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Abstract. Current climate models are complex computer programs that
are typically iterated time-step by time-step to predict the next set of
values of the climate-related variables. Since these iterative methods are
necessarily computed only for a fixed number of iterations, they are un-
able to answer the natural question whether there is a limit to the rise of
global temperature. In order to answer that question we propose to com-
bine climate models with software verification techniques that can find
invariant conditions for the set of program variables. In particular, we ap-
ply the constraint database approach to software verification to find that
the rise in global temperature is bounded according to the common Java
Climate Model that implements the Wigley/Raper Upwelling-Diffusion
Energy Balance Model climate model.

1 Introduction

The ability to predict climate change, which has potentially a huge impact on
life on earth, is affecting the legislation of countries and their mitigation efforts
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around the world [8]. The predictions of the impacts of climate change rely
heavily on the simulations of global climate models. Regional climate models
offer a finer level of detail than the global climate models, and are sometimes
used to determine the impact of climate on smaller regions. Climate models are
calibrated using historical weather data. The model scenarios have been stan-
dardized by the Intergovernmental Panel on Climate Change (IPCC), which
was established in 1988 by the World Meteorological Organization and the
United Nations Environment Programme.

The IPCC used several global climate models in its Third Assessment Report
(TAR) [8] and its successor the Fourth Assessment Report (AR4) [2]. The
TAR and AR4 assessment reports continue to be updated to include new
information and research conducted since their dates. Chapter 9 of [8] defines
that climate change simulations are to be assessed over the period from 1990
to 2100.

Current climate models, including the ones in TAR and AR4 [8, 2], are com-
puter programs that use iterative methods to compute the values of climate
variables, such as the rise in global average temperature above a baseline year,
one year at a time for a fixed number of iterations. The computer programs
become nonterminating when we drop the restriction of a fixed number of
iterations. Nevertheless, we need to drop the restriction of a fixed number of
iterations if we want to ask some of the most basic questions about climate
change, such as ”Will the global average temperature rise without a bound?”
Saying that under a certain scenario of carbon emissions, the global aver-
age temperature will rise only one degree during the next twenty-five, fifty or
seventy-five years is not satisfying. Our generation cannot claim to have found
a sustainable, long-term solution, even a model of a solution, to the problem of
climate change if the global average temperature rise cannot be bounded. The
goal of this paper is to determine if there is a maximum invariant value for the
global average temperature change from a baseline using software verification
techniques.

This paper is organized as follows. Section 2 reviews some basic concepts,
including the constraint database approach to software verification and the
Java Climate Model used by the IPCC. Section 3 describes the climate model’s
implementation in the MLPQ constraint database system. Section 4 discusses
the implications of the results. Section 5 summarizes related work. Finally,
Section 6 gives some conclusions and future work.
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2 Basic concepts

Next we review some concepts of the constraint database approach to software
verification [16] and on climate models [8, 2].

2.1 Addition-bound matrixes or ABMs

Addition-bound matrixes, or ABMs, are designed to represent a set or con-
junction of addition constraints and (lower and upper) bound constraints.
The following definitions are based on the standard textbook description by
Revesz [17].

Any set of addition, lower bound and upper bound constraints over the
variables V = {x1, . . . , xn} is representable by a set of difference constraints
over variables V+ = {x+1 , x

−
1 , . . . , x

+
n , x

−
n }. Note that in the difference constraint

representation each variable xi has two forms, namely a positive one, which
is denoted by x+i and a negative one, which is denoted by x−i . Here the first
form is equivalent to xi, while the second form is equivalent to −xi. The logical
equivalences shown below explain the rewriting of the constraints over V into
constraints over V+.

−x ≥ b ≡ x− − x+ ≥ 2b

x ≥ b ≡ x+ − x− ≥ 2b

x− y ≥ b ≡ x+ − y+ ≥ b

x+ y ≥ b ≡ x+ − y− ≥ b

−x− y ≥ b ≡ x− − y+ ≥ b

−x+ y ≥ b ≡ x− − y− ≥ b

After applying the above rewriting rules, it may happen that we have two
constraints x − y ≥ b and x − y ≥ c. Suppose without loss of generality that
b > c. Then x − y ≥ c can be deleted because it is implied by x − y ≥ b.
After similarly deleting all constraints that are implied by other constraints,
for each pair of variables x and y, there can be only one difference constraint
with x− y on the left side.

Therefore any set of addition, lower bound and upper bound constraints
over V is representable by an ABM A with rows and columns labeled by the
elements of V+. Further, the A[i, j] entry of this ABM contains the right side
constant of the difference constraint associated with the ith row and the jth
column labels.

Next we show on an example set of constraints how it can be rewritten into
an ABM. Suppose we have:

−x ≥ −25, y ≥ 3, x− y ≥ 4, x+ y ≥ 10, − x− y ≥ −40
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then by using the above rewriting rules and simplifications, it can be repre-
sented by the following set of difference constraints:

x− − x+ ≥ −50, y+ − y− ≥ 6, x+ − y+ ≥ 4, x+ − y− ≥ 10, x− − y+ ≥ −40

Finally, the ABM A below can represent the above set of difference constraints.

x+ x− y+ y−

x+ −∞ −∞ 4 10

x− −50 −∞ −40 −∞
y+ −∞ −∞ −∞ 6

y− −∞ −∞ −∞ −∞
2.2 Operations on ABMs

Below we review the main ABM operators [17] that are used in later sections.

Definition 1 Given two ABMs A and B, the minimum of A and B, denoted
by A∨ B, is:

[A∨ B] [i, j] =

{
A[i, j] if A[i, j] ≤ B[i, j]
B[i, j] if B[i, j] < A[i, j]

}
Definition 2 Given two ABMs A and B, the widening of A and B, denoted
by AOB, is:

[AOB] [i, j] =

{
A[i, j] if A[i, j] ≤ B[i, j]
−∞ if B[i, j] < A[i, j]

}
Definition 3 D is a domain of an ABM A if each entry A[i, j] ∈ D. When
for some integer constants l and u each A[i, j] is greater than or equal to l and
less than or equal to u or is equivalent to −∞, then {−∞}∪{l, l+1, . . . , u−1, u}

is a domain of A.

Definition 4 Let l < 0 and u > 0 be two integer numbers and let A be an
ABM with domain {−∞}∪ {l, l+ 1, . . . , u− 1, u}. Given also another ABM B,
the l-u-widening of A by B, denoted by A♦l,uB, is:

[A♦l,uB] [i, j] =


A[i, j] if A[i, j] ≤ B[i, j]
B[i, j] if l ≤ B[i, j] < A[i, j]
−∞ if B[i, j] < l ≤ A[i, j]
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Example 5 (Revesz [17]) Consider again A at the end of Section 2.1 and
also the following ABM B:

x+ x− y+ y−

x+ −∞ −∞ 15 10

x− −60 −∞ −∞ −∞
y+ −∞ 7 −∞ 2

y− −∞ −∞ −∞ −∞
Here A∨ B is:

x+ x− y+ y−

x+ −∞ −∞ 4 10

x− −60 −∞ −∞ −∞
y+ −∞ −∞ −∞ 2

y− −∞ −∞ −∞ −∞
and AOB is:

x+ x− y+ y−

x+ −∞ −∞ 4 10

x− −∞ −∞ −∞ −∞
y+ −∞ −∞ −∞ −∞
y− −∞ −∞ −∞ −∞

Finally, A♦−50,50B, that is when l = −50 and u = 50, gives:

x+ x− y+ y−

x+ −∞ −∞ 4 10

x− −∞ −∞ −∞ −∞
y+ −∞ −∞ −∞ 2

y− −∞ −∞ −∞ −∞
In addition to the above operators, we also consider the union operator
∪ of two ABMs. When A and B are AMBs, then the union operator A ∪ B

simply returns the set of constraints that either A or B contains. The following
theorem from [17] shows the relationship among the different AMB operators.

Theorem 6 (Revesz [17]) Let S be the set of assignments to the variables
that satisfy all the constraints of an ABM or union of ABMs. For any l < 0

and u > 0, the following holds:

S(A ∪ B) ⊆ S(A∨ B) ⊆ S(A♦l,uB) ⊆ S(AOB).
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2.3 Abstract fixed point semantics

Each procedural program has a collecting semantics, which consists of a set
of em invariants. Each invariant is associated with a line l in the procedural
program and is intended to describe all possible values of all the variables
when the program enters line l. Software verification is based on finding an
over-approximation of the collecting semantics.

A general method to compute an over-approximation is called abstract in-
terpretation. Abstract interpretation evaluates the procedural program by an
abstract execution that starts with some abstract representation of the input
data. The abstract execution at each entry of line l generalizes the invariant
associated with l using a widening operator until the line invariant cannot be
further widened.

A widening operator generalizes at a program location an invariant con-
straint A with some constraint B that describes an additional set of possible
values of the program variables at that location. There are different types of
widening operators proposed by various authors.

When we use the widening operator A♦l,uB, then it always leads to a termi-
nating program execution. Note that A∪B is not a suitable widening operator
because it may lead to a non-terminating abstract program execution.

Theorem 7 Let P be a program with n integer (or rational) variables, only
addition bound constraints on these variables, and k lines. Let l and u be
two constants, and let an addition-bound matrix Ai be assigned to each line
1 ≤ i ≤ k of the program. Let each Ai contain no constraints initially, and as
we execute line i of program P, widen Ai by the constraints B implied in line
i using the widening operator Ai♦l,uB. Then the abstract program execution
will terminate.

Programs with integer and rational variables, if statements, go to state-
ments, while statements, and assignment statements, where a variable is as-
signed the value of a linear arithmetic expression, can be represented as a
Datalog program with constraints [9, 15]. The abstract program execution
finds an abstract fixed point semantics, which will contain the least fixed point
semantics [17]. The containment allows us to answer some questions about the
possible values that variables in the program could take.

One can compute an abstract fixed point semantics of any climate change
model that is equivalent to a complex computer program that would not ter-
minate under normal program execution. If the abstract fixed point semantics
of that computer program does not contain the possibility that the global
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temperature reaches x degrees Fahrenheit, then we can conclude that accord-
ing to that model the global temperature will not reach x degrees Fahrenheit.
However, if the abstract fixed point semantics contains x as a possibility, then
we cannot conclude anything definite because the abstract fixed point seman-
tics may be an over-approximation of the least fixed point semantics, which
actually does not contain x as a possibility.

The constraint database approach to software verification [16], which is a
novel way to perform an abstract interpretation [4], uses the above idea to
verify that a program functions correctly on a valid input by avoiding certain
program states, where a program state is the values assigned to the variables in
the program at a specific line of the program code [1, 16]. The Management of
Linear Programming Queries (MLPQ) database [19, 1] is a constraint database
that implements the above described widening operator and can be applied
to Datalog programs with addition constraints. Hence we need to convert any
computer program to a Datalog with addition constraint program as part of
the constraint database approach to software verification.

2.4 Climate models

A climate system is a physical system that consists of five major components.
The first component is the atmosphere, which is the air and space surround-
ing the earth. The second component is the hydrosphere, which is the water
surrounding the earth. The hydrosphere is an important component because
oceans form about two-third of the earth’s surface. The third component is
the cryosphere, which consists of the parts of the earth where water is frozen.
This needs to be tracked separately from the oceans because the oceans and
the cryosphere have very different physical properties in terms of absorption
and reflection of sun light. The fourth component is the land surface, which is
the part of the earth that is covered by land. The fifth and final component is
the biosphere, which is the parts of the earth covered by living organisms.

Climate models try to model the climate system and predict some values
for the climate, such as the following:

1. Land-surface temperature and land-surface air temperature.

2. Sea-surface temperature and ocean air temperature.

3. Land and sea combined temperature.

4. Sub-surface ocean temperature.

5. Upper air temperature.

6. Snow cover, including snowfall.
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7. Sea-ice extent and thickness.

A good model considers all the possible types of interactions among the
components. For example, the biosphere affects the concentration of carbon
dioxide in the atmosphere [8]. Figure 1 shows a schematic diagram of a climate
model.

Figure 1: Some elements of a climate model from the Wikipedia entry ”General
Circulation Model.”

A report of the UN’s Intergovernmental Panel on Climate Change (IPCC)
outlines some of the ways to accurately predict the above values [8]. The
Wigley/Raper Upwelling-Diffusion Energy Balance Model (UD/EBM) climate
model is a simple climate model that differentiates the hemispheres, and the
land and ocean regions in each hemisphere [12]. The model uses heat flux
equations to model the transfer from one year to the next and from one re-
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gion to another. The UD/EBM climate model must be tuned to simulate an
atmosphere-ocean coupled general circulation model (AOGCM), without which
it is not a complete model [8]. This combined model can iteratively compute
each year’s value, and the computation can be repeated without any termina-
tion.

The Java Climate Model (JCM)1 implements the UD/EBM and was prop-
erly tuned to match a AOGCM [11]. Rather than using direct integration to
compute the values for the heat fluxes, the JCM uses an eigenvector calculation
method. This method finds the exact analytical solution, given the assumption
that the non-linear fluxes change linearly within one time-step of a year [11].

Figure 2: The global average temperature change given by the Java Climate
Model.

The JCM was downloaded from http://jcm.climatemodel.info/. The SVN
code repository for JCM was not operational, however, the source code was
included inside of the distributed Java Archive (JAR) file. After extracting
the source folders from the JAR file, a new project was created in NetBeans
IDE 7.0.1 (http://netbeans.org/) and the source folders were imported. We
needed to set up the following libraries:

• substance.jar – included in the JCM JAR.

• lucdata.jar – included in the JCM JAR.

• labdoc.jar – included in the JCM JAR.

1http://jcm.climatemodel.info/

http://jcm.climatemodel.info/
http://netbeans.org/
http://jcm.climatemodel.info/


14 P. Z. Revesz, R. J. Woodward

• match-emitdata.jar – included in the JCM JAR.

• JCM.jar – included in the JCM JAR.

• javaws.jar – included in the Jave Runtime Environment (JRE) library
folder.

• Jama-1.0.2.jar – downloaded from http://math.nist.gov/javanumerics/

jama/.

The method that computes the average temperature change iteratively, one
year at time, for the JCM is the Adjust method, inside ‘udebclimod.java,’ and
is shown in Algorithm 1. Line 1 of Algorithm 1 contains a for-loop to compute
the global average temperature change for each year. The initial values of the
variables used in Adjust are set up in the SetupFluxes method, which
is not shown here as their computation is not relevant. These intitial values
were used as constants in our approach, which is discussed in more detail in
Section 3.1. Figure 2 shows the predicted global average temperature change
for each year given by the Java Climate Model until 2150. Note that the model
seems to level off at a value around 2. However, there is no guarantee that the
value is will leveled off at 2 or will spark later according to the model. Hence
it is an important open question whether 2 is the maximum value. We will try
to determine that in the rest of this paper.

3 The climate model’s implementation in the MLPQ
system

The goal of the experiment is to determine an invariant value on the average
temperature change above a baseline year. Typically the value of the aver-
age temperature change above a baseline year is computed between 1990 and
2100 [8]. Instead, in our experiment the variant average temperature change
above a baseline year will not depend on any year but will be an abstract
fixed-point semantics upper-bound that will apply to all future years.

In this section, we first give an overview of how we will convert the Adjust
method from the Java Climate Model (JCM) code into Datalog to use with
the MLPQ system, which can compute the abstract fixed point semantics
to find all the possible values of the average climate temperature change.
Second, we present the conversion process, showing the difference and gap-
order constraints [13, 14]. Finally, we describe our implementation of the code
using Datalog with constraints.

http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/
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Algorithm 1: Adjust

Input: numYears: Number of years in the future to compute the weather for
Output: The global temperature change computed for each year

1 for year = 0;year < numYears;year = year+ 1 do
2 guess = nstd+ (nstd− nstdold);
3 nstd = guess;
4 nstdold = nstd;
5 for o = 0;o < 2;o = o+ 1 do
6 for n = 0;n < nhb;n = n+ 1 do
7 hiq[o][n] = hpropf[o][n] ∗ hiq[o][n] + shicML[o][n] ∗ qinold[o];
8 qinbase[o] = rf[o+ 1];
9 qinbase[o]+ = rf[o∗3]∗(frac[o∗3]/frac[o+1])∗klo/(kls∗frac[o∗3]+klo);

10 qinbase[o]+ = spaceflux[o] ∗ qpt ∗ tstart;
11 nit = 0;
12 while |diff| > 0.01 && nit < 10 do
13 for o = 0;o < 2;o = o+ 1 do
14 qin[o] = qinbase[o] + (o == 0? − 1.0 : 1.0) ∗ nstd ∗ kns/frac[o+ 1];
15 dqin = qin[o] − qinold[o];
16 mlt[o] = 0;
17 for n = 0;n < nhb;n = n+ 1 do
18 hiqi[o][n] = hiq[o][n] + rhicML[o][n] ∗ dqin;mlt[o]+ =

hrML[o][n] ∗ hiqi[o][n];
19 mlt[o]/ = qpt;

20 diff = (mlt[0] −mlt[1]) ∗ cice− nstd;nstd+ = diff;
21 nit = nit+ 1;

22 hiq = hiqi;
23 qinold = qin;
24 for o = 0;o < 2;o = o+ 1 do mlt[o]− = tstart;
25 bt[0][year] = mlt[0] ∗ cice ∗ klo+ frac[0] ∗ rf[0])/(kls ∗ frac[0] + klo);
26 bt[3][year] = mlt[1] ∗ cice ∗ klo+ frac[3] ∗ rf[3])/(kls ∗ frac[3] + klo);
27 bt[1][year] = mlt[0] ∗ cice;
28 bt[2][year] = mlt[1] ∗ cice;
29 globavtemp[year] = bt[0].get(year) ∗ frac[0] + bt[1].get(year) ∗ frac[1] +

bt[2].get(year) ∗ frac[2] + bt[3].get(year) ∗ frac[3];

3.1 The experimental design

The code was examined to determine the constant values that do not change
between iterations of the program (e.g., year-to-year). For the JCM, these val-
ues are typically the flux equations, or values that are specified by the user
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to adjust the model to match an AOGCM. The default values were taken in
this conversion to Datalog. Once these values were identified, because of the
assumptions made by JCM to use the eigenvector calculation method instead
of integration, all of the resulting equations were linear. Having linear equa-
tions was the goal of the model to study because MLPQ is a linear constraint
database.

In the converted Datalog code, we refer to “linei” as the values of the vari-
ables at the start of line i of the program. Each line of the code was converted
to Datalog to represent the change of values. These conversions are easy be-
cause we have only linear equations, For example, line 2 states the following:

guess=n+(n-nold)

and can be converted to Datalog:

line3(n,ndold,guess):- line2(n,ndold), guess=n+(n-ndold).

This Datalog code states that at the start of line 3, we are taking the same
state as the start of line 2, except that we updated guess to have the value
that is the value of the arithmetic expression on the right hand side of the
equation in line 2 of the computer program.

