1 + c < δ + b + bδ, then system (1.1) does not have

periodic orbits in the set {(x, y) ∈ R2 : x, z ≥ 0}.

Proof. Let

f (x, y) = x(−x2 + (1 − b)x − y + b) and g(x, y) = y((c − δ)x − δb).

In order to prove the non existence of periodic orbits we use the Bendixson–Dulac Theorem
that states that if there exists a function ϕ(x, y) such that the term

∆(x, y) =
∂(ϕ f )

∂x
+

∂(ϕg)

∂y

does not change sign in a simply connected set S , then there are no periodic orbits on S .
We consider the function ϕ(x, y) = 1/x, then:

∆(x, y) = 1 + c − δ − 2x − b(δ + x)

x
.

We observe that there are no periodic orbits in the set

{(x, y) ∈ R
2
+ : x ≥ 1},

because ẋ < 0 for all the points in this set and for the same reason there are no periodic orbits
crossing the line {x = 1, y ≥ 0}. As a consequence we can restrict to the case x < 1 for which
we obtain

∆(x, y) < 1 + c − δ − bδ

x
− b < 1 + c − δ − bδ − b.

Then ∆(x, y) < 0 in
{

(x, y) ∈ R2 : 0 ≤ x ≤ 1, y ≥ 0
}

if 1+ c − δ − b − bδ < 0 and we conclude
that there are no periodic orbits in the whole set

{

(x, y) ∈ R2 : x ≥ 0, y ≥ 0
}

.

Conjecture. If 0 < bδ < c − δ, A < 0 (i.e., we are in cases 4, 6, or 7 of Table 3.1) and 1 + c >

δ + b + bδ, there are not limit cycles.

We have numerical evidences that the conjecture holds.

6.2 Phase portraits on the positive quadrant of the Poincaré disc

Now we study the global phase portraits of system (1.1) on the positive quadrant of the
Poincaré disc when there is a singular point in the positive quadrant, assuming the previous
conjecture.

In case 3 of Table 3.1, by Theorem 6.1 there exist a unique limit cycle which is the ω-limit
of all orbits leaving O1 and P2, and also the ω-limit of the unstable separatrix leaving P1 in the
positive quadrant. Then the global phase portraits is the one on Figure 1.1(B).

In case 5 of Table 3.1 we have again that there exists a unique limit cycle attracting all
orbits in the positive quadrant. The global phase portrait is the same as the one in case 3 but
here the singular point in the positive quadrant is an unstable focus instead of an unstable
node. As the local phase portraits of these two singular points are topologically equivalent we
have again phase portrait (B) of Figure 1.1.

In cases 4, 6 and 7 of Table 3.1, if 1 + c < δ + b + bδ we have proved that there are no limit
cycles. In case 4 the only possibility is that the stable node P2 is a global attractor for all orbits
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in the positive quadrant, and we have the global phase portrait given in Figure 1.1(C). In cases
6 and 7 of Table 3.1, P2 is a stable focus and attracts all the orbits of the positive quadrant. As
the local phase portrait of a stable focus is topologically equivalent to a stable node, we also
have here the phase portrait of Figure 1.1(C).

In the cases 4, 6 and 7 of Table 3.1, if the conditions 1 + c < δ + b + bδ does not hold, we
have assumed that there are not limit cycles, so the conjectured phase portraits will be the
same.

Acknowledgements

The first and third authors are partially supported by the Ministerio de Ciencia e Innovación,
Agencia Estatal de Investigación (Spain), grant PID2020-115155GB-I00 and the Consellería de
Educación, Universidade e Formación Profesional (Xunta de Galicia), grant ED431C 2019/10
with FEDER funds. The first author is also supported by the Ministerio de Educacion, Cultura
y Deporte de España, contract FPU17/02125.

The second author is partially supported by the Agencia Estatal de Investigación grant
PID2019-104658GB-I00, and the H2020 European Research Council grant MSCA-RISE-2017-
777911.

References

[1] J. Alavez-Ramírez, G. Blé, V. Castellanos, J. Llibre, On the global flow of a 3-
dimensional Lotka–Volterra system, Nonlinear Anal. 75(2012), 4114–4125. https://doi.
org/10.1016/j.na.2012.03.002; MR2914597; Zbl 1246.37075

[2] M. J. Álvarez, A. Ferragut, X. Jarque, A survey on the blow up technique, Internat.

J. Bifur. Chaos Appl. Sci. Engrg. 21(2011), No. 11, 3103–3118. https://doi.org/10.1142/
S0218127411030416; MR2871964

[3] A. A. Andronov, E. A. Leontovich, I. J. Gordon, A. G. Maier, Qualitative theory of sec-

ond order dynamic systems, J. Wiley & Sons, 1973. https://doi.org/10.1063/1.3128815;
MR0350126

[4] P. Breitenlohner, G. Lavrelashvili, D. Maison, Mass inflation and chaotic behaviour
inside hairy black holes, Nuclear Phys. B 524(1998), 427–443. https://doi.org/10.1016/
S0550-3213(98)00177-1; MR1634643

[5] F. H. Busse, Transition to turbulence via the statistical limit cycle route, in: H. Haken
(Ed.), Chaos and order in nature, Springer Series in Synergetics, Vol. 11, Springer-Verlag,
Berlin, 1981, pp. 36–44. https://doi.org/10.1007/978-3-642-68304-6_4

[6] M. Desai, P. Ormerod, Richard Goodwin: A short appreciation, Econ. J. 108(1998),
No. 450, 1431–1435. https://doi.org/10.1111/1468-0297.00350

[7] F. Dumortier, Singularities of vector fields on the plane, J. Differential Equations 23(1977),
53–106. https://doi.org/10.1016/0022-0396(77)90136-X; MR0650816

[8] F. Dumortier, J. Llibre, J. C. Artés, Qualitative theory of planar differential systems,
UniversiText, Springer-Verlag, New York, 2006. https://doi.org/10.1007/978-3-540-
32902-2; MR2256001



12 E. Diz-Pita, J. Llibre and M. V. Otero-Espinar

[9] G. Gandolfo, Economic dynamics, Fourth edition. Springer, Heidelberg, 2009. https://
doi.org/10.1007/978-3-642-03871-6; MR2841165

[10] G. Gandolfo, Giuseppe Palomba and the Lotka–Volterra equations, Rend. Fis. Acc. Lincei

19(2008), No. 4, 347–357. https://doi.org/10.1007/s12210-008-0023-7

[11] R. M. Goodwin, A growth cycle, in: Essays in economic dynamics, Palgrave Macmillan,
London, 1967, pp. 165–170. https://doi.org/10.1007/978-1-349-05504-3_12

[12] C. S. Holling, The components of predation as revealed by a study of small-mammal
predation of the European pine sawfly, Can. Entomol. 91(1959), No. 5, 293–320. https:
//doi.org/10.4039/Ent91293-5

[13] C. S. Holling, Some characteristics of simple types of predation and parasitism, Can.

Entomol. 91(1959), No. 7, 385–398. https://doi.org/10.4039/Ent91385-7

[14] R. Huzak, Predator–prey systems with small predator’s death rate, Electron. J. Qual.

Theory Differ. Equ. 2018, No. 86, 1–16. https://doi.org/10.14232/ejqtde.2018.1.86;
MR3863880

[15] A. Kolmogorov, Sulla teoria di Volterra della lotta per l’esistenza (in Italian) [On
Volterra’s theory of the fight for existence], Giornale dell’ Istituto Italiano degli Attuari

7(1936), 74–80.

[16] Y. Kuznetsov, Elements of applied bifurcation theory, 2nd ed.; Springer, 1998. https:
//doi.org/10.1007/b98848; MR1711790

[17] G. Laval, R. Pellat, Plasma physics, in: Proceedings of Summer School of Theoretical Physics,
Gordon and Breach, New York, 1975.

[18] L. P. Liou, K. S. Cheng, On the uniqueness of a limit cycle for a predator–prey sys-
tem, SIAM J. Math. Anal 19(1988), No. 4, 867–878. https://doi.org/10.1137/0519060;
MR946648

[19] J. Llibre, X. Zhang, Darboux theory of integrability in Cn taking into account the mul-
tiplicity, J. Differential Equations, 246(2009), 541–551. https://doi.org/doi.org/10.1016/
j.jde.2008.07.020; MR2468727

[20] J. Llibre, X. Zhang, Darboux theory of integrability for polynomial vector fields in Rn

taking into account the multiplicity at infinity, Bull. Sci. Math. 133(2009), 765–778. https:
//doi.org/10.1016/j.bulsci.2009.06.002; MR2557407

[21] J. Llibre, X. Zhang, Rational first integrals in the Darboux theory of integrability in Cn,
Bull. Sci. Math. 134(2010), 189–195. https://doi.org/10.1016/j.bulsci.2007.12.001;
MR2592968

[22] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer.

Math. Soc. 76(1954), 127–148. https://doi.org/10.2307/1990747; MR0060657

[23] R. M. May, Stability and complexity in model ecosystems, Princeton NJ, 1974. https://doi.
org/10.2307/j.ctvs32rq4



Global phase portraits of a predator–prey system 13

[24] D. A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc.

48(1975), 73–81. https://doi.org/10.2307/2040695; MR0356138

[25] M. Rosenzweig, R. MacArthur, Graphical representation and stability conditions
of predator–prey interaction, Am. Nat. 97(1963), 209–223. https://doi.org/10.1086/

282272

[26] D. Schlomiuk, N. Vulpe, Global topological classification of Lotka–Volterra quadratic
differential systems, Electronic J. Differential Equations 2012, No. 64, 69 pp. MR2927799

[27] A. W. Wijeratne, F. Yi, J. Wei, Bifurcation analysis in the diffusive Lotka–Volterra system:
an application to market economy, Chaos Solitons Fractals 40(2009), No. 2, 902–911. https:
//doi.org/10.1016/j.chaos.2007.08.043; MR2527835



Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 17, 1–23; https://doi.org/10.14232/ejqtde.2022.1.17 www.math.u-szeged.hu/ejqtde/

Weighted Lp-type regularity estimates for nonlinear

parabolic equations with Orlicz growth

Fengping YaoB

Department of Mathematics, Shanghai University, Shanghai 200444, China

Received 9 October 2021, appeared 27 April 2022

Communicated by Roberto Livrea

Abstract. In this paper we obtain the following weighted Lp-type regularity estimates

B (|f|) ∈ Lq
(

ν, ν + T; L
q
w(Ω)

)
locally ⇒ B (|∇u|) ∈ Lq

(
ν, ν + T; L

q
w(Ω)

)
locally

for any q > 1 of weak solutions for non-homogeneous nonlinear parabolic equations
with Orlicz growth

ut − div
(

a
(
(A∇u · ∇u)

1
2

)
A∇u

)
= div (a (|f|) f)

under some proper assumptions on the functions a, w, A and f, where B(t) =∫ t
0 τa(τ) dτ for t ≥ 0. Moreover, we remark that two natural examples of functions

a(t) are

a(t) = tp−2 (p-Laplace equation) and a(t) = tp−2 logα (1 + t
)

for α > 0.

Moreover, our results improve the known results for such equations.

Keywords: weighted, Lp-type, regularity, gradient, quasilinear, parabolic, non-
homogeneous.
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1 Introduction

This paper is concerned with the local weighted Lp-type gradient estimates for weak solutions

of the following non-homogeneous nonlinear parabolic equations with Orlicz growth

ut − div
(

a
(
(A∇u · ∇u)

1
2

)
A∇u

)
= div (a (|f|) f) in ΩT := Ω × (ν, ν + T), (1.1)

where ν ∈ R, Ω is an open bounded domain in R
n, the vector valued function f = ( f1, . . . , fn)

and a : (0,+∞) → (0,+∞) ∈ C1 (0,+∞) satisfies

0 ≤ ia := inf
t>0

ta′(t)
a(t)

≤ sup
t>0

ta′(t)
a(t)

=: sa < +∞. (1.2)

BEmail: yfp@shu.edu.cn



2 F. Yao

Here, A(x, t) =
{

aij(x, t)
}

n×n
is a symmetric matrix with measurable coefficients satisfying

the uniformly parabolic condition

Λ−1|ξ|2 ≤ A(x, t)ξ · ξ ≤ Λ|ξ|2 (1.3)

for all ξ ∈ R
n, almost every (x, t) ∈ R

n × R and some positive constant Λ. Especially when

a(t) = tp−2, then 2 + ia = 2 + sa = p and (1.1) is reduced to the classical parabolic p-Laplace

equations

ut − div
(
(A∇u · ∇u)

p−2
2 A∇u

)
= div

(
|f|p−2 f

)
. (1.4)

Define

g(t) = ta(t) and B(t) =
∫ t

0
g(τ) dτ =

∫ t

0
τa(τ) dτ for t ≥ 0. (1.5)

Then (1.2) implies that

g(t) is strictly increasing and continuous over [0,+∞), (1.6)

and

B(t) is increasing over [0,+∞) and strictly convex with B(0) = 0. (1.7)

There are two simple examples satisfying the given condition (1.2)

a(t) = tp−2 and a(t) = tp−2 logα (1 + t
)

for any p ≥ 2 and any α > 0. (1.8)

Additionally, another general and interesting example satisfying (1.2) is related to (p, q)-

growth condition which is given by appropriate gluing of the monomials (see page 600 in

[7] and page 314 in [37]).

Different from the elliptic p-Laplace equation

div
(
(A∇u · ∇u)

p−2
2 A∇u

)
= div

(
|f|p−2 f

)
in Ω,

the solution in the p-parabolic setting (1.4) is no longer invariant under multiplication by a

constant, which is one of the most difficulties (see [12]). More precisely, it is slightly difficult

to use maximal operators, which are typically used in the elliptic cases (see [22]). First of all,

Kinnunen and Lewis [36] established the following Gehring’s reverse Hölder inequality

∇u ∈ L
p+ǫ
loc (ΩT) for some small ǫ > 0

for weak solutions of (1.4), which implies the local higher integrability of the gradient. In

their article they overcome the difficulties in using normalization and scaling methods by

choosing the irregular cylinders whose side lengths depend on the function. Meanwhile,

Misawa [42] obtained Lq (q ≥ p) estimates for gradients for evolutional p-Laplacian equa-

tions/systems (1.4) with discontinuous coefficients and external force given by the divergence

of BMO-functions. Subsequently, Acerbi & Mingione [1] invented a new covering/iteration

argument to prove the sharp local Lq (q ≥ p) estimates

|f|p ∈ L
q
loc(ΩT) ⇒ |∇u|p ∈ L

q
loc(ΩT) for any q ≥ 1
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with

∫

Qr

|∇u|pqdz ≤ C

[(∫

Q2r

|∇u|pdz

)q

+
∫

Q2r

|f|pq + 1dz

]p/2

, (1.9)

where the parabolic cylinder Q2r = B2r × (−4r2, 4r2] ⊂ ΩT, for weak solutions of the parabolic

p-Laplace equations/systems (1.4) with small BMO coefficients. Furthermore, Byun, Ok &

Ryu [17] obtained the global Lq (q ≥ p) estimates

f ∈ Lq(ΩT) ⇒ ∇u ∈ Lq(ΩT) for any q ≥ p

for weak solutions of the following general parabolic p-Laplace equations

ut − div a (Du, x, t) = div
(
|f|p−2f

)
. (1.10)

The corresponding Hölder estimates for (1.4) and (1.10) can be found in the book [29]. On

the other hand, the corresponding Lp-type estimates and Hölder estimates for the parabolic

p(x, t)-Laplacian equations are also developed by [6,10]. In addition, some authors [5,13] have

researched the Calderón–Zygmund estimates in the setting of Lorentz spaces

|f|p ∈ Lγ,q ⇒ |∇u|p ∈ Lγ,q for any 1 < γ < ∞ and 0 < q ≤ ∞ (1.11)

for degenerate parabolic equations/systems (1.4). Most recently, there are also many research

results [9,11,16,19,20,25,33,35] on the study of various kinds of regularity estimates for weak

solutions of the parabolic equations of p-Laplacian type.

The following non-homogeneous nonlinear elliptic equations with Orlicz growth which is

first introduced by Lieberman [37]

div (a (|∇u|)∇u) = f in Ω (1.12)

can be seen as the most natural generalization of the elliptic p-Laplace equations. Afterward,

Cianchi & Maz’ya [26–28] have investigated the global Lipschitz regularity and sharp esti-

mates for (1.12) with the condition (1.2). Moreover, Diening, Stroffolini & Verde [32] obtained

the φ-harmonic approximation lemma for the gradient of solutions to (1.12) with the condition

(1.2) and f = 0. Lately, we [48] established the following local Lq estimates

B (|f|) ∈ L
q
loc ⇒ B (|∇u|) ∈ L

q
loc for any q > 1

for weak solutions of

div (a (|∇u|)∇u) = div (a (|f|) f) in Ω. (1.13)

Additionally, the global gradient estimates in Orlicz spaces for weak solutions of (1.13) in

a Reifenberg domain have been developed by Byun and Cho [15]. Recently, Beck & Min-

gione [8] also proved the local Lipschitz regularity of weak solutions for nonuniformly elliptic

variational problems, which satisfies the condition (1.2) or the fast, exponential-type growth

conditions. Meanwhile, Baasandorj, Byun & Oh [4] discussed the Calderón–Zygmund type

estimates for non-uniformly elliptic equations of generalized double phase type in divergence

form. A more detailed research progress on (1.12) can be found in the paper [41]. Just like

the difference between the elliptic and parabolic quasilinear p-Laplace equations, it is much

more difficult to deal with the parabolic case (1.1) than the corresponding elliptic case (1.13).
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Recently, Diening, Scharle and Schwarzacher [31] obtained the interior Lipschitz regularity

for weak solutions of

ut − div (a (|∇u|)∇u) = div (a (|f|) f) . (1.14)

Subsequently, we [46, 47] established the local Calderón–Zygmund estimates in the setting

of Sobolev spaces and Lorentz spaces for weak solutions of (1.14). Moreover, many authors

[14, 38] also studied the regularity estimates of weak solutions for the parabolic case (1.14).

In recent years, there are many research activities on the weighted Lp-type estimates for the

nonlinear elliptic equations [21, 23, 39, 40, 45] and the nonlinear parabolic cases [3, 18, 49]. The

purpose of this paper is to investigate the local weighted Lp-type regularity estimates for weak

solutions of (1.1).

Let Q(θ, ρ) = Bρ × (−θ, θ] be a centered parabolic cylinder. Especially when θ = ρ2, we

denote Qρ ≡ Q(ρ2, ρ). Throughout this paper we assume that the coefficients of A = {aij} are

in parabolic BMO spaces and their parabolic semi-norm are small enough. More precisely, we

have the following definition.

Definition 1.1 (Small BMO coefficients). We say that the matrix A of coefficients is (δ, R)-

vanishing if

sup
Qz(θ,ρ)⊂Rn×R

∫

Qz(θ,ρ)
|A(ζ)− AQz(θ,ρ)|dζ ≤ δ

for ρ ≤ R and θ ≤ R2, where z = (x, t) and ζ = (y, s) ∈ R
n × R.

As usual, the solutions of (1.1) are taken in a weak sense. We now state the definition of

weak solutions.

Definition 1.2. Assume that f ∈ LB
loc(ΩT) (see Definition 2.4). A function u ∈ L∞

loc(ν, ν +

T; L2
loc(Ω)) ∩ LB

loc(ν, ν + T; W1,B
loc (Ω)) is a local weak solution of (1.1) if for any compact subset

K of Ω and for any subinterval [t1, t2] of (ν, ν + T) we have
∫

K
uϕ dx

∣∣∣
t2

t1

+
∫ t2

t1

∫

K

{
− uϕt + a

(
(A∇u · ∇u)

1
2

)
A∇u · ∇ϕ

}
dxdt = −

∫ t2

t1

∫

K
a (|f|) f · ∇ϕ dxdt

for any ϕ ∈ L∞
loc(ν, ν + T; L2(K)) ∩ LB

loc(ν, ν + T; W1,B
0 (K)).

For convenience of the readers, we shall now give some definitions and properties on the

weighted Lebesgue spaces (see [43, 44]).

Definition 1.3. We call the positive function w(x) ∈ L1
loc(R

n) belongs to the class of the reverse

Hölder weights Aq for some q > 1 if

(∫

Br

w(x) dx

)(∫

Br

w(x)
−1
q−1 dx

)q−1

≤ C

for any ball Br ⊂ R
n and some constant C > 0. Moreover, we denote

A∞ :=
⋃

1<q<∞

Aq and w(Br) :=
∫

Br

w(x) dx.

Furthermore, the corresponding weighted Lebesgue space L
p
w(Br) for any p ≥ 1 consists of all

functions h which satisfy

‖h‖L
p
w(Br)

:=

(∫

Br

|h|p w(x) dx

)1/p

< ∞.
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Now we are in a position to state the main result of this paper. Here we remark that just

like in [49], the occurrence of the assumption B (|∇u|) ∈ L1+ǫ
(
ν, ν + T; L1+ǫ

w (Ω)
)

locally is

essentially due to the presence of the weight function w.

Theorem 1.4. Assume that w(x) ∈ Aq for some q > 1. Let u be a local weak solution of (1.1) in ΩT

with Q2 ⊂ ΩT. Then for every ǫ ∈ (0, q− 1) there exists a small δ = δ(n, w, ia, sa, ǫ, R, Λ) > 0 so that

for each uniformly parabolic and (δ, R)-vanishing A, and for all f with B(|f|) ∈ Lq(ν, ν + T; L
q
w(Ω))

locally, if B(|∇u|) ∈ L1+ǫ(ν, ν + T; L1+ǫ
w (Ω)) locally, then we have B(|∇u|) ∈ Lq(ν, ν + T; L

q
w(Ω))

locally with the following estimate

(∫

Q1

[B (|∇u|)]q w(x) dz

) 1
q

≤ C

[{∫

Q2

[B (|∇u|)]1+ǫ w(x)dz

} 1
1+ǫ

+

{∫

Q2

[B (|f|)]q w(x) dz

} 1
q

+ 1

] q(2+sa)
2

,

where the constant C is independent of u and f.

2 Proof of the main result

This section is devoted to the proof of the main result stated in Theorem 1.4. For convenience

of the readers, we recall some definitions and conclusions on the properties of the general

Orlicz spaces.

Definition 2.1. A function B : [0,+∞) → [0,+∞) is said to be a Young function if it is convex

and B(0) = 0. Then a Young function B is called an N-function if

0 < B(t) < ∞ for t > 0 and lim
t→+∞

B(t)

t
= lim

t→0+

t

B(t)
= +∞. (2.1)

Moreover, we call a Young function B satisfies the global ∆2 condition, denoted by B ∈ ∆2, if

there exists a positive constant K such that

B(2t) ≤ KB(t) for every t > 0. (2.2)

Furthermore, an N-function B is said to satisfy the global ∇2 condition, denoted by B ∈ ∇2,

if there exists a number θ > 1 such that

B(t) ≤ B(θt)

2θ
for every t > 0. (2.3)

Remark 2.2. For example,

1. G1(t) = (1 + t) log(1 + t)− t ∈ ∆2, but G1(t) /∈ ∇2.

2. G2(t) = et − t − 1 ∈ ∇2, but G2(t) /∈ ∆2.

3. G3(t) = tp log
(
1 + t

)
∈ ∆2 ∩∇2 for p > 1.

Actually, it is easy to check that a Young function B ∈ ∆2 ∩∇2 if and only if

A1

( s

t

)β2 ≤ B(s)

B(t)
≤ A2

( s

t

)β1

(2.4)

for some constants A2 ≥ A1 > 0, β1 ≥ β2 > 1 and any 0 < t ≤ s.
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Lemma 2.3. If B is an N-function, then B satisfies the following Young’s inequality

st ≤ B̃(s) + B(t) for any s, t ≥ 0. (2.5)

Additionally, if B ∈ ∇2 ∩ ∆2, then we obtain the following Young’s inequality with ǫ

st ≤ ǫB̃(s) + C(ǫ)B(t) for any s, t ≥ 0 and ǫ > 0. (2.6)

Definition 2.4. If B is an N-function, then the Orlicz class KB(Ω) consists of all measurable

functions g : Ω → R satisfying ∫

Ω
B(|g|)dx < ∞.

Also, the Orlicz space LB(Ω) is the linear hull of KB(Ω) endowed with the Luxemburg norm

‖g‖LB(Ω) := inf

{
k > 0 :

∫

Ω
B

( |g(x)|
k

)
dx ≤ 1

}
.

On the other hand, the Orlicz–Sobolev space W1,B(Ω) :=
{

g ∈ LB(Ω)
∣∣ ∇g ∈ LB(Ω)

}
, en-

dowed with the norm ‖g‖W1,B(Ω) := ‖g‖LB(Ω) + ‖∇g‖LB(Ω).

Remark 2.5. In general, KB(Ω) ⊂ LB(Ω) (see [2, Chapter 8]). But when B ∈ ∆2, KB(Ω) = LB(Ω).

We first state the following properties on the functions a(t) and B(t) described above.

Lemma 2.6 (see [26, Proposition 2.9] and [48, Lemma 1.9]). If a(t) satisfies (1.2) and B(t) is

defined in (1.5), then we have

1. B(t) is strictly convex N-function and

B̃ (b(t)) ≤ C0B(t) for t ≥ 0 and some constant C0 > 0.

2. B(t) ∈ ∆2 ∩∇2 with the estimate

A1

( s

t

)2+ia ≤ B(s)

B(t)
≤ A2

( s

t

)2+sa

for any 0 < t ≤ s. (2.7)

3. a(t)θia ≤ a(θt) ≤ a(t)θsa for any t > 0 and θ ≥ 1.

We continue to require certain properties of the functions a(t) and B(t), whose proofs can

be found in Lemma 3 of [30] and Lemma 2.4 and Remark 2.5 of [48].

Lemma 2.7. If a(t) satisfies (1.2), A(x, t) satisfies (1.3) and B(t) is defined in (1.5), then for any

ξ, η ∈ R
n we have

a
(
(Aξ · ξ)

1
2

)
Aξ · ξ ≥ C(ia, sa, Λ)B (|ξ|) (2.8)

and
[

a
(
(Aξ · ξ)

1
2

)
Aξ − a

(
(Aη · η)

1
2

)
Aη
]
· (ξ − η) ≥ C(ia, sa, Λ)B (|ξ − η|) . (2.9)

Moreover, we first give the following L1 estimate of weak solutions.
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Lemma 2.8. Assume that u is a local weak solution of (1.1) in ΩT with Q2 ⊂ ΩT and (1.2). Then we

have ∫

Q1

B (|∇u|) dz ≤ C
∫

Q2

B(|u|) + B(|f|) + 1dz. (2.10)

Proof. We may as well select the test function ϕ = ζu, which may be justified via Steklov

average just like Remark 2.2 in [17], where ζ ∈ C∞
0 (Rn+1) is a cut-off function satisfying

0 ≤ ζ ≤ 1, ζ ≡ 1 in Q1 and ζ ≡ 0 in R
n+1/Q2.

Then by Definition 1.2, after a direct calculation we show the resulting expression as

I1 + I2 = I3 + I4,

where

I1 =
1

2

∫

B2

|u(x, t)|2 ζ(x, t) dx
∣∣∣
t=4

t=−4
= 0,

I2 =
∫

Q2

ζa
(
(A∇u · ∇u)

1
2

)
A∇u · ∇u dz,

I3 =
1

2

∫

Q2

ζtu
2dz −

∫

Q2

ua
(
(A∇u · ∇u)

1
2

)
A∇u · ∇ζdz,

I4 = −
∫

Q2

ζa (|f|) f · ∇u + ua (|f|) f · ∇ζdz.

Estimate of I2. It follows from (2.8) and the definition of ζ that

I2 ≥ C
∫

Q2

ζB (|∇u|) dz ≥ C
∫

Q1

B (|∇u|) dz.

Estimate of I3. According to Lemma 2.3 and Lemma 2.6 (1), we conclude that

|I3| ≤ C
∫

Q2

a (|∇u|) |∇u| |u|+ |u|2dz

≤ τ

C0

∫

Q2

B̃ (a (|∇u|) |∇u|) dz + C(τ)
∫

Q2

B (|u|) + |u|2dz

≤ τ
∫

Q2

B (|∇u|) dz + C(τ)
∫

Q2

B (|u|) + 1dz for any τ > 0,

where we have used the following inequality

B (λ) ≥ A1λ2+ia B (1) ≥ A1B (1) λ2 for λ ≥ 1 (2.11)

by Lemma 2.6 (2) and the fact that ia ≥ 0.

Estimate of I4. Similarly to the estimate of I3, we have

|I4| ≤
∫

Q2

a (|f|) |f| |∇u|+ a (|f|) |f| |u| dz

≤ τ
∫

Q2

B (|∇u|) dz + C(τ)
∫

Q2

B (|f|) + B (|u|) dz for any τ > 0.

Now we combine all the estimates of Ii (1 ≤ i ≤ 4) to deduce that

C
∫

Q1

B (|∇u|) dz ≤ 2τ
∫

Q2

B (|∇u|) dz + C(τ)
∫

Q2

B (|f|) + B (|u|) + 1dz.

Selecting τ small enough and removing the above right-hand side first integral by a covering

and iteration argument (see Lemma 4.1 of Chapter 2 in [24] or Lemma 2.1 of Chapter 3 in

[34]), we finish the proof.
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Next, we shall give some lemmas on the properties of Aq weight.

Lemma 2.9 (see [18,39,44]). Assume that w ∈ Aq for some q > 1. Then there exists a small positive

constant α ∈ (0, 1) such that

C1

( |Br|
|BR|

)q

≤ w(Br)

w(BR)
≤ C2

( |Br|
|BR|

)α

for any balls Br ⊂ BR ⊂ R
n and some constants C1, C2 > 0.

Remark 2.10. We remark that Ap1
⊂ Ap for any 1 < p1 ≤ p < ∞ (see page 195 in [43]).

Now we recall the following self-improved property and reverse Hölder’s inequality.

Lemma 2.11 (see [43,44]). Assume w ∈ Aq for some q > 1. Then there exist two constants q1 ∈ (1, q)

and ǫ0 > 0, depending only on n, q and w such that

w ∈ Aq1
and

{∫

Br

w1+ǫ0(x) dx

} 1
1+ǫ0 ≤ C

∫

Br

w(x) dx.

The following is the measure theory of the weighted Lebesgue spaces.

Lemma 2.12. If w(x) ∈ Aq for some q > 1 and g ∈ L
q
w(R

n+1), then for any q > β > 1 we have

∫

Rn+1
|g(z)|q w(x) dxdt = q

∫ +∞

0
λq−1

∫

{z∈Rn+1 :|g|>λ}
w(x) dxdtdλ

= (q − β)
∫ ∞

0
λq−β−1

∫

{z∈Rn+1 :|g|>λ}
|g|βw(x) dxdtdλ.

Proof. Using Fubini’s lemma, we conclude that

∫

Rn+1
|g(z)|q w(x) dxdt =

∫

Rn+1

[
q
∫ |g(z)|

0
λq−1dλ

]
w(x) dxdt

=
∫

Rn+1

[
q
∫ +∞

0
λq−1χ{z∈Rn+1:|g|>λ}dλ

]
w(x) dxdt

= q
∫ +∞

0
λq−1

∫

Rn+1
χ{z∈Rn+1 :|g|>λ}w(x) dxdtdλ

= q
∫ +∞

0
λq−1

∫

{z∈Rn+1:|g|>λ}
w(x) dxdtdλ.

On the other hand, we apply Fubini’s lemma to obtain that

(q − β)
∫ +∞

0
λq−β−1

∫

{z∈Rn+1:|g|>λ}
|g|βw(x) dxdtdλ

= (q − β)
∫ +∞

0
λq−β−1

∫

Rn+1
|g|βχ{z∈Rn+1:|g|>λ}w(x) dxdtdλ

= (q − β)
∫

Rn+1

∫ +∞

0
λq−β−1|g|βχ{z∈Rn+1:|g|>λ}w(x) dλdxdt

=
∫

Rn+1
|g|β

[
(q − β)

∫ |g|

0
λq−β−1dλ

]
w(x) dxdt

=
∫

Rn+1
|g|β|g|q−βw(x) dxdt =

∫

Rn+1
|g|qw(x) dxdt.

Thus, we finish the proof.



Weighted Lp-type regularity estimates 9

Next, we shall need the following important iteration-covering lemma, in which we will

divide the domain into several small parts.

Lemma 2.13. Given λ ≥ λ∗ := 5nq+2

min
{√

A1B(1),1
}λ0, where

λ2
0 :=

{
1

w (B2)

∫

Q2

[B (|∇u|)]q0 w(x)dz

} 1
q0

+
1

δ

{
1

w (B2)

∫

Q2

[B (|f|)]q0 w(x) dz

} 1
q0

+ 1 (2.12)

and q0 = 1 + ǫ with ǫ ∈ (0, q − 1), there exist a family of disjoint cylinders
{

Q0
i

}
i∈N

with

Q0
i := Qzi

(
λ2

B(λ)
ρ2

i , ρi

)
,

zi = (xi, ti) ∈ E(Q1, λ) := {z ∈ Q1 : B (|∇u|) > B (λ)} and 0 < ρi = ρ(zi) ≤ 1/10 such that

1.

J
[
Q0

i

]
= J

[
Qzi

(
λ2

B(λ)
ρ2

i , ρi

)]
= B(λ),

where

J [Q(θ, ρ)] :=

{
1

2θw
(

Bρ

)
∫

Q(θ,ρ)
[B (|∇u|)]q0 w(x)dz

} 1
q0

+
1

δ

{
1

2θw
(

Bρ

)
∫

Q(θ,ρ)
[B (|f|)]q0 w(x) dz

} 1
q0

.

2.

J
[

Q
j
i

]
= J

[
5jQ0

i

]
= J

[
Qzi

(
25j2

λ2

B(λ)
ρ2

i , 5jρi

)]
< B(λ) for j = 1, 2,

where Q
j
i = 5jQ0

i = Qzi

(
25j2 λ2

B(λ)
ρ2

i , 5jρi

)
.

3. E(Q1, λ) ⊂
⋃

i∈N

Q1
i ∪ negligible set.

Proof. Let λ ≥ λ∗. From Lemma 2.9 we have





∫
Q2

[B (|∇u|)]q0 w(x)dz
∫

Qz0

(
λ2

B(λ)
ρ2,ρ

) w(x) dxdt





1
q0

=





∫
Q2

[B (|∇u|)]q0 w(x)dz

2w
(

Bρ (x0)
)

λ2

B(λ)
ρ2





1
q0

≤





w(B2)

2w
(

Bρ (x0)
)

λ2

B(λ)
ρ2

1

w(B2)

∫

Q2

[B (|∇u|)]q0 w(x) dz





1
q0

≤
{

50 · 20nq B(λ)

λ2

1

w(B2)

∫

Q2

[B (|∇u|)]q0 w(x) dz

} 1
q0

for any z0 = (x0, t0) ∈ Q1 and 1/10 ≤ ρ ≤ 1, and then





∫
Q2

[B (|f|)]q0 w(x)dz
∫

Qz0

(
λ2

B(λ)
ρ2,ρ

) w(x) dxdt





1
q0

≤
{

50 · 20nq B(λ)

λ2

1

w(B2)

∫

Q2

[B (|f|)]q0 w(x) dz

} 1
q0

.
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So, (2.11) implies that

J

[
Qz0

(
λ2

B(λ)
ρ2, ρ

)]
≤
[

50 · 20nq A1B (1)
B(λ)

A1B (1) λ2

] 1
q0

λ2
0

≤
[
25nq+2 · A1B (1)

] 1
q0

B(λ)

A1B (1) λ2
λ2

0

≤ 25nq+2 max {1, A1B (1)} B(λ)

A1B (1) λ2
λ2

0

= λ2
∗

B(λ)

λ2
≤ B(λ)

for any z0 ∈ Q1 and 1
10 ≤ ρ ≤ 1. Therefore, we deduce that

sup
z=(x,t)∈Q1

sup
1

10≤ρ≤1

J

[
Qz

(
λ2

B(λ)
ρ2, ρ

)]
≤ B(λ). (2.13)

Using Lebesgue’s differentiation theorem, for a.e. z ∈ E(Q1, λ) we conclude that

lim
ρ→0

J

[
Qz

(
λ2

B(λ)
ρ2, ρ

)]
> B(λ),

which implies that there exists some ρ0 ∈ (0, 1] satisfying

J

[
Qz

(
λ2

B(λ)
ρ2

0, ρ0

)]
> B(λ). (2.14)

Therefore, from (2.13) and (2.14) we can select a radius ρz ∈ (0, 1/10] such that

ρz =: max

{
ρ
∣∣∣ J

[
Qz

(
λ2

B(λ)
ρ2, ρ

)]
= B(λ), 0 < ρ ≤ 1/10

}
,

which implies that

J

[
Qz

(
λ2

B(λ)
ρ2

z , ρz

)]
= B(λ) and J

[
Qz

(
λ2

B(λ)
ρ2, ρ

)]
< B(λ) for ρz < ρ ≤ 1.

Thus, by using Vitali’s covering lemma, we can find a family of disjoint cylinders
{

Q0
i

}
i∈N

=
{

Qzi

(
λ2

B(λ)
ρ2

i , ρi

)}
i∈N

with zi = (xi, ti) ∈ E(Q1, λ) and ρi = ρ(zi) ≤ 1/10 such that (1)–(3) are

true.

Now we employ the above lemma to derive careful estimates on the small parabolic cylin-

ders
{

Q0
i

}
i∈N

, whose precise structure will be needed below.

Lemma 2.14. Under the same hypothetical conditions as the lemma above, for λ ≥ λ∗ we obtain

w
(

Bρi
(xi)

) λ2

B(λ)
ρ2

i <
C

[B(λ)]q0

∫
{

z∈Q0
i :B(|∇u|)> B(λ)

4

} [B (|∇u|)]q0 w(x)dz

+
C

δq0 [B(λ)]q0

∫
{

z∈Q0
i :B(|f|)> B(λ)

4δ

} [B (|f|)]q0 w(x)dz.
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Proof. From Lemma 2.13 (1), we find that





1

2w
(

Bρi
(xi)

)
λ2

B(λ)
ρ2

i

∫

Q0
i

[B (|∇u|)]q0 w(x)dz





1
q0

+
1

δ





1

2w
(

Bρi
(xi)

)
λ2

B(λ)
ρ2

i

∫

Q0
i

[B (|f|)]q0 w(x) dz





1
q0

= B(λ).

Therefore, one of the following inequalities must be true





1

2w
(

Bρi
(xi)

)
λ2

B(λ)
ρ2

i

∫

Q0
i

[B (|∇u|)]q0 w(x)dz





1
q0

>
B(λ)

2
(2.15)

and

1

δ





1

2w
(

Bρi
(xi)

)
λ2

B(λ)
ρ2

i

∫

Q0
i

[B (|f|)]q0 w(x) dz





1
q0

>
B(λ)

2
. (2.16)

If (2.15) is true, then we have

2w
(

Bρi
(xi)

) λ2

B(λ)
ρ2

i <

[
2

B(λ)

]q0 ∫

Q0
i

[B (|∇u|)]q0 w(x)dz

≤
[

2

B(λ)

]q0 ∫
{

z∈Q0
i :B(|∇u|)> B(λ)

4

} [B (|∇u|)]q0 w(x)dz

+
1

2q0−1
w
(

Bρi
(xi)

) λ2

B(λ)
ρ2

i for λ ≥ λ∗,

which implies that

w
(

Bρi
(xi)

) λ2

B(λ)
ρ2

i <
C

[B(λ)]q0

∫
{

z∈Q0
i :B(|∇u|)> B(λ)

4

} [B (|∇u|)]q0 w(x)dz for λ ≥ λ∗.

Similarly, if (2.16) is true, then we have

w
(

Bρi
(xi)

) λ2

B(λ)
ρ2

i <
C

δq0 [B(λ)]q0

∫
{

z∈Q0
i :B(|f|)> B(λ)

4δ

} [B (|f|)]q0 w(x)dz for λ ≥ λ∗.

Finally, we combine the two estimates above to find that

w
(

Bρi
(xi)

) λ2

B(λ)
ρ2

i <
C

[B(λ)]q0

∫
{

z∈Q0
i :B(|∇u|)> B(λ)

4

} [B (|∇u|)]q0 w(x)dz

+
C

δq0 [B(λ)]q0

∫
{

z∈Q0
i :B(|f|)> B(λ)

4δ

} [B (|f|)]q0 w(x)dz

for λ ≥ λ∗. Thus, this finishes our proof.
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Lemma 2.15. Under the same hypotheses and results as those in Lemma 2.13, we have

(∫

Q
j
i

[B (|∇u|)]q2 dz

) 1
q2

< CB(λ) and

(∫

Q
j
i

[B (|f|)]q2 dz

) 1
q2

< CδB(λ) (2.17)

for j = 1, 2, λ ≥ λ∗ and some constant q2 ∈ (1, q0).

Proof. It follows from Lemma 2.13 (2) that


 1

w
(

B5jρi
(xi)

)
λ2

B(λ)
50j2ρ2

i

∫

Q
j
i

[B (|∇u|)]q0 w(x) dxdt




1
q0

< B(λ)

and 
 1

w
(

B5jρi
(xi)

)
λ2

B(λ)
50j2ρ2

i

∫

Q
j
i

[B (|f|)]q0 w(x) dxdt




1
q0

< δB(λ)

for j = 1, 2. Since w ∈ Aq0 by Remark 2.10, we find that w ∈ Aq1
for some q1 ∈ (1, q0) in

view of Lemma 2.11. Let q2 = q0

q1
∈ (1, q0). Then by using Hölder’s inequality and the two

inequalities above, we see

(∫

Q
j
i

[B (|∇u|)]q2 dz

) 1
q2

=

(∫

Q
j
i

[B (|∇u|)]q2 w(x)
1

q1 w(x)
− 1

q1 dz

) 1
q2

≤


w

(
B5jρi

(xi)
)

∣∣B5jρi
(xi)

∣∣
1

w
(

B5jρi
(xi)

)
λ2

B(λ)
50j2ρ2

i

∫

Q
j
i

[B (|∇u|)]q0 w(x) dz




1
q0 (∫

Q
j
i

w(x)
− 1

q1−1 dz

) q1−1
q0

< B(λ)



∫

B5jρi
(xi)

w(x) dx

(∫

B5jρi
(xi)

w(x)
− 1

q1−1 dx

)q1−1



1
q0

< CB(λ) for j = 1, 2.

Similarly, we have
(∫

Q
j
i

[B (|f|)]q2 dz

) 1
q2

< CδB(λ) for j = 1, 2,

which finishes our proof.

Moreover, we can obtain the following comparison result and interior Lipschitz regularity.

Lemma 2.16. Assume that u is a local weak solution of (1.1) in ΩT with (1.2). If v is the weak

solution of

vt − div

(
a

((
AQ2

∇v · ∇v
) 1

2

)
AQ2

∇v

)
= 0 in Q2 ⊂ ΩT (2.18)

with v = u on ∂pQ2, then we have

∫

Q2

B (|∇v|) dz ≤ C
∫

Q2

B(|∇u|) + B(|f|) dz (2.19)
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and

sup
Q1

B (|∇v|) ≤ C

[∫

Q2

B(|∇u|) + B(|f|) + 1dz

] 2+sa
2

, (2.20)

where the constant C = C(ia, sa, Λ) > 0.

Proof. Noting that u and v are the weak solutions of (1.1) and (2.18) respectively, we may as

well select the test function ϕ = v − u since v = u on ∂pQ2, which is possible modulo Steklov

average. Then a direct calculation shows the resulting expression as

I1 + I2 = I3 + I4 + I5,

where

I1 =
1

2

∫

B2

|v(x, 4)− u(x, 4)|2dx ≥ 0,

I2 =
∫

Q2

a

((
AQ2

∇v · ∇v
) 1

2

)
AQ2

∇v · ∇v dz,

I3 =
∫

Q2

a

((
AQ2

∇v · ∇v
) 1

2

)
AQ2

∇v · ∇u dz,

I4 =
∫

Q2

[
a
(
(A∇u · ∇u)

1
2

)
A∇u · ∇v − a

(
(A∇u · ∇u)

1
2

)
A∇u · ∇u

]
dz,

I5 =
∫

Q2

a(|f|) f · ∇v − a(|f|) f · ∇u dz.

Estimate of I2. Owing to Lemma 2.7 we thereby discover

I2 ≥ C
∫

Q2

B (|∇v|) dz.

Estimate of I3. According to Lemma 2.3 and Lemma 2.6 (1), we see

|I3| ≤
τ

C0

∫

Q2

B̃ (a (|∇v|) |∇v|) dz + C(τ)
∫

Q2

B (|∇u|) dz

≤ τ
∫

Q2

B (|∇v|) dz + C(τ)
∫

Q2

B (|∇u|) dz for any τ > 0.

Estimates of Ii (4 ≤ i ≤ 5). As in the proof of the estimate of I3, we compute

|I4| ≤ τ
∫

Q2

B (|∇v|) dz + C(τ)
∫

Q2

B (|∇u|) dz,

|I5| ≤ τ
∫

Q2

B (|∇v|) dz + C(τ)
∫

Q2

B (|∇u|) + B (|f|) dz for any τ > 0.

Therefore, by selecting τ > 0 small enough we obtain the desired result (2.19) from the esti-

mates of Ii (1 ≤ i ≤ 5). Rather, from Theorem 2.2 in [31] we have

min

{
sup

Q1

ρ(|∇v|), sup
Q1

|∇v|2
}

≤ C
∫

Q2

|∇v|2 + B(|∇v|) dz,

where C = (ia, sa, Λ) and

ρ(t) = (B(t))
n
2 t2−n ≥ Ctnt2−n = Ct2 for any t ≥ 1



14 F. Yao

by (2.11), which implies that

sup
Q1

|∇v|2 ≤ C min

{
sup

Q1

ρ(|∇v|), sup
Q1

|∇v|2
}
+ C ≤ C

∫

Q2

B(|∇v|) + 1dz. (2.21)

Furthermore, we deduce from (2.7) that

sup
Q1

B (|∇v|) ≤ C

[∫

Q2

B(|∇v|) + 1dz

] 2+sa
2

,

which implies that (2.20) is valid by (2.19). Thus, we finish the proof.

Moreover, we shall give the following essential estimate on the level set.

Lemma 2.17. For any ǫ > 0, there exists a small δ = δ(ǫ) > 0 such that if u is a local weak solution

of (1.1) in ΩT with (1.2) and Q2 ⊂ ΩT,
∫

Q2

|A − AQ2
|dz ≤ δ, (2.22)

{∫

Q2

[B (|∇u|)]q2 dz

} 1
q2 ≤ 1 and

{∫

Q2

[B (|f|)]q2 dz

} 1
q2 ≤ δ, (2.23)

then there exists a constant N1 > 1 such that

|{z ∈ Q1 : B(|∇u|) > N1}| ≤ Cǫ|Q1|.

Proof. If v is the weak solution of (2.18) in Q2 with v = u on ∂pQ2, then by selecting the test

function ϕ = u − v, which is possible modulo Steklov average, after a direct calculation we

show the resulting expression as

I1 + I2 = I3 + I4,

where

I1 =
1

2

∫

B2

|u(x, 4)− v(x, 4)|2 dx ≥ 0,

I2 =
∫

Q2

[
a

((
AQ2

∇u · ∇u
) 1

2

)
AQ2

∇u − a

((
AQ2

∇v · ∇v
) 1

2

)
AQ2

∇v

]
· (∇u −∇v) dz,

I3 = −
∫

Q2

[
a
(
(A∇u · ∇u)

1
2

)
A∇u − a

((
AQ2

∇u · ∇u
) 1

2

)
AQ2

∇u

]
· (∇u −∇v) dz,

I4 =
∫

Q2

a (|f|) f · ∇vdz −
∫

Q2

a (|f|) f · ∇udz.

Estimate of I2. Using Lemma 2.7, we observe that

I2 ≥ C
∫

Q2

B (|∇u −∇v|) dz.

Estimate of I3. First of all, we discover

|I3| ≤
∫

Q2

a
(
(A∇u · ∇u)

1
2

) ∣∣A − AQ2

∣∣ |∇u| |∇u −∇v| dz

+
∫

Q2

∣∣∣∣a
(
(A∇u · ∇u)

1
2

)
− a

((
AQ2

∇u · ∇u
) 1

2

)∣∣∣∣
∣∣AQ2

∇u
∣∣ |∇u −∇v| dz

=: I31 + I32.
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Estimate of I31. From (1.3), Lemma 2.6, Young’s inequality and Hölder’s inequality we find

that

|I31| ≤ C
∫

Q2

a (|∇u|) |∇u|
∣∣A − AQ2

∣∣ |∇u −∇v| dz

≤ ǫ

2Λ

∫

Q2

B (|∇u −∇v|)
∣∣A − AQ2

∣∣ dz + C(ǫ)
∫

Q2

B̃ (a (|∇u|) |∇u|)
∣∣A − AQ2

∣∣ dz

≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)
∫

Q2

B (|∇u|)
∣∣A − AQ2

∣∣ dz

≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)

{∫

Q2

[B (|∇u|)]q2 dz

} 1
q2
[∫

Q2

∣∣A − AQ2

∣∣
q2

q2−1 dz

] q2−1
q2

for any ǫ > 0, which implies that

|I31| ≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)

[∫

Q2

∣∣A − AQ2

∣∣ dz

] q2−1
q2

≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)δ
q2−1

q2 ,

where we used the given conditions (2.22)–(2.23).

Estimate of I32. (1.2), (1.3), Lemma 2.6 and Lagrange’s mean value theorem yield the bound

|I32| ≤ C
∫

Q2

a (|∇u|) |∇u|
∣∣A − AQ2

∣∣ |∇u −∇v| dz

and so

|I32| ≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)δ
q2−1

q2 for any ǫ > 0,

whose proof is totally similar to that of I31.

Estimate of I4. Lemma 2.3, Lemma 2.6 (1), Hölder’s inequality and (2.23) assert

|I4| ≤
∫

Q2

a (|f|) |f| |∇u −∇v| dz

≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)
∫

Q2

B̃ (a (|f|) |f|) dz

≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)
∫

Q2

B (|f|) dz

≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)

[∫

Q2

(B(|f|))q2 dz

] 1
q2

≤ ǫ
∫

Q2

B (|∇u −∇v|) dz + C(ǫ)δ

for any ǫ > 0. So, by selecting ǫ > 0 small enough and combining the estimates of Ii (1 ≤ i ≤
4) we conclude that

∫

Q2

B (|∇u −∇v|) dz ≤ C(ǫ)δ + C(ǫ)δ
q2−1

q2 ≤ ǫ, (2.24)
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where we have chosen a small constant δ > 0 satisfying the above last inequality. Thus, it

follows from Lemma 2.16, Hölder’s inequality and the assumed condition (2.23) that

sup
Q1

B (|∇v|) ≤ C

[∫

Q2

B(|∇u|) + B(|f|) + 1dz

] 2+sa
2

≤ C

{[∫

Q2

(B(|∇u|))q2 dz

] 1
q2

+

[∫

Q2

(B(|f|))q2 dz

] 1
q2

+ 1

} 2+sa
2

≤ N0 (2.25)

for some constant N0 > 1. Finally, from (2.24), (2.25) and the fact that B ∈ ∆2 ∩∇2 is convex

we have

|{z ∈ Q1 : B(|∇u|) > 2C∗N0}|
≤ |{z ∈ Q1 : B(|∇(u − v)|) > N0}|+ |{z ∈ Q1 : B(|∇v|) > N0}|
= |{z ∈ Q1 : B(|∇(u − v)|) > N0}|

≤ 1

N0

∫

Q2

B(|∇(u − v)|) dz ≤ Cǫ|Q2| ≤ Cǫ|Q1|,

where we have used the following inequality

B(a + b) ≤ 1

2
B(2a) +

1

2
B(2b) ≤ C∗B(a) + C∗B(b) for any a, b ≥ 0.

This completes our proof by choosing N1 = 2C∗N0 > 1.

Furthermore, we shall give the following result.

Lemma 2.18. Assume that λ ≥ λ∗. For any ǫ > 0, there exists a small δ = δ(ǫ) > 0 such that if u

is a local weak solution of (1.1) in ΩT with Q2 ⊂ ΩT, then we have

∫

{z∈Q1:B(|∇u|)>N1B(λ)}
w(x) dxdt ≤ Cǫα

[B(λ)]q0

∫
{

z∈Q2 :B(|∇u|)> B(λ)
4

} [B (|∇u|)]q0 w(x)dxdt

+
Cǫα

δq0 [B(λ)]q0

∫
{

z∈Q2 :B(|f|)> B(λ)
4δ

} [B (|f|)]q0 w(x)dxdt.

Proof. 1. We first claim that

∣∣∣
{

z ∈ Q1
i : B(|∇u|) > N1B(λ)

}∣∣∣ ≤ Cǫ|Q1
i |. (2.26)

To prove this, for each λ ≥ 1 we use the normalization and scaling methods by defining

ui
λ(x, t) :=

u
(

5ρi(x + xi),
λ2

B(λ)
(5ρi)

2(t + ti)
)

λ5ρi
,

fi
λ(x, t) :=

f
(

5ρi(x + xi),
λ2

B(λ)
(5ρi)

2(t + ti)
)

λ
,
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Ai
λ(x, t) := A

(
5ρi(x + xi),

λ2

B(λ)
(5ρi)

2(t + ti)

)
,

aλ(t) :=
a(λt)

B(λ)
λ2

, bλ(t) := taλ(t) and Bλ(t) :=
∫ t

0
bλ(τ) dτ =

B (λt)

B (λ)
,

which implies that

Bλ(1) =
B (λ)

B (λ)
= 1 and Bλ(t) satisfies (2.7).

From the definitions of ui
λ, fi

λ, Ai
λ and aλ, we find that ui

λ is a local weak solution of

(ui
λ)t − div

(
aλ

((
Ai

λ(x, t)∇ui
λ · ∇ui

λ

) 1
2

)
Ai

λ(x, t)∇ui
λ

)
= div

(
aλ

(
|fi

λ|
)

fi
λ

)
in Q2.

Without loss of generality we may as well assume that R = 2 in Definition 1.1 by a scaling

argument. Consequently, from Definition 1.1 and Lemma 2.15 we conclude that

{∫

Q2

[
Bλ(|∇ui

λ|)
]q2

dz

} 1
q2 ≤ C,

{∫

Q2

[
Bλ(|fi

λ|)
]q2

dz

} 1
q2 ≤ Cδ

and ∫

Q2

∣∣∣Ai
λ(x, t)− Ai

λQ2

∣∣∣ dz ≤ δ

for any j = 1, 2 and λ ≥ λ∗. Then according to Lemma 2.17, we conclude that

∣∣∣{z ∈ Q1 : Bλ(|∇ui
λ|) > N1}

∣∣∣ ≤ Cǫ|Q1|.

Then by way of changing variables, we recover the claim.

2. Now we find that
∫

{z∈Q1
i :B(|∇u|)>N1B(λ)}

w(x) dxdt

≤
∫ ti+25 λ2

B(λ)
ρ2

i

ti−25 λ2

B(λ)
ρ2

i

∫

E(B5ρi
(xi),t)

w(x) dxdt =
∫ ti+25 λ2

B(λ)
ρ2

i

ti−25 λ2

B(λ)
ρ2

i

w
(
E
(

B5ρi
(xi), t

))
dt,

where E
(

B5ρi
(xi), t

)
:=
{

x ∈ B5ρi
(xi) : B(|∇u(x, t)|) > N1B(λ)

}
, which implies that

∫
{z∈Q1

i :B(|∇u|)>N1B(λ)} w(x) dxdt

50w
(

B5ρi
(xi)

)
λ2

B(λ)
ρ2

i

≤ 1

50 λ2

B(λ)
ρ2

i

∫ ti+25 λ2

B(λ)
ρ2

i

ti−25 λ2

B(λ)
ρ2

i

w
(
E
(

B5ρi
(xi), t

))

w
(

B5ρi
(xi)

) dt

≤ 1

50 λ2

B(λ)
ρ2

i

∫ ti+25 λ2

B(λ)
ρ2

i

ti−25 λ2

B(λ)
ρ2

i

(
E
(

B5ρi
(xi), t

)
∣∣B5ρi

(xi)
∣∣

)α

dt

≤ 1[
50 λ2

B(λ)
ρ2

i

]α

[∫ ti+25 λ2

B(λ)
ρ2

i

ti−25 λ2

B(λ)
ρ2

i

E
(

B5ρi
(xi), t

)
∣∣B5ρi

(xi)
∣∣ dt

]α

=

[∣∣{z ∈ Q1
i : B(|∇u|) > N1B(λ)}

∣∣
∣∣Q1

i

∣∣

]α

≤ Cǫα,
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where we have used Lemma 2.9, Hölder’s inequality and (2.26). Therefore, we conclude that

∫

{z∈Q1
i :B(|∇u|)>N1B(λ)}

w(x) dxdt ≤ Cǫαw
(

B5ρi
(xi)

) λ2

B(λ)
ρ2

i ≤ Cǫαw
(

Bρi
(xi)

) λ2

B(λ)
ρ2

i .

So, we can deduce the following result from Lemma 2.13 (3), the fact that the cylinders {Q0
i }

are disjoint and Lemma 2.14

∫

{z∈Q1 :B(|∇u|)>N1B(λ)}
w(x) dxdt

≤ ∑
i∈N

∫

{z∈Q1
i :B(|∇u|)>N1B(λ)}

w(x) dxdt

≤ Cǫα ∑
i∈N

w
(

Bρi
(xi)

) λ2

B(λ)
ρ2

i

≤ ∑
i∈N

Cǫα

[B(λ)]q0

∫
{

z∈Q0
i :B(|∇u|)> B(λ)

4

} [B (|∇u|)]q0 w(x)dxdt

+ ∑
i∈N

Cǫα

δq0 [B(λ)]q0

∫
{

z∈Q0
i :B(|f|)> B(λ)

4δ

} [B (|f|)]q0 w(x)dxdt

≤ Cǫα

[B(λ)]q0

∫
{

z∈Q2:B(|∇u|)> B(λ)
4

} [B (|∇u|)]q0 w(x)dxdt

+
Cǫα

δq0 [B(λ)]q0

∫
{

z∈Q2:B(|f|)> B(λ)
4δ

} [B (|f|)]q0 w(x)dxdt.

Thus, we finish the proof.

In the following it is sufficient to consider the proof of Theorem 1.4 as an a priori estimate,

therefore assuming a priori that B (|∇u|) ∈ Lq(0, T; L
q
w(Ω)) locally. This assumption can be

removed by an approximation argument like the one in [1, 21]. Now we are ready to prove

the main result, Theorem 1.4.

Proof. In light of Lemma 2.12, we find

∫

Q1

[B (|∇u|)]q w(x) dxdt

= qN
q
1

∫ +∞

0
[B(λ)]q−1

∫

{z∈Q1:B(|∇u|)>N1B(λ)}
w(x) dxdtdB(λ)

= qN
q
1

∫ λ∗

0
[B(λ)]q−1

∫

{z∈Q1 :B(|∇u|)>N1B(λ)}
w(x) dxdtdB(λ)

+ qN
q
1

∫ +∞

λ∗
[B(λ)]q−1

∫

{z∈Q1:B(|∇u|)>N1B(λ)}
w(x) dxdtdB(λ)

=: J1 + J2.

Estimate of J1. Recalling the definitions of λ∗ and λ0, we estimate

J1 ≤ C



B



[{∫

Q2

[B (|∇u|)]q0 w(x)dz

} 1
q0

+
1

δ

{∫

Q2

[B (|f|)]q0 w(x) dz

} 1
q0

+ 1

] 1
2








q
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≤ C

[{∫

Q2

[B (|∇u|)]q0 w(x)dz

} 1
q0

+
1

δ

{∫

Q2

[B (|f|)]q0 w(x) dz

} 1
q0

+ 1

] q(2+sa)
2

≤ C

[{∫

Q2

[B (|∇u|)]q0 w(x)dz

} 1
q0

+

{∫

Q2

[B (|f|)]q w(x) dz

} 1
q

+ 1

] q(2+sa)
2

,

where C = C(n, ia, sa, q, δ, w), since

∫

Q2

[B (|f|)]q0 w(x) dz =
∫

Q2

[B (|f|)]1+ǫ w(x)
1+ǫ

q w(x)
q−1−ǫ

q dz ≤ C

(∫

Q2

[B (|f|)]q w(x) dz

) 1+ε
q

by using Hölder’s inequality and the fact that q0 = 1 + ǫ.

Estimate of J2. Now we apply Lemma 2.12 and Lemma 2.18 to find that

J2 ≤ Cǫα

{∫ ∞

0
[B(λ)]q−q0−1

∫
{

z∈Q2:B(|∇u|)> B(λ)
4

} [B (|∇u|)]q0 w(x)dxdtdB(λ)

+
1

δq0

∫ ∞

0
[B(λ)]q−q0−1

∫
{

z∈Q2:B(|f|)> B(λ)
4δ

} [B (|f|)]q0 w(x) dxdtdB(λ)

}

≤ C1ǫα
∫

Q2

[B (|∇u|)]q w(x)dz + C2

∫

Q2

[B (|f|)]q w(x)dz,

where C1 = C1(n, ia, sa, q, Λ) and C2 = C2(n, ia, sa, q, Λ, ǫ, δ). Therefore, we combine the esti-

mates of J1 and J2 to obtain
∫

Q1

[B (|∇u|)]q w(x) dz

≤ C3

[{∫

Q2

[B (|∇u|)]q0 w(x)dz

} 1
q0

+

{∫

Q2

[B (|f|)]q w(x) dz

} 1
q

+ 1

] q(2+sa)
2

+ C1ǫα
∫

Q2

[B (|∇u|)]q w(x) dz,

where C3 = C3(n, ia, sa, q, Λ, ǫ, δ, w). Selecting proper ǫ > 0 small enough and using a covering

and iteration argument, we can finish the proof of Theorem 1.4.
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Abstract. In the present paper, we study the time-space fractional diffusion equation
involving the Caputo differential operator and the fractional Laplacian. This equation
describes the Lévy flight with the Brownian motion component and the drift com-
ponent. First, the asymptotic behavior of the fundamental solution of the fractional
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1 Introduction

1.1 Statement of the problem

In this paper, we consider the Cauchy problem for the fractional diffusion equation

∂α
t u(t, x) = −(−△)βu(t, x) + b ·▽u(t, x) + h△u(t, x), t > 0, x ∈ R

n, (1.1)

u(0, x) = u0(x), x ∈ R
n, (1.2)

where n ∈ N, α ∈ (0, 1], β ∈ (0, 1), h > 0 and b ∈ Rn. Here ∂α
t denotes the Caputo fractional

differential operator defined by [16] ∂1
t being the classical differential operator and

∂α
t v(t) =

d

dt
J1−α
t (v − v(0))(t) =

1

Γ(1 − α)

d

dt

∫ t

0
(t − s)−α(v(s)− v(0))ds, t > 0

for α ∈ (0, 1), where Ja
t is the Riemann–Liouville fractional integral operator of order a ≥ 0

defined by [16] J0
t being the identity operator and

BEmail: cs.sin@ryongnamsan.edu.kp



2 C.-S. Sin

Ja
t v(t) =

1

Γ(a)

∫ t

0
(t − s)a−1v(s)ds

for a > 0. Also, (−△)β is the fractional Laplacian defined by

(−△)βv(x) = F−1(|ξ|2βFv(ξ))(x), x ∈ R
n

for β ∈ (0, 1). Here F and F−1 are respectively Fourier transform and inverse Fourier

transform defined by [16, 27]

F v(ξ) = ṽ(ξ) =
∫

Rn
v(x)e−ixξdx, ξ ∈ R

n,

F
−1v(x) =

1

(2π)n

∫

Rn
v(ξ)eixξdξ, x ∈ R

n.

1.2 Physical background

The equation (1.1) is derived from the continuous time random walk (CTRW in short) theory,

which is characterized by the waiting time probability density function (PDF in short) ψ(t)

and the jump length PDF ω(x). The famous Montroll–Weiss equation is given in the Fourier–

Laplace space by [21]

ˆ̃u(s, ξ) =
1 − ψ̂(s)

s

1

1 − ψ̂(s)ω̃(ξ)
, (1.3)

where ψ̂(s) means the Laplace transform of ψ(t) defined by [16]

ψ̂(s) = L ψ(s) =
∫ ∞

0
e−tsψ(t)dt

and ˆ̃u(s, ξ) stands for the Fourier–Laplace transform of the PDF u(t, x) of being at position x

at time t.

Take

ψ̂(s) =
1

1 + sα
, α ∈ (0, 1], (1.4)

ω̃(ξ) = e−ζβ(ξ), (1.5)

where ζβ is defined by

ζβ(ξ) = |ξ|2β + h|ξ|2 − ib · ξ. (1.6)

Since 1
1+sα is a Stieltjes function, ψ(t) becomes a PDF. In fact, ψ(t) is the Mittag-Leffler PDF

given by [11]

ψ(t) = L
−1

(

1

1 + sα

)

(t) = tα−1Eα,α(−tα). (1.7)

When α = 1, ψ(t) becomes a Poisson PDF. By Lemma 6.9 in [17], the function ζβ is negative

definite. It follows from the negative definiteness of ζβ that e−ζβ(ξ) is a positive definite func-

tion. For details of the Bernstein function theory, see [28]. Then, by the Bochner theorem,

ω(x) becomes a PDF. Also, we have

e−ζβ(ξ) → 1 − ζβ(ξ), ξ → 0. (1.8)
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Combining (1.8) with (1.3) and (1.4), we deduce

ˆ̃u(s, ξ) =
sα−1

sα + ζβ(ξ)
. (1.9)

We can rewrite (1.9) as

sα ˆ̃u(s, ξ)− sα−1 = −ζβ(ξ) ˆ̃u(s, ξ).

Taking the inverse Fourier–Laplace transform, we obtain the equation (1.1).

In [3,7], Cartea and del-Castillo-Negrete use the jump length PDF in the Lévy–Khintchine

representation to derive a general time-space nonlocal diffusion equation including (1.1). Also,

employing the general nonlocal diffusion equation, they described the tempered Lévy flight

which looks like a Lévy process in a small time and behaves like a Brownian random walk in a

large time. Meerschaert et al. also considered general nonlocal diffusion equations including

(1.1) in [20]. In [6], del-Castillo-Negrete and Cartea modelled the resistive pressure-gradient-

driven plasma turbulence by employing the time-space fractional diffusion equation.

The equation (1.1) captures the Lévy flight with the Brownian motion component and

the drift component. In (1.1), the fractional Laplacian and the classical Laplacian mean the

jump component and the Brownian motion component respectively. Also, the gradient in (1.1)

stands for the drift component. For details of the Lévy process, see [27].

1.3 State of the art

In [2], Blumenthal and Getoor established the following estimate for the transition density of

the 2β-stable Lévy process

u(t, x) ∼ min{t
− n

2β , t|x|−n−2β}. (1.10)

The transition density corresponds to the fundamental solution of the equation (1.1) of the

case: α = 1, β ∈ (0, 1), b = h = 0. In [12], Ignat and Rossi used the energy method to obtain

the decay estimate results for solutions of the space fractional diffusion equation. Kaleta and

Sztonyk [13] studied the asymptotic behavior of transition density and its derivatives for the

tempered Lévy flight.

Eidelman and Kochubei [8] obtained the various estimates for fundamental solutions of

the time fractional diffusion equation. In [26], the existence of solutions and the large time

behavior for the initial boundary value problem of the Caputo time fractional diffusion-wave

equation were investigated. In [14, 31, 32], the optimal decay estimates for solutions of time

nonlocal diffusion equations were established.

In [18], Mainardi, Luchko and Pagnini studied the analytical properties of fundamental so-

lutions of the time-space fractional diffusion-wave equation involving the Caputo differential

operator and the Riesz–Feller operator. Chen, Meerschaert and Nane [4] established the prob-

abilistic representations for solutions of the equation (1.1) of the case: α ∈ (0, 1], β ∈ (0, 1],

b = h = 0. In [15], Kemppainen, Siljander and Zacher used the properties of the Fox H-

function and the Fourier analysis technique to prove the results for the asymptotic behavior

of solutions of the equation

∂α
t u(t, x) = −(−△)βu(t, x) + f (t, x), t > 0, x ∈ R

n. (1.11)

Allen, Caffarelli and Vasseur [1] studied the Hölder regularity for the nonlocal diffusion equa-

tion with the Caputo fractional derivative and a generalization of the fractional Laplacian. By
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employing the Laplace transform, Cheng, Li and Yamamoto [5] obtained the large time be-

havior result for initial value problem and initial boundary value problem of the time-space

fractional diffusion-reaction equation. In [30], the author proved the existence of solutions

of the time-space nonlocal diffusion equation involving the generalized Caputo-type differ-

ential operator and the generalized fractional Laplacian introduced in [29]. We mention also

[10, 22–25], where analytical solutions of several time-space fractional diffusion-wave equa-

tions were established.

The goal of this paper is to obtain the asymptotic behavior of solutions of the Cauchy

problem (1.1)–(1.2).

1.4 Outline

This paper is organized as follows.

In Section 2, we give necessary concepts and lemmas for obtaining the main results of the

paper.

In Section 3, we study the asymptotic behavior of fundamental solutions of the equation

(1.1). The asymptotic behavior result for the fundamental solution shows that the equation

(1.1) captures the Lévy flight which looks like a Brownian random walk in a short time and

behaves like a Lévy process in a long time.

In Section 4, we prove the representation formula for solutions of the Cauchy problem

(1.1)–(1.2) by using the fundamental solution and the properties of the Wright function.

In Section 5, we obtain the L2-decay estimates for solutions of the Cauchy problem (1.1)–

(1.2) by employing the Fourier analysis method.

2 Preliminaries

First of all, we introduce some basic notations. Throughout this paper, N, R and C will mean

the sets of natural, real and complex numbers respectively. C > 0 stands for a universal

positive constant which can be different at different places. Also, a . b means a ≤ Cb for

some constant C > 0 and a & b denotes a ≥ Cb for some constant C > 0. In addition, we

write a ∼ b if a . b . a.

Let a, b ∈ C and Re(a) > 0. The two parameter Mittag-Leffler function is defined by [16]

Ea,b(z) =
∞

∑
j=0

zj

Γ(aj + b)
, z ∈ C.

Lemma 2.1 ([16, 32]). Let k ∈ C, a > 0 and j ∈ N. Then

∂a
t Ea,1(kta) = kEa,1(kta), t > 0. (2.1)

Proof. The relation (2.1) was proved in [16].

Lemma 2.2. Let a ∈ (0, 2) and b ∈ R. Suppose that µ is such that πa/2 < µ < min{π, πa}. Then

there exists a constant C = C(a, b, µ) > 0 such that

|Ea,b(z)| ≤
C

1 + |z|
, µ ≤ | arg(z)| ≤ π. (2.2)
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Let a > −1 and b ∈ C. The Wright function Wa,b is defined by [16]

Wa,b(t) =
∞

∑
j=0

zj

j!Γ(aj + b)
, z ∈ C. (2.3)

Let r ∈ (0, 1). The functions Fr and Mr are special cases of the Wright function defined by [19]

Fr(z) = W−r,0(−z) =
∞

∑
j=1

(−z)j

j!Γ(−rj)
, z ∈ C, (2.4)

Mr(z) = W−r,1−r(−z) =
∞

∑
j=0

(−z)j

j!Γ(−rj + 1 − r)
, z ∈ C. (2.5)

The functions Fr and Mr are related through

Fr(z) = rzMr(z), z ∈ C. (2.6)

By the relation Γ(z)Γ(1 − z) = π
sin(πz)

, the following equality holds.

Fr(z) =
1

π

∞

∑
j=1

(−1)j−1zj Γ(jα + 1)

j!
sin(jπα), z ∈ C. (2.7)

Also, the following relations hold [19].

Mr

( t

r

)

≈
1

√

2π(1 − r)
t

r− 1
2

1−r e−
1−r

r t
1

1−r
, t → +∞. (2.8)

∫ ∞

0
Mr(t)dt = 1. (2.9)

dWa,b(t)

dt
= Wa,a+b(t). (2.10)

By (2.8) and (2.6), we can easily see the asymptotic behavior of the function Fr(t).

e−τsα
=
∫ ∞

0
e−stθα(t, τ)dt, τ, s > 0, (2.11)

where

θα(t, τ) =
1

π

∞

∑
j=1

(−1)j−1τ jt−αj−1 Γ(jα + 1)

j!
sin(jπα), t, τ > 0. (2.12)

By (2.7) and (2.4),

θα(t, τ) =
1

t
Fα

( τ

tα

)

=
1

t
W−α,0

(

−
τ

tα

)

, t, τ > 0. (2.13)

From (2.11), we obtain

lim
t→0

θα(t, τ) = lim
s→∞

se−τsα
= 0, τ > 0. (2.14)

Let Zα,β stand for the fundamental solution of the following time-space fractional diffusion

equation

∂α
t u(t, x) = −(−△)βu(t, x), t > 0, x ∈ R

n. (2.15)

Let n ∈ N and b > 0. Denote

p̄(n, b) :=

{

n
n−2b , n > 2b,

∞, otherwise.
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3 Fundamental solution of fractional diffusion equation

In this section, we consider the fundamental solution of the fractional diffusion equation (1.1).

3.1 Fundamental solution of space fractional diffusion equation

In this subsection, we discuss the space fractional diffusion equation of the form

∂u(t, x)

∂t
= −(−△)βu(t, x) + b ·▽u(t, x) + h△u(t, x), t > 0, x ∈ R

n, (3.1)

which is corresponding to the equation (1.1) when α = 1 and β ∈ (0, 1). Applying the Fourier

transform to (3.1) with respect to the space variable x, we obtain

∂ũ(t, ξ)

∂t
= −(|ξ|2β + h|ξ|2 − ib · ξ)ũ(t, ξ), t > 0, ξ ∈ R

n. (3.2)

The solution of the equation (3.2) with the condition ũ(0, ξ) = 1 has the form:

ũ(t, ξ) = e−(|ξ|2β+h|ξ|2−ib·ξ)t.

For convenience, we write ζβ(ξ) = |ξ|2β + h|ξ|2 − ib · ξ. The fundamental solution A1,β of the

equation (3.1) is represented by

A1,β(t, x) =
1

(2π)n

∫

Rn
e−ζβ(ξ)t cos(xξ)dξ =

1

(2π)n

∫

Rn
e−(|ξ|2β+h|ξ|2)t cos((x + bt)ξ)dξ. (3.3)

Since e−(|ξ|2β+h|ξ|2−ib·ξ)t is positive definite, it follows from the Bochner theorem that A1,β(t, x)≥

0. Also, the following relation holds.

e−(|ξ|2β+h|ξ|2−ib·ξ)t =
∫

Rn
A1,β(t, x) cos(xξ)dx = Ã1,β(t, ξ). (3.4)

Moreover,
∫

Rn
A1,β(t, x)dx = 1, t > 0.

If h = 0, then

A1,β(t, x) = Z1,β(t, x + bt). (3.5)

If h 6= 0, then

A1,β(t, x) =
1

(4πht)
n
2

∫

Rn
e−

|x+bt−y|2

4ht Z1,β(t, y)dy. (3.6)

Theorem 3.1. Let n ∈ N, β ∈ (0, 1), h > 0 and b ∈ Rn. Then the following relations hold.

A1,β(t, x) .

{

t−
n
2 , if x ∈ R

n and t ∈ (0, 1],

t
− n

2β , if x ∈ R
n and t ∈ (1, ∞).

A1,β(t, x − bt) .







t
(

|x| − t
1

2β
)−n−2

, if |x| > t
1

2β and t ∈ (0, 1],

t
(

|x| − t
1

2β
)−n−2β

, if |x| > t
1

2β and t ∈ (1, ∞).
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Proof. The asymptotic behavior (1.10) of Z1,β(t, x) is the following.

Z1,β(t, x) ∼ min{t
− n

2β , t|x|−n−2β}. (3.7)

By (3.7), we have

A1,β(t, x − bt) =
1

(4πht)
n
2

∫

Rn
e−

(|x−y|)2

4ht Z1,β(t, y)dy

∼

1

(4πht)
n
2

∫

|y|<t
1

2β
e−

|x−y|2

4ht t
− n

2β dy +
1

(4πht)
n
2

∫

|y|>t
1

2β
e−

|x−y|2

4ht t|y|−n−2βdy

∼ t
− n

2β−
n
2

∫

|y|<t
1

2β
e−

|x−y|2

4ht dy + t1− n
2

∫

|y|>t
1

2β
e−

|x−y|2

4ht |y|−n−2βdy. (3.8)

First, we estimate the integral
∫

|y|<t
1

2β
e−

|x−y|2

4ht dy.

For x ∈ Rn, we have

∫

|y|<t
1

2β
e−

|x−y|2

4ht dy . t
n

2β .

For x ∈ Rn, we obtain

∫

|y|<t
1

2β
e−

|x−y|2

4ht dy .

∫

Rn
e−

|x−y|2

4ht dy . (ht)
n
2 . t

n
2 .

For |x| > t
1

2β , we estimate

∫

|x−z|<t
1

2β
e−

|z|2

4ht dz ≤ e−

(

|x|−t

1
2β
)2

4ht

∫

|x−z|<t
1

2β
dz . t

n
2β e−

(

|x|−t

1
2β
)2

4ht .

For |x| > t
1

2β and m > 0, we deduce

∫

|y|<t
1

2β
e−

|x−y|2

4ht dy .

∫

|y|<t
1

2β

t
m
2

|x − y|m
dy .

∫ t
1

2β

0

t
m
2

(|x| − r)m
rn−1dr

. t
m
2
(

|x| − t
1

2β
)−m

∫ t
1

2β

0
rn−1dr . t

m
2 t

n
2β
(

|x| − t
1

2β
)−m

.

Setting m = n + 2,

∫

|y|<t
1

2β
e−

|x−y|2

4ht dy . t
n

2β+
n
2 +1(|x| − t

1
2β
)−n−2

.

Setting m = n + 2β,

∫

|y|<t
1

2β
e−

|x−y|2

4ht dy . t
n

2β+
n
2 +β(|x| − t

1
2β
)−n−2β

.

Next, we estimate the integral

∫

|y|>t
1

2β
e−

|x−y|2

4ht |y|−n−2βdy.
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For x ∈ Rn, we obtain
∫

|y|>t
1

2β
e−

|x−y|2

4ht |y|−n−2βdy . t
−n−2β

2β

∫

|y|>t
1

2β
e−

|x−y|2

4ht dy . t
−n−2β

2β

∫

Rn
e−

|x−y|2

4ht dy . t
− n

2β+
n
2 −1

.

For x ∈ Rn, we have
∫

|y|>t
1

2β
e−

|x−y|2

4ht |y|−n−2βdy ≤
∫

|y|>t
1

2β
|y|−n−2βdy . t−1.

If |x| > t
1

2β , then

∫

|y|>t
1

2β
e−

|x−y|2

4ht |y|−n−2βdy =
∫

|y−x|< |x|−t

1
2β

2

e−
|x−y|2

4ht |y|−n−2βdy

+
∫

|y−x|> |x|−t

1
2β

2 ,|y|>t
1

2β

e−
|x−y|2

4ht |y|−n−2βdy.

Then, for |x| > t
1

2β ,

∫

|y|>t
1

2β
e−

|x−y|2

4ht |y|−n−2βdy ≤

(

|x|+ t
1

2β

2

)−n−2β ∫ |x|−t

1
2β

2

0
e−

r2

4ht rn−1dr

+ e−

(

|x|−t

1
2β
)2

16ht

∫

|y|>t
1

2β
|y|−n−2βdy

. (4ht)
n
2

(

|x|+ t
1

2β

2

)−n−2β

+
1

2βt
e−

(

|x|−t

1
2β
)2

16ht

. t
n
2
(

|x|+ t
1

2β
)−n−2β

+ t−1e−

(

|x|−t

1
2β
)2

16ht .

Also, for |x| > t
1

2β ,

∫

|y|>t
1

2β
e−

|x−y|2

4ht |y|−n−2βdy ≤

(

|x|+ t
1

2β

2

)−n−2 ∫ |x|−t

1
2β

2

0
e−

r2

4ht r2−2β+n−1dr

+ e−

(

|x|−t

1
2β
)2

16ht

∫

|y|>t
1

2β
|y|−n−2βdy

. (4ht)
n
2 +1−β

(

|x|+ t
1

2β

2

)−n−2

+
1

2βt
e−

(

|x|−t

1
2β
)2

16ht

. t
n
2 +1−β

(

|x|+ t
1

2β
)−n−2

+ t−1e−

(

|x|−t

1
2β
)2

16ht .

Combining the previous estimates, we obtain the following results.

If |x| > t
1

2β and t ∈ (0, 1], then, by (3.8), for m > 0,

A1,β(t, x − bt) . t
− n

2β−
n
2 t

n
2β e−

(

|x|−t

1
2β
)2

4ht + t1− n
2

(

t
n
2 +1−β

(

|x|+ t
1

2β
)−n−2

+ t−1e−

(

|x|−t

1
2β
)2

16ht

)

. t−
n
2 t

m
2
(

|x| − t
1

2β
)−m

+ t2−β
(

|x|+ t
1

2β
)−n−2

+ t−
n
2 t

m
2
(

|x| − t
1

2β
)−m

.
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Setting m = n + 2, we deduce

A1,β(t, x − bt) . t
(

|x| − t
1

2β
)−n−2

.

If x ∈ Rn and t ∈ (0, 1], then

A1,β(t, x − bt) . t
− n

2β−
n
2 t

n
2β + t1− n

2 t−1 . t−
n
2 .

If |x| > t
1

2β and t > 1, then, by (3.8), for m > 0,

A1,β(t, x − bt) . t
− n

2β−
n
2 t

n
2β e−

(

|x|−t

1
2β
)2

4ht + t1− n
2

(

t
n
2
(

|x|+ t
1

2β
)−n−2β

+ t−1e−

(

|x|−t

1
2β
)2

16ht

)

. t−
n
2 t

m
2
(

|x| − t
1

2β
)−m

+ t
(

|x|+ t
1

2β
)−n−2β

+ t−
n
2 t

m
2
(

|x| − t
1

2β
)−m

.

Setting m = n + 2β, we deduce

A1,β(t, x − bt) . tβ
(

|x| − t
1

2β
)−n−2β

+ t
(

|x| − t
1

2β
)−n−2β

. t
(

|x| − t
1

2β
)−n−2β

.

If x ∈ Rn and t > 1, then

A1,β(t, x − bt) . t
− n

2β−
n
2 t

n
2 + t1− n

2 t
−1− n

2β+
n
2 . t

− n
2β .

Remark 3.2. From the relation (3.7), we can easily see

Z1,β(t, x)

Z1,β(t, x + bt)
. max{1, t

n+2β− n
2β−1}, if t > 0 and x ∈ R

n.

Then, from (3.6) and Theorem 3.1, we obtain the following result.

If β ∈ [ 1
2 , 1), then

A1,β(t, x) .







t
(

|x| − t
1

2β
)−n−2

, if |x| > t
1

2β and t ∈ (0, 1],

t
n+2β− n

2β
(

|x| − t
1

2β
)−n−2β

, if |x| > t
1

2β and t ∈ (1, ∞).

If β ∈ (0, 1
2 ), then

A1,β(t, x) .







t
n+2β− n

2β
(

|x| − t
1

2β
)−n−2

, if |x| > t
1

2β and t ∈ (0, 1],

t
(

|x| − t
1

2β
)−n−2β

, if |x| > t
1

2β and t ∈ (1, ∞).

We consider the Lp-estimate of the fundamental solution A1,β.

Theorem 3.3. Let n ∈ N, β ∈ (0, 1), h > 0, b ∈ Rn and p ∈ [1, ∞]. Then the following relation

holds.

‖A1,β(t, ·)‖Lp(Rn) .







t
− n

2 (1−
1
p ), t ∈ (0, 1],

t
− n

2β (1−
1
p ), t ∈ (1, ∞).
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Proof. Using Theorem 3.1, we can easily obtain the result.

For t ∈ (0, 1], we obtain

‖A1,β(t, ·)‖
p

Lp(Rn)
=
∫

Rn
A1,β(t, x)pdx =

∫

|x|<t
1
2

A1,β(t, x)pdx +
∫

|x|>t
1
2

A1,β(t, x)pdx

. t−
np
2 + n

2 + tp
∫ ∞

t
1
2

rn−1

(r − t
1

2β
)np+2p

dr

. t−
np
2 + n

2 + tpt
n
2 −

np
2 − 2p

2

∫ ∞

1

sn−1

(

s − t
1

2β−
1
2
)np+2p

ds . t−
np
2 + n

2 .

For t > 1, we have

‖A1,β(t, ·)‖
p

Lp(Rn)
=
∫

Rn
A1,β(t, x)pdx =

∫

|x|<2t
1

2β
A1,β(t, x)pdx +

∫

|x|>2t
1

2β
A1,β(t, x)pdx

. t
− np

2β +
n

2β + tp
∫ ∞

2t
1

2β

rn−1

(r − t
1

2β
)np+2βp

dr

. t
− np

2β +
n

2β + tpt
n

2β−
np
2β −

2βp
2β

∫ ∞

2

sn−1

(s − 1)np+2βp
ds . t

− np
2β +

n
2β .

3.2 Fundamental solution of time-space fractional diffusion equation

In this subsection, we consider the time-space fractional diffusion equation (1.1) of the case:

α ∈ (0, 1) and β ∈ (0, 1). Let Aα,β denote the fundamental solution of the equation (1.1).

Applying the Fourier transform to (1.1) with respect to the space variable x, we obtain

∂α
t ũ(t, ξ) = −ζβ(ξ)ũ(t, ξ), t > 0, ξ ∈ R

n. (3.9)

The solution of the equation (3.9) with the condition ũ(0, ξ) = 1 is of the form

ũ(t, ξ) = Eα,1(−ζβ(ξ)t
α).

By the Laplace transform, we obtain

∫ ∞

0
Eα,1(−ζβ(ξ)t

α)e−stdt =
sα−1

sα + ζβ(ξ)
. (3.10)

Now we define the function φ(t, τ) by

φ(t, τ) = J1−α
t θα(t, τ) =

1

Γ(1 − α)

∫ t

0
(t − s)−αθα(s, τ)ds, t, τ > 0. (3.11)

Then
∫ ∞

0
φ(t, τ)e−tsdt = sα−1e−τsα

, s, τ > 0

and

lim
t→0

φ(t, τ) = lim
s→∞

sαe−τsα
= 0, τ > 0.

From (4.26) in [18], we obtain

φ(t, τ) =
1

tα
Mα

( τ

tα

)

=
1

tα
W−α,1−α

(

−
τ

tα

)

, t, τ > 0. (3.12)
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By the asymptotic behavior of Mα, we have

lim
τ→0

φ(t, τ) = lim
τ→∞

φ(t, τ) = 0, t > 0.

Also,
∫ ∞

0

∫ ∞

0
φ(t, τ)e−ζβ(ξ)τdτe−stdt =

∫ ∞

0

∫ ∞

0
φ(t, τ)e−stdte−ζβ(ξ)τdτ

=
∫ ∞

0
sα−1e−τsα

e−ζβ(ξ)τdτ =
sα−1

sα + ζβ(ξ)
. (3.13)

It follows from the uniqueness of the Laplace transform and (3.10) that

ũ(t, ξ) = Eα,1(−ζβ(ξ)t
α) =

∫ ∞

0
φ(t, τ)e−ζβ(ξ)τdτ, t > 0, ξ ∈ R

n. (3.14)

From (3.7) and (3.12), we deduce

u(t, x) =
1

(2π)n

∫ ∞

0
φ(t, τ)

∫

Rn
e−ζβ(ξ)τ cos(ξx)dξdτ =

∫ ∞

0
φ(t, τ)A1,β(τ, x)dτ

=
1

tα

∫ ∞

0
Mα

( τ

tα

)

A1,β(τ, x)dτ =
∫ ∞

0
Mα(s)A1,β(stα, x)ds, t > 0, x ∈ R

n.

Therefore the fundamental solution of the equation (1.1) is represented by

Aα,β(t, x) =
∫ ∞

0
Mα(s)A1,β(stα, x)ds, t > 0, x ∈ R

n. (3.15)

It follows from A1,β(s, x) ≥ 0 that Aα,β(t, x) ≥ 0. By the relation (2.9), we obtain

∫

Rn
Aα,β(t, x)dx =

∫ ∞

0
Mα(s)

∫

Rn
A1,β(stα, x)dxds =

∫ ∞

0
Mα(s)ds = 1, t > 0.

Now we consider the asymptotic behavior of Aα,β(t, x) when |x| > t
α

2β .

Lemma 3.4. Let n ∈ N, α ∈ (0, 1), β ∈ (0, 1), h > 0, b ∈ Rn, t ∈ (0, 1) and |x| > t
α

2β . Then the

following relation holds.

Aα,β(t, x) .

{

tα|x|−n−2, |x| ≤ 2,

tα|x|−n−2β, |x| > 2.
(3.16)

Proof. Now we will prove the relation (3.16) when of β ∈ [ 1
2 , 1). If β ∈ (0, 1

2 ), then the relation

can be proved similarly.

First, we consider the case of |x| ≤ 2. It follows from Theorem 3.1 and Remark 3.2 that

Aα,β(t, x) =
∫

|x|2β

22β tα

0
Mα(s)A1,β(stα, x)ds +

∫ 1
tα

|x|2β

22β tα

Mα(s)A1,β(stα, x)ds

+
∫ ∞

1
tα

Mα(s)A1,β(stα, x)ds

≤
∫

|x|2β

22β tα

0
Mα(s)stα

(

|x| − (stα)
1

2β
)−n−2

ds +
∫ 1

tα

|x|2β

22β tα

Mα(s)(stα)−
n
2 ds

+
∫ ∞

1
tα

Mα(s)(stα)−
n

2β ds.
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We obtain the following relations:

∫ 1
tα

|x|2β

22β tα

Mα(s)s
− n

2 ds =
∫ 1

tα

|x|2β

22β tα

sMα(s)s
− n

2 −1ds ≤

(

|x|2β

22βtα

)− n
2 −1 ∫ ∞

1
Mα(s)sds,

∫ ∞

1
tα

Mα(s)(stα)−
n

2β ds ≤
∫ ∞

1
tα

Mα(s)
( 1

tα
tα
)− n

2β
ds ≤

∫ ∞

1
tα

Mα(s)ds.

By the asymptotic behavior of Mα, the function

r
∫ ∞

r
Mα(s)ds

has a maximum value in [1, ∞). Then we have

Aα,β(t, x) . tα|x|−n−2 + tα+ nα
2 |x|−nβ−2β + tα . tα|x|−n−2.

Next, we consider the case of |x| > 2. By Theorem 3.1 and Remark 3.2, we have

Aα,β(t, x) =
∫ 1

tα

0
Mα(s)A1,β(stα, x)ds +

∫
|x|2β

22β tα

1
tα

Mα(s)A1,β(stα, x)ds

+
∫ ∞

|x|2β

22β tα

Mα(s)A1,β(stα, x − bt)ds

.

∫ 1
tα

0
Mα(s)stα

(

|x| − (stα)
1

2β
)−n−2

ds

+
∫

|x|2β

22β tα

1
tα

Mα(s)(stα)n+2β− n
2β
(

|x| − (stα)
1

2β
)−n−2β

ds

+
∫ ∞

|x|2β

22β tα

Mα(s)(stα)−
n

2β ds.

Since

∫ ∞

|x|2β

22β tα

Mα(s)(stα)−
n

2β ds≤
∫ ∞

|x|2β

22β tα

Mα(s)

(

|x|2βtα

22βtα

)− n
2β

ds.
|x|−ntα

|x|2β

|x|2β

tα

∫ ∞

|x|2β

22β tα

Mα(s)ds. tα|x|−n−2β,

we have

Aα,β(t, x) . tα(|x| − 1)−n−2 + t
α(n+2β− n

2β )|x|−n−2β + tα|x|−n−2β . tα|x|−n−2β.

Now we obtain the Lp-decay estimate for the fundamental solution Aα,β(t, x).

Theorem 3.5. Let n ∈ N, α ∈ (0, 1), β ∈ (0, 1), h > 0 and b ∈ Rn. Then,

‖Aα,β(t, ·)‖Lp(Rn) . t
− αn

2 (1− 1
p ), t ∈ (0, 1] (3.17)

for p ∈ [1, p̄(n, 1)). Also,

‖Aα,β(t, ·)‖Lp(Rn) . t
− αn

2β (1−
1
p ), t ∈ (1, ∞) (3.18)

for p ∈ [1, p̄(n, β)).
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Proof. If p ∈ [1, p̄(n, 1)), then the integral

∫ ∞

0
Mα(s)s

− n
2 (1−

1
p )ds

is finite. Then, for t > 0 and p ∈ [1, p̄(n, 1)), we have

‖Aα,β(t, ·)‖Lp(Rn) ≤
∫ 1

tα

0
Mα(s)‖A1,β(stα, ·)‖Lp(Rn)ds +

∫ ∞

1
tα

Mα(s)‖A1,β(stα, ·)‖Lp(Rn)ds

.

∫ 1
tα

0
Mα(s)(stα)−

n
2 (1−

1
p )ds +

∫ ∞

1
tα

Mα(s)(stα)−
n

2β (1−
1
p )ds

.

∫ 1
tα

0
Mα(s)(stα)−

n
2 (1−

1
p )ds +

∫ ∞

1
tα

Mα(s)(stα)−
n
2 (1−

1
p )ds

. t
− αn

2 (1− 1
p )
∫ 1

tα

0
Mα(s)s

− n
2 (1−

1
p )ds + t

− αn
2 (1− 1

p )
∫ ∞

1
tα

Mα(s)s
− n

2 (1−
1
p )ds

. t
− αn

2 (1− 1
p ).

If p ∈ [1, p̄(n, β)), then the integral

∫ ∞

0
Mα(s)s

− n
2β (1−

1
p )ds

is finite. Then, for t > 0 and p ∈ [1, p̄(n, β)), we have

‖Aα,β(t, ·)‖Lp(Rn) ≤
∫ 1

tα

0
Mα(s)‖A1,β(stα, ·)‖Lp(Rn)ds +

∫ ∞

1
tα

Mα(s)‖A1,β(stα, ·)‖Lp(Rn)ds

.

∫ 1
tα

0
Mα(s)(stα)−

n
2 (1−

1
p )ds +

∫ ∞

1
tα

Mα(s)(stα)−
n

2β (1−
1
p )ds

.

∫ 1
tα

0
Mα(s)(stα)−

n
2β (1−

1
p )ds +

∫ ∞

1
tα

Mα(s)(stα)−
n

2β (1−
1
p )ds

. t
− αn

2β (1−
1
p )
∫ 1

tα

0
Mα(s)s

− n
2β (1−

1
p )ds + t

− αn
2β (1−

1
p )
∫ ∞

1
tα

Mα(s)s
− n

2β (1−
1
p )ds

. t
− αn

2β (1−
1
p ).

Remark 3.6. Comparing Theorem 3.3 and Theorem 3.5 with Lemma 5.1 in [15], we can see

that the equation (1.1) describes the Lévy flight which looks like a Brownian random walk in

a small time and behaves like a Lévy process in a large time.

4 Representation formula of solutions

In this section, we establish a representation formula of the fractional diffusion equation (1.1)

with the initial condition (1.2).

4.1 Classical solution

In this subsection, we discuss a classical solution of the problem (1.1)–(1.2).
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Definition 4.1. We call u ∈ C([0, ∞)× Rn) a classical solution of the Cauchy problem (1.1)–

(1.2) if

(P1) F−1((ζβ(·)ũ(t, ·))(x) is a continuous function of x for any t > 0,

(P2) for any x ∈ Rn, J1−α
t u(t, x) is continuously differentiable with respect to t > 0,

(P3) u(t, x) satisfies the equation (1.1) for any (t, x) ∈ (0, ∞)× Rn and the initial condition

(1.2) for any x ∈ Rn.

Theorem 4.2. Let n ∈ N, α = 1, β ∈ (0, 1), h > 0 and b ∈ Rn. Let u0 ∈ C(Rn)
⋂

L1(Rn)

be a function such that ũ0 ∈ L1(Rn). Then the Cauchy problem (1.1)–(1.2) has a classical solution

represented by

u(t, x) =
∫

Rn
A1,β(t, x − y)u0(y)dy. (4.1)

Proof. First, we prove that the function (4.1) satisfies the condition (P1). Using (3.4), we have

ζβ(ξ)ũ(t, ξ) = ζβ(ξ)Ã1,β(t, ξ)ũ0(ξ) = ζβ(ξ)e
−ζβ(ξ)tũ0(ξ).

Then it follows from the condition ũ0 ∈ L1(Rn) that ζβ(·)ũ(t, ·) ∈ L1(Rn) for any t > 0. By the

Riemann–Lebesgue lemma, F−1((ζβ(·)ũ(t, ·))(x) is a continuous function of x for any t > 0.

Next, we show that the function (4.1) satisfies the condition (P2). We have

∂A1,β(t, x)

∂t
= −

1

(2π)n

∫

Rn
ζβ(ξ)e

−ζβ(ξ)t cos(xξ)dξ, (4.2)

which implies that
∂A1,β(t,x)

∂t is continuous with respect to t and x. Since the function

∂A1,β(t, x)

∂t

is a bounded continuous function of x for any t > 0 and u0 ∈ L1(Rn),

∂A1,β(t, x − ·)

∂t
u0(·) ∈ L1(Rn),

which implies that the function

∫

Rn

∂A1,β(t, x − y)

∂t
u0(y)dy

is a continuous function of x for any t > 0. Then, we have

∂u(t, x)

∂t
=
∫

Rn

∂A1,β(t, x − y)

∂t
u0(y)dy. (4.3)

In the last, we deduce that the function (4.1) satisfies the condition (P3). For (t, x) ∈

(0, ∞)× Rn, we deduce

F
−1(ζβ(ξ)ũ(t, ξ))(x) = F

−1
(

ζβ(ξ)e
−ζβ(ξ)tũ0(ξ)

)

(x) =
∫

Rn

∂A1,β(t, x − y)

∂t
u0(y)dy =

∂u(t, x)

∂t
.
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For any ǫ > 0, there exists a δ > 0 such that |u0(y) − u0(x)| < ǫ for x, y ∈ Rn satisfying

the relation |x − y| < 2δ. By the asymptotic behavior of A1,β(t, x), for any x ∈ Rn and

t ∈ (0, min{δ/|b|, δ2β/22β}), we have

|u(t, x)− u0(x)| =

∣

∣

∣

∣

∫

Rn
A1,β(t, x − y − bt)(u0(y + bt)− u0(x))dy

∣

∣

∣

∣

≤
∫

|x−y|<δ
A1,β(t, x − y − bt)|u0(y + bt)− u0(x)|dy

+
∫

|x−y|>δ
A1,β(t, x − y − bt)|u0(y + bt)− u0(x)|dy

. ǫ
∫

|x−y|<δ
A1,β(t, x − y − bt)dy + 2‖u0‖L∞(Rn)

∫

|x−y|>δ
t(|x − y| − t

1
2β )−n−2dy

. ǫ + 2t‖u0‖L∞(Rn)

∫ ∞

δ
(r − t

1
2β )−n−2rn−1dr

. ǫ + 2t‖u0‖L∞(Rn)

∫ ∞

δ

(

r −
δ

2

)−n−2

rn−1dr.

If t is sufficiently small, |u(t, x)− u0(x)| < 2ǫ for x ∈ Rn. Since ǫ is arbitrary, for any x ∈ Rn,

lim
t→0

|u(t, x)− u0(x)| = 0.

Theorem 4.3. Let n ∈ N, α ∈ (0, 1), β ∈ (0, 1), h > 0 and b ∈ Rn. Let u0 ∈ C(Rn)
⋂

L1(Rn)

be a function such that ũ0 ∈ L1(Rn). Then the Cauchy problem (1.1)–(1.2) has a classical solution

represented by

u(t, x) =
∫

Rn
Aα,β(t, x − y)u0(y)dy. (4.4)

Proof. First, we prove that the function (4.1) satisfies the condition (P1). Using (3.14) and (2.2),

we have

ζβ(ξ)ũ(t, ξ) = ζβ(ξ)Ãα,β(t, ξ)ũ0(ξ) = ζβ(ξ)Eα,1(−ζβ(ξ)t
α)ũ0(ξ) .

1

tα
ũ0(ξ), t > 0, ξ ∈ R

n.

Then it follows from the condition ũ0 ∈ L1(Rn) that ζβ(·)ũ(t, ·) ∈ L1(Rn) for any t > 0. By the

Riemann–Lebesgue lemma, F−1((ζβ(·)ũ(t, ·))(x) is a continuous function of x for any t > 0.

Next, we show that the function (4.1) satisfies the condition (P2). From the relation

∫ ∞

0
J1−α
t φ(t, τ)e−stdt = s2α−2e−τsα

, s, τ > 0,

we obtain

lim
t→0

J1−α
t φ(t, τ) = lim

s→∞
s2α−1e−τsα

= 0, τ > 0.

From the relations (2.13) and (2.10), we deduce

∂θα(t, τ)

∂t
= −

1

t2
Fα

( τ

tα

)

−
1

t1+α
F′

α

( τ

tα

)

= −
1

t2
Fα

( τ

tα

)

−
1

t1+α
W−α,−α

( τ

tα

)

. (4.5)

By the formula (2.3) and the asymptotic behavior of the Wright function given by (1.11.8) in

[16], we have
∂θα(t, τ)

∂t
→ 0, τ → 0 or τ → ∞. (4.6)
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Since
∫ ∞

0

∂θα(t, τ)

∂t
e−tsdt = se−τsα

, s, τ > 0,

we obtain

lim
t→0

∂θα(t, τ)

∂t
= lim

s→∞
s2e−τsα

= 0, τ > 0, (4.7)

lim
t→∞

∂θα(t, τ)

∂t
= lim

s→0
s2e−τsα

= 0, τ > 0. (4.8)

Then

∂α
t φ(t, τ) =

∂

∂t
J1−α
t φ(t, τ) =

∂

∂t
J2−2α
t θα(t, τ) = J2−2α

t

∂θα(t, τ)

∂t
, t, τ > 0. (4.9)

Meanwhile, we have

J1−α
t Aα,β(t, x) =

∫ ∞

0
J1−α
t φ(t, τ)A1,β(τ, x)dτ =

1

(2π)n

∫ ∞

0
J1−α
t φ(t, τ)

∫

Rn
e−ζβ(ξ)τ cos(ξx)dξdτ.

By (4.6) and (4.9), J1−α
t Aα,β(t, x) is continuously differentiable with respect to t > 0. From

Theorem 3.1 and (3.3), for t > 0 and x ∈ Rn, we obtain

∂α
t Aα,β(t, x) =

∫ ∞

0
∂α

t φ(t, τ)A1,β(τ, x)dτ =
1

(2π)n

∫ ∞

0
∂α

t φ(t, τ)
∫

Rn
e−ζβ(ξ)τ cos(xξ)dξdτ. (4.10)

Then the function ∂α
t Aα,β(t, x) is a continuous function of x for any t > 0. It follows from

Theorem 3.3 that ∂α
t Aα,β(t, ·) ∈ L1(Rn) for any t > 0. Also, the function

∫

Rn
∂α

t Aα,β(t, x − y)u0(y)dy

is a continuous function of x for any t > 0. Therefore, we have

∂α
t u(t, x) =

∫

Rn
∂α

t Aα,β(t, x − y)u0(y)dy. (4.11)

In the last, we deduce that the function (4.4) satisfies the condition (P3). For t > 0 and

x ∈ Rn, we deduce

F
−1((ζβ(ξ)ũ(t, ξ))(x) = F

−1
(

ζβ(ξ)Eα,1(−ζβ(ξ)t
α)ũ0(ξ)

)

(x)

= F
−1
(

∂α
t (Eα,1(−ζβ(ξ)t

α))ũ0(ξ)
)

(x)

= F
−1

(

∫ ∞

0
∂α

t φ(t, τ)e−ζβ(ξ)τ
α
ũ0(ξ)dτ

)

(x)

=
∫ ∞

0
∂α

t φ(t, τ)F−1
(

e−ζβ(ξ)τ
α
ũ0(ξ)

)

(x)dτ

=
∫ ∞

0
∂α

t φ(t, τ)
∫

Rn
A1,β(τ, x − y)u0(y)dydτ

=
∫

Rn
∂α

t Aα,β(t, x − y)u0(y)dy = ∂α
t u(t, x).

As in the proof of Theorem 4.2, using the asymptotic behavior of Aα,β(t, x) obtained in

Lemma 3.4, we can prove the initial condition limt→0 |u(t, x)− u0(x)| = 0 for any x ∈ Rn.
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4.2 Mild solution

In this subsection, we consider a mild solution of the Cauchy problem (1.1)–(1.2). Now we

give a rigorous definition of the solution of the equation (1.1)–(1.2).

Definition 4.4. We call u a mild solution to (1.1)–(1.2) if (1.1) holds in L2(Rn) and u(t, ·) ∈

H2(Rn) for t>0 and u ∈ C([0, ∞); L2(Rn)), limt→0 ‖u(t, ·)− u0‖L2(Rn) = 0.

Theorem 4.5. Let α ∈ (0, 1], β ∈ (0, 1), h > 0, b ∈ Rn and u0 ∈ L2(Rn). Then the Cauchy problem

(1.1)–(1.2) has a unique mild solution u represented by (4.4). Moreover, u ∈ C((0, ∞); H2(Rn)) and

the following relations hold.

‖u(t, ·)‖L2(Rn) ≤ ‖u0‖L2(Rn), t ≥ 0, (4.12)

‖u(t, ·)‖H2(Rn) . ‖u0‖L2(Rn)(1 + t−α), t > 0, (4.13)

‖u(t, ·)‖H1(Rn) . ‖u0‖L2(Rn)(1 + t−
α
2 ), t > 0. (4.14)

If n < 4β, then

‖u(t, ·)‖L∞(Rn) .

{

t−
nα
4 , t ∈ (0, 1),

t
− nα

4β , t ∈ [1, ∞).

Proof. Using Lemma 2.2, we have

||ξ|2ũ(t, ξ)| ≤ |ũ0(ξ)||ξ|
2
∣

∣Eα,1(−(|ξ|2β + h|ξ|2 − ib · ξ)tα)
∣

∣

. |ũ0(ξ)||ξ|
2 1

1 + |ξ|2tα
.

|ũ0(ξ)|

tα
, t > 0, ξ ∈ R

n,

||ξ|ũ(t, ξ)| ≤ |ũ0(ξ)||ξ|
∣

∣Eα,1(−(|ξ|2β + h|ξ|2 − ib · ξ)tα)
∣

∣

. |ũ0(ξ)||ξ|
1

1 + |ξ|2tα
.

|ũ0(ξ)|

t
α
2

, t > 0, ξ ∈ R
n.

By using the Plancherel theorem, for t > 0, we deduce

‖u(t, ·)‖L2(Rn) = ‖ũ(t, ·)‖L2(Rn) = ‖ũ0Ãα,β(t, ·)‖L2(Rn) ≤ ‖ũ0‖L2(Rn) = ‖u0‖L2(Rn).

Also, for t > 0, we have

‖u(t, ·)‖H2(Rn) = ‖(1 + | · |2)ũ(t, ·)‖L2(Rn) .
(

1 +
1

tα

)

‖u0‖L2(Rn),

‖u(t, ·)‖H1(Rn) = ‖(1 + | · |)ũ(t, ·)‖L2(Rn) .
(

1 +
1

t
α
2

)

‖u0‖L2(Rn).

For t > 0, we estimate

‖u(t, ·)− u0‖L2(Rn) = ‖ũ(t, ·)− ũ0‖L2(Rn) = ‖ũ0(1 − Ãα,β(t, ·))‖L2(Rn) ≤ 2‖u0‖L2(Rn).

From the Lebesgue dominated convergence theorem, we obtain

lim
t→0

‖u(t, ·)− u0‖L2(Rn) = lim
t→0

‖ũ(t, ·)− ũ0‖L2(Rn) = ‖ũ0 lim
t→0

(1 − Ãα,β(t, ·))‖L2(Rn) = 0.
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For t1, t2 > 0, we deduce

‖u(t1, ·)− u(t2, ·)‖H2(Rn) = ‖(1 + | · |2)(ũ(t1, ·)− ũ(t2, ·)‖L2(Rn)

= ‖(1 + | · |2)ũ0(Ãα,β(t1, ·)− Ãα,β(t2, ·))‖L2(Rn)

.
1

tα
1

‖u0‖L2(Rn) +
1

tα
2

‖u0‖L2(Rn) + 2‖u0‖L2(Rn).

By the Lebesgue dominated convergence theorem, we estimate

lim
t1→t2

‖u(t1, ·)− u(t2, ·)‖H2(Rn) = lim
t→0

‖(1 + | · |2)(ũ(t1, ·)− ũ(t2, ·))‖L2(Rn)

= ‖(1 + | · |2)ũ0(·) lim
t1→t2

(Ãα,β(t1, ·)− Ãα,β(t2, ·))‖L2(Rn) = 0.

Similarly, we can prove u ∈ C((0, ∞); H1(Rn)).

Using the Plancherel theorem, (2.1) and (3.9), for t > 0, we have

∥

∥

∥

∥

∂αu(t, ·)

∂tα
+ (−△)βu(t, x)− b ·▽u(t, x)− h△u(t, x)

∥

∥

∥

∥

L2(Rn)

=

∥

∥

∥

∥

∂αũ(t, ·)

∂tα
− ũ0(ξ)(|ξ|

2β + h|ξ|2 − ib · ξ)Eα,1(−(|ξ|2β + h|ξ|2 − ib · ξ)tα)

∥

∥

∥

∥

L2(Rn)

= 0.

In the case of n < 4β, using Young inequality for convolution and Theorem 3.5, we obtain

‖u(t, ·)‖L∞(Rn) ≤ ‖u0‖L2(Rn)‖Aα,β(t, ·)‖L2(Rn) .

{

t−
nα
4 , t ∈ (0, 1),

t
− nα

4β , t ∈ [1, ∞).

5 Decay behavior of solutions

In this section, we consider the L2-decay of solutions of the nonlocal diffusion equation (1.1)

with the initial condition (1.2).

Theorem 5.1. Let n ∈ N, α = 1, β ∈ (0, 1), h > 0, b ∈ Rn and u0 ∈ L1(Rn) ∩ L2(Rn). Then the

mild solution u of the Cauchy problem (1.1)–(1.2) satisfies the following relation.

‖u(t, ·)‖L2(Rn) .

{

t−
n
4 ‖u0‖L1(Rn), t ∈ (0, 1],

t
− n

4β ‖u0‖L1(Rn), t ∈ (1, ∞).

Proof. Using Theorem 3.3, Young’s inequality for convolution and the Plancherel theorem, for

t > 0, we obtain

‖u(t, ·)‖L2(Rn) ≤ ‖A1,β(t, ·)‖L2(Rn)‖u0‖L1(Rn) .

{

t−
n
4 ‖u0‖L1(Rn), t ∈ (0, 1],

t
− n

4β ‖u0‖L1(Rn), t ∈ (1, ∞).
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Theorem 5.2. Let n ∈ N, α ∈ (0, 1), β ∈ (0, 1), h > 0, b ∈ Rn and u0 ∈ L1(Rn) ∩ L2(Rn). Then

the mild solution u of the Cauchy problem (1.1)–(1.2) satisfies the following relations.

If n 6= 4β, then

‖u(t, ·)‖L2(Rn) .

{

t−
α
2 min{ n

2 ,1}, t ∈ (0, 1],

t
−α min{ n

4β ,1}
, t ∈ (1, ∞).

If n = 4β, then

‖u(t, ·)‖L2(Rn) .

{

t−
α
2 min{ n

2 ,1}, t ∈ (0, 1],

t−
α
2 max{ n

2 ,1}, t ∈ (1, ∞).

Proof. Using Theorem 3.5 and Young inequality for convolution, we have

‖u(t, ·)‖L2(Rn) ≤ ‖Aα,β(t, ·)‖L2(Rn)‖u0‖L1(Rn) .

{

t−
αn
4 ‖u0‖L1(Rn), for n < 4 and t ∈ (0, 1],

t
− αn

4β ‖u0‖L1(Rn), for n < 4β and t ∈ (1, ∞).

If n > 4β, then, from the Plancherel theorem, Lemma 2.2 and the Hardy–Littlewood–Sobolev

theorem [9], we deduce

(2π)n‖u(t, ·)‖2
L2(Rn) = ‖ũ(t, ·)‖2

L2(Rn) =
∫

Rn
|Ãα,β(t, ξ)|2|ũ0(ξ)|

2dξ

=
∫

Rn
|Eα,1(−ζβ(ξ)t

α)|2|ũ0(ξ)|
2dξ .

∫

Rn

|ũ0(ξ)|2

(1 + |ζβ(ξ)|tα)2
dξ

. t−2α
∫

Rn

|ξ|4βt2α

(1 + |ξ|2βtα)2
||ξ|−2βũ0(ξ)|

2dξ . t−2α‖(−△)−βu0‖
2
L2(Rn) . t−2α‖u0‖

2

L
2n

n+4β (Rn)
.

If n > 2β, then we obtain

‖u(t, ·)‖2
L2(Rn) .

∫

Rn

|ũ0(ξ)|2

(1 + |ζβ(ξ)|tα)2
dξ . t−α

∫

Rn

|ξ|2βtα

(1 + |ξ|2βtα)2
||ξ|−βũ0(ξ)|

2dξ

. t−α
∫

Rn

||ξ|−βũ0(ξ)|2

(|ξ|−βt−
α
2 + |ξ|βt

α
2 )2

dξ . t−α‖(−△)−
β
2 u0‖

2
L2(Rn) . t−α‖u0‖

2

L
2n

n+2β (Rn)
.

If n > 4, then we have

‖u(t, ·)‖2
L2(Rn) .

∫

Rn

|ũ0(ξ)|2

(1 + |ζβ(ξ)|tα)2
dξ . t−2α

∫

Rn

|ξ|4t2α

(1 + |ξ|2tα)2
||ξ|−2ũ0(ξ)|

2dξ

. t−2α‖(−△)−1u0‖
2
L2(Rn) . t−2α‖u0‖

2

L
2n

n+4 (Rn)
.

If n > 2, then we estimate

‖u(t, ·)‖2
L2(Rn) .

∫

Rn

|ũ0(ξ)|2

(1 + |ζβ(ξ)|tα)2
dξ . t−α

∫

Rn

|ξ|2tα

(1 + |ξ|2tα)2
||ξ|−1ũ0(ξ)|

2dξ

. t−α
∫

Rn

||ξ|−1ũ0(ξ)|2

(|ξ|−1t−
α
2 + |ξ|t

α
2 )2

dξ . t−α‖(−△)−
1
2 u0‖

2
L2(Rn) . t−α‖u0‖

2

L
2n

n+2 (Rn)
.

If n < 4, then we deduce

‖u(t, ·)‖2
L2(Rn) .

∫

Rn

|ũ0(ξ)|2

(1 + |ξ|2tα)2
dξ . ‖ũ0‖

2
L∞(Rn)

∫ ∞

0

rn−1

(1 + r2tα)2
dr

= t−
αn
2 ‖u0‖

2
L1(Rn)

∫ ∞

0

wn−1

(1 + w2)2
dw.

Combining the previous estimates, we obtain the desired result.
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Abstract. We consider a system of two sets of partial differential equations describing
the water hammer in a hydroelectric power plant containing the dynamics of the tun-
nel, turbine penstock, surge tank and hydraulic turbine. Under standard simplifying
assumptions (negligible Darcy–Weisbach losses and dynamic head variations), a system
of functional differential equations of neutral type, with two delays, can be associated to
the aforementioned partial differential equations and existence, uniqueness and contin-
uous data dependence can be established. Stability is then discussed using a Lyapunov
functional deduced from the energy identity. The Lyapunov functional is “weak” i.e. its
derivative function is only non-positive definite. Therefore only Lyapunov stability is
obtained while for asymptotic stability application of the Barbashin–Krasovskii–LaSalle
invariance principle is required. A necessary condition for its validity is the asymptotic
stability of the difference operator associated to the neutral system. However, its prop-
erties in the given case make the asymptotic stability non-robust (fragile) in function of
some arithmetic properties of the delay ratio.
Keywords: differential equations, neutral functional differential equations, energy Lya-
punov functional, asymptotic stability, water hammer.
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1 The engineering model and problem statement

The transient processes of the hydraulic power plants are quite important since, if uncon-
trolled, they can produce technical and/or environment catastrophes. Consequently their
theoretical analysis is of major concern: we can cite but a few references on this subject [3, 21,
24, 27].

We shall consider here, as in other papers of ours, the (relatively) standard structure of
a hydroelectric power plant consisting of a water reservoir (“lake”), tunnel, penstock and
hydraulic turbine (Fig. 1.1)

BEmail: vladimir.rasvan@edu.ucv.ro
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Figure 1.1: Hydroelectric plant structure. 1. Lake. 2. Tunnel. 3. Surge tank.
4. Penstock. 5. Hydraulic turbine.

This structure is common for the hydroelectric power plants throughout the world: such
examples as “Bicaz” and “Somes, Măris,elu” in Romania [27] or “Tanzmühle” in Germany [25,26]
illustrate this assertion.

If distributed parameters are considered along the two water conduits, the adapted Saint
Venant partial differential equations have to be used and the following mathematical model
is obtained – we reproduce it after [10]

∂xi

(

Hi +
V2

i

2g

)

+
1
g

∂tVi +
λi

2Di

1
g

Vi|Vi| = 0, ∂tHi +
a2

i

g
∂xi Vi = 0, i = 1,2,

H1(0, t) = H0; H1(L1, t) +
V2

1 (L1, t)
2g

= Z(t) + Rs
dZ
dt

= H2(0, t) +
V2

2 (0, t)
2g

,

Qi = FiVi, i = 1,2; Q̄ = αqFθ max

√

H0; Fs
dZ
dt

= Q1(L1, t)− Q2(0, t),

Q2(L2, t) = (1 − k)αqFθ(t)
√

H2(L2, t) + kQ̄Ω(t)/Ωc,

JΩc
dΩ

dt
= ηθ

γ

2g
Q2(L2, t)H2(L2, t)− Ng,

(1.1)

where the notations are the usual ones in the field and are enumerated in the Appendix (also
reproduced after the Appendix of [10]). In (1.1) the flow crossing the wicket gates of the
turbine, namely Q2(L2, t) (the subscript 2 accounts for the penstock state variables and pa-
rameters) is expressed according to an improved formula of [3], thus being dependent of the
turbine rotating speed. The terms depending on V2

i account for the dynamic heads and those
in Vi|Vi| for the Darcy–Weisbach losses. It is worth mentioning that all conduits are assumed
to be described by distributed parameters. The throttling of the surge tank is represented by
its parameter Rs; letting Rs = 0 means assuming a surge tank without throttling. Also the
flow Q̄ as defined in (1.1) represents the maximally available flow at the wicket gates and
serves to flow rating (at this point we do not yet discuss the state variables ratings). It is worth
mentioning however that this model reproduces the usual models of the hydraulic plants in-
corporating the dynamic (velocity) heads (Qi/Fi)

2 and the distributed Darcy–Weisbach losses
(λi/(2Dig))(Qi/Fi))(|Qi|/Fi). The boundary condition for the water flow Q2(L2, t) is bor-
rowed from [3] and incorporates the turbine rotating speed effect on the flow: it is stated
that 0 < k < 0.3 but in general there is taken k = 0; k is thus a numeric coefficient having a
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corrective character from the engineering point of view. As it will appear in the following,
k is irrelevant in water hammer analysis. As it can be seen in the Appendix containing the
notation list, Fθ is the cross section area of the hydraulic turbine wicket gates. In the equations
of the model (1.1) it acts as an input (forcing) signal, being defined by the speed controller
of the turbine; its amplitude is limited physically: 0 ≤ Fθ ≤ Fθ max. During water hammer the
hydraulic turbine is decoupled from the hydraulic system upstream and the forcing signal is
blocked at some constant value, being thus irrelevant for the water hammer dynamics.

In hydraulic engineering two are the types of transients which are discussed: the normal
and the abnormal ones. The normal exploitation regimes of the hydraulic power plants are
concerned firstly with the so called frequency/megawatt control of the Electric Grid. The fre-
quency/megawatt control is achieved by the control of the turbine rotating speed through
water flow admission – controlled by the cross section area Fθ(t) of the wicket gates. The
turbine controllers can be mechanical, hydraulic or electro-hydraulic (as technical implemen-
tation); the most recent control approach is based on predictive control [24]. The turbine
controller is not included in (1.1) since normal regimes are outside the aim of this paper.

The abnormal regimes are concerned with sudden large power changes including turbine
shut down. Especially in the last case, the turbine with the rotating speed controller are “cut”
from the upstream dynamics; the only stabilizing device for the upstream dynamics remains
the surge tank.

The present paper is concerned with the second case – the dynamics of the abnormal
regimes. Again, two will be the problems analyzed. The first one will be the inherent stability
of the surge tank as stabilizing device. The problem occurs from the engineering conviction
that a stabilizing device incorporated in a feedback structure must be stable itself. Moreover,
the surge tank is not a miniaturized electronic device but a construction which cannot be
rebuilt in case of a design error. The second problem, already mentioned, is the stability of
the upstream dynamics of the turbine (tunnel, surge tank, penstock) under water hammer.

Several simplifying assumptions are introduced, considered as covering from the engi-
neering point of view (this aspect will be explained in what follows). The newly obtained
model will allow a rigorous mathematical study by associating certain functional differential
equations of neutral type.

2 Rated variables and parameters – the basic working model

A specific feature of the analysis of the real world mathematical models is the use of the
rated (scaled) variables: the real physical variables are rated to certain reference values, the
aim being at least twofold: to use relative i.e. comparable values and to reduce numerical
ill conditioning. In our case the flows will be rated to the maximally available water flow at
the wicket gates of the hydraulic turbine Q̄ = αqFθ max

√
H0; the piezometric heads are rated

to the maximal head H0 of the reservoir; the rotating speed of the turbine is rated to the
synchronous speed Ωc. These are the scalings of the state variables. The next scalings are
those of the conduit coordinates xi(i = 1,2) to the conduit lengths Li namely ξi = xi/Li.

We introduce further the following time constants of the conduits

– the starting time constant Twi = (LiQ̄)(Fi H0g)−1 (i = 1,2);

– the fill up time constant Ti = (LiFi)/Q̄ (i = 1,2);

– the wave propagation time Tpi = Li/ai (i = 1,2),
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and also

– the fill up time constant of the surge tank Ts = FsH0/Q̄;

– the starting time constant of the turbine

Ta =
JΩ2

c

ηθ
γ
2g Q̄H0

.

The time constants notations are also listed in the Appendix.
After some simple and straightforward manipulation the following equations are obtained

∂ξi

(

hi +
1
2

Twi

Ti
q2

i

)

+ Twi∂tqi +
λiLi

Di

1
2

Twi

Ti
qi|qi| = 0,

T2
pi

Twi
∂thi + ∂ξi qi = 0,

h1(0, t) ≡ 1; h1(1, t) = 1 + z(t) + Rs
dz
dt

= h2(0, t),

Ts
dz
dt

= q1(1, t)− q2(0, t); q2(1, t) = (1 − k) fθ(t)
√

h2(1, t) + kϕ(t),

Ta
dϕ

dt
= q2(1, t)h2(1, t)− νg.

(2.1)

By lower case letters qi, hi, z we denoted the rated state variables – flows, piezometric
heads and water level in the surge tank respectively. We introduced also the rated rotating
speed ϕ = Ω/Ωc, the rated load mechanical power

νg =
Ng

ηθ
γ
2g Q̄H0

(2.2)

and the rated cross section area of the wicket gates fθ = Fθ/Fθ max. The aforementioned rated
variables are also listed in the Appendix. Observe also in (2.1) that the local dynamic heads
V2

1 (L1, t)/(2g) and V2
2 (0, t)/(2g) have been neglected, as it is customary in hydropower engi-

neering. Another remark concerns the water level in the surge tank: again, as it is customary
in hydraulic engineering, the rated level is “counted” from the maximal head H0 of the lake
i.e. z := (Z − H0)/H0 and this explains the presence of 1 in the boundary conditions at ξ1 = 1
and ξ2 = 0 where the surge tank is located – equations (2.1).

The next model transformation is connected with the rating of the time to the largest time
constant T1 (this assertion – T1 being the largest – holds for most hydroelectric power plants).
We shall have τ = t/T1; only the equations containing time derivatives will be modified since
the corresponding time constant will be now rated to T1 – from the chain rule differentiation.

Before writing down the modified model, an explanation for this time rating appears as
necessary. Model (1.1) is considered in hydraulics as fundamental in the sense that various
particular models for various analysis are deduced from it according to corresponding as-
sumptions (as it will appear throughout this paper also). Among other features of the model
– which correspond to a physical reality – is the property of several time scales. This property
follows by comparison of the time constants introduced previously: if we refer again to the
aforementioned hydroelectric power plants of Romania (for which numerical data are avail-
able) we can see e.g. that T1 = 1005 sec., Ts = 502.25 sec., Tw1 = 14.71 sec., Tp1 = 3.81 sec.,
T2 = 44.33 sec., Tw2 = 0.38 sec., Ta ≈ 8 sec. etc. Several time scales are usually tackled within
the framework of the singular perturbations. Therefore it is useful for a basic model to have the
“small parameters” as ratios of time constants ensuring their dimensionless.
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Denoting by θwi = Twi/T1, θi = Ti/T1 (θ1 = 1) etc. the rated to T1 time constants, the
following work model is obtained

∂ξi

(

hi +
1
2

θwi

θi
q2

i

)

+ θwi∂τqi +
λiLi

Di

1
2

θwi

θi
qi|qi| = 0,

θ2
pi

θwi
∂τhi + ∂ξi qi = 0,

h1(0,τ) ≡ 1; h1(1,τ) = 1 + z(τ) + λs
dz
dτ

= h2(0,τ),

θs
dz
dτ

= q1(1,τ)− q2(0,τ); q2(1,τ) = (1 − k) fθ(τ)
√

h2(1,τ) + kϕ(τ),

θa
dϕ

dτ
= q2(1,τ)h2(1,τ)− νg

(2.3)

with λs := Rs/T1; the term λsdz/dτ in the boundary conditions at the surge tank accounts for
a surge tank with throttling [15, 27, 39].

The rated time constants are also listed in the Appendix. The fact that θ1 = 1 appears in
the equations is due to the similarity of the Saint Venant partial differential equations for the
two conduits, suggesting the more compact writing of the equations.

Model (2.3) is, generally speaking, completed with certain equations of the speed controller
for the hydraulic turbine. We already mentioned at Section 1 that this controller is decoupled
(even blocked) during the abnormal regime of the water hammer hence that its dynamics will
be irrelevant throughout this paper. Its equations are nevertheless given in order to make
clearer the passage from normal to abnormal exploitation.

The speed controller has various engineering implementations (mechanical, mechanic-
hydraulic, electro-hydraulic). For the aforementioned purpose we can write down a general
form

ẋc = Acxc + bc(ϕ0 − ϕ),

fθ = f T
c xc + γc(ϕ0 − ϕ),

(2.4)

where xc ∈ Rn is the state vector of the controller dynamics and ϕ0 = 1 = Ω/Ωc – the rated
synchronous speed of the hydraulic turbine, imposed by the Power Grid. The controller’s
coefficients Ac, bc, fc, γc have appropriate dimensions.

Obviously the speed controller acts by modifying the cross section area fθ of the turbine
wicket gates. Its role is firstly to ensure a stable steady state for system (2.3)–(2.4). Let us
compute it, by letting the “time” derivatives from (2.3)–(2.4) go to zero. We obtain firstly for
the steady state flows q̄i(ξi) that they are constant and equal i.e. q̄1(ξ1)≡ q̄2(ξ2)≡ q̄. Let h̄i(ξi)

be the steady state values for the piezometric heads. The steady state boundary condition at
ξ2 = 1 that is

q̄ = (1 − k) f̄θ

√

h̄2(1) + kϕ̄

shows that h̄2(1) > 0. Therefore the steady state load condition q̄h̄2(1) = νg > 0 shows that
q̄ > 0 what is only natural since no normal exploitation would require an upstream flow.
Therefore we deduce the differential steady state equations for the piezometric heads

dh̄i

dξi
+

1
2

λiLi

Di

θwi

θi
q̄2 = 0.

From here it follows

h̄1(ξ1) = 1 − 1
2

λ1L1

D1

θw1

θ1
q̄2ξ1, 0 ≤ ξ1 ≤ 1,

h̄2(ξ2) = 1 − 1
2

λ1L1

D1

θw1

θ1
q̄2 − 1

2
λ2L2

D2

θw2

θ2
q̄2ξ2, 0 ≤ ξ2 ≤ 1
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and, therefore

h̄2(1) = 1 − 1
2

(

θw1

θ1

λ1L1

D1
+

θw2

θ2

λ2L2

D2

)

q̄2.

The load condition q̄h̄2(1) = νg will then send to the following equation of third degree which
allows determination of the flow as function of the mechanical load νg

1
2

(

θw1

θ1

λ1L1

D1
+

θw2

θ2

λ2L2

D2

)

q̄3 − q̄ + νg = 0. (2.5)

It is worth mentioning that the design is such that the coefficients of (2.5) allow existence of a
solution q̄ > 0. Observe that this solution results from the steady state equations of the water
supply of the turbine (upstream it), being imposed by the steady state mechanical load νg of
the turbine. Afterwards the piezometric heads, which are linearly decreasing, will follow, also
z̄ = h̄1(1) = h̄2(0). Now it becomes possible to obtain the steady state of the hydraulic turbine
and of its controller by solving the equations

Ac x̄c + bc(ϕ0 − ϕ̄) = 0; f̄θ = f T
c x̄c + γc(ϕ0 − ϕ̄),

(1 − k) f̄θ

√

νg/q̄ + kϕ̄ = q̄

allowing to find ϕ̄, f̄θ , x̄c, the reference ϕ0 being given.
However, the steady state of the normal exploitation, just computed, is not of interest in

this paper. We just mention that stability of this normal exploitation steady state is ensured
by both the surge tank – which regulates the upstream water flow q2(ξ2,τ) via the water
level oscillations z(τ) of the tank – and the speed controller – which regulates the water flow
admitted in the turbine to realize the frequency/megawatt (ϕ versus νg) control of the Power
Grid.

As already mentioned in Section 1, during the abnormal regimes generating water hammer
– the sudden turbine load discharge – the turbine with its speed controller are “cut” from the
upstream dynamics and fθ – the controlled cross-section area of the wicket gates – is assumed
“blocked” at a constant value.

3 Inherent stability of the surge tank

It has been just shown that the surge tank has regulatory role for the water flow upstream the
turbine. This regulatory role is more obvious during water hammer, when the turbine and its
speed controller are “cut” from the upstream. A standard engineering philosophy states that
a stabilizing device should display inherent stability itself. The stability analysis for the surge
tank is done under some unanimously accepted assumptions going back to the early period
of hydraulic power engineering [3, 20, 24, 27].

3.1 The inferred engineering model

According the the aforementioned literature (and not only), the stability model for the surge
tank relies on three equations: the dynamics equation, the continuity equation and the load
control equation.

The dynamics equation is the so called inelastic water column, upstream the surge tank, equation -
in fact the water column in the tunnel; the term inelastic defines the lumped flow parameters.
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It is adopted as such and it reads

L1

g
dV1

dt
+ (Z − H0) + P1|V1|V1 + Rs|Vs|Vs = 0 (3.1)

where P1|V1|V1 accounts for the hydraulic losses at the input of the surge tank and Rs|Vs|Vs

are the losses through the tank throttling: we have Vs = dZ/dt and in some cases this term
is linearized. The introduction of the modulus in the losses terms is done for the case of the
reverse (upstream) flow which might appear during transients.

The continuity equation is nothing more but the mass balance equation for the surge tank

Fs
dZ
dt

= F1V1 − QT (3.2)

where QT is the “load” water flow reaching the hydraulic turbine. This flow, which should
ensure delivery of the required mechanical power, is defined by the load control equation, which
is static – of the form

QT = fT(Ng, Z). (3.3)

The static load control function is an inference, deduced from several facts: firstly, the hydro-
electric plants had relatively small powers and, as a consequence, the penstocks were short
and the turbines located near the surge tanks. At its turn this fact allowed neglecting the
dynamics of the penstock and of the turbine, also of the hydraulic losses. Following the load
instantaneously induces also a more difficult dynamic condition for the surge tank and may
therefore be considered as covering (“worst case”) from the engineering point of view.

Starting from the hydraulic power definition, namely Ng = ηθ(γ/(2g))HTQT, HT being
the piezometric head at the wicket gates of the turbine, taking into account that head losses
between the surge tank and the hydraulic turbine are negligible and neglected, it follows that
HT = Z and

fT(Ng, Z) =
Ng

ηθ
γ
2g Z

. (3.4)

The model is thus given by (3.1), (3.2), (3.4) and, as already specified, represents an inference –
at the engineering level of rigor – from certain equations of the Hydraulic engineering. From
this moment, however, no additional physical or engineering assumptions can be introduced
and the analysis will deal with the differential equations

L1

g
dV1

dt
+ (Z − H0) + P1|V1|V1 + Rs

∣

∣

∣

∣

dZ
dt

∣

∣

∣

∣

dZ
dt

= 0,

Fs
dZ
dt

= F1V1 −
Ng

ηθ
γ
2g Z

.
(3.5)

In order to use a unitary framework, we rate the flows at Q̄ (as in Section 2), the piezomet-
ric heads to H0 and denote

q1 := F1V1/Q̄ , z := (Z − H0)/H0

Therefore equations (3.5) become

Tw1
dq1

dt
+ z +

P1Q̄2

F2
1 H0

|q1|q1 +
Rs

H2
0

∣

∣

∣

∣

dz
dt

∣

∣

∣

∣

dz
dt

= 0

Ts
dz
dt

= q1 −
νg

1 + z

(3.6)
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with Tw1 and Ts as defined in Section 2. While the fill up time constant T1 does not appear in
the present inference, it is however possible to introduce the rated time τ = t/T1 to transform
(3.6) as below

θw1
dq1

dτ
+ z + P′

1|q1|q1 + λs

∣

∣

∣

∣

dz
dτ

∣

∣

∣

∣

dz
dτ

= 0,

θs
dz
dτ

= q1 −
νg

1 + z
,

(3.7)

where the rated coefficients of the losses and of the throttling are as follows

P′
1 :=

P1Q̄2

F2
1 H0

, λs :=
Rs

H2
0 T2

1
=

RsQ̄2

F2
1 L2

1H0
. (3.8)

We proceed now to analyze stability of the surge tank based on (3.7), following [14, 16].
The steady state (equilibrium) imposed by following the load νg is given by

z̄ + P′
1|q̄1|q̄1 = 0 , q̄1 =

νg

1 + z̄

The physically significant steady states correspond to positive flows (flowing downstream),
what implies 1 + z̄ > 0 i.e. the water level in the surge tank, usually lower than the lake
water level (z̄ < 0 since νg < 1), cannot be under the basic reference level. Therefore z̄ is a real
solution of the third degree equation

z̄(1 + z̄)2 + P′
1ν2

g = 0. (3.9)

If P′
1ν2

g > 4/27, equation (3.9) has a single real root which is lower than −1 hence this case
is not acceptable from the engineering point of view. In practice the parameters are chosen
to have the reverse i.e. P′

1ν2
g < 4/27 – when (3.9) has three real roots: z̄1 ∈ (−1/3,0), z̄2 ∈

(−1,−1/3), z̄3 ∈ (−∞,−1). The third has no engineering significance, as already mentioned,
while z̄1 is the acceptable one. We shall discuss the stability of the equilibrium defined by it.
We introduce firstly the deviations

ζ := z − z̄1 , υ :=
dζ

dτ
(3.10)

which are subject to the following differential equations

dζ

dτ
= υ,

θs
dυ

dτ
=

d
dτ

(

θs
dζ

dτ

)

=
d

dτ

(

q1 −
νg

1 + z̄1 + ζ

)

=
νg

(1 + z̄1 + ζ)2 υ − 1
θw1

[z̄1 + ζ + P′
1|q1|q1 + λs|υ|υ]

=
νg

(1 + z̄1 + ζ)2 υ

− 1
θw1

[

z̄1 + ζ + P′
1

∣

∣

∣

∣

θsυ +
νg

1 + z̄1 + ζ

∣

∣

∣

∣

(

θsυ +
νg

1 + z̄1 + ζ

)

+ λs|υ|υ
]

.

(3.11)

To system (3.11) it is attached the following Lyapunov function

V(ζ,υ) =
1
2

θsυ
2 +

1
2θw1

[

1 − 2P′
1

ν2
g

(1 + z̄1)2(1 + z̄1 + ζ)

]

ζ2. (3.12)
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This function is positive definite in the following domain of the phase plane (ζ,υ)

1 − 2P′
1

ν2
g

(1 + z̄1)2(1 + z̄1 + ζ)
= 1 +

2z̄1

1 + z̄1 + ζ
=

1 + 3z̄1 + ζ

1 + z̄1 + ζ
> 0. (3.13)

The acceptable condition is the strip ζ >−(1 + 3z̄1) which contains (0,0) – the equilibrium of
(3.11) corresponding to the equilibrium of (3.9) (z̄1,νg(1 + z̄1)

−1).
The next condition is given by positiveness of the water flow q1 (flowing downstream –

what happens in most time even during water hammer transients). The condition

q1 > 0 ⇔ θsυ +
νg

1 + z̄1 + ζ
> 0 ⇔ υ(1 + z̄1 + ζ) > −νg

θs
(3.14)

defines a domain also containing the origin (0,0).
Consider firstly the simpler case of following a zero load – the completely discharged

turbine. Therefore νg = 0, z̄1 = 0. System (3.11) becomes

dζ

dτ
= υ ; θs

dυ

dτ
− 1

θw1
[ζ + (P′

1θ2
s + λs)|υ|υ] (3.15)

with the Lyapunov function

V(ζ,υ) =
1
2
(θsυ

2 +
1

θw1
ζ2) > 0. (3.16)

The derivative function will be

W(ζ,υ) = − 1
θw1

(P′
1θ2

s + λs)|υ|υ2 ≤ 0.

The asymptotic stability follows immediately by applying the Barbashin–Krasovskii–LaSalle
invariance principle. The same result is however straightforward from (3.7), where νg = 0
will show (0,0) to be the unique steady state. Further, system (3.7) can be written as a single
second order differential equation

θ2
s

θw1

d2z
dτ2 + (P′

1θ2
s + λs)

∣

∣

∣

∣

dz
dτ

∣

∣

∣

∣

dz
dτ

+ z = 0 (3.17)

which describes an oscillator with nonlinear damping. The Lyapunov function (3.16) is just
oscillator’s total energy.

Let now νg > 0 i.e. the load discharge is not full. The stability domain is delimited by
(3.13) and (3.14). The derivative function of (3.12) will be now, under conditions (3.13) and
(3.14)

W(ζ,υ) =

{

νg

(1 + z̄1 + ζ)2 υ − 1
θw1

[

z̄1 + ζ + P′
1

(

θsυ +
νg

1 + z̄1 + ζ

)2

+ λs|υ|υ
]}

υ

+
1

θw1

{[

1 − 2P′
1

ν2
g

(1 + z̄1)2(1 + z̄1 + ζ)

]

ζ + P′
1

ν2
g

(1 + z̄1)2(1 + z̄1 + ζ)2 ζ2

}

υ

=
νg

(1 + z̄1 + ζ)2 υ2 − 1
θw1

{

−
P′

1ν2
g

(1 + z̄1)2 + P′
1

(

θsυ +
νg

1 + z̄1 + ζ

)2

+

+ 2P′
1

ν2
g

(1 + z̄1)2(1 + z̄1 + ζ)
ζ − P′

1

ν2
g

(1 + z̄1)2(1 + z̄1 + ζ)2 ζ2 + λs|υ|υ
}

υ
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We compute

−
P′

1ν2
g

(1 + z̄1)2

[

1 − 2ζ

1 + z̄1 + ζ
+

ζ2

(1 + z̄1 + ζ)2

]

= −
P′

1ν2
g

(1 + z̄1 + ζ)2

to obtain further

W(ζ,υ) =
νg

(1 + z̄1 + ζ)2 υ2 − 1
θw1

[

P′
1

(

θsυ +
νg

1 + z̄1 + ζ

)2

−
P′

1ν2
g

(1 + z̄1 + ζ)2 + λs|υ|υ
]

υ

= −
[

θs

θw1
P′

1

(

θsυ +
2νg

1 + z̄1 + ζ

)

− νg

(1 + z̄1 + ζ)2 +
λs

θw1
|υ|
]

υ2.

(3.18)

We seek conditions for W(ζ,υ) ≤ 0 under (3.13) and (3.14). A necessary (not sufficient)
condition would be fulfilment of W(ζ,υ) ≤ 0 in a small neighborhood of the origin (0,0). This
condition reads

2
θs

θw1
P′

1
νg

1 + z̄1
− νg

(1 + z̄1)2 > 0 ⇔ 2
θs

θw1
P′

1(1 + z̄1) > 1 (3.19)

which imposes a lower limit for the time constant θs of the surge tank, in fact for the cross-
section area of the surge tank. Taking into account the definitions of θs, θw1, P′

1 and z̄1 we shall
have

2
θs

θw1
P′

1(1 + z̄1) = 2
Ts

Tw1
P′

1(1 + z̄1) = 2
FsH0

Q̄
F1H0g
L1Q̄

P1Q̄2

F2
1 H0

H0 + Z̄1

H0

= 2
Fs

F1

g
L1

P1(H0 + Z̄1) > 1

or
Fs >

1
2

L1

g
1

P1(H0 + Z̄1)
F1 = FTh (3.20)

where FTh is the so called Thoma cross-section area introduced by D. Thoma in his doctoral
thesis [38]. Since, as mentioned, (3.19) is necessary, not sufficient for W(ζ,υ) ≤ 0, we turn
again to (3.18) and re-write it as follows

W(ζ,υ) =
[

θ2
s

θw1
P′

1(α|υ|+ υ) + 2
θs

θw1
P′

1
νg

1 + z̄1 + ζ
− νg

(1 + z̄1 + ζ)2

]

υ2

where α = λs(P′
1θ2

s )
−1. Suppose α > 1, then W(ζ,υ) ≤ 0 provided

2
θs

θw1
P′

1(1 + z̄1 + ζ) > 1. (3.21)

It can be seen that (3.21) implies (3.19) which thus appears genuinely as necessary but not
sufficient. Even if α < 1, then (3.21) becomes a necessary condition for W(ζ,υ)≤ 0 with (3.19)
as necessary for the fulfilment of (3.21).

Consider now the expressions of the aforementioned parameters. We find

α =
RsH0

T2
1

F2
1 H0

P1Q̄2

T2
1

T2
s
=

Rs

P1

(

F1

Fs

)2

and, for (3.21)

2
Fs

F1

g
L1

P1(Z̄1 + Y) > 1 , Y := Z − Z̄1. (3.22)
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The last inequality is easily re-written as

Z̄1 + Y > Z̄1
FTh

Fs
(3.23)

and it implies (3.20) which again appears as a necessary condition.
Unfortunately condition α > 1 turns to be completely unrealistic since normally Rs < P1 and

F1 ≪ Fs. We have thus to consider the case α < 1. Following [16], we consider the following
function

Φ(ζ,υ) = υ − θw1

θ2
s P′

1

νg

1 + z̄1 + ζ

[

1
1 + z̄1 + ζ

− 2
θs

]

(3.24)

and if Φ(ζ,υ)> 0, it follows that W(ζ,υ)≤ 0. Together with the Barbashin–Krasovskii–LaSalle
invariance principle, this will give asymptotic stability.

Concerning the estimate of the attraction domain of the equilibrium (0,0), we have to
consider the interior of the domain defined by (3.13), (3.14) and Φ(ζ,υ)> 0, together with the
family of curves Ψc(ζ,υ) = {(ζ,υ) | V(ζ,υ) = c > 0} which are closed for c > 0 small enough.
An estimate of the attraction domain is the domain inside Ψc completely included in the
domain defined by (3.13), (3.14) and Φ(ζ,υ)> 0, c > 0 being maximal from this point of view.
Summarizing, the mathematical result is as follows.

Theorem 3.1. Consider the system (3.11), the associated Lyapunov function (3.12) and its derivative
function along (3.11) – its Lie derivative W(ζ,υ) – given by (3.18). The equilibrium (0,0) of (3.11) is
asymptotically stable with the attraction domain contained in the set of the phase plane (ζ,υ) defined by
(3.13), (3.14) and Φ(ζ,υ) > 0. A standard estimate of this domain is given by inequalities of the form
V(ζ,υ) < c with c > 0 maximally possible in order to have V(ζ,υ) = c closed curves and the domain
inside fully contained in the aforementioned set defined by (3.13), (3.14) and {(ζ,υ)|Φ(ζ,υ) > 0}.

Finally, let us remark that, since the attraction domain does not encompass the entire phase
plane, the analysis should be completed with additional studies dealing with limit cycles and
hidden attractors [2, 22, 32, 33]. This extended analysis is outside the aims of this paper.

3.2 Modeling the surge tank in the context of several time scales

In this subsection we shall consider modeling of the surge tank stability dynamics as result-
ing from the model (2.3)–(2.4). This model displays distributed parameters, being defined by
partial differential equations: it is valid for larger hydroelectric power plants unlike those for
which the model considered in the previous subsection was inferred. Nevertheless, in the con-
temporary water hammer analysis, a difference is made between fast water mass oscillations –
where partial differential equations are used in modeling – and slow water mass oscillations.
This last case is more suitable for surge tank stability analysis. The explanation is that model
(2.3)–(2.4) has several time scales, as follows e.g. from the size analysis of the occurring time
constants. Taking as examples the two hydroelectric plants of Romania, mentioned at the
beginning of Section 1, we can see that

a) for the “Bicaz” plant: θw1 = 14.71 × 10−3, θp1 = 3.81 × 10−3, θw2 = 0.38 × 10−3, θp2 =

0.14 × 10−3, θs = 0.502, θa = 5.1 × 10−3;
b) for the “Somes, -Măris, elu” plant: θw1 = 2.34 × 10−3, θp1 = 2.7 × 10−3, θw2 = 0.36 × 10−3,

θp2 = 0.27 × 10−3, θs = 0.108, θa = 1.3 × 10−3.
Consequently, the surge tank stability has to be studied at its time scale – given by the time

constant θs. We take therefore the approach of (formal) singular perturbations, following also
the standard engineering assumptions enumerated in the previous subsection.
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By taking θ2
p1/θw1 = δ2

1θw1 ≈ 0 (δ1 = θp1/θw1 = 0.26), it follows that ∂ξ1 q1 = 0 hence
q1(ξ1,τ) ≡ q1(τ); also ∂ξ1 q2

1 = 0. The equation for h1(ξ1,τ) becomes

∂ξ1 h1 + θw1
dq1

dτ
+

1
2

θw1

θ1

λ1L1

D1
|q1|q1 = 0

and can be integrated with respect to ξ1 from 0 to 1 to obtain

h1(1,τ)− h1(0,τ) + θw1
dq1

dτ
+

1
2

θw1

θ1

λ1L1

D1
|q1|q1 = 0,

h1(1,τ) = 1 + z(τ) + λs
dz
dτ

; h1(0,τ) ≡ 1.

Therefore

θw1
dq1

dτ
+

1
2

θw1

θ1

λ1L1

D1
|q1|q1 + z(τ) + λs

dz
dτ

= 0. (3.25)

A comparison with the first equation of (3.7) is useful. This first equation of (3.7) and (3.25)
are almost identical – the difference appears in the model of the surge tank throttling. In
the model (2.3)–(2.4) it was considered linear [15, 27], thus migrating in (3.25) while in other
studies is taken quadratic [19,27,41]. In fact the modeling of the local hydraulic losses is made
of engineering inferences: starting from the general laws of the Fluid Mechanics, a formula
is inferred and then verified experimentally. Many constructive elements in engineering are
modeled in this way, based on steady state behavior and measurements, then put together in
a comprehensive dynamical model thus extending the steady state properties to dynamics.
This explains the necessary validation of the mathematical model [28].

The second equation of the surge tank model is the continuity one i.e.

θs
dz
dτ

= q1(τ)− q2(0,τ) (3.26)

(we already took q1(τ) from the equation (3.25)). The remaining modeling problem is to
represent the load flow. The engineering requirement is that the load flow should follow a
static external mechanical load. Since in statics (but rated variables) we have the formula νg =

q2h2 with all terms – constant, it follows that q2 = νg/h2 = νg(1 + z)−1. This is an engineering
inference which has not been deduced from (2.3). The model

θw1
dq1

dτ
+

1
2

θw1

θ1

λ1L1

D1
|q1|q1 + z(τ) + λs

dz
dτ

= 0,

θs
dz
dτ

= q1 −
νg

1 + z

(3.27)

is very much alike to (3.7) but it is obtained (partly) from (2.3)–(2.4). We can try however to
point out possible assumptions leading to the second equation of (3.27) and/or (3.7).

Following a static load means firstly letting to zero all time constants multiplying the time
derivatives downstream the surge tank: θ2

p2/θw2 = δ2
2θw2 = 0, θw2 = 0, θa = 0. It follows that

q2(ξ2,τ) ≡ q2(τ) and
dh2

dξ2
+

1
2

θw2

θ2
|q2|q2 = 0.

Since the penstock is much shorter than the tunnel, the engineering assumption is that the
losses along the penstock are negligible; this inference is consistent with θw2 ≈ 0 (according to
the numerical data θw2/θ2 < θw2). Therefore h2(ξ2,τ) ≡ h2(τ). This implies

h2(τ) = 1 + z(τ) + λs
dz
dτ

; q2 = νg

(

1 + z(τ) + λs
dz
dτ

)−1

.
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The resulting model will be

θw1
dq1

dτ
+

1
2

θw1

θ1

λ1L1

D1
|q1|q1 + z(τ) + λs

dz
dτ

= 0,

θs
dz
dτ

= q1 − νg

(

1 + z(τ) + λs
dz
dτ

)−1 (3.28)

being different from (3.27) by the term λs(dz/dτ) in the second equation. Its significance is
that now the surge tank load flow must follow a dynamic load.

Some additional comments are necessary. Model (3.28) is not equivalent to (2.3)–(2.4), but it
is obtained from it by letting some small time constants to zero and neglecting the losses along
the penstock (the water conduit corresponding to i = 2). The connection of the two models
can be viewed at the level of their solutions by: a) neglecting the losses along the penstock
in (2.3) also; b) comparing the solutions of the two mathematical models for the “small” time
constants sufficiently small.

Other details are also to be specified. They are related to the hydraulic turbine and its
speed controller and we have to consider again the engineering assumptions and inferences.

Surge tank stability is related to water hammer – an abnormal transient occurring as a
result of a sudden, rather large load discharge. This load discharge initiates a safety maneuver
of decoupling the controller (2.4), stopping the turbine (ϕ = 0) and blocking the wicket gates
crossing area fθ at a constant value f̄θ . The boundary condition

q2 = (1 − k) fθ

√

h2(τ) + kϕ

combined with q2(τ)h2(τ) = νg and ϕ = 0 will give

νg = (1 − k) fθ(h2(τ))
3/2 ⇒ fθ =

νg

1 − k
(h2(τ))

3/2 =
νg

1 − k

(

1 + z(τ) + λs
dz
dτ

)−1

and
f̄θ = lim

τ→∞

νg

1 − k
(h2(τ))

3/2 = (1 + z̄1)
3/2 νg

1 − k
.

It follows that the blocking value f̄θ is reached after a transient process due to the surge tank
which, again, must be stable.

To end these considerations, let us mention that they contain several engineering infer-
ences resulting from practice, some of them being assumed here for the sake of completeness,
because civil hydraulic engineers, hydroelectric power engineers and automatic control en-
gineers have rather few interactions: each of them is following the prescriptions and the
experience of the corresponding domain of expertise.

3.3 Asymptotic stability and total stability

We shall consider here stability for the models (3.27) and (3.28). Both models have the same
steady state given by

1
2

θw1

θ1

λ1L1

D1
q2

1 + z̄ = 0 , q̄1 =
νg

1 + z̄
(3.29)

which reduces to the third degree equation

z̄(1 + z̄)2 + Aqν2
g = 0 ; Aq :=

1
2

θw1

θ1

λ1L1

D1
(3.30)
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like in the case discussed in Subsection 3.1 In fact (3.7) and (3.27) have the same structure. For
Aqν2

g < 4/27 equation (3.30) has three real roots, among which z̄1 ∈ (−1/3,0) is the acceptable
one in applications. It is interesting to give computed data for the aforementioned inequality.
Using the same data for the two already mentioned hydroelectric power plants of Romania,
we shall have Aq ≈ 0.073 for “Bicaz” and Aq ≈ 0.032 for “Somes, -Măris, elu”. Since 0 < νg < 1
and 4/27 ≈ 0.148, the fulfilment of Aqν2

g < 4/27 is obvious.
Model (3.27) having the same structure as (3.7), we can introduce again the deviations

(3.10) which are subject to the system in deviations – much alike to (3.11)

dζ

dτ
= υ,

θs
dυ

dτ
=

νg

(1 + z̄1 + ζ)2 υ

− 1
θw1

[

z̄1 + ζ + Aq

∣

∣

∣

∣

θsυ +
νg

1 + z̄1 + ζ

∣

∣

∣

∣

(

θsυ +
νg

1 + z̄1 + ζ

)

+ λsυ

]

.

(3.31)

The only differences in comparison to (3.11) are to have Aq instead of P′
1 and λsυ instead

of λs|υ|υ; the last difference is introduced as a result of having a linear throttling model.
Associate the same (in fact) Lyapunov function

V(ζ,υ) =
1
2

θsυ
2 +

1
2θw1

[

1 − 2Aq
ν2

g

(1 + z̄1)2(1 + z̄1 + ζ)

]

ζ2 (3.32)

which is strictly positive definite in the strip ζ > −(1 + 3z̄1) containing the equilibrium (0,0).
Computing the derivative function

W(ζ,υ) = −
[

θs

θw1
Aq

(

θsυ +
2νg

1 + z̄1 + ζ

)

− νg

(1 + z̄1 + ζ)2 +
λs

θw1

]

υ2

valid in the phase plane domain q1 > 0 i.e. θsυ + νg(1 + z̄1 + ζ)−1
> 0, we remark that the

“helpful” term λs/θw1 > 0 is now constant everywhere in the phase plane. The necessary
condition of (3.19) type is now

2
θs

θw1
Aq

νg

1 + z̄1
− νg

(1 + z̄1)2 +
λs

θw1
> 0 (3.33)

and it is relaxed in comparison to (3.19), because of the term λs/θw1 > 0. Condition (3.24) also
can be relaxed since now we shall have

Φ(ζ,υ) = υ − θw1

θ2
s Aq

νg

1 + z̄1 + ζ

[

1
1 + z̄1 + ζ

− 2
θs

]

+
λs

θ2
s Aq

> 0 (3.34)

the term λs(θ2
s Aq)−1 being again helpful.

Consider now the model (3.28). While the model (3.27) relies on the load curve q2 = νg(1+
z)−1 which is inferred while accepted by the hydraulic engineering community, model (3.28) is
obtained partly from (2.3)–(2.4) and this imposes a dynamic load curve defined by q2 = νg(1+
z + λsdz/dτ)−1. This model is not homologated within the hydraulic engineering community,
possibly because for λs = 0 (surge tank without throttling) the two models coincide, also
because for most surge tanks the throttling effect is neglected (λs ≈ 0 in real data).

Constructing a Lyapunov function for (3.28) is a new and distinct problem which is outside
the mainstream of the present paper, dealing with a model which has to be adopted as such.
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As a preliminary analysis, we can however consider (3.28) written as

θw1
dq1

dτ
+

1
2

θw1

θ1

λ1L1

D1
|q1|q1 + z(τ) + λs

dz
dτ

= 0,

θs
dz
dτ

= q1 −
νg

1 + z
+

νgλs

(1 + z)(1 + z + λsdz/dτ)

dz
dτ

.
(3.35)

The last term in the second equation of (3.35) is a persistent perturbation. It is thus possible to
search for the total stability [30,40] i.e. stability with respect to persistent perturbations [13,23].
The basic result on stability under persistent perturbations (total stability) is from 1944 and is
due to Malkin – see [23], pages 301 and next, also [30] (Theorems II.4.4 and II.4.5), [40], pages
118 and next.

The assumptions of these basic results of Malkin are fulfilled by (3.35) and its associated
Lyapunov function (3.32) – re-written in the state variables of (3.27), (3.28), (3.35), provided
they are considered on bounded domains of the state space (e.g. of the form V(ζ,υ) ≤ c).
Obviously the attraction domain of the origin under persistent perturbations is rather small.
Improvements can be sought using more refined results on perturbed dynamical systems [4–
7, 34–37]

4 Water hammer stability analysis

For this analysis we shall start from the mathematical model (2.3) under the assumptions of
[15, 27]. The basic one is to neglect the Darcy–Weisbach losses along the two water conduits
(the tunnel and the penstock). From the engineering point of view, with an argument at the
physical level of rigor, this assumption is covering: water hammer oscillation quenching is
connected to energy dissipation and the analysis is done precisely without certain energy
dissipation terms. Next, neglecting the dynamic (velocity) heads variation ∂ξi q

2
i is standard in

hydraulic engineering – see all the cited “hydraulic” literature – and we shall not elaborate on
this assumptions. Therefore the starting model will be now the following

θwi∂τqi + ∂ξi hi = 0,
θ2

pi

θwi
∂τhi + ∂ξi qi = 0; i = 1,2,

h1(0,τ) ≡ 1, h1(1,τ) = 1 + z(τ) + λs
dz
dτ

= h2(0,τ),

q2(1,τ) = (1 − k) fθ(τ)
√

h2(1,τ) + kϕ(τ),

θs
dz
dτ

= q1(1,τ)− q2(0,τ), θa
dϕ

dτ
= q2(1,τ)h2(1,τ)− νg.

(4.1)

This form of the equations will turn to be helpful for the basic theory for (4.1).
The ignition of the water hammer takes place as follows: system (4.1) starts from a normal

steady state defined by

h̄i(ξi) ≡ const, q̄i(ξi) ≡ const

h̄1(0) = 1, h̄1(1) = 1 + z̄ = h̄2(0) ⇒ z̄ = 0, h̄1 ≡ 1, h̄2 ≡ 1

q̄1 = q̄2 = q̄, q̄ = (1 − k) f̄θ + kϕ̄; q̄ = νg

(4.2)
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The steady state value of ϕ̄ – the rotating speed of the hydraulic turbine – is imposed by the
frequency/megawatt control of the Grid (together with the power level νg) and is ensured by
the speed controller of the turbine.

From this steady state the system is moved to an abnormal operation by turbine shutdown
fθ ≡ 0. Usually the case k = 0 is considered; the case k 6= 0 [3] is somehow unusual and we
do not know if k does change during turbine shutdown. If k is kept at its previous value and
the turbine is not unloaded instantaneously then the tendency will be to have the steady state
(4.2) but with ϕ̄ = νg/k. The turbine is probably unloaded before this steady state is reached
(provided it is asymptotically stable); nevertheless the stability of the steady state defined by
f̄θ = 0, ϕ̄ = νg/k – starting from (4.2) is interesting in itself and its study was not undertaken
(prior to our knowledge).

We shall however deal with basic theory for (4.1) with f̄θ(τ) ≡ 0 in order to deal with
a linear Boundary value problem of nonstandard type. We call it nonstandard because its
boundary conditions (of Dirichlet type) are controlled by ordinary differential equations which
at their turn are controlled by the boundary conditions (an internal feedback).

4.1 Basic theory

We shall take the approach arising from the papers of A.D. Myshkis [1] and K.L. Cooke [8]
(this one summarized and completely proven in [28]). This approach consists in associating
to (4.1) a system of functional differential equations with deviated argument and establishing
a one to one correspondence between the solutions of the two mathematical objects. As a
consequence, any property proven for one mathematical object is thus projected back on the other.

We shall thus turn to (4.1) with fθ(τ) ≡ 0. Introduce first the Riemann invariants r±i (ξi,τ)
by

r±i (ξi,τ) =
1
2

[

θpi

θwi
hi(ξi,τ)± qi(ξi,τ)

]

(4.3)

with their inverses

hi(ξi,τ) =
θwi

θpi

[

r+i (ξi,τ) + r−i (ξi,τ)
]

, qi(ξi,τ) = r+i (ξi,τ)− r−i (ξi,τ). (4.4)

Consequently the boundary value problem (4.1) – with fθ(τ)≡ 0 – will be written with respect
to the Riemann invariants as follows

θpi∂τr±i ± ∂ξi r
±
i = 0, i = 1,2,

r+1 (0,τ) + r−1 (0,τ) =
θp1

θw1
,

θw1

θp1
[r+1 (1,τ) + r−1 (1,τ)] = 1 + z(τ) + λs

dz
dτ

=
θw2

θp2
[r+2 (0,τ) + r−2 (0,τ)],

θs
dz
dτ

= r+1 (1,τ)− r−1 (1,τ)− r+2 (0,τ) + r−2 (0,τ),

r+2 (1,τ)− r−2 (1,τ) = kϕ(τ),

θa
dϕ

dτ
= k

θw2

θp2
[r+2 (1,τ) + r−2 (1,τ)]ϕ − νg.

(4.5)

In the strip [0,1]× R we define the characteristic lines crossing (ξi,τ) ∈ [0,1]× R+, i = 1,2

τ±
i (σ;ξi,τ) = τ ± θpi(σ − ξi), i = 1,2. (4.6)
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We now make use of the following properties of the characteristic lines and of the Riemann
invariants along them: a) any increasing characteristic τ+

i can be extended “to the right” up
to ξi = 1 and any decreasing characteristic τ−

i can be extended “to the left” up to ξi = 0; b) the
Riemann invariant r+i (the forward wave) is constant along the increasing characteristic τ+

i and
the Riemann invariant r−i (the backward wave) is constant along the decreasing characteristic
τ−

i . Consequently, the following representation formulae for the Riemann invariants, based
on their boundary values, are obtained

r+i (ξi,τ) = r+i (1,τ + θpi(1 − ξi)), r−i (ξi,τ) = r−i (0,τ + θpiξ) , i = 1,2. (4.7)

Consider now those characteristics which can be extended on (0,1) – r+i “to the left” and r−i
“to the right” – to obtain, after denoting y+i (τ) := r+i (1,τ), y−i (τ) := r−i (0,τ)

r+i (0,τ) = r+i (1,τ + θpi) = y+i (τ + θpi),

r−i (1,τ) = r−i (0,τ + θpi) = y+i (τ + θpi).
(4.8)

The functions y±i (τ) are then substituted in the boundary conditions of (4.5) to obtain

y+1 (τ + θp1) + y−1 (τ) =
θp1

θw1
,

θw1

θp1
(y+1 (τ) + y−1 (τ + θp1)) = 1 + z(τ) + λs

dz
dτ

=
θw2

θp2
(y+2 (τ + θp2) + y−2 (τ)),

θs
dz
dτ

= y+1 (τ)− y−1 (τ + θp1)− y+2 (τ + θp2) + y−2 (τ),

y+2 (τ)− y−2 (τ + θp2) = kϕ(τ),

θa
dϕ

dτ
= k

θw2

θp2
[y+2 (τ) + y−2 (τ + θp2)]ϕ − νg.

(4.9)

We introduce now the new functions w±
i (τ) := y±i (τ + θpi) to give (4.9) a form which is

more “at hand” in the study of the systems with deviated argument

w+
1 (τ) + w−

1 (τ − θp1) =
θp1

θw1
,

θw1

θp1
(w−

1 (τ) + w+
1 (τ − θp1)) = 1 + z(τ) + λs

dz
dτ

=
θw2

θp2
(w+

2 (τ) + w−
2 (τ − θp2)),

θs
dz
dτ

= w+
1 (τ − θp1)− w−

1 (τ)− w+
2 (τ) + w−

2 (τ − θp2),

w−
2 (τ)− w+

2 (τ − θp2) = −kϕ(τ),

θa
dϕ

dτ
= k

θw2

θp2
[w−

2 (τ) + w+
2 (τ − θp2)]ϕ − νg.

(4.10)

The differential and difference system (4.10) should be expressed in a form allowing the con-
struction by steps of its solution. Our main concern is the two boundary conditions corre-
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sponding to those of the surge tank, namely

θw1

θp1
(w−

1 (τ) + w+
1 (τ − θp1)) = z(τ) +

λs

θs
(w+

1 (τ − θp1)− w−
1 (τ)

− w+
2 (τ) + w−

2 (τ − θp2)),
θw2

θp2
(w+

2 (τ) + w−
2 (τ − θp2)) = z(τ) +

λs

θs
(w+

1 (τ − θp1)− w−
1 (τ)

− w+
2 (τ) + w−

2 (τ − θp2)).

(4.11)

Denoting for the simplicity of the writing δi := θpi/θwi, λ′
s := λs/θs, we obtain, after a straight-

forward manipulation including the inversion of a 2 × 2 matrix, the following system of cou-
pled delay differential and difference equations

θs
dz
dτ

=
1

1 + (δ1 + δ2)λ′
s
[−(δ1 + δ2)z(τ) + 2w+

1 (τ − θp1) + 2w−
2 (τ − θp2)],

δ2θa
dϕ

dτ
= k(2w+

2 (τ − θp2)− kϕ)ϕ − νg,

w+
1 (τ) = δ1 − w−

1 (τ − θp1); w−
2 (τ) = w+

2 (τ − θp2)− kϕ(τ),

w−
1 (τ) =

1
1 + (δ1 + δ2)λ′

s
[δ1z(τ)− (1 + (δ2 − δ1)λ

′
s)w

+
1 (τ − θp1)

+ 2δ1λ′
sw

−
2 (τ − θp2)],

w+
2 (τ) =

1
1 + (δ1 + δ2)λ′

s
[δ2z(τ) + 2δ2λ′

sw
+
1 (τ − θp1)

− (1 + (δ1 − δ2)λ
′
s)w

−
2 (τ − θp2)]

(4.12)

Observe that the equation of ϕ is a Riccati equation and this might ignite finite time escape.
Now, the solution of (4.12) can be constructed by steps provided initial conditions are given
on (−θpi,0) for w±

i (τ), i = 1,2. If ϕ(0),z(0) are given, as well as w±
i (τ) on (−θpi,0), then

(ϕ(τ),z(τ)) can be obtained on (0,θpi). Next, using the initial data and (ϕ(τ),z(τ) on (0,θpi),
w±

i (τ) can be obtained on (0,θpi) from the difference equations. The process is then iterated
on the following interval. The resulting solution appears to be continuous and piecewise
differentiable – the state variables z and ϕ – while w±

i have the smoothness of their initial
conditions and, in general, have finite discontinuities (“jumps”) in τ = m1θp1 + m2θp2, where
mi are integers. It is also quite clear that the solution can be constructed also backwards.

All this construction is conditioned by the knowledge of the initial conditions w±
io(τ),

−θpi ≤ τ < 0, i = 1,2. These initial conditions can be obtained starting from the initial condi-
tions of (4.3): starting from the initial conditions of (4.1) namely (qo

i (ξi), ho
i (ξi)) given on (0,1),

we use (4.3) to obtain r±io (ξi) on (0,1).
Consider those points (ξi,τ) which are such that the characteristic τ+

i (σ;ξi,τ) cannot be
extended “to the left” up to ξi = 0 but only to the point where τ + θpi(σ − ξi) = 0 i.e. up to
σ = ξi − τ/θpi. It follows that

r+i (ξi − τ/θpi,0) = r+i (1,τ + θpi(1 − ξi)) = w+
i (τ − θpiξi).

Since 0 ≤ ξi − τ/θpi ≤ 1, it follows that w+
io(θ) = r+io (−θ/θpi) with −θpi ≤ θ ≤ 0. In the same

way, using those characteristic lines τ−
i (σ;ξi,τ) which cannot be extended to σ = 1 but only

to the point where τ − θpi(σ − ξi) = 0, i.e. to σ = ξi + τ/θpi, the following initial condition is
obtained

r−i (ξi + τ/θpi,0) = r−i (0,τ + θpiξi) = w−
i (τ + θpi(ξi − 1)),
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hence w−
io(θ) = r−io (1 + θ/θpi) with −θpi ≤ θ ≤ 0.

Consider now the converse: let {z(0), ϕ(0),w±
io(θ),−θpi ≤ θ ≤ 0} be a set of initial condi-

tions for (4.12). The procedure by steps allows construction of the corresponding solution for
(4.12). Define

r+i (ξi,τ) = w+
i (τ − θpiξi) , r−i (ξi,τ) = w−

i (τ + θpi(ξi − 1)),

hi(ξi,τ) =
1
δi
[w+

i (τ − θpiξi) + w−
i (τ + θpi(ξi − 1))],

qi(ξi,τ) = w+
i (τ − θpiξi)− w−

i (τ + θpi(ξi − 1)).

(4.13)

Then, if w±
io(θ) are sufficiently smooth, the set of functions {z(τ), ϕ(τ); hi(ξi,τ),qi(ξi,τ)} is

a (possibly discontinuous) classical solution of (4.1) with the initial conditions {z(0), ϕ(0);
hi(ξi,0),qi(ξi,0)}. Summarizing, the following result has been obtained and proven.

Theorem 4.1. Consider the boundary value problem defined by (4.1) with fθ(τ)≡ 0 and a set of initial
conditions {z(0), ϕ(0); ho

i (ξi),qo
i (ξi),0 ≤ ξi ≤ 1, i = 1,2} with {ho

i ,qo
i } sufficiently smooth to define a

classical solution for (4.1). Let r±i (ξi,τ) – defined by (4.3) – be the corresponding Riemann invariants
of this solution. Let y±i (τ) defined by (4.8) and w±

i (τ) := y±i (τ + θpi). Then {z(τ), ϕ(τ);w±
i (τ)}

is a solution of (4.12) with the initial conditions {z(0), ϕ(0);w±
io(τ),−θpi ≤ τ ≤ 0} where w±

io(τ) are
obtained as defined above.

Conversely, let {z(τ), ϕ(τ);w±
i (τ)} be a solution of (4.12) defined by the initial conditions {z(0),

ϕ(0);w±
io(τ),−θpi ≤ τ ≤ 0} with w±

io(τ) sufficiently smooth e.g. of class C1. Then the set of functions
{z(τ), ϕ(τ); hi(ξi,τ),qi(ξi,τ)} with {hi(ξi,τ),qi(ξi,τ)} defined by (4.13) is a (possibly discontin-
uous) solution of (4.1) with fθ(τ) ≡ 0 and the initial conditions following by taking τ = 0 in the
aforementioned set of functions.

4.2 Steady state for the turbine shutdown

A. Consider fθ(τ) ≡ 0 in (4.1) and let the time derivatives be zero: this will give the steady
state at shutdown after water hammer (if the turbine is not unloaded and this steady state
is stable). Its equations are given by (4.2) with f̄θ = 0. Consider now (4.1) and, after taking
fθ(τ) ≡ 0, we introduce the deviations of the state variables with respect to the steady state

χi(ξi,τ) = hi(ξi,τ)− 1, ̟i(ξi,τ) = qi(ξi,τ)− q̄ = qi(ξi,τ)− νg;

ζ(τ) ≡ z(τ), s(τ) = ϕ(τ)− ϕ̄ = ϕ(τ)− νg/k.
(4.14)

Re-write now (4.1) with respect to the deviations

θwi∂τ̟i + ∂ξi χi = 0,
θ2

pi

θwi
∂τχi + ∂ξi ̟i = 0; i = 1,2,

χ1(0,τ) = 0 , χ1(1,τ) = z(τ) + λs
dz
dτ

= χ2(0,τ),

θs
dz
dτ

= ̟1(1,τ)− ̟2(0,τ); ̟2(1,τ) = ks(τ),

θa
ds
dτ

= ̟2(1,τ)(1 + χ2(1,τ)) + νgχ2(1,τ).

(4.15)

Except the last equation (of the hydraulic turbine), equations (4.15) are linear. If the standard
dependence flow – piezometric head is considered (k = 0), system (4.15) becomes fully linear
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since the boundary condition at ξ2 = 1 becomes ̟2(1,τ) = 0 and the equation for s is decou-
pled being thus independent. Due to linearity, the steady state is 0 but the basic steady state
with respect to which the deviations (4.14) has no importance.

B. Suppose we continue with k 6= 0 but take into account that the turbine is unloaded
simultaneously with shutdown ( fθ(τ) ≡ 0, νg = 0). In this case the steady state of (4.1) is
defined by

z̄ = 0, h̄1 = 1 , h̄2 = 1; q̄1 = q̄2 = q̄; q̄ = kϕ̄, q̄ = νg = 0 (4.16)

(see also (4.2)). Also the deviations are given by (4.14) with νg = 0, ϕ̄ = 0. The system in devi-
ations will be (4.15) but with ̟2(1,τ) = 0 and without the equation for s which is decoupled
and, therefore, not involved in the stability analysis under water hammer.

In what follows we shall consider only the case k = 0 i.e. of the decoupled turbine under
water hammer. This option is motivated by the fact that the expression of q2(1,τ) in (2.3) has
to be connected to an adequate expression for the active torque of the turbine – see [3]. In
fact the expression in (2.3) i.e. q2(1,τ)h2(1,τ) is used with the boundary condition with k = 0.
Moreover, the aforementioned expression for the torque in the case k 6= 0 is determined in
steady state and its use during transients might be questionable.

4.3 The energy identity for stability analysis

We start from the energy identity as deduced following e.g. [12]

1
2
· d

dτ

∫ 1

0

(

θwi̟i(ξi,τ)2 +
θ2

pi

θwi
χi(ξi,τ)2

)

dξi + ̟i(ξi,τ)χi(ξi,τ)|10 ≡ 0. (4.17)

The energy identity suggests the following Lyapunov functional, written along the solu-
tions of (4.15) with k = 0

V(z(τ),̟i(·,τ),χi(·,τ)) =
1
2

{

θsz(τ)2 +
2

∑
1

θwi

∫ 1

0

[

̟i(ξi,τ)2 + δ2
i χi(ξi,τ)2]dξi

}

. (4.18)

We differentiate (4.18) with respect to (4.15), taking into account the boundary conditions.
After a straightforward manipulation we obtain

W(̟1(·,τ),̟2(·,τ)) = −λs

θs
(̟1(1,τ)− ̟2(0,τ))2 = −λ′

s

(

dz
dτ

)2

≤ 0. (4.19)

It is clear that (4.18) and (4.19) imply Lyapunov stability of the zero solution of (4.15) in the
sense of the metrics induced by the Lyapunov function (4.18):

V(z,̟i(·,τ),χi(·,τ)) ≤ V(z,̟o
i (·),χo

i (·)). (4.20)

It remains now to discuss asymptotic stability. Since W is only non-positive definite, ap-
plication of the invariance principle Barbashin–Krasovskii–LaSalle is required. This principle
is known to be valid for neutral functional differential equations [18]; therefore we make
use of Theorem 4.1 and consider the system of functional differential equations (4.12) – but
associated to the system in deviations (4.15) with k = 0

θs
dz
dτ

=
1

1 + (δ1 + δ2)λ′
s
[−(δ1 + δ2)z(τ)− 2η−

1 (τ − 2θp1) + 2η+
2 (τ − 2θp2)],

η−
1 (τ) =

1
1 + (δ1 + δ2)λ′

s
[δ1z(τ) + (1 + (δ2 − δ1)λ

′
s)η

−
1 (τ − 2θp1) + 2δ1λ′

sη
+
2 (τ − 2θp2)],

η+
2 (τ) =

1
1 + (δ1 + δ2)λ′

s
[δ2z(τ)− 2δ2λ′

sη
−
1 (τ − 2θp1)− (1 + (δ1 − δ2)λ

′
s)η

+
2 (τ − 2θp2)]

(4.21)
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(for stability analysis, where large τ are concerned, one can consider τ > 2max{θp1,θp2} and
the variables η+

1 , η−
2 can be substituted from their equations in the remaining ones).

Consider now the representation formulae (4.13) written for the system in deviations

χi(ξi,τ) =
1
δi
[η+

i (τ − θpiξi) + η−
i (τ + θpi(ξi − 1))],

̟i(ξi,τ) = η+
i (τ − θpiξi)− η−

i (τ + θpi(ξi − 1))]
(4.22)

to re-write V and W

χ1(ξ1,τ) =
1
δ1
[η−

1 (τ + θp1(ξ1 − 1))− η−
1 (τ − θp1(ξ1 + 1))],

̟1(ξ1,τ) = −η−
1 (τ + θp1(ξ1 − 1))− η−

1 (τ − θp1(ξ1 + 1)),

χ2(ξ2,τ) =
1
δ2
[η+

2 (τ − θp2ξ2) + η+
2 (τ + θp2(ξ2 − 2))],

̟2(ξ2,τ) = η+
2 (τ − θp2ξ2)− η+

2 (τ + θp2(ξ2 − 2)).

(4.23)

Therefore

V(z(τ),η−
1 (·,τ),η+

2 (·,τ))

=
1
2

{

θsz(τ)2 + θw1

∫ 0

−2θp1

η−
1 (τ + λ)2dλ + θw2

∫ 0

−2θp2

η+
2 (τ + λ)2dλ

}

,

W(η−
1 (·,τ),η+

2 (·,τ)),

= −λ′
s[−η−

1 (τ)− η−
1 (τ − 2θp1)− η+

2 (τ) + η+
2 (τ − 2θp2)]

2 = −λ′
s

(

dz
dτ

)2

≤ 0.

(4.24)

Since W ≤ 0 we shall try to apply the invariance Barbashin–Krasovskii–LaSalle principle
hence we seek first for the largest invariant set with respect to the solutions of (4.21), contained
in the set where W = 0. Since dz/dτ = 0 we deduce from (4.21)

z(τ) =
2

δ1 + δ2
[−η−

1 (τ − 2θp1) + η+
2 (τ − 2θp2)]

and substitute z(τ) in the remaining difference equations; a simple manipulation will show
that on the set where W = 0 the system is restricted to

η−
1 (τ) =

δ2 − δ1

δ1 + δ2
η−

1 (τ − 2θp1) +
2δ1

δ1 + δ2
η+

2 (τ − 2θp2),

η+
2 (τ) = − 2δ2

δ1 + δ2
η−

1 (τ − 2θp1)−
δ1 − δ2

δ1 + δ2
η+

2 (τ − 2θp2).
(4.25)

The invariant solutions with respect to τ are the constant solutions. The non-zero determinant
∣

∣

∣

∣

∣

∣

∣

1 − δ2−δ1
δ1+δ2

− 2δ1
δ1+δ2

2δ2
δ1+δ2

1 + δ1−δ2
δ1+δ2

∣

∣

∣

∣

∣

∣

∣

=
4δ1

(δ1 + δ2)
6= 0

shows that the only invariant set located in the set where W = 0 is the origin {0;0,0}. Appli-
cation of the Barbashin–Krasovskii–LaSalle invariance principle [18], Theorem 9.8.2 will give
asymptotic stability.



22 V. Răsvan

There exists however a restriction to the application of the Barbashin–Krasovskii–LaSalle
invariance theorem – the stability if not even the strong stability of the difference subsystem of (4.21).
We shall consider this problem as applied to the stability of (4.21) and, via Theorem 4.1, to
(4.15) – both with k = 0. We make first the following notations

ρ1 =
1 + (δ2 − δ1)λ

′
s

1 + (δ1 + δ2)λ′
s

, ρ2 =
1 + (δ1 − δ2)λ′

s

1 + (δ1 + δ2)λ′
s

(4.26)

to give (4.21) the following form

θs
dz
dτ

=
ρ1 + ρ2

2
[−(δ1 + δ2)z − 2η−

1 (τ − 2θp1) + 2η+
2 (τ − 2θp2)],

η−
1 (τ) =

ρ1 + ρ2

2
δ1z(τ) + ρ1η−

1 (τ − 2θp1) + (1 − ρ1)η
+
2 (τ − 2θp2),

η+
2 (τ) =

ρ1 + ρ2

2
δ2z(τ)− (1 − ρ2)η

−
1 (τ − 2θp1)− ρ2η+

2 (τ − 2θp2).

(4.27)

The restriction in applying Theorem 9.8.2 of [18], page 293 thus refers to (asymptotic) stability
of a difference system having the form

y(t) =
p

∑
1

Aky(t − rk), t ≥ 0. (4.28)

In order to make the development which follows more clear, we shall recall in brief
certain development of [18], Section 9.3, the part tackling difference equations and opera-
tors – pp. 274–276. With the notations of op. cit., we consider the homogeneous and non-
homogeneous difference equations

Dyt = 0 , t ≥ 0; Dyt = h(t), t ≥ 0, (4.29)

where h ∈ C([0,∞);Rn) and the difference operator D : C(−r,0;Rn) 7→ Rn is continuous and
atomic at 0 being thus defined as

Dφ = φ(0)−
∫ 0

−r
d[µ(θ)]φ(θ). (4.30)

In (4.30) the kernel µ : R 7→ Rn×n is measurable, normalized such that µ(θ) ≡ 0 for θ ≥ 0 and
µ(θ)≡ µ(−r) for θ ≤−r; the kernel is continuous from the left and of bounded variation. The
following assumption is supposed to hold for the kernel µ.

Assumption 4.2 (Assumption (J) of [18], page 271). The entries µij of µ have an atom before they
become constant i.e. there is a tij such that µij(t)≡ µij(tij + 0) for t ≥ tij and µij(tij − 0) 6= µij(tij + 0).

This assumption is particularly true for (4.28) where µ(θ) is reduced to a stepwise function.
Let ∆0(λ) defined below be the characteristic function of (4.30)

∆0(λ) = det
(

I −
∫ 0

−r
eλθd[µ(θ)]

)

(4.31)

which in the case of (4.28) reads

∆0(λ) = det

(

I −
p

∑
1

Ake−λrk

)

(4.32)

Let aD := sup{ℜe(λ) | ∆0(λ) = 0}. We state firstly
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Definition 4.3 (Definition 9.3.1 of [18], page 275). Suppose D is linear, continuous and atomic
at 0 – see (4.30). The operator D is said to be stable if the zero solution of the homogeneous
equation of (4.29) with the initial condition ψ ∈ C(−r,0;Rn) subject to Dψ = 0 is asymptotically
stable

The following result [18], p. 275, concerns the aforementioned stability property.

Theorem 4.4 (Theorem 9.3.5 of [18], p. 275). The following statements are equivalent

(i) D is (asymptotically) stable in the sense of Definition 4.3.

(ii) aD < 0.

(iii) There exists constants α > 0 and γ(α) > 0 such that for any h ∈ C([0,∞);Rn) any solution of
the non-homogeneous equation of (4.29) satisfies

|y(ψ, h)(t)| ≤ γ(α)[|ψ|e−αt + sup
0≤s≤t

|h(s)|].

(iv) If D is given by (4.31) with lims→0 Var[−s,0]µ = 0 and µ is also subject to Assumption 4.2 –
Assumption (J), then there exists a δ > 0 such that all roots of the characteristic equation

∆0(λ) := det
(

I −
∫ 0

−r
eλθd[µ(θ)]

)

= 0

satisfy ℜe(λ) ≤ −δ < 0.

Observe that (iii) shows that (asymptotic) stability of D in the sense of Definition 4.3 is
equivalent to exponential stability (the principle of K. P. Persidskii). Therefore stability of
(4.28) means in fact exponential stability. Moreover, (iv) shows – along the same line – that
aD < 0 ensures that the roots of the characteristic equation (4.32) have their real parts well
delimited from 0. In fact Theorem 4.1 states equivalence of (apparently) weak properties with other,
stronger ones.

Turning to (4.29), its (asymptotic, exponential) stability is equivalent to the location of the
roots of the characteristic equation ∆0(λ) = 0 with ∆0(λ) given by (4.32) in the open left half
plane C−. But for difference operators there exists another property called strong stability. This
property is introduced also in [18], Section 9.6, for difference operators occurring in (4.28) i.e.
defined by

D(r, A)φ = φ(0)−
p

∑
1

Akφ(−rk). (4.33)

Observe that the difference operator (4.33) is a special case of (4.30) with µ containing only
the stepwise component with a finite number of steps.

Let r = col(r1, . . . ,rp) be the vector of the delays rk > 0, ∀k.

Definition 4.5 (Definitions 9.6.1 and 9.6.2 of [18], p. 285). The operator D(r, A) is said to be
stable locally in the delays if there is an open neighborhood I(r) ⊂ R

p
+ of r such that D(v, A)

is stable in the sense of Definition 4.3 for each v ∈ I(r).
The operator D(r, A) is said to be stable globally in the delays (strongly stable) if it is stable

for each r ∈ R
p
+.

For strong stability the following result is true.
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Theorem 4.6 (Theorem 9.6.1 of [18], p. 286). The following statements are equivalent.

(i) For some r ∈ R
p
+, r = col(r1, . . . ,rp) with rk > 0 rationally independent, D(r, A) is stable in the

sense of Definition 4.3.

(ii) If γ(B) is the spectral radius of a matrix B, then γ0(A) < 1 where

γ0(A) := sup

{

γ

(

p

∑
1

Akeıθk

)

∣

∣

∣

∣

θk ∈ [0,2π), k = 1,2, . . . , p

}

(4.34)

(iii) D(r, A) is stable locally in the delays in the sense of Definition 4.5.

(iv) D(r, A) is stable globally in the delays (strongly stable) in the sense of Definition 4.5.

We are now in position to consider the stability properties of the difference subsystem of
(4.27) namely the linear difference subsystem

η−
1 (τ) = ρ1η−

1 (τ − 2θp1) + (1 − ρ1)η
+
2 (τ − 2θp2),

η+
2 (τ) = −(1 − ρ2)η

−
1 (τ − 2θp1)− ρ2η+

2 (τ − 2θp2).
(4.35)

Therefore we shall have

A1 =





ρ1 0

−(1 − ρ2) 0



 ; A2 =





0 (1 − ρ1)

0 −ρ2



. (4.36)

The characteristic equation of (4.35) results in
(

1 − ρ1e−2λθp1

)(

1 + ρ2e−2λθp2

)

+ (1 − ρ1)(1 − ρ2)e−2λ(θp1+θp2) = 0 (4.37)

the two delays being, generally speaking, rationally independent; this equation ought to have
its roots in a left half plane ℜe(λ) ≤ −α0 < 0. Denoting

e2λθp2 =: s , ν = θp1/θp2, (4.38)

the aforementioned condition reduces to the condition for the equation

(sν − ρ1)(s + ρ2) + (1 − ρ1)(1 − ρ2) = 0 (4.39)

to have its roots with |s| < 1 (inside the unit disk of C).
Let firstly s = reıϕ, r > 1. We deduce

|rνeıνϕ − ρ1|2 · |reıϕ + ρ2|2 =
(

r2ν + ρ2
1 − 2rνρ1 cosνϕ

)(

r2 + ρ2
2 + 2ρ2 cos ϕ

)

> (rν − ρ1)
2 (r − ρ2)

2.

Further

(rν − ρ1)(r − ρ2) > (1 − ρ1)(1 − ρ2)

(rν − ρ1)(r + ρ2) > (1 − ρ1)(1 − ρ2) + 2ρ2(1 − ρ1) > (1 − ρ1)(1 − ρ2).

It follows that (4.39) cannot have roots with |s| > 1.
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Let now ν = p/q ∈ Q – an irreducible ratio i.e. assume the delays to be rationally depen-
dent. Equation (4.39) becomes by taking again s := reıϕ

(rp/qeıpϕ/q − ρ1)(reıϕ + ρ2) + (1 − ρ1)(1 − ρ2) = 0. (4.40)

Denote (reıϕ)1/q =: z. Consequently equation (4.40) reads

(zp − ρ1)(zq + ρ2) + (1 − ρ1)(1 − ρ2) = 0. (4.41)

Observe that if z := ρeıθ then ϕ = qθ and since ϕ ∈ [0,2π) it follows that θ ∈ [0,2π/q). Also
if r ≤ 1 then ρ ≤ 1.

Let ρ = 1. Equation (4.41) becomes

(eıpθ − ρ1)(eıqθ + ρ2) + (1 − ρ1)(1 − ρ2) = 0; θ ∈ [0,2π/q). (4.42)

This equation is equivalent to

(1 − 2ρ1 cos pθ + ρ2
1)(1 + 2ρ2 cosqθ + ρ2

2) = (1 − ρ1)
2(1 − ρ2)

2,

sin pθ

cos pθ − ρ1
+

sinqθ

cosqθ + ρ2
= 0.

(4.43)

(The modulus and phase equations.) The first (modulus) equation is re-written as
[

1 +
2ρ1

(1 − ρ1)2 (1 − cos pθ)

]

·
[

1 +
2ρ2

(1 − ρ2)2 (1 + cosqθ)

]

= 1 (4.44)

and holds for the unique combination

cos pθ = 1 (pθ = 2mπ), cosqθ = −1 (qθ = (2n + 1)π); m,n ∈ N. (4.45)

From (4.45) it follows that θ = 2mπ/p = (2n + 1)π/q. The first conclusion is that p/q =

(2m)(2n + 1)−1. Therefore the modulus equation of (4.43) has a solution iff p/q is such that
p is even and q is odd. Now, since 0 ≤ θ ≤ 2π/q, it follows that m ≤ p/q and 2n + 1 ≤ 2
i.e. n = 0. Therefore θ = π/q is the only possible solution of (4.43). Observe that for this value –
corresponding to ϕ = π – the phase equation in (4.43) is automatically fulfilled. An elementary
computation shows that this root is simple. The other roots have their modulus less than 1
and their number is finite and among them there is one whose modulus is maximal hence
ρk ≤ ρ0 < 1 for all roots inside the unit disk.

Otherwise i.e. iff both p and q are odd (4.43) has no solution that is (4.41) has no roots with
modulus 1; therefore in this case all roots of (4.41) satisfy ρk ≤ ρ0 < 1. The aforementioned
properties are thus valid for equation (4.40) hence for (4.39) in the case of ν ∈ Q.

Consider now the case of irrational ν that is of rationally independent delays in (4.35). This
case can be tackled via Theorem 4.4 dealing with strong stability of (4.35). Since there are two
delays the computation of the spectral radius reduces to its computation for A1 + A2eıθ where
θ ∈ [0,2π). The matrix being of dimension 2× 2, it has two eigenvalues which both have to be
inside the unit disk for all θ ∈ [0,2π). The characteristic equation of A1 + A2eıθ with Ai given
by (4.36) results as

(z − ρ1)(z + ρ2eıθ) + (1 − ρ1)(1 − ρ2)eıθ = 0. (4.46)

Location of the roots of (4.46) – a second degree equation with complex coefficients – inside the
unit disk can be checked with the Schur–Cohn criterion. However, since (4.46) is very much
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alike to (4.41), we can take the same approach. Let z = reıϕ, r > 1, ϕ ∈ [0,2π). We shall have
after a straightforward computation

|z − ρ1|2 · |z + ρ2eıθ |2 = |reıϕ − ρ1|2 · |reıϕ + ρ2eıθ |2

= (r2 − 2rρ1 cos ϕ + ρ1)
2(r2 + 2rρ2 cos ϕcosθ + ρ2)

2

= [(r − ρ1)
2 + 2ρ1r(1 − cos ϕ)][(r − ρ2)

2 + 2ρ2r(1 − cos ϕ)cosθ]

> (r − ρ1)
2(r − ρ2)

2
> (1 − ρ1)

2(1 − ρ2)
2.

Therefore equation (4.46) has no roots of modulus larger than 1. Let now r = 1. We have to
check the equality

(eıϕ − ρ1)(eıϕ + ρ2eıθ) + (1 − ρ1)(1 − ρ2)eıθ = 0. (4.47)

We can proceed as in the case of (4.42) but here the problem is simpler. Let ϕ = 0, θ = π:
obviously (4.47) is fulfilled. Therefore z = 1 is one of the two roots of (4.46) for θ = π, the
other one being (ρ1 + ρ2 − 1) ∈ (−1,1). This result is sufficient to obtain γ0(A) = 1 and,
therefore, that statement (ii) of Theorem 4.4 is not fulfilled. Since (ii) ⇔ (i), we have also
non(i) ⇔ non(ii). It follows that that there will be no (asymptotic) stability of the difference
system (4.35) for irrational ν.

We are now in position to summarize the results concerning (asymptotic) stability of the
difference system (4.35). This system is stable in the sense of Lyapunov: the result was obtained
using the Lyapunov functional (4.24) whose derivative, also given in (4.24) is non-positive
definite; stability should be viewed in the sense of the Lyapunov functional itself.

For the sake of completeness, it should be mentioned that the difference system (4.35) is
obtained from (4.21) for z(τ) ≡ 0. In this case the derivative functional of (4.24) is subject to
W(η−

1 (·,τ),η+
1 (·,τ))≡ 0, system (4.35) resulting conservative – in the metrics of the Lyapunov

functional V of (4.24), also restricted to z(τ)≡ 0. Therefore system (4.35) is stable in the sense
of the metrics of V .

If this aspect is viewed from the point of view of the characteristic equation (4.39), an
elementary computation of the derivative of its right hand side will show that for any real ν

the possible roots of modulus 1 will be simple. We reiterated here that system (4.35) as well
as system (4.21) are Lyapunov stable in the sense of the metrics induced by the Lyapunov
functional (4.24). Based on Theorem 4.1 and on the representation formulae (4.13), Lyapunov
stability is ensured for system (4.15) – in the sense of the metrics defined by the Lyapunov
functional (4.18).

Return now to the problem of asymptotic stability. We showed in the previous develop-
ment, based on Theorems 4.4 and 4.6 that the asymptotic stability of system (4.35) is true only
in a single case of rationally dependent delays – when their ratio ν = p/q ∈ Q in the particular
case when both p and q are odd numbers. Only in this case the invariance principle Barbashin–
Krasovskii–LaSalle (Theorem 9.8.2 of [18], page 293) can be applied to system (4.27) to obtain
its asymptotic stability and, via Theorem 4.1 and the representation formulae (4.13), of system
(4.15).

Summarizing, Lyapunov stability is ensured for (4.21) hence for (4.15) but the asymptotic
stability is fragile: it holds for a countable set of rational ratios of propagation time constants
– those rational ν having both odd numerator and denominator. The fragility appears from
the fact that the set of irrationals is dense and a small uncertainty in the delays will modify ν

from rational to irrational.
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5 Some conclusions

The examined stability analysis concerns a model arising from hydraulic engineering, largely
accepted among engineers, as it might be seen from the cited references. As it appeared from
the stability analysis of the water hammer, the only stabilizing device of this phenomenon
is the surge tank. Since the engineering philosophy states that a stabilizing device should
be stable itself (display inherent stability), the paper contains a standard stability analysis of
the surge tank. Its result is the dimension of the equivalent cross-section area of the surge
tank which must be larger than the so called Thoma cross-section area. The analysis was made
using a suitable Lyapunov function giving an asymptotic stability result combined with an
estimate of the attraction domain. The aforementioned analysis is valid for the physically
accepted equilibrium. Other steady states may be foreseen, corresponding to rather abnormal
situations (from the engineering point of view). The analysis might point out instabilities,
limit cycles, hidden attractors.

On the other hand, the model for the water hammer itself is described by a nonstandard
(i.e. with derivative boundary conditions) boundary value problem for hyperbolic 1D equa-
tions. We applied here a well established method, coming from the paper of A. D. Myshkis [1],
to associate a system of functional differential equations (in most cases, of neutral type) to a
nonstandard initial boundary value problem for hyperbolic partial differential equations. A
one to one correspondence between the solutions of the two mathematical objects being es-
tablished e.g. [28], all results obtained for one mathematical object are thus projected back on
the other one.

Consider here stability obtained via “weak” (in the sense of N. G. Četaev) Lyapunov func-
tion(al)s i.e. having the derivative function(al) only non-positive (the best known are the
energy type function(al)s). In this case the main instrument for the asymptotic stability is the
Barbashin–Krasovskii–LaSalle invariance principle. For neutral functional differential equa-
tions this principle is established as a theorem for equations with stable difference operator
(Theorem 9.8.2 of [18]). However this stability is robust (non-fragile) with respect to delay un-
certainties only if the difference operator is strongly stable. As an example, for a single delay
case – p = 1 in (4.28) – the strong stability follows from the location of the eigenvalues of A1

inside the unit disk of C; moreover, in this case stability and strong stability are the same
thing.

In our opinion, this assumption, occurring for the first time in the paper [9], turned to be
capital for stability studies. This was also due to the fact that many applications leading to
neutral functional differential equations displayed conditions for the fulfilment of the (strong)
stability assumptions of the difference operator.

In the last years there were however exposed applications (mainly from Mechanics and
Mechanical Engineering) with matrix A1 – again the case p = 1 in (4.28) – having its eigenval-
ues on the unit circle i.e. in a critical case (a list of such applications is available in [28]; other
applications, dealing with synchronization of mechanical oscillators, can be found in [29]);
these cases were not yet seriously tackled.

The case described in this paper looks different: displaying two delays, it displays also
a fragile asymptotic stability – valid for rationally dependent delays, but only in one case of
two possible. The fragility of the asymptotic stability with respect to the delays is confirmed
by practical measurement (in-site), displaying some oscillatory modes. Such aspects arising
from practice should stimulate revival of some “old” studies which have been obscured by
the Cruz-Hale assumptions: the book [11] and its reference list are a good starting point to
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meet this challenge.
There exists however another challenge, arising from the fact that stability of the differ-

ence operator is a premise to apply the Barbashin–Krasovskii–LaSalle invariance principle.
As pointed out in [31], the assumption of stability for the difference operator is necessary to
obtain pre-compactness of the positive orbits whenever the solution is bounded (Chapter VI,
p. 341 and next). The cited reference gives an alternative in its Chapter V (Section 4). Inter-
esting enough, the case considered in Chapter V is a boundary value problem for hyperbolic
partial differential equations. With the aforementioned one to one correspondence between
the solutions of the boundary value problem for hyperbolic partial differential equations and
those of the associated system of neutral functional differential equations, the things become
clearer. Our point of view is that all this is a question of choosing the state space for neu-
tral functional differential equations (other than C) – see [17]. In any case there is plenty of
motivation to follow this line of research.
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Appendix

We shall give in this Appendix (reproduced after [10]) the principal notations of the paper –
in fact the notations which are usual in the field of hydroelectric engineering and can be met
in field’s references, in particular in those of the present paper.

The notations of the state variables are as follows

• Vi(x, t), Qi(x, t), Hi(x, t), i = 1,2 – water flow velocity, water flow and piezometric head
at (x, t) ∈ {(x, t) | 0 ≤ x ≤ Li, t ∈ R}, x being the coordinates along the conduits (i = 1
accounts for the tunnel and i = 2 for the penstock);

• H0 – piezometric head of the lake;

• Z(t) – water level in the surge tank;

• Ω(t) – turbine rotating speed; Ωc – the synchronous speed.

Also the notations for system’s parameters are as follows

• Fi, Di, Li (i = 1,2) – the cross section areas, the hydraulic diameters and the lengths of
the conduits, respectively;

• Fs, Fθ – equivalent cross section areas of the surge tank and regulated flow area of the
turbine wicket gates, respectively;

• J, ηθ – moment of inertia and efficiency of the hydraulic turbine, respectively;
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• γ, g – specific weight of the water and gravity acceleration, respectively;

• Ng = Ωc Mg – the mechanical power supplied to the hydrogenerator, where Mg is the
torque;

• λs – coefficient of losses of the throttling of the surge tank;

• λi, ai (i = 1,2) – coefficients of the Darcy–Weisbach losses and the propagation speeds of
the water hammer along the conduits respectively;

• αq – a flow coefficient;

• k – a corrective coefficient for the flow through the wicket gates of the turbine.

We list further the following time constants of the conduits

• Twi – the starting time constant: Twi = (LiQ̄)(Fi H0g)−1 (i = 1,2);

• Ti – the fill up time constant: Ti = (LiFi)/Q̄ (i = 1,2);

• Tpi – the wave propagation time: Tpi = Li/ai (i = 1,2),

and also

• Ts – the fill up time constant of the surge tank: Ts = FsH0/Q̄;

• Ta – the starting time constant of the turbine:

Ta =
JΩ2

c

ηθ
γ
2g Q̄H0

.

The following rated state variables and parameters are listed below

• qi – rated water flow along the conduit i defined by qi = Qi/Q̄, i = 1,2;

• hi – rated piezometric head along the conduit i defined by hi = Hi/H0, i = 1,2;

• z – rated piezometric head at the surge tank defined by z = Z/H0;

• ϕ – rated rotating speed of the hydraulic turbine, defined by ϕ = Ω/Ωc;

• νg – rated load mechanical power of the hydraulic turbine, defined by

νg =
Ng

ηθ
γ
2g Q̄H0

.

We list finally the rated (to T1) time constants as follows

• θwi – the rated starting time constant θwi = Twi/T1 (i = 1,2);

• θi – the rated fill up time constant θi = Ti/T1 (i = 1,2,θ1 = 1);

• θpi – the rated wave propagation time θpi = Tpi/T1 (i = 1,2);

• θs – the rated fill up time constant of the surge tank θs = Ts/T1;

• θa – the rated starting time constant of the turbine θa = Ta/T1
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Abstract. It is our purpose in this paper to make a detailed description for the structure
of the set of the nonconstant steady states for the two-dimensional epidemic S-I model
with diffusion incorporating demographic and epidemiological processes with zero-
flux boundary conditions. We first study the conditions of diffusion-driven instability
occurrence, which induces spatial inhomogeneous patterns. The results will extend
to the derivative of prey’s functional response with prey is positive. Moreover, we
establish the local and global structure of nonconstant positive steady state solutions.
A priori estimates for steady state solutions will play a key role in the proof. Our
results indicate that the diffusion has a great influence on the spread of the epidemic
and extend well the finding of spatiotemporal dynamics in the epidemic model.
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1 Introduction

Since the pioneer work of King [15], Kermack and McKendrick [14], mathematical models

have been contributing to improve our understanding of infectious disease dynamics and help

us develop preventive measures to control infection spread. Over a period of time, researchers

in theoretical and mathematical epidemiology have proposed many epidemic models, and the

temporal dynamics of infectious disease transmission described with differential equations

has been investigated in either qualitative or numerical analysis [1, 2, 6, 20].

In epidemic models, the incidence rate plays a key role in the spread of an infection [3, 6,

8, 17, 19, 21, 24]. Traditionally, two different types of incidence rate are been frequently used

in well-known epidemic models [4, 9]: The density-dependent transmission is the case in

which the contact rate between susceptible and infective individuals increases linearly with

population size; the frequency-dependent transmission is the case in which the number of

contacts is independent of population size [13].

In [5], the susceptible S is a capable of reproducing with logistic law and strong Allee effect

and the infected individuals I do not reproduce but they still contribute with S to population

BEmail: gaoxiaoy0105@163.com
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growth toward the carrying capacity. This assumption is based on [28–30]. If we assume I is

capable of reproducing without strong Allee effect, and assume that the disease is not to be

transmitted to offspring, newborns of the infected are in the susceptible class. The infected

I is removed only by death at rate µ, there is no recovery from the disease. The disease

transmission is assumed to be standard incidence term
βSI
S+I , and no vertical transmission, i.e.,

the number of contacts between infected and susceptible individuals is constant [11]. The

transmission coefficient is β > 0.

From the above assumption, we can establish the following model

dS

dt
= r(S + ρI)[1 − a(S + I)]−

βSI

S + I
,

dI

dt
=

βSI

S + I
− µI.

(1.1)

Here S and I denote the density of the uninfected (susceptible) and infected hosts, respectively.

All parameters are nonnegative. Parameter r denotes the maximum birth rate of the hosts;

and 0 ≤ ρ ≤ 1 describes the reducing reproduction ability of infected hosts: ρ = 0 means

that infected hosts lose their reproducing ability while ρ = 1 indicates that they experience no

reduction in reproduction fitness; a measures the per capita density-dependent reduction in

birth rate. If a 6= 0, then 1/a is also called the carrying capacity; if a = 0, then the model not

consider horizontally transmitted that not reduces fecundity and survival of its host, which in

turn is not regulated by density-dependent birth. However, considering the impact of various

aspects such as resources and environment on population growth and the model has more

practical significance, this paper mainly considers a 6= 0.

Suppose that the susceptible (S) and the infections individuals (I) move randomly in

the space-described as Brownian random motion [10], and then we propose a simple spatial

model corresponding to (1.1) as follows

∂S

∂t
− d1∆S = r(S + ρI)[1 − a(S + I)]−

βSI

S + I
, x ∈ Ω, t > 0,

∂I

∂t
− d2∆I =

βSI

S + I
− µI, x ∈ Ω, t > 0,

∂S

∂n
=

∂I

∂n
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

(1.2)

Here Ω is a bounded domain in R
N(N ≥ 1) with smooth boundary ∂Ω, n is the outward unit

normal vector of the boundary ∂Ω and the homogeneous Neumann boundary condition is be-

ing considered. The diffusion coefficients d1 and d2 are positive constants, and the initial data

S0(x), I0(x) are continuous functions. ∆ = ∂2

∂x2 is the Laplacian operator in two-dimensional

space, which describes the Brownian random motion. The diffusion model provides a useful

framework to evaluate some spatially related control measures.

The Turing instability refers to “diffusion driven instability”, i.e., the stability of the endemic

equilibrium changing from stable for the ordinary differential equations (ODE) dynamics (1.1),

to unstable, for the partial differential equations (PDE) dynamics (1.2). And the reason of the

occurrence of Turing pattern is the existence of nonconstant positive steady states of model

(1.2) as a result of diffusion. And there naturally comes two questions:

(1) How about the existence of nonconstant positive steady states of model (1.2)?
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(2) What is the structure of nonconstant positive steady states of model (1.2)?

The main goal of this paper is to solve the two questions above completely. So, we will

concentrate on the following steady state problem corresponding to (1.2) is given by

−d1∆S = r(S + ρI)[1 − a(S + I)]−
βSI

S + I
, x ∈ Ω,

−d2∆I =
βSI

S + I
− µI, x ∈ Ω,

∂S

∂n
=

∂I

∂n
= 0, x ∈ ∂Ω.

(1.3)

The rest of the paper is organized as follows. In section 2, we perform a priori estimates

of positive steady state solutions of (1.3). In section 3, the stability of constant steady state

solution and the conditions of Turing instability of model (1.2) are discussed. In section 4, the

existence, local and global structure of nonconstant positive solutions of (1.3) are investigated.

In the last section, we make some comments on our studies and propose some interesting

problems for future studies.

2 A priori estimates

In this section, we investigate the basic estimates of the reaction-diffusion model (1.3) use the

following lemma.

Lemma 2.1 ([23]). Suppose that g ∈ C(Ω × R).

(1) Assume that w ∈ C2(Ω)∩ C1(Ω) and satisfies ∆w(x) + g(x, w(x)) ≥ 0 x ∈ Ω, ∂νw ≤ 0, x ∈

∂Ω, if w(x0) = maxΩ w, then g(x0, w(x0)) ≥ 0;

(2) Assume that w ∈ C2(Ω) ∩ C1(Ω), and satisfies ∆w(x) + g(x, w(x)) ≤ 0, x ∈ Ω, ∂νw ≥ 0, x ∈

∂Ω, if w(x0) = minΩ w, then g(x0, w(x0)) ≤ 0.

Lemma 2.2 ([25]). Let Ω be a bounded Lipschitz domain in R
n, and let g ∈ C(Ω × R).

(1) If z ∈ W1,2(Ω) is a weak solution of the inequalities

∆z + g(x, z) ≥ 0 in Ω, ∂nz ≤ 0 on ∂Ω.

and if there is a constant K such that g(x, z) < 0 for z > K, then z ≤ K a.e. in Ω.

(2) If z ∈ W1,2(Ω) is a weak solution of the inequalities

∆z + g(x, z) ≤ 0 in Ω, ∂nz ≥ 0 on ∂Ω.

and if there is a constant K such that g(x, z) > 0 for z < K, then z ≥ K a.e. in Ω.

In order to obtain the existence of nonconstant positive steady states, a priori estimates

will play a key role. Our main result in this section is the following.

Theorem 2.3. If d1 < d2, or d1 > d2 and d1(β − µ) < d2β, then all the non-negative solutions

of model (1.3) that start in Ω are bounded with ultimate bound Γ = 1
a independent of the initial

conditions.
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Proof. Model (1.3) can reduces to

−d1∆S = r(S + ρI)[1 − a(S + I)]−
βSI

S + I
,

−d1∆I =
d1

d2

βSI

S + I
−

d1

d2
µI.

(2.1)

Summing up the two equations of (2.1), we have

− d1∆(S + I) = r(S + ρI)[1 − a(S + I)]−
βSI

S + I
+

d1

d2

βSI

S + I
−

d1

d2
µI. (2.2)

(i) If d1 < d2, then from (2.2) it follows that

−d1∆(S + I) ≤ r(S + ρI)[1 − a(S + I)]−

(
1 −

d1

d2

)
βSI

S + I

≤ r(S + ρI)[1 − a(S + I)].

(ii) If d1 > d2 and d1(β − µ) < d2β, then from (2.2) lead to

−d1∆(S + I) ≤ r(S + ρI)[1 − a(S + I)] +

((
d1

d2
− 1

)
β −

d1

d2
µ

)
I

≤ r(S + ρI)[1 − a(S + I)].

In addition, by Lemma 2.2, we have 0 < S + I ≤ 1
a , and easy to see that Γ = 1

a independent of

the initial conditions, then we can conclude the proof.

Theorem 2.4. If (S(x), I(x)) is any positive solution of (1.3) and β > µ holds, then

0 < S(x) <
1

a
, 0 < I(x) <

β − µ

µa
, x ∈ Ω.

Furthermore, if M := r−raα(1+ρ)−β
ra > 0 holds, then (S(x), I(x)) satisfies

M < S(x) <
1

a
,

β − µ

µ
M < I(x) <

β − µ

µa
, x ∈ Ω, (2.3)

where α = β−µ
µa .

Proof. Let (S, I) be a given positive solution of (1.3). First of all, by Theorem 2.3, it is clear that

S(x) < 1
a , for all x ∈ Ω. To obtain the upper bound for I, we let for some z0 ∈ Ω such that

I(z0) = max I(x). By virtue of Lemma 2.1, we have

βS(z0)I(z0)

S(z0) + I(z0)
≥ µI(z0).

Thus

I(z0) ≤
β − µ

µ
S(z0) <

β − µ

µa
.

In the following, we proof the lower bound of (S(x), I(x)), and α = β−µ
µa . Since

−d1∆S = r(S + ρI)[1 − a(S + I)]−
βSI

S + I

≥ r(S + ρI)[1 − a(S + I)]− βS

≥ S(r − raS − raα(1 + ρ)− β) + rρI(1 − aI).
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By Theorem 2.3, we have

−d1∆S ≥ S(r − raS − raα(1 + ρ)− β).

Hence, by Lemma 2.2 and strong maximum principle, we can obtain

S(x) >
r − raα(1 + ρ)− β

ra
:= M > 0.

Similarly, we have

I(x) >
β − µ

µ
M.

This completes our proof.

3 Constant steady states and Turing instability

In this section, we mainly discuss the stability of constant steady state solution. For conve-

nience, we denote

g1(S, I) = r(S + ρI)[1 − a(S + I)]−
βSI

S + I
, g2(S, I) =

βSI

S + I
− µI. (3.1)

Clearly, ODE model (1.1) or PDE model (1.2) has a unique constant steady state E∗ =

(S∗, I∗) with positive coordinates

S∗ =

(
1 −

µ(β − µ)

r(µ + ρ(β − µ))

)
µ

aβ
, I∗ = S∗ β − µ

µ

if and only if

(P) µ < β <
rµ

µ−rρ + µ and µ > rρ hold.

In addition, model (1.1) or model (1.2) has a trivial equilibrium U0 =
(

1
a , 0
)
. By the

standard linearization method, we can easily prove the following result.

Theorem 3.1. The trivial equilibrium U0 is locally asymptotically stable if µ > β and is unstable if

µ < β.

Next, we will focus on the stability of E∗ for model (1.1) and model (1.2), respectively. By

simple calculation, the Jacobian matrix of (1.1) evaluated at E∗ is given by

J(E∗) =

(
a11 a12

a21 a22

)
, (3.2)

where

a11 = r[1 − a(S∗ + I∗)]− ar(S∗ + ρI∗)−
βI∗2

(S∗ + I∗)2
,

a12 = rρ[1 − a(S∗ + I∗)]− ar(S∗ + ρI∗)−
βS∗2

(S∗ + I∗)2
,

a21 =
βI∗2

(S∗ + I∗)2
> 0, a22 = −

βS∗ I∗

(S∗ + I∗)2
< 0.

(3.3)
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The characteristic equation of J(E∗) is

η2 − Tη + Q = 0,

where

T = a11 + a22, Q = a11a22 − a21a12. (3.4)

By direct calculation, under the condition (P), we have T < 0, Q > 0. Thus, we can obtain

the following theorem.

Theorem 3.2. Assume condition (P) holds, then the constant steady state solution E∗ of model (1.1)

is locally asymptotically stable.

Next, we analyse the stability of the endemic equilibrium E∗ for the reaction-diffusion

model (1.2). Form now on, let

0 = λ0 < λ1 < λ2 < · · · < λi < · · ·

be the sequence of eigenvalues for the operator −∆ subject to the Neumann boundary condi-

tion on Ω [7]. By E(λi), we denote the space of eigenfunctions corresponding to λi in H1(Ω).

Set {φij : j = 1, 2, · · · , dim E(λi)} be the orthonormal basis of E(λi), X = [H1(Ω)]2, Xij =

{cφij : c ∈ R
2}. Then

X =
+∞⊕

i=1

Xi and Xi =
dim E(λi)⊕

j=1

Xij.

Assume that a11 > 0 and d1λ1 < a11, then we may define N0 = N0(r, a, ρ, β, µ, Ω) to be the

largest positive integer such that

d1λi < a11, for i ≤ N0.

Obviously, if d1λ1 < a11 is satisfied, then 1 ≤ N0
< ∞. In this situation, define

d̃2 := min
1≤i≤N0

d2,i, d2,i =
a11a22 − a12a21 − a22d1λi

λi(a11 − d1λi)
. (3.5)

And naturally we can give the stability of E∗ of model (1.2).

Theorem 3.3. Assume condition (P) holds.

(i) If a11 < 0, then E∗ is locally asymptotically stable.

(ii) If a11 > 0, then

(ii-1) if d1λ1 < a11 and 0 < d2 < d̃2, then E∗ is locally asymptotically stable;

(ii-2) if d1λ1 < a11 and d2 > d̃2, then E∗ is Turing unstable.

Proof. Consider the linearization operator evaluated at E∗ of model (1.2)

L =

(
d1∆ + a11 a12

a21 d2∆ + a22

)
.

It is easy to see that the eigenvalues of L are given by those of the following operator Li

Li =

(
−d1λi + a11 a12

a21 −d2λi + a22

)
,
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whose characteristic equation is

ξ2 − ξTi + Qi = 0, i = 0, 1, 2, . . . , (3.6)

where

Ti = −(d1 + d2)λi + a11 + a22,

Qi = λi(d1λi − a11)

{
d2 −

d1a22λi − a11a22 + a12a21

λi(d1λi − a11)

}
.

(3.7)

(i) If a11 < 0, then Ti < 0 and Qi > 0, which implies that Re{ξi} < 0 for all eigenvalues ξ.

Therefore, the constant solution E∗ is locally asymptotically stable.

(ii) Since T < 0, Q > 0, then Ti < 0 and d1a22λi − a11a22 + a12a21 < 0.

(ii-1) If a11 > 0, d1λ1 < a11 and 0 < d2 < d̃2, then d1λi < a11 and d2 < d2,i for all

i ∈ [1, N0]. Thus

Qi = λi(d1λi − a11)

{
d2 −

d1a22λi − a11a22 + a12a21

λi(d1λi − a11)

}
> 0.

One the other hand, if i > N0, then d1λi > a11. Thus, we have Qi > 0. The analysis yields the

local asymptotic stability of E∗.

(ii-2) If a11 > 0, d1λ1 < a11 and d2 > d̃2, then we may assume the minimum is attained

at j ∈ [1, N0]. Thus d2 > d2,j, which implies

Qj = λj(d1λj − a11)

{
d2 −

d1a22λj − a11a22 + a12a21

λj(d1λj − a11)

}
< 0.

Hence, E∗ is unstable in this case.

Remark 3.4. From Theorem 3.2 and 3.3, we can know that if a11 > 0, under mild extra

conditions, the stability of the constant equilibrium E∗ may change from stable, for the (ODE)

dynamics (1.1), to unstable, for the (PDE) dynamics (1.2), whereas those of other constant

equilibria are invariant.

Remark 3.5. When we regard Qi as a quadratic polynomial with respect to λi, i.e., Qi =

d1d2λ2
i − (d1a22 + d2a11)λi + a11a22 − a12a21, using the method of [26], we can also get that the

condition of Turing instability: Assume that (P) and a11 > 0 hold. If

d2

d1
>

−(2a12a21 − a11a22) + 2
√

a12a21(a12a21 − a11a22)

a2
11

,

then Turing instability occurs.

Example 3.6. As an example, we take the parameters in model (1.2) as

a = 1, ρ = 0.1, β = 1, µ = 0.35, r = 0.61, d1 = 0.01.

There is a unique positive equilibrium E∗ ≈ (0.03546, 0.06586), and a11 = 0.1 > 0, d̃2 = 0.1073.

For the ODE model (1.1), easy to verify that T = −0.1275 < 0, Q = 0.0166 > 0, then E∗ is

locally asymptotically stable from Theorem 3.2.

For the PDE model (1.2) on one-dimensional space domain (0, π), d1λ1 − a11 = −0.09 < 0.

If 0.1 = d2 < d̃2, then E∗ is locally asymptotically stable (see Fig. 3.1), and if 0.25 = d2 > d̃2, E∗

is Turing instability from Theorem 3.3. The model (1.2) exhibits Turing pattern (see Fig. 3.2).



8 X. Gao

Figure 3.1: Stable behavior with d2 = 0.1 for the model (1.2).

Figure 3.2: Turing instability behavior with d2 = 0.25 for the model (1.2).

For the sake of learning the effect of the diffusion on the Turing pattern of model (1.2)

more, as an example, in Fig. 3.3, we demonstrate that the spatial-temporal dynamics to (1.2)

are complicated and the pattern formation is extremely sensitive to the variation in diffusion

rate d2 around 0.1073. The transitions between regular and irregular patterning have been

well observed in model (1.2).

(a) d2 = 0.4 (b) d2 = 1 (c) d2 = 1.35

(d) d2 = 1.5 (e) d2 = 1.54 (f) d2 = 1.8

Figure 3.3: Transitions between regular and irregular patterning in model (1.2)

with different values of d2.
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4 Nonconstant positive steady states

In this section, we will focus on the existence and the structure of nonconstant positive solution

for the system (1.3).

4.1 Existence of nonconstant positive steady states

In this subsection, we apply priori estimates to yield the existence and nonexistence results

of positive nonconstant solutions to (1.3). First, we can easily obtain the nonexistence of

nonconstant positive solutions by using the energy method [27], which is relatively simple

and we omit the proof here. Also, for notational convenience, we write Θ = (r, a, ρ, β, µ) in

the sequel.

Theorem 4.1. Under the assumption (P), let D2 be a fixed positive constant satisfying D2 >
µ
λ1

. Then

there exists a positive constant D1 = D1(Θ, D2) such that model (1.3) has no nonconstant positive

solution provided that d1 ≥ D1 and d2 ≥ D2.

With the help of Theorem 4.1, by using the Leray–Schauder degree theory, we discuss the

existence of positive nonconstant solutions to (1.3) when the diffusion coefficients d1 and d2

vary while the parameters r, a, ρ, β, µ keep fixed.

Rewrite model (1.3) in the form:




−∆E = D−1F(E), x ∈ Ω,

∂E

∂n
= 0, x ∈ ∂Ω,

(4.1)

where D = diag(d1, d2), E = (S, I), F(E) = (g1(S, I), g2(S, I))T. Therefore, E solves (4.1) if and

only if it satisfies

f̂ (d1, d2, E) := E − (I − ∆)−1{D−1F(E) + E} = 0 on X, (4.2)

where I is the identity matrix, (I − ∆)−1 represents the inverse of I − ∆ with homogeneous

Neumann boundary condition.

A straightforward computation reveals

DE f̂ (d1, d2, E∗) = I − (I − ∆)−1(D−1 J + I).

For each Xi, ξ is an eigenvalue of DE f̂ (d1, d2, E∗) on Xi if and only if ξ(1+ λi) is an eigenvalue

of the matrix

Mi := λi I − D−1 J =

(
λi − d−1

1 a11 −d−1
1 a12

−d−1
2 a21 λi − d−1

2 a22

)
.

Clearly,

detMi = d−1
1 d−1

2 [d1d2λ2
i + (−d1a22 − d2a11)λi + a11a22 − a12a21],

and

trMi = 2λi − d−1
1 a11 − d−1

2 a22.

Define

ĝ(d1, d2, λ) := d1d2λ2 + (−d1a22 − d2a11)λ + a11a22 − a12a21.

Thus, ĝ(d1, d2, λi) = d1d2 det Mi. If

d1a22 + d2a11 > 2
√

d1d2(a11a22 − a12a21), (4.3)
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then ĝ(d1, d2, λ) = 0 has two real roots, that is

λ+(d1, d2) =
d1a22 + d2a11 +

√
(d1a22 + d2a11)2 − 4d1d2(a11a22 − a12a21)

2d1d2
,

λ−(d1, d2) =
d1a22 + d2a11 −

√
(d1a22 + d2a11)2 − 4d1d2(a11a22 − a12a21)

2d1d2
.

Let

A = A(d1, d2) = {λ : λ ≥ 0, λ−(d1, d2) < λ < λ+(d1, d2)},

Sp = {λ0, λ1, λ2, . . . },

and let m(λi) be multiplicity of λi. In order to calculate the index of f̂ (d1, d2, ·) at E∗, we need

the following lemma.

Lemma 4.2. Suppose ĝ(d1, d2, λi) 6= 0 for all λi ∈ Sp. Then

index( f̂ (d1, d2, ·), E∗) = (−1)σ,

where

σ =

{
∑λi∈A∩Sp

m(λi), A ∩ Sp 6= ∅,

0, A ∩ Sp = ∅.

In particular, σ = 0 if ĝ(d1, d2, λi) > 0 for all λi ≥ 0.

From Lemma 4.2, in order to calculate the index of f̂ (d1, d2, ·) at E∗, we need to determine

the range of λ for which ĝ(d1, d2, λ) < 0.

Theorem 4.3. Under the conditions of Theorem 2.4 and (P), a11 > 0 hold. If a11
d1

∈ (λk, λk+1) for

some k ≥ 1, and σk = ∑
k
i=1 m(λi) is odd, then there exists a positive constant D∗ such that for all

d2 ≥ D∗, model (1.3) has at least one nonconstant positive solution.

Proof. Since a11 > 0, it follows that if d2 is large enough, then (4.3) holds and λ+(d1, d2) >

λ−(d1, d2) > 0. Furthermore,

lim
d2→∞

λ+(d1, d2) =
a11

d1
, lim

d2→∞
λ−(d1, d2) = 0.

As a11
d1

∈ (λk, λk+1), there exists d0 ≫ 1 such that

λ+(d1, d2) ∈ (λk, λk+1), 0 < λ−(d1, d2) < λ1 ∀d2 ≥ d0. (4.4)

From Theorem 4.1, we know that there exists d > d0 such that (1.3) with d1 = d and d2 ≥ d

has no nonconstant positive solution. Let d > 0 be large enough such that a11
d1

< λ1. Then

there exists D∗
> d such that

0 < λ−(d1, d2) < λ+(d1, d2) < λ1 for all d2 ≥ D∗. (4.5)

Now we prove that, for any d2 ≥ D∗, (1.3) has at least one nonconstant positive solution.

By way of contradiction, assume that the assertion is not true for some D∗
2 ≥ D∗. By using
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the homotopy argument, we can derive a contradiction in the sequel. Fixing d2 = D∗
2 , for

τ ∈ [0, 1], we define

D(τ) =

(
τd1 + (1 − τ)d 0

0 τd2 + (1 − τ)D∗

)
,

and consider the following problem





−∆E = D−1(τ)F(E), x ∈ Ω,

∂E

∂n
= 0, x ∈ ∂Ω.

(4.6)

Thus, E is a positive nonconstant solution of (1.3) if and only if it solves (4.6) with τ = 1.

Evidently, E∗ is the unique positive constant solution of (4.6). For any τ ∈ [0, 1], E is a positive

nonconstant solution of (4.6) if and only if

h(E, τ) = E − (I − ∆)−1{D−1(τ)F(E) + E} = 0 on X. (4.7)

From the discussion above, we know that (4.7) has no positive nonconstant solution when

τ = 0, and we have assumed that there is no such solution for τ = 1 at d2 = D∗
2 . Clearly,

h(E, 1) = f̂ (d1, d2, E), h(E, 0) = f̂ (d, D∗, E) and

DE f̂ (d1, d2, E∗) = I − (I − ∆)−1(D−1 J + I),

DE f̂ (d, D∗, E∗) = I − (I − ∆)−1(D̃−1 J + I),

where f̂ (·, ·, ·) is as given in (4.2) and D̃ = diag(d, D∗). From (4.4) and (4.5), we have

A(d1, d2) ∩ Sp = {λ1, λ2, . . . , λk} and A(d, D∗) ∩ Sp = ∅. Since σk is odd, Lemma 4.2 yields

index(h(·, 1), E∗) = index( f̂ (d1, d2, ·), E∗) = (−1)σk = −1,

index(h(·, 0), E∗) = index( f̂ (d, D∗, ·), E∗) = (−1)0 = 1.

From Theorem 2.4, there exist positive constants C = C(d, d1, D∗, D∗
2 , Θ) and C = C(d, D∗, Θ)

such that the positive solutions of (4.7) satisfy C < S(x), I(x) < C on Ω for all τ ∈ [0, 1].

Define Σ = {(S, I)T ∈ C1(Ω, R
2) : C < S(x), I(x) < C, x ∈ Ω}. Then h(E, τ) 6= 0 for all

E ∈ ∂Σ and τ ∈ [0, 1]. By virtue of the homotopy invariance of the Leray–Schauder degree,

we have

deg(h(·, 0), Σ, 0) = deg(h(·, 1), Σ, 0). (4.8)

Notice that both equations h(E, 0) = 0 and h(E, 1) = 0 have a unique positive solution E∗ in

Σ, and we obtain

deg(h(·, 0), Σ, 0) = index(h(·, 0), E∗) = 1,

deg(h(·, 1), Σ, 0) = index(h(·, 1), E∗) = −1,

which contradicts (4.8). The proof is complete.

Remark 4.4. Theorem 4.3 shows that, if the parameters are properly chosen, the existence of

nonconstant steady states, i.e., Turing pattern can arise as a result of diffusion.



12 X. Gao

Next we investigate the structure of nonconstant positive solution for the system (1.3) in

the one-dimensional space domain Ω = (0, π). Thus, (1.3) become

d1∆S + r(S + ρI)[1 − a(S + I)]−
βSI

S + I
= 0, x ∈ (0, π),

d2∆I +
βSI

S + I
− µI = 0, x ∈ (0, π),

S
′
= I

′
= 0, x = 0, π.

(4.9)

For the sake of simplicity, we denote d1 = 1 and d2 = d.

It is well known that the operator u → −∆u with no-flux boundary conditions has eigen-

values

λ0 = 0, λj = j2, j = 1, 2, 3, . . .

and eigenfunctions

φ0(x) =

√
1

π
, φj(x) =

√
2

π
cos jx, j = 1, 2, 3, . . .

We translate (S∗, I∗) to the origin by the translation (Ŝ, Î) = (S − S∗, I − I∗). For convenience,

we still denote Ŝ, Î by S, I respectively, then we can obtain the following system

∆S + r(S + S∗ + ρ(I + I∗))[1 − a((S + S∗) + (I + I∗))]−
β(S + S∗)(I + I∗)

(S + S∗) + (I + I∗)
= 0, x ∈ (0, π),

d∆I +
β(S + S∗)(I + I∗)

(S + S∗) + (I + I∗)
− µ(I + I∗) = 0, x ∈ (0, π),

S
′
= I

′
= 0, x = 0, π.

(4.10)

4.2 Local structure of nonconstant positive steady states

In this subsection, we study the local structure of nonconstant positive solutions for the new

system (4.10). In brief, by regarding d as the bifurcation parameter, we verify the existence of

positive solutions bifurcating form (d, (0, 0)). The Crandall–Rabinowitz bifurcation theorem

from the simple eigenvalue in [18] will be applied to obtain bifurcations. For the case of

double eigenvalues, we shall apply some techniques in [16] and [22] to deal with it.

Let X = {(S, I) ∈ W2,p(0, π) × W2,p(0, π) : S
′
= I

′
= 0, x = 0, π} and Y = Lp(0, π) ×

Lp(0, π). We define the map F : R
+ × X → Y by

F(d, (S, I)) =

(
∆S + r(S + S∗ + ρ(I + I∗))[1 − a((S + S∗) + (I + I∗))]− β(S+S∗)(I+I∗)

(S+S∗)+(I+I∗)

d∆I + β(S+S∗)(I+I∗)
(S+S∗)+(I+I∗)

− µ(I + I∗)

)
.

Thus, the solutions of (4.10) are exactly zeros of this map F(d, (S, I)). Note that (0, 0) is the

unique constant solution of (4.10), then we have F(d, (0, 0)) = 0. The Fréchet derivative of

F(d, (S, I)) with respect to (S, I) at (0, 0) can be given by

L(d) = F(S,I)(d, (0, 0)) =

(
∆ + a11 a12

a21 d∆ + a22

)
.

The characteristic equation of L(d) is given by

ξ2 − ξTi + Qi = 0, i = 0, 1, 2, . . . , (4.11)
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where, Ti = −(1 + d)λi + a11 + a22 and Qi = dλ2
i + (−a22 − da11)λi + a11a22 − a12a21.

Throughout this section, we always assume that λ1 < a11. Then there exists the largest

positive integer N0 ≥ 1 such that λj < a11 for 1 ≤ j ≤ N0. Letting ξ = 0 in (4.11), we have

d = dj =
a11a22 − a12a21 − a22λj

λj(a11 − λj)
, for 1 ≤ j ≤ N0.

We shall prove that there exists a nonconstant positive solution of F(d, (S, I)) = 0 near

(dj, (0, 0)).

Theorem 4.5. Let d = dj, λj = j2, for 1 ≤ j ≤ N0. Assume that

r 6=

{
(β − µ)(2µ2 − ρ(β − µ)(β − 2µ))

ρ2(β − µ)2 + 2µρ(β − µ) + µ2
,

2µβ(β − µ)2 + µ2(β − 2µ)

ρ2(β − µ)2 + 2µρ(β − µ) + µ2

}
.

Suppose that di 6= dj whenever i 6= j, 1 ≤ i, j ≤ N0. Then (dj, (0, 0)) is a bifurcation point

of F(d, (S, I)) = 0. Moreover, there is a curve of nonconstant solutions (d(s), (S(s), I(s))) of

F(d, (S, I)) = 0 for |s| sufficiently small, satisfying d(0) = dj, (S(0) I(0)), S(s) = sφj + O(s2),

I(s) = sejφj + O(s2), where d(s), S(s), I(s) are continuously differentiable function with respect to s

and ej =
λj−a11

a12
.

Proof. By the Crandall–Rabinowitz bifurcation theorem about simple eigenvalues in [18], we

see that (d, (0, 0)) is a bifurcation point if the following conditions are satisfied:

(a) the partial derivatives Fd, F(S,I), and F(d,(S,I)) exist and are continuous.

(b) dim ker F(S,I)(d, (0, 0)) = codimR(F(S,I)(d, (0, 0))) = 1.

(c) Let ker F(S,I)(d, (0, 0)) = span{Φ}, then F(d,(S,I))(d, (0, 0))Φ /∈ R(F(S,I)(d, (0, 0))).

Note that

L(dj) = F(S,I)(d, (0, 0)) =

(
∆ + a11 a12

a21 dj∆ + a22

)
,

and

Fd(d, (0, 0)) =

(
0

∆

)
, F(d,(S,I))(d, (0, 0)) =

(
0 0

0 ∆

)
.

It is obvious that the linear operators Fd, F(S,I), F(d,(S,I)) are continuous. So assertion (a) holds.

Suppose Φj = (φ, ψ) ∈ ker L(dj), and write φ = Σajφj, ψ = Σbjφj. Then

∞

∑
j=0

Bj

(
aj

bj

)
φj = 0, where Bj =

(
a11 − λj a12

a21 a22 − djλj

)
. (4.12)

And

det Bj = 0 ⇔ d = dj =
a11a22 − a12a21 − a22λj

λj(a11 − λj)

implies that

ker L(dj) = span{Φj}, Φj =

(
1

ej

)
φj,

where ej =
λj−a11

a12
. The adjoint operator is defined by

L∗(dj) =

(
∆ + a11 a21

a12 dj∆ + a22

)
.
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In the same way as above we obtain

ker L∗(dj) = span{Φ∗
j }, Φ∗

j =

(
1

e∗j

)
φj,

where e∗j =
λj−a11

a21
.

Since R(L) = ker(L∗)⊥ (R: image; ⊥: complementary set), thus

codim(R(L(dj))) = dim(ker(L∗(dj))) = 1.

So assertion (b) holds.

Next, we verify assertion (c) holds. Since

F(d,(S,I))(dj, (0, 0))Φj =

(
0 0

0 ∆

)
Φj =

(
0

−λjejφj

)
.

and

〈F(d,(S,I))(dj, (0, 0))Φj, Φ∗
j 〉Y = 〈−λjejφj, e∗j φj〉 = −λjeje

∗
j 6= 0.

we see that F(d,(S,I))(dj, (0, 0))Φj /∈ R(L(dj)). Hence, the proof is completed.

Remark 4.6. Under the assumption of Theorem 4.5, each (dj, (S
∗, I∗)) is a bifurcation point

with respect to the trivial branch (d, (S∗, I∗)). The number of such bifurcation points is infinite.

Remark 4.7. Theorem 4.5 implies that each bifurcation curve Γj around (dj, (S
∗, I∗)) is of

pitchfork type.

4.3 Global structure of nonconstant positive steady states

In this subsection, we study the global structure of the bifurcation solutions form simple

eigenvalues. Let J denote the closure of the nonconstant solution set of (4.9), and Γj the

connected component of J ∪ (dj, (S
∗, I∗)) to which (dj, (S

∗, I∗)) belongs. Theorem 4.5 provides

no information on the bifurcating curve Γj far form the equilibrium (S∗, I∗). In order to

understand its global structure, a further study is necessary.

Theorem 4.8. Under the same assumption of Theorem 4.5, the projection of the bifurcation curve Γj

on the d-axis contains (dj, ∞).

Proof. Rewrite (4.9) as {
−∆S = a11S + a12 I + h1(S, I),

−d∆I = a21S + a22 I + h2(S, I),

where h1(S, I), h2(S, I) are higher-order terms of S and I. The constant steady state (S∗, I∗) of

(1.3) is shifted to (0, 0) of this new system. Let

G = (−∆ + a11)
−1, Gd = (−d∆ − a22)

−1, E = (S, I).

We next rewrite (4.9) in a form that the standard global bifurcation theory can be more

conveniently used. Then

K(d)E = (2a11G(S) + a12G(I), a21Gd(S))
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and

H(E) = (G(h1(S, I)), Gd(h2(S, I))).

Then (4.9) can be interpreted as the equation

E = K(d)E + H(E). (4.13)

For any fixed d > 0, it is noted that K(d) is a compact liner operator on X. H(E) = o(|E|)

for E near zero uniformly on closed d sub-intervals of (0, ∞), and is also a compact operator

on X.

To apply Rabinowitz’s global bifurcation theorem, we first verify that 1 is an eigenvalue of

K(dj) of algebraic multiplicity one. From the argument in the proof of Theorem 4.5 it is seen

that ker(K(dj)− Id) = ker L = span{Φj} (Id: identity operator), so 1 is indeed an eigenvalue

of K(dj), and dim ker(K(dj)− Id) = 1. According to [12], we know that the algebraic multi-

plicity of the eigenvalue 1 is the dimension of the generalized null space ∪∞
i=1 ker(K(dj)− Id)i.

For our purpose, we need to verify that

ker(K(dj)− Id) = ker(K(dj)− Id)2, or ker(K(dj)− Id) ∩ R(K(dj)− Id) = {0}.

Now, We compute ker(K∗(dj) − Id), where K∗(dj) is the adjoint of K(dj). Let (ϕ, χ) ∈

ker(K∗(dj)− Id). Then we have

2a11G(ϕ) + a21Gd(χ) = ϕ, a12G(ϕ) = χ.

By the definition of G and Gd, we obtain

−dja12∆ϕ = fϕ ϕ + fχχ, −∆χ = a12ϕ − a11χ,

where

fϕ = 2dja11a12 + a12a22, fχ = a12a21 − 2a11a22 − 2dja
2
11.

Let ϕ = Σaiφi, χ = Σbiφi. Then

∞

∑
i=0

B∗
i

(
ai

bi

)
φi = 0, where B∗

i =

(
−dja12λi + fϕ fχ

a12 −λi − a11

)
.

By a straightforward calculation one can check that det B∗
i = a12 det Bi, where Bi is given in

(4.12). Thus det B∗
i = 0 only for i = j, and

ker(K∗(dj)− Id) = span{Φ
′

j} where Φ
′

j =

(
λj + a11

a12
, 1

)⊤

φj.

In addition, we can check that
∫ π

0 Φ
′

jΦjdx =
2λj

a12
6= 0, which implies that

Φj /∈ (ker(K∗(dj)− Id))⊥ = R((K(dj)− Id)).

Hence, we show ker(K(dj) − Id) ∩ R(K(dj) − Id) = {0} and the eigenvalue 1 has algebraic

multiplicity one.

Suppose that 0 < d 6= dj is in a small neighborhood of dj, then, for this given d, the liner

operator Id−K(d) : X → X is a bijection and 0 is an isolated solution of (4.13). The index of

this isolated zero of Id−K(d)− H is given by

index(Id−K(d)− H, (d, 0)) = deg(Id−K(d), B, 0) = (−1)P,
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where B is a sufficiently small ball center at 0, and P is the sum of the algebraic multiplicities

of the eigenvalues of K(d) that are greater than one.

For our purpose, it is also necessary to show that this index changes when d crosses dj,

that is, for ε > 0 sufficiently small, we need verify

index(Id−K(dj − ε)− H, (dj − ε, 0)) 6= index(Id−K(dj + ε)− H, (dj + ε, 0)). (4.14)

Indeed, suppose that ζ is an eigenvalue of K(d) with an eigenfunction (φ̃, ψ̃), then

−ζ∆φ̃ = (2 − ζ)a11φ̃ + a12ψ̃,

−dζ∆ψ̃ = a21φ̃ + a22ζψ̃.

Using the Fourier cosine series φ̃ = Σãiφi and ψ̃ = Σb̃iφi leads to

∞

∑
i=0

B̃i

(
ãi

b̃i

)
φi = 0, where B̃i =

(
(2 − ζ)a11 − λiζ a12

a21 (a22 − dλi)ζ

)
.

Thus, the set of eigenvalues of K(d) consists of all ζ
′
s, which solve the characteristic equation

ζ2 −
2a11

a11 + λi
ζ −

a12a21

(a11 + λi)(dλi − a22)
= 0, (4.15)

where the integer i runs from zero to ∞. In particular, for d = dj, if ζ = 1 is a root of

(4.15), then a simple calculation leads to dj = di, and so j = i by the assumption. Therefore,

without counting the eigenvalues corresponding to i 6= j in (4.15), K(d) has the same number

of eigenvalues greater than 1 for all d close to dj, and they have the same multiplicities. On

the other hand, for i = j in (4.15), we let ζ(d), ζ̃(d) denote the two roots. By a straightforward

calculation, we find that

ζ(dj) = 1 and ζ̃(dj) =
a11 − λj

a11 + λj
< 1.

When d close to dj, we obtain ζ̃(d) < 1. As the constant term −a12a21/(dλi − a22) in (4.15) is

a decreasing function of d when a12 < 0, we know that

ζ(dj + ε) > 1, ζ(dj − ε) < 1.

Consequently, K(dj + ε) has exactly one more eigenvalues that are larger than 1 than K(dj − ε)

does. Furthermore, by a similar argument above, we can show this eigenvalue has algebraic

multiplicity one. So (4.14) holds. And the proof is complete.

Remark 4.9. Theorem 4.8 shows that there is a smooth curve Γj bifurcating from (dj, (S
∗, I∗)),

with Γj contained in a global branch of the positive solutions of (4.9).

5 Conclusions

In this paper, we study the dynamics of a reaction-diffusion model in the susceptible popu-

lation. In particular, we are interested in the positive steady states. Diffusion-induced insta-

bility of the positive equilibrium E∗ is investigated, which produces spatial inhomogeneous

patterns (see Theorem 3.3). Since a priori estimates for steady states are necessary in obtaining
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the existence of nonconstant positive steady states by applying the global bifurcation theory,

establishing a priori bounds for steady states is the key point.

The condition di 6= dj for any integer i 6= j in Theorem 4.5 guarantees dim KerL(dj) = 1,

that is 0 is a simple eigenvalue of L(dj). Hence, we can apply the global bifurcation theory

from a simple eigenvalue in this paper. In fact, j 7→ dj is not a one-to-one correspondence. On

the other hand, dj is not monotonous function for λj. If di = dj for some integer i 6= j, then

dim Ker L(dj) > 1. We hope to discuss this case in the near future.

We also remark that we do not know if it is possible that Γj obtained in Theorem 4.8 meets

some bifurcation points and then reaches infinity; note that our argument only rules out

the possibility that Γj meets some bifurcation points without finally reaching infinity. If this

case occurs, then some bifurcation branches “collide” each other and the solution undergo

a symmetry breaking. Understanding this phenomenon is very important in studying the

pattern formation in living organisms.
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Abstract. In this paper, we are concerned with the following magnetic Schrödinger–
Poisson system

{
−(∇+ iA(x))2u + (λV(x) + 1)u + φu = α f (|u|2)u + |u|4u, in R3,

−∆φ = u2, in R3,

where λ > 0 is a parameter, f is a subcritical nonlinearity, the potential V : R3 → R

is a continuous function verifying some conditions, the magnetic potential A ∈
L2

loc(R
3, R3). Assuming that the zero set of V(x) has several isolated connected com-

ponents Ω1, . . . , Ωk such that the interior of Ωj is non-empty and ∂Ωj is smooth, where
j ∈ {1, . . . , k}, then for λ > 0 large enough, we use the variational methods to show
that the above system has at least 2k − 1 multi-bump solutions.

Keywords: Schrödinger–Poisson system, multi-bump solutions, magnetic field, critical
growth, variational methods.
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1 Introduction

In the past few decades, there is a vast literature concerning the nonlinear Schrödinger–

Poisson system {
−i

∂ψ
∂t = −∆ψ + V(x)ψ + φ(x)ψ − |ψ|p−1ψ, in R3,

−∆φ = ψ2, in R3,
(1.1)

where V : R3 → R is a nonnegative continuous function with infx∈R3V(x) > 0, 1 < p < 5

and ψ : R3 → C and φ : R3 → R are two unknown functions. In fact, the first equation

in the above system describes quantum (non-relativistic) particles interacting with the elec-

tromagnetic field generated by the motion. And φ(x) satisfies the second equation (Poisson

BCorresponding author. Email: radulescu@inf.ucv.ro
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equation) in the system, because the potential φ(x) is determined by the charge of wave func-

tion itself. Therefore, system (1.1) can be regarded as the coupling of the Schrödinger equation

and Poisson equation.

If one looks for stationary solutions ψ(x, t) := e−itu(x) of system (1.1), the system can be

reduced by {
−∆u + V(x)u + φ(x)u = |u|p−1u, in R3,

−∆φ = u2, in R3.
(1.2)

In [4], Azzollini and Pomponio considered system (1.2). More precisely, if V is a positive

constant, they proved the existence of a ground state solution (u, φ) for 2 < p < 5. If V

is a nonconstant potential that is measurable and (possibly) not bounded from below, they

obtained a similar existence result for 3 < p < 5. Existence and nonexistence results were also

proved when the nonlinearity exhibits a critical growth.

In a celebrated paper [13], by using the variational methods, Ding and Tanaka established

multiplicity of multi-bump solutions for a semilinear elliptic equation with deepening poten-

tial well. Recently, in [2], Alves and Yang considered system (1.2) which having a general

nonlinear term f and assumed the potential V(x) has the form V(x) = λa(x) + 1, where λ is

a positive parameter and a : R3 → R3 is a nonnegative continuous function. In the interesting

paper, the authors proved the existence of positive multi-bump solutions for the system

{
−∆u + (λa(x) + 1)u + φ(x)u = f (u), in R3,

−∆φ = 4πu2, in R3.

For more results on the Schrödinger–Poisson system, we refer the reader to [3, 5, 7, 10, 11, 18,

19, 23–26, 28, 31–34, 36, 38, 40, 41] and the references therein.

In recent years, the magnetic nonlinear Schrödinger equation has also received consider-

able attention

ih̄
∂ψ

∂t
=

(
h̄

i
∇− A(x)

)2

ψ + U(x)ψ − f (|ψ|2)ψ, in R
N × R,

where i is the imaginary unit, h̄ is the Planck constant, and A : RN → RN is the magnetic

potential. When one looks for standing wave solutions ψ(x, t) := e−iEt/h̄u(x), with E ∈ R, of

the above equation, the problem can be reduced by

(
h̄

i
∇− A(x)

)2

u + V(x)u = f
(
|u|2

)
u, in R

N . (1.3)

From a physical point of view, the existence of such solutions and the study of their shape in

the semiclassical limit, namely, as h̄ → 0+ is of the greatest importance, since the transition

from Quantum Mechanics to Classical Mechanics can be formally performed by sending the

Planck constant h̄ to zero.

As far as we know, the first result involving the magnetic field was obtained by Esteban and

Lions [15]. In [15], for h̄ > 0 fixed and special classes of magnetic fields, the authors found the

existence of standing waves to problem (1.3) by solving an appropriate minimization problem

for the corresponding energy functional in the cases of N = 2 and 3. Afterwards, in [27],

Kurata assumed a technical condition relating V(x) and A(x). Under these assumptions, he

proved that the associated functional satisfies the Palais–Smale condition at any level and

further obtained a least energy solution of the problem for any ǫ > 0. Also, Alves et al.
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[1] studied the multiple solutions by combining a local assumption on V, the penalization

techniques of del Pino and Felmer [12] and the Ljusternic–Schnirelmann theory.

Recently, Tang [35] considered multi-bump solutions of the following nonlinear magnetic

Schrödinger equation with critical frequency

−(∇+ iA(x))2u + (λV(x) + E)u = f
(
|u|2

)
u, in R

2,

where λ > 0, E ∈ R is a constant, infx∈RN V(x) = E and f satisfies subcritical growth. Later, by

using the variational methods, Ji and Rădulescu [22] established the existence and multiplicity

of multi-bump solutions for the following nonlinear magnetic Schrödinger equation

−(∇+ iA(x))2u + (λV(x) + Z(x))u = f
(
|u|2

)
u, in R

2,

where λ > 0, f (t) is a continuous function with exponential critical growth, the magnetic

potential A : R2 → R2 is in L2
loc

(
R2, R2

)
and the potentials V, Z : R2 → R are continu-

ous functions verifying some conditions. Recently, Ma and Ji [30] studied the existence and

multiplicity of multi-bump solutions for the magnetic Schrödinger–Poisson system with sub-

critical growth. It is natural to consider multiplicity of multi-bump solutions for the magnetic

Schrödinger–Poisson system with critical growth. To the best of our knowledge, this prob-

lem has not ever been studied. For more results related to the nonlinear partial differential

equations with magnetic field, we refer to [6, 8, 9, 14, 17, 20, 21, 39, 42] and references therein.

Inspired by the previous works of [22,30,35], the aim of this paper is to study existence of

multi-bump solutions for the magnetic Schrödinger–Poisson system with critical growth

{
−(∇+ iA(x))2u + (λV(x) + 1)u + φu = α f (|u|2)u + |u|4u, in R3,

−∆φ = u2, in R3,
(1.4)

where λ > 0 is a parameter, the magnetic potential A is in L2
loc(R

3, R3), f has subcritical

growth and the potential V : R3 → R is continuous. Due to the appearance of magnetic field

A(x), problem (1.4) can not be changed into a pure real-valued problem, hence we should

deal with a complex-valued directly. Also, since the electrostatic potential φ(x) depends on

the wave function, φ(x)u is nonlocal which will make some estimates more difficult and

complicated. Moreover, since the problem we deal with has critical growth, we need more

refined estimates to overcome the lack of compactness.

Now we present the general assumptions on the potentials in this paper:

(A) A : R3 → R3 be in L2
loc(R

3, R3);

(V1) V (x) ∈ C
(
R3, R

)
and V (x) ≥ 0, for all x ∈ R3;

(V2) Ω = int V−1(0) is a nonempty bounded open subset with smooth boundary and Ω =

V−1(0) where int V−1(0) denotes the set of the interior points of V−1(0), Ω consists of k

components:

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk,

and Ωi ∩ Ωj = ∅ for all i 6= j.

Furthermore, the nonlinearity f is a continuous function satisfying the following conditions:

( f1) f (t) = 0, ∀ t ≤ 0, and limt→0+
f (t)

t = 0;
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( f2) There exists q, ι ∈ (4, 6) and ς > 0 such that

lim
t→+∞

f (t)

t
q−2

2

= 0, and f (t) ≥ ςt(ι−2)/2 for any t > 0;

( f3) There exists θ ∈ (4, 6) such that

0 <
θ

2
F(t) ≤ t f (t), for any t > 0

where F(t) =
∫ t

0 f (s)ds;

( f4) f (t) is an increasing function in t > 0.

The main result of this paper to be proved is the theorem below:

Theorem 1.1. Assume that (A), (V1)− (V2) and ( f1)− ( f4) hold. Then, for any non-empty subset Γ

of {1, 2, . . . , k} , there exist constants α∗
> 0 and λ∗ = λ∗(α∗) such that, for all α ≥ α∗ and λ ≥ λ∗,

problem (1.4) has a nontrivial solution uλ. Moreover, the family {uλ}λ≥λ∗ has the following properties:

for any sequence λn → ∞, we can extract a subsequence λni
such that uλni

converges in H1
A(R

3, C) to

a function u, which satisfies u = 0 for x 6∈ ΩΓ = ∪j∈ΓΩj, and the restriction u |Ωj
is a least energy

solution of



−(∇+ iA(x))2u + u +

(
1

4π

∫
Ωj

|u(y)|2

|x−y|
dy
)

u = f (|u|2)u + |u|4u, x ∈ Ωj,

u ∈ H0,1
A

(
Ωj

)
,

where j ∈ Γ.

Corollary 1.2. Under the assumptions of Theorem 1.1, there exist α∗ > 0 and λ∗ = λ∗(α∗) such that,

for all α ≥ α∗ and λ ≥ λ∗, problem (1.4) has at least 2k − 1 nontrivial solutions.

The paper is organized as follows. In Section 2, we shall introduce the variational setting

and give some necessary preliminaries. In Section 3, we study an modified problem, and

prove the Palais–Smale condition for the modified problem and study the behavior of (PS)∞

sequence. Moreover, we establish L∞ estimate of the solution of the modified problem. In

Section 4, by adapting the deformation flow method, we show that the existence of a special

critical point and prove the main theorem.

2 Preliminaries

In this section, we shall present the variational framework for problem (1.4) and some useful

preliminary lemmas.

For u : R3 → C, let us denote by

∇Au = (∇+ iA) u,

and

H1
A

(
R

3, C
)
=
{

u ∈ L2
(
R

3, C
)

: |∇Au| ∈ L2
(
R

3, R
)}

.

The space H1
A

(
R3, C

)
is an Hilbert space under the scalar product

〈u, v〉 = Re
∫

R3

(
∇Au∇Av + uv

)
dx, ∀u, v ∈ H1

A

(
R

3, C
)

,
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where Re and the bar denote the real part of a complex number and the complex conjugation,

respectively. Moreover, the norm induced by the product 〈·, ·〉 is ‖u‖A=
(∫

R3 |∇Au|2+|u|2 dx
)1

2 .

By (A), on H1
A

(
R3, C

)
, we have the important diamagnetic inequality (see [29], Theo-

rem 7.21) which is frequently used in this paper:

|∇Au (x)| ≥ |∇ |u (x)|| . (2.1)

Let

Eλ =

{
u ∈ H1

A

(
R

3, C
)

:
∫

R3
λV (x) |u|2 dx < ∞

}
,

with the norm

‖u‖2
λ =

∫

R3

(
|∇Au|2 + (λV (x) + 1) |u|2

)
dx.

For λ ≥ 0, a direct computation gives that (Eλ, ‖·‖λ) is an Hilbert space and Eλ ⊂ H1
A

(
R3, C

)
.

Also, for an open set K ⊂ R3,

H1
A (K, C) :=

{
u ∈ L2 (K, C) : |∇Au| ∈ L2 (K, R)

}
,

‖u‖H1
A(K,C) =

(∫

K

(
|∇Au|2 + |u|2

)
dx

) 1
2

,

Eλ (K, C) :=

{
u ∈ H1

A (K, C) :
∫

K
λV (x) |u|2 dx < ∞

}
,

‖u‖2
λ,K =

∫

K

(
|∇Au|2 + (λV (x) + 1) |u|2

)
dx.

Let H0,1
A (K, C) be the Hilbert space obtained as the closure of C∞

0 (K, C) under the norm

‖u‖H1
A(K,C) .

The diamagnetic inequality (2.1) implies that, if u ∈ H1
A

(
R3, C

)
, then |u| ∈ H1

(
R3, R

)
and

‖u‖ ≤ ‖u‖A. Therefore, the embedding H1
A

(
R3, C

)
→֒ Lr

(
R3, C

)
is continuous for 2 ≤ r ≤ 6

and the embedding H1
A

(
R3, C

)
→֒ Lr

loc

(
R3, C

)
is compact for 1 ≤ r < 6.

By the continuous embedding H1
(
R3, R

)
→֒ Lr

(
R3, R

)
for 2 ≤ r ≤ 6, we have

H1
(
R

3, R
)
→֒ L

12
5
(
R

3, R
)

.

For any u ∈ H1
A

(
R3, C

)
, we obtain that |u| ∈ H1

(
R3, R

)
, and the linear functional L|u| :

D1,2
(
R3, R

)
→ R given by

L|u|(v) =
∫

R3
|u|2vdx

is well defined and continuous in view of the Hölder inequality and (2.2). Indeed, we can see

that
∣∣L|u|(v)

∣∣ ≤
(∫

R3
|u|

12
5 dx

) 5
6
(∫

R3
|v|6dx

) 1
6

≤ C‖u‖2
A‖v‖D1,2 . (2.2)

Then, given u ∈ H1
A

(
R3, C

)
, |u| ∈ H1

(
R3, R

)
, by the Lax–Milgram Theorem, there exists an

unique φ = φ|u| ∈ D1,2
(
R3, R

)
such that

−∆φ = u2.

Moreover, φ|u| can be expressed as

φ|u| (x) =
1

4π

∫

R3

|u (y)|2

|x − y|
dy.
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Next, we provide the following properties about φ|u| in the following lemma whose proof is

similar to one in [11, 32, 41], so we omit it.

Lemma 2.1. For any u ∈ H1
A

(
R3, C

)
, we have

(i) there exists C > 0 such that

∫
R3

∣∣∇φ|u|

∣∣2 dx =
∫

R3 φ|u| |u|
2 dx ≤ C ‖u‖4

A , ∀u ∈ H1
A

(
R3, C

)
;

(ii) φ|u| ≥ 0, ∀u ∈ H1
A

(
R3, C

)
;

(iii) φ|tu| = t2φ|u|, ∀t ∈ R and u ∈ H1
A

(
R3, C

)
;

(iv) if un ⇀ u in H1
A

(
R3, C

)
, then φ|un| ⇀ φ|u| in D1,2

(
R3, R

)
and

lim
n→+∞

∫

R3
φ|un||un|

2dx ≥
∫

R3
φ|u||u|

2dx;

(v) if un → u in H1
A

(
R3, C

)
, then φ|un| → φ|u| in D1,2

(
R3, R

)
. Hence,

lim
n→+∞

∫

R3
φ|un||un|

2dx =
∫

R3
φ|u||u|

2dx.

Now, we define the energy functional Iλ associated with problem (1.4) given by

Iλ (u) =
1

2

∫

R3

(
|∇Au|2 + (λV(x) + 1) |u|2

)
dx +

1

4

∫

R3
φ|u| (x) |u|2dx

−
α

2

∫

R3
F
(
|u|2

)
dx −

1

6

∫

R3
|un|

6dx,

it is standard to prove that Iλ (u) ∈ C1 (Eλ, R), and for any ϕ ∈ Eλ, we have

〈
Iλ

′ (u) , ϕ
〉
=Re

∫

R3

(
∇Au∇A ϕ + (λV (x) + 1) uϕ

)
dx + Re

∫

R3
φ|u| (x) uϕdx

− Re
∫

R3
α f
(
|u|2

)
uϕdx − Re

∫

R3
|u|4 uϕdx.

Definition 2.2. A pair (u, φ) ∈ Eλ × D1,2
(
R3, R

)
is said to be a weak solution of problem (1.4),

if I′λ (u) ϕ = 0, ∀ϕ ∈ Eλ, where φ|u| = φ.

By (V3), we can derive that for any open set K ⊂ R3,

M0‖u‖2
2,K ≤

∫

K

(
|∇Au|2 + (λV(x) + 1)|u|2

)
dx,

for all u ∈ Eλ (K), and λ > 0, where ‖u‖2
2,K =

∫
K |u|2 dx. So, from this relation, we have the

following result:

Lemma 2.3. There exist δ0, ν0 > 0 with δ0 ≈ 1 and ν0 ≈ 0 such that for any open set K ⊂ R3,

δ0‖u‖2
λ,K ≤ ‖u‖2

λ,K − ν0‖u‖2
2,K, for all u ∈ Eλ(K, C), and λ > 0.
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3 A modified problem

Since R3 is unbounded and nonlinear term has the critical growth, we know that the Sobolev

embeddings are not compact, as so Iλ can not verify the Palais–Smale condition. In order to

overcome this difficulty, we adapt the argument of the penalization method introduced by del

Pino and Felmer [12] and Ding and Tanaka [13], and consider a modified problem satisfying

the Palais–Smale condition.

Let ν0 > 0 be a constant given in Lemma 2.3, κ >
θ

θ−2 and a > 0 verifying α f (a) + a2 = ν0
κ

and f̃ , F̃ : R → R given by

f̃ (t) =

{
α f (t) + t2, t ≤ a,
ν0
κ , t ≥ a,

thus

f̃ (t) ≤ α f (t) + t2, t ≥ 0. (3.1)

Also,

F̃ (t) =
∫ t

0
f̃ (s) ds.

Now, since the potential well Ω = int V−1 (0) can be decomposed into k connected compo-

nents Ω1, . . . , Ωk with dist(Ωi, Ωj) > 0, i 6= j, then for each j ∈ {1, 2, . . . , k} , we fix a smooth

bounded domain Ω′
j such that

(i) Ωj ⊂ Ω′
j;

(ii) Ω′
i ∩ Ω′

j = ∅ for all i 6= j.

Next, we fix a non-empty subset Γ ⊂ {1, . . . , k} and

ΩΓ =
⋃

j∈Γ

Ωj, Ω′
Γ =

⋃
j∈Γ

Ω′
j,

χΓ(x) :=

{
1 for x ∈ Ω′

Γ,

0 for x /∈ Ω′
Γ.

Using the above notations, we set the functions

g(x, t) = χΓ(x)(α f (t) + t2) + (1 − χΓ(x)) f̃ (t),

G(x, t) =
∫ t

0
g(x, s)ds = χΓ(x)αF(t) + (1 − χΓ(x)) F̃(t).

(3.2)

In view of ( f1)–( f4), we have that g is a Carathéodory function satisfying the following prop-

erties:

(g
1
) g(x, t) = 0 for each t ≤ 0;

(g2) limt→0+
g(x,t)

t = 0 uniformly in x ∈ R3;

(g3) g(x, t) ≤ α f (t) + t2 for all t ≥ 0 and any x ∈ R3;

(g
4
) 0 < θG(x, t) ≤ 2g(x, t)t for each x ∈ Ω′

Γ and t > 0;
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(g5) 0 < G(x, t) ≤ g(x, t)t ≤ ν0t/κ, for each x ∈ R3 \ Ω′
Γ, t > 0;

(g6) for each x ∈ Ω′
Γ, the function t 7→ g(x,t)

t is strictly increasing in t ∈ (0,+∞) and for each

x ∈ R3 \ Ω′
Γ, the function t 7→ g(x,t)

t is strictly increasing in (0, a).

Moreover, we have the modified problem

− (∇+ iA(x))2u + (λV(x) + 1)u + φ|u|u = g
(
x, |u|2

)
u, x ∈ R

3, (3.3)

and the energy functional Φλ (u) : Eλ

(
R3, C

)
→ R given by

Φλ(u) =
1

2

∫

R3

(
|∇Au|2 + (λV(x) + 1)|u|2

)
dx +

1

4

∫

R3
φ|u||u|

2dx −
1

2

∫

R3
G
(
x, |u|2

)
dx.

We want to get some nontrivial solutions of (3.3) are ones of the original problem (1.4),

more precisely, if uλ is a nontrivial solution of (3.3) verifying |uλ (x)|2 ≤ a in R3 \ Ω′
Γ, then it

is a nontrivial solution to (1.4).

Next, we prove that the energy functional Φλ (u) satisfies the (PS) condition.

Lemma 3.1. All (PS)c sequences for Φλ are bounded in Eλ.

Proof. Let (un) be a (PS)c sequence for Φλ. Thus, we have

Φλ (un)−
1

θ
Φ′

λ (un) un = c + on(1) + on(1) ‖un‖λ .

On the other hand, by (g4), (g5), κ >
θ

θ−2 , and Lemma 2.3, we derive

Φλ (un)−
1

θ
Φ′

λ (un) un =

(
1

2
−

1

θ

)
‖un‖

2
λ +

(
1

4
−

1

θ

) ∫

R3
φ|un| (x) |un|

2dx

+
∫

R3

(
1

θ
g
(

x, |un|
2
)
|un|

2 −
1

2
G
(

x, |un|
2
))

dx

≥

(
1

2
−

1

θ

)
‖un‖

2
λ +

2 − θ

2θ

∫

R3\Ω′
Γ

F̃(|un|
2)dx

≥

(
1

2
−

1

θ

)
‖un‖

2
λ +

(θ − 2)ν0

2θκ

∫

R3\Ω′
Γ

|un|
2 dx

≥

(
1

2
−

1

θ

)
(1 −

1

κ
) ‖un‖

2
λ .

So, (
1

2
−

1

θ

)
(1 −

1

κ
) ‖un‖

2
λ ≤ c + on(1) + on(1) ‖un‖λ .

This shows that (un) is bounded in Eλ.

For each fixed j∈Γ, let us denote by cj the minimax level of the functional Ij : H0,1
A (Ωj, C) →

R given by

Ij(u) =
1

2

∫

Ωj

(
|∇Au|2 + |u|2

)
dx +

1

4

∫

Ωj

φ|u||u|
2dx −

α

2

∫

Ωj

F(|u|2)dx −
1

6

∫

Ωj

|u|6dx,

and

cj = inf
γ∈Λj

max
t∈[0,1]

Ij(γ(t)),
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where

Λj =
{

γ ∈ C([0, 1], H0,1
A

(
Ωj, C

)
) : γ(0) = 0, Ij(γ(1)) < 0

}
.

It is well-known that the critical points of are the weak solutions of the problem

{
−(∇+ iA(x))2u + u + φ|u|u = α f

(
|u|2

)
u + |u|4u, in Ωj,

u = 0, on ∂Ωj.
(3.4)

Moreover, we have the following important result.

Lemma 3.2. There exists α∗
> 0 such that, for all α ≥ α∗, we have

cj ∈
(

0,
1

3(k + 1)
S3/2

)
, for all j ∈ {1, · · · , k} and all α ∈ [α∗,+∞).

Proof. We choose a function ϕj ∈ H0,1
A

(
Ωj, C

)
) \ {0} for each j ∈ {1, · · · , k}. There exists

tα,j ∈ (0,+∞) such that

cj ≤ Ij(tα,j ϕj) = max
t≥0

Ij(tϕj)

and hence, by ( f4), one has

t2
α,j

∫

R3

(∣∣∇A ϕj

∣∣2 +
∣∣ϕj

∣∣2
)

dx + t4
α,j

∫

R3
φ|ϕj||ϕj|

2dx

= α
∫

R3
f
(∣∣tα,j ϕj

∣∣2
) ∣∣tα,j ϕj

∣∣2 dx + t6
α,j

∫

R3
|ϕj|

6dx

≥ α
∫

R3
f
(∣∣tα,j ϕj

∣∣2
) ∣∣tα,j ϕj

∣∣2 dx ≥ αςtι
α,j

∫

R3

∣∣ϕj

∣∣ι dx.

(3.5)

If |tα,j| ≤ 1, by (3.5), we have

t2
α,j

∫

R3

(∣∣∇A ϕj

∣∣2 +
∣∣ϕj

∣∣2
)

dx + t2
α,j

∫

R3
φ|ϕj||ϕj|

2dx ≥ αςtι
α,j

∫

R3

∣∣ϕj

∣∣ι dx.

The above inequality implies that

tα,j ≤

[∫
R3

(∣∣∇A ϕj

∣∣2 +
∣∣ϕj

∣∣2
)

dx +
∫

R3 φ|ϕj||ϕj|
2dx

ας
∫

R3

∣∣ϕj

∣∣ι dx

]1/(ι−2)

.

If |tα,j| ≥ 1, by (3.5), one has

t4
α,j

∫

R3

(∣∣∇A ϕj

∣∣2 +
∣∣ϕj

∣∣2
)

dx + t4
α,j

∫

R3
φ|ϕj||ϕj|

2dx ≥ αςtι
α,j

∫

R3

∣∣ϕj

∣∣ι dx.

The above inequality implies that

tα,j ≤
[
∫

R3

(∣∣∇A ϕj

∣∣2 +
∣∣ϕj

∣∣2
)

dx +
∫

R3 φ|ϕj||ϕj|
2dx

ας
∫

R3

∣∣ϕj

∣∣ι dx

]1/(ι−4)
.

Using the above limits, we have tα,j → 0 as α → +∞. This fact yields that Ij(tα,j ϕj) → 0 as

α → +∞. Thus, there exists α∗
> 0 such that

cj ∈
(

0,
1

3(k + 1)
S3/2

)
, for all j ∈ {1, · · · , k}.
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Remark 3.3. In particular, the above lemma implies for α > 0 large that

k

∑
j=1

cj ∈
(

0,
1

3
S

3
2

)
. (3.6)

Proposition 3.4. For any λ > 0, the functional Φλ satisfies the (PS)c condition at the level c < 1
3 S

3
2 .

Proof. Let (un) ⊂ Eλ be a (PS)c sequence for Φλat the level c < 1
3 S

3
2 , that is

Φλ(un) → c <
1

3
S

3
2 and Φ′

λ(un) → 0.

From Lemma 3.1, we know that the sequence (un) is bounded in Eλ. Thus, there exists u ∈ Eλ

such that un ⇀ u in Eλ, up to a subsequence if necessary. Then it is standard to check that for

any C∞
0

(
R3, C

)
⊂ Eλ,

Re
∫

R3
∇Aun∇A ϕdx → Re

∫

R3
∇Au∇A ϕdx,

Re
∫

R3
(λV(x) + 1)un ϕdx → Re

∫

R3
(λV(x) + 1)uϕdx,

and

Re
∫

R3
g
(

x, |un|
2
)

un ϕdx → Re
∫

R3
g
(

x, |u|2
)

uϕdx. (3.7)

Form (3.7), the density of C∞
0

(
R3, C

)
in Eλ, and Φ′

λ(un) → 0, we can obtain that the weak

limit u is a critical point of Φλ and so

‖u‖2
λ +

∫

R3
φ|u||u|

2dx =
∫

R3
g(x, |u|2)|u|2dx. (3.8)

On the other hand, we know that < Φ′
λ (un) , un >= on(1) which implies that

‖un‖
2
λ +

∫

R3
φ|un||un|

2dx =
∫

R3
g(x, |un|

2)|un|
2dx + on(1). (3.9)

Step 1: We show that for any given ζ > 0, there exists R > 0 large enough such that Ω′
Γ ⊂

BR/2(0) and

lim sup
n

∫

Bc
R(0)

(|∇Aun|
2 + (λV(x) + 1)|un|

2)dx ≤ ζ. (3.10)

Now, we take R > 0 large such that Ω′
Γ ⊂ B R

2
(0) and ηR ∈ C∞

(
R3, R

)
satisfying

ηR = 0 x ∈ B R
2
(0), ηR = 1 x ∈ Bc

R(0), 0 ≤ ηR ≤ 1, and |∇ηR| ≤
C

R
,

where C > 0 is a constant independent of R.

By a direct computation, we have

on(1) = 〈Φ′
λ (un) , unηR〉 =

∫

R3

(
|∇Aun|

2 + (λV(x) + 1) |un|
2
)

ηRdx

+
∫

R3
φ|un| (x) |un|

2ηRdx + Re

(∫

R3
un∇Aun∇ηRdx

)

−
∫

R3
f̃
(
|un|

2
)
|un|

2 ηRdx.
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Notice that

|Re (un∇Aun)| = |Re ((∇un + iAun) un)| = |Re (un∇un)| = |un| |∇|un||.

Using the Hölder inequality and the above equality, we derive

lim sup
n→∞

∣∣∣∣Re

(∫

R3
un∇Aun∇ηRdx

)∣∣∣∣ ≤
C

R
.

So, we obtain ∫

R3

(
|∇Aun|

2 + (λV(x) + 1) |un|
2
)

ηRdx

≤
∫

R3
f̃
(
|un|

2
)
|un|

2 ηRdx +
C

R
+ on(1)

≤
ν0

κ

∫

R3
|un|

2 ηRdx +
C

R
+ on(1),

which implies that for any ζ > 0, choosing a R > 0 larger if necessary, we have

lim sup
n→∞

∫

Bc
R(0)

(
|∇Aun|

2 + (λV(x) + 1) |un|
2
)

dx ≤ ζ.

Step 2: We show that

lim
n

∫

R3
φ|un||un|

2dx =
∫

R3
φ|u||u|

2dx. (3.11)

By (3.10) and the Sobolev embedding, for any ζ > 0, there exists R > 0 such that for n large

enough and q ∈ [2, 6)

‖un − u‖Lq(R3) = ‖un − u‖Lq(BR(0)) + ‖un − u‖Lq(Bc
R(0))

≤ ‖un − u‖Lq(BR(0)) + ‖un‖Lq(Bc
R(0))

+ ‖u‖Lq(Bc
R(0))

≤ Cζ,

which implies

un → u in Lq(R3, C), ∀q ∈ [2, 6).

Since ||un| − |u|| ≤ |un − u|| and 12
5 ∈ (2, 6), one has

|un| → |u| in L12/5(R3, R). (3.12)

Let

D(u) =
∫

R3

∫

R3

|u (x)|2 |u (y)|2

|x − y|
dxdy,

we have

|D(un)− D(u)| =

∣∣∣∣
∫

R3

∫

R3

|un (x)|2 |un (y)|
2

|x − y|
dxdy −

∫

R3

∫

R3

|u (x)|2 |u (y)|2

|x − y|
dxdy

∣∣∣∣

=

∣∣∣∣
∫

R3

∫

R3

(|un (x)|2 − |u (x)|2)(|un (y)|
2 + |u (y)|2)

|x − y|
dxdy

∣∣∣∣

≤

∣∣∣∣
∫

R3

∫

R3

| |un (x)|2 − |u (x)|2 |(|un (y)|
2 + |u (y)|2)

|x − y|
dxdy

∣∣∣∣

≤ C
√

D(||un|2 − |u|2|1/2)
√

D(||un|2 + |u|2|1/2)
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Then, by the Hardy–Littlewood–Sobolev inequality, the Hölder inequality and (3.12), it follows

that
|D(un)− D(u)|2 = C‖||un|

2 − |u|2|1/2‖4
L12/5(R3)‖||un|

2 + |u|2|1/2‖4
L12/5(R3)

≤ C‖||un|
2 − |u|2|1/2‖4

L12/5(R3) → 0.

Step 3:

lim
n

∫

R3
g(x, |un|

2)|un|
2dx =

∫

R3
g(x, |u|2)|u|2dx. (3.13)

By (g3), ( f1) and ( f2), (3.10), for n large enough,
∫

Bc
R(0)

∣∣∣g(x, |un|
2) |un|

2
∣∣∣ dx ≤ C1

∫

Bc
R(0)

(|un|
2 + |un|

q + |un|
6)dx

≤ C2(ζ + ζ
q
2 + ζ3) (3.14)

On the other hand, choosing R > 0 large if necessary, we may assume that
∫

Bc
R(0)

∣∣∣g(x, |u|2) |u|2
∣∣∣ dx ≤ ζ.

Hence, from the last inequality and (3.14), we have that

lim
n

∫

Bc
R(0)

g(x, |un|
2) |un|

2 dx =
∫

Bc
R(0)

g(x, |u|2) |u|2 dx. (3.15)

By the definition of g, one has

g(x, |un|
2) |un|

2 ≤ α f (|un|
2) |un|

2 + a3 +
ν0

κ
|un|

2, for any x ∈ R
3 \ Ω′

Γ.

Since the set BR(0)
⋂
(R3 \ Ω′

Γ) is bounded, we can use the above estimates, ( f1), ( f2) and

Lebesgue dominated convergence theorem to obtain that

lim
n

∫

BR(0)
⋂
(R3\Ω′

Γ)
g(x, |un|

2) |un|
2 dx =

∫

BR(0)
⋂
(R3\Ω′

Γ)
g(x, |u|2) |u|2 dx. (3.16)

We show now

lim
n

∫

Ω′
Γ

|un|
6dx =

∫

Ω′
Γ

|u|6dx. (3.17)

If (3.17) holds, by (g3), ( f1), ( f2) and Lebesgue dominated convergence theorem, we have

lim
n

∫

BR(0)∩Ω′
Γ

g(x, |un|
2) |un|

2 dx =
∫

BR(0)∩Ω′
Γ

g(x, |u|2) |u|2 dx. (3.18)

Hence, by (3.16) and (3.18), limn

∫
R3 g(x, |un|2)|un|2dx =

∫
R3 g(x, |u|2)|u|2dx. Using (3.10) and

the diamagnetic inequality (2.1), the sequence (|un|) is tight in, we may assume that

|∇|un||
2
⇀ µ and |un|

6
⇀ ν (3.19)

in the sense of measures. By the concentration-compactness principle in [37], we can find an

at most countable index I, sequences (xi) ⊂ R3, (µi), (νi) ⊂ (0, ∞) such that

µ ≥ |∇|u||2dx + ∑
i∈I

µiδxi
,

ν = |u|6 + ∑
i∈I

νiδxi
and Sν1/3

i ≤ µi (3.20)
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for any i ∈ I, where δxi
is the Dirac mass at the point xi. Let us show that (xi)i∈I ∩ Ω′

Γ =

∅. Assume, by contradiction, that xi ∈ Ω′
Γ for some i ∈ I. For any ρ > 0, we define

ψρ(x) = ψ( x−xi
ρ ) where ψ ∈ C∞

0 (R3, [0, 1]) is such that ψ = 1 in B1, ψ = 0 in R3 \ B2 and

‖∇ψ‖L∞(R3,R) ≤ 2. We suppose that ρ > 0 is such that supp(ψρ) ⊂ Ω′
Γ. Since (ψρun) is

bounded in Eλ, we can see that Φ′
λ (un) [ψρun] = on(1), that is

∫

R3
|∇Aun|

2ψρdx + Re
∫

R3
iun∇Aun∇ψρdx +

∫

R3
(λV(x) + 1)|un|

2ψρdx

=
∫

R3
g(x, |un|

2)|un|
2ψρdx + on(1)

= α
∫

R3
f (|un|

2)|un|
2ψρdx +

∫

R3
|un|

6ψρdx + on(1).

Using the diamagnetic inequality (2.1) again, it follows that

∫

R3
|∇|un||

2ψρdx + Re
∫

R3
iun∇Aun∇ψρdx

≤ α
∫

R3
f (|un|

2)|un|
2ψρdx +

∫

R3
|un|

6ψρdx + on(1). (3.21)

Due to the fact that f has the subcritical growth and ψρ has the compact support, we have that

lim
ρ→0

lim
n→∞

∫

R3
f (|un|

2)|un|
2ψρdx = lim

ρ→0

∫

R3
f (|u|2)|u|2ψρdx = 0. (3.22)

Now, we show that

lim
ρ→0

lim sup
n→∞

∣∣∣Re
∫

R3
iun∇Aun∇ψρdx

∣∣∣ = 0. (3.23)

Because of the boundedness of (un) in Eλ, using the Hölder inequality, the strong convergence

of (|un|) in L2
loc(R

3, R), |u| ∈ L6(R3, R), |∇ψρ| ≤ Cρ−1 and |B2ρ(xi)| ∼ ρ3, we have that

0 ≤ lim
ρ→0

lim sup
n→∞

∣∣∣Re
∫

R3
iun∇Aun∇ψρdx

∣∣∣

≤ lim
ρ→0

lim sup
n→∞

∫

R3
|un∇ψρ||∇Aun|dx

≤ lim
ρ→0

lim
n→∞

( ∫

B2ρ(xi)
|un∇ψρ|

2dx
)1/2

‖un‖λ

≤ C lim
ρ→0

( ∫

B2ρ(xi)
|u|2dx

)1/2
= 0

which shows that (3.23) holds.

Then, taking into account (3.19), (3.21), (3.22) and (3.23), we can conclude that νi ≥ µi for

all i ∈ I. Together with the inequality Sν1/3
i ≤ µi in (3.20), we have

νi ≥ S
3
2 . (3.24)
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Now, from ( f3), (g4) and (g5), we have

c = Φλ (un)−
1

4
< Φ′

λ (un) , un > +on(1)

=
1

4
‖un‖

2
λ +

∫

R3

(1

4
g(x, |un|

2)|un|
2 −

1

2
G(x, |un|

2)
)

dx + on(1)

≥
1

4
‖un‖

2
ε +

∫

R3\Ω′
Γ

(1

4
g(x, |un|

2)|un|
2 −

1

2
G(x, |un|

2)
)

dx

+
1

12

∫

Ω′
Γ

|un|
6dx + on(1)

≥
1

4

( ∫

Ω′
Γ

ψρ|∇|un||
2dx +

∫

R3\Ω′
Γ

(λV(x) + 1)|un|
2
)
−

1

4

∫

R3\Ω′
Γ

G(x, |un|
2)dx

+
1

12

∫

Ω′
Γ

|un|
6dx + on(1)

≥
1

4

∫

Λε

ψρ|∇|un||
2dx + (

1

4
−

1

4κ
)
∫

R3\Ω′
Γ

(λV(x) + 1)|un|
2dx +

1

12

∫

Λε

ψρ|un|
6dx + on(1)

≥
1

4

∫

Ω′
Γ

ψρ|∇|un||
2dx +

1

12

∫

Ω′
Γ

ψρ|un|
6dx + on(1).

From the above arguments, (3.20) and (3.24), we have

c ≥
1

4 ∑
{i∈I:xi∈Ω′

Γ}

ψρ(xi)µi +
1

12 ∑
{i∈I:xi∈Ω′

Γ}

ψρ(xi)νi

≥
1

4 ∑
{i∈I:xi∈Ω′

Γ}

ψρ(xi)Sν1/3
i +

1

12 ∑
{i∈I:xi∈Ω′

Γ}

ψρ(xi)νi

≥
1

4
S

3
2 +

1

12
S

3
2 =

1

3
S

3
2

which gives a contradiction. This means that (3.17) holds.

From (3.8), (3), (3.12) and (3.13), we may obtain that ‖un‖
2
λ → ‖u‖2

λ which means that

un → u in Eλ.

Next we study the behavior of a (PS)∞ sequence, that is, a sequence (un) ⊂ H1
A

(
R3, C

)

satisfying

un ∈ Eλn
and λn → ∞,

Φλn (un) → c,∥∥∥Φ′
λn
(un)

∥∥∥
E∗

λn

→ 0, as n → ∞.

Proposition 3.5. Let (un) ⊂ H1
A

(
R3, C

)
be a (PS)∞ sequence with c ∈ (0, 1

3 S
3
2 ). Then, up to a

subsequence, there exists u ∈ H1
A

(
R3, C

)
such that un ⇀ u in H1

A

(
R3, C

)
. Moreover,

(i) u = 0 in R3 \ ΩΓ, and for all j ∈ Γ, u |Ωj
is a solution for

{
−(∇+ iA(x))2u + u + φ|u|u = α f

(
|u|2

)
u + |u|4u, in Ωj,

u = 0, on ∂Ωj;
(3.25)

(ii) un → u in Eλn
. Hence

un → u in H1
A

(
R

3, C
)

; (3.26)
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(iii) λn

∫
R3 V(x) |un|

2 dx → 0.

(iv) ‖un‖
2
λn,Ω′

j
→
∫

Ωj
(|∇Au|2 + |u|2)dx, for j ∈ Γ;

(v) ‖un‖
2
λn,R3\ΩΓ

→ 0;

(vi) Φλn (un) →
1
2

∫
ΩΓ

(
|∇Au|2 + |u|2

)
dx + 1

4

∫
ΩΓ

φ|u||u|
2dx − α

∫
ΩΓ

F(|u|2)dx − 1
6

∫
ΩΓ

|u|6dx.

Proof. As in Lemma 3.1, we know that (un) is bounded in H1
A(R

3, C). Thus we may assume

that for some u ∈ H1
A(R

3, C), up to a subsequence, if necessary

un ⇀ u in H1
A

(
R

3, C
)

,

un → u in Lr
loc

(
R

3, C
)

, ∀r ≥ 1,

|un| → |u| a.e. in R
3.

(i) We fix the set Cm =
{

x ∈ R3; V(x) ≥ 1
m

}
, for each m ∈ N. Then, we have

∫

Cm

|un|
2 dx ≤

m

λn

∫

R3
λnV(x) |un|

2 dx

≤
2m

λn

∫

R3

(
|∇Aun|

2 + (λnV(x) + 1) |un|
2
)

dx

=
2m

λn
‖un‖

2
λn

.

By the Fatou’s lemma, we derive ∫

Cm

|u|2 dx = 0.

So, u = 0 in ∪+∞
m=1Cm = R3 \ Ω, from which we can assert that u|Ωj

∈ H0,1
A

(
Ωj, C

)
for any

j ∈ {1, 2, . . . , k} .

From ( f1), ( f2), for any ζ > 0, there exists Cζ > 0 such that

| f (t)| ≤ ζ |t|+ Cζ |t|
q−2

2 .

So, we derive
∣∣∣∣Re

∫

R3
g
(

x, |un|
2
)

unv̄dx

∣∣∣∣ ≤ ζα
∫

R3
|un|

3 |v̄|dx + Cζα
∫

R3
|un|

q−1 |v̄|dx +
∫

R3
|un|

5 |v̄|dx.

Therefore,

Re
∫

R3
g
(

x, |un|
2
)

unv̄dx → Re
∫

R3
g
(

x, |u|2
)

uv̄dx.

Since for each v ∈ C∞
0

(
Ωj, C

)
, Φ′

λn
(un) v → 0 as n → ∞, from the above information and

the argument explored in Proposition 3.4, we have

Re

(∫

Ωj

(
∇Au∇Av + uv̄

)
dx +

∫

Ωj

φ|u|uvdx −
∫

Ωj

g
(
x, |u|2

)
uv̄dx

)
= 0,

which implies that u|Ωj
is a solution of problem (3.25) for each j ∈ Γ.

On the other hand, if j ∈ {1, 2, . . . , k} \ Γ, setting v = u|Ωj
,

∫

Ωj

(
|∇Au|2 + |u|2

)
dx +

∫

Ωj

φ|u| |u|
2 dx −

∫

Ωj

f̃
(
|u|2

)
|u|2 dx = 0.
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By Lemma 2.3 and the definition of f̃ , we have

0 ≤ δ0‖u‖2
λ,Ωj

≤ ‖u‖2
λ,Ωj

−
ν0

k
‖u‖2

2,Ωj

≤
∫

Ωj

(
|∇Au|2 + |u|2

)
dx −

∫

Ωj

f̃
(
|u|2

)
|u|2dx ≤ 0.

Thus u|Ωj
= 0 for j ∈ {1, 2, . . . , k} \ Γ. This proves that u = 0 in R3 \ ΩΓ.

(ii) From the similar arguments in the proof of Proposition 3.4,
∫

R3
g
(

x, |un|
2
)
|un|

2 dx →
∫

R3
g
(
x, |u|2

)
|u|2dx

= α
∫

ΩΓ

f
(
|u|2

)
|u|2dx +

∫

ΩΓ

|u|6dx as n → +∞.

By (i), we have

on(1) = Φ′
λn
(un) (un)

= ‖un‖
2
λn

+
∫

R3
φ|un| (x) |un|

2dx −
∫

R3
g
(

x, |un|
2
)
|un|

2 dx

= ‖un‖
2
λn

− ‖u‖2
λn

+ on(1),

which implies un → u in Eλn
. Hence un → u in H1

A(R
3, C).

(iii) By (ii),

λn

∫

R3
V(x) |un|

2 dx = λn

∫

R3
V(x) |un − u|2 dx

≤ C ‖un − u‖2
λn

→ 0 as n → ∞.

(iv) Let j ∈ Γ. By (ii),

|un − u|22,Ω′
j
→ 0, |∇Aun −∇Au|22,Ω′

j
→ 0,

therefore,
∫

Ω′
Γ

(
|∇Aun|

2 − |∇Au|2
)

dx → 0 and
∫

Ω′
Γ

(
|un|

2 − |u|2
)

dx → 0.

Also, by (iii), ∫

Ω′
Γ

λnV (x) |un|
2 dx → 0.

Thus,

‖un‖
2
λn,Ω′

Γ
→
∫

ΩΓ

(
|∇Au|2 + u2

)
dx.

(v) By (ii), it is easy to obtain that

‖un‖
2
λ,R3\ΩΓ

→ 0.

(vi) Since

Φλn (un) = ∑
j∈Γ

[
1

2

∫

Ω′
j

(
|∇Aun|

2 + (λnV(x) + 1) |un|
2
)

dx +
1

4

∫

Ω′
j

φ|un||un|
2dx

]

+
1

2

∫

R3\Ω′
Γ

(
|∇Aun|

2 + (λnV(x) + 1) |un|
2
)

dx +
1

4

∫

R3\Ω′
Γ

φ|un||un|
2dx

−
∫

R3
G (x, un) dx,
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by (i)–(v), we can derive

Φλn (un) →
1

2

∫

ΩΓ

(
|∇Au|2 + |u|2

)
dx +

1

4

∫

ΩΓ

φ|u|u
2dx − α

∫

ΩΓ

F(|u|2)dx −
1

6

∫

ΩΓ

|u|6dx.

Now, we study L∞ estimate of the solution of problem (3.3).

Proposition 3.6. Let (uλ) be a family of nontrivial solutions of (3.3). Then, there exists λ∗
> 0 such

that

‖uλ‖
2
L∞(R3\Ω′

Γ)
≤ a, ∀λ ≥ λ∗.

In particular, uλ is a solution of the original problem (1.4) for any λ ≥ λ∗.

Proof. We give notation Br(x) =
{

y ∈ R3 : |x − y| < r
}

. Since uλ ∈ Eλ is a critical point of

Φλ(u), that is, uλ satisfies the following equation

−∆Auλ + (λV(x) + 1)uλ + φ|uλ|uλ = g
(

x, |uλ|
2
)

uλ, x ∈ R
3.

By the Kato’s inequality

∆ |uλ| ≥ Re

(
uλ

|uλ|
(∇+ iA(x))2uλ(x)

)
,

there holds

∆ |uλ(x)| − (λV(x) + 1) |uλ(x)| − φ|uλ| |uλ(x)| − g(x, |uλ|
2) |uλ(x)| ≥ 0, x ∈ R

3,

since |uλ| ≥ 0, φ|uλ| ≥ 0 and (λV(x) + 1) ≥ M0 > 0 if λ ≥ 1, we have

∆ |uλ(x)| − g
(

x, |uλ|
2
)
|uλ(x)| ≥ 0, x ∈ R

3.

We use the subsolution estimate (see [16], Theorem 8.17) and obtain that there exists a constant

C(r) such that for 1 < q < 2

sup
y∈Br(x)

|uλ(y)| ≤ C(r)
( ∫

B2r(x)
|uλ|

qdy
)1/q

.

By Proposition 3.5, for any sequence λn → ∞, we can extract a subsequence λni
such that

uλni
→ u ∈ H0,1

A (ΩΓ, C) strongly in H1
A(R

N , C).

In particular,

uλni
→ 0 in L2(RN \ ΩΓ, C).

Since λn → ∞ is arbitrary, we have

uλ → 0 in L2(RN \ ΩΓ, C) as λ → ∞.

Thus, choosing r ∈ (0, dist(ΩΓ, RN \ Ω′
Γ)), we have uniformly in x ∈ RN \ Ω′

Γ that

|uλ(y)| ≤ C(r)‖uλ‖Lq(B2r(x))

≤ C(r)|B2r(x)|
2−q
2q ‖uλ‖L2(RN\ΩΓ)

→ 0.

This finishes the proof.



18 C. Ji, Y. Zhang and V. D. Rădulescu

4 Existence of multi-bump solutions

In this section, we start to prove the existence of multi-bump solutions. First of all, for each

fixed j ∈ Γ, let us denote by cj the minimax level of the functional Ij : H0,1
A

(
Ωj, C

)
→ R given

by

Ij(u) =
1

2

∫

Ωj

(
|∇Au|2 + |u|2

)
dx +

1

4

∫

Ωj

φ|u||u|
2dx −

α

2

∫

Ωj

F(|u|2)dx −
1

6

∫

Ωj

|u|6dx,

and

cj = inf
γ∈Λj

max
t∈[0,1]

Ij(γ(t)),

where

Λj =
{

γ ∈ C([0, 1], H0,1
A

(
Ωj, C

)
) : γ(0) = 0, Ij(γ(1)) < 0

}
.

For each j ∈ Γ, we denote by Φλ,j : H1
A

(
Ω′

j, C

)
→ R the functional given by

Φλ,j(u) =
1

2

∫

Ω′
j

(
|∇Au|2 + (λV(x) + 1)|u|2

)
dx

+
1

4

∫

Ω′
j

(
1

4π

∫

Ω′
j

|ũ|2

|x − y|
dy

)
u2dx −

α

2

∫

Ω′
j

F(|u|2)dx −
1

6

∫

Ω′
j

|u|6dx,

and the above functional is associated to the following problem




−∆Au + (λV(x) + 1)u +

(
1

4π

∫
Ω′

j

|ũ|2

|x−y|
dy

)
u = α f (|u|2)u + |u|4u, in Ω′

j,

∂u
∂η = 0, on ∂Ω′

j,

where

ũ(x) =

{
u(x), in Ω′

j,

0, in R3 \ Ω′
j.

In what follows, we denote by cλ,j the minimax level of the above functional given by

cλ,j = inf
γ∈Λλ,j

max
t∈[0,1]

Φλ,j(γ(t)),

where

Λλ,j =
{

γ ∈ C
(
[0, 1], H1

A

(
Ω′

j, C

))
: γ(0) = 0, Φλ,j(γ(1)) < 0

}
.

Repeating the same method used in the previous section, we are able to prove that there exist

ωj ∈ H0,1
A

(
Ωj, C

)
and ωλ,j ∈ H1

A

(
Ω′

j, C

)
such that

Ij(ωj) = cj and I′j(ωj) = 0,

and

Φλ,j(ωλ,j) = cλ,j and Φ′
λ,j(ωλ,j) = 0.

Furthermore, we have the following important lemma.
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Lemma 4.1. The following statements hold:

(i) 0 < cλ,j ≤ cj, for λ ≥ 1 and j ∈ Γ.

(ii) cj (cλ,j respectively) is a least energy level for Ij(u) (Φλ,j(u) respectively), that is

cj = inf
{

Ij(u) : u ∈ H0,1
A

(
Ωj, C

)
\ {0}, I′j(u)u = 0

}
,

and

cλ,j = inf
{

Φλ,j(u) : u ∈ H1
A

(
Ω′

j, C

)
\ {0}, Φ′

λ,j(u)u = 0
}

.

(iii) cλ,j → cj, as λ → ∞ for any j ∈ Γ.

Proof. (i) From ( f3), we have cj > 0 and cλ,j > 0 for any j ∈ Γ and λ ≥ 1. For any u ∈

H0,1
A

(
Ωj, C

)
, we may extend u to û ∈ H1

A

(
Ω′

j, C

)
by

û(x) =

{
u(x), in Ωj,

0, in Ω′
j \ Ωj.

Using the fact that H0,1
A

(
Ωj, C

)
⊂ H1

A

(
Ω′

j, C

)
, we have

cλ,j = inf
γ∈Λλ,j

max
t∈[0,1]

Φλ,j(γ(t))

≤ inf
γ∈Λj

max
t∈[0,1]

Φλ,j(γ(t))

= inf
γ∈Λj

max
t∈[0,1]

Ij(γ(t)) = cj.

(ii) By the monotonicity of the term f (t) with respect to t for t > 0, we are able to prove

this.

(iii) Using Proposition 3.5, for sequences (λn) with λn → ∞, as n → ∞, there exists

ω ∈ H0,1
A (Ωj, C) is a solution of (3.25) such that

ωλn,j → ω in H1
A(Ω

′
j, C),

and

Φλn,j(ωλn,j) → Ij(ω).

By the definition of cj, we have

lim sup
λ→∞

cλ,j = lim sup
λ→∞

Φλ,j

(
ωλ,j

)
≥ Ij (ω) ≥ cj.

Together with (i), we get the asserted result.

In what follows, we fix R > 1 verifying

∣∣∣∣Ij

(
1

R
ωj

)∣∣∣∣ <
1

2
cj, ∀j ∈ Γ, (4.1)

and ∣∣Ij

(
Rωj

)
− cj

∣∣ ≥ 1, ∀j ∈ Γ. (4.2)
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By the definition of cj, we are able to obtain

max
sj∈[1/R2,1]

Ij

(
sjRωj

)
= cj, ∀j ∈ Γ.

Then, for Γ = {1, 2, . . . , l} (l ≤ k), we define

γ0(s)(x) = ∑
l
j=1 sjRωj(x) ∀s = (s1, s2, . . . , sl) ∈

[
1/R2, l

]l
,

Λ∗ =
{

γ ∈ C
([

1/R2, 1
]l

, Eλ \ {0}
)

: γ = γ0 on ∂
([

1/R2, 1
]l
)}

,

and

bλ,Γ = inf
γ∈Λ∗

max
s∈[1/R2,1]

l
Φλ (γ (s)) .

Next, let us denote by cΓ = ∑
l
j=1 cj and cλ,Γ = ∑

l
j=1 cλ,j. Moreover, from Remark 3.3, we

know that cΓ ∈ (0, 1
3 S

3
2 ). To prove an important relation among bλ,Γ, cΛ and cλ,Γ, we need to

the following lemma.

Lemma 4.2. For any γ ∈ Λ∗, there exists (t1, t2, . . . , tl) ∈
[
1/R2, 1

]l
such that

Φ′
λ,j (γ (t1, t2, . . . , tl)) (γ (t1, t2, . . . , tl)) = 0 for all j ∈ {1, 2, . . . , l}.

Proof. Given γ ∈ Λ∗, consider γ̃ :
[
1/R2, 1

]l
→ Cl defined by

γ̃ (s1, s2, . . . , sl) =
(
Φ′

λ,1(γ)(γ), Φ′
λ,2(γ)(γ), . . . , Φ′

λ,l(γ)(γ)
)

,

where

Φ′
λ,j(γ)(γ) = Φ′

λ,j (γ (s1, s2, . . . , sl)) (γ (s1, s2, . . . , sl)) for all j ∈ Γ.

By ( f4) and I′j(ωj) = 0, we have

I′j
(

Rωj

) (
Rωj

)
< 0 and I′j

(
1

R
ωj

)(
1

R
ωj

)
> 0.

For s ∈ ∂(
[
1/R2, 1

]l
), it holds γ(s) = γ0(s), and

Φ′
λ,j (γ0 (s)) (γ0 (s)) = 0 ⇒ sj /∈

{
1/R2, 1

}
, ∀j ∈ Γ.

Thus,

(0, 0, . . . , 0) /∈ γ̃
(

∂
([

1/R2, 1
]l
))

.

Since

deg
(

γ̃,
(
1/R2, 1

)l
, (0, . . . , 0)

)
= deg

(
γ̃0,
(
1/R2, 1

)l
, (0, . . . , 0)

)

and, for s ∈
(
1/R2, 1

)l
,

γ̃0(s) = 0 ⇐⇒ s =

(
1

R
, . . . ,

1

R

)
,

we have

deg
(

γ̃,
(
1/R2, 1

)l
, (0, . . . , 0)

)
6= 0.

This shows what was stated.
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Proposition 4.3. The following facts hold:

(i) cλ,Γ ≤ bλ,Γ ≤ cΓ, ∀λ ≥ 1;

(ii) bλ,Γ → cΓ, as λ → ∞;

(iii) Φλ(γ(s)) < cΓ, ∀λ ≥ 1, γ ∈ Λ∗ and s = (s1, . . . , tl) ∈ ∂(
[
1/R2, 1

]l
);

(iv) bλ,Γ is a critical point of Φλ for large λ.

Proof. (i) Since γ0 ∈ Λ∗,

bλ,Γ ≤ max
(s1,s2,...,sl)∈[1/R2,1]

Φλ (γ0 (s1, s2, . . . , sl))

= max
(s1,s2,...,sl)∈[1/R2,1]

l

∑
j=1

Ij

(
sjRωj

)

=
l

∑
j=1

cj = cΓ.

Fixing (t1, t2, . . . , tl) ∈
[
1/R2, 1

]l
given in Lemma 4.2 and recalling that cλ,j can be character-

ized by

cλ,j = inf
{

Φλ,j(u) : u ∈ H1
A

(
Ω′

j, C

)
\ {0}, Φ′

λ,j(u)u = 0
}

,

it follows that

Φλ,j (γ (t1, t2, . . . , tl)) ≥ cλ,j ∀j ∈ Γ.

Since ∀u ∈ H1
A

(
R3 \ Ω′

Γ, C
)
, Φλ,R2\Ω′

Γ
(u) ≥ 0, we have

Φλ (γ (s1, s2, . . . , sl)) ≥
l

∑
j=1

Φλ,j (γ (s1, s2, . . . , sl)) .

Hence

max
(s1,s2,...,sl)∈[1/R2,1]

l
Φλ (γ (s1, s2, . . . , sl)) ≥ Φλ (γ (t1, t2, . . . , tl)) ≥

l

∑
j=1

cλ,j

showing that

bλ,Γ ≥
l

∑
j=1

cλ,j = cλ,Γ.

(ii) Since cλ,j → cj, as λ → ∞, by the previous item,

bλ,Γ → cΓ, as λ → ∞.

(iii) For s ∈ ∂(
[
1/R2, 1

]l
), it holds γ(s) = γ0(s). Hence,

Φλ (γ0 (s1, s2, . . . , sl)) =
l

∑
j=1

Ij

(
sjRωj

)
.

From (4.1) and (4.2), we have

Φλ (γ0 (s1, s2, . . . , sl)) ≤ cΓ − ǫ.
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for some ǫ > 0, so (iii) holds.

(iv) By (ii), we can choose λ large enough such that bλ,Γ, cΓ ∈ (0, 1
3 S

3
2 ). From Proposition 3.4

and (3.6), we know that any (PS)bλ,Γ
sequence of Φλ has a convergence subsequence in Eλ.

Moreover, from the deformation lemma, we can conclude that bλ,Γ is a critical level of Φλ for

λ large.

To prove Theorem 1.1, we need to find a nontrivial solution uλ for the large λ which

approaches a least energy solution in each Ωj (j ∈ Γ) and to 0 elsewhere as λ → ∞. Therefore,

we shall show two propositions which imply together with the estimates made in the previous

section that Theorem 1.1 holds.

Henceforth, let

Φ
cΓ

λ = {u ∈ Eλ : Φλ(u) ≤ cΓ} .

For small µ > 0, we denote by

Aλ
µ =

{
u ∈ Eλ : ‖u‖λ,R3\Ω′

j
≤ µ,

∣∣Φλ,j(u)− cj

∣∣ ≤ µ, ∀j ∈ Γ
}

,

and observe that ω = ∑
l
j=1 ωj ∈ Aλ

µ ∩ Φ
cΓ

λ , showing that Aλ
µ ∩ Φ

cΓ

λ 6= ∅. Fixing

0 < µ <
1

3
min

{
cj, j ∈ Γ

}
. (4.3)

We obtain the following uniform estimate of
∥∥Φ′

λ(u)
∥∥

λ
on the annulus

(
Aλ

2µ \ Aλ
µ

)
∩ Φ

cΓ

λ .

Proposition 4.4. Let µ > 0 satisfying (4.3). Then there exist σ0 > 0 and λ∗ ≥ 1 independent of λ

such that ∥∥Φ′
λ(u)

∥∥
λ
≥ σ0 for λ ≥ λ∗ for all u ∈

(
Aλ

2µ \ Aλ
µ

)
∩ Φ

cΓ

λ .

Proof. Arguing by contradiction, we assume that there exist λn → ∞ and un ∈
(

Aλn
2µ \ Aλn

µ

)
∩

Φ
cΓ

λn
such that

∥∥Φ′
λn
(u)
∥∥

λn
→ 0.

Since un ∈ Aλn
2µ, we can obtain that

{
‖un‖λn

}
is a bounded in Eλn

(
R3, C

)
and H1

A

(
R3, C

)
,

and {Φλn (un)} is also bounded. Thus, passing a subsequence if necessary, we may assume

that

Φλn (un) → c ∈ (−∞, cΓ] .

From Proposition 3.5, there exists u ∈ H0,1
A (ΩΓ, C) such that u is a solution of (3.25),

un → u in H1
A(R

3, C),

lim
n→∞

Φλn (un) =
l

∑
j=1

Ij(u) ≤ cΓ,

‖un‖
2
λn,Ω′

j
→
∫

Ωj

(
|∇Au|2 + |u|2

)
dx, ∀j ∈ Γ,

λn

∫

R3
V(x) |un|

2 dx → 0,

‖un‖
2
λn,R3\ΩΓ

→ 0.

Since cΓ = ∑
l
j=1 cj and cj is the least energy level for Ij, we have two possibilities:

(i) Ij(u|Ωj
) = cj ∀j ∈ Γ;

(ii) Ij0(u|Ωj0
) = 0, that is u|Ωj0

≡ 0 for some j0 ∈ Γ.
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If (i) occurs, we have

1

2

∫

Ωj

(
|∇Au|2 + |u|2

)
dx +

1

4

∫

Ωj

φ|u| |u|
2 dx −

α

2

∫

Ωj

F(|u|2)dx −
1

6

∫

Ωj

|u|6dx = cj, ∀j ∈ Γ.

Thus,
∣∣Φλ,j(u)− cj

∣∣ ≤ µ, ∀j ∈ Γ, that is, un ∈ Aλn
µ for large n, which is a contradiction to the

assumption un ∈ Aλn
2µ \ Aλn

µ .

If (ii) occurs, we have ∣∣Φλn,j0 (un)− cj0

∣∣→ cj0 ≥ 3µ,

which is a contradiction with the fact that un ∈ Aλn
2µ \ Aλn

µ . Thus neither (i) nor (ii) can hold,

and the proof is completed.

Proposition 4.5. Let µ > 0 satisfying (4.3) and λ∗ ≥ 0 be a constant given in Proposition 4.4. Then,

for any λ ≥ λ∗, there exists a nontrivial solution uλ of (3.3) satisfying uλ ∈ Aλ
µ ∩ Φ

cΓ

λ .

Proof. Arguing by contradiction, we assume that there are no critical points in Aλ
µ ∩ Φ

cΓ

λ . Since

Φλ verifies the (PS) condition in the level (0, 1
3 S

3
2 ), there exists a constant dλ > 0 such that

∥∥Φ′
λ(u)

∥∥ ≥ dλ for all u ∈ Aλ
µ ∩ Φ

cΓ

λ .

From Proposition 4.4, we have

∥∥Φ′
λ(u)

∥∥ ≥ σ0 for all u ∈
(

Aλ
2µ \ Aλ

µ

)
∩ Φ

cΓ

λ ,

where σ0 > 0 does not depend on λ. In what follows, Ψ : Eλ → R is a continuous functional

verifying

Ψ(u) = 1 for u ∈ Aλ
3µ/2,

Ψ(u) = 0 for u /∈ Aλ
2µ,

0 ≤ Ψ(u) ≤ 1 for u ∈ Eλ

(
R3, C

)
.

We consider H : Φ
cΓ

λ → Eλ given by

H(u) =




−Ψ(u)

Φ′
λ(u)

‖Φ′
λ(u)‖λ

, u ∈ Aλ
2µ,

0, u /∈ Aλ
2µ.

Hence, we have the inequality

‖H(u)‖λ ≤ 1 ∀λ ≥ Λ∗ and u ∈ Φ
cΓ

λ .

Considering the deformation flow η : [0, ∞)× Φ
cΓ

λ → Φ
cΓ

λ defined by

dη

dt
= H(η) and η(0, u) = u ∈ Φ

cΓ

λ .

Thus η has the following properties

d

dt
Φλ(η(t, u)) = −Ψ(η(t, u))

∥∥Φ′
λ(η(t, u))

∥∥
λ
≤ 0, (4.4)

η(t, u) = u for all t ≥ 0 and u ∈ Φ
cΓ

λ \ Aλ
2µ, (4.5)
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∥∥∥∥
dη

dt

∥∥∥∥
λ

≤ 1 for all t, u. (4.6)

Now let γ0(s) ∈ Λ∗ and we consider η(t, γ0(s)) for large t. If µ satisfies (4.3), we have that

γ0(s) /∈ Aλ
2µ, ∀s ∈ ∂

([
1/R2, 1

]l
)

.

Since

Φλ (γ0(s)) < cΓ, ∀s ∈ ∂
([

1/R2, 1
]l
)

,

from (4.5), it follows that

η (t, γ0(s)) = γ0(s), ∀s ∈ ∂
([

1/R2, 1
]l
)

.

So, η (t, γ0(s)) ∈ Λ∗, for each t ≥ 0.

On the other hand, suppγ0(s)(x) ⊂ ΩΓ for all s ∈ ∂(
[
1/R2, 1

]l
), then Φλ(γ0(s)) does not

depend on λ ≥ 0. Moreover,

Φλ (γ0(s)) ≤ cΓ, ∀s ∈
[
1/R2, 1

]l

and Φλ (γ0(s)) = cΓ if and only if sj =
1
R , ∀j ∈ Γ.

Therefore, we have that

m0 = max
{

Φλ(u) : u ∈ γ0(
[
1/R2, 1

]l
) \ Aλ

µ

}

is independent of λ and m0 ≤ cΓ. From (4.6), it is easy to see that for any t > 0,

‖η (0, γ0 (s1, s2, . . . , sl))− η (t, γ0 (s1, s2, . . . , sl))‖λ ≤ t.

Since Φλ,j(u) ∈ C1(Eλ, R) for all j = 1, 2, . . . , l, and the assumptions ( f1)− ( f4), it is easy to

see that for large number T > 0, there exists a positive number ρ0 > 0 which is independent

of λ such that for all j = 1, 2, . . . , l and t ∈ [0, T],

∥∥∥Φ′
λ,j(η(t, γ0(s1, s2, . . . , sl)))

∥∥∥
λ
≤ ρ0. (4.7)

We claim that for large T,

max
s∈[1/R2,1]

l
Φλ (η (T, γ0(s))) ≤ max

{
m0, cΓ −

1

2
τ0µ

}
,

where τ0 = max
{

σ0, σ0
ρ0

}
.

In fact, if γ0(s) /∈ Aλ
µ, from (4.4),

Φλ(η(t, s)) ≤ Φλ(s) ≤ m0, ∀t ≥ 0.

If γ0(s) ∈ Aλ
µ, we set

η̃(t) = η(t, s), d̃λ = min {dλ, σ0} and T =
σ0µ

2d̃λ

.

Next we differentiate two cases:

(1) η̃(t) ∈ Aλ
3µ/2 for all t ∈ [0, T].
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(2) η̃ (t0) ∈ ∂Aλ
3µ/2 for some t0 ∈ [0, T].

If (1) holds, we have Ψ(η̃(t)) ≡ 1 and
∥∥Φ′

λ(η̃(t))
∥∥

λ
≥ d̃λ for all t ∈ [0, T]. Hence, from (4.4),

we get

Φλ(η̃(T)) = Φλ (γ0(s)) +
∫ T

0

d

ds
Φλ(η̃(s))ds

= Φλ (γ0(s))−
∫ T

0
Ψ(η̃(s))

∥∥Φ′
λ(η̃(s))

∥∥
λ

ds

≤ cΓ −
∫ T

0
d̃λds

= cΓ − d̃λT

= cΓ −
1

2
σ0µ

≤ cΓ −
1

2
τ0µ.

If (2) holds, there exists 0 ≤ t1 ≤ t2 ≤ T such that

η̃ (t1) ∈ ∂Aλ
u , (4.8)

η̃ (t2) ∈ ∂Aλ
3µ/2, (4.9)

η̃(t) ∈ Aλ
3µ/2 \ Aλ

u , for all t ∈ [t1, t2] .

It follows from (4.9)

‖η̃ (t2)‖λ,R3\Ω′
Γ
=

3µ

2
,

or ∣∣∣Φλ,Ω′
j0
(η̃ (t2))− cj0

∣∣∣ = 3µ

2
,

for some j0 ∈ Γ.

Now we consider the later case, the former case can be obtained in a similar way. By (4.8),

∣∣∣Φλ,Ω′
j0
(η̃ (t1))− cj0

∣∣∣ ≤ µ,

thus, we obtain

∣∣∣Φλ,Ω′
j0
(η̃(t2))− Φλ,Ω′

j0
(η̃(t1))

∣∣∣ ≥
∣∣∣Φλ,Ω′

j0
(η̃ (t2))− cj0

∣∣∣−
∣∣∣Φλ,Ω′

j0
(η̃ (t1))− cj0

∣∣∣ ≥ 1

2
µ.

On the other hand, by the mean value theorem, there exists t3 ∈ (t1, t2) such that

∣∣∣Φλ,Ω′
j0
(η̃(t2))− Φλ,Ω′

j0
(η̃(t1))

∣∣∣ =
∣∣∣∣Φ

′
λ,Ω′

j0

·
dη̃

dt
(t3)

∣∣∣∣ (t2 − t1).

Moreover, from (4.6) and (4.7), we have

t2 − t1 ≥
µ

2ρ0
.
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Hence, we obtain

Φλ(η̃(T)) = Φλ (γ0(s)) +
∫ T

0

d

ds
Φλ(η̃(s))ds

= Φλ (γ0(s))−
∫ T

0
Ψ(η̃(s))

∥∥Φ′
λ(η̃(s))

∥∥
λ

ds

≤ cΓ −
∫ t2

t1

Ψ(η̃(s))
∥∥Φ′

λ(η̃(s))
∥∥

λ
ds

= cΓ − σ0(t2 − t1)

≤ cΓ −
1

2
τ0µ,

and so (4.7) is proved. Now we recall that η̃(T) = η(T, γ0(0)) ∈ Λ∗, thus

bλ,Γ ≤ Φλ(η̃(T)) ≤ max

{
m0, cΓ −

1

2
τ0µ

}
,

which contradicts the fact that bλ,Γ → cΓ as λ → ∞.

Proof of Theorem 1.1. From Proposition 4.5, there exists a nontrivial solutions uλ to problem

(3.3) such that uλ ∈ Aλ
µ ∩ Φ

cΓ

λ , for all λ ≥ λ∗. So, using the proof of Proposition 3.6, we can

derive that

‖uλ‖
2
L∞(R3\Ω′

Γ)
≤ a, ∀λ ≥ λ∗,

which shows that uλ is a nontrivial solution to the original problem (1.4).

Moreover, for any given sequence (λn) with λn → +∞, up to a subsequence if necessary,

it is easy to show that (uλn) is a (PS)∞ sequence. Hence, by Proposition 3.5, we obtain

uλn
→ u in H1

A

(
R

3, C
)

with u ∈ H0,1
A (ΩΓ, C) , u ≡ 0 in R

3 \ ΩΓ,

and the restriction u |Ωj
is a least energy solution of




−(∇+ iA(x))2u + u +

(
1

4π

∫
Ωj

|u(y)|2

|x−y|
dy
)

u = α f (|u|2)u + |u|4u, x ∈ Ωj,

u ∈ H0,1
A

(
Ωj

)
,

where j ∈ Γ. We complete the proof of Theorem 1.1.
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[41] L. Zhao, F. Zhao, Positive solutions for Schrödinger–Poisson equations with a critical ex-

ponent, Nonlinear Anal. 70(2009), 2150–2164. https://doi.org/10.1016/j.na.2008.02.

116; MR2498302; Zbl 1156.35374

[42] A. Q. Zhu, X. M. Sun, Multiple solutions for Schrödinger–Poisson type equation with

magnetic field, J. Math. Phys. 56(2015), 091504, 15 pp. https://doi.org/10.1063/1.

4929571; MR3392243; Zbl 1329.35297



Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 22, 1–15; https://doi.org/10.14232/ejqtde.2022.1.22 www.math.u-szeged.hu/ejqtde/

Weak center for a class of Λ–Ω differential systems

Zhengxin ZhouB

School of Mathematical Sciences, Yangzhou University, China

Received 30 July 2021, appeared 12 May 2022

Communicated by Gabriele Villari

Abstract. In this paper, we give the necessary and sufficient conditions for a class of
higher degree polynomial systems to have a weak center. As corollaries, we prove
the correctness of the two conjectures about the weak center problem for the Λ–Ω

differential systems.

