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Abstract: The paper deals with the vibration analysis of a one-cylinder engine 

crankshaft. For the analysis, a sequential torsional multi-mass vibration 
model was created of the crank-mechanism. The natural frequencies and 
natural modes of the crankshaft were determined from this model. The 
results of the torsional model were verified with a 3D finite element model, 
which consists of not only the torsional, but every other natural frequency 
and mode of the crankshaft. From the torsional natural frequencies and the 
harmonic expansion of the excitation forces, the critical speeds were 
determined, where resonance phenomena can occur. The relative angular 
deflection of the two ends of the crankshaft was also determined which 
characterizes the torsional stiffness of the crankshaft. From the angular 
velocity function of the clutch, the measure of speed irregularity of the 
clutch was defined. 
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1. Introduction 
As result of periodic loading in time, every mechanism that contains elastic elements 

– e.g. the crankshaft of an internal combustion engine – vibrations may occur. The 
investigated crank-mechanism can be regarded as a vibration system from a mechanical 
point of view. In this vibration system under specific conditions resonance phenomena 
may occur. In the analysis, the goals were: 
 to perform a free vibration analysis of the crank-mechanism in order to obtain the 

natural frequencies and natural modes of the crankshaft, 
 to investigate the effect of the excitation loads, 
 to determine critical speeds, where resonance phenomenon can occur, 
 to define the relative angular deflection of the two ends of the crankshaft, which 

is characteristic for the stiffness of the crankshaft, 
 to define the measure of speed irregularity of the clutch, which has a great impact 

on the fatigue life of the gearbox. 
The investigation and clarification of the abovementioned points is crucial because of 

the constructional modifications [1]. Since the stiffness of the crankshaft has been 
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reduced [1], the structure has become more sensitive to excitation loads, to vibration 
and to resonance phenomena. 
 
2. Creating the torsional multi-mass model of the crank mechanism 

For the torsional analysis of the crankshaft (Fig. 1.) a simple multi-mass model was 
created from the original crank-mechanism which only describes the torsional vibrations 
of the crankshaft. 

1: flywheel 
2: halfshaft (flywheel side) 
3: main journal (flywheel side) 
4: crankpin 
5: web (flywheel side) 
6: web (clutch side) 
7: main journal (clutch side) 
8: halfshaft (clutch side) 
9: clutch 
10: connecting rod 
11: piston 

Figure 1. Parts of the analysed crank mechanism 

A seven-degree of freedom sequential multi-mass torsional model was created (Fig. 
2.) for modelling the crank mechanism (Fig. 1.) according to [2], [3] and [4]. 

 
Figure 2. The sequential torsional multi-mass model of the crank mechanism 

In this model, the rigid mass elements are described by moments of inertia and elastic 
elements are characterized by torsional stiffnesses. The unknown parameters, which 
should be calculated, are the angular deflections of the rigid mass elements. As the 
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unknown parameters are only angular deflections, the mass properties can be given 
simply by moments of inertia. The main bearings of the crankshaft have no effect on the 
angular deflections, so the torsional multi-mass model has no kinematic boundary 
conditions, it is a so-called free vibration model. In order to create the torsional multi-
mass model, the mass- and stiffness reduction of the crankshaft had to be performed. 

2.1 Mass-reduction of the crankshaft 
The moments of inertia for a simple shaft, journal or pin (parts 2, 3, 4, 7 and 8 in Fig. 

1), calculated with respect to the rotational axis of the crankshaft, can be calculated as 
follows: 

 
2 2

2 1
2 4 4

D d
J mr m

 
   

 
, (1) 

where m is the mass of the given part, d is the inner diameter, D is the outer diameter of 
the part and r is the distance from the rotation-axis (in case of the crankpin, it is the 
throw of crank, in other cases it is zero). 

The moments of inertia of the webs and counterweights were gained from the CAD 
model. 

The moments of inertia of the connecting rod and piston reduced to the rotation-axis 
are function of the crank angle. In this case an equivalent moment of inertia was 
calculated according to [12]: 

  
2

21
2 8e hA hB dJ m m m r

  
     

  
, (2) 

where: -  1hA h hm u m   is the rotating mass part of the connecting rod, where hu  is 
the length ratio of the big end - center of gravity distance to the big end - small 
end distance and hm is the mass of the connecting rod, 

- hB h hm u m  is the alternating mass part of the connecting rod, 
- dm  is the mass of the piston, 
- r is the length of the throw of crank, 
- /r l   is the length ratio of throw of crank to the connecting rod length 

In Table 1. the moments of inertia of each mass element of the crank mechanism, 
obtained from the formulas (1) and (2) and CAD calculations [2] [3] are summarized. 

From the ten moments of inertia in Table 1. seven moments of inertia were calculated 
by the formulas in Table 2., which are assumed to be mass elements in the ends of the 
shafts and in the middle of the pins (Fig. 2.). In Table 2. these seven moments of inertia 
and their derivation from the former ten moments of inertia shown in Table 1. are 
summarized. 
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Table 1. Moments of inertia of the parts of the crank mechanism 

Symbol of moment 
of inertia 

Description of the part of the 
crank mechanism 

Value of moment of inertia 
[kgm2] 

Jl flywheel 2,906∙10-3 
Jvt halfshaft (flywheel side) 6,57157∙10-6 
Jvcs main journal (flywheel side) 1,44886∙10-5 
Jvk web (flywheel side) 1,135432∙10-3 
Jfcs crankpin 1,23428∙10-4 
Jhk web (clutch side) 1,135622∙10-3 
Jhcs main journal (clutch side) 1,57778∙10-5 
Jht halfshaft (clutch side) 6,9956∙10-5 
Jk clutch 6,206∙10-3 
Je piston and connecting rod 4,343∙10-4 

Table 2. The moments of inertia of the mass elements used for the torsional analysis 

Symbol of 
mass element 

Description of 
mass element 

Calculation of moment of 
inertia of the mass elements

Moment of inertia 
Ji [kgm2]  

i=1 flywheel 1 / 2l vtJ J J   2,910∙10-3 

i=2 
halfshaft 1 - main 

journal 1 2 2
vtJ

J   3,286∙10-6 

i=3 main journal 1 3 / 2vcs vkJ J J   5,822∙10-4 

i=4 crankpin 4 2 2
vk hk

fcs e

J J
J J J     1,693∙10-3 

i=5 main journal 2 5 / 2hcs hkJ J J   5,836∙10-4 

i=6 
main journal 2 - 

halfshaft 2 6 2
htJ

J   2,998∙10-5 

i=7 clutch 7 / 2k htJ J J   6,206∙10-3 

2.2 Stiffness-reduction of the crankshaft 

For the sequential torsional vibration system, six elastic elements are needed between 
the above described seven reduced rigid mass elements. Fig. 3. shows these elastic 
elements of the crankshaft. 

In case of shafts and pins, the stiffness can be calculated with the following formula: 

 pcs
I GM

s
l

  , (3) 

where pI  is the polar moment of inertia of the cross section area, G is the shear 
modulus of the crankshaft’s material and l is the length of the shaft / pin. 
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Figure 3. The six elastic elements connecting the rigid mass elements. 

In case of webs, the stiffness cannot be calculated with a simple formula. In this 
paper, the web’s stiffness was calculated with the aid of the AutoSHAFT modul of AVL 
Excite Designer software [2]. This modul automatically creates the FEM model of the 
crank web and then with static FEM analysis it calculates the torsional stiffness of the 
webs, applying a tentative torque on the webs. In Table 3. the stiffness of the elastic 
elements are summarized. 

Table 3. Stiffnesses of the connecting elastic elements 

Symbol of connecting 
element 

Description of 
connecting element 

Value of stiffness 
si [Nm/rad] 

i=12 halfshaft 1 9,628∙104 
i=23 half main journal 1 5,399∙105 
i=34 web 1 1,766∙105 
i=45 web 2 1,643∙105 
i=56 half main journal 2 4,293∙105 
i=67 halfshaft 2 2,024∙105 

 

3. The natural frequencies and natural modes from the multi-mass model 
A free sequentional torsional model consisting of n mass has (n-1) non zero natural 

frequencies and modes, so the above created multi-mass model consisting of seven mass 
elements has six non zero natural frequencies. The determination of the movement of 
this multi-mass model can be expressed using Lagrange’s equations [8]: 

 si
i

d E E
Q

dt  
  

    
, (4) 

where E is the kinetic energy of the whole torsional model, i  is the angular deflection 
of mass element i and SiQ  is the spring force. Executing the differentiations in (4) the 
following second order differential equation system is obtained: 

 0M K   , (5)  
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where   is the vector of angular deflection (6) of the mass elements, M  is the mass 

matrix (7) and K  is the stiffness matrix (8). 

  1 2 7...T     (6) 
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J
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 (8) 

The differential equation system (4) leads to the (9) eigenvalue problem, the 
eigenvalues of which provide the natural circular frequencies i , while the eigenvectors 

provide the natural modes 0 i
  for the natural circular frequency i  

  2
0 0 i i

K M  . (9) 

Table 4. 
The natural circular frequencies and natural frequencies of the multi-mass model 

 Natural circular frequencies 
(rad/s) 

Natural frequencies 
(Hz) 

ω1 3944,6 627,8 
 ω2 8857,4 1409,7 
ω3 21934,6 3491,0 
ω4 24975,0 3974,9 
ω5 146949,3 23387,7 
ω6 440913,7 70173,6 

In Table 4. the natural circular frequencies and the natural frequencies are 
summarized, while Fig. 4. illustrates the first two natural modes, which belong to the 
lowest two natural frequencies. The natural modes illustrate the relative ratio and 
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direction of the amplitudes of the angular deflection of the mass elements of the multi-
mass model vibrating on the given natural frequency. The actual vibration amplitudes 
will be influenced by the excitation forces and the damping of the crank mechanism. It 
can be observed that the first natural mode has one non-vibrating (non-rotating) point, 
while the second mode has two, so the number of the non-vibrating points increases 
according to the number of the natural modes. In case of engines, in general, it is 
important to know only the first two natural modes, as the detectable harmonics of the 
excitation torques – as it will be seen in the next chapter – are only in the range of the 
first two natural frequencies. 
 

 
Figure 4. First two natural modes of the crankshaft 

4. The natural frequencies and natural modes calculated by FEM modeling 
In this point the natural frequencies and natural modes will also be calculated by FEM 

method. In order to verify the result of the multi-mass model, these results will be 
compared to the former values. 

For the vibration analysis of the FEM model, the Modal modul of ANSYS software 
[5] was used. From the crankshaft–flywheel–clutch assembly, the FEM model was 
created only for the crankshaft, the flywheel and the clutch were added as mass 
elements, characterized by their mass and their moments of inertia. 

As a kinematic boundary condition in static analysis, an elastic support was used on 
the contact surface of the main bearings [1]. At free vibration analysis kinematic 
boundary condition does not need to be defined. In an eigenvalue problem dynamic 
boundary conditions (loadings) are not needed either. 

The FEM analysis has covered only the first two natural frequences which are the 
most important ones from the resonance phenomena point of view [6] – [8]. Fig. 5. 
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illustrates the first two natural modes belonging to the lowest two natural frequencies of 
the crankshaft. 

 
Figure 5. The first two natural modes belonging to the lowest two natural frequencies 

In Table 5. the first two natural frequencies of the FEM model are compared with the 
first two natural frequencies of the torsional multi-mass model. 

Table 5. Comparison of the natural frequencies of the torsional multi-mass model with 
those of the FEM model 

Natural frequencies of the 
multi-mass model (Hz) 

Natural frequencies of 
the FEM model (Hz) 

Relative 
error [%] 

627,8 636,79 1,43 
1409,7 1436,1 1,87 

As can be seen from Table 5. the first two natural frequencies calculated from the 
torsional multi-mass model and those calculated from the FEM model show a very good 
match, the relative error is below 2 % in both cases. Furthermore, the natural modes 
obtained from the FEM model come close to those obtained from the multi-mass model. 
On the basis of this, it can be stated that from the torsional vibrations aspect, in the 
frequency range of operation, the multi–mass model comes close to the real system in 
respect to natural frequencies and natural modes. 

5. Forced torsional vibrations 
The periodic tangential force generates not only a static torque on the crankshaft, but 

it causes additional torsional vibrations as well. Both the tangential force – crank angle 
function and the torque – crank angle function, due to the periodical characteristic of 
these functions, they can be expanded into harmonic series. In course of the harmonic 
series development, the torque – crank angle function is expanded into an infinite series, 
where the terms of the series are harmonic (sine and cosine) functions. The harmonic 
expansion can be performed mathematically with the Fourier-Transformation. 
According to this, the torque – crank angle function ( )M   can be written with the use 
of harmonic functions as the following series [9]: 
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1 1

2 2( ) 2 cos 2 sink n n
n n

M M a n b n
T T

   
 

 

        
   

  , (10) 

where kM  is the mean torque, while na  and nb  coefficients can be calculated with the 
following formulas: 

0

1 2( )cos
T

na M n d
T T

     
  ,  

0

1 2( )sin
T

nb M n d
T T

     
  . (11) 

In case of a four stroke engine the whole engine cycle is 4T  . Substituting this 
value into the equations (11), the argumentums of the sine and cosine functions will be 

2
n , where 

2
n

x   is the n-th order of the series development, which is the number of 

harmonic oscillations during a whole engine cycle. So in case of a four stroke engine, 
the harmonics will have half orders, as in case of n = 1, 2, 3 we get x = 0,5, 1, 1,5 
oscillation in the harmonic functions. 

With the amplitude of each harmonic, the spectrum of the exciting harmonics can be 
obtained. The spectrum represents the amplitude of the harmonics in function of the 
order. Fig. 6–8. show the spectrum of the exciting gas-, mass- and resultant rotation-
forces which are proportional to the torques caused by the tangential gas-, mass- and 
resultant forces in case of crankshaft speed of 6500 rpm. 

 
Figure 6. Spectrum of the gas rotational excitation harmonics at crankshaft speed of 

6500 rpm 

 

Figure 7. Spectrum of the mass rotational excitation harmonics at crankshaft speed of 
6500 rpm 

It can be seen from the spectrum of the excitation harmonics (Fig. 6. – 8.) that the 
rotational mass forces appear only in case of integer orders. Furthermore, it can be 
observed from the column diagrams that as an effect of the rotational mass forces, the 
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amplitude of the first order rotational gas force increases, while the amplitude of the 
second, third and slightly the fourth order rotational gas force decreases. 

 

Figure 8. Spectrum of resultant rotational excitation harmonics at crankshaft speed of 
6500 rpm 

From the fifth order on, the effect of the rotational mass forces is practically 
negligible. The amplitudes of the rotational resultant forces decrease also significantly 
in function of the orders, and as a result the analysis does not have to be extended for 
higher orders (in this paper the last order is the tenth). 

 
Figure 9. Resultant excitation harmonics at different crankshaft speeds 

       
Figure 10. The second- and third order rotational gas- and resultant harmonics in 

function of crankshaft speed 
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Studying the excitation harmonics in function of the crankshaft speed, it can be 
observed that – in case of any value of the crankshaft speed – the second and the third 
order rotational mass forces (Fig. 8.) have a major effect on the amplitude of the 
rotational gas force (Fig. 9.). Furthermore – as can be seen from Fig. 10. – in case of 
lower engine speeds, this effect means the decrease of the amplitude of the rotational 
gas force, while in case of higher engine speeds this effect means the increase of the 
same. 

6. Defining critical speeds 

Unlike the natural frequencies, the frequencies of the excitation harmonics ( e ) are 
not constant, but they are increasing linearly in function of the crankshaft speed: 

 
60e

n
x  , (12) 

where n has to be substituted in rpm. 

Plotting the excitation and natural frequencies in function of crankshaft speed, the 
excitation frequencies will be lines starting from the origin, while the natural 
frequencies will be horizontal lines. The critical speeds can be derived from the 
intersections of the excitation and natural frequency curves [11], [12]. 

According to Fig. 11. the first six excitation harmonics have no intersections even 
with the first natural frequency. Since the first six harmonics have the highest 
amplitudes – as can be seen from Fig. 9. – they are the most dangerous ones so avoiding 
them has an advantageous effect on the dynamic loading of the crankshaft. The first 
excitation harmonic that resonates with the first natural frequency is the 3,5th excitation 
harmonic. From Fig. 8. it can be seen that from this excitation harmonic on, the 
amplitudes of the harmonics decrease, so they generate smaller and smaller angular 
deflection. The examined first 20 excitation harmonics have 19 intersection points with 
the first and second natural frequencies, so that means that there are 19 critical speed 
values. Not every critical speed causes dangerous amplitudes, however.  

 
Figure 11. Defining critical engine speeds 
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On the one hand, the magnitude of the angular deflections depend on the amplitude of 
the excitation harmonic, on the other hand, the different damping effects in the system 
have a major decreasing effect on the magnitudes of the angular deflection. The next 
chapter deals with these magnitudes. 

7. Damping of the crank mechanism 
Since the system has a non-negligible damping, finite revolutions will occur at the 

resonance locations. Basically, there are two damping effects acting on the crank 
mechanism: 
 damping of the piston. 
 damping of the valve control and different auxiliary equipment (like the oil pump or 

the water pump). 
The damping effect of the piston - characterized by the damping coefficient dk  - 

acting on the crankpin (mass element 4J ) can be calculated with the following formula 
according to [3]: 

 
2

7 2 [ ]1,5 10 [ ]
4

d
d

d mNms
k r m

rad

     
, (13) 

where r  is the throw of crank and dd  is the diameter of the piston. The damping from 
the effects of the valve control and auxiliary equipment was defined on the flywheel 
(mass element 1). The value of this can only be obtained through experiments. Without 
such experience one can only rely on the literature. Based on experiments measured by 
AVL [12] on similar one-cylinder engines, the value of this damping was considered as 
1,2 /Nms rad  

8. Solving the equations of motion in case of forced vibrations 
Taking into consideration excitation and damping, the equation system of motion 

looks like the following formula [9]: 

 ( )gM C K M t      ,  (14) 

where: M  is the mass matrix, C  is the damping matrix, K is the stiffness matrix, 

( )gM t  is the vector of the excitation forces / torques and  t is the vector of angles of 

revolution (unknown parameters). 