The computer program we are converting from JCM contains two for-loops.
The iterations of the two for-loops are independent from one-another. Since
the method in JCM is called once for each year, after computing the last line
in Datalog, we create a rule for the first line that propagates the values from
the last line back as input. This creates the loop in the code that can then
compute the abstract fixed point semantics. After the MLPQ system finished
computing the values, we can look at the relation of the last line and see the
possible values of the global average temperature change.

3.2 The coversion process

To give more details about the conversion process, we focus on the 29 lines of
the Adjust method in the JCM code (Algorithm 1), which was written in Java
and consists of linear equations. The problem is that these linear equations
are embedded in non-terminating for loops when we drop the condition which
limits the numbers of years. In order to guarantee termination and execution
in our Datalog with constraints program, we need to simplify the some parts
of the computer program, where it contains either (1) global variables, or (2)
large arrays. Lines 6 and 7 of the code offers a good example of these two
types of simplifications:
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for n← 0;n < nhb;n← n+ 1 do
hiq[o][n]← hpropf[o][n] ∗ hiq[o][n] + shicML[o][n] ∗ qinold[o];

Global variables: The hpropf and shicML variables are both global vari-
ables, which are set from a different method call. These values are abstracted
out as constants and loaded directly into the constraint database.

Large arrays: The for loop will iterate 40 times (nhb = 40, a constant)
and thus the array for hiq[o] will have 40 entries. Having that many variables
seems too prohibitive as a first-step towards modeling the program. Therefore,
we restrict nhb = 3, and only have three values in the hiq[o] array.

Table 1 gives the gap-order constraints for Algorithm 1. In the table, the
variable var previous denotes the value of var from the previous line or pre-
vious iteration. Variables in all capital letters are treated as constants.

In a further simplification, we assumed that the ocean and the land areas
for each the hemispheres took the same values. This simplification allowed
the for-loops on line 5 and line 11 to be removed. However, this simplification
was later removed by unrolling the content in the for-loops, once for each
loop of the for-loop. The reason this simplification could be made was because
the loops were independent from one another, which allowed the code to be
unrolled.

Another simplification made, that is still in place, simplifies the for-loops of
line 6 and 15 to only compute the first three values. Normally, these for-loops
iterate over 40 values. All of the implementation details are in-place to remove
this simplification.

3.3 A Datalog implementation

The simplified code was implemented in Datalog with the following steps:
1) allowing the insertion of constants into the Datalog program, 2) convert
equations for MLPQ compatibility, and 3) allow more complicated arithmetic
operations on constants (i.e., multiplication).

Prior to using the converter, we inserted constants into the Datalog program
by fixing the variable assignment. For example, consider the constant x = 123:

CONST_X(x) :- 123

We found that using constants in this fashion over-complicated the program
and caused significant overhead. Therefore, we wrote the converter such that
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Line Gap-Order Constraints

1 initialize rf, nstd, hiq, nstdold, qin, qinold
2 guess − nstd − (nstd − nstdold) = 0
3 nstd − guess = 0
4 nstdold − nstd = 0
5,6 For loop is unrolled
7 hiq[o][n] − HPROPF[o][n] ∗

hiq previous[o][n] − SHICML[o][n] ∗
qinold[o] = 0

8 qinbase[o] − rf[o + 1] = 0
9 qinbase[o] − qinbase previous[o] −

(FRAC[o ∗ 3]/FRAC[o + 1]) ∗ KLO/(KLS ∗
FRAC[o ∗ 3] + KLO) ∗ rf[o ∗ 3] = 0

10 qinbase[o] − qinbase previous[o] ∗
SPACEFLUX[o] ∗QPT ∗ TSTART

11 Not computed
12 Constraint posted on line 17
13 For loop is unrolled
14 qin[o] − qinbase[o] − (o == 0? − 1.0 :

1.0) ∗ KNS/FRAC[o + 1] ∗ nstd = 0
15 dqin − qin[o] + qinold[o] = 0
16 mlt[o] = 0
17 For loop is unrolled
18 hiqi[o][n] − hiq[o][n] − RHICML[o][n] ∗

dqin ∧ mlt[o] − mlt previous[o] −
HRML[o][n] ∗ hiqi[o][n]

19 [1/QPT ]mlt[o] = 0
20 diff − (mlt[0] −mlt[1]) ∗ CICE + nstd =

0 ∧ nstd − nstd previous − diff = 0 ∧

diff > 0.001
21 [not required]
22 hiq − hiqi = 0
23 qinold − qin = 0
24 mlt[o] −mlt previous[o] = TSTART
25 bt[0] − ((CICE ∗ KLO)/(KLS ∗ FRAC[0] +

KLO))mlt[0] − (FRAC0/(KLS ∗ FRAC[0] +
KLO))rf = 0

26 bt[3] − ((CICE ∗ KLO)/(KLS ∗ FRAC[3] +
KLO))mlt[1] − (FRAC3/(KLS ∗ FRAC[3] +
KLO))rf = 0

27 bt[1] − CICEmlt[0] = 0
28 bt[2] − CICEmlt[1] = 0
29 globavtemp−FRAC[0]∗bt[0]−FRAC[1]∗

bt[1]−FRAC[2]∗bt[2]−FRAC[3]∗bt[3] = 0

Table 1: Conversion of Algorithm 1 to gap-order constraints.

it inserts the constants directly into the Datalog code. Note that we could
have put the constants into the original Datalog program directly, but using
a converter increases the readability of the code and gives us the ability to
change the constants if required.
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To accomplish multiplication, we tried to generalize an approach of mul-
tiplying two integer variables (See page 240 of [17]) to using floating point
numbers, and first attempted to create a more general multiplication in Dat-
alog as follows:

mult(x, y, z) :- y = 0, z = 0.

mult(x, y, z) :- y - y1 = 1, z - z0 - x = 0, mult(x, y1, z0).

However, in the above multiplication, where x × y = z, the value of x is
allowed to be a floating point number, but y is still required to be an integer.
Since in some calculations both x and y need to be floating point numbers,
we utilized the converter because all of our multiplications are on constants.

The converter has three parts:

1. A set of assignments used to convert constants to floating-point numbers.
These assignments are stored in the ‘ASSIGNMENTS’ variable in the
form ‘VARIABLE=NUMBER’. VARIABLE is the text to search for, and
NUMBER is a floating-point number that can be positive or negative.
All fractions of numbers must have a leading ‘0’ prior to the decimal
point.

2. Converts double negation into a plus, for MLPQ compatibility. (E.g.,
2−−2 becomes 2+ 2.)

3. Evaluates arithmetic operations on numbers that are included in square
brackets [ ]. This functionality allows more advanced arithmetic opera-
tions to be applied on constants (e.g., multiplication, division).

The steps in the converter could have been manually done when creating
the Datalog file. However, the automated converter allows for more flexability
when writing the Datalog code.

The converter script was created to work as a UNIX shell script. The script
assumes a file named ‘datalog.txt’ is in the same working directory as the
script, and will output a file named ‘datalog convert.txt’ in the same working
directory as the script. To run the script, simply type ‘./convert.sh’. Note,
the script requires the proper permissions set (e.g., chmod 700). Note: When
using a Windows computer, the script might need to be converted not to have
the Windows line returns (e.g., dos2unix convert.sh).
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Figure 3: The relations loaded into MLPQ (left) and the resulting output of
the global average temperature change above baseline of value one (right).

4 Discussion of the results

One of the problems we had early on when writing the Datalog code was not
always determining when we had a typing error in one of the variable names
in our code. MLPQ would then, correctly, interpret in the code the mistyped
variable as a ‘free-variable,’ one that does not have any constraints on it.
This problem caused errors early on in values not being computed properly.
One way around this issue would be to use the Datalog Mode for Eclipse2,
which allows syntax highlighting for Datalog programs (but is not a Datalog
interpreter).

2http://suif.stanford.edu/~livshits/work/datalogeditor/

http://suif.stanford.edu/~livshits/work/datalogeditor/
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Another struggle was getting MLPQ to properly load the relations. Some
relations would take a huge amount of time for MLPQ to compute the value
of the relation, which caused the program to look like it crashed. However,
after waiting patiently, the program would load the relation. In order to get
around this issue, we tweaked the order of the relations that were loaded and
optimized the code by factoring out common code fragments and creating
smaller relations.

In our tests, MLPQ returned the value of 1 for the bound on the global
average temperature change as shown in Figure 3 for the results of the MLPQ
system execution of the Datalog program. Although the idea of testing the
long-range predictions of climate models using software verification is an intu-
itive and valid idea, the value of 1 should not be taken as conclusive because
of the possible errors in the translation process from Java to Datalog and
some simplifications we had to make to the original code. We need further
tests of the algorithm to achieve confidence in its correctness and conclusions.
Nevertheless, our experiment shows the soundness of the constraint database
approach to being able to compute invariants for climate models.

5 Related work

There are a growing number of climate models. For example, the Intermedi-
ate Global Circulation Model (IGCM) (http://www.met.rdg.ac.uk/~mike/
dyn_models/igcm/) implementing the baroclinic model of Hoskins and Sim-
mons [7] and the Earth System Modeling Framework (ESMF) [3, 6] (http:
//www.earthsystemmodeling.org) are other climate models that are more
complex than JCM.

A preliminary version of this paper was presented at [20]. To the best of
our knowledge, no other researcher has previously attempted to compute an
invariant value for any climate model. In fact, the calculation of invariants is
not even considered in Chapter 9 of [8], where all simulations arbitrarily end
at year 2100.

6 Conclusions and future work

This paper made the first attempt to investigate whether the climate mod-
els contain any inherent bounds. The paper combined climate modeling and
software verification techniques, in particular software verification using the
constraint database approach [1, 16]. Software verification techniques are able

http://www.met.rdg.ac.uk/~mike/dyn_models/igcm/
http://www.met.rdg.ac.uk/~mike/dyn_models/igcm/
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org
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to answer for even nonterminating computer programs what are the minimum
and the maximum bounds on the variables.

The idea of combining climate models with abstract interpretation software
verification techniques is a general contribution that is applicable to other
climate models and other software verification techniques. Since the primary
aim of our paper was only to show the feasibility of applying software verifi-
cation techniques to testing the long-range implications of climate models, we
started with the simpler JCM model. It remains a future work to investigate
other combinations, for example using the IGCM or the ESMF climate mod-
els. Instead of being globally oriented like the JCM, some of the other climate
models predict the future climate at a set of specific locations. These more
refined climate models with values at specific locations at specific times may
be also combined with spatio-temporal interpolation methods [5, 10, 18, 21]
to generate temperature surface equations over each point of the globe.
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Abstract. A path decomposition of a graph is a collection of its edge
disjoint paths whose union is G. The pendant number Πp is the minimum
number of end vertices of paths in a path decomposition of G. In this
paper, we determine the pendant number of corona products and rooted
products of paths and cycles and obtain some bounds for the pendant
number for some specific derived graphs. Further, for any natural number
n, the existence of a connected graph with pendant number n has also
been established.

1 Introduction

We refer to West [1] and Harary[2] for terms and definitions in graph theory. All
graphs we consider in this paper are undirected, simple, finite and connected.
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Partition of a graph G into its subgraphs is also termed as decomposition of
G. A path-decomposition of a graph G is the partitioning of its edges into
subgraphs Si, 1 ≤ i ≤ n, where each of the subgraph Si is a path in G.

Definition 1 [3] The pendant number of a graph G, denoted by Πp(G), is the
least number of vertices in a graph such that they are the end vertices of a
path in a given path decomposition of a graph G. If Vp(G) denotes the set of
all u ∈ V(G) such that u is an end vertex of a path in P-decomposition in G,
then Πp(G) = min{|Vp(G)|}.

An introductory study on pendant number of graphs is available in [3].
A similar study on the star number of graphs can be seen in [4]. For the
discussions in this paper, we use the following theorems.

Theorem 2 [3] Let G be a connected graph with n vertices. If G has l odd
degree vertices, then l ≤ Πp(G) ≤ n.

Theorem 3 [3] Let T be tree on n vertices of which k vertices are of even
degree. Then, Πp(T) = n− k.

Theorem 4 [3] For a unicyclic graph G of order n; n ≥ 3 with l odd degree
vertices, we have

Πp(G) =


2 if m = 0;

l+ 1 if m = 1;

l otherwise,

where m is the number of vertices on C with deg(v) ≥ 2.

Proposition 5 [3] If G is the cycle Cn on n ≥ 3 vertices, then Πp(G) = 2.

2 Properties of pendant number

Even though there is no direct relation between the pendant number and other
known and popular graph parameters, it is observed that the pendant number
is highly influenced by the number of odd degree vertices in a graph. Moreover,
the pendant number of a graph G has plenty of interesting properties, some
of which, we deal with in the following discussion.

Definition 6 A Πp-realisation of a positive integer k ≥ 2 is a minimal con-
nected graph G, whose pendant number is k.
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By the one-point union of a collection of graphs (possibly with different
order), we mean a graph obtained by replacing some or all edges of a path P
by some graphs in the collection. In view of this notion, the following theorem
establishes the existence of Πp-realisation for any given positive integer.

Theorem 7 For every positive integer k ≥ 2, there exists a Πp-realisation for
k.

Proof. We can iteratively construct a (minimal) connected graph with pen-
dant number k using 1-point union of K2 and K3 (in alternative manner) as
shown in Figure 1. We note that for an even integer k, taking the one-point
union of k

2 number of K2’s and k
2 − 1 number of K3’s alternatively, we can

construct a graph with Πp(G) = k, whereas for an odd integer k, taking the
one-point union of k−12 number of K2’s and K3’s alternatively, we can construct
a graph with Πp(G) = k. This completes the proof.

(a) A graph with Πp = 2. (b) A graph with Πp = 3. (c) A graph with Πp = 4.

(d) A graph with Πp = 5. (e) A graph with Πp = 6.

Figure 1: A Πp realisation of the given positive integer k ≥ 2.

�

Remark 8 It has been determined that for every k ∈ N, there exists a graph
with Πp(G) = k. More precisely, for every k ∈ N, there exists a graph with
cycles such that Πp(G) = k and there exists an acyclic graph corresponding
to any even natural number.

Theorem 9 If u, v are two non-adjacent vertices in a graph G of order n,
then |Πp(G+ uv) − Πp(G)| ≤ 2.

Proof. Let G be a graph with Πp(G) > 2. Let u and v be two non-adjacent
vertices in G. Here, one may consider the following two cases:
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Case-1: If u and v are of even degree and neither of them is an end point of
a path in the decomposition of G, then in G + uv, u and v are of odd
degree and become end points of some path in G, while the degrees of
all other vertices remain the same as those in G. Hence, in this case,
Πp(G+ uv) = Πp(G) + 2 (see Figure 2 for illustration).

u v

(a) A graph G with no even degree ver-
tex as end point of a path.

u v

(b) A graph G+uv with Πp(G+uv) =
Πp(G) + 2.

Figure 2

Case-2: Let P and P ′ be two (vertex-) disjoint paths in G such that u is an end
vertex of P in G and v is an end vertex of P ′ in G. Join the edge uv.
Now the path P+uv+P ′ becomes a longer path, in which neither u nor
v is an end point. In this case, Πp(G+uv) = Πp(G)− 2 (see Figure 3 for
illustration).

u v

(a) A graph G with end vertices of
paths.

u v

(b) A graph G+uv with Πp(G+uv) =
Πp(G) − 2.

Figure 3

It can be verified that in all other possible cases, Πp(G + uv) lies between
Πp(G) − 2 and Πp(G) + 2. This completes the proof. �

Invoking the results mentioned, we discuss some immediate observations in
this section. By one-point union of cycles, we mean a graph obtained from a
path by replacing its edges by cycles (possibly of different order). The following
result provides the pendant number of one-point union of cycles.
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Proposition 10 If G is the one-point union of cycles, then Πp(G) = 2.

Proof. The proof is clear from Figure 4. The two edge disjoint (u, v)-paths of
the one-point union of cycles are illustrated in the figure. �

u v

P2

P1

Figure 4: One-point union of cycles.

Proposition 11 Let G be a graph, which is neither a cycle nor a one-point
union of cycles. Then, the one-point union of G and a cycle Cn has the pendant
number Πp(G) + 1.

Proof. Let G∗ be the one-point union of a given graph G and a cycle Cn and
let v be the vertex common to G and Cn in G∗. If v is a pendant vertex of any
path decomposition of G, it will be a pendant vertex of some paths in G∗ also.
It can be taken as an end vertex of a path in Cn too. The other end vertex of
this path can be arbitrarily chosen on Cn. If v is not a pendant vertex of any
path decomposition of G, some paths passing through v in G can be extended
to a vertex u of Cn in G∗. Hence, in this case also, one vertex of Cn will be a
pendant vertex in G∗, other than the pendant vertices in G.

Therefore, in both cases, the pendant number is Πp(G) + 1 (see Figure 5).
�

v u

(a) The one-point union of G and Cn

with v as an end vertex of paths.

v u

(b) The one-point union of G and Cn

with v not as an end vertex of paths.

Figure 5
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Proposition 12 If G is a graph with cycles such that v is an end vertex of
a path and G∗ is the one-point union of G and a path Pm joined at v, then
Πp(G) ≤ Πp(G∗) ≤ Πp(G) + 1.

Proof. If v is an end vertex of a single path, then the path can be extended
to Pm so that u ∈ Pm is the end vertex of the resultant path (see Figure 6a).
If v is the end vertex of more than one path, then v together with u ∈ Pm
become the end vertices of the new path (see Figure 6b). �

Example 13 Let G = Kn;n even and G∗ be the (n,m)-shovel graph, which
is the one-point union of Kn and Pm (that is, (Kn∪̇Pm)) [7]. Then, Πp(G

∗) =
Πp(G). Let G = Kn; n odd and G∗ be the (n,m)-shovel graph. Then, Πp(G

∗) =
Πp(G) + 1.

v

u

(a) A graph G with Πp(G
∗) = Πp(G)

u

v

(b) A graphG with Πp(G
∗) = Πp(G)+1.

Figure 6

A maximal, bi-connected, edge-disjoint subgraph of a graph G is called a
block of G. Note that two blocks may have utmost one vertex in common.

Proposition 14 If B1, B2, . . . , Bk are k distinct blocks of a graph G, then
Πp(G) ≤ Σki=1Πp(Bi).

The Figure 4 explains the case when the equality in the above result holds.
The next proposition establishes an illustration of the case where there is the
strict inequality in the above proposition.

Definition 15 A non-uniform friendship graph F∗n is defined as the graph
obtained by joining n cycles (need not be of same order) to a common vertex.
Cycles in this graph are called as petals of F∗n.
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The following result discusses the pendant number of non-uniform friendship
graphs.

Proposition 16 For a non-uniform friendship graph F∗n on n petals, Πp(F
∗
n) =

n.