Keywords: weak center, Λ–Ω system, composition center, center conditions.

2020 Mathematics Subject Classification: 34C07, 34C05, 34C25, 37G15.

1 Introduction

Consider differential system of the form

{

x′ = −y + P,

y′ = x + Q,
(1.1)

where P = ∑
m
k=2 Pk(x, y) and Q = ∑

m
k=2 Qk(x, y), Pk and Qk are homogeneous polynomials

in x and y of degree k . The equilibrium point O(0, 0) is a center if there exists an open

neighborhood U of O where all the orbits contained in U/O are periodic. The center-focus

problem asks about the conditions on the coefficients of P and Q under which the origin

of system (1.1) is a center. The study of the centers of analytical or polynomial differential

system (1.1) has a long history. The first works are due to Poincaré [13] and Dulac [8], and

continued by Liapunov [9] and many others. Unfortunately, the center-focus problem has

been solved only for quadratic system and some special cubic system and others [2, 6, 7, 12].

Up to now, very little is known about the center conditions for polynomial differential system

with arbitrary degree m (m > 2).

A center of (1.1) is called a weak center if the Poincaré–Liapunov first integral can be writ-

ten as H = 1
2 (x2 + y2)(1 + h.o.t.). By literature [10, 11] we know that a center of a polynomial

differential system (1.1) is a weak center if and only if it can be written as

{

x′ = −y(1 + Λ) + xΩ,

y′ = x(1 + Λ) + yΩ,
(1.2)

BCorresponding author. Email: zxzhou@yzu.edu.cn
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where Λ = Λ(x, y) and Ω = Ω(x, y) are polynomials of degree at most m − 1 such that

Λ(0, 0) = Ω(0, 0) = 0. The weak centers contain the uniform isochronous centers and the

holomorphic isochronous centers [10], they also contain the class of centers studied by Alwash

and Lloyd [5], but they do not coincide with all classes of isochronous centers [10].

The class of differential system (1.2) is called the Λ–Ω system. The reason of called such

system in this way is due to the fact that a subclass of these systems already appears in physics

[11].

In [11] the authors put forward such conjectures:

Conjecture 1.1. The polynomial differential system of degree m

{

x′ = −y(1 + µ(a2x − a1y)) + x((a1x + a2y) + Φm−1),

y′ = x(1 + µ(a2x − a1y)) + y((a1x + a2y) + Φm−1),
(1.3)

where (µ + m − 2)(a2
1 + a2

2) 6= 0 and Φm−1 = Φm−1(x, y) is a homogeneous polynomial of degree

m − 1, has a weak center at the origin if and only if system (1.3) after a linear change of variables

(x, y) → (X, Y) is invariant under the transformations (X, Y, t) → (−X, Y,−t).

Conjecture 1.2. The polynomial differential system of degree m

{

x′ = −y(1 + a1x + a2y) + xΦm−1,

y′ = x(1 + a1x + a2y) + yΦm−1

(1.4)

has a weak center at the origin if and only if system (1.4) after a linear change of variables (x, y) →

(X, Y) is invariant under the transformations (X, Y, t) → (−X, Y,−t).

The authors of [11] have used Poincaré–Liapunov first integral and Reeb inverse integrat-

ing factor to prove that Conjecture 1.1 and Conjecture 1.2 are correct when m = 2, 3, 4, 5, 6.

They remarked that the only difficulty for proving Conjectures 1.1 and 1.2 for the Λ–Ω sys-

tem of degree m with m > 6 is the huge number of computations for obtaining the conditions

that characterize the centers.

In this paper we will research the weak center problem of the Λ–Ω system

{

x′ = −y(1 + µ(a2x − a1y)) + x(ν(a1x + a2y) + Λm−1 + Ω2m−1),

y′ = x(1 + µ(a2x − a1y)) + y(ν(a1x + a2y) + Λm−1 + Ω2m−1),
(1.5)

in which m > 2 and (µ2 + ν2)(µ + ν(m − 2))(a2
1 + a2

2) 6= 0, Λm−1 = Λm−1(x, y), Ω2m−1 =

Ω2m−1(x, y) are respectively homogeneous polynomials of degree m − 1 and 2m − 1. In the

section 3 we will see that by suitable transformation this system can be transformed into

{

x′ = −y(1 − µy) + x(νx + Φm−1 + Ψ2m−1),

y′ = x(1 − µy) + y(νx + Φm−1 + Ψ2m−1).
(1.6)

In the following we use a method different from Llibre [11] and more simply, without huge

number of computation, to prove that for system (1.6), under several restrictive conditions, it

has a weak center at the origin if and only if

∫ 2π

0
sini θ Φm−1(cos θ, sin θ)dθ = 0 (i = 0, 1, 2, . . . , m − 1) (1.7)
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and
∫ 2π

0
sinj θ Ψ2m−1(cos θ, sin θ)dθ = 0 (j = 0, 1, 2, . . . , 2m − 1). (1.8)

As corollaries, we also show that for arbitrary m (> 2), Conjecture 1.1 with µ = 1 and Conjec-

ture 1.2 are correct; When µ 6= 1 under several restrictive conditions Conjecture 1.1 is correct,

too.

2 Several lemmas

In polar coordinates, the system (1.1) becomes

dr

dθ
=

∑
m
k=2 Ak(θ)r

k

1 + ∑
m
k=2 Bk(θ)rk−1

,

where

Ak(θ) = cos θPk(cos θ, sin θ) + sin θQk(cos θ, sin θ),

Bk(θ) = cos θQk(cos θ, sin θ)− sin θPk(cos θ, sin θ).

By [3, 4], the composition condition is satisfied if there exists a trigonometric polynomial

u(θ) such that

Ak(θ) = u′(θ)∑ akju
j(θ), Bk(θ) = ∑ bkju

j(θ) (k = 2, 3, . . . , m), (2.1)

where akj, bkj are real numbers.

Lemma 2.1 ([4]). If the conditions (2.1) are satisfied, then the origin point of (1.1) is a center and this

center is called composition center.

Lemma 2.2 ([14]). If

Pn = ∑
i+j=n

pij cosi θ sinj θ, pij ∈ R,

P̂1 = p10 sin θ − p01 cos θ, p2
10 + p2

01 6= 0

and
∫ 2π

0
P̂k

1 Pndθ = 0 (k = 0, 1, 2, . . . , n),

then

Pn = P1

n

∑
i=1

λi P̂
i−1
1 ,

where λi (i = 1, 2, . . . , n) are real numbers.

Lemma 2.3. Let Φm−1(x, y) = ∑i+j=m−1 φijx
iyj (φij ∈ R). If relation (1.7) holds, then

Φm−1(cos θ, sin θ) = cos θ
m−1

∑
i=1

λi sini−1 θ,

where λi (i = 1, 2, . . . , m − 2) are real numbers and

λm−1 =
[m−2

2 ]

∑
i=0

(−1)iφ2i+1 m−2−2i. (2.2)



4 Z. Zhou

Proof. In Lemma 2.2, taking P1 = cos θ, P̂1 = sin θ we get

Φm−1(cos θ, sin θ) = cos θ
m−1

∑
i=1

λi sini−1 θ,

thus

Φm−1(x, y) = ∑
i+j=2n

φijx
iyj = x

n

∑
i=1

λ2iy
2i−1(x2 + y2)n−i, m − 1 = 2n;

Φm−1(x, y) = ∑
i+j=2n+1

φijx
iyj = x

n

∑
i=0

λ2i+1y2i(x2 + y2)n−i, m − 1 = 2n + 1.

Equating the corresponding coefficients of the same power of x, y, we obtain

λm−1 =
n−1

∑
i=0

(−1)iφ2i+1 2(n−i)−1, m − 1 = 2n;

λm−1 =
n

∑
i=0

(−1)iφ2i+1 2(n−i), m − 1 = 2n + 1.

Therefore, the conclusion of the present lemma is valid.

By this lemma, it is easy to deduce the following conclusion.

Lemma 2.4. Let Φm−1(x, y) be a homogeneous polynomial of degree m − 1. Then it can be written as

Φm−1(x, y) = xΦ̌(x2 + y2, y)

if and only if the relation (1.7) holds. Where Φ̌ is a polynomial on x2 + y2 and y.

3 Main results

As a2
1 + a2

2 6= 0, taking the linear change:

X = a1x + a2y, Y = −a2x + a1y, (3.1)

the system (1.5) becomes

{

X′ = −Y(1 − µY) + X(νX + Φm−1 + Ψ2m−1),

Y′ = X(1 − µY) + Y(νX + Φm−1 + Ψ2m−1),

where Φm−1 = Λm−1

( a1X−a2Y
a2

1+a2
2

, a1Y+a2X
a2

1+a2
2

)

, Ψ2m−1 = Ω2m−1

( a1X−a2Y
a2

1+a2
2

, a1Y+a2X
a2

1+a2
2

)

, and they are re-

spectively homogeneous polynomials of degree m − 1 and 2m − 1.

Obviously, if Φm−1 = XΦ̆m−1(X2 + Y2, Y), Ψ2m−1 = XΨ̆2m−1(X2 + Y2, Y), then the Λ–Ω

system (1.5) after a linear change of variables (x, y) → (X, Y) is invariant under the transfor-

mations (X, Y, t) → (−X, Y,−t). By Lemma 2.4, in order to find the necessary and sufficient

conditions for (1.5) to have a weak center, only need to seek the conditions under which the

identities (1.7) and (1.8) are valid.

Case A. If ν 6= 0, applying the transformation X = 1
ν x, Y = 1

ν y, we get
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{

x′ = −y(1 − µ̂y) + x(x + Φ̂m−1 + Ψ̂2m−1),

y′ = x(1 − µ̂y) + y(x + Φ̂m−1 + Ψ̂2m−1),

where µ̂ = µ
ν , Φ̂m−1 = 1

νm−1 Φm−1(x, y), Ψ̂2m−1 = 1
ν2m−1 Ψ2m−1(x, y). Thus, if the identities (1.7)

and (1.8) are valid, then replacing Φm−1 and Ψ2m−1 by Φ̂m−1 and Ψ̂2m−1 respectively, these

identities also hold.

Case 1. ν 6= 0, µ̂ = 1.

Consider the Λ–Ω system

{

x′ = −y(1 − y) + x(x + Φm−1 + Ψ2m−1),

y′ = x(1 − y) + y(x + Φm−1 + Ψ2m−1).
(3.2)

Theorem 3.1. Suppose that

∏
m−1≤k≤2m−3

Lk 6= 0; (3.3)

L2m−2 +
m(2m − 1)

2(m − 1)2
λ2

m−1 6= 0; (3.4)

L2m−1 +

(

2d1 + e1
m(m + 1)

(m − 1)2

)

λ2
m−1 6= 0, (3.5)

where λm−1 is expressed by (2.2),

Lk := ek +
k−m+1

∑
i=0

k + 1 − 2i

m − 1 + i
diek−m+1−iλm−1 (k = m − 1, m, . . . , 2m − 1),

dk = (m − 1)
(m + k − 1)k−1

k!
, ek = (2m − 1)

(2m + k − 1)k−1

k!

(k = 1, 2, 3, . . . ), d0 = 1, e0 = 1.

(3.6)

Then the origin point of (3.2) is a center if and only if (1.7) and (1.8) hold.

Moreover, this center is a composition center and weak center.

Proof. In polar coordinates, the system (3.2) can be written as

dr

dθ
=

r2 cos θ + Φm−1rm + Ψ2m−1r2m

1 − r sin θ
,

where Φm−1 = Φm−1(cos θ, sin θ), Ψ2m−1 = Ψ2m−1(cos θ, sin θ).

Taking ρ = r
er sin θ , the above equation becomes

dρ

dθ
= ρme(m−1)r sin θΦm−1 + ρ2me(2m−1)r sin θΨ2m−1. (3.7)

Now we recall the Langrange–Bürman formula [1]. If real or complex w and z satisfy that

w = z
φ(z)

, where φ(0) = 1 and φ(z) is analytic at z = 0, then in a neighborhood of w = 0, the

analytic function F(z) can be expressed as a power series:

F(z) = F(0) +
∞

∑
n=1

wn

n!

dn−1(F′(x)φn(x))

dxn−1

∣

∣

∣

∣

x=0

,

which is analytic at w = 0.
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Applying the Langrange–Bürman formula we have

e(m−1)r sin θ = 1 + (m − 1)
∞

∑
n=1

(m + n − 1)n−1

n!
ρn sinn θ,

e(2m−1)r sin θ = 1 + (2m − 1)
∞

∑
n=1

(2m + n − 1)n−1

n!
ρn sinn θ.

Thus the equation (3.7) can be written as

dρ

dθ
= Φm−1

∞

∑
n=0

dnρm+n sinn θ + Ψ2m−1

∞

∑
n=0

enρ2m+n sinn θ, (3.8)

where dn, en (n = 0, 1, 2, . . . ) are expressed by (3.6).

Therefore, the system (3.2) has a center at (0, 0) if and only if all the solutions ρ(θ) of

equation (3.8) near ρ = 0 are periodic [2].

Let ρ(θ, c) be the solution of (3.8) such that ρ(0, c) = c (0 < c ≪ 1). We write

ρ(θ, c) = c
∞

∑
n=0

an(θ)c
n,

where a0(0) = 1 and an(0) = 0 for n ≥ 1. The origin point of (3.2) is a center if and only if

ρ(θ + 2π, c) = ρ(θ, c), i.e., a0(2π) = 1, an(2π) = 0 (n = 1, 2, 3, . . . ) [5].

Substituting ρ(θ, c) into (3.8) we obtain

c
∞

∑
i=0

a′i(θ)c
n=Φm−1

∞

∑
n=0

dn sinn θ

(

c
∞

∑
i=0

ai(θ)c
i

)m+n

+ Ψ2m−1

∞

∑
n=0

en sinn θ

(

c
∞

∑
i=0

ai(θ)c
i

)2m+n

. (3.9)

Equating the corresponding coefficients of cn of (3.9) yields

a0(θ) = 1, ai(θ) = 0, (i = 1, 2, . . . , m − 2).

Rewriting

ρ = c(1 + cm−1h), h =
∞

∑
i=0

hi(θ)c
i, hi(0) = 0, (i = 0, 1, 2 . . . .).

Substituting it into (3.8) we get

∞

∑
k=0

h′k(θ)c
k = Φm−1

∞

∑
k=0

dkck sink θ
m+k

∑
j=0

C
j
m+khjc(m−1)j (3.10)

+ Ψ2m−1

∞

∑
k=0

ekcm+k sink θ
2m+k

∑
j=0

C
j
2m+khjc(m−1)j, hk(0) = 0 (k = 0, 1, 2, . . . ).

In the following we denote

gk = dk sink θ Φm−1, βk = ek sink θ Ψ2m−1, (k = 0, 1, 2, . . . .), (3.11)

where

sink θ Φm−1 =
∫ θ

0
sink θΦm−1dθ, sink θ Ψ2m−1 =

∫ θ

0
sink θΨ2m−1dθ.
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Equating the corresponding coefficients of ck of the equation (3.10) we obtain

h′k = dk sink θ Φm−1, hk(0) = 0 (k = 0, 1, 2, . . . ., m − 2),

h′m−1 = Φm−1C1
mh0 + Φm−1dm−1 sinm−1 θ, hm−1(0) = 0,

solving these equations we get

hk(θ) = gk, (k = 0, 1, 2, . . . , m − 2),

hm−1(θ) = gm−1 + α0, α0 =
m

2
Φ̄2

m−1.

As dk 6= 0 (k = 0, 1, 2 . . . .), from hk(2π) = 0 (k = 0, 1, 2, . . . , m − 1) follow that

∫ 2π

0
sink θ Φm−1dθ = 0 (k = 0, 1, 2, . . . , m − 1),

i.e., the condition (1.7) is a necessary condition for ρ = 0 to be a center. By Lemma 2.3 which

implies that

Φm−1 = cos θ
m−1

∑
k=1

λk sink−1 θ, Φ̄m−1 =
∫ θ

0
Φm−1dθ =

m−1

∑
k=1

λk

k
sink θ, (3.12)

where λk (k = 1, 2, . . . , m − 1) are real numbers and λm−1 is expressed by (2.2).

Applying (3.12) we get

∫ 2π

0
sink θ Φm−1dθ = 0, gk = gk(sin θ), gk(2π) = 0 (k = 0, 1, 2, . . . .). (3.13)

Equating the corresponding coefficients of cm−1+k of the equation (3.10) we obtain

h′m−1+k = Φm−1

k

∑
i=0

di sini θC1
m+ihk−i + dm−1+k sinm−1+k θΦm−1 + ek−1 sink−1 θΨ2m−1,

hm−1+k(0) = 0 (k = 1, 2, . . . , m − 2),

solving these equations we get

hm−1+k(θ) = gm−1+k + αk + βk−1 (k = 1, 2, . . . , m − 2),

where gm−1+k and βk−1 are expressed by (3.11), αk is the solution of the following equation

α′
k = Φm−1

k

∑
i=0

didk−i sini θC1
m+isink−i θΦm−1, αk(0) = 0. (3.14)

By this we get: when k = 2n,

αk =
n−1

∑
i=0

didk−i

(

C1
m+isini θΦm−1 sink−i θΦm−1 + (C1

m+k−i − C1
m+i)sini θΦm−1 sink−i θΦm−1

)

+
1

2
d2

nC1
m+nsinn θΦm−1

2
; (3.15)
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when k = 2n + 1,

αk =
n

∑
i=0

didk−i

(

C1
m+isini θΦm−1 sink−i θΦm−1 + (C1

m+k−i − C1
m+i)sini θΦm−1 sink−i θΦm−1

)

.

(3.16)

By (3.13) we see that αk = αk(sin θ), αk(2π) = 0 (k = 0, 1, 2, 3, . . . ). Then from

hm−1+k(2π) = gm−1+k(2π) + αk(2π) + βk−1(2π) = 0 (k = 1, 2, . . . , m − 2)

imply that

βk(2π) = 0 (k = 0, 1, 2, . . . , m − 3),

in view of ek 6= 0 (k = 0, 1, 2 . . . .), so

∫ 2π

0
sink θΨ2m−1dθ = 0 (k = 0, 1, 2 . . . , m − 3). (3.17)

Equating the corresponding coefficients of c2m−2 of the equation (3.10) we get

h′2m−2 = Φm−1

m−1

∑
i=0

di sini θC1
m+ihm−1−i + Φm−1(C

1
mα0 + C2

mh2
0)

+ d2m−2 sin2m−2 θΦm−1 + em−2 sinm−2 θΨ2m−1, h2m−2(0) = 0,

by this we get

h2m−2(θ) = g2m−2 + αm−1 + βm−2 + δ0,

where

δ0 =
m(2m − 1)

6
Φ̄3

m−1.

αm−1 is a solution of (3.14) with k = m − 1 and αm−1 = αm−1(sin θ). Thus, using (3.12) and

(3.13), from h2m−2(2π) = 0 follows that βm−2(2π) = 0, i.e.,

∫ 2π

0
sinm−2 θ Ψ2m−1dθ = 0. (3.18)

Equating the corresponding coefficients of c2m−2+k of the equation (3.10) we obtain

h′2m−2+k = Φm−1

m−1+k

∑
i=0

di sini θC1
m+ihm−1+k−i + Φm−1

k

∑
i=0

di sini θC2
m+i ∑

j+l=k−i

hjhl

+ d2m−2+k sin2m−2+k θΦm−1 + em−2+k sinm−2+k θΨ2m−1

+ Ψ2m−1

k−1

∑
i=0

ei sini θC1
2m+ihk−1−i,

h2m−2+k(0) = 0 (k = 1, 2, . . . , m − 2),

solving these equations we get

h2m−2+k = g2m−2+k + αk+m−1 + βk+m−2 + δk + εk−1 (k = 1, 2, . . . , m − 2),

where αk+m−1 is a solution of (3.14), δk and εk−1 are the solutions of the following equations,

respectively,

δ′k = Φm−1

(

k

∑
i=0

di sini θC1
m+iαk−i +

k

∑
i=0

C2
m+idi sini θ ∑

j+l=k−i

hlhj

)

,
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ε′k−1 = Φm−1

k−1

∑
i=0

C1
m+idi sini θβk−1−i + Ψ2m−1

k−1

∑
i=0

ei sini θC1
2m+igk−1−i. (3.19)

By (3.12) and (3.13) we see that δk = δk(sin θ) and δk(2π) = 0.

Solving (3.19) we get

εk−1 =
k−1

∑
i=0

diek−1−i

(

C1
m+isini θΦm−1 sink−1−i θΨ2m−1

+ (C1
2m+k−1−i − C1

m+i)sini θΦm−1 sink−1−i θΨ2m−1

)

. (3.20)

Therefore, from h2m−2+k(2π) = 0 (k = 1, 2, . . . , m − 2) implies that

βk+m−2(2π) + εk−1(2π) = 0 (k = 1, 2, . . . , m − 2),

simplifying this relation by using (3.17) and (3.18), (3.20) and (3.12) we get

(

ek +
k−m+1

∑
i=0

k + 1 − 2i

m − 1 + i
diek−m+1−iλm−1

)

∫ 2π

0
sink θΨ2m−1dθ = Lk

∫ 2π

0
sink θΨ2m−1dθ = 0,

(k = m − 1, m, . . . , 2m − 4).

By the hypothesis (3.3), Lk 6= 0, so

∫ 2π

0
sink θΨ2m−1dθ = 0 (k = m − 1, m, . . . , 2m − 4). (3.21)

Equating the corresponding coefficients of c3m−3 of the equation (3.10) we obtain

h3m−3 = g3m−3 + α2m−2 + β2m−3 + δm−1 + εm−2,

where α2m−2 is a solution of (3.14) with k = 2m− 2 and α2m−2 = α2m−2(sin θ), εm−2 is expressed

by (3.20) with k = m − 1, δm−1 is a solution of the following equation

δ′m−1=Φm−1

(m−1

∑
i=0

di sini θC1
m+iαm−1−i +

m−1

∑
i=0

C2
m+idi sini θ ∑

j+l=m−1−i

gl gj+C1
mδ0+2C2

mh0α0+C3
mh3

0

)

.

By (3.12) and (3.13) we see that gk = gk(sin θ) (k = 0, 1, 2, . . . , m − 1) and δm−1 = δm−1(sin θ).

Thus, from h3m−3(2π) = 0 follows that

β2m−3(2π) + εm−2(2π) = 0,

simplifying this relation by using (3.17) and (3.18) and (3.21), (3.20) and (3.12) we get

L2m−3

∫ 2π

0
sin2m−3 θΨ2m−1dθ = 0,

as L2m−3 6= 0,
∫ 2π

0
sin2m−3 θΨ2m−1dθ = 0. (3.22)

Equating the corresponding coefficients of c3m−2 of the equation (3.10) we obtain
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h3m−2(θ) = g3m−2 + α2m−1 + β2m−2 + δm + εm−1 + η0,

where α2m−1 is a solution of (3.14) with k = 2m − 1, εm−1 is a solution of (3.19) with k = m, δm

is a solution of the following equation

δ′m = Φm−1

(

m

∑
i=0

di sini θC1
m+iαm−i +

m

∑
i=0

di sini θC2
m+i ∑

j+l=m−i

gjgl

)

+ Φm−1(C
1
mδ1 + d1 sin θC1

m+1δ0 + C2
m(2h0α1 + 2h1α0) + 3C3

mh2
0h1 + d1 sin θC3

m+1h3
0),

by (3.12) and (3.13) we see that δm = δm(sin θ). η0 is a solution of equation

η′
0 = Φm−1(C

1
mε0 + 2C2

mh0β0) + Ψ2m−1(C
2
2mh2

0 + C1
2mα0),

solving this we get

η0 =
1

2
m(m − 1)Φ̄2

m−1Ψ̄2m−1 + m2Φ̄m−1Φ̄m−1Ψ2m−1 +
2m2 − m

2
Φ̄2

m−1Ψ2m−1. (3.23)

Thus, from h3m−2(2π) = 0 follows that

β2m−2(2π) + εm−1(2π) + η0(2π) = 0,

calculating this relation by using (3.17) and (3.18) and (3.20)–(3.23) and (3.12) we get

(

L2m−2 +
2m2 − m

2(m − 1)2
λ2

m−1

)

∫ 2π

0
sin2m−2 Ψ2m−1dθ = 0,

in view of the condition (3.4) we have

∫ 2π

0
sin2m−2 θΨ2m−1dθ = 0. (3.24)

Equating the corresponding coefficients of c3m−1 of the equation (3.10) we obtain

h3m−1(θ) = g3m−1 + α2m + β2m−1 + δm+1 + εm + η1, (3.25)

where g3m−1, α2m, β2m−1 and εm are the same as above, δm+1 is a solution of the equation

δ′m+1 = Φm−1

( m+1

∑
i=0

di sini θC1
m+iαm+1−i +

m+1

∑
i=0

di sini θC2
m+i ∑

j+l=m+1−i

gjgl

+
2

∑
i=0

di sini θ

(

C1
m+iδ2−i + C2

m+i ∑
l+j=2−i

gjαi + C3
m+i ∑

l+j+k=2−i

gl gjgk

))

.

By (3.12) and (3.13) and αk = αk(sin θ) (k = 0, 1, 2 . . . ), δi = δi(sin θ) (i = 0, 1, 2), which imply

that δm+1 = δm+1(sin θ). η1 is a solution of the following equation

η′
1 = Φm−1(C

1
mε1 + d1 sin θC1

m+1ε0 + C2
m(2h0β1 + 2h1β0) + d1 sin θC2

m+12h0β0)

+ Ψ2m+1(C
2
2m2h0h1 + e1 sin θC2

2m+1h2
0 + C1

2m(α1 + β0) + e1 sin θC1
2m+1α0),



Weak center for a class of Λ–Ω differential systems 11

solving this equation we get

η1 = mΨ̄2
2m−1 + e1

((

m2 −
m

2

)

Φ̄2
m−1sin θΨ2m−1 + m(m + 1)Φ̄m−1Φ̄m−1 sin θΨ2m−1

+ m(m + 1)sin θΨ2m−1Φ̄2
m−1

)

+ d1

(

2m2Φ̄m−1 Ψ̄2m−1 sin θΦm−1 + m(m − 1)Φ̄m−1 sin θΦm−1Ψ2m−1

+ m(m + 1)sin θΦm−1 Φ̄m−1Ψ2m−1

+ 2mΨ̄2m−1Φ̄m−1Ψm−1 sin θ + 2(m2 − m)Φ̄m−1Ψ2m−1sin θΦm−1

)

. (3.26)

By (3.25) we see that if h3m−1(2π) = 0, then

β2m−1(2π) + εm(2π) + η1(2π) = 0,

simplifying this equation by using (3.17) and (3.18) and (3.20)–(3.24), (3.26) and (3.12) we get
(

L2m−1 +

(

2d1 + e1
m(m + 1)

(m − 1)2

)

λ2
m−1

)

∫ 2π

0
sin2m−1 θΨ2m−1dθ = 0,

by the hypothesis (3.5) we obtain
∫ 2π

0
sin2m−1 θΨ2m−1dθ = 0.

In summary, under the conditions (3.3)–(3.5), the (1.7) and (1.8) are the necessary condi-

tions for ρ = 0 to be a center of (3.2). Therefore, the necessity has been proved. On the other

hand, by Lemma 2.1 and Lemma 2.3, if the conditions (1.7) and (1.8) are satisfied, then ρ = 0 is

a center of equation (3.2), this means that the sufficiency is proved. By Lemma 2.3 this center

is a composition center, by Lemma 2.4 this center is a weak center.

Corollary 3.2. For arbitrary m (> 2), if µ = 1, then the origin point of (1.3) is a center if and only if

(1.7) is satisfied.

Proof. Under the linear change of variables (3.1) the system (1.3) becomes
{

x′ = −y(1 − y) + x(x + Φm−1),

y′ = x(1 − y) + y(x + Φm−1),

which in polar coordinates becomes

dr

dθ
=

r2 cos θ + Φm−1rm

1 − r sin θ
.

Taking ρ = r
er sin θ we get

dρ

dθ
= Φm−1ρm

∞

∑
n=0

dnρn sinn θ,

where d0 = 1, dn = 1
n! (m − 1)(m + n − 1)n−1, (n = 1, 2, 3, . . . ). Similar to Theorem 3.1, it can

be deduced that the solution ρ of this equation such that ρ(0) = c (0 < |c| ≪ 1) is

ρ = c + cm
m−2

∑
k=0

ckdksink θΦm−1 + c2m−1
(

dm−1sinm−1 θΦm−1 +
m

2
Φ̄2

m−1

)

+ o(c2m−1).

As dn 6= 0 (n = 0, 1, 2 . . . .), from ρ(2π) = c it follows that the condition (1.7) is satisfied. Using

Lemma 2.3 and Lemma 2.4, the conclusion of the present corollary is valid.
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Remark 3.3. By Corollary 3.2, when µ = 1, Conjecture 1.1 is correct for arbitrary m > 2.

Case 2. ν 6= 0, µ̂ 6= 1.

Consider Λ–Ω system

{

x′ = −y(1 − µ̂y) + x(x + Φm−1 + Ψ2m−1),

y′ = x(1 − µ̂y) + y(x + Φm−1 + Ψ2m−1).
(3.27)

Theorem 3.4. Suppose that

∏
1≤n≤m−1

d̃n 6= 0; ∏
m−1≤k≤2m−3

L̃k 6= 0;

L̃2m−2 +
m(2m − 1)

2(m − 1)2
λ2

m−1 6= 0;

L̃2m−1 +

(

2d̃1 + ẽ1
m(m + 1)

(m − 1)2

)

λ2
m−1 6= 0,

where λm−1 is expressed by (2.2),

L̃k := ẽk +
k−m+1

∑
i=0

k + 1 − 2i

m − 1 + i
d̃i ẽk−m+1−iλm−1, (k = m − 1, m, . . . , 2m − 1),

d̃n =
d̃1

n! ∏
0≤r≤n−2

(σ − r(1 − µ̂))

(n = 2, 3, . . . ), d̃0 = 1, d̃1 = m + µ̂ − 2, σ = n + m + 2µ̂ − 3; (3.28)

ẽn =
ẽ1

n! ∏
0≤r≤n−2

(ǫ − r(1 − µ̂))

(n = 2, 3, . . . ), ẽ0 = 1, ẽ1 = 2m + µ̂ − 2, ǫ = n + 2m + 2µ̂ − 3. (3.29)

Then the origin point of (3.27) is a center if and only if (1.7) and (1.8) hold.

Moreover, this center is a composition center and weak center.

Proof. In polar coordinates, the system (3.27) becomes

dr

dθ
=

r2 cos θ + Φm−1rm + Ψ2m−1r2m

1 − µ̂r sin θ
, (3.30)

where Φm−1 = Φm−1(cos θ, sin θ), Ψ2m−1 = Ψ2m−1(cos θ, sin θ).

Taking

ρ =
r

(1 + (1 − µ̂)r sin θ)
1

1−µ̂

,

the equation (3.30) can be written as

dρ

dθ
= ρmΦm−1(1 + (1 − µ̂)r sin θ)

m+µ̂−2
1−µ̂ + ρ2mΨ2m−1(1 + (1 − µ̂)r sin θ)

2m+µ̂−2
1−µ̂ . (3.31)
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Applying the Langrange–Bürman formula we have

(1 + (1 − µ̂)r sin θ)
m+µ̂−2

1−µ̂ =
∞

∑
n=0

d̃nρn sinn θ;

(1 + (1 − µ̂)r sin θ)
2m+µ̂−2

1−µ̂ =
∞

∑
n=0

ẽnρn sinn θ,

where d̃n, ẽn are expressed by (3.28), (3.29), respectively.

Substituting them into (3.31) we get

dρ

dθ
= Φm−1ρm

∞

∑
n=0

d̃nρn sinn θ + ρ2mΨ2m−1

∞

∑
n=0

ẽnρn sinn θ. (3.32)

Comparing the equations (3.8) and (3.32), we see that they have the same form, only with

different coefficients. Similar to Theorem 3.1, the present theorem can be derived.

Remark 3.5. When µ̂ = 0, from Theorem 3.4 implies the Theorem 3.1 of [15].

Corollary 3.6. If µ 6= 1 and d̂n = d̃n|µ̂=µ 6= 0 (n = 1, 2, . . . , m − 1) (m > 2), where d̃n (n =

1, 2, . . . , m − 1) is expressed by (3.28). Then the origin point of (1.3) is a center if and only if (1.7) is

satisfied.

Proof. Similar to Theorem 3.4, when Ψ2m−1 = 0, the equation (1.3) can be transformed as

following

dρ

dθ
= Φm−1ρm

∞

∑
n=0

d̂nρn sinn θ. (3.33)

Similar to Theorem 3.1, we get that the solution of (3.33) such that ρ(0) = c (0 < |c| ≪ 1) is

ρ = c + cm
m−2

∑
k=0

ckd̂ksink θΦm−1 + c2m−1
(

d̂m−1sinm−1 θΦm−1 +
m

2
Φ̄2

m−1

)

+ o(c2m−1).

As d̂n = d̃n|µ̂=µ 6= 0 (n = 1, 2 . . . , m − 1), d̃0 = 1, from ρ(2π) = c follows that the condition

(1.7) is satisfied. Using Lemma 2.4, the conclusion of the present corollary is valid.

Remark 3.7. By Corollary 3.6, if µ 6= 1, Conjecture 1.1 is valid when ∏1≤n≤m−1 d̂n 6= 0, (m > 2).

Case B. ν = 0, µ 6= 0.

Consider Λ–Ω system
{

x′ = −y(1 − µy) + x(Φm−1 + Ψ2m−1),

y′ = x(1 − µy) + y(Φm−1 + Ψ2m−1).
(3.34)

Theorem 3.8. Suppose that

∏
m−1≤k≤2m−3

L̂k 6= 0;

L̂2m−2 +
m(2m − 1)

2(m − 1)2
λ2

m−1 6= 0;

L̂2m−1 + µ

(

2 +
m(m + 1)

(m − 1)2

)

λ2
m−1 6= 0,

where λm−1 is expressed by (2.2), L̂k :=µk+µ1−m+k ∑
k−m+1
i=0

k+1−2i
m−1+i λm−1, (k=m−1, m, . . . , 2m−1).

Then the origin point of (3.34) is a center if and only if (1.7) and (1.8) hold.

Moreover, this center is a composition center and weak center.
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Proof. In polar coordinates, the system (3.34) becomes

dr

dθ
= Φm−1

∞

∑
n=0

µnrm+n sinn θ + Ψ2m−1

∞

∑
n=0

µnr2m+n sinn θ, (3.35)

where Φm−1 = Φm−1(cos θ, sin θ), Ψ2m−1 = Ψ2m−1(cos θ, sin θ).

Obviously, the equation (3.35) has the same form as (3.8), in Theorem 3.1 taking dk = ek =

µk (k = 0, 1, 2, . . . ), the present theorem can be derived directly.

Corollary 3.9. For arbitrary m > 2, the origin point of (1.4) is a center if and only if (1.7) is satisfied.

Proof. Under the linear changes of variables (3.1) the system (1.4) becomes

{

x′ = −y(1 − y) + xΦm−1,

y′ = x(1 − y) + yΦm−1.
(3.36)

In polar coordinates (3.36) can be written as

dr

dθ
= Φm−1

∞

∑
n=0

rm+n sinn θ. (3.37)

Similar to Theorem 3.1, we get that the solution of (3.37) such that r(0) = c (0 < |c| ≪ 1) is

r = c + cm
m−2

∑
i=0

sink θΦm−1 + c2m−1
(

sinm−1 θΦm−1 +
m

2
Φ̄2

m−1

)

+ o(c2m−1).

Obviously, from r(2π) = c follows that the condition (1.7) is satisfied. Using Lemma 2.4 the

conclusion of the present corollary is correct.

Remark 3.10. By Corollary 3.9, Conjecture 1.2 is valid for m > 2.

Remark 3.11. In the case of µ = ν = 0, m = 2 the center problem of system (1.5) has been

discussed by [14].
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Abstract. In this paper, we are concerned with some new first order differential equa-
tion defined on the whole real axis R. The principal part of the equation involves an
operator with variable exponent p depending on the variable x ∈ R through the un-
known solution while the nonlinear part involves the classical variable exponent p(x).
Such kind of situation is very related to the presence of the variable exponent and has
not been treated before. Our existence result of nontrivial solution cannot be reached
using standard variational or topological methods of nonlinear analysis and some so-
phisticated arguments have to be employed.
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1 Introduction and Statement of Main results

Nonlinear partial differential equations involving variable exponents have many applications

in physics. In fact, such equations are used as models to describe many phenomena aris-

ing in applied sciences. For instance, we can mention the study of materials with strong

inhomogeneities such as electrorheological fluids or thermo-rheological, image restoration,

phenomenon of elasticity or the continuum mechanics. See [5, 10, 15, 16, 22].

Actually, the observation of the image restoration process through some numerical tech-

niques has proved that considering the case of variable exponents depending on the solution

u (or its derivatives) reduces the noise of the restored image u. See [8,9,17]. The same situation

is observed when treating the problem of thermistor which describes the electric current in a

conductor that may change its properties in dependence of temperature (see [4]).

When we try to deal with a problem involving an exponent depending on the solution,

we are quickly faced with many obstacles which are essentially related to the theoretical well-

posedness of the problem itself. Indeed, such a problem is not standard because its weak

BEmail: sami.aouaoui@ismai.u-kairouan.tn



2 S. Aouaoui

formulation cannot be written as an equation in terms of duality in a fixed Banach space.

This is why, in the mathematical literature, one can find only few works devoted to the study

of elliptic and parabolic equations involving an exponent of the type p(u) with local and

nonlocal dependence of p on u. The first one is due to B. Andreianov, M. Bendahmane and S.

Ouaro who have considered in [1] the problem





u − div
(
|∇u|p(u)−2 ∇u

)
= f , in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is some bounded domain of R
N , N ≥ 2, f ∈ L1(Ω) and p : R → R is Lipschitz

continuous such that p− = infs∈R p(s) > N. Under the key restriction p− > N, the authors

proved that the problem (1.1) is well-posed in L1(Ω). By this way, using some approximation

method, they can establish the existence of so-called narrow and broad weak solution (defini-

tions related to the fact that the source f is integrable). The version of the problem (1.1) with

homogeneous Neumann boundary conditions has been treated in [14].

Recently, M. Chipot and H. B. de Oliveira proposed in [11] a new simple approach to deal

with a problem very similar to (1.1). More precisely, M. Chipot and H. B. de Oliveira studied

the problem 


−div

(
|∇u|p(u)−2 ∇u

)
= f , in Ω,

u = 0, on ∂Ω,
(1.2)

where Ω is a bounded domain of R
N , N ≥ 2 with smooth boundary, p : R → R is a Lipschitz

continuous function such that p− > N, and f ∈ W−1,(p−)′(Ω). The approach in [11] is mainly

based on a perturbation of the problem (1.2) and the use of Schauder’s fixed point theorem to

solve the approximated problem. Finally, a process of passage to the limit in the spirit of [23]

is carried out to prove the existence of a weak solution u of the problem (1.2) in the sense that

u ∈ W
1,p(u)
0 (Ω) and satisfies

∫

Ω

|∇u|p(u)−2 ∇u∇vdx = 〈 f , v〉 , ∀ v ∈ W
1,p(u)
0 (Ω).

The nonlocal version of (1.2) has been also considered in [11]. More precisely, the authors

studied the problem 


−div

(
|∇u|p(b(u))−2 ∇u

)
= f , in Ω,

u = 0, on ∂Ω,
(1.3)

where p is merely bounded continuous and satisfies that 1 < p− < p(s), ∀ s ∈ R, and

b : W
1,p−

0 (Ω) → R sends bounded sets of W
1,p−

0 (Ω) into bounded sets of R. Using the Brower’s

fixed point theorem applied to some compact interval of R, M. Chipot and H. B. de Oliveira

proved that (1.3) has at least one weak solution u in the sense that u ∈ W
1,p(b(u))
0 (Ω) and

satisfies ∫

Ω

|∇u|p(b(u))−2 ∇u∇vdx = 〈 f , v〉 , ∀ v ∈ W
1,p(b(u))
0 (Ω).

This work has been completed in [20] where the authors treated the case when f ∈ L1(Ω) for

which they prove the existence of an entropy solution. The work of M. Chipot and H. B. de

Oliveira has given a new impulse to the study of problems involving exponents depending
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on the unknown solution. In [2], S. Antontsev and S. Shmarev studied the homogeneous

Dirichlet problem for the parabolic equation

ut − div
(
|∇u|p[u]−2 ∇u

)
= f , in QT = Ω×]0, T[,

where Ω ⊂ R
N , N ≥ 2, is a smooth domain, p [u] = p(l(u)), p is a given differentiable func-

tion such that 2N
N+2 < p− ≤ p+ < 2, and sups∈R

|p′(s)| < +∞; l(u) =
∫

Ω
|u(x, t)|α dx, α ∈ [1, 2],

and f ∈ L(p−)′(QT). A result of existence and uniqueness of a solution u ∈ C0
(
[0, T]; L2(Ω)

)
,

|∇u|p[u] ∈ L∞
(
0, T; L1(Ω)

)
, ut ∈ L2(QT) has been proved. This result has been extended in

[3] to the case when the source f is replaced by the nonlinear term f ((x, t), u, l(u)), and in

[4] where the authors (together with I. Kuznetsov) treated the case when the exponent p is

depending on the gradient of u, i.e. when p[u] is replaced by p[∇u] = p(l(|∇u|)). The case of

unbounded domain has been considered in [7] where S. Aouaoui and A. E. Bahrouni studied

the equation

−div(w1(x) |∇u|p(u)−2 ∇u) + w0(x) |u|p(u)−2 u = f (x, u), x ∈ R
N , N ≥ 2,

where p : R → R is a Lipschitz continuous function such that N < p− < p+ < +∞; w0, w1 ∈

L1(RN) and f is a Carathéodory function having a polynomial growth with exponent lower

than p− − 1. A result of the existence of a nontrivial solution has been established.

The present work is a contribution in the same direction. Indeed, in this paper, we are

concerned with the following nonlinear differential equation:

−
(

w1(x)
∣∣u′
∣∣p(u)−2

u′
)′

+ w0(x) |u|p(u)−2 u = g(x) |u|p(x)−2 u, x ∈ R, (1.4)

where p : R → R is a Lipschitz continuous function such that

1 < p− = inf
s∈R

p(s) < p+ = sup
s∈R

p(s) < +∞.

The equation (1.4) is taken under the following assumptions:

(H1) We assume that there exists 0 < α < 1 such that p(α) = p+. Moreover, we assume that

the function x 7−→ xp(x)−1 is increasing on the interval [0, α].

(H2) w0, w1 ∈ L1(R) are such that

0 < sup
|x|≤R

w0(x) < +∞, 0 < inf
|x|≤R

w1(x) < +∞, ∀ R > 0.

We also assume that there exists a positive constant C0 > 0 such that

w1(x) ≤ C0w0(x), ∀ x ∈ R.

(H3) g ∈ L1(R), g(x) > 0, ∀ x ∈ R. We assume that

g(x) ≤ w0(x) ≤ g(x)αp(x)−p+ , ∀ x ∈ R,

where α is defined in (H1).
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A similar differential equation to (1.4) has been treated in [6] where the author dealt with the

nonlinear equation

− (
∣∣u′
∣∣p(x)−2

u′) + |u|p(x)−2 u = λϕ(x) |u|p(u)−2 u, x ∈ R, (1.5)

where p ∈ C1(R) is such that 2 < p− < p+ < +∞, λ is a positive parameter and ϕ ∈

C(R) ∩ L∞(R), ϕ(x) > 0, ∀ x ∈ R. Under some suitable additional conditions on p and

ϕ, the author used a variational method to prove the existence of a nontrivial solution to

(1.5). Comparing to (1.4), the problem (1.5) is easier because the exponent appearing in the

principal part depends directly on the variable x ∈ R and by consequence the solution has

been searched in the fixed classical variable exponent Sobolev space W1,p(x)(R).

Definition 1.1. A function u : R → R is said to be a weak solution to the equation (1.4) if it

satisfies that u ∈ L1
loc(R),

∫

R

w0(x) |u|p(u) dx < +∞,
∫

R

w1(x)
∣∣u′
∣∣p(u) dx < +∞,

and
∫

R

w1(x)
∣∣u′
∣∣p(u)−2

u′v′dx +
∫

R

w0(x) |u|p(u)−2 uvdx =
∫

R

g(x) |u|p(x)−2 uvdx, ∀ v ∈ Eu,

where

Eu =

{
v ∈ L1

loc(R),
∫

R

w0(x) |v|p(u) dx < +∞,
∫

R

w1(x)
∣∣v′
∣∣p(u) dx < +∞

}
.

The main result in this work is given by the following theorem.

Theorem 1.2. Assume that (H1), (H2) and (H3) hold. Then, there exists at least one weak nontrivial

and positive solution to the equation (1.4) in the sense of Definition 1.1.

Example 1.3. As an example of functions p, w0, w1 and g satisfying the hypotheses of Theo-

rem 1.2, one can choose

p(x) = k + e−(x− 1
2 )

2
, k ≥ 2, w0(x) = w1(x) = g(x) = e−x2

, x ∈ R.

2 Preliminaries

In this section, we study the functional space Eu. For u : R → R a fixed measurable function,

set q = p(u). In view of this notation, one can easily see that Eu is the weighted Sobolev space

with variable exponent

Eu =

{
v ∈ L1

loc(R),
∫

R

w0(x) |v|q(x) dx < +∞,
∫

R

w1(x)
∣∣v′
∣∣q(x)

dx < +∞

}
.

This space is equipped with the well known Luxemburg norm

‖u‖Eu
= inf

{
λ > 0,

∫

R

(
w1(x) |u′|q(x) + w0(x) |u|q(x)

λq(x)

)
dx ≤ 1

}
.
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Since w0, w1 ∈ L1
loc(R) and w

− 1
q(x)−1

0 , w
− 1

q(x)−1

1 ∈ L1
loc(R), then (Eu, ‖ · ‖Eu

) is a Banach, reflexive

and separable space (see [21]).

If v ∈ Eu, (vn)n ⊂ Eu, then the following relations hold true.

‖v‖Eu
< 1 ⇒ ‖v‖

q+

Eu
≤
∫

R

(
w1(x)

∣∣v′
∣∣q(x)

+ w0(x) |v|q(x)
)

dx ≤ ‖v‖
q−

Eu
,

‖v‖Eu
> 1 ⇒ ‖v‖

q−

Eu
≤
∫

R

(
w1(x)

∣∣v′
∣∣q(x)

+ w0(x) |v|q(x)
)

dx ≤ ‖v‖
q+

Eu
,

‖vn − v‖Eu
→ 0 ⇔

∫

R

(
w1(x)

∣∣v′n − v′
∣∣q(x)

+ w0(x) |vn − v|q(x)
)

dx → 0, n → +∞.

One of the most important properties of the space Eu is the density of the space of smooth

functions C∞

0 (R) in it with respect to the norm ‖ · ‖Eu
.

Proposition 2.1. Assume that u ∈ L1
loc(R), and satisfies

∫

R

w0(x) |u|p
−

dx < +∞, and
∫

R

w1(x)
∣∣u′
∣∣p− dx < +∞.

Then, C∞

0 (R) is dense in Eu.

Proof. The proof relies essentially on a truncation procedure. Let v ∈ Eu, ψ ∈ C∞

0 (R) with

0 ≤ ψ ≤ 1, ψ(x) = 1, if |x| ≤ 1, ψ(x) = 0, if |x| ≥ 2, and, for n ≥ 1 an integer, set

ψn(x) = ψ( x
n ) and vn = vψn. We claim that vn → v strongly in Eu. We have,

∫

R

w0(x) |vn − v|q(x) dx =
∫

R

w0(x) |1 − ψn(x)|q(x) |v|q(x) dx.

Since |1 − ψn(x)| → 0, ∀ x ∈ R and |1 − ψn(x)| ≤ 2, ∀ x ∈ R, ∀ n ≥ 1, then one can use the

Lebesgue’s dominated convergence theorem to deduce that

lim
n→+∞

∫

R

w0(x) |vn − v|q(x) dx = 0. (2.1)

On the other hand,
∫

R

w1(x)
∣∣v′n − v′

∣∣q(x)
dx

=
∫

R

w1(x)
∣∣(1 − ψn)v

′ − vψ′
n

∣∣q(x)
dx

≤ c0

∫

R

w1(x) |1 − ψn|
q(x) ∣∣v′

∣∣q(x)
dx + c0

∫

R

w1(x) |v|q(x)
(

1

n

)q(x) ∣∣∣ψ′
( x

n

)∣∣∣
q(x)

dx

≤ c0

∫

R

w1(x) |1 − ψn|
q(x) ∣∣v′

∣∣q(x)
dx + c0C0

∫

R

w0(x) |v|q(x)
(

1

n

)q(x) ∣∣∣ψ′
( x

n

)∣∣∣
q(x)

dx,

(2.2)

where we used the fact that w1(x) ≤ C0w0(x), ∀ x ∈ R. Plainly,

∫

R

w0(x) |v|q(x)
(

1

n

)q(x) ∣∣∣ψ′
( x

n

)∣∣∣
q(x)

dx → 0, n → +∞. (2.3)

Again by the virtue of the Lebesgue’s dominated convergence theorem, we get

lim
n→+∞

∫

R

w1(x) |1 − ψn|
q(x) ∣∣v′

∣∣q(x)
dx = 0. (2.4)
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By (2.4) and (2.3), we infer

lim
n→+∞

∫

R

w1(x)
∣∣v′n − v′

∣∣q(x)
dx = 0. (2.5)

Combining (2.5) and (2.1), it follows that vn → v strongly in Eu. Hence, for every ǫ > 0, there

exists n0 = n0(ǫ) ≥ 1 such that ‖vn0 − v‖Eu
≤ ǫ

2 . Now, taking into account that

0 < inf
|x|<2n0

w0(x) ≤ sup
|x|<2n0

w0(x) < +∞, and 0 < inf
|x|<2n0

w1(x) ≤ sup
|x|<2n0

w1(x) < +∞,

one can easily see that

{
w ∈ L1(]− 2n0, 2n0[),

∫ 2n0

−2n0

w0(x) |w|q(x) dx < +∞,
∫ 2n0

−2n0

w1(x)
∣∣w′
∣∣q(x)

dx < +∞

}

= W1,q(x)(]− 2n0, 2n0[).

We also see that u ∈ W1,p−(]− 2n0, 2n0[). Hence, u ∈ C([−2n0, 2n0]) and there exists a constant

C depending on p and ǫ such that

|u(x)− u(y)| ≤ C ‖u‖W1,p− (]−2n0,2n0[)
|x − y|

1− 1
p− , ∀ x, y ∈]− 2n0, 2n0[.

By hypothesis, there is a constant L > 0 such that

|p(u(x))− p(u(y))| ≤ L |u(x)− u(y)| , ∀ x, y ∈ R,

which implies that

|q(x)− q(y)| ≤ LC ‖u‖W1,p− (]−2n0,2n0[)
|x − y|

1− 1
p− , ∀ x, y ∈]− 2n0, 2n0[.

Therefore, q is log-Hölder continuous, that is, there is a constant C′
> 0 such that

|q(x)− q(y)| ≤
−C′

log |x − y|
, ∀ x, y ∈]− 2n0, 2n0[, |x − y| <

1

2
.

That result guarantees that C∞

0 (]−2n0, 2n0[) is dense in W1,q(x)(]−2n0, 2n0[)∩W1,1
0 (]−2n0, 2n0[)

(see [13, 21]). Having in mind that vn0 ∈ W1,q(x)(] − 2n0, 2n0[) ∩ W1,1
0 (] − 2n0, 2n0[), we can

conclude the proof of Proposition 2.1.

3 Proof of Theorem 1.2

For (x, s) ∈ R
2, set

f (x, s) =





g(x), if s ≥ 1,

g(x)sp(x)−1, if α ≤ s ≤ 1,

g(x)αp(x)−1, if s ≤ α.

Consider the weighted Sobolev space

W
1,p+

w0,w1
(R) =

{
u ∈ L1

loc(R),
∫

R

w0(x) |u|p
+

dx < +∞,
∫

R

w1(x)
∣∣u′
∣∣p+ dx < +∞

}
.

This space is naturally equipped with the norm

‖u‖
W

1,p+
w0,w1

(R)
=

(∫

R

(
w1(x)

∣∣u′
∣∣p+ + w0(x) |u|p

+
)

dx

) 1
p+

.
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Lemma 3.1. For each ǫ > 0, there exists a function uǫ ∈ W
1,p+

w0,w1
(R) such that

∫

R

w1(x)
∣∣u′

ǫ

∣∣p(uǫ)−2
u′

ǫv′dx +
∫

R

w0(x) |uǫ|
p(uǫ)−2 uǫvdx

+ ǫ

(∫

R

w1(x)
∣∣u′

ǫ

∣∣p+−2
u′

ǫv′dx +
∫

R

w0(x) |uǫ|
p+−2 uǫvdx

)

=
∫

R

f (x, uǫ)vdx, ∀ v ∈ W
1,p+

w0,w1
(R).

Proof. Let ǫ > 0 fixed. For w : R → R a measurable function, define the operator Aw :

W
1,p+

w0,w1
(R) → (W

1,p+

w0,w1
(R))∗ by

〈Awu, v〉 =
∫

R

w1

∣∣u′
∣∣p(w)−2

u′v′dx +
∫

R

w0 |u|
p(w)−2 uvdx

+ ǫ

(∫

R

w1

∣∣u′
∣∣p+−2

u′v′dx +
∫

R

w0 |u|
p+−2 uvdx

)
, u, v ∈ W

1,p+

w0,w1
(R).

Observe that Aw is well defined. In fact, for u, v ∈ W
1,p+

w0,w1
(R), we have

∣∣∣∣
∫

R

w1

∣∣u′
∣∣p(w)−2

u′v′dx +
∫

R

w0 |u|
p(w)−2 uvdx

∣∣∣∣

≤
∫

R

w1

∣∣u′
∣∣p(w)−1 ∣∣v′

∣∣ dx +
∫

R

w0 |u|
p(w)−1 |v| dx

≤
∫

R

w1

∣∣v′
∣∣ dx +

∫

R

w1

∣∣u′
∣∣p+−1 ∣∣v′

∣∣ dx +
∫

R

w0 |v| dx +
∫

R

w0 |u|
p+−1 |v| dx

≤ |w1|
p+−1

p+

L1(R)

(∫

R

w1

∣∣v′
∣∣p+ dx

) 1
p+

+

(∫

R

w1

∣∣u′
∣∣p+ dx

) p+−1

p+
(∫

R

w1

∣∣v′
∣∣p+ dx

) 1
p+

+ |w0|
p+−1

p+

L1(R)

(∫

R

w0 |v|
p+ dx

) 1
p+

+

(∫

R

w0 |u|
p+ dx

) p+−1

p+
(∫

R

w0 |v|
p+ dx

) 1
p+

.

Hence, for u fixed in W
1,p+

w0,w1
(R), the linear mapping v 7−→ 〈Awu, v〉 lies in the dual

(W
1,p+
w0,w1

(R))∗. Clearly, Aw is coercive and continuous. Moreover, Aw is strictly monotone,

i.e.

〈Awu1 − Awu2, u1 − u2〉 > 0, ∀ u1, u2 ∈ W
1,p+

w0,w1
(R), u1 6= u2.

On the other hand, for w : R → R measurable and v ∈ W
1,p+

w0,w1
(R), we have

∣∣∣∣
∫

R

f (x, w)vdx

∣∣∣∣ ≤
∫

w≥1
g(x) |v| dx +

∫

w≤α
g(x)αp(x)−1 |v| dx +

∫

α≤w≤1
g(x) |w|p(x)−1 |v| dx

≤
∫

R

g(x) |v| dx

=
∫

R

g(x)

w
1

p+

0

w
1

p+

0 |v| dx

≤



∫

R

(g(x))
p+

p+−1

w
1

p+−1

0

dx




p+−1

p+ (∫

R

w0 |v|
p+ dx

) 1
p+

.
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Thus, ( f (·, w)) ∈ (W
1,p+

w0,w1
(R))∗. By the virtue of the Minty–Browder theorem (see [19, Theo-

rem 26.A]), we deduce that there exists a unique element uw ∈ W
1,p+

w0,w1
(R) such that

Aw(uw) = f (·, w) in (W
1,p+

w0,w1
(R))∗.

That is

〈Awuw, v〉 =
∫

R

f (x, w)vdx, ∀ v ∈ W
1,p+

w0,w1
(R). (3.1)

Taking v = uw in (3.1), we infer

∫

R

w1(x)
∣∣u′

w

∣∣p(w)
dx +

∫

R

w0(x) |uw|
p(w) dx + ǫ

(∫

R

w1(x)
∣∣u′

w

∣∣p+ dx +
∫

R

w0(x) |uw|
p+ dx

)

=
∫

R

f (x, w)uwdx ≤
∫

R

g(x) |uw| dx.

Thus,

ǫ ‖uw‖
p+

W
1,p+
w0,w1

(R)
≤



∫

R

g(x)
p+

p+−1

w
1

p+−1

0

dx




p+−1

p+

‖uw‖
W

1,p+
w0,w1

(R)
.

Consequently, there exists a constant Cǫ depending on ǫ but independent of w such that

‖uw‖
W

1,p+
w0,w1

(R)
≤ Cǫ. (3.2)

Now, we claim that W
1,p+

w0,w1
(R) is compactly embedded in the weighted Lebesgue space

L
p−

w0
(R) =

{
u : R → R measurable,

∫

R

w0(x) |u|p
−

dx < +∞

}

equipped with the norm u 7−→ |u|
L

p−
w0

(R)
=
( ∫

R
w0(x) |u|p

−

dx
) 1

p− . For that aim, take a se-

quence (un)n ⊂ W
1,p+

w0,w1
(R) such that un ⇀ 0 weakly in W

1,p+

w0,w1
(R). We claim that, up to a

subsequence un → 0 strongly in L
p−

w0
(R). We have,

∫

R

w0(x) |un|
p− dx =

∫

R

(w0(x))
1− p−

p+ (w0(x))
p−

p+ |un|
p− dx. (3.3)

Observing that the sequence (w
p−

p+

0 |un|
p−)n is bounded in L

p+

p− (R) and, up to a subsequence,

is weakly convergent to 0 in L
p+

p− (R), and that w
1− p−

p+

0 ∈ L
p+

p+−p− (R), we can immediately see

from (3.3) that ∫

R

w0(x) |un|
p− dx → 0, n → +∞.

Let C1 > 0 be a positive constant such that

|u|
L

p−
w0

(R)
≤ C1 ‖u‖

W
1,p+
w0,w1

(R)
, ∀ u ∈ W

1,p+

w0,w1
(R). (3.4)

Set C̃ǫ = C1Cǫ, and K =
{

w ∈ L
p−

w0
(R), |w|

L
p−
w0

(R)
≤ C̃ǫ

}
the closed ball of L

p−

w0
(R) centered

at the origin and of radius C̃ǫ. Define the mapping T : K → K by Tw = uw given by (3.1).

In view of (3.2) and (3.4), it yields that T(K) ⊂ K. Moreover, since W
1,p−

w0,w1
(R) is compactly
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embedded in L
p−

w0
(R), we can easily show that T(K) is relatively compact. Observing that T

is continuous, then one can use the Schauder’s fixed point Theorem (see [18, Theorem 2.A])

to deduce the existence of w̃ ∈ K such that uw̃ = w̃. Consequently,
∫

R

w1(x)
∣∣u′

w̃

∣∣p(uw̃)−2
u′

w̃v′dx +
∫

R

w0(x) |uw̃|
p(uw̃)−2 uw̃vdx

+ ǫ

(∫

R

w1(x)
∣∣u′

w̃

∣∣p+−2
u′

w̃v′dx +
∫

R

w0(x) |uw̃|
p+−2 uw̃vdx

)

=
∫

R

f (x, uw̃)vdx, ∀ v ∈ W
1,p+

w0,w1
(R).

This concludes the proof of Lemma 3.1.

The completion of the proof of Theorem 1.2

Choosing ǫ = 1
n , n ≥ 1, in Lemma 3.1, we deduce that there exists un ∈ W

1,p+

w0,w1
(R) such that

∫

R

w1(x)
∣∣u′

n

∣∣p(un)−2
u′

nv′dx +
∫

R

w0(x) |un|
p(un)−2 unvdx

+
1

n

(∫

R

w1(x)
∣∣u′

n

∣∣p+−2
u′

nv′dx +
∫

R

w0(x) |un|
p+−2 unvdx

)

=
∫

R

f (x, un)vdx, ∀ v ∈ W
1,p+

w0,w1
(R).

(3.5)

Taking v = un as test function in (3.5), we get

∫

R

w1(x)
∣∣u′

n

∣∣p(un) dx +
∫

R

w0(x) |un|
p(un) dx +

1

n
‖un‖

p+

W
1,p+
w0,w1

(R)

=
∫

R

f (x, un)undx, ∀ n ≥ 1.

(3.6)

We have
∣∣∣∣
∫

R

f (x, un)undx

∣∣∣∣ ≤
∫

RN
g(x) |un| dx

≤



∫

R


 g(x)

(w0(x))
1

p−




p−

p−−1

dx




p−−1

p− (∫

R

w0(x) |un|
p− dx

) 1
p−

≤ c2

(∫

|un|≤1
w0(x) |un|

p− dx +
∫

|un|≥1
w0(x) |un|

p− dx

) 1
p−

≤ c2

(∫

R

w0(x) |un|
p(un) dx + |w0|L1(R)

) 1
p−

.

By (3.6), we infer

∫

R

w1(x)
∣∣u′

n

∣∣p(un) dx +
∫

R

w0(x) |un|
p(un) dx +

1

n
‖un‖

p+

W
1,p+
w0,w1

(R)
≤ c3, ∀ n ≥ 1. (3.7)

In particular, there exists a positive constant c4 > 0 (independent of n ) such that
∫

R

w1(x)
∣∣u′

n

∣∣p− dx +
∫

R

w0(x) |un|
p− dx ≤ c4, ∀ n ≥ 1. (3.8)
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Indeed, ∫

R

w1(x)
∣∣u′

n

∣∣p− dx =
∫

|u′
n|≥1

w1(x)
∣∣u′

n

∣∣p− dx +
∫

|u′
n|<1

w1(x)
∣∣u′

n

∣∣p− dx

≤
∫

|u′
n|≥1

w1(x)
∣∣u′

n

∣∣p(un) dx + |w1|L1(R)

≤
∫

R

w1(x)
∣∣u′

n

∣∣p(un) dx + |w1|L1(R) , ∀ n ≥ 1.

Similarly,

∫

R

w0(x) |un|
p− dx ≤

∫

R

w0(x) |un|
p(un) dx + |w0|L1(R) , ∀ n ≥ 1.

Hence, (3.8) immediately follows from (3.7). By the reflexivity of the weighted Sobolev space

W
1,p−

w0,w1
(R), there exists u ∈ W

1,p−

w0,w1
(R) such that, up to a subsequence, un ⇀ u weakly in

W
1,p−

w0,w1
(R) and un(x) → u(x) a.e. x ∈ R. Now, we claim that

∫

R

w1(x)
∣∣u′
∣∣p(u) dx +

∫

R

w0(x) |u|p(u) dx < +∞. (3.9)

For that aim, for x ∈ R and n ≥ 1, set qn(x) = p(un(x)) and q(x) = p(u(x)). For k > 0, set

vk =

{
qu |u|q−2 , if |u| ≤ k,

qkq−1 u
|u|

, if |u| > k.

By Young’s inequality, it yields

unvk ≤ |un|
qn +

qn − 1

q
q′n
n

|vk|
q′n , ∀ k > 0, ∀ n ≥ 1,

where q′n = qn

qn−1 . Thus,

∫

R

w0(x)unvkdx ≤
∫

R

w0(x) |un|
qn dx +

∫

R

w0(x)
qn − 1

q
q′n
n

|vk|
q′n dx, ∀ k > 0, ∀ n ≥ 1.

Tending n to +∞ and having (3.7) in mind, we get

∫

R

w0(x)uvkdx ≤ c3 +
∫

R

w0(x)
q − 1

qq′
|vk|

q′ dx.

Consequently,

∫

|u|≤k
w0(x)q |u|q dx +

∫

|u|>k
w0(x)qkq−1 |u| dx

≤ c3 +
∫

|u|≤k
w0(x)(q − 1) |u|q dx +

∫

|u|>k
w0(x)(q − 1)kqdx.

Thus, ∫

|u|≤k
w0(x) |u|q dx +

∫

|u|>k
w0(x)kqdx ≤ c3.

Passing to the limit as k tends to +∞ in that last inequality, we obtain

∫

R

w0(x) |u|q dx ≤ c3.
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Similarly, for k > 0, one can choose the function

ṽk =





qu′ |u′|q−2 , if |u′| ≤ k,

qkq−1 u′

|u′|
, if |u′| > k,

Using Young’s inequality and proceeding exactly as previously, we can easily show that

∫

|u′|≤k
w1(x)

∣∣u′
∣∣q dx ≤ c3, ∀ k > 0,

and after passing to the limit as k tends to +∞, we finally obtain

∫

R

w1(x)
∣∣u′
∣∣q dx ≤ c3.

Hence, the claim (3.9) holds. Let v ∈ W
1,p+

w0,w1
(R). We have

∫

R

w1(x)
(∣∣u′

n

∣∣p(un)−2
u′

n −
∣∣v′
∣∣p(un)−2

v′
)
(u′

n − v′)dx

+
∫

R

w0(x)
(
|un|

p(un)−2 un − |v|p(un)−2 v
)
(un − v)dx

+
1

n

∫

R

w1(x)
(∣∣u′

n

∣∣p+−2
u′

n −
∣∣v′
∣∣p+−2

v′
)
(u′

n − v′)dx

+
1

n

∫

R

w0(x)
(
|un|

p+−2 un − |v|p
+−2 v

)
(un − v)dx

≥ 0, ∀ n ≥ 1.

Thus,

∫

R

w1(x)

(∣∣u′
n

∣∣p(un)−2
u′

n +
1

n

∣∣u′
n

∣∣p+−2
u′

n

)
(u′

n − v′)dx

+
∫

R

w0(x)

(
|un|

p(un)−2 un +
1

n
|un|

p+−2 un

)
(un − v)dx

≥
∫

R

w1(x)

(∣∣v′
∣∣p(un)−2

v′ +
1

n

∣∣v′
∣∣p+−2

v′
)
(u′

n − v′)dx

+
∫

R

w0(x)

(
|v|p(un)−2 v +

1

n
|v|p

+−2 v

)
(un − v)dx.

By (3.5), it follows

∫

R

f (x, un)(un − v)dx ≥
∫

R

w1(x)

(∣∣v′
∣∣p(un)−2

v′ +
1

n

∣∣v′
∣∣p+−2

v′
)
(u′

n − v′)dx

+
∫

R

w0(x)

(
|v|p(un)−2 v +

1

n
|v|p

+−2 v

)
(un − v)dx.

(3.10)
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We have
∣∣∣∣
1

n

∫

R

w1(x)
∣∣v′
∣∣p+−2

v′(u′
n − v′)dx

∣∣∣∣

≤
1

n

∫

R

w1(x)
∣∣v′
∣∣p+−1 ∣∣(u′

n − v′)
∣∣ dx

≤
1

n

(∫

R

w1(x)
∣∣v′
∣∣p+ dx

) p+−1

p+
(∫

R

w1(x)
∣∣(u′

n − v′)
∣∣p+ dx

) 1
p+

=

(
1

n

) p+−1

p+
(

1

n

) 1
p+
(∫

R

w1(x)
∣∣v′
∣∣p+ dx

) p+−1

p+
(∫

R

w1(x)
∣∣(u′

n − v′)
∣∣p+ dx

) 1
p+

≤

(
1

n

) p+−1

p+
(

1

n
‖un − v‖

p+

W
1,p+
w0,w1

(R)

) 1
p+

‖v‖
p+−1

W
1,p+
w0,w1

(R)
.

(3.11)

By (3.7), we know that

sup
n≥1

(
1

n
‖un‖

p+

W
1,p+
w0,w1

(R)

)
< +∞.

Then, from (3.11), we deduce that

1

n

∫

R

w1(x)
∣∣v′
∣∣p+−2

v′(u′
n − v′)dx → 0, n → +∞. (3.12)

Similarly,
1

n

∫

R

w0(x) |v|p
+−2 v(un − v)dx → 0, n → +∞. (3.13)

We claim that
∫

R

f (x, un)(un − v)dx →
∫

R

f (x, u)(u − v)dx, n → +∞. (3.14)

First, note that f (x, un(x))(un(x)− v(x)) → f (x, u(x))(u(x)− v(x)), a.e. x ∈ R. Second, by

(H2), it yields

| f (x, un)(un − v)| ≤ g(x) |un − v| =
g(x)

(w0(x))
1

p−

(w0(x))
1

p− |un − v| , ∀ n ≥ 1.

Having in mind that (w0(x))
1

p− |un − v| ⇀ (w0(x))
1

p− |u − v| weakly in Lp−(R) and that g/w
1

p−

0

belongs to the dual of Lp−(R), it follows that
∫

R

g(x) |un − v| dx →
∫

R

g(x) |u − v| dx, n → +∞,

which implies that g(x) |un − v| → g(x) |u − v| strongly in L1(R) and by consequence, there

exists g1 ∈ L1(R) such that, up to a subsequence,

g(x) |un − v| ≤ g1(x), a.e. x ∈ R, ∀ n ≥ 1. (3.15)

Using (3.15), we can easily apply the Lebesgue’s dominated convergence theorem to deduce

(3.14). In view of (3.12), (3.13), and (3.14), from (3.10) we get that
∫

R

f (x, u)(u − v)dx ≥ lim
n→+∞

∫

R

w1(x)
∣∣v′
∣∣p(un)−2

v′(u′
n − v′)dx

+ lim
n→+∞

∫

R

w0(x) |v|p(un)−2 v(un − v)dx.
(3.16)
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Now, observe that

∫

R

w1(x)
∣∣v′
∣∣p(un)−2

v′(u′
n − v′)dx =

∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′(u′
n − v′)dx (3.17)

+
∫

R

w1(x)
(∣∣v′

∣∣p(un)−2
v′ −

∣∣v′
∣∣p(u)−2

v′
)
(u′

n − v′)dx,

and
∫

R

w0(x) |v|p(un)−2 v(un − v)dx =
∫

R

w0(x) |v|p(u)−2 v(un − v)dx

+
∫

R

w0(x)
(
|v|p(un)−2 v − |v|p(u)−2 v

)
(un − v)dx.

(3.18)

Next, we introduce the functional subspace Z of W
1,p+

w0,w1
(R) defined by

Z =

{
v ∈ W

1,p+

w0,w1
(R),

∫

R

w1(x)
∣∣v′
∣∣ p−(p+−1)

p−−1 dx < +∞,
∫

R

w0(x) |v|
p−(p+−1)

p−−1 dx < +∞

}
.

For v ∈ Z and w ∈ W
1,p−

w0,w1
(R), we have

∣∣∣∣
∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′w′dx

∣∣∣∣

≤
∫

R

w1(x)
∣∣v′
∣∣p(u)−1 ∣∣w′

∣∣ dx

≤

(∫

R

w1(x)
∣∣v′
∣∣ p−(p(u)−1)

p−−1 dx

) p−−1

p−
(∫

R

w1(x)
∣∣w′
∣∣p− dx

) 1
p−

≤

(
|w1|L1(R) +

∫

|v′|≥1
w1(x)

∣∣v′
∣∣ p−(p+−1)

p−−1 dx

) p−−1

p−
(∫

R

w1(x)
∣∣w′
∣∣p− dx

) 1
p−

≤

(
|w1|L1(R) +

∫

R

w1(x)
∣∣v′
∣∣ p−(p+−1)

p−−1 dx

) p−−1

p−

‖w‖
W

1,p−
w0,w1

(R)
,

where

W
1,p−

w0,w1
(R) =

{
u ∈ L1

loc(R),
∫

R

w0(x) |u|p
−

dx < +∞,
∫

R

w1(x)
∣∣u′
∣∣p− dx < +∞

}
,

equipped with the norm

‖u‖
W

1,p−
w0,w1

(R)
=

(∫

R

(
w1(x)

∣∣u′
∣∣p− + w0(x) |u|p

−
)

dx

) 1
p−

.

Thus, the functional

w 7−→
∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′w′dx

belongs to the dual of W
1,p−

w0,w1
(R). The same result holds for the functional

w 7−→
∫

R

w0(x) |v|p(u)−2 vwdx.
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Since (un − v) ⇀ (u − v) weakly in W
1,p−

w0,w1
(R), then

∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′(u′
n − v′)dx +

∫

R

w0(x) |v|p(u)−2 v(un − v)dx

→
∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′(u′ − v′)dx +
∫

R

w0(x) |v|p(u)−2 v(u − v)dx.
(3.19)

Furthermore, we have
∣∣∣∣
∫

R

w1(x)
(∣∣v′

∣∣p(un)−2
v′ −

∣∣v′
∣∣p(u)−2

v′
)
(u′

n − v′)dx

∣∣∣∣

≤

(∫

R

w1(x)
∣∣∣
∣∣v′
∣∣p(un)−2

v′ −
∣∣v′
∣∣p(u)−2

v′
∣∣∣

p−

p−−1
dx

) p−−1

p−

×

(∫

R

w1(x)
∣∣(u′

n − v′)
∣∣p− dx

) 1
p−

≤ c5

(∫

R

w1(x)
∣∣∣
∣∣v′
∣∣p(un)−2

v′ −
∣∣v′
∣∣p(u)−2

v′
∣∣∣

p−

p−−1
dx

) p−−1

p−

.

(3.20)

Observe that

w1(x)
∣∣∣
∣∣v′
∣∣p(un)−2

v′ −
∣∣v′
∣∣p(u)−2

v′
∣∣∣

p−

p−−1

≤ w1(x)2
p−

p−−1
∣∣v′
∣∣ p−(p+−1)

p−−1 1{|v′|≥1} + w1(x)2
p−

p−−11{|v′|≤1}

≤ w1(x)2
p−

p−−1

(
1 +

∣∣v′
∣∣ p−(p+−1)

p−−1

)
.

Taking into account that, for a.e. x ∈ R, p(un(x)) → p(u(x)) as n → +∞, then we can apply

the Lebesgue’s dominated convergence theorem to get

∫

R

w1(x)
∣∣∣
∣∣v′
∣∣p(un)−2

v′ −
∣∣v′
∣∣p(u)−2

v′
∣∣∣

p−

p−−1
dx → 0, n → +∞.

By (3.20), it follows
∫

R

w1(x)
(∣∣v′

∣∣p(un)−2
v′ −

∣∣v′
∣∣p(u)−2

v′
)
(u′

n − v′)dx → 0, n → +∞. (3.21)

In a similar way, we have
∫

R

w0(x)
(
|v|p(un)−2 v − |v|p(u)−2 v

)
(un − v)dx → 0, n → +∞. (3.22)

Combining (3.21), (3.22), (3.17) and (3.18), we deduce that
∫

R

w1(x)
∣∣v′
∣∣p(un)−2

v′(u′
n − v′)dx +

∫

R

w0(x) |v|p(un)−2 v(un − v)dx

→
∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′(u′ − v′)dx +
∫

R

w0(x) |v|p(u)−2 v(u − v)dx.
(3.23)

Inserting (3.23) in (3.16), we infer
∫

R

f (x, u)(u − v)dx ≥
∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′(u′ − v′)dx

+
∫

R

w0(x) |v|p(u)−2 v(u − v)dx, ∀ v ∈ Z.
(3.24)
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In particular,
∫

R

f (x, u)(u − v)dx ≥
∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′(u − v)′dx

+
∫

R

w0(x) |v|p(u)−2 v(u − v)dx, ∀ v ∈ C∞

0 (R).
(3.25)

Next, observe that the function w 7−→
∫

R
w0(x) |u − w|p

−

is continuous on (Eu, ‖ · ‖Eu
). Tak-

ing into account that

∫

R

g(x) |u − w| dx ≤



∫

R


 g(x)

(w0(x))
1

p−




p−

p−−1

dx




p−−1

p− (∫

R

w0(x) |u − w|p
−

dx

) 1
p−

, ∀ w ∈ Eu,

then by (H2), we can deduce that the function

w 7−→
∫

R

f (x, u)(u − w)dx

is continuous on (Eu, ‖ · ‖Eu
). Using that fact together with Proposition 2.1, we can immedi-

ately see that the inequality (3.25) can be extended to the whole space Eu, i.e.
∫

R

f (x, u)(u − v)dx ≥
∫

R

w1(x)
∣∣v′
∣∣p(u)−2

v′(u′ − v′)dx

+
∫

R

w0(x) |v|p(u)−2 v(u − v)dx, ∀ v ∈ Eu.
(3.26)

For s > 0 and w ∈ Eu, choosing v = u − sw as test function in (3.26), it yields

s
∫

R

f (x, u)wdx ≥ s
∫

R

w1(x)
∣∣u′ − sw′

∣∣p(u)−2
(u′ − sw′)w′dx

+ s
∫

R

w0(x) |u − sw|p(u)−2 (u − sw)wdx.

Thus,

∫

R

f (x, u)wdx −
∫

R

w1(x)
∣∣u′ − sw′

∣∣p(u)−2
(u′ − sw′)w′dx

−
∫

R

w0(x) |u − sw|p(u)−2 (u − sw)wdx ≥ 0.

Tending s to 0+ in that last inequality, we obtain
∫

R

f (x, u)wdx ≥
∫

R

w1(x)
∣∣u′
∣∣p(u)−2

u′w′dx +
∫

R

w0(x) |u|p(u)−2 uwdx.

Clearly, the same inequality holds for (−w). Therefore,
∫

R

w1(x)
∣∣u′
∣∣p(u)−2

u′w′dx +
∫

R

w0(x) |u|p(u)−2 uwdx =
∫

R

f (x, u)wdx, ∀ w ∈ Eu. (3.27)

In order to conclude the proof of Theorem 1.2, we need to prove that f (x, u(x)) =

g(x) |u|p(x)−2 u(x) a.e. x ∈ R. For that aim, we start by taking w = (u − 1)+ as test func-

tion in (3.27):
∫

R

w1(x)
∣∣u′
∣∣p(u)−2

u′((u − 1)+)′dx +
∫

R

w0(x) |u|p(u)−2 u(u − 1)+dx =
∫

R

f (x, u)(u − 1)+dx.
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Since ∫

R

w1(x)
∣∣u′
∣∣p(u)−2

u′((u − 1)+)′dx =
∫

u≥1
w1(x)

∣∣u′
∣∣p(u) dx ≥ 0,

by (H3) we get

∫

R

w0(x) |u|p(u)−2 u(u − 1)+dx ≤
∫

R

f (x, u)(u − 1)+dx

=
∫

u≥1
g(x)(u − 1)+dx ≤

∫

u≥1
w0(x)(u − 1)+dx.

Thus, ∫

u≥1
w0(x)

(
|u|p(u)−2 u − 1

)
(u − 1)+dx ≤ 0.

We immediately deduce that u(x) ≤ 1 a.e. x ∈ R. On the other hand, it is easy to see that

u ≥ 0. In fact, taking w = u− = min(u, 0) as test function in (3.27), we have

∫

R

w1(x)
∣∣(u−)′

∣∣p(u) dx +
∫

R

w0(x)
∣∣u−

∣∣p(u) dx =
∫

R

f (x, u)u−dx ≤ 0,

which immediately implies that u− = 0 and by consequence u(x) ≥ 0 a.e. x ∈ R. Now, taking

w = (α − u)+ as test function in (3.27) and having in mind that

∫

R

w1(x)
∣∣u′
∣∣p(u)−2

u((α − u)+)′dx = −
∫

α≥u
w1(x)

∣∣u′
∣∣p(u) dx ≤ 0,

by (H3) it yields

∫

R

w0(x)up(u)−1(α − u)+dx ≥
∫

R

f (x, u)(α − u)+dx

=
∫

α≥u
g(x)αp(x)−1(α − u)+dx

≥
∫

α≥u
w0(x)αp(α)−1(α − u)+dx.

Hence, ∫

α≥u
w0(x)

(
αp(α)−1 − up(u)−1

)
(α − u)+dx ≤ 0. (3.28)

In view of (H1), we know that αp(α)−1 ≥ up(u)−1 on the set {x ∈ R, α ≥ u(x)} . From (3.28),

we deduce that (α − u)+ = 0 and by consequence u(x) ≥ α a.e. x ∈ R. Finally, we conclude

that u 6= 0 and f (x, u(x)) = g(x)up(x)−1 a.e. x ∈ R. This ends the proof of Theorem 1.2.
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Abstract. In this paper we prove the following weighted Sobolev inequality in a
bounded domain Ω ⊂ R

n, n ≥ 1, of a homogeneous space (Rn, ρ, wdx), under suit-
able compatibility conditions on the positive weight functions (v, w, ω1, ω2, . . . , ωn) and
on the quasi-metric ρ,

(

∫

Ω
| f |qv wdz

)
1
q
≤ C

N

∑
i=1

(

∫

Ω
| fzi |

pωi MSw dz
)

1
p
, f ∈ Lip0(Ω),

where q ≥ p > 1 and MS denotes the strong maximal operator. Some corollaries on
non-uniformly degenerating gradient inequalities are derived.

Keywords: Sobolev’s inequality, homogeneous space, non-uniformly degenerating gra-
dient.
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1 Introduction

In this paper we aim to prove the following weighted Sobolev type inequality in a bounded
domain Ω ⊂ R

n, n ≥ 1, of a homogeneous space (Rn, ρ, wdx)

(

∫

Ω
| f |qv wdz

)
1
q
≤ C

N

∑
i=1

(

∫

Ω
| fzi |

pωi MSw dz
)

1
p
, f ∈ Lip0(Ω), (1.1)

where q ≥ p > 1 and MS denotes the strong maximal operator. This can be done under
suitable compatibility conditions on the positive weight functions (v, w, ω1, ω2, . . . , ωn) and
on the quasi-metric ρ.

We say that (1.1) is a non-uniform weighted Sobolev inequality since the functions ωiω
−1
j ,

i, j = 1, . . . , n, are not assumed to be neither bounded nor bounded away from zero in any
compact subset of Ω.

BCorresponding author. Email: mfarmannn@gmail.com
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Poincaré–Sobolev type inequalities are essential in many contexts of the theory of elliptic
and parabolic partial differential equations such as the Harnack’s inequality, the regularity
of solutions, the continuation of differential inequalities, the absence of positive eigenvalues,
the estimation of negative eigenvalues, the spectrum discreetness of Schrödinger operator etc.
(see, e.g., [1, 3, 5, 11, 12, 23–27, 30, 33, 36, 38, 40]).

The study of the above mentioned qualitative properties of second order elliptic equa-
tions in absence of uniform ellipticity condition and in lack of uniform degeneration relies
on Poincaré–Sobolev type weighted inequalities having non-uniformly degenerating gradi-
ent. Meanwhile, the theory has also been extended to more general contexts, such as that of
Carnot–Carathéodory metrics associated with families of vector fields (see, e.g., [8–10, 13]).

To deduce the inequality (1.1) one could first derive a suitable representation formula
in terms of integral operators of potential type, and then use some continuity results for
these operators in proper metric spaces, endowed with doubling measures (see, for example,
[18]). In this paper, we show a new different approach to obtain the inequality (1.1). The
arguments of our proofs are inspired by those of [31] (see, also the recent papers [29, 32]),
where the Euclidean metric was considered. However, the ideas of [31, 32] cannot be simply
adapted to homogeneous spaces and to non-uniformly degenerating gradients, since not all
the homogeneous spaces posses the Besicovitch covering property (see, e.g., [35]). To overcome
this difficulty, we use the ”5B” covering lemma that holds in any homogeneous space, see e.g.,
[7, 39]. We refer to [37], and to the references therein where the Euclidean metric and equal
weights ωi, , i = 1, . . . , n, are considered.

In general, when dealing with multi-weighted Sobolev inequalities the task is to find suf-
ficient (and hopefully necessary) conditions on the measures ωi(x)dx, i = 1, . . . , n, and v(x)dx
which give

(

∫

Ω
| f |qv dz

)
1
q
≤ C

N

∑
i=1

(

∫

Ω
| fzi |

pωi dz
)

1
p
, f ∈ Lip0(Ω), (1.2)

where 1 ≤ p ≤ q < ∞ and the constant C does not depend on f and Ω. For equal weights ωi,
i = 1, . . . , n, sharp sufficient conditions can be found in [4, 15] and in the papers [20, 32, 34].
Though this subject has been extensively studied in the last years it is still far from its full
characterization (see, [6, 14–22]). Some progresses in deriving sufficient conditions for the
Sobolev–Poincaré type inequalities with Grushin type weights were made in the works [15,29].
In this article we give sufficient conditions for the inequality (1.2) to hold and we show some
generalizations.

2 Notation and main results

We say that (Rn, ρ) is a quasi-metric space if the function ρ : R
n × R

n → (0, ∞) satisfies the
following properties:

1) ρ(x, y) ≥ 0 for all x, y ∈ R
n; ρ(x, y) = 0 if and only if x = y;

2) ρ(x, y) ≤ K0

(

ρ(x, z) + ρ(y, z)
)

for all x, y, z ∈ R
n, with K0 positive constant;

3) ρ(x, y) = ρ(y, x) for all x, y ∈ R
n.

A useful result by Macías and Segovia (see [28]) asserts that, every quasi-metric space is
metrizable, i.e. there exist a distance d and a positive number α > 0 such that ρα is equivalent
to d.
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Now, let us denote by B(x, r) = {y ∈ R
n : ρ(y, x) < r} the ρ-metric ball with center in

x ∈ R
n and radius r > 0, and let µ be a nonnegative Borel measure on R

n satisfying the
doubling condition. We say the measure µ is a doubling measure if there exists C1 such that

µ (B(x, 2r)) ≤ C1µ (B(x, r)) for all x ∈ R
n, r > 0.

The quasi-metric space (Rn, ρ) equipped with a doubling measure µ is called a homogeneous
space and it is denoted by (Rn, ρ, dµ) (see [7]). In Section 3 we will give an example of
homogeneous space.

In sequel, the notation Qn(x, r) ( or simply Q(x, r) ) denotes the n-dimensional Euclidean
ball Q(x, r) = {y ∈ R

n : |y − x| < r} centered in x and of radius r. For i = 1, . . . , n, we
denote by ℓi(B(x, r)) = sup

{

|zi − yi| : z = (z1, . . . , zn), y = (y1, . . . , yn) ∈ B(x, r)
}

and by
d(Ω) = sup {ρ(x, y) : x, y ∈ Ω} the ρ-diameter of the domain Ω. We also let Σ be the
collection of ρ-metric balls with center in Ω and radius less then d(Ω).

Given an integrable function f and a measurable set E ⊂ R
n we denote by f (E) =

∫

E f (x)dx the weighted measure of E, while |E| denotes the Lebesgue measure of E. Denote
by p′ the conjugate number of 1 < p < ∞ such that 1

p +
1
p′ = 1

A measurable function taking a.e. finite positive values is called a weight. A weight
function f : R

n → (0, ∞) belongs to the Ap-Muckenhoupt weight class, 1 < p < ∞, with
respect to the quasi-metric ρ, if for any ρ-metric ball B = B(x, r) ⊂ R

n, one has

(

1
|B|

∫

B
f (z)dz

)(

1
|B|

∫

B
f−

1
p−1 (z)dz

)p−1

≤ C, (2.1)

while it belongs to the A1-class if

1
|B|

∫

B
f (z)dz ≤ C inf

B
f (z),

where the constants C > 0 do not depend on x ∈ R
n and r > 0.

A weight function f : R
n → (0, ∞) belongs to the A∞-Muckenhoupt weight class A∞(dx)

if there exist two constants C, δ > 0 such that for any ρ-metric ball B = B(x, r) and any
measurable subset E ⊂ B it holds that

f (E)
f (B)

≤ C
(

|E|
|B|

)δ

. (2.2)

Let g : R
n → (0, ∞) be a weight function and µ be a doubling measure. We say g belongs

to the A∞(µ) weight class if there exist two constants C, δ > 0 such that for any ρ quasi-metric
ball B = B(x, r) and any measurable subset E ⊂ B one has

∫

E gdµ
∫

B gdµ
≤ C

(

µ(E)
µ(B)

)δ

, (2.3)

For the main properties of the Ap-Muckenhoupt’s weight classes, we refer the reader, for
instance, to [7]. It is well-known that Ap ⊂ A∞ for any fixed 1 ≤ p ≤ ∞ and moreover
A∞ = ∪1≤p<∞ Ap. Furthermore, Ap ⊂ Ap−ε, for some ε > 0 depending on the constant C in
the Ap class definition.

In the statement and proof of Theorem 2.5 below, we use the strong maximal function
MSw. For sake of completeness, let us recall its definition. Let R denote the collection of
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rectangles R in R
n with sides parallel to the coordinate axes, we define the strong maximal

function MS as

MS f (x) = sup
R∋x

1
|R|

∫

R
| f (y)| dy, f ∈ L1, loc

In Theorem 2.6, we make use of the classical fractional maximal operator Mε defined as

Mε f (x) = sup
Q∋x

1
|Q|(n−ε)/n

∫

Q
| f (y)|dy,

where the supremum is taken all over the Euclidean balls {Q} containing the point x.
In the proofs of our main results we avail ourselves of the so called ”5B” covering lemma

below. This lemma, unlike Besicovich covering property, is valid in any homogeneous space.

Lemma 2.1 ([1, Covering Lemma, p. 270]). Let (X, ρ, µ) be a homogeneous space. Let B =

{Bα = B(xα, rα) : α ∈ Γ} be a family of balls in X such that ∪α∈ΓBα is bounded. Then there ex-
ists a sequence of disjoint balls {B(xi, ri)}i∈N ⊂ B such that for every α ∈ Γ there exists i satisfying
rα ≤ 2ri and Bα ⊂ B(xi, 5K2

0ri).

Definition 2.2. Throughout this paper, we consider the quasi-metrics ρ satisfying the following
“S”-condition

|B#| ≤ C|B|, (2.4)

for all the ρ quasi-metric balls B (see next section for their definition). Here B# is the smallest
parallelepiped with edges parallel to coordinate axes containing the ρ quasi-metric ball B.

Definition 2.3. Moreover, we assume that there exists a constant c > 0 such that for every B
and every x, y ∈ B, t ∈ (0, 1) one has

x + t(y − x) ∈ cB. (2.5)

Now, we are ready to state our main results.

Theorem 2.4. Let q ≥ p ≥ 1, (Rn, ρ, dx) be a homogeneous space and Ω ⊂ R
N be a bounded domain.

Assume that the ρ quasi-metric balls B ∈ Σ satisfy the S-condition (2.4) and (2.5). Let v ∈ A∞(dx)

and ω
1−p′

i , i = 1, 2, . . . , n, be doubling functions on Σ. If

(ℓi(B)/|B|)
(

∫

B∩Ω
v dx

)
1
q
(

∫

B∩Ω
ω

1−p′

i dx
)

1
p′
≤ Ã, (2.6)

i = 1, 2, . . . , n, on any B ∈ Σ, then

(

∫

Ω
| f |qv dx

)
1
q
≤ C0Ã

n

∑
i=1

(

∫

Ω
| fzi |

pωi dx
)

1
p
, (2.7)

for all Lipschitz continuous functions f : Ω → R vanishing on ∂Ω, and with a constant C0 depending
only p, q, n and on C, δ in (2.2).

Theorem 2.4 is an easy consequence of the next assertion.

Theorem 2.5. Let q ≥ p ≥ 1, (Rn, ρ, dx) be a homogeneous space and Ω ⊂ R
N be a bounded

domain. Assume that the ρ quasi-metric balls B ∈ Σ satisfy the S-condition (2.4) and (2.5). Let
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v : R
N → (0, ∞) be an A∞(wdx) function and ω

1−p′

i MSw, i = 1, 2, . . . , n, be doubling functions on
Σ. If

ℓi(B)
(

∫

B
vw dy

)1/q (∫

B
ω

1−p′

i MSw(y) dy
)1/p′

≤ A
∫

B
w(y) dy, (2.8)

i = 1, 2, . . . , n, on any B ∈ Σ, then

(

∫

Ω
| f |qv w(z) dz

)
1
q
≤ C0A

N

∑
i=1

(

∫

Ω
| fzi |

pωi MSw(z) dz
)

1
p
, (2.9)

for all Lipschitz continuous functions f : Ω → R vanishing on ∂Ω, and with a constant C0 depending
only on p, q, n and on C, δ in (2.3).

We remark that, in Theorem 2.5, the Sobolev type weight inequality (2.9) is proven with
different weights for the partial derivatives. This is due to the fact that the weights and the
metric must be in a balance with the geometry of the quasi-metric balls. Taking v ≡ ωi ≡ 1
in (2.9) we get the measure w(x)dx to be a doubling function on Σ, hence we obtain the
inequality

(

∫

Ω
| f |qw(x) dx

)
1
q
≤ C0

N

∑
i=1

(

∫

Ω
| fzi |

p MSw(x)dx
)

1
p
.

Moreover, let us mention that the doubling condition on the weights ω
1−p′

i MSw in Theorem 2.5
is motivated by the use Lemma 4 of [39, Chapter 8].

In the next Theorem 2.6 we give a better estimate. In order to do that, the sufficiency
condition (2.8) needs to be suitably strengthened (see (2.11)). Theorem 2.6 below gives, locally,
a finer inequality since

d(Ω)ε sup
B∈Σ,B∋x

w(B)/|B| ≥ sup
B∈Σ,B∋x

w(B)/|B|1−ε/n.

Theorem 2.6. Let q ≥ p ≥ 1 and Ω ⊂ R
N be a bounded domain. Let (RN , ρ, wdx) be a homogeneous

space and assume that there exists a positive constant C1 such that

C1|x − y| ≤ ρ(x, y) (2.10)

for all x, y ∈ Ω. Let v : R
N → (0, ∞) be an A∞(wdx) weight function and ω

1−p′

i Mεw, i =

1, 2, . . . , n, be doubling functions on Σ. Assume that the ρ quasi-metric balls B ∈ Σ satisfy the S-
condition (2.4) and (2.5). If

ℓi(B)
(

r(B)n−ε

|B|

)(

∫

B
vw dy

)1/q (∫

B
ω

1−p′

i Mεw dy
)1/p′

≤ Ā
∫

B
w(y) dy (2.11)

i = 1, 2, . . . , n, with ε ∈ [0, 1) uniformly with respect to B ∈ Σ, then

(

∫

Ω
| f |qv w(z) dz

)
1
q
≤ C0Ā

N

∑
i=1

(

∫

Ω
| fzi |

pωi Mεw(z) dz
)

1
p
, (2.12)

for all Lipschitz continuous functions f : Ω → R vanishing on ∂Ω, and with a constant C0 depending
on p, q, n and on C, δ in (2.3).
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3 An example of homogeneous space

Let ω : R
n → (0, ∞) be a positive measurable function, such that σ(x) = 1

ω(x) is in the
Muckenhoupt A2-weight class all over the n-dimensional Euclidean balls. This condition used
in proofs of the corollaries below. Observe that this gives that also ω is in the Muckenhoupt’s
A2-class all over the n-dimensional Euclidean balls.

For x ∈ R
n, define a function hx : t ∈ [0, ∞) → hx(t) ∈ [0, ∞) as

hx(t) = t
(

1
|Q(x, t)|

∫

Q(x,t)
σ(s) ds

) 1
2

, t > 0

and assume that hx(0) = 0, limt→+∞ hx(t) = +∞ for a fixed x ∈ R
n. Then we may consider

an inverse function h−1
x : s ∈ [0, ∞) → h−1

x (s) ∈ [0, ∞) defined as

h−1
x (s) = inf

{

t > 0 : hx(t) ≥ s
}

, s > 0.

and h−1
x (0) = 0. We can define a quasi-metric ρ on R

N = R
n × R

m = {z = (x, y) |x ∈ R
n , y ∈

R
m} as follows: for any z1 = (x1, y1), z2 = (x2, y2) ∈ R

N we put

ρ(z1, z2) = max
{

|x1 − x2|, h−1
x1
(|y2 − y1|), h−1

x2
(|y2 − y1|)

}

. (3.1)

The function ρ : R
N × R

N → [0, ∞) is a quasi-metric satisfying the triangle inequality

ρ(z1, z2) ≤ K0

(

ρ(z1, z3) + ρ(z2, z3)
)

(3.2)

with a constant K0 ≥ 1 independent of z1, z2, z3 ∈ R
N , (see, e.g., [1, 15]). Therefore, the above

defined quasi-metric space (RN , ρ) endowed with the Lebesgue measure is a homogeneous
space.

In general, the balls of a homogeneous space are not convex, therefore the conditions
(2.4), (2.5) may be failed. The condition (2.4) means that the Lebesgue measure of a metric
ball comparable with Lebesgue measure of its circumscribed parallelepiped. Also as we have
noted the balls of a metric space are not convex the line segment connecting any two points
of a ball may get out of that ball. The meaning of condition (2.5) is that, although the points
on a line segment get out of the ball its points are contained on the comparable ball. It easily
seen that the balls of metric (3.1) are convex and conditions (2.4), (2.5) are satisfied for that.

4 Applications

In this section, we give two examples of applications of Theorem 2.4. To this aim, let ρ be
the quasi-metric defined in (3.1). It is not difficult to see that the ball B(z0, R) with center in
z0 = (x0, y0) ∈ R

N and radius R > 0 of this quasi-metric is given by

B(z0, R) =

{

z = (x, y) ∈ R
n × R

m : |x − x0| < R,

|y − y0| < R
(

1
|Q(x0, R)|

∫

Q(x0,R)
σ(t)dt

) 1
2
}

(4.1)
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Let ω as in the beginning of Section 3 and f : (x, y) ∈ R
n × R

m → f (x, y) ∈ R be a
Lipschitz continuous function. The degenerated gradient of f is given by

|∇ω f |2 = ω(x)|∇x f |2 + |∇y f |2.

For m ≥ 2 we can prove the following result:

Corollary 4.1. Let n + m ≥ 3, q = 2(n+m)
n+m−2 , t = n

n+m−2 and let ω ∈ A2-Muckenhoupt class function
on R

n. Then,
(

∫

B(z0,R)
ωt | f |q dz

)
1
q
≤ C0

(

∫

B(z0,R)
|∇ω f |2 dz

)
1
2

(4.2)

for any function f , Lipschitz continuous in the ball B(z0, R) ⊂ R
N , vanishing on ∂B(z0, R). The

positive constant C0 in (4.2) depends on n, m and on the constants in the A2-condition from (2.1).

For m = 1, we have:

Corollary 4.2. Let n > 1, q = 2(n+1)
n−1 , and let ω−1 be a classical A1+ 1

n′
-Muckenhoupt class function

on R
n. Then,

(

∫

B(z0,R)
ω

n
n−1 | f |qdz

)
1
q
≤ C0

(

∫

B(z0,R)
|∇ω f |2 dz

)
1
2

(4.3)

for any function f , Lipschitz continuous in the ball B(z0, R) ⊂ R
N and vanishing on ∂B(z0, R). The

positive constant C0 in (4.2) depends on n and on the constants in the A1+ 1
n′

-condition from (2.1).

Corollary 4.3. Let q ∈ [2, 2N/(N − 2)] and let v, ω : R
n → (0, ∞) be functions of the variable x

only of classes A∞ and A2, respectively. Let

( r
R

)1− (N−n)(n+2)
2

(

1
2−

1
q

)

(

v (Qx
r )

v (Qx
R)

) 1
q

≤ C
(

ω (Qx
r )

ω (Qx
R)

) 1
2−

N−n
2

(

1
2−

1
q

)

(4.4)

for any x ∈ R
n and r > 0. Then for all f ∈ Lip0 (Bz0

R )

(

∫

B(z0,R)
v | f |q dz

)1/q
≤ C0 A(x0, R) R

(

∫

B(z0,R)
|∇ω f |2 dz

)1/2
(4.5)

holds with

A(x0, R) = R− (N−n)(n+2)
2

(

1
2−

1
q

)

v (Qx0
R )

1
q

/

ω (Qx0
R )

1
2−

N−n
2

(

1
2−

1
q

)

,

C0 depends on the A∞, A2 conditions for v, ω and n, q.

The given above corollaries generalize the two-weight Sobolev inequalities to the case of
non-uniformly degenerate gradient ∇ω f . Therefore, those inequalities are of the well-known
inequalities type by Chanillo–Wheeden, Fabes–Kenig–Serapioni with ω ≡ 1. Such inequalities
may be applied to the study of equations with Grushin type operator ∂xi

(

ω(x)∂xi

)

+ ∂2
yj

or

its generalizations ∂xi

(

ω(x)w∂xi

)

+ ∂yj

(

w∂yj

)

when w(x, y) is a function of two variables x, y
obligated to satisfy some conditions.

Note that, the condition (4.4) is a balance condition of Chanillo–Wheeden type [4] for the
case of non-uniformly degenerate gradient inequality of the Sobolev type. Note again, the
function v depends only the variable x while the function f is dependent of two variables
z = (x, y).



8 F. Mamedov and S. Monsurrò

5 Proofs of the main results

Let us start proving Theorem 2.5.

5.1 Proof of Theorem 2.5

Assume that f is not equal to zero almost everywhere in Ω, otherwise the result of Theorem
2.5 is trivial. For α > 0 set Ωα =

{

x ∈ Ω : | f (x)| > α
}

. Since f is continuous the set Ωα

is open. Let a fixed α be such that the set Ω3α is nonempty. Choose a countable covering of
Ωα made up of connected components Ωα,j ⊂ Ωα, j ∈ N. Denote the parts of Ω3α and Ω2α

contained in Ωα,j by Ω3α,j and Ω2α,j, respectively (note that the sets Ω3α,j and Ω2α,j need not to
be connected).

For the reader’s convenience, let us recall that the weight function w of the homogeneous
space (Rn, ρ, wdx) satisfies the doubling condition on the ρ quasi-metric balls. Let b ∈ Ω3α,j

be a fixed point. Let us show that there exists a ρ-quasi metric ball B = B (b, r(b)) such that

w
(

B \ Ωα,j
)

= γ w(B), (5.1)

where γ is a small positive number that will be chosen later on. To this aim, let γ > 0 and
define the function

F(t) =
1
γ

w
(

B(b, t) \ Ωα,j
)

− w (B(b, t)) ,

which is continuous and negative for sufficiently small t > 0 since b is an interior point of
Ω3α,j.

From the doubling property of w on the ρ-quasimetric balls it follows that there exists a
positive real number τ such that

w (B (b, d(Ω)) \ Ω) ≥ τw (B (b, d(Ω))) .

Let us choose the constant γ > 0 so that the function F(t) is positive for t = d(Ω). Observe,
that is always possible since

F(d(Ω)) =
1
γ

w
(

B (b, d(Ω)) \ Ωα,j
)

− w (B(b, d(Ω)))

≥
1
γ

w (B (b, d(Ω)) \ Ω)− w (B(b, d(Ω)))

≥

(

τ

γ
− 1
)

w (B (b, d(Ω))) ,

thus it suffices to choose γ such that τ
γ − 1 > 0 in order to get F(d(Ω)) ≥ 0. Hence, by the

Bolzano–Cauchy theorem for continuous functions we get that there exists a t∗ ∈ (0, d(Ω))

such that F(t∗) = 0. Therefore, if we take r(b) = t∗ we achieve equality (5.1).
Now, there are two possibilities:

Case 1)
w
(

B∗ ∩ Ω3α,j
)

≤ γw(B∗), (5.2)

Case 2)
w
(

B∗ ∩ Ω3α,j
)

> γw(B∗), (5.3)

where B∗ = B(b, 5K2
0r(b)).
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In case 1), denoted by λ = vw, using the doubling property of the function v ∈ A∞(wdx),
it follows

λ
(

B∗ ∩ Ω3α,j
)

≤ Cγδλ(B∗) ≤ CC1γδλ(B). (5.4)

By (5.1) and since v ∈ A∞(wdx) we have again

λ(B) = λ
(

B ∩ Ωα,j
)

+ λ
(

B \ Ωα,j
)

≤ λ
(

B ∩ Ωα,j
)

+ Cγδλ(B),

therefore, eventually reducing γ

λ(B) ≤
1

1 − Cγδ
λ
(

B ∩ Ωα,j
)

.

Thus, by (5.4) we get

λ
(

B∗ ∩ Ω3α,j
)

≤
CC1γδ

1 − Cγδ
λ
(

B ∩ Ωα,j
)

(5.5)

In case 2), we have two possibilities:

2a)
∣

∣B∗ \ Ω2α,j
∣

∣ ≥
1
2
|B∗| (5.6)

and
2b)

∣

∣B∗ ∩ Ω2α,j
∣

∣ >
1
2
|B∗|. (5.7)

If 2a) takes place, let us show that

1 ≤
2

γα

n

∑
i=1

ℓi(B∗)|(B∗)#|

|B∗|w(B∗)

∫

B∗∗∩(Ω2α,j\Ω3α,j)
| fxi(z)|MSw(z) dz, (5.8)

where MSw denotes the strong maximal function of w, B∗∗ is the ρ-metric ball B∗∗ = cB∗ and
(B∗)# denotes the smallest rectangular with edges parallel to coordinate axes containing B∗.

To prove inequality (5.8), we follow an idea of [31], formula (3.7). Denote Â = B∗ \ Ω2α,j

and Z = B∗ ∩ Ω3α,j. Let the points x ∈ Â and y ∈ Z be arbitrary fixed. Since the quasi-
metric balls are not assumed to be convex, the line segment xy = {x + t(y − x) : t ∈ [0, 1]}
connecting x, y may get out of the ball B∗ as t varies in (0, 1). But, due to hypothesis (2.5) it
will stay in the congruent ball B∗∗ = cB∗.

Also, the line segment xy intersects the surfaces {z′ ∈ Ωα,j : | f (z′)| = α} and {z′′ ∈ Ω
j
α :

| f (z′′)| = 2α} in some points z′ = x + t1(y − x) and z′′ = x + t2(y − x) where t1, t2 ∈ [0, 1],
with t2 > t1 depend on x, y. Here, t2 corresponds to the value of t for which xy meets for the
first time the surface ∂Ω2α,j after leaving ∂Ωα,j while t1 corresponds to the value of t when
xy intersects the surface ∂Ωα,j.

Having this in mind and using (5.1), (5.6) it follows that

1
2

γw(B∗)|B∗| ≤
1
α

∫

Â

(

∫

Z
| f (z′′)− f (z′)|dy

)

w(x)dx. (5.9)

Whence,

1
2

γw(B∗)|B∗| ≤
1
α

∫

Â

(

∫

Z

(

∫ t2(z,y)

t1(z,y)

∣

∣

∣

∂ f
∂t

(

x + t(y − x)
)

∣

∣

∣dt
)

dy
)

w(x)dx.
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By Fubini’s theorem,

1
2

γw(B∗)|B∗| ≤
n

∑
i=1

ℓi(B∗)

α

∫

Â

(

∫ 1

0

(

∫

{y∈B∗ : x+t(y−x)∈G}

∣

∣

∣

∂ f
∂zi

(

x + t(y − x)
)

∣

∣

∣dy
)

dt
)

w(x)dx,

where G = B∗∗ ∩ (Ω2α,j \ Ω3α,j).
Let us now make the change of variable z = x + t(y − x) in the interior integral to pass

from y to z. Since dy = t−ndz, one has

1
2

γw(B∗)|B∗| ≤
n

∑
i=1

ℓi(B∗)

α

∫

Â

(

∫ 1

0

(

∫

{z∈G: z−x
t +x∈Z}

(∣

∣

∣

∂ f
∂zi

(z)
∣

∣

∣dz
)dt

tn

)

w(x)dx. (5.10)

For t ∈ (0, 1) and z ∈ G it follows |xs − zs| < tls(B∗), s = 1, 2, . . . , n, therefore applying
Fubini’s formula again, we get

1
2

γw(B∗)|B∗| ≤
N

∑
i=1

ℓi(B∗)

α

∫ 1

0

(

∫

G

∣

∣

∣

∂ f
∂zi

(z)
∣

∣

∣

(

∫

{z: |zs−xs|<tls(B∗), s=1,2,...,N}
w(x)dx

)

dz
)dt

tn , (5.11)

where G = B∗∗ ∩
(

Ω2α,j \ Ω3α,j
)

.
Then

1 ≤
2

γα

n

∑
i=1

ℓi(B∗)| (B∗)# |

|B∗|w(B∗)

∫

B∗∗∩(Ω2α,j\Ω3α,j)
| fzi(z)|MSw(z) dz,

where MS is the strong maximal operator. Therefore,

λ
(

Ω3α,j ∩ B∗
)

≤
2

γα

n

∑
i=1

ℓi(B∗)λ(B∗)| (B∗)# |

|B∗|w(B∗)

∫

B∗∗∩(Ω2α,j\Ω3α,j)
| fzi(z)|MSw(z) dz. (5.12)

In the case 2b) we can argue as in case 2a) by putting Â = B∗ \ Ωα,j and Z = Ω2α,j ∩ B∗.
Thus, we have

1
2

γw(B∗)|B∗| ≤
1
α

∫

B∗\Ωα,j

(

∫

Ω2α,j∩B∗
| f (z′′)− f (z′)|dy

)

w(x)dx.

In this case the line segment xy intersects the surfaces {z′ ∈ Ωα,j : | f (z′)| = α} and {z′′ ∈ Ω
j
α :

| f (z′′)| = 2α} in points that can be expressed as z′ = x + t1(y − x) and z′′ = x + t2(y − x)
where t1, t2 ∈ [0, 1], with t2 > t1 depend on x, y. Here, t2 corresponds to the value of t for
which xy meets for the first time the surface ∂Ω2α,j after leaving ∂Ωα,j while t1 corresponds
to the value of t when xy intersects the surface ∂Ωα,j.

In this case, in place of (5.11), we get the following inequality

1
2

γw(B∗)|B∗| ≤
N

∑
i=1

ℓi(B∗)

α

∫ 1

0

(

∫

G

∣

∣

∣

∂ f
∂zi

(z)
∣

∣

∣

(

∫

{

z: |zs−xs|<tls(B), s=1,2,...,N}
w(x)dx

)

dz
)dt

tn ,

where G = B∗∗ ∩
(

Ωα,j \ Ω2α,j
)

.
Therefore,

1 ≤
2

γα

n

∑
i=1

ℓi(B∗)| (B∗)# |

|B∗|w(B∗)

∫

B∗∗∩(Ωα,j\Ω2α,j)
| fzi(z)|MSw(z) dz
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and then

λ
(

Ω2α,j ∩ B∗
)

≤
2

γα

n

∑
i=1

ℓi(B∗)λ(B∗)| (B∗)# |

|B∗|w(B∗)

∫

B∗∗∩(Ωα,j\Ω2α,j)
| fzi(z)|MSw(z) dz. (5.13)

Now, since Ω3α,j ⊂ Ω2α,j, combining (5.5), (5.12), and (5.13) we have

λ
(

Ω3α,j ∩ B∗
)

≤
CC1γδ

1 − Cγδ
λ
(

B ∩ Ω
j
α

)

+
2

γα

n

∑
i=1

ℓi(B∗)λ(B∗)| (B∗)# |

|B∗|w(B∗)

∫

B∗∗∩(Ω2α,j\Ω3α,j)
| fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

ℓi(B∗)λ(B∗)| (B∗)# |

|B∗|w(B∗)

∫

B∗∗∩(Ωα,j\Ω2α,j)
| fzi(z)|MSw(z) dz.

(5.14)

Summing up over j = 1, 2, . . . , we obtain

λ (Ω3α ∩ B∗) ≤
CC1γδ

1 − Cγδ
λ (B∗ ∩ Ωα)

+
2

γα

n

∑
i=1

ℓi(B∗)λ(B∗)| (B∗)# |

|B∗|w(B∗)

∫

B∗∗∩(Ω2α\Ω3α)
| fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

ℓi(B∗)λ(B∗)| (B∗)# |

|B∗|w(B∗)

∫

B∗∗∩(Ωα\Ω2α)
| fzi(z)|MSw(z) dz.

(5.15)

Recall that the balls system
{

B∗ = B(b, 5K2
0r(b))

}

b∈Ω3α
covers Ω3α. Using Lemma 2.1, from

those balls one can choose a countable subcover
{

B∗
m = B(xm, 5K2

0r(xm))
}

m∈N
such that

Ω3α ⊂
⋃

m
B∗

m. (5.16)

Moreover, the balls
{

Bm = B(xm, r(xm))
}

m∈N
are disjoint, i.e.

⋂

m
Bm = ∅. (5.17)

Writing (5.15) for the system of balls B∗
m, we get

λ (Ω3α ∩ B∗
m) ≤

CC1γδ

1 − Cγδ
λ (Bm ∩ Ωα)

+
2

γα

n

∑
i=1

ℓi(B∗
m)λ(B∗

m)| (B∗
m)

# |

|B∗
m|w(B∗

m)

∫

B∗∗
m ∩(Ω2α\Ω3α)

| fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

ℓi(B∗
m)λ(B∗

m)| (B∗
m)

# |

|B∗
m|w(B∗

m)

∫

B∗∗
m ∩(Ωα\Ω2α)

| fzi(z)|MSw(z) dz.

(5.18)

Summing up over m = 1, 2, . . . , we get

λ (Ω3α) ≤
CC1γδ

1 − Cγδ
λ (Ωα)

+
2

γα

n

∑
i=1

∑
m

ℓi(B∗
m)λ(B∗

m)| (B∗
m)

# |

|B∗
m|w(B∗

m)

∫

Ω2α\Ω3α

χB∗∗
m
(z) | fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

∑
m

ℓi(B∗
m)λ(B∗

m)| (B∗
m)

# |

|B∗
m|w(B∗

m)

∫

Ωα\Ω2α

|χB∗∗
m
(z) fzi(z)|MSw(z) dz.

(5.19)
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Denote

cm =
ℓi(B∗

m)λ(B∗
m)| (B∗

m)
# |

|B∗
m|w(B∗

m)
,

then

λ (Ω3α) ≤
CC1γδ

1 − Cγδ
λ (Ωα) +

2
γα

n

∑
i=1

∫

Ω2α\Ω3α

(

∑
m

cmχB∗∗
m
(z)

)

| fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

∫

Ωα\Ω2α

(

∑
m

cmχB∗∗
m
(z)

)

| fzi(z)|MSw(z) dz.

(5.20)

Using Hölder’s inequality, this implies

λ (Ω3α) ≤
CC1γδ

1 − Cγδ
λ (Ωα) +

2
γα

n

∑
i=1

(

∫

Ω2α\Ω3α

ωi(z) | fzi(z)|
p MSw(z) dz

)1/p

×





∫

Ω2α\Ω3α

(

∑
m

cmχB∗∗
m
(z)

)p′

σi(z) MSw(z) dz





1/p′

+
2

γα

n

∑
i=1

(

∫

Ωα\Ω2α

ωi(z) | fzi(z)|
p MSw(z) dz

)1/p

×





∫

Ωα\Ω2α

(

∑
m

cmχB∗∗
m
(z)

)p′

σi(z) MSw(z) dz





1/p′

,

where σi = ω
1−p′

i . Now, using Lemma of 4 in [39, Chapter 8], we have

λ (Ω3α) ≤
CC1γδ

1 − Cγδ
λ (Ωα) +

2C2

γα

n

∑
i=1

(

∫

Ω2α\Ω3α

ωi(z) | fxi(z)|
p MSw(z) dz

)1/p

×





∫

Ω2α\Ω3α

(

∑
m

cmχBm(z)

)p′

σi(z) MSw(z) dz





1/p′

+
2C2

γα

n

∑
i=1

(

∫

Ωα\Ω2α

ωi(z) | fzi(z)|
p MSw(z) dz

)1/p

×





∫

Ωα\Ω2α

(

∑
m

cmχBm(z)

)p′

σi(z) MSw(z) dz





1/p′

.

(5.21)

By the property (5.17) of the covering {Bm} and by the doubling assumption on σi MSw on the
ρ quasi-metric balls, we get





∫

Ω2α\Ω3α

(

∑
m

cmχBm(z)

)p′

σi(z) MSw(z) dz





1/p′

=

(

∑
m

cp′
m κi(Bm)

)1/p′

≤ CA

(

∑
m

λ(Bm)
p′/q′

)1/p′

,

(5.22)
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where κi = σi MSw. Note that in (5.22) we have used that the condition (2.4) and (2.8) and the
doubling assumption on the measures yield

cp′
m κi(Bm) ≤ C3Ap′ (λ(Bm))

p′/q′ .

Now, by (5.1) and since p′/q′ ≥ 1,





∫

Ω2α\Ω3α

(

∑
m

cmχBm(z)

)p′

σi(z) MSw(z) dz





1/p′

≤ C/(1 − γ)1/q′ A

(

∑
m

λ (Bm ∩ Ωα)
p′/q′

)1/p′

≤ CA/(1 − γ)1/q′λ(Ωα)
1/q′ .

(5.23)

Observe that the same inequality can be obtained also for integrals over the sets Ωα \ Ω2α.
Thus, by (5.21), we get

λ (Ω3α) ≤
CC1γδ

1 − Cγδ
λ (Ωα)

+
2C3A

(1 − γ)1/q′γα
λ(Ωα)

1/q′
n

∑
i=1

(

∫

Ω2α\Ω3α

ωi(z) | fzi(z)|
p MSw(z) dz

)1/p

+
2C3A

(1 − γ)1/q′γα
λ(Ωα)

1/q′
n

∑
i=1

(

∫

Ωα\Ω2α

ωi(z) | fzi(z)|
p MSw(z) dz

)1/p

, α > 0

and
∫ ∞

0
λ(Ω3α)dαq ≤

CC1γδ

1 − Cγδ

∫ ∞

0
λ(Ωα)dαq

+
2C3q

(1 − γ)1/q′γ

N

∑
j=1

A
∫ ∞

0
λ(Ωα)

1/q′
(

∫

Ω2α\Ω3α

ωi(z) | fzi(z)|
p MSw(z) dz

)1/p αq−1dα

α

+
2C3q

(1 − γ)1/q′γ

N

∑
j=1

A
∫ ∞

0
λ(Ωα)

1/q′
(

∫

Ωα\Ω2α

ωi(z) | fzi(z)|
p MSw(z) dz

)1/p αq−1dα

α
.

(5.24)

Notice that
∫ ∞

0
λ(Ω3α)dαq =

1
3q

∫

Ω
| f |q v wdx and

∫ ∞

0
λ(Ωα)dαq =

∫

Ω
| f |qv wdx. (5.25)

Therefore, from (5.25) and Hölder’s inequality, we get

1
3q

∫

Ω
| f |q v wdx ≤

CC1γδ

1 − Cγδ

∫

Ω
| f |qv wdx

+
2C3q

(1 − γ)1/q′γ

n

∑
i=1

A
(

∫ ∞

0

(

∫

Ω2α\Ω3α

ωi(z) | fzi(z)|
p MSw(z) dz

)

dα

α

)1/p

×

(

∫ ∞

0
λ(Ωα)

p′/q′α(q−1)p′−1dα

)1/p′

+
2C3q

(1 − γ)1/q′γ

n

∑
i=1

A
(

∫ ∞

0

(

∫

Ωα\Ω2α

ωi(z) | fzi(z)|
p MSw(z) dz

)

dα

α

)1/p

×

(

∫ ∞

0
λ(Ωα)

p′/q′α(q−1)p′−1dα

)1/p′

.

(5.26)
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Now, by Fubini’s theorem,
(

∫ ∞

0

(

∫

Ω2α\Ω3α

ωi(z) | fzi(z)|
p MSw(z) dz

)

dα

α

)1/p

=

(

ln
3
2

)1/p

‖ fzi(·)‖p, ωi MSw, Ω
,

(

∫ ∞

0

(

∫

Ω2α\Ω3α

ωi(z) | fzi(z)|
pωi MSw(z) dz

)

dα

α

)1/p

= (ln 2)1/p ‖ fzi(·)‖p, ωi MSw, Ω
.

On the other hand, Minkowski’s inequality gives

(

∫ ∞

0
λ(Ωα)

p′/q′α(q−1)p′−1dα

)1/p′

≤

(

1
(q − 1)p′

)1/p′
∥

∥

∥

∥

∥

∫

Ω(·)

v wdx

∥

∥

∥

∥

∥

1/q′

p′/q′,dα(q−1)p′

≤

(

1
(q − 1)p′

)1/p′

‖ f ‖1/q′

q,vw,Ω .

Using the last inequalities and choosing

1
3q −

CC1γδ

1 − Cγδ
> 0, (5.27)

from (5.26) we get

‖ f ‖q,vw,Ω ≤

(

1
(q − 1)p′

)1/p′ 2C3q21/p′(ln 3)1/p

(1 − γ)1/q′γ
A

n

∑
i=1

‖ fzi(·)‖p, ωi MSw, Ω
. (5.28)

This completes the proof of Theorem 2.5

5.2 Proof of Theorem 2.6

To prove Theorem 2.6 we may argue following along the lines the proof of Theorem 2.5 until
formula (5.10). Then, from hypothesis (2.10), for t ∈ (0, 1) and z = x + t(y − x) ∈ G, using the
condition (2.10) it follows

|x − z| < t|x − y| ≤ ρ(x, y) ≤ 2K0r(B∗) t,

therefore applying Fubini’s formula again,

1
2

γw(B∗)|B∗|

≤
N

∑
i=1

ℓi(B∗)

α

∫

G

∣

∣

∣

∣

∂ f
∂xi

(z)
∣

∣

∣

∣

(

∫ 1

0

(

1
tn−ε

∫

{

x∈B: |z−x|<2K0r(B∗) t}
w(x)dx

)

dt
tε

)

dz.
(5.29)

Now, by the definition of the fractional order Hardy–Littlewood maximal operator over
Euclidean balls and since B(x, 2K0r(B∗)t) ∋ z it follows

∫

{

x∈B: |z−x|<2K0r(B∗) t}
w(x)dx ≤ Mεw(z) (2K0r(B∗) t)n−ε .

By (5.29), one has

1 ≤
2n+1−εKn−ε

0

(1 − ε)γα

n

∑
i=1

ℓi(B∗)r(B∗)n−ε

|B∗|w(B∗)

∫

B∗∗∩(Ω2α,j\Ω3α,j)
| fzi(z)|Mεw(z) dz.

Arguing further as in Theorem 2.5 we obtain estimate (5.28) with Ā in place of A. The
proof of Theorem 2.6 is then complete.
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5.3 Proof of Theorem 2.4

Theorem 2.4 is a corollary of Theorem 2.5 for w ≡ 1.

5.4 Proof of Corollary 4.1

The result follows from Theorem 2.4. It is enough to choose (x, y) ∈ R
N , with N = n + m,

v(x, y) = ω(x)t, t = n
n+m−2 , and ω1 = · · · = ωn = ω(x), ωi ≡ 1, i = n + 1, n + 2, . . . , n + m

in the statement of Theorem 2.4. Observe that the A∞-condition on the ρ-quasimetric balls on
ω(x)

n
n+m−2 as well as the A2-condition on the ρ-quasimetric balls for ω are satisfied, in view

of (3.1) and (4.1). Indeed, it is well-known that the Ap condition for some p ≥ 1 implies the
A∞ condition. Therefore, in order to show that ωt belongs to A∞ let us show that it belongs
to Ap, for some p ≥ 1. To this aim, observe that, by our assumptions, σ ∈ A2 hence

σ(Q)
∫

Q
ω dx ≤ C|Q|2. (5.30)

Using the Hölder inequality with powers n+m−2
n and n+m−2

m−2 ,

∫

Q
ω

n
n+m−2 dx ≤

(

∫

Q
ω dx

) n
n+m−2

|Q|
m−2

n+m−2 ,

thus, by (5.30), we get

σ(Q)

(

∫

Q
ω

n
n+m−2 dx

) n+m−2
n

≤ C|Q|2+
m−2

n .

The last inequality implies ωt ∈ Ap with p = 1 + n
n+m−2 .

For what concerns hypothesis (2.6), by the definition of the quasimetric ρ given in Section 3,
in this case it can be derived by the following inequality

Cr|B(z, r)|−( 1
2−

1
q )
(

1
|Q(x, r)|

∫

Q(x,r)
ωt ds

)
1
q
(

1
|Q(x, r)|

∫

Q(x,r)
σ(s)ds

)
1
2

≤ A, (5.31)

where B(z, r) is a ρ-quasimetric ball of center z and radius r, 0 < r < R, while Q(x, r) is the
projection of B(z, r) on R

n. Thus, in order to satisfy condition (2.6) we need to estimate the
left hand side of (5.31) from above. To this aim, observe that

r|B(z, r)|−( 1
2−

1
q )
(

1
|Q(x, r)|

∫

Q(x,r)
ωt ds

)
1
q
(

1
|Q(x, r)|

∫

Q(x,r)
σ(s)ds

)
1
2

≤

(

1
|Q(x, r)|

∫

Q(x,r)
ω(s)tds

)
1
q
(

1
|Q(x, r)|

∫

Q(x,r)
σ(s)ds

)
1
2−

m
2

(

1
2−

1
q

)

r1−(n+m)
(

1
2−

1
q

)

= C
(

1
|Q(x, r)|

∫

Q(x,r)
ω(s)tds

)
1
q
(

1
|Q(x, r)|

∫

Q(x,r)
σ(s)ds

)
1
2−

m
2

(

1
2−

1
q

)

≤ C1

(

1
|Q(x, r)|

∫

Q(x,r)
ω(s)ds

)
t
q
(

1
|Q(x, r)|

∫

Q(x,r)
σ(s)ds

)
1
2−

m
2

(

1
2−

1
q

)

,

where we used the fact that q = 2(n+m)
n+m−2 gives 1 − (n + m)

( 1
2 −

1
q

)

= 0 and Hölder’s inequality.



16 F. Mamedov and S. Monsurrò

Now, since t
q = 1

2 −
m
2

( 1
2 −

1
q

)

= n
2(n+m)

, taking into account assumption ω ∈ A2 we get

C1

(

1
|Q(x, r)|

∫

Q(x,r)
ω(s)ds

) t
q
(

1
|Q(x, r)|

∫

Q(x,r)
σ(s)ds

) 1
2−

m
2

(

1
2−

1
q

)

= C1

[(

1
|Q(x, r)|

∫

Q(x,r)
ω(s)ds

)(

1
|Q(x, r)|

∫

Q(x,r)
σ(s)ds

)] n
2(n+m)

≤ C2

Hence condition (2.6) of Theorem 2.4 satisfied. This completes the proof of Corollary 4.1.

5.5 Proof of Corollary 4.2

To prove this result, one can follow along the lines the proof of Corollary 4.1, for t = n
n−1 , with

suitable modifications.

5.6 Proof of Corollary 4.3

The proof of Corollary 4.3 is obtained from Theorem 2.4 similarly to that of Corollary 4.1, so
we leave the proof to the Reader.
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Abstract. The connection of these maps to homoclinic loops acts like an amplifier of the
map behavior, and makes it interesting also in the case where all map orbits approach
zero (but in many possible ways). We introduce so-called ‘flat’ intervals containing
exactly one maximum or minimum, and so-called ‘steep’ intervals containing exactly
one zero point of fµ,ω and no zero of f ′µ,ω. For specific parameters µ and ω, we construct
an open set of points with orbits staying entirely in the ‘flat’ intervals in section three.
In section four, we describe orbits staying in the ‘steep’ intervals (for open parameter
sets), and in section five (for specific parameters) orbits regularly changing between
‘steep’ and ‘flat’ intervals. Both orbit types are described by symbol sequences, and it
is shown that their Lebesgue measure is zero.

Keywords: homoclinic behavior, one-dimensional maps, symbolic dynamics, measure.

2020 Mathematics Subject Classification: Primary 37E05, Secondary 34C37, 37B10,
37D45.

1 Introduction

Our aim in this paper is to analyze the dynamics of certain parametrized families fµ,ω of
one-dimensional maps. These arise in the dynamics of flows in three dimensions of saddle-
focus homoclinic connections which were studied by Šil’nikov [6] and Holmes [2]. Holmes
considered maps f similar to

fµ,ω : x → xµ sin(ω ln(x))

for µ > 1, ω > 0 (and odd continuation). The property µ > 1 implies that all points x ∈ (−1, 1)
approach 0 under f n as n → ∞ . The connection of the map f to a doubly homoclinic loop (as
explained below) implies that the small difference between f n (x) being positive or negative
corresponds to the ’macroscopic’ difference that the n + 1st return will take place along the
upper or lower branch of the homoclinic loop, and is therefore of interest. Holmes claimed
that the set Z of points x for which there exists an nx ∈ N such that f nx (x) = 0 can be a
dense subset of [0, 1], but it seems that this proof is not conclusive. (We briefly write f for
fµ,ω now.) In section four, we are interested in the orbit x, f (x) , f ( f (x)) , . . . We first assign

BEmail: erkanmustu1445@gmail.com



2 E. Muştu

to x a symbolic trajectory s0, s1, s2, . . . where sn = sign( f n (x)). Then we construct sets Ωc
n

(depending on a parameter c and n ∈ N) of points with the first n iterates contained in certain
‘steep’ intervals and following arbitrary symbol sequences. We show that Ωc

n is contained in
the closure of the set Z, but Ωc

∞ =
⋂

n∈N Ωc
n has measure zero. The remark on the bottom of

the page 395 of [2] conjectures that open sets of points with orbit only in the ‘flat’ intervals can
exist for certain parameters. (These ‘flat’ intervals are disjoint to Z.) We prove this in Section 3.

In the last section, we focus on constructing another type of orbit whose points travel
regularly from a ‘flat’ interval to a ‘steep’ interval, then again from the ‘steep’ interval to a
‘flat’ interval. These points form a Cantor type set and are described by sequences of the type
(L, R, R, L, . . . ), indicating whether iterates of the initial points are to the left or to the right of
corresponding maxima of f . Taking counter images f−1 (J) of intervals J with f−1 (J) close to
a quadratic maximum of f involves inversion of the second order Taylor expansion and thus
taking square roots. We also show that, despite the expanding effect of the square root, the
measure of the points with such orbits (and thus the measure of the Cantor set) is also zero.

1.1 Motivation of the map

We consider the differential equation

ẋ = sx − νy + F1 (x, y, z)

ẏ = νx + sy + F2 (x, y, z) or Ẋ = F (X) , (1.1)

ż = λz + F3 (x, y, z)

where X = (x, y, z), with smooth functions F1, F2, F3 which vanish at the origin together with
their derivatives and assume that there exists a doubly homoclinic connection associated to
a saddle-focus singularity at the origin (0, 0, 0) with eigenvalues s ± iν, s < 0, ν 6= 0, λ > 0.
We also assume that the saddle value satisfies s + λ < 0 and F possesses symmetry under the
change of sign, F (X) = −F (−X). Here, note that while the stable manifold Ws (0) is two-
dimensional, the unstable manifold Wu (0) is one-dimensional. The global unstable manifold
Wu (0) consists of the homoclinic loops and is contained in Ws (0) (see Figure 1.1). Note also
that in case s + λ < 0 stable periodic orbits bifurcate from the homoclinic loop as described
by L. P. Šil’nikov in reference [5], even in case of only one homoclinic loop.

Furthermore, to obtain expressions for a Poincaré first return map defined by the trajecto-
ries close to the homoclinic loop Λ, we assume that the vector field is linear (i.e. F1 = F2 =

F3 = 0) in a neighborhood of (0, 0, 0). First, in a neighborhood of (0, 0, 0) we introduce a
cross section Σ0 that is transversal to Λ and has a nonzero projection to the unstable direction.
The second property is an automatic consequence of the first in three dimensions. The stable
manifold Ws

loc splits Σ0 into the upper and lower components Σ+
0 and Σ−

0 respectively, and the
homoclinic loop intersects Σ0 at some point p = (ξ, 0, 0) ∈ Λ ∩ Σ0 on Ws

loc. We next introduce
two cross-sections Σ∓

1 transversal to Wu
loc. Using the trajectories which travel from Σ+

0 to Σ+
1

we aim at computing local maps G+
0 : Σ+

0 → Σ+
1 and G−

0 : Σ−
0 → Σ−

1 . These local maps
associate to each point p ∈ Σ0 the first intersection with Σ1 of the trajectory which starts at p.
Thus, a local map G0 is defined by the flow on subsets Σ∓

0 of Σ0. Note that since the upper
and lower homoclinic orbit of the system have analogous behavior, we shall continue with
one (the upper homoclinic loop) of them. For simplification we assume that there exist ξ > 0,
ζ > 0 such that Σ+

0 ⊂
{
(ξ, y, z) : (y, z) ∈ R

2
}

and Σ+
1 ⊂

{
(x, y, ζ) : (x, y) ∈ R

2
}

.
The solution (x (t) , y (t) , z (t)) of (1.1), which starts from a point (x0 = ξ, y0, z0) ∈ Σ+

0 close
to the origin at the time t = 0 and ends up at the point (x1, y1, z1 = ζ) ∈ Σ+

1 at the time t = τ,
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is written (taking into account only the linear terms in (1.1)) as follows:

x (t) + iy (t) = e(s+iν)t (x0 + iy0) = e(s+iν)t (ξ + iy0) (1.2)

z (t) = z0eλt.

The flight time τ that the trajectory takes from Σ+
0 to Σ+

1 is given by τ = 1
λ ln

( ζ
z0

)
. Sub-

stituting τ and ξ into formula (1.2), we get the following expression for the local map G+
0 , in

complex notation:

x1 + iy1 = e(s+iν)τ(z0) (x0 + iy0) = e(s+iν)τ(z0) (ξ + iy0) . (1.3)

On the other hand, due to the existence of the homoclinic connection and its transversal
intersection with Σ0 and Σ+

1 , we also have a Poincaré type map

G+
1 : Σ+

1 → Σ0

Figure 1.1: Cross sections Σ0, Σ1 and homoclinic orbit Λ.

Hence, for (x1, y1, z1 = ζ) ∈ Σ+
1 we have G+

1 (x1, y1, z1 = ζ) = (ξ, y2, z2) ∈ Σ0. With
DG+

1 (0, 0, ζ) represented by the matrix

(
α β

γ δ

)
=

(
∂y2
∂x1

∂y2
∂y1

∂z2
∂x1

∂z2
∂y1

)
(0, 0) ,

we have for the composite map

(
G+

1 ◦ G+
0

)
: (ξ, y0, z0) → (ξ, y2, z2) ,
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(
y2

z2

)
=

(
αx1 + βy1

γx1 + δy1

)
+ h.o.t. (higher order terms),

and finally we get
z2 = γx1 + δy1. (1.4)

Substituting the value of τ (z0) , x1 and y1 in (1.4), in particular for y0 = 0, one obtains

z2 = ξesτ(z0) [γ cos+δ sin] (ντ (z0)) .

Hence, with c := ξ
√

γ2 + δ2 and choosing ϕ with eiϕ
√

γ2 + δ2 = δ+ iγ, the z-component after
one return is approximately given by

z0 → z2 = c

(
ζ

z0

) s
λ
[

sin
(

ν

λ

(
ln

ζ

z0

)
+ ϕ

)]
.

Note that s
λ < −1 so µ := − s

λ > 1, with x := z0
ζ , and ω = ν

λ we can rewrite the last equation
as

z2 = cxµ [sin (−ω (ln x) + ϕ)] .

This motivates the study of the one-dimensional map fω,µ : [−1, 1] → [−1, 1] given by the
following simpler expression

fµ,ω(x) =





xµ sin(ω ln(x)), x > 0,

0, x = 0,

− fµ,ω (−x) , x < 0,

where we use x instead of z from now on. Here, note that odd continuation in the definition
of fµ,ω is motivated by the corresponding symmetry of vector field. The above process shows
how to arrive at this map starting from homoclinic orbits; similar considerations are given in
Šil’nikov, L. P. [6], P. J. Holmes [2], or J. Guckenheimer/P. Holmes [1, pp. 320–321]. Analogous
infinite-dimensional examples with attracting homoclinic behavior (not necessarily with a
double loop) were studied by Walther in [7] and by Ignatenko in [3]. The maps of this kind
(see Figure 1.2) were also studied by M. J. Pacifico, A. Rovella and M. Viana [4], but for µ < 1,
which has expansion properties of fµ,ω as a consequence. Briefly, they proved that a family
of one dimensional maps with infinitely many critical points exhibit global chaotic behavior
in a persistent way: For a positive Lebesgue measure set of values µ, the map f has positive
Lyapunov exponent at every critical value and at Lebesgue almost all points in its domain;
moreover, f is topologically transitive, i.e. has dense orbits [4].

After giving some preparatory calculations for the following chapters, we are going to
study the orbit f n

ω,µ (x) = f n(x); n = 1, 2, 3, . . . of a typical point x ∈ (0, 1). If f n(x) = 0 for
some n < ∞, then it is clear that all

(
f j(x)

)
j≥n

will equal to 0. To orbits of f we can associate

symbol sequences
(
sj

)
=
(
sign f j (x)

)
j≥0 = (+1,+1,−1, . . . ). f n (x) = 0 implies that sn = 0,

then sk = 0 for all k ≥ n. Here +1,−1 and 0 correspond to the upper, to the lower homoclinic
branch or to the stable manifold Ws (0) in terms of the original motivation. Consequently, the
following questions arise:

(i) Are all symbol sequences possible or not?

(ii) Does the symbol sequence change in every interval? (Is there chaotic motion?)
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(iii) Is it possible to construct open intervals where the symbol sequence does not change?

In the fifth chapter, we shall also consider symbol sequences different from (sign f j (x)),
describing whether f n(x) is to the left or to the right hand side of maximum points of f .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−1

0

1

x

f(
x
)

f (x) = x2 · sin(10 · ln(x))

Figure 1.2: Graph of f for µ = 2, ω = 10.

2 Formulas for the derivatives of fµ,ω

Lemma 2.1. Define for µ, ω > 0 the map

fµ,ω(x) =





xµ sin(ω ln(x)), x > 0,

0, x = 0,

− fµ,ω(−x), x < 0.

Assume now µ ∈ (2, ∞), ω > 0. Set ϕj := arctan
(

ω
µ+1−j

)
∈
(
0, π

2

)
and

gω,µ+1−j :=
√
(µ + 1 − j)2 + ω2

for j ∈ {1, 2, 3}. It is convenient to also define the more general class of functions

fµ,ω,ϕ(x) := xµ sin (ω ln (x) + ϕ) .

Then, the following formulas hold for x ∈ R, if µ > 3:

(i)

f ′µ,ω(x) = gω,µ · fµ−1,ω,ϕ1(x), (2.1)

cos (ϕ1) =
µ√

µ2 + ω2
=

µ

gω,µ
, (2.2)

sin (ϕ1) =
ω√

µ2 + ω2
=

ω

gω,µ
. (2.3)
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(ii)

f ′′µ,ω(x) = gω,µ · gω,µ−1 · fµ−2,ω,ϕ1+ϕ2(x). (2.4)

(iii)

f ′′′µ,ω(x) = gω,µ · gω,µ−1 · gω,µ−2 · fµ−3,ω,ϕ1+ϕ2+ϕ3(x). (2.5)

Proof. (i) From the definition of ϕj, we have ϕ1 = arctan
(

ω
µ

)
, and also from the definition of

gω,µ+1−j, we have gω,µ =
√

µ2 + ω2. It follows that

cos (ϕ1) =
µ

gω,µ
and sin (ϕ1) =

ω

gω,µ
.

This proves (2.2) and (2.3). For x > 0, we have

f ′µ,ω,ϕ(x) = xµ cos (ω ln (x) + ϕ)

(
1
x

ω

)
+ xµ−1µ sin (ω ln (x) + ϕ)

= xµ−1 (µ sin (ω ln (x) + ϕ) + ω cos (ω ln (x) + ϕ)) .

By multiplying and dividing the last equation with gω,µ, we have

f ′µ,ω,ϕ(x) = gω,µ · xµ−1
(

µ

gω,µ
sin (ω ln (x) + ϕ) +

ω

gω,µ
cos (ω ln (x) + ϕ)

)
. (2.6)

Putting (2.2) and (2.3) in (2.6), we finally obtain

f ′µ,ω,ϕ(x) = gω,µ · xµ−1 (cos (ϕ1) · sin (ω ln (x) + ϕ) + sin (ϕ1) · cos (ω ln (x) + ϕ))

= gω,µ · xµ−1 sin(ω ln (x) + ϕ + ϕ1)

= gω,µ · fµ−1,ω,ϕ+ϕ1(x). (2.7)

(ii) Further, using (2.7) with ϕ + ϕ1 instead of ϕ, and µ − 1 instead of µ, we see that

f ′′µ,ω(x) = f ′′µ,ω,0(x) =
(

gω,µ · fµ−1,ω,ϕ1

)′
(x)

= gω,µ · gω,µ−1 · fµ−2,ω,ϕ1+ϕ2(x),

which proves (2.4).
(iii) Using (2.7) we obtain (2.5) analogously.

Lemma 2.2. Let µ > 3 and ω > 0 be given. Define q := e−
π
ω and ϕj as in Lemma 2.1. Then, the

following properties are satisfied in (0, 1]:

(i) fµ,ω has the zero points

qk = e−
kπ
ω , (2.8)

(k ∈ N) and

f ′µ,ω(q
k) = (−1)k ωqk(µ−1). (2.9)

(ii) fµ,ω has the extremal points

mk = qke
−ϕ1

ω (2.10)

and

fµ,ω (mk) = (−1)k+1 · exp
(
− kπµ + ϕ1µ

ω

)
· sin(ϕ1). (2.11)
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(iii) If µ is an even integer, and β ∈ N is odd and l (k) := kµ + β, then fµ,ω has a maximum at

ml(k) = ql(k)e
−ϕ1

ω . (2.12)

Proof. (i) We first find the zeros of fµ,ω. For x ∈ (0, 1) one has

sin(ω ln(x)) = 0 ⇔ ∃k ∈ N : ω ln(x) = −kπ ⇔ ∃k ∈ N ln(x) =
−kπ

ω
,

and hence x = e
−kπ

ω . With q = e−
π
ω , the zeros of fµ,ω in (0, q] are given by x = e

−kπ
ω = qk.

Therefore, by inserting qk in (2.1), we have

f ′µ,ω(q
k) = qk(µ−1) · gω,µ · sin(ω

(
ln qk

)
+ ϕ1)

= qk(µ−1) · gω,µ · sin(ω
(

ln e
−kπ

ω

)
+ ϕ1)

= (−1)k qk(µ−1) · gω,µ · sin(ϕ1).

Using (2.3) we obtain

f ′µ,ω(q
k) = (−1)k qk(µ−1) · gω,µ ·

ω

gω,µ

= (−1)k ωqk(µ−1).

Hence, assertion (i) is proved.
(ii) Let k ∈ N. We find the extremum points of fµ,ω in the interval Ik =

[
qk+1, qk

]
by

solving f ′µ,ω(x) = 0 for x ∈ Ik. Since x > 0, xµ−1 6= 0. So, we have

sin(ω (ln x) + ϕ1) = 0,

and hence x = e
−kπ−ϕ1

ω . The last expression equals to qke
−ϕ1

ω = mk, which proves (2.10).
Furthermore, for the extremum point mk of fµ,ω in the interval

(
qk+1, qk

)
we have

fµ,ω (mk) = m
µ
k sin(ω ln(mk))

=

(
qke−

ϕ1
ω

)µ

sin(ω ln
(

qke−
ϕ1
ω

)
)

=

(
e−

kπ
ω e−

ϕ1
ω

)µ

sin(ω ln
(

e−
kπ
ω e−

ϕ1
ω

)
)

= exp
(
− kπµ + ϕ1µ

ω

)
sin(ω

−kπ − ϕ1

ω
)

= (−1)k+1 exp
(
− kπµ + ϕ1µ

ω

)
sin(ϕ1).

(iii) Substituting l (k) instead of k in (2.11), we have

fµ,ω

(
ml(k)

)
= (−1)l(k)+1 exp

(
− l (k)πµ + ϕ1µ

ω

)
sin(ϕ1)

= exp
(
− l (k)πµ + ϕ1µ

ω

)
(−1)kµ+β+1 sin(ϕ1)

Therefore, it is clear that fµ,ω
(
ml(k)

)
> 0 (and hence fµ,ω has a maximum at ml(k)), if µ is even

and β is odd.
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We shall frequently use the simple lemma below.

Lemma 2.3. Assume f : [a, b] → R is continuous on [a, b] and differentiable on (a, b). If | f ′| ≥ c, or

| f ′| ≤ d (c and d are constant), then we have

c |b − a| ≤ | f (b)− f (a)| ≤ d |b − a| . (2.13)

Proof. (Follows from the mean value theorem.)

3 The behavior of orbits remaining in some ‘flat’ intervals

In this part we find some parameters µ and ω such that fµ,ω maps some extremal points mk

to some other extremal points mℓ(k) (see Figure 3.1). Then, we construct some open intervals
Uk around mk and orbits of fµ,ω = f which are entirely contained in

⋃
k∈N Uk.

qkqk+1 mk

ql(k)+1 ql(k)

ml(k)

Uk

x f (x)

x

Figure 3.1: f (mk) = mℓ(k) for special parameters (picture not produced with
realistic parameters, for better visibility).

Theorem 3.1. For k ∈ N, ω > 0, and even integer µ > 5, define

η := min





q

gω,µ · gω,µ−1
,

e−
ϕ1
ω − q

2
,

1 − e−
ϕ1
ω

2



 , (3.1)

and set ℓ (k) := kµ + 1 (which corresponds to β = 1 in assertion (iii) of Lemma 2.2), δk := ηqk ,

δℓ(k) := ηqℓ(k). Then, for every large enough even integer µ there exists a corresponding ω such that

the following properties are satisfied:

(i) With the intervals Uk = (mk − δk, mk + δk) one has f (Uk) ⊂ Uℓ(k) and

∀k ∈ N : f−1({0}) ∩ Uk = ∅.

(ii) If k is odd, then for x ∈ Uk, the orbits
(

f j (x)
)

j∈N
all have the symbol sequence

(
sj

)
=
(

sign f j (x)
)

j∈N

= (+1,+1,+1, . . . ) .



Dynamical behavior of a parametrized family of one-dimensional maps 9

(iii) The set

Z = {x | ∃n ∈ N : f n (x) = 0} (3.2)

is disjoint to
⋃

k Uk and, in particular, is not dense in [−1, 1].

The proof is divided into several lemmas.

Lemma 3.2. Let k ∈ N and define ϕ1 as in Lemma 2.1. Define η and δk as in Theorem 3.1, and

η := min





e−
ϕ1
ω − q

2
,

1 − e−
ϕ1
ω

2



 .

Then we have

(mk − δk, mk + δk) ⊂ [mk − δk, mk + δk] ⊂
[
mk − ηqk, mk + ηqk

]
⊂
(

qk+1, qk
)

.

Proof. From (3.1) we have η ≤ η. Multiplying both sides with qk, and using (2.10) we have

δk ≤ ηqk = min





qke−
ϕ1
ω − qk+1

2
,

qk − qke−
ϕ1
ω

2



 = min

{
mk − qk+1

2
,

qk − mk

2

}
,

it follows that (mk − δk, mk + δk) ⊂ [mk − δk, mk + δk] ⊂
[
mk − ηqk, mk + ηqk

]
⊂
(
qk+1, qk

)
.

Lemma 3.3. Define ϕ1 as in Lemma 2.1, and define ℓ (k) as in Theorem 3.1. Then the following

statements are true.

(i) For every even integer µ ≥ 32, there exists ω ∈ (0, 1) such that for all k ∈ N f has the property

f (mk) = mℓ(k).

(ii) For any choice of ω as in assertion (i), one has ω → 0 as µ → ∞.

Proof. (i) From (2.11) we have for all k ∈ N

| f (mk)| = exp
(
− kπµ + ϕ1µ

ω

)
sin(ϕ1). (3.3)

On the other hand, from the third assertion of Lemma 2.2 we know that for even µ, f has a
maximum at the point

mℓ(k) = exp
(
−πℓ (k) + ϕ1

ω

)
. (3.4)

Using (2.3), (3.3) and (3.4), we obtain the following equivalences:

mℓ(k) = f (mk) ⇔ exp
(
−πℓ (k) + ϕ1

ω

)
= exp

(
− kπµ + ϕ1µ

ω

)
· sin(ϕ1)

⇔ exp
(
−πℓ (k) + ϕ1

ω

)
= exp

(
− kπµ + ϕ1µ

ω

)
· 1√

1 + µ2

ω2

⇔ exp
(−π

ω
[kµ − ℓ (k)] +

ϕ1 (1 − µ)

ω

)
=

√
1 +

µ2

ω2 . (3.5)
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Substituting ℓ (k) = kµ + 1 in (3.5), we have

exp
(

π + ϕ1 (1 − µ)

ω

)
=

√
1 +

µ2

ω2

or, using the definition of ϕ1,

exp




π − (µ − 1) arctan
(

ω
µ

)

ω


 =

√
1 +

µ2

ω2 . (3.6)

In view of (3.6), we define

F (ω, µ) = exp




π − (µ − 1) arctan
(

ω
µ

)

ω


−

√
1 +

µ2

ω2 (3.7)

for all ω > 0 and µ > 1. We try to find (ω, µ) with F (ω, µ) = 0 (see Figure 3.2). Noting
that for fixed µ, limω→0 F (ω, µ) = +∞, it is enough to find at least one pair (ω, µ) with
F (ω, µ) < 0. For ω = 1, we have

F (1, µ) = exp
(

π − (µ − 1) arctan
(

1
µ

))
−
√

1 + µ2

= exp
(

π − µ arctan
(

1
µ

)
+ arctan

(
1
µ

))
−
√

1 + µ2. (3.8)

Since arctan′ (x) = 1
1+x2 , we have arctan′ (x) ≥ 1

2 for |x| ≤ 1. Hence, (2.13) shows arctan(x) ≥
1
2 x for x ∈ [0, 1]. It follows that for µ > 1,

µ arctan
(

1
µ

)
≥ 1

2
. (3.9)

Using (3.9) and arctan
(

1
µ

)
<

π
4 for µ > 1 in (3.8), we have

F (1, µ) ≤ exp
(

π − 1
2
+

π

4

)
−
√

1 + µ2 = exp
(

5π

4
− 1

2

)
−
√

1 + µ2.

From the fact that exp
( 5π

4 − 1
2

)
< 32, we have F (ω, µ) < 0, if we set ω = 1 and µ ≥ 32. With

the intermediate value theorem, it is trivial that F (ω, µ) has at least one zero point ω ∈ (0, 1).
It follows that (3.7) is satisfied with this ω depending on the even integer µ ≥ 32. Hence, the
proof of assertion (i) is completed.

(ii) Consider a sequence µk, µk → ∞ with corresponding ωk ∈ (0, 1) such that F (µk, ωk) =

0. Then

√
1 + µ2

k

ω2
k

→ ∞. Further, (µk − 1) arctan
(ωk

µk

)
is bounded. The exponential term in

(3.7) must go to +∞, so ωk → 0 necessarily. This completes the proof of (ii) and the proof of
Lemma 3.3.

Remark 3.4. Consider the equation (3.5). Because µ > 1, so ϕ1(1−µ)
ω < 0, and

√
1 + µ2

ω2 > 1,
the term −π

ω [kµ − ℓ (k)] must be positive, if we have a solution. Accordingly, ℓ (k) > kµ must
be satisfied. It means (3.6) has no solution for ℓ (k) ≤ kµ. Thus ℓ (k) ≥ kµ + 1 necessarily; we
made the choice ℓ (k) = kµ + 1.
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0 1 2 3 4 5
−40

−20

0

20

40

60

80

100

ω

F
(ω

,3
2)

Figure 3.2: Graph of F(·, µ) for µ = 32.

Numerical observations. In order to find a numerical solution we use two starting points
where F (·, µ) has opposite signs and at the 9 th step of a bisection method we obtained
ω = 0.69895 and µ = 24 as an appropriate F (ω, µ) = 0. Although one can obtain some other
solution points ω, for some other the parameters µ, we numerically found out that there is no
solution for µ < 3.1.

Lemma 3.5. Choose an even integer µ ≥ 32 and ω ∈ (0, 1) with the properties as in Lemma 3.3.

Define ℓ (k), η, δk and δℓ(k) as in Theorem 3.1. Then with the intervals Uk = (mk − δk, mk + δk), we

have f (Uk) ⊂ Uℓ(k).

Proof. Let µ and ω be as in the assumption of the lemma, and x ∈ Uk. With ℓ (k) = kµ + 1 we
claim that ∣∣∣ f (x)− mℓ(k)

∣∣∣ < δℓ(k) = ηqℓ(k) . (3.10)

From the second order Taylor expansion, we have

f (x) = f (mk) + f ′ (mk) (x − mk) +
f ′′ (ξ)

2
(x − mk)

2 (3.11)

with ξ ∈ (mk − δk, mk + δk). Since µ > 2, note that we also have

q(k+1)(µ−2) ≤ |ξ|µ−2 ≤ qk(µ−2). (3.12)

Substituting the equality (3.11) in the left hand side of (3.10), we get

∣∣∣ f (x)− mℓ(k)

∣∣∣ =
∣∣∣∣∣ f (mk) + f ′ (mk) (x − mk) + f ′′ (ξ)

(x − mk)
2

2
− mℓ(k)

∣∣∣∣∣ .

From the fact that we now have fixed parameters µ, ω with the property f (mk) = mℓ(k) as in
Lemma 3.3 and using f ′(mk) = 0 and (x − mk) < δk, the last equality gives

∣∣∣ f (x)− mℓ(k)

∣∣∣ ≤
∣∣∣∣∣ f

′′ (ξ)
δ2

k

2

∣∣∣∣∣ .
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Using (2.4) in the last equality, we obtain

∣∣∣ f (x)− mℓ(k)

∣∣∣ =
∣∣∣∣∣gω,µ · gω,µ−1 · sin (ω ln (ξ) + ϕ1 + ϕ2) |ξ|µ−2 δ2

k

2

∣∣∣∣∣ . (3.13)

Using the upper estimate of (3.12) and substituting the value of δk in (3.13), we get

∣∣∣ f (x)− mℓ(k)

∣∣∣ ≤
∣∣∣∣gω,µ · gω,µ−1 ·

∣∣∣qk
∣∣∣
µ−2 η2q2k

2

∣∣∣∣

=
∣∣∣gω,µ · gω,µ−1 · qkµ ηη

2

∣∣∣ . (3.14)

Finally, using the definition of η from (3.1) in (3.14), we have

∣∣∣ f (x)− mℓ(k)

∣∣∣ ≤
∣∣∣∣gω,µ · gω,µ−1 · qkµ η

2
q

gω,µ · gω,µ−1

∣∣∣∣

= qkµ+1 η

2
< ηqkµ+1 = ηqℓ(k) = δℓ(k).

Proof of Theorem 3.1. Choose µ, ω as in Lemma 3.3, and let ℓ (k) be as in Theorem 3.1.
(i) Lemma 3.5 shows f (Uk) ⊂ Uℓ(k) and the definition of Uℓ(k) implies 0 /∈ Uℓ(k), so

f−1 ({0}) ∩ Uk = ∅.

(ii) If k is odd and µ is as above (therefore even), then all ℓj (k) (j ≥ 0) are odd and all Uℓj(k)

are intervals around maxima of f , where f is positive. Hence the assertion is proved.
(iii) For k0 ∈ N, x ∈ Uk0 and n ∈ N0, f n (x) ∈ ⋃

k∈N Uk, in particular f n (x) 6= 0, which
proves assertion (iii).

Note that the possible existence of the orbits which remain close to critical points, i.e
implying non-density has been mentioned as a remark by P. J. Holmes in the bottom of the
page 395 of [2] with only a vague indication of proof. With this section we gave a rigorous
proof of that idea.

4 Behavior of the map fµ,ω in some ‘steep’ intervals

In this section we first construct some orbits whose points stay entirely in so-called ‘steep’
intervals, and then analyze the measure of the set of points which have such orbits. In con-
trast to Sections 3 and 5, where the parameters µ and ω are connected by the conditions
given in assertion (i) of Lemma 3.3 and in (5.1), in this section both of them can be varied
independently.

Consider the interval (−mk,−mk+1) or (mk+1, mk). From Lemma 2.2 we have

∣∣∣ f ′µ,ω(q
k+1)

∣∣∣ = ω
(

qk+1
)(µ−1)

.

Since f ′µ,ω (∓mk) = f ′µ,ω (∓mk+1) = 0, continuity of f ′µ,ω implies that we can choose a ‘steep’
interval Sk, either as a subset of (mk+1, mk) or as a subset of (−mk,−mk+1), on which | f ′µ,ω|
satisfies a lower estimate. We begin by specifying the boundaries of the ‘steep’ interval Sk and
by giving some new notations.

We use the notation |I| for the length of an interval I.
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Definition 4.1. Let k ∈ N and c ∈ (0, 1). Define

ak := min
{

x ∈
(

mk+1, qk+1
]

:
∣∣∣ f ′µ,ω(x)

∣∣∣ ≥ cω
(

qk+1
)(µ−1)

on
[

x, qk+1
]}

and

bk := max
{

x ∈
[
qk+1, mk

)
:
∣∣∣ f ′µ,ω(x)

∣∣∣ ≥ cω
(

qk+1
)(µ−1)

on
[
qk+1, x

]}
.

Note that qk+2 < ak < qk+1 < bk < qk (see Figure 4.1). Given a symbol sequence of the form

s = (s0, s1, s2, . . . ) ∈ {+1,−1}N0 ,

where symbols represent the signs of f
j
µ,ω (x) for some starting value x, we construct corre-

sponding orbits of fµ,ω. Note that in terms of the motivation by the three dimensional vector
field, such orbits correspond to solutions converging to the doubly homoclinic loop, and tak-
ing turns along the upper and lower homoclinic orbit according to the symbol sequence. For
0 ≤ a ≤ b, define

[a, b]+1 := [a, b] ,

[a, b]−1 := [−b,−a] ,

and define ‘steep’ intervals by

Sc
k,s := [ak, bk]s =

{
[ak, bk] , if s = +1,

[−bk,−ak] , if s = −1.

So, we have ∣∣∣ f ′µ,ω(x)
∣∣∣ ≥ cω

(
qk+1

)(µ−1)
for x ∈ Sc

k,s, s ∈ {±1} , k ∈ N. (4.1)

We also define Sk,±1 := Sc
k,+1 ∪ Sc

k,−1 and define the union of all ‘steep’ intervals by

qkqk+1 mkqk+2
mk+1 akak bk

f (x)

x

Figure 4.1: One interval (qk+2, qk), with corresponding ‘steep’ interval Sc
k,+1 =

[ak, bk].
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Ψc=
⋃

k∈N

Sk,±1.

Note that for s ∈ {±1} , Sc
k,s ⊂ (mk+1, mk)s , and hence

∣∣Sc
k,s

∣∣ ≤ mk − mk+1 = qke−
ϕ1
ω (1 − q) (4.2)

Setting f := fµ,ω, we define sets of points with forward orbits which are contained in these
‘steep’ intervals (see Figure 4.2). Namely,

Ωc
n =

n⋂

j=0

f−j (Ψc) ; Ωc
∞ =

∞⋂

j=0

f−j (Ψc) .

qk0

y0

Σ1

qk0+1

f (x)

qk1+1 qk1

y1

x f (x)

x

Figure 4.2: Graphical construction of Σ1 from Σ0 = [qk0+1, y0] (in case s0 = s1 =

+1).

Theorem 4.2. Let c ∈ (0, 1). Assume µ > 1 and define Sc
k,±1 and Ωc

∞ as above. Then for k0 ∈ N the

following statements are true:

(i) For every symbol sequence s = (s0, s1, s2, . . . ) there exists a point y0 ∈
(

Sc
k0,s0

∩ Ωc
∞

)
with the

property that sign f j (y0) is given by sj ∈ {±1}, where j ∈ N0.

(ii) Let ω >
1
c + π (µ + 1). Then with the set Z from (3.2) we have

(
Sc

k0,s0
∩ Ωc

∞

)
⊂ Z.

(iii) Let c ∈
( 2

π , 1
)

and ω >
cπ2(2µ+3)

2(cπ−2) . Then Ωc
∞ ⊂ Z, and Ωc

∞ has Lebesgue measure zero.

Remark 4.3. A similar argument is sketched in the page 395 of [2], with the purpose to show
that Z can be dense, but it seems that the method gives density only in a set of measure zero
(see part (iii) of the above theorem).

The proof starts with the following lemma.
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Lemma 4.4. Let k0 ∈ N, c ∈ (0, 1) and s = (s0, s1, s2, . . . ) ∈ {+1,−1}N0 be given. Define Sc
k0,sj

as

in the passage given before Theorem 4.2. Then the following statements are true:

(i) There exists a point y0 ∈ Sc
k0,s0

and a sequence k0 < k1 < k2 < · · · such that ∀j ∈ N0

f j (y0) ∈ Sc
k j,sj

, in particular, y0 ∈ Ωc
∞.

(ii) Let y0 ∈
(
Sc

k0,s0
∩ Ωc

∞

)
be given and define the sequence k0 < k1 < k2 < · · · by f j (y0) = yj ∈

Sc
k j,sj

(j ∈ N0). Then there exists a sequence
(
Σj

)
of intervals in Sc

k0,s0
with Σj ⊃ Σj+1 ∋ y0,

(
f j
)′ 6= 0 on Σj and

f j
(
Σj

)
=
[
qk j+1, yj

]
sj

=





[
qk j+1, yj

]
, if sj = +1,

[
yj,−qk j+1

]
, if sj = −1

⊂ Sc
k j,sj

for j ∈ N0, (4.3)

in particular, Z ∩ Σj 6= ∅ for all j ∈ N0.

(iii) For y0 ∈
(

Sc
k0,s0

∩ Ωc
∞

)
and k0, k1, k2, . . . as in assertion (ii) and all j ∈ N we have

∣∣∣∣
(

f j
)′

(y0)

∣∣∣∣ ≥ (cω)j

(
j−1

∏
n=0

qkn+1

)µ−1

. (4.4)

(iv) Let y0 and the sequence k0 < k1 < k2 < · · · be as in (ii). Then

∀j ∈ N : qk jµ ≥ qk j+1+2. (4.5)

(v) Let ω >
1
c + π (µ + 1). Let y0 and the associated Σj be as in assertion (ii) and ϕ1 be as in

Lemma 2.1. Then
∣∣Σj

∣∣ ≤ qk0 e−
ϕ1
ω (1−q)

(cωqµ+1)
j and cωqµ+1 > 1; in particular,

∣∣Σj

∣∣→ 0, as j → ∞.

Proof. (i) Let k0 ∈ N and s = (s0, s1, s2, . . . ) be given. For Sc
k0,s0

= [ak0 , bk0 ]s0
it is clear that

f
(
Sc

k0,s0

)
is an interval which contains 0 in its interior, and since ak → 0, bk → 0 as k → ∞,

there exists k1 > k0 with Sc
k1,s1

⊂ f
(
Sc

k0,s0

)
. Further f |Sc

k0,s0
is injective, and we set

J1 :=
(

f |Sc
k0,s0

)−1 (
Sc

k1,s1

)
.

( f maps J1 bijectively onto Sc
k1,s1

.) Similarly, there exists k2 > k1 with Sc
k2,s2

⊂ f
(
Sc

k1,s1

)
, and a

closed subinterval J2 ⊂ J1 such that f 2|J2 : J2 → Sc
k2,s2

is bijective. Thus, we obtain a nested
sequence

J1 ⊃ J2 ⊃ J3 ⊃ · · ·

of closed intervals and sequence of numbers

k0 < k1 < k2 < · · ·

with the property that f j
(

Jj

)
= Sc

k j,sj
, j = 1, 2, 3, . . . Furthermore, the intersection of nested

closed intervals
⋂

j∈N Jj is not empty. It means that there exists a point y0 ∈ ⋂
j∈N Jj which

follows the symbol sequence s, and this result completes the proof of assertion (i).
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(ii) For the proof of this assertion we use a recursive construction. Define

Σ0 :=
[
qk0+1, y0

]
s0
=





[
qk0+1, y0

]
, if s0 = +1

[
y0,−qk0+1

]
, if s0 = −1

⊂ Sc
k0,s0

.

Then y0 ∈ Σ0, and the definition of Sc
k0,s0

implies f ′ 6= 0 on Σ0, so (4.3) holds for j = 0. Assume
Σj with the properties in (4.3) is constructed and we want to construct Σj+1 ⊂ Σj such that
(4.3) is also satisfied for j + 1. We have, observing that sign

(
yj

)
= sj,

f

([
qk j+1, yj

]
sj

)
=
[
0, f

(
yj

)]
sj+1

=
[
0, yj+1

]
sj+1

,

and f j|Σj
as well as f |[

q
kj+1,yj

]
sj

are invertible. Hence, we can define

Σj+1 =
(

f−j|Σj

)−1
(

f |[
q

kj+1,yj

]
sj

)−1 ([
qk j+1+1, yj+1

]
sj+1

)
.

Then y0 ∈ Σj+1 ⊂ Σj, the chain rule shows
(

f j+1
)′ 6= 0 on Σj+1, and

(
f j+1

) (
Σj+1

)
=
[
qk j+1+1, yj+1

]
sj+1

⊂ Sc
k j+1,sj+1

.

Hence, the recursive construction is completed. Note also that for j ∈ N, Σj contains a point

xj with f j
(
xj

)
= qk j+1, so f j+1

(
xj

)
= f

(
qk j+1

)
= 0, hence xj ∈ Σj ∩ Z.

(iii) By the chain rule the derivative
(

f j
)′

at y0 ∈ ⋂j∈N Σj can be calculated as the product
of the derivatives of f along the orbit

∣∣∣∣
(

f j
)′

(y0)

∣∣∣∣ =
∣∣ f ′ (y0) · f ′ (y1) · . . . · f ′

(
yj−2

)
· f ′
(
yj−1

)∣∣ =
j−1

∏
n=0

∣∣ f ′ (yn)
∣∣ .

Using (4.1) for each derivative in the last equality, we have

∣∣∣∣
(

f j
)′

(y0)

∣∣∣∣ =
j−1

∏
n=0

∣∣ f ′ (yn)
∣∣ ≥ (cω)j

j−1

∏
n=0

(
qkn+1

)µ−1

= (cω)j

(
j−1

∏
n=0

qkn+1

)µ−1

.

This gives the proof of (4.4).
(iv) Let now y0 ∈ Sc

k0,s0
and sequence k0 < k1 < k2 < · · · as in (ii) be given. With Σj from

(4.3) we have f j
(
Σj

)
⊂ Sc

k j,sj
, and so

f j+1 (y0) ∈ Sc
k j+1,sj+1

∩ f j+1 (Σj

)
⊂ f

(
f j
(
Σj

))
⊂ f

(
Sc

k j,sj

)
, for j ∈ N0

which implies f
(
Sc

k j,sj

)
∩ Sc

k j+1,sj+1
6= ∅. Moreover, since | f | ≤ qk jµ on Sc

k j,sj
, we obviously have

qk jµ ≥ max
{
| f (x)| : x ∈ Sc

k j,sj

}
. Together with

max
{
| f (x)| : x ∈ Sc

k j,sj

}
≥ min

{
|y| : y ∈ Sc

k j+1,sj+1

}
,
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we conclude

qk jµ ≥ max
{
| f (x)| : x ∈ Sc

k j,sj

}
≥ min

{
|y| : y ∈ Sc

k j+1,sj+1

}
= ak j+1

≥ qk j+1+2.

Hence, the proof of (iv) is also completed.
(v) Finally, from (2.13) we know that on Σj we have

∣∣Σj

∣∣ ≤
∣∣( f j

) (
Σj

)∣∣

minΣj

∣∣∣
(

f j
)′∣∣∣

. (4.6)

From (4.3) we have
∣∣( f j

) (
Σj

)∣∣ ≤
∣∣∣Sc

k j,sj

∣∣∣, and from (4.2) we have
∣∣∣Sc

k j,sj

∣∣∣ ≤ qk j e−
ϕ1
ω (1 − q).

Combining both inequalities, we get
∣∣∣
(

f j
) (

Σj

)∣∣∣ ≤
∣∣∣Sc

k j,sj

∣∣∣ ≤ qk j e−
ϕ1
ω (1 − q) . (4.7)

Using (4.7) and (4.4) in (4.6), we obtain

∣∣Σj

∣∣ ≤ qk j e−
ϕ1
ω (1 − q)

(cω)j

(
j−1

∏
n=0

qkn+1

)µ−1 . (4.8)

By using (4.5) we can estimate the denominator of (4.8) as follows:

(cω)j

(
j−1

∏
n=0

qkn+1

)µ−1

= (cω)j ·
(

j−1

∏
n=0

q

)µ−1( j−1

∏
n=0

qkn

)µ−1

= (cω)j ·
qj(µ−1)

j−1

∏
n=0

qknµ

j−1

∏
n=0

qkn

≥ (cω)j · qj(µ−1) ·

j−1

∏
n=0

qkn+1+2

j−1

∏
n=0

qkn

= (cω)j · q(µ−1)j ·
q2j

j−1

∏
n=0

qkn+1

j−1

∏
n=0

qkn

=
(

cωqµ+1
)j

· qk j

qk0
.

Substituting this estimate in (4.8), we finally have

∣∣Σj

∣∣ ≤ qk j e−
ϕ1
ω (1 − q) qk0

(cωqµ+1)
j
qk j

=
qk0 e−

ϕ1
ω (1 − q)

(cωqµ+1)
j

.

To show that
∣∣Σj

∣∣ → 0 as j → ∞, it is enough to show
(
cωqµ+1

)
> 1. Note that the first order

Taylor expansion of qµ+1 = exp
(
− π

ω (µ + 1)
)

is

exp
(
−π

ω
(µ + 1)

)
= 1 − π (µ + 1)

ω
+ R1 (ξ) ,

where R1 (ξ) =
exp′′(ξ)

2

(
π(µ+1)

ω

)2
> 0, and ξ ∈

(
−π(µ+1)

ω , 0
)

. The assumption of (e) gives us
1
c + π (µ + 1) < ω, and hence

1 < cω − cπ (µ + 1) = cω

(
1 − π (µ + 1)

ω

)
.
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Since R1 (ξ) > 0, we obtain

1 < cω

(
1 − π (µ + 1)

ω

)
< cω

(
1 − π (µ + 1)

ω
+ R1 (ξ)

)
= cω exp

(
−π

ω
(µ + 1)

)
= cωqµ+1,

and this completes the proof of (v).

The next lemma estimates the measure of the points in the ‘steep’ interval Sc
k0,+1 which

have the first n iterates in the union of all ‘steep’ intervals.

Lemma 4.5. Let k0 ∈ N, c ∈
( 1

π , 1
)
. Let Ψc and Sc

k0,±1 be as in the passage before Theorem 4.2.

Define ϕ1 as in Lemma 2.1. Then for k0 ∈ N we have

∣∣∣∣∣S
c
k0,+1 ∩

n⋂

i=1

f−i (Ψc)

∣∣∣∣∣ ≤
2nqk0 e−

ϕ1
ω (1 − q)

(cωqµ+1 (1 − q))
n . (4.9)

(The same estimate holds for Sc
k0,−1.)

Proof. Let k0 ∈ N and c ∈
( 1

π , 1
)

be given. It is clear that f
(
Sc

k0,+1

)
contains infinitely many

‘steep’ intervals, because it is a neighborhood of zero. Assume ℓ, i ∈ N are such that Sc
k0,+1 ∩

f−i
(
Sc
ℓ,±1

)
6= ∅. Since

∣∣ f i
(

x
)∣∣ ≤ |x|µi

on Sc
k0,±1, one must have qk0µi ≥ min

{∣∣y
∣∣ : y ∈ Sc

ℓ,±1

}
≥

qℓ+2. It follows that ℓ ≥ k0µi − 2 ≥ k0µ − 2. Thus

f−i (Ψc) = f−i

(
⋃

ℓ∈N

Sc
ℓ,±1

)
= f−i




⋃

ℓ∈N

f−i(Sc
ℓ,±1) 6=∅

Sc
ℓ,±1


 = f−i


 ⋃

ℓ≥k0µ−2

Sc
ℓ,±1


 .

Hence, the intersection in (4.9) equals Sc
k0,+1 ∩

⋂n
i=1 f−i

(⋃
ℓ≥k0µ−2 Sc

ℓ,±1

)
. We now prove (4.9)

by induction over n. For n = 1,

∣∣∣Sc
k0,+1 ∩ f−1 (Ψc)

∣∣∣ =

∣∣∣∣∣∣
Sc

k0,+1 ∩ f−1


 ⋃

ℓ≥k0µ−2

Sc
ℓ,±1



∣∣∣∣∣∣

= ∑
ℓ≥k0µ−2

∣∣∣Sc
k0,+1 ∩ f−1 (Sc

ℓ,±1

)∣∣∣ . (4.10)

From (4.2) we have ∣∣Sc
ℓ,±1

∣∣ ≤ 2qℓe−
ϕ1
ω (1 − q) . (4.11)

Using (2.13), (4.1) and (4.11) in (4.10), we have

∣∣∣Sc
k0,+1 ∩ f−1 (Ψc)

∣∣∣ = ∑
ℓ≥k0µ−2

∣∣∣Sc
k0,+1 ∩ f−1 (Sc

ℓ,±1

)∣∣∣ ≤ ∑
ℓ≥k0µ−2

1
cωq(k0+1)(µ−1)

∣∣Sc
ℓ,±1

∣∣

≤ 2e−
ϕ1
ω (1 − q)

cωq(k0+1)(µ−1) ∑
ℓ≥k0µ−2

qℓ. (4.12)

Here, note that

∑
ℓ≥k0µ−2

qℓ = ∑
ℓ≥⌈k0µ−2⌉

qℓ = q⌈k0µ−2⌉ 1
1 − q

, (4.13)
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where ⌈·⌉ denotes the ceiling function. Setting ε (k0) := ⌈k0µ − 2⌉ − (k0µ − 1) ∈ [−1, 0) and
using (4.13) in (4.12), we obtain

∣∣∣Sc
k0,+1 ∩ f−1 (Ψc)

∣∣∣ ≤ 2e−
ϕ1
ω

cωq(k0+1)(µ−1)
q⌈k0µ−2⌉ =

2qk0 e−
ϕ1
ω

cω
· q⌈k0µ−2⌉

qk0µ−1 · 1
qµ

= 2qε(k0) · qk0 e−
ϕ1
ω

cωqµ
≤ 2q−1qk0 e−

ϕ1
ω

cωqµ
=

2qk0 e−
ϕ1
ω (1 − q)

cωqµ+1 (1 − q)

which proves the case n = 1.
Assume the assertion is true for n, i.e, for all k0 ∈ N we have

∣∣∣∣∣S
c
k0,+1 ∩

n⋂

i=1

f−i (Ψc)

∣∣∣∣∣ ≤ qk0 e−
ϕ1
ω (1 − q)

(
2

cωqµ+1 (1 − q)

)n

, (4.14)

then the same estimate is true for Sc
k0,−1. Now we show that it is true for n + 1. Using (4.10)

for the third equality we obtain

∣∣∣∣∣S
c
k0,+1 ∩

n+1⋂

i=1

f−i (Ψc)

∣∣∣∣∣ =
∣∣∣Sc

k0,+1 ∩ f−1 (Ψc) ∩ · · · ∩ f−n−1 (Ψc)
∣∣∣

=

∣∣∣∣∣S
c
k0,+1 ∩ f−1

(
n⋂

i=0

f−i (Ψc)

)∣∣∣∣∣

=

∣∣∣∣∣∣
Sc

k0,+1 ∩ f−1




 ⋃

ℓ≥k0µ−2

Sc
ℓ,±1


 ∩

n⋂

i=0

f−i (Ψc)



∣∣∣∣∣∣

.

Note that Sc
ℓ,±1 ⊂ Ψ

c implies

Sc
ℓ,±1 ∩

n⋂

i=0

f−i (Ψc) = Sc
ℓ,±1 ∩

n⋂

i=1

f−i (Ψc) .

So, we obtain

∣∣∣∣∣S
c
k0,+1 ∩

n+1⋂

i=1

f−i (Ψc)

∣∣∣∣∣ =

∣∣∣∣∣∣
Sc

k0,+1 ∩ f−1


 ⋃

ℓ≥k0µ−2

(
Sc
ℓ,±1 ∩

n⋂

i=1

f−i (Ψc)

)

∣∣∣∣∣∣

(4.15)

Using (2.13), (4.1), (4.11), (4.13) and (4.14) for Sc
k0,+1 and Sc

k0,−1 in (4.15), we have

∣∣∣∣∣S
c
k0,+1 ∩

n+1⋂

i=1

f−i (Ψc)

∣∣∣∣∣ ≤
1

(cω) q(k0+1)(µ−1) ∑
ℓ≥k0µ−2

2
(

2
cωqµ+1 (1 − q)

)n

qℓe−
ϕ1
ω (1 − q)

=
2n+1qk0 e−

ϕ1
ω

(cω)n+1 (qµ+1)
n

qµqk0µ−1

(
1

1 − q

)n−1

∑
ℓ≥k0µ−2

qℓ

=
2n+1qk0 e−

ϕ1
ω

(cω)n+1 (qµ+1)
n

qµ

(
1

1 − q

)n−1 q⌈k0µ−2⌉

qk0µ−1

1
1 − q
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With ε (k0) as above, we obtain
∣∣∣∣∣S

c
k0,+1 ∩

n+1⋂

i=1

f−i (Ψc)

∣∣∣∣∣ ≤
2n+1qk0 e−

ϕ1
ω qε(k0)

(cω)n+1 (qµ+1)
n

qµ

(
1

1 − q

)n

≤ 2n+1qk0 e−
ϕ1
ω q−1

(cω)n+1 (qµ+1)
n

qµ

(
1

1 − q

)n

= qk0 e−
ϕ1
ω (1 − q)

(
2

cωqµ+1 (1 − q)

)n+1

,

so the assertion is true for n + 1 and hence, the proof of Lemma 4.5 is completed.

Remark 4.6. Let c ∈
( 2

π , 1
)

and µ > 1. Then 1
c + π (µ + 1) ≤ cπ2(2µ+3)

2(cπ−2) .

Proof. Let c ∈
( 2

π , 1
)
. Then

1
c
+ π (µ + 1) =

1 + cπµ + cπ

c
=

π + cπ2µ + cπ2

cπ
≤ 2cπ2µ + 2cπ2 + 2π

2 (cπ − 2)
.

Since cπ > 2, we have 2π < cπ2 and hence

1
c
+ π (µ + 1) ≤ 2cπ2µ + 3cπ2

2 (cπ − 2)
=

cπ2 (2µ + 3)
2 (cπ − 2)

.

Proof of Theorem 4.2. (i) From assertion (i) in Lemma 4.4 we see that there exists a point
y0 ∈ (Sc

k0,s0
∩ Ωc

∞) with sign f j (y0) = sj, because f j(y0) ∈ Sc
k j,sj

.

(ii) Assume y0 ∈ (Sc
k0,s0

∩ Ωc
∞). Assertion (ii) of Lemma 4.4 shows that Σj ∋ y0 and

Z ∩ Σj 6= ∅. Further, assertion (v) of Lemma 4.4 shows that |Σj| → 0 as j → ∞. This means
that there exists a sequence (zj) ⊂ Z with zj → y0, and this completes the proof.

(iii) Let c ∈ ( 2
π , 1) be given. Remark 4.6 shows that the condition ω >

cπ2(2µ+3)
2(cπ−2) from

assertion (iii) of Theorem 4.2 implies the condition ω >
1
c + π(µ + 1) of assertion (ii). Hence,

(Sc
k0,±1 ∩ Ωc

∞) ⊂ Z for all k0 ∈ N. It follows that Ωc
∞ =

⋃
k0∈N(Sc

k0,±1 ∩ Ωc
∞) ⊂ Z, so Ωc

∞ ⊂ Z.
To prove that Ωc

∞ has measure zero, we show limn→∞ |Ωc
n ∩ Sc

k0,±1| = 0 for every k0 ∈ N. For
this purpose it is enough to show that under the conditions of assertion (iii) of Theorem 4.2,
cωqµ+1(1 − q) > 2 in (4.9). We use the second order Taylor expansion of e−y around 0 for
y > 0,

e−y = 1 − y +
y2

2
+ R3,

with R3 = exp′′′(ξ)
3! (−y)3

< 0 for some ξ ∈ (−y, 0). Hence, since

q = e−
π
ω = 1 − π

ω
+

(π)2

2ω2 + R3

(π

ω

)
< 1 − π

ω
+

(π)2

2ω2 ,

we have

1 − q = 1 − e−
π
ω =

π

ω
− π2

2ω2 − R3

(π

ω

)
>

π

ω
− π2

2ω2 . (4.16)

On the other hand, with appropriate ξ,

qµ+1 = e−
π
ω (µ+1) = 1 − π (µ + 1)

ω
+

exp′′ (ξ)
2!

(
−π (µ + 1)

ω

)2

> 1 − π (µ + 1)
ω

. (4.17)
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Using (4.16) and (4.17), we get

cωqµ+1 (1 − q) > cω

(
1 − π (µ + 1)

ω

)(
π

ω
− π2

2ω2

)
= cπ

(
1 − πµ + π

ω

)(
1 − π

2ω

)

= cπ

(
1 − (3π + 2πµ)

2ω
+

π2 (µ + 1)
2ω2

)

> cπ

(
1 − π (3 + 2µ)

2ω

)
. (4.18)

In view of Remark 4.6, and using the assumption which is given in the assertion (iii) of
Theorem 4.2 in (4.18), we finally obtain

cωqµ+1 (1 − q) > cπ


1 − π (3 + 2µ)

2 · cπ2(2µ+3)
2(cπ−2)


 = cπ

(
1 − cπ − 2

cπ

)
= 2.

5 The behavior of the points whose orbits follow ‘flat-steep-flat’ in-

tervals

In chapter three we analyzed the behavior of the points which are mapped from ‘flat’ intervals
to some other ‘flat’ intervals, and in chapter four we studied the behavior of the points which
are mapped from ‘steep’ intervals to some other ‘steep’ intervals. Finally in this chapter, as
we briefly mentioned in the summary of this thesis, we first construct a specific type of orbit
whose points travel from ‘flat’ intervals to ‘steep’ intervals, then from ‘steep’ intervals again
to ‘flat’ intervals under the iteration (see Figure 5.1).

x

qkqk+1

Ûℓ2(k)
mk

ÛL
k ÛR

k
qℓ1(k)

qℓ1(k)+1

Sl1(k)

qℓ2(k)+1

qℓ2(k)

f (x)

x

Figure 5.1: The parameters adjusted so that f (mk) = qℓ1(k), and the sets ÛL
k

and ÛR
k constructed as counterimages under f 2 of the interval Ûℓ2(k) ⊂ Uℓ2(k)

(indicated only for the lower endpoint of ÛL
k ). The dotted parts of the graph

indicate possible maxima/minima in between which are not shown.

Besides, to avoid repeating the same expression, we shall use gω,µ+1−j as in Lemma 2.1
and c ∈ (0, 1) for the rest of the paper. For a specific choice of µ, ω > 0, maxima mk get



22 E. Muştu

mapped to zeros qℓ1(k) of fµ,ω = f . We shall first introduce ‘flat’ intervals of the form Uk =

[mk − δk, mk + δk] for odd k and use the notations UR
k = [mk, mk + δk] and UL

k = [mk − δk, mk]
for the right and left part of Uk respectively. We also introduce ‘steep’ intervals Sℓ1(k), where
ℓ1 (k) = kµ + 1, of the form

[
qℓ1(k) − rℓ1(k), qℓ1(k)

]
, with a suitable rℓ1(k). Then we define U =⋃

k∈N
k odd

Uk , S =
⋃

k∈N
k odd

Sℓ1(k), and we construct orbits
(

f j (x)
)

j∈N
, with the properties

f j (x) ∈
{

U, j is even,

S, j is odd.

Furthermore, for k, µ ∈ N, ω > 0 and with ϕ1 as in Lemma 2.1, we define

ℓ2 (k) := min

{
ℓ ∈ N : qℓ ≤ qℓ1(k)µ · q

ϕ1(µ−2)
π · c (1 − c)ω3

4gω,µ · g2
ω,µ−1

}
.

We denote by ℓ
j
2 (k) the j th iterate of the function ℓ2 applied to k. Then, given a symbol

sequence of the form {L, R}n+1, where symbols represent the left ‘L’ or right ‘R’ hand part of
Uk (that is UL

k , UR
k ), we construct corresponding orbits of f . Given a finite sequence

s = (s0, s1, s2, . . . , sn) ∈ {L, R}n+1

and k ∈ N, we first construct the subset of points x in Uk which follow this symbol sequence in
the sense that f 2j (x) ∈ UL

ℓ
j
2(k)

or f 2j (x) ∈ UR

ℓ
j
2(k)

, j = 0, 1, 2, . . . , n depending on whether sj = L

or sj = R. Hence, we construct the set In
k,s =

⋂n
j=0 f−2j

(
U

sj

ℓ
j
2(k)

)
and the set Γn

k =
⋃

s∈{L,R}n+1 In
k,s

which is the set of points following symbol sequences in the set {L, R}{0,1,2,...,n}. Note that strict
monotonicity of f 2 on each interval UL

k and UR
k implies that the sets In

k,s are closed intervals.

The corresponding set for infinite symbol sequences is I∞
k,s =

⋂∞
j=0 f−2j

(
U

sj

ℓ
j
2(k)

)
. Finally, we

analyze the Lebesgue measure of the set Γn
k , and consider the limit as n → ∞.

Note that the ‘steep’ intervals Sk that we use in our calculations in this chapter are some
subintervals of

(
mk, qk

]
, whereas the ‘steep’ intervals which were used in the fourth chapter

are some subintervals of (mk+1, mk). In the theorem below we restrict ourselves to µ ∈ N for
simplicity.

Theorem 5.1. Let k be a positive odd integer. Let c ∈ (0, 1), and µ ∈ N, µ ≥ max
{( 30e

7π

)2( 1−c
2c

)
, 15
}

be given. Then there exist an ω > 0 (depending on µ) such that f = fµ,ω has the following properties:

(i) Let a sequence of the form s ∈ {L, R}N0 be given. Then, there exists exactly one point xk,s ∈ Uk

with the property:

For all n ∈ N0, f 2n (xk,s) ∈ Uℓn
2 (k)

, and f 2n (xk,s) is to the left of mℓn
2 (k)

or to the right of mℓn
2 (k)

,

depending on whether sn = L or sn = R. That is, I∞
k,s = {xk,s} .

(ii) The measure of Γn
k as defined above goes to zero, as n → ∞.

The proof requires several lemmas and propositions. The proof of the following lemma is
analogous to the proof of Lemma 3.3, but is included for completeness.

Lemma 5.2. Define ϕ1 as in Lemma 2.1. Then the following statements are true.
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(i) Assume µ ∈ N, µ ≥ 15 and define ℓ1 (k) as in the passage before Theorem 5.1. Then there exists

an ω ∈ (0, 1) such that for all k ∈ N, f has the property

| f (mk)| = qℓ1(k), (5.1)

which is equivalent to

exp




π − µ arctan
(

ω
µ

)

ω


 =

√
1 +

µ2

ω2 . (5.2)

(ii) For any choice of ω as in assertion (i), we have ω → 0 as µ → ∞.

Proof. (i) Let k ∈ N be given. With mk from (2.10), we have from (2.11)

| f (mk)| = exp
(
− kπµ + ϕ1µ

ω

)
· sin(ϕ1).

Using (2.3) we obtain

| f (mk)| = exp
(
− kπµ + ϕ1µ

ω

)
· 1√

1 + µ2

ω2

. (5.3)

On the other hand, from (2.8) we have

qℓ1(k) = exp
(
−πℓ1 (k)

ω

)
. (5.4)

With (5.3) and (5.4) together, we see that (5.1) is equivalent to

exp
(
−πℓ1 (k)

ω

)
= exp

(
− kπµ + ϕ1µ

ω

)
1√

1 + µ2

ω2

and hence to

exp
(

π (ℓ1 (k)− kµ)− ϕ1µ

ω

)
=

√
1 +

µ2

ω2 . (5.5)

So, if we substitute ℓ1 (k) = kµ + 1 and the value of ϕ1 given by Lemma 2.1 in (5.5), we finally
get that (5.1) is equivalent to

exp




π − µ arctan
(

ω
µ

)

ω


 =

√
1 +

µ2

ω2 ,

which proves the equivalence of (5.1) and (5.2). Now, we want to find ω and µ such that
| f (mk)| = qℓ1(k). Define

F (ω, µ) = exp




π − µ arctan
(

ω
µ

)

ω


−

√
1 +

µ2

ω2
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and try to find F (ω, µ) = 0 at least for a special pair of (ω, µ) (see Figure 5.2). On the one

hand, for a fixed µ > 2, arctan
(

ω
µ

)
→ 0 as ω → 0. Hence, due to the exponential growth,

F (ω, µ) → ∞ as ω → 0. On the other hand, for ω = 1 we have

F (1, µ) = exp
(

π − µ arctan
(

1
µ

))
−
√

1 + µ2. (5.6)

From 3.9 we have µ arctan
( 1

µ

)
≥ 1

2 for µ > 2, and using this estimate in (5.6), we finally have

F (1, µ) < eπ− 1
2 −

√
1 + µ2. From the fact that eπ− 1

2 < 15, we finally have F (1, µ) < 0, if we
choose µ ≥ 15. With the intermediate value theorem, it is clear that there exists at least one
ω ∈ (0, 1) which satisfies F (ω, µ) = 0 for fixed µ. This gives the proof of assertion (i).

(ii) The proof is analogous to the proof of the assertion (ii) of Lemma 3.3.

In order to find a numerical solution, one can use the bisection method, and we found
numerically that there is no solution for µ < 2.3. The numerical investigation suggests that
ω in Lemma 5.2 is unique. We made no effort to prove that, because part (ii) is true for any
possible choice of ω.

The next three propositions (5.3–5.5) give some preparatory calculations.
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Figure 5.2: Graph of F(·, µ) for µ = 15.

Proposition 5.3. Let ϕ1 be as in Lemma 2.1. Set α(ω, µ, c) :=
exp
(

(µ−2)ϕ1
2ω

)
gω,µ−1

√
1−c
2cω . If µ ∈ N,

µ ≥ max

{(
30e

7π

)2 (1 − c

2c

)
, 15

}
,

and ω is a corresponding value obtained as in Lemma 5.2, then we have α (ω, µ, c) < 1
2 .

Proof. Let µ and ω ∈ (0, 1) be as in the assumption. Then, it is clear that 3µ2

ω2 ≥ 1, and in view
of (5.2) we have

2µ

ω
=

√
3µ2

ω2 +
µ2

ω2 ≥
√

1 +
µ2

ω2 = exp




π − µ arctan
(

ω
µ

)

ω


 .
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Since arctan
(

ω
µ

)
≤ ω

µ , we get

2µ

ω
≥ exp

(
π − µ · ω

µ

ω

)
= exp

(π

ω
− 1
)

,

and hence we have 2µe ≥ ωe
π
ω . Using the second order Taylor expansion of e

π
ω in the last

inequality, we obtain

2µe ≥ ω

(
1 +

π

ω
+

1
2

π2

ω2

)
≥ 1

2
π2

ω
or

4eµ ≥ π2

ω
. (5.7)

On the other hand, we know that µ ≥
( 30e

7π

)2 ( 1−c
2c

)
, so

√
µ ≥ 30e

7π

√
1−c
2c which implies

1
2
≥ e

1
2

√
1 − c

2c

30e
1
2

14π
√

µ
.

Since e
1
2 > e

1
2− 1

µ , it follows that

1
2
> exp

(
1
2
− 1

µ

)
·
√

1 − c

2c
· 15

√
4e

14π
√

µ
= exp

(
ω

2µω
(µ − 2)

)
·
√

1 − c

2c
· 15

√
4eµ

14πµ
.

On the other hand, since µ ≥ 15, we have 1
µ−1 ≤ 15

14µ , and with the fact that arctan
(

ω
µ

)
≤ ω

µ we
get

1
2
> exp



(µ − 2) arctan

(
ω
µ

)

2ω


 ·

√
1 − c

2c
·
√

4eµ

π (µ − 1)
.

Finally, using (5.7) and the definition of ϕ1, we obtain

1
2
> exp

(
(µ − 2) ϕ1

2ω

)
·
√

1 − c

2cω
·
√

1

(µ − 1)2

≥ exp
(
(µ − 2) ϕ1

2ω

)
·
√

1 − c

2cω
·
√

1

ω2 + (µ − 1)2

=
exp

(
(µ−2)ϕ1

2ω

)

gω,µ−1
·
√

1 − c

2cω
= α (ω, µ, c)

and this completes the proof.

Proposition 5.4. Let ϕ1 be as in Lemma 2.1 and c ∈ (0, 1) be given. Set η̃1 (ω, µ) := ωe−
ϕ1(µ−2)

ω

2gω,µ−1·gω,µ−2
,

η̃2 (ω) := e−
ϕ1
ω −q
2 , η̃3 (ω) := 1−e−

ϕ1
ω

2 and η̃4 (ω, µ) :=
√

(1−c)qω

gω,µ·gω,µ−1
. There exist ω0 > 0 and µ0 > 3

such that for ω ≤ ω0 and µ ∈ N, µ ≥ µ0, the number

η̃ := min {η̃1 (ω, µ) , η̃2 (ω) , η̃3 (ω) , η̃4 (ω, µ)}

satisfies

η̃ = η̃4 (ω, µ) . (5.8)
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Proof. We prove that η̃4 (ω, µ) ≤ η̃1 (ω, µ) ≤ min {η̃2 (ω) , η̃3 (ω)} for µ large enough, ω small

enough. For ω > 0, we have gω,µ−1 ≥
√
(µ − 1)2, gω,µ−2 ≥

√
(µ − 2)2 and using these

simplifications, we obtain

η̃1 (ω, µ) ≤ ωe−
ϕ1(µ−2)

ω

2
√
(µ − 1)2 (µ − 2)2

=
ωe−

ϕ1(µ−2)
ω

2 (µ − 1) (µ − 2)
. (5.9)

We have already defined

η̃2 (ω) =
e−

ϕ1
ω − q

2
=

1
2

e−
ϕ1
ω

(
1 − e

ϕ1−π
ω

)
,

and there exists ω̃1 > 0 such that for ω ∈ ω0 ∈ (0, ω̃1], the property ϕ1 − π < 0 implies(
1 − e

ϕ1−π
ω

)
>

1
2 . Hence, for such ω we have

η̃2 (ω) ≥ 1
4

e−
ϕ1
ω . (5.10)

From (5.9) and (5.10) it is obvious that η̃1 (ω, µ) ≤ ωe−
ϕ1
ω

2 ≤ η̃2 (ω) for µ ≥ 3 and ω ≤ ω12,
where ω12 =: min

{ 1
2 , ω̃1

}
. Analogously there exists ω13 > 0 such that for µ ≥ 3 and ω ≤ ω13,

one has η̃1 (ω, µ) ≤ η̃3 (ω); observe η̃3 (ω) → 1
2 as ω → 0. There exist c1, c2 > 0, and µ̃0 > 0

such that for µ ≥ µ̃0 we have η̃1 (ω, µ) ≥ c1
ωe−

ϕ1(µ−2)
ω

µ2 and η̃4 (ω, µ) ≤ c2

√
ωe−

π
ω

µ2 . Hence, we
have for µ ≥ µ̃0 and ω > 0

η̃4 (ω, µ)

η̃1 (ω, µ)
≤ c2

√
ωe−

π
ω

c1ωe−
ϕ1(µ−2)

ω

=
c2

c1

1√
ω

exp
(

ϕ1 (µ − 2)− π
2

ω

)
.

Substituting the explicit form of ϕ1 as in Lemma 2.1, the last equality turns to

η̃4 (ω, µ)

η̃1 (ω, µ)
≤ c2

c1

1√
ω

exp



(µ − 2) arctan

(
ω
µ

)
− π

2

ω


 . (5.11)

Using the fact that

lim
µ→∞, ω→0



(µ − 2) arctan

(
ω
µ

)

ω


 = lim

µ→∞, ω→0

(
(µ − 2) ω

µ

ω

)
= 1, and

limω→0
1√
ω

exp
(−π

2ω

)
= 0 in (5.11), we finally have

lim
µ→∞, ω→0

(
η̃4 (ω, µ)

η̃1 (ω, µ)

)
≤ lim

µ→∞, ω→0

c2

c1

1√
ω

exp
(

1 − π

2ω

)
= 0

and that shows that there exists µ0 ≥ µ̃0 and ω0 ∈ (0, min {ω12, ω13}] such that for ω ≤ ω0

and µ ∈ N, µ ≥ µ0 one has η̃4 (ω, µ) ≤ η̃1 (ω, µ) ≤ min {η̃2 (ω) , η̃3 (ω)}.

Now, we aim at finding an interval Uk := [mk − δk, mk + δk] as indicated in the passage
before Theorem 5.1, which gets mapped to a ‘steep’ interval Sℓ1(k), but we first provide upper
and lower estimates for the second derivative f ′́′µ,ω of f .
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Proposition 5.5. Let k ∈ N. Assume that with µ0 and ω0 as in Proposition 5.4, one has µ ≥ µ0 and

ω ≤ ω0. Define η̃ as in Proposition 5.4 and set δk := η̃δk, Jk :=
[
qk+1, qk

]
. Then

Uk := [mk − δk, mk + δk] ⊂
[
qk+1, qk

]
= Jk

and the following estimates hold:

∀x ∈ [mk − δk, mk + δk] : gω,µ · gω,µ−1 · qk(µ−2) ≥
∣∣ f ′′ (x)

∣∣ ≥

(
qke−

ϕ
ω

)µ−2
· ω · gω,µ

2
. (5.12)

Proof. Let k ∈ N. With η from Lemma 3.2, the definition of η̃ given in Proposition 5.4 shows
η̃ ≤ min {η̃2, η̃3} = η. Hence, in view of Lemma 3.2, we see that

Uk = [mk − δk, mk + δk] ⊂
[
mk − ηqk, mk + ηqk

]
⊂
[
qk+1, qk

]
= Jk.

Further, inserting mk from (2.10) in (2.4) we have
∣∣ f ′′ (mk)

∣∣ = gω,µ · gω,µ−1 · |mk|µ−2 |sin ((ω ln (mk) + ϕ1) + ϕ2)|
= gω,µ · gω,µ−1 · |mk|µ−2 |sin (−kπ + ϕ2)| .

Using ϕ2 = arctan
(

ω
µ−1

)
from Lemma 2.1, we have sin (ϕ2) =

ω
gω,µ−1

and, inserting this value
in the last equality, we have

∣∣ f ′′ (mk)
∣∣ = gω,µ · gω,µ−1 · |mk|µ−2 ω

gω,µ−1
= |mk|µ−2 ω · gω,µ. (5.13)

From (2.5) we have on
[
qk+1, qk

]
∣∣ f ′′′ (x)

∣∣ =
∣∣gω,µ · gω,µ−1 · gω,µ−2 · xµ−3 sin (ω ln (x) + (ϕ1 + ϕ2 + ϕ3))

∣∣

≤ gω,µ · gω,µ−1 · gω,µ−2 · qk(µ−3). (5.14)

From (2.13) for x ∈ [mk − δk, mk + δk] and with the definition of δk, we also have
∣∣ f ′′ (x)

∣∣ ≥
∣∣ f ′′ (mk)

∣∣− δk · max
[mk−δk ,mk+δk ]

∣∣ f ′′′
∣∣

=
∣∣ f ′′ (mk)

∣∣− η̃qk · max
[mk−δk ,mk+δk ]

∣∣ f ′′′
∣∣

≥
∣∣ f ′′ (mk)

∣∣− η̃1qk · max
[mk−δk ,mk+δk ]

∣∣ f ′′′
∣∣ . (5.15)

With the definition of η̃1, using (2.10), (5.13) and (5.14) in (5.15), we finally have

∣∣ f ′′ (x)
∣∣ ≥ m

µ−2
k ω · gω,µ −

qkωe−
ϕ1(µ−2)

ω

2gω,µ−1 · gω,µ−2
gω,µ · gω,µ−1 · gω,µ−2 · qk(µ−3)

=
(

qke−
ϕ1
ω

)µ−2
· ω · gω,µ −

qk(µ−2)ωe−
ϕ1(µ−2)

ω

2
gω,µ

=
(

qke−
ϕ1
ω

)µ−2
· ω · gω,µ −

(
qke−

ϕ1
ω

)µ−2
· ω · gω,µ

2

=

(
qke−

ϕ1
ω

)µ−2
· ω · gω,µ

2
.

This is the lower estimate for | f ′′ (x)|; the upper estimate even on the interval
[
qk+1, qk

]
follows

with the formula for f ′′ in (2.4).
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For k ∈ N, we specify the boundaries of an associated ‘steep’ interval Sℓ1(k) with the next
proposition.

Proposition 5.6. Let k ∈ N. Assume µ and ω are as in Proposition 5.4 and define ℓ1 (k) = kµ + 1 as

in the passage before the Theorem 5.1. Set rℓ1(k) := (1−c)ω
gω,µ·gω,µ−1

qℓ1(k) and Sℓ1(k) :=
[
qℓ1(k)− rℓ1(k), qℓ1(k)

]
.

Then, Sℓ1(k) ⊂
(
mℓ1(k), qℓ1(k)

]
and on Sℓ1(k) we have

∣∣ f ′
∣∣ ≥ cωqℓ1(k)(µ−1). (5.16)

Proof. Let k ∈ N. From the upper estimate of (5.12), on Sℓ1(k) we have

∥∥ f ′′
∥∥

∞,Sℓ1(k)
≤ gω,µ · gω,µ−1 · qℓ1(k)(µ−2). (5.17)

From (2.13) we have

∀x ∈ Sℓ1(k) :
∣∣ f ′ (x)

∣∣ ≥
∣∣∣ f ′
(

qℓ1(k)
)∣∣∣−

∥∥ f ′′
∥∥

∞,Sℓ1(k)
· rℓ1(k) , (5.18)

and from (2.9) we also have
∣∣ f ′
(
qℓ1(k)

)∣∣ = ωqℓ1(k)(µ−1). Using (5.17) and substituting the
explicit values of both

∣∣ f ′
(
qℓ1(k)

)∣∣ and rℓ1(k) in (5.18), we get

∀x ∈ Sℓ1(k) :
∣∣ f ′ (x)

∣∣ ≥
∣∣∣ f ′
(

qℓ1(k)
)∣∣∣− gω,µ · gω,µ−1 · qℓ1(k)(µ−2) · rℓ1(k)

= ωqℓ1(k)(µ−1) − gω,µ · gω,µ−1 · qℓ1(k)(µ−2) · (1 − c)ω

gω,µ−1 · gω,µ
qℓ1(k)

= ωqℓ1(k)(µ−1) − (1 − c)ωqℓ1(k)(µ−1) = cωqℓ1(k)(µ−1) .

It follows now from f ′(mℓ1(k)) = 0 that mℓ1(k) < qℓ1(k) − rℓ1(k).

From the graph of the map one can understand that the image of Sℓ1(k) under fµ,ω includes

many ‘steep‘ and ‘flat’ intervals, but we continue our calculations with a subinterval S̃ℓ1(k) of
Sℓ1(k) which is contained in f (Uk). The next lemma gives an estimate for the size of f (Uk)

with a relation between S̃ℓ1(k) and Sℓ1(k).

Note that for the sake of simplicity we shall use k as a positive odd integer number for the
rest of the paper. Note also that in addition to the notations UL

k , UR
k which represent to the

left ‘L’ and right ‘R’ hand part of Uk respectively, we also use the notation U
L\R
k in statements

which are valid for both UL
k and UR

k .

Lemma 5.7. Let k be a positive odd integer number. Let ω and even integer µ be as in Proposition 5.4

and satisfying (5.2). Define η̃ as in Proposition 5.4, δk and Uk as in Proposition 5.5, and U
L\R
k as in

the passage before Theorem 5.1. Then the following statements are true.

(i) Define rℓ1(k) and Sℓ1(k) as in Proposition 5.6. Then we have f (Uk) ⊂ Sℓ1(k);

(ii) Set

r̃ℓ1(k) := qℓ1(k) · q
ϕ1(µ−2)

π · (1 − c) · ω2

4gω,µ · g2
ω,µ−1

(5.19)

and S̃ℓ1(k) =
[
qℓ1(k) − r̃ℓ1(k), qℓ1(k)

]
. Then we have f

(
U

L\R
k

)
⊃ S̃ℓ1(k).
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Proof. Note that due to (5.1), and since k is odd (see (2.11)), max { f (Uk)} = f (mk) = qℓ1(k).
For the interval Uk we have

min
{∣∣∣ f (mk − δk)− qℓ1(k)

∣∣∣ ,
∣∣∣ f (mk + δk)− qℓ1(k)

∣∣∣
}

≤ | f (Uk)|
≤ max

{∣∣∣ f (mk − δk)− qℓ1(k)
∣∣∣ ,
∣∣∣ f (mk + δk)− qℓ1(k)

∣∣∣
}

.

It follows from second order Taylor expansion of f around the extremum mk and from (5.1)
that

min
ξ∈[mk−δk ,mk+δk ]

∣∣ f ′′ (ξ)
∣∣ δ2

k

2
≤ | f (Uk)| ≤ max

ξ∈[mk−δk ,mk+δk ]

∣∣ f ′′ (ξ)
∣∣ δ2

k

2
. (5.20)

Consequently, using (5.8) and inserting the upper estimate of | f ′′| given in (5.12) and the value
of δk in the upper estimate of (5.20), we finally get

| f (Uk)| ≤ max
ξ∈[mk−δk ,mk+δk ]

∣∣ f ′′ (ξ)
∣∣ δ2

k

2
≤ gω,µ · gω,µ−1 · qk(µ−2) δ2

k

2

= gω,µ · gω,µ−1 · qk(µ−2)η̃2q2k

≤ gω,µ · gω,µ−1 · qk(µ−2) (η̃4)
2 q2k

≤ gω,µ · gω,µ−1 · qk(µ−2)

(√
(1 − c) qω

gω,µ · gω,µ−1

)2

q2k

= qkµ+1 (1 − c)ω

gω,µ · gω,µ−1
=

(1 − c)ω

gω,µ · gω,µ−1
qℓ1(k) = rℓ1(k) =

∣∣∣Sℓ1(k)

∣∣∣ .

From (5.1) we know that f (mk) = qℓ1(k). So, f (Uk) =
[
min f (Uk) , qℓ1(k)

]
and the estimate

| f (Uk)| ≤ rℓ1(k) shows f (Uk) ⊂
[
qℓ1(k) − rℓ1(k), qℓ1(k)

]
= Sℓ1(k)

and this completes the proof of assertion (i).
Note that, although there is no symmetry between the graph of fµ,ω to the left and right

hand side of Uk, we can estimate the size of f
(
UL

k

)
and f

(
UR

k

)
in a similar way. Substituting

the lower bound of | f ′′| given by (5.12), the value of δk in the analogue of the lower estimate
of (5.20) for U

L\R
k , and using (5.8) we obtain

∣∣∣ f
(

U
L\R
k

)∣∣∣ ≥ min
ξ∈Uk

∣∣ f ′′ (ξ)
∣∣ δ2

k

2
≥

(
qke−

ϕ1
ω

)µ−2
· ω · gω,µ

2
δ2

k

2

=

(
qke−

ϕ1
ω

)µ−2
· ω · gω,µ

4
η̃2q2k =

qkµ−2k · e−
ϕ1(µ−2)

ω ω · gω,µ

4
(η̃4)

2 q2k

=
qkµ−2k · e−

ϕ1(µ−2)
ω ω · gω,µ

4

(√
(1 − c) qω

gω,µ · gω,µ−1

)2

q2k

=
qkµ+1 · e−

ϕ1(µ−2)
ω · ω2

4
(1 − c)

gω,µ · g2
ω,µ−1

= qℓ1(k) · q
ϕ1(µ−2)

π · (1 − c) · ω2

4gω,µ · g2
ω,µ−1

= r̃ℓ1(k) =
∣∣∣S̃ℓ1(k)

∣∣∣ ,

and this completes the proof of assertion (ii) and the proof of the lemma.
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We continue analyzing the next ‘flat’ interval obtained by the second iteration of f .

Lemma 5.8. Let k be a positive odd integer number. Let ω, µ be as in Lemma 5.7. Define ℓ1 (k) and

ℓ2 (k) as in the passage before Theorem 5.1. Then for S̃ℓ1(k) as in Lemma 5.7, we have

f
(

S̃ℓ1(k)

)
⊃
[
0, qℓ2(k)

]
.

Proof. Using (2.13) on S̃ℓ1(k), we obtain

∣∣∣ f
(

S̃ℓ1(k)

)∣∣∣ ≥ r̃ℓ1(k) · min
x∈S̃ℓ1(k)

∣∣ f ′ (x)
∣∣ . (5.21)

Using (5.16) and (5.19) in (5.21), and also the definition of ℓ2 (k) at the beginning of this section,
we have

∣∣∣ f
(

S̃ℓ1(k)

)∣∣∣ ≥ r̃ℓ1(k) · min
x∈S̃ℓ1(k)

∣∣ f ′ (x)
∣∣

= qℓ1(k) · q
ϕ1(µ−2)

π · (1 − c) · ω2

4gω,µ · g2
ω,µ−1

· cωqℓ1(k)(µ−1)

= qℓ1(k)µ · q
ϕ1(µ−2)

π · c (1 − c)ω3

4gω,µ · g2
ω,µ−1

≥ qℓ2(k).

Note also that ℓ1 (k) = kµ + 1 is odd, since µ is even. Hence, f ≥ 0 on S̃ℓ1(k) and since

f
(
qℓ1(k)

)
= 0, f

(
S̃ℓ1(k)

)
=
[
0, max f

(
S̃ℓ1(k)

)]
. The estimate

∣∣ f
(
S̃ℓ1(k)

)∣∣ ≥ qℓ2(k) implies that

f
(
S̃ℓ1(k)

)
⊃
[
0, qℓ2(k)

]
.

From Lemma 5.7 we know f
(
U

L\R
k

)
⊃ S̃ℓ1(k). In Lemma 5.8 we showed that f

(
S̃ℓ1(k)

)
⊃

[
0, qℓ2(k)

]
. In particular, Uℓ2(k) ⊂

[
qℓ2(k)+1, qℓ2(k)

]
⊂ f

(
S̃ℓ1(k)

)
. Now, in the next lemma we

estimate the counterimage of subsets of Uℓ2(k) under
(

f 2|
U

L\R
k

)
.

Lemma 5.9. Let k be a positive odd integer. Assume µ is an even integer, µ ≥ max
{( 30e

7π

)2 ( 1−c
2c

)
, 15
}

and ω ∈ (0, 1) is a corresponding value satisfying (5.2) and such that the assertion of Proposition 5.4

is true (this is possible due to assertion (ii) of Lemma 5.2). Define α (ω, µ, c) as in Proposition 5.3 and

Jk as in Proposition 5.5. Then, for p ∈ (0, 1] and any subinterval Ûℓ2(k) of Uℓ2(k) with ℓ2 (k) as in the

passage before Theorem 5.1, if ∣∣∣Ûℓ2(k)

∣∣∣ = p
∣∣∣Jℓ2(k)

∣∣∣

then ( f |Uk
)−2
(
Ûℓ2(k)

)
has two parts of the form

ÛL
k =

[
mk − δL

k,2, mk − δL
k,1

]
⊂ UL

k and ÛR
k =

[
mk + δR

k,1, mk + δR
k,2

]
⊂ UR

k ,

where δL
k,1, δL

k,2 ∈
(
0, mk − qk+1

)
and δR

k,1, δR
k,2 ∈

(
0, qk − mk

)
, and each of them has the size

∣∣∣∣
̂
U

L\R
k

∣∣∣∣ ≤ α · p · |Jk| . (5.22)
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Proof. Set Ŝℓ1(k) :=
(

f |
S̃ℓ1(k)

)−1(
Ûℓ2(k)

)
. Note that injectivity of f |Sℓ1(k)

and Lemma 5.8 imply

that
(

f |Sℓ1(k)

)−1(
Ûℓ2(k)

)
=
(

f |
S̃ℓ1(k)

)−1(
Ûℓ2(k)

)
. Using (2.13) on Ŝℓ1(k), we have

∣∣∣∣∣

(
f |

S̃ℓ1(k)

)−1 (
Ûℓ2(k)

)∣∣∣∣∣ =
∣∣∣Ŝℓ1(k)

∣∣∣ ≤

∣∣∣Ûℓ2(k)

∣∣∣
min

Ŝℓ1(k)
| f ′| .

On the other hand, from Proposition 5.6 we already know that on Sℓ1(k), | f ′| ≥ cωqℓ1(k)(µ−1).

Because of Ŝℓ1(k) ⊂ S̃ℓ1(k) ⊂ Sℓ1(k), this property also satisfied on Ŝℓ1(k). Hence, inserting both∣∣Ûℓ2(k)

∣∣ = p
∣∣Jℓ2(k)

∣∣ and the estimate of minSℓ1(k)
| f ′| in the last expression, we have

∣∣∣Ŝℓ1(k)

∣∣∣ ≤

∣∣∣Ûℓ2(k)

∣∣∣
min

Ŝℓ1(k)
| f ′| ≤

p
∣∣∣Jℓ2(k)

∣∣∣
minSℓ1(k)

| f ′| ≤
p · qℓ2(k) (1 − q)

cωqℓ1(k)(µ−1)
. (5.23)

Now, we calculate subintervals of (mk − δk, mk + δk) which get mapped bijectively to Ŝℓ1(k).

Note that the counterimage of Ŝℓ1(k) has two parts in the form ÛL
k ⊂ UL

k , and ÛR
k ⊂ UR

k . It
follows from strict monotonicty of f on [mk − δk, mk] and [mk, mk + δk] and from the fact that
f
(
U

L\R
k

)
⊃ S̃ℓ1(k) that there exist δ

L\R
k,1 , δ

L\R
k,2 with

∣∣∣ f
(

ÛR
k

)∣∣∣ =
∣∣∣ f
([

mk + δR
k,1, mk + δR

k,2

])∣∣∣ (5.24)

=
∣∣∣ f
([

mk − δL
k,2, mk − δL

k,1

])∣∣∣ =
∣∣∣ f
(

ÛL
k

)∣∣∣ =
∣∣∣Ŝℓ1(k)

∣∣∣ .

We continue our calculations by using the boundaries of ÛR
k . Note that for the interval[

mk, mk + δR
k,1

]
we know that f

(
mk + δR

k,1

)
= max Ŝℓ1(k) and f (mk) = qℓ1(k). Again from the

monotonicity of the map it follows that f
([

mk, mk + δR
k,1

])
=
[

max Ŝℓ1(k), qℓ1(k)
]
. Consequently,

since f
(
qℓ1(k)

)
= 0 and f

(
max Ŝℓ1(k)

)
∈
[
qℓ2(k)+1, qℓ2(k)

]
, from (2.13) we have

∣∣∣max Ŝℓ1(k) − qℓ1(k)
∣∣∣ ≥ qℓ2(k)+1

‖ f ′‖∞,Sℓ1(k)

. (5.25)

From (2.1) we also have that ‖ f ′‖∞,Sℓ1(k)
≤ gω,µ · qℓ1(k)(µ−1). Inserting this estimate in (5.25), we

obtain ∣∣∣max Ŝℓ1(k) − qℓ1(k)
∣∣∣ ≥ qℓ2(k)+1

gω,µ · qℓ1(k)(µ−1)
. (5.26)

In addition, from (2.4) we know that

∥∥ f ′′
∥∥

∞,Uk
≤ gω,µ · gω,µ−1 · qk(µ−2). (5.27)

Now, using the second order Taylor expansion of f
(
mk + δR

k,1

)
, we have

∣∣∣ f
(

mk + δR
k,1

)
− f (mk)

∣∣∣ ≤

∣∣∣∣∣∣
f ′′ (ξ)

(
δR

k,1

)2

2

∣∣∣∣∣∣
, (5.28)
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where ξ ∈
(
mk, mk + δR

k,1

)
. Substituting the values of f

(
mk + δR

k,1

)
and f (mk) in (5.28), we have

∣∣∣ f
(

mk + δR
k,1

)
− f (mk)

∣∣∣ =
∣∣∣max Ŝℓ1(k) − qℓ1(k)

∣∣∣ ≤
∥∥ f ′′

∥∥
∞,Uk

(
δR

k,1

)2

2
,

which implies

δR
k,1 ≥

√√√√
2

∣∣∣max Ŝℓ1(k) − qℓ1(k)
∣∣∣

‖ f ′′‖∞,Uk

. (5.29)

Using both estimates (5.26) and (5.27) in (5.29), we finally get

δR
k,1 ≥

√
2

qℓ2(k)+1

g2
ω,µ · gω,µ−1 · qk(µ−2) · qℓ1(k)(µ−1)

. (5.30)

On the other hand, from Taylor’s formula with the integral remainder term we have

f (mk + δ) = f (mk) +
∫ mk+δ

mk

(mk + δ − t) f ′′ (t) dt

= f (mk) +
∫ δ

0
(δ − t) f ′′ (mk + t) dt. (5.31)

Consequently, applying (5.31) for the boundaries of ÛR
k , we have

∣∣∣Ŝℓ1(k)

∣∣∣ =
∣∣∣ f
(

ÛR
k

)∣∣∣ =
∣∣∣ f
(

mk + δR
k,2

)
− f

(
mk + δR

k,1

)∣∣∣

=

∣∣∣∣∣
∫ δR

k,2

0

(
δR

k,2 − t
)

f ′′ (mk + t) dt −
∫ δR

k,1

0

(
δR

k,1 − t
)

f ′′ (mk + t) dt

∣∣∣∣∣ .

From (5.12) we already know that M := minx∈Uk
| f ′′ (x)| ≥ qk(µ−2)q

ϕ1(µ−2)
π ·ω·gω,µ
2 . In particular, f ′′

has constant sign on Uk. Using the fact that δR
k,1 < δR

k,2 in the last equality, we obtain

∣∣∣Ŝℓ1(k)

∣∣∣ =
∣∣∣∣∣
∫ δR

k,1

0

(
δR

k,2 − δR
k,1

)
f ′′ (mk + t) dt +

∫ δR
k,2

δR
k,1

(
δR

k2
− t
)

f ′′ (mk + t) dt

∣∣∣∣∣

≥
∣∣∣∣∣
∫ δR

k,1

0

(
δR

k,2 − δR
k,1

)
f ′′ (mk + t) dt

∣∣∣∣∣ ≥
∣∣∣δR

k,2 − δR
k,1

∣∣∣ · M · δR
k,1,

so
∣∣∣δR

k,2 − δR
k,1

∣∣∣ ≤

∣∣∣Ŝℓ1(k)

∣∣∣
M · δR

k,1

. (5.32)

Substituting the estimate of M and the estimate δR
k,1 given by (5.30) in (5.32), we obtain

∣∣∣δR
k,2 − δR

k,1

∣∣∣ ≤

∣∣∣Ŝℓ1(k)

∣∣∣

qk(µ−2)q
ϕ1(µ−2)

π ·ω·gω,µ
2 ·

√
2 qℓ2(k)+1

qk(µ−2)·gω,µ−1·g2
ω,µ·qℓ1(k)(µ−1)

. (5.33)



Dynamical behavior of a parametrized family of one-dimensional maps 33

Combining the estimate of Ŝℓ1(k) given by (5.23) with (5.33), we finally have
∣∣∣ÛR

k

∣∣∣ =
∣∣∣δR

k,2 − δR
k,1

∣∣∣

≤
√

2p · qℓ2(k) (1 − q)

cωqℓ1(k)(µ−1)

√
qk(µ−2) · gω,µ−1 · g2

ω,µ · qℓ1(k)(µ−1)

qk(µ−2)q
ϕ1(µ−2)

π · ω · gω,µ ·
√

qℓ2(k)+1

=
√

2p
qℓ2(k) (1 − q)

cωqℓ1(k)(µ−1)
·

√
qk(µ−2)gω,µ−1

qk(µ−2)q
ϕ1(µ−2)

π · ω
·

√
qℓ1(k)(µ−1)

√
qℓ2(k)+1

=
√

2p
(1 − q)

√
gω,µ−1

cω2 · q
ϕ1(µ−2)

π

· qℓ2(k)

q
ℓ2(k)

2

·

√
qk(µ−2)

qk(µ−2)+ 1
2
·

√
qℓ1(k)(µ−1)

qℓ1(k)(µ−1)

=

√
2p · qk (1 − q) · q

ℓ2(k)
2

q
ℓ1(k)(µ−1)

2 · q
kµ+1

2 · q
ϕ1(µ−2)

π

·
√

gω,µ−1

cω2 .

Here, using the estimate of qℓ2(k) given in the passage before Theorem 5.1 and |Jk| = qk (1 − q),
we obtain

∣∣∣ÛR
k

∣∣∣ ≤

√
2p · |Jk| ·

√
qℓ1(k)µ · q

ϕ1(µ−2)
π · c(1−c)ω3

4gω,µ·g2
ω,µ−1

q
ℓ1(k)(µ−1)

2 · q
kµ+1

2 · q
ϕ1(µ−2)

π

·
√

gω,µ−1

cω2

=

√
2

2
p · |Jk| ·

√
qℓ1(k)µ

q
ℓ1(k)µ−ℓ1(k)

2 · q
kµ+1

2

·

√
q

ϕ1(µ−2)
π

q
ϕ1(µ−2)

π

·
√

(1 − c)

cωgω,µ · gω,µ−1
.

Inserting ℓ1 (k) = kµ + 1 one gets

∣∣∣ÛR
k

∣∣∣ ≤
√

2
2

p · |Jk| ·

√
q(kµ+1)µ

q
(kµ+1)µ−(kµ+1)

2 · q
kµ+1

2

·

√
q

ϕ1(µ−2)
π

q
ϕ1(µ−2)

π

·
√

(1 − c)

cωgω,µ · gω,µ−1

= p · |Jk| · q−
ϕ1(µ−2)

2π ·
√

(1 − c)

2cωgω,µ · gω,µ−1
.

Since gω,µ−1 < gω,µ, we can simplify the last inequality as follows:

∣∣∣ÛR
k

∣∣∣ ≤ p · |Jk| · q−
ϕ1(µ−2)

2π ·
√

(1 − c)

2cωg2
ω,µ−1

= p · |Jk| ·
q−

ϕ1(µ−2)
2π

gω,µ−1
·
√

1 − c

2cω
.

Inserting q = e−
π
ω we have

∣∣∣ÛR
k

∣∣∣ ≤ p · |Jk| ·
exp

(
π
ω · (µ−2)ϕ1

2π

)

gω,µ−1
·
√

1 − c

2cω

= p · |Jk| ·
exp

(
(µ−2)ϕ1

2ω

)

gω,µ−1
·
√

1 − c

2cω
.
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Finally, using the definition of α (µ, ω, c), we get
∣∣∣ÛR

k

∣∣∣ ≤ α · p · |Jk| ,

and this completes the proof for ÛR
k . The proof for ÛL

k is analogous.

Corollary 5.10. If the set Ûℓ2(k) in Lemma 5.9 is not only one interval, but a disjoint union of subinter-

vals of Uℓ2(k), and
∣∣Ûℓ2(k)

∣∣ (the measure of Ûℓ2(k)) satisfies
∣∣Ûℓ2(k)

∣∣ = p
∣∣Jℓ2(k)

∣∣, then
(

f |Uk

)−2(
Ûℓ2(k)

)

has two parts (one in UL
k and the other in UR

k ) and each of them has measure less or equal αp |Jk|.

Proof. (By summation over the subintervals.)

Now, we consider symbol sequences of the form {L, R}n+1 and construct corresponding
orbits of f . For given a finite sequence

s = (s0, s1, s2, . . . , sn) ∈ {L, R}n+1

and odd k ∈ N, we now construct the subset of points x in Uk which follow this symbol
sequence. Recall the set In

k,s =
⋂n

j=0 f−2j
(
U

sj

ℓ
j
2(k)

)
defined in the passage before Theorem 5.1.

We estimate the size of
∣∣In

k,s

∣∣.

Corollary 5.11. Let s = (s0, s1, s2, . . . , sn) and an odd k ∈ N be given. Then, with ω, µ as in

Lemma 5.9 and α (ω, µ, c) as in Proposition 5.3 we have ∅ 6= In
k,s and

∣∣In
k,s

∣∣ ≤ αn |Jk| .

Proof. We prove the corollary by induction over n. For n = 0, I0
k,s = Us0

k 6= ∅, and

∣∣I0
k,s

∣∣ =
∣∣Us0

k

∣∣ ≤ |Jk| .

Now, we assume the result is true for n, and we verify it for n + 1. Let s = (s0, s1, s2, . . . , sn+1)
be given. Define s̃ = (s1, s2, . . . , sn+1). From the induction hypothesis we have In

ℓ2(k),̃s
6= ∅,

In
ℓ2(k),̃s

⊂ Uℓ2(k), and

∣∣∣In
ℓ2(k),̃s

∣∣∣ =

∣∣∣∣∣∣

n⋂

j=0

f−2j

(
U

sj+1

ℓ
j
2(ℓ2(k))

)∣∣∣∣∣∣

≤ αn
∣∣∣Jℓ2(k)

∣∣∣ .

Note that In+1
k,s = f−2

(
In
ℓ2(k),̃s

)
∩ Us0

k . Hence, we have

∣∣∣In+1
k,s

∣∣∣ =
∣∣∣ f−2

(
In
ℓ2(k),̃s

)
∩ Us0

k

∣∣∣ . (5.34)

Applying Corollary 5.10 with p := αn and In
ℓ2(k),̃s

instead of Ûℓ2(k) in (5.34), and using this p

together with 5.22, we finally obtain
∣∣∣In+1

k,s

∣∣∣ =
∣∣∣ f−2

(
In
ℓ2(k),̃s

)
∩ Us0

k

∣∣∣ ≤ α · p · |Jk| = αn+1 |Jk| .

This completes the induction and the proof of Corollary 5.11.
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Proof of Theorem 5.1. Assume k, c and µ are as in the assumptions of the Theorem 5.1 and,
α = α (ω, µ, c) be as in Proposition 5.3, so that α <

1
2 . Choose ω ∈ (0, 1) as in Lemma 5.2.

(i) Let a symbol sequence s = (s0, s1, s2, . . . ) ∈ {L, R}N0 be given. From Corollary 5.11 one
can see that for n ∈ N0 the closed interval In

k,s consists of the points x ∈ Uk which follow

the finite symbol sequence s = (s0, s1, s2, . . . , sn) ∈ {L, R}n+1. Further we have In+1
k,s ⊂ In

k,s. It
follows that

⋂
n∈N0

In
k,s 6= ∅. Since, in view of Corollary 5.11 and α <

1
2 , we have

∣∣In
k,s

∣∣ → 0
for n → ∞, the intersection

⋂
n∈N0

In
k,s contains exactly one point xk,s. This point xk,s has the

asserted properties. Any point in Uk with these properties would also be contained in this
intersection and thus equal xk,s.

(ii) The set {L, R}{0,1,...,n} has 2n+1 elements and from Corollary 5.11 we know that each set

corresponding to one s ∈ {L, R}{0,1,2,...,n} satisfies the estimate
∣∣∣In

k,s

∣∣∣ ≤ αn |Jk|. It follows that∣∣Γn
k

∣∣ ≤ 2n+1αn |Jk|, and it turns out that the measure

lim
n→∞

|Γn
k | = lim

n→∞

∣∣∣∣∣∣
⋃

s∈{L,R}{0,1,2,...,n}
In
k,s

∣∣∣∣∣∣
≤ 2 lim

n→∞
2nαn |Jk| = 0

and this completes the proof.
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Abstract. We present thirty-six classes of three-dimensional systems of difference equa-
tions of the hyperbolic-cotangent type which are solvable in closed form.
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1 Introduction

Let N, Z and C be the sets of natural, integer and complex numbers, respectively, and
N0 = N ∪ {0}. Difference equations and systems have been studied for a long time. Some
information on old results can be found in the classical books such as [4, 8, 9, 15–18]. Each
of the books contain a part devoted to solvability. Solvability seems the first topic which has
been seriously studied. The following papers and books contain some of the most important
classical results on solvability [3,5–7,12–14]. Quite old presentations of these and other old re-
sults can be found in [10, 11]. Many difference equations and systems have appeared in some
applications. Some classical applications can be found in [8, 9, 17, 29, 44]. A great majority of
the equations and systems is very difficult or impossible to solve, because of which it is of
some interest to look for their invariants, which might also help in studying of long-term be-
haviour of their solutions as it was the case, for example, in [20–22,25,30,31,35]. The following
papers: [26, 28, 32–34, 36–43] contain some recent results on solvability.

During the ’90s Papaschinopoulos and Schinas started studying systems which frequently
possessed some kind of symmetry (see, e.g., [19–25, 27, 30, 31]), which was one of the moti-
vations for our investigation of solvability of such systems (see, e.g., [32–34, 36–39, 42, 43]).
Product-type difference equations and systems are closely related to linear ones, some of
which are solvable. This fact motivated some recent investigations of their solvability (see,
e.g., [32]).

BEmail: sstevic@ptt.rs
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The following class of systems (the hyperbolic-cotangent-type class)

xn+1 =
pn−kqn−l + a

pn−k + qn−l
, yn+1 =

rn−ksn−l + a

rn−k + sn−l
, n ∈ N0, (1.1)

with complex initial values, where k, l ∈ N0, a ∈ C, and pn, qn, rn, sn are xn or yn for all n, has
been studied considerably during the last several years. The corresponding scalar equation
has been studied for the last two decades (see [28, 40] and the related references therein). The
fact that the equation can be easily reduced to the case a = 1, which has the form of the
hyperbolic-cotangent sum formula, has suggested the name of the class of systems.

System (1.1) is closely related to some product-type ones. Depending on the characteristic
polynomial associated with a linear difference equation appearing during finding closed-form
formulas for solutions to such a system, some of them are theoretically, but some are prac-
tically solvable, i.e., solvable in closed form, due to the Abel theorem [1] (each linear homo-
geneous difference equation with constant coefficients of order less than or equal to four is
practically solvable, unlike the case when the order is bigger than four when in some cases the
equation is only theoretically solvable). This fact suggests that for practical solvability delays
k and l have to take small values. In a series of papers we have studied solvability of the
systems of the form in (1.1) with small k and l. In [34, 42, 43] was investigated the case k = 0
and l = 1, in [33] the case k = 1 and l = 2, in [37] the case k = 0 and l = 2, in [38] the case
k = 2 and l = 3, in [39] the case k = 0 and l = 3, in [36] the case k = l ∈ N0. The case k = 1
and l = 3 reduces to the case k = 0 and l = 1, since in the case the system is with interlacing
indices (for the notion and some basic fact see, e.g., [41]). In these papers was shown that the
corresponding systems are practically solvable, which in some cases is a bit surprising result,
e.g., when k = 2 and l = 3. Namely, it turns out that all the associated polynomials appearing
during finding solutions to the corresponding systems are solvable by radicals.

It is a natural problem to study solvability of the corresponding thee-dimensional sys-
tems of difference equations. Hence, in this paper we study solvability of some of the three-
dimensional systems of difference equations of the form

xn+1 =
pnqn + a

pn + qn
, yn+1 =

rnsn + a

rn + sn
, zn+1 =

tngn + a

tn + gn
, n ∈ N0, (1.2)

where a, p0, q0, r0, s0, t0, g0 ∈ C, and pn, qn, rn, sn, tn, gn are one of the sequences xn, yn, zn.

2 Systems studied in the paper

In this section we transform the system (1.2) into another and give a list of its special cases
which are studied in the paper. Before we do this we first note that if a = 0, then the system
(1.2) is essentially linear with constant coefficients (see [34]; special cases frequently appear in
problem books [2]), so the case is not much interesting. Hence, the case will not be treated
here and we may assume that a 6= 0.

First note that from (1.2) we easily obtain

xn+1 ±
√

a =
(pn ±

√
a)(qn ±

√
a)

pn + qn
,

yn+1 ±
√

a =
(rn ±

√
a)(sn ±

√
a)

rn + sn
,

zn+1 ±
√

a =
(tn ±

√
a)(gn ±

√
a)

tn + gn
,
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for n ∈ N0, and consequently

xn+1 +
√

a

xn+1 −
√

a
=

pn +
√

a

pn −
√

a
· qn +

√
a

qn −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

rn +
√

a

rn −
√

a
· sn +

√
a

sn −
√

a
, (2.1)

zn+1 +
√

a

zn+1 −
√

a
=

tn +
√

a

tn −
√

a
· gn +

√
a

gn −
√

a
,

for n ∈ N0.
Since each of the sequences pn, qn, rn, sn, tn, gn is one of the sequences xn, yn, zn, there are

a lot of systems of difference equations of the form in (2.1). They all are not different, since
some of them are equivalent to each other.

By using the change of variables

un =
xn +

√
a

xn −
√

a
, vn =

yn +
√

a

yn −
√

a
, wn =

zn +
√

a

zn −
√

a
, n ∈ N0, (2.2)

the systems of difference equations in (2.1) are transformed to some product type systems of
difference equations. Bearing in mind that the product type systems of difference equations
are theoretically solvable and that some of them are practically solvable, it is a natural problem
to study practical solvability of (1.2).

Note that from (2.2) we have the following relations

xn =
√

a
un + 1
un − 1

, yn =
√

a
vn + 1
vn − 1

, zn =
√

a
wn + 1
wn − 1

, n ∈ N0, (2.3)

which will be used in the proofs of all the theorems in the paper.
Our aim here is to show practical solvability of the following 36 systems of difference

equations by presenting closed-form formulas for their well-defined solutions.

System 1. Case pn = qn = rn = sn = tn = gn = xn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.4)

System 2. Case pn = qn = rn = sn = tn = xn, gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.5)

System 3. Case pn = qn = rn = sn = xn, tn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.6)
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System 4. pn = qn = rn = sn = tn = xn, gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.7)

System 5. Case pn = qn = rn = sn = xn, tn = gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.8)

System 6. Case pn = qn = rn = sn = xn, tn = yn, gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.9)

System 7. Case pn = qn = rn = tn = gn = xn, sn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.10)

System 8. Case pn = qn = rn = tn = xn, sn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.11)

System 9. Case pn = qn = rn = xn, sn = tn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.12)
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System 10. Case pn = qn = rn = tn = xn, sn = yn, gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.13)

System 11. Case pn = qn = rn = xn, sn = yn, tn = gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.14)

System 12. Case pn = qn = rn = xn, sn = tn = yn, gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.15)

System 13. Case pn = qn = tn = gn = xn, rn = sn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.16)

System 14. Case pn = qn = tn = xn, rn = sn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.17)

System 15. Case pn = qn = xn, rn = sn = tn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.18)
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System 16. Case pn = qn = tn = xn, rn = sn = yn, gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.19)

System 17. Case pn = qn = xn, rn = sn = yn, tn = gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.20)

System 18. Case pn = qn = xn, rn = sn = tn = yn, gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.21)

System 19. Case pn = qn = rn = tn = gn = xn, sn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.22)

System 20. Case pn = qn = rn = tn = xn, sn = zn, gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.23)

System 21. Case pn = qn = rn = xn, sn = zn, tn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.24)
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System 22. Case pn = qn = rn = tn = xn, sn = gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.25)

System 23. Case pn = qn = rn = xn, sn = tn = gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.26)

System 24. Case pn = qn = rn = xn, sn = gn = zn, tn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.27)

System 25. Case pn = qn = tn = gn = xn, rn = sn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.28)

System 26. Case pn = qn = tn = xn, rn = sn = zn, gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.29)

System 27. Case pn = qn = xn, rn = sn = zn, tn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.30)
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System 28. Case pn = qn = tn = xn, rn = sn = gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.31)

System 29. Case pn = qn = xn, rn = sn = tn = gn = zn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.32)

System 30. Case pn = qn = xn, rn = sn = gn = zn, tn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.33)

System 31. Case pn = qn = tn = gn = xn, sn = zn, rn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.34)

System 32. Case pn = qn = tn = xn, sn = zn, rn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.35)

System 33. Case pn = qn = xn, sn = zn, rn = tn = gn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.36)
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System 34. Case pn = qn = tn = xn, sn = gn = zn, rn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.37)

System 35. Case pn = qn = xn, sn = tn = gn = zn, rn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.38)

System 36. Case pn = qn = xn, sn = gn = zn, rn = tn = yn.

xn+1 +
√

a

xn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a

zn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.39)

3 Main results

Here we analyse solvability of each of the systems (2.4)–(2.39), and as a consequence of the
analysis, for each of them, we state the corresponding result on its solvability. For each system
we also use (2.3).

System 1. By using the change of variables (2.2) system (2.4) is transformed to

un+1 = u2
n, vn+1 = u2

n, wn+1 = u2
n, n ∈ N0. (3.1)

From the first equation in (3.1) we easily obtain

un = u2n

0 , n ∈ N0. (3.2)

By using (3.2) in the second and third equation in (3.1) we get

vn = u2n

0 , wn = u2n

0 , n ∈ N. (3.3)

From (2.3), (3.2) and (3.3) we have that the following theorem holds.
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Theorem 3.1. If a 6= 0, then the general solution to system (2.4) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N.

Remark 3.2. Note that in the formulas in Theorem 3.1 do not participate the initial values y0

and z0, which is caused by the form of system (2.4). The situation that some of the initial
values x0, y0, z0, do not participate in the corresponding formulas appears also in several
other systems considered in this paper. Such systems seem less interesting than the other
ones. Nevertheless, we will also consider them.

System 2. By using the change of variables (2.2) system (2.5) becomes

un+1 = u2
n, vn+1 = u2

n, wn+1 = unvn, n ∈ N0. (3.4)

We have that (3.2) and the first equality in (3.3) hold. By using these relations in the third
equation in (3.4) we have

wn = un−1vn−1 = u2n−1

0 u2n−1

0 = u2n

0 , n ≥ 2. (3.5)

From (2.3), (3.2), (3.3) and (3.5) we have that the following theorem holds.

Theorem 3.3. If a 6= 0, then the general solution to system (2.5) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ≥ 2.

Remark 3.4. Note that the solutions to systems (2.4) and (2.5) are not the same. Namely, the
formula for zn holds for n ∈ N, that is, n ≥ 2, respectively, whereas the values for z1 can be
different.

System 3. By using the change of variables (2.2) system (2.6) is transformed to

un+1 = u2
n, vn+1 = u2

n, wn+1 = v2
n, n ∈ N0. (3.6)
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We have that (3.2) and the first equality in (3.3) hold. By using (3.3) in the third equation
in (3.6) we have

wn = v2
n−1 = (u2n−1

0 )2 = u2n

0 , n ≥ 2. (3.7)

From (2.3), (3.2), (3.3) and (3.7) we have that the following theorem holds.

Theorem 3.5. If a 6= 0, then the general solution to system (2.6) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ≥ 2.

Remark 3.6. Note that the solutions to systems (2.5) and (2.6) are not the same. Namely, the
corresponding values for z1 can be different.

System 4. By using the change of variables (2.2) system (2.7) is transformed to

un+1 = u2
n, vn+1 = u2

n, wn+1 = unwn, n ∈ N0. (3.8)

We have that (3.2) and the first equality in (3.3) hold. By using (3.2) in the third equation
in (3.8) we have

wn = un−1wn−1 = u2n−1

0 wn−1 = w0

n−1

∏
j=0

u2j

0 = w0u
∑

n−1
j=0 2j

0 = w0u2n−1
0 , n ∈ N0. (3.9)

From (2.3), (3.2), (3.3) and (3.9) we have that the following theorem holds.

Theorem 3.7. If a 6= 0, then the general solution to system (2.7) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0.

System 5. By using the change of variables (2.2) system (2.8) becomes

un+1 = u2
n, vn+1 = u2

n, wn+1 = w2
n, n ∈ N0. (3.10)
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We have that (3.2) and the first equality in (3.3) hold, whereas from the third equation in
(3.10) we have

wn = w2n

0 , n ∈ N0. (3.11)

From (2.3), (3.2), (3.3) and (3.11) we have that the following theorem holds.

Theorem 3.8. If a 6= 0, then the general solution to system (2.8) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N,

zn =
√

a

(
z0+

√
a

z0−
√

a

)2n

+ 1
(

z0+
√

a
z0−

√
a

)2n

− 1
, n ∈ N0.

System 6. By using the change of variables (2.2) system (2.9) is transformed to

un+1 = u2
n, vn+1 = u2

n, wn+1 = vnwn, n ∈ N0. (3.12)

We have that (3.2) and the first equality in (3.3) hold. By using (3.3) in the third equation
in (3.12) we have

wn = vn−1wn−1 = u2n−1

0 wn−1 = w1

n−1

∏
j=1

u2j

0 = v0w0u
∑

n−1
j=1 2j

0 = v0w0u2n−2
0 , (3.13)

for n ∈ N.
From (2.3), (3.2), (3.3) and (3.13) we have that the following theorem holds.

Theorem 3.9. If a 6= 0, then the general solution to system (2.9) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−2 ( y0+
√

a

y0−
√

a

) (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−2 ( y0+
√

a

y0−
√

a

) (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N.

System 7. By using the change of variables (2.2) system (2.10) becomes

un+1 = u2
n, vn+1 = unvn, wn+1 = u2

n, n ∈ N0. (3.14)
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We have that (3.2) and the second equality in (3.3) hold. By using (3.2) in the second
equation in (3.14) we have

vn = un−1vn−1 = u2n−1

0 vn−1 = v0

n−1

∏
j=0

u2j

0 = v0u
∑

n−1
j=0 2j

0 = v0u2n−1
0 , n ∈ N0. (3.15)

From (2.3), (3.2), (3.3) and (3.15) we have that the following theorem holds.

Theorem 3.10. If a 6= 0, then the general solution to system (2.10) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N.

System 8. By using the change of variables (2.2) system (2.11) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = unvn, n ∈ N0. (3.16)

We have that (3.2) and (3.15) hold. From this and since vn = wn, n ∈ N, we have

wn = v0u2n−1
0 , n ∈ N. (3.17)

From (2.3), (3.2), (3.15) and (3.17) we have that the following theorem holds.

Theorem 3.11. If a 6= 0, then the general solution to system (2.11) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N.

System 9. By using the change of variables (2.2) system (2.12) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = v2

n, n ∈ N0. (3.18)

We have that (3.2) and (3.15) hold. From this and the third equation in (3.18), we have

wn = v2
n−1 = v2

0u2n−2
0 , n ∈ N. (3.19)

From (2.3), (3.2), (3.15) and (3.19) we have that the following theorem holds.
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Theorem 3.12. If a 6= 0, then the general solution to system (2.12) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−2 ( y0+
√

a

y0−
√

a

)2
+ 1

(
x0+

√
a

x0−
√

a

)2n−2 ( y0+
√

a

y0−
√

a

)2
− 1

, n ∈ N.

System 10. By using the change of variables (2.2) system (2.13) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = unwn, n ∈ N0. (3.20)

We have that (3.2) and (3.15) hold. From this and the third equation in (3.20), we have

wn = un−1wn−1 = w0

n−1

∏
j=0

u2j

0 = w0u
∑

n−1
j=0 2j

0 = w0u2n−1
0 , n ∈ N0. (3.21)

From (2.3), (3.2), (3.15) and (3.21) we have that the following theorem holds.

Theorem 3.13. If a 6= 0, then the general solution to system (2.13) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0.

System 11. By using the change of variables (2.2) system (2.14) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = w2

n, n ∈ N0. (3.22)

We have that (3.2), (3.11), (3.15) hold, form which along with (2.3) it follows that the
following theorem holds.
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Theorem 3.14. If a 6= 0, then the general solution to system (2.14) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N0,

zn =
√

a

(
z0+

√
a

z0−
√

a

)2n

+ 1
(

z0+
√

a
z0−

√
a

)2n

− 1
, n ∈ N0.

System 12. By using the change of variables (2.2) system (2.15) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = vnwn, n ∈ N0. (3.23)

We have that (3.2) and (3.15) hold. From this and the third equation in (3.23), we have

wn = vn−1wn−1 = w0

n−1

∏
j=0

vj = w0

n−1

∏
j=0

v0u2j−1
0

= w0vn
0 u

∑
n−1
j=0 (2

j−1)
0 = w0vn

0 u2n−n−1
0 , n ∈ N0. (3.24)

From (2.3), (3.2), (3.15) and (3.24) we have that the following theorem holds.

Theorem 3.15. If a 6= 0, then the general solution to system (2.15) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−n−1 ( y0+
√

a

y0−
√

a

)n (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−n−1 ( y0+
√

a

y0−
√

a

)n (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0.

System 13. By using the change of variables (2.2) system (2.16) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = u2
n, n ∈ N0. (3.25)

We have that (3.2) and the second equality in (3.3) hold, whereas from the second equation
in (3.25) we have

vn = v2n

0 , n ∈ N0. (3.26)

From (2.3), (3.2), (3.3) and (3.26) we have that the following theorem holds.
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Theorem 3.16. If a 6= 0, then the general solution to system (2.16) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

)2n

+ 1
(

y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N.

System 14. By using the change of variables (2.2) system (2.17) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = unvn, n ∈ N0. (3.27)

We have that (3.2) and (3.26) hold, whereas from the third equation in (3.27) we have

wn = un−1vn−1 = u2n−1

0 v2n−1

0 , n ∈ N. (3.28)

From (2.3), (3.2), (3.26) and (3.28) we have that the following theorem holds.

Theorem 3.17. If a 6= 0, then the general solution to system (2.17) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

)2n

+ 1
(

y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
y0+

√
a

y0−
√

a

)2n−1

+ 1
(

x0+
√

a
x0−

√
a

)2n−1 (
y0+

√
a

y0−
√

a

)2n−1

− 1
, n ∈ N.

System 15. By using the change of variables (2.2) system (2.18) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = v2
n, n ∈ N0. (3.29)

We have that (3.2) and (3.26) hold, whereas from the third equation in (3.29) we have

wn = v2
n−1 = v2n

0 , n ∈ N. (3.30)

From (2.3), (3.2), (3.26) and (3.30) we have that the following theorem holds.
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Theorem 3.18. If a 6= 0, then the general solution to system (2.18) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

)2n

+ 1
(

y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0,

zn =
√

a

(
y0+

√
a

y0−
√

a

)2n

+ 1
(

y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N.

System 16. By using the change of variables (2.2) system (2.19) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = unwn, n ∈ N0. (3.31)

We have that (3.2) and (3.26) hold, whereas from the third equation in (3.31) we have

wn = un−1wn−1 = w0

n−1

∏
j=0

uj = w0

n−1

∏
j=0

u2j

0 = w0u2n−1
0 , n ∈ N0. (3.32)

From (2.3), (3.2), (3.26) and (3.32) we have that the following theorem holds.

Theorem 3.19. If a 6= 0, then the general solution to system (2.19) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

)2n

+ 1
(

y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0.

System 17. By using the change of variables (2.2) system (2.20) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = w2
n, n ∈ N0. (3.33)

We have that (3.2), (3.11) and (3.26) hold, from which the following theorem follows.
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Theorem 3.20. If a 6= 0, then the general solution to system (2.20) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

)2n

+ 1
(

y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0,

zn =
√

a

(
z0+

√
a

z0−
√

a

)2n

+ 1
(

z0+
√

a
z0−

√
a

)2n

− 1
, n ∈ N0.

System 18. By using the change of variables (2.2) system (2.21) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = vnwn, n ∈ N0. (3.34)

We have that (3.2) and (3.26) hold, whereas from the third equation in (3.34) we have

wn = vn−1wn−1 = w0

n−1

∏
j=0

v2j

0 = w0v
∑

n−1
j=0 2j

0 = w0v2n−1
0 , n ∈ N0. (3.35)

From (2.3), (3.2), (3.26) and (3.35) we have that the following theorem holds.

Theorem 3.21. If a 6= 0, then the general solution to system (2.21) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

)2n

+ 1
(

y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0,

zn =
√

a

(
y0+

√
a

y0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
y0+

√
a

y0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0.

System 19. By using the change of variables (2.2) system (2.22) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = u2

n, n ∈ N0. (3.36)

We have that (3.2) and the second relation in (3.3) hold, whereas from the second equation
in (3.36) we have

vn = un−1wn−1 = u2n−1

0 u2n−1

0 = u2n

0 , n ≥ 2. (3.37)

From (2.3), (3.2), (3.3) and (3.37) we have that the following theorem holds.
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Theorem 3.22. If a 6= 0, then the general solution to system (2.22) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ≥ 2,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N.

System 20. By using the change of variables (2.2) system (2.23) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = unvn, n ∈ N0. (3.38)

We have that (3.2) holds. From the second and third relation in (3.38) we have

vn = un−1wn−1 = un−1un−2vn−2 = u3·2n−2

0 vn−2, n ≥ 2,

from which we obtain

v2n = u3·22n−2

0 v2n−2 = v0

n

∏
j=1

u3·22j−2

0 = v0u
3 ∑

n
j=1 4j−1

0 = v0u4n−1
0 , n ∈ N0, (3.39)

and

v2n+1 = u3·22n−1

0 v2n−1 = v1

n

∏
j=1

u3·22j−1

0 = u0w0u
6 ∑

n
j=1 4j−1

0 = w0u22n+1−1
0 , (3.40)

for n ∈ N0.

Further, by (3.2), (3.39) and (3.40), we have

w2n = u2n−1v2n−1 = u22n−1

0 w0u22n−1−1
0 = w0u4n−1

0 , n ∈ N0, (3.41)

and

w2n+1 = u2nv2n = u22n

0 v0u4n−1
0 = v0u22n+1−1

0 , n ∈ N0. (3.42)

From (2.3), (3.2), (3.39)–(3.42) we have that the following theorem holds.
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Theorem 3.23. If a 6= 0, then the general solution to system (2.23) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

y2n =
√

a

(
x0+

√
a

x0−
√

a

)22n−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)22n−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N0,

y2n+1 =
√

a

(
x0+

√
a

x0−
√

a

)22n+1−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)22n+1−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0,

z2n =
√

a

(
x0+

√
a

x0−
√

a

)22n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)22n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0,

z2n+1 =
√

a

(
x0+

√
a

x0−
√

a

)22n+1−1 ( y0+
√

a

y0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)22n+1−1 ( y0+
√

a

y0−
√

a

)
− 1

, n ∈ N0.

System 21. By using the change of variables (2.2) system (2.24) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = v2

n, n ∈ N0. (3.43)

We have that (3.2) holds. From the second and third relation in (3.43) we have

vn = un−1wn−1 = u2n−1

0 v2
n−2, n ≥ 2, (3.44)

from which we obtain

v2n = u22n−1

0 v2
2n−2 = u22n−1

0 (u22n−3

0 v2
2n−4)

2 = u22n−1+22n−2

0 v22

2n−4

= u22n−1+22n−2

0 (u22n−5

0 v2
2n−6)

22
= u22n−1+22n−2+22n−3

0 v23

2n−6.

Assume that we have proved

v2n = u22n−1+22n−2+···+2n+1+2n

0 v2n

0 = u
2n(2n−1)
0 v2n

0 , (3.45)

for an n ∈ N.
Then by using (3.44) and (3.45) we have

v2n+2 = u22n+1

0 v2
2n = u22n+1

0 (u
2n(2n−1)
0 v2n

0 )2 = u
2n+1(2n+1−1)
0 v2n+1

0 ,

from which along with the method of induction it follows that formula (3.45) holds for every
n ∈ N. In fact, a simple calculation shows that it also holds for n = 0.

Further, we have

v2n+1 = u22n

0 v2
2n−1 = u22n

0 (u22n−2

0 v2
2n−3)

2 = u22n+22n−1

0 v22

2n−3, n ≥ 2.
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Assume that we have proved

v2n+1 = u22n+22n−1+···+2n+2+2n+1

0 v2n

1 = u
2n+1(2n−1)
0 (u0w0)

2n

= u
2n(2n+1−1)
0 w2n

0 , (3.46)

for an n ∈ N0.
Then by using (3.44) and (3.46) we have

v2n+3 = u22n+2

0 v2
2n+1 = u22n+2

0 (u
2n(2n+1−1)
0 w2n

0 )2 = u
2n+1(2n+2−1)
0 w2n+1

0 ,

from which along with the method of induction it follows that formula (3.46) holds for every
n ∈ N0.

By using (3.45) and (3.46) into the third equation in (3.43) we get

w2n = v2
2n−1 = (u

2n−1(2n−1)
0 w2n−1

0 )2 = u
2n(2n−1)
0 w2n

0 , n ∈ N0, (3.47)

and
w2n+1 = v2

2n = (u
2n(2n−1)
0 v2n

0 )2 = u
2n+1(2n−1)
0 v2n+1

0 , n ∈ N0. (3.48)

From (2.3), (3.2), (3.45)–(3.48) we have that the following theorem holds.

Theorem 3.24. If a 6= 0, then the general solution to system (2.24) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

y2n =
√

a

(
x0+

√
a

x0−
√

a

)2n(2n−1) ( y0+
√

a

y0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n(2n−1) ( y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0,

y2n+1 =
√

a

(
x0+

√
a

x0−
√

a

)2n(2n+1−1) (
z0+

√
a

z0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n(2n+1−1) (
z0+

√
a

z0−
√

a

)2n

− 1
, n ∈ N0,

z2n =
√

a

(
x0+

√
a

x0−
√

a

)2n(2n−1) (
z0+

√
a

z0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n(2n−1) (
z0+

√
a

z0−
√

a

)2n

− 1
, n ∈ N0,

z2n+1 =
√

a

(
x0+

√
a

x0−
√

a

)2n+1(2n−1) ( y0+
√

a

y0−
√

a

)2n+1

+ 1
(

x0+
√

a
x0−

√
a

)2n+1(2n−1) ( y0+
√

a

y0−
√

a

)2n+1

− 1
, n ∈ N0.

System 22. By using the change of variables (2.2) system (2.25) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = unwn, n ∈ N0. (3.49)

We have that (3.2) holds and that vn = wn, n ∈ N. Hence

vn = un−1wn−1 = u2n−1

0 vn−1 = v1

n−1

∏
j=1

u2j

0 = w0u
∑

n−1
j=0 2j

0 = w0u2n−1
0 (3.50)
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for n ∈ N, and consequently
wn = w0u2n−1

0 , n ∈ N. (3.51)

In fact, a simple calculation shows that (3.51) also holds for n = 0.
From (2.3), (3.2), (3.50) and (3.51) we have that the following theorem holds.

Theorem 3.25. If a 6= 0, then the general solution to system (2.25) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0.

System 23. By using the change of variables (2.2) system (2.26) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = w2

n, n ∈ N0. (3.52)

We have that (3.2) and (3.11) hold, from which it follows that

vn = un−1wn−1 = u2n−1

0 w2n−1

0 = (u0w0)
2n−1

, n ∈ N. (3.53)

From (2.3), (3.2), (3.11) and (3.53) we have that the following theorem holds.

Theorem 3.26. If a 6= 0, then the general solution to system (2.26) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)2n−1

+ 1
(

x0+
√

a
x0−

√
a

)2n−1 (
z0+

√
a

z0−
√

a

)2n−1

− 1
, n ∈ N,

zn =
√

a

(
z0+

√
a

z0−
√

a

)2n

+ 1
(

z0+
√

a
z0−

√
a

)2n

− 1
, n ∈ N0.

System 24. By using the change of variables (2.2) system (2.27) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = vnwn, n ∈ N0. (3.54)

We have that (3.2) holds. From this, the second and third equation in (3.54) we get

wn = vn−1wn−1 = wn−1wn−2un−2 = wn−1wn−2u2n−2

0 , n ≥ 2.
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By using the change of variables

wn = ζnuαn
0 , n ∈ N0, (3.55)

the last equation becomes

ζn = ζn−1ζn−2u
αn−1+αn−2+2n−2−αn

0 , n ≥ 2. (3.56)

Since w0 = w0 and w1 = v0w0, and they do not contain u0, we may take

α0 = 0 and α1 = 0. (3.57)

Let (αn)n∈N0 be the solution to the difference equation

αn = αn−1 + αn−2 + 2n−2, n ≥ 2, (3.58)

satisfying the initial conditions in (3.57).
We find a particular solution to equation (3.58) in the form α

p
n = c2n, n ∈ N0, where c is a

constant ([17]). By employing it in (3.58) we have that it must be

c2n = c(2n−1 + 2n−2) + 2n−2, n ∈ N

from which it follows that c = 1. Hence, the general solution to (3.58) has the form

αn = c1λn
1 + c2λn

2 + 2n, n ∈ N, (3.59)

where λ1 and λ2 are the roots of the polynomial P2(λ) = λ2 − λ − 1.
From (3.57) and (3.59) we have

c1 + c2 = −1 and c1λ1 + c2λ2 = −2

from which it follows that

c1 =
1

λ2 − λ1

∣∣∣∣
−1 1
−2 λ2

∣∣∣∣ =
2 − λ2

λ2 − λ1
and c2 =

1
λ2 − λ1

∣∣∣∣
1 −1

λ1 −2

∣∣∣∣ =
λ1 − 2

λ2 − λ1
,

from which along with (3.59) we have

αn =
(2 − λ2)λn

1 + (λ1 − 2)λn
2

λ2 − λ1
+ 2n, n ∈ N0. (3.60)

For such a chosen sequence αn, we have that (ζn)n∈N0 satisfies the equation

ζn = ζn−1ζn−2, n ≥ 2, (3.61)

with the initial conditions
ζ0 = w0 and ζ1 = v0w0. (3.62)

Let a1 = b1 = 1. Then we have

ζn = ζ
a1
n−1ζ

b1
n−2 = (ζn−2ζn−3)

a1 ζ
b1
n−2 = ζ

a1+b1
n−2 ζ

a1
n−3 = ζ

a2
n−2ζ

b2
n−3,

where a2 = a1 + b1 and b2 = a1. By using a simple inductive argument we obtain

ζn = ζ
ak

n−kζ
bk

n−k−1
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for 1 ≤ k ≤ n − 1, and
ak = ak−1 + bk−1, bk = ak−1. (3.63)

The relations in (3.63) hold for every k ∈ Z.
Hence for k = n − 1 is obtained

ζn = ζ
an−1
1 ζ

bn−1
0 = ζ

an−1
1 ζ

an−2
0 , n ∈ N, (3.64)

and also
an = an−1 + an−2, n ≥ 3.

From this and since a1 = 1 and a2 = 2, we have an = fn+1 and bn = fn, where fn is the
Fibonacci sequence ([44]).

From (3.62), (3.63) and (3.64) we have

ζn = (v0w0)
fn w

fn−1
0 = v

fn

0 w
fn+ fn−1
0 = v

fn

0 w
fn+1
0 ,

from which together with (3.55) we obtain

wn = v
fn

0 w
fn+1
0 uαn

0 , n ∈ N0. (3.65)

By using (3.2) and (3.65) in the second equation in (3.54) we get

vn = un−1wn−1 = u
αn−1+2n−1

0 v
fn−1
0 w

fn

0 , n ∈ N. (3.66)

A simple calculation shows that (3.66) holds also for n = 0.
From (2.3), (3.2), (3.65), (3.66) we have that the following theorem holds.

Theorem 3.27. If a 6= 0, then the general solution to system (2.27) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)αn−1+2n−1 (
y0+

√
a

y0−
√

a

) fn−1
(

z0+
√

a
z0−

√
a

) fn

+ 1
(

x0+
√

a
x0−

√
a

)αn−1+2n−1 (
y0+

√
a

y0−
√

a

) fn−1
(

z0+
√

a
z0−

√
a

) fn − 1
, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)αn
(

y0+
√

a

y0−
√

a

) fn
(

z0+
√

a
z0−

√
a

) fn+1
+ 1

(
x0+

√
a

x0−
√

a

)αn
(

y0+
√

a

y0−
√

a

) fn
(

z0+
√

a
z0−

√
a

) fn+1 − 1
, n ∈ N0,

where the sequence (αn)n∈N0 is given by (3.60).

System 25. By using the change of variables (2.2) system (2.28) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = u2
n, n ∈ N0. (3.67)

We have that (3.2) and the second relation in (3.3) hold. Hence

vn = w2
n−1 = u2n

0 , n ≥ 2. (3.68)

From (2.3), (3.2), (3.3), (3.68) we have that the following theorem holds.
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Theorem 3.28. If a 6= 0, then the general solution to system (2.28) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ≥ 2,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N.

System 26. By using the change of variables (2.2) system (2.29) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = unvn, n ∈ N0. (3.69)

This system is obtained from system (3.43) by interchanging letters v and w. Hence, from
(3.45)–(3.48) we have

v2n = u
2n(2n−1)
0 v2n

0 , n ∈ N0, (3.70)

v2n+1 = u
2n+1(2n−1)
0 w2n+1

0 , n ∈ N0, (3.71)

w2n = u
2n(2n−1)
0 w2n

0 , n ∈ N0, (3.72)

w2n+1 = u
2n(2n+1−1)
0 v2n

0 , n ∈ N0. (3.73)

From (2.3), (3.2), (3.70)–(3.73) we have that the following theorem holds.

Theorem 3.29. If a 6= 0, then the general solution to system (2.29) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

y2n =
√

a

(
x0+

√
a

x0−
√

a

)2n(2n−1) ( y0+
√

a

y0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n(2n−1) ( y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0,

y2n+1 =
√

a

(
x0+

√
a

x0−
√

a

)2n+1(2n−1) (
z0+

√
a

z0−
√

a

)2n+1

+ 1
(

x0+
√

a
x0−

√
a

)2n+1(2n−1) (
z0+

√
a

z0−
√

a

)2n+1

− 1
, n ∈ N0,

z2n =
√

a

(
x0+

√
a

x0−
√

a

)2n(2n−1) (
z0+

√
a

z0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n(2n−1) (
z0+

√
a

z0−
√

a

)2n

− 1
, n ∈ N0,

z2n+1 =
√

a

(
x0+

√
a

x0−
√

a

)2n(2n+1−1) ( y0+
√

a

y0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n(2n+1−1) ( y0+
√

a

y0−
√

a

)2n

− 1
, n ∈ N0.
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System 27. By using the change of variables (2.2) system (2.30) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = v2
n, n ∈ N0. (3.74)

We have that (3.2) holds. From the second and third equation in (3.74) we have

vn = w2
n−1 = v4

n−2, n ≥ 2,

from which it follows that
v2n = v4

2n−2 = v4n

0 , n ∈ N0, (3.75)

and
v2n+1 = v4

2n−1 = v4n

1 = w2·4n

0 , n ∈ N0, (3.76)

By using (3.75) and (3.76) in the third equation in (3.74) we get

w2n = v2
2n−1 = (w2·4n−1

0 )2 = w4n

0 , n ∈ N0, (3.77)

and
w2n+1 = v2

2n = (v4n

0 )2 = v2·4n

0 , n ∈ N0. (3.78)

From (2.3), (3.2), (3.75)–(3.78) we have that the following theorem holds.

Theorem 3.30. If a 6= 0, then the general solution to system (2.30) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

y2n =
√

a

(
y0+

√
a

y0−
√

a

)4n

+ 1
(

y0+
√

a

y0−
√

a

)4n

− 1
, n ∈ N0,

y2n+1 =
√

a

(
z0+

√
a

z0−
√

a

)2·4n

+ 1
(

z0+
√

a
z0−

√
a

)2·4n

− 1
, n ∈ N0,

z2n =
√

a

(
z0+

√
a

z0−
√

a

)4n

+ 1
(

z0+
√

a
z0−

√
a

)4n

− 1
, n ∈ N0,

z2n+1 =
√

a

(
y0+

√
a

y0−
√

a

)2·4n

+ 1
(

y0+
√

a

y0−
√

a

)2·4n

− 1
, n ∈ N0.

System 28. By using the change of variables (2.2) system (2.31) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = unwn, n ∈ N0. (3.79)

We have that (3.2) holds. From this and the third equation in (3.79) we have

wn = un−1wn−1 = u2n−1

0 wn−1 = w0

n−1

∏
j=0

u2j

0 = w0u
∑

n−1
j=0 2j

0 = w0u2n−1
0 , (3.80)

for n ∈ N0, from which and the second equation in (3.79) it follows that

vn = w2
n−1 = (w0u2n−1−1

0 )2 = w2
0u2n−2

0 , n ∈ N. (3.81)

From (2.3), (3.2), (3.80), (3.81) we have that the following theorem holds.
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Theorem 3.31. If a 6= 0, then the general solution to system (2.31) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−2 (
z0+

√
a

z0−
√

a

)2
+ 1

(
x0+

√
a

x0−
√

a

)2n−2 (
z0+

√
a

z0−
√

a

)2
− 1

, n ∈ N,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0.

System 29. By using the change of variables (2.2) system (2.32) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = w2
n, n ∈ N0. (3.82)

We have that (3.2) and (3.11) hold, and consequently

vn = w2
n−1 = w2n

0 , n ∈ N. (3.83)

From (2.3), (3.2), (3.11), (3.83) we have that the following theorem holds.

Theorem 3.32. If a 6= 0, then the general solution to system (2.32) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
z0+

√
a

z0−
√

a

)2n

+ 1
(

z0+
√

a
z0−

√
a

)2n

− 1
, n ∈ N,

zn =
√

a

(
z0+

√
a

z0−
√

a

)2n

+ 1
(

z0+
√

a
z0−

√
a

)2n

− 1
, n ∈ N0.

System 30. By using the change of variables (2.2) system (2.33) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = vnwn, n ∈ N0. (3.84)

We have that (3.2) holds. From the second and third equation in (3.84) we have

wn = vn−1wn−1 = wn−1w2
n−2, n ≥ 2. (3.85)

Let a1 = 1 and b1 = 2. Then we have

wn = wa1
n−1wb1

n−2 = (wn−2w2
n−3)

a1 wb1
n−2 = wa1+b1

n−2 w2a1
n−3 = wa2

n−2wb2
n−3,

where a2 = a1 + b1 and b2 = 2a1. By using a simple inductive argument we obtain

wn = wak

n−kwbk

n−k−1
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for 1 ≤ k ≤ n − 1, and
ak = ak−1 + bk−1, bk = 2ak−1. (3.86)

Hence for k = n − 1 we get

wn = w
an−1
1 w

bn−1
0 = (v0w0)

an−1 w
2an−2
0 = v

an−1
0 wan

0 , n ∈ N0, (3.87)

and
an = an−1 + 2an−1, n ≥ 2. (3.88)

In fact, (3.88) holds for each n ∈ Z.
The characteristic polynomial associated to equation (3.88) is P̂2(λ) = λ2 − λ − 2 =

(λ + 1)(λ − 2). Hence, general solution to the equation is

an = c1(−1)n + c22n.

From this and since a0 = a1 = 1, we have

c1 + c2 = 1, −c1 + 2c2 = 1

from which it follows that c1 = 1/3 and c2 = 2/3. Hence

an =
2n+1 + (−1)n

3
, n ∈ N0,

from which together with (3.87) it follows that

wn = v
2n−(−1)n

3
0 w

2n+1+(−1)n

3
0 , n ∈ N0. (3.89)

By using (3.89) in the second equation in (3.84) we get

vn = w2
n−1 = v

2n+2(−1)n

3
0 w

2n+1−2(−1)n

3
0 , n ∈ N. (3.90)

Direct calculation shows that this formula also holds for n = 0.
From (2.3), (3.2), (3.89), (3.90) we have that the following theorem holds.

Theorem 3.33. If a 6= 0, then the general solution to system (2.33) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

) 2n+2(−1)n

3
(

z0+
√

a
z0−

√
a

) 2n+1−2(−1)n

3
+ 1

(
y0+

√
a

y0−
√

a

) 2n+2(−1)n
3

(
z0+

√
a

z0−
√

a

) 2n+1−2(−1)n
3 − 1

, n ∈ N0,

zn =
√

a

(
y0+

√
a

y0−
√

a

) 2n−(−1)n

3
(

z0+
√

a
z0−

√
a

) 2n+1+(−1)n

3
+ 1

(
y0+

√
a

y0−
√

a

) 2n−(−1)n
3

(
z0+

√
a

z0−
√

a

) 2n+1+(−1)n
3 − 1

, n ∈ N0.
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System 31. By using the change of variables (2.2) system (2.34) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = u2

n, n ∈ N0. (3.91)

We have that (3.2) and the second equality in (3.3) hold. By using these formulas we have

vn = wn−1vn−1 = v1

n−1

∏
j=1

u2j

0 = v0w0u
∑

n−1
j=1 2j

0 = v0w0u2n−2
0 , n ∈ N. (3.92)

From (2.3), (3.2), (3.3), (3.92) we have that the following theorem holds.

Theorem 3.34. If a 6= 0, then the general solution to system (2.34) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−2 ( y0+
√

a

y0−
√

a

) (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−2 ( y0+
√

a

y0−
√

a

) (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N.

System 32. By using the change of variables (2.2) system (2.35) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = unvn, n ∈ N0. (3.93)

This system is obtained from system (3.54) by interchanging letters v and w. Hence, from
(3.65) and (3.66) we have

vn = v
fn+1
0 w

fn

0 uαn
0 , n ∈ N0, (3.94)

wn = u
αn−1+2n−1

0 v
fn

0 w
fn−1
0 , n ∈ N0. (3.95)

From (2.3), (3.2), (3.94), (3.95) we have that the following theorem holds.

Theorem 3.35. If a 6= 0, then the general solution to system (2.35) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)αn
(

y0+
√

a

y0−
√

a

) fn+1
(

z0+
√

a
z0−

√
a

) fn

+ 1
(

x0+
√

a
x0−

√
a

)αn
(

y0+
√

a

y0−
√

a

) fn+1
(

z0+
√

a
z0−

√
a

) fn − 1
, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)αn−1+2n−1 (
y0+

√
a

y0−
√

a

) fn
(

z0+
√

a
z0−

√
a

) fn−1
+ 1

(
x0+

√
a

x0−
√

a

)αn−1+2n−1 (
y0+

√
a

y0−
√

a

) fn
(

z0+
√

a
z0−

√
a

) fn−1 − 1
, n ∈ N0.

where the sequence (αn)n∈N0 is given by (3.60).
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System 33. By using the change of variables (2.2) system (2.36) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = v2

n, n ∈ N0. (3.96)

This system is obtained from system (3.84) by interchanging letters v and w. Hence, from
(3.89) and (3.90) we have

vn = v
2n+1+(−1)n

3
0 w

2n−(−1)n

3
0 , n ∈ N0, (3.97)

wn = v
2n+1−2(−1)n

3
0 w

2n+2(−1)n

3
0 , n ∈ N0. (3.98)

From (2.3), (3.2), (3.97), (3.98) we have that the following theorem holds.

Theorem 3.36. If a 6= 0, then the general solution to system (2.36) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

) 2n+1+(−1)n

3
(

z0+
√

a
z0−

√
a

) 2n−(−1)n

3
+ 1

(
y0+

√
a

y0−
√

a

) 2n+1+(−1)n
3

(
z0+

√
a

z0−
√

a

) 2n−(−1)n
3 − 1

, n ∈ N0,

zn =
√

a

(
y0+

√
a

y0−
√

a

) 2n+1−2(−1)n

3
(

z0+
√

a
z0−

√
a

) 2n+2(−1)n

3
+ 1

(
y0+

√
a

y0−
√

a

) 2n+1−2(−1)n
3

(
z0+

√
a

z0−
√

a

) 2n+2(−1)n
3 − 1

, n ∈ N0.

System 34. By using the change of variables (2.2) system (2.37) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = unwn, n ∈ N0. (3.99)

This system is obtained from system (3.23) by interchanging letters v and w. Hence, from
(3.15) and (3.24) we have

vn = v0wn
0 u2n−n−1

0 , n ∈ N0, (3.100)

wn = w0u2n−1
0 , n ∈ N0. (3.101)

From (2.3), (3.2), (3.100), (3.101) we have that the following theorem holds.

Theorem 3.37. If a 6= 0, then the general solution to system (2.37) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
x0+

√
a

x0−
√

a

)2n−n−1 ( y0+
√

a

y0−
√

a

) (
z0+

√
a

z0−
√

a

)n
+ 1

(
x0+

√
a

x0−
√

a

)2n−n−1 ( y0+
√

a

y0−
√

a

) (
z0+

√
a

z0−
√

a

)n
− 1

, n ∈ N0,

zn =
√

a

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
+ 1

(
x0+

√
a

x0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)
− 1

, n ∈ N0.
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System 35. By using the change of variables (2.2) system (2.38) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = w2

n, n ∈ N0. (3.102)

We have that (3.2) and (3.11) hold. By using (3.11) in the second equation in (3.102) we
have

vn = vn−1wn−1 = v0

n−1

∏
j=0

w2j

0 = v0w2n−1
0 , n ∈ N0. (3.103)

From (2.3), (3.2), (3.11), (3.103) we have that the following theorem holds.

Theorem 3.38. If a 6= 0, then the general solution to system (2.38) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

) (
z0+

√
a

z0−
√

a

)2n−1
+ 1

(
y0+

√
a

y0−
√

a

) (
z0+

√
a

z0−
√

a

)2n−1
− 1

, n ∈ N0,

zn =
√

a

(
z0+

√
a

z0−
√

a

)2n

+ 1
(

z0+
√

a
z0−

√
a

)2n

− 1
, n ∈ N0.

System 36. By using the change of variables (2.2) system (2.39) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = vnwn, n ∈ N0. (3.104)

We have that (3.2) holds and that vn = wn, n ∈ N. By using the last relation in the second
equation in (3.104) we have

vn = vn−1wn−1 = v2
n−1, n ≥ 2. (3.105)

Hence
vn = v2n−1

1 = (v0w0)
2n−1

, n ∈ N, (3.106)

and consequently
wn = (v0w0)

2n−1
, n ∈ N. (3.107)

From (2.3), (3.2), (3.106), (3.107) we have that the following theorem holds.

Theorem 3.39. If a 6= 0, then the general solution to system (2.39) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)2n

+ 1
(

x0+
√

a
x0−

√
a

)2n

− 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)2n−1

+ 1
(

y0+
√

a

y0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)2n−1

− 1
, n ∈ N,

zn =
√

a

(
y0+

√
a

y0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)2n−1

+ 1
(

y0+
√

a

y0−
√

a

)2n−1 (
z0+

√
a

z0−
√

a

)2n−1

− 1
, n ∈ N.
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Abstract. In this paper, we study the existence of limit cycles in continuous and dis-
continuous planar piecewise linear Hamiltonian differential system with two or three
zones separated by straight lines and such that the linear systems that define the piece-
wise one have isolated singular points, i.e. centers or saddles. In this case, we show
that if the planar piecewise linear Hamiltonian differential system is either continuous
or discontinuous with two zones, then it has no limit cycles. Now, if the planar piece-
wise linear Hamiltonian differential system is discontinuous with three zones, then it
has at most one limit cycle, and there are examples with one limit cycle. More pre-
cisely, without taking into account the position of the singular points in the zones, we
present examples with the unique limit cycle for all possible combinations of saddles
and centers.

Keywords: limit cycles, piecewise linear differential system, Hamiltonian systems.
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1 Introduction

The first works on piecewise differential systems appeared in the 1930s, see [1]. This class

of systems is very important due to numerous applications, for example in control theory,

mechanics, electrical circuits, neurobiology, etc (see for instance the book [7]). Recently, this

subject has piqued the attention of researchers in qualitative theory of differential equations

and numerous studies about this topic have arisen in the literature (see [6, 15, 19, 20, 30]).

Piecewise linear differential systems are an interesting class of piecewise differential sys-

tems and, unlike the smooth case, have a rich dynamic that is far from being fully understood.

In addition to numerous applications in various areas of knowledge. In 1990, Lum and Chua

[28] conjectured that a continuous piecewise differential systems in the plane with two zones

has at most one limit cycle. In 1998 this conjecture was proved by Freire, Ponce, Rodrigo

and Torres in [9]. The problem becomes more complicated when we have three zones. Con-

ditions for non existence and existence of one, two or three limit cycles have been obtained,

BCorresponding author. Emails: c.pessoa@unesp.br (C. Pessoa); ronisio.ribeiro@unesp.br (R. Ribeiro).
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see [10, 23, 32]. However, the maximum number of limit cycles, as far as we know, is not yet

known.

In the discontinuous case, the maximum number of limit cycles is not known even in

the simplest case, i.e. for piecewise linear differential systems with two zones separated by

a straight line. However, important partial results about this problem have been obtained.

In summary, the results about the number of limit cycles of discontinuous piecewise linear

differential systems with two zones separated by a straight line are given in Table 1.1. The

symbol “—” indicates that those cases appear repeated in the table and the empty entries on

it correspond to cases not studied in the literature, at least as far as we know.

Fr Fv Fb Sr S0
r Nv iNv C Cb

Fr 3 2∗ 3 2∗ 3 3 2∗ 2∗

Fv — 2 2∗ 2 1∗ 2 1∗ 1∗

Fb — — 1∗ 2∗ 1∗ 2∗ 2∗ 1∗ 1∗

Sr — — — 2∗ 1∗ 2 2 1∗ 1∗

S0
r — — — — 0∗ 1∗ 1∗ 0∗ 0∗

Nv — — — — — 1∗ 1∗

iNv — — — — — — 2 1∗ 1∗

C — — — — — — — 0∗ 0∗

Cb — — — — — — — — 0∗

Table 1.1: Lower bounds (Upper bounds*) of the maximum number of limit

cycles of discontinuous piecewise linear differential systems with two zones

separated by a straight line. Here Fr, Fv, Fb, Sr, S0
r , Nv, iNv, C and Cb denote real

focus, virtual focus, boundary focus, real saddle, real saddle with zero trace,

virtual node, improper node, center and boundary center, respectively.

We denote the lower bounds of the entrances from Table 1.1 by the symbols that indicate

its position on the table. For example, the lower bound for the case with a real focus Fr and a

virtual focus Fv is detonated by FrFv, i.e. FrFv = 3. A proof for the lower bound FrFv can be

found in [22]. A proof for the lower bound FrSr can be found in [18]. A proof for the lower

bounds FrNv and FriNv can be found in [12]. A proof for the lower bound FvFv can be found

in [11]. A proof for the lower bound FvSr can be found in [36]. A proof for the lower bound

FviNv can be found in [35]. A proof for the upper bound SrSr can be found in [2]. A proof for

the lower bounds SrNv and SriNv can be found in [26]. A proof for the lower bound iNviNv

can be found in [17]. The other cases listed in Table 1.1 can be found in [21]. In the papers

[3, 5, 13, 27, 34] we can also find proofs for some lower bounds of Table 1.1.

If the curve between two linear zones is not a straight line it is possible to obtain as many

cycles as you want. This fact has been conjectured by Braga and Mello in [4] and firstly proved

by Novaes and Ponce in [31]. Exact number of limit cycles, for discontinuous piecewise linear

systems with two zones separated by a straight line, were obtained in particular cases. Llibre

and Teixeira [24] proved that if the linear systems, that define the piecewise one, has no

singular point, then it has at most one limit cycle. Medrado and Torregrossa [29] proved that

if the straight line has only crossing sewing points and the piecewise linear system has only a

monodronic singular point on it, then the system has at most one limit cycle.

There are a few papers on discontinuous piecewise linear systems with three zones sepa-

rated by two straight lines (see [8,25,38,39]). In [25], Llibre and Teixeira study the existence of
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limit cycles for continuous and discontinuous planar piecewise linear differential system with

three zones separated by two parallel straight lines and such that the linear systems involved

have a unique singular point which are centers. More precisely, in the continuous case, they

prove that the piecewise system has no limit cycles. Now, in the discontinuous case, the piece-

wise system has at most one limit cycle and there are examples with one. Mello, Llibre and

Fonseca, in [8], propose a mix of [24] and [25]. They proved that a piecewise linear Hamilto-

nian systems with three zones separated by two parallel straight lines without singular points

have at most one crossing limit cycle.

In this paper, we contribute along these lines, that is, we are interested in studying the

existence and the number of limit cycles of piecewise linear differential systems with two or

three zones in the plane with the following hypotheses:

(H1) The separations curves are straight lines, and parallel if there are more than one.

(H2) The vector fields which define the piecewise one are linear.

(H3) The vector fields which define the piecewise one are Hamiltonian.

(H4) The vector fields which define the piecewise one have isolated singularities.

Note that, hypotheses (H2), (H3) and (H4) imply that the singular points of the linear systems

that define the piecewise differential systems are saddles or centers.

We can classify the systems that satisfy the above hypotheses according to the configura-

tion of their singular points. Thus, denoting the centers by the capital letter C and by S the

saddles, in the case of two zones we have systems of the type CC, SC and SS. This is, CC

indicates that the singular points of the linear systems that define the piecewise differential

system are centers and so on. Following this idea, for three zones, we have the following six

class of piecewise linear Hamiltonian systems: CCC, SCC, SCS, CSC, SSS and SSC.

The case with two zones has been study in the literature, i.e. the next theorem is already

proved.

Theorem 1.1. A continuous or discontinuous planar piecewise linear Hamiltonian differential system

with two zones separated by a straight line and such that the linear systems that define it have isolated

singular points, i.e. centers or saddles, has no limit cycles.

A proof for Theorem 1.1 is contained in the proofs of Theorem 2 and 4 from [21]. Alter-

native proofs can also be found in other papers. See the proof of Theorem 1 from [27] for the

case where one of the linear systems has a center and the other has a center or saddle, and

see the proof of Theorem 3.4 from [16] for the case where the linear systems has saddles.

We include a proof of Theorem 1.1 in Section 3 just for the sake of completeness.

Assuming hypotheses (H1)–(H4), the main results in this paper are the follows:

Theorem 1.2. A continuous planar piecewise linear Hamiltonian differential system with three zones

separated by two parallel straight lines and such that the linear systems that define it have isolated

singular points, i.e. centers or saddles, has no limit cycles.

Theorem 1.3. A discontinuous planar piecewise linear Hamiltonian differential system with three

zones separated by two parallel straight lines and such that the linear systems that define it have

isolated singular points, i.e. centers or saddles, has at most one limit cycle.
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Theorems 1.2 and 1.3 have been proved for the particular case in which the linear sys-

tems that define the piecewise one has only isolated centers, see [25]. Theorem 1.2 has also

been proved for the particular case SCS, see the proof of Lemma 11 from [33]. For the other

possibilities, as far as we know, the results of Theorems 1.2 and 1.3 are new.

The paper is organized as follows. In Section 2 we introduce the basic definitions and

results. In Section 3 we prove Theorems 1.2–1.3. Examples of discontinuous planar piecewise

linear Hamiltonian differential system with three zones separated by two parallel straight

lines such that the linear systems that define it have isolated singular points are analyzed in

Section 4. That is, we give examples of piecewise linear Hamiltonian systems of type CCC,

SCC, SCS, CSC, SSS and SSC with exactly one limit cycle.

2 Preliminary results

In this section, we will present the basic concepts that we need to prove the main results of

this paper.

Let hi : R
2 → R, i = C, L, R, be the function hC(x, y) = x, hL(x, y) = x + 1 and hR(x, y) =

x − 1. By means of rotations, translations and homotheties we can assume without loss of

generality that the switching curve ΣC of a piecewise linear system with two zones in the plane

is defined as

ΣC = h−1
C (0) = {(x, y) ∈ R

2 : x = 0}.

This straight line decomposes the plane in two regions

RL = {(x, y) ∈ R
2 : x < 0} and RR = {(x, y) ∈ R

2 : x > 0}.

Assuming the hypotheses (H2) and (H3), the piecewise linear Hamiltonian vector field

with two zones is given by

XL(x, y) = (aLx + bLy + αL, cLx − aLy + βL), x ≤ 0,

XR(x, y) = (aRx + bRy + αR, cRx − aRy + βR), x > 0.
(2.1)

Note that the Hamiltonian functions that determine the vector field (2.1) are

HL(x, y) =
bL

2
y2 − cL

2
x2 + aLxy + αLy − βLx, x ≤ 0,

HR(x, y) =
bR

2
y2 − cR

2
x2 + aRxy + αRy − βRx, x > 0.

(2.2)

Assuming the hypothesis (H1), by means of rotations, translations and homotheties we

can assume without loss of generality, for the case with three zones, that the switching curves

ΣL and ΣR are given by

ΣL = h−1
L (0) = {(x, y) ∈ R

2 : x = −1},

and

ΣR = h−1
R (0) = {(x, y) ∈ R

2 : x = 1}.

This straight lines decomposes the plane in three regions

RL = {(x, y) ∈ R
2 : x < −1}, RC = {(x, y) ∈ R

2 : −1 < x < 1},

and

RR = {(x, y) ∈ R
2 : x > 1}.
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Assuming the hypotheses (H2) and (H3), the piecewise linear Hamiltonian vector field with

three zones is give by

XL(x, y) = (aLx + bLy + αL, cLx − aLy + βL), x ≤ −1,

XC(x, y) = (aCx + bCy + αC, cCx − aCy + βC), − 1 ≤ x ≤ 1,

XR(x, y) = (aRx + bRy + αR, cRx − aRy + βR), x ≥ 1.

(2.3)

The Hamiltonian functions that determine the vector field (2.3) are

HL(x, y) =
bL

2
y2 − cL

2
x2 + aLxy + αLy − βLx, x ≤ −1,

HC(x, y) =
bC

2
y2 − cC

2
x2 + aCxy + αCy − βCx, − 1 ≤ x ≤ 1,

HR(x, y) =
bR

2
y2 − cR

2
x2 + aRxy + αRy − βRx, x ≥ 1.

(2.4)

We will use the vector field XL and the switching curve ΣL in the next definitions. However,

we can easily adapt the definitions to the vector fields XC and XR and the switching curves ΣC

and ΣR.

The derivative of function hL in the direction of the vector field XL, i.e., the expression

XLhL(p) = 〈XL(p),∇hL(p)〉,

where 〈·, ·〉 is the usual inner product in R
2, characterize the contact between the vector field

XL and the switching curve ΣL.

We distinguish the following subsets of ΣL (the same for ΣC and ΣR)

• Crossing set:

Σ
c
L = {p ∈ ΣL : XLhL(p) · XChL(p) > 0};

• Sliding set:

Σ
s
L = {p ∈ ΣL : XLhL(p) > 0, XChL(p) < 0};

• Escaping set:

Σ
e
L = {p ∈ ΣL : XLhL(p) < 0, XChL(p) > 0}.

In a piecewise vector field with two or three zones in the plane, the limit cycles can be of

two types: sliding limit cycles or crossing limit cycles; the first one contain some segment

of sliding or escaping sets, and the second one does not contain any segments of sliding or

escaping sets. In this paper, we only study the crossing limit cycles. In what follows, when

we talk about limit cycles, we are talking about crossing limit cycles.

Piecewise vector field (2.1) is called continuous if

XL(p) = XR(p), ∀p ∈ ΣC.

Otherwise, it is called discontinuous. Similarly, piecewise vector field (2.3) is called continuous

if
XL(p) = XC(p), ∀p ∈ ΣL and

XC(q) = XR(q), ∀q ∈ ΣR.

Otherwise, it is called discontinuous.
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3 Proof of Theorems 1.1–1.3

This section is devoted to present the proof of main results.

Proof of Theorem 1.1. Consider a discontinuous piecewise linear Hamiltonian vector field with

two zones separated by a straight line, such that the linear vector fields, that define it, have

isolated singular points. That is, we have piecewise vector field (2.1), with a2
i + bici 6= 0, for

i = L, R. If the piecewise linear vector field has a periodic orbit, then it intersects the straight

line x = 0 at two points, (0, y0) and (0, y1), with y1 < y0, satisfying

HR(0, y1) = HR(0, y0),

HL(0, y0) = HL(0, y1),

where HL and HR are given by (2.2). More precisely, we have the equations

−1

2
(y0 − y1)(bR(y0 + y1) + 2αR) = 0,

1

2
(y0 − y1)(bL(y0 + y1) + 2αL) = 0.

As y1 < y0, if bR = 0 and αR 6= 0 or bL = 0 and αL 6= 0 the above system has no solutions.

If bR = αR = 0 and bL 6= 0 the solution (y0, y1) of the above system with y1 < y0 satisfies

y0 = −(bLy1 + 2αL)/bL, with arbitrary y1. If bL = αL = 0 and bR 6= 0 the solution (y0, y1) of the

above system with y1 < y0 satisfies y0 = −(bRy1 + 2αR)/bR, with arbitrary y1. If bLbR 6= 0, then

the above system has a solution (y0, y1) with y1 < y0 only when bL = bR = b and αL = αR = α.

Moreover, y0 = (−by1 + 2α)/b with arbitrary y1. If bR = bL = αR = αL = 0, then the system

has infinitely many solutions. Therefore, the piecewise linear vector field (2.1) has no periodic

orbits or has a continuum of periodic orbits, and consequently, it has no limit cycle.

Note that the continuous case is a constraint of the discontinuous one. In fact, the contin-

uous condition is given by

XR(0, y) = XL(0, y), ∀y ∈ R.

which implies

aR = aL = a, bR = bL = b, αR = αL = α and βR = βL = β.

Proof of Theorem 1.2. Consider a continuous piecewise linear Hamiltonian vector field with

three zones separated by two parallel straight lines, such that the linear vector fields, that

define it, have isolated singular points. That is, we have piecewise vector fields (2.3), with

a2
i + bici 6= 0, for i = L, C, R, and due to continuity

XR(1, y) = XC(1, y) and XC(−1, y) = XL(−1, y), ∀y ∈ R.

These equalities imply that

aR = aC = aL = a, bR = bC = bL = b, αR = αC = αL = α

and

βR − βC − cC + cR = βL − βC − cL + cC = 0.

By Theorem 1.1, the piecewise linear vector field has no limit cycles contained in two zones.

Thus, if the piecewise linear vector field has a periodic orbit, then it intersects the straight
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lines x = ±1 at four points, (1, y0), (1, y1), with y1 < y0, and (−1, y2), (−1, y3), with y2 < y3,

respectively, satisfying

HR(1, y1) = HR(1, y0),

HC(1, y0) = HC(−1, y3),

HL(−1, y3) = HL(−1, y2),

HC(−1, y2) = HC(1, y1),

(3.1)

where HL, HC and HR are given by (2.4). More precisely, we have the equations

−1

2
(y0 − y1)(b(y0 + y1) + 2(a + α)) = 0, (3.2)

a(y0 + y3) +
1

2
(y0 − y3)(b(y0 + y3) + 2α)− 2βC = 0, (3.3)

−1

2
(y2 − y3)(b(y2 + y3)− 2(a − α)) = 0, (3.4)

−a(y1 + y2)−
1

2
(y1 − y2)(b(y1 + y2) + 2α) + 2βC = 0. (3.5)

As y1 < y0, y2 < y3 and a2 + bci 6= 0, for i = L, C, R, if either b = 0 and a + α 6= 0 or b = 0 and

a + α = 0 the above system has no solutions. If b 6= 0, as y1 < y0 and y2 < y3, from equation

(3.2) we can obtain y0 as a function of y1, i.e.

y0 =
−by1 − 2(a + α)

b
. (3.6)

Now, from equation (3.4) we can obtain y2 as a function of y3, i.e.

y2 =
−by3 − 2(α − a)

b
. (3.7)

Substituting (3.6) and (3.7) in equations (3.3) and (3.5), respectively, we obtain a solution

(y0, y1, y2, y3) of the system (3.1) satisfying y1 < y0 and y2 < y3, given by (ϕ1(y1), y1, ϕ2(y1),

ϕ3(y1)), where

ϕ1(y1) =
−by1 − 2(a + α)

b
,

ϕ2(y1) =
a − α +

√

b2y2
1 + 2b(a + α)y1 + (a − α)2 − 4bβC

b
,

ϕ3(y1) =
a − α +

√

b2y2
1 + 2b(a + α)y1 + (a − α)2 − 4bβC

b
,

with arbitrary y1. Note that the inequality b2y2
1 + 2b(a + α)y1 + (a − α)2 − 4bβC ≤ 0 for all

y1 ∈ R is not possible. Therefore, the piecewise linear vector field (2.3) has no periodic orbits

or has a continuum of periodic orbits, and consequently, it has no limit cycle.

Proof of Theorem 1.3. Consider a discontinuous piecewise linear Hamiltonian vector field with

three zones separated by two parallel straight lines, such that the linear vector fields, that

define it, have isolated singular points. That is, we have piecewise vector fields (2.3), with

−a2
i − bici 6= 0, for i = L, C, R. By Theorem 1.1, the piecewise linear vector field has no limit

cycles contained in two zones. Thus, if the piecewise linear vector field has a periodic orbit,
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then it intersects the straight lines x = ±1 at four points, (1, y0), (1, y1), with y1 < y0, and

(−1, y2), (−1, y3), with y2 < y3, respectively, satisfying

HR(1, y1) = HR(1, y0),

HC(1, y0) = HC(−1, y3),

HL(−1, y3) = HL(−1, y2),

HC(−1, y2) = HC(1, y1),

(3.8)

where HL, HC and HR are given by (2.4). More precisely, we have the equations

1

2
(y1 − y0)(bR(y0 + y1) + 2(aR + αR)) = 0, (3.9)

1

2
(y0 − y3)(bC(y0 + y3) + 2αC)− 2βC + aC(y0 + y3) = 0, (3.10)

1

2
(y3 − y2)(bL(y2 + y3)− 2(aL − αL)) = 0, (3.11)

1

2
(y2 − y1)(bC(y1 + y2) + 2αC) + 2βC − aC(y1 + y2) = 0. (3.12)

To determine all the solutions of the above systems, restricted to the conditions y1 < y0,

y2 < y3 and a2
i + bici 6= 0, for i = L, C, R, we distinguish two cases. In the first case we assume

that bRbLbC = 0. For this cases, system (3.9)–(3.12) has no solutions when

• bR = 0 and aR + αR 6= 0;

• bL = 0 and aL − αL 6= 0;

• bR = aR + αR = bL = aL − αL = bC = αC − aC = 0;

• bR = aR + αR = bC = αC − aC = 0 and bL 6= 0;

• bL = aL − αL = bC = αC − aC = 0 and bR 6= 0;

• bC = 0, bRbL 6= 0 and bRαC(aL − αL) + aCbR(αL − aL) + bL(aR + αR)(aC + αC) + 2bLbRβC 6= 0;

and it has infinitely many solutions when

• bR = aR + αR = bL = aL − αL = bC = 0 and αC − aC 6= 0;

• bR = aR + αR = bL = aL − αL = 0 and bC 6= 0;

• bR = aR + αR = bC = 0, αC − aC 6= 0 and bL 6= 0;

• bR = aR + αR = 0 and bLbC 6= 0;

• bL = aL − αL = bC = 0, bR 6= 0 and αC − aC 6= 0;

• bL = aL − αL = 0 and bRbC 6= 0;

• bC = 0, bRbL 6= 0 and bRαC(aL − αL) + aCbR(αL − aL) + bL(aR + αR)(aC + αC) + 2bLbRβC = 0.

In the second case, we assume that bLbCbR 6= 0. From equation (3.9), we can obtain y0 as a

function of y1, i.e.

y0 =
−bRy1 − 2(aR + αR)

bR

. (3.13)



Limit cycles of piecewise linear Hamiltonian differential systems 9

Now, from equation (3.11), we can obtain y2 as a function of y3, i.e.

y2 =
−bLy3 − 2(αL − aL)

bL

. (3.14)

Substituting (3.13) and (3.14) in equations (3.10) and (3.12), respectively, we obtain the equa-

tions of two hyperbolas in the y1y3 plane, given by

(y1 − A)2

K
− (y3 − B)2

K
− C = 0,

(y1 − D)2

K
− (y3 − E)2

K
− C = 0,

(3.15)

with

K =
2

bC

, A =
bR(aC + αC)− 2bC(aR + αR)

bCbR

,

B =
aC − αC

bC

, C =
2(aCαC + bCβC)

bC

,

D = − (aC + αC)

bC

and E =
bL(αC − aC)− 2bC(αL − aL)

bCbL

.

Note that the system (3.15) is equivalent to the system

y2
1 − 2Ay1 + A2 − y2

3 + 2By3 − B2 − KC = 0,

2(A − D)y1 + 2(E − B)y3 + D2 − E2 + B2 − A2 = 0.
(3.16)

The system above eventually could have infinitely many solutions (y1, y3), for instance when

A = D and B = E. In this case, the piecewise linear vector field (2.3) has a continuum of

periodic orbits, and consequently, it has no limit cycle. Suppose that system (3.16) has finitely

many solutions. According to Bezout’s Theorem, if a system of polynomial equations has

finitely many solutions, then the number of its solutions is at most the product of the degrees

of the polynomials, that for system (3.16) is two. Therefore, the two hyperbolas above intersect

at most two points. Note that, by (3.9)–(3.12), if (y0, y1, y2, y3) is solution of the system (3.8)

then (y1, y0, y3, y2) is also a solution. However, for y1 < y0 and y2 < y3 we have at most a

single solution. Therefore, the piecewise linear vector field (2.3) can have at most one limit

cycle.

4 Examples

In this section, we will give some examples of discontinuous planar piecewise linear Hamil-

tonian differential system with three zones separated by two parallel straight lines with one

limit cycle, such that the linear systems that define it have isolated singular points. That is,

we given examples of piecewise linear Hamiltonian systems of type CCC, SCC, SCS, CSC, SSS

and SSC with exactly one limit cycle. In [25], the authors presented an example of a discon-

tinuous piecewise linear differential system of type CCC with exactly one limit cycle. Here

we will show another example for this case.
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Example 4.1 (Case CCC). Consider the discontinuous planar piecewise linear Hamiltonian

vector field (2.3) with aL = 4, bL = 8, αL = 3/2, cL = −5/2, βL = 11/4, aC = 0, bC = 2,

αC = βC = 2/3, cC = −2, aR = 4, bR = 2, cR = −10 and αR = βR = −4. The eigenvalues of

the linear part of Xi, i = L, C, R, from (2.3) for this case, are ±2i, ±2i and ±2i, respectively, i.e.

we have three centers. Therefore, a candidate to limit cycle of vector field (2.3), in this case,

correspond to the solution of system (3.8), i.e.

(y1 − y0)(y1 + y0) = 0,

1

3
(y0(2 + 3y0)− y3(2 + 3y3)− 4) = 0,

1

2
(y3 − y2)(8(y2 + y3)− 5) = 0,

1

3
(4 − y1(2 + 3y1) + y2(2 + 3y2)) = 0.

After some computations, the unique solution (y0, y1, y2, y3) of the above system, satisfying

the condition y1 < y0 and y2 < y3, is given by

(

31

48

√

1259

235
, −31

48

√

1259

235
,

5

16
− 1

3

√

1259

235
,

5

16
+

1

3

√

1259

235

)

.

The points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points because

〈XL(−1, y2), (1, 0)〉 · 〈XC(−1, y2), (1, 0)〉 ≈ 1.5518 > 0,

〈XL(−1, y3), (1, 0)〉 · 〈XC(−1, y3), (1, 0)〉 ≈ 17.4969 > 0,

〈XC(1, y0), (1, 0)〉 · 〈XR(1, y0), (1, 0)〉 ≈ 10.9315 > 0,

〈XC(1, y1), (1, 0)〉 · 〈XR(1, y1), (1, 0)〉 ≈ 6.9452 > 0.

The orbit (xR(t), yR(t)) of XR, such that (xR(0), yR(0)) = (1, y0), is given by

xR(t) = 7 cos(2t) +
31

48

√

1259

235
sin(2t)− 6,

yR(t) =

(

31

48

√

1259

235
− 14

)

cos(2t)−
(

7 +
31

24

√

1259

235

)

sin(2t) + 14.

The orbit (xC1
(t), yC1

(t)) of XC, such that (xC1
(0), yC1

(0)) = (1, y1), is given by

xC1
(t) =

2

3
cos(2t) +

(

1

3
− 31

48

√

1259

235

)

sin(2t) +
1

3
,

yC1
(t) =

(

1

3
− 31

48

√

1259

235

)

cos(2t)− 1

3
(1 + 4 cos(t) sin(t)).

The orbit (xL(t), yL(t)) of XL, such that (xL(0), yL(0)) = (−1, y2), is given by

xL(t) = −8 cos(2t)− 4

3

√

1259

235
sin(2t) + 7,

yL(t) =

(

4 − 1

3

√

1259

235

)

cos(2t) +

(

4 +
4

3

√

1259

235

)

cos(t) sin(t)− 59

16
.
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The orbit (xC2
(t), yC2

(t)) of XC, such that (xC2
(0), yC2

(0)) = (−1, y3), is given by

xC2
(t) = −4

3
cos(2t) +

(

31

48
+

1

3

√

1259

235

)

sin(2t) +
1

3
,

yC2
(t) =

(

31

48
+

1

3

√

1259

235

)

cos(2t) +
1

3
(8 cos(t) sin(t)− 1).

The fly time of the orbit (xR(t), yR(t)), from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR, is

tR =
1

2
arctan

(

20832
√

295865

25320661

)

.

The fly time of the orbit (xC1
(t), yC1

(t)), from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL, is

tC1
=

π

2
− 1

2
arctan

(

96(10810 +
√

295865)

496001

)

.

The fly time of the orbit (xL(t), yL(t)), from (−1, y2) ∈ ΣL to (−1, y3) ∈ ΣL, is

tL =
1

2
arctan

(

12
√

295865

7201

)

.

Finally, the fly time of the orbit (xC2
(t), yC2

(t)), from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR, is

tC2
= −1

2
arctan

(

96(
√

295865 − 10810)

496001

)

.

Using the Mathematica software (see [37]), we can draw the orbits (xi(t), yi(t)) for the time

t ∈ [0, ti], i = R, L, C1, C2, i.e. we obtain the limit cycle given in Figure 4.1 (a). Figure 4.1 (b)

was made with the help of P5 software (see [14]), and provides the phase portrait of vector

field (2.3) in this case (the symbol ◦ indicates an invisible singular point).

Example 4.2 (Case SCC). Consider the discontinuous planar piecewise linear Hamiltonian

vector field (2.3) with aL = bL = 1, αL = 2/3, cL = 35, βL = 214/3, aC = 0, bC = 2, αC = βC =

2/3, cC = −2, aR = 4, bR = 2, αR = βR = −4 and cR = −10. The eigenvalues of the linear part

of Xi, i = L, C, R, from (2.3) for this case, are ±6, ±2i and ±2i, respectively, i.e. we have one

saddle and two centers. In this case, as in Example 4.1, the unique solution (y0, y1, y2, y3) of

system (3.8) satisfying the condition y1 < y0 and y2 < y3, which is given by

(

2
√

5

3
, −2

√
5

3
,

1 −
√

5

3
,

1 +
√

5

3

)

,

correspond to the unique limit cycle of vector field (2.3).

Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.

Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with

(xL(0), yL(0)) = (−1, y2); and the orbit (xC2
(t), yC2

(t)) of XC, with (xC2
(0), yC2

(0)) = (−1, y3).

We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;
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Figure 4.1: The limit cycle of vector field (2.3) with aL = 4, bL = 8, αL = 3/2,

cL = −5/2, βL = 11/4, aC = 0, bC = 2, αC = βC = 2/3, cC = −2, aR = 4, bR = 2,

cR = −10 and αR = βR = −4.

(xC1
(t), yC1

(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈
ΣL; and (xC2

(t), yC2
(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the Mathematica

software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we

obtain the limit cycle given in Figure 4.2 (a). The Figure 4.2 (b) has been made with the help

of P5 software, and provides the phase portrait of vector field (2.3) in this case.

Example 4.3 (Case SCS). Consider the discontinuous planar piecewise linear Hamiltonian

vector field (2.3) with aL = bL = 1, αL = 3/5, cL = 35, βL = 357/5, aC = 0, bC = 2, αC = βC = 1,

cC = −2, aR = bR = 1, αR = −1, cR = 15 and βR = −31. The eigenvalues of the linear part

of Xi, i = L, C, R, from (2.3) for this case, are ±6, ±2i and ±4, respectively, i.e. we have two

saddles and one center. In this case, as in Example 4.1, the unique solution (y0, y1, y2, y3) of

system (3.8) satisfying the condition y1 < y0 and y2 < y3, which is given by

(

18

5

√

2

7
, −18

5

√

2

7
,

2

5
− 2

√

2

7
,

2

5
+ 2

√

2

7

)

,

correspond to the unique limit cycle of vector field (2.3).

Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.

Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with

(xL(0), yL(0)) = (−1, y2); and the orbit (xC2
(t), yC2

(t)) of XC, with (xC2
(0), yC2

(0)) = (−1, y3).

We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;

(xC1
(t), yC1

(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈
ΣL; and (xC2

(t), yC2
(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the mathematica

software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we

obtain the limit cycle given in Figure 4.3 (a). The Figure 4.3 (b) has been made with the help

of P5 software, and provides the phase portrait of vector field (2.3) in this case.
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Figure 4.2: The limit cycle of vector field (2.3) with aL = bL = 1, αL = 2/3,

cL = 35, βL = 214/3, aC = 0, bC = 2, αC = βC = 2/3, cC = −2, aR = 4, bR = 2,

αR = βR = −4 and cR = −10.

Example 4.4 (Case CSC). Consider the discontinuous planar piecewise linear Hamiltonian

vector field (2.3) with aL = 4, bL = 8, αL = 2, cL = −5/2, βL = 5/2, aC = 2/5, bC = 24/5,

αC = −9/5, cC = 4/5, βC = −4/15, aR = 8, bR = 10 and αR = cR = βR = −8. The eigenvalues

of the linear part of Xi, i = L, C, R, from (2.3) for this case, are ±2i, ±2 and ±4i, respectively,

i.e. we have one saddle and two centers. In this case, as in Example 4.1, the unique solution

(y0, y1, y2, y3) of system (3.8) satisfying the condition y1 < y0 and y2 < y3, which is given by

(

5

12

√

7

3
, − 5

12

√

7

3
,

1

4
− 7

√
21

36
,

1

4
+

7
√

21

36

)

,

correspond to the unique limit cycle of vector field (2.3).

Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.

Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with

(xL(0), yL(0)) = (−1, y2); and the orbit (xC2
(t), yC2

(t)) of XC, with (xC2
(0), yC2

(0)) = (−1, y3).

We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;

(xC1
(t), yC1

(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈
ΣL; and (xC2

(t), yC2
(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the Mathematica

software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we

obtain the limit cycle given in Figure 4.4 (a). The Figure 4.4 (b) has been made with the help

of P5 software, and provides the phase portrait of vector field (2.3) in this case.

Example 4.5 (Case SSS). Consider the discontinuous planar piecewise linear Hamiltonian

vector field (2.3) with aL = αL = −2/3, bL = 4/3, cL = 8/3, βL = 35/3, aC = 2/11, bC = 120/11,

αC = −41/11, cC = 4/11, βC = −4/33, aR = −2/11, bR = 4/11, αR = 1/5, cR = 120/11 and

βR = −749/55. The eigenvalues of the linear part of Xi, i = L, C, R, from (2.3) for this case,

are ±2, ±2 and ±2, respectively, i.e. we have three saddles. In this case, as in Example 4.1,

the unique solution (y0, y1, y2, y3) of system (3.8) satisfying the condition y1 < y0 and y2 < y3,
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Figure 4.3: The limit cycle of vector field (2.3) with aL = bL = 1, αL = 3/5,

cL = 35, βL = 357/5, aC = 0, bC = 2, αC = βC = 1, cC = −2, aR = bR = 1,

αR = −1, cR = 15 and βR = −31.

- 0.5 0.5

1

0.5

0.5-

-1.5
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(1, y1)(1, y2)
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Figure 4.4: The limit cycle of vector field (2.3) with aL = 4, bL = 8, αL = 2,

cL = −5/2, βL = 5/2, aC = 2/5, bC = 24/5, αC = −9/5, cC = 4/5, βC = −4/15,

aR = 8, bR = 10 and αR = cR = βR = −8.

which is given by
(

43
√

26 − 12

240
, −43

√
26 + 12

240
, −3

8

√

13

2
,

3

8

√

13

2

)

,

correspond to the unique limit cycle of vector field (2.3).

Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.

Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with

(xL(0), yL(0)) = (−1, y2); and the orbit (xC2
(t), yC2

(t)) of XC, with (xC2
(0), yC2

(0)) = (−1, y3).

We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;
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(xC1
(t), yC1

(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈
ΣL; and (xC2

(t), yC2
(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the Mathematica

software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we

obtain the limit cycle given in Figure 4.5 (a). The Figure 4.5 (b) has been made with the help

of P5 software, and provides the phase portrait of vector field (2.3) in this case..
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0.5

0.5

0.5
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Figure 4.5: The limit cycle of vector field (2.3) with aL = αL = −2/3, bL = 4/3,

cL = 8/3, βL = 35/3, aC = 2/11, bC = 120/11, αC = −41/11, cC = 4/11,

βC = −4/33, aR = −2/11, bR = 4/11, αR = 1/5, cR = 120/11 and βR = −749/55.

Example 4.6 (Case SSC). Consider the discontinuous planar piecewise linear Hamiltonian

vector field (2.3) with aL = αL = −2/3, bL = 4/3, cL = 8/3, βL = 35/3, aC = 2/11, bC = 120/11,

αC = −41/11, cC = 4/11, βC = −4/33, aR = 8, bR = 10, αR = −7 and cR = βR = −8. The

eigenvalues of the linear part of Xi, i = L, C, R, from (2.3) for this case, are ±2, ±2 and ±4i,

respectively, i.e. we have two saddles and one center. In this case, as in Example 4.1, the

unique solution (y0, y1, y2, y3) of system (3.8) satisfying the condition y1 < y0 and y2 < y3,

which is given by

(

43

24

√

43

470
− 1

10
, −43

24

√

43

470
− 1

10
, −17

8

√

43

470
,

17

8

√

43

470

)

,

correspond to the unique limit cycle of vector field (2.3).

Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.

Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with

(xL(0), yL(0)) = (−1, y2); and the orbit (xC2
(t), yC2

(t)) of XC, with (xC2
(0), yC2

(0)) = (−1, y3).

We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;

(xC1
(t), yC1

(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈
ΣL; and (xC2

(t), yC2
(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the Mathematica

software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we

obtain the limit cycle given in Figure 4.6 (a). The Figure 4.6 (b) has been made with the help

of P5 software, and provides the phase portrait of vector field (2.3) in this case.
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Figure 4.6: The limit cycle of vector field (2.3) with aL = αL = −2/3, bL = 4/3,

cL = 8/3, βL = 35/3, aC = 2/11, bC = 120/11, αC = −41/11, cC = 4/11,

βC = −4/33, aR = 8, bR = 10, αR = −7 and cR = βR = −8.
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Abstract. In the present paper, we are concerned with a very general problem, namely
the Stieltjes differential Cauchy problem involving state-dependent discontinuities.

Given that the theory of Stieltjes differential equations covers the framework of
impulsive problems with fixed-time impulses, in the present work we generalize this
setting by allowing the occurrence of fixed-time impulses, as well as the occurrence of
state-dependent impulses.

Along with an existence result obtained under an overarching set of assumptions
involving Stieltjes integrals, it is showed that a least and a greatest solution can be
found.

Keywords: Stieltjes differential equation, state-dependent impulsive equation, Stieltjes
integral, extremal solution.

2020 Mathematics Subject Classification: 34A37, 34A06, 26A24, 26A42.

1 Introduction

The important role played by the theory of initial value impulsive differential problems in
describing the evolution of many processes in the real life is well-known [1, 15, 27]. The most
encountered framework in literature is that of impulsive equations with impulses occurring
at fixed times [1, 5].

The more general setting of state-dependent time discrete perturbations is (despite its wide
applicability, e.g. [6, 12, 24]) far less studied, due to its complexity – see [2, 4, 10] or [25] and
the references therein. To give just an idea, fixed point results are not applicable since the
continuity of Nemytskii operator cannot be checked, while the control of the number and
position of the state-dependent impulse moments requires strong specific assumptions.

At the same time, the theory of differential equations with Stieltjes derivative – see [19]
(called Stieltjes differential equations, e.g. [11, 17]), which has been shown to be generally
equivalent to the theory of measure differential equations (see [8, 9, 21]) covers a wide variety

BEmail: bisatco@usm.ro
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of real life processes. For instance, it allows the occurrence of stationary intervals (where the
derivator g is constant) coupled with moments with abrupt changes in the state (where g has
discontinuities).

We have in mind the possibility to allow both behaviours: stationary intervals coupled with
pre-established moments with abrupt changes and also with state-dependent time impulses.

We thus focus on Stieltjes first-order Cauchy differential problem with impulses depending
on the state





x′g(t) = f (t, x(t)), µg-a.e. t ∈ [0, 1] \ (Ax \ A)

∆+x(t) = x(t+)− x(t) = Ii(x(t)), if t ∈ Ai
x \ A, for i = 1, . . . , k

x(0) = x0

(1.1)

where g : [0, 1] → R is a left-continuous nondecreasing function which induces the Stieltjes
measure µg, B ⊂ R is a closed set containing x0, f : [0, 1]× B → R is the function describing
the rate of change of the unknown function, while Ii : R → R, i = 1, . . . , k give the jumps at
the points where the barriers γi : R → [0, 1], i = 1, . . . , k are reached.

By A, Ai
x and Ax (x being a real valued function on [0, 1]) one denotes the sets

A = the set of points of discontinuity of g,

Ai
x = {t ∈ [0, 1] : t = γi(x(t))} for every i = 1, . . . , k,

respectively

Ax =
k⋃

i=1

Ai
x.

To avoid ambiguity at the common points of Ai
x and A

j
x (with i ̸= j), respectively of Ai

x and
A, we impose the conditions H4).iii), respectively H4).iv) below.

Using of the Stieltjes derivative x′g with respect to a left-continuous nondecreasing map g

enables the presence of dead times (intervals where the process is stationary – correspond-
ing to intervals where g is constant) as well as of fixed-time discrete perturbations (at the
discontinuities of g).

In the particular case where g(t) = t for every t ∈ [0, 1], the existence of solutions for
this problem has been provided e.g. in [2, 10, 13] or [25]. However, even in this specific case,
basic properties of the set of solutions are difficult to be proved (we refer to [13] or [33] for a
detailed discussion).

The very wide framework of Stieltjes differential problems (which already covers many
classical cases, such as ordinary differential and difference equations, impulsive equations,
time-scales dynamic equations) with state-dependent discontinuities is studied here for the
first time, as far as the author knows.

More precisely, we first present an existence result inspired by [22] (available for measure
differential equations without allowing state dependent discontinuities, in particular for im-
pulsive problems with fixed time impulse moments) by taking the advantage of the method
used in [10] for state-dependent impulsive equations with g(t) = t.

