
Acta Universitatis Sapientiae

Informatica
Volume 5, Number 2, 2013

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

Katalin Pásztor Varga, Gábor Alagi, Magda Várterész
Many-valued logics–implications and semantic consequences . . 145

Boldizsár Németh, Zoltán Csörnyei
Stackless programming in Miller . 167

Richárd Forster, Ágnes Fülöp
Yang-Mills lattice on CUDA . 184

José L. Ramı́rez, Gustavo N. Rubiano
On the k-Fibonacci words . 212

Boris Melnikov, Aleksandra Melnikova
Some more on the basis finite automaton . 227

Antal Iványi, Loránd Lucz, Gergő Gombos, Tamás Matuszka
Parallel enumeration of degree sequences of simple graphs II . .245

Andrew V. Lelechenko
Linear programming over exponent pairs . 271

Book reviews
Algorithms of Informatics Vol. 3 (ed. A. Iványi) and
Informatikai algoritmusok 3. kötet (ed. A. Iványi) 289

143

Acta Univ. Sapientiae, Informatica, 5, 2 (2013) 145–166

Many-valued logics—implications and

semantic consequences

Katalin PÁSZTOR VARGA
Eötvös Loránd University

email: pkata@ludens.elte.hu

Gábor ALAGI∗
Eötvös Loránd University

email: alagig@caesar.elte.hu

Magda VÁRTERÉSZ
Debrecen University

email:
varteresz.magda@inf.unideb.hu

Abstract.
In this paper an application of the well-known matrix method to an

extension of the classical logic to many-valued logic is discussed: we con-
sider an n-valued propositional logic as a propositional logic language
with a logical matrix over n truth-values. The algebra of the logical ma-
trix has operations expanding the operations of the classical propositional
logic. Therefore we look over the Lukasiewicz, Post, Heyting and Rosser
style expansions of the operations negation, conjunction, disjunction and
with a special emphasis on implication.

In the frame of consequence operation, some notions of semantic con-
sequence are examined. Then we continue with the decision problem and
the logical calculi. We show that the cause of difficulties with the notions
of semantic consequence is the weakness of the reviewed expansions of
negation and implication. Finally, we introduce an approach to finding
implications that preserve both the modus ponens and the deduction
theorem with respect to our definitions of consequence.

Computing Classification System 1998: F.4.1
Mathematics Subject Classification 2010: 03B50
Key words and phrases: many-valued logic, extensions of implication, notions of conse-
quence
∗Current affiliation of the author: Max Planck Institute für Informatik, email: galagi@mpi-

inf.mpg.de

145

http://people.inf.elte.hu/pkata
http://www.elte.hu/en
mailto:pkata@ludens.elte.hu
http://www.mpi-inf.mpg.de/~galagi/
http://www.elte.hu/en
mailto:alagig@caesar.elte.hu
http://www.inf.unideb.hu/~varteres
http://www.unideb.hu
mailto:varteresz.magda@inf.unideb.hu
http://www.mpi-inf.mpg.de
mailto:galagi@mpi-inf.mpg.de
mailto:galagi@mpi-inf.mpg.de

146 K. Pásztor Varga, G. Alagi, M. Várterész

1 Introduction

The construction of propositional logics can follow several methodological
ways. The algebraic method is fundamental and also prior to any others. One
such an algebraic tool for constructing a logic is the logical matrix method.
We begin with a brief survey of related notions and notations. After defining
the notion of consequence operation, we show that the semantic consequence
for the classical propositional logic generates a consequence operation. Later,
we outline the conventional axiomatic treatment of logic for a given logic lan-
guage. Here, we prove that the usual derivation notion is also a consequence
operation.

After this, we discuss the n-valued propositional logics (n > 2). It is desir-
able to obtain an algebraic structure close to a Boolean algebra by expansion
of the classical logical matrix to n values. Here, we define two notions of se-
mantic consequence, and prove that both are consequence operations. Because
the usual expansion of conjunction is the minimum unanimously, and the ex-
pansion of disjunction is the maximum in the same way, we deal only with the
 Lukasiewicz, Post, Heyting and Rosser style expansions of implication.

Finally, we look for a suitable implication for a general consequence notion
such that both the modus ponens and the deduction theorem remain valid.

2 Logical matrices

Let U be any nonempty set. A mapping o : Um → U, defined on the Cartesian
product of m copies of U, with values in U, is called an m-argument (or an
m-ary) operation in U (for m = 0, 1, . . .). By an algebra we mean a pair
〈U, (o1, o2, . . . , ok)〉 (k ≥ 1), where U is a (nonempty) set, called the universe
of the algebra, and each oj is an mj-argument operation over U. A tuple
(m1,m2, . . . ,mk) associated to the operations is called the signature of the
algebra.

We consider an arbitrary logic language L = 〈V, (c1, c2, . . . , ck) , F〉, where
V is the set of propositional variables; c1, c2, . . . , ck are logical connectives; F
is the set of formulas generated by the variables and the connectives in the
standard way. At the same time, the set F of the formulas can also be regarded
as the universe of an algebra with concatenation operations induced by the
connectives. If we can connect mj formulas with the connective cj, the induced
operation has mj arguments, and the signature of the algebra freely generated
by V is (m1,m2, . . . ,mk). This algebra is a logic language algebra.

A logic system is semantically determined, if we have an interpretation no-

Many-valued logics 147

tion in the sense that every formula has some truth-value with respect to each
such interpretation. A basic assumption in classical logics is the principle of
compositionality: the truth-value of a compound formula is a function of the
truth-values of its immediate subformulas (every formula represents a function
into the set of truth-values). Hence the most essential semantical decision is
the determination of the operations over the truth-value set which character-
izes the connectives. Later, the algebraic structure of the truth-value set will
play an important role.

Definition 1 [5] By a logical matrix M for a logic language algebra L with a
signature (m1,m2, . . . ,mk) we mean a triple

〈U, (o1, o2, . . . , ok) , U∗〉 ,

where 〈U, (o1, o2, . . . , ok)〉 is an algebra with the signature (m1,m2, . . . ,mk),
and U∗ is a nonempty subset of U. U is the set of truth-values, the elements
of U∗ are called designated truth-values.

After this, we define the semantics as a correspondence between the set of
connectives and operations using the signature. This is followed by an inter-
pretation I : V → U. The interpretation I can uniquely be extended to a
homomorphism (called a valuation of formulas) from the set of formulas F to
the universe U:

(a) |v|I = I(v) for v ∈ V;

(b) |cj(α1, . . . , αmj
)|I = oj(|α1|I, . . . , |αmj

|I) for every mj-ary connective cj
and for all α1, . . . , αmj

∈ F.

In every interpretation, a truth-value is assigned to a formula, depending
on the truth-values assigned to the variables occurring in the formula. Thus, a
formula expresses a truth-function Un → U (an n-variable operation over U).
If we want to handle every potential truth-function with the logic language,
then the set of operations in the logical matrix should be functionally com-
plete. We say that a set of operations is functionally complete, when every
truth-function Un → U can be expressed by a formula using only the logical
connectives corresponding to these operations.

Now, a notion of partial interpretation Ip : V ′ → U (V ′ ⊆ V) is convenient.
If V ′ = V, the partial interpretation Ip is a (total) interpretation. And, if
the domain of Ip contains all the variables occurring in a set X of formulas,
then Ip is total with respect to X. Sometimes later, it is simpler to handle an

148 K. Pásztor Varga, G. Alagi, M. Várterész

(partial) interpretation Ip as a relation Ip ⊆ V ×U, where for all pair (v1, u1)
and (v2, u2) in Ip, if u1 6= u2, then v1 6= v2. In this notation, we can formalize
an extension of the partial interpetation Ip to the variable v /∈ Dom(Ip) with
Ip ∪ {(v, u)}, where u ∈ U.

In order that a logic language and its matrix can become a logic system,
the consequence notion and the decision problem are inevitable. In [7], Tarski
developed an abstract theory of logical systems. He introduced a finitary clo-
sure operation on the sets of formulas, called consequence operation. Let P(F)
denote the power set of F.

Definition 2 The consequence operation Cn : P(F)→ P(F) in L is an opera-
tion which satisfies the following conditions for any X, Y ⊆ F and α,β ∈ F :

(1) X ⊆ Cn(X) ⊆ F;

(2) if X ⊆ Cn(Y) then Cn(X) ⊆ Cn(Y);

(3) if α ∈ Cn(X) then there exists a finite set Y such that Y ⊆ X and
α ∈ Cn(Y).

Note that Cn(Cn(X)) ⊆ Cn(X) holds for every consequence operation, because
Cn(X) ⊆ Cn(X) and (2).

Let α be a formula and let X be a set of formulas. The decision problem is
to decide whether α ∈ Cn(X).

To sum it up, by a propositional logic we mean a quadruple

〈L,M, In, Pr〉 ,

where L is a logic language algebra, M is a logical matrix for L, In is the set
of interpretations of L, Pr is a consequence operation.

Example 3 A classical two-valued propositional logic (CPL) is a quadruple〈
L,M, In, Pr ′

〉
,

where

(a) L is a language algebra 〈V, (¬,∧,∨) , F〉 with signature (1, 2, 2).

(b) M is a logical matrix 〈{0, 1} , (¬ ′,∧ ′,∨ ′) , {1}〉, where the values 0 and 1
are truth-values, 1 stands for true, 0 stands for false. The operation ∧ ′

is the classical conjunction (minimum), ∨ ′ is the classical disjunction

Many-valued logics 149

(maximum), and ¬ ′ is the classical negation. This operation set is func-
tionally complete. (We remark, if we use the definition x ⊃ ′ y
 ¬ ′x∨ ′y
in M, the set {¬ ′,⊃ ′} is also functionally complete.)

The structure 〈
{0, 1} ,

{
¬ ′,∧ ′,∨ ′

}
, 0, 1

〉
yields a Boolean algebra. The set {0, 1} is the universe of the Boolean
algebra, the operations ∧ ′ and ∨ ′ are lattice operations, the unary oper-
ation ¬ ′ is the complementation, and 1 is the unit, 0 is the zero element.

(c) In = {I | I : V → {0, 1} is an interpretation of L}.

(d) Pr ′ is the usual semantic consequence: α ∈ Pr ′(X) if and only if |α|I = 1,
whenever |β|I = 1 for every formula β in X.

Next, we verify that Pr ′ is a consequence operation.

Proposition 4 Pr ′ satisfies the conditions (1)-(3) in Definition 2.

Proof.

(1) is obvious.

(2) Let InX be the set of interpretations, where |β|I = 1 for every formula β
in X. If elements of X are consequences of Y, then InY ⊆ InX. Whereas
InX ⊆ InPr ′(X), thus InY ⊆ InPr ′(X).

(3) If α ∈ Pr ′(X), then InX ∩ In¬α = ∅. Because of compactness theorem in
CPL, if InX ∩ In¬α = ∅, then there exists a finite set Y such that Y ⊆ X
and InY ∩ In¬α = ∅ also. Thus, Y is a finite subset of X and α ∈ Pr ′(Y).

�

3 Axiomatic treatment of logics

Another method to construct logics is the axiomatic (syntax-based) way. Let
L be a logic language with the set F of formulas.

Definition 5 A finite subset A of formulas is called an axiom system.

Definition 6 A rule over F is a nonempty relation

r ⊆ {(α1, . . . , αm, α) | α1, . . . , αm, α ∈ F} .

150 K. Pásztor Varga, G. Alagi, M. Várterész

Definition 7 Let A be an axiom system, R a set of rules and X any set of
formulas. A formula α is derived from X if there is a finite sequence of formulas
α1, . . . , αk such that

(1) αk = α, and

(2) for each i (1 ≤ i ≤ k), either αi ∈ X ∪A, or there exist indices i1, . . . , il
smaller than i such that (αi1 , . . . , αil , αi) ∈ r for some rule r ∈ R.

Proposition 8 Pr∗ : X → {α | α is derived from X} satisfies conditions (1)-
(3) in Definition 2.

Proof.

(1) is obvious.

(3) can be seen easily. If α ∈ Pr∗(X), the derivation of α is a finite sequence
of formulas. Let Y be the set of formulas of X occuring in this derivation.
Clearly, α can be derived from Y, as well.

(2) If α can be derived from X, because of (3), there is a finite Z ⊆ X such
that α can be derived from Z. But every element of Z can be derived
from Y, i.e. from some finite subset of Y. If we concatenate the derivations
of the elements of Z from Y and furthermore, we add the derivation of
α from Z to it, then the result is a derivation of α from Y. Herewith,
condition (2) holds. �

Informally, a propositional logic is axiomatically given by

〈L,A, R, Pr∗〉 ,

if its language algebra L is specified, an axiom system A is fixed, a finite set
R of derivation rules is specified and Pr∗ is the consequence operation.

An axiomatically given propositional logic (calculus) 〈L,A, R, Pr∗〉 is said to
be (strongly) adequate for a propositional logic 〈L,M, In, Pr〉 if their conse-
quence operations are the same.

Example 9 By a classical propositional calculus we mean a quadruple

〈L∗, A, R, Pr∗〉 ,

where

Many-valued logics 151

(a) L∗ is the free language algebra 〈V, (¬,⊃) , F〉 with signature (1, 2);

(b) the axiom system A consists of the axioms

{α ⊃ (β ⊃ α), (α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ)),
(¬α ⊃ β) ⊃ ((¬α ⊃ ¬β) ⊃ α) } ;

(c) the set R contains the single derivation rule

α,α ⊃ β
β

;

(d) and Pr∗ : X→ {α | α is derived from X} is the consequence operation.

The classical propositional calculus 〈L∗, A, R, Pr∗〉 is adequate for the classical
propositional logic 〈L∗,M∗, In, Pr ′〉, where M∗ is a logical matrix for L∗.

4 Propositional many-valued logics

By the literature [1], [2] and [3], a non-classical logic may be an extended logic
and/or a deviant logic. ”Extended logics expand classical logic by additional
logical constructs. For example, in modal logic modal operators are added to
classical logic to express modal notions. In contrast, deviant logics are rivals
to classical logic that give up some classical principles. In many-valued logics,
we allow for many truth-values instead of two truth-values (we give up the
principle of bivalence)”. This deviation leads to the extension of the operations
of the classical two-valued logic. An operation is extended if, whenever the
arguments are classical truth-values, the result has the same truth-value as
it does in classical logic. ”In this sense, classical logic can be thought of as a
special case of many-valued logic.”

Let Un be a set of truth-values {0, 1, 2, . . . , n− 1} (n ≥ 2). Formally, we can
define a propositional many-valued logic (MVPL) as a quadruple

〈L,M, In, Prn〉 ,

where

(a) L = 〈V,Con, F〉 is a language algebra with a signature σ.

(b) M = 〈Un, Op,U∗n〉 is a logical matrix for L, where 〈Un, Op〉 is an algebra
over Un with the signature σ, as well. Moreover, let S ∈ Un. Then
U∗n = {S+ 1, . . . , n− 1} is the set of the designated truth-values, and
0, 1, . . . , S are called non-designated ones.

152 K. Pásztor Varga, G. Alagi, M. Várterész

(c) In = {I | I : V → Un is an interpretation of L}.

(d) Prn : P(F)→ P(F) should be a consequence operation.

Now, we look for a consequence operation.
Let L = 〈V,Con, F〉 be a language algebra and let M = 〈Un, Op,U∗n〉 be a

logical matrix for the language L.

Definition 10 A formula α is a weak semantic consequence of a set X of
formulas, denoted as

X |=S α,

if for any interpretation in which the truth-value of every formula β ∈ X is
designated, the truth-value of α is also designated. If X is the empty set, we
have no constraint for the interpretations. Thus, α is said to be an S-tautology
(∅ |=S α) if the truth-value of α is designated for every interpretation.

We can give a more rigorous notion of the consequence relation if we also
take the extent of truth-values of formulas into consideration.

Definition 11 A formula α is a strong semantic consequence of a set X of
formulas, denoted as

X |=S∗ α,

if for any interpretation in which the truth-value of every formula β ∈ X is
designated, the truth-value of α is also designated with at least the same truth-
value as the minimum of the truth-values of formulas in X in the underlying
interpretation.

We need some further notions and a lemma to discuss simply the character-
istic of the consequence relation.

Definition 12 Let a partial interpretation Ip be a total interpretation with
respect to the set X∪ {α} of formulas. X is appropriate for α in Ip if the truth-
value of α is not less than the minimum of the truth-values of formulas in X,
whenever this minimum is designated.

Definition 13 X is finitely bad for α with respect to a partial interpretation
Ip if for all finite subsets Y of X there exists an extension of Ip in which Y is
not appropriate for α.

Many-valued logics 153

Lemma 14 If X is finitely bad for α with respect to a partial interpretation Ip
and the variable v has no value in Ip yet, then there is some j ∈ Un such that
X is also finitely bad for α with respect to the partial interpretation Ip∪ {(v, j)}.

Proof. Otherwise, X is not finitely bad for α with respect to any partial
interpretation Ip ∪ {(v, i)} (i ∈ Un). So for all i, a finite subset Yi of X would
exist such that Yi would be appropriate for α in all of the total extensions of
Ip∪ {(v, i)}. Thus, ∪n−1i=0 Yi is a finite set and appropriate for α in all of the total
extensions of Ip. It means that X is not finitely bad for α with respect to a
partial interpretation Ip. It is a contradiction. �

Proposition 15 PrnS : X → {α | X |=S α} and PrnS∗ : X → {α | X |=S∗ α} are
consequence operations.

Proof.

(1) is obvious.

(2) For every interpretation I ′, where q = minα∈X |α|I ′ > S, |γ|I ′ ≥ q holds
for any γ ∈ PrnS (X). Now, let I be an interpretation, where |β|I > S for
every formula β in Y, and let p be minβ∈Y |β|I. According to condition
X ⊆ PrnS (Y), we get |α|I ≥ p > S for every α ∈ X. Thus, I is an inter-
pretation, where |γ|I ≥ p holds for all γ ∈ PrnS (X). It means, we have
PrnS (X) ⊆ PrnS (Y).

(3) Now, let α be a strong consequence of X. Then α is also a weak conse-
quence of X. Let us define a special kind of negation:

¬x

{
0 if x ∈ U∗n ,
(n− 1) otherwise

Moreover, let InX contain all the interpretations in which every formula
in X has a designated truth-value.

It is clear that X |=S α if and only if InX ∩ In¬α = ∅. Because of the
compactness theorem in MVPL (see in [4]), if InX∩In¬α = ∅, then there
exists a finite set Y0 such that Y0 ⊆ X and InY0 ∩ In¬α = ∅.
Thus, Y0 is a finite subset of X and Y0 |=S α. It means, that for any inter-
pretation in which the truth-value of every formula in Y0 is designated,
the truth-value of α is also designated. At the same time, the truth-value
of α may be less than the minimum of the truth-values of formulas in Y0
in several (however finite number of) interpretations.

154 K. Pásztor Varga, G. Alagi, M. Várterész

Now, let the partial interpretation Ip be total with respect to Y0 ∪ {α}

such that Y0 is not appropriate for α in Ip. We prove that there is a
finite subset Y of X such that Y0 ∪ Y is appropriate for α in all of the
total extensions of Ip.

Let v1, v2, . . . be a list of variables not occuring in Ip. Assume that the
opposite of what we are trying to prove is true: X is finitely bad for α
with respect to Ip.

In view of Lemma 14, for all k there is some jk ∈ Un such that X is
also finitely bad for α with respect to Ipk = Ipk−1 ∪ {(vk, jk)}. In the
total interpretation ∪∞k=1Ipk, there is an index k for all γ ∈ X such
that Ipk is total with respect to γ. Since X is finitely bad for α with
respect to Ipk, |γ|Ipk > |α|Ipk . It means that X is not appropriate for α
in the interpretation ∪∞k=1Ipk, so α is not a strong consequence of X, a
contradiction.

Our indirect assumption is false, so there is a finite subset Y of X such
that Y0 ∪ Y is appropriate for α in all extensions of Ip.

To sum it up, if we have some interpretations, in which the truth-value
of α is less than the minimum of the truth-values of formulas in Y0,
when it is designated, then we have no more than finitely many such
interpretations. For every such interpretation, there exists a finite subset
Y of X such that Y0 ∪ Y is appropriate for α in all extensions of the
interpretation. Adding the union of finite number of the finite subsets to
Y0 we get a finite set and in every interpretation, if the minimum of the
truth-values of formulas in this set is designated, the minimum is not
greater than the truth-value of α. �

5 Problems with n-valued operations

In the classical logic, the consequence notion leads to the decision problem
through the deduction theorem. The deduction theorem requires the classical
syllogism, modus ponens.

In a many-valued logic with the weak consequence relation, the modus po-
nens is valid if we have an operation ⊃ with α ⊃ β,α |=S β, i.e. if α ⊃ β and
α have designated values, then β has a designated value, too.

The Lukasiewicz implication is defined by

x1 ⊃L x2

{
n− 1 if x1 ≤ x2,
(n− 1) − x1 + x2 if x1 > x2,

Many-valued logics 155

or by Table 1. Designated values are marked by an asterisk.

⊃L 0 1 · · · S S + 1∗ · · · n − 3∗ n − 2∗ n − 1∗

0 n − 1 n − 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1
1 n − 2 n − 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1
2 n − 3 n − 2 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

... · · · · · ·
S − 1 n − S n − S + 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1
S n − S − 1 n − S · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

S + 1∗ n − S − 2 n − S − 1 · · · n − 2 n − 1 · · · n − 1 n − 1 n − 1

... · · · · · ·
n − 3∗ 2 3 · · · S + 2 S + 3 · · · n − 1 n − 1 n − 1
n − 2∗ 1 2 · · · S + 1 S + 2 · · · n − 2 n − 1 n − 1
n − 1∗ 0 1 · · · S S + 1 · · · n − 3 n − 2 n − 1

Table 1: Lukasiewicz implication

We can see that if S < n−2, then S+1 ⊃L S and S+1 are designated, but S is
not. The modus ponens is not valid in such many-valued logics and moreover,
it is not valid when the consequence relation is the second one.

The Post implication is defined by

x1 ⊃P x2

n− 1 if x1 ≤ x2,
x2 if x1 > x2, x1 > S,
(n− 1) − x1 + x2 if x1 > x2, x1 ≤ S,

or by Table 2.
The modus ponens is valid in the case of Post implication:

Proposition 16

α ⊃P β,α |=S∗ β.

Proof. If |α ⊃P β| > S and |α| > S in an interpretation, then either |α| > |β|

or |α| ≤ |β|. In the first case, S < |α ⊃P β| = |β| and min (|α|, |α ⊃P β|) = |β|.
In the second case, |α ⊃P β| = n− 1, so min (|α|, |α ⊃P β|) = |α| ≤ |β|. �

Now, we must verify whether the deduction theorem is valid. The deduction
theorem would state that X,α |=S β if and only if X |=S α ⊃P β. It is easy
to realize, this theorem is not valid: if X,α |=S β, X |=S α ⊃P β does not
necessarily follow.

Actually, let n − 1 ≤ 2S and γ, α |=S β. There is no constraint for the
truth-value of β in the interpretations where α is not designated. So |γ| =

156 K. Pásztor Varga, G. Alagi, M. Várterész

⊃P 0 1 · · · S S + 1∗ · · · n − 3∗ n − 2∗ n − 1∗

0 n − 1 n − 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

1 n − 2 n − 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

2 n − 3 n − 2 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1
... · · · · · ·

S − 1 n − S n − S + 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

S n − S − 1 n − S · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

S + 1∗ 0 1 · · · S n − 1 · · · n − 1 n − 1 n − 1
... · · · · · ·

n − 3∗ 0 1 · · · S S + 1 · · · n − 1 n − 1 n − 1

n − 2∗ 0 1 · · · S S + 1 · · · n − 3 n − 1 n − 1

n − 1∗ 0 1 · · · S S + 1 · · · n − 3 n − 2 n − 1

Table 2: Post implication

n − 1, |α| = S and |β| = 0 might hold in an interpretation. In this case γ is
designated, but |α ⊃P β| = (n − 1) − S ≤ S is not. Thus, γ |=S α ⊃P β is not
valid.

⊃H 0 1 · · · S S+ 1∗ · · · n− 3∗ n− 2∗ n− 1∗

0 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
1 0 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
2 0 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

S− 1 0 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
S 0 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S+ 1∗ 0 1 · · · S n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

n− 3∗ 0 1 · · · S S+ 1 · · · n− 1 n− 1 n− 1
n− 2∗ 0 1 · · · S S+ 1 · · · n− 3 n− 1 n− 1
n− 1∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1

Table 3: Heyting implication

The Heyting implication is often used in a many-valued logic: x1 ⊃H x2 is
the greatest element in Un such that x1 ∧ (x1 ⊃H x2) ≤ x2, that is for every
x1, x2 ∈ Un,

x1 ⊃H x2

{
n− 1 if x1 ≤ x2,
x2 if x1 > x2,

Many-valued logics 157

or see Table 3.

Proposition 17

α ⊃H β,α |=S∗ β.

Proof. If |α ⊃H β| > S and |α| > S hold in an interpretation, then by the
definition of the Heyting implication

(1) if |α| > |β|, |α ⊃H β| = |β|, thus |β| > S and min (|α ⊃H β|, |α|) = |β|, and

(2) if |α| ≤ |β|, thus |β| > S and, because |α ⊃H β| = n − 1, thus
min (|α ⊃H β|, |α|) = |α| ≤ |β|.

�

It is easy to see, the deduction theorem is not valid: if X,α |=S β, it does
not necessarily follow that X |=S α ⊃H β.

Actually, let γ, α |=S β. There is no constraint for the truth-value of β
in the interpretations where α is not designated. So it can happen that |γ| =
n−1, |α| = S and |β| = 0 hold in an interpretation. In this case γ is designated,
but |α ⊃H β| = 0 is not. So, γ |=S α ⊃H β is not valid.

⊃R 0 1 · · · S S+ 1∗ · · · n− 3∗ n− 2∗ n− 1∗

0 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
1 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
2 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

S− 1 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
S n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S+ 1∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1
... · · · · · ·

n− 3∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1
n− 2∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1
n− 1∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1

Table 4: Rosser implication

In [6], another implication has been used by Rosser:

x1 ⊃R x2

{
n− 1 if x1 ≤ S,
x2 if x1 > S.

158 K. Pásztor Varga, G. Alagi, M. Várterész

Table 4 shows the truth-table of this implication. In this paper we name this
implication after Rosser.

Proposition 18

α ⊃R β,α |=S∗ β.

Proof. If |α ⊃R β| > S and |α| > S hold in an interpretation, then by
the definition of the Rosser implication |α ⊃R β| = |β|, thus |β| > S and
min (|α ⊃R β|, |α|) ≤ |β|. �

Proposition 19 If X,α |=S β, then X |=S α ⊃R β.

Proof. Suppose X,α |=S β. In every interpretation where every formula from
X is designated, either α is also deignated or not. In the first case, according
to the condition, β is designated, and because |α ⊃R β| = |β|, α ⊃R β is
designated, too. In the second case, according to the definition of the Rosser
implication, we have |α ⊃R β| = n − 1. This is a designated value. Therefore,
X |= α ⊃R β. �

We can not prove that if γ, α |=S∗ β, then γ |=S∗ α ⊃R β. If |α| = |β| = S+ 1
and |γ| = n− 1 in an interpretation, then |α ⊃R β| = |β| = S+ 1, thus α ⊃R β
is designated, but if S+ 1 < n− 1, then |γ| > |α ⊃R β|.

Proposition 20 If X |=S∗ α ⊃R β, then X,α |=S∗ β.

Proof. Let I be an interpretation in which every formula from X and α are
designated. According to the condition, α ⊃R β is designated with truth-value
at least minγ∈X {|γ|}. If α is designated, |β| = |α ⊃R β|, thus β is also designated
with truth-value at least minγ∈X {|γ|} ≥ minγ∈X {|γ|, |α|}. �

Finally, let f : U × U → U such that f(x1, x2) ≤ S for all x1, x2 ∈ U, when
x1 > S and x2 ≤ S. Then the implication defined below admits the modus
ponens and the deduction theorem:

x1 ⊃f∗ x2

n− 1 if x1 ≤ S or x1 ≤ x2,
x2 if x1 > x2 > S,
f(x1, x2) otherwise.

Proposition 21

α ⊃f∗ β,α |=S∗ β.

Many-valued logics 159

⊃f
∗ 0 1 · · · S S+ 1∗ · · · n− 3∗ n− 2∗ n− 1∗

0 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
1 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
2 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

S− 1 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
S n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S+ 1∗ 0 1 · · · S n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

n− 3∗ 0 1 · · · S S+ 1 · · · n− 1 n− 1 n− 1
n− 2∗ 0 1 · · · S S+ 1 · · · n− 3 n− 1 n− 1
n− 1∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1

Table 5: The implication with f(x1, x2) = x2

Proof. If |α ⊃f∗ β| > S and |α| > S in an interpretation, then by the definition
of the new implication either |α ⊃f∗ β| = n − 1, or |α ⊃f∗ β| = |β|. In the first
case |β| ≥ |α| > S and min (|α ⊃f∗ β|, |α|) ≤ |β|. In the second case |α| > |β| > S

and min (|α ⊃f∗ β|, |α|) = |β|. �

Proposition 22 If X,α |=S∗ β, then X |=S∗ α ⊃f∗ β.

Proof. Suppose X,α |=S β. In every interpretation where every formula from
X is designated, either α is also deignated or not. In the first case, according
to the condition, β is designated, and

(1) either S < |α| ≤ |β| and |α ⊃f∗ β| = n− 1, so minγ∈X {|γ|} ≤ |α ⊃f∗ β|;

(2) or |α| > |β| > S and |α ⊃f∗ β| = |β|, thus α ⊃f∗ β is also designated
moreover, minγ∈X {|γ|} ≤ |β| = |α ⊃f∗ β| because minγ∈X {|γ|, |α|} ≤ |β| <

|α|.

In the second case, |α ⊃f∗ β| = n − 1, which is a designated value. Therefore,
X |=S∗ α ⊃f∗ β. �

Proposition 23 If X |=S∗ α ⊃f∗ β, then X,α |=S∗ β.

Proof. Let I be an interpretation in which every formula from X and α are
designated. According to the condition, α ⊃f∗ β is designated with truth-value

160 K. Pásztor Varga, G. Alagi, M. Várterész

at least minγ∈X {|γ|}. Because α is designated, if |α| ≤ |β|, then |β| is designated
with truth-value at least minγ∈X {|γ|, |α|}. In the case |α| > |β|, |α ⊃f∗ β| = |β|,
thus β is designated with truth-value at least

min
γ∈X

{|γ|} ≥ min
γ∈X

{|γ|, |α|},

as well. �

Finally, all what was proved about the examined implications at this section
we summarized in the following table:

⊃L ⊃P ⊃H ⊃R ⊃f
∗

modus ponens - + + + +
deduction theorem with |=S - - - + +
deduction theorem with |=S∗ - - - - +

6 Suitable implication for a given consequence

It is desirable that both the modus ponens and the deduction theorem hold
with respect to the underlying consequence. Now, we look for a suitable im-
plication for a generally given consequence notion such that both the modus
ponens and the deduction theorem are valid.

Now, let ψ : U × U → {0, 1} be an arbitrary classical truth-valued function
with the following properties:

(a) ψ(x, x) = 1 for all x ∈ U,

(b) if ψ(x, y)∧ψ(y, z) = 1, then ψ(x, z) = 1 for all x, y, z ∈ U.

Then, define the consequence as below:

Definition 24 A formula α is a formal semantic consequence of a set X of
formulas, denoted as X |= α, if∨

γ∈X
ψ(|γ|I, |α|I) = 1 for any interpretation I,

where
∨
γ∈Xψ(|γ|I, |α|I) denotes the supremum of {ψ(|γ|I, |α|I) | γ ∈ X }.

Many-valued logics 161

Proposition 25 Pr : X → {α | X |= α} satisfies conditions (1)-(3) in Defini-
tion 2.

Proof.

(1) Now to prove the condition (1), let α ∈ X. Since in any interpretation
ψ(|α|, |α|) = 1, therefore

∨
γ∈Xψ(|γ|, |α|) = 1, so X |= α. It means that

X ⊆ Pr(X).

(2) Next, let X ⊆ Pr(Y) for some X, Y ⊆ F. We show that Pr(X) ⊆ Pr(Y).

– For any α ∈ Pr(X), since∨
γ∈X

ψ(|γ|I, |α|I) = 1, so
∨

γ∈Pr(Y)

ψ(|γ|I, |α|I) = 1.

It means Pr(X) ⊆ Pr(Pr(Y)).
– Now, we show that Pr(Pr(Y)) = Pr(Y). Since Pr(Y) ⊆ Pr(Pr(Y))

by the property (1), it is enough to prove, that α ∈ Pr(Y) for all
α ∈ Pr(Pr(Y)).
Obviously Y ⊆ Pr(Y). Let Y ′ denote the set Pr(Y) \ Y and let α ∈
Pr(Pr(Y)). Then∨

γ∈Pr(Y)

ψ(|γ|I, |α|I) =
∨

γ∈Y ′∪Y
ψ(|γ|I, |α|I) = 1.

If ∨
γ∈Y ′

ψ(|γ|I, |α|I) = 0, then
∨
γ∈Y

ψ(|γ|I, |α|I) = 1.

And if ∨
γ∈Y ′

ψ(|γ|I, |α|I) = 1,

then there exists a γ ′ ∈ Y ′ for which ψ(|γ ′|I, |α|I) = 1. But γ ′ ∈
Pr(Y) also holds, thus ∨

γ∈Y
ψ(|γ|I, |γ

′|I) = 1

must hold, i.e. there exists a γ ′′ ∈ Y for which ψ(|γ ′′|I, |γ
′|I) = 1.