Proof. Let there be n petals in F∗n. Let v0 be the common vertex and choose
n vertices v1, v2, . . . , vn randomly from each petal. Join the path from v1 to
v2 through v0. Then, v1 and v2 becomes the end vertices of a path. Similarly,
construct the paths from v2 to v3, from v3 to v4, . . . , from vn−1 to vn, and
from vn to v1. There are n such paths with end vertices of every path is a
starting point of another path. Hence, Πp(G) = n. �

This class of non-uniform friendship graphs is another example for Πp-
realisation of positive integers. This fact is immediate from the above result.
We consider δ(G) as the lowest degree among all the degrees of the vertices of
the graph G.

Theorem 17 There exists a connected graph G with δ(G) ≥ 2 corresponding
to any natural number k ≥ 2.

Proof. A (minimal) connected graph G with δ(G) ≥ 2 can be iteratively
constructed corresponding to any natural number k ≥ 2. Consider a cycle Ck
with chords and a cycle C3 in alternative manner. For an even integer 2k, take
the cycle C2k with every vertex has exactly one chord results in an even number
as pendant number. For an odd integer 2k+1, take the one point union of the
cycle C2k with every vertex have exactly one chord and a C3 attached to any
one of its vertices, result in an odd number as pendant number (by Theorem
11). That is, consider the cycle C3 to get the pendant number 2 (see Figure
7a). The one-point union of a diamond with C3 has the pendant number 3
(see Figure 7b). The cycle C4 with every vertex having exactly one chord has
the pendant number 4 (see Figure 7c). The one point union of the above C4
and a C3 has the pendant number 5 (see Figure 7d). The cycle C6 with every
vertex having exactly one chord has the pendant number 6 (see Figure 7e).
The one point union of the above C6 and a C3 has the pendant number 7 (see
Figure 7f). This process gives the pendant number of a (minimal) connected
graph with δ(G) ≥ 2 for any natural number. This completes the proof. �

In view of the Theorem 17, instead of taking C3, if one takes a cycle of
desired length, then it leads to the existence of a graph with desired pendant
number and desired number of vertices. Note that to get the required pendant
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(a) A graph with κ ≥ 2
and Πp = 2.

(b) A graph with κ ≥ 2
and Πp = 3.

(c) A graph with κ ≥ 2
and Πp = 4.

(d) A graph with κ ≥
2 and Πp = 5.

(e) A graph with κ ≥ 2
and Πp = 6.

(f) A graph with κ ≥ 2
and Πp = 7.

Figure 7

number, one must have at least the same number of odd vertices. It leads to
the following result.

Corollary 18 There exists a connected graph G of order n with δ(G) ≥ 2

corresponding to any natural number k ≥ 2 and corresponding to any order
n ≥ 3 with desired pendant number.

Theorem 19 A graph G of order n ≥ 3, with at least one even degree vertex
has the pendant number at most n− 1.

Proof. Since the result has already been proved for acyclic graphs (see Theo-
rem 3), it is sufficient to prove the result for cyclic graphs on n vertices using
the method of induction on the number of vertices.

The smallest graph with cycles with at least one even degree vertex is C3
and Πp(C3) = 2. Hence the result is true for n = 3. Assume the result is true
for n = k. Let G be a graph with k vertices and Πp(G) ≤ k− 1. Let v1 be an
even degree vertex, which is not an end vertex of any path in G.

Now let n = k+1. Add one more vertex vk+1 to the above graph G. Connect
any number of vertices of G except v1 to vk+1 (if v1 is joined to vk+1, then
degree of v1 becomes odd). For v1 is not an end vertex of any path in G,
Πp(G) ≤ k. Hence, the proof. �

Theorem 20 Let G be a graph of order n, consisting of cycles and k > 0

even degree vertices. Then, n− k ≤ Πp(G).
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Proof. Let us use the induction on k, viz., k = 1, n − 1 and n. Let k = 1.
Then, by Theorem 19, n−1 ≤ Πp(G) ≤ n−1. Let k = n−1 then, n−(n−1) =
1 ≤ Πp(G). Let k = n then, n− n = 0 ≤ Πp(G). Hence the result is true.

�

Combining Theorem 19 and Theorem 20, it follows:

Theorem 21 If a graph G, with n ≥ 3 vertices, has k even degree vertices,
then n− k ≤ Πp(G) ≤ n− 1.

Proposition 22 If both G and its complement G are connected graphs with
odd degree, then |V(G)| ≥ 5.

Proof. Let a graph G and its complement G be connected graphs such that
all their vertices are of odd degree. Then, at least two vertices each of G and
G will be with degree ≥ 3. If all vertices except one is of degree one in G, then
this vertex must be isolated in G. It implies that the number of vertices of G
must be at least 5. �

A pineapple graph [9], denoted by Kmn , is a graph obtained by appending
m pendant edges to a vertex of a complete graph Kn;m ≥ 1, n ≥ 3. Let A be
the collection of graphs given in Figure 8 and Figure 9. Even though Km3 ⊆
one-point union of a triangle and an odd degree tree, K

m
3 is disconnected.

Moreover, it is clear that the complement of one-point union of triangle and
an odd degree tree always has Πp ≤ n− 2 (see Theorem 3 and Theorem 4).

Figure 8: The graph Km
3 ;m odd.

The next proposition can be proved in a similar manner as that of Theorem
19.

Proposition 23 Let G be a graph G of order n ≥ 4 and G /∈ A. If G has at
least two even degree vertices, then Πp(G) ≤ n− 2.

Using Proposition 22 and Proposition 23, we have the next result associated
a graph G and its complement G.
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Figure 9: One-point union of K3 and an odd degree tree.

Theorem 24 If both the graphs G and its complement G are connected, then
4 ≤ Πp(G) + Πp(G) ≤ 2(n− 1).

Proof. The lower bound of Πp(G) for any graph G is 2. Therefore, 2 ≤ Πp(G)
and 2 ≤ Πp(G). Hence, 4 ≤ Πp(G) + Πp(G).
To prove the other part, one may consider the following two cases:

Case-1: The number of vertices n of the graph G is odd. Since n is odd,
at least one vertex each of G and G must be even. Thus, the result
can be determined by using the Theorem 19, as Πp(G) ≤ n − 1 and
Πp(G) ≤ n− 1.

Case-2: The number of vertices n of the graph G is even. Let all the vertices
of G be odd degree vertices. Hence, Πp(G) = n. Thus, the degree of G
must be even. By Proposition 22, |V(G)| ≥ 5 and by Proposition 23,
Πp(G) = n− 2.

In both cases, it is determined that Πp(G) + Πp(G) ≤ 2(n− 1), completing
the proof. �

3 Pendant number of graph products

The rooted product of two graphs G1 and G2, denoted by G1 ◦G2, is the graph
obtained by taking |V(G1)| copies of G2 and identifying one vertex (root)
of each copy of G2 to the corresponding vertex of G1. The following result
discusses the pendant number of the rooted products of cycles and paths.

Theorem 25 Let Pn and Pm be any two paths and Cn and Cm be any two
cycles. Then the pendant number of their rooted products are given by;

(i) For Pn ◦ Pm,

Πp(Pn ◦ Pm) =

{
2(n− 1) if the root vertex is a pendant vertex ;

2(n+ 1) if the root vertex is an internal vertex.
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(ii) For Cn ◦ Pm, Πp(Cn ◦ Pm) = 2n.

(iii) For Cn ◦ Cm, Πp(Cn ◦ Cm) = n.

Proof.

(i) Let u1, u2, . . . , un be the vertices of Pn and v1, v2, . . . , vm be the vertices
of Pm.

Case-1: Let the root vertex of Pm be a pendant vertex. Then, in the rooted
product Pn◦Pm, one copy of Pm is joined to each of the vertices u1, u2, . . . , un.
The longest path includes the one-point union of Pn between two copies
of Pm (situated at the end points of Pn), yielding 2 pendant vertices.
The remaining n−2 vertices of Pn together with the pendant vertices in
the remaining n− 2 copies of Pm result in 2(n− 2) pendant vertices (see
Figure 10 for illustration). Therefore, Πp(G) = 2+ 2(n− 2) = 2(n− 1).

Case-2: Let the root vertex of Pm be an internal vertex. Then, both end
vertices of all the n copies of Pm and the end vertices of Pn are the end
vertices of some paths in the path decomposition of Pn ◦ Pm (see Figure
11 for illustration). Hence, Πp(G) = 2(n+ 1).

(ii) For Cn ◦Pm, the collection Vp(G) (see 1) is constituted by all the vertices
of Cn together with one end vertex of each of the n copies of the paths
Pm on the other end as seen in Figure 12. Hence, Πp(G) = 2n.

(iii) In the rooted product Cn ◦ Cm, one copy of Cm is joined at each vertex
of Cn. Now take any vertex of degree 2 of Cn ◦Cm as the first vertex of
a path. This path passes through some vertices of the same copy of Cm,
say Cm(i), passes through two adjacent vertices of Cn and passes through
some vertices of the next copy Cm(i+1) before it terminates at some vertex
of Cm(i+1). The next path starts from this end vertex in Cm(i+1) and will
end at some vertex of the next copy Cm(i+2). Continuing like this, one
can find out paths which cover all edges of Cn ◦Cm, as shown in Figure
13. Hence, Πp(Cn ◦ Cm) = n.

�

The corona product G � H of two graphs G and H is obtained by taking
one copy of G and |V(G)| copies of H; and by joining each vertex of the ith

copy of H to the ith vertex of G; 1 ≤ i ≤ |V(G)| (see [8]). When we consider
the corona of two paths, for certain initial values of n and m, the pendant
numbers of Pn � Pm have already determined (see [3],[6]). They are:
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Figure 10: A rooted product Pn ◦Pm with the root vertex as a pendant vertex.

Figure 11: A rooted product Pn◦Pm with the root vertex as an internal vertex.

Figure 12: A rooted product Cn ◦ Pm.

Figure 13: A rooted product Cn ◦ Cm.

(i) We can exclude the cases P1� P1 = K2, P1� P2 = C3, P2� P1 = P4, whose
pendant number is already determined in [3] as 2.

(ii) Since, P1� Pm; m ≥ 3 is the n− fan graph on n+ 2 vertices, its pendant
number is determined in [6] as;

Πp(P1 � Pm) =

{
m− 1 if m is odd;

m− 2 if m is even.

(iii) Pn�P1; n ≥ 3 is the comb tree T , whose pendant number is Πp(Pn�P1) =
2(n− 1) (see[6]).
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(iv) Pn�P2; n ≥ 2 is the lever graph Ln with pendant number Πp(Pn�P2) =
n+ 2 (see [6]).

(v) Since Pn � P3; n ≥ 2 is the diamond neckalce graph Dn, the pendant
number is Πp(Pn � P3) = 2n (see[6]).

Theorem 26 The pendant number of the corona product Pn�Pm with n ≥ 2
and m ≥ 4 of two paths Pn and Pm is given by

Πp(Pn � Pm) =

{
n(m− 1) − 2 if m is odd;

n(m− 2) + 2 if m is even.

Proof. Let u1, u2, . . . , un be the vertices of Pn and v1, v2, . . . , vm be the ver-
tices of Pm. Let u1, u2, . . . , un be the vertices on the root and v11, v12, . . . , v1m,
v21, v22, . . . , v2m, . . ., vn1, vn2, . . . , vnm be the vertices on the crown. Then, the
total number of vertices is n(m + 1). Let the jth vertex of the ith copy of Pm
be denoted by vi,j. The corona product of Pn � Pm where n ≥ 2 and m ≥ 4
has two cases:

Case-1: Let m be odd. Since vi1, vim; 1 ≤ i ≤ n and u1, un are even degree (=
2n+2) and all other vertices are odd, one can make a path decomposition
with the odd degree vertices as the end vertices of every path (see Figure
14) and it will be the least (see Theorem 2). Hence, Πp(G) = n(m+1)−
(2n+ 2) = n(m− 1) − 2.

Case-2: Let m be even. Since vi1, vim; 1 ≤ i ≤ n and u2, u3, . . . , un−1 are
even degree (= 2n + (n − 2)) and all other vertices are odd, the path
decomposition with minimum number of end vertices be the path de-
composition with odd degree vertices as the end vertices of every path
(see Figure 15). Hence,Πp(G) = n(m+ 1)− (2n+n− 2) = n(m− 2)+ 2.

�

vn5vn4vn3vn2vn1v25v24v23v22v21v15v14v13v12v11

unu2u1

Figure 14: A corona product Pn � Pm;m odd.
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vn6vn5vn4vn3vn2vn1v26v25v24v23v22v21v16v15v14v13v12v11

unu2u1

Figure 15: A corona product Pn � Pm;m even.

Theorem 27 The pendant number of the corona product of cycles and paths
is given as:

(i) For Cn � Pm,

Πp(Cn � Pm) =


2n if m = 1;

n if m = 2;

2nbm−1
2 c if m 6= 1, 2.

(ii) The pendant number of the corona product Cn � Cm is given by,

Πp(Cn � Cm) =

{
nm if m is even;

n(m+ 1) if m is odd.

Proof.

(i) The first two parts of the result follow respectively from Part-(ii) and
Part-(iii) of Theorem 25.

Let us now consider the corona product Cn � Pm;m 6= 1, 2. Note that
for every vertex v of Cn, the degree of v in Cn � Pm is m + 2 and for
every vertex of each copy of Pm has degree one more than the degree of
the corresponding vertex in Pm. Hence, the following two cases must be
considered:

Case-1: Let m be odd. Then, in Cn � Pm, every vertex of Cn becomes
odd degree vertex and all vertices of each copy of Pm, except two
(corresponding to the end vertices of Pm) become odd. It is pos-
sible to find edge-disjoint paths in Cn � Pm in such a way that
the vertices of degree two are not pendant vertices of paths in the
path decomposition of Cn�Pm (see Figure 16 for example). Hence,
Πp(Cn � Pm) = n+ n(m− 2) = n(m− 1).
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Case-2: Let m be even. Then, in Cn � Pm, every vertex of Cn remains
as an even degree vertex and all vertices of each copy of Pm, except
two (corresponding to the end vertices of Pm) become odd. It is
possible to find edge-disjoint paths in Cn � Pm in such a way that
the even degree vertices are not pendant vertices of paths in the
path decomposition of Cn�Pm (see Figure 17 for example). Hence,
Πp(Cn � Pm) = n(m− 2).

Combining the above two cases, it is clear that Πp(Cn�Pm) = 2nbm−1
2 c.

Figure 16: A corona product Cn � Pm;m odd.

Figure 17: A corona product Cn � Pm;m even.

(ii) Let u1, u2, . . . , un be the vertices of Cn and v1, v2, . . . , vm be the vertices
of Cm. Let u1, u2, . . . , un be the vertices on the root and v11, v12, . . . , v1m,
v21, v22, . . . , v2m, . . ., vn1, vn2, . . . , vnm be the vertices on the crown. In
Cn�Cm, vi1, vi2, vim; 1 ≤ i ≤ n always have odd degree with deg(vij) =
3; 1 ≤ j ≤ m. The total number of vertices in the corona product is
n(m+ 1). There are two possibilities for Cn � Cm.

Case-1: Let m be even. Since every vertex of each copy of Cm is joined
to each vertex of Cn, the degree of Cn remains even, one can make
a path decomposition in such a way that none of the vertices of
Cn is the end vertex of any path (see Figure 18) and it will be
the least too (see Theorem 2). Thus the pendant number becomes
n(m+ 1) − n = nm.
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Figure 18: A corona product Cn � Cm; m even.

Figure 19: A corona product Cn � Cm; m odd.

Case-2: Let m be odd. Then, all the vertices of Cn � Cm become odd.
Thus, by Theorem 2, pendant number is n(m+ 1) (see Figure 19),
the entire vertex set of the resultant graph.

�
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4 Conclusion

In this paper, we discussed certain properties of the pendant number of a
given graph G. We have determined the pendant number of corona products
and rooted products of paths and cycles. We have also obtained some bounds
for the pendant number for some specific derived graphs. Corresponding to any
natural number n, the existence of a connected graph with pendant number n
has also been established in this study. These studies can further be extended
to other general graph classes, graph products and other graph operations. The
relation of pendant numbers with other popular parameters like domination
number, covering number, chromatic number etc. can also be studied.
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Abstract. To reconstruct the points in three dimensional space, we need
at least two images. In this paper we compared two different methods:
the first uses only two images, the second one uses three. During the
research we measured how camera resolution, camera angles and camera
distances influence the number of reconstructed points and the dispersion
of them. The paper presents that using the two-view method, we can
reconstruct significantly more points than using the other one, but the
dispersion of points is smaller if we use the three-view method. Taking
into consideration the different camera settings, we can say that both the
two- and three-view method behaves the same, and the best parameters
are also the same for both methods.

1 Introduction

Computer Vision plays an increasingly important role in our days. It’s use is
very diverse. The diversity is reflected in it’s use from engineering to medical
applications but Computer Vision also plays a major role in the entertainment
industry. Some examples of it’s usage are: autonomous cars, face detection,
three dimensional triangulation, extended reality, Google Street View etc.
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Most of the applications mentioned above require a variety of tools. Au-
tonomous cars use different capture devices, such as LIDAR (laser-based sen-
sor), see for instance [6], to achieve “vision”. Likewise, there is a need for a
device (eg. MRI or CT) that can capture an image from inside the body to
segment the tumors. It is noticeable that similarly to the complex structure of
the human visual system, for the computer vision, we also need a complex sys-
tem of physical devices. Of course, this complex physical system is not enough.
There is also a need for effective software, that processes and interprets the
information gained through the devices.

From a large set of applications, the three-dimensional triangulation may
seem to be the simplest. For this application, we do not need anything else
but just different photos about the same object. It is not necessary for images
to be made with the same camera and it is not important how the cameras
are placed when capturing the images, but it is important to have at least
one common object on the images. Based on these, it seems this problem can
be solved more easily than the rest. Nevertheless, if we are getting deeper in
this subject, it turns out that although this task is associated with the least
constraint, it is one of the most difficult to solve mathematically and to write
optimal software for this.

In this paper the main goals are to compare the two-view triangulation with
the three-view one and to create a data set, that is suitable for the previously
mentioned purpose. Comparing the two methods, we had the following aims:
to compare the two methods based on input images with different resolution,
in the case of different angles of the cameras and finally in the case of different
distances of the cameras.

In order to make the right measurements, the following are required: to
identify common pixels on images, to calculate the camera matrices based
on the images and to triangulate the identified common pixels based on the
camera matrices (using both two-view and three-view method).

2 Mathematical background and previous results

1997 is a significant year in the history of Computer Vision. At this point,
there were methods for the triangulation problem, but in this year Richard I.
Hartley with Peter Sturm published a method, which gives an optimal solution
in case we are using image pairs. Their method differs from previous methods,
so not the algebraic error was minimized but the geometrical. By this method
they achieved to solve the problem optimally by finding the roots of a 6th
grade polynomial, see [5].
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In 2005 Henrik Stewenius, Frederik Schaffalitzky and David Nister published
a paper about solving optimal the three-view triangulation. This method is
based also on minimizing the geometric error, but instead of the 6th grade
polynomial we have to find the roots of a 47th grade polynomial to get the
optimal solution, see [10].