Finally, we prove, using a nice result for measure differential problems without variable
time impulses in [22], that a least and a greatest solution can be found. Note that, by a different
method and different hypotheses, the existence of extremal solutions has been obtained in [13]
when g(t) = t under assumptions involving that each barrier is hit only once.
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2 Notions and preliminary facts

A function u : [0, 1] → R is said to be regulated if for every t ∈ [0, 1) there exists the limit
u(t+) and for every s ∈ (0, 1] there exists the limit u(s−). The set of discontinuity points of
a regulated function is at most countable and the bounded variation or continuous functions
are, without any doubt, regulated. The space G([0, 1], R) of regulated functions u : [0, 1] → R

is a Banach space with respect to the sup-norm. By G−([0, 1], R) we denote its subspace
consisting in left-continuous functions.

Given a left-continuous nondecreasing function g : [0, 1] → R, the measurability with
respect to (in short, w.r.t.) the σ-algebra defined by g will be called g-measurability, µg denotes
the Stieltjes measure generated by g and the Lebesgue–Stieltjes (shortly, LS-) integrability w.r.t.
g means the abstract Lebesgue integrability w.r.t. the Stieltjes measure µg. It is well known
that if f is LS-integrable w.r.t. g, the primitive

∫ ·
0 f (s)dg(s) =

∫
[0,·) f (s)dg(s) is a g-absolutely

continuous function in the following sense (see [31], [11] or [19]): a function u : [0, 1] → R is
g-absolutely continuous if for every ε > 0 there is δε > 0 such that

m

∑
j=1

|u(t′′j )− u(t′j)| < ε

for any set {(t′j, t′′j )}
m
i=1 of non-overlapping subintervals of [0, 1] with ∑

m
j=1(g(t′′j )− g(t′j)) < δε.

We shall also use the theory of Kurzweil–Stieltjes integral (we refer the reader to [14,23,30],
see also [28, 29]) motivated by the fact that it is easy to handle (by integral sums), it fits well
with the setting of regulated functions (i.e. it covers the situation where both the integrand
and the integrator possess discontinuities) and, moreover, it can integrate functions that are
not absolutely integrable.

Below are listed the basic properties of KS-integrals.

Definition 2.1. A function f : [0, 1] → R is Kurzweil–Stieltjes integrable with respect to g :
[0, 1] → R (or KS-integrable w.r.t. g) if there exists

∫ 1
0 f (s)dg(s) ∈ R such that, for every ε > 0,

there is a positive function δε : [0, 1] → R with
∣∣∣∣∣

p

∑
i=1

f (ξi)(g(ti)− g(ti−1))−
∫ 1

0
f (s)dg(s)

∣∣∣∣∣ < ε

for every δε-fine partition {([ti−1, ti], ξi) : i = 1, . . . , p} of [0, 1]. This means that [ti−1, ti] ⊂

]ξi − δ(ξi), ξi + δ(ξi)[, for all i = 1, . . . , p.

The function t 7→
∫ t

0 f (s)dg(s) is called the KS-primitive of f w.r.t. g.

Proposition 2.2 ([23]). Let f : [0, 1] → R be Kurzweil–Stieltjes integrable w.r.t. g : [0, 1] → R. If g

is regulated, then so is the primitive h : [0, 1] → R, h(t) =
∫ t

0 f (s)dg(s) and for every t ∈ [0, 1],

h(t+)− h(t) = f (t) [g(t+)− g(t)] and h(t)− h(t−) = f (t) [g(t)− g(t−)] .

Therefore, h is left-continuous, respectively right-continuous at the points where g has the same prop-

erty.

Note that the Lebesgue–Stieltjes integrability of a function f implies the Kurzweil–Stieltjes
integrability and in the framework of a left-continuous nondecreasing function g, as a conse-
quence of [23, Theorem 6.11.3] (see also [26, Theorem 8.1]), if t ∈ [0, 1] then

∫ t

0
f (s)dg(s) =

∫

[0,t]
f (s)dµg(s)− f (t)(g(t+)− g(t)) =

∫

[0,t)
f (s)dµg(s).
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In order to recall more properties of the primitive, we need the notion of (Stieltjes) deriva-
tive of a function with respect to another function, given in [19] (see also [31]).

Definition 2.3. Let g : [0, 1] → R be nondecreasing and left-continuous. The derivative of
f : [0, 1] → R with respect to g (or the g-derivative) at the point t ∈ [0, 1] is

f ′g(t) = lim
t′→t

f (t′)− f (t)

g(t′)− g(t)
if g is continuous at t,

f ′g(t) = lim
t′→t+

f (t′)− f (t)

g(t′)− g(t)
if g is discontinuous at t,

if the limit exists.

The g-derivative has found meaningful applications in solving real-world problems where
periods of time where no activity occurs and instants with abrupt changes are both involved,
such as [11], [18] or [20].

Remark that if t is a discontinuity point of g, then

f ′g(t) =
f (t+)− f (t)

g(t+)− g(t)
.

There is a set where Definition 2.3 does not work, more precisely,

Cg = {t ∈ [0, 1] : g is constant on (t − ε, t + ε) for some ε > 0}

but we must take into account that µg(Cg) = 0 [19] and, when studying differential equations,
the equation has to be satisfied µg-almost everywhere.

The connection between Stieltjes integrals and the Stieltjes derivative is given by Funda-
mental Theorems of Calculus [19, Theorems 5.4, 6.2, 6.5].

For Lebesgue–Stieltjes integrals, it is contained in [19, Theorem 5.4], we give the entire
statement below.

Theorem 2.4. Let g : [0, 1] → R be a nondecreasing left-continuous function. Then f : [0, 1] → R

is g-absolutely continuous if and only if it is g-differentiable µg-a.e., f ′g is Lebesgue–Stieltjes integrable

w.r.t g and

f (t′) = f (t′′) +
∫

[t′′,t′)
f ′g(s)dµg(s), for every 0 ≤ t′′ < t′ ≤ 1.

3 Main results

We are concerned with the Stieltjes initial value differential problem with state-dependent
discontinuities

{
x′g(t) = f (t, x(t)), µg − a.e. t ∈ [0, 1] \ (Ax \ A)

∆+x(t) = x(t+)− x(t) = Ii(x(t)), if t ∈ Ai
x \ A, for i = 1, . . . , k

where B ⊂ R is closed, x0 ∈ B, f : [0, 1]× B → R and for each i = 1, . . . , k, Ii : B → R describes
the jumps at the points where the barrier γi : R → [0, 1] is reached. Recall that A is the set of
discontinuity points of the left-continuous nondecreasing function g : [0, 1] → R continuous
at 0, Ai

x is the set of points where the function x : [0, 1] → R hits the barrier γi, i.e. τ ∈ Ai
x if

t = γi(x(t)) and Ax is the union of these Ai
x.
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3.1 Existence result

Definition 3.1.

i) A function x : [0, a] → R (a ∈ (0, 1]) is called an integral solution of the state-dependent
impulsive Stieltjes differential problem (1.1) on [0, a] if it is a solution of the impulsive
integral equation

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s) +

k

∑
i=1

∑
τ∈(Ai

x\A)∩[0,t)

Ii(x(τ)), t ∈ [0, a]. (3.1)

ii) (e.g. [10]) We say that a function x : [0, a] → R (a ∈ (0, 1]) is a g-Carathéodory solution
of the state-dependent impulsive Stieltjes differential problem (1.1) on [0, a] if:

• it is g-absolutely continuous and x′g(t) = f (t, x(t)), µg-a.e. on [0, a] \ (Ax \ A);

• for each i = 1, . . . , k, at every t ∈ (Ai
x \ A) ∩ [0, a], x is left-continuous, it has finite

right limit and x(t+) = x(t) + Ii(x(t));

• x(0) = x0.

Consider B ⊂ R a compact set.
We shall impose the following hypotheses on f : [0, 1]× B → R:

H1) For each x ∈ B, the map f (·, x) is Kurzweil–Stieltjes integrable w.r.t. g on [0, 1];

H2) One can find a non-decreasing function h : [0, 1] → R and a function M : [0, 1] → R

KS-integrable w.r.t. h such that for every x ∈ G−([0, 1], B),
∣∣∣∣
∫ v

u
f (t, x(t))dg(t)

∣∣∣∣ ≤
∫ v

u
M(t)dh(t), for all 0 ≤ u ≤ v ≤ 1;

H3) For any t ∈ [0, 1], f (t, ·) is continuous on B;

Remark 3.2. Using [22, Lemma 3.1], from the preceding assumptions it follows that for each
x ∈ G−([0, 1], B), the map f (·, x(·)) is Kurzweil–Stieltjes integrable w.r.t. g.

The assumptions on the barriers γi : R → [0, 1] (known as transversality assumptions) and
on the jumps Ii : R → R, i = 1, . . . , k are described below:

H4) i) The maps γi, i = 1, . . . , k are strictly monotone and continuous;

ii) γ−1
i (0) ̸= x0 for all i and γ−1

i (t) ̸= γ−1
j (t) + Ij(γ

−1
j (t)) for all i, j = 1, . . . , k, t ∈ [0, 1];

iii) if γi(x) = γj(x) for some x ∈ B and i ̸= j then Ii(x) = Ij(x);

iv) whenever τ ∈ Ai
x ∩ A for some x ∈ G−([0, 1], B),

Ii(x(τ)) = f (τ, x(τ)) · ∆+g(τ);

H5) There is a positive integer M̃ such that each integral solution of (1.1) on any subinterval
of [0, 1] hits the barriers at at most M̃ points.

We make the convention that, whenever a solution hits the intersection of two barriers, the
moment is counted only once.
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Remark 3.3. The last part of Condition H4) means that for every τ ∈ A satisfying x(τ) =

γ−1
i (τ) for some x ∈ G−([0, 1], B) and some i ∈ {1, . . . , k},

Ii(γ
−1
i (τ)) = f (τ, γ−1

i (τ)) · ∆+g(τ).

Condition H5) is presented in a very general form, but we stress that it is ensured by the
hypotheses imposed in other works on state-dependent impulsive differential problems when
g(t) = t.

For instance, in [10] it is assumed that the distance between any two consecutive points
where a solution hits the barriers is bigger than some constant, see (3.4) in Theorem 3.1. Also,
in [2] there are a fixed number of barriers which are hit at most once by any solution, while
in [25] there is only one barrier hit exactly once by any solution, see [25, Lemma 5.1].

By combining the hypotheses imposed for integral measure driven equations in [22] with
the method used in the framework of state dependent impulsive equations in [10], we can
prove an existence result for the state dependent impulsive Stieltjes differential problem (1.1):

Theorem 3.4. Let f : [0, 1] × B → R satisfy the hypotheses H1)–H3) and the barriers and jumps

satisfy H4), H5). Suppose that

{
x ∈ R; |x − x0| ≤

∫ 1

0
M(s)dh(s) + K1 + · · ·+ KM̃

}
⊂ B, (∗)

where

K1 =
k

max
i=1

sup
|x−x0|≤

∫ 1
0 M(s)dh(s)

|Ii(x)|,

Kn+1 =
k

max
i=1

sup
|x−x0|≤

∫ 1
0 M(s)dh(s)+K1+···+Kn

|Ii(x)|, ∀n ≥ 1.

Then the problem (1.1) admits integral solutions on [0, 1].

Proof. Consider at the beginning the measure-driven integral equation

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s), t ∈ [0, 1].

Since our assumption on B implies that
{

x ∈ R : |x − x0| ≤
∫ 1

0
M(t)dh(t)

}
⊂ B,

by [22, Theorem 3.2], one can find an integral solution x1 on [0, 1]. By usual properties of
Kurzweil–Stieltjes integrals, x1 is left-continuous on [0, 1] and continuous at any point where
g is continuous (thus, it is continuous at 0).

Define then ri,1 : [0, 1] → R by

ri,1(t) = γi(x1(t))− t.

Due to H4).ii), ri,1(0) ̸= 0 for all i = 1, . . . , k and, since ri,1 is continuous at 0, we might
encounter the following situations:

• if ri,1(t) ̸= 0 for all i = 1, . . . , k and t ∈ (0, 1] \ A, then x1 is a solution of (1.1) on [0, 1].
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• if ri,1(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (0, 1] \ A, then let t1 be a continuity point of
g (i.e. t /∈ A) such that ri1,1(t1) = 0 for some i1 and ri,1(t) ̸= 0 on [0, t1) \ A for all i.

Consider in what follows the measure-driven integral problem

x(t) = x1(t1) + Ii1(x1(t1)) +
∫ t

t1

f (s, x(s))dg(s), t ∈ [t1, 1].

The assumption made on B brings us to
{

x ∈ R : |x − (x1(t1) + Ii1(x1(t1)))| ≤
∫ 1

t1

M(s)dh(s)

}
⊂ B

since for each such x

|x − x0| ≤ |x − (x1(t1) + Ii1(x1(t1)))|+ |x1(t1)− x0|+ |Ii1(x1(t1)))|

≤
∫ 1

t1

M(s)dh(s) +
∫ t1

0
M(s)dh(s) + sup

|x−x0|≤
∫ 1

0 M(s)dh(s)

|Ii1(x)|

≤
∫ 1

0
M(s)dh(s) + K1

and so, x ∈ B and the inclusion is proved.
We can thus apply [22, Theorem 3.2] once again and one can find an integral solution x2

on [t1, 1]; it is left-continuous on [t1, 1] and continuous at any point where g is continuous
(in particular, at t1). As above, define ri,2 : [t1, 1] → R by ri,2(t) = γi(x2(t)) − t which is
continuous at t1.

Besides, by H4).ii), for all i

γ−1
i (t1) ̸= γ−1

i1
(t1) + Ii1(γ

−1
i1

(t1)) = x2(t1),

so ri,2(t1) ̸= 0, whence we might have the following situations:

• if ri,2(t) ̸= 0 for all i = 1, . . . , k and t ∈ (t1, 1] \ A, then a solution of (1.1) on [0, 1] can be
found if we take x1 on [0, t1] and x2 on (t1, 1];

• if ri,2(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (t1, 1] \ A, then let t2 > t1 be a continuity
point of g chosen such that ri2,2(t2) = 0 for some i2 and ri,2(t) ̸= 0 on [t1, t2) \ A for all i.

Let us next look at the measure-driven Cauchy problem

x(t) = x2(t2) + Ii2(x2(t2)) +
∫ t

t2

f (s, x(s))dg(s), t ∈ [t2, 1].

It is not difficult to see that
{

x ∈ R : |x − (x2(t2) + Ii2(x2(t2)))| ≤
∫ 1

t2

M(s)dh(s)

}
⊂ B

as for each x in this set, as before,

|x − x0| ≤ |x − (x2(t2) + Ii2(x2(t2)))|+ |x2(t2)− x1(t1)|+ |x1(t1)− x0|+ |Ii2(x2(t2)))|

≤
∫ 1

t2

M(s)dh(s) +
∫ t2

t1

M(s)dh(s) + |Ii1(x1(t1)))|+
∫ t1

0
M(s)dh(s) + |Ii2(x2(t2)))|

≤
∫ t1

0
M(s)dh(s) + sup

|x−x0|≤
∫ 1

0 M(s)dh(s)

|Ii1(x)|+ sup
|x−x0|≤

∫ 1
0 M(s)dh(s)+K1

|Ii2(x)|

≤
∫ 1

0
M(s)dh(s) + K1 + K2
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and so, x ∈ B.
We can thus apply [22, Theorem 3.2] and one can continue the process and we claim that it

will be finished after less than M̃+ 1 steps (otherwise, hypothesis H5) would be contradicted).

Under stronger assumptions on f and keeping the hypothesis on the barriers, one can ob-
tain the existence of g-Carathéodory solutions for the impulsive measure differential problem
(1.1).

Theorem 3.5. Let f : [0, 1]× B → R satisfy the hypotheses

H1′) For each x ∈ G−([0, 1], B), the map f (·, x(·)) is g-measurable on [0, 1];

H2′) One can find a function M : [0, 1] → R Lebesgue–Stieltjes-integrable w.r.t. g such that for every

x ∈ B,

| f (t, x)| ≤ M(t), for µg-a.e. t ∈ [0, 1];

together with H3) and the barriers and jumps satisfy H4), H5).
Suppose that

{
x ∈ R; |x − x0| ≤

∫ 1

0
M(s)dg(s) + K1 + · · ·+ KM̃

}
⊂ B, (∗∗)

where

K1 =
k

max
i=1

sup
|x−x0|≤

∫ 1
0 M(s)dg(s)

|Ii(x)|,

Kn+1 =
k

max
i=1

sup
|x−x0|≤

∫ 1
0 M(s)dg(s)+K1+···+Kn

|Ii(x)|, ∀n ≥ 1.

Then the problem (1.1) admits g-Carathéodory solutions on [0, 1].

Proof. We follow the same lines as in the previous result. Consider first the measure-driven
Cauchy problem {

x′g(t) = f (t, x(t)), µg-a.e. t ∈ [0, 1],

x(0) = x0.

By the Peano existence result [11, Theorem 7.5], one can find a g-Carathéodory solution x1 on
[0, 1].

Define then ri,1 : [0, 1] → R as before and we can fall into one of the following situations:

• if ri,1(t) ̸= 0 for all i = 1, . . . , k and t ∈ (0, 1] \ A, then x1 is a g-Carathéodory solution of
(1.1) on [0, 1];

• if ri,1(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (0, 1] \ A, then let t1 ∈ (0, 1] \ A be chosen
such that ri1,1(t1) = 0 for some i1 and ri,1(t) ̸= 0 on [0, t1) \ A for all i.

Consider then the measure-driven Cauchy problem
{

x′g(t) = f (t, x(t)), µg-a.e. t ∈ [t1, 1],

x(t1) = x1(t1) + Ii1(x1(t1)).

We can again apply [11, Theorem 7.5] in order to get a g-Carathéodory solution on [t1, 1] and
so on.
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Remark 3.6. We could have obtained the previous result by applying Theorem 3.4 and re-
marking that the assumptions H1′), H2′) together with the Fundamental Theorem of Calculus
imply that any integral solution of our problem is a g-Carathéodory solution.

3.2 Existence of extremal solutions

Using the existence of extremal solutions for measure differential equations ([22, Theorem
4.4]), we get the existence of extremal solutions for measure differential equations with state-
dependent impulses.

We need several additional assumptions.

H6) One of the following sets of conditions holds:

a) x0 > γ−1
i (0) for each i, together with

i) γ−1
i (t) < x + f (t, x)∆+g(t) for every i = 1, . . . , k, t ∈ A whenever γ−1

i (t) < x;
ii) γ−1

i (t) < γ−1
j (t) + Ij(γ

−1
j (t)) for all i, j = 1, . . . , k, t ∈ [0, 1]

or

b) x0 < γ−1
i (0) for each i, together with

i) γ−1
i (t) > x + f (t, x)∆+g(t) for every i = 1, . . . , k, t ∈ A whenever γ−1

i (t) > x;
ii) γ−1

i (t) > γ−1
j (t) + Ij(γ

−1
j (t)) for all i, j = 1, . . . , k, t ∈ [0, 1].

Remark 3.7. In the first case, when i = j one gets Ii(γ
−1
i (t)) > 0 and, obviously, in the second

case, Ii(γ
−1
i (t)) < 0.

H7) For every x, y ∈ B with x ≤ y,

x + f (t, x) · ∆+g(t) ≤ y + f (t, y) · ∆+g(t), ∀t ∈ A

together with

γ−1
i (t) + Ii(γ

−1
i (t)) ≤ γ−1

j (t) + Ij(γ
−1
j (t)) whenever γ−1

i (t) ≤ γ−1
j (t)

for some t ∈ [0, 1], i, j ∈ {1, . . . , k}.

Definition 3.8. A solution y : [0, 1] → R is said to be the least (resp. greatest) solution of (1.1)
if for any other solution x : [0, 1] → R,

y(t) ≤ x(t) for every t ∈ [0, 1],

respectively
y(t) ≥ x(t) for every t ∈ [0, 1].

Theorem 3.9. Let the hypotheses H1)–H7) and (∗) be satisfied. Then the problem (1.1) admits a

greatest integral solution and a least integral solution on [0, 1].

Proof. We proceed as in the proof of Theorem 3.4, with convenient adjustments, in order to
get the existence of a least solution.

Thus, consider in the first place the measure-driven integral equation

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s), t ∈ [0, 1].
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Since all the hypotheses of [22, Theorem 4.4] are satisfied, one can find a least solution y1 on
[0, 1] (left-continuous everywhere and continuous at the continuity points of g, such as 0).

Let ri,1 : [0, 1] → R be defined by

ri,1(t) = γi(y1(t))− t.

Due to H4).ii), ri,1(0) ̸= 0 for all i = 1, . . . , k and since ri,1 is continuous at 0, the following
situations are possible:

• if ri,1(t) ̸= 0 for all i = 1, . . . , k and all t ∈ (0, 1] \ A, let y− be y1 on [0, 1].

• if ri,1(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (0, 1] \ A, then let t1 be a continuity point of
g such that ri1,1(t1) = 0 (i.e. y1(t1) = γ−1

i1
(t1)) for some i1 and ri,1(t) ̸= 0 on [0, t1) \ A for

all i.

Consider in what follows the measure-driven integral problem:

x(t) = γ−1
i1

(t1) + Ii1(γ
−1
i1

(t1)) +
∫ t

t1

f (s, x(s))dg(s), t ∈ [t1, 1].

The assumption we made on B implies that we can apply [22, Theorem 4.4] once again in
order to find a least solution on [t1, 1], denoted by y2.

As above, define ri,2 : [t1, 1] → R by ri,2(t) = γi(y2(t))− t and since it is continuous at t1

and ri,2(t1) ̸= 0, we might have the following situations:

• if ri,2(t) ̸= 0 for all i = 1, . . . , k and t ∈ (t1, 1] \ A, then we construct the solution y− of
(1.1) on [0, 1] taking y1 on [0, t1] and y2 on (t1, 1].

• if ri,2(t) = 0 for some i ∈ {1, . . . , k} and t ∈ (t1, 1] \ A, then let t2 > t1 be a continuity
point of g chosen such that ri2,2(t2) = 0 for some i2 and ri,2(t) ̸= 0 on [t1, t2) \ A for all i.

Let us next look at the problem:

x(t) = γ−1
i2

(t2) + Ii2(γ
−1
i2

(t2)) +
∫ t

t2

f (s, x(s))dg(s), t ∈ [t2, 1]

for each i ∈ {1, . . . , k}.
The hypothesis on B implies that, by [22, Theorem 4.4], we can find, for each of these

problems, a least solution on [t2, 1], denoted by y3 and one can continue the process, which
will be finished after less than M̃+ 1 steps (otherwise, hypothesis H5) would be contradicted).

Let us see that the solution constructed in this way, namely y−, is a least solution of (1.1)
on [0, 1]. Suppose that H6).a) is satisfied (the case b) can be analyzed in a similar way).

Let x be an arbitrary solution of (1.1) on [0, 1]. We first show that y−(t) ≤ x(t) for every
t ∈ [0, t1].

i) If (Ax \ A) ∩ [0, t1) = ∅, then y−(t) ≤ x(t) for every t ∈ [0, t1].

ii) If there are points in (Ax \ A) ∩ [0, t1), let us focus on the first one since their number
is finite and for all such points the discussion can be led in the same way; let τ1 ∈

(Ax \ A) ∩ [0, t1) be the first point where x hits some barrier γi0 . Then the following
situations can be encountered:
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ii.a) none of the discontinuity points of g lies in between 0 and τ1; in this case, since
y−(0) = x0 > γ−1

i0
(0) and y−(τ1) ≤ x(τ1) = γ−1

i0
(τ1) (as y− is the least solution of

the measure integral equation on [0, t1)), by the continuity of γ−1
i0

and y− on (0, τ1),
it would follow that y− hits the barrier γi0 on (0, τ1], contradiction with the choice
of t1.

ii.b) if there are discontinuity points of g lying in between 0 and τ1, we can fall into one
of the three cases below:
• this is a finite subset of A, {̃t̃i, i = 1, . . . , k}; then for each i, x(̃t̃i), y− (̃t̃i) > γ−1

i0
(̃t̃i)

since otherwise the graphs of x, y− would hit the barrier γi0 before τ1 and this is
not possible.
By H6).a).i), for each i = 1, . . . , k,

γ−1
i0

(̃t̃i) < x(̃t̃i+) and γ−1
i0

(̃t̃i) < y− (̃t̃i+),

whence, due to the fact that y−(τ1) ≤ x(τ1) = γ−1
i0

(τ1) (since y− is the least solution
of the measure integral equation on [0, t1)), y− would hit the barrier γi0 on (tk, τ1]

which again is impossible.

• this is a countable set {̃t̃i, i ∈ N} accumulating towards t < τ1; then, as before, at
each such point

γ−1
i0

(̃t̃i) < x(̃t̃i) and γ−1
i0

(̃t̃i) < y− (̃t̃i),

which, taking into account the left continuity of x, y− and the continuity of γ−1
i0

,
imply

γ−1
i0

(t) ≤ x(t) and γ−1
i0

(t) ≤ y−(t).

But equality is impossible as this would mean that x, respectively y− would hit
some barrier at t, therefore

γ−1
i0

(t) < x(t) and γ−1
i0

(t) < y−(t)

and thus, by H6).a).i),

γ−1
i0

(t) < x(t+) and γ−1
i0

(t) < y−(t+).

Again it would imply that y− hits the barrier γi0 on (t, τ1] which cannot happen.

• this is a countable set {̃t̃i, i ∈ N} accumulating towards τ1, in which case, as
before,

γ−1
i0

(τ1) ≤ x(τ1) and γ−1
i0

(τ1) ≤ y−(τ1)

and since y−(τ1) ≤ x(τ1) = γ−1
i0

(τ1), y− would hit the barrier before t1 and this is a
contradiction.

Let us now check that y−(t) ≤ x(t) for every t ∈ [t1, t2] (on the next intervals the same
discussion is to be carried out).

Hypothesis H6).a).ii) implies that

y−(t1+) > γ−1
i (t1) for each i = 1, . . . , k (3.2)

and from the preceding step we know that y−(t1) ≤ x(t1) which, by H7), implies that

y−(t1+) ≤ x(t1+). (3.3)
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If in (3.3) one has equality, then the proof on [0, t1] has to be repeated in order to get the
assertion on [t1, t2]. If strict inequality holds, then some modifications are necessary but we
take the same steps as on [0, t1] in order to prove that y−(t) ≤ x(t) for every t ∈ [t1, t2]. Thus:

i) If (Ax \ A) ∩ [t1, t2) = ∅, then suppose there is t ∈ (t1, t2] such that y−(t) > x(t). We
could be in the following situations:

i).a) [t1, t] ∩ A = ∅, in which case x and y− are continuous on (t1, t], y−(t1+) < x(t1+)

is valid and so there is a point t in this interval where the two trajectories intersect;
then the solution defined by

{
y−(t), for t ∈ (t1, t],

x(t), for t ∈ (t, t]

would contradict the definition of y− on (t1, t2] as being the least solution of the
measure integral equation.

i).b) [t1, t] ∩ A ̸= ∅, in which case we might have:

• this is a finite subset of A, {̃t̃i, i = 1, . . . , k}; then, since y−(t1+) < x(t1+), for

each i, y− (̃t̃i) ≤ x(̃t̃i) since otherwise, as in i).a), the fact that y− is a least solution
of the measure integral equation would be disobeyed.

So, by H7), y− (̃t̃k+) ≤ x(̃t̃k+) and, as y−(t) > x(t), as in i).a), the fact that y− is
the least solution of the measure integral equation on [t1, t2) is contradicted.

• this is a countable set {̃t̃i, i ∈ N} accumulating towards t < t; then, as before,

at each such point y− (̃t̃i) ≤ x(̃t̃i) which, taking into account the left continuity of
x, y−, imply

y−(t) ≤ x(t)

and thus
y−(t+) ≤ x(t+).

Again it would follow that y− is not a least solution on (t, t].

• this is a countable set {̃t̃i, i ∈ N} accumulating towards t, in which case, as before,
y−(t) ≤ x(t) - contradiction.

ii) If there are points in (Ax \ A)∩ [t1, t2), let us focus only on the first one τ1 ∈ (Ax \ A)∩

[t1, t2) where x hits some barrier γi0 . Then the following situations can be encountered:

ii.a) none of the discontinuity points of g lies in between t1 and τ1; in this case, let us put
together (3.2) and the fact that y−(τ1) ≤ x(τ1) = γ−1

i0
(τ1) (since otherwise, together

with (3.3) and the continuity of y− and x it would be contradicted, as before, the
choice of y− as the least solution of the measure integral equation on [t1, t2)). By
the continuity of γ−1

i0
and y− on (t1, τ1), it would then follow that y− hits the barrier

γi0 on (t1, τ1], contradiction with the choice of t2.

ii.b) if there are discontinuity points of g lying in between t1 and τ1, we can fall again
into one of the three cases below:
• this is a finite subset of A, {̃t̃i, i = 1, . . . , k}; then for each i, x(̃t̃i), y− (̃t̃i) > γ−1

i0
(̃t̃i)

since otherwise the graphs of x, y− would hit the barrier γi0 on (t1, τ1) and this is
not possible.
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By H6).a).i), for each i = 1, . . . , k,

γ−1
i0

(̃t̃i) < x(̃t̃i+) and γ−1
i0

(̃t̃i) < y− (̃t̃i+),

whence, due to the fact that y−(τ1) ≤ x(τ1) = γ−1
i0

(τ1) (otherwise, as before, the
fact that y− is the least solution of the measure integral equation on [t1, t2) would
be contradicted), y− would hit the barrier γi0 on (tk, τ1] which again is impossible.

• this is a countable set {̃t̃i, i ∈ N} accumulating towards t < τ1; then, as before, at
each such point

γ−1
i0

(̃t̃i) < x(̃t̃i) and γ−1
i0

(̃t̃i) < y− (̃t̃i),

which, taking into account the left continuity of x, y−, imply

γ−1
i0

(t) ≤ x(t) and γ−1
i0

(t) ≤ y−(t).

Equality is not possible (because it would mean that x, y− hit the barrier at t), so

γ−1
i0

(t) < x(t) and γ−1
i0

(t) < y−(t)

and thus
γ−1

i0
(t) < x(t+) and γ−1

i0
(t) < y−(t+).

Again it would follow that y− would hit the barrier γi0 on (t, τ1] which cannot
happen.

• this is a countable set {̃t̃i, i ∈ N} accumulating towards τ1, in which case, as
before,

γ−1
i0

(τ1) ≤ x(τ1) and γ−1
i0

(τ1) ≤ y−(τ1)

and since y−(τ1) ≤ x(τ1) = γ−1
i0

(τ1), y− would hit the barrier before t2 and this is a
contradiction.

Corollary 3.10. If H1′), H2′) are imposed, then there exist a least and a greatest g-Carathéodory

solutions of (1.1).

Remark 3.11. The present work provides the existence of extremal solutions for a large class
of differential problems, namely Stieltjes differential equations involving fixed time and state-
dependent time impulses. Let us note once again that, even in the particular case where the
Stieltjes derivative is the usual derivative, the allowance of state-dependent time impulses
leads to really complex situations.

The very general discussion developed here could be applied to study real life problems
where the results available in literature for measure (Stieltjes) differential equations or for
classical impulsive ODEs fail.

The wide applicability of our results can be seen by looking at the following example,
which represents a generalization of a problem in [11], describing the evaporating water in an
open top cylindrical tank.

Example 3.12. Suppose that the initial level of the water in the tank is x0 and that the water
level decreases due to evaporation. If x(t) denotes the water height at time t > 0, then the
model adopted in [11] (which takes into account that the level remains constant during the
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nights, while during the days the evaporation speed is maximum at middays) states that the
evolution of x can be described by the Stieltjes differential problem

x′g(t) = f (t, x(t)), t ∈ [0, T] and x(0) = x0.

Note that in [11] the map f is supposed to be linear in x, but the nonlinear framework is
realistic as well. The nondecreasing left-continuous function g can be chosen conveniently
[11, page 20], for instance if we want to refill the tank every morning with an amount of water
depending on to the level before refilling, then one may set

g(t) =
∫ t

0
max (sin(πs), 0) ds + max{k ∈ N : 2k ≤ t}

and
f (2k, x(2k)) = ∆+x(2k) = λkx(2k), λk > 0

(the intervals [2k, 2k + 1), k ∈ N correspond to day times and, obviously, the intervals [2k +

1, 2k + 2), k ∈ N to night times).
In other words, the moments 2k, k ∈ N are fixed-time impulsive moments with ∆+g(2k) =

1, ∀k and so far, the problem can be solved through the theory of Stieltjes differential equations.
Suppose now that we want to add an amount of water (equal to I(x(t))) whenever a

state-dependent condition is satisfied, such as x(t) = β(t), where β is a decreasing function
measuring the water level in a huge second tank where the level water decreases due to
evaporation, without adding or removing any quantity and without stationary intervals.

In this case, the theory in [11] cannot be applied due to the occurrence of state-dependent
impulses. At the same time, nor the studies developed for state-dependent impulsive prob-
lems ([10], [2] or [25]) apply since the involved derivative is the Stieltjes derivative (not the
usual derivative).

The announced problem can be investigated by applying our results for




x′g(t) = f (t, x(t)), µg-a.e. t ∈ [0, T] \ (Ax \ A)

∆+x(t) = x(t+)− x(t) = I(x(t)), if t ∈ Ax \ A

x(0) = x0

where A = {2k : k ∈ N} ∩ [0, T] and, for some function x ∈ G−([0, T], R), Ax = {t ∈ [0, T] :
x(t) = β(t)}; we thus face the occurrence of only one barrier γ1 = β−1.

Theorem 3.9 yields the existence of a least g-Carathéodory solution and of a greatest
g-Carathéodory solution provided f and I satisfy the following conditions:

a) for each x ∈ G−([0, T], B), the map f (·, x(·)) is g-measurable;

b) one can find a function M : [0, T] → R Lebesgue–Stieltjes-integrable w.r.t. g such that for
every x ∈ B,

| f (t, x)| ≤ M(t), for µg-a.e. t ∈ [0, T]

such that (∗∗) is valid (with T instead of 1);

c) f is continuous with respect to its second argument;

d) β : [0, 1] → R is strictly monotone and continuous and whenever τ ∈ Ax ∩ A for some
x ∈ G−([0, T], B),

I(β(τ)) = f (τ, β(τ));
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e) there is a positive integer M̃ such that each integral solution of (1.1) on any subinterval
of [0, T] hits the barrier at at most M̃ points;

f) x0 > β(0), I(β(t)) > 0 for every t ∈ [0, T] and β(t) < x + f (t, x) for every t ∈ A, x ∈ B

with β(t) < x;

g) for every x, y ∈ B with x ≤ y,

x + f (t, x) ≤ y + f (t, y), ∀t ∈ A.
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1 Introduction

The purpose of this note is to investigate the C1,γ regularity up to the boundary for viscosity

solutions of the following fully nonlinear elliptic equation

{

F(D2u, x) = f in Ω;

u = g on ∂Ω,
(1.1)

where Ω ⊂ Rn is a convex polyhedron, F is assumed to be uniformly elliptic (see (1.4)).

With respect to the boundary regularity of solutions of linear elliptic equations, Li and

Wang [7, 8] proved the boundary differentiability on convex domains and demonstrated that

only under the assumption that Ω is convex, no continuity of the gradient of solutions along

the boundary can be expected (see the counterexamples in [7]). On the other hand, Lian and

Zhang [11, Theorem 1.6] proved the boundary C1,α regularity of solutions of fully nonlinear

elliptic equations under the assumption that the boundary ∂Ω is C1,α. In this note, we show

the C1,γ regularity for fully nonlinear elliptic equations (linear elliptic equations as a special

case) by strengthening convex domain into convex polyhedron. And we do not need such

high smoothness condition on the boundary as in [11].

Before stating our main results, we give several definitions.

BCorresponding author. Email: pengchengniu@nwpu.edu.cn
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Definition 1.1. Let Ω ⊂ Rn be a bounded set and f be a function defined on Ω. We say that f

is C1,α at x0 ∈ Ω denoted by f ∈ C1,α(x0) if there exist a linear polynomial L, constants C and

r0 > 0 such that

| f (x)− L(x)| ≤ C|x − x0|
1+α, ∀ x ∈ Ω ∩ Br0(x0). (1.2)

Note that there may exist many L and C (e.g. Ω = B1 ∩ Rn−1). We take L0 with

‖L0‖ = min {‖L‖ | ∃C such that (1.2) holds with L and C} ,

where ‖L‖ = |L(x0)|+ |DL(x0)|. Define

D f (x0) = DL0(x0),

‖ f ‖C1(x0) = ‖L0‖,

[ f ]C1,α(x0) = min {C | (1.2) holds with L0 and C}

and

‖ f ‖C1,α(x0) = ‖ f ‖C1(x0) + [ f ]C1,α(x0).

If f ∈ C1,α(x) for any x ∈ Ω with the same r0 and

‖ f ‖C1,α(Ω̄) := sup
x∈Ω

‖ f ‖C1(x) + sup
x∈Ω

[ f ]C1,α(x) < +∞,

we say f ∈ C1,α(Ω̄).

Definition 1.2. Let Ω and f be as in Definition 1.1. We call that f is C−1,α at x0 ∈ Ω denoted

by f ∈ C−1,α(x0) if there exist constants C and r0 > 0 such that

‖ f ‖Ln(Ω̄∩Br(x0))
≤ Crα, ∀ 0 < r < r0, (1.3)

and denote

‖ f ‖C−1,α(x0) = min {C | (1.3) holds with C} .

If f ∈ C−1,α(x) for any x ∈ Ω with the same r0 and

‖ f ‖C−1,α(Ω̄) := sup
x∈Ω

‖ f ‖C−1,α(x) < +∞,

we say f ∈ C−1,α(Ω̄).

Remark 1.3. Without loss of generality, we can assume r0 = 1 throughout this paper.

Remark 1.4. If Ω is a Lipschitz domain, the definition of C1,α(Ω̄) in Definition 1.1 is equivalent

to the usual classical definition of C1,α(Ω̄) (see [9]).

Definition 1.5 ([13]). A bounded set Ω is called a convex polyhedron if it is the intersection

of a finite number of closed half-spaces.

For an n-dimensional convex polyhedron Ω, let Fk (k = 0, 1, . . . , n− 1) be its k-dimensional

faces. Specially, 0-dimensional faces are vertices and 1-dimensional faces are edges. Then we

classify the boundary points of Ω into two categories. For any x0 ∈ ∂Ω, if x0 ∈ Fn−1, we call

it the first class boundary point and denote x0 ∈ S1. If x0 /∈ Fn−1, we call it the second class

boundary point and denote x0 ∈ S2.



C1,γ regularity for fully nonlinear elliptic equations 3

We call that F : Sn × Ω → R is a fully nonlinear uniformly elliptic operator with ellipticity

constants 0 < λ ≤ Λ if

λ‖N‖ ≤ F(M + N, x)− F(M, x) ≤ Λ‖N‖, ∀ M, N ∈ Sn, N ≥ 0, (1.4)

where Sn denotes the set of n× n symmetric matrices; ‖N‖ is the spectral radius of N and N ≥

0 means the nonnegativeness. The standard notions and notations such as Pucci operators

M+(M, λ, Λ), M−(M, λ, Λ) and Pucci class S̄(λ, Λ, f ), S(λ, Λ, f ), S∗(λ, Λ, f ) will be used. For

the details, one can refer to [1–3].

Now we state our main results.

Theorem 1.6 (boundary C1,γ regularity). Let 0 < α < α1 where α1 is a universal constant (see

Lemma 2.1). Suppose that Ω is a convex polyhedron, x0 ∈ ∂Ω and u is a viscosity solution of

{

u ∈ S∗(λ, Λ, f ) in Ω;

u = g on ∂Ω,
(1.5)

where f ∈ C−1,α(x0) and g ∈ C1,α(x0). Then u is C1,γ at x0, i.e., for any x0 ∈ ∂Ω, there exists a

linear polynomial Lx0 such that

|u(x)− Lx0(x)| ≤ C|x − x0|
1+γ

(

‖u‖L∞(Ω) + ‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0)

)

, | ∀ x ∈ Ω̄ (1.6)

and

|Du(x0)| ≤ C
(

‖u‖L∞(Ω) + ‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0)

)

, (1.7)

where 0 < γ < α and C depend only on n, λ, Λ, α and Ω.

Remark 1.7. The viscosity solutions of (1.1) are in the classes S∗(λ, Λ, f ) (see [1, Proposi-

tion 2.13]). So all results for functions in the classes S∗(λ, Λ, f ) are valid for solutions of (1.1).

Combining the interior C1,γ estimate [1, Theorem 8.3], we have

Theorem 1.8 (global C1,γ regularity). Let α and Ω be as in Theorem 1.6. Suppose that u is a

viscosity solution of (1.1) with f ∈ C−1,α(Ω̄) and g ∈ C1,α(∂Ω). Then there exists θ > 0 depending

only on n, λ, Λ and α such that if

βF(x) = sup
M∈S\{0}

|F(M, x)− F(M, 0)|

‖M‖
≤ θ, ∀ x ∈ Ω,

then u ∈ C1,γ(Ω̄) and

‖u‖C1,γ(Ω̄) ≤ C
(

‖u‖L∞(Ω) + ‖ f ‖C−1,α(Ω̄) + ‖g‖C1,α(∂Ω)

)

,

where 0 < γ < α and C depend only on n, λ, Λ, α and Ω.

The following corollary of Theorem 1.8 is a new result for linear elliptic equations.

Corollary 1.9. Let u be a viscosity solution of











− aij(x)
∂2u(x)

∂xixj
= f in Ω;

u = g on ∂Ω,
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where α, Ω, f and g are as in Theorem 1.8. Then there exists θ > 0 depending only on n, λ, Λ and α

such that if

‖aij − δij‖L∞(Ω) ≤ θ,

then u ∈ C1,γ(Ω̄) and

‖u‖C1,γ(Ω̄) ≤ C
(

‖u‖L∞(Ω) + ‖ f ‖C−1,α(Ω̄) + ‖g‖C1,α(∂Ω)

)

, (1.8)

where 0 < γ < α and C depend only on n, λ, Λ, α and Ω.

Remark 1.10. The C1,γ estimate (1.8) is also called Cordes–Nirenberg estimate.

Remark 1.11. In this paper, C depending on n, λ, Λ, α and Ω will denote constants which may

differ at different occurrences.

The main route of proving Theorem 1.6 is the following. For x0 ∈ S1, the C1,γ regularity

can be obtained as a simple corollary of [11]. For x0 ∈ S2, there exist a half ball Br(x0) and

a cone K such that Ω ⊂ Br(x0) and K ⊂ Br(x0) ∩ Ωc. This will lead to a higher regularity

of u. In addition, if f , g ≡ 0, the solutions of (1.5) on the half ball have sufficient regularity

(see Lemma 2.1). Noting that cone has the scaling invariance, the boundary C1,γ regularity for

x0 ∈ S2 can be derived by perturbation and iteration techniques which are inspired by [10].

Then the boundary C1,γ regularity can be obtained by the technique of patching. Finally, the

global C1,γ regularity will be deduced by combining the interior C1,γ estimate.

In Section 2, we will prove an important estimate (about the C1,γ regularity for x0 ∈ S2).

Theorem 1.6 and Theorem 1.8 will be proved in Section 3. In this note, we use the following

notations.

Notation

1. Rn
+ = {x ∈ Rn | xn > 0}.

2. Br(x0) = {x ∈ Rn | ||x − x0| < r}, Br = Br(0), B+
r (x0) = Br(x0) ∩ Rn

+ and B+
r = B+

r (0).

3. Tr(x0) = {(x′, 0) ∈ Rn | |x′ − x′0| < r} and Tr = Tr(0).

4. Ωc: the complement of Ω and Ω̄: the closure of Ω, ∀Ω ⊂ Rn.

5. Ωr = Ω ∩ Br and (∂Ω)r = ∂Ω ∩ Br.

2 An important estimate

In this section, we introduce some known lemmas. The first concerns the boundary C1,α

regularity for solutions with flat boundaries. It was first proved by Krylov [6] for classical

solutions and further simplified by Caffarelli (see [4, Theorem 9.31] and [5, Theorem 4.28]),

which is applicable to viscosity solutions (see [12]).

Lemma 2.1. Let u be a viscosity solution of

{

u ∈ S(λ, Λ, 0) in B+
1 ;

u = 0 on T1.
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Then u is C1,α1 at 0, i.e., there exists a constant a such that

|u(x)− axn| ≤ C1|x|
1+α1‖u‖L∞(B+

1 ), ∀ x ∈ B+
1/2

and

|a| ≤ C1‖u‖L∞(B+
1 ),

where α1 and C1 depend only on n, λ and Λ.

The next Lemma presents the boundary C1,α estimate for solutions of fully nonlinear ellip-

tic equations with the suitable right hand function f and the boundary value g on the curved

boundary (see [11, Theorem 1.6]).

Lemma 2.2. Let 0 < α2 < α1 where α1 is a universal constant (see Lemma 2.1). Suppose that ∂Ω is

C1,α2 at 0 and u is a viscosity solution of
{

u ∈ S(λ, Λ, f ) in Ω ∩ B1;

u = g on ∂Ω ∩ B1,

where f ∈ C−1,α2(0) and g ∈ C1,α2(0). Then u is C1,α2 at 0, i.e., there exists a linear polynomial L̃0

such that

|u(x)− L̃0(x)| ≤ C̃|x|1+α2

(

‖u‖L∞(Ω∩B1) + ‖ f ‖C−1,α2 (0) + ‖g‖C1,α2 (0)

)

, ∀ x ∈ Ω ∩ B1/2

and

|Du(0)| ≤ C̃
(

‖u‖L∞(Ω∩B1) + ‖ f ‖C−1,α2 (0) + ‖g‖C1,α2 (0)

)

,

where C̃ depends only on n, λ, Λ, α2 and Ω.

Remark 2.3. The C1,γ regularity for the viscosity solutions of (1.5) at x0 ∈ S1 is true as a special

case of Lemma 2.2.

The next is a Hopf type lemma (see [14, Lemma 2.15]).

Lemma 2.4. Let Γ ⊂ ∂B+
1 \T1, and u be a viscosity solution of











M−(D2u, λ, Λ) = 0 in B+
1 ;

u = xn on Γ;

u = 0 on ∂B+
1 \Γ.

Then

u(x) ≥ c1xn in B+
1/2,

where c1 > 0 depends only on n, λ, Λ and Γ.

It has been known that if Ω occupies a smaller portion in a ball centered at 0 (e.g.

|Ω ∩ Br|/|Br| is smaller), the regularity of u is higher (roughly speaking). Inspired by this,

we have the following result.

Theorem 2.5. Let α and Ω be as in Theorem 1.6. Suppose that x0 ∈ S2 and u is a viscosity solution

of (1.5) with f ∈ C−1,α(x0) and g ∈ C1,α(x0). Then u is C1,γ at x0, i.e., for any x0 ∈ S2, there exists

a linear polynomial L̄x0 such that

|u(x)− L̄x0(x)| ≤ C|x − x0|
1+γ

(

‖u‖L∞(Ω∩B1) + ‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0)

)

, ∀ x ∈ Ω̄ (2.1)

with

Du(x0) = Dg(x0), (2.2)

where 0 < γ < α and C depend only on n, λ, Λ, α and Ω.
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Proof. For x0 ∈ S2, we can assume that x0 = 0, Ω ⊂ Rn
+ and there exists a cone K ⊂ Ωc ∩

Rn
+ with 0 being the vertex (by translating and rotating the coordinate system). Further, we

assume that g(0) = 0 and Dg(0) = 0. Otherwise, we can consider v(x) = u(x) − g(0) −

Dg(0) · x, then the regularity of u follows easily from v. Let Cg = [g]C1,α(0), then

|g(x)| ≤ Cg|x|
1+α, ∀ x ∈ (∂Ω)1. (2.3)

Let M = ‖u‖L∞(Ω∩B1) + ‖ f ‖C−1,α(0) + ‖g‖C1,α(0). To prove Theorem 2.5, we only need to

show that there exists a nonnegative sequence {ak} (k ≥ −1) with a0 = 0 such that for all

k ≥ 0,

sup
Ω

ηk

(u − akxn) ≤ ĈMηk(1+α), (2.4)

inf
Ω

ηk

(u + akxn) ≥ −ĈMηk(1+α) (2.5)

and

ak ≤ (1 − c1)ak−1 + C̄ĈMη(k−1)α, (2.6)

where C̄ depends only on n, λ and Λ; 0 < c1 < 1 depends only on n, λ, Λ and Ω; Ĉ and

0 < η < 1/4 depend only on n, λ, Λ and α.

Now we show that (2.4)-(2.6) imply that u is C1,γ at 0. Indeed, from (2.6), we have

ak ≤ C̄ĈM
k−1

∑
i=0

(1 − c1)
k−1−iηiα ≤ C̄ĈMη(k−1)γ

k−1

∑
i=0

ηi(α−γ) ≤ CMηkγ,

provided

1 − c1 ≤ ηγ, 0 < γ < α.

For any x ∈ Ω1, there exists k ≥ 0 such that ηk+1 ≤ |x| < ηk. From (2.4), we have

u(x) ≤ sup
Ω

ηk

(u − akxn) + akxn ≤ CMηk(1+γ) ≤ CM|x|1+γ.

Similarly, (2.5) and (2.6) imply

u(x) ≥ −CM|x|1+γ.

Therefore, u is C1,γ at 0 with Du(0) = Dg(0).

We only give the proofs of (2.4) and (2.6); the proof of (2.5) is similar with (2.4) and we

omit it. We prove (2.4) and (2.6) by induction. For k = 0, by setting a−1 = 0, they hold clearly.

Supposing that they hold for k, we need to prove that they hold for k + 1.

Let r = ηk/2 and v1 solve











M+(D2v1, λ, Λ) = 0 in B+
r ;

v1 = 0 on Tr;

v1 = ĈMηk(1+α) on ∂B+
r \Tr.

By the boundary C1,α estimate for v1 (see Lemma 2.1) and the maximum principle, there exists

ā ≥ 0 such that
‖v1 − āxn‖L∞(Ω

ηk+1 ) = ‖v1 − āxn‖L∞(Ω2ηr)

≤ C1
|x|1+α1

r1+α1
‖v1‖L∞(B+

r )

≤ C1ηα1−α · ĈMη(k+1)(1+α)

(2.7)
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and

ā ≤ C1ĈMηkα,

where α1 and C1 depend only on n, λ and Λ.

Let v2 solve










M−(D2v2, λ, Λ) = 0 in B+
r ;

v2 = akxn on ∂B+
r ∩ K;

v2 = 0 on ∂B+
r \K.

By Lemma 2.4, there exists 0 < c1 < 1 depending only on n, λ, Λ and K such that

v2 ≥ c1akxn in B+
2ηr. (2.8)

In addition, by the comparison principle,

v2 ≤ akxn in B+
r .

Letting w = u − akxn − v1 + v2, it follows that (note that v1, v2 ≥ 0)











w ∈ S(λ, Λ,−| f |) in Ω ∩ B+
r ;

w ≤ g on ∂Ω ∩ B+
r ;

w ≤ 0 on ∂B+
r ∩ Ω̄.

By the Alexandrov–Bakel’man–Pucci maximum principle, we have

sup
Ω

ηk+1

w ≤ sup
Ωr

w ≤ Cgηk(1+α) + C2r‖ f ‖Ln(Ωr) ≤
1 + C2

Ĉη1+α
· ĈMη(k+1)(1+α), (2.9)

where C2 depend only on n, λ and Λ.

Let C̄ := C1. Take η small enough such that

C1ηα1−α ≤
1

2
.

Next, take Ĉ large enough such that

1 + C2

Ĉη1+α
≤

1

2
.

Let ak+1 = (1− c1)ak + ā. Then (2.6) holds for k + 1. Recalling (2.7), (2.8) and (2.9), we have

u − ak+1xn = u − akxn − v1 + v2 + v1 − axn + c1akxn − v2

= w + v1 − axn + c1akxn − v2

≤ w + v1 − axn

≤ ĈMη(k+1)(1+α) in Ωηk+1 .

By induction, the proofs of (2.4) and (2.6) are completed.
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3 Proofs of the main results

Combining Theorem 2.5 and Lemma 2.2, we give the

Proof of Theorem 1.6. We only need to prove that for any x0 ∈ S1, there exists a linear poly-

nomial Lx0 such that

|u(x)− Lx0(x)| ≤ C|x − x0|
1+γ, ∀ x ∈ Ω̄. (3.1)

In fact, for any x0 ∈ S1, there exists y ∈ S2 such that |y − x0| = dx0 = d(x0, S2). We know from

Theorem 2.5 that there exist a linear polynomial L̄y and a constant C such that

|u(x)− L̄y(x)| ≤ C|x − y|1+γ, ∀ x ∈ Ω̄. (3.2)

Let v(x) = u(x)− L̄y(x). There exists a constant 0 < τ ≤ 1 (depending only on Ω) such that

Ω ∩ Bτdx0
(x0) is a half ball. That is, Ω ∩ Bτdx0

(x0) = {x ∈ Rn
∣

∣~n · (x − x0) > 0} ∩ Bτdx0
(x0),

where ~n is the unit inward normal of Ω at x0. Applying Lemma 2.2 in Ω ∩ Bτdx0
(x0) and

recalling (3.2), there exists a linear polynomial

Rx0(x) = R(x0) + DR(x0) · (x − x0)

such that
|R(x0)| = |v(x0)| ≤ C|dx0 |

1+γ,

|DR(x0)| ≤ C|τdx0 |
γ ≤ C|dx0 |

γ

and

|v(x)− Rx0(x)| ≤ C
|x − x0|1+γ

|τdx0 |
1+γ

(

‖v‖L∞(Ω∩Bτdx0
(x0)) + |τdx0 |

1+γ(‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0))
)

≤ C|x − x0|
1+γ, ∀ x ∈ Ω ∩ Bτdx0

/2(x0).

(3.3)

Define

Lx0(x) = L̄y(x) + Rx0(x).

If |x − x0| < τdx0 /2, by (3.3), we have

|u(x)− Lx0(x)| = |v(x)− Rx0(x)| ≤ C|x − x0|
1+γ.

If |x − x0| ≥ τdx0 /2, by (3.2), we have

|u(x)− Lx0(x)| ≤ |u(x)− L̄y(x)|+ |Rx0(x)|

≤ C|x − y|1+γ + |R(x0)|+ |DR(x0)||x − x0|

≤ C|x − x0|
1+γ.

Combining the two cases, we get (3.1).

The proof of the global C1,γ regularity is ended by Theorem 1.6 and the interior C1,γ

estimate. Now we give the details.
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Proof of Theorem 1.8. For any x0 ∈ Ω, there exists y ∈ ∂Ω such that |y − x0| = dx0 =

d(x0, ∂Ω). Then from Theorem 1.6 and Remark 1.7, there exist a linear polynomial Ly and

a constant C such that

|u(x)− Ly(x)| ≤ C|x − y|1+γ, ∀ x ∈ Ω̄. (3.4)

Let v(x) = u(x)− Ly(x). By the interior C1,α estimate in Bdx0
(x0) and (3.4), there exists a linear

polynomial

Qx0(x) = Q(x0) + DQ(x0) · (x − x0)

such that
|Q(x0)| = |v(x0)| ≤ C|dx0 |

1+γ,

|DQ(x0)| ≤ C|dx0 |
γ

and

|v(x)− Qx0(x)| ≤ C
|x − x0|1+γ

|dx0 |
1+γ

(

‖v‖L∞(Bdx0
(x0)) + |dx0 |

1+γ(‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0))
)

≤ C|x − x0|
1+γ, ∀ x ∈ Bdx0

/2(x0).

(3.5)

Define

Px0(x) = Ly(x) + Qx0(x).

If |x − x0| < dx0 /2, by (3.5), we have

|u(x)− Px0(x)| = |v(x)− Qx0(x)| ≤ C|x − x0|
1+γ.

If |x − x0| ≥ dx0 /2, by (3.4), we have

|u(x)− Px0(x)| ≤ |u(x)− Ly(x)|+ |Qx0(x)|

≤ C|x − y|1+γ + |Q(x0)|+ |DQ(x0)||x0 − x|

≤ C|x − x0|
1+γ.

Combining the two cases, it follows that for any x0 ∈ Ω, there exists a linear polynomial Px0

such that

|u(x)− Px0(x)| ≤ C|x − x0|
1+γ, ∀ x ∈ Ω̄.

The proof of Theorem 1.8 is finished.
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Abstract. In this article, we study the following degenerated Schrödinger equations:

{

−∆γu + λV(x)u = f (x, u) in R
N ,

u ∈ Eλ ,

where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator, the potential V(x)
has a potential well with bottom and the nonlinearity f (x, u) is either super-linear or
sub-linear at infinity in u. The existence of ground state solution be obtained by using
the variational methods.

Keywords: steep well potential, mountain pass theorem, strongly degenerate elliptic
operator.
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1 Introduction

This article is concerned with a class of nonlinear Schrödinger equations:

{

−∆γu + λV(x)u = f (x, u) in R
N ,

u ∈ Eλ ,
(1.1)

where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator of the form

∆γ :=
N

∑
j=1

∂xj
(γ2

j ∂xj
), ∂xj

=
∂

∂xj
, γ = (γ1(x), γ2(x), . . . , γN(x)).

BCorresponding author. Email: 11183356@qq.com
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Here, the functions γj : R
N → R are assumed to be continuous, different from zero and of

class C1 in R
N \ Π, where

Π :=

{

x = (x1, x2, . . . , xN) ∈ R
N :

N

∏
j=1

xj = 0

}

.

Moreover, the function γj satisfy the following properties:

(i) There exists a semigroup of dilations {δt}t>0 such that

δt : R
N → R, δt(x1, . . . , xN) = (tε1 x1, . . . , tεN xN),

where 1 = ε1 ≤ ε2 ≤ · · · ≤ εN , such that γj is δt-homogeneous of degree ε j − 1, i.e.

γj(δt(x)) = tε j−1γj(x), ∀x ∈ R
N , ∀t > 0, j = 1, . . . , N.

The number

Ñ :=
N

∑
j=1

ε j

is called the homogeneous dimension of R
N with respect to {δt}t>0.

(ii) γ1 = 1, γj(x) = γj(x1, x2, . . . , xj−1), j = 2, . . . , N.

(iii) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk
γj(x) ≤ ργj(x), ∀k ∈ {1, 2, . . . , j − 1}, ∀j = 2, . . . , N,

and for every x ∈ R
N
+ = {(x1, x2, . . . , xN) ∈ R

N : xj ≥ 0, ∀j = 1, 2, . . . , N}.

(iv) Equalities γj(x) = γj(x∗)(j = 1, 2, . . . , N) are satisfied for every x ∈ R
N , where

x∗ = (|x1|, . . . , |xN |), if x = (x1, x2, . . . , xN).

The ∆γ-operator contains the following operator of Grušin-type

Gα := ∆x + |x|2α∆y, α ≥ 0,

where (x, y) denotes the point of R
N1 ×R

N2 . This operator was studied by Grušin in [8] when

α is an integer, and by Franchi and Lanconeli in [6, 7], Loiudice in [11], Monti and Morbidelli

in [13] when α is not an integer. The ∆γ-operator also contains following semi-linear strongly

degenerate operator

Pα,β = ∆x + ∆y + |x|2α|y|2β∆z, (x, y, z) ∈ R
N1 × R

N2 × R
N3 ,

where α, β are nonnegative real numbers. The Pα,β-operator was studied in [1]. For more

information about the operator ∆γ, please see [10].

In this paper, we study the existence of ground state solutions for the equation (1.1) under

the assumptions that V is neither radially symmetric nor coercive. Precisely, we make the

following assumptions.
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(V1) V(x) ∈ C(RN , R) satisfying infx∈RN V(x) > 0.

(V2) There exists b > 0 such that the set {x ∈ R
N : V(x) < b} is nonempty and has finite

measure.

The conditions (V1) ∼ (V2) are special cases of steep potential well which were first intro-

duced by Bartsch and Wang in [2]. In recent years, steep potential well are widely used in

various equation, such as Schrödinger equations, Schrödinger–Poisson equations and Klein–

Gordon–Maxwell system and so on (see [2–4, 9, 14, 15]).

Nextly, wee will require that the nonlinear term satisfies either the assumptions:

( f 1)′ f ∈ C(RN × R, R) and there are constants 0 < a1 < a2 < a3 · · · < am < 1 and functions

bi(x) ∈ L
2

1−ai (RN , (0,+∞)) such that

| f (x, z)| ≤
m

∑
i=1

(ai + 1)bi(x)|z|ai , ∀(x, z) ∈ R
N × R;

( f 2)′ There exist constants η, δ > 0, a0 ∈ (1, 2), Ω ⊂ R
N such that meas(Ω) 6= 0 and

F(x, z) =
∫ z

0
f (x, t)dt ≥ η|z|a0 , ∀x ∈ Ω and ∀ |z| ≤ δ,

or the assumptions:

( f 1) lim|z|→0
f (x,z)
|z| = 0 uniformly for x ∈ R

N .

( f 2) For some 2 < p < 2∗γ, C0 > 0,

| f (x, z)| ≤ C0(|z|+ |z|p−1), ∀(x, z) ∈ R
N × R,

where 2∗γ := 2Ñ
Ñ−2

is the critical Sobolev exponent;

( f 3) F(x, z) :=
∫ z

0 f (x, t)dt ≥ 0 for all x ∈ R
N , and

lim
|z|→+∞

F(x, z)

|z|2 = +∞, ∀(x, z) ∈ R
N × R;

( f 4) There exist a1 > 0, L0 > 0 and τ >
Ñ
2 , such that

| f (x, z)|τ ≤ a1F (x, z)|z|τ, for all x ∈ R
N and |z| ≥ L0,

where

F (x, z) :=
1

2
f (x, z)z − F(x, z) ≥ 0, ∀(x, z) ∈ R

N × R;

( f 5) f (x,z)
|z| is an increasing function of z on R \ {0} for every x ∈ R

N .

Before stating our main results, we give several notations. For λ > 0, let

S2
γ(R

N) :=
{

u ∈ L2(RN) : γj∂xj
u ∈ L2(RN), j = 1, . . . , N

}

,

Eλ :=

{

u ∈ S2
γ(R

N) :
∫

RN
λV(x)u2dx < +∞

}

.
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Then, by assumption (V1), Eλ is a Hilbert space with the inner product and norm respectively

(u, v)λ =
∫

RN
(∇γu∇γv + λV(x)uv)dx, ‖u‖λ = (u, u)

1
2
λ ,

where

∇γu = (γ1∂x1
u, γ2∂x2 u, . . . , γN∂xN

u).

Obviously, the embedding Eλ →֒ S2
γ(R

N) is continuous. It follows that Eλ →֒ Ls(RN) is

continuous for each s ∈ [2, 2∗γ] (see [12]). Thus for each 2 ≤ s ≤ 2∗γ, there exists ds > 0 such

that

|u|s ≤ ds‖u‖λ, ∀u ∈ Eλ, (1.2)

where Ls(RN) denote a Lebesgue space, the norm in Ls(RN) is denoted by | · |s.
We point out that there are Rellich-type compact embeddings hold on bounded domains

for subcritical exponents. By S2
γ(Ω) we denote the set of all functions u ∈ L2(Ω) such that

γj∂xj
u ∈ L2(Ω) for all j = 1, . . . , N, where Ω is a bounded domain with smooth boundary in

R
N . The space S2

γ,0(Ω) is defined as the closure of C1
0(Ω) in the space S2

γ(Ω). We define the

norm on this space as
∫

Ω
(|∇γu|2 + λV(x)u2)dx,

which is equivalent to
∫

Ω
|∇γu|2dx, by (V1). Then, we have that the embedding S2

γ,0(Ω) →֒
Ls(Ω) is compact for every s ∈ [1, 2∗γ) (see Proposition 3.2. in [10]).

We can now state the main result:

Theorem 1.1. Assume (V1) and ( f 1)′ ∼ ( f 2)′ are satisfied. Then ∀λ > 0, problem (1.1) admits at

least a ground state solution in Eλ.

Remark 1.2. To the best of our knowledge, it seems that Theorem 1.1 is the first result about

the existence of ground state solutions for the semi-linear ∆γ differential equation in R
N . By

the way, we would like to point out that in [12] the authors study existence of infinitely many

solutions for semi-linear degenerate Schrödinger equations with the potential V(x) satisfying

the coercivity condition which implies Eλ →֒→֒ Ls(RN) for any s ∈ [2, 2∗γ).

Theorem 1.3. Assume (V1), (V2) and ( f 1) ∼ ( f 5) are satisfied. Then there exists Λ > 0 such that

problem (1.1) has at least a ground state solution in Eλ, for all λ > Λ.

Remark 1.4. We point out that the Schrödinger equation with general steep potential well

is considered in reference [3, 4], but they consider a special nonlinear term, where f (x, z) =

|z|p−2z(2 < p < 2∗). At the same time, we also point out that although the Schrödinger

equation with general steep potential well and the general nonlinear term are considered in

reference [2, 9], the nonlinear term there satisfies the following Ambrosetti–Rabinowitz type

condition:

(AR) There exist µ > 2 and L > 0, such that

µF(x, z) ≤ z f (x, z), ∀x ∈ R
N , ∀|z| ≥ L.

The nonlinear term we consider here is not required to satisfy the Ambrosetti–Rabinowitz

type condition, for example we allow nonlinearities of the type

f (x, z) = 2z ln(1 + z2) +
2z3

1 + z2
, ∀(x, z) ∈ R

3 × R.
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By a simple calculation, we have

F(x, z) =
∫ z

0
f (x, t)dt = z2 ln(1 + z2), F (x, z) =

2z4

1 + z2
,

and

z f (x, z)− µF(x, z) = z2

(

(2 − µ) ln(1 + z2) +
2z2

1 + z2

)

.

Now, it is easy to verify that the function f satisfies our assumptions and does not satisfy the

Ambrosetti–Rabinowitz type condition.

To obtain our main results, we have to overcome some difficulties in our proof. The

main difficulty consists in the lack of compactness of the Eλ →֒ Ls(RN) with s ∈ [2, 2∗γ].
Since we assume that the potential is not radially symmetric, we cannot use the usual way to

recover compactness, for example, restricting in the subspace of radial functions of Eλ. We

also cannot borrow some ideas in [12] to recover compactness because the potential do not

satisfied the coercivity condition. To recover the compactness, we establish the parameter

dependent compactness conditions.

Now, we define the following energy functional

Jλ(u) =
1

2

∫

RN
(|∇γu|2 + λV(x)u2)dx −

∫

RN
F(x, u)dx, (1.3)

for any u ∈ Eλ. It is well known that Jλ is a C1 functional with derivative given by

〈J′λ(u), v〉 =
∫

RN
(∇γu∇γv + λV(x)uv)dx −

∫

RN
f (x, u)vdx, (1.4)

for any u, v ∈ Eλ. We have that u is a weak solution of equation (1.1) if only if it is a critical

point of Jλ(u) in Eλ.

2 The proof of main results for f sub-linear at infinity in u

Lemma 2.1 (see [17]). Let E be a real Banach space and J ∈ C1(E, R) satisfy the (PS) condition. If

J is bounded from below, then c = infE J is critical value of J.

Lemma 2.2. Assume that (V1) and ( f 1)′ hold, then Jλ is bounded from below.

Proof. It follows from ( f 1)′ that we can get

|F(x, z)| ≤
m

∑
i=1

bi(x)|z|ai+1, ∀(x, z) ∈ R
N × R. (2.1)

The above inequality combined with the Hölder inequality and (1.2) shows that

∫

RN
|F(x, z)|dx ≤

∫

RN

m

∑
i=1

bi(x)|z|ai+1dx

≤
m

∑
i=1

(

∫

RN
|bi(x)|

2
1−ai dx

)

1−ai
2
(

∫

RN
|z|2dx

)

1+ai
2

≤
m

∑
i=1

d1+ai
2 |bi(x)| 2

1−ai

‖z‖1+ai
λ .

(2.2)
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Thus

Jλ(u) =
1

2

∫

RN
(|∇γu|2 + λV(x)u2)dx −

∫

RN
F(x, u)dx

≥ 1

2
‖u‖2

λ −
m

∑
i=1

d1+ai
2 |bi(x)| 2

1−ai

‖u‖1+ai
λ .

In view of 0 < a1 < a2 < a3 < · · · < am < 1 and bi(x) ∈ L
2

1−ai (RN , (0,+∞)), it is clearly shows

that Jλ is coercive, then Jλ is bounded from below.

Lemma 2.3. Assume that (V1) and ( f 1)′ are satisfied, then Jλ satisfies the (PS) condition for each

λ > 0.

Proof. We suppose that {un} is a Palais–Smale sequence of Jλ, that is for some cλ ∈ R,

Jλ(un) → cλ, J′λ(un) → 0, as n → ∞. According to lemma 2.2, {un} is bounded in Eλ.

Therefore, up to a subsequence, there are u ∈ Eλ, we have

un ⇀ u, in Eλ;

un → u, in Ls
loc(R

N), 2 ≤ s < 2∗γ.
(2.3)

By ( f 1)′, for any fixed ε > 0, we can choose Rε > 0 such that

(

∫

RN−BRε

|bi(x)|
2

1−ai dx

)

1−ai
2

< ε, i = 1, 2, . . . , m. (2.4)

It follows that (2.3), we obtain that

lim
n→∞

∫

BRε

|un − u|2dx = 0.

Hence, there exists N0 ∈ N such that we have

∫

BRε

|un − u|2dx < ε2, ∀n ≥ N0. (2.5)

Combing this with the Hölder inequality and ( f 1)′, for any n ≥ N0 we have that

∫

BRε

| f (x, un)− f (x, u)||un − u|dx

≤
(

∫

BRε

| f (x, un)− f (x, u)|2dx

)
1
2
(

∫

BRε

|un − u|2dx

)
1
2

≤
(

∫

BRε

| f (x, un)− f (x, u)|2dx

)
1
2

· ε

≤
{

∫

BRε

2m

[

m

∑
i=1

(ai + 1)2b2
i (x)|un|2ai +

m

∑
i=1

(ai + 1)2b2
i (x)|u|2ai

]

dx

}
1
2

· ε

≤
√

2m

[

m

∑
i=1

(ai + 1)2|bi(x)|2 2
1−ai

(|un|2ai
2 + |u|2ai

2 )

]
1
2

· ε.

(2.6)
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Again by ( f 1)′, the Hölder inequality and (2.4), we obtain that

∫

RN−BRε

| f (x, un)− f (x, u)||un − u|dx

≤
∫

RN−BRε

m

∑
i=1

(ai + 1)bi(x)(|un|ai+1 + |u|ai |un|+ |un|ai |u|+ |u|ai+1)dx

≤
m

∑
i=1

(ai + 1)

(

∫

RN−BRε

|bi|
2

1−ai dx

)

1−ai
2 (

|un|ai+1
2 + |u|ai

2 |un|2 + |un|ai
2 |u|2 + |u|ai+1

2

)

≤ ε
m

∑
i=1

(ai + 1)
(

|un|ai+1
2 + |u|ai

2 |un|2 + |un|ai
2 |u|2 + |u|ai+1

2

)

.

(2.7)

Since ε is arbitrary, by (2.6) and (2.7), we known that

∫

RN
| f (x, un)− f (x, u)||un − u|dx → 0, as n → ∞. (2.8)

Thus, from (1.4) and (2.3), it holds

‖un − u‖2
λ = 〈J′λ(un)− J′λ(u), un − u〉+

∫

RN
| f (x, un)− f (x, u)||un − u|dx → 0, as n → ∞.

So, un → u in Eλ.

Proof of Theorem 1.1. By Lemmas 2.1, 2.2 and 2.3, we known that cλ = infEλ
Jλ(u) is critical

value of Jλ. Next, we will prove cλ 6= 0. Let u ∈ Eλ and ‖u‖λ = 1, by ( f 2)′, we can get

Jλ(tu) =
t2

2
‖u‖2

λ −
∫

RN
F(x, tu)dx

≤ t2

2
− η|t|a0

∫

Ω
|u|a0 dx.

Since 1 < a0 < 2, as t > 0 small enough, Jλ(tu) < 0. Hence cλ = infEλ
Jλ(u) < 0, equation

(1.1) possesses at least a nontrivial ground state solution uλ for every λ > 0. Then the proof

of Theorem 1.1 is completed.

3 The proof of main results for f super-linear at infinity in u

To complete the proof of our theorem, we need the following definition of Cerami condition

and critical point theorem(see [16]).

If any sequence {un} ⊂ H such that J(un) → c and J′(un)(1 + ‖un‖) → 0, then this

sequence is called a (C)c sequence. If any (C)c sequence {un} ⊂ H of J has a convergent

subsequence, then this C1 functional J satisfies (C)c condition.

Theorem 3.1 (Mountain Pass Theorem). Let H be a real Banach space and J ∈ C1(H, R). Assume

that there exist v0 ∈ H, v1 ∈ H, and a bounded open neighborhood Ω of v0 such that v1 6∈ Ω and

inf
u∈∂Ω

J(u) > max {J(v0), J(v1)} .

Let

Γ := {γ ∈ C ([0, 1]), H) : γ(0) = v0, γ(1) = v1}
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and

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

If J satisfies the (C)c condition, then c is a critical value of J and c > max{J(v0), J(v1)}.

We choose H = Eλ, J = Jλ, v0 = 0 and define Ω = B(0, ρ) is a ball with radius ρ and origin

at 0 ∈ H, where radius ρ is given in following lemma.

Lemma 3.2. Assume (V1) and ( f 1), ( f 2) are satisfied, then for each λ > 0, there exist ρ > 0 such

that

inf
‖u‖λ=ρ

Jλ(u) > 0.

Proof. According to ( f 1), for any ε > 0, there exist δ = δ(ε) > 0, such that

| f (x, z)| ≤ ε|z|, ∀x ∈ R
N and |z| ≤ δ. (3.1)

By ( f 2) we can obtain that

| f (x, z)| ≤ C0(|z|+ |z|p−1) ≤ |z|p−1

(

C0
1

δp−2
+ 1

)

:= Cε|z|p−1, ∀x ∈ R
N , |z| ≥ δ. (3.2)

Combining this with (3.1), (3.2) and F(x, z) =
∫ 1

0 f (x, tz)zdt, we get

| f (x, z)| ≤ Cε|z|p−1 + ε|z|, ∀(x, z) ∈ R
N × R, (3.3)

and

|F(x, z)| ≤ Cε

p
|z|p + ε

2
|z|2, ∀(x, z) ∈ R

N × R. (3.4)

Then, from (3.4) and (1.2), we have that

Jλ(u) =
1

2

∫

RN
(|∇γu|2 + λV(x)u2)dx −

∫

RN
F(x, u)dx

≥ 1

2
‖u‖2

λ −
∫

RN

ε

2
|u|2dx −

∫

RN

Cε

p
|u|pdx

≥ 1

2
‖u‖2

λ − ε

2
d2

2‖u‖2
λ − Cε

p
d

p
p‖u‖p

λ

≥ 1

4
‖u‖2

λ − Cε

p
d

p
p‖u‖p

λ,

where 2 < p < 2∗γ and 0 < ε < 1
2d2

2
. Choosing ρ = ‖u‖λ small enough concludes the proof.

Lemma 3.3. Under assumption (V1) and ( f 3), there exist v1 ∈ Eλ, such that ‖v1‖λ > ρ and

Jλ(v1) < 0.

Proof. Let u ∈ Eλ satisfied u 6= 0, then meas({x ∈ R
N : u(x) 6= 0}) > 0. If there exists M0 > 0

such that Jλ(tu) > −M0, then by ( f 3) and the Fatou lemma, we have that

0 = lim
t→+∞

−M0

t2
≤ lim sup

t→+∞

Jλ(tu)

t2

= lim sup
t→+∞

(

t2

2 ‖u‖2
λ

t2
−
∫

RN

F(x, tu)

t2
dx

)

≤ 1

2
‖u‖2

λ − lim inf
t→+∞

∫

u(x) 6=0

F(x, tu)

(tu)2
u2dx

= −∞.
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Obviously, this is a contradiction. So Jλ(tu) → −∞, as t → +∞. Let v1 = tu, for large enough

t, we have ‖v1‖λ > ρ and Jλ(v1) < 0. The proof is complete.

It is clear that

inf
u∈∂Ω

Jλ(u) = inf
‖u‖λ=ρ

Jλ(u) > 0 = max {Jλ(0), Jλ(v1)} = max {Jλ(v0), Jλ(v1)} .

That is, the geometric conditions of mountain pass theorem are satisfied. Thus, the mountain

pass value

cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)).

exists.

Lemma 3.4. Let (V1), (V2) and ( f 1) ∼ ( f 4) be satisfied. For any M > cλ, the (C)cλ
sequence of Jλ

is bounded in Eλ for enough large λ.

Proof. Let {un} ⊂ Eλ be a (C)cλ
sequence of Jλ, that is

Jλ(un) → cλ, J′λ(un)(1 + ‖un‖λ) → 0, as n → ∞. (3.5)

Arguing by contradiction, up to subsequence, we assume that ‖un‖λ → ∞ as n → ∞. Let

wn = un

‖un‖λ
, then ‖wn‖λ = 1, {wn} is bounded. Going if necessary to a subsequence, there

exists a w ∈ Eλ such that we have

wn → w, in Ls
loc(R

N), for 2 ≤ s < 2∗γ;

wn(x) → w(x), a.e. x ∈ R
N .

(3.6)

Firstly, we consider the case w = 0. By (1.4) and (3.5), we obtain that

∫

RN

f (x, un)un

‖un‖2
λ

dx = 1 − 〈J′λ(un), un〉
‖un‖2

λ

→ 1, as n → ∞. (3.7)

From ( f 1), there exist δ > 0, such that
∣

∣

∣

∣

f (x, z)z

z2

∣

∣

∣

∣

=

∣

∣

∣

∣

f (x, z)

z

∣

∣

∣

∣

≤ 1, ∀x ∈ R
N , 0 < |z| < δ. (3.8)

By ( f 2), there exist C > 0 satisfy
∣

∣

∣

∣

f (x, z)z

z2

∣

∣

∣

∣

≤
∣

∣

∣

∣

C0(|z|2 + |z|p)
z2

∣

∣

∣

∣

≤ C, ∀x ∈ R
N , δ ≤ |z| ≤ L0. (3.9)

Hence, from (3.8) and (3.9), we have that

| f (x, z)z| ≤ (C + 1)z2, ∀x ∈ R
N , 0 < |z| ≤ L0. (3.10)

By (V2), (3.6) and ‖wn‖λ = 1, we get that
∫

RN
w2

ndx =
∫

V(x)≥b
w2

ndx +
∫

V(x)<b
w2

ndx

≤ 1

λb

∫

V(x)≥b
λV(x)w2

ndx +
∫

V(x)<b
w2

ndx

≤ 1

λb

∫

RN
λV(x)w2

ndx +
∫

V(x)<b
w2

ndx

≤ 1

λb
+
∫

V(x)<b
w2

ndx → 0, as n → ∞, λ → +∞.

(3.11)
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In view of (3.10) and (3.11), we obtain that

∫

|un|≤L0

| f (x, un)un|
‖un‖2

λ

dx ≤ (C + 1)
∫

|un|≤L0

u2
n

‖un‖2
λ

dx

= (C + 1)
∫

|un|≤L0

w2
ndx

≤ (C + 1)
∫

RN
w2

ndx → 0, as n → ∞, λ → +∞.

(3.12)

Combing the Hölder inequality, (1.2), ‖wn‖λ = 1 and (3.11), for any s ∈ (2, 2∗γ) we have that

(

∫

RN
|wn|sdx

)
1
s

=

(

∫

RN
|wn|θs|wn|(1−θ)sdx

)
1
s

≤
(

∫

RN
|wn|θs· 2

θs dx

)
θs
2 · 1

s
(

∫

RN
|wn|(1−θ)s· 2∗γ

(1−θ)s dx

)

(1−θ)s
2∗γ

· 1
s

=

(

∫

RN
|wn|2dx

)
θ
2
(

∫

RN
|wn|2

∗
γ dx

)
1−θ
2∗γ

≤ d1−θ
2∗γ

(

∫

RN
|wn|2dx

)
θ
2

→ 0, as n → ∞, λ → +∞,

(3.13)

where θ =
2(2∗γ−s)

s(2∗γ−2)
. By (3.5) and ( f 4), we get that for n large enough

M > Jλ(un)−
1

2
〈J′λ(un), un〉 =

∫

RN
F (x, un)dx ≥ 0. (3.14)

From τ >
Ñ
2 , we easily obtain 2τ

τ−1 ∈ (2, 2∗γ). So, by the Hölder inequality, ( f 4), (3.14) and

(3.13) with s = 2τ
τ−1 , we get that

∫

|un|≥L0

| f (x, un)un|
‖un‖2

λ

dx =
∫

|un|≥L0

∣

∣

∣

∣

f (x, un)

un

∣

∣

∣

∣

w2
ndx

≤
(

∫

|un|≥L0

∣

∣

∣

∣

f (x, un)

un

∣

∣

∣

∣

τ

dx

)

1
τ
(

∫

|un|≥L0

|wn|2·
τ

τ−1 dx

)
τ−1

τ

≤
(

∫

|un|≥L0

a1F (x, un)dx

)
1
τ
(

∫

RN
|wn|

2τ
τ−1 dx

)
τ−1

τ

≤ a
1
τ
1

(

∫

RN
F (x, un)dx

)
1
τ

(

(

∫

RN
|wn|

2τ
τ−1 dx

)
τ−1
2τ

)2

≤ (a1M)
1
τ

(

(

∫

RN
|wn|

2τ
τ−1 dx

)
τ−1
2τ

)2

→ 0, as n → +∞, λ → +∞.

Thus, combining with (3.12), we obtain that

∫

RN

f (x, un)un

‖un‖2
λ

dx =
∫

|un|≤L0

f (x, un)un

‖un‖2
λ

dx +
∫

|un|≥L0

f (x, un)un

‖un‖2
λ

dx → 0, as n → ∞, λ → +∞,

which is a contradiction with (3.7).
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Secondly, we consider the case w 6= 0. Evidently, meas({x ∈ R
N : w(x) 6= 0}) > 0 and

|un(x)| → ∞ as n → ∞, for a.e. x ∈ {x ∈ R
N : w(x) 6= 0}. Thus, from ( f 3) and Fatou’s

lemma, we can get

lim inf
n→∞

∫

RN F(x, un)dx

‖un‖2
λ

≥ lim inf
n→∞

∫

w(x) 6=0

F(x, un)

u2
n

w2
ndx

≥
∫

w(x) 6=0
lim inf

n→∞

F(x, un)

u2
n

w2
ndx

= +∞.

(3.15)

By (3.5), we have

lim inf
n→∞

∫

RN F(x, un)dx

‖un‖2
λ

≤ lim sup
n→∞

∫

RN F(x, un)dx

‖un‖2
λ

= lim sup
n→∞

(

1

2
− Jλ(un)

‖un‖2
λ

)

=
1

2
,

which is contradiction with (3.15).

So {un} is bounded.

Lemma 3.5. Assume (V1), (V2) and ( f 1) ∼ ( f 4) be satisfied, then for any M > cλ, there exist

Λ = Λ(M) > 0 such that Jλ satisfies (C)cλ
condition for all λ > Λ.

Proof. Let {un} ⊂ Eλ satisfies (3.5). By Lemma 3.4, we known that {un} is bounded in Eλ.

Thus, up to a subsequence, we have that

un ⇀ u, in Eλ; (3.16)

un → u, in Ls
loc(R

N), for 2 ≤ s < 2∗γ; (3.17)

un(x) → u(x), a.e. x ∈ R
N . (3.18)

Let vn := un − u, then vn ⇀ 0 in Eλ by (3.16), which implies that

‖un‖2
λ = (vn + u, vn + u)λ = ‖vn‖2

λ + ‖u‖2
λ + o(1). (3.19)

Next, by using the similar proof method of Proposition A.1 in the literature [5], we can get

that
∫

RN
F(x, un)dx =

∫

RN
F(x, vn)dx +

∫

RN
F(x, u)dx + o(1), (3.20)

and
∫

RN
f (x, un)ϕdx =

∫

RN
f (x, vn)ϕdx +

∫

RN
f (x, u)ϕdx + o(1), (3.21)

for any ϕ ∈ Eλ. By (3.19) and (3.20), we can obtain that

Jλ(un) = Jλ(vn) + Jλ(u) + o(1). (3.22)

Combing with (3.21) and un = vn + u, for any ϕ ∈ Eλ we have that

〈J′λ(un), ϕ〉 = 〈J′λ(vn), ϕ〉+ 〈J′λ(u), ϕ〉+ o(1). (3.23)
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From (3.3), (3.18) and the dominated convergence theorem, for any ϕ ∈ C∞
0 (RN), we obtain

that
∫

RN
( f (x, un)− f (x, u))ϕdx =

∫

Ωϕ

( f (x, un)− f (x, u))ϕdx → 0, as n → ∞, (3.24)

here Ωϕ is the support set of ϕ. For each ϕ ∈ C∞
0 (RN), by (3.16) we have

(un − u, ϕ)λ → 0, as n → ∞. (3.25)

By (3.25), (3.24), (3.5) and the dense of C∞
0 (RN) in Eλ, it shows that

lim
n→∞

〈J′λ(un), ϕ〉 = 〈J′λ(u), ϕ〉 = 0, ∀ϕ ∈ Eλ. (3.26)

Hence, J′λ(u) = 0 and from ( f 4) we can obtain that

Jλ(u) = Jλ(u)−
1

2
〈J′λ(u), u〉 =

∫

RN
F (x, u)dx ≥ 0.

So, by (3.22), (3.23), (3.26) and the boundedness of {vn}, we get that
∫

RN
F (x, vn)dx = Jλ(vn)−

1

2
〈J′λ(vn), vn〉

= Jλ(un)− Jλ(u)−
1

2
〈J′λ(un)− J′λ(u), vn〉+ o(1)

≤ Jλ(un) + o(1).

Thus, for enough large n, we have that
∫

RN
F (x, vn)dx < M. (3.27)

Now, we will show that vn → 0 in Eλ. By (V2) and (3.17) that
∫

RN
v2

ndx =
∫

V(x)≥b
v2

ndx +
∫

V(x)<b
v2

ndx ≤ 1

λb
‖vn‖2

λ + o(1). (3.28)

Thus, combing with the Hölder inequality and (1.2), for any s ∈ (2, 2∗γ) we have

(

∫

RN
|vn|sdx

)
1
s

=

(

∫

RN
|vn|θs|vn|(1−θ)sdx

)
1
s

≤
(

∫

RN
|vn|θs· 2

θs dx

)
θs
2 · 1

s
(

∫

RN
|vn|(1−θ)s· 2∗γ

(1−θ)s dx

)

(1−θ)s
2∗γ

· 1
s

=

(

∫

RN
|vn|2dx

)
θ
2
(

∫

RN
|vn|2

∗
γ dx

)
1−θ
2∗γ

≤ d1−θ
2∗γ

(λb)−
θ
2 ‖vn‖λ + o(1),

(3.29)

where θ =
2(2∗γ−s)

s(2∗γ−2)
. According to (3.28) and (3.10), we obtain that

∫

vn≤L0

f (x, vn)vndx ≤ (C + 1)
∫

vn≤L0

v2
ndx

≤ (C + 1)
∫

RN
v2

ndx

≤ C + 1

λb
‖vn‖2

λ + o(1).

(3.30)
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By τ >
Ñ
2 , it is easy obtained that 2τ

τ−1 ∈ (2, 2∗γ). Thus, from the Hölder inequality, (3.27), (3.29)

with s = 2τ
τ−1 and the boundedness of {vn}, we can see that

∫

vn≥L0

f (x, vn)vndx ≤
∫

|un|≥L0

∣

∣

∣

∣

f (x, vn)

vn

∣

∣

∣

∣

v2
ndx

≤
(

∫

vn≥L0

∣

∣

∣

∣

f (x, vn)

vn

∣

∣

∣

∣

τ

dx

)

1
τ
(

∫

vn≥L0

|vn|2·
τ

τ−1 dx

)
τ−1

τ

≤
(

∫

vn≥L0

a1F (x, vn)dx

)
1
τ
(

∫

RN
|vn|

2τ
τ−1 dx

)
τ−1

τ

≤ a
1
τ
1

(

∫

RN
F (x, vn)dx

)
1
τ

(

(

∫

RN
|vn|

2τ
τ−1 dx

)
τ−1
2τ

)2

≤ (a1M)
1
τ d

2(1−θ)
2∗γ

(λb)−θ‖vn‖2
λ + o(1).

(3.31)

Therefore, by (3.30) and (3.31), we have

o(1) = 〈J′λ(vn), vn〉

= ‖vn‖2
λ −

∫

RN
f (x, vn)vndx

= ‖vn‖2
λ −

∫

vn≤L0

f (x, vn)vndx −
∫

vn≥L0

f (x, vn)vndx

≥
[

1 − C + 1

λb
− (a1M)

1
τ d

2(1−θ)
2∗γ

(λb)−θ

]

‖vn‖2
λ + o(1).

So, there exist Λ = Λ(M) > 0 such that vn → 0 in Eλ as n → ∞ for any λ > Λ. The proof is

complete.

Proof of Theorem 1.3. By Lemma 3.2, 3.3, 3.4 and 3.5, all condition of Theorem 3.1 are satisfied.

Thus equation (1.1) possesses at least a nontrivial solution uλ ∈ Eλ and Jλ(uλ) = cλ is a critical

value, as λ > Λ. Set S = {u ∈ Eλ − {0} : J′λ(u) = 0}. Evidently, by uλ ∈ S we have that

inf
u∈S

Jλ(u) ≤ Jλ(uλ) = cλ.

For any u ∈ S, let γu(t) = tt0u, t ∈ [0, 1], then γ ∈ Γ for enough large t0 by Lemma 3.3. Thus,

according to the definition of cλ for any u ∈ S we have

cλ ≤ max
t∈[0,1]

Jλ(γu(t)) = max
t∈[0,1]

Jλ(tt0u) = max
t∈[0,t0]

Jλ(tu) = max
t≥0

Jλ(tu).

It is easy obtained that Jλ(u) = maxt≥0 Jλ(tu) by ( f 5) for any u ∈ S. So, from the arbitrariness

of u, we obtain

inf
u∈S

Jλ(u) ≥ cλ.

Thus,

cλ = inf
u∈S

Jλ(u),

and we can conclude that uλ is the ground state solution, then the proof of Theorem 1.3 is

completed.
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Abstract. For a differential equation with a state-dependent delay we show that the as-
sociated solution manifold X f of codimension 1 in the space C1([−r, 0], R) is an almost
graph over a hyperplane, which implies that X f is diffeomorphic to the hyperplane.
For the case considered previous results only provide a covering by 2 almost graphs.
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1 Introduction

Let r > 0 be given, choose a norm on R
n, and let Cn = C([−r, 0], R

n) and C1
n = C1([−r, 0], R

n)

denote the Banach spaces of continuous and continuously differentiable functions [−r, 0] →

R
n, respectively, with the norms given by |φ|C = max−r≤t≤0 |φ(t)| and |φ| = |φ|C + |φ′|C. For

a delay differential equation

x′(t) = f (xt)

with a vector-valued functional f : C1
n ⊃ U → R

n and with the solution segment xt ∈ U

defined as xt(s) = x(t + s), the associated solution manifold is the set

X f = {φ ∈ U : φ′(0) = f (φ)}.

Assume that f is continuously differentiable and

(e) each derivative D f (φ) : C1
n → R

n, φ ∈ U, has a linear extension De f (φ) : Cn → R
n so that

the map

U × Cn ∋ (φ, χ) 7→ De f (φ)χ ∈ R
n

is continuous.

BHans-Otto.Walther@math.uni-giessen.de
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The extension property (e) is a relative of the notion of being almost Fréchet differentiable

from [4] and can be verified for a variety of differential equations with state-dependent de-

lay. – Under the said, mild conditions a non-empty set X f is a continuously differentiable

submanifold of codimension n in the Banach space C1
n, and it is on this manifold that the

initial value problem associated with x′(t) = f (xt) is well-posed, with solutions which are

continuously differentiable with respect to initial data [1, 5].

The present note continues the description of solution manifolds initiated in [6, 7]. In [6]

we saw that in case f satisfies a condition which in examples with explicit delays corresponds

to all of these delays being bounded away from zero the solution manifold is a graph over the

closed subspace

X0 = {φ ∈ C1
n : φ′(0) = 0},

which also is the solution manifold for f = 0. An example of a scalar equation with a single

state-dependent delay which is positive but not bounded away from zero shows that in general

solution manifolds do not admit any graph representation [6, Section 3]. However, the main

result from [6] guarantees that for a reasonably large class of systems with explicit discrete

state-dependent delays which are all positive the solution manifolds are nearly as simple as

graphs: They are almost graphs over X0, in the terminology introduced in [6, 7].

Let us recall from [7] that given a continuously differentiable submanifold X of a Banach

space E and a closed subspace H with a closed complementary space,

(i) X is called a graph (over H) if there are a closed complementary space Q for H and a

continuously differentiable map γ : H ⊃ dom → Q with

X = {ζ + γ(ζ) ∈ E : ζ ∈ dom},

and that

(ii) X is called an almost graph (over H) if there is a continuously differentiable map α : H ⊃

dom → E with

α(ζ) = 0 on dom ∩ X,

α(ζ) ∈ E \ H on dom \ X,

so that the map

dom ∋ ζ 7→ ζ + α(ζ) ∈ E

defines a diffeomorphism onto X.

Furthermore,

(iii) a diffeomorphism A from an open neighbourhood O of X in E onto an open subset of

E is called an almost graph diffeomorphism (associated with X and H) if

A(X) ⊂ H

and

A(ζ) = ζ on X ∩ H.

In [7, Section 1] it is verified that in case there is an almost graph diffeomorphism A

associated with X and H the submanifold X is an almost graph over H.
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An example of an almost graph in finite dimension is the unit circle in the plane without

the point on top. The inverse of the stereographic projection onto the real line serves as the

map ζ 7→ ζ + α(ζ) in Part (ii) of the previous definition.

We return to the results in [6] and [7]. It is not difficult to see that the approach used in [6]

for an almost graph representation of a solution manifold fails in case some of the delays in

the system considered have zeros. For the solution manifold of such a system, with k delays

some of which have zeros, the approach can be used, however, in order to obtain a finite atlas

of manifold charts whose domains are almost graphs over X0. This is achieved in [7], with

the size of the atlas independent of the number of equations in the system considered, solely

determined by the zerosets of the delays, and not exceeding 2k.

The immediate question with regard to the topological properties of these solution man-

ifolds is whether the size of the atlas found in [7] is minimal. The result of the present note

shows that for a prototype of the systems studied in [6, 7] this is not the case: The entire

solution manifolds of the prototype equation is in fact an almost graph over X0. The proof

relies on a major modification of the approach taken in [7].

The prototype equation belongs to the simplest cases of the systems studied in [6,7] which

are scalar equations with a single delay (k=1) and have the form

x′(t) = g(x(t − d(Lxt))) (1.1)

with a continuously differentiable map g : R → R, a continuously differentiable delay function

d : F → [0, r] defined on a finite-dimensional topological vectorspace F, and a surjective

continuous linear map L : C → F. We abbreviate C = C1 and C1 = C1
1 . For f : C1 → R given

by

f (φ) = g(φ(−d(Lφ)))

Eq. (1.1) takes the form x′(t) = f (xt). Proposition 2.1 from [7] applies and shows that f is con-

tinuously differentiable with property (e). Proposition 2.3 from [7] yields that the associated

solution manifold

X f = {φ ∈ C1 : φ′(0) = g(φ(−d(Lφ)))}

is non-empty, and it follows that it is a continuously differentiable submanifold of codimen-

sion 1 in C1.

If d(ξ) > 0 everywhere than we know from [6] that X f is an almost graph over X0 = {χ ∈

C1 : χ′(0) = 0}. If d has zeros then the result of [7] yields an atlas of 2 = 21 manifold charts

whose domains are almost graphs over X0.

In [8] an adaptation of the approach from [6, 7] to (1.1) with a linear map L for which,

loosely spoken, Lφ does not depend on φ(0) is used to prove that the associated solution

manifold is an almost graph over X0, no matter whether d has zeros or not.

In the sequel we consider a prototype for the remaining, critical cases, namely, Eq. (1.1) for

F = R, Lφ = φ(0) for all φ ∈ C,

and for

d with a single zero η0 ∈ R.

We find an almost graph diffeomorphism A : C1 → C1 which maps X f onto X0.

A part of the construction of the diffeomorphism A uses the technique developed in [6,7].

For another part it was helpful to have in mind an idea of Krisztin [2] which yields graph

representations of solution manifolds from bounds on extended derivatives as in property (e),

compare the proof of Lemma 1 in [3].

The assumption that d has a single zero is for simplicity and may be relaxed in future work.
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2 Preliminaries

Differentiable maps are always defined on open subsets of Banach spaces or Banach manifolds.

Differentiation ∂ : C1 → C, ∂φ = φ′, is linear and continuous, and the evaluation map

ev : C × [−r, 0] ∋ (φ, t) 7→ φ(t) ∈ R is continuous but not locally Lipschitz continuous. The

composition

ev(·, 0) ◦ ∂ : C1 ∋ φ 7→ ev(∂φ, 0) ∈ R

is linear and continuous.

The restriction ev1 of ev to C1 × (−r, 0) is continuously differentiable with

D ev1(φ, t)(χ, s) = χ(t) + φ′(t) s,

and the composition

h : C1 ∋ φ 7→ ev(φ,−d(Lφ)) ∈ R

is continuously differentiable with

Dh(φ)χ = χ(−d(Lφ))− φ′(−d(Lφ))d′(Lφ)Lχ,

see Part 2.1 of the proof of [7, Proposition 2.1].

In Section 1 we quoted [7, Proposition 2.3] for X f 6= ∅. Using the choice of L this also

follows directly from the fact that for every ξ ∈ R each φ ∈ C1 with L(φ) = φ(0) = ξ,

φ(−d(ξ)) = ξ, and φ′(0) = g(ξ) belongs to X f .

The tangent space TφX f of the solution manifold X f at φ ∈ X f consists of the vectors

c′(0) = Dc(0)1 of differentiable curves c : I → C1 with 0 ∈ I ⊂ R, c(0) = φ, c(I) ⊂ X f . We

have

TφX f = {χ ∈ C1 : χ′(0) = D f (φ)χ}

= {χ ∈ C1 : χ′(0) = g′(φ(−d(Lφ)))[χ(−d(Lφ))− φ′(−d(Lφ))d′(Lφ)Lχ]}.

3 A map A taking X f into X0

As d is minimal at η0 we have d′(η0) = 0.

Notice that for φ ∈ C with Lφ = η0,

φ(−d(Lφ)) = φ(−d(η0)) = φ(0) = Lφ = η0. (3.1)

For reals η we introduce the continuous linear maps

Lη : C → R

given by Lηφ = φ(−d(η)).

In order to develop a bit of intuition about the shape of X f observe that the sets

X f η = X f ∩ L−1(η)

= {φ ∈ C1 : Lφ = η and φ′(0) = g(φ(−d(Lφ)))}

= {φ ∈ C1 : Lφ = η and φ′(0) = g(φ(−d(η)))}

are mutually disjoint and decompose X f , and that

X f η0
= {φ ∈ C1 : Lφ = η0 and φ′(0) = g(η0)}
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(with Eq. (3.1) for Lφ = η0) is a closed affine subspace of codimension 2 in C1.

Choose ρ > 0 and set

c = max
|ξ−η0|≤ρ

|g(ξ)|+ max
|ξ−η0|≤ρ

|g′(ξ)|,

c∗ =
ρ

4(c + 1)(ρ + 3)
.

The map which we are going to construct relies on vectors ψη ∈ C1 which are transversal

to the solution manifold at points in X f η . We begin with the case η = η0 and choose ψη0 ∈ C1

with the properties

ψη0(0) = 0, ψ′
η0
(0) = 1, |ψη0 |C ≤ c∗.

For each φ ∈ X f with Lφ = η0 (or, for each φ ∈ X f η0
) we have

ψ′
η0
(0) = 1 > c c∗ ≥ |g′(η0)||ψη0 |C

= |g′(φ(−d(Lφ)))||ψη0 |C ≥ |g′(φ(−d(Lφ)))ψη0(−d(Lφ))|

= |g′(φ(−d(Lφ)))[ψη0(−d(Lφ))− φ′(−d(Lφ))d′(Lφ)Lψη0 ]|

(with d′(Lφ) = d′(η0) = 0)

which means

ψη0 ∈ C1 \ TφX f .

Proposition 3.1. There exists a continuously differentiable map

R \ {η0} ∋ η 7→ ψη ∈ C1

so that for every η ∈ R \ {η0} we have

ψη(t) = 0 on [−r,−d(η)] ∪ {0}, ψ′
η(0) = 1, |ψη |C ≤ c∗,

and for all φ ∈ X f with Lφ = η,

ψη ∈ C1 \ TφX f .

Proof. 1. For each z ∈ [−r, 0) choose ψz ∈ C1 with ψz(t) = 0 on [−r, z] ∪ {0}, ψ′(0) = 1,

and |ψz|C ≤ c∗. Then proceed as in the proof of [7, Proposition 4.1], with F = R,W =

R \ {η0}, λ = L, and construct the desired map R \ {η0} → C1 from a sequence of maps ψzm ,

m ∈ N, with zm → min d = 0 as m → ∞. Observe that |ψη |C ≤ c∗ is achieved.

2. For η ∈ R \ {η0} and φ ∈ X f with Lφ = η the function ψη does not satisfy the equation

characterizing the tangent space TφX f , due to ψ′
η(0) = 1 and ψη(−d(Lφ)) = ψη(−d(η)) = 0 =

ψη(0) = Lψη .

The map from Proposition 3.1 has no continuous extension to R. Nevertheless, for all

η ∈ R,

Lψη = ψη(0) = 0. (3.2)

Also, for each η ∈ R,

Lηψη = 0, (3.3)

which in case η = η0 holds with Lη0 = L, and,

ψ′
η(0) = 1. (3.4)
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It follows from Eq. (3.4) that for all η ∈ R,

C1 = X0 ⊕ Rψη ,

and the continuous linear projection Pη : C1 → C1 along Rψη onto X0 is given by

Pηφ = φ − φ′(0)ψη .

Now we are ready for the definition of the map A : C1 → C1 which in the next section will

be shown to be an almost graph diffeomorphism associated with X f and X0. Let

a : R → [0, 1]

be a continuously differentiable map with a(ξ) = 1 for |ξ − η0| ≤
ρ
2 , a(ξ) = 0 for |ξ − η0| ≥ ρ,

and |a′(ξ)| ≤ 3
ρ for

ρ
2 ≤ |ξ − η0| ≤ ρ.

The maps Aρ/2 : C1
ρ/2 → C1 and A+ : C1

+ → C1 given by

C1
ρ/2 = {φ ∈ C1 : |φ(−d(Lφ))− η0| < ρ/2},

Aρ/2(φ) = φ − g(τ)ψη0 ,

C1
+ = {φ ∈ C1 : d(Lφ) > 0},

A+(φ) = φ − g(τ)[a(τ)ψη0 + (1 − a(τ))ψη ],

with

τ = Lηφ = ev(φ,−d(Lφ)), η = Lφ,

are continuously differentiable. On the intersection of their domains they coincide: For φ ∈

C1
ρ/2 ∩ C1

+ we have

|τ − η0| = |φ(−d(Lφ))− η0| <
ρ

2
,

which yields a(τ) = 1, and thereby, Aρ/2(φ) = A+(φ).

Also,

C1 = C1
ρ/2 ∪ C1

+,

since for φ ∈ C1 \ C1
+, d(Lφ) = 0, hence Lφ = η0, and due to Eq. (3.1), φ(−d(Lφ)) = η0, which

means |φ(−d(Lφ))− η0| = 0, or φ ∈ C1
ρ/2.

It follows that Aρ/2 and A+ define a continuously differentiable map A : C1 → C1.

Using Eq. (3.4) we infer that for every φ ∈ X f ,

(A(φ))′(0) = φ′(0)− g(τ) · 1 = φ′(0)− g(φ(−d(Lφ))) = 0,

or, A(φ) ∈ X0. Hence

A(X f ) ⊂ X0.

Notice also that due to Eq. (3.2),

LA(φ) = Lφ for all φ ∈ C1. (3.5)
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4 A is an almost graph diffeomorphism

In order to find the inverse of A we first consider φ ∈ C1
+ ∩ X f and χ = A(φ) = A+(φ) ∈ X0,

and compare τ = Lηφ where η = Lφ to σ = Lη̂χ where η̂ = Lχ. By Eq. (3.5), η̂ = η, hence

σ = Lηχ = Lη A+(φ)

= Lηφ − g(τ)[a(τ)Lηφη0 + (1 − a(τ))Lηφη ]

= τ − g(τ)a(τ)Lηφη0 (with Eq. (3.3)).

(4.1)

For every η ∈ R the map

hη : R ∋ τ 7→ τ − (ga)(τ)Lηψη0 ∈ R

is continuously differentiable.

Proposition 4.1. Every map hη , η ∈ R, is a bijection, the map T : R
2 → R given by T(η, σ) =

(hη)−1(σ) is continuously differentiable, and for all (η, σ, τ) ∈ R
3 Eq. (4.1) is equivalent to τ =

T(η, σ).

Proof. 1. For every η ∈ R the map hη satisfies hη(τ) = τ for |τ − η0| ≥ ρ, and for |τ − η0| ≤ ρ,

h′η(τ) = 1 − (g′(τ)a(τ) + g(τ)a′(τ))Lηψη0

≥ 1 − (c + c(3/ρ))c∗ > 0.

It follows that hη is bijective.

2. The map

F : R
3 ∋ (η, σ, τ) 7→ σ − hη(τ) ∈ R

is continuously differentiable (with Lηψη0 = ψη0(−d(η))). For each (η, σ, τ) ∈ R
3 Eq. (4.1) and

the relations F(η, σ, τ) = 0 and τ = (hη)−1(σ) = T(η, σ) are equivalent. For |τ − η0| ≤ ρ we

have

∂3F(η, σ, τ) = −1 + (ga)′(τ)Lηψη0 ≤ −1 + (c + c(3/ρ))c∗ < 0,

and

∂3F(η, σ, τ) = −1 6= 0

for |τ − η0| ≥ ρ. Applications of the Implicit Function Theorem to the zeroset of F show that

the map T is locally given by continuously differentiable maps.

For the open subsets C1
ρ/4 = {χ ∈ C1 : |χ(−d(Lχ))− η0| < ρ/4} and C1

+ of the space C1

we have

C1 = C1
ρ/4 ∪ C1

+

since for χ ∈ C1 \ C1
+, d(Lχ) = 0, hence Lχ = η0, and due to Eq. (3.1) χ(−d(Lχ)) = η0, which

means |χ(−d(Lχ))− η0| = 0. The maps Bρ/4 : C1
ρ/4 → C1 and B+ : C1

+ → C1 given by

Bρ/4(χ) = χ + g(τ)ψη0 ,

B+(χ) = χ + g(τ)[a(τ)ψη0 + (1 − a(τ))ψη ],

with

τ = T(η, σ), η = Lχ, σ = Lηχ = ev(χ,−d(Lχ))
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are continuously differentiable. On the intersection C1
ρ/4 ∩C1

+ both maps Bρ/4 and B+ coincide.

In order to verify this we need to know a(τ) = 1 for

τ = T(η, σ), η = Lχ, χ ∈ C1, σ = Lηχ

with |χ(−d(Lχ))− η0| < ρ/4 and d(Lχ) > 0. The equation a(τ) = 1 holds provided |τ− η0| ≤

ρ/2, which follows from

|τ − η0| = |σ + (ga)(τ)Lηψη0 − η0| ≤
ρ

4
+ max

ξ∈R

|(ga)(ξ)| · c∗

in combination with

(ga)(τ) = 0 for |τ − η0| ≥ ρ

|(ga)(τ)| ≤ c for |τ − η0| ≤ ρ,

c c∗ < ρ/4.

So Bρ/4 and B+ define a continuously differentiable map B : C1 → C1.

Observe that due to Eq. (3.2),

LB(χ) = Lχ for all χ ∈ C1. (4.2)

We have

B(X0) ⊂ X f .

Proof of this: For χ ∈ X0 let φ = B(χ) and η = Lχ, σ = Lηχ, and τ = T(η, σ) = h−1
η (σ). Then

σ = hη(τ) = τ − (ga)(τ)Lηψη0 .

Using χ′(0) = 0, Eq. (3.4), and the preceding equation we get

φ′(0) = (B(χ))′(0) = 0 + g(τ) · 1 = g(τ)

with

τ = σ + (ga)(τ)Lηψη0

= Lηχ + g(τ)[a(τ)Lηψη0 + (1 − a(τ))Lηψη ] (with Eq. (3.3))

= Lη B(χ) = Lηφ.

Eq. (4.2) yields η = Lχ = Lφ, and we obtain

φ′(0) = g(τ) = g(Lηφ) = g(φ(−d(η))) = g(φ(−d(Lφ))),

or, B(χ) = φ ∈ X f .

Proposition 4.2. B(A(φ)) = φ for all φ ∈ C1.

Proof. 1. The case d(Lφ) > 0. Consider

χ = A(φ) = A+(φ) = φ − g(τ)[a(τ)ψη0 + (1 − a(τ))ψLφ]

with

τ = Lηφ, η = Lφ.
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From Eq. (3.5) we infer

Lχ = Lφ, (4.3)

hence d(Lχ) = d(Lφ) > 0, and thereby

B(χ) = B+(χ) = χ + g(τ̂)[a(τ̂)ψη0 + (1 − a(τ̂))ψLχ]

with

τ̂ = T(η̂, σ̂) = h−1
η̂ (σ̂), η̂ = Lχ, σ̂ = Lη̂χ.

It follows that

B(χ) = B(A(φ)) = {φ − g(τ)[a(τ)ψη0 + (1 − a(τ))ψLφ]}+ g(τ̂)[a(τ̂)ψη0 + (1 − a(τ̂))ψLχ].

Using the preceding equation in combination with Eq. (4.3) we obtain B(A(φ)) = φ provided

we have τ̂ = τ. Proof of this: By Eq. (4.3), η̂ = Lχ = Lφ = η. We get

hη(τ̂) = hη̂(τ̂) = σ̂ = Lη̂χ = Lηχ = Lη A(φ)

= Lηφ − g(τ)[a(τ)Lηψη0 + (1 − a(τ))Lηψη ]

= Lηφ − g(τ)a(τ)Lηψη0 (with Eq. (3.3))

= τ − (ga)(τ)Lηψη0

= hη(τ),

and the injectivity of hη yields τ̂ = τ.

2. The case d(Lφ) = 0. Then φ(0) = Lφ = η0. Choose a sequence of points φj ∈ C1, j ∈ N,

with φj(0) 6= η0 for all j ∈ N and φj → φ in C1 as j → ∞. For all j ∈ N, B(A(φj)) = φj, due to

Part 1 of the proof, and continuity yields B(A(φ)) = φ.

Proposition 4.3. A(B(χ)) = χ for all χ ∈ C1.

Proof. 1. The case d(Lχ) > 0. Then χ ∈ C1
+ and

B(χ) = B+(χ) = χ + g(τ)[a(τ)ψη0 + (1 − a(τ))ψη ]

with τ = T(η, σ) = h−1
η (σ), η = Lχ, σ = Lηχ. Set φ = B(χ). By Eq. (4.2), Lφ = Lχ = η. Hence

d(Lφ) = d(Lχ) > 0, or φ ∈ C1
+, and

A(φ) = A+(φ) = φ − g(τ̂)[a(τ̂)ψη0 + (1 − a(τ̂))ψη̂ ]

with

τ̂ = Lη̂φ, η̂ = Lφ (= η).

It follows that

A(B(χ)) = A(φ) = {χ + g(τ)[a(τ)ψη0 + (1 − a(τ))ψη ]} − g(τ̂)[a(τ̂)ψη0 + (1 − a(τ̂))ψη̂ ]

= {χ + g(τ)[a(τ)ψη0 + (1 − a(τ))ψη ]} − g(τ̂)[a(τ̂)ψη0 + (1 − a(τ̂))ψη ] (with η̂ = η),

and for A(B(χ)) = χ it remains to show τ̂ = τ. Proof of this:

τ̂ = Lη̂φ = Lηφ = Lη(χ + g(τ)[a(τ)ψη0 + (1 − a(τ))ψη ])

= Lηχ + g(τ)[a(τ)Lηψη0 + (1 − a(τ))Lηψη ]

= σ + (ga)(τ)Lηψη0 (with Eq. (3.3))

= hη(τ) + (ga)(τ)Lηψη0 = τ.

2. In case d(Lχ) = 0 use the result of Part 1 above and continuity as in Part 2 of the proof

of Proposition 4.2.
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Corollary 4.4. The map A is an almost graph diffeomorphism associated with X f and X0.

Proof. Propositions 4.2 and 4.3 yield that A is a diffeomorphism onto C1 with inverse B. Using

A(X f ) ⊂ X0 and B(X0) ⊂ X f one finds A(X f ) = X0. For φ ∈ X f ∩ X0, τ = Lηφ, and η = Lφ,

we have

g(τ) = g(Lηφ) = g(φ(−d(η))) = g(φ(−d(Lφ))) = φ′(0) = 0.

This yields A(φ) = φ.
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Abstract. We examine the semilinear resonant problem

−∆u = λ1u + λg(u) in Ω, u ≥ 0 in Ω, u|∂Ω = 0,

where Ω ⊂ R
N is a smooth, bounded domain, λ1 is the first eigenvalue of −∆ in Ω,

λ > 0. Inspired by a previous result in literature involving power-type nonlinearities,
we consider here a generic sublinear term g and single out conditions to ensure: the
existence of solutions for all λ > 0; the validity of the strong maximum principle for
sufficiently small λ. The proof rests upon variational arguments.

Keywords: resonant problem, existence, maximum principle.
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1 Introduction

Let Ω ⊂ R
N , N ≥ 1, be a bounded domain of class C2, and let λ1 be the first eigenvalue of

−∆ in Ω with Dirichlet boundary conditions. The issue of the existence of solutions of the
problem















−∆u = λ1u + us−1 − µur−1 in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω,

(1.1)

s ∈ (1, 2), r ∈ (1, s), and µ > 0, has been the subject of study of the recent [3]. As a distinctive
feature, the right-hand side term f (t) := λ1t + ts−1 − µtr−1 in (1.1) is not locally Lipschitz near
0, and moreover satisfies the sign property

f−1((−∞, 0]) ⊇ (0, a], for some a > 0.

As a result, from the celebrated paper [13] (see also [8]), it is known that the strong maxi-
mum principle may fail to be valid in this context. By adopting minimax and perturbation
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techniques, the author of [3] showed instead that such a principle does hold as long as the per-
turbation parameter is chosen sufficiently large. More precisely, the main results in [3] state
that problem (1.1) has non-zero solutions for the entire positive range of µ; positive solutions
for µ large enough.

The fact that, after a rescaling, (1.1) can be turned into the problem














−∆u = λ1u + λ(us−1 − ur−1) in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω,

(1.2)

for a suitable λ > 0, raises the natural question whether, as explicitly expressed in [3, Remark
2.4], the same results mentioned above continue to hold when the powers in (1.2) are replaced
by a generic nonlinear term g. And, if it is so, it would be interesting of course to identify
some “minimal” structure conditions on g for the validity of such results. In the present paper
we address these questions and consider the problem















−∆u = λ1u + λg(u) in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω,

(Pλ)

where g : [0,+∞) → R is continuous, g(0) = 0, and obeys the following conditions:

(g1) there exists q ∈ (1, 2) such that k1 := sup
t>0

|g(t)|

1 + tq−1 < +∞;

(g2) lim
t→0+

g(t)

t
= −∞;

(g3) lim inf
t→+∞

G(t) > 0;

(g4) lim
t→+∞

(g(t)t − 2G(t)) = −∞,

where, as usual,

G(t) :=
∫ t

0
g(s)ds, for all t ≥ 0.

Problems like (Pλ) are being investigated since Landesman and Lazer’s pioneering work
[9], in which sufficient conditions, based on the interaction between the nonlinearity and
the spectrum of the linear operator, were given for them to have a solution. Noteworthy
contributions following that work can be found in [2, 5, 12] and also in [6, 7, 10, 11, 14] (see
the related references as well) in which several classes of elliptic problems at resonance are
investigated via variational and topological methods.

Coming back to (Pλ), our approach develops along the same line of reasoning as [3]. We
prove initially that (Pλ) has at least a non-zero solution for all λ > 0. This is accomplished by
considering a sequence of problems near resonance whose solutions are shown to converge to
a solution of the original problem. In this regard, assumption (g4) comes into play to prove
the boundedness of the sequence of approximating solutions. Then, by exploiting the classical
decomposition of H1

0(Ω) into the first eigenspace and its orthogonal complement, we show
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that, for sufficiently small λ, the set of solutions to (Pλ) is contained in the interior of the pos-
itive cone of C1

0(Ω). It still remains an open question to investigate the uniqueness of positive
solutions to (Pλ) (in the one-dimensional case and for power-nonlinearities it has instead been
established in [4]), as well as the existence of non-zero solutions compactly supported in Ω,
in the spirit of [8].

Our main results, Theorems 2.3 and 2.4, are stated and proved in the coming section.
Before going on, we arrange some notation and the variational framework for (Pλ). We set

‖u‖ :=
(

∫

Ω

|∇u|2dx

) 1
2

, for all u ∈ H1
0(Ω),

and denote by ‖·‖p, p ∈ [1,+∞], the classical Lp-norm on Ω. We also set

cp := sup
u∈H1

0 (Ω)\{0}

‖u‖p

‖u‖

for each p ≥ 1, with p ≤ 2N
N−2 if N ≥ 3, and denote by φ1 the positive eigenfunction associated

with λ1 and normalized with respect to ‖·‖
∞

. We recall that the first two eigenvalues λ1, λ2

of −∆ in Ω admit the variational characterization

λ1 = inf
u∈H1

0 (Ω)\{0}

‖u‖2

‖u‖2
2

, λ2 = inf
u∈ span{φ1}⊥\{0}

‖u‖2

‖u‖2
2

.

Given a set E ⊂ R
N , its Lebesgue measure will be denoted by the symbol |E|. Throughout

this paper, the symbols C, C1, C2, . . . represent generic positive constants whose exact value
may change from occurence to occurrence.

For all λ > 0, we denote by Iλ : H1
0(Ω) → R the energy functional associated with (Pλ),

Iλ(u) :=
1
2
‖u‖2 −

λ1

2
‖u+‖

2
2 − λ

∫

Ω

G(u+)dx, for all u ∈ H1
0(Ω),

where u+ = max{u, 0}. By a weak solution to (Pλ) we mean any u ∈ C0(Ω)∩ H1
0(Ω) verifying

∫

Ω

(∇u∇v − λ1uv − λg(u)v) dx = 0, for all v ∈ H1
0(Ω).

2 Results

As already mentioned, we start by considering a sequence of approximating problems.

Lemma 2.1. For each λ > 0, there exists n̄ ∈ N such that the problem



















−∆u =

(

λ1 −
1
n

)

u + λg(u) in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω,

(Pn)

admits a non-zero weak solution un, with positive energy, for all n ≥ n̄.
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Proof. Fix λ > 0 and let n ∈ N with n >
1

λ1
. Let us first show that the energy functional

In : H1
0(Ω) → R corresponding to (Pn),

In(u) := Iλ(u) +
1

2n
‖u+‖

2
2 =

1
2
‖u‖2 −

1
2

(

λ1 −
1
n

)

‖u+‖
2
2 − λ

∫

Ω

G(u+)dx, (2.1)

for all u ∈ H1
0(Ω), has the mountain pass geometry for sufficiently large n ∈ N.

Fix k ∈ (2, 2∗) and set

M :=
k

2
sup
t>0

λ1t2 + 2λG(t)

tk
.

By (g1) and (g2) one has 0 < M < +∞ and λ1
2 t2 + λG(t) ≤ M

k tk, for all t ≥ 0. Then, defining

R := (Mck
k)

1
2−k ,

we easily obtain

inf
u∈SR

In(u) ≥ inf
‖u‖=R

(

1
2
‖u‖2 −

M

k
‖u‖k

k

)

≥ inf
u∈SR

(

1
2
‖u‖2 −

Mck
k

k
‖u‖k

)

=

(

1
2
−

1
k

)

R2
> 0,

(2.2)

for any n ∈ N, where SR := {u ∈ H1
0(Ω) : ‖u‖ = R}.

Now, let us show that there exist u1 ∈ H1
0(Ω), with ‖u1‖ > R, and n̄ ∈ N, such that

In(u1) < 0 for all n ≥ n̄. Owing to (g3), there exist L, b > 0 such that

G(t) > L, for all t ≥ b.

If we denote by

Eγ := {x ∈ Ω : φ1(x) < γ},

with γ > 0, then there exists γ1 > 0 such that

L >
k1(bq + bq)|Eγ|

q(|Ω| − |Eγ|)
, for all γ ∈ (0, γ1). (2.3)

Fix γ̄ ∈ R satisfying

0 < γ̄ < min
{

γ1,
b

R

}

.

Since the function ψ(t) := qγ̄t + γ̄qtq is continuous in (0,+∞) and ψ
(

b
γ̄

)

= bq + bq, thanks to

(2.3), there exists t̄ > b
γ̄ such that

L >
k1(qγ̄t̄ + γ̄q t̄q)|Eγ̄|

q(|Ω| − |Eγ̄|)
. (2.4)
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With the aid of (g1) and (2.4) we then obtain

∫

Ω

G(t̄φ1)dx =
∫

Eγ̄

G(t̄φ1)dx +
∫

{φ1≥γ̄}
G(t̄φ1)dx

≥ −k1

∫

Eγ̄

(

t̄φ1 +
(t̄φ1)

q

q

)

dx +
∫

{φ1≥γ̄}
G(t̄φ1)dx

≥ −k1

(

t̄γ̄ +
t̄qγ̄q

q

)

|Eγ̄|+ L(|Ω| − |Eγ̄|)

> 0.

As a result, there exists n̄ ∈ N, with n̄ >
1

λ1
, such that

In(t̄φ1) =
t̄2

2n
‖φ1‖

2
2 − λ

∫

Ω

G(t̄φ1)dx < 0

for all n ≥ n̄. Therefore, the functional In satisfies the geometric conditions required by the
mountain pass theorem for all n ≥ n̄.

Moreover, by (g1) and Sobolev embeddings, one has

In(u) ≥
1

2nλ1
‖u‖2 − λk1

(

∫

Ω

|u|dx +
1
q

∫

Ω

|u|qdx

)

≥
1

2nλ1
‖u‖2 − λc1k1 ‖u‖ −

λcqk1

q
‖u‖q ,

and thus In(u) → +∞ as ‖u‖ → +∞. This fact, in addition to standard arguments (see for
instance Example 38.25 of [15]), ensures that In satisfies the Palais–Smale condition. Then, by
invoking the classical mountain pass theorem, In admits a critical point un ∈ H1

0(Ω) \ {0} for
all n ≥ n̄, and, by (2.2), one also has

In(un) = inf
γ∈Γ

max
t∈[0,1]

In(γ(t)) ≥

(

1
2
−

1
k

)

R2, (2.5)

where Γ := {γ ∈ C0([0, 1], H1
0(Ω)) : γ(0) = 0, γ(1) = u1}. This concludes the proof.

Lemma 2.2. Let λ > 0, n̄ ∈ N and let un, with n ≥ n̄, be as in Lemma 2.1. Then, the sequence

{un}n≥n̄ is bounded in H1
0(Ω).

Proof. Let n ∈ N, n ≥ n̄. By standard regularity theory, un ∈ C1,α(Ω), for some α ∈ (0, 1). For
any n ∈ N, n ≥ n̄ there exist, uniquely determined, tn ∈ R and wn ∈ span{φ1}

⊥ such that

un = tnφ1 + wn.

It is straightforward to verify that wn ∈ C1,α(Ω) is a weak solution to



















−∆u =

(

λ1 −
1
n

)

u + λg(tnφ1 + u)−
tn

n
φ1 in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω,

(2.6)
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and therefore, also by (g1), one has

‖wn‖
2 ≤

(

λ1 −
1
n

λ2

)

‖wn‖
2 + λ

∫

Ω

g(tnφ1 + wn)wndx

≤

(

λ1 −
1
n

λ2

)

‖wn‖
2 + λk1 ‖wn‖1 + λk1t

q−1
n ‖φ1‖

q−1
∞

‖wn‖1 + λk1 ‖wn‖
q
q .

(2.7)

From (2.7), it follows that

‖wn‖ ≤ C
(

(1 + t
q−1
n ) + ‖wn‖

q−1
)

, (2.8)

for some C > 0. We claim that the sequence {tn}n≥n̄ is bounded in R. Arguing by contradic-
tion, assume that, up to a subsequence, tn → +∞ as n → +∞. Without loss of generality, we
can assume that tn ≥ 1 for all n ≥ n̄ and, since

yq−1 ≤ C1 +
1

2C
y ≤ C1t

q−1
n +

1
2C

y, for all y > 0,

from (2.8) we deduce

‖wn‖ ≤ 2Ct
q−1
n + C ‖wn‖

q−1 ≤ 2Ct
q−1
n + CC1t

q−1
n +

1
2
‖wn‖ ,

and then
‖wn‖ ≤ C2t

q−1
n .

Therefore, fixing p > max
{

N
2 , q

q−1

}

, we obtain

‖wn‖∞
≤ C3

(

‖wn‖p + ‖g(tnφ1 + wn)‖p +
tn

n
‖φ1‖p

)

≤ C4

(

‖wn‖
p−1

p
∞ ‖wn‖

1
p

1 + 1 + t
q−1
n + ‖wn‖

q−1− q
p

∞ ‖wn‖
q
p
q +

tn

n

)

≤ C5

(

‖wn‖
p−1

p
∞ t

q−1
p

n + t
q−1
n + ‖wn‖

q−1− q
p

∞ t
q(q−1)

p
n +

tn

n

)

.

Dividing the first and the last side of the previous inequality by tn and bearing in mind that
ym ≤ 1 + y, for all m ∈ [0, 1] and y > 0, we get

∥

∥

∥

∥

wn

tn

∥

∥

∥

∥

∞

≤ C5





∥

∥

∥

∥

wn

tn

∥

∥

∥

∥

p−1
p

∞

t
q−2

p
n + t

q−2
n +

∥

∥

∥

∥

wn

tn

∥

∥

∥

∥

q−1− q
p

∞

t
(q−2)

(

1+ q
p

)

n +
1
n





≤ C5

(

t
q−2
n +

(

t
q−2

p
n + t

(q−2)
(

1+ q
p

)

n

)

(

1 +

∥

∥

∥

∥

wn

tn

∥

∥

∥

∥

∞

)

+
1
n

)

≤ C5

(

t
q−2

p
n + 2t

q−2
p

n

(

1 +

∥

∥

∥

∥

wn

tn

∥

∥

∥

∥

∞

)

+
1
n

)

.

It follows that
(

1 − 2C5t
q−2

p
n

)∥

∥

∥

∥

wn

tn

∥

∥

∥

∥

∞

≤ 3C5t
q−2

p
n +

C5

n
,

and, as a consequence,

lim
n→+∞

∥

∥

∥

∥

wn

tn

∥

∥

∥

∥

∞

= 0,
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i.e.,
un

tn
→ φ1 uniformly in Ω.

So, fixing γ ∈ (0, ‖φ1‖∞
), we can find E ⊂ Ω, with |E| > 0, and ñ ∈ N, ñ ≥ n̄, such that

un(x) ≥ γtn, for all n ≥ ñ and x ∈ E.

At this point, set

δ := sup
t>0

(g(t)t − 2G(t)) ∈ [0,+∞),

and let t̄ > 0 such that

g(t)t − 2G(t) ≤ −
(δ + 1)|Ω|

|E|
, for all t ≥ t̄,

and n∗ ≥ ñ such that tn ≥ t̄
γ for all n ≥ n∗. Then, for all n ≥ n∗, taking also (2.5) into account,

we obtain

0 <

∫

Ω

(g(un)un − 2G(un))dx

=
∫

Ω\E
(g(un)un − 2G(un))dx +

∫

E
(g(un)un − 2G(un))dx

≤ δ|Ω| − (δ + 1)|Ω| < 0,

a contradiction. Therefore, the sequence {tn}n≥n̄ is bounded in R and (2.8) yields the bound-
edness of {wn}n≥n̄ in H1

0(Ω), as well. As a consequence, we get the boundedness of {un}n≥n̄

in H1
0(Ω), as desired.

Collecting the results of the previous lemmas, it is now easy to derive our first existence
result.

Theorem 2.3. For all λ > 0, problem (Pλ) has at least one non-zero solution.

Proof. Let {un} be the sequence of solutions to (Pn) in Lemma 2.1. By Lemma 2.2 there exists
u∗ ∈ H1

0(Ω) such that, up to a subsequence,

un ⇀ u∗ in H1
0(Ω), un → u∗ in Lp(Ω), for all p ∈ [1, 2∗).

Fixing v ∈ H1
0(Ω) and taking the limit as n → +∞ in the identity I′n(un)(v) = 0, we get

I′λ(u
∗)(v) = 0, i.e. u∗ is a weak solution to (Pλ). To justify that u∗ 6= 0, observe that, by (2.5)

one has

0 <

(

1
2
−

1
k

)

R2

≤ λ
∫

Ω

(g(un)undx − 2G(un)) dx

≤ λk1

(

‖un‖1 + ‖un‖
q
q

)

+ 2λk1

(

‖un‖1 +
1
q
‖un‖

q
q

)

,

and so, letting n → +∞, the conclusion is achieved.
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We now show that, when λ approaches zero, every non-zero solution to (Pλ) is actually
positive. To this aim, for all λ > 0, set

Sλ := {u ∈ H1
0(Ω) \ {0} : u is a solution to (Pλ)},

and denote by P the interior of the positive cone of C1
0(Ω), i.e.

P :=
{

u ∈ C1
0(Ω) : u > 0 in Ω,

∂u

∂ν
< 0 on ∂Ω

}

,

ν being the unit outer normal to ∂Ω. Our second result reads as follows:

Theorem 2.4. There exists Λ
∗
> 0 such that for each λ ∈ (0, Λ

∗), Sλ ⊂ P .

Proof. We first observe that, by the regularity theory of elliptic equations, for all λ > 0 and
uλ ∈ Sλ, one has uλ ∈ C1,α(Ω), for some α ∈ (0, 1).

If uλ ∈ Sλ, it is straightforward to check that vλ := λ−1uλ is a solution to the problem














−∆u = λ1u + g(λu) in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω,

(P̃λ)

clearly equivalent to (Pλ). Note that (g2) ensures the existence of some a > 0 such that g(t) < 0
for all t ∈ (0, a), and moreover it must hold

‖vλ‖∞
≥

a

λ
, (2.9)

otherwise we would get g(uλ) < 0 in Ω \ u−1
λ (0), and so

‖uλ‖
2 − λ1 ‖uλ‖

2
2 = λ

∫

Ω

g(uλ)uλdx < 0,

against the definition of λ1. From now on, we will then focus on (P̃λ). We split the proof in
several steps.

Step 1. We show that there exist two constants C∗, Λ0 > 0 such that, for any λ ∈ (0, Λ0] and
for any vλ ∈ Sλ,

‖vλ‖ ≥
C∗

λ
. (2.10)

Fix β > max{N
2 , 1

q−1}. By [1, Theorem 8.2] and the embedding W2,β(Ω) →֒ C1(Ω), one has

vλ ∈ W2,β(Ω) and there exists a constant C0 > 0, independent of λ, such that

‖vλ‖C1(Ω) ≤ C0

(

(λ1 + 1) ‖vλ‖β + ‖g(λvλ)‖β

)

. (2.11)

So, by (g1) and Hölder’s inequality, we get

∫

Ω

|g(λvλ)|
βdx ≤ k

β
1

∫

Ω

(

1 + (λvλ)
q−1
)β

dx

≤ 2β−1k
β
1

(

|Ω|+ λβ(q−1) ‖vλ‖
β(q−1)−1
∞

‖vλ‖1

)

,
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and therefore

‖vλ‖∞
≤ C0

(

(λ1 + 1) ‖vλ‖
β−1

β
∞ ‖vλ‖

1
β

1

+2
β−1

β k1

(

|Ω|
1
β + λq−1 ‖vλ‖

q−1− 1
β

∞ ‖vλ‖
1
β

1

))

.

Now, dividing by ‖vλ‖
β−1

β
∞ both sides of the previous inequality and taking (2.9) into account,

we obtain,

( a

λ

)
1
β
≤ ‖vλ‖

1
β
∞ ≤ C1

(

‖vλ‖
1
β

1 + ‖vλ‖
1−β

β
∞ + λq−1 ‖vλ‖

q−2
∞

‖vλ‖
1
β

1

)

≤ C1

(

‖vλ‖
1
β

1 + a
1−β

β λ
β−1

β + aq−2λ ‖vλ‖
1
β

1

)

≤ C2

(

(1 + λ) ‖vλ‖
1
β + λ

β−1
β

)

.

(2.12)

Now, if 0 < λ ≤ min{1, a(2C2)−β} := Λ0, one has

‖vλ‖
1
β ≥

1
2C2

( a

λ

)
1
β
−

1
2
≥

1
4C2

( a

λ

)
1
β

and hence (2.10) is fulfilled with C∗ = a(4C2)−β. Since of course ‖vλ‖ → +∞ as λ → 0+, by
(2.12) we can determine C3 > 0 and Λ1 ∈ (0, Λ0] such that ‖vλ‖ ≥ 1 and

‖vλ‖∞
≤ C3 ‖vλ‖ (2.13)

for any λ ∈ (0, Λ1]. For the rest of the proof, we assume λ ∈ (0, Λ1].

Step 2. We now show that, writing vλ as

vλ = tλφ1 + wλ,

with tλ ∈ R and wλ ∈ span{φ1}
⊥, then it holds

‖wλ‖C1(Ω) ≤ C̃ ‖vλ‖
q
2 , (2.14)

for some C̃ > 0. By the same arguments as [3], it is easily seen that tλ > 0 and that wλ is a
weak solution to

{

−∆u = λ1u + g(λvλ) in Ω

u = 0 on ∂Ω.
(2.15)

The relation I′λ(vλ)(φ1) = 0 and the definition of φ1 imply that

∫

Ω

∇vλ∇φ1dx − λ1

∫

Ω

vλφ1dx −
∫

Ω

g(λvλ)φ1dx = −
∫

Ω

g(λvλ)φ1dx = 0,

and therefore
∫

Ω

g(λvλ)wλdx =
∫

Ω

g(λvλ)(vλ − tλφ1)dx =
∫

Ω

g(λvλ)vλdx.
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So, we get

‖wλ‖
2 = λ1 ‖wλ‖

2
2 +

∫

Ω

g(λvλ)wλdx

≤
λ1

λ2
‖wλ‖

2 +
∫

Ω

g(λvλ)vλdx

≤
λ1

λ2
‖wλ‖

2 + k1

(

‖vλ‖1 + λq−1 ‖vλ‖
q
q

)

≤
λ1

λ2
‖wλ‖

2 + C4 ‖vλ‖
q ,

from which we deduce the estimate

‖wλ‖
2 ≤ C5 ‖vλ‖

q , (2.16)

being C5 = λ2C4
λ2−λ1

. By applying the same arguments as before to the function wλ and bearing
in mind also (2.13) and (2.16), we obtain

‖wλ‖C1(Ω) ≤ C6

(

(λ1 + 1) ‖wλ‖β + ‖g(λvλ)‖β

)

≤ C6

(

(λ1 + 1) ‖wλ‖
β−1

β
∞ ‖wλ‖

1
β

1 + 2
β−1

β k1

(

|Ω|
1
β + λq−1 ‖vλ‖

q−1− 1
β

∞ ‖vλ‖
1
β

1

))

≤ C7

(

‖wλ‖
β−1

β

C1(Ω)
‖vλ‖

q
2β + 1 + λq−1 ‖vλ‖

q−1
)

≤ C7

(

‖wλ‖
β−1

β

C1(Ω)
‖vλ‖

q
2β + 2 ‖vλ‖

q−1
)

.

So, either

‖wλ‖C1(Ω) ≤ 2C7 ‖wλ‖
β−1

β

C1(Ω)
‖vλ‖

q
2β

or
‖wλ‖C1(Ω) ≤ 4C7 ‖vλ‖

q−1 .

In any case, we get

‖wλ‖C1(Ω) ≤ C̃ ‖vλ‖
q
2 , (2.17)

where C̃ = 4C7, as desired.

Step 3 (conclusion). Taking (2.10) and (2.16) into account, for 0 < λ ≤ min{1, Λ0, Λ1, Λ2},

where Λ2 :=
( 1

2C5

)
1

2−q C∗, we obtain

t2
λ ≥

‖vλ‖
2 − C5 ‖vλ‖

q

‖φ1‖
2 ≥

‖vλ‖
2

‖φ1‖
2

(

1 −
C5C∗q−2

λq−2

)

≥
‖vλ‖

2

2 ‖φ1‖
2 = C8 ‖vλ‖

2 , (2.18)

where C8 = 1
2‖φ1‖

2 . For this range of λ, in view of (2.17), we then obtain

∥

∥

∥t−1
λ vλ − φ1

∥

∥

∥

C1(Ω)
= t−1

λ ‖wλ‖C1(Ω) ≤ C̃C
− 1

2
8 ‖vλ‖

q
2−1 ≤ C9λ1− q

2

with C9 = C̃C
− 1

2
8 C∗

q
2−1. Since φ1 ∈ P and P is an open subset of C1(Ω), there exists δ > 0

such that
{u ∈ C1(Ω) : ‖u − φ1‖C1(Ω) < δ} ⊂ P .

So, setting Λ3 :=
(

δ
C9

)
2

2−q , for all 0 < λ ≤ min{1, Λ0, Λ1, Λ2, Λ3} := Λ
∗, one has t−1

λ vλ ∈ P

and hence vλ ∈ P . This concludes the proof.
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1 Introduction

In this paper, we study existence and local uniqueness of periodic solutions of nonlinear delay

first-order equation

ẋ(t) = f (x(t − ε), t), t ∈ R (1.1)

where ε is a positive parameter, f : R
2 → R and f satisfies assumptions fully specified in

Theorems 3.1 and 3.2 below. We use classical methods such as Leray–Schauder degree and a

priori estimates to prove that for sufficiently small parameters ε and under certain assump-

tions to right-hand-side function f , there is a locally unique periodic solution that depends

continuously on ε. Similar methods were used e.g., in [7, 8] where more complicated neutral

differential equations were studied. Bifurcation theory is applied for perturbed second order

case of (1.1) to get existence and non-existence results for periodic and bounded solutions with

examples in Section 4. Related results to this paper are derived in [1]. We refer the reader

to [2] for more papers dealing with the effects of small delays on the dynamical behaviors of

systems compared with differential equations without delays.

BCorresponding author. Email: michal.feckan@fmph.uniba.sk
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2 Preliminaries

As we already mentioned our paper deals with periodic solutions of equation (1.1). Such

equations are usually equipped with initial condition x(t) = ϕ(t) for t ∈ [−ε, 0] where func-

tion ϕ is given. To avoid defining an initial condition for periodic solutions we introduce the

following new problem. We see that a function x is a T-periodic solution of (1.1) and ε ∈ (0, T)

if and only if it is a solution of the problem

ẋ(t) = f (x (t − ε) , t) , t ∈ [0, T],

x(t) = x(T + t), t ∈ [−ε, 0] .
(2.1)

The corresponding problem (when ε = 0) is then

ẋ(t) = f (x (t) , t) , t ∈ [0, T],

x(0) = x(T).
(2.2)

Here we introduce some notation we will use in the rest of our paper. Let X be the

space of continuous, T-periodic functions defined on R equipped with the maximum norm

∥x∥
∞

:= maxt∈R |x(t)|. We define the closed ball in X as

Br(y) =: {x ∈ X; ∥x − y∥
∞
≤ r}

and let I : X → X be the identical operator. For the Leray–Schauder degree of function f

on domain Ω at point 0, we will use the standard notation deg( f , Ω, 0). Properties of Leray–

Schauder degree can be found in e.g., in [4].

3 Existence results

Theorem 3.1. Let f : R × R → R, f = f (x, t) be a uniformly Lipschitz continuous function with

respect to x, T-periodic in variable t. Let there exist δ, η, K, L > 0 such that −L + η < K − η and

either

f (x, t) ≥ δ for (x, t) ∈ [−L − η,−L + η]× [0, T]

and f (x, t) ≤ −δ for (x, t) ∈ [K − η, K + η]× [0, T], (3.1)

or

f (x, t) ≤ −δ for (x, t) ∈ [−L − η,−L + η]× [0, T]

and f (x, t) ≥ δ for (x, t) ∈ [K − η, K + η]× [0, T] (3.2)

is satisfied. Then there exists ε0 > 0 such that for every ε ∈ (0, ε0], there exists a solution of problem

(2.1) that is bounded by K and −L.

Proof. Denote

Ω = {x ∈ X; x([0, T]) ⊂ (−L, K)} .

First, we assume that the condition (3.1) is valid. We define the following operator

F : [0, T]× X → X, F(ε, x)(t) = x(T) +
∫ t

0
f (x̃ (s − ε) , s) ds (3.3)
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where x̃(t) = x(t) if t ∈ [0, T], and x̃(t) = x(T + t) if t ∈ [−ε, 0). Clearly, the operator F is

well defined. Note that F is also continuous and compact due to the local boundedness and

continuity of f . In the following, we will use the notation Fε := F(ε, .) whenever ε ≥ 0 is fixed.

Our goal is to prove that if ε0 > 0 is sufficiently small then for the Leray–Schauder degree,

there holds

deg(I − Fε, Ω, 0) = deg(I − F0, Ω, 0) = 1

for ε ∈ (0, ε0].

We will prove that (I − θF0)x ̸= 0 for every x ∈ ∂Ω and θ ∈ [0, 1]. This is clearly true for

θ = 0. Assume that there exists some θ ∈ (0, 1) and a solution x ∈ ∂Ω of problem

ẋ(t) = θ f (x (t) , t) for t ∈ [0, T],

x(0) = θx(T).
(3.4)

This means that x is a fixed point of the operator θF0. Since x ∈ ∂Ω, there exists either

t0 ∈ [0, T] and x(t0) = K, or t1 ∈ [0, T] and x(t1) = −L. We will deal with the first case that x

attains maximum K > 0 at some t0, since the proof is similar in the second case.

Due to the assumption (3.1), we see that ẋ0(t0) ≤ −δ and hence x is decreasing in some

neighbourhood of t0. Then necessarily t0 = 0, otherwise x would attain higher values for

some t < t0. The solution x satisfies the problem (3.4), hence x(T) ≥ K. This is not possible,

since x is decreasing in some neighbourhood of 0 and decreases whenever x reaches value K

due to (3.1). Thus, we proved deg(I − θF0, Ω, 0) = deg(I, Ω, 0) = 1.

Finally, we will prove that (I − θF0 − (1 − θ)Fε)x ̸= 0 for every x ∈ ∂Ω and θ ∈ [0, 1]. This

means we have to show that there are no solutions of problem

ẋ(t) = θ f (x (t) , t) + (1 − θ) f (x (t − ε) , t) , t ∈ [0, T],

x(t) = x(T + t), t ∈ [−ε, 0]
(3.5)

that lie on the boundary of Ω. Let there exist a solution x of (3.5) that attains its maximum

K at some t0 ∈ [0, T] (the case when x attains minimum −L would be treated similarly).

This solution can be periodically extended to the whole real line. Moreover, x is Lipschitz

continuous with some Lipschitz constant M that is a bound for f on set Ω. For some ε0 > 0

sufficiently small and dependent on x, there holds x(t0 − ε) ∈ [K − η, K] for ε ∈ (0, ε0] and so

ẋ(t0) ≤ −δ. This is a contradiction, since x is periodic and attains maximum at t0.

The next step is to remove the dependence of ε0 on solution x. For every x ∈ Ω, there

holds

|x(t0)− x(t0 − ε)| ≤ Mε0 for all ε ∈ [0, ε0].

If we choose ε0 = η
M then both values x(t0) and x(t0 − ε) stay in the interval [K − η, K] for

ε ∈ [0, ε0]. Therefore since x satisies the problem (3.5), we get ẋ(t0) ≤ −δ what contradicts the

fact that x attains its maximum at t0. Thus we proved deg(I − Fε, Ω, 0) = deg(I − F0, Ω, 0) = 1

for ε ∈ (0, ε0].

Next, we assume that the condition (3.2) is valid. In this case, our goal is to prove the

existence of T-periodic solution of problem

ẏ(t) = − f (y (t + ε) ,−t) , t ∈ [0, T],

y(t) = y(T + t), t ∈ [0, ε] .
(3.6)

for all ε > 0 sufficiently small, since then we just set s = −t and x(s) := y(−s). Then x will be

a T-periodic solution of the original problem (2.1).
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We define the following operator

G : [0, T]× X → X, G(ε, x)(t) = x(T)−
∫ t

0
f (x̃ (s + ε) ,−s) ds

where x̃(t) = x(t) if t ∈ [0, T], and x̃(t) = x(t − T) if t ∈ (T, T + ε]. Note that the right-hand-

side function in problem (3.6) satisfies the assumption (3.1). Using the notation Gε := G(ε, .)

for ε ≥ 0 fixed and using similar arguments as in the previous part of the proof, we come to

conclusion

deg(I − Gε, Ω, 0) = deg(I − G0, Ω, 0) = 1

for ε ∈ (0, ε0] with ε0 > 0 sufficiently small.

Theorem 3.2. Let f : R × R → R, f = f (x, t) be a bounded continuous function, T-periodic in

variable t and there exist K, L, δ > 0 such that either

∫ T

0
f (x, t) dt ≥ δ for x ≥ K and

∫ T

0
f (x, t) dt ≤ −δ for x ≤ −L (3.7)

or ∫ T

0
f (x, t) dt ≤ −δ for x ≥ K and

∫ T

0
f (x, t) dt ≥ δ for x ≤ −L. (3.8)

Then for every ε > 0 there exists a solution of problem (2.1).

Proof. In our proof, we will proceed under the case (3.7) only since the case (3.8) would be

dealt with similarly as in the proof of Theorem 3.1 under the assumption (3.2). We define the

following operators

H : X → X, T : R × X → R × X,

H(x)(t) =
∫ t

0
f (x(s − ε), s) ds − t

T

∫ T

0
f (x(s − ε), s) ds,

T(r, x)(t) =

(∫ T

0
f (x(s − ε), s) ds, x(t)− r − H(x)(t)

)
.

Observe that T(r, x) = 0 for some r ∈ R and x ∈ X if and only if x is a solution of (2.1) and

x(0) = r.

As in the proof of Theorem 3.1, we will use the Leray–Schauder degree to prove the

assertion. Let M > 0 be a global bound of right-hand-side function f and let α = max{K, L}+
2MT + 1, β = α + 2MT + 1. We define the domain

Ω := {(r, x) ∈ R × X; |r| < α, ∥x∥
∞
< β}

and the homotopy

Tθ(r, x) =

(∫ T

0
f (r + θH(x)(s − ε), s) ds, x(t)− θ(r + H(x)(t))

)

where θ ∈ [0, 1]. Our goal is to prove that

deg(T1, Ω, 0) = deg(T0, Ω, 0) = 1

which means that there exist (r, x) ∈ Ω such that T1(r, x) = 0. One can easily prove that

T1(r, x) = 0 if and only if T(r, x) = 0.
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Now, we prove that Tθ(r, x) ̸= 0 for (r, x) ∈ ∂Ω and θ ∈ [0, 1]. Note that H(x)(0) = 0 and

H(x) ∈ X for every x ∈ X. Since

|Ḣ(x)(t)| =
∣∣∣∣ f (x(t − ε), t)− 1

T

∫ T

0
f (x(s − ε), s) ds

∣∣∣∣ ≤ 2M

due to the boundedness of f , we have |H(x)(t)| ≤ 2MT for every x ∈ X and t ∈ R. Next,

assume by contradiction that there is some (r, x) ∈ ∂Ω and θ ∈ [0, 1] such that Tθ(r, x) = 0.

Then it holds

|x(t)| = θ|r + H(x)(t)| ≤ α + 2MT < β, t ∈ R

for every r ∈ [−α, α]. Then necessarily r = ±α, otherwise (r, x) /∈ ∂Ω. For the case r = α, we

obtain

r + θH(x)(s − ε) ≥ α − 2MT ≥ K,

so due to the assumption (3.7), it holds

∫ T

0
f (r + θH(x)(s − ε), s) ds ≥ δ.

This means that Tθ(α, x) ̸= 0 and this is a contradiction. For the case r = −α, we obtain a

similar estimate

r + θH(x)(s − ε) ≤ −α + 2MT ≤ −L

and using (3.7) leads to a contradiction. Thus deg(T1, Ω, 0) = deg(T0, Ω, 0).

The identity deg(T0, Ω, 0) = 1 follows from the basic properties of the Leray–Schauder

degree. In fact, the domain Ω can be represented as a Cartesian product of interval and a ball

in the maximum norm. Hence

deg(T0, Ω, 0) = deg ((g, I), Ω, 0) = deg(g, (−α, α), 0)

where g = g(r) =
∫ T

0 f (r, s) ds. Since g(−α) < 0 < g(α) due to the assumption (3.7), we can

define homotopy gθ(r) = θg(r) + (1 − θ)r and we conclude that deg(g, (−α, α), 0) = 1.

Lemma 3.3. Let f : R × R → R, f = f (x, t) be a uniformly Lipschitz continuous function with

respect to x, T-periodic in variable t. Denote by M a Lipschitz constant for function f and let L > M

be a given constant. Then for any ε > 0 such that

ε <
L − M

L
e−LT, (3.9)

(periodic) solutions of problem (2.1) do not intersect each other.

Proof. Let x, y be two (periodic) solutions of (2.1) that intersect at some t0 ∈ [0, T]. Introduce

the norm ∥x∥L := maxt∈[t0,t0+T] e−L(t−t0)|x(t)|. Let z =: x − y and t ∈ [t0, t0 + T]. Using

standard estimates, the Lipschitz continuity of f (and M denotes the Lipschitz constant), the

periodicity of function z and the equality

z(t) =
∫ t

t0

(ẋ − ẏ)(s)ds =
∫ t

t0

f (x(s − ε), s)− f (y(s − ε), s)ds,
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we obtain the following estimation

e−L(t−t0)|z(t)| ≤ M
∫ t

t0

e−L(t−s+ε)e−L(s−ε−t0)|z(s − ε)| ds

≤ M

(∫ t

t0+ε
e−L(−s+ε+t)e−L(s−ε−t0)|z(s − ε)| ds

+
∫ t0+ε

t0

e−L(−s+ε+t)e−L(s−ε−t0)|z(s − ε)| ds

)

≤ M

L

(
e−Lε − e−L(t−t0+ε)

)
∥z∥L

+
∫ t0+ε

t0

eL(s+T−t−ε)e−L(s−ε+T−t0)|z(s − ε + T)| ds

≤
(

M

L
+ εeLT

)
∥z∥L .

Hence z ≡ 0 due to the assumption (3.9) and this concludes the proof of the lemma.

Now, we are ready to prove the following Theorem 3.4. The proof relies on Theorem 3.1,

however, Theorem 3.4 can be proven also using Theorem 3.2.

Theorem 3.4. Let f : R × R → R, f = f (x, t) be a uniformly Lipschitz continuous function with

respect to x, T-periodic in variable t and let x0 be a (T-periodic) solution of problem (2.2). Assume

that there exists a constant η > 0 such that function f is either increasing, or decreasing in variable

x for every t ∈ [0, T] and x ∈ [x0(t)− η, x0(t) + η]. Then there exists ε0 > 0 such that for every

ε ∈ (0, ε0], there exists a locally unique solution xε of problem (2.1) and xε depends continuously on ε.

Proof. Assume that f is increasing in variable x for every t ∈ [0, T] and x ∈ [x0(t)− η, x0(t) + η].

We define a new right-hand-side function

g(x, t) :=





f (x0(t)− η, t) + x − x0(t) + η, (x, t) ∈ (−∞, x0(t)− η)× [0, T] ,

f (x, t), (x, t) ∈ [x0(t)− η, x0(t) + η]× [0, T] ,

f (x0(t) + η, t) + x − x0(t)− η, (x, t) ∈ (x0(t) + η, ∞)× [0, T] .

Since g is increasing in variable x, the function x0 ∈ X is the only periodic solution of equation

ẋ(t) = g (x, t) , t ∈ [0, T]. (3.10)

In fact, since x0 is the periodic solution of (3.10) then necessarily
∫ T

0 g(x0(t), t) dt = 0. Due

to the Lipschitz continuity of g, we know that any other solution y does not cross x0, hence

either y(t) > x0(t) or y(t) < x0(t) for all t ∈ [0, T]. In both cases due to the strict monotonicity

of g, we get
∫ T

0 g(y(t), t) dt ̸= 0 so y cannot be periodic.

The new right-hand-side function g satisfies the assumptions of Theorem 3.1 and thus

there exists ε0 > 0 such that for every ε ∈ (0, ε0], there exists at least one (periodic) solution xε

of problem

ẋ(t) = g (x (t − ε) , t) , t ∈ [0, T],

x(t) = x(T + t), t ∈ [−ε, 0] .
(3.11)

Moreover, all such solutions are uniformly bounded independently of ε. We need to verify that

for some ε0 > 0 sufficiently small, the solution xε of (3.11) is also a solution of original problem

(2.2). More precisely, we prove that there exists some ε0 > 0 such that for every ε ∈ (0, ε0],
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there holds xε ∈ Bη(x0). Assume that this is not true, i.e. there exists a sequence of positive

parameters {εn}n∈N
such that εn → 0 and for every n ∈ N, it holds xεn /∈ Bη(x0). Recall that

the solutions xεn are fixed points of the operator F defined by (3.3) and due to the compactness

of F and the uniform boundedness of functions xεn , the set {xεn}n∈N
is relatively compact in

X. Hence some subsequence converges uniformly to a periodic solution of equation (3.10)

(since εn → 0) that is not equal to x0. This contradicts the uniqueness of periodic solution x0.

Next, we will prove the local uniqueness of periodic solutions of original problem (2.2).

More precisely, the solution xε is unique in the ball Bη(x0) In fact, let y be a periodic solution

that lies in Bη(x0) and is not equal to xε. Then necessarily, there exists some t0 ∈ [0, T]

such that y(t0) = xε(t0), otherwise we would come to
∫ T

0 f (y(t), t) dt ̸= 0 due to the strict

monotonicity of f . We choose some L > M and ε0 > 0 sufficiently small so the inequality

(3.9) is valid for all ε ∈ [0, ε0]. Hence the uniqueness follows from Lemma 3.3. This completes

the proof of the local uniqueness of periodic solutions of problem (2.1) for small ε > 0.

The continuous dependence of solution xε on parameter ε is a consequence of uniform

boundedness of these solutions and compactness of the operator F defined by (3.3).

Remark 3.5. Lemma 3.3 need not to be true if the inequality (3.9) is not valid. In fact, consider

the equation

ẋ(t) = x

(
t − 3π

2

)
.

This equation possesses infinitely many 2π-periodic solutions of form a sin(x + b) for a ∈ R

and b ∈ [0, π) and every two of these solutions intersect each other.

4 Bifurcations

We consider the perturbed equation

ẍ(t) + g(x(t − εµ1)) + εµ2h(t) = 0 (4.1)

where g, h ∈ C3(R, R), µ1, µ2 ∈ R and h(t) is T-periodic.

Theorem 4.1. Assume that there is a T-periodic solution u(t) of equation

ü + g(u) = 0 (4.2)

such that v(t) = u̇(t) is the only T-periodic solution up to a scalar multiple of

v̈ + g′(u(t))v = 0.

If the function

M(α) = µ2

∫ T

0
h(t + α)u̇(t)dt − µ1

∫ T

0
g′(u(t))u̇2(t)dt

has a simple zero α0, i.e., M(α0) = 0 and M′(α0) ̸= 0, then for any ε ̸= 0 small, the equation (4.1)

has the unique T-periodic solution xε(t) that satisfies

sup
t∈R

|xε(t)− u(t − α0)|+ |ẋε(t)− u̇(t − α0)| = O(ε). (4.3)

Proof. Note that the equation (4.1) can be written in the form

ẍ(t) + g(x(t))− εµ1g′(x(t))ẋ(t) + εµ2h(t) = O(ε2).

Hence we can apply the well-known Melnikov theory (see [3, 5]) to obtain the result.
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Remark 4.2. 1. Note that M(α) is T-periodic and

M(α) = −µ1

∫ T

0
ü2(t)dt − µ2

∫ T

0
ḣ(t + α)u(t)dt. (4.4)

2. The function u(t) is embedded into a 1-parametric family of periodic solutions ua(t),

a ∈ (a1, a2) ⊂ R of (4.2) with minimal periods T(a). So ua0(t) = u(t). If T′(a0) ̸= 0 then the

assumption of Theorem 4.1 holds.

3. The existence part of Theorem 4.1 holds if

max
α∈R

M(α)min
α∈R

M(α) < 0.

4. If M(α) ̸= 0, ∀α ∈ R then there is no bifurcation.

5. If x(t) is a solution of (4.1) then x(t + kT), k ∈ Z is also a solution. So we consider in

Theorem 4.1 just α0 ∈ [0, T].

To illustrate the theory, we consider the following example

ẍ(t) + x(t − εµ1) + x3(t − εµ1) + εµ2 cos 2t = 0. (4.5)

So (4.2) is the Duffing equation

U′′(t) + U(t) + U3(t) = 0

possessing a family of periodic solutions

ua(t) = a cn(
√

1 + a2t)

for a > 0 with periods T(a) = 4K(k)√
1+a2

, k = a√
2+2a2

. Note ua(0) = a and u′
a(0) = 0. Here cn is

the Jacobi elliptic function, K(k) is the complete elliptic function of the first kind and k is the

elliptic modulus, see [6]. Moreover, we have

T′(a) =
8(E(k)− K(k))− 4a2K(k)

a
√

1 + a2 (2 + a2)
< 0,

since E(k) ≤ K(k), where E(k) is the complete elliptic function of the second kind. So T(a) is

decreasing from T(0) = 2π to 0, and hence Remark 4.2 2 can be applied. Now T = π, so we

numerically solve T(a) = π to get a0
∼= 2.03284 and then (4.4) has the form

M(α) = −105.817µ1 + 6.17466µ2 sin 2α. (4.6)

Applying Theorem 4.1 we get the following result.

Theorem 4.3. If |µ1| < 0.058352|µ2| and ε ̸= 0 is small, then (4.5) has precisely two π-periodic

solutions orbitally near ua0(t) = 2.03284 cn(2.26549t), i.e., (4.3) holds just for two α0,1, α0,2 ∈ [0, π),

namely for roots of (4.6). If |µ1| > 17.1374|µ2| then (4.5) has no π-periodic solutions orbitally near

ua0(t) for any ε ̸= 0 small, i.e., (4.3) does not hold for any α ∈ R.

We end this paper with extending the above bifurcation results of periodic solutions to

bounded ones.
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Theorem 4.4. Assume that there are x0 and x1 such that g(x0) = g(x1) = 0 and g′(x0) < 0,

g′(x1) < 0. Suppose there is a solution u(t) of (4.2) such that limt→−∞ u(t) = x0 and limt→∞ u(t) =

x1. If the function

M(α) = −µ1

∫
∞

−∞

ü2(t)dt + µ2

∫
∞

−∞

h(t + α)u̇(t)dt (4.7)

has a simple zero α0 then for any ε ̸= 0 small, the equation (4.1) has the unique solution xε(t) that

satisfies (4.3).

Remark 4.5. The points 3, 4 and 5 of Remark 4.2 remain valid for this case.

To illustrate the theory, we consider

ẍ(t)− x(t − εµ1) + x3(t − εµ1) + εµ2 cos 2t = 0. (4.8)

So (4.2) is the Duffing equation

U′′(t)− U(t) + U3(t) = 0

possessing a homoclinic solution

u(t) =
√

2 sech t

to x0 = x1 = 0. Again h(t) = cos 2t. Then the Melnikov function (4.7) is now

M(α) = −28

15
µ1 + 2

√
2π sech πµ2 sin 2α. (4.9)

Applying Theorem 4.1 we get the following result.

Theorem 4.6. If |µ1| <
15π sech π

7
√

2
|µ2| and ε ̸= 0 is small, then (4.8) has precisely two bounded

solutions orbitally near
√

2 sech t, i.e., (4.3) holds just for two α0,1, α0,2 ∈ [0, π), namely for roots of

(4.9). If |µ1| > 15π sech π
7
√

2
|µ2| then (4.8) has no bounded solutions orbitally near

√
2 sech t for any

ε ̸= 0 small, i.e., (4.3) does not hold for any α ∈ R. Note 15π sech π
14
√

2
∼= 0.41065.

Finally, we consider

ẍ(t) + x(t − εµ1)− x3(t − εµ1) + εµ2 cos 2t = 0. (4.10)

So (4.2) is the Duffing equation

U′′(t) + U(t)− U3(t) = 0

possessing a heteroclinic solution

u(t) = tanh(t/
√

2).

to x0 = −1 and x1 = 1. Again h(t) = cos 2t. Then the Melnikov function (4.7) is now

M(α) = −4
√

2

15
µ1 + 2

√
2π csch

√
2πµ2 cos 2α. (4.11)

Applying Theorem 4.1 we get the following result.

Theorem 4.7. If |µ1| < 15
2 π csch

√
2π|µ2| and ε ̸= 0 is small, then (4.10) has precisely two bounded

solutions orbitally near tanh(t/
√

2), i.e., (4.3) holds just for two α0,1, α0,2 ∈ [0, π), namely for roots of

(4.11). If |µ1| > 15
2 π csch

√
2π|µ2| then (4.10) has no bolunded solutions orbitally near tanh(t/

√
2)

for any ε ̸= 0 small, i.e., (4.3) does not hold for any α ∈ R. Note 15
2 π csch

√
2π ∼= 0.554347.
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Acknowledgements

We thank for the referee important comments. M.F. was supported by the Slovak Research and

Development Agency under the contract No. APVV-18-0308 and by the Slovak Grant Agency

VEGA No. 1/0358/20. J.P. was supported by the Slovak Research and Development Agency

under the contract No. APVV-18-0308, in part by grants VEGA No. 1/0358/20 and VEGA No.

1/0339/21.

References

[1] D. D. Bainov, V. Ch. Covachev, Periodic solutions of impulsive systems with a small

delay, J. Phys. A 27(1994), No. 16, 5551–5563. MR1295379; Zbl 0837.34069

[2] S. Chen, J. Shen, Smooth inertial manifolds for neutral differential equations with small

delays, J. Dynam. Differential Equations, published online, 2021. https://doi.org/10.

1007/s10884-021-09993-1

[3] C. Chicone, Ordinary differential equations with applications, Texts in Applied Mathe-

matics, Vol. 34, Springer, New York, 2006. https://doi.org/10.1007/0-387-35794-7;

MR2224508; Zbl 1120.34001

[4] K. Deimling, Nonlinear functional analysis, Springer-Verlag, 1985. https://doi.org/10.

1007/978-3-662-00547-7; MR787404; Zbl 0559.47040

[5] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of

vector fields, Applied Mathematical Sciences, Vol. 42, Springer-Verlag, New York, 1983.

https://doi.org/10.1007/978-1-4612-1140-2; MR709768; Zbl 0515.34001

[6] D. F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, Vol. 80,

Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-3980-0;

MR1007595; Zbl 0689.33001

[7] B. Liu, L. Huang, Existence and uniqueness of periodic solutions for a kind of first order

neutral functional differential equations, J. Math. Anal. Appl. 322(2006), No. 1, 121–132.

https://doi.org/10.1016/jmaa.2005.08.069; MR2238153; Zbl 1101.34054

[8] S. Lu, W. Ge, On the existence of periodic solutions for neutral differential equation,

Nonlinear Anal. 54(2003), No. 7, 1285–1306. https://doi.org/10.1016/S0362-546X(03)

00187-1; MR1995931; Zbl 1037.34064



Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 34, 1–9; https://doi.org/10.14232/ejqtde.2022.1.34 www.math.u-szeged.hu/ejqtde/

Iterative solution of elliptic equations

Philip KormanB 1 and Dieter S. Schmidt2

1University of Cincinnati, Cincinnati OH 45221-0025, USA
2University of Cincinnati, Cincinnati OH 45221-0030, USA

Received 10 February 2022, appeared 23 July 2022

Communicated by Gabriele Bonanno

Abstract. We reduce solution of the Dirichlet problem (x ∈ D ⊂ Rm)

∆u(x) + a(x)u(x) = f (x) in D, u = 0 on ∂D

to iterative solution of a simpler problem

∆u = f (x) in D, u = 0 on ∂D ,

for which one can use either Fourier series or Green’s function method. The method is
suitable for numerical computations, particularly when one uses Newton’s method for
semilinear problems

∆u + g(x, u) = 0 in D, u = 0 on ∂D ,

in dimensions m ≥ 3.

Keywords: iterative method, Lyapunov–Schmidt reduction.

2020 Mathematics Subject Classification: 35J25, 65N80.

1 Introduction

If Green’s function G(x, y) is available for a domain D ⊂ Rm, it is easy to solve numerically

the Dirichlet problem for Laplace’s equation

− ∆u = f (x) in D, u = 0 on ∂D . (1.1)

The solution is u(x) =
∫

D G(x, y) f (y) dy. Mathematica software can compute such integrals

quickly and accurately even in dimensions m > 2, say for m = 5. When solving semilinear

problems

∆u + g(x, u) = 0 in D, u = 0 on ∂D

one usually uses Newton’s method

∆up+1 + g(x, up) + gu(x, up)
(

up+1 − up

)

= 0 in D, up+1 = 0 on ∂D ,

BCorresponding author. Email: kormanp@ucmail.uc.edu
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which requires repeated solution of the linear problems

∆u + a(x)u = f (x) in D, u = 0 on ∂D , (1.2)

with given functions a(x) and f (x). It is very unlikely to have eigenfunctions (or Green’s

function) available for the problem (1.2). Question: can one reduce solving (1.2) to iterative solution

of (1.1)? It turns out that the answer is affirmative for any bounded a(x). We show that either

the iterations

− ∆un+1 = a(x)un − f (x) in D, un+1 = 0 on ∂D (1.3)

converge to the solution of (1.2), or else there is a modified iterative process that converges

to the solution of (1.2). Eigenfunctions of the Laplacian, or Green’s functions, are available

for some domains. For other domains their computation is a one time effort, while solving

nonlinear problems requires repeated solutions of the problem (1.2), particularly in connection

to curve following.

Turning to the description of the method, let 0 < λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues

of −∆ with zero boundary conditions on D (λ1 is simple, while some other eigenvalues may

be repeated), and ϕ1 > 0, ϕ2, ϕ3, . . . be the corresponding eigenfunctions of −∆, forming

an orthonormal set in L2(D), so that
∫

D ϕ2
k dx = 1. Represent f (x) = ∑

∞
k=1 fk ϕk(x), with

fk =
∫

D f (x)ϕk(x) dx. Recall that ∥ f ∥2
L2(D)

=
∫

D f 2(x) dx = ∑
∞
k=1 f 2

k (Parseval’s identity), see

e.g., W. Craig [1] or P. Korman [2]. The solution of (1.1) is

u(x) =
∞

∑
k=1

fk

λk
ϕk(x) ≡ (−∆)−1 ( f (x)) ,

where (−∆)−1 is the common notation for the solution operator of (1.1). By Parseval’s identity

∥(−∆)−1 f ∥2
L2(D) =

∞

∑
k=1

f 2
k

λ2
k

≤ 1

λ2
1

∞

∑
k=1

f 2
k =

1

λ2
1

∥ f ∥2
L2(D) . (1.4)

In case f1 = 0, or f ⊥ ϕ1 in L2, the same argument shows that

∥(−∆)−1 f ∥L2 ≤ 1

λ2
∥ f ∥L2 , (1.5)

and if f1 = f2 = · · · = f j = 0, then

∥(−∆)−1 f ∥L2 ≤ 1

λj+1
∥ f ∥L2 . (1.6)

Proposition 1.1. Assume that a(x) ∈ C(D̄) satisfies

max
D̄

|a(x)| < λ1 . (1.7)

Then the iterates given by (1.3) converge in L2(D), to a solution u(x) ∈ H2(D) of (1.2), for any

f (x) ∈ L2(D).

Proof. Write (1.3) in the form

un+1 = (−∆)−1 [a(x)un − f (x)] .
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Subtracting a similar formula for un, and then using (1.4), we obtain

un+1 − un = (−∆)−1 [a(x) (un − un−1)] ,

∥un+1 − un∥L2 ≤ 1

λ1
∥a(x) (un − un−1) ∥L2 ≤ θ∥un − un−1∥L2 ,

where θ ≡ maxD̄ |a(x)|
λ1

< 1, which implies that {un(x)} is a Cauchy sequence in L2(D), and the

proof follows in view of completeness of L2(D).

If the condition (1.7) is violated then the iterations (1.3) diverge in L2(D), in general, as the

following example shows.

Example 1.2. Let a(x) = a, a constant, with λ1 < a < λ2. For the iterations

− ∆un+1 = aun − f (x) in D, un+1 = 0 on ∂D , (1.8)

write f (x) = ∑
∞
k=1 fk ϕk, and un = ∑

∞
k=1 uk

n ϕk, to obtain

λkuk
n+1 = auk

n − fk .

Denoting δ = a
λ1

> 1, obtain for the k = 1 component

u1
n+1 − u1

n = δ
(

u1
n − u1

n−1

)

,

so that the iterations (1.8) diverge (because the first component diverges).

Now suppose that the condition (1.7) does not hold, but we have

max
D̄

|a(x)| < λ2 (1.9)

instead. Decompose

u(x) = ξ1 ϕ1(x) + U(x) , (1.10)

with
∫

D U(x)ϕ1(x) dx = 0, i.e., u(x) is the sum of the first harmonic of u(x), and the projection

of u(x) on ϕ⊥
1 , the orthogonal complement of ϕ1 in L2(D). Now the iterates given by (1.3)

diverge, in general, but we shall show that both ξ1 and the U part can be obtained by using

two converging iteration processes. (Unless a(x) is a constant, the harmonics do not decouple,

making the problem nontrivial.) Then we extend the method for any a(x) bounded on D̄.

2 The case maxD̄ |a(x)| < λ2

Let P denote the projection operator on ϕ⊥
1 in L2(D) (Pv = v −

(∫

D vϕ1 dx
)

ϕ1). Then one can

write U(x) = Pu(x) in the decomposition (1.10). Similarly, decompose f (x) = µ1ϕ1 + e(x),

with e(x) = P f (x). Applying the operator P to the equation (1.2) gives

∆U + P [a(x) (ξ1ϕ1(x) + U(x))] = e(x) in D, U = 0 on ∂D . (2.1)

Projection of (1.2) onto ϕ1 gives

∫

D
(∆u + a(x)u) ϕ1 dx =

∫

D
f (x)ϕ1 dx = µ1 . (2.2)
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Clearly, u(x) = ξ1 ϕ1(x) + U(x) is a solution of (1.2) if and only if (2.1) and (2.2) hold. The

decomposition (2.1), (2.2) is similar to the Lyapunov–Schmidt reduction, see e.g., L. Niren-

berg [5].

We now modify the problem (2.1): find V(x) ∈ ϕ⊥
1 ∩ H2(D) solving

∆V + P [a(x)V(x)] = e(x) in D, V = 0 on ∂D . (2.3)

Proposition 2.1. Assume that the condition (1.9) holds. Then the problem (2.3) can be solved by the

converging iterations Vn(x) ∈ ϕ⊥
1 ∩ H2(D)

− ∆Vn+1 = P [a(x)Vn(x)]− e(x) in D, Vn+1 = 0 on ∂D , (2.4)

beginning with V0 = 0.

Proof. The iterates belong to ϕ⊥
1 , since the right hand sides of (2.4) do. Subtracting the equa-

tions for two consecutive iterates, and then using (1.5) and ∥Pv∥L2 ≤ ∥v∥L2 , we obtain from

(2.4):

Vn+1 − Vn = (−∆)−1P [a(x) (Vn − Vn−1)] ,

∥Vn+1 − Vn∥L2 ≤ 1

λ2
∥a(x) (Vn − Vn−1) ∥L2 ≤ θ∥Vn − Vn−1∥L2 ,

where θ ≡ maxD̄ |a(x)|
λ2

< 1 by (1.9), and the proof follows.

The difference W(x) = U(x)− V(x) satisfies

∆W + P [a(x)W(x)] = −ξ1P [a(x)ϕ1] in D, W = 0 on ∂D .

It follows that W = ξ1W̄, where W̄ is the unique solution of

∆W + P [a(x)W(x)] = −P [a(x)ϕ1] in D, W = 0 on ∂D , (2.5)

which in view of Proposition 2.1 is the limit of the iterations

− ∆Wn+1 = P [a(x)Wn(x)] + P [a(x)ϕ1] in D, Wn+1 = 0 on ∂D , (2.6)

starting with W0 = 0.

We conclude that U = V + ξ1W̄, so that u = ξ1 ϕ1 + U = ξ1 ϕ1 + V + ξ1W̄, and it remains

to determine the value of ξ1. Substitute this u(x) into (1.2)

−λ1ξ1 ϕ1 + ∆V + ξ1∆W̄ + a(x) (ξ1ϕ1 + V + ξ1W̄) = f (x) .

Multiplication by ϕ1 and integration over D gives a linear equation for ξ1, with the solution

(observe that both ∆V and ∆W̄ are in ϕ⊥
1 )

ξ̄1 =

∫

D f ϕ1 dx −
∫

D a(x)Vϕ1 dx

−λ1 +
∫

D a(x)ϕ2
1 dx +

∫

D a(x)W̄ϕ1 dx
. (2.7)

Then the solution of (1.2) is

u(x) = ξ̄1 ϕ1 + V + ξ̄1W̄ . (2.8)



Iterative solution of elliptic equations 5

Remark 2.2. In case maxD a(x) > λ1, it is possible to have resonance, when the problem

∆u + a(x)u = 0 in D, u = 0 on ∂D ,

has a nontrivial solution. In such a case the denominator in (2.7) is zero, and the problem (1.2)

is not solvable for general f (x).

Example 2.3. As a feasibility check we solved the problem

u′′(x) +

(

2 +
1

3
x

)

u(x) = x2 for 0 < x < π, u(0) = u(π) = 0 . (2.9)

Here λ1 = 1, λ2 = 4, so that a(x) = 2 + 1
3 x satisfies λ1 < a(x) < λ2 on (0, π). Calculate

ϕ1(x) =
√

2
π sin x, e(x) = f (x)−

(∫ π
0 f (x)ϕ1(x) dx

)

ϕ1(x), with f (x) = x2. We achieved good

accuracy performing twelve iterations for both (2.4) and (2.6). The graph of the solution of

(2.9) was identical to the one produced by Mathematica’s NDSolve command.

3 The general a(x)

We now prove directly that the formulas (2.3), (2.5), (2.7), (2.8) give the solution of (1.2), and

then generalize for any bounded a(x).

Theorem 3.1. Assume that the condition (1.9) holds. Then the formulas (2.3), (2.5), (2.7), (2.8) give

the solution of (1.2).

Proof. We will show that u(x) = ξ̄1ϕ1(x) +U(x), with U(x) = V + ξ̄1W̄ satisfies (2.1) and (2.2)

(where V and W̄ are the unique solutions (2.3) and (2.5) respectively, and ξ̄ is determined by

(2.7)). Indeed,

∆U + P
[

a(x)
(

ξ̄1ϕ1(x) + U(x)
)]

= ∆V + ξ̄1∆W̄ + P
[

a(x)
(

ξ̄1ϕ1(x) + V + ξ̄1W̄
)]

= ∆V + P [a(x)V] + ξ̄1

{

∆W̄ + P [a(x)W̄] + P [a(x)ϕ1]
}

= e(x) ,

verifying (2.1). Using (2.7) we obtain

∫

D
(∆u + a(x)u) ϕ1 dx = −λ1ξ̄1 +

∫

D
a(x)

[

ξ̄1 ϕ1 + V + ξ̄1W̄
]

ϕ1 dx

= ξ̄1

[

−λ1 +
∫

D
a(x)ϕ2

1 dx +
∫

D
ā(x)Wϕ1 dx

]

+
∫

D
a(x)Vϕ1 dx =

∫

D
f ϕ1 dx ,

justifying (2.2).

Turning to any a(x) ∈ C(D̄), we can find the first index j so that

max
D̄

|a(x)| < λj+1 . (3.1)

Decompose

u(x) =
j

∑
i=1

ξi ϕi(x) + U(x) , (3.2)
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with
∫

D U(x)ϕi(x) dx = 0 for all i = 1, . . . , j. Let P denote the projection operator on the or-

thogonal complement of the first j eigenfunctions, i.e., the projection on Span
{

ϕ1, ϕ2, . . . , ϕj

}⊥

in L2(D). Decompose f (x) = ∑
j
i=1 µi ϕi + e(x), with e(x) = P f (x). Applying P to the equation

(1.2) gives

∆U + P

[

a(x)

(

j

∑
i=1

ξi ϕi(x) + U(x)

)]

= e(x) in D, U = 0 on ∂D . (3.3)

We now modify the problem (3.3): find V(x) ∈ Span
{

ϕ1, ϕ2, . . . , ϕj

}⊥
solving

∆V + P [a(x)V(x)] = e(x) in D, V = 0 on ∂D . (3.4)

The following proposition is proved the same way as Proposition 2.1.

Proposition 3.2. Under the condition (3.1) the problem (3.4) can be solved by the converging iterations

Vn(x) ∈ Span
{

ϕ1, ϕ2, . . . , ϕj

}⊥

− ∆Vn+1 = P [a(x)Vn(x)]− e(x) in D, Vn+1 = 0 on ∂D , (3.5)

beginning with V0 = 0.

The difference W(x) = U(x)− V(x) ∈ Span
{

ϕ1, ϕ2, . . . , ϕj

}⊥
satisfies

∆W + P [a(x)W(x)] = −
j

∑
i=1

ξiP [a(x)ϕi] in D, W = 0 on ∂D .

By linearity W = ∑
j
i=1 ξiW̄i, where W̄i is the unique solution of

∆W + P [a(x)W(x)] = −P [a(x)ϕi] in D, W = 0 on ∂D , (3.6)

which in view of Proposition 3.2 is the limit of the iterations

− ∆Wn+1 = P [a(x)Wn(x)] + P [a(x)ϕi] in D, Wn+1 = 0 on ∂D , (3.7)

starting with W0 = 0. It follows that

u =
j

∑
i=1

ξi ϕi + U =
j

∑
i=1

ξi ϕi + V +
j

∑
i=1

ξiW̄i , (3.8)

and it remains to determine the values of ξi. Substitute this u(x) into (1.2)

−
j

∑
i=1

λiξi ϕi + ∆V +
j

∑
i=1

ξi∆W̄i + a(x)

(

j

∑
i=1

ξi ϕi + V +
j

∑
i=1

ξiW̄i

)

= f (x) .

Multiplication by ϕk and integration over D gives a j × j system of linear equations for ξi’s

(k = 1, 2, . . . , j)

− λkξk +
j

∑
i=1

ξi

[

∫

D
a(x) (ϕi + W̄i) ϕk dx

]

=
∫

D
( f (x)− a(x)V) ϕk dx . (3.9)

This system has a unique solution, provided that (1.2) is solvable. Using the solution of (3.9)

in (3.8) provides the solution of (1.2).
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So that in case the condition (3.1) holds, the algorithm for solving (1.2) is as follows.

1. Solve the problem (3.4) by using the iterates (3.5).

2. Solve j problems (3.6) by using the iterates (3.7) for each problem.

3. Solve the j × j linear algebraic system (3.9) to find ξ̄1, ξ̄2, . . . , ξ̄ j.

4. The solution is u(x) = ∑
j
i=1 ξ̄i ϕi + V + ∑

j
i=1 ξ̄iW̄i.

4 Semilinear Poisson equation in higher dimensions

Elliptic PDE’s, like the problem (1.2), are rarely solved numerically in dimensions m > 2.

Using finite differences in the dimension m = 4 with 20 subdivision points along each axis

(which is not many), requires solving a system of 204 = 160000 linear equations. Richard Bell-

man coined a phrase “the curse of dimensionality” to describe the computational challenges in

higher dimensions. Since then there has been a tremendous advance in computer power and

software (e.g., parallel computations). In particular, a system of 204 = 160000 linear equations

nowadays is not considered to be very large. However the accuracy will be low with only

20 subdivision points along each axis, so that challenges remain. Another problem in higher

dimensions is representation of solutions. Once a solution in dimension m = 4 is computed,

should the result be presented as a graph in 5 dimensions, or as a 4-dimensional table? The

iterative method developed above addresses both issues. Represent f (x) = ∑
∞
k=1 fk ϕk(x), with

the coefficients fk =
∫

D f (y)ϕk(y) dy. The solution of (1.1) is

u(x) =
∞

∑
k=1

fk

λk
ϕk(x) , with fk =

∫

D f (y)ϕk(y) dy . (4.1)

Replacing fk’s in the sum by their expressions as integrals, one can express the solution of

(1.1) as

u(x) =
∫

D
G(x, y) f (y) dy , (4.2)

with Green’s function

G(x, y) =
∞

∑
k=1

ϕk(x)ϕk(y)

λk
. (4.3)

However, it is easier to use the form (4.1) rather than (4.2) because Mathematica cannot handle

numerical integration in y variables, when x variables are present (even with the delayed

assignment). This is perfectly understandable, because addition of thousands of functions

(obtained by interpolation) is an enormous task. One can introduce a mesh, and compute

(4.2) in parallel at each point, using as many processors as there are points on the mesh, but

this “industrial strength” computational effort is beyond our scope. However, the usefulness

of our method probably lies in this direction.

We did try the eigenfunction expansion in both two and three dimensions, using the first

50 eigenfunctions. Conclusion: the method is slow. The method requires either the knowledge

or calculation of the eigenvalues and the eigenfuctions of the Laplacian. On a rectangle R =

[0, a]× [0, b]× [0, c] in three dimensions, the eigenfunctions (vanishing on ∂R) are

ϕ = c0 sin
mπ

a
x sin

nπ

b
y sin

pπ

c
z , c0 =

√

8

abc
,
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with
∫

R ϕ2 dxdydz = 1. The corresponding eigenvalues are

λ = π2

(

m2

a2
+

n2

b2
+

p2

c2

)

.

The order and multiplicity of eigenvalues depends on a particular choice of a, b, c. Let us take

a = b = 1, c =
√

2. Then λ = π2
(

m2 + n2 + p2

2

)

. The order of eigenvalues is determined by

(m, n, p) ≡ m2 + n2 + p2

2 .

a. (1, 1, 1) gives λ1 = 5
2 π2, ϕ1 = c0 sin πx sin πy sin π√

2
z.

b. (1, 1, 2) gives λ2 = 4π2, ϕ2 = c0 sin πx sin πy sin 2π√
2
z.

c. (2, 1, 1) and (1, 2, 1) give a repeated eigenvalue λ3 = λ4 = 11
2 π2, with the eigenfunctions

ϕ3 = c0 sin 2πx sin πy sin π√
2
z and ϕ4 = sin πx sin 2πy sin π√

2
z, and so on.

2 4 6 8 10
ξ1

0.1

0.2

0.3

0.4

μ1

Figure 4.1: The solution curve µ1 = µ1(ξ1) of the problem (4.4), oscillating around the ξ1-axis.

We wrote a code, allowing us to calculate a large number of eigenfunctions automatically.

We solved a number of examples for the problem (1.2), obtaining the expected results, but the

computations were slow.

Example 4.1. We performed curve-following for the following semilinear problem on a paral-

lelepiped Ω = (0, 1)× (0, 1)× (0,
√

2) in three dimensions

∆u + λ1u + sin u = µ1 ϕ1(x, y, z) in Ω, u = 0 on ∂Ω , (4.4)

see Figure 4.1. Here λ1 = 5
2 π2 is the principal eigenvalue of the Laplacian on Ω with zero

boundary condition, so that the problem is at resonance. Decompose the solution as u(x) =

ξ1ϕ1(r) + U(x, y, z), with U(x, y, z) ∈ ϕ⊥
1 in L2(Ω), where ϕ1 =

√

8√
2

sin πx sin πy sin π√
2
z.

The following facts follow from the results proved in [3] and [4]. The solution set of (4.4) is

exhausted by a single continuous curve (u(x, y, z), µ1)(ξ1). Moreover µ1(ξ1) → 0 as ξ1 → ∞,

while µ1(ξ1) changes sign infinitely many times. In particular, the problem (4.4) has infinitely

many solutions at µ1 = 0. Performing the curve following required solving linear problems of

the type (1.2) repeatedly. We used eigenfunction expansions, and it took long time to compute

the solution curve in Figure 4.1.

Mathematica’s NDSolve command can also handle the problem (1.2) in two and three di-

mensions. It appears that the accuracy is excellent in two dimensions, but not in dimension

three.
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Abstract. In this paper we study planar polynomial Kolmogorov’s differential systems

Xµ

{

ẋ = x f (x, y; µ),

ẏ = yg(x, y; µ),

with the parameter µ varying in an open subset Λ ⊂ RN . Compactifying Xµ to the
Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ, that we
assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for
all µ ∈ Λ. We are interested in the cyclicity of Γ inside the family {Xµ}µ∈Λ, i.e., the
number of limit cycles that bifurcate from Γ as we perturb µ. In our main result we
define three functions that play the same role for the cyclicity of the polycycle as the
first three Lyapunov quantities for the cyclicity of a focus. As an application we study
two cubic Kolmogorov families, with N = 3 and N = 5, and in both cases we are able
to determine the cyclicity of the polycycle for all µ ∈ Λ, including those parameters for
which the return map along Γ is the identity.

Keywords: limit cycle, polycycle, cyclicity, asymptotic expansion.

2020 Mathematics Subject Classification: 34C07, 34C20, 34C23.

1 Introduction and main results

The present paper is motivated by the results obtained by Gasull, Mañosa and Mañosas [8]

with regard to the stability of an unbounded polycycle Γ in the Kolmogorov’s polynomial

differential systems
{

ẋ = x f (x, y),

ẏ = yg(x, y).

These systems are widely used in ecology to describe the interaction between two populations,

see [18] for instance. That being said, the stability of the polycycle is not the main issue to

BCorresponding author. Email: jordi.villadelprat@urv.cat
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which this paper is addressed. Indeed, assuming that the coefficients of the polynomials f

and g depend analytically on a parameter µ, we are interested in the cyclicity of the polycycle

(see Definition 1.2 below), which roughly speaking is the number of limit cycles that can

bifurcate from Γ as we perturb µ. In our main result (Theorem A) we define three functions,

d1(µ), d2(µ) and d3(µ), that play the same role for the cyclicity of the polycycle as the first

three Lyapunov quantities for the cyclicity of a focus. Recall that the displacement map can

be analytically extended to a focus and that the Lyapunov quantities are the coefficients of

its Taylor’s series. On the contrary the displacement map has no smooth extension to a

polycycle. At best one can hope that it has some asymptotic expansion. This is indeed the

case for the polycycle that we study in the present paper and in order to obtain it we strongly

rely in our previous results [14–16] about the asymptotic expansion of the Dulac map of

an unfolding of hyperbolic saddles. The principal part of the asymptotic expansion of the

displacement map is given in a monomial scale containing a deformation of the logarithm,

the so-called Ecalle–Roussarie compensator, and the remainder is uniformly flat with respect

to the parameters. The functions di(µ) in Theorem A are essentially the coefficients of the

first three monomials in the principal part, which explains their relation with the cyclicity.

For other results regarding the cyclicity of polycycles and more general limit periodic sets the

reader is referred to [5, 6, 11, 22] and references therein.

Most of the work on planar polynomial differential systems, including this paper, is related

to the questions surrounding Hilbert’s 16th problem (see for instance [10,21,23] and references

therein) and its various weakened versions. In this setting it is worth to mention that, using

a compactness argument, Roussarie [20] showed that to prove the existential part of Hilbert’s

16th problem in the family Pn of all polynomial vector fields of degree ⩽ n it is sufficient to

show that each limit periodic set in Pn has finite cyclicity.

Definition 1.1. Let X be a vector field on R2 (or S2). A graphic Γ for X is a compact, non-

empty invariant subset which is a continuous image of S1 and consists of a finite number

of isolated singular points {p1, . . . , pm, pm+1 = p1} (not necessarily distinct) and compatibly

oriented separatrices {s1, . . . , sm} connecting them (i.e., such that the α-limit set of sj is pj and

the ω-limit set of sj is pj+1). A graphic is said to be hyperbolic if all its singular points are

hyperbolic saddles. A polycyle is a graphic with a return map defined on one of its sides.

The polycycle that we aim to study is unbounded. In order to investigate the behaviour

of the trajectories of a polynomial vector field Y near infinity we can consider its Poincaré

compactification p(Y), see [2, §5] for details, which is an analytically equivalent vector field

defined on the sphere S2. The points at infinity of R2 are in bijective correspondence with

the points of the equator of S2, that we denote by ℓ∞. Furthermore, the trajectories of p(Y)

in S2 are symmetric with respect to the origin and so it suffices to draw its flow in the closed

northern hemisphere only, the so called Poincaré disc.

Definition 1.2. Let {Xµ}µ∈Λ be a family of vector fields on S2 and suppose that Γ is a polycyle

for Xµ0 . We say that Γ has finite cyclicity in the family {Xµ}µ∈Λ if there exist κ ∈ N, ε > 0 and

δ > 0 such that any Xµ with ∥µ − µ0∥ < δ has at most κ limit cycles γi with distH(Γ, γi) < ε.

The minimum of such κ when ε and δ go to zero is called the cyclicity of Γ in {Xµ}µ∈Λ and

denoted by Cycl
(

(Γ, Xµ0), Xµ

)

.

In this paper we consider the family of vector fields {Xµ}µ∈Λ given by

Xµ := f (x, y; µ)x∂x + g(x, y; µ)y∂y (1.1)
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ℓ∞

s3

s2

s1

Γ

Figure 1.1: Placement of the hyperbolic saddles and the polycycle Γ in the

Poincaré disc.

where Λ is an open subset of RN and f and g are polynomials in x and y of degree n ∈ N with

the coefficients depending analytically on µ. The standing hypothesis on the family {Xµ}µ∈Λ

are the following:

H1 f (z, 0; µ) > 0, g(0, z; µ) < 0 and
(

fn − gn

)

(1, z; µ) < 0 for all z > 0 and µ ∈ Λ.

H2 λ1(µ) :=
( fn

gn− fn

)

(1, 0; µ), λ2(µ) :=
( fn−gn

gn

)

(0, 1; µ) and λ3(µ) := −
( g

f

)

(0, 0; µ), are well

defined and strictly positive for all µ ∈ Λ.

Here, and in what follows, fn and gn denote, respectively, the homogeneous part of degree n

of f and g. Conditions H1 and H2 guarantee that, after compactifying the polynomial vector

field Xµ to the Poincaré disc, the boundary of the first quadrant is a polycyle with three

hyperbolic saddles, see Figure 1.1,

s1 := {y = 0} ∩ ℓ∞, s2 := {x = 0} ∩ ℓ∞ and s3 := (0, 0).

From now on we shall denote this polycyle by Γ, that we remark is a compact subset of the

Poincaré disc. The hyperbolicity ratios of the saddles at its vertices are precisely the ones

given in H2. We also define:

L11(u) = exp

(

∫ u

0

((

f−g
f

)

(1/z, 0) + 1
λ1

)

dz
z

)

, L12(u) = exp

(

∫ u

0

((

fn

fn−gn

)

(1, z) + λ1

)

dz
z

)

,

L21(u) = exp

(

∫ u

0

((

gn

gn− fn

)

(z, 1) + 1
λ2

)

dz
z

)

, L22(u) = exp

(

∫ u

0

((

g− f
g

)

(0, 1/z) + λ2

)

dz
z

)

,

L31(u) = exp

(

∫ u

0

((

g
f

)

(z, 0) + λ3

)

dz
z

)

, L32(u) = exp

(

∫ u

0

(

(

f
g

)

(0, z) +
1

λ3

)

dz
z

)

together with

M1(u) = −L11(u)

u
∂2

(

g

f

)

(1/u, 0) and M3(u) = L31(u) ∂2

(

g

f

)

(u, 0). (1.2)
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We point out that all these functions depend on the parameter µ. This dependence is omitted

for the sake of shortness when there is no risk of confusion.

We can now state our main result, which is addressed to the cyclicity of the polycycle Γ

inside the polynomial family {Xµ}µ∈Λ. More formally, we should refer to the compactified

family {p(Xµ)}µ∈Λ of vector fields on S2 but for the simplicity in the exposition we commit

an abuse of language by identifying both families. It is clear that the number of limit cycles

of p(Xµ) and Xµ is the same. In the statement R( · ; µ) stands for the return map of the

vector field Xµ around the polycycle Γ (see Figure 1.1) and we use the notion of functional

independence that is given in Definition 2.8.

Theorem A. Consider the family of Kolmogorov polynomial vector fields {Xµ}µ∈Λ given in (1.1) and

verifying the assumptions H1 and H2. Then, for any µ0 ∈ Λ, the following assertions hold with regard

to the cyclicity of the polycycle Γ inside the family:

(a) Cycl
(

(Γ, Xµ0), Xµ

)

= 0 if d1(µ) := 1 − λ1λ2λ3 does not vanish at µ0.

(b) Cycl
(

(Γ, Xµ0), Xµ

)

⩾ 1 if d1 vanishes and is independent at µ0 and R( · ; µ0) ̸≡ Id.

(c) Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 1 if d2(µ) := log

(

(

L12
L21

)λ2
(

L31
L11

)λ1λ2 L22
L32

)

(1) does not vanish at µ0.

(d) Cycl
(

(Γ, Xµ0), Xµ

)

⩾ 2 if d1 and d2 vanish and are independent at µ0 and R( · ; µ0) ̸≡ Id.

In case that λ1(µ0) < 1, λ2(µ0) > 1 and λ3(µ0) > 1 then the following assertions hold as well:

(e) Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 2 if d3(µ) := M̂3(λ3, 1)L11(1)− M̂1

(

1
λ1

, 1
)

L31(1) does not vanish at µ0.

( f ) Cycl
(

(Γ, Xµ0), Xµ

)

⩾ 3 if d1, d2 and d3 vanish and are independent at µ0 and R( · ; µ0) ≢ Id.

Let us make some remarks with regard to the regularity of the functions d1, d2 and d3

defined in the statement. On account of the hypothesis H1 and H2 it is evident that d1 is

analytic on the whole parameter space Λ. On the other hand, d2 is defined in terms of the

functions µ 7→ Lij(1), which in turn are given by some (apparently) improper integrals. By

applying the Weierstrass Division Theorem one can easily show that each Lij(1) is an analytic

strictly positive function, so that d2 is also analytic on Λ. Finally, d3 is given by means of a

sort of incomplete Mellin transform (which is defined in Proposition 2.5) of the functions M1

and M3 in (1.2). One can show that the hypothesis H1 and H2 imply that each Mi(u; µ)

is analytic on (−ε,+∞) × Λ for some ε > 0. Taking this into account, by applying (d) in

Proposition 2.5 it follows that d3 is a meromorphic function on Λ having poles only at those

µ0 such that 1/λ1(µ0) ∈ N or λ3(µ0) ∈ N.

Also with regard to the statement of Theorem A, the assertions (e) and ( f ) hold under the

assumptions λ1(µ0) < 1, λ2(µ0) > 1 and λ3(µ0) > 1. However, one can always reduce to this

case provided that λi(µ0) ̸= 1 for i = 1, 2, 3 by means of a rescaling of time and a projective

change of coordinates that permute conveniently the three singular points of the polycycle.

The paper [8] constitutes an important previous contribution to the study of Kolmogorov

polycycles that should be referred. Indeed, following our notations and definitions, the au-

thors prove (see [8, Theorem 1]) that if d1(µ0) = 0 then the return map of Xµ0 around the

polycycle Γ is of the form

R(s; µ0) = ∆s + o(s), (1.3)

cf. (b) in Theorem 2.6, and they also provide the explicit expression of the coefficient ∆.

This coefficient is given as the limit of a sum of three improper integrals, which computed
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separately diverge. An easy manipulation of the integrals shows that these divergences cancel

each other, yielding to the expression of d2 given in Theorem A. It is important to remark

that the expansion in (1.3) can not be used to obtain an upper bound for Cycl
(

(Γ, Xµ0), Xµ

)

because the remainder is not uniform with respect to the parameters. It is possible, however,

to use it to obtain lower bounds. In this direction the authors prove in [8, Corollary 5] that

if d1 vanishes and is independent at µ0 and d2(µ0) ̸= 0 then Cycl
(

(Γ, Xµ0), Xµ

)

⩾ 1. Since

d2(µ0) ̸= 0 implies R( · ; µ0) ̸≡ Id by Theorem 2.6, this lower bound follows by applying (b)

in Theorem A.

The paper is organised in the following way. Section 2 is entirely devoted to prove Theo-

rem A and for that purpose we rely in our previous results about the asymptotic expansion of

the Dulac map of a hyperbolic saddle that we obtain in [14–16]. For this reason, before starting

the proof of Theorem A we first state these results and introduce the necessary definitions.

The asymptotic expansion of the displacement map near the polycycle is given in Theorem 2.6

and constitutes the fundamental tool in order to prove Theorem A. As a by-product of this ex-

pansion we obtain a method to study the stability of the polycycle, see Remark 2.7. Section 3

is addressed to the applications. The first one is Theorem 3.1, where we consider a Kol-

mogorov’s cubic system depending on three parameters that was previously studied in [8].

The authors in that paper show that there exist parameters for which the cyclicity of the poly-

cycle is at least 1. In the present paper we obtain the exact cyclicity of all the parameters in

the family (that can be 0 or 1), including the case in which the return map along the polycycle

is the identity. We also show that there exists exactly one singularity in the first quadrant,

which can be a focus or a center, and we compute its cyclicity. Finally we prove that it is not

possible a simultaneous bifurcation of limit cycles from the polycycle and that singularity. We

give our second application in Theorem 3.2, where we consider a Kolmogorov’s cubic system

depending on five parameters. In this case we also provide the exact cyclicity of Γ for all the

parameters in the family, which again can be 0 or 1.

2 Proof of Theorem A

In order to tackle the proof of Theorem A we will appeal to some previous results from [14–16]

about the asymptotic expansion of the Dulac map. For reader’s convenience we gather these

results in Proposition 2.4. To this end it is first necessary to introduce some new notation and

definitions.

Setting ν̂ := (λ, ν) ∈ Ŵ := (0,+∞)× W with W an open set of RN , we consider the family

of vector fields {Xν̂}ν̂∈Ŵ with

Xν̂(x1, x2) = x1P1(x1, x2; ν̂)∂x1
+ x2P2(x1, x2; ν̂)∂x2 (2.1)

where

• P1 and P2 belong to C ω(U ×Ŵ) for some open set U of R2 containing the origin,

• P1(x1, 0; ν̂) > 0 and P2(0, x2; ν̂) < 0 for all (x1, 0), (0, x2) ∈ U and ν̂ ∈ Ŵ,

• λ = − P2(0,0;ν)
P1(0,0;ν)

.

Thus, for all ν̂ ∈ Ŵ, the origin is a hyperbolic saddle of Xν̂ with the separatrices lying in the

axis. We point out that here the hyperbolicity ratio of the saddle is an independent parameter,

although in the proof of Theorem A we will have λ = λ(ν). The reason for this is that the
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0 s

σ1

Σ1

x2
σ1(s)

ϕ( · , σ1(s))

σ2(D(s))

Σ2

x1

σ2

0 D(s)

Figure 2.1: Definition of the Dulac map D( · ; ν̂), where ϕ(t, p; ν̂) is the solution

of Xν̂ passing through the point p ∈ U at time t = 0.

hyperbolicity ratio turns out to be the ruling parameter in our results and, besides, having it

uncoupled from the rest of parameters simplifies the notation in the statements. Moreover, for

i = 1, 2, we consider a C ω transverse section σi : (−ε, ε)× Ŵ −→ Σi to Xν̂ at xi = 0 defined by

σi(s; ν̂) =
(

σi1(s; ν̂), σi2(s; ν̂)
)

such that σ1(0, ν̂) ∈ {(0, x2); x2 > 0} and σ2(0, ν̂) ∈ {(x1, 0); x1 > 0} for all ν̂ ∈ Ŵ. We denote

the Dulac map of Xν̂ from Σ1 to Σ2 by D( · ; ν̂), see Figure 2.1. The asymptotic expansion of

D(s; ν̂) at s = 0 consists of a remainder and a principal part. The principal part is given in

a monomial scale that contains a deformation of the logarithm, the so-called Ecalle-Roussarie

compensator, whereas the remainder has good flatness properties with respect to the param-

eters. We next give precise definitions of these key notions.

Definition 2.1. The function defined for s > 0 and α ∈ R by means of

ω(s; α) =

{

s−α−1
α if α ̸= 0,

− log s if α = 0,

is called the Ecalle–Roussarie compensator.

Definition 2.2. Consider an open subset U ⊂ Ŵ ⊂ RN+1. We say that a function ψ(s; ν̂)

belongs to the class C ∞
s>0(U) if there exist an open neighbourhood Ω of

{(s, ν̂) ∈ R
N+2; s = 0, ν̂ ∈ U} = {0} × U

in RN+2 such that (s, ν̂) 7→ ψ(s; ν̂) is C ∞ on Ω ∩
(

(0,+∞)× U
)

.

More formally, the definition of C ∞
s>0(U) must be thought in terms of germs with respect

to relative neighbourhoods of {0} × U in (0,+∞)× U. In doing so C ∞
s>0(U) becomes a ring.

We can now introduce the notion of flatness that we shall use in the sequel.

Definition 2.3. Consider an open subset U ⊂ Ŵ ⊂ RN+1. Given L ∈ R and ν̂0 ∈ U, we say

that a function ψ(s; ν̂) ∈ C ∞
s>0(U) is L-flat with respect to s at ν̂0, and we write ψ ∈ F∞

L (ν̂0), if

for each ℓ = (ℓ0, ℓ1, . . . , ℓN+1) ∈ Z
N+2
≥0 there exist a neighbourhood V of ν̂0 and C, s0 > 0 such

that
∣

∣

∣

∣

∣

∂|ℓ|ψ(s; ν̂)

∂sℓ0 ∂ν̂ℓ1
1 · · · ∂ν̂

ℓN+1

N+1

∣

∣

∣

∣

∣

⩽ CsL−ℓ0 for all s ∈ (0, s0) and ν̂ ∈ V.

If W is a (not necessarily open) subset of U then define F∞
L (W) :=

⋂

ν̂0∈W F∞
L (ν̂0).
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Apart from the remainder and the monomial order, the most important ingredient for our

purposes is the explicit expression of the coefficients in the asymptotic expansion. In order

to give them we introduce next some additional notation, where for the sake of shortness the

dependence on ν̂ = (λ, ν) is omitted. We define the functions:

L1(u) := exp
∫ u

0

(

P1(0, z)

P2(0, z)
+

1

λ

)

dz

z
L2(u) := exp

∫ u

0

(

P2(z, 0)

P1(z, 0)
+ λ

)

dz

z

M1(u) := L1(u)∂1

(

P1

P2

)

(0, u) M2(u) := L2(u)∂2

(

P2

P1

)

(u, 0)

(2.2)

On the other hand, for shortness as well, we use the compact notation σijk for the kth derivative

at s = 0 of the jth component of σi(s; ν̂), i.e.,

σijk(ν̂) := ∂k
s σij(0; ν̂).

Taking this notation into account we also introduce the following real values, where once

again we omit the dependence on ν̂:

S1 :=
σ112

2σ111
− σ121

σ120

(

P1

P2

)

(0, σ120)−
σ111

L1(σ120)
M̂1(1/λ, σ120)

S2 :=
σ222

2σ221
− σ211

σ210

(

P2

P1

)

(σ210, 0)− σ221

L2(σ210)
M̂2(λ, σ210).

(2.3)

Here M̂i stands for a sort of incomplete Mellin transform of Mi that will be defined by Propo-

sition 2.5 below. We can now state the following result, which gathers Theorem A and Theo-

rem 4.1 in [16] and that it will constitute the key tool in order to prove the main result in the

present paper.

Proposition 2.4. Let D(s; ν̂) be the Dulac map of the hyperbolic saddle (2.1) from Σ1 and Σ2 and

define

∆0(ν̂) =
σλ

111σ120

Lλ
1 (σ120)

L2(σ210)

σ221σλ
210

, ∆1(ν̂) = ∆0λS1 and ∆2(ν̂) = −∆2
0S2,

where ν̂ = (λ, ν) ∈ Ŵ = (0,+∞) × W. Then ∆0 is analytic and strictly positive on Ŵ, ∆1 is

meromorphic on Ŵ with poles only at λ ∈ 1
N

and ∆2 is meromorphic on Ŵ with poles only at λ ∈ N.

Moreover the following assertions hold:

(1) If λ0 < 1 then D(s; ν̂) = sλ
(

∆0(ν̂)+∆2(ν̂)sλ +F∞
ℓ
({λ0}×W)

)

for any ℓ ∈
[

λ0, min(2λ0, 1)
)

.

(2) If λ0 = 1 then D(s; ν̂) = sλ
(

∆0(ν̂) + ∆
λ0(ω; ν̂)s +F∞

ℓ
({λ0} × W)

)

for any ℓ ∈ [1, 2), where

∆
λ0(ω; ν̂) = ∆1(ν̂) + ∆2(ν̂)(1 + αω),

α = 1 − λ and ω = ω(s; α).

(3) If λ0 > 1 then D(s; ν̂) = sλ
(

∆0(ν̂) + ∆1(ν̂)s +F∞
ℓ
({λ0} × W)

)

for any ℓ ∈
[

1, min(λ0, 2)
)

.

In particular, D(s; ν̂) = sλ
(

∆0(ν̂) +F∞
ℓ
({λ0} × W)

)

for any ℓ ∈
(

0, min(λ0, 1)
)

.

The flatness ℓ of the remainder can range in a certain interval depending on λ0. The left

endpoint of this interval is only given for completeness to guarantee that all the monomials in

the principal part are relevant (i.e., they cannot be included in the remainder). The important
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information about the flatness is given by the right endpoint. A key tool in order to give a

closed expression of the coefficients ∆i is the use of a sort of incomplete Mellin transform,

which is accurately defined in the next result. For a proof of this result the reader is referred

to [16, Appendix B].

Proposition 2.5. Consider an open interval I of R containing x = 0 and an open subset U of RM.

(a) Given f (x; υ) ∈ C ∞(I × U), there exits a unique f̂ (α, x; υ) ∈ C ∞((R \ Z≥0) × I × U) such

that

x∂x f̂ (α, x; υ)− α f̂ (α, x; υ) = f (x; υ).

(b) If x ∈ I \ {0} then ∂x( f̂ (α, x; υ)|x|−α) = f (x; υ) |x|
−α

x and, taking any k ∈ Z≥0 with k > α,

f̂ (α, x; υ) =
k−1

∑
i=0

∂i
x f (0; υ)

i!(i − α)
xi + |x|α

∫ x

0

(

f (s; υ)− Tk−1
0 f (s; υ)

)

|s|−α ds

s
,

where Tk
0 f (x; υ) = ∑

k
i=0

1
i! ∂

i
x f (0; υ)xi is the k-th degree Taylor polynomial of f (x; υ) at x = 0.

(c) For each (i0, x0, υ0) ∈ Z≥0 × I × W the function (α, x, υ) 7→ (i0 − α) f̂ (α, x; υ) extends C ∞ at

(i0, x0, υ0) and, moreover, it tends to 1
i0! ∂

i0
x f (0; υ0)xi0

0 as (α, x, υ) → (i0, x0, υ0).

(d) If f (x; υ) is analytic on I × U then f̂ (α, x; υ) is analytic on (R \ Z≥0)× I × U. Finally, for each

(α0, x0, υ0) ∈ Z≥0 × I × U the function (α, x, υ) 7→ (α0 − α) f̂ (α, x; υ) extends analytically to

(α0, x0, υ0).

On account of this result for each Mi(u; ν̂) in (2.2) we have that (α, u; ν̂) 7→ M̂i(α, u; ν̂)

is a well defined meromorphic function with poles only at α ∈ Z≥0. Accordingly, see

(2.3), M̂1(1/λ, σ120) and M̂2(λ, σ210) are the values (depending on ν̂) that we obtain by tak-

ing M̂1(α, u; ν̂) with α = 1/λ and u = σ120(ν̂) and by taking M̂2(α, u; ν̂) with α = λ and

u = σ210(ν̂), respectively.

At this point we get back to the setting treated in the present paper and from now on we

recover the original notation for the parameters in the family under consideration, see (1.1).

In order to study the Dulac maps of the hyperbolic saddles at the vertices of the polycycle Γ

we take three local transverse sections Σ1, Σ2, and Σ3 parametrised, respectively, by s 7→ (1, s),

s 7→ (1/s, 1/s) and s 7→ (s, 1) with s > 0. We define D1(s; µ) to be the Dulac map of Xµ from

Σ1 to Σ2, D2(s; µ) to be the Dulac map of Xµ from Σ2 to Σ3 and, finally, D3(s; µ) to be the

Dulac map of −Xµ from Σ1 to Σ3, see Figure 2.2 x It is then clear that the limit cycles of Xµ

near Γ are in one to one correspondence with the isolated positive zeroes of

D(s; µ) :=
(

D2 ◦ D1 − D3

)

(s; µ)

near s = 0. The proof of Theorem A strongly relies in our next result, where we get the

asymptotic expansion of D(s; µ) at s = 0 and we compute its coefficients. In its statement

di(µ), for i = 1, 2, 3, are the functions defined in Theorem A and R{µ}µ0 stands for the local

ring of convergent power series at µ0.

Theorem 2.6. Let us fix any µ0 ∈ Λ and set λ0
i := λi(µ0) for i = 1, 2, 3.

(a) If λ0
1λ0

2λ0
3 ̸= 1 then, for any ℓ1 ∈

(

min(λ0
1λ0

2, 1/λ0
3), min(λ0

1 + λ0
1λ0

2, 1 + λ0
1λ0

2, 2λ0
1λ0

2, 1 +

1/λ0
3, 2/λ0

3)
)

,

D(s; µ) = a1(µ)s
λ1λ2 − a2(µ)s

1/λ3 +F∞
ℓ1
(µ0),

where a1 and a2 are analytic and strictly positive functions on Λ.
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Σ1

Σ3

Σ2

ℓ∞

D1

D3

D2

s1

s2

s3

Figure 2.2: Auxiliary Dulac maps for the definition of D = D2 ◦ D1 − D3 in

Theorem 2.6. The return map in Theorem A, with respect to the transverse

section Σ1, would be R = D−1
3 ◦ D2 ◦ D1 = D−1

3 ◦D + Id.

(b) If λ0
1λ0

2λ0
3 = 1 then, for any ℓ2 ∈ (0, min(1, λ0

1, λ0
1λ0

2)),

D(s; µ) =
(

b1(µ)ω
(

s; α(µ)
)

+ b2(µ) +F∞
ℓ2
(µ0)

)

s1/λ3 ,

where α = 1/λ3 − λ1λ2, b1 = αa1 and b2 = a1 − a2. Moreover the equalities

(b1) = (d1) and (b1, b2) = (d1, d2)

between ideals over the ring R{µ}µ0 are verified. Assuming λ0
1 > 1, λ0

2 > 1 and λ0
3 < 1

additionally then, for any ℓ3 ∈
(

1, min(2, λ0
1, 1/λ0

3)
)

,

D(s; µ) =
(

b1(µ)ω
(

s; α(µ)
)

+ b2(µ) + b3(µ)s +F∞
ℓ3
(µ0)

)

s1/λ3U(s; µ),

where b3 is an analytic function at µ0 verifying that

(b1, b2, b3) = (d1, d2, d3)

over the ring R{µ}µ0 and U is an analytic function such that U(0; µ0) = 1.

Proof. In order to study the Dulac map D1 from Σ1 to Σ2 we compactify Xµ by means of

the coordinate change {x1 = y
x , x2 = 1

x}. One can easily verify that the new vector field is

orbitally conjugated to (2.1) particularised with P1(x1, x2) = xn
2

(

f − g)( 1
x2

, x1
x2
) and P2(x1, x2) =

xn
2 f ( 1

x2
, x1

x2
), whereas in these coordinates the transverse sections Σ1 and Σ2 are parametrised

by σ1(s) = (s, 1) and σ2(s) = (1, s), respectively. The hyperbolicity ratio of the saddle at

the origin is λ1 = −
(

P2
P1

)

(0, 0) =
( fn

gn− fn

)

(1, 0). Therefore, by applying Proposition 2.4 we can

assert that

D1(s) = ∆10sλ1
(

1 +F∞
ℓ1
(µ0)

)

, with ∆10 :=
(

L12L−λ1
11

)

(1) (2.4)

and any 0 < ℓ1 < min(1, λ0
1). Recall here that λ0

i = λi(µ0) for i = 1, 2, 3 by definition.



10 D. Marín and J. Villadelprat

Next, to analyse the Dulac map D2 from Σ2 to Σ3 we compactify Xµ performing the change

of coordinates given by {x1 = 1
y , x2 = x

y}. One can check that the new vector field is orbitally

conjugated to (2.1) with P1(x1, x2) = xn
1 g( x2

x1
, 1

x1
) and P2(x1, x2) = xn

1

(

g − f )( x2
x1

, 1
x1
) and that

in these coordinates the transverse sections Σ2 and Σ3 are parametrised by σ1(s) = (s, 1)

and σ2(s) = (1, s), respectively. The hyperbolicity ratio of the saddle at the origin is λ2 =

−
(

P2
P1

)

(0, 0) =
( fn−gn

gn

)

(0, 1). Thus, by Proposition 2.4 again,

D2(s) = ∆20sλ2
(

1 +F∞
ℓ2
(µ0)

)

, with ∆20 :=
(

L22L−λ2
21

)

(1) (2.5)

and any 0 < ℓ2 < min(1, λ0
2).

Finally, to study the Dulac map D3 of from Σ1 to Σ3 we make the reflection {x1 = y, x2 =

x}, which brings −Xµ to (2.1) with P1(x1, x2) = −g(x2, x1) and P2(x1, x2) = − f (x2, x1). In

these coordinates the transverse sections Σ1 and Σ3 are parametrised by σ1(s) = (s, 1) and

σ2(s) = (1, s), respectively, and the hyperbolicity ratio of the saddle is 1
λ3

= −
(

P2
P1

)

(0, 0) =

−
( f

g

)

(0, 0). Hence by Proposition 2.4 once again,

D3(s) = ∆30s1/λ3
(

1 +F∞
ℓ3
(µ0)

)

, with ∆30 :=
(

L32L−1/λ3
31

)

(1) (2.6)

and any 0 < ℓ3 < min(1, 1/λ0
3). Consequently, from (2.4), (2.5) and (2.6) we get that

D(s) =
(

D2 ◦ D1 − D3

)

(s) = ∆20∆
λ2
10sλ1λ2

(

1 +F∞
ℓ1
(µ0)

)λ2
(

1 +F∞
ℓ4
(µ0)

)

−∆30s1/λ3
(

1 +F∞
ℓ3
(µ0)

)

= ∆20∆
λ2
10sλ1λ2

(

1 +F∞
ℓ1
(µ0)

)(

1 +F∞
ℓ4
(µ0)

)

− ∆30s1/λ3
(

1 +F∞
ℓ3
(µ0)

)

= ∆20∆
λ2
10sλ1λ2 − ∆30s1/λ3 +F∞

ℓ5
(µ0),

where, by [15, Lemma A.2], we can take ℓ4 and ℓ5 to be any numbers such that 0 < ℓ4 <

min(λ0
1, λ0

1λ0
2) and min(λ0

1λ0
2, 1/λ0

3)) < ℓ5 < min(λ0
1 + λ0

1λ0
2, 1 + λ0

1λ0
2, 2λ0

1λ0
2, 1 + 1/λ0

3, 2/λ0
3),

respectively. Thus, setting a1 := ∆20∆
λ2
10 and a2 := ∆30, we obtain

D(s) = a1sλ1λ2 − a2s1/λ3 +F∞
ℓ5
(µ0) (2.7)

and this proves (a) because each ∆i0 is a strictly positive analytic function by Proposition 2.4.

Let us proceed next with the proof of the assertions in (b), thus from now on we assume

that λ0
1λ0

2λ0
3 = 1. Then, setting α = 1/λ3 − λ1λ2 and taking any ℓ6 ∈ (0, min(1, λ0

1, λ0
1λ0

2)),

from the above expression we get

D(s) = s1/λ3
(

a1sλ1λ2−1/λ3 − a2 +F∞
ℓ6
(µ0)

)

= s1/λ3
(

a1(1 + αω(s; α))− a2 +F∞
ℓ6
(µ0)

)

= s1/λ3
(

b1ω(s; α) + b2 +F∞
ℓ6
(µ0)

)

,

where b1 := αa1 and b2 := a1 − a2. Here we also take Definition 2.1 into account. Since a1 is

an analytic non-vanishing function at µ0 and d1 = λ3α, we obtain the equality (b1) = (d1)

between ideals over the local ring R{µ}µ0 . In order to show that (b1, b2) = (d1, d2) holds as
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well we note that, from (2.4), (2.5) and (2.6) again,

b2(µ) = a1 − a2 = ∆20∆
λ2
10 − ∆30

= (L22L−λ2
21 Lλ2

12 L−λ1λ2
11 − L32L−1/λ3

31 )
∣

∣

u=1

= L32L−1/λ3
31

(

L22

L32

L1/λ3
31

Lλ1λ2
11

Lλ2
12

Lλ2
21

− 1

) ∣

∣

∣

∣

∣

u=1

= L32L−1/λ3
31

(

Lα
31

(

L22

L32

Lλ1λ2
31

Lλ1λ2
11

Lλ2
12

Lλ2
21

− 1

)

+ (Lα
31 − 1)

) ∣

∣

∣

∣

∣

u=1

= κ1(µ)d2(µ) + α(µ)κ2(µ),

where κ1 = L32

L
1/λ3
31

∣

∣

u=1
ed2−1

d2
and κ2 = L32

L
1/λ3
31

Lα
31−1

α

∣

∣

u=1
are analytic functions at µ0 because so it

is each Lij by [16, Lemma 2.3]. Thus, on account of d1 = λ3α, we get that b2 = κ1d2 + κ3d1.

Hence (b1, b2) = (d1, d2) over the ring R{µ}µ0 since κ1(µ0) > 0 and we have already shown

that (b1) = (d1).

So far we have proved the first assertion in (b). To show the second one, besides λ0
1λ0

2λ0
3 =

1, we assume λ0
1 > 1, λ0

2 > 1 and λ0
3 < 1. On account of this we can apply point (3) in

Proposition 2.4 to conclude that

D1(s) = sλ1
(

∆10 + ∆11s +F∞
ℓ7
(µ0)

)

for any ℓ7 ∈
[

1, min(λ0
1, 2)

)

, (2.8)

D2(s) = sλ2
(

∆20 + ∆21s +F∞
ℓ8
(µ0)

)

for any ℓ8 ∈
[

1, min(λ0
2, 2)

)

, (2.9)

and

D3(s) = s1/λ3
(

∆30 + ∆31s +F∞
ℓ9
(µ0)

)

for any ℓ9 ∈
[

1, min(1/λ0
3, 2)

)

. (2.10)

Here the first order coefficients ∆10, ∆20 and ∆30 are the ones already defined in (2.4), (2.5)

and (2.6), respectively. With regard to the second order coefficients, only the ones of D1 and

D3 are relevant for our purposes, which are given by

∆11 := −λ1∆10M̂1(1/λ1, 1)

L11(1)
and ∆31 := −∆30M̂3(λ3, 1)

λ3L31(1)
, (2.11)

respectively. In each case, on account of (1.2), this follows easily from the formula ∆1 = λ∆0S1

given in Proposition 2.4 and taking S1 in (2.3) particularised to σ1(s) = (s, 1).

From (2.8) and (2.9), by applying [15, Lemma A.2] we can assert that

(

D2 ◦ D1

)

(s) = sλ1λ2
(

∆10 + ∆11s +F∞
ℓ7

)λ2
(

∆20 + ∆21sλ1
(

∆10 + ∆11s +F∞
ℓ7

)

+F∞
ℓ10

)

= sλ1λ2
(

∆
λ2
10 + λ2∆

λ2−1
10 ∆11s +F∞

ℓ7

)(

∆20 + ∆21sλ1
(

∆10 + ∆11s
)

+F∞
ℓ11

+F∞
ℓ10

)

= sλ1λ2
(

∆
λ2
10 + λ2∆

λ2−1
10 ∆11s +F∞

ℓ7

)(

∆20 + ∆10∆21sλ1 + ∆11∆21sλ1+1 +F∞
ℓ12

)

for any ℓ10 ∈ [λ0
1, λ0

1 min(λ0
2, 2)

)

in the first equality, any ℓ11 ∈
[

λ0
1 + 1, λ0

1 + min(λ0
1, 2)

)

in the

second one and any ℓ12 ∈
[

λ0
1 + 1, min(2λ0

1, λ0
1 + 2, λ0

1λ0
2)
)

in the third one. Furthermore, in

the second equality we use that, for any η = η(µ),

(1 + as +Fℓ)
η = (1 + as)η +Fℓ = 1 + aηs +F2−ε +Fℓ, (2.12)
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for any ε > 0, which in turn follows noting that

(1 + as +Fℓ)
η − (1 + as)η = (1 + as)η

(

(1 + Fℓ

1+as )
η − 1

)

= (1 + as)η
(

(1 +Fℓ)
η − 1

)

= (1 + as)ηFℓ = Fℓ.

Consequently
(

D2 ◦ D1

)

(s) = sλ1λ2
(

∆20∆
λ2
10 + λ2∆11∆20∆

λ2−1
10 s +F∞

ℓ7

)

,

where we use again [15, Lemma A.2] taking λ0
1 > 1 and λ0

2 > 1 into account. Hence, from

(2.10) and plug in s−α = 1 + αω(s; α) as before, we get

D(s) =
(

D2 ◦ D1 − D3

)

(s)

= s1/λ3

(

s−α
(

∆20∆
λ2
10 + λ2∆11∆20∆

λ2−1
10 s +F∞

ℓ7

)

− ∆30 − ∆31s −F∞
ℓ9

)

= s1/λ3
(

(1 + αω(s; α))∆20∆
λ2
10U(s)− ∆30 − ∆31s −F∞

ℓ9

)

,

where we define U(s) = 1 + λ2∆11∆−1
10 s +F∞

ℓ7
. The application of the formula given in (2.12)

with η = −1 shows that U(s)−1 = 1 − λ2∆11∆−1
10 s + Fℓ7

. Thus one can easily verify that the

above expression yields to

D(s) = s1/λ3U(s)
(

b1ω(s; α) + b2 + b3s +F∞
ℓ13

)

with ℓ13 ∈ [1, min(λ0
1, 1/λ0

3, 2)) and b3 := λ2∆11∆30∆−1
10 −∆31. Let us recall here that b1 = αa1 =

α∆20∆
λ2
10 and b2 = a1 − a2 = ∆20∆

λ2
10 −∆30, where a1 and a2 are the analytic and strictly positive

functions in (2.7). On account of the assumptions λ0
1 > 1 and λ0

3 < 1 we have λ1(µ) /∈ 1
N

and λ3(µ) /∈ N for µ ≈ µ0, which imply respectively that ∆11 and ∆31 are analytic at µ0 by

Proposition 2.4. Consequently b3 is an analytic function at µ0. That being said we claim that

the equality (b1, b2, b3) = (d1, d2, d3) between ideals over the local ring R{µ}µ0 is true. In order

to prove this, for the sake of shortness in the next computation we follow the convention that

κ stands for an analytic function at µ0 and κ̂ stands for an analytic strictly positive function at

µ0. Some easy computations following this convention yield

b3 = ∆−1
10 (λ2∆11∆30 − ∆31∆10) = ∆−1

10 (λ2∆11∆30 − ∆31∆10)

= −∆30

(

λ2λ1
M̂1(1/λ1,1)

L11(1)
− 1

λ3

M̂3(λ3,1)
L31(1)

)

= −κ̂
(

λ1λ2λ3M̂1

(

1
λ1

, 1
)

L31(1)− M̂3(λ3, 1)L11(1)
)

= −κ̂
(

(1 − d1)M̂1

(

1
λ1

, 1
)

L31(1)− M̂3(λ3, 1)L11(1)
)

= κ̂
(

M̂3(λ3, 1)L11(1)− M̂1

(

1
λ1

, 1
)

L31(1)
)

+ κd1.

where in the third and fifth equalities we use (2.11) and d1 := 1 − λ1λ2λ3, respectively. Hence

b3 = κ̂d3 + κd1 since d3 := M̂3(λ3, 1)L11(1) − M̂1(
1

λ1
, 1)L31(1). On account of (b1) = (d1)

and (b1, b2) = (d1, d2), this shows the validity of the claim and completes the proof of the

result.

Remark 2.7. There are two important observations to be made about Theorem 2.6:

(a) The statement claims that the equalities (b1) = (d1), (b1, b2) = (d1, d2) and (b1, b2, b3) =

(d1, d2, d3) between ideals over the local ring R{µ}µ⋆
are satisfied. As a matter of fact, in

the proof we show a stronger property, namely that the following holds:




d1

d2

d3



 =





κ1 0 0

∗ κ2 0

∗ ∗ κ3









b1

b2

b3



 ,
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where all the entries in the matrix are analytic functions on Λ and each κi is strictly

positive.

(b) From the dynamical point of view it is interesting to point out that the asymptotic expan-

sion of the displacement map D(s; µ0) given in Theorem 2.6 provides a method to study

the stability of the polycycle Γ. Indeed, taking also the previous observation into account,

it shows that

1. if d1(µ0) < 0 (respectively, > 0) then Γ is asymptotically stable (respectively, unstable),

2. if d1(µ0) = 0 and d2(µ0) < 0 (respectively, > 0) then Γ is asymptotically stable (respec-

tively, unstable), and

3. if d1(µ0) = d2(µ0) = 0 and d3(µ0) < 0 (respectively, > 0) then Γ is asymptotically

stable (respectively, unstable).

Of course this is relevant because we have an explicit expression of these functions by

Theorem A. In this regard let us note that the first assertion is well known since d1(µ0) < 0

is equivalent to require that λ0
1λ0

2λ0
3 > 1, while the second assertion was already proved

by Gasull et al. in [8], see Theorem 1. On the contrary the third assertion constitutes a

new result to the best of our knowledge. □

We give at this point the precise definition of independence of functions that we use in the

present paper.

Definition 2.8. Let us consider the functions gi : Λ −→ R for i = 1, 2, . . . , k. The real variety

V(g1, g2, . . . , gk) is defined to be the set of µ ∈ Λ such that gi(µ) = 0 for i = 1, 2, . . . , k. We

say that g1, g2, . . . , gk are independent at µ⋆ ∈ V(g1, g2, . . . , gk) if the following conditions are

fulfilled:

(1) Every neighbourhood of µ⋆ contains two points µ1, µ2 ∈ V(g1, . . . , gk−1) verifying that

gk(µ1)gk(µ2) < 0 (if k = 1 then we set V(g1, . . . , gk−1) = V(0) = Λ for this to hold).

(2) The varieties V(g1, . . . , gi), 2 ⩽ i ⩽ k − 1, are such that if µ0 ∈ V(g1, . . . , gi) then every

neighbourhood of µ0 contains two points µ1, µ2 ∈ V(g1, . . . , gi−1) so that gi(µ1)gi(µ2) < 0.

(3) If µ0 ∈ V(g1) then every neighbourhood of µ0 contains two points µ1, µ2 such that

g1(µ1)g1(µ2) < 0.

It is clear that if gi ∈ C 1(Λ) for i = 1, 2, . . . , k and the gradients ∇g1(µ⋆),∇g2(µ⋆) . . . ,∇gk(µ⋆)

are linearly independent vectors of RN+1 then there exists a neighbourhood U⋆ of µ⋆ such

that the restrictions of g1, g2, . . . , gk to U⋆ are independent at µ⋆.

Lemma 2.9. Suppose that the equalities (c1, . . . , ck) = (d1, . . . , dk) between ideals over the local ring

R{µ}µ⋆
hold for k = 1, 2, . . . , n, where µ⋆ ∈ V(c1, . . . , cn) = V(d1, . . . , dn). Then c1, . . . , cn are

independent at µ⋆ if, and only if, d1, . . . , dn are independent at µ⋆.

Proof. Let us assume for instance that c1, . . . , cn are independent at µ⋆ and prove that then

d1, . . . , dn are also independent. To this aim we note that the equalities (c1, . . . , ck) = (d1, . . . , dk)

for k = 1, 2, . . . , n imply the existence of two triangular matrices A = (aij) and B = (bij) with
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coefficients in R{µ}µ⋆
such that







d1
...

dn






=











a11 0 · · · 0

∗ a22 · · · 0
...

...
. . .

...

∗ · · · ∗ ann

















c1
...

cn







and







c1
...

cn






=











b11 0 · · · 0

∗ b22 · · · 0
...

...
. . .

...

∗ · · · ∗ bnn

















d1
...

dn






.

Clearly R = (rij) := BA is also a triangular matrix with coefficients in the local ring R{µ}µ⋆

and






c1
...

cn






=











r11 0 · · · 0

∗ r22 · · · 0
...

...
. . .

...

∗ · · · ∗ rnn

















c1
...

cn






.

We claim that, since c1, . . . , cn are independent at µ⋆, then rkk(µ⋆) = 1 for all k = 1, 2, . . . , n.

The fact that this is true for k = 1 follows easily by continuity. Let us prove by contradiction

that this is also true for k ⩾ 2. So assume that rkk(µ⋆) ̸= 1 for some k ∈ {2, . . . , n}. Then

the equality ck = rk1c1 + . . . + rkkck implies that ck = α1c1 + . . . + αk−1ck−1 where each αi :=
rki

1−rkk
is an analytic function at µ⋆. This clearly contradicts the assumption that c1, . . . , cn are

independent at µ⋆ (see Definition 2.8). Hence the claim is true and, consequently, det(R) =

det(A)det(B) = 1 at µ = µ⋆. This shows, in particular, that A is an invertible matrix in the local

ring R{µ}µ⋆
and so there exists a neighbourhood U of µ⋆ such that akk(µ) ̸= 0 for all µ ∈ U

and k = 1, 2, . . . , n. On account of this, the fact that d1, . . . , dn are independent at µ⋆ follows

easily noting that if we take any two points µ1, µ2 ∈ U ∩ V(c1, . . . , ci−1) = U ∩ V(d1, . . . , di−1)

verifying ci(µ1)ci(µ2) < 0 then we have that di(µ1)di(µ2) = aii(µ1)aii(µ2)ci(µ1)ci(µ2) < 0. This

completes the proof of the result.

Proof of Theorem A. Let us fix any µ0 ∈ Λ and set λ0
i := λi(µ0) for i = 1, 2, 3. Recall that the

limit cycles of Xµ near Γ are in one to one correspondence with the isolated positive zeros of

D(s; µ) =
(

D2 ◦ D1 − D3

)

(s; µ)

near s = 0. If d1(µ0) = 1 − λ0
1λ0

2λ0
3 is not zero then by applying (a) in Theorem 2.6 we have

that, for any ℓ1 ∈
(

min(λ0
1λ0

2, 1/λ0
3), min(λ0

1 + λ0
1λ0

2, 1 + λ0
1λ0

2, 2λ0
1λ0

2, 1 + 1/λ0
3, 2/λ0

3)
)

,

D(s; µ) = a1(µ)s
λ1λ2 + a2(µ)s

1/λ3 +F∞
ℓ1
(µ0),

where a1 and a2 are analytic and strictly positive functions on Λ. Thus

lim
(s,µ)→(0,µ0)

s−λ1λ2D(s; µ) = a1(µ0) in case that λ0
1λ0

2 < λ0
3

and

lim
(s,µ)→(0,µ0)

s−1/λ3D(s; µ) = a2(µ0) in case that λ0
1λ0

2 > λ0
3.
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Since ai(µ0) ̸= 0 for i = 1, 2, this implies the existence of an open neighbourhood U of µ0 and

ε > 0 small enough such that D(s; µ) ̸= 0 for all µ ∈ U and s ∈ (0, ε) when λ0
1λ0

2λ0
3 ̸= 1. Hence

Cycl
(

(Γ, Xµ0), Xµ

)

= 0 and the assertion in (a) is true.

In order to prove (b) we note that if d1(µ0) = 1 − λ0
1λ0

2λ0
3 is equal to zero then, by (b) in

Theorem 2.6, we can assert that, for any ℓ2 ∈ (0, min(1, λ0
1, λ0

1λ0
2)),

s−1/λ3D(s; µ) = b1(µ)ω
(

s; α(µ)
)

+ b2(µ) +F∞
ℓ2
(µ0), (2.13)

where α = 1/λ3 − λ1λ2 and b1 and b2 are analytic functions at µ0 such that (b1) = (d1) and

(b1, b2) = (d1, d2) over the ring R{µ}µ0 . The assumptions in this case imply that D(s; µ0) ̸≡ 0,

b1(µ0) = 0 and, thanks to Lemma 2.9, that b1 is independent at µ0. Thus, given any ε > 0,

there exists s1 ∈ (0, ε) such that D(s1; µ0) ̸= 0. Let us assume for instance that D(s1; µ0) > 0,

the other case follows verbatim. Then, thanks to (1) in Definition 2.8, there exists µ1 ≈ µ0

with b1(µ1) < 0 and, by continuity, such that D(s1; µ1) > 0. Moreover by applying Lemmas

A.3 and A.4 in [14],

Z1(s; µ) :=
s−1/λ3D(s; µ)

ω
(

s; α(µ)
) = b1(µ) +

b2(µ)

ω
(

s; α(µ)
) +F∞

ℓ2−δ(µ0) → κ(µ) as s → 0, (2.14)

where

κ(µ) := b1(µ)− b2(µ)min(α(µ), 0)).

Here we use that 1/ω(s; α(µ)) ∈F∞
−δ(µ0) for any δ > 0 and that lims→0 1/ω(s; α) = max(−α, 0)

by assertions (a) and (b) in [14, Lemma A.4], respectively. Note on the other hand that, by

(b) in Theorem 2.6, b1 = αa1 and b2 = a1 − a2, where each ai is an analytic strictly positive

function. Thus κ(µ) = α(µ)a2(µ) if α(µ) < 0 and κ(µ) = α(µ)a1(µ) if α(µ) ⩾ 0. Therefore,

since b1 = αa1, we can write

κ = b1η with η > 0. (2.15)

Hence, on account of b1(µ1) < 0, we can assert that κ(µ1) < 0, which in turn, from (2.14), guar-

antees the existence of some s2 ∈ (0, s1) such that Z1(s2; µ1) < 0. Thus D(s1; µ1)D(s2; µ1) < 0

and, by continuity, D(ŝ; µ1) = 0 for some ŝ ∈ (s2, s1) ⊂ (0, ε). This implies Cycl
(

(Γ, Xµ0), Xµ

)

⩾

1 as desired.

Let us prove (c) next, i.e., that if d2(µ0) ̸= 0 then Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 1. Note first that to

this end we can also assume that d1(µ0) = 0, otherwise Cycl
(

(Γ, Xµ0), Xµ

)

= 0. Consequently

the expression in (2.13) is valid. That being said, the proof will follow by applying the well-

known derivation-division algorithm. In doing so, from (2.14) and the fact that ∂sω(s; α) =

−s−α−1,

∂sZ1(s; µ) =
b2(µ)

sα(µ)+1ω2
(

s; α(µ)
) +F∞

ℓ2−1−δ(µ0),

where the flatness of the remainder follows from ( f ) in Lemma A.3 of [14]. Therefore

sα(µ)+1ω2
(

s; α(µ)
)

∂sZ1(s; µ) = b2(µ) +F∞
ℓ2−4δ(µ0) → b2(µ0) as (s, µ) → (0, µ0).

Recall at this point that (b1) = (d1) and (b1, b2) = (d1, d2) over the local ring R{µ}µ0 by

Theorem 2.6. Thus, the assumptions d1(µ0) = 0 and d2(µ0) ̸= 0 imply that b2(µ0) ̸= 0. Ac-

cordingly, on account of the above limit and by Bolzano’s Theorem, we obtain ε > 0 such that

if ∥µ − µ0∥ < ε then Z1( · ; µ), and so D( · ; µ), has at most one zero for s ∈ (0, ε), multiplicities

taking into account. Hence Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 1 and (c) follows.
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Let us turn next to the proof of (d), in which the assumptions are R( · ; µ0) ̸≡ Id and that

d1 and d2 vanish and are independent at µ0. Then D( · ; µ0) ̸≡ 0 and, due to (b1) = (d1)

and (b1, b2) = (d1, d2) once again, b1 and b2 vanish and are independent at µ0 by Lemma 2.9.

Thus, given any ε > 0, there exists s1 ∈ (0, ε) such that, for instance, D(s1; µ0) < 0. Then,

by continuity and condition (1) in Definition 2.8, there exists µ1 ≈ µ0 such that b2(µ1) > 0,

b1(µ1) = 0 and D(s1; µ1) < 0. Hence, from (2.13),

s−1/λ3D(s; µ1) = b2(µ1) +F∞
ℓ2
(µ0) → b2(µ1) as s → 0,

which shows the existence of s2 ∈ (0, s1) such that D(s2; µ1) > 0. For the same reasons we

can choose µ2 ≈ µ1 satisfying D(s1; µ2) < 0 and D(s2; µ2) > 0 together with b1(µ2) < 0.

Then, from (2.14) and (2.15), lims→0 Z1(s; µ2) = b1(µ2)η(µ2) < 0 and so there exists s3 ∈
(0, s2) verifying that D(s3; µ2) < 0. By continuity there exist ŝ1, ŝ2 ∈ (0, ε) with D(ŝ1; µ2) =

D(ŝ2; µ2) = 0. Accordingly Cycl
(

(Γ, Xµ0), Xµ

)

⩾ 2.

From now on, in order to prove (e) and ( f ), we assume λ0
1 < 1, λ0

2 > 1 and λ0
3 > 1. Then

by applying Theorem 2.6, for any ℓ3 ∈
(

1, min(2, λ0
1, 1/λ0

3)
)

,

D(s; µ) =
(

b1(µ)ω
(

s; α(µ)
)

+ b2(µ) + b3(µ)s +F∞
ℓ3
(µ0)

)

s1/λ3U(s; µ), (2.16)

where b3 is an analytic function at µ0 verifying that (b1, b2, b3) = (d1, d2, d3) over the ring

R{µ}µ0 and U is an analytic function such that U(0; µ0) = 1. Hence

Z2(s; µ) :=
D(s; µ)

s1/λ3 ω(s; α(µ))U(s)

= b1(µ) + b2(µ)
1

ω(s; α(µ))
+ b3(µ)

s

ω(s; α(µ))
+F∞

ℓ3−δ(µ0),

(2.17)

where we use once again that 1/ω(s; α(µ)) ∈ F∞
−δ(µ0) for any δ > 0. Note furthermore

that, for µ ≈ µ0, the positive zeros of D( · ; µ) and Z2( · ; µ) near s = 0 are in one to one

correspondence because 1
s1/λ3 ω(s;α(µ))

tends to +∞ as (s, µ) → (0, µ0). That being stablished

we begin first with the proof of assertion (e) and to this aim, besides d3(µ0) ̸= 0, we can

also suppose d1(µ0) = d2(µ0) = 0, otherwise Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 1 by (a) or (b), which

already have been proved. In this case, since (b1) = (d1), (b1, b2) = (d1, d2) and (b1, b2, b3) =

(d1, d2, d3), it turns out that b3(µ0) ̸= 0. As in the proof of (c), we will apply to steps of the

derivation-division algorithm in (2.17). In doing so we obtain that

Z3(s; µ) := sα(µ)+1ω2(s; α(µ))∂sZ2(s; µ) = b2(µ) + b3(µ)
(

s + sα(µ)+1ω(s; α(µ))
)

+F∞
ℓ3−4δ(µ0),

where the flatness of the remainder follows by applying Lemmas A.3 and A.4 in [14] as

before and we use that ∂sω(s; α) = −s−α−1. Note also that the positive zeros of Z3( · ; µ) and

∂sZ2( · ; µ) near s = 0 are in one to one correspondence for µ ≈ µ0 because ω(s; α(µ)) tends to

+∞ as (s, µ) → (0, µ0). Finally

∂sZ3(s; µ)

sα(µ)ω(s; α(µ))
= (α(µ) + 1)b3(µ) +F∞

ℓ3−1−6δ(µ0) → b3(µ0) ̸= 0 as (s, µ) → (0, µ0).

By applying twice Bolzano’s Theorem, we can assert the existence of some ε > 0 such that if

∥µ − µ0∥ < ε then Z2( · ; µ), and so D( · ; µ), has at most two zeros for s ∈ (0, ε), multiplicities

taking into account. Hence Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 2, which proves (e).

Finally, in order to prove ( f ) we suppose that R( · ; µ0) ̸≡ Id and that d1, d2 and d3 vanish

and are independent at µ0. Consequently D( · ; µ0) ̸≡ 0 and, due to the equality between the
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corresponding ideals over the local ring, b1, b2 and b3 vanish and are independent at µ0 by

Lemma 2.9. Thus, given any ε > 0, there exists s1 ∈ (0, ε) such that, for instance, D(s1; µ0) < 0.

Then, by continuity and condition (1) in Definition 2.8, there exists µ1 ≈ µ0 such that b3(µ1) >

0, b1(µ1) = b2(µ1) = 0 and D(s1; µ1) < 0. Hence, from (2.16),

D(s; µ1)

s1+1/λ3U(s; µ)
= b3(µ1) +F∞

ℓ3−1(µ0) → b3(µ1) > 0 as s → 0,

which shows the existence of s2 ∈ (0, s1) such that D(s2; µ1) > 0. For the same reasons we

can choose µ2 ≈ µ1 satisfying D(s1; µ2) < 0 and D(s2; µ2) > 0 together with b1(µ2) = 0 and

b2(µ2) < 0. Accordingly, from (2.16) again,

D(s; µ2)

s1/λ3U(s; µ)
= b2(µ2) + b3(µ2)s +F∞

ℓ3−1(µ0) → b2(µ2) < 0 as s → 0,

which shows the existence of s3 ∈ (0, s2) such that D(s3; µ2) < 0. In the final step we take

µ3 ≈ µ2 satisfying D(s1; µ3) < 0 and D(s2; µ3) > 0 and D(s3; µ3) < 0 together with b1(µ3) > 0.

Then, from (2.14) and (2.15), lims→0 s−1/λ3 Z1(s; µ3) = b1(µ3)η(µ3) > 0 and so there exists

s4 ∈ (0, s3) such that D(s3; µ3) > 0. By continuity there exist ŝ1, ŝ2, ŝ3 ∈ (0, ε) with D(ŝi; µ3) = 0

for i = 1, 2, 3. Hence Cycl
(

(Γ, Xµ0), Xµ

)

⩾ 3 and this completes the proof of the result. □

3 Applications

We begin this section by revisiting in Theorem 3.1 a family of Kolmogorov differential systems

that was first studied in [8], where the authors (following the notation in our statement) prove

that if µ0 = (a0, p0, q0) verifies p0 + q0 = 0 and a0 ̸= 0 then Cycl
(

(Γ, Xµ0), Xµ

)

⩾ 1, cf.

assertion (b).

Theorem 3.1. Consider the family of Kolmogorov differential systems

Xµ

{

ẋ = x(1 + x + x2 + axy + py2),

ẏ = y(−1 − y + qx2 + axy − y2),

where µ = (a, p, q) ∈ R3 with p < −1 and q > 1 and let us fix any µ0 = (a0, p0, q0). Then,

compactifying Xµ to the Poincaré disc, the boundary of the first quadrant is a polycycle Γ such that:

(a) Cycl
(

(Γ, Xµ0), Xµ

)

= 0 if p0 + q0 ̸= 0.

(b) Cycl
(

(Γ, Xµ0), Xµ

)

= 1 if p0 + q0 = 0 and a0 ̸= 0.

(c) The return map of Xµ0 along Γ is the identity if, and only if, a0 = p0 + q0 = 0. In this case Γ

is the outer boundary of the period annulus of a center at (x0, y0) with x0 = y0 = − 1+
√

−3−4p0

2(1+p0)

that foliates the first quadrant and, moreover, Cycl
(

(Γ, Xµ0), Xµ

)

= 1.

On the other hand the vector field Xµ has a unique singularity Qµ = (υ1, υ2) in the first quadrant,

which is either a focus or a center, and has trace equal to τ(µ) = υ1 + 2υ2
1 + 2aυ1υ2 − υ2 − 2υ2

2.

Furthermore, the following holds:

(d) If τ(µ0) ̸= 0 then Cycl
(

(Qµ0 , Xµ0), Xµ

)

= 0 and a sufficient condition for τ(µ0) ̸= 0 to hold is

that p0 + q0 = 0 and a0 ̸= 0.
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(e) If τ(µ0) = 0 and p0 + q0 ̸= 0 then Qµ0 is a weak focus of order 1 and Cycl
(

(Qµ0 , Xµ0), Xµ

)

= 1.

( f ) If τ(µ0) = 0 and p0 + q0 = 0 then a0 = 0. In addition Qµ0 is a center if, and only if, p0 + q0 =

a0 = 0 and, in this case, Cycl
(

(Qµ0 , Xµ0), Xµ

)

= 1.

Finally it is not possible a simultaneous bifurcation of limit cycles from Γ and Qµ.

Proof. The assertions in (a) and (b) follow directly by applying Theorem A. Indeed, in this

case, following the notation in (1.1), f (x, y) = 1 + x + x2 + axy + py2 and g(x, y) = −1 − y +

qx2 + axy − y2, so that

f2(x, y) = x2 + axy + py2 and g2(x, y) = qx2 + axy − y2.

Taking this into account, together with p < −1 and q > 1, one can easily check that the

assumptions H1 and H2 are verified. As a matter of fact the first assumption holds not

only for z > 0 but for all z ∈ R, and this implies that the boundary of each quadrant is a

monodromic polycycle for the compactified vector field. Hence, by the Poincaré–Bendixson

theorem (see [21] for instance), there exists at least one singularity of Xµ inside each one of

the four quadrants. Due to deg( f ) = deg(g) = 2, by Bézout’s theorem there exists exactly

one in each quadrant. From now on we denote the singularity of Xµ in the first quadrant by

Qµ. That being said, the hyperbolicity ratios of the saddles at Γ are λ1 = 1
q−1 , λ2 = −(p + 1)

and λ3 = 1. Consequently the first assertion follows from (a) in Theorem A because

d1(µ) = 1 − λ1λ2λ3 =
p + q

q − 1
. (3.1)

The second assertion will follow by applying (b) and (c) in Theorem A. To show this we first

recall that

d2(µ) = λ2 log

(

L12

L21

)

(1) + log

(

L22

L32

)

(1) + λ1λ2 log

(

L31

L11

)

(1)

and this leads us to the computation of the following improper integrals:

∆1(µ) := log

(

L12

L21

)

(1) =
∫ 1

0

((

f2

f2 − g2

)

(1, z) + λ1 −
(

g2

g2 − f2

)

(z, 1)− 1

λ2

)

dz

z

∆2(µ) := log

(

L22

L32

)

(1) =
∫ 1

0

((

g − f

g

)

(0, 1/z) + λ2 −
(

f

g

)

(0, z)− 1

λ3

)

dz

z

∆3(µ) := log

(

L31

L11

)

(1) =
∫ 1

0

((

g

f

)

(z, 0) + λ3 −
(

f − g

f

)

(1/z, 0)− 1

λ1

)

dz

z

These expressions have to be computed assuming that p + q = 0, i.e., λ1λ2 = 1. In doing so

we obtain that

∆1(a, p,−p) =
2a

1 − q

∫ 1

0

zdz

z2 + 1
=

aπ

2(p + 1)

and

∆2(a, p,−p) = −∆3(a, p,−p) = −(p + 1)
∫ 1

0

zdz

z2 + z + 1
= − (p + 1)π

3
√

3
.

Therefore d2(a, p,−p) = − aπ
2 is zero if, and only if, a = 0. Taking this into account, the

combination of (b) and (c) in Theorem A shows that Cycl
(

(Γ, Xµ0), Xµ

)

= 1 for any µ0 =
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(a0, p0,−p0) with a0 ̸= 0, as desired. It is important to remark for the forthcoming analysis

that by applying the Weierstrass Division Theorem (see for instance [9, 12]) we can assert that

d2(µ) = − aπ

2
+ (p + q)h(µ) (3.2)

for some analytic function h.

Next we proceed with the proof of (c).To this aim we fix any µ0 = (a0, p0, q0) and apply

Theorem 2.6, which gives the asymptotic expansion of D(s; µ) at s = 0 for µ ≈ µ0. This result,

taking (3.1) and (3.2) into account, shows that if D(s; µ0) ≡ 0 then a0 = p0 + q0 = 0. In order

to prove the converse observe that if µ0 = (0, p0,−p0) then the vector field Xµ0 writes as
{

ẋ = x(1 + x + x2 + p0y2),

ẏ = −y(1 + y + p0x2 + y2).

One can easily check that Qµ0 , the only singularity of Xµ0 in the first quadrant, is a weak focus

at the point (x0, y0) with x0 = y0 = − 1+
√

−3−4p0

2(1+p0)
. Furthermore, setting σ(x, y) = (y, x), it

turns out that σ⋆Xµ0 = −Xµ0 and so the vector field is reversible with respect to the straight

line y = x. Hence Qµ0 is a center and a straightforward application of the Poincaré–Bendixson

theorem shows that its period annulus fills the first quadrant, which in particular implies that

D(s; µ0) ≡ 0.

So far we have proved that the return map of Xµ0 along Γ is the identity if, and only if,

µ0 = (0, p0,−p0). Our next task is to show that, in this case, Cycl
(

(Γ, Xµ0), Xµ

)

= 1. With this

aim in view we apply (b) in Theorem 2.6, which shows that if µ ≈ µ0 then

D(s; µ) =
(

b1(µ)ω
(

s; α(µ)
)

+ b2(µ) + r(s; µ)
)

s1/λ3 , (3.3)

where α = 1/λ3 − λ1λ2, r ∈ F∞
ℓ
(µ0) with ℓ ∈

(

0, min(1, −1
p+1 )

)

and, in addition,

(b1) = (d1) and (b1, b2) = (d1, d2)

over the local ring R{µ}µ0 . Consequently if µ = (a, p, q) satisfies a = p + q = 0 then b1(µ) =

b2(µ) = 0 and r(s; µ) ≡ 0. Furthermore, since the vectors ∇d1(µ0) and ∇d2(µ0) are linearly

independent, see (3.1) and (3.2), the above equalities between ideals show that this is also the

case of ∇b1(µ0) and ∇b2(µ0). We can thus take (η1, η2, η3) /∈ ⟨∇b1(µ0),∇b2(µ0)⟩ and define

b3(µ) := η1a + η2(p − p0) + η3(q + p0) so that ν = Ψ(µ) :=
(

b1(µ), b2(µ), b3(µ)
)

is a local

analytical change of coordinates in a neighbourhood of µ = µ0. Note that Ψ maps µ0 to

03 := (0, 0, 0) and {a = p + q = 0} to {ν1 = ν2 = 0} and in addition

R1(s; ν) := s−1/λ3D(s; µ)
∣

∣

∣

µ=Ψ−1(ν)
= ν1 ω(s; α̂) + ν2 + r̂(s; ν),

where α̂ = α̂(ν) := α
(

Ψ−1(ν)
)

and r̂(s; ν) := r
(

s; Ψ−1(ν)
)

∈ F∞
ℓ
(03). The key point is that

r̂(s; 0, 0, ν3) ≡ 0 implies, thanks to [17, Lemma 4.1], that r̂(s; ν) = ν1h1(s; ν) + ν2h2(s; ν) with

hi ∈ F∞
ℓ
(03). Accordingly

R1(s; ν) = ν1

(

ω(s; α̂) + h1(s; ν)
)

+ ν2

(

1 + h2(s; ν)
)

. (3.4)

Observe that if s → 0+ and ν → (0, 0, 0) then the factor multiplying ν1 tends to +∞, whereas

the factor multiplying ν2 tends to 1. Here we use Definition 2.3 and that lim(s,α)→(0,0) ω(s; α) =

+∞. We claim that there exists s0 > 0 and an open neighbourhood U of ν = (0, 0, 0) such that

R2(s; ν) :=
R1(s; ν)

ω(s; α̂) + h1(s; ν)
= ν1 + ν2

1 + h2(s; ν)

ω(s; α̂) + h1(s; ν)
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has at most one zero on (0, s0), counted with multiplicities, for all ν = (ν1, ν2, ν3) ∈ U with

ν2
1 + ν2

2 ̸= 0. This will imply that Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 1 because R2(s; 0, 0, ν3) ≡ 0, so that it

has not any isolated zero. The claim is clear in case that ν2 = 0. To tackle the case ν2 ̸= 0 we

compute the derivative with respect to s to obtain that

R
′
2(s; ν) = ν2∂s

(

1 +F∞
ℓ

ω(s; α̂) +F∞
ℓ

)

= ν2∂s

(

1 +F∞
ℓ

ω(s; α̂)(1 +F∞
ℓ−ε)

)

= ν2∂s

(

1 +F∞
ℓ−ε

ω(s; α̂)

)

=
ν2

sα̂+1ω2(s; α̂)
(1 +F∞

ℓ−ε) +
ν2

ω(s; α̂)
F∞

ℓ−ε−1

=
ν2

sα̂+1ω2(s; α̂)

(

1 +F∞
ℓ−ε + sα̂+1ω(s; α̂)F∞

ℓ−ε−1

)

=
ν2

sα̂+1ω2(s; α̂)

(

1 +F∞
ℓ−3ε

)

.

Here, in the second equality we apply first assertion (c) of Lemma A.4 in [14] to get that

1/ω(s; α̂) ∈ F∞
−ε(03) for all ε > 0 small enough, due to α̂(03) = 0, and use next that F∞

−εF∞
ℓ

⊂
F∞

ℓ−ε from (g) of Lemma A.3 in [14] . In the third equality, on account of 1
1+s − 1 ∈ F∞

1 and by

(h) of Lemma A.3 in [14] , we use first the inclusion 1
1+F∞

ℓ−ε
⊂ 1+F∞

ℓ−ε. Then, by using (d) and

(g) of Lemma A.3 in [14] , we expand the numerator to get that (1+F∞
ℓ
)(1+F∞

ℓ−ε) ⊂ 1+F∞
ℓ−ε.

Next, in the fourth equality we use that ∂sω(s; α) = s−α−1 and assertion ( f ) of Lemma A.3 in

[14] to deduce that ∂sF∞
ℓ−ε ⊂ F∞

ℓ−ε−1. Finally in the last equality we apply (c) of Lemma A.4 in

[14] to get that sα̂+1ω(s; α̂) ∈ F∞
1−2ε and we use again that F∞

1−2εF∞
ℓ−ε−1 ⊂ F∞

ℓ−3ε. On account

of Definition 2.3 we can assert the existence of some s0 ∈ (0, 1) and a neighbourhood U

of ν = (0, 0, 0) such that R ′
2(s; ν) ̸= 0 for all s ∈ (0, s0) and ν ∈ U with ν2 ̸= 0. Hence the

application of Rolle’s theorem shows that the claim is true for ν2 ̸= 0 as well. So far we have

proved that Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 1. The fact that this upper bound is attained follows by

applying the assertion in (b) taking µ0 = (a0, p0,−p0) with a0 ≈ 0 but different from zero.

This completes the proof of (c).

Let us turn now to the proof of the assertions regarding the singularity of Xµ at Qµ. The

approach here is rather standard and the technical difficulty is that we do not dispose of a

feasible expression of the coordinates of Qµ. To overcome this problem we shall parametrise

the family of vector fields more conveniently. For reader’s convenience we summarise the

chain of reparametrisations that we shall perform:

µ = (a, p, q) → (a, p, ε) → (υ1, υ2, ε) → (υ1, υ2, τ) → µ̂ = (ρ, σ, τ).

For the first one we simply introduce ε = p + q. In the second one we take the coordinates of

the singular point Qµ = (υ1, υ2) as new parameters, i.e., we isolate a and p from

{

1 + υ1 + υ2
1 + aυ1υ2 + pυ2

2 = 0,

1 + υ2 + (p − ε)υ2
1 − aυ1υ2 + υ2

2 = 0,
(3.5)

to obtain

a = −υ2
1υ2

2ε + υ4
1 − υ4

2 + υ3
1 − υ3

2 + υ2
1 − υ2

2

υ1υ2

(

υ2
1 + υ2

2

) and p =
υ2

1ε − υ2
1 − υ2

2 − υ1 − υ2 − 2

υ2
1 + υ2

2

.

In this respect we point out that υ1 and υ2 are strictly positive because Qµ is inside the first

quadrant for all admissible µ. More important, the map ϕ : (a, p, ε) 7→ (υ1, υ2, ε) is smooth

and, taking (3.5) into account, injective. The smoothness follows by the Inverse Function
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Theorem since one can check that the determinant of the Jacobian of (υ1, υ2, ε) 7→ (a, p, ε) is

non-zero at the image by ϕ of any admissible parameter. Then one can check that the trace of

the Jacobian of the vector field at (x, y) = (υ1, υ2) is

x fx(x, y) + ygy(x, y)
∣

∣

(x,y)=(υ1,υ2)
= υ1 + 2υ2

1 + 2aυ1υ2 − υ2 − 2υ2
2

∣

∣

∣

a=a(υ1,υ2,ε)

= −2ευ2
1υ2

2 + (υ1 − υ2)(υ1 + 2 + υ2)(υ1 + υ2)

υ2
2 + υ2

1

,

and we introduce τ = τ(υ1, υ2, ε) isolating ε from

2ευ2
1υ2

2 + (υ1 − υ2)(υ1 + 2 + υ2)(υ1 + υ2) = τ. (3.6)

In other words, τ is (up to a non-vanishing factor) the trace of the vector field. Finally, for

convenience, we define ρ = υ1−υ2
2 and σ = υ1+υ2

2 . Observe then that {p + q = a = 0} becomes

{ρ = τ = 0}. In what follows, setting µ̂ = (ρ, σ, τ) for shortness, we denote the vector field by

Xµ̂. Let us also remark that the map µ 7→ µ̂ is smooth and injective as a consequence of the

previous discussion.

At this point we claim that Qµ is either a focus or a center. To show this we will check

that the discriminant Dµ of the characteristic polynomial of the Jacobian matrix of Xµ at Qµ

is strictly negative for all admissible parameter. Indeed, one can verify that Dµ expressed in

terms of (υ1, υ2, ε) can be written as

Dµ =
4(υ1υ2)4ε2 + A1(υ1, υ2)ε + A0(υ1, υ2)

(υ2
1 + υ2

2)
2

,

where Ai are polynomials of degree 7. Thus Dµ = 0 gives two roots ε = ε̂ i(υ1, υ2), for i = 1, 2,

that one can check to be well-defined continuous functions on V := {(υ1, υ2) ∈ R2 : υ1 >

0, υ2 > 0}. To see the claim we first prove that, for i = 1, 2,

(p + 1)(q − 1)
∣

∣

ε=ε̂i
> 0 for all (υ1, υ2) ∈ V. (3.7)

This implies that Dµ can not vanish at an admissible parameter due to the assumptions p < −1

and q > 1. In this regard we note that the product (p + 1)(q − 1) expressed in terms of

(υ1, υ2, ε) is given by

(p + 1)(q − 1) =
(υ1υ2)2ε2 + B1(υ1, υ2)ε + B0(υ1, υ2)

(υ2
1 + υ2

2)
2

,

where deg(B1) = 3 and deg(B0) = 2. A computation shows that the resultant (see [4, Chapter

3] for instance) between the numerators of Dµ and (p + 1)(q − 1) with respect to ε is a polyno-

mial in υ1 and υ2 with all the coefficients being natural numbers. Consequently the resultant

does not vanish on V and, accordingly, (p + 1)(q − 1)|ε=ε̂i
̸= 0 for all (υ1, υ2) ∈ V. Thus, since

V is arc-connected and the function (υ1, υ2) 7→ (p + 1)(q − 1)|ε=ε̂i
is continuous on V, it suf-

fices to verify (3.7) at some particular choice of parameter. For instance, taking υ1 = υ2 = 1 we

obtain that (p + 1)(q − 1)|ε=ε̂i
= 92 for i = 1, 2. Therefore Dµ ̸= 0 at any admissible parameter.

Thus, exactly as before, since µ 7→ Dµ is continuous and the set of admissible parameters is

arc-connected, the claim will follow once we verify its validity at some particular parameter.

For instance the choice µ = (0,−2, 2) yields Dµ = − 67+25
√

5
2 < 0.
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We proceed now with the study of the cyclicity of Qµ. The fact that Cycl
(

(Qµ0 , Xµ0), Xµ

)

=

0 when τ(µ0) ̸= 0 is well-known. On the other hand, if p + q = 0 then ε = 0 and

τ(υ1, υ2, 0) = (υ1 − υ2)(υ1 + 2 + υ2)(υ1 + υ2),

which vanishes at an admissible parameter if, and only if, υ1 = υ2. For this to happen, see

(3.5) with ε = 0, it is necessary that a = 0. This proves the validity of (d).

We shall next solve the center-focus problem in the family. With this aim in view, taking

a local transversal section at Qµ we consider the displacement map D(s; µ̂), which extends

analytically to s = 0, so that we can compute its Taylor’s expansion

D(s; µ̂) = η1(µ̂)s + η2(µ̂)s
2 + η3(µ̂)s

3 + sR(s; µ̂),

where the remainder R is o(s2). Recall that the trace of Xµ̂ at Qµ̂ is equal to τu1(µ̂), where

u1 is a unity. The coefficients ηi are called the Lyapunov quantities of the focus. We have in

particular (see for instance [19, p. 94]) that η1(µ̂) = eτu1(µ̂) − 1 = τu2(µ̂), where u2 is again a

unity. Since the first nonzero coefficient of the expansion is the coefficient of an odd power

of s, see [19, p. 94] again, we get that η2(µ̂) = τℓ1(µ̂) for some analytic function ℓ1. In order

to obtain η3 we shall appeal to the well-known relation between the Lyapunov and focus

quantities which, following the notation in [19, Theorem 6.2.3], we denote by gii. The first

ones are the coefficients in the Taylor’s expansion of the displacement map that we already

introduced, while the second ones are the obstructions for the existence of a first integral.

It occurs that η2i+1 − πgii ∈ (g11, . . . , gi−1,i−1) and, more important for our purposes, that

η3 = πg11. On account of this we can compute g11 instead of η3, which is easier to obtain, and

in doing so (see [3, p. 29]) we get that

η3(µ̂)
∣

∣

τ=0
= π

2ρ (ρ − σ) (σ + 1)
(

4 + 34σ + 29σ2 + 8σ3 − 3ρ2
)

3 (ρ + σ)3 (ρ + 2σ + 2σ2 + 2ρ2 + 2)2
.

In this respect we claim that η3(µ̂)
∣

∣

τ=0
= ρh(ρ, σ) with h(ρ, σ) ̸= 0 in case that |ρ| < σ, which

corresponds to the admissible values υ1, υ2 > 0 due to ρ = υ1−υ2
2 and σ = υ1+υ2

2 . Indeed, it is

clear that the factor (ρ − σ)(σ + 1) does not vanish inside the admissible set, while the other

one does not vanish neither because

4 + 34σ + 29σ2 + 8σ3 − 3ρ2
> 4 + 34σ + 26σ2 + 8σ3

> 0,

where the first inequality follows using that |ρ| < σ and the second one the fact that σ > 0.

Hence the claim is true. Therefore, if Qµ is a center then τ = ρ = 0, and the assertion in (c)

shows that these two conditions are also sufficient because {p + q = a = 0} = {τ = ρ = 0}.

Observe moreover that we can write η3(µ̂) = τℓ2(µ̂) + ρh(ρ, σ) for some analytic function ℓ2.

On the other hand, due to R(s; µ̂)|ρ=τ=0 ≡ 0, we can also write R = τR1 + ρR2 with Ri ∈ o(s2)

and, accordingly,

D(s; µ) = τs
(

u2 + ℓ1s + ℓ2s2 + R1) + ρs
(

hs2 + R2

)

. (3.8)

Note that if τ(µ) = 0 and ε = p + q ̸= 0 then ρ = υ1−υ2
2 must be different from zero because

otherwise, from (3.6), we would get that ε = 0. Consequently, due to h(ρ, σ) ̸= 0 for all ad-

missible ρ and σ, the equality in (3.8) implies Cycl
(

(Qµ0 , Xµ0), Xµ

)

⩽ 1 in case that τ(µ0) = 0

and p0 + q0 ̸= 0. The fact that this upper bound is attained follows by means of an easy per-

turbative argument using that ∂ετ(µ) = −2υ2
1υ2

2 ̸= 0. This proves the validity of the assertion

in (e).
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In order to prove ( f ) note that if τ(µ) = 0 and ε = p + q = 0 then, from (3.6), ρ = υ1−υ2
2 =

0. Hence, from (3.5), 2aυ1υ2 = 0, which implies a = 0 and shows the first assertion. That

being stablished, we have already proved that Qµ0 is a center if, and only if p0 + q0 = a0 = 0.

We show next that, in this case, Cycl
(

(Qµ0 , Xµ0), Xµ

)

⩽ 1. Indeed, since u2 is a unity we can

consider

D1(s; µ̂) :=
D(s; µ̂)

s(u2 + ℓ1s + ℓ2s2 + R1)
= τ + ρ

hs2 + R2

u2 + ℓ1s + ℓ2s2 + R1
.

The upper bound for the cyclicity of Qµ0 in the center case will follow once we prove that

there exist s0 > 0 and an open neighbourhood U of (ρ, σ, τ) = (0, σ̂, 0) such that D1(s; µ̂) has

at most one zero on (0, s0), counted with multiplicities, for all µ̂ ∈ U with ρ2 + τ2 ̸= 0. Recall

in this regard that D1(s; µ̂)|ρ=τ=0 ≡ 0 and that, on account of (c), σ̂ = − 1+
√

−3−4p0

2(1+p0)
> 0 is

the first component of Qµ0 . The idea to show this is exactly the same as in the proof of (c)

but with less technicalities because the involved functions are analytic at s = 0. The desired

property is evident when ρ = 0. In case that ρ ̸= 0 we compute the derivative of D1 with

respect to s to obtain

∂sD1(s; µ̂) = ρs
(

2h/u2 + o(1)
)

.

Since h(ρ, σ) ̸= 0 in case that |ρ| < σ and u2 = u2(µ̂) is a unity, the existence of the desired

s0 > 0 and the open neighbourhood U follows by Rolle’s theorem. So far we have proved

that Cycl
(

(Qµ0 , Xµ0), Xµ

)

⩽ 1 if p0 + q0 = a0 = 0. The fact that this upper bound is attained

follows noting that we can take µ = (a, p, q) with τ(µ) = 0 and p + q ̸= 0 arbitrarily close to

µ0 = (0, p0,−p0) and apply then the assertion in (e). This proves ( f ).

Let us turn now to the proof of the last assertion in the statement. Observe in this respect

that the combination of (a) and (b) together with (d) and (e) shows that a simultaneous

bifurcation of limit cycles from Γ and Qµ can only occur if we perturb some µ⋆ = (a⋆, p⋆, q⋆)

with a⋆ = p⋆ + q⋆ = 0. We shall prove by contradiction that this is neither possible. So assume

that for each n ∈ N there exist µn = (an, pn, qn) and two limit cycles γn and γ′
n of the vector

field Xµn in the first quadrant such that the Hausdorff distances dH(γn, Γ) and dH(γ
′
n, Qµn)

tend to zero and µn tends to µ⋆ as n → +∞. Let us consider the asymptotic expansion of the

displacement map of Xµ at the polycycle Γ that we compute in (3.3) and denote it by Dp(s; µ).

We also consider its Taylor’s expansion near the focus Qµ given in (3.8) and denote it by

Dc(s′; µ). Then the assumption implies the existence of two sequences sn → 0+ and s′n → 0+

such that Dp(sn; µn) = 0 and Dc(s′n; µn) = 0 for all n ∈ N. We claim that the first equality

implies that

lim
n→+∞

pn + qn

an
= 0. (3.9)

Indeed, from (3.4) we have that

R1(sn; ν)
∣

∣

ν=Ψ(µn)
= b1(µn)

(

ω(sn; α(µn)) + h1(sn; ν)
)

+ b2(µn)
(

1 + h2(s; ν)
)∣

∣

ν=Ψ(µn)
= 0

for all n ∈ N. Thus, due to limn→+∞ ω(sn; α(µn)) = +∞ and hi ∈ F∞
ℓ
(03), we obtain that

limn→+∞
b2(µn)
b1(µn)

= −∞. Moreover, since (b1) = (d1) and (b1, b2) = (d1, d2) with ∇d1 and ∇d2

independent at µ = µ⋆, we can write

b2

b1
=

κ1d1 + κ̂2d2

κ̂3d1

with κ̂i(µ⋆) ̸= 0 and, consequently, limn→+∞
d2(µn)
d1(µn)

= ∞. This, on account of (3.1) and (3.2),

gives the limit in (3.9) and so the claim is true. Recall on the other hand that in order to study
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the displacement map near the focus Qµ we use a more convenient parametrisation given by

µ̂ := (ρ, σ, τ) = φ(µ). That being said, setting (ρn, σn, τn) := φ(an, pn, qn), similarly as we argue

before, the fact that Dc(s′n; µn) = 0 for all n ∈ N implies from (3.8) that

lim
n→+∞

τn

ρn
= 0. (3.10)

Let us remark that here we also take into account that u2 is a unity. We next arrive to contra-

diction showing that (3.9) and (3.10) cannot hold simultaneously. Indeed, one can verify that,

setting σ⋆ = − 1+
√

−3−4p⋆
2(1+p⋆)

,

pn + qn

an

∣

∣

∣

∣

µn=φ−1(µ̂n)

= 4
ρ2

n + σ2
n

ρ2
n − σ2

n

τn + ρnσn(σn + 2)

2τn − ρn(2σn + 1)(ρ2
n + σ2

n)

= 4
ρ2

n + σ2
n

ρ2
n − σ2

n

τn/ρn + σn(σn + 2)

2τn/ρn − (2σn + 1)(ρ2
n + σ2

n)
→ 4(σ⋆ + 2)

σ⋆(2σ⋆ + 1)
̸= 0 as n → +∞.

Here, in addition to (3.10), we use that if p + q and a tend to zero then ρ → 0 and σ → σ⋆,

where σ⋆ is precisely the first component of the center at Qµ⋆
(which is in the diagonal of the

first quadrant). This shows that (3.9) and (3.10) cannot occur simultaneously, which yields to

the desired contradiction and finishes the proof of the result.

The following is our second example of application of Theorem A. In this case the family

of Kolmogorov’s systems is five-parametric and to the best of our knowledge it has not been

studied previously.

Theorem 3.2. Consider the family of Kolmogorov differential systems

Xµ

{

ẋ = x(c + x2 + axy − (p + 1)y2),

ẏ = y(−1 + (q + 1)x2 + (a − b)xy − y2),

where µ = (a, b, c, p, q) ∈ R5 with c > 0, p > 0, q > 0 and b < 2
√

pq and let us fix any

µ0 = (a0, b0, c0, p0, q0). Then there exists a unique singular point Qµ in the first quadrant, which is

either a center, a focus or a node. Moreover, compactifying Xµ to the Poincaré disc, the boundary of the

first quadrant is a polycycle Γ such that:

(a) Cycl
(

(Γ, Xµ0), Xµ

)

= 0 if p0 − c0q0 ̸= 0.

(b) Cycl
(

(Γ, Xµ0), Xµ

)

= 1 if p0 − c0q0 = 0 and 2c0q0a0 − (c0q0 − c0 + 1)b0 ̸= 0.

(c) The return map of Xµ0 along Γ is the identity if, and only if, p0 − c0q0 = 2c0q0a0−
(c0q0 − c0 + 1)b0 = 0. In this case Qµ0 is a center with first integral

H(x, y) =
q0(x2 + c0(y2 + 1))− b0xy

(xyc0)
2

c0q0+c0+1

,

which foliates the first quadrant. Moreover Γ is the outer boundary of its period annulus and, in

addition, Cycl
(

(Γ, Xµ0), Xµ

)

= 1.
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Remark 3.3. In contrast to the family of Kolmogorov’s cubic systems studied in Theorem 3.1,

for the family in Theorem 3.2 there exist parameters µ0 with d1(µ0) = 0 and d2(µ0) ̸= 0, so

that Cycl
(

(Γ, Xµ0), Xµ

)

= 1, and satisfying additionally that the unique singular point Qµ0 in

the first quadrant is a non-degenerate node. Hence, for appropriate µ ≈ µ0 we will have a

limit cycle γµ with a non-monodromic singular point Qµ as unique singularity in its interior.

For instance, the choice µ0 = (−800.01,−900.99999, 1000, 1, 0.001) leads to this phenomenon

with Qµ0 = (0.1, 10). A similar occurrence is observed in [2, p. 203] to take place in the family

of cubic Liénard systems studied in [7]. □

Proof of Theorem 3.2. In this case, following the notation in (1.1), we have that

f (x, y; µ) := c + x2 + axy − (p + 1)y2 and g(x, y; µ) := −1 + (q + 1)x2 + (a − b)xy − y2.

Since f (z, 0; µ) = c + z2, g(0, z; µ) = −1 − z2 and ( f2 − g2)(1, z; µ) = −q + bz − pz2, one can

check that the hypothesis H1 and H2 are satisfied for the admissible parameters, i.e., c > 0,

p > 0, q > 0 and b < 2
√

pq. Moreover the hyperbolicity ratios are

λ1 = 1/q, λ2 = p and λ3 = 1/c. (3.11)

Then Γ is a polycycle and by applying the Poincaré–Bendixson theorem we deduce the ex-

istence of at least one singular point of Xµ in the first quadrant. We claim that there exists

exactly one. In order to show this we suppose that (υ1, υ2) is a singular point of Xµ in the first

quadrant and solve f (υ1, υ2; µ) = 0 and g(υ1, υ2; µ) = 0 for a and b as a function of c, p, q, υ1

and υ2. In doing so we obtain that

a =
pυ2

2 − υ2
1 + υ2

2 − c

υ1υ2
and b =

pυ2
2 + qυ2

1 − c − 1

υ1υ2
.

The substitution of these values in f + cg, which is homogeneous of degree 2 in x and y, yields

(

f + cg
)

(x, y; µ)
∣

∣

y=rx
=

x2(υ2 − rυ1)
(

rυ2(c + p + 1) + υ1(cq + c + 1)
)

υ1υ2
.

It is clear then that the vanishing of the above numerator provides the possible values of r

such that Xµ has a singular point at the straight-line y = rx, namely,

r1 =
υ2

υ1
> 0 and r2 = −υ1(cq + c + 1)

υ2(c + p + 1)
< 0.

Since x 7→ f (x, r1x) = c + x2(1 + ar1 − (p + 1)r2
1) vanishes at x = υ1 > 0, it must have

another real zero, which has to be negative. Therefore Xµ has exactly one singular point in

the first quadrant and exactly one singular point in the third quadrant, showing in particular

the validity of the claim. An easy computation shows that the determinant of the Jacobian of

Xµ at Qµ = (υ1, υ2) is equal to 2υ2
1(cq + c + 1) + 2υ2

2(p + c + 1) > 0, so that it can be a center,

a focus or a node.

So far we have proved that the first assertion in the statement is true. Let us turn to the

proof of the assertions in (a), (b) and (c). The first one follows from (a) in Theorem A because

d1(µ) = 1 − λ1λ2λ3 =
cq − p

cq
. (3.12)
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The second assertion will follow by applying (b) and (c) in Theorem A. In this regard let us

recall that

d2(µ) = λ2 log

(

L12

L21

)

(1) + log

(

L22

L32

)

(1) + λ1λ2 log

(

L31

L11

)

(1). (3.13)

On account of the definition of each Lij, see (1.2), we easily obtain that

log L11(1) =
1 + c(q + 1)

2c
log(c + 1),

log L31(1) =
1 + c(q + 1)

2c
log (1/c + 1) , (3.14)

log L22(1) = log L32(1) =
log 2

2
(p + c + 1).

Moreover

log L12(1) =
1

q

∫ 1

0

mz + n

−pz2 + bz − q
dz and log L21(1) =

1

p

∫ 1

0

mz + n′

−qz2 + bz − p
dz,

where

m := −(pq + p + q), n := qa + b and n′ := p(b − a) + b. (3.15)

The explicit integration of these functions leads to several cases depending on the parameters.

To avoid this we note that

mz + n

−pz2 + bz − q
= − m

2p

−2pz + b

−pz2 + bz − q
+

1

2p

mb + 2np

−pz2 + bz − q
,

so that

log L12(1) = − m

2pq
log

(

p + q − b

q

)

+
mb + 2np

2pq

∫ 1

0

dz

−pz2 + bz − q
.

It is clear that the same formula holds for log L21(1) replacing p, q and n by q, p and n′,
respectively. On account of this and the fact that, from (3.15), mb + 2n′q = −mb − 2np, we get

log

(

L12

L21

)

(1) = log L12(1)− log L21(1) = − m

2pq
log

(

p

q

)

+ (mb + 2np)Φ(µ), (3.16)

where

Φ(µ) :=
1

2pq

∫ 1

0

(

1

−pz2 + bz − q
+

1

−qz2 + bz − p

)

dz.

Notice, and this is the key point in the forthcoming arguments, that Φ is a non-vanishing

function because, thanks to property H1, Φ(µ) < 0 at any admissible parameter µ. On the

other hand, from (3.14),

log

(

L31

L11

)

(1) = − (1 + c + cq)

2c
log c and log

(

L22

L32

)

(1) = 0. (3.17)

Accordingly the substitution of (3.16) and (3.17) in (3.13) yields

d2(µ) = − m

2q
log

(

p

q

)

+ p(mb + 2np)Φ(µ)− p(1 + c + cq)

2qc
log c

=
pq + p + q

2q
log

(

p

q

)

+ p
(

2pqa − (pq − p + q)b
)

Φ(µ)− p(1 + c + cq)

2qc
log c,
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where in the first equality we set the values of the hyperbolicity ratios given in (3.11) and in

the second one the expressions of m and n defined in (3.15). Observe at this point, see (3.12),

that d1(µ) = 0 if, and only if, p = cq. Moreover the two logarithmic summands in the above

expression of d2(µ) cancel each other after the substitution p = cq, so that

d2(µ)
∣

∣

p=cq
= cq2

(

2cqa − (cq − c + 1)b
)

Φ(a, b, c, cq, q).

Thus, by the Weierstrass Division Theorem (see [9, 12]), there exists an analytic function κ1

such that

d2(µ) = d1(µ)κ1(µ) +
(

2cqa − (cq − c + 1)b
)

κ2(µ), (3.18)

where κ2(µ) := cq2Φ(µ) is a unity in the admissible set. This expression shows that if we take

an admissible parameter µ0 = (a0, b0, c0, p0, q0) such that p0 − c0q0 = 0 and 2c0q0a0 − (c0q0 −
c0 + 1)b0 ̸= 0 then d2(µ0) ̸= 0, which by (c) in Theorem A implies that Cycl

(

(Γ, Xµ0), Xµ

)

⩽ 1.

The fact that Cycl
(

(Γ, Xµ0), Xµ

)

= 1 follows by applying (b) in Theorem A because ∇d1(µ0)

is not the zero vector, see (3.12). This proves the validity of the assertion in (b).

To show (c) we take any µ0 = (a0, b0, c0, p0, q0) satisfying p0 − c0q0 = 2c0q0a0 − (c0q0 − c0 +

1)b0 = 0. Then one can verify that the function

H(x, y) =
q0(x2 + c0(y2 + 1))− b0xy

(xyc0)
2

c0q0+c0+1

is a first integral of Xµ0 , which is clearly analytic on the whole first quadrant. (For reader’s

convenience let us mention that we found this first integral looking for an integrating factor

of the form xrys with r, s ∈ R.) Thus, since the determinant of the Jacobian of Xµ0 at Qµ0

is strictly positive, we can assert that it is a center. A straightforward application of the

Poincaré-Bendixson theorem shows that Γ is the outer boundary of its period annulus, which

fills the first quadrant. This proves that if p0 − c0q0 = 2c0q0a0 − (c0q0 − c0 + 1)b0 = 0 then

the displacement map D( · ; µ0) of Xµ0 along Γ is identically zero. The converse follows by

Theorem 2.6 noting that d1(µ) = d2(µ) = 0 if, and only if, p − cq = 2cqa − (cq − c + 1)b = 0.

It only remains to be proved that Cycl
(

(Γ, Xµ0), Xµ

)

= 1. This follows verbatim the proof

of the same fact in assertion (c) of Theorem 3.1 and so we shall omit the details for the sake

of shortness. Indeed, by (b) in Theorem 2.6 we have that if µ ≈ µ0 then

D(s; µ) = (b1(µ)ω(s; α(µ)) + b2(µ) + r(s; µ))sc,

where α = c − p/q and r ∈ F∞
ℓ
(µ0) with ℓ ∈ (0, min(1, p)). Here we use that the three

hyperbolicity ratios are λ1 = 1/q, λ2 = p and λ3 = 1/c. We also have that (b1) = (d1)

and (b1, b2) = (d1, d2) over the local ring R{µ}µ0 . Therefore, if µ = (a, b, c, p, q) verifies

p − cq = 2cqa − (cq − c + 1)b = 0 then b1(µ) = b2(µ) = 0 and r(s; µ) ≡ 0. Moreover,

since ∇d1(µ0) and ∇d2(µ0) are linearly independent, see (3.12) and (3.18), this is also the

case of ∇b1(µ0) and ∇b2(µ0). We can thus take three linear functions, say b3(µ), b4(µ) and

b5(µ), such that ν = Ψ(µ) :=
(

b1(µ), b2(µ), b3(µ), b4(µ), b5(µ)
)

is a local analytic change of

coordinates in a neighbourhood of µ = µ0 with Ψ(µ0) = 05 := (0, 0, 0, 0, 0). Notice then that Ψ

maps {p − cq = 2cqa − (cq − c + 1)b = 0} to {ν1 = ν2 = 0} and, moreover,

R1(s; ν) := s−c
D(s; µ)

∣

∣

∣

µ=Ψ−1(ν)
= ν1ω(s; α̂) + ν2 + r̂(s; ν),

where α̂ = α̂(ν) := α(Ψ−1(ν)) and r̂(s; ν) := r(s; Ψ̂−1(ν)) ∈ F∞
ℓ
(05). Due to r̂(s; 0, 0, ν3, ν4, ν5) ≡

0, by applying [17, Lemma 4.1] we can write the remainder as r̂(s; ν) = ν1h1(s; ν) + ν2h2(s; ν)
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with hi ∈ F∞
ℓ
(05) and, consequently,

R1(s; ν) = ν1

(

ω(s; α̂) + h1(s; ν)
)

+ ν2

(

1 + h2(s; ν)
)

.

From this expression we conclude that there exists s0 > 0 and an open neighbourhood U of

ν = 05 such that R1(s; ν) that has at most one zero on (0, s0), counted with multiplicities, for

all ν = (ν1, ν2, ν3, ν4, ν5) ∈ U with ν2
1 + ν2

2 ̸= 0, which implies that Cycl
(

(Γ, Xµ0), Xµ

)

⩽ 1. The

proof of this follows exactly as we argue to show the same fact in Theorem 3.1, cf. (3.4), and

it is omitted for brevity. Finally the fact that Cycl
(

(Γ, Xµ0), Xµ

)

⩾ 1 follows taking µ1 ≈ µ0

with p1 − c1q1 = 0 and 2c1q1a1 − (c1q1 − c1 + 1)b1 ̸= 0, and applying the assertion in (b). This

completes the proof of the result. □

Remark 3.4. In order to prove Theorem 3.2 it is only necessary to compute the functions d1 and

d2 in Theorem A, which give the conditions for cyclicity 0 and 1, respectively. Let us explain

that, as a matter of fact, we computed the function d3 as well, realizing that it vanishes when

d1 = d2 = 0. It was this fact that lead us to investigate if the return map along the polycycle

is the identity in that case. For completeness let us explain succinctly the computations that

involve the obtention of d3 for the Kolmogorov’s family considered in Theorem 3.2. Recall,

see (e) in Theorem A, that

d3(µ) := M̂3(λ3, 1)L11(1)− M̂1

(

1/λ1, 1
)

L31(1).

In this case, cf. (3.14), we have that

L11(u) = (1 + cu2)
1+(q+1)c

2c and L31(u) =
(

1 + u2/c
)

1+(q+1)c
2c

and then, from the definition in (1.2),

M1(u) = (1 + cu2)
1+(q−3)c

2c
(

aq + b + (cb − (c + 1)a)u2
)

and

M3(u) = −u
(

1 + u2/c
)

1+(q−3)c
2c

(

(aq + b)u2 + cb − (c + 1)a
)

/c2.

In order to proceed with the computation of M̂1

(

1
λ1

, 1
)

and M̂3

(

λ3, 1
)

we note that if

J(x; η, r) := (1 + ηx2)r with η > 0 and r ∈ R then

Ĵ(α, 1; η, r) =
∫ 1

0
(1 + ηx2)rx−α−1dx = −1

α
2F1(−r,−α/2; 1 − α/2;−η) for all α < 0,

where in the first equality we apply (b) in Proposition 2.5 with k = 0 and in the second one

we use the equality in [1, 15.3.1] to express the definite integral as a hypergeometric function.

In principle the above equality is only true provided that α < 0. However, its validity can

be extended to any α /∈ N thanks to the meromorphic properties of the functions 2F1 and Ĵ

established, respectively, by [17, Lemma B.2] and (d) in Proposition 2.5. Consequently, thanks

to this observation and applying twice the above formula, we get

M̂1(1/λ1, 1) = − aq + b

q
ϕ1(c, q) +

cb − (c + 1)a

2 − q
ϕ2(c, q),

where

ϕ1(c, q) := 2F1

(

(3 − q)/2 − 1/(2c),−q/2; 1 − q/2;−c
)

,

ϕ2(c, q) := 2F1

(

(3 − q)/2 − 1/(2c), 1 − q/2; 2 − q/2;−c
)

.
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Here we also use that if h = f + g then ĥα = f̂α + ĝα and that if f (x) = xng(x) then f̂α(x) =

xn ĝα−n(x), see [16, Corollary B3]. Similarly

M̂3(λ3, 1) =
aq + b

c(1 − 3c)
ϕ3(c, q) +

cb − (c + 1)a

c(1 − c)
ϕ4(c, q),

where

ϕ3(c, q) := 2F1

(

(3 − q)/2 − 1/(2c), 3/2 − 1/(2c); 5/2 − 1/(2c);−1/c
)

,

ϕ4(c, q) := 2F1

(

(3 − q)/2 − 1/(2c), 1/2 − 1/(2c); 3/2 − 1/(2c);−1/c
)

.

In the proof of Theorem 3.2 we show that d1(µ) = d2(µ) = 0 if, and only if, µ = (a, b, c, p, q)

verifies p = cq and a = b(1−c+cq)
2cq . Long but easy computations show that, under these two

conditions, d3(µ) = 0 if, and only if,

q

1 − 3c
ϕ3(c, q)− ϕ4(c, q) + c−

1+c+cq
2c

(

ϕ1(c, q) +
c − 1

q − 2
ϕ2(c, q)

)

= 0.

This is an equation for b, c and q that involves four hypergeometric functions. Surprisingly

enough it turns out, by applying the formula in [1, 15.3.7], that the function on the left hand

side of the above equation is identically zero. In other words, d1(µ0) = d2(µ0) = 0 implies

d3(µ0) = 0. □
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[22] C. Rousseau, G. Świrszcz, H. Żołądek, Cyclicity of graphics with semi-hyperbolic

points inside quadratic systems, J. Dynam. Control Systems 4(1988), 149–189. https:

//doi.org/10.1023/A:1022887001627; MR1626537

[23] Y. Q. Ye, S. L. Cai, L. S. Chen, K. C. Huang, D. J. Luo, Z. E. Ma, E. N. Wang, M.

S. Wang, X. A. Yang, Theory of limit cycles, Translations of Mathematical Monographs,

Vol. 66, American Mathematical Society, Providence, RI, 1984. MR0854278



Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 36, 1–12; https://doi.org/10.14232/ejqtde.2022.1.36 www.math.u-szeged.hu/ejqtde/

On the existence of periodic solutions

to second order Hamiltonian systems

Xiao-Feng Ke1 and Jia-Feng LiaoB 2

1School of Mathematics and Statistics, Southwest University, Chongqing, 400715, P. R. China
2College of Mathematics Education, China West Normal University,

Nanchong, Sichuan, 637002, P. R. China

Received 6 April 2022, appeared 30 July 2022

Communicated by Gabriele Bonanno

Abstract. In this paper, the existence of periodic solutions to the second order Hamil-
tonian systems is investigated. By introducing a new growth condition which gener-
alizes the Ambrosetti–Rabinowitz condition, we prove a existence result of nontrivial
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tential to be superquadratic growth in only one direction and asymptotically quadratic
growth in other directions.

Keywords: second order Hamiltonian systems, periodic solutions, existence, variational
method.

2020 Mathematics Subject Classification: 34C25, 37J45, 34A34.

1 Introduction and main result

Consider the following second order Hamiltonian systems

{

−ü(t) + L(t)u(t) = ∇xF(t, u(t)), a.e. t ∈ [0, T],

u(0)− u(T) = u̇(0)− u̇(T) = 0,
(1.1)

where u(t) = (u1(t), u2(t), . . . , uN(t)), N ≥ 1, T > 0, L(t) :=
(

lij(t)
)

∈ C(0, T; R
N×N) is a

symmetric positive matrix and T-periodic in t, F : [0, T] × R
N → R is T-periodic in t and

satisfies the following assumptions:

(A) F(t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x for a.e.

t ∈ [0, T], and there exist a ∈ C(R+, R
+), b ∈ L1(0, T; R

+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇xF(t, x)| ≤ a(|x|)b(t)

for x ∈ R
N and a.e. t ∈ [0, T], where x := (x1, . . . , xN), ∇xF(t, x) :=

(

∂F
∂x1

, . . . , ∂F
∂xN

)

.

BCorresponding author. Email: liaojiafeng@163.com
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The periodic solutions to non-autonomous system (1.1) has an extensive history in the

case of singular systems (cf., e.g., Ambrosetti–Coti Zelati [1]). The first to consider it for

nonsingular potentials were Berger and Schechter [3] in 1977. Since then, the existence of

periodic solutions to system (1.1) have been deeply studied by a large number of researchers.

Many solvability conditions about the potentials have been obtained, we refer the readers to

[4, 11, 12, 16, 17, 19–23, 26–28] and their references. In 1978, Rabinowitz [13] established the

existence of a non-constant T-periodic solution when L(t) ≡ 0 by assuming that the potential

F satisfies the following superquadratic condition

(AR) there exist constants r0 > 0 and θ > 2 such that

0 < θF(t, x) ≤ (∇xF(t, x), x)

for |x| ≥ r0 and a.e. t ∈ [0, T], where (·, ·) is the inner product in R
N .

This is the so-called Ambrosetti–Rabinowitz ((AR) for short) condition which plays a key

role in verifying the mountain pass geometry and the compactness for the Euler–Lagrange

functional associated to system (1.1). So (AR) condition has been widely used in follow-

up research for the superquadratic problem, for example, see [5] and their references. If

F ∈ C1
(

[0, T]× R
N , R

)

, one can easily deduce from (AR) that

F(t, x) ≥ a|x|θ − b

for x ∈ R
N and a.e. t ∈ [0, T], where a, b > 0. This implies a more intrinsic superquadratic

condition

(SQ) lim|x|→∞

F(t,x)
|x|2 = +∞ uniformly in a.e. t ∈ [0, T].

Under condition (SQ), one can also add some other conditions on F to guarantee the existence

of T-periodic solutions. For example, Fei [7] assumed the nonquadratic condition

(NQ) lim inf|x|→∞

(∇x F(t,x),x)−2F(t,x)
|x|β > 0 uniformly in a.e. t ∈ [0, T],

where β > 1. Luan–Mao [10] supposed that F satisfied the following condition

(LM) there exist c > 0, r1 > 0 and some σ > 1 such that

|∇xF(t, x)|σ
|x|σ ≤ cH(x, s)

for |x| ≥ r1 and a.e. t ∈ [0, T] , where H(x, s) := (∇xF(t, x), x)− 2F(t, x).

Wu and Tang [24] introduced a new superquadratic situation

(WT) there exist c > 0, r2 > 0 such that

F(t, x)

|x|2 ≤ cH(x, s)

for |x| ≥ r2 and a.e. t ∈ [0, T].

Ye–Tang [30] and Li–Schechter [9] studied the situation that F satisfied the following mono-

tonic condition
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(M) there exist D ≥ 1 and C∗ ∈ L1(0, T; R
+) such that

H(t, sx) ≤ DH(t, x) + C∗(t), ∀s ∈ [0, 1]

for x ∈ R
N and a.e. t ∈ [0, T].

Schechter [18] assumed

(S1) 2F(t, x) ≥ λl−1|x|2 for x ∈ R
N and a.e. t ∈ [0, T], where λi is the ith eigenvalue of the

operator − d2

dt2 + L(t),

(S2) there are constants m > 0 and ϑ > 0 such that

2F(t, x) ≤ ϑ|x|2

for |x| ≤ m and a.e. t ∈ [0, T].

The readers are referred to [6, 8, 29] for more types of conditions under condition (SQ).

In addition, without condition (SQ), Schechter [14] assumed that

(S3) F(t, x) ≥ 0 for x ∈ R
N and a.e. t ∈ [0, T],

(S4) there are constants m > 0, α ≤ 6m2/T2 such that

F(t, x) ≤ α

for |x| ≤ m and a.e. t ∈ [0, T],

(S5) there are µ > 2, r3 > 0 and W ∈ L1([0, T]) such that







(i)
Hµ(t,x)

|x|2 ≤ W(t) for |x| ≥ r3 and a.e. t ∈ [0, T],

(ii) lim sup|x|→+∞

Hµ(t,x)

|x|2 ≤ 0,

where Hµ(t, x) := µF(t, x)− (∇xF(t, x), x),

(S6) there is a subset Σ ⊂ [0, T] of positive measure such that

lim inf
|x|→+∞

F(t, x)

|x|2 > 0 uniformly in a.e. t ∈ Σ.

In [15], the potentials F satisfy (S3)–(S5) and

(S7) there are constants β >
2π2

T2 and r3 > 0 such that

F(t, x) ≥ β|x|2

for |x| > r3 and a.e. t ∈ [0, T].

Wang–Zhang [25] assumed F satisfies (S3), (S4), (S6) and
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(WZ) (i) there exist M1 > 0, σ > 1 and f ∈ C (R+, R
+) with lim|x|→∞ f (|x|) = +∞ and

f (|x|)
|x|σ

is non-increasing on R
+ such that

(∇xF(t, x), x)− 2F(t, x) ≥ f (|x|) |∇F(t, x)|σ
|x|σ

for |x| ≥ M1 and a.e. t ∈ [0, T], or

(ii) there exist M2 > 0 and g ∈ C (R+, R
+) with lim|x|→∞g(|x|) = +∞ and

g(|x|)
|x|2 is

non-increasing on R
+ such that

(∇xF(t, x), x)− 2F(t, x) ≥ g(|x|)F(t, x)

|x|2

for |x| ≥ M2 and a.e. t ∈ [0, T].

In [31], Zhang–Tang assumed

(ZT) there exist constants µ > 2, 0 < β < 2, L > 0 and a function a ∈ L1(0, T; R
+) such

that

µF(t, x) ≤ (∇xF(t, x)x) + a(t)|x|β

for |x| ≤ L and a.e. t ∈ [0, T].

In this paper, we will give a new solvable condition. Our main result is the following

theorem.

Theorem 1.1. Assume that F satisfies assumptions (A) and

(F1) lim|x|→0
F(t,x)
|x|2 = 0 uniformly in a.e. t ∈ [0, T],

(F2) there exist a constant r∗ > 0 and a function θ such that

0 < (2 + θ(x))F(t, x) ≤ (∇xF(t, x), x)

for |x| ≥ r∗ and a.e. t ∈ [0, T], where θ : {x ∈ R
N : |x| ≥ r∗} → R is continuous and

satisfies the following assumption

(⋆)



































(i) θ(x) > 0, ∀|x| ≥ r∗,

(ii) lim
|x|→+∞

θ(x)|x|2 = +∞,

(iii) there is x0 ∈ R
N with |x0| = 1 satisfying lim

r→+∞

∫ r

r∗

θ(sx0)

s
ds = +∞,

then system (1.1) has a nontrivial periodic solution.

Remark 1.2. (1) Condition (F2) is strictly weaker than the (AR) condition. In fact, we can de-

rive from condition (F2) that inf|x|≥r∗θ(x) ≥ 0, and the (AR) condition is exactly equivalent to

condition (F2) when inf|x|≥r∗θ(x) > 0. On the one hand, the (AR) condition implies condition

(F2) with θ(x) ≡ θ − 2 > 0 and r∗ = r0. On the other hand, when inf|x|≥r∗θ(x) > 0, condition

(F2) implies the (AR) condition with θ := 2 + inf|x|≥r∗θ(x) > 2 and r0 = r∗. In addition, there

are functions F satisfying condition (F2) with inf|x|≥r∗θ(x) = 0, for example,
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(Superlinear case) let

F(t, x) =















|x|2 ln |x| − 1
2 e2 − 1

16 , |x| ≥ e;
1
2 |x|2 − 1

16 , 1
2 ≤ |x| ≤ e;

|x|4, |x| ≤ 1
2 .

Then we have

∇xF(t, x) =















2x ln |x|+ x, |x| ≥ e;

x, 1
2 ≤ |x| ≤ e;

4|x|2x, |x| ≤ 1
2

and

(∇xF(t, x), x)− 2F(t, x) =















|x|2 + e2 + 1
8 , |x| ≥ e;

1
16 , 1

2 ≤ |x| ≤ e;

2|x|4, |x| ≤ 1
2 .

It is easy to verify that F satisfies assumptions (A), (F1), (F2) with θ(x) = 1
ln |x| and r∗ = e.

However, inf|x|≥e
1

ln |x| = 0, so condition (AR) is not satisfied.

(2) It is particularly noteworthy that our Theorem 1.1 can deal with the potentials F without

condition (SQ). In fact, there are functions with anisotropic growth satisfying condition (F2),

for example,

(Anisotropic case) let N = 2, x := (x1, x2) ∈ R
2, and

F(t, x) =







x4
1 +

5
6 x4

2, x2 ≤ 1;

x4
1 + x2

2 · e−x
− 4

3
2 +1 − 1

6 , x2 ≥ 1.

Through simple calculation, we have

∇xF(t, x) :=

(

∂F

∂x1
,

∂F

∂x2

)

=







4x3
1 +

10
3 x3

2, x2 ≤ 1;

4x3
1 +

(

2x2 +
4
3 x

− 1
3

2

)

· e−x
− 4

3
2 +1, x2 ≥ 1

and

(∇xF(t, x), x)− 2F(t, x) =







2x4
1 +

5
3 x4

2, x2 ≤ 1;

2x4
1 +

4
3 x

2
3
2 e−x

− 4
3

2 +1 + 1
3 , x2 ≥ 1.

Let

θ(x) =















2, x2 ≤ 1;

2x4
1+

4
3 x

2
3
2 e−x

− 4
3

2 +1+ 1
3

x4
1+x2

2·e
−x

− 4
3

2 +1− 1
6

, x2 ≥ 1,

then for |x| =
√

x2
1 + x2

2, r∗ =
√

2 and e1 = (1, 0) ∈ R
2, we can deduce that θ(x) > 0 for

|x| ≥
√

2, lim|x|→∞θ(x)|x|2 = +∞, and

lim
r→+∞

∫ r

√
2

θ(se1)

s
ds = lim

r→+∞

∫ r

√
2

2

s
ds = +∞,
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which implies that F is superquadratic growth in direction e1. In addition, it is easy to verify

that F satisfies assumptions (A), (F1), (F2). However, for e2 = (0, 1) ∈ R
2, we have

lim
x=se2, |x|→+∞

F(t, x)

|x|2 = lim
|s|→+∞

F(t, se2)

|s|2 = e,

which shows that F is asymptotically quadratic growth in direction e2. In conclusion, F satisfy

condition (F2) but not condition (SQ).

(3) Our Theorem 1.1 is different from all the results mentioned above. Firstly, condition

(F2) is strictly weaker than the (AR) condition. Secondly, we do not need the condition (SQ).

More precisely, Theorem 1.1 can deal with not only the superquadratic case but also the the

anisotropic case. Thirdly, we do not need more stringent and complex growth assumptions

on F at 0.

2 Proof of the theorem

Let

H1
T =

{

u ∈ L2(0, T; R
N) | u is weakly differentiable and u̇ ∈ L2(0, T; R

N)
}

be a Hilbert space with the inner product and the induced norm respectively given by

⟨u, v⟩H1
T
=
∫ T

0
(u̇, v̇) + (u(t), v(t))dt, ∥u∥H1

T
=

(

∫ T

0
|u̇(t)|2 + |u(t)|2dt

)
1
2

.

Denoting by λmin(t) and λmax(t) respectively the smallest and the biggest eigenvalue of L(t),

then λmin(t), λmax(t) ∈ C(0, T; R
+). Setting

λ := min
t∈[0,T]

λmin(t), λ := max
t∈[0,T]

λmax(t),

we have 0 < λ ≤ λ and

λ|ξ|2 ≤
(

L(t)ξ, ξ
)

≤ λ|ξ|2

for ξ ∈ R
N and t ∈ [0, T]. Thus, the following inner product and the corresponding induced

norm on H1
T defined by

⟨u, v⟩ =
∫ T

0
(u̇, v̇) +

(

L(t)u(t), v(t)
)

dt, ∥u∥ =

(

∫ T

0
|u̇(t)|2 +

(

L(t)u(t), u(t)
)

dt

)
1
2

are respectively equivalent to ⟨u, v⟩H1
T

and ∥u∥H1
T
. In fact, it is easy to verify that

√

min
{

1, λ
}

∥u∥H1
T
≤ ∥u∥ ≤

√

max
{

1, λ
}

∥u∥H1
T

for u ∈ H1
T. By Sobolev’s inequality, there is M > 0 such that

∥u∥∞ ≤ M∥u∥, ∀u ∈ H1
T,

where ∥u∥∞ := maxt∈[0,T]|u(t)|. In addition, from the assumption (A) it follows that the

functional Φ given by

Φ(u) =
1

2

∫ T

0
|u̇(t)|2dt +

1

2

∫ T

0

(

L(t)u(t), u(t)
)

dt −
∫ T

0
F(t, u(t))dt
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is continuously differentiable on H1
T, and

⟨Φ′(u), v⟩ =
∫ T

0

[(

u̇(t), v̇(t)
)

+
(

L(t)u(t), v(t)
)

−
(

∇xF(t, u(t)), v(t)
)]

dt.

Furthermore, the weak solutions to system (1.1) are exactly the critical points of Φ in H1
T.

Lemma 2.1. Assume that θ : {x ∈ R
N : |x| ≥ r∗} → R is continuous and satisfies condition (⋆)(i),

and suppose that there is a sequence {yn} ⊂ {x ∈ R
N : |x| ≥ r∗} such that

θ(yn) → 0 as n → ∞,

then |yn| → +∞ as n → ∞.

Proof. By negation, there exists a subsequence, still denoted by {yn}, is bounded. After pass-

ing to a subsequence, we may assume that there is y0 ∈ {x ∈ R
N : |x| ≥ r∗} such that

yn → y0 as n → ∞,

from this, (⋆)(i) and the continuity of θ it follows that

0 = lim
n→∞

θ(yn) = θ(y0) > 0,

a contradiction. The proof of Lemma 2.1 is completed.

Lemma 2.2. Assume that F satisfies (F1), then there are ρ > 0 and α > 0 such that Φ(u) ≥ α for

u ∈ H1
T with ∥u∥ = ρ.

Proof. From (F1), for ε ∈
(

0, 1
4TM2

)

, there exists a constant δ > 0 such that

|F(t, x)| ≤ ε|x|2

for |x| < δ and a.e. t ∈ [0, T]. Arbitrarily taking ρ ∈
(

0, δ
M

)

, we have

∥u∥∞ ≤ M∥u∥ ≤ Mρ < δ

for u ∈ H1
T with ∥u∥ = ρ, this leads to

Φ(u) ≥ 1

2
∥u∥2 − ε

∫ T

0
|u(t)|2dt ≥

(

1

2
− εM2T

)

∥u∥2 ≥ ρ2

4

for u ∈ H1
T with ∥u∥ = ρ. Setting α := ρ2

4 > 0, then the proof Lemma 2.2 is completed.

Lemma 2.3. Assume that F satisfies assumptions (A) and (F2), then there is u0 ∈ H1
T with ∥u0∥ > ρ

such that Φ(u0) < 0.

Proof. From assumptions (A) and (F2) it follows that

F(t, sx0) ≥ F(t, r∗x0)

r2∗
· e
∫ s

r∗
θ(τx0)

τ dτ · s2

for s ≥ r∗ and a.e. t ∈ [0, T], then we have

Φ(sx0) =
1

2
∥sx0∥2 −

∫ T

0
F(t, sx0)dt ≤

(

λ
2

2
−
∫ T

0

F(t, r∗x0)

r2∗
dt · e

∫ s
r∗

θ(τx0)
τ dτ

)

s2

for s ≥ r∗ and a.e. t ∈ [0, T], which implies Φ(u0) < 0 with u0 = sx0 for large s. This

completes the proof of Lemma 2.3
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Lemma 2.4. Assume that F satisfies assumptions (A), (F1) and (F2), then Φ satisfies the (C) condi-

tion, that is, for any c ∈ R and every sequence {un} such that

∥Φ
′(un)∥(1 + ∥un∥) → 0 and Φ(un) → c as n → ∞ (2.1)

has a convergent subsequence.

Proof. It suffices to prove that {un} is bounded. Moreover, the proof is trivial when

inf|x|≥r∗θ(x) > 0, so we just need to prove this lemma when inf|x|≥r∗θ(x) = 0.

We argue by contradiction. If {un} is unbounded, then after passing to a subsequence, we

may assume that

λn := ∥un∥ → +∞ as n → ∞. (2.2)

Setting wn = un

∥un∥ , then ∥wn∥ = 1 and un = λnwn. Thus, we deduce

∥wn∥∞ ≤ M∥wn∥ ≤ M.

Fixing xλn
∈
{

x ∈ R
N : r∗ ≤ |x| ≤ λn M

}

to be such that

θ(xλn
) = min

r∗≤|x|≤λn M
θ(x), (2.3)

then we have λn ≥ |xλn |
M , 0 < θ(xλn

) ≤ θ∗ := min|x|=r∗θ(x),

0 < (2 + θ(xλn
))F(t, x) ≤ (2 + θ(x))F(t, x) ≤ (∇xF(t, x), x) (2.4)

for r∗ ≤ |x| ≤ λn M and a.e. t ∈ [0, T]. Moreover, from (2.2), (2.3) and inf|x|≥r∗θ(x) = 0 it

follows that

θ(xλn
) → 0 as n → ∞.

Thus, from Lemma 2.1, we obtain

|xλn
| → +∞ as n → ∞. (2.5)

Setting

E−
n = {t ∈ [0, T] : |un(t)| < r∗}, E+

n = {t ∈ [0, T] : |un(t)| ≥ r∗},

then from (2.1) it follows that

o(1) =
∣

∣⟨Φ′(un), un⟩
∣

∣

=

∣

∣

∣

∣

λ2
n −

∫

E−
n

(un(t),∇xF(t, un(t))dt −
∫

E+
n

(un(t),∇xF(t, un(t))dt

∣

∣

∣

∣

,

where o(1) → 0 as n → ∞, this implies that

∫

E+
n

(un(t),∇xF(t, un(t))dt ≤ λ2
n +

∣

∣

∣

∣

∫

E−
n

(un(t),∇xF(t, un(t))dt

∣

∣

∣

∣

+ o(1). (2.6)

In addition, it follows from assumption (A) that there is β > 0 such that

∣

∣

∣

∣

∫

E−
n

(un(t),∇xF(t, un(t))dt

∣

∣

∣

∣

,

∣

∣

∣

∣

∫

E−
n

F(t, un(t))dt

∣

∣

∣

∣

≤ β,
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which together with (2.1), (2.4) and (2.6) gives

c + o(1) = Φ(un)

=
λ2

n

2
−
∫

E−
n

F(t, un(t))dt −
∫

E+
n

F(t, un(t))dt

≥ λ2
n

2
− β − 1

2 + θ(xλn
)

∫

E+
n

(un(t),∇xF(t, un(t))dt

≥ λ2
n

2
− β − 1

2 + θ(xλn
)

(

λ2
n +

∣

∣

∣

∣

∫

E−
n

(un(t),∇xF(t, un(t))dt

∣

∣

∣

∣

+ o(1)

)

≥ θ(xλn
)λ2

n

2(2 + θ(xλn
))

− β − β + o(1)

2 + θ(xλn
)

≥ θ(xλn
)|xλn

|2
2(2 + θ∗)M2

− 3β + o(1)

2
,

which is in contradiction with (2.5) and the assumption θ(x)|x|2 → +∞ as |x| → ∞. Hence,

{un} is bounded, the proof of Lemma 2.4 is completed.

Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 2.2–2.4, we obtain a nontrivial solution to system (1.1) via the

Mountain Pass Theorem under the (C) condition which the readers can refer to [2].
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1 Introduction

Let N, Z, R stand for the sets of natural, integer and real numbers respectively, and let
Nk = {n ∈ Z : n ≥ k} where k ∈ Z. If l ∈ Z, then, as usual, we regard that ∏

l−1
j=l cj = 1.

To obtain some information on solutions of difference equations and systems of difference
equations scientists first tried to find some closed form formulas for their solutions. The first
important results can be found, for example, in [7,10,11,17,18], as well as in the books [15,16]
where many results up to the end of the eighteenth century can be found.

The linear homogeneous second order difference equation with constant coefficients

xn+2 + axn+1 + bxn = 0, n ∈ N0, (1.1)

BCorresponding author. Email: sstevic@ptt.rs
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where a ∈ R and b ∈ R \ {0}, was solved by de Moivre [10].
If the coefficients a and b satisfy the condition a2 ̸= 4b, then the general solution to equation

(1.1) is given by the formula

xn =
(x1 − λ2x0)λn

1 − (x1 − λ1x0)λn
2

λ1 − λ2
, n ∈ N0, (1.2)

where

λ1 =
−a +

√
a2 − 4b

2
and λ2 =

−a −
√

a2 − 4b
2

are the roots of the polynomial equation p2(λ) := λ2 + aλ + b = 0 (see [10, p.84]).
If a2 = 4b, then the polynomial has two equal roots

λ1 = λ2 = − a
2

,

and the general solution to equation (1.1) in this case is given by the closed-form formula

xn = ((x1 − λ1x0)n + λ1x0)λ
n−1
1 , n ∈ N0. (1.3)

See [7], where, among other things, the method for finding solutions to linear homogeneous
difference equations with constant coefficients of arbitrary order in the form

xn = λn, n ∈ N0,

was described.
Closed-form formulas for solutions to linear homogeneous difference equations with con-

stant coefficients of the third order were presented by Euler in [11]. For some later presenta-
tions of results in the topic see, for example, the books [8, 13, 19, 20, 22].

Beside solvability of difference equations and systems of difference equations, some recent
investigations in the topic include also finding invariants of the equations and systems. For
some recent results in the topics, as well as their applications see, for example, [4–6,12,23–37],
as well as many related references cited therein.

One of the difference equations which, by using some changes of variables, reduces to
equation (1.1) is

xn+1 =
axn + b
cxn + d

, n ∈ N0, (1.4)

the bilinear/fractional linear difference equation. Equation (1.4) and some of related systems
of difference equations have been investigated since the time of Laplace and frequently appear
in the literature (see, for example, [1, 2, 6, 8, 9, 14–16, 19, 21, 22, 31, 32, 34, 35, 37]).

Many other classes of difference equations can be reduced to linear difference equations
with constant coefficients. It is of some interest to find such classes, as well as some which
reduces to equation (1.4). By using some changes of variables it is easy to form many such
classes.

There have been some investigations on solvability and behaviour of solutions to the dif-
ference equation

xn+1 = axn +
bxnxn−3

cxn−2 + dxn−3
, n ∈ N0, (1.5)

where a, b, c, d ∈ R.
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Here we show that a more general class of difference equations can be solved in closed
form, extending some of the results on equation (1.5) in the literature. We use some methods
and ideas related to the ones, e.g., in [12,31,32,34,37]. By using obtained closed-form formulas
for solutions to equation (1.5), we present some applications of our main theorem by giving
two examples which show that some results in [3] are not correct.

2 Main results

This section presents the main result in the paper. It shows the solvability of a generalization
of equation (1.5), by finding closed form formulas for their solutions.

Theorem 2.1. Assume α, β, γ, δ ∈ R, α2 + β2 ̸= 0 ̸= γ2 + δ2, g is a strictly monotone and continuous
function, g(R) = R and g(0) = 0. Then, the equation

xn+1 = g−1
(

g(xn)
αg(xn−2) + βg(xn−3)

γg(xn−2) + δg(xn−3)

)

, n ∈ N0, (2.1)

is solvable in closed form.

Proof. By a well known theorem in real analysis we see that the conditions posed on function
g imply the existence of the inverse function g−1 which satisfies the same conditions as the
function g ([38]).