Using the property (b) of ψ we get ψ(|γ ′′|I, |α|I) = 1, that is∨
γ∈Y

ψ(|γ|I, |α|I) = 1.

Thus in both cases, we get α ∈ Pr(Y).

162 K. Pásztor Varga, G. Alagi, M. Várterész

– Since X ⊆ Pr(Y), thus Pr(X) ⊆ Pr(Pr(Y)), and thereby Pr(X) ⊆
Pr(Y) must hold.

(3) We prove compactness by reducing the problem to the compactness of
first-order logic with equality. First, let us define the language of our
encoding:

– We have a single binary predicate symbol ψ̂.

– For each many-valued operation o, we have a corresponding func-
tion symbol ô with the same arity.

– For each variable v, we have a corresponding constant cv.

– For each truth-value u, we have an additional constant û.

Given this language, we might fix the interpretation of our symbols by
defining a set Σ of the following axioms:

(i) ∀x(x = û1 ∨ x = û2 ∨ · · ·∨ x = ûn) if U = {u1, u2, . . . , un}

(ii) û 6= û ′ for each u, u ′ ∈ U with u 6= u ′

(iii) ψ̂(û, û ′) if ψ(u, u ′) = 1 and u, u ′ ∈ U
(iv) ¬ψ̂(û, û ′) if ψ(u, u ′) = 0 and u, u ′ ∈ U
(v) ô(â1, â2, . . . , âk) = û if o is an operator with arity k, a1, a2, . . . ,

ak, u ∈ U, and o(a1, a2, . . . , ak) = u

Since U is finite, Σ is a finite set of first-order formulas as well. It is easy
to see that if Î is a first-order model of Σ, then there is a corresponding
many-valued interpretation I which assigns the same values to variables
as did Î to the corresponding constants.

Let α̂ denote the encoding of a formula α in this language, i.e. the
first-order formula we get from α by substituting each symbol with the
corresponding first-order symbol. By our definitions, if I and Î are cor-
responding many-valued and first-order interpretations, |α|I = u if and
only if |α̂|̂I = û. Thus, for each α, β, we have ψ(|α|I, |β|I) holds if and
only if ψ̂(α̂, β̂) holds in Î.

Now, by our assumptions, X |= α if and only if
∨
γ∈Xψ(|γ|I, |α|I) holds

for all interpretation I. This, on the other hand, holds if and only if the
set Γ = { ¬ψ(|γ|I, |α|I) | γ ∈ X } is not satisfied under any interpretation
I. Consider the first-order set

Γ̂ = Σ ∪ { ¬ ψ̂(γ̂, α̂) | γ ∈ X }

Many-valued logics 163

From our considerations it follows that Γ̂ is unsatisfiable if and only if
the original Γ is unsatisfiable.

Then, by the compactness of first-order logic, we know that there is a
finite Γ̂ ′ ⊆ Γ̂ such that Γ̂ ′ is unsatisfiable. Since Σ is finite, we might
assume Σ ⊆ Γ̂ ′. Now, let X ′ the finite set {γ ∈ X | ¬ ψ̂(γ̂, α̂) ∈ Γ̂ ′ }.
We know that the corresponding set Γ ′ = { ¬ψ(|γ|I, |α|I) | γ ∈ X ′ } is
not satisfied by any I either. Therefore, X ′ |= α must hold where X ′ is a
finite subset of X. �

Proposition 26 Let ⊃ be an implication operation over U. If

ψ(x1, x2)∨ψ(y, x2) = ψ(y, x1 ⊃ x2)

for all x1, x2, y ∈ U, then ⊃ admits the modus ponens and the deduction theo-
rem.

Proof. First, we prove the modus ponens, i.e. we show, that {α,α ⊃ β} |= β

holds for any formulas α,β. For all α,β ∈ F and for all I ∈ In we get

ψ(|α|I, |β|I)∨ψ(|α ⊃ β|I, |β|I).

For all x1, x2 ∈ U, by applying the proposed equality

ψ(x1, x2)∨ψ(x1 ⊃ x2, x2) = ψ(x1 ⊃ x2, x1 ⊃ x2) = 1.

To prove the deduction theorem, we have to show for any α,β, X

X, α |= β if and only if X |= α ⊃ β.

Again, applying our assumptions to both sides, we get for all I ∈ In∨
γ∈X

ψ(|γ|I, |β|I)∨ψ(|α|I, |β|I) =
∨
γ∈X

(ψ(|γ|I, |β|I)∨ψ(|α|I, |β|I))

if and only if for all I ∈ In ∨
γ∈X

ψ(|γ|I, |α|I ⊃ |β|I).

From our assumption with y = |γ|I, x1 = |α|I, x2 = |β|I, we get

ψ(|γ|I, |β|I)∨ψ(|α|I, |β|I) = ψ(|γ|I, |α|I ⊃ |β|I),

from which the desired equivalence immediately follows. �

In the remaining part of the section we apply this proposition to the earlier
defined semantic consequences.

164 K. Pásztor Varga, G. Alagi, M. Várterész

Example 27 By Definition 10,

X |=S α if and only if min
γ∈X

{|γ|I} ≤ S∨ S < |α|I for all I ∈ In.

Thus, for this case we get ψ(x, y) = (x ≤ S ∨ S < y). To find a suitable
implication, it is enough to satisfy

(x1 ≤ S∨ S < x2)∨ (y ≤ S∨ S < x2) if and only if (y ≤ S∨ S < x1 ⊃ x2)

for all x1, x2, y ∈ U. Let f, h : U×U→ U such that for all x1 > S and x2 ≤ S
f(x1, x2) ≤ S and if x1 ≤ S or x2 > S, then h(x1, x2) > S. Then, as we have
seen above, the implication defined below admits the modus ponens and the
deduction theorem:

x1 ⊃f,h∗ x2

{
h(x1, x2) if x1 ≤ S or x2 > S,
f(x1, x2) otherwise.

Example 28 By Definition 11,

X |=S∗ α if and only if min
γ∈X

{|γ|I} ≤ S∨ min
γ∈X

{|γ|I} ≤ |α|I for all I ∈ In.

For this case we get ψ(x, y) = x ≤ S∨ x ≤ y. Thus to find a suitable implica-
tion, it is enough to satisfy

(x1 ≤ S∨ x1 ≤ x2)∨ (y ≤ S∨ y ≤ x2) if and only if (y ≤ x1 ⊃ x2 ∨ y ≤ S)

for all x1, x2, y ∈ U. The possible values for x1 ⊃ x2 might be deduced as
follows:

• x1 ≤ S∨x1 ≤ x2: since the right side must also hold, even for y = n−1,
we get x1 ⊃ x2 = n− 1, which is indeed a good choice.

• x1 ≥ x2 > S: for y = x2 we get x2 ≤ x1 ⊃ x2, and for y = x2 + 1
x1 ⊃ x2 < x2 + 1. Thus only x1 ⊃ x2 = x2 is possible, and it indeed
satisfies the equality in this case.

• x1 > S ≥ x2: for y > S we get x1 ⊃ x2 ≤ S. In this case any value
smaller than S satisfies the equality.

Let f : U×U→ U be such that for all x1 > S and x2 ≤ S f(x1, x2) ≤ S. Then,
as we have seen above, the implication defined below admits the modus ponens
and the deduction theorem:

x1 ⊃f∗ x2

n− 1 if x1 ≤ S or x1 ≤ x2,
x2 if x1 > x2 > S,
f(x1, x2) otherwise.

Many-valued logics 165

7 Summary

In this paper we demonstrated that both semantic and syntactic consequences
of classical logic generate consequence operators. We proved similar proposi-
tions about the weak and strong semantic consequences in the many-valued
logic. After this, we investigated the Lukasiewicz, Post, Heyting and Rosser
style many-valued implications whether the modus ponens rule and the de-
duction theorem are valid beside of our consequence relations. By the strong
consequence, the deduction theorem is not valid with none of them. How-
ever, the implication family ⊃f∗ defined in our paper found to comply with the
modus ponens and the deduction theorem by the strong consequence as well.

In the last section, we introduced a general formal consequence relation and
showed, that it also leads to a consequence operator. The weak and strong
consequence definitions are realizations of this general consequence notion. It
would be profitable to consider what additional realizations are possible. By
this general consequence, we also gave a suitable implication which admits the
modus ponens and the deduction theorem as well.

The problem of a syntactic treatment of logical consequences in the many-
valued logic could be an exciting topic of future research.

Acknowledgements

The publication is supported by the TÁMOP-4.2.2/B-10/1-2010-0024 project.
The project is co-financed by the European Union and the European Social
Fund.

References

[1] M. Bergmann, An Introduction to Many-Valued and Fuzzy Logic: Semantics,
Algebras, and Derivation Systems, Cambridge University Press, 2008. ⇒151

[2] L. Bolc, P. Borowik, Many-valued Logics. Vol.1. Theoretical Foundations,
Springer-Verlag, Berlin, 1992. ⇒151

[3] R. Hähnle, G. Escalada-Imaz, Deduction in many-valued logics: a survey, Math-
ware and Soft Computing 4, 2 (1997) 69–97. ⇒151

[4] J.-L. Lee, On compactness theorem, in: Taiwan Philosophical Association 2006
Annual Meeting, (2006) pp. 1–11. ⇒153

[5] K. Pásztor Varga, M. Várterész, Many-valued logic, mappings, ICF graphs, nor-
mal forms, Annales Univ. Sci. Budapest. de R. Eötvös Nom. Sect. Computatorica
31 (2009) 185–202. ⇒147

http://cs.smith.edu/fac_mbergmann.php
http://www.cambridge.org
http://www.springer.com
https://www.se.tu-darmstadt.de/se/group-members/reiner-haehnle/
http://www.iiia.csic.es/en/individual/gonzalo-escalada-imaz
http://ic.ugr.es/Mathware/index.php/Mathware/article/viewFile/256/232
http://ic.ugr.es/Mathware/index.php/Mathware
http://ic.ugr.es/Mathware/index.php/Mathware
http://tpa.hss.nthu.edu.tw/committee/tpaseminar/2006/25.pdf
http://people.inf.elte.hu/pkata
http://www.inf.unideb.hu/~varteres
http://ac.inf.elte.hu/Vol_031_2009/185.pdf
http://ac.inf.elte.hu/

166 K. Pásztor Varga, G. Alagi, M. Várterész

[6] J. B. Rosser, A. R. Turquette, Many-valued Logics. Studies in Logic and Foun-
dations of Math., North-Holland Publishing Co., Amsterdam, 1952. ⇒157

[7] A. Tarski, On some fundamental concepts of metamathematics, in: Logic, Se-
mantics and Metamath., Clarendon Press, Oxford, 1956, pp. 30–38. ⇒148

Received: June 5, 2013 • Revised: September 7, 2013

https://en.wikipedia.org/wiki/J._B._Rosser
https://en.wikipedia.org/wiki/A._Tarski

Acta Univ. Sapientiae, Informatica, 5, 2 (2013) 167–183

Stackless programming in Miller∗

Boldizsár NÉMETH
Eötvös Loránd University

Faculty of Informatics
Budapest, Hungary

email: nboldi@caesar.elte.hu

Zoltán CSÖRNYEI
Eötvös Loránd University

Faculty of Informatics
Budapest, Hungary

email: csz@inf.elte.hu

Abstract. Compilers generate from the procedure or function call in-
struction a code that builds up an ”activation record” into the stack
memory in run time. At execution of this code the formal parameters,
local variables, data of visibility and the scope are pushed into the acti-
vation record, and in this record there are fields for the return address
and the return value as well. In case of intensive recursive calls this is
the reason of the frequent occurrences of the stack-overflow error mes-
sages. The classical technique for fixing such stack-overflows is to write
programs in stackless programming style using tail recursive calls; the
method is usually realised by Continuation Passing Style. This paper de-
scribes this style and gives an introduction to the new, special purpose
stackless programming language Miller, which provides methods to avoid
stack-overflow errors.

1 Introduction

”The modern operating systems we have operate with what I call the ’big
stack model’. And that model is wrong, sometimes, and motivates the need
for ’stackless’ languages.” (Ira Baxter, 2009 [1])

Computing Classification System 1998: D.3.2, D.3.3.
Mathematics Subject Classification 2010: 68-02, 68N15, 68N18
Key words and phrases: tail recursion, continuation passing style, stackless programming,
programming language Miller

∗Supported by Ericsson Hungary and EITKIC 12-1-2012-0001.

167

http://www.elte.hu/en
http://www.inf.elte.hu
mailto:nboldi@caesar.elte.hu
http://people.inf.elte.hu/csz
http://www.elte.hu/en
http://www.inf.elte.hu
mailto:csz@inf.elte.hu

168 B. Németh, Z. Csörnyei

Using the big stack model in case of intensive recursive calls stack-overflow
error messages may occur frequently. The classical method to fix such stack-
overflows is to write programs in stackless programming style, when tail recur-
sive procedures are used to eliminate the cases of running out of the available
stack memory. This method is usually realised by Continuation Passing Style
(CPS).

2 Stackless programming

2.1 Recursion and iteration

Hereinafter the usual definition of the factorial function is given. It is obvious
that at all recursive call fac i it is needed to save information for the next
operation, namely what operation has to be executed when the fac i is finished
and its value is available.

fac ≡ λx . if (zero x)
1

(∗ x(fac (− x 1)))

For example, the action of calculating the value of fac 3 as follows.

fac 3→
∗ 3 (fac 2) →
∗ 3 (∗ 2(fac 1)) →
∗ 3 (∗ 2(∗ 1(fac 0))) →
∗ 3 (∗ 2(∗ 1 1)) →
∗ 3 (∗ 2 1) →
∗ 3 2→
6

It is obvious that if the value of the call fac i is calculated then it is needed
to return to the caller process to execute multiplications. It means that acti-
vation records have to be used and thus a stack memory has to be applied for
registration the calculating processes.

This is a so called ”recursive-controlled behaviour”, and it is obvious that
using this method the stack-overflow error may appear in the case of intensive,
multiple recursive calls.

There is a simple method to avoid stack-overflow errors, it has the name

Stackless programming in Miller 169

”iterative-controlled behaviour”. It is a simple iteration, where there is no
need to preserve long series of operations, the size of occupied memory is not
increased in the course of execution of recursive calls, and the most important
property is that all of the calls are on the same level. This method uses an
accumulator for storing intermediate results [4].

The factorial function in the iterative-controlled style is as follows. In this
definition variable r is the accumulator.

fac ≡ λn . fac ′ n 1
fac ′ ≡ λxr . if (zero x)

r

(fac ′ (− x 1) (∗ x r))

It seems that in the calculating process there is only one level for recursive
calls, for example the value of fac 3

fac 3→
fac ′ 3 1→
fac ′ 2 3→
fac ′ 1 6→
fac ′ 0 6→
6

There is no need to large stack memory for activation records, only two vari-
ables are required, one for the value n and another variable for the accumulator
r. The calculating process is described and controlled by these variables.

It is important to observe that the called process does not return to the caller
process to execute any operation, since there is no operation to be executed.

Iterative behaviour seems to be a very nice method, but it is applicable for
cases where the size of the accumulator is constant during the calculation,
and what is more, unfortunately there are procedures for which there is no
possibility to convert them into iterative-controlled behaviour forms. But the
continuation passing style solves this problem.

2.2 Tail position and tail call

In the previous example it was shown that the called process does not return
to the caller process, and for this case we say that a tail call was executed.

More precisely, the procedure E is in tail position of the enclosing procedure
F if F does not have any action to performed after E is returned. This means

170 B. Németh, Z. Csörnyei

that the return value of E is the result of F. Tail call means a call to expression
in tail position, and the recursion is said to be tail recursion if the recursive
calls are tail calls.

Thus in the case of tail calls there is no need for extra memory to the
control information, the result of the procedure E is the result of F. Namely,
after executing E, the control of execution is passed to the process which is
the continuation of F.

There is a general method to convert procedures into this form, we have to
write procedures in continuation passing style where the continuation repre-
sents what is left to do.

3 CPS—Continuation Passing Style

Continuation is a function and the result of the procedure is applied to it. A
new variable is introduced, this variable represents the continuation. It usually
has the name k.

There are many methods to convert an expression into continuation passing
style [2, 8]. For example, a formal method published by Plotkin is as follows.

[x] k = k x

[n] k = k n

[λx . E] k = k (λxv . [E] v)
[EF] k = [E] (λv . [F] (λw . v w k))

where the expression [.] is due to convert, x is a variable and n is a constant.
For example, if the continuation is k ≡ print, then using the second rule to
form [6] print, it results print 6 as it was expected.

For reductions it is not too hard to prove that E→ F⇐⇒ [E] k→ [F] k .
It is known that (λxy . y) 1 → λy . y ≡ Id. The next example shows that

[(λxy . y) 1] k→ [λy . y] k .

[(λxy . y) 1] k =
[λxy . y] (λv . [1] (λw . v k w)) =
[λxy . y] (λv . (λw . v k w) 1) =
(λv . (λw . v k w) 1) (λp x . [λy . y] p)
(λv . (λw . v k w) 1) (λp x . p (λqy . q y)) →
(λw . (λp x . p (λqy . q y)) k w) 1) →
(λp x . p (λqy . q y)) k 1→
k (λqy . q y) =

Stackless programming in Miller 171

k (λqy . [y] q) =
[λy . y] k

There is a simple method to convert the expression to a tail call form, the
method is presented by the calculation of fac 3 [10]. We see an intermediate
state:
∗ 3(∗ 2 (fac 1)) .
Replace the call to fac 1 with a new variable x,
∗ 3 (∗ 2 x) ,
and create a λ-abstraction with this new variable:
λx. ∗ 3 (∗ 2 x) ,
this is a continuation k of the expression fac 1, that is
k (fac 1) =
(λx. ∗ 3(∗ 2 x)) (fac 1) →
∗ 3 (∗ 2 (fac 1)) .
This means that the steps of calculation have form k (fac i). Now we create
a new version of fac that takes an additional argument k for continuation and
calls that function as the original body of fac, that is
fac-cps n k→ k (fac n) .
The function fac-cps has the form as follows.

fac-cps ≡ λnk .if (= n 0)
(k 1)
(fac-cps (− n 1) (λv . (k (∗ n v))))

For example the value of fac-cps 3 k:

fac-cps 3 k =
fac-cps 2 (λv . (k (∗ 3 v))) =
fac-cps 1 (λv ′ . ((λv . (k (∗ 3 v))) (∗ 2 v ′))) →
fac-cps 1 (λv ′ . (k (∗ 3 (∗ 2 v ′)))) =
fac-cps 0 (λv ′′ . ((λv ′ . (k (∗ 3 (∗ 2 v ′))))(∗ 1 v ′′))) →
fac-cps 0 (λv ′′ . (k (∗ 3 (∗ 2 (∗ 1 v ′′))))) =
(λv ′′ . (k (∗ 3 (∗ 2 (∗ 1 v ′′))))) 1→
(k (∗ 3 (∗ 2 (∗ 1 1)))) →
k 6

If k ≡ print , then fac-cps 3 print = print 6 , as it was expected.

172 B. Németh, Z. Csörnyei

We remark that continuations can be used to implement for example branch-
ing, loops, goto, return, and give possibility to write such types of control flow
that coroutines, exceptions and threads.

4 Tail Call Optimisation in various languages

Tail Call Optimisation (TCO) is a common technique for transforming some
execution units of the program to operate in constant stack space. The func-
tion with the recursive call is transformed into a loop, while preserving the
semantics with the appropriate condition.

We chose Scala, a functional language running on JVM and the purely func-
tional language Haskell. We did so because the problem is most relevant to
functional languages where recursive calls are the only source of iterative be-
haviour. We also wanted to compare the different approaches to this problem.

4.1 TCO in Scala

The Scala compiler implements a limited form of the TCO.
The problem with the recursive approach is that calls to non-static functions

in the JVM are dynamically dispatched. There is a direct and an indirect cost
of this, mostly studied in C++ programs [3]. However extensive research had
been done on the resolution of virtual calls in Java programs [11].

The system only handles self-recursion, so two functions mutually calling
each other will not be transformed into a single cycle. The designers of the
compiler introduced this constraint because they didn’t want to cause dupli-
cations in the generated code, that could cause the program to slow down.

TCO can only be used on non-overrideable functions, because the dynamic
method invocation of the JVM prevents further optimisations [9].

With the @tailrec annotation, the programmer can ensure that the TCO
can be performed by the compiler, otherwise the compilation fails.

Example

def factorialAcc(acc: Int, n: Int): Int = {
if (n<=1) acc

else factorialAcc(n*acc, n-1)

}

The program is compiled to the same bytecode as:

Stackless programming in Miller 173

def factorialAcc(acc: Int, n: Int): Int = {
while(n <= 1) {

acc = n*acc

n = n-1

}
acc

}

So in this example we can get the elegant functional solution with no addi-
tional costs.

4.2 TCO in Haskell

Tail call elimination in Haskell is a little different than in languages with strict
execution. It allows not only tail call functions to be executed in constant stack
space, but a wider class of functions, that are called productive functions [7].

Every function is productive if only contains recursive calls in a data con-
structor.

For example take the three function definitions below:

infinite list = 1 : infinite list

infinite_number = go 0

where go n = (let n’ = n+1 in n’ ‘seq‘ go n’)

infinite number’ = 1 + infinite number’

The infinite list function is productive, because the recursive call is a
parameter of the : data constructor, therefore the execution will not result in
a stack overflow. And it will generate an infinite list of 1’s.

The infinite number function has a tail call, where the result is accumu-
lated as an argument, and strictly evaluated by the seq function. If we would
allow the lazy execution of the accumulator parameter, the tail call would
be eliminated, but because the parameter is constantly growing, the ”out of
memory” error would be inevitable as seen in the case of infinite number’.
See also the strict folding functions foldr’ and foldl’ in [6].

Let’s see the result of the execution of the three statements above:

> infinite_list

[1,1,1,1,1... -- This goes forever, but does not result in stack overflow.

174 B. Németh, Z. Csörnyei

> infinite_number

-- Goes on forever, but also in constant stack size
> infinite_number’

<interactive>: out of memory

5 Structures for stackless programming

5.1 The Haskell Cont monad

The Cont monad can be found in the Monad transformer library [5], in the
Control.Monad.Cont module. It is a monadic structure for writing functions
with continuation passing style.

newtype Cont r a = Cont {
runCont :: (a -> r) -> r -- Returns the value after applying

-- the given (final) continuation to it.
}

instance Monad (Cont r) where

return a = Cont (λf -> f a)

-- When returning, simple supply the result to the final continuation.

m >>= k = Cont $ λc -> runCont m (λa -> runCont (k a) c)

-- When binding, set the continuation of the first expression to
-- the second expression (that gets the final continuation).$

After making a Monad instance for the Cont datatype, we can use it to
create a factorial calculation in a simple way. The fac function simply executes
fac cont with an identity transformation as the final continuation.

The fac cont n applies the final continuation with return, or executes
fac cont (n-1) with the multiplication as a continuation.

fac :: Int -> Int

fac n = runCont (fac_cont n) id

where fac_cont :: Int -> Cont Int Int

fac_cont 0 = return 1

fac_cont n = do fprev <- fac_cont (n-1)

return (fprev * n)

For demonstrating the power of our continuation-using factorial function,
we also present a näıve recursive implementation.

Stackless programming in Miller 175

fac_naive :: Int -> Int

fac_naive n = n * fac_naive (n-1)

Then we execute both for a number larger than the maximum stack size,
and inspect the results:

> fac 1000000

0 (Because of the overflow)
> fac_naive 1000000

<interactive>: out of memory

If we follow the execution of the fac cont function we can observe that this
is identical to the previous fac-cps example in Section 3.

> fac_cont 3

runCont (fac_cps 3) id

runCont (fac_cps 2) (λa1 → runCont (return (a1*3)) id)

runCont (fac_cps 1) ((λa2 → runCont (return (a2*2)))

(λa1 → runCont (return (a1*3)) id))

runCont (fac_cps 0) (λa3 → runCont (return (a3*1))

((λa2 → runCont (return (a2*2)))

(λa1 → runCont (return (a1*3)) id)))

runCont (return (1)) ((λa2 → runCont (return (1*2)))

(λa1 → runCont (return (a1*3)) id))

runCont (return (1*2))) (λa1 → runCont (return (a1*3)) id)

runCont (return (1*2*3)) id

1*2*3

6

6 Stackless elements of the Miller programming lan-
guage

In this section of the article we present the aspects of the Miller∗ programming
language that are related to stackless programming.

∗ George Armitage Miller (February 3, 1920 – July 22, 2012) was one of the founders
of the cognitive psychology field. He also contributed to the birth of psycholinguistics and
cognitive science in general. Miller wrote several books and directed the development of
WordNet, an online word-linkage database usable by computer programs [12]. We chose his
name for our language because of his great contribution for the understanding on the usage
of human memory, while our language focuses on the usage of electronic memory.

176 B. Németh, Z. Csörnyei

6.1 The Miller programming language

The Miller programming language is an industry-oriented programming lan-
guage, focused on the development of performance-critical applications for
special hardware.

The simplest execution unit of Miller is the bubble. A bubble is a separate
compilation unit. Bubbles can contain simple sequential code, but no control
structures such as branches and cycles. At the end of the bubble there is a
section where conditions decide which bubble will be executed next. These are
the exit points of the bubble.

Bubbles can also form a network, interconnected by their exit points. A
graph bubble embeds a network of bubbles into itself. The nested bubbles can
only be used by transferring the control to one of the entry points of the graph
bubble. If an exit point of an inner bubble is connected to the entry point of
another bubble inside it is called a local exit point. Otherwise if it’s connected
to an exit point of the containing graph bubble it is a far exit point.

The graph bubble creates an encapsulation for its inner bubbles, and defines
an interface through which they can be accessed. Graph bubbles can also be
nested into other graph bubbles. Nested bubbles can use any program element
defined in their graph bubbles.

It is easy to see that graph bubbles, bubbles and exit points are equiva-
lent in expressive power to the control structures of structured programming.
Branches and loops can be simulated using a network of bubbles.

7 Defining control flow with bubbles

The general case of defining the transfer of control is to set exit points of
the bubbles. This also allows the programmer to create control cycles. We
experimented with this mode of control, but found that it is too cumbersome
for actual programming.

Non-sequential code (for example branches and cycles) will be transformed
into a network of bubbles. However, the language does not require the program-
mer to manually create these bubbles and their connections. An imperative
programming interface is specified from which the compiler creates the final
bubble graph. This interface contains if-then branching, if-then-else branching,
special branching operations, and a do-while loop.

Nested bubbles can be instantiated in their ancestor bubbles any number of
times.

Stackless programming in Miller 177

Example

The following example shows a typical conversion from imperative frontend to
a network of bubbles. It shows how the while cycle is transformed to bubbles
in a näıve algorithm to compute the greatest common divisor of two positive
integers.

Compile[... while (b 6= 0)
if(a > b) { a := a− b; b := b− a; }
...]

The while cycle will be transformed by a stateful transformation. The con-
dition and the loop body are separated.

Condition(b 6= 0)
Core (Compile[if(a > b) a := a− b; b := b− a;])
State(bubble previous bubble{...}...)

Then another transformation will create bubbles from the condition and the
loop core and combine them into the state.

State(
bubble loop condition ⇒ loop core, exit {...}
bubble loop core ⇒ loop condition{
Compile[if(a > b) { a := a− b; b := b− a; }]})

Using bubbles for the transfer of control does not need a stack. The pro-
grammer cannot return control to the caller from an execution module, just
pass the control to the next execution unit. If call-and-return behaviour is
expected, limited depth function calls provide help.

The result of the execution of the bubble body decides through which exit
the control flow is passed.

Control flow of bubbles currently cannot follow continuation passing style,
since it is not possible to transfer the exit point. A language feature is under
planning which allows compile time passing of control. This is the parametri-
sation of the bubble exit points.

8 Parameter passing with interfaces

The bubble states that through an exit point which variables are passed to
the next bubble. This is the exit specification. The bubble also declares the

178 B. Németh, Z. Csörnyei

variables that it uses, this is the entry specification. The interface checker
verifies that the exit and entry specifications match.

It is very important to clarify that no copy operations happen, for this is
not the traditional way of parameter passing. All variables declared in the exit
and entry specification must appear in one of the ancestor bubbles.

The interface check theoretically prevents that the program has access to
uninitialised variables. In practice this does not always happen. For example,
it cannot be statically proven that a loop cycle running on an array gives all
elements a starting value.

Nevertheless, the interface check gives us the same confidence that can be
given by inspecting the initial assignment of variables, and does not require
any data copy to be made for parameter passing. In addition, it also enables
to create variables with constant values locally, in the scope of one bubble.

Example: factorial function in Miller

We present two approaches to calculate the factorial function. The first ap-
proach is a näıve recursive function, using stack. It is presented in a C-like
pseudo-code. The second is a stackless approach, with bubbles accessing global
variables, and using iterative control structure. It is presented with the pseudo-
code version of the language Miller. We give the sequence of evaluation for each
implementation.

Please note that, although the algorithm is the same as the example pre-
sented in the first part of the article, it is written in procedural and not in
functional style.

int32 fac(int32 n) {
if(n ≤ 1) {

return 1;

} else {
return n * fac(n-1);

}
}

The next table shows the content of the stack after each step of execution.
The ‘n’ columns show the value of the variable n in the given context. The ret
columns show the points where the control is returned after the return call.

Stackless programming in Miller 179

step # ret n ret n ret n

1 caller 3
2 caller 3 fact 2
3 (return 1) caller 3 fact 2 fact 1
4 (return 2) caller 3 fact 2
5 (return 6) caller 3

The second part of the example shows the factorial function implemented with
stackless bubbles of Miller. A few notes on the implementation:

• The language syntax may change, the purpose of the example is to give
an idea about the implementation.

• The while cycle is needed because we have to connect the again exit
point with the entry point of the cycle.

int32 n;

int32 val;

bubble fact(n)

exits out(val) {
val = 1;

while(true) cycle;

}
bubble fact::cycle(n,val)

exits again(n,val)

far exits out(val) {
if(n ≤ 1) {

exit out(val);

} else {
exit again(n-1, val*n);

}
}

The next table shows the evaluation of the fact(3) expression in Miller with
only two global variables. The two columns represent the values of the corre-
sponding global variables.

180 B. Németh, Z. Csörnyei

step n val

1 (in fact) 3
2 (in cycle) 3 1
3 (in cycle) 2 3
4 (in cycle) 1 6
5 (in out) 6

As can be seen, the expression is evaluated in constant stack size.

8.1 Limited depth function calls

There are situations where calling functions and returning the control is highly
preferred to low level passing of control. The Miller language provides limited
function calls in such situations.

Currently it’s the programmers responsibility to return the control to the
caller from the called method. This approach enables the function to be a
complete system of bubbles, and any of them can return, if appropriate.

An important aspect of the functions is that the depth of the call chain is
limited. We can calculate it in the following way:

• The bubble that calls no other bubbles have the call depth of zero.

• When a bubble calls other bubbles, its call depth is greater by one than
the maximum of the call depths of the called bubbles.

Because the depth of all units must be bounded, the function calls cannot be
recursive. This kind of control flow would require a stack to implement.

Thanks to the limitations on the function calls it becomes possible to store
all function arguments and return addresses in registers, which is a common
practice in performance critical systems. For example, if we limit our call
chains to a depth of five, at most five registers would be enough to store the
return addresses of the calls.

Of course, if values are passed to the called functions, more registers will be
needed. To implement calls inside the bubble system, the compiler creates a
calling bubble, which executes the call operation.

9 Evaluation of expressions using sandbox

The sandbox is a tool for generating instructions to evaluate complex ex-
pressions. It has a finite amount of registers and a larger amount of memory
locations.

Stackless programming in Miller 181

The compiler always optimises the usage of registers and memory loca-
tions to minimise the number of temporary variables. This means that the
subexpressions to be evaluated first are the subexpressions that need more
registers.

The sandbox works according to a simple strategy. As long as there is space
the intermediate values are stored on registers, then it puts them on the spec-
ified memory areas. For now, this is enough, when it will be necessary, we
design an algorithm that takes into account the different types of memory as
well.

Example

In this example we present two methods to evaluate a simple expression. The
first method uses the stack to evaluate expressions of any size, while the second
uses a sandbox with a finite amount of registers to evaluate expressions.

The evaluation of the expression a ∧ b to the lower part of the ax register
with a very simple code generator is based on stack operations.

... instructions for the evaluation of a

to the lower part of ax register ...

push ax

... instructions for the evaluation of b

to the lower part of ax register ...

pop bx (loading the previously stored value of a)
and al,bl (executing the instruction on

the lower part of ax and bx registers)

The evaluation of a ∧ b to the lower part of ax register with our sandbox
model:

... instructions for the evaluation of a

to the lower part of ax register ...

... instructions to acquire a new register r

from the sandbox ... (that may cause moving previously stored data
from a register to the memory.)

... instructions for the evaluation of b

to the allocated r register ...

and ax,r

... instructions to release the allocated r register ...

182 B. Németh, Z. Csörnyei

If more registers are needed for calculating the subexpressions then more
registers can be acquired. When the sandbox has temporary registers, the
allocation of registers doesn’t generate any instructions.

10 Summary

We investigated the techniques of generating programs that do not use a run-
time stack for the calls and the evaluation of complex expressions.

We followed two different paths to address this problem. The first way was
the formal method of continuation passing style, that solved the problem in
a functional way. In functional languages this formal method can be imple-
mented easily.