The three-view triangulation compared to the two-view has just one more
input (the third picture) but the problem to find the optimal triangulation
has become more complicated. This is also a question, that if we want to
triangulate optimally from n pictures, how complicated will be the polynomial
we have to solve. We don’t know for sure the answer to this question, but
there is a paper from 2016 in which there is formulated a conjecture about
this. Conform to the conjecture, if we have n pictures, the grade of polynomial
will be the following (see [2]):

9

2
n3 −

21

2
n2 + 8n− 4

2.1 Camera coordinate system

The corresponding point of X3D = (x1, x2, x3)
T is the X2D = (x1, x2)

T in the
camera coordinate system. This has the following form in homogeneous coor-
dinates (see [7]): 

x1
x2
x3
1

 7−→
fx1
fx2
x3

 =

f 0 0 0

0 f 0 0

0 0 1 0



x1
x2
x3
1

 (1)

Transformation (1) is a simple product of matrices. The left-hand side of the
product is the projection matrix, that contains the parameters of the camera.
These parameters determine the formation of the image. The right-hand side
of the product is the three-dimensional point itself, which we would like to
take picture of. The actual projection matrix looks like the following (see [7]):

P =

sxf a sxox 0

0 syf syoy 0

0 0 1 0

 , (2)

where f is the focal length, (sx, sy) the zoom of the camera, (ox, oy) the trans-
lation of the axes of the camera coordinate system and a determines the shape
of the pixels. The parameter a is not null just in the case, where the axes of
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the coordinate system are not perpendicular to each other, see [7].
The projection matrix has also the following form:

P = K[I|O], (3)

where K is the calibration matrix, see [7].

2.2 World coordinate system

It is not enough to consider just the camera coordinate system, because the
real points which we want to take pictures of are in the world coordinate
system. The connection of the two coordinate systems are the following:

1. There is a translation t between them

2. The world coordinate system is rotated

Taking into consideration these, the projection matrix has the following form:

P = K[R|Rt] = KR[I|t] = K[R|− RC̃] = KR[I|− C̃], (4)

where R is the rotation and, t is the translation. C̃ is inhomogeneous coordinate
of camera center in the world coordinate system (t = −C̃), see [7].

2.3 Camera calibration

From (1), we can easily determine the image of a point if projection matrix P

is known. The process of determining the projection matrix P is called camera
calibration.

One method to this process is using calibration pattern. The corners of a
chessboard can be easily identified, so they are often used. The most used
calibration pattern is the Tsai grid, see [11].
P has 12 elements, but it’s degree of freedom is just 11, so we need 11 equations
to determine the projection matrix.

Because of the noise of the images, the 11 equations won’t give an exact
solution, so we use more equations and minimize the algebraic error of the
over-defined equation system, see [7].

Ap = 0, (5)

where A has size 2N × 12 and p = (P11, P12, ... , P34)
T contains the unknown

elements of the projection matrix (Pij ∈ P, i = 1, 3, j = 1, 4).
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2.4 Geometrical error

(5) minimizes the algebraic error of the system, but this won’t be optimal
geometrically. For minimizing the geometrical error of n-view method, we use
the following equation, from [7]:

Err =

n∑
i=1

‖X2Di
− PX3Di

‖2 , (6)

where X2D is the coordinate of a pixel on the image, and PX3D is coordinate
projected by the camera matrix. This is a least squares problem, which we can
solve for example with Levenberg-Marquard algorithm, see [4].

3 Practical implementation

To make the proper measurements, we needed an appropriate set of data. Since
we did not find a suitable data set, we generated one, see [8]. The pictures
for this data set were made with a Google Pixel 2 smartphone, using the
OpenCamera (see [3]) application freely available for Android phones. The
specifications of the camera are the following:

Sensor type CMOS

Sensor size 1/2.6”

Aperture f/1.8

Focal length ≈4.47 mm

Image Resolution 4032x3024 (12.19 MP)

Pixel size 1.4 µm

Table 1: Google Pixel 2 – camera specifications [1]

3.1 OpenMVG library

For comparing the two methods, we used the OpenMVG open-source library,
see [9]. This library is designed for computer-vision scientists. OpenMVG pro-
vides solutions for multiple problems in Computer Vision, such as the trian-
gulation.
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Figure 1: OpenMVG Reconstruction System

4 Evaluation and conclusion

Given the number of found common pixels, the two-view method founds
1.45−1.86 times more common pixels than three-view one, but there are some
questions. The first question would be, what happens with common pixels on
all images? In this case the two-view method does three triangulations: using
images 1− 2, 1− 3 and 2− 3. From these three triangulations two are redun-
dant. Furthermore if there is noise on the images, the needlessly triangulated
points won’t coincide with each other, however they should.

4.1 Evaluation of different resolution measurements

We can notice, that the smaller the resolution, the less common points will
find the software. At very low resolution (480 × 320), the software does not
work at all. Up to FullHD resolution (1920×1080) the software finds less than
1, 000 while above FullHD resolution finds thousands of common pixels with
the two-view method. The three-view method has similar results. Up to Ul-
traHD resolution (3840 × 2160) the number of reconstructed pixels increases
steadily, while at the highest resolution (4032×3024) a larger drop is detected
(426 points for two-view and 122 for three-view method). One possible ex-
planation for this is the higher noise entering at high resolution. If there was
no noise on the images, the number of reconstructed points would increase
steadily by increasing the resolution.
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Figure 2: Different resolution measurements

Analyzing the dispersion, we can observe for the three-view method this is
smaller. The dispersion at three-view method can be smaller from 1.2% up to
11.8%. On average, the dispersion of three-view triangulation is less by 5.6%
than the two-view method.

4.2 Evaluation of different angles measurements

First of all, the middle camera was fixed for all measurements at 21cm distance
from the object. For every three measurement, the left camera was fixed, while
the right-one was positioned in 8.74°, 13.18° and 16.79° degrees to the middle
camera. At the first three measurements, the left camera was held in 5.33°, in
the next three in 9.46° and at the last three in 10.72° degrees to the middle
camera (see Figure 3).

The first conclusion we can observe is the resolution does not play a key role
in either two- or three-view method. For both methods, the number of pixels
matched increases in the same way as the angles increase, but for two-view
method is still significantly higher. From the current measurements, we can
conclude, the dispersion decreases if one camera is positioned in a low angle,
and the other in a high angle to the middle camera.
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Figure 3: Camera positions for different angle measurements
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The best result is in the case when left-camera has 5.33° and the right-
camera 16.79° degrees to the middle camera. In this case the number of found
common pixels is 653 for the two-view method, and 264 for the three-view
one. In this case also, the dispersion of points is minimal, 1.18 for two-view
method, and 1.11 for three-view one.

The worst result is at 10.72° for the left camera and 8.74° for the right-one,
with 498 common pixels found using two-view method, and 202 using three-
view. The dispersions in this case are the largest, 2.8 and 2.71 respectively for
the two-view and three-view methods.

4.3 Evaluation of different distances measurements

At these measurements, we fixed seven different points on a line. The points
were at 1.73 cm, 3.46 cm, 5.33 cm, 7.2 cm, 9.16 cm, and 10.93 cm distances
relatively to the first fixed point. We positioned the cameras in every combina-
tion of these points for measurements. The fourth point (with 5.33 cm distance
to the left-most point) was on the perpendicular bisector of the object.
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Figure 5: Different distances measurements

Our measurements don’t show a clear correlation between the different dis-
tances between cameras and the number reconstructed pixels, but it is clearly
apparent that the dispersion decreases when two cameras are close together
and the third moves away.



50 Zs. Kucsván

The best result was when the left camera is at 1.73 cm, the middle-one at
5.33 cm and the right-one at 7.2 cm distance from the left-most point. In this
case the dispersion is 0.49 for two-view method, and 0.45 for three-view one.

The worst result was the first measurement, when the left camera is at 0

cm, the middle-one at 1.73 cm and the right-one at 3.46 cm distance from the
left-most point. In this case the dispersion is 1.89 for the two-view method,
and 1.83 for the three-view one.

4.4 Conclusion

From the results, firstly, we can conclude, that using the two-view method
there will be more common pixels but using the three-view method the dis-
persion of triangulated points will be smaller. Secondly, we conclude, that the
number of found common pixels increases if we increase the angle of one camera
but the other camera remains at a low angle to the middle one. The dispersion
of triangulated points depends on the distance between the cameras, but also
from the position relative to the object. The last conclusion is that until a
certain resolution, the bigger resolution results in more triangulated points.
This resolution may differ from the camera used for capturing the images. In
our case, the best resolution was the UltraHD resolution (3840× 2160 pixels).
Summarizing the research output, we can formulate that using the three-view
method, we get a better triangulation result for the human eye than using
the two-view method. The question remains whether the three-view method
is more accurate than the two-view method, or not?
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[2] J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, R. R. Thomas, The
euclidean distance degree of an algebraic variety, Foundations of compu-
tational mathematics, 16, 1, (2016) 99–149. ⇒43

https://www.devicespecifications.com/en/model/cd694619
https://www.devicespecifications.com/en/model/cd694619


Comparing two- and three-view computer vision 51

[3] M. Harman, Opencamera, https://sourceforge.net/projects/

opencamera/. ⇒45
[4] R. Hartley, A. Zisserman. Multiple view geometry in computer vision.

Cambridge University Press, 2003. ⇒45
[5] R. I. Hartley, P. Sturm, Triangulation, Computer vision and image un-

derstanding, 68, 2 (1997) 146–157. ⇒42
[6] L. Hung, M. Barth, A novel multi-planar lidar and computer vision cal-

ibration procedure using 2d patterns for automated navigation, In 2009
IEEE Intelligent Vehicles Symposium, IEEE, 2009 pp. 117–122. ⇒42
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Abstract. A set of vertices in a graph is a dominating set if every vertex
not in the set is adjacent to at least one vertex in the set. A dominat-
ing structure is a subgraph induced by the dominating set. Connected
domination is a type of domination where the dominating structure is
connected. Clique domination is a type of domination in graphs where
the dominating structure is a complete subgraph. The clique domina-
tion number of a graph G denoted by γk(G) is the minimum cardinality
among all the clique dominating sets of G. We present few properties of
graphs admitting dominating cliques along with bounds on clique domi-
nation number in terms of order and size of the graph. A necessary and
sufficient condition for the existence of dominating clique in strong prod-
uct of graphs is presented. A forbidden subgraph condition necessary to
imply the existence of a connected dominating set of size four also is
found.

1 Introduction

The study of domination in graphs is to a great extent a result of the study
of games and recreational mathematics. It began when C.F. De Jaenisch at-
tempted to determine the minimum number of queens that can be placed on
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an n × n chess board so that all squares are either attacked by a queen or
are occupied by a queen [10]. Domination in graph can be defined in a similar
terms as finding a set of vertices in a graph such that every vertex in the
graph is either adjacent to some vertex in the set or is in the set. Further
development in domination was observed in late 1950s with Claude Berge [3]
introducing coefficient of external stability which is now known as domination
number. A set of vertices in a graph is a dominating set if every vertex in the
graph which is not in the dominating set is adjacent to one or more vertices in
the dominating set. The domination number, γ(G), of a graph G is the mini-
mum number of vertices in a dominating set. Over the course of time different
types of domination in graphs such as total domination, connected domination
and independent domination were developed by imposing conditions on the
dominating set. For example a connected dominating set is a dominating set
that induces a connected subgraph. [17, 9, 7, 12, 2, 16].

A dominating structure in a graph is a subgraph induced by its dominating
set. Identification of graphs possessing specific types of dominating structures
is a problem that caught the attention of several researchers. In this paper
we are exploring graphs having complete graphs as a dominating structure.
Every graph referred to in this article is finite, undirected, simple and con-
nected. [5, 14, 4] A clique dominating set is a dominating set that induces a
complete subgraph. A clique dominated graph is a graph that contains a clique
as a dominating structure. Cozzens and Kelleher were the first to deal with
dominating cliques. The clique domination number, γk(G), of a graph G is the
minimum number of vertices in a clique dominating set.

The concept of domination is very useful to model several real-world prob-
lems such as social networks , bus routing, land surveying, computer and com-
munication networks . Facility allocation is another area wherein one finds
one of the most important applications of domination; in particular connected
domination and clique domination. It involves optimal placement of facilities
in a given area.[6, 7, 8] For example let us consider the problem of effective
allocation of airports and air routes of a country. The airports in important
cities of a country are connected with each other, while every other airport is
connected with that of at least one of the important cities. Another instance
is a wireless sensor network which is comprised of autonomous sensor nodes
where the connected dominating set enable faster communication by forming
a virtual network backbone for information and control routing.[15, 11, 13, 1]
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2 Related results

It is note worthy that every graph need not have a dominating clique. The
smallest clique being K1, the smallest dominating clique is a single vertex. It is
clear that a graph with a dominating vertex has a star as spanning tree. Wolk
[18] gave the necessary condition for the graphs to have dominating clique of
size one and he called such a dominating clique a central vertex or a central
point. Dominating clique of size two is an edge called dominating edge.

Theorem 1 (Wolk [18]) If G is a finite connected graph with no induced P4
or C4, then G has a dominating vertex.

Cozzens and Kelleher [5] extended the theorem to get a forbidden subgraph
condition to establish the existence of a dominating clique, which is presented
below

Theorem 2 (Cozzens and Kelleher [5]) If G is a connected graph that
has no induced P5 or C5 then G has a dominating clique.

Although the above result ensures the existence of a dominating clique, it
does not specify the size of the dominating clique. In the direction,Cozzens
and Kelleher [5] have explored the problem of identifying graphs possessing
connected dominating set of size 3.

The notation Kn+p [5] represents the complete graph Kn on n vertices along
with n pendants, one at each vertex of the complete graph. For example K3+p
is the net graph. K3+p and K4+p are shown in the Figure 1.

Figure 1: The graphs K3+p and K4+p

Note that connected dominating sets of size one and two respectively are
defined uniquely whereas a connected dominating set of size three is either a
P3 or a K3.
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Figure 2: The graphs A1, A2, A3 and A4

The characterization obtained by Cozzens and Kelleher [5] was in terms of
a class A = {P6, C6, K4+p, A1, A2, A3, A4} of graphs where the graphs A1, A2,
A3 and A4 are as shown Figure 2.

Theorem 3 (Cozzens and Kelleher [5]) If G is a finite, connected graph
with three or more vertices that has none of the graphs in Class A as an
induced subgraph, then G has a connected dominating set of size three.

We have settled the problem of obtaining a necessary condition for graphs to
have a connected dominating set of size of 4 and the result is presented section
5. First we will explore the bounds for clique domination number γk.

3 Bounds for clique domination number

Recall that a private neighbour of a vertex v with respect to the set K is
a vertex adjacent to only v from the set K. First we present the following
proposition.

Proposition 4 If K is a minimal dominating clique of a graph G, then every
vertex in K has a private neighbour.

Proof. On the contrary, assume that there is a vertex v ∈ K having no private
neighbor. Then v is adjacent to every vertex in K and v will have no private
neighbour. This implies that K− {v} is a smaller dominating clique contained
in K, which contradicts the minimality of K. �

The bound obtained by Ore [10] for domination number, is true for clique
domination as given below.
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Proposition 5 If a connected graph G of order n has a dominating clique,
then γk(G) ≤ n/2.

Proof. Assume that γk(G) > n/2. Then γk-set of G being a minimal domi-
nating clique, it is clear that there exists a vertex v ∈ γk-set of G which does
not have a private neighbor which is a contradiction to the proposition 3.1.
�

Remark 6 The bound obtained in Proposition 3.2 is sharp and Kn+p is a
class of graph that attains the bound. There are 2n vertices in Kn+p and the
minimum dominating set is of size n.

It is obvious that the domination number serves as a lower bound for clique
domination number. Then the following inequality follows immediately.

Proposition 7 If the graph G has a dominating clique, then γ(G) ≤ γk(G)
≤ ω(G) where ω(G) is the clique number of the graph.

Remark 8 Let G and H be two graphs. The corona product G◦H, is the graph
obtained by taking one copy of G and |V(G)| copies of H and by joining each
vertex of the i-th copy of H to the i-th vertex of G, where 1 ≤ i ≤ |V(G)|. The
graph Kr ◦ Ks, where r ≥ s has γ(Kr ◦ Ks) = γk(Kr ◦ Ks) = ω(Kr ◦ Ks) = r.

The next theorem gives a bound for the clique domination number of a graph
in terms of its size.

Theorem 9 If G is a graph with m edges possessing a dominating clique,
then

γk(G) ≤
√
1+ 8m− 1

2
.

Proof. We know that a clique of size γk has
γk(γk − 1)

2
edges. Therefore, m ≥

γk(γk − 1)

2
+ γk so that m ≥ γk(γk + 1)

2
. By solving which we will get γk(G)

≤
√
1+ 8m− 1

2
or γk(G) ≤

−
√
1+ 8m− 1

2
. Latter being impossible can be

neglected. Hence γk(G) ≤
√
1+ 8m− 1

2
. �

Remark 10 We can observe that the bound is sharp and Kn+p is a class of
graph that attains the bound. Figure 1 shows the graphs K3+p and K4+p.
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Obviously a graph G with maximum degree ∆ = n−1 has a dominating vertex
as the vertex with degree n− 1 itself is a dominating vertex. We now consider
graphs with ∆ = n− 2 and obtain the following theorem.

Theorem 11 If G is a connected graph with maximum degree ∆ = n−2, then
G has a dominating edge.

Proof. Since ∆ = n − 2, there exists a vertex, say v in G which is adjacent
to all but one vertex (obviously excluding v), say w, of the graph. But G is a
connected graph and w is not adjacent to v which implies that w is adjacent
to a neighbor of v say u, so that uv is a dominating edge of G. �

4 Clique domination in product of graphs

Clique domination problem for two types of graph product namely Lexico-
graphical product and Cartesian product has been studied[4]. We now extend
for clique domination in tensor products strong products of graphs.

The tensor product G×H of graphs G and H is a graph such that the vertex
set of G×H is the Cartesian product V(G)×V(H); and any two vertices (u, v)
and (u ′, v ′) are adjacent in G × H if and only if u is adjacent with u ′ in G
and v is adjacent with v ′ in H.[17, 9]

We can understand by the definition of tensor product of graphs that any
vertex (u ′, v ′) is not adjacent to any other vertex (u ′, vi) and (uj, v

′), ∀vi ∈
V(H) and ∀uj ∈ V(G). For any two graphs G and H, γ(G × H) ≥ 2. For any
graph G of order n, G× K1 is Kn. And G× K2 is a bipartite graph.