Assume that xn0 = 0 for some n0 ∈ N0. Then from (2.1) we have xn0+1 = 0. These facts
along with (2.1) imply that xn0+4 is not defined. Thus, of interest are the solutions of equation
(2.1) such that xn ̸= 0, n ∈ N0. We may also assume that x−j ̸= 0, j = 1, 3, otherwise the
equation can be considered only on the domain N0. Hence, we suppose

xn ̸= 0, for n ∈ N−3. (2.2)

From (2.2) and the conditions of the theorem we have

g(xn) ̸= 0, for n ∈ N−3. (2.3)

First, assume αδ ̸= βγ and γ ̸= 0. Let

yn =
g(xn)

g(xn−1)
, n ∈ N−2. (2.4)

From (2.1) and monotonicity of g, we have

g(xn+1) = g(xn)
αg(xn−2) + βg(xn−3)

γg(xn−2) + δg(xn−3)
, n ∈ N0. (2.5)

Employing the change of variables (2.4) in (2.5) we have

yn+1 =
αyn−2 + β

γyn−2 + δ
, n ∈ N0. (2.6)

Let

z(j)
m = y3m−j, m ∈ N0, j = 0, 2. (2.7)
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Then, from (2.6) and (2.7) we have

z(j)
m+1 =

αz(j)
m + β

γz(j)
m + δ

, (2.8)

for m ∈ N0, j = 0, 2, which is a bilinear difference equation.
Let

z(j)
m =

u(j)
m+1

u(j)
m

+ f j, m ∈ N0, j = 0, 2, (2.9)

for some f j ∈ R, j = 0, 2.
Then from (2.8) and (2.9) we have

(

u(j)
m+2

u(j)
m+1

+ f j

)(

γ
u(j)

m+1

u(j)
m

+ γ f j + δ

)

−
(

α
u(j)

m+1

u(j)
m

+ α f j + β

)

= 0,

for m ∈ N0, j = 0, 2.
Let

f j = − δ

γ
, j = 0, 2.

Then we have

γ2u(j)
m+2 − γ(α + δ)u(j)

m+1 + (αδ − βγ)u(j)
m = 0, (2.10)

for m ∈ N0, j = 0, 2.
Suppose ∆ := (α + δ)2 − 4(αδ − βγ) ̸= 0. Then by using formula (1.2) we have that

u(j)
m =

(u(j)
1 − λ2u(j)

0 )λm
1 − (u(j)

1 − λ1u(j)
0 )λm

2

λ1 − λ2
, (2.11)

for m ∈ N0, j = 0, 2, where

λ1 =
α + δ +

√
∆

2γ
and λ2 =

α + δ −
√

∆

2γ
,

is the general solution to (2.10).
Formulas (2.9) and (2.11) imply

z(j)
m =

(u(j)
1 − λ2u(j)

0 )λm+1
1 − (u(j)

1 − λ1u(j)
0 )λm+1

2

(u(j)
1 − λ2u(j)

0 )λm
1 − (u(j)

1 − λ1u(j)
0 )λm

2

− δ

γ

=
(z(j)

0 − λ2 +
δ
γ )λ

m+1
1 − (z(j)

0 − λ1 +
δ
γ )λ

m+1
2

(z(j)
0 − λ2 +

δ
γ )λ

m
1 − (z(j)

0 − λ1 +
δ
γ )λ

m
2

− δ

γ
,

for m ∈ N0, j = 0, 2, from which along with (2.7) it follows that

y3m−j =
(y−j − λ2 +

δ
γ )λ

m+1
1 − (y−j − λ1 +

δ
γ )λ

m+1
2

(y−j − λ2 +
δ
γ )λ

m
1 − (y−j − λ1 +

δ
γ )λ

m
2

− δ

γ
, (2.12)
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for m ∈ N0, j = 0, 2.

From (2.4) and (2.12) it follows that

g(x3m−j)=





( g(x−j)

g(x−j−1)
− λ2 +

δ
γ

)

λm+1
1 −

( g(x−j)

g(x−j−1)
− λ1 +

δ
γ

)

λm+1
2

( g(x−j)

g(x−j−1)
− λ2 +

δ
γ

)

λm
1 −

( g(x−j)

g(x−j−1)
− λ1 +

δ
γ

)

λm
2

− δ

γ



 g(x3m−j−1),

for m ∈ N0, j = 0, 2.

From (2.4) we easily get

g(x3m−j) = y3m−jy3m−j−1y3m−j−2g(x3m−j−3), (2.13)

for m ∈ N, j = 1, 3.

Hence

g(x3m) = g(x−3)
m

∏
i=0

y3iy3i−1y3i−2,

g(x3m+1) = g(x−2)
m

∏
i=0

y3i+1y3iy3i−1,

g(x3m+2) = g(x−1)
m

∏
i=0

y3i+2y3i+1y3i,

for m ∈ N0, and consequently

x3m = g−1

(

g(x−3)
m

∏
i=0

y3iy3i−1y3i−2

)

, (2.14)

x3m+1 = g−1

(

g(x−2)
m

∏
i=0

y3i+1y3iy3i−1

)

, (2.15)

x3m+2 = g−1

(

g(x−1)
m

∏
i=0

y3i+2y3i+1y3i

)

, (2.16)

for m ∈ N0, where

y3my3m−1y3m−2 =





( g(x0)
g(x−1)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x0)
g(x−1)

− λ1 +
δ
γ

)

λm+1
2

( g(x0)
g(x−1)

− λ2 +
δ
γ

)

λm
1 −

( g(x0)
g(x−1)

− λ1 +
δ
γ

)

λm
2

− δ

γ





×





( g(x−1)
g(x−2)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x−1)
g(x−2)

− λ1 +
δ
γ

)

λm+1
2

( g(x−1)
g(x−2)

− λ2 +
δ
γ

)

λm
1 −

( g(x−1)
g(x−2)

− λ1 +
δ
γ

)

λm
2

− δ

γ





×





( g(x−2)
g(x−3)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x−2)
g(x−3)

− λ1 +
δ
γ

)

λm+1
2

( g(x−2)
g(x−3)

− λ2 +
δ
γ

)

λm
1 −

( g(x−2)
g(x−3)

− λ1 +
δ
γ

)

λm
2

− δ

γ



 , (2.17)
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y3m+1y3my3m−1 =





( g(x−2)
g(x−3)

− λ2 +
δ
γ

)

λm+2
1 −

( g(x−2)
g(x−3)

− λ1 +
δ
γ

)

λm+2
2

( g(x−2)
g(x−3)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x−2)
g(x−3)

− λ1 +
δ
γ

)

λm+1
2

− δ

γ





×





( g(x0)
g(x−1)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x0)
g(x−1)

− λ1 +
δ
γ

)

λm+1
2

( g(x0)
g(x−1)

− λ2 +
δ
γ

)

λm
1 −

( g(x0)
g(x−1)

− λ1 +
δ
γ

)

λm
2

− δ

γ





×





( g(x−1)
g(x−2)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x−1)
g(x−2)

− λ1 +
δ
γ

)

λm+1
2

( g(x−1)
g(x−2)

− λ2 +
δ
γ

)

λm
1 −

( g(x−1)
g(x−2)

− λ1 +
δ
γ

)

λm
2

− δ

γ



 , (2.18)

y3m+2y3m+1y3m =





( g(x−1)
g(x−2)

− λ2 +
δ
γ

)

λm+2
1 −

( g(x−1)
g(x−2)

− λ1 +
δ
γ

)

λm+2
2

( g(x−1)
g(x−2)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x−1)
g(x−2)

− λ1 +
δ
γ

)

λm+1
2

− δ

γ





×





( g(x−2)
g(x−3)

− λ2 +
δ
γ

)

λm+2
1 −

( g(x−2)
g(x−3)

− λ1 +
δ
γ

)

λm+2
2

( g(x−2)
g(x−3)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x−2)
g(x−3)

− λ1 +
δ
γ

)

λm+1
2

− δ

γ





×





( g(x0)
g(x−1)

− λ2 +
δ
γ

)

λm+1
1 −

( g(x0)
g(x−1)

− λ1 +
δ
γ

)

λm+1
2

( g(x0)
g(x−1)

− λ2 +
δ
γ

)

λm
1 −

( g(x0)
g(x−1)

− λ1 +
δ
γ

)

λm
2

− δ

γ



 , (2.19)

for m ∈ N0. Formulas (2.14)–(2.19) present general solution to equation (2.1) in this case.
Assume ∆ = 0. Then, by using formula (1.3) we see that the general solution to equation

(2.10) in this case is given by

u(j)
m = ((u(j)

1 − λ1u(j)
0 )m + λ1u(j)

0 )λm−1
1 , (2.20)

for m ∈ N0, j = 0, 2, where

λ1 =
α + δ

2γ
̸= 0.

From (2.9) and (2.20) we have

z(j)
m =

((u(j)
1 − λ1u(j)

0 )(m + 1) + λ1u(j)
0 )λ1

(u(j)
1 − λ1u(j)

0 )m + λ1u(j)
0

− δ

γ

=
((z(j)

0 − λ1 +
δ
γ )(m + 1) + λ1)λ1

(z(j)
0 − λ1 +

δ
γ )m + λ1

− δ

γ
,

for m ∈ N0, j = 0, 2, from which along with (2.7) it follows that

y3m−j =
((y−j − λ1 +

δ
γ )(m + 1) + λ1)λ1

(y−j − λ1 +
δ
γ )m + λ1

− δ

γ
, (2.21)

for m ∈ N0, j = 0, 2.
From (2.4) and (2.21) we have

g(x3m−j) =





(
g(x−j)

g(x−j−1)
− λ1 +

δ
γ )(m + 1) + λ1)λ1

(
g(x−j)

g(x−j−1)
− λ1 +

δ
γ )m + λ1

− δ

γ



 g(x3m−j−1), (2.22)



On a solvable class of nonlinear difference equations of fourth order 7

for m ∈ N0, j = 0, 2.
We also have

y3my3m−1y3m−2 =





( g(x0)
g(x−1)

− λ1 +
δ
γ )(m + 1) + λ1)λ1

( g(x0)
g(x−1)

− λ1 +
δ
γ )m + λ1

− δ

γ





×





( g(x−1)
g(x−2)

− λ1 +
δ
γ )(m + 1) + λ1)λ1

( g(x−1)
g(x−2)

− λ1 +
δ
γ )m + λ1

− δ

γ





×





( g(x−2)
g(x−3)

− λ1 +
δ
γ )(m + 1) + λ1)λ1

( g(x−2)
g(x−3)

− λ1 +
δ
γ )m + λ1

− δ

γ



 , (2.23)

y3m+1y3my3m−1 =





( g(x−2)
g(x−3)

− λ1 +
δ
γ )(m + 2) + λ1)λ1

( g(x−2)
g(x−3)

− λ1 +
δ
γ )(m + 1) + λ1

− δ

γ





×





( g(x0)
g(x−1)

− λ1 +
δ
γ )(m + 1) + λ1)λ1

( g(x0)
g(x−1)

− λ1 +
δ
γ )m + λ1

− δ

γ





×





( g(x−1)
g(x−2)

− λ1 +
δ
γ )(m + 1) + λ1)λ1

( g(x−1)
g(x−2)

− λ1 +
δ
γ )m + λ1

− δ

γ



 , (2.24)

y3m+2y3m+1y3m =





( g(x−1)
g(x−2)

− λ1 +
δ
γ )(m + 2) + λ1)λ1

( g(x−1)
g(x−2)

− λ1 +
δ
γ )(m + 1) + λ1

− δ

γ





×





( g(x−2)
g(x−3)

− λ1 +
δ
γ )(m + 2) + λ1)λ1

( g(x−2)
g(x−3)

− λ1 +
δ
γ )(m + 1) + λ1

− δ

γ





×





( g(x0)
g(x−1)

− λ1 +
δ
γ )(m + 1) + λ1)λ1

( g(x0)
g(x−1)

− λ1 +
δ
γ )m + λ1

− δ

γ



 , (2.25)

for m ∈ N0.
The above consideration, shows that the general solution to equation (2.1) in this case is

given by formulas (2.14)–(2.16), (2.23)–(2.25).
Now assume γ = 0. Then δ ̸= 0 and equation (2.6) becomes

yn+1 =
α

δ
yn−2 +

β

δ
, n ∈ N0. (2.26)

Hence,

z(j)
m+1 =

α

δ
z(j)

m +
β

δ
, m ∈ N0, j = 0, 2. (2.27)

If α = δ, then from (2.27) we obtain

z(j)
m =

β

δ
m + z(j)

0 , m ∈ N0, j = 0, 2.
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that is

y3m−j =
β

δ
m + y−j, m ∈ N0, j = 0, 2,

from which along with (2.4) and (2.13) it follows that

g(x3m) =

(

β

δ
m +

g(x0)

g(x−1)

)(

β

δ
m +

g(x−1)

g(x−2)

)(

β

δ
m +

g(x−2)

g(x−3)

)

g(x3m−3),

g(x3m+1) =

(

β

δ
(m + 1) +

g(x−2)

g(x−3)

)(

β

δ
m +

g(x0)

g(x−1)

)(

β

δ
m +

g(x−1)

g(x−2)

)

g(x3m−2),

g(x3m+2) =

(

β

δ
(m + 1) +

g(x−1)

g(x−2)

)(

β

δ
(m + 1) +

g(x−2)

g(x−3)

)(

β

δ
m +

g(x0)

g(x−1)

)

g(x3m−1),

for m ∈ N0, from which it follows that

g(x3m) = g(x−3)
m

∏
j=0

(

β

δ
j +

g(x0)

g(x−1)

)(

β

δ
j +

g(x−1)

g(x−2)

)(

β

δ
j +

g(x−2)

g(x−3)

)

,

g(x3m+1) = g(x−2)
m

∏
j=0

(

β

δ
(j + 1) +

g(x−2)

g(x−3)

)(

β

δ
j +

g(x0)

g(x−1)

)(

β

δ
j +

g(x−1)

g(x−2)

)

,

g(x3m+2) = g(x−1)
m

∏
j=0

(

β

δ
(j + 1) +

g(x−1)

g(x−2)

)(

β

δ
(j + 1) +

g(x−2)

g(x−3)

)(

β

δ
j +

g(x0)

g(x−1)

)

,

for m ∈ N0, and consequently

x3m = g−1

(

g(x−3)
m

∏
j=0

(

β

δ
j +

g(x0)

g(x−1)

)(

β

δ
j +

g(x−1)

g(x−2)

)(

β

δ
j +

g(x−2)

g(x−3)

)

)

, (2.28)

x3m+1 = g−1

(

g(x−2)
m

∏
j=0

(

β

δ
(j + 1) +

g(x−2)

g(x−3)

)(

β

δ
j +

g(x0)

g(x−1)

)(

β

δ
j +

g(x−1)

g(x−2)

)

)

, (2.29)

x3m+2 = g−1

(

g(x−1)
m

∏
j=0

(

β

δ
(j + 1) +

g(x−1)

g(x−2)

)(

β

δ
(j + 1) +

g(x−2)

g(x−3)

)(

β

δ
j +

g(x0)

g(x−1)

)

)

, (2.30)

for m ∈ N0. Hence, the general solution to equation (2.1) in this case is given by formulas
(2.28)–(2.30).

If α ̸= δ, then from (2.27) we have

z(j)
m =

β

α − δ

(

(α

δ

)m
− 1
)

+
(α

δ

)m
z(j)

0 ,

for m ∈ N0, j = 0, 2, that is,

y3m−j = β
(α/δ)m − 1

α − δ
+
(α

δ

)m
y−j, (2.31)

for m ∈ N0, j = 0, 2.
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From (2.4), (2.13) and (2.31) we have

g(x3m) =

(

β
(α/δ)m − 1

α − δ
+
(α

δ

)m g(x0)

g(x−1)

)

×
(

β
(α/δ)m − 1

α − δ
+
(α

δ

)m g(x−1)

g(x−2)

)

×
(

β
(α/δ)m − 1

α − δ
+
(α

δ

)m g(x−2)

g(x−3)

)

g(x3m−3),

g(x3m+1) =

(

β
(α/δ)m+1 − 1

α − δ
+
(α

δ

)m+1 g(x−2)

g(x−3)

)

×
(

β
(α/δ)m − 1

α − δ
+
(α

δ

)m g(x0)

g(x−1)

)

×
(

β
(α/δ)m − 1

α − δ
+
(α

δ

)m g(x−1)

g(x−2)

)

g(x3m−2),

g(x3m+2) =

(

β
(α/δ)m+1 − 1

α − δ
+
(α

δ

)m+1 g(x−1)

g(x−2)

)

×
(

β
(α/δ)m+1 − 1

α − δ
+
(α

δ

)m+1 g(x−2)

g(x−3)

)

×
(

β
(α/δ)m − 1

α − δ
+
(α

δ

)m g(x0)

g(x−1)

)

g(x3m−1),

for m ∈ N0.

Hence

g(x3m) = g(x−3)
m

∏
j=0

(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x0)

g(x−1)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x−1)

g(x−2)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x−2)

g(x−3)

)

,

g(x3m+1) = g(x−2)
m

∏
j=0

(

β
(α/δ)j+1 − 1

α − δ
+
(α

δ

)j+1 g(x−2)

g(x−3)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x0)

g(x−1)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x−1)

g(x−2)

)

,

g(x3m+2) = g(x−1)
m

∏
j=0

(

β
(α/δ)j+1 − 1

α − δ
+
(α

δ

)j+1 g(x−1)

g(x−2)

)

×
(

β
(α/δ)j+1 − 1

α − δ
+
(α

δ

)j+1 g(x−2)

g(x−3)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x0)

g(x−1)

)

,
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for m ∈ N0, and consequently

x3m = g−1
(

g(x−3)
m

∏
j=0

(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x0)

g(x−1)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x−1)

g(x−2)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x−2)

g(x−3)

))

, (2.32)

x3m+1 = g−1
(

g(x−2)
m

∏
j=0

(

β
(α/δ)j+1 − 1

α − δ
+
(α

δ

)j+1 g(x−2)

g(x−3)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x0)

g(x−1)

))

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x−1)

g(x−2)

))

, (2.33)

x3m+2 = g−1
(

g(x−1)
m

∏
j=0

(

β
(α/δ)j+1 − 1

α − δ
+
(α

δ

)j+1 g(x−1)

g(x−2)

)

×
(

β
(α/δ)j+1 − 1

α − δ
+
(α

δ

)j+1 g(x−2)

g(x−3)

)

×
(

β
(α/δ)j − 1

α − δ
+
(α

δ

)j g(x0)

g(x−1)

))

, (2.34)

for m ∈ N0. Hence, the general solution to equation (2.1) in this case is given by formulas
(2.32)–(2.34).

Assume αδ = βγ. If α = 0, then β ̸= 0. This implies γ = 0 and δ ̸= 0. Hence

xn+1 = g−1
(

β

δ
g(xn)

)

, n ∈ N0. (2.35)

From (2.35) we easily get

xn = g−1
((

β

δ

)n

g(x0)

)

, (2.36)

for n ∈ N0.
If α ̸= 0 and β = 0, then δ = 0, from which it follows that γ ̸= 0. Hence

xn+1 = g−1
(

α

γ
g(xn)

)

, n ∈ N0. (2.37)

From (2.37) we obtain

xn = g−1
((

α

γ

)n

g(x0)

)

, n ∈ N0. (2.38)

If δ = 0, then γ ̸= 0. This implies β = 0, and consequently α ̸= 0, so we get equation (2.37)
whose solutions are given by formula (2.38). If γ = 0, then δ ̸= 0. Hence α = 0 which implies
β ̸= 0, so we get equation (2.35) whose solutions are given by formula (2.36).

If αβγδ ̸= 0, then α = βγ/δ, so we again get equation (2.35), which in this case coincides
with equation (2.37).

From above obtained closed-form formulas for solutions to equation (2.1) the theorem
follows.
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3 Some applications and discussions

A part of recent literature on difference equations contains many claims which are not estab-
lished and/or explained. In some of our papers we discussed some aspects of the phenomena
(see, e.g., [32–34, 36]). Here we discuss some incorrect claims on long-term behaviour of solu-
tions to equation (1.5) given in [3].

Note that equation (1.5) can be written in the form

xn+1 = xn
acxn−2 + (ad + b)xn−3

cxn−2 + dxn−3
, n ∈ N0. (3.1)

In [3] was first tried to find the equilibria of the equation. After some simple algebraic
manipulations it was concluded that x̄ = 0 is a unique equilibrium point of equation (1.5),
when

(1 − a)(c + d) ̸= b.

Assume that x̄ is an equilibrium of equation (1.5). Then it must satisfy the algebraic equation

x̄ = ax̄ +
bx̄2

(c + d)x̄
. (3.2)

From (3.2) we see that it must be

x̄ ̸= 0 and c + d ̸= 0.

This eliminates the possibility x̄ = 0.
If x̄ ̸= 0, then (3.2) implies

x̄
(

1 − a − b
c + d

)

= 0,

and consequently

1 − a − b
c + d

= 0.

Therefore, under the last condition any x̄ ̸= 0 is an equilibrium of the difference equation.
This means that the claim in [3, Theorem 1] that, under a condition, the zero equilib-

rium point of equation (1.5) is locally asymptotically stable is not correct, since it is not an
equilibrium at all.

Further, Theorem 2 in [3] claims the following:

Theorem 3.1. The equilibrium point x̄ of equation (1.5) is global attractor if d(1 − a) ̸= b.

Note that equation (3.1) is a special case of equation (2.1) with

g(x) = x, α = ac, β = ad + b, γ = c and δ = d.

Example 3.2. Consider the equation (1.5) with

a = 3, b = −5, c = 1 and d = 2, (3.3)

that is, the equation

xn+1 = xn
3xn−2 + xn−3

xn−2 + 2xn−3
, n ∈ N0. (3.4)
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This is the equation (2.1) with g(x) = x, x ∈ R,

α = 3, β = γ = 1, δ = 2. (3.5)

The associated characteristic polynomial to the corresponding linear equation in (2.10) is

p2(λ) = λ2 − 5λ + 5,

and its roots are

λ1 =
5 +

√
5

2
and λ2 =

5 −
√

5
2

.

Since in this case we have
d(1 − a)− b = 1 ̸= 0,

the condition d(1 − a) ̸= b in Theorem 3.1 is satisfied.
Employing the formulas in (2.14)–(2.19), where g(x) = x, x ∈ R, and the coefficients

α, β, γ, δ are as in (3.5), we have

x3m = x−3

m

∏
i=0

y3iy3i−1y3i−2, (3.6)

x3m+1 = x−2

m

∏
i=0

y3i+1y3iy3i−1, (3.7)

x3m+2 = x−1

m

∏
i=0

y3i+2y3i+1y3i, (3.8)

for m ∈ N0, where

y3my3m−1y3m−2 =

(( x0
x−1

− λ2 + 2
)

λm+1
1 −

( x0
x−1

− λ1 + 2
)

λm+1
2

( x0
x−1

− λ2 + 2
)

λm
1 −

( x0
x−1

− λ1 + 2
)

λm
2

− 2

)

×
(( x−1

x−2
− λ2 + 2

)

λm+1
1 −

( x−1
x−2

− λ1 + 2
)

λm+1
2

( x−1
x−2

− λ2 + 2
)

λm
1 −

( x−1
x−2

− λ1 + 2
)

λm
2

− 2

)

×
(( x−2

x−3
− λ2 + 2

)

λm+1
1 −

( x−2
x−3

− λ1 + 2
)

λm+1
2

( x−2
x−3

− λ2 + 2
)

λm
1 −

( x−2
x−3

− λ1 + 2
)

λm
2

− 2

)

, (3.9)

y3m+1y3my3m−1 =

(( x−2
x−3

− λ2 + 2
)

λm+2
1 −

( x−2
x−3

− λ1 + 2
)

λm+2
2

( x−2
x−3

− λ2 + 2
)

λm+1
1 −

( x−2
x−3

− λ1 + 2
)

λm+1
2

− 2

)

×
(( x0

x−1
− λ2 + 2

)

λm+1
1 −

( x0
x−1

− λ1 + 2
)

λm+1
2

( x0
x−1

− λ2 + 2
)

λm
1 −

( x0
x−1

− λ1 + 2
)

λm
2

− 2

)

×
(( x−1

x−2
− λ2 + 2

)

λm+1
1 −

( x−1
x−2

− λ1 + 2
)

λm+1
2

( x−1
x−2

− λ2 + 2
)

λm
1 −

( x−1
x−2

− λ1 + 2
)

λm
2

− 2

)

, (3.10)

y3m+2y3m+1y3m =

(( x−1
x−2

− λ2 + 2
)

λm+2
1 −

( x−1
x−2

− λ1 + 2
)

λm+2
2

( x−1
x−2

− λ2 + 2
)

λm+1
1 −

( x−1
x−2

− λ1 + 2
)

λm+1
2

− 2

)

×
(( x−2

x−3
− λ2 + 2

)

λm+2
1 −

( x−2
x−3

− λ1 + 2
)

λm+2
2

( x−2
x−3

− λ2 + 2
)

λm+1
1 −

( x−2
x−3

− λ1 + 2
)

λm+1
2

− 2

)

×
(( x0

x−1
− λ2 + 2

)

λm+1
1 −

( x0
x−1

− λ1 + 2
)

λm+1
2

( x0
x−1

− λ2 + 2
)

λm
1 −

( x0
x−1

− λ1 + 2
)

λm
2

− 2

)

, (3.11)
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for m ∈ N0.
Now note that

lim
m→+∞

( x0
x−1

− λ2 + 2
)

λm+1
1 −

( x0
x−1

− λ1 + 2
)

λm+1
2

( x0
x−1

− λ2 + 2
)

λm
1 −

( x0
x−1

− λ1 + 2
)

λm
2

− 2

= lim
m→+∞

( x−1
x−2

− λ2 + 2
)

λm+1
1 −

( x−1
x−2

− λ1 + 2
)

λm+1
2

( x−1
x−2

− λ2 + 2
)

λm
1 −

( x−1
x−2

− λ1 + 2
)

λm
2

− 2

= lim
m→+∞

( x−2
x−3

− λ2 + 2
)

λm+1
1 −

( x−2
x−3

− λ1 + 2
)

λm+1
2

( x−2
x−3

− λ2 + 2
)

λm
1 −

( x−2
x−3

− λ1 + 2
)

λm
2

− 2

= λ1 − 2 =
1 +

√
5

2
> 1,

when

x−i

x−(i+1)
̸= λ2 − 2 =

1 −
√

5
2

, i = 0, 2. (3.12)

By choosing positive initial values satisfying (3.12) and using formulas (3.6)–(3.11) we have

lim
n→+∞

xn = +∞.

This means that the solution is not convergent, which is a counterexample to the claim in
Theorem 3.1.

Bearing in mind that in [3] is stated that it considers equation (1.5) for the case when all
the coefficients a, b, c and d are positive, and that one of the coefficients in Example 3.2 is
negative (see (3.3)), in the following example we also give a counterexample to the statement
in Theorem 3.1 for the case of positive coefficients.

Example 3.3. Consider the equation (1.5) with

a = b = c = d = 1, (3.13)

that is, the equation

xn+1 = xn
xn−2 + 2xn−3

xn−2 + xn−3
, n ∈ N0. (3.14)

This is the equation (2.1) with g(x) = x, x ∈ R,

α = γ = δ = 1, β = 2. (3.15)

The associated characteristic polynomial to the corresponding linear equation in (2.10) is

p2(λ) = λ2 − 2λ − 1,

and its roots are
λ1 = 1 +

√
2 and λ2 = 1 −

√
2.

Since in this case we have
d(1 − a)− b = −1 ̸= 0,
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the condition d(1 − a) ̸= b in Theorem 3.1 is satisfied.
Employing (2.14)–(2.19), where g(x) = x, x ∈ R, and the coefficients α, β, γ, δ are as in

(3.15) we have that the relations in (3.6)–(3.8) hold for m ∈ N0, where

y3my3m−1y3m−2 =

(( x0
x−1

− λ2 + 1
)

λm+1
1 −

( x0
x−1

− λ1 + 1
)

λm+1
2

( x0
x−1

− λ2 + 1
)

λm
1 −

( x0
x−1

− λ1 + 1
)

λm
2

− 1

)

×
(( x−1

x−2
− λ2 + 1

)

λm+1
1 −

( x−1
x−2

− λ1 + 1
)

λm+1
2

( x−1
x−2

− λ2 + 1
)

λm
1 −

( x−1
x−2

− λ1 + 1
)

λm
2

− 1

)

×
(( x−2

x−3
− λ2 + 1

)

λm+1
1 −

( x−2
x−3

− λ1 + 1
)

λm+1
2

( x−2
x−3

− λ2 + 1
)

λm
1 −

( x−2
x−3

− λ1 + 1
)

λm
2

− 1

)

, (3.16)

y3m+1y3my3m−1 =

(( x−2
x−3

− λ2 + 1
)

λm+2
1 −

( x−2
x−3

− λ1 + 1
)

λm+2
2

( x−2
x−3

− λ2 + 1
)

λm+1
1 −

( x−2
x−3

− λ1 + 1
)

λm+1
2

− 1

)

×
(( x0

x−1
− λ2 + 1

)

λm+1
1 −

( x0
x−1

− λ1 + 1
)

λm+1
2

( x0
x−1

− λ2 + 1
)

λm
1 −

( x0
x−1

− λ2 + 1
)

λm
2

− 1

)

×
(( x−1

x−2
− λ2 + 1

)

λm+1
1 −

( x−1
x−2

− λ1 + 1
)

λm+1
2

( x−1
x−2

− λ2 + 1
)

λm
1 −

( x−1
x−2

− λ1 + 1
)

λm
2

− 1

)

, (3.17)

y3m+2y3m+1y3m =

(( x−1
x−2

− λ2 + 1
)

λm+2
1 −

( x−1
x−2

− λ1 + 1
)

λm+2
2

( x−1
x−2

− λ2 + 1
)

λm+1
1 −

( x−1
x−2

− λ1 + 1
)

λm+1
2

− 1

)

×
(( x−2

x−3
− λ2 + 1

)

λm+2
1 −

( x−2
x−3

− λ1 + 1
)

λm+2
2

( x−2
x−3

− λ2 + 1
)

λm+1
1 −

( x−2
x−3

− λ1 + 1
)

λm+1
2

− 1

)

×
(( x0

x−1
− λ2 + 1

)

λm+1
1 −

( x0
x−1

− λ1 + 1
)

λm+1
2

( x0
x−1

− λ2 + 1
)

λm
1 −

( x0
x−1

− λ1 + 1
)

λm
2

− 1

)

, (3.18)

for m ∈ N0.
Now note that

lim
m→+∞

( x0
x−1

− λ2 + 1
)

λm+1
1 −

( x0
x−1

− λ1 + 1
)

λm+1
2

( x0
x−1

− λ2 + 1
)

λm
1 −

( x0
x−1

− λ1 + 1
)

λm
2

− 1

= lim
m→+∞

( x−1
x−2

− λ2 + 1
)

λm+1
1 −

( x−1
x−2

− λ1 + 1
)

λm+1
2

( x−1
x−2

− λ2 + 1
)

λm
1 −

( x−1
x−2

− λ1 + 1
)

λm
2

− 1

= lim
m→+∞

( x−2
x−3

− λ2 + 1
)

λm+1
1 −

( x−2
x−3

− λ1 + 1
)

λm+1
2

( x−2
x−3

− λ2 + 1
)

λm
1 −

( x−2
x−3

− λ1 + 1
)

λm
2

− 1

= λ1 − 1 =
√

2 > 1,

when

x−i

x−(i+1)
̸= λ2 − 1 = −

√
2, i = 0, 2. (3.19)
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By choosing positive initial values satisfying (3.19), and using formulas (3.6)–(3.8), (3.16)–(3.18)
we have

lim
n→+∞

xn = +∞.

Hence, the solutions are not convergent, which is a counterexample to the claim in Theorem
3.1 in the case min{a, b, c, d} > 0.

Remark 3.4. The closed-form formulas for some special cases of equation (1.5) presented
in [3] easily follow from the ones in Theorem 2.1. We leave the verification of the fact to
the interested reader as some simple exercises. Hence, our Theorem 2.1 gives a theoretical
explanation for the closed-form formulas therein.
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[1] D. Adamović, Problem 194, Mat. Vesnik 22(1970), No. 2, 270.
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demic model is established, and various properties of solution are derived directly from
the exact solution. The exact solution of an initial value problem for SIRD epidemic
model is represented in an explicit form, and it is shown that the parametric form of
the exact solution is a solution of some linear differential system.
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1 Introduction

Recently there is an increasing requirement for mathematical approach to epidemic models. It

goes without saying that a vast literature and research papers, dealing with epidemic models

has been published so far (see, e.g., [2–4,7]). It seems that little is known about exact solutions

of epidemic models. Exact solutions of the Susceptible-Infectious-Recovered (SIR) epidemic

model were studied by Bohner, Streipert and Torres [1], Harko, Lobo and Mak [5], Shabbir,

Khan and Sadiq [9] and Yoshida [11]. However there appears to be no known results about

exact solutions of the Susceptible–Infectious–Recovered–Deceased (SIRD) epidemic models.

The objective of this paper is to obtain an exact solution of SIRD differential system, and to

derive various properties of the exact solution. Furthermore we show that the parametric

form of the exact solution satisfies some linear differential system.

The differential system called Susceptible–Infectious–Recovered–Deceased (SIRD) epidem-

1Corresponding author. Email: norio.yoshidajp@gmail.com
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ic model is the following:

dS(t)

dt
= −βS(t)I(t) + νR(t),

dI(t)

dt
= βS(t)I(t)− γI(t)− µI(t),

dR(t)

dt
= γI(t)− νR(t),

dD(t)

dt
= µI(t)

(see, e.g., [8]). If ν = 0, we obtain the simplified SIRD differential system

dS(t)

dt
= −βS(t)I(t), (1.1)

dI(t)

dt
= βS(t)I(t)− γI(t)− µI(t), (1.2)

dR(t)

dt
= γI(t), (1.3)

dD(t)

dt
= µI(t) (1.4)

for t > 0, where β, γ and µ are positive constants. We consider the following initial condition:

S(0) = S̃, I(0) = Ĩ, R(0) = R̃, D(0) = D̃, (1.5)

where S̃ + Ĩ + R̃ + D̃ = N (positive constant). Since

d

dt
(S(t) + I(t) + R(t) + D(t)) =

dS(t)

dt
+

dI(t)

dt
+

dR(t)

dt
+

dD(t)

dt
= 0

by (1.1)–(1.4), it follows that

S(t) + I(t) + R(t) + D(t) = k (t ≥ 0)

for some constant k. In view of the fact that

k = S(0) + I(0) + R(0) + D(0) = S̃ + Ĩ + R̃ + D̃ = N,

we conclude that

S(t) + I(t) + R(t) + D(t) = N (t ≥ 0).

It is assumed throughout this paper that:

(A1) S̃ >
γ + µ

β
;

(A2) Ĩ > 0;

(A3) R̃ ≥ 0 satisfies

N − D̃ > S̃e(β/γ)R̃ + R̃; (1.6)

(A4) D̃ ≥ 0.

In Section 2 we show that a positive solution of the SIRD differential system can be repre-

sented in a parametric form, and we derive an exact solution of the SIRD differential system

(1.1)–(1.4). Section 3 is devoted to the investigation of various properties of the exact solution.
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2 Exact solution of SIRD differential system

First we need the following important lemma.

Lemma 2.1. If S(t) > 0 for t > 0, then the following holds:

R′(t) = γ

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)R(t) −

(

1 +
µ

γ

)

R(t)

)

(2.1)

for t > 0.

Proof. From (1.1) and (1.3) we see that

R′(t) = γI(t) = γ

(

S′(t)

−βS(t)

)

= −
γ

β

(

log S(t)
)′

,

and integrating the above on [0, t] yields

R(t)− R̃ = −
γ

β

(

log S(t)− log S̃
)

.

Therefore we obtain

log S(t) = −
β

γ

(

R(t)− R̃
)

+ log S̃

and hence

S(t) = exp

(

log S̃ −
β

γ
R(t) +

β

γ
R̃

)

= S̃e(β/γ)R̃e−(β/γ)R(t). (2.2)

It follows from (1.3) and (1.4) that

D′(t) = µI(t) =
µ

γ
(γI(t)) =

µ

γ
R′(t)

and hence we get

D(t) =
µ

γ
R(t) + C

for some constant C. The initial condition (1.5) implies

C = D̃ −
µ

γ
R̃.

Consequently we obtain

D(t) =
µ

γ
R(t) + D̃ −

µ

γ
R̃. (2.3)

Taking account of (2.2), (2.3) and I(t) = N − S(t)− R(t)− D(t), we observe that

R′(t) = γI(t)

= γ(N − S(t)− R(t)− D(t))

= γ

(

N − S̃e(β/γ)R̃e−(β/γ)R(t) − R(t)−
µ

γ
R(t)− D̃ +

µ

γ
R̃

)

= γ

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)R(t) −

(

1 +
µ

γ

)

R(t)

)

,

which is the desired identity (2.1).
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By a solution of the SIRD differential system (1.1)–(1.4) we mean a vector-valued function

(S(t), I(t), R(t), D(t)) of class C1(0, ∞) ∩ C[0, ∞) which satisfies (1.1)–(1.4). Associated with

every continuous function f (t) on [0, ∞), we define

f (∞) := lim
t→∞

f (t).

Lemma 2.2. Let (S(t), I(t), R(t), D(t)) be a solution of the SIRD differential system (1.1)–(1.4) such

that S(t) > 0 and I(t) > 0 for t > 0. Then there exist the limits S(∞), I(∞), R(∞) and D(∞).

Proof. Since S(t) > 0 and I(t) > 0, we see that S′(t) < 0, and therefore S(t) is decreasing on

[0, ∞). It is trivial that S(t) is bounded from below because S(t) > 0. Hence, there exists the

limit S(∞). We observe that R(t) is increasing on [0, ∞) and bounded from above in view of

the fact that R′(t) = γI(t) > 0 and R(t) < N. Therefore there exists R(∞). Similarly there

exists D(∞). Since I(t) = N − S(t)− R(t)− D(t) and there exist S(∞), R(∞) and D(∞), it

follows that there exists I(∞).

Theorem 2.3. Let (S(t), I(t), R(t), D(t)) be a solution of the initial value problem (1.1)–(1.5) such

that S(t) > 0 and I(t) > 0 for t > 0. Then (S(t), I(t), R(t), D(t)) can be represented in the following

parametric form:

S(t) = S(ϕ(u)) = S̃e(β/γ)R̃u, (2.4)

I(t) = I(ϕ(u)) = N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃u +

γ + µ

β
log u, (2.5)

R(t) = R(ϕ(u)) = −
γ

β
log u, (2.6)

D(t) = D(ϕ(u)) = −
µ

β
log u + D̃ −

µ

γ
R̃ (2.7)

for e−(β/γ)R(∞)
< u ≤ e−(β/γ)R̃, where t = ϕ(u) is given in the proof.

Proof. Define the function u(t) by

u(t) := e−(β/γ)R(t).

We note that there exists the limit R(∞) by Lemma 2.2. Then u = u(t) is decreasing on [0, ∞),

e−(β/γ)R(∞)
< u ≤ e−(β/γ)R̃ and limt→∞ u(t) = e−(β/γ)R(∞) since R(t) is increasing on [0, ∞)

and R̃ ≤ R(t) < R(∞). It is clear that u(t) is of class C1(0, ∞) in view of e−(β/γ)R(t) ∈ C1(0, ∞).

Therefore, there exists the inverse function ϕ(u) of u = u(t) such that

t = ϕ(u)
(

e−(β/γ)R(∞)
< u ≤ e−(β/γ)R̃

)

,

ϕ(u) ∈ C1(e−(β/γ)R(∞), e−(β/γ)R̃),

ϕ(u) is decreasing in (e−(β/γ)R(∞), e−(β/γ)R̃],

ϕ
(

e−(β/γ)R̃
)

= 0,

lim
u→e−(β/γ)R(∞)+0

ϕ(u) = ∞.

Substituting t = ϕ(u) into (2.1) in Lemma 2.1 yields

R′(ϕ(u)) = γ

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)R(ϕ(u)) −

(

1 +
µ

γ

)

R(ϕ(u))

)

(2.8)
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for e−(β/γ)R(∞)
< u ≤ e−(β/γ)R̃. Differentiating both sides of u = e−(β/γ)R(ϕ(u)) with respect to

u, we get

1 = −
β

γ
R′(ϕ(u))ϕ′(u)e−(β/γ)R(ϕ(u))

= −
β

γ
R′(ϕ(u))ϕ′(u)u,

and therefore

R′(ϕ(u)) = −
γ

β

1

ϕ′(u)u
. (2.9)

It is obvious that

R(ϕ(u)) = −
γ

β
log u (2.10)

in view of u = e−(β/γ)R(ϕ(u)). Combining (2.8)–(2.10), we have

−
γ

β

1

ϕ′(u)u
= γN − γD̃ + µR̃ − γS̃e(β/γ)R̃u +

γ

β
(γ + µ) log u

and therefore

−ϕ′(u) =
γ

β

1

u
(

γN − γD̃ + µR̃ − γS̃e(β/γ)R̃u + (γ/β)(γ + µ) log u
)

=
1

u
(

βN − βD̃ + (βµ/γ)R̃ − βS̃e(β/γ)R̃u + (γ + µ) log u
) . (2.11)

Integrating (2.11) over [u, e−(β/γ)R̃] and taking account of ϕ(e−(β/γ)R̃) = 0, we get

ϕ(u) =
∫ e−(β/γ)R̃

u

dξ

ξψ(ξ)
,

where

ψ(ξ) = βN − βD̃ +
βµ

γ
R̃ − βS̃e(β/γ)R̃ξ + (γ + µ) log ξ. (2.12)

It follows from (2.2), (2.3) and (2.10) that

S(t) = S(ϕ(u)) = S̃e(β/γ)R̃e−(β/γ)R(ϕ(u)) = S̃e(β/γ)R̃u,

R(t) = R(ϕ(u)) = −
γ

β
log u,

D(t) = D(ϕ(u)) =
µ

γ
R(ϕ(u)) + D̃ −

µ

γ
R̃ = −

µ

β
log u + D̃ −

µ

γ
R̃,

I(t) = I(ϕ(u)) = N − S(ϕ(u))− R(ϕ(u))− D(ϕ(u))

= N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃u +

γ + µ

β
log u,

which is the desired solution (2.4)–(2.7). Since limu→e−(β/γ)R(∞)+0 ϕ(u) = ∞, it is necessary that

lim
ξ→e−(β/γ)R(∞)+0

ψ(ξ) = lim
ξ→e−(β/γ)R(∞)+0

(

βN − βD̃ +
βµ

γ
R̃ − βS̃e(β/γ)R̃ξ + (γ + µ) log ξ

)

= lim
x→R(∞)−0

β

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)x −

γ + µ

γ
x

)

= β

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)R(∞) −

γ + µ

γ
R(∞)

)

= 0,
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which implies

R(∞) =
γ

γ + µ
N −

γ

γ + µ
D̃ +

µ

γ + µ
R̃ −

γ

γ + µ
S̃e(β/γ)R̃e−(β/γ)R(∞). (2.13)

We find that ψ′(ξ) = 0 for ξ = ξ =
(

(γ + µ)/(βS̃)
)

e−(β/γ)R̃, and that e−(β/γ)R(∞)
< ξ <

e−(β/γ)R̃ if (γ+ µ)/β < S̃ < ((γ+ µ)/β)e(β/γ)(R(∞)−R̃). Since ψ′(ξ) > 0 for e−(β/γ)R(∞)
< ξ < ξ

and ψ′(ξ) < 0 for ξ < ξ < e−(β/γ)R̃, we observe that ψ(ξ) is increasing in (e−(β/γ)R(∞), ξ) and is

decreasing in (ξ, e−(β/γ)R̃). In view of the fact that ψ
(

e−(β/γ)R̃
)

= β
(

N − S̃ − R̃ − D̃
)

= β Ĩ > 0

and limξ→e−(β/γ)R(∞)+0 ψ(ξ) = 0, we see that

ψ(ξ) > 0 in (e−(β/γ)R(∞), e−(β/γ)R̃]

under the condition (γ + µ)/β < S̃ < ((γ + µ)/β)e(β/γ)(R(∞)−R̃). Moreover, we get

lim
t→∞

β

γ
R′(t) = lim

t→∞

β

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)R(t) −

(

1 +
µ

γ

)

R(t)

)

= β

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)R(∞) −

(

1 +
µ

γ

)

R(∞)

)

= 0,

which implies I(∞) = 0 in light of (1.3).

Lemma 2.4. Under the hypothesis (A3), the transcendental equation

x = F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃e−(β/γ)x

has a unique solution x = α such that

R̃ < α < N,

where

F(N, D̃, R̃, γ, µ) :=
γ

γ + µ
N −

γ

γ + µ
D̃ +

µ

γ + µ
R̃

(cf. Figure 2.1).

Proof. First we note that

F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃ =

γ

γ + µ

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃

)

> 0 (2.14)

in view of (1.6). We define the sequence {an}∞

n=1 by

a1 = ã

(

0 < ã ≤ F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃

)

,

an+1 = F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃e−(β/γ)an (n = 1, 2, . . . ). (2.15)

It is easily seen that

a1 = ã ≤ F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃

≤ F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃e−(β/γ)a1

= a2.
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a = 744.48 · · ·

(5/6)(N‒S) = 25/6
~

303.75 · · ·

Figure 2.1: Variation of F(N, D̃, R̃, γ, µ) − (γ/(γ + µ))S̃e(β/γ)R̃e−(β/γ)x − x for

N = 1000, S̃ = 995, R̃ = 0, D̃ = 0, β = 0.15/1000, γ = 0.05 and µ = 0.01. In this

case we see that F(N, D̃, R̃, γ, µ)− (γ/(γ + µ))S̃ = (5/6)(N − S̃) = 25/6 and

0 < α = 744.48 · · · < 1000.

If an+1 ≥ an, then

an+2 − an+1 =
γ

γ + µ
S̃e(β/γ)R̃

(

e−(β/γ)an − e−(β/γ)an+1

)

≥ 0.

Therefore we find that an+2 ≥ an+1, and hence the sequence {an} is nondecreasing by the

mathematical induction. We observe that the sequence {an} is bounded because

|an+1| ≤ F(N, D̃, R̃, γ, µ) +
γ

γ + µ
S̃e(β/γ)R̃.

Since {an} is nondecreasing and bounded, there exists limn→∞ an = α. Taking the limit as

n → ∞ in (2.15), we have

α = F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃e−(β/γ)α. (2.16)

The straight line y=F(N, D̃, R̃, γ, µ)−x and the exponential curve y=(γ/(γ+µ))S̃e(β/γ)R̃e−(β/γ)x

has only one intersecting point in 0 < x < N by virtue of (2.14), and so the uniqueness of α

follows. We claim that R̃ < α < N. Since

F(N, D̃, R̃, γ, µ) =
γ

γ + µ
N −

γ

γ + µ
D̃ +

µ

γ + µ
R̃

= N −
µ

γ + µ
(N − R̃)−

γ

γ + µ
D̃

≤ N,

we obtain

α = F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃e−(β/γ)α

< F(N, D̃, R̃, γ, µ) ≤ N.
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The inequality α > R̃ follows from the following inequality

α ≥ F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃

=
γ

γ + µ

(

N − D̃ − S̃e(β/γ)R̃
)

+
µ

γ + µ
R̃

>
γ

γ + µ
R̃ +

µ

γ + µ
R̃ = R̃

in view of (1.6).

We assume that the following hypothesis

(A5) S̃ <
γ + µ

β
e(β/γ)(α−R̃)

holds in the rest of this paper. We note that (A5) is equivalent to the following

(A′
5)

γ + µ

β
> N − D̃ +

µ

γ
R̃ −

γ + µ

γ
α

in view of S̃e(β/γ)R̃e−(β/γ)α = N − D̃ + (µ/γ)R̃ − ((γ + µ)/γ) α.

Theorem 2.5. The initial value problem (1.1)–(1.5) has the solution

S(t) = S̃e(β/γ)R̃ ϕ−1(t), (2.17)

I(t) = N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t), (2.18)

R(t) = −
γ

β
log ϕ−1(t), (2.19)

D(t) = −
µ

β
log ϕ−1(t) + D̃ −

µ

γ
R̃, (2.20)

where ϕ−1(t) denotes the inverse function of ϕ : (e−(β/γ)α, e−(β/γ)R̃] → [0, ∞) such that

t = ϕ(u) :=
∫ e−(β/γ)R̃

u

dξ

ξψ(ξ)
,

where ψ(ξ) is given by (2.12).

Proof. We note that ϕ(u) ∈ C1(e−(β/γ)α, e−(β/γ)R̃), ϕ(u) is decreasing in (e−(β/γ)α, e−(β/γ)R̃],

ϕ
(

e−(β/γ)R̃
)

= 0. We claim that limu→e−(β/γ)α+0 ϕ(u) = ∞. A little calculation yields

lim
ξ→e−(β/γ)α+0

ψ(ξ) = lim
ξ→e−(β/γ)α+0

(

βN − βD̃ +
βµ

γ
R̃ − βS̃e(β/γ)R̃ξ + (γ + µ) log ξ

)

= lim
x→α−0

β

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)x −

γ + µ

γ
x

)

= β

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)α −

γ + µ

γ
α

)

= 0 (2.21)
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y(x)

0.40201 · · ·
exp(- (b/g)a) = 0.10715 · · ·

y(1) = 0.00075

exp(- (b/g)R) = 1
~

Figure 2.2: Variation of ψ(ξ) = βN − βD̃+(βµ/γ)R̃− βS̃e(β/γ)R̃ξ +(γ+µ) log ξ

for N = 1000, S̃ = 995, Ĩ = 5, R̃ = 0, D̃ = 0, β = 0.15/1000, γ = 0.05 and

µ = 0.01. In this case we observe that e−(β/γ)α = 0.10715 . . . , e−(β/γ)R̃ = 1,

ψ(1) = βN − βS̃ = β Ĩ = 0.00075, ψ′(ξ) = 0 for ξ = 0.40201 . . . , (γ + µ)/β = 40,

((γ + µ)/β)e(β/γ)α
> 2000, and (γ + µ)/β < S̃ < ((γ + µ)/β)e(β/γ)α.

in view of (2.16). Taking account of the hypotheses (A1) and (A5), we find that ψ(ξ) > 0 in

(e−(β/γ)α, e−(β/γ)R̃] by the same arguments as in the proof of Theorem 2.3. Since

1

ξψ(ξ)
=

β

γ + µ
S̃e(β/γ)R̃ 1

ψ(ξ)
+

1

γ + µ

−βS̃e(β/γ)R̃ + (γ + µ)/ξ

ψ(ξ)
,

we get

ϕ(u) =
∫ e−(β/γ)R̃

u

dξ

ξψ(ξ)

=
β

γ + µ
S̃e(β/γ)R̃

∫ e−(β/γ)R̃

u

dξ

ψ(ξ)
+

1

γ + µ

∫ e−(β/γ)R̃

u

ψ′(ξ)

ψ(ξ)
dξ

=
β

γ + µ
S̃e(β/γ)R̃

∫ e−(β/γ)R̃

u

dξ

ψ(ξ)
+

1

γ + µ

(

log ψ
(

e−(β/γ)R̃
)

− log ψ(u)
)

=
β

γ + µ
S̃e(β/γ)R̃

∫ e−(β/γ)R̃

u

dξ

ψ(ξ)
+

1

γ + µ

(

log (β Ĩ)− log ψ(u)
)

. (2.22)

Therefore, we see from (2.21) and (2.22) that

lim
u→e−(β/γ)α+0

ϕ(u) = lim
u→e−(β/γ)α+0

∫ e−(β/γ)R̃

u

dξ

ξψ(ξ)
= ∞.

Then we conclude that ϕ−1(t) ∈ C1(0, ∞), ϕ−1(t) is decreasing on [0, ∞), and that

ϕ−1(0) = e−(β/γ)R̃,

lim
t→∞

ϕ−1(t) = e−(β/γ)α.

It is easily verified that
(

ϕ−1(t)
)′

=
1

ϕ′(u)

∣

∣

∣

u=ϕ−1(t)
= −uψ(u)

∣

∣

∣

u=ϕ−1(t)

= −ϕ−1(t)ψ(ϕ−1(t)) = −βI(t)ϕ−1(t), (2.23)
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in light of

ψ(ϕ−1(t)) = βI(t). (2.24)

We observe, using (2.17)–(2.20) and (2.23), that

S′(t) = S̃e(β/γ)R̃
(

ϕ−1(t)
)′

= S̃e(β/γ)R̃
(

−βI(t)ϕ−1(t)
)

= −βS̃e(β/γ)R̃ ϕ−1(t)I(t) = −βS(t)I(t),

I′(t) = −S̃e(β/γ)R̃
(

ϕ−1(t)
)′

+
γ + µ

β

(

ϕ−1(t)
)′

ϕ−1(t)

= −(−βS(t)I(t)) +
γ + µ

β
(−βI(t)) = βS(t)I(t)− γI(t)− µI(t),

R′(t) = −
γ

β

(

ϕ−1(t)
)′

ϕ−1(t)
= −

γ

β
(−βI(t)) = γI(t),

D′(t) = −
µ

β

(

ϕ−1(t)
)′

ϕ−1(t)
= −

µ

β
(−βI(t)) = µI(t),

and consequently (2.17)–(2.20) satisfy (1.1)–(1.4), respectively. It is easy to check that

S(0) = S̃e(β/γ)R̃ ϕ−1(0) = S̃e(β/γ)R̃e−(β/γ)R̃ = S̃,

R(0) = −
γ

β
log ϕ−1(0) = −

γ

β
log e−(β/γ)R̃ = R̃,

D(0) = −
µ

β
log ϕ−1(0) + D̃ −

µ

γ
R̃

= −
µ

β
log e−(β/γ)R̃ + D̃ −

µ

γ
R̃

= −
µ

β

(

−
β

γ
R̃

)

+ D̃ −
µ

γ
R̃ = D̃,

I(0) = N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃ ϕ−1(0) +

γ + µ

β
log ϕ−1(0)

= N − D̃ +
µ

γ
R̃ − S̃ +

γ + µ

β

(

−
β

γ
R̃

)

= N − D̃ − S̃ − R̃ = Ĩ.

3 Various properties of the exact solution

We can derive various properties of solutions of SIRD epidemic model via the differential sys-

tem qualitatively, however we obtain more detailed properties directly from the exact solution

of the SIRD differential system.

Theorem 3.1. We observe that I(∞) = 0 and I(t) > 0 on [0, ∞), and that I(t) has the maximum

max
t≥0

I(t) = N − D̃ − R̃ −
γ + µ

β

(

1 + log S̃ − log
γ + µ

β

)

at

t = T := ϕ

(

γ + µ

βS̃e(β/γ)R̃

)

= S−1

(

γ + µ

β

)

.

Furthermore, I(t) is increasing in [0, T) and is decreasing in (T, ∞).
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Proof. Taking account of (2.16), we easily check that

I(∞) = lim
t→∞

I(t)

= lim
u→e−(β/γ)α+0

(

N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃u +

γ + µ

β
log u

)

=
γ + µ

γ

(

F(N, D̃, R̃, γ, µ)−
γ

γ + µ
S̃e(β/γ)R̃e−(β/γ)α − α

)

= 0.

Since e−(β/γ)α
< ϕ−1(t) ≤ e−(β/γ)R̃ for t ≥ 0 and ψ(ξ) > 0 for e−(β/γ)α

< ξ ≤ e−(β/γ)R̃, we

find that I(t) = (1/β)ψ
(

ϕ−1(t)
)

> 0 on [0, ∞). Since e−(β/γ)α
< ϕ−1(t) ≤ e−(β/γ)R̃ for t > 0

and ψ(ξ) > 0 for e−(β/γ)α
< ξ ≤ e−(β/γ)R̃, we see that I(t) = (1/β)ψ

(

ϕ−1(t)
)

given by (2.24)

is positive for t > 0. Differentiating both sides of (2.24), we arrive at

I′(t) =
1

β
ψ′
(

ϕ−1(t)
)(

ϕ−1(t)
)′

=
1

β

(

−βS̃e(β/γ)R̃ +
γ + µ

ϕ−1(t)

)

(

ϕ−1(t)
)′

=
1

β
(−βS(t) + γ + µ)

(

ϕ−1(t)
)′

ϕ−1(t)

=
1

β
(−βS(t) + γ + µ) (−βI(t))

=
(

βS(t)− (γ + µ)
)

I(t) (3.1)

in view of (2.23). It is obvious that I′(t) = 0 holds if and only if

ϕ−1(t) =
γ + µ

βS̃e(β/γ)R̃

or

S(t) =
γ + µ

β
,

which yield

t = T = ϕ

(

γ + µ

βS̃e(β/γ)R̃

)

= S−1

(

γ + µ

β

)

.

We note that

e−(β/γ)α
<

γ + µ

βS̃e(β/γ)R̃
=

γ + µ

βS̃
e−(β/γ)R̃

< e−(β/γ)R̃

in light of the hypotheses (A1) and (A5). Since
(

ϕ−1(t)
)′

< 0 and ϕ−1(t) is decreasing on

[0, ∞), we observe that I′(t) > 0 [resp. < 0] if and only if t < T [resp. > T]. Hence, I(t) is

increasing in [0, T) and is decreasing in (T, ∞). We find that the maximum of I(t) on [0, ∞) is

given by

1

β
ψ

(

γ + µ

βS̃e(β/γ)R̃

)

= N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃ γ + µ

βS̃e(β/γ)R̃
+

γ + µ

β
log

(

γ + µ

βS̃e(β/γ)R̃

)

= N − D̃ +
µ

γ
R̃ −

γ + µ

β
+

γ + µ

β

(

log
γ + µ

β
− log S̃ −

β

γ
R̃

)

= N − D̃ − R̃ −
γ + µ

β

(

1 + log S̃ − log
γ + µ

β

)

.
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Corollary 3.2. The function I(t) has the maximum at

T = ϕ

(

γ + µ

βS̃e(β/γ)R̃

)

=
β

γ + µ
S̃e(β/γ)R̃

∫ e−(β/γ)R̃

(γ+µ)/(βS̃e(β/γ)R̃)

dξ

ψ(ξ)

+
1

γ + µ

(

log (β Ĩ)− log
(

βH(N, S̃, R̃, D̃, β, γ, µ)
))

,

and T satisfies the following inequality

τ1 ≤ T ≤ τ2,

where

τ1 =
(β/(γ + µ))S̃ − 1

βH(N, S̃, R̃, D̃, β, γ)
+

1

γ + µ

(

log (β Ĩ)− log
(

βH(N, S̃, R̃, D̃, β, γ, µ)
))

and

τ2 =
(β/(γ + µ))S̃ − 1

β Ĩ
+

1

γ + µ

(

log (β Ĩ)− log
(

βH(N, S̃, R̃, D̃, β, γ, µ)
))

with H(N, S̃, R̃, D̃, β, γ, µ) being

H(N, S̃, R̃, D̃, β, γ, µ) := N − D̃ − R̃ −
γ + µ

β

(

1 + log S̃ − log
γ + µ

β

)

.

Proof. It follows from (2.22) that

T = ϕ

(

γ + µ

βS̃e(β/γ)R̃

)

=
β

γ + µ
S̃e(β/γ)R̃

∫ e−(β/γ)R̃

(γ+µ)/(βS̃e(β/γ)R̃)

dξ

ψ(ξ)

+
1

γ + µ

(

log (β Ĩ)− log
(

βH(N, S̃, R̃, D̃, β, γ, µ)
))

because of

ψ

(

γ + µ

βS̃e(β/γ)R̃

)

= βH(N, S̃, R̃, D̃, β, γ, µ).

From (2.12) we see that

ψ′(ξ) = −βS̃e(β/γ)R̃ +
γ + µ

ξ
,

and that ψ′
(

(γ + µ)/(βS̃e(β/γ)R̃)
)

= 0, ψ(e−(β/γ)R̃) = β Ĩ, and ψ(ξ) is decreasing on

[(γ + µ)/(βS̃e(β/γ)R̃), e−(β/γ)R̃]. Then we get

β Ĩ ≤ ψ(ξ) ≤ βH(N, S̃, R̃, D̃, β, γ, µ),

and hence
1

βH(N, S̃, R̃, D̃, β, γ, µ)
≤

1

ψ(ξ)
≤

1

β Ĩ
.
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Integrating the above inequality over [(γ + µ)/(βS̃e(β/γ)R̃), e−(β/γ)R̃], and then multiplying by

(β/(γ + µ))S̃e(β/γ)R̃, we are led to

(β/(γ + µ))S̃ − 1

βH(N, S̃, R̃, D̃, β, γ, µ)
≤

β

γ + µ
S̃e(β/γ)R̃

∫ e−(β/γ)R̃

(γ+µ)/(βS̃e(β/γ)R̃)

dξ

ψ(ξ)

≤
(β/(γ + µ))S̃ − 1

β Ĩ
,

which yields the desired inequality.

Theorem 3.3. We find that R(∞) = α,

R(∞) = N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃e−(β/γ)R(∞) −

µ

γ
R(∞), (3.2)

and that R(t) is an increasing function on [0, ∞) such that

R̃ ≤ R(t) < α = R(∞).

Proof. It follows from (2.19) that

R(∞) = lim
t→∞

R(t) = lim
t→∞

−
γ

β
log ϕ−1(t)

= lim
u→e−(β/γ)α+0

−
γ

β
log u

= α.

Since α = R(∞), the identity (3.2) follows from (2.16). Since e−(β/γ)α
< ϕ−1(t) ≤ e−(β/γ)R̃, we

obtain

−
γ

β
log e−(β/γ)R̃ ≤ R(t) < −

γ

β
log e−(β/γ)α,

or

R̃ ≤ R(t) < α = R(∞).

It is obvious that R(t) is increasing on [0, ∞) in view of the fact that ϕ−1(t) is decreasing

[0, ∞).

Theorem 3.4. We see that

S(∞) = S̃e(β/γ)R̃e−(β/γ)R(∞), (3.3)

and that S(t) is a decreasing function on [0, ∞) such that

S̃ ≥ S(t) > S̃e(β/γ)R̃e−(β/γ)α = S(∞).

Proof. The identity (3.3) follows from

S(∞) = lim
t→∞

S(t) = lim
t→∞

S̃e(β/γ)R̃ ϕ−1(t)

= lim
u→e−(β/γ)α+0

S̃e(β/γ)R̃u

= S̃e(β/γ)R̃e−(β/γ)α

= S̃e(β/γ)R̃e−(β/γ)R(∞).
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Since e−(β/γ)α
< ϕ−1(t) ≤ e−(β/γ)R̃, we have

S̃e(β/γ)R̃e−(β/γ)α
< S̃e(β/γ)R̃ ϕ−1(t) ≤ S̃e(β/γ)R̃e−(β/γ)R̃.

Hence we obtain

S̃e(β/γ)R̃e−(β/γ)α
< S(t) ≤ S̃.

Since ϕ−1(t) is decreasing on [0, ∞), we deduce that S(t) is also decreasing on [0, ∞).

Theorem 3.5. The following holds:

D(∞) =
µ

γ
R(∞) + D̃ −

µ

γ
R̃, (3.4)

and D(t) is an increasing function on [0, ∞) such that

D̃ ≤ D(t) < D(∞).

Proof. Taking account of (2.20), we obtain

lim
t→∞

D(t) = lim
t→∞

(

−
µ

β
log ϕ−1(t)

)

+ D̃ −
µ

γ
R̃

= lim
u→e−(β/γ)α+0

(

−
µ

β
log u

)

+ D̃ −
µ

γ
R̃

=
µ

γ
α + D̃ −

µ

γ
R̃

=
µ

γ
R(∞) + D̃ −

µ

γ
R̃,

which is the desired identity (3.4). Since e−(β/γ)α
< ϕ−1(t) ≤ e−(β/γ)R̃, we get

−
β

γ
α < log ϕ−1(t) ≤ −

β

γ
R̃,

and hence
µ

γ
R̃ ≤ −

µ

β
log ϕ−1(t) <

µ

γ
α,

which implies

D̃ ≤ D(t) <
µ

γ
α + D̃ −

µ

γ
R̃ =

µ

γ
R(∞) + D̃ −

µ

γ
R̃.

We conclude that D(t) is increasing on [0, ∞) since ϕ−1(t) is decreasing on [0, ∞).

Theorem 3.6. If

S̃ ≤
γ + µ

β
+

1

2

(

Ĩ +

√

4(γ + µ)

β
Ĩ + Ĩ2

)

, (3.5)

then there exists a number T1 (T < T1) such that I(t) is concave in (0, T1), and is convex in (T1, ∞).

If

S̃ >
γ + µ

β
+

1

2

(

Ĩ +

√

4(γ + µ)

β
Ĩ + Ĩ2

)

, (3.6)

then there exist two numbers T2 and T3 (0 < T2 < T < T3) such that I(t) is convex in (0, T1) ∪

(T3, ∞), and is concave in (T2, T3) (cf. Figures 3.1, 3.2).
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S(t)

I(t)

R(t)

D(t)

T      T₁

Figure 3.1: Variation of S(t), I(t), R(t) and D(t) obtained by the numer-

ical integration of the initial value problem (1.1)–(1.5) for N = 1000, S̃ =

800, Ĩ = 200, R̃ = D̃ = 0, β = 0.2/1000, γ = 0.07 and µ = 0.03. In this

case S̃(= 800) > (γ + µ)/β(= 500) > S(∞)(= 144.57 . . . ), and the condi-

tion (3.5) is satisfied because (γ + µ)/β = 500 and S̃(= 800) < (γ + µ)/β +

(1/2)

(

Ĩ +
√

(4(γ + µ)/β) Ĩ + Ĩ2

)

(= 931.66 . . . ).

Proof. First we note that the hypotheses (A1) and (A′
5) imply that

S̃ >
γ + µ

β
> N − D̃ +

µ

γ
R̃ −

γ + µ

γ
α

= N − R(∞)−

(

µ

γ
R(∞) + D̃ −

µ

γ
R̃

)

= N − R(∞)− D(∞) = S(∞)

in light of α = R(∞) and I(∞) = 0. Differentiating (3.1) with respect to t and taking (1.1),

(1.2) into account, we obtain

I′′(t) =
(

βS′(t)
)

I(t) +
(

βS(t)− (γ + µ)
)

I′(t)

= β
(

−βS(t)I(t)
)

I(t) +
(

βS(t)− (γ + µ)
)(

βS(t)I(t)− γI(t)− µI(t)
)

=
(

− β2S(t)I(t) + β2S(t)2 − 2β(γ + µ)S(t) + (γ + µ)2
)

I(t)

= β2

(

S(t)2 − S(t)I(t)−
2(γ + µ)

β
S(t) +

(γ + µ)2

β2

)

I(t)

= β2

(

S(t)−
2(γ + µ)

β
+

(γ + µ)2

β2

1

S(t)
− I(t)

)

S(t)I(t).

Now we investigate the sign of I′′(t). We define

G(t) := S(t)−
2(γ + µ)

β
+

(γ + µ)2

β2

1

S(t)
− I(t)
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S(t)

D(t)

R(t)

I(t)

T₂      T      T₃

Figure 3.2: Variation of S(t), I(t), R(t) and D(t) obtained by the numerical

integration of the initial value problem (1.1)–(1.5) for N = 1000, S̃ = 980, Ĩ =

20, R̃ = D̃ = 0, β = 0.4/1000, γ = 0.07 and µ = 0.03. In this case S̃(= 980) >

(γ + µ)/β(= 250) > S(∞)(= 19.39 . . . ), and the condition (3.6) is satisfied be-

cause S̃(= 980) > (γ + µ)/β + (1/2)
(

Ĩ +
√

(4(γ + µ)/β) Ĩ + Ĩ2
)

(= 331.41 . . . ).

and differentiate both sides of the above with respect to t to obtain

G′(t) = S′(t)−
(γ + µ)2

β2

S′(t)

S(t)2
− I′(t)

= S′(t)−
(γ + µ)2

β2

−βS(t)I(t)

S(t)2
− I′(t)

= −βS(t)I(t) +
(γ + µ)2

β

I(t)

S(t)
−
(

βS(t)I(t)− γI(t)− µI(t)
)

= −2βS(t)I(t) +
(γ + µ)2

β

I(t)

S(t)
+ (γ + µ)I(t)

= −2β

(

S(t)2 −
(γ + µ)

2β
S(t)−

(γ + µ)2

2β2

)

I(t)

S(t)

= −2β

(

S(t)−
γ + µ

β

)(

S(t) +
γ + µ

2β

)

I(t)

S(t)
.

Since S(t) + (γ + µ)/(2β) > 0, it follows that G′(t) = 0 for t = T = S−1 ((γ + µ)/β), and

that G′(t) < 0 [resp. > 0] if t < T [resp. > T]. Therefore, G(t) is decreasing in [0, T) and

increasing in (T, ∞). It is readily seen that

G(0) = S̃ −
2(γ + µ)

β
+

(γ + µ)2

β2

1

S̃
− Ĩ

=
1

S̃

(

S̃2 −

(

2(γ + µ)

β
+ Ĩ

)

S̃ +
(γ + µ)2

β2

)

=
1

S̃
(S̃ − s1)(S̃ − s2),
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where

s1 =
γ + µ

β
+

1

2

(

Ĩ −

√

4(γ + µ)

β
Ĩ + Ĩ2

)

(

<
γ + µ

β

)

,

s2 =
γ + µ

β
+

1

2

(

Ĩ +

√

4(γ + µ)

β
Ĩ + Ĩ2

)

(

>
γ + µ

β

)

.

Moreover we observe that

G(T) = S(T)−
2(γ + µ)

β
+

(γ + µ)2

β2

1

S(T)
− I(T)

=
γ + µ

β
−

2(γ + µ)

β
+

(γ + µ)2

β2

β

γ + µ
− max

t≥0
I(t)

= −max
t≥0

I(t) < 0,

and that

lim
t→∞

G(t) = S(∞)−
2(γ + µ)

β
+

(γ + µ)2

β2

1

S(∞)
− I(∞)

=
1

S(∞)

(

γ + µ

β
− S(∞)

)2

> 0.

If (3.5) is satisfied, then G(0) ≤ 0, and therefore there exists a number T1 > T such that

G(T1) = 0, G(t) is negative in (0, T1), and G(t) is positive in (T1, ∞). Since I′′(t) =

β2G(t)S(t)I(t), we deduce that I(t) is concave in (0, T1), and is convex in (T1, ∞). If (3.6)

is satisfied, then G(0) > 0, and hence there exist two numbers T2 and T3 (0 < T2 < T < T3)

such that G(T2) = G(T3) = 0, G(t) is positive in (0, T2) ∪ (T3, ∞), and G(t) is negative in

(T2, T3). Consequently we conclude that I(t) is convex in (0, T2) ∪ (T3, ∞), and is concave in

(T2, T3).

Theorem 3.7. The following identity holds:

S(∞) = S̃ + Ĩ +
γ + µ

β
log

S(∞)

S̃
.

Proof. Since I(∞) = 0, we observe, using (3.4), that

S(∞) = N − R(∞)− D(∞)

= N − R(∞)−
µ

γ
R(∞)− D̃ +

µ

γ
R̃

= N − D̃ − R̃ +

(

1 +
µ

γ

)

R̃ −

(

1 +
µ

γ

)

R(∞)

= S̃ + Ĩ +

(

1 +
µ

γ

)

γ

β

(

β

γ
R̃ −

β

γ
R(∞)

)

= S̃ + Ĩ +
γ + µ

β
log
(

e(β/γ)R̃e−(β/γ)R(∞)
)

= S̃ + Ĩ +
γ + µ

β
log

S(∞)

S̃

by virtue of (3.3).
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Theorem 3.8. It follows that

S′(∞) = I′(∞) = R′(∞) = D′(∞) = 0.

Proof. Since I(∞) = 0, we conclude that

S′(∞) = −βS(∞)I(∞) = 0,

I′(∞) = βS(∞)I(∞)− γI(∞)− µI(∞) = 0,

R′(∞) = γI(∞) = 0,

D′(∞) = µI(∞) = 0,

by taking account of (1.1)–(1.4).

Theorem 3.9. Let (S(t), I(t), R(t), D(t)) be the exact solution (2.17)–(2.20) of the initial value prob-

lem (1.1)–(1.5), and let
(

Ŝ(u), Î(u), R̂(u), D̂(u)
)

:=
(

S(ϕ(u)), I(ϕ(u)), R(ϕ(u)), D(ϕ(u))
)

.

Then
(

Ŝ(u), Î(u), R̂(u), D̂(u)
)

is a solution of the initial value problem for the linear differential system

dŜ(u)

du
=

Ŝ(u)

u
, (3.7)

dÎ(u)

du
= −

Ŝ(u)

u
+

γ

β

1

u
+

µ

β

1

u
, (3.8)

dR̂(u)

du
= −

γ

β

1

u
, (3.9)

dD̂(u)

du
= −

µ

β

1

u
(3.10)

for u ∈ (e−(β/γ)α, e−(β/γ)R̃), with the initial condition

Ŝ
(

e−(β/γ)R̃
)

= S̃, (3.11)

Î
(

e−(β/γ)R̃
)

= Ĩ, (3.12)

R̂
(

e−(β/γ)R̃
)

= R̃, (3.13)

D̂
(

e−(β/γ)R̃
)

= D̃. (3.14)

Proof. First we remark that

Î(u) = I(ϕ(u)) =
1

β
ψ(u) (3.15)

in light of (2.24). Noting

S′(ϕ(u)) = −βS(ϕ(u))I(ϕ(u)) = −βŜ(u) Î(u),

we are led to

dŜ(u)

du
=

dS(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u) = S′(ϕ(u))

(

−
1

uψ(u)

)

=
(

−βŜ(u) Î(u)
)

(

−
1

uψ(u)

)

= βŜ(u) Î(u)

(

1

uψ(u)

)

=
Ŝ(u)

u
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in view of (3.15). Similarly we obtain

dR̂(u)

du
=

dR(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u) = R′(ϕ(u))

(

−
1

uψ(u)

)

=
(

γ Î(u)
)

(

−
1

uψ(u)

)

= −
γ

β

1

u
,

dD̂(u)

du
=

dD(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u) = D′(ϕ(u))

(

−
1

uψ(u)

)

=
(

µ Î(u)
)

(

−
1

uψ(u)

)

= −
µ

β

1

u
,

and

dÎ(u)

du
=

dI(t)

dt

∣

∣

∣

t=ϕ(u)
ϕ′(u) = I′(ϕ(u))

(

−
1

uψ(u)

)

=
(

βŜ(u) Î(u)− γ Î(u)− µ Î(u)
)

(

−
1

uψ(u)

)

= −
Ŝ(u)

u
+

γ

β

1

u
+

µ

β

1

u
.

It is clear that

Ŝ
(

e−(β/γ)R̃
)

= S
(

ϕ
(

e−(β/γ)R̃
))

= S(0) = S̃,

Î
(

e−(β/γ)R̃
)

= I
(

ϕ
(

e−(β/γ)R̃
))

= I(0) = Ĩ,

R̂
(

e−(β/γ)R̃
)

= R
(

ϕ
(

e−(β/γ)R̃
))

= R(0) = R̃,

D̂
(

e−(β/γ)R̃
)

= D
(

ϕ
(

e−(β/γ)R̃
))

= D(0) = D̃.

Hence,
(

Ŝ(u), Î(u), R̂(u), D̂(u)
)

is a solution of the initial value problem (3.7)–(3.14).

Theorem 3.10. Solving the initial value problem (3.7)–(3.14), we obtain the solution (2.4)–(2.7) for

u ∈ (e−(β/γ)α, e−(β/γ)R̃].

Proof. Since (3.7) is equivalent to
d

du

(

1

u
Ŝ(u)

)

= 0,

we derive

Ŝ(u) = ku

for some constant k. It follows from (3.11) that

Ŝ
(

e−(β/γ)R̃
)

= ke−(β/γ)R̃ = S̃
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and hence

k = S̃e(β/γ)R̃,

which yields

Ŝ(u) = S̃e(β/γ)R̃u.

Solving (3.9) yields

R̂(u) = −
γ

β
log u + k

for some constant k. The initial condition (3.13) implies

R̂
(

e−(β/γ)R̃
)

= −
γ

β
log e−(β/γ)R̃ + k = R̃ + k = R̃

and hence k = 0. Consequently we have

R̂(u) = −
γ

β
log u.

We solve (3.10) to obtain

D̂(u) = −
µ

β
log u + k

for some constant k. The initial condition (3.14) implies

D̂
(

e−(β/γ)R̃
)

= −
µ

β
log e−(β/γ)R̃ + k =

µ

γ
R̃ + k = D̃

and hence k = D̃ − (µ/γ)R̃. Consequently we have

D̂(u) = −
µ

β
log u + D̃ −

µ

γ
R̃.

Since
Ŝ(u)

u
= S̃e(β/γ)R̃,

we obtain
dÎ(u)

du
= −S̃e(β/γ)R̃ +

γ

β

1

u
+

µ

β

1

u
.

Hence we get

Î(u) = −S̃e(β/γ)R̃u +
γ

β
log u +

µ

β
log u + k

for some constant k. From the initial condition (3.12) it follows that

Î
(

e−(β/γ)R̃
)

= −S̃ +
γ

β
log e−(β/γ)R̃ +

µ

β
log e−(β/γ)R̃ + k = −S̃ − R̃ −

µ

γ
R̃ + k = Ĩ,

which implies

k = S̃ + Ĩ + R̃ +
µ

γ
R̃ = N − D̃ +

µ

γ
R̃.

Therefore we deduce that

Î(u) = −S̃e(β/γ)R̃u +
γ + µ

β
log u + N − D̃ +

µ

γ
R̃.
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S(t)

R(t)

D(t)

I(t)

R(∞) = a = 744.48 · · ·

D(∞) = 148.89 · · ·
S(∞) = 106.63 · · ·

S = 995
~

(g+m)/b = 400

max I(t) = 235.48 · · · 

T = 63.03 · · · 

Figure 3.3: Variation of S(t), I(t), R(t) and D(t) obtained by the numerical in-

tegration of the initial value problem (1.1)–(1.5) for N = 1000, S̃ = 995, Ĩ =

5, R̃ = D̃ = 0, β = 0.15/1000, γ = 0.05 and µ = 0.01. In this case we

obtain R(∞) = α = 744.48 . . . , I(∞) = 0, D(∞) = 148.89 . . . , S(∞) =

N − R(∞) − D(∞) = 106.63 . . . , (γ + µ)/β = 400, S̃(= 995) > (γ + µ)/β(=

400) > S(∞)(= 106.63 . . . ), maxt≥0 I(t) = 235.48 . . . and T = 63.03 . . . , where T

is calculated by

T = ϕ
(

(γ + µ)/(βS̃)
)

=
∫ 1

400/995

dξ

ξψ(ξ)

=
∫ 1

400/995

dξ

ξ(0.15 − (0.15/1000)× 995 ξ + 0.06 log ξ)
= 63.03 . . .

Remark 3.11. The hypothesis (A3) is satisfied if R̃ = 0, since N > S̃ + D̃.

Remark 3.12. The right differential coefficient I′+(0) is positive because

I′+(0) = lim
t→+0

I′(t) = lim
t→+0

(

βS(t)I(t)− γI(t)− µI(t)
)

= βS̃ Ĩ − γ Ĩ − µ Ĩ =
(

βS̃ − γ − µ
)

Ĩ > 0

in view of the hypotheses (A1) and (A2).

Remark 3.13. In the case where (S(∞) <) S̃ ≤ (γ + µ)/β (i.e., I′+(0) ≤ 0) we deduce that

ψ(ξ) is increasing in
(

e−(β/γ)α, e−(β/γ)R̃
]

, limξ→e−(β/γ)α+0 ψ(ξ) = 0 and ψ
(

e−(β/γ)R̃
)

= β Ĩ. Since

ϕ−1(t) is decreasing on [0, ∞), ϕ−1(0) = e−(β/γ)R̃ and limt→∞ ϕ−1(t) = e−(β/γ)α, it follows

that I(t) = (1/β)ψ
(

ϕ−1(t)
)

is decreasing on [0, ∞), and that I(0) = (1/β)ψ(ϕ−1(0)
)

= Ĩ and

I(∞) = limt→∞ I(t) = limξ→e−(β/γ)α+0(1/β)ψ(ξ) = 0 (cf. Figure 3.4).

Remark 3.14. The constant H(N, S̃, R̃, D̃, β, γ, µ) defined in Corollary 3.2 is equal to maxt≥0 I(t)

given in Theorem 3.1.

Remark 3.15. It follows from Theorems 3.1, 3.3–3.5 that S(t) > 0, I(t) > 0 for t ≥ 0 and

R(t) > 0, D(t) > 0 for t > 0.
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S(t)

I(t)

R(t)

D(t)

(g+m)/b = 900

S = 700
~

I = 300
~

Figure 3.4: Variation of S(t), I(t), R(t), D(t) obtained by the numerical inte-

gration of the initial value problem (1.1)–(1.5) for N = 1000, S̃ = 700, Ĩ =

300, R̃ = D̃ = 0, β = 0.2/1000, γ = 0.1 and µ = 0.08. In this case we see

that (γ + µ)/β(= 900) > S̃(= 700), I(∞) = 0 and I(t) is decreasing on [0, ∞).

Remark 3.16. Under the hypothesis

(A′
3) D̃ ≥ 0 satisfies

N − R̃ > S̃e(β/µ)D̃ + D̃,

the transcendental equation

y =
µ

µ + γ
N −

µ

µ + γ
R̃ +

γ

µ + γ
D̃ −

µ

µ + γ
S̃e(β/µ)D̃e−(β/µ)y (3.16)

has a unique solution y = α∗ such that

D̃ < α∗ < N

by the same arguments as in Lemma 2.4. Since the equation (3.16) reduces to the transcen-

dental equation in Lemma 2.4 by the transformation y = D̃ − (µ/γ)(R̃ − x), we see that

α∗ = D̃ − (µ/γ)(R̃ − α). We define

ϕ∗(w) :=
∫ e−(β/µ)D̃

w

dξ

ξψ∗(ξ)

for e−(β/µ)α∗ < w ≤ e−(β/µ)D̃, where

ψ∗(ξ) = βN − βR̃ +
βγ

µ
D̃ − βS̃e(β/µ)D̃ξ + (µ + γ) log ξ.

It follows from the transformation

ξ = e−(β/µ)D̃e(β/γ)R̃η

that

ϕ∗(w) =
∫ e−(β/γ)R̃

e(β/µ)D̃e−(β/γ)R̃w

dη

ηψ(η)
,
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where e−(β/γ)α
< e(β/µ)D̃e−(β/γ)R̃w ≤ e−(β/γ)R̃. Then there exist the inverse functions ϕ−1

∗ (t)

and ϕ−1(t) of the functions

t = ϕ∗(w), t = ϕ
(

e(β/µ)D̃e−(β/γ)R̃w
)

,

respectively, and the following hold:

w = ϕ−1
∗ (t), e(β/µ)D̃e−(β/γ)R̃w = ϕ−1(t) (0 ≤ t < ∞).

Hence we obtain

ϕ−1
∗ (t) = e−(β/µ)D̃e(β/γ)R̃ ϕ−1(t) (0 ≤ t < ∞).

Let
(

S∗(t), I∗(t), R∗(t), D∗(t)
)

be the exact solution of the initial value problem (1.1)–(1.5) by

starting our arguments utilizing (1.4) instead of (1.3). Then we observe that

S∗(t) = S̃e(β/µ)D̃ ϕ−1
∗ (t)

= S̃e(β/µ)D̃e−(β/µ)D̃e(β/γ)R̃ ϕ−1(t)

= S̃e(β/γ)R̃ ϕ−1(t) = S(t),

I∗(t) = N − R̃ +
γ

µ
D̃ − S̃e(β/µ)D̃ ϕ−1

∗ (t) +
µ + γ

β
log ϕ−1

∗ (t)

= N − D̃ +
µ

γ
R̃ − S̃e(β/γ)R̃ ϕ−1(t) +

γ + µ

β
log ϕ−1(t) = I(t),

R∗(t) = −
γ

β
log ϕ−1

∗ (t) + R̃ −
γ

µ
D̃

= −
γ

β
log
(

e−(β/µ)D̃e(β/γ)R̃ ϕ−1(t)
)

+ R̃ −
γ

µ
D̃

= −
γ

β
log ϕ−1(t) = R(t),

D∗(t) = −
µ

β
log ϕ−1

∗ (t)

= −
µ

β
log
(

e−(β/µ)D̃e(β/γ)R̃ ϕ−1(t)
)

= D̃ −
µ

γ
R̃ −

µ

β
log ϕ−1(t) = D(t)

for 0 ≤ t < ∞. Consequently we conclude that

(

S∗(t), I∗(t), R∗(t), D∗(t)
)

≡
(

S(t), I(t), R(t), D(t)
)

on [0, ∞).

Remark 3.17. In this paper we derived the explicit formula for the exact solution of the SIRD

epidemic model, and obtained various properties of the exact solution including the maximum

of I(t), the concavity and convexity of I(t), time T which attains maxt≥0 I(t) and the linear

differential system which is satisfied by the parametric form of the exact solution. If µ = 0

and D(t) ≡ 0, then the SIRD epidemic model reduces to the SIR epidemic model. We note

that our results can be applied to the SIR epidemic model if we set µ = 0 and D(t) ≡ 0.
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Abstract. We consider the Dirichlet problem

−∆
Kp

p(x)
u(x)− ∆

Kq

q(x)
u(x) = f (x, u(x),∇u(x)) in Ω, u

∣∣
∂Ω

= 0,

driven by the sum of a p(x)-Laplacian operator and of a q(x)-Laplacian operator, both
of them weighted by indefinite (sign-changing) Kirchhoff type terms. We establish
the existence of weak solution and strong generalized solution, using topological tools
(properties of Galerkin basis and of Nemitsky map). In the particular case of a pos-
itive Kirchhoff term, we obtain the existence of weak solution (= strong generalized
solution), using the properties of pseudomonotone operators.

Keywords: Brouwer fixed point theorem, Galerkin basis, Kirchhoff term, Nemitsky
map, pseudomonotone operator.
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1 Introduction

In this manuscript we consider equations driven by Kirchhoff type operators of the form u →

−K(r, u)∆r(x)u for functions u, defined on a bounded domain Ω ⊆ R
N with smooth boundary

∂Ω. The analysis is carried out in a suitable anisotropic Dirichlet Sobolev space W
1,r(x)
0 (Ω),

with variable exponent r ∈ C(Ω) satisfying certain regularity and bound conditions. The

operator ∆r(x) is the r(x)-Laplacian operator, which for every u ∈ W
1,r(x)
0 (Ω) is defined by

∆r(x)u = div(|∇u|r(x)−2∇u). Additionally, the nonlocal Kirchhoff type term K(r, u) is assumed

indefinite (sign changing) and given as

K(r, u) = ar − br

∫

Ω

1

r(x)
|∇u|r(x)dx, with ar, br > 0. (K)

BCorresponding author. Email: giovany@unb.br
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Precisely, the Dirichlet problem we study is

− ∆
Kp

p(x)
u(x)− ∆

Kq

q(x)
u(x) = f (x, u(x),∇u(x)) in Ω, u

∣∣
∂Ω

= 0. (P)

Here, we have the sum of two such Kirchhoff type operators −∆
Kp

p(x)
u := −K(p, u)∆p(x)u and

−∆
Kq

q(x)
u := −K(q, u)∆q(x)u, with variable exponents p, q ∈ C(Ω) such that

1 < q− = inf
x∈Ω

q(x) ≤ q(x) ≤ q+ = sup
x∈Ω

q(x)

< p− = inf
x∈Ω

p(x) ≤ p(x) ≤ p+ = sup
x∈Ω

p(x) < +∞.

The reaction (right hand side of (P)) is a Carathéodory function f (x, z, y) (that is, for all

(z, y) ∈ R × R
N , x → f (x, z, y) is measurable and for almost all x ∈ Ω, (z, y) → f (x, z, y)

is continuous). The presence of the gradient ∇u is crucial to be considered when the con-

vection in fluid dynamical processes cannot be neglected (that is, when an energy transfer is

accomplished by moving particles). Turning to the Kirchhoff type term (K), it is related to

physical modeling of the changes in length of a string subject to transverse vibrations. In [13],

Kirchhoff generalized the classical D’Alembert wave equation

ρ
∂2

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2

∂x2
= 0,

with ρ, P0, h, E, L denoting physical parameters (respectively, mass density, initial tension, area

of the cross-section, Young modulus of the material, length of the string) and describing the

change of string’s length during free vibration.

The existence results we establish use topological techniques (fixed-point arguments to-

gether with the theory of pseudomonotone operators) in order to overcome the loss of varia-

tional structure, due to the presence of gradient term in the reaction. The classical strategies

are also adapted to deal with the nonlocal nature of the Kirchhoff term. Following the similar

approach as in Vetro [26], we prove the existence of strong generalized solutions as well as

weak solutions to (P). To have a more complete picture of the relevant literature, we mention

that standard −∆p − ∆q operator was considered by Faria et al. [5] and Zeng & Papageorgiou

[28], in the case of positive solutions. For single −∆p operator we mention Papageorgiou et

al. [19], dealing also with positive solutions. Precisely, in [5] the authors adopt an approx-

imating process involving a Schauder basis of W
1,p(x)
0 (Ω), then apply a generalized strong

maximum principle. In [28], the authors use the Leray–Schauder alternative principle in com-

bination with the frozen variable method (to freeze the effects of the gradient term). In [19],

the authors use also Leray–Schauder alternative principle, together with truncation and com-

parison techniques. Additionally, the case of double phase problems (that is, −∆p − µ(x)∆q

operator, with suitable weight function µ(·)) was studied by Gasiński & Winkert [10], using

surjectivity result of pseudomonotone operators. Finally, we mention the work of Motreanu

[18] dealing with −∆p + ∆q operator. In that paper, the author uses a consequence of the

Brouwer fixed point theorem, in respect of a Galerkin basis of W
1,p
0 (Ω). A main feature of

the present manuscript and of the works [18, 26] is the consideration of two different types of

solutions of (P), that is, the authors employ both classical weak solutions and new concepts of

strong generalized solutions. Additionally, [26] deals with the variable exponents Lebesgue

and Sobolev spaces, in the case of a single p(x)-Kirchhoff type operator. The similar problem
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was previously studied by Wang et al. [27], in absence of Kirchhoff type term. Moreover,

the Kirchhoff type term herein was considered by Hamdani et al. [11], whose reaction is not

gradient dependent. Therefore, [11] employs a (classical) variational approach. It is worth

mentioning that the Lions’ work [16] originated a revival interest for equations involving a

Kirchhoff term, but a large amount of manuscripts imposes a positive restriction to the values

of the Kirchhoff term (that is, they consider a sign “+” instead of “−” in (K), deriving from

the classical theory). The interested reader can also refer to Molica Bisci & Pizzimenti [17]

(looking infinitely many solutions), Figueiredo & Nascimento [6] (looking for nodal (sign-

changing) solutions), Santos Júnior & Siciliano [24] and Gasiński & Santos Júnior [8, 9] (both

of them introducing non positivity conditions on the Kirchhoff term). In the last three papers,

the authors assume that Kirchhoff terms can vanish in many different points. Additionally,

their strategy of proofs also involve fixed point results, and aims to establish both existence

and nonexistence theorems. Before concluding this introduction, it is very important to say

that recently in the literature, we find many papers where the authors study the existence and

multiplicity of solutions to problems involving the Kirchhoff operator, Choquard-Pekar equa-

tions and functionals of double phase with variable exponents. As a partial list we mention

the works by Albalawi [1], He et al. [12], Liang et al. [15], Qin et al. [21], Ragusa & Tachikawa

[22], Hi et al. [25], and references therein.

2 Preliminaries

Referring to the books of Diening et al. [2] and of Rădulescu & Repovš [23], we provide the

mathematical background of the present study. The natural setting where finding solutions

to (P) is the anisotropic Dirichlet Sobolev space W
1,p(x)
0 (Ω), which means the completion of

C∞

0 (Ω) with respect to the W1,p(x)-norm defined below. Starting with

Lp(x)(Ω) =

{
u ∈ M(Ω) :

∫

Ω

|u(x)|p(x)dx < +∞

}
,

which is the variable exponent Lebesgue space, we consider the norm

‖u‖Lp(x)(Ω) := inf
{

λ > 0 : ρp

(u

λ

)
≤ 1

}
.

Here M(Ω) means the space of all measurable functions u : Ω → R, and

ρp(u) :=
∫

Ω

|u(x)|p(x)dx for all u ∈ Lp(x)(Ω)

denotes the modular. As it is well known, (Lp(x)(Ω), ‖ · ‖Lp(x)(Ω)) is a separable, reflexive and

uniformly convex Banach space. The norm ‖ · ‖Lp(x)(Ω) and the modular ρp(·) are related each

other by the following statements.

Theorem 2.1 ([4, Theorem 1.3]). Let u ∈ Lp(x)(Ω), then we have:

(i) ‖u‖Lp(x)(Ω) < 1 (= 1, > 1) ⇔ ρp(u) < 1 (= 1, > 1);

(ii) if ‖u‖Lp(x)(Ω) > 1, then ‖u‖
p−

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖

p+

Lp(x)(Ω)
;

(iii) if ‖u‖Lp(x)(Ω) < 1, then ‖u‖
p+

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖

p−

Lp(x)(Ω)
.
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In view of Theorem 2.1, we obtain the relation:

‖u‖
p+

Lp(x)(Ω)
+ 1 ≥ ρp(u) ≥ ‖u‖

p−

Lp(x)(Ω)
− 1. (2.1)

We are able to introduce the conjugate variable exponent to p, namely p′ ∈ C(Ω) satisfying

1

p(x)
+

1

p′(x)
= 1 for all x ∈ Ω.

As it is well known Lp(x)(Ω)∗ = Lp′(x)(Ω) and if p− > 1 we have

∫

Ω

uwdx ≤

(
1

p−
+

1

(p′)−

)
‖u‖Lp(x)(Ω)‖w‖Lp′(x)(Ω) ≤ 2‖u‖Lp(x)(Ω)‖w‖Lp′(x)(Ω),

for u ∈ Lp(x)(Ω), w ∈ Lp′(x)(Ω). This Hölder’s inequality plays a crucial role in establishing

suitable embedding results. We refer to [4, Theorem 1.11] for the continuity of the embedding

Lp1(x)(Ω) →֒ Lp2(x)(Ω), provided that p1, p2 ∈ C(Ω) with p1(x) ≥ p2(x) > 1 for all x ∈ Ω.

Using the variable exponent Lebesgue space, we can define the variable exponent Sobolev

space

W1,p(x)(Ω) := {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}, p ∈ C(Ω).

Starting with the norm

‖u‖W1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) (where ‖∇u‖Lp(x)(Ω) = ‖|∇u|‖Lp(x)(Ω)),

we recall that

‖u‖Lp(x)(Ω) ≤ c1‖∇u‖Lp(x)(Ω) for all u ∈ W
1,p(x)
0 (Ω), some c1 > 0, (2.2)

see [2, Theorem 8.2.18]. Thus, as it is well known, ‖u‖W1,p(x)(Ω) and ‖∇u‖Lp(x)(Ω) are equivalent

norms on W
1,p(x)
0 (Ω). This implies that we can use ‖∇u‖Lp(x)(Ω) instead of ‖u‖W1,p(x)(Ω), and

set

‖u‖ = ‖∇u‖Lp(x)(Ω) in W
1,p(x)
0 (Ω) (by (2.2)).

We mention that judicious choices of norms and norm inequalities are needed for estab-

lishing bounds and a priori estimates. Additionally, Fan & Zhao [4] established that with

these norms the spaces W1,p(x)(Ω) and W
1,p(x)
0 (Ω), become Banach spaces which are sepa-

rable and uniformly convex (hence reflexive). Now, for p ∈ C(Ω) we are able to define the

critical Sobolev exponent p∗ by

p∗(x) =

{
Np(x)

N−p(x)
if p(x) < N,

+∞ if N ≤ p(x),
for all x ∈ Ω.

About the continuity and compactness of Sobolev embeddings, we recall the following

well-known result.

Proposition 2.2. Suppose p ∈ C(Ω) with p(x) > 1 for all x ∈ Ω. If α ∈ C(Ω) and 1 < α(x) <

p∗(x) for all x ∈ Ω, then W1,p(x)(Ω) →֒ Lα(x)(Ω) is continuous and compact.

As already mentioned in the Introduction, our approach here makes use of properties of

pseudomonotone operators. So, we collect some definitions and results, as follows.
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Definition 2.3. For a reflexive Banach space X, let X∗ the dual space of X and 〈· , ·〉 the duality

pairing. Let A : X → X∗, then A is called

(i) to satisfy the (S+)-property if un
w
−→ u in X and lim supn→+∞

〈A(un), un − u〉 ≤ 0 imply

un → u in X;

(ii) pseudomonotone if un
w
−→ u in X and lim supn→+∞

〈A(un), un − u〉 ≤ 0 imply

lim inf
n→+∞

〈A(un), un − v〉 ≥ 〈A(u), u − v〉 for all v ∈ X;

(iii) coercive if

lim
‖u‖X→+∞

〈A(u), u〉

‖u‖X
= +∞.

Remark 2.4. We point out that if the operator A : X → X∗ is bounded, then pseudomono-

tonicity in Definition 2.3 (ii) is equivalent to un
w
−→ u in X and lim supn→+∞

〈A(un), un − u〉 ≤ 0

imply A(un)
w
−→ A(u) and 〈A(un), un〉 → 〈A(u), u〉. In the following we are going to use this

fact since our involved operators are bounded.

Pseudomonotone operators exhibit remarkable surjectivity properties. In particular, we

have the following result, see, for example, Papageorgiou & Winkert [20, Theorem 6.1.57].

Theorem 2.5. Let X be a real and reflexive Banach space. Let A : X → X∗ be a pseudomonotone,

bounded, and coercive operator, and let b ∈ X∗. Then, the equation A(u) = b admits a solution.

From Gasiński & Papageorgiou [7, Lemma 2.2.27], we get the following result of continu-

ous embedding and density.

Theorem 2.6. Let X, Y be Banach spaces such that X ⊆ Y. If X is dense in Y and the embedding

is continuous, then the embedding Y∗ ⊆ X∗ is continuous too. Moreover, if X is reflexive then Y∗ is

dense in X∗.

Our arguments of proofs are also based on Brouwer’s fixed point theorem, which leads to

the existence of solutions to certain operator equations as stated in the following proposition.

Proposition 2.7. For a normed finite-dimensional space (X, ‖ · ‖X) and a continuous map A : X →

X∗, we have that:

If there exists some R > 0 such that

〈A(w), w〉 ≥ 0 for all w ∈ X with ‖w‖X = R,

then A(w) = 0 has a solution ŵ ∈ X such that R ≥ ‖ŵ‖X.

3 Hypotheses and results

In this section, we introduce the hypotheses on the data and collect the statements of our

results. First, we put some restrictions on the exponent p, useful to give us the Rayleigh

quotient

λ̂ := inf
u∈W

1,p(x)
0 (Ω),u 6=0

∫
Ω
|∇u|p(x)dx∫

Ω
|u|p(x)dx

> 0. (3.1)
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H(p): There exists ξ0 ∈ R
N \ {0} such that for all x ∈ Ω the function px : Ωx → R defined by

px(z) = p(x + zξ0) is monotone, where Ωx := {z ∈ R : x + zξ0 ∈ Ω}.

We get (3.1) by [3, Theorem 3.3]. Alternatively, one can adopt a different condition, see for

example [3, Theorem 3.4]. Here, we will also impose the condition:

H′(p): p ∈ C(Ω) is finite with p+ < 2p−.

A similar condition was used in [11, 26]. Additionally, we impose growth conditions on

the right hand side of (P). Precisely, our hypotheses will be the following:

H( f ): f : Ω × R × R
N → R is a Carathéodory function such that

(i) there exist σ ∈ Lα′(x)(Ω), α ∈ C(Ω) with 1 < α(x) < p∗(x) for all x ∈ Ω and c > 0 such

that

| f (x, z, y)| ≤ c(σ(x) + |z|α(x)−1 + |y|
p(x)

α′(x) ) for a.a. x ∈ Ω, all z ∈ R, all y ∈ R
N ;

(ii) there exist σ0 ∈ L1(Ω) and b1, b2 ≥ 0 such that

| f (x, z, y)z| ≤ σ0(x) + b1|z|
p(x) + b2|y|

p(x) for a.a. x ∈ Ω, all z ∈ R, all y ∈ R
N .

Remark 3.1. Let λ∗ = b1λ̂−1 + b2. By H( f )(ii) and H(p), we get the following estimate:

∫

Ω

| f (x, u,∇u)u|dx ≤ λ∗ρp(∇u) + ‖σ0‖L1(Ω) for all u ∈ W
1,p(x)
0 (Ω). (3.2)

Here we establish the existence of solutions both in the usual weak form and in a spe-

cific (for Dirichlet problem (P)) form. As it is well known, u ∈ W
1,p(x)
0 (Ω) is weak solution

whenever 〈
− ∆

Kp

p(x)
u, w

〉
+
〈
− ∆

Kq

q(x)
u, w

〉
=
∫

Ω

f (x, u(x),∇u(x))w(x)dx (3.3)

for all w ∈ W
1,p(x)
0 (Ω).

On the other hand, we introduce a new definition of strong generalized solution to (P), as

follows (see, the corresponding notion of [26]).

Definition 3.2. u ∈ W
1,p(x)
0 (Ω) is a strong generalized solution to (P), if we can find a sequence

{un}n∈N ⊆ W
1,p(x)
0 (Ω) verifying the convergences:

(i) un
w
−→ u in W

1,p(x)
0 (Ω), as n → +∞;

(ii) −∆
Kp

p(x)
un − ∆

Kq

q(x)
un − f (·, un(·),∇un(·))

w
−→ 0 in W−1,p′(x)(Ω), as n → +∞;

(iii) limn→+∞

〈
− ∆

Kp

p(x)
un − ∆

Kq

q(x)
un, un − u

〉
= 0.

Remark 3.3. We point out that every weak solution to (P) satisfies the conditions in Defini-

tion 3.2. It is sufficient to use as test sequence, {un}n∈N ⊆ W
1,p(x)
0 (Ω) defined by un = u for

all n ∈ N.

In view of the above remark, we provide an answer to the question:

When does a strong generalized solution to (P) lead to a weak solution?
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Note that the source of difficulty in answering this question, is related to the indefinite

behavior of (K). Thus we assume the following non-negative bound conditions:

lim inf
n→+∞

|K(p, un)| > 0 and K(p, un)K(q, un) ≥ 0 for all n ∈ N. (K+)

Proposition 3.4. Consider a strong generalized solution of (P), namely u ∈ W
1,p(x)
0 (Ω), in respect to

the sequence {un}n∈N ⊆ W
1,p(x)
0 (Ω). Then u ∈ W

1,p(x)
0 (Ω) is a weak solution of (P), provided that

hypotheses H( f ) and (K+) hold.

We shall prove two auxiliary propositions needed for the proof of the main result. These

propositions require both the hypotheses H(p) and H( f ), as given in the statements. Since

W
1,p(x)
0 (Ω) is a separable Banach space, then we consider a Galerkin basis of W

1,p(x)
0 (Ω), which

means that there exists a sequence {Xn}n∈N of vector subspaces of W
1,p(x)
0 (Ω) satisfying

(j) dim (Xn) < +∞ for all n ∈ N;

(jj) Xn ⊆ Xn+1 for all n ∈ N;

(jjj) ∪∞

n=1Xn = W
1,p(x)
0 (Ω).

Proposition 3.5. Consider a Galerkin basis of W
1,p(x)
0 (Ω), namely {Xn}n∈N. Then for all n ∈ N we

can find un ∈ Xn with

〈
− ∆

Kp

p(x)
un, w

〉
+
〈
− ∆

Kq

q(x)
un, w

〉
=
∫

Ω

f (x, un(x),∇un(x))w(x)dx (3.4)

for all w ∈ Xn, provided that hypotheses H(p) and H( f ) hold.

Remark 3.6. From Theorem 2.1 we deduce that S ⊆ W
1,p(x)
0 (Ω) is bounded in its norm if the

set {ρp(∇u) : u ∈ S} is bounded.

Focusing on the sequence {un}n∈N ⊆ ∪∞

n=1Xn mentioned in Proposition 3.5 (see also the

corresponding proof, in next section), we will show that {un}n∈N is bounded in W
1,p(x)
0 (Ω).

Proposition 3.7. Consider the sequence {un}n∈N ⊆ ∪∞

n=1Xn generated in Proposition 3.5. Then

{un}n∈N is bounded in W
1,p(x)
0 (Ω), provided that hypotheses H(p) and H( f ) hold.

Consequently, we prove our first existence result.

Theorem 3.8. Problem (P) admits a strong generalized solution u ∈ W
1,p(x)
0 (Ω), provided that hy-

potheses H(p) and H( f ) hold.

The analogous of Propositions 3.5 and 3.7, and Theorem 3.8 can be obtained imposing

H′(p) instead of H(p) (see also Remark 4.1 at the end of Section 4).

4 Proofs of results

In this section we collect the technical proofs of the results stated previously.
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Proof of Proposition 3.4. We only prove the case lim infn→+∞ K(p, un) > 0, the other cases can

be proved by a similar argument. The previous assumption ensures that we can suppose that

K(p, un) ≥ β > 0 and K(q, un) ≥ 0 for all n ∈ N, (4.1)

are true at least for a relabeled subsequence of {un}n∈N. Next, we recall that the −∆q(x)

operator is monotone and hence

〈−∆q(x)un, un − u〉 ≥ 〈−∆q(x)u, un − u〉 for all n ∈ N.

Multiplying both sides of last inequality by K(q, un), then we get

K(q, un)〈−∆q(x)un, un − u〉 ≥ K(q, un)〈−∆q(x)u, un − u〉 for all n ∈ N (by (4.1)),

that is, adopting the notation introduced at the beginning of this manuscript,

〈
− ∆

Kq

q(x)
un, un − u

〉
≥ K(q, un)〈−∆q(x)u, un − u〉 for all n ∈ N.

It is clear that using condition (iii) of Definition 3.2, we get

lim sup
n→+∞

〈
− ∆

Kp

p(x)
un, un − u

〉
= lim sup

n→+∞

[〈
− ∆

Kp

p(x)
un, un − u

〉
− K(q, un)〈∆q(x)u, un − u〉

]

≤ lim
n→+∞

〈
− ∆

Kp

p(x)
un − ∆

Kq

q(x)
un, un − u

〉
= 0.

From the previous inequality and (4.1), we deduce

lim sup
n→+∞

〈−∆p(x)un, un − u〉 ≤ 0,

and hence we retrieve the (S)+-property of the p(x)-Laplacian operator, provided that un → u

in W
1,p(x)
0 (Ω), as n → +∞. Using condition (ii) of Definition 3.2, we deduce that

−∆
Kp

p(x)
un − ∆

Kq

q(x)
un − f (·, un(·),∇un(·))

w
−→ 0 in W−1,p′(x)(Ω),

which implies

−∆
Kp

p(x)
u − ∆

Kq

q(x)
u − f (·, u(·),∇u(·)) = 0,

and hence we conclude that u ∈ W
1,p(x)
0 (Ω) is a weak solution to problem (P) (recall the

definition of weak solution in (3.3)).

Proof of Proposition 3.5. Fixed n ∈ N, let An : Xn → X∗
n be the operator defined by

〈An(u), w〉 =
〈
− ∆

Kp

p(x)
u, w

〉
+
〈
− ∆

Kq

q(x)
u, w

〉
−
∫

Ω

f (x, u(x),∇u(x))w(x)dx

for all u, w ∈ Xn.
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Now, by the estimate (3.2), we get

〈−An(w), w〉 =

(
bp

∫

Ω

1

p(x)
|∇w|p(x)dx − ap

) ∫

Ω

|∇w|p(x)dx

+

(
bq

∫

Ω

1

q(x)
|∇w|q(x)dx − aq

) ∫

Ω

|∇w|q(x)dx −
∫

Ω

f (x, w,∇w)wdx

≥

(
bp

∫

Ω

1

p(x)
|∇w|p(x)dx − ap

) ∫

Ω

|∇w|p(x)dx

− aq

∫

Ω

|∇w|q(x)dx −
∫

Ω

| f (x, w,∇w)w|dx

≥
bp

p+
ρ2

p(∇w)− apρp(∇w)− aq

∫

Ω

(1 + |∇w|p(x))dx

− λ∗ρp(∇w)− ‖σ0‖L1(Ω) (by (3.2))

≥
bp

p+
ρ2

p(∇w)− (ap + aq + λ∗)ρp(∇w)− aq|Ω| − ‖σ0‖L1(Ω),

where |Ω| is the Lebesgue measure of the set Ω. So, we have

〈−An(w), w〉 ≥
bp

p+
ρ2

p(∇w)− (ap + aq + λ∗)ρp(∇w)− C for all w ∈ Xn,

where C = aq|Ω|+ ‖σ0‖L1(Ω). Now, if ρp(∇w) > 1 we get

〈−An(w), w〉 ≥
bp

p+
ρ2

p(∇w)− (ap + aq + λ∗ + C)ρp(∇w)

=

[
bp

p+
ρp(∇w)−

(
ap + aq + λ∗ + C

)]
ρp(∇w),

which gives us the condition

〈−An(w), w〉 ≥ 0 if ρp(∇w) ≥
p+

bp
(ap + aq + λ∗ + C).

Let

R > max

{[
p+

bp
(ap + aq + λ∗ + C)

]1/p−

, 1

}

be fixed. For each w ∈ Xn with ‖w‖ = R we obtain

〈−An(w), w〉 ≥ 0 (recall we have ‖w‖ = ‖∇w‖Lp(x)(Ω) ≤ ρ
1

p−

p (∇w)).

A simple application of Proposition 2.7 ensures that −An(w) = 0 (and hence, An(w) =

0) possesses a solution un ∈ Xn. This is sufficient to conclude that the equation (3.4) is

proved.

Proof of Proposition 3.7. The crucial point of the proof consists in showing that

ρp(∇un) ≤ max

{
p+

bp

(
ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω)

)
, 1

}
for all n ∈ N. (4.2)
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Hence, we start obtaining the inequality

ρp(∇un) ≤
p+

bp

(
ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω)

)
,

provided that ρp(∇un) > 1. By (3.4), putting w = un we get

bp

p+
ρ2

p(∇un) ≤ apρp(∇un) + aqρq(∇un)−
bq

q+
ρ2

q(∇un)−
∫

Ω

f (x, un,∇un)undx

≤ (ap + aq)ρp(∇un) + aq|Ω|+
∫

Ω

| f (x, un,∇un)un|dx

≤ (ap + aq)ρp(∇un) + aq|Ω|+ λ∗ρp(∇un) + ‖σ0‖L1(Ω) (by (3.2)).

Keeping in mind that ρp(∇un) > 1, it follows that

bp

p+
ρ2

p(∇un) ≤
(

ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω)

)
ρp(∇un),

⇒
bp

p+
ρp(∇un) ≤ ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω),

and multiplying both sides by
p+

bp
, we get

ρp(∇un) ≤
p+

bp

(
ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω)

)
.

This concludes the proof of inequality (4.2). Consequently, we get that {un}n∈N ⊆ ∪∞

n=1Xn is

a bounded sequence in W
1,p(x)
0 (Ω).

Proof of Theorem 3.8. First, we introduce the Nemitsky map corresponding to the Carathéodory

function f . Namely, N∗
f : W

1,p(x)
0 (Ω) ⊂ Lα(x)(Ω) → Lα′(x)(Ω) defined by

N∗
f (u)(·) = f (·, u(·),∇u(·)) for all u ∈ W

1,p(x)
0 (Ω).

Hypothesis H( f )(i) implies that N∗
f (·) is well-defined, bounded and continuous, see Fan &

Zhao [4] and Kováčik & Rákosník [14]. By Theorem 2.6, the embedding i∗ : Lα′(x)(Ω) →

W−1,p′(x)(Ω) is continuous and hence the operator N f : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) defined by

N f = i∗ ◦ N∗
f is bounded and continuous.

Now, we have established in Proposition 3.7, that the sequence {un}n∈N ⊆ ∪∞

n=1Xn (gen-

erated in Proposition 3.5) is bounded in the anisotropic Dirichlet Sobolev space W
1,p(x)
0 (Ω).

Additionally, this Sobolev space is reflexive, and hence for some u ∈ W
1,p(x)
0 (Ω), we suppose

that

un
w
−→ u in W

1,p(x)
0 (Ω) and un → u in Lα(x)(Ω). (4.3)

Since the Nemitsky map is bounded, then we deduce that

{N f (un)}n∈N is bounded in W−1,p′(x)(Ω).

We already know that −∆
Kp

p(x)
,−∆

Kq

q(x)
: W

1,p(x)
0 (Ω) → W−1,p′(x)(Ω) are bounded, and hence

{
− ∆

Kp

p(x)
un − ∆

Kq

q(x)
un − N f (un)

}
n∈N

is bounded in W−1,p′(x)(Ω). (4.4)
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Consequently, for a relabeled subsequence of (4.4) we get

− ∆
Kp

p(x)
un − ∆

Kq

q(x)
un − N f (un)

w
−→ g in W−1,p′(x)(Ω), for some g ∈ W−1,p′(x)(Ω), (4.5)

as the dual space W−1,p′(x)(Ω) is reflexive too.

Choosing w in ∪∞

n=1Xn, there will be n(w) ∈ N such that w belongs to Xn(w). By Proposi-

tion 3.5, we deduce that (3.4) holds true for every n ≥ n(w). Letting n to infinity in (3.4), we

obtain

〈g, w〉 = 0 for all w ∈ ∪∞

n=1Xn.

The density of ∪∞

n=1Xn in W
1,p(x)
0 (Ω) (as {Xn}n∈N is a Galerkin basis), leads to the conclu-

sion g = 0, and using (4.5) we get

− ∆
Kp

p(x)
un − ∆

Kq

q(x)
un − N f (un)

w
−→ 0 in W−1,p′(x)(Ω). (4.6)

Turning to equation (3.4), we consider w = un and obtain

〈
− ∆

Kp

p(x)
un − ∆

Kq

q(x)
un − N f (un), un

〉
= 0 for all n ∈ N. (4.7)

By (4.6) we have

〈
− ∆

Kp

p(x)
un − ∆

Kq

q(x)
un − N f (un), u

〉
→ 0, as n → +∞,

and using (4.7) we get

lim
n→+∞

〈
− ∆

Kp

p(x)
un − ∆

Kq

q(x)
un − N f (un), un − u

〉
= 0. (4.8)

Since {un}n∈N converges weakly in W
1,p(x)
0 (Ω), it is bounded and so {N∗

f (un)}n∈N is

bounded. Using this fact along with Hölder’s inequality and the compact embedding

W
1,p(x)
0 →֒ Lα(x)(Ω) (see Proposition 2.2), we get

∣∣∣∣
∫

Ω

f (x, un,∇un)(un − u) dx

∣∣∣∣ ≤ 2‖N∗
f (un)‖Lα′(x)(Ω)‖u − un‖Lα(x)(Ω)

≤ 2

(
sup
n∈N

‖N∗
f (un)‖Lα′(x)(Ω)

)
‖u − un‖Lα(x)(Ω) → 0,

as n → +∞. It follows that

lim
n→+∞

〈
− ∆

Kp

p(x)
un − ∆

Kq

q(x)
un, un − u

〉
= 0 (recall (4.8)). (4.9)

Combining (4.3), (4.6) and (4.9) we conclude that u ∈ W
1,p(x)
0 (Ω) is a strong generalized

solution to (P). This completes the proof.

Remark 4.1. Changing H(p) by H′(p), the proofs of Propositions 3.5 and 3.7 above need

minor adaptations. Thus, to avoid repetitions, we omit the details. We leave to the reader the

easy computations, see also the similar lines in Section 4, pp. 12–13, of [26].
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5 Case of positive Kirchhoff term

In this section, we briefly discuss the existence of weak solutions to (P), in the case the Kirch-

hoff type term (K) is substituted by the classical positive Kirchhoff term in the literature,

that is

K̃(r, u) = ar + br

∫

Ω

1

r(x)
|∇u|r(x)dx, with ar, br > 0. (5.1)

This means that our hypothesis (K+) this time is trivially satisfied as from (5.1) we have

K̃(r, u) ≥ ar > 0 for all u ∈ W
1,r(x)
0 (Ω),

and consequently we focus only on the notion of weak solution. Indeed, every weak solution

obtained in this case, is a strong generalized solution too (recall (K+)).

The main problem (P) becomes as follows

− ∆
K̃p

p(x)
u(x)− ∆

K̃q

q(x)
u(x) = f (x, u(x),∇u(x)) in Ω, u

∣∣
∂Ω

= 0. (P+)

This time, −∆
K̃p

p(x)
,−∆

K̃p

q(x)
: W

1,p(x)
0 (Ω) → W−1,p′(x)(Ω) are the operators defined by

〈
− ∆

K̃p

p(x)
u, w

〉
= K̃(p, u)〈−∆p(x)u, w〉

= K̃(p, u)
∫

Ω

|∇u|p(x)−2(∇u,∇w)RN dx for all u, w ∈ W
1,p(x)
0 (Ω),

〈
− ∆

K̃q

q(x)
u, w

〉
= K̃(q, u)〈−∆q(x)u, w〉

= K̃(q, u)
∫

Ω

|∇u|q(x)−2(∇u,∇w)RN dx for all u, w ∈ W
1,p(x)
0 (Ω).

Simplifying, −∆
K̃r

r(x)
: W

1,r(x)
0 (Ω) → W−1,r′(x)(Ω) can be seen as positive-weight version of

the operator −∆r(x) : W
1,r(x)
0 (Ω) → W−1,r′(x)(Ω), in respect to the theory of pseudomonotone

operators. Since −∆r(x) is continuous, bounded, strictly monotone convex and of type (S)+,

we deduce trivially that −∆
K̃r

r(x)
is continuous, bounded and of type (S)+.

Our approach remains purely topological (because of the presence of convection), so we

involve the Nemitsky map N f : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω), and introduce the operator A :

W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) defined by

A(u) = −∆
K̃p

p(x)
u − ∆

K̃q

q(x)
u − N f (u) for all u ∈ W

1,p(x)
0 (Ω). (5.2)

Clearly, this operator is bounded and continuous. We establish the following existence theo-

rem.

Theorem 5.1. If hypotheses H(p) and H( f ) hold, then problem (P+) admits at least a weak solution.

A similar theorem can be established using hypothesis H′(p) instead of H(p). In both the

cases, the new strategy develops through two steps: the proof of pseudo-monotonicity of A(·)

and the proof of coercivity of A(·).
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Proof of Theorem 5.1. In the first step of the proof, we establish the pseudo-monotonicity of

A(·) defined by (5.2), in the sense of Remark 2.4. To this end, let {un}n∈N ⊆ W
1,p(x)
0 be a

sequence such that

un
w
−→ u in W

1,p(x)
0 and lim sup

n→+∞

〈A(un), un − u〉 ≤ 0. (5.3)

Using (5.3) we deduce that

lim sup
n→+∞

[〈
− ∆

K̃p

p(x)
un − ∆

K̃q

q(x)
un, un − u

〉
−
∫

Ω

f (x, un,∇un)(un − u)dx
]
≤ 0. (5.4)

Since {un}n∈N converges weakly in W
1,p(x)
0 (Ω), it is bounded and so {N∗

f (un)}n∈N is

bounded. Using this fact along with Hölder’s inequality and the compact embedding

W
1,p(x)
0 →֒ Lα(x)(Ω) (see Proposition 2.2), we get

∫

Ω

f (x, un,∇un)(un − u)dx → 0, as n → +∞. (5.5)

Therefore (5.4) leads to the following chain of implications

lim sup
n→+∞

〈
− ∆

K̃p

p(x)
un − ∆

K̃q

q(x)
un, un − u

〉
≤ 0,

⇒ lim sup
n→+∞

[〈
− ∆

K̃p

p(x)
un, un − u

〉
+ K̃(q, un)〈−∆q(x)u, un − u〉

]
≤ 0,

⇒ lim sup
n→+∞

〈
− ∆

K̃p

p(x)
un, un − u

〉
≤ 0

⇒ un → u in W
1,p(x)
0 (Ω) (since −∆

K̃p

p(x)
has the (S)+-property). (5.6)

Since A(·) is continuous, using (5.6) we get the convergences A(un)→A(u) and 〈A(un), un〉→

〈A(u), u〉. So, we conclude that A(·) is a pseudomonotone operator.

It remains to prove the coercivity of A(·). Using hypothesis H( f )(ii), we deduce that

〈A(u), u〉 =

(
ap + bp

∫

Ω

1

p(x)
|∇u|p(x)dx

) ∫

Ω

|∇u|p(x)dx

+

(
aq + bq

∫

Ω

1

q(x)
|∇u|q(x)dx

) ∫

Ω

|∇u|q(x)dx −
∫

Ω

f (x, u,∇u)udx

≥
bp

p+
ρ2

p(∇u) + apρp(∇u) +
bq

q+
ρ2

q(∇u) + aqρq(∇u)−
∫

Ω

| f (x, u,∇u)u|dx

≥

[
bp

p+
ρp(∇u) + ap − λ∗

]
ρp(∇u)− ‖σ0‖L1(Ω) (by (3.2)),

and hence we get

〈A(u), u〉 ≥

[
bp

p+
(‖u‖p− − 1) + ap − λ∗

]
(‖u‖p− − 1)− ‖σ0‖L1(Ω) (by (2.1)).

Therefore the coercivity of A(·) follows immediately since 1 < p−. Now, we can apply

Theorem 2.5 to the operator A(·), and hence we deduce that there exists û ∈ W
1,p(x)
0 (Ω) such

that A(û) = 0. Obviously, such û ∈ W
1,p(x)
0 (Ω) is a weak solution to (P+).
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Remark 5.2. When we use hypothesis H( f )(ii) and H′(p) to prove the coercivity of A(·), the

precise calculations are as follows

〈A(u), u〉 =

(
ap + bp

∫

Ω

1

p(x)
|∇u|p(x)dx

) ∫

Ω

|∇u|p(x)dx

+

(
aq + bq

∫

Ω

1

q(x)
|∇u|q(x)dx

) ∫

Ω

|∇u|q(x)dx −
∫

Ω

f (x, u,∇u)udx

≥
bp

p+
ρ2

p(∇u)− |ap − b2|ρp(∇u)− b1

∫

Ω

|u|p(x)dx − ‖σ0‖L1(Ω)

≥
bp

p+
‖u‖2p− − C‖u‖p+ for some C > 0 if ‖u‖ > 1,

and hence the coercivity of A(·) is proved.
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Abstract. We prove an existence result for strong solutions u ∈ W2,q (Ω) of singular
semilinear elliptic problems of the form −∆u = g (·, u) in Ω, u = τ on ∂Ω, where

1 < q < ∞, Ω is a bounded domain in R
n with C2 boundary, 0 ≤ τ ∈ W

2− 1
q ,q

(∂Ω) ,
and with g : Ω × (0, ∞) → [0, ∞) belonging to a class of nonnegative Carathéodory
functions, which may be singular at s = 0 and also at x ∈ S for some suitable subsets
S ⊂ Ω. In addition, we give results concerning the uniqueness and regularity of the
solutions. A related problem on punctured domains is also considered.
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1 Introduction and statement of the main results

Our aim in this paper is to state existence and uniqueness results for strong solutions u ∈

W2,q (Ω) of singular elliptic problems of the form





−∆u = g (·, u) in Ω,

u = τ on ∂Ω,

u > 0 in Ω,

(1.1)

where 1 < q < ∞, Ω is a bounded domain in R
n with C2 boundary, 0 ≤ τ ∈ W

2− 1
q ,q

(∂Ω) ,

with the boundary condition understood in the sense of the trace, and where g : Ω× (0, ∞) →

[0, ∞) is a suitable nonnegative Carathéodory function which may be singular at s = 0 and at

x ∈ S for some suitable subsets S ⊂ Ω.

Singular elliptic problems appear in the study of nonlinear phenomena such as non-

Newtonian fluids, the temperature of some electrical conductors, thin films, micro electro-

mechanicals devices, and chemical catalysts process, (see e.g., [6, 15, 19, 20, 28] and the refer-

ences therein).

BEmail: godoy@mate.uncor.edu



2 T. Godoy

Existence of classical solutions u ∈ C2 (Ω) ∩ C
(
Ω
)

of problem (1.1) were obtained, in the

pioneering works [11, 41] (in both cases for a general second order linear operator instead of

the Laplacian, but in [11] with homogeneous boundary condition), and in [9, 15, 20]. Cases

where g has the form g (x, s) = a (x) s−α, α ∈ (0, ∞) , and τ = 0 were studied in [26] and [14],

and more recently, in [16, 40], and [29]. Let us mention also that in [15], problem (1.1) was

studied when τ = 0 and g (x, s) = − 1
sγ + f (x) for some γ > 0 and f ∈ L1 (Ω) .

Existence results for classical solutions of Lane–Emden–Fowler equations with convection

and singular potential were obtained in [17], and related problems were studied in [8] and

[22]. Problem (1.1) was studied, again in a classical sense, in [1, 27, 31, 34, 35, 42], and [43],

in some cases where g = g (x, s) is singular at s = 0, and with some kind of singularity at

x ∈ ∂Ω. Related problems can be found also in [37], [38], and [39].

In [30] it was studied the existence, uniqueness, and regularity properties of the weak

solutions of problems of the form −div (A (x)∇u) =
f (x)
uγ + µ in Ω, u > 0 in Ω, u = 0 on ∂Ω,

in the case when A (x) is a uniformly elliptic and bounded matrix, γ > 0, 0 ≤ f ∈ L1 (Ω) in

Ω, and µ is a nonnegative bounded Radon measure.

Existence and nonexistence of solutions of problems of the form −div (A (x)∇u) = f u−γ

in Ω, u > 0 in Ω, u = 0 on ∂Ω, was studied in [4], in the case where A is a bounded elliptic

matrix and f is, either a nonnegative function in a suitable Lp (Ω) or a nonnegative and

bounded Radon measure. The existence and uniqueness of solutions of problem of the form

−div (A (x)∇u) = H (u) µ in Ω, u > 0 in Ω, u = 0 on ∂Ω, was studied in [31] in the case

when µ a bounded Radon measure, A (x) is a uniformly elliptic and bounded matrix with

Lipschitz continuous coefficients, and H : (0, ∞) → (0, ∞) satisfies some suitable conditions

which allow that lims→0+ H (s) = ∞.

Problems of the form −∆u = H (u) µ in Ω, u > 0 in Ω, u = 0 on ∂Ω, with H : (0, ∞) →

(0, ∞) allowed to be singular at the origin, in the sense that lims→0+ H (s) = ∞, and where µ

is a bounded Radon measure were studied, under different assumptions, in [13] and [32], and

the analogous problem −∆pu = H (u) µ in Ω, u > 0 in Ω, u = 0 on ∂Ω (where ∆p is the usual

p-Laplacian operator ∆p (u) := div
(
|∇u|p−2 ∇u

)
), was studied in [12].

In [18] it was proved, via a comparison principle, the uniqueness of the weak solutions of

problems of the form −∆pu = F (·, u) in Ω, u > 0 in Ω, u = 0 on ∂Ω, in the case when F is a

nonnegative Carathéodory function on Ω × (0, ∞) such that s → s1−pF (x, s) is decreasing on

(0, ∞) for a.e. x ∈ Ω. In addition, again in [18], it was proved the existence of weak solutions

of problems of the form −∆pu = f u−γ + guq in Ω, u > 0 in Ω, u = 0 on ∂Ω, in the case

when γ ≥ 0, 0 ≤ q ≤ p − 1; f and g are nonnegative functions belonging to suitable Lebesgue

spaces.

The existence of weak solutions in W
1,q
0 (Ω) of problem (1.1) was studied in [7] in some

cases where τ = 0, g (x, s) = a (x) s−α(x). In [24] it was studied the existence of weak solutions,

in H1
0 (Ω) , for problems of the form −∆u = g (·, u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, including

some cases where g (x, s) is singular at s = 0, and also at x ∈ ∂Ω.

Singular problems on punctured domains were studied in [3]. There it was proved that,

if x0 ∈ Ω and if a : Ω → R satisfies certain condition related to the Karamata class, then the

problem −∆u = au−α in Ω \ {x0} , u > 0 in Ω \ {x0} , u = 0 on ∂Ω has at least one solution

such that , limx→x0 |x − x0|
n−2 u (x) = 0.

The interested reader will find an updated account, concerning the topic of singular elliptic

problems, as well as additional references, in the research books [36], and [21].

We assume, from now on, that n ≥ 2 and that Ω is a bounded domain in R
n with C2

boundary. Let q ∈ (1, ∞) , which we fix from now on. We recall that (see, e.g., [25, The-
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orem 2.4.2.5]), for f ∈ Lq (Ω) and τ ∈ W
2− 1

q ,q
(∂Ω) , there exists a unique strong solution

u ∈ W2,q (Ω) of the problem {
−∆u = f in Ω,

u = τ on ∂Ω,
(1.2)

with the boundary condition understood in the sense of the trace, and that u satisfies

∥u∥W2,q(Ω) ≤ c
(
∥ f ∥Lq(Ω) + ∥τ∥

W
2− 1

q ,q
(∂Ω)

)
, where c is a positive constant independent of u.

We will write (−∆)−1 for the solution operator (−∆)−1 : Lq (Ω) → W2,q (Ω) of the homoge-

neous Dirichlet problem {
−∆u = f in Ω,

u = 0 on ∂Ω,
(1.3)

i.e., for the operator defined by (−∆)−1 f := u, where u ∈ W2,q (Ω) is the unique strong

solution u of problem (1.3).

We will write dΩ for the function dΩ : Ω → R , defined by dΩ (x) := dist (x, ∂Ω) . With

these notations, our first result reads as follows:

Theorem 1.1. Let n ≥ 2, let Ω be a bounded domain in R
n with C2 boundary, and let τ be a

nonnegative function in W
2− 1

q ,q
(∂Ω) ∩ C (∂Ω). Let g : Ω × (0, ∞) → R satisfying the following

three conditions H1)–H3):

H1) g is a Carathéodory function (that is g (·, s) is measurable for any s > 0 and g (x, ·) is continuous

on (0, ∞) for any x ∈ Ω) and such that, for any x ∈ Ω, g (x, ·) is nonnegative and nonincreasing

on (0, ∞) .

H2) There exists A ⊂ Ω such that |A| > 0 and g (x, s) > 0 for all (x, s) ∈ A × (0, ∞) .

H3) g (·, cdΩ) ∈ Lq (Ω) for all c ∈ (0, ∞) .

Then problem (1.1) has a strong solution u ∈ W2,q (Ω) which satisfies τ∗ + cdΩ ≤ u ≤ τ∗ +

(−∆)−1 (g (·, cdΩ)) a.e. in Ω, where c is a positive constant and τ∗ ∈ W2,q (Ω) is the (unique) strong

solution of the problem {
−∆z = 0 in Ω,

z = τ on ∂Ω.
(1.4)

Remark 1.2. For τ as in the statement of Theorem 1.1, since τ ∈ C (∂Ω) , problem (1.4) has

a classical solution ζ ∈ C2 (Ω) ∩ C
(
Ω
)

(see e.g., [23, Theorem 2.14]) which, by the classical

maximum principle (as stated e.g., in [23, Theorem 3.1]), satisfies ζ ≥ 0 in Ω. On the other

hand, since τ ∈ W
2− 1

q ,q
(∂Ω) , ([2, Theorem 15.2]) gives that ζ ∈ W2,q (Ω) and that ζ is the

strong solution of (1.4). Then τ∗ ≥ 0 in Ω and τ∗ ∈ C
(
Ω
)

. Moreover, τ∗ is harmonic in Ω,

then τ∗ ∈ C∞ (Ω) , and so τ∗ ∈ W
2,p
loc (Ω) for any p ∈ [1, ∞) .

The next result states that, if H1)–H3) hold, and if some additional assumptions on g

are fulfilled, then the solution u of problem (1.1) is unique and has additional regularity

properties:

Theorem 1.3. Assume the hypothesis of Theorem 1.1 and that, in addition, the following conditions

H4)–H5) hold:

H4) g is continuous on Ω × (0, ∞) ,
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H5) (−∆)−1 (g (·, cdΩ)) ∈ C
(
Ω
)

for any c > 0.

Then problem (1.1) has a unique strong solution u ∈ W2,q (Ω) , and it belongs to W2,n
loc (Ω) ∩ C

(
Ω
)

.

In particular, u ∈ C1 (Ω) .

Our third result refers to the punctured domain U := Ω \ {x0} , where x0 ∈ Ω, and reads

as follows:

Theorem 1.4. Let x0 ∈ Ω, U := Ω \ {x0} and, for δ > 0, let

Aδ :=

{
x ∈ Ω :

δ

2
≤ |x − x0| ≤ δ

}
. (1.5)

Let h : Ω × (0, ∞) → R and let w ∈ W2,q (U) . Assume that w is a strong solution of the problem

{
−∆w = h (·, w) in U,

w = τ on ∂Ω
(1.6)

(with the boundary condition understood in the sense of the trace). If either w ∈ C (Ω) or

lim supδ→0+
1
δ2

∫
Aδ

|w| = 0, then w ∈ W2,q (Ω) and w is a strong solution of the problem

{
−∆w = h (·, w) in Ω,

w = τ on ∂Ω.
(1.7)

We have also the following:

Theorem 1.5. Assume the hypothesis of Theorem 1.3. Let x0 ∈ Ω, U := Ω \ {x0} , and let w ∈

W2,q (U) . If w is a strong solution of the problem





−∆w = g (·, w) in U,

w = τ on ∂Ω,

w > 0 in U.

Then:

i) If lim supx→x0
|x − x0|

n−2 w (x) = 0 then, after redefining w in a set with zero measure, it hold

that w ∈ W2,q (Ω) ∩ C
(
Ω
)
∩ C1 (Ω) and w is the unique solution of problem (1.1)

ii) If ∥w∥L∞(U) = ∞, then lim supx→x0
|x − x0|

n−2 w (x) > 0.

The paper is organized as follows: in Section 2 we study, for M ≥ 1 and ε ∈ (0, 1] , the

approximated problems {
−∆u = gM (·, ε + u) in Ω,

u = τ on ∂Ω,

where gM (x, s) := min {M, g (x, s)}. By using Schauder’s fixed point theorem, we show

that this problem has a unique solution uM,ε ∈ ∩1<p<∞W2,p (Ω) (see Lemmas 2.2 and 2.4).

Lemma 2.6 states that ε → uM,ε is nonincreasing, M → uM,ε is nondecreasing, and that

τ∗ + c0dΩ ≤ uM,ε ≤ τ∗ + (−∆)−1 (·, c0dΩ) in Ω, with c0 a positive constant independent of M
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and ε, and where τ∗ is the strong solution of (1.4). Lemma 2.7 shows that if uM := limε→0+ uM,ε,

then uM ∈ W2,q (Ω) and uM is a strong solution of the problem

{
−∆uM = gM (·, uM) in Ω,

uM = τ on ∂Ω.

The main results are proved in Section 3. To prove Theorem 1.1 we define u := limM→∞ uM

and we show that u is a strong solution of problem (1.1) with the desired properties. This is

achieved from thanks to Lemma 2.7 by showing that g (·, u) := limM→∞ gM (·, uM) with con-

vergence in Lq (Ω). To prove Theorem 1.3 we show that, for any strong solution u of problem

(1.1), there exists a positive constant c such that τ∗ + cdΩ ≤ u ≤ τ∗ + (−∆)−1 (·, cdΩ) in Ω,

which will give the continuity of u at ∂Ω, next we show, by a suitable bootstrap argument, that

u ∈ W2,n
loc (Ω) , which gives that u ∈ C1 (Ω) . Proved that u ∈ W2,n

loc (Ω)∩C
(
Ω
)

, the uniqueness

assertion of Theorem 1.3 will follow from the fact that s → g (x, s) is nonincreasing, combined

with the application of an appropriate maximum principle. Finally, Theorem 1.4 is proved by

showing that, if w ∈ W2,q (Ω \ {x0}) satisfies the conditions of Theorem 1.4, then w, viewed

as a distribution on Ω, belongs to W2,q (Ω) .

2 Preliminaries

Let g : Ω × (0, ∞) → R be a function satisfying the conditions H1)–H3) of Theorem 1.1 and,

for M ∈ [1, ∞) , ε ∈ (0, 1] , let gM : Ω × (0, ∞) → R be defined by

gM (x, s) := min {M, g (x, s)} .

let KM := ∥τ∗∥Lq(Ω) + M
∥∥ (−∆)−1 (1)

∥∥
Lq(Ω)

, where τ∗ is the strong solution of problem (1.4),

and let

CM := {v ∈ Lq (Ω) : 0 ≤ v ≤ KM} .

For v ∈ CM, since g is a Carathéodory function, gM (·, ε + v) is a measurable function. Let η be

a positive and small enough number such that ηdΩ ≤ ε in Ω. Then, since g is nonincreasing

in the second variable and v ≥ 0 in Ω, we have 0 ≤ g (·, ε + v) ≤ g (·, ε) ≤ g (·, ηdΩ) in Ω. By

H3), g (·, ηdΩ) ∈ Lq (Ω) , then 0 ≤ gM (·, ε + v) ≤ gM (·, ηdΩ) ∈ Lq (Ω) and thus gM (·, ε + v) ∈

Lq (Ω) . Then (−∆)−1 (gM (·, ε + v)) is a well defined element in W2,q (Ω) . Let TM,ε : CM →

W2,q (Ω) be the operator defined by

TM,ε (v) := τ∗ + (−∆)−1 (gM (·, ε + v)) .

Remark 2.1.

i) Let us recall the following form of the Aleksandrov maximum principle (which is a

particular case of [23], Theorem 9.1): If U is a bounded domain in R
n and if u ∈

W2,n
loc (U) ∩ C

(
U
)

satisfies −∆u ≥ 0 in U (respectively −∆u ≤ 0 in U) and u ≥ 0 on

∂U (resp. u ≤ 0 on ∂U), then u ≥ 0 in U (resp. u ≤ 0 in U).

ii) If 0 ≤ f ∈ Lq (Ω) then (−∆)−1 f ≥ 0 in Ω (note that we do not assume q ≥ n).

Indeed, let f̃ : R
n → R be the extension by zero of f . Then 0 ≤ f̃ ∈ Lq (Rn) and so f̃

can be approximated, in the Lq (Rn) norm, by a sequence
{

f̃ j

}
j∈N

⊂ C∞ (Rn) obtained
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by convolving f̃ with suitable mollifiers (see [33, Proposition 1.1.3]). Thus, for each j,

0 ≤ f̃ j|Ω ∈ L∞ (Ω) , and so the solution uj of the problem

{
−∆uj = f̃ j|Ω in Ω,

uj = 0 on ∂Ω

belongs to W2,p (Ω) for any p ∈ [1, ∞) and, since
{

f̃ j|Ω

}
j∈N

converges to f in Lq (Rn) , it

follows that
{

uj

}
j∈N

converges to u in W2,q (Ω). Now, by i), uj ≥ 0 in Ω, and then u ≥ 0

in Ω.

iii) From ii), it follows immediately that if f and h belong to Lq (Ω) and f ≤ h in Ω, then

(−∆)−1 f ≤ (−∆)−1 h in Ω.

Lemma 2.2. Assume the conditions H1)–H3) of Theorem 1.1, let τ be a nonnegative function in

W
2− 1

q ,q
(∂Ω) , and let τ∗ ∈ W2,q (Ω) be the strong solution of problem (1.4). Then, for M ∈ [1, ∞)

and ε ∈ (0, 1] ,

i) CM is a closed and convex subset of Lq (Ω) .

ii) TM,ε (CM) ⊂ CM.

iii) TM,ε : CM → CM is continuous.

iv) TM,ε : CM → CM is a compact operator.

Proof. i) is immediate. To prove ii), observe that, for v ∈ CM, since g (·, ε + v) is nonnegative,

Remark 2.1 iii) gives that (−∆)−1 (gM (·, ε + v)) ≥ 0 and so, since τ∗ ≥ 0 in Ω, we have

TM,ε (v) ≥ 0 in Ω. Also,

∥TM,ε (v)∥q ≤ ∥τ∗∥q +
∥∥∥(−∆)−1 (gM (·, ε + v))

∥∥∥
q

≤ ∥τ∗∥q + M
∥∥∥(−∆)−1 (1)

∥∥∥
q
= KM.

Then TM,ε (v) ∈ CM.

To show iii), it is enough to see that if v ∈ CM and if
{

vj

}
j∈N

is a sequence in CM such

that
{

vj

}
j∈N

converges to v in Lq (Ω) , then there exists a subsequence
{

vjk

}
k∈N

such that
{

TM,ε

(
vjk

)}
k∈N

converges to TM,ε (v) in Lq (Ω) .

Let v ∈ CM and let
{

vj

}
j∈N

⊂ CM be such that
{

vj

}
j∈N

converges to v in Lq (Ω). Then

there exists a subsequence
{

vjk

}
k∈N

such that
{

vjk

}
k∈N

converges to v a.e. in Ω. Then, since

gM is a Carathéodory function,
{

gM

(
·, ε + vjk

)}
k∈N

converges to gM (·, ε + v) a.e. in Ω. Thus

limk→∞

∣∣gM

(
·, ε + vjk

)
− gM (·, ε + v)

∣∣q
= 0 a.e. in Ω. Also,

∣∣gM

(
·, ε + vjk

)
− gM (·, ε + v)

∣∣q
≤

(2M)q and then, by Lebesgue’s dominated convergence theorem,
{

gM

(
·, ε + vjk

)}
k∈N

converges to gM (·, ε + v) in Lq (Ω). Thus
{
(−∆)−1 (gM

(
·, ε + vjk

)) }
k∈N

converges to

(−∆)−1 (gM (·, ε + v)) in W2,q (Ω). Then iii) holds.

To prove iv), consider a sequence
{

vj

}
j∈N

⊂ CM. Then
{

vj

}
j∈N

is bounded in Lq (Ω) , and

thus
{
(−∆)−1 (gM

(
·, ε + vjk

)) }
k∈N

is bounded in W2,q (Ω). Then there exists a subsequence
{

vjk

}
k∈N

such that
{
(−∆)−1 (gM

(
·, ε + vjk

)) }
k∈N

converges in Lq (Ω) , and so iv) holds.
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Lemma 2.3. Let h : Ω × (0, ∞) → R be a function such that h (x, ·) is nonincreasing on (0, ∞) for

any x ∈ Ω, and let u, v be two functions in W2,n
loc (Ω) ∩ C

(
Ω
)
. If u, v satisfy −∆u = h (·, u) in Ω,

−∆v = h (·, v) in Ω, and u = v on ∂Ω, then u = v in Ω.

Proof. Let U := {x ∈ Ω : u (x) > v (x)} and let V := {x ∈ Ω : u (x) < v (x)} . Then U and V

are open subsets of Ω. Suppose that U ̸= ∅, Then

−∆ (u − v) = h (·, u)− h (·, v) ≤ 0 in U. (2.1)

Also,

u − v = 0 on ∂U. (2.2)

Indeed, if x ∈ ∂U ∩ ∂Ω then u (x) − v (x) = 0, and if x ∈ ∂U ∩ Ω then u (x) − v (x) ≥ 0

(because u − v > 0 in U and u − v is continuous in Ω), but if u (x) − v (x) > 0 we would

have u − v > 0 in a neighborhood of x, in contradiction with the fact that x ∈ U. Then

u (x)− v (x) = 0 also in the case when x ∈ ∂U ∩ Ω. Thus (2.2) holds. Now, from (2.1), (2.2)

and Remark 2.1, we obtain u − v ≤ 0 in U. which is impossible. Thus U = ∅. Similarly,

V = ∅, and so u = v in Ω.

Lemma 2.4. Assume the hypothesis of Theorem 1.1. Then, for M ∈ [1, ∞) and ε ∈ (0, 1]

i) The problem {
−∆u = gM (·, ε + u) in Ω,

u = τ on ∂Ω
(2.3)

has a unique strong solution uM,ε ∈ W2,q (Ω) ∩ CM.

ii) The problem {
−∆v = gM (·, ε + τ∗ + v) in Ω,

v = 0 on ∂Ω.
(2.4)

has a unique strong solution vM,ε ∈ ∩1<p<∞W2,p (Ω) and uM,ε = τ∗ + vM,ε.

Proof. Taking into account Lemma 2.2 and Schauder’s fixed point theorem (as stated, e.g., in

[23, Corollary 11.2]), TM,ε has a fixed point uM,ε ∈ CM, which, by the definition of TM,ε, belongs

also to W2,q (Ω) and that is a strong solution of problem (2.3). Clearly a function u ∈ W2,q (Ω)
is solution of (2.3) if and only if v := u − τ∗ is a solution of (2.4), and so (2.4) has, at least, a

solution vM,ε ∈ W2,q (Ω). Moreover, if v is a solution of (2.4), since gM (·, ε + τ∗ + v) ∈ L∞ (Ω)
and v = 0 on ∂Ω, it follows that v ∈ ∩1≤p<∞W2,p (Ω) . In particular v ∈ C

(
Ω
)
∩ W2,n

loc (Ω) .

Suppose now that v and w are two solutions of (2.4). Then v and w belong to C
(
Ω
)
∩W2,n

loc (Ω)
and v = w = 0 on ∂Ω. Since s → g (x, ε + τ∗ (x) + s) is nonincreasing for any x ∈ Ω, the

function h (x, s) := gM (x, ε + τ∗ (x) + s) is also nonincreasing for any x ∈ Ω. Then, by Lemma

2.3, v = w in Ω and so the solution of (2.4) is unique. Now, from the equivalence of problems

(2.3) and (2.4), the solution of (2.3) is also unique.

For M ∈ [1, ∞) and ε ∈ (0, 1] we will denote by uM,ε and vM,ε the solutions of problems

(2.3) and (2.4) given by Lemma 2.4.
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Remark 2.5.

i) Let us recall the following form of the Hopf maximum principle (see [5], Lemma 3.2):

Suppose that ρ ≥ 0 belongs to L∞ (Ω) . Let v be the solution of −∆v = ρ in Ω, v = 0 on

∂Ω. Then

v (x) ≥ cdΩ (x)
∫

Ω

ρdΩ a.e.in Ω, (2.5)

where c is a positive constant depending only on Ω.

ii) Suppose that ρ ≥ 0 belongs to L∞ (Ω) . If h ∈ Lq (Ω) and h ≥ ρ in Ω, then, from Remark

2.1 iii) and (2.5) it follows immediately that (−∆)−1 h ≥ cdΩ (x)
∫

Ω
ρdΩ a.e. in Ω, where

c is the constant given in (2.5).

iii) We recall also Hardy’s inequality (see e.g., [33], Theorem 1.10.15): There exists a positive

constant c such that
∥∥ ϕ

dΩ

∥∥
2
≤ c

∥∥∇ϕ
∥∥

2
for any ϕ ∈ H1

0 (Ω) .

Lemma 2.6. Assume the hypothesis of Theorem 1.1. Then

i) For each M ∈ [1, ∞) the map ε → uM,ε is nonincreasing on (0, 1].

ii) For each ε ∈ (0, 1] the map M → uM,ε is nondecreasing on [1, ∞).

iii) There exists a positive constant c0 such that, for any ε ∈ (0, 1] and M ∈ [1, ∞) , τ∗ + c0dΩ ≤

uM,ε ≤ τ∗ + (−∆)−1 (·, c0dΩ) in Ω .

Proof. To see i), suppose that 0 < ε ≤ η ≤ 1. Let U :=
{

x ∈ Ω : vM,ε (x) < vM,η (x)
}

and

suppose that U ̸= ∅. Since g is nonincreasing in the second variable, the same is true for gM

and so,

−∆ (vM,ε) = gM (·, ε + τ∗ + vM,ε) ≥ gM (·, η + τ∗ + vM,ε)

≥ gM

(
·, η + τ∗ + vM,η

)
= −∆

(
vM,η

)
in U.

Also, as in the proof of Lemma 2.3, we have vM,ε = vM,η on ∂U. Then, by Remark 2.1 iii),

vM,ε ≥ vM,η in U, which is impossible. Then U = ∅ and so vM,ε ≥ vM,η in Ω, which implies

uM,ε ≥ uM,η in Ω. Thus i) holds.

To see ii), suppose 1 ≤ M1 ≤ M2 and ε ∈ (0, 1] . Let U := {vM1,ε > vM2,ε} . If U ̸= ∅, then

−∆ (vM2,ε) = gM2 (·, ε + τ∗ + vM2,ε) ≥ gM1
(·, ε + τ∗ + vM2,ε)

≥ gM1
(·, ε + τ∗ + vM1,ε) = −∆ (vM1,ε) in U.

Also, vM1,ε = vM2,ε on ∂U. Then, by Remark 2.1 iii), vM1,ε ≤ vM2,ε in U, which is impossible.

Therefore U = ∅ and so vM1,ε ≤ vM2,ε in Ω, which implies uM1,ε ≤ uM2,ε in Ω. Thus ii) holds.

To prove iii), observe that by i) and ii) we have, for M ∈ [1, ∞) and ε ∈ (0, 1] ,

vM,ε ≥ vM,1 ≥ v1,1 in Ω. (2.6)

Now, {
−∆v1,1 = g1 (·, 1 + τ∗ + v1,1) in Ω,

v1,1 = 0 on ∂Ω
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and 0 ≤ g1 (·, 1 + τ∗ + v1,1) ∈ L∞ (Ω). Note that g1 (·, 1 + τ∗ + v1,1) ̸≡ 0 in Ω (that is:

|{x ∈ Ω : g1 (x, 1 + τ∗(x) + v1,1(x)) > 0}| > 0) because if g1 (·, 1 + τ∗ + v1,1) ≡ 0 in Ω then

g (·, 1 + τ∗ + v1,1) ≡ 0 in Ω, which contradicts H2). Then
∫

Ω

dΩg1 (·, 1 + τ∗ + v1,1) > 0,

and so, taking into account Remark 2.5, there exists a positive constant c′, depending only on

Ω, such that

v1,1 ≥ c′dΩ

∫

Ω

g1 (·, 1 + τ∗ + v1,1) dΩ a.e. in Ω.

Then, from (2.6), vM,ε ≥ c0dΩ with

c0 := c′
∫

Ω

g1 (·, 1 + τ∗ + v1,1) dΩ > 0. (2.7)

and so, since uM,ε = τ∗ + vM,ε, we get that uM,ε ≥ τ∗ + c0dΩ in Ω.

On the other hand, vM,ε = (−∆)−1 (gM (·, ε + τ∗ + vM,ε)) . Now, vM,ε ≥ v1,ε ≥ v1,1 in Ω,

and so gM (·, ε + τ∗ + vM,ε) ≤ gM (·, v1,1) ≤ gM (·, c0dΩ) ≤ g (·, c0dΩ) , with c0 given by (2.7).

Then, by Remark 2.1 iii), (−∆)−1 gM (·, ε + τ∗ + vM,ε) ≤ (−∆)−1 (g (·, c0dΩ)) in Ω, that is,

vM,ε ≤ (−∆)−1 (g (·, c0dΩ)) in Ω. Thus uM,ε = τ∗ + vM,ε ≤ τ∗ + (−∆)−1 (g (·, c0dΩ)) in Ω,

which completes the proof of the lemma.

For M ∈ [1, ∞) , let uM and vM be the functions, defined on Ω by

uM (x) := lim
ε→0+

uM,ε (x) , vM (x) := lim
ε→0+

vM,ε (x) . (2.8)

Note that, by Lemma 2.6, uM (x) is well defined and finite for a.e. x ∈ Ω and so, since

uM,ε = τ∗ + vM,ε, the same assertion holds also for vM.

Lemma 2.7. Assume the hypothesis of Theorem 1.1 and let c0 be the constant given by Lemma 2.6 iii).

Then:

i) The map M → uM is nondecreasing on [1, ∞).

ii) τ∗ + c0dΩ ≤ uM ≤ τ∗ + (−∆)−1 (g (·, c0dΩ)) in Ω,for any M ≥ 1 (in particular uM > 0 in

Ω)

iii) For each M > 0, uM ∈ W2,q (Ω) and uM is a strong solution of the problem

{
−∆uM = gM (·, uM) in Ω,

uM = τ on ∂Ω.

Proof. If 1 ≤ M1 ≤ M2 and ε ∈ (0, 1] then, by Lemma 2.6, uM1,ε ≤ uM2,ε, and so, by taking

limε→0+ , we get uM1
≤ uM2

. Thus i) holds. Also, taking limε→0+ in the inequalities of Lemma

2.6 iii) we get ii).

To prove iii) note that, by Lemma 2.4 ii), we have, for ε ∈ (0, 1] and M ∈ [1, ∞) ,

uM,ε = τ∗ + vM,ε, (2.9)

where vM,ε = (−∆)−1 (gM (·, ε + τ∗ + vM,ε)) . From (2.9),

lim
ε→0+

(τ∗ + vM,ε) = uM a.e. in Ω,
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and so, since gM is a Carathéodory function,

lim
ε→0+

gM (·, ε + τ∗ + vM,ε) = gM (·, uM) a.e. in Ω.

Then limε→0+ |gM (·, ε + τ∗ + vM,ε)− gM (·, uM)|q = 0 a.e. in Ω. Also,

|gM (·, ε + τ∗ + vM,ε)− gM (·, uM)|q ≤ (2M)q

for any ε ∈ (0, 1] . Then, by the Lebesgue’s dominated convergence theorem,

lim
ε→0+

gM (·, ε + τ∗ + vM,ε) = gM (·, uM)

with convergence in Lq (Ω) . Then

lim
ε→0+

(−∆)−1 (gM (·, ε + τ∗ + vM,ε)) = (−∆)−1 (gM (·, uM))

with convergence in W2,q (Ω) , and so, in particular, (−∆)−1 (gM (·, uM)) ∈ W2,q (Ω) . There-

fore limε→0+ vM,ε = (−∆)−1 (gM (·, uM)) with convergence in W2,q (Ω) , and thus uM =

limε→0+ uM,ε = limε→0+ (τ
∗ + vM,ε) = τ∗ + (−∆)−1 (gM (·, uM)) , with convergence in W2,q(Ω).

Then −∆uM = gM (·, uM) in Ω and uM = τ on ∂Ω.

3 Proof of Theorems 1.1 and 1.3

Proof of Theorem 1.1. Define u : Ω → R by

u := lim
M→∞

uM. (3.1)

Note that, by Lemma 2.7 i), the map M → uM is nondecreasing on (0, ∞) , and so u is well

defined. By Lemma 2.7 we have, for any M ≥ 1,

τ∗ + c0dΩ ≤ uM ≤ τ∗ + (−∆)−1 (g (·, c0dΩ)) in Ω, (3.2)

with τ∗ given by by (1.4). Then

τ∗ + c0dΩ ≤ u ≤ τ∗ + (−∆)−1 (g (·, c0dΩ)) in Ω (3.3)

Also, by Lemma 2.7, {
−∆uM = gM (·, uM) in Ω,

uM = τ on ∂Ω.
(3.4)

Note that

lim
M→∞

gM (·, uM) = g (·, u) a.e. in Ω. (3.5)

Indeed, for k ∈ N let

Ωk :=

{
x ∈ Ω :

1

k
dΩ (x) < u (x) < k

}
,

and let E := Ω \ ∪k∈NΩk. Thus E = {x ∈ Ω : u (x) = 0} ∪ {x ∈ Ω : u (x) = ∞} and so, from

(3.3) and taking into account that τ∗ ≥ 0 in Ω and that (−∆)−1 (g (·, c0dΩ)) < ∞ a.e. in Ω, we

get that |E| = 0. Then

Ω = ∪k∈NΩk ∪ E. (3.6)
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with |E| = 0. Now, for each k ∈ N and x ∈ Ωk, we have u (x) >
1
k dΩ (x) and so, since

u (x) = limM→∞ uM (x) , there exists Nk,x such that uM (x) >
1
k dΩ (x) for any M > Nk,x. Let

Mk,x := max
{

Nk,x, g
(

x, 1
k dΩ (x)

)}
. Since g (x, ·) is nonincreasing we have, for M > Mk,x,

g (x, uM (x)) ≤ g

(
x,

1

k
dΩ (x)

)
≤ Mk,x < M,

and so gM (x, uM (x)) = g (x, uM (x)) whenever M > Mk,x. Thus, for any x ∈ Ωk,

lim
M→∞

gM (x, uM (x)) = lim
M→∞

g (x, uM (x)) = g (x, u (x)) ,

the last equality because g is a Carathéodory function. Then, for each k,

lim
M→∞

gM (·, uM) = g (·, u) a.e. in Ωk,

and so, taking into account (3.6) and that |E| = 0, we get (3.5).

Let us see that {gM (·, uM)}M∈N
converges to g (·, u) with convergence in Lq (Ω). From

(3.5),

lim
M→∞

|gM (·, uM)− g (·, u)|q = 0 a.e. in Ω.

Also, since τ∗ ≥ 0, from (3.3) and (3.2) we have that u ≥ c0dΩ in Ω and that uM ≥ c0dΩ in Ω

for any M ≥ 1. Then, recalling that g and gM are nonincreasing in the second variable,

|gM (·, uM)− g (·, u)|q ≤ (gM (·, uM) + g (·, u))q

≤ (2g (·, c0dΩ))
q a.e. in Ω.

By H3), (2g (·, c0dΩ))
q ∈ L1 (Ω). By Lebesgue’s dominated convergence theorem,

g (·, u) ∈ Lq (Ω) , (3.7)

and lim
M→∞

gM (·, uM) = g (·, u) with convergence in Lq (Ω) .

Let v = u − τ∗. Since vM = uM − τ∗, Lemma 2.7 gives

{
−∆vM = −∆uM = gM (·, uM) in Ω,

vM = 0 on ∂Ω.

i.e., vM = (−∆)−1 gM (·, uM) ; and so, by (3.7),

v = lim
M→∞

vM = (−∆)−1 g (·, u) with convergence in W2,q (Ω) . (3.8)

Then u − τ∗ = v = (−∆)−1 g (·, u) , which gives that u ∈ W2,q (Ω) and that

{
−∆u = g (·, u) in Ω,

u = τ on ∂Ω.

Remark 3.1. It is a well known fact that, for η ∈ R, d
−η
Ω

∈ L1 (Ω) if, and only if, η < 1. More-

over, if S ⊂ Ω is a closed C2 and n − 1 dimensional surface, and if ρS (x) := dist (x, S) , then

ρ
−η
S ∈ L1 (Ω) whenever η < 1. From these facts, and taking into account that dist (S, ∂Ω) > 0,

it follows easily that if α : Ω → R and β : Ω → R are measurable functions such that

ess sup
Ω

α <
1
q and ess sup

Ω
β <

1
q , then d−α

Ω
s−β ∈ Lq (Ω) .
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Example 3.2. The conditions H1–H3) of Theorem 1.1 allow some cases where the function

g (x, s) is singular at s = 0, and also at x ∈ ∂Ω. For instance, consider the case where g (x, s) :=

b (x) d−α
Ω

s−β, with α : Ω → R, and β : Ω → [0, ∞) measurable functions such that ess sup Ωα +

ess sup Ωβ <
1
q , and with b : Ω → R such that

0 ≤ b ∈ L∞ (Ω) and |{x ∈ Ω : b (x) > 0}| > 0. (3.9)

Clearly g satisfies H1) and H2) and, for q ∈
(
1, 1

α+β

)
, the first assertion of Remark (3.1), jointly

with (3.9), implies that g satisfies also H3).

Example 3.3. A second example of application of Theorem 1.1 is given by the function

g(x, s) := |x − x0|
−γ b (x) s−β, where x0 ∈ Ω, 0 < γ < n, 0 < β < 1, 1 < q < min

{
1
β , n

γ

}

and with b : Ω → R satisfying (3.9).

Example 3.4. A third example can be given by taking g (x, s) := b (x) ρ
−γ
S (x) s−β, where S ⊂ Ω

is a closed C2 and n − 1 dimensional surface, ρS (x) := dist (x, S) , 0 < γ < 1, 0 < β < 1,

1 < q < min
{

1
β , 1

γ

}
and with b satisfying (3.9). Indeed, H1) and H2) clearly hold, and H3)

follows easily from the last assertion of Remark 3.1.

If U and V ′ are domains in R
n, we will write U ⊂⊂ V to mean that U ⊂ U ⊂ V.

Proof of Theorem 1.3. Let u be a solution of (1.1). By H1) and H2), g (·, u) is nonnegative and

nonidentically zero on Ω and, since u is a strong solution of problem (1.1), then g (·, u) ∈

Lq (Ω). Let v := u − τ∗. Then −∆v = −∆u = g (·, u) in Ω and v = 0 on ∂Ω, i.e., v =

(−∆)−1 g (·, u) . Then, by Remark 2.5 ii), there exists a positive constant c′ such that v ≥ c′dΩ

in Ω. On the other hand, τ∗ ≥ 0 in Ω. Thus, since u = v + τ∗,

u ≥ τ∗ + c′dΩ in Ω. (3.10)

Also, since τ∗ ≥ 0 in Ω, and taking into account that g is nonincreasing in the second variable

and that v ≥ c′dΩ in Ω, we have g (·, τ∗ + v) ≤ g (·, c′dΩ) and so v = (−∆)−1 g (·, u) =

(−∆)−1 g (·, τ∗ + v) ≤ (−∆)−1 g (·, c′dΩ) . Then

u ≤ τ∗ + (−∆)−1 g
(
·, c′dΩ

)
in Ω. (3.11)

Then

τ∗ + c′dΩ ≤ u ≤ τ∗ + (−∆)−1 g
(
·, c′dΩ

)
in Ω, (3.12)

which, taking into account H5) and that τ∗ ∈ C
(
Ω
)

, implies that u is continuous at ∂Ω.

Now we prove, by a bootstrap argument, that u ∈ W2,n
loc (Ω) . For 1 ≤ p ≤ ∞ define p∗ by

1
p∗ = 1

p − 1
n if p < n and by p∗ = ∞ if p ≥ n; and, for k ∈ N∪ {0}, define inductively qk, by

q0 = q, and by qk+1 = q∗k . Thus 1
qk

= 1
q −

k
n when k <

n
q and qk = ∞ if k ≥ n

q . Let j ∈ N∪ {0}

be such that
j
n <

1
q ≤ j+1

n . Then 0 <
1
q − j

n <
1
n , and so n < qj < ∞. Given a domain

Ω̃ ⊂⊂ Ω, let Ω0, Ω1, Ω2, . . . , Ωj be regular domains such that Ω̃ ⊂ Ωj ⊂⊂ Ωj−1 ⊂⊂ · · · ⊂⊂

Ω1 ⊂⊂ Ω0 = Ω. Now, u ∈ W2,q(Ω) = W2,q0 (Ω0). Suppose that u ∈ W2,qk (Ωk) for some

k = 0, 1, . . . , j − 1 and let Ω̃k be a domain such that Ωk+1 ⊂⊂ Ω̃k ⊂⊂ Ωk. Then u ∈ W2,qk(Ω̃k)

and so, by the embedding theorems for Sobolev spaces, u ∈ Lq∗k

(
Ω̃k

)
= Lqk+1(Ω̃k). Also, by

H4), g is continuous on Ω × (0, ∞) , and so, since 0 ≤ g (·, u) = g (·, τ∗ + v) ≤ g (·, c′dΩ) , we

have g (·, c′dΩ) ∈ L∞(Ω̃k). Thus, by the inner elliptic estimates (as stated, e.g., in [23, Theorem

9.11]), u ∈ W2,qk+1 (Ωk+1). Thus, inductively, we get that u ∈ W2,qj
(
Ωj

)
and so, since Ω̃ ⊂ Ωj
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and j > n, we have u ∈ W2,n(Ω̃). Thus (since Ω̃ was an arbitrary domain such that Ω̃ ⊂⊂ Ω),

u ∈ W2,n
loc (Ω) . Then u ∈ C (Ω) and so, since we had already seen that u is continuous at ∂Ω,

we conclude that u ∈ C
(
Ω
)

.

Suppose now that u and ũ are solutions of problem (1.1). Then u and ũ belong to

W2,n
loc (Ω) ∩ C

(
Ω
)

and

{
−∆ (u − ũ) = g (·, u)− g (·, v) in Ω,

u − ũ = 0 on ∂Ω.

Thus, by Lemma 2.3, u = ũ in Ω.

Remark 3.5. Assume the hypothesis of Theorem 1.1 and that τ = 0 in problem (1.1). Assume

also that dΩg (·, cdΩ) ∈ L2 (Ω) for any c ∈ (0, ∞) , and let u ∈ W2,q (Ω) be the strong solution

of problem (1.1) given by Theorem 1.1. Then u ∈ H1
0 (Ω) and u is a weak solution of problem

(1.1), i.e., for any ϕ ∈ H1
0 (Ω) ,

g (·, u) ϕ ∈ L1 (Ω) and
∫

Ω

⟨∇u,∇ϕ⟩ =
∫

Ω

g (·, u) ϕ. (3.13)

Indeed, by Theorem 1.1, we have u ≥ cudΩ for some cu ∈ (0, ∞) and so 0 ≤ g (·, u) ≤

g (·, cudΩ) . Now, for ϕ ∈ H1
0 (Ω) , the Holder’s inequality and the Hardy’s inequality of

Remark 2.5 iii) give

∫

Ω

|g (·, u) ϕ| =
∫

Ω

dΩg (·, u)

∣∣∣∣
ϕ

dΩ

∣∣∣∣ ≤
∫

Ω

dΩg (·, cudΩ)

∣∣∣∣
ϕ

dΩ

∣∣∣∣

≤ ∥dΩg (·, cudΩ)∥2

∥∥∥∥
ϕ

dΩ

∥∥∥∥
2

≤ c ∥dΩg (·, cudΩ)∥2 ∥∇ϕ∥2 ,

and thus g(·, u)ϕ ∈ L1(Ω). Moreover, the above inequality gives that the map ϕ →
∫

Ω
g(·, u)ϕ

is continuous on H1
0 (Ω) . Then, since H1

0 (Ω) is a Hilbert space with respect to the inner

product (u, v) :=
∫

Ω
⟨∇u,∇v⟩ , it follows that there exists a function ũ ∈ H1

0 (Ω) such that, for

any ϕ ∈ H1
0 (Ω) , ∫

Ω

⟨∇ũ,∇ϕ⟩ =
∫

Ω

⟨∇u,∇ϕ⟩ .

Then
∫

Ω
⟨∇ (ũ − u) ,∇ϕ⟩ = 0 for any ϕ ∈ C∞

c (Ω) and so z := ũ − u satisfies, in the sense of

distributions, −∆z = 0 in Ω. Also, z ∈ W
1,q
0 (Ω) with q := min (q, 2) and so, in the sense of

the trace, z = 0 on ∂Ω. Then z = 0 and thus u = ũ in Ω. Therefore u ∈ H1
0 (Ω) . Since u is a

strong solution of problem (1.1) we have

∫

Ω

⟨∇u,∇ψ⟩ =
∫

Ω

g (·, u)ψ for any ψ ∈ C∞

c (Ω) . (3.14)

and then, by density, (3.14) holds also for any ϕ ∈ H1
0 (Ω) .

For f : Ω → R and h : Ω → R we will write f ≈ h to mean that there exist positive

constants c1 and c2 such that c1 f ≤ h ≤ c2h a.e. in Ω

Remark 3.6. In order to illustrate the relationship between the existence of classical solutions,

strong solutions and weak solutions in H1
0 (Ω) let us consider the case when Ω is a C2+α

domain in R
n for some α ∈ (0, 1) , n ≥ 3 and g (x, s) = a (x) s−γ with a ∈ Cα

(
Ω
)

such that

minΩ α > 0. Assume also that τ = 0 in problem (1.1). In this situation, [26, Theorem 1] states
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that problem (1.1) has a unique classical solution u ∈ C2+α (Ω) ∩ C
(
Ω
)

for any γ > 0 and

that, when γ > 1, u ≈ d
2

1+γ

Ω
in Ω. In addition, [26, Theorem 2] says that when γ > 3 no

(classical) solution belonging to H1 (Ω) exists. In the case γ = 1 [29, Theorem 1] states that

u ≈ dΩ

(
ln

(
ω
dΩ

)) 1
2 , where ω is any constant such that ω > diam (Ω). On the other hand, as a

consequence of [42, Theorems 1 and 2] a weak solution u ∈ H1
0 (Ω) exists if and only if γ < 3.

However, for 1 ≤ γ < 3 these weak solution are not strong solutions. Indeed, when γ = 1,

au−γ = au−1 ≈ d−1
Ω

(
ln

(
ω
dΩ

))− 1
2 and it is easy to see that, for all q ≥ 1,

∫
Ω

d
−q
Ω

(
ln

(
ω
dΩ

))− q
2 = ∞

(in fact,
∫

Ω
d
−q
Ω

(
ln

(
ω
dΩ

))− q
2
< ∞ if and only if I (ε) :=

∫ ε
0 t−q

(
ln

(
ω
t

))− q
2 dt < ∞ for some ε > 0,

but the change of variable s = ln ω
t immediately shows that I (ε) = ∞ for all ε > 0). When

1 < γ < 3, we have u ≈ d
2

1+γ

Ω
in Ω, and thus au−γ ≈ d

− 2γ
1+γ

Ω
. Then, for q ≥ 1, au−γ ∈ Lq (Ω) if

and only if
2γq
1+γ < 1, that is γ <

1
2q−1 . Since 1

2q−1 ≤ 1 we get that γ < 1, which contradicts our

assumption 1 < γ < 3.

4 A related problem in a punctured domain

Let x0 ∈ Ω, let U := Ω \ {x0} and let w ∈ L1 (U) . Then w ∈ L1 (Ω) , and so w can be viewed

as a distribution on U and also as a distribution on Ω. For 1 ≤ i, j ≤ n, we will denote by

∂U
i w and ∂U

i ∂U
j w (respectively by ∂Ω

i w and ∂Ω

i ∂Ω

j w) the first and the second derivatives of w

considered as a distribution on U (resp. as a distribution on Ω), and, if ϕ ∈ C∞ (Rn) , we will

write simply ∂i ϕ and ∂i∂j ϕ for the first and the second derivatives of ϕ.

If w ∈ W2,q (U) for some q ∈ (1, ∞) , then ∂U
i w and ∂U

i ∂U
j w belong to Lq (U) and so they

also belong to Lq (Ω) . One may ask if ∂U
i w = ∂Ω

i w and ∂U
i ∂U

j w = ∂Ω

i ∂Ω

j w, i.e., if the equalities

〈
∂U

i w, ϕ
〉
= −

∫

Ω

w∂i ϕ and
〈

∂U
i ∂U

j w, ϕ
〉
=

∫

Ω

w∂i∂j ϕ,

which hold for ϕ ∈ C∞
c (U) , hold also for ϕ ∈ C∞

c (Ω) . The next lemma provides a partial

answer to this question.

Lemma 4.1. Let x0 ∈ Ω, let U := Ω \ {x0} , and, for δ > 0, let Aδ be defined by (1.5) and let

w ∈ W2,q (U) . If either limx→x0 w (x) exists and is finite, or if

lim sup
δ→0+

1

δ2

∫

Aδ

|w| = 0, (4.1)

then ∂U
i w = ∂Ω

i w and ∂U
i ∂U

j w = ∂Ω

i ∂Ω

j w for each i and j, and so, in particular, w ∈ W2,q (Ω) .

Proof. Observe that, in the case when limx→x0 w (x) exists and is finite, it is enough to prove

the lemma under the additional assumption that limx→x0 w (x) = 0 (because the functions

w − limx→x0 w (x) and w have the same derivatives, either in D′ (U) or in D′ (Ω)). Let ψ ∈

C∞
c (Rn) be such that 0 ≤ ψ ≤ 1 in R

n, ψ (x) = 1 for |x| ≤ 1
2 and ψ (x) = 0 for |x| ≥ 1; and for

δ > 0, define ψ1,δ and ψ2,δ by ψ1,δ (x) := ψ
(

x−x0
δ

)
and ψ2,δ (x) := 1 − ψ1,δ (x) . For ϕ ∈ C∞

c (Ω)
and 0 < δ < min {1, dist (x0, ∂Ω)} we have

∫

Ω

ϕ∂U
i ∂U

j w =
∫

Ω

ϕψ1,δ∂U
i ∂U

j w +
∫

Ω

ϕψ2,δ∂U
i ∂U

j w.
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Now,
∣∣ϕψ1,δ∂U

i ∂U
j w

∣∣≤∥ϕ∥L∞(Ω)

∣∣∂U
i ∂U

j w
∣∣∈Lq(U)=Lq(Ω)⊂L1(Ω). Also limδ→0 ϕψ1,δ∂U

i ∂U
j w=0

a.e. in Ω. Then, by Lebesgue’s dominated convergence theorem,

lim
δ→0

∫

Ω

ϕψ1,δ∂U
i ∂U

j w = 0. (4.2)

Thus, to prove the assertion of the lemma for the second derivatives, it suffices to show that

lim
δ→0

∫

Ω

ϕψ2,δ∂U
i ∂U

j w =
∫

Ω

w∂i∂j ϕ for any ϕ ∈ C∞

c (Ω) . (4.3)

Notice that ∂iψ2,δ (x) = 1
δ

∂ψ
∂xi

(
x−x0

δ

)
and ∂i∂jψ2,δ (x) = 1

δ2

(
∂i∂jψ

) (
x−x0

δ

)
, and so there exists a

positive constant c, independent of δ, such that

|∂iψ2,δ| ≤
c

δ
and

∣∣∂i∂jψ2,δ

∣∣ ≤ c

δ2
in Ω. (4.4)

Now, ∫

Ω

ϕψ2,δ∂U
i ∂U

j w =
∫

U
ϕψ2,δ∂U

i ∂U
j w =

∫

U
w∂i∂j (ϕψ2,δ) ,

and a computation gives that

∂i∂j (ϕψ2,δ) = ∂i ϕ∂jψ2,δ + ϕ∂i∂jψ2,δ + ∂iψ2,δ∂j ϕ + ψ2,δ∂i∂j ϕ,

and so, ψ2,δ, ∂iψ2,δ and ∂i∂jψ2,δ have their supports contained in Aδ, we have

∫

U
w∂i∂j (ϕψ2,δ) = I1,δ + I2,δ + I3,δ + I4,δ, (4.5)

where

I1,δ :=
∫

Aδ

w∂i ϕ∂jψ2,δ, I2,δ :=
∫

Aδ

wϕ∂i∂jψ2,δ,

I3,δ :=
∫

Aδ

w∂iψ2,δ∂j ϕ, I4,δ :=
∫

U
wψ2,δ∂i∂j ϕ.

Thus, by (4.4),

|I1,δ| ≤ c ∥∂i ϕ∥L∞(Ω)

1

δ

∫

Aδ

|w| , (4.6)

with c a positive constant independent of δ. If (4.1) holds then clearly

lim
δ→0+

I1,δ = 0. (4.7)

and, in the case when limx→x0 w (x) = 0, we have limδ→0+ supAδ
|w| = 0, and so, from (4.6),

|I1,δ| ≤
c
δ ∥∂i ϕ∥L∞(Ω) |Aδ| supAδ

|w| , where |Aδ| denotes the Lebesgue measure of Aδ. Since

|Aδ| = αn

(
1 − 1

2n

)
δn where αn is the volume of the unit ball in R

n and taking into account

that n ≥ 2, we get (4.7) again in this case. Similarly,

lim
δ→0+

I3,δ = 0. (4.8)

To estimate I2,δ observe that, by (4.4),

|I2,δ| ≤
c

δ2
∥ϕ∥L∞(Ω)

∫

Aδ

|w| , (4.9)
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and so, proceeding similarly to the estimative of I3,δ we get, in both cases of the lemma, that

lim
δ→0+

I2,δ = 0. (4.10)

Consider now I4,δ. We have
∣∣wψ2,δ∂i∂j ϕ

∣∣≤|w||∂i∂j ϕ|∈L1(Ω), and clearly limδ→0+wψ2,δ∂i∂j ϕ =

w∂i∂j ϕ a.e. in Ω. Then, by Lebesgue’s dominated convergence theorem,

lim
δ→0+

I4,δ =
∫

Ω

w∂i∂j ϕ =
〈

∂Ω

i ∂Ω

j w, ϕ
〉

. (4.11)

From (4.7), (4.8), (4.10), and (4.11), we get (4.3), and so the assertion of the lemma for the

second derivatives holds. The proof of the assertion of the lemma for the first derivatives

follows similar lines and we omit it.

Proof of Theorem 1.4. Let w ∈ W2,q (U) be a strong solution of problem (1.6). If either w ∈

C (Ω) or lim supδ→0+
1
δ2

∫
Aδ

|w| = 0, then, by Lemma 4.1, w ∈ W2,q (Ω) . Since the equality

−∆w = h (·, w) holds a.e. in Ω, and, in the sense of the trace, w = τ on ∂Ω, we have that w is

a strong solution u of problem (1.7).

Proof of Theorem 1.5. To see i), suppose that lim supx→x0
|x − x0|

n−2 w (x) = 0, and let ε > 0.

Then there exist δ0 > 0 such that |x − x0|
n−2 w (x) ≤ ε if 0 < |x − x0| < δ0. Now, for δ ∈ (0, δ0) ,

1

δ2

∫

Aδ

|w| =
1

δ2

∫

Aδ

1

|x − x0|
n−2

|x − x0|
n−2 w (x) dx

≤
1

δ2

∫

Aδ

(
2

δ

)n−2

|x − x0|
n−2 w (x) dx

≤ 2n−2εδ−n |Aδ| = 2n−2

(
1 −

1

2n

)
αnε,

where αn is the volume of the unit ball in R
n. Thus limδ→0

1
δ2

∫
Aδ

|w| = 0, and then i) follows

from Theorems 1.4 and 1.3.

ii) follows directly from i). If ∥w∥L∞(U) = ∞ and lim supx→x0
|x − x0|

n−2 w (x) = 0, then, by

i), after redefining w in a set with zero measure, we would have C
(
Ω
)

, which is impossible

when ∥w∥L∞(U) = ∞.

Remark 4.2. Theorems 1.4 and 1.5 say that if x0 ∈ Ω, U = Ω \ {x0} , and if w is a nice enough

strong solution of problem (1.7) then w is a strong solution of problem 1.1.

On the other hand, it was proved in ([30], Theorem 3.6) that, if µ is a bounded Radon

measure in Ω, γ ≤ 1, and f ∈ L1 (Ω) , then the problem





−∆w = f u−γ + µ in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

has a solution in the sense that:

i) u ∈ W1,1
0 (Ω) and for any compact K ⊂ Ω there exists a positive constant c such that

u ≥ c a.e. in K,

ii)
∫

Ω
⟨∇w,∇ϕ⟩ =

∫
Ω

f u−γ ϕ +
∫

Ω
ϕdµ for any ϕ ∈ C1

c (Ω) .
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By taking µ = δx0 (the Dirac’s measure concentrated at x0), and, for instance, f = 1,

in [30, Theorem 3.6] it is clear that the conclusions of Theorems 1.4 and 1.5 could not hold

anymore if the notion of solution is changed and the requirement that w is “nice enough” is

dropped.
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a Lipschitz boundary ∂Ω. In this paper we study the

existence of a positive solution for the following nonlinear Dirichlet problem

{
−∆a

pu(z)− ∆qu(z) = f (z, u(z), Du(z)) in Ω,

u|∂Ω = 0, u > 0, 1 < q < p < N.
(1.1)

Given a ∈ L∞(Ω) \ {0} with a(z) ≥ 0 for a.a. z ∈ Ω and r ∈ (1, ∞) by ∆a
r denotes the

weighted r-Laplace differential operator defined by

∆
a
r u = div(a(z)|Du|r−2Du).

When a(·) ≡ 1, then we write ∆a
r = ∆r which is the standard r-Laplace differential operator.

In (1.1) the differential operator is not homogeneous and is related to two-phase integral

functional

u →
∫

Ω

[a(z)|Du|p + |Du|q] dz.

BCorresponding author. Email: zhhliu@hotmail.com
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The integrand of this functional is the function

E(z, t) = a(z)tp + tq ∀z ∈ Ω, ∀t ≥ 0.

We do not assume that the weight a(·) is bounded away from zero (that is, we do not

require that ess infΩ a > 0) and so E(t, ·) exhibits unbalanced growth, namely we have

tq ≤ E(z, t) ≤ c0[t
p + tq] a.a. z ∈ Ω, all t ≥ 0, some c0 > 0.

Such integral functionals, were first examined by Marcellini [11] and Zhikov [18] in the

context of problems of the calculus of variations and of nonlinear elasticity theory. Until now

there is no global regularity theory for unbalanced growth (double phase) boundary value

problems analogous to the one for balanced growth problems developed by Lieberman [7].

Only local (interior) regularity results exist, produced primarily by Marcellini [12], Baroni–

Colombo–Mingione [1] and Ragusa–Tachikawa [17].

In the reaction (right hand side) of (1.1), we have a Carathéodory function f (z, x, y) (that

is, for all (x, y) ∈ R × R
N , z → f (z, x, y) is measurable and for a.a. z ∈ Ω, (x, y) → f (z, x, y) is

continuous). Since the reaction (source) term is gradient dependent, problem (1.1) is nonvari-

ational. For this reason our approach is topological based on the theory of nonlinear operators

of monotone type.

Recently there have been existence and multiplicity results for double phase equations

with no gradient dependence (variational problems). We refer to the works of Gasiński–

Papageorgiou [3], Gasiński–Winkert [4], Liu–Dai [8], Papageorgiou–Rădulescu–Repovš [14],

Papageorgiou–Rădulescu–Zhang [15], Papageorgiou–Vetro–Vetro [16] and the references

therein. Double phase problems with gradient dependence (convection), were studied only

by Gasiński–Winkert [5] and Liu–Papageorgiou [9] using different conditions on the reaction

f (z, x, y).

2 Mathematical background

The unbalanced growth of E(z, ·) leads to a functional framework for problem (1.1) based

on generalized Orlicz spaces. A comprehensive account of the theory of these spaces can be

found in the book of Harjulehto–Hästö [6].

Let M(Ω) = {u : Ω → R measurable}. We identify two such functions which differ only

on a Lebesgue-null set. Also by C0,1(Ω) we denote the space of all functions u : Ω → R which

are Lipschitz continuous. For the moment we assume that

a ∈ C0,1(Ω), a(z) > 0 ∀z ∈ Ω, 1 < q < p < N,
p

q
< 1 +

1

N
. (2.1)

The last inequality in (2.1) implies that p < q∗ = Nq
N−q and this then leads to useful com-

pact embeddings for some relevant spaces (see Proposition 2.1 below). Also these conditions

guarantee the validity of the Poincaré inequality in the appropriate Sobolev–Orlicz space.

Then the Lebesgue–Orlicz space LE (Ω) is defined by

LE (Ω) = {u ∈ M(Ω) : ρE (u) < ∞},

with ρE (·) being the modular function defined by
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ρE (u) =
∫

Ω

E(z, |u|) dz =
∫

Ω

[a(z)|u|p + |u|q]dz.

We equip this space with the so-called “Luxemburg norm” defined by

∥u∥E = inf
[
λ > 0 : ρE

(u

λ

)
≤ 1

]
.

Normed this way, LE (Ω) becomes a Banach space which is separable and reflexive (in fact

uniformly convex). Then using LE (Ω) we can define the corresponding Sobolev–Orlicz space

W1,E (Ω) by

W1,E (Ω) = {u ∈ LE (Ω) : |Du| ∈ LE (Ω)}.

Here Du denotes the weak gradient of u(·). This space is given the following norm

∥u∥1,E = ∥u∥E + ∥Du∥E for all u ∈ W1,E (Ω).

Here ∥Du∥E = ∥|Du|∥E . This too is a Banach space which separable and reflexive (in fact

uniformly convex). Also set

W1,E
0 (Ω) = C∞

c (Ω)
∥·∥1,E

,

with C∞
c (Ω) = {u ∈ C∞(Ω) with compact support}. Conditions (2.1) imply that the Poincaré

inequality is valid on W1,E
0 (Ω) and we can use the following equivalent norm on W1,E

0 (Ω).

∥u∥ = ∥Du∥E for all u ∈ W1,E
0 (Ω).

For these spaces we have the following useful embeddings.

Proposition 2.1.

(a) LE (Ω) →֒ Lτ(Ω) and W1,E
0 (Ω) →֒ W1,τ

0 (Ω) continuously for all τ ∈ [1, q].

(b) W1,E
0 (Ω) →֒ Lτ(Ω) continuously for all τ ∈ [1, q∗] and compactly for all τ ∈ [1, q∗);

(c) Lp(Ω) →֒ LE (Ω) continuously.

There is a close relation between the norm ∥ · ∥E and the modular function ρE (·) on the

space W1,E
0 (Ω).

Proposition 2.2.

(a) ∥u∥E = λ ⇔ ρE (
u
λ ) = 1;

(b) ∥u∥E < 1 (resp. = 1,> 1) ⇔ ρE (u) < 1 (resp. = 1,> 1);

(c) ∥u∥E ≤ 1 ⇒ ∥u∥
p
E ≤ ρE (u) ≤ ∥u∥

q
E ;

(d) ∥u∥E > 1 ⇒ ∥u∥
q
E ≤ ρE (u) ≤ ∥u∥

p
E ;

(e) ∥u∥E → 0 (resp. → +∞) ⇔ ρE (u) → 0q(resp. → +∞).

Let V : W1,E
0 (Ω) → W1,E

0 (Ω)∗ be the nonlinear operator defined by

⟨V(u), h⟩ =
∫

Ω

(a(z)|Du|p−2Du + |Du|p−2Du, Dh)RN dz, for all u, h ∈ W1,E
0 (Ω).

This operator has the following properties (see [8]).
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Proposition 2.3. The operator V(·) is bounded (maps bounded sets to bounded sets), continuous,

strictly monotone (thus maximal monotone too) and of type (S)+, that is, “if un
w

−→ u in W1,E
0 (Ω)

and lim supn→∞
⟨V(un), un − u⟩ ≤ 0, then un → u in W1,E

0 (Ω).′′

For x ∈ R, we set x+ = max{x, 0}, x− = max{−x, 0}. Then if u ∈ M(Ω), we define

u+(z) = u(z)+ and u−(z) = u(z)− for all z ∈ Ω. We know that u = u+ − u−,|u| = u+ + u−

and if u ∈ W1,E
0 (Ω), then u± ∈ W1,E

0 (Ω).

3 Some auxiliary results

In this section we prove some auxiliary results concerning the weighted p-Laplacian ∆a
p, which

we will need in the analysis of problem (1.1)).

We strengthen the conditions on the weight a(·). By Ãp we denote the p-Muckenhoupt

class (see Harjulehto–Hästö [6, p. 114]). The stronger conditions on the weight a(·) are the

following:

H0: a ∈ C0,1(Ω) ∩ Ãp, a(z) > 0 for all z ∈ Ω, 1 < q < p < N,
p
q < 1 + 1

N .

Let E0(z, t) = a(z)tp for all z ∈ Ω for all t ≥ 0. On account of hypotheses H0 above we

have that W1,E0
0 (Ω) →֒ LE0(Ω) compactly (see Liu–Papageorgiou [10]). We will use this fact to

produce a smallest eigenvalue for (−∆a
p, W1,E0

0 (Ω)). So, we consider the following nonlinear

eigenvalue problem

−∆
a
pu(z) = λ̂a(z)|u(z)|p−2u(z) in Ω, u|∂Ω = 0. (3.1)

We say that λ̂ ∈ R is an “eigenvalue”, if the above Dirichlet problem admits a nontrivial

solution û ∈ W1,E0
0 (Ω) known as an“eigenfunction” corresponding to λ̂.

Proposition 3.1. If hypotheses H0 hold, then problem (3.1) has a smallest eigenvalue λ̂a
1 = λ̂a

1(p) > 0

and every corresponding eigenfunction û ∈ W1,E0
0 (Ω) satisfies û(z) > 0 or û(z) < 0 a.a. in Ω (has

constant sign).

Proof. Let λ̂a
1 = inf

[ ρa(Du)
ρa(u)

: u ∈ W1,E0
0 (Ω), u ̸= 0

]
, where for every v ∈ LE0(Ω) we define

ρa(v) =
∫

Ω
a(z)|v|pdz. The homogeneity of ρa(·) implies that

λ̂a
1 = inf

[
ρa(Du) : u ∈ W1,E0

0 (Ω), ρa(u) = 1
]
. (3.2)

Consider a sequence {un}n≥N ⊆ W1,E0
0 (Ω) such that

ρa(Dun) ↓ λ̂a
1 and ρa(un) = 1 for all n ∈ N. (3.3)

Evidently {un}n∈N ⊆ W1,E0
0 (Ω) is bounded. So, we may assume that

un
w

−→ û in W1,E0
0 (Ω) and un → û in LE0(Ω). (3.4)

The function ρa(·) is continuous, convex, thus sequentially weakly lower semicontinuous. So,

from (3.4) we have

ρa(Dû) ≤ lim inf
n→+∞

ρa(Dun), ρa(un) → ρa(û),

⇒ ρa(Dû) ≤ λ̂a
1, ρa(û) = 1 (see (3.3)),

⇒ ρa(Dû) = λ̂a
1 > 0.



Dirichlet problems with unbalanced growth and convection 5

From (3.2) and the Lagrange multiplier rule (see [13, p. 422]), we have

−∆
a
pû = λ̂a

1a(z)|û|p−2û in Ω, û|∂Ω = 0. (3.5)

Suppose û+ ̸= 0, since û+ ∈ W1,E0
0 (Ω), acting on (3.4) with û+, we obtain

ρa(Dû+) = λ̂a
1ρa(û

+),

⇒ û+ is an eigenfunction for λ̂a
1 > 0.

From Colasuonno–Squassina [2, Section 3.3], we have that

u+ ∈ W1,E0
0 (Ω) ∩ L∞(Ω).

Invoking Proposition 2.4 of Papageorgiou–Vetro–Vetro [16], we infer that

û+(z) > 0 for a.a. z ∈ Ω,

⇒ û = û+.

Similarly if u− ̸= 0.

This proposition leads to the following estimate which is useful in case we have nonuni-

form nonresonance.

Proposition 3.2. If hypotheses H0 hold, η ∈ L∞(Ω), η(z) ≤ λ̂a
1 for a.a. z ∈ Ω and

η ̸≡ λ̂a
1,

then there exists c1 > 0 such that

c1∥u∥
p
1,E0

≤ ρa(Du)−
∫

Ω

η(z)a(z)|u|pdz for all u ∈ W1,E0
0 (Ω).

Proof. We argue by contradiction. So, suppose that the conclusion of the proposition is not

true. We can find {un}n≥N ⊆ W1,E0
0 (Ω) such that

ρa(Dun)−
∫

Ω

η(z)a(z)|un|
pdz <

1

n
∥un∥

p
1,E0

for all n ∈ N.

Exploiting the p-homogeneity of this inequality, we can say that





ρa(Dun)−
∫

Ω

η(z)a(z)|un|
pdz <

1

n
,

∥un∥1,E0
= 1 for all n ∈ N.



 (3.6)

We may assume that

un
w

−→ u in W1,E0
0 (Ω) and un → u in LE0(Ω). (3.7)

If u = 0, then

ρa(Dun) → 0,

⇒ un → 0 in W1,E0
0 (Ω) (see Proposition 2.2),

a contradiction, since ∥un∥1,E0
= 1, for all n ∈ N (see (3.6)).
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If u ̸= 0, then from (3.6) and (3.7)

ρa(Du) ≤
∫

Ω

η(z)a(z)|u|pdz, (3.8)

⇒ ρa(Du) = λ̂a
1ρa(u), (see (|3.1)),

⇒ |u(z)| > 0 for a.a. z ∈ Ω, (see Proposition 3.1),

⇒ ρa(Du) < λ̂a
1ρa(u) (see (3.8)),

which contradicts (3.1).

Therefore we conclude that there exists c1 > 0 such that

c1∥u∥
p
1,E0

≤ ρa(Du)−
∫

Ω

η(z)a(z)|u|pdz for all u ∈ W1,E0
0 (Ω).

4 Positive solution

In this section, using the theory of pseudomonotone operators (see Papageorgiou–Rădulescu–

Repovš [13, Section 2.10]), we prove the existence of a positive solution for problem (1.1).

We impose the following conditions on the reaction f (z, x, y). In what follows, by λ̂1(q)>0,

we denote the principal eigenvalue of (−∆q, W
1,q
0 (Ω)) (that is λ̂1(q) = λ̂a

1(q) with a ≡ 1).

H1: f : Ω × R × R
N → R is a Carathéodory function such that

(i) | f (z, x, y)| ≤ â(z)[1 + |x|p−1] + µ|y|q−1 for a.a. z ∈ Ω, all x ∈ R, all y ∈ R
N with

â ∈ L∞(Ω) and µ < λ̂1(q);

(ii) there exists a function η ∈ L∞(Ω) such that

η(z) ≤ λ̂a
1 for a.a. z ∈ Ω, η ̸≡ λ̂a

1,

and for every ε > 0, there exists Mε > 0 such that

f (z, x, y) ≤ [η(z) + ε]a(z)xp−1 + µ|y|q for a.a. z ∈ Ω, all x ≥ Mε;

(iii) there exists ϑ ∈ L∞(Ω) and δ > 0 such that

ϑ(z) ≥ λ̂1(q) for a.a. z ∈ Ω, ϑ ̸≡ λ̂1(q),

f (z, x, y) ≥ ϑ(z)xq−1 for a.a. z ∈ Ω, all 0 ≤ x ≤ δ, all y ∈ R
N

f (z, x, y) ≥ −c2xr−1 for a.a. z ∈ Ω, all x ≥ δ, all y ∈ R
N , some c2 > 0, p < r < p∗.

Remark 4.1. Hypothesis H1(ii) implies that

lim sup
n→+∞

f (z, x, y)

a(z)xp−1
≤ η(z)

uniformly for a.a.z ∈ Ω and all y ∈ R
N on a bounded set. Similarly, hypothesis H1(iii) implies

that

lim inf
x→0+

f (z, x, y)

xq−1
≥ ϑ(z)

uniformly for a.a.z ∈ Ω and all y ∈ R
N .
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Example 4.2. The following function satisfies all the above hypotheses

f (z, x, y) =





ϑ(x+)q−1 +
[
µ|y|q−1 + (ηa(z)− ϑ)

]
(x+)s−1, if x ≤ 1,

ηa(z)xp−1 + µ|y|q−1, if 1 < x,

with µ < λ̂1(q) < ϑ, η < λ̂a
1, 1 < q < s.

On account of hypotheses H1(i),(ii), we have

f (z, x, y) ≥ ϑ(z)xq−1 − c3xr−1 for a.a. z ∈ Ω, all x ≥ 0, all y ∈ R
N , some c3 > 0. (4.1)

Based on this unilateral growth condition, we consider the following auxiliary double

phase Dirichlet problem

{
− ∆

a
pu(z)− ∆qu(z) = ϑ(z)u(z)p−1 − c3u(z)r−1 in Ω,

u|∂Ω = 0, u > 0, 1 < q < p < N, r > p.

}
(4.2)

From Liu–Papageorgiou [9, Proposition 3.1], we have the following result for problem (4.2).

Proposition 4.3. If hypotheses H0 hold, then problem (4.2) has a unique positive solution ū ∈

W1,E
0 (Ω) ∩ L∞(Ω) and ū(z) > 0 for a.a. z ∈ Ω.

Using the solution ū we introduce the Carathéodory function g : Ω×R×R
N → R defined

by

g(z, x, y) =

{
f (z, ū(z), y), if x ≤ ū(z),

f (z, x, y), if ū(z) < x.
(4.3)

Let Ng(u)(·) = g(·, u(·), Du(·)) for all u ∈ W1,E
0 (Ω) (the Nemytski map corresponding

to g) and consider the nonlinear operator K : W1,E
0 (Ω) → W1,E

0 (Ω)∗ defined by

K(u) = V(u)− Ng(u) for all u ∈ W1,E
0 (Ω).

Proposition 4.4. If hypotheses H0, H1 hold, then the operator K(·) is pseudomonotone.

Proof. We consider a sequence {un}n≥N ⊆ W1,E
0 (Ω) such that





un
w

−→ u in W1,E
0 (Ω) K(un)

w
−→ u∗ in W1,E

0 (Ω)∗,

lim sup
n→∞

⟨K(un), un − u⟩ ≤ 0.



 (4.4)

Hypotheses H0 imply p < q∗ and so by Proposition 2.1, we have that

W1,E
0 (Ω) →֒ Lp(Ω) compactly,

⇒ un → u in Lp(Ω) (see (4.4)). (4.5)

We have
∫

Ω

g(z, un, Dun)(un − u)dz =
∫

{un≤ū}
f (z, ū, Dun)(un − u)dz

+
∫

{ū<un}
f (z, un, Dun)(un − u)dz (see (4.4)). (4.6)
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On account of hypothesis H1(i), we have that

{ f (·, ū(·), Dun(·)}n≥N ⊆ Lp′(Ω)

{ f (·, un(·), Dun(·)}n≥N ⊆ Lp′(Ω),

(
1

p
+

1

p′
= 1

)
,

are both bounded (recall q < p). Therefore, from (4.5) we infer that
∫

{un≤ū}
f (z, ū, Dun)(un − u)dz → 0,

∫

{ū<un}
f (z, un, Dun)(un − u)dz → 0 as n → ∞.

From (4.6) it follows that

lim
n→∞

∫

Ω

g(z, un, Dun)(un − u)dz = 0,

⇒ lim sup
n→∞

⟨V(un), un − u⟩ ≤ 0 (see (4.4)),

⇒ un → u in W1,E
0 (Ω) (see Proposition 2.3).

Exploiting the continuity of K(·), we have

K(un) → K(u) in W1,E
0 (Ω)∗,

⇒ u∗ = K(u) and ⟨K(un), un⟩ → ⟨K(u), u⟩ (see (4.4)),

⇒ K(·) is generalized pseudomonotone (see [13, p. 150]).

Invoking Proposition 2.10.3, p. 51, of Papageorgiou–Rădulescu–Repovš [13], we conclude that

K(·) is pseudomonotone.

Next we show that K(·) is strongly coercive, that is,

⟨K(u), u⟩

∥u∥
→ +∞ as ∥u∥ → ∞.

Proposition 4.5. If hypotheses H0, H1 hold, then the operator K(·) is strongly coercive.

Proof. For every u ∈ W1,E
0 (Ω) with ∥u∥ ≥ 1, ∥u∥1,E0

≥ 1, we have

⟨K(u), u⟩ = ⟨V(u), u⟩ −
∫

Ω

g(z, u, Du)udz

= ρE (Du)−
∫

{u≤ū}
f (z, ū, Du)udz −

∫

{ū<u}
f (z, u, Du)udz (see (4.3)). (4.7)

We have
∫

{u≤ū}
f (z, ū, Du)udz ≤ c4∥u∥+

∫

{u≤ū}
µ|Du|q−1udz (4.8)

for some c4 > 0 (see hypothesis H1(i))
∫

{ū<u}
f (z, u, Du)udz ≤ c5 +

∫

Ω

[η(z) + ε]a(z)updz +
∫

{ū<u}
µ|Du|q−1udz (4.9)

for some c5 = c5(ε) > 0 (see H1(ii)).

From (4.8) and (4.9) it follows that
∫

Ω

g(z, u, Du)udz ≤ c5 + c4∥u∥+
µ

λ̂1(q)
∥Du∥

q
q +

∫

Ω

η(z)a(z)updz + ερa(u) (4.10)

(here we have used Hölder’s inequality) .
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We return to (4.7) and use (4.10). We obtain

⟨K(u), u⟩ ≥ ρa(Du)−
∫

Ω

η(z)a(z)|u|pdz −
ε

λ̂a
1

∥u∥
p
1,E0

+
(

1 −
µ

λ̂1(q)

)
∥Du∥

q
q − c4∥u∥ − c5

(recall that ∥u∥1,E0
≥ 1 and see Proposition 2.2)

≥
[
c1 −

ε

λ̂a
1

]
∥u∥

p
1,E0

+ c6∥Du∥
q
q − c4∥u∥ − c5

with c6 = 1 −
µ

λ̂1(q)
> 0 (see Proposition 3.2).

Choosing ε ∈ (0, c1λ̂a
1), we see that

⟨K(u), u⟩ ≥ c7ρE (Du)− c4∥u∥ − c5

≥ c7∥u∥q − c4∥u∥ − c5 for some c7 > 0 (recall ∥u∥ ≥ 1 and see Proposition 2.2)

⇒ K(·) is strongly coercive.

Now we are ready to prove the existence of a bounded positive solution for problem (1.1).

Theorem 4.6. If hypotheses H0, H1 hold, then problem (1.1) admits a positive solution

û ∈ W1,E
0 (Ω) ∩ L∞(Ω).

such that û(z) > 0 for a.a. z ∈ Ω.

Proof. From Propositions 4.4 and 4.5 we have that the operator K(·) is pseudomonotone and

strongly coercive. So, by Theorem 2.10.10, p. 156, of Papageorgiou–Rădulescu–Repovš [13],

K(·) is surjective. Hence we can find û ∈ W1,E
0 (Ω) such that

K(û) = 0 in W1,E
0 (Ω)∗,

⇒ ⟨K(û), (ū − û)+⟩ = 0 (since (ū − û)+ in W1,E
0 (Ω))

⇒ ⟨V(û), (ū − û)+⟩ =
∫

Ω

g(z, û, Dû)(ū − û)+dz

=
∫

Ω

f (z, û, Dû)(ū − û)+dz (see (4.3))

≥
∫

Ω

[ϑ(z)ūq−1 − c8ūr−1](ū − û)+dz (see (4.1))

= ⟨V(ū), (ū − û)+⟩ (see Proposition 4.3)

⇒ ū ≤ û (see Proposition 2.3).

Therefore û ∈ W1,E
0 (Ω) is a positive solution for problem (1.1). From Theorem 3.1 of Gasiński–

Winkert [4], we have that û ∈ W1,E
0 (Ω) ∩ L∞(Ω). Finally Proposition 2.4 of Papageorgiou–

Vetro–Vetro [16] implies that û(z) > 0 for a.a. z ∈ Ω.

Let S+ ⊆ W1,E
0 (Ω) denote the set of positive solutions of problem (1.1). From Theorem 4.6

we have

∅ ̸= S+ ⊆ W1,E
0 (Ω) ∩ L∞(Ω). (4.11)
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Proposition 4.7. If hypotheses H0, H1 hold, then S+ ⊆ W1,E
0 (Ω) is nonempty, compact.

Proof. We already know that S+ ̸= ∅ (see Theorem 4.6 and (4.11)). Clearly S+ ⊆ W1,E
0 (Ω) is

closed. Let {un}n≥N ⊆ S+. We have

⟨V(un), h⟩ =
∫

Ω

f (z, un, Dun)hdz for all h ∈ W1,E
0 (Ω) all n ∈ N. (4.12)

On account of hypotheses H1(i)(ii), we have

f (z, x, y)x ≤ [η(z) + ε]a(z)|x|p + c8 + µ|y|q−1 for a.a. z ∈ Ω, all x ∈ R, some c8 > 0. (4.13)

In (4.12) we use h = un ∈ W1,E
0 (Ω). Using (4.13) we obtain

ρa(Dun)−
∫

Ω

η(z)a(z)|un|
pdz −

ε

λ̂a
1

∥un∥
p
1,E0

+ ∥Dun∥
q
q − µ∥un∥

q
q ≤ c8 for all n ∈ N,

⇒
[
c1 −

ε

λ̂a
1

]
∥un∥

p
1,E0

+
[
1 −

µ

λ̂1(q)

]
∥Du∥

q
q ≤ c8,

⇒ ∥un∥
p ≤ c9 for some c9 > 0, all n ∈ N

(choose ε ∈ (0, c1λ̂a
1) and recall that µ < λ̂1(q))

⇒ {un}n≥N ⊆ W1,E
0 (Ω) is bounded.

So, we may assume that

un
w

−→ u in W1,E
0 (Ω) and un → u in Lp(Ω) (4.14)

(recall that p < q∗ and see Proposition 2.1).

Then (4.14) and hypothesis H1(i) imply that

∫

Ω

f (z, un, Dun)(un − u)dz → 0,

⇒ lim
n→∞

⟨V(un), un − u⟩ = 0 (see (4.12) with h = un − u)

⇒ un → u in W1,E
0 (Ω) (see Proposition 4.4)

Since S+ is closed, we conclude that it is compact in W1,E
0 (Ω).
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Abstract. We present some simple mass-action systems with limit cycles that fall under
the scope of the Deficiency-One Theorem. All the constructed examples are mass-
conserving and their stoichiometric subspace is two-dimensional. Using the continua-
tion software MATCONT, we depict the limit cycles in all stoichiometric classes at once.
The networks are trimolecular and tetramolecular, and some exhibit two or even three
limit cycles. Finally, we show that the associated mass-action system of a bimolecular
reaction network with two-dimensional stoichiometric subspace does not admit a limit
cycle.

Keywords: Andronov–Hopf bifurcation, focal value, limit cycle, parallelogram.
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1 Introduction

The intensively studied field of reaction networks investigates, amongst many other questions,
the existence, the uniqueness, and the stability of equilibria and limit cycles of mass-action
systems. Often, properties of the underlying network alone have some consequences on the
dynamics. For example, the associated mass-action system of a deficiency-zero network, re-
gardless of the values of the rate constants, does not admit periodic solutions (the deficiency
is a nonnegative integer, to be defined in Section 2).

Recently we have constructed a number of planar deficiency-one mass-action systems that
oscillate [5]. The state space of those systems is the positive quadrant, an unbounded set.
Often, physically realistic systems have bounded state space: the law of atomic balance means
that in a closed environment the numbers of atoms of each element are expected to be con-
served [9]. In this paper we provide a couple of examples that admit limit cycles, all with
three species (whose concentrations are denoted by x, y, z) and a linear conservation law
d1 ẋ + d2ẏ + d3ż = 0 with d1, d2, d3 > 0. Thus, d1x + d2y + d3z = c holds for all positive
time, where c = d1x(0) + d2y(0) + d3z(0). Consequently, the state space, after fixing the initial
condition, is a bounded subset of the positive orthant. The main approach we follow is that
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*BB was supported by the Austrian Science Fund (FWF), project P32532.
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we regard c a bifurcation parameter. We will be interested in the stability of equilibria and
limit cycles as c varies, and in the case of limit cycles their number can also vary by c. We will
see examples with multiple limit cycles, in one of the cases we can even prove the existence
of three limit cycles that are all born via a degenerate Andronov–Hopf bifurcation. Proba-
bly the most interesting phenomenon found in this paper is a mass-action system with the
unique positive equilibrium being asymptotically stable for all c > 0, but not globally stable
for c∗1 ≤ c ≤ c∗2 , because a torus formed of stable and unstable limit cycles surrounds the
curve of equilibria. We extensively use the continuation software MATCONT [8] to visualise
the limit cycles in the (x, y, z)-space for all c > 0 at once, while fixing all the rate constants.
The codes are available on GitHub [3].

A common feature of the networks analysed in this paper is that they all have at least one
chemical complex that is trimolecular or tetramolecular. This is necessary, as the mass-action
system associated to a bimolecular reaction network with two-dimensional stoichiometric sub-
space does not admit limit cycles. This latter fact is known for 2 and 3 species [18, 19], while
for arbitrary number of species we prove it in Section 4. In fact, we show that essentially the
only bimolecular reaction networks with a two-dimensional stoichiometric subspace whose
associated mass-action system oscillates are the Lotka and the Ivanova reactions, where each
positive non-equilibrium solution is periodic.

The rest of this paper is organised as follows. In Section 2 we collect the needed terminol-
ogy and some basic results from chemical reaction network theory. In Section 3 we present
a number of mass-conserving networks that admit (multiple) limit cycles. Finally, in Sec-
tion 4 we show that the associated mass-action system of a bimolecular reaction network with
two-dimensional stoichiometric subspace does not admit a limit cycle.

2 Mass-action systems

In this section we briefly introduce mass-action systems and related notions that are necessary
for our exposition. An illustrative example is included at the end of this section. For more
details about mass-action systems, consult e.g. [10, 15]. The symbols R+ and Z≥0 denote the
set of positive real numbers and the set of nonnegative integers, respectively.

Definition 2.1. A Euclidean embedded graph (or a reaction network) is a directed graph (V, E),
where V is a nonempty finite subset of Z

n
≥0.

Denote by X1, . . . ,Xn the n species and by y1, . . . , ym the elements of V, called complexes.
Accordingly, we often refer to yi as yi

1X1 + · · ·+ yi
nXn. The entries of yi are the stoichiometric

coefficients. The concentrations of the species X1, . . . ,Xn at time τ are collected in the vector
x(τ) ∈ R

n
+.

Definition 2.2. A mass-action system is a triple (V, E, κ), where (V, E) is a reaction network
and κ : E → R+ is the collection of the rate constants. Its associated differential equation on R

n
+ is

ẋ(τ) = ∑
(i,j)∈E

κijx1(τ)
yi

1 · · · xn(τ)
yi

n(yj − yi). (2.1)

The span S = span{yj − yi : (i, j) ∈ E} ≤ R
n is called the stoichiometric subspace and the

sets (p + S) ∩ R
n
+ for p ∈ R

n
+ are called the (positive) stoichiometric classes. The stoichiometric

classes provide a foliation of the positive orthant R
n
+ into forward invariant sets of the mass-

action differential equation (2.1). Therefore, dynamical questions (e.g. existence, uniqueness,
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stability, or number of equilibria or limit cycles) are examined relative to a stoichiometric
class. The rank of a reaction network (or its associated mass-action system) is defined to be
the dimension of its stoichiometric subspace.

In some cases, a network property alone has consequences on the qualitative behaviour of
the differential equation (2.1). For instance, if the directed graph (V, E) is strongly connected
(i.e., for all i, j ∈ V there exists a directed path from i to j) then the associated mass-action
differential equation is permanent [14, Theorem 1.3], [1, Theorem 5.5], [4, Theorem 4.2]. We
now define permanence.

Definition 2.3. A mass-action system is permanent in a stoichiometric class P if there exists a
compact set K ⊆ P with the property that for each solution τ 7→ x(τ) with x(0) ∈ P there
exists a τ0 ≥ 0 such that x(τ) ∈ K holds for all τ ≥ τ0. A mass-action system is permanent if it
is permanent in every stoichiometric class.

Theorem 2.4 ([1, 4, 14]). If (V, E) is strongly connected then the mass-action system (V, E, κ) is

permanent.

We now recall a classical theorem on the number of positive equilibria for mass-action
systems with low deficiency. The deficiency of a reaction network (V, E) is the nonnegative
integer δ = m − ℓ− dimS , where m = |V|, ℓ is the number of connected components of the
directed graph (V, E), and S is the stoichiometric subspace.

Theorem 2.5 (Deficiency-One Theorem [11]). Assume that the reaction network (V, E) is strongly

connected and its deficiency is zero or one. Then the following statements hold.

(i) There exists a unique positive equilibrium in every stoichiometric class.

(ii) The set of positive equilibria equals {x ∈ R
n
+ : log x − log x∗ ∈ S⊥}, where x∗ is any given

positive equilibrium.

(iii) Denoting by J ∈ R
n×n the Jacobian matrix at a positive equilibrium,

(a) the linear map J|S : S → S is nonsingular and

(b) the linear map −J|S : S → S is orientation-preserving, i.e., its determinant is positive, or

equivalently sgn det J|S = (−1)dimS .

Proof. Parts (i), (ii), (iii)(a) are proven in [11].
We now prove part (iii)(b). For a fixed stoichiometric class, consider the map R

E
+ → R

that assigns to each set of rate constants the determinant of the restricted Jacobian map at the
unique positive equilibrium. This map is continuous, it is everywhere nonzero by part (iii)(a),
and hence has a constant sign. For the subset of complex balanced systems the equilibrium is
linearly stable (see [16, Theorem 4.3.2], [12, Theorem 15.2.2], or [7, Theorem 8]), and hence the
sign is (−1)dimS .

If δ = 0 in Theorem 2.5, one can even prove the asymptotic stability of the unique positive
equilibrium. For a streamlined exposition and a biological application, see [21].

As a consequence of part (iii)(b) in Theorem 2.5, for dimS = 2 the product of the two
nonzero eigenvalues at a positive equilibrium is positive, hence it is enough to look at the
trace for deciding stability: if the trace is negative (respectively, positive) then the equilibrium
is asymptotically stable (respectively, repelling) within its stoichiometric class. When the trace
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vanishes, the two nonzero eigenvalues are purely imaginary and the stability can be decided
by computing the focal values.

In the special case when dimS = n − 1, part (ii) in Theorem 2.5 has the immediate conse-
quence that the set of positive equilibria can be parametrised as follows:

{(x∗1 td1 , . . . , x∗ntdn) : t > 0}, (2.2)

where x∗ ∈ R
n
+ is any positive equilibrium and d is any nonzero vector in S⊥.

A reaction network is mass-conserving if the stoichiometric classes are bounded, or equiva-
lently there exists a d ∈ S⊥ with all coordinates being positive.

To illustrate the notions introduced in this section, consider the following reaction network
and its associated mass-action differential equation:

Y+ Z

X+ Z

X+ 2Y

3Y

κ1

κ2

κ3

κ4 ẋ = κ1yz − κ3xy2,

ẏ = −κ1yz + κ3xy2 + 2(κ2xz − κ4y3),

ż = −κ2xz + κ4y3.

The stoichiometric subspace of the network is

S = span








1
−1

0


 ,




0
2

−1


 ,



−1

1
0


 ,




0
−2

1






 .

Since [1, 1, 2]⊤ ∈ S⊥, the network is mass-conserving. The stoichiometric classes are Pc =

{(x, y, z) ∈ R
3
+ : x + y + 2z = c} for c > 0. By Theorem 2.5, the system is permanent in

Pc for every c > 0. Since dimS = 2, the rank of the network is two and its deficiency is
δ = 4 − 1 − 2 = 1. The set of positive equilibria is the curve

((
κ1κ4

κ2κ3

) 1
2

t, t,
(

κ3κ4

κ1κ2

) 1
2

t2

)
for t > 0

which is in line with (2.2). Further, this curve intersects Pc in exactly one point for each c > 0,
as predicted by Theorem 2.5.

In Sections 3.1 to 3.3, all the networks fall under the scope of the Theorem 2.5 (with δ = 1)
and satisfy n = 3 and dimS = 2. Thus, in all of the examples the set of positive equilibria is
parametrised as in (2.2) and their stability is decided by the sign of the trace of the Jacobian
matrix (provided it is nonzero).
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3 Parallelograms

Our goal is to find some simple mass-conserving reaction networks that fall under the scope
of the Deficiency-One Theorem and their associated mass-action systems admit limit cycles.
By the recent result [2, Theorem 1], a way to achieve this is the following: first find a planar
mass-action system with a limit cycle (or multiple limit cycles) and then add a new species
to some of the reactions in such a way that the rank of the new network is still two and
the stoichiometric classes become bounded. For instance, one confirms that all the three
parallelograms in Figure 3.1 admit limit cycles. This can be proven by showing that there
exist rate constants such that the unique positive equilibrium is repelling. The existence of a
stable limit cycle then follows from the permanence of the system and the Poincaré–Bendixson
Theorem. One finds that each of the second and the third parallelograms admits even two
limit cycles (to show this, one calculates the first focal value at the positive equilibrium and
finds that it can be positive for some rate constants, allowing an unstable limit cycle to be born
via a subcritical Andronov–Hopf bifurcation).

•

•

•

•

Y

X

X+ 2Y

3Y

•

•

•

•

Y

X

X+ 2Y

3Y

•

•

•

•

Y

2X

2X+ 2Y

3Y

Figure 3.1: Three planar reaction networks that all fall under the scope of the
Deficiency-One Theorem and their associated mass-action systems admit limit
cycles. Each of the second and the third parallelograms admits even two limit
cycles: there exist rate constants such that the unique positive equilibrium is
asymptotically stable and is surrounded by an unstable and a stable limit cycle.

In Sections 3.1 to 3.3, we respectively lift the three parallelograms in Figure 3.1 by adding
a new species. In all the three cases, we obtain a three species mass-action system that is
mass-conserving and that falls under the scope of the Deficiency-One Theorem. Thus, the
set of positive equilibria is of the form (2.2), it intersects every stoichiometric class in exactly
one point. The aim is to find rate constants such that the positive equilibria are surrounded
by limit cycles. In fact, we adopt the approach that the rate constants are fixed, and regard
the stoichiometric class as a bifurcation parameter. In a number of cases, we visualise the
(stable and unstable) limit cycles across the stoichiometric classes. This is performed using
the numerical continuation software MATCONT [8]. The MATLAB codes, along with the
symbolic computations performed with Mathematica, are available on GitHub [3].
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3.1 Supercritical Andronov–Hopf bifurcation

Let us take the first planar parallelogram in Figure 3.1 and add a new species, Z, with stoi-
chiometric coefficient γ > 0 as follows:

Y+ γZ

X+ γZ

X+ 2Y

3Y

κ1

κ2

κ3

κ4 ẋ = κ1yzγ − κ3xy2,

ẏ = −κ1yzγ + κ3xy2 + 2(κ2xzγ − κ4y3),

ż = γ(−κ2xzγ + κ4y3),
(3.1)

where we also displayed the associated mass-action differential equation. Note that γx +

γy + 2z is a conserved quantity, and therefore the network is mass-conserving. By a short
calculation, the set of positive equilibria is the curve

((
κ1κ4

κ2κ3

) 1
2

tγ, tγ,
(

κ3κ4

κ1κ2

) 1
2γ

t2

)
for t > 0.

Since the stability of a positive equilibrium within its stoichiometric class is determined by
the sign of the trace of the Jacobian matrix, we compute the trace along the curve of equilibria
and find it is

((
κ1κ3κ4

κ2

) 1
2

− (κ3 + 6κ4)

)
t2γ − γ2κ4

(
κ1κ2

κ3κ4

) 1
2γ

t3γ−2 for t > 0. (3.2)

As a function of t, it behaves differently for γ < 2, γ = 2, and γ > 2. In Sections 3.1.1 and 3.1.2
we study the cases γ = 2 and γ ̸= 2, respectively.

3.1.1 Case γ = 2

Notice that for γ = 2, every complex in the network is trimolecular. As a consequence, the
r.h.s. of the mass-action differential equation is a homogeneous polynomial (every monomial
is of degree three). Furthermore, x + y + z is conserved and it is not hard to see that in every
stoichiometric class the dynamics is the same (up to scaling).

For γ = 2, the set of positive equilibria is a half-line and the trace of the Jacobian matrix
along that, formula (3.2), equals

((
κ1κ3κ4

κ2

) 1
2

− κ3 − 6κ4 − 4κ4

(
κ1κ2

κ3κ4

) 1
4
)

t4,

an expression whose sign is independent of t. With a(κ) denoting the coefficient of t4, every
positive equilibrium is asymptotically stable (respectively, repelling) if a(κ) < 0 (respectively,
a(κ) > 0). For a(κ) = 0 one computes the first focal value and finds it is negative, implying
that the equilibria are asymptotically stable and the corresponding Andronov–Hopf bifurca-
tion is supercritical. Thus, setting the rate constants such that a(κ) = 0 and then perturbing
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them slightly to achieve a(κ) > 0, results in the emergence of a stable limit cycle in every
stoichiometric class. By the homogeneity, the phase portrait is the same in every stoichio-
metric class, and the limit cycles that are born via a supercritical Andronov–Hopf bifurcation
indeed coexist in every stoichiometric class. In fact, since the system is permanent and the
equilibrium is repelling for a(κ) > 0, a stable limit cycle exists in every stoichiometric class
for all rate constants with a(κ) > 0. We depicted these limit cycles in Figure 3.2 with κ1 = 16,
κ2 = 1

16 , κ3 = 1, κ4 = 1 (thus, a(κ) = 5 > 0).

Figure 3.2: The stable limit cycles that are born via a supercritical Andronov–
Hopf bifurcation for the mass-action system (3.1) (case γ = 2).

3.1.2 Case γ ̸= 2

When γ ̸= 2, the exponents 2γ and 3γ − 2 of t in the trace formula (3.2) are unequal. Since the
coefficient of t3γ−2 is negative, the trace vanishes at some t > 0 if and only if the coefficient of

t2γ is positive. Thus, if
√

κ1
κ2

≤
√

κ3
κ4
+ 6
√

κ4
κ3

then every positive equilibrium is asymptotically

stable. On the other hand, if
√

κ1
κ2

>

√
κ3
κ4
+ 6
√

κ4
κ3

then the trace vanishes at exactly one positive

t, call it t∗. One computes the first focal value at t = t∗ and finds it is negative (due to the high
computational complexity, we could, unfortunately, verify this only for some specific values
of γ, e.g. 1, 3, 4, 5, 6). Therefore, the equilibrium at t = t∗ is asymptotically stable and the
corresponding Andronov–Hopf bifurcation is supercritical (regarding t as a parameter, while
all the rate constants are fixed). Hence, we obtain the following qualitative pictures:

Case γ < 2. For t ≤ t∗ the equilibrium is asymptotically stable, for t > t∗ the equilibrium
is repelling, and for t slightly larger than t∗ there exists a stable limit cycle that is born via
a supercritical Andronov–Hopf bifurcation. In fact, since the system is permanent and the
equilibrium is repelling for all t > t∗, a stable limit cycle exists for all t > t∗. Using MATCONT,
we depicted these limit cycles in the left panel of Figure 3.3 with γ = 1, κ1 = 8, κ2 = 1

8 , κ3 = 1,
κ4 = 1.

Case γ > 2. For t ≥ t∗ the equilibrium is asymptotically stable, for t < t∗ the equilibrium
is repelling, and for t slightly smaller than t∗ there exists a stable limit cycle that is born
via a supercritical Andronov–Hopf bifurcation. In fact, since the system is permanent and
the equilibrium is repelling for all t < t∗, a stable limit cycle exists for all t < t∗. Using
MATCONT, we depicted these limit cycles in the right panel of Figure 3.3 with γ = 3, κ1 = 16,
κ2 = 1

16 , κ3 = 1, κ4 = 1.
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Figure 3.3: The stable limit cycles that are born via a supercritical Andronov–
Hopf bifurcation for the mass-action system (3.1) (case γ < 2 on the left, case
γ > 2 on the right).

3.2 Subcritical Andronov–Hopf bifurcation

Let us take the second planar parallelogram in Figure 3.1 and add a new species, Z, with
stoichiometric coefficient γ > 0 as follows:

Y+ γZ

X+ γZ

X+ 2Y

3Y

1

a4a

1

4b b ẋ = yzγ − xy2,

ẏ = −yzγ + xy2 + 2(axzγ − 4axy2 + byzγ − 4by3),

ż = γ(−axzγ + 4axy2 − byzγ + 4by3),
(3.3)

where we employed special rate constants (for a, b > 0) and also displayed the associated
mass-action differential equation. This special choice of the rate constants makes the calcula-
tions somewhat easier and they still allow us to present some qualitative pictures that were
not seen in Section 3.1. Note that γx + γy + 2z is a conserved quantity, and therefore the
network is mass-conserving. By a short calculation, the set of positive equilibria is the curve

(
2tγ, tγ/2, t2) for t > 0.

Since the stability of a positive equilibrium within its stoichiometric class is determined by
the sign of the trace of the Jacobian matrix, we compute the trace along the curve of equilibria
and find it is

4t2γ

[(
3

16
− 4a − b

)
− γ2

8
(4a + b)tγ−2

]
for t > 0. (3.4)

As a function of t, it behaves differently for γ < 2, γ = 2, and γ > 2. In Sections 3.2.1 and 3.2.2
we study the cases γ = 2 and γ ̸= 2, respectively.
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3.2.1 Case γ = 2

First notice that for γ = 2, the same way as in Section 3.1.1, the phase portrait is the same (up
to scaling) in every stoichiometric class.

For γ = 2, the set of positive equilibria is a half-line and the trace of the Jacobian matrix
along that, formula (3.4), equals 6t4

( 1
8 − 4a − b

)
. Thus, all positive equilibria are asymptoti-

cally stable if 4a + b >
1
8 , while all of them are repelling if 4a + b <

1
8 . On the 4a + b = 1

8 line
in parameter space, one computes the first focal value and gets

L1 = 1280b2 − 16b − 7 for 0 < b <
1
8

.

Hence, with b∗ = 1+
√

141
160 ≈ 0.08, the first focal value is negative for 0 < b < b∗, vanishes

at b∗, and is positive for b∗ < b <
1
8 . This allows us to construct two limit cycles in each

stoichiometric class in the following way. Take a = 1
200 and b = 21

200 . Then the trace vanishes
and the first focal value is positive, so the equilibrium is repelling. By permanence, there exists
a stable limit cycle. By increasing b a tiny bit, the trace becomes negative, and an unstable limit
cycle is born via a subcritical Andronov–Hopf bifurcation. Thus, there exist a and b such that
two limit cycles coexist. A numerical experiment suggests that these two limit cycles merge
and disappear through a fold bifurcation around b ≈ 23.37

200 . Using MATCONT, we depicted in
Figure 3.4 the two nested cones of limit cycles for a = 1

200 and b = 22
200 .

Figure 3.4: The two nested cones of limit cycles, the unstable limit cycles are
born via a subcritical Andronov–Hopf bifurcation for the mass-action system
(3.3) (case γ = 2).

3.2.2 Case γ ̸= 2

When γ ̸= 2, for any fixed a, b > 0 with 4a + b <
3
16 there exists a unique t∗ > 0 for which the

trace (3.4) vanishes. To decide stability of the equilibrium, one computes the first focal value
and finds it can have any sign, see the left (case γ = 1) and right (case γ = 3) panels in the
top row in Figure 3.5. In particular, the first focal value can be positive and the corresponding
Andronov–Hopf bifurcation is then subcritical, allowing an unstable limit cycle to be born.
Since the system is permanent, each unstable equilibrium and each unstable limit cycle is
surrounded by a stable limit cycle. Using MATCONT, we depicted these limit cycles in the
bottom row of Figure 3.5 for some particular choices of the parameters.
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Figure 3.5: Top row: the sign of the first focal value for the mass-action system
(3.3) (case γ = 1 on the left, case γ = 3 on the right). Bottom row: the unstable
limit cycles that are born via a subcritical Andronov–Hopf bifurcation (param-
eters are taken such that L1 > 0 holds), surrounded by stable limit cycles (case
γ = 1 on the left, case γ = 3 on the right). The stable and unstable limit cycles
merge through a fold bifurcation to a semistable limit cycle (shown in blue).

3.3 Two Andronov–Hopf points

Let us take the third planar parallelogram in Figure 3.1 and add a new species, Z, as follows:

Y+ Z

2X+ Z

2X+ 2Y

3Y

1

a4a

1

4b b ẋ = 2(yz − x2y2),

ẏ = −yz + x2y2 + 2(ax2z − 4ax2y2 + byz − 4by3),

ż = −ax2z + 4ax2y2 − byz + 4by3,
(3.5)
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where we employed special rate constants (for a, b > 0) and also displayed the associated
mass-action differential equation. Similarly to Section 3.2, this special choice of the rate con-
stants makes the calculations somewhat easier and they still allow us to present some quali-
tative pictures that were not seen in Sections 3.1 and 3.2. Note that x + 2y + 4z is a conserved
quantity, and therefore the network is mass-conserving. By a short calculation, the set of
positive equilibria is the curve

(t, t2/4, t4/4) for t > 0.

Since the stability of a positive equilibrium within its stoichiometric class is determined by
the sign of the trace of the Jacobian matrix, we compute the trace along the curve of equilibria
and find it is

t2

4
[−t3 + (1 − 4(4a + b))t2 − (4a + b)] for t > 0.

One finds that, as a function of t, the trace has exactly two positive roots if and only if
4a + b < 1/16. Call the two roots t(1) and t(2) (with 0 < t(1) < t(2); the dependence on a and
b is omitted for readability). To understand the stability of the equilibria at t(1) and t(2), one
computes the respective first focal values L

(1)
1 and L

(2)
1 . Their sign is shown in the left panel

of Figure 3.6, the generic cases are

• both of L
(1)
1 and L

(2)
1 are negative (first row in Figure 3.7),

• L
(1)
1 is negative and L

(2)
1 is positive (left panel in the second row in Figure 3.7),

• both of L
(1)
1 and L

(2)
1 are positive (right panel in the second row in Figure 3.7).

Figure 3.6: Left panel: the sign of the first focal values L
(1)
1 and L

(2)
1 for 4a + b ≤

1/16 for the mass-action system (3.5) (since t(1) and t(2) coincide if 4a + b =

1/16, we displayed only one sign there). Right panel: the sign of L2 along the
curve L1 = 0. The third focal value is negative at the unique (a, b, t) ∈ R

3
+,

where tr J = L1 = L2 = 0.

In the boundary case 4a+ b = 1/16, we have t(1) = t(2) = 1/2. If additionally the first focal
value is positive (take for instance a = 1/256 and b = 12/256) then the trace, as a function of
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t, vanishes, but does not change sign at 1/2. The equilibrium at t = 1/2 is repelling, since the
first focal value is positive. Furthermore, since this is the limiting case of L

(1)
1 > 0 and L

(2)
1 > 0,

both for t slightly smaller and slightly larger than 1/2, the stable equilibrium is surrounded
by an unstable limit cycle. Furthermore, by permanence, any unstable equilibrium and any
unstable limit cycle is surrounded by a stable limit cycle. Using MATCONT, the picture we
get in this case is shown in the left panel in the third row in Figure 3.7.

Figure 3.7: The various shapes that the stable and unstable limit cycles could
form for the mass-action system (3.5). The most interesting is the last one,
where all the positive equilibria are asymptotically stable, but not all of them
are globally stable, because a torus of limit cycles surrounds the curve of positive
equilibria.
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Perhaps the most interesting qualitative picture in this paper is obtained by taking param-
eter values a and b as in the previous paragraph and then perturbing them slightly to make
4a + b > 1/16. Then every positive equilibrium is asymptotically stable, but not all of them
are globally stable within their stoichiometric classes, because a torus of stable and unstable
limit cycles is created around the curve of positive equilibria as shown in the right panel in
the third row in Figure 3.7.

We conclude this section by explaining how can one construct even three limit cycles.
Viewing now (a, b, t) ∈ R

3
+ as parameter, the trace of the Jacobian matrix vanishes along

a surface M. On this surface, there is a curve γ, where the first focal value vanishes (the
projection of this curve to the (a, b)-plane is shown in Figure 3.6). Along this curve, there
is a point (a∗, b∗, t∗) ≈ (0.001291, 0.003044, 0.958228), where the second focal value changes
sign (this is shown in the right panel in Figure 3.6). One computes the third focal value at
(a∗, b∗, t∗) and finds it is negative. The equilibrium is therefore asymptotically stable. Then
do the following steps.

(i) First perturb (a, b, t) slightly along the curve γ such that the second focal value becomes
positive. Then a stable limit cycle Γ3 is born via a degenerate supercritical Andronov–
Hopf bifurcation and the equilibrium becomes repelling.

(ii) Then perturb (a, b, t) slightly along the surface M such that the first focal value becomes
negative. Then an unstable limit cycle Γ2 is born via a degenerate subcritical Andronov–
Hopf bifurcation and the equilibrium becomes asymptotically stable.

(iii) Finally perturb (a, b, t) slightly away from the surface M such that the trace of the Jaco-
bian matrix becomes positive. Then a stable limit cycle Γ1 is born via a nondegenerate
supercritical Andronov–Hopf bifurcation and the equilibrium becomes repelling.

We have thus proved that there exists an (a, b, t) such that the unique positive equilibrium
is repelling and is surrounded by three limit cycles (two stable and one unstable one). It would
be interesting to continue these limit cycles in MATCONT as t is varied, however, apparently
the three limit cycles coexist only in a very tiny region of the parameter space, and thus, it is
numerically not easy to create meaningful pictures.

4 Bimolecular networks and limit cycles

The molecularity of a complex y ∈ Z
n
≥0 (or y1X1 + · · ·+ ynXn) is the sum y1 + · · ·+ yn ∈ Z≥0.

We say that a reaction network (V, E) (or a mass-action system (V, E, κ)) is bimolecular if the
molecularity of each element of V is at most two. None of the examples in Section 3 is
bimolecular. In this section we prove that for a rank-two bimolecular reaction network the
associated mass-action system does not admit a limit cycle. For 2 and 3 species this was
proven by Póta in [18] and [19], respectively. Theorem 4.1 below is an extension of these
results to arbitrary number of species. On the other hand, there are two famous bimolecular
mass-action systems of rank two that do oscillate: the Lotka and the Ivanova networks give
rise to centers.

The Lotka network and its associated mass-action system are



14 B. Boros and J. Hofbauer

X 2X

X+ Y 2Y

Y 0

κ1

κ2

κ3

ẋ = κ1x − κ2xy,

ẏ = κ2xy − κ3y.

Notice however that the mass-action system

X+ Y

2Y

X 2X

Y

0

κ2

κ̃2λ µ

ν

κ1κ̃1

κ3

κ̃3

ẋ = (κ1 − κ̃1)x − (κ2 − κ̃2 + λ + ν)xy,

ẏ = (κ2 − κ̃2 − λ − µ)xy − (κ3 − κ̃3)y

also gives rise to a center, provided that

sgn(κ1 − κ̃1) = sgn(κ2 − κ̃2 + λ + ν) = sgn(κ2 − κ̃2 − λ − µ) = sgn(κ3 − κ̃3) ̸= 0.

In the above, we allow some of κ1, κ̃1, κ2, κ̃2, κ3, κ̃3, λ, µ, ν to vanish, in which case the
corresponding reaction is not present. Finally, we note that the sum of the quadratic terms
in ẋ and ẏ is nonpositive. This is because for a bimolecular reaction network in any reaction
the molecularity of the product complex cannot be larger than the molecularity of the reactant
complex if the latter equals two.

The Ivanova network and its associated mass-action system are

Z+ X 2X

X+ Y 2Y

Y+ Z 2Z

κ1

κ2

κ3

ẋ = κ1xz − κ2xy,

ẏ = κ2xy − κ3yz,

ż = κ3yz − κ1xz.

Notice however that the mass-action system

X+ Y

2Y

X+ Z 2X

Y+ Z

2Z

κ2

κ̃2

κ1κ̃1

κ3

κ̃3 ẋ = (κ1 − κ̃1)xz − (κ2 − κ̃2)xy,

ẏ = (κ2 − κ̃2)xy − (κ3 − κ̃3)yz,

ż = (κ3 − κ̃3)yz − (κ1 − κ̃1)xz

also gives rise to a center, provided that

sgn(κ1 − κ̃1) = sgn(κ2 − κ̃2) = sgn(κ3 − κ̃3) ̸= 0.
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In the above, we allow some of κ1, κ̃1, κ2, κ̃2, κ3, κ̃3 to vanish, in which case the corresponding
reaction is not present. Interestingly, the Ivanova network can be obtained from the Lotka
network by adding a new species, Z, in a way that the molecularity of every complex becomes
two.

Observe that there is another way for a rank-two bimolecular mass-action system to admit
periodic solutions, as in the following example:

X 2X

X+ Y 2Y

Y 0

X+ Z Z

κ1

κ2

κ3

κ4

ẋ = (κ1 − κ4z)x − κ2xy,

ẏ = κ2xy − κ3y,

ż = 0.

Here, the positive stoichiometric classes are given by z = c for some c > 0. For c <
κ1
κ4

,
the unique positive equilibrium is a global center (the dynamics is the same as for the Lotka
network), while for c ≥ κ1

κ4
there is no positive equilibrium.

The following theorem says that essentially the Lotka and the Ivanova differential equa-
tions are the only ones with a periodic solution that are derived from a rank-two bimolecular
reaction network.

Theorem 4.1. Suppose that a rank-two bimolecular mass-action system has a periodic solution in a

positive stoichiometric class P . Then the dynamics in P is described either by

ẋ = x(a − by),

ẏ = y(b′x − c)

for some a, b, b′, c ∈ R with sgn a = sgn b = sgn b′ = sgn c ̸= 0 and b′ ≤ b or by

ẋ = x(az − by),

ẏ = y(bx − cz),

ż = z(cy − ax)

for some a, b, c ∈ R with sgn a = sgn b = sgn c ̸= 0. In particular, there is a unique positive

equilibrium in P , every non-equilibrium solution is periodic, and there is no limit cycle.

Proof. For k = 1, . . . , n we collect the terms in ẋk according to their degree in xk. To ease the
notation, let x−k = (x1, . . . , xk−1, xk+1, . . . , xn) ∈ R

n−1 for x ∈ R
n. With this,

ẋk = ak(x−k) + xkbk(x−k) + ckx2
k for k = 1, . . . , n,

where the function ak collects all the terms without xk, the middle term collects all the terms,
where xk appears linearly, and finally, the only term which is quadratic in xk is denoted by
ckx2

k . Note that ak(x−k) ≥ 0, because in a reaction with Xk not being a reactant species, Xk can
only be gained. Also, ck ≤ 0, since Xk can only be consumed in a bimolecular reaction whose
reactant complex is 2Xk.

After dividing the vectorfield by ∏
n
i=1 xi, the divergence equals to

1
∏

n
i=1 xi

n

∑
k=1

(
− ak(x−k)

xk
+ ckxk

)
,
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which is nonpositive in R
n
+ by the above discussion. By a multidimensional version of the

Bendixson–Dulac test, the existence of a periodic solution together with dimP = 2 implies
that the divergence vanishes everywhere, see e.g. [20, Satz 1] for the n = 3 case and [17,
Theorem 3.3, Remark (3)] for the general case. Therefore, both ak(x−k) and ck vanish for all
k = 1, . . . , n and

ẋk = xkbk(x−k) = xk

(
rk + ∑

i ̸=k

bkixi

)
for k = 1, . . . , n. (4.1)

If there exists a k′ such that rk′ = 0 and bk′i = 0 for all i ̸= k′ then ẋk′ = 0 and thus xk′ ≡ d

for some d > 0. In this case, for each k ̸= k′ we update rk to be rk + bkk′d and omit the equation
for ẋk′ . For the rest of this proof, we assume that the differential equation (4.1) is such that

for all k = 1, . . . , n at least one of the n numbers rk and bki (i ̸= k) is nonzero. (4.2)

Case n = 2. The differential equation (4.1) takes the form

ẋ1 = x1(r1 + b12x2),

ẋ2 = x2(r2 + b21x1).

Since there exists a periodic solution, sgn r1 = − sgn b12 ̸= 0 and sgn r2 = − sgn b21 ̸= 0 follow.
Furthermore, sgn b12 = − sgn b21 (otherwise the unique positive equilibrium inside the closed
orbit would be a saddle with index −1, a contradiction). Finally, b12 + b21 ≤ 0 follows from
the assumption that every product complex has molecularity at most two.

Case n = 3. The differential equation (4.1) takes the form

ẋ1 = x1(r1 + b12x2 + b13x3),

ẋ2 = x2(r2 + b21x1 + b23x3),

ẋ3 = x3(r3 + b31x1 + b32x2).

(4.3)

Since the stoichiometric subspace is two-dimensional, there exists a d ∈ R
3 \ {0} such that

d1 ẋ1 + d2 ẋ2 + d3 ẋ3 = 0. If exactly one coordinate of d is nonzero, say d1, then ẋ1 = 0, contra-
dicting the assumption (4.2). If exactly two coordinates of d are nonzero, say d1 and d2, then
r1 = r2 = b13 = b23 = 0 follows. Taking also into account (4.2), b12 ̸= 0 and b21 ̸= 0 hold.
But then both x1 and x2 are strictly monotonic over time, contradicting the existence of a pe-
riodic solution. Thus, each of d1, d2, d3 is nonzero. Hence, d1 ẋ1 + d2 ẋ2 + d3 ẋ3 = 0 implies that
r1 = r2 = r3 = 0. Furthermore, the existence of a periodic solution and the assumption (4.2)
together imply sgn b12 = − sgn b13 ̸= 0, sgn b21 = − sgn b23 ̸= 0, and sgn b31 = − sgn b32 ̸= 0.
Since for reactions with reactant complexes X1 + X2, X1 + X3, or X2 + X3, the molecularity
cannot increase (by the assumption that there is no product complex with molecularity higher
than two), it follows that ẋ1 + ẋ2 + ẋ3 ≤ 0. Thus, along a periodic solution, ẋ1 + ẋ2 + ẋ3 = 0,
implying b12 = −b21, b13 = −b31, and b23 = −b32.

Case n ≥ 4. We now show that this case is actually empty. Since the stoichiometric subspace
is 2-dimensional, the linear conservation laws form an (n − 2)-dimensional subspace of R

n.
In such a subspace there always exists a nonzero vector d with at most three nonzero entries.
Assume that d has a support that is minimal w.r.t. inclusion. If d has exactly one or two
nonzero entries then we arrive at a contradiction in the same way as in the n = 3 case above.
If d has exactly three nonzero entries, say d1, d2, d3, then (x1, x2, x3) evolves according to the
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equations (4.3), because b1i = b2i = b3i = 0 for all i = 4, . . . , n follows. By the minimality of
the support of d, these three variables already occupy two dimensions, and thus ẋ4 = · · · =
ẋn = 0, contradicting the assumption (4.2).

Theorem 4.1 shows that the rank of a bimolecular mass-action system with a limit cycle is
at least three. We analyse some simple bimolecular oscillators of rank three in [6].

We conclude with a remark. For bimolecular networks we required that every complex’s
molecularity is at most two. If one relaxes this and imposes only that every reactant complex’s
molecularity is at most two, while it is allowed to have a product complex with molecularity
three then limit cycles in rank-two mass-action systems are not excluded in general. Indeed,
the mass-action system

X 2X 3X

X+ Y 2Y

Y 0

κ1 κ4

κ2

κ3

κ5

ẋ = κ1x − κ2xy + κ4x2,

ẏ = κ2xy − κ3y + κ5

by Frank-Kamenetsky and Salnikov [13] admits a stable limit cycle.
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Abstract. This paper is concerned with the asymptotic behavior of solutions of lin-
ear differential-algebraic equations (DAEs) under small nonlinear perturbations. Some
results on the asymptotic behavior of solutions which are well known for ordinary
differential equations are extended to DAEs. The main tools are the projector-based
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As the main result, a Perron type theorem that establishes the exponential growth rate
of solutions is formulated.
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1 Introduction

Qualitative theory and numerical analysis of differential-algebraic equations (DAEs) have been

extensively studied since the 80’s, see for example the monographs [8,9,11] and the references

therein. It is well known that DAEs play an important role in mathematical modeling and

arise in many real-life applications such as multibody mechanics, electronic circuit design,

chemical engineering, etc, see [4, 9, 10]. Since the derivative cannot be solved explicitly, DAEs

are also called singular (or generalized) systems of differential equations. DAEs are gener-

alizations of ordinary differential equations (ODEs) whose qualitative theory is well known,

see [6, 7]. Roughly speaking, DAEs are mixed systems of implicit differential and algebraic

equations, which may involve hidden constraints as well. The facts that the systems are cou-

pled and the dynamics is constrained makes the analysis and numerical treatment of DAEs

more complicated. Even the existence and uniqueness of solutions for linear DAEs can be

established only under extra restrictive assumptions. Furthermore, solutions of DAEs may be

very sensitive to changes in the system data.

BCorresponding author. Email: linhvh@vnu.edu.vn
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In this paper, we study the asymptotic behavior of solutions of linear DAEs under nonlin-

ear perturbations

Ex′(t) = Ax(t) + f (t, x(t), x′(t)), t ∈ I = [0, ∞), (1.1)

where E, A ∈ Cn×n, f : I × Cn × Cn → Cn is continuous, and E is assumed to be singular.

The question is that if a nonlinear perturbation f is supposed to be sufficiently small in some

sense, how certain solutions of the quasilinear DAE (1.1) behave asymptotically comparing to

those of the unperturbed linear DAE as t tends to infinity. In [12], asymptotic integration of

solutions of linear DAEs with coefficients subjected to linear time-varying perturbations was

studied. If the perturbations are small enough in some sense, then the exponential growth rate

of solutions is established. It is known that the exponential growth rate of solutions of linear

systems characterized by Lyapunov exponents plays a very important role in the qualitative

study of dynamical systems, see [1]. Characterizations of Lyapunov exponents were extended

from linear time-varying ODEs to linear time-varying DAEs in [13–15]. In particular, the sta-

bility of Lyapunov exponents is investigated when the coefficients are subjected to structured

perturbations in [14, 15]. For some other remarkable results on the asymptotics and stability

of solutions for DAEs, see [3, 5, 16, 18].

Our aim is to extend some classical results which are well known for quasilinear ordinary

differential equations [6, 7] to quasilinear DAEs. One of the most important results for quasi-

linear systems is the Perron type theorem which was established for ODEs a long time ago,

see [7, Theorem 5, p. 97]. Recently, extensions of this result to functional differential equa-

tions [17] and nonautonomous ODEs [2] were done. Unlike the approach in [12], in order to

characterize the asymptotic behavior of solutions of (1.1), in this work we use the projector-

based approach. Conditions for the pencil (E, A) and perturbation f are given so that the

asymptotic behavior of solutions of (1.1) is shown to be related to those of the correspond-

ing linear DAE. The paper is organized as follows. In the next section, we briefly introduce

the projector-based analysis of linear DAEs and recall some classical results for quasilinear

ODEs. In Section 3, the existence and uniqueness of solutions for the initial value problem

for DAE (1.1) are established. A simple example is also given for illustrating the feasibility

of the assumptions. Then, in Section 4, the asymptotic behavior of solutions is characterized

under certain assumptions. As the main result, a Perron type theorem that establishes the

exponential growth rate of solutions is formulated. A discussion and some open questions

will close the paper.

2 Preliminaries

2.1 Projector-based analysis for linear DAEs

Consider the linear time-invariant homogeneous DAEs of the form

Ex′(t) = Ax(t), t ∈ I, (2.1)

where E, A ∈ Cn×n, E is singular and x : I → Cn. As in the classical theory of ODEs, the

search for solutions of (2.1) having the form eλtx0 naturally leads to the generalized eigenvalue

problem defined by det(λE− A) = 0, and therefore drives the analysis of homogeneous linear

time-invariant DAEs to the theory of matrix pencils, see [8–10], where the Kronecker index is

used for the analysis of DAEs (2.1).
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The matrix pencil {E, A} is said to be regular if there exists λ ∈ C such that the determinant

det(λE− A) is nonzero. Otherwise, if det(λE− A) = 0 for all λ ∈ C, then we say that {E, A} is

irregular or non-regular. If {E, A} is regular, then λ ∈ C is a (generalized finite) eigenvalue of

{E, A} and a nonzero vector ζ is the associated eigenvector if λEζ = Aζ. It is known that the

system (2.1) is solvable if and only if the matrix pencil {E, A} is regular [4,8,9]. The following

theorem is known as the Kronecker–Weierstraß canonical form, which plays an important role

in the analysis of linear constant-coefficient DAEs.

Theorem 2.1. Suppose that {E, A} is a regular pencil. Then, there exist nonsingular matrices G and

H such that

GEH =

[
In1

0

0 N

]
, GAH =

[
Jn1

0

0 In2

]
, (2.2)

where n1 + n2 = n, Jn1
is a n1 × n1 matrix and N is a matrix of nilpotency index k, i.e. Nk = 0, but

Nk−1 ̸= 0. If N is a zero matrix, then we define k = 1.

The Kronecker index of the pencil {E, A} is defined by the nilpotency index of the matrix N

in (2.2).

Now, we suppose that the matrix pencil {E, A} is of index one (in the Kronecker sense)

and rank E = d < n. Let Q be any projector onto ker E. Then, we have the following result,

which is also presented as the definition of tractability index one, see [8].

Proposition 2.2. Let E ∈ Cn×n be a singular matrix, and Q be an arbitrary projector onto ker E. Then,

the matrix pencil {E, A} is regular with Kronecker index one if and only if the matrix E1 = E − AQ

is non-singular.

Let us define P = I − Q, which is a projector, too. It is easy to show that

E−1
1 E = P, E−1

1 AQ = −Q.

Multiplying (2.1) with PE−1
1 , QE−1

1 and using the relation x = Px + Qx, we obtain

(Px)′ = PE−1
1 APx,

0 = QE−1
1 APx − Qx.

(2.3)

Denoting u = Px and v = Qx, then the first equation of the system (2.3) can be rewritten as

u′ = PE−1
1 Au. (2.4)

In addition, we can rewrite the second equation of the system (2.3) as

v = QE−1
1 Au. (2.5)

Thus, equations (2.4) and (2.5) yield a decoupling of the DAE (2.1) in terms of the differential

component u and the algebraic one v. The equation (2.4) is called an inherent ODE for the

DAE (2.1). The linear subspace im P is invariant with respect to this equation. Indeed, an

initial condition u0 ∈ im P implies Qu0 = 0. Since (Qu)′ = Qu′ = QPE−1
1 Au = 0, we

obtain Qu(t) = 0 i.e., u(t) ∈ im P for all t. Solutions of the DAE (2.1) will be described in

terms of solutions u of (2.4) lying in the invariant subspace im P. A projector onto ker E along

S = {x ∈ Cn
∣∣∣Ax ∈ im E} is called the canonical projector. For index one DAE (2.4), specially,

if we choose Q being the canonical projector, then we have v = 0, see [8, 10].
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Using E = EP, let us reformulate (2.1) as

E(Px)′(t) = Ax(t). (2.6)

This makes sense to look for solutions defined in the space

C1
P(I, C

n) = {x ∈ C(I, C
n) | Px ∈ C1(I, C

n)} ⊃ C1(I, C
n),

where C1(I, Cn) denotes the space of continuously differentiable functions defined on I.

Therefore, x(·) ∈ C1
P(I, Cn) is a solution of (2.1) if and only if it can be written as

x(t) = u(t) + v(t), (2.7)

where u ∈ C1(I, Cn) is a solution of (2.4) in the invariant space im P and v ∈ C(I, Cn) given by

(2.5), see [8, 11]. It is sufficient to assign an initial condition to the differential component u.

The initial value for the algebraic component v follows from the algebraic constraint, namely

v(0) = QE−1
1 Au(0).

Now, let us construct a fundamental solution for DAE (2.1) as follows. In space im P, we

consider an orthogonal basis u1, u2, . . . , ud. Clearly, U = (u1, u2, . . . , ud) is an n × d-size matrix

and UTU = Id.

Suppose that Y(t) is a fundamental matrix of the inherent ODE (2.4) restricted on im P,

which is defined by the solution of the matrix-valued IVP

Y′(t) = PE−1
1 AY(t),

Y(0) = U.
(2.8)

It is easy to verify that Y(t) = etPE−1
1 AU and the columns of Y(t) are linearly independent

solutions of the equation (2.4) restricted on im P. Then, we define a fundamental matrix X of

the DAE (2.1) by

X(t) = (I + QE−1
1 A)Y(t). (2.9)

We note that we can also obtain another important associated ODE, the so-called essentially

underlying ODE as follows. Let us introduce the change of variables u(t) = Uw(t). Then, w

satisfies

w′(t) = UTPE−1
1 AUw(t). (2.10)

It is also easy to verify that Z(t) = UTY(t) is the normalized fundamental solution of the

EUODE (2.10) and we also have the representation Y(t) = UZ(t).

The following lemma, which is an extension of Lemma 3.1 [18], characterizes the spectra

of the eigenvalue problems associated with the DAE (2.1), the inherent ODE (2.4), and the

essentially underlying ODE (2.10).

Lemma 2.3. Let a regular index-1 pencil {E, A} be given and Q denotes an arbitrary projector

onto ker E. Further, M := PE−1
1 A, N := UTPE−1

1 AU, d := rank E = n − dim(ker E). Then

deg(det(λE − A)) = d, i.e., {E, A} has d finite eigenvalues, say λ1, . . . , λd. Moreover, λ1, . . . , λd

belong also to the spectrum of M and they are exactly the same as the eigenvalues of N. The remaining

eigenvalues of M are zero.

If Q is chosen being the canonical projector, then the eigenvectors associated with the finite

eigenvalues belong to im P and the eigenvectors associated with the other zero eigenvalues

of M span ker P, see [18, Lemma 3.1].
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Proof. Let λk be an arbitrary finite eigenvalue of matrix pencil {E, A} and ξk be an associated

eigenvector. From the equality λkEξk = Aξk with ξk = Pξk + Qξk, it is easy to see that

λkPξk = PE−1
1 APξk,

QE−1
1 APξk = Qξk.

This means that ξk is an eigenvector corresponding to the eigenvalue λk of the pencil {E, A}

if and only if Pξk is an eigenvector corresponding to the eigenvalue λk of the matrix PE−1
1 A.

Furthermore, let us define the vector ζk by Pξk = Uζk. Then, we obtain λkUζk = PE−1
1 APUζk.

It follows that λkζk = UTPE−1
1 APUζk. This means that λk is an eigenvalue and ζk is a corre-

sponding eigenvector of N.

Remark 2.4. It is quite obvious to see that all the solutions of DAE (2.1) are bounded if and

only if all the solutions of the inherent ODE (2.4) (and also those of the essential underlying

ODE (2.10)) are so. It is also well known that this happens if and only if all the finite eigenval-

ues of pencil {E, A} have non-positive real parts and any eigenvalue with zero real part must

be semi-simple.

2.2 Preliminary results for quasilinear ODEs

Consider a special case of (2.1), namely the case of well-known quasilinear ODE

x′(t) = Ax(t) + h(t, x), (2.11)

i.e., E = I, f (t, x, y) ≡ h(t, x), where I is the identity matrix. According to the stability theory

of ODEs, if the spectrum σ{I, A} belong to C− and the nonlinear term is sufficiently small in

some sense, then the trivial solution is asymptotically stable in Lyapunov sense. This result

was extended to DAEs in [16].

Next, we recall some other well-known results on the asymptotic behavior of solutions in

the theory of ODEs, see [6, 7].

Proposition 2.5 ([6, Problem 1, p. 344]). Let all solutions of the linear system with constant coeffi-

cients y′ = Ay be bounded for t ≥ 0, that is, let ∥etA∥ ≤ M, t ≥ 0, for some constant M. Let h be

continuous and let there exist a constant k and a function α(t) such that

∥h(t, x)∥ ≤ α(t)∥x∥ for ∥x∥ ≤ k and t ≥ 0, (2.12)

and let ∫
∞

0
α(t)dt < ∞. (2.13)

Then, there exists a constant M1 such that any solution x of the system (2.11) satisfies

∥x(t)∥ < M1∥x(0)∥ if ∥x(0)∥ ≤
k

M1
.

Proposition 2.6 ([6, Problem 2, p. 345]). Let the assumptions of Proposition 2.5 be satisfied. It is

clear that etA = X1(t) + X2(t), where X1(t) contains elements which are sums of exponential terms

eiλjt for real λj and

∥X1(t)∥ ≤ K1, −∞ < t < ∞, and

∥X2(t)∥ ≤ K2e−σt, 0 ≤ t < ∞
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for some positive constants σ > 0, K1 and K2.

Then, corresponding to any solution x of (2.11), there is a constant vector p such that

x(t)− X1(t)p → 0 as t → ∞.

Theorem 2.7 ([7, Theorem 5, p. 97]). Suppose that x(t) is a bounded solution of (2.11) and

∥h(t, x(t))∥ ≤ α(t)∥x(t)∥, (2.14)

for t ≥ 0, where α : [0, ∞) −→ [0, ∞) is a continuous nonnegative function satisfying
∫ t+1

t
α(s)ds → 0 as t → ∞, (2.15)

then either x(t) = 0 for all large t or

µ = lim
t→∞

log ∥x(t)∥

t
(2.16)

exists and is equal to the real part of one of the eigenvalues of the matrix A.

Obviously, if α(t) → 0 as t → ∞, or
∫

∞

σ
αp(s)ds < ∞ for some p ∈ [1, ∞), then the condition

(2.15) holds. This theorem is known as a Perron type theorem for ODEs.

3 Existence and uniqueness of solutions for quasilinear DAEs

Throughout the remainder of the paper, we consider the quasilinear DAE (1.1) where it is

assumed that the matrix pencil {E, A} is regular of index-1, f is continuous, and the Jacobian

fy(t, x, y) exists.

Clearly, (1.1) generalizes the well-understood case of ODEs (2.11). Now, we focus on the

case of singular E, i.e. the equation (1.1) is a DAE. To make sure that the nonlinear perturbation

in (1.1) plays a proper role, we need a technical assumption

ker E ⊆ ker fy(t, x, y), (t, x, y) ∈ I × C
n × C

n. (3.1)

It is shown, e.g., in [8], that (3.1) is sufficient for implying the identity

f (t, x, y) = f (t, x, Py). (3.2)

This suggests a more proper reformulation of equation (1.1) as follows

E(Px)′(t) = Ax(t) + f (t, x(t), (Px)′(t)). (3.3)

This is just a special case of DAEs with properly stated derivative discussed in [10]. We look

for solutions of (3.3) that belong to the class C1
P(I, Cm). It is worth mentioning that this class

is independent of the choice of projector P, see [8].

First, we establish the (local) existence and uniqueness of solutions of IVPs for (1.1).

Theorem 3.1. Let pencil {E, A} be of index-1 and let f satisfy

∥PE−1
1 f (t, x, y)− PE−1

1 f (t, x̄, ȳ)∥ ≤ α1(t)∥x − x̄∥+ β1(t)∥y − ȳ∥, (3.4)

∥QE−1
1 f (t, x, y)− QE−1

1 f (t, x̄, ȳ)∥ ≤ α2(t)∥x − x̄∥+ β2(t)∥y − ȳ∥, (3.5)

for all t ≥ 0 and x, x̄, y, ȳ ∈ Cn, αi(t) and βi(t) are non-negative bounded functions (i = 1, 2 and

t ≥ 0) such that supt∈[0,∞) α2(t) < 1 and supt∈[0,∞) γ(t) < 1, where γ(t) = α1(t)β2(t)
1−α2(t)

+ β1(t). Then,

for any t1 ≥ 0 and x1 ∈ Cn, there exists a positive a such that the IVP for equation (1.1) with initial

condition P(x(t1)− x1) = 0 has a unique solution defined on [t1, t1 + a).
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Proof. Since {E, A} is regular of index-1, we have QE−1
1 A = −Q, E−1

1 E = P and PE−1
1 A =

PE−1
1 AP. Multiplying both sides of (1.1) with PE−1

1 , QE−1
1 respectively, using the relation

x = Px + Qx and noting im Q = ker E ⊂ ker fy(t, x, y) for all t ∈ I, we obtain

(Px)′ = PE−1
1 A(Px) + PE−1

1 f (t, Px + Qx, (Px)′),

Qx = QE−1
1 A(Px) + QE−1

1 f (t, Px + Qx, (Px)′).

Denoting again u = Px and v = Qx, then the system can be rewritten as

u′ = PE−1
1 Au + PE−1

1 f (t, u + v, u′), (3.6)

v = QE−1
1 Au + QE−1

1 f (t, u + v, u′). (3.7)

Using on the second equation of (3.7), we will try to represent v by u and u′. Put F(t, u, u′, v) =

QE−1
1 Au + QE−1

1 f (t, u + v, u′). Due to (3.5), we have

∥F(t, x, y, z1)− F(t, x, y, z2)∥ ≤ α2(t)∥z1 − z2∥, for all x, y, z1, z2 ∈ C
n, t ∈ I.

Since supt∈I
α2(t) < 1, F(t, x, y, z) defined as above is a contractive mapping with respect to

variable z. Applying the contractive mapping principle, there exists a function ψ(t, x, y) such

that z = ψ(t, x, y), i.e.,

ψ(t, u, u′) = QE−1
1 Au + QE−1

1 f (t, u + ψ(t, u, u′), u′).

We can see that ψ is invariant under projector Q, i.e., Qψ(t, u, u′) = ψ(t, u, u′). Due to (3.5),

we have

∥ψ(t, x1, y1)− ψ(t, x2, y2)∥

≤ ∥QE−1
1 A(x1 − x2)∥+ ∥QE−1

1 f (t, x1 + ψ(t, x1, y1), y1)− QE−1
1 f (t, x2 + ψ(t, x2, y2), y2)∥,

≤ C1∥x1 − x2∥+ α2(t)∥x1 − x2∥+ α2(t)∥ψ(t, x1, y1)− ψ(t, x2, y2)∥+ β2(t)∥y1 − y2∥,

for all x1, x2, y1, y2 ∈ Cn, t ∈ I, where C1 = ∥QE−1
1 A∥.

Hence, we get

∥ψ(t, x1, y1)− ψ(t, x2, y2)∥ ≤
C1 + α2(t)

1 − α2(t)
∥x1 − x2∥+

β2(t)

1 − α2(t)
∥y1 − y2∥. (3.8)

Replacing v = ψ(t, u, u′) in (3.6), we obtain

u′ = PE−1
1 Au + PE−1

1 f (t, u + ψ(t, u, u′), u′).

Put K(t, u, u′) = PE−1
1 Au + PE−1

1 f (t, u + ψ(t, u, u′), u′). We will show that K(t, x, y) is a con-

tractive mapping with respect to variable y. Indeed, for x, y1, y2 ∈ Cn, t ∈ I, we have

∥K(t, x, y1)− K(t, x, y2)∥ = ∥PE−1
1 f (t, x + ψ(t, x, y1), y1)− PE−1

1 f (t, x + ψ(t, x, y2), y2)∥

≤ α1(t)∥ψ(t, x, y1)− ψ(t, x, y2)∥+ β1(t)∥y1 − y2∥

≤
α1(t)β2(t)

1 − α2(t)
∥y1 − y2∥+ β1(t)∥y1 − y2∥ (by (3.8))

≤
(α1(t)β2(t)

1 − α2(t)
+ β1(t)

)
∥y1 − y2∥ = γ(t)∥y1 − y2∥.
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Since supt∈I
γ(t) < 1, it follows that K(t, x, y) is a contraction with respect to variable y.

Applying the contractive mapping principle, there exists a function g(t, x) such that y =

g(t, x), i.e.,

g(t, u) = PE−1
1 Au + PE−1

1 f (t, u + ψ(t, u, g(t, u)), g(t, u)).

Obviously, g is invariant under projector P, i.e., Pg(t, u) = g(t, u). By (3.4) and (3.8), for

u1, u2 ∈ Cn, t ∈ I, we have

∥g(t, u1)− g(t, u2)∥

≤ ∥PE−1
1 A∥∥u1 − u2∥+ α1(t)∥u1 − u2∥+ α1(t)∥ψ(t, u1, g(t, u1))− ψ(t, u2, g(t, u2))∥

+ β1(t)∥g(t, u1)− g(t, u2)∥

≤ (C2 + α1(t))∥u1 − u2∥+
α1(t)(C1 + α2(t))

1 − α2(t)
∥u1 − u2∥

+
α1(t)β2(t)

1 − α2(t)
∥g(t, u1)− g(t, u2)∥+ β1(t)∥g(t, u1)− g(t, u2)∥ (put C2 = ∥PE−1

1 A∥)

≤
(

C2 +
(C1 + 1)α1(t)

1 − α2(t)

)
∥u1 − u2∥+ γ(t)∥g(t, u1)− g(t, u2)∥.

Thus, we have

(1 − γ(t))∥g(t, u1)− g(t, u2)∥ ≤

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)
∥u1 − u2∥,

i.e.,

∥g(t, u1)− g(t, u2)∥ ≤
1

1 − γ(t)

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)
∥u1 − u2∥. (3.9)

Put g̃(t, u) = g(t, u) − PE−1
1 Au. Then g̃ is also invariant under projector P, i.e., Pg̃(t, u) =

g̃(t, u). We have

∥g̃(t, u1)− g̃(t, u2)∥ ≤ α1(t)∥u1 − u2∥+ α1(t)∥ψ(t, u1, g(t, u1))− ψ(t, u2, g(t, u2))∥

+ β1(t)∥g(t, u1)− g(t, u2)∥

≤ α1(t)∥u1 − u2∥+
α1(t)(C1 + α2(t))

1 − α2(t)
∥u1 − u2∥

+
α1(t)β2(t)

1 − α2(t)
∥g(t, u1)− g(t, u2)∥+ β1(t)∥g(t, u1)− g(t, u2)∥

≤
(C1 + 1)α1(t)

1 − α2(t)
∥u1 − u2∥+

γ(t)

1 − γ(t)

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)
∥u1 − u2∥

≤

[
(C1 + 1)α1(t)

(1 − α2(t))(1 − γ(t))
+

C2γ(t)

1 − γ(t)

]
∥u1 − u2∥.

Thus, we get

∥g̃(t, u1)− g̃(t, u2)∥ ≤ γ̃(t)∥u1 − u2∥, (3.10)

where

γ̃(t) =
(C1 + 1)α1(t)

(1 − α2(t))(1 − γ(t))
+

C2γ(t)

1 − γ(t)
. (3.11)

On the other hand, α1(t) is bounded, supt∈[0,∞) α2(t) < 1 and supt∈[0,∞) γ(t) < 1, then there

exists a positive constant L such that ∥g̃(t, u1)− g̃(t, u2)∥ ≤ L∥u1 − u2∥, for all u1, u2 ∈ Cn, i.e.,

g̃(t, u) is Lipschitz continuous with respect to u.
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We conclude that system (1.1) can be reduced to the decoupled form

u′ = PE−1
1 Au + g̃(t, u), (3.12)

v = ψ(t, u, u′). (3.13)

and initial condition P(x(t1)− x1) = 0 is equivalent to u(t1) = Px1. Since g̃(t, u) is a Lipschitz

continuous function for u, the IVP for equation (3.12) with initial condition u(t1) = Px1 has

a unique solution u(t) defined on [t1, t1 + a) for some positive number a and this solution

satisfies Pu(t) = u(t). Then, we obtain v(t) from (3.13). Hence, the unique solution x(t) is

defined by x(t) = u(t) + v(t) for all t ∈ [t1, t1 + a). The proof is complete.

We present a simple example that illustrates the feasibility of the conditions given in The-

orem 3.1.

Example 3.2. We consider the equation

Ex′ = Ax + f (t, x, x′) (3.14)

with

E =




1 2 0

1 3 0

1 2 0


 , A =




1 2 1

1 3 1

1 2 2


 .

The nonlinear part f = ( f1, f2, f3)⊤ will be specified later. Let us choose

Q =




0 0 0

0 0 0

0 0 1


 , P =




1 0 0

0 1 0

0 0 0


 .

It is seen that Q is a projection onto ker E and the matrix pencil {E, A} is of index-1. Further-

more, we have

PE−1
1 =




4 −2 −1

−1 1 0

0 0 0


 , QE−1

1 =




0 0 0

0 0 0

1 0 −1


 .

Let us define f such that

PE−1
1 f (t, x, y) =




a1(t) sin(x2) + b1(t) cos(y1)

a2(t) sin(x3) + a3(t) cos(x2)

0




and

QE−1
1 f (t, x, y) =




0

0

−a4(t) cos(x3)− b2(t) cos(y2)


 .

Choose ai(t) = δi

(1+t)2 , (i = 1, 2, 3, 4), b1(t) = ε1

(1+t)2 , and b2(t) = 1−δ4

(1+t)2 , where δi and ε1 are

positive constants such that δ4 < 1.

Using the maximum norm, for any t ≥ 0 and any x, x̄, y, ȳ ∈ R3, we have

∥PE−1
1 f (t, x, y)− PE−1

1 f (t, x̄, ȳ)∥ ≤max {a1(t)| sin(x2)− sin(x̄2)|+ b1(t)| cos(y1)− cos(ȳ1)|,

a2(t)| sin(x3)− sin(x̄3)|+ a3(t)| cos(x2)− cos(x̄2)|}

≤(a1(t) + a2(t) + a3(t))∥x − x̄∥+ b1(t)∥y − ȳ∥
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and

∥QE−1
1 f (t, x, y)− QE−1

1 f (t, x̄, ȳ)∥ ≤ a4(t)| cos(x3)− cos(x̄3)|+ b2(t)| cos(y2)− cos(ȳ2)|

≤ a4(t)∥x − x̄∥+ b2(t)∥y − ȳ∥.

We put

α1(t) =
δ1 + δ2 + δ3

(1 + t)2
, β1(t) =

ε1

(1 + t)2
, α2(t) =

δ4

(1 + t)2
, β2 =

1 − δ4

(1 + t)2
.

It is trivial to see that, for t in [0, ∞), the following estimates hold:

0 < α1(t) ≤ δ1 + δ2 + δ3, 0 < α2(t) ≤ δ4,

0 < β1(t) ≤ ε1, 0 < β2(t) ≤ 1 − δ4,

0 < γ(t) =
α1(t)β2(t)

1 − α2(t)
+ β1(t) < δ1 + δ2 + δ3 + ε1.

Therefore, if δ4 < 1 and δ1 + δ2 + δ3 + ε1 < 1 simultaneously hold, then all the conditions

in Theorem 3.1 are satisfied. We conclude that for any t1 ∈ [0, ∞) and x1 ∈ R3, the IVP

for equation (3.14) with initial condition P(x(t1)− x1) = 0 has a unique solution defined in

[t1, t1 + a) with some positive number a.

4 Asymptotic behavior of solutions for quasilinear DAEs

In this section, we extend the results in Section 2.2 to quasilinear DAEs of the form (1.1).

Theorem 4.1. Let pencil {E, A} be regular of index-1 and let f satisfy all the conditions in Theorem

3.1 with ∫
∞

0
α1(t)dt < ∞,

∫
∞

0
β1(t)dt < ∞, (4.1)

and f (t, 0, 0) ≡ 0. Let all the solutions of the linear DAE (2.1) be bounded for t ≥ 0, i.e., there exists

a positive constant M such that the fundamental matrix X(t) of (2.1) satisfies ∥X(t)∥ ≤ M for all

t ≥ 0. Then, there exists positive constant M1 such that any solution x = x(t) of the system (1.1)

satisfies ∥x(t)∥ ≤ M1∥x(0)∥ for all t ≥ 0.

Proof. In space im P, let us consider again an orthogonal basis u1, u2, . . . , ud. We denote U =

(u1, u2, . . . , ud) which is a n × d-size matrix and UTU = Id. Using the change of variables

u(t) = Uw(t), it is easy to see that from the equation (3.12) we obtain the EUODE

w′(t) = UTPE−1
1 AUw(t) + UT g̃(t, Uw(t)). (4.2)

Due to Lemma 2.3, the spectra of pencil {E, A} and of N = UTPE−1
1 AU coincide. Put

g(t, w(t)) = UT g̃(t, Uw(t)). Clearly, the equation (4.2) is an ODE for w(t). From (3.10),

together with (4.1), α1(t) and β2(t) are bounded, supt∈[0,∞) α2(t) < 1 and supt∈[0,∞) γ(t) < 1,

g̃(t, 0) = 0, we have

∥g̃(t, u)∥ ≤ γ̃(t)∥u∥,

where γ̃(t) defined in (3.11) satisfies
∫

∞

0 γ̃(t)dt < ∞. Without loss of generality let us use the

Euclidean norm, due to the definition of U and the properties that u(t) = Pu(t), g̃(t, u) =

Pg̃(t, u), we obtain ∥u(t)∥ = ∥w(t)∥ and

∥g(t, w(t))∥ = ∥UT g̃(t, Uw(t))∥ = ∥g̃(t, Uw(t))∥ ≤ γ̃(t) ∥Uw(t)∥ = γ̃(t) ∥w(t)∥.
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Thus, we get

∥g(t, w(t))∥ ≤ γ̃(t)∥w(t)∥, for all t ≥ 0. (4.3)

Due to the properties of g and γ̃, by Proposition 2.5, one concludes that if the equation

(4.2) has a solution w(t) defined for all t ∈ [0, ∞), there exists a constant M̃ such that

∥w(t)∥ < M̃∥w(0)∥.

Then, u(t) = Uw(t) is a solution of the equation (3.12) such that

∥u(t)∥ = ∥w(t)∥ < M̃∥w(0)∥ = M̃∥u(0)∥.

The equation (1.1) has the solution of the form x(t) = u(t) + v(t). Therefore, we obtain

x(t) = u(t) + ψ(t, u(t), g(t, u(t))). Note that, since f (t, 0, 0) ≡ 0, it is not difficult to show that

ψ(t, 0, 0) ≡ 0, g(t, 0) ≡ 0 and g̃(t, 0) ≡ 0. Then, we have

∥x(t)∥ ≤ ∥u(t)∥+ ∥ψ(t, u(t), g(t, u(t)))∥

≤ ∥u(t)∥+
(C1 + α2(t)

1 − α2(t)
∥u(t)∥+

β2(t)

1 − α2(t)
∥g(t, u(t))∥ (by (3.8))

≤
C1 + 1

1 − α2(t)
∥u(t)∥+

β2(t)

(1 − α2(t))(1 − γ(t))

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)
∥u(t)∥ (by (3.9))

≤
1

1 − α2(t)

[
C1 + 1 +

β2(t)

1 − γ(t)

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)]
∥u(t)∥.

In addition, α1(t) and β2(t) are bounded, supt∈[0,∞) α2(t) < 1 and supt∈[0,∞) γ(t) < 1, there

exists a constant K̄ such that

∥x(t)∥ ≤ K̄∥u(t)∥. (4.4)

Therefore, we obtain

∥x(t)∥ ≤ K̄∥u(t)∥ ≤ K̄M̃∥u(0)∥ ≤ K̄M̃∥Px(0)∥ ≤ K̄M̃∥P∥∥x(0)∥.

Thus, by setting M1 = K̄M̃∥P∥, we get

∥x(t)∥ < M1∥x(0)∥, for all t ∈ [0, ∞).

The proof of Theorem 4.1 is complete.

The boundedness of the solutions of DAE (2.1) implies that

Z(t) = etUT PE−1
1 AU = Z1(t) + Z2(t), (4.5)

where Z1(t) contains elements which are sums of exponential terms eiλjt for real λj and

∥Z1(t)∥ ≤ K1, −∞ < t < ∞, (4.6)

∥Z2(t)∥ ≤ K2e−σt, 0 ≤ t < ∞ (4.7)

for some σ > 0, where K1 and K2 are constants. From (4.5) and (2.10) we have

Y(t) = UZ(t) = UZ1(t) + UZ2(t). (4.8)
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Thus, the fundamental matrix X(t) of equation (2.1) can be decomposed as

X(t) = X1(t) + X2(t), (4.9)

where

X1(t) = (I + QE−1
1 A)UZ1(t), X2(t) = (I + QE−1

1 A)UZ2(t).

Therefore, the estimates

∥X1(t)∥ ≤ K1, −∞ < t < ∞, (4.10)

∥X2(t)∥ ≤ K2e−σt, 0 ≤ t < ∞ (4.11)

hold for some positive constants σ > 0, K1 and K2.

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied. Moreover, let α2(t) → 0 and β2(t) → 0

as t → ∞ hold. Then, for any solution x of (1.1), there is a constant vector p ∈ Rd such that

x(t)− X1(t)p → 0 as t → ∞.

Proof. Given a solution x, let us define u, v and w as above. By Proposition 2.6, there exists a

constant vector p ∈ Rd such that

lim
t→∞

[w(t)− Z1(t)p] = 0

i.e.,

lim
t→∞

[u(t)− UZ1(t)p] = 0,

where u(t) is a solution of (3.12).

On the other hand, the solution of (1.1) of the form x(t) = u(t)+ψ(t, u(t), g(t, u(t))). Thus,

we obtain

x(t)− X1(t)p = u(t) + ψ(t, u(t), g(t, u(t)))− (I + QE−1
1 A)UZ1(t)p

= u(t) + QE−1
1 Au(t) + QE−1

1 f (t, u(t) + ψ(t, u(t), g(t, u(t))), g(t, u(t)))

− (I + QE−1
1 A)UU1(t)p

= (I+QE−1
1 A)[u(t)−UZ1(t)p]+QE−1

1 f (t, u(t)+ψ(t, u(t), g(t, u(t))), g(t, u(t))).

Therefore, we have the following inequality

∥x(t)− X1(t)p∥ ≤ ∥(I + QE−1
1 A)(u(t)− UZ1(t)p)∥

+ ∥QE−1
1 f (t, u(t) + ψ(t, u(t), g(t, u(t))), g(t, u(t)))∥.

Moreover, we have the following estimate

∥QE−1
1 f (t, u(t) + ψ(t, u(t), g(t, u(t))), g(t, u(t)))∥

≤ α2(t)∥u(t) + ψ(t, u(t), g(t, u(t)))∥+ β2(t)∥g(t, u(t))∥

≤ α2(t)

(
∥u(t)∥+

C1 + α2(t)

1 − α2(t)
∥u(t)∥

)
+

α2(t)β2(t)

1 − α2(t)
∥g(t, u(t))∥+ β2(t)∥g(t, u(t))∥

≤
(C1 + 1)α2(t)

1 − α2(t)
∥u(t)∥+

β2(t)

1 − α2(t)
∥g(t, u(t))∥

≤
(C1 + 1)α2(t)

1 − α2(t)
∥u(t)∥+

β2(t)

1 − α2(t)

1

1 − γ(t)

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)
∥u(t)∥

≤

[
(C1 + 1)α2(t)

1 − α2(t)
+

β2(t)

1 − α2(t)

1

1 − γ(t)

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)]
∥u(t)∥

≤ K(t)∥u(t)∥,
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where

K(t) =
(C1 + 1)α2(t)

1 − α2(t)
+

β2(t)

1 − α2(t)

1

1 − γ(t)

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)
.

Since limt→∞ α2(t) = 0, limt→∞ β2(t) = 0, we have limt→∞ K(t) = 0. Thus, we obtain

∥x(t)− X1(t)p∥ ≤ ∥I + QE−1
1 A∥∥u(t)− UZ1(t)p∥+ K(t)∥u(t)∥ → 0

as t → ∞, because u(t) is bounded for t ≥ 0. The proof of Theorem 4.2 is complete.

Theorem 4.3. Let the assumptions in Theorem 3.1 be satisfied and let

∫ t+1

t
α1(s)ds → 0,

∫ t+1

t
β1(s)ds → 0 as t → ∞. (4.12)

Furthermore f (t, 0, 0) = 0. Suppose that x is a bounded solution of (1.1). Then, either

i) the limit

lim
t→∞

ln ∥x(t)∥

t

exists and is equal to the real part of one of the eigenvalues of the pencil matrix {E, A}, or

ii) x(t) = 0 for all large t.

Proof. Since f (t, 0, 0) = 0, equation (1.1) has the trivial solution. We consider again the EUODE

(4.2), where ∥UT g̃(t, Uw(t))∥ ≤ γ̃(t)∥w(t)∥ and
∫ t+1

t γ̃(s)ds → 0 as t → ∞. By Theorem

2.7, the solution w(t) of (4.2) satisfies either the limit limt→∞

ln ∥w(t)∥
t exists and is equal to the

real part of one of the eigenvalues of the matrix N = UTPE−1
1 AU, or w(t) = 0 for all large t.

Therefore, the solution u(t) of (3.12) which satisfies either the limit limt→∞

ln ∥u(t)∥
t exists and

is equal to the real part of one of the finite eigenvalues of the matrix pencil {E, A} or u(t) = 0

for all large t.

On the other hand, from x(t) = u(t) + ψ(t, u(t), g(t, u(t))) it follows that the following

estimate holds:

∥x(t)∥ ≤ ∥u(t)∥+ ∥ψ(t, u(t), g(t, u(t)))∥

≤ ∥u(t)∥+
C1 + α2(t)

1 − α2(t)
∥u(t)∥+

β2(t)

1 − α2(t)
∥g(t, u(t)))∥

≤
C1 + 1

1 − α2(t)
∥u(t)∥+

1

1 − γ(t)

β2(t)

1 − α2(t)

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)
∥u(t)∥

≤
1

1 − α2(t)

[
1 + C1 +

β2(t)

1 − γ(t)

(
C2 +

(C1 + 1)α1(t)

1 − α2(t)

)]
∥u(t)∥.

Put supt∈[0,∞) αi = ai, sup
t∈[0,∞)

βi = bi, i = 1, 2. We obtain the following inequality

∥x(t)∥ ≤ K̃∥u(t)∥, t ≥ 0, (4.13)

where

K̃ =
1

1 − a2

[
C1 + 1 +

b2

1 − a1b2
1−a2

− b1

(
C2 +

(C1 + 1)a1

1 − a2

)]
.

Obviously, if u(t) = 0 for all large t then x(t) = 0 for all t ≥ 0, too. Otherwise, from the

inequality (4.13) it follows that

lim
t→∞

ln ∥x(t)∥

t
≤ lim

t→∞

ln ∥u(t)∥

t
. (4.14)
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Moreover, we have

∥u(t)∥ = ∥Px(t)∥ ≤ ∥P∥∥x(t)∥, ∀t ≥ 0.

Therefore, we obtain

lim
t→∞

ln ∥u(t)∥

t
≤ lim

t→∞

ln ∥x(t)∥

t
. (4.15)

Thus, from (4.14) and (4.15), we have

lim
t→∞

ln ∥x(t)∥

t
= lim

t→∞

ln ∥u(t)∥

t
.

By Theorem 2.7 and Lemma 2.3, we conclude that the limit limt→∞

ln ∥x(t)∥
t exists and it is equal

to the real part of one of the eigenvalues of the matrix pencil {E, A}. The proof of Theorem 4.3

is complete.

Remark 4.4. As a special case, if the nonlinear term f does not involve the derivative term x′,

i.e., DAE (1.1) becomes

Ex′(t) = Ax(t) + f (t, x), t ∈ I, (4.16)

then the situation is simpler and the assumptions in Theorem 3.1 can be significantly simpli-

fied. Namely, instead of (3.4) and (3.5), we assume

∥PE−1
1 f (t, x)− PE−1

1 f (t, x̄)∥ ≤ α1(t)∥x − x̄∥,

∥QE−1
1 f (t, x)− QE−1

1 f (t, x̄)∥ ≤ α2(t)∥x − x̄∥
(4.17)

for all t ≥ 0 and x, x̄ ∈ Cn, αi(t) are non-negative bounded functions (i = 1, 2) such that

supt∈[0,∞) α2(t) < 1. Furthermore, all the results in Section 4 can be stated analogously under

appropriately reduced assumptions for f (t, x), too.

5 Discussion

In this paper we have studied the asymptotic behavior of solutions for quasilinear DAEs,

where the linear part is a DAE of index one and the nonlinearity is assumed to be small

in some sense. As the main results, we have shown that any non-vanishing, bounded solu-

tion has the strict Lyapunov exponent which coincides with one of the Lyapunov exponents

of the linear system. Since the coefficients of the linear system are constant, one might use

alternatively the more simple Kronecker–Weierstraß decomposition or the Singular Value De-

composition as in [12] for decoupling. However, these tools will not work for time-varying

systems, in general. Here we prefer using the projector-based approach because as a future

problem, we want to use this approach to extend the results to quasilinear DAEs whose linear

part is time-varying. The derivative should be properly stated as in [10]. This problem expects

more technical difficulties since the Lyapunov spectrum of a linear time-varying system may

be unstable under infinitesimally small perturbations.

Acknowledgment

We thank the anonymous referee for useful comments that led to improvements of the paper.

This work is dedicated to the memory of our coauthor Nguyen Ngoc Tuan, who passed away

tragically young during the preparation of the first draft when he was a doctoral student.



Asymptotic behavior of solutions of quasilinear DAEs 15

References

[1] L. Ya. Adrianova, Introduction to linear systems of differential equations, Trans. Math. Mono-

graphs, Vol. 146, AMS, Providence, RI, 1995. https://doi.org/10.1090/mmono/146;

MR1351004; Zbl 0844.34001

[2] L. Barreira, C. Valls, A Perron-type theorem for nonautonomous differential equations,

J. Differential Equations 258(2015), 339–361. https://doi.org/10.1016/j.jde.2014.09.

012; MR3274761; Zbl 1312.34089

[3] T. Berger, Robustness of stability of time-varying index-1 DAEs, Math. Control Signals

Systems, 26(2014), 403–433. https://doi.org/10.1007/s00498-013-0123-5; MR3245921;

Zbl 1294.93066

[4] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical solution of initial-value problems

in differential-algebraic equations, SIAM Publications, Philadelphia, PA, 2nd edition, 1996.

https://doi.org/10.1137/1.9781611971224; MR1363258; Zbl 0844.65058

[5] C. J. Chyan, N. H. Du, V. H. Linh, On data-dependence of exponential stability and the

stability radii for linear time-varying differential-algebraic systems, J. Differential Equa-

tions 245(2008), 2078–2102. https://doi.org/10.1016/j.jde.2008.07.016; MR2446186;

Zbl 1162.34004

[6] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill,

1955. MR0069338; ZB0064.33002

[7] W. A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston, 1965.

MR0190463; Zbl 0154.09301

[8] E. Griepentrog, R. März, Differential-algebraic equations and their numerical treatment,

Teubner Verlag, Leipzig, Germany, 1986. MR0881052; Zbl 0629.65080

[9] P. Kunkel, V. Mehrmann, Differential-algebraic equations. Analysis and numerical solu-

tion, EMS Publishing House, Zürich, Switzerland, 2006. https://doi.org/10.4171/017;

MR2225970; Zbl 1095.34004

[10] R. Lamour, R. März, C. Tischendorf, Differential-algebraic equations: a projector based

analysis, Springer, 2013. https://doi.org/10.1007/978-3-642-27555-5; MR3024597;

Zbl 1276.65045

[11] R. Lamour, R. März, R. Winkler, How Floquet theory applies to index 1 differential-

algebraic equations, J. Math. Anal. Appl. 217(1998), No. 2, 372–394. https://doi.org/10.

1006/jmaa.1997.5714; MR1492095; Zbl 0903.34002

[12] V. H. Linh, N. N. Tuan, Asymptotic integration of linear differential-algebraic equa-

tions, Electron. J. Qual. Theory Differ. Equ. 2014, No. 12, 1–17. https://doi.org/10.14232/

ejqtde.2014.1.12; MR3183610; Zbl 1324.34021

[13] V. H. Linh, R. März, Adjoint pairs of differential-algebraic equations and their Lyapunov

exponents, J. Dynam. Differential Equations 29(2017), No. 2, 655–684. https://doi.org/10.

1007/s10884-015-9474-6; MR3651604; Zbl 1382.34013



16 V. H. Linh, N. T. T. Nga and N. N. Tuan

[14] V. H. Linh, V. Mehrmann, Lyapunov, Bohl, and Sacker–Sell spectral intervals for

differential-algebraic equations, J. Dynam. Differential Equations 21(2009), 153–194. https:

//doi.org/10.1007/s10884-009-9128-7; MR2482013; Zbl 1165.65050

[15] V. H. Linh, V. Mehrmann, Approximation of spectral intervals and associated leading

directions for linear differential-algebraic equation via smooth singular value decompo-

sitions, SIAM J. Numer. Anal. 49(2011), 1810–1835. https://doi.org/10.1137/100806059;

MR2837485; Zbl 1235.65087

[16] R. März, Criteria for the trivial solution of differential-algebraic equations with small

nonlinearities to be asymptotically stable, J. Math. Anal. Appl. 225(1998), No. 2, 587–607.

https://doi.org/10.1006/jmaa.1998.6055; MR1644296; Zbl 0955.34003

[17] M. Pituk, A Perron type theorem for functional differential equations, J. Math. Anal. Appl.

316(2006), No. 1, 24–41. https://doi.org/10.1016/j.jmaa.2005.04.027; MR2201747;

Zbl 1102.34060

[18] C. Tischendorf, On the stability of solutions of autonomous index-1 tractable and quasi-

linear index-2 tractable DAEs, Circuits Systems Signal Process 13(1994), No 2–3, 139–154.

https://doi.org/10.1007/BF01188102; MR1259588; Zbl 0801.34005



Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 44, 1–19; https://doi.org/10.14232/ejqtde.2022.1.44 www.math.u-szeged.hu/ejqtde/

Existence of positive ground state solutions of critical

nonlinear Klein–Gordon–Maxwell systems

Liping Xu1 and Haibo ChenB 2

1Department of Mathematics and Statistics, Henan University of Science and Technology,
Luoyang 471003, P.R. China

2School of Mathematics and Statistics, Central South University, Changsha 410075, P.R. China

Received 7 March 2022, appeared 5 September 2022

Communicated by Dimitri Mugnai

Abstract. In this paper we study the following nonlinear Klein–Gordon–Maxwell sys-
tem

{

−∆u + [m2
0 − (ω + ϕ)2]u = f (u) in R

3,

∆ϕ = (ω + ϕ)u in R
3,

where 0 < ω < m0. Based on an abstract critical point theorem established by Jeanjean,
the existence of positive ground state solutions is proved, when the nonlinear term
f (u) exhibits linear near zero and a general critical growth near infinity. Compared
with other recent literature, some different arguments have been introduced and some
results are extended.

Keywords: Klein–Gordon–Maxwell system, general critical growth, positive ground
state solutions, variational methods.
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1 Introduction

This article is concerned with the following Klein–Gordon–Maxwell equations

{

−∆u + [m2
0 − (ω + ϕ)2]u = f (u) in R

3,

∆ϕ = (ω + ϕ)u in R
3,

(KGME)

where 0 < ω < m0. We assume that the followings hold for f :

( f1) f ∈ C(R, R) is odd;

( f2) lims→0
f (s)

s = −m < 0;

( f3) lim|s|→+∞

f (s)
s5 = K > 0;

BCorresponding author. Emails: x.liping@126.com (Liping Xu); math−chb@csu.edu.cn (Haibo Chen)
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( f4) there exist D > 0 and q ∈ (2, 6) such that f (s) + ms ≥ Ks5 + Dsq−1 for all s > 0;

( f5) there exists constant γ > 2 such that f (s)s − γF(s) ≥ 0 for all s ∈ R, where F(s) =
∫ s

0 f (t)dt.

This system is well known as a model describing the interaction between the nonlinear
Klein–Gordon field and the electrostatic field. The presence of nonlinear term f (u) simulates
the interaction between many particles or external nonlinear perturbations.

In recent years, there is large quality works devoted to the system (KGME), and we would
like to recall some of them. In a remarkable work, V. Benci and D. Fortunato [4] are the first
to study the following system

{

−∆u + [m2
0 − (ω + ϕ)2]u = |u|p−2u in R

3,

∆ϕ = (ω + ϕ)u in R
3,

(1.1)

using the variational method, the authors proved the existence of infinitely many radially
symmetric solutions when m0 > ω > 0 and 4 < q < 6. In [15, 16], D’Aprile and Mugnai con-
sidered the case 2 < p ≤ 4 and established some non-existence results for p > 6. Afterwards,
there are also more literatures focusing on the existence and multiplicity of solutions for the
problem (KGME). See [12, 13, 19] and the references therein.

There are some results related the critical case. In [11], Cassani considered the following
system with the critical term:

{

−∆u + [m2
0 − (ω + ϕ)2]u = µ|u|p−2u + |u|2

∗−2u in R
3,

∆ϕ = (ω + ϕ)u in R
3,

(1.2)

where µ > 0. He showed that system (1.2) possesses a radially symmetric solution under one
of the following conditions:

(i) 4 < p < 6 and |m0| > |ω|;

(ii) p = 4, |m0| > |ω| and µ large enough.

Soon afterwards, the authors of [9] studied the following critical Klein–Gordon–Maxwell sys-
tem with external potential:

{

−∆u + µV(x)u − (2ω + ϕ)ϕ2]u = λ f (u) + |u|5 in R
3,

∆ϕ = (ω + ϕ)u in R
3.

(1.3)

Provided f (u) satisfying assumptions:

( f ′2) lims→0
f (s)

s = 0;

( f ′3) lims→∞
f (s)
s5 = 0;

( f ′4)
1
4 f (u)u − F(u) ≥ 0.

They obtained a nontrivial solution for (1.3). For more related results, we refer the readers to
[3, 24].

The existence of ground state solutions, that is, couples (u, ϕ) which solve (KGME) and
minimize the action functional associated to (KGME) among all possible nontrivial solutions,
has been investigated by many authors. Inspired by the approach of Benci and Fortunato,
Azzollini and Pomponio [10] proved that (1.1) admits a ground state solution provided one of
the following assumptions:
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(i) 3 ≤ p < 5 and m0 > ω;

(ii) 1 < p < 3, m0
√

p − 1 > ω
√

6 − p.

Soon afterwards, Carrião et al. [22] dealt with the critical Klein–Gordon–Maxwell system
(1.2) with potentials. Combining the minimization of the corresponding Euler–Lagrange func-
tional on the Nehari manifold, they proved the existence of positive ground state solutions
for system (1.2). Very recently, Moura, Miyagaki et al. [14] considered quasicritical Klein–
Gordon–Maxwell systems with potential, and obtained positive ground state solutions. For
other related results about Klein–Gordon–Maxwell systems the authors maybe see [7, 17, 25].

Here we also mention that the papers [2, 6], Berestycki and Lions studied the following
elliptic equation

−∆u = f (u), u ∈ H1(RN). (1.4)

Under the following conditions on f (u):

(A1) f (u) ∈ C(R, R) is odd;

(A2) −∞ < lim infu→0+
f (u)

u ≤ lim supu→0+
f (u)

u = −m < 0 for N ≥ 3 and limu→0
f (u)

u =

−m < 0 for N = 2;

(A3) when N ≥ 3, −∞ < lim supu→∞

f (u)

u
N+2
N−2

≤ 0; when N = 2 for any α > 0, there exists

Cα > 0 such that f (u) ≤ Cα exp(αu2) for u > 0;

(A4) there exists ς > 0 such thatF(ς) =
∫ ς

0 f (s)ds > 0,

Berestycki and Lions [6] proved the existence of a positive least energy solution when N ≥ 3
and Berestycki et al. [2] investigated the existence of infinitely many bound state solutions
when N = 2. Under the above assumptions, Azzollini, d’Avenia and Pomponio [1] obtained
the existence of at least a radial positive solution to a class of Schrödinger–Poisson problems,
and Azzollini [28] proved the existence of ground state solutions for Kirchhoff-type problems,
and soon after Zhang and Zou [27] investigated the existence of ground state solutions of the
problem (1.4) with the critical growth assumption on f (u).

Under the assumptions ( f1)–( f5), Zhang [21] studied a class of Schrödinger–Poisson prob-
lems and established the existence of ground state solutions for q ∈ (2, 4] with D large enough,
or q ∈ (4, 6), where m = 0; Liu [20] considered a Kirchhoff-type problem and obtained the
existence of ground state solutions without ( f5).

Motivated by the above mentioned works, in particular by [9, 20, 21, 27], the main purpose
of this paper is to consider the existence of positive least energy solutions of (KGME) with
a general nonlinearity in the critical growth. To our best knowledge, under the assumptions
( f1)–( f5), there is no work on the the existence of positive ground state solutions for problem
(KGME). Precisely, we have the following results.

Theorem 1.1. If ( f1)–( f5) hold. Assume that either q ∈ (2, 4] with D sufficiently large, or q ∈ (4, 6),
then the problem (KGME) possesses a positive radial solution if one of the following conditions is

satisfied:

(i) 2 < γ < 3 and 0 < ω <

√

(γ − 2)(4 − γ)m0;

(ii) 3 ≤ γ < ∞ and 0 < ω < m0.
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Theorem 1.2. If ( f1)–( f5) hold. Assume that either q ∈ (2, 4] with D sufficiently large, or q ∈ (4, 6),
then the problem (KGME) possesses a positive ground state solution provided one of the following

conditions holds:

(i) 2 < γ < 3 and 0 < ω <

√

(γ − 2)(4 − γ)m0;

(ii) 3 ≤ γ < ∞ and 0 < ω < m0.

Theorem 1.3. If we replace the condition ( f5) by the following condition:

( f6) there exists γ > 2 such that t :→ f (x,t)
tγ−1 is increasing on (−∞, 0) and (0,+∞).

Then the conclusions of Theorems 1.1 and 1.2 remain true.

Remark 1.4. Assumptions ( f1)–( f4) were used by [20,21]. Since the problem in [20] is different
from ours, the methods used in [20] do not work here. The similar hypotheses on f (u) as
above ( f1)–( f5) are introduced in [21], where the authors used a cut-off functional to obtain
bounded (PS) sequences. However, our device is different from the main arguments of [21].
Moreover, the results of [21] hold under γ > 3, and in our case, γ > 2.

Remark 1.5. The condition ( f4) plays a crucial role to ensure the existence of ground state
solution to the problem (KGME). And the condition ( f5) is a technical condition to overcome
the difficulty caused by the critical exponential growth case.

In our paper, due to the presence of a nonlocal term ϕ and the effect of the nonlinearity
in the critical growth, there exist several difficulties to solve. In the first place, the lack of the
following Ambrosetti–Rabinowitz growth hypothesis on f :

∃ µ > 4 s. t. 0 < µF(s) ≤ s f (s), ∀t ∈ R

brings a obstacle in proving the boundedness of (PS) sequence. To overcome this difficulty,
we will use approaches developed by Jeanjean [23] to obtain the boundedness. In the next
place, since we deal with the critical case, the Sobolev embedding H1(R3) →֒ L6(R3) is not
compact, and the functional I does not satisfy (PS)c condition at every energy level c. To
avoid the difficulty, we try to pull the energy level down below some critical level c∗1 (Section
3). In the end, we apply the Strauss’ compactness result [5] to obtain the convergence of (PS)c

sequence.
An outline of the paper is as follows. In Section 2, we give some preliminary lemmas.

Section 3 is devoted to the existence of the mountain pass solution and positive ground
state solution. Throughout the paper we denote by C the various positive constants. Let
D1,2(R3) = {u ∈ L6(R3) : ∇u ∈ L2(R3)} be the Sobolev space equipped with the norm

∥u∥2
D1,2 =

∫

R3 |∇u|2dx. S = inf
u∈D1,2(R3)\{0}

∫

R3 |∇u|2dx

(
∫

R3 |u|6dx)
1
3

denotes the best Sobolev constant.

2 Preliminaries

In this section we give notations and prove some preliminary lemmas. Let us define an
equivalent norm on H1(R3), that is

∥u∥2 =
∫

R3
(|∇u|2 + mu2)dx for fixed m > 0.
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For any 1 ≤ s < ∞, we denote that Ls(R3) is the usual Lebesgue space endowed with the
norm ∥u∥s

Ls =
∫

R3 |u|sdx. Then we have that, for 2 ≤ s ≤ 2∗, H1(R3) →֒ Ls(R3) continuously.
Let H := H1

r (R
3) := {u ∈ H1(R3) | u is radial functions}. Then H →֒ Ls(R3) is compact for

2 < s < 2∗.
According to the variational nature of (KGME), we define its the energy functional as

follows:

Φ(u, ϕ) =
1
2

∫

R3
(|∇u|2 − |∇ϕ|2 + [m2

0 − (ω + ϕ)2]u2)dx −
∫

R3
F(u)dx. (2.1)

Under the assumptions ( f1)–( f2), by standard arguments, we can prove that Φ(u, ϕ) is a
well defined C1 function on H1(R3) × D1,2(R3) and that the weak solutions of (KGME) is
critical points of the functional Φ. Obviously, the functional Φ is the strongly indefiniteness,
which means that it is unbounded both from below and from above on infinite-dimensional
subspaces. In order to avoid this indefiniteness, we apply the reduction method developed by
Benci and Fortunato [8]. For deducing our results, we introduce the following results whose
idea of proof comes from [15, 16].

Lemma 2.1. For any u ∈ H1(R3), there is a unique ϕ = ϕu ∈ D1,2(R3) which satisfies the following

equation

−∆ϕ + ϕu2 = −ωu2. (2.2)

Furthermore the map Ψ : u ∈ H1(R3) → ϕu ∈ D1,2(R3) is continuously differentiable and

(i) in the set {x : u(x) ̸= 0}, for ω > 0,

−ω ≤ ϕ ≤ 0;

(ii) ∥ϕu∥D1,2 ≤ C∥u∥2 and
∫

R3 |ϕu|u2dx ≤ C∥u∥4
12
5

.

Multiplying (2.2) by ϕu and integrating by parts, we obtain
∫

R3
|∇ϕu|

2dx = −
∫

R3
u2ϕ2

udx −
∫

R3
ωu2 ϕudx. (2.3)

Lemma 2.2. If un ⇀ u in H1(R3), then, up to subsequence, ϕun ⇀ ϕu in D1,2(R3). As a conse-

quence, Ψ′(un) → Ψ′(u) in the sense of distributions.

By the definition of Φ and (2.3) the functional I(u) = Φ(u, ϕ) may be rewritten as the
following form

I(u) =
1
2

∫

R3
(|∇u|2 + (m2

0 − ω2)u2 − ωϕuu2)dx −
∫

R3
F(u)dx. (2.4)

In view of Lemmas 2.1 and 2.2, the conditions ( f1)–( f3) imply I(u) ∈ C1 and its Gateaux
derivative is

⟨I′(u), v⟩ =
∫

R3
[∇u∇v + (m2

0 − ω2)uv − (2ω + ϕu)ϕuuv]dx −
∫

R3
f (u)vdx (2.5)

for all u, v ∈ H. Then (u, ϕ) is a weak solution of (KGME) if and only if ϕ = ϕu and u is a
critical point of I on H.
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For simplicity, in this paper we may assume that K = 1. Set g(t) = f (t) + mt, so the
functional I is reduced as

I(u) =
1
2
∥u∥2 +

1
2

∫

R3
(m2

0 − ω2)u2dx −
1
2

∫

R3
ωϕuu2dx −

∫

R3
G(u)dx, (2.6)

where G(s) =
∫ s

0 g(t)dt. In the following we give the abstract result established by Jeanjean
[23].

Lemma 2.3. Let (X, ∥ · ∥) be a Banach space and h ⊂ R+ an interval. Consider the family of C1

functionals on X

Jλ(u) = A(u)− λB(u), λ ∈ h

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ∥u∥ → ∞ and such that Jλ(0) = 0.

For any λ ∈ h, we set

Γλ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) < 0}.

If for every λ ∈ h the set Γλ is nonempty and

cλ = inf
γ∈Γλ

max
t∈[0,1]

Jλ(γ(t)) > 0.

Then for every almost λ ∈ h there is a sequence {un} ⊂ X such that

(i) {un} is bounded;

(ii) Jλ(un) → cλ;

(iii) J′λ(un) → 0 in the dual X−1 of X.

In our case, X = H, h = [ 1
2 , 1],

A(u) =
1
2
∥u∥2 +

1
2

∫

R3
(m2

0 − ω2)u2dx −
1
2

∫

R3
ωϕuu2dx, B(u) =

∫

R3
G(u)dx,

and so the family of functionals we study is

Iλ(u) =
1
2
∥u∥2 +

1
2

∫

R3
(m2

0 − ω2)u2dx −
1
2

∫

R3
ωϕuu2dx − λ

∫

R3
G(u)dx. (2.7)

and for every u, v ∈ H,

⟨I′λ(u), v⟩ =
∫

R3
(∇u∇v + muv)dx +

∫

R3
(m2

0 − ω2)uvdx

−
∫

R3
(2ω + ϕu)ϕuuvdx − λ

∫

R3
g(u)vdx. (2.8)

We shall use the following Pohožaev type identity. Its proof can be done as in [16].

Lemma 2.4. For λ ∈ [ 1
2 , 1], let u ∈ H be a critical point of Iλ, then

Pλ(u) :=
1
2

∫

R3
|∇u|2dx +

3
2

∫

R3
mu2dx +

3
2

∫

R3
(m2

0 − ω2)u2dx

−
1
2

∫

R3
(5ω + 2ϕu)ϕuu2dx − 3λ

∫

R3
G(u)dx = 0.

If λ = 1, the above Pohožaev equality turns to be the following

P(u) :=
1
2

∫

R3
|∇u|2dx +

3
2

∫

R3
mu2dx +

3
2

∫

R3
(m2

0 − ω2)u2dx

−
1
2

∫

R3
(5ω + 2ϕu)ϕuu2dx − 3

∫

R3
G(u)dx = 0.
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Next we shall cite a variant of the Strauss compactness result [5], which plays a fundamen-
tal tool in our arguments:

Lemma 2.5. Let P and Q : R → R be two continuous functions satisfying

lim
s→∞

P(s)

Q(s)
= 0.

Let {vn}n, v and ψ be measurable functions from R
N to R, with z bounded, such that

sup
n

∫

RN
|Q(vn(x))|ψdx < ∞,

P(vn(x)) → v(x) a.e. in R
N , as n → +∞.

Then for any bounded Borel set B one has ∥(P(vn)− v)ψ∥L1(B) → 0. Moreover, if

lim
s→0

P(s)

Q(s)
= 0,

lim
|x|→+∞

sup
n

|vn(x)| = 0,

then

∥(P(vn)− v)ψ∥L1(RN) → 0 as n → ∞.

3 Proof of main results

In this section we will look for a positive ground state solutions of (KGME). First, we will
prove the existence of a mountain pass solution. Now, we give several lemmas which imply
that Iλ satisfies the conditions of Lemma 2.3.

Lemma 3.1. Assume that ( f1)–( f4) hold. Then

(i) Γλ ̸= ∅ for every λ ∈ h;

(ii) there exists a constant c̃ such that cλ ≥ c̃ > 0.

Proof. (i) For any λ ∈ h, it follows from Lemma 2.1, (2.7) and ( f4) that

Iλ(u) ≤
1
2
∥u∥2 +

1
2

∫

R3
(m2

0 − ω2)u2dx −
1
2

∫

R3
ωϕuu2dx −

1
12

∫

R3
|u|6dx −

D

2q

∫

R3
|u|qdx.

Then

Iλ(tu) ≤
1
2

t2∥u∥2 +
1
2

t2
∫

R3
m2

0u2dx −
1

12
t6

∫

R3
|u|6dx −

D

2q
tq

∫

R3
|u|qdx.

Then we can choose t0 > 0 large and u ∈ H\{0} such that Iλ(t0u) < 0 for every λ ∈ h. Define
γ1 : [0, 1] → H in the following way

γ1(t) = tt0u, 0 ≤ t ≤ 1.

It is easy to see γ1 a continuous path from t0u. Moreover, for every λ ∈ h, Iλ(γ1(1)) < 0 and
Iλ(γ1(0)) = 0. The proof is completed.
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(ii) Using ( f1)–( f3), for any ε > 0 there exists Cε > 0 such that |g(u)| ≤ ε|u|+ Cε|u|5. Then by
Sobolev’s embedding theorem, one has

Iλ(u) ≥
1
2
∥u∥2 −

ε

2

∫

R3
|u|2dx −

Cε

6

∫

R3
|u|6dx ≥

m − ε

2m
∥u∥2 −

CCε

6
∥u∥6.

For fixed ε ∈ (0, m), there exists c̃ > 0 such that Iλ(u) ≥ c̃ > 0 for any λ ∈ h and u ∈ H with
∥u∥ = ρ small enough. Now fix λ ∈ h and γ ∈ Γλ. Since γ(0) = 0 and Iλ(γ(1)) < 0, certainly
∥γ(1)∥ > ρ. By continuity, we deduce that there exists tγ ∈ (0, 1) such that ∥γ(tγ)∥ = ρ.
Therefore for every λ ∈ h

cλ ≥ inf
γ∈Γλ

Iλ(γ(tγ)) ≥ c̃ > 0,

which implies (ii) of Lemma 3.1.

It follows from Lemma 3.1 that the conclusions of Lemma 2.3 hold.

Lemma 3.2. Assume that ( f1)–( f4) hold. If q ∈ (4, 6) or q ∈ (2, 4] with D is large enough, then

cλ < c∗λ := 1
3 λ− 1

2 S
3
2 .

Proof. For ε, r > 0, define uε(x) = φ(x)ε
1
4

(ε+|x|2)
1
2

, where φ ∈ C∞
0 (B2r(0)), 0 ≤ φ ≤ 1 and φ|Br(0) ≡ 1.

And it is well known that the best Sobolev constant S is attained by the functions ε
1
4

(ε+|x|2)
1
2

.

Direct calculation yields that
∫

R3
|∇uε|

2dx = K1 + O(ε
1
2 ),

∫

R3
|uε|

6dx = K2 + O(ε
3
2 ) (3.1)

and

∫

R3
|uε|

tdx =















Kε
t
4 , t ∈ [2, 3),

Kε
3
4 |lnε|, t = 3,

Kε
6−t

4 , t ∈ (3, 6),

(3.2)

where K1, K2, K are positive constants. Moreover, S = K1K
− 1

3
2 . Using (3.1) and (3.2), we have

∫

R3 |∇uε|2dx

(
∫

R3 u6
ε dx)

1
3

= S + O(ε
1
2 ).

Set

g(t) =
1
2

t2∥uε∥
2 +

1
2

t2(m2
0 − ω2)

∫

R3
|uε|

2dx −
λ

6
t6

∫

R3
|uε|

6dx.

It is easy to see that g(t) attains its maximum at t0 = [
∥uε∥2+(m2

0−ω2)
∫

R3 |uε|2dx
λ
6

∫

R3 |uε|6dx
]

1
4 and then

max
t≥0

g(t) =
1
2

λ− 1
2

√

√

√

√[
∥uε∥2)

(
∫

R3 |uε|6dx)
1
3
]3 +

(m2
0 − ω2)∥uε∥4

∫

R3 |uε|2dx
∫

R3 |uε|6dx

+
1
2
(m2

0 − ω2)λ− 1
2

√

∥uε∥2(
∫

R3 |uε|2dx)4 + (m2
0 − ω2)(

∫

R3 |uε|2dx)6
∫

R3 |uε|6dx

−
λ− 1

2

6

√

√

√

√[
∥uε∥2 + (m2

0 − ω2)
∫

R3 |uε|2dx

(
∫

R3 |uε|6dx)
1
3

]3 =
1
3

λ− 1
2 S

3
2
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for ε > 0 small enough. Obviously, there exists 0 < t′ < 1 such that, for ε < 1, one has

max
t′≥t≥0

Iλ(tuε(x)) ≤ max
t′≥t≥0

(

1
2

t2∥uε∥
2 +

1
2
(m2

0 − w2)t2
∫

R3
|uε|

2dx + Ct2
∫

R3
|uε|

2dx

)

≤ Ct2∥uε∥
2
<

1
3

λ− 1
2 S

3
2 . (3.3)

Using ( f4), (2.7) and Lemma 2.1, one has

Iλ(tuε(x)) =
1
2

t2∥uε∥
2 +

1
2

t2
∫

R3
(m2

0 − ω2)u2
ε dx −

1
2

t2
∫

R3
ωϕtuε u

2
ε dx − λ

∫

R3
G(tuε)dx

≤
1
2

t2∥uε∥
2 +

1
2

t2
∫

R3
(m2

0 − ω2)u2
ε dx −

1
2

t2
∫

R3
ωϕtuε u

2
ε dx −

λ

6
t2

∫

R3
|uε|

6dx

−
λD

q

∫

R3
|uε|

qdx

= g(t)−
1
2

t2
∫

R3
ωϕtuε u

2
ε dx −

λD

q

∫

R3
|uε|

qdx

≤ g(t) + Ct2
∫

R3
|uε|

2dx − CDtq
∫

R3
|uε|

qdx. (3.4)

It follows from (3.4) and Lemma 3.1 that

lim
t→∞

Iλ(tuε(x)) = −∞ (3.5)

and

Iλ(tuε(x)) > 0 (3.6)

as t is close to 0. Now we prove that there exists 0 < ε0 < 1 such that limt→∞ Iλ(tuε(x)) < 0
uniformly in ε ∈ (0, ε0). Set

η(t) =
1
2

t2∥uε∥
2 +

1
2

t2(m2
0 − ω2)

∫

R3
|uε|

2dx −
1
2

t2
∫

R3
ωϕtuε u

2
ε dx

−
λ

6
t6

∫

R3
|uε|

6dx −
λD

q
tq

∫

R3
|uε|

qdx. (3.7)

Following from (3.5) and (3.6), (3.7) means that there exists tε > 0 such that η(tε) = 0 and for
t > tε, η(t) < 0. Then we get

0 = η(tε) = t2
ε

(

1
2
∥uε∥

2 +
1
2
(m2

0 − ω2)
∫

R3
|uε|

2dx −
1
2

∫

R3
ωϕtuε u

2
ε dx

−
λ

6
t4
ε

∫

R3
|uε|

6dx −
λD

q
t
q−2
ε

∫

R3
|uε|

qdx

)

, (3.8)

thus (3.1) and (3.2) mean that for ε ∈ (0, ε0)

λ

6
t4
ε ≤

1
∫

R3 |uε|6dx

[

1
2
∥uε∥

2 +
1
2
(m2

0 − ω2)
∫

R3
|uε|

2dx −
1
2

∫

R3
ωϕtuε u

2
ε dx

]

≤
1

∫

R3 |uε|6dx

[

1
2
∥uε∥

2 +
1
2
(m2

0 − ω2)
∫

R3
|uε|

2dx + C
∫

R3
|uε|

2dx

]

≤
1
2

K1 + O(ε
1
2 )

K2 + O(ε
3
2 )

+ O(ε
1
2 ) ≤

1
2

K1 + O(ε
1
2
0 )

K2
+ O(ε

1
2
0 ), (3.9)
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where ε0 is small enough. (3.9) implies that for some t∗ > 0, tε is bounded from above
uniformly for ε ∈ (0, ε0), where t∗ is independent of ε. Using (3.5) and (3.9) we easily get that
there exists 0 < ε0 < 1 such that limt→∞ Iλ(tuε(x)) < 0 uniformly in ε ∈ (0, ε0). Thus there
exists t

′′
> t∗ such that for ε ∈ (0, ε0),

max
t≥t

′′
Iλ(tuε) <

1
3

λ− 1
2 S

3
2 . (3.10)

It follows from (3.1), (3.2) and (3.4) that

max
t
′′≥t≥t

′
Iλ(tuε) ≤ g(t0) + C

∫

R3
|uε|

2dx − CD
∫

R3
|uε|

qdx

=
1
3

λ− 1
2 S

3
2 + O(ε

1
2 )− CD

∫

R3
|uε|

qdx.
(3.11)

For q ∈ (2, 4] and D sufficiently large, ε ∈ (0, ε0) fixed, we derive from (3.11) that

max
t
′′≥t≥t

′
Iλ(tuε) <

1
3

λ− 1
2 S

3
2 . (3.12)

For q ∈ (4, 6), observe that 6−q
4 <

1
2 , then it follows from (3.2) and (3.11) that, there exists

0 < ε1 < ε0 small enough such that for ε ∈ (0, ε1),

max
t
′′≥t≥t

′
Iλ(tuε) <

1
3

λ− 1
2 S

3
2 . (3.13)

It follows from (3.3), (3.10), (3.12) and (3.13) that cλ < c∗λ := 1
3 λ− 1

2 S
3
2 .

Lemma 3.3. Assume that ( f1)–( f3) and ( f5) hold. Let {uλ} be a critical point for Iλ(uλ) at level cλ.

Then Iλ(uλ) ≥ 0.

Proof. If γ ≥ 4 in ( f5), then it follows from ( f5), (2.7) and (2.8) that

Iλ(uλ) = Iλ(uλ)−
1
γ
⟨I′λ(uλ), uλ⟩

=

(

1
2
−

1
γ

)

∫

R3

[

|∇uλ|
2 + (m2

0 − ω2)u2
λ

]

dx

+
∫

R3

[(

2
γ
−

1
2

)

ωϕuλ
u2

λ +
1
γ

ϕ2
uλ

u2
λ

]

dx +
∫

R3

[

1
γ

f (uλ)uλ − F(uλ)

]

dx

≥

(

1
2
−

1
γ

)

∫

R3
|∇uλ|

2dx ≥ 0.