The second path was a practical method, implemented in the imperative
Miller language. It replaced function calls with passing of control between
bubbles, and function arguments with controlled global variables. This method
can be used on the special hardware, which is not equipped with an efficient
stack implementation. Our research was motivated by these problems.

Acknowledgements

We wish to thank the head of our research group Gergely Dévai and academic
staff of the research group at ELTE Software Technology Lab for their useful
and constructive work on this project and we are really thankful for making
our publication possible.

We would like to thank the support of Ericsson Hungary and the grant EIT-
KIC 12-1-2012-0001 that is supported by the Hungarian Government, man-
aged by the National Development Agency, and financed by the Research and
Technology Innovation Fund.

References

[1] I. Baxter, Answer # 1, http://stackoverflow.com/questions/1016218/how-does-
a-stackless-language-work, 2013. ⇒167

[2] O. Danvy, K. Millikin, On One-Pass CPS Transformations, BRICS, Department
of Computer Science, University of Aarhus, RS-07-6, 2007. ⇒170

[3] K. Driesen, U. Hölzle, The direct cost of virtual function calls in C++, SIGPLAN
Not., 31, 10 (1996) 306–323. ⇒172

[4] D. P. Friedman, M. Wand, Essentials of Programming Languages (3rd edition),
The MIT Press, Cambridge, MA, 2008. ⇒169

http://www.semdesigns.com/Company/People/idbaxter/
http://stackoverflow.com/questions/1016218/how-does-a-stackless-language-work
http://stackoverflow.com/questions/1016218/how-does-a-stackless-language-work
http://cs.au.dk/~danvy
http://http://research.google.com/pubs/KevinMillikin.html
http://www.brics.dk/RS/07/6/BRICS-RS-07-6.ps.gz
http://doi.acm.org/10.1145/236338.236369
http://dl.acm.org/citation.cfm?id=1052883
http://dl.acm.org/citation.cfm?id=1052883
http://www.cs.indiana.edu/~dfried/
http://www.ccs.neu.edu/people/faculty/wand/
http://mitpress.mit.edu/books/essentials-programming-languages

Stackless programming in Miller 183

[5] A. Gill, Hackage, The Monad Transformer Library package, (16. 07. 2013.),
http://hackage.haskell.org/package/mtl-2.0.1.0 ⇒174

[6] The Glasgow Haskell Team, Haskell, The Data.List module, (16. 07. 2013.),
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html⇒173

[7] Haskell Wiki, Tail recursion, (16. 07. 2013.),
http://www.haskell.org/haskellwiki/Tail recursion ⇒173

[8] S. Krishnamurthi, Programming Languages: Application and Interpretation (2nd
edition), ebook, http://cs.brown.edu/∼sk/Publications/Books/ProgLangs/,
2007. ⇒170

[9] T. Lindholm, F. Xellin, G. Bracha, A. Buckley, The Java Virtual Machine Speci-
fication, (28. 02. 2013.), http://docs.oracle.com/javase/specs/jvms/se7/html ⇒
172

[10] A. Myers, Continuation-passing style, Lecture notes for CS 6110, Cornell Uni-
versity, 2013. ⇒171

[11] W. Sundaresan, L. J. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E.
Gagnon, C. Godin, Practical Virtual Method Call Resolution for Java, SIGPLAN
Not., 35, 10 (2000) 264–280. ⇒172

[12] Wikipedia, George Armitage Miller, (16. 07. 2013.),
http://en.wikipedia.org/wiki/George Armitage Miller ⇒175

Received: August 6, 2013 • Revised: October 27, 2013

http://hackage.haskell.org/package/mtl-2.0.1.0
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html
http://www.haskell.org/haskellwiki/Tail_recursion
http://cs.brown.edu/~sk
http://cs.brown.edu/~sk/Publications/Books/ProgLangs/
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://www.cs.cornell.edu/andru/
http://www.cs.cornell.edu/courses/cs6110/2013sp/lectures/lec13-sp13.pdf
http://doi.acm.org/10.1145/354222.353189
http://dl.acm.org/citation.cfm?id=1052883
http://dl.acm.org/citation.cfm?id=1052883
http://en.wikipedia.org/wiki/George_Armitage_Miller

Acta Univ. Sapientiae, Informatica, 5, 2 (2013) 184–211

Yang-Mills lattice on CUDA

Richárd FORSTER
Eötvös University

email: forceuse@inf.elte.hu

Ágnes FÜLÖP
Eötvös University

email: fulop@caesar.elte.hu

Abstract. The Yang-Mills fields have an important role in the non-
Abelian gauge field theory which describes the properties of the quark-
gluon plasma. The real time evolution of the classical fields is given by the
equations of motion which are derived from the Hamiltonians to contain
the term of the SU(2) gauge field tensor. The dynamics of the classi-
cal lattice Yang-Mills equations are studied on a 3 dimensional regular
lattice. During the solution of this system we keep the total energy on
constant values and it satisfies the Gauss law. The physical quantities
are desired to be calculated in the thermodynamic limit. The broadly
available computers can handle only a small amount of values, while the
GPUs provide enough performance to reach out for higher volumes of
lattice vertices which approximates the aforementioned limit.

1 Introduction

In particle physics there are many fundamental questions which demand the
GPU, from both theoretical and experimental point of view. In the CERN
NA61 collaboration one of the most important research field is the quark-
gluon plasma’s critical point examination. The topics of theoretical physics
includes the lattice field theory which is a crossover phase transition in the
quark gluon plasma and SU(N) gauge theory with topological lattice action
in the QCD.

We present an algorithm which determines the real time dynamics of Yang-
Mills fields which uses the parallel capabilities of the CUDA platform. We

Computing Classification System 1998: I.1.4
Mathematics Subject Classification 2010: 81T25
Key words and phrases: lattice gauge field, parallel computing, GPU, CUDA

184

http://www.elte.hu/en
mailto:forceuse@inf.elte.hu
http://compalg.inf.elte.hu/~fulop/
http://www.elte.hu/en
mailto:fulop@caesar.elte.hu

Yang-Mills lattice on CUDA 185

compare this and the original sequential CPU based program in terms of effi-
ciency and performance.

The real time evolution of these non-Abelian gauge fields is written by the
Hamiltonian lattice SU(2) equation of motions [9, 1]. A lattice method was
developed to solve these systems on the 3 dimensional space which satisfies
Noether theory [2]. This algorithm keeps the Gauss law, the constraint of total
energy and the unitary, orthogonality of the suitable link variable. It enables
us to study the chaotic behavior as full complex Lyapunov spectrum of SU(2)
Yang-Mills fields and the entropy-energy relation utilizing the Kolmogorov-
Sinai entropy which was extrapolated to the large size limit by this numerical
algorithm [6].

In the parallel algorithm all the links are computed concurrently by assigning
a thread to each of them. By taking advantage of the GPUs highly parallel
architecture this increases the precision of the calculation by allowing us to
utilize more dense lattices. Just by adding a few more points to the lattice,
the link count can increase drastically which makes this problem a very pa-
rallel friendly application which can utilize the high amount of computational
resources available in modern day GPUs [8].

By extending the available CPU based implementation we were able to
achieve a 28 times faster runtime compared to the original algorithm. This
approach does not involve any special optimization strategies which will im-
pose more performance boost in future releases.

In the original concept the calculations on the GPU were using only single
precision floating point numbers to make the evaluations work on older gen-
eration cards too, but with the possibility to utilize double precision values,
it is possible to achieve higher precision in energy calculation on the GPU as
well.

There are more kind of open questions in the high energy physics which
can be interesting for the GPU like studying the Yang-Mills-Higgs equations
and the monopoles in the lattice QCD. The action function permits to use the
thermalization of the quantum field theory in the non-equilibrium states. The
solution of these problems requires high calculation power and efficiency.

This paper is constructed as follows. First we review basic definitions dealing
with the Yang-Mills fields on lattice, then introducing the basic principles
of the GPU programming in CUDA and finally we present numerical results
providing comparisons between the CPU and GPU runtimes, extrapolate them
for large N values, show the ratio between the sequential and parallel fraction
of the algorithm, concluding with the thermodynamic limit of the total energy.

186 R. Forster, Á. Fülöp

2 Homogeneous Yang-Mills fields

The non-Abelian gauge field theory was introduced as generalizing the gauge
invariant of electrodynamics to non-Abelian Lie groups which leads to under-
stand the strong interaction of elementary particles. The homogeneous Yang-
Mills contains the quadratic part of the gauge field strength tensor [4, 10].

The Faµν forms the component of an antisymmetric gauge field tensor in the
Minkowski space, it is expressed by gauge fields Aaµ:

Faµν = ∂µA
a
ν − ∂νA

a
µ + gf

abcAbµA
c
ν, (1)

where µ, ν = 0, 1, 2, 3 are space-time coordinates, the symmetry generators are
labeled by a, b, c = 1, 2, 3, g is the bare gauge coupling constant and fabc is
the structure constant of the continuous Lie group. The generators of the Lie
group fulfills the following relationship [Tb, T c] = ifbcdTd.

The equation of motion can be expressed by covariant derivative in the
adjoin representation:

∂µFaµν + gf
abcAbµFcµν = 0. (2)

We use Hamiltonian approach to investigate the real time dynamics of these
systems SU(2). The lattice regularization of such theories were studied nume-
rically.

3 Lattice Yang-Mills theory

The real time coupled differential equations of motion are solved by numerical
method for basic variables which form matrix-valued link in the 3 dimensional
lattice with lattice elementary size a (Figure 1). These are group elements
which are related to the Yang-Mills potential Aci :

Ux,i = exp(aAci (x)T
c), where T c is a group generator.

For SU(2) symmetry group these links are given by the Pauli matrices τ, where
T c = −(ig/2)τc. The indices x, i denote the link of the lattice which starts at
the 3 dimensional position x and pointing into the nearest neighbor in direction
i, x+ i.

In this article we study the Hamiltonian lattice which can be written as a
sum over single link contribution [1, 3]:

H =
∑
x,i

[
1

2
〈U̇x,i, U̇x,i〉+

(
1−

1

4
〈Ux,i, Vx,i〉

)]
, (3)

Yang-Mills lattice on CUDA 187

Figure 1: Wilson loop

where 〈A,B〉 = tr(AB†) and Vx,i are complement link variables, these are
constructed by products of Ux,i-s along all link triples which close with given
link (x, i) an elementary plaquette. The canonical variable is Px,i = U̇x,i and a
dot means the time derivative.

The non-Abelian gauge field strength can be expressed by the oriented pla-
quette i.e. product of four links on an elementary box with corners (x, x+ i,
x+ i+ j, x+ j):

Ux,ij = Ux,iUx+i,jUx+i+j,−iUx+j,−j,

where Ux,−i = U
†
x−i,i.

Then the local magnetic field strength Bcx,k is related to the plaquette:

Ux,ij = exp(εijka
2Bcx,kT

c), (4)

where εijk is +1 or -1 if i, j, k is an even or odd permutation of 1,2,3 and
vanishes otherwise. The electric field Ecx,i is given in the continuum limit:

Ecx,i =
2

ag2
tr(T cU̇x,iU

†
x,i). (5)

We use the SU(2) matrices which can be expressed by the quaternion rep-
resentation (u0, u1, u2, u3) for one link, where the components ui i = 0, . . . , 3
are real numbers, it can be written:

U = u0 + iτ
aua

U =

(
u0 + iu3, iu1 + u2
iu1 − u2, u0 − iu3

)
. (6)

188 R. Forster, Á. Fülöp

The determinant of the quaternion is:

detU = u20 + u
2
1 + u

2
2 + u

2
3 = 1.

The length of the quaternion detU = ‖U‖ is conserved, because u̇0u0+u̇aua =
0. The three electric fields Eax,i which are updated on each link by the next
form:

Ėax,i =
i

ag2

∑
j

tr

[
1

2
τa(Ux,ij −U

†
x,ij)

]
, (7)

where the value of j runs over four plaquettes which are attached to the link
(x, i).

The time evolution of the electric fields constraints the Gauss law:

Dabi Ebx,i = 0. (8)

This means charge conservation.
The Hamiltonian equations of motion are derived from expression (3) by

canonical method and these can be solved with dt discrete time steps. The
algorithm satisfies the constraints of total energy and the Gauss law which is
detailed in the next Section 3.1. Update of link variables is derived from the
following implicit recursion forms of the lattice equation of motions:

Ut+1 −Ut−1 = 2dt(Pt − εUt),

Pt+1 − Pt−1 = 2dt(V(Ut) − µUt + εPt), (9)

ε =
〈Ut, Pt〉
〈Ut, Ut〉

, µ =
〈V(Ut), Ut〉+ 〈PtPt〉

〈Ut, Ut〉
, (10)

where ε, µ are the Lagrange multipliers and the symmetry SU(N) fulfills the
unitarity 〈Ut, Ut〉 = 1 and the orthogonality 〈Ut, Pt〉 = 0 conditions.

3.1 Constraint values

This algorithm fulfills the constraints of the system’s total energy and the
Gauss law.

The total energy Etot is determined by the sum over each link of lattice for
every time steps. The energy is defined for a single link at the time step t:

El =
1

2
< P, P > +1−

1

4
< U,V >, (11)

Yang-Mills lattice on CUDA 189

Figure 2: Flux line on the three dimensional lattice, where a means the size
of the box

where U = Ut, V = Vt and P = Pt. The value Etot does not change during
the time evolution. This is a constraint to use the Noether theorem [2]. The
Gauss law is a constraint quantity:

Γ =
∑
l+

PU† −
∑
l−

U†P = 0, (12)

where the sum is performed over links l+ which is started at the box on the
lattice and the l− means the links to end at that side of the grid. This is
conserved by the Hamiltonian equations of motion:

Γ̇ =
∑
l+

VU† −
∑
l−

U†V = 0. (13)

Corresponding to the quantum electrodynamics’ law the charge and flux line
initialization (Figure 2) occur with the following recursion expressions on the
lattice:

P1 = QU1,

Pn = U
†
n−1Pn−1Un (1 ≤ n ≤ N),

190 R. Forster, Á. Fülöp

where the starting value of charge is Q and the end of this quantity equals to
−F†QF. Flux line ordered product is written by the expression

F =

N−1∏
i=1

Ui. (14)

The condition of neutrality is expressed by these equations:

Q− F†QF = 0
trQ = 0

} ⇒ Q =
q

2
(F† − F).

In the next section we discuss the connection between the Hamiltonian ex-
pression and Wilson action, because this plays an important role in the strong
interaction.

3.2 Relation between Wilson action and Hamiltonian lattice

The Wilson action should be summed over all elementary squares of the lat-
tice S =

∑
px,i,j

Spx,i,j . The action function of the gauge theory on lattice is
written over plaquette sum to use the nearest neighbour pairs. Because in the
continuous time limit the lattice spacing at becomes different for the time
direction, therefore the time-like plaquettes has other shape than the space-
like ones. Therefore the coupling on space-like and time-like plaquettes are no
longer equal in the action:

S =
2

g2

∑
pt

(N− tr(Upt)) −
2

g2

∑
ps

(N− tr(Ups)). (15)

The time like plaquette is denoted by Upt and the space like is Ups .
Consider the path is a closed contour i.e. Wilson loop (Figure 1), where the

trace of the group element corresponding to such a contour which is invariant
under gauge changes and independent of the starting point. The product of
such group elements along connected lines is a gauge covariant quantity, the
trace over such products along a closed path is invariant. This lattice system
is very suitable for describing gauge theories. Because the Upt can be series
expansion by at:

Upt = U(t)U
†(t+ at) = UU

† + atUU̇
† +

a2t
2
UÜ† + ...

N− tr(Upt) = −
a2t
2
tr(UÜ†) up to O(a3t) correction.

Yang-Mills lattice on CUDA 191

We investigate the unitarity of the expression UU† = 1 at the beginning of
Section 3, therefore this implies the following:

UU̇+UU̇† = 0 and ÜU† + 2U̇U̇† +UÜ† = 0.

The homogeneous non-Abelian gauge action can be written in the next form:

∆SH =
2

g2

a2t
2

∑
i

tr(U̇iU̇
†
i) −
∑
ij

(N− tr(Uij))

 . (16)

The first sum is over all links and the second one goes over space-like plaquet-
tes. The scaled Hamiltonian was derived in the next form. General discretized
ansatz can be written as:

S = at
∑
t

a3s
∑
s

L, (17)

than the scaled Hamiltonian becomes:

atH =
2

g2

a2t
2

∑
i

tr(U̇iU̇
†
i) +
∑
ij

(N− tr(Uij))

 . (18)

In the next section we derived the algorithm in the explicit form.

4 Lattice field algorithm

In this section we introduce the numerical solving of the coupling differential
equations of motion by CPU [2]. The initial condition is uniformly random
in the SU(2) group space to fulfil the constraints unitarity, orthogonality and
Gauss law. The update algorithm satisfies the periodic boundary.

4.1 Implicit-explicit-endpoint algorithm

First we determine the forms µ and c corresponding to orthogonality and
unitarity conditions which were introduced in Section 3. We denote:

P
′
= Pt+1 P = Pt.

The equations of motion (9) are written:

P
′

= P + (V − µU+ εP
′
), (19)

U
′

= U+ (P
′
− εU). (20)

192 R. Forster, Á. Fülöp

The Lagrange multiplicators µ, ε are given in the next form to satisfy the
symmetry SU(2):

(1− ε)P
′

= P + (V − µU),

U
′

= (1− ε)U+ P
′
,

where c = 1− ε. First we obtain the value µ from orthogonality:

c〈U ′ , P ′〉 = 〈cU, P〉+ 〈P ′ , P〉+ c〈U,V − µU〉+ 〈P ′ , V − µU〉,
0 = 0+ c(〈U,V〉− µ) + c〈P ′ , P ′〉,
µ = 〈U,V〉+ 〈P ′ , P ′〉.

On the next step we obtain c from unitarity:

〈U ′ , U ′〉 = c〈U ′ , U〉+ 〈U ′ , P ′〉,
1 = c〈U ′ , U〉 = c(〈cU,U〉+ 〈P ′ , U〉),

1 = c2 + c〈P ′ , U〉,

c〈U, P ′〉 = 〈U, P〉+ 〈U,V − µU〉 = 〈U,V〉− µ = −〈P ′ , P ′〉,

1 = c2 − 〈P ′ , P ′〉⇒ c =
√
1+ 〈P ′ , P ′〉.

(c > 1, ε < 0).
In the next section we express the explicit and implicit form of the algorithm.

4.1.1 Algorithm

The method is written in implicit form. The final expressions of these equations
of motion are the following:

V† = V − 〈U,V〉U,
P̃ = P + V†,

cP
′

= P̃ − (c2 − 1)U,

U
′

= cU+ P̃.

The resolution of implicit recursion is:

c(P
′
+U

′
) = P̃ + c2U+ (1− c2)U+ cP

′
,

cU
′

= P̃ +U,

Yang-Mills lattice on CUDA 193

but U
′
= cU+ P

′
, so

P
′

= U
′
− cU =

1

c
(P̃ +U) − cU,

cP
′

= P̃ + (1− c2)U.

The length of cP
′

becomes:

c2〈P ′ , P ′〉 = 〈P̃, P̃〉+ 2(1− c2)〈P̃, U〉+ (1− c2)2〈U,U〉,
c2(c2 − 1) = 〈P̃, P̃〉+ (1− c2)2,

(c4 − c2) − (c4 − 2c2 + 1) = 〈P̃, P̃〉,
c2 − 1 = 〈P̃, P̃〉,

⇒ c =
√
1+ 〈P̃, P̃〉.

Finally the algorithm explicitly:

V† = V − 〈U,V〉U,
P̃ = P + V†,

c =

√
1+ 〈P̃, P̃〉,

P
′

=
1

c
(P̃ +U) − cU,

U
′

= cU+ P
′
.

This algorithm was applied on GPU in Section 6. These processes are compared
with the original sequential method on the CPU against the parallel version
on the GPU.

5 Compute unified device architecture

In the last decade the performance increase of the central processing units
have slowed down drastically compared to a decade earlier. At the same time
the graphical processing units are showing a very intense evolution booth
in performance and architecture thanks to their origin from the graphical
computations and thanks to the never-ending need for more computational
power (values on Figure 3 were taken from [12]).

194 R. Forster, Á. Fülöp

Figure 3: Performance increase of the CPU and the GPU

Our idea is to process the Yang-Mills model’s high volume data on the GPU.
This way we can use bigger lattices for calculation, achieving higher precision
and faster runtime. With the many core architecture through the CUDA it
is now possible to evaluate the actual status of the lattice by checking the
individual link values in parallel.

5.1 The compute unified device architecture

Thanks to the modern GPUs now we can process efficiently very big datasets
in parallel [7]. This is supported by the underlying hardware architecture that
now allows us to create general purpose algorithms running on the graphical
hardware. There is no need to introduce any middle abstractions to be able
to use these processors as they have evolved into a more general processing
unit (Figure 4 [14]). The compute unified device architecture (CUDA) divides
the GPUs into smaller logical parts to have a deeper understanding of the
platform. [12] With the current device architecture the GPUs are working like
coprocessors in the system, the instructions are issued through the CPU. In
the earlier generations we were forced to use the device side memory as the
GPUs were not capable to accept direct memory pointers. If we wanted to

Yang-Mills lattice on CUDA 195

utilize the GPUs, then all the data were supposed to be copied over to the
device prior the calculations.

Figure 4: CUDA processing flow

While this is still the main idea behind our parallel calculations as the second
generation of Compute Capability devices were released it has became possible
to issue direct memory transactions thanks to the Unified Virtual Addressing
[17]. This has made it possible to use pointers and memory allocations not
only on the host side, but on the device as well. In earlier generations it the
thread local, shared and global memories have used different address spaces,
which made it impossible to use C/C++ like pointers on the device as the
value of those pointers were unknown at compile time.

196 R. Forster, Á. Fülöp

5.1.1 Thread hierarchy

CUDA is very similar to the C language, the biggest difference in its syntax
is the <<< and >>> brackets which are used for kernel launches [8]. Kernels
are special C like functions with void return value, that will create all the
threads and that will run on the GPU. It also has the usual parameter list
which contains all the variables we want to pass our input through and to
receive the results of our computations. It is important, that for such inputs
and outputs the memory has to be allocated on the GPU prior the kernel call.
All of our threads are started in a grid which consists of many blocks which
will contain the threads (Figure 5).

Figure 5: CUDA thread hierarchy

The maximum number of threads that we can start depends on the actual
compute capability of the GPU, but it is important that this number does not
equal to the actual threads being processed at the same time on the GPU. The

Yang-Mills lattice on CUDA 197

size of the grid and the size of the block depends on the compute capability of
the hardware, but looking solely on the capability restraints we cannot show
the maximum threads being processed.

A GPU can have different number of Streaming Multiprocessors (SM) and
different amount of memory. The CUDA restrictions are containing occupancy
restrictions as well. There are three kinds of these restrictions: resource limita-
tions, block, and thread availability. The SMs are having the maximum limit
on the number of maximum online blocks. Performance wise it is not a good
practice to create algorithms that will be able to reach the resource constraints
even with a very low amount of threads i.e. with high register utilization per
thread [8].

We should divide our algorithm to be called by different kernels thus de-
creasing the resource dependency of our code. The biggest impact on the per-
formance is the memory utilization. It is the most important aspect to keep
all of our midterm results on the device and to keep the host-device memory
transactions to the minimum [11]. The data must be coalesced in the memory
to provide the maximum possible throughput. At the same time the registers
and the shared memory are faster by at least a factor of 100 than the global
memory. This is because the global memory is on the card, while the shared
memory and the registers are on the chip.

5.1.2 Memory access strategies

For older generation of GPUs with Compute Capability 1.x it is important to
use the right access patterns on the global memory. If we will try to use the
same value from thousands of threads, then the access will have to be serialized
on these GPUs, while the newer ones have caching functionality to help on
such scenarios. The most optimal access is the map access, where all threads
will manipulate their own values, more specifically thread n will access the
nth position of the input or output array.

If the data stored in the memory can be accessed in a sequential order and
it is aligned to a multitude of 128 byte address then the data fetching will be
the most optimal on the devices with Compute Capability 1.x (Figure 1). The
GPU can issue 32, 64 or 128 bytes transactions based on the utilization of the
hardware.

If the data is in a non-sequential order (Figure 2), then additional memory
transactions will be required to process everything. We mention here, by using
non-sequential ordering it is possible the transactions will fetch more data,
than we are really going to use at the time. This can be quite a wasteful

198 R. Forster, Á. Fülöp

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.x and 3.0

Memory transactions: Uncached Cached
1 x 64B at 128 1 x 64B at 128 1 x 128B at 128
1 x 64B at 192 1 x 64B at 192

Table 1: Aligned and sequential memory access

approach.

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.x and 3.0

Memory transactions: Uncached Cached
8 x 32B at 128 1 x 64B at 128 1 x 128B at 128
8 x 32B at 160 1 x 64B at 192
8 x 32B at 192
8 x 32B at 224

Table 2: Aligned and non-sequential memory access

If the data is misaligned (Figure 3), then it will invoke more transactions as
smaller ones will be required to fetch everything. This case can be problematic
even on the cached devices. All tables are representing the data taken from
[12].

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.x and 3.0

Memory transactions: Uncached Cached
7 x 32B at 128 1 x 128B at 128 1 x 128B at 128
8 x 32B at 160 1 x 64B at 192 1 x 128B at 256
8 x 32B at 192 1 x 32B 256
8 x 32B at 224
1 x 32B at 256

Table 3: Misaligned and sequential memory access

Overall it is important to design our data structures to be able to accom-
modate them to the aforementioned restrictions to be able to achieve the
maximum possible memory throughput.

Yang-Mills lattice on CUDA 199

5.1.3 Other architectures and models

Our development and research was conducted on the aforementioned CUDA
platform. Other architectures and programming models are available that
provide high parallel performance. Currently the biggest competition for the
NVIDIA GPUs are the AMD Radeon GPUs. But the biggest competition is
in the discrete GPU market. In the HPC segment the NVIDIA GPUs are the
mainstream solutions [18], when there is any GPU utilization in the super-
computers. For example the fastest GPU cluster based supercomputer, the
TITAN incorporates NVIDIA Tesla K20X GPUs as coprocessors.

On the other hand Intel is developing it’s own coprocessor for the HPC
segment, the Intel Xeon Phi processor. Currently the fastest supercomputer
in the TOP500 is the Tianhe-2 (MilkyWay-2) accelerated with these Xeon Phi
processors, while the previously mentioned TITAN is at the second place [18].
The Linpack performance benchmark shows a 33, 862.7 TFlop/s capability
for the Tianhe-2, while it shows a 17, 590.0 TFlop/s for TITAN. But if we
take a look at the number of the processor cores, the Tianhe-2 uses 3, 120, 000
cores, while the TITAN uses only 560, 640 cores. It is difficult to make a direct
interpolation for the achieved performance in the case if we will double the
cores in the TITAN, so we will take a look at the individual performance of
each computers accelerator core.

The Intel Xeon Phi 3100 series of accelerators have 57 x86 cores and are
capable of 1003 GFlop/s performance in double precision calculations while
drawing 300 Watt of power [15]. On the other hand the NVIDIA Tesla K20X
has 2688 CUDA cores, capable of 1310 GFlop/s performance also in double
precision calculations while drawing only 235 Watt of power [16]. If we take
the total core numbers of the supercomputers, then the Tianhe-2 has 48000
Xeon Phi processors [5], while the TITAN has 18688 Tesla K20X processors
[13]. Theoretically if we double the number of K20X cards, we will have more
performance than the Tianhe-2, while still utilizing less GPU, than how many
MICs they are using. This shows that the Kepler GPU architecture based Tesla
accelerators are more efficient than the Knights Corner MIC architecture based
Xeon Phi accelerators.

Booth architectures support the OpenCL, OpenAAC programming lan-
guages which all are GPU based languages. On the NVIDIA GPUs the CUDA
model is the most important as the GPUs are in connection with the program-
ming model and as they develop the GPUs and provide new functionality, the
same functionality becomes supported in the next CUDA version. This way
they have the freedom to let developers utilize their GPUs how they see it the
most efficient.

200 R. Forster, Á. Fülöp

5.2 Single instruction multiple thread architecture

Our current CPUs are SIMD processors, where SIMD stands for Single In-
struction Multiple Data. This implies that the multicore CPUs can evaluate
a given instruction for multiple data which can achieve even higher amount
of instructions per cycle with the Intel Hyper Threading Technology. In our
case the test machine CPU has two physical cores, that can run up to four
threads simultaneously thanks to the aforementioned technology. So in this
case we will have four instructions evaluated concurrently. On the other hand
the GPUs are SIMT architecture based processors. This stands for Single In-
struction Multiple Thread which is very similar to the SIMD architecture. The
biggest difference is in the maximum number of threads. Theoretically we are
not bound by the maximum number of threads that we can launch, as the
latest Kepler GPUs can initialize billions of threads at the same time. The
key factor is that the performance per thread is quite low, but the GPU can
handle thousands of those cores in a single clock cycle. Of course the actual
number of running threads will be lower, but still bigger then what we can
have on the CPUs. The basic idea behind the SIMT architecture is that we
summon as many threads as many data we have for evaluation. This implies
that for higher utilization we need to provide more data to work on. But even
with maximum thread occupancy it doesn’t directly mean we will achieve the
maximum computational performance.

5.3 Computational architecture

In this subsection we will see what kind of technical details the GPUs have
and how it affects the actual utilization of the given architecture. The actual
number of threads running on the GPU comes through the term of warps. A
warp is a set of 32 threads in a given Streaming Multiprocessor. Based on the
actual architecture and compute capability the maximum number of warps
per SM can differ (Table 4), but the size of a warp is constant 32. This means
that in an optimal solution the maximum number threads running at the same
time is:

#SM ∗#WARP ∗ 32.

This implies that all n threads are running the same instruction at the same
time. But in a not so optimal scenario it is possible that the threads are
diverging from the size of the warp. This means that the execution flow differs
among the different threads, so it will not be possible to evaluate all the 32
threads in the warp, because they are using the same program counter. In

Yang-Mills lattice on CUDA 201

this case the scheduler will have to take into account that there are slower
warps in which the threads are serialized, and this will decrease the overall
performance. This can happen if a thread has to evaluate if statement branches
or long cycles. In the case of cycles the compiler can make some optimization
as it will unroll the loops, but there is no way to predict the flow among the
if statements.

Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Maximum dimensionality of
grid of thread blocks

2 3

Maximum x-dimension of a
grid of thread blocks

65535 231 − 1

Maximum y- or z-dimension
of a grid of thread blocks

65535

Maximum dimensionality of
thread block

3

Maximum x- or y-dimension
of a block

512 1024

Maximum z-dimension of a
block

64

Maximum number of threads
per block

512 1024

Warp size 32

Maximum number of resident
blocks per multiprocessor

8 16

Maximum number of resident
warps per multiprocessor

24 32 48 64

Maximum number of resident
threads per multiprocessor

768 1024 1536 2048

Table 4: Compute capability technical specifications (for description see Sec-
tion 5.1.1)

202 R. Forster, Á. Fülöp

6 Parallel Yang-Mills algorithm

In our computational problem we are calculating newer and newer states of all
the links in the system. This is a great example to use the map access pattern
as all threads will have a link to work on. The algorithm was implemented on
the CUDA platform.

6.1 Main idea

In every given timestep a kernel generates the new values for the links. The
kernel call itself is in a cycle that will move until a given step count. The real
difficulty arise from the sanity checks of the system. After a given timestep
the algorithm checks if the system is still valid and such if any further devel-
opments are possible. This will require the actual results on the GPU to be
checked if are still valid. To copy them back to the host side is just a waste of
memory bandwidth and time. To check it on the device requires to have par-
allel algorithms for the subsequent operations. To check the systems validity
we have to summarize the energy values of the links, thus we need to make a
parallel summation. Thankfully the NVIDIA Thrust library already has this
algorithm implemented, so we have used this approach. For this to work we
have to give the values to the algorithm in the form of Thrust defined vectors.
It is possible to cast raw memory pointers to vector containers, so there is
no incompatibility between the Thrust defined vectors and the user defined
global memory allocations. The result will be only one value which will be
much easier to be transferred to the host side for evaluation and this will be
done only once in every check. This isn’t necessarily a good practice, because
to achieve the highest memory throughput we should copy high amount of
data instead of little fragments, but currently we only have to copy just these
summation, so its really just one value per iteration, without implying any
throughput problems.

6.2 Restrictions

The current implementation provides a direct port of the original Yang-Mills
algorithm. As such, it does not provide any GPU specific optimizations which
should further improve the already high amount of performance gain over
the original CPU based version. The calculations are running on the three
dimensional space with varying amount of precision, or varying dense of the
lattice. The more dense it is, the more links it will generate, thus heavily
increasing the inputs and the required calculations. Because this is a direct

Yang-Mills lattice on CUDA 203

port we do not separate the algorithm based on different functionalities, just
applying the same algorithm for all the links in parallel. This implies that for
the actual implementation the biggest restrain the available memory is. In this
sense how dense an actual lattice can be for processing depends on how much
free memory we have on the GPU, as all the links will have to be stored on
the device.

6.3 Implementation

For implementation and testing we have used a GeForce GTX 580 with com-
pute capability 2.0.