The solution of this second order, ordinary, inhomogeneous differential equation 
system provides the forced angular deflection, the forced angular velocity and the 
forced angular acceleration of each mass element. Fig. 12. illustrates the angular 
deflection between the two ends of the crankshaft, between the flywheel (mass element 
1) and the clutch (mass element 7). The angular deflection between the two ends of the 
crankshaft (15) is characteristic for the torsional stiffness of the crankshaft.  

 17 7 1    . (15) 
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Figure 12. The angular deflection between the flywheel and the clutch in function of 

crank angle at 8000 rpm engine speed 

In order to be able to plot the relative angular deflection of the crankshaft in function 
of the crankshaft speed, the mean relative angular deflection is calculated as follows: 

 17 max 17 min
17 2

 



 . (16) 

 
Figure 13. Mean relative angular deflection of the two ends of the original crankshaft 

and that of the two ends of the modified crankshaft in function of engine speed 

Fig. 13. shows the mean relative angular deflection of the crankshaft (16) in function 
of the crankshaft speed, while Fig. 14. shows the same quantity, but caused by the 
separate orders of the excitation forces. In order to be able to compare the results, the 
mean relative angular deflection of the original crankshaft [1] is also plotted in Fig. 13. 
According to Fig. 13. the maximal mean relative angular deflection of the modified 
crankshaft is approximately 30% higher compared to the original crankshaft. According 
to AVL design references [10], this value should be below 0,6○. As can be seen from 
Fig. 13. this criteria is fulfilled by both crankshafts. 

As to the mean relative angular deflections caused by the separate orders of the 
excitation loads, AVL indicates a maximal value of 0,1○ in case of serial engines [10]. 
Above this limit value the engine noise increases. According to Fig. 14. this criteria is 
not fulfilled in case of orders below five, but since the examined crankshaft is from a 
race engine the engine noise is not an important issue. 
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Figure 14. Mean relative angular deflection of the two ends of  the modified crankshaft 
caused by the separate orders of the excitation force in function of engine speed 

From Fig. 14. it can be observed, that the maximum values of angular deflection of 
the separate orders (the resonance locations) occur at critical speeds determined from 
Fig. 9. According to Fig. 9. in case of orders 3,5 – 7, the curve has one, while in case of 
orders 7,5 – 10, the curve has two maximum values. Furthermore, as excpected, the 
highest angular deflection occurs in case of order 3,5, while the maximum deflections 
decrease as the orders increase. 

Besides the relative angular deflection, another characteristic quantity that is usually 
analysed is the speed irregularity of the clutch. In order to be able to calculate this, first 
the angular velocity of the clutch must be defined. This can be achieved by 
differentiating the angular deflection of the clutch (Fig. 15.). 

 
Figure 15. Angular velocity of the clutch in function of crank-angle at 8000 rpm engine 

speed 

The angular speed irregularity  of the clutch is the difference between the maximum 
and the minimum angular speeds divided by the mean angular speed k : 
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 max min

k

 





 ,  max min

2k

 



 . (17) 

The speed irregularity of the clutch of the original, as well as of the modified 
crankshaft [1] can be seen in Fig. 16. 

 
Figure 16. The speed irregularity of the clutch of the original crankshaft (dashed line) 

and that of the modified crankshaft (continuous line) in function of engine speed 

A too high value of speed irregularity has a negative effect on the fatigue life of the 
gearbox. In case of serial engines, the maximum acceptable value is approximately 0,16 
–0,2. According to Fig. 16. the maximum value of the speed irregularity is 
approximately 0,18 in case of the original crankshaft, while in case of the modified 
crankshaft this value is slightly higher, approximately 0,19 at 4000 rpm engine speed. 
But this value rapidly decreases as the engine speed increases, at 5500 rpm engine speed 
it is already below 0,1 and it remains below this value in the largest part of the 
operational range. 

9. Summary of the results 
For the torsional dynamic analysis, we have created a sequential torsional multi-mass 

vibration model of the crankshaft mechanism. In order to be able to check the vibration 
characteristics of the torsional model, the first two natural frequencies and natural 
modes obtained from the multi-mass model were compared with those obtained from 
the 3D finite element model of the crankshaft. The error was below 2 % at the lowest 
two natural frequencies of the two different models. The natural modes have also shown 
a proper match and therefore the forced vibration analysis was performed only on the 
multi-mass model. 

During the forced vibration analysis, the following statements could be made: 

 Up to the first ten excitation harmonics, two natural frequencies appear in the 
operational range of the engine, which result nineteen resonance locations 
altogether. 

 The first six excitation harmonics have no intersection with the natural 
frequencies. Since these harmonics have the highest amplitudes they are the 
most dangerous ones, avoiding them has an advantageous effect on the 
dynamic loading of the crankshaft. 
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 Also taking into account the dampings of the system, the mean relative angular 
deflection of the two ends of the modified crankshaft has increased by 
approximately 30 % compared to that of the two ends of the original 
crankshaft, so the result was a maximum value of 0,3○, which is still half of the 
limit-value of 0,6○ specified by AVL [10]. 

 The speed irregularity of the clutch has slightly increased compared to the 
original crankshaft, the maximum value of 0,18 occuring in case of the original 
crankshaft has increased to approximately 0,19 at an engine speed of 4000 
rpm. However this value rapidly decreases as the engine speed increases. At 
5500 rpm engine speed this is already below 0,1 and it remains below this 
value in the largest part of  the operational range. 
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Abstract: The paper demonstrates the strength analysis of a solar energy driven 
racing car chassis with two different mechanical modeling, beam-bar and 
shell modeling. Weight reduction is also a key point in the stages of car 
design. Reducing the weight of the car results in higher fuel efficiency and 
usually better dynamical properties. The weight reduction was performed 
with three different materials, steel, aluminium-alloy and laminated fibre 
reinforced composites. The paper shows the complete mechanical 
modeling process from construction of the mechanical model to the 
analysis of the laminated composite chassis structure and the results of the 
weight reduction. 

Keywords: car chassis, steel, aluminium-alloy, fibre reinforced composite, strength 
analysis, FEM, weight reduction  

1. Introduction 

The investigated car was designed by the SZEnergy team (SZEnergy is a students’ 
team for solar car development at Széchenyi István University) for the Shell Eco 
Marathon race series. The aim of the Shell Eco Marathon competition is to achieve the 
lowest fuel consumption. Fuel efficiency is one of the most important points in car 
design not only at this competition but also in general in car manufacturing. There are 
many international regulations in the vehicle industry to limit the emission of carbon 
dioxide. A higher efficiency of fuel consumption is not only advantageous for the 
drivers’ budget but also beneficial for the environment. This parameter depends on a lot 
of things (car weight, air-drag, type of combustion engine, etc.). The paper deals only 
with one aspect, the weight reduction. 

There is a famous saying by Colin Chapman who was a car designer and builder. He 
said “Adding power makes you faster on the straights. Subtracting weight makes you 
faster everywhere.” [14] This principle also works in the Eco Marathon race series but 
in this case it sounds like this: Subtracting weight makes you save fuel everywhere. 
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The main goal of the analysis was to determine the stress distribution in the chassis 
and therefore to reduce the weight of the racing car [1]. The investigation concentrated 
on the chassis because it is one of main parts of the car and it represents a considerable 
part of its mass. Three different materials and two different mechanical models were 
used to analyse the structure and to realize the weight reduction. The paper also 
examines in detail the determination of the critical load cases and it describes the results 
of stress analysis and weight reduction. 

2. Geometry and load cases 

2.1. Layout of the solar racing car 

The investigated solar car was designed for the Urban Concept category in the Shell 
Eco Marathon race. The racing car has a traditional car layout, a car body and a chassis 
separately [2]. The solar cells were fixed on the car body.  

The geometry of the chassis under the car body was available from the SZEnergy 
students’ design team (Fig. 1.). The chassis carries all the loads and holds all other parts 
together. It is a welded beam-bar structure with closed thin-walled square and circle 
profiles (Fig. 1.). The weight of the original chassis geometry (Fig. 1.) was 55.6 kg for 
steel, 19.2 kg for aluminium alloy and 7.17 kg for laminated fibre reinforced composite 
material. 

 

Figure 1. The geometry of the investigated chassis 
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2.2. Basic and critical load cases 

For the stress analysis two different mechanical models were built and during the 
mechanical modelling only the chassis was considered. First the critical loads were 
determined which are acting on the structure during different driving manoeuvres. Two 
groups of loads were defined. The basic load cases (BL) is the first group which consist 
of elementary load parts and the other is the critical load cases (CL) which give the 
starting point for the dimensioning of the car chassis. The mechanical problem is linear 
therefore the critical loads can be built up as a superposition of basic loads. 

The basic load cases group consist of seven basic load sets. These are the following:  

BL1 dead weight of the chassis and other parts, 
BL2 body forces from longitudinal acceleration at emergency braking, 
BL3 body forces from lateral acceleration at turning with full speed, 
BL4 moments from the front wheels at braking, 
BL5 forces from the driver at braking, 
BL6 loads from the acceleration of non-braked rear wheels, 
BL7 moments from the wheels at turning. 

From the loading point of view three critical situations can occur during the race. 
These critical situations can be characterised by the superposition of basic load sets: 

CL1 emergency braking: BL1 + BL2 + BL4 + BL5 + BL6, 
CL2 turning with full speed: BL1 + BL3 + BL7, 
CL3 emergency braking at turning with full speed: 

BL1 + BL2 + BL3 + BL4 + BL5 + BL6 + BL7. 

BL1 - Loads from the dead weight of the chassis and other parts 

This load case originates from the weight of the car with every coupled part and from 
the body of the driver. It is determined by the acceleration of gravity g  and the mass 

density   of each component. The mass density values are for steel 37820 kg/ms  , 

for aluminium alloy 32 700 kg/ma   and for the composite material 
31200 kg/mc  . This body force loading occurs in every critical load cases. 

BL2 - Body forces from longitudinal acceleration at emergency braking 

The maximum acceleration Sma  (negative value) appears during the race at 

emergency braking. Only the front wheels of the car are supposed to be braked so the 

Sma  maximum deceleration is determined by the slip point of the front wheels. This 

Sma  maximum deceleration is caused by the tangential coordinate of EF


 reaction force 

(Fig. 2.). Newton's second law and the principle of conservation of angular momentum 
are used to determine this Sma  maximum deceleration: 

 
 0

En c
b

F m g
a b c


 

  (1) 
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where EnF  is normal reaction force on the front wheels, a, b, c  are geometric data of 

the car, cm  is the mass of the car (Fig. 2.), 0  is the coefficient of static friction and g  

is the acceleration of gravity. Using equation (1) and Newton's second law the Sma  

maximum deceleration is  

 
 

0
0

0

Et En
Sm

c c

F F b
a g

m m a b c





    

 
.  (2) 

In formulas (1) and (2) a static friction 0 0 9.   was considered as the upper limit of 

the real kinetic friction. The maximum deceleration values are for steel chassis 
23 75 m/sSma .  , for aluminium chassis 23 53 m/sSma .  and for composite chassis 
23 47 m/sSma .  . 

 

Figure 2. Geometric data and reaction forces in the slide point of the front wheels at 
braking 

BL3 - Body forces from lateral acceleration at turning with full speed 

At turning with full speed considerable body forces work on the car and all other 
coupled parts. They come from the lateral acceleration at turning with full speed. In this 
manoeuvre two possible critical events can occur. These are the turning-over and the 
sliding of the car. These two critical events cannot occur at the same time. The lateral 
accelerations were determined for both situations and two different values were 
obtained. From these the lower critical lateral acceleration value causes the real 
situation, which occurs first. 

 

Figure 3. Geometric data and reaction forces in the slide point of the wheels at turning 
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Only the sliding event is shown because it happens first. Newton's second law was 
used to determine the Sca  maximum side-slip lateral acceleration. It was assumed that 

both wheels slide at the same time (Fig. 3.) 

 Bn Jn cF F m g   (3) 

 0 0c Sc Bt Jt Bn Jn cm a F F ( F F ) m g         (4) 

where Sca  is the maximum lateral acceleration, Bt JtF ,F  are the tangential reaction 

forces in lateral direction on the left and right side, Bn JnF ,F  are the normal reaction 

forces. In formulas (3) and (4) a static friction 0 0 9.   was also considered as the 

upper limit of the real kinetic friction. 

From equations (3), (4) the maximum lateral acceleration is  

 2
0 8 83 m/sSca g .    . (5) 

BL4 - Moments from the front wheels at braking 

At braking the tangential coordinate of the EF


 reaction force (Fig. 2.) causes a torque 

on the front axle. This torque can be determined by the following formula: 

 0
0

02 2 2
w w w

ct Et En c
d d b d

M F F m g
( a b c )





   

 
,  (6) 

where 558 mmwd  is the outside diameter of wheel, a, b, c  are the dimensions of the 

centre of gravity S  of the car, 0 0 9.   is coefficient of static friction, g  is the 

gravitational acceleration. The torque on the front axle are 141 NmctM   for steel 

chassis, 115 NmctM   for aluminium alloy chassis and 110 NmctM   for composite 

chassis. 

BL5 - Forces from the driver at braking  

At braking the driver pushes the brake pedal and this activity causes a reaction force 
in the driver’s seat as well. This load was modelled with two concentrated forces. One 
force acts on the driver’s seat console and the other acts on the mounting point of the 
brake pedal. This force was determined by measurement and its magnitude is 500 N.  

BL6 - Loads from the acceleration of non-braked rear wheels 

At emergency braking tangential forces originate from the rear wheels. The total 

tangential coordinate of aF


 force (Fig. 4.) can be determined from the principle of 

conservation of angular momentum: 

 
3

2at w SmF m a    (7) 
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where wm  is the mass of the wheel, Sma  is the maximum deceleration.  

 

Figure 4. Forces on the rear non-braked wheel at emergency braking 

The translational motion part of tangential coordinate atF  of aF


 force was considered 

in BL2 load case. Thus the load from non-braked rear wheels deceleration at emergency 
braking is  

 
3 1

2 2at at at w Sm w Sm w SmF F F m a m a m a      , (8) 

where atF  is the total part of tangential coordinate and atF  is the translational motion 

part of tangential coordinate of the aF


 force. In the analysis only aluminium alloy 

wheel-discs were considered with the mass of 8 41 kgwm . . Therefore the additional 

force is 15 77 NatF .   for steel chassis, 14 84 NatF .  for aluminium alloy chassis 

and 14 59 NatF .  for composite chassis. 

BL7 - Moments come from turning loads 

Bending moments in the front and rear axles come from the lateral forces when the 
car is turning. These bending moments were determined from the critical lateral forces 

BtF  and BtF  (Fig. 3.). 

The four wheels were loaded with different bending moments, because the force 
values are different on the four wheels. These bending moments could be calculated 
with the following formulas: 
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where L  index means the left side of the car, R  index means the right side of the car, 
F  index is for the front wheels of the car, S  index is for the rear wheel of the car, 

558 mmwd  is the outside diameter of the tyre, a, b  are the coordinates of the centre 

of gravity of the car, 0 0 9.   is coefficient of static friction, g  is the gravitational 

acceleration and cm  is the mass of the car. 

3. FEM modelling of the chassis 

The finite element method (FEM) was used for the stress analysis. For the analysis 
two types of mechanical models of chassis were applied: a simple beam-bar model and 
a more complex shell model [12]. 

The beam-bar model consists of beam-bar elements modelled by their central lines 
and additional concentrated mass elements that are modelling the effect of the other 
parts of the car. From these additional mass elements the chassis obtains further loading, 

weight G mg
 

 and body forces T ma 
 

. 

 

Figure 5. The FEM beam-bar model with additional masses and boundary conditions  

At the wheels the chassis is supported by spring elements that are modelling the 
elastic support of the wheels. The spring coefficients xc , yc  and zc  are different in 

reality. The coefficient zc  could only be determined by measurement (Fig. 6.) and the 

same value 36 10 mm/Nzc    was applied for the tangential coefficients xc  and yc . 
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Figure 6. Measurement of the spring coefficient zc  

The beam-bar model can only be applied to analyse of the chassis made of steel and 
aluminium alloy because the traditional beam and bar elements cannot model thin 
walled laminated beam-bar structures. 

The chassis made of laminated fibre reinforced composite material can be modelled 
by laminated orthotropic shell elements. As mentioned before the chassis is built up of 
thin walled closed profile beams. For the shell model the beams of the chassis are 
modelled with their outer surfaces. The wall thickness and the number of layers were 
design parameters. The shell FEM model and the additional mass elements are shown in 
Fig. 7. The additional mass elements and the boundary condition were the same by the 
beam-bar FEM model. 

 

Figure 7. The shell FEM model with additional mass elements 
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In the laminated shell model two weave types (plain weave and twill weave) of 
reinforcement were used for the two different laminated composite structures. The 
material properties of these two composites are shown in Table 2.  

By composites it is very important to define the optimal fibre orientations and layer 
structures. In our models one composite layer’s thickness was 0.25 mm. The shell 
models were built from eight layers e.g. 1.5 mm wall thickness and the warp fibre 
orientations were parallel to the beam-axes. 

The von Mises equivalent stress theory was used to evaluate the strength analysis and 
to dimension for isotropic materials. The von Mises equivalent stress and the safety 
criterion are defined by (13) 

     2 2 2

0,2

1
( )

2eq I II II III I III pvon Mises R             , (13) 

where I II III, ,    are principal stresses and 0,2pR  is the yield stress of material. 

Composites are not isotropic materials so they need different failure criteria then 
metals. In this analysis the Tsai-Wu failure criterion was applied (14). If the left side 
value is bigger than the one in the criterion, it means the starting point of the failure of 
the composite structure [3] [4] 
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where   identify the normal stress coordinates and   identify the shear stress 
coordinates in the fibre direction coupled natural coordinate system 1x , 2x , 3x . 

Directions 1x , 2x  lie in the plane of layer and direction 1x  shows the orientation of the 

fibres. In the (13) Tsai-Wu criterion 1 2E E  and 3E  are Young moduli in direction 1, 2 

and 3, 12 21   and 13 23   Poisson’s coefficients, 12G  and 23 13G G  are 

independent shear moduli, T TX Y  is the tension strength in direction 1 and 2, 

C CX Y  is the compression strength in direction 1 and 2, S  is the shear strength and 

  is the mass density. 