(3.14)
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Now, we consider 2 < γ < 4 in ( f5). By ( f5), (2.7) and (2.8) and Lemma 2.4, we obtain that

Iλ(uλ) = Iλ(uλ)−
2

6 − γ
⟨I′λ(uλ), uλ⟩ −

2 − γ

2(6 − γ)
Pλ(uλ)

= Iλ(uλ)−

{

∫

R3

1
2
|∇uλ|

2dx +
10 − 3γ

2(6 − γ)

∫

R3
(m2

0 − ω2)u2
λdx

−
∫

R3

[

18 − 5γ

2(6 − γ)
ωϕuλ

+
8 − 2γ

2(6 − γ)
ϕ2

uλ
u2

λ

]

dx

− λ

∫

R3

[

2
6 − γ

f (uλ)uλ +
6(2 − γ)

2(6 − γ)
F(uλ)

]

dx

}

=
γ − 2
6 − γ

∫

R3
(m2

0 − ω2)u2
λdx +

∫

R3

[

2(3 − γ)

6 − γ
ωϕuλ

+
4 − γ

6 − γ
ϕ2

uλ

]

u2
λdx

+
2

6 − γ
λ

∫

R3
[ f (uλ)uλ − γF(uλ)]dx.

(3.15)

Set h(t) = (4 − γ)t2 + 2(3 − γ)ωt. We distinguish two cases:

Case 1. 3 ≤ γ < 4 and 0 < ω < m0. In this case, one has

h(t) ≥ 0, ∀ − ω ≤ t ≤ 0. (3.16)

Note that −ω ≤ ϕuλ
≤ 0. From ( f5), (3.15), (3.16), we have

Iλ(uλ) ≥
γ − 2
6 − γ

∫

R3
(m2

0 − ω2)u2
λdx ≥ 0. (3.17)

Case 2. 2 < γ < 3 and 0 < ω <

√

(γ − 2)(4 − γ)m0. For ∀ − ω ≤ t ≤ 0, an elementary
computation means that

(γ − 2)(m0 − ω2) + h(t) = (γ − 2)(m0 − ω2) + (4 − γ)(t2 +
2(3 − γ)

4 − γ
ωt)

≥ (γ − 2)(m0 − ω2)−
(γ − 3)2

4 − γ
ω2

=
(γ − 2)(4 − γ)m2

0 − ω2

4 − γ
> 0.

(3.18)

Then from ( f5), (3.15) and (3.18), we get

Iλ(uλ) ≥
1

(6 − γ)(4 − γ)
[(γ − 2)(4 − γ)m2

0 − ω2]
∫

R3
u2

λdx ≥ 0. (3.19)

It follows from (3.14), (3.17) and (3.19) that Iλ(uλ) ≥ 0.

Lemma 3.4. Assume that ( f1)–( f5). For almost every λ ∈ [ 1
2 , 1], there is uλ ∈ H \ {0} such that

I′λ(uλ) = 0 and Iλ(uλ) = cλ.

Proof. By Lemma 2.3 and Lemma 3.1, for almost every λ ∈ [ 1
2 , 1], there exists a bounded (PS)

sequence {un} ⊂ H such that

Iλ(un) → cλ, I′λ(un) = 0 in H′, (3.20)
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where H′ is the dual space of H. Using Lemma 2.2, up to a subsequence, we can suppose that
there exists u ∈ H such that

un ⇀ uλ weakly in H,

un → uλ in Lp(R3), 2 < p < 6,

un → uλ a.e. in R
3,

ϕun ⇀ ϕuλ
weakly in D1,2(R3).

(3.21)

If we apply Lemma 2.5 for P(t) = g(t)− t5, Q(t) = t5,{vn}n = {un}n, v = g(uλ)− u5
λ and

ψ ∈ C∞
0 (R3). By ( f2)–( f4) and (3.21), we have

∫

R3
(g(un)− u5

n)ψdx →
∫

R3
(g(uλ)− u5

λ)ψdx. (3.22)

If we apply Lemma 2.5 for P(t) = F(t) + 1
2 mt2 − 1

6 t6 = G(t)− 1
6 t6, Q(t) = t2 + t6, {vn}n =

{un}n, v = F(uλ) +
1
2 mu2

λ − 1
6 u6

λ = G(uλ)−
1
6 u6

λ, and ψ = 1. By ( f2)–( f4) and (3.21), we have

∫

R3

(

G(un)−
1
6

u6
n

)

dx →
∫

R3

(

G(uλ)−
1
6

u6
λ)dx. (3.23)

Similarly, we also have
∫

R3
(g(un)un − u6

n)dx →
∫

R3
(g(uλ)uλ − u6

λ)dx. (3.24)

Introduce the notation Υ = Supp(ψ). Using (3.21) and the Sobolev inequality, one has
∣

∣

∣

∣

∫

R3
(ϕun u2

nψ − ϕuλ
u2

λψ)dx

∣

∣

∣

∣

≤
∫

R3
|ϕun ||u

2
n − u2

λ||ψ|dx +
∫

R3
|ϕun − ϕuλ

||uλ||ψ|dx

≤

(

∫

R3
|ϕun |

6dx

)
1
6
(

∫

Υ

|u2
n − u2

λ|
6
5 dx

)
5
6

sup |ψ|

+

(

∫

Υ

|ϕun − ϕuλ
|

6
5 dx

)
5
6
(

∫

Υ

|u2
λ|

6dx

)
1
6

sup |ψ| = o(1),

(3.25)

and
∣

∣

∣

∣

∫

R3
(ϕun unψ − ϕuλ

uλψ)dx

∣

∣

∣

∣

≤
∫

R3
|ϕun ||un − uλ||ψ|dx +

∫

R3
|ϕun − ϕuλ

||uλ||ψ|dx

≤

(

∫

R3
|ϕun |

6dx

)
1
6
(

∫

Υ

|un − uλ|
6
5 dx

)
5
6

sup |ψ|

+

(

∫

Υ

|ϕun − ϕuλ
|

6
5 dx

)
5
6
(

∫

Υ

|uλ|
6dx

)
1
6

sup |ψ| = o(1),

(3.26)

and
∣

∣

∣

∣

∫

R3
(ϕ2

un
unψ − ϕ2

uλ
uλψ)dx

∣

∣

∣

∣

≤
∫

R3
ϕ2

un
|un − uλ||ψ|dx +

∫

R3
|ϕ2

un
− ϕ2

uλ
||uλ||ψ|dx

≤

(

∫

R3
|ϕun |

6dx

)
1
6
(

∫

Υ

|un − uλ|
3
2 dx

)
2
3

sup |ψ|

+

(

∫

Υ

|ϕ2
un
− ϕ2

uλ
|

6
5 dx

)
5
6
(

∫

Υ

|uλ|
6dx

)
1
6

sup |ψ| = o(1).

(3.27)
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It follows from ⟨I′λ(un), ψ⟩ = 0, (3.21), (3.22), (3.26) and (3.27) that
∫

R3
(∇uλ∇ψ + muλψ + (m2

0 − w2)uλψ)dx −
∫

R3
(2w + ϕuλ

)ϕuλ
uλψdx

− λ

∫

R3
(g(uλ)ψ − u5

λψ)dx − λ

∫

R3
u5

λψdx = 0,

i.e. J′λ(uλ) = 0, where

Jλ(u) :=
1
2
∥u∥2 +

1
2

∫

R3
(m2

0 − ω2)u2dx −
1
2

∫

R3
ωϕuu2dx

− λ

∫

R3
(G(u)−

1
6

u6)dx −
λ

6

∫

R3
u6dx.

Set vn = un − uλ. Then vn ⇀ 0 in H. Following from the well-known Brezis–Lieb lemma [18],
we get

∥vn∥
2
2 = ∥un∥

2
2 − ∥uλ∥

2
2 + o(1),

∥∇vn∥
2
2 = ∥∇un∥

2
2 − ∥∇uλ∥

2
2 + o(1),

∥vn∥
6
6 = ∥un∥

6
6 − ∥uλ∥

6
6 + o(1).

(3.28)

Then, by Lemma 3.3, (3.24), (3.26), (3.27), (3.28), J′λ(un) = 0 and J′λ(uλ) = 0, we have

o(1) = ⟨J′λ(un), un⟩ − ⟨J′λ(uλ), uλ⟩

= ∥vn∥
2 + (m2

0 − ω2)∥vn∥
2
2 − λ

∫

R3
|vn|

6dx.
(3.29)

Up to a subsequence, we may assume that ∥vn∥2 + (m2
0 − ω2)∥vn∥2

2 → l ≥ 0. By (3.29),

λ
∫

R3 |vn|6dx → l. If l > 0, then the Sobolev embedding theorem means that S ≤
∫

R3 |∇vn|2dx

(
∫

R3 |vn|6dx)
1
3
≤

∥vn∥2+(m2
0−ω2)∥vn∥2

2

(
∫

R3 |vn|6dx)
1
3

, which implies that

l ≥ λ− 1
2 S

3
2 . (3.30)

By (3.20), (3.21), (3.23), (3.25) and (3.28), we get

cλ − Iλ(uλ) = Iλ(un)− Iλ(uλ) + o(1)

=
1
2
∥vn∥

2 +
1
2

∫

R3
(m2

0 − ω2)|vn|
2dx −

λ

6

∫

R3
|vn|

6dx + o(1).
(3.31)

Then, by (3.30)–(3.31), we have cλ − Iλ(uλ) =
1
3 l > 1

3 λ− 1
2 S

3
2 , by Lemma 3.3, which contradicts

with cλ − Iλ(uλ) <
1
3 λ− 1

2 S
3
2 since that Iλ(uλ) ≥ 0. Therefore, l = 0, i.e. ∥vn∥2 = o(1), hence

un → uλ in H. This completes Lemma 3.4.

Proof of Theorem 1.1. According to Lemma 3.4, there exists sequences {λn} ⊂ h with λn →

1, cλn
∈ (0, 1

3 λ
− 1

2
n S

3
2 ) and a sequence of {uλn

}, denoted by {un} such that Iλn
(un) = cλn

and
I′λn

(un) = 0. Next we show {un} is bounded. The proof will be developed in several steps:
Indeed, by Lemma 2.4, Iλn

(un) = cλn
and I′λn

(un) = 0, we have














1
2

∫

R3 |∇un|2dx + 3
2

∫

R3(m2
0 − ω2)u2

ndx − 1
2

∫

R3(5ω + 2ϕun)ϕun u2
ndx − 3λn

∫

R3 F(un)dx = 0,
1
2

∫

R3 [|∇un|2 + (m2
0 − ω2)u2

n − ωϕun u2]dx − λn

∫

R3 F(un)dx = cλn
≤ c 1

2
,

∫

R3 [|∇un|2 + (m2
0 − ω2)u2

n − (2ω + ϕun)ϕun u2
n]dx − λn

∫

R3 f (un)undx = 0.
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Step 1. If γ ≥ 4 in ( f5), then it follows from (3.14) that

c 1
2
≥ cλn

= Iλn
(un) = Iλn

(un)−
1
γ
⟨I′λn

(un), un⟩

≥

(

1
2
−

1
γ

)

∫

R3
[|∇uλ|

2 + (m2
0 − ω2)u2

λ]dx ≥ C∥un∥
2.

(3.32)

Thus, we deduce from (3.32) that {un} is bounded in H if γ ≥ 4.

Step 2. If 2 < γ < 4 in ( f5), we distinguish two cases:

Case 1. 3 ≤ γ < 4 and 0 < ω < m0. Following from (3.17), we have

c 1
2
≥ cλn

= Iλn
(un) ≥

γ − 2
6 − γ

∫

R3
(m2

0 − ω2)u2
ndx. (3.33)

Case 2. 2 < γ < 3 and 0 < ω <

√

(γ − 2)(4 − γ)m0. From (3.19), we have

c 1
2
≥ cλn

= Iλn
(uλ) ≥

1
(6 − γ)(4 − γ)

[(γ − 2)(4 − γ)m2
0 − ω2]

∫

R3
u2

ndx. (3.34)

Deriving from (3.33) and (3.34), we get the boundedness of ∥un∥2. Then by Lemma 2.1, one
has

0 ≤
∫

R3
−ωϕun u2

ndx ≤
∫

R3
ω2u2

ndx ≤ C. (3.35)

Thus from Lemma 2.4 and (3.35) we deduce that

c 1
2
≥ cλn

= Iλn
(un)−

1
6

Pλn
(un) =

1
3

∫

R3
|∇un|

2dx +
1
3

∫

R3
(ω + ϕun)ϕun u2

ndx

≥
1
3

∫

R3
|∇un|

2dx +
1
3

∫

R3
ωϕun u2

ndx ≥
1
3

∫

R3
|∇un|

2dx − C,

which means the boundedness of {∥∇un|2}. This completes the proof.

Note that I(un)= Iλn
(un)−(λn−1)

∫

R3 F(un)dx and I′(un)= I′λn
(un)−(λn−1)

∫

R3 f (un)undx.
By using the fact that the map λ → cλ is left-continuous (see [23]), λn → 1, the boundedness
of {un}, we can show that

lim
n→∞

I(un) = c1, lim
n→∞

I′(un) = 0.

Lemma 3.4 yields that there exists u0 ∈ H \ {0} being a critical point of I and I(u0) = c1. Set

I+(u) =
1
2
∥u∥2 +

1
2

∫

R3
(m2

0 − ω2)u2dx −
1
2

∫

R3
ωϕuu2dx

−

(

∫

R3
G(u)dx −

1
6

∫

R3
|u|6dx

)

−
1
6

∫

R3
|u+|6dx,

where u+ = max{u, 0}. Repeating all the calculations above word by word, there is nonzero
function u0 solving the equation

−∆u + (m2
0 − ω2)u + mu − ωϕuu = (g(u)− u5) + (u+)5. (3.36)
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Using u− = max{−u0, 0} as a text function and integrating (3.36) by parts, we obtain

0 =
∫

R3
(|∇u−

0 |
2 + m|u−

0 |
2 + (m2

0 − ω2)|u−
0 |

2)dx

−
∫

R3
ωϕu0 |u

−
0 |

2)dx −
∫

R3
(g(u0)− u5

0)u
−
0 dx.

(3.37)

We deduce from ( f1) and ( f4) that g(t)− t5 is an odd function and g(t)− t5
> 0 for t > 0. So

from (3.37) one has

0 =
∫

R3
(|∇u−

0 |
2 + m|u−

0 |
2 + (m2

0 − ω2)|u−
0 |

2)dx −
∫

R3
ωϕu0 |u

−
0 |

2)dx.

From Lemma 2.1, we obtain that u−
0 = 0 and u0 ≥ 0. Then u0 is a nonnegative solution of the

problem (KGME). Deducing from Harnack’s inequality (see [26]), we can obtain that u0 > 0
for all x ∈ R

3, and u0 is a positive critical point of the functional I(u). Then by Lemma 2.1, we
have ϕ = ϕu0 . From (2.1), (2.3) and (2.4) that (u0, ϕu0) is a positive solution of (KGME). The
proof is complete. In what follows, we prove the existence of a positive ground state solution
for the problem (KGME).

Proof of Theorem 1.2. Set m̃ := inf{I(u) : u ∈ H \ {0}, I′(u) = 0}. According to the argu-
ments as above, we know that 0 < m̃ ≤ c < c∗1 := 1

3 S
3
2 . By the definition of m̃, there exists a

sequence {un} ⊂ H such that un ̸= 0, I(un) → m̃ and I′(un) = 0. Similar to the arguments as
Step 1 and Step 2 in Theorem 1.1, we obtain the boundedness of {un} in H. Since I′(un) = 0,
we deduce from (2.3), (2.5), ( f1)–( f3) and the Sobolev embedding inequality that

∥un∥
2 =

∫

R3
(|∇un|

2 + m|un|
2 + (m2

0 − ω2)|un|
2)dx +

∫

R3
[2|∇ϕun |

2 + ϕ2
un

u2
n]dx

=
∫

R3
g(un)undx ≤ ε

∫

R3
(|un|

2 + |un|
6)dx,

and so, there exists C > 0 such that ∥un∥ ≥ C. Then we can claim that there exists σ > 0 such
that

lim
n→∞

sup
y∈R3

∫

B1(y)
|un|

2dx ≥ σ > 0. (3.38)

Otherwise, limn→∞ supy∈R3

∫

B1(y)
|un|2dx = 0. Using Lemma I.1 of [26], it follows that, for

2 < s < 6,
∫

R3 |un|sdx → 0 in Ls(R3). Using the same arguments as Lemma 3.4, we can obtain
m̃ ≥ c∗1 := 1

3 S
3
2 , which contradicts m̃ < c∗1 := 1

3 S
3
2 . Then (3.38) holds. Going if necessary to a

subsequence, by (3.37), we may assume the existence of yn ∈ R
3 such that

∫

B1(yn)
|un|

2dx ≥
σ

2
> 0.

Set vn(x) = un(x + yn). Then

∥vn∥ = ∥un∥,
∫

B1(0)
|vn|

2dx ≥
σ

2
> 0.

Since ϕun(x + yn) = ϕvn(x), by (2.4), (2.5), we have

I(vn) → m̃, I′(vn) = 0.
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From the boundedness of {un} in H, {vn} is also bounded. Then there exits v0 ̸= 0 such that
vn ⇀ v0 weakly in H. In view of Lemma 3.4, one can conclude that

⟨I′(v0), v0⟩ = 0, I(v0) ≥ m̃. (3.39)

On the other hand, we will prove that m̃ ≥ I(v0).
In fact, if γ ≥ 4 in ( f5), by (2.3), (2.5), (3.39) and Fatou’s lemma, one has

m̃ = lim
n→∞

{

I(vn)−
1
γ
⟨I′(vn), vn⟩

}

= lim
n→∞

{(

1
2
−

1
γ

)

∫

R3
[|∇vn|

2 + (m2
0 − ω2)v2

n]dx

+
∫

R3

[(

2
γ
−

1
2

)

ωϕvn v2
n +

1
γ

ϕ2
vn

v2
n

]

dx +
∫

R3

[

1
γ

f (vn)vn − F(vn)

]

dx

}

≥

(

1
2
−

1
γ

)

∫

R3
[|∇v0|

2 + (m2
0 − ω2)v2

0]dx

+
∫

R3

[(

2
γ
−

1
2

)

ωϕv0 v2
0 +

1
γ

ϕ2
v0

v2
0

]

dx +
∫

R3

[

1
γ

f (v0)v0 − F(v0)

]

dx

= I(v0)−
1
γ
⟨I′(v0), v0⟩ = I(v0).

(3.40)

If 2 < γ < 3 in ( f5) and 0 < ω <

√

(γ − 2)(4 − γ)m0 or 3 ≤ γ < 4 in ( f5) and 0 < ω < m0,
by (3.15) and Fatou’s lemma, one also has

m̃ = lim
n→∞

{

I(vn)−
2

6 − γ
⟨I′(vn), vn⟩ −

2 − γ

2(6 − γ)
P(vn)

}

= lim
n→∞

{

γ − 2
6 − γ

∫

R3
(m2

0 − ω2)v2
ndx +

∫

R3

[

2(3 − γ)

6 − γ
ωϕvn +

4 − γ

6 − γ
ϕ2

vn

]

v2
ndx

+
2

6 − γ
λ

∫

R3
[ f (vn)vn − γF(vn)]dx

}

≥
γ − 2
6 − γ

∫

R3
(m2

0 − ω2)v2
0dx +

∫

R3

[

2(3 − γ)

6 − γ
ωϕv0 +

4 − γ

6 − γ
ϕ2

v0

]

v2
0dx

+
2

6 − γ
λ

∫

R3
[ f (v0)v0 − γF(v0)]dx

= I(v0)−
2

6 − γ
⟨I′(v0), v0⟩ −

2 − γ

2(6 − γ)
P(v0) = I(v0).

(3.41)

Combining (3.39), (3.40) with (3.41), we derive that I(v0) = m̃ = inf{I(u) : u ∈ H \ {0}} >

0. Arguments as Theorem 1.1, we get v0 > 0. Thus, by Lemma 2.1, (2.1), (2.3) and (2.4),
(v0, ϕv0) ∈ H × D1,2(R3) is a positive ground state solution of problem (KGME). The proof is
complete.

Proof of Theorem 1.3. It is sufficient to prove ( f5). Indeed, by ( f6), whenever u > 0,

F(x, u) =
∫ 1

0
f (x, ut)udt =

∫ 1

0

f (x, ut)

(ut)γ−1 uγtγ−1dt ≤
∫ 1

0

f (x, u)

uγ−1 uγtγ−1dt =
1
γ

u f (u),
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and whenever u < 0,

F(x, u) =
∫ 1

0
f (x, ut)udt = −

∫ 1

0

f (x, ut)

(−ut)γ−1 (−u)γtγ−1dt

= −
∫ 1

0

f (x, ut)

|ut|γ−1 |u|
γtγ−1dt ≤ −

∫ 1

0

f (x, u)

|u|γ−1 |u|
γtγ−1dt =

1
γ

u f (u).

The above results mean ( f5) holds. The proof is complete.
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Abstract. For a large class of nonautonomous linear delay equations with distributed
delay, we obtain the equivalence of hyperbolicity, with the existence of an exponential
dichotomy, and Ulam–Hyers stability. In particular, for linear equations with constant
or periodic coefficients and with a simple spectrum these two properties are equivalent.
We also show that any linear delay equation with an exponential dichotomy and its
sufficiently small Lipschitz perturbations are Ulam–Hyers stable.
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1 Introduction

We consider delay equations with distributed delay with the objective of relating hyperbolicity
and Ulam–Hyers stability. More precisely, the aim of our work is twofold. In a first part, we
show that any linear delay equation with an exponential dichotomy and its sufficiently small
Lipschitz perturbations are Ulam–Hyers stable. We emphasize that we consider arbitrary
nonautonomous delay equations with distributed delay. In a second part, we obtain a converse
for a large class of linear equations by showing that hyperbolicity and Ulam–Hyers stability
are equivalent properties. This includes in particular linear delay equations with constant
coefficients, always with distributed delay, provided for example that the generator has a
simple spectrum. We also consider delay equations with periodic coefficients.

Before proceeding, we recall the notion of Ulam–Hyers stability for an autonomous delay
equation (the general nonautonomous case is analogous but is left for the main text). Let
|·| be a norm on Cn. Given r > 0, we denote by C = C([−r, 0], Cn) the Banach space of
all continuous functions φ : [−r, 0] → Cn equipped with the supremum norm ‖·‖. Now let
L : C → Cn be a bounded linear operator and let f : C → Cn be a continuous function. We say
that the equation

v′ = Lvt + f (vt), (1.1)

where vt(θ) = v(t + θ) for θ ∈ [−r, 0], is Ulam–Hyers stable if there exists κ > 0 such that for
each ε > 0 and each continuous function v : [−r,+∞) → Cn of class C1 on [0,+∞) (taking the

BCorresponding author. Email: barreira@math.tecnico.ulisboa.pt
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right-hand derivative at 0) satisfying

sup
t≥0

∣

∣v′(t)− Lvt − f (vt)
∣

∣ < ε,

there exists a solution w : [−r,+∞) → Cn of equation (1.1) satisfying

sup
t≥0

‖vt − wt‖ < κε

We detail briefly the origins and developments of Ulam–Hyers stability (sometimes the
names are reordered in the literature), particularly in the context of differential equations and
dynamical systems. Often it is also called Ulam–Hyers–Rassias stability. The concept goes
back to a question of Ulam [37] for functional equations. Hyers [17] soon gave a solution for a
particular functional equation and much later Rassias [34] made a considerable generalization
for a notion of stability that includes the one studied by Hyers as a particular case (we refer the
reader to the book [18] for details and for many additional references). The notion essentially
requires that if there exists an approximate solution of a differential equation, in the sense that
it satisfies the differential equation up to a certain error, then there exists an actual solution
that is sufficiently close to the approximate solution. For many developments of the theory
we refer the reader to the books [10, 20, 36] and the references therein.

The developments described above include in particular many works giving conditions
leading to Ulam–Hyers stability, both for linear and nonlinear differential equations, or even
that are equivalent to Ulam–Hyers stability for some classes of equations. The first to consider
Ulam–Hyers stability in the context of differential equations seem to have been Alsina and
Ger [1] (see [35] for a generalization). Further developments include for example the works
[6, 13, 14, 19, 32, 33] as well as related work for difference equations, such as [5, 11, 31]. There
are various other variants, including for integral equations, differential integral equations, im-
pulsive differential equations, and partial differential equations. There are also some works
for delay equations, such as [16, 21, 26, 27, 38], although to our best knowledge never for dis-
tributed delays and never considering the problem of whether hyperbolicity is equivalent to
Ulam–Hyers stability. These two aspects are precisely the main novelties of our work.

We are mainly interested in the relation between Ulam–Hyers stability and hyperbolicity.
The equivalence between these two properties, under some additional assumptions, has been
established in a few cases. Namely, this was established in [25] for differential equations with
constant coefficients and in [6] for differential equations with periodic coefficients. Related
results for discrete time were obtained, respectively, in [5] for constant coefficients and in [12]
for periodic coefficients. To the possible extent, and similarly also under some additional
assumptions, we want to obtain related results for delay equations. To our best knowledge,
no similar problem was considered before for delays equations.

Certainly, our work is related to all these works since we study similar properties, but the
techniques (either for delays equations or others) cannot be used in our work. This is due to
the fact that we consider distributed delays, for which in particular the variation of constants
formula requires extending some operators to a space of discontinuous functions. Moreover,
unlike in all former works concerning Ulam–Hyers stability for delay equations, which put
their emphasis on Lipschitz properties and then deduce the stability of the equation, our
emphasis is instead on the hyperbolicity of the linear part, which allows us in particular to
give a complete characterization of Ulam–Hyers stability for linear delay equations.

Incidentally, Ulam–Hyers stability can be described, equivalently, as the shadowing of ap-
proximate orbits and specifically as what is called Lipschitz shadowing (we refer the reader
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to the books [28, 29] for details and references). Nonetheless, the two theories first emerged
independently. Shadowing theory was mainly motivated by hyperbolic dynamics. In par-
ticular, Anosov’s closing lemma [2] shows how to shadow pseudo-orbits by periodic orbits.
The general shadowing theorem of Anosov [3] and Bowen [9] leads to the structural stability
of hyperbolic sets. On the other hand, it was shown by Pilyugin and Tikhomirov [30] that
the Lipschitz shadowing property of a diffeomorphism is equivalent to its structural stability.
These closing and shadowing results have important generalizations to nonuniformly hyper-
bolic systems. In particular, a closing lemma was proved by Katok in [22]. It is also a Lipschitz
shadowing result, although some applications require its sharper bounds. We refer the reader
to the book [7] for a detailed presentation of these results, but we refrain from giving further
references since our work concerns only delay equations (with continuous time).

In the remainder of the introduction we recall briefly the notion of hyperbolicity and we
formulate our main results in the particular case of autonomous delay equations. This allows
us to avoid some technicalities that are present in the general nonautonomous case and for
which we refer to the main text.

We consider an autonomous delay equation

v′ = Lvt, (1.2)

where L : C → Cn is a bounded linear operator. For each initial condition v0 = φ ∈ C,
equation (1.2) has a unique solution v on [−r,+∞). These solutions determine a semigroup
S(t) : C → C, for t ≥ 0, defined by

S(t)φ = vt(·, 0, φ) for φ ∈ C.

It is a strongly continuous semigroup with generator A : D(A) → C given by

Aφ := lim
tց0

S(t)φ − φ

t
= φ′

in the domain D(A) formed by all φ ∈ C such that φ′ ∈ C and φ′(0) = Lφ. It turns out that
the spectrum σ(A) is composed entirely of eigenvalues.

Now we can formulate prototypes of our results in the particular case of autonomous
equations (we refer to the main text for general results).

Theorem 1.1. If the spectrum σ(A) does not intersect the imaginary axis and the function f : C → Cn

satisfies
| f (φ)− f (ψ)| ≤ K‖φ − ψ‖ for all φ, ψ ∈ C,

then provided that K is sufficiently small the equation v′ = Lvt + f (vt) is Ulam–Hyers stable.

One can take f = 0 to obtain a result for the linear equation v′ = Lvt.

Theorem 1.2. For a linear equation v′ = Lvt, if the spectrum σ(A) does not intersect the imaginary
axis, then the equation is Ulam–Hyers stable.

We also consider the converse problem for a linear delay equation, among other results in
the main text. Again we consider here only autonomous delay equations.

Theorem 1.3. Assume that any λ ∈ σ(A) on the imaginary axis is a simple eigenvalue. Then the
equation v′ = Lvt is Ulam–Hyers stable if and only if the spectrum σ(A) does not intersect the
imaginary axis.
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In addition, we show that for differential difference equations of the form

v′ = A0v +
k

∑
i=1

Aiv(t − τi),

for some positive numbers τ1 < τ2 < · · · < τk and some n × n matrices Ai for i = 0, . . . , k, the
simplicity condition in Theorem 1.3 is an open condition.

A more general condition than the simplicity of the spectrum is considered in the main
text. It corresponds to assume that the Jordan form of each eigenvalue on the imaginary axis
is diagonal. We also consider equations with periodic coefficients and, using the version of
Floquet theory for delay equations, we obtain an appropriate version of the former theorem.

2 Preliminaries

In this section we recall a few notions and results from the theory of delay equations. This
includes the notions of an exponential dichotomy and of an exponential trichotomy. We refer
the reader to the books [8, 15] for details as well as proofs of all the results recalled in this
section.

2.1 Basic notions

Let |·| be a norm on Cn. Given r > 0 (the delay), we denote by C = C([−r, 0], Cn) the Banach
space of all continuous functions φ : [−r, 0] → Cn equipped with the supremum norm

‖φ‖ = sup
−r≤θ≤0

|φ(θ)|. (2.1)

We consider perturbations of a linear delay equation of the form

v′ = L(t)vt + g(t), (2.2)

writing vt(θ) = v(t + θ) for θ ∈ [−r, 0] and where:

1. L(t) : C → Cn, for t ≥ 0, are bounded linear operators such that the map t 7→ L(t) is
strongly continuous on [0,+∞) and

sup
t≥0

∫ t+1

t
‖L(τ)‖ dτ < +∞; (2.3)

2. g : [0,+∞) → Cn is a bounded continuous function, that is,

sup
t≥0

|g(t)| < +∞.

We recall that a map t 7→ L(t) is said to be strongly continuous on [0,+∞) if t 7→ L(t)φ is
continuous on [0,+∞) for each φ ∈ C. It follows from the uniform boundedness principle
and the strong continuity of the map t 7→ L(t) that

sup
τ∈[s,t]

‖L(τ)‖ < +∞ for all t > s. (2.4)
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Note that condition (2.3) holds for example when the map t 7→ L(t) is bounded and so in
particular when the operators L(t) are independent of t or are periodic in t.

A continuous function v : [s− r, a) → Cn with a ≤ +∞ is called a solution of equation (2.2) if

v(t) = v(s) +
∫ t

s
(L(τ)vτ + g(τ)) dτ for t ∈ [s, a). (2.5)

Since v is uniformly continuous on bounded intervals, the map τ 7→ vτ is continuous. This
implies that the function

h(τ) = L(τ)vτ + g(τ)

is also continuous. Indeed,

|h(τ)− h(τ)| ≤ |L(τ)vτ − L(τ)vτ|+ |g(τ)− g(τ)|

≤ |L(τ)(vτ − vτ)|+ |L(τ)vτ − L(τ)vτ|+ |g(τ)− g(τ)|

and the right-hand side converges to 0 when τ → τ, in view of (2.4) and the continuity of
the maps τ 7→ vτ, τ 7→ L(τ)vτ and g. Therefore, by (2.5), any solution of equation (2.2) is of
class C1 on [s, a) and satisfies

v′(t) = L(t)vt + g(t) for t ∈ [s, a),

taking the right-hand derivative at s. Moreover, it follows from standard results on the exis-
tence and uniqueness of solutions of a delay equation that equation (2.2) has a unique solution
on [s− r,+∞) for each initial condition vs = φ ∈ C. These solutions can be expressed in terms
of the variation of constants formula (which we recall in the following section).

2.2 Linear equations

Now we consider the particular case of a linear equation

v′ = L(t)vt, (2.6)

with the same hypotheses on the operators L(t) as before. Equation (2.6) determines an
evolution family T(t, s) : C → C, for t ≥ s ≥ 0, defined by

T(t, s)φ = vt(·, s, φ) for φ ∈ C, (2.7)

where v is the unique solution of equation (2.6) on [s − r,+∞) with vs = φ. One can easily
verify that indeed

T(t, s) = Id and T(t, τ)T(τ, s) = T(t, s)

for any t ≥ τ ≥ s ≥ 0. Moreover, one can show that

‖T(t, s)‖ ≤ exp
(

∫ t

s
‖L(τ)‖ dτ

)

for any t ≥ s ≥ 0 and so it follows from any of the properties (2.3) and (2.4) that each T(t, s)
is bounded.

It turns out that the linear operators T(t, s) can be extended to a certain space of discon-
tinuous functions. Let C0 be the set of all functions φ : [−r, 0] → Cn that are continuous on
[−r, 0) and for which the limit

φ(0−) = lim
θ→0−

φ(θ)
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exists. This is a Banach space when equipped with the supremum norm ‖·‖ in (2.1). We write
the linear operator L(t) : C → Cn as a Riemann–Stieltjes integral

L(t)φ =
∫ 0

−r
dη(t, θ)φ(θ) (2.8)

for some measurable map η : [0,+∞)× [−r, 0] → Mn, where Mn is the set of all n× n matrices
with complex entries, such that θ 7→ η(t, θ) has bounded variation and is left-continuous for
each t ≥ 0. We extend the linear operator L(t) to C0 using the integral in (2.8) (we continue to
denote the extension by L(t) since there is no danger of confusion). Finally, given t ≥ 0, we
define a linear operator T0(t, s) on the space C0 by

T0(t, s)φ = vt(·, s, φ) for φ ∈ C0,

where v is the unique solution of equation (2.6) on [s − r,+∞) with vs = φ.
By the variation of constants formula for delay equations, the unique solution v of equa-

tion (2.2) on [s − r,+∞) with vs = φ ∈ C satisfies

vt = T(t, s)φ +
∫ t

s
T0(t, τ)X0g(τ) dτ (2.9)

for all t ≥ s, where X0 : Cn → C0 is the linear operator defined by

(X0 p)(θ) =

{

0 if −r ≤ θ < 0,

p if θ = 0

for each p ∈ Cn. Identity (2.9) means that

v(t + θ) = (T(t, s)φ)(θ) +
∫ t+θ

s

(

T0(t, τ)X0g(τ)
)

(θ) dτ (2.10)

for all t ≥ s and θ ∈ [−r, 0] with t + θ ≥ s. In particular, this formula gives the solution v(t)
taking θ = 0.

2.3 Partial hyperbolicity

We say that the linear equation (2.6) has an exponential trichotomy if:

1. there exist projections P(t), Q(t), R(t) : C → C for t ≥ 0 satisfying

P(t) + Q(t) + R(t) = Id

such that for any t ≥ s ≥ 0 we have

P(t)T(t, s) = T(t, s)P(s), Q(t)T(t, s) = T(t, s)Q(s)

and
R(t)T(t, s) = T(t, s)R(s);

2. the linear operator

T(t, s) := T(t, s)|ker P(s) : ker P(s) → ker P(t) (2.11)

is onto and invertible for each t ≥ s ≥ 0;
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3. there exist µ, ν, D > 0 with µ < ν such that for any t ≥ s ≥ 0 we have

‖T(t, s)P(s)‖ ≤ De−ν(t−s), ‖T(t, s)Q(s)‖ ≥ D−1eν(t−s)

and
D−1e−µ(t−s) ≤ ‖T(t, s)R(s)‖ ≤ Deµ(t−s).

An exponential dichotomy is an exponential trichotomy with R(s) = 0 for some s ≥ 0 (and so
with R(s) = 0 for all s ≥ 0). For each t ≥ s ≥ 0 we denote the inverse of the operator T(t, s)
in (2.11) by

T(s, t) := T(t, s)−1 : ker P(t) → ker P(s).

The stable, unstable and center spaces of an exponential trichotomy (or of an exponential
dichotomy) at time t are defined, respectively, by

E(t) = P(t)(C), F(t) = Q(t)(C) and G(t) = R(t)(C).

Clearly,
C = E(t)⊕ F(t)⊕ G(t).

The unstable and center spaces are always finite-dimensional, with dimensions independent
of t (see for example [8, Chapter 10]). For each t ≥ 0 we define linear operators

P0(t), Q0(t), R0(t) : C
n → C0

by
Q0(t) = T(t, t + r)Q(t + r)T0(t + r, t)X0,

R0(t) = T(t, t + r)R(t + r)T0(t + r, t)X0

and
P0(t) = X0 − Q0(t)− R0(t).

Then
P0(t)p ∈ C0 \ C, Q0(t)p ∈ F ⊂ C and R0(t)p ∈ G ⊂ C

for each p ∈ Cn. The following result extends the exponential bounds of an exponential
trichotomy to the space C0.

Proposition 2.1. If condition (2.3) holds and equation (2.6) has an exponential trichotomy, then there
exist µ, ν, N > 0 such that for any t ≥ s ≥ 0 we have

‖T0(t, s)P0(s)‖ ≤ Ne−ν(t−s), ‖T(t, s)Q0(s)‖ ≥ N−1eν(t−s)

and
N−1e−µ(t−s) ≤ ‖T(t, s)R0(s)‖ ≤ Neµ(t−s).

Proposition 2.1 also holds for an exponential dichotomy, in which case we have R(s) = 0
for all s ≥ 0 and so also R0(s) = 0 for all s ≥ 0.

3 From hyperbolicity to Ulam–Hyers stability

In this section we establish the Ulam–Hyers stability of an arbitrary nonautonomous linear
delay equation with an exponential dichotomy and of its sufficiently small Lipschitz pertur-
bations.
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3.1 Basic notions

We first introduce the notion of Ulam–Hyers stability for a delay equation. We consider
general perturbations of a nonautonomous linear delay equation. Namely, we assume that:

1. L(t) : C → Cn, for t ≥ 0, are bounded linear operators such that the map t 7→ L(t) is
strongly continuous on [0,+∞) and (2.3) holds;

2. f : [0,+∞)× C → Cn is a continuous function.

We say that the equation
v′ = L(t)vt + f (t, vt) (3.1)

is Ulam–Hyers stable if there exists κ > 0 such that for each ε > 0 and each continuous function
v : [−r,+∞) → Cn of class C1 on [0,+∞) (taking the right-hand derivative at 0) satisfying

sup
t≥0

∣

∣v′(t)− L(t)vt − f (t, vt)
∣

∣ < ε, (3.2)

there exists a solution w : [−r,+∞) → Cn of equation (3.1) satisfying

sup
t≥0

‖vt − wt‖ < κε (3.3)

Before proceeding, we make a few comments on this notion of stability. We must assume
that each function v has derivative on [0,+∞) so that the supremum in (3.2) is well defined.
But in fact one can show that any solution of equation (3.1) is of class C1 on the interval [0,+∞)

(taking the right-hand derivative at 0). Indeed, let w be any solution of the equation and
consider the continuous function g(t) = f (t, wt). Then, as detailed in Section 2.1, any solution
of equation (2.2) is of class C1 on the interval [0,+∞) (taking the right-hand derivative at 0).
But the function w is a solution of this equation, which thus gives the desired result. On the
other hand, this also motivates assuming that the function v in (3.2) is of class C1 on [0,+∞).

3.2 Linear case

The following theorem is our first result relating Ulam–Hyers stability and hyperbolicity.
It considers the particular case of a nonautonomous linear equation (2.6) and shows that the
existence of an exponential dichotomy yields the Ulam–Hyers stability of the equation. The
proof has the advantage of being more direct than in the general nonlinear case since we
construct explicitly the function w in (3.3).

Theorem 3.1. If the equation v′ = L(t)vt has an exponential dichotomy, then it is Ulam–Hyers stable.

Proof. Take ε > 0 and a continuous function v : [−r,+∞) → Cn of class C1 on the interval
[0,+∞) satisfying

sup
t≥0

|v′(t)− L(t)vt| < ε.

Consider the continuous function g : [0,+∞) → Cn given by

g(t) = v′(t)− L(t)vt.

Note that supt≥0|g(t)| < ε. For each t ≥ 0 let

w(t) = v(t)−
∫ t

0

(

T0(t, τ)P0g(τ)
)

(0) dτ +
∫ +∞

t

(

T(t, τ)Q0g(τ)
)

(0) dτ.



Stability of delay equations 9

Then for any t ≥ 0 and θ ∈ [−r, 0] with t + θ ≥ 0 we have

wt(θ) = vt(θ)−
∫ t+θ

0

(

T0(t + θ, τ)P0g(τ)
)

(0) dτ +
∫ +∞

t+θ

(

T(t + θ, τ)Q0g(τ)
)

(0) dτ

= vt(θ)−
∫ t+θ

0

(

T0(t, τ)P0g(τ)
)

(θ) dτ +
∫ +∞

t+θ

(

T(t, τ)Q0g(τ)
)

(θ) dτ.

This can be written in the form

wt = vt −
∫ t

0
T0(t, τ)P0g(τ) dτ +

∫ +∞

t
T(t, τ)Q0g(τ) dτ, (3.4)

in a similar manner to that in (2.10). It follows from Proposition 2.1 that
∫ t

0
‖T0(t, τ)P0g(τ)‖ dτ ≤ sup

s≥0
|g(s)|

∫ t

0
Ne−ν(t−τ) dτ

= sup
s≥0

|g(s)|
N(1 − e−νt)

ν
<

Nε

ν

and, similarly,
∫ +∞

t
‖T(t, τ)Q0g(τ)‖ dτ ≤ sup

s≥0
|g(s)|

N
ν

<
Nε

ν
,

for all t ≥ 0. Therefore, the function w : [−r,+∞) → Cn is well defined. Moreover, for any
t ≥ s ≥ 0 we have

vt − wt =
∫ t

s
T0(t, τ)X0g(τ) dτ −

∫ t

s
T0(t, τ)P0g(τ) dτ −

∫ t

s
T(t, τ)Q0g(τ) dτ

+
∫ t

0
T0(t, τ)P0g(τ) dτ −

∫ +∞

t
T(t, τ)Q0g(τ) dτ

=
∫ t

s
T0(t, τ)X0g(τ) dτ +

∫ s

0
T0(t, τ)P0g(τ) dτ −

∫ +∞

s
T(t, τ)Q0g(τ) dτ.

On the other hand, it also follows from (3.4) that

T(t, s)(vs − ws) =
∫ s

0
T0(t, τ)P0g(τ) dτ −

∫ +∞

s
T(t, τ)Q0g(τ) dτ

(see for example [8, Section 3.4]). Therefore,

vt − wt = T(t, s)(vs − ws) +
∫ t

s
T0(t, τ)X0g(τ) dτ

for all t ≥ s ≥ 0. It follows from the variation of constants formula that

(v − w)′ = L(t)(vt − wt) + g(t).

Since v satisfies the equation
v′ = L(t)vt + g(t),

we conclude that w′ = L(t)wt. Moreover,

‖vt − wt‖ ≤

∥

∥

∥

∥

∫ t

0
T0(t, τ)P0g(τ) dτ −

∫ +∞

t
T(t, τ)Q0g(τ) dτ

∥

∥

∥

∥

≤
∫ t

0
‖T0(t, τ)P0g(τ)‖ dτ +

∫ +∞

t
‖T(t, τ)Q0g(τ)‖ dτ
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and so

sup
t≥0

‖vt − wt‖ <
2Nε

ν
.

This shows that equation (2.6) is Ulam–Hyers stable with κ = 2N/ν.

A consequence of Theorem 3.1 is the following result. Let M(t) : C → Cn, for t ≥ 0, be
bounded linear operators such that the map t 7→ M(t) is strongly continuous on [0,+∞).

Corollary 3.2. If the equation v′ = L(t)vt has an exponential dichotomy, then there exists δ > 0 such
that if

sup
t≥0

∫ t+1

t
‖L(τ)− M(τ)‖ dτ < δ, (3.5)

then the equation v′ = M(t)vt is Ulam–Hyers stable.

Proof. When v′ = L(t)vt has an exponential dichotomy and δ > 0 is sufficiently small, con-
dition (3.5) implies that the equation v′ = M(t)vt also has an exponential dichotomy (see
Theorem 6.1 in [8]). Hence, the desired statement follows readily from Theorem 3.1.

3.3 Nonlinear case

The following theorem is our main result relating Ulam–Hyers stability and hyperbolicity for
a nonlinear delay equation obtained from perturbing a linear equation with an exponential
dichotomy by a continuous map that is Lipschitz on the space variable.

Theorem 3.3. Assume that the equation v′ = L(t)vt has an exponential dichotomy and that there
exists K > 0 such that

| f (t, φ)− f (t, ψ)| ≤ K‖φ − ψ‖ for all t ≥ 0 and φ, ψ ∈ C. (3.6)

If K is sufficiently small, then equation (3.1) is Ulam–Hyers stable.

Proof. Take ε > 0 and a continuous function v : [−r,+∞) → Cn of class C1 on [0,+∞) satisfy-
ing (3.2). We consider also the continuous function g : [0,+∞) → Cn defined by

g(t) = v′(t)− L(t)vt − f (t, vt),

which satisfies supt≥0|g(t)| < ε. We want to show that there exists a continuous function
w : [−r,+∞) → Cn satisfying

wt = vt −
∫ t

0
T0(t, τ)P0(τ)

[

f (τ, vτ)− f (τ, wτ) + g(τ)
]

dτ

+
∫ +∞

t
T(t, τ)Q0(τ)

[

f (τ, vτ)− f (τ, wτ) + g(τ)
]

dτ

(3.7)

for all t ≥ 0 such that the map t 7→ vt − wt is bounded. Let

u(t) = w(t)− v(t) and so ut = wt − vt. (3.8)

Moreover, let
h(t, φ) = f (t, vt)− f (t, φ + vt) + g(t). (3.9)
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Then identity (3.7) becomes

ut = −
∫ t

0
T0(t, τ)P0(τ)h(τ, uτ) dτ +

∫ +∞

t
T(t, τ)Q0(τ)h(τ, uτ) dτ.

Now we consider the map G : Cb → Cb defined by

G(u)t = −
∫ t

0
T0(t, τ)P0(τ)h(τ, uτ) dτ +

∫ +∞

t
T(t, τ)Q0(τ)h(τ, uτ) dτ,

where Cb denotes the Banach space of all bounded continuous functions u : [−r,+∞) → Cn

equipped with the supremum norm

‖u‖∞ = sup
t≥−r

|u(t)|.

For each t ≥ 0 and u, u ∈ Cb we have

‖G(u)t − G(u)t‖ ≤
∫ t

0

∥

∥T0(t, τ)P0(τ)( f (τ, uτ + vτ)− f (τ, uτ + vτ))
∥

∥ dτ

+
∫ +∞

t

∥

∥T(t, τ)Q0(τ)( f (τ, uτ + vτ)− f (τ, uτ + vτ))
∥

∥ dτ

≤ K‖u − u‖∞

(

∫ t

0
Ne−ν(t−τ) dτ +

∫ +∞

t
Ne−ν(τ−t) dτ

)

≤
2KN

ν
‖u − u‖∞.

Therefore,

‖G(u)− G(u)‖∞ = sup
t≥0

‖G(u)t − G(u)t‖ ≤
2KN

ν
‖u − u‖∞

and so the map G is a contraction provided that K is sufficiently small. Moreover, taking u = 0
we obtain

‖G(u)‖∞ = sup
t≥0

‖G(u)t‖ ≤
2KN

ν
‖u‖∞ + sup

t≥0
‖G(0)t‖.

Since h(τ, 0) = g(τ), proceeding as before we get

sup
t≥0

‖G(0)t‖ ≤
2N
ν

sup
t≥0

|g(t)| < ε
2N
ν

and so

‖G(u)‖∞ ≤
2KN

ν
‖u‖∞ + ε

2N
ν

.

This shows that the map G is well-defined. Hence, by the contraction mapping principle,
there exists u ∈ Cb satisfying (3.7). Moreover, u satisfies

‖u‖∞ ≤
2KN

ν
‖u‖∞ + ε

2N
ν

and for K < ν/(2N) we obtain

‖u‖∞ ≤ ε
2N

ν − 2KN
. (3.10)

Finally, proceeding as in the proof of Theorem 3.1 with g(t) replaced by h(t, ut), we
find that

ut = T(t, s)us −
∫ t

s
T0(t, τ)X0h(τ, uτ) dτ
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for all t ≥ s ≥ 0. It follows from the variation of constants formula that

u′ = L(t)ut − h(t, ut).

Since v satisfies the equation

v′ = L(t)vt + f (t, vt) + g(t),

it follows from (3.8) and (3.9) that

w′ = L(t)wt + f (t, wt).

By (3.10), we finally obtain

sup
t≥0

‖vt − wt‖ < ε
2N

ν − 2KN
,

and so equation (3.1) is Ulam–Hyers stable with κ = 2N/(ν − 2KN).

We were informed by the referee that Theorem 3.3 was obtained independently in [4] and
extended to the case of weighted Ulam–Hyers stability.

3.4 Measurable right-hand side

While Theorem 3.3 considers equations with continuous right-hand side, one can consider a
class of equations with measurable right-hand side. Similarly, one can also consider a notion
of Ulam–Hyers stability for which the approximate solution need not be of class C1 on [0,+∞).

Theorem 3.4. Let L(t) : C → Cn be linear operators for t ≥ 0, bounded for almost all t, with
t 7→ L(t)φ measurable for each φ ∈ C, and satisfying (2.3), and let f : [0,+∞) × C → Cn be a
measurable function satisfying (3.6). Then there exists κ > 0 such that for each ε > 0 and each
continuous function v : [−r,+∞) → Cn with measurable derivative on [0,+∞) satisfying (3.2), there
exists a solution w : [−r,+∞) → Cn of equation (3.1) satisfying (3.3).

One can in fact replace condition (2.3) by the more general requirement that there exist
constants C, ω > 0 such that

‖T0(t, s)‖ ≤ Ceω(t−s) for t ≥ s.

The proof of Theorem 3.4 follows almost verbatim the proof of Theorem 3.3, although now
the functions g and h may be only measurable in t.

4 From Ulam–Hyers stability to hyperbolicity

In this section we establish the converse of Theorem 3.1 for a large class of autonomous linear
equations v′ = Lvt and, more generally, linear equations v′ = L(t)vt for which the map
t 7→ L(t) is periodic. This class includes for example all equations for which the generator of
the semigroup induced by the equation has a simple spectrum on the imaginary axis. We first
recall a few basic notions, including the spectral properties of the generator, since these are
necessary for the proofs. Again we refer the reader to the books [8, 15] for details as well as
proofs of these basic notions.
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4.1 Basic notions

In this section we consider perturbations of a linear delay equation of the form

v′ = Lvt + g(t), (4.1)

where L : C → Cn is a bounded linear operator and g : R → Cn is a bounded continuous
function. Note that conditions 1 and 2 in Section 2.1 are automatically satisfied. Therefore,
for each initial condition vs = φ ∈ C equation (4.1) has a unique solution on [s − r,+∞). This
solution is of class C1 on the interval (s,+∞) and satisfies

v′(t) = Lvt + g(t) for t ∈ [s,+∞),

taking the right-hand derivative at s.
Now we consider the particular case of a linear equation

v′ = Lvt. (4.2)

This includes for example the differential difference equations of the form

v′ = A0v +
k

∑
i=1

Aiv(t − τi) (4.3)

for some positive numbers τ1 < τ2 < · · · < τk and some n × n matrices Ai for i = 0, . . . , k.
Equation (4.2) determines a semigroup S(t) : C → C, for t ≥ 0, defined by

S(t)φ = vt(·, 0, φ) for φ ∈ C,

where v is the unique solution of equation (4.2) on [−r,+∞) with v0 = φ. In fact,

S(t − s) = T(t, s) for any t ≥ s ≥ 0,

where T(t, s) is the evolution family in (2.7). One can also extend the linear operators S(t) to
the space C0. Namely, we first write the linear operator L : C → Cn in the form

Lφ =
∫ 0

−r
dη(θ)φ(θ)

for some left-continuous measurable map η : [−r, 0] → Mn of bounded variation and then we
use it to extend L to C0. Given t ≥ 0, we define a linear operator S0(t) on the space C0 by

S0(t)φ = vt(·, 0, φ) for φ ∈ C0,

where v is the unique solution of equation (4.2) on [−r,+∞) with v0 = φ.
We note that equation (4.2) has an exponential trichotomy if:

1. there exist projections P, Q, R : C → C satisfying P + Q + R = Id such that for all t ≥ 0
we have

PS(t) = S(t)P, QS(t) = S(t)Q and RS(t) = S(t)R;

2. the linear operator
S(t) := S(t)|ker P : ker P → ker P

is onto and invertible for each t ≥ 0;
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3. there exist µ, ν, D > 0 with µ < ν such that for any t ≥ 0 we have

‖S(t)P‖ ≤ De−νt, ‖S(t)Q‖ ≥ D−1eνt

and
D−1e−µt ≤ ‖S(t)R‖ ≤ Deµt. (4.4)

An exponential dichotomy is an exponential trichotomy with R = 0. It turns out that any
autonomous linear equation (4.2) has an exponential trichotomy (possibly with R = 0), as a
consequence of the spectral properties of the generator of S(t) (see Proposition 4.1).

We define linear operators P0, Q0, R0 : Cn → C0 by

Q0 = S(−r)QS0(r)X0, R0 = S(−r)RS0(r)X0

and
P0 = X0 − Q0 − R0.

For each p ∈ Cn we have

P0 p ∈ C0 \ C, Q0 p ∈ F ⊂ C and R0 p ∈ G ⊂ C.

In a similar manner to that in Proposition 2.1, one can extend the exponential bounds of
an exponential trichotomy to the space C0 (notice that condition (2.3) is now automatically
satisfied).

Finally, we recall some properties of the semigroup S(t) and its generator that will be used
later on.

Proposition 4.1. The following properties hold:

1. S(t) is a strongly continuous semigroup with generator A : D(A) → C given by

Aφ := lim
tց0

S(t)φ − φ

t
= φ′

in the domain
D(A) =

{

φ ∈ C : φ′ ∈ C, φ′(0) = Lφ
}

;

2. the spectrum σ(A) is composed of eigenvalues, for each γ ∈ R there are finitely many numbers
λ ∈ σ(A) satisfying Re λ > γ, and

sup
{

Re λ : λ ∈ σ(A)
}

< +∞;

3. the generalized eigenspace space Mλ of each λ ∈ σ(A) is finite-dimensional, there exists k ∈ N

such that Mλ = ker(A − λId)k and

C = Mλ ⊕ Nλ with Nλ = Im(A − λId)k;

4. if Φλ = {φ1, . . . , φd} is a basis for Mλ, then there exists a d × d matrix Bλ with a single
eigenvalue λ such that AΦλ = ΦλBλ,

S(t)Φλ = ΦλeBλt for t ∈ R

and so also
(S(t)Φλ)(θ) = Φλ(0)e

Bλ(t+θ) for t ∈ R and θ ∈ [−r, 0]. (4.5)
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The identity AΦλ = ΦλBλ in property 4 means that AΦλa = ΦλBλa for any a ∈ Cd and a
similar observation applies to the remaining identities. A consequence of the former propo-
sition is that any autonomous linear equation (4.2) has an exponential trichotomy (possibly
with R = 0), in fact with an arbitrarily small constant µ in (4.4).

The stable, unstable and center spaces of an exponential trichotomy are now independent
of time and are given, respectively, by

E = P(C), F = Q(C) and G = R(C).

In fact, we have
E =

⋂

Re λ≥0

Nλ, F =
⊕

Re λ>0

Mλ and G =
⊕

Re λ=0

Mλ.

Clearly, C = E ⊕ F ⊕ G and the spaces F and G are finite-dimensional.
Moreover, we have the following result.

Proposition 4.2. Equation (4.2) has an exponential dichotomy if and only if the spectrum σ(A) does
not intersect the imaginary axis.

4.2 Autonomous case

Now we consider the converse of Theorem 3.1 for an autonomous linear delay equation as-
suming that for any eigenvalue λ ∈ σ(A) with Re λ = 0 the corresponding matrix Bλ (see
Proposition 4.1) has a diagonal Jordan form. Under this assumption, we present our main
result for a linear delay equation: the Ulam–Hyers stability of the equation implies that there
exists an exponential dichotomy.

Theorem 4.3. If equation (4.2) is Ulam–Hyers stable, then either it has an exponential dichotomy or
for some eigenvalue λ ∈ σ(A) with Re λ = 0 the matrix Bλ has a nondiagonal Jordan form.

Proof. Assume that equation (4.2) does not have an exponential dichotomy and that for any
eigenvalue λ ∈ σ(A) with Re λ = 0 the matrix Bλ has a diagonal Jordan form. Since the
equation does not have an exponential dichotomy, by Proposition 4.2 indeed there exists an
eigenvalue λ ∈ σ(A) with Re λ = 0 (for which the matrix Bλ has thus a diagonal Jordan form).
Take φλ ∈ Mλ normalized so that |φλ(0)| < 1. Then necessarily φλ(0) 6= 0 for some φλ ∈ Mλ

since otherwise it would follow from (4.5) that the generalized eigenspace was Mλ = {0}.
More precisely, by property (4.5), the solutions w(t) of equation (4.2) with w0 ∈ Mλ are

w(t) = c(S(t)φλ)(0) = ceλtφλ(0) (4.6)

with c ∈ C. Given ε > 0, let
ψ(t) = εeλtφλ(0)/(1 + r‖L‖)

and consider the function

g(t) = ψ(t)−
∫ 0

−r
dη(θ)θψ(t + θ). (4.7)

Note that g is continuous and that

sup
t≥0

|g(t)| ≤ ‖ψ‖(1 + r‖L‖) < ε.
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The unbounded function v(t) = tψ(t) satisfies

v′(t) = ψ(t) + tψ′(t) = ψ(t) + tLψt

since ψ is a solution of equation (4.2). Moreover,

Lvt =
∫ 0

−r
dη(θ)(t + θ)ψ(t + θ) = tLψt +

∫ 0

−r
dη(θ)θψ(t + θ)

and so

v′(t)− Lvt = ψ(t)−
∫ 0

−r
dη(θ)θψ(t + θ) = g(t).

This shows that v is an unbounded function satisfying

sup
t≥0

|v′(t)− Lvt| < ε.

In order to obtain a contradiction, we consider an arbitrary solution w(t) of the linear
equation (4.2). Note that

‖Pwt‖ = ‖S(t)Pw0‖ ≤ De−νt‖w0‖ ≤ D‖w0‖

and
‖Qwt‖ = ‖S(t)Qw0‖ ≥ D−1eνt‖w0‖

for all t ≥ 0. Now we observe that there are finitely many eigenvalues λ of A with Re λ = 0.
Moreover, the matrix Bλ of each of them has a diagonal Jordan form. Finally, denoting by Πλ′

the projection onto Mλ′ it follows readily from (4.6) that

‖Rwt‖ = ‖S(t)Rw0‖ ≤ ∑
Re λ′=0

‖S(t)Πλ′w0‖ = ∑
Re λ′=0

‖Πλ′w0‖

for all t ≥ 0. Therefore, there exists a constant N > 0 such that

‖(P + R)wt‖ = ‖S(t)(P + R)w0‖ ≤ N

for all t ≥ 0. This implies that if Qw0 6= 0, then

‖vt − wt‖ ≥ ‖Qwt‖ − ‖vt − (P + R)wt‖

≥ D−1eνt‖w0‖ − sup
θ∈[−r,0]

|t + θ|ε|φλ(0)|/(1 + r‖L‖)− N → +∞

when t → +∞, which shows that

sup
t≥0

‖vt − wt‖ = +∞ (4.8)

when Qw0 6= 0. Now we assume that Qw0 = 0. In this case we have

‖vt − wt‖ ≥ |v(t)| − ‖(P + R)wt‖

≥ tε|φλ(0)|/(1 + r‖L‖)− N → +∞.

when t → +∞. This shows that (4.8) also holds when Qw0 = 0, which contradicts the
hypothesis that equation (4.2) is Ulam–Hyers stable. Therefore, either the equation has an
exponential dichotomy or for some eigenvalue λ ∈ σ(A) with Re λ = 0 the matrix Bλ has a
nondiagonal Jordan form.

The more general case of a linear delay equation with periodic coefficients is considered
later on in Section 4.4. However, the proof requires substantial additional material that also
needs to be introduced. For this reason we have preferred to give first the former streamlined
proof for autonomous equations. In its turn, it is this proof that motivates the approach for
delay equations with periodic coefficients.
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4.3 Diagonal Jordan forms

The main difficulty in considering nondiagonal normal forms for the eigenvalues of the gen-
erator A is that one may not be able to obtain a bounded function g as in (4.7). Indeed, if the
function ψ is obtained from a generalized eigenvector a in the form

ψ(t) = ε(S(t)Φλa)(0),

then g may not be bounded, simply because it may involve nonconstant polynomials. This
means that this approach need not work for an arbitrary autonomous linear equation v′ = Lvt.

A corollary of the former Theorems 3.1 and 4.3 is a complete characterization of the Ulam–
Hyers stability of a linear delay equation when the eigenvalues of the generator A on the
imaginary axis have diagonal Jordan forms.

Corollary 4.4. Assume that for any λ ∈ σ(A) with Re λ = 0 the matrix Bλ has a diagonal Jordan
form. Then equation (4.2) is Ulam–Hyers stable if and only if it has an exponential dichotomy.

It remains an open problem whether a similar characterization holds without the hypoth-
esis on diagonal Jordan forms. We are not aware of counterexamples, even though explicit
computations are always somewhat involved.

On the other hand, at least for differential difference equations as in (4.3) we can show
that if the spectrum of the generator A is simple on the imaginary axis (for which thus the
hypothesis on diagonal Jordan forms holds), then any sufficiently close equation is Ulam–
Hyers stable if and only if it has an exponential dichotomy. More precisely, we have the
following result.

Corollary 4.5. For equation (4.3) assume that any eigenvalue λ ∈ σ(A) with Re λ = 0 is simple.
Then there exists δ > 0 such that any equation

v′ = A′
0v +

k

∑
i=1

A′
iv(t − τi) (4.9)

with
‖A′

i − Ai‖ < δ for i = 0, . . . , k (4.10)

is Ulam–Hyers stable if and only if it has an exponential dichotomy.

Proof. We recall that the eigenvalues of the generator A are the roots of the characteristic
equation det ∆(λ) = 0, where

∆(λ) =
∫ 0

−r
eλθdη(θ)− λId.

For equation (4.3) this becomes

h(λ) := det

(

A0 +
k

∑
i=1

Aie
−λτi − λId

)

= 0.

Since the function h is holomorphic, one can use Rouché’s theorem to deduce the continuity
of the eigenvalues of A on the matrices Ai. In particular, given an eigenvalue λ of multiplicity
m, there exists δ > 0 such that for any equation (4.9) satisfying (4.10) there are exactly m eigen-
values, counted with multiplicities, of the corresponding generator of the induced semigroup
(see [23, 24] for details and related discussions).
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This has the following consequence. If for equation (4.3) any eigenvalue λ ∈ σ(A) with
Re λ = 0 is simple, then any equation (4.9) satisfying (4.10) for some sufficiently small δ > 0
has the property that any eigenvalue of the generator of the corresponding semigroup on
the imaginary axis is also simple. It follows from Corollary 4.4 that any such equation is
Ulam–Hyers stable if and only if it has an exponential dichotomy.

4.4 Periodic case

In this section we consider the more general case of a linear equation

v′ = L(t)vt, (4.11)

where L(t) : C → Cn, for t ≥ 0, are bounded linear operators such that:

1. the map t 7→ L(t) is strongly continuous on [0,+∞);

2. there exists ω > 0 such that L(t + ω) = L(t) for all t ≥ 0.

Note that condition (2.3) is automatically satisfied.
We recall a few properties of the solutions of the linear equation (4.11) that are necessary

for the arguments. We refer the reader to the book [15] for details. Consider the operator
U : C → C defined by

Uφ = T(ω, 0)φ

with the evolution family T(t, s) as in (2.7). The spectrum σ(U) is a countable compact subset
of C accumulating at most at 0 and any number µ ∈ σ(U) \ {0} is an eigenvalue of U, called
a characteristic multiplier of equation (4.11). Moreover, any number λ ∈ C satisfying µ = eλω

for some eigenvalue µ 6= 0 is called a characteristic exponent of the equation.

Proposition 4.6. Given a characteristic multiplier µ, the following properties hold:

1. for each s ∈ R there exists a splitting C = Mµ(s)⊕ Nµ(s) into closed subspaces with Mµ(s) is
finite-dimensional such that

U(s)Mµ(s) ⊂ Mµ(s) and U(s)Nµ(s) ⊂ Nµ(s),

where U(s) = T(s + ω, s);

2. we have

σ(U(s)|Mµ(s)) = {µ} and σ(U(s))|Nµ(s)) = σ(U) \ {µ};

3. if Φµ,s is a basis for Mµ(s), then T(t, s)Φµ,s is a basis for the space Mµ(t) for each t ∈ R;

4. if dim Mµ(s) = d, then there exist a d × d matrix Cµ and vectors P(t) ∈ Cd for t ∈ R such
that σ(eCµω) = {µ},

P(t + ω) = P(t) for t ∈ R

and

T(t, 0)Φµ,0 = P(t)eCµt for t ∈ R. (4.12)
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Identity (4.12) means that

(T(t, 0)Φµ,0)(θ) = P(t)(θ)eCµt

for all t ∈ R and θ ∈ [−r, 0]. In particular, taking θ = 0 we find that any solution v(t) of
equation (4.11) with initial condition in the space Mµ(0) for some characteristic multiplier
µ = eλω is obtained multiplying the exponential eλt by a polynomial in t whose coefficients
are ω-periodic in t.

A consequence of the former properties is that any linear equation (4.11) with periodic
coefficients has an exponential trichotomy (possibly with projections R(s) = 0 for each s ∈ R),
whose stable, unstable and center spaces at time s are given, respectively, by

E(s) =
⋂

|µ|≥1

Nµ(s), F(s) =
⊕

|µ|>1

Mµ(s) and G(s) =
⊕

|µ|=1

Mµ(s).

Note that F(s) and G(s) are always finite-dimensional (for example since each space Mµ(s) is
finite-dimensional and since σ(U) accumulates at most at 0, although it is always the case that
the unstable and center spaces of an exponential trichotomy are finite-dimensional). Moreover,
equation (4.11) has an exponential dichotomy if and only if σ(U) does not intersect the unit
circle S1.

The following result is a generalization of Theorem 4.3 for linear equations with periodic
coefficients.

Theorem 4.7. If equation (4.11) is Ulam–Hyers stable, then either it has an exponential dichotomy
or for some characteristic multiplier µ ∈ σ(U) with |µ| = 1 the matrix Cµ has a nondiagonal Jordan
form.

Proof. The proof is analogous to that of Theorem 4.7 and so we only give a sketch. Assume
that equation (4.11) does not have an exponential dichotomy and that for any characteristic
multiplier µ ∈ σ(U) with |µ| = 1 the matrix Cµ has a diagonal Jordan form. Since by hypoth-
esis the equation does not have an exponential dichotomy, there exists such a characteristic
multiplier. Writing µ = eλω with Re λ = 0, we consider the solutions w(t) of equation (4.11)
with w0 ∈ Mµ of the form w(t) = ceλt p(t) with c ∈ C and where p : R → Cn is a continuous
function such that p(t + ω) = p(t) for all t ∈ R. Given ε > 0, let ψ(t) = εeλt p(t) and

g(t) = ψ(t)−
∫ 0

−r
dη(t, θ)θψ(t + θ).

Note that

|g(t)| ≤ |ψ(t)|+ ‖L(t)‖ sup
θ∈[−r,0]

|θψ(t + θ)|

≤ |εeλt p(t)|+ ‖L(t)‖ sup
θ∈[−r,0]

r|εeλ(t+θ)p(t + θ)|

≤ ε|p(t)|+ ‖L(t)‖ sup
θ∈[−r,0]

rε|p(t + θ)| ≤ εα,

where

α := sup
t∈R

(

|p(t)|+ ‖L(t)‖ sup
θ∈[−r,0]

r|p(t + θ)|

)
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is finite because it is the supremum of a periodic function. One can easily verify that v(t) =
tψ(t) satisfies v′(t)− L(t)vt = g(t) and so

sup
t≥0

|v′(t)− L(t)vt| < εα.

In a similar manner to that in the proof of Theorem 4.7 we obtain

‖P(t)wt‖ = ‖T(t, 0)P(0)w0‖ ≤ De−νt‖w0‖ ≤ D‖w0‖ (4.13)

and
‖Q(t)wt‖ = ‖T(t, 0)Q(0)Qw0‖ ≥ D−1eνt‖w0‖

for all t ≥ 0. Moreover, denoting by Πµ′ the projection onto Mµ′(0) we have

‖R(t)wt‖ = ‖T(t, 0)R(0)w0‖ ≤ ∑
|µ′|=1

‖T(t, 0)Πµ′w0‖

for all t ≥ 0. On the other hand, writing µ′ = eλ′ω with Re λ′ = 0, the solutions w(t) of
equation (4.11) with w0 ∈ Mµ′ are given by w(t) = ceλ′tq(t) with c ∈ C and where q : R → Cn

is a continuous function such that q(t + ω) = q(t) for all t ∈ R. Therefore,

‖T(t, 0)Πµ′w0‖ ≤ sup
θ∈[−r,0]

|ceλ′(t+θ)q(t + θ)|

≤ sup
t∈R

sup
θ∈[−r,0]

|cq(t + θ)|

= sup
t∈R

|cq(t)| < +∞,

for some c ∈ R. Since there are finitely many characteristic multipliers on S1, this implies that
there exists a constant K > 0 such that

‖R(t)wt‖ ≤ ∑
|µ′|=1

‖T(t, 0)Πµ′w0‖ ≤ K. (4.14)

Finally, by (4.13) and (4.14) there exists N > 0 such that

‖(Id − Q(t))wt‖ ≤ N

for all t ≥ 0. If Q(0)w0 6= 0, then

‖vt − wt‖ ≥ ‖Q(t)wt‖ − ‖vt − (Id − Q(t))wt‖

≥ D−1eνt‖w0‖ − sup
θ∈[−r,0]

ε|(t + θ)eλ(t+θ)p(t + θ)| − N → +∞

when t → +∞, because the function eλt p(t) is bounded. On the other hand, if Q(0)w0 = 0,
then

‖vt − wt‖ ≥ |v(t)| − ‖(Id − Q(t))wt‖ ≥ tε|eλt p(t)| − N.

Note that the function |eλt p(t)| = |p(t)| is ω-periodic and so its maximum is attained at some
times tk = t0 + kω with k ∈ N. This implies that

‖vtk − wtk‖ ≥ tkε max
t∈R

|p(t)| − N → +∞

when k → +∞. In both cases property (4.8) holds and so we obtain a contradiction to the
hypothesis that equation (4.11) is Ulam–Hyers stable. This yields the desired statement.
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Building on the proof of the former theorem we formulate a result for arbitrary nonau-
tonomous linear delay equations v′ = L(t)vt under certain additional assumptions. We refrain
from including the proof since it corresponds to make slight changes in the former argument.

Theorem 4.8. Assume that:

1. L(t) : C → Cn, for t ≥ 0, are bounded linear operators such that the map t 7→ L(t) is bounded
and strongly continuous on [0,+∞);

2. equation (4.11) has an exponential trichotomy such that all solutions with initial condition in the
center space G(0) are bounded;

3. there exist δ > 0 and a solution ψ of equation (4.11) with initial condition in G(0) such that
|ψ(tn)| > δ for some sequence tn → +∞.

If equation (4.11) is Ulam–Hyers stable, then it has an exponential dichotomy.

Note that by property 1 condition (2.3) is automatically satisfied.
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Abstract. In this paper, a class of symmetric cubic planar piecewise polynomial systems
are presented, which have two symmetric centers corresponding to two period annuli.
By perturbation and considering piecewise first order Melnikov function, we show the
existence of 18 limit cycles (not small-amplitude limit cycles) with the configuration
(9, 9) bifurcating from the two period annuli and 22 small-amplitude limit cycles with
the configuration (11, 11), respectively.
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1 Introduction

During the past sixty years, many problems arising from mechanics, electrical engineering

and automatic control are described by non-smooth systems in [1, 2, 9]. Piecewise systems, a

class of non-smooth systems which have different definitions for the vector fields in different

regions divided by lines or curves, have attracted much attention due to their complex dy-

namic phenomena and wide applications. Usually, a planar piecewise system with two zones

has the form

(ẋ, ẏ) =







Z+(x, y), h(x, y) > 0,

Z−(x, y), h(x, y) < 0,

where Z±(x, y) are analytic functions in {(x, y) : ±h(x, y) ≥ 0} respectively, and h(x, y) is a

continuous function.

Similar to the planar smooth systems, a natural and important topic in the qualitative

theory of planar piecewise systems is to find the number and configuration of limit cy-

cles. Moreover, the piecewise systems can exhibit more complex dynamic behaviors than

the classical smooth systems. For instance, in contrast to non-existence of the limit cycle in

BCorresponding author. Email: syj1508556017@163.com
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planar linear systems, the piecewise linear ones can possess limit cycles, one is referred to

[4, 10, 14, 15, 17, 18, 22] for details.

Below we give a brief introduction to the piecewise quadratic and cubic systems. For

piecewise quadratic system, da Cruz et al. in [8] recently constructed a system with at least

16 limit cycles. For more stories, one can see [5, 21] and references therein. For piecewise

cubic systems, only a small amount of work has been done recently, see [11, 13, 16, 19, 23] for

example. In [16] Llibre et al. obtained 12 limit cycles bifurcating from a period annulus of

some cubic system under piecewise cubic perturbation. Later, a piecewise cubic system with

15 limit cycles was constructed by Li et al. [19]. Recently, Guo et al. considered in [13] a class

of Z2-equivariant piecewise cubic systems with two centers at (−1, 0) and (1, 0), and showed

by computing the Lyapunov quantities that there exist 18 small-amplitude limit cycles with

configuration (9, 9). Here by configuration (9, 9), we mean that 9 limit cycles surround (1, 0)

and the remaining ones surround (−1, 0), simultaneously. Yu et al. in [23] also obtained the

existence of 18 small-amplitude limit cycles by computing the Lyapunov quantities in a planar

piecewise cubic polynomial system. Note that the difference between them is that the authors

in [23] obtained 18 limit cycles bifurcating from the two symmetric foci, and each of them

will present 9 limit cycles. Of course, the calculations in [13, 23] have high techniques, as they

involves nonlinear equations. In [11], Gouveia and Torregrosa got, also by computing the

Lyapunov quantities through the parallelization algorithm, 24 crossing small-amplitude limit

cycles emerging from a piecewise cubic polynomial center at the cost of quite complicated

computations. Very recently, an improvement in the number of crossing limit cycles in the

cubic family is obtained by Gouveia and Torregrosa in [12], where the calculations are also

based on the parallelization algorithm.

Motivated by [13, 23] in which two symmetrical nests are considered simultaneously, this

paper is devoted to investigating limit cycles bifurcating from piecewise cubic polynomial

system with two symmetric centers, each of which corresponds to a period annulus full of

closed orbits. In detail, we focus on the following piecewise cubic polynomial system

{

H+(x, y) = Ψ+(x) + Φ+(y), x > 0,

H−(x, y) = Ψ−(x) + Φ−(y), x < 0,
(1.1)

where Ψ±(x) and Φ±(y) are quartic polynomials such that Φ±(y) = Φ±(−y). Concretely,

system (1.1) has form

(ẋ, ẏ) =

{

(

a1y + a2y3, a3 + a4x + a5x2 + a6x3
)

, x > 0,
(

b1y + b2y3, b3 + b4x + b5x2 + b6x3
)

, x < 0,
(1.2)

where ai and bi, i = 1, . . . , 6, are real coefficients. Without loss of generality, assume that

system (1.2) has two symmetric centers at (0,±1) which yield

a1 = −a2, b1 = −b2, a3 = b3 = 0, a1a4 > 0, b1b4 > 0.

Next, by the transformations (x, y, t) →
(
√

a1
2a4

x, y, 1√
2a1a4

t
)

and (x, y, t) →
(
√

b1
2b4

x, y, 1√
2b1b4

t
)

for x > 0 and x < 0, respectively, the system (1.2) becomes

(ẋ, ẏ) =















(

y(1 − y2),
1

2
x + āx2 + c̄x3

)

, x > 0,

(

y(1 − y2),
1

2
x + b̄x2 + d̄x3

)

, x < 0,

(1.3)
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where ā = a5
2a4

√

a1
2a4

, c̄ = a1a6

4a2
4

, b̄ = b5
2b4

√

b1
2b4

, and d̄ = b1b6

4b2
4

. Under piecewise cubic polynomial

perturbation, we consider

(ẋ, ẏ) =















(

y(1 − y2) + ǫ f+(x, y),
1

2
x + āx2 + c̄x3 + ǫg+(x, y)

)

, x > 0,

(

y(1 − y2) + ǫ f−(x, y),
1

2
x + b̄x2 + d̄x3 + ǫg−(x, y)

)

, x < 0,

(1.4)

where f+(x, y) = ∑
3
i+j=0 aijx

iyj, f−(x, y) = ∑
3
i+j=0 cijx

iyj, g+(x, y) = ∑
3
i+j=0 bijx

iyj, g−(x, y) =

∑
3
i+j=0 dijx

iyj.

To investigate the number of the limit cycles bifurcating from the two period annuli, we

will apply the first order Melnikov function, also known as the Abelian integral, rather than

the Lyapunov quantities to reduce the computation. One of our two main results is stated as

follows.

Theorem 1.1. For sufficiently small |ǫ| > 0, there exists a system of the form (1.4) possessing at least

18 limit cycles with configuration (9, 9).

Note that 18 limit cycles in Theorem 1.1 obtained by the first order Melnikov function and

Lemma 2.2 are no longer small-amplitude, which differs from the conclusions of 18 small-

amplitude limit cycles in [13, 23].

The following result states the existence of 22 small-amplitude limit cycles (near the cen-

ters) with configuration (11, 11), which improves the results in [13, 23]. Although 22 small-

amplitude limit cycles is not as good as previous results in [11,12], this is new and good from

the point of view of simultaneity.

Theorem 1.2. For sufficiently small |ǫ| > 0, there exists a system of the form (1.4) possessing at least

22 small-amplitude limit cycles with configuration (11, 11).

The rest of this paper is organized as follows. In section 2, we will introduce the piecewise

first order Melnikov function firstly. Meanwhile, some lemmas which will be applied to prove

our main theorems are presented. Section 3 is devoted to the proofs of Theorems 1.1 and 1.2.

2 Preliminary results

In this section, we introduce the piecewise first order Melnikov function. For this we need the

following result from the work of Liu and Han [20] in which the authors studied system

(ẋ, ẏ) =

{

(H+
y (x, y) + ǫ f+(x, y),−H+

x (x, y) + ǫg+(x, y)) x > 0,

(H−
y (x, y) + ǫ f−(x, y),−H−

x (x, y) + ǫg−(x, y)) x < 0,
(2.1)

where f±(x, y), g±(x, y), H±(x, y) are analytic functions and suppose the following two as-

sumptions H1 and H2 hold.

H1. There exists an open interval (α, β), and two points A(h) = (0, r(h)), C(h) = (0, r̃(h)),

where r(h) 6= r̃(h). For h ∈ (α, β), we have H+(A(h)) = H+(C(h)) = h, H−(A(h)) =

H−(C(h)).
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Figure 2.1: The graph shows the structure of H1 and H2.

H2. When x > 0, system (2.1)|ǫ=0 has an orbital arc Γ+
h starting from A(h) and ending at

C(h) defined by H+(x, y) = h. When x ≤ 0, system (2.1)|ǫ=0 has an orbital arc Γ−
h

starting from C(h) and ending at A(h) defined by H−(x, y) = H−(A(h)), as illustrated

in Figure 2.1.

Then Liu and Han give the piecewise first order Melnikov function, also known as Abelian

integral, for (2.1) in [20] as follows.

Lemma 2.1. Under assumptions H1 and H2, for sufficiently small |ǫ| > 0, then

(1) the Abelian integral of system (2.1) can be expressed as

I(h) =
H+

y (A(h))

H−
y (A(h))

(

H−
y (C(h))

H+
y (C(h))

∫

Γ+
h

g+(x, y)dx− f+(x, y)dy+
∫

Γ−
h

g−(x, y)dx− f−(x, y)dy

)

; (2.2)

(2) system (2.1) has a limit cycle near Γh∗ , if I(h) has a simple root h∗ (I(h∗) = 0, I′(h∗) 6= 0);

(3) system (2.1) has at least k limit cycles, if I(h) has k roots.

Applying Lemma 2.1 to consider the problem of limit cycles, a difficult and necessary

work is to estimate the number of roots of (2.2). For this purpose, a well-known result, see

Lemma 4.5 in [7], is presented as follows.

Lemma 2.2. Consider p + 1 linearly independent analytical functions fi : U ⊂ R → R, i =

0, 1, . . . , p.

(1) Given p arbitrary values xi ∈ U, i = 1, 2, . . . , p, there exist p + 1 constants Ci, i = 0, 1, . . . , p,

such that

f (x) :=
p

∑
i=0

Ci fi(x), (2.3)

is not the zero function and f (xi) = 0 for i = 1, 2, . . . , p.

(2) Furthermore, if there exists j ∈ {0, 1, . . . , p} such that f j |U has constant sign, it is possible to

get f (x) in (2.3) such that it has at least p simple roots in U.

If we consider small-amplitude limit cycles, the following lemma gives sufficient condi-

tions, see Lemma 3.2 in [5] and Theorem 2.1 in [6].
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Lemma 2.3. Suppose c = (c1, c2, . . . , cN), I(h) = ∑
∞
i=0 Ai(c)h

i where Ai(c
∗) = 0, i = 0, 1, 2, . . . ,

N − 1, AN(c
∗) 6= 0, and

rank

(

∂(A0(c), A1(c), . . . , AN−1(c))

∂(c1, c2, . . . , cN)
|c∗
)

= N,

then there exists (c1, c2, . . . , cN) such that I(h) can have N simple real positive roots near h = 0.

3 Proof of the main results

In this section, we will prove Theorem 1.1 and Theorem 1.2 by Lemma 2.2 and Lemma 2.3

respectively. For system (1.4)ǫ=0, there exists a first integral

H(x, y) =

{

H+(x, y) = 1
4 (y

2 − 1)2 + 1
4 x2(1 + 4

3 āx + c̄x2),

H−(x, y) = 1
4 (y

2 − 1)2 + 1
4 x2(1 + 4

3 b̄x + d̄x2).

Define Γ±
hi = {(x, y) : H±(x, y) = h, 0 < h <

1
4}, i = 1, 2, which form two annuli corresponding

to two centers (0, 1) and (0,−1), respectively (see Figure 3.1). More precisely, Γ+
h1 ∪ Γ−

h1 and

Γ+
h2 ∪ Γ−

h2 are the closed orbits surrounding (0, 1) and (0,−1), respectively.

Figure 3.1: The phase graph of system (1.4)ǫ=0.

Since H+
y (x, y) = H−

y (x, y), the Abelian integral (2.2) of the system (1.4) corresponding to

the two annuli can be written as

Ii(h) =
∫

Γ+
hi

g+(x, y)dx − f+(x, y)dy +
∫

Γ−
hi

g−(x, y)dx − f−(x, y)dy, i = 1, 2, (3.1)

respectively. A direct computation for (3.1) yields the following result.

Lemma 3.1.

Ii(h) = − (a00 − c00)
∫

Γ+
hi

dy − (a01 − c01)
∫

Γ+
hi

ydy − (a02 − c02)
∫

Γ+
hi

y2dy − (a03 − c03)
∫

Γ+
hi

y3dy

−
∫

Γ+
hi

[

(a10 + b01)x + (a11 + 2b02)xy +

(

a20 +
1

2
b11

)

x2 +

(

a30 +
1

3
b21

)

x3

+ (a21 + b12)x2y +

(

a12 + 3b03

)

xy2

]

dy −
∫

Γ−
hi

[(

c10 + d01

)

x + (c11 + 2d02)xy

+

(

c20 +
1

2
d11

)

x2 +

(

c30 +
1

3
d21

)

x3 + (c21 + d12)x2y + (c12 + 3d03)xy2

]

dy, i = 1, 2.
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In the proof of Lemma 3.1, we will impose
∫

Γ+
hi

dy = −
∫

Γ−
hi

dy,
∫

Γ+
hi

xmyndx = −
∫

Γ+
hi

n

m + 1
xm+1yn−1dy.

Since the proof is direct, we omit it. Furthermore, if we take the following hypothesis

(H) a01 − c01 = a03 − c03 = a11 + 2b02 = a21 + b12 = c11 + 2d02 = c21 + d12 = 0,

the Abelian integrals I1(h) and I2(h) will have the same expression defined as I(h). Define

J1(h)=
∫

Γ+
h1

dy, J2(h)=
∫

Γ+
h1

y2dy, J3(h)=
∫

Γ+
h1

xdy, J4(h)=
∫

Γ+
h1

x2dy, J5(h)=
∫

Γ+
h1

x3dy,

J6(h)=
∫

Γ+
h1

xy2dy, J7(h)=
∫

Γ−
h1

xdy, J8(h)=
∫

Γ−
h1

x2dy, J9(h)=
∫

Γ−
h1

x3dy, J10(h)=
∫

Γ−
h1

xy2dy.

Then we show the expression of I(h) as the following result.

Lemma 3.2. When the hypothesis (H) holds, then

I(h) = − (a00 − c00)J1(h)− (a02 − c02)J2(h)− (a10 + b01)J3(h)−
(

a20 +
1

2
b11

)

J4(h)

−
(

a30 +
1

3
b21

)

J5(h)− (a12 + 3b03)J6(h)− (c10 + d01)J7(h)−
(

c20 +
1

2
d11

)

J8(h)

−
(

c30 +
1

3
d21

)

J9(h)− (c12 + 3d03)J10(h).

Proof. Using symmetry, we have
∫

Γ+
h1

xiyjdy = (−1)j
∫

Γ+
h2

xiyjdy,
∫

Γ−
h1

xiyjdy = (−1)j
∫

Γ−
h2

xiyjdy,

where 0 ≤ i + j ≤ 3. Combining Lemma 3.1 and hypothesis (H), we directly obtain that I1(h)

and I2(h) have the same expression I(h).

Proof of Theorem 1.1. For simplicity, we may take ā = 3
4 , b̄ = 6

4 , and c̄ = d̄ = 1, then

Γ+
h1 =

{

(x, y) :
1

4
(y2 − 1)2 +

1

4
x2(1 + x + x2) = h

}

,

and

Γ−
h1 =

{

(x, y) :
1

4
(y2 − 1)2 +

1

4
x2(1 + 2x + x2) = h

}

,

where 0 < h <
1
4 .

From the proof of Lemma 3.2, it is easy to check that the coefficients of Ji(h), i = 1, 2, . . . , 10,

are arbitrary and J1(h) > 0 for all h ∈ (0, 1
4 ). By Lemma 2.2 and Theorem 2.1, we only need to

prove that Ji(h), i = 1, 2, . . . , 10, are linearly independent functions.

Let h = r2

4 . When 0 < h ≪ 1, on Γ+
1h we apply the transformations x2(1 + x + x2) =

u2, (y2 − 1)2 = v2 with x > 0, y > 0, where u = r cos θ, v = r sin θ, θ ∈ (−π
2 , π

2 ). With the aid

of algebra-system Maple [3], we obtain

x = u − 1

2
u2 +

1

8
u3 +

1

2
u4 − 161

128
u5 +

3

2
u6 +

33

1024
u7 − 9

2
u8 +

350779

32768
u9 − 23

2
u10 + O(u11),

y = 1 +
1

2
v − 1

8
v2 +

1

16
v3 − 5

128
v4 +

7

256
v5 − 21

1024
v6 +

33

2048
v7 − 429

32768
v8 +

715

65536
v9

− 2431

262144
v10 + O(v11).
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Furthermore,

J1(h) =
∫

Γ+
h1

dy =
∫ π

2

− π
2

r cos θ
dy

dv
|v=r sin θ dθ = r +

1

8
r3 +

7

128
r5 +

33

1024
r7 +

715

32768
r9 + O(r11),

J2(h) = r − 1

24
r3 − 1

128
r5 − 3

1024
r7 − 143

98304
r9 + O(r11),

J3(h) =
1

4
πr2 − 1

3
r3 +

3

64
πr4 +

29

120
r5 − 191

1024
πr6 +

443

640
r7 − 82949

46080
r9 +

1382241

1048576
πr10 + O(r11),

J4(h) =
2

3
r3 − 3

16
πr4 +

19

60
r5 +

1

8
π r6 − 601

448
r7 +

4935

8192
πr8 − 3023

4608
r9 − 78477

65536
πr10 + O(r11),

J5(h) =
3

16
πr4 − 4

5
r5 +

3

16
πr6 +

29

70
r7 − 5655

8192
πr8 +

12317

3360
r9 − 47691

65536
πr10 + O(r11),

J6(h) =
1

4
πr2 − 1

3
r3 +

1

64
πr4 +

11

40
r5 − 203

1024
πr6 +

9167

13440
r7 +

115

16384
πr8 − 592951

322560
r9

+
1381233

1048576
πr10 + O(r11).

On Γ−
h1, let x2(1 + 2x + x2) = u2, (y2 − 1)2 = v2 with x < 0 and y > 0, where u = r cos θ, v =

r sin θ, θ ∈ (π
2 , 3π

2 ). Similarly, we have

x = u − u2 + 2u3 − 5u4 + 14u5 − 42u6 + 132u7 − 429u8 + 1430u9 − 4862u10 + O(u11),

y = 1 +
1

2
v − 1

8
v2 +

1

16
v3 − 5

128
v4 +

7

256
v5 − 21

1024
v6 +

33

2048
v7 − 429

32768
v8 +

715

65536
v9

− 2431

262144
v10 + O(v11).

Furthermore,

J7(h) =
1

4
πr2 +

2

3
r3 +

51

128
πr4 +

163

60
r5 +

9091

4096
πr6 +

43363

2240
r7 +

4760595

262144
πr8 +

28250723

161280
r9

+
2963888949

16777216
πr10 + O(r11),

J8(h) = − 2

3
r3 − 3

8
π r4 − 163

60
r5 − 283

128
π r6 − 43363

2240
r7 − 297465

16384
π r8 − 28250723

161280
r9

− 46310061

262144
π r10 + O(r11),

J9(h) =
3

16
π r4 +

8

5
r5 +

363

256
π r6 +

451

35
r7 +

405465

32768
π r8 +

203683

1680
r9 +

64826685

524288
π r10 + O(r11),

J10(h) =
1

4
π r2 +

2

3
r3 +

47

128
π r4 +

53

20
r5 +

8923

4096
π r6 +

128689

6720
r7 +

4721575

262144
π r8 +

28071031

161280
r9

+
2948223621

16777216
π r10 + O(r11).

Define Ji(h) = ∑
10
j=1 Ci,jr

j +O(r10), i = 1, 2, . . . , 10, and C = (Ci,j)10×10, we obtain rank(C) = 10

which means Ji(h), i = 1, 2, . . . , 10, are linearly independent functions.

The proof is completed.

Next, we will apply Lemma 2.3 to prove that there exists a system of (1.4) with 22 small-

amplitude limit cycles. Here we will take ā = 3
4 a, b̄ = 3

4 b, and c̄ = d̄ = 1 for simplicity.

Proof of Theorem 1.2. Let

I(h) =
10

∑
j=1

k j Jj(h),



8 G. Ji and Y. Sun

where k j, j = 1, 2, . . . , 10, are arbitrary real constants.

By similar calculations used in Theorem 1.1, with the relation h = r2

4 , we get the Taylor

expansions of Ji(h), i = 1, 2, . . . , 10, with 12th-order r which yield

I(h) =
12

∑
i=0

Fir
i + O(r13) =

12

∑
i=0

2Fih
i
2 + O(h

13
2 ),

where

F0 = 0,

F1 = k1 + k2,

F2 =
1

4
π k3 +

1

4
π k6 +

1

4
π k7 +

1

4
π k10,

F3 =
1

8
k1 −

1

24
k2 −

1

3
ak3 +

2

3
k4 −

1

3
ak6 +

1

3
bk7 −

2

3
k8 +

1

3
bk10,

F4 =

(

− 9

128
π +

15

128
a2π

)

k3 −
3

16
π ak4 +

3

16
π k5 +

(

− 13

128
π +

15

128
a2π

)

k6

+

(

− 9

128
π +

15

128
b2π

)

k7 −
3

16
π bk8 +

3

16
π k9 +

(

− 13

128
π +

15

128
b2π

)

k10,

F5 =
7

128
k1 −

1

128
k2 +

(

− 8

15
a3 +

31

40
a

)

k3 +

(

− 29

60
+

4

5
a2

)

k4 −
4

5
ak5 +

(

− 8

15
a3 +

97

120
a

)

k6

+

(

8

15
b3 − 31

40
b

)

k7 +

(

− 4

5
b2 +

29

60

)

k8 +
4

5
bk9 +

(

8

15
b3 − 97

120
b

)

k10,

F6 =

(

571

4096
π − 1245

2048
a2π +

1155

4096
a4π

)

k3 +

(

− 105

256
π a3 +

137

256
π a

)

k4

+

(

− 57

256
π +

105

256
a2π

)

k5 +

(

563

4096
π − 1265

2048
a2π +

1155

4096
a4π

)

k6

+

(

571

4096
π − 1245

2048
b2π +

1155

4096
b4π

)

k7 +

(

− 105

256
π b3 +

137

256
π b

)

k8

+

(

− 57

256
π +

105

256
b2π

)

k9 +

(

563

4096
π − 1265

2048
b2π +

1155

4096
b4π

)

k10,

and Fi, i = 7, 8, 9, 10, 11, 12, are polynomials of a, b, and k j, j = 1, 2, . . . , 10, which are omitted

here because of the large scale.

Solving Fi = 0, i = 1, . . . , 9, we obtain k1, k3, k2, k4, k5, k6, k7, k8, k9 as follows.

k1 = − k2,

k3 = − k6 − k7 − k10,

k2 = 4k4 + (2a + 2b)k7 − 4k8 + (2a + 2b)k10,

k4 = − 1

24a

(

− 24k5 + 4k6 + (15a2 − 15b2)k7 + 24bk8 − 24k9 + (15a2 − 15b2 + 4)k10

)

,

k5 =

(

− 3

22
a2 +

1

6

)

k6 +

(

1

22
a4 +

15

22
a2b2 +

8

11
b3a − 53

88
a2 − 27

22
ba − 5

8
b2

)

k7

+

(

− 12

11
a2b − 12

11
b2a + a + b

)

k8 +

(

12

11
a2 +

12

11
ba − 1

)

k9

+

(

1

22
a4 +

15

22
a2b2 +

8

11
b3a − 69

88
a2 − 14

11
ba − 5

8
b2 +

1

6

)

k10,



Bifurcation for piecewise cubic systems with two centers 9

k6 =
1

16(9a2 − 22)

(

(103a4 + 390a2b2 − 2048ab3 − 2541b4 − 768a2 + 3456ab + 4224b2)k7

+ (−624a2b + 3072ab2 + 3696b3 − 2816a − 2816b)k8 + (624a2 − 3072ab − 3696b2)k9

+ (103a4 + 390a2b2 − 2048ab3 − 2541b4 − 872a2 + 3584ab + 4312b2 + 352)k10

)

,

k7 = − N7(a, b, k8, k9, k10)

3 M7(a, b)
, k8 = −N8(a, b, k9, k10)

6 M8(a, b)
, k9 = − k10 N9(a, b)

24 (a + b)2 M(a, b)
,

where M7, N7, M8, N8, N9, and M are polynomials of degree 7, 6, 10, 10, 14, and 10, respec-

tively. Substituting the above results into F10, F11, and F12, we have

F10 = − 21πk10

1048576M
(a2 − b2)P10(a, b), F11 =

k10

3465M
(a + b)P11(a, b),

F12 = − 21πk10

33554432M
(a2 − b2)P12(a, b),

where P10(a, b), P11(a, b), and P12(a, b) are polynomials of degree 12, 14, and 14 respectively.

Define

P = det

[

∂(F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11)

∂(k1, k3, k2, k4, k5, k6, k7, k8, k9, a, b)

]

.

When Fi = 0, i = 1, . . . , 9, we take k1, k3, k2, k4, k5, k6, k7, k8, and k9 into function P one by one.

Then we obtain

P =
π5k2

10(a + b)6

819261067214035353600

P̄(a, b)

M
,

where P̄(a, b) is a polynomial of degree 36.

Next, we prove the existence of a, b such that P10(a, b) = P11(a, b) = 0 and P12(a, b) ·
P̄(a, b) 6= 0 in three steps.

Firstly, we determine the common roots of P10(a, b) and P11(a, b). By the Maple built-in

command ‘RealRootIsolate’ where the width of the interval is less than or equal 1
215 , we have

R1 , {[[1.678741455, 1.678771973], [−0.9492201089,−0.9492201089]],

[[0.9492034912, 0.9492263794], [−1.678745722,−1.678745722]],

[[−0.9492263794,−0.9492034912], [1.678745722, 1.678745722]],

[[−1.678771973,−1.678741455], [0.9492201089, 0.9492201089]],

[[−1.901992798,−1.901976585], [−0.03034826851,−0.03034826851]],

[[−2.100128174,−2.100101471], [−0.8025713876,−0.8025713876]],

[[−2.040435791,−2.040405273], [−1.611435396,−1.611435396]],

[[−0.03036117554,−0.03033447266], [−1.901976879,−1.901976879]],

[[−1.611436844,−1.611415863], [−2.040434847,−2.040434847]],

[[−0.8025817871,−0.8025512695], [−2.100106852,−2.100106852]],

[[0.8025512695, 0.8025817871], [2.100106852, 2.100106852]],

[[1.611415863, 1.611436844], [2.040434847, 2.040434847]],

[[0.03033447266, 0.03036117554], [1.901976879, 1.901976879]],

[[2.040405273, 2.040435791], [1.611435396, 1.611435396]],

[[2.100101471, 2.100128174], [0.8025713876, 0.8025713876]],

[[1.901976585, 1.901992798], [0.03034826851, 0.03034826851]]},
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where the common roots are located.

Secondly, we estimate the common roots of P10(a, b), P11(a, b), and P12(a, b), and the com-

mon roots of P10(a, b), P11(a, b), and P̄(a, b). By Groebner Basis and the Maple built-in com-

mand ‘Basis’, we get

Basis([P10(a, b), P11(a, b), P12(a, b)], plex(a, b)) = Basis([P10(a, b), P11(a, b), P̄(a, b)], plex(a, b)),

and two polynomials P1(b) and P2(a, b) with degrees 44 and 43, respectively, which mean the

common roots of P10, P11, and P12 are the same as the common roots of P10, P11, and P̄(a, b)

and they are determined by the common roots of P1(b) and P2(a, b). Furthermore, we find the

intervals where the roots of P1(b) are located as follows

R2 ,{[−1.678746223,−1.678745270], [−0.9492206573,−0.9492197037],

[0.9492197037, 0.9492206573], [1.678745270, 1.678746223]}.

Thirdly, we take

(a∗, b∗) ∈ [[−1.901992798,−1.901976585], [−0.03034826851,−0.03034826851]],

which means a∗ ∈ [−1.901992798,−1.901976585], b∗ ∈ [−0.03034826851,−0.03034826851] with

b∗ /∈ R2. Then P10(a∗, b∗) = P11(a∗, b∗) = 0 and P12(a∗, b∗) · P̄(a∗, b∗) 6= 0. By the same method,

we can prove (a∗, b∗) such that M 6= 0 and Mi 6= 0, i = 7, 8. Furthermore, these properties

imply F10 = F11 = 0 and F12 · P 6= 0.

Finally, we can solve k∗9, . . . , k∗1 one by one, which combined with a∗ and b∗ imply Fi =

0, i = 1, 2, . . . , 11, and F12 · P 6= 0. According to Lemma 2.3, I(h) has 11 simple positive roots

near h = 0. By symmetry, the proof is completed.
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1 Introduction

In the short but clever paper [22], Hayan Wang solved the problem of existence of positive
radial solutions for the semilinear elliptic equation

∆w + g (|x|) f (w) = 0, R1 < |x| < R2, x ∈ R
N , N ≥ 2,

with one of the following sets of boundary conditions,

w = 0 on |x| = R1 and |x| = R2, (1.1)

w = 0 on |x| = R1 and ∂w/∂r = 0 on |x| = R2, (1.2)

∂w/∂r = 0 on |x| = R1 and w = 0 on |x| = R2, (1.3)

BCorresponding author. Email: r.precup@math.ubbcluj.ro
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where r = |x| and ∂w/∂r denotes differentiation in the radial direction, and 0 < R1 < R2 <

+∞.
The tools were a Krasnosel’skiı̆ type fixed point theorem in cones and the property of

bilateral boundedness of the corresponding Green functions. The first one is based on the
fixed point index theory, while the second, as shown in [16], on Harnack type inequalities.
Since then, many authors have considered the problem of radial solutions for equations and
systems involving the Laplacian or some of its generalizations, various boundary conditions
and domains, by using different topological or variational methods. We refer the interested
reader to some of these contributions [1–3, 5, 6, 9] and the references therein.

Most of the works that followed deviated from the spirit of the original ideas. On their
line, we mention our recent papers [17], [18] and [19]. It is the scope of the present paper to
complement them, as close as possible to paper [22], for the case of equations with a general
φ-Laplacian. Here in the absence of a Green function we are forced to produce Harnack type
inequalities for each set of boundary conditions.

More exactly, in this paper, we deal with the existence, localization and multiplicity of
positive radial solutions to equations involving φ-Laplacian operators:

−div (ψ (|∇w|)∇w) = g (|x|) f (u) , R1 < |x| < R2, x ∈ R
N , N ≥ 2, (1.4)

where 0 < R1 < R2 < +∞, the functions g : [R1, R2] → R+, f : R+ → R+ are continuous and
ψ : (−a, a) → R is such that φ (s) := s ψ (s) is an increasing homeomorphism between two
intervals (−a, a) and (−b, b) (0 < a, b ≤ +∞).

The following particular cases are of much interest due to their corresponding models
arising from physics:

(a) φ : R → R, φ (s) = |s|p−2 s, where p > 1 (here a = b = +∞), when the left side L0w

in (1.4) is

L0w = −div
(

|∇w|p−2 ∇w
)

(p-Laplace operator),

involved in a nonlinear Darcy law for flows through porous media;
(b) (singular homeomorphism) φ : (−a, a) → R, φ (s) = s√

a2−s2 (here 0 < a < +∞ and
b = +∞), when

L0w = −div





∇w
√

a2 − |∇w|2



 (Minkowski mean curvature operator),

arose from the relativistic mechanics;
(c) (bounded homeomorphism) φ : R → (−b, b) , φ (s) = bs√

1+s2 (here a = +∞ and 0 < b <

+∞), when

L0w = −b div





∇w
√

1 + |∇w|2



 (Euclidian mean curvature operator),

associated to capillarity problems.
Looking for radial solutions of (1.4), that is, functions of the form w(x) = v(r) with r = |x|,

(1.4) reduces to the ordinary differential equation

L (v) := −r1−N
(

rN−1φ
(

v′
)

)′
= g (r) f (v), R1 < r < R2, (1.5)
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while boundary conditions (1.1)–(1.3) become

v (R1) = 0 and v (R2) = 0, (1.6)

v (R1) = 0 and v′ (R2) = 0, (1.7)

v′ (R1) = 0 and v (R2) = 0. (1.8)

2 Harnack type inequalities

Originally, Harnack’s inequality was introduced in order to give estimates from above and
from below for the ratio u(x)/u(y) of two values of a positive harmonic function. It can be
generically put under the form

min
x∈ω

u (x) ≥ k max
x∈ω

u (x) ,

where k is a positive constant depending on the subdomain ω. Next it was generalized to
nonnegative solutions or supersolutions of a wide class of linear elliptic equations. For the
origin of the notion and many references, we refer the reader to [14].

More general, we speak about a Harnack type inequality whenever for a given operator L

acting on a space of functions defined on a set Ω and endowed with a norm ∥·∥ , there is a
subdomain ω ⊂ Ω and a constant k > 0 such that

min
x∈ω

u (x) ≥ k ∥u∥

for all nonnegative functions u satisfying L (u) ≥ 0 and eventually some additional behavior
properties. In [15], Harnack inequalities have been put in connection with the compression-
expansion method of Krasnosel’skiı̆ for the localization of positive solutions of nonlinear prob-
lems. In case of boundary value problems for ordinary differential equations, when a Green
function is known, a Harnack inequality immediately can be derived using the bilateral esti-
mates of the Green function. However, Harnack inequalities can be obtained even for differ-
ential operators for which a Green function does not exist. This is the case of the φ-Laplace
operators. Deduction of such inequalities requires a fine analysis and makes use of priority
properties of solutions such as monotony and concavity (see, e.g., [10] and [11]). The analysis
is even more difficult in the case of radial solutions. It is the goal of this section to obtain
Harnack inequalities for φ-Laplace operators subject to each of the three boundary conditions
(1.6), (1.7), (1.8).

2.1 Case of the boundary conditions (1.7)

Theorem 2.1. If v ∈ C1 [R1, R2] is such that (1.7) are satisfied, rN−1φ (v′) is differentiable and

L (v) (r) ∈ [0, b (R1/R2)N−1) for all r ∈ [R1, R2] , then v is nonnegative, increasing and concave. In

addition, for any c ∈ (R1, R2) , one has

v (c) ≥ c − R1

R2 − R1
v (R2) . (2.1)

Proof. Let h := L (v) . Integrating from r to R2 and taking into account that v′ (R2) = 0 yields

v′ (r) = φ−1
(

r1−N
∫ R2

r
τN−1h (τ) dτ

)

.
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A new integration, this time from R1 to r gives the expression of the solution, namely

v (r) =
∫ r

R1

φ−1
(

s1−N
∫ R2

s
τN−1h (τ) dτ

)

ds

and of the associated solution operator

S (h) (r) =
∫ r

R1

φ−1
(

s1−N
∫ R2

s
τN−1h (τ) dτ

)

ds.

Since h ≥ 0, these formulas show that v is nonnegative and increasing. Also v′ is decreasing,
i.e., v is concave. Finally, the concavity implies that the graph of v is over the line joining
the point (R1, 0) and (R2, v (R2)) , whose equation is y = v(R2)

R2−R1
(x − R1) . Taking x = c gives

(2.1).

Note that under the assumptions of Theorem 2.1, in (2.1), one has v (c) = minr∈[c,R2] v (r)
and v (R2) = maxr∈[R1,R2] v (r) = ∥v∥ . Hence,

min
r∈[c,R2]

v (r) ≥ k1 ∥v∥ ,

with k1 = (c − R1)/(R2 − R1).

2.2 Case of the boundary conditions (1.8)

Theorem 2.2. If v ∈ C1 [R1, R2] is such that (1.8) are satisfied, rN−1φ (v′) is differentiable, L (v) (r) ∈
[0, b) and L (v) is increasing on [R1, R2] , then v is nonnegative, decreasing and concave. In addition,

for any c ∈ (R1, R2) , one has

v (c) ≥ R2 − c

R2 − R1
v (R1) . (2.2)

Proof. If we let h = L (v) , then by integration we obtain

v′ (r) = φ−1
(

−r1−N
∫ r

R1

τN−1h (τ) dτ

)

and

S (h) (r) = v (r) = −
∫ R2

r
φ−1

(

−s1−N
∫ s

R1

τN−1h (τ) dτ

)

ds.

Since h is nonnegative, these formulas immediately imply that v is nonnegative and decreas-
ing.

To show that v is concave we need to prove that v′ is decreasing, equivalently, that the
function η (r) = r1−N

∫ r
R1

τN−1h (τ) dτ is increasing. Indeed, using the monotonicity of h, one
has

η′ (r) = h (r)− N − 1
rN

∫ r

R1

τN−1h (τ) dτ

≥ h (r)− N − 1
rN

h (r)
∫ r

R1

τN−1dτ

= h (r)− N − 1
N

h (r)

(

1 −
(

R1

r

)N
)

≥ 0.

Finally, since the graph of the concave function v is over the line joining the points
(R1, v (R1)) and (R2, 0) , if c is any point in (R1, R2) , we have (2.2).
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Note that under the assumptions of Theorem 2.2, in (2.2), one has v (c) = minr∈[R1,c] v (r)
and v (R1) = maxr∈[R1,R2] v (r) = ∥v∥ . Therefore,

min
r∈[R1,c]

v (r) ≥ k2 ∥v∥ ,

where k2 = (R2 − c)/(R2 − R1).

2.3 Case of the boundary conditions (1.6)

Theorem 2.3. For each function h ∈ L1 (R1, R2) not identically zero satisfying h (r) ≥ 0 a.e.

on (R1, R2) and ∥h∥L1 < b (R1/R2)N−1, the equation L (v) = h endowed with the boundary con-

ditions (1.6) has a unique nonzero nonnegative solution v which is concave and such that for any

c ∈ [0, (R2 − R1) /2), one has:

min
r∈[c1,c2]

v (r)≥ 1
R2 − R1

(

R2 − R1

2
− c

)

∥v∥, (2.3)

where c1 = Rm − c, c2 = Rm + c and Rm = (R1 + R2) /2.

Proof. Let v be a nonnegative solution. Since h is not identically zero, v is nonzero and since
it vanishes at R1 and R2, any maximum point R is interior and so v′ (R) = 0. Integrating from
R to r then gives

v′ (r) = φ−1
(

−r1−N
∫ r

R
τN−1h (τ) dτ

)

. (2.4)

This shows that v′ is decreasing on [R1, R2] . Hence v is concave on [R1, R2] . Let R be such that
v (R) = ∥v∥ = maxr∈[R1,R2] v (r) . First assume that R ≤ Rm. The concavity of v implies that the
graph of v restricted to [R, R2] is over the line joining the points (R, v (R)) and (R2, 0) which at
its turn is over the line joining the points (R1, v (R)) , (R2, 0) , of equation y = v(R)

R2−R1
(R2 − x) .

Thus, since c2 ∈ [R, R2] , we have

v (c2) ≥
v (R)

R2 − R1
(R2 − c2) =

1
R2 − R1

(

R2 − R1

2
− c

)

v (R).

In addition the graph of v on [R1, Rm] is over the line joining the points (R1, 0) , (R2, v (R)) .
Then

v (c1) ≥
v (R)

R2 − R1
(c1 − R1) =

1
R2 − R1

(

R2 − R1

2
− c

)

v (R) .

As a result

min
r∈[c1,c2]

v (r) = min {v (c1) , v (c2)} ≥ 1
R2 − R1

(

R2 − R1

2
− c

)

∥v∥ .

The proof of the case R ≥ Rm is similar.
Next, integration in (2.4) gives the representation formulas (for the solution operator)

v (r) =
∫ r

R1

φ−1
(

−s1−N
∫ s

R
τN−1h (τ) dτ

)

ds (r ∈ [R1, R2]) , (2.5)

v (r) = −
∫ R2

r
φ−1

(

−s1−N
∫ s

R
τN−1h (τ) dτ

)

ds (r ∈ [R1, R2]) .
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To prove the existence of a solution, in virtue of (2.5) and (2.4) it is enough to prove the
existence of a number R ∈ (R1, R2) such that

∫ R2

R1

φ−1
(

−s1−N
∫ s

R
τN−1h (τ) dτ

)

ds = 0.

This immediately follows since the continuous function

t 7−→
∫ R2

R1

φ−1
(

−s1−N
∫ s

t
τN−1h (τ) dτ

)

ds (t ∈ [R1, R2])

takes values of opposite sign at the ends R1 and R2.
To prove the uniqueness of the solution, assume that v1 and v2 are two nonnegative solu-

tions and let R′, R′′ be two of their maximum points, respectively. Using the representation
formula (2.4) it is easy to see that (v2 − v1)

′ preserves its sign on the whole interval (R1, R2) ,
positive or negative depending on the ordering between R′ and R′′. Thus v2 − v1 is monotone
and being zero at the ends of the interval it must be identically zero. Hence v1 = v2.

3 Existence and localization

As mentioned above, the key ingredient together with Harnack inequalities to obtain positive
solutions in this paper will be the fixed point index in cones. In particular, we recall the
well–known homotopy version of Krasnosel’skiı̆ fixed point theorem in cones.

Theorem 3.1 (Krasnosel’skiı̆). Let X be a Banach space, K a cone of X and Ω1 and Ω2 two relatively

open and bounded subsets of K with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Let N : K → K be a completely continuous

operator satisfying one of the following two conditions:

(i) λu ̸= N(u) for all u ∈ ∂KΩ1 and all λ ≥ 1; and there exists h ∈ K \ {0} such that u ̸=
N(u) + λ h for all u ∈ ∂KΩ2 and all λ ≥ 0.

(ii) λu ̸= N(u) for all u ∈ ∂KΩ2 and all λ ≥ 1; and there exists h ∈ K \ {0} such that u ̸=
N(u) + λ h for all u ∈ ∂KΩ1 and all λ ≥ 0.

Then N has a fixed point u ∈ K such that u ∈ Ω2 \ Ω1.

In the sequel, consider the Banach space of continuous functions C[R1, R2] endowed with
the usual maximum norm ∥v∥ = maxr∈[R1,R2] |v (r)| and denote by P the cone of nonnegative
functions in C[R1, R2].

3.1 Case of the boundary conditions (1.7)

By a solution of (1.5)–(1.7) we mean a function v ∈ C1[R1, R2] with v(R1) = 0 = v′(R2) such
that v′ ∈ (−a, a), rn−1φ(v′) ∈ W1,1[R1, R2] and satisfies (1.5). We will look for nonnegative
nontrivial solutions on [R1, R2].

It is clear that v is a nonnegative solution of (1.5)–(1.7) if and only if v is a fixed point of
the operator

T1(v)(r) =
∫ r

R1

φ−1
(

s1−N
∫ R2

s
τN−1g (τ) f (v(τ))dτ

)

ds.
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If f is such that f (s)
∫ R2

R1
g (τ) dτ <

(R1
R2

)N−1
b for all s ∈ R+, then T1 is defined on the whole

cone P and T1 (P) ⊂ P. Moreover, T1 is completely continuous as follows from the Arzelà–
Ascoli theorem.

Here, for a fixed c ∈ (R1, R2), we will look for fixed points of the operator T1 in a subcone
of P, namely,

K1 =

{

v ∈ P : min
r∈[c,R2]

v (r) ≥ k1 ∥v∥
}

,

where k1 = (c − R1)/(R2 − R1). By the Harnack inequality given by Theorem 2.1, it is easy to
check that the operator T1 maps the cone K1 into itself.

Now, for any numbers α, β > 0, consider the open (in K1) sets

Vα := {v ∈ K1 : ∥v∥ < α} (3.1)

and

Wβ :=
{

v ∈ K1 : min
r∈[c,R2]

v (r) < β

}

. (3.2)

Note that Vβ ⊂ Wβ ⊂ Vβ/k1 , so Wβ is bounded.
We are in the position to apply Theorem 3.1 in order to obtain existence and localization

results for problem (1.5)–(1.7). In this way, we localize a solution in the set Wβ \ Vα if β > α

and in the set Vα \ Wβ if α > β/k1.
We will use the following notations:

A :=
∫ R2

R1

g(τ)dτ and B :=
∫ R2

c
g(τ)dτ.

Also, for any α, β > 0, we denote

Mα := max{ f (s) : s ∈ [0, α]} and mβ := min{ f (s) : s ∈ [β, β/k1]}.

Theorem 3.2. Assume that

f (s) <
b

A

(

R1

R2

)N−1

for all s ∈ R+. (3.3)

In addition assume that there exist α, β > 0 such that

(R2 − R1)φ
−1
(

(R2/R1)
N−1 A Mα

)

< α, (3.4)

(c − R1)φ
−1 (B mβ

)

> β. (3.5)

(10) If α < β, then problem (1.5)–(1.7) has a positive solution v such that α < ∥v∥ < β/k1.

(20) If α > β/k1, then problem (1.5)–(1.7) has a positive solution v such that β < ∥v∥ < α.

Proof. We shall apply Theorem 3.1. First, let us see that

∥T1(v)∥ < α for all v ∈ K1 with ∥v∥ = α,

which clearly implies that λv ̸= T1(v) for all v ∈ ∂K1Vα and all λ ≥ 1. Indeed, for v ∈ K1 with
∥v∥ = α, we have that f (v(s)) ≤ Mα and so from (3.4) it follows that

∥T1(v)∥ =
∫ R2

R1

φ−1
(

s1−N
∫ R2

s
τN−1g (τ) f (v(τ))dτ

)

ds

≤
∫ R2

R1

φ−1
(

Mα s1−N
∫ R2

R1

τN−1g (τ) dτ

)

ds

≤ (R2 − R1)φ
−1
(

(R2/R1)
N−1 AMα

)

< α,
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as wished.
On the other hand, let us prove that v ̸= T1(v) + λh for all v ∈ ∂K1Wβ and all λ ≥ 0 with

h ≡ 1. Notice that for v ∈ K1 with minr∈[c,R2] v(r) = β, we have that β ≤ v(r) ≤ β/k1 for all
r ∈ [c, R2], and thus mβ ≤ f (v(r)) for all r ∈ [c, R2]. Hence, for any r ∈ [c, R2],

T1(v)(r) ≥
∫ c

R1

φ−1
(

s1−N
∫ R2

s
τN−1g (τ) f (v(τ))dτ

)

ds

≥
∫ c

R1

φ−1
(

s1−N
∫ R2

c
τN−1g (τ) f (v(τ))dτ

)

ds

≥ (c − R1)φ
−1 (B mβ

)

.

Now, (3.5) implies that T1(v)(r) > β = minr∈[c,R2] v(r) for all r ∈ [c, R2], which clearly ensures
that v ̸= T1(v) + λ for all v ∈ ∂K1Wβ and all λ ≥ 0.

Now, if α < β, then Vα ⊂ Wβ, so Theorem 3.1 guarantees that the operator T1 has at least
a fixed point in Wβ \ Vα ⊂ Vβ/k1 \ Vα. But if one has α > β/k1, then Wβ ⊂ Vβ/k1 ⊂ Vβ/k1 ⊂
Vα and thus Theorem 3.1 implies that the operator T1 has at least a fixed point located in
Vα \ Wβ ⊂ Vα \ Vβ.

Note that condition (3.3) trivially holds if b = +∞. Obviously, if φ is a classical or a
bounded homeomorphism, i.e., if a = +∞, then conditions (3.4) and (3.5) can be rewritten as

Mα

φ (C1 α)
< C2 and

mβ

φ (C3 β)
> C4,

with suitable positive constants C1, C2, C3 and C4 as come from (3.4)–(3.5).
Hence, if we are only interested on the existence and not on the localization of the solu-

tions, we can establish sufficient conditions for the existence of the numbers α and β satisfying
the inequalities above. They are given by asymptotic conditions on the ratio f /φ at 0 and at
infinity.

Theorem 3.3. Assume that the following conditions are satisfied: a = +∞,

lim sup
x→0

φ(τx)

φ(x)
< +∞, lim sup

x→+∞

φ(x)

φ(τx)
< +∞ for all τ > 0 (3.6)

and

f0 := lim
x→0+

f (x)

φ(x)
= +∞, f∞ := lim

x→+∞

f (x)

φ(x)
= 0.

Then problem (1.5)–(1.7) has at least one positive solution.

Proof. First we show that there exists β > 0 such that

mβ > C4φ (C3 β) . (3.7)

By (3.6), with τ = C3, there exist L > 0 and ρ > 0 such that

L

C4
φ(x) > φ(C3 x) for all x ∈ (0, ρ).

Now, since f0 = +∞, there exists τ > 0 (we may assume τ < ρ) such that

f (x) ≥ Lφ(x) for all x ∈ (0, τ].
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Hence, the fact that φ is increasing implies that

min
x∈[τk1,τ]

f (x) ≥ Lφ(τk1).

Then, taking β = τk1, one has

mβ := min
x∈[β,β/k1]

f (x) ≥ Lφ(β) > C4φ(C3 β),

and so (3.7) holds.
Secondly, we prove that there exists α > β/k1 such that

Mα < C2φ (C1 α) . (3.8)

By (3.6), with τ = C1, there exist L̃ > 0 and ρ̃ > 0 such that

C2 L̃ φ(C1 x) > φ(x) for all x ∈ (ρ̃,+∞).

Since f∞ = 0, there exists σ > 0 such that

f (x) ≤ σ +
1

2L̃
φ(x) for all x ≥ 0.

Now, it follows from the fact that φ : R → R is an increasing unbounded homeomorphism
that there exists α > 0 such that 2L̃ σ ≤ φ(α). Thus,

f (x) ≤ 1
L̃

φ(α) for all x ∈ [0, α],

and so
Mα := max

x∈[0,α]
f (x) ≤ 1

L̃
φ(α) < C2φ(C1 α),

that is, (3.8) holds.
Finally, the conclusion follows from Theorem 3.2.

Similarly, an existence result can be obtained if f is sublinear at 0 and superlinear at infinity
with respect to φ.

Theorem 3.4. Assume that φ is a classical homeomorphism such that

lim sup
x→0

φ(x)

φ(τx)
< +∞, lim sup

x→+∞

φ(τx)

φ(x)
< +∞ for all τ > 0 (3.9)

and f satisfies

f0 = 0, f∞ = +∞.

Then problem (1.5)–(1.7) has at least one positive solution.

Remark 3.5. Note that if φ is bounded, then condition f∞ = +∞ is not possible, since
limx→+∞ φ(x) = b and f must be bounded.

Note that if φ is singular (i.e., a < +∞, b = +∞), then condition (3.4) is trivially satisfied
for α large enough and so the existence of a positive solution for problem (1.5)–(1.7) is ensured
provided that there exists a positive number β satisfying (3.5). This holds if f is superlinear
at 0 with respect to φ, i.e., f0 = +∞. Thus we have
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Theorem 3.6. Assume that φ is a singular homeomorphism such that

lim sup
x→0

φ(τx)

φ(x)
< +∞ for all τ > 0 (3.10)

and f satisfies

f0 = +∞.

Then problem (1.5)–(1.7) has at least one positive solution.

Obviously, the localization of solutions given by Theorem 3.2 allows us to derive multi-
plicity results provided that there exist several couples of positive numbers (α, β) satisfying
assumptions (3.4)–(3.5). Some conclusions in this line are collected in the following

Theorem 3.7. Assume that condition (3.3) holds.

(1) Let (αi)1≤i≤k, (βi)1≤i≤k (k ∈ N) be sets of positive numbers with αi < βi ≤ k1αi+1 for each

i. If the assumptions of Theorem 3.2 hold for each couple (αi, βi), then problem (1.5)–(1.7) has k

different solutions vi such that αi < ∥vi∥ < βi/k1.

(2) Let (αi)1≤i≤k, (βi)1≤i≤k (k ∈ N) be sets of positive numbers with αi < βi < k1αi+1 for each i. If

the assumptions of Theorem 3.2 hold for each couple (αi, βi), then problem (1.5)–(1.7) has 2k − 1
different solutions vi, wj (i = 1, . . . , k, j = 1, . . . , k − 1) such that

αi < ∥vi∥ , min
r∈[c,R2]

vi (r) < βi and min
r∈[c,R2]

wj (r) > β j,
∥

∥wj

∥

∥ < αj+1.

(3) Let (αi)i∈N, (βi)i∈N be two sequences of positive numbers with αi < βi ≤ k1αi+1 for each i. If the

assumptions of Theorem 3.2 hold for each couple (αi, βi), then problem (1.5)–(1.7) has infinitely

many different solutions vi such that αi < ∥vi∥ < βi/k1.

Proof. Let us prove cases (1) and (2).

(1) For each i, since αi < βi, Theorem 3.2 ensures that problem (1.5)–(1.7) has a positive
solution vi such that αi < ∥vi∥ < βi/k1. Now, it suffices to remark that βi/k1 ≤ αi+1 implies
that ∥vi∥ < ∥vi+1∥, so there exist at least k different such solutions.

(2) For each i, since αi < βi, we can derive from the proof of Theorem 3.2 a better localization
result: the solution vi belongs to the set Wβi

\ Vαi
, that is,

αi < ∥vi∥ , min
r∈[c,R2]

vi (r) < βi.

On the other hand, for each j ∈ {1, . . . , k − 1}, since β j < k1αj+1, Theorem 3.2 also implies that
problem (1.5)–(1.7) has a positive solution wj located in the set Vαj+1 \ Wβ j

. Thus,

min
r∈[c,R2]

wj (r) > β j,
∥

∥wj

∥

∥ < αj+1.

Since αj+1 < β j+1, one has that
∥

∥wj

∥

∥ <

∥

∥wj+1
∥

∥. Finally, the estimations

min
r∈[c,R2]

vn (r) < β j < min
r∈[c,R2]

wj (r) and
∥

∥wj

∥

∥ < αj+1 < ∥vm∥ ,

for n ∈ {1, . . . , j} and m ∈ {j + 1, . . . , k}, show that wj is also distinct from any vi and so
problem (1.5)–(1.7) has at least 2k − 1 different solutions.

The proof of case (3) is analogous and thus we omit it.
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3.2 Case of the boundary conditions (1.8)

By a solution of (1.5)–(1.8) we mean a function v ∈ C1[R1, R2] with v′(R1) = 0 = v(R2) such
that v′ ∈ (−a, a), rn−1φ(v′) ∈ W1,1[R1, R2] and satisfies (1.5). We will look for nonnegative
nontrivial solutions on [R1, R2].

It is clear that v is a nonnegative solution of (1.5)–(1.8) if and only if v is a fixed point of
the operator T2 : P → P defined as

T2(v)(r) = −
∫ R2

r
φ−1

(

−s1−N
∫ s

R1

τN−1g (τ) f (v(τ))dτ

)

ds,

which is a completely continuous operator.
Let us assume that the functions f and g satisfy the following monotonicity assumptions:

(H f ) f is decreasing on R+ and 0 < f (0) < b
∫ R2

R1
g(τ)dτ;

(Hg) rN−1g(r) is increasing on [R1, R2].

For a fixed c ∈ (R1, R2), we consider the following subcone of P:

K2 =

{

v ∈ P : v is decreasing and min
r∈[R1,c]

v (r) ≥ k2 ∥v∥
}

,

where k2 = (R2 − c)/(R2 − R1).
Note that the operator T2 maps the cone K2 into itself. Indeed, take v ∈ K2 and let us

show that w := T2(v) belongs to K2. Since f and g are nonnegative, then w is nonnegative
and decreasing. Moreover, the monotonicity assumptions on f and g given by (H f ) and (Hg)
together with the fact that v is decreasing imply that the function r 7→ rN−1g(r) f (v(r)) is
increasing. Thus,

r 7→ L(w)(r) = rN−1g(r) f (v(r))

is increasing on [R1, R2]. Then Theorem 2.2 ensures that w satisfies that

min
r∈[R1,c]

w (r) ≥ k2 ∥w∥ ,

so w ∈ K2.
For any numbers α, β > 0, define the sets Vα and Wβ as in (3.1) and (3.2), with K2 instead of

K1. Then the following existence and localization result for problem (1.5)–(1.8) can be proved
as an application of Theorem 3.1, which guarantees the existence of a fixed point of T2 in
Wβ \ Vα or in Vα \ Wβ.

We will use the following notation:

A :=
∫ R2

R1

g(τ)dτ and B :=
∫ c

R1

g(τ)dτ.

Moreover, for any α, β > 0, denote

Mα := max{ f (s) : s ∈ [0, α]} = f (0) and mβ := min{ f (s) : s ∈ [β, β/k2]} = f (β/k2).

It is obvious that the following result can be proved in a similar way to Theorem 3.2, so
we omit the proof here.
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Theorem 3.8. Assume that conditions (H f ) and (Hg) hold and that there exist α, β > 0 such that

−(R2 − R1)φ
−1 (−A Mα) < α, (3.11)

−(R2 − c)φ−1
(

−(R1/R2)
N−1B mβ

)

> β. (3.12)

(10) If α < β, then problem (1.5)–(1.8) has a positive solution v such that α < ∥v∥ < β/k2.

(20) If α > β/k2, then problem (1.5)–(1.8) has a positive solution v such that β < ∥v∥ < α.

Remark 3.9. If we take into account that f is decreasing, then conditions (3.11) and (3.12) can
be rewritten as

−(R2 − R1)φ
−1 (−A f (0)) < α, (3.13)

−(R2 − c)φ−1
(

−(R1/R2)
N−1B f (β/k2)

)

> β. (3.14)

Note that condition (3.13) is always satisfied for α sufficiently large since the left-hand side
in the inequality is independent of α. Furthermore, from the fact that f is continuous with
f (0) > 0, it follows that condition (3.14) holds for any β close enough to 0.

In view of Theorem 3.8 and Remark 3.9, it is clear that problem (1.5)–(1.8) is always solvable
under assumptions (H f ) and (Hg). Thus we have

Corollary 3.10. If conditions (H f ) and (Hg) hold, then problem (1.5)–(1.8) has at least one positive

solution.

Remark 3.11. Observe that multiplicity results cannot be derived from Theorem 3.8. Indeed,
since A ≥ B and f is decreasing, one has

A f (0) ≥ (R1/R2)
N−1B f (β/k2),

and so
−(R2 − R1)φ

−1 (−A f (0)) > −(R2 − c)φ−1
(

−(R1/R2)
N−1B f (β/k2)

)

.

Therefore, any α satisfying (3.13) must be bigger than any β for which (3.14) holds.

Remark 3.12. Observe that the results contained in Section 3.2 remain valid for R1 = 0, i.e., in
the ball.

Note that problem (1.5)–(1.8) with R1 = 0 and R2 = 1, that is, in the unit ball, was consid-
ered in [19], but the results are not comparable since there f was assumed to be nondecreasing.

3.3 Case of the boundary conditions (1.6)

By a solution of (1.5)–(1.6) we mean a function v ∈ C1[R1, R2] with v(R1) = 0 = v(R2) such
that v′ ∈ (−a, a), rn−1φ(v′) ∈ W1,1[R1, R2] and satisfies (1.5). We will look for nonnegative
nontrivial solutions on [R1, R2].

To construct the fixed point operator, we need the following technical result, similar to
Lemma 1 in [4].

Denote

Db =

{

h ∈ P : ∥h∥L1 < b

(

R1

R2

)N−1
}

.
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Lemma 3.13. For each function h ∈ Db, there exists R ∈ (R1, R2) such that

γ =
∫ R

R1

τN−1h(τ) dτ

is the unique number γ satisfying

−s1−N

[

∫ s

R1

τN−1h(τ) dτ − γ

]

∈ (−b, b)

and
∫ R2

R1

φ−1
(

−s1−N

[

∫ s

R1

τN−1h(τ) dτ − γ

])

ds = 0.

Moreover, the function Qφ : Db → R, Qφ (h) = γ is continuous.

Proof. The existence of R with the desired property follows from the proof of Theorem 2.3.
Note that for any h ∈ Db, one has

−s1−N

[

∫ s

R1

τN−1h(τ) dτ − γ

]

∈ (−b, b) for all s ∈ [R1, R2] .

Indeed
∣

∣

∣

∣

−s1−N

[

∫ s

R1

τN−1h(τ) dτ − γ

]∣

∣

∣

∣

=

∣

∣

∣

∣

s1−N
∫ s

R
τN−1h(τ) dτ

∣

∣

∣

∣

≤
(

R2

R1

)N−1

∥h∥L1 < b.

For uniqueness, assume that there exist γi ∈ R (i = 1, 2) such that
∫ R2

R1

φ−1
(

−s1−N

[

∫ s

R1

τN−1h(τ) dτ − γi

])

ds = 0.

Now, by the mean value theorem for integration, there exists s0 ∈ [R1, R2] such that

φ−1
(

−s0
1−N

[

∫ s0

R1

τN−1h(τ) dτ − γ1

])

ds = φ−1
(

−s0
1−N

[

∫ s0

R1

τN−1h(τ) dτ − γ2

])

ds.

This clearly implies that γ1 = γ2.
Finally, for the continuity of Qφ, let {hn}n∈N

⊂ Db such that hn → h0 ∈ Db in C[R1, R2].
We may assume that Qφ(hn) → γ0. Passing to limit we find that

∫ R2

R1

φ−1
(

−s1−N

[

∫ s

R1

τN−1h0(τ) dτ − γ0

])

ds = 0,

and so γ0 = Qφ(h0), as wished.

In addition, the solution operator

S : Db → C[R1, R2], S(h)(r) =
∫ r

R1

φ−1
(

−s1−N

[

∫ s

R1

τN−1h(τ) dτ − Qφ (h)

])

ds,

is monotone as shows the next lemma. The proof follows similar ideas to those in [11].

Lemma 3.14. Let h1, h2 ∈ Db, h1 ≥ h2 a.e. on [R1, R2], and let v1, v2 ∈ C1[R1, R2] be such that for

i = 1, 2, one has vi(R1) = 0 = vi(R2) and

L(vi)(r) = hi(r) for r ∈ (R1, R2).

Then v1 ≥ v2 on [R1, R2].
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Proof. Assume to the contrary that v1 ̸≥ v2. Then there exists an interval [t1, t2], with R1 ≤
t1 < t2 ≤ R2, such that v1 < v2 on (t1, t2) and v1(ti) = v2(ti), i = 1, 2. Hence, by the mean
value theorem, there exists R ∈ (t1, t2) such that (v1 − v2)′(R) = 0. Then

φ(v′2)(r)− φ(v′1)(r) =
1

rN−1

∫ r

R
sN−1 [h1(s)− h2(s)] ds.

Since h1 ≥ h2, we deduce that φ(v′2)(r) − φ(v′1)(r) ≥ 0 on (R, t2). Thus, v′2(r) ≥ v′1(r) on
(R, t2) which joint with v2(t2) = v1(t2) imply v1 ≥ v2 on (R, t2), a contradiction.

If f satisfies condition (3.3), then for each v ∈ P, the function h := g f (v) ∈ Db and since
h ≥ 0, one has S (h) ≥ S (0) = 0. Hence the operator

T3 : P → P, T3 (v) = S (g f (v))

is well-defined. In addition, thanks to the continuity of Qφ and the Arzelà–Ascoli theorem, it
is completely continuous.

Notice that v is a nonnegative solution of (1.5)–(1.6) if and only if v is a fixed point of
the operator T3. Here, for a fixed c ∈ (0, (R2 − R1)/2), we shall look for fixed points of the
operator T3 in a subcone of P, namely,

K3 =

{

v ∈ P : min
r∈Ic

v (r) ≥ k3 ∥v∥
}

,

where k3 = ((R2 − R1)/2 − c) /(R2 − R1) and Ic = [Rm − c, Rm + c]. By the Harnack inequal-
ity given by Theorem 2.3, it follows that the operator T3 maps the cone K3 into itself.

Now, for any numbers α, β > 0, consider the relatively open sets

Vα := {v ∈ K3 : ∥v∥ < α} and Wβ :=
{

v ∈ K3 : min
r∈Ic

v (r) < β

}

.

We will use the following notation:

A :=
∫ R2

R1

g(τ)dτ and B := min
{

∫ Rm

Rm−c
g(τ)dτ,

∫ Rm+c

Rm

g(τ)dτ.
}

.

Moreover, for any α, β > 0, denote

Mα := max{ f (s) : s ∈ [0, α]} and mβ := min{ f (s) : s ∈ [β, β/k3]}.

Theorem 3.15. Assume that f satisfies (3.3) and there exist α, β > 0 such that

(R2 − R1)φ
−1

(

(

R2

R1

)N−1

A Mα

)

< α, (3.15)

k3 (Rm − R1 − c) φ−1 (B mβ

)

> β, (3.16)

−k3 (R2 − Rm − c) φ−1
(

− (Rm/R2)
N−1 B mβ

)

> β. (3.17)

(10) If α < β, then problem (1.5)–(1.6) has a positive solution v such that α < ∥v∥ < β/k3.

(20) If α > β/k3, then problem (1.5)–(1.6) has a positive solution v such that β < ∥v∥ < α.
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Proof. We shall apply Theorem 3.1. First, let us show that

∥T3(v)∥ < α for all v ∈ K3 with ∥v∥ = α,

which clearly implies that λv ̸= T3(v) for all v ∈ ∂K3Vα and all λ ≥ 1. Indeed, for v ∈ K3

with ∥v∥ = α, we have that there exists R ∈ (R1, R2) such that ∥T3(v)∥ = T3 (v) (R) and
(T3(v))′(R) = 0. Thus,

T3(v)(r) =
∫ r

R1

φ−1
(

−s1−N
∫ s

R
τN−1g(τ) f (v(τ)) dτ

)

ds

= −
∫ R2

r
φ−1

(

−s1−N
∫ s

R
τN−1g(τ) f (v(τ)) dτ

)

ds (r ∈ [R1, R2]).

Since f (v(s)) ≤ Mα for every s ∈ [R1, R2] and S is monotone, we have

∥T3(v)∥ = T3(v)(R) = S (g f (v)) (R) ≤ S (gMα) (R) =
∫ R

R1

φ−1
(

−s1−N Mα

∫ s

R
τN−1g(τ) dτ

)

ds

=
∫ R

R1

φ−1
(

s1−N Mα

∫ R

s
τN−1g(τ) dτ

)

ds

≤ (R2 − R1)φ
−1

(

(

R2

R1

)N−1

A Mα

)

< α,

as wished.
On the other hand, let us prove that v ̸= T3(v) + λ h for all v ∈ ∂K3Wβ and all λ ≥ 0 with

h ≡ 1. Notice that for v ∈ K3 with minr∈Ic v(r) = β, we have that β ≤ v(r) ≤ β/k3 for all
r ∈ Ic, and thus mβ ≤ f (v(r)) for all r ∈ Ic. Hence, f (v(r)) ≥ mβχIc(r) for all r ∈ [R1, R2]

(where χIc denotes the characteristic function of Ic). Then Lemma 3.14 implies that

T3(v)(r) ≥ S(mβ g χIc)(r), (r ∈ [R1, R2]).

Note that there is R ∈ (R1, R2) such that

S(mβ g χIc)(r) =
∫ r

R1

φ−1
(

−s1−Nmβ

∫ s

R
τN−1g(τ)χIc(τ) dτ

)

ds.

Now, suppose that R ≥ Rm. Then

T3(v)(Rm − c) ≥ S(mβ g χIc)(Rm − c)

=
∫ Rm−c

R1

φ−1
(

s1−Nmβ

∫ R

Rm−c
τN−1g(τ)χIc(τ) dτ

)

ds

≥
∫ Rm−c

R1

φ−1
(

s1−Nmβ

∫ Rm

Rm−c
τN−1g(τ)χIc(τ) dτ

)

ds

≥ (Rm − R1 − c)φ−1 (B mβ

)

> β/k3,

that is, T3(v)(Rm − c) > β/k3 ≥ v(r) for all r ∈ Ic. In particular, T3(v)(Rm − c) > v(Rm − c).
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Analogously, if R ≤ Rm, then

T3(v)(Rm + c) ≥ S(mβ g χIc)(Rm + c)

= −
∫ R2

Rm+c
φ−1

(

−s1−Nmβ

∫ s

R
τN−1g(τ)χIc(τ) dτ

)

ds

= −
∫ R2

Rm+c
φ−1

(

−s1−Nmβ

∫ Rm+c

Rm

τN−1g(τ)χIc(τ) dτ

)

ds

≥ − (R2 − Rm − c) φ−1
(

− (Rm/R2)
N−1 B mβ

)

> β/k3.

we may prove that T3(v)(Rm + c) > β/k3 ≥ v(r) for all r ∈ Ic.
Therefore, v ̸= T3(v) + λ for all v ∈ ∂K3Wβ and all λ ≥ 0. The conclusion follows from

Theorem 3.1.

Remark 3.16. If φ is odd then the two conditions (3.16) and (3.17) on β reduce to the unique
inequality

k3 (R2 − Rm − c) φ−1
(

(Rm/R2)
N−1 Bmβ

)

> β. (3.18)

We emphasize that if φ is a classical or bounded odd homeomorphism, then conditions
(3.15) and (3.18) can be rewritten as

Mα

φ (C1 α)
< C2 and

mβ

φ (C3 β)
> C4,

for certain positive constants C1, C2, C3 and C4. Therefore, existence results for sublinear and
superlinear nonlinearities can be proven exactly as in Section 3.1.

Theorem 3.17. Assume that φ is odd and that one of the following conditions holds:

(i) f0 = +∞, f∞ = 0 and φ is a classical or bounded homeomorphism satisfying (3.6).

(ii) f0 = 0, f∞ = +∞ and φ is a classical homeomorphism satisfying (3.9).

(iii) f0 = +∞ and φ is a singular homeomorphism satisfying (3.10).

Then problem (1.5)–(1.6) has at least one positive solution.

Remark 3.18. Theorem 3.15 allows us to deduce the existence of multiple positive solutions for
problem (1.5)–(1.6) provided that there are several pairs of positive numbers (α, β) satisfying
conditions (3.15)–(3.17).

4 Numerical examples

From numerical point of view we will consider three distinct boundary value problems. In
order to solve them we make use of the new and powerful MATLAB package Chebfun which
is a product of the numerical analysis group at Oxford University led by Professor Trefethen
(see for instance [20] and [21] to quote but a few).

The philosophy behind this package is non-standard in numerical analysis and can be
summed up in the words of its initiator as “Feel symbolic but run at the speed of numerics”.
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In short, the method implemented by Chebfun is a Chebyshev type collocation one. Cheb-
fun tries to solve a BVP by using successively to approximate the solution Chebyshev poly-
nomials on grids of size 17, 33, 65 . . . until the spectral convergence is reached. The relative
accuracy of each computation carried out by a Chebfun algorithm is usually about 16 digits,
and in principle the user need have no knowledge of the underlying algorithms. However,
when solving a nonlinear BVP, Chebfun provides useful information on the convergence of
the Newtonian method used to solve nonlinear algebraic systems obtained by discretization.
In addition, the behavior of the solution coefficients can be visualized (the way in which they
decrease to the machine accuracy). We will display these two outputs for each of the three
issues considered. In fact, we must emphasize that we have used Chebfun with excellent
results in our previous works [7] and [17].

Moreover, in order to observe the behavior of the Chebfun system in solving genuinely
nonlinear boundary value problems, we have reported in our recent work [8] the solutions
of eight non-linear problems, some of them even singular. In the vast majority of cases,
the asymptotic rate of convergence of the Chebyshev collocation implemented by Chebfun
is exponential (geometric). Only in the case of the singular problem was this reduced to an
algebraic one.

4.1 First example: a Dirichlet–Neumann problem

Consider the Dirichlet–Neumann problem for an equation involving a singular homeomor-
phism







−
(

r v′√
1−v′2

)′
= rg (r) f (v) , r ∈ (1, 2)

v (1) = v′ (2) = 0,
(4.1)

where
g (r) =

r + 1
2r2 + 1

, f (v) = v2 + 1.
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Figure 4.1: Graph of the numerical solution of problem (4.1). The initial guess
for the initialization of the Newton procedure is v0 := 1.

The residual Chebfun satisfies the operator is of order 10−10 and the boundary conditions
are satisfied exactly. From the left panel of Fig. 4.2 it is very clear that Newton method
converges with an order of at most 2. From the right panel of the same figure one can observe
that a Chebyshev polynomial of order 16, with highly and smoothly decreasing coefficients is
the solution of this problem and the asymptotic rate of convergence is exponential.
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Figure 4.2: Newton iterations (left panel) and the coefficients of Chebyshev
solution when Chebfun solves problem (4.1).

4.2 Second example: a Neumann–Dirichlet problem

We now solve numerically the following problem






−
(

r v′√
1−v′2

)′
= rg (r) f (v) , r ∈ (0, 1)

v′ (0) = v (1) = 0,
(4.2)

where
g (r) = e−r +

1
2

r, f (v) =
1

v2 + 1
.
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Figure 4.3: Graph of the numerical solution of problem (4.2). The initial guess
for the initialization of the Newton procedure is v0 := 1.

The residual Chebfun satisfies the operator is of order 10−11 and the boundary conditions
are satisfied exactly. From the left panel of Fig. 4.4 it is very clear that Newton method
converges with an order of at least 2. From the right panel of the same figure one can observe
that a Chebyshev polynomial of order 17, with highly decreasing coefficients is the solution
of the problem and the asymptotic rate of convergence is again exponential.
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Figure 4.4: Newton iterations (left panel) and the coefficients of Chebyshev
solution when Chebfun solves problem (4.2).

4.3 Third example: a Dirichlet problem

The last example is giving by the Dirichlet problem






−
(

r v′√
1−v′2

)′
= rg (r) f (v) , r ∈ (1, 2)

v (1) = v (2) = 0,
(4.3)

where
g (r) = 1, f (v) =

v + 1
v2 + 1

.

The residual Chebfun satisfies the operator is of order 10−10 and the boundary conditions are
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Figure 4.5: Graph of the numerical solution of problem (4.3). The initial guess
for the initialization of the Newton procedure is v0 := 1.

satisfied exactly. From the left panel of Fig. 4.6 it is very clear that Newton method converges
with an order of at least 2 and from the right panel of the same figure one can observe that a
Chebyshev polynomial of order 24, with highly decreasing coefficients is the solution of the
problem and the asymptotic rate of convergence continues to be exponential.
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Figure 4.6: Newton iterations (left panel) and the coefficients of Chebyshev
solution when Chebfun solves problem (4.3).

We must make an important remark at the end of these three examples. Exponential
convergence occurs for solutions represented by Chebyshev polynomials of relatively small
order (of the order of a few tens). Moreover and more important, the convergence is so fast
that no rounding off plateau appears (see the right panels of the Figures 4.2, 4.4 and 4.6).

From this point of view, the problems in the present work, compared to those in [8], appear
to be only slightly nonlinear.

In the papers [12] and [13], the authors solve numerically similar problems. They exclu-
sively use shooting type methods, i.e., they transform a nonlinear boundary value problem
into a Cauchy problem and then solve it by finite difference schemes.

Variants of the shooting method have produced remarkable results over time, but we
consider that the Chebyshev collocation implemented by Chebfun, through the information it
provides, is very reliable. Unfortunately, a direct comparison of our results with the numerical
results from the last two cited works is almost impossible.
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Abstract. In this paper, we prove the existence of a positive ground state solution to the
following coupled system involving nonlinear Schrödinger equations:

{

−∆u + V1(x)u = f1(x, u) + λ(x)v, x ∈ R
2,

−∆v + V2(x)v = f2(x, v) + λ(x)u, x ∈ R
2,

where λ, V1, V2 ∈ C(R2, (0,+∞)) and f1, f2 : R
2 × R → R have critical exponential

growth in the sense of Trudinger–Moser inequality. The potentials V1(x) and V2(x) sat-
isfy a condition involving the coupling term λ(x), namely 0 < λ(x) ≤ λ0

√

V1(x)V2(x).
We use non-Nehari manifold, Lions’s concentration compactness and strong maximum
principle to get a positive ground state solution. Moreover, by using a bootstrap reg-
ularity lifting argument and Lq-estimates we get regularity and asymptotic behavior.
Our results improve and extend the previous results.

Keywords: coupled system, nonlinear Schrödinger equations, variational methods,
Trudinger–Moser inequality, positive ground state solution, regularity.

2020 Mathematics Subject Classification: 35J10, 35J50, 35J61, 35B33, 35Q55.

1 Introduction and main results

This article is devoted to studying standing waves for the following system of nonlinear
Schrödinger equations:

{

−∆u + V1(x)u = f1(x, u) + λ(x)v, x ∈ R
2,

−∆v + V2(x)v = f2(x, v) + λ(x)u, x ∈ R
2,

(1.1)

where λ, V1, V2 ∈ C(R2, R) and f1, f2 : R
2 × R → R satisfy the following basic assumptions:

BCorresponding author. Email: cjhnust@aliyun.com
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(V) V1(x), V2(x), λ(x) ∈ C(R2, (0,+∞)) are all 1-periodic in each of x1 and x2. Moreover,
there exists λ0 ∈ (0, 1) such that

0 < λ(x) ≤ λ0

√

V1(x)V2(x), ∀x ∈ R
2;

(F1) fi ∈ C(R2 × R, R), fi(x, t) is 1-periodic in each of x1 and x2, and there exists α1, α2 > 0
such that

lim
t→∞

| fi(x, t)|
eαt2 = 0, uniformly on x ∈ R

2 for all α > αi, i = 1, 2;

and

lim
t→∞

| fi(x, t)|
eαt2 = +∞, uniformly on x ∈ R

2 for all α < αi, i = 1, 2;

(F2) fi(x, t) = o(t) as t → 0 uniformly on x ∈ R
2, for i = 1, 2. fi(x, t) = 0 for all x ∈ R

2, t ≤ 0.

Solutions of system (1.1) are related with standing waves of the following two-component
system:

{

−i
∂ψ
∂t = ∆ψ − V1(x)ψ + f1(x, ψ) + λ(x)φ, (x, t) ∈ R

2 × R,

−i
∂φ
∂t = ∆φ − V2(x)φ + f2(x, ψ) + λ(x)ψ, (x, t) ∈ R

2 × R,
(1.2)

where i denotes the imaginary unit. Such class of systems arise in various branches of mathe-
matical physics and nonlinear optics, see [1]. For instance, solutions of (1.1) are related to the
existence of solitary wave solutions for nonlinear Schrödinger equations and Klein–Gordon
equations, see [4]. For system (1.2), a solution of the form

(ψ(x, t), φ(x, t)) = (e−iMtu(x), e−iMtv(x)),

where M is some real constant, called standing wave solution.
In order to motivate our results, we begin by giving a brief survey on this subject. Let us

consider the scalar case. Notice that if λ ≡ 0, V1 ≡ V2 = V(x), f1 ≡ f2 = f and u ≡ v, system
(1.1) reduces to the scalar equation

− ∆u + V(x)u = f (x, u). (1.3)

This class of nonlinear Schrödinger equation has been widely studied by many researchers,
under various hypotheses on the potential V(x) and nonlinear term f (x, u). Such as coercive
potential, axially symmetric potential, positive potential and periodic potential. In particular,
Chen and Tang [8] developed a direct approach to get nontrivial solutions and ground state
solutions when they considered the equation (1.3) in R

2 where V(x) was a 1-periodic function
with respect to x1 and x2, 0 lies in the gap of −∆+V, and the nonlinear term was of Trudinger-
Moser critical exponential growth. Using the generalized linking theorem to obtain a Cerami
sequence, they showed that the Cerami sequence was bounded and the minimax-level was
less than the threshold value by virtue of Moser type functions. Furthermore, they obtained
that the Cerami sequence was nonvanishing, which extended and improved the results of
[2, 17].

For the system of nonlinear Schrödinger equations, there are some results on the linearly
coupled system in subcritical and critical case. Chen and Zou [9] studied the following system

{

−∆u + u = f (x, u) + λv, x ∈ R
N ,

−∆v + v = g(x, v) + λu, x ∈ R
N ,

(1.4)
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where 0 < λ < 1. They discussed the system for non-autonomous and autonomous non-
linearities of subcritical growth respectively. When N ≥ 2, f (x, u) = (1 + a(x))|u|p−1u and
g(x, v) = (1 + b(x))|v|p−1v, they improved the results of [3] for establishing energy estimates
of the ground states. Under some assumptions of potential a(x) and b(x), they obtained
not only the existence of positive bound states, but also a precise description of the limit be-
havior of the bound states as the parameter λ goes to zero. When N ≥ 3, f (x, u) = f (u),
g(x, v) = g(v), and Berestycki–Lions type assumptions were satisfied, they proved system
(1.4) had a positive radial ground state, moreover, the behavior and energy estimates of the
bound states as λ → 0 were also obtained.

Later, Chen and Zou [10] investigated the following coupled systems with critical power-
type nonlinearity:

{

−∆u + µu = |u|p−1u + λv, x ∈ R
N ,

−∆v + νv = |v|2∗−2v + λu, x ∈ R
N ,

(1.5)

where 0 < λ <
√

µν, 1 < p < 2∗ − 1 and N ≥ 3. They proved the existence of positive
ground states for system (1.5) when 0 < µ ≤ µ0, where µ0 ∈ (0, 1) was some critical value.
When µ and λ were both large, system (1.5) had a positive ground state also. While, when µ

was large but λ was small, the system (1.5) had no ground state solutions. In addition, when
p = 2∗ − 1, system (1.5) had no nontrivial solutions by the Pohozaev identity. Motivated by
[10], Li and Tang [14] considered system (1.5) in R

N , N ≥ 3, when µ = a(x) > 0, ν = b(x) > 0
and λ = λ(x) were continuous functions, 1-periodic in each of x1, x2, . . . , xN , and satisfied
λ(x) <

√

a(x)b(x), they proved system (1.5) had a Nehari-type ground state solution when
0 < a(x) < µ0 for some µ0 ∈ (0, 1). Some related linearly coupled systems were also studied
in [3, 11, 12] and the references therein.

In the above references we refer to, it is noticed that the nonlinearities were only considered
the polynominal growth of subcritical or critical type in terms of the Sobolev embedding. As
we all know, the Trudinger–Moser inequality in R

2 with critical exponential growth instead
of the Sobolev inequality in R

N with critical polynominal growth, which was first established
by Cao in [5], reads as follows.

Lemma 1.1 ([5]).

i) If α > 0 and u ∈ H1(R2), then

∫

R2

(

eαu2 − 1
)

dx < ∞;

ii) if u ∈ H1(R2), ‖∇u‖2
2 ≤ 1, ‖u‖2

2 ≤ M < ∞, and α < 4π. then there exists a constant

C(M, α), which depends only on M and α, such that

∫

R2

(

eαu2 − 1
)

dx ≤ C(M, α).

By virtue of the Trudinger–Moser inequality, do Ó and de Albuquerque [16] investigated
the following linear coupled system with constant potential in R

2,

{

−∆u + u = f1(u) + λ(x)v, x ∈ R
2,

−∆v + v = f2(v) + λ(x)u, x ∈ R
2.

(1.6)
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By using the minimization technique over the Nehari manifold and strong maximum princi-
ple, the existence of positive ground state solution and the corresponding asymptotic behavior
were obtained.

In the paper [15], do Ó and de Albuquerque used the same idea as [16] to investigate the
existence of positive ground state solution and asymptotic behaviors for the coupled system
(1.1) with nonnegative variable potentials. The main problem they faced was to overcome
the difficulty originated from the lack of compactness when the nonlinear terms had critical
exponential growth in R

2. Based on this, they considered the following weighted Sobolev
space defined by

HVi
(R2) =

{

u ∈ H1(R2) :
∫

R2
Vi(x)u2dx < ∞

}

,

endowed with the norm

‖u‖Vi
=

(

∫

R2
|∇u|2dx +

∫

R2
Vi(x)u2dx

)
1
2

.

They assumed the following conditions on the potential Vi(x), i = 1, 2.

(V1’) Vi(x) ≥ 0, for all x ∈ R
2 and Vi ∈ L∞

loc(R
2);

(V2’) The infimum

inf
u∈HVi

(R2)

{

∫

R2
(|∇u|2 + Vi(x)u2)dx :

∫

R2
u2dx = 1

}

is positive;

(V3’) There exists s ∈ [2,+∞) such that

lim
R→∞

νi
s(R

2 \ BR) = ∞,

here,

νi
s(Ω) =











inf
u∈H1

0 (Ω)\{0}

∫

Ω
(|∇u|2 + Vi(x)u2)dx

(
∫

Ω
|u|sdx)

2
s

, Ω 6= ∅,

∞, Ω = ∅;

(V4’) There exists functions Ai(x) ∈ L∞
loc(R

2), with Ai(x) ≥ 1, and constants βi > 1, C0, R0 >

0 such that
Ai(x) ≤ C0[1 + Vi(x)

1
βi ], for all |x| ≥ R0.

Here, (V1’) and (V2’) is assumed to ensure that HVi
(R2) is a Hilbert space, (V3’) and (V4’)

play a crucial role in overcoming the lack of compactness.
In terms of nonlinearities, they defined fi : R

2 × R → R had αi
0-critical growth at +∞

involving the term Ai(x), such as

lim
t→+∞

| fi(x, t)|
Ai(x)eαt2 = 0, uniformly on x ∈ R

2 for all α > αi
0.

lim
t→+∞

| fi(x, t)|
Ai(x)eαt2 = +∞, uniformly on x ∈ R

2 for all α < αi
0.

Here, Ai(x) was defined in (V4’). When Ai(x) = 1, (F1) holds. In addition, they assumed the
following hypotheses:
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(F1’) fi : R
2 × R → R is C1, fi(x, t) = 0 for all x ∈ R

2, t ≤ 0, and

lim
t→0

| fi(x, t)|
Ai(x)|t| = 0, uniformly on x ∈ R

2;

(F2’) fi(x, t) is locally bounded in t, that is, for any bounded interval Λ ⊂ R, there exists
C > 0 such that fi(x, t) ≤ C, for all (x, t) ∈ R

2 × Λ;

(F3’) There exists µi > 2 such that

t fi(x, t) ≥ µiFi(x, t) := µi

∫ t

0
fi(x, s)ds > 0, ∀(x, t) ∈ R

2 × R
+;

(F4’) For each fixed x ∈ R
2 the function t 7→ fi(x,t)

t is increasing for t > 0;

(F5’) There exists q > 2 such that

F1(x, s) + F2(x, t) ≥ ϑ(sq + tq)

for all x ∈ R
2 and s, t ≥ 0, ϑ > 0 is a constant.

In [15], jointly with (V4’), one can find that the growth of fi are controlled by the growth
of Vi(x), i = 1, 2 form (F1’). Moreover, the condition fi ∈ C1 in (F1’) plays a crucial role to
obtain the Nehari-type ground state solutions for (1.1) via the Nehari manifold method. (F3’)
is the well-known Ambrosetti–Rabinowitz condition ((AR) condition), which ensures that the
functional associated with the problem has a mountain pass geometry and guarantees the
boundedness of the Palais–Smale sequence. (F4’) is the Nehari monotonic condition. (F5’)
needs that the nonlinearities are super-q growth at zero, q > 2. It is noticed that sufficiently
large ϑ in (F5’) is very crucial in their arguments. In fact, by virtue of this condition, the
minimax-level for the energy functional can be choosen sufficiently small, therefore the dif-
ficult arising from the critical growth of Trudinger–Moser type is easily overcome. But this
result has no relationship with the exponential velocity αi

0, i = 1, 2 , hence it does not reveal
the essential characteristics with the critical growth of Trudinger–Moser type.

Recently, Wei, Lin and Tang [20] used non-Nehari manifold methods (see [19]), Lions’s
concentration compactness and a direct approach derived from [7] for obtaining the mini-
max estimate to investigate system (1.6) in the non-autonomous case. They proved that (1.6)
still possessed a Nehari-type ground state solution and a nontrivial solution. Their results
improved the existence results of [16] by weakening the nonlinearities to be continuous, and
only needed to satisfy the weaker Nehari monotonic condition, even without (AR) condition.
Additionally, since the generalized linking theorem did not work for the strongly indefinite
Hamiltonian elliptic system with critical exponential growth in R

2, Qin, Tang and Zhang [18]
developed a new approach to seek Cerami sequences for the energy functional and estimated
the minimax levels of these sequences. Furthermore, they used non-Nehari manifold method
to obtain the existence of ground state solutions without (AR) condition.

It is interesting to ask if the existence of positive ground state solutions for linearly coupled
systems with variable potentials is preserved without (AR) condition. Our aim in this paper
is to prove the existence of positive Nehari-type ground state solution of (1.1) and obtain the
asymptotic behaviors of ground states with some mild assumptions. This work is motivated
by the results of [15, 18, 20]. Our main result below (Theorem 1.2) can handle the case of



6 J. Chen and X. H. Zhang

fi(x, t) with less restrictions, which are in the true sense of critical exponential growth, and
are independent of (F5’) with some large constant ϑ (see [15, Theroem 1.1]).

To this end, we emphasize that we need refinements in order to treat the different setting
from the constant potentials to the variable ones. Indeed, it is easy to get the mountain pass
geometry for the problem with the constant potentials, while for variable potentials, some
new analysis techniques and imbedding inequalities such as (2.2) are needed. We borrow the
ideas from [18, 20] to look for the minimizing Cerami sequence for the energy functional as-
sociated with (1.1) by using the non-Nehari manifold approach. By means of slightly weaker
monotonic conditions, we show the boundedness of the Cerami sequence. Furthermore, to
recover the compactness of the minimizing Cerami sequence, we estimate an accurate thresh-
old for the minimax-level, meanwhile, we use Lions’s concentration compactness principle
and the invariance of the energy functional by translation to show that the sequence does not
vanish. Then by using a standard bootstrap argument and Lq-estimates we get regularity and
asymptotic behavior of the ground state solution.

To state our main results, in addition to (F1) and (F2), we also introduce the following
assumptions:

(F3) There exists M0 > 0 and t0 > 0 such that for every x ∈ R
2,

Fi(x, t) ≤ M0| fi(x, t)|, ∀|t| ≥ t0;

(F4) For every x ∈ R
2, fi(x,t)

t is non-decreasing on (0, ∞);

(F5) lim inf|t|→∞
t2Fi(x,t)

eα0t2
≥ κ >

VM

α2
0

uniformly on x ∈ R
2, where α0 = max{α1, α2}, VM =

maxR2{V1, V2}.

In view of Lemma 1.1 i), under assumption (V), (F1) and (F2), the weak solutions of (1.1)
correspond to the critical points of the energy functional defined by

Φ(u, v) =
1
2

[

‖(u, v)‖2 − 2
∫

R2
λ(x)uvdx

]

−
∫

R2
[F1(x, u) + F2(x, v)]dx. (1.7)

where ‖ · ‖ is defined in Section 2, (2.3).

Now our main results can be stated as follow.

Theorem 1.2. Let (V), (F1)–(F5) be satisfied. Then (1.1) has a solution (ū, v̄) ∈ N with ū > 0 and

v̄ > 0 such that Φ(ū, v̄) = b := infN Φ, where

N := {u ∈ E \ {(0, 0)} :
〈

Φ′(u, v), (u, v)
〉

= 0}, (1.8)

where E is defined in Section 2. Moreover, (ū, v̄) ∈ C
1,β
loc (R

2)× C
1,β
loc (R

2) for some β ∈ (0, 1) with the

following asymptotic behavior

‖ū‖C1,β(BR)
→ 0 and ‖v̄‖C1,β(BR)

→ 0 as |x| → ∞. (1.9)

Remark 1.3. Theorem 1.2 improves and extends the results in [15, Theorem 1.1]. In the sense
of the conditions of nonlinearities, f1 and f2 are continuous and the growth of them are
independent on Vi(x). For obtaining the boundedness of Cerami sequence, we only need
the condition (F3) used for the exponential growth problems instead of (F3’). When it comes
to the minimax level estimates of the energy functional, the authors in [15] made use of a
rigorous limitation on the norm of the minimizing sequence by the the polynomial controlled
condition (F5’), while we use the direct calculation argument with the exponential controlled
condition (F5). Moreover, we use the weaker monotonicity condition (F4) to replace (F4’).
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Remark 1.4. There are many functions satisfying the conditions (F1)–(F5) of the nonlinearities
in this paper, but not satisfying the conditions (F4’) and (F5’) in [15]. For example, fora1, a2 > 0,

f1(x, t) =

{

a1(e
2t2 − 1), t > 0,

0, t ≤ 0,

f2(x, t) =

{

a2|t|tet2
, t > 0,

0, t ≤ 0.

The paper is organized as follows. In Section 2, we give the variational setting and prelim-
inaries. In Section 3, we establish the minimax estimates of the energy functional. The proof
of ground state solution will be stated in Section 4. Then in Section 5, we give the proof of
regularity and asymptotic behavior.

Throughout the paper, we make use of the following notations:

• Ls(R2)(1 ≤ s < ∞) denotes the Lebesgue space with the norm ‖u‖s = (
∫

R2 |u|sdx)1/s;

• ∀x ∈ R
2 and r > 0, Br(x) := {y ∈ R

2 : |y − x| < r};

• C1, C2, C3, . . . denote positive constants possibly different in different places.

2 Variational setting and preliminaries

Consider that the potentials are positive, we define the inner product in H1(R2) and the
associated norm as follows,

(u, v) :=
∫

R2
[∇u∇v + V(x)uv]dx, ‖u‖2 := (u, u), ∀u, v ∈ H1(R2). (2.1)

For any s ∈ [2,+∞), the Sobolev embedding theorem yields the existence of γs ∈ (0,+∞)

such that
‖u‖s ≤ γs‖u‖, ∀u ∈ H1(R2). (2.2)

Under (V), let HV1(R
2) and HV2(R

2) be endowed with the norm

‖u‖V1 =

(

∫

R2
|∇u|2 + V1(x)u2dx

)
1
2

, ‖v‖V2 =

(

∫

R2
|∇v|2 + V2(x)v2dx

)
1
2

.

Define E := HV1(R
2)× HV2(R

2) and

((u, v), (φ, ψ)) :=
∫

R2
(∇u∇φ+∇v∇ψ+V1(x)uφ+V2(x)vψ)dx, ∀(u, φ) ∈ HV1 , (v, ψ) ∈ HV2 .

Then E is a Hilbert space on the above inner product. The induced norm

‖(u, v)‖2 :=
∫

R2
(|∇u|2 + |∇v|2 + V1(x)u2 + V2(x)v2)dx, ∀(u, v) ∈ E. (2.3)

That is ‖(u, v)‖2 = ‖u‖2
V1
+ ‖v‖2

V2
. By (V), (1.7) and Lemma 1.1, we know that the functional

Φ(u, v) is well defined on E. Moreover, by standard arguments, Φ ∈ C1(E, R) and its deriva-
tive is given by

〈

Φ′(u, v), (φ, ψ)
〉

= ((u, v), (φ, ψ))−
∫

R2
λ(x)(uψ+ vφ)dx −

∫

R2
[ f1(x, u)φ+ f2(x, v)ψ]dx (2.4)
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and
〈

Φ′(u, v), (u, v)
〉

= ‖(u, v)‖2 − 2
∫

R2
λ(x)uvdx −

∫

R2
[ f1(x, u)u + f2(x, v)v]dx. (2.5)

For any ε > 0, α > α0 and q̄ > 0, it follows from (F1) and (F2) that there exists C =

C(ε, α, q̄) > 0 such that
|Fi(x, t)| ≤ εt2 + C|t|q̄eαt2

. (2.6)

Now we choose (u0, v0) ∈ E \ {(0, 0)}, it is easy to show that limt→∞ Φ(tu0, tv0) = −∞ due to
(V) and (F1).
Lemma 2.1. Assume that (V), (F1) and (F2) hold. Then there exists a sequence (un, vn) ⊂ E satisfying

Φ(un, vn) → c∗, ‖Φ′(un, vn)‖(1 + ‖(un, vn)‖) → 0. (2.7)

where c∗ is given by

c∗ = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)),

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, Φ(γ(1)) < 0}.

Proof. By (2.6), one has for some constants α > α0 and C1 > 0

Fi(x, t) ≤ 1 − λ0

4γ2
2

t2 + C1|t|3(eαt2 − 1). (2.8)

From (2.8) and Lemma 1.1 ii), we obtain
∫

R2
F1(x, u)dx ≤ 1 − λ0

4γ2
2

‖u‖2
2 + C1

∫

R2
(eαu2 − 1)|u|3dx

≤ 1 − λ0

4γ2
2

‖u‖2
2 + C1

[

∫

R2
(e2αu2 − 1)dx

]
1
2 ‖u‖3

6

≤ 1 − λ0

4
‖u‖2

V1
+ C2‖u‖3

V1
, ∀‖(u, v)‖ ≤

√
π/α. (2.9)

Similarly, we have
∫

R2
F2(x, v)dx ≤ 1 − λ0

4
‖v‖2

V2
+ C2‖v‖3

V2
, ∀‖(u, v)‖ ≤

√
π/α. (2.10)

Hence, it follows from (V), (1.7), (2.9) and (2.10) that

Φ(u, v) =
1
2

[

‖(u, v)‖2 − 2
∫

R2
λ(x)uvdx

]

−
∫

R2
[F1(x, u) + F2(x, v)]dx

≥ 1
2

[

‖(u, v)‖2 − λ0

∫

R2
(V1(x)u2 + V2(x)v2)dx

]

− 1 − λ0

4
(‖u‖2

V1
+ ‖v‖2

V2
)

− C2(‖u‖3
V1
+ ‖v‖3

V2
)

≥ 1 − λ0

4
‖(u, v)‖2 − C3‖(u, v)‖3. (2.11)

Therefore, there exists κ0 > 0 and 0 < ρ <

√
π/α such that

Φ(u, v) ≥ κ0, ∀(u, v) ∈ S := {(u, v) ∈ E : ‖(u, v)‖ = ρ}. (2.12)

Since limt→∞ Φ(tu0, tv0) = −∞, we can choose T > 0 such that e = (Tu0, Tv0) ∈ {(u, v) ∈
E : ‖(u, v)‖ ≥ ρ} and Φ(e) < 0, then according to the mountain pass lemma, we deduce that
there exists c∗ ∈ [κ0, supt≥0 Φ(tu0, tv0)] and a sequence {(un, vn)} ⊂ E satisfying (2.7).
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Lemma 2.2. Assume that (V), (F1), (F2) and (F4) hold. Then

Φ(u, v) ≥ Φ(tu, tv) +
1 − t2

2

〈

Φ′(u, v), (u, v)
〉

, ∀t > 0. (2.13)

Proof. It is obvious that (F4) implies the following inequality:

1 − t2

2
fi(x, s)s + Fi(x, ts)− Fi(x, s) =

∫ 1

t

[

fi(x, s)

s
− fi(x, τs)

τs

]

τs2dτ ≥ 0. (2.14)

From (1.7), (2.5) and (2.14), we have

Φ(u, v)− Φ(tu, tv) =
1
2

[

‖(u, v)‖2 −
∫

R2
λ(x)uvdx

]

−
∫

R2
[F1(x, u) + F2(x, v)]dx

−
{

t2

2
‖(u, v)‖2 − t2

∫

R2
λ(x)uvdx −

∫

R2
F1(x, tu) + F2(x, tv)dx

}

=
1 − t2

2

〈

Φ′(u, v), (u, v)
〉

+
∫

R2

[

1 − t2

2
f1(x, u)u + F1(x, tu)− F1(x, u)

]

dx

+
∫

R2

[

1 − t2

2
f2(x, v)v + F2(x, tv)− F2(x, v)

]

dx

≥ 1 − t2

2

〈

Φ′(u, v), (u, v)
〉

.

From Lemma 2.2, we get the following corollary easily.

Corollary 2.3. Assume that (V), (F1), (F2) and (F4) hold. Then

Φ(u, v) ≥ max
t≥0

Φ(tu, tv), ∀(u, v) ∈ N . (2.15)

Lemma 2.4. Assume that (V), (F1), (F2) and (F4) hold. Then for any (u, v) ∈ E \ {(0, 0)}, there

exists a unique t(u,v) > 0 such that (t(u,v)u, t(u,v)v) ∈ N .

Proof. Let (u, v) ∈ E \ {(0, 0)} be fixed and define a function ζ(t) := Φ(tu, tv) on [0, ∞).
Clearly, by (2.5), we have

ζ ′(t) = 0 ⇔ t2‖(u, v)‖2 − 2t2
∫

R2
λ(x)uvdx −

∫

R2
[ f1(x, tu)tu + f2(x, tv)tv]dx = 0

⇔
〈

Φ′(tu, tv), (tu, tv)
〉

= 0 ⇔ (tu, tv) ∈ N .

By (2.11) and (F1), one has ζ(0) = 0 and ζ(t) > 0 for t > 0 small and ζ(t) < 0 for t

large. Therefore, maxt∈(0,∞) ζ(t) is achieved at some t0 = t(u,v) > 0, so that ζ ′(t0) = 0 and
t(u,v)(u, v) ∈ N .

Next we claim that t(u,v) is unique for any (u, v) ∈ E \ {(0, 0)}, let t1, t2 > 0 such that
ζ ′(t1) = ζ ′(t2) = 0. Then 〈Φ′(t1u, t1v), (t1u, t1v)〉 = 〈Φ′(t2u, t2v), (t2u, t2v)〉 = 0. Jointly with
(2.13) , we have

Φ(t1u, t1v) ≥ Φ(t2u, t2v) +
1 − t2

2

〈

Φ′(t1u, t1v), (t1u, t1v)
〉

(2.16)

and

Φ(t2u, t2v) ≥ Φ(t1u, t1v) +
1 − t2

2

〈

Φ′(t2u, t2v), (t2u, t2v)
〉

. (2.17)

By (2.16) and (2.17), it is obvious that t1 = t2. Therefore t(u,v) > 0 is unique for any (u, v) ∈
E \ {(0, 0)}.
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From Corollary 2.3 and Lemma 2.4, we directly have the following lemma about minimax
characterization of infN Φ.

Lemma 2.5. Assume that (V), (F1), (F2) and (F4) hold. Then

b := inf
N

Φ = inf
(u,v)∈E\{(0,0)}

max
t≥0

Φ(tu, tv). (2.18)

Lemma 2.6. Assume that (V), (F1), (F2) and (F4) hold. Then there exist a constant c̄ ∈ (0, b] and a

sequence {(un, vn)} ⊂ E satisfying

Φ(un, vn) → c̄, ‖Φ′(un, vn)‖E∗(1 + ‖(un, vn)‖) → 0. (2.19)

Similarly with [20, Lemma 2.6], the proof is omitted here.

Lemma 2.7. Assume that (V), (F1)–(F4) hold. Then any sequence {(un, vn)} satisfying (2.19) is

bounded.

Proof. Arguing by contradiction, suppose that ‖(un, vn)‖ → ∞ as n → ∞. Let (ũn, ṽn) =

(un, vn)/‖(un, vn)‖. Then 1 = ‖(ũn, ṽn)‖2. By (F2) and (F4), we have

fi(x, θt)θt

θ2 ≥ fi(x, t)t ≥ 2Fi(x, t) ≥ 0, ∀x ∈ R
2, t ∈ R, θ ≥ 1, i = 1, 2. (2.20)

It follows from (F3) and (2.20) that there exists R > t0 such that

fi(x, t)t ≥ 4Fi(x, t), ∀|t| ≥ R. (2.21)

From (1.7), (2.5), (2.19), (2.20), and (2.21), we have

c̄ + o(1) = Φ(un, vn)−
1
2

〈

Φ′(un, vn), (un, vn)
〉

=
∫

R2

[

1
2

f1(x, un)un − F1(x, un)

]

dx +
∫

R2

[

1
2

f2(x, vn)vn − F2(x, vn)

]

dx

≥
∫

|un|≤R

[

1
2

f1(x, un)un − F1(x, un)

]

dx +
∫

|vn|≤R

[

1
2

f2(x, vn)vn − F2(x, vn)

]

dx

+
1
4

∫

|un|>R
f1(x, un)undx +

1
4

∫

|vn|>R
f2(x, vn)vndx

≥ 1
4

∫

|un|>R
f1(x, un)undx +

1
4

∫

|vn|>R
f2(x, vn)vndx. (2.22)

Let τ ≥
( 4(c̄+1)

1−2λ0

)
1
2 and tn = τ/‖(un, vn)‖. Then tn → 0 as n → ∞. It follows from (F2), (2.21)
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and (2.22) that
∫

R2
[F1(x, tnun) + F2(x, tnun)]dx

=
∫

|un|≤R
F1(x, tnun)dx +

∫

|un|>R
F1(x, tnun)dx

+
∫

|vn|≤R
F2(x, tnvn)dx +

∫

|vn|>R
F2(x, tnvn)dx

≤ 1
4γ2

2

∫

|un|≤R
|tnun|2dx +

1
4γ2

2

∫

|vn|≤R
|tnvn|2dx

+
t2
n

4

∫

|un|>R
f1(x, un)undx +

t2
n

4

∫

|vn|>R
f2(x, vn)vndx

≤ t2
n

4γ2
2

∫

|un|≤R
|un|2dx +

t2
n

4γ2
2

∫

|vn|≤R
|vn|2dx +

τ2(c̄ + 1)
‖(un, vn)‖2

≤ τ2

4
+ o(1). (2.23)

Hence, from (2.13), (2.19) and (2.23), we have

c̄ + o(1) = Φ(un, vn)

≥ Φ(tnun, tnvn) +
1 − t2

n

2

〈

Φ′(un, vn), (un, vn)
〉

=
t2
n

2

[

‖(un, vn)‖2 − 2
∫

R2
λ(x)unvndx

]

−
∫

R2
[F1(x, tnun) + F2(x, tnvn)]dx + o(1)

≥ (1 − 2λ0)τ2

4
+ o(1)

≥ c̄ + 1 + o(1). (2.24)

This contradiction shows that {(un, vn)} is bounded.

3 Minimax estimates

In this section, we give a accurate estimation about the minimax level c∗ defined by Lemma
2.1.

At first, we define a Moser type function wn(x) supported in B√
2/VM

:= B√
2/VM

(0) as
follows:

wn(x) =
1√
2π























√

log n, 0 ≤ |x| ≤
√

2/(
√

VMn);

log(
√

2/
√

VM|x|)
√

log n
,

√
2/(

√

VMn) ≤ |x| ≤
√

2/VM;

0, |x| ≥
√

2/VM.

(3.1)

By an elementary computation, we have

‖∇wn‖2
2 =

∫

R2
|∇wn|2dx = 1, (3.2)

and

‖wn‖2
2 =

∫

R2
|wn|2dx =

2δn

VM
, (3.3)
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where
δn :=

1
4 log n

− 1
4n2 log n

− 1
2n2 > 0. (3.4)

Lemma 3.1. Assume that (V), (F1), (F2), and (F5) hold. Furthermore, suppose that Fi(x, t) ≥ 0 for

all t ∈ R. Then there exists n̄ ∈ N such that

c∗ ≤ max
t≥0

Φ(twn̄, twn̄) <
4π

α0
. (3.5)

Proof. By (F5), we can choose ε > 0 and tε > 0 such that

log
VM(1 + ǫ)2

(2 − ǫ)(κ − ǫ)α2
0
< −ǫ (3.6)

and
t2Fi(x, t) ≥ (κ − ǫ)eα0t2

, ∀x ∈ R
2, |t| ≥ tǫ, i = 1, 2. (3.7)

From (1.7), (3.2) and (3.3), we have

Φ(twn, twn) =
t2

2

∫

R2
[|∇wn|2 + |∇wn|2 + V1(x)w2

n + V2(x)w2
n]dx

− t2
∫

R2
λ(x)w2

ndx −
∫

R2
[F1(x, twn) + F2(x, twn)]dx

≤ t2(1 + 2δn)−
∫

R2
[F1(x, twn) + F2(x, twn)]dx. (3.8)

There are four cases to distinguish. In the sequel, we agree that all inequalities hold for large
n ∈ N without mentioning.

Case i). t ∈
[

0,
√

2π
α0

]

. Then it follows from (3.8) that

Φ(twn, twn) ≤ t2(1 + 2δn)−
∫

R2
[F1(x, twn) + F2(x, twn)]dx

≤ t2
(

1 +
1

2 log n

)

+ O

(

1
n log n

)

≤ 2π

α0
+ O

(

1
n log n

)

. (3.9)

Clearly, there exists n̄ ∈ N such that (3.5) hold.

Case ii). t ∈
[

√

2π
α0

,
√

4π
α0

]

. Then twn(x) ≥ tǫ for x ∈ B√
2/(VMn)

and for large n ∈ N, it

follows (3.1) and (3.7) that
∫

R2
F1(x, twn)dx ≥

∫

B√2/(VMn)

F1(x, twn)dx

≥
∫

B√2/(VMn)

(κ − ǫ)eα0t2w2
n

t2w2
n

dx

≥ (κ − ǫ)α0

2 log n

∫

B√2/(VMn)

eα0t2w2
n dx

=
π(κ − ǫ)α0

VMn2 log n

[

e(2π)−1α0t2 log n + 2n2 log n
∫ 1

1/2
n(2π)−1α0t2s2−2sds

]
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≥ π(κ − ǫ)α0

VMn2 log n

[

e(2π)−1α0t2 log n + 2n2 log n
∫ 1

1/2
n(2π)−1α0t2s−2ds

]

=
π(κ − ǫ)α0

VMn2 log n

[

e(2π)−1α0t2 log n +
4π

α0t2

(

n(2π)−1α0t2 − n(4π)−1α0t2)
]

≥ 2π(κ − ǫ)α0

VMn2 log n
e(2π)−1α0t2 log n − O

(

1
n log n

)

. (3.10)

Similarly, we have
∫

R2
F2(x, twn)dx ≥ 2π(κ − ǫ)α0

VMn2 log n
e(2π)−1α0t2 log n − O

(

1
n log n

)

. (3.11)

It follows from (3.8), (3.10) and (3.11) that

Φ(twn, twn) ≤ t2
(

1 +
1

2 log n

)

− 4π(κ − ǫ)α0

VMn2 log n
e(2π)−1α0t2 log n + 2O

(

1
n log n

)

=: ϕn(t) + 2O

(

1
n log n

)

. (3.12)

Let tn > 0 such that ϕ′
n(tn) = 0. Then

1 +
1

2 log n
=

2(κ − ǫ)α2
0

VMn2 e(2π)−1α0t2
n log n. (3.13)

It follows that
lim
n→∞

t2
n =

4π

α0
. (3.14)

From (3.13) and (3.14), we have

t2
n =

4π

α0

[

1 +
log

(

VM + VM
2 log n

)

− log(2(κ − ǫ)α2
0)

2 log n

]

≤ 4π

α0
+

2π

α0 log n
log

VM(1 + ǫ)

2(κ − ǫ)α2
0

. (3.15)

and

ϕn(t) ≤ ϕn(tn) = t2
n

(

1 +
1

2 log n

)

− 2π

α0 log n

(

1 +
1

2 log n

)

. (3.16)

From (3.14), (3.15) and (3.16), we have

ϕn(t) ≤ t2
n

(

1 +
1

2 log n

)

− 2π

α0 log n

(

1 +
1

2 log n

)

≤
[

4π

α0
+

2π

α0 log n
log

VM(1 + ǫ)

2(κ − ǫ)α2
0

] (

1 +
1

2 log n

)

− 2π

α0 log n

(

1 +
1

2 log n

)

≤
[

4π

α0
+

2π

α0 log n
log

VM(1 + ǫ)

2(κ − ǫ)α2
0

] (

1 +
1

2 log n

)

− 2π

α0 log n
(1 − ǫ)

≤ 4π

α0
+

2π

α0 log n

[

log
VM(1 + ǫ)

2(κ − ǫ)α2
0
+ ǫ

]

+ O

(

1

log2 n

)

. (3.17)

Hence, combining (3.12) with (3.17), one has

Φ(twn, twn) ≤
4π

α0
+

2π

α0 log n

[

log
VM(1 + ǫ)

2(κ − ǫ)α2
0
+ ǫ

]

+ O

(

1

log2 n

)

. (3.18)
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Obviously, (3.6) and (3.18) imply that there exists n̄ ∈ N such that (3.5) hold.

Case iii). t ∈
[

√

4π
α0

,
√

4π
α0
(1 + ǫ)

]

. Then twn(x) ≥ tǫ for x ∈ B√
2/(VMn)

and for large n ∈ N,

it follows (3.7) that
∫

R2
F1(x, twn)dx ≥

∫

B√2/(VMn)

F1(x, twn)dx

≥
∫

B√2/(VMn)

(κ − ǫ)eα0t2w2
n

t2w2
n

dx

≥ (κ − ǫ)α0

2(1 + ǫ) log n

∫

B√2/(VMn)

eα0t2w2
n dx

=
π(κ − ǫ)α0

(1 + ǫ)VMn2 log n

[

e(2π)−1α0t2 log n + 2n2 log n
∫ 1

1/2
n(2π)−1α0t2s2−2sds

]

≥ π(κ − ǫ)α0

(1 + ǫ)VMn2 log n

[

e(2π)−1α0t2 log n + 2 log n
∫ 1

1−ǫ
n[(1−ǫ)(2π)−1α0t2+2ǫ]sds

]

=
π(κ − ǫ)α0

(1 + ǫ)VMn2 log n

[

e(2π)−1α0t2 log n +
1

1 + ǫ
e[(1−ǫ)(2π)−1α0t2+2ǫ] log n

]

− O

(

1
n2ǫ2 log n

)

≥ 2π(κ − ǫ)α0

(1 + ǫ)3/2VMn2−ǫ log n
e(2−ǫ)(4π)−1α0t2 log n − O

(

1
n2ǫ2 log n

)

. (3.19)

Similarly, we have

∫

R2
F2(x, twn)dx ≥ 2π(κ − ǫ)α0

(1 + ǫ)3/2VMn2−ǫ log n
e(2−ǫ)(4π)−1α0t2 log n − O

(

1
n2ǫ2 log n

). (3.20)

It follows from (3.6) , (3.19) and (3.20) that

Φ(twn, twn) ≤ t2
(

1 +
1

2 log n

)

− 4π(κ − ǫ)α0

(1 + ǫ)3/2VMn2−ǫ log n
e(2−ǫ)(4π)−1α0t2 log n + 2O

(

1
n2ǫ2 log n

)

=: ψn(t) + 2O

(

1
n2ǫ2 log n

)

. (3.21)

Let t̂n > 0 such that ψ′
n(t̂n) = 0. Then

1 +
1

2 log n
=

(κ − ǫ)(2 − ǫ)α2
0

(1 + ǫ)3/2VMn2−ǫ
e(2−ǫ)(4π)−1α0 t̂2

n log n. (3.22)

It follows that
lim
n→∞

t̂2
n =

4π

α0
. (3.23)

From (3.22) and (3.23), we have

t̂2
n =

4π

α0

[

1 +
(1 + ǫ)3/2VM

(

1 + 1
2 log n

)

− log((2 − ǫ)(κ − ǫ)α2
0)

(2 − ǫ) log n

]

≤ 4π

α0
+

4π

α0(2 − ǫ) log n
log

VM(1 + ǫ)2

(2 − ǫ)(κ − ǫ)α2
0

. (3.24)
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It follows from (3.21), (3.23) and (3.24), we have

ψn(t) ≤ ψn(t̂n) = t̂2
n

(

1 +
1

2 log n

)

− 4π

(2 − ǫ)α0 log n

(

1 +
1

2 log n

)

≤
[

4π

α0
+

4π

α0(2 − ǫ) log n
log

VM(1 + ǫ)2

(2 − ǫ)(κ − ǫ)α2
0

] (

1 +
1

2 log n

)

− 4π(1 − ǫ)

(2 − ǫ)α0 log n

≤ 4π

α0
+

4π

(2 − ǫ)α0 log n

[

ǫ + log
VM(1 + ǫ)2

(2 − ǫ)(κ − ǫ)α2
0

]

+ O

(

1

log2 n

)

. (3.25)

Hence, combining (3.21) with (3.25), one has

Φ(twn, twn) ≤
4π

α0
+

4π

(2 − ǫ)α0 log n

[

ǫ + log
VM(1 + ǫ)2

(2 − ǫ)(κ − ǫ)α2
0

]

+ O

(

1

log2 n

)

. (3.26)

Clearly, (3.6) and (3.26) imply that there exists n̄ ∈ N such that (3.5) hold.

Case iv). t ∈
(

√

4π
α0
(1 + ǫ),+∞

)

. Then twn(x) ≥ tǫ for x ∈ B√
2/(

√
VMn) and for large n ∈ N,

it follows (3.1) and (3.8) that

Φ(twn, twn) ≤ t2
(

1 +
1

2 log n

)

−
∫

R2
[F1(x, twn) + F2(x, twn)]dx

≤ t2
(

1 +
1

2 log n

)

− 8π2(κ − ǫ)

VMn2t2 log n
e(2π)−1α0t2 log n + 2O

(

1
n log n

)

≤ 4π(1 + ǫ)

α0

(

1 +
1

2 log n

)

− 2α0π(κ − ǫ)

VM(1 + ǫ) log n
e2ǫ log n + 2O

(

1
n log n

)

≤ 3π

α0
. (3.27)

which implies that there exists n̄ ∈ N such that (3.5) hold. In the above derivation process,
we use the fact that the function

t2
(

1 +
1

2 log n

)

− 8π2(κ − ǫ)

VMn2t2 log n
e(2π)−1α0t2 log n + O

(

1
n log n

)

(3.28)

is decreasing on t ∈
(

√

4π
α0
(1 + ǫ),+∞

)

, since its stagnation tend to
√

4π
α0

as n → ∞.

From Lemma 2.5 and 3.1, we have the following corollary immediately.

Corollary 3.2. Assume that (V), (F1), (F2), (F4) and (F5) hold. Then

b := inf
N

Φ <
4π

α0
. (3.29)

4 Proofs of the main results

Lemma 4.1. The weak solution (ũ, ṽ) is nontrival.

Proof. By Lemmas 2.1 and 2.7, there exist a subsequence {un, vn} ⊂ E satisfying (2.7) and
‖(un, vn)‖+ ‖un‖2 + ‖vn‖2 ≤ C for some constant C4 > 0, it follows from (2.5) and (2.7) that

∫

R2
f1(x, un)undx ≤ C5,

∫

R2
f2(x, vn)vndx ≤ C5. (4.1)
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We may assume, passing to a subsequence if necessary, that (un, vn) ⇀ (ũ, ṽ) in E,
(un, vn) → (ũ, ṽ) in Ls

loc(R
2) for s ∈ [1,+∞) and (un, vn) → (ũ, ṽ) a.e. on R

2.
If

δ := lim sup
n→∞

sup
y∈R2

∫

B1(y)
(|un|2 + |vn|2)dx = 0,

then by Lions’s concentration compactness principle, (un, vn) → (0, 0) in Ls(R2) for 2 < s < ∞.
For any given ε > 0, we choose Mε > M0C5/ε, then it follows from (F3) and (4.1) that

∫

|un|≥Mε

F1(x, un)dx ≤ M0

∫

|un|≥Mε

| f1(x, un)|dx ≤ M0

Mε

∫

|un|≥Mε

f1(x, un)undx < ε. (4.2)

∫

|vn|≥Mε

F2(x, vn)dx ≤ M0

∫

|vn|≥Mε

| f2(x, vn)|dx ≤ M0

Mε

∫

|vn|≥Mε

f2(x, vn)vndx < ε. (4.3)

By (F2), we can choose Nε ∈ (0, 1) such that
∫

|un|≤Nε

F1(x, un)dx ≤
∫

|un|≤Nε

f1(x, un)undx ≤ ε

C2
4
‖un‖2

2 < ε. (4.4)

∫

|vn|≤Nε

F2(x, vn)dx ≤
∫

|vn|≤Nε

f2(x, vn)vndx ≤ ε

C2
4
‖vn‖2

2 < ε. (4.5)

By (F1), we have
∫

Nε≤|un|≤Mε

F1(x, un)dx ≤ C6‖un‖3
3 = o(1),

∫

Nε≤|vn|≤Mε

F2(x, vn)dx ≤ C6‖vn‖3
3 = o(1), (4.6)

∫

Nε≤|un|≤1
f1(x, un)undx ≤ C7‖un‖3

3 = o(1),
∫

Nε≤|vn|≤1
f2(x, vn)vndx ≤ C7‖vn‖3

3 = o(1). (4.7)

Due to the arbitrariness of ε > 0, from (4.2), (4.4), (4.6), we obtain
∫

R2
F1(x, un)dx = o(1),

∫

R2
F2(x, vn)dx = o(1). (4.8)

Hence, it follows from (V), (1.7), (2.7) and (4.8) that

1
2
(‖∇un‖2

2 + ‖∇vn‖2
2) <

1
2
‖(un, vn)‖2 −

∫

R2
λ(x)unvndx

= c∗ +
∫

R2
[F1(x, un) + F2(x, vn)]dx + o(1)

= c∗ + o(1).

Which, together with (3.5), implies that lim supn→∞ ‖∇un‖2
2 + ‖∇vn‖2

2 <
8π
α0

. Hence, there
exist ε̄ > 0 and n0 ∈ N such that

‖∇un‖2
2 + ‖∇vn‖2

2 ≤ 8π

α0
(1 − 3ε̄), ∀n ≥ n0.

Let us choose q ∈ (1, 2) such that

(1 + ε̄)(1 − 3ε̄)q

1 − ε̄
< 1. (4.9)

By (F1), there exists C8 > 0 such that

| fi(x, t)|q ≤ C8
[

eα0(1+ε̄)qt2 − 1
]

, ∀|t| ≥ 1, i = 1, 2. (4.10)
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It follows from (4.9), (4.10) and Lemma 1.1 ii) that
∫

|un|≥1
fi(x, un)

qdx ≤ C8

∫

R2

[

eα0(1+ε̄)qu2
n − 1

]

dx

= C8

∫

R2

[

eα0(1+ε̄)q‖un‖2(un/‖un‖)2 − 1
]

dx

≤ C9. (4.11)

Let q′ = q/(q − 1). Then we have

∫

|un|≥1
fi(x, un)undx ≤

[

∫

|un|≥1
| fi(x, un)|qdx

]
1
q

‖un‖q′ = o(1). (4.12)

Now we derive

c∗ + o(1) = Φ(un, vn)−
1
2

〈

Φ′(un, vn), (un, vn)
〉

=
∫

R2

[

1
2

f1(x, un)un − F1(x, un)

]

dx +
∫

R2

[

1
2

f2(x, vn)vn − F2(x, vn)

]

dx

< ε + o(1). (4.13)

This contradiction shows that δ > 0.
Going if necessary to a subsequence, we may assume that there exists {ln} ⊂ Z

2 such that
∫

B1+
√

2(ln)
|(|un|2 + |vn|2)dx >

δ
2 . Let us define ũn(x) = un(x + ln) and ṽn(x) = vn(x + ln) so

that
∫

B1+
√

2(0)
(|ũn|2 + |ṽn|2)dx ≥ δ

2
. (4.14)

Since λ(x) and fi(x, u) are 1-periodic on x , we have ‖ũn‖V1 = ‖un‖V1 , ‖ṽn‖V2 = ‖vn‖V2 and

Φ(ũn, ṽn) → c∗, ‖Φ′(ũn, ṽn)‖(1 + ‖(ũn, ṽn)‖) → 0. (4.15)

Passing to a subsequence, we have (ũn, ṽn) ⇀ (ũ, ṽ) in E, (ũn, ṽn) → (ũ, ṽ) in Ls
loc(R

2), 2 ≤ s ≤
∞ and (ũn, ṽn) → (ũ, ṽ) a.e. on R

2. Thus (4.14) implies that (ũ, ṽ) 6= (0, 0).
For any φ, ψ ∈ C∞

0 (R2), let {en}∞
n=1 be the complete standard orthogonal basis of C∞

0 (R2),
we have

φ =
∞

∑
j=1

(φ, ej)ej, ‖φ‖2 =
∞

∑
j=1

|(φ, ej)|2 (4.16)

and

ψ =
∞

∑
j=1

(ψ, ej)ej, ‖ψ‖2 =
∞

∑
j=1

|(ψ, ej)|2. (4.17)

Let

φn =
kn

∑
j=1

(φ, ej)ej, φ̃n =
∞

∑
j=kn+1

(φ, ej)ej (4.18)

and

ψn =
kn

∑
j=1

(ψ, ej)ej, ψ̃n =
∞

∑
j=kn+1

(ψ, ej)ej. (4.19)

For any given ε > 0, there holds
∫

|ũn|≥C10‖φ‖∞ε−1
| f1(x, ũn)φn|dx ≤ ε

C10

∫

|ũn|≥C10‖φ‖∞ε−1
f1(x, ũn)ũndx < ε. (4.20)
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On the other hand, it follows from (F1) and (F2) that

∫

|ũn|<C10‖φ‖∞ε−1
| f1(x, ũn)φ̃n|dx ≤

∫

|ũn|<C10‖φ‖∞ε−1
|unφ̃n|dx + C11

∫

|ũn|<C10‖φ‖∞ε−1

(

eαu2
n − 1

)

|φ̃n|dx

≤
{

‖un‖2 + C11

[

∫

R2

(

eαu2
n − 1

)2dx

]
1
2
}(

∫

R2
φ̃2

ndx

)
1
2

≤
{

‖un‖2 + C11

[

∫

R2
(e2αu2

n − 1)dx

]
1
2
}

‖φ̃n‖2

≤
{

‖un‖2 + C11

[

∫

R2

(

e
2αρ2

0‖un‖2( un
ρ0‖un‖ )

2

− 1
)

dx

]
1
2
}

‖φ̃n‖

≤ C12‖φ̃n‖ = o(1). (4.21)

Similarly, we have
∫

|ṽn|<C10‖ψ‖∞ε−1
| f2(x, ṽn)ψ̃n|dx = o(1). (4.22)

From (4.20), (4.21) and (4.22), one has

lim
n→∞

∫

R2
f1(x, ũn)φ̃ndx = 0, lim

n→∞

∫

R2
f2(x, ṽn)ψ̃ndx = 0. (4.23)

Due to the arbitrariness of ε > 0. Therefore, (2.4), (4.15) and (4.23) yield

〈Φ′(ũ, ṽ), (φ, ψ)〉 =
∫

R2
(∇ũ∇φ + V1(x)ũφ)dx +

∫

R2
(∇ṽ∇ψ + V2(x)ṽψ)dx

−
∫

R2
λ(x)(ũψ + ṽφ)dx −

∫

R2
( f1(x, ũ)φ + f2(x, ṽ)ψ)dx

= lim
n→∞

[

∫

R2
(∇ũn∇φ + V1(x)ũnφ)dx +

∫

R2
(∇ṽn∇ψ + V2(x)ṽnψ)dx

−
∫

R2
λ(x)(ũnψ + ṽnφ)dx −

∫

R2
( f1(x, ũn)φ + f2(x, ṽn)ψ)dx

]

= lim
n→∞

〈Φ′(ũn, ṽn), (φ, ψ)〉

= lim
n→∞

[

〈Φ′(ũn, ṽn)(φn, ψn)〉+ 〈Φ′(ũn, ṽn)(φ̃n, ψ̃n)〉
]

= lim
n→∞

〈Φ′(ũn, ṽn)(φ̃n, ψ̃n)〉

= lim
n→∞

{

∫

R2

[

(∇ũn∇φ̃n +∇ṽn∇ψ̃n) + V1(x)ũnφ̃n + V2(x)ṽnψ̃n

]

dx
}

− lim
n→∞

∫

R2
λ(x)(ũnψ̃n + ṽnφ̃n)dx − lim

n→∞

∫

R2
[ f1(x, ũn)φ̃n + f2(x, ṽn)ψ̃n]dx

= − lim
n→∞

∫

R2
[ f1(x, ũn)φ̃n + f2(x, ṽn)ψ̃n]dx

= 0.

It is easy to show that Φ′(ũ, ṽ) = 0. Since λ 6= 0, then from (1.1) we know that (ũ, ṽ) is a
nontrivial solution.

Lemma 4.2. The weak solution (ũ, ṽ) is a ground state solution.
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Proof. Since that (ũ, ṽ) 6= (0, 0) and Φ′(ũ, ṽ) = 0, we have (ũ, ṽ) ∈ N . Therefore b ≤ Φ(ũ, ṽ).
On the other hand, it follows from (2.20) and Fatou’s lemma that

b ≥ c̄ + o(1) = Φ(ũn, ṽn)−
1
2

〈

Φ′(ũn, ṽn), (ũn, ṽn)
〉

=
∫

R2

[

1
2

f1(x, ũn)ũn − F1(x, ũn)

]

dx +
∫

R2

[

1
2

f2(x, ṽn)ṽn − F2(x, ṽn)

]

dx

≥
∫

R2

[

1
2

f1(x, ũ)ũ − F1(x, ũ)

]

dx +
∫

R2

[

1
2

f2(x, ṽ)ṽ − F2(x, ṽ)

]

dx + on(1)

= Φ(ũ, ṽ)− 1
2

〈

Φ′(ũ, ṽ), (ũ, ṽ)
〉

+ on(1)

= Φ(ũ, ṽ) + on(1). (4.24)

Therefore Φ(ũ, ṽ) = b.
We have proved that (ũ, ṽ) is a ground state solution for system (1.1). In order to seek a

positive ground state, we note by assumptions (F1) and (F2) that

Fi(x, s) ≤ Fi(x, |s|), ∀(x, s) ∈ R
2 × R, i = 1, 2.

Thus, we can deduce that Φ(|ũ|, |ṽ|) ≤ Φ(ũ, ṽ).

5 The regularity and asymptotic behavior

In this section, we use strong maximum principle to get a unique positive ground state
solution, we will introduce methods to show that a weak solution of (1.1) is in fact smooth.
Moreover, we establish a priori estimate in W2,p for the solution of system (1.1), we show that
if the functions f1(x, u) and f2(x, v) are in L

p
loc(R

2), then (u, v) ∈ W
2,p
loc (R

2) is a strong solution
of (1.1), that is, there exists a constant C such that

‖u‖W2,p(BR)
≤ C(‖u‖Lp(B2R) + ‖p1(x)‖Lp(B2R)), ‖v‖W2,p(BR)

≤ C(‖v‖Lp(B2R) + ‖p2(x)‖Lp(B2R)),

where pi(x) can be defined as (5.3). We will establish this for a Newtonian potential, finally,
we use a bootstrap regularity lifting methods to boost the regularity of solution. The boot-
strap method can be found in [6, Subsection 3.3.1], which uses a lot of Sobolev imbedding to
enhance the regularity of the weak solution repeatedly, finally, Schauder’s estimate will lift
the solution to be a classical solution.
Lemma 5.1. There exists a positive ground state solution (ū, v̄) ∈ C

1,β
loc (R

2) × C
1,β
loc (R

2) for some

β ∈ (0, 1) with the following asymptotic behavior

‖ū‖C1,β(BR)
→ 0 and ‖v̄‖C1,β(BR)

→ 0, as |x| → ∞. (5.1)

Proof. Let (ũ, ṽ) ∈ E be the ground state obtained in Lemma 4.2 It follows from Lemma 2.4
that there exists a unique t0 > 0 such that (t0|ũ|, t0|ṽ|) ∈ N . Moreover, since (ũ, ṽ) ∈ N , we
point out that max

t≥0
Φ(tũ, tṽ) = Φ(ũ, ṽ). Thus we have that

Φ(t0|ũ|, t0|ṽ|) ≤ Φ(t0ũ, t0ṽ) ≤ max
t≥0

Φ(tũ, tṽ) = Φ(ũ, ṽ) = b.

Therefore, (t0|ũ|, t0|ṽ|) ∈ N is a nonnegative ground state solution for (1.1). Next, we denote
(ū, v̄) = (t0|ũ|, t0|ṽ|). In order to use the strong maximum principle, we note that −ū ∈
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HV1(R
2) \ {0} and take (ϕ, 0) as a test function. Here, ϕ ∈ C∞

0 (R2), ϕ ≥ 0. Then we have

−
∫

R2
∇(−ū)∇ϕdx −

∫

R2
V1(x)(−ū)ϕdx =

∫

R2
f (x, ū)ϕdx +

∫

R2
λ(x)ūϕdx ≥ 0. (5.2)

Moreover, since V1(x) > 0, it follows that

−
∫

R2
V1(x)ϕdx ≤ 0, ∀ϕ ≥ 0, ϕ ∈ C1

0(R
2).

Now suppose by contradiction that there exists x0 ∈ R
2 such that ū(x0) = 0. Thus, since

−ū ≤ 0 in R
2, for any R > 0 we have that

0 = sup
BR(x0)

(−ū) = sup
R2

(−ū)

By the strong maximum principle we conclude that −ū ≡ 0 in R
2, which is a contradiction.

Therefore ū > 0 in R
2. Similarly, we can prove that v̄ > 0 in R

2. Therefore, (ū, v̄) is positive.
In order to obtain the regularity, we use a bootstrap method. The ground state solution

(ū, v̄) is a weak solution of the restricted problem

{

−∆ū = f1(x, ū) + λ(x)v̄ − V1(x)ū = p1(x), B2R,

−∆v̄ = f2(x, v̄) + λ(x)ū − V2(x)v̄ = p2(x), B2R,
(5.3)

where and in the continuation B2R = B2R(x) ⊂ R
2 denote the ball centered in a fixed point

x ∈ R
2. Since Vi(x) ∈ C(R2), then Vi(x), λ(x) ∈ L∞

loc(R
2). For ū, v̄ ∈ Lp(R2), p ≥ 2, we have

that λ(x)v̄, V1(x)ū ∈ Lp(B2R) for all p ≥ 2. By (F1) and (F2), for ε > 0, p, q ≥ 2, r > p and
α > α1, we have that

∫

B2R

| f1(x, ū)|pdx ≤
∫

B2R

|εū + Cε(e
αū2 − 1)|ū|q−1|pdx

≤ C13

∫

B2R

εp|ū|pdx + C13

∫

B2R

C
p
ε (e

αū2 − 1)p|ū|p(q−1)dx

≤ C13εp‖ū‖p

Lp(B2R)
+ C13

∫

B2R

C
p
ε (e

rαū2 − 1)|ū|p(q−1)−1|ū|dx. (5.4)

By using Hölder’s inequality, it follows from Lemma 1.1 that

∫

B2R

C
p
ε (e

rαū2 − 1)|ū|p(q−1)−1|ū|dx ≤
(

∫

B2R

C
2p
ε (erαū2 − 1)2|ū|2(p(q−1)−1)dx

)
1
2

‖ū‖L2(B2R)

≤ C14‖ū‖L2(B2R). (5.5)

Thus, we have
∫

B2R

| f1(x, ū)|pdx ≤ C13‖ū‖p

Lp(B2R)
+ C14‖ū‖L2(B2R). (5.6)

Since the right-hand side is finite for all p ≥ 2, we have that f1(x, ū) ∈ Lp(B2R) for all p ≥ 2,
together with λ(x)v̄, V1(x)ū ∈ Lp(B2R) , we have that p1(x) ∈ Lp(B2R) for all p ≥ 2. Let fp1 be
the Newtonian potential of p1(x). In light of Lp-regularity theory [6, Theorem 3.1.1],

∆ fp1 = p1(x), x ∈ B2R, (5.7)
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and fp1 ∈ W2,p(B2R), for all p ≥ 2. Combining (5.3) and (5.7) we deduce that

∫

B2R

∇(ū − fp1)φdx = 0, ∀φ ∈ C∞
0 (B2R).

which implies that ū − fp1 is a weak solution of −∆z = 0 in B2R. Since ū − fp1 ∈ W1,2(B2R).
It follows from Weyl’s Lemma [13, Corollary 1.2.1] that ū − fp1 ∈ C∞(B2R). Therefore, ū ∈
W2,p(B2R), ∀p ≥ 2. Noticing that 2/p < 2, as p > 2. Thus, by Sobolev imbedding we
obtain that ū ∈ C1,β(B2R), for some β ∈ (0, 1). The same argument can be used to prove that
v̄ ∈ C1,β(B2R). By interior Lp-estimates [6, Theorem 3.1.2], we have that

‖ū‖W2,p(BR)
≤ C15(‖ū‖Lp(B2R) + ‖p1‖Lp(B2R)). (5.8)

On the other hand, by the Sobolev’s imbedding theorem, there exists C16 > 0 such that

‖ū‖C1,β(BR)
≤ C16‖ū‖W2,p(BR)

. (5.9)

Therefore, it follows from (5.8) and (5.9), we deduce that

‖ū‖C1,β(BR)
≤ C17(‖ū‖Lp(B2R) + ‖ū‖L2(B2R)).

Now we show that lim|x|→∞ ū = 0. Suppose on the contrary that there exists {xj} ⊂ R
2 with

|xj| → ∞ as j → ∞ and lim infj→∞ ū(xj) > 0. Letting wj(x) = ū(x + xj), then

− ∆wj + V1(x + xj)wj = f1(x + xj, wj) + λ(x + xj)v̄(x + xj), wj ∈ H1(R2). (5.10)

Assume that wj → w weakly in H1(R2). Then, by elliptic estimates we have w 6= 0. However,
for fixed R > 0,

∫

R2
ū2dx ≥ lim inf

j→∞

(

∫

BR(0)
ū2dx +

∫

BR(xj)
ū2dx

)

=
∫

BR(0)
ū2dx + lim inf

j→∞

∫

BR(0)
w2

j dx

=
∫

BR(0)
ū2dx +

∫

BR(0)
w2dx

→
∫

R2
ū2dx +

∫

R2
w2dx, as R → ∞.

Which is a contradiction. Thus, letting |x| → ∞, we get ū → 0, therefore, ‖ū‖C1,β(BR)
→ 0 as

|x| → ∞. Similarly, we can prove that ‖v̄‖C1,β(BR)
→ 0 as |x| → ∞.

Proof of Theorem 1.2. It follows from Lemmas 4.1, 4.2 and 5.1.
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Abstract. Little work seems to be known about stabilization results of highly nonlinear
stochastic time-varying delay systems (STVDSs) with Markovian switching and Pois-
son jump. This paper is concerned with the stabilization problem for a class of STVDSs
with Markovian switching and Poisson jump. The coefficients of such systems do not
satisfy the conventional linear growth conditions, but are subject to high nonlinearity.
The aim of this paper is to design a delay feedback controller to make an unstable
highly nonlinear STVDSs with Markovian switching and Poisson jump H∞-stable and
asymptotically stable. Besides, an illustrative example is provided to support the theo-
retical results.
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switching, Poisson jump.
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1 Introduction

Many dynamical systems are inevitably influenced by internal and external random distur-

bance. Such perturbation can drastically alter the deterministic dynamics and even produce

new interesting dynamical behavior. Such systems are often described by stochastic differen-

tial equations (see monograph [22]) and the stability analysis of stochastic differential equa-

tions has received a great deal of attention, see [1, 12, 15, 16, 23, 32, 36, 38] and the references

BCorresponding author. Email: scutliguangjie@163.com
*Corresponding author. Email: huzhipei5374@126.com
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therein. In addition, the evolution process of a stochastic system is not only related to the

present state, but also to the past states. In this case, stochastic delay systems (SDSs) are

introduced, which have been widely applicable to genetic regulatory networks, complex dy-

namical networks, biological systems, control and so on ([6, 10, 13, 28, 35]). Accordingly, many

results on the stability of SDSs have been obtained, see, e.g. [7–9, 14, 29, 31].

It is well known that a Brownian motion is a continuous stochastic process, however,

some systems may suffer from the jump type abrupt perturbations and the phenomenon of

discontinuous random pulse excitation. In such cases, incorporating jumps into SDSs seems

to be necessary, and it is therefore valuable to discuss the SDSs with Poisson jump, see, e.g.,

[2, 11, 17, 26]. In the case of the SDSs with Poisson jump experiencing abrupt changes in their

structure and parameters due to sudden changes of system factors, SDSs with Markovian

switching and Poisson jump (SDSwMSPJs) can be applied to model them. This kind of models

are more realistic, and the stability research of them has aroused great concern (see, e.g.,

[19, 21, 34, 37]).

Consider an unstable STVDS with Markovian switching and Poisson jump

dx(t) = f (x(t), x(t − δ(t)), r(t), t)dt + g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ h(x(t), x(t − δ(t)), r(t), t)dN(t)

on t ≥ 0, where the state x(t) ∈ R
n, r(t) is a Markov chain, N(t) is a scalar Poisson process,

δ(·) : R
+ → [0, δ] be continuous function with δ > 0. For details, see the system (2.1) below.

To make this given unstable system become stable, it is conventional to design a feedback

control u(x(t), r(t), t) in the drift term, based on the current state x(t), for the controlled

system to become stable. Due to the fact that there exists a time lag τ(τ > 0) between the

observation of the state is made and the time when the feedback control reaches the system,

it is thus more realistic to take into account the control depends on a past state x(t − τ) (see,

e.g. [18, 33]). Therefore, the control should be of the form u(x(t − τ), r(t), t). In this paper,

we assume that τ ≤ δ. Hence, the stabilization problem becomes to design a delay feedback

control u(x(t − τ), r(t), t) for the controlled system

dx(t) = [ f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)]dt

+ g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ h(x(t), x(t − δ(t)), r(t), t)dN(t)

to be stable. In [24], Mao et al. designed a delay feedback controller to stabilize an unstable

SDSs with Markovian switching for the first time, where both the drift and diffusion coeffi-

cients of the given unstable system meet the linear growth condition. Notice that in many

economic and ecological systems, the coefficients of these systems are characterized by non-

linearity, e.g. [4] and [5]. Therefore, the stabilization problems of a class of highly nonlinear

stochastic systems or SDSs with Markovian switching via delay feedback control have received

considerable research interests.

Recently, Lu et al. [20] used the delay feedback control to make unstable highly nonlinear

stochastic systems with Markovian switching asymptotically stable. Later, Li and Mao [18]

made a progress and used the delay feedback control to tackle the stabilization problem for a

given unstable highly nonlinear SDSs with Markovian switching. Shen et al. [33] explored the

stabilization of highly nonlinear neutral SDSs with Markovian switching by delay feedback

control. Zhao and Zhu [39] designed a delay feedback control function to study the stability of

highly nonlinear switched stochastic systems with time delays. Mei et al. [27] further studied
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the exponential stabilization problem for a class of highly nonlinear infinite delay stochastic

functional differential systems with Markovian switching. It should be noted that, though

the coefficients of the given unstable systems in [18,20,27,33] are highly nonlinear, little work

has focused on the stabilization problem of SDSs with Markovian switching and Poisson

jump simultaneously, not to mention the case where the SDSs under consideration are highly

nonlinear and the delay of the SDSs is time-varying. As we know, the increment of Poisson

jump has a nonzero mean, which brings significant difficulties for the stabilization of STVDSs

with Markovian switching and Poisson jump. Therefore, the motivation of this paper is to

overcome the identified difficulties by launching a systematic investigation.

Inspired by the analysis above, this paper investigates the stabilization problems via de-

lay feedback control for a class of highly nonlinear STVDSs with Markovian switching and

Poisson jump. Different from the existing literature, a new stabilization problem is studied

for a class of highly nonlinear SDSs, where both the Markovian switching and Poisson jump

are taken into consideration, which advances the results of the system considered in [24] and

covers the results in [18, 20, 27, 33, 39]. Moreover, the delay of the SDSs is time-varying, which

also covers the results in [18, 20, 27, 33]. The main contributions of this paper are summa-

rized: (1) Very few results seem to be known about the stabilization problem of STVDSs with

Markovian switching and Poisson jump simultaneously, not to mention the case where the

coefficients of such systems are highly nonlinear. This paper investigates the stabilization of

highly nonlinear STVDSs with Markovian switching and Poisson jump; (2) A delay feedback

controller is designed to make an unstable highly nonlinear STVDS with Markovian switching

and Poisson jump H∞-stable and asymptotically stable.

In this paper, we first present some notations and preliminaries in Section 2. Then in

Section 3, we prove that the controlled highly nonlinear STVDSs with Markovian switching

and Poisson jump is H∞-stable and asymptotically stable, respectively. Finally, an example is

provided to illustrate the obtained results in Section 4.

2 Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let R =

(−∞,+∞), R
+ = [0,+∞). R

n denotes the n-dimensional Euclidean space, and |x| denotes

the Euclidean norm of a vector x. ⟨x, y⟩ or xTy represents the inner product of ∀x, y ∈ R
n.

For a, b ∈ R, a ∨ b and a ∧ b stand for max{a, b} and min{a, b}, respectively. Let (Ω,F , P)

be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.

its right continuous and F0 contains all P-null sets). For τ > 0, let C([−τ, 0]; R
n) denote the

family of all continuous functions ϕ : [−τ, 0] → R
n with the norm ∥ϕ∥ = sup−τ≤θ≤0 |ϕ(θ)|.

Let Cb
F0
(Ω; R

n) be the family of all F0-measurable bounded C([−τ, 0]; R
n). For ∀t ≥ 0 and

δ > 0, let δ(·) : R
+ → [0, δ] be continuous function and δ̇(t) = dδ(t)/dt ≤ δ̄ < 1. In the case

when δ(t) ≡ constant, we assert δ̄ = 0. Let {r(t)}t≥0 be a right-continuous Markov chain on

the complete probability space taking values in a finite state space S = {1, 2, . . . , N} with the

generator Γ = (γij)N×N given by

P{r(t + ∆) = j|r(t) = i} =

{
γij∆ + o(∆), if i ̸= j,

1 + γii∆ + o(∆), if i = j,

where ∆ > 0, lim∆→0 o(∆)/∆ = 0, γij ≥ 0 is the transition rate from i to j for i ̸= j, and

γii = −∑j ̸=i γij. It is well known that almost every sample path of r(·) is a right-continuous
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step function with finite number of simple jumps in any finite subinterval of R
+ (see [25]).

Consider the following unstable n-dimensional stochastic time-varying delay systems with

Markovian switching and Poisson jump

dx(t) = f (x(t), x(t − δ(t)), r(t), t)dt + g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ h(x(t), x(t − δ(t)), r(t), t)dN(t), t ≥ 0 (2.1)

with the initial value

x0 = ϕ = {x(t) : −δ ≤ t ≤ 0} ∈ Cb
F0
(Ω; R

n) and r(0) = i0 ∈ S, (2.2)

where f , g, h : R
n × R

n × S × R
+ → R

n are Borel measurable functions, B(t) is a scalar

Brownian motion and N(t) is a scalar Poisson process with intensity λ > 0. Ñ(t) = N(t)− λt

is a compensated Poisson process satisfying the property of martingale. Moreover, B(t), N(t)

and r(t) are assumed to be mutually independent. For the purpose of the stability, we also

assume that f (0, 0, i, t) = g(0, 0, i, t) = h(0, 0, i, t) = 0 for ∀(i, t) ∈ S × R
+. We are required

to design a delay feedback u(x(t − τ), r(t), t) in the drift term so that the controlled system

which is described by

dx(t) = [ f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)]dt

+ g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ h(x(t), x(t − δ(t)), r(t), t)dN(t) (2.3)

becomes stable.

For the existence and uniqueness of the global solution, we assume that the local Lipschitz

condition and the polynomial growth condition are true. For ∀x, x̄, y, ȳ ∈ R
n and (i, t) ∈

S × R
+, we also impose the following assumptions:

Assumption 1: For any real number h > 0, there is a constant Lh > 0 such that

| f (x, y, i, t)− f (x̄, ȳ, i, t)| ∨ |g(x, y, i, t)− g(x̄, ȳ, i, t)|

∨ |h(x, y, i, t)− h(x̄, ȳ, i, t)| ≤ Lh(|x − x̄|+ |y − ȳ|) (2.4)

with |x| ∨ |x̄| ∨ |y| ∨ |ȳ| ≤ h. Moreover, there exists a positive constant β such that

|u(x, i, t)− u(y, i, t)| ≤ β|x − y|. (2.5)

For the stability purpose, we also require that u(0, i, t) = 0. Then we can obtain

|u(x, i, t)| ≤ β|x|, ∀(x, i, t) ∈ R
n × S × R

+. (2.6)

Assumption 2: There exist positive constants K and qi(i = 1, 2, 3) satisfying

| f (x, y, i, t)| ≤ K(1 + |x|q1 + |y|q1),

|g(x, y, i, t)| ≤ K(1 + |x|q2 + |y|q2),

|h(x, y, i, t)| ≤ K(1 + |x|q3 + |y|q3) (2.7)

with q1 ≥ 1, q2 ≥ 1 and q3 ≥ 1.
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Remark 2.1. If qi = 1(i = 1, 2, 3), the condition (2.7) is the linear growth condition. In this

paper, we consider that the coefficients of the stochastic time-varying delay systems (2.1) with

Markovian switching and Poisson jump are highly nonlinear, so we refer to the (2.7) as the

polynomial growth condition with max1≤i≤3{qi} > 1.

Let C2,1(Rn × S × R
+; R

+) be the family of all nonnegative functions V(x, i, t) on R
n ×

S × R
+, which are continuously twice differentiable in x and once in t. Define an operator

LV : R
n × R

n × S × R
+ → R by

LV(x, y, i, t) = Vt(x, i, t) + Vx(x, i, t) f (x, y, i, t)

+
1

2
trace[gT(x, y, i, t)Vxx(x, i, t)g(x, y, i, t)]

+ λ[V(x + h(x, y, i, t), i, t)− V(x, i, t)] +
N

∑
j=1

γijV(x, j, t),

where

Vt(x, i, t) =
∂V(x, i, t)

∂t
, Vx(x, i, t) =

(
∂V(x, i, t)

∂x1
, . . . ,

∂V(x, i, t)

∂xn

)
,

Vxx(x, i, t) =

(
∂2V(x, i, t)

∂xi∂xj

)

n×n

.

In the following, we can cite the generalized Itô formula

V(x(t), r(t), t) = V(x(0), r(0), 0) +
∫ t

0
LV(x(s), x(s − δ(s)), r(s), s) + Gt, (2.8)

where

Gt =
∫ t

0
Vx(x(s), r(s), s)g(x(s), x(s − δ(s)), r(s), s)dB(s)

+
∫ t

0
[Vx(x(s) + h(x(s), x(s − δ(s)), r(s), s), r(s), s)− Vx(x(s), r(s), s)]× dÑ(s)

+
∫ t

0

∫

R

[Vx(x(s), r0 + k(r(s), u), s)− Vx(x(s), r(s), s)]µ(ds, du) (2.9)

with r0 = r(0). The detailed representation of the functions µ and k can be found in [25].

Moreover, µ(ds, du) is a martingale measure and {Gt}t≥0 is a local martingale.

It is well known that under the Assumption 1 that the (2.3) with the given initial condition

(2.2) admits a unique maximal local solution, which may explode to infinity at a finite time.

To avoid such a possible explosion, we impose another assumption:

Assumption 3: Let H(·) ∈ C(Rn × [−δ, ∞); R
+). There is a function V ∈ C2,1(Rn × S ×

R
+; R

+), as well as q ≥ 2(q1 ∨ q2 ∨ q3), and positive numbers c1, c2, c3, c4 such that c3 + c4 <

c2, |x|q ≤ V(x, i, t) ≤ H(x, t), ∀(x, i, t) ∈ R
n × S × R

+, and LV(x, y, i, t) + Vx(x, i, t)u(z, i, t) ≤

c1 − c2H(x, t) + c3(1− δ̄)H(y, t − δ(t)) + c4H(z, t − τ), ∀(x, y, i, t) ∈ R
n ×R

n × S ×R
+, z ∈ R

n.

Theorem 2.2. Let the Assumptions 1–3 hold. Under the initial value (2.2), the system (2.3) admits a

unique global solution x(t) on t ≥ −δ and the solution x(t) satisfies

sup
−δ≤t<∞

E|x(t)|q < ∞. (2.10)
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Proof. (1) Existence and uniqueness. Fix any initial value (2.2). It follows from Assumption

1 that Eq. (2.3) has an unique maximal local solution x(t) on t ∈ [−δ, σe], where σe is the

explosion time. If we prove that the solution x(t) is global, we only need to show that σe = ∞.

Let m0 be a sufficiently large integer such that ∥x0∥ = ∥ϕ∥ = sup−τ≤s≤0 x(s) < m0. For each

integer m > m0, define the stopping time σm = inf{t ∈ [0, σe) : |x(t)| ≥ m}. As usual we set

inf ∅ = ∞, here ∅ is an empty set. Clearly, σm’s are increasing and σ∞ = limm→∞ σm ≤ σe. By

Itô’s formula, we can get that for ∀t > 0,

EV(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

= V(x(0), r(0), 0) + E

∫ t∧σm

0
[LV(x(s), x(s − δ(s)), r(s), s)

+ Vx(x(s), r(s), s)u(x(s − τ), r(s), s)]ds. (2.11)

Applying Assumption 3, we can obtain that

EV(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

≤ V(x(0), r(0), 0) + c1t − c2

∫ t∧σm

0
H(x(s), s)ds

+ c3(1 − δ̄)
∫ t∧σm

0
H(x(s − δ(s)), s − δ(s))ds

+ c4

∫ t∧σm

0
H(x(s − τ), s − τ)ds. (2.12)

Noting that

∫ t∧σm

0
H(x(s − δ(s)), s − δ(s))ds ≤

1

1 − δ̄

∫ t∧σm−δ(s)

−δ(s)
H(x(u), u)du (2.13)

≤
1

1 − δ̄

∫ 0

−δ
H(x(s), s)ds +

1

1 − δ̄

∫ t∧σm

0
H(x(s), s)ds

and
∫ t∧σm

0
H(x(s − τ), s − τ)ds =

∫ t∧σm−τ

−τ
H(x(u), u)du

≤
∫ 0

−τ
H(x(s), s)ds +

∫ t∧σm

0
H(x(s), s)ds. (2.14)

Substituting (2.13) and (2.14) into (2.12) that we have

EV(x(t ∧ σm), r(t ∧ σm), t ∧ σm) ≤ V(x(0), r(0), 0) + c3

∫ 0

−δ
H(x(s), s)ds

− (c2 − c3 − c4)
∫ t∧σm

0
H(x(s), s)ds

+ c4

∫ 0

−τ
H(x(s), s)ds + c1t. (2.15)

For c3 + c4 < c2, we can further get

EV(x(t ∧ σm), r(t ∧ σm), t ∧ σm) ≤ M1 + c1t, (2.16)

where M1 = V(x(0), r(0), 0) + c3

∫ 0
−δ H(x(s), s)ds + c4

∫ 0
−τ H(x(s), s)ds. Therefore,

E[V(x(σm), r(σm), σm)I{σm≤t}] ≤ M1 + c1t.
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For |x|q ≤ V(x, i, t), then we can obtain

E[|x(σm)|
q I{σm≤t}] ≤ M1 + c1t,

By the definition of σm, we have mq
P(σm ≤ t) ≤ M1 + c1t. When m → ∞, we have P(σ∞ ≤

t) → 0, that is σ∞ > t a.s. Letting t → ∞, we obtain that σ∞ = ∞ a.s.

(2) Prove sup−τ≤t≤∞ E|x(t)|q < ∞. Set f (u) = c2 − c3euδ − c4euτ − u for ∀u > 0. Obviously,

f (u) is continuous in u. Since f (0) = c2 − c3 − c4 > 0, by the local sign preserving property

of a continuous function, there is a sufficiently small positive number ε such that f (ε) =

c2 − c3eεδ − c4eετ − ε > 0. For ∀t > 0, applying Itô’s formula to eεtV(x(t), r(t), t), we gain

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

= V(x(0), r(0), 0) + E

∫ t∧σm

0
εeεsV(x(s), r(s), s)ds

+ E

∫ t∧σm

0
eεs[LV(x(s), x(s − δ(s)), r(s), s)

+ Vx(x(s), r(s), s)u(x(s − τ), r(s), s)]ds. (2.17)

Applying Assumption 3, we obtain

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

≤ V(x(0), r(0), 0) + εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds

+ E

∫ t∧σm

0
eεs[c1 − c2H(x(s), s) + c3(1 − δ̄)H(x(s − δ(s)), s − δ(s))

+ c4H(x(s − τ), s − τ)]ds

≤ V(x(0), r(0), 0) + εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds +

c1

ε
(eεt − 1)

− c2E

∫ t∧σm

0
eεsH(x(s), s)ds + c3(1 − δ̄)E

∫ t∧σm

0
eεδ(s)eε(s−δ(s))

× H(x(s − δ(s)), s − δ(s))ds

+ c4E

∫ t∧σm

0
eετeε(s−τ)H(x(s − τ), s − τ)ds

≤ V(x(0), r(0), 0) + εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds

+
c1

ε
eεt − c2E

∫ t∧σm

0
eεsH(x(s), s)ds

+ c3eεδ(1 − δ̄)E
∫ t∧σm

0
eε(s−δ(s))H(x(s − δ(s)), s − δ(s))ds

+ c4eετ
E

∫ t∧σm

0
eε(s−τ)H(x(s − τ), s − τ)ds. (2.18)

Noting that
∫ t∧σm

0
eε(s−δ(s))H(x(s − δ(s)), s − δ(s))ds

≤
1

1 − δ̄

∫ t∧σm−δ(s)

−δ(s)
eεuH(x(u), u)du

≤
1

1 − δ̄

∫ 0

−δ
eεsH(x(s), s)ds +

1

1 − δ̄

∫ t∧σm

0
eεsH(x(s), s)ds (2.19)



8 G. Li, Z. Hu, F. Deng and H. Zhang

and
∫ t∧σm

0
eε(s−τ)H(x(s − τ), s − τ)ds =

∫ t∧σm−τ

−τ
eεuH(x(u), u)du

≤
∫ 0

−τ
eεsH(x(s), s)ds +

∫ t∧σm

0
eεsH(x(s), s)ds. (2.20)

Substituting (2.19) and (2.20) into (2.18) that we have

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

≤ V(x(0), r(0), 0) + c3eεδ
∫ 0

−δ
eεsH(x(s), s)ds

+ c4eετ
∫ 0

−τ
eεsH(x(s), s)ds +

c1

ε
eεt

+ εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds

− (c2 − c3eεδ − c4eετ)E
∫ t∧σm

0
eεsH(x(s), s)ds

= M2 +
c1

ε
eεt + εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds

− (c2 − c3eεδ − c4eετ)E
∫ t∧σm

0
eεsH(x(s), s)ds,

where M2 = V(x(0), r(0), 0) + c3eεδ
∫ 0
−δ eεsH(x(s), s)ds + c4eετ

∫ 0
−τ eεsH(x(s), s)ds. For |x|q ≤

V(x, i, t) ≤ H(x, t), we further compute

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

≤ M2 +
c1

ε
eεt − (c2 − c3eεδ − c4eετ − ε)E

∫ t∧σm

0
eεsH(x(s), s)ds.

For c2 − c3eεδ − c4eετ − ε > 0,

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm) ≤ M2 +
c1

ε
eεt.

Letting m → ∞. Then

EV(x(t), r(t), t) ≤ M2e−εt +
c1

ε
< M2 +

c1

ε
.

Applying |x(t)|q ≤ V(x(t), r(t), t) again, we can get E|x(t)|q < M2 +
c1
ε , ∀t > 0. Together

with t ∈ [−δ, 0], supt∈[−δ,0] E|x(t)|q ≤ ∥ϕ∥q, therefore, supt∈[−δ,∞) E|x(t)|q < ∞. The proof is

complete.

3 Main results

In this section, we will investigate the H∞-stabilization and asymptotic stabilization.

To proceed, a Lyapunov functional V̄(xt, rt, t) need to be constructed on the segment xt :=

{x(t + s) : −2δ ≤ s ≤ 0} and rt = {r(t + s) : −2δ ≤ s ≤ 0} for t ≥ 0. For xt and rt to be well

defined for 0 ≤ t < 2δ, we set x(s) = ϕ(−δ) for s ∈ [−2δ,−δ) and r(s) = r0 for s ∈ [−2δ, 0).

Let

V̄(xt, rt, t) = Ū(x(t), r(t), t) + θ
∫ 0

−τ

∫ t

t+s
Q(v)dvds, t ≥ 0, (3.1)
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where θ is a positive number to be determined later, Ū ∈ C2,1(Rn × S × R
+; R

+) such that

lim
|x|→∞

[
inf

(i,t)∈S×R+
Ū(x, i, t)

]
= ∞ (3.2)

and

Q(t) = τ| f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)|2

+ |g(x(t), x(t − δ(t)), r(t), t)|2

+ 2λ(1 + λτ)|h(x(t), x(t − δ(t)), r(t), t)|2. (3.3)

Set

f (x, y, i, s) = f (x, y, i, 0), u(z, i, s) = u(z, i, 0),

g(x, y, i, s) = g(x, y, i, 0), h(x, y, i, s) = h(x, y, i, 0)

for (x, y, i, s) ∈ R
n × R

n × S × [−2δ, 0). Applying Itô’s formula to Ū(x(t), r(t), t), we obtain

dŪ(x(t), r(t), t)

= Ūt(x(t), r(t), t)dt + Ūx(x(t), r(t), t)

× [ f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)]dt

+
1

2
trace[gT(x(t), x(t − δ(t)), r(t), t)

× Ūxx(x(t), r(t), t)g(x(t), x(t − δ(t)), r(t), t)]dt

+ λ[Ū(x(t) + h(x(t), x(t − δ(t)), r(t), t), r(t), t)− Ū(x(t), r(t), t)]dt

+
N

∑
j=1

γr(t)jŪ(x(t), j, t)dt + Ūx(x(t), r(t), t)g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ [Ū(x(t) + h(x(t), x(t − δ(t)), r(t), t), r(t), t)− Ū(x(t), r(t), t)]dÑ(t)

+
∫

R

[Ū(x(t), r0 + h(r(t), u), t)− Ū(x(t), r(t), t)]µ(dt, du)

= [Ūx(x(t), r(t), t)(u(x(t − τ), r(t), t)− u(x(t), r(t), t))

+ LŪ(x(t), x(t − δ(t)), r(t), t)]dt + dM(t), t ≥ 0, (3.4)

where

LŪ(x(t), x(t − δ(t)), r(t), t)

= Ūt(x(t), r(t), t) + Ūx(x(t), r(t), t)[ f (x(t), x(t − δ(t)), r(t), t)

+ u(x(t), r(t), t)] +
1

2
trace[gT(x(t), x(t − δ(t)), r(t), t)

× Ūxx(x(t), r(t), t)g(x(t), x(t − δ(t)), r(t), t)]

+ λ[Ū(x(t) + h(x(t), x(t − δ(t)), r(t), t), r(t), t)− Ū(x(t), r(t), t)]

+
N

∑
j=1

γr(t)jŪ(x(t), j, t) (3.5)
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and

M(t) =
∫ t

0
Ūx(x(s), r(s), s)g(x(s), x(s − δ(s)), r(s), s)dB(s)

+
∫ t

0

∫

R

[Ū(x(t), r0 + h(r(t), u), t)− Ū(x(t), r(t), t)]µ(ds, du)

+
∫ t

0
[Ū(x(s) + h(x(s), x(s − δ(s)), r(s), s), r(s), s)− Ū(x(s), r(s), s)]dÑ(s).

Here M(t) is a local martingale with M(0) = 0.

To investigate the H∞-stability and asymptotic stability of system (2.3), the following as-

sumption is also given.

Assumption 4: For all (x, y, i, t) ∈ R
n × R

n × S × R
+, assume that there exist functions

U(x, i, t) ∈ C2,1(Rn × S × R
+; R

+), W(x) ∈ C(Rn; R
+) and positive constants α and ρi(i =

1, 2, . . . , 6) such that

LŪ(x, y, i, t) + ρ1|Ūx(x, i, t)|2 + ρ2| f (x, y, i, t)|2

+ ρ3|g(x, y, i, t)|2 + ρ4|h(x, y, i, t)|2

≤ − ρ5|x|
2 + ρ6(1 − δ̄)|y|2 − W(x) + α(1 − δ̄)W(y), (3.6)

where α < 1 and ρ6 < ρ5.

The following theorem shows that the controlled system (2.3) is stable in the sense of H∞.

Theorem 3.1. Suppose that Assumptions 1–2 and Assumption 4 hold, if positive number τ is small

enough for

τ ≤
1

β

√
2ρ1ρ2

3
∧

4ρ1ρ3

3β2
∧

1

β2

√
2ρ1(ρ5 − ρ6)

3
(3.7)

and
3λ(1+λτ)τβ2

2ρ1
≤ ρ4. Then for any given initial data (2.2), the solution of the controlled system (2.3)

has the property
∫ ∞

0
E[|x(t)|2 + W(x(t))]dt < ∞. (3.8)

Moreover, there exist positive constants c and p̃ > 2 such that c|x| p̃ ≤ W(x)(∀(x, t) ∈ R
n × R

+),

then the controlled system (2.3) is H∞-stable, namely
∫ ∞

0
E|x(t)|pdt < ∞, p ∈ [2, p̃] (3.9)

for any given initial value (2.2).

Proof. Given any initial value (2.2). Applying Itô’s formula to V̄(xt∧σm , rt∧σm , t ∧ σm) defined

by (3.1) yields

EV̄(xt∧σm , rt∧σm , t ∧ σm) = V̄(x0, r0, 0) + E

∫ t∧σm

0
LV̄(xs, rs, s)ds, t ≥ 0, (3.10)

where σm is defined as the same as in Theorem 2.2, and

LV̄(xt, rt, t) = LŪ(x(t), x(t − δ(t)), r(t), t)

+ Ūx(x(t), r(t), t)[u(x(t − τ), r(t), t)− u(x(t), r(t), t)]

+ θτQ(t)− θ
∫ t

t−τ
Q(r)dr. (3.11)
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Using (2.5) that we can gain

Ūx(x(t), r(t), t)[u(x(t − τ), r(t), t)− u(x(t), r(t), t)]

≤ ρ1|Ux(x(t), r(t), t)|2 +
1

4ρ1
|u(x(t − τ), r(t), t)− u(x(t), r(t), t)|2

≤ ρ1|Ux(x(t), r(t), t)|2 +
β2

4ρ1
|x(t)− x(t − τ)|2. (3.12)

Then we can obtain

LV̄(xt, rt, t) ≤ LŪ(x(t), x(t − δ(t)), r(t), t) + ρ1|Ūx(x(t), r(t), t)|2

+
β2

4ρ1
|x(t)− x(t − τ)|2 + 2θτ2| f (x(t), x(t − δ(t)), r(t), t)|2

+ 2θτ2|u(x(t − τ), r(t), t)|2 + θτ|g(x(t), x(t − δ(t)), r(t), t)|2

+ 2λ(1 + λτ)θτ|h(x(t), x(t − δ(t)), r(t), t)|2 − θ
∫ t

t−τ
Q(r)dr. (3.13)

According to (3.7), we can further gain

LV̄(xt, rt, t) ≤ LŪ(x(t), x(t − δ(t)), r(t), t) + ρ1|Ūx(x(t), r(t), t)|2

+
β2

4ρ1
|x(t)− x(t − τ)|2 + ρ2| f (x(t), x(t − δ(t)), r(t), t)|2

+ ρ3|g(x(t), x(t − δ(t)), r(t), t)|2 + ρ4|h(x(t), x(t − δ(t)), r(t), t)|2

+ 2θτ2β2|x(t − τ)|2 − θ
∫ t

t−τ
Q(r)dr

≤ − ρ5|x(t)|
2 + ρ6(1 − δ̄)|x(t − δ(t))|2 − W(x(t))

+ α(1 − δ̄)W(x(t − δ(t))) +
β2

4ρ1
|x(t)− x(t − τ)|2

+ 2θτ2β2|x(t − τ)|2 − θ
∫ t

t−τ
Q(r)dr. (3.14)

Substituting (3.14) into (3.10), we can obtain

EV̄(xt∧σm , rt∧σm , t ∧ σm) ≤ V̄(x0, r0, 0) + v1 + v2 + v3 − v4, (3.15)

where

v1 = E

∫ t∧σm

0
[−ρ5|x(r)|

2 + ρ6(1 − δ̄)|x(r − δ(r))|2 + 2θτ2β2|x(r − τ)|2]dr,

v2 = E

∫ t∧σm

0
[−W(x(r)) + α(1 − δ̄)W(x(r − δ(r)))]dr,

v3 =
β2

4ρ1
E

∫ t∧σm

0
|x(r)− x(r − τ)|2dr,

v4 = θE

∫ t∧σm

0

∫ r

r−τ
Q(v)dvdr.
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Noting that

∫ t∧σm

0
|x(s − δ(s))|2ds ≤

1

1 − δ̄

∫ t∧σm−δ(t∧σm)

−δ(0)
|x(r)|2dr ≤

1

1 − δ̄

∫ t∧σm

−δ
|x(r)|2dr,

∫ t∧σm

0
|x(s − τ)|2ds ≤

∫ t∧σm−τ

−τ
|x(r)|2dr ≤

∫ t∧σm

−δ
|x(r)|2dr,

∫ t∧σm

0
W(x(s − δ(s)))ds ≤

1

1 − δ̄

∫ t∧σm−δ(t∧σm)

−δ(0)
W(x(r))dr

≤
1

1 − δ̄

∫ t∧σm

−δ
W(x(r))dr,

v1 ≤ (ρ6 + 2θτ2β2)
∫ 0

−δ
|x(r)|2dr − (ρ5 − ρ6 − 2θτ2β2)E

∫ t∧σm

0
|x(r))|2dr,

v2 ≤ α
∫ 0

−δ
W(x(r))dr − (1 − α)

∫ t∧σm

0
W(x(r))dr. (3.16)

Substituting (3.16) into (3.15) that we obtain

EV̄(xt∧σm , rt∧σm , t ∧ σm) ≤ C − (ρ5 − ρ6 − 2θτ2β2)E
∫ t∧σm

0
|x(r)|2dr

− (1 − α)E
∫ t∧σm

0
W(x(r))dr + v3 − v4, (3.17)

where C = V̄(x0, r0, 0) + (ρ6 + 2θτ2β2)
∫ 0
−τ |x(r)|

2dr + α
∫ 0
−τ W(x(r))dr. Letting m → ∞ and

applying the classical Fatou lemma, we gain

EV(xt, rt, t) ≤ C − (ρ5 − ρ6 − 2θτ2β2)E
∫ t

0
|x(r)|2dr

− (1 − α)E
∫ t

0
W(x(r))dr + v̄3 − v̄4, (3.18)

where

v̄3 =
β2

4ρ1
E

∫ t

0
|x(r)− x(r − τ)|2dr, v̄4 = θE

∫ t

0

∫ r

r−τ
Q(v)dvdr.

For t ∈ [0, τ], we have

v̄3 ≤
β2

4ρ1

∫ t

0
E|x(r)− x(r − τ)|2dr

≤
β2

2ρ1

∫ τ

0
(E|x(r)|2 + E|x(r − τ)|2)dr

≤
β2

ρ1
τ

(
sup

−τ≤r≤τ

E|x(r)|2
)

.

For t > τ, we gain

v̄3 ≤
τβ2

ρ1

(
sup

−τ≤r≤τ

E|x(r)|2
)
+

β2

4ρ1
E

∫ t

τ
|x(r)− x(r − τ)|2dr.
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It follows from (2.3) and Hölder inequality that we can obtain

E

∫ t

τ
|x(r)− x(r − τ)|2dr ≤ 3E

∫ t

τ

∫ r

r−τ
Q(v)dvdr ≤ 3E

∫ t

0

∫ r

r−τ
Q(v)dvdr.

Then we can get

v̄3 ≤

(
β2τ

ρ1
sup

−τ≤r≤τ

E|x(r)|2
)
+

3β2

4ρ1
E

∫ t

0

∫ r

r−τ
Q(v)dvdr. (3.19)

Substituting (3.19) into (3.18) we obtain

0 ≤ EV̄(xt, rt, t) ≤ C +
τβ2

ρ1

(
sup

−τ≤r≤τ

E|x(r)|2
)

− (ρ5 − ρ6 − 2θτ2β2)E
∫ t

0
|x(r)|2dr

− (1 − α)E
∫ t

0
W(x(r))dr

+
3β2

4ρ1
E

∫ t

0

∫ r

r−τ
Q(v)dvdr − θE

∫ t

0

∫ r

r−τ
Q(v)dvdr. (3.20)

Let θ = 3β2

4ρ1
. For τ <

1
β2

√
2(ρ5−ρ6)ρ1

3 , then

min{ρ5 − ρ6 − 2θτ2β2, 1 − α}
∫ t

0
E[|x(r)|2 + W(x(r))]dr

≤ (ρ5 − ρ6 − 2θτ2β2)E
∫ t

0
|x(r)|2dr + (1 − α)E

∫ t

0
W(x(r))dr

≤ C +
τβ2

ρ1

(
sup

−τ≤r≤τ

E|x(r)|2
)

(3.21)

which implies the desired conclusion (3.8). Moreover, for c|x| p̃ ≤ W(x), applying the inequal-

ity |v|b ≤ |v|a + |v|c(∀0 < a ≤ b ≤ c), we can get for any p ∈ [2, p̃],

min{1, c}
∫ ∞

0
E|x(t)|pdt ≤ min{1, c}

∫ ∞

0
E[|x(t)|2 + |x(t)| p̃]dt

≤
∫ ∞

0
E[|x(t)|2 + c|x(t)| p̃]dt

≤
∫ ∞

0
E[|x(t)|2 + W(x(t))]dt < ∞

which implies (3.9) is true. The proof is complete.

The next theorem illustrates that the controlled system (2.3) is asymptotically stable.

Theorem 3.2. Let all the conditions of Theorem 3.1 hold. If p ≥ 2 and q ≥ (p + q1 − 1) ∨

(p + 2q2 − 2) ∨ pq3, then for the any given initial date (2.2), the solution of the system (2.3) sat-

isfies

lim
t→∞

E|x(t)|p = 0. (3.22)

Namely, the system (2.3) is asymptotically stable.
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Proof. Applying Itô’s formula to |x(t)|p that we obtain for any 0 ≤ t1 < t2 < ∞,

E|x(t2)|
p − E|x(t1)|

p

≤ E

∫ t2

t1

p|x(t)|p−2xT(t)[ f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)]dt

+
p(p − 1)

2
E

∫ t2

t1

|x(t)|p−2|g(x(t), x(t − δ(t)), r(t), t)|2dt

+ λE

∫ t2

t1

(|x(t) + h(x(t), x(t − δ(t)), r(t), t)|p − |x(t)|p) dt. (3.23)

It follows from (2.7) that we gain

E|x(t2)|
p − E|x(t1)|

p ≤ pE

∫ t2

t1

|x(t)|p−1[K(1 + |x(t)|q1 + |x(t − δ(t))|q1) + β|x(t − τ)|]dt

+
3p(p − 1)K2

2
E

∫ t2

t1

|x(t)|p−2(1 + |x(t)|2q2 + |x(t − δ(t))|2q2)dt

+ λ6p−1Kp
E

∫ t2

t1

(1 + |x(t)|pq3 + |x(t − δ(t))|pq3)dt

+ λ(2p−1 − 1)E
∫ t2

t1

|x(t)|pdt. (3.24)

By Young’s inequality, we can get

E

∫ t2

t1

|x(t)|p−1|x(t − δ(t))|q1 dt

≤
p − 1

p + q1 − 1

∫ t2

t1

E|x(t)|p+q1−1dt +
q1

p + q1 − 1

∫ t2

t1

E|x(t − δ(t))|p+q1−1dt. (3.25)

Using Theorem 2.2 and p + q1 − 1 ≤ q that we get

E

∫ t2

t1

|x(t)|p−1|x(t − δ(t))|q1 dt ≤ sup
−δ≤t<∞

E|x(t)|p+q1−1(t2 − t1). (3.26)

Similarly, according to p + 2q2 − 2 ≤ q and pq3 ≤ q that we can get

E

∫ t2

t1

|x(t)|p−2|x(t − δ(t))|2q2 dt ≤ sup
−δ≤t<∞

E|x(t)|p+2q2−2(t2 − t1) (3.27)

and

E

∫ t2

t1

|x(t)|pq3 dt ≤ sup
0≤t<∞

E|x(t)|pq3(t2 − t1). (3.28)

It follows from (3.26)–(3.28) that we can obtain

E|x(t2)|
p − E|x(t1)|

p ≤ C̃(t2 − t1) (3.29)

where C̃ is a constant independent t1, t2. That is, E|x(t)|p is uniformly continuous in t on R
+.

Together with (3.9), we can assert limt→∞ E|x(t)|p = 0. The proof is thus complete.

Remark 3.3. Different from the existing literature, this paper studies the H∞-stability and

asymptotic stability for a class of highly nonlinear SDSs, where both the Markovian switching

and Poisson jump are taken into consideration, which advances the results of the system

with the coefficients satisfying the linear growth condition in [24] and covers the results in

[18, 20, 27, 33, 39].
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4 An example

In this section, we give an example to illustrate the the obtained results. Let B(t) be a scalar

Brown motion and N(t) be a Poisson process with intensity λ = 1. For the sake of simplicity,

here we consider δ(t) ≡ δ. We thus consider the following scalar system

dx(t) = f (x(t), x(t − δ), r(t), t)dt + g(x(t), x(t − δ), r(t), t)dB(t)

+ h(x(t), x(t − δ), r(t), t)dN(t), t ≥ 0 (4.1)

with the initial data x(t) = 3 + 2 cos(t), t ∈ [−1, 0] and r(0) = 1, where f (x, y, 1, t) = x +
1
2 y3 − 2x3 − 2x7, f (x, y, 2, t) = x + y3 − 2x3 − x7, g(x, y, 1, t) = g(x, y, 2, t) = 1

4 y2, h(x, y, 1, t) =

h(x, y, 2, t) = 1
2 x, r(t) is a Markov chain on the state space S = {1, 2} with

Γ = (γij)2×2 =

[
cc − 2 2

1 −1

]
.

It is easy to see that q1 = 7, q2 = 2 and q3 = 1. The sample paths of the Markov chain and the

solution of the system (4.1) are shown in Fig. 4.1. From this figure, we can see that the system

(4.1) is unstable. We are in position to design a control function u : R × S × R
+ → R defined

by u(x, 1, t) = −4x, u(x, 2, t) = −5x to make the system (4.1) become stable. It is also easy to

see that β = 5. The controlled system of the form

dx(t) = [ f (x(t), x(t − δ), r(t), t) + u(x(t − τ), r(t), t)]dt

+ g(x(t), x(t − δ), r(t), t)dB(t)

+ h(x(t), x(t − δ), r(t), t)dN(t), t ≥ 0. (4.2)
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1

2

3

4

x
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)

Figure 4.1: The sample paths of the Markov chain (left) and the solution of the

system (4.1) (right) with δ = 1.

Let V(x, i, t) = x14(i = 1, 2). By Young inequality, we compute

LV(x, y, i, t) + Vx(x, i, t)u(z, i, t)

≤

{
− 28x20 − 18x16 + 356.93x14 + 2.74y16 + 4z14, i = 1,

− 14x20 − 12x16 + 369.93x14 + 4.05y16 + 5z14, i = 2,

≤ c1 − 12(x16 + x14) + 4.05(y14 + y16) + 5(z14 + z16),

where c1 = supx∈R{−14x20 + 381.93x14} < ∞. Therefore, Assumption 3 is fulfilled with c2 =

12, c3 = 4.05, c4 = 5, H(x, t) = x14 + x16 and q = 14.



16 G. Li, Z. Hu, F. Deng and H. Zhang

In the following, we define Ū(x, 1, t) = x2 + x4 + x8 and Ū(x, 2, t) = 1
2 (x2 + x4 + x8). Then

LŪ(x, y, i, t) ≤





−
21

4
x12 −

195

16
x4 −

7

2
x8 −

403

20
x10 − 16x14 +

13

16
y4 +

5

4
y6 +

19

10
y10, i = 1,

−
19

8
x2 −

215

8
x4 −

47

16
x6 −

7

2
x8 −

267

40
x10 − 4x14 +

25

32
y4 +

9

8
y6 +

31

20
y10, i = 2.

Moreover,

|Ūx(x, i, t)|2 ≤

{
12x2 + 48x6 + 192x14, i = 1,

3x2 + 12x6 + 48x14, i = 2,

and

| f (x, y, i, t)|2 ≤

{
4x2 + y6 + 16x6 + 16x14, i = 1,

4x2 + 4y6 + 16x6 + 4x14, i = 2,

and for ∀i = 1, 2, |g(x, y, i, t)|2 = 1
16 y4, |h(x, y, i, t)|2 = 1

4 x2. Let ρ1 = 1
650 , ρ2 = 1

80 , ρ3 = 1
5 and

ρ4 = 1
2 . Then we can compute

LŪ(x, y, i, t) + ρ1|Ūx(x, i, t)|2 + ρ2| f (x, y, i, t)|2 + ρ3|g(x, y, i, t)|2 + ρ4|h(x, y, i, t)|2

≤ −2.2|x|2 − 2.7(x4 + x6 + x8 + x10 + x14) + 1.9(y4 + y6 + y8 + y10 + y14). (4.3)

It follows from (4.3) that we can assert that Assumption 4 is satisfied with W(x) = 2.7(x4 +

x6 + x8 + x10 + x14), ρ5 = 11
5 , ρ6 = 0 and α = 19

27 . By computing, we can set τ = 10−5 to satisfy

(3.7) and
3λ(1+λτ)τβ2

2ρ1
≤ ρ4. Then according to Theorem 3.1, we therefore conclude that the

solution of the controlled system (4.2) satisfies the following property
∫ ∞

0
E[x2(t) + x4(t) + x6(t) + x8(t) + x10(t) + x14(t)]dt < ∞.

Thus, we can get
∫ ∞

0
E[x2(t) + x4(t) + x6(t) + x8(t) + x10(t)]dt < ∞.

Moreover, as |x(t)|p ≤ x2(t) + x4(t) + x6(t) + x8(t) + x10(t) for any p ∈ [2, 10], we obtain∫ ∞

0 E|x(t)|pdt < ∞.
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Figure 4.2: The sample paths of the Markov chain (left) and the solution of the

system (4.2) (right) with δ = 1 and τ = 10−5.

Let p = 4. Recalling q1 = 7, q2 = 2, q3 = 1, then all the conditions of Theorem 3.2 are

satisfied, so we can get limt→∞ E|x(t)|4 = 0.

The sample paths of the Markov chain and the solution of the controlled system (4.2) are

shown in Fig. 4.2. The simulation supports the theoretical results.
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5 Conclusion

Up to now, very few stabilization results seem to be known about the STVDSs with Markovian

switching and Poisson jump, not to mention the case where the coefficients of such systems

are highly nonlinear. This paper discussed the stabilization problem of such systems. In

this paper, we designed a delay feedback controller to make an unstable highly nonlinear

STVDS with Markovian switching and Poisson jump H∞-stable and asymptotically stable,

which enriches the stabilization results on such systems. Moreover, an illustrative example

has been presented to verify the effectiveness of the obtained results.
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Abstract. This paper deals with the following Kirchhoff–Schrödinger–Newton system
with critical growth



















−M

(

∫

Ω

|∇u|2dx

)

∆u = φ|u|2∗−3u + λ|u|p−2u, in Ω,

−∆φ = |u|2∗−1, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R
N(N ≥ 3) is a smooth bounded domain, M(t) = 1 + btθ−1 with t > 0,

1 < θ <
N+2
N−2 , b > 0, 1 < p < 2, λ > 0 is a parameter, 2∗ = 2N

N−2 is the critical Sobolev
exponent. By using the variational method and the Brézis–Lieb lemma, the existence
and multiplicity of positive solutions are established.
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1 Introduction and main result

Consider the following Kirchhoff–Schrödinger–Newton system involving critical growth



















−M

(

∫

Ω

|∇u|2dx

)

∆u = φ|u|2∗−3u + λ|u|p−2u, in Ω,

−∆φ = |u|2∗−1, in Ω,

u = φ = 0, on ∂Ω,

(1.1)

where Ω ⊂ R
N(N ≥ 3) is a smooth bounded domain, M(t) = 1 + btθ−1 with t > 0, 1 < θ <

N+2
N−2 , b > 0, 1 < p < 2, λ > 0 is a parameter, 2∗ = 2N

N−2 is the critical Sobolev exponent.
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This system is derived from the Schrödinger–Poisson system

{

−∆u + V(x)u + ηφ f (u) = h(x, u), in R
3,

−∆φ = 2F(u), in R
3.

(1.2)

System as (1.2) has been studied extensively by many researchers because (1.2) has a strong

physical meaning, which describes quantum particles interacting with the electromagnetic

field generated by the motion. The Schrödinger–Poisson system (also called Schrödinger–

Maxwell system) was first introduced by Benci and Fortunato in [6] as a physical model

describing a charged wave interacting with its own electrostatic field in quantum mechanic.

For more information on the physical aspects about (1.2), we refer the reader to [6, 7].

Many recent studies of (1.2) have focused on existence of multiple solutions, ground states,

positive and non-radial solutions. When h(x, u) = |u|p−2u, Alves et al. in [4] considered the

existence of ground state solutions for (1.2) with 4 < p < 6. In [10], Cerami and Vaira proved

the existence of positive solutions of (1.2) when h(x, u) = a(x)|u|p−2u with 4 < p < 6 and a(x)

is a nonnegative function. The same result was established in [11, 18, 22, 23] for 2 < p < 6. In

[20, 25, 26, 28], by using variational methods, the authors proved the existence of ground state

solutions of (1.2) with subcritical and critical growths. In addition, the existence of solutions

for Schrödinger–Poisson system involving critical nonlocal term has been paid much attention

by many authors, we can see [2, 13, 16, 19, 24, 27] and so on.

In [5], Arora et al. considered a nonlocal Kirchhoff type equation with a critical Sobolev

nonlinearity, using suitable variational techniques, the authors showed how to overcome the

lack of compactness at critical levels. In [15], by using the variational method and the con-

centration compactness principle, Lei and Suo established the existence and multiplicity of

nontrivial solutions. Luyen and Cuong [21] obtained the existence of multiple solutions for

a given boundary value problem, using the minimax method and Rabinowitz’s perturbation

method. In [29], Zhou, Guo and Zhang combined the variational method and the mountain

pass theorem, to get the existence of weak solutions, this time on the Heisenberg group.

Specially, Azzollini, D’Avenia and Vaira [3] studied the following Schrödinger–Newton

type system with critical growth















−∆u = λu + |u|2∗−3uφ, in Ω,

−∆φ = |u|2∗−1, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R
N(N ≥ 3) is a smooth bounded domain. By the variational method, they

obtained the existence and nonexistence results of positive solutions when N = 3 and the

existence of solutions in both the resonance and the non-resonance case for higher dimensions.

Lei and Gao [14] considered the Schrödinger–Newton system with sign-changing potential















−∆u = fλ(x)|u|p−2u + |u|3uφ, in Ω,

−∆φ = |u|5, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R
3 is a smooth bounded domain, 1 < p < 2, fλ = λ f+ + f−, λ > 0, f± =

max{± f , 0}. By using the variational method and analytic techniques, the authors proved the

existence and multiplicity of positive solutions.
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In [17], Li et al. proved the existence, nonexistence and multiplicity of positive radially

symmetric solutions for the following Schrödinger–Poisson system

{

−∆u + u + λφ|u|3u = µ|u|p−2u, in R
3,

−∆φ = |u|5, in R
3,

where p ∈ (2, 6), λ ∈ R and µ ≥ 0 are parameters.

With the help of the Lax–Milgram theorem, for every u ∈ H1
0(Ω), the second equation of

system (1.1) has a unique solution φu ∈ H1
0(Ω), we substitute φu to the first equation of system

(1.1), then system (1.1) transforms into the following equation







−M

(

∫

Ω

|∇u|2dx

)

∆u = φu|u|2
∗−3u + λ|u|p−2u, in Ω,

u = φ = 0, on ∂Ω.
(1.3)

The variational functional associated with (1.3) is defined by

Iλ(u) =
1

2

∫

Ω

|∇u|2dx +
b

2θ

(

∫

Ω

|∇u|2dx

)θ

− 1

2(2∗ − 1)

∫

Ω

φu|u|2
∗−1dx − λ

p

∫

Ω

|u|pdx.

We say that u ∈ H1
0(Ω) is a weak solution of (1.3), for all ψ ∈ H1

0(Ω), then u satisfies

[

1 + b

(

∫

Ω

|∇u|2dx

)θ−1
]

∫

Ω

∇u∇ψdx =
∫

Ω

φu|u|2
∗−3uψdx + λ

∫

Ω

|u|p−2uψdx.

Our technique based on the Ekeland variational principle and the mountain pass theorem.

Since system (1.1) contains a nonlocal critical growth term, which leads to the cause of the

lack of compactness of the embedding H1
0(Ω) →֒ L2∗(Ω) and the Palais–Smale condition for

the corresponding energy functional could not be checked directly. Then we overcome the

compactness by using the Brézis–Lieb lemma.

Now we state our main result.

Theorem 1.1. Assume that 1 < θ <
N+2
N−2 , N

N−2 < p < 2 and N > 4, b > 0 is small enough. Then

there exists Λ∗ > 0 such that for all λ ∈ (0, Λ∗), system (1.1) has at least two positive solutions.

Throughout this paper, we make use of the following notations:

• The space H1
0(Ω) is equipped with the norm ∥u∥2

H1
0 (Ω)

=
∫

Ω
|∇u|2dx, the norm in Lp(Ω)

is denoted by ∥ · ∥p.

• Let D1,2(RN) be the completion of C∞

0 (RN) with respect to the norm ∥u∥2
D1,2(RN)

=
∫

RN |∇u|2dx.

• C, C1, C2, . . . denote various positive constants, which may vary from line to line.

• We denote by Sρ (respectively, Bρ) the sphere (respectively, the closed ball) of center zero

and radius ρ, i.e. Sρ = {u ∈ H1
0(Ω) : ∥u∥ = ρ}, Bρ = {u ∈ H1

0(Ω) : ∥u∥ ≤ ρ}.

• Let S be the best constant for Sobolev embedding H1
0(Ω) →֒ L2∗(Ω), namely

S = inf
u∈H1

0 (Ω)\{0}

∫

Ω
|∇u|2dx

( ∫

Ω
|u|2∗dx

)2/2∗ .
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2 Proof of the theorem

Firstly, we have the following important lemma in [3].

Lemma 2.1. For all u ∈ H1
0(Ω), there exists a unique solution φu ∈ H1

0(Ω) of

{

−∆φ = |u|2∗−1, in Ω,

φ = 0, on ∂Ω.

Moreover,

(1) φu ≥ 0 for x ∈ Ω and for each t > 0, φtu = t2∗−1φu.

(2)
∫

Ω

|∇φu|2dx =
∫

Ω

φu|u|2
∗−1dx ≤ S−2∗∥u∥2(2∗−1).

(3) If un ⇀ u in H1
0(Ω), then

∫

Ω

φun |un|2
∗−1dx −

∫

Ω

φun−u|un − u|2∗−1dx =
∫

Ω

φu|u|2
∗−1dx + on(1).

Lemma 2.2. There exist constants δ, ρ, Λ0 > 0, for all λ ∈ (0, Λ0) such that the functional Iλ satisfies

the following conditions:

(i) Iλ|u∈Sρ
≥ δ > 0; inf

u∈Bρ
Iλ(u) < 0.

(ii) There exists e ∈ H1
0(Ω) with ∥e∥ > ρ such that Iλ(e) < 0.

Proof. (i) Using the Hölder inequality and the Sobolev inequality, we get

∫

Ω

|u|pdx ≤
(

∫

Ω

|u|2∗dx

)

p
2∗
(

∫

Ω

1
2∗

2∗−p dx

)

2∗−p
2∗

≤ |Ω|
2∗−p

2∗ S− p
2 ∥u∥p. (2.1)

Therefore, it follows from (2.1) and the Sobolev inequality that

Iλ(u) =
1

2

∫

Ω

|∇u|2dx +
b

2θ

(

∫

Ω

|∇u|2dx

)θ

− 1

2(2∗ − 1)

∫

Ω

φu|u|2
∗−1dx − λ

p

∫

Ω

|u|pdx

≥ 1

2
∥u∥2 − 1

2(2∗ − 1)
S−2∗∥u∥2(2∗−1) − λ

p
|Ω|

2∗−p
2∗ S− p

2 ∥u∥p

= ∥u∥p

(

1

2
∥u∥2−p − 1

2(2∗ − 1)
S−2∗∥u∥2(2∗−1)−p − λ

p
|Ω|

2∗−p
2∗ S− p

2

)

.

Let H(t) = 1
2 t2−p − 1

2(2∗−1)
S−2∗ t

2(2∗−1)−p
for t > 0, thus, there exists a constant

ρ =

[

(2∗ − 1)(2 − p)S2∗

(2(2∗ − 1)− p)

]

1
2(2∗−2)

> 0

such that maxt>0 h(t) = h(ρ) > 0. Setting Λ0 = pS
p
2

|Ω|
2∗−p

2∗
h(ρ), there exists a constant δ > 0 such

that Iλ|u∈Sρ
≥ δ for each λ ∈ (0, Λ0). Moreover, for every u ∈ H1

0(Ω)\{0}, we get

lim
t→0+

Iλ(tu)

tp
= −λ

p

∫

Ω

|u|pdx < 0.
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So we obtain Iλ(tu) < 0 for all u ̸= 0 and tu small enough. Hence, for ∥u∥ small enough, we

have

m ≜ inf
u∈Bρ

Iλ(u) < 0.

(ii) Set u ∈ H1
0(Ω), for all t > 0, we get

Iλ(tu) =
t2

2
∥u∥2 +

bt2θ

2θ
∥u∥2θ − t2(2∗−1)

2(2∗ − 1)

∫

Ω

φu|u|2
∗−1dx − λtp

p

∫

Ω

|u|pdx → −∞

as t → ∞, which implies that Iλ(tu) < 0 for t > 0 large enough. Consequently, we can find

e ∈ H1
0(Ω) with ∥e∥ > ρ such that Iλ(e) < 0. The proof is complete.

Definition 2.3. A sequence {un} ⊂ H1
0(Ω) is called (PS)c sequence of Iλ if Iλ(un) → c and

I′λ(un) → 0 as n → ∞. We say that Iλ satisfies (PS)c condition if every (PS)c sequence of Iλ

has a convergent subsequence in H1
0(Ω).

Lemma 2.4. Assume that 1 < θ <
N+2
N−2 and 1 < p < 2, the functional Iλ satisfies the (PS)c condition

for each c < c∗ = 2
N+2 S

N
2 − Dλ

2
2−p , where D = [2(2∗−1)−p]

2
2−p

2(2∗−1)(2∗−2)
p

2−p p
2

2−p
(S− p

2 |Ω| 2∗−p
2∗ )

2
2−p .

Proof. Let {un} ⊂ H1
0(Ω) be a (PS) sequence for Iλ at the level c, that is

Iλ(un) → c and I′λ(un) → 0 as n → ∞. (2.2)

Combining with (2.1) and (2.2), we have

c + 1 + o(∥un∥) ≥ Iλ(un)−
1

2(2∗ − 1)

〈

I′λ(un), un

〉

=

(

1

2
− 1

2(2∗ − 1)

)

∥un∥2 + b

(

1

2θ
− 1

2(2∗ − 1)

)

∥un∥2θ

− λ

(

1

p
− 1

2(2∗ − 1)

)

|Ω|
2∗−p

2∗ S− p
2 ∥un∥p

≥
(

1

2
− 1

2(2∗ − 1)

)

∥un∥2 − λ

(

1

p
− 1

2(2∗ − 1)

)

|Ω|
2∗−p

2∗ S− p
2 ∥un∥p.

Therefore {un} is bounded in H1
0(Ω) for all 1 < p < 2. Thus, we may assume up to a

subsequence, still denoted by {un}, that there exists u ∈ H1
0(Ω) such that















un ⇀ u, weakly in H1
0(Ω),

un → u, strongly in Lq(Ω) (1 ≤ q < 2∗),

un(x) → u(x), a.e. in Ω,

(2.3)

as n → ∞. By (2.1) and the Young inequality, one has

λ
∫

Ω

|u|pdx ≤ λS− p
2 |Ω|

2∗−p
2∗ ∥u∥p ≤ η∥u∥2 + C(η)λ

2
2−p , (2.4)

where C(η) = η
− p

2−p (S− p
2 |Ω| 2∗−p

2∗ )
2

2−p , it follows from (2.2) and (2.4) that

Iλ(u) = Iλ(u)−
1

2(2∗ − 1)
⟨I′λ(u), u⟩

≥
(

1

2
− 1

2(2∗ − 1)

)

∥u∥2 −
(

1

p
− 1

2(2∗ − 1)

)

λ
∫

Ω

|u|pdx

≥
(

2∗ − 2

2(2∗ − 1)
− 2(2∗ − 1)− p

2(2∗ − 1)p
η

)

∥u∥2 − 2(2∗ − 1)− p

2(2∗ − 1)p
C(η)λ

2
2−p .
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Letting η = p(2∗−2)
2(2∗−1)−p

and D = [2(2∗−1)−p]
2

2−p

2(2∗−1)(2∗−2)
p

2−p p
2

2−p
(S− p

2 |Ω| 2∗−p
2∗ )

2
2−p , we have Iλ(u) ≥ −Dλ

2
2−p .

Next, we prove that un → u strongly in H1
0(Ω). Set wn = un − u and limn→∞ ∥wn∥ = l, by

using the Brézis–Lieb lemma [9], we have

∥un∥2 = ∥wn∥2 + ∥u∥2 + o(1),

∥un∥2θ =
(

∥wn∥2 + ∥u∥2 + o(1)
)θ

,
∫

Ω

φun |un|2
∗−1dx =

∫

Ω

φwn |wn|2
∗−1dx +

∫

Ω

φu|u|2
∗−1dx + o(1).

From (2.2), (2.3) and Lemma 2.1, one has

∥wn∥2 + ∥u∥2 + b
(

∥wn∥2 + ∥u∥2 + o(1)
)θ

−
∫

Ω

φwn |wn|2
∗−1dx −

∫

Ω

φu|u|2
∗−1dx − λ

∫

Ω

|u|pdx = o(1), (2.5)

and

∥u∥2 + b∥u∥2θ −
∫

Ω

φu|u|2
∗−1dx − λ

∫

Ω

|u|pdx = 0. (2.6)

It follows from (2.5) and (2.6) that

∥wn∥2 + b
[

(

∥wn∥2 + ∥u∥2 + o(1)
)θ − ∥u∥2θ

]

−
∫

Ω

φwn |wn|2
∗−1dx = o(1). (2.7)

Since ∥wn∥ → l, we have

(

∥wn∥2 + ∥u∥2 + o(1)
)θ − ∥u∥2θ →

(

l2 + ∥u∥2 + o(1)
)θ − ∥u∥2θ = l1 ≥ 0, as n → ∞.

If follows from (2.7) that
∫

Ω

φwn |wn|2
∗−1dx → l2 + bl1.

Applying the Sobolev inequality, we get

∥wn∥2(2∗−1) ≥ S2∗
∫

Ω

φwn |wn|2
∗−1dx + o(1). (2.8)

Thus, by (2.8), we can deduce that

l2(2∗−1) ≥ S2∗(l2 + bl1) ≥ S2∗ l2 as n → ∞,

which implies that l ≥ S
N
4 as n → ∞. Since I(un) = c + o(1), we obtain

1

2
∥wn∥2 +

b

2θ
[
(

∥wn∥2 + ∥u∥2 + o(1)
)θ −∥u∥2θ ]− 1

2(2∗ − 1)

∫

Ω

φwn |wn|2
∗−1dx= c− Iλ(u)+ o(1).

Hence, there holds

c =

(

1

2
− 1

2(2∗ − 1)

)

l2 +

(

1

2θ
− 1

2(2∗ − 1)

)

bl1 + Iλ(u)

≥ 2

N + 2
S

N
2 − Dλ

2
2−p ≥ c∗,

as n → ∞. This is a contradiction. Hence, we can conclude that un → u in H1
0(Ω). The proof

is complete.
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Choose the extremal function

Uε(x) =
[N(N − 2)ε2]

N−2
4

(ε2 + |x|2) N−2
2

, x ∈ R
N , ε > 0.

It is a positive solution of the following problem

−∆Uε = U2∗−1
ε in R

N ,

and satisfies
∫

RN
|∇Uε|2dx =

∫

RN
|Uε|2

∗
dx = S

N
2 .

Pick a cut-off function ϕ ∈ C∞

0 (Ω) such that ϕ(x) = 1 on B(0, r
2 ), ϕ(x) = 0 on R

N − B(0, r)

and 0 ≤ ϕ(x) ≤ 1 on R
N . Set uε(x) = ϕ(x)Uε(x), from [8], we have











∫

Ω

|∇uε|2dx = S
N
2 + O(εN−2),

∫

Ω

|uε|2
∗
dx = S

N
2 + O(εN).

(2.9)

To estimate the value c observe that, multiplying the second equation of system (1.1) by |u|
and integrating, we get

∫

Ω

|u|2∗dx =
∫

Ω

∇φu∇|u|dx ≤ 1

2
∥φu∥2 +

1

2
∥u∥2. (2.10)

Then, we define a new functional Hλ : H1
0(Ω) → R by

Hλ(u) ≜
2∗

2(2∗ − 1)
∥u∥2 +

b

2θ
∥u∥2θ − 1

2∗ − 1

∫

Ω

|u|2∗dx − λ

p

∫

Ω

|u|pdx

=
2∗

2∗ − 1

[

1

2
∥u∥2 +

(2∗ − 1)b

2θ2∗
∥u∥2θ − 1

2∗

∫

Ω

|u|2∗dx − λ
2∗ − 1

2∗p

∫

Ω

|u|pdx

]

≜
2∗

2∗ − 1
Jλ(u),

where

Jλ(u) =
1

2
∥u∥2 +

(2∗ − 1)b

2θ2∗
∥u∥2θ − 1

2∗

∫

Ω

|u|2∗dx − λ
2∗ − 1

2∗p

∫

Ω

|u|pdx.

By (2.10), which implies that

Iλ(u) ≤ Hλ(u) =
2∗

2∗ − 1
Jλ(u), (2.11)

for every u ∈ H1
0(Ω), and c ≤ infu∈H1

0 (Ω)\{0} supt≥0 Jλ(tu). If we consider the following

problem















−
[

1 +
(2∗ − 1)b

2∗

(

∫

Ω

|∇u|2dx

)θ−1
]

∆u = |u|2∗−2u + λ
2∗ − 1

2∗
|u|p−2u, in Ω,

u = 0, on ∂Ω.

(2.12)

Then we find that the weak solution of problem (2.12) correspond to the critical points of the

functional Jλ. Next, we compute supt≥0 Jλ(tuε) = Jλ(tεuε).
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Lemma 2.5. Assume that 1 < θ <
N+2
N−2 , N

N−2 < p < 2 and N > 4, then there exist Λ3, b0 > 0 such

that for all λ ∈ (0, Λ3) and b ∈ (0, b0), it holds

sup
t≥0

Jλ(tuε) <
1

N
S

N
2 − N + 2

2N
Dλ

2
2−p .

In particular,

sup
t≥0

Iλ(tuε) <
2

N + 2
S

N
2 − Dλ

2
2−p .

Proof. For convenience, we consider the functional J∗b : H1
0(Ω) → R as follows

J∗b (u) =
1

2
∥u∥2 +

(2∗ − 1)b

2θ2∗
∥u∥2θ − 1

2∗

∫

Ω

|u|2∗dx.

Define

hb(t) = J∗b (tuε) =
t2

2
∥uε∥2 +

(2∗ − 1)bt2θ

2θ2∗
∥uε∥2θ − t2∗

2∗

∫

Ω

|uε|2
∗
dx, for all t ≥ 0.

It is clear that limt→0 hb(t) = 0 and limt→∞ hb(t) = −∞. Therefore there exists tb,ε > 0 such

that h(tb,ε) = maxt≥0 hb(t), that is

0 = h′0(t0,ε) = t0,ε

(

∥uε∥2 − t2∗−2
0,ε

∫

Ω

|uε|2
∗
dx

)

,

one has

t0,ε =

(

∥uε∥2

∫

Ω
|uε|2∗dx

)
1

2∗−2

.

Hence, we deduce from (2.9) that

sup
t≥0

J∗b (tuε) = hb(tb,εuε) ≤ h0(tb,εuε) ≤ h0(t0,εuε)

=
1

N
S

N
2 − N + 2

2N
Dλ

2
2−p +

N + 2

2N
Dλ

2
2−p + O(εN−2).

(2.13)

By using the definitions of J and uε, we have

Jλ(tuε) ≤
t2

2
∥uε∥2 +

b(2∗ − 1)t2θ

2θ2∗
∥uε∥2θ ,

for all t ≥ 0 and λ > 0. It follows from (2.9) that there exist T ∈ (0, 1), Λ1, b0 > 0 and ε1 > 0

such that

sup
0≤t≤T

Jλ(tuε) <
1

N
S

N
2 − N + 2

2N
Dλ

2
2−p ,

for every 0 < λ < Λ1, 0 < b < b0 and 0 < ε < ε1. According to the definition of uε, there
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exists C1 > 0, such that we have

∫

Ω

|uε|pdx ≥ C
∫

Br/2(0)

ε
p(N−2)

2

(ε2 + |x|2) p(N−2)
2

dx

= Cε
p(N−2)

2

∫ r/2

0

tN−1

(ε2 + t2)
p(N−2)

2

dt

= CεN− p(N−2)
2

∫ r/2
√

ε

0

yN−1

(1 + y2)
p(N−2)

2

dy

≥ CεN− p(N−2)
2

∫ 1

0

yN−1

(1 + y2)
p(N−2)

2

dy

≥ C1εN− p(N−2)
2 .

(2.14)

Thus, it follows from (2.13) and (2.14) that

sup
t≥T

J(tuε) = sup
t≥T

(

Jb(tuε)− λ
2∗ − 1

2∗p
tp
∫

Ω

|uε|pdx

)

≤ 1

N
S

N
2 − N + 2

2N
Dλ

2
2−p

+
N + 2

2N
Dλ

2
2−p + C2εN−2 − C1λεN− p(N−2)

2

<
1

N
S

N
2 − N + 2

2N
Dλ

2
2−p ,

(2.15)

where the constant C2 > 0. Here we have used the fact that N
N−2 < p < 2 and

(N−2)(2−2p)+2N
(N−2)(2−p)

<

2
2−p , let ε = λ

2
(N−2)(2−p) , 0 < λ < Λ2 = min

{

1, (C1
C3
)

(N−2)(2−p)
2p(N−2)−2N

}

, then

N + 2

2N
Dλ

2
2−p + C2εN−2 − C1λεN− p(N−2)

2 ≤ C3λ
2

2−p − C1λεN− p(N−2)
2

= C3λ
2

2−p − C1λ
(N−2)(2−2p)+2N

(N−2)(2−p)

< 0,

(2.16)

where C3 > 0. Therefore, we have

sup
t≥0

Jλ(tuε) <
1

N
S

N
2 − N + 2

2N
Dλ

2
2−p ,

for all 0 < λ < Λ3 = min{Λ1, Λ2, ε1} and 0 < b < b0. The proof is complete.

Theorem 2.6. Assume that 0 < λ < Λ0 (Λ0 is as in Lemma 2.2). Then system (1.1) has a positive

solution uλ satisfying Iλ(uλ) < 0.

Proof. Applying Lemma 2.2, we have

m ≜ inf
u∈Bρ(0)

Iλ(u) < 0.

By the Ekeland variational principle [12], there exists a minimizing sequence {un} ⊂ Bρ(0)

such that

Iλ(un) ≤ inf
u∈Bρ(0)

Iλ(u) +
1

n
, Iλ(v) ≥ Iλ(un)−

1

n
∥v − un∥, v ∈ Bρ(0).
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Thus, we obtain that Iλ(un) → m and I′λ(un) → 0. By Lemma 2.4, we have un → uλ in H1
0(Ω)

with Iλ(un) → m < 0, which implies that uλ ̸≡ 0. Note that Iλ(un) = Iλ(|un|), we have

uλ ≥ 0. Then, by using the strong maximum principle, we obtain that uλ is a positive solution

of system (1.1) such that Iλ(uλ) < 0.

Theorem 2.7. Assume that 0 < λ < Λ∗(Λ∗ = min{Λ0, Λ3}). Then the system (1.1) has a positive

solution u∗ ∈ H1
0(Ω) with Iλ(u∗) > 0.

Proof. According to the mountain pass theorem [1] and Lemma 2.2, there exists a sequence

{un} ⊂ H1
0(Ω) such that

Iλ(un) → c > 0 and I′λ(un) → 0 as n → ∞,

where

c = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

and

Γ =
{

γ ∈ C([0, 1], H1
0(Ω)) : γ(0) = 0, γ(1) = e

}

.

From Lemma 2.4, we know that {un} ⊂ H1
0(Ω) has a convergent subsequence, still denoted

by {un}, such that un → u∗ in H1
0(Ω) as n → ∞,

Iλ(u∗) = lim
n→∞

Iλ(un) = c > 0,

which implies that u∗ ̸≡ 0. It is similar to Theorem 2.6 that u∗ > 0, we obtain that u∗ is

a positive solution of system (1.1) such that Iλ(u∗) > 0. Combining the above facts with

Theorem 2.6 the proof of Theorem 1.1 is complete.
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Abstract. In this paper we study the existence of ground states solutions for non-
autonomous Schrödinger–Bopp–Podolsky system

{

−∆u + u + λK(x)ϕu = b(x)|u|p−2u in R
3,

−∆ϕ + a2∆2ϕ = 4πK(x)u2 in R
3,

where λ > 0, 2 < p ≤ 4 and both K(x) and b(x) are nonnegative functions in R
3.

Assuming that lim|x|→+∞K(x) = K∞ > 0 and lim|x|→+∞b(x) = b∞ > 0 and satisfying
suitable assumptions, but not requiring any symmetry property on them. We show
that the existence of a positive solution depends on the parameters λ and p. We also

establish the existence of ground state solutions for the case 3.18 ≈ 1+
√

73
3 < p ≤ 4.

Keywords: non-autonomous Schrödinger–Bopp–Podolsky system, variational meth-
ods, Pohožaev identity, Nehari manifold.

2020 Mathematics Subject Classification: 35J48, 35J50, 35Q60.

1 Introduction and main results

In this paper we are concerned with the existence of ground states for Schrödinger–Bopp–

Podolsky (SBP) system

{

−∆u + u + λK(x)ϕu = b(x)|u|p−2u in R
3,

−∆ϕ + a2∆2ϕ = 4πK(x)u2 in R
3,

(1.1)

where a > 0 is the Bopp-Podolsky (BP) parameter, u represents the modulus of the wave

function and ϕ the electrostatic situation. The Schrödinger–Bopp–Podolsky system has been

studied in [13] for the first time in the mathematical literature. The system appears when one

BCorresponding author. Email: linli@ctbu.edu.cn & lilin420@gmail.com
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looks for stationary solutions u(x)eiωt of the Schrödinger equation coupled with the Bopp–

Podolsky Lagrangian of the electromagnetic field in the purely electrostatic situation.

The Bopp–Podolsky theory is a second order for the electromagnetic field, and was pro-

posed to deal with the so called infinity problem that appears in the classical Maxwell theory

which is similar to the Mie theory [21] and its generalizations given by Born and Infeld [3–6].

In fact, by the well-known Gauss law (or Poisson’s equation), the electrostatic potential ϕ for

a given charge distribution whose density is ρ satisfies the equation

−∆ϕ = ρ in R
3. (1.2)

If ρ = 4πδx0 , with x0 ∈ R
3, the fundamental solution of (1.2) is G(x − x0), where

G(x) =
1

|x| ,

and the electrostatic energy is

EM (G) = 1

2

∫

R3
|∇G|2 = +∞.

Thus, equation (1.2) is replaced by

−div





∇ϕ
√

1 − |∇ϕ|2



 = ρ in R
3

in the Bopp–Infeld theory and by

−∆ϕ + a2∆2ϕ = ρ in R
3,

in the Bopp–Podolsky theory. In both cases, if ρ = 4πδx0 , their solutions can be written ex-

plicitly, and the corresponding energy is finite. In this paper, we focus on the Bopp–Podolsky

theory −∆ + a2∆2, the fundamental solution of the equation

−∆ϕ + a2∆2ϕ = 4πδx0

is L(x − x0), where

L(x) :=
1 − e−

|x|
a

|x| ,

which presents no singularities at x0, since

lim
x→x0

L (x − x0) =
1

a
.

Furthermore, its energy is

EBP(L) =
1

2

∫

R3
|∇L|2 dx +

a2

2

∫

R3
|∆L|2 dx < ∞.

We refer to [13] for more details.

In recent years, there has been increasing attention to problems like (1.1) on the existence

of positive solutions, ground state solutions, multiple solutions and normalized solutions, see

e.g. [1, 10, 16, 18–20, 27] and the references therein. According to [25], we know that there are
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two parameters K(x) and b(x) have an effect on the nonlocal term and nonlinear term. Hence,

we take advantage of the idea of [25]. And we know that a typical way to deal with (1.1) is to

use Nehari manifold and variational methods. In this paper, we mainly solve the Pohožaev

identity of (1.1), because the non-local terms and nonlinear terms are affected by K(x) and

b(x). It has not been studied before.

Then we are concerned with existence of ground states for following generalized nonlinear

system in R
3

{

−∆u + u + λK(x)ϕu = b(x)|u|p−2u in R
3,

−∆ϕ + a2∆2ϕ = 4πK(x)u2 in R
3.

(1.3)

It is known that system (1.3) can be transformed into a nonlinear Schrödinger equation

with a non-local term, for example, see [2,11,24]. Then we can use the same method as in [13]

to find the solution of the second equation of the system (1.3). For all u ∈ H1
(

R
3
)

, the unique

ϕK,u ∈ D (where D is a function space that will be introduced in Section 2) is given by

ϕK,u(x) =
∫

R3

1 − e−
|x−y|

a

|x − y| K(y)u2(y)dy,

such that −∆ϕ + a2∆2ϕ = 4πK(x)u2 and that, substituting it into the first equation of system

(1.3), gives

−∆u + u + λK(x)ϕK,uu = b(x)|u|p−2u in R
3. (1.4)

Equation (1.4) has solutions are the critical points of functional J (u) defined in H1(R3) as

J (u) =
1

2

∫

R3

(

|∇u|2 + u2
)

dx +
λ

4

∫

R3
K(x)ϕK,uu2dx − 1

p

∫

R3
b(x)|u|pdx. (1.5)

Furthermore, one can see that J is a C1 functional with the derivative given by

〈

J ′(u), φ
〉

=
∫

R3

(

∇u∇φ + uφ + λK(x)ϕK,uuφ − b(x)|u|p−2uφ
)

dx

for all φ ∈ H1
(

R
3
)

, where J ′ denotes the Fréchet derivative of J . We say that a pair (u, ϕ) ∈
H1
(

R
3
)

×D is a solution of system (1.3) if and only if u is a critical point of J . Furthermore,

for system(1.3), we find that the corresponding Pohožaev identity (see section 6 for more

details) is

0 =
1

2

∫

R3
|∇u|2dx +

3

2

∫

R3
u2dx +

5λ

4

∫

R3
K(x)ϕK,uu2dx

+
λ

2

∫

R3
⟨∇K(x), x⟩ϕK,uu2dx +

λ

4a

∫

R3
K(x)ψK,uu2dx

− 3

p

∫

R3
b(x)|u|pdx − 1

p

∫

R3
⟨∇b(x), x⟩|u|pdx,

where K(x), b(x) ∈ C1
(

R
3
)

and ψK,u := e−
|x|
a ∗ Ku2 =

∫

R3 e−
|x−y|

a K(y)u2(y)dy. It appears that

the Pohožaev identity of the non-autonomous case looks more complicated than that of the

autonomous case [24].

Therefore, we introduce a new set that can be seen as the filtration of the Nehari manifold.

That is

N (cτ) = {u ∈ N : J (u) < cτ},
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where N = {u ∈ H1(R3)\{0} : ⟨J ′(u), u⟩ = 0} (we can see in [22]) is the Nehari manifold

and cτ is the energy level of the functional J . Apparently, N (cτ) is a subset of the Nehari

manifold. We will show that N (cτ) can be divided into two parts

N (1)(cτ) = {u ∈ N (cτ) : ∥u∥ < C1} and N (2)(cτ) = {u ∈ N (cτ) : ∥u∥ > C2},

where each local minimizer of the functional J is a critical point of J in H1(R3). The ap-

proach we take is to minimize the energy functional J on the N (1)(cτ), where the J is

bounded below and the minimization sequence is bounded.

This paper gives the following assumptions about b(x) and K(x) :

(G1) b(x) is a positive continuous function on R
3 such that

lim
|x|→∞

b(x) = b∞ > 0 uniformly on R
3,

and

bmax := sup
x∈R3

b(x) <
b∞

A(p)
p−2

2

,

where

A(p) =







(

4−p
2

) 1
p−2

if 2 < p ≤ 3,

1
2 if 3 < p ≤ 4.

(G2) K(x) ∈ L∞(R3)\{0} is a non-negative function on R
3 such that

lim
|x|→∞

K(x) = K∞ ≥ 0 uniformly on R
3.

Remark 1.1. A direct calculation shows that for 2 < p ≤ 4, there holds

A(p) <
1√

e
< 1 and A(p)

(

2

4 − p

) 2
p−2

> 1.

Let w0 be tha unique positive solution of the following Schrödinger equation

−△u + u = b∞|u|p−2u in R
3. (1.6)

Available from [17]

w0(0) = max
x∈R3

w0(x),

∥w0∥2 =
∫

R3
b∞|w0|pdx =

(

S
p
p

b∞

)
2

p−2

, (1.7)

and

α0
∞ := inf

u∈M0
∞

J ∞
0 (u) =

p − 2

2p

(

S
p
p

b∞

)
2

p−2

,

where J ∞
0 is the energy functional of equation (1.6) in H1(R3) in the form

J ∞
0 (u) =

1

2

∫

R3
(|∇u|2 + u2)dx − 1

p

∫

R3
b∞|u|pdx, (1.8)

with

M0
∞ = {u ∈ H1(R3)\{0} | ⟨(J ∞

0 )′(u), u⟩ = 0}.
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Definition 1.2. (u, ϕ) is called a ground state solution of system (1.3) , if (u, ϕ) is a solution of

system (1.3) which has the least energy among all nontrivial solutions of system (1.3) .

Now, we give our main results as follows.

Theorem 1.3. Suppose that 2 < p ≤ 4, K(x) ≡ K∞ > 0 and b(x) ≡ b∞ > 0. Then for each

0 < λ < Λ, system (1.3) has a positive solution (w, ϕK∞,w) ∈ H1
(

R
3
)

×D, and when 2 < p < 4 it

satisfies

0 < ∥w∥ <

(

2S
p
p

b∞(4 − p)

) 1
p−2

,

and

α0
∞ < α−

∞ := J (w) <
A(p)(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2

.

In particular, when p = 4 we have

α−
∞ = J (w) > α0

∞,

and (w, ϕK∞,w) is a ground state solution of system (1.3).

Theorem 1.4. Suppose that 2 < p ≤ 4, K∞ > 0 and conditions (G1)–(G2) hold. Furthermore, we

assume that

(G3)
∫

R3 [b(x)− b∞]wpdx ≥ 0 and
∫

R3 K(x)ϕK,ww2dx ≤
∫

R3 K∞ϕK∞,ww2dx, but the equality signs

can not hold at the same time, where w is the positive solution as described in Theorem 1.3.

Then for each 0 < λ < Λ, system (1.3) has a positive solution (v, ϕK,v) ∈ H1
(

R
3
)

×D, and when

2 < p < 4 it satisfies

0 < ∥v∥ <

(

2S
p
p

bmax(4 − p)

) 1
p−2

,

and

p − 2

4p

(

S
p
p

bmax

)2/(p−2)

≤ J (v) < α−
∞ for 2 < p < 4.

In particular, when p = 4 we have

1

4

(

S
p
p

bmax

)2/(p−2)

≤ J (v) < α−
∞,

and (v, ϕK,v) is a ground state solution of system (1.3).

Theorem 1.5. Suppose that 1+
√

73
3 < p < 4 and conditions (G1)–(G2) hold. Furthermore, we assume

that

(G4) the functions b(x), K(x) ∈ C1
(

R
3
)

satisfy ⟨∇b(x), x⟩ ≤ 0 and

3p2 − 2p − 24

2(6 − p)
K(x) +

p(p − 2)

6 − p
⟨∇K(x), x⟩ ≥ 0.

If (v, ϕK,v) is the positive solution as described in Theorem 1.4, then (v, ϕK,v) is a ground state solution

of system (1.3).

The paper is organized as follows. First, we present some notations and the lemma for the

later proof in section 2. In Section 3, we give the proof Theorem 1.3. In Section 4, is devoted

to proof Theorem 1.4. Section 5 is dedicated to the proof of Theorem 1.5.
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2 Notations and preliminaries

We use the following notation:

• H1(R3) is the usual Sobolev space endowed with the standard scalar product and norm

⟨u, v⟩ =
∫

R3
(∇u∇v + uv)dx; ∥u∥2 =

∫

R3

(

|∇u|2 + u2
)

dx.

• H−1 denotes the dual space of H1(R3).

• Lp(Ω), 1 ≤ p ≤ +∞, Ω ⊆ R
3, demotes a Lebesgue space, the norm in Lp is denoted by

|u|p,Ω when Ω is a proper subset of R
3, by |·|p when Ω = R

3.

• C, C′, Ci are various positive constants.

• For any θ > 0 and for any ξ ∈ R
3, Bθ(ξ) denotes the ball of radius θ centered at ξ.

• Ŝ is the best constant for the embedding of H1(R3) in L
12
5

(

R
3
)

.

• S̄ is the best Sobolev constant for the embedding of D1,2
(

R
3
)

in L6
(

R
3
)

, that is

S̄ = inf
u∈D1,2(R3)\{0}

∥u∥D1,2

|u|6
.

• Sp is the best Sobolev constant for the embedding of H1(R3) is continuously embedded

into Lp(R3) (2 ≤ p ≤ 6), that is

Sp = inf
u∈H1(R3)\{0}

∥u∥
|u|p

where

D1,2
(

R
3
)

:=
{

u ∈ L6
(

R
3
)

: ∇u ∈ L2
(

R
3
)}

.

Then we let

Λ =











(p−2)K−2
∞ S̄2Ŝ4

2(4−p)

(

b∞(4−p)2

2pS
p
p

)2/(p−2)

if 2 < p < 4,

b∞K−2
∞ S̄2Ŝ4S−4

4 if p = 4,

and

Λ0 =

[

1 − A(p)

(

bmax

b∞

)2/(p−2)
](

b∞

S
p
p

)2/(p−2)
S̄2Ŝ4

K2
max

, (2.1)

where Kmax = supx∈R3 K(x). When p = 12/5 , we may take S12/5 = Ŝ. In particular, if

K(x) ≡ K∞ and b(x) ≡ b∞ , then equality (2.1) becomes

Λ0 = (1 − A(p))

(

b∞

S
p
p

)2/(p−2)
S̄2Ŝ4

K2
∞

.

• D(R3) is the completion of C∞
c (R3) with respect to the norm ∥ · ∥D induced by the scalar

product

⟨η, ζ⟩D =
∫

R3
(∇η∇ζ + a2∆η∆ζ)dx.
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Then D is a Hilbert space continuously embedded into D1,2(R3) and consequently in L6(R3).

It is interesting to point out the following properties.

Lemma 2.1 ([13]). The space D is continuously embedded in L∞(R3).

The next lemma gives a useful characterization of the space D.

Lemma 2.2 ([13]). The space C∞
c is dense in

A := {ϕ ∈ D1,2(R3) : ∆ϕ ∈ L2(R3)}

named by
√

⟨ϕ, ϕ⟩D and, therefore, D = A.

Now, by combining Lemma 3.4 in [13] with Proposition 2.1 in [27], the following lemma

can be obtained.

Lemma 2.3. For every u ∈ H1(R3) we have:

(i) for every y ∈ R
3, ϕK,u(·+y) = ϕK,u(·+ y);

(ii) ϕK,u ≥ 0 in R
3;

(iii) ϕK,u ∈ D;

(iv) ∥ϕK,u∥6 ≤ C∥u∥2;

(v) ϕK,u is the unique minimizer in D of the functional

E(ϕ) =
1

2
∥∇ϕ∥2

2 +
a2

2
∥∆ϕ∥2

2 −
∫

R3
ϕu2 dx, ϕ ∈ D.

Moreover,

(vi) if un ⇀ u in H1(R3), then ϕK(x),un
⇀ ϕK(x),u in D,

∫

R3
K(x)ϕK,un u2

ndx →
∫

R3
K(x)ϕK,uu2dx,

and
∫

R3
K(x)ϕK,un unζdx →

∫

R3
K(x)ϕK,uuζdx, ∀ζ ∈ H1(R3).

Next, we define the Nehari manifold

M :=
{

u ∈ H1(R3) \ {0} : ⟨J ′(u), u⟩ = 0
}

.

Then, u ∈ M if and only if ∥u∥2 + λ
∫

R3 K(x)ϕK,uu2dx −
∫

R3 b(x)|u|pdx = 0. It follows the

Sobolev inequality that

∥u∥2 ≤ ∥u∥2 + λ
∫

R3
K(x)ϕK,uu2dx

=
∫

R3
b(x)|u|pdx

≤ S
−p
p bmax∥u∥p,
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for all u ∈ M. Then we can get

∫

R3
b(x)|u|pdx ≥ ∥u∥2 ≥

(

S
p
p

bmax

) 2
p−2

for all u ∈ M. (2.2)

The Nehari manifold M is closely linked to the behavior of the function of the form hu : t →
J (tu) for t > 0. Such maps are known as fibering maps and were introduced by Drábek–

Pohožaev [14], and were further discussed by Brown–Zhang [9] and Brown–Wu [7, 8] etc. For

u ∈ H1
(

R
3
)

, we find

hu(t) =
t2

2
∥u∥2 +

λt4

4

∫

R3
K(x)ϕK,uu2dx − tp

p

∫

R3
b(x)|u|pdx,

h′u(t) = t∥u∥2 + λt3
∫

R3
K(x)ϕK,uu2dx − tp−1

∫

R3
b(x)|u|pdx,

h′′u(t) = ∥u∥2 + 3λt2
∫

R3
K(x)ϕK,uu2dx − (p − 1)tp−2

∫

R3
b(x)|u|pdx.

As a direct consequence, we have

th′u(t) = ∥tu∥2 + λ
∫

R3
K(x)ϕK,tu(tu)

2dx −
∫

R3
b(x)|tu|pdx,

and so, for u ∈ H1
(

R
3
)

\{0} and t > 0, h′u(t) = 0 holds if and only if tu ∈ M. In particular,

h′u(1) = 0 holds if and only if u ∈ M . It is convenient to divide M into three parts,

corresponding to local minima, local maxima, and inflection points. Following [26], we define

M+ =
{

u ∈ M : h′′u(1) > 0
}

,

M0 =
{

u ∈ M : h′′u(1) = 0
}

,

M− =
{

u ∈ M : h′′u(1) < 0
}

.

Lemma 2.4. Suppose that u0 is a local minimizer for J on M and u0 /∈ M0. Then J ′ (u0) = 0 in

H−1
(

R
3
)

.

The proof of Lemma 2.4 is essentially the same as in Brown–Zhang [9], so we omitted it

here.

For each u ∈ M , we find that

h′′u(1) = ∥u∥2 + 3λ
∫

R3
K(x)ϕK,uu2dx − (p − 1)

∫

R3
b(x)|u|pdx

= −(p − 2)∥u∥2 + (4 − p)λ
∫

R3
K(x)ϕK,uu2dx

= −2∥u∥2 + (4 − p)
∫

R3
b(x)|u|pdx. (2.3)

For each u ∈ M−and 2 < p < 4, using (2.2) and (2.3) gives

J (u) =
1

4
∥u∥2 − (4 − p)

4p

∫

R3
b(x)|u|pdx

>
p − 2

2p
∥u∥2

≥ p − 2

2p

(

S
p
p

bmax

)2/(p−2)

.
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Moreover, for each u ∈ M− and p = 4 , by virtue of (2.2) we have

J (u) =
1

4
∥u∥2 ≥ 1

4

(

S
p
p

bmax

)2/(p−2)

.

From this, the following lemma are obtained.

Lemma 2.5. Suppose that 2 < p ≤ 4. Then the energy functional J (u) is coercive and bounded below

on M−. Furthermore, for all u ∈ M−, when 2 < p < 4, there holds

J (u) >
p − 2

4p

(

S
p
p

bmax

)
2

p−2

,

if p = 4, there holds

J (u) ≥ 1

4

(

S
p
p

bmax

)
2

p−2

.

From the Lemma 2.3 and [24], the following properties can be obtained

Lemma 2.6. For each u ∈ H1(R)3, the following two inequalities are true.

(i) ϕK,u ≥ 0;

(ii)
∫

R3 K(x)ϕK,uu2dx ≤ S̄−2Ŝ−4K2
max∥u∥4.

Citing the lemma in [25], the same inequality can be obtained here, because

ϕK,u =
∫

R3

1 − e−
|x−y|

a

|x − y| K(y)u2(y)dy ≤
∫

R3

1

|x − y|K(y)u
2(y)dy.

For any u ∈ M and 2 < p < 4 with J (u) < A(p) (p−2)
2p

( 2S
p
p

b∞(4−p)

)
2

p−2 , we inference that

A(p)
(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2

> J (u)

=
1

2
∥u∥2 +

λ

4

∫

R3
K(x)ϕK,uu2dx − 1

p

∫

R3
b(x)|u|pdx

=
p − 2

2p
∥u∥2 − λ(4 − p)

4p

∫

R3
K(x)ϕK,uu2dx

≥ p − 2

2p
∥u∥2 − λ

(

4 − p

4p

)

S̄−2Ŝ−4K2
max∥u∥4. (2.4)

In addition, consider the quadratic equation as follows

1

4

(

1 − A(p)

(

bmax

b∞

) 2
p−2

)(

b∞(4 − p)

pS
p
p

) 2
p−2

x2 − x + A(p)

(

2S
p
p

b∞(4 − p)

) 2
p−2

= 0.
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It is easy to get one of the solutions expressed as

x1 =

2

(

1 +

√

1 − A(p)
(

1 − A(p)
(

bmax
b∞

)
2

p−2

)

(

2
p

)
2

p−2

)

(

1 − A(p)
(

bmax
b∞

)

)

(

2
p

)
2

p−2

(

2S
p
p

b∞(4 − p)

) 2
p−2

> 2

(

2S
p
p

b∞(4 − p)

) 2
p−2

, (2.5)

then we have used condition (G1), Remark 1.1 and the fact of
(

2
p

)
2

p−2
< 1 in the last inequality.

From (2.4) and (2.5), if 2 < p < 4 and 0 < λ <
p−2

2(4−p)

( 4−p
p

)
2

p−2 Λ0, then there exist two

positive number D(1) and D(2) satisfying

√

A(p)

(

2S
p
p

b∞(4 − p)

) 1
p−2

< D(1)
<

(

2S
p
p

bmax(4 − p)

) 1
p−2

<

√
2

(

2S
p
p

b∞(4 − p)

) 1
p−2

< D(2)

such that

∥u∥ < D(1) or ∥u∥ > D(2).

Obviously, it can be seen that when p → 4−, then D(1) → ∞.

So, we have

M




A(p)(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2





=







u ∈ M : J (u) <
A(p)(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2







= M(1)
⋃

M(2), (2.6)

where

M(1) :=







u ∈ M




A(p)(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2



 : ∥u∥ < D(1)







,

and

M(2) :=







u ∈ M




A(p)(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2



 : ∥u∥ > D(2)







.

Because of 2 < p < 4 and 0 < λ <
p−2

2(4−p)

( 4−p
p

)
2

p−2 Λ0, we have

∥u∥ < D(1)
<

(

2S
p
p

bmax(4 − p)

) 1
p−2

for all u ∈ M(1), (2.7)

and

∥u∥ > D(2)
>

√
2

(

2S
p
p

b∞(4 − p)

) 1
p−2

for all u ∈ M(2). (2.8)
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From the Sobolev inequality, (2.3) and (2.7)

h
′′
u(1) ≤ −2∥u∥2 + (4 − p)S

−p
p bmax∥u∥p

< 0 for all u ∈ M(1).

Using (2.8) we deduce that

1

4
∥u∥2 − (4 − p)

4p

∫

R3
b(x)|u|pdx

= J (u) <
A(p)(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2

<
p − 2

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2

<
p − 2

4p
∥u∥2 for all u ∈ M(2),

this implies

2∥u∥2
< (4 − p)

∫

R3
b(x)|u|pdx for all u ∈ M(2). (2.9)

Combining (2.3) and (2.9) results in

h
′′
u(1) = −2∥u∥2 + (4 − p)

∫

R3
b(x)|u|pdx > 0 for all u ∈ M(1).

Therefore, we get the following result.

Lemma 2.7.

(i) If 2 < p < 4 and 0 < λ <
p−2

2(4−p)
( 4−p

p )
2

p−2 Λ0, then M(1) ⊂ M− and M(2) ⊂ M+ are C1

sub-manifolds. Furthermore, each local minimizer of the functional J in the sub-manifolds M(1)

and M(2) is a critical point of J in H1(R3).

(ii) If p = 4 and λ > 0, then M(1) = M− = M is a C1 manifold and so the Nehari manifold

M(1) is a natural constraint for the functional J .

There we define

Qb(u) =

(

∥u∥2

∫

R3 b(x)|u|pdx

) 1
p−2

for u ∈ H1(R3)\{0}.

Lemma 2.8. Suppose that 2 < p < 4. then for each λ > 0 and u ∈ H1(R3)\{0} satisfying

∫

R3
b(x)|u|pdx >

p

4 − p

(

2λ(4 − p)K2
max

(p − 2)S̄2Ŝ4

)

p−2
2

∥u∥p,

there exists a constant q̄(1) >
( p

4−p

)
1

p−2 Qb(u) such that

inf
t≥0

J (tu) = inf

( p
4−p )

1
p−2 Qb(u)<t<q̄(1)

J (tu) < 0. (2.10)
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Proof. For any u ∈ H1(R3)\{0} and t > 0, it has

J (tu) =
t2

2
∥u∥2 +

λt4

4

∫

R3
K(x)ϕK,uu2dx − tp

p

∫

R3
b(x)|u|pdx

= t4

[

b(t) +
λ

4

∫

R3
K(x)ϕK,uu2dx

]

= hu(t),

where b(t) = t−2

2 ∥u∥2 − tp−4

p

∫

R3 b(x)|u|pdx.

Apparently, J (tu) = 0 if and only if b(t) + λ
4

∫

R3 K(x)ϕK,uu2dx = 0. It is not difficult

to observe that b(t̂) = 0, limt→0+ b(t) = ∞ and limt→∞ b(t) = 0, where t̂ =
( p

2

)
1

p−2 Qb(u).

Considering the derivative of b(t), we get

b′(t) = −t−3∥u∥2 +
(4 − p)

p
tp−5

∫

R3
b(x)|u|pdx

= t−3

[

(4 − p)tp−2

p

∫

R3
b(x)|u|pdx − ∥u∥2

]

,

it means that b(t) is decreasing when 0 < t <

( p
4−p

)
1

p−2 Qb(u) and is increasing when t >

( p
4−p

)
1

p−2 Qb(u), and so

inf
t>0

b(t) = b

[

(

p

4 − p

) 1
p−2

Qb(u)

]

= − p − 2

2(4 − p)

(

p∥u∥2

(4 − p)
∫

R3 b(x)|u|pdx

) −2
p−2

∥u∥2.

From Lemma 2.6 (ii) and the Sobolev inequality that for each u ∈ H1(R3)\{0} satisfying

∫

R3
b(x)|u|pdx >

p

4 − p

(

2λ(4 − p)K2
max

(p − 2)S̄2Ŝ4

)

p−2
2

∥u∥p,

we have

inf
t>0

b(t) = − p − 2

2(4 − p)

(

p∥u∥2

(4 − p)
∫

R3 b(x)|u|pdx

) −2
p−2

∥u∥2

< −λK2
maxS̄−2Ŝ−4∥u∥2

< −λ

4

∫

R3
K(x)ϕK,uu2dx.

Then, there exist q̄(1) and q̄(2) satisfying

0 < q̄(2) <

(

p

4 − p

) 1
p−2

Qb(u) < q̄(1) (2.11)

such that

b(q̄(j)) +
λ

4

∫

R3
K(x)ϕK,uu2dx = 0 for j = 1, 2.

That is J (q̄(j)u) = 0 for j = 1, 2.
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So, for each λ > 0 and u ∈ H1(R3)\{0} satisfying

∫

R3
b(x)|u|pdx >

p

4 − p

(

2λ(4 − p)K2
max

(p − 2)S̄2Ŝ4

)

p−2
2

∥u∥p,

we have

J
[

(

p

4 − p

) 1
p−2

Qb(u)

]

=

[

(

p

4 − p

) 1
p−2

Qb(u)

] [

b

(

(

p

4 − p

) 1
p−2

Qb(u)

)

+
λ

4

∫

R3
K(x)ϕK,uu2dx

]

< 0,

and so inft≥0 J (tu) < 0.

Then, we know that h′u(t) = 4t3[b(t)+ λ
4

∫

R3 K(x)ϕK,uu2dx] + t4b′(t), which leads to h′u(t) <

0 for all t ∈ (q̄(2), ( p
4−p )

1
p−2 Qb(u)] and h′u(q̄

(1)) > 0. Finally, we get the inequality (2.10).

Lemma 2.9. For each λ > 0 and u ∈ H1(R3)\{0} satisfying

∫

R3
b(x)|u|pdx >

p

4 − p

(

2λ(4 − p)K2
max

(p − 2)S̄2Ŝ4

)

p−2
2

∥u∥p if 2 < p < 4,

or
∫

R3
b(x)|u|4dx > λK2

maxS̄−2Ŝ−4∥u∥4 if p = 4,

the following two statements are true.

(i) if 2 < p < 4, then there exist two constants t+ and t− which satisfy

Qb(u) < t− <

√

A(p)

(

2

4 − p

) 1
p−2

Qb(u) <

(

2

4 − p

) 1
p−2

Qb(u) < t+ (2.12)

such that

t±u ∈ M±, J (t−u) = sup
0≤t≤t+

J (tu),

and

J (t+u) = inf
t≥t−

J (tu) = inf
t≥0

J (tu) < 0.

(ii) if p = 4, then there is a unique constant

t̄ =

(

∥u∥2

∫

R3 b(x)u4dx − λ
∫

R3 K(x)ϕK,uu2dx

) 1
2

> Qb(u)

such that

t̄u ∈ M(1) = M− = M,

and

J (t̄u) = sup
t≥0

J (tu) = sup
t≥Qb(u)

J (tu).
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Proof. (i) Define f (t) = t−2∥u∥2 − tp−4
∫

R3 b(x)|u|pdx for t > 0. Obviously, tu ∈ M if

and only if f (t) + λ
∫

R3 K(x)ϕK,uu2dx = 0. A straightforward evaluation gives f (Qb(u)) =

0, limt→0+ f (t) = ∞ and limt→∞ f (t) = 0.

Since 2 < p < 4 and f ′(t) = t−3(−2∥u∥2 + (4 − p)tp−2
∫

R3 b(x)|u|pdx), we know that f (t)

is decreasing when 0 < t <
(

2
4−p

)
1

p−2 Qb(u) and is increasing when t >
(

2
4−p

)
1

p−2 Qb(u). This

gives

inf
t>0

f (t) = f

[

(

2

4 − p

) 1
p−2

Qb(u)

]

. (2.13)

For each λ > 0 and u ∈ H1(R3)\{0} satisfying

∫

R3
b(x)|u|pdx >

p

4 − p

(

2λ(4 − p)K2
max

(p − 2)S̄2Ŝ4

)

p−2
2

∥u∥p if 2 < p < 4,

from Lemma 2.6 (ii) and Sobolev’s inequality we get

f

(

(

2

4 − p

) 1
p−2

Qb(u)

)

= −
(

p − 2

4 − p

)

(

2∥u∥2

(4 − p)
∫

R3 b(x)|u|pdx

) −2
p−2

∥u∥2

< −2
( p

2

)
2

p−2
λK2

maxS̄−2Ŝ−4∥u∥4

< −λ
∫

R3
K(x)ϕK,uu2dx,

where we also used the fact that ( 2
p )

2
p−2 > 1. However, for each 2 < p < 4, by Remark 1.1 we

have

Qb(u) <
√

A(p)

(

2

4 − p

) 1
p−2

Qb(u) <

(

2

4 − p

) 1
p−2

Qb(u), (2.14)

and directly calculated

(

2
4−p

)

A(p)
p−2

2 − 1

A(p)
(

2
4−p

) 2
p−2

>
p − 2

2(4 − p)

(

4 − p

p

) 2
p−2

. (2.15)

Then, from (2.13)–(2.15) that

f

(

√

A(p)

(

2

4 − p

) 1
p−2

Qb(u)

)

= −

(

2
4−p

)

A(p)
p−2

2 − 1

A(p)
(

2
4−p

) 2
p−2

(
∫

R3 b(x)|u|pdx

∥u∥2

) 2
p−2

∥u∥2

< −λK2
maxS̄−2Ŝ−4∥u∥4

≤ −λ
∫

R3
K(x)ϕK,uu2dx.

Therefore, there exist two constants t+ and t− > 0 which satisfy

Qb(u) < t− <

√

A(p)

(

2

4 − p

) 1
p−2

Qb(u) <

(

2

4 − p

) 1
p−2

Qb(u) < t+ (2.16)

such that f (t±) + λ
∫

R3 K(x)ϕK,uu2dx = 0. That is t±u ∈ M.
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By calculating the second derivative, we find that

h
′′
t−u(1) = −2∥t−u∥2 + (4 − p)

∫

R3
b(x)|t−u|pdx

= (t−)5 f ′(t−) < 0,

and

h
′′
t+u(1) = −2∥t+u∥2 + (4 − p)

∫

R3
b(x)|t+u|pdx

= (t+)5 f ′(t+) > 0.

This means that t±u ∈ M± and h′u(t) = t3( f (t)+λ
∫

R3 K(x)ϕK,uu2dx). It is known that h′u(t) >
0 holds for all t ∈ (0, t−)∪ (t+, ∞) and h′u(t) < 0 holds for all t ∈ (t−, t+). It leads to J (t−u) =

sup0≤t≤t+ J (tu) and J (t+u) = inft≥t− J (tu), and so J (t+u) < J (t−u). From Lemma 2.8 that

J (t+u) = inft≥0 J (tu) < 0.

(ii) Let

f̄ (t) = t−2∥u∥2 for t > 0. (2.17)

Apparently, tu ∈ M(1) = M− = M if and only if f̄ (t)−
∫

R3 b(x)u4dx + λ
∫

R3 K(x)ϕK,uu2dx =

0. By (2.17), we know that f̄ > 0(t > 0) is decreasing, and limt→0+ f̄ (t) = ∞ and limt→∞ f̄ (t) =

0.