GeForce GTX 580

Technical Specifications Compute Capability 2.0

Transistors (Million) 3000

Memory (MB) 1536

SM Count 16

Memory Bandwidth (GB/s) 192.4

GFLOPs 1581.1

TDP (watts) 244

Table 5: GeForce GTX 580 technical specifications

In our case the maximum number of executed threads is 24576 (Table 5).
This means that there will be this amount of instructions which evaluated at
every given clock cycle in parallel. To be really efficient though it is important
to do not introduce diverging threads. In our case the Yang-Mills algorithm
doesn’t provide any instructions that will result in diverging threads. The links
of 3 dimensional lattice are aligned into an array which are distributed into
a 1 dimensional grid. We compute a state of lattice through a grid of CUDA
threads by giving a link to a thread for computation. As a new state is reached
we use the Thrust reduction algorithm to do the required summation on the
new values to check the actual properties while keeping the whole dataset on
the GPU.

6.3.1 Compute unified device architecture based algorithm

Essentially there is no real difference between the original (see Section 4) and
the CUDA based algorithm, the equations (19), (20) are the same after all.

204 R. Forster, Á. Fülöp

But powerful distinction between the two is the indexing of the given links
Ux,i (Section 4.1.1) which are stored in a row ordered array.

The index of an actual thread can be calculated with the next statement,
assuming that we are using a one dimensional grid (Section 5.1.1) with one
dimensional blocks.

int idx = blockDim.x*blockIdx.x+threadIdx.x;

A simple optimization is the including of shared memory (Section 5.1.1).
We are accessing the links many times during an evaluation, so it is a good

optimization strategy to load the links into the shared memory.

__shared__ float s_aux[1000];

__shared__ float s_U[1000];

__shared__ float s_V[1000];

The most compute heavy parts of the algorithm are the subroutines to
upgrade the links and to calculate the complement of the lattice variable.
As an implication of this the GPU based algorithm contains the accelerated
versions of the aforementioned functions.

These functions are CUDA kernels so they are required to be global
functions. We are starting these kernels with 512 threads for each thread block
with as many blocks as much we need to have the same amount of threads as
much links we have.

Naturally this can give us more threads than the number of the available
links, so a condition check is given to do not utilize the unnecessary threads.

This way we can evaluate our algorithm (Section 4.1.1) on all the maximum
allowed threads at the same (Section 6.3), alas on the same amount of links.

6.4 Numerical results

We introduced a method to solve the Yang-Mills equations in time by expres-
sions (19), (20) (see Section 4). The link variables were expressed by quater-
nion representation and due to the SU(2) symmetry three dimensional polar
coordinate system was applied.

We numerically computed the differential equation of motion by real-time
implicit-explicit algorithm (Section 4.1) to choose random initial configura-
tions on any finite lattice SU(2). This process fulfils the constraints of total
energy Etot by Lagrange multiplicators, unitarity and orthogonality of the

Yang-Mills lattice on CUDA 205

SU(2) symmetry conditions and Gauss law. We applied periodic boundary
conditions and the nearest neighbor intersection on finite lattice.

The physical quantities required the high precision calculation and the size of
elementary lattice box expected the smallest value as possible i.e. to achieve the
extrapolation of the thermodynamic limit. An efficient algorithm was achieved
on the GPU by parallelism in Section 6. This process is much more effective
on the three dimensional lattice.

For overall testing the following system was used (Table 6):

CPU GPU OS Compiler
CUDA
version

Intel Core
i5 650

GeForce
GTX 580

Windows 8
Pro

Visual
C++ 2010

5.0

Table 6: The used system’s specification

We compared the runtime of the CPU to the GPU (Figure 6), the GPU
gives substantially better results considering the same lattice size which shows
acceleration of a magnitude of 28 in single precision and 11 in double preci-
sion.

Figure 6: Runtime on the CPU and on the GPU with N = 25, 50, 75, 100

Even if we use single precision values for our calculations, the CPU cannot

206 R. Forster, Á. Fülöp

provide any strong performance compared to the GPU because the latter has
a lot more processing power.

Due to the limited resources of the CPU it is really difficult to provide a
real comparison, thus we provide an extrapolation of the higher dense lattice
computation runtime (Figure 7). By measuring how much time a lattice with
N3 vertices takes to be evaluated, we can see how much time a single link
takes. Taking this into account we calculated the number of links on the three
dimensional lattice and multiplied this number with that single link runtime
as it follows:

const1 = t1/(24N
3
1); extrapolated runtime = const124N

3,

where t1 is the runtime of a lattice with N1 = 25 and 24N3 is the number
of all links in a lattice with N3 vertices. This value was calculated for booth
single and double precision driven CPU and GPU based runtimes.

Figure 7: Extrapolated runtime of the algorithm for large N on the CPU
and extrapolated runtime on the GPU. Measured range: 0 <= N <= 100;
Extrapolated range: 100 < N <= 1000

From (Figure 7) it can be read that the GPU based calculations will remain
faster compared to the CPU implementation even on much denser lattices. The
actual measured range of the lattice size is 0 <= N <= 100 and the further

Yang-Mills lattice on CUDA 207

extrapolated range is 100 < N <= 1000. (Figure 7) shows that the factor 27.68
by which the GPU is faster than the CPU on the actually calculated lattices is
still valid on the extrapolated interval where this factor is 27.69. Naturally the
single precision values should imply a faster runtime and the used hardware
provides a significantly higher single precision peak performance, than what it
gives for the double precision. Still the single precision based implementation
isn’t much faster than it’s double precision counterpart. The reason for that
is that the algorithm at hand cannot utilize the hardware efficiently.

We are mentioned it many times, that the problem at hand is very paral-
lelization. This means that the algorithm that we are using has a very good
sequential part to parallel part ratio which implies the parallelization nature
of the problem. The values on (Figure 8) shows that as we increase the size
of our lattice this ratio starts to grow, but very steadily. This is because the
sequential part is very limited compared to the parallel part which already has
a huge amount of acceleration over the original algorithm, where:

Let tseq/a denote the runtime of the sequential portion of the code and
tpar/a denote the runtime of the parallel portion booth values in seconds.

Figure 8: Ratio of the sequential and parallel runtime in the function of N,
where tseq[sec]/a is the sequential fraction of the runtime and tpar[sec]/a is
the parallel fraction

208 R. Forster, Á. Fülöp

The fraction of the two tseq/tpar is small, because the dominant factor is the
parallel part as it will take more time to be evaluated, than the lesser sequential
part. The parallel routines are handling the massive datasets, updating all
the link variables in the lattice, while the sequential parts are calculating
the Langrange multiplicators which results in the conservation of the total
energy, the unitarity and orthogonality of the SU(2) symmetry condition in
this dynamical system.

The single precision calculations are considerably faster than the double
precision evaluations, so it is an important question if the single precision
numbers are sufficient for our needs or not. The single precision values suffers
a little loss thanks to the half precision, but the two values are still equal up
to the fifth decimal value, above that the deviation of the energy only exists
because of the higher precision of the double values (Figure 9).

Let Ed denote the energy based on the double precision values of energy and
Es denote the energy based on the single precision values, and (Ed−Es)g

2a is
drawn in the function of t/a, where runtime measured in seconds.

Figure 9: The energy difference in the function of the time i.e. (Ed−Es)g
2a vs

t[sec]/a for single precision (Es) and double precision (Es) values on the GPU

The fundamental value of certain physical quantities can be determined
by finite-size scaling. We determined the extrapolation of the energy to the

Yang-Mills lattice on CUDA 209

Figure 10: The thermodynamic limit of the energy (N→∞)

thermodynamic limit (N → ∞) which is demonstrated on (Figure 10). The
correspondence proved to be almost linear by assuming g2aE ∼ 1

N scaling with
finite-size.

In this chapter through numerical calculations we have proved that the GPU
is a valuable computing platform even for the Yang-Mills algorithm, providing
faster real-time performance than what the CPU has, allowing us to reach
higher precision without sacrificing too much time.

7 Summary

We studied the time dependent behaviour of Yang-Mills fields which are ex-
pressed by coupled differential equations.

As the Fermi GPU architecture was build up from the ground to be com-
patible with the C++ programming standards it have became simple to port
the existing applications to the GPU. In our case the direct port Yang-Mills
model’s algorithm was capable to achieve at least 11 times performance boost
compared to the original.

Just changing the underlying hardware the algorithms still produced the

210 R. Forster, Á. Fülöp

same result, thus keeping the physical principles valid. Physical constant quan-
tities remains constraint while solving the equation of motion by parallel al-
gorithm, such as the total energy.

The behaviour of the GPU makes it possible to solve the more complicated
systems for example Yang-Mills-Higgs fields. This means more precision can be
achieved on these systems. This is especially important where high precision
computations in thermodynamic limit are mandatory.

References

[1] T. S. Biró, C. Gong, B. Müller, A. Trayanov, Hamiltonian dynamics of Yang-
Mills fields on a lattice, Int. J. of Modern Phys. C 5 (1994) 113–149. ⇒ 185,
186

[2] T. S. Biró, Conserving algorithms for real-time non-Abelian lattice gauge theo-
ries, Int. J. of Modern Phys. C 6 (1995) 327–344. ⇒185, 189, 191

[3] T. S. Biró, A. Fülöp, C. Gong, S. Matinyan, B. Müller, A. Trajanov, Chaotic
dynamics in classical lattice field theories, 165th WE-Heraeus Seminar on The-
ory of Spin Lattices and Lattice Gauge Models 14-19 Oct 1996. Bad Honnef,
Germany Lect. Notes in Physics 494 (1997) 164–176. ⇒186

[4] M. Creutz, Quarks, Gluons and Lattices, Cambridge University Press, Cam-
bridge CB2 1RP, 1983. ⇒186

[5] J. Dongarra, Visit to the National University for Defense Technology Changsha,
China, University of Tennessee ⇒199

[6] A. Fülöp, T. S. Biró, Towards the equation of state of a classical SU(2) lattice
gauge theory, Phys. Rev. C 64 (2001) 064902(5). ⇒185

[7] A. Iványi (ed.), Algorithms of Informatics, Volume 3, AnTonCom Infokommu-
nikációs Kft. 2011, ⇒194

[8] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors: A Hands-
on Approach, Morgan Kaufmann Publisher, Burlington, MA, 2012. ⇒185, 196,
197

[9] B. Müller, A. Trayanov, Deterministic chaos on non-Abelian lattice gauge theory,
Phys. Rev. Letters 68, 23 (1992) 3387–3390. ⇒185

[10] I. Montvay, G. Münster, Quantum Fields on a Lattice, Cambridge University
Press, Cambridge CB2 1RP, 1994. ⇒186

[11] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming, 2010, NVIDIA Corporation, ⇒197

[12] CUDA C Programming Guide, NVIDIA Corp., 2013, http://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html. ⇒193, 194, 198
[13] TITAN Supercomputer, http://www.olcf.ornl.gov/titan/ ⇒199
[14] Tosaka, CUDA, 2008 http://en.wikipedia.org/wiki/CUDA ⇒194
[15] Intel Xeon Phi 3100 Series Specification, http://www.cpu-world.com/CPUs/

Xeon_Phi/Intel-XeonPhi3120P.html ⇒199

http://www.rmki.kfki.hu/~tsbiro/
http://www.worldscientific.com/worldscinet/ijmpc
http://www.worldscientific.com/worldscinet/ijmpc
http://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://link.springer.com/content/pdf/bfm%3A978-3-540-69211-9%2F1.pdf
http://thy.phy.bnl.gov/~creutz/resume.html
http://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://arxiv.org/pdf/hep-ph/0107008.pdf
http://prc.aps.org/abstract/PRC/v64/i6/e064902
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.tankonyvtar.hu/hu/tartalom/tamop425/0046_algorithms_of_informatics_volume3/adatok.html
http://www.antoncom.hu/
http://store.elsevier.com/Morgan-Kaufmann/IMP_16/
http://prl.aps.org/abstract/PRL/v68/i23/p3387_1
http://www.cambridge.org/
http://www.cambridge.org/
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.olcf.ornl.gov/titan/
http://en.wikipedia.org/wiki/CUDA
http://www.cpu-world.com/CPUs/Xeon_Phi/Intel-Xeon Phi 3120P.html
http://www.cpu-world.com/CPUs/Xeon_Phi/Intel-Xeon Phi 3120P.html

Yang-Mills lattice on CUDA 211

[16] NVIDIA Tesla K20X Specification, http://www.nvidia.com/object/tesla-
servers.html ⇒199

[17] Whitepaper NVIDIA’s Next Generation Compute Architecture: Fermi, NVIDIA
Corp., 2009, http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf ⇒195
[18] Official list of the top 500 supercomputers, http://top500.org ⇒199

Received: July 11, 2013 • Revised: November 25, 2013

http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://top500.org

Acta Univ. Sapientiae, Informatica, 5, 2 (2013) 212–226

On the k-Fibonacci words

José L. RAMÍREZ
Instituto de Matemáticas y sus

Aplicaciones
Universidad Sergio Arboleda, Colombia

email:
josel.ramirez@ima.usergioarboleda.edu.co

Gustavo N. RUBIANO
Departamento de Matemáticas

Universidad Nacional de Colombia,
Colombia

email: gnrubianoo@unal.edu.co

Abstract. In this paper we define the k-Fibonacci words in analogy with
the definition of the k-Fibonacci numbers. We study their properties and
we associate to this family of words a family of curves with interesting
patterns.

1 Introduction

Fibonacci numbers and their generalizations have many interesting properties
and applications to almost every fields of science and arts (e.g. see [13]). The
Fibonacci numbers Fn are the terms of the sequence 0, 1, 1, 2, 3, 5, . . . wherein
each term is the sum of the two previous terms, beginning with the values
F0 = 0, and F1 = 1.

Besides the usual Fibonacci numbers many kinds of generalizations of these
numbers have been presented in the literature. In particular, a generalization
is the k-Fibonacci numbers [11].

For any positive real number k, the k-Fibonacci sequence, say {Fk,n}n∈N is
defined recurrently by

Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = kFk,n + Fk,n−1, n > 1. (1)

Computing Classification System 1998: I.3.7, G.2.0
Mathematics Subject Classification 2010: 11B39, 05A05 , 68R15
Key words and phrases: Fibonacci word, k-Fibonacci numbers, k-Fibonacci words, k-
Fibonacci curves

212

https://sites.google.com/site/ramirezrjl/
http://ima.usergioarboleda.edu.co/
http://ima.usergioarboleda.edu.co/
http://www.usergioarboleda.edu.co/
mailto:josel.ramirez@ima.usergioarboleda.edu.co
http://www.docentes.unal.edu.co/gnrubianoo/
http://www.matematicas.unal.edu.co/
http://www.unal.edu.co/
http://www.unal.edu.co/
mailto:gnrubianoo@unal.edu.co

On the k-Fibonacci words 213

In [11], k-Fibonacci numbers were found by studying the recursive applica-
tion of two geometrical transformations used in the four-triangle longest-edge
(4TLE) partition. These numbers have been studied in several papers, see
[5, 10, 11, 12, 18, 19, 23].

The characteristic equation associated to the recurrence relation (1) is x2 =
kx+ 1. The roots of this equation are

rk,1 =
k+
√
k2 + 4

2
, and rk,2 =

k−
√
k2 + 4

2
.

Some of the properties that the k-Fibonacci numbers verify are (see [11, 12]
for the proofs).

• Binet Formula: Fk,n =
rnk,1−r

n
k,2

rk,1−rk,2
.

• Combinatorial Formula: Fk,n =
∑bn−1

2
c

i=0

(
n−1−i
i

)
kn−1−2i.

• limn→∞ Fk,n
Fk,n−1

= rk,1.

On the other hand, there is a word-combinatorial interpretation of the Fi-
bonacci sequence. Fibonacci words are words over {0,1} defined recursively as
follows:

f0 = 1, f1 = 0, fn = fn−1fn−2, n > 2.

The words fn are referred to as the finite Fibonacci words and it is clear that
|fn| = Fn+1. The limit

f = lim
n→∞ fn = 0100101001001010010100100101 · · ·

is called the Fibonacci word. This word is certainly one of the most studied
words in the combinatorics on words, (see, e.g., [2, 6, 7, 9, 15, 22]). It is
the archetype of a Sturmian word [14]. This word can be associated with a
curve, which has fractal properties obtained from combinatorial properties of
f [3, 16, 21].

In this paper we introduce a family of words fk that generalize the Fibonacci
word. Specifically, the k-Fibonacci words are words over {0,1} defined induc-
tively as follows

fk,0 = 0, fk,1 = 0k−11, fk,n = fkk,n−1fk,n−2,

214 J. Ramı́rez, G. Rubiano

for all n ≥ 2 and k ≥ 1. Then it is clear that |fk,n| = Fk,n+1. The infinite word

fk := lim
n→∞ fk,n

is called the k-Fibonacci word. In connection with this definition, we investi-
gate some new combinatorial properties and we associate a family of curves
with interesting patterns.

2 Definitions and notation

The terminology and notations are mainly those of Lothaire [14] and Allouche
and Shallit [1].

Let Σ be a finite alphabet, whose elements are called symbols. A word over
Σ is a finite sequence of symbols from Σ. The set of all words over Σ, i.e.,
the free monoid generated by Σ, is denoted by Σ∗. The identity element ε of
Σ∗ is called the empty word and Σ+ = Σ∗ \ {ε}. For any word w ∈ Σ∗, |w|

denotes its length, i.e., the number of symbols occurring in w. The length of ε
is taken to be equal to 0. If a ∈ Σ and w ∈ Σ∗, then |w|a denotes the number
of occurrences of a in w.

For two words u = a1a2 · · ·ak and v = b1b2 · · ·bs in Σ∗ we denote by uv the
concatenation of the two words, that is, uv = a1a2 · · ·akb1b2 · · ·bs. If v = ε

then uε = εu = u, moreover, by un we denote the word uu · · ·u (n times). A
word v is a subword (or factor) of u if there exist x, y ∈ Σ∗ such that u = xvy.
If x = ε (y = ε), then v is called prefix (suffix) of u.

The reversal of a word u = a1a2 · · ·an is the word uR = an · · ·a2a1 and
εR = ε. A word u is a palindrome if uR = u.

An infinite word over Σ is a map u : N → Σ. It is written u = a1a2a3 · · · .
The set of all infinite words over Σ is denoted by Σω.

Example 1 The word p = (pn)n≥1 = 0110101000101 · · · , where pn = 1 if n
is a prime number and pn = 0 otherwise, is an example of an infinite word. p
is called the characteristic sequence of the prime numbers.

Definition 2 Let Σ and ∆ be alphabets. A morphism is a map h : Σ∗ → ∆∗

such that h(xy) = h(x)h(y) for all x, y ∈ Σ∗. It is clear that h(ε) = ε.

There is a special class of words, with many remarkable properties, the so-
called Sturmian words. These words admit several equivalent definitions (see,
e.g. [1] or [14]).

On the k-Fibonacci words 215

Definition 3 Let w ∈ Σω. We define P(w, n), the complexity function of w,
to be the map that counts, for all integer n ≥ 0, the number of subwords of
length n in w. An infinite word w is a Sturmian word if P(w, n) = n+ 1 for
all integer n ≥ 0.

Since for any Sturmian word P(w, 1) = 2, then Sturmian words are over
two symbols. The word p, in Example 1, is not a Sturmian word because
P(p, 2) = 4.

Given two real numbers α,β ∈ R with α irrational and 0 < α < 1, 0 ≤ β < 1,
we define the infinite word w = w1w2w3 · · · as

wn = b(n+ 1)α+ βc− bnα+ βc.

The numbers α and β are the slope and the intercept, respectively. This word
is called mechanical. The mechanical words are equivalent to Sturmian words
[14]. As special case, when β = 0, we obtain the characteristic words.

Definition 4 Let α be an irrational number with 0 < α < 1. For n ≥ 1,
define

wα(n) := b(n+ 1)αc− bnαc ,

and

w(α) := wα(1)wα(2)wα(3) · · · ,

then w(α) is called a characteristic word with slope α.

On the other hand, note that every irrational α ∈ (0, 1) has a unique con-
tinued fraction expansion

α = [0, a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 + · · ·

,

where each ai is a positive integer. Let α = [0, 1+ d1, d2, . . .] be an irra-
tional number with d1 ≥ 0 and dn > 0 for n > 1. To the directive sequence
(d1, d2, . . . , dn, . . .), we associate a sequence (sn)n≥−1 of words defined by

s−1 = 1, s0 = 0, sn = sdnn−1sn−2, (n ≥ 1).

216 J. Ramı́rez, G. Rubiano

Such a sequence of words is called a standard sequence. This sequence is related
to characteristic words in the following way. Observe that, for any n ≥ 0, sn
is a prefix of sn+1, which gives meaning to limn→∞ sn as an infinite word. In
fact, one can prove [14] that each sn is a prefix of w(α) for all n ≥ 0 and

w(α) = lim
n→∞ sn. (2)

Example 5 The infinite Fibonacci word f = 0100101001001010 · · · is a Stur-

mian word [14], exactly f = w
(
1
φ2

)
where φ = 1+

√
5

2 is the golden ratio.

Definition 6 The Fibonacci morphism σ : {0,1}→ {0,1} is defined by σ(0) =
01 and σ(1) = 0.

The Fibonacci word f satisfies that limn→∞ σn(1) = f [1].

3 The k-Fibonacci words

Definition 7 The nth k-Fibonacci words are words over {0,1} defined induc-
tively as follows

fk,0 = 0, fk,1 = 0k−11, fk,n = fkk,n−1fk,n−2,

for all n ≥ 2 and k ≥ 1. The infinite word

fk := lim
n→∞ fk,n

is called the k-Fibonacci word.

It is clear that |fk,n| = Fk,n+1. For k = 1 we have the word f = 1011010110110 . . .,
where a is a morphism, with a ∈ {0, 1}, defined by 0 = 1, 1 = 0.

Example 8 The first k-Fibonacci words are

f1 = 1011010110110 · · · = f , f2 = 0101001010010 · · · , f3 = 0010010010001 · · · ,
f4 = 0001000100010 · · · , f5 = 0000100001000 · · · , f6 = 0000010000010 · · · .

Definition 9 The k-Fibonacci morphism σk : {0,1} → {0,1} is defined by
σk(0) = 0k−11 and σk(1) = 0k−110.

Theorem 10 For all n ≥ 0, σnk (0) = fk,n and σn+1k (1) = fk,n+1fk,n. Hence,
the k-Fibonacci word fk satisfies that limn→∞ σn(0) = fk.

On the k-Fibonacci words 217

Proof. We prove the two assertions about σnk by induction on n. They are
clearly true for n = 0, 1. Assume for all j < n; we prove them for n:

σn+1k (0) = σnk (0
k−11) = (σnk (0))

k−1σnk (1) = f
k−1
k,n fk,nfk,n−1 = f

k
k,nfk,n−1 = fk,n+1.

σn+2k (1) = σn+1k (0k−110) = (σn+1k (0))k−1σn+1k (1)σn+1k (0) = fk−1k,n+1fk,n+1fk,nfk,n+1

= fkk,n+1fk,nfk,n+1 = fk,n+2fk,n+1. �

Proposition 11

1. |fk,n|1 = Fk,n and |fk,n+1|0 = Fk,n+1 + Fk,n for all n > 0.

2. lim
n→∞ |fk,n|

|fk,n|0
=

r2k,1
1+ rk,1

.

3. lim
n→∞ |fk,n|

|fk,n|1
= rk,1.

4. lim
n→∞ |fk,n|0

|fk,n|1
= 1+

1

rk,1
.

Proof.

1. It is clear by induction on n.

2. lim
n→∞ |fk,n|

|fk,n|0
= lim
n→∞ Fk,n+1

Fk,n + Fk,n−1
= lim
n→∞

Fk,n+1

Fk,n

1+ Fk,n−1

Fk,n

=
r2k,1

1+ rk,1
.

3. lim
n→∞ |fk,n|

|fk,n|1
= lim
n→∞ Fk,n+1

Fk,n
= rk,1.

4. lim
n→∞ |fk,n|0

|fk,n|1
= lim
n→∞ Fk,n + Fk,n−1

Fk,n
= 1+

1

rk,1
.

�

Proposition 12 The k-Fibonacci word and the nth k-Fibonacci word satisfy
that

1. The word 11 is not a subword of the k-Fibonacci word, k ≥ 2.
2. Let ab be the last two symbols of fk,n. For n ≥ 1, we have ab = 10 if n

is even and ab = 01 if n is odd, k ≥ 2.
3. The concatenation of two successive k-Fibonacci words is “almost com-

mutative”, i.e., fk,n−1fk,n−2 and fk,n−2fk,n−1 have a common prefix the
length Fk,n + Fk,n−1 − 2 for all n ≥ 2.

218 J. Ramı́rez, G. Rubiano

Proof.

1. It suffices to prove that 11 is not a subword of fk,n, for all n ≥ 0. By
induction on n. For n = 0, 1 it is clear. Assume for all j < n; we prove it
for n. We know that fk,n = fkk,n−1fk,n−2 so by the induction hypothesis
we have that 11 is not a subword of fk,n−1 and fk,n−2. Therefore, the
only possibility is that 1 is a suffix and prefix of fk,n−1 or 1 is a suffix of
fk,n−1 and a prefix of fk,n−2, both there are impossible.

2. By induction on n. For n = 1, 2 it is clear. Assume for all j < n; we
prove it for n. We know that fk,n+1 = f

k
k,nfk,n−1, if n+ 1 is even then by

the induction hypothesis the last two symbols of fk,n−1 are 10, therefore
the last two symbols of fk,n+1 are 10. Analogously, if n+ 1 is odd.

3. By induction on n. For n = 1, 2 it is clear. Assume for all j < n; we
prove it for n. By definition of fk,n, we have

fk,n−1fk,n−2 = f
k
k,n−2fk,n−3 · fkk,n−3fk,n−4

= (fkk,n−3fk,n−4)
k · fkk,n−3fk,n−3fk,n−4,

and

fk,n−2fk,n−1 = f
k
k,n−3fk,n−4 · fkk,n−2fk,n−3

= fkk,n−3fk,n−4 · (fkk,n−3fk,n−4)k · fk,n−3
= (fkk,n−3fk,n−4)

kfkk,n−3fk,n−4fk,n−3.

Hence the words have a common prefix of length k(kFk,n−2 + Fk,n−3) +
kFn−2 = k(Fk,n−1+ Fk,n−2). By the induction hypothesis fk,n−3fk,n−4 and
fk,n−4fk,n−3 have a common prefix of length Fk,n−2+Fk,n−3−2. Therefore
the words have a common prefix of length

k(Fk,n−1 + Fk,n−2) + Fk,n−2 + Fk,n−3 − 2 = Fk,n + Fk,n−1 − 2. �

Definition 13 Let Φ : {0, 1}∗ → {0, 1}∗ be a map such that Φ deletes the last
two symbols, i.e., Φ(a1a2 · · ·an) = a1a2 · · ·an−2 (n ≥ 2).

Corollary 14 The nth k-Fibonacci word, satisfy for all n > 2 that

1. Φ(fk,n−1fk,n−2) = Φ(fk,n−2fk,n−1).

2. Φ(fk,n−1fk,n−2) = fk,n−2Φ(fk,n−1) = fk,n−1Φ(fk,n−2).

3. If fk,n = Φ(fk,n)ab, then Φ(fk,n−2)abΦ(fk,n−1) = fk,n−1Φ(fk,n−2).

On the k-Fibonacci words 219

4. If fk,n = Φ(fk,n)ab, then Φ(fk,n−2)(abΦ(fk,n−1))
k = Φ(fk,n).

Proof. Parts (a) and (b) follow immediately from Proposition 12-(3) and be-
cause of |fk,n| > 2 for all n > 2. (c) In fact, if fk,n = Φ(fk,n)ab then from Propo-
sition 12-(2) we have fk,n−2 = Φ(fk,n−2)ab. Hence Φ(fk,n−2)abΦ(fk,n−1) =
fk,n−2Φ(fk,n−1) = fk,n−1Φ(fk,n−2). (d) It is clear from (c) and definition of
fk,n. �

Theorem 15 Φ(fk,n) is a palindrome for all n ≥ 1 and k ≥ 1.

Proof. By induction on n. If n = 2 then Φ(fk,2) = (0k−11)k−10k−1 is a palin-
drome. Now suppose that the result is true for all j < n; we prove it for
n.

(Φ(fk,n))
R = (Φ(fkk,n−1fk,n−2))

R = (fkk,n−1Φ(fk,n−2))
R = Φ(fk,n−2)

R(fkk,n−1)
R

= Φ(fk,n−2)(f
R
k,n−1)

k.

If n is even then fk,n = Φ(fk,n)10 and from Corollary 14-(4), we have that

(Φ(fk,n))
R = Φ(fk,n−2)((Φ(fk,n−1)01)

R)k = Φ(fk,n−2)(10(Φ(fk,n−1))
R)k

= Φ(fk,n−2)(10Φ(fk,n−1))
k = Φ(fk,n).

If n is odd, the proof is analogous. �

Corollary 16 1. If fk,n = Φ(fk,n)ab then baΦ(fk,n)ab is a palindrome.

2. If u is a subword of the k-Fibonacci word, then so is its reversal, uR .

Theorem 17 Let α =
[
0, k

]
be an irrational number, with k a positive integer,

then

w(α) = fk.

Proof. Let α =
[
0, k

]
an irrational number, then its associated standard

sequence is

s−1 = 1, s0 = 0, s1 = s
k−1
0 s−1 = 0k−11 and sn = skn−1sn−2, n ≥ 2.

Hence {sn}n≥0 = {fk,n}n≥0 and from equation (2), we have

w(α) = limn→∞ sn = fk. �

220 J. Ramı́rez, G. Rubiano

Remark. Note that

[
0, k

]
=

1

k+
1

k+
1

k+
1

. . .

=
−k+

√
k2 + 4

2
= −rk,2

From the above theorem, we conclude that k-Fibonacci words are Sturmian
words.

A fractional power is a word of the form z = xny, where n ∈ Z+ and x ∈ Σ+,
and y is power power prefix of x. If |z| = p and |x| = q, we say that z is a
p/q-power, or z = xp/q. In the expression xp/q, the number p/q is the power’s
exponent. For example, 01201201 is a 8/3-power, 01201201 = (012)8/3. The
index of an infinite word w∈ Σω is defined by

Ind(w) := sup{r ∈ Q>1 : w contains an r-power}

For example Ind(f)> 3 because the cube (010)3 occurs in f at position 6. In
[15] the authors proof that Ind(f)=2 + φ ≈ 3.618. A general formula for the
index of a Sturmian word was given in [8].

Theorem 18 If u is a Sturmian word of slope α = [0, a1, a2, a3, . . .], then

Ind(w) = sup
n>0

{
2+ an+1 +

qn−1 − 2

qn

}
,

where qn is the denominator of α = [0, a1, a2, a3, . . . , an] and satisfies q−1 =
0, q0 = 1, qn+1 = an+1qn + qn−1.

Corollary 19 The index of k-Fibonacci words is Ind(fk) = 2+ k+
1
rk,1

.

Proof. fk is a Sturmian word of slope α =
[
0, k

]
, then it is clear that qn =

Fk,n+1, and from above theorem

Ind(fk) = sup
n>0

{
2+ k+

Fk,n − 2

Fk,n+1

}
= 2+ k+

1

rk,1
. �

On the k-Fibonacci words 221

4 The k-Fibonacci Word Curve

The Fibonacci word can be associated to a curve from a drawing rule. We must
travel the word in a particular way, depending on the symbol read a particular
action is produced, this idea is the same as that used in the L-Systems [17].
In this case, the drawing rule is called “odd-even drawing rule” [16], this is
defined as shown in the following table.

Symbol Action

1 Draw a line forward.

0 Draw a line forward and if the symbol 0 is in a position even
then turn θ degree and if 0 is in a position odd then turn
−θ degrees.

Definition 20 The nth-curve of Fibonacci, denoted by Fn, is obtained by
applying the odd-even drawing rule to the word fn. The Fibonacci word fractal
F , is defined as

F := lim
n→∞Fn.

Example 21 In Figure 1 we show the curve F10 and F17. The graphics in
this paper were generated using the software Mathematica 9.0, [20].

Figure 1: Fibonacci curves F10 and F17 corresponding to the words f10 and f17

Properties of Fibonacci Word Fractal can be found in [3, 4, 16].

Definition 22 The nth k-curve of Fibonacci, denoted by Fk,n, is obtained by
applying the odd-even drawing rule to the word fk,n. The k-Fibonacci word
curve Fk is defined as

Fk := lim
n→∞Fk,n.

222 J. Ramı́rez, G. Rubiano

F1,18 F5,6

F6,6 F7,6

Table 1: Some curves Fk,n with θ = 90◦

In Table 1, we show some curves Fk,n with an angle θ = 90◦.
In Table 2, we show some curves Fk,n with an angle θ = 60◦. In general

these curves have a lot of patterns because the index is large, see Corollary
19.

Proposition 23 The k-Fibonacci word curve and the curve Fk,n have the
following properties:

1. The k-Fibonacci curve Fk is composed only of segments of length 1 or 2.

2. The Fk,n is symmetric.

3. The number of turns in the curve Fk,n is Fk,n + Fk,n−1.

4. If n is even then the Fk,n curve is similar to the curve Fk,n−2 and if n
is odd then the Fk,n curve is similar to the curve Fk,n−3.

Proof.

1. It is clear from Proposition 12-1, because 110 and 111 are not subwords
of fk.

2. It is clear from Theorem 15, because fk,n = Φ(fk,n)ab, where Φ(fk,n) is
a palindrome.

3. It is clear from definition of odd-even drawn rule and because |fk,n+1|0 =
Fk,n+1 + Fk,n.

On the k-Fibonacci words 223

F2,10 F4,7

F6,4 F7,6

Table 2: Some curves Fk,n with θ = 60◦

4. If n is even. It is clear that σ2k(fk,n−2) = fk,n. We are going to proof that
σ2k guaranties the odd-even alternation required by the odd-even drawing
rule. In fact, σ2k(0) = σk(0

k−11) = (0k−11)k0 and σ2k(1) = (0k−11)k0k1.
As k is even, then |σ2k(0)| and |σ2k(1)| are odd. Hence if |w| is even (odd)
then |σ2k(w)| is even (odd). Since σ2k preserves the parity of length then
any subword in the k-Fibonacci word preserves the parity of position.