4. Results of FEM stress analysis 

4.1. Results of beam-bar modeling 

Laminated composite structures cannot be analysed with the usual beam-bar 
modelling so the following beam-bar computations were made only for these two 
homogeneous metal materials, i.e. steel and aluminium alloy. 
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The beam-bar FEM analysis was performed with the material properties in Table 1. In 
the table E  is the Young modulus,   is the Poisson’s coefficient, 12G  is the shear 

modulus, 0 2p ,R  is the yield stress and   is the mass density of the material. 

Table 1. Material properties of metal materials 

 Steel  Aluminium alloy 

 MPaE  206800 72000 

    0.29 0.2963 

 MPaG  80155 27771.3 

 0 2 MPap ,R  250 280 

3t/m  
   7.8210-9 2.710-9 

The most important results of FEM strength analysis of beam modelling provide 
maximum von Mises equivalent stress distributions along the beams which can be used 
for the comparison of the three critical load cases and for the dimensioning of the 
chassis. The maximum equivalent von Mises stress distribution for the three critical load 
cases are shown for the aluminium alloy chassis in Fig. 7.-9. The character of maximum 
stress distribution is the same for the steel chassis as well, only the stress values are 
different. 

     

(a) Longitudinal beams   (b) Cross beams  

Figure 7. Maximum von Mises stress distribution for the CL1 critical loading case 
(aluminium chassis) 

The comparison of the three critical load cases CL1-CL3 showed that the CL3 is the 
most dangerous (Fig. 9.). In this complex critical load case the maximum equivalent von 
Mises stress is on the chassis 116 MPa for aluminium alloy and 135.78 MPa for steel. 
These maximum stress values occur in the same place. This is the front axle and the 
chassis connection area. 
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(c) Longitudinal beams   (d) Cross beams 

Figure 8. Maximum von Mises stress distribution for the CL2 critical loading case 
(aluminium chassis) 

 

     

(e) Longitudinal beams   (f) Cross beams 

Figure 9. Maximum von Mises stress distribution for the CL3 critical loading case 
(aluminium chassis) 

From one part of the chassis the loads can pass over to other areas and this can cause 
local maximum values. The connection area is a small area and this causes these critical 
high values. But if the safety factor for case CL3 is calculated with both metal materials 
these show that the chassis fulfils the safety criterion (13) for both materials. 

Using the (15) expression the n safety factor is 1.84 for steel material and 2.41 for 
aluminium alloy  

0,2

max

p

eq

R
n 


  (15) 

where 0 2p ,R  is the yield strength and eqmax  is the maximum equivalent stress value. 

The safety factor values show that there is emergency reserve in both structures of 
metal materials. This fact enables the weight to be reduced, for example reducing the 
wall thickness of beams.  



L. Fehér and J. Égert – Acta Technica Jaurinensis, Vol. 8, No. 4, pp. 296-311, 2015 

307 

Also an important task is to find the critical cross sections and critical points of the 
chassis. From the results of beam-bar modelling, shown in Fig. 7-9., the critical points 
and the critical cross sections of the chassis have been obtained. The results show good 
correlation between steel and aluminium-alloy so the places of critical points are the 
same for both metal structures. These critical points are assigned with numbers and they 
are shown in Fig. 10. 

 

Figure 10. Critical points of the aluminium alloy chassis  

4.2. Results of laminated shell modeling 

The material and strength properties of applied composite materials are summarized 
in Table 2. 

Table 2. Material properties of the applied composite material 

 Twill weave Plain weave 

1 2E E     [MPa] 35734 45514 

3E             [MPa] 3500 3500 

12 21     [ - ] 0.07 0.06 

13 23     [ - ] 0.35 0.35 

12G           [MPa] 2115 2722 

23 13G G  [MPa] 1296.3 1296.3 

T TX Y   [MPa] 321 562 

C CX Y   [MPa] 521 580 

S             [MPa] 23 26,3 

            [t/mm3] 1.1910-9 1.2310-9 
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In Table 2. 1 2E E  and 3E  are Young moduli in direction 1, 2 and 3, 12 21   and 

13 23   Poisson’s coefficients, 12G  and 23 13G G  are independent shear moduli, 

T TX Y  is the tension strength in direction 1 and 2, C CX Y  is the compression 

strength in direction 1 and 2, S  is the shear strength and   is the mass density. 

The basic shell model which includes two different weave types and 8 plies, was 
analysed first. Every beam of the chassis was identified by a number for easier 
evaluation. In the chassis 38 beams were identified (Fig. 11-12.).  

 

(a) Longitudinal beams    (b) Cross beams 

Figure 11. Identification or numbering of the composite chassis beams 

 

(c) Other beams 

Figure 12. Identification or numbering of the composite chassis beams 

For evaluating the computational results the maximum Tsai-Wu failure criterion 
values were used. The FEM software determines the failure value in the three parts of 
the composite laminate (top, middle, bottom). From these results the maximum Tsai-Wu 
failure indices were obtained.  

In Table 3. the results of the model made from plain weave plies were summarized. 
This weave type has shown better strength properties from the strength analysis so the 
laminated composite structure of final model is made from plain weave carbon 
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composite. As seen in Table 3. the Tsai-Wu failure indices are over one value in a lot of 
beams. This means these beams will fail in the given critical load case. 

This case is not acceptable because the chassis cannot fail in any of the critical load 
cases. However (see Table 3.) the maximum failure index is much less than one in a lot 
of beams. This is also not an ideal case because this means that the beams are over-
dimensioned. For the optimal chassis structure a homogeneous stress state has to be 
achieved, i.e., a homogeneous maximum failure index distribution should be realized. 

The results of Table 3. were considered as the starting point for the construction of the 
laminated shell structure. In those beams where the failure index is greater than one the 
ply number has to be increased. The ply number could be decreased where the failure 
index is less than one. The chassis is a symmetrical structure and this fact was also 
considered in the laminate plies construction. As a result the beams with the same 
function on the right side and on the left side of the chassis were constructed with the 
same ply number. 

Table 3. Values of failure criteria of plain weave composite chassis 

 

The above computations showed that the shear-force is a dangerous internal force in 
lot of beams. Therefore, two plies with 45° warp orientation in the inner and outer side 
of the laminate structure were used in the beams where high shear-forces occur (see Fig. 
13.). With this modification the following modified laminate plies structure was built 
up: 

 Beams with 2 plies: 4, 7, 10, 11, 14, 15, 16, 22, 27, 28, 30, 35, 36, 37, 38 

 Beams with 3 plies: 31, 34, 

 Beams with 4 plies: 12, 17, 18, 

 Beams with 5 plies: 29, 32, 33 

 Beams with 6 plies: 3, 8, 9     45°  

 Beams with 8 plies: 1, 5, 2, 6, 23, 24, 25, 26   45° 

 Beams with 9 plies: 19, 20, 21    45° 

 Beams with 18 plies: 13     45° 

1 2 3 4 5 6 7 8 9 10

CL1 1.0158 1.829 0.54 0.008 0.91 1.88 0.0009 0.0169 0.012 0.0067

CL2 1.32 0.85 0.749 0.0097 0.76 0.7 0.0028 0.295 0.479 0.0416

CL3 1.642 1.149 1.272 0.008 1.58 1.159 0.002 0.349 0.48 0.048

11 12 13 14 15 16 17 18 19 20

CL1 0.049 0.04 3.37 0.31 0.00837 0.00997 0.15 0.15 2.72 2.68

CL2 0.167 0.12 0.66 0.0036 0.02 0.011 0.15 0.15 2.84 0.26

CL3 0.188 0.24 3.49 0.23 0.017 0.018 0.319 0.26 3.63 0.76

21 22 23 24 25 26 27 28 29 30

CL1 1.06 0.0036 0.43 0.33 1.84 2.14 0.013 0.0013 0.051 0.025

CL2 1.01 0.15 4.14 3.14 0.7 0.71 0.014 0.011 0.14 0.046

CL3 1.2 0.16 4.52 3.1 0.68 0.71 0.017 0.008 0.29 0.044

31 32 33 34 35 36 37 38

CL1 0.024 0.71 0.63 0.028 0.034 0.00001 0.000009 0.000008

CL2 0.27 0.1 0.14 0.063 0.048 0.0013 0.0017 0.0002

CL3 0.24 0.2 0.29 0.072 0.068 0.0014 0.0015 0.00026
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The list above shows that the ply numbers could be decreased in most of the beams 
compared to the basic initial laminate structure. Also it can be observed that there are a 
few beams in which the ply number has to be increased. From the computation one can 
state that the beam number 13 is the most critical beam in the chassis. In this beam the 
ply number has to be increased up to 18.  

The final weight of this above modified laminate structure is 7.17 kg. This means that 
the chassis is approximately 12 kg applying composite materials, which means 62.5 % 
weight reduction compared to the aluminium alloy chassis. 

 

 

Figure 13. Ply structure in beams number 1, 5, 2, 6, 23, 24, 25, 26 

5. Conclusion 

The paper focused on a real-life engineering problem experienced in the Shell Eco 
marathon competition. In this race the weight of the car is key to reach success like in 
any other car race. The paper shows an example of how laminated composite materials 
can be used for a chassis structure and therefore to reduce weight. For the FEM strength 
analysis different mechanical models of the chassis with critical load cases were 
applied. The FEM strength analysis was carried out in three critical load cases. 

From the results of beam-bar modelling an overview was obtained concerning stress 
distribution in metal chassis. From the initial identical wall-thickness of the composite 
construction a laminate composite chassis was constructed with nearly homogeneous 
stress distribution. The weight of the basic laminated composite structure with 8 plies 
was 8.77 kg. From the results of FEM analysis of the basic laminated model an optimal 
layer structure was achieved. This means that every beam has nearly a homogeneous 
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stress state. The weight of the final laminated composite chassis structure was only 7.17 
kg. 

Having compared the final laminated carbon composite chassis to the aluminium 
alloy chassis the weight reduction is almost 12 kg, namely 62.5 %. Using this chassis 
the fuel consumption can be significantly reduced. 
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Abstract: Multilevel full cost allocation is an effective alternative of traditional, 
accounting oriented costing regimes and is applied in the transport sector as 
well. Nevertheless, its basic algorithm may fail when the cost calculation 
model contains so called performance feedbacks. This is often the case in 
transport management practice, especially in complex operational systems. 
Hence effective solutions are to be found to cope with this methodological 
problem. This paper aims at contributing to the improvement of multilevel 
full cost allocation method when performance feedbacks hinder the exact 
calculation. The application of estimated cost ratios or specific costs is 
proposed and tested on a theoretical transport costing example. If some 
methodological requirements can be met both parameter estimations may 
be employed effectively in calculation tasks with performance feedbacks.   

Keywords: multilevel full cost allocation, performance feedbacks, transport costing 

1. Introduction 
Activity-based costing (ABC) is a widely used costing tool. It aims at allocating 

indirect costs, i.e. costs that can not be assigned to products or services directly, to 
products or services on the basis of measured performance consumptions. Indirect costs 
are traced to activities first by using so called resource drivers. Then activity costs are 
distributed among products or services by using cost drivers, i.e. various performance 
indicators. By doing so a transparent and traceable cost allocation system can be set up 
instead of using arbitrary allocation techniques distorting cost information [7]. 

Multilevel full cost allocation (MFCA) is a similar method having the same 
advantages. Here, however, organisational units are used instead of activities for the 
allocation of indirect costs. These units are arranged into a multilevel hierarchy 
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depicting the operational structure of the company [2]. There are transport related 
applications reported in the literature for both methods. 

The most detailed transport oriented ABC application was carried out at a road freight 
transport company. Here the costs of service packages were determined and the results 
were compared to the outputs of traditional costing regime [1]. Road transport was in 
the focus of other, more complex ABC analyses as well [13]. ABC was used to 
calculate the costs of elementary air transport services, i.e. individual flights [14]. 
Furthermore, ABC was combined with other decision making techniques where the 
financial efficiency of air transport services was evaluated [11].  

The cost structure of third-party logistics service providers was also analysed by ABC 
with special regard to transport activities [10]. The activity-based cost structure of 
logistics service providers focusing on road freight transport was studied by 
highlighting the role of fixed and variable costs [6]. 

MFCA has a moderate application intensity compared to the one of ABC. Sample 
transport cost calculation models have been developed for the cases of rail infrastructure 
management [2], bus transport [3], rail freight transport [4] and rail passenger transport 
[5].  

This paper focuses on multilevel full cost allocation by making also use of available 
research results. Besides its advantages, MFCA models used in practice still have some 
limitations. One of the limitations is the fact that it neglects performance feedbacks, 
which may reduce accuracy. Performance feedbacks mean that performance flows 
facilitating the operation and governing the allocation of indirect costs are not always 
straightforward and there may be performances that stream backwards in the system. 
This is the case when some organisational units have mutual performance services and 
their operation depends on each other’s outputs. Thus the allocation of indirect costs can 
not be carried out exactly. This is a real problem in transport costing as the operational 
models establishing the calculation models, mainly in complex systems, often consist of 
objects interacting with each other in various ways.  

Before analysing the impacts of performance feedbacks, the basic MFCA calculation 
model is described also with view on the latest relevant research results [4, 5]. Note that 
fixed and variable costs are not separated in the applied approach as the further analysis 
of performance feedbacks does not require this distinction. Nevertheless, in the full 
scale cost calculation models the segmentation of costs into fixed and variable parts is 
also recommended provided the segmentation can be carried out in an exact way [6].  

The basic MFCA model consists of the cost centres (k, i = 1…n) and the profit objects 
(j = 1…m). The former ones are the organisational units and perform for the profit 
objects or for other cost centres. Nevertheless, performance feedbacks, i.e. when cost 
centres serve each other mutually, may not be incorporated into the basic model so that 
the calculation can be performed in an exact way. The cost of cost centres can be 
calculated in the following way:  

ܥ  ൌ ܥ  ܥ ೖୀଵ  (1) 

where: 
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 ;total cost of cost centre k	:ܥ 

 ;: primary cost of cost centre kܥ 

 ;: total cost of service cost centre iܥ 

 ܲ: performance consumption of cost centre k at service cost centre i; 

 ܲ: total performance of service cost centre i. 

Primary costs are assigned to cost centres directly and are obtained from the general 
ledger with certain transformations, if needed. Performance data are provided by 
technology information systems or by dedicated surveys. 

Profit objects are the ultimate products or services in the examined business-
technology system. The main goal of MFCA is to calculate the costs of profit objects. 
The basic formula of this calculation is the following: 

ܥ  ൌ ௗܥ  ܥ ೕୀଵ  (2) 

where: 

 ;: total cost of profit object jܥ 

 ;ௗ: direct cost of profit object jܥ 

 ܲ: performance consumption of profit object j at service cost centre i. 

Direct costs are assigned to profit objects directly and are obtained from the general 
ledger, too. As MFCA is a full cost allocation method it is required that all indirect 
costs, i.e. the costs of cost centres, are fully allocated by the end of the calculation 
process: 

  ೖୀଵ  ೕୀଵ ൌ 1 (3) 

As mentioned, the calculation is always based on an operational model which depicts 
the business and technology processes of the investigated company or organisational 
system. The following analysis highlights what methodological problems can be faced 
when the operational model and so the calculation model contain performance 
feedbacks. 

2. Initial problem 
The problem of performance feedbacks is illustrated using a simple transport costing 

example. Fig. 1 shows a simplified operation model of a transport company operating 
two kinds of services, i.e. regular and irregular transport services. These are the profit 
objects (j = A, B) in the corresponding calculation model. Four organisational units take 
part in the production of these services: two of them directly, i.e. vehicle pools I and II, 
while other two ones, i.e. operation and maintenance, indirectly. These units are 
regarded as cost centres (k, i = 1…4). The possible performance indicators (and their 
dimensions) can be for example: 
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 operation: disposition (number of orders); 

 maintenance: service time (hours); 

 vehicle pools I and II: running (vehicle kilometres). 

 
Figure 1. Sample operation model 

The vehicle pools produce the transport services while the operation and the 
maintenance units serve the vehicle pools. The latter units serve each other as well. It 
means that the model contains a performance feedback in the relation of cost centre 1 
and cost centre 2.  

The calculation formulas based on the extraction of (1) and (2) are the following: 

ଵܥ  ൌ ଵܥ  ଶܥ భమమ  (4) 

ଶܥ  ൌ ଶܥ  ଵܥ మభభ  (5) 

ଷܥ  ൌ ଷܥ  ଵܥ యభభ  ଶܥ యమమ  (6) 

ସܥ  ൌ ସܥ  ଵܥ రభభ  ଶܥ రమమ  (7) 

ܥ  ൌ ௗܥ  ଷܥ ಲయయ  ସܥ ಲరర  (8) 

ܥ  ൌ ௗܥ  ଷܥ ಳయయ  ସܥ ಳరర  (9) 

Let us calculate the cost of profit object A: 

ܥ  ൌ ௗܥ  ଷܥ ಲయయ  ଵܥ యభభ ಲయయ  ଶܥ యమమ ಲయయ  ସܥ ಲరర  ଵܥ రభభ ಲరర  ଶܥ రమమ ಲరర  (10) 

regular transport

service

(profit object A)

vehicle pool I

(cost centre 3)

irregular transport

service

(profit object B)

vehicle pool II

(cost centre 4)

operation

(cost centre 1)
maintenance

(cost centre 2)
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It is obvious that the calculation cannot be executed on a regular basis because C1 and 
C2 depend on each other as can be seen in (4) and (5). Additional considerations are 
needed to overcome this methodological problem and to calculate the costs of profit 
objects. 

3. Proposed solutions 

3.1. Estimation of cost ratios 

One of the possible solutions is to introduce the parameter of total cost ratio (rki) for 
the case of cost centres affected by performance feedbacks: 

ݎ  ൌ ೖ  (11) 

for ki representing pairs of cost centres with performance feedbacks. Let us introduce 
r12 = C1 / C2 in our example. Substituting by r12 the missing cost elements can be 
determined from (4) and (5):  

ଵܥ  ൌ భଵି ುభమೝభమುమ (12) 

ଶܥ  ൌ ଶܥ  భమభሺଵି ುభమೝభమುమሻభ (13) 

Using (12) and (13) for C1 and C2 respectively, the final cost calculation of profit 
objects, e.g. the one of profit object A in formula (10), can be executed exactly. 