Proposition 12 For complete graphs Kr and Ks, γk(Kr × Ks) = 3, if r,s ≥ 3

Proof. We can observe that the tensor product of two complete graphs Kn
and Km is a graph with any vertex (ui, vj) is adjacent to all vertices (uk, vl),
∀k 6= i and ∀l 6= j Therefore, by choosing three vertices (ui1 , vj1), (ui2 , vj2) and
(ui3 , vj3) where i1 6= i2 6= i3 and j1 6= j2 6= j3 we obtain a dominating clique,
thus proving that γk(Kr ×Ks) ≤ 3. As we have observed earlier, we require at
least two vertices to dominate a graph. And if we consider an edge, the two
vertices in the edge say (ui1 , vj1) and (ui2 , vj2) can dominate all the vertices
but (ui1 , vj2) and (ui2 , vj1), hence the graph cannot be dominated by an edge.
Therefore K3 is the smallest clique dominating the tensor product Kr × Ks �

The strong product G�H of two graphs G and H is the graph with V(G�H) =
V(G) × V(H) and (u, u ′)(v, v ′) ∈ E(G � H) if and only if either uv ∈ E(G)
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and u ′ = v ′ or u = v and u ′v ′ ∈ E(H) or uv ∈ E(G) and u ′v ′ ∈ E(H).
Note that if C ⊆ V(G�H), then the G-projection and H-projection of C are,
respectively, the sets CG = {u ∈ V(G) : (u, b) ∈ C for some b ∈ V(H)} and
CH = {v ∈ V(H) : (a, v) ∈ C for some a ∈ V(G)}. [17, 9]

Theorem 13 The graph G � H has a dominating clique if and only if the
graphs G and H have dominating cliques.

Proof. Suppose G � H has a dominating clique. Let C ⊆ V(G � H) be the
dominating clique of G � H. Consider the projections CG and CH of C on G
and H respectively. We claim that CG is a dominating clique of G and CH is a
dominating clique of H. Strong product being commutative, it is sufficient to
show that CG is a dominating clique of G. Let u, u ′ ∈ CG be distinct vertices.
By the definition of projection we can observe that there exist adjacent vertices
(u, v) and (u ′, v ′) in C. We know that (u, v) and (u ′, v ′) are adjacent in G�H
implies that either uu ′ ∈ E(G) and v = v ′ or u = u ′ and vv ′ ∈ E(H) or
uu ′ ∈ E(G) and vv ′ ∈ E(H). Since u and u ′ are distinct we can easily conclude
that uu ′ ∈ E(G). Therefore CG forms a clique in G. Now, to show that CG is a
dominating set. Let u1 /∈ CG be vertex of G. There exists a vertex (u1, v1) in
G�H. Since C is a dominating clique in G�H, there exists a vertex (u0, v0) ∈
C adjacent to (u1, v1). Since u0 and u1 are distinct, by definition of an edge in
strong product u1 and u0 are adjacent. Therefore, CG is a dominating clique
of G.
Conversely, let SG and SH be the dominating cliques in the graphs G and H.
We claim that SG × SH forms a dominating clique in G�H. Firstly to show
that SG × SH is a clique in G�H. Let (u, v) and (u ′, v ′) be two distinct vertices
in SG × SH. Either u = u ′ or uu ′ ∈ E(G) and v = v ′ or vv ′ ∈ E(H). Either
ways (u, v) and (u ′, v ′) are adjacent. Hence, SG × SH is a clique in G � H.
Now to show that SG × SH dominates G � H. Consider a vertex (u1, v1) not
in SG × SH. If u1 not in SG then there exists a u0 in SG adjacent to u1 in G
and a v0 in SH where v0 = v1 or v0 and v1 are adjacent in H. By the definition
of strong product of graphs (u1, v1) is adjacent to (u0, v0). And if u1 is in
SG since (u1, v1) not in SG × SH there exist v0 6= v1 in SH dominating v1 in
H. Owing to the definition of strong product of graphs (u1, v1) is adjacent to
(u1, v0). Therefore, SG × SH forms a dominating clique in G�H. �

Theorem 14 If G and H are connected graphs with dominating cliques, then
γk(G�H) = γk(G) × γk(H)
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Proof. Let SG and SH be the γk sets of G and H respectively. We know that
SG × SH forms a dominating clique in G�H. This implies

γk(G�H) ≤ γk(G) × γk(H)

To show that γk(G�H) ≥ γk(G) × γk(H) we need to show that ∀ (ui, vi) ∈
SG×SH, (ui, vi) ∈γk-set of (G�H). ui ∈ SG implies ui has a private neighbor
say u1. Similarly vi has a private neighbor v1. We claim that (u1, v1) is a private
neighbor of (ui, vi), i.e. there is no (u2, v2) adjacent to (u1, v1) in SG × SH. If
there exists a vertex, say, (u2, v2) adjacent to (u1, v1) then by definition of
strong product u2 = u1 and v1v2 ∈ E(H) or u1u2 ∈ E(G) and v2 = v1 or
u1u2 ∈ E(G) and v1v2 ∈ E(H) all contradicting the fact that u1 is the private
neighbor of ui and v1 is the private neighbor of vi. Which implies that ∀
(ui, vi) ∈ SG × SH, (ui, vi) ∈γk-set of (G � H). Hence SG × SH is a minimal
dominating clique of G�H. To show that SG×SH is a γk set of G�H, assume
the contrary, if SG × SH is not a γk set of G � H, then there exist a smaller
dominating clique T whose projections TG and TH forms a smaller dominating
clique for G and H respectively hence contradicting the minimality of SG and
SH. �

5 Graphs with connected dominating structure of
order four

A forbidden subgraph condition necessary for a graph to have a connected
dominating set of size three was found by Cozzens and Kelleher [5]. We discuss
a forbidden subgraph condition necessary to have a connected dominating set
of size four. There are 6 connected graphs on four vertices :- K4, C4, P4, Claw
(K1,3), Paw and Diamond (K4 − e). Therefore a connected dominating set of
size four can be any of the above mentioned graph.

Figure 3: Connected graphs of order four
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Theorem 15 If G is a finite, connected graph with four or more vertices that
has none of the graphs in B (Fig. 4) as an induced subgraph, then G has a
connected dominating structure of order four.

Figure 4: Class B
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Proof. By induction on n, the order of graph G,
(i) The theorem is true when n = 4.
(ii) Assume that any finite connected graph with n vertices, n ≥ 4, that has

none of the graphs in B as an induced subgraph has a connected dominating
structure of size four.

(iii) Let G be a finite connected graph on n+ 1 vertices, where n ≥ 4, that
has none of the graphs in class B as an induced subgraph. Let v be vertex of
G which is not a cut vertex. Consider the graph G ′, subgraph of G induced
by all vertices of G excluding v. Since G ′ is a finite connected graph with
n vertices having no graphs from class B as an induced subgraph, by the
induction hypothesis G ′ has a connected dominating structure of order four.

Let S = {a, b, c, d} induce the connected dominating structure of order
four of G ′. If v is adjacent to any vertex in S, then S dominates G also.

Suppose that in G, v is not adjacent to any vertex in S. Since G is con-
nected, v must be adjacent to some vertex of G, say x. And S being the
connected dominating set of G ′, x must be adjacent to some vertex in S. The
set {a, b, c, d, x} induces a connected graph of 5 vertices. Therefore, the
graph induced by S ∪N(S) ∪ {v} has one of the graphs from B as a subgraph,
not necessarily induced, i.e, there might be edges between the pendant ver-
tices and other vertices. If there are no edges between the pendant vertices and
the other vertices, this implies that the subgraphs are induced, which contra-
dicts the assumption that G has none of the graphs in class B as an induced
subgraph.

Figure 5: Graphs used in the proof of Theorem 15

Suppose G has at least one edge between the pendant vertices. If G has
exactly one edge between vertices as shown in Figure 5(a) , then G has an
induced subgraph shown in Figure 5(b), which is a forbidden subgraph from
class B.
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Figure 6: Graphs used in the proof of Theorem 15

If G has exactly two edges between the pendant vertices as shown in Figure
6(a) or 6(c), then G has an induced subgraph shown in Figure 6(b) or 6(d) ,
which is a forbidden subgraph from class B.

Figure 7: Graphs used in the proof of Theorem 15

If G has exactly three edges between the pendant vertices as shown in Figure
7(a) or 7(c), then G has an induced P7, which is a forbidden subgraph from
class B.
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Figure 8: Graphs used in the proof of Theorem 15

If G has exactly three edges between the pendant vertices as shown in Figure
8(a), then G has a P4 as shown in Figure 8(b) which is a connected dominating
structure of order four.

We can now observe that an edge between the pendant vertices in the graphs
in Class B will lead to obtaining a connected dominating structure of order
four or a contradiction to the absence of an induced forbidden structure from
class B. Therefore, G has a connected dominating set of size four. �

As we have seen before, the converse of this theorem need not be true. A
finite connected graph having graph from B as an induced subgraph can have
a dominating clique of size four. An example is given in Fig. 9.

Figure 9: Graph with induced P7 dominated by K4
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[15] G. Mekǐs, Lower bounds for the domination number and the total domination

number of direct product graphs, Discrete Mathematics, 310 (2010) 3310–3317.⇒53
[16] E. Sampathkumar, H. B. Walikar, The connected domination number of a graph,

Jour. Math. Phy. Sci. 13 (1979) 607–613. ⇒53
[17] D. B. West, Introduction to Graph Theory (2nd ed.), Pearson Education, 2002.⇒53, 57, 58
[18] E. S. Wolk, A note on “The comparability graph of a tree”, Proc. Amer. Math.

Sot., 16 (1965) 17–20. ⇒54

Received: March 25, 2019 • Revised: June 24, 2019

https://www.sciencedirect.com/science/article/pii/0012365X9090353J
https://www.sciencedirect.com/science/article/pii/0012365X9090353J
https://www.sciencedirect.com/science/article/abs/pii/0165489688900418
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230100304
https://www.sciencedirect.com/science/article/pii/S0012365X08003269
https://www.sciencedirect.com/science/article/pii/S0012365X08003269
https://en.wikipedia.org/wiki/Frank_Harary
https://www.sciencedirect.com/science/article/pii/S0166218X09001449
https://www.sciencedirect.com/science/article/pii/S0166218X09001449
https://www.hindawi.com/journals/ijcom/2013/795401/
https://www.sciencedirect.com/science/article/pii/S0304397507004938
https://www.sciencedirect.com/science/article/pii/S0012365X10002852
https://shyam.nitk.ac.in/es-papers/ES026%20The%20Connected%20Domination%20Number%20Of%20A%20Graph.pdf
https://www.ams.org/journals/proc/1962-013-05/S0002-9939-1962-0172273-0/S0002-9939-1962-0172273-0.pdf
https://www.ams.org/journals/proc/1962-013-05/S0002-9939-1962-0172273-0/S0002-9939-1962-0172273-0.pdf


Acta Univ. Sapientiae, Informatica 11, 1 (2019) 65–79

DOI: 10.2478/ausi-2019-0005

Automatic detection of hard and soft

exudates from retinal fundus images

Bálint BORSOS
Sapientia Hungarian University of Transylvania,

Cluj-Napoca, Romania
Dept. of Electrical Engineering, Târgu Mureş
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Abstract. According to WHO estimates, 400 million people suffer from
diabetes, and this number is likely to double by year 2030. Unfortu-
nately, diabetes can have severe complications like glaucoma or retinopa-
thy, which both can cause blindness. The main goal of our research is to
provide an automated procedure that can detect retinopathy-related le-
sions of the retina from fundus images. This paper focuses on the segmen-
tation of so-called white lesions of the retina that include hard and soft
exudates. The established procedure consists of three main phases. The
preprocessing step compensates the various luminosity patterns found in
retinal images, using background and foreground pixel extraction and a
data normalization operator similar to Z-transform. This is followed by a
modified SLIC algorithm that provides homogeneous superpixels in the
image. The final step is an ANN-based classification of pixels using fifteen
features extracted from the neighborhood of the pixels taken from the
equalized images and from the properties of the superpixel where the pixel
belongs. The proposed methodology was tested using high-resolution fun-
dus images originating from the IDRiD database. Pixelwise accuracy is
characterized by a 54% Dice score in average, but the presence of exu-
dates is detected with 94% precision.

1 Introduction

Retinopathy is a severe complication of diabetes, which can lead to partial
or total loss of sight. Several million people are affected by retinopathy of
various grades [14]. Retinopathy can be diagnosed via analysing the image
of the retina, which is usually acquired with a fundus camera. In the clinical
practice of developing countries, fundus images are recorded in certain regional
hospitals, but they are sent to a central hospital for evaluation by a qualified
human expert. In order to build a screening for mass population, it would
be necessary to purchase more fundus cameras and train lots of humans to
become qualified experts. While the first condition can be fulfilled by raising
funds, the second condition regarding human experts is a more difficult one.
This is why there is a strong need for well trained computer systems that
can reliably separate obvious negative cases from suspected positive ones, and
draw the attention of the human experts to the latter. This way it is possible
to create screening systems without needing lots of more human experts.

Retinopathy can cause various lesions on the retina. Some examples are
shown in Fig. 1. Microaneurysms and hemorrhages are collectively called red
lesions, while hard and soft exudates together are referred to as white lesions.
Although retinopathy is usually manifested with all these lesion types, just
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Figure 1: Retinal fundus image, indicating the anatomical parts relevant from
the point of view of this study, and showing examples for the four types of the
lesions. The original image was taken from the IDRid database [18].

as in the case shown in Fig. 1, the most studies from the literature focus on
the detection or segmentation of only the red or the white lesions. To comply
with this trend, we chose to dedicate the current study to the white lesion
segmentation problem.

The computerized analysis of fundus images has been investigated for over
two decades, and this process does not seem to slow down at all. The “Diabetic
Retinopathy: Segmentation and Grading Challenge” [18] organized jointly
with the IEEE International Symposium on Biomedical Imaging (ISBI 2018),
with its high resolution retinal fundus image database, even seems to have an
intensifying effect upon this research branch.

There are a few review articles in the field (e.g. [9, 16]), which give us a
concise insight into the exudate detection problem. The methodology includes
solutions based on: global and adaptive thresholding [19, 10], region grow-
ing [15], clustering in color space [7], morphological operations [17, 23], edge
detection and mixture modeling [4, 5, 3], active contours and Näıve Bayes
classifier [8], various supervised classifiers in competition [21], support vector
machine [20, 6], perceptron network combined with graph-cut algorithm [13],
circular Hough transform combined with CNN networks [2], and CNN with
deep learning [11, 12].
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This paper proposes a multi-step procedure for the exudate detection and
segmentation problem, consisting of image intensity compensation, superpixel
extraction, and supervised classification of pixels using a perceptron network,
based on 15 features extracted from the neighborhood of the pixels and the su-
perpixels they belong to. The proposed method will be evaluated using images
from the IDRiD dataset [18].

The rest of this paper is structured as follows: Section 2 gives details on the
proposed methodology. Section 3 exhibits and discusses the achieved results.
Finally, Section 4 concludes the investigation.

2 Materials and methods

2.1 Data sets

This study relies on a subset of the Indian Diabetic Retinopathy Image Dataset
(IDRiD) [18]. IDRiD contains 50 annotated positive images with soft and/or
hard exudates, for which the optic disc mask is also available. Further 89
negative images were involved in the study, for these images we have produced
optic disc masks. All these images were acquired using a Kowa VX-10 alpha
digital fundus camera. Each positive image is accompanied by two masks that
indicate the position of hard and soft exudates separately. We considered that
the images in IDRiD have too high resolution (4288×2848 pixels) and too few
components kept during JPEG encoding, so we resampled all retinal images
and masks to 1072× 712 pixels before proceeding to any processing step.

2.2 Data processing

The multi-step procedure proposed in this paper translates the image seg-
mentation task into a classification problem, and provides a machine learning
solution based on artificial neural networks (ANN) to complete the job. The
classification takes place at the level of pixels. So each pixel is provided a
feature vector, which includes properties of the neighborhood of the pixels,
and properties of the superpixel it belongs to. This way the procedure needs
to have the following steps (see Fig. 2): intensity compensation, superpixel
generation, feature extraction, ANN training, ANN testing (prediction with
ANN), and statistical evaluation.
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Figure 2: Block diagram of the proposed method.

2.3 Intensity compensation

A full processing of fundus images should be able to distinguish all anatomical
structures and all lesions from the background. The ideal would be to have a
constant background color. Unfortunately, the reality is usually very far from
the ideal case. Some parts of most recorded fundus images appear darker than
the others. This is why it is necessary to design a compensation scheme that
would not affect the anatomical parts [22].

Our intensity compensation method is inspired from the work of Sánchez
et al. [19]. First, we estimate which are the background pixel, and then we
apply intensity correction based on the local statistics, average and standard
deviation (STD) of intensities. Since the anatomical parts have significantly
different color compared to their immediate neighborhood (background) and
their edges are usually sharp, they are likely to be detected via thresholding.
We performed a blur filter with mask sizes 39 × 39 pixels, and compared
the blurred image from the original one. Wherever the absolute luminosity
difference exceeds the half of the global intensity STD, those areas are declared
anatomical parts. All other pixels are considered background pixels and they
participate in the compensation process. At least 80% of the pixels belong to
the background in most fundus images.
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To produce a compensation of intensities based on background pixels, it is
necessary to extract the local average and STD of intensities for every back-
ground pixels. Since this would be a very time consuming process, we adapted
the recipe given in [19], and turned to an approximation scheme. The whole
fundus image was divided into 4× 4 = 16 equal rectangles, which in our case
contained 268×178 pixels each. The average and STD intensity of background
pixels situated in each rectangle (µi and σi, i = 1 . . . 16) was then computed.
Finally, the approximated average and STD intensity for each pixel (not only
background ones) was interpolated from the values obtained in the four (or
less in the proximity of margins) such rectangles, using as weighting coefficient
the −1 power of the physical distance between the pixel and the center of the
rectangle. This way the difference and STD values of neighbor pixels were
found quite similar, which conforms to our previous expectation that the bias
field varies smoothly along the original image.

The compensation of any pixel situated at coordinates (x, y) is finally per-
formed with the formula:

Ĩ(x, y) =
I(x, y) − µ̂neigh(x, y)

σneigh(x, y)
+ µglobal , (1)

with

σneigh(x, y) =
σ̂neigh(x, y)
1
16

∑16
i=1 σi

, (2)

where µ̂neigh(x, y) and σ̂neigh(x, y) represent the interpolated average and STD
intensity at pixel (x, y), and µglobal is the desired average intensity of the
compensated images, which can be a freely chosen value.