Finally, we have to proof that the resulting angle of a pattern must be
preserved or inverted by σ2k. Let a(w) be the function that gives the
resulting angle of a word w through the odd-even drawing rule of angle

224 J. Ramı́rez, G. Rubiano

θ. Note that a(00) = 0◦, a(01) = −θ◦ and a(10) = θ◦. Therefore

a(σ2k(00)) = a((0
k−11)k0(0k−11)k0)

= a((0k−11)k)a(00k−1)a(1(0k−11)k−10)

= −kθ◦ + 0◦ + kθ◦ = 0◦

a(σ2k(01)) = a((0
k−11)k0(0k−11)k0k1)

= a((0k−11)k)a(00k−1)a(1(0k−11)k−10)a(0k−11)

= −kθ◦ + 0◦ + kθ◦ − θ◦ = −θ◦

a(σ2k(10)) = a((0
k−11)k0k1(0k−11)k0)

= a((0k−11)k)a(0k)a(1(0k−11)k0)

= −kθ◦ + 0◦ + (k+ 1)θ◦ = θ◦

Then σ2k inverts the resulting angle, i.e., a(w) = −a(σ2k(w)) for any word
w. Therefore the image of a pattern by σ2k is the rotation of this pattern
by a rotation of −θ◦. Since σ2k(fk,n−2) = fk,n, then the curve Fk,n is
similar to the curve Fk,n−2.
If n is odd the proof is similar, but using σ3k.

�

Example 24 In Figure 2 F4,4 looks similar to F4,6,F4,8 and so on.

Figure 2: Curves F4,4,F4,6,F4,8 with θ = 60◦

In Figure 3 F5,3 looks similar to F5,6.

Acknowledgements

The first author was partially supported by Universidad Sergio Arboleda under
grant number USA-II-2012-14.

On the k-Fibonacci words 225

Figure 3: Curves F5,3,F5,6 with θ = 60◦

References

[1] J. Allouche, J. Shallit, Automatic Sequences, Cambridge University Press, 2003.⇒214, 216
[2] J. Berstel, Fibonacci words—a survey, in: G. Rosenberg, A. Salomaa (Eds.), The

Book of L, Springer, Berlin, 1986, pp. 11–26. ⇒213
[3] A. Blondin-Mass, S. Brlek, A. Garon, S. Labb, Two infinite families of polyomi-

noes that tile the plane by translation in two distinct ways, Theoret. Comput.
Sci. 412 (2011) 4778–4786. ⇒213, 221

[4] A. Blondin-Mass, S. Brlek, S. Labb, M. Mends France, Complexity of the Fi-
bonacci snowflake, Fractals 20 (2012) 257–260. ⇒221

[5] C. Bolat, H. Kse, On the properties of k-Fibonacci numbers, Int. J. Contemp.
Math. Sciences, 22, 5 (2010) 1097–1105. ⇒213

[6] J. Cassaigne, On extremal properties of the Fibonacci word, RAIRO - Theor.
Inf. Appl. 42, (4) (2008) 701–715. ⇒213

[7] W. Chuan, Fibonacci words, Fibonacci Quart., 30, 1 (1992) 68–76. ⇒213
[8] D. Damanik, D. Lenz, The index of Sturmian sequences, European J. Combin.,

23 (2002) 23–29. ⇒220
[9] A. de Luca, Sturmian words: structure, combinatorics, and their arithmetics,

Theor. Comput. Sci. 183, 1 (1997) 45–82. ⇒213
[10] S. Falcon, A. Plaza, On k-Fibonacci sequences and polynomials and their deriva-

tives, Chaos Solitons Fractals 39, 3 (2009) 1005–1019. ⇒213
[11] S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos Solitons Fractals 32,

5 (2007) 1615–1624. ⇒212, 213
[12] S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos

Solitons Fractals 33, 1 (2007) 38–49. ⇒213
[13] T. Koshy, Fibonacci and Lucas numbers with Applications, Wiley-Interscience,

2001. ⇒212
[14] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics

and its Applications, Cambridge University Press, 2002. ⇒213, 214, 215, 216

http://www.math.jussieu.fr/~allouche/
https://cs.uwaterloo.ca/~shallit/
http://www.cambridge.org/
http://www-igm.univ-mlv.fr/~berstel/
http://thales.math.uqam.ca/~blondin/
http://lacim.uqam.ca/~brlek/
http://thales.math.uqam.ca/~labbes/
http://www.journals.elsevier.com/theoretical-computer-science/
http://www.journals.elsevier.com/theoretical-computer-science/
http://thales.math.uqam.ca/~blondin/
http://lacim.uqam.ca/~brlek/
http://thales.math.uqam.ca/~labbes/
http://www.worldscientific.com/worldscinet/fractals
http://www.m-hikari.com/ijcms-2010/21-24-2010/bolatIJCMS21-24-2010.pdf
http://iml.univ-mrs.fr/~cassaign/
http://journals.cambridge.org/action/displayJournal?jid=ITA
http://journals.cambridge.org/action/displayJournal?jid=ITA
http://www.fq.math.ca/Scanned/30-1/chuan.pdf
http://www.ruf.rice.edu/~dtd3/
http://www.analysis-lenz.uni-jena.de/
http://www.journals.elsevier.com/european-journal-of-combinatorics/
http://www.journals.elsevier.com/theoretical-computer-science/
http://www.dma.ulpgc.es/profesores/personal/aph/index.htm
http://www.journals.elsevier.com/chaos-solitons-and-fractals/
http://www.dma.ulpgc.es/profesores/personal/aph/index.htm
http://www.journals.elsevier.com/chaos-solitons-and-fractals/
http://www.dma.ulpgc.es/profesores/personal/aph/index.htm
http://www.journals.elsevier.com/chaos-solitons-and-fractals/
http://www.journals.elsevier.com/chaos-solitons-and-fractals/
http://www.cambridge.org/

226 J. Ramı́rez, G. Rubiano

[15] F. Mignosi, G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO –
Theor. Inf. Appl. 26 (1992) 199–204. ⇒213, 220

[16] A. Monnerot, The Fibonacci word fractal, preprint, 2009. ⇒213, 221
[17] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants, Springer-

Verlag, Nueva York, 2004. ⇒221
[18] J. Ramı́rez, Incomplete k-Fibonacci and k-Lucas numbers, Chinese Journal of

Mathematics (2013). ⇒213
[19] J. Ramı́rez. Some properties of convolved k-Fibonacci numbers. ISRN Combi-

natorics (2013) ID759641, 5pp. ⇒213
[20] J. Ramı́rez, G. Rubiano, Generating fractals curves from homomorphisms be-

tween languages [with Mathematicar] (Spanish), Rev. Integr. Temas Mat. 30,
2 (2012) 129–150. ⇒221

[21] J. Ramı́rez, G. Rubiano, R. de Castro, A generalization of the Fibonacci word
fractal and the Fibonacci snowflake, preprint arXiv:1212.1368, 2013. ⇒213

[22] W. Rytter, The structure of subword graphs and suffix trees of Fibonacci words,
Theoret. Comput. Sci. 363, 2 (2006) 211–223. ⇒213

[23] A. Salas. About k-Fibonacci numbers and their associated numbers, Int. Math.
Forum. 50, 6 (2011) 2473–2479. ⇒213

Received: June 12, 2013 • Revised: October 25, 2013

http://www.di.univaq.it/home.php?users_username=fmignosi
http://www.iasi.cnr.it/new/people.php/id_subject/23
http://journals.cambridge.org/action/displayJournal?jid=ITA
http://journals.cambridge.org/action/displayJournal?jid=ITA
http://hal.archives-ouvertes.fr/docs/00/36/79/72/PDF/The_Fibonacci_word_fractal.pdf
http://pages.cpsc.ucalgary.ca/~pwp/
http://algorithmicbotany.org/papers/abop/abop.pdf
https://sites.google.com/site/ramirezrjl/
http://downloads.hindawi.com/journals/cjm/2013/107145.pdf
https://sites.google.com/site/ramirezrjl/
http://downloads.hindawi.com/isrn/combinatorics/2013/759641.pdf
http://www.hindawi.com/isrn/combinatorics/
http://www.hindawi.com/isrn/combinatorics/
https://sites.google.com/site/ramirezrjl/
http://www.docentes.unal.edu.co/gnrubianoo/
http://matematicas.uis.edu.co/~integracion/Ediciones/vol30N2/V30-N2-4RamirezRubiano.pdf
https://sites.google.com/site/ramirezrjl/
http://www.docentes.unal.edu.co/gnrubianoo/
http://arxiv.org/pdf/1212.1368v2.pdf
http://www.mimuw.edu.pl/~rytter/
http://www.journals.elsevier.com/theoretical-computer-science/
http://www.m-hikari.com/imf-2011/49-52-2011/salasIMF49-52-2011.pdf

Acta Univ. Sapientiae, Informatica, 5, 2 (2013) 227–244

Some more on the basis finite automaton

Boris MELNIKOV
Russia, Samara State University

email: bormel@rambler.ru

Aleksandra MELNIKOVA
Russia, National Research Nuclear

University “MEPhI”
email: super-avahi@yandex.ru

Abstract. We consider in this paper the basis finite automaton and its
some properties. We shall also consider some properties of special binary
relation defined on the sets of states of canonical automata for the given
language and for its mirror image. We shall also consider an algorithm
of constructing the basis automaton defining the language which has a
priory given variant of this relation.

1 Introduction

The basis automaton for the given regular language was firstly defined in [11].
And in [6], we considered an extension of the basis automaton, which can
describe all the possible labels of inputs, outputs and loops for any state of
any nondeterministic automaton defining the given language.

The basis automaton can be considered as a complete invariant of regular
language, like automaton of canonical form and Conway’s universal automaton
([2, 5]). But using the basis automaton, we can formulate some properties of
regular language; using other formalisms, these properties could be formulated
in a more complicated way. Some of such properties were already considered
in [8, 9, 11].

In this paper, we shall consider some other such properties and some exam-
ples for them. Among other things, we shall consider some properties of special
binary relation defined on the sets of states of two canonical automata: for the

Computing Classification System 1998: F.4.3
Mathematics Subject Classification 2010: 68Q45
Key words and phrases: nondeterministic finite automata, basis automaton, state-
marking functions

227

http://www.mathnet.ru/php/person.phtml?personid=27967&option_lang=eng
http://www.ssu.samara.ru/en/
mailto:bormel@rambler.ru
http://www.linkedin.com/profile/view?id=255161556
http://www.mephi.ru/eng/
http://www.mephi.ru/eng/
mailto:super-avahi@yandex.ru

228 B. Melnikov, A. Melnikova

given language and for its mirror image. We shall also consider an algorithm of
constructing the basis automaton defining the language, for which there holds
the a priory given variant of this relation.

2 Preliminaries

We shall use the notation and preliminaries of [6, 7]. Let us repeat the main
ones for the ease of reading.

We shall consider nondeterministic finite automaton

K = (Q,Σ, δ, S, F) (1)

without ε-edges, i.e., we consider transition function δ of automaton (1) as

δ : Q× Σ→ P(Q) .

Its language will be denoted by L(K); unless other fact is formulated, we shall
suppose that L(K) = L.

The input language of the state q ∈ Q, i.e., the language of automaton
(Q,Σ, δ, S, {q}), will be denoted by Lin

K (q). Similarly, the output language of
the state q ∈ Q, i.e., the language of automaton (Q,Σ, δ, {q}, F), will be denoted
by Lout

K (q).

L̃ is the canonical automaton defining L, without the useless (“dead”) state.

Let automata L̃ and L̃R for the given language L be as follows:

L̃ = (Qπ, Σ, δπ, {sπ}, Fπ) and L̃R = (Qρ, Σ, δρ, {sρ}, Fρ)

(where π and ρ are indexes which indicate languages of two canonical au-
tomata, i.e., languages L and LR respectively).

Binary relation # ⊆ Qπ × Qρ is defined in the following way. For some
states A ∈ Qπ and X ∈ Qρ, condition A#X holds if and only if there exist

some words u ∈ Lin
L̃
(A) and v ∈ Lout

L̃R
(X), such that uvR ∈ L(K). In [7], we

considered a simple algorithm for constructing this relation.
Also in [6, 8, 7], we considered state-marking functions ϕin and ϕout for

automaton (1); those are the function of the type

ϕin
K : Q→ P(Qπ) and ϕout

K : Q→ P(Qρ)
defined in the following way. We set ϕin

K (q) 3 A (where q ∈ Q and A ∈ Qπ)
if and only if

(∃u ∈ Σ∗) (u ∈ Lin
K (q)&u ∈ Lin

L̃
(A)) , i.e., Lin

K (q) ∩ Lin
L̃
(A) 6= 6o .

Some more on the basis finite automaton 229

Similarly, we set ϕout
K (q) 3 X (where q ∈ Q and X ∈ Qρ) if and only if

(
Lout
K (q)

)R
∩ Lin

L̃R
(X) 6= 6o .

A simple algorithm for constructing these functions was also given in [7].
For language L defined by automaton (1), we define the equivalent basis

automaton BA(L); in this paper, we use the version of its definition of [6].
Thus, for the given regular language L, this automaton will be denoted by

BA(L) = (Q̂, Σ, δ̂, Ŝ, F̂), (2)

where 1:

• Q̂ is the set of pairs of the type A
X , such that A ∈ Qπ, X ∈ Qρ and A#X;

• transition function δ̂ is defined in the following way: for each A
X ,

B
Y ∈ Q̂

and a ∈ Σ, we have A
X

a−→̂
δ

B
Y if and only if A

a−→
δπ
B and Y

a−→
δρ
X;

• Ŝ =
{
sπ
X

∣∣∣ sπ#X
}

;

• similarly, F̂ =
{
A
sρ

∣∣∣A#sρ

}
.

Thus, we can think that considering the given regular language L, we also
have notation for its:

• two automata of canonical form (i.e., L̃ and L̃R), and also their states,
transition functionc etc;

• binary relation #;

• state-marking functions ϕin and ϕout;

• basis automaton BA(L).

We also shall sometimes consider automaton (L̃R)R which also defines language
L.

1 See [7] for some more details, e.g., for binary relation #.

230 B. Melnikov, A. Melnikova

3 The correctness of the definition BA(L):
the complete proof

As we said before, the definition of the basis automaton was firstly given in
[11], we use the equivalent definition of [6]. Also in [11], there was given the
proof of the correctness of that definition. But that proof was incomplete: in
fact, we have proved only that each word of the given language can be accepted
by automaton BA(L). In this section, we consider the complete version of this
proof. This complete version will be also used in Section 7.

Proposition 1 L
(
BA(L)

)
= L.

Proof. We shall prove the equivalence of automata L̃ and BA(L).
1. Firstly, let us consider some word u ∈ L, i.e., u ∈ L(L̃). Then uR ∈ LR,

i.e., uR ∈ L(L̃R). Let |u| = n.
Let the accepting of the word u by automaton L̃ is the following sequence

of transitions beginning (the only) initial state sπ:

p0=sπ, p1, p2, . . . , pn−2, pn−1, fπ=pn , (3)

where pi ∈ Qπ for each i ∈ { 1, . . . , n−1 } (i.e., each pi is some state of au-
tomaton L̃), and fπ ∈ Fπ (i.e., fπ is some final state of automaton L̃). Because
L̃ is deterministic automaton, sequence (3) is the (unique) accepting run of L̃
on u.

Similarly, automaton L̃R reading letters of the word uR has the following
sequence of transitions:

r0=sρ, r1, r2, . . . , rn−2, rn−1, fρ = rn (4)

(where ri ∈ Qρ for each i ∈ { 1, . . . , n−1 }, and fρ ∈ Fρ); as before, sρ is the
only initial state. Sequence (4) is also defined by the given word u (or uR) in
the only way. The numbers of elements of the sequences (3) and (4) are the

same; they are equal to n+ 1. The sequence of transitions for automata L̃, L̃R

and (L̃R)R reading words u and uR is shown on the following diagram:

L̃ : sπ −→ p1 −→ p2 . . . pn−2 −→ pn−1 −→ fπ
a1 a2 . . . an−1 an

fρ ←− rn−1 ←− rn−2 . . . r2 ←− r1 ←− sρ : L̃R

(L̃R)R : fρ −→ rn−1 −→ rn−2 . . . r2 −→ r1 −→ sρ

Some more on the basis finite automaton 231

Let us rewrite the sequence (4) in the reverse order:

fρ, rn−1, rn−2, . . . , r2, r1, sρ , (5)

then let us combine elements of (3) and (5) in the following sequence of the
pairs:

sπ

fρ
,

p1
rn−1

,
p2
rn−2

, . . . ,
pn−2
r2

,
pn−1
r1

,
fπ

sρ
.

By the definition of relation #, each pair of this sequence can be considered
as a state of automaton BA(L), because for each such pair (let it be qi

rn−i
), we

can write a word of L (i.e., the given word u) by u = vw, where

v = a1 . . . ai ∈ Lin
L̃
(pi) and w = ai+1 . . . an ∈

(
Lin
L̃R
(rn−i)

)R
.

Besides, by definition of BA(L), state sπ
fρ

belongs to Ŝ (the set of initial states

of automaton BA(L)), and state fπ
sρ

belongs to F̂ (the set of final states). And

for each i ∈ { 0, . . . , n−1 }, we have

pi
rn−i

ai−→
BA(L)

pi+1
rn−(i+1)

by definition of BA(L). Therefore L ⊆ L
(
BA(L)

)
.

2. Secondly, let us consider some word u ∈ L
(
BA(L)

)
. Let also |u| = n, and

u = a1a2 . . . an. Then for BA(L) and u, we can write the following sequence of
transitions:
p0
rn

a1−→
BA(L)

p1
rn−1

a2−→
BA(L)

p2
rn−2

. . .
pn−2
r2

an−1−→
BA(L)

pn−1
r1

an−→
BA(L)

pn

r0
. (6)

By definition of BA(L) we obtain, that p0 = sπ, and also

pi
ai+1−→̃
L

pi+1 for each i ∈ { 0, . . . , n−1 } .

We have to prove, that pn ∈ Fπ.
Let pn /∈ Fπ. By definition of relation # (see [7]) and pair pn

r0
for it, there

exists a word u ′ ∈ L, such that u ′ = vw, where

v ∈ Lin
L̃
(pn) and wR ∈ Lin

L̃R
(r0) .

By (6), we can think that v = u; then uw ∈ L, and therefore uR ∈ Lout
L̃R

(r0).

Then (because ε ∈ Lin
L̃R
(r0) and automaton L̃R is deterministic) uR ∈ LR,

therefore u ∈ L.

232 B. Melnikov, A. Melnikova

4 Some properties of the state-marking functions

In this section we consider some properties of the state-marking functions.
They were formulated in [10], and afterwards were used in some other our
papers. In this section we shall prove them without other facts, i.e., using the
definitions only. All these properties combine in the common expressions the
values of input and output languages of the states (i.e., of Lin and Lout, see
[7]):

• of any nondeterministic finite automaton K defining considered regular
language;

• of canonical automata for languages L(K) and L(KR).

It is important to remark, that by following Propositions 6 and 7, correspond-
ing languages are also input and output languages of the states of the equiv-
alent basis automaton.

The first proposition of this section formulates the sufficient condition of the
given word: whether or not it belongs to the corresponding output language.

Proposition 2 Lout
K (q) ⊆

⋃
q̃∈ϕin

K (q)

Lout
L̃

(q̃) .

Proof. Let for some word v and state of canonical automaton q̃ ∈ ϕin
K (q)

condition v /∈ Lout
L̃

(q̃) holds. Then we prove, that v /∈ Lout
K (q).

Consider some word
u ∈ Lin

K (q) ∩ Lin
L̃
(q̃) ;

such a word u exists by definition of the function ϕin. Automaton L̃ is deter-
ministic, then uv /∈ L(K). Therefore, condition v ∈ Lin

K (q), which is equivalent

to uv ∈ L(K), contradicts the equality L(L̃) = L(K).

The “mirror” fact is the following

Proposition 3

Lin
K (q) ⊆

(⋂
q̃∈ϕout

K (q)

Lout
L̃R

(q̃)
)R
.

In the two following propositions we consider subsets of some language using
output languages of the states.

Some more on the basis finite automaton 233

Proposition 4

Lin
K (q) ·

(⋂
q̃∈ϕin

K (q)

Lout
L̃

(q̃)
)
⊆ L(K) .

Proof. Consider any word u ∈ Lin
K (q). By definition of function ϕin, for

some state q̃ ∈ ϕin
K (q), the word u belongs to the language Lin

L̃
(q̃). For each

word
v ∈

⋂
q̃∈ϕin

K (q)

Lout
L̃

(q̃) ,

condition v ∈ Lout
L̃

(q̃) holds. Therefore,

uv ∈ Lin
L̃
(q̃) · Lout

L̃
(q̃) ⊆ L(L̃) = L(K) ,

and the last condition proves the proposition.

The “mirror” fact is the following

Proposition 5 (⋂
q̃∈ϕout

K (q)

Lout
L̃R

(q̃)
)R
· Lout

K (q) ⊆ L(K) .

5 The first example

In this section, we shall consider an example for Proposition 4. For this thing,
we shall use the automaton considered in detail in [7, Sect. 3].

For the ease of reading, let us give this figure once again (Fig. 1). And the
equivalent canonical automaton (i.e., L̃) is given on Fig. 2.

��
��
��
��
3����

�b
?

��
��
��
��
2 ����

Ia, b
?

��
��
��
��
1

?

�
�
�
��

a

�
�
�
��

b

A
A
A
AU

b

Figure 1

��
��
��
��
A- ��

��
��
��
B -

��
��
��
��
C

?

����
�a, b ��

��
��
��
D

?

-a

?
b

� b
?
b

6
a

Figure 2

234 B. Melnikov, A. Melnikova

For automaton on Fig. 1, we shall consider state 3. By simple definitions of
[7], input language of this state can be defined by the following automaton of
Fig. 3:

��
��
��
��
1

6
��
��
��
��
3 ����

Ib
?

�
b

-a

Figure 3

Then it can also be defined by regular expression

a(b+ ba)∗. (7)

For state 3, this language is the first factor of condition of Proposition 4.
By [7, Sect. 3], ϕin

K (3) = {B,C,D}. There is evident, that Lout
L̃

(C) = Σ∗.

Then we have to define the intersection of languages Lout
L̃

(B) and Lout
L̃

(D).
The automaton defining language of their intersection is shown on the fol-

lowing Fig. 4. It can be simply constructed using (deterministic) automaton
of Fig. 2. E.g., the (initial) state marked B∩D symbolized the intersection of
languages Lout

L̃
(B) and Lout

L̃
(D). We have

B
b−→̃
L

D and D
b−→̃
L

C ,

then in constructed automaton, we have B ∩D b−→C ∩D, etc.

��
��
��
��
C∩D

?
��
��
��
��
B∩C

?

�����9
b

��
��
��
��
B∩D

?

-
XXXXXXXXXz

b

��
��
��
��
C

?

����
�a, b

�
b

-a

Figure 4

The language of this automaton can also be defined be regular expression

ε+ b(ab)∗(a+ ε+ b(a+ b)∗)) .

Then considering the last expression and (7), we obtain, that each word defined
by the following expression

a(b+ ba)∗ · (ε+ b(ab)∗(a+ ε+ b(a+ b)∗)))

belongs to L.

Some more on the basis finite automaton 235

6 Input and output languages
of the states of the basis automaton

In this section we consider properties of input and output languages of the
states of the basis automaton; these properties also can be called by the prop-
erties of the table of binary relation #. Those are properties, which combine:

• input and output languages of the basis automaton;

• and also input and output languages of two canonical automata (i.e., of

automata L̃ and L̃R).

The canonical automaton L̃R contains no more than 2m−1 states (where m
is the number of states of automaton L̃). 2 Then we can limit by this value the
number of possible columns of the table of binary relation #, which has m
rows. Besides, this table cannot have duplicate rows and duplicate columns.

The next propositions 6–9 are proved by the definition of the basis automa-
ton.

Proposition 6 Let there are given some regular language L and some state

A ∈ Qπ of automaton L̃. Then for each state X of automaton L̃R, such that
A#X, the following condition holds:

Lin
BA(L)(

A
X) = L

in
L̃
(A).

Proof. Condition
Lin
BA(L)(

A
X) ⊆ L

in
L̃
(A)

is the direct consequence of the definition of automaton BA(L). Let us prove
the reverse inclusion

Lin
L̃
(A) ⊆ Lin

BA(L)(
A
X),

i.e., that for every word w ∈ Σ∗, the following fact holds:

w ∈ Lin
L̃
(A) implies w ∈ Lin

BA(L)(
A
X).

We shall prove this fact by induction by |w|.
The basis of induction (i.e., w = ε) is evident, because if ε ∈ Lin

BA(L)(
A
X) then

ε ∈ Lin
L̃
(A). Then let us prove the step of induction.

2 Remark once again, that we consider canonical automaton without possible “dead”
state.

236 B. Melnikov, A. Melnikova

Let w = w ′a, where w ′ ∈ Σ∗ and a ∈ Σ; let also w ∈ Lin
L̃
(A). Because

A#X, there exist words u, v ∈ Σ∗, such that

uv ∈ L , u ∈ Lin
L̃
(A) and vR ∈ Lin

L̃R
(X).

Because w also belongs to the language Lin
L̃
(A), we obtain, that wv ∈ L, i.e.,

w ′av ∈ L. Let also:

• B be some state of automaton L̃, such that w ′ ∈ Lin
L̃
(B);

• Y be some state of automaton L̃R, such that vRa ∈ Lin
L̃R
(Y);

both the states (B and Y) do exist, because w ′av ∈ L. Then B#Y, and, by the
induction hypothesis, w ′ ∈ Lin

BA(L)((B, Y)). And using the fact δT ((B, Y), a) 3
A
X , we obtain that w ∈ Lin

BA(L)(
A
X).

The “mirror” fact is the following

Proposition 7 Let there are given some regular language L and some state

X ∈ Qρ of automaton L̃R. Then for each state A of automaton L̃, the following
condition holds:

Lout
BA(L)(

A
X) =

(
Lin
L̃R
(X)
)R

= Lout
(L̃R)R

(X).

Proposition 8 Let there is given some regular language L. Then for each
state A ∈ Qπ of automaton L̃, the following condition holds:

Lout
L̃

(A) =
⋃
X∈Qπ

Lout
BA(L)

(
A
X

)
.

Proof. Consider some word uv ∈ L, such that

u ∈ Lin
L̃
(A) and v ∈ Lout

L̃
(A).

By [11] (and also by consequence of the proof of Proposition 1), automaton
BA(L) has the only accepting path for the word uv, and for some x ∈ Qρ the
following conditions hold:

u ∈ Lin
BA(L)(

A
X) and v ∈ Lout

BA(L)(
A
X).

Some more on the basis finite automaton 237

Then combining all the possible v, we obtain, that

Lout
L̃

(A) ⊆
⋃
X∈Qπ

Lout
BA(L)

(
A
X

)
.

The reverse inclusion, i.e., that⋃
X∈Qπ

Lout
BA(L)

(
A
X

)
⊆ Lout

L̃
(A),

is evident.

The “mirror” fact is the following

Proposition 9 Let there is given some regular language L. Then for each

state X ∈ Qρ of automaton L̃R, the following condition holds:(
Lout
L̃R

(X)
)R

= Lin
(L̃R)R

(X) =
⋃
A∈Qρ

Lin
BA(L)

(
A
X

)
.

Proposition 10 Let canonical automaton L̃ for the given regular language L
has at least 2 states, and A,B ∈ Qπ is a pair of such states. Then there exists

a state X ∈ Qρ of automaton L̃R, such that automaton BA(L) contains exactly
one state of the following 2 ones: A

X and B
X .

Proof. This proposition can be considered as a consequence of the classical
algorithm of constructing of canonical automaton (which includes imperative
combining equivalent states) and also [7, Th. 4.1].

The “mirror” fact is the following

Proposition 11 Let canonical automaton L̃R for the mirror image of the
given regular language L has at least 2 states, and X, Y ∈ Qρ is a pair of

such states. Then there exists a state A ∈ Qπ of automaton L̃, such that au-
tomaton BA(L) contains exactly one state of the following 2 ones: A

X and A
Y .

Two the following propositions (we briefly talked about them at the begin-
ning of this section) are the direct consequences of two previous propositions.
They formulate facts about the possible size of the table of binary relation #
for the given regular language.

238 B. Melnikov, A. Melnikova

Proposition 12 Let regular language L be given, and automaton L̃ contains

exactly n states (i.e., |Qπ| = m). Then automaton L̃R contains no more than
2m−1 states (i.e., |Qρ| ≤ 2m−1).

Proposition 13 Let regular language L be given, and automaton L̃R contains
exactly n states (i.e., |Qρ| = n). Then automaton L̃ contains no more than
2n−1 states (i.e., |Qπ| ≤ 2n−1).

In the next section we shall obtain, that such maximums (i.e., the values
2m−1 and 2n−1) can be achieved.

7 On the possible set of the states
of the basis automaton

In this section we shall formulate some properties for all the possible states
of a basis automaton (or, in other words, all the possible variants of binary
relation #). We shall obtain, that if there hold all the limitations formulated
in previous section for the table of the binary relation #, then such table can
really describe such relation for some regular language. Besides, such proof is
constructive, i.e., we obtain an algorithm of constructing the basis automaton
for regular language having such table of a priori given binary relation #.

Proposition 14 Let binary relation # be given, and for it, all the limita-
tions formulated before hold. 3 Then there exists a regular language, for which
corresponding binary relation # coincides with the given one.

Proof. Thus, we think, that the sets of states Qπ (where |Qπ| = m) and
Qρ (where |Qρ| = n) are already given. Binary relation # ⊆ Qπ ×Qρ is also
given. These objects satisfy all the limitations formulated before.

3 Let us formulate them once again, for the table of #. Let |Qπ| = m and |Qρ| = n. Then:

• 1 ≤ m ≤ 2n−1;
• 1 ≤ n ≤ 2m−1;

• there are no duplicate rows;

• there are no duplicate columns;

• there are no empty rows (i.e., there are no row A, such that A#X holds for none
column X);

• there are no empty columns.

Some more on the basis finite automaton 239

Consider the following alphabet:

Σ# =
{
a
A
X

∣∣∣A ∈ Qπ, X ∈ Qρ }.
Over this alphabet, consider the arbitrary states sπ ∈ Qπ and sρ ∈ Qρ. For
them, consider following automaton

K#sπsρ = (Qπ, Σ#, δπ, {sπ}, Fπ)

(or, briefly, K#, when sπ and sρ are meant), where:

• Fπ = { fπ ∈ Qπ | fπ#sρ };
4

• transition function δπ is defined in the following way:

for each A,B ∈ Qπ and X ∈ Qρ , δπ(A,a B
X

) =

{
{B}, if A#X ;

6o, otherwise

(we allow for the possibility A = B).

Let us prove that the language L(K#) is the desired one.
By the construction, automaton L(K#) is deterministic. The conditions of

Proposition 10 hold, because we made automaton using relation corresponding
#; therefore automaton K# has no pairs of equivalent states. Also by the
construction, the transition graph of is automaton is strongly connected ([3]);
then it contains no useless states. Therefore, automaton K# is canonical (for
its language), i.e.,

for the language L# = L(K#) , we have K# = L̃# .

Over the same alphabet Σ#, consider also automaton

K#sπsρ = (Qρ, Σ#, δρ, {sρ}, Fρ)

(or, briefly, K#, when sπ and sρ are meant), where:

• Fρ = { fρ ∈ Qπ | sπ#fρ };

4 Such a choice is possible, because of limitations formulated before. Remark also, that
choosing various sπ ∈ Qπ and sρ ∈ Qρ, we obtain a set of languages having the given binary
relation #.

240 B. Melnikov, A. Melnikova

• transition function δρ is defined in the following way:

for each B ∈ Qπ and X, Y ∈ Qρ , δρ(Y, a B
X

) =

{
{X}, if B#Y ;

6o, otherwise

(we allow for the possibility X = Y).

Like automaton K# we can prove, that automaton K# is canonical (for its

language), i.e., for the language L# = L(K#), we have K# = L̃#.
Let us prove, that L# = (L#)R. For this thing, consider any word u ∈ L#.

Let
u = a

A1
X1

a
A2
X2

. . . a
Ak
Xk

.

Then we can write the following sequence of transitions of canonical automaton

K# = L̃# while readind the word u:

sπ

a
A1
X1−→
K#

A1

a
A2
X2−→
K#

A2 . . . Ak−1

a
Ak
Xk−→
K#

Ak , where Ak ∈ Fπ .

Since Ak ∈ Fπ, we have Ak#sρ. Then for this sequence, we can construct the

following sequence of transitions of automaton K# = L̃#:

sρ

a
Ak
Xk−→
K#

Xk−1 . . . X2

a
A2
X2−→
K#

X1

a
A1
X1−→
K#

X0

for the sequence of states Xk−1, . . . , X2, X1 selected before and some new state
X0. Like the proof of Proposition 1, we obtain that X0 ∈ Fρ.

We proved that L# ⊆ (L#)
R. The reverse inclusion, i.e., (L#)

R ⊆ L#, can be
proved similarly.