For each λ > 0 and u ∈ H1(R3)\{0} satisfying
∫

R3 b(x)|u|4dx > λK2
maxS̄−2Ŝ−4∥u∥4,

by using Lemma 2.6 (ii) and (2.15), we obtain
∫

R3 b(x)|u|4dx > λK2
maxS̄−2Ŝ−4∥u∥4 ≥

λ
∫

R3 K(x)ϕK,uu2dx. Then we can get that equation f̄ (t)−
∫

R3 b(x)u4dx+λ
∫

R3 K(x)ϕK,uu2dx =

0 has a unique positive solution t̄ =
( ∥u∥2
∫

R3 b(x)u4dx−λ
∫

R3 K(x)ϕK,uu2dx

)
1
2
> Qb(u). This means

that t̄u ∈ M(1) = M− = M. Similar to the discussion of Case (i), we get that J (t̄u) =

supt≥0 J (tu) = supt≥Qb(u)
J (tu). This completes the proof.

3 Proofs of main results

3.1 Proof of Theorem 1.3

In this section, we first consider that K(x) ≡ K∞ > 0 and b(x) ≡ b∞ > 0. The existence of the

positive ground state solutions of system (1.3) at infinity, namely,

{

−∆u + u + λK∞ϕu = b∞|u|p−2u in R
3,

−∆ϕ + a2∆2ϕ = 4πK∞u2 in R
3.

(3.1)

Then we consider the following equation at infinity

−∆u + u + λK∞ϕK∞,uu = b∞|u|p−2u. (3.2)

We define the associated energy functional in H1(R3) by

J ∞(u) =
1

2

∫

R3

(

|∇u|2 + u2
)

dx +
λ

4

∫

R3
K∞ϕK∞,uu2dx − 1

p

∫

R3
b∞|u|pdx,

we know that solutions of equation (3.2) are critical points of the functional J ∞(u).

Define

M∞ := {u ∈ H1(R3)\{0} : ⟨(J ∞)′(u), u⟩ = 0},
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where (J ∞)′ denotes the Fréchet derivative of J ∞. Then, u ∈ M∞ if and only if

∥u∥2 + λ
∫

R3
K∞ϕK∞,uu2dx −

∫

R3
b∞|u|pdx = 0.

Notice that M∞ = M with K(x) ≡ K∞ and b(x) ≡ b∞. We denote by M(j)
∞ = M(j) with

K(x) ≡ K∞ and b(x) = b∞ for j = 1, 2.

Since w0 is the unique positive solution of equation (1.6), for 2 < p < 4 and 0 < λ <

p−2
2(4−p)

( 4−p
p

)
2

p−2 Λ0, from (1.7), we get

∫

R3
b∞|w0|pdx = b∞S

−p
p ∥w0∥p

>
p

4 − p

(

2λ(4 − p)K2
∞

S̄2Ŝ4(p − 2)

)

p−2
2

∥w0∥p.

From Lemma 2.9 (i) there exist two constants t−∞ and t+∞ satisfy

1 < t−∞ <

√

A(p)

(

2

4 − p

) 1
p−2

< t+∞,

such that t±∞w0 ∈ M±
∞, where M±

∞ = M± with K(x) ≡ K∞ and b(x) ≡ b∞. However, we obtain

J ∞(t−∞w0) = sup0≤t≤t+∞
J ∞(tw0) and J ∞(t+∞w0) = inft≥t−∞ J ∞(tw0) = inft≥0 J ∞(tw0) < 0.

Then we can get

J ∞(t−∞w0) =
1

2
∥t−∞w0∥2 +

λ

4

∫

R3
K∞ϕK∞,t−∞w0

(t−∞w0)
2dx − 1

p

∫

R3
b∞|t−∞w0|pdx

=
(t−∞)

2

4

[

1 − 4 − p

p
(t−∞)

p−2

]

∥w0∥2

< A(p)

(

2

4 − p

) 2
p−2 p − 2

2p
∥w0∥2

= A(p)
p − 2

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2

. (3.3)

This indicates that t−∞w0 ∈ M(1)
∞ . Namely, M(1)

∞ is nonempty.

For p = 4 and 0 < λ < b∞K−2
∞ S̄2Ŝ4S−4

4 , there holds

∫

R3
b∞|w0|4dx = b∞S−4

4 ∥w0∥4
> λK2

∞S̄−2Ŝ−4∥w0∥4.

Then, from Lemma 2.9 (ii), there exists a unique constant

t̄∞ =
∥w0∥2

∫

R3 b∞|w0|4dx − λ
∫

R3 K∞ϕK∞,w0
w2

0dx
> 1

such that t̄∞w0 ∈ M(1)
∞ = M−

∞ = M∞ and J ∞(t̄∞w0) = supt≥0 J ∞(tw0) = supt>1 J ∞(tw0).

Then we define

α−
∞ = inf

u∈M(1)
∞

J ∞(u) = inf
u∈M−

∞

J ∞(u) for 2 < p < 4,
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α+
∞ = inf

u∈M(2)
∞

J ∞(u) = inf
u∈M+

∞

J ∞(u) for 2 < p < 4,

and

α−
∞ = inf

u∈M(1)
∞

J ∞(u) = inf
u∈M∞

J ∞(u) for p = 4.

It follows from Lemma 2.5 and (3.3), we have

p − 2

4p

(

S
p
p

b∞

) 2
p−2

≤ α−
∞ <

A(p)(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2

for 2 < p < 4, (3.4)

and α+
∞ = −∞. For p = 4, it follows from Lemma 2.5 that α−

∞ ≥ 1
4 (

S
p
p

b∞
)

2
p−2 .

Then we are ready to prove Theorem 1.3.

Let un ∈ M(1)
∞ be a sequence, for 2 < p < 4, we have

J ∞(un) = α−
∞ + o(1) and (J ∞)′(un) = o(1) in H−1(R3). (3.5)

According to Theorem 7.2 in [25], we obtain that for

0 < λ <
(p − 2)S̄2Ŝ4

2(4 − p)K2
∞

(

b∞(4 − p)2

2pS
p
p

) 2
p−2

if 2 < p < 4,

or λ > 0 if p = 4, the compactness of the sequence {un} holds. Then there exist a positive

constant ξ = ξ(θ)(θ > 0) and a sequence {yn} ⊂ R
3 such that

∫

[B(yn;ξ)]c
(|∇un(x)|2 + u2

n(x))dx < θ uniformly for n ≥ 1. (3.6)

Now, we define a new sequence of functions

vn := un(·+ yn) ∈ H1(R3).

We find that {vn} ⊂ M(1)
∞ , and

ϕK∞,vn = ϕK∞,un(·+ yn) and J ∞(vn) = α−
∞ + o(1).

By inequality (3.6), there exists a positive constant ξ = ξ(θ)(θ > 0) such that

∫

[B(0;ξ)]c
(|∇vn(x)|2 + v2

n(x))dx < θ uniformly for n ≥ 1. (3.7)

For {vn} is bounded in H1(R3), we can assume that there exist a subsequence {vn} and

w ∈ H1(R3) such that

vn ⇀ w in H1(R3), (3.8)

vn → w in Lr
loc, ∀ 2 ≤ r < 6, (3.9)

vn → w a.e. in R
3.
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For any θ > 0 and sufficiently large n(≥ 1), by Fatou’s Lemma and (3.7)–(3.9), there exists a

constant ξ > 0 such that

∫

R3
|vn − w|pdx ≤

∫

B(0;ξ)
|vn − w|pdx +

∫

[B(0;ξ)]c
|vn − w|pdx

≤ θ + S
−p
p

[

∫

[B(0;ξ)]c
(|∇vn|2 + v2

n)dx +
∫

[B(0;ξ)]c
(|∇w|2 + w2)dx

]

p
2

≤ θ + S
−p
p (2θ)

p
2 ,

then we obtain

vn → w in Lr(R3), ∀r ∈ (2, 6). (3.10)

We know that ϕ : L
12
5 (R3) → D is a continuous function. It follows from (3.10) that

ϕK∞,vn → ϕK∞,w in D,

and
∫

R3
ϕK∞,vn v2

ndx →
∫

R3
ϕK∞,ww2dx. (3.11)

Since {vn} ⊂ M(1)
∞ , using (2.2) and (3.10) gives

∫

R3
b∞|w|pdx ≥

(

S
p
p

b∞

) 2
p−2

> 0.

This implies that w ̸= 0 and

∫

R3
b∞|w|pdx − λ

∫

R3
K∞ϕK∞,ww2dx ≥ ∥w∥2

> 0.

Next, we proof that

vn → w in H1(R3).

For this, we assume the opposite. Then we have

∥w∥ < lim inf
n→∞

∥vn∥. (3.12)

An argument similar to Lemma 2.9, there exists a unique t− > 0 such that

t−w ∈ M−
∞ and (h∞

w )
′(t−) = 0. (3.13)

For vn ∈ M(1)
∞ , from (3.12) we get

(h∞
w )

′(1) < 0. (3.14)

Using (3.13), (3.14) and the contour of h∞
w (t) results in t− < 1. By (3.10)–(3.12), we know

(h∞
vn
)′(t−) > 0 for sufficiently large n. Obviously, there holds

(h∞
vn
)′(1) = 0 (3.15)

due to vn ∈ M(1)
∞ . Similar to the proof of Lemma 2.9, for 2 < p < 4, we have

(h∞
vn
)′(t) = t3( f ∞(t) + λ

∫

R3
K∞ϕK∞,vn v2

ndx,
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where f ∞(t) := t−2∥vn∥2 − tp−4
∫

R3 b∞|vn|pdx is decreasing for 0< t<
(

2
4−p

)
1

p−2
( ∥vn∥2
∫

R3 b∞|vn|pdx

)
1

p−2 ,

and
(

2
4−p

)
1

p−2
( ∥vn∥2
∫

R3 b∞|vn|pdx

)
1

p−2
> 1 by using (2.12) and (3.15). This implies that (h∞

vn
)′(t) >

0 (0 < t < 1), which indicates that h∞
vn

is increasing on (t−, 1) for sufficiently large n. When

p = 4, we have

(h∞
vn
)′(t) = t3( f̄ ∞(t)−

∫

R3
b∞|vn|4dx + λ

∫

R3
K∞ϕK∞,vn v2

ndx) for t > 0,

where f̄ ∞(t) := t−2∥vn∥2 is decreasing for t > 0. This means that (h∞
vn
)′(t) > 0 (0 < t < 1),

and h∞
vn

is increasing on (t−, 1) for sufficiently large n. So, for,2 < p ≤ 4, h∞
vn
(t−) < h∞

vn
(1)

holds for sufficiently large n. This means that J ∞(t−vn) < J ∞(vn) for sufficiently large n.

Using (3.10)–(3.12) we again obtain

J ∞(t−w) < lim inf
n→∞

J ∞(t−vn) ≤ lim inf
n→∞

J ∞(vn) = α−
∞,

which is a contradiction. However, we get that vn → w in H1(R3) and J ∞(vn) → J ∞(w) =

α−
∞ as n → ∞.

In addition, we find that for 2 < p < 4,

(p − 2)S̄2Ŝ4

2(4 − p)K2
∞

(

b∞(4 − p)2

2pS
p
p

) 2
p−2

<
p − 2

2(4 − p)

(

4 − p

p

) 2
p−2

Λ0.

So, w is a minimizer for J ∞ on M−
∞ for each 0 < λ < Λ. For 2 < p < 4, it follows from (3.2)

that

J ∞(w) = α−
∞ ≤ J ∞(t−∞w0) <

A(p)(p − 2)

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2

,

which indicates that w ∈ M(1)
∞ . Since |w| ∈ M−

∞ and J ∞(|w|) = J ∞(w) = α−
∞, we can see

that w is a positive solution of equation (3.2) according to Lemma 2.4. It also implies that

(w, ϕK∞,w) is a positive solution of system (3.1).

Note that for 2 < p < 4, there holds

(4 − p)
∫

R3
b∞|w|pdx < 2∥w∥2 and tb∞

(w)w ∈ M0
∞,

where
(

4 − p

2

) 1
p−2

< tb∞
(w) :=

(

|w|2
∫

R3 b∞|w|pdx

) 1
p−2

< 1. (3.16)

According to Lemma 2.9, for 2 < p < 4, we have J ∞(w) = sup0≤t≤t+ J ∞(tw), where t+ >

(

2
4−p

)
1

p−2 tb∞
(w) > 1 by (3.16). Using this, together with (3.37), we get J ∞(w) > J ∞(tb∞

(w)w).

Similarly, for p = 4, we can also get the above inequality. So, we have

α−
∞ = J ∞(w) > J ∞(tb∞

(w)w)

≥ α∞
0 +

λ[tb∞
(w)]4

4

∫

R3
K∞ϕK∞,ww2dx

> α0
∞.

Consequently, we complete the proof.
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3.2 Proof of Theorem 1.4

Definition 3.1.

(1) For β ∈ R, a sequence {un} is a (PS)β-sequence in H1(R3) for J if J (un) = β + o(1)

and J (un)′(un) = o(1) strongly in H−1(R3) as n → ∞.

(2) If every (PS)β-sequence in H1(R3) for J contains a convergent subsequence, we can say

that J satisfies the (PS)β-sequence in H1(R3).

Lemma 3.2. Let {un} be a bounded (PS)β-sequence in H1(R3) for J . There exists a subsequence

{un}, a number l ∈ N, a sequence {x
(k)
n } ⊂ R

3 for 1 ≤ k ≤ l, a function v0 ∈ H1(R3), and

0 ̸= wi ∈ H1(R3) when 1 ≤ i ≤ l such that

(i) |xk
n| → ∞ and |xk

n − xh
n| → ∞, as n → ∞, 1 ≤ k ̸= h ≤ l;

(ii) −∆v0 + v0 + λK(x)ϕK,v0
v0 = b(x)|v0|p−2v0 in R

3;

(iii) −∆wi + wi + λK∞ϕK∞,wi wi = b(x)|wi|p−2wi in R
3;

(iv) un = v0 + ∑
l
i=1(· − xi

n) + o(1) strongly in H1(R3);

(v) J (un) = J (v0) + ∑
l
i=1 J ∞(wi) + o(1).

The proof is similar to the argument of [13] Lemma 4.5, so we omit it here.

Corollary 3.3. Suppose that {un} ⊂ M− is a (PS)β-sequence in H1(R3) for J with 0 < β < α−
∞.

Then there exist a subsequence {un} and a nonzero u0 in H1(R3) such that un → u0 strongly in

H1(R3) and J (u0) = β. However, (u0, ϕu0) is a nonzero solution of equation (1.4).

By Theorem 1.3, we know that equation (3.2) have a positive solution w(x) ∈ M−
∞ (up to

translation) such that for 2 < p ≤ 4, there holds

J ∞(w) = α−
∞ and

4 − p

2

∫

R3
b∞|w|pdx < ∥w∥2.

Define Qb(w) as

(

(4 − p)b∞

2bmax

)
1

p−2

< Qb(w) :=

(

∥w∥2

∫

R3 b(x)|w|pdx

) 1
p−2

.

Lemma 3.4. Suppose that 0 < λ < Λ. Then the following two statements are true.

(i) If 2 < p < 4, then there exists t∞
>

(

2
4−p

)
1

p−2 tb∞
(w) > 1 such that

J ∞(w) = sup
0≤t≤t∞

J ∞(tw) = α−
∞, (3.17)

where tb∞
(w) is defined as (3.16).

(ii) If p = 4, then it has

J ∞(w) = sup
t≥0

J ∞(tw) = sup
t≥1

J ∞(tw) = α−
∞. (3.18)
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Proof. (i) Let

g∞(t) = t−2∥w∥2 − tp−4
∫

R3
b∞|w|pdx for t > 0. (3.19)

Obviously, it satisfies

g∞(1) + λ
∫

R3
K∞ϕK∞,ww2dx = 0 for all 0 < λ < Λ. (3.20)

Then we get g∞(tb∞
(w)) = 0, limt→0+ g∞(t) = 0 and limt→∞ g∞(t) = 0.

For 2 < p < 4 and the equality (g∞)′(t) = t−3(−2∥w∥2 + (4 − p)tp−2
∫

R3 b∞|w|pdx),

we find that g∞ is decreasing when 0 < t <

(

2
4−p

)
1

p−2 tb∞
(w) and is increasing when t >

(

2
4−p

)
1

p−2 tb∞
(w). This means that

inf
t>0

g∞(t) = g∞

(

(

2

4 − p

) 1
p−2

tb∞
(w)

)

. (3.21)

Moreover, from (3.16) we know that

(

2

4 − p

) 1
p−2

tb∞
(w) > 1. (3.22)

So from (3.20)–(3.22) that

inf
t>0

g∞(t) < g∞(1) = −λ
∫

R3
K∞ϕK∞,ww2dx. (3.23)

This means that there exists t∞
>

(

2
4−p

)
1

p−2 tb∞
(w)>1 such that g∞(t∞)+λ

∫

R3 K∞ϕK∞,ww2dx=0.

Using a similar argument as the proof of Lemma (2.9) (i), we get (3.17).

(ii) Let ḡ∞(t) = t−2∥w∥2 for t > 0. Then we get ḡ∞(1)−
∫

R3 b∞|w|4dx+λ
∫

R3 K∞ϕK∞,ww2dx = 0

for all 0 < λ < Λ. we can observe that ḡ∞(t) is decreasing when t > 0 and limt→0+ ḡ∞(t) = ∞

and limt→∞ ḡ∞(t) = 0. Since w is the positive solution of equation (3.2), we have
∫

R3 b∞|w|4dx−
λ
∫

R3 K∞ϕK∞,ww2dx = ∥w∥2
> 0, which shows that t = 1 is a unique positive solution of the

equation ḡ∞(t)−
∫

R3 b∞|w|4dx + λ
∫

R3 K∞ϕK∞,ww2dx = 0. By the proof of Lemma 2.9 (ii) , we

get (3.18).

Lemma 3.5. Suppose that 0 < λ < Λ and conditions (G1)–(G3) hold. Then the following two

statements are true.

(i) If 2 < p < 4, then there exist two constants t(1) and t(2) satisfying

Qb(w) < t(1) <

(

2

4 − p

) 1
p−2

Qb(w) < t(2),

such that t(i)w ∈ M(i)(i = 1, 2), J (t(1)w) = sup0≤t≤t(2) J (tw) < α−
∞, and J (t(2)w) =

inft≥t(1) J (tw).

(ii) If p = 4, then there exists a unique constant

t̃ =

(

∥w∥2

∫

R3 b(x)|w|4dx − λ
∫

R3 K(x)ϕK(x),ww2dx

) 1
2

> Qb(w)

such that t̃w ∈ M(1) = M− = M and J (t̃w) = supt≥0 J (tw) = supt≥Qb(w) J (tw) < α−
∞.
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Proof. (i) Let g(t) = t−2∥w∥2 − tp−4
∫

R3 b(x)|w|pdx for t > 0. Clearly, tw ∈ M if and only if

g(t) + λ
∫

R3
K(x)ϕK(x),ww2dx = 0. (3.24)

From (3.24) gives g(Qb(w)) = 0, limt→0+ g(t) = ∞ and limt→∞ g(t) = 0.

In view of 2 < p < 4 and g′(t) = t−3(−2∥w∥2 + (4 − p)tp−2
∫

R3 b(x)|w|pdx), we see that

g(t) is decreasing on 0 < t <
(

2
4−p

)
1

p−2 Qb(w) and is increasing on t >
(

2
4−p

)
1

p−2 Qb(w). Then

from condition (G3) that Qb(w) ≤ Qb∞
(w) < 1 and g(t) ≤ g∞(t), where g∞(t) is given in

(3.19). Using condition (G3) and (3.23) again, we deduce that

inf
t>0

g(t) = g

(

(

2

4 − p

) 1
p−2

Qb(w)

)

≤ − p − 2

4 − p

(

4 − p

2

) 2
p−2

∥w∥2

(

∥w∥2

∫

R3 b(x)|w|pdx

) −2
p−2

= inf
t>0

g∞(t) < −λ
∫

R3
K∞ϕK∞,ww2dx

≤ −λ
∫

R3
K(x)ϕK(x),ww2dx.

Then, it can be concluded that there are two constants t(1) and t(2) satisfying Qb(w) < t(1) <
(

2
4−p

)
1

p−2 Qb(w) < t(2) such that g(t(i)) + λ
∫

R3 K(x)ϕK,ww2dx = 0 for i = 1, 2. That is, t(i)w ∈
M (i = 1, 2).

Direct calculation of the second derivative gives

h
′′
t(1)w

(1) = −2∥t(1)w∥2 + (4 − p)
∫

R3
b(x)|t(1)w|pdx = (t(1))5g′(t(1)) < 0,

and

h
′′
t(2)w

(1) = −2∥t(2)w∥2 + (4 − p)
∫

R3
b(x)|t(2)w|pdx = (t(2))5g′(t(2)) > 0.

Then we get t(1)w ∈ M− and t(2)w ∈ M.

Note that

t(1) <

(

2

4 − p

) 1
p−2

Qb(w) ≤
(

2

4 − p

) 1
p−2

tb∞
(w) < min

{

(

2

4 − p

) 1
p−2

, t∞

}

,

where t∞ is the same as described in Lemma 3.4. For each 0 < λ < Λ and from Lemma 3.4

and condition (G3), there holds

J (t(1)w) = J ∞(t(1)w)− [t(1)]p

p

∫

R3
[b(x)− b∞]|w|pdx

+
λ[t(1)]4

4

(

∫

R3
K(x)ϕK,ww2dx −

∫

R3
K∞ϕK∞,ww2dx

)

≤ sup
0≤t≤t∞

J ∞(tw)− [t(1)]p

p

∫

R3
[b(x)− b∞]|w|pdx

+
λ[t(1)]4

4

(

∫

R3
K(x)ϕK,ww2dx −

∫

R3
K∞ϕK∞,ww2dx

)

< α−
∞ < A(p)

p − 2

2p

(

2S
p
p

b∞(4 − p)

) 2
p−2

.
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In other words, t(1)w ∈ M(1) and J (t(1)w) < α−
∞. From the equation h′w(t) = t3(g(t) +

λ
∫

R3 K(x)ϕK,ww2dx), we notice that h′w(t) > 0 for all t ∈ (0, t(1)) ∪ (t(2), ∞) and h′w(t) < 0 for

all t ∈ (t(1), t(2)). Finally, we get J (t(1)w) = sup0≤t≤t(2) J (tw) and J (t(2)w) = inft≥t(1) J (tw).

That is, J (t(2)w) ≤ J (t(1)w) < α−
∞, and so t(2)w ∈ M(2).

(ii) Let ĝ(t) = t−2∥w∥2 for t > 0. Clearly, tw ∈ M(1) = M− = M if and only if ĝ(t) −
∫

R3 b(x)w4dx + λ
∫

R3 K(x)ϕK,ww2dx = 0. After analysis ĝ(t), we know that ĝ(t) > 0 is decreas-

ing for t > 0, and limt→0+ ĝ(t) = ∞ and limt→∞ ĝ(t) = 0. For 0 < λ < Λ and from condition

(G3) we have

∫

R3
b(x)w4dx − λ

∫

R3
K(x)ϕK,ww2dx >

∫

R3
b∞w4dx − λ

∫

R3
K∞ϕK∞,ww2dx

= ∥w∥2
> 0.

This implies that the equation ĝ(t) −
∫

R3 b(x)w4dx + λ
∫

R3 K(x)ϕK,ww2dx = 0 has a unique

positive solution t̂ =
( ∥w∥2
∫

R3 b(x)w4dx−λ
∫

R3 K(x)ϕK,ww2dx

)
1
2
> Qb(w). Then we get t̂w ∈ M(1) =

M− = M. Similar to the discussion of case (i), we get that J (t̂w) = supt≥0 J (tw) =

supt≥Qb(w) J (tw) < α−
∞. This completes the proof.

Learning [23, 26] we get the following result.

Lemma 3.6 ([25]). Suppose that 4 < p ≤ 4 and 0 < λ < Λ. Then for each u ∈ M(1), there

exist υ > 0 and a differentiable function: t∗ : B(0; υ) ⊂ H1(R3) → R
+ such that t∗(0) = 1 and

t∗(v)(u − v) ∈ M(1) for all v ∈ B(0; υ), and there holds

⟨(t∗)′(0), φ⟩ = 2
∫

R3(∇u∇φ + uφ)dx + 4λ
∫

R3 K(x)ϕK,uuφdx − p
∫

R3 b(x)|u|p−2uφdx

∥u∥2 − (p − 1)
∫

R3 b(x)|u|pdx

for all φ ∈ H1(R3).

By (2.6) and Lemma 2.7, for 2 < p < 4, we define α− = infu∈M(1) J (u) = infu∈M− J (u)

and α+ = infu∈M(2) J (u) = infu∈M+ J (u). When p = 4, we define α− = infu∈M(1) J (u) =

infu∈M J (u).

Proposition 3.7. Suppose that 2 < p ≤ 4 and 0 < λ < Λ. Then there exists a sequence {un} ⊂ M(1)

such that

J (un) = α− + o(1) and J ′(un) = o(1) in H−1(R3). (3.25)

Proof. According to the Ekeland variational principle [15], it follows from Lemma 2.5 that

there exists a minimization sequence {un} ⊂ M(1) such that J (un) < α− + 1
n and

J (un) ≤ J (w) +
1

n
∥w − un∥ for all w ∈ M(1). (3.26)

By Lemma 3.6 with u = un, there exists a function t̄∗ : B(0; ϵ) → R for some ϵ > 0 such

that t̄∗(w)(un − w) ∈ M(1). Let 0 < ρ < ϵ and u ∈ H1(R3) with u ̸= 0. we set wρ = ρu
∥u∥

and zρ = t̄∗(wρ)(un − wρ). Since zρ ∈ M(1), from (3.26) we can get that J (zρ − J (un) ≥
− 1

n∥zρ − un∥. Generated using the median theorem

⟨J ′(un), zρ − un⟩+ o(∥zρ − un∥) ≥ − 1

n
∥zρ − un∥,
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and

⟨J ′(un),−wρ⟩+ (t̄∗(wρ)− 1)⟨J ′(un), un − wρ⟩ ≥ − 1

n
∥zρ − un∥+ o(∥zρ − un∥). (3.27)

Observed t̄∗(wρ)(un − w) ∈ M(1). From (3.27) it gives

− ρ

〈

J ′(un),
u

∥u∥

〉

+
(t̄∗(wρ)− 1)

t̄∗(wρ)
⟨J ′(zρ), t̄∗(wρ)(un − w)⟩

+ (t̄∗(wρ)− 1)⟨J ′(un)−J ′(zρ), un − wρ⟩

≥ − 1

n
∥zρ − un∥+ o(∥zρ − un∥).

Rewrite the above inequality as
〈

J ′(un),
u

∥u∥

〉

≤ ∥zρ − un∥
ρn

+
o(∥zρ − un∥)

ρ

+
(t̄∗(wρ)− 1)

ρ
⟨J ′(un)−J ′(zρ), un − wρ⟩.

(3.28)

Then, there exist a constant C > 0 independent of ρ such that ∥zρ − un∥ ≤ ρ + C(|t̄∗(wρ)− 1|)
and limρ→0

|t̄∗(wρ)−1|
ρ ≤ ∥(t̄∗)′(0)∥ ≤ C. Letting ρ → 0 in (3.28) and using the fact that

limρ→0 ∥zρ − un∥ = 0, we get ⟨J ′(un),
u

∥u∥ ⟩ ≤ C
n , this allows us to get (3.25).

Therefore, we begin to prove the proof of Theorem 1.4.

By Proposition 3.7, for 2 < p ≤ 4, there exists a sequence {un} ⊂ M(1) satisfying

J (un) = α− + o(1) and J ′(un) = o(1) in H−1(R3).

From Corollary 3.3 and Lemma 3.4, 3.5, we know that equation (1.4) has a non-trivial solution

v ∈ M− such that J (v) = α−. So, v is a minimizer for J on M−. In particular, for 2 < p < 4,

using α−
< α−

∞ < A(p) p−2
2p

( 2S
p
p

b∞(4−p)

)
2

p−2 , we obtain v ∈ M−. Through similar discussions, we

get |v| ∈ M− and J (|v|) = J (v) = α−. According to Lemma 2.4, v is a positive solution to

equation (1.4). Therefore, (v, ϕK,v) is a positive solution to the system (1.3).

3.3 Proof of Theorem 1.5

Lemma 3.8. Suppose that 1+
√

73
3 < p < 4 and condition (G4) holds. Let u0 be a nontrivial solution

of equation (1.4) . Then u0 ∈ M−.

Proof. Since u0 is a nontrivial solution of equation (1.4), there holds
∫

R3
|∇u0|2 dx +

∫

R3
u2

0dx + λ
∫

R3
K(x)ϕK,u0

u2
0dx −

∫

R3
b(x) |u0|p dx = 0. (3.29)

Following the argument of [12] it is not difficult to verify that equation (1.4) satisfies the

following Pohožaev type identity:

1

2

∫

R3
|∇u0|2dx +

3

2

∫

R3
u2

0dx +
5λ

4

∫

R3
K(x)ϕK,u0

u2
0dx

+
λ

2

∫

R3
⟨∇K(x), x⟩ϕK,u0

u2
0dx +

λ

4a

∫

R3
K(x)ψK,u0

u2
0dx

=
3

p

∫

R3
b(x)|u0|pdx +

1

p

∫

R3
⟨∇b(x), x⟩|u0|pdx. (3.30)
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Combining (3.29) and (3.30) we get

∫

R3
|∇u0|2dx =

3(p − 2)

6 − p

∫

R3
u2

0dx +
5p − 12

2(6 − p)
λ
∫

R3
K(x)ϕK,u0

u2
0dx

+
pλ

6 − p

∫

R3
⟨∇K(x), x⟩ϕK,u0

u2
0dx +

pλ

2a(6 − p)

∫

R3
K(x)ψK,u0

u2
0dx

− 2

6 − p

∫

R3
⟨∇b(x), x⟩|u0|pdx. (3.31)

From (2.3), (3.31) and condition (G4) we obtain that

h′′u0
(1) = − (p − 2)∥u0∥2 + (4 − p)

∫

R3
K(x)ϕK,u0

u2
0dx

= − (p − 2)
∫

R3
|∇u0|2dx − (p − 2)

∫

R3
u2

0dx + (4 − p)
∫

R3
K(x)ϕK,u0

u2
0dx

= − 2p(p − 2)

6 − p

∫

R3
u2

0dx − p(p − 2)λ

2a(6 − p)

∫

R3
K(x)ψK,u0

u2
0dx

− λ
∫

R3
(

3p2 − 2p − 24

2(6 − p)
K(x) +

p(p − 2)

6 − p
⟨∇K(x), x⟩)ϕK,u0

u2
0dx

+
2(p − 2)

6 − p

∫

R3
⟨∇b(x), x⟩|u0|pdx

< 0.

So, we get u0 ∈ M−.

We now come to the proof of Theorem 1.5.

Proof. Let v be a positive solution of equation (1.4), then we get v ∈ M− and J (v) =

infu∈M− J (u) = α−. Next by Lemma 3.8, we know that v is a ground state solution of

equation (1.4). Therefore, (v, ϕK,v) is a positive solution of system (1.3).

4 Appendix

In this section, we give the calculation procedure of Pohožaev identity.

Let (u, ϕ) ∈ H1
ϕ(R

3)×D be a nontrivial solution of (1.1). Recall that ϕ = ϕK,u. we have

∥∇u∥2
2 + ∥u∥2

2 + λ
∫

K(x)ϕu2 − b(x)∥u∥p
p = 0 (4.1)

and

∥∇ϕ∥2
2 + a2∥∆ϕ∥2

2 = 4π
∫

K(x)ϕu2, (4.2)

that are usually called Nehari identities.

In fact, if (u, ϕ) solve (1.1), recalling the regularity proved in Appredix A.1. [13], for every

R > 0, we have

∫

BR

−∆u⟨x · ∇u⟩ = −1

2

∫

BR

|∇u|2 − 1

R

∫

∂BR

|x · ∇u|2 + R

2

∫

∂BR

|∇u|2, (4.3)
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∫

BR

K(x)ϕu⟨x · ∇u⟩ =− 1

2

∫

BR

K(x)u2⟨x · ∇ϕ⟩ − 1

2

∫

BR

ϕu2⟨x · ∇K(x)⟩ (4.4)

− 3

2

∫

BR

K(x)ϕu2 +
R

2

∫

∂BR

K(x)ϕu2, (4.5)

∫

BR

u⟨x · ∇u⟩ = −3

2

∫

BR

u2 +
R

2

∫

∂BR

u2, (4.6)

∫

BR

b(x)|u|p−2u⟨x · ∇u⟩ = − 1

p

∫

BR

⟨x · ∇b(x)⟩|u|p − 3

p

∫

BR

b(x)|u|pdx +
R

p

∫

∂BR

|u|p, (4.7)

where BR is the ball of R
3 centered in the origin and with radius R (see also [12]), and, since

∆2ϕ⟨x · ∇ϕ⟩ = div

(

∇∆ϕ⟨x · ∇ϕ⟩ − ∆ϕ∇ϕ − F + x
(∆ϕ)2

2

)

+
(∆ϕ)2

2
,

where Fi = ∆ϕ⟨x · ∇(∂iϕ)⟩, i = 1, 2, 3, then

∫

BR

∆2ϕ⟨x · ∇ϕ⟩ = 1

2

∫

BR

(∆ϕ)2 +
∫

∂BR

(

∇∆ϕ⟨x · ∇ϕ⟩ − ∆ϕ∇ϕ − F + x
(∆ϕ)2

2

)

· v. (4.8)

Multiplying the first equation of (1.1) by x · ∇u and the second equation by x · ∇ϕ and inte-

grating on BR, by (4.3), (4.4), (4.6), (4.7), and (4.8) we obtain

− 1

2

∫

BR

|∇u|2 − 1

R

∫

∂BR

|x · ∇u|2 + R

2

∫

∂BR

|∇u|2 − 3

2

∫

BR

u2 +
R

2

∫

∂BR

u2

− λ

2

∫

BR

K(x)u2⟨x · ∇ϕ⟩ − λ

2

∫

BR

ϕu2⟨x · ∇K(x)⟩ − 3λ

2

∫

BR

K(x)ϕu2 +
λR

2

∫

∂BR

K(x)ϕu2

= − 1

p

∫

BR

⟨x · ∇b(x)⟩|u|p − 3

p

∫

BR

b(x)|u|pdx +
R

p

∫

∂BR

|u|p (4.9)

and

4π
∫

BR

K(x)u2⟨x · ∇ϕ⟩

= − 1

2

∫

BR

|∇ϕ|2 − 1

R

∫

∂BR

|x · ∇ϕ|2 + R

2

∫

∂BR

|∇ϕ|2

+
a2

2

∫

BR

(∆ϕ)2 + a2
∫

∂BR

(

∇∆ϕ⟨x · ∇ϕ⟩ − ∆ϕ∇ϕ − F + x
(∆ϕ)2

2

)

· v. (4.10)

Substituting (4.10) into (4.9) we get

− 1

2

∫

BR

|∇u|2 − 3

2

∫

BR

u2 +
λ

16π

∫

BR

|∇ϕ|2 − λa2

16π

∫

BR

(∆ϕ)2 − 3λ

2

∫

BR

K(x)ϕu2

− λ

2

∫

BR

ϕu2⟨x · ∇K(x)⟩+ 1

p

∫

BR

⟨x · ∇b(x)⟩|u|p + 3

p

∫

BR

b(x)|u|pdx

=
1

R

∫

∂BR

|x · ∇u|2 − R

2

∫

∂BR

|∇u|2 − R

2

∫

∂BR

u2 − λR

2

∫

∂BR

K(x)ϕu2

+
R

p

∫

∂BR

|u|p − λ

8πR
−
∫

∂BR

|x · ∇ϕ|2 + λR

16π

∫

∂BR

|∇ϕ|2

+
λa2

8π

∫

∂BR

(

∇∆ϕ⟨x · ∇ϕ⟩ − ∆ϕ∇ϕ − F + x
(∆ϕ)2

2

)

· v.
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Using the same arguments as in [12, Proof of Theorem 1.2] we have that right-hand side tends

to zero as R → +∞, since

∫

∂BR

∇∆ϕ⟨x · ∇ϕ⟩ · v = R
∫

∂BR

∂∆ϕ

∂v

∂ϕ

∂v
→ 0,

∫

∂BR

∆ϕ∇ϕ · v =
∫

∂BR

∆ϕ
∂ϕ

∂v
→ 0,

∫

∂BR

F · v = R
∫

∂BR

∂2ϕ

∂v2
→ 0,

1

2

∫

∂BR

(∆ϕ)2x · v =
R

2

∫

∂BR

(∆ϕ)2 → 0.

Finally, using formula (A.3) in [13] , the Pohožaev identity can be written as

0 =
1

2

∫

R3
|∇u|2dx +

3

2

∫

R3
u2dx +

5λ

4

∫

R3
K(x)ϕK,uu2dx

+
λ

2

∫

R3
⟨∇K(x), x⟩ϕK,uu2dx +

λ

4a

∫

R3
K(x)ψK,uu2dx

− 3

p

∫

R3
b(x)|u|pdx − 1

p

∫

R3
⟨∇b(x), x⟩|u|pdx,

where ψK,u := e−
|x|
a ∗ Ku2 =

∫

R3 e−
|x−y|

a K(y)u2(y)dy.
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Abstract. Some new weakly singular integral inequalities are established by a new
method, which generalize some results of this type in some previous papers. By these
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fractional differential equations. Finally, several examples are given to illustrate our
main results.
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1 Introduction

The study of fractional differential equations has been of great interest in the past three

decades. It is caused both by the intensive development of the theory of fractional calcu-

lus itself and by the applications in various sciences. In particular, the existence, uniqueness

and stability results of fractional differential equations have been studied by many papers

and books. In recent years, many researchers have began to investigate the attractivity of so-

lutions of fractional differential equations. For example, Furati and Tatar [4] investigated the

asymptotic behavior for solutions of a weighted Cauchy-type nonlinear fractional problem.

Kassim, Furati and Tatar [8] studied the asymptotic behavior of solutions for a class of nonlin-

ear fractional differential equations involving two Riemann–Liouville fractional derivatives of

different orders. Zhou et al. [13] studied the attractivity of solutions for fractional evolution

equations with Riemann–Liouville fractional derivative. Gallegos and Duarte-Mermoud [5]

studied the asymptotic behavior of solutions to Riemann–Liouville fractional systems. Tuan

et al. [11] presented some results for existence of global solutions and attractivity for multi-

dimensional fractional differential equations involving Riemann–Liouville derivative. Cong,

Tuan and Trinh [2] presented some distinct asymptotic properties of solutions to Caputo frac-

tional differential equations.

BEmail: zhutaoyzu@sina.cn



2 T. Zhu

In this paper, we first study the following weakly singular integral inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)uµ(s)ds, t ∈ (0,+∞), (1.1)

where a, b > 0, α > 0, δ ≥ 0, 0 < β < 1 and 0 < µ ≤ 1. We know that weakly singular

integral inequalities are well-known tools in the study of the fractional differential equations.

The pioneering work of weakly singular integral inequalities was investigated by Henry [7].

In 1981, Henry [7, p. 190] studied the following weakly singular integral inequality

u(t) ≤ atα−1 + b
∫ t

0
(t − s)β−1sγ−1u(s)ds, t ∈ (0,+∞), (1.2)

where α, β, γ are positive with β + γ > 1 and α + γ > 1. Webb [12] also studied the following

weakly singular Gronwall inequality

u(t) ≤ at−α + b + c
∫ t

0
(t − s)−βs−γu(s)ds, for a.e. t ∈ (0, T], (1.3)

where 0 < α, β, γ < 1 with α + γ < 1 and β + γ < 1. Recently, Zhu [14] considered the

following inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0,+∞), (1.4)

where α > δ ≥ 0 and 0 < β < 1. Zhu [15] also considered the following weakly singular

integral inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)uµ(s)ds, t ∈ (0,+∞), (1.5)

where 1 > α ≥ δ ≥ 0, 0 < µ < 1 and 0 < β < 1. Some results of this type are also proved by

Denton and Vatsala [3], Haraux [6], Kong and Ding [9].

Applying weakly singular integral inequality (1.1), we begin to investigate the attractivity

of solutions of fractional differential equation
{

D
β

0+x(t) = f (t, x(t)),

limt→0+ t1−βx(t) = x0,
(1.6)

where β ∈ (0, 1) and t ∈ (0,+∞). As far as I know, there have been few papers to study

the attractivity of fractional differential equation (1.6) by weakly singular integral inequalities.

The conclusion and the method of the proof in this paper seem to be new.

The outline of this paper is as follows. In Section 2, we introduce some notations, defini-

tions and theorems needed in our proofs. In Section 3, we obtain some new results concerning

weakly singular integral inequalities. In the last Section, we give some sufficient conditions

on the attractivity of solutions of fractional differential equation (1.6). Finally, some examples

are given to illustrate our main results.

2 Preliminaries

In this section, we introduce some notations, definitions and theorems which will be needed

later.

Let α ∈ (0, 1), we denote Cα(0,+∞) = {x(t) : x(t) ∈ C(0,+∞) and tαx(t) ∈ C[0,+∞)}.

L
p
Loc[0,+∞) (p ≥ 1) is the space of all real valued functions which are Lebesgue integrable

over every bounded subinterval of [0,+∞).
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Definition 2.1. [10, p. 33] Let β ∈ (0, 1), The operator I
β

0+ , defined on L1[0, T] by

I
β

0+ ϕ(t) =
1

Γ(β)

∫ t

0

ϕ(s)

(t − s)1−β
ds, a.e. t ∈ [0, T]

is called the Riemann–Liouville fractional integral operator of order β.

Definition 2.2. [10, p. 35] Let β ∈ (0, 1), The operator D
β

0+ , defined by

D
β

0+ ϕ(t) =
d

dt
I

1−β

0+ ϕ(t) =
1

Γ(1 − β)

d

dt

∫ t

0

ϕ(s)

(t − s)β
ds, a.e. t ∈ [0, T],

where I
1−β

0+ ϕ(t) is an absolutely continuous function, is called the Riemann–Liouville frac-

tional differential operator of order β.

Definition 2.3. The solution x(t) ∈ C1−β(0,+∞) of fractional differential equation (1.6) is said

to be attractive if limt→+∞ x(t) = 0.

Using the Hölder inequality, Zhu [15] obtained the following inequality.

Lemma 2.4. Let 0 < β < 1. Suppose that s1−βρ(s) ∈ Lp[0, 1], where p >
1
β . Then

∣

∣

∣

∣

∫ t

0
(

t

t − s
)1−βρ(s)ds

∣

∣

∣

∣

≤ 2
1
q t

β− 1
p

(qβ − q + 1)
1
q

(

∫ t

0
sp(1−β)|ρ(s)|pds

)
1
p

(2.1)

for t ∈ [0, 1], where q = p
p−1 .

Recently, Zhu [15, Corollary 4.5] obtained the following result which is very useful for the

study of the main purpose of this paper.

Theorem 2.5. Let 0 < β < 1 and 0 < µ ≤ 1. Suppose f : (0,+∞) × R → R is a continuous

function, and there exist nonnegative functions l(t) and k(t) such that

| f (t, x)| ≤ l(t)|x|µ + k(t)

for all (t, x) ∈ (0,+∞) × R, where t(1−µ)(1−β)l(t) ∈ C(0,+∞)
⋂

L
p
Loc[0,+∞) and t1−βk(t) ∈

C(0,+∞)
⋂

L
p
Loc[0,+∞), p >

1
β . Then the fractional differential equation (1.6) has at least one global

solution in C1−β(0,+∞).

3 Weakly singular integral inequalities

In this section, we are now to prove some results concerning weakly singular integral inequali-

ties, which can be used to study the attractivity of solutions for fractional differential equation

(1.6). We first study the weakly singular integral inequality (1.1) for the case µ = 1.

Theorem 3.1. Let a, b > 0, α > 0, δ ≥ 0 and 0 < β < 1. Let l(t) be a nonnegative, continuous

function on (0,+∞) and tα1 l(t) ∈ L
p
Loc[0,+∞), where α1 = min{1 − α − β,−δ} and p >

1
β . Let

tαu(t) be a continuous, nonnegative function on [0,+∞) with

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0, ∞). (3.1)
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Then

u(t) ≤ at−α +
2

1
q bt

2β−δ−1− 1
p

(qβ − q + 1)
1
q

A
1
p (t) exp

(

∫ t

0

L(s)

p
ds

)

, t ∈ (0,+∞), (3.2)

where A(t) =
∫ t

0 2p−1apsp(1−α−β)lp(s)ds, L(t) = 4p−1bptp(β−δ)−1lp(t)

(qβ−q+1)
p
q

and q = p
p−1 .

Proof. Applying Lemma 2.4, we have

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds

= at−α + btβ−δ−1
∫ t

0
(

t

t − s
)1−βl(s)u(s)ds

≤ at−α +
2

1
q bt

2β−δ−1− 1
p

(qβ − q + 1)
1
q

(

∫ t

0
sp(1−β)lp(s)up(s)ds

)
1
p

.

(3.3)

From (3.3), we obtain

t1−βl(t)u(t) ≤ at1−α−βl(t) +
2

1
q bt

β−δ− 1
p l(t)

(qβ − q + 1)
1
q

(

∫ t

0
sp(1−β)lp(s)up(s)ds

)
1
p

. (3.4)

Since tα1 l(t) ∈ L
p
Loc[0,+∞), then tp(1−α−β)lp(t) ∈ L1

Loc[0,+∞) and tp(β−δ)−1lp(t) ∈ L1
Loc[0,+∞),

where p >
1
β . Therefore we get

∫ t

0
sp(1−β)lp(s)up(s)ds ≤

∫ t

0

[

as1−α−βl(s) +
2

1
q bs

β−δ− 1
p l(s)

(qβ − q + 1)
1
q

(

∫ s

0
τp(1−β)lp(τ)up(τ)dτ

)
1
p

]p

ds

≤
∫ t

0
2p−1apsp(1−α−β)lp(s)ds

+
∫ t

0

4p−1bpsp(β−δ)−1lp(s)

(qβ − q + 1)
p
q

∫ s

0
τp(1−β)lp(τ)up(τ)dτds.

(3.5)

Let W(t) =
∫ t

0 sp(1−β)lp(s)up(s)ds, then we get

W(t) ≤ A(t) +
∫ t

0
L(s)W(s)ds. (3.6)

In (3.6), we know that A(t) is a nondecreasing function on [0,+∞) and using the Gronwall

integral inequality [1, Corollary 1.2], we obtain

W(t) ≤ A(t) exp

(

∫ t

0
L(s)ds

)

. (3.7)

From (3.3) and (3.7), we get

u(t) ≤ at−α +
2

1
q bt

2β−δ−1− 1
p

(qβ − q + 1)
1
q

A
1
p (t) exp

(

∫ t

0

L(s)

p
ds

)

. (3.8)

Thus, we complete the proof.
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As a consequence of Theorem 3.1, we can immediately obtain the following result for the

case α = 1 − β and δ = 0.

Theorem 3.2. Let a, b > 0 and 0 < β < 1. Let l(t) be a nonnegative and continuous function on

(0,+∞) with l(t) ∈ L
p
Loc[0,+∞), where p >

1
β , and t1−βu(t) be a continuous, nonnegative function

on [0,+∞) with

u(t) ≤ atβ−1 + b
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0, ∞). (3.9)

Then

u(t) ≤ atβ−1 +
2

1
q bt

2β−1− 1
p

(qβ − q + 1)
1
q

A
1
p (t) exp

(

∫ t

0

L(s)

p
ds

)

, t ∈ (0,+∞), (3.10)

where A(t) =
∫ t

0 2p−1aplp(s)ds, L(t) = 4p−1bptpβ−1lp(t)

(qβ−q+1)
p
q

and q = p
p−1 .

Example 3.3. Suppose that t
1
4 u(t) is a continuous, nonnegative function on [0,+∞) and u(t)

satisfies the following inequality

u(t) ≤ t−
1
4 + t−

1
3

∫ t

0
(t − s)−

1
3

u(s)

1 + s
ds, t ∈ (0,+∞). (3.11)

By Theorem 3.1, let p = 2, then we get

u(t) ≤ t−
1
4 + 6

1
2 t−

1
2

(

∫ t

0

2s
1
6

(1 + s)2
ds

)
1
2

exp

(

∫ t

0

6s
−1
3

(1 + s)2
ds

)

, t ∈ (0,+∞). (3.12)

We know
∫ t

0

s
1
6

(1 + s)2
ds ≤

∫ +∞

0

s
1
6

(1 + s)2
ds = B(7/6, 5/6) =

π

3

and
∫ t

0

s
−1
3

(1 + s)2
ds ≤

∫ +∞

0

s
−1
3

(1 + s)2
ds = B(2/3, 4/3) =

2
√

3π

9
,

where B(p, q) =
∫ 1

0 (1 − s)p−1sq−1ds = Γ(p)Γ(q)
Γ(p+q)

(p, q > 0) is the Beta function, and Γ(p) =
∫ +∞

0 sp−1 exp(−s)ds (p > 0) is the Gamma function.

Then we obtain

u(t) ≤ t−
1
4 + 2

√
π exp

(

4
√

3π

3

)

t−
1
2 , t ∈ (0,+∞), (3.13)

and u(t) → 0 as t → +∞.

Now, we investigate the weakly singular integral inequality (1.1) when 0 < µ < 1.

Theorem 3.4. Let a, b > 0, α > 0, δ ≥ 0, 0 < β < 1 and 0 < µ < 1. Let l(t) be a nonneg-

ative, continuous function on (0,+∞) with tα2 l(t) ∈ L
p
Loc[0,+∞), where α2 = min{1 − αµ − β,

(β − δ − 1)µ + 1 − β} and p >
1
β . Let tαu(t) be a continuous, nonnegative function on [0,+∞) with

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)uµ(s)ds, t ∈ (0, ∞). (3.14)
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Then

u(t) ≤ at−α +
2

1
q bt

2β−δ−1− 1
p

(qβ − q + 1)
1
q

(

A1−µ(t) + (1 − µ)
∫ t

0
L(s)ds

)
1

p(1−µ)

, t ∈ (0,+∞), (3.15)

where A(t) =
∫ t

0 2p−1apµsp(1−αµ−β)lp(s)ds, L(t) = 4p−1bpµt(2pβ−pδ−p−1)µ+p−pβ lp(t)

(qβ−q+1)
pµ
q

and q = p
p−1 .

Proof. From the inequality (3.14), using the same procedure as in the proof of the inequality

(3.3), we have

u(t) ≤ at−α +
2

1
q bt

2β−δ−1− 1
p

(qβ − q + 1)
1
q

(

∫ t

0
sp(1−β)lp(s)upµ(s)ds

)
1
p

. (3.16)

From (3.16), we know

uµ(t) ≤ aµt−αµ +
2

1
q bµt

(2β−δ−1− 1
p )µ

(qβ − q + 1)
µ
q

(

∫ t

0
sp(1−β)lp(s)upµ(s)ds

)

µ
p

(3.17)

and

t1−βl(t)uµ(t)≤ aµt−αµ+1−βl(t)+
2

1
q bµt

(2β−δ−1− 1
p )µ+1−β

l(t)

(qβ − q + 1)
µ
q

(

∫ t

0
sp(1−β)lp(s)upµ(s)ds

)

µ
p

. (3.18)

Since tα2 l(t) ∈ L
p
Loc[0,+∞), then tp(1−αµ−β)lp(t) ∈ L1

Loc[0,+∞) and t(2pβ−pδ−p−1)µ+p−pβlp(t) ∈
L1

Loc[0,+∞), where p >
1
β . Then we obtain

∫ t

0
sp(1−β)lp(s)upµ(s)ds

≤
∫ t

0
2p−1apµsp(1−αµ−β)lp(s)ds

+
∫ t

0

4p−1bpµs(2pβ−pδ−p−1)µ+p−pβlp(s)

(qβ − q + 1)
pµ
q

(

∫ s

0
τp(1−β)lp(τ)upµ(τ)dτ

)µ

ds.

(3.19)

Let W(t) =
∫ t

0 sp(1−β)lp(s)upµ(s)ds, then we get

W(t) ≤ A(t) +
∫ t

0
L(s)Wµ(s)ds. (3.20)

Using the Bihari integral inequality [1, Corollary 5.3], we obtain

W(t) ≤
(

A1−µ(t) + (1 − µ)
∫ t

0
L(s)ds

)
1

1−µ

. (3.21)

From (3.16) and (3.21), we get

u(t) ≤ at−α +
2

1
q bt

2β−δ−1− 1
p

(qβ − q + 1)
1
q

(

A1−µ(t) + (1 − µ)
∫ t

0
L(s)ds

)
1

p(1−µ)

. (3.22)

Thus, we complete the proof.

As a consequence of Theorem 3.4, we can obtain the following result when α = 1 − β and

δ = 0.
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Theorem 3.5. Let a > 0, b > 0, 0 < β < 1 and 0 < µ < 1. Let l(t) be a nonnegative and continuous

function on (0,+∞) with t(1−µ)(1−β)l(t) ∈ L
p
Loc[0,+∞), where p >

1
β , and t1−βu(t) be a continuous,

nonnegative function on [0,+∞) with

u(t) ≤ atβ−1 + b
∫ t

0
(t − s)β−1l(s)uµ(s)ds, t ∈ (0, ∞). (3.23)

Then

u(t) ≤ atβ−1 +
2

1
q bt

2β−1− 1
p

(qβ − q + 1)
1
q

(

A1−µ(t) + (1 − µ)
∫ t

0
L(s)ds

)
1

p(1−µ)

, t ∈ (0,+∞), (3.24)

where A(t) =
∫ t

0 2p−1apµsp(1−µ)(1−β)lp(s)ds, L(t) = 4p−1bpµt(2pβ−p−1)µ+p−pβ lp(t)

(qβ−q+1)
pµ
q

and q = p
p−1 .

Example 3.6. Suppose that t
1
3 u(t) is a continuous, nonnegative function on [0,+∞) and u(t)

satisfies the inequality

u(t) ≤ t−
1
3 + t−

1
2

∫ t

0
(t − s)−

1
3 s

−1
2 u

1
3 (s)ds, t ∈ (0,+∞). (3.25)

Let p = 2, using Theorem 3.4, we get

u(t) ≤ t
−1
3 + 6

1
2 t

−2
3

(

(
9

2
)

2
3 t

8
27 + 12 · 3

1
3 t

2
9

)
3
4

≤ t
−1
3 +

√
27t

−4
9 + 12

√
3t

−1
2 , t ∈ (0,+∞)

(3.26)

and u(t) → 0 as t → +∞.

In [15, Theorem 3.4], Zhu studied the weakly singular integral inequality (3.14) when

t(1−µ)α−δl(t) ∈ L
p
Loc[0,+∞), where 1 > α ≥ δ ≥ 0 and p > max{ 1

β , 1
1−α+δ}. In fact, the

conclusion is also correct when 1 > α > 0 and 1 > δ ≥ 0. In the inequality (3.25), since

t
−7
9 /∈ Lp[0,+∞) when p >

3
2 , then Theorem 3.4 in [15] cannot be used to solve the inequality

(3.25).

Remark 3.7. In Theorem 3.4, since 0 < µ < 1, then α1 < α2. If l(t) is a nonnegative and

continuous function on (0,+∞) satisfying tα1 l(t) ∈ L
p
Loc[0,+∞), where p >

1
β , then we can get

tα2 l(t) ∈ L
p
Loc[0,+∞). Therefore, the hypothesis of function l(t) in Theorem 3.4 is weaker than

that imposed in Theorem 3.1.

Zhu [14, Theorem 3.4] obtained some results for the inequality (3.1) when α > δ ≥ 0. Zhu

[15, Theorem 3.3] studied the inequality (3.1) when 1 > α ≥ δ ≥ 0. In Theorem 3.1, we study

the inequality (3.1) when α > 0 and δ ≥ 0. Therefore, our result generalizes some results in

[14, 15].

Denton and Vatsala [3, Theorem 2.8] studied the inequality (3.1) for the special case α =

1 − β and δ = 0. Henry [7, Exercise 3, p. 190] discussed the inequality (3.1) for the case δ = 0

and l(t) = tγ−1. Some similar results of the inequality (3.1) were proved in Haraux [6, Lemma

10, p. 112], Kong and Ding [9, Theorem 2.7], Webb [13, Theorem 3.9] and Zhu [14, Theorem

3.6]. As far as I know, there have been few papers to study the inequality (1.1), and the

methods of proof in Theorem 3.1 and Theorem 3.4 seem to be new.
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4 Attractivity of fractional differential equations

In this section, we present the main results of this paper. We first study the attractivity of

solutions of fractional differential equation (1.6) when | f (t, x)| ≤ l(t)|x|.
Theorem 4.1. Let 0 < β < 1 and λ > β. Let l(t) be a nonnegative function with l(t) ∈
C(0,+∞)

⋂

L
p
Loc[0,+∞), where p > 1 and β >

1
p > 2β − 1, and there exists a nonnegative con-

stant K such that

tλl(t) ≤ K (4.1)

for all t ∈ [1,+∞). Suppose f : (0,+∞)× R → R is a continuous function and

| f (t, x)| ≤ l(t)|x|

for all (t, x) ∈ (0,+∞)× R. Then the solution of fractional differential equation (1.6) is attractive.

Proof. Using Theorem 2.5, we know that the fractional differential equation (1.6) has at least

one global solution x(t) ∈ C1−β(0,+∞) and x(t) also satisfies the following Volterra integral

equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds, t ∈ (0,+∞). (4.2)

Then we have

|x(t)| ≤ |x0|tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1l(s)|x(s)|ds, t ∈ (0,+∞). (4.3)

Then by Theorem 3.2, we obtain

|x(t)| ≤ |x0|tβ−1 +
2

1
q t

2β−1− 1
p

Γ(β)(qβ − q + 1)
1
q

A
1
p (t) exp

(

∫ t

0

L(s)

p
ds

)

, t ∈ (0,+∞), (4.4)

where A(t) =
∫ t

0 2p−1|x0|plp(s)ds, L(t) = 4p−1tpβ−1lp(t)

Γp(β)(qβ−q+1)
p
q

and q = p
p−1 .

From (4.1) and λ > β >
1
p , we know

lp(t) ≤ Kpt−pλ, t ∈ [1,+∞)

and
∫ +∞

1 Kps−pλds is convergent. Then we obtain that
∫ +∞

1 2p−1|x0|plp(s)ds is also convergent

and there exists a nonnegative constant M1 such that A(t) ≤ M1 for all t ∈ (0,+∞). Since

λ > β and

tpβ−1lp(t) ≤ Kptpβ−pλ−1, t ∈ [1,+∞),

we know that
∫ +∞

1 Kpspβ−pλ−1ds is convergent. Then we obtain that
∫ +∞

1 spβ−1lp(s)ds and
∫ +∞

1 L(s)ds are also convergent, and there exists a nonnegative constant M2 such that
∫ t

0
L(s)

p ds ≤ M2 for all t ∈ (0,+∞).

Therefore, from (4.4) and β >
1
p > 2β − 1, we get

|x(t)| ≤ |x0|tβ−1 +
2

1
q t

2β−1− 1
p

Γ(β)(qβ − q + 1)
1
q

M
1
p

1 exp(M2), t ∈ (0,+∞), (4.5)

and

lim
t→+∞

|x(t)| = 0. (4.6)

Thus, we complete the proof.
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We now discuss the case when | f (t, x)| ≤ l(t)|x|µ for all (t, x) ∈ (0,+∞) × R, where

0 < µ < 1.

Theorem 4.2. Let 0 < µ < 1, 0 < β < 1 and λ > β. Let l(t) be a nonnegative function with

t(1−µ)(1−β)l(t) ∈ C(0,+∞)
⋂

L
p
Loc[0,+∞), where p > 1 with β >

1
p > 2β − 1, and there exists a

nonnegative constant K such that

tλl(t) ≤ K (4.7)

for all t ∈ [1,+∞). Suppose f : (0,+∞)× R → R is a continuous function with

| f (t, x)| ≤ l(t)|x|µ

for all (t, x) ∈ (0,+∞)× R. Then the solution of fractional differential equation (1.6) is attractive.

Proof. Using the same procedure as in the proof of Theorem 4.1, we know that the global

solution x(t) ∈ C1−β(0,+∞) of equation (1.6) satisfies the following Volterra integral equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds, t ∈ (0,+∞), (4.8)

and

|x(t)| ≤ |x0|tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1l(s)|x(s)|µds, t ∈ (0,+∞). (4.9)

Then by Theorem 3.5, for t ∈ (0,+∞), we obtain

|x(t)| ≤ |x0|tβ−1 +
2

1
q t

2β−1− 1
p

Γ(β)(qβ − q + 1)
1
q

(

A1−µ(t) + (1 − µ)
∫ t

0
L(s)ds

)
1

p(1−µ)

= |x0|tβ−1 +
2

1
q

Γ(β)(qβ − q + 1)
1
q

(

(

A(t)

tp+1−2pβ

)1−µ

+
(1 − µ)

∫ t
0 L(s)ds

t(p+1−2pβ)(1−µ)

)
1

p(1−µ)

,

(4.10)

where A(t) =
∫ t

0 2p−1|x0|pµsp(1−µ)(1−β)lp(s)ds, L(t) = 4p−1t(2pβ−p−1)µ+p−pβ lp(t)

Γpµ(β)(qβ−q+1)
pµ
q

and q = p
p−1 .

Since 1 > β >
1
p > 2β − 1 and λ > β, using L’Hôspital’s rule, we get

lim
t→+∞

∫ t
0 sp(1−µ)(1−β)lp(s)ds

tp+1−2pβ
= lim

t→+∞

tp(1−µ)(1−β)lp(t)

(p + 1 − 2pβ)tp−2pβ

≤ lim
t→+∞

Kptp(1−µ)(1−β)−pλ

(p + 1 − 2pβ)tp−2pβ

= lim
t→+∞

Kptpµ(β−1)+p(β−λ)

(p + 1 − 2pβ)

= 0.

(4.11)

In (4.11), if
∫ t

0 sp(1−µ)(1−β)lp(s)ds is a bounded function for t ∈ [0,+∞), we can also obtain this

conclusion.
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Since λ > β, using L’Hôspital’s rule, we obtain

lim
t→+∞

∫ t
0 s(2pβ−p−1)µ+p−pβlp(s)ds

t(p+1−2pβ)(1−µ)
= lim

t→+∞

t(2pβ−p−1)µ+p−pβlp(t)

(p + 1 − 2pβ)(1 − µ)t(p+1−2pβ)(1−µ)−1

≤ lim
t→+∞

Kpt(2pβ−p−1)µ+p−p(β+λ)

(p + 1 − 2pβ)(1 − µ)t(p+1−2pβ)(1−µ)−1

= lim
t→+∞

Kptp(β−λ)

(p + 1 − 2pβ)(1 − µ)

= 0.

(4.12)

In (4.12), if
∫ t

0 s(2pβ−p−1)µ+p−pβlp(s)ds is a bounded function for t ∈ [0,+∞), we can also obtain

this conclusion.

In (4.10), using (4.11) and (4.12), we obtain

lim
t→+∞

|x(t)| = 0. (4.13)

Thus, we complete the proof.

Example 4.3. Consider the following Riemann–Liouville fractional differential equation







D
2
3

0+x(t) = x(t)√
t(1+

√
t)

,

limt→0+ t
1
3 x(t) = 1.

(4.14)

Let λ = 1 and 3
2 < p < 2, using Theorem 4.1 and the inequality (4.4), we know that the

solution x(t) ∈ C 1
3
(0,+∞) of the equation (4.14) is attractive, and

x(t) ≤ t
−1
3 + Mt

p−3
3p , (4.15)

where M = M(p) is a nonnegative constant and lim
p→ 3

2

+ M(p) = +∞.

Example 4.4. Consider the following Riemann–Liouville fractional differential equation

{

D
1
2

0+x(t) = t
−2
3 x

1
2 (t),

limt→0+ t
1
2 x(t) = 1.

(4.16)

Let λ = 2
3 and 2 < p <

12
5 , using Theorem 4.2 and the inequality (4.10), we get that the

solution x(t) ∈ C 1
2
(0,+∞) of the equation (4.16) is attractive, and

x(t) ≤ t
−1
2 + M1t

−1
3 + M2t

−5
12 , (4.17)

where M1 = M1(p) and M2 = M2(p) are nonnegative constants.
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1 Introduction

In this paper, we study the existence and uniqueness of solutions of the following boundary

value problem
{

u(6) + Au(4) + Bu′′ − C(x)u + f (x, u) = 0 in Ω

u = u′′ = u(4) = 0 on ∂Ω,
(1.1)

where A, B are some given constants, C(x) is a given function, f is a continuous function on

[0, L]× IR and Ω = (0, L).

The treatment of (1.1) is motivated by the study of stationary solutions (which leads to

sixth-order ODEs) of the sixth-order parabolic differential equation

∂u

∂t
=

∂6u

∂x6
+ A

∂4u

∂x4
+ B

∂2u

∂x2
+ f (x, u), (1.2)

arising in the formation of spatial periodic patterns in bistable systems and is also a model for

describing the behaviour of phase fronts in materials that are undergoing a transition between

the liquid and the solid state. The case f (u) = u − u3 was treated by Gardner and Jones [13]

as well as by Caginalp and Fife [7].

BEmail: cristian.danet@edu.ucv.ro
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We also note that the deformation of the equilibrium state of an elastic circular ring seg-

ment with its two ends simply supported can be described by a boundary value of sixth-order

(see [1]):
{

u(6) + 2u(4) + u′′ = f (x, u) in Ω = (0, 1)

u = u′′ = u(4) = 0 on ∂Ω.
(1.3)

Boundary value problems of sixth-order also arise in sandwich beam deflection under

transverse shear [2].

The existence and multiplicity of solutions to (1.1) were obtained in [20], when f (u) = −u3,

A2
< 4B and C = −1 in Ω and in [9] when C < 0, f (u) = −b(x)u3 where b is an even

continuous 2L periodic function. A more general existence and multiplicity result was given

in [14] by using variational methods and the Brézis and Nirenberg’s linking theorems in the

case

−
F(x, u)

u2
→ +∞, uniformly with respect to x as |u| → ∞, (1.4)

where F(x, u) =
∫ u

0 f (x, s)ds ≤ 0.

In [15], the authors studied the existence of positive solutions of the nonlinear boundary

value problem
{

u(6) + f (x, u, u′′, u(4)) = 0 in Ω = (0, 1)

u = u′′ = u(4) = 0 on ∂Ω,
(1.5)

using the Krein–Rutman Theorem and the Global Bifurcation Theory under the assumptions

(again a sign restriction is assumed)

1). f : Ω × [0, ∞)× (−∞, 0]× [0, ∞) → [0, ∞) is continuous and there exist functions a, b, c, d,

m, n with a(t) + b(t) + c(t) > 0 and d(t) + m(t) + n(t) > 0 in Ω such that

f (t, u, p, q) = a(t)u − b(t)p + c(t)q + o(|(u, p, q)|), as |(u, p, q)| → 0,

uniformly for t ∈ Ω, and

f (t, u, p, q) = d(t)u − m(t)p + n(t)q + o(|(u, p, q)|), as |(u, p, q)| → 0,

uniformly for t ∈ Ω. Here |(u, p, q)|2 = u2 + p2 + q2.

2). f > 0 in Ω and [0, ∞)× (−∞, 0]× [0, ∞) \ {(0, 0, 0)}.

3). there exists constants a0, b0, c0 ≥ 0 satisfying a2
0 + b2

0 + c2
0 > 0 and

f (t, u, p, q) = a0u − b0 p + c0q + o(|(u, p, q)|).

It is worth mentioning the new paper of Bonanno and Livrea [4], where the problem

{

−u(6) + Au(4) − Bu′′ + Cu = λ f (x, u) in Ω = (0, 1)

u = u′′ = u(4) = 0 on ∂Ω,
(1.6)

is treated.

The authors prove the existence of infinitely many solutions to problem (1.6) under differ-

ent assumptions on A, B, C and by requiring an oscillation on f (x, ·) at infinity. More precisely

if

i). F(x, t) ≥ 0 for every (x, t) ∈ ([0, 5/12] ∪ [7/21, 1])× IR.
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ii).

lim inf
t→∞

∫ 1
0 max|s|<t F(x, s)dx

t2
< τ lim sup

t→∞

∫ 7/12
5/12 F(x, t)dx

t2
,

then for every

λ ∈

(

2δ4

τ

1

lim supt→∞

∫ 7/12
5/12 F(x,t)dx

t2

,
2δπ4

lim inft→∞

∫ 1
0 max|s|<t F(x,s)dx

t2

)

the problem (1.6) admits an unbounded sequence of classical solutions. Here τ and δ are

technical constants depending on A, B and C.

Using variational methods we present here some new existence results (Section 3.1). The

main difference between our work and the above mentioned papers is that we treat a general

case and we do not impose sign restrictions on f or F. We note that we cover nonlinearities

that are not treated elsewhere, e.g., the cases f (u) = ln(|u| + 1) + |u|
|u|+1

+ u and f (x, u) =

a(x) cos(un +C)un−1, where a is a bounded function, C is a constant and n is a natural number.

We see that these cases are not covered in [14] since the assumption (H1) in [14], i.e. (1.4) is

not satisfied. In particular, since (2.10) holds (here A = 2, B = 1, C = 0, L = 1), our results

apply to (1.3).

We obtain our main existence results under the restriction

F(x, s) ≤ K1|s|
r + K2, ∀ (x, s) ∈ Ω × IR, (1.7)

where K1, K2, r > 0.

In Section 3.2 we will briefly present some uniqueness results for the corresponding non-

homogeneous linear equation.

The last section is devoted to a multiplicity result. As we mentioned above, the available

multiplicity results (see [20, Theorem 3] and [9, Theorem B]) are stated under the restriction

F ≤ 0. Here we strengthen relation (1.7), more precisely we impose

−K|s|p ≤ F(x, s) ≤ K1|s|
r + K2, ∀ (x, s) ∈ Ω × IR, (1.8)

where K, K1, K2 > 0, 0 < r < 2, p > 2 and obtain for sufficiently large L a multiplicity result

that holds without a sign restriction on F. We also note that the multiplicity result holds if

(1.4) is satisfied without the sign restriction on F.

2 Variational settings and auxiliaries

We consider the Hilbert space H(Ω) = {u ∈ H3(Ω)| u = u′′ = 0 on ∂Ω}, endowed with the

standard inner product

(u, v)H3(Ω) =
∫

Ω

(

u′′′v′′′ + u′′v′′ + u′v′ + uv
)

dx

and standard norm

∥u∥H3(Ω) = (u, u)
1
2

H3(Ω)
.
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Definition 2.1. A weak solution of (1.1) is a function u ∈ H(Ω) such that

∫

Ω

(

u′′′v′′′ − Au′′v′′ + Bu′v′ + C(x)uv − f (x, u)v
)

dx = 0, ∀v ∈ H(Ω).

A classical solution of (1.1) is a function u ∈ C6(Ω) that satisfies (1.1).

We note that if f is a continuous function on [0, L]× IR, then a weak solution is a classical

solution (for a proof see [20]).

The problem (1.1) has a variational structure and the weak solutions in the space H(Ω)

can be found as critical points of the functional

J : H(Ω) → IR

J(u) =
1

2

∫

Ω

(

(u′′′)2 − A(u′′)2 + B(u′)2 + C(x)u2
)

dx −
∫

Ω

F(x, u)dx,

which is Fréchet differentiable and its Fréchet derivative is given by

⟨J′(u), v⟩ =
∫

Ω

(

u′′′v′′′ − Au′′v′′ + Bu′v′ + C(x)uv − f (x, u)v
)

dx, ∀v ∈ H(Ω).

Throughout the paper C denotes a universal positive constant depending on the indicated

quantities, unless otherwise specified.

The following results will be useful.

Lemma 2.2. The following relations hold true for any u ∈ H(Ω).

∫

Ω

u2dx ≤

(

L

π

)2k ∫

Ω

(u(k))2dx, k = 1, 2, 3. (2.1)

∫

Ω

(u′)2dx ≤

(

L

π

)2 ∫

Ω

(u′′)2dx. (2.2)

∫

Ω

(u′′)2dx ≤

(

L

π

)2 ∫

Ω

(u′′′)2dx, (2.3)

where L represents the length of Ω.

Lemma 2.2 is proved in [4, Proposition 2.1] in the case when Ω = (0, 1). By similar

calculations we can get the result for the case Ω = (0, L).

From Lemma 2.2 it follows that the scalar product

(u, v)H(Ω) =
∫

Ω

u′′′v′′′dx

induces a norm equivalent to the norm ∥u∥H3(Ω) in the space H(Ω).

The next key result is more general version for bounded domains of the result presented

in [20], Lemma 5 and will be used to handle the existence in the case r > 2 as well the

multiplicity result.

Lemma 2.3. Let u ∈ H(Ω). Suppose that
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a).

A > 0,
A2

C1
< 4B, C1 = 1 − Cm

(

L

π

)6

> 0, C ≥ −Cm, Cm > 0. (2.4)

Then there exists a constant k1 such that

∫

Ω

[

(u′′′)2 − A(u′′)2 + B(u′)2 + C(x)u2

]

dx ≥ k1∥u∥2
H3(Ω). (2.5)

If C ≥ 0 then A2

C1
< 4B may be replaced by A2

< 4B.

A similar estimate holds if we assume that

A, B > 0, A2
< 4C B,≥ C,

A2

4C
≤ C − 1. (2.6)

b).

A = 0, B < 0, B2
< 2Cm,

B2

2Cm
≤

Cm

2
− 1, (2.7)

where Cm = infΩ C(x) > 0.

Then there exists a constant k2 > 0 such that

∫

Ω

[

(u′′′)2 + B(u′)2 + C(x)u2

]

dx ≥ k2∥u∥2
H3(Ω). (2.8)

The inequality (2.8) also holds if

A = 0, B < 0, C − 1 ≥

(

−2B

3

)4/3

. (2.9)

c).

C = 0, A > 0, B ≥ 0, 1 −
AL2

π2
> 0. (2.10)

Then there exists a constant k3 > 0 such that

∫

Ω

[

(u′′′)2 − A(u′′)2 + B(u′)2

]

dx ≥ k3∥u∥2
H3(Ω). (2.11)

Remark 2.4. Of course if A ≤ 0, B, C ≥ 0, then Lemma 2.3 is always true, i.e., there is nothing

to prove.

Proof. a). We borrow some ideas from the paper of Bonheure (see [5, Lemma 5]).

It is easy to see that for any real α

∫

Ω

(

u′′′ + αu′

)2

dx =
∫

Ω

(

(u′′′)2 − 2α(u′′)2 + α2(u′)2

)

dx.

Hence for any α the quantity

Qα =
∫

Ω

(

(u′′′)2 − 2α(u′′)2 + α2(u′)2

)

dx
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is positive.

For arbitrary ε > 0 we have by Lemma 2.2
∫

Ω

[

(u′′′)2 − A(u′′)2 + B(u′)2 + C(x)u2
]

dx

≥ C1

[

∫

Ω

(u′′′)2 −
A

C1
(u′′)2 +

B

C1
(u′)2

]

dx

= C1















ε
∫

Ω

[

(u′′′)2 + (u′′)2 + (u′)2
]

dx

+ (1 − ε)
∫

Ω



(u′′′)2 −
A
C1

+ ε

1 − ε
(u′′)2 +

1

4

(

A
C1

+ ε

1 − ε

)2

(u′)2



 dx

+







B

C1
− ε −

1

4

(

A
C1

+ ε
)2

1 − ε







∫

Ω

(u′)2dx















≥ εC1

∫

Ω

(u′′′)2dx + (1 − ε)C1Q A
C1

+ε

1−ε

+ C1







B

C1
− ε −

1

4

(

A
C1

+ ε
)2

1 − ε







∫

Ω

(u′)2dx.

Choosing ε sufficiently small, using that Q A
C1

+ε

1−ε

≥ 0 and the equivalence of norms ∥ · ∥H3(Ω)

and ∥ · ∥H(Ω) we get the desired result.

b). The proof of inequality (2.8) under the assumption (2.7) is deduced by different means,

namely by using the Fourier transform.

We first note that if one of the inequalities (2.5), (2.8) or (2.11) holds for u ∈ H3(IR), then it

follows that the inequalities are also true for u ∈ H(Ω).

Indeed, for u ∈ H(Ω), we have
∫

Ω

[

∗
]

dx =
∫

IR

[

∗
]

dx ≥ k∥u∥2
H3(IR) ≥ k∥u∥2

H3(Ω). (2.12)

Here ∗ stands for one of the expressions in the inequalities (2.5), (2.8) or (2.11) that is inside

the square brackets.

We now prove the required inequalities for u ∈ H3(IR).

We note that the proof of (2.5) under the conditions (2.6) is similar to the proof of (2.8)

under the hypothesis (2.7) and hence is omitted.

To prove inequality (2.8) we see that for all ξ ∈ IR

−Bξ2 ≤
B2

2Cm
ξ4 +

Cm

2
≤

B2

2Cm
ξ6 +

Cm

2
+

B2

2Cm
≤

B2

2Cm
ξ6 + Cm − 1. (2.13)

Hence

ξ6 + Bξ2 + Cm ≥ ξ6 −
B2

2Cm
ξ6 − Cm + 1 + Cm ≥

(

1 −
B2

2Cm

)(

ξ6 + 1

)

. (2.14)

As a consequence, we get

ξ6 + Bξ2 + Cm ≥
1

3

(

1 −
B2

2Cm

)(

1 + ξ2 + ξ4 + ξ6

)

, ∀ ξ ∈ IR. (2.15)



Existence and uniqueness for a sixth-order ODE 7

Let û(ξ) be the Fourier transform of u(x) ∈ H3(IR).

By Parseval’s identity and (2.15) we get

∫

IR

(

(u′′′)2 + B(u′)2 + C(x)u2
)

dx (2.16)

≥
∫

IR

(

(u′′′)2 + B(u′)2 + Cmu2
)

dx =
∫

IR

(

ξ6 + Bξ2 + Cm

)

∥û(ξ)∥2dξ

≥
1

3

(

1 −
B2

2Cm

)

∫

IR

(

1 + ξ2 + ξ4 + ξ6

)

∥û(ξ)∥2dξ

=
1

3

(

1 −
B2

2Cm

)

∫

IR

(

u2 + (u′)2 + (u′′)2 + (u′′′)2

)

dx (2.17)

=
1

3

(

1 −
B2

2Cm

)

∥u∥2
H3(IR),

which is the desired result.

If (2.9) holds then we can achieve the proof in a similar way by showing that

−Bξ2 ≤
1

2
ξ6 + C − 1, ∀ ξ ∈ IR. (2.18)

To prove (2.18) we easily see that the function ϕ(t) = 1
2 t3 + Bt + C − 1, t ≥ 0 has a global

minimum at (−2B
3 )1/2.

To prove the estimate (2.11) we use inequality (2.3)

∫

Ω

[

(u′′′)2 − A(u′′)2 + B(u′)2

]

dx ≥

(

1 −
AL2

π2

)

∫

Ω

(u′′′)2dx ≥ k3∥u∥2
H3(Ω).

Lemma 2.5. Let u ∈ H(Ω). Then we have the estimates

a).
∫

Ω

u2dx ≤

(

L

π

)6

∥u∥2
H(Ω), (2.19)

b).
∫

Ω

urdx ≤ C(L, r)S r−2∥u∥r
H(Ω), r > 2, (2.20)

where C is a positive constant depending only on the indicated quantities and S is the best

constant in the imbedding H3(Ω) ⊂ C0(Ω).

Proof. a). Follows from inequality (2.1).

b). By the Sobolev imbedding and Lemma 2.2 we get

∫

Ω

urdx ≤ ∥u∥r−2
C0(Ω)

∫

Ω

u2dx

≤ S r−2
(

∥u∥2
H3(Ω)

)(r−2)/2 ∫

Ω

u2dx (2.21)

≤ S r−2C(L)(r−2)/2
(

∥u∥2
H(Ω)

)(r−2)/2 ∫

Ω

u2dx

≤ S r−2C(L, r)∥u∥r
H(Ω).
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3 Main results

3.1 Existence

We split the study of existence into three cases:

Case 0 ≤ r < 2

Lemma 3.1. Suppose that F satisfies

F(x, s) ≤ K1|s|
r + K2, ∀ (x, s) ∈ Ω × IR,

where K1, K2, 0 ≤ r < 2 and A ≤ 0, B, C ≥ 0, C ∈ C0(Ω). Then the boundary value problem (1.1)

has at least one solution.

Proof. The result is a consequence of the Weierstrass theorem, which tells us that if the func-

tional J is coercive and weakly lower semicontinuous on H(Ω), then J has a global minimum.

We first establish that J(u) is coercive.

By Young’s inequality

∫

Ω

F(x, u)dx ≤ ε
∫

Ω

u2dx +
∫

Ω

(

C(r, ε)K
2

2−r

1 + K2

)

dx. (3.1)

Using Lemma 2.2 it follows that

J(u) ≥
1

2

∫

Ω

(

(u′′′)2 + C(x)u2
)

dx − ε
∫

Ω

u2dx −
∫

Ω

(

C(r, ε)K
2

2−r

1 + K2

)

dx

≥
∫

Ω

(u′′′)2

(

1

2
− ε

(

L

π

)6
)

dx − C(K1, K2, r, L, ε)

≥ ∥u∥2
H(Ω)

(

1

2
− ε

(

L

π

)6
)

− C(K1, K2, r, L, ε).

If we choose now ε > 0 sufficiently small we get that J(u) is coercive on H(Ω).

We now show that J(u) is weakly lower semicontinuous on the reflexive space H(Ω).

Since A ≤ 0 and B ≥ 0 we get that

J1(u) =
1

2

∫

Ω

(

(u′′′)2 − A(u′′)2 + B(u′)2
)

dx

is convex.

Hence J(u) can be represented as the sum J(u) = J1(u) + J2(u), where J1(u) is convex and

J2(u) =
1

2

∫

Ω

(

C(x)u2 − 2F(x, u)
)

dx

is sequentially weakly continuous.

Therefore, J(u) is weakly lower semicontinuous by the result in [3, Criterion 6.1.3, p. 30],

and the proof follows.
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Remark 3.2. From the proof of Lemma 3.1 it can easily be seen that Lemma 3.1 still works if

C takes negative values. More precisely, if C ≥ −Cm, where Cm > 0 and

C1 = 1 − Cm

(

L

π

)6

> 0. (3.2)

The next lemma ensures that the solution we have found is nontrivial.

Lemma 3.3. Suppose that the following condition holds:

lim
s→∞

f (x, s)

sα
= q(x) and lim

s→∞
F(x, s) = ∞ uniformly in Ω, (3.3)

where q(x) ≥ 0, ∥q∥L∞(Ω) > 0, α > 1.

Then there exists e ∈ H(Ω) such that J(e) < 0.

Proof. We can find a function ϕ > 0 in Ω such that ϕ ∈ H(Ω) and
∫

Ω
q(x)ϕα+1(x)dx ≥ δ,

where δ is a positive constant.

A candidate for ϕ is

ϕ(x) = sin
πx

L
.

We note that by the first part of relation (3.3) and by the fact that f (x, s)/sα is continuous

in Ω × (0, ∞) we get that there exists a strictly positive function Q(x) ∈ L1(Ω) such that

f (x, s) ≤ Q(x)sα in Ω × [N, ∞),

where N is a positive constant.

Integrating with respect to s the last inequality, we obtain that F(x, s)/sα+1 is ”dominated”

by the L1 function Q(x)/(α + 1) in Ω × [N, ∞).

Hence by the dominated convergence theorem and (3.3)

lim
s→∞

J(sϕ)

sα+1
=

1

2
lim
s→∞

s2
∫

Ω

(

(ϕ′′′)2 − A(ϕ′′)2 + B(ϕ′)2 + C(x)ϕ2
)

dx

sα+1

− lim
s→∞

∫

Ω

F(x, sϕ)

sα+1
dx

= −
∫

Ω

lim
s→∞

F(x, sϕ)

sα+1
dx = −

∫

Ω

lim
s→∞

f (x, sϕ)ϕ

(α + 1)sα
dx

= −
1

α + 1

∫

Ω

q(x)ϕα+1(x)dx < 0,

which is the desired result.

Hence there exists e = sϕ ∈ H(Ω) such that J(e) < 0.

Our first main existence result reads.

Theorem 3.4. Suppose that F satisfies

F(x, s) ≤ K1|s|
r + K2, ∀ (x, s) ∈ Ω × IR,

where K1, K2, 0 ≤ r < 2 and A ≤ 0, B, C ≥ 0, C ∈ C0(Ω). If in addition (3.3) holds, then the

boundary value problem (1.1) has at least one nontrivial solution.
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Case r = 2

Lemma 3.5. Suppose that F satisfies

F(x, s) ≤ K1|s|
2 + K2, ∀ (x, s) ∈ Ω × IR, (3.4)

where K1, K2, A ≤ 0, B, C ≥ 0, C ∈ C0(Ω). If in addition we assume that

1 − 2K1

(

L

π

)6

> 0, (3.5)

then the boundary value problem (1.1) has at least one solution.

Proof. Since relations and (3.4) and (3.5) ensure the coercivity of J(u), we can imitate the proof

of Lemma 3.1.

Similarly, we get the corresponding existence result in the case r = 2.

Theorem 3.6. Suppose that F satisfies

F(x, s) ≤ K1|s|
2 + K2, ∀ (x, s) ∈ Ω × IR,

where K1, K2, A ≤ 0, B, C ≥ 0 in Ω. If in addition we assume that

1 − 2K1

(

L

π

)6

> 0,

and that (3.3) holds, then the boundary value problem (1.1) has at least one nontrivial solution.

Proof. Follows from Lemma 3.3 and Lemma 3.5.

Case r > 2, K2 = 0

The existence for the case r > 2 will be treated differently. We shall see that J(u) has a

mountain-pass structure and the nontrivial critical points of J(u) will be found by using the

Mountain-Pass theorem of Brézis and Nirenberg.

The following two lemmas show when J(u) has a mountain-pass structure.

Lemma 3.7. Let F satisfy

F(x, s) ≤ K1|s|
r, ∀ (x, s) ∈ Ω × IR, (3.6)

where K1 > 0, r > 2.

If A ≤ 0, B, C ≥ 0, or if one of the relations (2.4), (2.6), (2.7), (2.9) or (2.10) is satisfied, then there

exist two positive constants ρ and η such that

J(u)|∥u∥i
=ρ ≥ η, i = 1, 2, 3. (3.7)

Here ∥u∥i denotes one of the following norms

∥u∥2
1 =

∫

Ω

(

(u′′′)2 − A(u′′)2 + B(u′)2 + C(x)u2
)

dx,

when A ≤ 0, B, C ≥ 0 or when one of the relations (2.4) or (2.6) is satisfied;
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∥u∥2
2 =

∫

Ω

(

(u′′′)2 + B(u′)2 + C(x)u2
)

dx,

when one of the relations (2.7) or (2.9) is satisfied;

∥u∥2
3 =

∫

Ω

(

(u′′′)2 − A(u′′)2 + B(u′)2
)

dx,

when the relation (2.10) is satisfied.

Proof. By virtue of Lemma 2.3 we see that H(Ω) endowed with one of the scalar products

(u, v)i, i = 1, 2, 3, becomes a Hilbert space.

We give the proof in the case when (2.4) is satisfied. The cases when relations (2.7), (2.9)

or (2.10) hold can be treated similarly.

We note that (2.5) reads

∥u∥1 ≥ k1∥u∥2
H3(Ω). (3.8)

J(u) becomes

J(u) =
1

2
∥u∥2

1 −
∫

Ω

F(x, u)dx.

Since r > 2, we can choose q > 1 such that r = 1 + q.

From (3.8), (1.7) and Young’s inequality it follows that

∫

Ω

F(x, u)dx ≤ εK1

∫

Ω

u2dx +
K1

4ε

∫

Ω

u2qdx

≤ εK1C(L)∥u∥2
H(Ω) +

K1

4ε
S2q−2C(L)

q
2 ∥u∥

2q

H(Ω)

≤ εC(L, k1, K1)∥u∥2
1 +

1

4ε
C(L,S , k1, K1, q)∥u∥

2q
1 .

Hence

J(u) ≥ ∥u∥2
1

(

1

2
− εC(L, k1, K1)−

1

4ε
C(L,S , k1, K1, q)∥u∥

2q−2
1

)

.

We choose now ε small such that 1
2 − εC(L, k1, K1) > 0.

If we choose ρ sufficiently small we see that the required inequality holds.

Lemma 3.8. Let F satisfy

F(x, s) ≤ K1|s|
r, ∀ (x, s) ∈ Ω × IR,

where K1 > 0, r > 2.

Suppose that A ≤ 0, B, C ≥ 0, or one of the relations (2.4), (2.6), (2.7), (2.9) or (2.10) is satisfied.

Suppose in addition that the condition (3.3) is satisfied and let ρ be as in Lemma 3.7. Then there exists

e ∈ H(Ω) with ||e||i > ρ, i = 1, 2, 3 such that J(e) < 0.

Proof. The condition A ≤ 0, B, C ≥ 0, or one of the relations (2.4), (2.6), (2.7), (2.9) or (2.10)

assures in view of Lemma 3.7 the existence of ρ, while relation (3.3) assures the existence of e

with J(e) < 0. Since e = sϕ where s is large we get that ∥e∥i > ρ, i = 1, 2, 3.
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The following celebrated result is useful.

Theorem 3.9 (Mountain Pass Theorem [6]). Let E be a real Banach space with its dual E∗ and

suppose that J ∈ C1(E, R) satisfies

max{J(0), J(e)} ≤ µ < η ≤ inf
∥u∥=ρ

J(u),

for some constants µ < η, ρ > 0 and e ∈ E with ∥e∥ > ρ. Let λ ≥ η be characterized by

λ = inf
γ∈Γ

max
0≤τ≤1

J(γ(τ)),

where Γ = {γ ∈ C0([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths joining 0 and e.

Then there exists a sequence {un} ⊂ E such that

J(un) → λ ≥ η and ∥J′(un)∥E∗ → 0, as n → ∞.

We can now apply the Mountain Pass Theorem (Theorem 3.9) in H(Ω) to find a Cerami

type sequence, i.e.,

there exists {un} ⊂ H(Ω) such that J(un) → λ and ∥J′(un)∥H∗(Ω) → 0. (3.9)

Lemma 3.10. Suppose that we are under the hypotheses of Lemma 3.8. Let α ∈ (0, 2). If in addition

there exist the constants β > 0, γ > 0, θ ≥ 2 such that

F(x, s)−
1

θ
f (x, s)s ≤ γ|s|α−1s, ∀x ∈ Ω, s ∈ IR, s ̸= 0, (3.10)

then the sequence {un} defined by (3.9) is bounded in H(Ω).

Proof. We give the proof in the case when (2.4) is satisfied.

By the Mountain Pass Theorem 3.9 there exists

{un} ⊂ H(Ω) such that J(un) → λ and ⟨J′(un), un⟩ → 0. (3.11)

Hence for sufficiently large n we have,

λ + 1 ≥ J(un)−
1

θ
⟨J′(un), un⟩. (3.12)

Since

⟨J′(un), un⟩ = ∥un∥
2
1 −

∫

Ω

f (x, un)undx, (3.13)

we get that

J(un)−
1

θ
⟨J′(un), un⟩ =

(

1

2
−

1

θ

)

∥un∥
2
1 −

∫

Ω

(

F(x, un)−
1

θ
f (x, un)un

)

dx. (3.14)

By (3.10)

−
∫

Ω

(

F(x, un)−
1

θ
f (x, un)un

)

dx ≥ −γ
∫

Ω

|un|
α−1undx

≥ −γ
∫

Ω

|un|
αdx. (3.15)
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Now by Young’s inequality we get

∫

Ω

|un|
αdx ≤ ε

∫

Ω

(un)
2dx + C(ε, α, L),

by Lemma 2.2 we get

∫

Ω

(un)
2dx ≤

(

L

π

)6 ∫

Ω

(u′′′
n )2dx =

(

L

π

)6

∥un∥
2
H(Ω), (3.16)

and since (2.5) reads

∥un∥
2
1 ≥ k∥un∥

2
H3(Ω) ≥ k∥un∥

2
H(Ω), k =

1

3

(

1 −
A2

4B

)

,

we obtain from (3.15) that

−
∫

Ω

(

F(x, un)−
1

θ
f (x, un)un

)

dx ≥ −εγ
∫

Ω

(un)
2dx − γC(ε, α, L)

≥ −εγC(L)∥un∥
2
H3(Ω) − C(ε, α, γ, L)

≥ −ε
γ

k
C(L)∥un∥

2
1 − C(ε, α, γ, L), (3.17)

where C(L) =
(

L
π

)6
.

Combining relations (3.12), (3.14), (3.17) we have the estimate

λ + 1 ≥

(

1

2
−

1

θ

)

∥un∥
2
1 − ε

γ

k
C(L)∥un∥

2
1 − C(ε, α, γ, L). (3.18)

We can choose δ > 0 such that θ = 2 + 2δ.

If we now choose

ε =
δk

2γ(2 + 2δ)C(L)
,

it follows that

λ + 1 ≥

(

1

2
−

1

θ

)

∥un∥
2
1 −

δ

2(2 + 2δ)
∥un∥

2
1 − C(k, α, γ, δ, L)

≥
δ

2(2 + 2δ)
∥un∥

2
1 − C(k, α, γ, δ, L), (3.19)

which shows that {un} is bounded.

Remark 3.11. Instead of (3.10) we could have imposed the following hypotheses:

Let α ∈ (0, 2) and suppose that there exist the constants β > 0, γ > 0, θ ≥ 2 such that

F(x, s)−
1

θ
f (x, s)s ≤ γsα, ∀x ∈ Ω, s > 0, (3.20)

F(x, s)−
1

θ
f (x, s)s ≤ β, ∀x ∈ Ω, s ≤ 0. (3.21)

As (3.10) requires that F(x, s) − 1
θ f (x, s)s is negative for s < 0 we see that (3.21) is less

restrictive that (3.10).
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Sketch of proof. For each fixed n we define Ω
+ = {x ∈ Ω | un(x) > 0} and Ω

− = {x ∈ Ω |

un(x) ≤ 0}.

By (3.20) and (3.21)

−
∫

Ω

(

F(x, un)−
1

θ
f (x, un)un

)

dx ≥ −γ
∫

Ω+
(un)

αdx − β
∫

Ω−
dx

= −γ
∫

Ω+
(un)

αdx − β meas(Ω−)

≥ −γ
∫

Ω+
(un)

αdx − βL.

By Young’s inequality we get

∫

Ω+
(un)

αdx ≤ ε
∫

Ω+
(un)

2dx + C(ε, α, L) ≤ ε
∫

Ω

(un)
2dx + C(ε, α, L).

Hence

−
∫

Ω

(

F(x, un)−
1

θ
f (x, un)un

)

dx ≥ −εγ
∫

Ω

(un)
2dx − C(γ, ε, α, L, β),

which is similar to the first inequality in (3.17). Now the proof follows exactly as the proof of

Lemma 3.10.

Remark 3.12. Lemma 3.10 still holds when α = 2, if we impose the restriction

1

2
−

1

θ
−

γ

k

(

L

π

)6

> 0. (3.22)

Lemma 3.13. Under the hypotheses of Lemma 3.10, there exists a sequence {un} such that un → u0

strongly in H(Ω).

Proof. By Lemma 3.10 there is a bounded Cerami type sequence {un}. Hence we can extract a

subsequence, still denoted {un}, such that

un ⇀ u0 weakly in H(Ω),

un → u0 strongly in C2(Ω).

Let vn = un − u0.

Using (3.13) with un replaced by vn and the fact that

⟨J′(vn), vn⟩ → 0 as n → ∞

we can find a sequence {αn}, αn > 0, αn → 0 as n → ∞ such that (for sufficiently large n)

αn ≥ ∥vn∥
2
1 −

∫

Ω

f (x, vn)vndx.

Hence

αn ≥ ∥vn∥
2
1 − K1

∫

Ω

|vn|
rdx. (3.23)
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By (2.20) we have the estimate

∫

Ω

|vn(x)|rdx =

(

∫

Ω

|vn(x)|rdx

)
r−2

r
(

∫

Ω

|vn(x)|rdx

)
2
r

≤ ∥vn(x)∥r−2
C0(Ω)

L
r−2

2

(

C(L, r)

k
S r−2∥vn(x)∥r

1

)
2
r

(3.24)

= C(L, r, k,S)∥vn(x)∥r−2
C0(Ω)

∥vn(x)∥2
1.

Combining (3.23) and (3.24)

αn ≥ ∥vn∥
2
1

(

1 − C(L, r, k, K1,S)∥vn(x)∥r−2
C0(Ω)

)

> 0.

Thus vn → 0 strongly in H(Ω). This completes the proof.

We can now conclude the existence result in the case r > 2, K2 = 0.

Theorem 3.14. Let F satisfy

F(x, s) ≤ K1|s|
r, ∀ (x, s) ∈ Ω × IR,

where K1 > 0, r > 2. Suppose that one of the conditions of Lemma 2.3 is satisfied and that (3.10) holds.

If the condition (3.3) is satisfied, then problem (1.1) has a nontrivial solution in H(Ω).

We end this section by giving the following examples as an application of the results.

Example 3.15. We see that the theory presented includes the typical example

f (x, s) = b(x)s |s|p−2 , p > 2,

where b is a bounded function which is either strictly positive or strictly negative in Ω (no

sign changing is allowed).

For the sake of simplicity we take p even. We can check that

F(x, s) = b(x)
sp

p

satisfies (1.7) and relation (3.20) becomes

b(x)sp

(

1

p
−

1

θ

)

≤ γs, x ∈ Ω, s > 0. (3.25)

If b > 0 then we can choose 2 < θ < p and see that the left hand side of (3.25) becomes

negative and hence (3.25) is satisfied. Due to the negativity of the left hand side of (3.25) for

s ≤ 0 it is also obvious that (3.21) is satisfied.

We can argue similarly if b < 0 by choosing θ > p.

Also since (2.10) holds with A = 2, B = 1, C = 0, L = 1 we get by Theorem 3.14 that the

boundary value problem that describes the deformation of the equilibrium state of an elastic

circular ring segment with its two ends simply supported (see [1])

{

u(6) + 2u(4) + u′′ = b(x)u |u|p−2 in Ω = (0, 1)

u = u′′ = u(4) = 0 on ∂Ω,
(3.26)

has at least one nontrivial solution.
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Example 3.16. We consider the following function

g(x, s) = a(x) cos(sn + C)sn−1,

where a is a bounded function, C is a constant and n is a natural number.

Since the potential of g is

G(x, s) =
a(x)

n
(sin(sn + C)− sin(C))

and satisfies the requirements of Lemma 3.1, we get that problem (1.1) with f replaced by g

has a nontrivial solution in H(Ω) if A ≤ 0, B, C ≥ 0, C ∈ C0(Ω).

Example 3.17. If we consider

h(s) = ln(|s|+ 1) +
|s|

|s|+ 1
+ s

we see that its potential is H(s) = s ln(|s|+ 1) + s2/2. Due to the inequality ln(|s|+ 1) ≤ |s|,

we see that H satisfies the requirements of Lemma 3.3. Hence problem (1.1) with f replaced

by h has a nontrivial solution in H(Ω) if A ≤ 0, B, C ≥ 0, C ∈ C0(Ω).

3.2 Uniqueness

Our first uniqueness result reads

Theorem 3.18. Suppose that F satisfies

F(x, s) ≤ K1|s|
r + K2, ∀ (x, s) ∈ Ω × IR,

where K1, K2, 0 ≤ r < 2 and A ≤ 0, B, C ≥ 0, C ∈ C0(Ω) and that relation (3.3) holds. If in addition

∂ f (x, s)

∂s
< 0 in Ω × IR (3.27)

holds, then problem (1.1) has a unique nontrivial solution in H(Ω).

Proof. By the proof of Lemma 3.1, J(u) can be represented as the sum J(u) = J1(u) + J2(u),

where J1(u) is convex and

J2(u) =
1

2

∫

Ω

(

C(x)u2 − 2F(x, u)
)

dx.

Condition (3.27) assures that the function s → F(x, s) is strictly convex and hence J2(u)

is strictly convex. The last statement implies that J(u) is strictly convex and the uniqueness

follows.

The next uniqueness result is a consequence of the following one dimensional generalized

maximum principle (for results concerning the generalized maximum principle see [18, p. 73])

and collects several author’s uniqueness results in the case when the coefficients A, B, C are

nonconstant or have arbitrary sign and f = f (x).
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Theorem 3.19. Let u ∈ C2(Ω) ∩ C0(Ω) satisfy the inequality Lu ≡ u′′ + γ(x)u ≥ 0 in Ω, where

γ ≥ 0 in Ω.

Suppose that

sup
Ω

γ <
π2

L2
(3.28)

holds.

Then, there exists a function w > 0 in Ω, w ∈ C∞(Ω) such that u/w satisfies a generalized

maximum principle in Ω, i.e., there exists a constant k ∈ IR such that u/w ≡ k in Ω or u/w does not

attain a nonnegative maximum in Ω.

Proof. The proof follows directly from [11, Theorem 2.1] (which holds for all dimensions

n ≥ 1).

The interested reader may consult the paper [16] for a different kind of one dimensional

maximum principle for sixth order operators. The authors prove (Theorem 3.1) the positivity

of the solution u that satisfies a sixth order differential inequality assuming that u, u′ are

positive on the boundary of the domain Ω = (a, b) and (in particular) u′′′(a) ≤ 0, u′′′(b) ≥ 0.

Theorem 3.20. The boundary value problem

{

u(6) + A(x)u(4) + B(x)u′′ − C(x)u = f (x) in Ω

u = g1, u′′ = g2, u(4) = g3 on ∂Ω,
(3.29)

has at most one solution if one of the following conditions is satisfied (here gi, i = 1, 2, 3 are arbitrary

constants)

1).

sup
Ω

A(B + C)2

2B2(A + 1)
<

π2

L2
in Ω. (3.30)

Here A < −1, B > 0 are constants and C > 0 in Ω is a function.

2). Suppose that the functions A, C satisfy −A = C > 0 in Ω and that the function B satisfies

B > 1 in Ω,
(

1/(B − 1)
)′′

≤ 0 in Ω. (3.31)

3). Suppose that the functions A < 0, B, C > 0 in Ω satisfy

sup
Ω

−(C − A)2

2A(B − 1)
<

π2

L2
in Ω (3.32)

and also (3.31) holds.

4).

sup
Ω

−2C

A + C + 1
<

π2

L2
in Ω, (3.33)

where the functions A < 0, C > 0 satisfy A + C + 1 < 0 in Ω and
(

1/(A + C + 1)
)′′

≥

0 in Ω.
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Proof. 1). The proof uses the P-function method introduced by L. E. Payne [17]. Many results

concerning the P-function method and its applications can be found in the book [19].

We give the proof when (3.30) holds.

We define u = u1 − u2, where u1 and u2 are solutions of (3.29). Then u satisfies (3.29),

where f = 0 and with zero boundary data u = u′′ = u(4) = 0 on ∂Ω.

According to [11], Lemma 3.1, i), the function

P = (−Au(4) + Bu)2 + AB(A + 1)(u′′)2 − B2(A + 1)u2

satisfies the inequality

P′′ +
A(B + C)2

2B2(A + 1)
P ≥ 0 in Ω.

Hence by Theorem 3.19 there exists w > 0 in Ω such that P/w satisfies a generalized

maximum principle in Ω, i.e., either there exists a constant k ∈ IR such that

P

w
≡ k in Ω, (3.34)

or
P

w
does not attain a maximum in Ω. (3.35)

If (3.34) holds then since the function P/w is smooth (3.34) holds in Ω. By the zero bound-

ary conditions we have P = 0 on ∂Ω, i.e., k = 0. It follows that P = 0 in Ω. Since P is a sum of

squares multiplied by positive constants, P = 0 in Ω implies u ≡ 0 in Ω. Hence u1 = u2 in Ω.

Alternatively, if (3.35) holds, then

max
Ω

P

w
= max

∂Ω

P

w
= 0

by the zero boundary conditions. It follows that

0 ≤ max
Ω

P

w
= 0,

i.e., P = 0 in Ω. Using the same arguments as above, we get u ≡ 0 in Ω, i.e., u1 = u2 in Ω.

2). If (3.31) holds then, by [11, Lemma 3.1, ii)], the P-function

P1 = (u(4) + u)2 + (B − 1)(u′′)2 + (B − 1)u2

satisfies the classical maximum principle, which means that it attains its maximum on the

boundary of Ω, i.e., max
Ω

P1 = max∂Ω P1 = 0.

3). If (3.32) holds then [11, Lemma 3.1, ii)] tells that P1/w satisfies a generalized maximum

principle and we can argue as in Case 1).

4). If (3.33) holds then we can use [11, Lemma 3.2, ii)] which shows that P2/w satisfies a

generalized maximum principle and the proof follows. Here

P2 = (u(4) − u′′)2 + C(u′′ − u)2 − (A + C + 1)(u′′)2.
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3.3 Multiplicity

Finally, we present a multiplicity result for (1.1) that is based on the result presented in [20,

Theorem 3], Lemma 2.3 and the next result.

Lemma 3.21. Let A, B, C be real constants such that C > 0. The polynomial

P(L) = L6 −
B

C
π2L4 +

A

C
π4L2 −

π6

C

has exactly one positive zero ξ0 if either

B ≤ 0, A > 0, (3.36)

A, B > 0, B2 ≤ 3AC, (3.37)

A, B > 0, B2
> 3AC,

1

C
∈ (0, γ−) ∪ (γ+, ∞), (3.38)

where

γ± =
1

27

[

9AB

C2
−

2B3

C3
±

(

2B2

C2
−

3A

C

)
3
2

]

,

or

A ≤ 0, B ∈ IR (3.39)

holds.

Moreover, for L > ξ0 we have P(L) > 0.

The proof is a direct consequence of the result presented in [8, Lemma 4.3].

To prove the multiplicity result we need the following

Definition 3.22. Let X be a Banach space and J ∈ C1(X, IR). We say that J satisfies a Palais–

Smale condition if any sequence {un}n in X for which J(un) is bounded and J′(un) → 0 as

n → ∞, has a convergent subsequence.

Theorem 3.23 (Clark [10]). Let X be a Banach space, J ∈ C1(X, IR) be even, bounded below and

satisfy the Palais–Smale condition. Suppose that J(0) = 0 and there is a set Y ⊂ X such that Y is

homeomorphic to Sm−1 by an odd map and supY J < 0. Then J possesses at least m distinct pairs of

critical points.

Our multiplicity result reads

Theorem 3.24. Let L > mξ0, for some positive natural number m. Suppose that F(x, 0) = 0, s →

F(x, s) is even for all x ∈ Ω and A, B, C are constants. If in addition one of the following relations

holds

one of the hypotheses of Lemma 3.21, relation (1.4) and − F(x, s) ≤ K|s|p, p > 2, (3.40)

A ≤ 0, B ≥ 0, 0 ≥ C ≥ −Cm and relation (1.8), (3.41)

A2 ≤ 4BC1, B2 ≤ −3AC and relation (1.8), (3.42)

where C1 = 1 − Cm

(

L
π

)6
, then problem (1.1) has m distinct nontrivial solutions.
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Proof. We first note that if relation (1.4) holds, then by [14, Lemma 7], we get that J(u) is

bounded from below and satisfies the Palais–Smale condition for any real constants A, B, C.

If one of the relations (3.41) or (3.42) is assumed, in view of Lemma 2.3 and the structure

condition (1.8) we can use a similar argument that was used in the proof of Lemma 3.1 to show

that J(u) is bounded from below on H(Ω) by a negative constant. Since f is continuous on IR2

we can follow [20], proof of Theorem 3, to get that J(u) satisfies the Palais–Smale condition.

We now use the same techniques as in [20, Theorem 3] and prove the case when (3.40)

holds. We can treat similarly the other cases.

Consider the set Y ⊂ H(Ω),

Y =

{

λ1 sin
πx

L
+ · · ·+ λm sin

mπx

L
: λ2

1 + · · ·+ λ2
m = ρ2

}

,

where ρ is a positive number to be chosen later. Y is a subset of the finite-dimensional space

Xm

Xm = span

{

sin
πx

L
, . . . , sin

mπx

L

}

equipped with the norm

∥

∥

∥
λ1 sin

πx

L
+ · · ·+ λm sin

mπx

L

∥

∥

∥

2

m
= λ2

1 + · · ·+ λ2
m.

Since

J(v) =
1

2

∫

Ω

(

(v′′′)2 − A(v′′)2 + B(v′)2 + Cv2
)

dx −
∫

Ω

F(x, v)dx,

we get by computation and by (1.8) that for any v ∈ Y

J(v) ≤
L

4
∥v∥2

m

[

(

π

L

)6

− A

(

π

L

)4

+ B

(

π

L

)2

+ C

]

+ K
∫

Ω

|v|pdx.

Using Hölder’s inequality we have

|v| =

∣

∣

∣

∣

λ1 sin
πx

L
+ · · ·+ λm sin

mπx

L

∣

∣

∣

∣

≤

(

λ2
1 + · · ·+ λ2

m

)
1
2
(

sin2 πx

L
+ · · ·+ sin2 mπx

L

)
1
2

≤ m∥v∥m.

Hence we get

J(v) ≤
L

4
∥v∥2

mQ(L) + C(K, m, p, L)∥v∥
p
m,

where

Q(L) =

(

π

L

)6

− A

(

π

L

)4

+ B

(

π

L

)2

− C.

It is easy to check that Q(L) < 0 iff P(L) > 0.



Existence and uniqueness for a sixth-order ODE 21

Hence by Lemma 3.21 we see that for L > ξ0 Q(L) < 0 and by choosing ρ sufficiently

small, we get

J(v) ≤ ∥v∥2
m

(

L

4
Q(L) + C(K, m, p, L)∥v∥

p−2
m

)

< 0,

for any v ∈ Y.

Now the proof follows from Clark’s theorem.
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Abstract. In this paper, we study sign-changing solution of the Choquard type equation

−∆u + (λV(x) + 1) u =
(

Iα ∗ |u|
2∗α
)
|u|2

∗
α−2u + µ|u|p−2u in R

N ,

where N ≥ 3, α ∈ ((N − 4)+, N), Iα is a Riesz potential, p ∈
[
2∗α, 2N

N−2

)
, 2∗α := N+α

N−2
is the upper critical exponent in terms of the Hardy–Littlewood–Sobolev inequality,
µ > 0, λ > 0, V ∈ C(RN , R) is nonnegative and has a potential well. By combining the
variational methods and sign-changing Nehari manifold, we prove the existence and
some properties of ground state sign-changing solution for λ, µ large enough. Further,
we verify the asymptotic behaviour of ground state sign-changing solutions as λ → +∞

and µ → +∞, respectively.

Keywords: Choquard equation, upper critical exponent, steep well potential, ground
state sign-changing solution, asymptotic behaviour.

2020 Mathematics Subject Classification: 35J15, 35J20, 35B33, 35D30.

1 Introduction and main results

The Choquard equation has a physical prototype, namely the Hartree type evolution equation

−i∂tψ = ∆ψ +
(

I2 ∗ |ψ|
2
)

ψ, (x, t) ∈ R
3 × R+, (1.1)

where R+ = [0,+∞), I2(x) = 1
4π|x| , ∀ x ∈ R

3\{0}, and ∗ is convolution in R
3. Eq. (1.1) was

firstly proposed by Pekar to describe a resting polaron in [24]. Two decades later, Choquard

[16] introduced Eq. (1.1) as a certain approximation to Hartree–Fock theory of one component

plasma, and used it to characterize an electron trapped in its own hole. Afterwards, viewing

the quantum state reduction as a gravitational phenomenon in quantum gravity, Penrose et al.

[20] proposed Eq. (1.1) in the form of Schrödinger–Newton system to model a single particle

moving in its own gravitational field.

BCorresponding author. Email: tangcl@swu.edu.cn
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As we know, standing wave solution of Eq. (1.1) corresponds to solution of the Choquard

equation

−∆u + u =
(

I2 ∗ |u|
2
)

u in R
3. (1.2)

In detail, with a suitable scaling, the wave function ψ(x, t) = e−itu(x) is a solution of Eq. (1.1)

once u is a solution of Eq. (1.2). Lieb demonstrated the seminal work on Eq. (1.2) in [16], in

which he certified the existence and uniqueness (up to translations) of positive radial ground

state solution by applying symmetrically decreasing rearrangement inequalities. After this,

Lions [18] studied the same problem and further proved the existence of infinitely many

radial solutions via the variational methods.

From mathematical perspective, scholars prefer to study the general Choquard equation

−∆u + W(x)u = γ (Iα ∗ G(u)) g(u) in R
N , (1.3)

where N ≥ 3, γ ∈ R
+, Iα is the Riesz potential of order α ∈ (0, N) defined for x ∈ R

N\{0} by

Iα(x) =
Aα

|x|N−α
with Aα =

Γ(N−α
2 )

Γ( α
2 )2

απ
N
2

,

Γ is the Gamma function, ∗ is convolution, W ∈ C(RN , R), g ∈ C(R, R) and G(u) =
∫ u

0 g(s)ds.

To establish the variational framework for Choquard equations, we need the following

celebrated Hardy–Littlewood–Sobolev inequality.

Proposition 1.1 ([17, Theorem 4.3]). Let r, s > 1, 0 < α < N satisfy 1
r +

1
s = 1 + α

N . Then there

exists a sharp constant C(N, α, r, s) > 0 such that, for all f ∈ Lr(RN) and h ∈ Ls(RN), there holds

∣∣∣∣
∫

RN

∫

RN

f (x)h(y)

|x − y|N−α
dxdy

∣∣∣∣ ≤ C(N, α, r, s)| f |r|h|s. (1.4)

In particular, if r = s = 2N
N+α , then the constant C(N, α, r, s) admits a precise expression, namely,

C(N, α) := C(N, α, r, s) = π
N−α

2
Γ( α

2 )

Γ(N+α
2 )

[
Γ(N

2 )

Γ(N)

]− α
N

.

Thanks to (1.4), the integral
∫

RN (Iα ∗ |u|p)|u|pdx is well defined in H1(RN) once p ∈ [2α
∗, 2∗α],

where 2∗α := N+α
N−2 and 2α

∗ := N+α
N are usually called upper and lower critical exponents with

respect to the Hardy–Littlewood–Sobolev inequality, respectively. It is easy to clarify that the

critical terms
∫

RN (Iα ∗ |u|2
∗
α)|u|2

∗
α dx and

∫
RN (Iα ∗ |u|2

α
∗)|u|2

α
∗dx are invariant under the scaling

actions σ
N−2

2 u(σ·) and σ
N
2 u(σ·) (σ > 0), respectively, and these two scaling actions served as

group actions are noncompact on H1(RN). Consequently, from the perspective of variational

methods, the critical exponents 2α
∗ and 2∗α may provoke two kinds of lack of compactness.

However, fortunately, similar to the Sobolev critical case studied in [3], these two kinds of

loss of compactness can be recovered to some extent by using the extremal functions of the

Hardy–Littlewood–Sobolev inequality.

In [21], Moroz and Van Schaftingen studied the case of Eq. (1.3) that W(x) ≡ 1, γ = 1
p and

G(u) = |u|p (p > 1), they proved the existence, regularity, radially symmetry and decaying

property at infinity of ground state solution when p ∈ (2α
∗, 2∗α). Meanwhile, based on the

regularity of solutions, they established a Nehari–Pohožaev type identity and then showed
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the nonexistence of nontrivial solutions for Eq. (1.3) when p /∈ (2α
∗, 2∗α). Afterwards, in [22],

they extended the existence results in [21] to the case of Eq. (1.3) that g satisfies the so-called

almost necessary conditions of Berestycki–Lions type. For the critical cases of Eq. (1.3), with

the nonexistence result of [21] in hand, an increasing number of scholars devote to studying

Eq. (1.3) with critical term and a noncritical perturbed term. We refer the interested readers

to [4, 9, 14, 30] for upper critical case, [23, 26] for lower critical case and [15, 25, 31] for doubly

critical case.

When it comes to the case W(x) ̸≡ const., we focus our attention on steep well potential of

the form λV(x) + b, where λ > 0, b ∈ R and V ∈ C(RN , R) satisfies the following hypotheses:

(V1) V is bounded from below, Ω := int V−1(0) is nonempty and Ω = V−1(0),

(V2) there exists some constant M > 0 such that
∣∣{x ∈ R

N : V(x) ≤ M
}∣∣ < +∞.

This type of potential was firstly introduced by Bartch and Wang in [2] to study the existence

and multiplicity of nontrivial solutions for subcritical Schrödinger equations in the case of

b > 0. Later, Ding and Szulkin further considered the case b = 0 in [8]. Since |Ω| < +∞,

then −∆ possesses a sequence of positive Dirichlet eigenvalues µ1 < µ2 < · · · < µn → +∞.

Assuming b < 0 and b ̸= −µi for any i ∈ N+, Clapp and Ding [6], together with Tang

[27], studied the existence and concentration of ground state solution for critical Schrödinger

equation. Recently, the pre-existing results on Schrödinger equations have been extended to

the Choquard equations, see e.g. [1, 14, 15, 19] and the references therein.

As we concerned here, sign-changing solution of elliptic equation is a focusing topic due

to its wide application in biology and physics etc. In [7], Clapp and Salazar investigated the

Choquard equation

−∆u + W(x)u = (Iα ∗ |u|
p) |u|p−2u in Ω,

where Ω ⊂ R
N (N ≥ 3) is an exterior domain, p ∈ [2, 2∗α), α ∈ ((N − 4)+, N) and W ∈

C(RN , R). Under symmetrical assumptions on Ω and decaying properties on W, they derived

multiple sign-changing solutions. After this, many scholars considered the same topic in the

whole Euclidean space, namely,

−∆u + W(x)u = (Iα ∗ |u|
p) |u|p−2u in R

N . (1.5)

In [11], Ghimenti and Van Schaftingen studied the case that N ≥ 1, α ∈ ((N − 4)+, N),

W(x) ≡ 1 and p ∈ (2, 2∗α) of Eq. (1.5). There, by introducing a new minimax principle and

concentration-compactness lemmas for sign-changing Palais–Smale sequences, they obtained

a ground state sign-changing solution. Also, they proved that the least energy in the sign-

changing Nehari manifold has no minimizers when p ∈ (2α
∗, max{2, 2∗α}). Further, Ghimenti,

Moroz and Van Schaftingen [10] constructed a ground state sign-changing solution of Eq. (1.5)

when p = 2 by approaching the case p = 2 with the cases p ∈ (2, 2∗α). Van Schaftingen and

Xia [28] assumed that N ≥ 1, α ∈ ((N − 4)+, N), p ∈ [2, 2∗α) and W ∈ C(RN , R) satisfies

the coercive condition lim|x|→∞ W(x) = +∞. By using a constrained minimization argument

in sign-changing Nehari manifold, they derived a ground state sign-changing solution of

Eq. (1.5) (see the similar result in [32]). Moreover, Zhong and Tang [33] studied the following

Choquard equation

−∆u + (λV(x) + 1) u =
(

Iα ∗ (K|u|
p)
)
K(x)|u|p−2u + |u|2

∗−2u in R
N ,

where N ≥ 3, 2∗ = 2N
N−2 , α ∈ ((N − 4)+, N), p ∈ (2, 2∗α), λ < 0 and the functions V, K satisfy
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(V3) V ∈ L
N
2 (RN)\{0} is nonnegative,

(V4) there exist constants ρ, β, C > 0 such that V(x) ≥ C|x|−β for all |x| < ρ,

(K1) K ∈ Lr(RN) ∩ L∞(RN)\{0} for some r ∈
[

2N
N+α−p(N−2)

,+∞
)

and K is nonnegative.

It follows from (V3) that the first eigenvalue λ1 of −∆u + u = λV(x)u in H1(RN) is pos-

itive. When λ ∈ (−λ1, 0) and β ∈
(
2 − min

{
N+α

2p − N−2
2 , N−2

2

}
, 2
)
, following the ideas in

[5], they derived a ground state sign-changing solution by using minimization arguments in

sign-changing Nehari manifold.

Motivated by the above works, in the present paper, we study the Choquard equation

−∆u + (λV(x) + 1) u =
(

Iα ∗ |u|
2∗α
)
|u|2

∗
α−2u + µ|u|p−2u in R

N , (1.6)

where λ > 0, µ > 0, N ≥ 3, α ∈ ((N − 4)+, N), p ∈ [2∗α, 2∗), and V ∈ C(RN , R) satisfies the

hypotheses

(V5) V(x) ≥ 0 in R
N and there exists some M > 0 such that

∣∣{x ∈ R
N : V(x) ≤ M

}∣∣ < +∞,

(V6) Ω := int V−1(0) is a nonempty set with smooth boundary and Ω = V−1(0).

Let Eλ :=
{

u ∈ H1(RN) :
∫

RN λV(x)u2dx < +∞
}

be equipped with the inner product

(u, v)λ :=
∫

RN
∇u · ∇v + (λV(x) + 1) uvdx, ∀ u, v ∈ Eλ,

and the norm ∥ · ∥λ = (·, ·)
1
2
λ for any λ > 0. Since V ≥ 0 in R

N , it is easy to see that

Eλ →֒ H1(RN) and, for any s ∈ [2, 2∗], there is some constant νs > 0 such that, for all λ > 0,

|u|s ≤ νs∥u∥ ≤ νs∥u∥λ, ∀ u ∈ Eλ. (1.7)

By (1.4) and (1.7), we deduce the energy functional Jλ,µ of Eq. (1.6) belongs to C1(Eλ, R),

where

Jλ,µ(u) =
1

2
∥u∥2

λ −
1

2 · 2∗α

∫

RN

(
Iα ∗ |u|

2∗α
)
|u|2

∗
α dx −

µ

p

∫

RN
|u|pdx.

Now we are prepared to state our main results.

Theorem 1.2. Assume that N ≥ 3, α ∈ ((N − 4)+, N), p ∈ [2∗α, 2∗) and (V5), (V6) hold. Then there

exist Λ > 0 and µ∗ > 0 such that Eq. (1.6) admits a ground state sign-changing solution uλ,µ for any

λ ≥ Λ and µ ≥ µ∗. Further, for any µ ≥ µ∗ and sequence {λn} ⊂ [Λ,+∞) satisfying λn → +∞,

the sequence
{

uλn,µ

}
of ground state sign-changing solutions to Eq. (1.6) strongly converges to some

uµ in H1(RN) in the sense of subsequence, where uµ is a ground state sign-changing solution of




−∆u + u = Aα

∫

Ω

|u(y)|2
∗
α

|x − y|N−α
dy|u|2

∗
α−2u + µ|u|p−2u in Ω,

u = 0 on ∂Ω.

(1.8)

Moreover, for any λ ≥ Λ and sequence {µn} ⊂ [µ∗,+∞) with µn → +∞, the sequence {uλ,µn
} of

ground state sign-changing solutions to Eq. (1.6) strongly converges to 0 in H1(RN) up to a subse-

quence.
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Remark 1.3. Similar to the proof of Theorem 1.1 in [14], by minimizing Jλ,µ on the Nehari

manifold

Nλ,µ =
{

u ∈ Eλ\{0},
〈
J ′

λ,µ(u), u
〉
= 0

}
,

we can demonstrate that Eq. (1.6) has a positive ground state solution vλ,µ for any λ, µ > 0

large enough. It is easy to show Jλ,µ(uλ,µ) > Jλ,µ(vλ,µ). Indeed, if Jλ,µ(uλ,µ) = Jλ,µ(vλ,µ),

then |uλ,µ| ∈ Nλ,µ satisfies Jλ,µ(|uλ,µ|) = infNλ,µ
Jλ,µ. Thereby, in a standard way, we may

deduce J ′
λ,µ(|uλ,µ|) = 0. Whereas, the strong maximum principle implies |uλ,µ| > 0 in R

N ,

and the regular estimates for Choquard equations (see e.g. [21, 22]) implies uλ,µ ∈ C(RN , R),

thus uλ,µ has constant sign in R
N , which contradicts with u±

λ,µ ̸= 0. Furthermore, due to

the presence of the perturbed term µ|u|p−2u, the methods introduced in [11, 32] to verify that

the least energy of sign-changing solutions is less than twice the least energy of nontrivial

solutions seem invalid here, we propose an open question whether Jλ,µ(uλ,µ) < 2Jλ,µ(vλ,µ).

Remark 1.4. To our knowledge, there seem to be no results on (ground state) sign-changing

solutions for Choquard equations with upper critical exponent, even on the bounded domain.

Our present work extends and improves the existence results of sign-changing solutions ver-

ified in [7, 10, 11, 28, 33]. In [5], the authors studied the ground state sign-changing solutions

for a class of critical Schrödinger equations

{
−∆u − λu = |u|2

∗−2u in D,

u = 0 on ∂D,

where D ⊂ R
N (N ≥ 6) is a bounded domain and λ ∈ (0, λ1), with λ1 denoting the first

eigenvalue of −∆ on D. They proved that any sign-changing (PS)c sequence is relatively

compact once c < c0 +
1
N S

N
2 , where c0 is the least energy of nontrivial solutions. As a counter-

part for the work in [5], Zhong and Tang studied a class of Choquard equations with critical

Sobolev exponent in [33], where they showed the relative compactness of sign-changing (PS)c

sequence with c less than the similar threshold. However, in this paper, due to the presence

of the upper critical nonlocal term (Iα ∗ |u|2
∗
α)|u|2

∗
α−2u in Eq. (1.6), the relative compactness of

sign-changing (PS)c sequence with

c ∈

[
2 + α

2(N + α)
S

N+α
2+α

α , inf
Nλ,µ

Jλ,µ +
2 + α

2(N + α)
S

N+α
2+α

α

)

cannot be deduced as expected, where Sα is defined by (2.12) hereinafter. Also, it seems

intractable to search for sign-changing (PS)c sequence such that c <
2+α

2(N+α)
S
(N+α)/(2+α)
α for

small µ > 0. Naturally, we attempt to construct a sign-changing (PS)c sequence with c <

2+α
2(N+α)

S
(N+α)/(2+α)
α by assuming that µ > 0 is sufficiently large. Therefrom, by applying the

properties of steep well potential λV, we can standardly prove the relative compactness of this

type of sign-changing (PS)c sequence and then obtain ground state sign-changing solution.

We will give the proof of Theorem 1.2 in the forthcoming section. Throughout this paper,

we use the following notations:

♠ Lp(RN) is the usual Lebesgue space with the norm |u|p =
(∫

RN |u|pdx
) 1

p for p ∈ [1,+∞).

♠ L∞(RN) is the space of measurable functions with the norm |u|∞ = ess supx∈RN |u(x)|.
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♠ C∞
0 (RN) consists of infinitely times differentiable functions with compact support in R

N .

♠ H1(RN) =
{

u ∈ L2(RN) : |∇u| ∈ L2(RN)
}

endowed with the inner product and norm

(u, v) =
∫

RN
∇u · ∇v + uvdx and ∥u∥ = (u, u)

1
2 .

♠ H1
0(Ω) is the closure of C∞

0 (Ω) in H1(Ω) with the norm ∥u∥Ω =
(∫

Ω
|∇u|2dx

) 1
2 .

♠ D1,2(RN) is the completion of C∞
0 (RN) with respect to the norm ∥u∥D = |∇u|2.

♠ The best Sobolev constant S = inf
{
∥u∥2

D : u ∈ D1,2(RN) and |u|2∗ = 1
}

.

♠ u±(x) := ±max {±u(x), 0} and (E∗, ∥ · ∥∗) is the dual space of Banach space (E, ∥ · ∥).

♠ o(1) is a quantity tending to 0 as n → ∞ and |Ω| is the Lebesgue measure of Ω ⊂ R
N .

♠ Br(y) =
{

x ∈ R
N : |x − y| < r

}
, B

c
r(y) = R

N\Br(y) and Br(0) = Br for r > 0, y ∈ R
N .

2 Proof of Theorem 1.2

For the limiting problem of Eq. (1.6) as λ → +∞, namely Eq. (1.8), its energy functional is

J∞,µ(u) =
1

2

∫

Ω

|∇u|2 + u2dx −
Aα

2 · 2∗α

∫

Ω

∫

Ω

|u(x)|2
∗
α |u(y)|2

∗
α

|x − y|N−α
dxdy −

µ

p

∫

Ω

|u|pdx.

Due to (1.4) and H1
0(Ω) →֒ Lp(Ω), J∞,µ ∈ C1(H1

0(Ω), R). Define the sign-changing Nehari

manifolds

Mλ,µ =
{

u ∈ Eλ : u± ̸= 0,
〈
J ′

λ,µ(u), u±
〉
= 0

}
,

M∞,µ =
{

u ∈ H1
0(Ω) : u± ̸= 0,

〈
J ′

∞,µ(u), u±
〉
= 0

}
.

Clearly, Mλ,µ and M∞,µ contain all of the sign-changing solutions of Eqs. (1.6) and (1.8),

respectively. To search for ground state sign-changing solutions, we consider the following

minimization problems:

mλ,µ = inf
{
Jλ,µ(u) : u ∈ Mλ,µ

}
,

m∞,µ = inf
{
J∞,µ(u) : u ∈ M∞,µ

}
.

Before completing the proof of Theorem 1.2, we establish several preliminary lemmas.

Lemma 2.1. For any λ > 0, µ > 0 and u ∈ Eλ with u± ̸= 0, there exists a unique pair (sλ,µ,u, tλ,µ,u)

of positive numbers such that s
1

2∗α
λ,µ,uu+ + t

1
2∗α
λ,µ,uu− ∈ Mλ,µ, also,

Jλ,µ

(
s

1
2∗α
λ,µ,uu+ + t

1
2∗α
λ,µ,uu−

)
= max

s,t≥0
Jλ,µ(s

1
2∗α u+ + t

1
2∗α u−).

Proof. Firstly, we certify the existence of such pair of numbers. For any λ > 0, µ > 0 and
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u ∈ Eλ with u± ̸= 0, define the function Fλ,µ,u(s, t) for any (s, t) ∈ [0,+∞)2 by

Fλ,µ,u(s, t) = Jλ,µ(s
1

2∗α u+ + t
1

2∗α u−)

=
s

2
2∗α

2
∥u+∥2

λ −
s2

2 · 2∗α

∫

RN

(
Iα ∗ |u

+|2
∗
α
)
|u+|2

∗
α dx −

µs
p

2∗α

p

∫

RN
|u+|pdx

+
t

2
2∗α

2
∥u−∥2

λ −
t2

2 · 2∗α

∫

RN

(
Iα ∗ |u

−|2
∗
α
)
|u−|2

∗
α dx −

µt
p

2∗α

p

∫

RN
|u−|pdx

−
st

2∗α

∫

RN

(
Iα ∗ |u

+|2
∗
α
)
|u−|2

∗
α dx.

It is easy to derive lim|(s,t)|→0 Fλ,µ,u(s, t) = 0 and lim|(s,t)|→+∞ Fλ,µ,u(s, t) = −∞. Then there

exists some point (sλ,µ,u, tλ,µ,u) ∈ [0,+∞)2 such that

Fλ,µ,u(sλ,µ,u, tλ,µ,u) = max
(s,t)∈[0,+∞)2

Fλ,µ,u(s, t).

Since Fλ,µ,u(s, tλ,µ,u) is increasing in s for s > 0 small enough, there results sλ,µ,u ̸= 0. Similarly,

we deduce tλ,µ,u ̸= 0. Thereby, (sλ,µ,u, tλ,µ,u) ∈ (0,+∞)2. Then

∂Fλ,µ,u

∂s
(sλ,µ,u, tλ,µ,u) =

∂Fλ,µ,u

∂t
(sλ,µ,u, tλ,µ,u) = 0.

Naturally, s
1

2∗α
λ,µ,uu+ + t

1
2∗α
λ,µ,uu− ∈ Mλ,µ.

Further, we claim such pair of numbers is unique. For brevity, we introduce the notation

B(u, v) :=
1

2∗α

∫

RN

(
Iα ∗ |u|

2∗α
)
|v|2

∗
α dx, ∀ u, v ∈ Eλ.

Through direct calculation, we deduce that the Hessian matrix of Fλ,µ,u at (s, t) ∈ (0,+∞)2 is

Hλ,µ,u(s, t) =
2 − 2∗α
(2∗α)

2

(
s

2
2∗α
−2
∥u+∥2

λ 0

0 t
2

2∗α
−2
∥u−∥2

λ

)

−

(
B(u+, u+) B(u+, u−)

B(u+, u−) B(u−, u−)

)
−

µ(p − 2∗α)

(2∗α)
2

(
s

p

2∗α
−2
|u+|

p
p 0

0 t
p

2∗α
−2
|u−|

p
p

)
.

It follows from [17, Theorem 9.8] that B(u+, u−)2
< B(u+, u+)B(u−, u−). Then, noting p ≥ 2∗α,

we conclude that Hλ,µ,u(s, t) is negative defined for any (s, t) ∈ (0,+∞)2. Thereby, it is easy to

know that Fλ,µ,u has at most one critical point on (0,+∞)2. Thus, (sλ,µ,u, tλ,µ,u) is the unique

pair of positive numbers such that s
1

2∗α
λ,µ,uu+ + t

1
2∗α
λ,µ,uu− ∈ Mλ,µ, and this lemma is proved.

As a by-product, we may derive M∞,µ ̸= ∅. Indeed, since Jλ,µ = J∞,µ in H1
0(Ω), we have

Remark 2.2. For any µ > 0 and u ∈ H1
0(Ω) with u± ̸= 0, there exists a unique pair (sµ,u, tµ,u)

of positive numbers such that s
1

2∗α
µ,uu+ + t

1
2∗α
µ,uu− ∈ M∞,µ and

J∞,µ

(
s

1
2∗α
µ,uu+ + t

1
2∗α
µ,uu−

)
= max

s,t≥0
J∞,µ(s

1
2∗α u+ + t

1
2∗α u−).
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To facilitate the subsequent discussion, we show some properties of Mλ,µ in the following

Lemma 2.3. For any λ > 0 and µ > 0, if {un} ⊂ Mλ,µ and limn→∞ Jλ,µ(un) = mλ,µ, then mλ,µ >

0 and there exist some constants Cλ,µ,1, Cλ,µ,2 > 0 such that Cλ,µ,2 ≤ ∥u±
n ∥λ, ∥un∥λ ≤ Cλ,µ,1 for all n.

Proof. From Mλ,µ ̸= ∅, we know mλ,µ < +∞ for any λ, µ > 0. Since {un} ⊂ Mλ,µ, there holds

mλ,µ + o(1) = Jλ,µ(un)−
1

p

〈
J ′

λ,µ(un), un

〉
≥

p − 2

2p
∥un∥

2
λ. (2.1)

Then there is constant Cλ,µ,1 > 0 such that supn ∥un∥λ ≤ Cλ,µ,1. Thereby, (1.4) and (1.7) imply

∥u±
n ∥

2
λ =

∫

RN

(
Iα ∗ |un|

2∗α
)
|u±

n |
2∗α dx + µ

∫

RN
|u±

n |
pdx

≤ AαC(N, α)ν
2·2∗α
2∗ ∥un∥

2∗α
λ ∥u±

n ∥
2∗α
λ + µν

p
p∥u±∥

p
λ

≤ AαC(N, α)ν
2·2∗α
2∗ C

2∗α
λ,µ,1∥u±

n ∥
2∗α
λ + µν

p
p∥u±∥

p
λ.

As a consequence, there exists some constant Cλ,µ,2 > 0 such that infn ∥u±
n ∥λ ≥ Cλ,µ,2. Further,

we deduce from (2.1) that mλ,µ > 0. Thus we complete the proof of this lemma.

Next, following [5], we construct a sign-changing (PS)c sequence {un} for Jλ,µ, (i.e. u±
n ̸= 0

for any n, Jλ,µ(un) → c and J ′
λ,µ(un) → 0 in E∗

λ as n → ∞). Let Pλ be the cone of nonnegative

functions in Eλ, Q = [0, 1]2 and Γλ,µ be the set of continuous maps γ : Q → Eλ such that, for

any (s, t) ∈ Q,

(a) γ(s, 0) = 0, γ(0, t) ∈ Pλ and γ(1, t) ∈ −Pλ,

(b) (Jλ,µ ◦ γ)(s, 1) ≤ 0 and

∫
RN

[(
Iα ∗ |γ(s, 1)|2

∗
α
)
|γ(s, 1)|2

∗
α + µ|γ(s, 1)|p

]
dx

∥γ(s, 1)∥2
λ

≥ 2.

For any u ∈ Eλ with u± ̸= 0, define γσ,u(s, t) = σt(1− s)u++ σtsu− for σ > 0 and (s, t) ∈ Q. It

is easy to show γσ,u ∈ Γλ,µ for σ > 0 large enough. Therefore, Γλ,µ ̸= ∅. Define the functional

Lλ,µ(u, v) =





∫
RN

[
(Iα ∗ |u|2

∗
α)(|u|2

∗
α + |v|2

∗
α) + µ|u|p

]
dx

∥u∥2
λ

, u ̸= 0,

0, u = 0.

Clearly, Lλ,µ > 0 if u ̸= 0. Moreover, u ∈ Mλ,µ if and only if Lλ,µ(u
+, u−) = Lλ,µ(u

−, u+) = 1.

As a start point, we display a minimax characterization on mλ,µ for any λ > 0 and µ > 0.

Lemma 2.4. For any λ > 0 and µ > 0, there holds

mλ,µ = inf
γ∈Γλ,µ

max
(s,t)∈Q

Jλ,µ(γ(s, t)). (2.2)

Proof. On the one hand, for every u ∈ Mλ,µ, γu(s, t) = σt(1 − s)u+ + σtsu− ∈ Γλ,µ for some

σ > 0 large enough. Then it follows from Lemma 2.1 that

Jλ,µ(u) = max
s,t≥0

Jλ,µ(su+ + tu−) ≥ max
(s,t)∈Q

Jλ,µ(γu(s, t)) ≥ inf
γ∈Γλ,µ

max
(s,t)∈Q

Jλ,µ(γ(s, t)).
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Thereby, due to the arbitrariness of u ∈ Mλ,µ, there results

mλ,µ ≥ inf
γ∈Γλ,µ

max
(s,t)∈Q

Jλ,µ(γ(s, t)).

On the other hand, for each γ ∈ Γλ,µ and t ∈ [0, 1], since γ(0, t) ∈ Pλ and γ(1, t) ∈ −Pλ, we

conclude

Lλ,µ(γ(0, t)+, γ(0, t)−)−Lλ,µ(γ(0, t)−, γ(0, t)+) = Lλ,µ(γ(0, t)+, γ(0, t)−) ≥ 0, (2.3)

Lλ,µ(γ(1, t)+, γ(1, t)−)−Lλ,µ(γ(1, t)−, γ(1, t)+) = −Lλ,µ(γ(1, t)−, γ(1, t)+) ≤ 0. (2.4)

Meanwhile, due to γ(s, 0) = 0 for all s ∈ [0, 1], there holds

Lλ,µ(γ(s, 0)+, γ(s, 0)−) + Lλ,µ(γ(s, 0)−, γ(s, 0)+)− 2 = −2, ∀ s ∈ [0, 1]. (2.5)

And, for each γ ∈ Γλ,µ, by the definition of Lλ,µ and the property (b) we have, for all s ∈ [0, 1],

Lλ,µ(γ(s, 1)+, γ(s, 1)−) + Lλ,µ(γ(s, 1)−, γ(s, 1)+)− 2

≥

∫
RN

[
(Iα ∗ |γ(s, 1)|2

∗
α)|γ(s, 1)|2

∗
α + µ|γ(s, 1)|p

]
dx

∥γ(s, 1)∥2
λ

− 2 ≥ 0. (2.6)

Moreover, it is easy to verify that, for any (s, t) ∈ ∂Q,

(
Lλ,µ(γ(s, t)+, γ(s, t)−)−Lλ,µ(γ(s, t)−, γ(s, t)+)

Lλ,µ(γ(s, t)+, γ(s, t)−) + Lλ,µ(γ(s, t)−, γ(s, t)+)− 2

)
̸=

(
0

0

)
. (2.7)

Then, by combining (2.3)−(2.7) with the Miranda theorem (see e.g. Lemma 2.4 in [13]), we

derive that there exists some (sγ, tγ) ∈ (0, 1)2 satisfying

Lλ,µ(γ(sγ, tγ)
+, γ(sγ, tγ)

−)−Lλ,µ(γ(sγ, tγ)
−, γ(sγ, tγ)

+) = 0,

Lλ,µ(γ(sγ, tγ)
+, γ(sγ, tγ)

−) + Lλ,µ(γ(sγ, tγ)
−, γ(sγ, tγ)

+) = 2.

In view of this fact, we easily obtain

Lλ,µ(γ(sγ, tγ)
+, γ(sγ, tγ)

−) = Lλ,µ(γ(sγ, tγ)
−, γ(sγ, tγ)

+) = 1,

which implies γ(sγ, tγ) ∈ Mλ,µ. Consequently, from the arbitrariness of γ ∈ Γλ,µ, we deduce

inf
γ∈Γλ,µ

max
(s,t)∈Q

Jλ,µ(γ(s, t)) ≥ mλ,µ.

Now, by combining the above two sides, we know (2.2) holds. Thus this lemma is showed.

Lemma 2.5. For any λ > 0 and µ > 0, Jλ,µ possesses a sign-changing (PS)mλ,µ
sequence {un} ⊂ Eλ.

Proof. We will end the proof in two steps. Firstly, we construct a (PS)mλ,µ
sequence for Jλ,µ.

Take a minimizing sequence {wn} ⊂ Mλ,µ for mλ,µ and set γσ,n(s, t) = σt(1 − s)w+
n + σtsw−

n .

By Lemma 2.3, it is easy to choose a sufficiently large constant σ̄ > 0 such that {γσ̄,n} ⊂ Γλ,µ.

Due to Lemmas 2.1 and 2.4, there holds

lim
n→∞

max
(s,t)∈Q

Jλ,µ(γσ̄,n(s, t)) = lim
n→∞

Jλ,µ(wn) = mλ,µ. (2.8)
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We assert that there exists some sequence {un} ⊂ Eλ such that, as n → ∞,

Jλ,µ(un) → mλ,µ, J ′
λ,µ(un) → 0, min

(s,t)∈Q
∥un − γσ̄,n(s, t)∥λ → 0. (2.9)

If not, there exists some constant δλ,µ > 0 such that, for n suitably large, γσ̄,n(Q) ∩ Uδλ,µ
= ∅,

in which

Uδλ,µ

△
=
{

u ∈ Eλ : ∃ v ∈ Eλ s.t. ∥v − u∥λ ≤ δλ,µ, ∥∇Jλ,µ(v)∥ ≤ δλ,µ, |Jλ,µ(v)− mλ,µ| ≤ δλ,µ

}
.

Then, by a variant of the classical deformation lemma due to Hofer (see [12, Lemma 1]), there

exists a continuous map ηλ,µ : [0, 1]× Eλ → Eλ, which satisfies that, for some ελ,µ ∈ (0,
mλ,µ

2 ),

(i) ηλ,µ(0, u) = u, ηλ,µ(τ,−u) = −ηλ,µ(τ, u), ∀ τ ∈ [0, 1], u ∈ Eλ,

(ii) ηλ,µ(τ, u) = u, ∀ u ∈ J
mλ,µ−ελ,µ

λ,µ ∪
(

Eλ\J
mλ,µ+ελ,µ

λ,µ

)
, ∀ τ ∈ [0, 1],

(iii) ηλ,µ

(
1,J

mλ,µ+
ελ,µ

2

λ,µ

∖
Uδλ,µ

)
⊂ J

mλ,µ−
ελ,µ

2

λ,µ ,

(iv) ηλ,µ

(
1,
(
J

mλ,µ+
ελ,µ

2

λ,µ ∩ Pλ

)∖
Uδλ,µ

)
⊂ J

mλ,µ−
ελ,µ

2

λ,µ ∩ Pλ,

where the sublevel set J d
λ,µ :=

{
u ∈ Eλ : Jλ,µ(u) ≤ d

}
for d ∈ R. By (2.8), we choose large n

such that

γσ̄,n(Q) ⊂ J
mλ,µ+

ελ,µ
2

λ,µ and γσ̄,n(Q) ∩ Uδλ,µ
= ∅. (2.10)

Set the continuous map γ̃λ,µ,n(s, t) = ηλ,µ(1, γσ̄,n(s, t)) for any (s, t) ∈ Q. We claim γ̃λ,µ,n ∈ Γλ,µ.

Indeed, from γσ̄,n(s, 0) = 0 and (ii), it follows that γ̃λ,µ,n(s, 0) = ηλ,µ(1, 0) = 0 for

any s ∈ [0, 1]. Since γσ̄,n(0, t), −γσ̄,n(1, t) ∈ Pλ and (2.10) implies γσ̄,n(0, t), −γσ̄,n(1, t) ∈

J
mλ,µ+

ελ,µ
2

λ,µ

∖
Uδλ,µ

, we deduce from (i), (iv) that γ̃λ,µ,n(0, t) ∈ Pλ and γ̃λ,µ,n(1, t) ∈ −Pλ for all

t ∈ [0, 1]. Also, Jλ,µ(γσ̄,n(s, 1)) ≤ 0 and (ii) imply γ̃λ,µ,n(s, 1) = ηλ,µ(1, γσ̄,n(s, 1)) = γσ̄,n(s, 1)

for any s ∈ [0, 1]. Then, by γσ̄,n ∈ Γλ,µ, we know γ̃λ,µ,n satisfies the property (b). From the

above arguments, we derive our claim γ̃λ,µ,n ∈ Γλ,µ.

Thereby, since (2.10) and (iii) imply γ̃λ,µ,n(Q) ⊂ J
mλ,µ−

ελ,µ
2

λ,µ , we conclude

mλ,µ ≤ max
(s,t)∈Q

Jλ,µ(γ̃λ,µ,n(s, t)) ≤ mλ,µ −
ελ,µ

2
,

which is a contradiction. Thus there is a sequence {un} ⊂ Eλ possessing the properties in (2.9).

Secondly, we prove u±
n ̸= 0 for all large n. By (2.9), there exists a sequence {vn} such that

vn = αnw+
n + βnw−

n ∈ γσ̄,n(Q) and ∥vn − un∥λ
n
−→ 0. (2.11)

Due to {wn} ⊂ Mλ,µ and p ∈ (2, 2∗), from (1.4), Lemma 2.3 and the Young inequality we have

∥∥w±
n

∥∥2

λ
≤ AαC(N, α)(ν2∗Cλ,µ,1)

2∗α
∣∣w±

n

∣∣2∗α
2∗
+

2∗ − p

2∗ − 2

∣∣w±
n

∣∣2
2
+

µ
2∗−2
p−2 (p − 2)

2∗ − 2

∣∣w±
n

∣∣2∗
2∗

.
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Then, by (1.7), there holds

p − 2

(2∗ − 2)ν2
2∗

∣∣w±
n

∣∣2
2∗

≤ AαC(N, α)(ν2∗Cλ,µ,1)
2∗α
∣∣w±

n

∣∣2∗α
2∗
+

µ
2∗−2
p−2 (p − 2)

2∗ − 2

∣∣w±
n

∣∣2∗
2∗

,

which implies infn |w±
n |2∗ > 0. In view of this fact, the second limiting formula in (2.11)

and (1.7), to show u±
n ̸= 0 for n large enough, it suffices to verify that αn ↛ 0 and βn ↛ 0

up to subsequences. Suppose inversely αn → 0 up to a subsequence. Then it follows from

Jλ,µ ∈ C(Eλ, R) and Lemma 2.3 that

mλ,µ = lim
n→∞

Jλ,µ(vn) = lim
n→∞

Jλ,µ(αnw+
n + βnw−

n ) = lim
n→∞

Jλ,µ(βnw−
n ),

which together with mλ,µ > 0 implies β̄ := supn βn < +∞. Further, by Lemma 2.1, the Fubini

theorem, Lemma 2.3, (1.4) and (1.7), we deduce

mλ,µ = lim
n→∞

Jλ,µ(wn)

= lim
n→∞

max
s,t≥0

Jλ,µ(sw+
n + tw−

n )

≥ lim
n→∞

max
s≥0

Jλ,µ(sw+
n + βnw−

n )

= lim
n→∞

max
s≥0

[
s2

2
∥w+

n ∥
2
λ −

s2·2∗α

2 · 2∗α

∫

RN

(
Iα ∗ |w

+
n |

2∗α
)
|w+

n |
2∗α dx −

µsp

p

∫

RN
|w+

n |
pdx

+
β2

n

2
∥w−

n ∥
2
λ −

β
2·2∗α
n

2 · 2∗α

∫

RN

(
Iα ∗ |w

−
n |

2∗α
)
|w−

n |
2∗α dx −

µβ
p
n

p

∫

RN
|w−

n |
pdx

−
s2∗α β

2∗α
n

2∗α

∫

RN

(
Iα ∗ |w

+
n |

2∗α
)
|w−

n |
2∗α dx

]

= lim
n→∞

max
s≥0

[
s2

2
∥w+

n ∥
2
λ −

s2·2∗α

2 · 2∗α

∫

RN

(
Iα ∗ |w

+
n |

2∗α
)
|w+

n |
2∗α dx

−
s2∗α β

2∗α
n

2∗α

∫

RN

(
Iα ∗ |w

+
n |

2∗α
)
|w−

n |
2∗α dx −

µsp

p

∫

RN
|w+

n |
pdx + Jλ,µ(βnw−

n )

]

≥ max
s≥0

[
1

2
C2

λ,µ,2s2 −
1

2∗α
AαC(N, α)

(
ν2∗Cλ,µ,1

)2·2∗α β̄2∗α s2∗α −
µ

p

(
νpCλ,µ,1

)p
sp

−
1

2 · 2∗α
AαC(N, α)

(
ν2∗Cλ,µ,1

)2·2α s2·2α

]
+ lim

n→∞
Jλ,µ(βnw−

n )

> mλ,µ,

a contradiction. Naturally, {αn} has no subsequence tending to 0. Similarly, we can show {βn}
has no subsequence tending to 0. Thus u±

n ̸= 0 for n large enough. This lemma is proved.

Now, we estimate the least energy mλ,µ from above. By [9, Lemma 1.2], the best constant

Sα := inf

{∫

RN
|∇u|2dx : u ∈ D1,2(RN) and

∫

RN

(
Iα ∗ |u|

2∗α
)
|u|2

∗
α dx = 1

}
(2.12)

is attained by the functions

Uε(·) =

[
N(N − 2)ε2

] N−2
4

[
C(N, α)AαS

α
2

] N−2
4+2α (ε2 + | · |2)

N−2
2

, ε > 0.
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Take δ > 0 such that B5δ ⊂ Ω, and extract two cut-off functions ϕ, ψ ∈ C∞
0 (Ω, [0, 1]) satisfying

ϕ(x) =

{
1, x ∈ Bδ,

0, x ∈ B
c
2δ

and ψ(x) =





0, x ∈ B2δ,

1, x ∈ B4δ\B3δ,

0, x ∈ B
c
5δ.

Define uε = ϕUε and vε = ψUε. As in [3,4], through direct computation, we obtain, as ε → 0+,

∫

Ω

|∇uε|
2dx = S

N+α
2+α

α + O
(
εN−2

)
, (2.13)

∫

Ω

|uε|
2dx =





O(ε), N = 3,

O
(
ε2| ln ε|

)
, N = 4,

O(ε2), N ≥ 5

(2.14)

and

∫

Ω

∫

Ω

|uε(x)|2
∗
α |uε(y)|2

∗
α

|x − y|N−α
dxdy = A−1

α S
N+α
2+α

α + O
(
ε

N+α
2
)
. (2.15)

Additionally, as ε → 0+,

∫

Ω

|∇vε|
2 + v2

ε dx = O(εN−2) and
∫

Ω

|vε(x)|pdx ≥ dpε
(N−2)p

2 for some dp > 0. (2.16)

Lemma 2.6. There exists some µ∗ > 0 independent of λ such that, for any λ > 0 and µ ≥ µ∗,

mλ,µ ≤ m∞,µ < m∗ :=
2 + α

2(N + α)
S

N+α
2+α

α .

Proof. Since M∞,µ ⊂ Mλ,µ and Jλ,µ = J∞,µ on M∞,µ, we easily derive mλ,µ ≤ m∞,µ. For

any ε > 0 and µ > 0, by Remark 2.2, there exist some constants sµ,ε > 0, tµ,ε > 0 such that

sµ,εuε − tµ,εvε ∈ M∞,µ and J∞,µ(sµ,εuε − tµ,εvε) = maxs,t>0 J∞,µ(suε − tvε). It suffices to show

maxs,t>0 J∞,µ(suε − tvε) < m∗ for ε > 0 small enough. Noting spt uε ∩ spt vε = ∅, we deduce

max
s,t>0

J∞,µ(suε − tvε) ≤ max
s>0

J∞,µ(suε) + max
t>0

J∞,µ(tvε). (2.17)

It easily follows from (2.13)−(2.15) that, for ε > 0 sufficiently small and all µ > 0, s > 0,

J∞,µ(suε) ≤ S
N+α
2+α

α

(
s2 −

1

4 · 2∗α
s2·2∗α

)
.

In view of this, there exist some sufficiently small s1 > 0 and sufficiently large s2 > 0 inde-

pendent of ε, µ such that, for ε > 0 small enough and all µ > 0,

max
s∈(0,s1)

J∞,µ(suε) < m∗ and max
s∈(s2,+∞)

J∞,µ(suε) < 0.
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Moreover, from (2.13)−(2.15) again we conclude, for ε > 0 sufficiently small and any µ > 0,

max
s∈[s1,s2]

J∞,µ(suε) ≤ max
s>0

(
s2

2

∫

Ω

|∇uε|
2dx −

s2·2∗α Aα

2 · 2∗α

∫

Ω

∫

Ω

|uε(x)|2
∗
α |uε(y)|2

∗
α

|x − y|N−α
dxdy

)

+
s2

2

2

∫

Ω

|uε|
2dx −

µs
p
1

p

∫

Ω

|uε|
pdx

≤
2 + α

2(N + α)
S

N+α
2+α

α

[
1 + O(εN−2)

][
1 − O(ε

N+α
2 )
]

+
s2

2

2

∫

Ω

|uε|
2dx −

µs
p
1 εN− (N−2)p

2

p

∫

B1

|U1|
pdx

=
2 + α

2(N + α)
S

N+α
2+α

α + O(εN−2) +
s2

2

2

∫

Ω

|uε|
2dx −

µs
p
1 εN− (N−2)p

2

p

∫

B1

|U1|
pdx.

If N ≥ 4, or N = 3 and α ∈ (1, 3), by (2.14) and p ≥ 2∗α we deduce, for ε > 0 small enough

and µ > 0,

ηN(ε) := O(εN−2) +
s2

2

2

∫

Ω

|uε|
2dx −

µs
p
1 εN− (N−2)p

2

p

∫

B1

|U1|
pdx < 0.

If N = 3 and α ∈ (0, 1], take µ = ε
α−3

2 , by (2.14), there exists small ε1 > 0 such that η3(ε) < 0

for all ε ∈ (0, ε1]. Based on the above discussion, for ε > 0 small enough and any µ ≥ ε
2

α−3

1

if N = 3 and α ∈ (0, 1), also, for ε > 0 small enough and any µ > 0 if N ≥ 4 or N = 3 and

α ∈ (1, 3), we conclude

max
s>0

J∞,µ(suε) < m∗. (2.18)

In addition, due to (2.16), there exists some C1 > 0 such that, for ε > 0 small enough and

any µ > 0,

max
t>0

J∞,µ(tvε) ≤ max
t>0

[
C1εN−2t2 − µdp

(
εN−2t2

) p
2

]
≤

(p − 2)(2C1)
p

p−2

2p(µpdp)
2

p−2

. (2.19)

Now, by combining (2.17), (2.18) and (2.19), there exists some large µ∗ ∈
[

1
ε1

,+∞
)

such that

maxs,t>0 J∞,µ(suε − tvε) < m∗ for any µ ≥ µ∗ and small ε > 0. Thus this lemma is proved.

In the forthcoming lemma, we show that Jλ,µ satisfies the local (PS)c condition for λ large.

Lemma 2.7. There exists some Λ > 0 independent of µ such that, for any λ ≥ Λ and µ ≥ µ∗, each

(PS)c sequence {un} ⊂ Eλ for Jλ,µ, with level c ∈ (0, m∗), has a convergent subsequence.

Proof. From the definition of {un}, there results

m∗ + o(1) + o(∥un∥λ) ≥ Jλ,µ(un)−
1

p

〈
J ′

λ,µ(un), un

〉
≥

p − 2

2p
∥un∥

2
λ.

Then there exists some C2 > 0 independent of λ and µ such that lim supn ∥un∥λ ≤ C2. Natu-

rally, {un} is bounded in Eλ. Hence, there exists some u ∈ Eλ such that, up to subsequences,




un ⇀ u in Eλ,

un → u in Ls
loc(R

N), ∀ s ∈ [1, 2∗),

un(x) → u(x) a.e. in R
N ,

as n → ∞. (2.20)
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Set vn = un − u. Clearly, lim supn ∥vn∥λ ≤ 2C2. We will show ∥vn∥λ
n
−→ 0 up to a subsequence.

Define

β = lim sup
n→∞

sup
y∈RN

∫

B1(y)
v2

ndx.

We assert β = 0. Otherwise, β > 0. Due to (V5), there exists some large R > 0 such that

∣∣{x ∈ B
c
R(0) : V(x) ≤ M}

∣∣ ≤
(

βS

16C2
2

) N
2

.

Then it follows from the Hölder and Sobolev inequalities that

lim sup
n→∞

∫

{x∈Bc
R(0):V(x)≤M}

v2
ndx ≤

∣∣{x ∈ B
c
R(0) : V(x) ≤ M}

∣∣ 2
N S−1 lim sup

n→∞

∥vn∥
2
λ ≤

β

4
. (2.21)

Moreover, if taking Λ = 1
M

(
16C2

2 β−1 − 1
)

and letting λ ≥ Λ, we have

lim sup
n→∞

∫

{x∈Bc
R(0):V(x)>M}

v2
ndx ≤

1

λM + 1
lim sup

n→∞

∥vn∥
2
λ ≤

β

4
. (2.22)

Consequently, combining (2.20)−(2.22) leads to

β ≤ lim sup
n→∞

∫

RN
v2

ndx = lim sup
n→∞

∫

Bc
R(0)

v2
ndx ≤

β

2
,

which contradicts β > 0. That is, our claim β = 0 is true. Then, thanks to [29, Lemma 1.21],

vn → 0 in Ls(RN), ∀ s ∈ (2, 2∗). (2.23)

By (2.20), it is easy to show J ′
λ,µ(u) = 0. Further, with ⟨J ′

λ,µ(un), un⟩ = o(1) in hand,

we deduce from (2.20), (2.23) and the nonlocal version of the Brézis–Lieb lemma (see e.g.

[4, Lemma 2.2]) that

o(1) = ∥vn∥
2
λ −

∫

RN

(
Iα ∗ |vn|

2∗α
)
|vn|

2∗α dx. (2.24)

Set κ = lim supn→∞
∥vn∥λ. Due to (2.24) and the definition of Sα, there results κ = 0 or

κ ≥ S
N+α

2(2+α)
α . We claim κ = 0. If not, because Jλ,µ(u) ≥ 0, it follows from (2.20), (2.24) and

Lemma 2.2 in [4] that

c = lim
n→∞

Jλ,µ(un) = Jλ,µ(u) +
2 + α

2(N + α)
lim sup

n→∞

∥vn∥
2
λ ≥

2 + α

2(N + α)
S

N+α
2+α

α ,

which contradicts c < m∗. Thus un → u in Eλ up to a subsequence. This lemma is proved.

Based on the above preliminary lemmas, we shall complete the proof of main results below.

Proof of Theorem 1.2. Let λ ≥ Λ and µ ≥ µ∗. Thanks to Lemmas 2.5 and 2.6, Jλ,µ has a

sign-changing (PS)mλ,µ
sequence {un} ⊂ Eλ, with mλ,µ < m∗. From Lemma 2.7, we derive

that un → uλ,µ in Eλ in the sense of subsequence. Then, there result J ′
λ,µ(uλ,µ) = 0 in E∗

λ and

Jλ,µ(uλ,µ) = mλ,µ. Further, Lemma 2.3 implies u±
λ,µ ̸= 0. That is, Eq. (1.6) has a ground state

sign-changing solution uλ,µ.
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Next, we show the concentration of ground state sign-changing solutions for Eq. (1.6) as

λ → +∞. Given µ ≥ µ∗ arbitrarily. For sequence {λn} ⊂ [Λ,+∞) with λn → +∞, let

uλn,µ ∈ Eλn
be such that

u±
λn,µ ̸= 0, J ′

λn,µ(uλn,µ) = 0 in E∗
λn

, Jλn,µ(uλn,µ) = mλn,µ.

By Lemma 2.6, it is easy to obtain

m∗ > Jλn,µ(uλn,µ)−
1

p

〈
J ′

λn,µ(uλn,µ), uλn,µ

〉
>

p − 2

2p
∥uλn,µ∥

2
λn

. (2.25)

Obviously, {uλn,µ} is bounded in H1(RN). Then, there exists some uµ ∈ H1(RN) such that,

up to subsequences,




uλn,µ
n
⇀ uµ in H1(RN),

uλn,µ
n
−→ uµ in Ls

loc(R
N), ∀ s ∈ [1, 2∗),

uλn,µ(x)
n
−→ uµ(x) a.e. in R

N .

(2.26)

It follows from the Fatou lemma, (2.25) and (2.26) that

0 ≤
∫

Ωc
V(x)u2

µdx ≤ lim inf
n→∞

∫

RN
V(x)u2

λn,µdx ≤ lim inf
n→∞

∥uλn,µ∥
2
λn

λn
= 0,

which together with (V6) implies uµ|Ωc = 0. Then, uµ ∈ H1
0(Ω), since ∂Ω is smooth. Thereby,

for any ω ∈ H1
0(Ω), we derive from ⟨J ′

λn,µ(uλn,µ), ω⟩ = 0 and (2.26) that J ′
∞,µ(uµ) = 0.

Set vµ,n = uλn,µ − uµ. For any ε > 0, by (V5), there exists some large Rε > 0 such that

∣∣{x ∈ B
c
Rε

: V(x) ≤ M
}∣∣ <

[
(p − 2)Sε

4pm∗

] N
2

.

Then, due to the Hölder and Sobolev inequalities, the weakly lower semicontinuity of norm

and (2.25), there holds
∫

{x∈Bc
Rε

:V(x)≤M}
v2

µ,ndx ≤
∣∣{x ∈ B

c
Rε

: V(x) ≤ M
}∣∣ 2

N S−1∥vn,µ∥
2
λn

< ε.

From the weakly lower semicontinuity of norm and (2.25), it follows that

∫

{x∈Bc
Rε

:V(x)≥M}
v2

µ,ndx ≤
∥vn,µ∥2

λn

λn M
≤

4pm∗

(p − 2)Mλn
→ 0 as n → ∞.

Thereby, we deduce from (2.26) that |vµ,n|2
n
−→ 0. Further, by (2.25), the Hölder and Sobolev

inequalities, there holds

lim sup
n→∞

∫

RN
|vµ,n|

pdx ≤ lim sup
n→∞

(
|vµ,n|

2(2∗−p)
2∗−2

2 |vµ,n|
2∗(p−2)

2∗−2

2∗

)

≤

[
4pm∗

(p − 2)S

] 2∗(p−2)
2(2∗−2)

lim sup
n→∞

|vµ,n|
2(2∗−p)

2∗−2

2 = 0. (2.27)

By (2.26), (2.27), the nonlocal type of the Brézis–Lieb Lemma 2.2 in [4] and J ′
∞,µ(uµ) = 0, we

have

0 =
〈
J ′

λn,µ(uλn,µ), uλn,µ

〉
= ∥vµ,n∥

2
λn

−
∫

RN

(
Iα ∗ |vµ,n|

2∗α
)
|vµ,n|

2∗α dx + o(1). (2.28)
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Denote κµ = lim supn→∞
∥vµ,n∥λn

. It follows from (2.28) and the definition of Sα that κ2
µ ≤

S
−2∗α
α κ

2·2∗α
µ . Then, by (2.25), there results κµ = 0 or κµ ≥ S

N+α
2(2+α)
α . We assert κµ = 0. If not, from

Lemma 2.6, (2.25)−(2.28), the nonlocal type of the Brézis–Lieb lemma and J ′
∞,µ(uµ) = 0, we

have

m∗ > lim
n→∞

Jλn,µ(uλn,µ)

= J∞,µ(uµ) +
2 + α

2(N + α)
lim sup

n→∞

∥vµ,n∥
2
λn

= J∞,µ(uµ)−
1

p

〈
J ′

∞,µ(uµ), uµ

〉
+

2 + α

2(N + α)
k2

µ

≥ m∗,

a contradiction. Hence, ∥uλn,µ − uµ∥λn

n
−→ 0. Then, it is easy to show uλn,µ → uµ in H1(RN).

From
〈
J ′

λn,µ(uλn,µ), u±
λn,µ

〉
= 0, (1.4), the Young and Sobolev inequalities, we deduce that

S
∣∣u±

λn,µ

∣∣2
2∗

≤
∥∥u±

λn,µ

∥∥2

λn
=
∫

RN

(
Iα ∗ |uλn,µ|

2∗α
)
|u±

λn,µ|
2∗α dx + µ

∣∣u±
λn,µ

∣∣p
p

≤ AαC(N, α)
∣∣uλn,µ

∣∣2∗α
2∗

∣∣u±
λn,µ

∣∣2∗α
2∗
+

2∗ − p

2∗ − 2

∥∥u±
λn,µ

∥∥2

λn
+

p − 2

2∗ − 2
µ

2∗−2
p−2
∣∣u±

λn,µ

∣∣2∗
2∗

,

which together with (2.25) implies

S
∣∣u±

λn,µ

∣∣2
2∗

≤
AαC(N, α)(2∗ − 2)

p − 2

[
2pm∗

S(p − 2)

] 2∗α
2 ∣∣u±

λn,µ

∣∣2∗α
2∗
+ µ

2∗−2
p−2
∣∣u±

λn,µ

∣∣2∗
2∗

.

In view of this, there holds inf
n

∣∣u±
λn,µ

∣∣
2∗

> 0. Thereby, ∥uλn,µ − uµ∥
n
−→ 0 implies |u±

µ |2∗ > 0.

Naturally, u±
µ ̸= 0 and then uµ ∈ M∞,µ. Thus we derive from (2.26), the Fatou lemma and

Lemma 2.6 that

m∞,µ ≤ J∞,µ(uµ)−
1

p

〈
J ′

∞,µ(uµ), uµ

〉

=
p − 2

2p

∫

Ω

(
|∇uµ|

2 + u2
µ

)
dx +

(2 · 2∗α − p)Aα

2p · 2∗α

∫

Ω

∫

Ω

|uµ(x)|2
∗
α |uµ(y)|2

∗
α

|x − y|N−α
dxdy

≤ lim
n→∞

[
p − 2

2p
∥uλn,µ∥

2
λn

+
2 · 2∗α − p

2p · 2∗α

∫

RN

(
Iα ∗ |uλn,µ|

2∗α
)
|uλn,µ|

2∗α dx

]

= lim
n→∞

[
Jλn,µ(uλn,µ)−

1

p

〈
J ′

λn,µ(uλn,µ), uλn,µ

〉]

≤ m∞,µ,

which leads to J∞,µ(uµ) = m∞,µ. Therefore, uµ is a ground state sign-changing solution for

Eq. (1.8).

Further, we certify the asymptotic behavior of ground state sign-changing solutions for

Eq. (1.6) as µ → +∞. Fix λ ≥ Λ. For any sequence {µn} ⊂ [µ∗,+∞) with µn → +∞, let{
uλ,µn

}
⊂ Eλ satisfy

u±
λ,µn

̸= 0, J ′
λ,µn

(uλ,µn
) = 0 in E∗

λ, Jλ,µn
(uλ,µn

) = mλ,µn
.
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It easily follows that

mλ,µn
= Jλ,µn

(uλ,µn
)−

1

p

〈
J ′

λ,µn
(uλ,µn

), uλ,µn

〉
≥

p − 2

2p

∥∥uλ,µn

∥∥2

λ
. (2.29)

We assert that limn→∞ mλ,µn
→ 0 in the sense of subsequence. Take ω ∈ H1

0(Ω) such that

ω± ̸= 0. Due to Remark 2.2, there exist sn > 0 and tn > 0 such that snω+ + tnω− ∈ M∞,µn .

Then we have

s2
n

∫

Ω

|∇ω+|2 + |ω+|2dx

= Aαs
2·2∗α
n

∫

Ω

∫

Ω

|ω+(x)|2
∗
α |ω+(y)|2

∗
α

|x − y|N−α
dxdy

+ Aα(sntn)
2∗α

∫

Ω

∫

Ω

|ω+(x)|2
∗
α |ω−(y)|2

∗
α

|x − y|N−α
dxdy + µns

p
n

∫

Ω

|ω+|pdx, (2.30)

t2
n

∫

Ω

|∇ω−|2 + |ω−|2dx

= Aαt
2·2∗α
n

∫

Ω

∫

Ω

|ω−(x)|2
∗
α |ω−(y)|2

∗
α

|x − y|N−α
dxdy

+ Aα(tnsn)
2∗α

∫

Ω

∫

Ω

|ω+(x)|2
∗
α |ω−(y)|2

∗
α

|x − y|N−α
dxdy + µnt

p
n

∫

Ω

|ω−|pdx. (2.31)

From (2.30) and (2.31), we easily deduce that both {sn} and {tn} are bounded. Thereby, sn →
s0 and tn → t0 up to subsequences. By using (2.30) and (2.31) again, we derive s0 = t0 = 0.

Consequently, Lemmas 2.3 and 2.6 imply

0 ≤ lim sup
n→∞

mλ,µn
≤ lim sup

n→∞

m∞,µn ≤ lim sup
n→∞

J∞,µn(snω+ + tnω−)

≤ lim sup
n→∞

(
s2

n

∫

Ω

|∇ω+|2 + |ω+|2dx + t2
n

∫

Ω

|∇ω−|2 + |ω−|2dx

)
= 0.

Now, from (2.29) we conclude uλ,µn

n
−→ 0 in Eλ. Naturally uλ,µn

n
−→ 0 in H1(RN) in the sense of

subsequence. Thus, based on the above arguments, we complete the proof of Theorem 1.2.
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Abstract. This work deals with the following viscoelastic heat equations with logarith-
mic nonlinearity

ut − ∆u +
∫ t

0
g(t − s)∆u(s)ds = |u|p−2u ln |u|.

In this paper, we show the effects of the viscoelastic term and the logarithmic nonlin-
earity to the asymptotic behavior of weak solutions. Our results extend the results of
Peng and Zhou [Appl. Anal. 100(2021), 2804–2824] and Messaoudi [Progr. Nonlinear Dif-
ferential Equations Appl. 64(2005), 351–356.].
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1 Introduction

In this paper, we study the following heat equations with viscoelastic term and logarithmic

nonlinearity





ut − ∆u +
∫ t

0 g(t − s)∆u(s)ds = |u|p−2u ln |u|, in Ω × (0, ∞),

u = 0, on ∂Ω × (0, ∞),

u(x, 0) = u0(x), in Ω,

(1.1)

BCorresponding author. Email: nhanlc@hcmute.edu.vn.com
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where u0 ∈ H1
0(Ω) and Ω ⊂ R

n (n ≥ 1) is a bounded domain with smooth boundary ∂Ω, and

the parameter p satisfy

2 < p <

{
∞, if n ≤ 2,
2(n−1)

n−2 , if n > 2.
(1.2)

The equation of the form

ut − ∆u +
∫ t

0
g(t − s)∆u(s)ds = f (u), (1.3)

is used to model many natural phenomena in physical science and engineering. For example,

in the study of heat conduction in materials with memory, from the heat balance equation the

temperature u(x, t) will satisfy Eq. (1.3) (see [3, 5, 12, 13] for more detail).

In the last several decades, the initial-boundary valued problem to Eq. (1.3) has been

studied extensively when the source f (u) is the power functions f (u) = |u|p−2u, or power

like-functions satisfying:

(1) f ∈ C1 and f (0) = f ′(0) = 0.

(2) (a) f is monotone and is convex for u > 0, and concave for u < 0; or (b) f is convex.

(3) (p + 1)
∫ u

0 f (z)dz ≤ u f (u), and |u f (u)| ≤ κ
∫ u

0 f (z)dz, where

2 < p + 1 ≤ κ < 2∗ =:

{
∞, if n ≤ 2,

2n
n−2 , if n ≥ 3.

For example, Messaoudi [12] studied Eq. (1.3) in the case f (u) = |u|p−2u associated with

homogeneous Dirichlet boundary condition. By the convexity method, the author showed

that if the relaxation function g is non-negative and non-increasing satisfying

∫ ∞

0
g(s)ds <

2(p − 2)

2p − 3
,

then weak solution to (1.3) blows up in finite time provided initial energy is positive. In

[20], Truong and Y also studied the problem of the above type with f (u) in the general

polynomial type and they obtained the existence, blow up and asymptotic behavior for weak

solution under suitable conditions. For further results on the existence, blow-up or asymptotic

behavior of solutions, we refer the reader to [5,13,16,19] in case of power or power-like sources.

With regard to the logarithmic nonlinearity, there are a few results (see [1, 2, 7, 9, 15]). In

case the relaxation function g vanishes, the problem (1.1) reduces to the following:





ut − ∆u = |u|p−2u ln |u|, in Ω × (0, ∞),

u = 0, on ∂Ω × (0, ∞),

u(x, 0) = u0(x), in Ω.

(1.4)

In case p = 2, self-similar solutions and their asymptotic stability for (1.4)1 has been studied

by Samarskii et al. [17]. With regard to weak solutions, by using the potential well method

and the logarithmic Sobolev inequality in H1
0(Ω) (see [6, 11]), Chen et al. [1] prove that the
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weak solution blows up at infinite time and exists globally provided that the initial data start

in the stable sets and unstable sets respectively. This result is so interesting because it showed

the different effect of logarithmic nonlinearity compared to the power one. Inspired by this

result the second and third authors [9] extended (1.4) to the evolution p-Laplacian equations

and showed a different result compared to the case p = 2, confirming that weak solutions

blow up in finite time. Afterward the PDEs with logarithmic nonlinearity have been attracted

many researchers, see [2, 7, 15] for example. In particular, Peng and Zhou [15] have showed

recently that in case p > 2 the solutions of (1.4) behave like the nonlinear case f (u) = |u|p−2u.

These results shows that p = 2 is the critical exponent for the blow-up at infinite time.

Motivated by all these works, our aim in this paper is to study the effect of the viscoelastic

term
∫ t

0 g(t − s)∆u(s)ds and the logarithmic nonlinearity |u|p−2u ln |u| to the blow-up and

global existence of weak solutions to (1.1). Firstly, the presence of logarithmic nonlinearity

help us relax conditions on g compared to [12], that is,

∫ ∞

0
g(s)ds <

p (p − 2)

(p − 1)2
,

where
p(p−2)

(p−1)2 >
2(p−2)
2p−3 since p > 2. Secondly, because of the presence of

∫ t
0 g(t − s)∆u(s)ds we

need more restriction on the range of p and for small energy levels E(0) < dδ ≤ d (see (2.2)

below) compared to [15].

Our result is twofold in the sense that it is not only study the blow-up in finite time but

also global existence of weak solutions. In addition, we also give the lower and upper bound

for blow-up time and decay estimate of global solutions. Also notice that our method differs

from [12]. To obtain the main results, we employ the ideas from the potential well method

due to Sattinger [18] (see also [14]). However, since the presence of the relaxation g we could

not apply the stable and unstable sets as in [14]. To overcome this difficulty we construct

a family of potential wells (see (2.3) and (2.4)) that is more suitable for the PDEs involving

viscoelastic terms. Also notice that the asymptotic behavior of global solutions in [15] has not

been studied and it can be done by using the method employed in this paper.

This paper is organized as follows. In the next section, we present some preliminaries and

define the family of modified potential wells. Our main results are stated in the Section 3 and

the rest of the paper is devoted to their proofs.

Notation. Throughout this paper, we denote Lp(Ω)-norm by ∥ · ∥p, especially ∥ · ∥ = ∥ · ∥L2(Ω).

And let ⟨·, ·⟩ denote L2-inner product.

2 Preliminaries and Modified potential wells

2.1 Preliminary lemmas

The following lemmas will be needed in our proof of the main results.

Lemma 2.1 ([21, Lemma 3.1.7 and Remark 3.1.4]). Let B be a reflexive Banach space and 0 < T <

∞. Suppose 1 < q < ∞, ϕ ∈ Lq (0, T; B) , and the sequence {ϕm}
∞
m=1 ⊂ Lq (0, T; B) satisfy (as

m → ∞) 



ϕm → ϕ weakly in Lq (0, T; B) ,

ϕmt → ϕt weakly in Lq (0, T; B) .
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Then ϕm(0) → ϕ(0) weakly in B.

Lemma 2.2 ([21, Thereom 3.1.1]). Let (1.2) hold and T ∈ (0, ∞) be fixed. Then the embedding

{
ϕ
∣∣∣ϕ ∈ L2

(
0, T; H1

0 (Ω)
)

, ϕt ∈ L2
(
0, T; L2 (Ω)

)}
→֒ L2 (0, T; Lp (Ω))

is compact.

Lemma 2.3 ([9]). Let ρ be a positive number. Then we have the following elementary inequalities:

Ψp ln Ψ ≤
e−1

ρ
Ψp+ρ, ∀Ψ ≥ 1 and |Ψp ln Ψ| ≤ (ep)−1 , ∀0 < Ψ < 1.

Lemma 2.4 ([8, 10]). Suppose that Φ(t) ∈ C2 [0, ∞) is a positive function satisfying the following

inequality

Φ(t)Φ′′(t)− (1 + γ)
(
Φ′(t)

)2
≥ 0,

where γ > 0 is a constant. If Φ(0) > 0, Φ′(0) > 0, then Φ(t) → ∞ for t → t∗ ≤ t∗ = Φ(0)
γΦ′(0)

.

2.2 Modified potential wells

For 0 < δ ≤ ℓ with ℓ := 1 −
∫ ∞

0 g(s)ds, we define potential energy functional

Jδ (u) =
δ

2
∥∇u∥2 −

1

p

∫

Ω
|u|p ln |u|dx +

1

p2
∥u∥p

p ,

and the associated Nehari functional

Iδ (u) = δ ∥∇u∥2 −
∫

Ω
|u|p ln |u|dx.

then we have that

Jδ (u) =

(
1

2
−

1

p

)
δ ∥∇u∥2 +

1

p
Iδ (u) +

1

p2
∥u∥p

p .

We have the following lemma.

Lemma 2.5. Let u ∈ H1
0 (Ω) \{0}. Then we have:

(i) lim
λ→0+

Jδ(λu) = 0 and lim
λ→∞

Jδ(λu) = −∞.

(ii) there is a unique λ1 = λ1(u) > 0 such that d
dλ Jδ(λu)

∣∣∣
λ=λ1

= 0.

(iii) Jδ(λu) is strictly increasing on (0, λ1) and strictly decreasing on (λ1, ∞), and attains its the

maximum value at λ = λ1. In addition, one has

Iδ(λu)





> 0, if 0 ≤ λ < λ1,

= 0, if λ = λ1,

< 0, if λ1 < λ < ∞.
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Proof. (i) From the definition of Jδ, we have for λ > 0 that

Jδ (λu) =
δλ2

2
∥∇u∥2 −

λp

p

∫

Ω
|u|p ln |u|dx −

λp

p
ln λ ∥u∥p

p +
λp

p2
∥u∥p

p ,

which implies limλ→0+ Jδ(λu) = 0 and lim
λ→∞

Jδ(λu) = −∞ thanks to p > 2.

For (ii). An easy calculation shows that

d

dλ
Jδ (λu) = λ

(
δ ∥∇u∥2 − λp−2

∫

Ω
|u|p ln |u|dx − λp−2 ln λ ∥u∥p

p

)
:= λKδ(λu),

where

Kδ (λu) = δ ∥∇u∥2 − λp−2
∫

Ω
|u|p ln |u|dx − λp−2 ln λ ∥u∥p

p . (2.1)

A direct calculations yields

d

dλ
Kδ (λu) = −λp−3

(
(p − 2)

∫

Ω
|u|p ln |u|dx + (p − 2) ln λ ∥u∥p

p + ∥u∥p
p

)
,

Hence if we choose

λ∗ = exp

(
(2 − p)

∫
Ω
|u|p ln |u|dx − ∥u∥p

p

(p − 2) ∥u∥p
p

)
,

then one has d
dλ Kδ (λ∗u) = 0, d

dλ Kδ (λu) > 0 for 0 < λ < λ∗ and d
dλ Kδ (λu) < 0 for λ∗ < λ <

∞. On the other hand, from the definition of K, we have

lim
λ→0+

Kδ (λu) = δ ∥∇u∥2
> 0 and lim

λ→∞
Kδ (λu) = −∞.

By these facts we obtain that there exists a unique λ1 > λ∗ such that Kδ (λ1u) = 0. Hence we

obtain (ii).

The last statement (iii) follows from (i)–(ii) and the relation

Iδ (λu) = λ
d

dλ
Jδ (λu) .

The proof is complete.

Let us state here the Sobolev imbedding which can be found in [4].

Lemma 2.6. Assume that p is a constant such that

1 ≤ p ≤





2n
n−2 , if n > 2,

p̃, if n = 2,

∞, if n = 1,

where p̃ ∈ [1, ∞) can be any constant. Then H1
0(Ω) →֒ Lp(Ω) continuously, and there exists a

positive constant Cp depending on n, p and Ω such that

∥u∥p ≤ Cp ∥∇u∥

holds for all u ∈ H1
0(Ω). We choose Cp be the optimal constant satisfying the above inequality, i.e.

Cp = sup
u∈H1

0 (Ω)\{0}

∥u∥p

∥∇u∥
.



6 N. V. Y, L. C. Nhan and L. X. Truong

Since p <
2(n−1)

n−2 < 2∗, let

σ∗ =

{
2n

n−2 − p, if n > 2,

∞, if n = 1, 2,

then σ∗ > 0 and by Lemma 2.6, we have H1
0(Ω) →֒ Lp+σ(Ω) continuously for any σ ∈ [0, σ∗).

Denote Cp+σ by C∗, then we have the following lemma.

Lemma 2.7. Let (1.2) hold and u ∈ H1
0 (Ω) \{0}. Then we have

(i) if Iδ(u) < 0, then ∥∇u∥ > rδ(σ),

(ii) if ∥∇u∥ ≤ rδ(σ) then Iδ(u) ≥ 0,

where rδ(σ) =
(

eσδ

C
p+σ
∗

) 1
p+σ−2 for 0 < σ < σ∗.

Proof. For 0 < σ < σ∗, by Lemma 2.3 and the Sobolev inequality, we have

∫

Ω
|u|p ln |u|dx =

∫

{Ω:|u|≤1}
|u|p ln |u|dx +

∫

{Ω:|u|≥1}
|u|p ln |u|dx

≤
e−1

σ
∥u∥

p+σ
p+σ ≤

e−1

σ
C

p+σ
∗ ∥∇u∥p+σ .

It follows that

Iδ(u) = δ ∥∇u∥2 −
∫

Ω
|u|p ln |u|dx

≥ δ ∥∇u∥2 −
e−1

σ
C

p+σ
∗ ∥∇u∥p+σ = ∥∇u∥2

(
δ −

e−1

σ
C

p+σ
∗ ∥∇u∥p+σ−2

)
.

The conclusions then follow from the above inequality.

Let us define the so-called Nehari manifold associated to the energy functional Jδ by

Nδ =
{

u ∈ H1
0 (Ω) \ {0} : Iδ(u) =

〈
J′δ(u), u

〉
= 0

}
.

By Lemma 2.5 we know that Nδ is not empty set. It is clear that Jδ(u) is coercive on the Nehari

manifold Nδ, hence we can define

dδ = inf
u∈Nδ

Jδ (u) . (2.2)

The standard variational method shows that dδ is a positive finite number and therefore it is

well-defined.

We end this section by giving the definitions of the modified stable and unstable sets as in

[14].

Wδ =
{

u ∈ H1
0 (Ω) : Jδ(u) < dδ, Iδ(u) > 0

}
∪ {0}, (2.3)

Uδ =
{

u ∈ H1
0 (Ω) : Jδ(u) < dδ, Iδ(u) < 0

}
. (2.4)
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3 Main results

Throughout this paper, we make the following usual assumptions on the relaxation function g:

(G) g : R
+ → R

+ belongs to C1(R+) and satisfies the conditions

(i) g(0) ≥ 0, ℓ := 1 −
∫ ∞

0
g(s)ds > 0, g′(t) ≤ 0,

(ii)
∫ ∞

0
g(s)ds <

p (p − 2)

(p − 1)2
,

(iii) There exists a positive differentiable function ξ(t) such that

g′(t) ≤ −ξ(t)g(t), ξ ′(t) ≤ 0,
∫ ∞

0
ξ(t)dt = ∞, ∀t > 0.

Let us now give the definition of weak solutions to (1.1).

Definition 3.1. Let 0 < T ≤ ∞, a function u is called a weak solution of problem (1.1) on

Ω × (0, T) if u ∈ L∞(0, T; H1
0(Ω)) with ut ∈ L2(0, T; L2(Ω)) satisfies u(x, 0) = u0(x) ∈ H1

0(Ω)

and the equality

⟨ut, ϕ⟩+ ⟨∇u,∇ϕ⟩ −
∫ t

0
g(t − s) ⟨∇u(τ),∇u(s)⟩ ds =

〈
|u|p−2 u ln |u|, ϕ

〉
, (3.1)

holds for a.e. t ∈ (0, T) and any ϕ ∈ H1
0(Ω).

Let u be a weak solution of problem (1.1), we define the total energy functional as follows

E(t) =
1

2

(
1 −

∫ t

0
g(τ)dτ

)
∥∇u(t)∥2 +

1

2
(g ◦ ∇u) (t)

−
1

p

∫

Ω
|u(t)|p ln |u(t)|dx +

1

p2
∥u(t)∥p

p , (3.2)

where

(g ◦ ∇u) (t) =
∫ t

0
g(t − s) ∥∇u(t)−∇u(s)∥2 ds.

By the Definition 3.1, u ∈ L∞(0, T; H1
0(Ω)) and ut ∈ L2(0, T; L2(Ω)). So E(t) is well-define for

a.e. t ∈ [0, T). In addition, the next lemma shows that E(t) is a non-increasing functional.

Lemma 3.2. Let (G, (i)) hold. The energy functional E(t) defined in (3.2) is nonincreasing and

d

dt
E(t) = −∥ut(t)∥

2 +
1

2

(
g′ ◦ ∇u

)
(t)−

1

2
g(t) ∥∇u(t)∥2 ≤ 0. (3.3)

Proof. By substituting ϕ = ut in (3.1), we get after some simple calculations that

d

dt
E(t) =

1

2

(
g′ ◦ ∇u

)
(t)−

1

2
g(t) ∥∇u(t)∥2 − ∥ut(t)∥

2 .

Then, using the assumption (G, (i)), it follows that E(t) is an non-increasing functional and

satisfies the energy inequality

E(t) +
∫ t

0
∥ut(s)∥

2 ds ≤ E(0). (3.4)

The proof is complete.
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We are now in the position to state the main theorems of this paper.

Theorem 3.3 (Global existence). Assume that (1.2) and (G, (i)) hold. Let u0 ∈ H1
0 (Ω) and

E(0) =
1

2
∥∇u0∥

2 −
1

p

∫

Ω
|u0|

p ln |u0|dx +
1

p2
∥u0∥

p
p < dδ, Iδ(u0) > 0.

Then problem (1.1) has a global weak solution u such that u∈L∞(0, ∞; H1
0(Ω))with ut∈L2(0, ∞; L2(Ω)).

Theorem 3.4 (Blow-up). Assume that (1.2) hold and g satisfies (G, (i), (ii)). Assume further that

u0 ∈ H1
0 (Ω) and

E(0) =
1

2
∥∇u0∥

2 −
1

p

∫

Ω
|u0|

p ln |u0|dx +
1

p2
∥u0∥

p
p < dκ, Iκ(u0) < 0,

where

0 < κ = ℓ−
1

p(p − 2)

∫ ∞

0
g(s)ds. (3.5)

Then the weak solution u(t) to (1.1) blows up in finite time and the lifespan time T satisfies

T ≤
8 ∥u0∥

2

(p − 2)2(dκ − E(0))
.

Furthermore, T is bounded below by

T ≥
∫ ∞

R(0)

1

K1zp−1+σ + K2
dz, (3.6)

for some 0 < σ <
2(n−1)

n−2 − p, where R(0) = 1
2 ∥∇u0∥

2 and

K1 =
1

2
(eσ)−2 S

2(p−1+σ)
2(p−1+σ)

(
2(p − 1)2

)p−1+σ
, K2 =

1

2
(e(p − 1))−2 |Ω|.

Here S2(p−1+σ) is the optimal embedding constants of H1
0(Ω) →֒ L2(p−1+σ)(Ω).

Theorem 3.5 (Decay estimate). Assume that (1.2) holds and g satisfies (G,(i), (iii)). Assume further

that u0 ∈ H1
0 (Ω) with u0 ∈ Wδ (0 < δ ≤ ℓ) and

E(0) <

(
ℓ

2δ

) p
p−2

dδ.

Then solution u(t) to (1.1) decays exponentially.

4 Proof of Theorem 3.3

Based on the Faedo–Galerkin method, this proof consists of three steps.

Step 1. Finite-dimensional approximations. Let {wj} be the orthogonal complete system of eigen-

functions of −∆ in H1
0 (Ω) , which is orthonormal in L2(Ω). We find the approximate solution

of the problem (1.1) in the forms

um(t) =
m

∑
j=1

cmj(t)wj, (4.1)
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where the coefficients functions cmj, 1 ≤ j ≤ m, satisfy the system of integro-differential

equations

〈
umt, wj

〉
+
〈
∇um,∇wj

〉
−
∫ t

0
g(t − s)

〈
∇um(s),∇wj

〉
ds =

〈
|um|

p−2 um ln |um|, wj

〉
, (4.2)

and

um(0) = u0m =
m

∑
j=1

αmjwj −→ u0 strongly in H1
0 (Ω) . (4.3)

It is obvious that for each m, there exists a solution um of the form (4.1) which satisfies

(4.2) and (4.3) almost everywhere on t ∈ [0, Tm], for some sufficiently small Tm > 0. In what

follows, we present a brief proof that a solution of (4.2)–(4.3) of the form (4.1) exists. It is

obvious that the system (4.2)–(4.3) can be rewritten in the vectorial form

c′m(t) + Amcm(t) = Am

∫ t

0
g(t − s)cm(s)ds +F (cm(t)),

with the initial condition

cm(0) = αm,

where




cm(t) = (cm1(t), cm1(t), . . . , cm1(t))
T , α = (αm1, αm2, . . . , αmm)

T ,

Am =
[〈
∇wi,∇wj

〉]m

i,j=1
, F (cm(t)) = (F1(cm(t)),F2(cm(t)), . . . ,Fm(cm(t)))

T ,

Fj(cm(t)) =
〈
|um|

p−2 um ln |um|, wj

〉
, ∀j = 1, m,

which is also equivalent to the integral equation

cm(t) = αm −
∫ t

0
Amcm(s)ds +

∫ t

0
Am

∫ s

0
g(s − τ)cm(τ)dτds +

∫ t

0
F (cm(s))ds. (4.4)

By the Schauder theorem, the integral equation (4.4) has a solution cm(t) in a certain closed

ball of the Banach space C([0, Tm]; R
m) with Tm ∈ (0, T]. Therefore, there exists um(t) of the

form (4.1) which satisfies (4.2)–(4.3) on 0 ≤ t ≤ Tm.

Step 2. A priori estimate. Multiplying (4.2) by c′mj(t) and summing for j from 1 to m, we get

⟨umt, umt⟩+ ⟨∇um,∇umt⟩ −
∫ t

0
g(t − s) ⟨∇um(s),∇umt⟩ ds =

〈
|um|

p−2 um ln |um|, umt

〉
. (4.5)

Integrating (4.5) with respect to time variable on [0, t], we have

Em(t) +
∫ t

0
∥umt(s)∥

2 ds = Em(0)−
1

2

∫ t

0
g(s) ∥∇um(s)∥

2 ds +
1

2

∫ t

0

(
g′ ◦ ∇um

)
(s)ds, (4.6)

where we have for 0 < δ ≤ ℓ

Em(t) =
1

2

(
1 −

∫ t

0
g(s)ds

)
∥∇um(t)∥

2 +
1

2
(g ◦ ∇um) (t)

−
1

p

∫

Ω
|um|

p ln |um|dx +
1

p2
∥um(t)∥

p
p

≥ Jδ(um(t)) +
1

2
(g ◦ ∇um) (t). (4.7)
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From E(0) < dδ and (4.3), we deduce that Em(0) < dδ for sufficiently large m. And then,

we deduce from (4.6) and (4.7) that

1

2
(g ◦ ∇um) (t) + Jδ(um(t)) +

∫ t

0
∥umt(s)∥

2 ds < dδ, 0 ≤ t ≤ Tm, (4.8)

holds for sufficiently large m. Take note of Iδ(u0) > 0, we can conclude that u0 ∈ Wδ. It implies

from (4.3) that um(0) ∈ Wδ for sufficiently large m. Now, we will show that um(t) ∈ Wδ for

any t ∈ [0, Tm] and sufficiently large m. In fact, if not, there exists a t0 ∈ (0, Tm] and a sufficient

large m such that Iδ(um(t0)) = 0 and um(t0) ̸= 0, then we get that um(t0) ∈ Nδ. So we deduce

from the definition of dδ that Jδ (um(t0)) ≥ dδ, which contradicts (4.8). Thus, um(t) ∈ Wδ for

any t ∈ [0, Tm] and sufficient large m, which implies Iδ(um(t)) ≥ 0 for any t ∈ [0, Tm] and

sufficient large m.

Thanks to the definition of Jδ and Iδ(um(t)) ≥ 0, we deduce from (4.8) that

p − 2

2p
δ ∥∇um(t)∥

2 +
1

p2
∥um(t)∥

p
p +

1

2
(g ◦ ∇um) (t) +

∫ t

0
∥umt(s)∥

2 ds < dδ,

0 ≤ t ≤ Tm,

(4.9)

From (4.9) we obtain




∥∇um(t)∥
2
<

2p

(p − 2)δ
dδ, ∥um(t)∥

p
p < p2dδ,

∫ t

0
∥umt(t)∥

2
< dδ, (g ◦ ∇um) (t) < 2dδ.

(4.10)

So Tm = ∞. And hence um(t) ∈ Wδ for t ∈ [0, ∞) and (4.10) holds for t ∈ [0, ∞) .

On the other hand, by (4.10), we get
∫

Ω
|ρm(x, t)|p

′
dx =

∫

Ω1

|ρm(x, t)|p
′
dx +

∫

Ω2

|ρm(x, t)|p
′
dx

≤ (e(p − 1))−p′ |Ω1|+ (eσ)−p′ ∥um∥
p+p′σ
p+p′σ

≤ (e(p − 1))−p′ |Ω1|+ (eσ)−p′S
p+p′σ
p+p′σ ∥∇um∥

p+p′σ

≤ (e(p − 1))−p′ |Ω1|+ (eσ)−p′S
p+p′σ
p+p′σ

(
2pdδ

(p − 2)δ

) p+p′σ
2

≡ Cδ, (4.11)

where p′ = p
p−1 , 0 < σ <

1
p′

(
2n

n−2 − p
)

, ρm(x, t) = |um(x, t)|p−1 ln |um(x, t)|,

Ω1 = {x ∈ Ω : |um(x, t)| ≤ 1} , Ω2 = {x ∈ Ω : |um(x, t)| ≥ 1} ,

and Sq is the best constant of the Sobolev embedding H1
0(Ω) →֒ Lq(Ω).

Step 3. Passage to the limit. From (4.10) and (4.11), we deduce that for each T > 0, there exists

a function u(t) and the subsequences of {um} , still denoted by {um} such that




um → u in L∞
(
0, T; H1

0(Ω)
)

weakly*,

um → u in L2
(
0, T; H1

0(Ω)
)

weakly,

um → u in L∞ (0, T; Lp(Ω)) weakly*,

um → u in L2 (0, T; Lp(Ω)) weakly,

umt → ut in L2
(
0, T; L2(Ω)

)
weakly*.

(4.12)
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By Lemma 2.1, it follows from (4.12)2,5 that there exists the existence of a subsequence still

denoted by {um} , such that

um → u strongly in L2 (0, T; Lp(Ω)) and um → u a.e (x, t) ∈ Ω × (0, T) ,

which yields

|um|
p−2um ln |um| → |u|p−2u ln |u| a.e (x, t) ∈ Ω × (0, T) . (4.13)

From (4.11) and (4.13) by the Aubin–Lions Lemma, we deduce that

|um|
p−2um ln |um| → |u|p−2u ln |u| weakly* in L∞

(
0, T; Lp′(Ω)

)
.

By using Lemma 2.1, it follows from (4.12)2,5 that

um(0) → u(0) weakly in L2 (Ω) . (4.14)

Passing to the limit in (4.2), by (4.3), (4.12), (4.13)–(4.14), we have u satisfying equation



⟨ut, ϕ⟩+ ⟨∇u,∇ϕ⟩ −

∫ t

0
g(t − s) ⟨∇u(s),∇ϕ⟩ ds =

〈
|u|p−2 u ln |u|, ϕ

〉
,

u(0) = u0.

The proof is complete.

5 Proof of Theorem 3.4

We begin this section by the following useful lemma which is useful later on.

Lemma 5.1. Under the assumptions of the Theorem 3.4 and let u(t) be any weak solution of the

problem (1.1) on [0, T) where T is the maximum existence time. Then we possess

dκ ≤
p − 2

2p
κ ∥∇u(t)∥2 +

1

p2
∥u(t)∥p

p , (5.1)

where κ is defined by (3.5).

Proof. Firstly, we show that u(t) ∈ Uκ for all t ∈ [0, T) . Indeed, if it is false, then there exists

a t0 > 0 such that Iκ(u(t)) < 0 for t ∈ [0, t0) and Iκ(u(t0)) = 0. By Lemma 2.7, we have

∥∇u(t)∥ > rκ(σ) > 0, for t ∈ [0, t0) and ∥∇u(t0)∥ ≥ rκ(σ) > 0, which yields u(t0) ∈ Nκ. So by

the definition of dκ we get Jκ(u(t0)) ≥ dκ, which contradicts to Jκ(u(t0)) ≤ E(t0)) ≤ E(0) < dκ.

Hence, we obtain u(t) ∈ Uκ for t ∈ [0, T).

By Lemma 2.5 we imply that there is a unique λ1 < 1 such that Iκ(λ1u(t)) = 0. We next

define j(λ) = Jκ(λu)− 1
p Iκ(λu), for λ > 0. By direct calculation, we have that

j(λ) =
κ(p − 2)

2p
λ2 ∥∇u(t)∥2 +

λp

p2
∥u(t)∥p

p .

Since u(t) ∈ Uκ, by Lemma 2.7 we have

j′(λ) =
κ(p − 2)

p
λ ∥∇u(t)∥2 +

λp−1

p
∥u(t)∥p

p > κ(p − 2)λr2
κ(σ) > 0.

Hence, j(λ) is strictly increasing on (0, ∞) which implies j(1) > j (λ1), that is

Jκ(u(t))−
1

p
Iκ(u(t)) > Jκ(λ1u(t))−

1

p
Iκ(λ1u(t)) = Jκ(λ1u) ≥ dκ.

The proof of lemma is complete.
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We now divide the proof of the Theorem 3.4 into two following steps:

Step 1: Blow-up in finite time and upper bound estimate of the blow-up time.

By contradiction, we assume that u(t) exists globally and define the function

θ(t) =
∫ t

0
∥u(s)∥2 ds + (T − t) ∥u0∥

2 + b(t + T0)
2, t ∈ [0, T], (5.2)

where b and T0 are positive constants to be determined later. Then we have

θ′(t) = ∥u(t)∥2 − ∥u0∥
2 + 2b(t + T0) =

∫ t

0

d

dt
∥u(s)∥2 ds + 2b(t + T0)

= 2
∫ t

0
⟨ut(s), u(s)⟩ ds + 2b(t + T0), (5.3)

and

θ′′(t) = 2
∫

Ω
u(t)ut(t)dx + 2b. (5.4)

By using (1.1), we deduce from (5.4) that

θ′′(t) = −2 ∥∇u(t)∥2 + 2
∫ t

0
g(t − s) ⟨∇u(s),∇u(t)⟩ ds + 2

∫

Ω
|u(t)|p ln |u(t)|dx + 2b. (5.5)

On the other hand, by the Hölder inequality and the Cauchy–Schwarz inequality, we have

1

4

(
θ′(t)

)2
≤

(∫ t

0
∥u(s)∥2 ds + b(t + T0)

2

)(∫ t

0
∥ut(s)∥

2 ds + b

)

≤ θ(t)

(∫ t

0
∥ut(s)∥

2 ds + b

)
, (5.6)

and by the Young inequality, one has

2
∫ t

0
g(t − s) ⟨∇u(s),∇u(t)⟩ ds

= 2
∫ t

0
g(s)ds ∥∇u(t)∥2 + 2

∫ t

0
g(t − s) ⟨∇u(s)−∇u(t),∇u(t)⟩ ds

≥

(
2 −

1

p

) ∫ t

0
g(s)ds ∥∇u(t)∥2 − p (g ◦ ∇u) (t). (5.7)

It follows from (5.2)–(5.7) that

θ′′(t)θ(t)−
p + 2

4

(
θ′(t)

)2
≥ θ(t)ζ(t), (5.8)

where ζ : [0, T] → R is the function defined by

ζ(t) = −2 ∥∇u(t)∥2 +

(
2 −

1

p

)(∫ t

0
g(s)ds

)
∥∇u(t)∥2 − p (g ◦ ∇u) (t)

+ 2
∫

Ω
|u(t)|p ln |u(t)|dx − (p + 2)

∫ t

0
∥ut(s)∥

2 ds − pb. (5.9)

On the other hand, from (3.2) we have that
∫

Ω
|u(t)|p ln |u(t)|dx = − pE(t) +

p

2

(
1 −

∫ t

0
g(τ)dτ

)
∥∇u(t)∥2

+
p

2
(g ◦ ∇u) (t) +

1

p
∥u(t)∥p

p . (5.10)
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And hence, (5.9) and (5.10) yield

ζ(t) =− 2pE(t) +

[
p − 2 −

(
p − 2 +

1

p

) ∫ t

0
g(s)ds

]
∥∇u(t)∥2

+
2

p
∥u(t)∥p

p − (p + 2)
∫ t

0
∥ut(s)∥

2 ds − pb. (5.11)

By virtue of the energy inequality (3.4), we deduce from (5.11) that

ζ(t) ≥ − 2pE(0) +

[
p − 2 −

(
p − 2 +

1

p

) ∫ t

0
g(s)ds

]
∥∇u(t)∥2

+
2

p
∥u(t)∥p

p + (p − 2)
∫ t

0
∥ut(s)∥

2 ds − pb

≥ 2p

[
p − 2

2p

(
1 −

∫ t

0
g(s)ds −

1

p(p − 2)

∫ t

0
g(s)ds

)
∥∇u(t)∥2 +

1

p2
∥u(t)∥p

p − E(0)−
b

2

]

≥ 2p

[
p − 2

2p
κ ∥∇u(t)∥2 +

1

p2
∥u(t)∥p

p − E(0)−
b

2

]
, (5.12)

where κ is a constant given by

0 < κ = ℓ−
1

p(p − 2)

∫ ∞

0
g(s)ds ≤ ℓ

thanks to p > 2 and ℓ = 1 −
∫ ∞

0 g(s)ds.

By virtue of Lemma 5.1, it follows from (5.12) that

ζ(t) ≥ 2p

(
dk − E(0)−

b

2

)
.

Since E(0) < dκ, choosing b small enough such that

0 < b ≤ 2 (dκ − E(0)) , (5.13)

we get

ζ(t) > ρ > 0. (5.14)

Combining (5.8) and (5.14), we arrive at

θ′′(t)θ(t)−
p + 2

4

(
θ′(t)

)2
≥ ρθ(t) ≥ 0.

Applying Lemma 2.4 with γ = p−2
4 we have that θ(t) → ∞ for t → t∗ < ∞, which contradicts

T = ∞. And hence u(t) blows up at finite time T. Moreover, we have also

T ≤
4θ(0)

(p − 2)θ′(0)
=

4
(

T ∥u0∥
2 + bT2

0

)

2(p − 2)bT0
=

2 ∥u0∥
2

(p − 2)bT0
T +

2T0

p − 2
.

By choosing T0 ∈
(

2∥u0∥
2

(p−2)b
, ∞
)

, we get

T ≤
2bT2

0

(p − 2)bT0 − 2 ∥u0∥
2

.
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Since b satisfies (5.13), by minimizing the above inequality for T0 >
2∥u0∥

2

(p−2)b
, we arrive at

T ≤
8 ∥u0∥

2

(p − 2)2(dκ − E(0))
.

Step 2: Lower bound estimate of the blow up time.

By Step 1 we know that limt→T− ∥u(t)∥2 = ∞ which implies

lim
t→T−

∥∇u(t)∥2 = ∞, (5.15)

thanks to the continuous embedding H1
0(Ω) →֒ L2(Ω).

Let us now define an auxiliary function

R(t) =
1

2

(
1 −

∫ t

0
g(s)ds

)
∥∇u(t)∥2 +

1

2
(g ◦ ∇u) (t)

= E(t) +
1

p

∫

Ω
|u(t)|p ln |u(t)|dx −

1

p2
∥u(t)∥p

p .

Then by assumption (G, (ii)), we have

1

2(p − 1)2
∥∇u(t)∥2 ≤

1

2

(
1 −

∫ t

0
g(s)ds

)
∥∇u(t)∥2 +

1

2
(g ◦ ∇u) (t) = R(t).

which implies limt→T− R(t) = ∞ thanks to (5.15).

Recalling the Lemma 3.2, we have

R′(t) = E′(t) +
∫

Ω
|u(t)|p−2u(t)ut(t) ln |u(t)|dx

≤ −∥ut(t)∥
2 +

∫

Ω
|u(t)|p−2u(t)ut(t) ln |u(t)|dx.

Let us divide Ω into two parts as follows:

Ω1 = {x ∈ Ω : |u(x, t)| ≤ 1} and Ω2 = {x ∈ Ω : |u(x, t)| ≥ 1}.

Applying Lemma 2.3, Hölder’s inequality, Young’s inequality, we reach

R′(t) ≤ −∥ut∥
2 +

∫

Ω
|u|p−2uut ln |u|dx

= −∥ut∥
2 +

∫

Ω1

|u|p−2uut ln |u|dx +
∫

Ω2

|u|p−2uut ln |u|dx

≤ −∥ut∥
2 + (e(p − 1))−1

∫

Ω1

|ut|dx + (eσ)−1
∫

Ω2

|u|p−1+σ|ut|dx

≤ −∥ut∥
2 + (e(p − 1))−1 |Ω1|

1
2 ∥ut∥+ (eσ)−1 ∥u∥

p−1+σ

2(p−1+σ) ∥ut∥

≤ − ∥ut∥
2 +

1

2
(e(p − 1))−2 |Ω1|+

1

2
∥ut∥

2 +
1

2
(eσ)−2 ∥u∥

2(p−1+σ)
2(p−1+σ)

+
1

2
∥ut∥

2

≤
1

2
(e(p − 1))−2 |Ω|+

1

2
(eσ)−2 ∥u∥

2(p−1+σ)
2(p−1+σ)

. (5.16)

Here, for simplicity, we write u instead of u(t).
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By 2 < 2p − 2 <
2n

n−2 , there exists σ > 0 such that 2 < 2(p − 1 + σ) <
2n

n−2 . Using the

embedding H1
0(Ω) →֒ L2(p−1+σ)(Ω), we deduce from (5.16) that

R′(t) ≤
1

2
(e(p − 1))−2 |Ω|+

1

2
(eσ)−2 S

2(p−1+σ)
2(p−1+σ) ∥∇u(t)∥2(p−1+σ)

≤ K1Rp−1+σ(t) + K2, (5.17)

where Sq is the optimal constant of embedding H1
0(Ω) →֒ Lq(Ω), and

K1 =
1

2
(eσ)−2 S

2(p−1+σ)
2(p−1+σ)

(
2(p − 1)2

)p−1+σ
, K2 =

1

2
(e(p − 1))−2 |Ω|.

Integrating (5.17) from 0 to t, we get

∫ R(t)

R(0)

1

K1zp−1+σ + K2
dz ≤ t,

combining with the fact limt→T− R(t) = ∞ we obtain (3.6). Thus the proof is complete.

6 Proof of Theorem 3.5

We begin with the following lemma which is helpful to the proof of Theorem 3.5.

Lemma 6.1. Under the assumptions of the Theorem 3.3. For any 0 < δ ≤ ℓ, we have that

Iδ(u(t)) ≥


1 −

(
dδ

E(0)

) 2−p
p


 δ ∥∇u(t)∥2 .

Proof. It is first noticed that u0 ∈ Wδ thanks to E(0) < dδ and I(u0) > 0. By using the similar

method as in the proof of Lemma 5.1, we can show that u(t) ∈ Wδ for t ≥ 0. Taking this

into account and using the Lemma 2.5 (iii), we imply that there is a constant λ1 > 1 such that

Iδ(λ1u(t)) = 0.

On the other hand, from the definition of Iδ, we have

Iδ(λ1u(t)) = δ (λ1)
2 ∥∇u(t)∥2 − (λ1)

p
∫

Ω
|u(t)|p ln |u(t)|dx − (λ1)

p ln λ1 ∥u(t)∥p
p

=
(
(λ1)

2 − (λ1)
p
)

δ ∥∇u(t)∥2 + (λ1)
p Iδ (u(t))− (λ1)

p ln λ1 ∥u(t)∥p
p ,

which implies, thanks to Iδ(λ1u(t)) = 0 and λ1 > 1, that

Iδ (u(t)) ≥
[
1 − (λ1)

2−p
]

δ ∥∇u(t)∥2 + ln λ1 ∥u(t)∥p
p ≥

[
1 − (λ1)

2−p
]

δ ∥∇u(t)∥2 . (6.1)

To end the proof it remains to estimate λ1. By variational characterization of dδ, we have

dδ ≤ Jδ (λ1u(t)) =
1

p
Iδ (λ1u(t)) + δ

(
1

2
−

1

p

)
(λ1)

2 ∥∇u(t)∥2 +
(λ1)

p

p2
∥u(t)∥p

p

≤

[
δ

(
1

2
−

1

p

)
∥∇u(t)∥2 +

1

p2
∥u(t)∥p

p

]
(λ1)

p . (6.2)
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On the other hand, by the non-increasing property of functional energy E(t), we have that

E (0) ≥ E(t) ≥ Jδ (u(t)) =
1

p
Iδ (u(t)) + δ

(
1

2
−

1

p

)
∥∇u(t)∥2 +

1

p2
∥u(t)∥p

p

> δ

(
1

2
−

1

p

)
∥∇u(t)∥2 +

1

p2
∥u(t)∥p

p . (6.3)

From (6.2)–(6.3), we deduce that

λ1 ≥

(
dδ

E(0)

)1/p

> 1. (6.4)

The proof follows from (6.1) and (6.4).

As a consequence of this lemma, we get the following estimates.

Lemma 6.2. Under the assumptions of the Theorem 3.3. For any 0 < δ ≤ ℓ, we possess

∫

Ω
|u(t)|p ln |u(t)|dx ≤ δ

(
dδ

E(0)

) 2−p
p

∥∇u(t)∥2 and ∥u(t)∥p
p ≤ C(p, dδ) ∥∇u(t)∥2 , (6.5)

where C(p, dδ) is the constant given by

C(p, dδ) = S
p
p




pδ−1dδ

1 −
( dδ

E(0)

) 2−p
p




p−2
2

.

Here Sp is the best constant in the embedding H1
0(Ω) →֒ Lp(Ω).

Proof. The first estimate in (6.5) follows from the Lemma 6.1 and the identity
∫

Ω
|u(t)|p ln |u(t)|dx = δ ∥∇u(t)∥2 − Iδ (u(t))

≤ δ ∥∇u(t)∥2 −


1 −

(
dδ

E(0)

) 2−p
p


 δ ∥∇u(t)∥2 = δ

(
dδ

E(0)

) 2−p
p

∥∇u(t)∥2 ,

and since 2 < p <
2(n−1)

n−2 , the second one follows from the Sobolev embedding H1
0(Ω) →֒

Lp(Ω) and the Lemma 6.1

∥u(t)∥p
p ≤ S

p
p ∥∇u(t)∥p ≤ S

p
p




pδ−1dδ

1 −
( dδ

E(0)

) 2−p
p




p−2
2

∥∇u(t)∥2 ≡ C(p, dδ) ∥∇u(t)∥2 ,

where Sp is the best constant in the embedding H1
0(Ω) →֒ Lp(Ω).

For the proof of Theorem 3.5, we define the following auxiliary functional

L(t) = E(t) + ερ(t),

where ρ is given by

ρ(t) =
1

2
ξ(t) ∥u(t)∥2 .

The next lemma tells us that E(t) and L(t) are equivalent functions.
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Lemma 6.3. For ε1 and ε2 small enough, we have

α1E(t) ≤ L(t) ≤ α2E(t)

holds for two positive constants α1 and α2.

Proof. By virtue of Lemma 6.1 and the definition of E(t), we have that

E(t) ≥
δ

p


1 −

(
dδ

E(0)

) 2−p
p


 ∥∇u(t)∥2 .

Taking this into account, we deduce from the definition of ρ(t) that

|ρ(t)| ≤
S2

2

2
ξ(t) ∥∇u(t)∥2 ≤

pS2
2

2δ


1 −

(
dδ

E(0)

) 2−p
p



−1

ξ(t)E(t),

where S2 is the optimal constant in the embedding H1
0 (Ω) →֒ L2 (Ω).

From (G, iii) we have ξ(t) ≤ ξ(0) ≤ M for some constant M > 0. Combining with the

above estimate to obtain

|L(t)− E(t)| ≤ ε |ρ(t)| ≤ εC(M)E(t),

that is

(1 − εC(M)) E(t) ≤ L(t) ≤ (1 + εC(M)) E(t).

By choosing ε small such that 0 < ε < 1/C (M) we claim the lemma.

The next lemma allow us to estimate ρ′(t).

Lemma 6.4. Let (G, (i, iii)) hold. Then we have that

ρ′(t) ≤ −
ℓ

2
ξ(t) ∥∇u(t)∥2 + ξ(t)

∫

Ω
|u(t)|p ln |u(t)|dx +

1 − ℓ

2ℓ
ξ(t) (g ◦ ∇u) (t).

Proof. By using the differential equation in (1.1), we easily see that

∫

Ω
ut(t)u(t)dx = −∥∇u(t)∥2 +

∫

Ω
|u(t)|p ln |u(t)|dx +

∫ t

0
g (t − s) ⟨∇u(s),∇u(t)⟩ ds.

By using the Hölder and Young inequalities, we obtain for any η > 0

∫ t

0
g (t − s) ⟨∇u(s),∇u(t)⟩ ds

=
∫ t

0
g (t − s) ⟨∇u(s)−∇u(t),∇u(t)⟩ ds +

(∫ t

0
g (s) ds

)
∥∇u(t)∥2

≤
1

2η
(g ◦ ∇u)(t) +

(
1 +

η

2

)(∫ t

0
g(s)ds

)
∥∇u(t)∥2 .

And hence, we arrive at

∫

Ω
ut(t)u(t)dx ≤−

[
1 −

(1 − ℓ)(2 + η)

2

]
∥∇u(t)∥2 +

∫

Ω
|u(t)|p ln |u(t)|dx +

1

2η
(g ◦ ∇u) (t).
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By assumption (G,iii) and definition of ρ(t), we deduce that

ρ′(t) =
1

2
ξ ′(t) ∥u(t)∥2 + ξ(t)

∫

Ω
ut(t)u(t)dx

≤ −

[
1 −

(1 − ℓ) (2 + η)

2

]
ξ(t) ∥∇u(t)∥2

+ ξ(t)
∫

Ω
|u(t)|p ln |u(t)|dx +

1

2η
ξ(t) (g ◦ ∇u) (t).

Choosing η = ℓ

1−ℓ
, we obtain

ρ′(t) ≤ −
ℓ

2
ξ(t) ∥∇u(t)∥2 + ξ(t)

∫

Ω
|u(t)|p ln |u(t)|dx +

1 − ℓ

2ℓ
ξ(t) (g ◦ ∇u) (t).

The proof is complete.

We are now ready to give the proof of Theorem 3.5.

Proof of Theorem 3.5. Taking into account (3.3), we deduce from Lemma 6.4 that

L′(t) = E′(t) + ερ′(t)

≤ − ∥ut(t)∥
2 − ε

ℓ

2
ξ(t) ∥∇u(t)∥2 + εξ(t)

∫

Ω
|u(t)|p ln |u(t)|dx

+
1

2

(
g′ ◦ ∇u

)
(t) + ε

1 − ℓ

2ℓ
ξ(t) (g ◦ ∇u) (t). (6.6)

By (G,iii) we have (g′ ◦ ∇u) (t) ≤ −ξ(t) (g ◦ ∇u) (t). Using (3.2), (6.6) and Lemma 6.2, we

have

L′(t) ≤ − εΛξ(t)E(t) +
εΛ

2
ξ(t)

(
1 −

∫ t

0
g(s)ds

)
∥∇u(t)∥2 +

εΛ

2
ξ(t) (g ◦ ∇u) (t)

−
εΛ

p
ξ(t)

∫

Ω
|u(t)|p ln |u(t)|dx +

εΛ

p2
ξ(t) ∥u(t)∥p

p − ∥ut(t)∥
2

−
εℓ

2
ξ(t) ∥∇u(t)∥2 + εξ(t)

∫

Ω
|u(t)|p ln |u(t)|dx −

1

2

(
1 − ε

1 − ℓ

ℓ

)
ξ(t) (g ◦ ∇u) (t)

≤ − εΛξ(t)E(t)− ε

(
ℓ

2
−

Λℓ

2
−

ΛC(p, dδ)

p2

)
ξ(t) ∥∇u(t)∥2

+ ε

(
1 −

Λ

p

)
ξ(t)

∫

Ω
|u(t)|p ln |u(t)|dx −

1

2

(
1 − ε

1 − ℓ

ℓ
− εΛ

)
ξ(t) (g ◦ ∇u) (t),

for any Λ > 0. By choosing ε > 0 and Λ < p small enough such that

1 − ε
1 − ℓ

ℓ
> 0 and 1 − ε

1 − ℓ

ℓ
− εΛ > 0

we obtain

L′(t) ≤ − εΛξ(t)E(t)− ε

(
ℓ

2
−

Λℓ

2
−

ΛC(p, dδ)

p2

)
ξ(t) ∥∇u(t)∥2

+ εδ

(
1 −

Λ

p

)(
dδ

E(0)

) 2−p
p

ξ(t) ∥∇u(t)∥2

≤ − εΛξ(t)E(t)− ε


 ℓ

2
− δ

(
dδ

E(0)

) 2−p
p

−
Λℓ

2
−

ΛC(p, dδ)

p2


 ξ(t) ∥∇u(t)∥2 .
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Since E(0) <
(

ℓ

2δ

) p
p−2

dδ, we can pick 0 < Λ < p such that

ℓ

2
− δ

(
dδ

E(0)

) 2−p
p

−
Λℓ

2
−

ΛC(p, dδ)

p2
> 0.

Therefore, we get

L′(t) ≤ −εΛξ(t)E(t) ≤ −
εΛ

α2
ξ(t)L(t), ∀t ≥ t0,

which implies

L(t) ≤ L(0)e
− εΛ

α2

∫ t
0 ξ(s)ds

, ∀t ≥ t0.

This completes the proof.
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1 Introduction

Delay differential equations arise from evolution phenomena in physical process and biolog-

ical systems (see e.g. [19, 21, 25]), in which time-delay is used for mathematical modelling to

describe the dynamical influence from the past. Recently, the effect of noise on such functional

differential equations is increasingly a focus of investigation, in particular, in the combined

influence of noise and delay in dynamical systems (see e.g. [5, 6, 13, 35, 37]). In this paper, we

consider the following stochastic delay differential equation in a separable Hilbert space H:

{
dX(t) = [AX(t) + F(Xt)]dt + G(Xt)dZ(t), t > 0,

X(t) = φ(t), t ∈ [−τ, 0],
(1.1)

where A: Dom(A) ⊆ H → H is the infinitesimal generator of a semigroup, Xt(s) = X(t + s)

for s ∈ [−τ, 0] and t ≥ 0. Here, Dom(A) denotes the domain of A and is a Banach space

under the usual graph norm. Let L = L2([−τ, 0], H), and ∥ · ∥, ∥ · ∥L denote the norms in

H and L, respectively. For a process X(t) ∈ H, we denote by {Xt : t ≥ 0} the segment

process, which takes values in L for each t. Z = {Z(t),Ft, t ≥ 0} could be an abstract

Q-Wiener process or Lévy jump process with values in some separable Hilbert space U , and

BCorresponding author. Email: lishangzhi@cug.edu.cn
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φ = {φ(t) : t ∈ [−τ, 0]} is a given real-valued stochastic process, both defined on a probability

space (Ω,F , P) where filtration {Ft : t ≥ 0} is the P-completion of the Borel σ-algebra on Ω.

For stochastic delay differential equations, there has been a rather comprehensive math-

ematical literature on both theories and applications. The existence of invariant measures is

well studied in both finite and infinite dimensions by using Krylov–Bogoliubov theorem (see

e.g. [7, 17, 18]). Scheutzow [35] formulated a sufficient condition ensuring the existence of an

invariant probability measure with additive noise. For a similar approach and connections to

stochastic partial differential equations, see Bakhtin and Mattingly [4]. For stochastic delay

differential equations driven by Brownian motion, Mohammed [31] investigated the existence

and uniqueness of strong or weak solutions under random functional Lipschitz conditions,

Mao [30] discussed the method of steps, which provides a unique solution without a regular

dependence of the coefficients on values in the past, Liptser and Shiryaev [26] considered

weak solutions, Itô and Nisio [23] investigated the existence of weak solutions for equations

with finite and infinite delay, Butkovsky and Scheutzow [8] established a general sufficient

conditions ensuring the existence of an invariant measure for stochastic functional differential

equations and exponential or subexponential convergence to the equilibrium. For stochastic

delay differential equations driven by a Lévy process, Gushchin and Küchler [20] established

some necessary and sufficient conditions ensuring the existence and uniqueness of stationary

solutions, Reiß, Riedle, and van Gaans [32] proved that the segment process is eventually

Feller, but in general not eventually strong Feller on the Skorokhod space, and also investi-

gated the existence of an invariant measure by proving the tightness of the segments using

semimartingale characteristics and the Krylov-Bogoliubov method. Existence and uniqueness

of global solutions have been established under local Lipschitz and linear growth conditions

(see e.g. [30,40]) or weak one-sided local Lipschitz (or monotonicity) conditions. Recently, Liu

[28] considered stationary distributions of a class of second-order stochastic delay evolution

equations driven by Wiener process or Lévy jump process in Hilbert space. In this paper we

shall prove the existence of an invariant measure for (1.1) without boundedness conditions

on the diffusion coefficient. Note that the segment process takes values in the infinite dimen-

sional space L, boundedness in probability does not generally imply tightness. In this case,

one usually uses compactness of the orbits of the underlying deterministic equation to obtain

tightness. However, such a compactness property does not hold for functional differential

equation (1.1). For more details, see [7]. In this work, we will study the existence of invariant

measures of (1.1) by applying the Krylov–Bogoliubov method.

A criterion for the existence of random attractors for random dynamical systems is es-

tablished by Crauel and Flandoli [14], who also obtained the invariant Markov measures

supported by the random attractor. Caraballo, Kloeden and Keal [10] proved the existence

of random attractors of an ordinary differential equation with a random stationary delay.

Kloeden and Lorenz [24] pointed out that the classical theory of pathwise random dynamical

systems with a skew product (see e.g. [3]) does not apply to nonlocal dynamics such as when

the dynamics of a sample path depends on other sample paths through an expectation or

when the evolution of random sets depends on nonlocal properties such as the diameter of

the sets. In [24], Kloeden and Lorenz showed that such nonlocal random dynamics can be

characterized by a deterministic two-parameter process from the theory of nonautonomous

dynamical systems acting on a state space of random variables or random sets with the mean-

square topology and provided a definition of mean-square random dynamical systems and

their attractors. Wu and Kloeden [39] investigated the existence of a random attractor for a

mean-square random dynamical system (MS-RDS) generated by a stochastic delay differential
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equation with random delay for which the drift term is dominated by a nondelay compo-

nent satisfying a one-sided dissipative Lipschitz condition. The exponential stability of trivial

stationary solutions for stochastic partial differential equations has been extensively analyzed

(see e.g. [12, 22, 29]). Caraballo, Kloeden and Schmalfuß [11] obtained the existence of a non-

trivial stationary solution and a random fixed point which is exponentially stable. In this

paper, we shall generalize the relevant results of Caraballo, Kloeden and Schmalfuß [11] to

such a stochastic evolution equation with delay as (1.1). In particular, we shall prove the exis-

tence of a random fixed point, which generates the exponentially stable stationary solution of

(1.1). Moreover, this stationary solution attracts bounded sets of initial conditions.

In this paper, we first establish a non-autonomous random dynamical system generated

by equation (1.1). Then we show the existence of an invariant measure of (1.1) driven by

Wiener process. In particular, we obtain a random pullback attractor consisting of a single

point which is exponentially stable. Next, the existence of invariant measures of (1.1) driven

by Lévy jump process is obtained by using Lévy–Itô decomposition formula. Finally, we apply

our results to reaction-diffusion equations with noise and delay.

2 Preliminaries

Throughout this paper, we always assume that H is a separable Hilbert space, and there exists

a Gelfand triplet V ⊂ H ⊂ V ′ of separable Hilbert spaces, where V ′ denotes the dual of V and

V = Dom(A
1
2 ) (see page 55 of [38] for more details). The inner product in H is denoted by

⟨·, ·⟩, and the duality mapping between V ′ and V by ⟨·, ·⟩V . We denote by a1 > 0 the constant

of the injection V ⊂ H, i.e.,

a1∥u∥2 ≤ ∥u∥2
V for u ∈ V,

and let −A : V → V ′ be a positive, linear and continuous operator for which there exists an

a2 > 0 such that

⟨−Au, u⟩V ≥ a2∥u∥2
V for all u ∈ V.

It is well known (see, for instance, [6, 9, 15]) that A is the generator of a strongly continuous

semigroup Φ(t) = etA on H satisfying that

∥ exp{tA}∥L (H) ≤ e−λt, (2.1)

where λ = a1a2 > 0 and L (H) is a space of bounded linear operators on H.

For any φ ∈ L2([−τ, 0], H), the mild solution X(t, φ) of (1.1) with the intimal data φ

satisfies 



X(t, φ) = Φ(t)φ(0) +
∫ t

0
Φ(t − s)F(Xs(φ))ds

+
∫ t

0
Φ(t − s)G(Xs(φ))dZ(s), t ≥ 0,

X(t, φ) = φ(t), t ∈ [−τ, 0],

(2.2)

where Xt(φ) represents Xt(φ)(s) = X(t + s, φ) for s ∈ [−τ, 0] and t ≥ 0.

Definition 2.1. A measure µ is called an invariant measure for (1.1) if

µ( f ) = µ(Pt f ), t ≥ 0,

where

µ( f ) =
∫

L
f (ϕ)µ(dϕ) and Pt f (ϕ) = E f (Xt(ϕ))
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for f ∈ Cb(L), where Pt is called the transition operator of (1.1) and Cb(L) denotes the set

of all bounded and continuous real-valued functions on L. Let µXt(ϕ) be the distribution of

Xt(ϕ), t ≥ 0. If an F0-measurable ϕ ∈ L2(Ω,L) is such that µXt(ϕ) = µϕ for all t ≥ 0, then µϕ

is called a stationary distribution of (1.1) and X(t, ϕ) is then called a stationary solution.

It follows from the above definition that an invariant measure µ is a stationary distribution

of (1.1) if and only if ∫

L
∥ϕ∥2

Lµ(dϕ) < ∞,

when F0 is assumed to be rich enough to allow the existence of an F0-measurable random

variable with distribution µ.

Definition 2.2. Denote by P(L) the set of Borel probability measures on L endowed with the

topology of weak convergence of measures. For µ1, µ2 ∈ P(L) define a metric on P(L) by

d(µ1, µ2) = sup
f∈M

∣∣∣∣
∫

L
f (ϕ)µ1(dϕ)−

∫

L
f (ϕ)µ2(dϕ)

∣∣∣∣ ,

where

M = { f ∈ C(L, R) : | f (ϕ)− f (ψ)| ≤ ∥ϕ − ψ∥L for all ϕ, ψ ∈ L and | f (·)| ≤ 1}.

It is well known that P(L) is complete under the metric d(·, ·) (see [16, Theorem 2.4.9]).

In order to show the existence of an invariant measure, we consider the segments of a

solution. In contrast to the scalar solution process, the process of segment {Xt(ϕ) : t ≥ 0} is

a Markov process [17, 18]. It is shown that the segment process is also Feller and there exists

a solution of which the segments are tight (see, for example, [17] for more details). Then we

apply the Krylov–Bogoliubov method. In fact, we have the following result.

Lemma 2.3. Suppose that for any bounded subset U of L,

(i) limt→∞ supϕ,ψ∈U E∥Xt(ϕ)− Xt(ψ)∥2
L = 0;

(ii) supt≥0 supϕ∈U E∥Xt(ϕ)∥2
L < ∞.

Then, for any initial condition ϕ ∈ L, the solution of equation (1.1) converges to an invariant measure.

Proof. It suffices to show that for any initial condition ϕ ∈ L, {P(ϕ, t, ·) : t ≥ 0} is Cauchy

in the space P(L) with the metric d(·, ·) in Definition 2.2. For this purpose, we only need to

show that for any initial data ϕ ∈ L and ε > 0, there exists a time T > 0 such that

d(P(ϕ, t + s, ·), P(ϕ, t, ·)) = sup
f∈M

|E f (Xt+s(ϕ))− E f (Xt(ϕ))| ≤ ε, ∀t ≥ T, s > 0. (2.3)

The proof is referred to Lemma 5.1 in [28]. Here we shall provide the details for the sake of

completeness. For any f ∈ M and t, s > 0, note that

|E f (Xt+s(ϕ))− E f (Xt(ϕ))|
= |E[E f (Xt+s(ϕ))|Fs]− E f (Xt(ϕ))|

=

∣∣∣∣
∫

L
E f (Xt(ψ))P(Xs(ϕ), dψ)− E f (Xt+s(ϕ))

∣∣∣∣

≤
∫

L
|E f (Xt(ψ))− E f (Xt(ϕ))|P(Xs(ϕ), dψ)

≤ 2P(Xs(ϕ),Lc
R) +

∫

LR

|E f (Xt(ψ))− E f (Xt(ϕ))|P(Xs(ϕ), dψ),

(2.4)



Stochastic delay differential equations in Hilbert space 5

where LR = {ϕ ∈ L : ∥ϕ∥L ≤ R} and Lc
R = L− LR. By virtue of condition (i), there exists a

time T2 > 0 such that

sup
f∈M

|E f (Xt(ϕ))− E f (Xt(ψ))| ≤
ε

2
, t ≥ T2.

On the other hand, condition (ii) implies that there exists a positive sufficiently large constant

R such that

P(Xs(ϕ),Lc
R) ≤

ε

4
, ∀s > 0.

Hence (2.3) holds and the transition probability P(Xs(ϕ), ·) of Xt(ϕ) converges weakly to some

µ ∈ P(L). For every f ∈ Cb(L) the Markovian property of Xt(ϕ), t ≥ 0 gives that

Pt+s f (ϕ) = PtPs f (ϕ) t, s ≥ 0, ϕ ∈ L.

Let s → ∞, it follows that

µ( f ) = µ(Pt f ), f ∈ Cb(L).
That is, µ is an invariant measure for Xt(ϕ), t ≥ 0. The proof is completed.

3 Stochastic systems driven by Wiener process

In this section we consider equation (1.1) with Z = {W(t) : t ≥ 0}, which denotes a U -valued

{Ft : t ≥ 0}-Wiener process defined on {Ω,F , P} with covariance operator Q, i.e.,

E⟨W(t), x⟩⟨W(s), y⟩ = (t ∧ s)⟨Qx, y⟩ for all x, y ∈ U ,

where Q is a linear, symmetric and nonnegative bounded operator on U. In particular, we

shall call {W(t) : t ≥ 0}, a U -valued Q-Wiener process with respect to {Ft : t ≥ 0}.

First, we shall show the solution process is tight. Let LQ
2 (U , H) is the space of all Hilbert–

Schmidt operators from U to H with ∥G∥2
L

Q
2

:= TrH(GQG∗). For any t ≥ 0 and G(t) ∈
L

Q
2 (U , H), let

Qt =
∫ t

0
Φ(s)G(s)QG∗(s)Φ∗(s)ds,

where G∗(s) and Φ∗(s) are the adjoint operators of G(s) and Φ(s), respectively. We suppose

that

Tr(Qt) =
∫ t

0
Tr[Φ(s)G(s)QG∗(s)Φ∗(s)]ds < ∞ for any t ≥ 0. (3.1)

Throughout this section, the operator F: L → H is supposed to be Lipschitz continuous

while the operator G: L → L
Q
2 (U , H) is supposed to be Lipschitz continuous with respect to

the Hilbert-Schmidt norm L
Q
2 (U , H) of linear operators from U to H:

∥F(x)− F(y)∥+ ∥G(x)− G(y)∥
L

Q
2
≤ K∥x − y∥L,

∥F(x)∥+ ∥G(x)∥
L

Q
2
≤ K1∥x∥L + K2

(3.2)

for all x, y ∈ L, where K, K1, K2 are nonpositive constants. Note that under hypotheses

(2.1) and (3.2), (1.1) has a unique mild solution of which the segment is a Markov and Feller

process (see [33, 34, 39] for more details). In the subsequent two subsections, we investigate

the existence of invariant measure and random attractor as well as the exponential stability of

stationary solutions.
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3.1 Invariant measure

Lemma 3.1. Assume that 2K2e2λτ(1+ λ−1e−λτ) < λ, Then all trajectories of solution processes (2.2)

converge exponentially together in the mean-square sense. In particular, for any bounded subset U of L,

lim
t→∞

sup
ϕ,ψ∈U

E∥Xt(ϕ)− Xt(ψ)∥2
L = 0.

Proof. It follows from 2(1 + ε)K2e2λτ(1 + λ−1e−λτ) < λ that there exists ε > 0 such that

2(1 + ε)K2e2λτ(1 + λ−1e−λτ) < λ. Note that

(A + B + C)2 ≤ (1 + ε)(A + B)2 +

(
1 +

1

ε

)
C2 ≤ 2(1 + ε)(A2 + B2) +

(
1 +

1

ε

)
C2

for all A, B, C ≥ 0. Then it follows from (2.2) that for t > τ,

E∥Xt(ϕ)− Xt(ψ)∥2
L

≤ E

{(
1 +

1

ε

) ∫ 0

−τ
∥Φ(t + θ)(ϕ(0)− ψ(0))∥2dθ

+ 2(1 + ε)
∫ 0

−τ

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)(F(Xs(ϕ))− F(Xs(ψ)))ds

∥∥∥∥
2

dθ

+ 2(1 + ε)
∫ 0

−τ

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)(G(Xs(ϕ))− G(Xs(ψ)))dW

∥∥∥∥
2}

dθ

=:

(
1 +

1

ε

)
I1 + 2(1 + ε)I2 + 2(1 + ε)I3.

(3.3)

Following (2.1) we have

I1 ≤ e−2λt(e2λτ − 1)

2λ
∥ϕ(0)− ψ(0)∥2. (3.4)

From (2.1), (3.2) and Hölder’s inequality, it follows that for t > τ,

I2 ≤ E

∫ 0

−τ

[∫ t+θ

0
∥Φ(t + θ − s)∥L (H)ds

∫ t+θ

0
∥Φ(t + θ − s)∥L (H)∥F(Xs(ϕ))− F(Xs(ψ))∥2ds

]
dθ

≤ K2

λ

∫ 0

−τ

∫ t+θ

0
(1 − e−λ(t+θ))e−λ(t+θ−s)

E∥Xs(ϕ)− Xs(ψ)∥2
Ldsdθ

≤ K2eλτ

λ

∫ t

0
e−λ(t−s)

E∥Xs(ϕ)− Xs(ψ)∥2
Lds.

(3.5)

Using (2.1), (3.2) and the Burkholder–Davis–Gundy inequatlity (see, for example [27, Theo-

rem 6.1]), we get

I3 ≤ E

∫ 0

−τ

∫ t+θ

0
∥Φ(t + θ − s)∥2

L (H)∥G(Xs(ϕ))− G(Xs(ψ))∥2
L

Q
2

dsdθ

≤ K2
∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)

E∥Xs(ϕ)− Xs(ψ)∥2
Ldsdθ

≤ K2e2λτ
∫ t

0
e−λ(t−s)

E∥Xs(ϕ)− Xs(ψ)∥2
Lds

(3.6)
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for t > τ. Then from (3.4), (3.5) and (3.6), we obtain

eλt
E∥Xt(ϕ)− Xt(ψ)∥2 ≤ (e2λτ − 1)(1 + ε)

2λε
∥ϕ(0)− ψ(0)∥2

+ 2(1 + ε)K2(e2λτ + λ−1eλτ)
∫ t

0
eλs

E∥Xs(ϕ)− Xs(ψ)∥2
Lds.

Using Gronwall’s inequality, we have

eλt
E∥Xt(ϕ)− Xt(ψ)∥2

L ≤ (e2λτ − 1)(1 + ε)

2λε
∥ϕ(0)− ψ(0)∥2 (3.7)

The proof is completed.

Then we will prove the segment process of solution to (1.1) is bounded with Wiener pro-

cess.

Lemma 3.2. Assume that 2K2
1e2λτ(1 + λ−1e−λτ) < λ. Then the solution process (2.2) is ultimately

bounded in the mean-square sense, i.e., for any bounded set U of L,

sup
t≥0

sup
ϕ∈U

E∥Xt(ϕ)∥2
L < ∞.

Proof. It follows from 2K2
1e2λτ(1 + λ−1e−λτ) < λ that there exists ε > 0 such that 2K2

1(e
2λτ +

λ−1eλτ)(1 + ε)2
< λ. Similar to (3.3), it follows from (2.2) that for all t ≥ 0

E∥Xt(ϕ)∥2
L ≤ E

{(
1 +

1

ε

) ∫ 0

−τ
∥Φ(t + θ)ϕ(0)∥2dθ

+ 2 (1 + ε)
∫ 0

−τ

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)F(Xs(ϕ))ds

∥∥∥∥
2

dθ

+ 2 (1 + ε)
∫ 0

−τ

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)G(Xs(ϕ))dW

∥∥∥∥
2

dθ

}

=:

(
1 +

1

ε

)
J1 + 2 (1 + ε) J2 + 2 (1 + ε) J3.

(3.8)

From (2.1) we have

J1 ≤ e−2λt(e2λτ − 1)

2λ
∥ϕ(0)∥2. (3.9)

Note that

(A + B)2 ≤ (1 + ε)A2 +

(
1 +

1

ε

)
B2.

Following (2.1), (3.2) and Hölder’s inequality we have

J2 ≤ E

∫ 0

−τ

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)F(Xs(ϕ))ds

∥∥∥∥
2

dθ

≤ E

∫ 0

−τ

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)[K1∥Xs(ϕ)∥L + K2]ds

∥∥∥∥
2

dθ

≤
(

1 +
1

ε

)
K2

2

∫ 0

−τ

∫ t+θ

0
∥Φ(t + θ − s)∥2

L (H) dsdθ

+(1 + ε)K2
1

∫ 0

−τ

∫ t+θ

0
∥Φ(t + θ − s)∥

L (H) ds
∫ t+θ

0
∥Φ(t + θ − s)∥L (H)∥Xs(ϕ)∥2

Ldsdθ
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≤ (1 + ε)τK2
2

2ελ
+

(1 + ε)K2
1

λ

∫ 0

−τ

∫ t+θ

0
(1 − e−λ(t+θ))e−λ(t+θ−s)

E∥Xs(ϕ)∥2
Ldsdθ

≤ (1 + ε)τK2
2

2ελ
+

(1 + ε)eλτK2
1

λ

∫ t

0
e−λ(t−s)

E∥Xs(ϕ)∥2
Lds (3.10)

for t > τ. It follows from (2.1), (3.2) and the Burkholder–Davis–Gundy inequality that

J3 ≤
∫ 0

−τ

∫ t+θ

0
E ∥Φ(t + θ − s)G(Xs(ϕ))∥2 dsdθ

≤
∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)

[
(1 + ε)K2

1E∥Xs(ϕ)∥2
L +

(
1 +

1

ε

)
K2

2

]
dsdθ

≤ (1 + ε)K2
2

2ελ

∫ 0

−τ
(1 − e−2λ(t+θ))dθ + (1 + ε)K2

1

∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)

E∥Xs(ϕ)∥2
Ldsdθ

≤ (1 + ε) τK2
2

2ελ
+ (1 + ε)K2

1e2λτ
∫ t

0
e−λ(t−s)

E∥Xs(ϕ)∥2
Lds

(3.11)

for t > τ. Thus, (3.9), (3.10) and (3.11) together imply that for t > τ,

eλt
E∥Xt(ϕ)∥2 ≤ (1 + ε) (e2λτ−1)

2ελ
∥ϕ(0)∥2 +

(1 + ε)2K2
2τ

ελ
eλt

+ 2K2
1(1 + ε)2(λ−1eλτ + e2λτ)

∫ t

0
eλs

E∥Xs(ϕ)∥2
Lds

= α1 + γ1eλt + β1

∫ t

0
eλs

E∥Xs(ϕ)∥2
Lds,

where

α1 =
(1 + ε) (e2λτ−1)

2ελ
∥ϕ(0)∥2,

γ1 =
(1 + ε)2K2

2τ

ελ
,

β1 = 2K2
1(1 + ε)2(e2λτ + λ−1eλτ).

Then Gronwall’s inequality gives that

eλt
E∥Xt(ϕ)∥2

L ≤ α1 + γ1eλt + β1

∫ t

0

(
γ1eλs + α1

)
eβ1(t−s)ds

and hence that

E∥Xt(ϕ)∥2
L ≤ γ1 + α1e−λt + β1e(β1−λ)t

∫ t

0

(
γ1eλs + α1

)
e−β1sds

≤ γ1 + 2α1 +
β1γ1

λ − β1

for t > τ. This completes the proof.

By Lemmas 2.3, 3.1 and 3.2, we can have the following result about the existence of in-

variant measures of equation (1.1) driven by Wiener process. Now we show the uniqueness

of invariant measures. If µ, µ′ ∈ P(L) are two different invariant measures for Xt of (1.1), for

any f ∈ M, by virtue of (3.7), Hölder’s inequality and the invariance of µ(·), µ′(·), it follows

that

|µ( f )− µ′( f )| ≤
∫

L×L
|Pt f (ϕ)− Pt f (ψ)|µ(dϕ)µ(dψ) ≤ K3eαt, t ≥ 0,

for some constant K3 > 0, where α = K2(e2λτ + λ−1eλτ)− 1
2 λ < 0 under the assumption in

Lemma 3.1. We obtain the uniqueness of invariant measures by letting t → ∞.
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Theorem 3.3. Under the assumptions of Lemmas 3.1 and 3.2, equation (1.1) driven by Wiener process

has a unique invariant measure.

3.2 Random attractor

We consider the canonical probability space (Ω,F , P), where

Ω = {ω ∈ C(R; H) : ω(0) = 0},

and F is the Borel σ-algebra induced by the compact open topology of Ω (see [3]), while P is

the corresponding Wiener measure on (Ω,F , P). Define a shift operators by flow θ = {θt}t∈R

on Ω:

θtω(·) = ω(·+ t)− ω(t), t ∈ R, ω ∈ Ω.

Then, (Ω,F , P, (θt)t∈R) is a metric dynamical system, that is, θ : R×Ω → Ω is (B(R)×F ,F )-

measurable, θ0 is the identity on Ω, θs+t = θtθs for all s, t ∈ R, and θt(P) = P for all t ∈ R.

More precisely, P is ergodic with respect to θ. In addition, with respect to the filtration we

have that

θ−1
s F̄t = F̄t+s (3.12)

for any t, s ∈ R, where F̄ is the completion of F , see [3, Definition 2.3.4] for more details. For

the sake of convenience, from now on, we will abuse the notation slightly and write the space

Ω as Ω.

The Wiener process with covariance Q is adapted to the filtration {F̄s+t}t≥0. First we

define a mean-square random dynamical system referring to [24, 39]. Let

R
2
≥ ≜ {(t, t0) ∈ R

2 : t ≥ t0},

and

Π ≜ L2((Ω,F , P);L), Πt ≜ L2((Ω,Ft, P);L)
for each t ∈ R.

Definition 3.4 ([39, Definition 10]). A mean-square random dynamical system (MS-RDS) Ψ

on L with probability space (Ω,F ,Ft, P) is a family of mappings

Ψ(t, t0, ·) : Πt0 → Πt, (t, t0) ∈ R
2
≥,

which satisfies

(i) initial value property: Ψ(t, t0, ψ) = ψ for every ψ ∈ Πt0 ;

(ii) two-parameter semigroup property: Ψ(t2, t0, ψ) = Ψ(t2, t1, Ψ(t1, t0, ψ)) for all t2 ≥ t1 ≥ t0;

(iii) continuity property: (t, t0, ψ) 7→ Ψ(t, t0, ψ) is continuous in the space R
2
≥ × Π.

Definition 3.5 ([39, Definition 11]). A family A = {At}t∈R of nonempty subsets of Π with

At ⊂ Πt is said to be Ψ-invariant if

Ψ(t, t0, At0) = At for all (t, t0) ∈ R
2
≥,

and Ψ-positively invariant if

Ψ(t, t0, At0) ⊂ At for all (t, t0) ∈ R
2
≥.
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Definition 3.6 ([39, Definition 12]). A Ψ-invariant family A = {At}t∈R of nonempty compact

subsets of {Πt}t∈R is called a mean-square pullback attractor if it pullback attracts all families

B = {Bt}t∈R of uniformly bounded subsets of {Πt}t∈R, i.e., for any fixed t ∈ R

dist(Ψ(t, t0, Bt0), At) → 0 as t0 → −∞.

Let X(·, t0, ϕ0) be the solution of the following equation with initial value ϕ0 ∈ Πt0 ,
{

dX(t) = [AX(t) + F(Xt)]dt + G(Xt)dW(t), t > t0,

X(t0 + s) = ϕ0(s), s ∈ [−τ, 0].
(3.13)

For each (t, t0, ϕ0) ∈ R
2
≥ × Πt0 , define solution mapping of (3.13):

Ψ(t, t0, ϕ0) = Xt(·, t0, ϕ0) = X(t + ·, t0, ϕ0).

It is easy to see that Ψ satisfies the initial value property,

Ψ(t0, t0, ϕ0) = Xt0(·, t0, ϕ0) = X(t0 + ·) = ϕ0

for all (t0, ϕ0) ∈ R × Πt0 . Existence and uniqueness of solution of (3.13) show that Ψ satisfies

the two-parameter semigroup evolution property. Moreover, Ψ is continuous for all (t, t0, ϕ0) ∈
R

2
≥ × Πt0 since solution Xt(·, t0, ϕ0) is continuous with respect to t, ϕ0. Thus, (3.13) generates

a continuous MS-RDS Ψ = {Ψ(t, t0, ·), (t, t0) ∈ R
2
≥} with state space L.

It follows from Lemma 3.2 that for any bounded set U of Π there exist constants B > 0

and TU ≥ 0 such that for all t ≥ t0 + TU and ϕ0 ∈ U ∩ Πt0 ,

E∥Ψ(t, t0, ϕ0)∥2
< B,

which can be represented in the pullback sense that

E∥Ψ(t, tn, ϕn)∥2
< B

for all tn ≤ t − TB and ϕn ∈ U ∩ Πtn . Lemma 3.1 shows that any two solutions converge to-

gether in the mean-square sense uniformly for different initial conditions at the same starting

time. Namely, for any ϕ0, ψ0 ∈ Πt0 ,

E∥Ψ(t, t0, ϕ0)− Ψ(t, t0, ψ0)∥2 → 0 as t → ∞,

with the convergence being uniform for initial values in a common bounded subset as well as

in the initial time t0. Let UB be a bounded ball about the origin of radius B in L. Consider a

sequence tn → −∞ as n → ∞ with tn < −TU − τ and tn+1 ≤ tn − TBU
and define a sequence

{χn}∞
n=1 in UB ∩ Π0 by

χn ≜ Ψ(0, tn, ϕn) (3.14)

for an arbitrary ϕn ∈ UB ∩ Πtn . Namely,

χn(s) = Ψ(s, tn, ϕn)

for all s ∈ [−τ, 0]. Then {χn}∞
n=1 are obviously mean-square bounded by B for all ϕn taking

values in UB ∩ Πtn .

Lemma 3.7. {χn}n∈N is a Cauchy sequence with values in UB ∩ Π0 and there exists a unique limit

χ∗
0 ∈ UB ∩ Π0 such that

E∥χn − χ∗
0∥2 → 0 as n → ∞.
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Proof. It suffices to prove that for every ε > 0 there exists Nε > 0 such that

E∥χn − χm∥2 ≤ ε for all n, m ≥ Nε. (3.15)

Let tm < tn < 0. Then we have

χm = Ψ(0, tm, ϕm) = Ψ(0, tn, Ψ(tn, tm, ϕm)) = Ψ(0, tn, ϕ̂n,m),

where ϕ̂n,m := Ψ(tn, tm, ϕm) ∈ UB ∩ Πtn . Indeed,

E∥χn − χm∥2 = E∥Ψ(0, tn, ϕn)− Ψ(0, tm, ϕm)∥2 = E∥Ψ(0, tn, ϕn)− Ψ(0, tn, ϕ̂n,m)∥2.

Thus, it follows from Lemma 3.1 that (3.15) holds and all solutions starting in the common

bounded subset UB converge in Π0. Since Π0 is complete, the Cauchy sequence has a unique

limit χ∗
0 ∈ UB ∩ Π0. The proof is completed.

From the above process, we can repeat with 0 in (3.14) replaced by −1 to obtain a limit

χ∗
−1 ∈ Π−1. It is easy to see from the construction that χ∗

0 = Ψ(0,−1, χ∗
−1). Follow this way,

we can construct a sequence {χ∗
−n}n∈N and hence obtain an entire MS-RDS χ∗

t for all t ∈ R.

Moreover, all other MS-RDS trajectories converge to χ∗
t in the mean-square sense.

Theorem 3.8. Under the assumptions of Lemmas 3.1 and 3.2, there exists a pullback random attractor

for the random dynamical system generated by (1.1) which consists of singleton sets. Furthermore, the

random attractor pullback attracts all other solution processes in mean-square sense.

Proof. The above arguments shows the existence of random attractor consisting of singleton

sets At = {χ∗
t } and attracts all other solution processes in the mean-square sense. Next we

show the random attractor is unique. Suppose there is another entire trajectory χ̄∗
t ∈ At for

all t ∈ R and there exists a constant ε0 > 0 such that

E∥χ∗
0 − χ̄∗

0∥2 ≥ ε0.

On the other hand, it follows from the convergence in Lemma 3.1 that there exists T ≥ 0 such

that

E∥Ψ(0,−t, χ∗
−t)− Ψ(0,−t, χ̄∗

−t)∥2 ≤ ε0

2

for all t ≥ T. Note that χ∗
0 = Ψ(0,−t, χ∗

−t) and χ̄∗
0 = Ψ(0,−t, χ̄∗

−t). Hence

ε0 ≤ E∥χ∗
0 − χ̄∗

0∥2 = E∥Ψ(0,−t, χ∗
−t)− Ψ(0,−t, χ̄∗

−t)∥2 ≤ ε0

2

for t ≥ T, which is a contradiction. This completes the proof.

Remark 3.9. If the random attractor A(ω), ω ∈ Ω consists of a single point, then A defines a

random fixed point which attracts tempered random sets.

3.3 Exponential stability of stationary solutions

Note that zero is not a solution to the equation (1.1). In this subsection we shall prove that

the non-trivial stationary solutions to equation (1.1) with Wiener process are exponentially

stable. Consider the process θsW(·, ω) = W(·, θsω) = W(·+ s, ω)− W(s, ω), for s ∈ R which

is adapted to the filtration {Ft+s}t≥0. The following equality holds for ψ0 ∈ Π0, t ≥ 0, s ∈ R:

Ψ(t, 0, ψ0)(θs·) = Ψ(t, s, ψs)(·) almost surely t, s ∈ R, (3.16)

where ψs(·) := ψ0(θs·). It follows from (3.12) that x0(θs·) is F̄s-measurable. The following

lemma is obvious from the proof of Lemma 3.1.
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Lemma 3.10. For s ∈ R, ϵ ≥ 0, ψ ∈ Πs,

Ψ(·, s + ϵ, Ψ(ϵ, s, ψ)) = Ψ(·+ ϵ, s, ψ) almost surely.

Now we can show the existence of the fixed point.

Theorem 3.11. Under the assumptions in Lemma 3.1, there exists an exponentially attracting fixed

point X∗ ∈ Π0 which generates an exponentially stable stationary solution for (1.1). In addition, the

process (t, ω) → X∗(θtω) has a continuous version given by Ψ(·, 0, X∗).

Proof. First we claim that (Ψ(k,−k, ψ0(θ−k·)))k∈N is a Cauchy sequence in Π0. It follows from

Lemma 3.10 and (3.16) that

E∥Ψ(k,−k, ψ0(θ−k·))− Ψ(k − 1, 1 − k, ψ0(θ1−k·))∥2

= E∥Ψ(k − 1, 1 − k, Ψ(k,−k, ψ0(θ−k·))))− Ψ(k − 1, 1 − k, ψ0(θ1−k·))∥2

≤ eσ(k−1)
E∥Ψ(1,−k, ψ0(θ−k·))− ψ0(θ1−k·))∥2

= eσ(k−1)
E∥Ψ(1, 0, ψ0(·))− ψ0(θ1·))∥2.

It follows from Lemma 3.1 that σ < 0 and then the Cauchy sequence property holds. Let

X∗ ∈ Π0 be the limit of this sequence, i.e. in L2-norm sense,

X∗(θt·) = lim
k→∞

Ψ(k,−k, ψ0(θ−k·))(θtω),

which is equal to

X∗(θt·) = lim
k→∞

Ψ(k, t − k, ψ0(θt−k·))(ω).

For ψ0, ϕ0 ∈ Π0, we have

E∥Ψ(k,−k, ψ0(θ−k·))− Ψ(k,−k, ϕ0(θ−k·))∥2

= E∥Ψ(k, 0, ψ0(·))− Ψ(k, 0, ϕ0(·))∥2 ≤ eσk
E∥ψ0 − ϕ0∥2

L,

which tends to zero as k goes to infinity. Thus X∗ ∈ Π0 is exponentially stable and indepen-

dent of the choice of ψ0 ∈ Π0.

Next, we show that X∗ is a fixed point, i.e., for any t ∈ R
+

Ψ(t, 0, X∗)(·) = X∗(θt·) almost surely.

Indeed, for any fixed t, from (3.16), Lemma 3.10 and semigroup property we have

E∥Ψ(t, 0, X∗)− X∗(θt·)∥2

= E

∥∥∥∥Ψ

(
t, 0, lim

k→∞
Ψ(k,−k, ψ0(θ−k·))

)
− lim

k→∞
Ψ(k, t − k, ψ0(θt−k·))

∥∥∥∥
2

= lim
k→∞

E∥Ψ(k, t − k, Ψ(t,−k, ψ0(θ−k·))− Ψ(k, t − k, ψ0(θt−k·))∥2

≤ lim
k→∞

eσk
E∥Ψ(t,−k, ψ0)− ψ0(θt·)∥2 = 0.

This completes the proof.
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4 Systems driven by Lévy jump process

In this section, we will give the existence of invariant measures of (1.1) with Lévy jump process

in separable Hilbert space U . To this end, it suffices to verify the assertions in Lemma 2.3 hold.

Let Z = {Z(t) : t ≥ 0} be a stochastic process defined on a probability space (Ω,F , P).

We say that Z is a Lévy process if:

(i) Z(0) = 0 (a.s.);

(ii) Z has independent and stationary increments;

(iii) Z is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P(∥Z(t)− Z(s)∥U > a) = 0.

We have the following property of Lévy measures on separable Hilbert spaces (see [36]).

Lemma 4.1. Let U be a separable Hilbert space. Then a σ-finite measure ν with ν({0}) = 0 is on U
if and only if ∫

U
(1 ∧ ∥y∥2

U )ν(dy) < ∞.

ν(·) is also called a Lévy measure.

The jump process ∆Z = {∆Z(t) : t ≥ 0} is defined by

∆Z(t) = Z(t)− Z(t−)

for each t ≥ 0, where Z(t−) is the left limit at the point t. Furthermore, ∆Z is a Poisson point

process. The Poisson process of intensity λ > 0 is a Lévy process with N taking values in

N ∪ {0} wherein each N(t) ∼ π(λt). For t > 0 and Γ ∈ B(U − {0}), define

N(t, Γ)(ω) = ∑
s∈(0,t]

1Γ(∆Z(s)(ω)), (4.1)

if ω ∈ Ω0, and N(t, Γ)(ω) = 0, if ω ∈ Ωc
0, where Ω0 ∈ F with P(Ω0) = 1 such that

t → Z(t)(ω) is càdlàg1 for all ω ∈ Ωc
0. We write ν(·) = E(N(1, ·)) and call it the intensity

measure associated with Z. We say that Γ ∈ B(U − {0}) is bounded below if 0 /∈ Γ̄. The

following results are from [2].

Lemma 4.2. (i) If Z is a Lévy process, then for fixed t > 0, ∆Z(t) = 0 (a.s.);

(ii) If Γ is bounded, then N(t, Γ) < ∞ (a.s.) for all t ≥ 0;

(iii) If Γ is bounded, then {N(t, Γ) : t ≥ 0} is a Poisson process with intensity ν(Γ).

Let S be a set and A be a ring of subsets of S. Clearly, if F is a σ-algebra then it is also a

ring. A random measure M on (S,A) is a collection of random variables {M(B) : B ∈ A} such

that (i) M(∅) = 0, (ii) given any disjoint A, B ∈ A, M(A ∪ B) = M(A) + M(B). A random

measure is said to be independently scattered if for each disjoint family {B1, . . . , Bn} in A, the

random variables M(B1), . . . , M(Bn) are independent.

1 Let I = [a, b] be an interval in R
+. A mapping f : I → R

d is said to be càdlàg if, for all t ∈ [a, b], f has a left

limit at t and f is right-continuous at t.
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Let S be a σ-algebra of subsets of set S. Fix a non-trivial ring A ⊆ S , an independently

scattered σ-finite random measure M on (S,S) is called a Poisson random measure if M(B) < ∞

for each B ∈ A and each M(B) has a Poisson distribution. It follows from (4.1) and Lemma 4.2

that N(t, Γ) is a Poisson random measure and λ(·) = tν(·).
Now introduce the compensated Poisson process Ñ = {Ñ(t) : t ≥ 0} where Ñ(t) = N(t)− νt.

Note that E[Ñ(t)] = 0 and E[Ñ(t)2] = νt for each t ≥ 0. Then Ñ(t) is martingale, that is,

for all 0 ≤ s < t < ∞, E(Ñ(t)|Fs) = Ñ(s) a.s. For each t ≥ 0 and Γ bounded, we define the

compensated Poisson random measure by

Ñ(t, Γ) = N(t, Γ)− tν(Γ).

It is easy to see that Ñ(t, Γ) is a σ-finite independently scattered martingale-valued measure.

Let Γ ∈ B(U − {0}) with 0 /∈ Γ̄ and f : Γ → U measurable. Define the following integral
∫

Γ
f (z)N(t, dz) = ∑

0<s≤t

f (∆Z(s))1Γ(∆Z(s)).

This is a finite sum P-a.s. since the number of summands is finite P-a.s. For f ∈ L2
ν ≜ L2(U −

{0}, ν|U−{0};U ), the next proposition defines the integral with respect to the compensated

Poisson random measure (see [36] for more details).

Proposition 4.3. Let f be strongly square-integrable with respect to Ñ(t, dz) and f ∈ L2
ν. Then for

any Γ ∈ B(U − {0}) with 0 /∈ Γ̄ we have
∫

Γ
f (z)Ñ(t, dz) = ∑

0<s≤t

f (∆Z(s))1Γ(∆Z(s))− t
∫

Γ
f (z)ν(dz).

Proposition 4.4 (cf. [1] and [36]). Let f ∈ L2
ν then for any Γ ∈ B(U − {0}) the integral∫

Γ
f (z)Ñ(t, dz) exists and

E

[∥∥∥∥
∫

Γ
f (z)Ñ(t, dz)

∥∥∥∥
2
]
= t

∫

Γ
∥ f (z)∥2ν(dz) < ∞.

The following is a very important for Lévy processes called Lévy–Itô decomposition (see

e.g. [1, 2, 36]).

Theorem 4.5. Let Z = {Z(t) : t ≥ 0} be a Lévy process on a separable Hilbert space U where the

distribution of Z(t) has generating triplet [tb, tQ, tν] for each t ≥ 0,

Z(t) = bt + WQ(t) +
∫

∥z∥U<1
zÑ(t, dz) +

∫

∥z∥U≥1
zN(t, dz),

where

b = E

[
Z(1)−

∫

∥z∥U≥1
zN(1, dz)

]

and WQ = {WQ(t) : t ≥ 0} is a Wiener process with covariance operator Q independent of N(·, Γ)

for all Γ ∈ B(U − {0}) with 0 /∈ Γ̄.

Let Z be a U -valued Lévy process with its Lévy triplet (0, Q, ν) below. By Lemma 4.1, ν(Γ)

is a Lévy measure with Γ ∈ B(Γ − {0}). Note that an adapted Lévy process with zero mean

is martingale, and that a Lévy process is martingale if and only if it is integrable and

b +
∫

∥z∥U≥1
zν(dz) = 0.
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It follows from Lévy–Itô decomposition that the Lévy process can be written as

Z(t) = WQ(t) +
∫

U−{0}
zÑ(t, dz). (4.2)

In view of Proposition 4.4, we have

Kz ≜

∫

U−{0}
∥z∥2

Uν(dz) < ∞.

Throughout this section, we always assume that the operators F and G in (1.1) satisfy

∥F(x)− F(y)∥+ ∥G(x)− G(y)∥L (U ,H) ≤ K∥x − y∥L,

∥F(x)∥+ ∥G(x)∥L (U ,H) ≤ K1∥x∥L + K2

(4.3)

for all x, y ∈ L, where K, K1, K2 are nonnegative constants, L (U , H) is the space of bounded

linear operators from U to H.

The boundedness of solution with Lévy jump process is given as follows.

Lemma 4.6. Assume that 3K2
1e2λτ

[
λ−1e−λτ + Tr(Q) + Kz

]
< λ. Then for any bounded set U of L,

sup
t≥0

sup
ϕ∈U

E∥Xt(ϕ)∥2
L < ∞.

Proof. Using the similar arguments as the proof of Lemma 3.2 and the Lévy–Itô decomposition

(4.2), we can obtain that for all t ≥ 0

E∥Xt(ϕ)∥2
L ≤ 3E

∫ 0

−τ

{∥∥∥∥Φ(t + θ)ϕ(0) +
∫ t+θ

0
Φ(t + θ − s)F(Xs(ϕ))ds

∥∥∥∥
2

+

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)G(Xs(ϕ))dWQ

∥∥∥∥
2

+

∥∥∥∥
∫ t+θ

0

∫

U−{0}
Φ(t + θ − s)G(Xs(ϕ))zÑ(ds, dz)

∥∥∥∥
2}

dθ

≤ 3E

{
(1 +

1

ε
)
∫ 0

−τ
e−2λ(t+θ)∥ϕ∥2

Ldθ

+ (1 + ε)
∫ 0

−τ

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)F(Xs(ϕ))ds

∥∥∥∥
2

dθ

}

+ 3E

∫ 0

−τ

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)G(Xs(ϕ))dWQ

∥∥∥∥
2

dθ

+ 3E

∫ 0

−τ

∥∥∥∥
∫ t+θ

0

∫

U−{0}
Φ(t + θ − s)G(Xs(ϕ))zÑ(ds, dz)

∥∥∥∥
2

dθ

=:
3(1 + ε)e−2λt(e2λτ − 1)

2ελ
∥ϕ(0)∥2 + M1 + M2 + M3.

(4.4)

By virtue of (3.10), we have

M1 ≤ 3(1 + ε)

[
(1 + ε) τK2

2

2ελ
+

(1 + ε)K2
1eλτ

λ

∫ t

0
e−λ(t−s)

E∥Xs(ϕ)∥2
Lds

]
. (4.5)
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Carrying out a similar argument to that of (3.11), we can easily get that

M2 ≤ 3Tr(Q)
∫ 0

−τ

∫ t+θ

0
E ∥Φ(t + θ − s)G(Xs(ϕ))∥2 dsdθ

≤ 3Tr(Q)
∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)

[
(1 + ε)K2

1E∥Xs(ϕ)∥2
L +

(
1 +

1

ε

)
K2

2

]
dsdθ

≤ 3 (1 + ε) τK2
2Tr(Q)

2ελ
+ 3(1 + ε)Tr(Q)K2

1e2λτ
∫ t

0
e−λ(t−s)

E∥Xs(ϕ)∥2
Lds.

(4.6)

Moreover,

M3 ≤ 3
∫ 0

−τ

∫ t+θ

0

∫

U−{0}
E ∥Φ(t + θ − s)G(Xs(ϕ))z∥2 Ñ(ds, dz)dθ

≤ 3
∫

U−{0}
∥z∥2

Uν(dz)

[(
1 +

1

ε

)
K2

2

∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)dsdθ

+ (1 + ε)K2
1

∫ 0

−τ

∫ t+θ

0
e−λ(t+θ−s)∥Xs(ϕ)∥2

Ldsdθ

]

≤ 3 (1 + ε) τKzK2
2

2ελ
+ 3Kz(1 + ε)K2

1e2λτ
∫ t

0
e−λ(t−s)

E∥Xs(ϕ)∥2
Lds.

(4.7)

Thus (4.5), (4.6) and (4.7) together imply that

eλt
E∥Xt(ϕ)∥2

L ≤ α2 + γ2eλt + β2

∫ t

0
eλs

E∥Xs(ϕ)∥2
Lds,

where

α2 =
3 (1 + ε) (e2λτ − 1)

2ελ
∥ϕ(0)∥,

γ2 =
3 (1 + ε) τK2

2

2ελ
(1 + ε + Tr(Q) + Kz),

β2 = 3K2
1(1 + ε)

[
(1 + ε)λ−1eλτ + Tr(Q)e2λτ + Kze2λτ

]
.

Then Gronwall’s inequality gives that

eλt
E∥Xt(ϕ)∥2

L ≤ γ2eλt + α2 + β2

∫ t

0

(
γ2eλs + α2

)
eβ2(t−s)ds.

It follows from 3K2
1e2λτ

[
λ−1e−λτ + Tr(Q) + Kz

]
< λ that there exists ε > 0 such that

3K2
1e2λτ(1 + ε)

[
(1 + ε)λ−1e−λτ + Tr(Q) + Kz

]
< λ

and hence that

E∥Xt(ϕ)∥2
L ≤ γ2 + α2e−λt + β2e(β2−λ)t

∫ t

0

(
γ2eλs + α2

)
e−β3sds

≤ γ2 + 2α2 +
β2γ2

λ − β2
.

This completes the proof.

Now we only need to show the tightness of solution (2.2) with Lévy jump process.
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Lemma 4.7. Suppose that 3K2
1e2λτ

[
λ−1e−λτ + Tr(Q) + Kz

]
< λ. Then for any bounded set U of L,

lim
t→∞

sup
ϕ,ψ∈U

E∥Xt(ϕ)− Xt(ψ)∥2
L = 0.

Proof. Using the similar arguments as the proof of Lemmas 3.1 and 4.6, we have

E∥Xt(ϕ)− Xt(ψ)∥2
L

≤ 3E

∫ 0

−τ

{∥∥∥∥Φ(t + θ)(ϕ(0)− ψ(0)) +
∫ t+θ

0
Φ(t + θ − s)(F(Xs(ϕ))− F(Xs(ψ)))ds

∥∥∥∥
2

+

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] dWQ

∥∥∥∥
2

+

∥∥∥∥
∫ t+θ

0

∫

U−{0}
Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] zÑ(ds, dz)

∥∥∥∥
2
}

dθ

≤ 3E

∫ 0

−τ

{(
1 +

1

ε

)
e−2λ(t+θ)∥ϕ − ψ∥2

L

+ (1 + ε)

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s)(F(Xs(ϕ))− F(Xs(ψ)))ds

∥∥∥∥
2

+

∥∥∥∥
∫ t+θ

0
Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] dWQ

∥∥∥∥
2

+

∥∥∥∥
∫ t+θ

0

∫

U−{0}
Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] zÑ(ds, dz)

∥∥∥∥
2
}

dθ

=:
e−2λt3(1 + ε)(e2λτ − 1)

2ελ
∥ϕ(0)− ψ(0)∥2 + N1 + N2 + N3.

(4.8)

Similar to (3.5) we have

N1 ≤ 3(1 + ε)K2eλτ

λ

∫ t

0
e−λ(t−s)

E∥Xs(ϕ)− Xs(ψ)∥2
Lds. (4.9)

Burkholder–Davis–Gundy inequality implies that

N2 ≤ 3Tr(Q)E
∫ 0

−τ

∫ t+θ

0
∥Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] ∥2dsdθ

≤ 3Tr(Q)K2e2λτ
∫ t

0
e−λ(t−s)

E∥Xs(ϕ)− Xs(ψ)∥2
Lds,

(4.10)

It follows from Proposition 4.4 that there exists Kz > 0 such that

N3 ≤ 3
∫ 0

−τ

∫ t+θ

0

∫

U−{0}
E ∥Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] z∥2 Ñ(ds, dz)dθ

≤ 3
∫

U−{0}
∥z∥2

Uν(dz)
∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)KE∥Xs(ϕ)− Xs(ψ)∥2

Ldsdθ

≤ 3KzK2e2λτ
∫ t

0
e−λ(t−s)

E∥Xs(ϕ)− Xs(ψ)∥2
Lds.

(4.11)

Thus (4.9), (4.10) and (4.11) together imply that

eλt
E∥Xt(ϕ)− Xt(ψ)∥2

L ≤ α3 + β3

∫ t

0
eλs

E∥Xs(ϕ)− Xs(ψ)∥2
Lds,
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where

α3 =

(
3(1 + ε)e2λτ − 1

)

2ελ
∥ϕ(0)− ψ(0)∥2,

β3 = 3K2e2λτ
[
λ−1e−λτ(1 + ε) + Tr(Q) + Kz

]
.

It follows from 3K2e2λτ(λ−1e−λτ + Tr(Q) + Kz) < λ that there exists ε > 0 such that

3K2e2λτ(λ−1e−λτ(1 + ε) + Tr(Q) + Kz) < λ.

Then Gronwall’s inequality gives that

eλt
E∥Xt(ϕ)− Xt(ψ)∥2

L ≤ α3eβ3t. (4.12)

This completes the proof.

In view of Lemmas 4.6 and 4.7, it suffices to show the uniqueness of invariant measures of

(1.1) driven by Lévy jump process. If µ, µ̃ ∈ P(L) are two different invariant measures, then

for any f ∈ M, it follows from (4.12) and the invariance of µ, µ̃ ∈ P(L) that

|µ( f )− µ̃( f )| =
∫

L

∫

L
|Pt f (ϕ)− Pt f (ψ)|µ(dϕ)µ̃(dψ) ≤ K4e−α̃t, t ≥ 0,

for some K4 > 0, where α̃ = 3
2 K2e2λτ(λ−1e−λτ + Tr(Q) + Kz) − 1

2 λ. Thus, we obtain the

following main result immediately.

Theorem 4.8. Under the assumptions of Lemmas 4.6 and 4.7, equation (1.1) driven by Lévy jump

process has a unique invariant measure.

5 Application

Let T := R/(2πZ) be equipped with the usual Riemannian metric, and let dξ denote the

Lebesgue measure on T. For any p ≥ 1, let

Lp(T, R) =

{
x : T → R; ∥x∥p ≜

[∫

T

|x(ξ)|pdξ

]1/p

< ∞

}
,

and

H =

{
x ∈ L2(T, R) :

∫

T

x(ξ)dξ = 0

}
.

It is easy to see that H is a real separable Hilbert space with the inner product

⟨x, y⟩ =
∫

T

x(ξ)y(ξ)dξ, x, y ∈ H,

and the norm ∥x∥ =
√
⟨x, x⟩. In the following two subsections, we consider two stochastic

reaction-diffusion equations on torus T.
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5.1 A Brownian motion case

Consider a stochastic reaction-diffusion equation driven by a Brownian motion {W(t)}t≥0 on

torus T as follows:




du(t, ξ) =

[
∂2

∂ξ2
u(t, ξ) + f (u(t − 1, ξ))

]
dt + g(u(t − 1, ξ))dW(t, ξ), t ≥ 0,

u(t, ξ) = ϕ(t, ξ), t ∈ [−1, 0],

(5.1)

where ϕ ∈ C := C([−1, 0], W1,2(T)), f : R → R and g: R → R are Lipschitz continuous and

satisfy the linear growth, i.e., there exist positive constants K, K1, and K2 such that

f (u)− f (v)| ≤ L f |u − v|, |g(u)− g(v)| ≤ Lg|u − v|,
| f (u)| ≤ L1|u|+ L2, |g(u)| ≤ L3|u|+ L4

(5.2)

for all u, v ∈ R. Obviously, A = ∂2

∂ξ2 is a self-adjoint operator on H with the discrete spectral.

More precisely, there exist an orthogonal basis {ek = exp{ik(·)} : k ∈ Z∗} with Z∗ = Z \ {0},

and a sequence of real numbers {λk = k2 : k ∈ Z∗} such that −Aek = λkek. Let V be the

domain of the fractional operator (−A)1/2, that is,

V =

{
∑

k∈Z∗

√
λkakek : {ak}k∈Z∗ ⊂ R, ∑

k∈Z∗

a2
k < ∞

}

with the inner product

⟨u, v⟩V = ⟨(−A)1/2u, (−A)1/2v⟩ = ∑
k∈Z∗

λk⟨u, ek⟩⟨v, ek⟩,

and with the norm ∥u∥V =
√
⟨u, u⟩V = ∥(−A)1/2u∥. Clearly, V is densely and compactly

embedded in H.

For every u ∈ H, there exists {ak}k∈Z∗ ⊂ R such that u = ∑x∈Z∗ akek. Thus, we have

⟨−Au, u⟩V = ∑
k∈Z∗

λk⟨−Au, ek⟩⟨u, ek⟩

= ∑
k∈Z∗

λk⟨u,−Aek⟩⟨u, ek⟩ = ∑
k∈Z∗

a2
kλ2

k ≥ λ2
1∥u∥2.

Thus, we obtain (2.1) with λ = λ2
1.

We consider a symmetric positive linear operator Q in H such that Qek = qkek for k ∈
Z∗, where {qk}k∈Z∗ is a bounded sequence of nonnegative real numbers. Thus, Tr(Q) ≜

∑k∈Z∗⟨Qek, ek⟩ = ∑k∈Z∗ qk < ∞, and Q is also called a trace class operator. Let {W(t)}t≥0 be

a H-valued Q-Wiener process given by

W(t) = ∑
x∈Z∗

√
qkWk(t)ek,

where {Wk(t) : t ≥ 0}k∈Z∗ be a sequence of independent standard one-dimensional Brow-

nian motions on some filtered probability space (Ω,F , {Ft}t≥0, P), that is, Wk(t) ∼ N (0, t),

EWk(t) = 0, E[Wk(t)]
2 = t, and E[Wk(t)Wk(s)] = min{t, s}. It is easy to see that the infinite

series of W(t) converges in L2(Ω), and satisfies

E⟨W(t), W(t)⟩ = tTr(Q), E (⟨W(t), a⟩⟨W(s), b⟩) = (t ∧ s)⟨a, b⟩.
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Then we can rewrite system (5.1) into the abstract form (1.1) with τ = 1, F(ut) = f (u(t − 1, ·))
and G(ut) = g(u(t − 1, ·)). Note that the segment process ut = u(t + s, ξ), s ∈ [−1, 0] is

equipped with norm in C, i.e.,

∥ut∥C = max
s∈[−1,0]

∥u(t + s, ξ)∥ = max
s∈[−1,0]

{∫

T

|u(t + s, ξ)|2dξ

} 1
2

.

In what follows, we shall verify that F and G satisfy hypothesis (3.2). In fact, it follows from

(5.2) and Minkowski inequality that

∥F(ut)− F(vt)∥ =

{∫

T

[ f (u(t − 1, ξ))− f (v(t − 1, ξ))]2 dξ

} 1
2

≤
{

L2
f

∫

T

[u(t − 1, ξ)− v(t − 1, ξ)]2 dξ

} 1
2

≤ L f ∥ut − vt∥C ,

∥G(ut)− G(vt)∥LQ
2
=

{
∑

k∈Z∗

⟨(G(ut)− G(vt))Q(G(ut)− G(vt))
∗ek, ek⟩

} 1
2

≤
{

∑
k∈Z∗

L2
g

∫

T

|u(t − 1, ξ)− v(t − 1, ξ)|2dξ ⟨Qek, ek⟩
} 1

2

≤
{

∑
k∈Z∗

L2
g∥ut − vt∥2

C ⟨Qek, ek⟩
} 1

2

= Lg

√
Tr(Q)∥ut − vt∥C ,

and

∥F(ut)∥ =

{∫

T

[ f (u(t − 1, ξ))]2 dξ

} 1
2

≤
{∫

T

(L1|u(t − 1, ξ)|+ L2)
2 dξ

} 1
2

≤
{

L1

∫

T

|u(t − 1, ξ)|2dξ

} 1
2

+

(∫

T

L2
2dξ

) 1
2

≤ L1∥ut∥C + L2,

∥G(ut)∥LQ
2
=

{
∑

k∈Z∗

⟨G(ut)QG(ut)
∗ek, ek⟩

} 1
2

=

{
∑

k∈Z∗

〈∫

T

|g(u(t − 1, ξ))|2dξQek, ek

〉} 1
2

≤
{

∑
k∈Z∗

∫

T

|L3u(t − 1, ξ) + L4|2dξ ⟨Qek, ek⟩
} 1

2

≤
[∫

T

|L3u(t − 1, ξ) + L4|2dξ

] 1
2

[
∑

k∈Z∗

qk

] 1
2

≤ (L3∥ut∥C + L4)
√

Tr(Q).
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Then we can set the parameter values in (3.2) as follows

K = L f + Lg

(
∑

k∈Z∗

qk

) 1
2

, K1 = L1 + L3

(
∑

k∈Z∗

qk

) 1
2

, K2 = L2 + L4

(
∑

k∈Z∗

qk

) 1
2

.

Thus, from Theorems 3.3 and 3.8 we have the following result.

Corollary 5.1. Assume that

max



L f + Lg

(
∑

k∈Z∗

qk

) 1
2

, L1 + L3

(
∑

k∈Z∗

qk

) 1
2



 ≤ (2e2 + 2e)−

1
2 .

Then equation (5.1) has a unique invariant measure and a pullback attractor.

5.2 A Poisson jumps case

Let {N(dt, dz) : t ∈ R
+, z ∈ R} is a centered Poisson random measure with parameter

ν(dz)dt = 2m(z)dzdt, and Ñ(dt, dz) = N(dt, dz)− ν(dz)dt be a compensated Poisson random

measure, where

m(z) =
1√
2πz

exp

{
− ln2 z

2

}
, 0 ≤ z < ∞

is the density function of a lognormal random variable. Consider the following stochastic

delay differential equations with Poisson jumps on T:




du(t, x) =

[
∂2

∂x2
u(t, x) + f (u(t − 1, x))

]
dt +

∫

U
g(u(t − 1, x))zÑ(dt, dz), t ≥ 0,

u(t, x) = ϕ(t, x), t ∈ [−1, 0],

(5.3)

where ϕ ∈ C := C([−1, 0], W1,2(T)), U = {z ∈ R : 0 < |z| ≤ 1}, f : R → R and g : R → R

satisfy (5.2).

Define A : H → H by A = ∂2

∂x2 . It follows from the arguments in Section 5.1 that the space

H and operator A is well defined. Note that λ = λ2
1 = 1. Note that A is the generator of an

analytic semigroup Φ(t), t ≥ 0, equation (5.3) can be given by the following integral equation

u(t, x) = Φ(t)ϕ(t, x) +
∫ t

0
Φ(t − s) f (u(t − 1, x))ds

+
∫ t+

0

∫

U
Φ(t − s)g(u(t − 1, x))zÑ(dz, ds)

(5.4)

for t ∈ [0,+∞) and x ∈ H. Note that ν(U ) = 1 and

Kz =
∫

U
z2ν(dz) =

∫ 1

0

z√
2π

exp

{
− ln2 z

2

}
dz ≤ e2.

Then we can rewrite system (5.3) into the abstract form (1.1) with τ = 1, F(ut) = f (u(t − 1, ·))
and G(ut) = g(u(t − 1, x)). Note that the segment process ut = u(t + s, ξ), s ∈ [−1, 0] is

equipped with norm in C, i.e.,

∥ut∥C = max
s∈[−1,0]

∥u(t + s, ξ)∥ = max
s∈[−1,0]

{∫

T

|u(t + s, ξ)|2dξ

} 1
2

.



22 S. Li and S. Guo

It follows from Section 5.1 that

∥F(ut)− F(vt)∥ ≤ L f ∥ut − vt∥C

and

∥F(ut)∥ ≤ L1∥ut∥C + L2.

It is easy to check that

∥G(ut)− G(vt)∥L (R,H) =

{∫

T

[g(u(t − 1, ξ))− g(v(t − 1, ξ))]2 dξ

} 1
2

≤
{

L2
g

∫

T

[u(t − 1, ξ)− v(t − 1, ξ)]2 dξ

} 1
2

≤ Lg∥ut − vt∥C

and

∥G(ut)∥L (R,H) =

{∫

T

[g(u(t − 1, ξ))]2 dξ

} 1
2

≤
{∫

T

(L3|u(t − 1, ξ)|+ L4)
2 dξ

} 1
2

≤
{

L3

∫

T

|u(t − 1, ξ)|2dξ

} 1
2

+

(∫

T

L2
4dξ

) 1
2

≤ L3∥ut∥C + L4.

Then we set the parameter values in (4.3) as follows

K = L f + Lg, K1 = L1 + L3, K2 = L2 + L4.

Thus the result of existence of invariant measure of (5.3) follows from Theorems 4.6 and 4.7.

Corollary 5.2. Assume that

max
{

L f + Lg, L1 + L3

}
≤ (3e + 3e4)−

1
2 .

Then equation (5.3) has a unique invariant measure.
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Abstract. In this paper, we consider the quasilinear Schrödinger system in R
N (N ≥ 3):















−∆u + A(x)u−
1

2
∆(u2)u =

2α

α + β
|u|α−2u|v|β,

−∆v + Bv−
1

2
∆(v2)v =

2β

α + β
|u|α|v|β−2v,

where α, β > 1, 2 < α + β <
4N

N−2 , B > 0 is a constant. By using a constrained
minimization on Nehari–Pohožaev set, for any given integer s ≥ 2, we construct a non-
radially symmetrical nodal solution with its 2s nodal domains.

Keywords: quasilinear Schrödinger system, Nehari–Pohožaev set, non-radially sym-
metrical nodal solutions.
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1 Introduction

We study the following quasilinear Schrödinger system















−∆u + A(x)u−
1

2
∆(u2)u =

2α

α + β
|u|α−2u|v|β,

−∆v + Bv−
1

2
∆(v2)v =

2β

α + β
|u|α|v|β−2v,

(1.1)

where u(x) → 0, v(x) → 0 as |x| → ∞, N ≥ 3, u := u(x), v := v(x) be real valued functions

on R
N , α, β > 1, 2 < α+ β <

4N
N−2 , B > 0 is a constant. In the last two decades, much attention

has been devoted to the quasilinear Schrödinger equation of the form

−∆u + V(x)u−
1

2
u∆(u2) = |u|p−2u, x ∈ R

N . (1.2)

BCorresponding author. Email: zhangqianmath@163.com
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The equation (1.2) is related to the existence of standing waves of the following quasilinear

Schrödinger equation

i∂tz = −∆z + V(x)z− l(|z|2)z−
1

2
∆g(|z|2)g′(|z|2)z, x ∈ R

N , (1.3)

where V is a given potential, l and g are real functions. The equation (1.3) has been used as

models in several areas of physics corresponding to various types of g. The superfluid film

equation in plasma physics has this structure for g(s) = s [9]. In the case g(s) = (1 + s)
1
2 , the

equation (1.3) models the self-channeling of a high-power ultra short laser in matter [19]. The

equation (1.3) also appears in fluid mechanics [9, 10], in the theory of Heidelberg ferromag-

netism and magnus [11], in dissipative quantum mechanics and in condensed matter theory

[14]. When considering the case g(s) = s, one obtains a corresponding equation of elliptic

type like (1.2). For more detailed mathematical and physical interpretation of equations like

(1.2), we refer to [1, 3, 4, 12, 18, 21] and the references therein.

In recent years, there has been increasing interest in studying problem (1.2), see for ex-

amples, [5, 6, 8, 15, 16, 24, 25] and the references therein. More precisely, by the Mountain Pass

Theorem and the principle of symmetric criticality, Severo [22] obtained symmetric and non-

symmetric solutions for quasilinear Schrödinger equation (1.2). In [13], when 4 ≤ p <
4N

N−2 ,

Liu, Wang and Wang established the existence results of a positive ground state solution and

a sign-changing ground state solution were given by using the Nehari method for (1.2). Based

on the method of perturbation and invariant sets of descending flow, Zhang and Liu [27]

studied the nonautonomous case of (1.2), they obtained the existence of infinitely many sign-

changing solutions for 4 < p <
4N

N−2 . With the help of Nehari method and change of variables,

Deng, Peng and Wang [7] considered

−∆u + V(x)u− u∆(u2) = λ|u|p−2u + |u|
4N

N−2−2u, x ∈ R
N , (1.4)

and proved that (1.4) has at least one pair of k-node solutions if either N ≥ 6 and 4 < p <
4N

N−2

or 3 ≤ N < 6 and 2(N+2)
N−2 < q <

4N
N−2 . In addition, problem (1.4) still has at least one pair

of k-node solutions if 3 ≤ N < 6 , 4 < q ≤ 2(N+2)
N−2 and λ sufficiently large. Note that

all sign-changing solutions obtained in [7, 13, 27] are only valid for 4 < p <
4N

N−2 . When

2 < p <
4N

N−2 , Ruiz and Siciliano [20] showed equation (1.2) has a ground states solution via

Nehari–Pohožaev type constraint and concentration-compactness lemma, Wu and Wu [26]

obtained the existence of radial solutions for (1.2) by using change of variables.

It is natural to pose a series of interesting questions: whether we can find an unified

approach to obtain sign-changing solutions for the full subcritical range of 2 < α + β <
4N

N−2 ?

Further, whether we can extend these results to system of the quasilinear Schrödinger system?

To answer these two questions, we adopt an action of finite subgroup G of O(2) from Szulkin

and Waliullah [23] and look for the existence of non-radially symmetrical nodal solutions for

quasilinear Schrödinger system (1.1).

Before stating our main results, we make the following assumptions:

(A1) A ∈ C1(RN , R
+), 0 < A0 ≤ A(x) ≤ A∞ = lim|x|→∞ A(x) < +∞;

(A2) ∇A(x) · x ∈ L∞(RN), (α + β− 2)A(x)−∇A(x) · x ≥ 0;

(A3) the map s 7→ s
N+2

N+α+β A(s
1

N+α+β x) is concave for any x ∈ R
N ;
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(A4) A(x) is radially symmetric with respect to the first two coordinates, that is to say, if

(x1, x2, x3, . . . , xN), (y1, y2, y3, . . . , yN) ∈ R
N and x2

1 + x2
2 = y2

1 + y2
2, then

A(x1, x2, z3, . . . , zN) = A(y1, y2, z3, . . . , zN).

It is worth noting that (A1) is used to derive the existence of a strongly convergent subse-

quence, while for the system, we only need one such kind of condition in our equations, which

seems to be a different phenomenon due to the coupling of u and v. (A2)–(A3) once appeared

in [20, 26] to obtain the existence of ground states solutions for the quasilinear Schrödinger

equation.

Our main result reads as follows.

Theorem 1.1. Assume that (A1)–(A4) hold. For any given integer s ≥ 2, the problem (1.1) possesses

a non-radially symmetrical nodal solution with its 2s nodal domains.

Corollary 1.2. If A(x) is a positive constant, one can still obtain the same results as Theorem 1.1 for

system (1.1).

Remark 1.3. Since s ∈ N is arbitrary, the solution we obtained in Theorem 1.1 is actually a

result of multiplicity.

Remark 1.4. As a main novelty with respect to some results in [7, 13, 27], we are able to deal

with exponents α + β ∈ (2, 4N
N−2 ) and obtain the existence and multiplicity of nodal solution

without any radial symmetry.

The rest of the paper is organized as follows. In Section 2, we establish some preliminary

results. Theorem 1.1 is proved in Section 3.

2 Preliminaries

Throughout this paper, ∥u∥H1 and |u|r denote the usual norms of H1(RN) and Lr(RN) for

r > 1, respectively. C and Ci (i = 1, 2, . . .) denote (possibly different) positive constants and
∫

RN g denotes the integral
∫

RN g(z)dz. The → and ⇀ denote strong convergence and weak

convergence, respectively.

Let H1(RN) be the usual Sobolev space, define X := H × H with

H :=

{

u ∈ H1(RN) |
∫

RN
u2|∇u|2 < +∞

}

.

The term
∫

RN u2|∇u|2 is not convex and H is not even a vector space. So, the usual min-max

techniques cannot be directly applied, nevertheless H is a complete metric space with distance

dH(u, ω) = ∥u−ω∥H1 + |∇u2 −∇ω2|2.

Define

dX

(

(u, v), (ω, ν)
)

:= ∥u−ω∥H1 + |∇u2 −∇ω2|2 + ∥v− ν∥H1 + |∇v2 −∇ν2|2.

Then we call (u, v) ∈ X is a weak solution of (1.1) if for any ϕ1, ϕ2 ∈ C∞

0 (RN),

∫

RN

(

(1 + u2)∇u∇ϕ1 +

(

u|∇u|2 + A(x)u−
2α|u|α−2u|v|β

α + β

)

ϕ1

)

= 0,
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and
∫

RN

(

(1 + v2)∇v∇ϕ2 +

(

v|∇v|2 + Bv−
2β|u|α|v|β−2v

α + β

)

ϕ2

)

= 0.

Hence there is a one-to-one correspondence between solutions of (1.1) and critical points of

the following functional I : X → R defined by

I(u, v) =
1

2

∫

RN
(|∇u|2 + |∇v|2 + A(x)u2 + Bv2)

+
1

2

∫

RN
(u2|∇u|2 + v2|∇v|2)−

2

α + β

∫

RN
|u|α|v|β.

(2.1)

For any ϕ1, ϕ2 ∈ C∞

0 (RN), (u, v) ∈ X, and (u, v) + (ϕ1, ϕ2) ∈ X, we compute the Gateaux

derivative

⟨I′(u, v), (ϕ1, ϕ2)⟩ =
∫

RN

(

(1 + u2)∇u∇ϕ1 + (1 + v2)∇v∇ϕ2 + u|∇u|2 ϕ1

+ v|∇v|2ϕ2 + A(x)uϕ1 + Bvϕ2

)

−
2α

α + β

∫

RN
|u|α−2u|v|β ϕ1

−
2β

α + β

∫

RN
|v|β−2v|u|α ϕ2.

Then, (u, v) ∈ X is a solution of (1.1) if and only if

⟨I′(u, v), (ϕ1, ϕ2)⟩ = 0, ϕ1, ϕ2 ∈ C∞

0 (RN).

Motivated by [23], we recall that a subset U of a Banach space E is called invariant with

respect to an action of a group G (or G-invariant) if gU ⊂ U for all g ∈ G, and a functional

I : U → R is invariant (or G-invariant) if I(gu) = I(u) for all g ∈ G, u ∈ U. The subspace

EG := {u ∈ E | gu = u for all g ∈ G}

is called the fixed point space of this action.

Let x = (y, z) = (y1, y2, z1, . . . , zN) ∈ R
N and let O(2) be the group of orthogonal transfor-

mations acting on R
2 by (g, y) 7→ gy. For any positive integer s we define Gs to be the finite

subgroup of O(2) generated by the two elements α and β in O(2), where α is the rotation in

the y-plane by the angle 2π
s and β is the reflection in the line y1 = 0 if s = 2, and in the line

y2 = tan(π/s)y1 for other s (so in complex notation w = y1 + iy2 , αw = we
2πi

s , βw = we
2πi

s ).

∀ g ∈ Gs, x ∈ R
N , gx := (gy, z). Define the action of Gs on H1(RN) by setting

(g(u, v))x := (gu, gv)x = (det(g)ug−1x, det(g)vg−1x).

Define

V := {(u, v) ∈ X | (u, v)(gx) = (det(g)u(x), det(g)v(x)), g ∈ Gs},

M := {(u, v) ∈ V\{(0, 0)} | G(u, v) = 0},

where G : X → R and

G(u, v) =
N

2

∫

RN
(|∇u|2 + |∇v|2) +

N + 2

2

∫

RN
(A(x)u2 + Bv2

+ u2|∇u|2 + v2|∇v|2)−
2(N + α + β)

α + β

∫

RN
|u|α|v|β.
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Let

m := inf
(u,v)∈M

I(u, v). (2.2)

Then our aim is to prove that m is achieved. In the rest of this section, we will give some

properties of the setM.

For any u ∈ H1(RN), we define ut : R
+ → H1(RN) by:

ut(x) := tu(t−1x).

Let t ∈ R
+ and (u, v) ∈ X. We have that

I(ut, vt) =
tN

2

∫

RN
(|∇u|2 + |∇v|2) +

tN+2

2

∫

RN
(A(x)u2 + Bv2

+ u2|∇u|2 + v2|∇v|2)−
2tN+α+β

α + β

∫

RN
|u|α|v|β.

Denote huv(t) := I(ut, vt). Since α + β > 2, we see that huv(t) > 0 for t > 0 small enough

and huv(t) → −∞ as t → +∞, this implies that huv(t) attains its maximum. Moreover,

huv(t) : R
+ → R is C1 and

h′uv(t) =
N

2
tN−1

∫

RN
(|∇u|2 + |∇v|2) +

N + 2

2
tN+1

∫

RN
(A(x)u2 + Bv2

+ u2|∇u|2 + v2|∇v|2)−
2(N + α + β)

α + β
tN+α+β−1

∫

RN
|u|α|v|β.

Lemma 2.1. If (u, v) ∈ X is a weak solution of (1.1), then (u, v) satisfies the following P(u, v) = 0,

where

P(u, v) :=
N − 2

2

∫

RN
(|∇u|2 + |∇v|2 + u2|∇u|2 + v2|∇v|2)

+
N

2

∫

RN
(A(x)u2 + Bv2) +

1

2

∫

RN
∇A(x) · xu2

−
2N

α + β

∫

RN
|u|α|v|β.

(2.3)

Proof. The proof is standard, so we omit it here.

The lemma below shows (2.2) is well defined.

Lemma 2.2. For any (u, v) ∈ X and u, v ̸= 0, the map huv attains its maximum at exactly one point

t̄. Moreover, huv is positive and increasing for t ∈ [0, t̄] and decreasing for t > t̄. Finally

m = inf
(u,v)∈X

max
t>0

I(ut, vt).

Proof. For any t > 0, set s = tN+α+β, we obtain

huv(s) =
s

N
N+α+β

2

∫

RN
|∇u|2 +

s
N

N+α+β

2

∫

RN
|∇v|2 +

s
N+2

N+α+β

2

∫

RN
u2|∇u|2

+
s

N+2
N+α+β

2

∫

RN
v2|∇v|2 +

s
N+2

N+α+β

2

∫

RN
A(s

1
N+α+β x)u2

+
s

N+2
N+α+β

2

∫

RN
Bv2 −

2s

α + β

∫

RN
|u|α|v|β.
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This is a concave function by condition (A3) and we already know that it attains its maximum,

let t̄ be the unique point at which this maximum is achieved. Notice that G(ut, vt) = th′uv(t),

then t̄ is the unique critical point of huv and huv is positive and increasing for 0 < t < t̄ and

decreasing for t > t̄. In particular, t̄ ∈ R is the unique value such that ut̄ ∈ M, and I(ut̄, vt̄)

reaches a global maximum for t = t̄. This finishes the proof.

Lemma 2.3. m > 0.

Proof. For every (u, v) ∈ M, it follows from (A2) that

I(u, v) =
α + β

2(N + α + β)

∫

RN
(|∇u|2 + |∇v|2)

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2 + u2|∇u|2 + v2|∇v|2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2

> 0.

The proof is complete.

3 Proof of Theorem 1.1

We need the following variant of the Lions Lemma.

Lemma 3.1. If q ∈ [2, 4N
N−2 ), {un} is bounded in X, r0 > 0 is such that for all r ≥ r0

lim
n→∞

sup
z∈R

∫

B((0,z),r)
|un|

q = 0, (3.1)

then we have un → 0 in Lp(RN) for p ∈ (2, 4N
N−2 ).

Proof. By using [24, Lemma 2.2], it remains to prove that for some r > 0,

lim
n→∞

sup
z∈RN

∫

B(z,r)
|un|

q = 0.

Suppose that
∫

B(zn,1)
|un|

q ≥ c > 0. (3.2)

Observe that in the family {B(gzn, 1)}g∈O(2), we find an increasing number of disjoint balls

provided that |(z1
n, z2

n)| → ∞. Since {un} is bounded in Lq(RN), q ∈ [2, 4N
N−2 ), by (3.2), |(z1

n, z2
n)|

must be bounded. Then for sufficiently large r ≥ r0, one obtains

∫

B((0,z3
n),r)
|un|

q ≥
∫

B(zn,1)
|un|

q ≥ c > 0,

and we get a contradiction with (3.1).

Lemma 3.2. Let un ⇀ u, vn ⇀ v in X, un → u, vn → v a.e in R
N . Then

lim
n→∞

∫

RN
|un|

α|vn|
β −

∫

RN
|u|α|v|β = lim

n→∞

∫

RN
|un − u|α|vn − v|β.
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Proof. For n = 1, 2, . . ., we have that

∫

RN
|un|

α|vn|
β −

∫

RN
|un − u|α|vn − v|β

=
∫

RN
(|un|

α − |un − u|α)|vn|
β +

∫

RN
|un − u|α(|vn|

β − |vn − v|β).

Since un ⇀ u, vn ⇀ v in H1(RN), from [17, Lemma 2.5], one has

∫

RN
(|un|

α − |un − u|α − |u|α)
p
α → 0, n→ ∞,

which means that

|un|
α − |un − u|α → |u|α in L

p
α (RN).

Using |vn|β ⇀ |v|β in L
p
β (RN), it follows from α + β = p that

∫

RN
(|un|

α − |un − u|α)|vn|
β →

∫

RN
|u|α|v|β, n→ ∞.

Similarly,

|vn|
β − |vn − v|β → |v|β in L

p
β (RN).

As |un − u|α ⇀ 0 in L
p
α (RN), we obtain that

∫

RN
|un − u|α(|vn|

β − |vn − v|β)→ 0, n→ ∞.

This proves the lemma.

The following lemma is due to Poppenberg, Schmitt and Wang from [18, Lemma 2].

Lemma 3.3. Assume that un ⇀ u in H1(RN). Then

lim inf
n→∞

∫

RN
u2

n|∇un|
2 ≥ lim inf

n→∞

∫

RN
(un − u)2|∇un −∇u|2 +

∫

RN
u2|∇u|2. (3.3)

Proof. The proof is analogous to that of [18, Lemma 2], so we omit it here.

Lemma 3.4. m is achieved at some (u, v) ∈ M.

Proof. Let {(un, vn)} ⊂ M be a sequence such that I(un, vn) → m. Using (un, vn) ⊂ M and

(A2), we may obtain

1 + m ≥ I(un, vn)

=
α + β

2(N + α + β)

∫

RN
(|∇un|

2 + |∇vn|
2)

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2

n + u2
n|∇un|

2 + v2
n|∇vn|

2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2
n,

which implies that {un}, {vn}, {u2
n} and {v2

n} are bounded in H1(RN), then, there exists a

subsequence of (un, vn), still denoted by (un, vn) such that (un, vn) ⇀ (u, v) in X. Then {un}

and {vn} are bounded in Lα+β(RN). The proof consists of three steps.
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Step 1.
∫

RN
|un|

α|vn|
β ̸→ 0.

It follows from Lemma 2.3 that

I(un, vn) =
∫

RN

(

1

2
(|∇un|

2 + |∇vn|
2 + A(x)u2

n + Bv2
n

+ u2
n|∇un|

2 + v2
n|∇vn|

2)−
2

α + β
|un|

α|vn|
β

)

→ m > 0,

then
∫

RN
(|∇un|

2 + |∇vn|
2 + A(x)u2

n + Bv2
n + u2

n|∇un|
2 + v2

n|∇vn|
2) ̸→ 0.

By Lemma 2.2, for t > 1,

m← I(un, vn)

≥ I
(

(un)t, (vn)t

)

=
tN

2

∫

RN
(|∇un|

2 + |∇vn|
2) +

tN+2

2

∫

RN
(A(tx)u2

n + Bv2
n)

+
tN+2

2

∫

RN
(u2

n|∇un|
2 + v2

n|∇vn|
2)−

2tN+α+β

α + β

∫

RN
|un|

α|vn|
β

≥
tN

2

∫

RN
(|∇un|

2 + |∇vn|
2 + A0u2

n + Bv2
n + u2

n|∇un|
2 + v2

n|∇vn|
2)

−
2tN+α+β

α + β

∫

RN
|un|

α|vn|
β

≥
tN

2
δ−

2tN+α+β

α + β

∫

RN
|un|

α|vn|
β,

where δ is a fixed constant. It suffices to choose t > 1 so that tNδ
2 > 2m to get a lower bound

for
∫

RN
|un|

α|vn|
β.

Therefore, we may assume (passing to a subsequence, if necessary) that

∫

RN
|un|

α|vn|
β → D ∈ (0, ∞). (3.4)

Step 2. u ̸= 0. By using (3.4) and Hölder’s inequality, we can assume (passing to a subse-

quence, if necessary) that
∫

RN
|un|

α+β
> δ > 0.

By Lemma 3.1, there exist δ > 0 and {zn} ⊂ R such that

lim sup
n→+∞

∫

B((0,zn),r)
|un|

α+β
> δ > 0. (3.5)

Define

y = (x1, x2), z = (x3, . . . , xN),
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wn(x) = wn(y, z) = un(y, z + zn),

and

σn(x) = σn(y, z) = vn(y, z + zn),

then wn ⇀ w, σn ⇀ σ in X. In this case, by (A4), we may obtain I(un, vn) = I(wn, σn). By

using (3.5) and wn → w in L
α+β
loc (RN), one has

0 < δ < lim sup
n→+∞

∫

B((0,zn),r)
|un|

α+β

= lim sup
n→+∞

∫

B((0,0),r)
|wn|

α+β

=
∫

B((0,0),r)
|w|α+β,

which implies w ̸= 0, and then u ̸= 0.

Step 3. We claim that (u, v) ∈ M. Indeed, if (u, v) ̸∈ M, we discuss three cases:

Case 1: G(u, v) < 0. By Lemma 2.2, there exists t ∈ (0, 1) such that (ut, vt) ∈ M, it follows

from (A2), (un, vn) ∈ M and Fatou’s Lemma that

m = lim inf
n→+∞

(

I(un, vn)−
1

N + α + β
G(un, vn)

)

= lim inf
n→+∞

(

α + β

2(N + α + β)

∫

RN
(|∇un|

2 + |∇vn|
2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2
n

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2

n + u2
n|∇un|

2 + v2
n|∇vn|

2)

)

≥
α + β

2(N + α + β)

∫

RN
(|∇u|2 + |∇v|2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2 + u2|∇u|2 + v2|∇v|2)

>
α + β

2(N + α + β)
tN

∫

RN
(|∇u|2 + |∇v|2)

+
tN+2

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2

+
α + β− 2

2(N + α + β)
tN+α+β

∫

RN
(Bv2 + u2|∇u|2 + v2|∇v|2)

= I(ut, vt)−
1

N + α + β
G(ut, vt)

≥ m,

which is a contradiction.

Case 2: G(u, v) > 0. Set ξn := un − u, γn := vn − v, by Lemma 3.2, the Brézis–Lieb Lemma [2],

(3.3), (A1) and (B1), we may obtain

G(un, vn) ≥ G(u, v) + G(ξn, γn) + on(1). (3.6)
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Then

lim sup
n→∞

G(ξn, γn) < 0.

By Lemma 2.2, there exists tn ∈ (0, 1) such that ((ξn)tn , (γn)tn) ∈ M. Furthermore, one has

that

lim sup
n→∞

tn < 1,

otherwise, along a subsequence, tn → 1 and hence

G(ξn, γn) = G((ξn)tn , (γn)tn) + on(1) = on(1),

a contradiction. It follows from (un, vn) ∈ M, (3.6), (A2) that

m + on(1) = I(un, vn)−
1

N + α + β
G(un, vn)

=
α + β

2(N + α + β)

∫

RN
(|∇un|

2 + |∇vn|
2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2
n

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2

n + u2
n|∇un|

2 + v2
n|∇vn|

2)

≥
α + β

2(N + α + β)

∫

RN
(|∇u|2 + |∇v|2 + |∇ξn|

2 + |∇γn|
2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

(u2 + ξ2
n)

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2 + u2|∇u|2 + v2|∇v|2 + γ2

n + ξ2
n|∇ξn|

2

+ γ2
n|∇γn|

2)

>
α + β

2(N + α + β)

∫

RN
(|∇u|2 + |∇v|2 + |∇ξn|

2 + |∇γn|
2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

(u2 + tN+2
n ξ2

n)

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2 + u2|∇u|2 + v2|∇v|2 + tN+2

n γ2
n

+ tN+2
n ξ2

n|∇ξn|
2 + tN+2

n γ2
n|∇γn|

2)

= I
(

(ξn)tn , (γn)tn

)

+
α + β

2(N + α + β)

∫

RN
(|∇u|2 + |∇v|2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2 + u2|∇u|2 + v2|∇v|2)

≥ m,

which is also a contradiction.

Therefore, (u, v) ∈ M. By using Lebesgue’s dominated convergence theorem, Fatou’s
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Lemma, (A2) and (un, vn) ∈ M, we may get

m = I(u, v)−
1

N + α + β
G(u, v)

=
α + β

2(N + α + β)

∫

RN
(|∇u|2 + |∇v|2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2 + u2|∇u|2 + v2|∇v|2)

≤ lim inf
n→+∞

(

α + β

2(N + α + β)

∫

RN
(|∇un|

2 + |∇vn|
2)

+
1

2(N + α + β)

∫

RN

(

(α + β− 2)A(x)−∇A(x) · x
)

u2
n

+
α + β− 2

2(N + α + β)

∫

RN
(Bv2

n + u2
n|∇un|

2 + v2
n|∇vn|

2)

)

= lim inf
n→+∞

(

I(un, vn)−
1

N + α + β
G(un, vn)

)

= m,

which implies that (un, vn)→ (u, v) in X and I(u, v) = m.

Having a minimum of I|M, the fact that it is indeed a solution of (1.1), is based on a

general idea used in [13, Lemma 2.5].

Proof of Theorem 1.1. Let (ũ, ṽ) ∈ M be a minimizer of the functional I|M. We show that

I′(ũ, ṽ) = 0. By Lemma 2.2,

I(ũ, ṽ) = inf
(u,v)∈X

max
t>0

I(ut, vt) = m.

We argue by contradiction by assuming that (ũ, ṽ) is not a weak solution of (1.1). Then, we

can chose φ1, φ2 ∈ C∞

0 (RN) ∩ V such that

⟨I′(ũ, ṽ), (φ1, φ2)⟩ =
∫

RN

(

∇ũ∇φ1 +∇ṽ∇φ2 +∇(ũ
2)∇(ũφ1) +∇(ṽ

2)∇(ṽφ2)

+ A(x)ũφ1 + Bṽφ2 −
2α

α + β
|ũ|α−2ũ|ṽ|βφ1 −

2β

α + β
|ṽ|β−2ṽ|ũ|αφ2

)

< − 1.

Then we fix ε > 0 sufficiently small such that

〈

I′(ũt + σφ1, ṽt + σφ2), (φ1, φ2)
〉

≤ −
1

2
, ∀ |t− 1|, ∥σ| ≤ ε

and introduce a cut-off function 0 ≤ ζ ≤ 1 such that ζ(t) = 1 for |t− 1| ≤ ε
2 and ζ(t) = 0 for

|t− 1| ≥ ε. For t ≥ 0, we define

γ1(t) :=

{

ũt, if |t− 1| ≥ ε,

ũt + εζ(t)φ1, if |t− 1| < ε,
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γ2(t) :=

{

ṽt, if |t− 1| ≥ ε,

ṽt + εζ(t)φ2, if |t− 1| < ε.

Note that γ1(t) and γ2(t) are continuous curve in the metric space (X, d) and, eventually

choosing a smaller ε, we get that for |t− 1| < ε,

dX

(

(γ1(t), γ2(t)), (0, 0)
)

> 0.

Claim: supt≥0 I(γ1(t), γ2(t)) < m.

Indeed, if |t− 1| ≥ ε, then I(γ1(t), γ2(t)) = I(ũt, ṽt) < I(u, v) = m. If |t− 1| < ε, by using

the mean value theorem to the C1 map [0, ε] ∋ σ 7→ I(ũt + σζ(t)φ1, ṽt + σζ(t)φ2) ∈ R, we find,

for a suitable σ̄ ∈ (0, ε),

I(ũt + σζ(t)φ1, ṽt + σζ(t)φ2)

= I(ũt, ṽt) + ⟨I
′(ũt + σ̄ζ(t)φ1, ṽt + σ̄ζ(t)φ2), (ζ(t)φ1, ζ(t)φ2)⟩

≤ I(ũt, ṽt)−
1

2
ζ(t)

< m.

To conclude, we observe that G(γ1(1 − ε), γ2(1 − ε)) > 0 and G(γ1(1 + ε), γ2(1 + ε)) < 0.

By the continuity of the map t 7→ G(γ1(t), γ2(t)) there exists t0 ∈ (1 − ε, 1 + ε) such that

G(γ1(t0), γ2(t0)) = 0. Namely,

(γ1(t0), γ2(t0)) = (ũt0 + εζ(t0)φ1, ṽt0 + εζ(t0)φ2) ∈ M

and I(γ1(t0), γ2(t0)) < m, this is a contradiction.

In addition, from the definition of V and the fact that det(η) = −1, (u(ηx), v(ηx)) =

(det(η)u(x), det(η)v(x)) = (−u(x),−v(x)). So (u, v) will change sign when (y1, y2) cross

perpendicularly the half lines y2 = ±y1
tan π j

s (y1 ≥ 0), j = 1, 2, . . . , s. Hence (u, v) is a nodal

solution with at least 2s nodal domains.
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Abstract. This paper is concerned with the following quasilinear Schrödinger equations
of the form:

−∆u − u∆(u2) + u = |u|p−2u, x ∈ R
3,
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for any p ∈ (2, 12).
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1 Introduction

In this paper, we are devoted to studying the following quasilinear Schrödinger equations:

−∆u − u∆(u2) + u = |u|p−2u, x ∈ R
3, (1.1)

where p ∈ (2, 12).

Set

E :=

{

u ∈ H1
r

(

R
3
)

:
∫

R3
u2 |∇u|2 dx < ∞

}

,

where

H1
r

(

R
3
)

:=
{

u ∈ H1
(

R
3
)

: u (|x|) = u (x)
}

with the norm

∥u∥ =

(

∫

R3

(

|∇u|2 + u2
)

dx

)1/2

.
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A function u ∈ E is called a weak solution of equation (1.1), if for all φ ∈ C∞

0

(

R
3
)

it holds

∫

R3
∇u∇φdx +

∫

R3
uφdx + 2

∫

R3
u2∇u∇φdx + 2

∫

R3
|∇u|2uφdx =

∫

R3
|u|p−2uφdx.

Define the functional I on E by

I(u) =
1

2

∫

R3

(

|∇u|2 + u2
)

dx +
∫

R3
u2|∇u|2dx −

1

p

∫

R3
|u|pdx.

It is easy to check that I is continuous on E. Furthermore, given u ∈ E and φ ∈ C∞

0

(

R
3
)

, we

can compute the Gateaux derivative of I in the direction φ at u:

〈

I′(u), φ
〉

=
∫

R3
∇u∇φdx +

∫

R3
uφdx + 2

∫

R3

(

|∇u|2uφ + u2∇u∇φ
)

dx −
∫

R3
|u|p−2uφdx.

Hence u is a weak solution of equation (1.1) if and only if this derivative is zero in every

direction φ ∈ C∞

0

(

R
3
)

.

When V(x) = 1, α(s) = s and f (x, z) = |z|p−2z, solutions of equation (1.1) are standing

waves of the following quasilinear Schrödinger equations of the form:

izt + ∆z − V(x)z + ∆α
(

|z|2
)

α′
(

|z|2
)

z + f (x, z) = 0, x ∈ R
3, (1.2)

where V(x) is a given potential, α and f are real functions. Equation (1.2) has been derived as

models of several physical phenomena, such as [1, 4–6]. It began with [11] for the studies on

mathematics. Several methods can be used to deal with problem (1.2), such as, the existence of

a positive ground state solution was studied by making use of the constrained minimization

method in [8, 12]; Liu et al. in [9] and Colin et al. in [3] obtained the existence results for

equation (1.2) through making a change of variable and reducing the quasilinear problem (1.2)

to a semilinear one; Nehari method was used to obtain the existence results of ground state

solutions for equation (1.2) in [10]. Moreover, in [7], the existence results for the general form

of quasilinear elliptic equations were studied by means of a perturbation method. Especially,

in [13], Ruiz et al. proved the existence of positive radial solutions for the Schrödinger–Poisson

equation by using the constrained minimization argument on the Nehari–Pohožaev manifold.