2.4 Superpixel generation

The images with compensated intensity obtained in the previous section were
fed to a procedure that identified homogeneous spots or superpixels in them.
The procedure was based on the so-called simple linear iterative clustering
(SLIC) [1] algorithm. The original SLIC uses the k-means algorithm to clus-
ter pixels using a composite distance function that includes components of
physical distance and color difference. To assure the high speed of superpixel
creation, when pixels are assigned to the closest cluster, only those cluster
propotypes are tested which are situated within a short distance from the
given pixel, as distant ones have no chance to be the closest according to the
composite difference criterion.
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SLIC offers the chance for the user to set the approximate size of clusters.
As cluster centers are initially sampled on a regular grid Q pixels apart, the
approximate number of pixels belonging to each cluster will be Q2. In our im-
plementation, the value of Q was set to 9, and the composite distance between
two pixels at coordinates (x1, y1) and (x2, y2), having gray intensities g1 and
g2, respectively, was considered as

d =

√
(x1 − x2)2 + (y1 − y2)2 +

1

5
(g1 − g2)2 . (3)

With these settings, SLIC provided approximately 6300 superpixels in each
image. As a further step, all such superpixels or clusters were analyzed from
the point of view of their intensity distribution. Those clusters in which the
standard deviation exceeded a predefined threshold value θ were further sep-
arated into two clusters using the k-means algorithm. In this case only the
pixel intensities were considered and not their position within the cluster. The
value of the threshold θ was chosen such a way, that 5 − 10% of the clusters
would be further separated into two parts. The value was chosen as θ = 7.7

units on the 0 . . . 255 gray scale. Finally, the number of superpixels or clusters
was close to 7000 in each image.

2.5 Feature generation

Pixels of the retina images were going to be classified using a supervised ma-
chine learning approach. A feature vector was extracted for each pixel of the
50 retina images, with the following composition:

• 1–3: pixel intensity in red, green, and blue channels;

• 4–9: minimum, maximum, and average of green channel intensities ex-
tracted from 5× 5 and 11× 11 sized neighborhood of the pixel;

• 10: distance of the pixel from the closest point of the optic disc;

• 11: size of the superpixels where the pixel belongs;

• 12–15: average value in green channel, and the 10, 50, and 90 percentile
values of green channel intensity within the superpixel where the pixel
belongs.

These fifteen features characterize each pixel of the retina images. In the
next section we will attempt to distinguish exudates pixels from normal ones
using an artificial neural network based approach.



72 B. Borsos, L. Nagy, D. Iclănzan, L. Szilágyi

2.6 ANN training and testing

An artificial neural network (ANN) was trained to separate exudates from
other pixels of the retina images. The perceptron network employed for this
problem consisted of four layers. The input layer has a dedicated neuron for
each of the fifteen features listed in the previous subsection, the two hidden
layers consists of seven neurons each, while there is a single neuron in the
output layer.

To train the neural network, the “leave one out” technique was employed,
namely we trained an ANN for each of the 50 retina images, using randomly
selected pixels of the other 49 images as training data and their labeling as
expected values. Train data for each network consisted of 4900 negative pixels,
600 hard exudate pixels and 500 soft exudate pixels.

The ANN deployed for hard and soft exudate detection was the one imple-
mented in OpenCV ver. 3.1.0.

2.7 Evaluation criteria

Section 3 will provide a statistical evaluation of the obtained results. Pixel-
wise evaluation is performed based on the number of true positives (TP), false
negatives (FN), false positives (FP) and true negatives (TN), and the following
accuracy indicators will be computed:

• Sensitivity or true positive rate (TPR), defined as TPR = TP
TP+FN ;

• Specificity or true negative rate (TNR), defined as TNR = TN
TN+FP ;

• Dice score (DS), defined as DS = 2×TP
2×TP+FN+FP .

These statistical indicators will be analyzed separately in images with various
amounts of exudate pixels.

3 Results and discussion

All 50 retina images with positive (exudate) pixels, and all 89 negative im-
ages underwent the above described processing steps. Figure 3 presents the
intermediary results obtained for one of the images, starting from the original
color image and its green channel, the region of interest consisting from the
whole retinal part of the image with the optic disc removed, the estimated set
of background pixels, the intensity compensated image and the superpixels
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Intermediary results of the exudate detection procedure: (a) original
color image; (b) the green channel of the original image; (c) region of interest:
the whole retina image without the area of the optic disc; (d) the background
pixels detected by the intensity compensation method; (e) the intensity com-
pensated image; (f) the superpixels found by the modified SLIC algorithm.
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(a)

(b)

(c)

Figure 4: Three of the input retina images and the detected exudates: magenta
and cyan represent detected hard and soft exudates, respectively; red and
green indicate undetected hard and soft exudates, respectively; false positives
are shown in blue.
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Figure 5: Segmentation quality indicators obtained for individual retina im-
ages, plotted against the actual number of exudate pixels in the image accord-
ing to the ground truth.

identified in it. The feature vector was extracted for all pixels of all images
involved in this study.

For each image with exudate pixels, a dedicated ANN was trained to obtain
the segmentation, as described in Section 2.6. For the negative images, a sin-
gle ANN was trained using pixels from all 50 images that contain positives.
Detailed results of the segmentation are presented in the following.

Figure 4 presents the segmentation outcome for three images with positives.
The left column shows the original color images, while the right column in-
dicates the found and missed structures. The red, green and blue channels of
the color image are used according to the following logic:

• red channel is set to maximum intensity wherever there is a hard exudate
pixel according to the ground truth;

• green channel is set to maximum intensity wherever there is a soft exu-
date pixel according to the ground truth;

• blue channel is set to maximum intensity wherever the ANN estimates
that there is an exudate pixel;

• all other pixels in all color channels are set to zero intensity.
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Accuracy Cases with exudate pixel count Average of
indicators ≥ 30000 ≥ 10000 ≥ 3000 ≥ 1000 all cases

Dice Score 76.83% 63.67% 57.85% 56.35% 53.75%
Sensitivity 80.99% 70.96% 65.43% 64.26% 62.42%
Specificity 97.09% 97.94% 98.52% 98.75% 98.99%

Table 1: Average values of the accuracy indicators for various subsets of the
input images, defined in accordance to the actual number of exudate pixels in
the images.

This notation means that correct decisions are denoted by magenta (identified
hard exudates), cyan (identified soft exudates), and black (true negatives),
while red (missed hard exudates), green (missed soft exudates), and blue (false
positives) indicate wrong decisions. Larger spots of hard exudates are usually
found, while smaller ones are more likely to be missed.

Figure 5 shows the main statistical quality indicator values obtained for
individual retina images plotted against the number of actual exudate pixels
present in the images. This figure shows that Dice Score and Sensitivity is
generally higher in the segmentation outcome of images with larger number
of exudate pixels. The variation os Specificity is apparently reversed.

Table 1 indicates the average values of main statistical quality indicators
obtained in various subsets of the images that contain positive pixels. Subsets
restrict the whole set of positive images to those, which contain at least a
certain threshold number of positive pixels, the threshold varying from 1000

to 30000. As it is expected, images with more positive pixels are processed with
better accuracy, at least from the point of view of Dice Score and Sensitivity.

If we consider the pixels of the whole set of positive images with their
segmentation outcome, and compute the overall accuracy indicators for this
whole set, we obtain DS = 60.52%, TPR = 68.98%, and TNR = 99.01%.

For the negative images it only makes sense to extract the Specificity value,
which showed and average of 98.63%. For further development, it would be
necessary to propose an additional processing step to suppress the false posi-
tives.
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4 Conclusion

This paper proposed an image segmentation procedure to identify the presence
of hard and soft exudates in retinal fundus images. The proposed method was
tested on 50 positive and 89 negative cases taken from the IDRiD database.
The sensitivity values above 1/3, which we consider enough to detect the
presence of exudates, was found in 94% of the positive cases, making the
proposed method a good candidate for integration into a future screening
application.
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Abstract. In this short survey and case study we want to present our
research experience through the project developed by our team, that
involves the building of a LEGO MINDSTORMS EV3 robotic arm and
tracked robot car which mimics the motion of the human arm and legs.
We used 3 interconnected LEGO MINDSTORMS EV3 bricks to reach
the desired degrees of freedom. Using a Kinect sensor, the system detects
the motion of the human user’s arm and creates the skeletal image of
the arm. Coordinate geometry and different approximation methods are
used to calculate the rotation angles between the bones connecting the
joints. In our project the key is inverse kinematics, whitch makes use of
the kinematics equations to determine the joint rotation parameters that
provide a desired position for each of the robot’s end-effectors – arms and
legs (wheels). The combined motion of the LEGO MINDSTORMS EV3
motors results in a complete robotic forward or backward motion and
arm movement which is a perfect mimic of the human arm movement.

1 Introduction and motivation

The purpose of this paper is to introduce and compare different implemen-
tations of inverse kinematics, and to present a LEGO [16] robot and Kinect
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[15] (for motion capture) system that mimics the motion of the human arm
as a case study. Our application implements five different algorithms to solve
inverse kinematics problem. We compare and analyze the algorithms to select
the most appropriate one.

Inverse kinematics as an animation technique plays an important role in
computer animation and as we will see, robots can be controlled with the help
of it.

During the last decades several algorithms have been presented to produce
fast and realistic solutions to the inverse kinematics problem, but most of
the available algorithms have high computational cost and produce unrealistic
poses. The [1] technical report summarizes the research to date and the re-
sults achieved and methods developed. Based on the [10] book, using OpenGL
[17], we have developed a graphical system that displays the results of the
movements, the animation.

Kinect is used to copy human movements, we recognize gestures, and execute
them with our specially built LEGO robot.

Most of the results achieved have been presented at conferences [11], and
details and new solutions will be presented.

The body of this survey paper is divided into 6 sections. The first section
introduce readers to the robot control and animation, the second section de-
scribes the rotation in plane and space as the basis of animation. Section 3
presents the Inverse Kinematics (IK) problem and discusses the most popular
and developed solutions during the last couple of decades. Section 4 presents
the Kinect sensor and introduces gesture recognition methods. And finally,
Section 5 describes how our built LEGO robot works. The final section sum-
marizes the conclusions of our work.

2 Robot control and animation

Robot control is the study and practice of controlling robots [3]. Animation
is a method in which standing pictures are manipulated by quick changes to
appear as moving images [13]. Commonly the effect of animation (the movie,
or motion) is achieved by a rapid succession of sequential images – drawn or
computer generated – that minimally differ from each other.

But what does robot control and animation have in common?
If we want to answer the question briefly, we could say that the techniques.

In the longer term, we need to look specifically at the techniques and how to
apply them.
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When we talk about animation techniques, we distinguish between simple
and complex animation. Simple animation is the key frame animation or the
program-controlled animation. A keyframe in computer assisted or aided an-
imation and cinematography is a drawing suite that defines the starting, the
middle and ending points of any smooth transition [19]. The drawings, the pic-
tures (the given particular images) are called “frames” because their position
in time is measured in frames on a strip of old type of cellulose film.

In program controlled or program-driven animation, we write scripts that
implement the animation. Complex animation is motion caption, forward kine-
matics and inverse kinematics. Motion capture (mo-cap or mocap) is the pro-
cess of recording the movement of objects or people using differend kind of sen-
sors. In animation and film making, it refers to recording actions (movements)
of human or in some cases, not human actors, and using that information to
animate digital character models (skeletons) in 2D or 3D computer aided ani-
mation. If we use Kinect or VR equipment, we can realize a full robot control
using motion capture. The disadvantage of the method is, that only human-
shaped (android, humanoid) robots can be controlled in this way. But how
to control for example a spider- or dog-shaped robot? For these cases, and
not only, forward kinematics and inverse kinematics are suitable. For these
animations we need a bone/joint system.

In computer aided animation a designed figure, character is represented in
two parts: a surface representation (called skin or mesh), this is used to draw
the character and a hierarchical, recursive set of interconnected bones (called
the skeleton or rig) used to animate the figure, the character.

Each bone has a 2D (in plane) or 3D (in space) transformation (which
includes its position, scale and orientation in plane, space), and an optional
parent bone. The bones therefore form a hierarchy. This is a hierarchical and
recursive structure, because the full transform of a child node is the product of
its parent transform and in plus its own transform. So moving a thigh-bone will
move the lower leg too. As the character is animated during the process, the
bones change automatically their transformation over time, under the influence
of some animation controller [12].

The essential concept of forward kinematic animation – one of the anima-
tion techniques – is that the positions of particular parts of the model at a
specified time are calculated from the position and orientation of the object,
together with any information on the joints of an articulated model. In this
model the animator must to calculate each position of every joints. So for
example if the object to be animated is an arm with the shoulder remaining
at a fixed location, the location of the tip of the thumb would be calculated
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from the angles of the shoulder, elbow, wrist, thumb and knuckle joints. The
avantage of forward kinematic is, that we have a very precise control [18].
The disadvantage: difficult for complex movements, for example we can not
climbing stairs with forward kinematic control.

For complex movements the effective method ist the inverse kinematics. In
kinematics an animated figure is modeled with a skeleton of rigid segments
connected with joints, called a kinematic chain. The kinematics equations of
the figure define the relationship between the joint angles of the figure and
its pose or configuration. In inverse kinematics the orientation of articulated
parts is calculated from the desired position of certain points on the model.We
move only the end effector, and the program calculates the kinematic path of
each bones. The joints bind the bones. The bone rotates around the joint in
a given range of angle. The length of the bones does not change during the
movement. Mathematically, the system is complex. The exact method exists
for only two bones, the system becomes very complicated for more bones.
Nonlinear optimization is required.

In our project we use inverse kinematics for robot controll, but also motion
caption is required.

3 Rotation in plane (2D) and space (3D)

As we have seen, motion is accomplished by inverse kinematics, which is ob-
tained with rotation of bones around the joints. Rotations are described using
Euler angles. The Euler angles are three angles introduced by Leonhard Euler
to describe the orientation in space of a rigid body (described by the pitch,
yaw and roll movements) with respect to a fixed coordinate system. Any ori-
entation can be achieved by composing three elemental rotations. We use the
following angles: ψ around Z, θ around X, and ϕ around Y axis. In the plane,
rotation is accomplished by complex numbers. The multiplication rules for
complex numbers make them suitable for representing rotational quantities in
two dimensions. Using complex numbers, we can describe rotations as follows:
CR = C1 · C2, where C1 is a complex number representing the initial orienta-
tion, C2 is a complex number representing the subsequent rotation, and CR
is a complex number representing the final orientation. If we want to rotate
with two angles, first one with θ, after that with ϕ, we can use the exponen-
tial form of the complex number: z = r · eiθ. Then the rotation can be traced
back to the product of two complex numbers because: ei(θ+ϕ) = eiθ · eiϕ. If we
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Figure 1: The analytical solution

want to repeat the rotation, the De Moivre theorem will simplify the situation:
(cosθ+ i · sinθ)n = cosnθ+ sinnθ.

In the space (3D) instead of complex numbers, we use quaternions. In math-
ematics, the quaternions are a number system that extends the complex num-
bers. They were first described by Irish mathematician William Rowan Hamil-
ton in 1843 and applied to mechanics in three-dimensional space. Hamilton de-
fined a quaternion as the quotient of two directed lines in a three-dimensional
space or equivalently as the quotient of two vectors. The general form of a
quaternion: q = w + xi + yj + zk, where i2 = j2 = k2 = −1, and ji = −k,
kj = −i, ik = −j. Thus, all operations can be defined on quaternions. Quater-
nions can be used to explain orientation and quaternion operations to track
its changes.
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For a given rotation axis, the rotation formula, using Euler angels, is:
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4 The solutions of inverse kinematic problem

As we said, the exact method to solve the inverse kinematic problem exists
only for two bones, the system becomes very complicated for more bones. This
is the analytical solution.
Problem statement:
There are two bones given, the first has one end in the origin (0, 0) and the

second bone starts at the other end. With what kind of angles do you need to
rotate the two bones so that the free end of the second bone reaches a given
position (x, y)?

The solution of the problem, according to Figure 1 is:

cos θ2 =
x2 + y2 − l21 − l

2
2

2l1l2

and

tan θ1 =
y · (l1 + l2 · cosθ) − x · l2 · sinθ2
x · (l1 + l2 · cosθ) + y · l2 · sinθ2

Note: instead of atan function in computer science we use the atan2 func-
tion. The definition of this function is:

atan2(y, x) =



atan(y/x), if x > 0,
atan(y/x) + π, if x < 0 and y ≥ 0,
atan(y/x) − π, if x < 0 and y < 0,
+π
2 , if x = 0 and y > 0,

−π
2 , if x = 0 and y < 0,

undefined, if x = 0 and y = 0.
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Figure 2: Kinematic chain – hierarchical movement

For more than two bones, we can solve the system by hierarchical movement
based on Figure 2. We are iterating from the end effector to the base and
optimizing each joint so that the last one comes close as possible to the target.
So, we can have the same solution for more inverse kinematics problem.
Problem statement:
Known: The coordinates of end effector: e = [e1e2...eN].
Unknown: The degree of freedom (DOF): θ = [θ1θ2...θM].
The solution of the problem: θ = f−1(e).
Problems encountered: The f function is nonlinear. Calculation of the inverse

function is not trivial. The solution is ambiguous, multiple states may have
the same effector position.

The nonlinearity and ambiguity of inversion can be solved by an iteration
that produces one of the possible solutions. The base idea of the iteration: if
we known the position of end effector in a time moment t, we can calculate
the position in time moment t + ∆t. If ∆t is small, we can approximate the
function with its tangent (linear approximation).

In our research, a comparative analysis of four methods was made in this
sense. We compared the approximation method based on Jacobian matrix [4],
the correction of this method called Damped Least Squares [4], the Cyclic
Coordinate Descent (CCD) method [14], and the Constraint Relaxation (CR)
method [6, 9].
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The Jacobian matrix is the matrix of the partial derivatives of the system:
J = ∂e

∂θ . Then ∂θ = J−1 · ∂e.
If e = [e1e2...eN] and θ = [θ1θ2...θM], then the Jacobian matrix is an N×M

dimension matrix. So, we need a pseudoinverse: J+ = (JT [M×N] ·J[N×M])−1 ·
JT [M×N].

The state-changes in the pseudoinverse are minimal, so we get the possible
movements in which the relative velocity of the bones in the joints is minimal.
Iterative solution: in time moment t0 all factors are known. The end effector
is moved in small steps on the prescribed track, and in each step we calculate
the change of state using the Jacobian matrix’s pseudoinverse [13].

Algorithm 1: The Jacobian solution

e = e(tstart);
θ = θ(tstart);
for t = tstart to tend step ∆t do

Draw the animation if needed ;
Compute the Jacobian-matrix J;
Compute the pseudoinverse J+;
Compute e(t+ ∆t);
∆e = e(t+ ∆t) − e(t);
∆θ = J+ · ∆e;
θ = θ+ ∆θ;

end

For correction we can use the Levenberg–Marquardt algorithm (LMA, LM),
also known as the Damped Least-Squares (DLS) method, which is used to
solve non-linear least squares problems [20]. These minimization problems arise
especially in least squares curve fitting. The essence of the method is that
Instead of ∆θ, we minimize the following expression: ‖J∆θ− ~e‖2 + λ2 ‖∆θ‖2,
where λ ∈ R is a damping constant depending on the target position and
chosen so that the solution be numerically stable.