Thus, automata K# and K# are canonical automata for the languages L#

and (L#)R = L#. Then for them, we can construct the following basis automa-
ton

BA(L#) = (T , Σ#, δT , ST , FT),

(over the alphabet Σ# defined before), where:

• T =
{
A
X

∣∣∣A ∈ Qπ, X ∈ Qρ, A#X
}

;

• for each A,B ∈ Qπ and X ∈ Qρ, such that A#X (we admit the possibility
of A = B), we set

δT

(
A
X , a B

X

)
=
{
B
Y

∣∣∣ (∃Y ∈ Qρ) (B#Y)
}
;

Some more on the basis finite automaton 241

• for each other cases a ∈ Σ#, 5 A,B ∈ Qπ and X, Y ∈ Qρ, we set

δT (
A
X , a) = 6o ;

• ST =
{
sπ
X

∣∣∣ sπ#X
}

;

• ST =
{
A
sρ

∣∣∣A#sρ

}
;

(where the states sπ and sρ were also previously selected). This automaton
is BA(L#) by the process of its constructing. And also by its constructing, its
set of states T forms the given binary relation #.

As a consequence of the Proposition 14 we obtain, that these maximums
of the number of states of two canonical automata (i.e., the values 2m−1 and
2n−1) can be achieved. But there is important to remark the following thing. In
some books ([1] etc.), there are examples, when the given automaton contains
n states, and the equivalent canonical automaton contains 2n−1 states. 6 This
fact (i.e., the possible fulfilment the upper bound 2n−1) is not a consequence
of these results: it proved there for arbitrary nondeterministic finite automata
(having no limitations), and we consider it for automata which are mirror
automata for canonical ones. E.g. we can say, that these automata are not
deterministic, but they are unambiguous.

8 The second example

Let us consider a simple example for automata defined in previous section.
However, we describe the whole process of constructing detailed.

Thus, let us consider the following binary relation #:

X Y

A # –

B # #

Table 1

Certainly, this relation satisfies all the limitations formulated before.

5 Remark once again, that we consider automata without ε-edges.
6 Or 2n states, when we assume the possible “dead” state, considering the canonical

automaton as a total automaton.

242 B. Melnikov, A. Melnikova

By the previous section, corresponding alphabet Σ# is the following:

Σ# =

{
a
A
X

, a
B
X

, a
A
Y

, a
B
Y

}
.

Let sπ = A, sρ = Y (also by the previous section, we can choose such states).
Then Fπ = {B}, Fρ = {X}, and we obtain the following canonical automaton for
the language L#:

L# a
A
X

a
B
X

a
A
Y

a
B
Y→ A A B – –← B A B A B

Table 2

For the convenience, let us rename the letters in the following way:

a
A
X

= a , a
B
X

= b , a
A
Y

= c , a
B
Y

= d .

Then we can rewrite the considered automaton by the following Table 3 or
Fig. 5:

L# a b c d→ A A B – –← B A B A B
��
��
��
��
A����

�a
6

��
��
��
��
B ����

Ib, d
?

�
a, c

-b

Table 3 Figure 5

The mirror automaton (L#)R is the following (Table 4 or Fig. 6; for the table
of nondeterministic automaton, we use the agreements of [7]):

(L#)R a b c d← A A,B – B –→ B – A,B – B
��
��
��
��
A����

�a
?

��
��
��
��
B ����

Ib, d
6

�

a, c
-

b

Table 4 Figure 6

The process of determinization is given by the following table:

Some more on the basis finite automaton 243

a b c d→ B – A,B – B← A,B A,B A,B B B

Table 5

Renaming {B} for Y and {A,B} for X, we obtain the following automaton L̃ ′ =
L# (where L ′ = (L#)R; see Table 6 or Fig. 7):

L# a b c d→ Y – X – Y← X X X Y Y
��
��
��
��
Y����

�d
6

��
��
��
��
X ����

Ia, b
?

�
c, d

-b

Table 6 Figure 7

And using the last automaton, we obtain automata (L#)
R and then BA(L#)

(Fig. 8 and 9).

��
��
��
��
Y����

�d
6

��
��
��
��
X ����

Ia, b
?

�
c, d

-b

Figure 8

��
��
��
��

A
X

�����
�a @

@
@
@
@
@R

b

Figure 9

@
@

@
@
@@I

c

?

b

6

a

��
��
��
��

B
X

-
� d

b ��
��
��
��

B
Y

6

����
�b

����
Id

Certainly, they both also define the language L#. (Compare the given Table 1
and the obtained Fig. 9.)

9 Conclusion

Let us describe some possible problems for the future solution. Thus, we are
going to:

• to show the relationship between the basis automaton and Conway’s
universal automaton;

244 B. Melnikov, A. Melnikova

• to use some propositions proved in this paper to describe the minimiza-
tion algorithms for nondeterministic finite automata;

• vice versa, to use automaton K# to describe algorithms of automatic
constructing some counter-examples for the algorithms of state mini-
mization (the most famous example of such a counter-example is so
called automaton Waterloo, [4]).

References

[1] W. Brauer, Automatentheorie. Eine Einführung in die Theorie endlicher Auto-
maten. Teubner, 1984. ⇒241

[2] J. Conway, Regular Algebra and Finite Machines. Chapman and Hall, 1971. ⇒
227

[3] F. Harary, Graph Theory. Addison-Wesley, 1969. ⇒239
[4] T. Kameda, P. Weiner, On the state minimization of nondeterministic finite

automata, IEEE Trans. on Comp., C-19, 7 (1970) 617–627. ⇒244
[5] S. Lombardy, J. Sakarovitch, The Universal Automaton, Logic and Automata,

Texts in Logic and Games, Amsterdam Univ. Press, 2 (2008) 457–504. ⇒227
[6] B. Melnikov, On an expansion of nondeterministic finite automata, J. of Applied

Math. and Computing (The Korean J. of Comp. and Appl. Math.), 24, 1–2
(2007) 155–165. ⇒227, 228, 229, 230

[7] B. Melnikov, Once more on the edge-minimization of nondeterministic finite
automata and the connected problems, Fundamenta Informaticae, 104, 3 (2010)
267–283. ⇒228, 229, 231, 232, 233, 234, 237, 242

[8] B. Melnikov, A. Melnikova, Some properties of the basis finite automaton, J. of
Applied Math. and Computing (The Korean J. of Comp. and Appl. Math.), 9,
1 (2002) 131–150. ⇒227, 228

[9] B. Melnikov, A. Melnikova, A new algorithm of constructing the basis finite
automaton, Informatica (Lithuanian Acad. Sci. Ed.), 13, 3 (2002) 299–310. ⇒
227

[10] B. B. Melnikov, N. Sciarini-Guryanova, Possible edges of a finite automaton
defining a given regular language, J. of Applied Math. and Computing (The
Korean J. of Comp. and Appl. Math.), 9, 2 (2002) 475–485. ⇒232

[11] A. Vakhitova, The basis automaton for the given regular language, J. of Applied
Math. and Computing (The Korean J. of Comp. and Appl. Math.), 6, 3 (1999)
617–624. ⇒227, 230, 236

Received: August 2, 2013 • Revised: December 27, 2013

https://en.wikipedia.org/wiki/Wilfried_Brauer
https://en.wikipedia.org/wiki/John_Horton_Conway
https://en.wikipedia.org/wiki/Frank_Harary
http://www.pearsoned.co.uk/Imprints/Addison-Wesley/
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=T.%20Kameda
http://www.mathnet.ru/php/person.phtml?personid=27967&option_lang=eng
http://www.mathnet.ru/php/person.phtml?personid=27967&option_lang=eng
http://www.mathnet.ru/php/person.phtml?personid=27967&option_lang=eng
http://www.linkedin.com/profile/view?id=255161556
http://www.mathnet.ru/php/person.phtml?personid=27967&option_lang=eng
http://www.linkedin.com/profile/view?id=255161556
http://www.mii.lt/informatica/
http://www.mathnet.ru/php/person.phtml?personid=27967&option_lang=eng
http://academic.research.microsoft.com/Author/47344664/a-a-vakhitova

Acta Univ. Sapientiae, Informatica, 5, 2 (2013) 245–270

Parallel enumeration of degree sequences

of simple graphs II

Antal IVÁNYI
Eötvös Loránd University,

Faculty of Informatics
Budapest

email: tony@onf.elte.hu

Loránd LUCZ
Eötvös Loránd University,

Faculty of Informatics
Budapest

email: lorand.lucz@gmail.com

Gergő GOMBOS
Eötvös Loránd University,

Faculty of Informatics
Budapest

email: ggombos@inf.elte.hu

Tamás MATUSZKA
Eötvös Loránd University,

Faculty of Informatics
Budapest

email: matuszka1987@gmail.com

Abstract. In the paper we report on the parallel enumeration of the
degree sequences (their number is denoted by G(n)) and zerofree de-
gree sequences (their number is denoted by (Gz(n)) of simple graphs
on n = 30 and n = 31 vertices. Among others we obtained that the
number of zerofree degree sequences of graphs on n = 30 vertices is
Gz(30) = 5 876 236 938 019 300 and on n = 31 vertices is Gz(31) =
22 974 847 474 172 374. Due to Corollary 21 in [52] these results give the
number of degree sequences of simple graphs on 30 and 31 vertices.

1 Introduction

In the practice an often occuring problem is the ranking of different objects
(examples can be found e.g. in [52]), assigning points to the objects and then
ranking of the objects on the base of the sum of the assigned to them points.

Computing Classification System 1998: G.2.2.
Mathematics Subject Classification 2010: 05C85, 68R10
Key words and phrases: simple directed graphs, linear Erdős-Gallai and Havel-Hakimi
algorithm, enumeration of graphical sequences

245

http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:tony@inf.elte.hu
http://people.inf.elte.hu/lulsaai
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:lorand.lucz@gmail.com
http://people.inf.elte.hu/ggombos/
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:ggombos@inf.elte.hu
http://people.inf.elte.hu/tomintt/
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:matuszka1987@gmail.com

246 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

Especially extensive bibliography has the case when the results are rep-
resented by a simple graph and the problem is the test, reconstruction and
enumeration of the degree sequences. Havel in 1955 [42], Erdős and Gallai in
1960 [16, 32, 77], Hakimi in 1962 [39], Knuth in 2008 [61], Tripathi et al. in 2010
[89] proposed a method to decide, whether a sequence of nonnegative integers
can be the degree sequence of a simple graph. Sierksma and Hoogeven in 1991
[83] compared seven known methods. The running time of their algorithms
in worst case is Ω(n2). In 2007 Takahashi [86], in 2009 Hell and Kirkpatrick
[43], in 2011 Iványi et al. [52] and in April of 2012 Király [58] proposed an
algorithm, whose worst running time is Θ(n).

There are several new proofs for the classical Havel-Hakimi and Erdős-Gallai
theorems [26, 32, 63, 70, 75, 87, 88, 89].

Extensions of the algorithms for (0, b)-graphs [8, 9, 24, 23, 25, 27, 69, 75,
90, 92] and (a, b)-graphs [44, 45, 46, 53] are also known.

As an application of our linear time algorithm we describe Erdős-Gallai-
Enumerative algorithm (EGE) and its parallel version used to enumerate
the different degree sequences of simple graphs for 30 vertices. We also present
the linear test version of Havel-Hakimi algorithm (HHL).

Let n ≥ 1. We call a sequence s = (s1, . . . , sn) (l, u, n)-bounded, if 0 ≤
si ≤ n for i = 1, . . . , n, n-bounded, if it is (0, n − 1, n)-bounded, n-regular, if
the conditions n − 1 ≥ s1 ≥ · · · ≥ sn ≥ 0 hold, and n-even, if the sum of the
elements of s is even. If there exists a graph with n vertices which has the
degree sequence s, then we say that s is n-graphical. If such graph does not
exist, then we say that s is nongraphical. A sequence is zerofree, if it does not
contain zero. If n is not necessary, then we omit it in the terms n-bounded,
n-regular, n-even and n-graphical. The first i elements of an n-regular s are
called the head, and the last n− i elements are called the tail, belonging to the
element i of s.

2 Earlier results

A classical problem of the graph theory is the enumeration of the sorted degree
sequences of different graphs—among others simple graphs. For example The
On-Line Encyclopedia of Integer Sequences contains for n = 1, . . . , 29 vertices
the number of degree sequences of simple graphs (the values for n = 20, . . . , 23
were set in July of 2011 by Nathann Cohen [28], and for 24, . . . , 29 in 15
November, 2011 by us [48, 52]) and the number of zerofree degree sequences
of simple graphs (the values for n = 1, . . . , 9 were set in 12 June, 2004 by

Parallel enumeration of degree sequences of simple graphs. II 247

N. J. Sloane, for n = 10, . . . , 20 in 12 August, 2006 by Gordon Royle, for
n = 21, 22, and 23 in August 31, 2011, and in December 10, 2012 by Frank
Ruskey [80], and the values for n = 24, . . . , 29 by us [50, 51].

In this section we review the theoretical and practical results connected with
the enumeration of simple graphs.

2.1 Exact enumeration results

It is known [52, equation (23)] that if n ≥ 1, then the number R(n) of the
regular sequences is

R(n) =

(
2n− 1

n

)
(1)

and the number Rz(n) of the zerofree regular sequences is [52, equation (24)]

Rz(n) =

(
2n− 2

n

)
(2)

implying [52]

lim
n→∞ R(n+ 1)

R(n)
= lim
n→∞ Rz(n+ 1)

Rz(n)
= 4 (3)

and

lim
n→∞ Rz(n)

R(n)
=
1

2
, (4)

and

R(n) =
4n

2
√
πn

+O

(
4n

n3/2

)
(5)

and

Rz(n) =
4n

4
√
πn

+O

(
4n

n3/2

)
. (6)

Table 1 in [52] shows the values values of R(n) for n = 1, . . . , 38, Table
4 in [51] for n = 39, . . . , 60, and in [47, 51, 68] the values are presented for
n = 1, . . . , 1200. Table 1 in Subsection 3.3 presents the values R(n)/R(n+ 1)
for n = 1, . . . , 32 and [68] for n = 1, . . . , 1200.

Figure 1 in Subsection 3.3 shows the values of Rz(n)/Rz(n + 1)) for n =
1, . . . , 32.

In 1987 Ascher derived the following explicit formula for the number E(n)
of even sequences.

248 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

Lemma 1 (Ascher [2], Sloane and Pfoffe [85]) If n ≥ 1, then the number of
even sequences E(n) is

E(n) =
1

2

((
2n− 1

n

)
+

(
n− 1

bn/2c

))
. (7)

Proof. See [2]. �

Table 1 in [52] contains the values of E(n) and E(n + 1)/E(n) for n =
1, . . . , 31.

(7) implies (see [52])

lim
n→∞ E(n+ 1)

E(n)
= 4 (8)

and

E(n) =
4n

8
√
πn

+O

(
4n

n3/2

)
. (9)

further (1) and (7) imply

lim
n→∞ E(n)

R(n)
=
1

2
, (10)

(2) and (7) imply

Rz(n)

E(n)
=
2n− 2

2n− 1
= 1−

1

2n− 1
and lim

n→∞ Rz(n)

E(n)
= 1. (11)

Table 1 in [52] shows the values of E(n) for n = 1, . . . , 38, Table 4 in
[51] for n = 39, . . . , 60, the list of [64] for n = 1, . . . , 1000, and [68] for
n = 31, . . . , 1200.

Figure 3 in [52] shows the values of Ez(n) for n = 1, . . . , 20, and [68] n =
1, . . . , 1200. Table 5 in [51] shows the values of Ez(n/R(n) for n = 1, . . . , 20.

Using (1) and (7) we computed E(n) and E(n+ 1)/E(n) for i = 1, . . . , 750
(see [52, 68]). Recently Librandi [64] published the values of E(n) up to n =
1000 and we continued the computations up to 1200 [51, 68].

The following theorem gives a very useful connection between the values
of G(n) and Gz(n): it helped to decrease the computing time of G(29) with
about 50 %.

Lemma 2 (Iványi, Lucz, Móri, Sótér [52]) If n ≥ 2, then the number of n-
graphical sequences G(n) can be computed from the number of (n−1)-graphical
sequences G(n− 1) and the number of n-graphical zero-free sequences Gz:

G(n) = G(n− 1) +Gz(n),

Parallel enumeration of degree sequences of simple graphs. II 249

and if n ≥ 1 then

G(n) = 1+

n∑
i=2

Gz(i).

Proof. If an even sequence s = (s1, . . . , sn) contains at least one zero, then
sn = 0 and s ′ = (s1, . . . , sn−1) is graphical or not. If a = (a1, . . . , an−1) is
(n− 1)-graphical, then a ′ = (a1, . . . , an−1, 0) is n-graphical.

The set of the n-graphical sequences S(n) consists of two subsets: set of
zerofree sequences Sz(n) and the set of the remaining sequences S0(n). There
is a bijection between the set of the (n − 1)-graphical sequences and such n-
graphical sequences, which contain at least one zero. Therefore |S | = |Sz| +
|S0| = Gz(n) +G(n− 1). �

Using the parallel version EGP (see the next section) of EGE we computed
G(n) up to n = 29. These numbers can be found in Table 2 of [52].

Theorem 3 (Burns [22]) There exist positive constants c and C such that the
following bounds of the function G(n) are true for n ≥ 1:

4n

cn
< G(n) <

4n

(logn)C
√
n
. (12)

Proof. See [22]. �

This result implies that the asymptotic density of the graphical sequences
is zero among the even sequences.

Corollary 4 If n ≥ 1, then there exists a positive constant C such that

G(n)

E(n)
<

1

(log2 n)
C

(13)

and

lim
n→∞ G(n)

E(n)
= 0. (14)

Proof. (13) is a direct consequence of (7) and (12). �

Table 1 in [52] contains the values of G(n) and G(n + 1)/G(n) for n =
1, . . . , 29. Table 5 in [51] contains values ofGz(n),Gz(n)/R(n), andG(n)/R(n)
for n = 1, . . . , 29.

We remark that a zerofree degree sequence belongs to a graph not containing
isolated vertex, therefore the number of zerofree graphical degree sequences

250 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

Gz(n) is at the same time also the number of degree sequences of simple
graphs, not containing isolated vertex.

There are several classic asymptotic results, e.g. due to Bender and Canfield
[7], Bollobás [17, 18, 19], Harary and Palmer [41], Kleitman and Winston
[56, 60], Reid [78], Winston and Kleitman [91]. A modern direction is to get
approximate results by sampling of random graphs (see e.g. the papers of
Erdős, Király and Miklós [34], further of Miklós, Erdős and Soukup [?].

An interesting connected problem is the characterization of pairs of different
directed graphs having a pair of prescribed indegree and outdegree sequences
[8, 9, 10, 11, 12, 14, 15, 20, 40, 72, 76, 81].

Another interesting related questions are the unicity of the realizations of
the degree sequences [29, 55, 62, 82] and the parallel realization of degree
sequences [1].

Several recent papers consider the problem of approximate enumeration of
the number of all realizations of simple graphs (see e.g. [13, 34, 35, 36, 37, 38,
59, 71]). In 1978 Bender and Canfield [7] characterized the asymptotic number
of realizations of given graphical degree sequences, while in 2012 Zoltán Király
[58] proposed an algorithm which with polynomial delay lists all realizations
of a given graphical sequence.

2.2 Earlier algorithmic results

In this subsection the linear Havel-Hakimi algorithm (HHL) based on Havel-
Hakimi theorem [39, 42] and the enumerating Erdős-Gallai algorithm (EGE)
based on Erdős-Gallai theorem [32] are shortly described.

2.2.1 Linear Havel-Hakimi algorithm (HHL)

In a previous paper [52] we described the classical Havel-Hakimi [39, 42] and
Erdős-Gallai [32] algorithms and their some improvements as linear Erdős-
Gallai (EGL) and jumping Erdős-Gallai (EGLJ) algorithms.

it is worth to remark that our linear Erdős-Gallai algorithm is applied in the
solution of different problems connected with degree sequences [5, 6, 21, 31].

Here we present the linear version of Havel-Hakimi algorithm (HHL) [46]
and compare it with the previous linear algorithms EGL and EGLJ [52]. It is
important to remark that this linear version of HH only tests the investigated
sequences without their reconstruction.

In the worst case the original Havel-Hakimi algorithm requires quadratic
time to test the (0, 1, n)-regular sequences. Using the new concepts weight

Parallel enumeration of degree sequences of simple graphs. II 251

point and reserve we reduced the worst running time to O(n).
Let s = (s1, . . . , sn) be a potential graphical sequence. The definition of

the weight point wi belonging to si was introduced in [52] in connection with
Erdős-Gallai-Linear: if s1 ≥ i, then wi is the largest k (1 ≤ k ≤ n) having
the property sk ≥ i. But if s1 < i, then wi = 0. EGL exploits the property wi
ensuring that if i ≤ wi, then the key expression min j, sk in the Erdős-Gallai
theorem equals i, otherwise equals sk.

In HHL the weight point wi determines the increment of the tail capacity
when we switch to the investigation of the next element of s.

The reserve ri belonging to si is defined as the unused part of the actual
tail capacity and can be computed by the formulas

r1 = w1 − 1− s1 (15)

and
ri = wi + ri−1 − si for 2 ≤ i ≤ n− 1. (16)

Theorem 5 The running time of Havel-Hakimi-Linear is in best case
Θ(1), and in worst case it is Θ(n).

Proof. If the condition in line 1 or 3 holds, then the running time is Θ(1).
If not, then we decrease the actual w at most n times and the remaining
operations require O(1) operations for all reductions. �

2.2.2 Enumerating Erdős-Gallai algorithm (EGE)

A classical problem of the graph theory is the enumeration of the degree
sequences of different graphs—among others simple graphs. For example The
On-Line Encyclopedia of Integer Sequences [84] contains for n = 1, . . . , 30

vertices the number of degree sequences of simple graphs (the values for n =
20, . . . , 23 were set in July of 2011 by Nathann Cohen, in November 15, 2011
for 24, . . . , 29 and in 29 July of 2013 for n = 30 by us [48]).

We applied the new quick EGL to get these numbers for larger values of n.
Our starting point was to test all regular sequences and so to enumerate the

graphical ones. Equation 1 gives the number of regular sequences.
According to Erdős-Gallai theorem [32] the sum of the elements of a graph-

ical sequence is always even. Therefore it is sufficient to test only the even
sequences. In 1987 Ascher [2] derived Lemma 1, containing an explicit formula
for the number of even sequences E(n).

According to Lemma 2 it is enough to test only the zerofree even sequences.

252 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

This lemma was the base of Erdős-Gallai Enumerative algorithm (EGE)
used to enumerate the graphical sequences for n = 23, . . . , 29 [51].

We enumerated the graphical sequences of simple graphs on n = 30 and 31
vertices using algorithm EGE2. The running time of EGE was substantially
(with about 30 %) decreased due to Lemma 9.

We prepare the enumeration of degree sequences of simple graphs on 32
vertices. The running time of EGE2 would be about 320 years for a computer
with one processor having 2,2 GHz speed. We wish to decrease the running
time of EGE2 using Lemmas 10 and 11.

2.3 Earlier simulation results

The papers [44, 45, 46, 51, 52, 66] and OEIS [64, 73, 74] contain many simu-
lation results. We describe them together with the new results in Subsection
3.3.

It is worth to mention other methods of enumeration of graph sequences as
generation of random graphs (e.g. [65] and generation of graphical partitions
(see e.g. [3, 4, 30, 33].

3 New results

In this section we describe the new mathematical and simulation results.

3.1 New enumerative results

At first we give a new formula for the number of zerofree even sequences.
This formula is more sophisticated than Ascher’s formula, and its application
requires more time, but it has the adventage that we can extend it to a formula
for Ez(n). Let s be an n-even sequence and let s ′ = (s ′1, . . . , s

′
n) be defined by

s ′i = si+n−i for i = 1, . . . , n. Then the number of different possible sequences
s is E(n) and the number of different sequences s ′ is R(n).

If j = 0, 1, 2, or 3 and n = 4k+ j, then let E(n) be denoted by E(k, j).

Lemma 6 If n ≥ 1 and n = 4k+ j, then

E(k, 0) =

2k−1∑
i=0

(
4k− 1

2i

)(
4k

4k− 2i

)
, (17)

E(k, 1) =

2k∑
i=0

(
4k

2i

)(
4k+ 1

4k− 2i+ 1

)
, (18)

Parallel enumeration of degree sequences of simple graphs. II 253

E(k, 2) =

2k∑
i=0

(
4k+ 1

2i+ 1

)(
4k+ 2

4k− 2i+ 1

)
, (19)

E(k, 3) =

k∑
i=0

(
4k+ 2

2i+ 1

)(
4k+ 3

4k− 2i+ 2

)
. (20)

Proof. Let
n∑
i=1

si = S(s) and
n∑
i=1

s ′i = S
′(s). (21)

According to the value of j we consider four cases. Since s is an even se-
quence, therefore S(s) is even in all cases.

1. If j = 0, then

S ′(s) = S(s) +
4k−1∑
i=0

i = S(s) + 2k(4k− 1), (22)

and so S(s ′) is also even, therefore it contains an even number of odd
elements. The interval [0, 8k − 2] contains 8k − 1 elements and among
them 4k even and 4k − 1 odd elements, so for s ′ we can choose 2i odd
elements from 4k− 1 candidates and 4k− 2i (i = 0, 1, . . . , 2k− 1) even
elements from 4k+ 1 candidates, so

E(k, 0) =

2k−1∑
i=0

(
4k− 1

2i

)(
4k

4k− 2i

)
. (23)

2. If j = 1, 2 or j = 3, then the proof is similar to the proof in the first
case.

�

For example let n = 4, then k = 1, j = 0 and

E(4) = E(1, 0) =

1∑
i=0

(
3

2i

)(
4

4− 2i

)
= 1 · 1+ 3 · 6 = 19. (24)

As another example let n = 6, then k = 1, j = 2 and

E(6) =

2∑
i=0

(
5

1

)(
6

3

)
+

(
5

5

)(
6

1

)
= 530+ 200+ 6 = 236. (25)

254 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

Let the number of zerofree even sequences denoted by Ez(n). Let q =
(q1, . . . , qn) be a zerofree n-even sequence and let q ′ = (q ′

1, . . . , q
′
n) be defined

by q ′
i = qi + n − i for i = 1, . . . , n. Then the number of different possible

sequences q is Ez(n) and the number of different sequences q ′ is Rz(n).

Theorem 7 Let n = 4k + j for k = 0, 1, . . . and j = 0, 1, 2, 3, further let
Ez(n) be denoted by Ez(k, j). Then

Ez(k, 0) =

2k−1∑
i=0

(
4k− 1

2i

)(
4k− 1

4k− 2i

)
, (26)

Ez(k, 1) =

2k∑
i=0

(
4k

2i

)(
4k

4k− 2i+ 1

)
, (27)

Ez(k, 2) =

2k∑
i=0

(
4k+ 1

2i+ 1

)(
4k+ 1

4k− 2i+ 1

)
, (28)

Ez(k, 3) =

2k+1∑
i=0

(
4k+ 2

2i+ 1

)(
4k+ 2

4k− 2i+ 2

)
. (29)

Proof. Let
n∑
i=1

qi = Q(q) and
n∑
i=1

q ′
i = Q

′(q). (30)

According to the value of j we consider four cases. Since q is an even se-
quence, therefore Q(q) is alwys even.

1. If j = 0, then

Q ′(q) = Q(q) +

4k−1∑
i=0

i = Q(q) + 2k(4k− 1) (31)

is even, therefore the number of odd elements of q ′ is also even. The
interval [1, 8k−2] contains 8k−2 elements and among them 4k−1 even
and 4k − 1 odd elements, so for q ′ we can choose 2i odd elements from
4k − 1 candidates and 4k − 2i (i = 0, . . . , 2k − 1) even elements from
4k− 1 candidates, so we get (26).

Parallel enumeration of degree sequences of simple graphs. II 255

2. If j = 1, then

Q ′(q) = Q(q) +
4k∑
i=0

i = Q(q) + 2k(4k+ 1), (32)

is even, therefore the number of odd elements of q ′ is also even. The
interval [1, 8k] contains 8k elements and among them 4k odd and 4k even
elements, so for q ′ we can choose 2i odd elements from 4k candidates
and 4k − 2i + 1 (i = 0, . . . , 2k) even elements from 4k − 1 candidates,
so we get (27).

3. If j = 2, then

Q ′(q) = Q(q) +

4k+1∑
i=0

i = Q(q) + (2k+ 1)(4k+ 1) (33)

is odd, therefore the number of odd elements of q ′ is also odd. The
interval [1, 8k+2] contains 8k+2 elements and among them 4k+1 even
and 4k + 1 odd elements, so for q ′ we can choose 2i + 1 odd elements
from 4k+2 candidates and 4k−2i−1 (i = 0, . . . , 2k−1) even elements
from 4k+ 1 candidates, so we get (28).

4. If j = 3, then

Q ′(q) = Q(q) +

4k+2∑
i=0

i = Q(q) + (2k+ 1)(4k+ 3), (34)

and so Q(q ′) is also odd, therefore q ′ contains an odd number of odd
elements. The interval [1, 8k + 4] contains 8k + 4 elements and among
them 4k+2 even and 4k+2 odd elements, so for q ′ we can choose 2i+1
odd elements from 4k+ 2 candidates and 4k− 2i− 1 (i = 0, . . . , 2k− 1)
even elements from 4k+ 2 candidates, so

Ez(k, 3) =

2k+1∑
i=0

(
4k+ 2

2i+ 1

)(
4k+ 2

4k− 2i+ 2

)
. (35)

�

Table 1 shows the values of R(n)/R(n + 1), Rz(n)/Rz(n + 1), E(n)/R(n),
E(n)/E(n+ 1), Ez(n)/Ez(n+ 1), and Ez(n)/Rz(n) for n = 1, . . . , 32.

256 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

n
R(n)

R(n+1)
Rz(n)

Rz(n+1)
E(n)
R(n)

E(n)
E(n+1)

Ez(n)
Ez(n+1)

Ez(n)
Rz(n)

1 0.333333 0.000000 1.00000000 0.000000 0.000000 − − −
2 0.300000 0.250000 0.66666667 0.500000 0.500000 1.000000

3 0.287714 0.266667 0.60000000 0.222220 0.222222 0.500000

4 0.277778 0.257857 0.487179 0.321427 0.321429 0.600000

5 0.270562 0.266667 0.523810 0.254545 0.254545 0.500000

6 0.269231 0.265151 0.510823 0.277778 0.277778 0.523810

7 0.266667 0.263736 0.505828 0.260698 0.260698 0.500000

8 0.264706 0.262500 0.502720 0.265559 0.265559 0.505828

9 0.263158 0.261437 0.501440 0.260687 0.260687 0.500000

10 0.261905 0.260526 0.500682 0.261276 0.261276 0.501440

11 0.260870 0.259740 0.500357 0.259555 0.259555 0.500000

12 0.260000 0.259058 0.500171 0.259243 0.259243 0.500357

13 0.259259 0.258461 0.500089 0.258415 0.258416 0.500000

14 0.258621 0.257937 0.500043 0.257982 0.257982 0.500089

15 0.258065 0.257471 0.500022 0.257460 0.257460 0.500000

16 0.257578 0.257056 0.500011 0.257068 0.257068 0.500022

17 0.257143 0.256684 0.500005 0.256682 0.256682 0.500000

18 0.256757 0.256349 0.500003 0.256352 0.256352 0.500006

19 0.256410 0.256046 0.500001 0.256045 0.256045 0.500000

20 0.256098 0.255769 0.500001 0.255770 0.255770 0.500001

21 0.255814 0.255517 0.50000034 0.255517 0.255517 0.500000

22 0.255556 0.255285 0.50000016 0.255286 0.255286 0.50000034

23 0.255319 0.255072 0.50000009 0.255072 0.255072 0.50000000

24 0.255102 0.254876 0.50000004 0.254876 0.254876 0.50000000

25 0.254902 0.254694 0.50000002 0.254694 0.254694 0.50000009

26 0.254717 0.254525 0.50000001 0.254525 0.254525 0.50000000

27 0.254545 0.254368 0.50000001 0.254368 0.254368 0.50000000

28 0.254386 0.254221 0.50000000 0.254221 0.254221 0.50000000

29 0.254237 0.254083 0.50000000 0.254083 0.254083 0.50000000

30 0.254098 0.253854 0.50000000 0.253955 0.253955 0.50000000

31 0.253968 0.253834 0.50000000 0.253834 0.253834 0.50000000

32 0.253846 0.253720 0.50000000 0.253720 0.253720 0.50000000

Table 1: The values of R(n)/R(n+1), Rz(n)/Rz(n+1), E(n)/R(n), E(n)/E(n+
1), Ez(n)/Ez(n+ 1), and Ez(n)/Rz(n) for n = 1, . . . , 32

It is remarkable that in R(101)/R(102) and Rz(101)/Rz(102) the first nine
decimal digits are equal.