In the present paper, inspired by [13], our goal is to prove the existence of positive radial

solutions for equation (1.1) via the constrained minimization method on the Nehari–Pohožaev

manifold. Our main result reads as follows.

Theorem 1.1. For 2 < p < 12, problem (1.1) possesses one positive radial solution.

2 Preliminaries and proof of main result

Lemma 2.1. For p ∈ (2, 12), I is unbounded from below.

Proof. Let u ∈ E be radial and positive, and ut = t1/2u
(

t−1x
)

for t > 0. To facilitate the

estimation of I (ut), we firstly compute:

∫

R3
|∇ut|

2 dx = t2
∫

R3
|∇u|2dx,

∫

R3
u2

t dx = t4
∫

R3
u2dx,

∫

R3
u2

t |∇ut|
2 dx = t3

∫

R3
u2 |∇u|2 dx,

∫

R3
|ut|

p dx = t
p+6

2

∫

R3
|u|pdx.
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Then one has

I (ut) =
1

2

∫

R3
|∇ut|

2 dx +
1

2

∫

R3
u2

t dx +
∫

R3
u2

t |∇ut|
2 dx −

1

p

∫

R3
|ut|

p dx

=
t2

2

∫

R3
|∇u|2dx +

t4

2

∫

R3
u2dx + t3

∫

R3
u2 |∇u|2 dx −

1

p
t

p+6
2

∫

R3
|u|pdx.

Since (p + 6)/2 > 4 for p ∈ (2, 12), we easily infer that I (ut) → −∞ as t → +∞.

Lemma 2.2. Let c1, c2, c3, c4 be positive constants and p > 2. Then for t > 0, the function

η(t) = c1t2 + c2t3 + c3t4 − c4t
p+6

2

has a unique positive critical point which corresponds to its maximum.

Proof. The conclusion is easily obtained by elementary calculation.

Now, in order to define the Nehari–Pohožaev manifold, we firstly need to introduce the

following Pohožaev identity (see, e.g., [13, p. 1224]).

Lemma 2.3. If u ∈ E is a weak solution to equation (1.1), then the following Pohožaev identity holds:

P(u) :=
1

2

∫

R3
|∇u|2dx +

3

2

∫

R3
|u|2dx +

∫

R3
u2|∇u|2dx −

3

p

∫

R3
|u|pdx = 0.

Proof. The proof is standard, so we omit it.

As mentioned in the introduction, we will use the constrained minimization argument on

a special manifold to prove the existence result of equation (1.1).

Let us justify the choice of the manifold. Assume that u ∈ E is a critical point of I. Define,

as above, ut(x) = t1/2u(t−1x), and consider

η(t) = I (ut) =
t2

2

∫

R3
|∇u|2dx +

t4

2

∫

R3
u2dx + t3

∫

R3
u2 |∇u|2 dx −

1

p
t

p+6
2

∫

R3
|u|pdx.

Obviously, η(t) > 0 for small t and η(t) → −∞ as t → +∞. Moreover, it follows from Lemma

2.2 that η(t) has a unique critical point which corresponds to its maximum. But since u is a

critical point of I, the maximum of η(t) should be achieved at t = 1 and thus η′(1) = 0. Thus

we can define the manifold T as

T :=
{

u ∈ E\ {0} : J(u) = 0
}

,

where

J(u) := η′(1) =
∫

R3
|∇u|2dx + 2

∫

R3
u2dx + 3

∫

R3
u2 |∇u|2 dx −

p + 6

2p

∫

R3
|u|pdx.

Clearly, J(u) = 1
2 ⟨I′(u), u⟩+ P(u). If u is a nontrivial solution of problem (1.1), then u ∈ T .

The manifold T can be viewed as the combination of the commonly used Nehari manifold and

Pohožaev manifold. Such manifold was first introduced in [13], in which the Schrödinger–

Poisson system was studied.

Lemma 2.4. If p ∈ (2, 12), then T is a C1-manifold and every critical point of I|T is a critical point

of I.
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Proof. Step 1. 0 /∈ ∂T . By Sobolev’s inequality, one has

J(u) ≥ ∥u∥2 − C1
p + 6

2p
∥u∥p,

where C1 is a positive constant. Choosing R small enough, then there exists ρ > 0 such that

J(u) > ρ for ∥u∥ < R, that is, 0 /∈ ∂T .

Step 2. inf I|T > 0. For any u ∈ T , for convenience, we set

α =
∫

R3
|∇u|2dx, β =

∫

R3
u2dx, γ =

∫

R3
u2 |∇u|2 dx, θ =

∫

R3
|u|pdx, s = I(u). (2.1)

Then α, β, γ, θ are positive, and we get

{

I(u) = 1
2 α + 1

2 β + γ − 1
p θ = s,

J(u) = α + 2β + 3γ − p+6
2p θ = 0.

(2.2)

By solving the system (2.2), we obtain

γ =
2(p + 6)s − (p + 2)α − (p − 2)β

2p
(2.3)

and
p + 2

4
α +

p − 2

4
β +

p

2
γ =

p + 6

2
s. (2.4)

Since α, β, γ > 0 and p > 2, we follow from (2.3) and (2.4) that

(p − 2)(α + β) < (p + 2)α + (p − 2)β < 2(p + 6)s (2.5)

and

γ <
p + 6

p
s. (2.6)

Moreover, it follows from Step 1 that there exists ε > 0 such that α + β > ε. Therefore, by (2.5)

we get

I(u) = s >
p − 2

2(p + 6)
(α + β) > 0, (2.7)

which means I|T > 0.

Step 3. T is a C1-manifold. It suffices to show that J′(u) ̸= 0 for any u ∈ T by the implicit

function theorem. Suppose that J′(u) = 0 for some u ∈ T . In a weak sense, the equation

J′(u) = 0 can be written as

−2∆u − 3u∆(u2) + 4u =
p + 6

2
|u|p−2u. (2.8)

Multiplying (2.8) by u and integrating, one has

〈

J′(u), u
〉

= 2
∫

R3
|∇u|2dx + 4

∫

R3
u2dx + 12

∫

R3
u2 |∇u|2 dx −

p + 6

2

∫

R3
|u|pdx = 0. (2.9)

The Pohožaev identity corresponding to (2.9) is

∫

R3
|∇u|2dx + 6

∫

R3
u2dx + 3

∫

R3
u2 |∇u|2 dx −

3(p + 6)

2p

∫

R3
|u|pdx = 0. (2.10)
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Thus, using the same notations defined in (2.1), we follow from (2.9) and (2.10) that



























I(u) = 1
2 α + 1

2 β + γ − 1
p θ = s,

J(u) = α + 2β + 3γ − p+6
2p θ = 0,

2α + 4β + 12γ − p+6
2 θ = 0,

α + 6β + 3γ − 3(p+6)
2p θ = 0.

It can be checked out that for p ∈ (2, 12), the above system of equations admits one unique

solution on θ, given by

θ =
−24ps

(p − 2)(p + 3)
.

Since s > 0, we infer θ < 0, which is impossible. So J′(u) ̸= 0 for any u ∈ T , and then we

conclude that T is a C1-manifold.

Step 4. I′(u) = 0. Assume that u is a critical point of I|T . Depending on the Lagrange

multiplier argument, there exists µ ∈ R such that I′(u) = µJ′(u). We claim that µ = 0.

As above, I′(u) = µJ′(u) can be written, in a weak sense, as

−∆u − u∆(u2) + u − up−2u = µ

[

−2∆u − 3u∆(u2) + 4u −
p + 6

2
up−2u

]

,

which means

− (1 − 2µ)∆u − (1 − 3µ) u∆(u2) + (1 − 4µ)u =

(

1 −
p + 6

2
µ

)

up−2u. (2.11)

Combining (2.2) and (2.11), we get



























I(u) = 1
2 α + 1

2 β + γ − 1
p θ = s,

J(u) = α + 2β + 3γ − p+6
2p θ = 0,

α + β + 4γ − θ = 0,

(1 − 2µ)α + (1 − 4µ)β + (4 − 12µ)γ −
[

1 − p+6
2 µ

]

θ = 0.

(2.12)

The third equation corresponds to ⟨I′(u), u⟩ = 0 for u ∈ T . The fourth one follows by

multiplying (2.11) by u and integrating. Now we deal with this system. Considering α, β, γ, θ

as unknowns and denoting by D the coefficient matrix, we can get

det D =
(p − 2)µ

2
.

Therefore, for p ∈ (2, 12) we infer

det D = 0 ⇔ µ = 0.

Now we prove that µ = 0 by contradiction. If µ ̸= 0, then det D ̸= 0, which means system

(2.12) has a unique solution. So we can obtain

θ = −
12s

p − 2
.

This is impossible since θ must be positive. Hence µ = 0, and then I′(u) = 0.
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Lemma 2.5. If p ∈ (2, 12), then cT is achieved, where cT := inf {I(u) : u ∈ T }.

Proof. Let {un} ⊂ T be a minimizing sequence of I|T , namely that I (un) → cT . Referring to

(2.5) and (2.6), in a similar way we can deduce that

∥un∥
2
<

2(p + 6)

p − 2
I (un)

and
∫

R3
u2

n |∇un|
2 dx <

p + 6

p
I (un) .

Then {un} is bounded in E and
{

∇
(

u2
n

)}

is bounded in L2
(

R
3
)

. Moreover, by the continuous

Sobolev embedding E →֒ L6
(

R
3
)

and Hölder’s inequality, we conclude that there exists a

positive constant C such that

∫

R3

∣

∣u2
n

∣

∣

2
dx ≤

(

∫

R3
|un|

2 dx

)
1
2
(

∫

R3
|un|

6 dx

)
1
2

≤ C∥un∥
4,

which together with the boundedness of
{

∇
(

u2
n

)}

in L2
(

R
3
)

means that
{

u2
n

}

is bounded

in E. Therefore, by using the compact embedding H1
r (R

3) →֒ Ls
(

R
3
)

for any s ∈ (2, 6) and

interpolation inequality, we get























u2
n ⇀ u2 in E,

un ⇀ u in E,

un → u in Lq(R3), for q ∈ (2, 12),

un → u a.e. in R
3.

(2.13)

We claim that u ∈ T and un → u strongly in E.

Similar to (2.1), we define

αn =
∫

R3
|∇un|

2dx, βn =
∫

R3
u2

ndx, γn =
∫

R3
u2

n |∇un|
2 dx, θn =

∫

R3
|un|

pdx

and

α̃ = lim
n→∞

αn, β̃ = lim
n→∞

βn, γ̃ = lim
n→∞

γn, θ̃ = lim
n→∞

θn.

In order to show un → u in E, we just need to prove ∥un∥ → ∥u∥ by the Brezis–Lieb Lemma

in [2], that is, α + β = α̃ + β̃. From (2.13), we infer that α ≤ α̃, β ≤ β̃ and γ ≤ γ̃. Suppose by

contradiction that α + β < α̃ + β̃.

Noting that limn→∞ I (un) = cT and J (un) = 0, we infer

{

1
2 α̃ + 1

2 β̃ + γ̃ − 1
p θ̃ = cT ,

α̃ + 2β̃ + 3γ̃ − p+6
2p θ̃ = 0.

(2.14)

We first show u ̸= 0. By (2.13), we easily infer that θ = θ̃. Thanks to Step 2 in the proof of

Lemma 2.4, we get α̃ + β̃ > ε > 0, which together with (2.14) yields to θ̃ > 0. Thus we infer

θ =
∫

R3
|u|pdx > 0,
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which means u ̸= 0.

Set

g(t) =
1

2
t2α +

1

2
t4β + t3γ −

1

p
t

p+6
2 θ, g̃(t) =

1

2
t2α̃ +

1

2
t4 β̃ + t3γ̃ −

1

p
t

p+6
2 θ̃.

Depending on Lemma 2.2, we know that both g and g̃ have a unique critical point, correspond-

ing to their maxima. From (2.14), we get that g̃′(1) = 0, namely that g̃(1) = cT . Moreover,

since α + β < α̃ + β̃, γ ≤ γ̃ and θ = θ̃, then g(t) < g̃(t) for all t > 0. Let t0 > 0 be the

maximum of g. Then g′ (t0) = 0 and g (t0) < cT .

Define v0(x) = t1/2
0 u(t−1

0 x). Then one has

I (v0) =
1

2
t2
0α +

1

2
t4
0β + t3

0γ −
1

p
t

p+6
2

0 θ = g (t0) < cT

and

J (v0) = t2
0α + 2t4

0β + 3t3
0γ −

p + 6

2p
t

p+6
2

0 θ = g′ (t0) t0 = 0.

Then v0 ∈ T and I (v0) < cT , which is a contradiction. Therefore α + β = α̃ + β̃, and then

un → u in E.

Proof of Theorem 1.1. By Lemma 2.5, we know that I|T attains its minimum at u and u ̸= 0,

namely that u is a nontrivial critical point of I|T . And then from Lemma 2.4, we get that u is a

nontrivial solution of equation (1.1). Since the functional I and the manifold T are symmetric,

we easily deduce that |u| is also a nontrivial solution of equation (1.1). Hence we may assume

that such a solution does not change sign, i.e., u ≥ 0. Depending on the strong maximum

principle, u must be strictly positive, and then u is a positive solution of equation (1.1).
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Abstract. In this paper we study the oscillation problem for the known scalar delay dif-
ferential equation. We assume that the coefficients of this equation have an oscillatory
behaviour with an amplitude of oscillation tending to zero at infinity. The asymptotic
formulae for the solutions of the considered equation in the so-called critical case are
constructed. We give the conditions for existence of oscillatory or nonoscillatory solu-
tions in terms of certain numerical quantities. The obtained results are illustrated by a
number of examples.
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1 Problem statement

In this paper, we construct the asymptotics as t → ∞ for solutions of the following scalar
differential equation with variable delay:

ẋ = −a(t)x(t − τ(t)), t ≥ t0 > 0. (1.1)

Here a(t) and τ(t) are real-valued and continuous functions on [t0, ∞). Further we will impose
some additional restrictions on these functions.

One of the main questions usually considered for Eq. (1.1) concerns the oscillation problem
of its solutions. Choose h > 0 such that 0 ≤ τ(t) ≤ h for t ≥ T ≥ t0. By a solution of (1.1)
for t ≥ T, we mean a function x(t) which is continuous on [T − h, ∞), differentiable on
[T, ∞) and satisfies (1.1) for t ≥ T (by the derivative at t = T, we mean the right-hand side
derivative). Such a solution x(t) of Eq. (1.1) is said to be oscillatory if it has arbitrarily large
zeroes. Otherwise, it is called nonoscillatory. Evidently, x(t) is nonoscillatory if it is eventually
positive or eventually negative.

The oscillation problem for Eq. (1.1) was studied by many authors. The systematic study
of equation (1.1) was started by A. D. Myshkis in [23] (see also [24]). Among the works

BEmail: nesterov.pn@gmail.com
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dealing with the oscillation problem we note the results obtained in [14, 15, 17, 21, 34], the
series of papers by J. Diblík et al. [7–9, 11, 13], M. Pituk et al. [29, 31, 32], K. M. Chudinov
[3–5]. In some of the mentioned papers the oscillation problem is solved by constructing
the asymptotic formulae for solutions. The asymptotic properties of solutions of Eq. (1.1)
are also studied in [10, 12, 18, 30]. Of course, the mentioned list of papers is not exhaustive
due to the enormous amount of studies devoted to the analysis of dynamics of solutions to
Eq. (1.1). More references concerning this topic can be found in the lists of cited literature in
the mentioned papers. We also note paper [33] that contains the extensive review of works on
this subject. Below we give two well-known criteria on oscillation of solutions to Eq. (1.1). In
particular, this will allow us to refine the formulation of the problem considered in this paper.

The first of the announced results refers to the equation (1.1) with a constant delay τ(t) ≡ τ

provided that a(t) > 0 as t ≥ t0. Let us introduce the following notation. We will denote by
lnm t, where m ≥ 1, the expression, defined by the formula lnm t = ln(lnm−1 t) and ln0 t = t.
The following theorem holds [9].

Theorem 1.1.

A. Let us assume that a(t) ≤ am(t) for t → ∞ and an integer m ≥ 0, where

am(t) =
1
eτ

+
τ

8et2 +
τ

8e(t ln t)2 +
τ

8e(t ln t ln2 t)2 + · · ·+ τ

8e(t ln t ln2 t . . . lnm t)2 .

Then there exists a positive solution x = x(t) of (1.1). Moreover,

x(t) < e−t/τ
√

t ln t ln2 t . . . lnm t

as t → ∞.

B. Let us assume that

a(t) > am−2(t) +
θτ

8e(t ln t ln2 t . . . lnm−1 t)2

if t → ∞, an integer m ≥ 2 and a constant θ > 1. Then all the solutions of (1.1) oscillate.

In [13], the authors generalize certain results of Theorem 1.1 to the case of Eq. (1.1) with
variable delay τ(t). One more result on the oscillation of solutions of Eq. (1.1) we would like
to point out is due to Koplatadze and Chanturiya [21].

Theorem 1.2. If a(t) ≥ 0, τ(t) ≥ 0, t − τ(t) → +∞ as t → +∞ and

lim inf
t→+∞

∫ t

t−τ(t)
a(s)ds >

1
e

,

then all solutions of Eq. (1.1) oscillate. Conversely, if there exists t0 ≥ 0 such that

∫ t

t−τ(t)
a(s)ds ≤ 1

e
.

for t ≥ t0 then Eq. (1.1) has a nonoscillatory solution.

The development of the ideas concerning the improvement of the results of Theorem 1.2
may be found, e.g., in [34].
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The most difficult situation in the oscillation problem occurs in the so called critical case
[15] when

lim
t→+∞

a(t) =
1
eτ

, lim
t→+∞

τ(t) = τ > 0. (1.2)

It is known that in this case equation (1.1) may have oscillatory solutions although the «limit
equation»

ẋ = − 1
eτ

x(t − τ), τ > 0

has positive solution x(t) = e−t/τ. To obtain any general results in this situation is a challeng-
ing task. It is necessary to take into account some additional properties of the functions a(t)

and τ(t), in particular, the rate of their tending to limit values in (1.2) and the character of this
tending.

In our paper we consider Eq. (1.1) provided that the functions a(t) and τ(t) have the
following asymptotic expansions as t → ∞:

a(t) =
1
e
+ a1(t)t

−ρ + a2(t)t
−2ρ + · · ·+ ak+1(t)t

−(k+1)ρ + O(t−(k+2)ρ), (1.3)

τ(t) = 1 + q1(t)t
−ρ + q2(t)t

−2ρ + · · ·+ qk+1(t)t
−(k+1)ρ + O(t−(k+2)ρ), (1.4)

where ρ > 0 and k ∈ N is chosen such that

(k + 1)ρ > 1. (1.5)

Functions aj(t), qj(t), j = 1, . . . , k + 1, are finite trigonometric polynomials. Since functions
a(t) and τ(t), in general, oscillate around the limit values, Theorem 1.1 and Theorem 1.2, as
well as some other similar results, fail in this case. In this paper we construct the asymptotics
as t → ∞ for solutions of Eq. (1.1). The obtained asymptotic formulae will allow us to solve
the oscillation problem for Eq. (1.1) in terms of certain numerical quantities that include the
information about the coefficients aj(t), qj(t) of expansions (1.3) and (1.4) with account of the
values of parameter ρ.

This paper is organized as follows. In Section 2 we describe the asymptotic integration
method that we use throughout the paper to get the asymptotic formulae for solutions of
Eq. (1.1). Asymptotic representations for solutions are constructed in Section 3. In the fi-
nal section of the paper we summarize the obtained results and indicate the conditions for
existence of oscillatory (nonoscillatory) solutions of Eq. (1.1). Moreover, we also give some
examples in this section.

2 Description of the asymptotic integration method

In (1.1), we make the change of variable

x(t) = e−ty(t), (2.1)

to get
ẏ = y(t)− a(t)eτ(t)y(t − τ(t)). (2.2)

After some trivial manipulations with the right-hand side of Eq. (2.2) we rewrite it in the form
of the functional differential equation

ẏ = B0yt + G(t, yt), (2.3)
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where yt(θ) = y(t + θ) (−h ≤ θ ≤ 0) denotes the element of the space Ch ≡ C
(

[−h, 0], C
)

consisting of all continuous functions defined on [−h, 0] and acting to C. We choose the delay
h > 0 such that the inequalities 0 ≤ τ(t) ≤ h hold t ≥ t0. The norm in Ch is introduced in the
standard way:

∥ϕ∥Ch
= sup

−h≤θ≤0
|ϕ(θ)|. (2.4)

Further, B0 is a bounded linear functional acting from Ch to C that is defined by the formula

B0ϕ(θ) = ϕ(0)− ϕ(−1), ϕ(θ) ∈ Ch. (2.5)

Finally, functional G(t, ϕ(θ)), acting from Ch to C, has the form

G(t, ϕ(θ)) = ϕ(−1)− a(t)eτ(t)ϕ(−τ(t)). (2.6)

The asymptotic integration method that we apply in this work to study the dynamics of
Eq. (2.3) was suggested by the author in [26, 27]. In these papers Eq. (2.3) is considered as a
perturbation of the linear autonomous equation

ẏ = B0yt. (2.7)

The main assumption concerning the unperturbed Eq. (2.7) is the following. The characteristic
equation should have the finite number of roots (with account of their multiplicities) with
zero real parts and all other roots should have negative real parts. Linear bounded functional
G(t, ϕ(θ)) is, in some sense, a «small» perturbation consisting of two terms. The first term is
a functional that oscillatorily tends to zero as t → ∞ for each ϕ(θ). The second term is an
absolutely integrable on [t0, ∞) in a certain sense functional, i.e., its values as functions of t

belong to L1[t0, ∞). Here and in what follows we write that scalar function, vector-function or
matrix F(t) belongs to L1[t0, ∞), if the integral

∫ ∞

t0

|F(t)|dt,

where | · | is an absolute value or certain vector or matrix norm, is finite.

Proposition 2.1. The characteristic equation

∆(λ) = 0, ∆(λ) = λ − 1 + e−λ, (2.8)

constructed for the unperturbed equation (2.7) with functional (2.5), has roots λ1,2 = 0 (i.e., zero root

of multiplicity two) and all the other roots have negative real parts.

Proof. It is obvious that ∆(0) = ∆′(0) = 0 and ∆′′(0) = 1 ̸= 0. Hence, λ = 0 is a root of
characteristic equation (2.8) with multiplicity two. Note that this equation does not have any
other real roots λ. Since ∆′(λ) = 1 − e−λ, the function ∆(λ) decreases monotonically in the
interval (−∞, 0) and increases monotonically in the interval (0,+∞). At the point λ = 0 this
function has global minimum ∆(0) = 0. Consequently, ∆(λ) > 0 for all λ ̸= 0.

Suppose that equation (2.8) has complex root λ = α + iβ, where α, β ∈ R and β > 0. By
equating the real and the imaginary parts in (2.8), we obtain

{

α − 1 + e−α cos β = 0,

β − e−α sin β = 0.



On oscillation of solutions of scalar delay differential equation 5

Due to the well-known inequality, it follows that

eα =
sin β

β
< 1.

Hence, α < 0 and all complex roots have negative real parts.

Verification of the fact that functional G(t, ϕ(θ)) is a small perturbation is not actually triv-
ial due to the presence of the variable delay τ(t). The corresponding problems are discussed
in paper [27]. It turns out that in this case the choice of the space Ch as the phase space for
Eq. (2.3) is not appropriate. We should act in another manner. We remind that function ϕ ∈ Ch

is called Lipschitz continuous if there is a positive constant K (Lipschitz constant) such that

|ϕ(θ1)− ϕ(θ2)| ≤ K |θ1 − θ2|, −h ≤ θ1, θ2 ≤ 0. (2.9)

Note that constant K in (2.9) depends on function ϕ(θ). Let us introduce the following nota-
tion.

Definition 2.2. Denote by LCh the subspace of Ch consisting of all Lipschitz continuous func-
tions and equipped with the norm

∥ϕ∥LCh
= max

(

∥ϕ∥Ch
, Kϕ

)

, (2.10)

where Kϕ = inf K and infimum is taken over all constants K for which inequality (2.9) holds.
Symbol ∥ϕ∥Ch

stands for norm (2.4).

We remark that with norm (2.10) the space LCh is a Banach space. Let yt(θ) be the solution
of Eq. (2.3) with initial value yT = ϕ, where ϕ ∈ Ch and T ≥ t0. Then, due to continuity
property of functions a(t), τ(t) and the form of functional G(t, ϕ), defined by (2.6), solution
yt(θ) belongs to the space LCh for t ≥ T + h. Therefore, the dynamics of Eq. (2.3) is defined
by the behaviour of solutions in LCh. We can now easily check that G(t, ϕ), as the functional
acting from LCh, is a small perturbation. Since, due to (1.3) and (1.4), the asymptotic formula
a(t)eτ(t) = 1 + O(t−ρ) holds as t → ∞, we have

G(t, ϕ(θ)) = ϕ(−1)− ϕ(−τ(t)) + O(t−ρ)ϕ(−τ(t)).

Thus, for each ϕ ∈ LCh due to (1.4) with account of (2.10) we conclude that

|G(t, ϕ(θ))| ≤ |ϕ(−1)− ϕ(−τ(t))|+ O(t−ρ)|ϕ(−τ(t))|
≤ KϕO(t−ρ) + O(t−ρ)∥ϕ∥Ch

≤ O(t−ρ)∥ϕ∥LCh
(2.11)

This proves the «smallness» of the functional G(t, ϕ(θ)) as t → ∞. The oscillatory decreasing
character of G(t, ϕ(θ)) as the function of t for each ϕ ∈ LCh follows from (2.6) and the cor-
responding properties of the functions aj(t), qj(t) in (1.3), (1.4). In what follows we will give
a slightly different representation for the functional G(t, ϕ(θ)). The presence of oscillatory
decreasing coefficients in this representation will play an essential role for the implementation
of the asymptotic integration method. We now turn to the description of this method.

The asymptotic integration method we apply in this paper is based on the existence for
sufficiently large t of the positively invariant manifold in space LCh that attracts (at the expo-
nential rate) all the trajectories of Eq. (2.3). The dynamics of solutions of Eq. (2.3), lying in this
manifold, is described by the two-dimensional linear ordinary differential system. Thus, the
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fundamental solutions of this system define the main parts of the asymptotic formulae for so-
lutions of Eq. (2.3). We will now describe this method in details. First we need to decompose
space Ch into direct sum of two certain subspaces.

It is known that linear autonomous equation (2.7) generates in Ch for t ≥ 0 a strongly
continuous semigroup T(t): Ch → Ch. The solution operator T(t) of Eq. (2.7) is defined as
follows: T(t)ϕ = y

ϕ
t (θ), where ϕ ∈ Ch and y

ϕ
t (θ) is a unique solution of Eq. (2.7) with initial

value y
ϕ
0 (θ) = ϕ. The infinitesimal generator A of this semigroup is defined by Aϕ = ϕ′(θ),

where ϕ ∈ D(A). The domain of A

D(A) =
{

ϕ ∈ Ch

∣

∣ ϕ′(θ) ∈ Ch, ϕ′(0) = B0 ϕ
}

is dense in Ch. Suppose that B0 has Riesz representation

B0ϕ =
∫ 0

−h
dη(θ)ϕ(θ),

where η(θ) is the scalar function of bounded variation on [−h, 0]. We can associate with
Eq. (2.7) the transposed equation

ẏ∗ = −
∫ 0

−h
y∗(t − θ)dη(θ), t ≤ 0, (2.12)

where y∗(t) is complex scalar function. The phase space for Eq. (2.12) is C′
h ≡ C

(

[0, h], C
)

. For
ψ ∈ C′

h and ϕ ∈ Ch we define the bilinear form

(

ψ(ξ), ϕ(θ)
)

= ψ(0)ϕ(0)−
∫ 0

−h

∫ θ

0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ. (2.13)

Let
Λ =

{

λ1, λ2},

where λ1 = λ2 = 0 are the roots of characteristic equation (2.8) from Proposition 2.1. We now
decompose Ch into a direct sum

Ch = PΛ ⊕ QΛ. (2.14)

Here PΛ is a linear span of generalized eigenfunctions of operator A corresponding to the
eigenvalues from Λ and QΛ is certain complementary subspace of Ch such that T(t)QΛ ⊆ QΛ.
Let Φ(θ) be two-dimensional row-vector whose entries are the generalized eigenfunctions
ϕ1(θ), ϕ2(θ) of operator A corresponding to the eigenvalues from Λ. Thus, the entries of Φ(θ)

form the basis of PΛ. Moreover, let Ψ(ξ) be two-dimensional column-vector whose entries
ψ1(ξ), ψ2(ξ) form the basis of the generalized eigenspace PT

Λ of the transposed equation (2.12)
associated with Λ. We can choose vectors Φ(θ) and Ψ(ξ) such that

(

Ψ(ξ), Φ(θ)
)

=
{(

ψi(ξ), ϕj(θ)
)}

1≤i,j≤2 = I. (2.15)

Since Φ(θ) is the basis of PΛ and APΛ ⊆ PΛ, there exists (2× 2)-matrix D, whose spectrum
is Λ, such that AΦ(θ) = Φ(θ)D. From the definition of A, we deduce that

Φ(θ) = Φ(0)eDθ , T(t)Φ(θ) = Φ(θ)eDt = Φ(0)eD(t+θ),

where −h ≤ θ ≤ 0 and t ≥ 0. Analogously, for column-vector Ψ(ξ) we have

Ψ(ξ) = e−DξΨ(0), (2.16)
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where 0 ≤ ξ ≤ h. Vectors Φ(0) and Ψ(0) are chosen in the following way. Since the entries of
row-vector Φ(θ) are the generalized eigenfunctions of A, they should belong to D(A). This
implies that

Φ′(0) = Φ(0)D = B0Φ =
∫ 0

−h
dη(θ)Φ(0)eDθ .

The same reasoning, using (2.12) and (2.16), yields

Ψ′(0) = −DΨ(0) = −
∫ 0

−h
eDθΨ(0)dη(θ).

Finally, the subspaces PΛ and QΛ from decomposition (2.14) may be defined as follows:

PΛ =
{

ϕ ∈ Ch

∣

∣ ϕ(θ) = Φ(θ)u, u ∈ C
2},

QΛ =
{

ϕ ∈ Ch

∣

∣ (Ψ, ϕ) = 0
}

.
(2.17)

Here and in what follows symbol C2 stands for the space of two-dimensional complex column-
vectors.

An easy computation yields the following formulae for vectors Φ(θ), Ψ(ξ) and matrix D

for Eq. (2.7) with functional (2.5):

Φ(θ) =
(

1 θ
)

, Ψ(ξ) =

( 2
3 − 2ξ

2

)

, D =

(

0 1
0 0

)

. (2.18)

To calculate vectors Φ(θ) and Ψ(ξ) we also used condition (2.15). We are now in a position
to define the central notion of the proposed method — the notion of critical manifold for
Eq. (2.3).

Definition 2.3. Two-dimensional linear space W(t) ⊂ LCh ⊂ Ch is said to be critical (or
center-like) manifold of Eq. (2.3) for t ≥ t∗ ≥ t0 if the following conditions hold:

1. There exists two-dimensional row-vector H(t, θ), whose entries are continuous in t ≥ t∗
and belong to LCh and also subspace QΛ as functions of θ ∈ [−h, 0] for all t ≥ t∗.
Moreover, ∥H(t, ·)∥LCh

→ 0 as t → ∞, where

∥H(t, ·)∥LCh
=
∥

∥ |H(t, ·)|
∥

∥

LCh
.

Here | · | denotes some vector norm in the space of two-dimensional row-vectors.

2. The space W(t) for t ≥ t∗ is defined by the formula

W(t) =
{

ϕ(θ) ∈ LCh

∣

∣ ϕ(θ) = Φ(θ)u + H(t, θ)u, u ∈ C
2
}

. (2.19)

3. The space W(t) is positively invariant for trajectories of Eq. (2.3) for t ≥ t∗, i.e., if
yT ∈ W(T), T ≥ t∗, then yt ∈ W(t) for t ≥ T.

The following existence theorem holds (see [27]).

Theorem 2.4. For sufficiently large t there exists a critical manifold W(t) of Eq. (2.3) in LCh.
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Due to the positive invariance of W(t), the trajectories lying in this manifold for sufficiently
large t are described by the formula

yt(θ) = Φ(θ)u(t) + H(t, θ)u(t), t ≥ T, u(t) ∈ C
2.

It can be shown (see, e.g., [19,20]), that the vector function u(t) in the above expression satisfies
the following ordinary differential system:

u̇ =
[

D + Ψ(0)G
(

t, Φ(θ) + H(t, θ)
)]

u, t ≥ T. (2.20)

This system will be referred to as a system on critical manifold. An important property of
manifold W(t) is that it is attractive for all trajectories of Eq. (2.3) (see [27]).

Theorem 2.5. Suppose that y(t) is a solution of Eq. (2.2), defined for t ≥ T ≥ t0. Then there exists

sufficiently large t∗ ≥ T such that the following asymptotic formula holds for t ≥ t∗:

yt(θ) = Φ(θ)uH(t) + H(t, θ)uH(t) + O
(

e−βt
)

, t → ∞.

Here uH(t) (t ≥ t∗) is a certain solution of Eq. (2.20) and β > 0 is a certain real number.

Suppose that u(1)(t), u(2)(t) are the fundamental solutions of a system on critical manifold
(2.20) and y(t) is an arbitrary solution of Eq. (2.2) defined for t ≥ T. By Theorem 2.5, this
solution has the following asymptotic representation as t → ∞:

y(t) = yt(0) =
(

Φ(0) + H(t, 0)
)(

c1u(1)(t) + c2u(2)(t)
)

+ O
(

e−βt
)

, t → ∞, (2.21)

where c1, c2 are arbitrary complex constants and β > 0 is a certain real number. Therefore,
to solve the oscillation problem for Eq. (2.2) (evidently, for initial Eq. (1.1) as well) we need
to construct the asymptotics for the fundamental solutions u(1)(t), u(2)(t) of system (2.20)
that define the dynamics of all solutions of Eq. (2.2) due to (2.21). Unfortunately, having
determined the type of solutions u(1)(t) and u(2)(t) (oscillatory or nonoscillatory), we cannot
answer the question whether all the solutions of Eq. (1.1) are of the same type. This follows
from the fact that due to (2.21) if c1 = c2 = 0 the dynamics of solutions of Eq. (1.1) is defined
by the remainder term, whose form is unclear. Thus, in this paper we only give an answer
concerning the existence of oscillatory or nonoscillatory solutions.

Now we need to clarify how to construct the row-vector H(t, θ) needed for system on
critical manifold (2.20) and how to obtain the asymptotics for the fundamental matrix of this
system. It is shown in [26, 27] that vector H(t, θ) is a solution, in certain week sense, of the
following problem:

Φ(θ)Ψ(0)G
(

t, Φ(θ) + H(t, θ)
)

+ H(t, θ)
(

D + Ψ(0)G
(

t, Φ(θ) + H(t, θ)
))

+
∂H

∂t

=







∂H

∂θ
, −h ≤ θ < 0,

B0H + G
(

t, Φ(θ) + H(t, θ)
)

, θ = 0.
(2.22)

We can solve this problem approximately. Namely, due to the form of the functional G(t, ϕ(θ))

that is defined by formula (2.6) and taking into account asymptotic representations (1.3), (1.4)
we can satisfy problem (2.22) with the row-vector

Ĥ(t, θ) = H1(t, θ)t−ρ + H2(t, θ)t−2ρ + · · ·+ Hk(t, θ)t−kρ (2.23)
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up to the term R̂(t, θ) such that ∥R̂(t, ·)∥LCh
∈ L1[t0, ∞). Here k ∈ N is defined according

to (1.3), (1.4) with account of (1.5) and the entries of two-dimensional row-vectors Hj(t, θ),
j = 1, . . . , k are trigonometric polynomials in t whose coefficients are infinitely differentiable
in θ ∈ [−h, 0]. Thus, the row-vectors Hj(t, θ) has the form

Hj(t, θ) = ∑
s

β
(j)
s (θ)eiωst, (2.24)

where the row-vectors β
(j)
s (θ) are infinitely differentiable in θ ∈ [−h, 0]. We also note that the

entries of these row-vectors belong to the subspace QΛ. It appears that the problem of finding
the vectors Hj(t, θ) is reduced to solving certain functional boundary problems for linear
ordinary differential systems. Namely, we substitute (2.23) for H(t, θ) in (2.22) and collect
terms corresponding to factors t−jρ, j = 1, . . . , k. We then seek the solutions of the obtained
equations in form (2.24). Substituting the latter in the mentioned equations and matching the
coefficients of the corresponding exponentials, we get the functional boundary problems for
linear ordinary differential systems. It is proved in[26] that each of these problems is uniquely
solvable.

Row-vector Ĥ(t, θ) is an approximation, in a certain sense, for vector H(t, θ) that describes
manifold W(t) according to formula (2.19). To be precise the following approximation theo-
rem holds.

Theorem 2.6. Suppose that W(t) is a critical manifold of Eq. (2.3) which exists for sufficiently large

t according to Theorem 2.4. Then there exists a sufficiently large t∗ such that for t ≥ t∗ row-vector

H(t, θ) from (2.19) admits the following representation:

H(t, θ) = Ĥ(t, θ) + Z(t, θ), t ≥ t∗ ≥ t0, −τ ≤ θ ≤ 0. (2.25)

Here the row-vector Ĥ(t, θ) is defined by formula (2.23) and satisfies Eq. (2.22) up to the term R̂(t, θ)

such that ∥R̂(t, ·)∥LCh
∈ L1[t0, ∞). Moreover, Z(t, θ) is a certain row-vector such that ∥Z(t, ·)∥LCh

→
0 as t → ∞ and ∥Z(t, ·)∥LCh

∈ L1[t∗, ∞).

According to (1.3), (1.4), (2.6) with account of formula (2.23), describing the approximate
solution of problem (2.22), it can be shown that row-vector Z(t, θ) in (2.25) has the following
asymptotic estimate as t → ∞:

∥Z(t, ·)∥LCh
= O

( d

dt
(t−ρ)

)

+ O
(

t−(k+1)ρ) = O
(

t−(ρ+1))+ O
(

t−(k+1)ρ). (2.26)

The asymptotic integration of system (2.20) is carried out as follows. Due to (1.3), (1.4),
(2.6), (2.23) this system in the considered case has the following form:

u̇ =
[

D + A1(t)t
−ρ + A2(t)t

−2ρ + · · ·+ Ak+1(t)t
−(k+1)ρ + R(t)

]

u, u ∈ C
2. (2.27)

Here matrix D is defined in (2.18), natural number k is chosen according to (1.5) and A1(t), . . .,
Ak+1(t) are (2 × 2)-matrices, whose entries are trigonometric polynomials, i.e., matrices hav-
ing the form

Aj(t) = ∑
s

ψ
(j)
s eiωst,

where ψ
(j)
s are constant complex matrices and ωs are real numbers. Finally, R(t) is a certain

(2 × 2)-matrix that belongs to L1[t∗, ∞). It follows from (1.3), (1.4), (2.11) and (2.26) that this
matrix has the following asymptotic estimate:

R(t) = O
(

t−(k+2)ρ)+ O
(

t−(2ρ+1)), t → ∞. (2.28)
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The main difficulty in the asymptotic integration of system (2.27) as t → ∞ is that its co-
efficients have an oscillatory behaviour. Therefore, on the first step we utilize in (2.27) the
averaging change of variable that makes it possible to exclude the oscillating coefficients from
the main part of the system. The following theorem holds (see [25]).

Theorem 2.7. For sufficiently large t, system (2.27) by the change of variable

u =
[

I + Y1(t)t
−ρ + Y2(t)t

−2ρ + · · ·+ Yk+1(t)t
−(k+1)ρ

]

u1 (2.29)

can be reduced to its averaged form

u̇1 =
[

D + A1t−ρ + A2t−2ρ + · · ·+ Ak+1t−(k+1)ρ + R1(t)
]

u1 (2.30)

with constant matrices A1, . . . , Ak and with matrix R1(t) from L1[t∗, ∞). In (2.29), I is the identity

matrix and the entries of matrices Y1(t), . . . , Yk(t) are trigonometric polynomials having zero mean

value.

As a rule, to construct the asymptotics for solutions of (2.30) we need to compute only a
few constant matrices. Hence, we give the explicit formulas only for matrices A1 and A2. We
have

A1 = M
[

A1(t)
]

, (2.31)

A2 = M
[

A2(t) + A1(t)Y1(t)
]

. (2.32)

Here symbol M
[

F(t)
]

denotes the mean value of the matrix F(t) whose entries are trigono-
metric polynomials:

M
[

F(t)
]

= lim
T→∞

1
T

∫ T

0
F(t)dt.

Matrix Y1(t) in (2.32) is the solution of matrix differential equation

Ẏ1 − DY1 + Y1D = A1(t)− A1 (2.33)

with zero mean value. Finally, matrix R1(t) in (2.30) has the following form:

R1(t) = ρY1(t)t
−(ρ+1) + O

(

t−(2ρ+1))+ O
(

t−(k+2)ρ), t → ∞. (2.34)

Here we give the explicit formula for the first term in (2.34) since its form will be necessary
for further transformation of system (2.30).

The subsequent transformations of the averaged system (2.30) aim to bring it to the form

u̇2 =
[

A0 + V(t)
]

t−αu2 + R2(t)u2, (2.35)

where α > 0 is a certain number, A0 is a constant matrix, matrix V(t) tends to zero matrix as
t → ∞ and R2(t) ∈ L1[t∗, ∞). The following lemma holds (see, for instance, [1, 6, 16]).

Lemma 2.8 (diagonalization of variable matrices). Suppose that all eigenvalues of the matrix A0

are distinct. Moreover, suppose that matrix V(t) → 0 as t → ∞ and V ′(t) ∈ L1[t∗, ∞). Then for

sufficiently large t there exists a nonsingular matrix C(t) such that

(i) the columns of this matrix are the eigenvectors of the matrix A0 + V(t) and C(t) → C0 as

t → ∞. The columns of the constant matrix C0 are the eigenvectors of the matrix A0;
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(ii) the derivative C′(t) ∈ L1[t∗, ∞);

(iii) it brings the matrix A0 + V(t) to diagonal form, i.e.,

C−1(t)
[

A0 + V(t)
]

C(t) = Λ̂(t),

where Λ̂(t) = diag
(

λ̂1(t), λ̂2(t)
)

and λ̂1(t), λ̂2(t) are the eigenvalues of the matrix A0 + V(t).

In (2.35), we make the change of variable

u2(t) = C(t)u3(t),

where C(t) is the matrix from Lemma 2.8. This change of variable brings system (2.35) to
what is called L-diagonal form:

u̇3 =
[

Λ(t) + R3(t)
]

u3, (2.36)

where Λ(t) = diag
(

λ1(t), λ2(t)
)

, λj(t) = λ̂j(t)t
−α (j = 1, 2) and

R3(t) = −C−1(t)Ċ(t) + C−1(t)R2(t)C(t).

The properties (i) and (ii) of the matrix C(t) imply that matrix R3(t) belongs to L1[t∗, ∞).
To construct the asymptotics for solutions of L-diagonal system (2.36) as t → ∞ the well-

known Theorem of Levinson can be used. Suppose that the following dichotomy condition
holds for the entries of the matrix Λ(t): either the inequality

∫ t2

t1

Re
(

λi(s)− λj(s)
)

ds ≤ K1, t2 ≥ t1 ≥ t∗, (2.37)

or the inequality
∫ t2

t1

Re
(

λi(s)− λj(s)
)

ds ≥ K2, t2 ≥ t1 ≥ t∗, (2.38)

is valid for each pair of indices (i, j), where K1, K2 are some constants. What follows is Levin-
son’s fundamental theorem (see, e.g., [6, 16, 22]).

Theorem 2.9 (Levinson). Let the dichotomy condition (2.37), (2.38) be satisfied. Then the fundamen-

tal matrix of L-diagonal system (2.36) has the following asymptotics as t → ∞:

U(t) =
(

I + o(1)
)

exp
{

∫ t

t∗
Λ(s)ds

}

.

We note that for the problem considered in this paper the dichotomy condition (2.37), (2.38)
is always satisfied since quantities Re

(

λi(t)− λj(t)
)

do not change their signs for sufficiently
large t. This follows from the fact that system (2.35) comes from the averaged system (2.30),
whose coefficients in the main part do not oscillate and the utilized transformations do not
change this property.
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3 Construction of asymptotic formulae

In this section we obtain the asymptotic formulae for solutions of Eq. (2.2) as t → ∞. The
asymptotics for solutions of the initial Eq. (1.1) can be easily constructed by applying the
change of variable (2.1) and, therefore, we will not write it here. First, we get another one
representation for functional G(t, ϕ(θ)) in (2.3) that is defined by formula (2.6). By applying
Taylor’s formula for a(t)eτ(t) as t → ∞ with account of (1.3), (1.4), we obtain

a(t)eτ(t) = 1 + p1(t)t
−ρ + p2(t)t

−2ρ + · · ·+ pk+1(t)t
−(k+1)ρ + O(t−(k+2)ρ). (3.1)

Here p1(t), . . . , pk+1(t) are certain trigonometric polynomials and, in particular,

p1(t) = ea1(t) + q1(t), p2(t) = ea2(t) + q2(t) +
q2

1(t)

2
+ ea1(t)q1(t), (3.2)

where ai(t), qi(t), i = 1, 2, are functions from asymptotic expansions (1.3), (1.4) for coefficients
of the initial equation (1.1). For the sequel we need the expressions for the functions p1(t) and
q1(t) in the form of the trigonometric polynomials:

p1(t) =
N

∑
j=−N

p
(j)
1 eiωjt, q1(t) =

N

∑
j=−N

q
(j)
1 eiωjt, (3.3)

where p
(j)
1 , q

(j)
1 are, in general, certain complex numbers, ωj are real numbers and, moreover,

p
(−j)
1 = p̄

(j)
1 , q

(−j)
1 = q̄

(j)
1 , ω−j = −ωj (ωl ̸= ωl , l ̸= m), j = 1, . . . , N. (3.4)

here notation ā stands for complex conjugate of a. Hence, we have

M
[

p1(t)
]

= p
(0)
1 , M

[

q1(t)
]

= q
(0)
1 . (3.5)

By using Taylor’s formula for ϕ(−τ(t)) as t → ∞, and taking into account (3.1), we finally
obtain the following representation for functional G(t, ϕ(θ)):

G(t, ϕ(θ)) =
[

q1(t)ϕ′(−1)− p1(t)ϕ(−1)
]

t−ρ

+

[

p1(t)q1(t)ϕ′(−1) + q2(t)ϕ′(−1)− p2(t)ϕ(−1)− q2
1(t)

2
ϕ′′(−1)

]

t−2ρ

+ O
(

t−3ρ). (3.6)

Although the functional G(t, ϕ(θ)) is defined only for elements from Ch, in what follows it
will be applied to infinitely differentiable functions and this makes possible to use form (3.6).
We proceed now to the problem of construction of the asymptotic formulae for solutions of
Eq. (2.2) as t → ∞.

We write system on critical manifold (2.20) in form (2.27). To get the asymptotics for the
fundamental solutions of this system we need the explicit formulae for matrices A1(t) and
A2(t). We use (3.6) and also formula (2.18) to obtain

A1(t) = Ψ(0)
[

q1(t)Φ
′(−1)− p1(t)Φ(−1)

]

=
2
3

( −p1(t) q1(t) + p1(t)

−3p1(t) 3
(

q1(t) + p1(t)
)

)

(3.7)
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and

A2(t) = Ψ(0)
[

p1(t)q1(t)Φ
′(−1) + q2(t)Φ

′(−1)− p2(t)Φ(−1)− q2
1(t)

2
Φ′′(−1)

]

+ Ψ(0)
[

q1(t)
∂H1

∂θ
(t, θ)

∣

∣

∣

θ=−1
− p1(t)H1(t,−1)

]

=
2
3

(

−p2(t) p1(t)q1(t)+q2(t)+p2(t)

−3p2(t) 3
(

p1(t)q1(t)+q2(t)+p2(t)
)

)

+
2
3

(

q1(t)
∂h11

∂θ (t,θ)
∣

∣

θ=−1
−p1(t)h11(t,−1) q1(t)

∂h12
∂θ (t,θ)

∣

∣

θ=−1
−p1(t)h12(t,−1)

3
(

q1(t)
∂h11

∂θ (t,θ)
∣

∣

θ=−1
−p1(t)h11(t,−1)

)

3
(

q1(t)
∂h12

∂θ (t,θ)
∣

∣

θ=−1
−p1(t)h12(t,−1)

)

)

. (3.8)

Here
H1(t, θ) =

(

h11(t, θ) h12(t, θ)
)

(3.9)

is a row-vector from representation (2.23) for row-vector Ĥ(t, θ) that is an approximation of
H(t, θ) due to Theorem 2.6. Row-vector (3.9) will be defined at the end of this section.

The most simple case in constructing the asymptotic formulae for solutions of Eq. (2.2)
occurs when

ρ > 2. (3.10)

In this situation system on critical manifold (2.27) with account of (2.28) takes the form

u̇ =
[

D + O
(

t−ρ
)]

u, (3.11)

where matrix D is defined by formula (2.18). Since, due to (3.10), the remainder term in (3.11)
has the property that

O
(

t−ρ
)

ti−j ∈ L1[t0, ∞), 1 ≤ i, j ≤ 2,

we can use [2, Corollary 6.2, p. 213]. It follows that the fundamental solutions of system (3.11)
have the following asymptotics as t → ∞:

u(1)(t) =

(

1 + o(1)
o
(

t−1
)

)

, u(2)(t) =

(

t
(

1 + o(1)
)

1 + o(1)

)

. (3.12)

We then use (2.21), with account that H(t, 0) = o(1), to obtain the following asymptotic
representation for all solutions of Eq. (2.2) as t → ∞:

y(t) = c1
(

1 + o(1)
)

+ c2t
(

1 + o(1)
)

+ O
(

e−βt
)

, (3.13)

where c1, c2 are arbitrary real constants and β > 0 is a certain real number.
Thus, the main interest concerns the case

ρ ≤ 2.

We use Theorem 2.7 to bring system (2.27) by the change of variable (2.29) to the averaged
form (2.30). In (2.30), constant matrices A1 and A2 are described by formulae (2.31), (2.32) and
the remainder term R1(t) has form (2.34). We calculate matrix A1 taking into account (3.7)
and also expressions (3.3), (3.5). We have

A1 = M
[

A1(t)
]

=
2
3

(

−p
(0)
1 q

(0)
1 + p

(0)
1

−3p
(0)
1 3

(

q
(0)
1 + p

(0)
1

)

)

. (3.14)

The explicit form for matrix A2 will be obtained later. The asymptotics for solutions of system
(2.30) will differ depending on the mean value of the function p1(t). We now proceed to
analysis of these cases.
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I. p
(0)
1 ̸= 0

The eigenvalues of the matrix

A(t) = D + A1t−ρ + A2t−2ρ + · · ·+ Ak+1t−(k+1)ρ

in the main part of system (2.30) have the following asymptotics as t → ∞:

λ1,2(t) = ±t−
ρ
2

√

−2p
(0)
1

(

1 + O(t−ρ)
)

+
(

q
(0)
1 +

2
3

p
(0)
1

)

t−ρ + O(t−2ρ). (3.15)

Here and in what follows the symbol
√

a, where a ∈ R, stands for the quantity

√
a =

{√
a, a ≥ 0,

i
√
−a, a < 0.

(3.16)

Since the eigenvalues (3.15) are distinct for sufficiently large t, the matrix A(t) can be reduced
to the diagonal form by certain non-singular matrix C(t):

Λ(t) = diag
(

λ1(t), λ2(t)
)

= C−1(t)A(t)C(t). (3.17)

Some easy calculations show that the corresponding matrix C(t) has the following asymptotics
as t → ∞:

C(t) =

(

1 1

t−
ρ
2

√

−2p
(0)
1 + O(t−ρ) −t−

ρ
2

√

−2p
(0)
1 + O(t−ρ)

)

. (3.18)

For the inverse matrix we get

C−1(t) =
1

2
√

−2p
(0)
1





√

−2p
(0)
1 + O

(

t−
ρ
2
)

t
ρ
2 + O(1)

√

−2p
(0)
1 + O

(

t−
ρ
2
)

−t
ρ
2 + O(1)



 , t → ∞.

We note that matrix C−1(t) is unbounded as t → ∞ and has the asymptotic estimate O
(

t
ρ
2
)

.
Keeping this fact in mind, we make in (2.30) the change of variable

u1(t) = C(t)u2(t)

with matrix C(t) having form (3.18). Since

C−1(t)Ċ(t) =
ρ

4
t−1

(

−1 + O
(

t−
ρ
2
)

1 + O
(

t−
ρ
2
)

1 + O
(

t−
ρ
2
)

−1 + O
(

t−
ρ
2
)

)

, (3.19)

we obtain
u̇2 =

[

Λ(t) + Bt−1 + R2(t)
]

u2. (3.20)

Here the diagonal matrix Λ(t) is defined by formula (3.17) with account of (3.15) and the
constant matrix B has the following form:

B =
ρ

4

(

1 −1
−1 1

)

. (3.21)

Moreover, the remainder term in (3.20), due to (1.5), (2.34) and (3.19), admits the asymptotic
estimate R2(t) = O

(

t−
ρ
2−1
)

as t → ∞. Further, we need to study several alternatives.
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Assume first that
ρ = 2. (3.22)

In this situation system (3.20) takes the following form:

u̇2 =
[

St−1 + O(t−2)
]

u2, (3.23)

where

S =

√

−2p
(0)
1 diag(1,−1) + B, (3.24)

and matrix B is defined by formula (3.21). The eigenvalues of this matrix are

µ1,2 =
1
2
± σ, σ =

1
2

√

1 − 8p
(0)
1 . (3.25)

We recall that the square root here means the quantity (3.16). We should consider two cases.

• p
(0)
1 ̸= 1

8
This is the case when µ1,2 are distinct and system (3.23) by the change of variable u2 = Cu3,

where, for instance,

C =

(

1 1

2
√

−2p
(0)
1 −

√

1 − 8p
(0)
1 2

√

−2p
(0)
1 +

√

1 − 8p
(0)
1

)

,

can be reduced to L-diagonal form (2.36). In the corresponding L-diagonal system we have

Λ(t) = diag(µ1, µ2)t
−1, R3(t) = O(t−2), t → ∞.

The asymptotics for the fundamental matrix of this system can be constructed by applying
Theorem 2.9. If we return then to Eq. (2.2), we get the following asymptotics for its solutions
as t → ∞:

y(t) = c1t
1
2 exp{σ ln t}

(

1 + o(1)
)

+ c2t
1
2 exp{−σ ln t}

(

1 + o(1)
)

+ O
(

e−βt
)

,

where c1, c2 are arbitrary, in general, complex constants, β > 0 is a certain real number and
quantity σ is defined by formula (3.25).

• p
(0)
1 =

1
8

In this situation the eigenvalues of matrix (3.24) coincide:

µ1,2 =
1
2

.

First, by the change of variable u2 = Cu3, where

C =
1
2

(−1 0
−i 2

)

,

we bring system (3.23) to the form

u̇3 =
[

Jt−1 + O(t−2)
]

u3, J =
1
2

(

1 2
0 1

)

. (3.26)
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Next, we apply in (3.26) the transformation u3 = t
1
2 u4 to obtain

u̇4 =
[

Dt−1 + O(t−2)
]

u4, (3.27)

where matrix D is defined by (2.18). Finally, in (3.27) we introduce the new time-variable
τ = ln t to get

u′
4 =

[

D + O(e−τ)
]

u4, (3.28)

where the dash denotes the derivative with respect to τ. The construction of the asymptotics
for the fundamental matrix of system (3.28) is carried out in the same manner as for system
(3.11). This results in the following asymptotic representation for solutions of Eq. (2.2) as
t → ∞:

y(t) = c1t
1
2
(

1 + o(1)
)

+ c2t
1
2 ln t

(

1 + o(1)
)

+ O
(

e−βt
)

,

where c1, c2 are arbitrary real constants and β > 0 is a certain real number.
Consider now the case

ρ < 2.

We can write system (3.20) in form (2.35), where, due to (3.15),

α =
ρ

2
, A0 =

√

−2p
(0)
1 diag(1,−1), V(t) =

(

q
(0)
1 +

2
3

p
(0)
1

)

It−
ρ
2 + Bt

ρ
2−1 + O(t−ρ).

and R2(t) = O
(

t−
ρ
2−1
)

as t → ∞. Here matrix B is described by formula (3.21). The asymptotic
integration of systems having form (2.35) was described at the end of the previous section.
Therefore, we give only the final result concerning the asymptotic formulae for solutions of
Eq. (2.2) as t → ∞.

So, if
1 < ρ < 2,

we have

y(t) = c1t
ρ
4 exp

{

2
2 − ρ

√

−2p
(0)
1 t1− ρ

2

}

(

1 + o(1)
)

+ c2t
ρ
4 exp

{

− 2
2 − ρ

√

−2p
(0)
1 t1− ρ

2

}

(

1 + o(1)
)

+ O
(

e−βt
)

.

If
ρ = 1,

then

y(t) = t
1
4+q

(0)
1 + 2

3 p
(0)
1

[

c1 exp
{

2
√

−2p
(0)
1 t

}

(

1 + o(1)
)

+ c2 exp
{

−2
√

−2p
(0)
1 t

}

(

1 + o(1)
)

]

+ O
(

e−βt
)

.

Finally, if
ρ < 1,

we obtain

y(t) = t
ρ
4 exp

{

t1−ρ

1 − ρ

(

q
(0)
1 +

2
3

p
(0)
1

)}[

c1 exp
{

2
2 − ρ

√

−2p
(0)
1 t1− ρ

2 + O

(

∫

t−
3ρ
2 dt

)}

(

1 + o(1)
)

+ c2 exp
{

− 2
2 − ρ

√

−2p
(0)
1 t1− ρ

2 + O

(

∫

t−
3ρ
2 dt

)}

(

1 + o(1)
)

]

+ O
(

e−βt
)

.



On oscillation of solutions of scalar delay differential equation 17

Everywhere in these asymptotic formulae c1, c2 are arbitrary, in general, complex constants
and β > 0 is a certain real number.

We now proceed to a case more complicated in computational sense.

II. p
(0)
1 = 0 (3.29)

The simplest situation in this case occurs when

ρ > 1.

The averaged system (2.30) takes the form

u̇1 =
[

D + R̂1(t)
]

u1, (3.30)

where, with account of (2.34),

R̂1(t) = A1t−ρ + · · ·+ Ak+1t−(k+1)ρ + O
(

t−(ρ+1))+ O
(

t−(2ρ+1))+ O
(

t−(k+2)ρ).

We remark that, due to (3.29), matrix A1, that is described by formula (3.14), has the following
form:

A1 =
2
3

q
(0)
1

(

0 1
0 3

)

. (3.31)

It follows that the entries r̂ij(t) of the matrix R̂1(t) have the property

ti−jr̂ij(t) ∈ L1[t0, ∞), 1 ≤ i, j ≤ 2.

This yields that like in the case (3.10) we can use [2, Corollary 6.2, p. 213] to construct the
asymptotics for the fundamental solutions of system (3.30). Hence, we obtain asymptotic
formulae (3.12) for the fundamental solutions of this system. Thus, we get asymptotics (3.13)
for solutions of Eq. (2.2) as t → ∞.

Assume further that
ρ ≤ 1.

In the averaged system (2.30) we make one more averaging change of variable

u1 =
[

I + Q(t)t−(ρ+1)]u2 (3.32)

that allows us, due to Theorem 2.7, to exclude the summand having the asymptotic order
O(t−(ρ+1)) in the remainder term (2.34). Here matrix Q(t), whose entries are trigonometric
polynomials, is the solution of the matrix differential equation

Q̇ − DQ + QD = ρY1(t)

with zero mean value. The main part of the transformed system has the same form as the
main part of system (2.30) but the new remainder term has now the following asymptotic
estimate as t → ∞:

R2(t) = O
(

t−(ρ+2))+ O
(

t−(2ρ+1))+ O
(

t−(k+2)ρ). (3.33)

Then in the obtained system we make the so-called shearing transformation

u2 =

(

t
ρ
2

0 t−
ρ
2

)

u3. (3.34)
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With account of formulae (2.18) and (3.31), that describe matrices D and A1, we get the fol-
lowing system:

u̇3 =
[

B1t−ρ + B2t−2ρ + · · ·+ Bkt−kρ + B0t−1 + R3(t)
]

u3. (3.35)

Here B0, . . . , Bk are certain constant matrices and, in particular,

B0 =
ρ

2

(−1 0
0 1

)

, B1 =

(

0 1

a
(2)
21 2q

(0)
1

)

, B2 =

(

a
(2)
11

2
3 q

(0)
1

a
(3)
21 a

(2)
22

)

.

Symbols a
(2)
ij in the above expressions denote the entries of the matrix A2, situated in the

corresponding positions, and symbol a
(3)
21 denotes the corresponding entry of the matrix A3

from the averaged system (2.30). In what follows we only need the explicit formula for the
entry a

(2)
21 of the matrix A2. We devote the conclusive part of this section to computation of

this entry. Finally, we note that the remainder term in (3.35), due to (3.33) and (3.34), has the
asymptotic estimate

R3(t) = O
(

t−2)+ O
(

t−(ρ+1))+ O
(

t−(k+1)ρ), t → ∞ (3.36)

and, therefore, belongs to L1[t0, ∞) taking into account (1.5).
We start with the case

ρ = 1.

System (3.35) due to (3.36) gets the form

u̇3 =
[

Wt−1 + O
(

t−2)
]

u3, (3.37)

where

W = B0 + B1 =

(

− 1
2 1

a
(2)
21

1
2 + 2q

(0)
1

)

.

The eigenvalues of the matrix W are

ν1,2 = q
(0)
1 ± ξ, ξ =

√

(

q
(0)
1 +

1
2

)2
+ a

(2)
21 . (3.38)

Here the square root is defined according to (3.16). The further asymptotic analysis of system
(3.37) is conducted in the same way as for the case (3.22). Thus, we give here only the final
result with account of the transformation (3.34).

•
(

q
(0)
1 + 1

2

)2
+ a

(2)
21 ̸= 0

We have the following asymptotic representation for solutions of Eq. (2.2) as t → ∞:

y(t) = t
1
2+q

(0)
1

[

c1 exp{ξ ln t}
(

1 + o(1)
)

+ c2 exp{−ξ ln t}
(

1 + o(1)
)

]

+ O
(

e−βt
)

,

where c1, c2 are arbitrary, in general, complex constants, β > 0 is a certain real number and
the quantity ξ is defined by formula (3.38).

•
(

q
(0)
1 + 1

2

)2
+ a

(2)
21 = 0

In this case the behaviour of solutions of Eq. (2.2) as t → ∞ is described by the asymptotic
formula

y(t) = c1t
1
2+q

(0)
1
(

1 + o(1)
)

+ c2t
1
2+q

(0)
1 ln t

(

1 + o(1)
)

+ O
(

e−βt
)

,
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where c1, c2 are arbitrary real constants and β > 0 is a certain real number.
Let

ρ < 1.

System (3.35) takes form (2.35), where

α = ρ, A0 = B1, V(t) = B2t−ρ + · · ·+ Bkt(−k+1)ρ + B0tρ−1, R2(t) = R3(t). (3.39)

The eigenvalues of the matrix A0 = B1 are

ν1,2 = q
(0)
1 ± κ, κ =

√

(

q
(0)
1

)2
+ a

(2)
21 , (3.40)

where the square root means (3.16). Further in this paper we study only the case

(

q
(0)
1

)2
+ a

(2)
21 ̸= 0, (3.41)

when these eigenvalues are distinct. Provided condition (3.41) holds, system (3.35), due to
Lemma 2.8, can be reduced to L-diagonal form (2.36), where the entries of the diagonal matrix
Λ(t) = diag

(

λ1(t), λ2(t)
)

are the eigenvalues of the matrix
(

A0 + V(t)
)

t−ρ. By (3.39), these
eigenvalues have the following form:

λ1,2(t) = q
(0)
1 t−ρ ± κt−ρ

(

1 + O
(

t−ρ
)

+ O
(

t2ρ−2)+ O
(

t−1)
)

+
a
(2)
11 + a

(2)
22

2
t−2ρ + O

(

t−3ρ
)

.

Here all the terms denoted by the order symbol O(·) are real valued. The asymptotics for the
fundamental matrix of system (3.35) can be constructed according to Theorem 2.9. If we then
return to Eq. (2.2), we get the following asymptotic formulae for its solutions as t → ∞.

If
1
2
< ρ < 1,

we have

y(t) = t
ρ
2 exp

{

q
(0)
1

1 − ρ
t1−ρ

}

[

c1 exp
{

κ

1 − ρ
t1−ρ

}

(

1 + o(1)
)

+ c2 exp
{

− κ

1 − ρ
t1−ρ

}

(

1 + o(1)
)

]

+ O
(

e−βt
)

.

(3.42)

If

ρ =
1
2

,

then

y(t) = t
1
4+

a
(2)
11 +a

(2)
22

2 exp
{

2q
(0)
1

√
t
}

[

c1 exp
{

2κ
(√

t + O(ln t)
)}

(1 + o(1))

+ c2 exp
{

−2κ
(√

t + O(ln t)
)}

(1 + o(1))
]

+ O
(

e−βt
)

.

(3.43)

Finally, if

ρ <
1
2

,
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we obtain

y(t) = t
ρ
2 exp

{

q
(0)
1

1 − ρ
t1−ρ +

a
(2)
11 + a

(2)
22

2(1 − 2ρ)
t1−2ρ + O

(

∫

t−3ρdt

)

}

×
[

c1 exp
{

κ

1 − ρ
t1−ρ

(

1 + O(t−ρ)
)

}

(1 + o(1))

+ c2 exp
{

− κ

1 − ρ
t1−ρ

(

1 + O(t−ρ)
)

}

(1 + o(1))
]

+ O
(

e−βt
)

.

(3.44)

Everywhere in these asymptotic formulae c1, c2 are arbitrary, in general, complex constants,
β > 0 is a certain real number and the quantity κ is defined in (3.40).

Computation of the quantity a
(2)
21 in case (3.29)

It follows from the asymptotic formulae (3.42)–(3.44) that the key role in the oscillation
problem for Eq. (1.1) plays the quantity a

(2)
21 . It defines, due to (3.16) and (3.40), whether the

number κ is real or pure imaginary. We recall that the quantity a
(2)
21 is the corresponding

entry of the matrix A2. The latter is defined by formula (2.32) with account of (3.8). First, we
calculate the matrix Y1(t) as the solution of the matrix differential equation (2.33) with zero
mean value. Recalling the form of the matrix D (see (2.18)) and also formulae (3.7), (3.31),
we conclude that the entries yij(t) of the matrix Y1(t) satisfy the following linear differential
system with constant coefficients:

ẏ11 = y21 −
2
3

p1(t), ẏ12 = y22 − y11 +
2
3

(

q
(0)
1 (t) + p1(t)

)

,

ẏ21 = −2p1(t), ẏ22 = −y21 + 2
(

q
(0)
1 (t) + p1(t)

)

.

Here
q
(0)
1 (t) = q1(t)− q

(0)
1 , (3.45)

function q1(t) is defined in (1.4) (see also (3.3)), and the real number q
(0)
1 is its mean value

according to (3.5). After some easy calculations we obtain

y11(t) = −2
∫∫

p1(t)(dt)2 − 2
3

∫

p1(t)dt,

y12(t) = 4
∫∫∫

p1(t)(dt)3 +
∫∫

(

2q
(0)
1 (t) +

8
3

p1(t)
)

(dt)2 +
2
3

∫

(

q
(0)
1 (t) + p1(t)

)

dt,

y21(t) = −2
∫

p1(t)dt,

y22(t) = 2
∫∫

p1(t)(dt)2 + 2
∫

(

q
(0)
1 (t) + p1(t)

)

dt.

(3.46)

Symbol
∫

denotes the antiderivative having zero mean value. Further we will use the fol-
lowing relations that can be proved simply by integration by parts. If f (t) is a trigonometric
polynomial (or T-periodic function as well) with zero mean value then the following equalities
hold:

M
[

f (t)
∫∫

f (t)(dt)2
]

= −M
[(

∫

f (t)dt
)2]

, M
[

f (t)
∫

f (t)dt
]

= 0,

M
[

f (t)
∫∫∫

f (t)(dt)3
]

= −M
[

∫

f (t)dt
∫∫

f (t)(dt)2
]

= 0.
(3.47)
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We recall now (3.7), (3.31) and take into account (3.46), (3.47) to conclude that

M
[

A1(t)Y1(t)
]

= M
[

(A1(t)− A1)Y1(t)
]

=
4
9

(

−3 M
[(

∫

p1(t)dt
)2]

+3 M
[

p1(t)
∫

q
(0)
1 (t)dt

]

M
[(

∫

p1(t)dt
)2]

−M
[

p1(t)
∫

q
(0)
1 (t)dt

]

−9 M
[(

∫

p1(t)dt
)2]

+9 M
[

p1(t)
∫

q
(0)
1 (t)dt

]

3 M
[(

∫

p1(t)dt
)2]

−3 M
[

p1(t)
∫

q
(0)
1 (t)dt

]

)

.

(3.48)

To calculate the entries of the matrix A2 we also need to find row-vector (3.9). This is done
as follows. We substitute (2.23) in (2.22) and collect terms corresponding to factor t−ρ. With
account of (2.5) and (3.6) we obtain the following problem:

Φ(θ)Ψ(0)
[

q1(t)Φ
′(−1)− p1(t)Φ(−1)

]

+ H1(t, θ)D +
∂H1

∂t

=







∂H1

∂θ
, −h ≤ θ < 0,

H1(t, 0)− H1(t,−1) + q1(t)Φ
′(−1)− p1(t)Φ(−1), θ = 0.

We apply (2.18) to get the following partial differential system for finding the entries of row-
vector (3.9):

∂h11

∂θ
=

∂h11

∂t
−
(

2
3
+ 2θ

)

p1(t),

∂h12

∂θ
=

∂h12

∂t
+ h11 +

(

2
3
+ 2θ

)

(

q1(t) + p1(t)
)

,
(3.49)

where −h ≤ θ < 0. At the point θ = 0 the solution of this system should satisfy the condition

∂h11

∂t
(t, 0) = h11(t, 0)− h11(t,−1)− p1(t)

3
,

∂h12

∂t
(t, 0) = h12(t, 0)− h11(t, 0)− h12(t,−1) +

1
3

(

q1(t) + p1(t)
)

.
(3.50)

Due to (3.3), we seek the solution of (3.49), (3.50) in the form

h11(t, θ) =
N

∑
j=−N

g
(j)
1 (θ)eiωjt, h12(t, θ) =

N

∑
j=−N

g
(j)
2 (θ)eiωjt, (3.51)

where the infinitely differentiable functions g
(j)
1 (θ) and g

(j)
2 (θ) belong to subspace QΛ. Hence,

by (2.17), these functions should satisfy the following additional condition:
(

Ψ(ξ), g
(j)
i (θ)

)

= 0, i = 1, 2, j = −N, . . . , N. (3.52)

Here the bilinear form (·, ·) is defined according to (2.13) and the column-vector Ψ(ξ) has
form (2.18).

It follows from (2.32) and (3.8) that to compute the quantity a
(2)
21 we need to find only the

function h11(t, θ). We substitute (3.3), (3.51) in (3.49), (3.50) and match the coefficients of the
corresponding exponentials eiωjt. Thus, we get the following boundary value problems for

functions g
(j)
1 (θ):

dg
(j)
1

dθ
= iωjg

(j)
1 (θ)−

(2
3
+ 2θ

)

p
(j)
1 ,

(1 − iωj)g
(j)
1 (0)− g

(j)
1 (−1) =

p
(j)
1
3

, j = −N, . . . , N.

(3.53)
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It is easy to verify that

g
(j)
1 (θ) =

(

eiωjθ

1 − iωj − e−iωj
− 2iθ

ωj
− 6 + 2iωj

3ω2
j

)

p
(j)
1 , j ̸= 0. (3.54)

If j = 0 then, by (3.4) and (3.29), we have ω0 = 0 and p
(0)
1 = 0. This yields that the correspond-

ing solution of (3.53) has the form g
(0)
1 (θ) ≡ c, where c is a certain constant. The quantity c is

uniquely defined from equality (3.52). Finally, we deduce that

g
(0)
1 (θ) ≡ 0. (3.55)

Therefore, taking into account (2.32), (3.8) and also expression (3.48), we get the following
representation for the quantity a

(2)
21 :

a
(2)
21 = −4 M

[

(

∫

p1(t)dt

)2
]

+ 4 M
[

p1(t)
∫

q
(0)
1 (t)dt

]

− 2 M [p2(t)]

+ 2 M

[

q1(t)
∂h11

∂θ
(t, θ)

∣

∣

∣

∣

θ=−1

]

− 2 M [p1(t)h11(t,−1)] . (3.56)

Here the function q
(0)
1 (t) is defined according to (3.45) and the function h11(t, θ) has form

(3.51) with account of (3.54) and (3.55). If we calculate in (3.56) all the mean values and use
(3.4) we obtain the more compact form for a

(2)
21 . Namely, we conclude that

a
(2)
21 = 2

N

∑
j=−N

j ̸=0

(

iωj p
(j)
1 q̄

(j)
1 −

∣

∣p
(j)
1

∣

∣

2)
e−iωj

1 − iωj − e−iωj
− 2 M

[

p2(t)
]

. (3.57)

Function p2(t) in this expression is defined by formula (3.2).

4 Conclusions and examples

We begin this section by analyzing the asymptotic formulae obtained in the previous section
as applied to the oscillation problem of Eq. (1.1) with conditions (1.3), (1.4). The results of the
analysis are given in Tables 4.1 and 4.2.

ρ > 2 ρ = 2 ρ < 2

o – p
(0)
1 >

1
8

p
(0)
1 > 0

p + p
(0)
1 ≤ 1

8
p
(0)
1 < 0

Table 4.1: Case p
(0)
1 ̸= 0.

In these tables the line titled «o» contains the conditions for existence of oscillatory solu-
tions and the line titled «p» contains the conditions for existence of nonoscillatory (positive)
solutions. Symbol «–» means the situation when the oscillatory solutions are not found by
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ρ > 1 ρ = 1 ρ < 1

o –
(

q
(0)
1 +

1
2

)2
+ a

(2)
21 < 0

(

q
(0)
1

)2
+ a

(2)
21 < 0

p +
(

q
(0)
1 +

1
2

)2
+ a

(2)
21 ≥ 0

(

q
(0)
1

)2
+ a

(2)
21 > 0

Table 4.2: Case p
(0)
1 = 0.

means of the main parts of the asymptotic formulae in the prescribed interval of the parame-
ter ρ (highly likely oscillatory solutions don’t exist at all). Symbol «+» stands for the situation
when there exist nonoscillatory (positive) solutions for all values of the parameter ρ in the
prescribed interval. In all the other positions of these tables the conditions for existence of
oscillatory and nonoscillatory (positive) solutions of Eq. (1.1) in the prescribed intervals of the
parameter ρ are collected. We also remind that the real numbers p

(0)
1 , q

(0)
1 are defined in (3.5)

and the real number a
(2)
21 is described by formula (3.57) with account of (3.2) and (3.3).

We now demonstrate the obtained results by a number of illustrating examples.

Example 4.1. In paper [13] the authors illustrate the obtained criteria for existence of the
positive solutions by the following equation:

dx̂

ds
= −â(s)x̂

(

s − c − d

s

)

, (4.1)

where c, d > 0. It is claimed that if

â(s) ≤ 1
ec

− d

ec2 · 1
s
+

1
e
·
(

d2

c3 +
c

8

)

· 1
s2 + o

(

1
s2

)

(4.2)

or

â(s) ≤ 1
ec

− d

ec2 · 1
s
+

1
e
·
(

d2

c3 +
d

2c

)

· 1
s2 + o

(

1
s2

)

(4.3)

as s → ∞ then Eq. (4.1) has positive solution.
We consider the case when function â(s) in Eq. (4.1) has the following asymptotic repre-

sentation as s → ∞:

â(s) =
1
ec

+ â1(s)s
−1 + â2(s)s

−2 + O(s−3), (4.4)

where â1(s), â2(s) are real-valued trigonometric polynomials. In particular,

â1(s) =
N

∑
j=−N

â
(j)
1 eiωjs, (4.5)

and, besides,

â
(−j)
1 = â

(j)
1 , ω−j = −ωj (ωl ̸= ωl , l ̸= m), j = 1, . . . , N.

In Eq. (4.1) we make the change of independent variable s = tc that transforms it to form (1.1),
where

x(t) = x̂(ct), a(t) = câ(tc), τ(t) = 1 +
d

c2 · 1
t

. (4.6)
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Due to (4.4) and (4.6), we conclude that in the considered case the coefficients in the expansions
(1.3), (1.4) have the following form:

a1(t) = â1(tc), a2(t) =
â2(tc)

c
, q1(t) ≡

d

c2 , qm(t) ≡ 0, m ≥ 2 (4.7)

and ρ = 1. It follows from (3.5) with account of (3.2) that

p
(0)
1 = ea

(0)
1 + q

(0)
1 , q

(0)
1 =

d

c2 ,

where
a
(0)
1 = M

[

a1(t)
]

= â
(0)
1 , â

(0)
1 = M

[

â1(s)
]

.

We deduce from Table 4.1 that equation (4.1), (4.4) has oscillatory solutions if

â
(0)
1 > − d

ec2

and positive solutions if

â
(0)
1 < − d

ec2 .

We also need to study the case when p
(0)
1 = 0, i.e.,

â
(0)
1 = − d

ec2 .

By (3.2) and (4.7), we have

M
[

p2(t)
]

= ea
(0)
2 +

d2

2c4 + ea
(0)
1 · d

c2 = ea
(0)
2 − d2

2c4 ,

where

a
(0)
2 = M [a2(t)] =

â
(0)
2
c

, â
(0)
2 = M [â2(s)] . (4.8)

We then compute quantity (3.57) using (3.2), (4.5), (4.7) and (4.8). We obtain

a
(2)
21 = −2e2

N

∑
j=−N

j ̸=0

∣

∣

∣â
(j)
1

∣

∣

∣

2
e−icωj

1 − icωj − e−icωj
− 2eâ

(0)
2

c
+

d2

c4 .

It follows from Table 4.2 that equation (4.1), (4.4) has oscillatory solutions if

â
(0)
2 >

1
e

(

d2

c3 +
d

2c
+

c

8

)

− ec
N

∑
j=−N

j ̸=0

∣

∣

∣
â
(j)
1

∣

∣

∣

2
e−icωj

1 − icωj − e−icωj
(4.9)

and positive solutions if

â
(0)
2 ≤ 1

e

(

d2

c3 +
d

2c
+

c

8

)

− ec
N

∑
j=−N

j ̸=0

∣

∣

∣â
(j)
1

∣

∣

∣

2
e−icωj

1 − icωj − e−icωj
. (4.10)
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We now consider the special case when the following identity holds in (4.4):

â1(s) ≡ â
(0)
1 = − d

ec2 . (4.11)

In this situation formulae (4.9), (4.10) take the simple form. It is easily seen that in this case
equation (4.1), (4.4) with the coefficient â1(s) described by (4.11) has oscillatory solutions if

â
(0)
2 >

1
e

(

d2

c3 +
d

2c
+

c

8

)

and positive solutions if

â
(0)
2 ≤ 1

e

(

d2

c3 +
d

2c
+

c

8

)

.

This fact allows us to propose the hypothesis that the condition for existence of positive
solutions in Eq. (4.1) is described by the inequality

â(s) ≤ 1
ec

− d

ec2 · 1
s
+

1
e
·
(

d2

c3 +
d

2c
+

c

8

)

· 1
s2 + o

(

1
s2

)

, s → ∞, (4.12)

instead of (4.2) and (4.3).

Example 4.2. This example concerns equation (1.1), where

a(t) =
1
e

(

1 +
K(sin2 πt − γ)

tρ

)

, 0 < ρ ≤ 2, τ(t) ≡ 1, (4.13)

and K > 0, γ ∈ R. Equation (1.1), (4.13) was considered in [15, 17]. In [17], this equation
was studied provided that γ = 0. In this case it was shown that all solutions of this equation
oscillate if K > 0 and 0 ≤ ρ < 2, and also if K > 1 and ρ = 2. If K <

1
8 and ρ = 2, then equation

(1.1), (4.13) has nonoscillatory solution. In paper [15], equation (1.1), (4.13) was studied in the
case ρ = 2. It was shown that if γ <

1
2 and K >

1
4(1−2γ)

then all solutions of this equation
oscillate. In particular, the authors improved the results from [17] for the case γ = 0.

We write (4.13) in form (1.3), (1.4) and obtain

a1(t) =
K

e

(

sin2 πt − γ
)

, q1(t) ≡ 0, am(t) = qm(t) ≡ 0, m ≥ 2.

We deduce from (3.2) and (3.5) that

p1(t) = K
(

sin2 πt − γ
)

= K

(

1
2
− γ

)

− K

2
cos 2πt, p2(t) ≡ 0 (4.14)

and

p
(0)
1 = M [p1(t)] = K

(

1
2
− γ

)

, q
(0)
1 = M [q1(t)] = 0. (4.15)

It follows from Table 4.1 that if ρ = 2 then equation (1.1), (4.13) has oscillatory solutions
provided that inequality 4K(1 − 2γ) > 1 holds and positive solutions if 4K(1 − 2γ) ≤ 1.
Parameter γ in these inequalities may take all the values except γ = 1

2 . If 0 < ρ < 2 then
the considered equation has oscillatory solutions if γ <

1
2 and positive solutions if γ >

1
2 .

Parameter K may take all the positive values.
The more difficult case occurs when

γ =
1
2

, (4.16)
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since we have p
(0)
1 = 0. We calculate coefficients in (3.3) with account of (4.14), (4.16) and

conclude that
N = 1, p

(1)
1 = p

(−1)
1 = −K

4
, ω1 = 2π, ω−1 = −2π. (4.17)

We compute quantity (3.57) using (4.17) to get

a
(2)
21 = −K2

8

(

e2πi

1 + i2π − e2πi
+

e−2πi

1 − i2π − e−2πi

)

= 0. (4.18)

We then deduce from Table 4.2 that equation (1.1), (4.13) under condition (4.16) has nonoscil-
latory solutions for all values of the parameter K > 0 if 1 < ρ ≤ 2. If ρ = 1 then, by (4.15), we
also conclude that this equation has nonoscillatory solutions for all values of the parameter
K > 0.

Unfortunately, the obtained results don’t allow us to analyze the oscillation problem for
equation (1.1), (4.13) under condition (4.16) for the case ρ < 1. In this situation condition
(3.41), under which the asymptotic representations were constructed in this paper, fails. Nev-
ertheless, certain advance in the analysis of the oscillation problem for this case can still be
made. Note that in relation to the studied equation system (3.35) in the case ρ < 1 takes the
following form:

u̇3 =
[

B1t−ρ + B0t−1 + O
(

t−2ρ
)

]

u3. (4.19)

Here matrices B0, B1 with account of (4.15), (4.18) are described by the formulae

B0 =
ρ

2

(−1 0
0 1

)

, B1 =

(

0 1
0 0

)

.

We make the change of variable

u3 =

(

1 1
0 ρtρ−1

)

u4

to reduce system (4.19) to form (2.35) for new unknown variable u4(t), where

α = 1, A0 =

(− ρ
2 ρ − 1

0 1 − ρ
2

)

, V(t) ≡ 0, R2(t) = O
(

t1−3ρ
)

.

We remark that the eigenvalues of the matrix A0 are distinct and the remainder term R2(t)

belongs to L1[t0, ∞) if ρ >
2
3 . Thus, we can bring the obtained system to L-diagonal form (2.36)

by certain transformation with constant coefficients and then apply Levinson’s Theorem to get
the asymptotics for its fundamental matrix. Some easy calculations show that in this situation
we obtain the asymptotic representation (3.13) for solutions of Eq. (2.2) as t → ∞. Hence,
equation (1.1), (4.13) under condition (4.16) has nonoscillatory solutions for all the values of
the parameter K > 0 if 2

3 < ρ < 1. Evidently, to study the case ρ ≤ 2
3 under condition (4.16)

we need to compute the entries of the matrix B2 in system (3.35).

Example 4.3. Our last example deals with equation (1.1), where

a(t) =
1
e
+

a sin ωt

tρ
, τ(t) = 1 +

b sin ωt

tρ
, ρ > 0 (4.20)

and a, b ∈ R, ω > 0. Therefore,

a1(t) = a sin ωt, q1(t) = b sin ωt, am(t) = qm(t) ≡ 0, m ≥ 2.
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It follows from (3.2) and (3.5) that

p1(t) = (ea + b) sin ωt, p2(t) =

(

b2

2
+ eab

)

sin2 ωt (4.21)

and, moreover,

p
(0)
1 = M [p1(t)] = 0, q

(0)
1 = M [q1(t)] = 0, p

(0)
2 = M [p2(t)] =

b2

4
+

eab

2
. (4.22)

By calculating coefficients in (3.3) with account of (4.21), we get

N = 1, p
(1)
1 = −p

(−1)
1 =

ea + b

2i
, q

(1)
1 = −q

(−1)
1 =

b

2i
, ω1 = −ω−1 = ω.

We then compute quantity (3.57) and conclude that

a
(2)
21 = 2

(

iωe−iω

1 − iω − e−iω
− iωeiω

1 + iω − eiω

)

(ea + b)b

4

− 2
(

e−iω

1 − iω − e−iω
+

eiω

1 + iω − eiω

)

(ea + b)2

4
−
(

b2

2
+ eab

)

.

We can write this expression in the real form. In particular, we used the mathematical package
Wolfram Mathematica to obtain the following real-valued expression:

a
(2)
21 = − (2eab + b2)ω2 − 2e2a2 + 2

(

e2a2 + (eab + b2)ω2
)

cos ω − 2ω
(

b2 − e2a2 + eab
)

sin ω

2 (ω2 − 2ω sin ω − 2 cos ω + 2)
.

(4.23)

If we consider the quantity a
(2)
21 as the function of ω we can write the following limit

relations (again we used Wolfram Mathematica):

a
(2)
21 = −2(ea + b)2

ω2 +
1
18

(

7e2a2 + 20eab + 22b2)+ O
(

ω2) , ω → 0, (4.24)

a
(2)
21 = −1

2

(

2eab + b2)− (eab + b2) cos ω + O
(

ω−1
)

, ω → ∞. (4.25)

In particular, we conclude from (4.25) that a
(2)
21 as the function of ω is asymptotically 2π-

periodic as ω → ∞. In Fig. 4.1 we give the graph of quantity a
(2)
21 as the function f (ω) =

a
(2)
21 (ω) for the values of parameters a = b = 1.

To obtain the conditions for existence of oscillatory or nonoscillatory solutions of (1.1),
(4.20) we can use Table 4.2 with account of (4.22) and (4.23). In particular, if ρ ≤ 1 then
it follows from (4.24) that for all sufficiently small ω equation (1.1), (4.20) has oscillatory
solutions for all the values of parameters a, b ∈ R not simultaneously equal to zero.

It is highly likely that the obtained results are still valid in the case when aj(t), qj(t),
j = 1, . . . , k + 1 in (1.3), (1.4) are sufficiently smooth ω-periodic functions. In this situation
the periodic coefficients are described in terms of the infinite Fourier series having form (3.3)
with N = +∞. Of course, the problem of convergence of the corresponding series (2.24) and
its partial derivatives arises in these case. This question is not discussed here.

In conclusion we note that the oscillation problem in critical case can be also studied for
the difference analog of equation (1.1):

∆y(n) = −g(n)y(n − k), k ∈ N,

where g(n) > 0 for all n ∈ N. The corresponding results are discussed in paper [28].
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Figure 4.1: The graph of the quantity a
(2)
21 , defined by (4.23), as the function

f (ω) = a
(2)
21 (ω) for the values of parameters a = b = 1.
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1 Introduction

Several applied problems are modeled by non-delay systems. Non-delay systems are gov-

erned by the assumption that the future evolution of the system is determined by the present

state. Moreover, it is independent of the past states. In reality, such an assumption is the only

a first approximation to the real system. A more realistic model assumes that the evolution

of the future states depends not only on the current state but also on their past history. Delay

differential equations (DDEs) (also called hereditary systems, systems with aftereffect, func-

tional differential equations, retarded differential equations, differential difference equations)

provide an appropriate model for physical processes whose time evolution depends on their

history.

The stochastic delay differential equations (SDDEs) have been extensively used in many

branches of physics, biology, as well as in dynamical structures in engineering, mechanics, au-

tomatic regulation, economy finance, ecology, sociology, medicine, etc. The stability of SDDEs

has become a very prevalent theme of recent research in Mathematics and its applications. An

BCorresponding author. Emails: caraball@us.es (T. Caraballo), ezzinefaten94fss@gmail.com (F. Ezzine), Mo-

hamedAli.Hammami@fss.rnu.tn (M. A. Hammami)
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important direction in the study of equations with delays is the analysis of stability. The cor-

responding study of the stability properties of solutions has received much attention during

the last decades. The reader is referred to [15, 16, 20–22, 24], for more details.

As it is well known, in the case without any hereditary features, Lyapunov’s technique

is available to obtain sufficient conditions for the stability of the solutions of stochastic dif-

ferential equations. These sufficient conditions are obtained using the construction of some

Lyapunov functions of functionals, being the latter a method which provides better conditions

than using Lyapunov functions. Moreover, the construction of Lyapunov functionals is more

complicated as Krasovskii [19] pointed out.

In this us, the construction of different Lyapunov functionals for one SDDEs allows to

establish several stability conditions for the solution of this equation. There exist numerous

works that tackle the construction of Lyapunov functionals for a wide range of equations

containing some hereditary properties, see [10, 17, 23].

Several fundamental variants to Lyapunov’s original concepts of practical stability were

introduced in [1–6, 9, 11, 12]. When the origin is not necessarily an equilibrium point, we can

study the asymptotic stability of solutions of the SDDEs in a small neighborhood of the origin.

In the investigation of the asymptotic behavior of solutions to stochastic differential systems,

one can find that a solution is asymptotically stable but may not necessarily exponentially

stable. Further, in the nonlinear and/or nonautonomous situations, it may happen that the

stability cannot always be exponential but can be sub or super-exponential, see [7, 8]. For

this reason, the main aim of this paper is to discuss the almost sure practical stability with a

general decay rate of stochastic delay differential equations.

The general method of Lyapunov functionals construction, which was proposed by V.

Kolmanovskii and L. Shaikhet [17,18,23], is used here for stochastic differential equations with

delay. This approach has already been successfully used for functional differential equations,

for difference equations with discrete time, for difference equations with continuous time.

Our interest in this paper is to investigate the practical stability with a general decay rate of

stochastic differential equations with constant and time-varying delay by using the general

method of Lyapunov functionals construction.

In [11], Caraballo et al. investigated the practical convergence to zero with a general decay

rate of stochastic delay evolution equation by using Lyapunov functions. To the best of our

knowledge, no work has been published about the practical stability of SDDEs in the literature

by using Lyapunov functionals, which is our research topic in our paper. The novelty of our

work is to investigate the practical convergence to a small ball centered at the origin with a

general decay rate in terms of the existence and construction of Lyapunov functionals. Further-

more, we construct Lyapunov functionals for stochastic differential equations with constant

and time-varying delay to obtain sufficient conditions ensuring the practical convergence to a

small ball centered at the origin with a general decay rate. The contents of this paper are as

follows: in Section 2, we introduce the necessary notations and preliminaries. In Section 3,

we establish several sufficient criteria for almost sure practical stability of the stochastic delay

systems with a general decay rate utilizing Lyapunov’s functional. In Section 4, we aim to

analyze the almost sure practical stability with a general decay rate of stochastic differential

equations with constant and time-varying delay by constructing suitable Lyapunov function-

als. Moreover, we exhibit some examples to illustrate the theoretical findings. Eventually,

some conclusions are included in the last section.
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Notations

Throughout this paper, unless otherwise specified, we use the following notations.

Let {Ω,F , P} be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets). Let

B(t) = (B1(t), . . . , Bm(t)) be an m-dimensional Brownian motion defined on the probability

space. Let R+ = [0,+∞) and τ > 0. We denote by C([−τ, 0], R
n) the family of all con-

tinuous functions from [−τ, 0] to R
n with the norm ∥ϕ∥ = sup−τ≤θ≤0 |ϕ(θ)|. Let p > 0,

and denote by L
p
Ft
([−τ, 0], R

n) the family of all Ft-measurable C([−τ, 0], R
n)-valued random

variables ξ, such that E(∥ξ∥p) < ∞. If x(t) is a continuous R
n-valued stochastic process on

t ∈ [−τ,+∞), for each t ≥ 0 we define xt by xt(θ) = x(t + θ) : −τ ≤ θ ≤ 0 for t ≥ 0, which is

a C([−τ, 0], R
n)valued process.

Let us consider the following n-dimensional stochastic differential delay equation (SDDE):

dx(t) = F(t, xt)dt + G(t, xt)dB(t), t ≥ 0, (1.1)

where F : [0,+∞)× C([−τ, 0], R
n) → R

n, G : [0,+∞)× C([−τ, 0], R
n) → R

n×m.

We assume that there exits t ∈ R+, such that F(t, 0) ̸= 0 or G(t, 0) ̸= 0, i.e., the stochastic

differential delay equation (1.1) does not have the trivial solution x ≡ 0.

In order to solve equation (1.1), we require to know the initial data, then we assume that

they are given by

x0 = ξ, i.e., x0(θ) = ξ(θ) = x(θ), ∀θ ∈ [−τ, 0], (1.2)

where ξ is a C([−τ, 0], R
n)− valued random variable such that E(∥ξ∥2) < ∞.

For the well-posedness of system (1.1), we impose the following assumptions.

Assumptions:

1. A local Lipschitz condition:

For every real number T > 0 and integer i ≥ 1, there exists a positive constant KT,i, such

that for all t ∈ [0, T] and all ϕ, ϕ̄ ∈ C([−τ, 0], R
n) with ∥ϕ∥ ∨ ∥ϕ̄∥ ≤ i,

∥F(t, ϕ)− F(t, ϕ̄)∥2 ∨ ∥G(t, ϕ)− G(t, ϕ̄)∥2 ≤ KT,i (∥ϕ − ϕ̄∥2).

2. A linear growth condition:

For every real number T > 0, there exists a positive constant KT, such that for all

t ∈ [0, T] and all ϕ ∈ C([−τ, 0], R
n),

∥F(t, ϕ)∥2 ∨ ∥G(t, ϕ)∥2 ≤ KT (1 + ∥ϕ∥2).

Then, under assumptions (1) and (2), the stochastic differential delay equation (1.1) with the

given initial data (1.2) has a unique global solution x(·) = x(·, 0, ξ) ∈ M2([−τ,+∞), R
n), (see

Mao [21], for more details). Moreover, x(·) satisfies the following integral equation:





x(t) = ξ(0) +
∫ t

0
F(s, xs)ds +

∫ t

0
G(s, xs)dB(s), a.s., and

x(t) = ξ(t), t ∈ [−τ, 0].
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To calculate the stochastic differential of the process η(t) = v(t, x(t)), where x(t) is a

solution of the SDDE (1.1), and the function v : [0,+∞)× R
n → R+ has continuous partial

derivatives

vt(t, x) =
∂v

∂t
(t, x); vx(t, x) =

(
∂v

∂x1
(t, x), . . . ,

∂v

∂xn
(t, x)

)
; vxx(t, x) =

(
∂2v

∂xi∂xj
(t, x)

)

n×n

.

The following Itô’s formula [14] is used:

dη(t) = Lv(t, x(t))dt + vx(t, x(t))G(t, xt)dB(t).

The operator Lv is called the generator of (1.1) and is defined in the following way:

Lv(t, x(t)) = vt(t, x(t)) + vx(t, x(t))F(t, xt) +
1

2
trace

(
GT(t, xt)vxx(t, x(t))G(t, xt)

)
.

The generator L can be applied also for some functionals V(t, ϕ): [0,+∞)×C([−τ, 0], R
n)→

R+. Suppose that a functional V(t, ϕ) can be represented in the form V(t, ϕ(0), ϕ(θ)), θ < 0,

and for ϕ = xt, put

Vϕ(t, x) = V(t, ϕ) = V(t, xt) = V(t, x, x(t + θ)), θ < 0,

x = ϕ(0) = x(t). (1.3)

Denote by D the set of the functionals for which the function Vϕ(t, x) defined by (1) has a

continuous derivative with respect to t and two continuous derivatives with respect to x (see

[23]). For functionals from D, the generator L of (1.1) has the following form:

LV(t, xt) = Vϕt(t, x(t)) + Vϕx(t, x(t))F(t, xt) +
1

2
trace

(
GT(t, xt)Vϕxx(t, x(t))G(t, xt)

)
.

From the Itô formula it follows that for a functional V from D,

dV(t, xt) = LV(t, xt)dt + Vϕx(t, x(t))G(t, xt)dB(t).

The following lemma is known as the exponential martingale inequality, and will be useful

in our analysis.

Lemma 1.1 (See [21]). Let g = (g1, . . . , gm) ∈ L2(R+, R
m), and let τ, µ, η be any positive numbers.

Then,

P

(
sup

0≤t≤τ

[∫ t

0
g(s)dBs −

µ

2

∫ t

0
∥g(s)∥2ds

]
> η

)
≤ exp(−µη).

2 Practical stability of stochastic delay equations

First, we define the practical uniform exponential stability of a stochastic delay equation.

Definition 2.1.

i) The ball Br := {x ∈ R
n : ∥x∥ ≤ r}, r > 0 is said to be almost surely globally uniformly

exponentially stable, if for any initial data ξ ∈C([−τ, 0], R
n), such that 0< ∥x(t, 0, ξ)∥−r,

for all t ≥ 0,

lim
t→+∞

sup
1

t
ln(∥x(t, 0, ξ)∥ − r) < 0, a.s.
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ii) The system (1.1) is said to be almost surely practically uniformly exponentially stable, if

there exists r > 0, such that Br is almost surely uniformly exponentially stable.

Now, we state the definition of practical convergence to the ball Br with a general decay

function λ(t).

Definition 2.2. Let λ(t) be a positive function defined for sufficiently large t > 0, such that

λ(t) → +∞ as t → +∞. A solution x(t) to system (1.1) is said to decay to the ball Br

almost surely practically with decay function λ(t) and order at least γ > 0, if its generalized

Lyapunov exponent is less than or equal to −γ with probability one, i.e.,

lim
t→+∞

sup
ln(∥x(t, 0, ξ)∥ − r)

ln λ(t)
≤ −γ, a.s.

If in addition, 0 is a solution to system (1.1), the zero solution is said to be almost surely

practically asymptotically stable with decay function λ(t) and order at least γ, if every solution

to system (1.1) decays to the ball Br almost surely practically with decay function λ(t) and

order at least γ, for all r > 0 sufficiently small.

Remark 2.3. Clearly, replacing in the above definition, the decay function λ(t) by O(et) leads

to the almost sure practical exponential stability.

Remark 2.4. Here we should mention that in [11] we establish sufficient conditions for prac-

tical decay to zero by using Lyapunov functions but now we will use Lyapunov functionals

and decay to ball Br.

Now, we aim to prove the practical stability of stochastic differential delay equations with

general decay rate in terms of Lyapunov functionals.

Theorem 2.5. Let V : R+ × C([−τ, 0], R
n) → R+ be a functional from D. Assume that ln λ(t) is

uniformly continuous on t ≥ 0, and there exists a constant σ ≥ 0, such that

lim
t→+∞

ln ln t

ln λ(t)
≤ σ.

Let x(·) = x(·, 0, ξ) be a solution to system (1.1) and assume that there exist constants q ∈ N
⋆, m ≥

0, β1 ∈ R, β2 ≥ 0, a non-increasing function φ(t) > 0 and a continuous non-negative function ψ(t),

such that, for all t ≥ 0, the following assumptions hold:

(H1) λm(t)∥x(t)∥q ≤ V(t, xt).

(H2)
∫ t

0
LV(s, xs)ds +

∫ t

0
φ(s)∥Vx(s, xs)G(s, xs)∥

2ds ≤
∫ t

0
ψ(s)λm(s)∥x(s)∥qds + ρ(t),

where ρ(t) is a continuous non-negative function.

(H3)
lim

t→+∞
sup

∫ t
0 ψ(s)ds

ln λ(t)
≤ β1,

lim
t→+∞

inf
ln φ(t)

ln λ(t)
≥ −β2,

lim
t→+∞

ρ(t)

λm(t)
= υ > 0.
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(H4)
∥x(t, 0, ξ)∥ >

(
ρ(t)

λm(t)

) 1
q

, for all t ≥ 0.

Then,

lim
t→+∞

sup

ln

(
∥x(t, 0, ξ)∥ −

(
ρ(t)

λm(t)

) 1
q

)

ln λ(t)
≤ − [m − (β1 + (β2 + σ) ∨ m)] , a.s.

Proof. Observe that we have

λm(t)∥x(t)∥q − ρ(t) = λm(t)

(
∥x(t)∥q −

ρ(t)

λm(t)

)

= λm(t)


∥x(t)∥q −

((
ρ(t)

λm(t)

) 1
q

)q

 .

Using the inequality

aq − bq = (a − b)(aq−1 + aq−2b + aq−3b2 + · · ·+ a0bq−1),

we conclude

λm(t)∥x(t)∥q − ρ(t) = λm(t)


∥x(t)∥q −

((
ρ(t)

λm(t)

) 1
q

)q



= λm(t)

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q

)

×


∥x(t)∥q−1 + ∥x(t)∥q−2

(
ρ(t)

λm(t)

) 1
q

+ · · ·+

(
ρ(t)

λm(t)

) q−1
q




= λm(t)

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q

)
q

∑
k=1

∥x(t)∥q−k

(
ρ(t)

λm(t)

) k−1
q

.

From condition (H3), we have limt→+∞
ρ(t)

λm(t)
= υ > 0. That is, for 0 < υ0 < υ, there exits

T̄ ≥ 0, such that
ρ(t)

λm(t)
≥ υ0 for all t ≥ T̄. Then, as we are assuming that ∥x(t)∥ >

( ρ(t)
λm(t)

) 1
q , for

all t ≥ 0, it holds

q

∑
k=1

∥x(t)∥q−k

[
ρ(t)

λm(t)

] k−1
q

= ∥x(t)∥q−1 + ∥x(t)∥q−2

[
ρ(t)

λm(t)

] 1
q

+ · · ·+

[
ρ(t)

λm(t)

] q−1
q

≥ υ′ = q (υ0)
(q−1)/q , ∀t ≥ T̄ ≥ 0.

Therefore,

λm(t)∥x(t)∥q − ρ(t) ≥ λm(t)

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q

]
υ′, for all t ≥ T̄ ≥ 0.
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Hence, we see that

V(t, xt) ≥ λm(t)∥x(t)∥q ≥ λm(t)∥x(t)∥q − ρ(t)

≥ λm(t)

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q

]
υ′.

That is,

υ′λm(t)

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q

]
≤ V(t, xt),

and,

ln υ′ + ln

[
λm(t)

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q

]]
≤ ln [V(t, xt)] .

Consequently, it follows that

ln υ′ + m ln λ(t) + ln

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q

]
≤ ln [V(t, xt)] , ∀t ≥ T̄ ≥ 0.

Applying the Itô formula, we obtain

V(t, xt) = V(0, x0) +
∫ t

0
LV(s, xs)ds +

∫ t

0
Vx(s, xs)G(s, xs)dB(s). (2.1)

Based upon the uniform continuity of ln λ(t), we can ensure that for each ε > 0 there exists

two positive integers N = N(ε) and k1(ε), such that if k−1
2N ≤ t ≤ k

2N , k ≥ k1(ε), it follows that

∣∣∣∣ln λ

(
k

2N

)
− ln λ(t)

∣∣∣∣ ≤ ε.

On the other side, owing to the exponential martingale inequality from Lemma 1.1, we have

P

{
ω : sup

0≤t≤τ

[
M(t)−

µ

2

∫ t

0
∥Vx(s, xs)G(s, xs)∥

2ds

]
> η

}
≤ e−µη ,

for any positive constants µ, η and τ, where

M(t) =
∫ t

0
Vx(s, xs)G(s, xs)dB(s).

In particular, for the preceding ε > 0, we set

µ = 2φ

(
k − 1

2N

)
, η = φ

(
k − 1

2N

)−1

ln
k − 1

2N
, τ =

k

2N
, k = 2, 3, . . .

Then, we apply the well-known Borel–Cantelli lemma to obtain that, for almost all ω ∈ Ω,

there exists an integer k0 = k(ε, ω) > 0, such that

M(t) ≤ φ

(
k − 1

2N

)−1

ln
k − 1

2N
+ φ

(
k − 1

2N

) ∫ t

0
∥Vx(s, xs))G(s, xs)∥

2ds

≤ φ

(
k − 1

2N

)−1

ln
k − 1

2N
+
∫ t

0
φ(s)∥Vx(s, xs)G(s, xs)∥

2ds,



8 T. Caraballo, F. Ezzine and M. A. Hammami

for 0 ≤ t ≤ k
2N , k ≥ k0(ε, ω).

Substituting the last inequality into Eq. (2.1), we obtain

V(t, xt) ≤ V(0, x0) + φ

(
k − 1

2N

)−1

ln
k − 1

2N
+
∫ t

0
LV(s, xs)ds +

∫ t

0
φ(s)∥Vs(s, xs)G(s, xs)∥

2ds,

for 0 ≤ t ≤ k
2N , k ≤ k0(ε, ω).

Using conditions (H1) and (H2), it follows that

V(t, xt) ≤ V(0, x0) + φ

(
k − 1

2N

)−1

ln
k − 1

2N
+ ρ(t) +

∫ t

0
ψ(s)λm(s)∥x(s)∥qds

≤ V(0, x0) + φ

(
k − 1

2N

)−1

ln
k − 1

2N
+ ρ(t) +

∫ t

0
ψ(s)V(s, xs)ds,

for 0 ≤ t ≤ k
2N , k ≥ k0(ε, ω).

Applying now the Gronwall lemma [13],

V(t, xt) ≤

(
V(0, x0) + φ

(
k − 1

2N

)−1

ln
k − 1

2N
+ ρ(t)

)
exp

(∫ t

0
ψ(s)ds

)
. (2.2)

Based upon condition (H3) we have that, for any ε > 0, limt→+∞ sup
∫ t

0 ψ(s)ds

ln λ(t)
< β1 + ε, and

limt→+∞ inf
ln φ(t)
ln λ(t)

> −β2 − ε. Thanks also to the uniform continuity of ln λ(t), there exists a

positive integer k1(ε), such that whenever t ≥ k1(ε),

∫ t

0
ψ(s)ds ≤ (β1 + ε) ln λ(t),

φ

(
k − 1

2N

)−1

≤ φ(t) ≤ λ(t)β2+ε,

for k−1
2N ≤ t ≤ k

2N , k ≥ k1(ε).

Furthermore, we have

ln
k − 1

2N
≤ ln t ≤ ln

k

2N
, for

k − 1

2N
≤ t ≤

k

2N
.

Based on inequality (2.2), and the standing assumptions, we obtain for almost all ω ∈ Ω,

ln V(t, xt) ≤ ln
(

V(0, x0) + λ(t)β2+σ+2ε + ρ(t)
)
+ (β1 + ε) ln λ(t),

for k−1
2N ≤ t ≤ k

2N , k ≥ k1(ε).

Hence, we deduce that

lim
t→+∞

sup
ln V(t, xt)

ln λ(t)
≤ (β2 + σ + 2ε) ∨ m + β1 + ε, a.s.

Recall that, for t ≥ T̄ ≥ 0 and q ∈ N
⋆, we have

ln

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q

)
≤ ln V(t, xt)− m ln λ(t)− ln υ′.
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Taking into account that ε > 0 is arbitrary, we derive that,

lim
t→+∞

sup

ln

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q

)

ln λ(t)
≤ − [m − (β1 + (β2 + σ) ∨ m)] , a.s.,

as required.

In the next corollary, we will deduce the practical convergence to the ball Br with a general

decay rate of stochastic differential delay equations.

Corollary 2.6. Let V : R+ × C([−τ, 0], R
n) → R+ be a functional from D. Assume that ln λ(t) is

uniformly continuous on t ≥ 0, and there exists a constant σ ≥ 0, such that

lim
t→+∞

ln ln t

ln λ(t)
≤ σ.

Let x(·) = x(·, 0, ξ) be a solution to system (1.1), and assume that there exist constants q ∈ N
⋆, m ≥

0, β1 ∈ R, β2 ≥ 0, a non–increasing function φ(t) > 0 and a continuous non–negative function

ψ(t), such that for all t ≥ 0, assumptions (H1)–(H4) are satisfied. Then, if in addition there exists

υ̃ > υ > 0, such that ∥x(t, 0, ξ)∥ > υ̃ for all t ≥ 0, it follows

lim
t→+∞

sup
ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
q

)

ln λ(t)
≤ −γ, ; a.s.,

where γ = m − (β1 + (β2 + σ) ∨ m).

In particular, if m > β1 + (β2 + σ) ∨ m, then the solution to system (1.1) decays to the ball Br,

with r = (υ̃)
1
q almost surely practically with decay function λ(t) and order at least γ.

Remark 2.7. Observe that the condition m > β1 + (β2 + σ) ∨ m (or equivalently γ > 0) in the

corollary holds in the following cases:

• If β2 + σ ≤ m, then the condition becomes m > β1 + m. Therefore, this requires β1 < 0.

• If β2 + σ > m, then the condition turns to m > β1 + β2 + σ which again requires β1 < 0.

As a conclusion, the condition ensuring that γ is positive requires that β1 < 0, and this

implies that when β2 + σ ≤ m, then γ > 0, and when β2 + σ > m, then β1 must be

smaller than m − β2 − σ.

Proof. From Theorem 2.5, it follows that

lim
t→+∞

sup

ln

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q

)

ln λ(t)
≤ −γ, a.s.

Since, we have limt→+∞
ρ(t)

λm(t)
= υ < υ̃, then there exists T̄ ≥ 0, such that

ρ(t)
λm(t)

≤ υ̃, for all

t ≥ T̄ ≥ 0. Hence, we obtain

lim
t→+∞

sup
ln
(
∥x(t)∥ − (υ̃)

1
q

)

ln λ(t)
≤ lim

t→+∞
sup

ln

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q

)

ln λ(t)
≤ −γ, textrma.s.

Hence, if m > β1 + (β2 + σ) ∨ m, then the solution to system (1.1) decays to the ball Br,

with r = (υ̃)
1
q almost surely practically with decay function λ(t) and order at least γ.



10 T. Caraballo, F. Ezzine and M. A. Hammami

Example 2.8. Consider the following one dimensional stochastic differential delay equation

with constant time delay.




dx(t) =

[
−

b + 1

2(1 + t)
x(t) +

1

1 + t
x(t − τ)

]
dt + (1 + t)−

1
2 dB(t), t ≥ 0,

x(t) = ξ(t), t ∈ [−τ, 0],

(2.3)

where b ∈ R+, B(t) is a one-dimensional Brownian motion and τ is a positive constant.

Define for Φ ∈ C([−τ, 0], R):

F(t, Φ) = −
b + 1

2(1 + t)
Φ(0) +

1

1 + t
Φ(−τ), G(t, Φ) = (1 + t)−

1
2 , t ≥ 0.

Now, we proceed to investigate the practical stability with a general decay rate of system

(2.3) by using a Lyapunov functional.

Consider the following functional,

V(t, xt) := (1 + t)|x(t)|2 +
∫ t

t−τ
|x(u)|2du.

Then, it is easy to check that for arbitrary α > 1, φ(t) = b
4(1+t)α , we have

∫ t

0
LV(s, xs)ds +

∫ t

0

b

4(1 + s)α
|Vx(s, xs)G(s, xs)|

2ds

≤
∫ t

0
ds −

∫ t

0
b|x(s)|2ds +

∫ t

0
2|x(s)||x(s − τ)|ds

+
∫ t

0
|x(s)|2ds −

∫ t

0
|x(s − τ)|2ds +

∫ t

0

b

(1 + s)α−2
|x(s)|2ds

≤
∫ t

0
ds +

∫ t

0
(1 − b)|x(s)|2ds +

∫ t

0
|x(s − τ)|2ds

+
∫ t

0
|x(s)|2ds −

∫ t

0
|x(s − τ)|2ds +

∫ t

0

b

(1 + s)α−2
|x(s)|2ds.

Consequently, we obtain
∫ t

0
LV(s, xs)ds +

∫ t

0

1

b(1 + s)α
|Vx(s, xs)G(s, xs)|

2ds

≤ t +
∫ t

0

[
2 − b

1 + s
+

b

(1 + s)α−1

]
(1 + s)|x(s)|2ds.

Hence, we see that

ψ(t) =
b

(1 + t)α−1
+

2 − b

1 + t
, ρ(t) = t.

Taking λ(t) = (1 + t), then by some easy computations, we can check that,

σ = 0, β1 = 2 − b, β2 = α, υ = 1, m = 1.

Finally, Corollary 2.6 allows us to conclude that

lim
t→+∞

sup
ln(|x(t)| − 1)

ln(1 + t)
≤ −γ, a.s.

Hence, we deduce that the solution to system (2.3) decays to the ball Br almost surely prac-

tically with decay function λ(t) = 1 + t, r = 1, and order at least γ = b − 1 − α, whenever

b > 1 + α.
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3 Method of Lyapunov functionals construction in practical stability

of stochastic delay differential equations

Notice that Corollary 2.6 implies that the almost sure practical stability with a general decay

rate of SDDE (1.1) can be reduced to the construction of appropriate Lyapunov functionals.

A formal procedure to construct Lyapunov functionals is described below, (see Krasovskii

[19], and V. Kolmanovskii and L. Shaikhet [17, 18, 23], for more details).

3.1 The formal procedure of constructing Lyapunov functionals

The formal procedure for constructing Lyapunov functionals consists of four steps.

Step 1 : Let us represent (1.1) in the following form:

dz(t, xt) = (F1(t, x(t)) + F2(t, xt)) dt + (G1(t, x(t)) + G2(t, xt)) dB(t), (3.1)

where z(t, xt) is some functional of xt, the functions F1(t, x(t)) and G1(t, x(t)), depend on t

and x(t) only and do not depend on the previous values x(t + θ), θ < 0, of the solution, and

there exists t ∈ R+, such that F1(t, ·) ̸= 0 or G1(t, ·) ̸= 0.

Step 2 : Consider the auxiliary differential equation without memory

dy(t) = F1(t, y(t))dt + G1(t, y(t))dB(t). (3.2)

Assume that the system (3.2) is almost sure practical stable with a general decay rate and there

exists a Lyapunov function v(t, y(t)), which satisfies the conditions of Corollary 2.6.

Step 3 : A Lyapunov functional V(t, xt) for Eq.(1.1) is constructed in the form V = V1 + V2,

where V1(t, xt) = v(t, z(t, xt)). Here the argument y of the function v(t, y) is replaced on the

functional z(t, xt) from the left–hand part of Eq.(3.1).

Step 4 : Usually, the functional V1(t, xt) almost satisfies the conditions of Corollary 2.6. To

fully satisfy these conditions, it is necessary to calculate LV1(t, xt) and estimate it. Then, we

choose the additional functional V2(t, xt) in a standard way.

Remark 3.1. The representation (3.1) is not unique. This fact allows, using different repre-

sentations of the type of (3.1) or different ways to estimate LV1(t, xt), to construct different

Lyapunov functionals and, as a result to obtain different sufficient conditions for the practical

stability with a general decay rate.

3.2 Construction of Lyapunov functionals for stochastic differential equations
with constant delay

Consider the following stochastic differential equation with constant delay:

dx(t) = ( f (t, x(t)) + F(t, x(t), x(t − h))) dt + G(t, x(t), x(t − τ))dB(t),

x(s) = ξ(s), s ∈ [−h̃, 0], (3.3)

where,

h̃ = max[h, τ], and f : R+ × R
n → ×R

n,

F : [0,+∞)× R
n × R

n → R
n, G : [0,+∞)× R

n × R
n → R

n×m.
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B(t) is an m-dimensional Brownian motion defined on the probability space {Ω,F , P}.

Observe that Eq. (3.3) is a particular case of Eq. (1.1).

We will apply the method described above to construct Lyapunov functionals for Eq. (3.3),

and, as a consequence, to obtain sufficient conditions ensuring the almost sure practical sta-

bility with decay function λ(t), where λ(·) ∈ C1(R+).

Theorem 3.2. Assume that ln λ(t) is uniformly continuous on t ≥ 0, and there exists a constant

σ ≥ 0, such that

lim
t→+∞

ln ln t

ln λ(t)
≤ σ.

Let ψ1(t) be a continuous non–negative function, and ρ(t) a non-negative continuous differentiable

function, such that for all t ≥ 0 ≥ 0 the following assumptions hold:

(A1) 2⟨x, f (t, x)⟩ ≤ (ψ1(t)− K)∥x∥2 +
ρ′(t)

λm(t)
, K > 0,

∥F̃(t, Φ)∥ ≤ α1∥Φ(−h)∥,

∥G̃(t, Φ)∥ ≤ α2∥Φ(−τ)∥,

∥Φ(0)G̃(t, Φ)∥ ≤ α3∥Φ(−τ)∥, (3.4)

where F̃(t, Φ) = F(t, Φ(0), Φ(−h)), G̃(t, Φ) = G(t, Φ(0), Φ(−τ)).

(A2)
lim

t→+∞
sup

∫ t
0 ψ1(s)ds

ln λ(t)
≤ α, α ∈ R.

lim
t→+∞

sup
t

ln λ(t)
= C ≥ 0, lim

t→+∞

ρ(t)

λm(t)
= υ > 0.

(A3)
∥x(t, 0, ξ)∥ >

(
ρ(t)

λm(t)

) 1
2

, for all t ≥ 0.

Then, if in addition there exists υ̃ ≥ υ > 0, such that ∥x(t, 0, ξ)∥ > υ̃ for all t ≥ 0, it follows

lim
t→+∞

sup
ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
2

)

ln λ(t)
≤ −γ, a.s.,

where γ = KC − (m + α + σ)− (2α1 + α̃)C, α̃ = α2
1 + α2

2.

In particular, if KC > m + α + σ + (2α1 + α̃)C, then the solution to system (3.3) decays to the

ball Br, with r = (υ̃)
1
2 almost surely practically, with decay function λ(t) and order at least γ.

Proof. Based upon the procedure of Lyapunov functionals construction, we consider the aux-

iliary equation without memory of the type (3.2) as

ẏ(t) = f (t, y(t)). (3.5)

Our target now is to prove that the solution to system (3.5) decays to the ball Br, with r =

(υ̃)
1
2 almost surely with decay function λ(t). To this end, we consider the function v(t, y) =

λm(t)∥y∥2, m ≥ 0 as a Lyapunov function for Eq. (3.5). Then, we have to prove that v(t, y)

satisfies all conditions of Corollary 2.6.
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Using (3.4), it follows that

∫ t

0
vs(s, y(s))ds +

∫ t

0
vx(s, y(s)) f (s, y(s))ds

≤
∫ t

0
mλ′(s)λm−1(s)∥y(s)∥2ds +

∫ t

0
2λm(s)⟨y(s), f (s, y(s)⟩ds

≤
∫ t

0
mλ′(s)λm−1(s)∥y(s)∥2ds +

∫ t

0

(
λm(s) [ψ1(s)− K] ∥y(s)∥2 + ρ′(s)

)
ds

≤
∫ t

0

[
m

λ′(s)

λ(s)
+ ψ1(s)− K

]
λm(s)∥y(s)∥2ds + ρ(t)− ρ(0).

That is,

∫ t

0
vs(s, y(s))ds +

∫ t

0
vx(s, y(s)) f (s, y(s))ds

≤
∫ t

0

[
m

λ′(s)

λ(s)
+ ψ1(s)− K

]
λm(s)∥y(s)∥2ds + ρ(t).

Thus, setting

ψ(t) = m
λ′(t)

λ(t)
+ ψ1(t)− K.

Then, using assumption (A2), one obtains

lim
t→+∞

sup

∫ t
0 ψ(s)ds

ln λ(t)
≤ m + α − KC.

Consequently, Corollary 2.6 allows us to conclude that,

lim
t→+∞

sup
ln
(
∥y(t)∥ − (υ̃)

1
2

)

ln λ(t)
≤ −γ, a.s.,

where γ = KC − (α + σ ∨ m). Hence, if KC > α + σ ∨ m, then the solution to system (3.4)

decays to the ball Br, with r = (υ̃)
1
2 almost surely practically with decay function λ(t) and

order at least γ.

Based on the procedure, now we construct a Lyapunov functional V for Eq. (3.3) in the

form V = V1 + V2, where V1(t, xt) = λm(t)∥x(t)∥2.

Following Corollary 2.6, we consider the function φ(t) = 1
4λm(t)

, t ≥ 0, then, it follows that

∫ t

0
LV1(s, xs)ds +

∫ t

0
φ(s)∥V1x(s, xs)G̃(s, x(s), x(s − τ))∥2ds

=
∫ t

0
mλ′(s)λm−1(s)∥x(s)∥2ds +

∫ t

0
2λm(s)⟨ f (s, x(s)), x(s)⟩ds

+
∫ t

0
2λm(s)⟨F̃(s, x(s), x(s − h)), x(s)⟩ds +

∫ t

0
λm(s)∥G̃(s, x(s), x(s − τ))∥2ds

+
∫ t

0
λm(s)∥x(s)G̃(s, x(s), x(s − τ))∥2ds.
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Taking into account assumptions (3.4), we obtain

∫ t

0
LV1(s, xs)ds +

∫ t

0

1

4λm(s)
∥V1x(s, xs)G̃(s, x(s), x(s − τ))∥2ds

≤
∫ t

0
λm(s)

[
m

λ′(s)

λ(s)
+ ψ1(s)− K

]
∥x(s)∥2ds + ρ(t)

+
∫ t

0
2α1λm(s)∥x(s)∥∥x(s − h)∥ds +

∫ t

0
α2

2λm(s)∥x(s − τ)∥2ds

+
∫ t

0
α2

3λm(s)∥x(s − τ)∥2ds

≤
∫ t

0
λm(s)

([
m

λ′(s)

λ(s)
+ ψ1(s)− K

]
+ α1

)
∥x(s)∥2ds

+
∫ t

0
α1λm(s)∥x(s − h)∥2ds +

∫ t

0
α̃λm(s)∥x(s − τ)∥2ds + ρ(t),

where, α̃ = α2
2 + α2

3.

Set now

V2(t, xt) = α1

∫ t

t−h
λm(u + h)∥x(u)∥2du + α̃

∫ t

t−τ
λm(u + τ)∥x(u)∥2du.

Then,

∫ t

0
LV2(s, xs)ds = α1

∫ t

0
λm(s + h)∥x(s)∥2ds − α1

∫ t

0
λm(s)∥x(s − h)∥2ds

+ α̃
∫ t

0
λm(s + τ)∥x(s)∥2ds − α̃

∫ t

0
λm(s)∥x(s − τ)∥2ds

≃ α1

∫ t

0
λm(s)∥x(s)∥2ds − α1

∫ t

0
λm(s)∥x(s − h)∥2ds

+ α̃
∫ t

0
λm(s)∥x(s)∥2ds − α̃

∫ t

0
λm(s)∥x(s − τ)∥2ds.

That is, for V = V1 + V2, we obtain

∫ t

0
LV(s, xs)ds +

∫ t

0

1

4λm(s)
∥Vx(s, xs)G̃(s, x(s), x(s − τ))∥2ds

≤
∫ t

0
λm(s)

[
m

λ′(s)

λ(s)
+ ψ1(s) + 2α1 + α̃ − K

]
∥x(s)∥2ds + ρ(t).

That is, we have

ψ(t) = m
λ′(t)

λ(t)
+ ψ1(t) + 2α1 + α̃ − K, φ(t) =

1

4λm(t)
.

Therefore, we obtain

lim
t→+∞

sup

∫ t
0 ψ(s)ds

ln λ(t)
≤ m + α + (2α1 + α̃ − K)C,

lim
t→+∞

inf
ln φ(t)

ln λ(t)
≥ −m.
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Finally, Corollary 2.6 allows us to conclude that,

lim
t→+∞

ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
2

)

ln λ(t)
≤ −γ,

where γ = KC − (m + α + σ) − (2α1 + α̃)C. Thus, if KC > (m + α + σ) + (2α1 + α̃)C, the

solution to system (3.3) decays to the ball Br, with r = (υ̃)
1
2 almost surely practically with

decay function λ(t).

Now, we provide an illustrative example that implements the previous result.

Example 3.3. Consider the following one dimensional stochastic differential delay equation

with constant time delay.





dx(t) =

[(
a + e−

3
2 t − 4K

)
x(t) +

1

2(1 + |x(t)|)
+ cos(t)x(t − h)

]
dt

+g(x(t))
x(t − h)

1 + |x(t)|
dB(t), t ≥ 0,

x(t) = ξ(t), t ∈ [−h, 0],

(3.6)

where a, K ∈ R+, g(·) : R → R is a bounded Lipschitz continuous function, such that g(0) ̸=

0, and |g(x)| ≤ L, x ∈ R, L > 0, B(t) is a one-dimensional Brownian motion and h is a

positive constant.

We can set this problem in our formulation by taking,

f (t, x) =
1

2

(
a + e−

3
2 t − 4K

)
x +

1

2(1 + |x(t)|)
,

F̃(t, Φ) = cos(t)Φ(−h),

G̃(t, Φ) = g(Φ(0))
Φ(−h)

1 + |Φ(0)|
,

x ∈ R, Φ ∈ C([−h, 0], R).

We will consider the decay function λ(t) = et and m = 1. Indeed, we can apply Theorem

3.2 in a straightforward way since,

2⟨x, f (t, x)⟩ ≤
(

a + e−
3
2 t − 4K

)
|x|2 +

et

et
,

|F̃(t, Φ)| ≤ |Φ(−h)|,

|G̃(t, Φ)| ≤ L|Φ(−h)|,

|Φ(0)G̃(t, Φ)| ≤ L|Φ(−h)|.

Therefore, we can set

ρ(t) = et, ψ1(t) = (a + e−
3
2 t).

Then, we can choose constants in Theorem 3.2 as follows:

σ = 0, C = 1, α = a, α1 = 1, α2 = α3 = L, υ = 1.

Eventually, we deduce that

lim
t→+∞

sup
ln(|x(t)| − 1)

t
≤ −γ, a.s.,
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where γ = 4K − (3 + a + 2L2). Hence, if 4K > 3 + a + 2L2, we deduce that the solution to

system (3.6) is almost surely practically exponentially stable with decay function λ(t) = et

and order at least γ.

3.3 Construction of Lyapunov functionals for stochastic differential equations
with time-varying delay

Consider the following stochastic differential equation with time-varying delay:

dx(t) = [ f (t, x(t)) + F(t, x(t), x(t − h(t)))] dt + G(t, x(t), x(t − τ(t)))dB(t),

h(t) ∈ [0, h0], τ(t) ∈ [0, τ0], h = max[h0, τ0],

x(s) = ξ(s), s ∈ [−h, 0], (3.7)

where,

f : R+ × R
n → ×R

n, F : [0,+∞)× R
n × R

n → R
n, G : [0,+∞)× R

n × R
n → R

n×m.

B(t) is an m–dimensional Brownian motion defined on the probability {Ω,F , P}.

Observe that Eq.(3.7) is a particular case of Eq. (1.1).

Now, we aim to apply the procedure of constructing Lyapunov functionals for Eq. (3.7), in

order to obtain sufficient conditions ensuring the almost sure practical uniform exponential

stability, with decay function λ(t) = et. The construction of Lyapunov functionals for general

decay functions will be analyzed elsewhere.

Theorem 3.4. Let ψ1(t) be a continuous non–negative function, ψ2(t) > 0 a non-increasing function

and ρ(t) a continuous non-negative differentiable function, such that for all t ≥ 0 ≥ 0 the following

assumptions hold:

(A′
1) 2⟨x, f (t, x)⟩ ≤ (ψ1(t)− K)∥x∥2 +

ρ′(t)

emt
, K > 0,

∥F̃(t, Φ)∥ ≤ ψ2(t)∥Φ(−h(t))∥,

∥G̃(t, Φ)∥ ≤ α2∥Φ(−τ(t))∥,

∥Φ(0)G̃(t, Φ)∥ ≤ α3∥Φ(−τ(t))∥, (3.8)

where F̃(t, Φ) = F(t, Φ(0), Φ(−h(t))), G̃(t, Φ) = G(t, Φ(0), Φ(−τ(t))), and

h(t) ∈ [0, h0], ḣ(t) ≤ h1 ≤ 1,

τ(t) ∈ [0, τ0], τ̇(t) ≤ τ1 ≤ 1. (3.9)

(A′
2)

lim
t→+∞

sup

∫ t
0 ψ1(s)ds

t
≤ α, α > 0,

lim
t→+∞

sup

∫ t
0 ψ2(s)ds

t
≤ a, a > 0,

lim
t→+∞

ρ(t)

emt
= υ > 0.

(A′
3)

∥x(t, 0, ξ)∥ >

(
ρ(t)

emt

) 1
2

, for all t ≥ 0.
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Then, if in addition there exists υ̃ ≥ υ > 0, such that ∥x(t, 0, ξ)∥ > υ̃ for all t ≥ 0, it follows

lim
t→+∞

ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
2

)

ln λ(t)
≤ −γ, a.s.,

where γ = K − (m + α)−
(
1 + emh0

1−h1

)
a − α̃ emτ0

1−τ1
, α̃ = α2

1 + α2
2.

In particular, if K > m + α +
(
1 + emh0

1−h1

)
a + α̃ emτ0

1−τ1
, the solution to system (3.7) decays to the ball

Br, with r = (υ̃)
1
2 almost surely uniformly practically exponentially stable, i.e., with decay function

λ(t) = et, and order at least γ.

Proof. Proceeding as in the proof of Theorem 3.2, we consider the auxiliary equation without

memory of the type (3.2) as

ẏ(t) = f (t, y(t)). (3.10)

We have to prove that the solution to system (3.10) decays to the ball Br, with r = (υ̃)
1
2 almost

surely with decay function λ(t). To this end, we consider the function v(t, y) = emt∥y∥2, m ≥ 0

as a Lyapunov function for Eq. (3.10).

Then, we have to prove that v(t, y) satisfies all conditions of Corollary 2.6.

On account of (3.8), it follows that

∫ t

0
vs(s, y(s))ds +

∫ t

0
vx(s, y(s)) f (s, y(s))ds ≤

∫ t

0
[m + ψ1(s)− K] ems∥y(s)∥2ds + ρ(t).

Thus, setting

ψ(t) = m + ψ1(t)− K.

and using Corollary 2.6, it follows that

lim
t→+∞

sup
ln
(
∥y(t)∥ − (υ̃)

1
2

)

t
≤ −γ, a.s.,

where γ = K − (α + σ ∨ m). Hence, if K > α + σ ∨ m, then the solution to system (3.10)

decays to the ball Br, with r = (υ̃)
1
2 almost surely practically uniformly exponentially stable

with order at least γ. Based on the procedure, now we construct a Lyapunov functional V for

Eq. (3.7) in the form V = V1 + V2, where V1(t, xt) = emt∥x(t)∥2.

Following Corollary 2.6, we consider the function φ(t) = 1
4emt , t ≥ 0, then it follows that

∫ t

0
LV1(s, xs)ds +

∫ t

0
φ(s)∥V1x(s, xs)G̃(s, xs)∥

2ds

=
∫ t

0
ems∥x(s)∥2ds +

∫ t

0
2ems⟨ f (s, x(s)), x(s)⟩ds

+
∫ t

0
2ems⟨F̃(s, xs), x(s)⟩ds +

∫ t

0
ems∥G̃(s, xs)∥

2ds +
∫ t

0
ems∥x(s)G̃(s, xs)∥

2ds.
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Taking into account assumption (A′
1), it follows that

∫ t

0
LV1(s, xs)ds +

∫ t

0

1

4ems
∥V1x(s, xs)G̃(s, xs)∥

2ds

≤
∫ t

0
ems [m + ψ1(s)− K] ∥x(s)∥2ds + ρ(t)

+
∫ t

0
2ψ2(s)e

ms∥x(s)∥∥x(s − h(s))∥ds +
∫ t

0
α2

2ems∥x(s − τ(s))∥2ds

+
∫ t

0
α2

3ems∥x(s − τ(s))∥2ds

≤
∫ t

0
ems (m + ψ1(s)− K + ψ2(s)) ∥x(s)∥2ds

+
∫ t

0
ψ2(s)e

ms∥x(s − h(s))∥2ds +
∫ t

0
α̃ems∥x(s − τ(s))∥2ds + ρ(t),

where α̃ = α2
2 + α2

3.

Set now

V2(t, xt) =
1

1 − h1

∫ t

t−h(t)
em(u+h0)ψ2(u)∥x(u)∥2du +

α̃

1 − τ1

∫ t

t−τ(t)
em(u+τ0)∥x(u)∥2du.

Then,

∫ t

0
LV2(s, xs)ds

=
1

1 − h1

∫ t

0
em(s+h0)ψ2(s)∥x(s)∥2ds

−
1

1 − h1

∫ t

0
(1 − ḣ(s))em(s−h(s)+h0))ψ2(s − h(s))∥x(s − h(s))∥2ds

+
α̃

1 − τ1

∫ t

0
em(s+τ0)∥x(s)∥2ds −

α̃

1 − τ1

∫ t

0
(1 − τ̇(s))em(s−τ(s)+τ0)∥x(s − τ(s))∥2ds

≤
1

1 − h1

∫ t

0
em(s+h0)ψ2(s)∥x(s)∥2ds

−
1

1 − h1

∫ t

0
(1 − h1)e

msem(h0−h(s))ψ2(s − h(s))∥x(s − h(s))∥2ds

+
α̃

1 − τ1

∫ t

0
em(s+τ0)∥x(s)∥2ds −

α̃

1 − τ1

∫ t

0
(1 − τ1)e

msem(τ0−τ(s))∥x(s − τ(s))∥2ds

≤
1

1 − h1

∫ t

0
em(s+h0)ψ2(s)∥x(s)∥2ds −

∫ t

0
emsψ2(s)∥x(s − h(s))∥2ds

+
α̃

1 − τ1

∫ t

0
em(s+τ0)∥x(s)∥2ds − α̃

∫ t

0
ems∥x(s − τ(s))∥2ds.

That is, for V = V1 + V2, we obtain

∫ t

0
LV(s, xs)ds +

∫ t

0

1

4ems
∥Vx(s, xs)G̃(s, x(s), x(s − τ))∥2ds

≤
∫ t

0
ems

(
m + ψ1(s)− K +

(
1 +

emh0

1 − h1

)
ψ2(s) + α̃

emτ0

1 − τ1

)
∥x(s)∥2ds + ρ(t).
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That is, we have

ψ(t) = m + ψ1(t)− K +

(
1 +

emh0

1 − h1

)
ψ2(t) + α̃

emτ0

1 − τ1
,

φ(t) =
1

4emt
.

Therefore, we obtain

lim
t→+∞

sup

∫ t
0 ψ(s)ds

t
≤ m + α − K +

(
1 +

emh0

1 − h1

)
a + α̃

emτ0

1 − τ1
,

lim
t→+∞

inf
ln φ(t)

t
= −m.

Using Corollary 2.6, we infer that

lim
t→+∞

ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
2

)

ln λ(t)
≤ −γ, a.s.,

where γ = K − (m + α)−
(
1 + emh0

1−h1

)
a − α̃

emτ0

1 − τ1
.

Then, if K > m + α +
(
1+ emh0

1−h1

)
a + α̃ emτ0

1−τ1
, the solution to system (3.7) decays to the ball Br,

with r = (υ̃)
1
2 almost surely uniformly practically exponentially stable with decay function

λ(t) = et, and order at least γ.

We analyze now an example to show how the previous theorem can be implemented.

Example 3.5. Consider the following one dimensional stochastic differential delay equation

with constant time delay.





dx(t) =

[
1

2
(b + | cos(t)| − K) x(t) +

1

2

e−t

1 + |x(t)|
+

1

t + 1
x(t − h(t))

]
dt

+
x(t − τ(t))

1 + |x(t)|
dB(t), t ≥ 0,

x(t) = ξ(t), t ∈ [−h, 0],

(3.11)

with the conditions,

h(t) ∈ [0, h0], ḣ(t) ≤ h1 ≤ 1,

τ(t) ∈ [0, τ0], τ̇(t) ≤ τ1 ≤ 1,

where b, K ∈ R+, x ∈ R, B(t) is a one-dimensional Brownian motion, and h = max[h0, τ0].

We can set this problem in our formulation by taking,

f (t, x) =
1

2
(a + | cos(t)| − K) x +

1

2

e−t

1 + |x|
,

F̃(t, Φ) =
1

t + 1
Φ(−h(t)),

G̃(t, Φ) =
Φ(−τ(t))

1 + |Φ(0)|
,
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x ∈ R, Φ ∈ C([−h, 0], R).

For m = 2, we can check that

2⟨x, f (t, x)⟩ ≤ (b − K)|x|2 +
et

e2t
,

|F̃(t, Φ)| ≤
1

t + 1
|Φ(−h(t))|,

|G̃(t, Φ)| ≤ |Φ(−τ(t))|,

|Φ(0)G̃(t, Φ)| ≤ |Φ(−τ(t))|.

Hence, we see that

ψ1(t) = (b + | cos(t)|), ψ2(t) =
1

t + 1
, ρ(t) = et.

Then, we can choose constants in Theorem 3.4 as follows:

α = b, a = 0, α2 = α3 = 1, υ = 1.

Finally, Theorem 3.4 allows us to conclude that,

lim
t→+∞

sup
ln(|x(t)| − 1)

t
≤ −γ, a.s.,

where γ = K − (2 − b) − e2τ0

1−τ1
. Hence, if K > 2 + b + 2 e2τ0

1−τ1
, we deduce that the solution

to system (3.11) is almost surely practically exponentially stable, i.e., with decay function

λ(t) = et, and order at least γ.

4 Conclusion

We investigated herein the practical convergence to a small ball centered at the origin with

a general decay rate of stochastic differential delay equations. We then establish sufficient

conditions ensuring practical stability with a general decay rate of SDDEs by using Lyapunov

functionals. Furthermore, we construct suitable Lyapunov functionals for stochastic differen-

tial equations with constant and time–varying delay to obtain sufficient conditions ensuring

the practical stability with a general decay rate. Finally, based on the established stability

criteria, some examples are given to check the correctness of the derived results.

Data availability statement

Data sharing not applicable to this article as no data sets were generated or analyzed during

the current study.

Acknowledgements

The research of Tomás Caraballo has been partially supported by the Spanish Ministerio

de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and

Fondo Europeo de Desarrollo Regional (FEDER) under the project PGC2018-096540-B-I00, and

by FEDER and Junta de Andalucía (Consejería de Economía y Conocimiento) under projects

US-1254251, and P18-FR-4509.



Lyapunov functionals and practical stability for SDDEs with general decay rate 21

References

[1] T. Caraballo, F. Ezzine, M. Hammami, Partial stability analysis of stochastic differential

equations with a general decay rate, J. Eng. Math. 130(2021), No. 4, 1–17. https://doi.

org/10.1007/s10665-021-10164-w MR4308313; Zbl 1478.93706

[2] T. Caraballo, F. Ezzine, M. Hammami, New stability criteria for stochastic perturbed

singular systems in mean square, Nonlinear Dyn. 105(2021), No. 4, 1–17. https://doi.

org/10.1007/s11071-021-06620-y MR4308313; Zbl 1478.93706

[3] T. Caraballo, F. Ezzine, M. Hammami, On the exponential stability of stochastic per-

turbed singular systems in mean square, Appl. Math. Optim. 84(2021), 2923–2945. No. 3,

2923–2945. https://doi.org/10.1007/s00245-020-09734-8 MR4308217; Zbl 1472.93152

[4] T. Caraballo, F. Ezzine, M. Hammami, Practical stability with respect to a part of the

variables of stochastic differential equations driven by G-Brownian motion, J. Dyn. Control

Syst. 33(2022), 1–19. https://doi.org/10.1007/s10883-022-09593-2

[5] T. Caraballo, F. Ezzine, M. Hammami, A new result on stabilization analysis for

stochastic nonlinear affine systems via Gamidov’s inequality, Rev. R. Acad. Cienc. Exac-

tas Fís. Nat., Ser. A Mat. RACSAM 116(2022), No. 4, 1578–7303. https://doi.org/10.

1007/s13398-022-01320-7; MR4480308; Zbl 7600375

[6] T. Caraballo, F. Ezzine, M. Hammami, L. Mchiri, Practical stability with respect to a

part of variables of stochastic differential equations, Stochastics 93(2020), 647–664. No. 5,

https://doi.org/10.1080/17442508.2020.1773826 MR4270858; Zbl 1492.93190

[7] T. Caraballo, M. J. Garrido-Atienza, J. Real, Asymptotic stability of nonlinear

stochastic evolution equations, Stoch. Anal. Appl. 21(2003), No. 2, 301–327. https://doi.

org/10.1081/SAP-120019288; MR1967716; Zbl 1055.60065

[8] T. Caraballo, M. J. Garrido-Atienza, J. Real, Stochastic stabilization of differential

systems with general decay rate, Systems Control Lett. 48(2003), No. 5, 397–406. https:

//doi.org/10.1016/S0167-6911; MR2010559; Zbl 1157.93537

[9] T. Caraballo, M. Hammami, L. Mchiri, Practical asymptotic stability of nonlinear evo-

lution equations, Stochastic Anal. Appl. 32(2014), 77–87. No. 1, https://doi.org/10.1080/

07362994.2013.843142 MR375816; Zbl 1287.93104

[10] T. Caraballo, L. Shaikhet, Stability of delay evolution equations with stochastic per-

turbations, Commun. Pure Appl. Anal. 13(2014), 2095–2113. No. 5, https://doi.org/10.

3934/cpaa.2014.13.2095; MR3230425; Zbl 1316.60104

[11] T. Caraballo, M. Hammami, L. Mchiri, On the practical global uniform asymptotic

stability of stochastic differential equations, Stochastics 88(2016), 45–56. No. 1, https:

//doi.org/10.1080/17442508.2015.1029719 MR3450823; Zbl 1337.60117

[12] T. Caraballo, M. Hammami, L. Mchiri, Practical stability of stochastic delay evolution

equations, Acta Appl. Math. 142(2016), 91–105. No. 1, https://doi.org/10.1007/s10440-

015-0016-3 MR3466916; Zbl 1335.60105



22 T. Caraballo, F. Ezzine and M. A. Hammami

[13] S. S. Dragomir, Some Gronwall type inequalities and applications, Nova Science Publishers,

Inc., Hauppauge, NY, 2003. MR2016992

[14] I. I. Gikhman, A. V. Skorokhod, Stochastic differential equations, Springer-Verlag, New

York–Heidelberg, 1972. MR0346904

[15] G. Guatteri, F. Masiero, C. Orrieri, Stochastic maximum principle for SPDEs with

delay, Stochastic Processes Appl. 127(2017), No. 7, 2396–2427. https://doi.org/10.1016/

j.spa.2016.11.007 MR3652419; Zbl 1365.93543

[16] Q. Guo, X. Mao, R. Yue, Almost sure exponential stability of stochastic differential delay

equations, SIAM J. Control Optim. 54(2016), No. 4, 1919–1933. https://doi.org/10.1137/

15M1019465 MR3529739; Zbl 1343.60072

[17] V. Kolmanovskii, L. Shaikhet, Method for constructing Lyapunov functionals for

stochastic differential equations of neutral type (in Russian), Differ. Uravn. 31(1995),

No. 11, 1851–1857. Translation in: Differ. Equ. 31(1995), No. 11, 1819–1825. MR1434886

[18] V. Kolmanovskii, L. Shaikhet, Construction of Lyapunov functionals for stochas-

tic hereditary systems: A survey of some recent results. Math. Comput. Mod-

elling 36(2002), No. 6, 691–716. https://doi.org/10.1016/S0895-7177(02)00168-1

MR1940617; Zbl 1029.93057

[19] N. N. Krasovskii, Stability of motions, Standford Univ. Press, Standford, 1963. MR0147744

[20] L. Liu, New criteria on exponential stability for stochastic delay differential systems

based on vector Lyapunov function, IEEE Transactions on Systems, Man, and Cybernetics:

Systems 47(2016), No. 11, 2985–2993. https://doi.org/10.1109/TSMC.2016.2558047

[21] X. Mao, Stochastic differential equations and applications, Ellis Horwood, Chichester, 1997.

MR1475218

[22] X. Mao, Stability and stabilisation of stochastic differential delay equations, IET Control.

Theory Appl. 6(2007), No. 1, 1551–1566. https://doi.org/10.1049/iet-cta:20070006

[23] L. Shaikhet, Lyapunov functionals and stability of stochastic functional differential equations,

Springer, Cham, 2013. https://doi.org/10.1007/978-3-319-00101-2; MR3076210

[24] X. Yin, W. Xu, G. Shen, Stability of stochastic differential equations driven by the

time-changed Lévy process with impulsive effects, Int. J. Syst. Sci., Princ. Appl. Syst.

Integr. 52(2021), No. 11, 2338–2357. https://doi.org/10.1080/00207721.2021.1885763

Zbl 1483.93698



Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 61, 1–9; https://doi.org/10.14232/ejqtde.2022.1.61 www.math.u-szeged.hu/ejqtde/

Homoclinic orbits for periodic second order

Hamiltonian systems with superlinear terms

Haiyan Lv1 and Guanwei ChenB 2

1School of Mathematics and Statistics, Heze University, Heze 274015, Shandong Province, P. R. China
2School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong Province, P. R. China

Received 10 June 2022, appeared 6 December 2022

Communicated by Gabriele Bonanno
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1 Introduction and main result

We consider the following nonautonomous second order Hamiltonian system

u′′(t)− A(t)u(t) +∇H(t, u(t)) = 0, t ∈ R, (1.1)

where A(t) ∈ C(R, R
N×N) is T-periodic N × N symmetric matrix, and is positive definite

uniformly for t ∈ [0, T]; H(t, u) ∈ C1(R × R
N , R) is T-periodic in t for each u ∈ R

N and

∇H(t, u) denotes its gradient with respect to the u variable. We say that a solution u(t) of

(1.1) is homoclinic (with 0) if u(t) ∈ C2(R, R
N) such that u(t) → 0 and u′(t) → 0 as |t| → ∞.

If u(t) ̸≡ 0, then u(t) is called a nontrivial homoclinic solution.

In the past decades, many authors have studied the existence and multiplicity of periodic

or homoclinic solutions of (1.1). In this paper, we are interested in the case where the non-

linearity ∇H is superlinear as |u| → ∞. Therefore, here we only state some related results.

There are some authors [1–4,7,9–11,13–16] who have obtained homoclinic orbits for (1.1) with

∇H being superlinear as |u| → ∞ by critical point theory under the following A–R condition

due to Ambrosetti and Rabinowitz (e.g., [2]): there exists a constant µ > 2 such that

0 < µH(t, u) ≤ (∇H(t, u), u) , u ∈ R
N\{0}, (1.2)

where (·, ·) denotes the inner product in R
N , and the corresponding norm is denoted by

| · |. Roughly speaking the role of (1.2) is to insure that all Palais–Smale sequences for the

BCorresponding author. Email: guanweic@163.com
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corresponding function of (1.1) at the Mountain-Pass level are bounded. For related papers,

we refer the readers to see [5, 6] and so on.

Let G(t, u) := 1
2 (∇H(t, u), u) − H(t, u). We weaken the condition (1.2) and obtain the

following result.

Theorem 1.1. Assume that the following conditions hold.

(H1) H(t, u) ≥ 0, ∀(t, u) ∈ R × R
N .

(H2) |∇H(t, u)| ≤ c(1 + |u|p−1) for some p > 2 and c > 0, ∀t ∈ R.

(H3) |∇H(t, u)| = o(|u|) as |u| → 0 uniformly in t ∈ R.

(H4)
H(t,u)
|u|2 → +∞ as |u| → +∞ uniformly in t ∈ R.

(H5) If |u| ≤ |v|, then G(t, u) ≤ DG(t, v) for some D ≥ 1, ∀t ∈ R.

Then there is at least one nontrivial homoclinic orbit of (1.1).

Remark 1.2. Note that (H5) implies G(t, u) ≥ 0 for all (t, u) ∈ R × R
N . In fact, the condition

(H5) was used firstly to study Schrödinger equations [12], but as far as we know, the condition

was not used by other authors to study the seconder order Hamiltonian system (1.1).

Example 1.3. Let

H(t, u) =
1

2
|u|2 ln(1 + |u|)−

(

1

2
|u|2 − |u|+ ln(1 + |u|)

)

.

A simple calculation shows that H satisfies (H1)–(H5) but does not satisfy the superquadratic

condition (1.2).

To prove our main result, we need the following theorem developed by Jeanjean [12].

Theorem A ([12]). Let E be a Banach space equipped with the norm ∥ · ∥. Let J ⊂ R
+ be an interval,

and Iλ ∈ C1(E, R) (λ ∈ J) is defined by

Iλ(u) := A(u)− λB(u).

If the following conditions hold:

(1) B(u) ≥ 0 for all u ∈ E;

(2) either A(u) → +∞ or B(u) → +∞ as ∥u∥ → +∞;

(3) there are two points v1 and v2 in E such that setting

Γ = {γ ∈ C([0, 1], E), γ(0) = v1, γ(1) = v2}
it holds for all λ ∈ J that

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)},

then, for almost every λ ∈ J, there is a sequence {uj} ⊂ E such that

{uj} is bounded in E, Iλ(uj) → cλ, I′λ(uj) → 0 in the dual E−1 of E.

Theorem A means that for a wide class of functionals, having a Mountain-Pass geometry,

almost every functionals in this class has a bounded Palais–Smale sequence at the Mountain-

Pass level.

The rest of our paper is organized as follows. In Section 2, we give the variational frame-

work of (1.1) and some preliminary lemmas, and then we give the detailed proof of our result.
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2 Variational frameworks and the proof of Theorem 1.1

Throughout this paper we denote by ∥ · ∥Lq the usual Lq(R, R
N) norm and C for generic

constants.

Let E := H1(R, R
N) under the usual norm

∥u∥2
E =

∫ +∞

−∞

(|u|2 + |u′|2)dt.

Thus E is a Hilbert space and it is not difficult to show that E ⊂ C0(R, R
N), the space of

continuous functions u on R such that u(t) → 0 as |t| → ∞ (see, e.g., [15]). We will seek

solutions of (1.1) as critical points of the functional I associated with (1.1) and given by

I(u) :=
1

2

∫ +∞

−∞

(

|u′|2 + (A(t)u, u)
)

dt −
∫ +∞

−∞

H(t, u)dt.

Let

∥u∥2 :=
∫ +∞

−∞

((A(t)u, u) + |u′|2)dt,

then ∥ · ∥ can and will be taken as an equivalent norm on E. Hence I can be written as

I(u) :=
1

2
∥u∥2 −

∫ +∞

−∞

H(t, u)dt.

The assumptions on H imply that I ∈ C1(E, R). Moreover, critical points of I are classical

solutions of (1.1) satisfying u′(t) → 0 as |t| → ∞. Thus u is a homoclinic solution of (1.1).

In what follows, we always assume that (H1)–(H5) hold. Let us show that I has a

Mountain-Pass geometry. That is a consequence of the two following results:

Lemma 2.1. I(u) = 1
2∥u∥2 + o(∥u∥2) as u → 0.

Proof. By (H2) and (H3), we know for any ε > 0 there exists a Cε > 0 such that

|∇H(t, u)| ≤ ε|u|+ Cε|u|p−1, ∀(t, u) ∈ R × R
N . (2.1)

Note that Remark 1.2 implies that 1
2 (∇H(t, u), u) ≥ H(t, u), which together with (2.1) implies

that

|H(t, u)| ≤ ε

2
|u|2 + Cε

2
|u|p, ∀(t, u) ∈ R × R

N . (2.2)

Thus (2.2) follows from the Sobolev embedding theorem that
∫ +∞

−∞
|H(t, u)|dt ≤ ε

2∥u∥2 +

C∥u∥p, that is,
∫ +∞

−∞
H(t, u)dt = o(∥u∥2). The proof is finished.

Lemma 2.2. There exists a function u0 ∈ E with u0 ̸= 0 satisfying I(u0) ≤ 0.

Proof. For every v ∈ E with v ̸= 0, |sv| → +∞ as s → ∞. It follows from (H4) that

lim
s→∞

H(t, sv)

s2
= lim

s→∞

H(t, sv)

s2|v|2 |v|2 = +∞ uniformly in t ∈ R.

Thus by (H1) and Fatou’s lemma, we have

lim
s→∞

∫ +∞

−∞

H(t, sv)

s2
dt = +∞.
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It follows from the definition of I that

lim
s→∞

I(sv)

s2
=

1

2
∥v∥2 − lim

s→∞

∫ +∞

−∞

H(t, sv)

s2
dt → −∞.

Thus we can choose u0 := sv with |s| big enough such that u0 ∈ E with u0 ̸= 0 satisfying

I(u0) ≤ 0.

We define on E the family of functionals

Iλ(u) = A(u)− λB(u) :=
1

2
∥u∥2 − λ

∫ +∞

−∞

H(t, u)dt, λ ∈ [1, 2].

Lemma 2.3. For almost every λ ∈ [1, 2], there exists a sequence {uj} ⊂ E satisfying

{uj} is bounded in E, 0 < lim
j→∞

Iλ(uj) = cλ, I′λ(uj) → 0.

Proof. We will use Theorem A to prove this lemma. Obviously, conditions (1) and (2) in

Theorem A hold. Next we prove the condition (3) holds. Let

Γ := {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = u0}, u0 is obtained in Lemma 2.2,

cλ := inf
γ∈Γ

max
s∈[0,1]

Iλ(γ(s)), ∀λ ∈ [1, 2].

Lemma 2.1 implies that Iλ(γ(s)) > 0 (∀λ ∈ [1, 2]) for any small enough |γ(s)| (i.e., γ(s) → 0),

and Iλ(0) = I(0) = 0 (∀λ ∈ [1, 2]) by Lemma 2.1, besides, (H1) and Lemma 2.2 imply that

Iλ(u
0) ≤ 0, ∀λ ∈ [1, 2]. Therefore,

cλ := inf
γ∈Γ

max
s∈[0,1]

Iλ(γ(s)) > 0 = max{Iλ(0), Iλ(u
0)}.

That is the condition (3) of Theorem A holds. An application of Theorem A implies that for

almost every λ ∈ [1, 2] there exists a sequence {uj} ⊂ E satisfying

{uj} is bounded in E, Iλ(uj) → cλ, I′λ(uj) → 0.

Obviously, the definition of cλ and Iλ(uj) → cλ imply that 0 < limj→∞ Iλ(uj) = cλ.

Lemma 2.4. Let λ ∈ [1, 2] is fixed. If {uj} ⊂ E satisfying

{uj} is bounded in E, 0 < lim
j→∞

Iλ(uj) = cλ, I′λ(uj) → 0,

then up to a subsequence, uj ⇀ uλ ̸= 0 with I′λ(uλ) = 0 and Iλ(uλ) ≤ cλ.

Proof. If {uj} ⊂ E satisfying

{uj} is bounded in E, 0 < lim
j→∞

Iλ(uj) = cλ, I′λ(uj) → 0,

then

lim
j→∞

∫ +∞

−∞

G(t, uj)dt = lim
j→∞

(

Iλ(uj)−
1

2
I′λ(uj)uj

)

= lim
j→∞

Iλ(uj) > 0, (2.3)

where G(t, u) := 1
2 (∇H(t, u), u)− H(t, u) is defined in Section 1. To continue the proof, we

need the following remark:
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Remark 2.5. If {wj} ⊂ E is bounded and vanishing, then limj→∞

∫ +∞

−∞
G(t, wj)dt = 0.

Now, we give the proof of Remark 2.5. If {wj} vanishes, then Lion’s concentration com-

pactness principle implies wj → 0 in Lq(R, R
N) for all q ∈ (2, ∞), which together with (2.1),

(2.2), ∥wj∥ < ∞ and the Sobolev embedding theorem implies that

∫ +∞

−∞

(∇H(t, wj), wj) ≤
∫ +∞

−∞

|∇H(t, wj)||wj| ≤ ε∥wj∥2
L2 +Cε∥wj∥p

Lp ≤ εC∥wj∥2 +Cε∥wj∥p
Lp → 0

and

∫ +∞

−∞

H(t, wj)dt ≤
∫ +∞

−∞

|H(t, wj)|dt ≤ ε

2
∥wj∥2

L2 +
Cε

2
∥wj∥p

Lp ≤ ε

2
C∥wj∥2 +

Cε

2
∥wj∥p

Lp → 0.

It follows from the definition of G(t, w) that limj→∞

∫ +∞

−∞
G(t, wj)dt = 0.

By Remark 2.5, (2.3) and the boundedness of {uj} in E, we know {uj} does not vanish, i.e.,

there exist r, δ > 0 and a sequence {sj} ⊂ R such that

lim
j→∞

∫

Br(sj)
u2

j dt ≥ δ,

where Br(sj) := [sj − r, sj + r]. Note that {uj} is bounded implies that uj ⇀ uλ in E and

uj → uλ in L2
loc(R, R

N) (see [8]) after passing to a subsequence, which together with

lim
j→∞

∫

Br(sj)
u2

j dt ≥ δ

implies uλ ̸= 0. By the fact I′λ is weakly sequentially continuous [17] and I′λ(uj) → 0, we have

I′λ(uλ)v = limj→∞ I′λ(uj)v = 0 for all v ∈ E. Therefore, I′λ(uλ) = 0.

Next, we still need to prove Iλ(uλ) ≤ cλ. Since (H5) implies G(t, u) ≥ 0 for all (t, u) ∈
R × R

N , it follows from Fatou’s lemma, Iλ(uj) → cλ, I′λ(uj) → 0 and I′λ(uλ) = 0 that

cλ = lim
j→∞

(

Iλ(uj)−
1

2
I′λ(uj)uj

)

= lim
j→∞

λ

∫ +∞

−∞

G(t, uj)dt

≥ λ

∫ +∞

−∞

G(t, uλ)dt

= Iλ(uλ)−
1

2
I′λ(uλ)uλ = Iλ(uλ).

The proof is finished.

By Lemmas 2.3 and 2.4, we deduce the existence of a sequence {(λj, uj)} ⊂ [1, 2]× E such

that

• λj → 1 and {λj} is decreasing.

• uj ̸= 0, Iλj
(uj) ≤ cλj

and I′λj
(uj) = 0.

(2.4)

Lemma 2.6. The sequence {uj} obtained in (2.4) is bounded.

Proof. Arguing by contradiction, suppose ∥uj∥ → ∞. Let vj :=
uj

∥uj∥ , then ∥vj∥ = 1 and thus

vj ⇀ v and vj → v a.e. t ∈ R, up to a subsequence. So either {vj} vanishes or it does not

vanish. Next, we shall prove that the two cases are all impossible.
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Part 1. The non-vanishing of {vj} is impossible. By contradiction, if {vj} is non-vanishing,

that is, there exist r, δ > 0 and a sequence {sj} ⊂ R such that

lim
j→∞

∫

Br(sj)
v2

j dt ≥ δ. (2.5)

Thus it follows from vj → v in L2
loc(R; R

N) that v ̸= 0.

Since I′λj
(uj) = 0 implies ∥uj∥2 = λj

∫ +∞

−∞
(∇H(t, uj), uj)dt, thus it follows from Remark 1.2

that

1 = λj

∫ +∞

−∞

(∇H(t, uj), uj)

∥uj∥2
dt ≥ 2

∫ +∞

−∞

H(t, uj)

∥uj∥2
dt = 2

∫ +∞

−∞

H(t, uj)

|uj|2
|vj|2dt. (2.6)

On the other hand, the facts vj → v a.e. t ∈ R, v ̸= 0 and ∥uj∥ → ∞ imply that |uj| =

|vj| · ∥uj∥ → +∞, which together with (H4) implies

H(t, uj)

|uj|2
|vj|2 → +∞ a.e. t ∈ R.

It follows from Fatou’s lemma that

∫ +∞

−∞

H(t, uj)

|uj|2
|vj|2dt → +∞ as j → ∞,

which contradicts with (2.6).

Part 2. The vanishing of {vj} is impossible. If {vj} is vanishing. We define a sequence {zj} ⊂ E

by zj = tjuj with 0 ≤ tj ≤ 1 satisfying

Iλj
(zj) := max

0≤t≤1
Iλj

(tuj). (2.7)

(Here, if for a j ∈ N, tj defined by (2.7) is not unique we choose the smaller possible value).

We claim that

lim
j→∞

Iλj
(zj) = +∞. (2.8)

Seeking a contradiction we assume for all tj ∈ [0, 1] there exists a positive constant M such

that

lim inf
j→∞

Iλj
(zj) ≤ M. (2.9)

Let {k j} be defined by k j :=
√

4M
∥uj∥ uj. With the relationships of {vj} and {k j}, we know {k j} is

also bounded and vanishing. Hence Remark 2.5 in Lemma 2.4 implies that
∫ +∞

−∞
H(t, k j)dt → 0.

Thus for j sufficiently large,

Iλj
(k j) = 2M − λj

∫ +∞

−∞

H(t, k j)dt ≥ 3

2
M. (2.10)

If we let tj :=
√

4M
∥uj∥ for j sufficiently large, then tj ∈ [0, 1]. Thus (2.10) contradicts with (2.9).

Therefore, (2.8) holds. Note that I′λj
(zj)zj = 0 for all j ∈ N by (2.7), thus

Iλj
(zj) = Iλj

(zj)−
1

2
I′λj

(zj)zj = λj

∫ +∞

−∞

G(t, zj)dt,
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which together with (2.8) implies that
∫ +∞

−∞

G(t, zj)dt → +∞. (2.11)

Note that conditions Iλj
(uj) ≤ cλj

and I′λj
(uj) = 0 in (2.4) imply that

1

2
∥uj∥2 − λj

∫ +∞

−∞

H(t, uj)dt ≤ cλj
, ∥uj∥2 − λj

∫ +∞

−∞

(∇H(t, uj), uj)dt = 0.

It follows from the definition of G that
∫ +∞

−∞
G(t, uj)dt ≤

cλj

λj
. Clearly,

cλj

λj
is increasing and

bounded by c = c1, thus we have
∫ +∞

−∞

G(t, uj)dt ≤ c, ∀j ∈ N.

It follows from (H5) that
∫ +∞

−∞
G(t, zj)dt ≤ D

∫ +∞

−∞
G(t, uj)dt ≤ C, which contradicts with (2.11).

Therefore, the proof is finished by Part 1 and Part 2.

Proof of Theorem 1.1. Since Lemma 2.6 implies that {uj} is bounded in E, we can assume

uj ⇀ u in E and uj → u a.e. t ∈ R, up to a subsequence. Obviously,

I(uj) = Iλj
(uj) + (λj − 1)

∫ +∞

−∞

H(t, uj)dt. (2.12)

We distinguish two cases: either lim supj→∞
Iλj

(uj) > 0 or lim supj→∞
Iλj

(uj) ≤ 0.

Case 1. If lim supj→∞
Iλj

(uj) > 0, then (2.12) implies that lim supj→∞
I(uj) > 0, besides,

the facts λj → 1 and I′λj
(uj) = 0 (see (2.4)) imply that I′(uj) → 0, by the similar proof of

Lemma 2.4, we can get uj ⇀ u ̸= 0 with I′(u) = 0, up to a subsequence.

Case 2. If lim supj→∞
Iλj

(uj) ≤ 0, we use the sequence {zj} defined in (2.7). Since {uj} is

bounded, {zj} is also bounded. Note that I′λj
(zj)zj = 0 for all j ∈ N by (2.7), thus

λj

∫ +∞

−∞

G(t, zj)dt = Iλj
(zj)−

1

2
I′λj

(zj)zj = Iλj
(zj). (2.13)

Similarly to Lemma 2.1, we have

I′λj
(uj)uj = ∥uj∥2 + o(∥uj∥2) as uj → 0,

uniformly in j ∈ N. Note that I′λj
(uj) = 0, thus there is θ > 0 such that ∥uj∥ ≥ θ, ∀j ∈ N.

Similarly to Lemma 2.1, we also get

Iλj
(tuj) =

1

2
t2∥uj∥2 + o(t2∥uj∥2) as t → 0, t ∈ [0, 1],

uniformly in j ∈ N, thus Iλj
(tuj) > 0 for small enough t. It follows from lim supj→∞

Iλj
(uj) ≤ 0

that the maximum Iλj
(zj) := max0≤t≤1 Iλj

(tuj) (see (2.7)) can not be obtained at t = 1, and

there holds lim infj→∞ Iλj
(zj) > 0. It follows from (2.13) and λj → 1 that

lim inf
j→∞

∫ +∞

−∞

G(t, zj)dt = lim inf
j→∞

Iλj
(zj) > 0,

it follows from the fact {zj} is bounded and the Remark 2.5 in Lemma 2.4 that {zj} does not

vanish. Therefore, {uj} does not vanish. Moreover, (2.4) implies that

I′(uj)ϕ = I′λj
(uj)ϕ + (λj − 1)

∫ +∞

−∞

(

∇H(t, uj), ϕ
)

dt → 0 as j → ∞, ∀ϕ ∈ E.

Therefore, similar to the proof of Lemma 2.4, we can easily get u ̸= 0 and I′(u) = 0.
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Abstract. We establish a uniqueness theorem and a Liouville type result for positive
radial solutions of some classes of nonlinear autonomous equation with the k-Hessian
operator. We also give some interesting qualitative properties of solutions. We provide
an approach, based upon a Pohozaev-type identity, that unifies all our results.
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1 Introduction

Let Ω = R
n or Ω = B a finite ball about the origin. For 1 ≤ k ≤ n and u ∈ C2(Ω), let Sk(D2u)

denote the k-Hessian operator of u which is defined by

Sk(D2u) = σk

(

λ[D2u]
)

= ∑
1≤i1<···<ik≤n

λi1 · · · λik
,

where λ[D2u] = (λ1, . . . , λn) denotes the eigenvalues of the Hessian matrix D2u of u and σk

is the kth elementary symmetric polynomial in n variables. This family of partial differential

operators includes the Laplace and Monge–Ampère operator, respectively, when k = 1 and

k = n. The study of general k-Hessian operators have many applications in geometry, opti-

mization theory and other related fields. It began with the work of Krylov [15] and Caffarelli,

Nirenberg, and Spruck [3]; and was continued by Jacobson [13], Trudinger and Wang [26, 27],

Tso [28] and Wang [29], among others. In this paper, we consider the Dirichlet boundary value

problem

Sk(D2(−u)) = f (u) on Ω

u > 0 on Ω

u = 0 on ∂Ω.

(1.1)

BEmail: Mohamed.BenChrouda@isimm.rnu.tn
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For Ω = R
n, the Dirichlet boundary condition is understood to mean that

lim
|x|→∞

u(x) = 0.

When k = 1, problem (1.1) is reduced to

−∆u = f (u) on Ω

u > 0 on Ω

u = 0 on ∂Ω.

(1.2)

The interest in radial solutions is sparked by the well known results of Gidas, Ni, and Niren-

berg [11, 12]. The authors showed that any solution of problem (1.2) is necessarily radially

symmetric. The uniqueness of ground state solution (radial solution in Ω = R
n) plays an

important role in physics. This importance was mentioned, for instance, by Troy [25] and

the references therein for the logarithmic Schrödinger equation −∆u = u ln u. Over the

past half century, the question of uniqueness of radial solution of problem (1.2) has been

explored under a variety of conditions on the non-linearity f (u). For relevant references, see

[1,4,6–9,14,16–19,21–25,31]. In general, two types of datum f (u) are considered: f (u) > 0 on

the whole of the interval (0, ∞), or f (u) < 0 on (0, γ) and f (u) > 0 on (γ, ∞) for some γ > 0.

The fundamental examples correspond to f (u) = up and f (u) = up − u, p > 1. A natural

question to ask is whether uniqueness of radial solutions of problem (1.1) continues to hold

for general k-Hessian operators. This question seems to have received almost no attention

in the literature and little is known when 2 ≤ k ≤ n. Clément, Figueiredo and Mitidieri [5]

studied problem (1.1) in Ω = B and f (u) = λeu, λ > 0, which is known as Liouville–Gelfand

problem in the literature. The authors proved the existence of λ∗
> 0 such that the Liouville–

Gelfand problem has exactly two radial solutions if 0 < λ < λ∗, a unique radial solution if

λ = λ∗, and no radial solutions if λ > λ∗. The question of uniqueness has been explored

also by Wei [30] and Zhang [32] over the last few years. Wei apply the argument of Erbe and

Tang [8, 9] to prove the uniqueness of radial solutions to problem (1.1) when 1 ≤ k < n/2

and f (u) satisfies some convexity conditions. The argument is based upon a Pohozaev-type

identity and the monotone separation techniques. Zhang proved existence and uniqueness

of radial solution of problem (1.1) where f (u) is replaced by λ f (u) a positive continuous

function which satisfies some growth conditions at ∞ and 0, and λ is a large parameter. We

also note that a characterization of semi-stable radial solutions of some class of autonomous

k-Hessian equation in the unit ball have been studied recently in [20]. We mention here that

all the aforementioned authors investigated problem (1.1) in Ω = B and a non-linearity f (u)

which is always assumed to be positive on the whole of (0, ∞).

In the present work, we are concerned with radial solutions of problem (1.1) in Ω = B or

Ω = R
n and datum f (u) of the form:

(a) f1(u) = up − uk, k < p.

(b) f2(u) = uk − up, 0 < p < k.

(c) f3(u) = uk(ln u + β), β ∈ R.

Here k ∈ {1, . . . , n} is the index of the Hessian operator and p is a parameter. As far as we

know this is the first work dealing with non-linearity f (u) which change sign on (0, ∞). Our

main results are the following:
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Theorem 1.1 (Liouville-type results). Let n ≥ 1 and k ∈ {1, . . . , n}.

1. If f (u) = up − uk, p > k and

p(n − 2k) ≥ k(n + 2), n > 2k,

then problem (1.1) has no radial solutions in Ω = B.

2. If f (u) = uk − up, 0 < p < k then problem (1.1) has no radial solutions in Ω = R
n.

We mention that similar nonexistence result of radial solutions of problem (1.1) in Ω = B

was established in [5, 28] when f (u) = up, p > 1. In our second main result, we give some

interesting qualitative properties of radial solutions of problem (1.1).

Theorem 1.2. Let n ≥ 1 and k ∈ {1, . . . , n}. Let f (u) = fi(u), i = 1, 2 or 3.

1. Suppose that problem (1.1) admits a radial solution uj in Ω = Bj a finite ball of radius bj,

j = 1, 2. If u1(0) < u2(0) then b2 < b1, and u1(r) and u2(r) intersect exactly once in (0, b2).

2. If problem (1.1) admits a radial solution u in Ω = B for some ball B then there is no radial

solution v in Ω = R
n such that u(0) < v(0).

As an immediate consequence, we have the following uniqueness result in balls.

Corollary 1.3. Problem (1.1) has at most one radial solution in Ω = B.

Theorem 1.4 (Uniqueness results in Ω = R
n). Let n ≥ 1 and k ∈ {1, . . . , n}.

1. If f (u) = up − uk, k < p and p(n − 2k) < k(n + 2) then problem (1.1) has at most one radial

solution in Ω = R
n. Furthermore, if such a radial solution u exists then

u(x) ≤ C exp



−
k + 1

2k

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1

|x|
2k

k+1



 ,

where C is a positive constant.

2. If f (u) = uk(ln u + β) then the function

u(x) = exp



−

(

1

2 Ck−1
n−1

)
1
k
|x|2

2
+

n

2k
− β





is the unique radial solution of problem (1.1) in Ω = R
n.

This theorem is an extension of the uniqueness results established in [16, 25] when k = 1.

We note that the kind of bound of solutions given in the first statement when k = 1 has been

proved in the celebrated work of Berestycki and Lions [2].

The following result is an immediate consequence of Theorems 1.2 and 1.4.

Corollary 1.5. For f (u) = uk(ln u + β), problem (1.1) has no radial solution u such that

u(0) < exp
( n

2k
− β

)

neither in finite balls nor in the whole of R
n.
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We provide an approach, based upon a Pohozaev-type identity due to Tso [28], that unifies

all our uniqueness and Liouville type results. Our method can be used without any restriction

on k ∈ {1, . . . , n}, including the Laplace operator when k = 1 and also the Monge–Ampère

operator when k = n.

We finally note that the question of uniqueness for problems of type (1.1) has been also ex-

plored with non-local operators. In this context, Frank, Lenzmann, and Silvestre [10] showed

the uniqueness of ground state solutions for the non-linear equation

(−∆)su + u − up = 0 in R
n,

where (−∆)s denotes the fractional Laplacian with s ∈ (0, 1) and p > 1 a real number. A little

is known on the uniqueness of positive radial solutions for the fractional Laplacian.

2 Properties of radial solutions

For radial function v(x) = v(r) with r = |x|, we have

Sk(D2(−v))(x) = r1−n Ck−1
n−1

k

(

rn−k(−v′)k
)′

= Ck−1
n−1

(

−v′

r

)k−1 (

−v′′ −
n − k

k

v′

r

)

,

where Ck−1
n−1 = (n−1)!

(k−1)!(n−k)!
and 1 ≤ k ≤ n. Therefore, when referring to a radial solution v of

problem (1.1) in Ω, we mean a C2 function v(|x|) = v(r) satisfies

Ck−1
n−1

k

(

rn−k(−v′)k
)′

= rn−1 f (v) on (0, b)

v > 0 on (0, b)

lim
r→b

v(r) = 0,

(2.1)

where b denotes the radius of Ω (0 < b ≤ ∞) and f = fi, i = 1, 2, 3, the function defined by

(a) f1(v) = vp − vk, k < p.

(b) f2(v) = vk − vp, 0 < p < k.

(c) f3(v) = vk ln v + βvk, β ∈ R.

Denote by γ f the unique zero of f in (0, ∞). We note that f < 0 on (0, γ f ), f > 0 on (γ f , ∞)

and

γ f1
= γ f2

= 1, γ f3
= e−β.

In the following lemma, we shall focus attention on some basic properties of solutions of

problem (2.1).

Lemma 2.1. If v is a solution of (2.1), then v′(0) = 0, v(0) > γ f and v′(r) < 0 for 0 < r < b.

Proof. The results are well known when k = 1, see for instance [24]. So we can assume that

k ≥ 2. We first write equation (2.1) in the following equivalent form

Ck−1
n−1

(

−v′

r

)k−1 (

−v′′ −
n − k

k

v′

r

)

= f (v). (2.2)
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If v′(0) ̸= 0 then by letting r tend to 0 we obtain ∞ = f (v(0)), a contradiction. Hence

v′(0) = 0. Suppose that there exists r0 ∈ (0, b) such that v′(r0) = 0 and v′ ̸= 0 on (0, r0). Then

integrate the equation in (2.1) from 0 to r0 to get

0 =
Ck−1

n−1

k

[

rn−k(−v′)k
]r0

0
=
∫ r0

0
rn−1 f (v) dr. (2.3)

On the other hand, since v′(r0) = 0, it follows from (2.2) that f (v(r0)) = 0, yielding v(r0) = γ f

the unique zero of f other than 0. Since v is strictly monotone on the interval (0, r0), this

implies that f (v) does not change sign on (0, r0), which contradicts (2.3). Therefore v′ ̸= 0 on

(0, b), and hence v′ < 0 as desired. Suppose that v(0) ≤ γ f . Since v decreases on (0, b) and

f < 0 on (0, γ f ), this implies that f (v) < 0 on (0, b) and thus

∫ r

0
tn−1 f (v)dt < 0.

But this is impossible since

∫ r

0
tn−1 f (v) dt =

Ck−1
n−1

k
rn−k(−v′)k

> 0.

Hence v(0) > γ f . This completes the proof.

Let

F(v) =
∫ v

0
f (t)dt.

One easily checks that

F1(v) =
vp+1

p + 1
−

vk+1

k + 1
, F2(v) =

vk+1

k + 1
−

vp+1

p + 1
, F3(v) =

vk+1

k + 1

(

ln v + β −
1

k + 1

)

.

We denote by γF the unique zero of F in (0, ∞). It can be easily calculated

γF1
=

(

p + 1

k + 1

)
1

p−k

, γF2
=

(

k + 1

p + 1

)
1

k−p

, γF3
= e

1
k+1−β.

We note that

γFi
> γ fi

, i = 1, 2, 3.

For a given solution v of problem (2.1), we define

E(r, v) := Ck−1
n−1r1−k(−v′)k+1 + (k + 1)F(v), 0 ≤ r < b. (2.4)

Lemma 2.2. If v is a solution of problem (2.1), then v(0) > γF and

E(r, v) > 0, 0 ≤ r < b. (2.5)

Proof. Let v be a solution of (2.1). By using (2.2), a straightforward computation gives

d

dr
E(r, v) = −(n + k(n − 2))

Ck−1
n−1

k

(−v′)k+1

rk
.

Since v′ < 0 on (0, b), this implies that E(r, v) decreases on (0, b), yielding

E(r, v) > lim
r→b

E(r, v) = Ck−1
n−1 lim

r→b
r1−k(−v′)k+1 ≥ 0.

For r = 0, we obtain 0 < E(0, v) = (k + 1)F(v(0)) from which we conclude that v(0) > γF.



6 M. Ben Chrouda

For i ∈ {1, 2, 3}, let

Gi(t) = (n − 2k)t fi(t)− n(k + 1)Fi(t). (2.6)

A straightforward computation shows that

G1(t) = C(n, k, p)tp+1 + 2ktk+1,

G2(t) = −2ktk+1 − C(n, k, p)tp+1

and

G3(t) = C(n, k, p)tk+1 ln t +

(

n

k + 1
− 2βk

)

tk+1,

where

C(n, k, p) = n − 2k −
n(k + 1)

p + 1
(2.7)

with the obvious convention p = k when f (t) = tk ln t + βtk.

Remark 2.3.

1. We note that C(n, k, p) < 0 when f = f2 or f = f3, that is, when 0 < p ≤ k. However,

the mapping p → C(n, k, p) can change sign when p > k.

2. If C(n, k, p) ≥ 0 then G1 is positive on (0, ∞).

3. If C(n, k, p) < 0 then G1 is positive on (0, γG1
) and negative on (γG1

, ∞), where

γG1
=

(

2k

−C(n, k, p)

)
1

p−k

.

4. For i = 2, 3, Gi is positive on (0, γGi
) and negative on (γGi

, ∞), where

γG2
=

(

−C(n, k, p)

2k

)
1

k−p

, γG3
= exp

(

−β +
n

2k(k + 1)

)

.

5. It is worth noting that

γF1
< γG1

, γG2
< γF2

and

γF3
< γG3

if n − 2k > 0, γG3
< γF3

if n − 2k < 0.

6. A straightforward computation shows

G(t)

tk+1
−

G(s)

sk+1
= C(n, k, p)

(

f (t)

tk
−

f (s)

sk

)

, t, s > 0. (2.8)

This identity will be crucial in the proof of uniqueness results.

For a solution v of problem (2.1) in (0, b), let

P(r, v) = rn

[

Ck−1
n−1r1−k(−v′)k+1 + (k + 1)F(v)− Ck−1

n−1

n − 2k

k
v

(

−v′

r

)k
]

.

We note that the radial form of the Pohozaev identity for k-Hessian equation established in

[28] states that

P(r, v) = −
∫ r

0
tn−1G(v)dt. (2.9)
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Lemma 2.4. If v is a solution of problem (2.1) in (0, b), 0 < b < ∞, then v(0) > γG and

P(r, v) > 0, r ∈ (0, b). (2.10)

Proof. Let v be a solution of problem (2.1) in (0, b). By (2.9),

d

dr
P(r, v) = −rn−1G(v).

By Remarks 2.3, G is positive on (0, γG) and negative on (γG, ∞). Suppose that v(0) ≤ γG.

Then G(v) > 0 on (0, b) which implies that P(r, v) decreases on (0, b). Thus,

0 = P(0, v) > lim
r→b

P(r, v) = Ck−1
n−1bn+1−k(−v′(b))k+1 ≥ 0,

a contradiction. Hence v(0) > γG. Since v is decreasing on (0, b), the condition v(0) > γG

implies that G(v) is positive-negative on (0, b), yielding P(r, v) increases-decreases on (0, b).

Since P(0, v) = 0 and P(b, v) ≥ 0, we immediately deduce that P(r, v) > 0 for every r ∈ (0, b).

This completes the proof.

We now provide some interesting estimates of radial solutions of problem (1.1) in Ω = R
n.

Lemma 2.5.

(a) Let f (v) = vp − vk, k < p. If v is a solution of problem (2.1) in (0, ∞), then there exist two

constants C1, C2 > 0 such that

v(r) ≤ C1 exp



−
k + 1

2k

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1

r
2k

k+1



 (2.11)

and

−rv′(r) ≤ C2 exp



−
k + 1

2k

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1
( r

2

)
2k

k+1



 . (2.12)

(b) Let f (v) = vk ln v + βvk, β ∈ R. If v is a solution of problem (2.1) in (0, ∞), then there exist

two constants C1, C2 > 0 such that

v(r) ≤ C1 exp



−

(

1

(k + 1)Ck−1
n−1

)
1

k+1

r
2k

k+1



 (2.13)

and

−rv′(r) ≤ C2 exp



−

(

1

(k + 1)Ck−1
n−1

)
1

k+1
( r

2

)
2k

k+1



 . (2.14)

Proof. We shall use the same lines of reasoning in the proof of both cases. It is for this reason

that we omit the proof of the second statement. Let f (v) = vp − vk, k < p. Let v be a

solution of problem (2.1) in (0, ∞). We denote by b1 the unique positive constant such that

v(b1) = γ f (= 1). By (2.5), we have E(r, v) > 0. This means that

Ck−1
n−1r1−k(−v′)k+1

> −(k + 1)F(v) = vk+1

(

1 −
k + 1

p + 1
vp−k

)

.
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Since v decreases, we then obtain, for every r ≥ b1,

(−v′)k+1 ≥
(p − k)

(p + 1)Ck−1
n−1

rk−1vk+1,

or equivalently,

−
v′

v
≥

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1

r
k−1
k+1 .

Integrating from b1 to r gives

− ln v ≥
k + 1

2k

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1 (

r
2k

k+1 − b
2k

k+1

1

)

.

Thus

v(r) ≤ C exp



−
k + 1

2k

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1

r
2k

k+1



 , r ≥ b1,

where

C = exp





k + 1

2k

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1

b
2k

k+1

1



 .

Since v is continuous on the whole of R+, this yields the existence of a constant C1 > 0 such

that (2.11) holds for all r ≥ 0. The estimate (2.12) follows from the fact that v is convex on

(b1, ∞) together with (2.11). Indeed, v is convex on (b1, ∞) since

v′′ = −
n − k

k

v′

r
−

1

Ck−1
n−1

(

r

−v′

)k−1

f (v) > 0.

Thus, for every b1 < t < r, we have

v(r)− v(t)

r − t
≤ v′(r).

For t = r
2 , we get

2v(r)− 2v(
r

2
) ≤ rv′(r).

Multiplying by

exp





k + 1

2k

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1
( r

2

)
2k

k+1





and then letting r tend to ∞, we conclude using (2.11) that

−∞ < lim
r→∞

rv′(r) exp





k + 1

2k

(

(p − k)

(p + 1)Ck−1
n−1

)
1

k+1
( r

2

)
2k

k+1



 .

This completes the proof of the first statement.

We mention here that this kind of bound when k = 1 and f (u) = up − u has been proved

in the celebrated work [2].
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Lemma 2.6. Assume that f (v) = fi(v), i ∈ {1, 3}. If v is a solution of (2.1) in (0, ∞) then

v(0) > γG,

lim
r→∞

P(r, v) = 0 (2.15)

and

P(r, v) > 0.

Proof. The property (2.15) follows from the estimates (2.11) and (2.12) when f (v) = f1(v), and

the estimates (2.13) and (2.14) when f (v) = f3(v). The rest of the proof is similar to that of

Lemma 2.4.

3 Proof of Theorem 1.1

1. Assume that f (v) = vp − vk, k < p and p(n − 2k) ≥ k(n + 2). Suppose that problem

(1.1) has a radial solution v in Ω = B a finite ball of radius b. By (2.9), we have

d

dr
P(r, v) = −rn−1G1(v).

G1(v) > 0 by Remarks 2.3 since C(n, k, p) ≥ 0 by hypothesis. Thus P(r, v) is decreasing

on (0, b), and hence

0 = P(0, v) > P(b, v) = Ck−1
n−1bn+1−k(−v′(b))k+1 ≥ 0,

a contradiction. Therefore, problem (1.1) has no radial solutions in Ω = B.

2. Assume that f (v) = vk − vp, 0 < p < k. Striving for a contradiction, suppose that

problem (1.1) admits a radial solution v in R
n. By (2.5), we have E(r, v) > 0. Thus,

Ck−1
n−1r1−k(−v′)k+1 ≥ −(k + 1)F(v) = vp+1

(

k + 1

p + 1
− vk−p

)

.

Let b1 ∈ (0, ∞) so that v(b1) = 1. Since v is decreasing, it follows that, for every r ≥ b1,

(−v′)k+1 ≥
(k − p)

(p + 1)Ck−1
n−1

rk−1vp+1,

or equivalently,

−v′v−
p+1
k+1 ≥

(

(k − p)

(p + 1)Ck−1
n−1

)
1

k+1

r
k−1
k+1 .

Integrate from b1 to r gives

1 − v
k−p
k+1 ≥

k − p

2k

(

(k − p)

(p + 1)Ck−1
n−1

)
1

k+1 (

r
2k

k+1 − b
2k

k+1

1

)

.

Now, let r tend to ∞ we obtain 1 ≥ ∞, a contradiction. This completes the proof.
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4 Proof of Theorem 1.2

Let k ∈ {1, · · · , n} be the index of the Hessian operator. Let f (v) be a function defined on

[0, ∞[ which takes one of the following forms:

(a) f1(v) = vp − vk, k < p and p(n − 2k) < k(n + 2).

(b) f2(v) = vk − vp, 0 < p < k.

(c) f3(v) = vk ln v + βvk, β ∈ R.

Assume that v and w are two solutions of problem (2.1) in (0, b) and (0, c) respectively. We

shall prove that if v(0) < w(0) and b < ∞ then c < ∞ and

c < b.

Furthermore, v and w intersect exactly once in (0, c). The proof will be divided into a sequence

of lemmas. Assume that v(0) < w(0) and b < ∞. Arguing by contradiction, suppose that

c ≥ b.

For 0 ≤ r ≤ b, let

Y(r) = vw′ − v′w.

Lemma 4.1. Let v and w be two positive solutions of the equation

Ck−1
n−1

k

(

rn−k(−u′)k
)′

= rn−1 f (u).

If v(0) < w(0) then Y(r) < 0 as long as v(r) < w(r).

Proof. By writing the above equation in the following equivalent form

Ck−1
n−1

(

−v′

r

)k−1 (

−v′′ −
n − k

k

v′

r

)

= f (v), (4.1)

we see that

lim
r→0

−v′

r
=

(

k

n Ck−1
n−1

f (v(0))

)
1
k

.

Thus

lim
r→0

Y(r)

r
=

(

k

n Ck−1
n−1

)
1
k
[

w ( f (v)))
1
k − v ( f (w))

1
k

]

(0).

Together with the fact that f (t)/tk increases on (0, ∞) and v(0) < w(0), this implies that Y < 0

on some neighbourhood (0, ε). Arguing by contradiction, suppose that there exists a ∈ (0, b)

such that Y(a) = 0, Y < 0 on (0, a) and v(a) < w(a). It is obvious that Y′(a) ≥ 0. On the other

hand, using the fact that v and w satisfy equation (4.1), we easily obtain

Y′(r) =
rk−1

Ck−1
n−1

vw

(

f (v)

v(−v′)k−1
−

f (w)

w(−w′)k−1

)

−
n − k

kr
Y(r).

Since Y(a) = 0, this implies that

Y′(a) =
ak−1

Ck−1
n−1

v(a)w(a)

(

v

−v′

)k−1

(a)

(

f (v)

vk
−

f (w)

wk

)

(a) < 0,

in contradiction with Y′(a) ≥ 0. This completes the proof.
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It is clear that Y must vanish on (0, b] since Y(0) = 0, Y < 0 near 0 and Y(b) ≥ 0. Let τ

denote the first zero of Y in (0, b]. Therefore,

Y(τ) = 0 and Y(r) < 0, 0 < r < τ.

Define

Z(r) =
Ck−1

n−1

k
rn−k

[

(−w′)k −
(

−v′
w

v

)k
]

, 0 ≤ r ≤ b. (4.2)

Lemma 4.2.

(a) For every r ∈ (0, b), we have

Z′(r) + Ck−1
n−1rn−kY

wk−1(−v′)k

vk+1
= rn−1

[

f (w)−
(w

v

)k
f (v)

]

. (4.3)

(b) For every r ∈ (0, τ), we have

−w′Z + Ck−1
n−1rn−kY

(−v′w)k

vk+1
> 0. (4.4)

Proof. (a) A straightforward computation using equation (2.1) gives

Z′(r) = rn−1

[

f (w)−
(w

v

)k
f (v)

]

− Ck−1
n−1rn−k

(w

v

)′ (w

v

)k−1
(−v′)k

= rn−1

[

f (w)−
(w

v

)k
f (v)

]

− Ck−1
n−1rn−kY

wk−1(−v′)k

vk+1
.

(b) For r ∈ (0, τ) we have −vw′
> −v′w > 0. Thus,

Z(r) =
Ck−1

n−1

k

rn−k

vk

[

(−vw′)k − (−wv′)k
]

≥ −Ck−1
n−1

rn−k

vk
(−wv′)k−1Y.

The last inequality follows immediately from the fact that tk − sk ≥ k(t − s)sk−1 for

t > s > 0. Hence,

−w′Z + Ck−1
n−1rn−kY

(−wv′)k

vk+1
≥ Ck−1

n−1rn−kY
(−wv′)k−1

vk+1
(w′v − wv′)

= Ck−1
n−1rn−k (−wv′)k−1

vk+1
Y2

> 0.

For 0 ≤ r ≤ b, we define

Φ(r) = P(r, w)−
(w

v

)k+1
P(r, v).

We now show by two methods that Φ(τ) > 0 and Φ(τ) ≤ 0 which is the required contradic-

tion.

Lemma 4.3. Φ(τ) > 0.
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Proof. By differentiation, we have

Φ′(r) = rn−1

[

(w

v

)k+1
G(v)− G(w)

]

− (k + 1)
(w

v

)′ (w

v

)k
P(r, v).

Using (2.8) and (4.3), we obtain

Φ′(r) = C(n, k, p)rn−1w

[

(w

v

)k
f (v)− f (w)

]

− (k + 1)
(w

v

)′ (w

v

)k
P(r, v)

= −C(n, k, p)

[

wZ′(r) + Ck−1
n−1rn−kY

(−v′w)k

vk+1

]

− (k + 1)Y
wk

vk+2
P(r, v).

Seeing that Z(0) = Z(τ) = 0, an integration by parts yields

∫ τ

0
wZ′dr = [wZ]τ0 −

∫ τ

0
w′Zdr = −

∫ τ

0
w′Zdr.

Thus

Φ(τ) = −C(n, k, p)
∫ τ

0

[

−w′Z + Ck−1
n−1rn−kY

(−v′w)k

vk+1

]

dr − (k + 1)
∫ τ

0

Ywk

vk+2
P(r, v)dr.

Now, Φ(τ) > 0 follows from (2.10) and (4.4) together with the fact that Y < 0 on (0, τ) and

C(n, k, p) < 0.

On the other hand, we have

Lemma 4.4. Φ(τ) ≤ 0.

Proof. For r ∈ (0, b), we have

Φ(r) = Ck−1
n−1rn+1−k

[

(−w′)k+1 −

(

−
wv′

v

)k+1
]

− (k + 1)rnwk+1

[

F(v)

vk+1
−

F(w)

wk+1

]

− (n − 2k)
Ck−1

n−1

k
rn−kw

[

(−w′)k −

(

−
wv′

v

)k
]

.

Thus

• If τ < b then

Φ(τ) = −(k + 1)τnw(τ)k+1

[

F(v)

vk+1
−

F(w)

wk+1

]

(τ).

By Lemma 4.1, Y(τ) = 0 implies v(τ) ≥ w(τ). Since F(t)/tk+1 increases on (0, ∞), it

follows that

Φ(τ) ≤ 0.

• If τ = b, then Y(b) = 0 implies that w(b) = 0. If, in addition, v′(b) ̸= 0 then

Φ(τ) = lim
r→ b

Φ(r) = P(b, w)−

(

w′(b)

v′(b)

)k+1

P(b, v) = 0.

If v′(b) = 0 then we must have w′(b) = 0. Otherwise, since the ratio v/w increases on

(0, b), we obtain

0 <
v(0)

w(0)
< lim

r→b

v

w
(r) =

v′(b)

w′(b)
= 0.
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a contradiction. Thus P(b, w) = P(b, v) = 0, and hence

|Φ(τ)| = lim
r→b

|Φ(r)| ≤ lim
r→b

[

P(r, w) +

(

w(0)

v(0)

)k+1

P(r, v)

]

= 0.

Hence Φ(τ) ≤ 0 as desired.

We have shown that if v(0) < w(0) and b < ∞ then c < b, this holds for any solutions

v and w of problem (2.1) in (0, b) and (0, c) respectively. This implies that the set A := {r ∈

(0, c); v(r) = w(r)} is nonempty. Arguing by contradiction, suppose that the set A contains

two points r1 < r2. Thus
v

w
(r1) = 1 =

v

w
(r2).

This yields the existence of τ ∈ (r1, r2) such that

( v

w

)′
(τ) = 0,

or equivalently,
(

v′w − vw′
)

(τ) = 0.

Using Lemma 4.1, we can assume that v′w − vw′
< 0 on the interval (0, τ). The contradiction

follows now again from Lemmas 4.3 and 4.4 above. Hence v and w intersect exactly once in

(0, c). This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.4

Let k ∈ {1, · · · , n} be the index of the Hessian operator. Let f (v) be of the form:

(a) f1(v) = vp − vk, k < p and p(n − 2k) < k(n + 2).

(b) f3(v) = vk ln v + βvk, β ∈ R.

We shall first prove that problem (2.1) has at most one solution in (0, ∞). The proof proceeds

along the same lines as the proof of Theorem 1.2. We shall be brief here and just outline the

proof. Let the notation be as in the preceding paragraph. Arguing by contradiction, suppose

that problem (2.1) has two solutions v and w in (0, ∞). We can assume that v(0) < w(0). For

r ≥ 0, let

Y(r) = w′v − v′w

and

Φ(r) = P(r, w)−
(w

v

)k+1
P(r, v).

By Lemma 4.1, we have Y(r) < 0 as long as v(r) < w(r).

• Assume that there exists τ ∈ (0, ∞) such that

Y < 0 on (0, τ) and Y(τ) = 0.

In this case the required contradiction follows from Lemmas 4.3 and 4.4 above.
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• Assume that Y < 0 on the whole of (0, ∞). Since the ratio w/v decreases on (0, ∞), it

follows that

|Φ(r)| ≤ |P(r, w)|+

(

w(0)

v(0)

)k+1

|P(r, v)|.

This implies together with (2.15) that

lim
r→∞

|Φ(r)| = 0.

On the other hand, following the same steps as in the proof of Lemma 4.3, we conclude

that

lim
r→∞

Φ(r) > 0

provided we have

lim
r→∞

w(r)Z(r) = 0, (5.1)

where Z is given by (4.2). So it remains to show (5.1). We see that w/v is decreasing on

(0, ∞) since Y < 0, and so
w

v
≤

w(0)

v(0)
.

Thus

|Z(r)| ≤
Ck−1

n−1

k
rn−k

[

(−w′)k +

(

w(0)

v(0)

)k

(−v′)k

]

from which we obtain (5.1) using (2.11) and (2.12) when f (v) = f1(v), and the estimates

(2.13) and (2.14) when f (v) = f3(v). This completes the proof of the uniqueness result.

The upper bound of solutions stated in the first statement of the theorem is given by (2.11).

So it remains to show that the function

u(r) := exp



−

(

1

2 Ck−1
n−1

)
1
k

r2

2
+

n

2k
− β





is a solution of equation (2.1) in (0, ∞) when f (u) = uk(ln u + β). Let

v(r) = e−a r2

2 −b.

Then v′(r) = −arv(r), yielding

Ck−1
n−1

k

(

rn−k(−v′)k
)′

=
Ck−1

n−1

k
ak
(

rnvk
)′

=
Ck−1

n−1

k
aknrn−1vk + Ck−1

n−1akrnv′vk−1

= 2akCk−1
n−1vk

(

n

2k
− a

r2

2

)

rn−1.

Now by taking 2akCk−1
n−1 = 1 and b = β − n

2k , we obtain

Ck−1
n−1

k

(

rn−k(−v′)k
)′

= rn−1vk(ln v + β).

This completes the proof of the theorem.
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Abstract. In this paper, we use Prandtl mixing-length theory and semiempirical the-
ory to extend the classical problem of the wind in the steady atmospheric Ekman layer
with constant eddy viscosity. New generalized atmospheric Ekman equations are estab-
lished and qualitative properties of the corresponding ODEs are studied. Spatial wave
solutions results for the nonlinear and implicit equations with different nonlinearities
are presented.

Keywords: generalized atmospheric Ekman equations, nonlinear and implicit equa-
tions, spatial wave solutions.
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1 Introduction

Lamina sublayer, surface layer and Ekman layer are three important parts for the atmospheric
boundary layer [24,26]. In particular, the Ekman layer covers ninety percent of the atmospheric
boundary layer, which is driven by a three-way balance among frictional effects, pressure
gradient and the influence of the Coriolis force in non-equatorial regions [13,24,33]. However,
this balance breaks down in equatorial regions, where the Coriolis effect due to the Earths
rotation vanishes, the Coriolis force changes sign across the Equator, so the nonlinear effects
have to be accounted for [4–8, 11, 23, 25].

Ekman was the first to formula and analyse a mathematical model which describes the
behavior of wind-generated steady surface currents [13], the theory is the basis for our un-
derstanding of wind-driven currents, and is also relevant for the air flow in the atmospheric
boundary layer.

BCorresponding author. Email: Michal.Feckan@fmph.uniba.sk
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We consider a rotating framework with the origin at a point on the Earth’s surface, with the
x axis chosen horizontally due east, the y axis horizontally due north, and the z axis upward,
it is known that the standard Ekman equations are given by

{

f (v− vg) = − ∂
∂z (k

∂u
∂z ),

f (u− ug) =
∂
∂z (k

∂v
∂z ),

(1.1)

where u = u(t, x, y, z), v = v(t, x, y, z) are the components of the wind in the x and y directions
respectively, P is the atmospheric pressure, ρ is the reference density, f = 2Ω sin ϕ is the
Coriolis parameter at the fixed latitude ϕ, ug and vg are the corresponding geostrophic wind
components, k denotes the eddy viscosity [22].

Ekman derived the flow from this model and obtained three characteristics, two of which
have been shown to hold in the general case of depth-dependent eddy viscosity. However,
regarding of the value of the deflection angle of the surface flow from the wind direction,
some data in non-equatorial regions predicted significant differences [9,17,34]. It is natural to
attribute this difference to the assumption of constant vorticity. Some results have been made
on the explicit formula of the solution to (1.1) with the hight-dependent eddy viscosity and
the classic boundary conditions u = v = 0 at z = 0 and u → ug, v → vg for z → ∞ for the
atmospheric Ekman equations [9,10,16,19,20,32]. With respect to wind-driven surface current,
one can refer to [1–3,12,30,31] for the depth-dependent eddy viscosity and the corresponding
boundary conditions.

Noting that (1.1) is formulated by omitting the turbulent fluxes, which has obvious lim-
itations. Recently, Guan et al. [18] introduced a new nonhomogeneous model containing
turbulent flux terms, which improved the classical model proposed in [24]. Further, in this
paper, we propose the following generalized model

{

f (v− vg) = − ∂
∂z (k

∂u
∂z ) + 2l2u ∂u

∂x ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) + 2l2v ∂v

∂y ,
(1.2)

where l is a constant number. We emphasize that (1.2) is a generalization of the standard
Ekman equations since the turbulent flux term is considered. Comparing with the previous
extension model in [18], (1.2) has a totally different and specific turbulent flux terms. In
[18], the turbulent flux is assumed to be a function of height, but here we use semi-empirical
method and assume turbulent flux to be a function of u, v and their partial derivatives, which
are more reasonable than the turbulent fluxes only depending on the high z in [18] and also
makes the current model more complex.

Note that explicit solution and dynamical properties of atmospheric Ekman flows with
boundary conditions have been presented extensively. There are still very few contributions
on the modified Ekman equation. In particular, periodic solutions and Hyers–Ulam stability
are reported in a modified model in [18] by using the theory of ordinary differential equations
and hyperbolic matrix theory. In this paper, we consider spatial wave solutions of (1.2), which
satisfy certain ODEs, and we study qualitative properties of this corresponding ODEs. This is
a novelty of this paper.

The rest of the paper is organized as follows. New generalized atmospheric Ekman equa-
tions are derived in Section 2. Section 3 deals with spatial wave solutions of (1.2). We study
qualitative properties of the corresponding ODEs determining these solutions. Involving also
other terms not just linear ones into (2.5), we continue our analysis in Section 4 with more
general ODEs. Finally, (2.4) is investigated in Section 5. The obtained spatial wave ODEs
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are nonlinear and implicit, so their study is difficult. There are still many open challenging
problems for further research. These aspects are presented in Section 6.

2 Model description

In the local Cartesian coordinate system, the earth’s surface is approximately regarded as a
plane, and the curvature term can be omitted, so the Ekman layer is governed by the following
equations, see [24, 26]















Du
Dt = − 1

ρ
∂P
∂x + 2Ω sin ϕv− 2Ω cos ϕw + Frx,

Dv
Dt = − 1

ρ
∂P
∂y − 2Ω sin ϕu + Fry,

Dw
Dt = − 1

ρ
∂P
∂z − g + 2Ω cos ϕu + Frz,

(2.1)

where














Frx = υ[ ∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 ],

Fry = υ[ ∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2 ],

Frz = υ[ ∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2 ],

and υ = µ
ρ is the kinematic viscosity coefficient [24], u = u(t, x, y, z), v = v(t, x, y, z) and

w = w(t, x, y, z) are the components of the wind in the x, y and z directions respectively.
Besides,

−→
U = (u, v, w) satisfies the continuity equation

∂ρ

∂t
+∇ · (ρ−→U ) = 0. (2.2)

For a wide range of air movements, w ≪ u, v [33], so we assume w = 0, kinematic viscosity
coefficient is negligible in the Ekman layer, so Frx = 0, Fry = 0 , then (2.1) reduces to

{

Du
Dt = − 1

ρ
∂P
∂x + 2Ω sin ϕv,

Dv
Dt = − 1

ρ
∂P
∂y − 2Ω sin ϕu.

(2.3)

Note that the Boussinesq approximation is an important simplifications in (2.2) and (2.3) for
application in the boundary layer, in this approximation, density ρ in (2.2) and (2.3) are re-
placed by a constant mean value (everywhere except in the buoyancy term in the vertical
momentum equation, see [24]). Clearly, (2.2) becomes to

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

We assume that the variable consists of the mean value and the turbulence value, for exam-
ple, u = u + u′, the corresponding mean values are indicated by overbars and the fluctuating
component by primes.

Under the Boussinesq approximation, the mean velocity fields satisfy the following conti-
nuity equations [24]

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

we separate each dependent variable into mean and fluctuating parts, and substitute into the
chain rule of the differentiation, then we obtain

Du

Dt
=

∂u

∂t
+

∂

∂x
(u′u′) +

∂

∂y
(u′v′) +

∂

∂z
(u′w′),
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where
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

is the rate of change following the mean motion.
Using the above relationships and (2.3), the mean equations thus have the following form:

{

Du
Dt = − 1

ρ
∂P
∂x + f v− [ ∂u′u′

∂x + ∂u′v′
∂y + ∂u′w′

∂z ],
Dv
Dt = − 1

ρ
∂P
∂y − f u− [ ∂u′v′

∂x + ∂v′v′
∂y + ∂v′w′

∂z ].

We omit the inertial acceleration terms because they are much smaller that the Cariolis force
and pressure gradient force terms for midlatitude synoptic-scale motions [24], using the
geostrophic balance, we obtain

{

f (v− vg)− [ ∂u′u′
∂x + ∂u′v′

∂y + ∂u′w′
∂z ] = 0,

− f (u− ug)− [ ∂u′v′
∂x + ∂v′v′

∂y + ∂v′w′
∂z ] = 0.

By the Flux-Gradient theory [24], we get

{

u′w′ = −k ∂u
∂z ,

v′w′ = −k ∂v
∂z ,

where k is the eddy viscosity coefficient, then we obtain

{

f (v− vg) = − ∂
∂z (k

∂u
∂z ) +

∂u′u′
∂x + ∂u′v′

∂y ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) +

∂u′v′
∂x + ∂v′v′

∂y ,

usually we omit the terms ∂u′u′
∂x , ∂u′v′

∂y , ∂u′v′
∂x and ∂v′v′

∂y because they are small in comparison to

the terms ∂u′w′
∂z , ∂v′w′

∂z , but here we retain ∂u′u′
∂x and ∂v′v′

∂y and obtain

{

f (v− vg) = − ∂
∂z (k

∂u
∂z ) +

∂u′u′
∂x ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) +

∂v′v′
∂y .

By the Prandtl mixing-length theory [24], we have u′ = −l′ ∂u
∂z , v′ = −l′ ∂v

∂z , so

{

f (v− vg) = − ∂
∂z (k

∂u
∂z ) + l2 ∂

∂x (
∂u
∂z )

2,

f (u− ug) =
∂
∂z (k

∂v
∂z ) + l2 ∂

∂y (
∂v
∂z )

2.
(2.4)

where l = l′ is the mean mixing-length.
Now replacing u, v, ug and vg by u, v, ug and vg, respectively, and we assume that

∂u

∂z
≈ u,

∂v

∂z
≈ v, (2.5)

by semiempirical theory, one can obtain

{

f (v− vg) = − ∂
∂z (k

∂u
∂z ) + 2l2u ∂u

∂x ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) + 2l2v ∂v

∂y .
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3 Spatial wave solutions for (1.2)

Assuming that k is a nonzero constant, (1.2) becomes

{

f (v− vg) = −k ∂2u
∂z2 + 2l2u ∂u

∂x ,

f (u− ug) = k ∂2v
∂z2 + 2l2v ∂v

∂y .
(3.1)

We are looking for spatial wave solutions of (3.1) as follows

u(x, y, z) = U(αx + βy + z),

v(x, y, z) = V(αx + βy + z),
(3.2)

where α and β are parameters. Then we get

f (V − vg) = −kU′′ + 2αl2UU′,

f (U − ug) = kV ′′ + 2βl2VV ′.
(3.3)

For α = 0 and β = 0, we get the standard Ekman equations. Taking

X =









U

V

U′

V ′









=









x1

x2

x3

x4









,

(3.3) becomes

X′ = F(X) =











x3

x4
f
k (vg − x2) +

2αl2

k x1x3
f
k (x1 − ug)− 2βl2

k x2x4











. (3.4)

Note (3.4) has a unique equilibrium

X0 =









ug

vg

0
0









and its Jacobian matrix is

DF(X0) =











0 0 1 0
0 0 0 1

0 − f
k

2αl2ug

k 0
f
k 0 0 − 2βl2vg

k











(3.5)

with the characteristic polynomial

χ(λ) = λ4 + λ3 2βl2vg − 2αl2ug

k
− λ2 4αβl4ugvg

k2 +
f 2

k2 . (3.6)

Lemma 3.1. χ defined in (3.6) has no pure imaginary roots.
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Proof. Suppose λ = ıω, ω ∈ R is a root of χ, then we get

0 = χ(ıω) = ω4 − ıω3 2βl2vg − 2αl2ug

k
+ ω2 4αβl4ugvg

k2 +
f 2

k2 .

So

ω4 + ω2 4αβl4ugvg

k2 +
f 2

k2 = 0,

ω3 2βl2vg − 2αl2ug

k
= 0.

Clearly ω ̸= 0, then βvg − αug = 0, so

ω4 + ω2 4α2β2l4ugvg

k2 +
f 2

k2 = 0,

which is not possible. The proof is finished.

Consequently, DF(X0) is hyperbolic. When α = β = 0, we get

DF(X0) = A =











0 0 1 0
0 0 0 1
0 − f

k 0 0
f
k 0 0 0











with (3.6) of the form

λ4 +
f 2

k2 = 0

and possessing four eigenvalues
√

f

2k
+

√

f

2k
ı,

√

f

2k
−
√

f

2k
ı, −

√

f

2k
+

√

f

2k
ı, −

√

f

2k
−
√

f

2k
ı.

Thus there are two eigenvalues of A on both sides of the imaginary axis. By Lemma 3.1
this property remains for any DF(X0) with arbitrary α and β. Consequently, X0 has a 2-
dimensional stable manifold Ws

X0
. So we have a 4-parameterized family of functions

X(α, β, s1, s2; t)

such that
X(t) = X(α, β, s1, s2; t)

is a solution of (3.4) with X(0) ∈ Ws
X0

. Then X(t)→ X0 exponentially fast as t→ ∞. Summa-
rizing, we arrive at the following result.

Theorem 3.2. Functions

uα,β,s1,s2(x, y, z) = U(α, β, s1, s2; αx + βy + z),

vα,β,s1,s2(x, y, z) = V(α, β, s1, s2; αx + βy + z)
(3.7)

give a 4-parameterized family of solutions for (3.1) with

uα,β,s1,s2(x, y, z)→ ug,

vα,β,s1,s2(x, y, z)→ vg,

as x + y + z→ ∞, x ≥ 0, y ≥ 0, z ≥ 0, α > 0 and β > 0. In general, the above asymptotic properties

hold for αx + βy + z→ ∞.
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For l = 0, ug = vg = 1, f
2k = 1, we have an implicit solution [20]

u10,0,1,−1(x, y, z) = e−(10x+z) sin(10x + z)− e−(10x+z) cos(10x + z) + 1,

v10,0,1,−1(x, y, z) = −e−(10x+z) sin(10x + z)− e−(10x+z) cos(10x + z) + 1,
(3.8)

visualizing their spatial wave forms on Figure 3.1.

Figure 3.1: Solutions of (3.8): left u10,0,1,−1(x, y, z), right v10,0,1,−1(x, y, z)

We need the next observation.

Lemma 3.3. If α > 0 and β > 0, then

L(X) =
k

2
(x2

4 − x2
3)− f x1x2 + f vgx1 + f ugx2

is a Lyapunov function of (3.4) on the set

Π = {x1 ≥ 0, x2 ≥ 0} ⊂ R
4.

Proof. For any solution X(t) ∈ Π of (3.4), we compute

L(X(t))′ = k(x4(t)x′4(t)− x3(t)x′3(t))− f x′1(t)x2(t)− f x1(t)x′2(t) + f vgx′1(t) + f ugx′2(t)

= x4(t)( f (x1(t)− ug)− 2βl2x2(t)x4(t))− x3(t)( f (vg − x2(t))

+2αl2x1(t)x3(t))− f x3(t)x2(t)− f x1(t)x4(t)

+ f vgx3(t) + f ugx4(t) = −2βl2x2(t)x4(t)
2 − 2αl2x1(t)x3(t)

2 ≤ 0.

The proof is finished.

Now we present a uniqueness result for nonnegative solutions in Theorem 3.2.

Theorem 3.4. If α > 0 and β > 0, then any bounded solution X(t) ∈ Π, ∀t ≥ 0 of (3.4) tends to X0

as t→ ∞, i.e., X(t) ∈Ws
X0

, ∀t ≥ 0.

Proof. Set
L̇(X) = −2βl2x2x2

4 − 2αl2x1x2
3.

The ω-limit of set of X(0) is denoted by ω(X(0)). The largest invariant subset of the set

{X ∈ Π | L̇(X) = 0}

is denoted by M. A simple analysis shows that M = {X0}. Next, by Lemma 3.3 and [21,
Theorem 9.22], we know ω(X(0)) = {X0}. The proof is finished.
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Next, using (3.2), we consider that a solution depends on z. Now we study opposite, that
is we take

u(x, y, z) = U(αx + βy),

v(x, y, z) = V(αx + βy).
(3.9)

Then (3.3) is transformed to
f (V − vg) = 2αl2UU′,

f (U − ug) = 2βl2VV ′,
(3.10)

which is an implicit ODE (see [15, 29]). Now (3.10) gives

0 = αUU′(U − ug)− βVV ′(V − vg)

=
d

dt

[

α

(

U3

3
− U2

2
ug

)

− β

(

V3

3
− V2

2
vg

)]

,

thus implicit solutions are given by

H(U, V) = α

(

U3

3
− U2

2
ug

)

− β

(

V3

3
− V2

2
vg

)

= c ∈ R. (3.11)

Theorem 3.5. There is a family of periodic spatial solutions (3.9) of (3.1) given by the equation (3.11)
under the following condition

αβugvg < 0. (3.12)

Proof. The gradient of H(U, V) is

∇H(U, V) =

[

αU(U − ug)

−βV(V − vg)

]

,

so
[

ug

vg

]

, (3.13)

is a critical point of H(U, V) with the Hessian

Hess H(ug, vg) =

[

αug 0
0 −βvg

]

.

Clearly, if (3.12) holds then (3.13) is a strong local extreme of H(U, V) and it is a center
for (3.10). If αβugvg > 0, then (3.13) is a non-degenerate saddle point of H(U, V) and it is

hyperbolic. Consequently, (3.11) are periodic for suitable c ≈ βv3
g−αu3

g

6 under (3.12). The proof
is finished.

Implicit ODE (3.10) has the same phase portrait as the following ODE

a′ = βb(b− vg),

b′ = αa(a− ug)
(3.14)

when a ̸= 0 and b ̸= 0. (3.14) has 4 equilibria (0, 0), (ug, 0), (0, vg) and (ug, vg) which are
either centers or hyperbolic. Thus, implicit ODE (3.10) has impasse solutions, so solutions
terminating in singularities U = 0 or V = 0 in finite time [15, 29], which are impasse spatial
solutions of (3.1). This is demonstrated on Figure 3.2.

We end this section with the following notes.
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Figure 3.2: Periodic and impasse solutions of (3.10): left α = −β = ug = vg = 1,
right α = β = ug = vg = 1

1. We can reduce parameters in (3.3) by taking

U(t) = ug +

√

f k

2l2 U1

(

√

f

k
t

)

,

V(t) = vg +

√

f k

2l2 V1

(

√

f

k
t

) (3.15)

to get
V1 = −U′′1 + αU1U′1,

U1 = V ′′1 + βV1V ′1.
(3.16)

We do not consider (3.16) until instead of (3.3) to keep the role of other parameters in the
above results.

2. Let (3.16) have a T-periodic solution. Then integrating (3.16) we have

∫ T

0
V1(t)dt =

∫ T

0
(−U′′1 (t) + αU1(t)U

′
1(t))dt =

[

−U′(t) + α
U1(t)

2

2

]t=T

t=0
= 0,

∫ T

0
U1(t)dt =

∫ T

0
(V ′′1 (t) + βV1(t)V

′
1(t))dt =

[

−V ′(t) + β
V1(t)

2

2

]t=T

t=0
= 0.

So we can use Wirtinger inequality [27, p. 9] to derive

∥U′′1 ∥2 ≤ ∥V1∥2 + |α||∥U1U′1∥2 ≤
T2

4π2 ∥V
′′
1 ∥2 +

T

2π
|α|∥U1∥∞∥U′′1 ∥2,

∥V ′′1 ∥2 ≤ ∥U1∥2 + |β||∥V1V ′1∥2 ≤
T2

4π2 ∥U
′′
1 ∥2 +

T

2π
|β|∥V1∥∞∥V ′′1 ∥2,

(3.17)

where

∥U∥2 =

√

∫ T

0
U(t)2dt, ∥U∥∞ = max

t∈[0,T]
|U(t)|.

Adding the two equations of (3.17), we arrive at

∥U′′1 ∥2 + ∥V ′′1 ∥2 ≤
(

T2

4π2 +
T

2π
max{|α|∥U1∥∞, |β|∥V1∥∞}

)

∥U′′1 ∥2 + ∥V ′′1 ∥2. (3.18)
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So if
∥U′′1 ∥2 + ∥V ′′1 ∥2 ̸= 0,

then (3.18) implies

1 ≤ T2

4π2 +
T

2π
max{|α|∥U1∥∞, |β|∥V1∥∞},

which leads to
(
√

4 + (max{|α|∥U1∥∞, |β|∥V1∥∞})2 −max{|α|∥U1∥∞, |β|∥V1∥∞}
)

π ≤ T. (3.19)

Using (3.15) and (3.19), we obtain

Theorem 3.6. A period T of any nonconstant T-periodic solution of (3.3) with

max
t∈[0,T]

|U(t)− ug| ≤ M, max
t∈[0,T]

|V(t)− vg| ≤ N

satisfying

π

√

k

f

(
√

4 +
4l2

f k
(max{|α|M, |β|N})2 − 2l2

√

f k
max{|α|M, |β|N}

)

≤ T.

Results similar to Theorem 3.6 are presented in [14].
3. We are focusing in this paper on the case for fixed f ̸= 0. This leads to a hyperbolic-like

dynamics. On the other hand, if f = 0, then (3.4) has a form

x′1 = x3,

x′2 = x4,

x′3 =
2αl2

k
x1x3,

x′4 = −2βl2

k
x2x4.

(3.20)

Clearly
Σ = {x3 = x4 = 0}

is a fixed point set of (3.20) with Jacobian matrices










0 0 1 0
0 0 0 1
0 0 2αl2x1

k 0

0 0 0 − 2βl2x2
k











(3.21)

possessing eigenvalues

0, 0,
2αl2x1

k
, −2βl2x2

and the corresponding eigenvectors









0
1
0
0









,









1
0
0
0









,











1
0

2αl2x1
k

0











,











0
1
0

− 2βl2x2
k
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for x1 ̸= 0 and x2 ̸= 0. (3.20) is decoupling to

x′′1 =
2αl2

k
x1x′1,

x′′2 = −2βl2

k
x2x′2.

(3.22)

Integrating (3.22), we derive

x′1 =
αl2

k
x2

1 + c1,

x′2 = −βl2

k
x2

2 + c2

(3.23)

(3.23) is solvable and leading to these cases [28]:

i) c1 = 0:

x1(t) =
kx1(0)

k− αl2x1(0)t
,

x3(t) =
αkl2x1(0)2

(k− αl2x1(0)t)2

is a blow-up solution.

ii) αl2c1
k < 0:

x1(t) =
x1(0)

√

− αl2c1
k + c1 tanh

(

√

− αl2c1
k t
)

√

− αl2xc1
k − αl2x1(0)

k tanh
(

√

− αl2c1
k t
)

,

x3(t) =
− αl2c1

k

(

c1 +
αl2x1(0)2

k

)

(

√

− αl2c1
k cosh

(

√

− αl2c1
k t
)

− αl2x1(0)
k sinh

(

√

− αl2c1
k t
)

)2

is an asymptotic solution for |x1(0)| <
√

− αl2

kc1
connecting two points on Σ:

lim
t→−∞

x1(t) = ±
√

− c1k

αl2 , lim
t→∞

x1(t) = ∓
√

− c1k

αl2 ,

lim
t→−∞

x3(t) = 0, lim
t→∞

x3(t) = 0

is a blow-up solution for |x1(0)| ≥
√

− αl2

kc1
.

iii) αl2c1
k > 0:

x1(t) =
x1(0)

√

αl2c1
k + c1 tan

(

√

αl2c1
k t
)

√

αl2xc1
k − αl2x1(0)

k tan
(

√

αl2c1
k t
)

,

x3(t) =

αl2c1
k

(

c1 +
αl2x1(0)2

k

)

(

√

αl2c1
k cos

(

√

αl2c1
k r
)

− αl2x1(0)
k sin

(

√

αl2c1
k t
)

)2

is a blow-up solution.
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iv) Similar formulas hold for x2(t) and x4(t) by exchanging (α, c1) with (−β, c2).

v) Note

c1 = x3(0)−
αl2

k
x1(0)2, c2 = x4(0) +

βl2

k
x2(0)2.

Clearly blow up solutions persist in (3.4) for f ̸= 0 small. It will be our next study the
asymptotic solutions ii).

Finally, we note that (3.4) for l small has a hyperbolic structure on bounded sets due to the
Hartman–Grobman theorem. On the other hand, when l large, say l = ϵ−1/2

> 0 then (3.3)
becomes

ϵ f (V − vg) = −ϵkU′′ + 2αUU′,

ϵ f (U − ug) = ϵkV ′′ + 2βVV ′.

Scaling
U(t) = U1(t/ϵ), V(t) = V1(t/ϵ),

we get
ϵ2 f (V1 − vg) = −kU′′1 + 2αU1U′1,

ϵ2 f (U1 − ug) = kV ′′1 + 2βV1V ′1.
(3.24)

(3.24) has a form of (3.22) for ϵ = 0, so we can apply above results and remarks. We see that
(3.4) has different dynamics for l small and large.

4 General nonlinearities

Assuming that (2.5) involves also other terms not just linear ones, we suppose that

(

∂u

∂z

)2

≈ p(u),
(

∂v

∂z

)2

≈ q(v)

for p, q ∈ C2(R, R). Then instead of (1.2), we obtain
{

f (v− vg) = − ∂
∂z (k

∂u
∂z ) + l2 p′(u) ∂u

∂x ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) + l2q′(v) ∂v

∂y .
(4.1)

Then (3.4) becomes

X′ = F(X) =











x3

x4
f
k (vg − x2) +

αl2

k p′(x1)x3
f
k (x1 − ug)− βl2

k q′(x2)x4











. (4.2)

(4.2) still has a unique equilibrium X0 with a Jacobian matrix

DF(X0) =











0 0 1 0
0 0 0 1

0 − f
k

αl2 p′′(ug)
k 0

f
k 0 0 − βl2q′′(vg)

k











.

We see again that X0 is hyperbolic with 2-dimensional stable and unstable manifolds. Note
(4.2) has a form

X′ = B(X)(X− X0) (4.3)
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for

B(X) =











0 0 1 0
0 0 0 1

0 − f
k

αl2 p′(x1)
k 0

f
k 0 0 − βl2q′(x2)

k











.

For any X, B(X) is hyperbolic with 2-dimensional stable and unstable manifolds.
This motivates us to show the following results. Let Ws and Wu be stable and unstable

subspaces of A defined in (3.5). Let Ps : R
4 → Ws and Pu : R

4 → Wu be projections with
Ps + Pu = I. Then from [20] we have

eAtPs =
e−k̃t

2











cos k̃t − sin k̃t − cos k̃t+sin k̃t
2k̃

cos k̃t+sin k̃t
2k̃

sin k̃t cos[k̃t] − cos k̃t+sin k̃t
2k̃

− cos k̃t+sin k̃t
2k̃

−k̃(cos k̃t + sin k̃t) k̃(− cos k̃t + sin k̃t) cos k̃t − sin k̃t

k̃(cos k̃t− sin k̃t) −k̃(cos k̃t + sin k̃t) sin k̃t cos k̃t











and

eAtPu =
ek̃t

2











cos k̃t sin k̃t cos k̃t+sin k̃t
2k̃

− cos k̃t+sin k̃t
2k̃

− sin k̃t cos k̃t cos k̃t−sin k̃t
2k̃

cos k̃t+sin k̃t
2k̃

k̃(cos k̃t− sin k̃t) k̃(cos k̃t + sin k̃t) cos k̃t sin k̃t

−k̃(cos k̃t + sin k̃t) k̃(cos k̃t− sin k̃t) − sin k̃t cos k̃t











for

k̃ =

√

f

2k
.

By considering a norm
∥X∥ = max

i=1,2,3,4
|xi|

on R
4, we compute

∥eAtPs,u∥ ≤ Kek̃t, K =
1√
2
+ max

{

1
2k̃

, k̃

}

,

∥B(X)− A∥ = l2

k
max{|αp′(x1)|, |βq′(x2)|}.

(4.4)

We are ready to prove the next theorem.

Theorem 4.1. Let M > 0 and set

SX0(M) = {X ∈ R
4 | |x1| ≤ M, |x2| ≤ M}.

Suppose

κ =
l2

k
max

X∈SX0 (M)
max{|αp′(x1)|, |βq′(x2)|} <

k̃

2K
, (4.5)

where K is given in (4.4). Then (4.2) has X(t) = X0 as the only bounded solution on R with X(t) ∈
SX0(M).

Proof. Rewriting (4.3) as

(X− X0)
′ = A(X− X0) + (B(X)− A)(X− X0),
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its bounded solution X(t) ∈ SX0(M) on R is given by

X(t)− X0 =
∫ t

−∞
eA(t−s)Ps(B(X(s))− A)(X(s)− X0)ds

−
∫ ∞

t
eA(t−s)Pu(B(X(s))− A)(X(s)− X0)ds,

which by (4.4) implies

∥X(t)− X0∥ ≤ K
∫ t

−∞
ek̃(t−s)∥B(X(s))− A∥∥X(s)− X0∥ds

+
∫ ∞

t
ek̃(t−s)∥B(X(s))− A∥∥X(s)− X0∥ds ≤ 2Kκ

k̃
sup
t∈R

∥X(t)− X0∥.

This gives

sup
t∈R

∥X(t)− X0∥ ≤
2Kκ

k̃
sup
t∈R

∥X(t)− X0∥,

which by (4.5) implies supt∈R
∥X(t)− X0∥ = 0, i.e., X(t) = X0. The proof is finished.

Theorem 4.1 leads to the following extension of Theorem 3.4.

Corollary 4.2. If (4.5) holds then a bounded solution X(t) ∈ SX0(M), t ≥ 0 of (4.2) satisfies

lim
t→∞

X(t) = X0.

Proof. If X(t) ∈ SX0(M), t ≥ 0 is a bounded solution of (4.2), then its ω-limit set ω(X(0)) ⊂
SX0(M) is compact and invariant. Thus for any X̃0 ∈ ω(X(0)), the solution X̃(t), X̃(0) = X̃0,
t ∈ R of (4.2) is bounded and it satisfies X(t) ∈ SX0(M), since X̃(t) ∈ ω(X(0)) ⊂ SX0(M),
t ∈ R. Theorem 4.1 gives X̃(t) = X0, so X̃0 = X0 and thus ω(X(0)) = {X0}. The proof is
finished.

Corollary 4.3. If

Θ = max

{

sup
x1∈R

|p′(x1)|, sup
x2∈R

|q′(x2)|
}

< ∞,

then for any

max{|α|, |β|} < k̃k

2Kl2Θ
, (4.6)

all bounded solutions X(t), t ≥ 0 of (4.2) satisfies

lim
t→∞

X(t) = X0.

Proof. Since condition (4.6) implies (4.5), the proof is finished by Corollary 4.2.

We continue with utilizing a hyperbolic structure of B(X) by considering a slowly variable
system

X′ =











x3

x4
f
k (vg − x2) +

αl2

k p′(ϵx1)x3
f
k (x1 − ug)− βl2

k q′(ϵx2)x4











(4.7)

for a small parameter ϵ ∈ R. Then (4.7) has a form

X′ = B(ϵX)(X− X0).

We have the following conclusion.
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Theorem 4.4. If p′(0) = q′(0) = 0, then for any M > 0 there is an ϵM > 0 such that any bounded

solution X(t) ∈ SX0(M), t ≥ 0 of (4.7) with |ϵ| < ϵM satisfies

lim
t→∞

X(t) = X0.

Proof. Now (4.5) means

κ =
l2

k
max

X∈SX0 (M)
max{|αp′(ϵx1)|, |βq′(ϵx2)|} <

k̃

2K
,

which clearly holds for any ϵ small due p′(0) = q′(0) = 0. The proof is finished.

Results of this section lead to Theorem 3.2.

5 Spatial wave solutions for (2.4)

Motivated by the above method and results, we consider (2.4) for constant k
{

f (v− vg) = −k ∂2u
∂z2 + 2l2 ∂u

∂z
∂2u

∂z∂x ,

f (u− ug) = k ∂2v
∂z2 + 2l2v ∂v

∂z
∂2

∂z∂y .
(5.1)

We are looking again for spatial wave solutions (3.2) of (5.1) to get

f (V − vg) = −kU′′ + 2αl2U′U′′,

f (U − ug) = kV ′′ + 2βl2V ′V ′′.
(5.2)

We observe that (5.2) is more sophisticated than (3.3). Shifting

U ←→ U − ug, V ←→ V − vg,

we study
f V = −kU′′ + 2αl2U′U′′,

f U = kV ′′ + 2βl2V ′V ′′.
(5.3)

Integrating both equations of (5.3), we obtain

f
∫

V(t)dt = −kU′(t) + αl2U′2(t),

f
∫

U(t)dt = kV ′(t) + βl2V ′2(t).
(5.4)

By introducing

W1 =
∫

U(t)dt, W2 =
∫

V(t)dt,

we get
f W2 = −kW ′′1 + αl2W ′′21 ,

f W1 = kW ′′2 + βl2W ′′22 .
(5.5)

When W1(t) = 0 then U(t) = 0 and (5.3) implies V(t) = 0, so W2(t) = 0. Consequently
W1(t) = 0 =⇒W2(t) = 0. Similarly W2(t) = 0 =⇒W1(t) = 0. Thus (5.5) gives

W ′′1 =
k−

√

k2 + 4α f l2W2

2αl2 ,

W ′′2 =
−k +

√

k2 + 4β f l2W1

2βl2 .
(5.6)
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Next, we take in (5.6)
Y1 = k2 + 4β f l2W1, Y2 = k2 + 4α f l2W2

to get

Y′′1 =
2β f

α
(k−

√

Y2),

Y′′2 =
2α f

β
(−k +

√

Y1).
(5.7)

Next, we set

Yi(t) = k2Zi

(

√

2 f

k
t

)

, i = 1, 2

in (5.7) to obtain
Z′′1 = µ−1(1−

√
Z2),

Z′′2 = µ(−1 +
√

Z1).
(5.8)

for
µ =

α

β
.

Taking

X =









Z1

Z2

Z′1
Z′2









=









x1

x2

x3

x4









,

(5.8) becomes

X′ = G(X) =









x3

x4

µ−1(1−√x2)

µ(−1 +
√

x1)









. (5.9)

Note (5.9) has a unique equilibrium

X1 =









1
1
0
0









and its Jacobian matrix is

DG(X1) =











0 0 1 0
0 0 0 1
0 − 1

2µ 0 0
µ
2 0 0 0











with eigenvalues
−1− ı

2
,
−1 + ı

2
,

1− ı

2
,

1 + ı

2
and the corresponding complex eigenvectors











− 1+ı
µ

−1 + ı
ı
µ

1











,











− 1−ı
µ

−1− ı

− ı
µ

1











,











1−ı
µ

1 + ı

− ı
µ

1











,











1+ı
µ

1− ı
ı
µ

1











.
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Consequently, X1 is a hyperbolic equilibrium. Thus we have the following result similar to
the statement of Theorem 3.2.

Theorem 5.1. There is a 4-parametrized family of spacial waves solutions of (5.2) asymptotic to the

equilibrium.

Furthermore, (5.9) has a first integral

I(x1, x2, x3, x4) = x3x4 − µ−1
[

x2 −
2
3

x3/2
2

]

− µ

[

−x1 +
2
3

x3/2
1

]

.

Its reduction on the level
I(x1, x2, x3, x4) = C (5.10)

is given by
x′1 = x3,

x3x′2 = µ−1
[

x2 −
2
3

x3/2
2

]

+ µ

[

−x1 +
2
3

x3/2
1

]

+ C,

x′3 = µ−1(1−√x2).

(5.11)

(5.11) is an implicit ODE [15, 29] and its analysis seems to be difficult in general. Some
numerical simulations should help. On the other hand, taking

yi(t) = xi(µt), i = 1, 2, 3, (5.12)

we get
y′1 = µy3,

y3y′2 = y2 −
2
3

y3/2
2 + Cµ + µ2

[

−y1 +
2
3

y3/2
1

]

,

y′3 = 1−√y2.

(5.13)

(5.13) is reducing for µ = 0 to
y′1 = 0

y3y′2 = y2 −
2
3

y3/2
2

y′3 = 1−√y2.

(5.14)

The first equation of (5.14) gives y1(t) = y1(0), and the second and third ones imply

dy3

y3
=

1−√y2

y2 − 2
3 y3/2

2

dy2. (5.15)

Integrating (5.15), we have
ln y3 = ln(y2(2

√
y2 − 3)) + C̃

for a constant C̃, which implies
y3 = C0(3− 2

√
y2)y2 (5.16)

for a constant C0. Note y1, y2 and y3 are depending on t, so differentiating (5.16) with respect
to t, we get

y′3 = 3C0(1−
√

y2)y
′
2,
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which together with the third equation of (5.14) give

3C0y′2 = 1,

which possesses a solution

y2(t) =
t

3C0
+ y2(0)

and (5.16) leads to

y3(t) = C0

(

3− 2

√

t

3C0
+ y2(0)

)(

t

3C0
+ y2(0)

)

.

Clearly

y3(0) = C0

(

3− 2
√

y2(0)
)

y2(0).

Consequently, (5.13) has a solution

y1(t) = y1(0) + O(µ),

y2(t) =
t

3C0
+ y2(0) + O(µ),

y3(t) = C0

(

3− 2

√

t

3C0
+ y2(0)

)(

t

3C0
+ y2(0)

)

+ O(µ),

C0 =
y3(0)

(3− 2
√

y2(0))y2(0)
.

(5.17)

Summarizing, (5.17), (5.12) and (5.10) give a first order approximate solution of (5.9) with
respect to µ small. Higher orders can be computed similarly. But since the right hand side of
(5.13) is not analytic, it is better instead of (5.13) to take

u2
1 = y1, u2

2 = y2, u3 = y3

and consider
2u1u′1 = µu3,

2u3u2u′2 = u2
2 −

2
3

u3
2 + Cµ + µ2

[

−u2
1 +

2
3

u3
1

]

,

u′3 = 1− u2.

(5.18)

Then we expand

ui(t) =
r

∑
k=0

µkuik(t), i = 1, 2, 3, uik(0) = 0, k ≥ 1 (5.19)

and plugging (5.19) into (5.18), we derive other terms. By (5.17), we have

u10(t) = u1(0),

u20(t) =

√

t

3C0
+ u2(0)2,

u30(t) = C0

(

3− 2

√

t

3C0
+ u2(0)2

)(

t

3C0
+ u2(0)2

)

,

C0 =
u3(0)

(3− 2u2(0))u2(0)2 .
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Note that (5.18) is not solvable at the surface u1u2u3 = 0, so it is implicit in the terminology
of [15, 29]. But it is orbitally equivalent for u1u2u3 ̸= 0 to a standard ODE

û′1 = µû2û2
3,

û′2 = û1û2
2 −

2
3

û1û3
2 + Cµ + µ2û1

[

−û2
1 +

2
3

û3
1

]

,

û′3 = û1û2û3 − û1û2
2û3.

(5.20)

Hence expansion (5.19) really works for (5.18).

6 Conclusion

We use Prandtl mixing-length theory and semiempirical theory to extend the classical prob-
lem of the wind in the steady atmospheric Ekman layer with constant eddy viscosity. This
establishes new generalized atmospheric Ekman equations. Then paper deals with the exis-
tence of spatial wave solutions for these generalized atmospheric Ekman equations. Such kind
of solutions are determined by certain 4-dimensional autonomous ODEs with quadratic non-
linearities. We apply methods of dynamical systems for investigating qualitative properties
of these ODEs. The existence of families of asymptotic and periodic spatial wave solutions
is proved. Exact and approximative solutions of the corresponding ODEs are also derived.
Two figures are presented for visualization of certain these solutions. The derived spatial
wave ODEs are nonlinear and could be implicit, so their study is difficult in general. Conse-
quently, there are still many open challenging problems for further research such as existence
or nonexistence of quasiperiodic, homoclinic or even chaotic solutions.
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[19] Y. Guan, M. Fečkan, J. Wang, Explicit solution of atmospheric Ekman flows with some
types of Eddy viscosity, Monatsh Math. 197(2022), 71–84. https://doi.org/10.1007/

s00605-021-01551-7; MR4368631
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22 M. Fečkan, Y. Guan and J. Wang

[34] Y. Yoshikawa, A. Masuda, Seasonal variations in the speed factor and deflection angle
of the wind-driven surface flow in the Tsushima Strait, J. Geophys. Res. 114(2009), C12022.
https://doi.org/10.1029/2009JC005632



Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 64, 1–28; https://doi.org/10.14232/ejqtde.2022.1.64 www.math.u-szeged.hu/ejqtde/

Asymptotic behavior of multiple solutions for

quasilinear Schrödinger equations

Xian Zhang1 and Chen HuangB 2

1Business School, University of Shanghai for Science and Technology, Shanghai, 200433, P. R. China
2College of Science, University of Shanghai for Science and Technology, Shanghai, 200433, P. R. China

Received 17 June 2022, appeared 20 December 2022

Communicated by Dimitri Mugnai

Abstract. This paper establishes the multiplicity of solutions for a class of quasilinear
Schrödinger elliptic equations:

−∆u + V(x)u − γ

2
∆(u2)u = f (x, u), x ∈ R

3,

where V(x) : R3 → R is a given potential and γ > 0. Furthermore, by the variational
argument and L∞-estimates, we are able to obtain the precise asymptotic behavior of
these solutions as γ → 0+.
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asymptotic behavior.
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1 Introduction

This paper deals with multiplicity and asymptotic behavior of solitary wave solutions for

quasilinear Schrödinger equations of the form

i∂tz = −∆z + W(x)z − l(x, |z|2)z − γ

2
[∆ρ(|z|2)]ρ′(|z|2)z, (1.1)

where z : R3 × R → C, W : R3 → R is a given potential, γ is a real constant and l, ρ are real

functions. Quasilinear equations of the form (1.1) have been established in the past in several

areas of physics with different types of ρ. For example, the case ρ(t) = t was used in [18] for

the superfluid film equation in plasma physics; the case ρ(t) = (1 + t)1/2 was considered for

the self-channeling of a high-power ultrashort laser in matter, see [11] and [12]. These types

of equations also appear in fluid mechanics [19], in the theory of Heidelberg ferromagnetism

and magnus [20], in dissipative quantum mechanics [17] and in condensed matter theory [27].

BCorresponding author. Email: chenhuangmath111@163.com
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We now consider the case of the superfluid film equation in plasma physics, namely ρ(t) =

t. If we look for standing waves, that is, solutions of the form z(t, x) := exp(−iEt)u(x) with

E > 0, we are lead to investigate the following elliptic equation

−∆u + V(x)u − γ

2
∆(u2)u = f (x, u), x ∈ R

3, (1.2)

with V(x) = W(x)− E and f : R3 × R → R given by f (x, t) := l(x, |t|2)t is a new nonlinear

term. Later on, we shall pose precisely the hypotheses on V and f .

Taking γ = 0, the equation (1.2) is a semilinear case, scholars have obtained a large number

of existence and multiplicity results based on variational methods, see e.g. [10, 14, 21, 22].

When γ > 0, the first existence of positive solutions is proved by Poppenberg, Schmitt and

Wang in [28] with a constrained minimization argument. While a general existence result

for (1.1) is due to Liu et al. in [25] through using of a change of variable to reformulate

the quasilinear problem (1.2) to a semilinear one in an Orlicz space framework. Colin and

Jeanjean in [13] used the same method of changing variables, but the classical Sobolev space

H1(RN) was chosen. We refer the readers to [5, 26, 31, 33, 34] for more results. Recently, in

[23], by using perturbation methods, Liu et al. proved the existence of nodal solutions for the

general quasilinear problem in bounded domains.

In the above references mentioned, the γ in the quasilinear problem (1.2) was assumed to

be a fixed constant. While, the constant γ represents several physical effect and is assumed

to be small in some situation. This indicates the importance of the study of the asymptotic

behavior of ground states as γ → 0+. But, asymptotic behavior of solutions for quasilinear

Schrödinger equations is much less studied. In [1], Adachi et al. considered the problem for

N = 3, λ > 0, γ > 0 and f (x, s) = |s|p−2s (4 < p < 6):

−∆u + λu − γ

2
∆(u2)u = |u|p−2u, x ∈ R

3. (1.3)

They showed the ground states uγ of (1.3) satisfies uγ → u0 in H2(R3) ∩ C2(R3) as γ → 0+,

where u0 is a unique ground state of

−∆u + λu = |u|p−2u, x ∈ R
3.

Then, in [34], Wang and Shen proved the asymptotic behavior of positive solutions for (1.3)

when p ∈ (2, 4), which complemented the result given by Adachi et al. in [1]. By applying

the blow-up analysis and the variational methods, in [2–4] Adachi et al. obtained the precise

asymptotic behavior of ground states when N ≥ 3 and the nonlinear term has H1-critical

growth or H1-supercritical growth.

However, the work in the literature always assumed that V(x) ≡ λ > 0 and studied the

asymptotic behavior of one ground state solution for (1.4). We are interested in the problem

that whether or not we can find the multiplicity of solutions for (1.4) with some suitable

potential conditions. Furthermore, as γ → 0+, whether these solutions have any asymptotic

behavior. Specifically, the main purpose of the present paper is to solve the following three

problems:

(Q1) We have the multiplicity of solutions for (1.4) in unbounded domains, which comple-

ments the results given by Liu et al. in [23].

(Q2) We obtain the asymptotic properties of solutions for (1.4) under some suitable potential

conditions. Our result, in the sense that we do not need the restrictive conditions V(x) ≡
λ > 0, improves the one obtained in [1].
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(Q3) All the papers mentioned above only studied the asymptotic behavior of a positive

ground state solution for (1.4). In this paper, we explore the asymptotic behavior of

multiple solutions for quasilinear Schrödinger equations. More precisely, we can obtain

the asymptotic behavior of sign-changing solution for (1.4).

For this purpose, we consider the multiplicity and asymptotic behavior of solutions for the

following one-parameter family of elliptic equations with general nonlinearities:

−∆u + V(x)u − γ

2
∆(u2)u = f (x, u), x ∈ R

3, (1.4)

where γ > 0 and V(x) ∈ C(R3, R) satisfying:

(V0) : V(x) ≥ V0 > 0 for all x ∈ R3;

(V1) : For any M, r > 0, there is a ball Br(y) centered at y with radius r such that

µ({x ∈ Br(y) : V(x) ≤ M}) → 0, as |y| → ∞.

Remark 1.1. The condition (V1) was firstly introduced by Bartsch, Pankov and Wang [8] to

guarantee the compactness of embeddings of the work space. The limit of condition (V1) can

be replaced by one of the following simpler conditions:

(V2) : V(x) ∈ C(R3), µ({x ∈ R3 : V(x) ≤ M}) < ∞ for any M > 0 (see [9]);

(V3) : V(x) ∈ C(R3), V(x) is coercive, i.e., lim|x|→∞ V(x) = ∞.

For the continuous nonlinearity f , we suppose that it satisfies the following conditions:

( f1) : there exist a constant C and p ∈ (4, 6) such that

| f (x, t)| ≤ C(1 + |t|p−1), for all x ∈ R
3, t ∈ R;

( f2) : limt→0
f (x,t)

t = 0 uniformly with respect to x ∈ R3;

( f3) : there exists θ > 4 such that

0 < θF(x, t) ≤ t f (x, t), for all x ∈ R
3, t ̸= 0,

where F(x, t) =
∫ t

0 f (x, s)ds.

Note that (1.4) is the Euler–Lagrange equation associated to the natural energy functional:

I(u) =
1

2

∫

R3
(1 + γu2)|∇u|2dx +

1

2

∫

R3
V(x)u2dx −

∫

R3
F(x, u)dx,

which is not well defined in H1(R3). Due to this fact, the usual variational methods can not be

applied directly. This difficulty makes problem like (1.4) interesting and challenging. Inspired

by the work of Shen [29], we first establish the existence of signed solutions for a modified

quasilinear Schrödinger equation

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = f (x, u), x ∈ R
3, (1.5)

where g(t) =
√

1 + γt2.
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In what follows, instead of using the dual method, we search the existence of sign-

changing solutions for the problem (1.4) via the perturbation method and invariant sets of

descending flow.

For asymptotic behavior of solutions for the problem (1.4), arguments we apply are rather

standard. Using a bootstrap argument, we obtain the uniform boundedness of L∞-norm of

uγ. Then we apply the uniform estimates for the energies to show the strong convergence in

H1
V(R

3) (H1
V(R

3) will be defined in Section 2), this is a key problem to the study.

Next, we give our main results.

Theorem 1.2. Assume that (V0), (V1), and ( f1)–( f3) hold. Then, for fixed γ ∈ (0, 1], the problem

(1.4) has at least three solutions: a positive solution uγ,1, a negative solution uγ,2 and a sign-changing

solution uγ,3.

Theorem 1.3. For fixed γ ∈ (0, 1], uγ,i (i = 1, 2, 3) are solutions of the problem (1.4). As γ → 0+,

then passing to a subsequence, there exist ui ∈ H1
V(R

3) ∩ L∞(R3) (i = 1, 2, 3) such that uγ,i → ui

strongly in H1
V(R

3), where u1 is a positive solution of problem

−∆u + V(x)u = f (x, u), x ∈ R
3. (1.6)

u2 is a negative solution of the problem (1.6) and u3 is a sign-changing solution of the problem (1.6).

Remark 1.4. In order to prove the existence of a sign-changing solution, we need a restriction

p > 4 because of the degeneracy of the quasilinear term. Moreover we require that p is

H1-subcritical to prove the L∞-norm of the solutions of (1.5) are uniformly bounded. Since

4 <
2N

N−2 if and only if N < 4. Hence we only show the asymptotic behavior of multiple

solutions for the quasilinear Schrödinger for N = 3.

This paper is organized as follows. In Section 2, we describe the variational framework

associated with the problem (1.4). We give the proofs of existence of signed and sign-changing

solutions in Sections 3–4, respectively. Section 5 is devoted to the study of asymptotic behavior

of solutions.

In what follows, C and Ci (i = 1, 2, . . . ) denote positive generic constants. In this paper,

the norms of Ls(RN)(s ≥ 1) is denoted by | · |s.

2 The modified problem

Let

H1
V(R

3) =

{
u ∈ H1(R3) :

∫

R3

(
|∇u|2 + V(x)u2

)
dx < +∞

}

with the inner product

⟨u, v⟩H1
V(R

3) =
∫

R3
(∇u · ∇v + V(x)uv) dx

and the norm

∥u∥2
H1

V
= ⟨u, u⟩H1

V(R
3).

From [9], we know that under the assumptions (V0) and (V1), the embedding H1
V(R

3) →֒
Ls(R3) is compact for each s ∈ [2, 6).

Note that (1.4) is the Euler–Lagrange equation associated to the natural energy functional:

Iγ(u) =
1

2

∫

R3
(1 + γu2)|∇u|2dx +

1

2

∫

R3
V(x)u2dx −

∫

R3
F(x, u)dx,
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which is not well defined in H1(R3) or H1
V(R

3). Inspired by [13, 29, 30], we consider the

following quasilinear Schrödinger equation:

−div(g2
γ(u)∇u) + gγ(u)g′γ(u)|∇u|2 + V(x)u = f (x, u), x ∈ R

3. (2.1)

Here we choose gγ(t) : R → R given by

gγ(t) =
√

1 + γt2.

It follows that gγ(t) ∈ C1(R, [1, ∞)), increases in [0,+∞) and decreases in (−∞, 0].

Next, we set

Gγ(t) =
∫ t

0
gγ(s)ds.

It is well known that Gγ(t) is an odd function and inverse function G−1
γ (t) exists. Moreover,

we summarize some properties of G−1
γ (t) as follows.

Lemma 2.1 ([30]).

(1) limt→0
G−1

γ (t)

t = 1;

(2) limt→+∞
G−1

γ (t)

t = 0;

(3) limt→+∞
|G−1

γ (t)|2
t = 2√

γ ;

(4) for all t, s ∈ R, then

Gγ(s) ≤ gγ(s)s, |G−1
γ (t)| ≤ |t|;

(5) 0 ≤ s
gγ(s)

g′γ(s) ≤ 1, for all s ∈ R;

(6) there exists a positive constant C independent of γ such that

|G−1
γ (t)| ≥

{
C|t| if |t| ≤ 1,

C|t|1/2 if |t| ≥ 1;

(7) there exists θ > 4 such that

0 <
θ

2
F(x, t)gγ(t) ≤ Gγ(t) f (x, t), for all x ∈ R

3, t ̸= 0.

In what follows, taking the change variable

v = Gγ(u) =
∫ u

0
gγ(s)ds,

we observe that the functional Iγ(u) can be written of the following way

Jγ(v) =
1

2

∫

R3
|∇v|2dx +

1

2

∫

R3
V(x)|G−1

γ (v)|2dx −
∫

R3
F(x, G−1

γ (v))dx.

From Lemma 2.1 and conditions (V0), (V1) and ( f1)–( f3), we obtain the functional Jγ(v) is

well-defined in H1
V(R

3), Jγ ∈ C1(H1
V(R

3), R) and

J′γ(v)ϕ =
∫

R3
∇v∇ϕdx +

∫

R3
V(x)

G−1
γ (v)

gγ(G
−1
γ (v))

ϕdx −
∫

R3

f (x, G−1
γ (v))

gγ(G
−1
γ (v))

ϕdx,
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for all ϕ ∈ H1
V(R

3).

Moreover, the critical points of the functional Jγ correspond to the weak solutions of the

following equation

−∆v + V(x)
G−1

γ (v)

gγ(G
−1
γ (v))

=
f (x, G−1

γ (v))

gγ(G
−1
γ (v))

, x ∈ R
3. (2.2)

It is clear that if v is a critical point of Jγ, u = G−1
γ (v) is a critical point of Iγ, i.e. u = G−1

γ (v)

is a solution of (1.4).

3 The existence of signed solutions

In this section we fix 1 ≥ γ > 0. Let u+ = max{u, 0} and u− = min{u, 0}. Set

I±γ (u) =
1

2

∫

R3
(1 + γu2)|∇u|2dx +

1

2

∫

R3
V(x)u2dx −

∫

R3
F(x, u±)dx

and

J±γ (v) := I±γ (G−1
γ (v)) =

1

2

∫

R3
|∇v|2dx +

1

2

∫

R3
V(x)|G−1

γ (v)|2dx −
∫

R3
F(x, (G−1

γ (v))±)dx.

Lemma 3.1. Assume that ( f1)–( f3), (V0) and (V1) hold. Then there exist ρ > 0 and e ∈ H1
V(R

3)

such that

J+γ (v) > 0, for ∥v∥H1
V
= ρ,

and J+γ (e) < 0.

Proof. By conditions ( f1), ( f2) and |G−1
γ (s)| ≤ |s|, for δ > 0 small enough, there exists Cδ > 0

such that

|F(x, G−1
γ (v)+)| ≤ δV(x)v2 + Cδ|v|p, for all x ∈ R

3,

since we have

lim
|t|→0

G−1
γ (t)

t
= 1,

and

lim
|t|→∞

G−1
γ (t)

t
= 0.

Then, setting Hγ(x, t) := − 1
2 V(x)|G−1

γ (t)|2 + F(x, (G−1
γ (t))+), it follows that

lim
t→0

Hγ(x, t)

t2
= −1

2
V(x) < 0, lim

t→+∞

Hγ(x, t)

t6
= 0, for all x ∈ R

3

and we have

J+γ (v) =
1

2

∫

R3
|∇v|2dx +

1

2

∫

R3
V(x)|G−1

γ (v)|2dx −
∫

R3
F(x, (G−1

γ (v))+)dx

≥ 1

2

∫

R3
|∇v|2dx −

∫

R3
Hγ(x, v)dx

≥ 1

2

∫

R3
|∇v|2dx + (

1

2
− δ)

∫

R3
V(x)|v|2dx − Cδ

∫

R3
|v|6dx

≥ C∥v∥2
H1

V
− C∥v∥6

H1
V

,
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where we need sufficiently small δ > 0 and the Sobolev inequality. Thus, it implies J+γ (v) has

local minimum at v = 0.

On the other hand, the condition ( f3) implies that

F(x, t) ≥ Ctθ − C, for all t > 0, x ∈ R
3.

For w ∈ C∞
0 (R3) with supp(w) = B1 and w(x) ≥ 0,

J+γ (tw) =
t2

2

∫

R3
|∇w|2dx +

1

2

∫

R3
V(x)|G−1

γ (tw)|2dx −
∫

R3
F(x, (G−1

γ (tw))+)dx

≤ t2

2

∫

R3
|∇w|2dx +

t2

2

∫

R3
V(x)|w|2dx − Ct

θ
2

∫

R3
|w| θ

2 dx − C.

Since θ > 4, it follows that J+γ (tw) → −∞ as t → ∞.

As a consequence of Lemma 3.1 and the Ambrosetti–Rabinowitz Mountain Pass Theorem,

for the constant

dγ = inf
η∈Γ

sup
t∈[0,1]

J+γ (η(t)),

where

Γ = {η : η ∈ C([0, 1], H1
V(R

3)), η(0) = 0, J+γ (η(1)) < 0},

there exists a Palais–Smale sequence {vn} at level dγ, that is J+γ (vn) → dγ and (J+γ )′(vn) → 0,

as n → ∞.

Lemma 3.2. Assume that ( f1)–( f3), (V0) and (V1) hold. Then the Palais–Smale sequence of J+γ is

bounded.

Proof. Let {vn} ⊂ H1
V(R

3) be a Palais–Smale sequence. Then

J+γ (vn) =
1

2

∫

R3
|∇vn|2dx +

1

2

∫

R3
V(x)|G−1

γ (vn)|2dx −
∫

R3
F(x, (G−1

γ (vn))+)dx

= dγ + on(1)
(3.1)

and for any ϕ ∈ H1
V(R

3), ⟨(J+γ )′(vn), ϕ⟩ = on(1)∥ϕ∥H1
V

, that is

∫

R3

(
∇vn∇ϕ + V(x)

G−1
γ (vn)

gγ(G
−1
γ (vn))

ϕ

)
dx −

∫

R3

f (x, (G−1
γ (vn))+)

g(G−1
γ (vn))

ϕdx = on(1)∥ϕ∥H1
V

. (3.2)

Fixing ϕ = vn, we deduce that

on(1)∥vn∥H1
V
= ⟨(J+γ )′(vn), vn⟩

=
∫

R3

(
|∇vn|2 + V(x)

G−1
γ (vn)

gγ(G
−1
γ (vn))

vn

)
dx

−
∫

R3

f (x, (G−1
γ (vn))+)

gγ(G
−1
γ (vn))

vndx.

(3.3)
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Therefore, by (3.1)–(3.3) and Lemma 2.1-(7), we have

θ

2
dγ + on(1) + on(1)∥vn∥H1

V
=

θ

2
J+γ (vn)− ⟨(J+γ )′(vn), vn⟩

≥ θ − 4

4

∫

R3
|∇vn|2dx

+
∫

R3
V(x)G−1

γ (vn)

(
θG−1

γ (vn)

4
− 1

gγ(G
−1
γ (vn))

vn

)
dx

−
∫

R3

(
θ

2
F(x, (G−1

γ (vn))
+)−

f (x, (G−1
γ (vn))+)

gγ(G
−1
γ (vn))

vn

)
dx

≥ θ − 4

4

(∫

R3
|∇vn|2dx +

∫

R3
V(x)(G−1

γ (vn))
2dx

)
.

Next, we will prove that there exists a constant C > 0 such that

∫

R3

(
|∇vn|2 + V(x)(G−1

γ (vn))
2
)

dx ≥ C∥vn∥2
H1

V
.

Otherwise, there exists a sequence {vnk
} ⊂ H1

V(R
3) such that

A2
k :=

∫

R3

(
|∇vnk

|2 + V(x)(G−1
γ (vnk

))2
)

dx <
1

k
∥vnk

∥2
H1

V
. (3.4)

Hence, by (3.4),
A2

k

∥vnk
∥2

H1
V

→ 0. Consequently, in Lemma 2.4 of [30], we get a contradiction. This

shows that ∥vn∥H1
V
< +∞.

Lemma 3.3. Assume that ( f1)–( f3), (V0) and (V1) hold. Then J+γ has a positive critical point.

Proof. First, we show that the sequence {vn} possesses a convergent subsequence in H1
V(R

3).

Indeed, by the boundedness of {vn} and the compactness of embedding H1
V(R

3) →֒ Ls(R3)

(2 ≤ s < 6), up to subsequence, one has vn ⇀ v weakly in H1
V(R

3), vn → v strongly in Ls(R3)

for all s ∈ [2, 6) and vn(x) → v(x) a.e. on R3.

By conditions ( f1), ( f2), Lemma 2.1-(4) and gγ(s) ≥ 1, one has

∣∣∣∣∣

∫

R3

(
f (x, (G−1

γ (vn))+)

gγ(G
−1
γ (vn))

−
f (x, (G−1

γ (v))+)

gγ(G
−1
γ (v))

)
(vn − v)dx

∣∣∣∣∣

≤ C
∫

R3

(
|G−1

γ (vn)|+ |G−1
γ (vn)|p−1 + |G−1

γ (v)|+ |G−1
γ (v)|p−1

)
|vn − v|dx

≤ C
∫

R3

(
|vn|+ |vn|p−1 + |v|+ |v|p−1

)
|vn − v|dx

≤ C
(
(|vn|2 + |v|2)|vn − v|2 + (|vn|p−1

p + |v|p−1
p )|vn − v|p

)
.

(3.5)

On the other hand, as in Lemma 2.5 of [30], we know that

∫

R3

(
|∇(vn − v)|2 + V(x)

(
G−1

γ (vn)

gγ(G
−1
γ (vn))

−
G−1

γ (v)

gγ(G
−1
γ (v))

)
(vn − v)

)
dx

≥ C∥vn − v∥2
H1

V
.

(3.6)
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By virtue of (3.5) and (3.6), we have

o(1) = ⟨(J+γ )′(vn)− (J+γ )′(v), vn − v⟩

=
∫

R3

(
|∇(vn − v)|2 + V(x)

(
G−1

γ (vn)

gγ(G
−1
γ (vn))

−
G−1

γ (v)

gγ(G
−1
γ (v))

)
(vn − v)

)
dx

−
∫

R3

(
f (x, (G−1

γ (vn))+)

gγ(G
−1
γ (vn))

−
f (x, (G−1

γ (v))+)

gγ(G
−1
γ (v))

)
(vn − v)dx

≥ C∥vn − v∥2
H1

V
+ o(1).

This implies vn → v strongly in H1
V(R

3). By standard regular arguments, the weak limit v

of {vn} is a critical point of J+γ . Furthermore, from vn → v strongly in H1
V(R

3) and v can be

shown to be positive critical point of Jγ by applying the maximum principle in [16]. Hence,

u = G−1
γ (v) is a positive weak solution of (1.4). By the similar argument, we know that the

equation (1.4) also has a negative weak solution.

The next two results establish the uniform boundedness of H1
V-norm of vγ. This important

estimate will be used in Section 5.

Lemma 3.4. Assume that ( f1)–( f3), (V0) and (V1) hold. Let vγ be a critical point of J+γ with

J+γ (vγ) = dγ. Then there exists C > 0 (independent of γ) such that

∥vγ∥2
H1

V
≤ Cdγ. (3.7)

Proof. Let vγ be a critical point of J+γ . Similar with Lemma 3.2, we get the following estimates

θ

2
dγ =

θ

2
J+γ (vγ)− ⟨(J+γ )′(vγ), vγ⟩

≥ θ − 4

4

∫

R3
|∇vγ|2dx

+
∫

R3
V(x)G−1

γ (vγ)

(
θG−1

γ (vγ)

4
− 1

gγ(G
−1
γ (vγ))

vγ

)
dx

−
∫

R3

(
θ

2
F(x, (G−1

γ (vγ))+)−
f (x, (G−1

γ (vγ))+)

gγ(G
−1
γ (vγ))

vγ

)
dx

≥ θ − 4

4

(∫

R3
|∇vγ|2dx +

∫

R3
V(x)(G−1

γ (vγ))
2dx

)

≥ C∥vγ∥2
H1

V
,

which implies ∥vγ∥2
H1

V
≤ Cdγ.

Lemma 3.5. Assume γ ∈ [0, 1]. Then there exist positive constants m1, m2 (independent on γ), such

that

m1 ≤ J+γ (vγ) ≤ m2,

where vγ is a positive critical point of J+γ .

Proof. For ρ > 0, let

Σρ =

{
v ∈ H1

V(R
3) :

∫

R3

(
|∇v|2 + V(x)v2

)
dx ≤ ρ2

}
.
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Similar with Lemma 3.1, we have

J+γ (v) =
1

2

∫

R3
|∇v|2dx +

1

2

∫

R3
V(x)|G−1

γ (v)|2dx −
∫

R3
F(x, (G−1

γ (v))+)dx

≥ 1

2

∫

R3
|∇v|2dx −

∫

R3
Hγ(x, v)dx

≥ 1

2

∫

R3
|∇v|2dx +

(
1

2
− δ

) ∫

R3
V(x)|v|2dx − Cδ

∫

R3
|v|6dx

≥ C∥v∥2
H1

V
− C∥v∥6

H1
V

,

where we need sufficiently small δ > 0 and the Sobolev inequality. Thus, if v ∈ ∂Σρ, take ρ

small enough, it implies that J+γ (v) ≥ Cρ2 := m1, where m1 does not depend on γ.

Note that

J+γ (vγ) = inf
η∈Γ

sup
t∈[0,1]

J+γ (η(t)),

where

Γ = {η : η ∈ C([0, 1], H1
V(R

3)), η(0) = 0, J+γ (η(1)) < 0}.

Since any path η(t) ∈ Γ always passes though ∂Σρ, then

J+γ (vγ) = inf
η∈Γ

sup
t∈[0,1]

J+γ (η(t)) ≥ inf
v∈∂Σρ

J+γ (v) ≥ m1.

Take ϕ ∈ C∞
0 (R3), ϕ ≥ 0, and define a path h : [0, 1] → H1

V(R
3) by h(t) = tTϕ, where the

constant T > 0. For T large enough, we have

J+γ (h(1)) ≤ J+1 (h(1)) < 0,
∫

R3
|∇h(1)|2 + V(x)(G−1

γ (h(1)))2dx > ρ2.

Due to h(t) ∈ Γ, then we get

J+γ (vγ) ≤ sup
t∈[0,1]

J+γ (h(t)) ≤ sup
t∈[0,1]

J+1 (h(t)) := m2,

where m2 does not depend on γ.

4 The existence of sign-changing solutions

The goal of this section is to consider the existence of sign-changing solutions. To do this, we

define the work space E as follows

E = W1,4(R3) ∩ H1
V(R

3),

where

H1
V(R

3) :=

{
u ∈ H1(R3) :

∫

R3
V(x)u2dx < +∞

}
,

which endowed with the norm

∥u∥H1
V
=

(∫

R3

(
|∇u|2 + V(x)u2

)
dx

)1/2
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and W1,4(R3) endowed with the norm

∥u∥W =

(∫

R3
(|∇u|4 + u4)dx

)1/4

.

The norm of E is denoted by

∥u∥E = ∥u∥W + ∥u∥H1
V

.

Remark 4.1. It is noteworthy that the embedding from H1
V(R

3) into L2(R3) is compact (see

[9]). Applying the interpolation inequality, we obtain that the embedding from E into Ls(R3)

for 2 ≤ s < 12 is compact.

In what follows, we formally formulate (1.4) in variational structure as follows

Iγ(u) =
1

2

∫

R3

(
|∇u|2 + V(x)u2 + γu2|∇u|2

)
dx −

∫

R3
F(x, u)dx. (4.1)

If u ∈ H1
V(R

3) ∩ L∞(R3) is a weak solution of (1.4), that is, for all ϕ ∈ C∞
0 (R3) the following

equation holds
∫

R3
(∇u∇ϕ + V(x)uϕ) dx + γ

∫

R3
u2∇u∇ϕdx + γ

∫

R3
|∇u|2uϕdx −

∫

R3
f (x, u)ϕdx = 0. (4.2)

Notice that Iγ is an ill-behaved functional in H1
V(R

3). To avoid this difficulty, in the sequel, for

each µ, γ > 0 fixed, let us consider the perturbation functional Iµ,γ : E → R associated with

(1.4) given by

Iµ,γ(u) =
µ

4

∫

R3

(
|∇u|4 + u4

)
dx + Iγ(u). (4.3)

By deducing as in [15] (see also [23]), it is normal to verify that Iµ,γ ∈ C1(E, R) and for each

ϕ ∈ E, we get

⟨I′µ,γ(u), ϕ⟩ = µ
∫

R3

(
|∇u|2∇u∇ϕ + u3 ϕ

)
dx +

∫

R3
(∇u∇ϕ + V(x)uϕ) dx

+ γ
∫

R3
u2∇u∇ϕdx + γ

∫

R3
|∇u|2uϕdx −

∫

R3
f (x, u)ϕdx.

(4.4)

In the following, we prove a compactness condition for Iµ,γ.

Lemma 4.2. For µ, γ > 0 fixed, then Iµ,γ satisfies the (PS) conditions.

Proof. Let {un} ⊂ E be a (PS) sequence for Iµ,γ, that is {un} satisfies:

|Iµ,γ(un)| ≤ c and I′µ,γ(un) → 0 as n → ∞.

Consider

Iµ,γ(un)−
1

θ
⟨I′µ,γ(un), un⟩

=
(µ

4
− µ

θ

)
∥un∥4

W +

(
1

2
− 1

θ

) ∫

R3

(
|∇un|2 + V(x)u2

n

)
dx

+

(
1

2
− 2

θ

)
γ
∫

R3
|∇un|2u2

ndx +
∫

R3

(
1

θ
un f (x, un)− F(x, un)

)
dx

≥
(µ

4
− µ

θ

)
∥un∥4

W +

(
1

2
− 1

θ

)
∥un∥2

H1
V

,

which deduces that {un} is bounded in E.

By a standard argument, we can prove that every bounded (PS) sequence

{un} ⊂ E of Iµ,γ possesses a convergent subsequence, cf. [15]. This completes the proof.
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In the following, we would like to construct a descending flow guaranteeing existence

of desired invariant sets for the functional Iµ,γ. For this purpose, we introduce an auxiliary

operator A : E → E, u 7→ Au := v satisfies

⟨J′µ,γ(v), ω⟩ = C0

∫

R3
u3ωdx +

∫

R3
f (x, u)ωdx, for all ω ∈ E, (4.5)

where

Jµ,γ(v) =
µ

4

∫

R3

(
|∇v|4 + v4

)
dx +

1

2

∫

R3

(
|∇v|2 + V(x)v2 + γv2|∇v|2

)
dx +

C0

4

∫

R3
v4dx,

and C0 > 0 large enough. It is normal to verify that Jµ,γ ∈ C1(E, R) and for all ω ∈ E we have

⟨J′µ,γ(v), ω⟩ = µ
∫

R3

(
|∇v|2∇v∇ω + v3ω

)
dx +

∫

R3
(∇v∇ω + V(x)vω) dx

+ γ
∫

R3

(
|∇v|2vω + v2∇v∇ω

)
dx + C0

∫

R3
v3ωdx.

Clearly, we notice that the following two statements are equivalent:

u is a fixed point of A and u is a critical point of Iµ,γ.

Lemma 4.3. For fixed µ ∈ (0, 1] and γ > 0, the operator u 7→ v = Au is well defined and continuous.

Moreover, there exist constants c1, c2, c3 > 0 such that

(1) ∥I′µ,γ(u)∥E∗ ≤ c1(∥u∥2
W + ∥Au∥2

W)∥u −Au∥W + c2∥u −Au∥H1
V

;

(2) ⟨I′µ,γ(u), u −Au⟩ ≥ c3(∥u −Au∥4
W + ∥u −Au∥2

H1
V
);

(3) for all u ∈ I−1
µ,γ([a, b]), if ∥I′µ,γ(u)∥E∗ ≥ α > 0, then there exists δ > 0 such that ∥u−Au∥E ≥ δ.

Proof. To prove the operator u 7→ v = Au is well defined and continuous, we consider

Φµ,γ(v) =
µ

4

∫

R3

(
|∇v|4 + v4

)
dx +

1

2

∫

R3

(
|∇v|2 + V(x)v2 + γv2|∇v|2

)
dx

+
C0

4

∫

R3
v4dx − C0

4

∫

R3
u3vdx −

∫

R3
f (x, u)vdx, for all v ∈ E.

Obviously, Φµ,γ ∈ C1(E, R). And one can see that Φµ,γ is weakly lower semicontinuous.

From conditions ( f1), ( f2) and the Sobolev embeddings theorem, for any δ > 0, there

exists Cδ, such that

∫

R3

(
C0

4
u3 + f (x, u)

)
vdx ≤ C0

4
|u|36|v|2 + δ|u|2|v|2 + Cδ|u|p−1

p |v|p ≤ C∥v∥E.

This deduces

Φµ,γ(v) ≥ C(∥v∥4
W + ∥v∥2

H1
V
)− C∥v∥E → +∞, as ∥v∥E → +∞.

Therefore, the functional Φµ,γ is coercive. We can see that the functional Φµ,γ is bounded from

below and maps bounded sets into bounded sets. In the following, we shall prove that the
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functional Φµ,γ is also strictly convex. In fact, since

⟨Φ′
µ,γ(v)− Φ′

µ,γ(ω), v − ω⟩

= 3µ
∫ 1

0

∫

R3
|∇θt|2|∇(v − ω)|2dxdt + 3µ

∫ 1

0

∫

R3
θ2

t (v − ω)2dxdt

+
∫

R3
(|∇(v − ω)|2 + V(x)(v − ω)2)dx + 4γ

∫ 1

0

∫

R3
∇θt∇(v − ω)θt(v − ω)dxdt

+ γ
∫ 1

0

∫

R3
|∇θt|2(v − ω)2dxdt + γ

∫ 1

0

∫

R3
θ2

t |∇(v − ω)|2dxdt

+ 3C0

∫ 1

0

∫

R3
θ2

t (v − ω)2dxdt,

where θt = tv + (1 − t)ω (t ∈ (0, 1)). By Young’s inequality, for any δ > 0, there exists Cδ > 0,

such that
∣∣∣∣4γ

∫ 1

0

∫

R3
∇θt∇(v − ω)θt(v − ω)dxdt

∣∣∣∣

≤ δ
∫ 1

0

∫

R3
|∇θt|2|∇(v − ω)|2dxdt + Cδ

∫ 1

0

∫

R3
θ2

t (v − ω)2dxdt.

Taking δ = 3µ
2 and choosing C0 >

C 3µ
2

3 , if v ̸= ω, we get

⟨Φ′
µ,γ(v)− Φ′

µ,γ(ω), v − ω⟩

≥ µ

2

∫

R3

(
(|∇v|2∇v − |∇ω|2∇ω)∇(v − ω) + (v3 − ω3)(v − ω)

)
dx

+
∫

R3

(
|∇(v − ω)|2 + V(x)(v − ω)2

)
dx

≥ C(∥v − ω∥4
W + ∥v − ω∥2

H1
V
)

> 0.

(4.6)

From the above analysis, we obtain that the functional Φµ,γ is coercive, bounded below,

weakly lower semicontinuous and strictly convex. Thus, the functional Φµ,γ admits a unique

minimizer v = A(u). Moreover, the operator A maps bounded sets into bounded sets.

Next, we will verify the continuity of the operator A on E. To prove this, let

K(u) =
C0

4

∫

R3
u4dx +

∫

R3
F(x, u)dx.

If {un} ⊂ E satisfying un → u strongly in E, setting v = A(u) and vn = A(un), then we can

obtain

⟨J′µ,γ(vn)− J′µ,γ(v), ω⟩ = ⟨K′(un)− K′(u), ω⟩, for all ω ∈ E. (4.7)

Furthermore, by the similar estimates of (4.6), for C0 large enough, we get

⟨J′µ,γ(vn)− J′µ,γ(v), vn − v⟩

≥ µ

2

∫

R3

(
(|∇vn|2∇vn − |∇v|2∇v)∇(vn − v) + (v3

n − v3)(vn − v)
)

dx

+
∫

R3

(
|∇(vn − v)|2 + V(x)(vn − v)2

)
dx

≥ C(∥vn − v∥4
W + ∥vn − v∥2

H1
V
).

(4.8)
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Then, combining (4.7) with (4.8), we have

C(∥vn − v∥4
W + ∥vn − v∥2

H1
V
) ≤ ⟨J′µ,γ(vn)− J′µ,γ(v), vn − v⟩
= ⟨K′(un)− K′(u), vn − v⟩
≤ ∥K′(un)− K′(u)∥E∗∥vn − v∥E.

Since K ∈ C1(E, R) and un → u strongly in E, we get that vn → v strongly in E and the

operator A is continuous.

Next, we shall verify (1) and (2) as follows. By (4.5), we get

⟨I′µ,γ(u), ϕ⟩ = ⟨J′µ,γ(u)− J′µ,γ(v), ϕ⟩, for ϕ ∈ E. (4.9)

Furthermore, we have the following estimates

⟨J′µ,γ(u)− J′µ,γ(v), ϕ⟩

= 3µ
∫ 1

0

∫

R3
|∇ωt|2∇(u − v)∇ϕdxdt + 3µ

∫ 1

0

∫

R3
ω2

t (u − v)ϕdxdt

+
∫

R3
(∇(u − v)∇ϕ + V(x)(u − v)ϕ)dx + 2γ

∫ 1

0

∫

R3
∇ωt∇(u − v)ωt ϕdxdt

+ γ
∫ 1

0

∫

R3
|∇ωt|2(u − v)ϕdxdt + 2γ

∫ 1

0

∫

R3
ωt(u − v)∇ωt∇ϕdxdt

+ γ
∫ 1

0

∫

R3
ω2

t ∇(u − v)∇ϕdxdt + 3C0

∫ 1

0

∫

R3
ω2

t (u − v)ϕdxdt,

(4.10)

where ωt = tu + (1− t)v. By |ωt| ≤ |u|+ |v|, |∇ωt| ≤ |∇u|+ |∇v|, the Hölder inequality and

(4.9), we can get

|⟨I′λ(u), ϕ⟩| ≤ c1(∥u∥2
W + ∥v∥2

W)∥u − v∥W∥ϕ∥E + c2∥u − v∥H1
V
∥ϕ∥E.

In fact, there hold

3µ
∫ 1

0

∫

R3
|∇ωt|2∇(u − v)∇ϕdxdt + 3µ

∫ 1

0

∫

R3
ω2

t (u − v)ϕdxdt

≤ C(|∇u|24 + |∇v|24)|∇(u − v)|4|∇ϕ|4 + C(|u|24 + |v|24)|u − v|4|ϕ|4
≤ C(∥u∥2

W + ∥v∥2
W)∥u − v∥W∥ϕ∥E

and ∫

R3
(∇(u − v)∇ϕ + V(x)(u − v)ϕ)dx ≤ C∥u − v∥H1

V
∥ϕ∥E.

Using similar methods, we can also estimate other terms in (4.10). Hence

∥I′µ,γ(u)∥E∗ ≤ c1(∥u∥2
W + ∥v∥2

W)∥u − v∥W + c2∥u − v∥H1
V

.

For (2), by the similar estimates of (4.6), set ϕ = u − v, we have

⟨I′µ,γ(u), u − v⟩ = ⟨J′µ,γ(u)− J′µ,γ(v), u − v⟩

≥ µ

2

∫

R3

(
(|∇u|2∇u − |∇v|2∇v)∇(u − v) + (u3 − v3)(u − v)

)
dx

+
∫

R3

(
|∇(u − v)|2 + V(x)(u − v)2

)
dx

≥ c3(∥u − v∥4
W + ∥u − v∥2

H1
V
).
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In order to prove (3), we consider

Iµ,γ(u)−
1

θ
⟨I′µ,γ(u), u⟩

=
(µ

4
− µ

θ

)
∥u∥4

W +

(
1

2
− 1

θ

) ∫

R3

(
|∇u|2 + V(x)u2

)
dx

+

(
γ

2
− 2γ

θ

) ∫

R3
|∇u|2u2dx +

∫

R3

(
1

θ
u f (x, u)− F(x, u)

)
dx

≥
(µ

4
− µ

θ

)
∥u∥4

W +

(
1

2
− 1

θ

)
∥u∥2

H1
V

.

Hence, for any δ > 0, there exists Cδ, such that

∥u∥4
W + ∥u∥2

H1
V
≤ C(|Iµ,γ(u)|+ ∥I′µ,γ(u)∥E∗∥u∥E)

= C(|Iµ,γ(u)|+ ∥I′µ,γ(u)∥E∗(∥u∥W + ∥u∥H1
V
))

≤ C(|Iµ,γ(u)|+ Cδ∥I′µ,γ(u)∥4/3
E∗ + δ∥u∥4

W + Cδ∥I′µ,γ(u)∥2
E∗ + δ∥u∥2

H1
V
).

Taking δ > 0 small enough, by direct calculation, we obtain the following estimates

∥u∥2
W ≤ C(1 + |Iµ,γ(u)|1/2 + ∥I′µ,γ(u)∥E∗) (4.11)

Combining (4.11) and Lemma 4.3-(1), we can obtain

∥I′µ,γ(u)∥E∗ ≤ c1(∥u∥2
W + ∥v∥2

W)∥u − v∥W + c2∥u − v∥H1
V

≤ C(1 + ∥u∥2
W + ∥u − v∥2

E)∥u − v∥E

≤ C̃(1 + |Iµ,γ(u)|1/2 + ∥I′µ,γ(u)∥E∗ + ∥u − v∥2
E)∥u − v∥E.

For u ∈ I−1
µ,γ([a, b]) and ∥I′µ,γ(u)∥E∗ ≥ α > 0, without loss of generality, let ∥u − v∥E ≤ 1

2C̃
, we

obtain

∥I′µ,γ(u)∥E∗ ≤ C̃

(
1 + b1/2 +

1

(2C̃)2

)
∥u − v∥E +

1

2
∥I′µ,γ(u)∥E∗ ,

and

∥u − v∥E ≥ C∥I′λ(u)∥E∗ ≥ Cα.

Consider a positive cone P in E defined by P := {u ∈ E : u ≥ 0 a.e. on x ∈ R3}. For an

arbitrary ε > 0, let

P±
ε =

{
u ∈ E : V0

∫

R3
u2
∓dx + S

(∫

R3
|u∓|6dx

) 1
3

< ε

}
,

where S = infu∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

(
∫

R3 |u|6dx)1/3 , u+ = max{u, 0}, u− = min{u, 0}.

Lemma 4.4. There exists ε0 > 0 such that for all ε ∈ (0, ε0), then

A(∂P+
ε ) ⊂ P+

ε and A(∂P−
ε ) ⊂ P−

ε .
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Proof. Since the proofs of the two conclusions are similar, we just give the proof of A(∂P+
ε ) ⊂

P+
ε .

Let u ∈ E, v = A(u), v satisfying (4.5). Taking ω = v−, we have

µ
∫

R3

(
|∇v−|4 + v4

−
)

dx +
∫

R3

(
|∇v−|2 + V(x)v2

−
)

dx

+ 2γ
∫

R3
|∇v−|2v2

−dx + C0

∫

R3
v4
−dx

= C0

∫

R3
u3v−dx +

∫

R3
f (x, u)v−dx.

(4.12)

Next, we will give the estimates of both sides of above equality. On one hand, we have

µ
∫

R3

(
|∇v−|4 + v4

−
)

dx +
∫

R3

(
|∇v−|2 + V(x)v2

−
)

dx

+ 2γ
∫

R3
|∇v−|2v2

−dx + C0

∫

R3
v4
−dx

≥ V0

∫

R3
v2
−dx + S

(∫

R3
|v−|6dx

)1/3

.

(4.13)

On the other hand, by Young inequality, we obtain

C0

∫

R3
u3v−dx +

∫

R3
f (u)v−dx

≤ δ
∫

R3
u−v−dx + Cδ

∫

R3
u5
−v−dx

≤ 1

2
δ
∫

R3
(u2

− + v2
−)dx +

S

2

(∫

R3
|v−|6dx

)1/3

+ Cδ

(∫

R3
|u−|6dx

)5/3

, for any δ > 0.

(4.14)

Fix δ = V0 and choose ε0 such that Cδ(
ε0
S )

4 ≤ S
2 . For 0 < ε < ε0 and u ∈ P+

ε , we have

Cδ

(∫

R3
|u−|6dx

)4/3

≤ Cδ

( ε

S

)4
≤ S

2
. (4.15)

By (4.13)–(4.15), we get

V0

∫

R3
v2
−dx + S

(∫

R3
|v−|6dx

) 1
3

≤ V0

∫

R3
u2
−dx + S

(∫

R3
|u−|6dx

) 1
3

.

Therefore, for u ∈ ∂P+
ε , u ̸= 0, we have

V0

∫

R3
v2
−dx + S

(∫

R3
|v−|6dx

) 1
3

< ε,

which implies v ∈ P+
ε . This completes the proof.

From the above analysis, we know that A is merely continuous. But A itself is not ap-

plicable to construct a descending flow for Iµ,γ, and we have to construct a locally Lipschitz

continuous operator B which inherits the main properties of A.
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Lemma 4.5. Let E0 = E \ K, K = {u ∈ E : I′µ,γ(u) = 0}. There exist a locally Lipschitz continuous

operator B : E0 → E such that

(1) 1
2∥u −B(u)∥E ≤ ∥u −A(u)∥E ≤ 2∥u −B(u)∥E for all u ∈ E0;

(2) ⟨I′µ,γ(u), u −B(u)⟩ ≥ c∗3(∥u −Bu∥4
W + ∥u −Bu∥2

H1
V
) for all u ∈ E0;

(3) ∥I′µ,γ(u)∥E∗ ≤ c∗1(∥u∥2
W + ∥Bu∥2

W)∥u −Bu∥W + c∗2∥u −Bu∥H1
V

for all u ∈ E0;

(4) B(∂P+
ε ) ⊂ P+

ε , B(∂P−
ε ) ⊂ P−

ε for ε ∈ (0, ε0),

where c∗1 , c∗2 , c∗3 are different constants.

Proof. The proof is similar to the proofs in [6] and [7]. We omit the details.

From the above discussions, it is worth pointing that P+
ε and P−

ε are invariant sets of

descending flow τ, where ε ∈ (0, ε0) and τ satisfies the following initial value problem

{
d
dt τ(t, u) = −(id −B)τ(t, u),

τ(0, u) = u.

By applying invariant sets of descending flow, we can find one sign-changing critical point

of the functional Iµ,γ. For this purpose, we adapt some abstract results in [24].

Let I ∈ C1(E, R), P, Q ⊂ E be open sets, M = P ∩ Q, Σ = ∂P ∩ ∂Q and W = P ∪ Q. For

c ∈ R, let Kc = {u ∈ E : I(u) = c, I′(u) = 0} and Ic = {u ∈ E : I(u) ≤ c}.

Definition 4.6. {P, Q} is called an admissible family of invariant sets with respect to I at level

c, provided that the following deformation property holds: if Kc \ W = ∅, then, there exists

ε1 > 0 such that for ε ∈ (0, ε1), there exists η ∈ C(E, E) satisfying

(1) η(P) ⊂ P, η(Q) ⊂ Q;

(2) η|Ic−2ε = id;

(3) η(Ic+ε \ W) ⊂ Ic−ε.

Theorem 4.7 ([24]). Assume that {P, Q} is an admissible family of invariant sets with respect to I at

any level c ≥ c∗ := infu∈Σ I(u) and there exists a map ϕ0 : χ → E satisfying

(1) ϕ0(∂1χ) ⊂ P and ϕ0(∂2χ) ⊂ Q;

(2) ϕ0(∂0χ) ∩ M = ∅;

(3) supu∈ϕ0(∂0χ) I(u) < c∗,

where χ = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 ≤ 1}, ∂1χ = {0} × [0, 1], ∂2χ = [0, 1] × {0} and

∂0χ = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 = 1}. Define

c = inf
ϕ∈Γ

sup
u∈ϕ(χ)\W

I(u),

where Γ := {ϕ ∈ C(χ, E) : ϕ(∂1χ) ⊂ P, ϕ(∂2χ) ⊂ Q, ϕ|∂0χ = ϕ0|∂0χ}. Then c ≥ c∗, and

Kc \ W ̸= ∅.
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To apply Theorem 4.7 to obtain one sign-changing critical point of Iµ,γ, we take P = P+
ε ,

Q = P−
ε , I = Iµ,γ. Then we need to prove the following crucial lemma.

Lemma 4.8. If Kc \ W = ∅, then there exists ε2 > 0 such that, for 0 < ε < ε′ < ε2, there exists a

continuous map σ : [0, 1]× E → E satisfying

(1) σ(0, u) = u for u ∈ E;

(2) σ(t, u) = u for t ∈ [0, 1], u /∈ I−1
µ,γ[c − ε′, c + ε′];

(3) σ(1, Ic+ε
µ,γ \ W) ⊂ Ic−ε

µ,γ ;

(4) σ(t, P+
ε ) ⊂ P+

ε and σ(t, P−
ε ) ⊂ P−

ε for t ∈ [0, 1].

Proof. The proof is similar to many existing literature (see [25, 32]). For the readers’ conve-

nience, here we give the details.

Let Nδ(Kc) := {u ∈ E : d(E, Kc) < δ}. If Kc \ W = ∅, then Kc ⊂ W. Thus for δ > 0 small

enough, we get

Nδ(Kc) ⊂ W.

By Lemma 4.2, we know that Iµ,γ satisfies the (PS)-condition. Hence Kc is compact and exist

ε2, α > 0 such that

∥I′µ,γ(u)∥E∗ ≥ α, for all u ∈ I−1
µ,γ([c − ε2, c + ε2]) \ Nδ/2(Kc).

Using Lemma 4.3-(3) and Lemma 4.5-(1),(2), we can find β > 0 such that

⟨I′µ,γ(u),
u − Bu

∥u − Bu∥E
⟩ ≥ β, for all u ∈ I−1

µ,γ([c − ε2, c + ε2]) \ Nδ/2(Kc).

Assume

ε2 < min{βδ

4
, ε0},

where ε0 is defined in Lemma 4.4. Defining two Lipschitz continuous functionals g, q : E →
[0, 1], satisfying

g(u) =

{
0, if u ∈ Nδ/4(Kc),

1, if u /∈ Nδ/2(Kc)

and

q(u) =

{
0, if u /∈ I−1

µ,γ([c − ε′, c + ε′]),

1, if u ∈ I−1
µ,γ([c − ε, c + ε]).

Consider the following initial value problem

{
dτ(t,u)

dt = −Φ(τ(t, u)),

τ(0, u) = u,
(4.16)

where Φ(u) = g(u)q(u) u−Bu
∥u−Bu∥E

. Using the existence and uniqueness theory of ODE, we obtain

that the problem (4.16) has a unique solution τ(·, u) ∈ C(R+, E). Let σ(t, u) = τ( 2ε
β t, u), then

we verify (1)–(3). In fact, (1) and (2) are obvious. It suffices to verify (3). To do this, we

consider the following two cases.
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Case 1. There exists t0 ∈ [0, 2ε
β ] such that Iµ,γ(τ(t0, u)) < c − ε. Using Lemma 4.5-(2), we

obtain that Iµ,γ(τ(t, u) is decreasing for t ≥ 0. Therefore, Iµ,γ(σ(1, u)) ≤ c − ε.

Case 2. For u ∈ Ic+ε
µ,γ \ W and t ∈ [0, 2ε

β ], then Iµ,γ(τ(t, u)) > c − ε. In this case, we claim

that τ(t, u) ∈ Nδ/2(Kc) for any t ∈ [0, 2ε
β ]. Indeed, if for some t0 ∈ [0, 2ε

β ] such that τ(t0, u) ∈
Nδ/2(Kc), then

δ

2
≤ ∥τ(t0, u)− u∥E ≤

∫ t0

0
∥τ′(s, u)∥Eds ≤ t0 <

δ

2
,

which is a contradiction. Thus, g(τ(t, u))q(τ(t, u)) ≡ 1 for all t ∈ [0, 2ε
β ]. Hence,

Iµ,γ(σ(1, u)) = Iµ,γ(τ(
2ε

β
, u))

= Iµ,γ(u)−
∫ 2ε

β

0
⟨I′µ,γ(τ(s, u)), Φ(τ(s, u))⟩ds

≤ c + ε − 2ε

= c − ε.

The proof is completed.

Next, we will construct ϕ0 satisfying the hypotheses in Theorem 4.7. Choose u1, u2 ∈
C∞

0 (R3) which satisfy supp(u1) ∩ supp(u2) = ∅ and u1 ≤ 0, u2 ≥ 0. Let ϕ0(t, s) := R(tu1 +

su2) for (t, s) ∈ χ, where χ = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 ≤ 1} and R is a positive constant

to be determined later. Obviously, for t, s ∈ [0, 1], ϕ0(0, s) = Rsu2 ∈ P+
ε and ϕ0(t, 0) = Rtu1 ∈

P−
ε .

Lemma 4.9. Assume that (V0), (V1) and ( f1)–( f3) hold. Then the functional Iµ,γ has a sign-changing

critical point.

Proof. It is sufficient to check assumptions (2)–(3) in applying Theorem 4.7.

Notice that ρ = min{|tu1 + (1 − t)u2|2 : 0 ≤ t ≤ 1} > 0. Then,

|u|2 ≥ ρR for u ∈ ϕ0(∂0χ).

Furthermore, for u ∈ M = P+
ε ∩ P−

ε , we have that

|u|22 ≤ 2

V0
ε.

Hence, ϕ0(∂0χ) ∩ M = ∅ for R large enough.

To verify (3), for any u ∈ Σ, from the conditions ( f1) and ( f2) and the definition of Σ, for

all δ > 0, there exists Cδ > 0, such that

Iµ,γ(u) ≥ −
∫

R3
F(x, u)dx ≥ −δ

∫

R3
u2dx − Cδ

∫

R3
u6dx ≥ −C(ε + ε3),

which implies that

c∗ ≥ −C(ε + ε3). (4.17)

On the other hand, by the condition ( f3), we have F(x, t) ≥ C|t|θ for all x ∈ R3. For any

u ∈ ϕ0(∂0χ), then

Iµ,γ(u) =
µ

4
∥u∥4

W +
1

2
∥u∥2

H1
V
+

γ

2

∫

R3
u2|∇u|2dx −

∫

supp(u1)∩supp(u2)
F(x, u)dx

≤ µ

4
∥u∥4

W +
1

2
∥u∥2

H1
V
+

γ

2

∫

R3
u2|∇u|2dx − C|u|θθ

≤ C∥u∥4
E − C|u|θθ ,

(4.18)
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which together with (4.17) implies that for R large enough and ε small enough, we obtain

sup
u∈ϕ0(∂0χ)

Iµ,γ(u) < c∗.

Hence, by Theorem 4.7, Iµ,γ has at least one critical point u in E \ (P+
ε ∪ P−

ε ).

The next result establishes an important estimate associated with critical values.

Lemma 4.10. Assume 0 < µ < 1 and 0 < γ < 1. Then there exists a positive constant m3

(independent on µ and γ), such that

Iµ,γ(uµ,γ) ≤ m3,

where uµ,γ is a sign-changing critical point of Iµ,γ.

Proof. For fixed 0 < µ < 1 and 0 < γ < 1, take a path ϕ1,1(s, t) : [0, 1] × [0, 1] → E \ {0},

ϕ1,1(t, s) := T(tu1 + su2), where the constant T > R (R is defined in the proof of Lemma 4.9).

A simple computation ensures that ϕ1,1(0, s) ∈ P+
ε , ϕ1,1(t, 0) ∈ P−

ε and ϕ1,1(∂0χ) ∩ M = ∅. By

the similar estimates of (4.18), taking T sufficiently large, we obtain

I1,1(ϕ1,1(t, s)) ≤ −C1 for all (t, s) ∈ ∂0χ, (4.19)

where C1 > 0 is large enough.

On the other hand, for ε small enough, we have

inf
u∈Σ

Iµ,γ(u) > − sup
u∈Σ

∫

R3
F(x, u)dx ≥ −C2, (4.20)

here choose C1 large enough, such that 0 < C2 < C1. Then estimates (4.19) and (4.20) ensure

that

max
(t,s)∈∂0χ

Iµ,γ(ϕ1,1(t, s)) ≤ max
(t,s)∈∂0χ

I1,1(ϕ1,1(t, s)) ≤ −C2 < inf
u∈Σ

Iµ,γ(u).

This implies

ϕ1,1(s, t) ∈ Γ,

where Γ := {ϕ ∈ C(χ, E) : ϕ(∂1χ) ⊂ P+
ε , ϕ(∂2χ) ⊂ P−

ε , ϕ|∂0χ = ϕ0|∂0χ}, and so

Iµ,γ(uµ,γ) = inf
ϕ∈Γ

sup
u∈ϕ(χ)\W

Iµ,γ(u) ≤ sup
u∈ϕ1,1(χ)

Iµ,γ(u) ≤ max
(t,s)∈[0,1]×[0,1]

I1,1(ϕ1,1(t, s)) := m3,

where m3 is independent on γ and µ.

Finally, the existence of a sign-changing critical point to the original functional Iγ is based

on the following convergence result for the perturbation functional Iµ,γ.

Proposition 4.11 ([23]). Let µi → 0 and {ui} ⊂ E be a sequence of critical points of Iµi ,γ satisfying

I′µi ,γ
(ui) = 0 and Iµi ,γ(ui) ≤ C for some C independent of i. Then as i → ∞, up to a subsequence

ui → uγ in H1
V(R

3), ui∇ui → uγ∇uγ in L2(R3), µi

∫
R3

(
|∇ui|4 + u4

i

)
dx → 0, Iµi ,γ(ui) → Iγ(uγ)

and uγ is a critical point of Iγ.

Lemma 4.12. Assume 0 < γ < 1. Then there exist a positive constant m3 and a sign-changing critical

point uγ of Iγ, such that

Iγ(uγ) ≤ m3,

where m3 is independent on γ.
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Proof. From Lemma 4.9 and Lemma 4.10, it permits to apply the Proposition 4.11. Therefore,

there exists a critical point uγ of Iγ such that uγ ∈ H1
V(R

3)∩ L∞(R3). In the following, we will

show that uγ is a sign-changing critical point of Iγ. To this end, we need estimate uγ+ ̸= 0 as

follows. Consider ⟨I′µi ,γ
(ui), ui+⟩ = 0, it follows from Sobolev inequality and the conditions

( f1), ( f2) that

V0

∫

R3
|ui+|2dx + S

(∫

R3
|ui+|6dx

) 1
3

≤ V0

∫

R3
|ui+|2dx +

∫

R3
|∇ui+|2dx

≤
∫

R3
f (x, ui+)ui+dx

≤ δ
∫

R3
|ui+|2dx + Cδ

∫

R3
|ui+|6dx,

where δ > 0 small enough. This implies |ui+|6 ≥ C > 0. Recall that ui+ → uγ+ strongly in

L6(R3). Therefore, we see that uγ+ ̸= 0. By the same argument we can prove that uγ− ̸= 0.

Hence we obtain uγ is a sign-changing critical point of Iγ.

Moreover, by Lemma 4.10, we obtain

Iµ,γ(uµ,γ) ≤ m3,

where m3 is independent on γ and µ.

Having this in mind, taken µ → 0, from the Proposition 4.11 we have

Iγ(uγ) ≤ m3,

where uγ is sign-changing critical point of Iγ.

Before concluding this section, we would like to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. From Lemma 3.3 and Lemma 4.12, the problem (1.4) has at least three

solutions: a positive solution uγ,1, a negative solution uγ,2 and a sign-changing solution uγ,3.

5 Asymptotic behavior of solutions

In this section, our goal is to study the asymptotic behavior of uγ = G−1(vγ). Having this in

mind, we are going to show the L∞ estimates of the critical points of Jγ.

Lemma 5.1. If vγ ∈ H1
V(R

3) is a weak solution of problem (2.2), then vγ ∈ L∞(R3). Moreover, there

exists a constant C > 0 independents of γ such that |vγ|∞ ≤ C∥vγ∥
4

6−p

H1
V

.

Proof. The result can be proved similarly to [5, 14] but we give a proof for the convenience of

the readers. In what follows, for simplicity, we denote vγ by v. Let v ∈ H1
V(R

3) be a weak

solution of −∆v + V(x)
G−1

γ (v)

gγ(G
−1
γ (v))

=
f (x,G−1

γ (v))

gγ(G
−1
γ (v))

, i.e.

∫

R3
∇v∇ϕdx +

∫

R3
V(x)

G−1
γ (v)

gγ(G
−1
γ (v))

ϕdx =
∫

R3

f (x, G−1
γ (v))

gγ(G
−1
γ (v))

ϕdx, for all ϕ ∈ H1
V(R

3). (5.1)
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Set T > 0, and denote

vT =





−T, if v ≤ −T,

v, if − T < v < T,

T, if v ≥ T.

Choosing ϕ = |vT|2(η−1)v in (5.1), where η > 1 to be determined later, we get
∫

R3
|∇v|2 · |vT|2(η−1)dx + 2(η − 1)

∫

{x: |v(x)|<T}
|v|2(η−1)|∇v|2dx

+
∫

R3
V(x)

G−1
γ (v)

gγ(G
−1
γ (v))

|vT|2(η−1)vdx

=
∫

R3

f (x, G−1
γ (v))

gγ(G
−1
γ (v))

|vT|2(η−1)vdx.

Combining the fact that the second term in the left side of the above equation is nonnegative

and Lemma 2.1-(4), we obtain

∫

R3
|∇v|2|vT|2(η−1)dx +

∫

R3
V(x)

G−1
γ (v)

gγ(G
−1
γ (v))

|vT|2(η−1)vdx

≤
∫

R3

f (x, G−1
γ (v))

gγ(G
−1
γ (v))

|vT|2(η−1)vdx

≤ δ
∫

R3

G−1
γ (v)

gγ(G
−1
γ (v))

|vT|2(η−1)vdx + Cδ

∫

R3

|G−1
γ (v)|p−1

gγ(G
−1
γ (v))

|vT|2(η−1)vdx

≤ δ
∫

R3

G−1
γ (v)

gγ(G
−1
γ (v))

|vT|2(η−1)vdx + Cδ

∫

R3
|v|p|vT|2(η−1)dx.

(5.2)

Taking δ small enough in (5.2), we have
∫

R3
|∇v|2|vT|2(η−1)dx ≤ C

∫

R3
|v|p|vT|2(η−1)dx. (5.3)

On the other hand, using the Sobolev inequality, we have

(∫

R3
(|v||vT|η−1)6dx

) 1
3

≤ C
∫

R3
|∇(vv

η−1
T )|2dx

≤ C
∫

R3
|∇v|2|vT|2(η−1)dx + C(η − 1)2

∫

R3
|∇v|2|vT|2(η−1)dx

≤ Cη2
∫

R3
|∇v|2|vT|2(η−1)dx,

where we used that (a + b)2 ≤ 2(a2 + b2) and η2 ≥ (η − 1)2 + 1.

By (5.3), the Hölder inequality and the Sobolev embedding theorem,

(∫

R3
(|v||vT|η−1)6dx

) 1
3

≤ Cη2
∫

R3
|v|p−2v2|vT|2(η−1)dx

≤ Cη2

(∫

R3
|v|6dx

) p−2
6
(∫

R3
(|v||vT|η−1)

12
8−p dx

) 8−p
6

≤ Cη2∥v∥p−2

H1
V

(∫

R3
|v|

12η
8−p dx

) 8−p
6

,
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where we used the fact that |vT| ≤ |v|. In what follows, taking ζ = 12
8−p , we get

(∫

R3
(|v||vT|η−1)6dx

) 1
3

≤ Cη2∥v∥p−2

H1
V

|v|2η
ηζ .

From Fatou’s lemma, it follows that

|v|6η ≤ (Cη2∥v∥p−2

H1
V

)
1

2η |v|ηζ . (5.4)

Let us define ηn+1ζ = 6ηn where n = 0, 1, 2, . . . and η0 = 8−p
2 . By (5.4) we have

|v|6η1
≤ (Cη2

1∥v∥p−2

H1
V

)
1

2η1 |v|6η0
≤ (C∥v∥p−2

H1
V

)
1

2η1
+ 1

2η0 η
1

η0
0 η

1
η1
1 |v|6.

By Moser’s iteration method we have

|v|6ηn ≤ (C∥v∥p−2

H1
V

)
1

2η0
∑

n
i=0(

ζ
6 )

i

(η0)
1

η0
∑

n
i=0(

ζ
6 )

i

(
6

ζ
)

1
η0

∑
n
i=0 i( ζ

6 )
i

|v|6.

Thus, we have

|v|∞ ≤ C∥v∥
4

6−p

H1
V

.

Now we are ready to prove H1
V-strong convergence of the weak solution of problem (1.4).

Lemma 5.2. Assume uγ is a solution of (1.4), then uγ → u0 strongly in H1
V(R

3) as γ → 0+, where

u0 is a solution of (1.6).

Proof. If uγ is a signed solution of (1.4), Lemma 3.4 and Lemma 3.5 guarantee that

∥vγ∥H1
V
< C,

for some C > 0. This together with the fact that

∥uγ∥H1
V
= ∥G−1(vγ)∥H1

V
≤ C∥vγ∥H1

V
,

gives {uγ} is uniformly bounded in H1
V(R

3), that is

∥uγ∥H1
V
< C,

where C is independent on γ.

Similarly, if uγ is a sign-changing solution of (1.4), from Lemma 3.4 and Lemma 4.12, it

follows that {uγ} is uniformly bounded in H1
V(R

3) as well.

Thus, if uγ is a solution of (1.4), then there exists u0 ∈ H1
V(R

3) such that, as γ → 0+

passing to a subsequence

uγ ⇀ u0 weakly in H1
V(R

3),

uγ → u0 strongly in Lp(R3) (p ∈ [2, 6)),

uγ → u0 a.e. on K := supp ϕ, ϕ ∈ C∞
0 (R3).

Moreover, there exists a function φ ∈ Lp(R3) such that |uγ| ≤ φ a.e. on K for all γ.

Since uγ ⇀ u0 weakly in H1
V(R

3), we have
∫

R3
(∇uγ∇ϕ + V(x)uγ ϕ) dx →

∫

R3
(∇u0∇ϕ + V(x)u0 ϕ) dx for all ϕ ∈ C∞

0 (R3). (5.5)
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By conditions ( f1) and ( f2), the Lebesgue dominated theorem and the fact that uγ → u0

strongly in Lp(R3), we get

∫

R3
f (x, uγ)ϕdx →

∫

R3
f (x, u0)ϕdx for all ϕ ∈ C∞

0 (R3). (5.6)

In what follows, define the following functional:

I(u) =
1

2

∫

R3

(
|∇u|2 + V(x)u2

)
dx −

∫

R3
F(x, u)dx.

Next we are going to show that ⟨I′(u0), ϕ⟩ = 0 for all ϕ ∈ C∞
0 (R3). Indeed, uγ is a critical

point of Iγ, i.e. for all ϕ ∈ C∞
0 (R3), we have

∫

R3
(∇uγ∇ϕ + V(x)uγ ϕ) dx + γ

∫

R3

(
|∇uγ|2uγ ϕ +∇uγ∇ϕu2

γ

)
dx

−
∫

R3
f (x, uγ)ϕdx = 0. (5.7)

On the other hand, by Lemma 5.1,

|uγ|∞ ≤ C|vγ|∞ ≤ C∥vγ∥
4

6−p

H1
V

≤ C

and so, from ∥uγ∥H1
V
≤ C,

γ
∫

R3

(
|∇uγ|2uγ ϕ +∇uγ∇ϕu2

γ

)
dx

≤ Cγ|ϕ|∞
∫

R3
|∇uγ|2dx + Cγ

∫

R3
|∇uγ||∇ϕ|dx

≤ Cγ
(
|ϕ|∞|∇uγ|22 + |∇ϕ|2|∇uγ|2

)
→ 0, as γ → 0+.

(5.8)

In view of (5.5)–(5.8), for all ϕ ∈ C∞
0 (R3), we obtain

∫

R3
(∇u0 + V(x)u0 − f (x, u0)) ϕdx = 0, (5.9)

which yields that u0 is a weak solution of problem (1.6).

Next we will show that the test function ϕ in (5.7) can be taken as arbitrary functions

ψ ∈ H1
V(R

3) ∩ L∞(R3). First, without loss of generality, for ψ ≥ 0, choose a sequence {ϕn} ⊂
C∞

0 (R3) such that ϕn ≥ 0, ϕn → ψ strongly in H1
V(R

3), ϕn → ψ a.e. x ∈ R3 and |ϕn|∞ ≤
|ψ|∞ + 1. Take ϕn as the test function in (5.7), letting n → ∞ we know that (5.7) holds for

ϕ = ψ. Hence we can take ϕ = uγ in (5.7), then

∫

R3

(
|∇uγ|2 + V(x)u2

γ

)
dx + 2γ

∫

R3
|∇uγ|2u2

γdx −
∫

R3
f (x, uγ)uγdx = 0. (5.10)

Since u0 is a weak solution of (1.6), taking ϕ = u0 in (5.9), we have

∫

R3

(
|∇u0|2 + V(x)u2

0

)
dx −

∫

R3
f (x, u0)u0dx = 0. (5.11)

Similar with (5.6), we obtain
∫

R3
f (x, uγ)uγdx →

∫

R3
f (x, u0)u0dx, as γ → 0+. (5.12)
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By (5.10)–(5.12) and the lower semicontinuity of ∥uγ∥H1
V

, we get

γ
∫

R3
|∇uγ|2u2

γdx → 0, as γ → 0+

and ∫

R3

(
|∇uγ|2 + V(x)u2

γ

)
dx →

∫

R3

(
|∇u0|2 + V(x)u2

0

)
dx, as γ → 0+.

This combined with the fact that uγ ⇀ u0 weakly in H1
V(R

3) gives

uγ → u0 strongly in H1
V(R

3) as γ → 0+.

Proof of Theorem 1.3. From Lemma 3.3, we know that for all γ ∈ (0, 1], there exists a positive

critical point uγ,1. Then, by Lemma 5.2, we obtain uγ,1 → u1 strongly in H1
V(R

3) as γ → 0+,

where u1 is critical point of I. Note that at this stage, we do not know whether u1 ̸= 0. To this

end, by Lemma 3.5, we know that

0 < m1 ≤ I+γ (uγ,1)

and so, by uγ,1 → u1 strongly in H1
V(R

3) as γ → 0+,

I+γ (u1) ≥ m1 > 0.

Consequently, u1 ̸= 0, then u1 can be shown to be positive critical point of I+γ by applying the

maximum principle in [16], that is, u1 is a positive solution of (1.6). Similarly, we can show u2

is a negative solution of problem (1.6).

On the other hand, by Lemma 4.12, for all γ ∈ (0, 1], there exists a positive constant m3

such that Iγ has a sign-changing solution uγ,3 with Iγ(uγ,3) ≤ m3. By Lemma 5.2, as γi → 0+,

there exists a sequence of sign-changing critical points {uγi ,3} of Iγi
, converges to a critical

point u3 ∈ H1
V(R

3) ∩ L∞(R3) of I. Next, we will show u3 is a sign-changing critical point of I.

Taking ϕ = (uγ,3)+ := u+
γ,3 in the equation ⟨I′γ(uγ,3), ϕ⟩ = 0, by the conditions ( f1), ( f2) and

Poincare inequalities and Sobolev inequalities we have

C
∫

R3
(u+

γ,3)
2dx + C

(∫

R3
(u+

γ,3)
6dx

)1/3

≤
∫

R3

(
|∇u+

γ,3|2 + V(x)(u+
γ,3)

2
)

dx

≤
∫

R3
f (x, u+

γ,3)u
+
γ,3dx

≤ δ
∫

R3
(u+

γ,3)
2dx + Cδ

∫

R3
(u+

γ,3)
6dx.

This implies that there exists C > 0 such that
∫

R3(u
+
γ,3)

6dx ≥ C for γ ∈ (0, 1]. Now by Lemma

5.2, we have uγ,3 → u3 strongly in H1
V(R

3) as γ → 0+. This combined with the Sobolev

embedding gives ∫

R3
(u3+)

6dx = lim
γ→0+

∫

R3
(u+

γ,3)
6dx ≥ C > 0.

Thereby, we can infer that u3+ ̸= 0. By the same argument we can show u3− ̸= 0. This

completes the proof.
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Abstract. In this paper we investigate the behaviour of the solutions of the following
k-dimensional cyclic system of difference equations with maximum:

xi(n + 1) = max

{

Ai,
x

p
i (n)

x
q
i+1(n − 1)

}

, i = 1, 2, . . . , k − 1,

xk(n + 1) = max

{

Ak,
x

p
k (n)

x
q
1(n − 1)

}

where n = 0, 1, . . . , Ai > 1, for i = 1, 2, . . . , k, whereas the exponents p, q and the initial
values xi(−1), xi(0), i = 1, 2, . . . , k are positive real numbers.

Keywords: difference equations with maximum, cyclic system, equilibrium, eventually
equal to equilibrium.
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1 Introduction

Undoubtedly, there is a growing interest in the study of difference equations and systems
of difference equations. Among others, the study of difference equations and systems of
difference equations with maximum, have attracted some attention in the last few decades
(see, for instance, [1, 5–9, 11–17, 20, 22, 24, 26, 28, 29, 35–51, 54–58] and the related references
therein). For some differential equations with maximum see, for example, [18, 19].

At the beginning were usually studied the difference equations and systems containing
several arguments of the form Ak(n)/x(n − k) where k = 0, 1, . . . , and Ak(n) is a given se-
quence of real numbers (see, for example, [5, 7, 9, 15–17, 26, 28, 29, 56–58]), whereas equations
and systems containing several arguments of the form xp(n − k), where p is a real number,
have been usually studied recently (see, for example, [1, 6, 12–14, 35–49, 51, 52, 54, 55]).

BCorresponding author. Email: gpapas@env.duth.gr
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The motivation for the study of such difference equations and systems of difference equa-
tions stems from the study of the equations of the form

x(n) = a +
xp(n − k)

xq(n − l)
, n = 1, 2, . . . ,

where the parameters a, p, q, and the initial values x(j), j = −max{k, l}, . . . , 0, are real or
nonnegative numbers and k and l are positive integers, and their generalizations (see, for
example, [2–4, 21, 23, 25, 27, 30–36] and the references cited therein).

In [10] was initiated studying cyclic systems of difference equations. The study was con-
tinued, for instance, in [11, 24, 46, 49, 52–55].

In [55] was studied the behaviour of the solutions of the following cyclic system of differ-
ence equations with maximum:

xi(n + 1) = max
{

Ai,
xi(n)

xi+1(n − 1)

}

, i = 1, 2, . . . , k,

where n = 0, 1, . . . , the coefficients Ai, i = 1, 2, . . . , k are positive constants, and the initial
values xi(−1), xi(0), i = 1, 2, . . . , k are real positive numbers. Moreover, for k = 2 under some
conditions it were found solutions which converge to periodic six solutions.

In this paper we continue the investigation of cyclic systems of difference equations by
studying the behaviour of the solutions of the following generalized cyclic system of difference
equations with maximum:

xi(n + 1) = max
{

Ai,
x

p
i (n)

x
q
i+1(n − 1)

}

, i = 1, 2, . . . , k, (1.1)

where n = 0, 1, . . . , for the coefficients Ai we assume that Ai > 1, i = 1, 2, . . . , k, the exponents
p, q and the initial values xi(−1), xi(0), i = 1, 2, . . . , k are positive real numbers, and since the
system is cyclic we have Aλk+i = Ai, xλk+i(n) = xi(n), λ positive integer, i = 1, 2, . . . , k. To
do this we use some methods and ideas in the literature mentioned above. Finally, using the
results obtained for the general system (1.1), we derive some further results for system (1.1)
for k = 2.

2 Main results

Lemma 2.1. Consider the system of algebraic equations

xi = max

{

Ai,
x

p
i

x
q
i+1

}

, i = 1, 2, . . . , k, (2.1)

where

Aλk+i = Ai, xλk+i = xi, i = 1, 2, . . . k, λ is a positive integer, (2.2)

and

Ai > 1, i = 1, 2, . . . k, (2.3)

then
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(i) if

0 < p ≤ 1, q > 0, (2.4)

then system (2.1) has a unique solution, which is

(A1, A2, . . . , Ak).

(ii) If

p > 1, 0 < q < p − 1, (2.5)

then system (2.1) has no solutions.

(iii) Suppose that

p > 1, q > p − 1. (2.6)

If there exist m positive integers

r1, r2, . . . , rm ∈ {1, 2, . . . , k}, r1 < r2 < · · · < rm, m ∈ {1, 2, . . . , k}, (2.7)

such that

Ai < A
( q

p−1 )
k+rj−i

rj
, for any i ∈ {rj, rj + 1, . . . , k}, and for any j ∈ {1, 2, . . . , m}, (2.8)

and

Ai < A
( q

p−1 )
rj−i

rj
, for any i ∈ {1, 2, . . . , rj − 1}, and for any j ∈ {1, 2, . . . , m}, (2.9)

and for any r ∈ {1, 2, . . . , k}, r ̸= rj, j ∈ {1, 2, . . . , m}, there exists an integer i ∈ {1, 2, . . . , k},

such that

Ai > A
( q

p−1 )
k+r−i

r , for i > r, (2.10)

or

Ai > A
( q

p−1 )
r−i

r , for i < r, (2.11)

holds, then system (2.1) has 2m − 1 solutions.

(iv) If

q = p − 1 > 0, (2.12)

then all solutions of (2.1) are the following

(x1, x2, . . . , xk) = (a, a, . . . , a), for any a ≥ Aw = max{A1, A2, . . . , Ak}. (2.13)

Proof. From (2.1) and (2.3), we get

xi > 1, for any i ∈ {1, 2, . . . , k}. (2.14)

(i) Suppose that (2.4) holds, then, from (2.14), we have

x
p
i

x
q
i+1

< x
p
i ≤ xi, for any i ∈ {1, 2, . . . , k}. (2.15)
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Using (2.1) and (2.15), we have

xi = Ai, for any i ∈ {1, 2, . . . , k}.