Another task is to estimate the value of the parameter applied:  

 the simplest estimation for total cost ratio is the ratio of corresponding 
primary costs. It can be an acceptable solution when the total costs do not 
differ from primary costs significantly or are approximately proportional to 
total costs. Usually this is not the case;  

 an alternative estimation can be the ratio of measurable natural indicators, 
like staff numbers, numbers of machines or appliances, etc., of 
corresponding cost centres. It shall be ensured that the indicator chosen is 
relevant for both cost centres concerned, and furthermore, that the indicator 
can be regarded as a real influencing factor of costs. The latter condition can 
be justified by correlation analyses on the basis of historical data, provided 
these data are available; 

 combining and extending the former approaches by using the ratios of 
multiple factors (l = 1…q) which may be primary costs or selected natural 
indicators. Theoretically this leads to the best estimation thanks to the 
multiple factors considered, provided the conditions mentioned are observed 
and the input data are available: 

ݎ̂  ൌ ∏ ೖୀଵ  (14) 

where: 
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 ;: estimated value of total cost ratio kiݎ̂ 

 ݂: factor l at cost centre k; 

 ݂ : factor l at cost centre i. 

In our example the total costs of operation and maintenance are to be compared. The 
corresponding primary cost data are available but it is not sure that they reflect the total 
costs. Nevertheless, some natural indicators are likely to be found for the estimation. 
For example, the material costs of maintenance might be recorded in the served cost 
centres and so the main driver of maintenance costs will be labour, staff numbers or 
working hours. These may be appropriate indicators for estimating the cost ratio as 
operation is also a labour-intensive business area. Of course, the suitability of the 
indicator chosen depends on the operational characteristics of the company assessed. 
Last but not least, if more than one indicator is found appropriate or we would like to 
combine the ratio of primary costs and the ratio of natural indicators the complex 
estimation formula (14) can also be applied here. 

3.2. Estimation of specific costs 

Another possible solution for handling the methodological problem mentioned is to 
introduce the parameter of specific cost (ci) for the case of cost centres affected by 
performance feedbacks: 

 ܿ ൌ  (15) 

for i representing cost centres having performance feedbacks. We can use c1 or c2 in 
our example, let us introduce c2 = C2 / P2. Substituting by this parameter the missing 
cost elements can be determined from (4) and (5) again: 

ଵܥ  ൌ ଵܥ  ܿଶ ଵܲଶ (16) 

ଶܥ  ൌ ଶܥ  ଵܥ మభభ  ܿଶ భమమభభ  (17) 

Using (16) and (17) for C1 and C2 respectively, the final cost calculation of profit 
objects, e.g. the one of profit object A in formula (10), can also be executed exactly. The 
question arises again: how to estimate the value of the parameter. There are two 
alternatives: 

 using the corresponding primary specific cost values increased by estimated 
percentages based on relevant practical expertise. The subjectivity of this 
approach can be reduced by applying group decision making methods like 
analytic hierarchy process (AHP) or by conducting sensitivity analyses; 

 using benchmark values, e.g. the average prices of similar activities or 
services. As benchmark values reflect the actual prices and are probably less 
subjective this approach seems to be a better solution, provided the 
benchmark data are available and the prices offered are cost-based. 

In our example the specific cost of maintenance shall be determined with the 
dimension of (EUR / service hour). If we have experts with reliable expertise in the field 
we can rely on their estimations. It is, however, reasonable to obtain benchmark values 
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as prices of maintenance services may easily be obtained, e.g. by calling for bids. 
Nevertheless, the quotations shall be reviewed carefully to ensure their applicability in 
the costing model. 

Concerning AHP it shall be noted that this method has an extensive application 
potential in transport. For example, it was successfully applied in the quality analysis of 
public transport systems [8, 9]. These research results may also be useful when AHP is 
utilised for supporting cost estimations. 

4. Discussion and conclusions 
The additional procedures proposed may help improve the accuracy of multilevel full 

cost allocation models containing performance feedbacks, with special regards to 
transport related applications. Comparing the two solutions it can be concluded that the 
application of estimated specific costs involves, in general, less risks than the one of 
estimated cost ratios. This can be explained by the better availability of input data, i.e. 
benchmark values. Nevertheless, if the estimation is company specific, then cost ratios 
may be more favourable as they use multiple factors describing the operational 
characteristics of the particular business-technology system. So it depends on the data 
availability and the circumstances of the estimation which approach is worth being 
preferred.  

Although the proposed solutions have been tested on a simple example they can also 
systematically be applied in multilevel cost calculation models with multiple feedbacks. 
Of course the complexity of additional calculations is in line with the number of 
feedbacks. 

When using the improved MFCA model the limitations of estimations shall also be 
considered as the estimations may contain some errors. These errors can be reduced by 
using further statistical or decision supporting methods like correlation analysis or AHP. 
Furthermore, there are some conditions which are to be observed when applying 
estimated cost ratios or specific costs during the calculation process. These 
requirements, i.e. the suitability of selected factors or benchmarks, etc., have been 
discussed in detail. 

It shall be noted that iterative calculation procedures may also contribute to solve the 
problems of performance feedbacks in MFCA models. Here initial values for the 
missing parameters are set and the calculation programme runs until the calculated 
values do not change significantly. Nevertheless, the approach proposed in this paper 
aims at making advantages of the available information instead of iteration. However, 
the two different approaches, i.e. iteration and the use of estimated cost ratios or specific 
costs, may be effective complementary tools of cost calculation tasks that are not 
calculable in exact ways. This may often be the case in complex transport systems. 

And at last it is worth mentioning that if the general or overall efficiency of complex 
transport systems is to be assessed single cost calculations may not be sufficient. Cost is 
namely one of the factors determining efficiency. Here more comprehensive and non-
parametric methods like data envelopment analysis (DEA) can be utilised [12].   
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Abstract: On the field of compression strength of packaging the researchers, studies 
and standards mainly focus on the short-time measurements. The derived 
results from these accelerated tests can be used with a large tolerance in 
reality. These measurements do not give response that how long the 
packaging is able to tolerate the given calculated or measured stress during 
a long-term storage in the supply chain without damages in the aspect of 
product or packaging. The tests in this paper were done to analyse the 
possible deformation shapes, which could be a first step into the process of 
final damage. The samples were tested under both static and dynamic 
compression. The deformations were observed by TRITOP system in order 
to prove the different deformation processes between the static and 
dynamic compression. This paper is a first phase of a research program, 
which deals with the effect of real compression and physical environment 
of logistics boxes on long time storage and stacking. 

Keywords: packaging, compression test, TRITOP 

1. Introduction 

Tests of various international standards (FEFCO, ISO, ASTM, TAPPI) use only 
short-time measurements to assess the compression strength of packaging materials 
made of corrugated cardboard sheet (HPL) and this is partly when they have contents 
during the time of the measurement [1][2][3][4]. Historically, HPL industry has 
established the nature and scope of compression strength measurements. Experts believe 
that the measurement results derived from BCT (Box Compression Test) allow them to 
evaluate the compressive behaviour of the boxes. Compression strength measurements 
were mainly developed for quality control purposes. Furthermore, large production 
volumes do not allow any of the test methods to be applied for a relatively long 
duration.  

Some previous studies dealing with the mechanical behaviours of these packaging 
structures under static compression [5][6][7], and some other papers show results and 
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brief reviews of designing and modelling the stack-ability of cardboard boxes using 
finite element method (FEM) [8][9]. However, deformation images and shapes 
occurring during quasi-dynamic laboratory testing and static load have not been dealt 
with so far. This paper is aimed to examine deformation events occurring through static 
load and deformation events occurring during laboratory measurement, and then 
compare them. These kind of quasi-dynamic and static tests are usually applied to 
observe the cushioning and strength effect of other packaging materials [10][11] such as 
plastic foams. The results of these tests are applied as input data to decision support 
models and processes to choose the right protective packaging system [12]. However, it 
is well known that the long time distribution environment and storage can affect the real 
strength of the packaging especially the corrugated paper box packaging [13]. 

This study begun with the conduction of traditional BCT tests, and box sidewalls 
were inspected for deformations. Load was then gradually reduced on the packaging 
material all the way until the packaging material had the ability to carry the static load 
for at least 1 hour. This method was also used to analyse the deformation processes of 
the sidewalls under static load. 

During the tests, a press recognised in the standards was used for the analysis of the 
deformation images, and also a system called TRITOP. Type and quality of the 
corrugated cardboard box used is FEFCO 0201 - 26C. The main flutes are composed of 
175KL (Kraftliner), 150HP (semi-chemical fluting) and 200TL1 (Testliner 1) with a 
weight of 597 g/m2. Box dimensions were 600 mm x 400 mm x 300 mm (L x W x H).    

Tests and results presented in this paper constitute the first stage of a research that 
will eventually focus on the more accurate estimation of static compressive strength of 
corrugated cardboard boxes as a function of load and compressive resistance. The 
research may be able to answer the question of how much the results of the methods 
used in laboratory practice are suitable for the evaluation of actual compression 
strength. 

2. Measurement system and setup 

The deformation processes were analysed with the mentioned TRITOP system above. 
This measurement system is an industrial optical measurement system for three-
dimensional acquisition of discrete object points. While in operation, the instrument 
marks every essential object point and employs a photogrammetric camera to capture 
images about the object, and then it records the measurement from various angles. 
Subsequently, the instrument software automatically calculates the three-dimensional 
coordinates and physical properties of the markers using the digital images.  
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Figure 1 – Structure of the TRITOP system 

The basic idea of measuring light intensity is that it views points from multiple 
directions and uses light rays to calculate the three-dimensional coordinates. The 
reference points shown in the figure below must be fixed relative to each other. 
Consequently, camera position relative to the reference points can be calculated for each 
specific case using images captured from various angles. During the acquisition of the 
image set, the aim is to record reference points from several angles of view so that they 
can show one another the largest possible angle. This is demonstrated in Fig. 2. 

 

Figure 2 – Spatial operating principles of the TRITOP system 

The legends, shown in the figure, have the following meaning:  

Point ray of a reference point:  Point ray of a reference point 

Camera CCD sensor:   Camera CCD sensor 
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Fixed relation of the reference points in the image of the CCD camera  

Fixed relation of the reference points in the 
image of the CCD camera 

Focal points of the camera:  Focal points of the camera 

Reference points:   Reference points 

The main goal of the software is to accurately locate omissions and gaps (a bird’s-eye 
view of the reference points) in each image within the image set and in 3D directions of 
the image. Measurement data can be evaluated in the TRITOP system (CAD 
comparison). The coded reference points of TRITOP allow the setting of an image that 
evaluates and automatically calculates the locations of the camera. When capturing an 
image, the aim is to see as many reference points as possible and preferably reach 
beyond the entire object so as to obtain an accurate measurement. 

 

 

Figure 3 – ID marks of the uncoded points of the TRITOP system 

The orientation crosses are factory-equipped with coded points. Uncoded reference 
points (Fig. 3.) are used to determine the 3D coordinates and are identified 
automatically by the instrument. If the uncoded reference points are positioned on the 
object, the measurement method determines the location of these points. For 
determining the dimensions reference is provided by scale bars (Fig. 4). The software 
package of the system then also allows you to determine how much each single point 
has migrated from their original location in the X:Y:Z coordinates. The extent of how 
much each single point has migrated from its original location can be determined with 
an accuracy of 1/1000th of a millimetre. 
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Figure 4 - Scale bars of the system 

3. Measurement and observation method 

The following measurement programme was devised for observing the deformation 
processes: 

 25 boxes of identical corrugated cardboard material and identical geometric 
size were selected and kept under identical climatic conditions. 

 5 boxes were measured for standard BCT values. 
 5 boxes loaded into the press based on the BCT value were provided with the 

markers of the TRITOP system and subjected to load with quasi-permanent 
feed until the boxes collapsed. But since the TRITOP system operates on the 
principle of imaging, we stopped increasing load while the pictures were being 
taken. Load was set so as to increase compression force with 50N increments 
using constant feed rate, then feeding was stopped, the images regarding 
compression were taken (an approximately 5-minute period of time), then load 
was again increased with the standard feed rate of 50N, feeding was stopped, 
images were taken and this process continued until the box got completely 
damaged. 

 Based on the BCT value, 5 boxes were respectively loaded with an evenly 
distributed static compression that equals 80%, 70% and 60% of the BCT 
value and the TRITOP system was used to take pictures every 24 hours for 
deformation analysis. Naturally, the box was kept under the same climatic 
conditions during static compression. 

 Under static compression, TRITOP images were only evaluated for boxes, 
which were able to withstand static compression for at least 1 hour. 

The measurement results were compared with and evaluated against deformation 
images captured during the test. During the evaluation of the deformation images, it was 
determined from within the inside of the box whether the deformation appeared concave 
or convex for each side. 
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4. Results and discussion 

The original BCT value of the box was measured at 1340N on average. During static 
testing, the box was able to resist loading for longer than 1 hour if the compression was 
as low as 80 kg – any higher compression caused the box being tested to collapse right 
away. The measurement results are shown in Table 1. 

Table 1. The measured BCT values and the period to collapse during static testing 

besides varied BCT load 

 BCT (N) Static 80% BCT Static 70% BCT Static 60% BCT 

S. Measured 

values 

Time to collapse (min, hour) 

1 1 360 < 1 min - < 1 min - > 1 hour ✔ 
2 1 320 < 1 min - < 1 hour - > 1 hour ✔ 
3 1 240 < 1 min - < 1 min - > 1 hour ✔ 
4 1 390 < 1 min - < 1 hour - > 1 hour ✔ 
5 1 310 < 1 min - < 1 min - > 1 hour ✔ 

Deformation under 80 kg of compression within the first 24 hours and deformation 
produced on the last day of compression (day 18) is presented in Fig. 5a and Fig. 5b 
respectively. Intermediate states are not published for considerations of space.   

 

Figure 5a – Deformations occurring as a result of 800N static load after the first 24 

hours of measurement 
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Figure 5b – Deformation occurring as a result of 800N static load after 18 days 

Deformation occurring at a load of 1200N during quasi-standard BCT testing is 
shown in Fig. 6a and 6b. As the reduction of the feed rate reduces the peak load of BCT 
measurement to a significant extent, this phenomenon occurred here as well, and the 
box cracked under a load of 1250N. 

 

Figure 6a – Deformation occurring at a load of 1200N during quasi BCT testing (left 

side) 

 



P. Böröcz – Acta Technica Jaurinensis, Vol. 8, No. 4, pp. 320-329, 2015 

327 

 

Figure 6b. – Deformation occurring at a load of 1200N during quasi BCT testing (right 

side) 

Table 2 shows the shape of deformation of each sidewall of the boxes under static and 
quasi-dynamic loads. Deformation is characterised by either a convex or a concave 
shape depending on whether the deformation of the sidewall is evaluated from inside 
the boxes. The results show that it was only in a total of 3 cases that the deformation of 
a sidewall was concave out of the 20 sidewalls of the five samples. However, in the case 
of quasi-dynamic measurements, each pair of the opposing walls almost always suffered 
concave deformation viewed from the inside. 

Table 2. Shape of deformation during the tests 

Sample number  Quasi dynamic Static 

1 Short sides left / right convex / convex convex / convex 
Long sides left / right concave / concave convex / convex 

2 Short sides left / right convex / concave convex / convex 
Long sides left / right convex / convex convex / concave 

3 Short sides left / right concave / convex convex / concave 
Long sides left / right concave / concave convex / convex 

4 Short sides left / right convex / concave concave / convex 
Long sides left / right concave / concave convex / convex 

5 Short sides left / right concave / concave convex / convex 
Long sides left / right convex / convex convex / convex 

5. Conclusion 

The measurements described above verify the following: 
 There is a significant difference between the deformation images of BCT 

measurements and static load measurements. The two measurements are not 
considered compatible with each other. 
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 The deformation images of the BCT value measured in laboratory practice are 
not in accordance with the deformation images of the boxes captured in real 
life circumstances. 

 The two different measurement methods show significantly varying skews 
with the alternating side walls bending in both convex and concave direction 
seen from the inside in the case of BCT, and with each side wall bending in 
convex direction seen from the inside in the case of static load. 

 The results of this study can be adapted to determine the possible damages 
under a real storage period, thereby to reduce the protective packaging costs, 
and also to provide more sustainable solutions. 
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Abstract: In this paper is described the mechanical stress analysis of glass vacuum 

windows of the "COMPASS"  tokamak using Finite Element Method. As a 

reference test problem the problem of uniformly loaded glass vacuum win-

dow with circular shape has been chosen, which problem can be solved also 

analytically.  In the case of Finite Element analysis we used two different 

mechanical models: 3-dimensional (3D) approach and shell modelling. For 

3D approach an optimal finite element type - quadratic tetrahedron element 

with appropriate size - was chosen, and for shell modelling a thin axisym-

metric shell element type - shell 209 - was applied. The analytic and both 

numerical results have been compared and summarized. 

Keywords: stress analysis, Finite Element Method (FEM), glass vacuum windows, the 

“COMPASS” tokamak,  shell element, deformation, equivalent (von Mises) 

stress 

 

1. Introduction  

The purpose of analysis presented in this paper is to verify mechanical resistance of 

vacuum windows on the "COMPASS"  tokamak through numerical stress analysis. This 

analysis has been carried out using Finite Element (FE) modelling. As the FE modelling 

tool we used the programme package ANSYS. 

The main structure of this paper is the following:  

 after the general introduction  (Chapter 1.)  we introduce the  “COMPASS” tokamak 

in Prague and the geometrical model of its vacuum windows as objects of our tests 

(Chapters 2.,3.);  
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 as a reference problem we remind the analytical solution  for displacement and stress 

in the case of window with circle shape fixed along its perimeter and with uniformly 

distributed pressure as the load (Chapter 4.); 

 in Chapter 5. we solve the problem for different shapes numerically (as a 3D model 

and also as a shell model); 

 and finally, Chapter 6. consists of the summary of  results and conclusions.  