For example let n = 4, then k = 1, j = 0 and

Ez(4) = Ez(1, 0) =

(
3

0

)(
3

4

)
+

(
3

2

)(
3

2

)
= 1 · 0+ 3 · 3 = 9. (36)

If n = 5, then k = 1, j = 1 and

Ez(5) =

(
4

0

)(
4

5

)
+

(
4

2

)(
4

3

)
+

(
4

4

)(
4

1

)
= 0+ 24+ 4 = 28. (37)

Parallel enumeration of degree sequences of simple graphs. II 257

If n = 6, then k = 1, j = 2 and

Ez(6) =

(
5

1

)(
5

5

)
+

(
5

3

)(
5

3

)
+

(
5

5

)(
5

1

)
= 5+ 100+ 5 = 110. (38)

If n = 7, then k = 1, j = 3 and

Ez(7) =

(
6

1

)(
6

6

)
+

(
6

3

)(
6

4

)
+

(
6

5

)(
6

2

)
= 6+ 300+ 90 = 396. (39)

If n = 8, then k = 2, j = 0 and

Ez(8) =

(
7

0

)(
7

8

)
+

(
7

2

)(
7

6

)
+

(
7

4

)(
7

4

)
+

(
7

6

)(
7

2

)
= 1519. (40)

Simulaton results in Table 1 show, that if 1 ≤ n ≤ 32 and n is odd, then
Ez(n)/Rz(n) = 0.5. This property is true for larger odd n’s too.

Lemma 8 If 1 ≤ k ≤ 600, then

Ez(2k− 1)

Rz(2k− 1)
= 0.5. (41)

Proof. See the computed values of Rz(n) and Ez(n) in [68]. �

Table 2 contains the ratios Ez(n)/Gz(n) for n = 23, . . . , 29 and the ratios
T(n)/Gz(n) for n = 30 and n = 31.

The data in Table 2 show that the function Gz/Ez) is decreasing. We suppose
that this function tends monotonically decreasing to zero when n tends to
infinity (in a similar way as the function G(n)/E(n) tends to zero according
to Corollary 23 [52, page 260].

Table 3 contains the values of Gz(n), T(n), and Gz(n)/T(n) for n = 30 and
n = 31: the ratio of the graphical and tested sequences is much higher and
these ratios are increasing. These changes are dut to the fact that EGE2 jumps
many nongraphical zerofree ebven sequences withous testing them.

3.2 New algorithmic results

Using the following Lemma 9 later we will further fasten EGE.
If b = (b1, . . . , bn) is a regular sequence, then c = (c1, . . . , cn) is called

lexicographically i-smaller, than b if there exist indices i and j such that

1 ≤ i < j <≤ n, (42)

258 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

n Gz(n) Ez(n) Gz(n)/Ez(n)

17 130 038 230 282 861 360 0.459724

18 499 753 855 1 101 992 870 0.453500

19 1 924 912 894 4 298 748 300 0.447784

20 7 429 160 296 16 789 046 494 0.442500

21 28 723 877 732 65 641 204 200 0.437589

22 111 236 423 288 256 895 980 068 0.433002

23 431 403 470 222 1 006 308 200 040 0.428699

24 1 675 316 535 350 3 945 186 233 014 0.424648

25 6 513 837 679 610 15 478 849 767 888 0.420821

26 25 354 842 100 894 60 774 332 618 300 0.417197

27 98 794 053 269 694 238 775 589 937 976 0.413752

28 385 312 558 571 890 938 702 947 395 204 0.410473

29 1 504 105 116 253 904 3 692 471 324 505 040 0.407344

30 5 876 236 938 019 300 14 532 512 180 224 216 0.404351

31 22 974 847 474 172 100 57 224 797 531 384 560 0.400148

Table 2: The values of Gz(n), Ez(n), and Gz(n)/Ez(n) for n = 17, . . . , 31

n Gz(n) T(n) Gz(n)/T(n)

31 5 876 236 938 019 300 6 790 865 476 867 340 86, 531487

32 22 974 847 471 172 100 26 507 499 250 791 700 86, 673010

Table 3: The values of Gz(n), T(n), and Gz(n)/T(n) for n = 30 and n = 31

further

ck = bk for k = 1, . . . , i, (43)

and
n∑

k=i+1

ck ≤
n∑

k=i+1

bk. (44)

Lemma 9 If b = (b1, . . . , bn) and is a nongraphical sequence and c = (c1, . . . , cn)
is lexicographically i-smaller than b for some i (1 ≤ i < n, then c is also
graphical.

Proof. See [54]. �

Using this lemma the running time of EGLJ decreased substantially. It was
very useful when we enumerated the edge sequences of the simple graphs on

Parallel enumeration of degree sequences of simple graphs. II 259

30 vertices between June 21 and 18 July of 2013 and on 31 vertices between
18 July and 24 August (the results see in Table 4).

Using the results of Tripathi and Vijay [52, Lemma 6 and Theorem 7] we can
substantially decrease the average testing time of the zerofree even sequences.
It is known that the expected number of checking points proposed by Tripathi
and Vijay is about n/2 [52].

Algorithm EGE2 [51, pages 274–277] used in the enumerations for n = 30

and n = 31 vertices is based on Lemma 9.
We develop algorithm EGE3 for the enumeration of the degree sequences in

the case of 32 vertices. EGE3 will be based on Lemmas 10 and 11.

Lemma 10 If the investigated by EG3 sequence is graphical and has the form
b = bc1i1 b

c2
i2

and the upper bound c1(c1−1) of the inner capacity of the c1-length
head of b covers Hn, that is if

c1(c1 − 1) ≥ Hn (45)

then all sequences starting with bc11 are graphical.

Proof. See [54]. �

The next lemma allows to enumerate many graphical sequences without
their time consuming testing.

Lemma 11 If the investigated by EG3 graphical sequence has the form b =
bc11 b

c2
2 . . . b

cp
p 1

cp+1, where p ≥ 1, b1 > b2 > · · · > bp ≥ 3, c1, . . . , cp+1 ≥ 1,
then all zerofree even sequences starting with the prefix

bc11 b
c2
2 . . . b

cp−1

p−1 b
cp−1
p (bp − 1)

are also graphical.

Proof. See [54]. �

3.3 New simulation results

Table 4 contains the values of Gz(n) and G(n) for n = 1, . . . , 31. The values
for n = 1, . . . , 9 were computed by E. Weisstein, for n = 10, . . . , 20 by G.
Royle in 2006, for n = 21, 22 and n = 23 by F. Ruskey in 2006, for n =
24, . . . , 29 by T. Matuszka in January of 2013, for n = 30 by L. Lucz in July
of 2013 and for n = 31 also by L. Lucz in September of 2013 [48, 50, 51, 52, 79].

Column 4 of Table 4 supports the following conjecture formulated by Gordon
Royle in 2012.

260 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

Conjecture 12 (Royle, 2012). If n tends to infinity, then Gz(n + 1)/Gz(n)
tends to 4.

We think, that the following conjecture is also true.

Conjecture 13 If n tends to infinity, then G(n+ 1)/G(n) tends to 4.

We observed that when we enumerated these sequences, that in the case
n = 30 vertices 85.40 percent, while in the case n = 31 vertices 86.67 percent
of the investigated potential degree sequences was graphical. Therefore it is
useful if we know without a linear time testing that a given tested sequence is
graphical.

Figure 1 shows the number of the tested and the graphical sequences as the
function of the index of the slices when n = 30.

Figure 1: The number of tested (trimmed even) sequences and the number of
graphical sequences as the function of the index of slices when n = 30

Figure 2 shows the similar data for n = 31.
We remark that on the site of the journal the Figures 1 and 2 are color (the

graphical sequences are represented by red, while the tested sequences by blue
color).

Table 5 contains the data of PC’s used for the enumeration of Gz(31), where
Comp. alg. = Computer Algebra, Prog. lang. = Program languages, Core =

Parallel enumeration of degree sequences of simple graphs. II 261

n Gz(n) G(n) Gz(n+1)
Gz(n)

G(n+1)
G(n)

1 0 1 0.000000 0.500000

2 1 2 0.500000 0.500000

3 2 4 3.500000 3.750000

4 7 11 2.857143 2.818182

5 20 31 3.550000 3.290323

6 71 102 3.380282 3.352941

7 240 342 3.629167 3.546784

8 871 1 213 3.614237 3.595218

9 3 148 4 361 3.702351 3.672552

10 11 655 16 016 3.717889 3.705544

11 43 332 59 348 3.756323 3.742620

12 162 769 222 117 3.773434 3.786674

13 614 198 836 315 3.794439 3.802710

14 2 330 537 3 166 852 3.808465 3.817067

15 8 875 768 12 042 620 3.822189 3.828918

16 33 924 859 45 967 479 3.833125 3.839418

17 130 038 230 176 005 709 3.843130 3.848517

18 499 753 855 675 759 564 3.851172 3.856630

19 1 924 912 894 2 600 672 458 3.859479 3.863844

20 7 429 160 296 10 029 832 754 3.866369 3.870343

21 28 723 877 732 38 753 710 486 3.872612 3.876212

22 111 236 423 288 149 990 133 774 3.878257 3.881553

23 431 403 470 222 581 393 603 996 3.883410 3.886431

24 1 675 316 535 350 2 256 710 139 346 3.888124 3.890907

25 6 513 837, 679 610 8 770 547 818 956 3.894458 3.895031

26 25 354 842 100 894 34 125 389 919 850 3.895503 3.897978

27 98 794 053 269 694 132 919 443 189 544 3.900159 3.898843

28 385 312 558 571 890 518 232 001 761 434 3.903597 3.902238

29 1 504 105 116 253 904 2 022 337 118 015 338 3.906814 3.905666

30 5 876 236 938 019 300 7 898 574 056 034 638 3.909789 3.908734

31 22 974 847 474 172 100 30 873 429 530 206 738 −−− −−−

Table 4: The number Gz(n) of zerofree graphical sequences and the number
G(n) of graphical sequences for n = 1, . . . , 31, further the ratiosGz(n)/Gz(n+
1) and G(n)/G(n+ 1) for n = 1, . . . , 30

Core(TM)Kása 1 = Z. Kása (Cluj), Kása 2 = Z. Kása (Tg.-Mureś), Kása 3 =
Z. Kása // (Tg.-Mureś), Sp1 = Speed of a machine in GHz, Sp2 = Speed of
the laboratory in GFLOPS, Intel (R) = Intel (R) Xeon (R).

262 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

Figure 2: The number of tested (trimmed even) sequences and the number of
graphical sequences as the function of the index of slices when n = 31

The total number of machines was 350.
Table 6 contains the algorithms, running times and number of jobs in the

case n = 25, . . . , 31.

3.4 The growth of the functions R(n), E(n), Rz(n), Ez(n), G(n)
and Gz(n)

In this subsection we present concrete values of the functions characterizing
the sizes of the investigated sets of sequences.

The number R(n) of the regular sequences is presented in Figure 1 of [52]
for n = 1, . . . , 38 and up to n = 1200 in [47].

The values of the zerofree regular Rz(n) can be quickly computed using
formula (22) in [47]. The values for n = 1, . . . , 1200 can be found in [68].

The number E(n) of even sequences is presented in Figure 1 of [52] for
n = 1, . . . , 38 and up to 1000 in [49] and up to n = 1200 in [68].

The number Ez(n) of the zerofree even sequences is contained in Figure 3
of [52] for n = 1, . . . , 20 (these data are the results of brute force simulation)
and up to n = 1200 in [68].

The order of growth of these functions is Θ(4n/n).
According to theorem of Burns [22, 52] the order of growth of G(n) is smaller

(see 12).

Parallel enumeration of degree sequences of simple graphs. II 263

Laboratory Number Type Sp1 Sp2

Central 87 Core 2 Duo 2.93 2041
Comp. algebra 13 Core 2 Duo 2.13 403
Data base 34 Core 2 Duo 3.25 1631
Graphical 16 Core 2 Quad 2.33 597
Prog. lang. 54 Core 4 Duo 3.25 6621
PC1 20 Core i5-2320 3.00 1920
PC3 28 Core i3-2100 3.10 1389
PC4 19 Core 2 Duo 2.93 446
PC5 19 Core 4 Duo 2.93 446
PC6 18 Core 2 Quad 2,33 672
PC7 18 Core 2 Quad 2.40 691
PC9 19 Core 2 Quad 2.66 810
Server 1 Core i5 650 3.20 26

Kása 1 1 AMD K7 0.75 8
Kása 2 1 Intel (R) 3.00 50
Kása 3 1 Intel (R) 2.13 23

P. Ősze 1 Core 4 Duo 2.20 37

Total 350 17811

Table 5: Names of laboratories, number of machines, type of machines, speed
of machines in GHz, speed of laboratories in GLOPS, used in the case n = 31

The known values of G(n) and Gz(n) are summarized in Table 4.

3.5 Further plans

Our new program (EGE3) is able to jump the test of some part of zerofree
graphical sequences [54]. Due to this property of the new program EGE3 the
number of tested sequences is smaller than the number of zerofree graphical
ones (see Table 7).

4 Summary

The log files and source codes of our programs can be found at

http://people.inf.elte.hu/lulsaai/Holzhacker .

http://people.inf.elte.hu/lulsaai/Holzhacker

264 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

n Algorithm Running time Running time Number of jobs
(in days) (in years)

25 EGE 26 0.0712 435
26 EGE 70 0.1918 435
27 EGE 316 0.8657 435
28 EGE 1 130 3.0959 2 001
29 EGE 6 733 18.4466 15 119

30 EGE2 7 221 19.7835 351 155

31 EGE2 32 702 89.5954 448 957

Table 6: Number of vertices, used algorithm, total running time (in days and
in years) and number of jobs

n T(n) Gz(n)

3 3 2
4 8 7
5 24 20
6 77 71
7 245 240
8 852 871
9 2991 3148

10 10807 11655
11 39407 43332
12 145673 162769
13 542531 614198
14 2036196 2330537
15 7684164 8875768
16 29143362 33924859
17 110973050 130038230
18 424055902 499753855
19 1625265958 1924912894
20 6245498873 7429160296

Table 7: Number of vertices (n), number of tested sequences (T(n)) and num-
ber of zerofree graphical sequences (Gz(n))

Parallel enumeration of degree sequences of simple graphs. II 265

Acknowledgements. The authors are indebted to Faculty of Informatics
of Eötvös Loránd University for the possibility to run the server and client
programs in its laboratories, further to Antal Sándor and Ferenc Saáry, Jr.
(Eötvös Loránd University, Faculty of Informatics) for their technical help, for
Bálint Csergő (Ulstream Hungary Kft.) for the conversion of the figures, for
Zoltán Kása (Sapientia Hungarian University of Transylvania, Campus in Cluj
and Tg.-Mureś) and for Péter Ősze (Ustream Hungary Kft.) for running the
clients and Kristóf Szabados (Ericsson Hungary) for improving the jumping
algorithm.

References

[1] S. R. Arikati, A. Maheshwari, Realizing degree sequences in parallel, SIAM J.
Discrete Math. 9, 2 (1996) 317–338. ⇒250

[2] M. Ascher, Mu torere: an analysis of a Maori game, Math. Mag. 60, 2 (1987)
90–100. ⇒248, 251

[3] T. M. Barnes, C. D. Savage, A recurrence for counting graphical partitions, Elec-
tron. J. Combin. 2 (1995), Research Paper 11, 10 pages (electronic). ⇒252

[4] T. M. Barnes, C. D. Savage, Efficient generation of graphical partitions, Discrete
Appl. Math. 78, 1–3 (1997) 17–26. ⇒252

[5] M. D. Barrus, Hereditary unigraphs and Erdős-Gallai inequalities.
arXiv:1302.2703v1 [mathCO] 12 February 2013, 23 pages. ⇒250

[6] M. D. Barrus, S. G. Hartke, K. F. Jao, D. B. West, Length threshold s for graphic
lists given fixed largest and smallest entries and bounded gaps, Discrete Math.
312, 9 (2012) 1494–1501. ⇒250

[7] E. A. Bender, E. N. Canfield, The asymptotic number of labeled graphs with
given degree sequences, J. Comb. Math. 24 (1978) 296–307. ⇒250

[8] C. Berge, Graphs and Hypergraphs, North Holland, 1973. ⇒246, 250
[9] C. Berge, Graphs (third edition), North Holland, 2001 (first edition: 1989). ⇒

246, 250
[10] A. Berger, Directed degree sequences, PhD Dissertation, Martin-Luther-

Universität Halle-Wittenberg, 2011. http://wcms.uzi.uni-halle.de/

download.php?down=22851&elem=2544689. ⇒250
[11] A. Berger, A note on the characterization of digraph sequences,

arXiv, arXiv:1112.1215v1 [math.CO] (6 December 2011). ⇒250
[12] A. Berger, A note on the characterization of digraphic sequences, Discrete Math.

314 (2014) 38–41. ⇒250
[13] A. Berger, M. Müller-Hannemann, Uniform sampling of digraphs with a fixed

degree sequence, in (ed. D. M. Thilikos) 36th Int. Workshop on Graph Theoretic
Concepts in Computer Science (June 28 - 30, 2010, Zarós, Crete, Greece), LNCS
6410 (2010) 220–231. ⇒250

http://www4.ncsu.edu/~savage/
http://www.combinatorics.org/Volume_2/volume2.html#R11
http://www.combinatorics.org/Volume_2/volume2.html#R11
http://www4.ncsu.edu/~savage/
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://math.byu.edu/~barrus/
http://www.sciencedirect.com/science/journal/0012365X
http://en.wikipedia.org/wiki/Claude_Berge
http://en.wikipedia.org/wiki/Claude_Berge
http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/annabell_berger/
http://wcms.uzi.uni-halle.de/download.php?down=22851&elem=2544689
http://wcms.uzi.uni-halle.de/download.php?down=22851&elem=2544689
http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/annabell_berger/
http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/annabell_berger/
http://www.sciencedirect.com/science/journal/0012365X
http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/annabell_berger/
http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/muellerh/

266 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

[14] A. Berger, M. Müller-Hannemann, Dag characterizations of directed degree se-
quences, Technical Report 2011/6 of University Halle-Wittenberg, Institute of
Computer Science. ⇒250

[15] A. Berger, M. Müller-Hannemann, How to attack the NP-complete
dag realization problems in practice. arXiv, arXiv:1203.36v1, 2012.
http://arxiv.org/abs/1203.3636 ⇒250

[16] N. Bödei, Degree sequences of graphs (Hungarian), Mathematical master thesis
(supervisor A. Frank), Dept. of Operation Research of Eötvös Loránd University,
Budapest, 2010, 43 pages. ⇒246

[17] B. Bollobás, The distribution of the maximum degree of a random graph, Dis-
creteMath. 32, 2 (1980) 201–203. ⇒250

[18] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs, European J. Comb. 1, 4 (1980) 311–316. ⇒250

[19] B. Bollobás, Degree sequences of random graphs, Discrete Mathematics 33, 1
(1981) 1–19. ⇒250

[20] A. Brualdi, Matrices of zeros and ones with fixed row and column sum vectors,
Linear Alg. Appl. 33 (1980) 159–231. ⇒250

[21] J. C. Brunson, The S-metric, the Beichl-Croteaux approximation and preferential
attachment, arXiv :1308.4067v1 [mathCO] 19 August 2013. ⇒250

[22] J. M. Burns, The number of degree sequences of graphs, PhD Dissertation, MIT,
2007. ⇒249, 262

[23] G. Cairns, S. Mendan, An improvement of a result of Zverovich-Zverovich, arXiv
arXiv:1303.2144v1 [math.CO], 5 pages. ⇒246

[24] G. Cairns, S. Mendan, Degree sequences for graphs with loops, arXiv
arXiv:1303.2145v1 [math.CO], 9 pages. ⇒246

[25] G. Cairns, S. Mendan, Y. Nikolayevsky, A sharp improvement of a result of
Zverovich-Zverovich, arXiv arXiv:1310.3992v1 [math.CO], 7 pages. ⇒246

[26] S. A. Choudum, A simple proof of the Erdős-Gallai theorem on graph sequences,
Bull. Austral. Math. Soc. 33 (1986) 67–70. ⇒246

[27] V. Chungphaisan, Conditions for sequences to be r-graphic, Discrete Math. 7
(1974) 31–39. ⇒246

[28] N. Cohen, Number of distinct degree sequences among all n-vertex graphs
with no isolated vertices: new values for n = 20, 21, 22, and 23, in: ed.
by N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2012,
http://oeis.org/A095268. ⇒246

[29] P. Das, Characterization of unigraphic and unidigraphic integer-pair sequences,
Characterization of unigraphic and unidigraphic integer-pair sequences Discrete
Math. 37, 1 (1981) 51–66. ⇒250

[30] C. I. Del Genio, H. Kim, Z. Toroczkai, K. E. Bassler, Efficient and exact sampling
of simple graphs with given arbitrary degree sequence, PLoS ONE 5, 4 e10012
(2010). ⇒252

[31] D. Dimitrov, Efficient computation of trees with minimal atom-bound connec-
tivity index. arXiv :1305.1155v2 [csDM] 4 October 2013. ⇒250

http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/annabell_berger/
http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/muellerh/
http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/annabell_berger/
http://www.informatik.uni-halle.de/arbeitsgruppen/datenstrukturen/mitarbeiter/muellerh/
http://www.cs.elte.hu/~frank/
http://en.wikipedia.org/wiki/B$%$C3$%$A9la_Bollob$%$C3$%$A1s
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://en.wikipedia.org/wiki/B$%$C3$%$A9la_Bollob$%$C3$%$A1s
http://en.wikipedia.org/wiki/B$%$C3$%$A9la_Bollob$%$C3$%$A1s
http://www.sciencedirect.com/science/journal/0012365X
http://www.math.wisc.edu/~brualdi/
http://www.sciencedirect.com/science/journal/00243795
http://www.math.vt.edu/people/jabrunso/
http://dspace.mit.edu/bitstream/handle/1721.1/38882/166267576.pdf?sequence=1
http://web.mit.edu/
http://arxiv.org/abs/1303.2144
http://arxiv.org/abs/1303.2145
http://arxiv.org/abs/1310.3992
http://journals.cambridge.org/action/displayJournal?jid=BAZ
http://www.sciencedirect.com/science/journal/0012365X
http://www2.research.att.com/~njas/
http://oeis.org/A095268
http://www.sciencedirect.com/science/journal/0012365X
http://www.biond.org/user/22
http://icensa.nd.edu/kim.shtml
http://obelix.phys.nd.edu/~toro/
http://phys.uh.edu/people/faculty/index.php?155622-961-5=kbassler
http://www.plosone.org/article/info$%$3Adoi$%$2F10.1371$%$2Fjournal.pone.0010012
http://www.plosone.org/home.action
http://www.inf.fu-berlin.de/inst/ag-ti/index.php?id=32&no_cache=1&tx_timembers_pi1$%$5BshowUid$%$5D=8

Parallel enumeration of degree sequences of simple graphs. II 267

[32] P. Erdős, T. Gallai, Graphs with vertices having prescribed degrees (Hungarian),
Mat. Lapok 11 (1960) 264–274. ⇒246, 250, 251

[33] P. Erdős, L. B. Richmond, On graphical partitions, Combinatorica 13, 1 (1993)
57–63. ⇒252

[34] P. L. Erdős, S. Z. Kiss, I. Miklós, On the swap-distances of different realizations
of a graphical degree sequence, Comb. Probab. Comp. 22, 3 (2013) 366–383. ⇒
250

[35] P. L. Erdős, Z. Király, I. Miklós, L. Soukup, Constructive sampling and count-
ing graphical realizations of restricted degree sequences, arXiv arXiv:13017523v3
[math.CO], 24 pages. ⇒250

[36] P. L. Erdős, I. Miklós, Z. Toroczkai, A simple Havel-Hakimi type algorithm to
realize graphical degree sequences of directed graphs, Electron. J. Combin. 17, 1
(2010) R66, 10 pages. ⇒250

[37] P. L. Erdős, I. Miklós, Z. Toroczkai, A decomposition based proof for fast mixing
of a Markov chain over balanced realizations of a joint degree matrix, arXiv,
arXiv:1307.5295v1 [math.CO], 2013, 18 pages. ⇒250

[38] C. Greenhill, A polynomial bound on the mixing time of a Markov chain for
sampling regular directed graphs, Electron. J. Combin. 18 &P234, 2011, 49 pages.⇒250

[39] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices
of a simple graph, J. SIAM Appl. Math. 10 (1962) 496–506. ⇒246, 250

[40] S. L. Hakimi, On the degrees of the vertices of a graph, F. Franklin Institute
279, 4 (1965) 290–308. ⇒250

[41] F. Harary, E. M. Palmer, Graphical Enumeration, Academic Press, New York
and London, 1973. ⇒250

[42] V. Havel, A remark on the existence of finite graphs (Czech), C̆asopis Pĕst. Mat.
80 (1955) 477–480. ⇒246, 250

[43] P. Hell, D. Kirkpatrick, Linear-time certifying algorithms for near-graphical se-
quences. Discrete Math. 309, 18 (2009) 5703–5713. ⇒246

[44] A. Iványi, Reconstruction of complete interval tournaments, Acta Univ. Sapien-
tiae, Inform. 1, 1 (2009) 71–88. ⇒246, 252

[45] A. Iványi, Reconstruction of complete interval tournaments. II, Acta Univ. Sapi-
entiae, Math. 2, 1 (2010) 47–71. ⇒246, 252

[46] A. Iványi, Degree sequences of multigraphs. Annales Univ. Sci. Budapest., Sect.
Comp. 37 (2012) 195–214. ⇒246, 250, 252

[47] A. Iványi, L. Lucz, G. Gombos, T. Matuszka C(2n + 1, n + 1): number of ways
to put n+ 1 indistinguishable balls into n+ 1 distinguishable boxes = number of
(n+ 1)-st degree monomials in n+ 1 variables = number of monotone maps from
1 . . n + 1 to 1 . . n + 1, in (ed. N. J. A. Sloane): The On-Line Encyclopedia of
the Integer Sequences. 2013. http://oeis.org/A001700. ⇒247, 262

[48] A. Iványi, L. Lucz, G. Gombos, T. Matuszka The number of degree-vectors for
simple graph. in (ed. N. J. A. Sloane): The On-Line Encyclopedia of the Integer
Sequences. 2013. http://oeis.org/A004251. ⇒246, 251, 259

http://www-history.mcs.st-and.ac.uk/Mathematicians/Erdos.html
http://hu.wikipedia.org/wiki/Gallai_Tibor
http://www.renyi.hu/~p_erdos/1961-05.pdf
http://www-history.mcs.st-and.ac.uk/Mathematicians/Erdos.html
http://www.combinatorica.hu/kezdolap.html
http://www.renyi.hu/~elp/
http://www.sztaki.hu/munkatars/niifUniqueIdq$%$3D008006255$%$2Cou$%$3DPeople$%$2Co$%$3DSZTAKI$%$2Co$%$3DNIIF$%$2Cc$%$3DHU/
http://www.renyi.hu/~elp/
http://www.cs.elte.hu/~kiraly/
http://www.sztaki.hu/munkatars/niifUniqueIdq$%$3D008006255$%$2Cou$%$3DPeople$%$2Co$%$3DSZTAKI$%$2Co$%$3DNIIF$%$2Cc$%$3DHU/
http://www.renyi.hu/~soukup/
http://www.renyi.hu/~elp/
http://www.sztaki.hu/munkatars/niifUniqueIdq$%$3D008006255$%$2Cou$%$3DPeople$%$2Co$%$3DSZTAKI$%$2Co$%$3DNIIF$%$2Cc$%$3DHU/
http://obelix.phys.nd.edu/~toro/
http://www.combinatorics.org/Volume_2/volume2.html#R11
http://www.renyi.hu/~elp/
http://www.sztaki.hu/munkatars/niifUniqueIdq$%$3D008006255$%$2Cou$%$3DPeople$%$2Co$%$3DSZTAKI$%$2Co$%$3DNIIF$%$2Cc$%$3DHU/
http://obelix.phys.nd.edu/~toro/
http://web.maths.unsw.edu.au/~csg/
http://www.combinatorics.org/
http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.jstor.org/action/showPublication?journalCode=jsociinduapplmat
http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.cs.sfu.ca/~pavol/
https://www.cs.ubc.ca/people/david-kirkpatrick
http://www.sciencedirect.com/science/journal/0012365X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-math/matematica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ac.inf.elte.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto: ggombos@inf.elte.hu
http://people.inf.elte.hu/tomintt/
http://www2.research.att.com/~njas/
http://oeis.org/A004251
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto: ggombos@inf.elte.hu
http://people.inf.elte.hu/tomintt/
http://www2.research.att.com/~njas/
http://oeis.org/A004251

268 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

[49] A. Iványi, L. Lucz, G. Gombos, T. Matuszka, Number of bracelets (turn over
necklaces) with n red, 1 pink and n− 1 blue beads; also reversible strings with n
red and n− 1 blue beads, in (ed. by N. J. A. Sloane), The On-Line Encyclopedia
of Integer Sequences, 2013. http://oeis.org/A005654. ⇒262

[50] A. Iványi, L. Lucz, G. Gombos, T. Matuszka, Number of distinct degree se-
quences among all n-vertex graphs with no isolated vertices: new values for
n = 24, 25, 26, 27, 28, and 29, in (ed. by N. J. A. Sloane): The On-Line Ency-
clopedia of Integer Sequences, 2013, http://oeis.org/A095268. ⇒247, 259

[51] A. Iványi, L. Lucz, T. Matuszka, S. Pirzada, Parallel enumeration of degree
sequences of simple graphs. Acta Univ. Sapientiae, Inform. 4, 2 (2012) 260–288.⇒247, 248, 249, 252, 259

[52] A. Iványi, L. Lucz, T. F. Móri, P. Sótér, On the Erdős-Gallai and Havel-Hakimi
algorithms. Acta Univ. Sapientiae, Inform. 3, 2 (2011) 230–268. ⇒245, 246, 247,
248, 249, 250, 251, 252, 257, 259, 262

[53] A. Iványi, S. Pirzada, Comparison based ranking, in: Algorithms of Informatics,
Vol. 3 (ed. A. Iványi), AnTonCom, Budapest 2011, 1209–1258. ⇒246

[54] A. Iványi, K. Szabados, Parallel enumeration of degree sequences (Hungarian).
Alk. Mat. Lapok, 40 pages, submitted. ⇒258, 259, 263

[55] R. H. Johnson, properties of unique realizations—a survey, Discrete Math. 3, 1
(1980) 185–192. ⇒250

[56] J. H. Kim, B. Piztttel, Confirming the Kleitman-Winston conjecture on the
largest coefficient in a q-Catalan number, J. Comb. Theory A 99, 2 (2000) 19–206.⇒250

[57] H. Kim, Z. Toroczkai, I. Miklós, P. L. Erdős, L. A. Székely: Degree-based graph
construction, J. Physics: Math. Theor. A 42 (2009), 392001, 10 pages. ⇒

[58] Z. Király, Recognizing graphic degree sequences and generating all realizations.
Egres Technical Reports, TR-2011-11 April 23, 2012, 12 pages. ⇒246, 250

[59] D. J. Kleitman, D. Wang, Algorithms for constructing graphs and digraphs with
given valences and factors, Discrete Math. 6 (1973) 79–88. ⇒250

[60] D. J. Kleitman, K. J. Winston, Forests and score vectors. Combinatorica 1 (1981)
49–51. ⇒250

[61] D. E. Knuth, The Art of Computer Programming, Volume 4A, Addison Wesley,
2011. ⇒246

[62] M. Koren, Sequences with a unique realization by simple graphs, J. Comb. The-
ory, Ser. B 21, 3 (1976) 235–244. ⇒250

[63] M. D. LaMar, Algorithms for realizing degree sequences of directed graphs. arXiv,
2010. http://arxiv.org/abs/0906.0343. ⇒246

[64] V. Librandi, Number of bracelets (turn over necklaces) with n red, 1 pink and
n−1 blue beads for n = 1, . . . , 1000, in (ed. N. J. A. Sloane): The On-Line Ency-
clopedia of the Integer Sequences. 2012. http://oeis.org/A005654/b005654.txt⇒248, 252

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto: ggombos@inf.elte.hu
http://people.inf.elte.hu/tomintt/
http://www2.research.att.com/~njas/
http://oeis.org/A095268
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto: ggombos@inf.elte.hu
http://people.inf.elte.hu/tomintt/
http://www2.research.att.com/~njas/
http://oeis.org/A095268
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
http://people.inf.elte.hu/tomintt/
http://maths.uok.edu.in/Faculty5.aspx
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://maths.uok.edu.in/Faculty5.aspx
http://www.tankonyvtar.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.antoncom.hu/books.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.sciencedirect.com/science/journal/0012365X
ttp://www.sciencedirect.com/science/journal/00973165
http://obelix.phys.nd.edu/~toro/
http://www.sztaki.hu/munkatars/niifUniqueIdq$%$3D008006255$%$2Cou$%$3DPeople$%$2Co$%$3DSZTAKI$%$2Co$%$3DNIIF$%$2Cc$%$3DHU/
http://www.renyi.hu/~elp/
http://www.math.sc.edu/~szekely/
http://www.cs.elte.hu/~kiraly/
http://web.cs.elte.hu/egres/tr/egres-11-11.pdf
http://www-math.mit.edu/~djk/
http://www.sciencedirect.com/science/journal/0012365X
http://www-math.mit.edu/~djk/
http://www-cs-faculty.stanford.edu/~uno/
http://www.pearsoned.co.uk/Imprints/Addison-Wesley/
http://arxiv.org/abs/0906.0343
http://www2.research.att.com/~njas/
http://oeis.org/A005654/b005654.txt

Parallel enumeration of degree sequences of simple graphs. II 269

[65] X. Lu, S. Bressan, Generating random graph sequences, in (ed. J. X. Yu, M.
H. Kim, R. Unland): DASFAA2011, Part I, LNCS 6587, Springer-Verlag, 2011,
570–579. ⇒252

[66] L. Lucz, Analysis of degree sequences of graphs (Hungarian), Student the-
sis awarded by first prize in the Hungarian Scientific Student Conference, Bu-
dapest, 2013. Eötvös Loránd University, Faculty of Informatics, Budapest, 2011.
http://people.inf.elte.hu/lulsaai/diploma. ⇒252

[67] B. D. McKay, X. Wang, Asymptotic enumeration of tournaments with a given
score sequence. J. Comb. Theory A, 73, (1) (1996) 77–90. ⇒

[68] T. Matuszka, Programs and Results Connected with Degree Sequences. ELTE
IK, Budapest, 2013. ⇒247, 248, 257, 262

[69] D. Meierling, L. Volkmann, A remark on degree sequences of multigraphs, Math.
Methods Operation Research, 69, 2 (2009) 369–374. ⇒246

[70] J. W. Miller, Reduced criteria for degree sequences, Discrete Math. 313, 4 (2013)
550–562. ⇒246

[71] R. Milo, N. Kashtan, S. Itzkovitz, M.E.J. Newman, U. Alon, On the uniform
generation of random graphs with prescribed degree sequences, arXiv, arXiv:cond-
mat/0312028v2 [cond-mat.stat-mech], 2004, 4 pages. ⇒250

[72] Miklós, J. Podani, Randomization of presence-absence matrices: comments and
new algorithms, Ecology, 85, 1 (2004) 86–92. ⇒250

[73] T. D. Noe, Table of a(n) for n = 1, . . . , 100, in (ed. N. J. A. Sloane): The On-
Line Encyclopedia of the Integer Sequences. 2010. http://oeis.org/A001700. ⇒
252

[74] T. D. Noe, Table of binomial coefficients C(2n − 1, n), in (ed. N. J. A. Sloane):
The On-Line Encyclopedia of the Integer Sequences. 2012, http://oeis.org/

A001791. ⇒252
[75] S. Özkan, Generalization of the Erdős-Gallai inequality. Ars Combin., 98 (2011)

295–302. ⇒246
[76] A. N. Patrinos, S. L. Hakimi, Relations between graphs and integer-pair se-

quences. Discrete Math., 15, 4 (1976) 347–358 ⇒250
[77] S. Pirzada, Introduction to Graph Theory, Universities Press (India) Private Lim-

ited, 2012. ⇒246
[78] R. C. Read, The enumeration of locally restricted graphs (I). J. London Math.