The Cyclic Coordinate Descent (CCD) method traces the calculation of θ
to vector operations (scalar product, cross product, sin, cos, etc.).

The Constraint Relaxation (CR) algorithm is capable to calculate the ex-
act position of any bone in an arbitrary long kinematic chain, and it is easy
to implement in larger dimensions. The kinematic chain of joints without ro-
tational constraints can also be understood as point clouds, with distances
between points (definite length bones). The kinematic chain of joints without
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rotational constraints can also be understood as point clouds, with distances
between points (definite length bones). The essence of the algorithm is to
stretch the bones one by one to the target and then restore the original size
to get closer to the solution. This involves scaling of vectors.

In conclusion, we used the Damped Least-Squares (DLS) Constraint Relax-
ation (CR) and methods, which we found to be the most appropriate.

5 The Kinect, the skeleton, and the gestures

Developed by Microsoft, Kinect (initial codenamed Project Natal during de-
velopment) is a line of motion sensing input devices for Xbox 360 and Xbox
One video game consoles (release date: 2010) and Microsoft Windows PCs
(release date: 2012) [21]. Based around a webcam-style add-on peripheral, it
enables users to control and interact with their game console or personal com-
puter without the need for a game controller, only through a natural user
interface using gestures and spoken commands. The skeletal mapping technol-
ogy shown in 2009 was capable of simultaneously tracking four people, with a
feature extraction of 48 skeletal points on a human body at 30 Hz. There are
two skeleton versions for Kinect 1 and Kinect 2. The Kinect can track up to
six skeletons at one time. According to Figure 3 each of these skeletons has 25
joints.

The Kinect skeleton returns joints not bones [5]. The joints form a point
cloud in space:
Vector4 skeletonPosition[NUI SKELETON POSITION COUNT];

Each joint has 11 properties: color (x, y); depth coordinates (x, y); camera
coordinates in homogeneous coordinate system (x, y, z,w); and orientation co-
ordinates in homogeneous coordinate system (x, y, z,w), wherew is the divider
coordinate. In projective geometry homogeneous coordinates or projective co-
ordinates were introduced by August Ferdinand Möbius in 1827 for handling
the infinity. The color coordinates (x, y) are the coordinates of the joint on the
image from the color camera. The depth coordinates (x, y) are the coordinates
of the joint on the image from the depth camera. The Kinects camera coordi-
nates use the Kinects infrared sensor to find 3D points of the joints in space.
The camera space coordinates are handled differently from the color and depth
coordinates. Kinect uses quaternions to deliver joint orientation [8].

Kinect’s skeleton can be used for gesture recognition, and gestures can be
used to control robots.
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Figure 3: The skeleton of Kinect 2.0 [7]

A gesture is a form of non-verbal communication or non-vocal communica-
tion in which visible bodily actions communicate particular messages, either
in place of, or in conjunction with, speech. Gestures include movement of the
hands, legs, face, or other parts (mostly limbs) of the body. Gesture recognition
is a topic in computer science with the goal of interpreting human gestures via
mathematical algorithms. We used a 3D model-based skeletal gesture recog-
nition technique.

The method we use assumes that each gesture is represented by 33 frames
[2]. We use spherical coordinates, because coordinates are easier to normalize.
Regardless of the size of the user, only the distance from the origin will vary,
instead all the coordinates in the Cartesian system and the angles will remain
constant.
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The proposed algorithm for gesture recognition involves 4 steps:

1. detection of the human user,

2. extraction of the features,

3. a stage of warping, in which the gestures are compared to reference
gestures,

4. gesture recognition.

Human detection is facilitated by the Kinect sensor, so step 1. is almost
trivial. The most important feature of a gesture is limb movement. In step 3.
we use a DTW - In time series analysis, dynamic time warping (DTW) is one
of the algorithms for measuring similarity between two temporal sequences,
which may vary in speed. For instance, similarities in walking could be detected
using DTW, even if one person was walking faster than the other [2, 22].

The algorithm consists of the following steps:

Algorithm 2: Gesture recognition

Detection of the human user;
Extraction of the features;
DTW-warping;
Gesture recognition;
if YES then

Robot action;
Learning a new task;

end

Gesture recognition requires the following steps:

• geting the 33 frames video sequence

• geting the joint coordinates

• converting to spherical coordinates

• converting to normalized coordinates

• building the vector of features

• DTW-algorithm

DTW compares the sequence obtained of an unknown gesture with one or
more reference patterns or templates. With several such templates, the recog-
nition rate will be more big, but the calculation time increases. Having two se-
quences represented by the time series: x = x1, x2, ..., xn, and y = y1, y2, ..., yn,
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Figure 4: The LEGO robot

a matrix of n ×m elements can be obtained, where each element of the ma-
trix represents the distance between two elements of the time series, called
the cost of the matrix. To find the best match between these two sequences,
a matrix path must be found that minimizes the cumulative total distance
between their elements. The warping path defines the mapping between the
elements of the two time series: w = w1, w2, ..., wk, ...wp, where DTW(x, y) =
min

∑p
k=1 d(wk), and d(wk) represents the distance between elements xi and

yj of the time series, that is: d(xi, yj) = |xi − yj|.

6 The LEGO robot

Using three interconnected bricks, we built an LEGO MINDSTORMS EV3
[16] robot (Figure 4), which we can control with gestures. Lego Mindstorms
EV3 is the third generation robotics kit in Lego’s Mindstorms line after NXT
(2006) and RCX (1998). The home and education editions were released in
2013. The LEGO MINDSTORMS EV3 set includes motors (large and medium),
sensors (touch, color, infrared gyroscopic, ultrasonic), the EV3 programmable
brick, cables, more than 550 LEGO Technic elements and a remote control.
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Figure 5: The human part

We have created the system according to Figures 5 and 6, which consists of
the following parts:

• Human part:

– Human user,
– Kinect,
– Computer,
– Inverse kinematics module,
– Gesture recognition module,
– Bluetooth communication module.

• Robot part:

– The robot,
– Inverse kinematics module,
– Bluetooth communication module.

The computer-connected Kinect recognizes the user’s gestures and calculates
the coordinates of the joints using the inverse kinematics module. The data
(coordinates, controll sequences) are transmitted via Bluetooth to the LEGO
robot. The LEGO robot uses the inverse kinematics module to convert the
coordinates into its own coordinate system and then execute the movement.
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Figure 6: The robot part

7 Conclusion

Experimental results show that the linear approach with the Jacobian solution
contains quite a lot of singularity, it must be definitely improved, but it is
a fast, effective method. CCD performs better on tracking a moving target
avoiding the oscillations and motion discontinuities exhibited by the Jacobian
methods [1]. CCD has a low computational cost and solves the IK problem
in real-time. The CR algorithm is more difficult to understand but produces
suitable results in real time, so it’s worth using.

With the presented methods we can easily control robots, of course, we need
to practice gestures well enough to achieve the required accuracy.

The methods presented are general enough to control not only LEGO robots,
but any robot.

The solution described here is light enough, perfectly suited for educational
purposes, and also suitable for lab exercises or simulation exercises.
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Abstract. A vertex v of a given graph is said to be in a rainbow neigh-
bourhood of G if every color class of G consists of at least one vertex
from the closed neighbourhood N[v]. A maximal proper coloring of a
graph G is a J-coloring if and only if every vertex of G belongs to a rain-
bow neighbourhood of G. In general all graphs need not have a J-coloring,
even though they admit a chromatic coloring. In this paper, we charac-
terise graphs which admit a J-coloring. We also discuss some preliminary
results in respect of certain graph operations which admit a J-coloring
under certain conditions.

1 Introduction

For general notations and concepts in graphs and digraphs we refer to [1, 3,
9]. For further definitions in the theory of graph coloring, see [2, 4]. Unless
specified otherwise, all graphs mentioned in this paper are simple, connected
and undirected graphs.

The degree of a vertex v ∈ V(G) is the number of edges in G incident with v
and is denoted dG(v) or when the context is clear, simply as d(v). A pendant
vertex or an end vertex of a graph G is a vertex having degree 1. A vertex
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which is not a pendant vertex is called an internal vertex of G (see [3]). A
pendant edge of G is an edge incident on a pendant vertex of G. Also, unless
mentioned otherwise, the graphs we consider in this paper has the order n and
size p with minimum and maximum degree δ and ∆, respectively.

Recall that if C = {c1, c2, c3, . . . , c`} and ` sufficiently large, is a set of distinct
colors, a proper vertex coloring of a graph G is a vertex coloring ϕ : V(G) 7→ C
such that no two distinct adjacent vertices have the same color. The cardinality
of a minimum set of colors which allows a proper vertex coloring of G is
called the chromatic number of G and is denoted by χ(G). When a vertex
coloring is considered with colors of minimum subscripts, the coloring is called
a minimum parameter coloring. Unless stated otherwise, all colorings in this
paper are minimum parameter color sets.

The number of times a color ci is allocated to vertices of a graph G is
denoted by θ(ci) and ϕ : vi 7→ cj is abbreviated, c(vi) = cj. Furthermore, if
c(vi) = cj then ι(vi) = j. The color class of a color ci, denoted by Ci, is the set
of vertices of G having the same color ci.

We shall also color a graph in accordance with the rainbow neighbourhood
convention (see [5]), which is stated as follows.

Rainbow neighbourhood convention: ([5]) For a proper coloring C =
{c1, c2, c3, . . . , c`}, χ(G) = `, we always color maximum possible number of ver-
tices with the color c1, then color the maximum possible number of remaining
vertices by the color c2 and proceeding like this and finally color the remaining
vertices by the color c`. Such a coloring is called a χ−-coloring of a graph.

The inverse to the convention requires the mapping cj 7→ c`−(j−1). Corre-
sponding to the inverse coloring we define ι ′(vi) = `−(j− 1) if c(vi) = cj. The
inverse of a χ−-coloring is called a χ+-coloring.

The closed neighbourhood N[v] of a vertex v ∈ V(G) which contains at least
one colored vertex of each color in the chromatic coloring, is called a rainbow
neighbourhood. That is, a vertex V is said to be in a rainbow neighbourhood if
Ci∩N[v] 6= ∅, for all 1 ≤ i ≤ χ(G). The number of vertices of a graph G, which
belong to some rainbow neighbourhoods of G is called the rainbow neighbour-
hood number of G, denoted by rχ(G) (see [5]). The rainbow neighbourhood
number of certain graph classes have been determined in [6, 7].

Motivated by these studies, two types of vertex colorings in terms of rainbow
neighbourhoods have been introduced in [8] as follows.

Definition 1 [8] A maximal proper coloring of a graph G is a Johan coloring
of G, or J-coloring in short, if and only if every vertex of G belongs to a
rainbow neighbourhood of G. The maximum number of colors in a J-coloring
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is called the J-chromatic number of G, denoted by J(G).

Definition 2 [8] A maximal proper coloring of a graph G is a modified Johan
coloring, or J∗-coloring in short, if and only if every internal vertex (a vertex
having degree at least 2) of G belongs to a rainbow neighbourhood of G. The
maximum number of colors in a J∗-coloring is denoted by J∗(G).

Figure 1 illustrate a J-colorable and a J∗-colorable graph.
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(a) A graph with a J-coloring.
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c1

c1

c1

c1

c1
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(b) A graph with a J∗-coloring.

Figure 1: J-colorable and J∗ colorable graphs

In this paper, we characterise the graphs which admit J-coloring. We also
discuss some preliminary results in respect of certain graph operations which
admit a J-coloring under certain conditions.

2 Results and discussions

A null graph on n vertices is an edgeless graph and is denoted by Nn. We
follow the convention that J(Nn) = J∗(Nn) = 1, n ∈ N. Also, note that for
any graph G which admits a J-coloring, we have χ(G) ≤ J(G).

Note that if a graph G admits a J-coloring, it also admits a J∗-coloring.
However, the converse need not be true always. It can also be noted that if
graph G has no pendant vertex and it admits a J-coloring, then J(G) = J∗(G).

In view of the above mentioned concepts and facts, we have the following
theorem.
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Theorem 3 If G is a tree of order n ≥ 2, then J(G) < J∗(G).

Proof. A tree G of order n ≥ 2 has at least two pendant vertices, say u and
v. Therefore, the maximum number of colors which will allow both vertices u
and v to yield rainbow neighbourhoods is χ(G) = 2. Therefore, G admits a
J-coloring and J(G) = 2.

Any internal vertex w of G has d(w) ≥ 2. Therefore, J∗(G) ≤ 3. Consider
any diameter path of G say Pdiam(G). Beginning at a pendant vertex of the
diameter path, label the vertices consecutively v1, v2, v3, . . . , vdiam(G). color the
vertices consecutively c(v1) = c1, c(v2) = c2, c(v3) = c3, c(v4) = c1, c(v5) = c2,
c(v6) = c3 and so on such that

c(vdiam(G)) = 1; if diam(G) ≡ 1(mod 3) (1)

c(vdiam(G)) = 2; if diam(G) ≡ 2(mod 3) (2)

c(vdiam(G)) = 3; if diam(G) ≡ 0(mod 3). (3)

Clearly, in respect of path Pdiam(G), it is a proper coloring and all internal
vertices yield a rainbow neighbourhood on 3 colors. Consider any maximal
path starting from, say v ∈ V(Pdiam(G)). Hence, v is a pendant vertex to that
maximal path. color the vertices consecutively from v as follows:

(a) If c(v) = c1 in Pdiam(G), color as c1, c2, c3, c1, c2, c3, . . . , c1 or c2 or c3︸ ︷︷ ︸
(b) If c(v) = c2 in Pdiam(G), color as c2, c3, c1, c2, c3, c1, · · · , c2 or c3 or c1︸ ︷︷ ︸.
(c) If c(v) = c3 in Pdiam(G), color as c3, c1, c2, c3, c1, c2, · · · , c3 or c1 or c2︸ ︷︷ ︸.
It follows from mathematical induction that all maximal branching can re-

ceive such coloring which remains a proper coloring with all internal vertices
v ∈ V(G) having |c(N[v])| = 3. Furthermore, all nested branching can be col-
ored in a similar way until all vertices of G are colored. Therefore, J∗(G) ≥ 3.
Hence, J(G) < J∗(G). �

An easy example to illustrate Theorem 3 is the star K1,n, n ≥ 2 for which
J(K1,n) = 2 < n+ 1 = J∗(K1,n). This example prompts the next results.

Corollary 4 For any graph G which admits a J∗-coloring, we have J∗(G) ≤
∆(G) + 1.
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Corollary 5 If J∗(G) > J(G) for a graph G, then G has at least one pendant
vertex.

Proof. Since all v ∈ V(G) are internal vertices and any vertex u for which
d(u) = δ(G) must yield a rainbow neighbourhood, it follows that any maximal
proper coloring C are bound to |C| = |N[u]| = δ(G) + 1. Therefore, if J∗(G) >
J(G), then G has at least one pendant vertex. �

In [5], the rainbow neighbourhood number rχ(G) is defined as the number
of vertices of G which yield rainbow neighbourhoods. It is evident that not all
graphs admit a J-coloring. Then, we have

Lemma 6 (i) A maximal proper coloring ϕ : V(G) 7→ C of a graph G which
satisfies a graph theoretical property, say P, can be minimised to obtain
a minimal proper coloring which satisfies P.

(ii) A minimal proper coloring ϕ : V(G) 7→ C of a graph G which satisfies a
graph theoretical property, say P, can be maximised to obtain a maximal
proper coloring which satisfies P.

Proof.

(i) Consider a maximal proper coloring ϕ : V(G) 7→ C of a graph G which
satisfies a graph theoretical property say, P. If a minimum color set C ′,
with |C ′| < |C|, such that a minimal proper coloring ϕ ′ : V(G) 7→ C ′
which satisfies the graph theoretical property P cannot be found, then
|C| is minimum.

(ii) Consider a minimal proper coloring ϕ : V(G) 7→ C of a graph G which
satisfies a graph theoretical property say, P. If a maximum color set C ′,
|C ′| > |C|, such that a maximal proper coloring ϕ ′ : V(G) 7→ C ′ which
satisfies the graph theoretical property P cannot be found, then |C| is
maximum.

�

The following theorem characterises those graphs which admit a J-coloring.

Theorem 7 A graph G of order n admits a J-coloring if and only if rχ(G) =
n.

Proof. If rχ(G) = n, then every vertex of G belongs to a rainbow neighbour-
hood. Hence, either the chromatic coloring ϕ : V(G) 7→ C is maximal or a
maximal coloring ϕ ′ : V(G) 7→ C ′ exists.
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An immediate consequence of Definition 1 is that if graph G admits a J-
coloring then each vertex v ∈ V(G) yields a rainbow neighbourhood. This
consequence also follows from the the result that for any connected graph G,
J(G) ≤ δ(G) + 1 (see [8]). Hence, from Lemma 6 it follows that either the
J-coloring is minimal or a minimal coloring ϕ ′ : V(G) 7→ C ′ exists such that
rχ(G) = n. �

The following theorem establishes a necessary and sufficient condition for a
graph G to have a J-coloring with respect to a χ−-coloring of G.

Theorem 8 A graph G admits a J-coloring if and only if each v ∈ V(G) yields
a rainbow neighbourhood with respect to a χ−-coloring of G.

Proof. If in a χ−-coloring of G, each v ∈ V(G) yields a rainbow neighbourhood
it follows from the second part of Lemma 6 that the corresponding proper
coloring can be maximised to obtain a J-coloring.

Conversely, assume that a graph G admits a J-coloring. Then, it follows
from Lemma 6(i) that the corresponding proper coloring can be minimised to
obtain a minimal proper coloring for which each v ∈ V(G) yields a rainbow
neighbourhood. Let the aforesaid set of colors be C ′. Assume that a minimum
set of colors C exists which is a χ−-coloring of G and |C| < |C ′|. It implies
that there exists at least one vertex v ∈ V(G) for which at least one distinct
pair of vertices, say u,w ∈ N(v) exists such that u and v are non-adjacent.
Furthermore, c(u) = c(w) under the coloring ϕ : V(G) 7→ C.

Assume that there is exactly one such v and exactly one such vertex pair
u,w ∈ N(v). But then both u and w yield rainbow neighbourhoods in G under
the proper coloring ϕ : V(G) 7→ C, which is a contradiction to the minimality
of C ′. By mathematical induction, similar contradictions arise for all vertices
similar to v. This completes the proof. �

3 Analysis for certain graphs

Note that we have two types of operations related to graphs, that is: operations
on a graph G and operations between two graphs G and H. Operations on a
graph G result in a well defined derivative of G. Examples are the complement
graph Gc, the line graph L(G), the middle graph M(G), the central graph
C(G), the jump graph J(G) and the total graph T(G) and so on. Recall that
the jump graph J(G) of a graph G of order n ≥ 3 is the complement graph of
the line graph L(G). Also, note that the line graph is the graphical realisation
of edge adjacency in G and the jump graph is the graphical realisation of edge
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independence in G. Some other graph derivative operations are edge deletion,
vertex deletion, edge contraction, thorning a graph by pendant vertex addition
and so on.