2. The "COMPASS" tokamak and its glass vacuum windows 

The "COMPASS" tokamak of IPP-CR in Prague is a medium size fusion device producing 

plasma with ITER-like shape [1]. Proper operation of such fusion devices need to fulfil 

some necessary prerequisites (Fig. 1.): 

 enough energy to produce and maintain high magnetic fields and huge electric cur-

rents; 

 very high vacuum in the reaction chamber; 

 and very clean first wall.  

Requirement of the vacuum inside the tokamak chamber during operation is very strict. 

Pressure inside the vessel must be below of 
85 10  Pa during regular operation. The ful-

filment of this requirement needs powerful vacuum pumps and to seal all ports on the 

vacuum system properly. 

Some ports were designed as diagnostic ports for optical observation of plasma inside 

the chamber. These ports are equipped with high quality 2SIO  glass vacuum windows.  

The glass vacuum windows on diagnostic ports for optical observation were welded 

using electron beam welding technology which allows welding of steel to glass [2, 3] and 

results are high quality vacuum windows with extremely good vacuum sealing. Even the 

smallest displacement of the glass in this type of windows is excluded because of the 

required high vacuum in the reaction chamber.  

 

 

Figure 1.  View of the "COMPASS"  tokamak (left) and its vacuum chamber with diag-

nostic ports (right) 
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3. Mechanical model 

The vacuum chamber of the "COMPASS"  tokamak (Fig. 2.) is equipped with two types 

of vacuum windows of different shapes, circular and oval (Fig. 3.). 

 

Figure 2. Locations of vacuum windows on the "COMPASS" tokamak 

 

The geometric model of both types of vacuum windows is shown in Fig. 3.  

 

Figure 3. Shapes (circular and oval) of vacuum windows of the "COMPASS" tokamak 

 

The thickness of glass in vacuum windows is h = 8.5 mm. Windows were made from 

normal 2SIO  glass with the following mechanical properties: Young's modulus is  E = 

72 GPa, Poisson’s ratio is   ν = 0.23 and tensile strength is mR  = 50 MPa (which  

strongly depends on the state of surface [2, 4]). The other (geometric) parameters (R, L) 

of these windows are collected in Tab. 5. 

The pressure outside the device is the normal atmospheric pressure (~ 
510  Pa) and 

inside of it is in the range of 
85 10 0 :  Pa (~ vacuum). The difference of these two 

pressures is the load on the outer surface of vacuum windows  510 Pap  . All windows 

are fixed along their perimeters. The optimal 3D and shell meshing for FE analysis has 

been chosen (see Chapter 5.) on the base of existing analytical solution for the  window 

with circular shape.  

4. Reference problem with analytical solution  

Firstly, we remind the analytical solution for displacement and stress in the case of 

circular window as a reference problem [5, 6, 7]. 
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We consider a vacuum window of circular shape (Fig. 4.), which is fixed along its pe-

rimeter, the load is a uniformly distributed (atmospheric) pressure perpendicular to the 

surface of the window. The target of the analysis is to calculate the radial distribution of 

the deformation (in direction z) and the equivalent (von Mises) stress. 

4.1. Analytical solution for circular case 

Consider the glass plate of circular shape with radius R and thickness h fixed along the 

perimeter. The load is an uniformly distributed pressure p perpendicular to the surface of 

the plate. The mathematical model of the problem can be easily formulated in  cylindrical 

coordinate system which origin is in the centre of the plate, and the direction of axis z is 

perpendicular to the plane of the window (see Fig. 4.). 

r

z

Rp O

h

 

Figure 4. Mechanical model of uniformly loaded circular glass window 

 

The problem is described with the biharmonic differential equation [5, 6, 8]: 

 2 constant
p

w r
D

   , where  
 

3

212 1

Eh
D





,   (1) 

and E is the modulus of elasticity (Young’s modulus) of glass ( 2SIO ) and   is its Pois-

son’s ratio.  The radial component of equation (1) is: 

 1 1 dw rd d d p
r r

r dr dr r dr dr D

        
     

.   (2) 

 The analytical solution for circular shape is: 

   2
2 2

64

p
w r R r

D
  ,    (3) 

where w (r) is the radial distribution of the deformation in direction z. (see Fig. 5) 
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Figure 5. Analytical solution of displacement w(r) in direction z for circular  window 

under homogeneous pressure load (R=75 mm, h=1 mm, p=105 Pa) 

The calculated displacement from the formula (3)  at the centre of the window is 

max 7.8040 mmw  in the test case (R=75 mm, h=1 mm). The maximal displacement is 

max 0.0215 mmw  in the real case (R=85.575 mm, h=8.5 mm).   

4.2. Analytical solution for stresses  

Radial and tangential torques ,r tM M can be calculated from following expressions 

(see [8]): 

2

2

1 1
( ) ,t

r t

dd w dw
M r D D

r dr dr rdr


  

          
  

   (4) 

2

2

1 1
( ) t

t t

dd w dw
M r D D

r dr dr rdr


  
          

  
 ,  (5) 

where t  is the rotation angle around t axis.  

From formulas (4) and  (5) maximum values of  torques and stresses at 
2

h
z   can be 

calculated: 

   2 2
( ) 1 3 ,

16
r

p
M r R r v       

max 2

( )
( ) 6 r

r

M r
r

h
  ,  (6) 

   2 2
( ) 1 1 3

16
t

p
M r R r       , 

max 2

( )
( ) 6 t

t

M r
r

h
  .  (7) 

In Fig. 6. the distributions of torques ( )rM r , ( )tM r  are shown: 
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Figure 6. Distribution of radial and tangential torques ( )rM r , ( )tM r in the case of 

circular window with testing parameters R=75 mm, h=1mm 

At the perimeter of the window  r R one can get: 

2

0
8

r r R

pR
M


   , 

2

0
8

t r R

pR
M 


   , r tr R r R

M M
 

 , (8) 

and in the centre of the window  0r  : 

 
2

0 0
1 0.

16
r tr r

pR
M M 

 
        (9) 

The maximum value of torque in both cases is along the fixed perimeter of the window, 

therefore there is the critical location. 

The equivalent stress  von Miseseq  is defined by the formula (10): 

         2 2 2 2 2 21
6

2
eq x y y z x z xy yz xzvon Mises                       

,  (10) 

where i  are normal stresses and i j  are shear stresses from the stress tensor F : 



x xy xz

yx y yz

xyz
zx zy z

F

  
  
  

 
   
  

.           (11) 

The stress tensor can be transformed into the coordinate system defined by its eigenvec-

tors (so called main axes coordinate system),  and in this system the stress tensor is diag-

onal:  
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.           (12) 

 

The definition of the equivalent stress in the main axis coordinate system is:  

       2 2 2

1 2 2 3 1 3

1

2
eq von Mises                

, (13) 

where for the stresses 1 2 3, ,    we have a convention 1 2 3     and we call them 

stress maximum principal, middle principal and minimum principal. 

In our case 1 r  , 2 t   and 3 0z   . Principal stresses 1 2,   can be calculated 

as follows: 

     2 2 2

1 2 2 2

6 6 3
1 3

16 4
r r

p p
M r R R R R

h h h
                , (14) 

     2 2 2

2 2 2 2

6 6 3
1 1 3

16 4
t t

p p
M r R R R R

h h h
                , (15) 

and 

     2 2 2 2 2

max 2

1 3
1

2 4
eq r t t r r R

p
von Mises R

h
      

         .     (16) 

Finally for safe operation must be valid: 

 maxeq mvon Mises R  .         (17) 

The equivalent stress  eq  reaches its maximum along the perimeter of the window. 

For the glass ( 2SIO ) is 50 MPamR   and the maximum value of equivalent stress for   

real size window (R=85.575 mm, h=8.5 mm) is max 6.256 MPaeq  . This value is almost 

ten times less than tensile strength of SiO2 glasses.  

5. Numerical solution 

5.1. FE meshing and convergence 

The numerical analysis we started with FE stress analysis [9] using ANSYS Workbench 

programme package [10, 11]  for 3D FE - model, and using ANSYS APDL (Ansys Param-

eter Design Language) package for shell FE - model.    

At the beginning of the numerical analysis we tested the convergence of FE solutions 

[12] in the case of 3D FE - model of vacuum window with circular shape (R = 75 mm, h 
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= 1 mm) [12, 13]. As the 3D  FE - type has been chosen the quadratic tetrahedron ele-

ment. We have investigated the convergence of numerical solution to the analytic solution 

as a function of FE size (see Fig 7. and Fig. 8.). 

 

Figure 7. Convergence of FE solutions to the analytic solution in the sense of displace-

ment for the circular test window (R=75 mm, h=1mm) in 3D model with dif-

ferent FE sizes 

 

From Fig. 7. one can see, the numerical solution calculated from 3D model with de-

creasing element size converge to analytic solution. 

 

 

Figure 8. Relative difference between numerical and analytic solution as a function of 

average FE size at the radial position r=0 mm for the circular test window 

(R=75 mm, h=1mm) in 3D model  
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Fig. 8. shows the relative difference between numerical and analytic solution with de-

creasing FE size rapidly converge to zero value, thus it is reasonable to use this FE - type 

and FE size also in the cases of oval windows without analytic solutions.  

 

5.2. Results of FE analysis for the case of test window 

In this subchapter we will present numerical results for the case of the test window with 

circular shape and comparison of numerical results with analytic solutions. 

First of all, we need to note our problem is cylindrically symmetric therefore we present 

in all figures just the quarter of the window for the 3D model, and  in the shell model it is 

enough to consider only the radial intersection of the circular plate.  

In Fig. 9. one can see meshes with two different FE sizes. Fig.10. shows the distribution 

of displacement w in direction z and the distribution of equivalent stress eq calculated 

from 3D model. Same two quantities (w and eq ) calculated from shell model are shown 

in Fig. 11. 

 

 

Figure 9. Two different meshes in 3D model for circular window with test parameters 

R=75 mm, h=1 mm and with FE sizes 4 mm (left) and 2 mm (right). 

 

 

Table 1. Number of nodes and elements of two applied meshing in 3D model for the 

meshes with bigger and smaller FE sizes for the test window of circular shape 

(R= 75 mm and h=1 mm)  

 Element size  mm  Number of Nodes Number of Elements 

Mesh 1 4 4336 1975 

Mesh 2 2 14692 7202 
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Figure 10. Deformation w  in direction z (left) and equivalent stress eq  (right) from 3D 

model for circular test window (R=75 mm, h=1 mm) with average FE size 

2mm. 

 

 

Figure 11. Deformation w  in direction  z (left) and equivalent stress 
eq  (right) calcu-

lated from shell model for circular window with testing parameters R =75 mm, 

h =1 mm with FE size 2mm. 

 

Table 2. Comparison of results (displacements and equivalent stresses) for the circular 

test  window (R=75 mm, h=1 mm) with average FE size 2 mm 

wmax [mm] σeq max [MPa] 

Analytic 

solution 

3D 

model 

Shell 

model 

Analytic 

solution 

3D 

model 

Shell 

model 

7.804 7.789 7.809 347.161 366.19 382.635 

In Tab. 2. one can see that differences between  three different solutions (analytic solu-

tion, 3D model and shell model) for displacement are small, thus our model for displace-

ment is appropriate, but in cases of equivalent stresses the model is less precise.   
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5.3. Results of FE analysis for the case of real window sizes 

This chapter presents results for the case of real window sizes for both models (3D and 

shell) and for both shapes of vacuum windows (circular and oval) of the "COMPASS" 

tokamak. The stress study of all types of vacuum windows on “COMPASS” tokamak has 

been provided using meshing with FE types of quadratic tetrahedron in 3D model and 

FE type shell 209 in shell model with FE sizes equal 4.25 mm. All windows have equal 

thicknesses h=8.5 mm. 

5.3.1. The 3D model 

5.3.1.1. The case of circular window 

 Fig. 12. shows FE meshes from 3D model for the circular vacuum window with radius 

R = 85.575 mm and with thickness h = 8.5 mm: 

 

Figure 12. Meshing from 3D model for the case of circular window using average FE 

size 8.5 mm (left) and 4.25 mm (right) with quadratic tetrahedron elements 

 

Table 3. Number of nodes and elements of applied meshing from 3D model for the meshes 

with bigger and smaller FE sizes for the vacuum window of circular shape (R= 85.575 

mm, h = 8.5 mm)  

 Element size  mm  Number of Nodes Number of Elements 

Mesh 1 8.5 1598 856 

Mesh 2 4.25 9934 6060 

 

In Fig 13. one can see results of FE analysis (deformation and stress) for the vacuum 

window of circular shape calculated from 3D model.    



Z. Molnár et al. – Acta Technica Jaurinensis, Vol. 8, No. 4, pp. 330-346, 2015 

341 

 

Figure 13. Results of FE analysis (the deformation in the direction of axis z (left) and the 

equivalent stress (right)) calculated from 3D model for circular vacuum window (R = 

85.575 mm, h=8.5mm) with FE size 4.25mm  

  Both of investigated physical quantities (deformation and equivalent stress) for the 

circular vacuum window calculated from 3D model meet very well with analytic results. 

5.3.1.2. The case of oval window 

Consider the oval window with geometric parameters R = 34.5 mm, L = 389 mm and 

the thickness h = 8.5 mm. 

Fig. 14. shows the mesh of the model. We used the same mesh as in the case of circular 

window and the quadratic tetrahedron elements with average element size of 8.5 mm. 

 

 

 

Figure 14. Meshing from 3D model for the case of oval window using average FE size 

8.5 mm (left) and 4.25 mm (right) with quadratic tetrahedron elements 
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Table 4. Two different meshes of 3D model with bigger and smaller FE sizes for the big-

gest window of oval shape with parameters L = 389.0 mm and R = 34.5 mm  

Element size  mm  Number of Nodes Number of Elements 

8.5 2168 1166 

4.25 12130 7383 

  

 

Figure 15. Results of FE analysis (the deformation in the direction of axis z (left) and the 

equivalent stress (right)) from 3D model for oval window with L=389.0 mm 

and R = 34.5 mm  

 One can see from Fig. 15. the maximum of deformation is in the middle of the window. 

The result of stress analysis for oval window is shown in Fig. 15. We can see that the 

equivalent stress again has its maximum at the perimeter of the window, where the win-

dow is fixed, but its distribution is not symmetric. Along the straight part of the perimeter 

it is significantly higher in comparison with equivalent stress along the round part of the 

perimeter.  

  

5.3.1.3. Summary of results of FE analysis from 3D model 

In this subchapter we will summarize the results of FE analysis calculated from 3D 

model for both shapes of windows of real sizes.  
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Table 5. Summary table of FE analysis calculated from 3D model with real geometric 

parameters of windows (real window sizes) 

Shape Size [mm] wmax [μm] σeq.max [MPa] 

 

 

Round 

R1 = 24.175 0.204 0.676 

R2 = 41.275 1.357 1.634 

R3 = 60.350 5.731 3.456 

R4 = 85.575 22.328 6.516 

 

 

Oval 

L1 = 90.0 R1 =17.25 0.162 0.784 

L2 = 123.5 R2 =17.25 0.163 0.809 

L3 =  389.0 R3 =34.5 1.788 2.803 

In Tab. 5. one can see the maximum of displacement in direction z and the maximum 

of equivalent stress (for both shapes of window and for cases of different radii R and 

length L) calculated from 3D model.  

Deformations in the direction of axis z and stresses are small. Equivalent stresses, 

which are the main design parameters for these vacuum windows, are safely below of 

tensile strength for SiO2 glass.  

 

5.3.2. The shell model 

One dimension - the thickness of windows - is significantly smaller than other two 

dimensions, therefore we decided about the FE analysis with shell elements for compari-

son with 3D results. Appropriate FE shell element is included in ANSYS APDL, thus we 

provided FE analysis in this part of ANSYS programme package. 

Results of this analysis is summarized in Fig. 16.  

 

 
Figure 16. Deformation w in direction z (left) and the equivalent  stress eq  (right) of 

shell model for circular window with real size parameters R = 85.575 mm and 

h= 8.5 mm  
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One can see from Fig. 16. and also from Tab. 6 given below, the maximum value of 

the deformation is again at the centre of the window, and its value is near to values from 

analytic calculations. 

The equivalent stress has its maximum again along the perimeter of the window and 

one can see, the 3D model and the shell model give basically the same results. 

 

Table 6. Summary table of FE analysis calculated from shell model for real thickness of 

windows h = 8.5 mm and with FE size 4.25 mm  

Shape Size [mm] wmax [μm] σeq.max [MPa] 

 

 

Round 

R1 = 24.175 0.208 0.547 

R2 = 41.275 1.371 1.601 

R3 = 60.350 5.767 3.426 

R4 = 85.575 22.421 6.890 

  

Our analysis showed, the 3D model and shell model are practically equivalent for 

stress analysis of vacuum windows of the "COMPASS" tokamak. 

 

6. Summary and Conclusions 

Our task - agreed with operators of the "COMPASS" tokamak - was to perform detailed 

FE stress analysis for all types of vacuum windows of the device. 

In the case of windows with circular shape fortunately exists an analytic solution. This 

situation gave us the possibility to test properties of numerical solutions from FE analysis 

(convergence, element type, element size). 

It was reasonable to use the same FE parameters also for oval windows. 

Detailed analysis showed, deformations are small and equivalent stresses are safely be-

low of tensile strength for SiO2 glasses. 

From the FE analysis point of view it is interesting,  practically no difference between 

results from 3D and shell model.     
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Table 7. Summary table: comparison of results (maximum of displacements in direction 

z and maximum of equivalent stresses) of analytic solution, the 3D and shell 

model for the circular  window ( R = 85.575 mm,  h = 8.5 mm, FE size 4.25 mm) 

wmax [mm]  σeq.max [MPa] 

Analyti-

cal 

solution 

3D 

model 

Shell 

model 

Analytic 

solution 

3D 

model 

Shell 

model 

0.0215 0.0223 0.0224 6.256 6.5163 6.891 
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Abstract: By using scalar and vector potentials, Maxwell’s equations can be transformed

into partial differential equations. Generally, the partial differential equations

can be solved by numerical methods. One of these numerical methods is

the finite element method, which is based on the weak formulation of the

partial differential equations. The basis of numerical techniques is to reduce

the partial differential equations to algebraic ones whose solution gives an

approximation of the unknown potentials and electromagnetic field quantities.