(ii) Now, suppose that (2.5) holds. We prove that system (2.1) has no solution.
On the contrary, we assume that there exists a solution of system (2.1). From (2.1), we have

xi ≥
x

p
i

x
q
i+1

, for any i ∈ {1, 2, . . . , k}, (2.16)

and so from (2.5), (2.14), and (2.16), we get

xi+1 ≥ x
p−1

q

i > xi, for any i ∈ {1, 2, . . . , k},

and obviously,
xk+1 > xk > xk−1 > · · · > x1. (2.17)

From (2.2) and (2.17), we get x1 > x1. So, system (2.1) has no solution.

(iii) Now, suppose that (2.6) holds.
From (2.3) and (2.6) it is obvious that (2.8) and (2.9) hold for rj = w, where

Aw = max{A1, A2, . . . , Ak}.

So, m ≥ 1.
First, we prove that, for every solution of (2.1), there exists a b ∈ {1, 2, . . . , k} such that

xb = Ab. (2.18)

On the contrary, suppose that

xi =
x

p
i

x
q
i+1

= x
q

p−1

i+1 , for any i ∈ {1, 2, . . . , k}. (2.19)

From (2.2) and (2.19), we get

x1 = x
( q

p−1 )
k

k+1 = x
( q

p−1 )
k

1 ,

and since k is a positive integer and (2.14) holds, we get q = p − 1 which contradicts with
(2.6). So (2.18) is true.

To continue, we prove that

xi ≤ x
q

p−1

i+1 , for any i ∈ {1, 2, . . . , k}. (2.20)

From (2.1), we get (2.16) and so from (2.6), relation (2.20) is obvious.
In addition, from (2.1),

Ai ≤ xi, for any i ∈ {1, 2, . . . , k}. (2.21)

In what follows, we prove that if there exist i, r ∈ {1, 2, . . . , k}, such that either (2.10) or
(2.11) holds, then

xr =
x

p
r

x
q
r+1

. (2.22)
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On the contrary, suppose that
xr = Ar. (2.23)

If (2.10) holds, then, from (2.6), (2.20), and (2.21), we have

Ai ≤ xi ≤ x
q

p−1

i+1 ≤ · · · ≤ x
( q

p−1 )
k−i

k ≤ x
( q

p−1 )
k−i+1

1 ≤ · · · ≤ x
( q

p−1 )
k−i+r

r = A
( q

p−1 )
k+r−i

r ,

which contradicts with (2.10). So, necessarily, if (2.10) holds, then relation (2.22) is true.
Now, suppose that (2.11) holds, then, from (2.6), (2.20), and (2.21), we have

Ai ≤ x
q

p−1

i+1 ≤ x
( q

p−1 )
2

i+2 ≤ · · · ≤ x
( q

p−1 )
r−i

r = A
( q

p−1 )
r−i

r ,

which contradicts with (2.11). So, necessarily, if (2.11) holds, then relation (2.22) is true.
Finally, suppose that there exist exactly m positive integers such that (2.7), (2.8) and (2.9)

hold. For any j ∈ {1, 2, . . . , m}, we prove that both equations

xrj
= Arj

. (2.24)

and

xrj
=

x
p
rj

x
q
rj+1

, (2.25)

are possible.
Since for any i ∈ {1, 2, . . . , k}, i ̸= rj, j ∈ {1, 2, . . . , m}, relation either (2.10) or (2.11) holds,

from (2.22) we get

xi = x
q

p−1

i+1 , for any i ∈ {1, 2, . . . , k}, i ̸= rj, j ∈ {1, 2, . . . , m}. (2.26)

From (2.26),

xrm−1 = x
q

p−1
rm

, xrm−2 = x
( q

p−1 )
2

rm
, . . . , xrm−1+1 = x

( q
p−1 )

rm−rm−1−1

rm
,

xrm−1−1 = x
q

p−1
rm−1 , xrm−1−2 = x

( q
p−1 )

2

rm−1 , . . . , xrm−2+1 = x
( q

p−1 )
rm−1−rm−2−1

rm−1 ,
...

xr2−1 = x
q

p−1
r2 , xr2−2 = x

( q
p−1 )

2

r2 , . . . , xr1+1 = x
( q

p−1 )
r2−r1−1

r2 ,

xr1−1 = x
q

p−1
r1 , . . . , x1 = x

( q
p−1 )

r1−1

r1 , xk = x
( q

p−1 )
r1

r1 , . . . , xrm+1 = x
( q

p−1 )
k−(rm−r1)−1

r1 ,

(2.27)

and so from (2.1) and (2.27) for l = 1, 2, . . . , m − 1 we get,

xrl
= max

{

Arl
,

x
p
rl

x
q
rl+1

}

= max











Arl
,

x
p
rl

(

x
( q

p−1 )
rl+1−rl−1

rl+1

)q











.

Now, we prove that xrl
can be equal either to Arl

or to
x

p
rl

(

x
(

q
p−1 )

rl+1−rl−1

rl+1

)q .

If xrl
= Arl

then, from (2.1), (2.6), (2.7) we get

x
p
rl

(

x
( q

p−1 )
rl+1−rl−1

rl+1

)q
≤

A
p
rl

(

A
( q

p−1 )
rl+1−rl−1

rl+1

)q
. (2.28)
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Using (2.6), (2.7) and (2.9) for i = rl and j = l + 1 we have

Arl
< A

( q
p−1 )

rl+1−rl

rl+1

and from (2.5)

A
p−1
rl

< A
(p−1)( q

p−1 )
rl+1−rl

rl+1 = A
q
(p−1)

q ( q
p−1 )

rl+1−rl

rl+1 =
(

A
( q

p−1 )
rl+1−rl−1

rl+1

)q
.

Then,
A

p
rl

(

A
( q

p−1 )
rl+1−rl−1

rl+1

)q
< Arl

. (2.29)

Therefore, from (2.28) and (2.29) we

x
p
rl

(

x
( q

p−1 )
rl+1−rl−1

rl+1

)q
< Arl

.

If xrl
=

x
p
rl

(

x
(

q
p−1 )

rl+1−rl−1

rl+1

)q then, from (2.1), (2.6), (2.7) and (2.9) for i = rl and j = l + 1, we get

xrl
= x

( q
p−1 )

rl+1−rl

rl+1 ≥ A
( q

p−1 )
rl+1−rl

rl+1 > Arl
,

and so, for any j ∈ {1, 2, . . . , m − 1}, both equations (2.24) and (2.25) are possible.
From (2.1) and the last equality of (2.27) we get

xrm = max

{

Arm ,
x

p
rm

x
q
rm+1

}

= max











Arm ,
x

p
rm

(

x
( q

p−1 )
k−rm+r1−1

r1

)q











.

Finally, we prove that xrm can be equal either to Arm or to x
p
rm

(

x
(

q
p−1 )

k−rm+r1−1

r1

)q .

If xrm = Arm , then, from (2.1), (2.6), (2.7), we get

x
p
rm

(

x
( q

p−1 )
k−rm+rl−1

r1

)q
≤

A
p
rm

(

A
( q

p−1 )
k−rm+r1−1

r1

)q
. (2.30)

Using (2.6), (2.7) and (2.8) for i = rm and j = 1, we have

Arm < A
( q

p−1 )
k−rm+r1

r1

and so, arguing as to prove (2.29)

A
p
rm

(

A
( q

p−1 )
k−rm+r1−1

r1

)q
< Arm . (2.31)
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Therefore, from (2.30) and (2.31), we take

x
p
rm

(

x
( q

p−1 )
k−rm+r1−1

r1

)q
< Arm .

If xrm =
x

p
rm

(

x
(

q
p−1 )

k−rm+r1−1

r1

)q then, from (2.1), (2.6), (2.7) and (2.8) for i = rm and j = 1, we get

xrm = x
( q

p−1 )
k−rm+r1

r1 ≥ A
( q

p−1 )
k−rm+r1

r1 > Arm

and so for any j ∈ {1, 2, . . . , m} both equations (2.24) and (2.25) are possible.
From (2.7), (2.8), (2.9), (2.24), (2.25), and (2.26), and since, for every solution of (2.1) there

exists at least one r such that (2.18) holds, we have that system (2.1) has 2m − 1 solutions.

(iv) Finally, suppose that (2.12) holds. From (2.1) and (2.12), we get

xi ≥
x

p
i

x
p−1
i+1

, for any i ∈ {1, 2, . . . , k},

and so
xi+1 ≥ xi, for any i ∈ {1, 2, . . . , k}. (2.32)

From (2.2) and (2.32), we have

xk+1 = x1 ≥ xk ≥ xk−1 ≥ · · · ≥ x2 ≥ x1,

which means that
x1 = x2 = · · · = xk.

Then, from (2.1) and (2.12), if we set xi = a, i = 1, 2, . . . , k, we get

a = max{Ai, a}, i = 1, 2, . . . , k.

Therefore, if a ≥ Aw, we get that all the solutions of (2.1), if (2.12), holds are given by (2.13).
This completes the proof of the Lemma 2.1.

In the following proposition we give a result concerning the global behavior of the so-
lutions of (1.1). Since the proof is similar to the proof of Proposition 2.2 of [55], we omit
it.

Proposition 2.2. Consider the system of difference equations (1.1). If (2.4) holds, then every solution

of (1.1) is eventually equal to the unique equilibrium (A1, A2, . . . , Ak).

In the following lemma we prove some results concerning the solutions of (1.1), which can
be used in order to study the behavior of these solutions.

Lemma 2.3. Consider the system of difference equations (1.1) where

p > 1 and q > 0. (2.33)

For a solution of (1.1), suppose that there exist a j ∈ {1, 2, . . . , k}, a positive integer Sj ≥ 2, and a

constant a > 0, such that

xj(n) = a, for any n ≥ Sj, (2.34)

then
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(i) If

xj−1(Sj + 1) > a
q

p−1 , (2.35)

then the solution of (1.1) is unbounded.

(ii) If

xj−1(Sj + 1) < a
q

p−1 , (2.36)

then there exists an integer Sj−1 ≥ Sj + 1, such that

xj−1(n) = Aj−1, for any n ≥ Sj−1. (2.37)

(iii) If

xj−1(Sj + 1) = a
q

p−1 , (2.38)

then

xj−1(n) = a
q

p−1 , for any n ≥ Sj + 1. (2.39)

Proof. (i) From (1.1) and (2.34), we get

xj−1(Sj + 2) ≥
x

p
j−1(Sj + 1)

x
q
j (Sj)

=
x

p
j−1(Sj + 1)

aq
,

xj−1(Sj + 3) ≥
x

p
j−1(Sj + 2)

x
q
j (Sj + 1)

≥
x

p2

j−1(Sj + 1)

aq(1+p)
,

and working inductively we have

xj−1(Sj + m) ≥
x

pm−1

j−1 (Sj + 1)

aq(1+p+p2+···+pm−2)
=

x
pm−1

j−1 (Sj + 1)

a
q

pm−1−1
p−1

= a
q

p−1

(

xj−1(Sj + 1)

a
q

p−1

)pm−1

, m ≥ 2. (2.40)

From (2.33), (2.35), and (2.40), we get

lim
n→∞

xj−1(n) = ∞,

and so, the solution of (1.1) is unbounded.

(ii) Now, suppose that (2.36) holds.
First, we prove that there exists a positive integer Sj−1 ≥ Sj + 1, such that

xj−1(Sj−1) = Aj−1. (2.41)

If
xj−1(Sj + 1) = Aj−1,

then (2.41) holds for Sj−1 = Sj + 1.
Now, suppose that

xj−1(n) > Aj−1, for any n ≥ Sj + 1, (2.42)

then, from (1.1) and (2.34), and working as to prove (2.40), we have

xj−1(Sj + m) = a
q

p−1

(

xj−1(Sj + 1)

a
q

p−1

)pm−1

, m ≥ 2. (2.43)
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From (2.33), (2.36) and (2.43), we have that there exists a positive integer n0 ≥ Sj + 2, such that

xj−1(n) < Aj−1, for any n ≥ n0,

which contradicts with (2.42). So, in any case, there exists a positive integer Sj−1 ≥ Sj + 1,
such that (2.41) holds.

Now, we prove that (2.37) holds for any n ≥ Sj−1 .
From (1.1) and (2.36), we get

Aj−1 < a
q

p−1 . (2.44)

From (2.34), (2.41) and (2.44), we have

x
p
j−1(Sj−1)

x
q
j (Sj−1 − 1)

=
A

p
j−1

aq
<

A
p
j−1

A
p−1
j−1

= Aj−1,

and so, from (1.1), we have
xj−1(Sj−1 + 1) = Aj−1,

and working inductively we get (2.37).

(iii) Finally, suppose that (2.38) holds.
From (1.1) and (2.38), we get

Aj−1 ≤ a
q

p−1 . (2.45)

Using (2.34), (2.38) and (2.45), we get

x
p
j−1(Sj + 1)

x
q
j (Sj)

=
a

pq
p−1

aq
= a

q
p−1 ≥ Aj−1,

and so, from (1.1), we get

xj−1(Sj + 2) = a
q

p−1 ,

and working inductively (2.39) is true.
So, the proof of Lemma 2.3 is completed.

In the following propositions, we give furthermore results for system (1.1), where k = 2
and relation (2.6) or (2.12) holds. Our aim is to present how the results of Lemma 2.3 can be
used, in order to find out how a solution of (1.1) behaves.

In what follows, without loss of generality, we assume that A2 = max{A1, A2}. If, in
addition, (2.6) holds, and since A2 > 1, we have that

A1 < A
q

p−1
2 . (2.46)

Proposition 2.4. Consider the system of difference equations

x1(n + 1) = max
{

A1, x
p
1 (n)

x
q
2(n−1)

}

,

x2(n + 1) = max
{

A2, x
p
2 (n)

x
q
1(n−1)

}

,
(2.47)

where n = 0, 1, . . . , A1, A2 > 1, and the initial values xi(−1), xi(0), i = 1, 2, are positive real

numbers. Suppose that (2.6) holds.

The following statements are true:
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I. Suppose that

A2 > A
q

p−1

1 . (2.48)

Then system (2.47) has a unique equilibrium which is

(A
q

p−1
2 , A2). (2.49)

Furthermore, we have:

(a) There exist solutions (x1(n), x2(n)) of (2.47), for which, there exists an integer r ≥ 2, such

that

x1(r) < A
q

p−1
2 . (2.50)

These solutions are unbounded.

(b) There exist solutions (x1(n), x2(n)) of (2.47), such that

x1(n) ≥ A
q

p−1
2 , for any n ≥ 2, (2.51)

and

x1(z) = A
q

p−1
2 , for an integer z ≥ 2. (2.52)

These solutions are eventually equal to the unique equilibrium (2.49).

(c) There exist solutions (x1(n), x2(n)) of (2.47), such that

x1(n) > A
q

p−1
2 , for any n ≥ 2, (2.53)

and

x2(d) = A2, for an integer d ≥ 2. (2.54)

These solutions are unbounded.

II. Suppose that

A2 < A
q

p−1

1 . (2.55)

Then system (2.47) has three equilibria, the one given by (2.49), and the following two,

(A1, A
q

p−1

1 ), (2.56)

and

(A1, A2). (2.57)

Furthermore, we have:

(a) There exist solutions (x1(n), x2(n)) of (2.47), for which, there exists an integer r ≥ 2, such

that (2.50) holds. These solutions are unbounded or eventually equal to the equilibrium

(2.56) or eventually equal to the equilibrium (2.57).

(b) There exist solutions (x1(n), x2(n)) of (2.47), such that (2.51) and (2.52) hold. These

solutions are eventually equal to the equilibrium (2.49).

(c) There exist solutions (x1(n), x2(n)) of (2.47), such that (2.53) and (2.54) hold. These

solutions are unbounded.
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Proof. (I.) From (2.46), (2.48) and (iii) of Lemma 2.1, we have that system (2.47) has a unique
equilibrium given by (2.49).

I(a). First, we prove that there exist solutions (x1(n), x2(n)) of (2.47), for which there exists
an integer r ≥ 2, such that (2.50) holds.
Indeed, if, for instance,

x1(−1) > 0, x1(0) > 0 and x2(−1) ≥
x

p
q

1 (0)

A
1
q

1

, x2(0) >
A

p
q

1

A
1

p−1
2

,

then, it is easy to prove that

x1(2) < A
q

p−1
2 ,

and so (2.50) is true for r = 2.
Now, we prove that, if for a solution of (2.47), relation (2.50) is satisfied, then the solution

is unbounded.
At the beginning, we prove that there exists a positive integer s ≥ r, such that

x1(s) = A1. (2.58)

On the contrary, suppose that

x1(n) > A1, for any n ≥ r, (2.59)

then, from (2.47), we have

x1(r + 1) =
x

p
1 (r)

x
q
2(r − 1)

≤
x

p
1 (r)

A
q
2

,

x1(r + 2) =
x

p
1 (r + 1)

x
q
2(r)

≤
x

p2

1 (r)

A
q(1+p)
2

,

and working inductively and as in (2.40), we get

x1(r + m) ≤ A
q

p−1
2





x1(r)

A
q

p−1
2





pm

, m ≥ 1. (2.60)

From (2.6), (2.50) and (2.60), we have that there exists a positive integer n0 ≥ r, such that

x1(n) < A1, for any n ≥ n0,

which contradicts with (2.59). So, if (2.50) holds, then there exists a positive integer s ≥ r,
such that (2.58) holds.

Now, we prove that
x1(n) = A1, for any n ≥ s. (2.61)

From (2.46), (2.47) and (2.58), we get

x
p
1 (s)

x
q
2(s − 1)

≤
A

p
1

A
q
2

≤
A

p
1

A
p−1
1

= A1. (2.62)
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From (2.47) and (2.62), obviously,
x1(s + 1) = A1,

and working inductively we get (2.61).
From (2.47) and (2.48), we have

x2(s + 1) ≥ A2 > A
q

p−1

1 ,

and so, from (2.61) and (i) of Lemma 2.3 for a = A1, we have that the solution is unbounded.

I(b). We show that there exist solutions (x1(n), x2(n)) of (2.47) and an integer z ≥ 2, such that
(2.51) and (2.52) hold.

Indeed, if, for instance,

x1(0) > A
p−1

q

2 , x1(−1) > A
p−1

q

2 , x2(0) = A2, x2(−1) =
x

p
q

1 (0)

A
1

p−1
2

,

it is easy to prove that

x1(n) ≥ A
q

p−1
2 , n ≥ −1 and x1(2) = A

q
p−1
2 .

Now, we prove that, if for a solution of (2.47), relations (2.51) and (2.52) hold, then the
solution is eventually equal to the unique equilibrium (2.49).

From (2.47) and (2.52), we have

x
p
1 (z)

x
q
2(z − 1)

≤
(A

q
p−1
2 )

p

A
q
2

= A
q

p−1
2 ,

and so, from (2.46) and (2.47), we get

x1(z + 1) ≤ A
q

p−1
2 ,

and from (2.51) we have

x1(z + 1) = A
q

p−1
2 .

Working inductively, we get

x1(n) = A
q

p−1
2 > A1, for any n ≥ z. (2.63)

From (2.47) and (2.63), we get

A
q

p−1
2 = max







A1,
A

pq
p−1
2

x
q
2(n)







, n ≥ z − 1,

and so, from (2.46), we have

x2(n) = A2, for any n ≥ z − 1. (2.64)

From (2.63) and (2.64), we have that the solution is eventually equal to the unique equilibrium
(2.49).
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I(c). We show that there exist solutions (x1(n), x2(n)) of (2.47) and an integer d ≥ 3, such that
(2.53) and (2.54) hold.

Indeed, if, for instance,

x1(−1) > A
p−1

q

2 , x1(0) > A
q

p−1
2 and x2(−1) ≤ A2, x2(0) ≤ A2,

it is easy to prove that

x1(n) > A
q

p−1
2 , for any n ≥ 2 and x2(3) = A2.

Now, we prove that, if for a solution of (2.47), relations (2.53) and (2.54) hold, then the
solution is unbounded.

From (2.53) and (2.54), we have

x
p
2 (d)

x
q
1(d − 1)

<
A

p
2

(A
q

p−1
2 )

q < A2, (2.65)

and so, from (2.47),
x2(d + 1) = A2, (2.66)

and working inductively, obviously,

x2(n) = A2, for any n ≥ d. (2.67)

Since (2.53) hold, then from (2.67) and (i) of Lemma 2.3 for a = A2, we have that the solution
is unbounded.

II. From (2.46), (2.55) and (iii) of Lemma 2.1 we have that system (2.47) has three equilibria,
which are given by (2.49), (2.56) and (2.57).

II(a). For a solution (x1(n), x2(n)) of (2.47) suppose that there exists an integer r ≥ 2, such
that (2.50) holds. Then, arguing as in I(a), we get that there exists a positive integer s ≥ r,
such that (2.61) holds.

If
x2(s + 1) > A

q
p−1

1 , (2.68)

then from (2.61), (2.68) and (i) of Lemma 2.3 for a = A1, we have that the solution is un-
bounded.

If
x2(s + 1) < A

q
p−1

1 , (2.69)

then from (2.61), (2.69) and (ii) of Lemma 2.3 for a = A1, we have that there exists an integer
s2 ≥ s + 1, such that

x2(n) = A2, for any n ≥ s2. (2.70)

From (2.61) and (2.70), we have that the solution is eventually equal to the equilibrium (2.57).
If

x2(s + 1) = A
q

p−1

1 , (2.71)

then from (2.61), (2.71) and (iii) of Lemma 2.3 for a = A1, we have that

x2(n) = A
q

p−1

1 , for any n ≥ s + 1. (2.72)
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From (2.61) and (2.72) we have that the solution is eventually equal to the equilibrium (2.56).
Now, we show that there exist solutions (x1(n), x2(n)) of (2.47) and integers r, s, r ≥ 2, s ≥

r, such that (2.50) and (2.68) hold.
Indeed, if, for instance,

x1(0) > 0, x2(0) > A
p−1

q

1 and x1(−1) <
x

p
q

2 (0)

A
1

p(p−1)

1 x
1
p

1 (0)
, x2(−1) ≥

x
p
q

1 (0)

A
1
q

1

, (2.73)

it is easy to prove that

x1(2) = A1 < A
q

p−1
2 and x2(3) > A

q
p−1

1 ,

and so these solutions are unbounded.
In addition, we show that there exist solutions (x1(n), x2(n)) of (2.47) and integers r, s,

r ≥ 2, s ≥ r, such that (2.50) and (2.69) hold.
Indeed, if, for instance,

x1(0) >
A

p
q

2

A
1

p−1

1

, x2(0) > A
p−1

q

1 , x2(−1) ≥
x

p
q

1 (0)

A
1
q

1

, x1(−1) >
x

p
q

2 (0)

A
1

p(p−1)

1 x
1
p

1 (0)
,

it is easy to prove that

x1(2) = A1 < A
q

p−1
2 and x2(3) < A

q
p−1

1 ,

and so these solutions are eventually equal to the equilibrium (2.57).
Finally, we show that there exist solutions (x1(n), x2(n)) of (2.47) and integers r, s, r ≥

2, s ≥ r, such that (2.50) and (2.71) hold.
Indeed, if, for instance,

x1(0) >
A

p
q

2

A
1

p−1

1

, x2(0) > A
p−1

q

1 , x2(−1) ≥
x

p
q

1 (0)

A
1
q

1

, x1(−1) =
x

p
q

2 (0)

A
1

p(p−1)

1 x
1
p

1 (0)
, (2.74)

it is easy to prove that

x1(2) = A1 < A
q

p−1
2 and x2(3) = A

q
p−1

1 ,

and so these solutions are eventually equal to the equilibrium (2.56).

II(b). The proof is the same as in I(b).

II(c). The proof is the same as in I(c).

Proposition 2.5. Consider the system of difference equations

x1(n + 1) = max
{

A1, x
p
1 (n)

x
p−1
2 (n−1)

}

,

x2(n + 1) = max
{

A2, x
p
2 (n)

x
p−1
1 (n−1)

}

,
(2.75)

where n = 0, 1, . . . , A1, A2 > 1, and the initial values xi(−1), xi(0), i = 1, 2, are positive real

numbers.

The following statements are true.
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(a) There exist solutions (x1(n), x2(n)) of (2.75), for which, there exists an integer r ≥ 2, such that

x1(r) < A2. (2.76)

These solutions are unbounded.

(b) There exist solutions (x1(n), x2(n)) of (2.75), such that

x1(n) ≥ A2, for any n ≥ 2, (2.77)

and

x1(z) = A2, for an integer z ≥ 2. (2.78)

These solutions are unbounded or eventually equal to the equilibrium (A2, A2).

(c) There exist solutions (x1(n), x2(n)) of (2.75), such that

x1(n) > A2, for any n ≥ 2, (2.79)

and

x2(d) = A2, for an integer d ≥ 2. (2.80)

These solutions are unbounded.

(d) The solution (x1(n), x2(n)) = (a, a), n ≥ −1, a > A2, is the only solution of (2.75), which is

eventually equal to the equilibrium (a, a).

Proof. (a) Since Lemma 2.3 holds for q = p − 1 > 0 and, from (2.75) and (2.76), we get that
A1 < A2, the proof of (a) is exactly the same with the proof of I(a) of Proposition 2.4, and we
omit it.

(b) If A1 < A2, then arguing as in the proof of I(b) of Proposition 2.4, we can prove that, there
exist solutions (x1(n), x2(n)) of (2.75), such that relations (2.77) and (2.78) hold, and these
solutions are eventually equal to the equilibrium (A2, A2).

If A1 = A2, then for a solution (x1(n), x2(n)) of (2.75), such that (2.77) and (2.78) hold, we
have

x1(z) = A1, for an integer z ≥ 2, (2.81)

and so, arguing as to prove (2.61), we get

x1(n) = A1, for any n ≥ z. (2.82)

If
x2(z + 1) = A2 = A1, (2.83)

then, from (2.82), (2.83), and (iii) of Lemma 2.3 for a = A1 and q = p − 1 > 0, we have that

x2(n) = A2 = A1, for any n ≥ z + 1. (2.84)

From (2.82) and (2.84), we have that the solution is eventually equal to the equilibrium
(A2, A2).

If
x2(z + 1) > A2 = A1, (2.85)

then, from (2.82), (2.85), and (i) of Lemma 2.3 for a = A1 and q = p − 1 > 0, we have that the
solution is unbounded.
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Now, we show that there exist solutions (x1(n), x2(n)) of (2.75), such that (2.81) and (2.85)
hold for an integer z, z ≥ 2. Indeed, if, for instance, relations (2.74) hold for q = p − 1 > 0,
then it is easy to prove that

x1(2) = A1 = A2 and x2(3) = A1 = A2,

and so these solutions are eventually equal to the equilibrium (A2, A2).
In addition, we show that there exist solutions (x1(n), x2(n)) of (2.75), such that (2.81) and

(2.83) hold for an integer z, z ≥ 2,.
Indeed, if, for instance, relations (2.73) hold for q = p − 1 > 0, then it is easy to prove that

x1(2) = A1 = A2 and x2(3) > A1 = A2,

and so these solutions are unbounded.

(c) Relation (2.65), for q = p − 1 > 0, becomes

x
p
2 (d)

x
p−1
1 (d − 1)

<
A

p
2

A
p−1
2

= A2,

and so, we have that, (2.66) also holds, and since Lemma 2.3 holds for q = p − 1 > 0, the proof
of (c) is exactly the same with the proof of I(c) of Proposition 2.4, and we omit it.

(d) Suppose that (x1(n), x2(n)) is a solution of (2.75) eventually equal to the equilibrium (a, a),
a > A2. Then, there exists a positive integer n0, such that

x1(n) = a, x2(n) = a, for any n ≥ n0. (2.86)

Since a > A2, from (2.75) and (2.86), we have

x1(n0 + 1) =
x

p
1 (n0)

x
p−1
2 (n0 − 1)

, x2(n0 + 1) =
x

p
2 (n0)

x
p−1
1 (n0 − 1)

,

and so, x2(n0 − 1) = a and x1(n0 − 1) = a. Working inductively, we get

x1(n) = a, x2(n) = a, for any − 1 ≤ n ≤ n0 − 1. (2.87)

From (2.86) and (2.87), we have that

x1(n) = a, x2(n) = a, for any n ≥ −1.
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1 Introduction and main result

In the paper, we explore nontrivial solutions for the following nonlocal problem

−∆u + V(x)u =

(

1

|x|
∗ u2

)

u + g(u) in R
3, (1.1)

where 1
|x|

∗ u2 =
∫

R3
u2(y)
|x−y|

dy, the nonlinearity g satisfies general subcritical growth conditions

(g1) g ∈ C(R, R) is odd;

(g2) −∞ < lim
s→0+

g(s)
s = −m < 0;

(g3) lims→+∞
g(s)
s5 = 0; and the potential function V verifies

(V1) V ∈ C(R3, (−m, 0]) and lim|x|→∞ V(x) = 0;

(V2) (∇V, x) ∈ L
3
2 (R3) and

|(∇V, x)| 3
2

:=

(

∫

R3
|(∇V, x)|

3
2 dx

)
2
3

< 2S := 2 inf
0 ̸=u∈D1,2(R3)

∫

R3 |∇u|2dx

(
∫

R3 u6dx)
1
3

.

BCorresponding author. Email: jiuliu2011@163.com
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When V ≡ 0 and g(s) = −s, Eq. (1.1) is simplified to the classical Choquard equation

−∆u + u =

(

1

|x|
∗ u2

)

u in R
3. (1.2)

Eq. (1.2) appeared at least as early as in 1954, in a work by S. I. Pekar describing the quantum

mechanics of a polaron at rest [11]. In 1976, P. Choquard used Eq. (1.2) to describe an electron

trapped in its own hole in a certain approximation to Hartree–Fock theory of one component

plasma [4]. For more details in the physics aspects, please refer to [7]. Therefore, many

scholars have carried out in-depth research on Choquard equations and related problems. For

recent results, we refer the readers to [6, 8, 9, 12, 14] and references therein. See also [10] for a

broad survey of Choquard equations.

It is important to point out that Liu et al. in [6] considered the following special case of

Eq. (1.1)

−∆u =

(

1

|x|
∗ u2

)

u + g(u) in R
3. (1.3)

Under the assumptions (g1)-(g3), they investigated ground states of Eq. (1.3) by using the

Pohožaev manifold method. In the present paper, we study Eq. (1.1) which can be regarded

as the perturbation equation of Eq. (1.3). By using the monotonicity trick we obtain the

following main result.

Theorem 1.1. Suppose that (V1)–(V2) and (g1)–(g3) hold. Then Eq. (1.1) possesses a nontrivial

solution.

Set K(x) = V(x) +m and f (s) = g(s) +ms. Then Eq. (1.1) equals to the following equation

−∆u + K(x)u =

(

1

|x|
∗ u2

)

u + f (u) in R
3, (1.4)

where f satisfies

( f1) f ∈ C(R, R) is odd;

( f2) lims→0+
f (s)

s = 0;

( f3) lims→+∞
f (s)
s5 = 0;

and K verifies

(K1) K ∈ C(R3, (0, m]) and lim|x|→∞ K(x) = m;

(K2) (∇K, x) ∈ L
3
2 (R3) and |(∇K, x)| 3

2
< 2S.

Then we convert to consider the following

Theorem 1.2. Suppose that (K1)–(K2) and ( f1)–( f3) hold. Then Eq. (1.4) has a nontrivial solution.

Remark 1.3. If K(x) ≡ m, then Theorem 1.2 was proved in [6]. Thus we assume that K(x) ̸≡ m.
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For the rest of this paper, we make the following marks. H := H1(R3) is the usual Sobolev

space endowed with the standard norm ∥ · ∥. Ls(R3), 2 ≤ s ≤ 6, denotes the usual Lebesgue

space with the norm | · |s. C, C1, C2, . . . denote different positive constants whose exact value

is inessential. For any u ∈ H, we define ut(·) := u(t−1·) for t > 0.

It is widely known that the solutions of Eq. (1.4) correspond to the critical points of the

functional defined by

I(u) =
1

2

∫

R3
(|∇u|2 + K(x)u2)dx −

1

4

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dxdy −

∫

R3
F(u)dx, u ∈ H,

where F(s) =
∫ s

0 f (t)dt. Using the Hardy–Littlewood–Sobolev inequality [5], one has

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dxdy ≤ C|u|412

5
≤ C1∥u∥4.

Combining with ( f1)–( f3) and (K1) we know that I is well defined and I is of C1. But it is

hard to obtain a bounded (PS) sequence for the functional I under the assumptions ( f1)–( f3).

In addition, another difficulty we face is the lack of space compactness.

From (K1) we know that there exits a > 0 such that a∥u∥2 ≤
∫

R3(|∇u|2 + K(x)u2)dx.

2 Preliminaries

In order to prove Theorem 1.2, we cannot directly apply the mountain pass theorem [1]. In-

stead we use an indirect approach which dated to Struwe [13] and was developed by Jeanjean

in [2]. Exactly, we apply the following

Proposition 2.1. Let X be a Banach space equipped with a norm ∥ · ∥X and let J ⊂ R
+ be an interval.

We consider a family {Φµ}µ∈J of C1-functionals on X of the form

Φµ(u) = A(u)− µB(u), ∀µ ∈ J,

where B(u) ≥ 0 for all u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as ∥u∥X → +∞.

We assume that there are two points v1, v2 in X such that

Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2},

there hold, ∀µ ∈ J,

cµ = inf
γ∈Γ

max
t∈[0,1]

Φµ(γ(t)) > max{Φµ(v1), Φµ(v2)}.

Then for almost every µ ∈ J, there is a sequence {un} ⊂ X such that

(i) {un} is bounded in X,

(ii) Φµ(un) → cµ and

(iii) Φ′
µ(un) → 0 in the dual X∗ of X.

Moreover, the map µ → cµ is non-increasing and continuous from the left.
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Define f±(s) = max{± f (s), 0}, F1(s) =
∫ s

0 f+(t)dt and F2(s) =
∫ s

0 f−(t)dt, from ( f1)–( f3)

one has

lim
s→0

f±(s)

s
= 0 and lim

s→∞

f±(s)

s5
= 0. (2.1)

Set

X = H, ∥ · ∥X = ∥ · ∥, Φµ = Iµ, J = [2−1, 1],

B(u) =
1

4

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dxdy +

∫

R3
F1(u)dx

and

A(u) =
1

2

∫

R3
(|∇u|2 + K(x)u2)dx +

∫

R3
F2(u)dx.

Then A(u) → +∞ as ∥u∥ → +∞ and

Iµ(u) = A(u)− µB(u)

=
1

2

∫

R3
(|∇u|2 + K(x)u2)dx +

∫

R3
F2(u)dx

−
µ

4

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dxdy − µ

∫

R3
F1(u)dx.

Specially, I1(u) = I(u). The following limit equations

−∆u + mu = µ

(

1

|x|
∗ u2

)

u + lµ(u) in R
3, (2.2)

will play an important role, where lµ(s) = µ f+(s)− f−(s). The energy functional of Eq. (2.2)

is defined by

I∞
µ (u) =

1

2

∫

R3
(|∇u|2 + mu2)dx −

µ

4

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dxdy −

∫

R3
Lµ(u)dx,

where Lµ(s) =
∫ s

0 lµ(t)dt. Set

c∞
µ = inf{I∞

µ (u) : 0 ̸= u ∈ H, (I∞
µ )′(u) = 0}.

Let ω be a positive ground state solution of Eq. (2.2) with µ = 1. By the proof of [6,

Lemma 3.3], one has c∞
1 = maxt>0 I∞

1 (ω(t−1x)).

3 The proof of Theorem 1.2

The following lemma is to verify the assumptions of Proposition 2.1.

Lemma 3.1. Suppose that (K1) and ( f1)–( f3) hold. Then there exist v1, v2 ∈ H such that for any

µ ∈ J, cµ > max{Iµ(v1), Iµ(v2)}.

Proof. From ( f1)–( f3) it follows that

F(s) ≤
a

4
|s|2 + C|s|6 for all s ∈ R.
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Combining with the Hardy–Littlewood–Sobolev and Sobolev inequality, for any u ∈ H and

µ ∈ J one has

Iµ(u) ≥ I(u)

≥
a

4
∥u∥2 −

C1

4
∥u∥4 − C∥u∥6

which implies that there exist α, ρ > 0 such that Iµ(u) ≥ α for all µ ∈ J and ∥u∥ = ρ. Let

ω ∈ H be a positive ground state solution of Eq. (2.2) with µ = 1. For any µ ∈ J, one has

Iµ(ωt) ≤ I∞
1
2
(ωt)

=
t

2

∫

R3
|∇ω|2dx +

mt3

2

∫

R3
ω2dx −

t5

8

∫

R3

∫

R3

ω2(x)ω2(y)

|x − y|
dxdy −

t3

2

∫

R3
L 1

2
(ω)dx.

Combining with

∥ωt∥
2 = t

∫

R3
|∇ω|2dx + t3

∫

R3
|ω|2dx,

there exists t0 > 0 such that ∥ωt0∥ > ρ and Iµ(ωt0) < 0. Set v1 = 0 and v2 = ωt0 . Thus for any

γ ∈ Γ, maxt∈[0,1] Iµ(γ(t)) ≥ α > 0. So cµ ≥ α > max{Iµ(v1), Iµ(v2)}.

Lemma 3.2. Suppose that (K1) and ( f1)–( f3) hold. Then there exists δ ∈ [ 1
2 , 1) such that for any

µ ∈ [δ, 1], cµ < c∞
µ .

Proof. According to the proof of Lemma 3.1, for any µ ∈ J, there exists tµ ∈ (0, t0) such that

Iµ(ω(t−1
µ x)) = maxt∈(0,1] Iµ(ω((t0t)−1x)) ≥ cµ. Set θ = infµ∈J tµ. We claim θ > 0. Otherwise,

there exists µn ∈ J such that tµn → 0 and then

c1 ≤ cµn ≤ Iµn(ω(t−1
µn

x)) → 0.

It is a contradiction. Note that K(x) ≤ m and K(x) ̸≡ m. Define

δ = max











1

2
, 1 −

θ3 min
s∈[θ,t0]

∫

R3 [m − K(sx)]ω2dx

2t3
0

∫

R3 F1(ω)dx +
t5
0
2

∫

R3

∫

R3
ω2(x)ω2(y)

|x−y|
dxdy











.

Then for any µ ∈ [δ, 1], we get

c∞
µ ≥ c∞

1

≥ I∞
1 (ω(t−1

µ x))

= Iµ(ω(t−1
µ x)) +

t3
µ

2

∫

R3
[m − K(tµx)]ω2dx − (1 − µ)t3

µ

∫

R3
F1(ω)dx

−

(

1

4
−

µ

4

)

t5
µ

∫

R3

∫

R3

ω2(x)ω2(y)

|x − y|
dxdy

> cµ +
θ3

2
min

s∈[θ,t0]

∫

R3
[m − K(sx)]ω2dx − (1 − µ)t3

0

∫

R3
F1(ω)dx

−

(

1

4
−

µ

4

)

t5
0

∫

R3

∫

R3

ω2(x)ω2(y)

|x − y|
dxdy

≥ cµ.
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Lemma 3.3. Fix µ ∈ [δ, 1]. Suppose that (K1) and ( f1)–( f3) hold and that {un} ⊂ H is a bounded

(PS)cµ sequence for Iµ. Then there exists u ∈ H, k ∈ N, vi ∈ H\{0}, yn,i ∈ R
3 for 1 ≤ i ≤ k such

that up to a subsequence,

(i) |yn,i| → ∞, |yn,i − yn,j| → ∞, i ̸= j, for 1 ≤ i, j ≤ k,

(ii) (Iµ)′(u) = 0 and (I∞
µ )′(vi) = 0 for 1 ≤ i ≤ k,

(iii) un − u − ∑
k
i=1 vi(· − yn,i) → 0 in H,

(iv) cµ = Iµ(u) + ∑
k
i=1 I∞

µ (vi) + o(1),

where we agree that in the case k = 0 the above holds without vi, yn,i.

Proof. The proof is in the spirit of [3]. Obviously, there exists u ∈ H such that up to a

subsequence un ⇀ u in H, un → u in L
p
loc(R

3) with 2 ≤ p < 6 and un(x) → u(x) a.e. in R
3.

For any ϕ ∈ C∞
0 (R3), one has

0 = ⟨I′µ(un), ϕ⟩+ o(1) = ⟨I′µ(u), ϕ⟩.

Set un,1 = un − u. If un → 0 in H, we are done. So we can assume that {un,1} does not

converge strongly to 0 in H. Thus up to a subsequence un,1 ⇀ 0 in H, un,1 → 0 in L
p
loc(R

3)

and un,1(x) → 0 a.e. in R
3. Then we have

∥un,1∥
2 = ∥un∥

2 − ∥u∥2 + o(1),

∫

R3
K(x)u2

n,1dx =
∫

R3
K(x)u2

ndx −
∫

R3
K(x)u2dx + o(1),

∫

R3

∫

R3

u2
n,1(x)u2

n,1(y)

|x − y|
dxdy =

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy −

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dxdy + o(1)

and
∫

R3
Lµ(un,1)dx =

∫

R3
Lµ(un)dx −

∫

R3
Lµ(u)dx + o(1).

Therefore,

Iµ(un,1) = Iµ(un)− Iµ(u) + o(1).

Define

β1 = lim sup
n→∞

sup
z∈R3

∫

B1(z)
u2

n,1dx.

If β1 = 0, one sees un,1 → 0 in Lp(R3) with 2 < p < 6 from Lion’s lemma [15]. Then

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy →

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dxdy

and
∫

R3
lµ(un)undx →

∫

R3
lµ(u)udx.

Therefore,

0 = ⟨I′µ(un), un⟩+ o(1) ≥ ⟨I′µ(u), u⟩ = 0,



Nonautonomous Choquard equations 7

which infers un → u in H. It is a contradiction. If β1 > 0, we may assume the existence of

yn,1 ∈ R
3 such that

∫

B1(yn,1)
u2

n,1dx >
β1

2 . Set wn,1 = un(·+ yn,1), there exists v1 ∈ H such that up

to a subsequence wn,1 ⇀ v1 in H, wn,1 → v1 in L
p
loc(R

3) with 2 ≤ p < 6 and wn,1(x) → v1(x)

a.e. in R
3. From

∫

B1(0)
v2

1dx = lim
n→∞

∫

B1(0)
w2

n,1dx = lim
n→∞

∫

B1(yn,1)
u2

ndx = lim
n→∞

∫

B1(yn,1)
(u2

n,1 + u2)dx ≥
β1

2
,

we know v1 ̸= 0. Since un,1 ⇀ 0 in H, {yn,1} is unbounded in R
3 and, up to a subsequence,

we can assume that |yn,1| → ∞. Thus

0 = ⟨I′µ(un), ϕ(· − yn,1)⟩+ o(1)

= ⟨(I∞
µ )′(v1), ϕ⟩.

Set un,2 = un − u − v1(· − yn,1). If un,2 → 0 in H, we are done. So we can assume that {un,2}

does not converge strongly to 0 in H. Thus up to a subsequence un,2 ⇀ 0 in H, un,2 → 0 in

L
p
loc(R

3) and un,2(x) → 0 a.e. in R
3. Thus we have

∥un,2∥
2 = ∥un∥

2 − ∥u∥2 − ∥v1∥
2 + o(1),

∫

R3
K(x)u2

n,2dx =
∫

R3
K(x)u2

ndx −
∫

R3
K(x)u2dx −

∫

R3
mv2

1dx + o(1),

∫

R3

∫

R3

u2
n,2(x)u2

n,2(y)

|x − y|
dxdy =

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy −

∫

R3

∫

R3

u2(x)u2(y)

|x − y|
dxdy

−
∫

R3

∫

R3

v2
1(x)v2

1(y)

|x − y|
dxdy + o(1)

and
∫

R3
Lµ(un,2)dx =

∫

R3
Lµ(un)dx −

∫

R3
Lµ(u)dx −

∫

R3
Lµ(v1)dx + o(1).

Therefore,

Iµ(un,2) = Iµ(un)− Iµ(u)− I∞
µ (v1) + o(1).

Define

β2 = lim sup
n→∞

sup
z∈R3

∫

B1(z)
u2

n,2dx.

We replaced un,1 by un,2 and repeat the above arguments. If β2 = 0, then un,2 → 0. It is a

contradiction. If β2 > 0, we may assume the existence of yn,2 ∈ R
3 such that

∫

B1(yn,2)
u2

n,2dx >

β2

2 . Set wn,2 = un(·+ yn,2), there exists v2 ∈ H such that up to a subsequence wn,2 ⇀ v2 in H,

wn,2 → v2 in L
p
loc(R

3) with 2 ≤ p < 6 and wn,2(x) → v2(x) a.e. in R
3. From

∫

B1(0)
v2

2dx = lim
n→∞

∫

B1(0)
w2

n,2dx = lim
n→∞

∫

B1(yn,2)
u2

ndx = lim
n→∞

∫

B1(yn,2)
u2

n,2dx ≥
β2

2
,

we know v2 ̸= 0. Since un,2 ⇀ 0 in H, {yn,2} is unbounded in R
3 and, up to a subsequence,

we can assume that |yn,2| → ∞ and |yn,2 − yn,1| → ∞. Similarly, (I∞
µ )′(v2) = 0. Set

un,3 = un − u − v1(· − yn,1)− v2(· − yn,2).



8 L. Ding, J. Liu and Y.-X. Yuan

Again we repeat the above arguments, then there exists k ∈ N, vi ∈ H\{0}, yn,i ∈ R
3 for

1 ≤ i ≤ k such that up to a subsequence, |yn,i| → ∞, |yn,i − yn,j| → ∞, i ̸= j, for 1 ≤ i, j ≤ k,

(I∞
µ )′(vi) = 0 for 1 ≤ i ≤ k,

un,k+1 = un − u −
k

∑
i=1

vi(· − yn,i)

and

cµ = Iµ(un,k+1) + Iµ(u) +
k

∑
i=1

I∞
µ (vi) + o(1).

Note that there exists α > 0 such that ∥v∥ ≥ α for any v ∈ {v ∈ H : v ̸= 0 and (I∞
µ )′(v) = 0}.

The iterations must stop after steps because {un} is bounded in H.

For almost every µ ∈ [δ, 1], by Proposition 2.1 there is a sequence {un} ⊂ H such that

(i) {un} is bounded in H,

(ii) Iµ(un) → cµ,

(iii) I′µ(un) → 0 in the dual H∗ of H.

(3.1)

Moreover, the map µ → cµ is non-increasing and continuous from the left.

Lemma 3.4. Fix µ ∈ [δ, 1]. Suppose that (K1) and ( f1)–( f3) hold and that {un} ⊂ H satisfies (3.1).

Then there exists u ∈ H such that Iµ(u) = cµ and I ′µ(u) = 0.

Proof. We assume k ≥ 1 in Lemma 3.3. Then

∥un − u −
k

∑
i=1

vi(· − yn,i)∥ → 0

and

cµ = Iµ(u) +
k

∑
i=1

I∞
µ (vi) + o(1),

where I′µ(u) = 0 and (I∞
µ )′(vi) = 0 for 1 ≤ i ≤ k. Because Iµ(u) ≥ 0 and I∞

µ (vi) ≥ c∞
µ for

1 ≤ i ≤ k, we have cµ ≥ c∞
µ . It is a contradiction. Thus k = 0 and ∥un − u∥ → 0. Therefore,

Iµ(u) = cµ and I′µ(u) = 0.

Lemma 3.5. Suppose that (K1)–(K2) and ( f1)–( f3) hold. Then there exists u ∈ H such that I(u) = c1

and I ′(u) = 0.

Proof. Choosing µn ∈ [δ, 1] and µn ↗ 1, then Lemma 3.4 implies that there exists a sequence

{uµn := un} ⊂ H such that

cµn = Iµn(un)

=
1

2

∫

R3
(|∇un|

2 + K(x)u2
n)dx −

µn

4

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy −

∫

R3
Lµn(un)dx

(3.2)

and the following Pohožaev identity

0 =
1

2

∫

R3
|∇un|

2dx +
3

2

∫

R3
K(x)u2

ndx +
1

2

∫

R3
(∇K(x), x)u2

ndx

−
5µn

4

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy − 3

∫

R3
Lµn(un)dx.

(3.3)
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(3.2) × 3 − (3.3) implies

3cµn =
∫

R3
|∇un|

2dx −
1

2

∫

R3
(∇K(x), x)u2

ndx +
µn

2

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy

≥

(

1 −
|(∇K, x)| 3

2

2S

)

∫

R3
|∇un|

2dx +
1

4

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy

which implies that

∫

R3
|∇un|

2dx,
∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy ≤ C, ∀ n ∈ N

∗.

Combining with (2.1) and the Sobolev inequality, we get

∫

R3
|∇un|

2dx +
∫

R3
K(x)u2

ndx = µn

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy +

∫

R3
lµn(un)undx

≤ C +
min
x∈R3

K(x)

2

∫

R3
u2

ndx + C
∫

R3
u6

ndx

which implies
∫

R3
u2

ndx ≤ C ∀ n ∈ N
∗.

Then {un} is bounded in H. Recall that µn ↗ 1,

I(un) = cµn +
µn − 1

4

∫

R3

∫

R3

u2
n(x)u2

n(y)

|x − y|
dxdy + (µn − 1)

∫

R3
F1(un)dx

and

∥I′(un)∥∗ = sup
∥ϕ∥E=1

∣

∣

∣

∣

(µn − 1)
∫

R3

un(x)ϕ(x)u2
n(y)

|x − y|
dxdy + (µn − 1)

∫

R3
f+(un)ϕdx

∣

∣

∣

∣

,

where ∥ · ∥∗ denotes the norm in H∗. So I(un) → c1 and ∥I′(un)∥∗ → 0. According to

Lemma 3.3, we get that there exists u ∈ H such that I(u) = c1 and I′(u) = 0.

Hence, we complete the proof.
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Abstract. In this paper, we consider the multiplicity of homoclinic solutions for the
following damped vibration problems

ẍ(t) + Bẋ(t)− A(t)x(t) + Hx(t, x(t)) = 0,

where A(t) ∈ (R, R
N) is a symmetric matrix for all t ∈ R, B = [bij] is an antisymmetric

N × N constant matrix, and H(t, x) ∈ C1(R × Bδ, R) is only locally defined near the
origin in x for some δ > 0. With the nonlinearity H(t, x) being partially sub-quadratic at
zero, we obtain infinitely many homoclinic solutions near the origin by using a Clark’s
theorem.

Keywords: homoclinic solutions, Clark’s theorem, critical points, Palais–Smale condi-
tion.
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1 Introduction

The homoclinic orbit is an important kind of trajectory in dynamical systems recognized by

Poincaré at the end of the 19th century. Their presence often means the occurrence of chaos

or the bifurcation behavior of periodic orbits, see [4, 7, 10, 12, 14] and references therein. In

recent decades, the existence and multiplicity of homoclinic orbits has been studied in depth

via variational methods. In this paper, we consider the existence of infinitely many homoclinic

solutions for the following damped vibration problems

ẍ(t) + Bẋ(t)− A(t)x(t) + Hx(t, x(t)) = 0, (1.1)

where x(t) ∈ C2(R, R
N), A(t) = [aij(t)] is a symmetric and positive N × N matrix-valued

function with aij ∈ L∞(R, R)(∀i, j = 1, 2, . . . , N), B = [bij] is an antisymmetric N × N constant

matrix, H(t, x) ∈ C1(R × Bδ, R) with Bδ = {x ∈ R
N | |x| ≤ δ} for some δ > 0, Hx(t, x) denote

its derivative with respect to the x variable.

BCorresponding author. Email: lgg112@163.com
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When B = 0, the system (1.1) is the classical second-order Hamiltonian systems which has

been extensively studied in the past, see [1, 5, 6, 8, 11, 13, 15, 16] and references therein. When

B ̸= 0, many authors have studied the existence and multiplicity of homoclinic solutions for

(1.1) under various growth conditions, see [2,3,17–19] and references therein. In [17], Wu and

Zhang obtained the existence and multiplicity of homoclinic solutions by using a symmetric

mountain pass theorem and a generalized mountain pass theorem under the local (AR) su-

perquadratic growth condition. In [2], by using a variant fountain theorem, Chen obtained

infinitely many nontrivial homoclinic orbits for non-periodic damped vibration systems when

H(t, x) satisfies the subquadratic condition at infinity. In [19], Zhang and Yuan studied the

existence of the homoclinic solutions via the genus properties in critical point theory when

H(t, x) is of subquadratic growth as |x| → +∞. In [3], Chen and Tang obtained infinitely

many homoclinic solutions for (1.1) by using a fountain theorem when H(t, x) satisfies a new

subquadratic condition. In [18], Zhu obtained the existence of nontrivial homoclinic solutions

using the mountain pass theorem when H(t, x) satisfies asymptotically quadratic condition.

In this paper, we study the existence of homoclinic solutions for (1.1) when the nonlinearity

H(t, x) is only defined near the origin with respect to x and H(t, x) is partially subquadratic

at zero. To the best of our knowledge, the existence of homoclinic solutions for damped

vibration systems in this case has not been considered before. Our work is motivated by [9],

where the authors improved and extended Clark’s theorem and applied it to the problems on

solutions of elliptic equations and periodic solutions of Hamiltonian systems. Here by using

the Clark’s theorem in [9], we prove that (1.1) has infinitely many homoclinic solutions near

the origin. Furthermore, we make the following assumptions:

(H1) H(t, x) ∈ C1(R × Bδ, R) is even in x, H(t, x) = H(t,−x) for all t ∈ R and x ∈ Bδ, and

H(t, 0) = 0 for all t ∈ R;

(H2) There exists constants α > 0, such that (A(t)x, x) ≥ α|x|2 and ∥B∥ < 2
√

α for all

(t, x) ∈ (R, R
N);

(H3) There exist t0 ∈ R and r > 0 such that uniformly in t ∈ [t0 − r, t0 + r],

lim
|x|→0

H(t, x)

|x|2 = +∞;

(H4) For all (t, x) ∈ R × Bδ,

|Hx(t, x)| ≤ b(t),

where b(t) : R → R is a function such that b ∈ Lξ(R) for some 1 ≤ ξ ≤ 2.

Now, we state the main result as follows.

Theorem 1.1. Assume that (H1)–(H4) hold, then (1.1) has infinitely many homoclinic solution xk

with ∥xk∥L∞ → 0 as k → ∞.

Remark 1.2. Now we give some comparisons between our result and other results on the sys-

tem (1.1). Firstly, in the previous works [2, 3, 17–19], the authors needed to make assumptions

about the behavior of the nonlinearity H(t, x) as |x| → +∞. They assumed that H(t, x) satis-

fies the subquadratic condition, superquadratic condition or asymptotically quadratic condi-

tion at infinity. Compared with these works, we do not need the behavior of the nonlinearity

H(t, x) for |x| large. Secondly, our subquadratic conditions near zero are also weaker than the

related papers [2,3]. In [2,3], the authors assumed that H(t, x) satisfies lim|x|→0
H(t,x)
|x|2 = +∞ for



Infinitely many homoclinic solutions for a class of damped vibration problems 3

all t ∈ R. By contrast, we only assume that lim|x|→0
H(t,x)
|x|2 = +∞ in a interval t ∈ [t0 − r, t0 + r].

Thirdly, in the literature [2,3,17–19], the authors did not give the information for the obtained

homoclinic solutions. However, we can prove that the homoclinic solutions found here con-

verge to the null solution in L∞ norm.

Example 1.3. Let H(t, x) = η(t)|x|µ, where 1 < µ < 2, η(t) ∈ C∞(R, R) satisfies that η(t) = 1,

∀|t| ≤ 1, and η(t) = 0, ∀|t| ≥ 2. It is not difficult to see that H(t, x) satisfies all conditions

of Theorem 1.1. It is worth noting that H(t, x) does not satisfies lim|x|→0
H(t,x)
|x|2 = +∞ for all

t ∈ R.

The remainder of this paper is organized as follows. In Section 2, we give the variational

framework for (1.1). In Section 3, we prove our main result in detail.

2 Preliminaries

In this section, we establish the variational framework for (1.1) and give a preliminary result.

Let E = H1(R, R
N) be a Hilbert space where the function is from R to R

N with the inner

product

⟨x, y⟩0 =
∫

R

(

(x(t), y(t)) + (ẋ(t), ẏ(t))

)

dt, ∀x, y ∈ E0, (2.1)

where (·, ·) means the standard inner product in R
N . The corresponding norm is

∥x∥0 =

(

∫

R

(|x(t)|2 + |ẋ(t)|2)dt

)
1
2

, ∀x ∈ E0. (2.2)

For simplicity, we define a new norm on E. Let

∥x∥ =

(

∫

R

[|ẋ|2 + (A(t)x(t), x(t))− (Bẋ(t), x(t))]dt

)
1
2

, ∀x ∈ E. (2.3)

And the corresponding inner product is denoted by ⟨·, ·⟩. Now we show that the norms ∥ · ∥
and ∥ · ∥0 are equivalent. Since ∥B∥ < 2

√
α from (H2), then ∥B∥2

2α < 2. Hence we can choose a

constant ε0 such that

∥B∥2

2α
< ε0 < 2. (2.4)

Set

C0 = min

{

1 − ε0

2
, α − ∥B∥2

2ε0

}

. (2.5)

By (2.4), we see that C0 > 0. Then by (H2) and mean inequality, we have

∥x∥2 =
∫

R

[|ẋ|2 + (A(t)x(t), x(t))− (Bẋ(t), x(t))]dt

≥
∫

R

[(1 − ε0

2
)|ẋ(t)|2 + (α − ∥B∥2

2ε0
)|x|2]dt

≥ C0∥x∥2
0.

(2.6)
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On the other hand,

∥x∥2 =
∫

R

[|ẋ|2 + (A(t)x(t), x(t))− (Bẋ(t), x(t))]dt

≤
∫

R

[|ẋ(t)|2 + ∥A(t)∥L∞(R)|x|2 + ∥B∥(|ẋ(t)|2 + |x|2)]dt

≤ C1∥x∥2
0,

(2.7)

where C1 = (1 + ∥A(t)∥L∞(R) + ∥B∥) is a constant. Therefore, the norms ∥ · ∥ and ∥ · ∥0 are

equivalent.

To obtain the homoclinic solution of (1.1), we consider the following systems

ẍ(t) + Bẋ(t)− A(t)x(t) + Ĥx(t, x(t)) = 0, (2.8)

where Ĥ ∈ C1(R ×R
N , R) satisfies that Ĥ is even in u, Ĥ(t, x) = H(t, x) for t ∈ R and |x| < δ

2 ,

and Ĥ(t, x) = 0 for t ∈ R and |x| > δ.

Define the functional Φ on E by

Φ(x) =
1

2

∫

R

[|ẋ|2 + (A(t)x(t), x(t))− (Bẋ(t), x(t))]dt −
∫

R

Ĥ(t, x(t))dt

=
1

2
∥x∥2 −

∫

R

Ĥ(t, x(t))dt.

(2.9)

By (H1), Φ ∈ C1(E, R) and the critical points of Φ correspond to the homoclinic solutions of

(2.8) (see [17]). We can get that

⟨Φ′(x), y⟩ =
∫

R

[(ẋ(t), ẏ(t)) + (A(t)x(t), y(t))− (Bẋ(t), y(t))]dt

−
∫

R

(Ĥx(t, x(t)), y(t))dt.
(2.10)

Now we introduce a Clark’s theorem established by Liu and Wang [9]. Clark’s theorem

is a classical theorem in the critical point theory and has a large number of applications in

differential equations. In [9], Liu and Wang improved and extended Clark’s theorem, and

applied it to elliptic equations and Hamiltonian systems.

Let X be a Banach space, Φ ∈ C1(X, R). We say that Φ satisfies (PS) condition if any

sequence {xj} such that Φ(xj) is bounded and Φ
′(xj) → 0 as j → ∞ contains a convergent

subsequence.

Theorem 2.1 ([9]). Assume Φ satisfies the (PS) condition, is even and bounded from below, and

Φ(0) = 0. If for any k ∈ N, there exists a k-dimensional subspace Xk of X and ρk > 0 such that

supXk
⋂

Sρk
Φ < 0, where Sρ = {x ∈ X | ∥x∥ = ρ}, then at least one of the following conclusions

holds.

(1) There exists a sequence of critical points {xk} satisfying Φ(xk) < 0 for all n and ∥xk∥ → 0 as

k → ∞.

(2) There exists r > 0 such that for any 0 < a < r there exists a critical point x such that ∥x∥ = a

and Φ(x) = 0.

Remark 2.2. Clearly, under the assumptions of Theorem 2.1 there exist infinitely many critical

points xk of Φ that satisfies Φ(xk) ≤ 0, Φ(xk) → 0 and ∥xk∥ → 0 as k → ∞.
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3 Proof of the main result

In this section, we use Theorem 2.1 to prove the main result of this paper.

Proof. Step 1. We prove that Φ is bounded from below. Let ∥ · ∥Lp(R) denote the norm of

Lp(R, R
N)(1 ≤ p ≤ ∞). By (H4), we have that

|Ĥ(t, x)| ≤ b(t)|x|, ∀(t, x) ∈ R × R
N , (3.1)

where b ∈ Lξ(R) is from (H4). If ξ = 1, we have

∫

R

Ĥ(t, x(t))dt ≤
∫

R

b(t)|x|dt ≤ ∥x∥L∞(R)

∫

R

b(t)dt ≤ C′
1∥x∥∥b(t)∥L1(R), (3.2)

where the Sobolev inequality ∥x∥L∞(R) ≤ C′
1∥x∥ has been used. If 1 < ξ ≤ 2, by the Hölder

inequality and the Sobolev inequality, we have

∫

R

Ĥ(t, x(t))dt ≤
(

∫

R

(b(t))ξ

)
1
ξ
(

∫

R

|x|
ξ

ξ−1 dt

)

ξ−1
ξ

≤ C′
ξ∥x∥∥b(t)∥Lξ (R). (3.3)

Then, by (3.2), (3.3) we can see that

∫

R

Ĥ(t, x(t))dt ≤ C′
ξ∥x∥∥b(t)∥Lξ (R). (3.4)

Therefore by (2.3) and (3.4), we have

Φ(x) =
1

2

∫

R

[|ẋ|2 + (A(t)x(t), x(t)) + (Bx(t), ẋ(t))]dt

−
∫

R

Ĥ(t, x(t))dt

≥ 1

2
∥x∥2 − C′

ξ∥x∥∥b(t)∥Lξ (R).

(3.5)

Consequently, Φ is bounded from below.

Step 2. We prove that Φ(x) satisfies the (PS) condition. Let {xn} be a (PS) sequence, that

is Φ(xn) is bounded and Φ
′(xn) → 0 as n → ∞. By (3.5), we see that {xn} is bounded in

E. Hence, there exists a subsequence of {xn} (for simplicity still denoted by {xn}) and some

x0 ∈ E such that xn ⇀ x0 in E, and xn → x0 strongly in Cloc(R
1) as n → ∞. Then Φ

′(x0) = 0.

Notice that

∥xn − x0∥2 = ⟨(Φ′(xn)− Φ
′(x0)), (xn − x0)⟩

+
∫

R

(

(Ĥx(t, xn)− Ĥx(t, x0)), (xn − x0)
)

dt (3.6)

Since xn ⇀ x0 in E and Φ
′(xn) → 0 as n → ∞, we have

⟨(Φ′(xn)− Φ
′(x0)), (xn − x0)⟩ → 0 as n → ∞. (3.7)
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By (3.1), the Hölder inequality and the Sobolev inequality, for every R > 0 we have

∣

∣

∣

∣

∫

R

(

(Ĥx(t, xn)− Ĥx(t, x0)), (xn − x0)
)

dt

∣

∣

∣

∣

≤
∫

R

|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt

≤
∫

R\[−R,R]
|Ĥx(t, xn)− Ĥx(t, x0)|(|xn|+ |x0|)dt

+
∫ R

−R
|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt

≤ 2
∫

R\[−R,R]
b(t)(|xn|+ |x0|)dt +

∫ R

−R
|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt

≤ 2∥b(t)∥Lξ (R\[−R,R])(∥xn∥+ ∥x0∥) +
∫ R

−R
|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt.

(3.8)

For any ε > 0, since b(t) ∈ Lξ(R) and {xn} is bounded in E, there exists R0 > 0 large enough

such that

(∥xn∥+ ∥x0∥)∥b(t)∥Lξ (R\[−R0,R0]) <
ε

4
, ∀n ∈ Z

+. (3.9)

On the other hand, since xn → x0 strongly in C([−R0, R0]), there must exist n0 ∈ Z
+ such

that for n ≥ n0
∫ R0

−R0

|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt <
ε

2
. (3.10)

Then by (3.8),(3.9) and (3.10), for n ≥ n0 we have

∣

∣

∣

∣

∫

R

(Ĥx(t, xn)− Ĥx(t, x0), xn − x0)dt

∣

∣

∣

∣

< ε,

which implies that

∣

∣

∣

∣

∫

R

(Ĥx(t, xn)− Ĥx(t, x0), xn − x0)dt

∣

∣

∣

∣

→ 0 as n → ∞. (3.11)

Hence, by (3.6), (3.7) and (3.11), we have xn → x0 in E as n → ∞. Therefore, Φ(x) satisfies the

(PS) condition.

Step 3. We show that for every k ∈ N, there exists a k-dimensional subspace Xk of X and ρk >

0 such that supXk
⋂

Sρk
Φ < 0. Let Xk be a k-dimensional subspace of C∞

0 ([t0 − r, t0 + r]). Since

Xk is a finite dimensional space and the norms in finite dimensional space are all equivalent,

there exists a positive constant Ck > 0 such that

∥x∥2 ≤ Ck∥x∥2
L2 , ∀x ∈ Xk. (3.12)

By (H3) and the definition of Ĥ(t, x), there exists a constant 0 < δk <
δ
2 such that for t ∈

[t0 − r, t0 + r] and x ∈ Bδk
, we have

Ĥ(t, x) ≥ Ck|x|2. (3.13)
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Recall the Sobolev inequality ∥x∥L∞(R) ≤ C′
1∥x∥, we take ρk = δk

C′
1
. Then for any x ∈ Sρk

, we

have ∥x∥L∞ < δk. Thus by (2.9), (3.12) and (3.13), for any x ∈ Xk ∩ Sρk
we have

Φ(x) ≤ 1

2
∥x∥2 − Ck∥x∥2

L2(R)

< −1

2
∥x∥2

= −1

2
ρ2

k < 0,

which implies that supXk
⋂

Sρk
Φ < 0. Now by Theorem 2.1, we obtain infinitely many solu-

tions {xk} for (2.1) such that ∥xk∥ → 0 as k → ∞. By Sobolev’s inequality, we can get that

∥xk∥L∞(R) → 0 as k → ∞. Then there exists k0 ∈ N such that ∥xk∥L∞(R) <
δ
2 , ∀k ≥ k0. Hence

by the definition of Ĥ(t, x), for k ≥ k0, {xk} are also solutions of (1.1).

Acknowledgements

The authors would like to thank the referee and the editor for their helpful comments and

suggestions. This work was supported by National Natural Science Foundation of China

(11901270) and Shandong Provincial Natural Science Foundation (ZR2019BA019)

References

[1] A. Ambrosetti, V. Coti Zelati, Multiple homoclinic orbits for a class of conservative sys-

tems, Rend. Sem. Mat. Univ. Padova 89(1993), 177–194. https://doi.org/10.1016/0165-

0114(92)90069-G; MR1229052; Zbl 0806.58018

[2] G. W. Chen, Non-periodic damped vibration systems with sublinear terms at infinity:

Infinitely many homoclinic orbits, Nonlinear Anal. 92(2013), No. 9, 168–176. https://

doi.org/10.1016/j.na.2013.07.018; MR3091117; Zbl 1346.49026

[3] P. Chen, X. H. Tang, Infinitely many homoclinic solutions for a class of damped vibration

problems, Math. Methods Appl. Sci. 37(2014), No. 15, 2297–2307. https://doi.org/10.

1002/mma.2978; MR3264729; Zbl 1306.34072

[4] S. N. Chow, J. K. Hale, J. Mallet-Paret, An example of bifurcation to homoclinic or-

bits, J. Differential Equations 37(1980), No. 3, 351–373. https://doi.org/10.1016/0022-

0396(80)90104-7; MR0589997; Zbl 0439.34035

[5] V. Coti Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian sys-

tems possessing superquadratic potentials, J. Amer. Math. Soc. 41991, No. 4, 693–727.

https://doi.org/10.2307/2939286; MR1119200; Zbl 0744.34045

[6] Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamil-

tonian systems, Nonlinear Anal. 25(1995), No. 11, 1095–1113. https://doi.org/10.1016/

0362-546X(94)00229-B; MR1350732; Zbl 0840.34044

[7] P. J. Holmes, Averaging and chaotic motions in forced oscillations, SIAM J. Appl. Math.

38(1980), No. 1, 65–80. https://doi.org/10.1137/0138005; MR0559081; Zbl 0472.70024



8 H. J. Xu, S. Jiang and G. G. Liu,

[8] M. Izydorek, J. Janczewska, Homoclinic solutions for a class of the second order Hamil-

tonian systems, J. Differential Equations 219(2005), No. 2, 375–389. https://doi.org/10.

1016/j.jde.2005.06.029; MR2183265; Zbl 1080.37067

[9] Z. Liu, Z.-Q. Wang, On Clark’s theorem and its applications to partially sublinear prob-

lems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32(2015), 1015–1037. https://doi.org/

10.1016/J.ANIHPC.2014.05.002; MR3400440; Zbl 1333.58004

[10] V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans.

Moscow Math. Soc. 12(1963), No. 1, l–57; translation from Trudy Moskov. Mat. Obšč 12(1963),
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Abstract. In this paper, we consider a class of Lane–Emden heat flow system with the
fractional Laplacian





ut + (−∆)
α
2 u = N1(v) + f1(x), (x, t) ∈ Q,

vt + (−∆)
α
2 v = N2(u) + f2(x), (x, t) ∈ Q,

u(x, 0) = a(x), v(x, 0) = b(x), x ∈ R
N ,

where 0 < α ≤ 2, N ≥ 3, Q := R
N × (0,+∞) , fi(x) ∈ L1

loc(R
N) (i = 1, 2) are nonneg-

ative functions. We study the relationship between the existence, blow-up of the global
solutions for the above system and the indexes p, q in the nonlinear terms N1(v), N2(u).
Here, we first establish the existence and uniqueness of the global solutions in the
supercritical case by using Duhamel’s integral equivalent system and the contraction
mapping principle, and we further obtain some relevant properties of the global solu-
tions. Next, in the critical case, we prove the blow-up of nonnegative solutions for the
system by utilizing some heat kernel estimates and combining with proof by contra-
diction. Finally, by means of the test function method, we investigate the blow-up of
negative solutions for the Cauchy problem of a more general higher-order nonlinear
evolution system with the fractional Laplacian in the subcritical case.

Keywords: fractional Laplacian, Lane–Emden heat flow system, critical exponent, the
contraction mapping principle, the test function method.

2020 Mathematics Subject Classification: 35B08, 35B44, 35B33, 35R11.

1 Introduction

The classical Lane–Emden equation

−∆u = up, x ∈ R
N , N > 2, p > 1,

has been extensively studied, going back to the pioneering work of astronomers and astro-

physicists Lane [32] and Emden [15]. It is one of the basic equations in the theory of stellar
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structure and originally used to compute the pressure, density and temperature on the surface

of the Sun. It has been discussed by many scholars, see [13, 18, 35, 43, 47] and the references

therein. The existence and nonexistence of the global solutions of the equation was once an

significant research topic for scholars. For instance, Gidas and Spruck [22] proved that the

equation has no positive classical solution in a bounded domain when 1 < p <
N+2
N−2 , while

the existence of the solution was solved by Caffarelli et al. in [6]. Thereafter, Chen and Li

[8] found the form of the positive solution for p = N+2
N−2 (N ≥ 3) in the whole space and

obtained that only trivial solutions exist for p <
N+2
N−2 by using the method of moving planes.

In addition, as for p >
N+2
N−2 , Zou [49] proved that the equation has a unique positive radial

symmetric solution with polynomial decay at infinity. Meanwhile, scholars also discussed the

existence and nonexistence of solutions to nonlinear elliptic equation and system with a more

general nonlinearity. In [4], Bernard studied the semilinear elliptic equation −∆u = up + f (x)

in the whole space. He obtained the blow-up of the global solutions for 1 < p ≤ N
N−2 , while

if p >
N

N−2 and f ∈ C0,γ(RN) with 0 < γ ≤ 1, he showed that the equation has a bounded

positive solution. Obviously, the Lane–Emden type system is the natural counterpart of the

Lane–Emden equation {
−∆u = v|v|p−1, x ∈ R

N ,

−∆v = u|u|q−1 + f (x), x ∈ R
N ,

where N ≥ 3, p, q > 1. When f = 0, Mitidieri [37] proved that there has no nontrivial radial

positive solutions of class C2(RN) by contradiction if 1 < p ≤ q and 1
p+1 +

1
q+1 >

N−2
N , while if

1 < p ≤ q and 1
p+1 +

1
q+1 ≤ N−2

N , the existence of positive (radial, bounded) classical solution

for the system is fully solved by Serrin and Zou in [42]. As for more general cases, when

f ∈ L
N(pq−1)
2q(p+1) , Ferreira et al. [19] showed the existence of the global solutions in the supercritical

case N > max
{ 2q(p+1)

pq−1 ,
2p(q+1)

pq−1

}
by means of the fixed point theorem, here the range for (p, q)

covers the critical and supercritical cases with respect to the hyperbola 1
p+1 +

1
q+1 = N−2

N . In

case N ≤ max
{ 2q(p+1)

pq−1 ,
2p(q+1)

pq−1

}
, the nonexistence results has been pointed out by Mitidieri in

[38]. For more researches on elliptic equations, please refer to [2, 11, 34, 40].

The parabolic equation corresponding to the classical Lane–Emden equation, namely the

semilinear reaction-diffusion equation

ut − ∆u = uq, x ∈ R
N , t > 0,

has been studied by many scholars, since the pioneering work [20] of Fujita in 1966, where it

was shown that the Cauchy problem of the equation has two cases of the solution: if q > qc =

1 + 2
N , there exist both global and blow-up solutions, corresponding to small and large initial

values, respectively; while if q < qc = 1 + 2
N , then the problem does not admit nonnegative

global solution. The case of q = qc = 1 + 2
N was decided by Hayakawa [28] for N = 1, 2 and

Kobayashi et al. [31] for all N ≥ 1 that the problem does not admit nontrivial nonnegative

global solution. Thus, it can be seen that the range of index q plays an important role in the

researches of existence and blow-up of the solutions. And qc is called Fujita critical exponent.

Since then, there have been a number of extensions to the research of critical exponent in

several directions. For instance, Pascucci [39] considered a semilinear Cauchy problem on

nilpotent Lie groups and obtained the sharp Fujita critical exponent, which generalized the

results in [20, 28, 31].

As for the semilinear parabolic system, Escobedo and Herrero [16] discussed the Cauchy
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problem of semilinear reaction-diffusion system in the whole space





ut − ∆u = vp, (x, t) ∈ R
N × (0, ∞),

vt − ∆v = uq, (x, t) ∈ R
N × (0, ∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R
N , N ≥ 1.

They showed that the system has two significant curves, namely, the global existence curve

pq = 1 and the Fujita curve pq = 1 + 2
N max {p + 1, q + 1}. If 0 < pq ≤ 1 or pq >

1 + 2
N max {p + 1, q + 1} with suitably small initial values, then every solution is global by

employing the integral equivalent system and Gronwall-type inequalities, respectively; while

if pq > 1 + 2
N max {p + 1, q + 1} with large initial values, the system possesses no nontrivial

global solution. Meanwhile, the nonexistence of nontrivial global solution is proved based on

some heat kernel estimates for 1 < pq ≤ 1 + 2
N max {p + 1, q + 1}. For some problems with

boundary conditions or nonlinear terms different from the above, many scholars have also

studied the existence and nonexistence of global solutions. For example, Deng and Fila [14]

and Bai et al. [5] discussed the Fujita critical exponent of parabolic problems in the upper half

space and bounded domain respectively. For more researches on parabolic system, see for

example [17, 29, 30, 45].

In mathematical physics, nonlinear evolution equations with the fractional Laplacian are

extensively used to describe anomalous diffusion, see [25, 26, 33] and the references therein.

Therefore, it is of theoretical value and practical significance to study the existence of solutions

of equations with the fractional Laplacian. Amor and Kenzizi [3] studied the Cauchy problem

of the fractional perturbed heat equation on a bounded domain and obtained the necessary

conditions for the existence of nonnegative global solution. In [23], Greco et al. concerned the

Cauchy problem of the fractional heat equation ut + (−∆)su = 0 in the whole space. It was

showed that the problem has a global solution if the initial value subject to a certain growth

condition. In addition, many scholars have also considered the fractional nonhomogeneous

parabolic equation

ut + (−∆)αu = f (t, u).

When f (t, u) = h(t)up, Guedda et al. [24] and Tan et al. [44] concerned the Cauchy problem

of the equation by means of the integral equivalent equation and the contraction mapping

principle, respectively. Their conclusions implied that the Fujita critical exponent is 1+ 2α(1+σ)
N .

Here, p > 1 and the function h(t) ∈ C ([0, ∞)) satisfied c0tσ ≤ h(t) ≤ c1tσ with c0, c1 > 0, σ >

−1 for t large enough. Besides, the nonexistence of nontrivial nonnegative solutions and the

asymptotic symmetry of the solution were obtained in [10] and [9] under suitable assumptions

on f (t, u) via narrow region principles and the method of moving planes, respectively. For

more works about the fractional parabolic equation, see [1,21,36,41] and the references therein.

Inspired by the above literature, we study the Cauchy problem of the Lane–Emden heat

flow system with the fractional Laplacian





ut + (−∆)
α
2 u = N1(v) + f1(x), (x, t) ∈ Q,

vt + (−∆)
α
2 v = N2(u) + f2(x), (x, t) ∈ Q,

u(x, 0) = a(x), v(x, 0) = b(x), x ∈ R
N .

(1.1)

This problem is used to describe the heat transfer of two mixed combustibles, where u and

v represent the temperature of anomalous diffusion at which the two substances interact

respectively. We are primarily concerned with the case 0 < α ≤ 2, Q := R
N × (0,+∞), N ≥ 3.
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fi(x) ∈ L1
loc(R

N) for i = 1, 2 are nonnegative functions. The nonnegative coupling terms

N1(v), N2(u) satisfying

C1|v − ṽ|(|v|p−1 + |ṽ|p−1) ≤ |N1(v)− N1(ṽ)| ≤ C2|v − ṽ|(|v|p−1 + |ṽ|p−1), (1.2a)

C̃1|u − ũ|(|u|q−1 + |ũ|q−1) ≤ |N2(u)− N2(ũ)| ≤ C̃2|u − ũ|(|u|q−1 + |ũ|q−1), (1.2b)

where p > 1, q > 1, and N1(v) = N2(u) = 0 if u = v = 0. We shall assume henceforth

that both a(x) ∈ Lω1(RN), b(x) ∈ Lω2(RN) are continuous, bounded, nonnegative and not-

constant zero functions with ω1, ω2 > 1. Here u is a curve in Lω3(RN), u : [0, ∞) → Lω3(RN)

while v is a curve in Lω4(RN), v : [0, ∞) → Lω4(RN) for ω3, ω4 > 1, which assumes only non-

negative values. We show the existence of a unique global solution for (1.1) in the supercritical

case and the problem does not admit nonnegative global solutions in the critical case. As for

the subcritical case, we consider the blow-up of the global solution for the following Cauchy

problem of the higher-order nonlinear evolution system





∂ku
∂tk + (−∆)

α
2 u = N1(v) + f1(x), (x, t) ∈ Q,

∂kv
∂tk + (−∆)

β
2 v = N2(u) + f2(x), (x, t) ∈ Q,

∂k−1u
∂tk−1 (x, 0) ≥ 0, ∂k−1v

∂tk−1 (x, 0) ≥ 0, x ∈ R
N ,

(1.3)

where k > 1, 0 < α, β ≤ 2.

For simplicity, throughout the paper, we denote by C a generic positive constant which

may vary in value from line to line and even within the same line, but is independent of the

terms which will take part in any limit process.

The following Duhamel’s integral equivalent system [44] will be used to prove the exis-

tence of a global solution for (1.1) in the supercritical case and the blow-up result in the critical

case for (1.1).

u(x, t) =
∫

RN
Γ(x − y, t)a(y)dy +

∫ t

0

∫

RN
Γ(x − y, t − s)N1(v)(y, s)dyds

+
∫ t

0

∫

RN
Γ(x − y, t − s) f1(y)dyds,

(1.4)

v(x, t) =
∫

RN
Γ(x − y, t)b(y)dy +

∫ t

0

∫

RN
Γ(x − y, t − s)N2(u)(y, s)dyds

+
∫ t

0

∫

RN
Γ(x − y, t − s) f2(y)dyds,

(1.5)

where Γ(x, t) is the fundamental solution to ut + (−∆)
α
2 u = 0. It is well known that Γ(x, t) is

given by ∫

RN
Γ(x, t)e−iz·xdx = e−t|z|α , 0 < α ≤ 2,

From [48], we have

Γ(x, t) =
∫ +∞

0
ft, α

2
(s)T(x, s)ds, 0 < α ≤ 2,

and Γ(x, t) = T(x, t) if α = 2, where

ft, α
2
(s) =

1

2iπ

∫ τ+i∞

τ−i∞
ezs−tz

α
2 dz ≥ 0, T(x, s) =

(
1

4πs

) N
2

e−
|x|2

4s , τ > 0, s > 0.
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To facilitate writing, we set

u0(x, t) =
∫

RN
Γ(x − y, t)a(y)dy, (1.6)

and

v0(x, t) =
∫

RN
Γ(x − y, t)b(y)dy. (1.7)

Define

F ( f1) =
∫ t

0

∫

RN
Γ(x − y, t − s) f1(y)dyds, (1.8)

and

F ( f2) =
∫ t

0

∫

RN
Γ(x − y, t − s) f2(y)dyds. (1.9)

In this framework we can write the integral system (1.4)–(1.5) in the abstract form

(u, v) = (u0, v0) + B(u, v) + (F ( f1) , F ( f2)), (1.10)

where

B(u, v) = (B1(v), B2(u)) , (1.11)

and B1(v) = F (N1(v)), B2(u) = F (N2(u)).

If N > max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
, we denote

Psc :=
N(pq − 1)

α(p + 1)
, Qsc :=

N(pq − 1)

α(q + 1)
,

and

P′
sc :=

N(pq − 1)

α(p + 1) + pq − 1
, Q′

sc :=
N(pq − 1)

α(q + 1) + pq − 1
.

Below we assume the basic assumptions on the range of p1 and q1:

p + 1

pq − 1
−

p + 1

pq + p
<

N

αp1
<

p + 1

pq − 1
, p1 ≥ p, (1.12)

q + 1

pq − 1
−

q + 1

pq + q
<

N

αq1
<

q + 1

pq − 1
, q1 ≥ q, (1.13)

and
N

αq1
<

Nq

αp1
< 1 +

N

αq1
,

N

αp1
<

Np

αq1
< 1 +

N

αp1
,

that is
1

q1
<

q

p1
<

1

q1
+

α

N
,

1

p1
<

p

q1
<

1

p1
+

α

N
. (1.14)

The range and some basic assumptions of the indexes p′1 and q′1 are

1

α
+

p + 1

pq − 1
−

p + 1

pq + p
<

N

αp′1
<

1

α
+

p + 1

pq − 1
, p′1 ≥ p1, (1.15)

1

α
+

q + 1

pq − 1
−

q + 1

pq + q
<

N

αq′1
<

1

α
+

q + 1

pq − 1
, q′1 ≥ q1. (1.16)

Therefore
1

q′1
<

q

p1
,

1

p′1
<

p

q1
. (1.17)

The above assumptions are used in the following statements. Our main results read
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Theorem 1.1. Suppose that N > max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
. Let C0

(
R

N
)

denote the space of all con-

tinuous functions decaying to zero at infinity, and let a(x) ∈ LPsc
(
R

N
)
∩ C0

(
R

N
)
, b(x) ∈ LQsc

(
R

N
)
∩ C0

(
R

N
)
, f1(x) ∈ L

Qsc
p
(
R

N
)
∩ C0

(
R

N
)
, f2(x) ∈ L

Psc
q
(
R

N
)
∩ C0

(
R

N
)
.

(1) There exists δ > 0 such that if ∥a(x)∥Psc , ∥b(x)∥Qsc
, ∥ f1(x)∥ Qsc

p
, ∥ f2(x)∥ Psc

q
≤ δ

3K1
, then the

integral system (1.10) has a unique solution (u, v) satisfying u ∈ Lp1
(
R

N
)
, v ∈ Lq1

(
R

N
)

and

∥u∥p1
, ∥v∥q1

≤ 2δ,

where the constant K1 is as in Lemma 2.3.

(2) If N > 1 + max
{

α(p+1)
pq−1 ,

α(q+1)
pq−1

}
, then (u, v) is a solution in the sense of distributions and

satisfies

∇u ∈ Lp′1(RN), ∇v ∈ Lq′1(RN).

(3) Furthermore, if a(x) ∈ Lp1
(
R

N
)
, b(x) ∈ Lq1

(
R

N
)
, then u, v ∈ C

(
[0, ∞), C0

(
R

N
))

.

Theorem 1.2. Suppose that N = max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
. Then the problem (1.1) has no nonnegative

global solution u, v ∈ C1(Q) ∩ L∞(Q) such that (−∆)
α
2 u(x, t), (−∆)

α
2 v(x, t) ∈ L∞(Q).

Theorem 1.3. Suppose that N < max
{ q(α+pβ)

pq−1 − σ,
p(α+qβ)

pq−1 − σ
}

with σ > max{ α
k ,

β
k } and fi(x) ̸≡

0 for i = 1, 2. Then (1.3) has no nonnegative global weak solution (see Definition 2.1 below).

Remark 1.4. It is worth noting that, compared with the semilinear reaction-diffusion system

of the classical Laplacian in [16], the influence of the fractional operator and the nonlinear

terms for (1.1) we consider on the estimates are more complicated. Hence, when we prove

Theorem 1.2, we argue by contradiction, the integral related to the initial value is estimated

skillfully, which reduces a large number of calculations generated by using the method in [16],

and the method here is more convenient.

Remark 1.5. From Theorem 1.3, if α = β and k = 1, then hypothetical condition will corre-

spondingly change to N < max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
, which is consistent with the indexes in The-

orems 1.1 and 1.2. So we can get that the critical curve for (1.1) is N = max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
.

Next, we give some comments about the critical curve(exponent) for (1.1).

(1) If α = 2, then N = max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
becomes pq = 1 + 2

N max {p + 1, q + 1}, which

is the critical curve for semilinear reaction-diffusion system in [16].

(2) If u = v and p = q, then N = max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
becomes p = 1 + α

N , which is the

critical exponent for the corresponding single parabolic equation ut + (−∆)
α
2 = up in [24, 44].

We conclude this introduction by describing the plan of the paper. Section 2 recalls some

lemmas and some properties of the fundamental solution Γ(x, t) which we shall use in the se-

quel. In Section 3, we use the contraction mapping principle to prove the existence of a unique

global solution for (1.1) in the supercritical case, and further obtain some relevant properties

of the global solution. The blow-up of the global solutions in the critical case is discussed via

Duhamel’s integral equivalent equations and combined with proof by contradiction, which is

gathered in Section 4. As for the blow-up result for a more general higher-order system (1.3)

in the subcritical case, we utilize the test function method to obtain and make up the content

of Section 5. Section 6 is an appendix, in which we prove some lemmas given in Section 2 in

detail.
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2 Preliminaries

In this section, we mainly introduce some lemmas, as well as some properties and estimates

related to the kernel function Γ(x, t), which will be utilized in the following proofs. For

general k, we first give the definition of weak solutions for (1.3).

Definition 2.1. Let u, v ∈ L1
loc

(
R

N × [0, ∞)
)

with N1(v), N2(u) ∈ L1
loc

(
R

N × [0, ∞)
)
, and let

the locally integrable traces ∂iu
∂ti (x, 0), ∂iv

∂ti (x, 0), i = 1, 2, . . . , k − 1 on the hyperplane t = 0 are

well defined. The function (u, v) is called a global weak solution for (1.3) in Q if for any

nonnegative test function ϕ(x, t) ∈ C∞
c

(
R

N × [0, ∞)
)
, the following integral equalities hold:

∫∫

Q
u

[
(−1)k ∂k ϕ

∂tk
+ (−∆)

α
2 ϕ

]
dxdt =

∫∫

Q
(N1(v) + f1(x)) ϕ(x, t)dxdt

+
k−1

∑
i=1

(−1)i
∫

RN

∂k−1−iu

∂tk−1−i
(x, 0)

∂i ϕ

∂ti
(x, 0)dx

+
∫

RN

∂k−1u

∂tk−1
(x, 0)ϕ(x, 0)dx,

(2.1)

∫∫

Q
v

[
(−1)k ∂k ϕ

∂tk
+ (−∆)

β
2 ϕ

]
dxdt =

∫∫

Q
(N2(u) + f2(x)) ϕ(x, t)dxdt

+
k−1

∑
i=1

(−1)i
∫

RN

∂k−1−iv

∂tk−1−i
(x, 0)

∂i ϕ

∂ti
(x, 0)dx

+
∫

RN

∂k−1v

∂tk−1
(x, 0)ϕ(x, 0)dx.

(2.2)

According to [24, 27, 46], we collect the following propositions:

Proposition 2.2.

(1) Γ(x, ts) = t−
N
α Γ(t−

1
α x, s).

(2) Γ(x, t) ≥
(

s
t

)− N
α Γ(x, s) for all t ≥ s.

(3) For all x ∈ R
N and α > 0, Γ(x, t) satisfies the following pointwise estimates

|Γ(x, 1)| ≤ C (1 + |x|)−N−α ,
∣∣∣(−∆)

α
2 Γ(x, 1)

∣∣∣ ≤ C′ (1 + |x|)−N−α .

(4) ∥Γ(·, t)∥1 = 1 for all t > 0, and Γ(x, t) satisfies:

Γ(x, t) ∈ Lp(RN), (−∆)
α
2 Γ(x, t) ∈ Lp(RN).

for all t > 0 and 1 ≤ p ≤ ∞.

(5) For all x ∈ R
N and t, s > 0, the following Chapman–Kolmogorov equation holds:

∫

RN
Γ(x − z, s)Γ(z, t)dz = Γ(x, t + s).

(6) If Γ(0, t) ≤ 1 and τ ≥ 2, then Γ
(

1
τ (x − y), t

)
≥ Γ(x, t)Γ(y, t).
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Lemma 2.3. Let 1 ≤ m ≤ n ≤ ∞. Then for t > 0, e−t(−∆)
α
2 : Lm

(
R

N
)
→ Ln

(
R

N
)

is a bounded

map. Furthermore, for any T > 0 and h(x, t) ∈ Lm(RN), there are positive constants K1 and K2

depending only on m, n and l, such that

∥Γ(x, t) ∗ h(x, t)∥n ≤ K1t−
N
α (1− 1

r ) ∥h(x, t)∥m , (2.3)

∥∥∥(−∆)
l
2 Γ(x, t) ∗ h(x, t)

∥∥∥
n
≤ K2t−

l
α−

N
α (1− 1

r ) ∥h(x, t)∥m , (2.4)

for all t ∈ (0, T] and any l > 0, where 1 + 1
n = 1

m + 1
r . In particular, if l = 1, then

∥∇Γ(x, t) ∗ h(x, t)∥n ≤ K2t−
1
α−

N
α (1− 1

r ) ∥h(x, t)∥m , ∀t ∈ (0, T].

Here and hereafter, “ ∗" stands for the convolution in the space variable.

See Appendix for detailed proof of Lemma 2.3.

Lemma 2.4 (See [7]). Let a ∧ b := min {a, b} for a, b ∈ R. Then there exist positive constants Cα, N

and C′
α,N , depending only on N and α, such that

C′
α, N

(
t−

N
α ∧

t

|x|N+α

)
≤ Γ(x, t) ≤ Cα, N

(
t−

N
α ∧

t

|x|N+α

)

for all (x, t) ∈ R
N × (0,+∞) and 0 < α < 2.

Lemma 2.5. Let (u, v) is a nonnegative solution to (1.1), then there exist positive constants t0, C and

τ such that

u (x, t0) ≥ CΓ(x, τ), v (x, t0) ≥ CΓq(x, τ), (2.5)

for q > 1 and all x ∈ R
N .

Similar estimates can be found in [24, Lemma 3.2]. To make the paper self-contained, we

give the proof of Lemma 2.5 in Appendix.

3 Existence of the global solution for (1.1) in the supercritical case

In this section, we utilize (1.10) and the contraction mapping principle to prove the existence

of a global solution for (1.1) in the supercritical case. To achieve this, we first derive a key

lemma, which provides estimates for the integrals in (1.10).

Define

E := L∞
(
(0, ∞), Lp1

(
R

N
))

× L∞
(
(0, ∞), Lq1

(
R

N
))

.

For each δ > 0 fixed we consider the space D defined by

D :=
{
(u, v) ∈ E | sup tb1∥u∥p1

< 2δ, sup tb2∥v∥q1
< 2δ

}
,

where constants b1, b2 are given by formulas (3.9)–(3.10).

On the space D, we show the following lemma:

Lemma 3.1. Let p1, q1 be as in (1.12)–(1.14) and p′1, q′1 be as in (1.15)–(1.16), (u, v) ∈ D. For all

v1, v2 ∈ Lq1
(
R

N
)

and u1, u2 ∈ Lp1
(
R

N
)
, there are positive constants M1, M2, M′

1, M′
2 > 0 such that
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(1) ∥B1(v1)− B1(v2)∥p1

≤ M1

∫ t

0
(t − s)

− N
α

(
p

q1
− 1

p1

)

∥v1 − v2∥q1

(
∥v1∥

p−1
q1

+ ∥v2∥
p−1
q1

)
ds, (3.1)

∥B2(u1)− B2(u2)∥q1

≤ M2

∫ t

0
(t − s)

− N
α

(
q

p1
− 1

q1

)

∥u1 − u2∥p1

(
∥u1∥

q−1
p1

+ ∥u2∥
q−1
p1

)
ds. (3.2)

(2) ∥∇ [B1(v1)− B1(v2)]∥p′1

≤ M′
1

∫ t

0
(t − s)

− 1
α−

N
α

(
p

q1
− 1

p′
1

)

∥v1 − v2∥q1

(
∥v1∥

p−1
q1

+ ∥v2∥
p−1
q1

)
ds, (3.3)

∥∇ [B2(u1)− B2(u2)]∥q′1

≤ M′
2

∫ t

0
(t − s)

− 1
α−

N
α

(
q

p1
− 1

q′
1

)

∥u1 − u2∥p1

(
∥u1∥

q−1
p1

+ ∥u2∥
q−1
p1

)
ds. (3.4)

Proof. We will only prove the estimates in (3.1) and (3.3) because the ones in (3.2) and (3.4)

can be obtained analogously.

(1) According to the definition of B1(v), together with (1.2a), one can calculate

∥B1(v1)− B1(v2)∥p1

=

∥∥∥∥
∫ t

0

∫

RN
Γ(x − y, t − s) [N1(v1)− N1(v2)]dyds

∥∥∥∥
p1

≤ C2

∫ t

0

∥∥∥∥
∫

RN
Γ(x − y, t − s) |v1 − v2|

(
|v1|

p−1 + |v2|
p−1
)

dy

∥∥∥∥
p1

ds

≤ K1C2

∫ t

0
(t − s)

− N
α

(
p

q1
− 1

p1

) ∥∥∥|v1 − v2|
(
|v1|

p−1 + |v2|
p−1
)∥∥∥ q1

p

ds, (3.5)

here we have used Lemma 2.3 in the second inequality. By employing Hölder’s inequality we

have

∥∥∥|v1 − v2|
(
|v1|

p−1 + |v2|
p−1
)∥∥∥ q1

p

≤



(∫

RN
|v1 − v2|

q1 dx

) 1
p
(∫

RN

(
|v1|

p−1 + |v2|
p−1
) q1

p−1
dx

) p−1
p




p
q1

= ∥v1 − v2∥q1

(∫

RN

(
|v1|

p−1 + |v2|
p−1
) q1

p−1
dx

) p−1
q1

≤ C ∥v1 − v2∥q1

(
∥v1∥q1

+ ∥v2∥q1

)p−1

≤ C ∥v1 − v2∥q1

(
∥v1∥

p−1
q1

+ ∥v2∥
p−1
q1

)
. (3.6)

Substitute (3.6) into (3.5), it yields (3.1), where M1 = K1C2C.
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(2) Using Lemma 2.3, similar to (3.5)–(3.6), we can get

∥∇ [B1(v1)− B1(v2)]∥p′1

≤ C2

∫ t

0

∥∥∥∥
∫

RN
∇Γ(x − y, t − s) |v1 − v2|

(
|v1|

p−1 + |v2|
p−1
)

dy

∥∥∥∥
p′1

ds

≤ K2C2

∫ t

0
(t − s)

− 1
α−

N
α

(
p

q1
− 1

p′
1

) ∥∥∥|v1 − v2|
(
|v1|

p−1 + |v2|
p−1
)∥∥∥ q1

p

ds

≤ M′
1

∫ t

0
(t − s)

− 1
α−

N
α

(
p

q1
− 1

p′
1

)

∥v1 − v2∥q1

(
∥v1∥

p−1
q1

+ ∥v2∥
p−1
q1

)
ds. (3.7)

Using Lemma 3.1, we now give the proof of Theorem 1.1.

Proof of Theorem 1.1. (1) Due to N > max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
, combining (1.12) and (1.13) we can

obtain

p1 >
N(pq − 1)

α(p + 1)
= Psc > 1, q1 >

N(pq − 1)

α(q + 1)
= Qsc > 1. (3.8)

Let

b1 =
N

α

(
1

Psc
−

1

p1

)
=

N

αPsc
−

N

αp1
=

p + 1

pq − 1
−

N

αp1
, (3.9)

b2 =
N

α

(
1

Qsc
−

1

q1

)
=

N

αQsc
−

N

αq1
=

q + 1

pq − 1
−

N

αq1
. (3.10)

Then using (1.12)–(1.14) and (3.8)–(3.10), we conclude that

b1 > 0, b2 > 0,

b2 p − b1 = 1 −
N

α

(
p

q1
−

1

p1

)
, b1q − b2 = 1 −

N

α

(
q

p1
−

1

q1

)
. (3.11)

As ∥a(x)∥Psc ≤ δ
3K1

, ∥b(x)∥Qsc
≤ δ

3K1
, here K1 is determined by Lemma 2.3. Applying

Lemma 2.3, we obtain for any t > 0

sup tb1∥u0(x, t)∥p1
= sup tb1∥Γ(x, t) ∗ a(x)∥p1

≤ K1∥a(x)∥Psc ≤
δ

3
< ∞, (3.12)

sup tb2∥v0(x, t)∥q1
= sup tb2∥Γ(x, t) ∗ b(x)∥q1

≤ K1∥b(x)∥Qsc
≤

δ

3
< ∞. (3.13)

Since ∥ f1(x)∥ Qsc
p

≤ δ
3K1,

, ∥ f2(x)∥ Psc
q

≤ δ
3K1

, combining (1.14) and (3.9), applying Lemma 2.3

with n = p1 and m = Qsc

p , we have

sup tb1∥F( f1)∥p1
≤ sup tb1

∫ t

0
∥Γ(x, t − s) ∗ f1(x)∥p1

ds

≤ K1 sup tb1

∫ t

0
(t − s)

− N
α

(
p

Qsc
− 1

p1

)

∥ f1(x)∥ Qsc
p

ds

≤ K1 ∥ f1(x)∥ Qsc
p

,

namely

sup tb1∥F( f1)∥p1
≤ K1 ∥ f1(x)∥ Qsc

p
≤

δ

3
. (3.14)
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One obtains in a similar way

sup tb2∥F( f2)∥q1
≤ K1 ∥ f2(x)∥ Psc

q
≤

δ

3
. (3.15)

Here u is a curve in Lp1
(
R

N
)
, u : [0, ∞) → Lp1

(
R

N
)
, and v is also a curve in Lq1

(
R

N
)
,

v : [0, ∞) → Lq1
(
R

N
)
. For the above space E is endowed with the usual norm

∥(u, v)∥E = sup tb1∥u∥p1
+ sup tb2∥v∥q1

,

we can define a map Φ : E → E by

Φ(u, v) = (u0, v0) + B(u, v) + (F ( f1) , F ( f2)) .

For each δ > 0 fixed we consider the ball

Bδ = {u ∈ E | ∥u∥E < 2δ} ,

endowed with the metric

dB(u, v) = ∥u − v∥E, ∀u, v ∈ Bδ.

Therefore, the metric space (Bδ, dB) is complete. We will next prove that the operator Φ|Bδ
is

a strict contraction for some δ > 0.

In fact, for any (u1, v1), (u2, v2) ∈ Bδ, using (3.1) with v2 = 0 we get

sup tb1 ∥B1(v1)∥p1
≤ M1 sup tb1

∫ t

0
(t − s)

− N
α

(
p

q1
− 1

p1

)

∥v1∥
p
q1

ds

≤ M1(2δ)p sup tb1

∫ t

0
(t − s)

− N
α

(
p

q1
− 1

p1

)

s−b2 pds. (3.16)

Using (3.11), one obtains

∫ t

0
(t − s)

− N
α

(
p

q1
− 1

p1

)

s−b2 pds ≤ Ct−b1 . (3.17)

Substituting (3.17) into (3.16) we get

sup tb1 ∥B1(v1)∥p1
≤ M3(2δ)p. (3.18)

Similarly, we can arrive at

sup tb2 ∥B2(u1)∥q1
≤ M4(2δ)q. (3.19)

Estimates (3.12)–(3.15), (3.18)–(3.19) and Minkowski’s inequality yield

∥Φ(u1, v1)∥E ≤ sup tb1∥u0∥p1
+ sup tb1∥B1(v1)∥p1

+ sup tb1∥F( f1)∥p1

+ sup tb2∥v0∥q1
+ sup tb2∥B2(u1)∥q1

+ sup tb2∥F( f2)∥q1

≤

(
4

3
+ M32pδp−1 + M42qδq−1

)
δ. (3.20)

Consequently, ∥Φ(u1, v1)∥E < 2δ if 4
3 + M32pδp−1 + M42qδq−1

< 2. This shows that Φ (Bδ)⊂Bδ.
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For all (u1, v1), (u2, v2) ∈ Bδ, we then have ∥(u1, v1)− (u2, v2)∥E ≤ 4δ. Combining (3.1)

and (3.17) we get

sup tb1 ∥B1(v1)− B1(v2)∥p1
≤ M12pδp−1tb1 ∥(u1, v1)− (u2, v2)∥E

·
∫ t

0
(t − s)

− N
α

(
p

q1
− 1

p1

)

s−b2 pds

≤ M32pδp−1 ∥(u1, v1)− (u2, v2)∥E . (3.21)

We can proceed this process similarly as in (3.21) to derive that

sup tb2 ∥B2(u1)− B2(u2)∥q1
≤ M42qδq−1 ∥(u1, v1)− (u2, v2)∥E . (3.22)

By (3.21) and (3.22), it follows that

∥Φ(u1, v1)− Φ (u2, v2)∥E = ∥B(u1, v1)− B (u2, v2)∥E

= sup tb1 ∥B1(v1)− B1 (v2)∥p1
+ sup tb2 ∥B2(u1)− B2 (u2)∥q1

≤
(

M32pδp−1 + M42qδq−1
)
∥(u1, v2)− (u1, v2)∥E . (3.23)

Combining (3.20) and (3.23) we obtain that the map Φ|Bδ
is a strict contraction. So it has a

fixed point in Bδ, which is the unique solution (u, v) for (1.10) satisfying ∥(u, v)∥E < 2δ.

(2) If N > 1 + max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
, using (1.15)–(1.16), we have

p′1 >
N(pq − 1)

α(p + 1) + pq − 1
= P′

sc > 1, q′1 >
N(pq − 1)

α(q + 1) + pq − 1
= Q′

sc > 1. (3.24)

Let

d1 =
N

α

(
1

P′
sc

−
1

p′1

)
=

1

α
+

p + 1

pq − 1
−

N

αp′1
, (3.25)

d2 =
N

α

(
1

Q′
sc

−
1

q′1

)
=

1

α
+

q + 1

pq − 1
−

N

αq′1
. (3.26)

Combining (1.15)–(1.17) and (3.24)–(3.26), we conclude that

d1 > 0, d2 > 0,

and

b2 p − d1 = 1 −
1

α
−

N

α

(
p

q1
−

1

p′1

)
, b1q − d2 = 1 −

1

α
−

N

α

(
q

p1
−

1

q′1

)
. (3.27)

We consider the space E1 := L∞
(
(0, ∞), Lp′1

(
R

N
))

× L∞
(
(0, ∞), Lq′1

(
R

N
))

endowed with

the usual norm

∥(u, v)∥E1
= sup td1∥u∥p′1

+ sup td2∥v∥q′1
.

It is easy to see that E1 ⊂ E. Applying Lemma 2.3, similar to (1), we have

sup td1∥∇u0(x, t)∥p′1
= sup td1∥∇Γ(x, t) ∗ a(x)∥p′1

≤ K2∥a(x)∥Psc ≤
δK2

3K1
< ∞, (3.28)

sup td2∥∇v0(x, t)∥q′1
= sup td2∥∇Γ(x, t) ∗ b(x)∥q′1

≤ K2∥b(x)∥Qsc
≤

δK2

3K1
< ∞, (3.29)
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for any t > 0. In view of the definitions of F and B, combining (1.17), (3.8), (3.3) with v2 = 0,

(3.25) and (3.27), we can calculate

sup td1∥∇F( f1)∥p′1
≤ sup td1

∫ t

0
∥∇Γ(x, t − s) ∗ f1(x)∥p′1

ds

≤ K2 sup td1

∫ t

0
(t − s)

− 1
α−

N
α

(
p

Qsc
− 1

p′
1

)

∥ f1(x)∥ Qsc
p

ds

≤
δK2

3K1
, (3.30)

and

sup td1 ∥∇B1(v)∥p′1
≤ M′

1 sup td1

∫ t

0
(t − s)

− 1
α−

N
α

(
p

q1
− 1

p′
1

)

∥v∥p
q1

ds

≤ M′
1 (2δ)p sup td1

∫ t

0
(t − s)

− 1
α−

N
α

(
p

q1
− 1

p′
1

)

s−b2 pds

≤ M′
3 (2δ)p , (3.31)

analogously,

sup td2∥∇F( f2)∥q′1
≤

δK2

3K1
, (3.32)

and

sup td2 ∥∇B2(u)∥q′1
≤ M′

4(2δ)q. (3.33)

It follows that

∥∇Φ(u, v)∥E1
≤ sup td1∥∇u0∥p′1

+ sup td1∥∇B1(v)∥p′1
+ sup td1∥∇F( f1)∥p′1

+ sup td2∥∇v0∥q′1
+ sup td2∥∇B2(u)∥q′1

+ sup td2∥∇F( f2)∥q′1

≤

(
4K2

3K1
+ M′

32pδp−1 + M′
42qδq−1

)
δ, (3.34)

so ∇Φ(u, v) ∈ E1. In view of the fact that (u, v) is the unique fixed point of Φ on E, thus

∇(u, v) ∈ E1, and likewise ∇u ∈ Lp′1
(
R

N
)
, ∇v ∈ Lq′1

(
R

N
)
.

Let φ(x, t) ∈ C∞
c

(
R

N
)

be a nonnegative test function. Multiplying the integral equation

(1.4) by (− ∂
∂t + (−∆)

α
2 )ϕ(x, t), and then integrating on Q, we obtain

∫∫

Q
u

(
−

∂

∂t
+ (−∆)

α
2

)
ϕ(x, t)dxdt

=
∫∫

Q
[u0(x, t) + F (N1(v) + f1)]

(
−

∂

∂t
+ (−∆)

α
2

)
ϕ(x, t)dxdt

=
∫∫

Q
u0(x, t)

(
−

∂

∂t
+ (−∆)

α
2

)
ϕ(x, t)dxdt

+
∫∫

Q
F (N1(v) + f1)

(
−

∂

∂t
+ (−∆)

α
2

)
ϕ(x, t)dxdt

=: A1 + A2. (3.35)
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One can invert the order of integration and utilize the self-adjointness of (−∆)
α
2 to obtain

that

A1 = −
∫

RN

∫ ∞

0
u0(x, t)ϕt(x, t)dtdx +

∫∫

Q
(−∆)

α
2 u0(x, t)ϕ(x, t)dxdt

=
∫

RN
u0(x, 0)ϕ(x, 0)dx +

∫∫

Q

(
∂

∂t
+ (−∆)

α
2

)
u0(x, t) · ϕ(x, t)dxdt. (3.36)

Furthermore, A2 is estimated as follows

A2 = −
∫

RN

∫ ∞

0
F (N1(v) + f1) ϕt(x, t)dtdx +

∫∫

Q
(−∆)

α
2 F (N1(v) + f1) ϕ(x, t)dxdt

=
∫∫

Q

(
∂

∂t
+ (−∆)

α
2

)
F (N1(v) + f1) · ϕ(x, t)dxdt, (3.37)

where we have used the fact that ϕ ∈ C∞
c (Q) and F (N1(v) + f1) (x, 0) = 0 in the last equality.

Plug (3.36) and (3.37) into (3.35), one obtains

∫∫

Q
u

(
−

∂

∂t
+ (−∆)

α
2

)
ϕ(x, t)dxdt

=
∫∫

Q

(
∂

∂t
+ (−∆)

α
2

)
(u0(x, t) + F (N1(v) + f1)) · ϕ(x, t)dxdt

+
∫

RN
u0(x, 0)ϕ(x, 0)dx

=
∫∫

Q

(
∂

∂t
+ (−∆)

α
2

)
u(x, t) · ϕ(x, t)dxdt +

∫

RN
u0(x, 0)ϕ(x, 0)dx

=
∫∫

Q
(N1(v) + f1(x)) ϕ(x, t)dxdt +

∫

RN
u(x, 0)ϕ(x, 0)dx, (3.38)

here we have used (1.4) with t = 0 in the last equality. Obviously, (3.38) is (2.1) when k = 1.

In the same vein, (2.2) with k = 1 can be deduced from the integral equation (1.5), which

can be derived through a similar process as in the proof for (3.38). As a result, (u, v) satisfies

(1.1) in the sense of distributions.

(3) For 0 < T < ∞, if a(x) ∈ Lp1
(
R

N
)
∩ C0

(
R

N
)
, b(x) ∈ Lq1

(
R

N
)
∩ C0

(
R

N
)
, then repeating

the fixed point argument, it is easily conclude that

u ∈ C
(
[0, T], Lp1

(
R

N
)
∩ C0

(
R

N
))

, v ∈ C
(
[0, T], Lq1

(
R

N
)
∩ C0

(
R

N
))

.

Next, we show that u, v ∈ C
(
[T, ∞), C0

(
R

N
))

by a bootstrap argument.

Indeed, for t ≥ T, we write

u(x, t)− u0(x, t) =
∫ T

0

∫

RN
Γ(x − y, t − s) [N1(v) + f1(y)]dyds

+
∫ t

T

∫

RN
Γ(x − y, t − s) [N1(v) + f1(y)]dyds

:= I1(x, t) + I2(x, t), (3.39)

v(x, t)− v0(x, t) =
∫ T

0

∫

RN
Γ(x − y, t − s) [N2(u) + f2(y)]dyds

+
∫ t

T

∫

RN
Γ(x − y, t − s) [N2(u) + f2(y)]dyds

:= J1(x, t) + J2(x, t). (3.40)
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Since u, v ∈ C
(
[0, T], C0

(
R

N
))

, f1(x), f2(x) ∈ C0

(
R

N
)
, it follows that

I1(x, t), J1(x, t) ∈ C
(
[T, ∞), C0

(
R

N
))

.

Also, if t ≥ T, then t−b1 ≤ T−b1 < ∞, t−b2 ≤ T−b2 < ∞. On the metric space (Bδ, dB), using

(3.14) and (3.18), we can get

sup tb1 ∥I1(x, t)∥p1
≤ sup tb1 ∥B1(v)∥p1

+ sup tb1 ∥F ( f1)∥p1

≤ M3 (2δ)p +
δ

3
, (3.41)

it implies that

∥I1(x, t)∥p1
≤ t−b1

(
M3 (2δ)p +

δ

3

)
≤ T−b1

(
M3 (2δ)p +

δ

3

)
.

Similarly, we obtain

∥J1(x, t)∥q1
≤ T−b2

(
M4 (2δ)q +

δ

3

)
. (3.42)

As a result,

I1(x, t) ∈ C
(
[T, ∞), Lp1

(
R

N
))

, J1(x, t) ∈ C
(
[T, ∞), Lq1

(
R

N
))

.

Hence,

I1(x, t) ∈ C
(
[T, ∞), Lp1

(
R

N
)
∩ C0

(
R

N
))

,

J1(x, t) ∈ C
(
[T, ∞), Lq1

(
R

N
)
∩ C0

(
R

N
))

.

Next, from (1.14) we can get

0 <
N

α

(
p

q1
−

1

p1

)
< 1, 0 <

N

α

(
q

p1
−

1

q1

)
< 1.

Thus, there exists p2 > p1, q2 > q1 such that

0 <
N

α

(
p

q1
−

1

p2

)
< 1, 0 <

N

α

(
q

p1
−

1

q2

)
< 1.

Due to u ∈ L∞
(
(0, ∞), Lp1

(
R

N
))

, v ∈ L∞
(
(0, ∞), Lq1

(
R

N
))

, then

uq ∈ L∞
(
(0, ∞), L

p1
q

(
R

N
))

, vp ∈ L∞
(
(0, ∞), L

q1
p

(
R

N
))

.

For t ≥ T, using (3.8)–(3.10), we can get

b1 + 1 −
N

α

(
p

q1
−

1

p2

)
< b2 p, b1 + 1 −

N

α

(
p

Qsc
−

1

p2

)
< 0. (3.43)
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Taking into account that the fixed point is in Bδ, employing Lemma 2.3, Hölder’s inequality

and (3.43), we have

sup tb1 ∥I2(x, t)∥p2
≤ C sup tb1

∫ t

T
∥Γ(x, t − s) ∗ vp∥p2

ds

+ sup tb1

∫ t

T
∥Γ(x, t − s) ∗ f1(x)∥p2

ds

≤ C sup tb1

∫ t

0
(t − s)

− N
α

(
p

q1
− 1

p2

)

∥v∥
p
q1

ds

+ K1 sup tb1

∫ t

T
(t − s)

− N
α

(
p

Qsc
− 1

p2

)

∥ f1(x)∥ Qsc
p

ds

≤ C sup tb1(2δ)p
∫ t

0
(t − s)

− N
α

(
p

q1
− 1

p2

)

s−b2 pds

+ K1 sup t
b1+1− N

α

(
p

Qsc
− 1

p2

)

∥ f1(x)∥ Qsc
p

≤ C (2δ)p +
δ

3
, (3.44)

therefore,

∥I2(x, t)∥p2
≤ T−b1

(
(2δ)p +

δ

3

)
,

that is I2(x, t) ∈ C
(
[T, ∞), Lp2

(
R

N
))

. Similarly, we can get J2(x, t) ∈ C
(
[T, ∞), Lq2

(
R

N
))

.

Combining (3.9) and p2 > p1, it yields b1 −
N
α

(
1

Psc
− 1

p2

)
< 0. Similar to (3.12), (3.14) and

(3.16), we have

sup tb1∥u0(x, t)∥p2 ≤ K1 sup t
b1−

N
α

(
1

Psc
− 1

p2

)

∥a(x)∥Psc ≤
δ

3
T

b1−
N
α

(
1

Psc
− 1

p2

)

, (3.45)

sup tb1∥F( f1)∥p2 ≤ K1 sup t
b1+1− N

α

(
p

Qsc
− 1

p2

)

∥ f1(x)∥ Qsc
p

≤
δ

3
T

b1+1− N
α

(
p

Qsc
− 1

p2

)

, (3.46)

and

sup tb1 ∥B1(v)∥p2
≤ M3(2δ)p sup t

1+b1−
N
α

(
p

q1
− 1

p2

)
−b2 p

≤ M3(2δ)pT
1+b1−

N
α

(
p

q1
− 1

p2

)
−b2 p

. (3.47)

Using (3.44)–(3.47), we can calculate

sup tb1 ∥u(x, t)∥p2
≤ sup tb1 ∥u0(x, t)∥p2

+ sup tb1 ∥I1(x, t)∥p2
+ sup tb1 ∥I2(x, t)∥p2

≤
δ

3
T

b1−
N
α

(
1

Psc
− 1

p2

)

+ M3 (2δ)p T
1+b1−

N
α

(
p

q1
− 1

p2

)
−b2 p

+
δ

3
T

b1+1− N
α

(
p

Qsc
− 1

p2

)

+ C (2δ)p +
δ

3

≤ C,

consequently,

∥u(x, t)∥p2
≤ Ct−b1 ≤ CT−b1 .

Obviously, u(x, t) ∈ C
(
[T, ∞), Lp2

(
R

N
))

. Analogously, we can obtain that v(x, t) ∈ C ([T, ∞),

Lq2
(
R

N
))

.

Iterating this procedure a finite number of times, we deduce that

u(x, t), v(x, t) ∈ C
(
[T, ∞), C0

(
R

N
))

.

This completes the proof.
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4 Blow-up of nonnegative solutions for (1.1) in the critical case

Throughout this section, we shall assume 1 < p ≤ q for definiteness. The following estimate

of the solution for (1.1) is the key step in proving the blow-up theorem for (1.1) in the critical

case.

Lemma 4.1. Assume u, v ∈ C1(Q) ∩ L∞(Q), and let (u, v) is a nonnegative global solution for (1.1)

and satisfies (−∆)
α
2 u(x, t), (−∆)

α
2 v(x, t) ∈ L∞(Q), u0(x, t), v0(x, t) be as in (1.6)–(1.7), then there

exists a constant C, depending on only p and q, such that

t
p+1
pq−1 u0(x, t) ≤ C, t

q+1
pq−1 v0(x, t) ≤ C. (4.1)

Proof. We will only show the first estimate in (4.1) because the proof of the second one is

similar. Arguing as in Lemma 2.5 one has

v(x, t) ≥ Ct

∣∣∣∣
∫

RN
Γ(x − y, t)a(y)dy

∣∣∣∣
q

. (4.2)

We now substitute (4.2) into (1.4), drop the first and third terms on the right there, and use

(1.2a), Jensen’s inequality and Tonelli’s theorem to obtain

u(x, t) ≥ C1

∫ t

0

∫

RN
Γ(x − y, t − s)vp(y, s)dyds

≥ C
∫ t

0

∫

RN
Γ(x − y, t − s)

(
s

∣∣∣∣
∫

RN
Γ(y − z, s)a(z)dz

∣∣∣∣
q)p

dyds

≥ C
∫ t

0
sp

(∫

RN
Γ(x − y, t − s)

∫

RN
Γ(y − z, s)a(z)dzdy

)pq

ds

=
C

p + 1
tp+1 (u0(x, t))pq . (4.3)

We next substitute (4.3) into (1.5). Ignoring again the first and third terms, we have

v(x, t) ≥
C

(p + 1)q

∫ t

0
s(p+1)q

∫

RN
Γ(x − y, t − s)

(∫

RN
Γ(y − z, s)a(z)dz

)pq2

dyds

≥
C

(p + 1)q
·

t(p+1)q+1

(p + 1)q + 1
(u0(x, t))pq2

. (4.4)

Plugging (4.4) into (1.4) we obtain in turn

u(x, t) ≥
C

(p + 1)pq
·

1

((p + 1)q + 1)p ·
t(p+1)(pq+1)

(p + 1)(pq + 1)
(u0(x, t))p2q2

. (4.5)

Iterating the previous procedure, it follows that for any integer k

u(x, t) ≥ AkBkt(p+1)(1+pq+(pq)2+···+(pq)k−1) (u0(x, t))(pq)k

, (4.6)
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where

Ak =
C

(p + 1)(pq)k−1

(
1

(p + 1)(1 + pq)

)(pq)k−2 (
1

(p + 1) (1 + pq + p2q2)

)(pq)k−3

· · ·

(
1

(p + 1) (1 + pq + p2q2 + · · ·+ (pq)k−1)

)
, (4.7)

Bk =

(
1

(p + 1)q + 1

) (pq)k−1

q
(

1

(p + 1)(1 + pq)q + 1

) (pq)k−2

q

·

(
1

(p + 1) (1 + pq + p2q2) q + 1

) (pq)k−3

q

· · ·

(
1

(p + 1) (1 + pq + p2q2 + · · ·+ (pq)k−2) q + 1

)p

, (4.8)

here constant C in Ak is changed one by one according to the different k.

We next note that for any positive integers k and l, the following equalities hold

k−1

∑
i=0

(pq)i =
(pq)k − 1

pq − 1
,

l−1

∑
i=0

(l − i)(pq)i = pq
(pq)l − 1

(pq − 1)2
−

l

pq − 1
,

l−1

∑
i=1

(l − i)(pq)i = pq
(pq)l − 1

(pq − 1)2
−

pql

pq − 1
.

Now set λ = pq, then (4.7) can be written as

Ak = C

(
1

p + 1

) λk−1
λ−1 k−1

∏
i=1

(
λ − 1

λi+1 − 1

)λk−i−1

. (4.9)

We note that (p + 1)
(
1 + λ + λ2 + · · ·+ λi

)
> 1 for any integer i > 1, then

Bk ≥

(
1

(p + 1)(q + 1)

) λk−1

q
(

1

(p + 1)(q + 1)(1 + λ)

) λk−2

q

·

(
1

(p + 1)(q + 1) (1 + λ + λ2)

) λk−3

q

. . .

(
1

(p + 1)(q + 1) (1 + λ + λ2 + · · ·+ λk−2)

) λ
q

,

and therefore

Bk ≥

(
1

(p + 1)(q + 1)

) λk−1
q(λ−1)

·
k−1

∏
i=1

(
λ − 1

λi+1 − 1

) λk−i−1

q

. (4.10)

Substitution of (4.9) and (4.10) into (4.6) yields

u(x, t) ≥ Ct
(p+1)(λk−1)

λ−1 (u0(x, t))λk
(

1

p + 1

) λk−1
λ−1

(
1+ 1

q

)

×

(
1

q + 1

) λk−1
q(λ−1)

(
k−1

∏
i=1

(
λ − 1

λi+1 − 1

)λk−i−1
)1+ 1

q

,
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hence

t

(p+1)(λk−1)
(λ−1)λk u0(x, t) ≤ C (p + 1)

λk−1

(λ−1)λk

(
1+ 1

q

)

(q + 1)
λk−1

q(λ−1)λk ∥u(x, t)∥λ−k

∞

×

(
k−1

∏
i=1

(
λ − 1

λi+1 − 1

)λk−i−1
)−(1+ 1

q )λ
−k

. (4.11)

Since ∥u(x, t)∥∞ < +∞ for any t ∈ [0, ∞), letting k → ∞ in (4.11) and recalling that λ = pq,

we finally arrive at

t
p+1
pq−1 u0(x, t) ≤ C < +∞

for some constant C that only depends on p and q.

In the critical case, applying Lemma 4.1, the blow-up theorem (Theorem 1.2) of the non-

negative solutions for (1.1) is proved as follows.

Proof of Theorem 1.2. Let 1 < p ≤ q, N = max
{ α(p+1)

pq−1 ,
α(q+1)
pq−1

}
= α(q+1)

pq−1 . We suppose by

contradiction that there exists a nonnegative global solution u, v ∈ C1(Q)∩ L∞(Q) for (1.1)

such that (−∆)
α
2 u(x, t), (−∆)

α
2 v(x, t) ∈ L∞(Q). Using Lemma 4.1, there exists a constant C

which depends only on p and q such that

t
q+1
pq−1 v0(x, t) ≤ C,

that is

t
N
α v0(0, t) ≤ C. (4.12)

By employing Fatou’s lemma and Lemma 2.4, we can derive

lim
t→∞

t
N
α v0(0, t) ≥

∫

RN
lim
t→∞

t
N
α Γ(−y, t)b(y)dy

≥ C′
α,N

∫

RN
b(y)dy. (4.13)

Estimates (4.12) and (4.13) yield

∥b(x)∥1 ≤ C, (4.14)

where C > 0 depends only on α and N. Regarding v(·, t) as initial value, by (4.14) we get

∥v(·, t)∥1 ≤ C, ∀t ≥ 0. (4.15)

Let t0 > 0 be as in Lemma 2.5. For t > 1, we set ũ(·, t) = u(·, t + t0), ṽ(·, t) =

v(·, t + t0). Obviously, (ũ, ṽ) is also a solution for (1.1). Applying (1.4) and Lemma 2.5, it

follows that

ũ(x, t) ≥
∫

RN
Γ(x − y, t)ũ(y, 0)dy

≥ C
∫

RN
Γ(x − y, t)Γ(y, τ)dy

= CΓ(x, t + τ), (4.16)
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here we have used Proposition 2.2 (5) in the last equality. By means of (1.5), (1.2b), Tonelli’s

theorem and Proposition 2.2 (4), we have

∥ṽ(x, t)∥1 ≥ C̃1

∫

RN

(∫ t

0

∫

RN
Γ(x − y, t − s)ũq(y, s)dyds

)
dx

= C̃1

∫ t

0

∫

RN
ũq(y, s)dyds. (4.17)

Substituting (4.16) into (4.17), combining with Proposition 2.2 (2), and observing that N =
α(q+1)
pq−1 , we can estimate

∥ṽ(x, t)∥1 ≥ C
∫ t

1

∫

RN
Γq(y, s + τ)dyds

≥ C
∫ t

1
(s + τ)

N
α q ds

∫

RN
Γq(y, 1)dy

= C

[
(t + τ)

q(q+1)
pq−1 +1 − (1 + τ)

q(q+1)
pq−1 +1

]
. (4.18)

In the proceeding estimate, we consider the integral
∫

RN Γq(y, 1)dy as a constant.

In addition, estimate (4.15) also holds for the function ṽ, which conflicts with (4.18) as t

large enough.

5 Blow-up of nonnegative solutions for (1.3) in the subcritical case

Next, we prove the nonexistence of nonnegative solutions for (1.3) in the subcritical case.

Proof of Theorem 1.3. Assume (1.3) admits a nonnegative global solution (u, v), we argue by

contradiction. Take ϕ(x, t) = φs1( |x|R )φks2( t
Rσ ) as the test function in (2.1) and (2.2), where

s1, s2 ≥ max
{ p

p−1 ,
q

q−1

}
, σ ≥ max

{
α
k ,

β
k

}
, φ(ρ) ∈ C∞

c (R) is the “standard cut-off function” with

the following properties:

0 ≤ φ (ρ) ≤ 1, and φ (ρ) =

{
1, if ρ ≤ 1,

0, if ρ ≥ 2.

Substituting ϕ(x, t) into (2.1), thanks to
∂i ϕ

∂ti (x, 0) ≡ 0, i = 1, 2, . . . , k − 1, it follows that

∫∫

Q
(N1(v) + f1(x)) ϕ(x, t)dxdt +

∫

RN

∂k−1u

∂tk−1
(x, 0)ϕ(x, 0)dx

=
∫∫

Q
u

[
(−1)k ∂k ϕ

∂tk
+ (−∆)

α
2 ϕ

]
dxdt

≤
∫∫

Q
u

[
(−1)kφs1(

|x|

R
)

dk

dtk

(
φks2

(
t

Rσ

))

+ s1φks2

(
t

Rσ

)
φs1−1

(
|x|

R

)
(−∆)

α
2 φ

(
|x|

R

)]
dxdt, (5.1)

here we have used Ju’s inequality in the last inequality. Since u(x, t) ≥ 0, N1(v) ≥ 0 and (1.2a),

we obtain
∫∫

Q
N1(v)ϕ(x, t)dxdt ≥

∫∫

Q
(C1|v|

p + N1(0)) ϕ(x, t)dxdt ≥ C1

∫∫

Q
|v|p ϕ(x, t)dxdt.
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By ∂k−1u
∂tk−1 (x, 0) ≥ 0, f1(x) ≥ 0 and f1(x) ̸≡ 0, applying Hölder’s inequality, we get that

∫∫

Q
vp ϕ(x, t)dxdt

< C

(∫∫

Q
uq ϕ(x, t)dxdt

) 1
q

·

(∫∫

Q

∣∣∣∣(−1)kφs1

(
|x|

R

)
dk

dtk

(
φks2

(
t

Rσ

))
ϕ

1−q′

q′

∣∣∣∣
q′

+

∣∣∣∣s1φks2

(
t

Rσ

)
φs1−1

(
|x|

R

)
(−∆)

α
2 φ

(
|x|

R

)
ϕ

1−q′

q′

∣∣∣∣
q′

dxdt

) 1
q′

, (5.2)

here we have used Cp inequality in the last inequality. Set

B1 := C
∫∫

Q

∣∣∣∣φ
s1

(
|x|

R

)
dk

dtk

(
φks2

(
t

Rσ

))
ϕ

1−q′

q′

∣∣∣∣
q′

dxdt,

B2 := C
∫∫

Q

∣∣∣∣s1φks2

(
t

Rσ

)
φs1−1

(
|x|

R

)
(−∆)

α
2 φ

(
|x|

R

)
ϕ

1−q′

q′

∣∣∣∣
q′

dxdt.

Then we have

∫∫

Q
vp ϕ(x, t)dxdt <

(∫∫

Q
uq ϕ(x, t)dxdt

) 1
q

· (B1 + B2)
1
q′ . (5.3)

Now according to the expression of ϕ(x, t), we get

B1 = C
∫∫

Q
φs1

(
|x|

R

) ∣∣∣∣
1

Rkσ

(
φks2

)(k) ( t

Rσ

)∣∣∣∣
q′

φks2(1−q′)

(
t

Rσ

)
dxdt

= C
∫ 2Rσ

Rσ

∣∣∣∣
1

Rkσ

(
φks2

)(k) ( t

Rσ

)∣∣∣∣
q′

φks2(1−q′)

(
t

Rσ

)
dt
∫

{x∈RN :|x|<2R}
φs1

(
|x|

R

)
dx. (5.4)

Since φ(ρ) ∈ [0, 1], and if s2 ≥ max
{ p

p−1 ,
q

q−1

}
, namely s2 ≥ q′, for any 1 ≤ j ≤ k, we obtain

∣∣∣∣
(

ϕks2

)(j)
(ρ)

∣∣∣∣
q′

≤

∣∣∣∣∣

j

∑
i=1

C
(ks2)!

(ks2 − i)!
φks2−i(ρ)

∣∣∣∣∣

q′

≤ Cφks2(q
′−1)(ρ). (5.5)

Substituting (5.5) into (5.4), it yields

B1 ≤ C
∫ 2Rσ

Rσ

1

Rkσq′
dt
∫

{x∈RN :|x|<2R}
φs1

(
|x|

R

)
dx ≤ CRN+σ−kσq′ . (5.6)

Furthermore, B2 is estimated as follows

B2 = Cs
q′

1

∫ 2Rσ

0
φks2

(
t

Rσ

)
dt
∫

{x∈RN :|x|<2R}
φs1−q′

(
|x|

R

) ∣∣∣∣(−∆)
α
2 φ

(
|x|

R

)∣∣∣∣
q′

dx

≤ 2Cs
q′

1 Rσ
∫

{x∈RN :|x|<2R}
φs1−q′

(
|x|

R

) ∣∣∣∣(−∆)
α
2 φ

(
|x|

R

)∣∣∣∣
q′

dx. (5.7)

Let y = x
R . Using the definition of fractional Laplacian [12], we obtain

(−∆)
α
2 φ
( x

R

)
= R−α(−∆)

α
2 φ(|y|).
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Plugging the above equality into (5.7), it follows that

B2 ≤ CRσ
∫

{x∈RN :|x|<2R}

∣∣∣∣(−∆)
α
2 φ

(
|x|

R

)∣∣∣∣
q′

dx

≤ CRσ
∫

{y∈RN :|y|<2}
RN−αq′

∣∣∣(−∆)
α
2 φ (|y|)

∣∣∣
q′

dy

≤ CRN+σ−αq′ . (5.8)

Here we consider the integral
∫
{y∈RN :|y|<2}

∣∣(−∆)
α
2 φ (|y|)

∣∣q′ dy as a constant.

When σ ≥ max
{

α
k ,

β
k

}
, the powers in (5.6) and (5.8) satisfy the following inequality:

N + σ − kσq′ ≤ N + σ − αq′.

Thus, we eventually arrive at

B1 + B2 ≤ CRN+σ−αq′ (5.9)

for sufficiently large R.

Analogously, we next substitute ϕ(x, t) into (2.2), use Hölder’s inequality and the defini-

tion of the global weak solution to obtain

∫∫

Q
uq ϕ(x, t)dxdt <

(∫∫

Q
vp ϕ(x, t)dxdt

) 1
p

· (B3 + B4)
1
p′ , (5.10)

where

B3 = C
∫∫

Q

∣∣∣∣φ
s1

(
|x|

R

)
dk

dtk

(
φks2

(
t

Rσ

))
ϕ

1−p′

p′

∣∣∣∣
p′

dxdt,

and

B4 = C
∫∫

Q

∣∣∣∣s1φks2

(
t

Rσ

)
φs1−1

(
|x|

R

)
(−∆)

β
2 φ

(
|x|

R

)
ϕ

1−p′

p′

∣∣∣∣
p′

dxdt.

Similar to (5.6) and (5.8), we can derive that

B3 ≤ CRN+σ−kσp′ , B4 ≤ CRN+σ−βp′ ,

since σ ≥ max
{

α
k ,

β
k

}
, we derive

B3 + B4 ≤ CRN+σ−βp′ (5.11)

for sufficiently large R.

Plugging (5.3) into (5.10) we obtain

(∫∫

Q
uq ϕ(x, t)dxdt

)1− 1
pq

< (B1 + B2)
1

pq′ · (B3 + B4)
1
p′ ≤ CR

N+σ
pq′

− α
p+

N+σ
p′

−β
(5.12)

for sufficiently large R. Similarly, substituting (5.10) into (5.3) gives

(∫∫

Q
vp ϕ(x, t)dxdt

)1− 1
pq

< CR
N+σ
qp′

− α
q +

N+σ
q′

−β
(5.13)
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for sufficiently large R. Letting R → ∞ in (5.12) and (5.13). Using the hypothesis of Theo-

rem 1.3, we can see that N+σ
pq′ − α

p + N+σ
p′ − β < 0 or N+σ

qp′ − α
q + N+σ

q′ − β < 0, we eventually

have ∫∫

Q
uqdxdt = lim

R→+∞

∫∫

Q
uq ϕ(x, t)dxdt ≤ 0,

or ∫∫

Q
vpdxdt = lim

R→+∞

∫∫

Q
vp ϕ(x, t)dxdt ≤ 0.

Therefore u(x, t) ≡ 0 or v(x, t) ≡ 0 in Q. This is a contradiction with the assumption that

fi(x) ̸≡ 0 for i = 1, 2, which ends the proof.

A Appendix

Below we give the complete proof of Lemma 2.3.

Proof of Lemma 2.3. (1) We first prove (2.3). When 1 + 1
n = 1

m + 1
r , using Proposition 2.2 (4),

we obtain Γ(x, t) ∈ Lr(RN). Since h(x, t) ∈ Lm(RN), by applying generalized Young’s inequal-

ity, we get

∥Γ(x, t) ∗ h(x, t)∥n ≤ ∥Γ(x, t)∥r ∥h(x, t)∥m =

(∫

RN
Γr(x, t)dx

) 1
r

· ∥h(x, t)∥m .

By Proposition 2.2 (1) with s = 1, namely Γ(x, t) = t−
N
α Γ
(
t−

1
α x, 1

)
, we have

∥Γ(x, t) ∗ h(x, t)∥n ≤ t−
N
α

(∫

RN
Γr(t−

1
α x, 1)dx

) 1
r

· ∥h(x, t)∥m . (A.1)

Utilizing Proposition 2.2 (3), we estimate

∫

RN
Γr(t−

1
α x, 1)dx ≤ C

∫

RN

1
(

1 + t−
1
α |x|

)(N+α)r
dx

≤ C
∫

RN

t
N
α

(
1 + t−

1
α |x|

)(N+α)r
d
(

t−
1
α x
)

. (A.2)

Denote y = t−
1
α x, then (A.2) can be reduced to

∫

RN
Γr(t−

1
α x, 1)dx ≤ Ct

N
α

∫

RN

1

(1 + |y|)(N+α)r
dy. (A.3)

Due to 1 + 1
n = 1

m + 1
r and 1 ≤ m ≤ n ≤ ∞, we have r ≥ 1. Otherwise, it conflicts with m ≤ n.

Therefore, (N + α)r > N. Consequently, the integral on the right hand side of inequality (A.3)

is integrable. We now substitute (A.3) into (A.1) to obtain

∥Γ(x, t) ∗ h(x, t)∥n ≤ K1t−
N
α (1− 1

r ) ∥h(x, t)∥m , (A.4)

where K1 =
(
C
∫

RN
1

(1+|y|)(N+α)r dy
) 1

r .
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(2) The proof of (2.4) is as follows. Similarly, by using generalized Young’s inequality and

Proposition 2.2 (1), we conclude
∥∥∥(−∆)

l
2 Γ(x, t) ∗ h(x, t)

∥∥∥
n
≤
∥∥∥(−∆)

l
2 Γ(x, t)

∥∥∥
r
∥h(x, t)∥m

=

(∫

RN

(
(−∆)

l
2 Γ(x, t)

)r
dx

) 1
r

· ∥h(x, t)∥m

= t−
N
α

(∫

RN

(
(−∆)

l
2 Γ(t−

1
α x, 1)

)r
dx

) 1
r

· ∥h(x, t)∥m .

Let y = t−
1
α x. Using the definition of fractional Laplacian, we get that
∫

RN

(
(−∆)

l
2 Γ(t−

1
α x, 1)

)r
dx = t−

lr
α +

N
α

∫

RN

(
(−∆)

l
2 Γ(y, 1)

)r
dy

≤ C′t−
lr
α +

N
α

∫

RN

1

(1 + |y|)(N+l)r
dy, (A.5)

here we have used Proposition 2.2 (3) in the last inequality. Since r ≥ 1, then (N + l)r > N.

Therefore, the integral on the right hand side of inequality (A.5) is integrable. It follows that
∥∥∥(−∆)

l
2 Γ(x, t) ∗ h(x, t)

∥∥∥
n
≤ K2t−

l
α−

N
α (1− 1

r ) ∥h(x, t)∥m , (A.6)

where K2 =
(
C′
∫

RN
1

(1+|y|)(N+l)r dy
) 1

r .

In particular, substituting l = 1 into (A.6), we have

∥∇Γ(x, t) ∗ h(x, t)∥n ≤ K2t−
1
α−

N
α (1− 1

r ) ∥h(x, t)∥m , ∀t ∈ (0, T].

This completes the proof of Lemma 2.3.

Based on the method in the proof of Lemma 3.2 in [24], we now show the complete proof

of Lemma 2.5 as follows.

Proof of Lemma 2.5. Let t0 > 0 be such that Γ(0, t0) ≤ 1. We obtain

Γ(x − y, t0) = Γ

(
1

2
(2x − 2y) , t0

)
.

Proposition 2.2 (1) and (6) yield

Γ

(
1

2
(2x − 2y) , t0

)
≥ Γ (2x, t0) Γ (2y, t0) = 2−NΓ

(
x,

t0

2α

)
Γ (2y, t0) ,

that is

Γ(x − y, t0) ≥ 2−NΓ

(
x,

t0

2α

)
Γ(2y, t0). (A.7)

Plugging (A.7) into (1.4), and dropping the second and third terms on the right side, we obtain

u(x, t0) ≥
∫

RN
Γ(x − y, t0)a(y)dy

≥
∫

RN
2−NΓ

(
x,

t0

2α

)
Γ(2y, t0)a(y)dy

= CΓ(x, τ),
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where C =
∫

RN 2−NΓ(2y, t0)a(y)dy, τ = t0
2α > 0.

In order to get the corresponding result of v(x, t), for q > 1, by employing Jensen’s in-

equality and Tonelli’s theorem we get

v(x, t) ≥
∫ t

0

∫

RN
Γ(x − y, t − s)N2(u)(y, s)dyds

≥ C̃1

∫ t

0

∫

RN
Γ(x − y, t − s)

∣∣∣∣
∫

RN
Γ(y − z, s)a(z)dz

∣∣∣∣
q

dyds

≥ C
∫ t

0

∣∣∣∣
∫

RN

∫

RN
Γ(x − y, t − s)Γ(y − z, s)a(z)dzdy

∣∣∣∣
q

ds

= C
∫ t

0

∣∣∣∣
∫

RN
Γ(x − z, t)a(z)dz

∣∣∣∣
q

ds,

hence

v(x, t) ≥ Ct

∣∣∣∣
∫

RN
Γ(x − y, t)a(y)dy

∣∣∣∣
q

. (A.8)

For the above t0, we then have

v(x, t0) ≥ Ct0

∣∣∣∣
∫

RN
Γ(x − y, t0)a(y)dy

∣∣∣∣
q

≥ Ct0

∣∣∣∣
∫

RN
2−NΓ

(
x,

t0

2α

)
Γ(2y, t0)a(y)dy

∣∣∣∣
q

= CΓq(x, τ),

where τ = t0
2α > 0. We consider the integral

∣∣∫
RN 2−NΓ(2y, t0)a(y)dy

∣∣q as a constant.

Remark A.1. In Section 4, we assumed that 1 < p ≤ q. If p ≥ q > 1, then the conclusion of

Lemma 2.5 needs to be changed as follows:

v (x, t0) ≥ CΓ(x, τ), u (x, t0) ≥ CΓp(x, τ).

Its proof is similar to the proof of Lemma 2.5. Therefore, in the case of p ≥ q > 1, through the

homologous proof of Theorem 1.2, we can still get the conclusion of Theorem 1.2.
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Abstract. The main goal of this paper is to analyze the existence and nonexistence as
well as the regularity of positive solutions for the following initial parabolic problem



















∂tu − ∆u = µ
u

|x|2
+

f

uσ
in ΩT := Ω × (0, T),

u = 0 on ∂Ω × (0, T),

u(x, 0) = u0(x) in Ω,

where Ω ⊂ R
N , N ≥ 3, is a bounded open, σ ≥ 0 and µ > 0 are real constants and f ∈

Lm(ΩT), m ≥ 1, and u0 are nonnegative functions. The study we lead shows that the
existence of solutions depends on σ and the summability of the datum f as well as on
the interplay between µ and the best constant in the Hardy inequality. Regularity results
of solutions, when they exist, are also provided. Furthermore, we prove uniqueness of
finite energy solutions.

Keywords: heat equation, existence and regularity, Hardy potential, singular terms.
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1 Introduction

Let Ω be a bounded open subset of R
N , N ≥ 3, containing the origin. Set ΩT := Ω × (0, T)

where T > 0 is a real constant. In this paper we investigate the existence and regularity as

well as the uniqueness of solutions to the following initial parabolic problem


















∂tu − ∆u = µ
u

|x|2
+

f

uσ
in ΩT,

u = 0 on Γ := ∂Ω × (0, T),

u(x, 0) = u0(x) in Ω,

(1.1)

where σ ≥ 0 and µ ≥ 0. The source terms f and u0 satisfy

f ≥ 0, f ∈ Lm(ΩT), m ≥ 1 (1.2)
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and u0 ∈ L∞(Ω) such that

∀w ⊂⊂ Ω ∃dw > 0 : u0 ≥ dw in w. (1.3)

It is clear that problem (1.1) is strongly related to the following classical Hardy inequality

which asserts that

ΛN,2

∫

Ω

|u|2

|x|2
dx ≤

∫

Ω

|∇u|2dx, (1.4)

for all u ∈ C∞
0 (Ω), where ΛN,2 = (N−2

2 )2 is optimal and not achieved (see for instance [20, 50]

and [11] when Ω = R
N). The presence of a term with negative exponent generally induces a

difficulty in defining the notion of solution for the problem (1.1).

In the literature, singular problems like (1.1) are considered and intensively studied in

various situations depending on σ or µ. If σ = 0 and µ > 0, the problem (1.1) is reduced to

the following heat equation involving the Hardy potential


















∂tu − ∆u = µ
u

|x|2
+ f in ΩT,

u = 0 on ∂Ω × (0, T),

u(x, 0) = u0(x) in Ω,

(1.5)

and is studied first by Baras and Goldstein in their pioneering work [15]. When the data

0 ≤ f ∈ L1(ΩT) and u0 is a positive L1-function or a positive Radon measure on Ω are

not both identically zero (otherwise the result is false since u ≡ 0 is a solution), Baras and

Goldstein [15] have proved that if 0 ≤ µ ≤ ΛN,2 then there exists a positive global solution for

the problem (1.5), while if µ > ΛN,2 there is no solution.

Problem (1.5) with −diva(x, t,∇u) instead of −∆ was studied in [45], where the author

proved that all the solutions have the same asymptotic behaviour, that is they all tend to

the solution of the original problem which satisfies a zero initial condition. In [46] the au-

thors studied the influence of the presence of the Hardy potential and the summability of

the datum f on the regularity of the solutions of problem (1.5) with the nonlinear operator

−diva(x, t, u,∇u) in the principal part.

The singular Hardy potential appears in the context of combustion theory (see [50] and

references therein) and quantum mechanics (see [15] and [50] and references therein). There

is a wide literature about problems involving the Hardy potential where the existence and

regularity of solutions as well as nonexistence of solutions are analyzed, for instance, we refer

to [2–7, 10, 17, 18, 32, 36–38, 54].

Problems involving singularities (like (1.1) with µ = 0) describe naturally several physical

phenomena. Stationary cases include the semilinear equation −∆u = f (x)u−σ, x ∈ Ω ⊂ R
N ,

that can be obtained as a generalization to the higher dimension from a one dimensional ODE

(N = 1) by some transformations of boundary layer equations for the class of non-Newtonian

fluids called pseudoplastic (see [29, 39]). As far as we know, semilinear equations with sin-

gularities arise in various contexts of chemical heterogeneous catalysts [9], non-Newtonian

fluids as well as heat conduction in electrically conducting materials (the term uσ describes

the resistivity of the material), see for instance, [31, 39]. In view of this physical interpre-

tation various generalizations of this later equation considered in the framework of partial

differential equations (N ≥ 2) has been the subject of study in many papers. For the math-

ematical analysis account, the seminal papers [23, 49] constitute the starting point of a wide

literature about singular semilinear elliptic equations. Far from being complete we quote the

list [8, 17, 19, 21, 26, 27, 33, 34, 40, 42, 43, 52, 53, 56].
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It is worth recalling that due to the meaning of the unknowns (concentrations, popula-

tions,. . . ), only the positive solutions are relevant in most cases.

As far as the parabolic setting is concerned for problems as in (1.1) with µ = 0, the

literature is not rich enough. For problems like (1.1) with p-Laplacian operator, existence

results of nonnegative solutions are obtained in [25] for data with higher summability while

in [41] the authors proved the existence of nonnegative distributional solutions for non regular

data (L1 and measure) and the uniqueness is proved for energy solutions. Other related

problems with singular terms can be found in [12–14].

In the case where σ ̸= 0 and µ = 0, problem (1.1) with a quite more general diffusion

operator including the Laplacian one was studied in [24]. The authors considered nonnegative

data having suitable Lebesgue-type summabilities and assumed the strict positivity on the

initial data inside the parabolic cylinder. They have shown, via Harnack’s inequality, that this

strict positivity is inherited by the constructed solution to the problem, thus giving a meaning

to the notion of solution considered. Some regularity results are obtained according to the

regularity of f and the values of σ.

Our main goal in this paper is to study the problem (1.1) in the presence of the two singular

terms, that is µ > 0 and σ ≥ 0 extending to the evolution case some results obtained for the

elliptic problem (with the ∆p operator instead of Laplacian one) studied in [1]. Abdellaoui and

Attar [1] investigated the interplay between the summability of f and σ providing the largest

class of the datum f for which the problem admits a solution in the sense of distributions.

Uniqueness and regularity results on the distributional solutions are also established. In the

same spirit, the parabolic case with µ = 0 was investigated in [24]. Our work fits in the

context of recent work on equations involving the Hardy potential in the case of nonexistence

of solutions. We start by studying first the case µ < ΛN,2 := (N−2)2

4 distinguishing two cases

where σ ≥ 1 and f ∈ L1(ΩT) and the case where σ < 1 with f ∈ Lm1(ΩT), m1 = 2N
2N+(σ−1)(N−2)

.

Then we investigate the case µ = ΛN,2 and σ = 1 with data f ∈ L1(ΩT). In both cases we

prove the existence of a weak solution obtained as limit of approximations that belongs to a

suitable Sobolev space. The approach we use consists in approximating the singular equation

with a regular problem, where the standard techniques (e.g., fixed point argument) can be

applied and then passing to the limit to obtain the weak solution of the original problem.

The regularity of weak solutions is analyzed according to the Lebesgue summability of f and

σ. Furthermore, we prove the uniqueness of finite energy solutions when the source term f

has a compact support by extending the formulation of weak solutions to a large class of test

functions. Finally, in the case where µ > ΛN,2 we prove a nonexistence result.

The paper is presented as follows. Section 2 contains all the main results (existence, reg-

ularity and uniqueness) and also graphic presentations allowing to better locate the obtained

results. In Section 3 we first prove an existence result for approximate regular problems of the

problem (1.1) and then we give the proof of all the main results Theorem 2.2, Theorem 2.4,

Theorem 2.5, Theorem 2.6, Theorem 2.8 and Theorem 2.10. At the end, some results that are

necessary for the accomplishment of the work are given in an appendix to make the paper

quite self contained.

2 Main results

We begin by stating the definition of weak solution and finite energy solution of the problem

(1.1) and then we state and comment the main results.
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Definition 2.1.

1) By a weak solution of the problem (1.1) we mean a function u ∈ L1(0, T; W1,1
loc (Ω)) satisfying

∀Ω
′ ⊂⊂ Ω ∃CΩ′ > 0 : u ≥ CΩ′ in Ω

′

and

−
∫

Ω

u0(x)ϕ(x, 0)dx −
∫

ΩT

u∂tϕdxdt +
∫

ΩT

∇u · ∇ϕdxdt =
∫

ΩT

(

µ
u

|x|2
+

f

uσ

)

ϕdxdt, (2.1)

for every ϕ ∈ C∞
0 (Ω × [0, T)).

2) We call a finite energy solution of the problem (1.1) a weak solution u that satisfies u ∈

L2(0, T; H1
0(Ω)) with ∂tu ∈ L2(0, T; H−1(Ω)) + L1(0, T; L1

loc(Ω)).

In Definition 2.1 above all the integrals make sense. Generated by the singular terms, the

only difficulty is raised in the right-hand side. Indeed, by Hardy’s inequality the integral
∫

ΩT

uϕ
|x|2

dxdt is finite while we make use of a comparison result with a solution of a problem

in [24, Proposition 2.2], where the hypothesis (1.3) is used, for the integral
∫

ΩT

∣

∣

f ϕ
uσ

∣

∣dxdt to be

finite. Thus one has
f

uσ ∈ L1(0, T; L1
loc(Ω)).

Throughout this paper, we will use the two real auxiliary truncation functions Tk and Gk

defined for k > 0 respectively as Tk(s) = max(−k, min(s, k)) and Gk(s) = (|s| − k)+sign(s).

We also define

m1 :=
2N

2N − (1 − σ)(N − 2)
.

Observe that m1 ≥ 1 if and only if σ ≤ 1. We will prove the existence of solution for the

problem (1.1) under the assumption that the datum f satisfies

{

f ∈ Lm1(ΩT) if 0 ≤ σ ≤ 1,

f ∈ L1(ΩT) if σ ≥ 1.
(2.2)

2.1 The case µ < ΛN,2: existence of weak solutions

The first existence result is the following.

Theorem 2.2. Let Ω be a bounded open subset of R
N , N ≥ 3, containing the origin. Assume that u0

and f are nonnegative functions satisfying (1.3) and (2.2) respectively. If µ < ΛN,2 then the problem

(1.1) has a positive weak solution u such that

1. if 0 ≤ σ ≤ 1 then u is a finite energy solution,

2. if σ > 1 then u ∈ L2(0, T; H1
loc(Ω)) ∩ L∞(0, T; L2(Ω)) with Gk(u) ∈ L2(0, T; H1

0(Ω)). More-

over, if 4σ
(σ+1)2 −

µ
ΛN,2

> 0 then we have u
σ+1

2 ∈ L2(0, T; H1
0(Ω)),

3. if σ > 1 and supp( f ) ⊂⊂ Ω then u is a finite energy solution.

Remark 2.3. Let us notice that in absence of the Hardy potential (i.e. µ = 0), the result

corresponding to the case σ ≤ 1 is already obtained in [24, Theorem 1.3 (i)], when p = 2 and

the source term f belongs to Lm2(ΩT), m2 := 2(N+2)
2(N+2)−N(1−σ)

. Note that since m1 < m2, the

result we prove here is a refinement of that in [24, Theorem 1.3 (i)]. While in the case σ > 1



Semilinear heat equation with singular terms 5

we obtain the same result to that in [24, Theorem 1.3 (ii)]. Note that if σ = 1 the above results

coincide.

Observe that 1 ≤ m1 ≤ 2N
N+2 for any 0 ≤ σ ≤ 1. We point out that in the case where

σ = 0, which yields m1 = 2N
N+2 , we find the result already established in [46, Theorem 1.2] for

data f ∈ Lr(0, T; Lq(Ω)) with r = q ≥ 2N
N+2 . It is worth recalling here that 2N

N+2 is the Hölder

conjugate exponent of the Sobolev exponent 2N
N−2 and by duality argument, data belonging to

the Lebesgue space of exponent 2N
N+2 are in force in the dual space L2(0, T; H−1(Ω)).

2.2 The case µ = ΛN,2: existence of infinite energy solutions

In the following result we deal with the case where µ = ΛN,2. The weak solutions found do

not generally belong to the energy space.

Theorem 2.4. Let Ω be a bounded open subset of R
N , N ≥ 3, containing the origin. Suppose that

(1.3) is fulfilled and assume that σ = 1 and f ∈ L1(ΩT). If µ = ΛN,2 then the problem (1.1) has a

weak solution u such that u ∈ Lq(0, T; W
1,q
0 (Ω)) ∩ L∞(0, T; L2(Ω)), for every q < 2.

2.3 The case µ > ΛN,2: nonexistence of weak solutions

If we assume µ > ΛN,2 then the problem (1.1) has no weak solution. This is stated in the

following theorem.

Theorem 2.5. Let Ω be a bounded open subset of R
N , N ≥ 3, containing the origin. Assume that

(1.3) and (2.2) hold. If µ > ΛN,2 then the problem (1.1) has no positive weak solution.

The following Figure 2.1 summarizes the different existence results according to the inter-

actions between the singularities.

σ

1

0 ΛN,2 µ

No positive weak solution

u ∈ Lq(0, T; W
1,q
0 (Ω)),

• u ∈ L2(0, T; H1
loc(Ω))

u ∈ L2(0, T; H1
0(Ω))

• u ∈ L2(0, T; H1
0(Ω)),

if supp( f ) ⊂⊂ Ω

∀q < 2

•

Figure 2.1: Existence and nonexistence results

2.4 Regularity of weak solutions

In the following theorem we give some regularity results for the weak solution u of the prob-

lem (1.1) obtained in Theorem 2.2.

Theorem 2.6. Let Ω be a bounded open subset of R
N , N ≥ 3, containing the origin. Assume that

(1.2) and (1.3) hold and suppose that σ ≥ 0 and µ < ΛN,2. Then
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(i) if σ ≥ 1 and m ≥ 1 one has

(a) if m >
N
2 + 1 then u ∈ L∞(ΩT),

(b) if 1 ≤ m <
N
2 + 1, then u

γ+1
2 ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1

0(Ω)) where γ =
Nm(1+σ)−N+2m−2

N−2m+2 provided that 4γ
(γ+1)2 −

µ
ΛN,2

> 0.

(ii) If 0 ≤ σ ≤ 1 one has

(c) if m >
N
2 + 1 then u ∈ L∞(ΩT),

(d) if m1 ≤ m <
N
2 + 1 then u

γ+1
2 ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1

0(Ω)) where γ =
Nm(1+σ)−N+2m−2

N−2m+2 provided that 4γ
(γ+1)2 −

µ
ΛN,2

> 0.

Remark 2.7.

1. Observe that since 0 < σ ≤ 1 and N ≥ 3 one has 1 ≤ m1 := 2N
2N−(1−σ)(N−2)

<
N
2 + 1.

2. If σ ≥ 1 and 1 ≤ m <
N
2 + 1 then γ ≥ mσ ≥ 1.

3. If 0 ≤ σ ≤ 1 and m1 ≤ m <
N
2 + 1 then γ ≥ mσ ≥ 0.

4. Notice that 0 ≤ 4γ
(γ+1)2 ≤ 1 and since µ < ΛN,2 the assumption 4γ

(γ+1)2 −
µ

ΛN,2
> 0 is

necessary in order to get the results stated in Theorem 2.6.

In the case where 0 < σ ≤ 1, the regularity results obtained in the previous Theorem 2.6

concerns the weak solutions corresponding to data f ∈ Lm(ΩT), with m ≥ m1. When we

decrease the summability of the data, that is f ∈ Lm(ΩT) with 1 < m < m1, we obtain

solutions lying in a bigger space than the energy one. Actually, we have the following result.

Theorem 2.8. Let Ω be a bounded open subset of R
N , N ≥ 3, containing the origin. Assume that

(1.3) holds and f ∈ Lm(ΩT), with 1 < m < m1 and suppose that 0 ≤ σ ≤ 1 and µ < ΛN,2.

Then if mN(1+σ)
2N−4(m−1)

>
ΛN,2

µ

(

1 −
√

1 − µ
ΛN,2

)

, the problem (1.1) has a weak solution u such that u ∈

Lq(0, T; W
1,q
0 (Ω)) ∩ Lγ(ΩT) with q = m(N+2)(1+σ)

N+2−m(1−σ)
and γ = m(1+σ)(N+2)

N−2m+2 .

Remark 2.9. We point out that for the particular case σ = 0 we obtain that the solution u

belongs to Lq(0, T; W
1,q
0 (Ω))∩ Lγ(ΩT) with q = m(N+2)

N+2−m and γ = m(N+2)
N−2m+2 . These are exactly the

same exponents as those obtained in nonsingular case in [16, Theorem 1.9] when f ∈ Lm3(ΩT),

m3 := 2(N+2)
2(N+2)−N

. Observe that since for σ = 0 we have m1 = 2N
N+2 < m3, the result we prove is

a refinement of the one in [16, Theorem 1.9]. This is not surprising since the effect of Hardy’s

potential vanishes for µ < ΛN,2 as it is shown in the proof of Theorem 2.8. Remark that we

cannot the consider case where σ = 0 and m = 1, since the test functions we use in order to

obtain the regularity stated in Theorem 2.8 cannot be chosen.

The following Figure 2.2 summarizes the previous regularity results considering the inter-

play between the singularity and the summability of the source term f .
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σ

1

0

1 m1
N
2 + 1 m

Zone (a)

u ∈ L∞(ΩT)

Zone (b)

u
γ+1

2 ∈ L2(0, T; H1
0(Ω)); γ = Nm(σ+1)−N+2(m−1)

N−2m+2

Zone (c)

u ∈ L∞(ΩT)

Zone (d)

u
γ+1

2 ∈ L2(0, T; H1
0(Ω))

γ = Nm(σ+1)−N+2(m−1)
N−2m+2

Zone (e)

u ∈ Lq(0, T; W
1,q
0 (Ω)) ∩ Lγ(ΩT)

q = m(N+2)(σ+1)
N+2−m(1−σ)

,

γ = m(1+σ)(N+2)
N−2m+2

Figure 2.2: Regularity results for µ < ΛN,2. Zone (e) corresponds to the result

in Theorem 2.8

2.5 Uniqueness of finite energy solutions

As far as the uniqueness is concerned, we give the following result for the finite energy

solutions in the case of data with compact support.

Theorem 2.10. Let Ω be a bounded open subset of R
N , N ≥ 3, containing the origin. Suppose that

(1.3) is fulfilled, µ < ΛN,2 and σ ≥ 0. If f ∈ Lm(ΩT), with m ≥ 1 and supp( f ) ⊂⊂ ΩT then the

energy solution u ∈ L2(0, T; H1
0(Ω)) of the problem (1.1) is unique.

3 Proofs of the results

3.1 Approximate problems

Let us consider the following sequence of approximate initial-boundary value problems



















∂tun − ∆un = µ
Tn(un)

|x|2 + 1
n

+
fn

(|un|+
1
n )

σ
in Ω × (0, T),

un(x, t) = 0 in ∂Ω × (0, T),

un(x, 0) = u0(x) in Ω,

(3.1)

where fn = Tn( f ) = min( f , n). The case σ = 0 leads to the variational framework since

m1 = 2N
N+2 is the Hölder conjugate exponent of the Sobolev exponent 2∗ := 2N

N−2 and then by

the Sobolev embedding and a duality argument we obtain f ∈ Lm1(ΩT) →֒ L2(0, T; H−1(Ω))

and the existence of un can be found in [30, Theorem 3] on page 356. If 0 < σ ≤ 1, the

proof of the existence of a solution un to the approximate problem (3.1), which is based on the

Schauder’s fixed point theorem, is now classical. For the convenience of the reader we give it

here.

Lemma 3.1. Assume that 0 < σ ≤ 1 and µ ≤ ΛN,2. For each integer n ∈ N the approximate problem

(3.1) has a solution un ∈ L2(0, T; H1
0(Ω)) ∩ L∞(ΩT) such that ∂tun ∈ L2(0, T; H−1(Ω)) satisfying
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for every ϕ ∈ L2(0, T; H1
0(Ω))

∫ T

0

∫

Ω

∂tunϕdxdt +
∫ T

0

∫

Ω

∇un∇ϕdxdt

= µ
∫ T

0

∫

Ω

Tn(un)ϕ

|x|2 + 1
n

dxdt +
∫ T

0

∫

Ω

fnϕ

(|un|+
1
n )

σ
dxdt

(3.2)

Moreover, un is such that for every Ω′ ⊂⊂ Ω there exists CΩ′ > 0 (not depending on n), such that

un ≥ CΩ′ in Ω′ × [0, T].

Proof. Let v ∈ L2(ΩT) and let n ∈ N be fixed. We consider w ∈ L∞(0, T; L2(Ω)) ∩

L2(0, T; H1
0(Ω)) ∩ C([0, T]; L2(Ω)) ∩ L∞(ΩT) with ∂tw ∈ L2(0, T; H−1(Ω)) the unique weak

solution (depending on v and n) of the following problem















∂tw − ∆w = µ Tn(w)

|x|2+ 1
n

+ fn

(|v|+ 1
n )

σ in ΩT

w(x, t) = 0 in ∂Ω × (0, T)

w(x, 0) = u0(x) in Ω.

(3.3)

which satisfies for every ϕ ∈ L2(0, T; H1
0(Ω))

∫ T

0

∫

Ω

∂tunϕdxdt +
∫ T

0

∫

Ω

∇un · ∇ϕdxdt

= µ
∫ T

0

∫

Ω

Tn(un)ϕ

|x|2 + 1
n

dxdt +
∫ T

0

∫

Ω

fnϕ

(|v|+ 1
n )

σ
dxdt

The existence of w can be found in [30, Theorem 3] on page 356 (see also [35]). Let us consider

the map S defined by S(v) = w. Taking w as test function in (3.3) we get

∥∇w∥2
L2(ΩT)

≤ µ
∫

ΩT

Tn(w)w

|x|2 + 1
n

dxdt +
∫

ΩT

fnw
(

|v|+ 1
n

)σ dxdt + ∥u0∥
2
L2(Ω).

Thus, by the Hölder inequality we arrive at

∥∇w∥2
L2(ΩT)

≤ |ΩT|
1
2

(

µn2 + nσ+1
)

(

∫

ΩT

w2dxdt

) 1
2

+ ∥u0∥2
L2(Ω)

,

so that by the Poincaré inequality one has

∥w∥2
L2(ΩT)

≤ C1∥w∥L2(ΩT) + C2,

where C1 = C2
P|ΩT|

1
2 (µn2 + nσ+1), C2 = C2

P∥u0∥2
L2(Ω)

and Cp is the constant in the Poincaré

inequality. Therefore by the Young inequality we obtain

∥w∥L2(ΩT) ≤ C :=
√

C2
1 + 2C2. (3.4)

Defining the ball B :=
{

v ∈ L2(ΩT) : ∥v∥L2(ΩT) ≤ C
}

of L2(ΩT) we have proved that the

map S : B → B is well defined. In order to apply Schauder’s fixed point theorem over S to

guarantee the existence of a solution for (3.1) in the sense of (3.2), we need to check that the

map S is continuous and compact on B.
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Let us first prove the continuity of S. In order to do this, let {vk}k ⊂ B be a sequence such that

lim
k→+∞

∥vk − v∥L2(ΩT) = 0.

Denote by wk := S(vk) and w := S(v). Then wk is the solution of the problem















∂twk − ∆wk = µ Tn(wk)

|x|2+ 1
n

+ fn

(|vk |+
1
n )

σ in ΩT

wk = 0 on ∂Ω × (0, T),

wk(·, 0) = u0(·) in Ω.

(3.5)

We shall prove that

lim
k→+∞

∥wk − w∥L2((ΩT) = 0.

Observe that up to a subsequence, we can assume that vk → v a.e. in ΩT. So that one has
fn

(|vk |+
1
n )

σ converges to
fn

(|v|+ 1
n )

σ a.e. in ΩT. Furthermore, since

| fn|
(

|vk|+
1
n

)σ ≤ nσ+1,

by the dominated convergence theorem we have

fn
(

|vk|+
1
n

)σ →
fn

(

|v|+ 1
n

)σ in L2(ΩT). (3.6)

Thus, testing by wk − w in the difference equations solved by wk and w and using the fact that

wk(x, 0) = w(x, 0) = u0 and the Hölder inequality, we obtain

1

2

∫

Ω

((wk(x, T)− w(x, T)))2dx +
∫

ΩT

|∇(wk − w)|2dxdt − µ
∫

ΩT

(wk − w)2

|x|2 + 1
n

dxdt

≤





∫

ΩT

∣

∣

∣

∣

∣

fn
(

|vk|+
1
n

)σ −
fn

(

|v|+ 1
n

)σ

∣

∣

∣

∣

∣

2

dxdt





1
2

∥wk − w∥L2(ΩT).

If µ < ΛN,2 then by the Poincaré inequality we obtain

(

1 −
µ

ΛN,2

)

∥wk − w∥L2(ΩT) ≤ C2
p





∫

ΩT

∣

∣

∣

∣

∣

fn
(

|vk|+
1
n

)σ −
fn

(

|v|+ 1
n

)σ

∣

∣

∣

∣

∣

2

dxdt





1
2

,

where Cp is the Poincaré constant. While if µ = ΛN,2 then by [50, Theorem 2.1] there exists a

constant C(Ω) > 0 such that

C(Ω)∥wk − w∥L2(ΩT) ≤





∫

ΩT

∣

∣

∣

∣

∣

fn
(

|vk|+
1
n

)σ −
fn

(

|v|+ 1
n

)σ

∣

∣

∣

∣

∣

2

dxdt





1
2

.

Having in mind (3.6) we conclude that the sequence {wk}k converges to w in L2(ΩT) and so

S is continuous.
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We turn now to prove that S is compact on B. Let {vk}k∈N be a bounded sequence in

B. We shall prove that there exists a subsequence of wk := S(vk) that converges in norm in

L2(ΩT).

Taking wk = S(vk) as a test function in (3.5) solved by wk and using the Hölder inequality

we obtain

∥wk∥
2
L2(0,T;H1

0 (Ω))
≤ |ΩT|

1
2

(

µn2 + nσ+1
)

(

∫

ΩT

w2
kdxdt

) 1
2

+ ∥u0∥2
L2(Ω)

.

Thus, from the Poincaré and Young inequalities it follows

∥wk∥L2(0,T;H1
0 (Ω)) ≤ C, (3.7)

where C is a positive constant not depending on k. Hence, by (3.7) the sequence {wk}k is

uniformly bounded in L2(0, T; H1
0(Ω)). Now, testing by an arbitrary ϕ ∈ L2(0, T; H1

0(Ω)) in

(3.5) we obtain
∫

ΩT

∂twkϕdxdt +
∫

ΩT

∇wk · ∇ϕdxdt ≤ (µn2 + nσ+1)
∫

ΩT

ϕdxdt.

Then,
∫

ΩT

∂twkϕdxdt ≤
∫

ΩT

|∇wk · ∇ϕ|dxdt + (µn2 + nσ+1)
∫

ΩT

ϕdxdt.

By Hölder’s inequality we have

∫

ΩT

∂twkϕdxdt ≤

(

(

∫

ΩT

|∇wk|
2dxdt

) 1
2

+ C(n, Ω, T)

)

(

∫

ΩT

|ϕ|2dxdt

) 1
2

,

so that since the sequence {wk}k is uniformly bounded in L2(0, T; H1
0(Ω)) then so is {∂twk}k

in L1(0, T; H−1(Ω)). Therefore, by [47, Corollary 4] there exists a subsequence of {wk}k∈N

which converges in norm in L2(ΩT). So S : B → B is compact. Given these conditions on S,

Schauder’s fixed point theorem provides the existence of a function un ∈ B such that un =

S(un) that is un solves (3.1) in the sense of (3.2). In particular we have un ∈ L2(0, T; H1
0(Ω)) ∩

L∞(ΩT). The last assertion follows from Lemma A.5 (in Appendix).

We also observe that from Lemma A.6 (in Appendix) the sequence {un}n is increasing.

3.2 Proof of Theorem 2.2

The main argument is to get a priori estimates on {un}n and then to pass to the limit as

n → +∞. We divide the proof in four cases, the case where σ = 1, the case σ < 1, the case

σ > 1 and the case σ > 1 with supp( f ) ⊂⊂ ΩT.

Case 1 : σ = 1.

Taking unχ(0, τ)(t) as test function in (3.2), with 0 ≤ τ ≤ T, we get

1

2

∫

Ω

(un(x, τ))2dx +
∫ τ

0

∫

Ω

|∇un|
2dxdt ≤ µ

∫ τ

0

∫

Ω

u2
n

|x|2 + 1
n

dxdt
∫

ΩT

f dxdt + ∥u0∥
2
L2(Ω).

Then, by using (1.4) we obtain

1

2

∫

Ω

(un(x, τ))2dx +

(

1 −
µ

ΛN,2

)

∫ τ

0

∫

Ω

|∇un|
2dxdt ≤ ∥ f ∥L1(ΩT) + ∥u0∥

2
L2(Ω).
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Passing to the supremum in τ ∈ [0, T], we obtain

1

2
sup

0≤τ≤T

∫

Ω

(un(x, τ))2dx +

(

1 −
µ

ΛN,2

)

∫

ΩT

|∇un|
2dxdt ≤ ∥ f ∥L1(ΩT) + ∥u0∥

2
L2(Ω).

This shows that the sequence {un}n is uniformly bounded in L∞(0, T; L2(Ω))∩L2(0, T; H1
0(Ω)).

Then, there exist a subsequence of {un}n still indexed by n and a function u∈L∞(0, T; L2(Ω))∩

L2(0, T; H1
0(Ω)) such that un ⇀ u weakly in L2(0, T; H1

0(Ω)). Moreover, the boundedness

of {∂tun}n in the dual space L2(0, T; H−1(Ω)) implies that the sequence {un}n is relatively

compact in L1(ΩT) (see [47, Corollary 4]) and hence for a subsequence, indexed again by n,

we have un → u a.e. in ΩT.

Let ϕ ∈ C∞
0 (Ω × [0, T)). Using ϕ as test function in (3.2) we obtain

−
∫

Ω

u0(x)ϕ(x, 0)dx −
∫

ΩT

un∂tϕdtdx +
∫

ΩT

∇un · ∇ϕdxdt

= µ
∫

ΩT

Tn(un)ϕ

|x|2 + 1
n

dxdt +
∫

ΩT

fnϕ

|un|+
1
n

dxdt.
(3.8)

Notice that since un ⇀ u weakly in L2(0, T; H1
0(Ω)), we immediately have

lim
n→+∞

∫

ΩT

∇un · ∇ϕdxdt =
∫

ΩT

∇u · ∇ϕdxdt

and

lim
n→+∞

∫

ΩT

un∂tϕdtdx =
∫

ΩT

u∂tϕdtdx.

As regards the first integral in the right-hand side of (3.8), we know that the sequence {un} is

increasing to its limit u so we have
∣

∣

∣

∣

∣

Tn(un)ϕ

|x|2 + 1
n

∣

∣

∣

∣

∣

≤
|uϕ|

|x|2
.

Applying Hölder’s and Hardy’s inequalities we obtain

∫

ΩT

|uϕ|

|x|2
dxdt ≤ ∥ϕ∥∞(ΛN,2)

− 1
2

(

∫

ΩT

|∇u|2dxdt

) 1
2
(

∫

ΩT

dxdt

|x|2

) 1
2

.

As N ≥ 3 and Ω bounded, a straightforward calculation yields the existence of a positive

constant C1 such that
∫

Ω

dx

|x|2
≤ C1. (3.9)

Therefore, the function
|uϕ|
|x|2

lies in L1(ΩT) and since
Tn(un)ϕ

|x|2+ 1
n

→ uϕ
|x|2

a.e. in ΩT the Lebesgue

dominated convergence theorem gives

lim
n→+∞

∫

ΩT

Tn(un)ϕ

|x|2
dxdt =

∫

ΩT

uϕ

|x|2
dxdt.

On the other hand, the support supp(ϕ) of the function ϕ is a compact subset of ΩT and so

by Lemma A.5 (in Appendix) there exists a constant Csupp(ϕ) > 0 such that un ≥ Csupp(ϕ) in

supp(ϕ). Then,
∣

∣

∣

∣

∣

fnϕ

un +
1
n

∣

∣

∣

∣

∣

≤
∥ϕ∥∞

Csupp(ϕ)
| f | ∈ L1(ΩT).
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So that by the Lebesgue dominated convergence theorem we can get

lim
n→+∞

∫

ΩT

fnϕ

un +
1
n

dxdt =
∫

ΩT

f ϕ

u
dxdt.

Now passing to the limit as n tends to ∞ in (3.8) we obtain

−
∫

Ω

u0ϕ(x, 0)dx −
∫

ΩT

u∂tϕdtdx +
∫

ΩT

∇u · ∇ϕdxdt

= µ
∫

ΩT

uϕ

|x|2
dxdt +

∫

ΩT

f ϕ

u
dxdt

for all ϕ ∈ C∞
0 (ΩT), namely u is a finite energy solution to (1.1).

Case 2 : σ < 1.

The function unχ(0,τ) ∈ L2(0, T; H1
0(Ω)), τ ∈ (0, T), is an admissible test function in (3.2).

Taking it so and using Hölder’s inequality and (1.4) we arrive at

1

2

∫

Ω

|un(x, τ)|2dx +

(

1 −
µ

ΛN,2

)

∫ τ

0

∫

Ω

|∇un|
2dxdt

≤ ∥ f ∥Lm1 (ΩT)

(

∫ τ

0

∫

Ω

|un|
(1−σ)m′

1 dxdt

) 1
m′

1 +
1

2
∥u0∥L2(Ω),

where m1 := 2N
2N−(1−σ)(N−2)

and m′
1 := m1

m1−1 . Setting 2∗ := 2N
N−2 one has

(1 − σ)m′
1 = 2∗.

Then, we have

1

2

∫

Ω

|un(x, τ)|2dx +

(

1 −
µ

ΛN,2

)

∫ τ

0

∫

Ω

|∇un|
2dxdt

≤ ∥ f ∥Lm1 (ΩT)

(

∫ τ

0

∫

Ω

|un|
2∗dxdt

) 1−σ
2∗

+
1

2
∥u0∥L2(Ω).

By Sobolev’s inequality there exists a positive constant C such that

1

2

∫

Ω

|un(x, τ)|2dx +

(

1 −
µ

ΛN,2

)

∥un∥
2
L2(0,τ;H1

0 (Ω))

≤ C∥ f ∥Lm1 (ΩT)∥un∥
1−σ
L2(0,τ;H1

0 (Ω))
+

1

2
∥u0∥L2(Ω).

(3.10)

For every real numbers a, b ≥ 0 and for every Let ϵ > 0 be arbitrary. For every positive real

numbers a and b, the Young inequality yields

ab ≤ ϵap + Cϵbq, (3.11)

where p > 1, q = p
p−1 and Cϵ = p−1

p(pϵ)
1

p−1
. Since 2∗

m′
1
= 1 − σ < 2 we apply (3.11) with p =

2m′
1

2∗

in the first term on the right hand side of (3.10) obtaining

1

2

∫

Ω

|un(x, τ)|2dx +

(

1 −
µ

ΛN,2
− ϵ

)

∥un∥
2
L2(0,τ;H1

0 (Ω))

≤ Cϵ(C∥ f ∥Lm1 (ΩT))
2m′

1
2m′

1
−2∗ +

1

2
∥u0∥L2(Ω).
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Choosing ϵ such that 1 − µ
ΛN,2

− ϵ > 0 and passing to the supremum in τ ∈ [0, T] we obtain

1

2
sup

0≤τ≤T

∫

Ω

(un(x, τ))2dx +

(

1 −
µ

ΛN,2
− ϵ

)

∫

ΩT

|∇un|
2dxdt ≤ C3,

with C3 = Cϵ(C∥ f ∥Lm1 (ΩT))
2m′

1
2m′

1
−2∗ + 1

2∥u0∥L2(Ω). Therefore, the sequence {un}n is uniformly

bounded in L2(0, T; H1
0(Ω)) and L∞(0, T; L2(Ω)). Thus there exist a subsequence of {un}n,

still labelled by n, and a function u ∈ L2(0, T; H1
0(Ω)) such that

un ⇀ u weakly in L2(0, T; H1
0(Ω)).

Now we shall prove that u is a weak solution of (1.1). For this, let us insert as a test function

in (3.2) an arbitrary function ϕ ∈ C∞
0 (Ω × [0, T)).

−
∫

Ω

u0(x)ϕ(x, 0)dx −
∫

ΩT

un∂tϕdtdx +
∫

ΩT

∇u · ∇ϕdxdt

= µ
∫

ΩT

Tn(un)ϕ

|x|2 + 1
n

dxdt +
∫

ΩT

fnϕ

(un +
1
n )

σ
dxdt.

As in the first case, we can pass to the limit in the above equality to conclude that u is a finite

energy solution of (1.1).

Case 3 : σ > 1.

In order to prove that {un}n is uniformly bounded in L2(0, T; H1
loc(Ω)) ∩ L∞(0, T; L2(Ω)),

we will prove that the sequence Gk(un) is uniformly bounded in L2(0, T; H1
0(Ω))

∩L∞(0, T; L2(Ω)) and Tk(un) is uniformly bounded in L2(0, T; H1
loc(Ω)) ∩ L∞(0, T; Lσ+1(Ω)).

Let us first prove that Gk(un) is uniformly bounded in L2(0, T; H1
0(Ω)) ∩ L∞(0, T; L2(Ω)). In-

serting Gk(un)χ(0,τ), with 0 ≤ τ ≤ T, as a test function in (3.2) we obtain

∫ τ

0

∫

Ω

∂tunGk(un)dxdt +
∫

Ωτ

|∇Gk(un)|
2dxdt

= µ
∫

Ωτ

Tn(un)Gk(un)

|x|2 + 1
n

dxdt +
∫

Ωτ

fnGk(un)

(un +
1
n )

σ
dxdt

≤ µ
∫

Ωτ

unGk(un)

|x|2
dxdt +

∫

ΩT

fnGk(un)

(un +
1
n )

σ
dxdt.

(3.12)

Observe that the function Gk(un) is different from zero only on the set Bn,k :=
{

(x, t) ∈ Ωτ :

un(x, t) > k
}

, and so we have

∫ τ

0

∫

Ω

∂tunGk(un)dxdt =
1

2

∫

Bn,k

∂t(un − k)2dxdt =
1

2

∫

Ωτ

∂t(Gk(un(x, τ)))2dxdt

=
1

2

∫

Ω

(Gk(un(x, τ)))2dx −
1

2

∫

Ω

(Gk(un(x, 0)))2dx.

Since
∫

Ω
(Gk(un(x, 0)))2dx ≤

∫

Ω
(u0(x))2dx and un +

1
n ≥ k on Bn,k inequality (3.12) becomes

1

2

∫

Ω

(Gk(un(x, τ)))2dx +
∫

Ωτ

|∇Gk(un)|
2dxdt ≤ µ

∫

Ωτ

unGk(un)

|x|2
dxdt + C4,
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with C4 = ∥u0∥2
L2(Ω)

+ 1
kσ−1 ∥ f ∥L1(ΩT). Moreover, since unGk(un) = (Gk(un))2 + kGk(un) on the

set Bn,k we get

1

2

∫

Ω

(Gk(un(x, τ)))2dx +
∫

Ωτ

|∇Gk(un)|
2dxdt − µ

∫

Ωτ

(Gk(un))2

|x|2
dxdt

≤ µk
∫

Ωτ

Gk(un)

|x|2
dxdt + C4.

Taking into account that µ < ΛN,2 by (1.4) we have

1

2

∫

Ω

(Gk(un(x, τ)))2dx +

(

1 −
µ

ΛN,2

)

∫

Ωτ

|∇Gk(un)|
2dxdt

≤ µk
∫

Ωτ

Gk(un(x, t))

|x|2
dxdt + C4.

(3.13)

We shall now estimate the term µk
∫

Ωτ

Gk(un(x,t))
|x|2

dxdt. Let us fix α such that 1 < α < 2 and set

β = α
α−1 . By Young’s inequality we can write

µk
∫

Ωτ

Gk(un)

|x|2
dxdt ≤

µ

α

∫

Ωτ

(Gk(un))α

|x|2
dxdt +

µ

β

∫

Ωτ

kβ

|x|2
dxdt.

Having in mind (3.9) we get

µk
∫

Ωτ

Gk(un)

|x|2
dxdt ≤ µ

∫

Ωτ

(Gk(un))α

|x|2
dxdt + C5,

where C5 = C1µkβ

β . Then the Hölder inequality yields

µk
∫

Ωτ

Gk(un)

|x|2
dxdt ≤ µ

(

∫

Ωτ

(Gk(un))2

|x|2
dxdt

)

α
2
(

∫

Ωτ

dxdt

|x|2

) 2−α
2

+ C5

≤ C6

(

∫

Ωτ

(Gk(un))2

|x|2
dxdt

)

α
2

+ C5,

where C6 = µC
2−α

2
1 and by (1.4) we obtain

µk
∫

Ωτ

Gk(un(x, t))

|x|2
dxdt ≤ C7

(

∫

Ωτ

|∇Gk(un)|
2dxdt

) α
2

+ C5,

where C7 = C6
ΛN,2

. For arbitrary ϵ > 0, applying the Young inequality (3.11) with a =
∫

Ωτ
|∇Gk(un)|2dxdt, b = C7 and p = 2

α , we get

µk
∫

Ωτ

Gk(un(x, t))

|x|2
dxdt ≤ ϵ

∫

Ωτ

|∇Gk(un)|
2dxdt + C8, (3.14)

where C8 = C5 + CϵC
2−α

2
7 . Choosing ϵ such that 1 − µ

ΛN,2
− ϵ > 0 and gathering (3.13) and

(3.14), we deduce that

1

2

∫

Ω

(Gk(un(x, τ)))2dx +

(

1 −
µ

ΛN,2
− ϵ

)

∫

Ωτ

|∇Gk(un)|
2dxdt ≤ C9, (3.15)
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where C9 = C8 + C4. Passing to the supremum in τ ∈ [0, T], we conclude that the sequence

{Gk(un)}n∈N is uniformly bounded in L2(0, T; H1
0(Ω)) ∩ L∞(0, T; L2(Ω)).

We now turn to prove that the sequence {Tk(un)}n is uniformly bounded in

L2(0, T; H1
loc(Ω)) ∩ L∞(0, T; Lσ+1(Ω)). Using Tσ

k (un)χ(0,τ), 0 ≤ τ ≤ T, as a test function in

(3.2) we obtain

1

σ + 1

∫

Ω

(Tk(un(x, τ)))σ+1dx +
∫

Ωτ

(Tk(un))
σ−1|∇Tk(un)|

2dxdt

≤ kσ−1µ
∫

ΩT

u2
n

|x|2
dxdt +

∫

ΩT

f dxdt +
1

σ + 1
∥u0∥Lσ+1(Ω),

(3.16)

where we have dropped σ > 1 in the second integral on the left-hand side and written

Tσ
k (un) = Tσ−1

k (un)Tk(un) in the first integral on the right-hand side of the inequality. As

un = Tk(un) + Gk(un), the first term on the right-hand side of the above inequality can be

estimated as

∫

ΩT

u2
n

|x|2
dxdt =

∫

ΩT

(Tk(un))2

|x|2
dxdt +

∫

ΩT

(Gk(un))2

|x|2
dxdt + 2

∫

ΩT

Tk(un)Gk(un)

|x|2
dxdt

≤ k2
∫

ΩT

dxdt

|x|2
+
∫

ΩT

(Gk(un))2

|x|2
dxdt + 2k

∫

ΩT

Gk(un)

|x|2
dxdt.

So that by (1.4), (3.9), (3.14) and (3.15) there exists a real constant C10 > 0 such that

∫

ΩT

u2
n

|x|2
dxdt ≤ C10.

Then, it follows that the inequality (3.16) reads as

1
σ+1

∫

Ω

(Tk(un(x, τ)))σ+1dx +
∫

Ωτ

(Tk(un))
σ−1|∇Tk(un)|

2dxdt ≤ C11, (3.17)

with C11 = kσ−1µC10 + ∥ f ∥L1(ΩT) +
1

σ+1∥u0∥Lσ+1(Ω). On the other hand, let Ω′ ⊂⊂ Ω. By

Lemma A.5 (in Appendix) there exists CΩ′ > 0 such that

Tk(un(x, t)) ≥ C0 := min{k, CΩ′}, (3.18)

for all (x, t) ∈ Ω′ × [0, T]. Thus, by (3.17) and (3.18) we get

1

σ + 1

∫

Ω

(Tk(un(x, τ)))σ+1dx + Cσ−1
0

∫ τ

0

∫

Ω′
|∇Tk(un)|

2dxdt ≤ C11.

Passing to the supremum in τ ∈ [0, T], we get that the sequence {Tk(un)}n∈N is uniformly

bounded in L2(0, T; H1
loc(Ω)) ∩ L∞(0, T; L2(Ω)). Therefore, we conclude that the sequence

{un}n∈N is uniformly bounded in L2(0, T; H1
loc(Ω))∩ L∞(0, T; L2(Ω)). As a consequence, there

exist a subsequence of {un}n∈N, relabelled again by n, and a function u ∈ L2(0, T; H1
loc(Ω)) ∩

L∞(0, T; L2(Ω)) such that un ⇀ u weakly in L2(0, T; H1
loc(Ω)).

On the other hand, let us assume that 4σ
(σ+1)2 −

µ
ΛN,2

> 0. Taking uσ
nχ(0,τ)(t), 0 ≤ τ ≤ T, as

a test function in (3.2) and using the Hardy inequality (1.4) we arrive at

1

σ + 1

∫

Ω

(un(x, τ))σ+1dx +

(

4σ

(σ + 1)2
−

µ

ΛN,2

)

∫ τ

0

∫

Ω

|∇u
σ+1

2
n |2dxdt

≤
∫

ΩT

f dxdt +
1

σ + 1

∫

Ω

(u0(x))σ+1dx.
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This shows that u
σ+1

2
n is uniformly bounded in L2(0, T; H1

0(Ω)) and so by the Poincaré inequal-

ity the sequence un is uniformly bounded in Lσ+1(ΩT) and hence for a subsequence, labelled

again by n, we have un → u a.e. in ΩT.

Testing by an arbitrary function ϕ ∈ C∞
0 (Ω × [0, T)) in (3.2) we obtain

−
∫

Ω

u0(x)ϕ(x, 0)dx −
∫

ΩT

un∂tϕdtdx +
∫

ΩT

∇un · ∇ϕdxdt

= µ
∫

ΩT

Tn(un)ϕ

|x|2 + 1
n

dxdt +
∫

ΩT

fnϕ

|un|+
1
n

dxdt.
(3.19)

We shall now pass of the limit in each term of (3.19). Notice that since un ⇀ u weakly in

L2(0, T; H1
loc(Ω)) we have

lim
n→+∞

∫

ΩT

∇un · ∇ϕdxdt =
∫

ΩT

∇u · ∇ϕdxdt

and

lim
n→+∞

∫

ΩT

un∂tϕdtdx =
∫

ΩT

u∂tϕdtdx.

For the first integral in the right-hand side of (3.19), we know that the sequence {un} is

increasing to its limit u so we obtain
∣

∣

∣

∣

∣

Tn(un)ϕ

|x|2 + 1
n

∣

∣

∣

∣

∣

≤
|uϕ|

|x|2
.

By Hölder’s and Hardy’s inequalities we get

∫

ΩT

|uϕ|

|x|2
dxdt ≤ ∥ϕ∥∞

∫

supp(ϕ)

|u|

|x|2
dxdt = ∥ϕ∥∞

∫

supp(ϕ)

|u|

|x|
×

1

|x|
dxdt

≤ ∥ϕ∥∞

(

∫

supp(ϕ)

|u|2

|x|2
dxdt

)

1
2
(

∫

ΩT

dxdt

|x|2

) 1
2

≤ ∥ϕ∥∞(ΛN,2)
− 1

2

(

∫

supp(ϕ)
|∇u|2dxdt

) 1
2
(

∫

ΩT

dxdt

|x|2

) 1
2

.

Since u ∈ L2(0, T; H1
loc(Ω)), a calculation as in (3.9) allows us conclude that the function

|uϕ|
|x|2

lies in L1(ΩT). Moreover,
Tn(un)ϕ

|x|2+ 1
n

→ uϕ
|x|2

a.e. in ΩT, so that by the Lebesgue dominated

convergence theorem one has

lim
n→+∞

∫

ΩT

Tn(un)ϕ

|x|2
dxdt =

∫

ΩT

uϕ

|x|2
dxdt.

As regards the last term in (3.19), by Lemma A.5 (in Appendix) there exists a constant

Csupp(ϕ) > 0 such that un ≥ Csupp(ϕ) in supp(ϕ). Then,

∫

ΩT

∣

∣

∣

∣

∣

fnϕ

un +
1
n

∣

∣

∣

∣

∣

dxdt ≤
∥ϕ∥∞

Csupp(ϕ)

∫

ΩT

| f |dxdt < +∞.

So that by the Lebesgue dominated convergence theorem we get

lim
n→+∞

∫

ΩT

fnϕ

un +
1
n

dxdt =
∫

ΩT

f ϕ

u
dxdt.
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Finally passing to the limit as n tends to ∞ in (3.19) we obtain

−
∫

Ω

u0ϕ(x, 0)dx −
∫

ΩT

u∂tϕdtdx +
∫

ΩT

∇u · ∇ϕdxdt = µ
∫

ΩT

uϕ

|x|2
dxdt +

∫

ΩT

f ϕ

u
dxdt

for all ϕ ∈ C∞
0 (ΩT). Furthermore, by Lemma A.5 there exists a constant CΩ′ > 0 such that

u ≥ CΩ′ in Ω′ × [0, T] which shows that u is a weak solution of (1.1).

Now assume that σ > 1 is such that 4σ
(σ+1)2 −

µ
ΛN,2

> 0. For 0 ≤ τ ≤ T let us use uσ
nχ(0,τ) as

a test function in (3.2). By the Hardy inequality (1.4) we arrive at

1

σ + 1

∫

Ω

(un(x, τ))σ+1dx +

(

4σ

(σ + 1)2
−

µ

ΛN,2

)

∫ τ

0

∫

Ω

|∇u
σ+1

2
n |2dxdt ≤ C,

where C = ∥ f ∥L1(ΩT) +
1

σ+1∥u0∥Lσ+1(Ω). Therefore, we deduce that u
σ+1

2 ∈ L2(0, T; H1
0(Ω)).

Case 4 :

Suppose that σ > 1 and supp( f ) ⊂⊂ ΩT. Taking unχ(0, τ), 0 ≤ τ ≤ T, as a test function

in (3.2) and using (1.4) we get

1

2

∫

Ω

(un(x, τ))2dx +

(

1 −
µ

ΛN,2

)

∫ τ

0

∫

Ω

|∇un|
2dxdt ≤

∫

ΩT

f

uσ−1
n

dxdt +
1

2
∥u0∥

2
L2(Ω).

Applying Lemma A.5 (in Appendix) there exists C > 0 such that un ≥ C in supp( f ). Whence,

passing to the supremum in τ ∈ [0, T] we obtain

1

2
sup

0≤τ≤T

∫

Ω

(un(x, τ))2dx +

(

1 −
µ

ΛN,2

)

∫

Ω

|∇un|
2dxdt

≤
1

Cσ−1

∫

supp( f )
f dxdt +

1

2
∥u0∥

2
L2(Ω).

Thus, the sequence {un}n is bounded in L2(0, T; H1
0(Ω)) ∩ L∞(0, T; L2(Ω)). Therefore, there

exist a function u ∈ L2(0, T; H1
0(Ω)) ∩ L∞(0, T; L2(Ω)) and a subsequence of {un}n, still in-

dexed by n, such that un ⇀ u in L2(0, T; H1
0(Ω)) and then u is a finite energy solution of the

problem (1.1).

3.3 Proof of Theorem 2.4

Let 0 ≤ τ ≤ T. Taking unχ(0,τ)(t) as a test function in (3.2), we get

1

2

∫

Ω

(un(x, τ))2dx +
∫ τ

0

∫

Ω

|∇un|
2dxdt − ΛN,2

∫ τ

0

∫

Ω

u2
n

|x|2
dxdt ≤ ∥ f ∥L1(ΩT) +

1

2
∥u0∥L2(Ω).

Passing to the supremum in τ ∈ [0, T] and using Theorem A.1 (in Appendix) we conclude

that the sequence {un}n is uniformly bounded in Lq(0, T; W
1,q
0 (Ω)) ∩ L∞(0, T; L2(Ω)), for all

q < 2. As a consequence, there exist a subsequence of {un}n, still indexed by n, and a

function u ∈ Lq(0, T; W
1,q
0 (Ω))∩ L∞(0, T; L2(Ω)) such that un ⇀ u weakly in Lq(0, T; W

1,q
0 (Ω)).

Arguing in a similar way as in the case 1, we conclude that u is a weak solution of the problem

(1.1).
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3.4 Proof of Theorem 2.5

Suppose that µ > ΛN,2. Arguing by contradiction, assume that (1.1) admits a positive weak

solution u. Thus u is also a weak solution to the problem














∂tu − ∆u − ΛN,2
u
|x|2

= (µ − ΛN,2)
u
|x|2

+ f
uσ in ΩT,

u = 0 in ∂Ω × (0, T),

u(x, 0) = u0(x) in ∂Ω × (0, T).

By virtue of Lemma A.3 (in Appendix) we have
(

(µ − ΛN,2)
u

|x|2
+

f

uσ

)

|x|−α1 ∈ L1(Br1
(0)× (t1, t2)),

for any small enough parabolic cylinder Br1
(0)× (t1, t2) ⊂⊂ ΩT where α1 is defined in (A.1).

As in our equation λ = ΛN,2 we have α1 = N−2
2 . Since u > 0 and f ≥ 0 we have in particular

(µ − ΛN,2)
u

|x|2
|x|−

N−2
2 ∈ L1(Br1

(0)× (t1, t2)). (3.20)

On the other hand, since

∂tu − ∆u − ΛN,2
u

|x|2
= (µ − ΛN,2)

u

|x|2
+

f

uσ
≥ 0

by Lemma A.2 (in Appendix) there exists a constant C > 0 such that

u ≥ C|x|−
N−2

2 . (3.21)

Gathering (3.20) and (3.21) we obtain

|x|−N ∈ L1(Br1
(0)× (t1, t2))

which is a contradiction. Therefore, if µ > ΛN,2 the problem (1.1) has no positive weak

solution.

3.5 Proof of Theorem 2.6

The proofs of (i) and (ii) are similar. We only give the proof of (i).

• Proof of (a) – We shall establish an a priori L∞-estimate for the solution un of (3.2). To do

so, we use standard ideas that can be found in several nonsingular cases as for instance in

[22,28,48,51,55,57]. Despite being classic, we give the proof for the convenience of the reader.

Let k ≥ k0 := max(1, ∥u0∥∞). We choose Gk(un)χ(0,τ), 0 ≤ τ ≤ T, as a test function in (3.2),

we get
∫ τ

0

∫

Ω

∂tunGk(un)dxdt +
∫

Ak,n

|∇Gk(un)|
2dxdt

≤ µ
∫

Ak,n

unGk(un)

|x|2
dxdt +

∫

Ak,n

f Gk(un)

(un +
1
n )

σ
dxdt,

where we have set Ak,n = {(x, t) ∈ Ωτ : un(x, t) > k}. Observe that since Gk(un) is different

from zero only on the set Ak,n and according to the choice of k, one has
∫ τ

0

∫

Ω

∂tunGk(un)dxdt =
1

2

∫

Ω

Gk(un(x, τ))2dx.
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Note that the Hölder inequality implies

∫

Ak,n

unGk(un)

|x|2
dxdt ≤

(

∫

Ak,n

u2
n

|x|2
dxdt

)

1
2
(

∫

Ak,n

Gk(un)2

|x|2
dxdt

)

1
2

.

Taking into account that on the subset Ak,n one has ∇Gk(un) = ∇un a.e. in Ω, so that Hardy’s

inequality yields
∫

Ak,n

unGk(un)

|x|2
dxdt ≤

1

ΛN,2

∫

Ak,n

|∇Gk(un)|
2dxdt.

Since un +
1
n > k0 on the subset Ak,n we get

1

2

∫

Ω

Gk(un(x, τ))2dx +
∫

Ak,n

|∇Gk(un)|
2dxdt

≤
µ

ΛN,2

∫

Ak,n

|∇Gk(un)|
2dxdt +

1

kσ
0

∫

Ak,n

f Gk(un)dxdt.

Then passing to the supremum in τ ∈ (0, T) we obtain

1

2
∥Gk(un)∥

2
L∞(0,T;L2(Ω)) +

(

1 −
µ

ΛN,2

)

∥Gk(un)∥
2
L2(0,T;H1

0 (Ω))
≤

1

kσ
0

∫

ΩT

f Gk(un)dxdt. (3.22)

On the other hand, since Gk(un) ∈ L∞(ΩT)∩ L2(0, T; H1
0(Ω)) then Gk(un) ∈ L∞(0, T; L2(Ω))∩

L2(0, T; H1
0(Ω)). Therefore, by [28, Proposition 3.1] there exists a positive constant c such that

∫

ΩT

Gk(un)
2N+4

N dxdt ≤ c
2N+4

N

(

∫

ΩT

|∇Gk(un)|
2dxdt

)

(

∥Gk(un)∥
2
L∞(0,T;L2(Ω))

) 2
N

.

Setting ΓN,2 := 1 − µ
ΛN,2

and C1 := c
2N+4

N 2
2
N

ΓN,2k
σ(1+ 2

N )

0

, we obtain using (3.22)

∫

ΩT

Gk(un)
2N+4

N dxdt ≤ C1

(

∫

ΩT

f Gk(un)dxdt

)1+ 2
N

.

Observe that both integrals are on the subset Ak,n. Using Hölder’s inequality in the right-hand

side term with exponents 2N+4
N and 2N+4

N+4 , we get

∫

Ak,n

Gk(un)
2N+4

N dxdt ≤ C1

(

∫

Ak,n

f
2N+4
N+4 dxdt

) N+4
2N
(

∫

Ak,n

Gk(un)
2N+4

N dxdt

) 1
2

,

from which it follows

∫

Ak,n

Gk(un)
2N+4

N dxdt ≤ C2
1

(

∫

Ak,n

f
2N+4
N+4 dxdt

) N+4
N

.

Since f ∈ Lm(ΩT) with m >
N
2 + 1 >

2N+4
N+4 , we use again Hölder’s inequality obtaining

∫

Ak,n

Gk(un)
2N+4

N dxdt ≤ C2
1∥ f ∥

2N+4
N

Lm(ΩT)
|Ak,n|

N+4
N − 2N+4

mN .

Now let h > k. It’s easy to see that Ah,n ⊂ Ak,n and Gk(un) ≥ h − k on Ah,n, so that one has

|Ah,n|(h − k)
2N+4

N ≤ C2
1∥ f ∥

2N+4
N

Lm(ΩT)
|Ak,n|

N+4
N − 2N+4

mN .
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Setting ψ(k) = |Ak,n|, we get

ψ(h) ≤
C2

(h − k)α
ψ(k)β,

where C2 = C2
1∥ f ∥

2N+4
N

Lm(ΩT)
, α = 2N+4

N and β = N+4
N − 2N+4

mN . Since m >
N
2 + 1 we have β > 1 and

then we can apply the first item of [48, Lemma 4.1] to conclude that there exists a constant

C∞, such that ψ(C∞) = 0, that is

∥un∥∞ ≤ C∞.

• Proof of (b) – Using u
γ
nχ(0,τ), 0 < τ < T, as a test function in (3.2) and applying the Hölder’s

inequality and (1.4) we arrive at

1

γ + 1

∫

Ω

(un(x, τ))γ+1dx +

(

γ

(

2

γ + 1

)2

−
µ

ΛN,2

)

∫

Ωτ

|∇u
γ+1

2
n |2dxdt

≤ ∥ f ∥Lm(ΩT)

(

∫

ΩT

u
(γ−σ)m′

n dxdt

) 1
m′

+ ∥u0∥
γ+1
Lγ+1(Ω)

.

(3.23)

Note that 1 ≤ σ ≤ γ = Nm(σ+1)−N+2m−2
N−2m+2 . Since we have supposed that γ

(

2
γ+1

)2
− µ

ΛN,2
> 0, we

discuss the two cases σ = γ and σ < γ. Thus, if σ = γ we immediately have

1

γ + 1

∫

Ω

(un(x, τ))γ+1dx +

(

γ

(

2

γ + 1

)2

−
µ

ΛN,2

)

∫

Ωτ

|∇u
γ+1

2
n |2dxdt

≤ |ΩT|
1

m′ ∥ f ∥Lm(ΩT) + ∥u0∥
γ+1
Lγ+1(Ω)

.

While If σ < γ, we compute (γ − σ)m′ = (γ + 1)N+2
N < (γ + 1) N

N−2 . Therefore, by (3.23) there

exists a positive constant C such that

1

γ + 1

∫

Ω

(un(x, τ))γ+1dx +

(

γ

(

2

γ + 1

)2

−
µ

ΛN,2

)

∫

Ωτ

|∇u
γ+1

2
n |2dxdt

≤ C∥ f ∥Lm(ΩT)

(

∫

ΩT

(u
γ+1

2
n )2∗dxdt

)

2(γ−σ)
2∗(γ+1)

+ ∥u0∥
γ+1
Lγ+1(Ω)

.

Using the Sobolev inequality in the first term on the right hand side of the above inequality,

we conclude that there exists a positive constant C1 such that

1

γ + 1

∫

Ω

(un(x, τ))γ+1dx +

(

γ

(

2

γ + 1

)2

−
µ

ΛN,2

)

∫

Ωτ

|∇u
γ+1

2
n |2dxdt

≤ C1∥ f ∥Lm(ΩT)

(

∫

Ωτ

|∇u
γ+1

2
n |2dxdt

)
γ−σ
γ+1

+ ∥u0∥
γ+1
Lγ+1(Ω)

.

Applying (3.11) with a =

(

∫

Ωτ
|∇u

γ+1
2

n |2dxdt

)
γ−σ
γ+1

, b = C1∥ f ∥Lm(ΩT), p = γ+1
γ−σ and q = γ+1

σ+1 to

obtain

1

γ + 1
∥u

γ+1
2

n ∥2
L∞(0,T;L2(Ω)) +

(

γ

(

2

γ + 1

)2

−
µ

ΛN,2
− ϵ

)

∫

Ωτ

|∇u
γ+1

2
n |2dxdt

≤ Cϵ(C∥ f ∥Lm)
γ+1
σ+1 + ∥u0∥

γ+1
Lγ+1(Ω)

.
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Finally we choose ϵ such that γ
(

2
γ+1

)2
− µ

ΛN,2
− ϵ > 0. Consequently, in both cases the sequence

{u
γ+1

2
n }n is uniformly bounded in L2(0, T; H1

0(Ω)) ∩ L∞(0, T; L2(Ω)). Whence, there exist a

subsequence of {u
γ+1

2
n }n, still indexed by n, and a function v ∈ L2(0, T; H1

0(Ω)) such that

u
γ+1

2
n ⇀ v weakly in L2(0, T; H1

0(Ω)). Now according to the proof of the second item of

Theorem 2.2, we know that un ⇀ u weakly in L2(0, T; H1
loc(Ω)) so that identifying almost

everywhere the limits one has v = u
γ+1

2 ∈ L2(0, T; H1
0(Ω)).

3.6 Proof of Theorem 2.8

The ideas we use are standard and we follow the lines of [24, Theorem 4.1, (i)-(b)]. Let us

choose u2δ−1
n χ(0,τ), 0 < τ < T, as a test function in (3.2) where δ is a positive real constant

satisfying
ΛN,2

µ (1 −
√

1 − µ
ΛN,2

) < δ < 1. This choice made possible by the fact that µ < ΛN,2

implies 1
2 < δ and 2δ−1

δ2 − µ
ΛN,2

> 0 that will be chosen after few lines. We get

1

2δ

∫

Ω

(un(x, τ))2δdx +
(2δ − 1)

δ2

∫

Ωτ

|∇uδ
n|

2dxdt

≤ µ
∫

Ωτ

u2δ
n

|x|2
dxdt +

∫

Ωτ

f u
(2δ−1−σ)
n dxdt +

1

2δ
∥uδ

0∥
2
L2(Ω).

Passing to the supremum in τ ∈ (0, T) and applying Hardy’s inequality (1.4) and then

Hölder’s inequality, we obtain

1

2δ
∥uδ

n∥
2
L∞(0,T;L2(Ω)) +

(

2δ − 1

δ2
−

µ

ΛN,2

)

∫

ΩT

|∇uδ
n|

2dxdt

≤
∫

ΩT

f u2δ−1−σ
n dxdt +

1

2δ
∥uδ

0∥
2
L2(Ω)

≤ ∥ f ∥Lm(ΩT)

(

∫

ΩT

u
(2δ−1−σ)m′

n dxdt

) 1
m′

+
1

2δ
∥uδ

0∥
2
L2(Ω).

(3.24)

Since un ∈ L∞(ΩT) ∩ L2(0, T; H1
0(Ω)) then un ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1

0(Ω)). Thus, by

[28, Proposition 3.1] there exists a positive constant c such that

∫

ΩT

(uδ
n)

2N+4
N dxdt ≤ c

2N+4
N

(

∫

ΩT

|∇uδ
n|

2dxdt

)

(

∥uδ
n∥

2
L∞(0,T;L2(Ω))

) 2
N

.

Then, using (3.24) we obtain

∫

ΩT

(uδ
n)

2N+4
N dxdt ≤

(2δ)
2
N c

2N+4
N

Λδ

(

∥ f ∥Lm(ΩT)

(

∫

ΩT

u
(2δ−1−σ)m′

n dxdt

) 1
m′

+
1

2δ
∥uδ

0∥
2
L2(Ω)

)1+ 2
N

≤
(4δ)

2
N c

2N+4
N

Λδ

(

∥ f ∥
1+ 2

N

Lm(ΩT)

(

∫

ΩT

u
(2δ−1−σ)m′

n dxdt

) N+2
Nm′

+
1

(2δ)1+ 2
N

∥uδ
0∥

2N+4
N

L2(Ω)

)

,

where Λδ = 2δ−1
δ2 − µ

ΛN,2
. Now we choose δ to be such that δ 2N+4

N = (2δ − 1 − σ)m′, that is

δ = mN(1+σ)
2N−4(m−1)

. Observe that since 1 < m < m1 <
N
2 + 1 one has N − 2(m − 1) > 0 and

δ >
1+σ

2 ≥ 1
2 . We point out that

µ
ΛN,2

> 0 implies
ΛN,2

µ (1 −
√

1 − µ
ΛN,2

) >
1
2 and the choice
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δ >
ΛN,2

µ (1 −
√

1 − µ
ΛN,2

) ensures that Λδ > 0. To check the upper bound on δ, we notice that

δ < 1 is equivalent to m <
2N+4

N(1+σ)+4
. Such an inequality is always satisfied since for σ ≤ 1 we

have m < m1 ≤ 2N+4
N(1+σ)+4

. Therefore, with this choice of δ we obtain

∥un∥
(2δ−1−σ)m′

L(2δ−1−σ)m′ (ΩT)
≤

(4δ)
2
N c

2N+4
N

Λδ
∥ fn∥

2
N +1

Lm(ΩT)
∥un∥

(N+2)(2δ−1−σ)
N

L(2δ−1−σ)m′ (ΩT)
+

(4δ)
2
N c

2N+4
N

Λδ

1

(2δ)1+ 2
N

∥uδ
0∥

2N+4
N

L2(Ω)
.

Since m <
N
2 + 1 we have

(2δ − 1 − σ)m′
>

(N + 2)(2δ − 1 − σ)

N

and so by virtue of Young’s inequality the sequence {un}n is uniformly bounded in Lγ(ΩT)

with

γ = (2δ − 1 − σ)m′ =
m(N + 2)(1 + σ)

N − 2m + 2
> 1.

Now we shall obtain an estimation on ∇un. Notice that from (3.24) we get

Λδδ2
∫

ΩT

|∇un|2

u
2(1−δ)
n

dxdt ≤ ∥ fn∥
2
N +1

Lm(ΩT)
∥un∥

(2δ−1−σ)
Lγ(ΩT)

+
1

2δ
∥uδ

0∥
2
L2(Ω)

and since {un}n is uniformly bounded in Lγ(ΩT), we deduce the existence of a positive con-

stant C, not depending on n, such that

∫

ΩT

|∇un|2

u
2(1−δ)
n

dxdt ≤ C.

Let now q ≥ 1 be such that q < 2. An application of Hölder’s inequality with exponents 2
q

and 2
2−q yields

∫

ΩT

|∇un|
qdxdt =

∫

ΩT

|∇un|q

u
q(1−δ)
n

u
q(1−δ)
n dxdt

≤

(

∫

ΩT

|∇un|2

u
2(1−δ)
n

dxdt

)

q
2 (∫

ΩT

u
(1−δ)2q

2−q
n dxdt

)

2−q
2

≤ C
q
2

(

∫

ΩT

u
(1−δ)2q

2−q
n dxdt

)

2−q
2

.

Now we impose the condition γ = (1−δ)2q
2−q that gives q = m(N+2)(σ+1)

N+2−m(1−σ)
. Observe that q ≥

m(σ + 1) > 1 and since σ ≤ 1 we have m < m1 ≤ 2N+4
N(1+σ)+4

which implies q < 2. Thus, the

sequence {un}n is uniformly bounded in Lq(0, T; W
1,q
0 (Ω)) ∩ Lγ(ΩT). Therefore, there exist

a subsequence of {un}n, still indexed by n, and a function u ∈ Lq(0, T; W
1,q
0 (Ω)) ∩ Lγ(ΩT)

such that un ⇀ u weakly in Lq(0, T; W
1,q
0 (Ω)) ∩ Lγ(ΩT) and un → u a.e. in ΩT. Using

ϕ ∈ C∞
0 (Ω × [0, T)) as test function in (3.2) we obtain

−
∫

Ω

u0(x)ϕ(x, 0)dx −
∫

ΩT

un∂tϕdtdx +
∫

ΩT

∇un · ∇ϕdxdt

= µ
∫

ΩT

Tn(un)ϕ

|x|2 + 1
n

dxdt +
∫

ΩT

fnϕ

|un|+
1
n

dxdt.
(3.25)
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Notice that since un ⇀ u weakly in Lq(0, T; W
1,q
0 (Ω)), we immediately have

lim
n→+∞

∫

ΩT

∇un · ∇ϕdxdt =
∫

ΩT

∇u · ∇ϕdxdt

and

lim
n→+∞

∫

ΩT

un∂tϕdtdx =
∫

ΩT

u∂tϕdtdx.

As regards the first integral in the right-hand side of (3.25), we know that the sequence {un}

is increasing to its limit u so we have

∣

∣

∣

Tn(un)ϕ

|x|2 + 1
n

∣

∣

∣
≤

|uϕ|

|x|2
.

Applying Hölder’s and Hardy’s inequalities with exponents 2δ and 2δ
2δ−1 we obtain

∫

ΩT

|uϕ|

|x|2
dxdt ≤ ∥ϕ∥∞

∫

ΩT

|u|

|x|
1
δ

×
1

|x|
2δ−1

δ

dxdt

≤ ∥ϕ∥∞

(

∫

ΩT

|u|2δ

|x|2
dxdt

)

1
2δ
(

∫

ΩT

dxdt

|x|2

) 2δ−1
2δ

≤ ∥ϕ∥∞(ΛN,2)
−1
2δ

(

∫

ΩT

|∇uδ|2dxdt

) 1
2δ
(

∫

ΩT

dxdt

|x|2

) 2δ−1
2δ

.

From (3.9) and (3.24) we deduce that the sequence {uδ
n} is uniformly bounded in

L2(0, T; H1
0(Ω)) and thus there exist a subsequence of {uδ

n}, still indexed by n, and a function

v ∈ L2(0, T; H1
0(Ω)) such that uδ

n ⇀ v weakly in L2(0, T; H1
0(Ω)) and uδ

n → v a.e. in ΩT. But

we also have uδ
n ⇀ v weakly in Lq(0, T; W

1,q
0 (Ω)) and hence follows v = uδ ∈ L2(0, T; H1

0(Ω)).

Which shows that the function
|uϕ|
|x|2

lies in L1(ΩT). Furthermore, since
Tn(un)ϕ

|x|2+ 1
n

→ uϕ
|x|2

a.e. in

ΩT, the Lebesgue dominated convergence theorem gives

lim
n→+∞

∫

ΩT

Tn(un)ϕ

|x|2
dxdt =

∫

ΩT

uϕ

|x|2
dxdt.

On the other hand, the support supp(ϕ) of the function ϕ is a compact subset of ΩT and so

by Lemma A.5 (in Appendix) there exists a constant Csupp(ϕ) > 0 such that un ≥ Csupp(ϕ) in

supp(ϕ). Then,
∣

∣

∣

∣

∣

fnϕ

un +
1
n

∣

∣

∣

∣

∣

≤
∥ϕ∥∞

Csupp(ϕ)
| f | ∈ L1(ΩT).

So that by the Lebesgue dominated convergence theorem we get

lim
n→+∞

∫

ΩT

fnϕ

un +
1
n

dxdt =
∫

ΩT

f ϕ

u
dxdt.

We point out that we also have u ≥ Csupp(ϕ) in supp(ϕ). Now passing to the limit as n tends

to ∞ in (3.25) we obtain

−
∫

Ω

u0ϕ(x, 0)dx −
∫

ΩT

u∂tϕdtdx +
∫

ΩT

∇u · ∇ϕdxdt = µ
∫

ΩT

uϕ

|x|2
dxdt +

∫

ΩT

f ϕ

u
dxdt

for all ϕ ∈ C∞
0 (Ω × [0, T)). Namely u is a finite energy solution of the problem (1.1).
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3.7 Proof of Theorem 2.10

Let u, v ∈ L2(0, T; H1
0(Ω)) be two energy solutions of the problem (1.1) corresponding to

the same data u0 satisfying (1.3) and f ∈ Lm(ΩT), m ≥ 1. Since the datum f is compactly

supported in ΩT, then ∂tu ∈ L2(0, T; H−1(Ω)) + L1(ΩT). Let k > 0 and r > k. The function

Tk((u − v)+) ∈ L2(0, T; H1
0(Ω)) ∩ L∞(ΩT) is an admissible test function in the formulation of

solution (A.8) in Lemma A.7 (in Appendix). Taking it so in the difference of formulations

(A.8) solved by u and v, we obtain

∫

ΩT

∂t(u − v)+Tk((u − v)+)dxdt +
∫

ΩT

|∇Tk((u − v)+)|
2dxdt

≤
∫

{(u−v)+≤k}

(Tk((u − v)+))2

|x|2
dxdt + kµ

∫

{(u−v)+>k}

(u − v)+
|x|2

dxdt

+
∫

ΩT

f

(

1

uσ
−

1

vσ

)

Tk((u − v)+)dxdt

Setting Θk(s) =
∫ s

0 Tk(ν)dν and dropping the negative term, we get

∫

Ω

Θk((u − v)+(x, T))dx +
∫

ΩT

|∇Tk((u − v)+)|
2dxdt

≤
∫

{(u−v)+≤k}

(Tk((u − v)+))2

|x|2
dxdt + kµ

∫

{(u−v)+>k}

(u − v)+
|x|2

dxdt

+
∫

Ω

Θk((u − v)+(x, 0))dx.

Using
∫

Ω
Θk((u − v)+(x, T))dx ≥ 0, the fact that u(x, 0) = v(x, 0) = u0(x), Hardy’s inequality

(1.4) and Hölder’s inequality, we arrive at

∫

ΩT

|∇Tk((u − v)+)|
2dxdt ≤

µ

ΛN,2

∫

ΩT

|∇Tk((u − v)+)|
2dxdt

+ kµ

(

∫

{(u−v)+>k}

((u − v)+)2

|x|2
dxdt

)

1
2
(

∫

{(u−v)+>k}

dxdt

|x|2

) 1
2

.

Having in mind (3.9) and using again (1.4) we reach that

∫

ΩT

|∇Tk((u − v)+)|
2dxdt ≤

µ

ΛN,2

∫

ΩT

|∇Tk((u − v)+)|
2dxdt

+
kµT

1
2 C

1
2
1

Λ
1
2
N,2

(

∫

{(u−v)+>k}
|∇(u − v)+|

2dxdt

) 1
2

.
(3.26)

On the other hand, taking Tr(Gk((u − v)+)) ∈ L2(0, T; H1
0(Ω)) ∩ L∞(ΩT) as a test function in

the problems solved by u and v and subtracting the two equations we obtain

∫

ΩT

∂t(u − v)+Tr(Gk((u − v)+))dxdt +
∫

{k<(u−v)+<k+r}
|∇(u − v)+|

2dxdt

≤ µ
∫

{(u−v)+>k}

(u − v)2
+

|x|2
dxdt +

∫

ΩT

f

(

1

uσ
−

1

vσ

)

Tr(Gk((u − v)+))dxdt.
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Setting Θk,r(s) =
∫ s

0 Tr(Gk(ν))dν and dropping the negative term, the above inequality be-

comes
∫

Ω

Θk,r((u − v)+(x, T))dx +
∫

{k<(u−v)+<k+r}
|∇(u − v)+|

2dxdt

≤ µ
∫

{(u−v)+>k}

(u − v)2
+

|x|2
dxdt +

∫

Ω

Θk,r((u − v)+(x, 0))dx.

Note that
∫

Ω
Θk,r((u − v)+(x, T))dx ≥ 0 and

∫

Ω
Θk,r((u − v)+(x, 0))dx = 0. Whence, by (1.4)

we obtain
∫

{k<(u−v)+<k+r}
|∇(u − v)+|

2dxdt ≤
µ

ΛN,2

∫

{(u−v)+>k}
|∇(u − v)+|

2dxdt.

Then, passing to the limit as r tends to +∞ we get
∫

{k<(u−v)+}
|∇(u − v)+|

2dxdt ≤
µ

ΛN,2

∫

{k<(u−v)+}
|∇(u − v)+|

2dxdt. (3.27)

Therefore, gathering (3.26) and (3.27) we obtain
∫

ΩT

|∇(u − v)+|
2dxdt ≤

µ

ΛN,2

∫

ΩT

|∇(u − v)+|
2dxdt

+
kµC1

ΛN,2

(

∫

{(u−v)+>k}
|∇(u − v)+|

2dxdt

) 1
2

.

Passing now to the limit as k tends to 0 we obtain
∫

ΩT

|∇(u − v)+|
2dxdt ≤

µ

ΛN,2

∫

ΩT

|∇(u − v)+|
2dxdt,

which, recalling that u − v ∈ C([0, T]; L1(Ω)) (see [44, Theorem 1.1]) implies (u − v)+(·, τ) = 0

for any τ ∈ [0, T] and for almost every x ∈ Ω. Since u and v play symmetrical roles we

conclude that u = v a.e. in ΩT.

A Appendix

We give here some important lemmas that are necessary for the accomplishment of the proofs

of the previous results.

Theorem A.1 ([50, Theorem 2.2]). Let Ω be a bounded open subset of R
N , N ≥ 3. Then for every

1 ≤ q < 2 there exists a positive constant C = C(Ω, q) such that for all u ∈ H1
0(Ω) we have

C

(

∫

Ω

|∇u|qdx

) 2
q

≤
∫

Ω

|∇u|2dx − ΛN,2

∫

Ω

u2

|x|2
dx.

Let

α1 :=
N − 2

2
−

√

(

N − 2

2

)2

− λ (A.1)

be the smallest root of α2 − (N − 2)α + λ = 0. It is well known that this root yields the radial

solution |x|−α1 to the homogeneous equation

−∆v − λ
v

|x|2
= 0.

The following lemma provides a local comparison result with this radial solution.
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Lemma A.2 ([5, Lemma 2.2]). Assume that u is a non-negative function defined in Ω such that

u ̸≡ 0, u ∈ L1
loc(ΩT). If u satisfies

∂tu − ∆u − λ
u

|x|2
≥ 0, in D′(ΩT)

with ΩT := Ω × (0, T), λ ≤ ΛN,2 and Br(0) ⊂⊂ Ω, then there exists a constant C = C(N, r, t1, t2)

such that for each cylinder Br1
(0)× (t1, t2) ⊂ Ω × (0, T), 0 < r1 < r,

u ≥ C|x|−α1 in Br1
(0)× (t1, t2),

where α1 is the constant defined in (A.1).

Lemma A.3. Let 0 < λ ≤ ΛN,2 and g ∈ L1(0, T; L1
loc(Ω)), g ≥ 0. If u is a weak solution of the

problem














∂tu − ∆u = λ
u

|x|2
+ g in ΩT := Ω × (0, T),

u = 0 in ∂Ω × (0, T),

u(x, 0) = u0(x) in Ω,

(A.2)

where u0 ∈ L∞(Ω), u0 ≥ 0, then g satisfies

∫ t2

t1

∫

Br1
(0)

|x|−α1 gdxdt < +∞,

for any ball Br1
(0) ⊂⊂ Ω, where α1 is defined in (A.1).

Proof. We use similar arguments as in [5, Remark 2.4]. Let Br(0) ⊂⊂ Ω and ϕ ∈

L2(0, T; H1
0(Ω)) ∩ L∞(ΩT) be a weak solution of the problem















∂tϕ − ∆ϕ − λ
ϕ
|x|2

= 1 in ΩT,

ϕ = 0 in ∂Ω × (0, T),

ϕ(x, 0) = 1 in Ω.

(A.3)

Multiplying (A.2) by Tn(ϕ) and integrating over Br(0)× (0, T) we obtain

∫ T

0

∫

Br(0)
∂tuTn(ϕ)dxdt −

∫ T

0

∫

Br(0)
∆uTn(ϕ)dxdt − λ

∫ T

0

∫

Br(0)

u

|x|2
Tn(ϕ)dxdt

=
∫ T

0

∫

Br(0)
gTn(ϕ)dxdt.

Since u is a weak solution of (A.2) the above integrals make sense for each integer n. By the

classical by-parts integration formula, one has

∫

Br(0)
u(x, T)Tn(ϕ(x, T))dx −

∫

Br(0)
u(x, 0)dx −

∫ T

0

∫

Br(0)
u∂t(Tn(ϕ))dxdt

−
∫ T

0

∫

Br(0)
u∆(Tn(ϕ))dxdt − λ

∫ T

0

∫

Br(0)

u

|x|2
Tn(ϕ)dxdt

=
∫ T

0

∫

Br(0)
gTn(ϕ)dxdt.

(A.4)
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Since Tn(ϕ) → ϕ in L1(ΩT) and a.e. in ΩT and ϕ ∈ L∞(ΩT), we can apply the Lebesgue

dominated convergence theorem in the (A.4) to get

∫

Br(0)
u(x, T)ϕ(x, T)dx −

∫

Br(0)
u0(x)dx −

∫ T

0

∫

Br(0)
u∂tϕdxdt

−
∫ T

0

∫

Br(0)
u∆ϕdxdt − λ

∫ T

0

∫

Br(0)

u

|x|2
ϕdxdt =

∫ T

0

∫

Br(0)
gϕdxdt.

As ϕ is a solution of (A.3), we get

∫

Br(0)
u(x, T)ϕ(x, T)dx −

∫

Br(0)
u0dx − 2

∫ T

0

∫

Br(0)
u∂tϕdxdt +

∫ T

0

∫

Br(0)
udxdt

=
∫ T

0

∫

Br(0)
gϕdxdt.

Applying again the by-parts integration formula we obtain

−
∫

Br(0)
u(x, T)ϕ(x, T)dx +

∫

Br(0)
u0(x)dx + 2

∫ T

0

∫

Br(0)
∂tuϕdxdt +

∫ T

0

∫

Br(0)
udxdt

=
∫ T

0

∫

Br(0)
gϕdxdt.

By Lemma A.2, for every cylinder Br1
(0)× (t1, t2) ⊂ Br(0)× (0, T), 0 < r1 < r there exists a

constant C > 0 such that
∫ t2

t1

∫

Br1
(0)

|x|−α1 gdxdt ≤
∫

Br(0)
u(x, T)ϕ(x, T)dx +

∫

Br(0)
u0dx

+ 2
∫ T

0

∫

Br(0)
|∂tuϕ|dxdt +

∫ T

0

∫

Br(0)
udxdt.

Since u ∈ L1(0, T; L1
loc(Ω)), u0 ∈ L∞(Ω), ϕ ∈ L∞(ΩT) and ∂tu ∈ L2(0, T; H−1

loc (Ω))

+ L1(0, T; L1
loc(Ω)) conclude that

∫ t2

t1

∫

Br1
(0)

|x|−α1 gdxdt < +∞.

We will now compare the solution un of (3.1) with the solution wn of the problem


















∂twn − ∆wn =
fn

(wn +
1
n )

σ
in Ω × (0, T),

wn(x, t) = 0 in ∂Ω × (0, T),

wn(x, 0) = u0(x) in Ω,

(A.5)

where f = min( f , n) and u0 satisfies (1.3). Recall that (A.5) has a weak solution wn (see

[24, Lemma 2.1]).

Lemma A.4. Let un be a solution of (3.1) and wn be a solution of (A.5). Then, wn ≤ un a.e. in ΩT.

Proof. Consider the problems solved by wn and un, subtracting the two equations, we get

∂t(wn − un)− ∆(wn − un) = −µ
Tn(un)

|x|2 + 1
n

+ fn

(

1

(wn +
1
n )

σ
−

1

(un +
1
n )

σ

)

≤ fn

(

1

(wn +
1
n )

σ
−

1

(un +
1
n )

σ

)

.

(A.6)
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Using (wn − un)+χ(0,τ), 0 ≤ τ ≤ T, as test function in (A.6) it follows that

1

2

∫

Ω

(wn − un)
2
+(x, τ)dx +

∫

Ωτ

|∇(wn − un)+|
2dxdt

≤
∫

Ωτ

fn

(

(un +
1
n )

σ − (wn +
1
n )

σ

(un +
1
n )

σ(wn +
1
n )

σ

)

(wn − un)+dxdt

≤ 0,

where we have used wn(x, 0) = un(x, 0) = u0(x). Hence we conclude that
∫

ΩT

|∇(wn − un)+|
2(x, τ)dx = 0.

Recalling that wn − un ∈ C([0, T]; L1(Ω)) (see [44, Theorem 1.1]) implies (wn − un)+(·, τ) = 0

for every 0 ≤ τ ≤ T and for almost every x ∈ Ω. Thus, wn ≤ un a.e. in ΩT.

Lemma A.5. Let un be the solution of (3.1) given by Lemma 3.1. Then for every Ω′ ⊂⊂ Ω there

exists CΩ′ > 0 (not depending on n), such that un ≥ CΩ′ in Ω′ × [0, T].

Proof. The proof follows by combining [24, Proposition 2.2] and Lemma A.4.

Lemma A.6. Assume that µ ≤ ΛN,2 and let un be a solution of (3.1). The sequence {un}n∈N is

nonnegative and increasing with respect to n ∈ N.

Proof. Writing (3.2) with un and un+1 and then subtracting the two corresponding equations,

we obtain
∫ T

0

∫

Ω

∂t(un − un+1)ϕdxdt +
∫ T

0

∫

Ω

∇(un − un+1)∇ϕdxdt

≤ µ
∫ T

0

∫

Ω

Tn+1(un)− Tn+1(un+1)

|x|2 + 1
n+1

ϕdxdt

+
∫ T

0

∫

Ω

fn+1

(

1
(

un +
1

n+1

)σ −
1

(

un+1 +
1

n+1

)σ

)

ϕdxdt

(A.7)

for every ϕ ∈ L2(0, T; H1
0(Ω)). Inserting (un − un+1)+ ∈ L2(0, T; H1

0(Ω)) as a test function in

(A.7) and using the fact that Tn+1 is a 1-Lipschitzian function, we get

1

2

∫

ΩT

∂t(un − un+1)
2
+dxdt +

∫

ΩT

|∇(un − un+1)+|
2dxdt

≤
∫

ΩT

fn+1(un − un+1)+

(

1
(

un +
1

n+1

)σ −
1

(

un+1 +
1

n+1

)σ

)

dxdt

+ µ
∫

ΩT

(un − un+1)
2
+

|x|2
dxdt.

Dropping the non-negative parabolic term and using the fact that

(un − un+1)+

(

1
(

un +
1

n+1

)σ −
1

(

un+1 +
1

n+1

)σ

)

≤ 0,

we obtain
∫

ΩT

|∇(un − un+1)+|
2dxdt ≤ µ

∫

ΩT

(un − un+1)
2
+

|x|2
dxdt.
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Thus, if µ < ΛN,2 the Hardy inequality (1.4) yields
∫

ΩT

|∇(un − un+1)+|
2dxdt = 0,

while if µ = ΛN,2 we can apply Theorem A.1 obtaining
∫

ΩT

|∇(un − un+1)+|
qdxdt = 0,

for all q < 2. Therefore, in both cases we get (un − un+1)+ = 0 a.e. in ΩT, that is un ≤ un+1

a.e. in ΩT. In addition, as un ≥ u0 we infer that un is nonnegative.

Lemma A.7. Let u ∈ L2(0, T; H1
0(Ω)) be a finite energy solution of (1.1) with a datum f ∈ L1(ΩT)

such that supp( f ) ⊂⊂ ΩT. Then u satisfies
uϕ
|x|2

∈ L1(ΩT),
f ϕ
uσ ∈ L1(ΩT) and

∫

ΩT

∂tuϕdxdt +
∫

ΩT

∇u · ∇ϕdxdt =
∫

ΩT

(

µ
u

|x|2
+

f

uσ

)

ϕdxdt, (A.8)

for every ϕ ∈ L2(0, T; H1
0(Ω)) ∩ L∞(ΩT).

Proof. Let ϕ ∈ L2(0, T; H1
0(Ω)) ∩ L∞(ΩT) be a nonnegative function. A direct application of

Hardy’s inequality yields µ
uϕ
|x|2

∈ L1(ΩT), while since f is compactly supported in ΩT, by

Lemma A.5 there exists a constant Csupp( f ) > 0 such that u ≥ Csupp( f ) in supp( f ) so that one

has
∫

ΩT

| f ϕ|

uσ
dxdt ≤ Cσ

supp( f )∥ϕ∥∞∥ f ∥L1(ΩT) < ∞.

We argue as in [41, Lemma 4.2] considering a sequence of function ϕn ∈ C∞
0 (ΩT), with ϕn ≥ 0

and ϕn → ϕ in L2(0, T; H1
0(Ω)), with ∥ϕn∥∞ ≤ ∥ϕ∥∞. Inserting ϕn as a test function in (2.1)

and integrating by parts, we obtain

∫

ΩT

∂tuϕndxdt +
∫

ΩT

∇u · ∇ϕndxdt =
∫

ΩT

(

µ
u

|x|2
+

f

uσ

)

ϕndxdt. (A.9)

Since ϕn → ϕ in L2(ΩT) then, for a subsequence still indexed by n, we may assume that

ϕn → ϕ a.e. in ΩT. As f is compactly supported in ΩT we have

(

µ
u

|x|2
+

f

uσ

)

ϕn ≤ ∥ϕ∥∞

(

µ
u

|x|2
+

f

uσ

)

∈ L1(ΩT).

Thus, by the Lebesgue dominated convergence theorem we obtain

lim
n→∞

∫

ΩT

(

µ
u

|x|2
+

f

uσ

)

ϕndxdt =
∫

ΩT

(

µ
u

|x|2
+

f

uσ

)

ϕdxdt.

Since ∂tu ∈ L2(0, T; H−1(Ω)) + L1(ΩT) we use the convergence ϕn → ϕ in L2(0, T; H1
0(Ω)) and

again the Lebesgue dominated convergence theorem in (A.9) obtaining

∫

ΩT

∂tuϕdxdt +
∫

ΩT

∇u · ∇ϕdxdt =
∫

ΩT

(

µ
u

|x|2
+

f

uσ

)

ϕdxdt.
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1 Introduction

Various kinds of mathematical models arising from physics, engineering and biology not only
involve random effects such as uncertain parameters, stochastic perturbation, but also relate
to multiple disparate time or spatial scales [2, 16, 21]. Many important physical models, such
as Burger’s equation, Ginzburg–Laudau equation, Swift–Hohenberg equation are highly re-
ferred in this field. In order to investigate a variety of equations in the context of random
influences, by combining probability theory, functional analysis and the theory of partial dif-
ferential equations, mathematicians gradually developed and perfected a systematic frame-
work of stochastic partial differential equations (SPDEs) in recent decades [13, 30]. In terms
of SPDEs evolving on multi-scales, there are many methods used to analyze the dynamical
behaviours of SPDEs, such as averaging method [9, 10], amplitude equations [4, 5] and the
theory of invariant manifolds [17, 29].

Among these methods, the theory of invariant manifolds is considered as a practicable
tool, which can provide a geometric structure of complex systems [1,35,37]. For deterministic
systems, the pioneering results were obtained by Hadamard [22], Lyapunov [23] and Perron
[25]. Duan et al. [14, 15] extended this theory to random dynamic systems and show the ex-
istence of random invariant manifolds for SPDEs with simple multiplicative noise. Equations
with more general multiplicative noise were studied by Caraballo et al. [7] and Mohammed

BCorresponding author. Email: shisy@jlu.edu.cn
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et al. [24]. Also other dynamical properties of SPDEs have been already addressed in the lit-
erature, just to list a few but far from being complete: random invariant foliations [26, 32, 34],
asymptotic dynamical behaviors [19, 33, 34, 36], geometric shape [6, 11, 18, 20], etc.

Applying the property that the random invariant manifolds contribute to the reduction
of SPDEs, mathematicians can eliminate the fast variable of slow-fast systems to reduce the
original system to a lower dimensional system. At earlier stage of the research, Schmalfuß
and Schneider [31] studied a class of slow-fast systems with noise in the finite dimensional
case by Hadamard method, and obtained that inertial manifolds tend to slow manifolds if
the scaling parameter ε tends to 0. Fu et al. [17] applied Lyapunov–Perron method to a
class of stochastic evolution equations with slow and fast components, and proved that slow
manifolds asymptotically approximate to critical manifolds. Qiao et al. [28, 29] obtained a
reduced system of a class of SDEs under slow-fast Gaussian noisy fluctuations on the random
invariant manifolds, and showed the delicate error between the filter of the original system
and that of the reduced system. The slow invariant foliation, another interesting object in this
field, was originally studied by Chen et al. [12]. They constructed random invariant foliations
for a class of slow-fast stochastic evolutionary systems, and presented the approximation of
slow foliations. Recently, slow-fast systems with non-Gaussian noise have gained substantial
attention from researchers. For details, please see [27, 38, 39], etc.

In this paper, we investigate a class of slow-fast PDEs driven by strong multiplicative noise:

dXε =

[
A

ε
Xε +

f (Xε, Yε)

ε

]
dt +

Xε

√
ε
◦ dW, in H1, (1.1)

dYε = [BYε + g(Xε, Yε)]dt +
Yε

√
ε
◦ dW, in H2, (1.2)

where H1 and H2 are separable Hilbert spaces, ε is small parameter (0 < ε ≪ 1), W(t) is a
two-sided Wiener process taking value in R, ◦ means Stratonovich stochastic differential, and
A, B, f , g will be introduced later. Briefly, the main goal of this paper is to construct the random
invariant manifolds and foliations for (1.1)–(1.2) and to derive corresponding approximations
for both. Compared with [17, 28, 29, 31], the system we study is forced by multiplicative noise
rather than additive noise. To the best of our knowledge, this is the first research to consider
the slow manifolds and slow foliations for slow-fast SPDEs with multiplicative noise.

This paper is organized as follows. In next section, we present some assumptions and
recall some basic concepts in random dynamical systems. In Section 3, the existence of random
invariant manifolds of (1.1)–(1.2) is established. Moreover, we show the orbit starting from
random invariant manifold can exponentially approach to the other orbits in forward time,
and prove that invariant manifolds can converge to slow ones as ε tends to 0. Section 4 is
aimed at the theory of random invariant foliations including existence, exponential tracking
property in backward time, and asymptotic foliations.

2 Preliminaries

The section is devoted to presenting some conditions that we need later, and reviewing some
background materials in random dynamic systems.
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2.1 Notations and assumptions

Let H1 and H2 be separable Hilbert spaces in (1.1) and (1.2). Denote their norms by ∥ · ∥1 and
∥ · ∥2, respectively. Set H := H1 × H2 with norm ∥ · ∥ = ∥ · ∥1 + ∥ · ∥2. A, B, f , g in (1.1)–(1.2)
satisfy the following conditions.

Assumption 1. Suppose that linear operator A generates a C0-semigroup {eAt}t≥0 on H1

fulfilling

∥eAtx∥1 ≤ e−γ1t∥x∥1, for x ∈ H1, t ≥ 0,

and linear operator B generates a C0-group {eBt}t∈R on H2 fulfilling

∥eBty∥2 ≤ eγ2t∥y∥2, for y ∈ H2, t ≤ 0,

where γ1 > 0, γ2 ≥ 0.

Assumption 2. Suppose that nonlinear terms

f : H1 × H2 → H1,

g : H1 × H2 → H2,

satisfy f (0, 0) = 0 and g(0, 0) = 0, and there exists a constant K > 0 such that

∥ f (x1, y1)− f (x2, y2)∥1 ≤ K(∥x1 − x2∥1 + ∥y1 − y2∥2),

∥g(x1, y1)− g(x2, y2)∥2 ≤ K(∥x1 − x2∥1 + ∥y1 − y2∥2),

for all x1, x2 ∈ H1 and y1, y2 ∈ H2.

Assumption 3. f (x, y) and g(x, y) are C1 functions, and all the first order partial derivatives
of them are uniformly bounded.

Assumption 4. The Lipschitz constant K and decay rate γ1 of A satisfy

K < γ1. (2.1)

Assumption 5. The Lipschitz constant K, decay rate γ1 of A and decay rate γ2 of B satisfy

K <
γ1γ2

2γ1 + γ2
. (2.2)

Remark 2.1. (1) We remark that our main theorems hold when H1 and H2 are real or complex
separable Hilbert spaces. For simplicity, we ignore it.

(2) Assumption 3 and Assumption 4 will be imposed in Section 3 and Section 4, respec-
tively. We would like to point out that condition (2.2) is sufficient for condition (2.1), which
implies that the condition used for the study of the random invariant manifolds is weaker
than that used for the study of the random invariant foliations.

(3) Moreover, we remark that there are other conditions, which can also play the same role
as condition (2.2). For the details, please see Remark 4.3 and Remark 4.4 in [12].
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2.2 Random dynamical systems

Referring to the literature [1, 12, 14, 15, 26], we introduce some concepts of random dynamical
systems.

Definition 2.2. Let (Ω,F , P) be a probability space, and a flow θ of mappings {θt}t∈R be
defined by θ : R × Ω → Ω such that

θ0 = idΩ,

θt1 ◦ θt2 = θt1+t2 , ∀t1, t2 ∈ R,

the flow is (B(R)⊗F ,F )-measurable,

θtP = P, ∀t ∈ R.

Then (Ω,F , P, {θt}t∈R) is called a metric dynamical system.

Definition 2.3. A random dynamical system on the topological space X over a metric dynam-
ical system (Ω,F , P, {θt}t∈R) is a mapping

ϕ : R × Ω × X → X, (t, ω, x) → ϕ(t, ω, x),

such that

ϕ is (B(R)⊗F ⊗B(X),B(X))-measurable,

ϕ(0, ω) = idX, ∀ω ∈ Ω,

ϕ(t + s, ω, ·) = ϕ(t, θsω, ϕ(s, ω, ·)), ∀s, t ∈ R, ω ∈ Ω,

ϕ(t, ω, x) is continuous with respect to t, for fixed ω ∈ Ω, x ∈ X.

In what follows, we consider ϕ(t, ω, ·) as a random dynamical system on a complete sep-
arable metric space (H, dH) over a metric dynamical system (Ω,F , P, {θt}t∈R).

Definition 2.4. A family of nonempty closed sets M = {M(ω)} contained in (H, dH) is called
a random set if

ω → inf
y∈M(ω)

dH(x, y)

is a random variable for x ∈ H.

Definition 2.5. A random set M = {M(ω)} is called a positively invariant set contained in
(H, dH) if

ϕ(t, ω, M(ω)) ⊂ M(θtω), t ≥ 0, ω ∈ Ω.

Furthermore, if, for every ω ∈ Ω, we can represent M by a graph of a Lipschitz mapping

φ(ω, ·) : H2 → H1,

i.e.,
M(ω) = {(φ(ω, y), y)|y ∈ H2},

then M(ω) is called a Lipschitz continuous invariant manifold.

Definition 2.6. (i) Fixing x ∈ H, we call Wαs(x, ω) is an α-stable fiber passing through x

with α ∈ R
−, if ∥ϕ(t, ω, x) − ϕ(t, ω, x̄)∥H = O(eαt), ∀ω ∈ Ω as t → +∞ for all x̄ ∈

Wαs(x, ω).
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(ii) Fixing x ∈ H, we call Wβu(x, ω) is a β-unstable fiber passing through x with β ∈ R
+, if

∥ϕ(t, ω, x)− ϕ(t, ω, x̄)∥H = O(eβt), ∀ω ∈ Ω as t → −∞ for all x̄ ∈ Wβu(x, ω).

(iii) Wαs(ω) := ∪x∈HWαs(x, ω) is called stable foliation.

(iv) Wβu(ω) := ∪x∈HWβu(x, ω) is called unstable foliation.

(v) A foliation Wβu(ω) is invariant with respect to random dynamical system ϕ if each fiber
of it satisfies that

ϕ(t, ω,Wβu(x, ω)) ⊂ Wβu(ϕ(t, ω, x), θtω).

2.3 Transformation from SPDEs to RPDEs

The motivation of this subsection is to transform SPDEs (1.1)–(1.2) into random partial differ-
ential equations (RPDEs), and show the relationship between them. For our applications, we
introduce the metric dynamical system induced by Wiener process. Let W(t) be a two-sided
Wiener process with trajectories in the space C0(R, R) which is the collection of continuous
functions ω : R → R with ω(0) = 0. Set Ω̄ := C0(R, R). This set is equipped with a compact-
open topology (please see the Appendix in [1]). Let F̄ be its Borel σ-field and P̄ be the Wiener
measure. Set

θtω(·) := ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.

Note that P̄ is ergodic with respect to θt. Then (Ω̄, F̄ , P̄, {θt}t∈R) is a metric dynamical system.
In order ot obtain RPDEs, we need the following preparation. Consider the linear stochas-

tic differential equation:

dzε = − zε

ε
dt +

1√
ε
dW. (2.3)

The solution of (2.3) is called an Ornstein–Uhlenbeck process. Following Lemma 2.1 in [14],
we present the properties of zε(t) as follows.

Lemma 2.7.

(1) There exists a {θt}t∈R-invariant set Ω ∈ B(C0(R, R)) of full measure with sublinear growth:

lim
t→±∞

|ω(t)|
|t| = 0, ω ∈ Ω.

(2) For ω ∈ Ω the random variable

zε(ω) = −ε−
3
2

∫ 0

−∞

e
τ
ε ω(τ)dτ

exists and generates a unique stationary solution of (2.3) given by

Ω × R ∋ (ω, t) → zε(θtω) = −ε−
3
2

∫ 0

−∞

e
τ
ε θtω(τ)dτ = −ε−

3
2

∫ 0

−∞

e
τ
ε ω(τ + t)dτ + ε−

1
2 ω(t).

The mapping t → zε(θtω) is continuous.

(3) In particular, we have

lim
t→±∞

|zε(θtω)|
|t| = 0 for ω ∈ Ω.
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(4) In addition,

lim
t→±∞

1
t

∫ t

0
zε(θτω)dτ = 0 for ω ∈ Ω.

In the followings of this paper, we consider (1.1)–(1.2) on the new metric dynamical system
(Ω,F , P, {θt}t∈R), where Ω is given in Lemma 2.7, F := {Ω ∩A,A ∈ B(C0(R, R))}, and P is
the restriction of the Wiener measure P̄ to F . We proceed to show the solution of (1.1)–(1.2)
can generate a random dynamical system over the metric dynamical system (Ω,F , P, {θt}t∈R).
Letting X̄ε = e−zε(θtω)Xε, Ȳε = e−zε(θtω)Yε, we obtain RPDEs:

dX̄ε =

[
A

ε
X̄ε +

zε(θtω)X̄ε

ε
+

F(X̄ε, Ȳε, θtω)

ε

]
dt, (2.4)

dȲε = [BȲε +
zε(θtω)Ȳε

ε
+ G(X̄ε, Ȳε, θtω)]dt, (2.5)

where

F(X̄ε, Ȳε, θtω) = e−zε(θtω) f (ezε(θtω)X̄ε, ezε(θtω)Ȳε),

G(X̄ε, Ȳε, θtω) = e−zε(θtω)g(ezε(θtω)X̄ε, ezε(θtω)Ȳε).

Since F and G are also Lipschitz functions with the same Lipschitz constant K for ω ∈ Ω, there
exists a unique solution Zε(t) = (Xε(t), Yε(t)) of (2.4)–(2.5) for ω ∈ Ω. Hence, the mapping

(t, ω, Zε(0)) → Zε(t, ω, Zε(0))

is (R ⊗ F ⊗ B(H),B(H))-measurable and generates a random dynamical system. We intro-
duce the transform

T(ω, x) = xe−zε(ω) (2.6)

and its inverse transform
T−1(ω, x) = xezε(ω) (2.7)

for x ∈ H and ω ∈ Ω.

Lemma 2.8. Suppose that uε(t, ω, x) is the random dynamical system generated by (2.4)–(2.5). Then

(t, ω, x) → T−1(θtω, uε(t, ω, T(ω, x))) =: ûε(t, ω, x)

is a random dynamical system. For any x ∈ H this process (t, ω) → ûε(t, ω, x) is a solution to

(1.1)–(1.2).

Proof. Note that T(ω, ·) is a homeomorphism for any ω ∈ Ω, T(·, x), T−1(·, x) are measurable
for any x ∈ H, and uε(t, ω, x) is a random dynamical system. Hence, ûε(t, ω, x) is a random
dynamical system. For x ∈ H, applying Itô’s formula to T(θtω, ûε(t, ω, T−1(ω, x))), we can
obtain a solution of (2.4)–(2.5). Because T(θtω, x) and u(t, ω, x) are well defined for any ω ∈ Ω,
and T−1 is the inverse of T, the converse is also true, which implies ûε(t, ω, x) is a solution of
(1.1)–(1.2).

Based on the above lemma, we can investigate (1.1)–(1.2) via (2.4)–(2.5). Then we are
concerned with the random partial differential equations (RPDEs) (2.4)–(2.5) in the remainder
of this paper.
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3 Random invariant manifolds and slow manifolds

In this section, we use Lyapunov–Perron’s method to prove the existence of random invariant
manifolds for (2.4)–(2.5), and state that any orbit can be exponentially attracted by random
invariant manifolds. Moreover, we show slow manifolds can approach to random invariant
manifolds as the parameter ε tends to 0.

3.1 Random invariant manifolds

Let us give some notations. For α ∈ R, a real-valued stochastic process p(t, ω) and i = 1, 2,
define Banach Space

Ci,−
α,p :=

{
φ : (−∞, 0] → Hi|φ is continuous and sup

t∈(−∞,0]
e−αt−

∫ t
0 p(s,ω)ds∥φ(t)∥i < ∞

}

with the norm ∥φ∥
Ci,−

α,p
= sup

t∈(−∞,0]
e−αt−

∫ t
0 p(s,ω)ds∥φ(t)∥i, and

Ci,+
α,p :=

{
φ : [0,+∞) → Hi|φ is continuous and sup

t∈[0,+∞)

e−αt−
∫ t

0 p(s,ω)ds∥φ(t)∥i < ∞

}

with the norm ∥φ∥
Ci,+

α,p
= supt∈[0,+∞) e−αt−

∫ t
0 p(s,ω)ds∥φ(t)∥i. Furthermore, define product Ba-

nach space C±
α,p := C1,±

α,p × C2,±
α,p with the norm ∥z∥C±

α,p
= ∥x∥

C1,±
α,p

+ ∥y∥C2,±
α,p

, z = (x, y) ∈ C±
α,p.

Let µ be a positive number satisfying γ1 − µ > K. Let Z̄ε(t, ω, Z̄0) be the solution of (2.4)-
(2.5) with the initial value Z̄0 ∈ H. Set Mε(ω) =

{
Z̄0 ∈ H|Z̄ε(·, ω, Z̄0) ∈ C−

− µ
ε , zε

ε

}
. More

precisely, Mε(ω) is the set containing all initial data such that corresponding solutions belong
to C−

− µ
ε , zε

ε

.

Following the idea from [15, 17], we will show Mε(ω) can be represented by a Lipschitz
function with Lyapunov–Perron’s method.

Lemma 3.1. Suppose that Assumptions 1, 2, 4 hold. Z̄0 = (X̄0, Ȳ0) ∈ Mε(ω) if and only if there

exists a function Z̄ε(·) = (X̄ε(·), Ȳε(·)) ∈ C−
− µ

ε , zε

ε

with Z̄ε(0) = Z̄0 and satisfies

X̄ε(t) =
1
ε

∫ t

−∞

e
A(t−s)+

∫ t
s zε(θrω)dr

ε F(X̄ε, Ȳε, θsω)ds, (3.1)

Ȳε(t) = eBt+
∫ t

0 zε(θrω)dr

ε Ȳ0 +
∫ t

0
eB(t−s)+

∫ t
s zε(θrω)dr

ε G(X̄ε, Ȳε, θsω)ds. (3.2)

Proof. The proof can be completed by that of Theorem 3.1 in [15], so it is omitted here.

Theorem 3.2 (Existence of invariant manifold). Under Assumptions 1, 2, 4, for sufficiently small

ε > 0, there exists a Lipschitz invariant manifold Mε(ω) for (2.4)–(2.5) represented as a graph

Mε(ω) = {(Hε(ω, Y0), Y0)|Y0 ∈ H2}, (3.3)

where Hε(·, ·) : Ω× H2 → H1 is a Lipschitz continuous mapping with Lipschitz constant Lip Hε(ω, ·)
satisfying that

Lip Hε(ω, ·) ≤ K

(γ1 − µ)
[
1 − K

(
1

γ1−µ + ε
µ+εγ2

)] , ω ∈ Ω. (3.4)

Moreover, Hε(ω, 0) = 0.
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Proof. The proof consists of four steps.

Step1. Claim that for ε > 0 sufficiently small, (3.1)–(3.2) will have a unique solution Z̄ε(·, ω, Z̄0) =

(X̄ε(·, ω, Z̄0), Ȳε(·, ω, Z̄0)) ∈ C−
− µ

ε , zε

ε

. We will use Banach’s Fixed Point Theorem to achieve the

claim.

Define two operators Jε
1 : C−

− µ
ε , zε

ε

→ C1,−
− µ

ε , zε

ε

and Jε
2 : C−

− µ
ε , zε

ε

→ C2,−
− µ

ε , zε

ε

satisfying

Jε
1(Z̄ε(t)) =

1
ε

∫ t

−∞

e
A(t−s)+

∫ t
s zε(θrω)dr

ε F(X̄ε, Ȳε, θsω)ds, (3.5)

Jε
2(Z̄ε(t)) = eBt+

∫ t
0 zε(θrω)dr

ε Ȳ0 +
∫ t

0
eB(t−s)+

∫ t
s zε(θrω)dr

ε G(X̄ε, Ȳε, θsω)ds, (3.6)

for t ≤ 0. Define Jε : C−
− µ

ε , zε

ε

→ C−
− µ

ε , zε

ε

by means of Jε(Z̄ε(·)) = (Jε
1(Z̄ε(·)), Jε

2(Z̄ε(·))). Firstly,

let us show that Jε maps C−
− µ

ε , zε

ε

into itself. Since F, G keep the Lipschitz condition, we have

∥Jε
1(Z̄ε(·))∥

C1,−
− µ

ε , zε
ε

=
1
ε

sup
t∈(−∞,0]

{ ∫ t

−∞

e
A(t−s)+µt+

∫ 0
s zε(θrω)dr

ε F(X̄ε, Ȳε, θsω)ds
}

≤ K

ε
sup

t∈(−∞,0]

{ ∫ t

−∞

e
(−γ1+µ)(t−s)

ε ds
}
∥Z̄ε∥C−

− µ
ε , zε

ε

=
K

γ1 − µ
∥Z̄ε∥C−

− µ
ε , zε

ε

and

∥Jε
2(Z̄ε(·))∥C2,−

− µ
ε , zε

ε

= sup
t∈(−∞,0]

{
eBt+ µ

ε tȲ0 +
∫ t

0
eB(t−s)+

µt+
∫ 0

s zε(θrω)dr

ε G(X̄ε, Ȳε, θsω)ds
}

≤ K sup
t∈(−∞,0]

{ ∫ 0

t
e(γ2+

µ
ε )(t−s)ds

}
∥Z̄ε∥C−

− µ
ε , zε

ε

+ ∥Ȳ0∥2

=
εK

µ + εγ2
∥Z̄ε∥C−

− µ
ε , zε

ε

+ ∥Ȳ0∥2.

Thus, ∥Jε(Z̄ε(·))∥C−
− µ

ε , zε
ε

≤ ρ(K, µ, γ1, γ2, ε) + ∥Ȳ0∥2, where ρ(K, µ, γ1, γ2, ε) = K
γ1−µ + εK

µ+εγ2
.

Next, we verify that Jε is a contractive mapping. Let Zε(·) and Z̄ε(·) ∈ C−
− µ

ε , zε

ε

. Then

∥Jε
1(Zε(·))− Jε

1(Z̄ε(·))∥
C1,−
− µ

ε , z
ε

≤ K

ε
sup

t∈(−∞,0]

{ ∫ t

−∞

e
(−γ1+µ)(t−s)

ε (∥Xε − X̄ε∥
C1,−
− µ

ε , zε
ε

+ ∥Yε − Ȳε∥C2,−
− µ

ε , zε
ε

)ds
}

≤ K

ε
sup

t∈(−∞,0]

{ ∫ t

−∞

e
(−γ1+µ)(t−s)

ε ds
}
∥Zε − Z̄ε∥C−

− µ
ε , zε

ε

=
K

γ1 − µ
∥Zε − Z̄ε∥C−

− µ
ε , zε

ε
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and

∥Jε
2(Zε(·))− Jε

2(Z̄ε(·))∥C2,−
− µ

ε , zε
ε

≤ K sup
t∈(−∞,0]

{ ∫ t

0
e(−γ2+

µ
ε )(t−s)(∥Xε − X̄ε∥

C1,−
− µ

ε , zε
ε

+ ∥Yε − Ȳε∥C2,−
− µ

ε , zε
ε

)ds
}

≤ K sup
t∈(−∞,0]

{ ∫ 0

t
e(γ2+

µ
ε )(t−s)ds

}
∥Zε − Z̄ε∥C−

− µ
ε , zε

ε

=
εK

µ + εγ2
∥Zε − Z̄ε∥C−

− µ
ε , zε

ε

.

Therefore, ∥Jε(Zε(·))− Jε(Z̄ε(·))∥C−
− µ

ε , zε
ε

≤ ρ(K, µ, γ1, γ2, ε)∥Zε − Z̄ε∥C−
− µ

ε , zε
ε

. Since γ1 − µ > K,

we have ρ < 1 if ε ∈ (0, ε0) with ε0 = (γ1−µ−K)µ
K(γ1−µ)−(γ1−µ−K)γ2

.
Consequently, we use Banach’s Fixed Point Theorem to obtain the existence of the unique

solution Z̄ε(·) ∈ C−
− µ

ε , zε

ε

for (2.4)–(2.5), and the standard a-priori estimate:

∥Z̄ε(·, ω, Z0)− Z̄ε(·, ω, Z̄0)∥C−
− µ

ε , zε
ε

≤ 1
1 − ρ(K, µ, γ1, γ2, ε)

∥Y0 − Ȳ0∥2, (3.7)

for all ω ∈ Ω, Y0, Ȳ0 ∈ H2.

Step 2. Construct the random invariant manifold Mε(ω).
Define

Hε(ω, Y0) :=
1
ε

∫ 0

−∞

e
−As−

∫ s
0 zε(θrω)dr

ε F(X̄ε(s, ω, Y0), Ȳε(s, ω, Y0), θsω)ds.

Then, the Lipschitz constant of Hε(ω, Y0) is given by

∥Hε(ω, Y0)− Hε(ω, Ȳ0)∥1 ≤ K

γ1 − µ
∥Z̄ε(·, ω, Z0)− Z̄ε(·, ω, Z̄0)∥C−

− µ
ε , zε

ε

≤ K

(γ1 − µ)
[
1 − K

(
1

γ1−µ + ε
µ+εγ2

)]∥Y0 − Ȳ0∥2

for all ω ∈ Ω, Y0, Ȳ0 ∈ H2. Lemma 3.1 yields that Mε(ω) = {(Hε(ω, Y0), Y0)|Y0 ∈ H2}.

Step 3. We need to prove Mε(ω) is a random set. To this end, we show that

ω → inf
z′∈H

∥(x, y)− (Hε(ω,Pz′),Pz′)∥ (3.8)

is measurable, where P is the projection from H to H2. Let Hc be a countable dense set of
the separable space H. The continuity of Hε(ω, ·) yields that the right-hand side of (3.8) is
equivalent to

ω → inf
z′∈Hc

∥(x, y)− (Hε(ω,Pz′),Pz′)∥. (3.9)

Since ω → Hε(ω,Pz′) is measurable, we obtain that measurability of any expression under
the infimum of (3.9). Then the fact that Mε is a random set follows from Theorem III.9 in [8].

Step 4. We are going to show that Mε is positively invariant which means that for every
Z̄0 = (X̄0, Ȳ0) ∈ Mε(ω), Z̄(s, ω, Z̄0) ∈ Mε(θsω) for all s ≥ 0. For every fixed s ≥ 0, we claim
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that Z̄(t + s, ω, Z̄0) is the solution of

dX̄ε =

[
A

ε
X̄ε +

zε(θt(θsω))X̄ε

ε
+

F(X̄, Ȳ, θt(θsω))

ε

]
dt,

dȲε = [BȲε +
zε(θt(θsω))Ȳε

ε
+ G(X̄ε, Ȳε, θt(θsω))]dt

with initial value Z̄(0) = Z̄(s, ω, Z̄0). Then, Z̄(t + s, ω, Z̄0) = Z̄(t, θsω, Z̄(s, ω, Z̄0)). Since
Z̄(·, ω, Z̄0) ∈ C−

− µ
ε , zε

ε

, we get Z̄(·, θsω, Z̄(s, ω, Z̄0)) ∈ C−
− µ

ε , zε

ε

. Thus Z̄(s, ω, Z̄0) ∈ Mε(θsω). The

proof is completed.

Next, we want to show that the Lipschitz invariant manifolds for (2.4)–(2.5) given in (3.3)
has exponential tracking property

Theorem 3.3 (Exponential tracking property in forward time). Under Assumptions 1, 2, 4, for

sufficiently small ε > 0, there exists a positive constant C and a random process D(t, ω) such that for

any Z̆0 = (X̆0, Y̆0) ∈ H, there exists Z̄0 = (X̄0, Ȳ0) ∈ Mε(ω) satisfying that

∥Z̄ε(t, ω, Z̆0)− Z̄ε(t, ω, Z̄0)∥ ≤ D(t, ω)e−Ct∥Z̆0 − Z̄0∥, t ≥ 0.

Proof. Suppose that Z̆ε(t) = (X̆ε(t), Y̆ε(t)) and Z̄ε(t) = (X̄ε(t), Ȳε(t)) are two solutions of (2.4)–
(2.5) with initial data Z̆ε(0) = Z̆0 and Z̄ε(0) = Z̄0, respectively. Then Z̃ε(t) = Z̆ε(t)− Z̄ε(t) =

(X̃ε(t), Ỹε(t)) satisfies that the following system:

dX̃ε =

[
A

ε
X̃ε +

zε(θtω)X̃ε

ε
+

F̃(X̃ε, Ỹε, θtω)

ε

]
dt, (3.10)

dỸε = [BỸε +
zε(θtω)Ỹε

ε
+ G̃(X̃ε, Ỹε, θtω)]dt, (3.11)

where

F̃(X̃ε, Ỹε, θtω) = F(X̃ε + X̄ε, Ỹε + Ȳε, θtω)− F(X̄ε, Ȳε, θtω), (3.12)

G̃(X̃ε, Ỹε, θtω) = G(X̃ε + X̄ε, Ỹε + Ȳε, θtω)− G(X̄ε, Ȳε, θtω). (3.13)

Acoording to the variation of constants formula, we state that Z̃ε(·) = (X̃ε(·), Ỹε(·)) with
initial value Z̃ε(0) = Z̆0 − Z̄0 = (X̃ε(0), Ỹε(0)) is the solution in C+

− µ
ε , zε

ε

of (3.10)–(3.11) if and

only if

X̃ε(t) = e
At+

∫ t
0 zε(θrω)dr

ε X̃ε(0) +
1
ε

∫ t

0
e

A(t−s)+
∫ t

s zε(θrω)dr

ε F̃(X̃ε, Ỹε, θsω)ds, (3.14)

Ỹε(t) =
∫ t

+∞

eB(t−s)+
∫ t

s zε(θrω)dr

ε G̃(X̃ε, Ỹε, θsω)ds. (3.15)

Now, let us show that there exists a unique solution Z̃ε(·) = (X̃ε(·), Ỹε(·)) in C+
− µ

ε , zε

ε

with initial

value (X̃ε(0), Ỹε(0)) such that

(X̄0, Ȳ0) = (X̃ε(0), Ỹε(0)) + (X̆0, Y̆0) ∈ Mε(ω). (3.16)

It follows from Theorem 3.2 that

X̃ε(0) = −X̆0 + Hε(ω, Ỹε(0) + Y̆0)

= −X̆0 +
1
ε

∫ 0

−∞

e
−As−

∫ s
0 zε(θrω)dr

ε F(X̄ε(s, Ỹε(0) + Y̆0), Ȳε(s, Ỹε(0) + Y̆0), θsω)ds.
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Let Z̃ε(·) = (X̃ε(·), Ỹε(·)) ∈ C+
− µ

ε , zε

ε

. For t ≥ 0, define two operators C+
− µ

ε , zε

ε

→ C1,+
− µ

ε , zε

ε

and

C+
− µ

ε , zε

ε

→ C2,+
− µ

ε , zε

ε

by means of

J ε
1 (Z̃ε(t)) = e

At+
∫ t

0 zε(θrω)dr

ε X̃ε(0) +
1
ε

∫ t

0
e

A(t−s)+
∫ t

s zε(θrω)dr

ε F(X̃ε, Ỹε, θsω)ds,

J ε
2 (Z̃ε(t)) =

∫ t

+∞

eB(t−s)+
∫ t

s zε(θrω)dr

ε G(X̃ε, Ỹε, θsω)ds,

where X̃ε(0) is from (3.16). Furthermore, define J ε : C+
− µ

ε , zε

ε

→ C+
− µ

ε , zε

ε

as

J ε(Z̃ε(·)) = (J ε
1 (Z̃ε(·)),J ε

2 (Z̃ε(·))).

As the proof of Theorem 3.2, we apply Banach’s Fixed Point Theorem to (3.14)–(3.15). Obvi-
ously, J ε is self-map. It remains to show that J ε is contractive. Note

∥e
A·+

∫ ·
0 zε(θrω)dr

ε (X̃ε
1(0)− X̃ε

2(0))∥C1,+

− µ
ε , zε

ε

≤ e
(−γ1+µ)t

ε Lip Hε∥Ỹε
1(0)− Ỹε

2(0))∥2

≤ e
(−γ1+µ)t

ε Lip Hε∥
∫ 0

+∞

e−Bs+
∫ t

s zε(θrω)dr

ε
(
G̃(X̃ε

1, Ỹε
1 , θsω)− G̃(X̃ε

2, Ỹε
2 , θsω)

)
ds∥2

≤ e
(−γ1+µ)t

ε Lip Hε · K∥Z̃ε
1(·)− Z̃ε

2(·)∥C+

− µ
ε , zε

ε

∫ +∞

0
e(−γ2− µ

ε )sds.

Then,

∥J ε
1 (Z̃ε

1 − Z̃ε
2)∥C1,+

µ
ε , zε

ε

≤ Lip Hε · K∥Z̃ε
1(·)− Z̃ε

2(·)∥C+

− µ
ε , zε

ε

sup
t≥0

{
e
(−γ1+µ)t

ε

∫ +∞

0
e(−γ2− µ

ε )sds

}

+
K

ε
∥Z̃ε

1(·)− Z̃ε
2(·)∥C+

− µ
ε , zε

ε

sup
t≥0

{ ∫ t

0
e
(−γ1+µ)(t−s)

ε ds

}

≤
(Lip Hε · εK

µ + εγ2
+

K

γ1 − µ

)
∥Z̃ε

1(·)− Z̃ε
2(·)∥C+

− µ
ε , zε

ε

,

and

∥J ε
2 (Z̃ε

1 − Z̃ε
2)∥C2,+

µ
ε , z

ε

≤ K∥Z̃ε
1(·)− Z̃ε

2(·)∥C+

− µ
ε , zε

ε

sup
t≥0

{ ∫ +∞

t
e(−γ2− µ

ε )(t−s)ds

}

≤ εK

µ + εγ2
∥Z̃ε

1(·)− Z̃ε
2(·)∥C+

− µ
ε , zε

ε

.

By (3.4), we further obtain

∥J ε(Z̃ε
1(·))−J ε(Z̃ε

2(·))∥C+

− µ
ε , zε

ε

≤ β(K, γ1, γ2, µ)∥Z̃ε
1(·)− Z̃ε

2(·)∥C+

− µ
ε , zε

ε

,

where

β(K, γ1, γ2, µ) =
εK2

(γ1 − µ)(µ + εγ2)[1 − K( 1
γ1−µ + ε

µ+εγ2
)]

+ K(
1

γ1 − µ
+

ε

µ + εγ2
).
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Note β(K, γ1, γ2, µ) < 1 if ε is sufficiently small. Then there exists a unique solution Z̃ε(·) for
(3.14)–(3.15) in C+

− µ
ε , zε

ε

.

Furthermore,

∥Z̃ε(·)∥C+

− µ
ε , zε

ε

≤ ∥Z̃ε(0)∥+ K
( 1

γ1 − µ
+

ε

µ + εγ2

)
∥Z̃ε(·)∥C+

− µ
ε , zε

ε

,

which implies that

∥Z̃ε(·)∥C+

− µ
ε , zε

ε

≤ 1

1 − K

(
1

γ1−µ + ε
µ+εγ2

)∥Z̃ε(0)∥.

Thus, we obtain

∥Z̄ε(t, ω, Z̆0)− Z̄ε(t, ω, Z̄0)∥ ≤ e

∫ t
0 zε(θrω)dr

ε

1 − K

(
1

γ1−µ + ε
µ+εγ2

) e−
µ
ε t∥Z̆0 − Z̄0∥, t ≥ 0.

The proof is completed.

3.2 Slow manifolds

In this subsection, we are going to present the approximation of Mε(ω) in slow time-scale
T = t

ε . Scaling t = εT in (2.4)–(2.5), we have

dX̄ε = [AX̄ε + zε(θεTω)X̄ε + F̄(X̄ε, Ȳε, θεTω)]dT, (3.17)

dȲε = [εBȲε + zε(θεTω)Ŷε + εḠ(X̄ε, Ȳε, θεTω)]dT. (3.18)

Let η(θTω) be the stationary solution of

dη = −ηdT + dW̃(T), (3.19)

where W̃(T) and ε−
1
2 W(εT) are identical in distribution. Replacing zε(θεTω) by η(θTω) in

(3.17)–(3.18), we have

dX̂ε = [AX̂ε + η(θTω)X̂ε + F̂(X̂ε, Ŷε, θTω)]dT, (3.20)

dŶε = [εBŶε + η(θTω)Ŷε + εĜ(X̂ε, Ŷε, θTω)]dT, (3.21)

where

F̂(X̂ε, Ŷε, θTω) = e−η(θTω) f (eη(θTω)X̂ε, eη(θTω)Ŷε),

Ĝ(X̂ε, Ŷε, θTω) = e−η(θTω)g(eη(θTω)X̂ε, eη(θTω)Ŷε).

Since zε(θεTω) is the same as η(θTω) in distribution (please see Lemma 3.2 in [31]), the dis-
tribution of the solution (3.17)–(3.18) coincides with that of (3.20)–(3.21). Using the similar
procedure as the proof of Theorem 3.2, we obtain that (3.20)–(3.21) has a random invariant
manifold M̂ε(ω) represented as

M̂ε(ω) = {(Ĥε(ω, Ŷ0), Ŷ0)|Ŷ0 ∈ H2}
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with

Ĥε(ω, Ŷ0) =
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr F̂(X̂ε, Ŷε, θsω)ds,

where

X̂ε(T) =
∫ T

−∞

eA(T−s)+
∫ T

s η(θrω)dr F̂(X̂ε, Ŷε, θsω)ds,

Ŷε(T) = eεBT+
∫ T

0 η(θrω)drŶ0 + ε

∫ T

0
eεB(T−s)+

∫ T
s η(θrω)drĜ(X̂ε, Ŷε, θsω)ds.

Then, for fixed Ŷ0 ∈ H2, Hε(ω, Ŷ0) = Ĥε(ω, Ŷ0) in distribution. In fact,

Hε(ω, Ŷ0) =
1
ε

∫ 0

−∞

e
−As−

∫ s
0 zε(θrω)dr

ε F(X̄(s, ω, Ŷ0), Ȳ(s, ω, Ŷ0), θsω)ds

=
∫ 0

−∞

e−As−
∫ s

0 zε(θεrω)drF(X̄(εs, ω, Ŷ0), Ȳ(εs, ω, Ŷ0), θεsω)ds

d
=
∫ 0

−∞

e−As−
∫ s

0 ηε(θrω)dr F̂(X̂(s, ω, Ŷ0), Ŷ(s, ω, Ŷ0), θsω)ds

= Ĥε(ω, Ŷ0), (3.22)

where
d
= denotes the equivalence in distribution.

We proceed to want to explore the approximation form of the invariant manifold M̂ε(ω)

as ε → 0. To achieve it, we observe (3.20)–(3.21) when ε = 0.
Consider

dX̂0 = [AX̂0 + η(θTω)X̂0 + F̂(X̂0, Ŷ0, θTω)]dT, (3.23)

dŶ0 = η(θTω)Ŷ0dT. (3.24)

We comment that (3.23)–(3.24) is the critical system of (3.20)–(3.21). It is clear that there exists
a random invariant manifold M̂0(ω) for (3.23)–(3.24) which is

M̂0(ω) = {(Ĥ0(ω, Ŷ0), Ŷ0)|Ŷ0 ∈ H2}, (3.25)

where

Ĥ0(ω, Ŷ0) =
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr F̂(X̂0, e
∫ s

0 η(θrω)drŶ0, θsω)ds. (3.26)

Furthermore, using the idea coming from Theorem 5.1 in [17], we state that Ĥε(ω, Ŷ0) =

Ĥ0(ω, Ŷ0) +O(ε), for ω ∈ Ω.

Theorem 3.4. Under Assumptions 1, 2, 4, for sufficiently small ε > 0, we have

∥Ĥε(ω, Ŷ0)− Ĥ0(ω, Ŷ0)∥1 = O(ε),

for all Ŷ0 ∈ D(B)*, ω ∈ Ω.

Proof. For T ≤ 0 and Ŷ0 ∈ D(B),

∥eεBT+
∫ T

0 η(θrω)drŶ0 − e
∫ T

0 η(θrω)drŶ0∥2 ≤ e
∫ T

0 η(θrω)dr∥
∫ 0

εT
eBsBŶ0ds∥2

≤ e
∫ T

0 η(θrω)dr∥BŶ0∥2
1 − eγ2εT

γ2
.

*D(B) means the domain of operator B
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Then,

∥Ŷε(T)− Ŷ0(T)∥2

≤ ∥eεBT+
∫ T

0 η(θrω)drŶ0 − e
∫ T

0 η(θrω)drŶ0∥2

+ ∥ε

∫ T

0
eεB(T−s)+

∫ T
s η(θrω)drĜ(X̂ε, Ŷε, θsω)ds∥2

≤ e
∫ T

0 η(θrω)dr∥BŶ0∥2
1 − eγ2εT

γ2

+ εK
∫ 0

T
eεγ2(T−s)−µs+

∫ T
0 η(θrω)dr

(
∥X̂ε∥

C1,−
−µ,η

+ ∥Ŷε∥C2,−
−µ,η

)
ds

≤ e
∫ T

0 η(θrω)dr∥BŶ0∥2
1 − eγ2εT

γ2
+

εK∥Ŷ0∥2

1 − ρ

∫ 0

T
eεγ2(T−s)−µs+

∫ T
0 η(θrω)drds,

≤ e
∫ T

0 η(θrω)dr∥BŶ0∥2
1 − eγ2εT

γ2
+ e

∫ T
0 η(θrω)dr εK∥Ŷ0∥2

1 − ρ

e−µT − eεγ2T

µ + εγ2
, (3.27)

where we use the estimation (3.7) in the third inequality. By (3.27), we obtain

∥X̂ε(·)− X̂0(·)∥
C1,−
−µ,η

≤ K∥X̂ε(·)− X̂0(·)∥
C1,−
−µ,η

sup
T≤0

{ ∫ T

−∞

e−(γ1−µ)(T−s)ds
}

+ K sup
T≤0

{ ∫ T

−∞

e−γ1(T−s)+µT+
∫ 0

s η(θrω)dr∥Ŷε − Ŷ0∥2ds
}

≤ K

γ1 − µ
∥X̂ε(·)− X̂0(·)∥

C1,−
−µ,η

+R, (3.28)

where

R = sup
T≤0

{
KeµT(

∥BŶ0∥2

γ1γ2
− ∥BŶ0∥2eγ2εT

(γ1 + γ2ε)γ2
− εK∥Ŷ0∥2eγ2εT

(1 − ρ)(µ + εγ2)(γ1 + γ2ε)
)

+
εK2∥Ŷ0∥2

(1 − ρ)(µ + εγ2)(γ1 − µ)

}

:= sup
T≤0

Σ(T).

Note that there exists Tsup < 0 such that dΣ(T)
dT |T=Tsup = 0, which implies that R = Σ(Tsup) =

O(ε). Then we have

∥X̂ε(·)− X̂0(·)∥
C1,−
−µ,η

≤ (γ1 − µ)R
γ1 − µ − K

.
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Therefore,

∥Ĥε(ω, Ŷ0)− Ĥ0(ω, Ŷ0)∥1

≤ K
∫ 0

−∞

e(γ1−µ)s∥X̂ε − X̂0∥
C1,−
−µ,η

ds + K
∫ 0

−∞

eγ1s−
∫ s

0 η(θrω)dr∥Y̌ε − Y̌0∥2ds

≤ KR
γ1 − µ − K

+
εK2∥Ŷ0∥2

(1 − ρ)(µ + εγ2)(γ1 − µ)
+

K∥BŶ0∥2

γ1γ2

− K∥BŶ0∥2

(γ1 + γ2ε)γ2
− εK2∥Ŷ0∥2

(1 − ρ)(µ + εγ2)(γ1 + γ2ε)

= O(ε).

We now show the better approximation of slow manifolds. According to Assumption 3,
we know F̂(x, y) has the partial derivatives. Let

X̂ε(T) = X̂0(T) + εX̂1(T) + ε2X̂2(T) + · · · ,

Ŷε(T) = Ŷ0(T) + εŶ1(T) + ε2Ŷ2(T) + · · · .

Then, we have

F̂(X̂ε, Ŷε, θTω) = F̂(X̂0, Ŷ0, θTω) + εF̂x(X̂0, Ŷ0, θTω)X̂1

+ εF̂y(X̂0, Ŷ0, θTω)Ŷ1 +O(ε2),

εĜ(X̂ε, Ŷε, θTω) = εĜ(X̂0, Ŷ0, θTω) +O(ε2),

where F̂x and F̂y are the partial derivatives of F̂(x, y) with respect to x and y, respectively.
Equating the same degree of ε, we have

dX̂0 = [AX̂0 + η(θTω)X̂0 + F̂(X̂0, Ŷ0, θTω)]dT, (3.29)

dŶ0 = η(θTω)Ŷ0dT, (3.30)

and

dX̂1 = [AX̂1 + η(θTω)X̂1 + F̂x(X̂0, Ŷ0, θTω)X̂1 + F̂y(X̂0, Ŷ0, θTω)Ŷ1]dT, (3.31)

dŶ1 = [BŶ0 + η(θTω)Ŷ1 + Ĝ(X̂0, Ŷ0, θTω)]dT. (3.32)

We note (3.29)–(3.30) is the same as (3.23)–(3.24). Hence, (3.29)–(3.30) has a random invariant
manifold M̂0(ω) given in (3.25).

Let us consider

X̂1(T) =
∫ T

−∞

eA(T−s)+
∫ T

s η(θrω)dr[F̂x(X̂0, Ŷ0, θsω)X̂1 + F̂y(X̂0, Ŷ0, θsω)Ŷ1]ds, (3.33)

Ŷ1(T) = e
∫ T

0 η(θrω)drŶ1 +
∫ T

0
e
∫ T

s η(θrω)dr[BŶ0 + Ĝ(X̂0, Ŷ0, θsω)]ds, (3.34)

where

X̂0(T) = eAT+
∫ T

0 η(θrω)dr Ĥ0(Y0, ω) +
∫ T

0
eA(T−s)+

∫ T
s η(θrω)dr F̂(X̂0, Ŷ0, θsω)dT,

Ŷ0(T) = e
∫ T

0 η(θrω)drŶ0,
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with Ĥ0(Y0, ω) given in (3.26).
We state there exists a unique solution for (3.33)–(3.34) in C+

− µ
ε , zε

ε

without proof. Then, it is

easy to obtain that (3.31)–(3.32) has the random invariant manifold represented as

M1(ω) = {(Ȟ1(ω, Ŷ1), Ŷ1)|Ŷ1 ∈ H2},

where

Ȟ1(ω, Ŷ1) =
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr[F̂x(X̂0, Ŷ0, θsω)X̂1 + F̂y(X̂0, Ŷ0, θsω)Ŷ1]ds.

Set

Ĥ1(ω, Ŷ0) = Ȟ1(ω, 0)

=
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr

{
F̂x(X̂0, Ŷ0, θsω)X̂1 + F̂y(X̂0, Ŷ0, θsω)

×
[ ∫ s

0
e
∫ s

τ η(θrω)dr
(

BŶ0 + Ĝ(X̂0, Ŷ0, θτω)
)

dτ
]}

ds. (3.35)

Then, we can formally show the first order approximation of Hε(Ŷ0, ω) as follow:

Hε(ω, Ŷ0)

d
= Ĥε(ω, Ŷ0)

=
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr F̂(X̂(s, ω, Y0), Ŷ(s, ω, Y0), θsω)ds

=
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr F̂(X̂0, Ŷ0, θsω)ds

+
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr[F̂x(X̂0, Ŷ0, θsω)X̂1 + F̂y(X̂0, Ŷ0, θsω)Ŷ1]ds +O(ε2)

= Ĥ0(ω, Ŷ0) + εĤ1(ω, Ŷ0) +O(ε2). (3.36)

Note that Hε(ω, Ŷ0) coincides with Ĥε(ω, Ŷ0) in distribution. We have, in fact, proved the
following theorem.

Theorem 3.5 (First order approximation of slow manifold). Under Assumptions 1-4, for suffi-

ciently small ε > 0, we obtain the approximation of the random invariant manifold for (2.4)–(2.5)

as

Mε(ω) = {(Hε(ω, Ŷ0), Ŷ0)|Ŷ0 ∈ D(B)}
d
= {(Ĥε(ω, Ŷ0), Ŷ0)|Ŷ0 ∈ D(B)}
= {(Ĥ0(ω, Ŷ0) + εĤ1(ω, Ŷ0) +O(ε2), Ŷ0)|Ŷ0 ∈ D(B)},

where the second equality holds in distribution, that means for fixed Ŷ0 ∈ D(B), Hε(ω, Ŷ0) and

Ĥε(ω, Ŷ0) are identical in distribution, while the third equality holds for all ω ∈ Ω, Ĥ0(ω, Ŷ0) is the

critical manifold as (3.26), and Ĥ1(ω, Ŷ0) is the first order manifold as (3.35).
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We now go back to investigate the approximation of the random invariant manifold for
SPDEs (1.1)–(1.2). Recall the transforms T and T−1 defined in (2.6) and (2.7). Let M̃ε(ω) :=
T−1(ω, Mε(ω)), Z̃ε(t, ω, ·) be the solution of SPDEs (1.1)–(1.2) and Z̄ε(t, ω, ·) be the solution
of RPDEs (2.4)–(2.5). By Lemma 2.8, we have

Z̃ε(t, ω, M̃ε(ω)) = T−1(θtω, Z̄ε(t, ω, T(ω, M̃ε(ω))))

= T−1(θtω, Z̄ε(t, ω, Mε(ω)))

⊂ T−1(θtω, Mε(θtω))

= M̃ε(θtω), (3.37)

which implies that M̃ε(ω) is an invariant set. Moreover, we notice that

M̃ε(ω) = T−1(ω, Mε(ω))

= {(ezε(ω)Hε(ω, Ŷ0), ezε(ω)Ŷ0)|Ŷ0 ∈ H2}
= {(ezε(ω)Hε(ω, e−zε(ω)Ŷ0), Ŷ0)|Ŷ0 ∈ H2}
= {(H̃ε(ω, Ŷ0), Ŷ0)|Ŷ0 ∈ H2}, (3.38)

where H̃ε(ω, Ŷ0) = ezε(ω)Hε(ω, e−zε(ω)Ŷ0). Then, M̃ε(ω) can be represented by a graph of a
Lipschitz function H̃ε(ω, ·). Therefore, M̃ε(ω) is the random invariant manifold for (1.1)–(1.2).
With the help of Theorem 3.5, we show the approximation of the random invariant manifold
for SPDEs (1.1)–(1.2) as follows.

Theorem 3.6. Under Assumptions 1-4, for sufficiently small ε > 0, we obtain the approximation of

the random invariant manifold for (1.1)–(1.2) as

M̃ε(ω) = {(H̃ε(ω, Ŷ0), Ŷ0)|Ŷ0 ∈ D(B)}
= {(ezε(ω)Hε(ω, e−zε(ω)Ŷ0), Ŷ0)|Ŷ0 ∈ D(B)}
d
= {(eη(ω)Ĥε(ω, e−η(ω)Ŷ0), Ŷ0)|Ŷ0 ∈ D(B)}
= {(eη(ω)Ĥ0(ω, e−η(ω)Ŷ0) + εeη(ω)Ĥ1(ω, e−η(ω)Ŷ0) +O(ε2), Ŷ0)|Ŷ0 ∈ D(B)},

where the third equality holds in distribution while the fourth equality holds for all ω ∈ Ω, η(θTω) is

the stationary solution of (3.19), eη(ω)Ĥ0(ω, e−η(ω)Ŷ0) is the critical manifold, and eη(ω)Ĥ1(ω, e−η(ω)Ŷ0)

is the first order manifold.

4 Random invariant foliations and slow foliations

In the section, we are going to show there also exist random invariant foliations for RPDEs
(2.4)–(2.5), and any two orbits start from the same fiber can approach to each other as expo-
nential rate in backward time. Then, we prove that random invariant foliations converge to
slow foliations as the parameter ε tends to 0.

4.1 Random invariant foliations

For (X̄0, Ȳ0), (X̆0, Y̆0) ∈ H, let Ỹε(0) = Y̆0 − Ȳ0. Set Z̃ε(t, ω) = Z̄ε(t, ω, (X̆0, Y̆0)) −
Z̄ε(t, ω, (X̄0, Ȳ0)) =(X̃ε(t, ω, (X̄0, Ȳ0); Ỹε(0)), Ỹε(t, ω, (X̄0, Ȳ0); Ỹε(0))). Introduce a set:

W ε
γ2
2 , zε

ε

(
(X̄0, Ȳ0), ω

)
:=
{
(X̆0, Y̆0) ∈ H|Z̄ε

(
t, ω, (X̆0, Y̆0)

)
− Z̄ε

(
t, ω, (X̄0, Ȳ0)

)
∈ C−

γ2
2 , zε

ε

}
. (4.1)
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In the followings, we will prove W ε
γ2
2 , zε

ε

(
(X̄0, Ȳ0), ω

)
is a fiber of the random invariant foliations

for (2.4)–(2.5).

Lemma 4.1. Under Assumptions 1, 2, 5, for sufficiently small ε > 0, we have the following results:

(1) (X̆0, Y̆0) ∈ W ε
γ2
2 , zε

ε

(
(X̄0, Ȳ0), ω

)
if and only if Z̃ε(·) ∈ C−

γ2
2 , zε

ε

satisfies

X̃ε(t) =
1
ε

∫ t

−∞

e
A(t−s)+

∫ t
s zε(θrω)dr

ε F̃(X̃ε, Ỹε, θsω)ds, (4.2)

Ỹε(t) = eBt+
∫ t

0 zε(θrω)dr

ε Ỹε(0) +
∫ t

0
eB(t−s)+

∫ t
s zε(θrω)dr

ε G̃(X̃ε, Ỹε, θsω)ds, (4.3)

where nonlinear functions F̃ and G̃ are defined in (3.12)–(3.13).

(2) There exists a unique solution Z̃ε(·) ∈ C−
γ2
2 , zε

ε

for (4.2)–(4.3).

(3) Let Ỹε
1(0) and Ỹε

2(0) ∈ H2. Then

∥Z̃ε(·, ω, (X̄0, Ȳ0); Ỹε
1(0))− Z̃ε(·, ω, (X̄0, Ȳ0); Ỹε

2(0))∥C−
γ2
2 , zε

ε

≤ 1
1 − ρ̃(K, γ1, γ2, ε)

∥Ỹε
1(0)− Ỹε

2(0)∥2,

where

ρ̃(K, γ1, γ2, ε) =
2K

γ2
+

2K

2γ1 + εγ2
. (4.4)

Proof. The proof of (i) follows from the variation of constants formula. With the help of
Banach’s Fixed Point Theorem, we can prove (2). Using the same techniques as in the proof
of Theorem 3.3, we can obtain (3).

For ζ ∈ H2, we define

lε(ζ, (X̄0, Ȳ0), ω) : = X̄0 +
1
ε

∫ 0

−∞

e
−As−

∫ s
0 zε(θε

r ω)dr

ε F̃
(

X̃ε(s, ω, (X̄0, Ȳ0); ζ − Ȳ0),

Ỹε(s, ω, (X̄0, Ȳ0); ζ − Ȳ0), θsω
)

ds. (4.5)

By (4.5), we can show the existence of random invariant foliations for (2.4)–(2.5) as follows.

Theorem 4.2 (Existence of random invariant foliations). Under Assumptions 1, 2, 5, for suffi-

ciently small ε > 0, we have the following results:

(1) (2.4)–(2.5) has a random invariant foliation, whose each fiber is represented as

W ε
γ2
2 , zε

ε

(
(X̄0, Ȳ0), ω

)
=
{(

lε(ζ, (X̄0, Ȳ0), ω), ζ
)
|ζ ∈ H2

}
, (4.6)

where lε(ζ, (X̄0, Ȳ0), ω) is defined in (4.5).

(2) lε is a Lipschitz mapping with respect to ζ, whose Lipschitz constant Lip lε(·, ω) satisfies that

Lip lε(·, ω) ≤ 2K

(εγ2 + 2γ1)[1 − ρ̃(K, γ1, γ2, ε)]
,

with ρ̃(K, γ1, γ2, ε) given in (4.4).
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Proof. (1) According to (4.2)–(4.3), we obtain

X̆0 − X̄0 =
1
ε

∫ 0

−∞

e
−As−

∫ s
0 zε(θrω)dr

ε F̃(X̃, Ỹ, θsω)ds

=
1
ε

∫ 0

−∞

e
−As−

∫ s
0 zε(θrω)dr

ε F̃(X̃(s, ω, (X̄0, Ȳ0); (Y̆0 − Ȳ0)),

Ỹ(s, ω, (X̄0, Ȳ0); (Y̆0 − Ȳ0)), θsω)ds.

Then, replacing Y̆0 with ζ, we have (4.6) by (4.1), (4.5) and Lemma 4.1.

We proceed to verify that each fiber is invariant. Let (X̆0, Y̆0) ∈ W ε
γ2
2 , zε

ε

(
(X̄0, Ȳ0), ω

)
.

Since Z̄ε(·, ω, (X̆0, Y̆0)) − Z̄ε(·, ω, (X̄0, Ȳ0)) ∈ C−
γ2
2 , zε

ε

, we have Z̄ε(· + τ, ω, (X̆0, Y̆0)) − Z̄ε(· +
τ, ω, (X̄0, Ȳ0)) ∈ C−

γ2
2 , zε

ε

. Then, the cocycle property leads to

Z̄ε(·+ τ, ω, (X̆0, Y̆0)) = Z̄ε(·, θτω, Z̄ε(τ, ω, (X̆0, Y̆0))),

Z̄ε(·+ τ, ω, (X̄0, Ȳ0)) = Z̄ε(·, θτω, Z̄ε(τ, ω, (X̄0, Ȳ0))),

which can yield that Z̄ε(τ, ω, (X̆0, Y̆0)) ∈ W ε
γ2
2 , zε

ε

(Z̄ε(τ, ω, (X̄0, Ȳ0)), θτω).

(2) Let ζ and ζ̄ ∈ H2. Then

∥lε(ζ, (X̄0, Ȳ0))− lε(ζ̄, (X̄0, Ȳ0))∥1

≤ ∥X̃ε(·, ω, (X̄0, Ȳ0); ζ − X̄0)− X̃ε(·, ω, (X̄0, Ȳ0); ζ̄ − X̄0)∥C1,−
γ2
2 , zε

ε

≤ 2K

εγ2 + 2γ1
∥Z̃ε(·, ω, (X̄0, Ȳ0); ζ − X̄0)− Z̃ε(·, ω, (X̄0, Ȳ0); ζ̄ − X̄0)∥C−

γ2
2 , zε

ε

≤ 2K

(εγ2 + 2γ1)[1 − ρ̃(K, γ1, γ2, ε)]
∥ζ − ζ̄∥2,

where the second inequality is from direct calculation and the last one is from Lemma 4.1.

Theorem 4.3 (Exponential tracking property in backward time). Under Assumptions 1, 2, 5, for

sufficiently small ε > 0, any two points (X̆1
0 , Y̆1

0 ) and (X̆2
0 , Y̆2

0 ) in a same fiber W ε
γ2
2 , zε

ε

(
(X̄0, Ȳ0), ω

)
,

we have

∥Z̄ε(t, ω, (X̆1
0 , Y̆1

0 ))− Z̄ε(t, ω, (X̆2
0 , Y̆2

0 ))∥ ≤ e

∫ t
0 zε(θrω)dr

ε +
γ2t

2

1 − ρ̃(K, γ1, γ2, ε)
∥Y̆1

0 − Y̆2
0 ∥2 (4.7)

with t ≤ 0.

Proof. Let

Z̃ε
1(t) = Z̄ε(t, ω, (X̆1

0 , Y̆1
0 ))− Z̄ε(t, ω, (X̄0, Ȳ0)),

Z̃ε
2(t) = Z̄ε(t, ω, (X̆2

0 , Y̆2
0 ))− Z̄ε(t, ω, (X̄0, Ȳ0)).
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Applying Lemma 4.1, we know that

∥Z̄ε(·, ω, (X̆1
0 , Y̆1

0 ))− Z̄ε(·, ω, (X̆2
0 , Y̆2

0 ))∥C−
γ2
2 , zε

ε

= ∥Z̃ε
1(·)− Z̃ε

2(·)∥C−
γ2
2 , zε

ε

≤ 1
ε
∥
∫ ·

−∞

e
A(·−s)+

∫ ·
s zε(θrω)dr

ε [F̃(X̃ε
1, Ỹε

1 , θsω)− F̃(X̃ε
2, Ỹε

2 , θsω)]ds∥
C1,−

γ2
2 , zε

ε

+ ∥eB·+
∫ ·

0 zε(θrω)dr

ε (Y̆1
0 − Y̆2

0 )∥C2,−
γ2
2 , zε

ε

+ ∥
∫ ·

0
eB(·−s)+

∫ ·
s zε(θrω)dr

ε [G̃(X̃ε
1, Ỹε

1 , θsω)− G̃(X̃ε
2, Ỹε

2 , θsω)]ds∥C2,−
γ2
2 , zε

ε

≤ ∥Y̆1
0 − Y̆2

0 ∥2 + ρ̃(K, γ1, γ2, ε)∥Z̃ε
1(·)− Z̃ε

2(·)∥C−
γ2
2 , zε

ε

.

For sufficiently small ε > 0, we have

∥Z̃ε
1(·)− Z̃ε

2(·)∥C−
γ2
2 , zε

ε

≤ 1
1 − ρ̃(K, γ1, γ2, ε)

∥Y̆1
0 − Y̆2

0 ∥2,

which implies (4.7).

4.2 Slow foliations

The motivation of this subsection is to investigate the approximation of the random invariant
foliations for RPDEs (2.4)–(2.5) in slow time-scale T = t

ε . As the arguments in Subsection 3.2,
we will study the approximation of the random invariant foliations for RPDEs (2.4)–(2.5) via
(3.20)–(3.21).

Let Ẑε
1(T, ω, (X̆0, Y̆0)) and Ẑε

2(T, ω, (X̂0, Ŷ0)) be the solutions of (3.20)–(3.21) with initial
data (X̆0, Y̆0) and (X̂0, Ŷ0), respectively. Set Z̃ε(T, ω) = Ẑε

1(T, ω, (X̆0, Y̆0))−Ẑε
2(T, ω, (X̂0, Ŷ0)),

Ỹε(0) = Y̆0 − Ŷ0. According to the variation of constants formula, we state Z̃ε(·, ω) =

(X̃ε(·, ω, (X̂0, Ŷ0); Ỹε(0)), Ỹε(·, ω, (X̂0, Ŷ0); Ỹε(0))) ∈ C−
γ2
2 ,η

if and only if Z̃ε(T, ω) satisfies

X̃ε(T) =
∫ T

−∞

eA(T−s)+
∫ T

s η(θrω)dr F̊(X̃ε, Ỹε, θsω)ds, (4.8)

Ỹε(T) = eεBT+
∫ T

0 η(θrω)drỸε(0) + ε

∫ T

0
eεB(T−s)+

∫ T
s η(θrω)drG̊(X̃ε, Ỹε, θsω)ds, (4.9)

where

F̊(X̃ε, Ỹε, θsω) = F̂(X̃ε + X̂ε
2, Ỹε + Ŷε

2 , θsω)− F̂(X̂ε
2, Ŷε

2 , θsω),

G̊(X̃ε, Ỹε, θsω) = Ĝ(X̃ε + X̂ε
2, Ỹε + Ŷε

2 , θsω)− Ĝ(X̂ε
2, Ŷε

2 , θsω).

By Banach’s Fixed Point Theorem, we can prove there exists a unique solution Z̃ε(·) ∈ C−
γ2
2 ,η

of (4.8)–(4.9). Then, by the similar arguments as in Theorem 4.2, we can prove that there exists
a random invariant foliation for (3.20)–(3.21), each fiber of which is represented as

W ε
γ2
2 ,η

(
(X̂0, Ŷ0), ω

)
=
{
(X̆0, Y̆0) ∈ H|Ẑε

1(T, ω, (X̆0, Y̆0))− Ẑε
2(T, ω, (X̂0, Ŷ0)) ∈ C−

γ2
2 ,η

}

=
{(

l̂ε(ζ, (X̂0, Ŷ0), ω), ζ
)
|ζ ∈ H2

}
, (4.10)
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where

l̂ε(ζ, (X̂0, Ŷ0), ω) : = X̂0 +
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr F̊
(

X̃ε(s, ω, (X̂0, Ŷ0); ζ − Ŷ0),

Ỹε(s, ω, (X̂0, Ŷ0); ζ − Ŷ0), θsω
)

ds.

Using the similar discussion as (3.22), we derive

l̂ε(ζ, (X̂0, Ŷ0), ω)
d
= lε(ζ, (X̂0, Ŷ0), ω). (4.11)

Based on (4.11), we turn to the study of the approximation of l̂ε(ζ, (X̂0, Ŷ0), ω). Taking into
account the critical system (3.23)–(3.24). Let Ẑ0

1(T, ω, (X̆0, Y̆0)) and Ẑ0
2(T, ω, (X̂0, Ŷ0)) be the

solutions of (3.23)–(3.24) with initial data (X̆0, Y̆0) and (X̂0, Ŷ0), respectively. Set Z̃0(T, ω) =

Ẑ0
1(T, ω, (X̆0, Y̆0))−Ẑ0

2(T, ω, (X̂0, Ŷ0)), Ỹ0(0) = Y̆0 − Ŷ0.
Clearly, Z̃0(·, ω) = (X̃0(·, ω, (X̂0, Ŷ0); Ỹ0(0)), Ỹ0(·, ω, (X̂0, Ŷ0); Ỹ0(0))) ∈ C−

γ2
2 ,η

if and only if

Z̃0(T, ω) satisfies

X̃0(T) =
∫ T

−∞

eA(T−s)+
∫ T

s η(θrω)dr F̊(X̃0, Ỹ0, θsω)ds, (4.12)

Ỹ0(T) = e
∫ T

0 η(θrω)drỸ0(0), (4.13)

where

F̊(X̃0, Ỹ0, θTω) = F̂(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θTω)− F̂(X̂0
2 , Ŷ0

2 , θTω).

Furthermore, we claim that (3.23)–(3.24) has a random invariant foliation, whose each fiber is
represented as

W0
γ2
2 ,η

(
(X̂0, Ŷ0), ω

)
=
{(

l̂0(ζ, (X̂0, Ŷ0), ω), ζ
)
|ζ ∈ H2

}
, (4.14)

where

l̂0(ζ, (X̂0, Ŷ0), ω) := X̂0 +
∫ 0

−∞

e−As−
∫ s

0 η(θrω)dr F̊
(

X̃0(s, ω, (X̂0, Ŷ0); ζ − Ŷ0),

Ỹ0(s, ω, (X̂0, Ŷ0); ζ − Ŷ0), θsω
)

ds. (4.15)

Inspired by the technique from Theorem 5.2 in [12], we are going to prove that the random
invariant foliation for (3.20)–(3.21) converges to that for (3.23)–(3.24) as ε → 0.

Theorem 4.4. Under Assumptions 1, 2, 5, for sufficiently small ε > 0, we have

l̂ε(ζ, (X̂0, Ŷ0), ω) = l̂0(ζ, (X̂0, Ŷ0), ω) +O(ε),

for all X̂0 ∈ H1, Ŷ0, ζ ∈ D(B), ω ∈ Ω.

Proof. Due to the representations of l̂ε and l̂0, we obtain

∥l̂ε(ζ, (X̂0, Ŷ0), ω)− l̂0(ζ, (X̂0, Ŷ0), ω)∥1

= ∥X̃ε
(
T, ω, (X̂0, Ŷ0); (ζ − Ŷ0)

)
− X̃0(T, ω, (X̂0, Ŷ0); (ζ − Ŷ0)

)
∥1|T=0.
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Hence, if we can estimate the error between X̃ε(T) and X̃0(T), the proof will be done. For
T ≤ 0, we have

∥X̃ε
(
T, ω, (X̂0, Ŷ0); (ζ − Ŷ0)

)
− X̃0(T, ω, (X̂0, Ŷ0); (ζ − Ŷ0)

)
∥1

=
∫ T

−∞

eA(T−s)+
∫ T

s η(θrω)dr[F̊(X̃ε(s), Ỹε(s), θsω)− F̊(X̃0(s), Ỹ0(s), θsω)]ds

=
∫ T

−∞

eA(T−s)+
∫ T

s η(θrω)dr[F̂(X̃ε(s) + X̂ε
2(s), Ỹε(s) + Ŷε

2(s), θsω)

− F̂(X̃0(s) + X̂0
2(s), Ỹ0(s) + Ŷ0

2 (s), θsω) + F̂(X̂0
2(s), Ŷ0

2 (s), θsω)

− F̂(X̂ε
2(s), Ŷε

2(s), θsω)]ds

≤ K
∫ T

−∞

eA(T−s)+
∫ T

s η(θrω)dr[∥X̃ε(s)− X̃0(s)∥1 + ∥Ỹε(s)− Ỹ0(s)∥2

+ 2∥X̂ε
2(s)− X̂0

2(s)∥1 + 2∥Ŷε
2(s)− Ŷ0

2 (s)∥2]ds.

In order to show the bounds of ∥X̃ε(T)− X̃0(T)∥1, we need the estimates of ∥Ỹε(T)− Ỹ0(T)∥2,

∥X̂ε
2(T) − X̂0

2(T)∥1 and ∥Ŷε
2(T) − Ŷ0

2 (T)∥2, respectively. Choose µ̄ satisfying µ̄ ∈ (0, 2γ2
1

γ2+2γ1
],

which implies K < γ1 − µ̄. Similar to the deduction in (3.27), we derive

∥Ŷε
2(T)− Ŷ0

2 (T)∥2 ≤ e
∫ T

0 η(θrω)dr∥BŶ0∥2
1 − eγ2εT

γ2
+ e

∫ T
0 η(θrω)dr εK∥Ŷ0∥2

1 − ρ̂

e−µ̄T − eεγ2T

µ̄ + εγ2
,

and

∥Ỹε(T)− Ỹ0(T)∥2 ≤ e
∫ T

0 η(θrω)dr∥B(ζ − Ŷ0)∥2
1 − eγ2εT

γ2
+ e

∫ T
0 η(θrω)dr εK∥ζ − Ŷ0∥2

1 − ρ̂

e−µ̄T − eεγ2T

µ̄ + εγ2
,

where

ρ̂(K, µ̄, γ1, γ2, ε) =
K

γ1 − µ̄
+

εK

µ̄ + εγ2
.

Analogous argument as (3.28) yields

∥X̂ε
2(·)− X̂0

2(·)∥C1,−
−µ̄,η

≤ (γ1 − µ̄)R̂
γ1 − µ̄ − K

,

where

R̂ = sup
T≤0

{
Keµ̄T(

∥BŶ0∥2

γ1γ2
− ∥BŶ0∥2eγ2εT

(γ1 + γ2ε)γ2
− εK∥Ŷ0∥2eγ2εT

(1 − ρ̂)(µ̄ + εγ2)(γ1 + γ2ε)
)

+
εK2∥Ŷ0∥2

(1 − ρ̂)(µ̄ + εγ2)(γ1 − µ̄)

}

= O(ε).

Furthermore, combining the above estimates, we obtain that

∥X̃ε(·)− X̃0(·)∥
C1,−
−µ̄,η

≤ K
∫ T

−∞

e(−γ1+µ̄)(T−s)(2∥X̂ε
2(·)− X̂0

2(·)∥C1,−
−µ̄,η

+ ∥X̃ε(·)− X̃0(·)∥
C1,−
−µ̄,η

)ds

+ K
∫ T

−∞

e−γ1(T−s)+µ̄T+
∫ 0

s η(θrω)dr(2∥Ŷε
2 − Ŷ0

2 ∥2 + ∥Ỹε − Ỹ0∥2)ds

≤ K

γ1 − µ̄
∥X̃ε(·)− X̃0(·)∥

C1,−
−µ̄,η

+
2KR̂

γ1 − µ̄ − K
+ 2R̂+ R̃,
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where

R̃ = sup
T≤0

{
Keµ̄T(

∥B(ζ − Ŷ0)∥2

γ1γ2
− ∥B(ζ − Ŷ0)∥2eγ2εT

(γ1 + γ2ε)γ2

− εK∥ζ − Ŷ0∥2eγ2εT

(1 − ρ̂)(µ̄ + εγ2)(γ1 + γ2ε)
) +

εK2∥ζ − Ŷ0∥2

(1 − ρ̂)(µ̄ + εγ2)(γ1 − µ̄)

}

= O(ε).

Therefore, we deduce

∥X̃ε(·)− X̃0(·)∥
C1,−
−µ̄,η

≤
2KR̂

γ1−µ̄−K + 2R̂+ R̃
1 − K

γ1−µ̄

= O(ε),

which implies

∥X̃ε(T)− X̃0(T)∥1 ≤
2KR̂

γ1−µ̄−K + 2R̂+ R̃
1 − K

γ1−µ

e−µ̄T+
∫ T

0 η(θrω)dr.

Our proof is completed.

In the following, we study the first order approximation of the random invariant foliation
for (3.20)–(3.21). Let Ẑ1(T, ω, (X̆1

0 , Y̆1
0 )) and Ẑ1(T, ω, (X̂1

0 , Ŷ1
0 )) be the solutions of (3.31)–(3.32)

with initial data (X̆1
0 , Y̆1

0 ) and (X̂1
0 , Ŷ1

0 ), respectively. Set Z̃1(T, ω) = Ẑ1
1(T, ω, (X̆1

0 , Y̆1
0 ))−Ẑ1

2(T, ω,
(X̂1

0 , Ŷ1
0 )).

According to Assumption 3, we know F̂(x, y) has the partial derivatives. Expanding
Z̃ε(T, ω) = (X̃ε(T, ω), Ỹε(T, ω)) with respect to ε, we have Z̃ε(T, ω) = Z̃0(T, ω) + εZ̃1(T, ω) +

O(ε2), where Z̃0(T, ω) satisfies

dX̃0 = [AX̃0 + η(θTω)X̃0 + F̂(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θTω)− F̂(X̂0
2 , Ŷ0

2 , θTω)]dT,

dỸ0 = η(θTω)Ỹ0dT,

and Z̃1(T, ω) satisfies

dX̃1 = [AX̃1 + η(θTω)X̃1 + F̂x(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θTω)(X̃1 + X̂1
2)

+ F̂y(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θTω)(Ỹ1 + Ŷ1
2 )− F̂x(X̂0

2 , Ŷ0
2 , θTω)X̂1

2

− F̂y(X̂0
2 , Ŷ0

2 , θTω)Ŷ1
2 ]dT,

dỸ1 = [BỸ0 + η(θTω)Ỹ1 + Ĝ(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θTω)− Ĝ(X̂0
2 , Ŷ0

2 , θTω)]dT.

The critical foliation for (3.23)–(3.24) has been presented in (4.14). We proceed to investi-
gate the first order of the random invariant foliations for (3.23)–(3.24). Consider

X̃1(T) =
∫ T

−∞

eA(T−s)+
∫ T

s η(θrω)dr[F̂x(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θsω)(X̃1 + X̂1
2)

+ F̂y(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θsω)(Ỹ1 + Ŷ1
2 )− F̂x(X̂0

2 , Ŷ0
2 , θsω)X̂1

2

− F̂y(X̂0
2 , Ŷ0

2 , θsω)Ŷ1
2 ]ds, (4.16)

Ỹ1(T) =
∫ T

0
e
∫ T

s η(θrω)dr[BỸ0 + Ĝ(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θsω)

− Ĝ(X̂0
2 , Ŷ0

2 , θsω)]ds, (4.17)
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where X̃0(T) and Ỹ0(T) are from (4.12)–(4.13). By Banach’s Fixed Point Theorem, we know
that there exists a unique solution (X̃1(·), Ỹ1(·)) of (4.16)–(4.17) in C−

λ2
2 ,η

. Similar to the argu-

ments as in Theorem 4.2, we can obtain the first order approximation of the random invariant
foliation for (3.20)–(3.21). Fixing X̂0 ∈ H1, Ŷ0 ∈ D(B), define

l̂1(Y̆0, (X̂0, Ŷ0), ω) :=
∫ 0

−∞

eA(T−s)+
∫ T

s η(θrω)dr[F̂x(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θsω)(X̃1 + X̂1
2)

+ F̂y(X̃0 + X̂0
2 , Ỹ0 + Ŷ0

2 , θsω)(Ỹ1 + Ŷ1
2 )− F̂x(X̂0

2 , Ŷ0
2 , θsω)X̂1

2

− F̂y(X̂0
2 , Ŷ0

2 , θsω)Ŷ1
2 ]ds. (4.18)

Similar to (3.36), we formally obtain

l̂ε(ζ, (X̂0, Ŷ0), ω) = l̂0(ζ, (X̂0, Ŷ0), ω) + l̂1(ζ, (X̂0, Ŷ0), ω) +O(ε2).

Ultimately, we have the following theorem.

Theorem 4.5 (First order approximation of slow foliation). Under Assumptions 1, 2, 3, 5, for

sufficiently small ε > 0, we obtain the approximation fo the random invariant foliation for as

W ε
γ2
2 , zε

ε

(
(X̂0, Ŷ0), ω

)
=
{(

lε(ζ, (X̂0, Ŷ0), ω), ζ
)
|ζ ∈ D(B)

}

d
=
{(

l̂ε(ζ, (X̂0, Ŷ0), ω), ζ
)
|ζ ∈ D(B)

}

=
{(

l̂0(ζ, (X̂0, Ŷ0), ω) + εl̂1(ζ, (X̂0, Ŷ0), ω) +O(ε2), ζ
)
|ζ ∈ D(B)

}
,

where X̂0 ∈ H1, Ŷ0 ∈ D(B), the second equality holds in distribution while the third equality holds for

all ω ∈ Ω, l̂0(ζ, (X̂0, Ŷ0), ω) is the critical foliation as (4.15), and l̂1(ζ, (X̂0, Ŷ0), ω) is the first order

foliation as (4.18).

We are going to study the the approximation fo the random invariant foliation for SPDEs
(1.1)–(1.2) in the followings. Recall the transforms T and T−1 defined in (2.6) and (2.7). Let
(X̂0, Ŷ0) ∈ H. By Lemma 2.8 and the similar arguments as in (3.19)–(3.37), we can obtain a
random invariant foliation for SPDEs (1.1)–(1.2), each fiber of which is represented as

W̃ ε
γ2
2 , zε

ε

(
(X̂0, Ŷ0), ω

)
= T−1W ε

γ2
2 , zε

ε

(
(TX̂0, TŶ0), ω

)

=
{(

ezε(ω)lε(ζ, (e−zε(ω)X̂0, e−zε(ω)Ŷ0), ω), ezε(ω)ζ
)
|ζ ∈ H2

}

=
{(

l̃ε(ζ, (X̂0, Ŷ0), ω), ζ
)
|ζ ∈ H2

}
,

where lε is defined in (4.5), and l̃ε(ζ, (X̂0, Ŷ0), ω) = ezε(ω)lε(e−zε(ω)ζ, (e−zε(ω)X̂0, e−zε(ω)Ŷ0), ω).
By Theorem 4.5, we can obtain the first order approximation of the random invariant foliation
for SPDEs (1.1)–(1.2) as follows.

Theorem 4.6. Under Assumptions 1, 2, 3, 5, for sufficiently small ε > 0, we obtain the approximation

of the random invariant foliation for (1.1)–(1.2) as

W̃ ε
γ2
2 , zε

ε

(
(X̂0, Ŷ0), ω

)

=
{(

l̃ε(ζ, (X̂0, Ŷ0), ω), ζ
)
|ζ ∈ D(B)

}

=
{(

ezε(ω)lε(ζ, (e−zε(ω)X̂0, e−zε(ω)Ŷ0), ω), ezε(ω)ζ
)
|ζ ∈ D(B)

}

d
=
{(

eη(ω) l̂ε(ζ, (e−η(ω)X̂0, e−η(ω)Ŷ0), ω), eη(ω)ζ
)
|ζ ∈ D(B)

}

=
{(

eη(ω) l̂0(ζ, (e−η(ω)X̂0, e−η(ω)Ŷ0), ω) + εeη(ω) l̂1(ζ, (e−η(ω)X̂0, e−η(ω)Ŷ0), ω)

+O(ε2), eη(ω)ζ
)
|ζ ∈ D(B)

}
,
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where X̂0 ∈ H1, Ŷ0 ∈ D(B), the third equality holds in distribution while the fourth equality holds for

all ω ∈ Ω, eη(ω) l̂0(ζ, (e−η(ω)X̂0, e−η(ω)Ŷ0), ω) is the critical foliation, and eη(ω) l̂1(ζ, (e−η(ω)X̂0,
e−η(ω)Ŷ0), ω) is the first order foliation.
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