Examples of operations between graphs G and H are, the corona between
G and H denoted, G ◦H, the join denoted, G+H, the disjoint union denoted,
G ∪H, the Cartesian product denoted, G�H and so on.

3.1 Operations between certain graphs

The following result establishes a necessary and sufficient condition for the
corona of two graphs G and H to admit a J-coloring.

Theorem 9 If graphs G and H admit J-colorings, then G ◦ H admits a J-
coloring if and only if either G = K1 or J(G) = J(H) + 1.

Proof. Part 1: If G = K1 assume C = {c1, c2, c3, . . . , cJ(H)} provides a J-coloring
of H. color K1 the color cJ(H)+1. Clearly, C ′ = C ∪ {cJ(H)+1} is a J-coloring of
K1 ◦H.

Part 2: If G 6= K1 and J(G) = J(H) + 1 let C = {c1, c2, c3, . . . , c`, ` = J(G)}
and C ′ = {c1, c2, c3, . . . , c`−1, ` = J(G)} provide the J-colorings of G and H,
respectively. Assume that v ∈ V(G) has c(v) = ci then color all u ∈ V(H) for
the copy of H corona’d to v for which c(u)(in H) = ci, 1 ≤ i ≤ `, to be c`+1.
Clearly every vertex v ∈ V(G)∪V(H) yields a rainbow neighbourhood and |C|
is maximal.

Conversely, let G ◦H admit a J-coloring. Then, for any vertex v ∈ V(G) the
subgraph v ◦H holds the condition c(v) 6= c(u), ∀u ∈ V(H). Therefore, either
G = K1 or J(G) = J(H) + 1. �

The next corollary requires no proof as it is a direct consequence of Theorem
9.

Corollary 10 If G ◦H admits a J-coloring then: J(G ◦H) = J(G).

The following theorem discusses the admissibility of J-coloring by the join
of two graphs.

Theorem 11 The join G + H admits a J-coloring if and only if both graphs
G and H admit a J-coloring.

Proof. Assume that both G and H admit a J-coloring. Without loss of gen-
erality, let J(G) ≤ J(H). Assume that ϕ : V(G) 7→ C, C = {c1, c2, c3, . . . , c`}
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and ϕ ′ : V(H) 7→ C ′, C ′ = {c1, c2, c3, . . . , c` ′} is a J-coloring of G and H, re-
spectively. For each v ∈ V(G), c(v) = ci recolor c(v) 7→ ci+` ′ . Denote the new
color set by Ci+` ′ . Clearly, each vertex v ∈ V(G) is adjacent to at least one of
each color in G + H hence, each such vertex yields a rainbow neighbourhood
in G + H. Similarly, each vertex u ∈ V(H) is adjacent to at least one of each
color in G+H and hence each such vertex yields a rainbow neighbourhood in
G+H. Furthermore, since both |C|, |C ′| is maximal color sets, the set |Ci+` ′∪C ′|
is maximal. Therefore, G+H admits a J-coloring.

The converse follows trivially from the fact that the additional edges between
G and H as defined for join form an edge cut in G+H. �

The following result discusses the existence of a J-coloring for the Cartesian
product of two given graphs.

Theorem 12 If graphs G and H of order n and m respectively admit a J-
coloring, then

(i) G�H admits a J-coloring.

(ii) J(G�H) = max{J(G), J(H)}

Proof.

(i) Without loss of generality assume J(H) ≥ J(G). Also, assume that
V(G) = {vi : 1 ≤ i ≤ n} and V(H) = {ui : 1 ≤ i ≤ m}. From the
definition of G�H it follows that V(G�H) = {(vi, uj) : 1 ≤ i ≤ n, 1 ≤
j ≤ m}. For i = 1, if uj ∼ uk in H, where ∼ denotes the adjacency, then
(v1, uj) ∼ (v1, uk) and hence we obtain an isomorphic copy of H. Such
a copy admits a J-coloring identical to that of H in respect of the ver-
tex elements u1, u2, u3, . . . , um. Now obtain the disjoint union with the
copies of H corresponding to i = 2, 3, 4, . . . , n. Apply the definition of
G�H for u1 and if vi ∼ vj in G, then (vi, u1) ∼ (vj, u1). An interconnect-
ing copy of G is obtained which result in the first iteration connected
graph. Similarly, this copy of G admits a J-coloring identical to that of G
in respect of the vertex elements v1, v2, v3, . . . , vn. Proceeding iteratively
to add all copies of G for i = 2, 3, 4, . . . , n in terms of the definition of
G�H, clearly shows that a J-coloring is admitted.

(ii) The second part of the result follows from the similar reasoning used to
prove and hence, χ(G�H) = max{χ(G), χ(H)}.

�
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3.2 Operations on certain graphs

Recall that for any connected graph G, J(G) ≤ δ(G) + 1 (see [8]) and for
n ≥ 2, J(Pn) = 2 and J∗(Pn) = 3. In view of these results, we have the
following results in respect of certain operations on paths and cycles.

Proposition 13 For a path Pn, n ≥ 2 with edge set consecutively labeled
as e1, e2, e3, . . . , en−1 and the corresponding line graph vertices consecutively
labeled as u1, u2, u3, . . . , un−1. We have

(i) J(L(Pn)) = 2 and J∗(L(Pn)) = 3.

(ii) J(M(P2)) = 2 and M(Pn) n ≥ 3 does not admit a J-coloring and
J∗(M(Pn)) = 3.

(iii) J(T(Pn)) = J∗(T(Pn)) = 3.

(iv) For connectivity, let n ≥ 5. Then J(J(P5)) = 3 and J∗(J(P5)) = 3 and for
n ≥ 6,

J(J(Pn)) = J∗(J(Pn)) =

{
n
2 n is even

bn2 c n is odd.

(v) J(C(Pn)) = J∗(C(Pn)) = 3.

Proof.

(i) Since L(Pn) = Pn−1, the result follows from the result that for any con-
nected graph G, J(G) ≤ δ(G) + 1.

(ii) Since M(P2) = P3 the result follows from the result that for any con-
nected graph G, J(G) ≤ δ(G)+1. For n ≥ 3, the middle graph contains a
triangle hence, J(M(Pn)) ≥ χ(M(Pn)) ≥ 3. Also M(Pn) has two pendant
vertices therefore rχ(M(Pn)) 6= n. So M(Pn), n ≥ 3 does not admit a J-
coloring. The derivative graph G ′ =M(Pn) − {v1, vn} contains a triangle
and δ(G ′) = 2. Therefore, J∗(M(Pn)) = 3.

(iii) Since J(T(Pn)) ≤ δ(J(T(Pn)) + 1 = 3 and T(Pn) contains a triangle,
J(T(Pn)) = 3. As T(Pn) has no pendant vertex and contains an odd
cycle C3, the result J∗(T(Pn)) = 3 is immediate.

(iv) For P5 we have J(P5) = P4. Hence, the result follows from for any
connected graph G, J(G) ≤ δ(G) + 1. For a path Pn, n ≥ 6 and
edge set consecutively labeled as e1, e2, e3, . . . , en−1 and the correspond-
ing line graph vertices consecutively labeled as u1, u2, u3, . . . , un−1, we
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have the consecutive vertex χ−-coloring sequence of J(Pn) is given by
c1, c1, c2, c2, c3, c3, . . . , cn

2
if n is even and c1, c1, c2, c2, c3, c3, . . . , cbn

2
c, cbn

2
c

if n is odd. Since the vertices ui, ui+1, 1 ≤ i ≤ n − 2 are pairwise not
adjacent, the χ−-coloring is maximal as well. Clearly, every vertex ui
yields a rainbow neighbourhood. Therefore, the result follows.

(v) Since C(Pn) has no pendant vertex and contains an odd cycle C5, the
result is immediate.

�

Next, we consider cycles Cn, n ≥ 3. In [8], it is proved that

Theorem 14 [8] If Cn admits a J-coloring then:

J(Cn) =

{
3 if n ≡ 0 (mod 3)

2 if n ≡ 0 (mod 2)and n 6≡ 0 (mod 3).

Analogous to the proof of Theorem 2.7 in [8], we now establish the corre-
sponding results for the derivatives of cycle graphs in the following proposition.

Proposition 15 For a cycle Cn, n ≥ 3 and edge set consecutively labeled as
e1, e2, e3, . . . , en and the corresponding line graph vertices consecutively labeled
as u1, u2, u3, . . . , un, we have

(i) J(L(Cn)) = J∗(L(Cn)) = 2 if and only if n ≡ 0 (mod 2) and n 6≡
0 (mod 3), and J(L(Cn)) = J∗(L(Cn)) = 3 if and only if n ≡ 0 (mod 3),
else, L(Cn) does not admit a J-coloring.

(ii) For n ≥ 3, J(M(Cn)) = J∗(M(Cn)) = 3 if n ≡ 0 (mod 3), or if, M(Cn)
for n 6≡ 0 (mod 3), and without loss of generality admits the coloring:
c(v1) = c1, c(u1) = c2, c(v2) = c3, c(u2) = c1, c(v3) = c2, c(u3) =
c3, . . . , c(vn−1) = c1, c(un−1) = c2, c(vn) = c1, c(un) = c3, else, M(Cn)
does not admit a J-coloring.

(iii) J(T(Cn)) = J∗(T(Cn)) = 4 if and only if n is even, else, T(Cn) does not
admit a J-coloring.

(iv) For n ≥ 6, J(J(Cn)) = J∗(J(Cn)) =

{
n
2 n is even

bn2 c n is odd.
.

(v) J(C(Cn)) = J∗(C(Cn)) = 3.
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Proof. (i) Because L(Cn) = Cn the result follows from Corollary 3.6. Also
because L(Cn) has no pendant edges, J(L(Cn)) = J∗(L(Cn)).

(ii) If M(Cn) admits a J-coloring then J(M(Cn)) ≤ δ(J(M(Cn)) + 1 = 3.
For n ≡ 0 (mod 3), consider the coloring: c(v1) = c1, c(u1) = c2, c(v2) = c3,
c(u2) = c1, c(v3) = c2, c(u3) = c3, . . . , c(un−1) = c1, c(vn) = c2, c(un) = c3.

From the definition of the middle graph, we know that M(Cn) has n trian-
gles stringed so clearly the proper coloring is maximum and all vertices yield a
rainbow neighbourhood. Part 2 follows by similar reasoning and hence the re-
sult follows. Also, sinceM(Cn) has no pendant edges, J(M(Cn)) = J∗(M(Cn)).
In all other cases, χ((M(Cn)) = 4 and a J-coloring does not exist.

(iii) Note that J(T(Cn)) ≤ δ(J(T(Cn)) + 1 = 5. Since T(Cn) contains a tri-
angle, J(T(Cn)) ≥ 3. Furthermore, χ((T(Cn)) = 4 if and only if n ≡ 0 (mod 2)
and n 6≡ 0 (mod 3), and all vertices yield a rainbow neighbourhood. Also,
for any set of vertices V ′ = {vi, vi+1, vi+2, vi+2, vi+3, vi+4} 7→ {vivj : 1 ≤ i ≤
n, 0 ≤ j ≤ 4, and (i + j) 7→ (i + j) (mod 6)}, the induced subgraph
〈V ′〉 6= K5. Therefore, J(T(Cn)) = 4. Also because T(Cn) has no pendant
edges, J(T(Cn)) = J∗(T(Cn)). Otherwise, χ((T(Cn)) = 5, and not all vertices
yield a rainbow neighbourhood and hence a J-coloring is not obtained.

(iv) For n = 5, J(C5) = C5 and thus, does not admit a J-coloring. For a path
Cn, n ≥ 6 and edge set consecutively labeled as e1, e2, e3, . . . , en−1 and the
corresponding line graph vertices consecutively labeled as u1, u2, u3, . . . , un−1,
we have the consecutive vertex χ−-coloring sequence of J(Cn) is given by
c1, c1, c2, c2, c3, c3, . . . , cn

2
if n is even and c1, c1, c2, c2, c3, c3, . . . , cbn

2
c, cbn

2
c if

n is odd (n−1 entries). As the vertices ui, ui+1, 1 ≤ i ≤ n−2 are pairwise not
adjacent, the χ−-coloring is maximal as well. Clearly, every vertex ui yields a
rainbow neighbourhood. Therefore, the result follows.

(v) The result is trivial for C(C3). For n ≥ 4, J(C(Cn)) ≤ δ(J(C(Cn))+1 = 3.
Since χ((C(Cn)) = 3 and all vertices yield a rainbow neighbourhood and C(Cn)
contains a cycle C5, the result J(C(Cn)) = 3 holds immediately. Also, since
C(Cn) has no pendant edges, J(C(Cn)) = J∗(C(Cn)). �

4 Extremal results for certain graphs

For a graph G of order n ≥ 1, which admits a J-coloring the minimum (or
maximum) number of edges in a subset E ′k ⊆ E(G) whose removal ensures
that J(G−E ′k) = k, 1 ≤ k ≤ J(G), is discussed in this section. These extremal
variables are called the minimum (or maximum) rainbow bonding variables
and are denoted r−k (G) and r+k (G), respectively. A graph G which does not
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admit a J-coloring has r−k (G) and r+k (G) undefined. For such aforesaid graph it
is always possible to remove a minimal set of edges, E ′′, which is not necessarily
unique such that G − E ′′ admits a J-coloring. This is formalised in the next
result.

Lemma 16 For any connected graph G which does not admit a J-coloring, a
minimal set of edges, E ′′ which is not necessarily unique, can be removed such
that G− E ′′ admits a J-coloring.

Proof. Since any connected graph G of order n and size ε(G) = p has a
spanning subtree and any tree admits a J-coloring, at most p− (n− 1) edges
must be removed from G. Therefore, if p − (n − 1) is not a minimal number
of edges to be removed then a minimal set of edges E ′, |E ′| < p − (n − 1)
must exist whose removal results in a spanning subgraph G ′ which allows a
J-coloring. �

It is obvious from Lemma 16 that the restriction of connectedness can be
relaxed if G =

⋃
Hi, 1 ≤ i ≤ t and it is possible that J(Hi−E"i)∀i = k, k some

integer constant.
It is obvious that for a complete graph Kn, J(Kn) = n. To ensure J(Kn) = n,

no edges can be removed. Therefore, r−n(Kn) = r
+
n(Kn) = 0.

Theorem 17 For a complete graph Kn, n ≥ 1 we have

(i) For n is even and n
2 ≤ k ≤ n and J(Kn−E

′
k) = k, then r−k (Kn) = n− k.

(ii) For n is odd and dn2 e ≤ k ≤ n, and J(Kn−E
′
k) = k, then r−k (Kn) = n−k.

(iii) For n ∈ N and 1 ≤ k ≤ n, and J(Kn − E ′k) = k, then r+k (Kn) =
1
2(n +

1− k)(n− k).

Proof. (i) For n is even and n
2 ≤ k ≤ n, exactly 0 or 1 or 2 or 3 or · · ·or n

2

edges between distinct pairs of vertices can be removed to obtain J(Kn −
E ′k) = n,n − 1, n − 2, . . . , n2 . Hence, r−k (Kn) = 0, 1, 2, 3, . . . , n2 . In other words
r−k (Kn) = n− k, n2 ≤ k ≤ n.

(ii) The result follows through similar reasoning as that in (i).
(iii) In any clique of order t, the removal of the 1

2t(t − 1) edges is the
maximum number of edges whose removal renders J(Nt) = 1 hence, all ver-
tices can be colored say, c1. Through immediate mathematical induction it
follows that we iteratively remove the maximum number of edges r+k (Kn) =
0, 1, 3, 6, 10, . . . , 12(n+ 1− k)(n− k), 1 ≤ k ≤ n of cliques K1, K2, K3, . . . , Kn to
obtain J(Kn − E

′
k) = n,n− 1, n− 2, . . . , 1. Hence, the result follows. �
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Theorem 18 A graph G of order n which allows a J-coloring, has r−k (G) =
r+k (G) if and only if J(G) = 2.

Proof. If J(G) = 2 then all edges are incident with colors c1, c2. Therefore
all edges must be removed to obtain the null graph N0 for which J(N0) = 1.
Hence, r−k (G) = r

+
k (G).

Conversely, let r−k (G) = r
+
k (G). Then, assume that at least one edge say, e is

incident with color c3. It implies that G contains at least a triangle or an odd
cycle. Therefore, ε(G) ≥ 3. To ensure a proper coloring on removing edge e the
color c3 must change to either c1 or c2 which is always possible. If J(G−e) = 2
then r+k (G) = 1 which is a contradiction because any one additional edge may
have been removed, implying r+k (G) ≥ 2. For colors c4, c5, c6, . . . , J(G), similar
contradictions follows through immediate induction. Therefore, if r−k (G) =
r+k (G) then, J(G) = 2. �

5 Conclusion

Clearly the cycles for which the the middle graphs admit a J-coloring in accor-
dance with the second part of Proposition 13(ii) require to be characterised if
possible. It follows from Theorem 18 that for the cases n is even and 1 ≤ k < n

2 ,
or n is odd and 1 ≤ k < dn2 e, determining r−k (Kn) remains open. It is suggested
that an algorithm must be described to obtain these values.

Example 19 For the complete graph K9 with vertices v1, v2, v3, . . . , v9, The-
orem 17(ii) admits the minimum removal of r−n,k(Kn) = 4 edges to obtain
J(Kn−E

′
k) = 5. Without loss of generality say the edges were. v1v2, v3v4, v6v6,

v7v8. To obtain J(Kn − E
′
k) = 4 we only remove without loss of generality say,

the edges v7v9, v8v9. To obtain J(Kn − E ′k) = 3 we only remove without loss
of generality say, the edges v1v3, v1v4, v2v3, v2v4. To obtain J(Kn − E ′k) = 2

we only remove without loss of generality say, the edges v5v7, v5v8, v5v9, v6v7,
v6v8, v6v9. To obtain J(Kn−E

′
k) = 1 we remove all remaining edges. It implies

that as J(Kn − E ′k) iteratively ranges through the values 5, 4, 3, 2, 1 the value
of r−k (K9) ranges through, 4, 6, 10, 16, 36.

Determining the range of minimum (maximum) rainbow bonding variables
for other classes of graphs is certainly worthy research. For a graph G which
does not allow a J-coloring it follows from Lemma 16 that a study of r−k (G

′)
and r+k (G

′) with G ′ a maximal spanning subgraph of G which does allow a
J-coloring, is open.
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Zoltán KÁSA András KELEMEN Laura NISTOR
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Zoltán KÁTAI (Sapientia Hungarian University of Transylvania, Romania)
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