This reduction can be done by discretizing the partial differential equations in

time if necessary and in space. The potential functions, the approximation

method and the generated mesh distinguish the numerical field solvers. This

paper summarize the finite element method as a CAD technique in electrical

engineering to obtain the electromagnetic field quantities in the case of static

magnetic field and eddy current field problems. Here, we show how to

discretize the analyzed domain with finite elements, how to approximate

potential functions with nodal and vector shape functions and how to build up

the system of equations, which solution obtain the unknown potentials.

Keywords: Maxwell’s equations, weak formulation, finite element method

1. Introduction

This paper is based on the book [1].

The Finite Element Method (FEM) is the most popular and the most flexible numerical

technique to determine the approximate solution of the partial differential equations in

engineering. For example, commercially available FEM software package is COMSOL

Multiphysics, which is able to solve one, two and three-dimensional problems. A free

mesh generator with a built-in CAD engine and post-processor is Gmsh.

The main steps of simulation with FEM are illustrated in Fig. 1. Firstly, in the model

specification phase, the model of the real life problem, which simulation require electro-

magnetic field calculations must be set up, i.e. we have to find out the partial differential
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Figure 1. Steps of simulation by FEM.

equations, which must be solved with prescribed boundary and continuity conditions. We

have to find out, whether it is a linear or a nonlinear problem and how the characteristics

look like. After selecting potentials, the weak formulation of these partial differential equa-

tions must be worked out as well. It is depending on the problem, of course, but the chosen

mathematical model of the arrangement should be adequate to calculate electromagnetic

field quantities in the given accuracy. The geometry of the problem must be defined by a

CAD software tool, e.g. by using a user friendly interface, see e.g. Fig. 2.

The next step is the preprocessing task. Here we have to give the values of different

parameters, such as the material properties, i.e. the constitutive relations, the excitation

signal and the others. The geometry can be simplified according to symmetries or axial

symmetries.

The geometry of the problem must be discretized by a FEM mesh. The fundamental idea

of FEM is to divide the problem region to be analyzed into smaller finite elements with

given shape. A finite element can be e.g. triangle or quadrangle in 2D, e.g. tetrahedron or

hexahedra in 3D. A triangle has three vertices 1, 2 and 3 numbered counter-clockwise and

has 3 edges. The quadrangle element has 4 nodes and 4 edges. A tetrahedral element has 4
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Figure 2. COMSOL Multiphysics, a CAD environment to solve electromagnetic field

problems.

vertices and 6 edges and a hexahedral element has 8 nodes and 12 edges.

There are some simple rules, how to generate a mesh. Neither overlapping nor holes

are allowed in the generated finite element mesh. If material interface are included in

the problem region, the configuration of mesh must be adapted to these boundaries, i.e.

interfaces coincide with finite element interfaces.

FEM mesh, as two illustrations, generated by COMSOL Multiphysics can be seen in

Fig. 3 and in Fig. 4. The first 2D illustration (Fig. 3) shows the mesh of a horseshoe-

shaped permanent magnet. The two ends are pre-magnetized in different directions. The

second illustration (Fig. 4) presents a model of a micro-scale square inductor, used for LC

bandpass filters in microelectromechanical systems. The model geometry consists of the

spiral-shaped inductor and the air surrounding it (the mesh in air is not shown). The outer

dimensions of the model geometry are around 0.3 mm. These illustrations are cited from

the Model Documentation of COMSOL Multiphysics.

The next step in FEM simulations is solving the problem. The FEM equations, based

on the weak formulations, must be set up in the level of one finite element, then these

equations must be assembled through the FEM mesh. Assembling means that the global

system of equations is built up, which solution is the approximation of the introduced

potential. The obtained global system of algebraic equations is linear, or nonlinear but

linearized, depending on the medium to be analyzed. Then this global system of equations

must be solved by a solver. The computation may contain iteration if the constitutive

equations are nonlinear. This is the situation when simulating ferromagnetic materials with

nonlinear characteristics. Iteration means that the system of equations must be set up and
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Figure 3. COMSOL model of a permanent magnet, geometry is meshed by triangles.

Figure 4. COMSOL model of a micro-scale square inductor, geometry is discretized by

tetrahedral shape finite elements.

Figure 5. COMSOL solution of the static magnetic field generated by a permanent magnet.
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Figure 6. Electric potential in the device and magnetic flux lines around the device, the

problem has been solved by COMSOL.

must be solved step by step until convergence is reached. If the problem is time dependent,

then the solution must be worked out at every discrete time instant.

The result of computations is the approximated potential value in the FEM mesh. Any

electromagnetic field quantity (e.g. magnetic field intensity, or magnetic flux density,

etc.) can be calculated by using the potentials at the postprocessing stage. Capacitance,

inductance, energy, force and other quantities can also be calculated. The postprocessing

give a chance to modify the geometry, the material parameters or the FEM mesh to get

more accurate result. The COMSOL Multiphysics has been used to show two examples

about postprocessing. The pattern of the magnetic field around the permanent magnet

is well known through experiments (see Fig. 5). Figure 6 shows the electric potential in

the inductor and the magnetic flux lines. The thickness of the flow lines represents the

magnitude of the magnetic flux.

2. Approximating potentials with shape functions

The potential function can be scalar valued (e.g. the magnetic scalar potential Φ, or the

electric scalar potential V ), or vector valued (e.g. the current vector potential T , or the

magnetic vector potential A).

The scalar potential functions can be approximated by so-called nodal shape functions

and the vector potential functions can be approximated by either nodal or so-called vector

shape functions, also called edge shape functions. Generally, a shape function is a simple

continuous polynomial function defined in a finite element and it is depending on the type

of the used finite element.

Shape functions have the following general properties:
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(i) Each shape function is defined in the entire problem region;

(ii) Each scalar shape function corresponds to just one nodal point and each vector shape

function corresponds to just one edge;

(iii) Each scalar shape function is nonzero over just those finite elements that contain its

nodal point and equals to zero over all other elements. Each vector shape function in

nonzero over just those finite elements that contain its edge and equals to zero over

all other elements;

(iv) The scalar shape function has a value unity at its nodal point and zero at all other

nodal points. The line integral of a vector shape function is equal to one along its

edge and the line integral of it is equal to zero along the other edges;

(v) The shape functions are linearly independent, i.e. no shape function equals a linear

combination of the other shape functions.

The accuracy of solution obtained by FEM can be increased in three ways. The first one

is increasing the number of finite elements, i.e. decreasing the element size. It is called

h-FEM. The second way is to increase the degree of polynomials building up a shape

function (e.g. using Lagrange or Legendre interpolation functions). This is the so-called

p-FEM. The mixture of these methods results in hp-FEM. Potentials approximated by

h-version or p-version are assigned in the indices of the potentials.

2.1. Nodal finite elements

Scalar potential functions can be represented by a linear combination of shape functions

associated with nodes of the finite element mesh. Within a finite element, a scalar potential

function Φ = Φ(r,t) is approximated by

Φ ≃

m
∑

i=1

NiΦi, (1)

where Ni = Ni(r) and Φi = Φi(t) are the nodal shape functions and the value of potential

function corresponding to the ith node, respectively. The number of degrees of freedom is

m = 2 in 1D problems, m = 3 in a 2D problem using triangular FEM mesh and m = 4 in

a 3D arrangement meshed by tetrahedral elements and the shape functions are linear. The

nodal shape functions can be defined by the relation

Ni =

{

1, at the node i,
0, at other nodes.

(2)

(i) In 1D, the linear shape functions can be build up by

N1 =
x2 − x

x2 − x1

, and N2 =
x− x1

x2 − x1

, (3)
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where x1 and x2 are the coordinates of the boundaries of one finite element. The linear

shape functions are plotted in Fig. 7. It is easy to control the equation (2).

Figure 7. The 1D linear shape functions N1(x) and N2(x).

If the values of the potential are known in the two boundary points x1 and x2, then the

potential can be determined easily inside the finite element x1 ≤ x ≤ x2 as (see Fig. 8)

Φ = N1 Φ1 +N2 Φ2 =
x2 − x

x2 − x1

Φ1 +
x− x1

x2 − x1

Φ2. (4)

Of course, it is valid in the other finite elements as well, e.g. if x2 ≤ x ≤ x3, then

Φ = N1 Φ2 +N2 Φ3 =
x3 − x

x3 − x2

Φ2 +
x− x2

x3 − x2

Φ3, (5)

and N1, N2 are shifted to the second finite element.

The scalar potential is continuous in the whole 1D region. It is noted here that the

accuracy of approximation can be increased by decreasing the length of the elements,

Figure 8. Known potential values are approximated by linear functions.
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especially where the rate of change of the solution is large, e.g. between x3 and x4 in

Fig. 8. Here, the mesh can be very fine and higher order approximation can results in better

solution.

One way to build up higher order shape functions is using Lagrange interpolation

functions, defined by the formula

Ni(x) =
m
∏

j=1, j 6=i

x− xj

xi − xj

. (6)

The order is m− 1 and Ni(x) is equal to one in the node i and equal to zero in all the other

nodes. Here, second and third order approximations are shown.

The second order approximation can be defined by 3 quadratic shape functions (i.e.

m = 3 in (1), see Fig. 9),

N1 =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
, (7)

N2 =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
, (8)

N3 =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
, (9)

and the new point x3 is placed in the center of the element,

x3 =
x1 + x2

2
. (10)

The third order approximation can be defined by 4 cubic shape functions (m = 4 in (1),

see Fig. 10),

N1 =
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x1 − x4)
, (11)

Figure 9. The 1D quadratic shape functions N1(x), N2(x) and N3(x).
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N2 =
(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
, (12)

N3 =
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)
, (13)

N4 =
(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)
, (14)

and the new points x3 and x4 are placed inside the element as

x3 =
1(x1 + x2)

3
, x4 =

2(x1 + x2)

3
. (15)

Figure 10. The 1D cubic shape functions N1(x), N2(x), N3(x) and N4(x).

Figure 11. Known potential values are approximated by quadratic functions.

With this technique, the interpolation functions of any order can be defined and the

equation (2) can be controlled.

Figure 11 shows the higher order approximation of the potential plotted in Fig. 8. This

illustration shows the applicability of higher order functions.
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(ii) 2D linear shape functions can be built up as follows when using a finite element

mesh with triangular finite elements. Linear basis functions can be introduced by using the

so-called barycentric coordinate system in a triangle as follows. The area of a triangle is

denoted by ∆ and it can be calculated as

∆ =
1

2

∣

∣

∣

∣

∣

∣

1 x1 y1
1 x2 y2
1 x3 y3

∣

∣

∣

∣

∣

∣

, (16)

where (x1,y1), (x2,y2) and (x3,y3) are the coordinates of the three nodes of the triangle in

the global coordinate system building an anticlockwise sequence. The area functions (see

Fig. 12) of a given point inside the triangle with coordinates (x,y) can be calculated as

∆1=
1

2

∣

∣

∣

∣

∣

∣

1 x y
1 x2 y2
1 x3 y3

∣

∣

∣

∣

∣

∣

,∆2=
1

2

∣

∣

∣

∣

∣

∣

1 x1 y1
1 x y
1 x3 y3

∣

∣

∣

∣

∣

∣

,∆3=
1

2

∣

∣

∣

∣

∣

∣

1 x1 y1
1 x2 y2
1 x y

∣

∣

∣

∣

∣

∣

, (17)

i.e. ∆1 = ∆1(x,y), ∆2 = ∆2(x,y) and ∆3 = ∆3(x,y) are depending on the coordinates

x and y.

The barycentric coordinates Li = Li(x,y) can be defined by the above area functions as

Li =
∆i

∆
, i = 1,2,3. (18)

Three linear shape functions Ni = Ni(x,y) can be described as

Ni = Li, i = 1,2,3. (19)

The shape function Ni is equal to 1 at the ith node of the triangle and it is equal to zero

at the other two nodes, because ∆i is equal to ∆ at node i and it is equal to zero at the

other two nodes. That is why the relation (2) is satisfied. It is obvious that the three shape

functions are linearly independent.

The linear shape functions Ni (i = 1,2,3) vary linearly over the triangle, because the

fraction ∆i/∆ measures the perpendicular distance of the point (x,y) toward the vertex

opposite to node i as it is illustrated in Fig. 13 and the linear shape function is constant

along such a line. The three linear shape functions are shown in Fig. 14.

If the potential at the nodes is known, then a linear approximation of the potential

function can be represented by (1). The derivative of a first order approximation is zeroth

order, i.e. constant. The magnetic field intensity H , or the magnetic flux density B

are constant within a triangle, if these are obtained from a first order approximation by

H = −∇Φ, or B = ∇×A. This may results in inaccurate solution. This is the reason

why higher order approximations are studied. Here, only the second and the third order

approximations are shown.
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Figure 12. The area function of a triangle.

Figure 13. Fraction ∆i/∆ measures the perpendicular distance of the point (x,y) toward

the vertex opposite to node i (here i = 1).

Higher order shape functions can also be built up by using the barycentric coordinates

L1, L2 and L3 introduced above in (18).
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Figure 14. The 2D linear shape functions N1(x,y), N2(x,y) and N3(x,y).

A polynomial of order n must contain all possible terms xp yq , 0 ≤ p+ q ≤ n, as it is

presented by Pascal’s triangle,

1

x y

x2 xy y2

x3 x2y xy2 y3 · · ·

The first row contains the only one term of the zeroth order polynomials, the second,

third and fourth rows contain the terms of the first, second and third order polynomials.

Pascal’s triangle can be used to generate the elements of a polynomial with given order.

Such a polynomial contains

m =
(n+ 1)(n+ 2)

2
(20)
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elements altogether, i.e. m = 1, m = 3, m = 6 and m = 10 in the case of zeroth, first,

second and third order polynomials. It means that m coefficients must be expressed, finally

m points must be placed within a triangle. Pascal’s triangle can be continued, of course.

The interpolation function of order n can be constructed as

Ni = Pn
I (L1)P

n
J (L2)P

n
K(L3), where I + J +K = n, (21)

and the integers I , J and K label the nodes within the triangle, resulting in a numbering

scheme. Figure 15, Fig. 16 and Fig. 17 illustrate the numbering scheme of the first, the

second and the third order approximations. It is noted that points must be inserted not only

the edges, but inside the triangle, if n > 2.

Figure 15. Numbering scheme for linear element, n = 1.

The polynomials Pn
I (L1), P

n
J (L2) and Pn

K(L3) are defined as

Pn
I (L1) =

I−1
∏

p=0

nL1 − p

I − p
=

1

I!

I−1
∏

p=0

(nL1 − p), if I > 0, (22)

Pn
J (L2) =

J−1
∏

p=0

nL2 − p

J − p
=

1

J !

J−1
∏

p=0

(nL2 − p), if J > 0, (23)

Pn
K(L3) =

K−1
∏

p=0

nL3 − p

K − p
=

1

K!

K−1
∏

p=0

(nL3 − p), if K > 0, (24)

and as a definition

Pn
0 = 1. (25)
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If n = 1, then m = 3, i.e. (see Fig. 15)

N1 = P 1
1 (L1)P

1
0 (L2)P

1
0 (L3) = L1, (26)

N2 = P 1
0 (L1)P

1
1 (L2)P

1
0 (L3) = L2, (27)

N3 = P 1
0 (L1)P

1
0 (L2)P

1
1 (L3) = L3, (28)

since

P 1
1 (Li) =

1−1
∏

p=0

1Li − p

1− p
= Li, (29)

as it was mentioned in (19).

Figure 16. Numbering scheme for quadratic element, n = 2.

Figure 17. Numbering scheme for cubic element, n = 3.
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If n = 2, then m = 6, i.e. (see Fig. 16)

N1 = P 2
2 (L1)P

2
0 (L2)P

2
0 (L3) = L1(2L1 − 1), (30)

N2 = P 2
0 (L1)P

2
2 (L2)P

2
0 (L3) = L2(2L2 − 1), (31)

N3 = P 2
0 (L1)P

2
0 (L2)P

2
2 (L3) = L3(2L3 − 1), (32)

N4 = P 2
1 (L1)P

2
1 (L2)P

2
0 (L3) = 4L1 L2, (33)

N5 = P 2
0 (L1)P

2
1 (L2)P

2
1 (L3) = 4L2 L3, (34)

N6 = P 2
1 (L1)P

2
0 (L2)P

2
1 (L3) = 4L1 L3, (35)

because

P 2
1 (Li) =

1−1
∏

p=0

2Li − p

1− p
= 2Li, (36)

and

P 2
2 (Li) =

2−1
∏

p=0

2Li − p

2− p
=

2Li

2

2Li − 1

1
= Li(2Li − 1). (37)

Figure 18 shows the shape functions N1 and N4. The other shape functions look like these,

N2 and N3 are the same as N1, moreover N5 and N6 are the same as N4, but they must be

rotated to the corresponding nodes.

Figure 18. The 2D quadratic shape functions N1(x,y) and N4(x,y).
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Finally, if n = 3, m = 10, shape functions can be constructed as (see Fig. 19)

N1 = P 3
3 (L1)P

3
0 (L2)P

3
0 (L3) =

1

2
L1(3L1 − 1)(3L1 − 2), (38)

N2 = P 3
0 (L1)P

3
3 (L2)P

3
0 (L3) =

1

2
L2(3L2 − 1)(3L2 − 2), (39)

N3 = P 3
0 (L1)P

3
0 (L2)P

3
3 (L3) =

1

2
L3(3L3 − 1)(3L3 − 2), (40)

N4 = P 3
2 (L1)P

3
1 (L2)P

3
0 (L3) =

9

2
L1(3L1 − 1)L2, (41)

N5 = P 3
1 (L1)P

3
2 (L2)P

3
0 (L3) =

9

2
L2(3L2 − 1)L1, (42)

N6 = P 3
0 (L1)P

3
2 (L2)P

3
1 (L3) =

9

2
L2(3L2 − 1)L3, (43)

N7 = P 3
0 (L1)P

3
1 (L2)P

3
2 (L3) =

9

2
L3(3L3 − 1)L2, (44)

N8 = P 3
1 (L1)P

3
0 (L2)P

3
2 (L3) =

9

2
L3(3L3 − 1)L1, (45)

N9 = P 3
2 (L1)P

3
0 (L2)P

3
1 (L3) =

9

2
L1(3L1 − 1)L3, (46)

N10 = P 3
1 (L1)P

3
1 (L2)P

3
1 (L3) = 27L1 L2 L3, (47)

because

P 3
1 (Li) =

1−1
∏

p=0

3Li − p

1− p
= 3Li, (48)

Figure 19. The 2D cubic shape functions N1(x,y) and N5(x,y).
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P 3
2 (Li) =

2−1
∏

p=0

3Li − p

2− p
=

3Li

2

3Li − 1

1
=

3

2
Li(3Li − 1), (49)

P 3
3 (Li) =

3−1
∏

p=0

3Li − p

3− p
=
3Li

3

3Li − 1

2

3Li − 2

1

=
1

2
Li(3Li − 1)(3Li − 2).

(50)

These functions satisfy the condition (2). Figure 19 shows the shape functions N1 and

N5, as examples. The other shape functions look like these, N2 and N3 are the same as

N1, N4, N6, N7, N8 and N9 look like N5, but they must be imagined at the corresponding

nodes. The shape function N10 is equal to one at the center of mass of the triangle and

equal to zero on the other nine nodes.

The scalar potential along any edge of a triangle is the linear combination of the values

defined in the points of this edge (see Fig. 15, Fig. 16, Fig. 17), so that if two triangles share

the same vertice, the potential will be continuous across the interface element boundary.

This means that the approximate solution is continuous everywhere, however, its normal

derivate is not.

It is easy to see that the 1D shape functions are the same as the functions along the edges

of a triangle.

(iii) 3D linear shape functions can be worked out as follows when using tetrahedral

finite elements. Linear basis functions can be introduced again by using the barycentric

coordinate system. The volume of a tetrahedron is denoted by V and it can be expressed as

V =
1

6

∣

∣

∣

∣

∣

∣

x4 − x1 y4 − y1 z4 − z1
x4 − x2 y4 − y2 z4 − z2
x4 − x3 y4 − y3 z4 − z3

∣

∣

∣

∣

∣

∣

, (51)

where (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) and (x4,y4,z4) are the coordinates of the four

nodes of the tetrahedron as shown in Fig. 20. The volume functions according to a given

point inside the tetrahedron with coordinates (x,y,z) can be calculated as

V1 =
1

6

∣

∣

∣

∣

∣

∣

x4 − x y4 − y z4 − z
x4 − x2 y4 − y2 z4 − z2
x4 − x3 y4 − y3 z4 − z3

∣

∣

∣

∣

∣

∣

, (52)

V2 =
1

6

∣

∣

∣

∣

∣

∣

x4 − x1 y4 − y1 z4 − z1
x4 − x y4 − y z4 − z
x4 − x3 y4 − y3 z4 − z3

∣

∣

∣

∣

∣

∣

, (53)
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Figure 20. The volume functions in a tetrahedron.

V3 =
1

6

∣

∣

∣

∣

∣

∣

x4 − x1 y4 − y1 z4 − z1
x4 − x2 y4 − y2 z4 − z2
x4 − x y4 − y z4 − z

∣

∣

∣

∣

∣

∣

, (54)

V4 =
1

6

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1
x− x2 y − y2 z − z2
x− x3 y − y3 z − z3

∣

∣

∣

∣

∣

∣

. (55)

The barycentric coordinates Li = Li(x,y,z) of a tetrahedron can be formulated as

Li =
Vi

V
, i = 1,2,3,4. (56)

Four linear shape functions Ni = Ni(x,y,z) correspondingly to the four nodes are

Ni = Li, i = 1,2,3,4. (57)

A shape function Ni is equal to 1 at the ith node of the tetrahedron, moreover it is equal to

zero at the other three nodes and it is varying linearly within the tetrahedron, because the

fraction Vi/V measures the perpendicular distance of the point (x,y,z) toward the facet

opposite to node i as it is illustrated in Fig. 21 and the linear shape function is constant

along such a surface. That is why the relation (2) is satisfied. It is obvious that the four

shape functions are linearly independent.
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Figure 21. Fraction Vi/V measures the perpendicular distance of the point (x,y,z) toward

the facet opposite to node i (here i = 3).

The higher order shape functions can be worked out similarly as it was mentioned in the

case of triangular elements. The barycentric coordinates L1, L2, L3 and L4 can be used.

A polynomial of order n must contain all possible terms xp yq zr, 0 ≤ p+ q + r ≤ n and

a polynomial contains

m =
(n+ 1)(n+ 2)(n+ 3)

6
(58)

elements altogether, i.e. m = 1, m = 4, m = 10 and m = 20 in the case of zeroth, first,

second and third order polynomials. It means that m coefficients must be expressed and m
points must be placed within a tetrahedron.

The interpolation function of order n can be constructed as

Ni = Pn
I (L1)P

n
J (L2)P

n
K(L3)P

n
L (L4), where I + J +K + L = n, (59)

where the integers I , J , K and L label the nodes within the tetrahedra, resulting in a

numbering scheme. Figure 22, Fig. 23 and Fig. 24 illustrate the numbering scheme of the

first, the second and the third order approximations.

The polynomials Pn
I (L1), P

n
J (L2), P

n
K(L3) and Pn

L (L4) are defined in the same way

as it was presented in the 2D situation, see definitions (22)–(25).

If n = 1, then m = 4, i.e. (see Fig. 22)

N1 = P 1
1 (L1)P

1
0 (L2)P

1
0 (L3)P

1
0 (L4) = L1, (60)

N2 = P 1
0 (L1)P

1
1 (L2)P

1
0 (L3)P

1
0 (L4) = L2, (61)
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Figure 22. Numbering scheme for linear element, n = 1.

N3 = P 1
0 (L1)P

1
0 (L2)P

1
1 (L3)P

1
0 (L4) = L3, (62)

N4 = P 1
0 (L1)P

1
0 (L2)P

1
0 (L3)P

1
1 (L4) = L4, (63)

since (29) as it was mentioned in (57).

If n = 2, then m = 10, i.e. (see Fig. 23)

N1 = P 2
2 (L1)P

2
0 (L2)P

2
0 (L3)P

2
0 (L4) = L1(2L1 − 1), (64)

N2 = P 2
0 (L1)P

2
2 (L2)P

2
0 (L3)P

2
0 (L4) = L2(2L2 − 1), (65)

Figure 23. Numbering scheme for quadratic element, n = 2.
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N3 = P 2
0 (L1)P

2
0 (L2)P

2
2 (L3)P

2
0 (L4) = L3(2L3 − 1), (66)

N4 = P 2
0 (L1)P

2
0 (L2)P

2
0 (L3)P

2
2 (L4) = L4(2L4 − 1), (67)

N5 = P 2
1 (L1)P

2
1 (L2)P

2
0 (L3)P

2
0 (L4) = 4L1 L2, (68)

N6 = P 2
0 (L1)P

2
1 (L2)P

2
1 (L3)P

2
0 (L4) = 4L2 L3, (69)

N7 = P 2
1 (L1)P

2
0 (L2)P

2
1 (L3)P

2
0 (L4) = 4L1 L3, (70)

N8 = P 2
1 (L1)P

2
0 (L2)P

2
0 (L3)P

2
1 (L4) = 4L1 L4, (71)

N9 = P 2
0 (L1)P

2
0 (L2)P

2
1 (L3)P

2
1 (L4) = 4L3 L4, (72)

N10 = P 2
0 (L1)P

2
1 (L2)P

2
0 (L3)P

2
1 (L4) = 4L2 L4, (73)

because (36) and (37).

Finally, if n = 3, m = 20 shape functions can be constructed as (see Fig. 24)

N1 = P 3
3 (L1)P

3
0 (L2)P

3
0 (L3)P

3
0 (L4) =

1

2
L1(3L1 − 1)(3L1 − 2), (74)

N2 = P 3
0 (L1)P

3
3 (L2)P

3
0 (L3)P

3
0 (L4) =

1

2
L2(3L2 − 1)(3L2 − 2), (75)

N3 = P 3
0 (L1)P

3
0 (L2)P

3
3 (L3)P

3
0 (L4) =

1

2
L3(3L3 − 1)(3L3 − 2), (76)

N4 = P 3
0 (L1)P

3
0 (L2)P

3
0 (L3)P

3
3 (L4) =

1

2
L4(3L4 − 1)(3L4 − 2), (77)

N5 = P 3
2 (L1)P

3
1 (L2)P

3
0 (L3)P

3
0 (L4) =

9

2
L1(3L1 − 1)L2, (78)

Figure 24. Numbering scheme for cubic element, n = 3.
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N6 = P 3
1 (L1)P

3
2 (L2)P

3
0 (L3)P

3
0 (L4) =

9

2
L2(3L2 − 1)L1, (79)

N7 = P 3
0 (L1)P

3
2 (L2)P

3
1 (L3)P

3
0 (L4) =

9

2
L2(3L2 − 1)L3, (80)

N8 = P 3
0 (L1)P

3
1 (L2)P

3
2 (L3)P

3
0 (L4) =

9

2
L3(3L3 − 1)L2, (81)

N9 = P 3
1 (L1)P

3
0 (L2)P

3
2 (L3)P

3
0 (L4) =

9

2
L3(3L3 − 1)L1, (82)

N10 = P 3
2 (L1)P

3
0 (L2)P

3
1 (L3)P

3
0 (L4) =

9

2
L1(3L1 − 1)L3, (83)

N11 = P 3
1 (L1)P

3
0 (L2)P

3
0 (L3)P

3
2 (L4) =

9

2
L4(3L4 − 1)L1, (84)

N12 = P 3
2 (L1)P

3
0 (L2)P

3
0 (L3)P

3
1 (L4) =

9

2
L1(3L1 − 1)L4, (85)

N13 = P 3
0 (L1)P

3
1 (L2)P

3
0 (L3)P

3
2 (L4) =

9

2
L4(3L4 − 1)L2, (86)

N14 = P 3
0 (L1)P

3
2 (L2)P

3
0 (L3)P

3
1 (L4) =

9

2
L2(3L2 − 1)L4, (87)

N15 = P 3
0 (L1)P

3
0 (L2)P

3
1 (L3)P

3
2 (L4) =

9

2
L4(3L4 − 1)L3, (88)

N16 = P 3
0 (L1)P

3
0 (L2)P

3
2 (L3)P

3
1 (L4) =

9

2
L3(3L3 − 1)L4, (89)

N17 = P 3
1 (L1)P

3
1 (L2)P

3
1 (L3)P

3
0 (L4) = 27L1 L2 L3, (90)

N18 = P 3
1 (L1)P

3
1 (L2)P

3
0 (L3)P

3
1 (L4) = 27L1 L2 L4, (91)

N19 = P 3
1 (L1)P

3
0 (L2)P

3
1 (L3)P

3
1 (L4) = 27L1 L3 L4, (92)

N20 = P 3
0 (L1)P

3
1 (L2)P

3
1 (L3)P

3
1 (L4) = 27L2 L3 L4, (93)

because of the equations (48), (49) and (50).

The scalar potential along any edge of a tetrahedron is the linear combination of the

values defined on the points of the given edge, so that if two tetrahedra share the same facet,

the potential will be continuous across this interface. This means that the approximate

solution is continuous everywhere, however, its normal derivate is not.

If potentials at the nodes are known, then a linear approximation of the potential function

can be represented by (1).

The sum of all nodal shape functions is equal to 1, hence the sum of their gradient is

zero,
m
∑

i=1

Ni = 1, and

m
∑

i=1

∇Ni = 0. (94)
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This means that the maximal number of linearly independent nodal basis functions is m
and the maximal number of linearly independent gradients of the nodal basis functions is

m− 1, i.e. shape functions are linearly independent but their gradients are not.

2.2. Edge finite elements

Vector potentials can be represented either by nodal shape functions or by so-called edge

shape functions. Edge shape functions are also called vector shape functions.

The natural approach is to treat the vector field T = T (r,t) as two or three coupled

scalar fields Tx = Tx(r,t), Ty = Ty(r,t) and Tz = Tz(r,t), i.e.

T = Txex + Tyey, (95)

and

T = Txex + Tyey + Tzez (96)

in 2D and in 3D situations, respectively, ex, ey and ez are the orthogonal unit vectors in

the x− y and in the x− y − z plane.

Nodal shape functions can be used in this case as well, as it was presented for scalar

potentials in the previous section, however, each node has two or three unknowns. Nodal

shape functions can be applied to approximate the scalar components of the vector field T .

For example in 3D, T can be approximated as

T ≃

m
∑

i=1

Ni (Tx,i ex + Ty,i ey + Tz,i ez)

=

m
∑

i=1

NiTx,i ex +

m
∑

i=1

NiTy,i ey +

m
∑

i=1

NiTz,i ez.

(97)

Here Ni = Ni(r) are the usual nodal shape functions defined by (2) and Tx,i = Tx,i(t),
Ty,i = Ty,i(t), Tz,i = Tz,i(t) are the values of components of the approximated vector

potential at node i. The number of degrees of freedom is 2m in a 2D problem using

triangular mesh and 3m in a 3D arrangement meshed by tetrahedral elements.

Nodal shape functions are used to approximate gauged vector potentials, which was the

first in the history of finite element method in electromagnetics. Unfortunately, there are

some problems when the usual nodal based finite elements are used to interpolate vector

potentials. The lack of enforcement of the divergence condition (lack of gauging) results in

a system of algebraic equations, which has infinite number of solution and the application

of iterative solvers sometimes fails. We have to take care about the Coulomb gauge.

There are problems on the iron/air interface when using the magnetic vector potential

approximated by nodal elements and extra interface conditions must be set up to solve this

problem.
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Fortunately, vector shape functions have been developed in the last decades, which

application in static and eddy current field problems is more and more popular, because of

their advantages. The use of edge shape functions solves the problems described above. It

will be shown that the divergence of vector shape functions is equal to zero, that is why,

gauging is satisfied automatically. The ungauged potential functions are approximated by

vector elements. Vector shape functions are usually called edge shape functions, because

they are associated to the edges of the FEM mesh. Vector shape functions are more and

more popular in wave problems, too.

Instead of scalar shape functions, vector shape functions (or edge shape functions)

W i = W i(r) can be applied to approximate a vector potential T ,

T ≃
k
∑

i=1

W i Ti, (98)

where Ti = Ti(t) is the line integral of the vector potential T along the edge i. First order

vector shape functions are defined by the line integral

∫

l

W i · dl =

{

1, along edge i,
0, along other edges,

(99)

i.e. the line integral of the vector shape function W i along the ith edge is equal to one. In

other words, the vector shape function W i has tangential component only along the ith

edge and it has only normal component along the other edges, because W i · dl is equal

to zero only if the vectors W i and dl are perpendicular to each others and |W i||dl| > 0.

Moreover, in 3D case, the vector shape function W i has zero tangential component along

every facet of the 3D finite element, which not share the edge i.

If two triangles share the same vertices, the tangential component of the approximated

vector potential will be continuous across the interface element boundary. This is true in 3D

case as well, moreover, if two tetrahedra share the same facet, the tangential component of

the vector potential will be continuous across this interface. This means that the tangential

component of the approximate solution is continuous everywhere, however, its normal

component is not. In the words of equations, according to the definition (99), the line

integral of the vector potential along the mth edge is equal to Tm, i.e.

∫

lm

T · dl =

∫

lm

(

k
∑

i=1

W i Ti

)

· dl =

k
∑

i=1

∫

lm

(W i Ti) · dl

=Tm

∫

lm

Wm · dl = Tm.

(100)
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That is why, edge shape functions are also called tangentially continuous shape functions.

The gradients of the nodal shape functions are in the function space spanned by the edge

basis functions, that is

∇Nj =

k
∑

i=1

cjiW i, j = 1, · · · ,m− 1, (101)

where
∑k

i=1
c2ji > 0. Taking the curl of each equation in (101) results in

k
∑

i=1

cji∇×W i = 0, j = 1, · · · ,m− 1, (102)

because ∇ × (∇ϕ) ≡ 0. This shows that the maximal number of linearly independent

curls of the edge basis functions is k − (m − 1). The interdependence of the curls of

the edge basis functions means that an ungauged formulation leads to a singular, positive

semidefinit finite element curl-curl matrix. Singular systems can be solved by iterative

methods, if the right-hand side of the system of equations is consistent. We took care about

it when obtaining the weak formulations of the ungauged version of potentials, because

excitation current density has been taken into account by the use of impressed current

vector potential, T 0.

The vector function

wij = Li∇Lj − Lj∇Li (103)

will be applied to construct the edge shape functions, because it can be used in functions,

which satisfies (99) and (100). In 2D, Li (i = 1,2,3) are the barycentric coordinates of

the triangle defined by (18). In 3D, Li (i = 1,2,3,4) are the barycentric coordinates of

Figure 25. The definition of edges with local directions of the triangular finite element.
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Figure 26. The definition of edges with local directions of the tetrahedral finite element.

the tetrahedron defined by (56). According to the notations in (103), the edges of a finite

element are pointing from node i to node j, as it can be seen in Fig. 25 and in Fig. 26.

The vector field wij has the following important properties, which proofs the use of

vector function wij as vector shape function.

(i) Let eij is a unit vector pointing from node i to node j, then

eij ·wij =
1

lij
, (104)

where lij is the length of edge {i,j}. This means that wij has constant tangential

component along the edge {i,j}.

Since Li and Lj are linear functions that vary from node i to node j from 1 to 0 and

from 0 to 1, respectively, we have eij · ∇Li = −1/lij and eij · ∇Lj = 1/lij , finally

eij ·wij = Li

1

lij
+ Lj

1

lij
=

Li + Lj

lij
=

1

lij
, (105)

because Li + Lj = 1 along the edge {i,j}. See, for example Fig. 14 and let i = 1,

j = 2, so N1 = L1 is decreasing along edge {1,2} and N2 = L2 is increasing

along the same edge. See also Fig. 7, from which it is easy to see the gradients

eij · ∇Li = −1/lij and eij · ∇Lj = 1/lij .
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(ii) In 2D, the function Li varies linearly from node i to the opposite edge {j,k} (see e.g.

N1 in Fig. 14, i = 1, j = 2, k = 3), i.e. the vector field ∇Li is perpendicular to this

edge, but Li is zero there, that is why wij is perpendicular to the edge {j,k},

wij = −Lj∇Li, on the edge {j,k}, (106)

and the length of this vector is decreasing from node j to k according to Lj . On the

other hand, the function Lj varies linearly from node j to the opposite edge {k,i}
(see N2 in Fig. 14), i.e. ∇Lj is perpendicular to this edge, but Lj is zero there and

wij is perpendicular to the edge {k,i},

wij = Li∇Lj , on the edge {k,i}, (107)

and the length of this vector is decreasing from node i to k according to Li.

This with item (i) means that the vector function wij has tangential component only

on the edge {i,j} and it is perpendicular to the other edges.

In 3D, this is valid to the whole triangular facet with the bounding edges opposite to a

node, see e.g. Fig. 21.

(iii) The vector field wij is divergence-free,

∇ ·wij=∇·(Li∇Lj−Lj∇Li)=∇·(Li∇Lj)−∇ · (Lj∇Li)

=∇Li ·∇Lj + Li∇·∇Lj −∇Lj ·∇Li − Lj∇·∇Li=0,
(108)

by using the identity

∇ · (ϕv) = ∇ϕ · v + ϕ∇ · v (109)

with the notations ϕ = Li, v = ∇Lj in the second and ϕ = Lj , v = ∇Li in the last

term. The barycentric coordinates are linear functions of the coordinates and their

gradient is constant, which divergence is equal to zero, i.e. the second and fourth

terms are vanishing. The first and the third terms are equal, finally, ∇ ·wij = 0.

(iv) The vector field wij has constant curl,

∇×wij=∇×(Li∇Lj−Lj∇Li)=∇·(Li∇Lj)−∇·(Lj∇Li)

=Li∇×∇Lj−∇Lj×∇Li−Lj∇×∇Li +∇Li×∇Lj

=2∇Li ×∇Lj ,

(110)

by using the identity
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∇× (ϕv) = ϕ∇× v − v ×∇ϕ (111)

with the notations ϕ = Li, v = ∇Lj in the first and ϕ = Lj , v = ∇Li in the second

term. The first and the third terms are equal to zero because of the identity ∇×∇ϕ ≡ 0
for any function ϕ. The second term can be reformulated by a× b = −b×a, finally,

the result is constant, because the gradients of the barycentric coordinates are constant.

First, the edge shape functions defined on triangles based on (103) are collected. The

basic 2D vector shape functions W i can be constructed by using the first order nodal

shape functions,

W 1 = l1(N1∇N2 −N2∇N1)δ1, (112)

W 2 = l2(N2∇N3 −N3∇N2)δ2, (113)

W 3 = l3(N3∇N1 −N1∇N3)δ3. (114)

Here li (Fig. 25) denotes the length of the ith edges of the triangle and it is used to normalize

the edge shape function according to (104). The edge basis function W i (i = 1,2,3) has

tangential component only along the ith edge and it is perpendicular to the other two

edges as represented in Fig. 27(a)-27(c). It is easy to see that an edge shape function has

magnitude and direction. The value of δi is equal to ±1, depending on whether the local

direction of the edge is the same as the global direction or opposite (see Fig. 25 for local

direction). This set of vector functions is called zeroth order vector shape functions.

If the approximation of the vector function T is known along the edges of the mesh,

then (98) can be used to interpolate the function anywhere and in linear case K = 3.

Higher order vector shape functions can be constructed by using the vector function wij

defined by (103), too. This vector function must be multiplied by a complete interpolatory

polynomial, which results in the higher order vector shape functions. First and second

order polynomials will be used to build up first and second order vector shape functions.

Here, we follow, the method is as follows.

First of all, an indexing sequence must be set up, which is similar to the method used to

build up the scalar shape functions, because the higher order vector shape functions are

based on the Lagrange polynomials and (103). In the case of first order approximation,

the numbering scheme of the third order scalar interpolation can be used and the points

are shown in Fig. 28, Fig. 29 and Fig. 30 must be used to represent first order vector

shape functions associated to the edge {1,2}, {2,3} and {3,1}, respectively. In the case of

second order approximation, the numbering scheme of the fourth order scalar interpolation

can be used and the interpolation points shown in Fig. 31, Fig. 32 and Fig. 33 must be

used to represent second order vector shape functions associated to the edge {1,2}, {2,3}
and {3,1}, respectively. The interpolation points have been selected in this special way,

because the interpolation of field vectors along vertices has been avoided, i.e. the points

have been shifted inside the triangle and the indexing scheme of order n + 2 is used to

represent the vector interpolation of order n. This is called global numbering and denoted

374



M. Kuczmann – Acta Technica Jaurinensis, Vol.8., No.4., pp. 347–383, 2015

(a) The edge shape function W 1

(b) The edge shape function W 2

(c) The edge shape function W 3

Figure 27. The 2D edge shape functions.

375



M. Kuczmann – Acta Technica Jaurinensis, Vol.8., No.4., pp. 347–383, 2015

Figure 28. Numbering scheme for the first order vector element associated with w12.

Figure 29. Numbering scheme for the first order vector element associated with w23.

Figure 30. Numbering scheme for the first order vector element associated with w31.

by (I,J,K) on the ’big’ triangle, local numbering means the numbering scheme with the

real order (i,j,k) defined over the ’small’ triangle.
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Figure 31. Numbering scheme for the second order vector element associated with w12.

Figure 32. Numbering scheme for the second order vector element associated with w23.

Figure 33. Numbering scheme for the second order vector element associated with w31.

It is noted here that the COMSOL Multiphysics software uses this kind of vector shape

functions, however, n = 0, n = 1 and n = 2 are named as linear, quadratic and cubic

vector shape functions.
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The vector function wab (associated to the edge pointing from node a to node b) can be

multiplied by the Lagrange polynomials as

W
IJK
ab = αIJK

ab Pn
i (l1)P

n
j (l2)P

n
k (l3)wab, (115)

where n is the order of approximation and the integers i, j and k satisfy i + j + k = n
(see the small triangles in Fig. 28-Fig. 33).

If n = 0, the basic vector shape functions can be obtained, because P 0
m(·) = 1 and α

can be selected as the length of the appropriate edge, lab, since αIJK
ab is a normalizing

factor. The barycentric coordinates l1, l2 and l3 are imagined in the small triangles. The

transformation between local and global numbering is as follows:

i = I − 1, j = J − 1, k = K, on the edge {1,2}, (116)

i = I, j = J − 1, k = K − 1, on the edge {2,3}, (117)

i = I − 1, j = J, k = K − 1, on the edge {3,1}. (118)

The relation between the barycentric coordinates of the small and the big triangles is as

follows:

l1 = L1

n+ 2

n
, l2 = L2

n+ 2

n
−

1

n
, l3 = L3

n+ 2

n
−

1

n
. (119)

Using these relations, (115) can be written as (let here {ab} = {23} for simplicity)

W
IJK
23 = αIJK

23 Pn
I

(

L1

n+ 2

n

)

Pn
J−1

(

L2

n+ 2

n
−

1

n

)

Pn
K−1

(

L3

n+ 2

n
−

1

n

)

w23.

(120)

According to (22), Lagrange polynomials can be reformulated as

Pn
I

(

L1

n+ 2

n

)

=
1

I!

I−1
∏

p=0

(

nL1

n+ 2

n
− p

)

=
1

I!

I−1
∏

p=0

[(n+ 2)L1 − p] = Pn+2

I (L1) , if I > 0,

(121)
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and

Pn
J−1

(

L2

n+ 2

n
−

1

n

)

=
1

(J − 1)!

J−2
∏

p=0

[

n

(

L2

n+ 2

n
−

1

n

)

− p

]

=
1

(J − 1)!

J−2
∏

p=0

[(n+ 2)L2 − 1− p]

=
1

(J − 1)!

J−2
∏

p=0

[

(n+ 2)

(

L2 −
1

n+ 2

)

− p

]

=Pn+2

J−1

(

L2 −
1

n+ 2

)

, if J > 1.

(122)

The so-called shifted Silvester polynomials can be used to simplify the relations above,

Sn+2

J (L2) = Pn+2

J−1

(

L2 −
1

n+ 2

)

=
1

(J − 1)!

J−1
∏

p=0

[(n+ 2)L2 − p] . (123)

Finally, the higher order vector shape functions can be formulated as follows by using

the Lagrange and Silvester polynomials:

W
IJK
12 = αIJK

12 Sn+2

I (L1)S
n+2

J (L2)P
n+2

K (L3)w12, (124)

W
IJK
23 = αIJK

23 Pn+2

I (L1)S
n+2

J (L2)S
n+2

K (L3)w23, (125)

W
IJK
31 = αIJK

31 Sn+2

I (L1)P
n+2

J (L2)S
n+2

K (L3)w31. (126)

The parameter denoted by α is a normalization factor, which must have the value such that

the line integral of vector shape function W
IJKL
ab is equal to 1 on the edge pointing from

node a to node b. Here,

Pn
0 (·) = 1, and Sn

1 (·) = 1. (127)

The number of vector basis functions is

k = (n+ 1)(n+ 3). (128)

There is one shape function associated with the introduced interpolation nodes on the

edges. It means 3(n+ 1) basis functions. There are three basis functions for an interior

interpolation point, because every interpolation point inside the triangle is used to build

all the vector shape functions in the three edges. Since a surface vector has only two

degrees of freedom, these three basis functions are not independent and one of them must

be discarded. This results in n(n + 1) interior basis functions. In total, the number of

shape functions is 3(n+ 1) + n(n+ 1) = (n+ 3)(n+ 1).
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In the case of first order approximation n = 0 and k = 3. In the case of second order

approximation n = 1 and K = 8. In the case of third order approximation n = 2 and

k = 15 and so on.

The first order vector shape functions are as follows:

W 1=W
120
12 = α120

12 S3
1(L1)S

3
2(L2)P

3
0 (L3)w12= α120

12 (3L2 − 1)w12, (129)

W 2=W
210
12 = α210

12 S3
2(L1)S

3
1(L2)P

3
0 (L3)w12= α210

12 (3L1 − 1)w12, (130)

W 3=W
111
12 = α111

12 S3
1(L1)S

3
1(L2)P

3
1 (L3)w12= α111

12 3L3 w12, (131)

W 4=W
012
23 = α012

23 P 3
0 (L1)S

3
1(L2)S

3
2(L3)w23= α012

23 (3L3 − 1)w23, (132)

W 5=W
021
23 = α021

23 P 3
0 (L1)S

3
2(L2)S

3
1(L3)w23= α021

23 (3L2 − 1)w23, (133)

W 6=W
102
31 = α102

31 S3
1(L1)P

3
0 (L2)S

3
2(L3)w31= α102

31 (3L3 − 1)w31, (134)

W 7=W
201
31 = α201

31 S3
2(L1)P

3
0 (L2)S

3
1(L3)w31= α201

31 (3L1 − 1)w31, (135)

W 8=W
111
31 = α111

31 S3
1(L1)P

3
1 (L2)S

3
1(L3)w31= α111

31 3L2 w31. (136)

The second order vector shape functions are as follows using (124)–(127):

W 1 = W
310
12 = α310

12 S4
3(L1)S

4
1(L2)P

4
0 (L3)w12

= α310
12

1

2
(4L1 − 1)(4L1 − 2)w12,

(137)

W 2 = W
220
12 = α220

12 S4
2(L1)S

4
2(L2)P

4
0 (L3)w12

= α220
12 (4L1 − 1)(4L2 − 1)w12,

(138)

W 3 = W
130
12 = α130

12 S4
1(L1)S

4
3(L2)P

4
0 (L3)w12

= α130
12

1

2
(4L2 − 1)(4L2 − 2)w12,

(139)

W 4 = W
211
12 = α211

12 S4
2(L1)S

4
1(L2)P

4
1 (L3)w12

= α211
12 (4L1 − 1)4L3 w12,

(140)

W 5 = W
121
12 = α121

12 S4
1(L1)S

4
2(L2)P

4
1 (L3)w12

= α121
12 (4L2 − 1)4L3 w12,

(141)

W 6 = W
031
23 = α031

23 P 4
0 (L1)S

4
3(L2)S

4
1(L3)w23

= α031
23

1

2
(4L2 − 1)(4L2 − 2)w23,

(142)

W 7 = W
022
23 = α022

23 P 4
0 (L1)S

4
2(L2)S

4
2(L3)w23

= α022
23 (4L2 − 1)(4L3 − 1)w23,

(143)
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W 8 = W
013
23 = α013

23 P 4
0 (L1)S

4
1(L2)S

4
3(L3)w23

= α013
23

1

2
(4L3 − 1)(4L3 − 2)w23,

(144)

W 9 = W
121
23 = α121

23 P 4
1 (L1)S

4
2(L2)S

4
1(L3)w23

= α121
23 (4L1)(4L2 − 1)w23,

(145)

W 10 = W
112
23 = α112

23 P 4
1 (L1)S

4
1(L2)S

4
2(L3)w23

= α112
23 (4L1)(4L3 − 1)w23,

(146)

W 11 = W
103
31 = α103

31 S4
1(L1)P

4
0 (L2)S

4
3(L3)w31

= α103
31

1

2
(4L3 − 1)(4L3 − 2)w31,

(147)

W 12 = W
202
31 = α202

31 S4
2(L1)P

4
0 (L2)S

4
2(L3)w31

= α202
31 (4L1 − 1)(4L3 − 1)w31,

(148)

W 13 = W
301
31 = α301

31 S4
3(L1)P

4
0 (L2)S

4
1(L3)w31

= α301
31

1

2
(4L1 − 1)(4L1 − 2)w31,

(149)

W 14 = W
112
31 = α112

31 S4
1(L1)P

4
1 (L2)S

4
2(L3)w31

= α112
31 (4L2)(4L3 − 1)w31,

(150)

W 15 = W
211
31 = α211

31 S4
2(L1)P

4
1 (L2)S

4
1(L3)w31

= α211
31 (4L2)(4L1 − 1)w31.

(151)

The vector shape functions in 3D can be constructed as the extension of the above

presented 2D realization. Three-dimensional zeroth order edge shape functions can be

constructed as,

W 1 = l1(N1∇N2 −N2∇N1)δ1, (152)

W 2 = l2(N2∇N3 −N3∇N2)δ2, (153)

W 3 = l3(N3∇N1 −N1∇N3)δ3, (154)

W 4 = l4(N1∇N4 −N4∇N1)δ4, (155)

W 5 = l5(N2∇N4 −N4∇N2)δ5, (156)

W 6 = l6(N3∇N4 −N4∇N3)δ6. (157)

Here li (Fig. 26) is the length of the edges and it is used to normalize the edge shape

function according to (104). The value of δi is also equal to ±1 depending on whether

the local direction of the edge is the same as the global direction or opposite. The edge

definition employed in my analysis can be seen in Fig. 26.
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If the approximation of the vector function T is known along the edges of the mesh,

then (98) can be used to interpolate the function anywhere and in linear case k = 6.

To construct higher order vector basis functions, the points of interpolation polynomials

are arranged in a pyramid format to build an applicable numbering scheme (I,J,K,L)
and I,J,K,L = 0,1, · · · ,n + 2, where n is the order of the element. The illustration of

numbering scheme in 3D is not easy, but it can be construct as follows. Let us imagine the

same numbering scheme on the triangular facets of the tetrahedron as in Fig. 31-Fig. 33

and the integers I , J , K and L can be set up according to the facets.

The vector shape functions of order n are given as,

W
IJKL
12 = αIJKL

12 Sn+2

I (L1)S
n+2

J (L2)P
n+2

K (L3)P
n+2

L (L4)w12, (158)

W
IJKL
23 = αIJKL

23 Pn+2

I (L1)S
n+2

J (L2)S
n+2

K (L3)P
n+2

L (L4)w23, (159)

W
IJKL
31 = αIJKL

31 Sn+2

I (L1)P
n+2

J (L2)S
n+2

K (L3)P
n+2

L (L4)w31, (160)

W
IJKL
14 = αIJKL

14 Sn+2

I (L1)P
n+2

J (L2)P
n+2

K (L3)S
n+2

L (L4)w14, (161)

W
IJKL
24 = αIJKL

24 Pn+2

I (L1)S
n+2

J (L2)P
n+2

K (L3)S
n+2

L (L4)w24, (162)

W
IJKL
34 = αIJKL

34 Pn+2

I (L1)P
n+2

J (L2)S
n+2

K (L3)S
n+2

L (L4)w34. (163)

The parameters denoted by α are normalization factors, which must have the value such

that the line integral of the vector shape function W
IJKL
ab is equal to 1 on the edge pointing

from node a to node b.

The number of edge shape functions when defining the nth order family is

k =
(n+ 1)(n+ 3)(n+ 4)

2
. (164)

For each interpolation point on the edge, there is one corresponding vector shape function,

which means 6(n+ 1) functions. For each interpolation point on the face of a tetrahedron

there are three vector functions, but one of them is depending on the other two and it

must be discarded, finally there are 4n(n+ 1) vector shape functions defined on the four

facets. For each interpolation points inside the element there are six basis functions. A

3D vector has only three degree of freedom, that is why three vector basis functions must

be discarded resulting in n(n − 1)(n + 1)/2 vector basis functions. Totally, there are

6(n + 1) + 4n(n + 1) + n(n − 1)(n + 1)/2 = (n + 1)(n + 3)(n + 4)/2 vector shape

functions. There are k = 6, k = 20 and k = 45 shape functions for n = 0, n = 1 and

n = 2, respectively.

As an example, the following vector shape functions can be set up when n = 1,

W
2100
12 , W

1200
12 , W

0210
23 , W

0120
23 , W

1020
31 , W

2010
31 , W

2001
14 , W

1002
14 , W

0201
24 , W

0102
24 ,

W
0021
34 , W 0012

34 , W 1110
12 , W 1110

31 , W 1011
14 , W 1011

34 , W 0111
23 , W 0111

24 , W 1101
12 , W 1101

24 .

382



M. Kuczmann – Acta Technica Jaurinensis, Vol.8., No.4., pp. 347–383, 2015

References
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