Soc., 34 (1959) 417–436. ⇒250
[79] G. Royle, Is it true that a(n+ 1)/a(n) tends to 4? In (ed. N. J. A. Sloane): The

On-Line Encyclopedia of the Integer Sequences. 2012. http://oeis.org/A095268⇒259
[80] F. Ruskey, Number of distinct degree sequences among all n-vertex graphs with

no isolated vertices for n = 21, 22 and 23, in (ed. N. J. A. Sloane): The On-Line
Encyclopedia of the Integer Sequences. 2006. http://oeis.org/A095268. ⇒247

[81] H. J. Ryser, Matrices of zeros and ones. Bull. of Amer. Math. Soc. 66, 6 (1960)
442–464. ⇒250

[82] R. L. Shuo-Yen, Graphic sequences with unique realization, J. Comb. Theory,
Ser. B, 19 (1975) 42–68. ⇒250

http://link.springer.com/chapter/10.1007/978-3-642-20149-3_41#page-1
http://people.inf.elte.hu/lulsaai
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
http://people.inf.elte.hu/lulsaai/diploma
ttp://www.sciencedirect.com/science/journal/00973165
http://people.inf.elte.hu/tomintt/
http://people.inf.elte.hu/tomintt/DegreeSeq
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
http://www.math2.rwth-aachen.de/de/mitarbeiter/volkm
http://www.springerlink.com/content/102510/
http://www.sciencedirect.com/science/journal/0012365X
http://arxiv.org/abs/condmat/0312028
http://www.sztaki.hu/munkatars/niifUniqueIdq$%$3D008006255$%$2Cou$%$3DPeople$%$2Co$%$3DSZTAKI$%$2Co$%$3DNIIF$%$2Cc$%$3DHU/
http://www2.research.att.com/~njas/
http://oeis.org/A001700
http://www2.research.att.com/~njas/
http://oeis.org/A001791
http://oeis.org/A001791
http://bkocay.cs.umanitoba.ca/arscombinatoria/
http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.sciencedirect.com/science/journal/0012365X
http://school.maths.uwa.edu.au/~gordon/
http://www2.research.att.com/~njas/
http://oeis.org/A095268
http://webhome.cs.uvic.ca/~ruskey/
http://www2.research.att.com/~njas/
http://oeis.org/A095268
http://www.math.osu.edu/history/biographies/hjryser/
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183523748
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams

270 A. Iványi, L. Lucz, G. Gombos, T. Matuszka

[83] G. Sierksma, H. Hoogeveen, Seven criteria for integer sequences being graphic,
J. Graph Theory 15, (2) (1991) 223–231. ⇒246

[84] N. J. A. Sloane, The number of degree-vectors for simple graphs, in (ed. N.
J. A. Sloane): The On-Line Encyclopedia of the Integer Sequences. 2011. http:
//oeis.org/A004251. ⇒251

[85] N. J. A. Sloane, S. Plouffe, The Encyclopedia of Integer Sequences, Academic
Press, 1995. ⇒248

[86] M. Takahashi, Optimization Methods for Graphical Degree Sequence Problems
and their Extensions, PhD thesis, Graduate School of Information, Production
and systems, Waseda University, Tokyo, 2007. http://hdl.handle.net/2065/28387.⇒246

[87] A. Tripathi, H. Tyagy, A simple criterion on degree sequences of graphs. Discrete
Appl. Math., 156, 18 (2008) 3513–3517. ⇒246

[88] A. Tripathi, S. Vijay, A note on a theorem of Erdős & Gallai. Discrete Math.,
265, 1–3 (2003) 417–420. ⇒246

[89] A. Tripathi, S. Venugopalan, D. B. West, A short constructive proof of the Erdős-
Gallai characterization of graphic lists. Discrete Math., 310, 4 (2010) 833–834.⇒246

[90] R. I. Tyshkevich, O. I. Melnikov, V. M. Kotov, On graphs and degree sequences:
a canonical decomposition (Russian), Kibernetika 6 (1981) 5–8. ⇒246

[91] K. J. Winston, D. J. Kleitman, On the asymptotic number of tournament score
sequences. J. Comb. Theory A 35, 2 (1983) 208–230. ⇒250

[92] I. E. Zverovich, V. E. Zverovich, Contributions to the theory of graphic sequences,
Discrete Math., 105, 1–3 (1992) 293–303. ⇒246

Received: August 10, 2013 • Revised: December 30, 2013

http://www2.research.att.com/~njas/
http://www2.research.att.com/~njas/
http://oeis.org/A004251
http://oeis.org/A004251
http://www2.research.att.com/~njas/
http://www.waseda.jp/top/index-e.html
http://hdl.handle.net/2065/28387
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science/journal/0166218X
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.math.illinois.edu/~sujith/
http://www.sciencedirect.com/science/journal/0012365X
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.math.uiuc.edu/~west/
http://www.sciencedirect.com/science/journal/0012365X
http://www-math.mit.edu/~djk/
ttp://www.sciencedirect.com/science/journal/00973165
http://www.sciencedirect.com/science/journal/0012365X

Acta Univ. Sapientiae, Informatica, 5, 2 (2013) 271–287

Linear programming over exponent pairs

Andrew V. LELECHENKO
I. I. Mechnikov Odessa National University, Russia

email: 1@dxdy.ru

Abstract. We consider the problem of the computation of infp θp over
the set of exponent pairs P 3 p under linear constrains for a certain class
of objective functions θ. An effective algorithm is presented. The output
of the algorithm leads to the improvement and establishing new estimates
in the various divisor problems in the analytical number theory.

1 Introduction

Exponent pairs are an extremely important concept in the analytical number
theory. They are defined implicitly.

Definition 1 ([8, Ch. 2]) A pair (k, l) of real numbers is called an exponent
pair if 0 6 k 6 1/2 6 l 6 1, and if for each s > 0 there exist integer r > 4 and
real c ∈ (0, 1/2) depending only on s such that the inequality∑

a<n6b

e2πif(n) � zkal

holds with respect to s and u when the following conditions are satisfied:

u > 0, 1 6 a < b < au, y > 0, z = ya−s > 1;

f(t) being any real function with differential coefficients of the first r orders
in [a, b] and ∣∣∣∣f(ν+1)(t) − y dνdtν t−s

∣∣∣∣ < (−1)νcy
dν

dtν
t−s

for a 6 t 6 b and 0 6 ν 6 r− 1.

Computing Classification System 1998: G.1.6, F.2.1.
Mathematics Subject Classification 2010: 90C05, 11Y16, 11L07, 11N37
Key words and phrases: linear programming, exponent pairs, divisor problem

271

http://onu.edu.ua
mailto:1@dxdy.ru

272 A. V. Lelechenko

But for the computational purposes more explicit construction is needed.

Proposition 2 The set of the exponent pairs includes a convex hull conv P of
the set P such that

1. P includes a subset of initial elements P0, namely

(a) (0, 1) [8],

(b) (2/13+ε, 35/52+ε), (13/80+ε, 1/2+13/80+ε), (11/68+ε, 1/2+
11/68+ ε) [3],

(c) (9/56+ ε, 1/2+ 9/56+ ε) [5],

(d) (89/560+ ε, 1/2+ 89/560+ ε) [11],

(e) H05 := (32/205+ ε, 1/2+ 32/205+ ε) [4].

2. A(k, l) ∈ P and BA(k, l) ∈ P for every (k, l) ∈ P, where operators A
and B are defined as follows:

A(k, l) =

(
k

2(k+ 1)
,
k+ l+ 1

2(k+ 1)

)
, B(k, l) = (l− 1/2, k+ 1/2) .

Possibly the set of the exponent pairs includes elements (k, l) 6∈ conv P, but
at least conv P incorporates all currently known exponent pairs. Everywhere
below writing “a set of exponent pairs” we mean P in fact.

Denote by Pp a set of exponent pairs, generated from the pair p with the
use of operators A and BA. One can check that currently

conv P = conv
(
PH05 ∪ {(0, 1), (1/2, 1/2)}

)
.

Many asymptotic questions of the number theory (especially in the area of
divisor problems) come to the optimization task

inf
(k,l)∈conv P

{
θ(k, l)

∣∣ Ri(αik+ βil+ γi), i = 1, . . . , j
}
, (1)

where αi, βi, γi ∈ R, Ri ∈ R>, R≥, predicate R> checks whether its argument
is a positive value and R≥ checks whether its argument is non-negative, i =
1, . . . , j.

Graham [2] gave an effective method, which in many cases is able to deter-
mine

inf
(k,l)∈conv P(0,1)

θ(k, l)

Linear programming over exponent pairs 273

with a given precision (for certain θ—even exactly), where

θ ∈ Θ :=

{
(k, l) 7→ ak+ bl+ c

dk+ el+ f

∣∣∣∣∣ a, b, c, d, e, f ∈ R,
dk+ el+ f > 0 for (k, l) ∈ conv P

}
.

We shall refer to this result as to Graham algorithm. Unfortunately, for some
objective functions θ ∈ Θ the algorithm fails and, as Graham writes, we should
“resort to manual calculations and ad hoc arguments”. We discuss possible
improvements in Section 4.

The primary aim of the current paper is to provide an algorithm to deter-
mine

inf
(k,l)∈P

θ(k, l) (2)

under a nonempty set of linear constrains (thus j 6= 0) and

θ = max{θ1(k, l), . . . , θm(k, l)}, θ1, . . . , θm ∈ Θ. (3)

In Section 2 a useful computational concept of projective exponent pairs is
explained. Section 3 is devoted to the exploration of the geometry of P and its
results are of separate interest. In Section 4 Graham algorithm is discussed.
Section 5 contains the description of the proposed algorithm to solve (2) under
linear constrains and (3). In Section 6 new estimates and theoretical results on
various divisor problems are given, derived from the observation of particular
cases of the output of our algorithm.

2 Projective exponent pairs

Let us map exponent pairs into the real projective space (the concept of such
mapping traces back to Graham [2]):

µ : R2 → R3/(R \ {0}), (k, l) 7→ (k : l : 1).

For the set of the exponent pairs the inverse mapping

µ−1 : (k : l : m) 7→ (k/m, l/m)

is also well-defined.
Operators A and BA are mapped by µ into linear operators over projective

space:

A(k, l) 7→ A(k : l : 1), A =

1 0 0

1 1 1

2 0 2

 , A(k : l : m) =

 k

k+ l+m
2k+ 2m

274 A. V. Lelechenko

and

BA(k, l) 7→ BA(k : l : 1), BA =

0 1 0

2 0 1

2 0 2

 , BA(k : l : m) =

 l

2k+m
2k+ 2m

 .
Thus A = µ−1Aµ and BA = µ−1BAµ

Such projective mappings are very useful to achieve better computational
performance.

Firstly, we replace fractional calculations with integer ones.
Secondly, let M be a fixed composition of A and BA. We can evaluate Mp

for a set of points p effectively: once precompute the matrix of the projective
operator M and then just calculate µ−1Mµp for each point p.

3 Exploring exponent pairs

Let us split Pp into generations Pnp such that

P0p = {p}, Pnp = APn−1p ∪ BAPn−1p, n > 0.

Let us investigate properties of P(0, 1). As soon as

A(0, 1) = (0, 1), BA(0, 1) = (1/2, 1/2),

A(1/2, 1/2) = BA(1/2, 1/2) = (1/6, 2/3),

we obtain
P(0, 1) =

{
(0, 1), (1/2, 1/2)

}
∪ P(1/6, 2/3).

So it is enough to study P(1/6, 2/3).
All initial exponent pairs satisfy inequalities

k+ l 6 1, k 6 1/2, l > 1/2.

One can check that if (k, l) satisfies such inequalities, then A(k, l) and BA(k, l)
also do. Thus all exponent pairs fits into the triangle

T := 4
(
(1/2, 1/2), (0, 1), (0, 1/2)

)
. (4)

Lemma 3 Denote

P ′ = (0, 1/6)× (2/3, 1), P ′′ = (1/6, 1/2)× (1/2, 2/3).

Let p := (k, l) be the exponent pair such that Ap ∈ P ′. Then

APp ⊂ P ′, BAPp ⊂ P ′′, Pp ⊂ {p} ∪ P ′ ∪ P ′′. (5)

Linear programming over exponent pairs 275

Proof. Suppose that (5) is true for all generations Pm, m < n. Let us prove
that it is also true for generation Pn.

We have BP ′ = P ′′, so it is enough to prove that APn−1p ⊂ P ′. Let (k, l)
be an arbitrary element of Pn−1p and let (κ, λ) = A(k, l). There are three
possibilities:

1. (k, l) = p. Then (κ, λ) ∈ P ′ by conditions of the lemma.

2. (k, l) ∈ P ′. Then

κ =
1

2
−

1

2(k+ 1)
<
1

2
−
3

7
=
1

14
,

λ =
1

2
+

l

2(k+ 1)
>
1

2
+
2/3

7/3
=
11

14
.

3. (k, l) ∈ P ′′. Then

κ =
1

2
−

1

2(k+ 1)
<
1

2
−
1

3
=
1

6
,

λ =
1

2
+

l

2(k+ 1)
>
1

2
+
1/2

3
=
2

3
.

�

An exponent pair (1/6, 2/3) satisfies conditions of Lemma 3, because

A(1/6, 2/3) = (1/14, 11/14).

We note that the statement of Lemma 3 can be refined step-by-step, ob-
taining 4, 8, 16 and so on rectangles, covering Pp more and more precisely.

Remark 4 There exists another approach to cover Pp or the whole P. For a
set of pairs (αi, βi) determine with the use of Graham algorithm

θi = inf
(k,l)∈conv Pp

(αik+ βil).

Then Pp is embedded into a polygonal area, constrained with the set of inequal-
ities

αik+ βil > θi

from the bottom and left (together they form a hyperbola-like line) and by the
segment from (0, 1) to (1/2, 1/2).

276 A. V. Lelechenko

Let us introduce an order ≺ on P(1/6, 2/3), defined as

(k, l) ≺ (κ, λ) ⇐⇒ k < κ, l > λ.

Theorem 5 Let p be the exponent pair from the statement of Lemma 3. Then
the order ≺ is a strict total order on Pnp and this order coincides with the
order of the binary Gray codes [7, Ch. 7.2.1.1] over an alphabet {A,BA}.

Proof. One can directly check that operator A saves the order:

p1 ≺ p2 ⇒ Ap1 ≺ Ap2

and operator B reverses it, so BA reverses it too:

p1 ≺ p2 ⇒ BAp1 � BAp2.

Lemma 3 implies that for every p1, p2 ∈ Pn−1p

Ap1 ≺ BAp2. (6)

Combining these facts we obtain the statement of the theorem. �

In the case of P(1/6, 2/3) inequality (6) can be refined up to

Ap1 ≺ (1/6, 2/3) ≺ BAp2. (7)

Thus ≺ is a strict total order over the whole P(1/6, 2/3).

Fig. 1 illustrates our results. Point (1/6, 2/3) divides the set into rectan-
gles P ′ and P ′′. These rectangles consists of pairs, where the last applied op-
erator was A, and pairs, where the last applied operator was BA, respectively.
All plotted points are total-ordered by ≺. Writing out points of the same gen-
eration from the left top corner to the right bottom corner we obtain a list of
Gray codes. E. g., for the generation 3 we obtain a sequence of 8 codes:

A A A,
A ABA,
ABABA,
ABA A,
BABA A,
BABABA,
BA ABA,
BA A A.

Linear programming over exponent pairs 277

k1/2

l-1/2

1/2

(1/6,2/3)

A

BA

A A

A BA

B
A

 A

BA B
A

A A A

A A BA

A BA A

A BA BA

B
A

 A
 A

B
A

A
B

A

BA BA A

BA B
A B

A

A A A A

A A A BA

A A BA A

A A BA BA

A BA A A

A BA A BA

A BA BA A

A BA BA BA

B
A

 A
 A

 A

B
A

 A
 A

 B
ABA

 A
 B

A
A

B
A

A
B

A
B

A

BA BA A A

BA B
A A B

A

BA
BA

BA
A

BA B
A B

A B
A

A A A A A

A A A A BA

A A A BA A

A A A BA BA

A A BA A A

A A BA A BA

A A BA BA A

A A BA BA BA

A BA A A AA BA A A BA
A BA A BA A

A BA A BA BA

A BA BA A A

A BA BA A BA

A BA BA BA AA BA BA BA BA

B
A

 A
 A

 A
 A

B
A

 A
 A

 A
 B

A

B
A

 A
 A

 B
A

 A
B

A
 A

 A
 B

A
 B

ABA
 A

 B
A

A
A

BA
 A

 B
A

A
BA

B
A

A
B

A
B

A
A

B
A

A
B

A
B

A
B

A

BA BA A A A

BA BA A A BA

BA B
A A B

A A

BA B
A A B

A BA

BA
BA

BA
A

A

BA B
A B

A A
 B

A

BA B
A B

A B
A A

BA B
A B

A B
A B

A

Figure 1: First six generations of P(1/6, 2/3) plotted in shifted coordinates
(k, l− 1/2).

278 A. V. Lelechenko

As soon as

An(1/6, 2/3)→ (0+ , 1− 0) as n→∞
we obtain

pn := A · BA ·An(1/6, 2/3) → (1/6− 0, 2/3+ 0),

BA · BA ·An(1/6, 2/3) → (1/6+ 0, 2/3− 0) as n→∞.
So no point from P(1/6, 2/3) is isolated: for every p ∈ P(1/6, 2/3) and ev-
ery ε > 0 there exist p1, p2 ∈ P(1/6, 2/3) such that p1 ≺ p ≺ p2, |p − p1| < ε
and |p− p2| < ε.

We are even able to compute the slopes of left-hand and right-hand “tan-
gents” at (1/6, 2/3). Namely, using Section 2 and denoting dn = pn−(1/6, 2/3)
we get

dn/|dn|→ (−2/
√
5, 1/
√
5) as n→∞,

so the left-hand “tangent” at (1/6, 2/3) has a slope arctan(−1/2). The right-
hand “tangent” has a slope arctan(−2).

What about sets generated from other known initial exponent pairs, listed
in Proposition 2? Lemma 3 and Theorem 5 remains valid. But inequality (7)
does not hold and so ≺ is not a strict total order. E. g., for

p = A · BA ·A4H05 =
(
8083

50342
,
1

2
+
4304

25171

)
neither p ≺ H05, nor p � H05.

As opposed to P(1/6, 2/3), each point of the set Pp, p 6= (1/6, 2/3), is iso-
lated, because the initial point is. But for every such p each point of P(1/6, 2/3)
has an arbitrary close to it point from Pp.

Lemma 6 Operators A and BA are contractions over the triangle T , which
was defined in (4).

Proof. It is enough to prove that A is a contraction. Let us check that there
exists α < 1 such that for each p1, p2 ∈ T we have∣∣Ap1 −Ap2∣∣ 6 α∣∣p1 − p2∣∣.

Linear programming over exponent pairs 279

Let (k1, l1) := p1 and (k2, l2) := p2. Then

∣∣Ap1 −Ap2∣∣2 = 1

4

((
1

k1 + 1
−

1

k2 + 1

)2
+

(
l1

k1 + 1
−

l2
k2 + 1

)2)
=

=
1

4

((
k2 − k1

(k1 + 1)(k2 + 1)

)2
+

(
(l1 − l2)(k2 + 1) + l2(k2 − k1)

(k1 + 1)(k2 + 1)

)2)
.

But k1, k2 > 0, so∣∣Ap1 −Ap2∣∣2 6 1
4

(
(k1 − k2)

2 + (|l1 − l2|+ |k1 − k2|)
2
)
.

Applying inequality (x+ y)2 6 2(x2 + y2) we finally obtain

∣∣Ap1 −Ap2∣∣2 6 3
4

(
(k1 − k2)

2 + (l1 − l2)
2
)
=
3

4

∣∣p1 − p2∣∣2.
�

4 Notes on Graham algorithm

Below GX means a reference to [2, Step X at p. 209].

1. Graham algorithm is designed to search infp∈P(0,1) θp and relies on the
fact that

P(0, 1) = AP(0, 1) ∪ BAP(0, 1).

This kind of decomposition does not hold for the whole P. Instead we have

P = AP ∪ BAP ∪
(
P0 \ {(0, 1)}

)
.

Thus in order to run Graham algorithm over P, not just over P(0, 1), it should
be changed in following way. Establish a variable r to keep a current minimal
value, setting it initially to +∞. Add an additional step before G5: apply
current θ on elements of P0 and set r ← min(r,min θP0). At the end of the
algorithm output r instead of simply min θP0.

2. Unfortunately, Graham algorithm over P is infinite: no analog of halting
conditions at G3 provided by [2, Th. 3] can be easily derived. So we should
stop depending on whether the desired accuracy is achieved. Cf. Step 2 in the
Section 5 below.

280 A. V. Lelechenko

3. Bad news: if [2, Th. 1, 2] does not specify the branch to choose at G4 then
the original Graham algorithm halts. Good news: [2, Th. 2] can be generalized
to cover a wider range of cases. In notations of the mentioned theorem for a
given finite sequence M ∈ {A,BA}n if inf θBA = inf θBAM and if

min(rw+ v− u,αw+ v− u) > 0

then inf θ = inf θA, where

α := max
{
k+ l

∣∣ (k, l) ∈ AM{(0, 1), (1/2, 1/2), (0, 1/2)}
}
.

4. For the case of linearly constrained optimization one can build a “greedy”
modification of Graham algorithm: if at G5 one of the branches is entirely out
of constrains then choose another one; otherwise choose a branch in a normal
way. Such algorithm executes pretty fast, but misses optimal pairs sometimes.

5 Linear programming algorithm

Now let us return to the optimization problem (2). We will attack it with the
use of backtracking.

Operators A and BA perform projective mappings of the plane R2, so both
of them map straight lines into lines and polygons into polygons.

Let θ be as in (3) and a set of linear constrains LC be as in (1).
Denote

θ+(V) = max
{

sup
p∈V

θip
}m
i=1
, θ−(V) = max

{
inf
p∈V

θip
}m
i=1
.

Then

θ−(V) 6 inf
p∈V

θp 6 θ+(V)

and these bounds embrace infp∈V θp tighter and tighter as V becomes smaller.
Both θ+ and θ− can be computed effectively by simplex method.

Let V be a polygon (or a set of polygons, lines and points) such that P ⊂ V.
See Lemma 3 and paragraphs above and below it for possible constructions
of V. For a set of linear constrains LC let R(V, LC) be a predicate, which is
true if and only if there exists a point p ∈ V, which satisfies all constrains
from LC. This predicate can be computed effectively using algorithms for line
segment intersections [1, p. 19–44].

Linear programming over exponent pairs 281

The proposed algorithm consists of a routine L(θ, LC, r,M), which calls itself
recursively. Here r keeps a current minimal value of θ(k, l) andM is a current

projective transformation matrix. Initially r← +∞ and M← (
1 0 0
0 1 0
0 0 1

)
.

On each call routine L performs following steps:

1. Compute t ← min{θµ−1Mµp}, where p runs over all known initial
pairs p. If we get t < r then update current minimal value: r← t.

2. Check whether the desired accuracy is achieved, comparing r with the
values of θ+(µ

−1MµV) and θ−(µ
−1MµV). If yes then return r and abort

computations.

3. Set LC ′ ← LC∪ {θi(k, l) < r}mi=1. Due to the nature of θi ∈ Θ a constrain
of form θi(k, l) < r is in fact a linear constrain.

4. If R(µ−1MAµV, LC ′) (that means that there is at least a chance to
meet exponent pair p ∈ µ−1MAµV, which satisfies LC and on which
objective function is less than yet achieved value) then compute t ←
L(θ, LC, r,MA). If t < r set r← t and recompute LC ′ as in Step 3 using
the new value of r.

5. If R(µ−1MBAµV, LC ′) then compute t ← L(θ, LC, r,MBA). If t < r

set r← t.

6. Return r.

The algorithm executes in finite time, because due to Lemma 6 both A

and BA are contractions and sooner or later (depending on required accuracy)
recursively called routines will abort at Step 2.

Step 3 plays a crucial role in chopping off non-optimal branches of the
exhaustive search and preventing exponential running time. We are not able
to provide any theoretical estimates, but in all our experiments (see Section 6
below) the number of calls of L(·, ·, ·, ·) behaved like a linear function of the
recursion’s depth.

We have implemented our algorithm as a program, written in PARI/GP [10].
It appears that it runs pretty fast, in a fraction of a second on the modern
hardware.

During computations elements of M can grow enormously. As soon as ma-
trix M is applied on projective vectors we can divide M on the greatest
common divisor of its elements to decrease their magnitude.

282 A. V. Lelechenko

Now, under which circumstances an equality

inf
p∈P

θp = inf
p∈conv P

θp

holds? Certainly it is true for θ ∈ Θ and j = 0, because sets {θp = const} are
straight lines; this is the case of Graham algorithm.

Consider the case θ ∈ Θ and j 6= 0. Constraining lines are specified by
equations

li = {αik+ βil+ γi = 0}, i = 1, . . . , j.

Then

inf
p∈conv P

θp = min

{
inf
p∈P

θp, inf
p∈l1∩conv P

θp, . . . , inf
p∈lj∩conv P

θp

}
.

But conv P is approximated by a polygon as in Remark 4, so li ∩ conv P can
be approximated too and consists of a single segment. Thus infp∈li∩conv P θp
is computable.

The case when θ is as in (3) with m > 1 is different. Even without any con-
strains the value of infp∈conv P θp may be not equal to infp∈P θp. For example,
take

θ(k, l) = max
{
11k/10, l− 1/2

}
.

Then

inf
p∈P

θp =
176

1025
at p = H05.

But

inf
p∈conv P

θp =
176

1057
at p = (160/1057, 1409/2114) := q,

and q is owned by a segment from (0, 1) to H05. However, in not-so-synthetic
cases the proposed algorithm produces results, which are closer to optimal.

6 Applications

One can run algorithm from the previous section to obtain numerical results
in partial cases for different objective functions and constrains. It gives us a
way to catch site of some patterns and to suppose general statements on them.
Nevertheless these patterns should be proved, not only observed. This is the
main theme of the current section.

Linear programming over exponent pairs 283

Consider the asymmetrical divisor problem. Denote

τ(a1, . . . , ak;n) =
∑

d
a1
1 ···d

ak
k =n

1,

which is called an asymmetrical divisor function. Let ∆(a1, . . . , am; x) be an er-
ror term in the asymptotic estimate of the sum

∑
n6x τ(a1, . . . , am;n). (See [8]

for the form of the main term.) What upper estimates of ∆ can be given? The
following result is one of the possible answers.

Theorem 7 ([8, Th. 5.11]) Let a < b and let (k, l) = A(κ, λ) be an expo-
nent pair. Then the estimate

∆(a, b; x)� xα log x, α =
2(k+ l− 1/2)

(a+ b)

holds under the condition (2l − 1)a > 2kb. Here f(x) � g(x) denotes f(x) =
O
(
g(x)

)
. If otherwise (2l− 1)a < 2kb, then

∆(a, b; x)� xα log x, α =
k

(1− l)a+ kb
.

Taking into account Lemma 3 the condition (k, l) = A(κ, λ) can be rewritten
as k < 1/6 and l > 2/3. Thus

θ1 =
2(k+ l− 1/2)

a+ b
, LC1 =

{
(2l− 1)a > 2kb, k < 1/6, l > 2/3

}
,

θ2 =
k

(1− l)a+ kb
, LC2 =

{
(2l− 1)a < 2kb, k < 1/6, l > 2/3

}
.

Using proposed algorithm we can compute inf θ1 under constrains LC1 (which
refers to the first case of Theorem 7), compute inf θ2 under constrains LC2
(which refers to the second case) and take lesser of the obtained values. Ob-
served results shows that for a = 1, b = 2r, r > 10, the second case provides
better results and exponent pair has form

Ar−1BAAr−4BABA

This leads us to the following statement.

Theorem 8 For a fixed integer r > 5 we have ∆(1, 2r; x)� xα log x, where

α =
2r − 2r

22r − r · 2r − 2r2 + 2r− 4
<

1

2r + r
.

284 A. V. Lelechenko

Proof. Consider an exponent pair

(kr, lr) := A
r−1BAAr−4(1/6, 2/3).

We have

A = S

1 1 0

0 1 0

0 0 2

S−1, S =

0 −1 0

1 0 1

0 2 1

 .
Thus An = S

(
1 n 0
0 1 0
0 0 2n

)
S−1. Note that µ(1/6, 2/3) = (1 : 4 : 6) and

Ar−1BAAr−4(1 : 4 : 6) =

 2r − 2r
22r+1 − (3r+ 4) · 2r + 2r2 + 2r+ 4

22r+1 − (2r+ 4) · 2r + 4r

 .
Applying µ−1 we get

kr =
2r − 2r

22r+1 − (2r+ 4) · 2r + 4r
, lr = 1−

r · 2r − 2r2 + 2r− 4
22r+1 − (2r+ 4) · 2r + 4r

.

Now for r > 5

2lr − 2 · 2rkr − 1 =
2r2 + 4− 2r+1

22r − (r+ 2) · 2r + 2r
< 0.

This proves that (kr, lr) satisfies the second case of Theorem 7 and finally

α =
kr

2rkr − lr + 1
.

�

In the same manner one can estimate ∆(a, 2r; x) for odd a. Here is one more
example.

Theorem 9 For a fixed integer r > 1 we have ∆(3, 2r; x)� xα+ε, where

α =
1

2r + 3r− 88/17
.

Proof. Consider an exponent pair (k, l) := Ar−3BAA(9/56+ ε, 37/56+ ε). �

In the case of ∆(a, b, c) one can derive objective function and constrains
from [8, Th. 6.2, 6.3] and observe the output of the algorithm.

Linear programming over exponent pairs 285

a b (k, l) Ξ(a, b)
1 2 BAH05 269/1217

1 3 (BA)2ABAH05 1486/8647

1 4 H05 111/790

1 5 ABAA2BAA(BA)2A2M∞(0, 1) (15921− 2c)/30437
1 6 (ABA)3(BA)3A3BA(0, 1) 669/6305

1 7 A(BA)2BAA(BA)2A2M∞(0, 1) (9370− c)/34469

1 8 A(BA)4(A2BAA)∞(0, 1) (5+
√
809)/392

1 9 A(BA)2AM∞(0, 1) (10551− c)/56976
1 10 A(BA)2(A2(BA)2)2ABAH05 150509/2096993

2 3 BAA(BA)2A2M∞(0, 1) (c− 4047)/15688
2 4 BAH05 269/2434

2 5 M∞(0, 1) (c− 4311)/18672
3 4 BAAH05 1819/19369

3 5 BAA(BA)3A2(BA)3A(BA)5A2BA(0, 1) 63916/774807

4 5 BAAH05 1819/24903

Table 1: Estimates of Ξ. Here M = (BA)6(ABA)2BAA2 and c =
√
37368753.

Theorem 10 For a fixed integer r > 10 we have

θ(1, 2r, 2r) =
26 · 22r − (29r+ 41)2r + 16r2 + 12r+ 32

26 · 23r − (16r+ 41)22r + (24r− 3)2r + 16r+ 12
<

1

2r + 1
.

Proof. Follows from [8, Th. 6.2] with (k, l) = Ar−1BAr−2BABA2 · B(0, 1). �
Finally, consider the asymmetric divisor problem with congruence conditions

on divisors. Namely, let τ(a,ma, ra;b,mb, rb;n) be the number of (da, db) such
that

daad
b
b = n, da ≡ ra (mod ma), db ≡ rb (mod mb).

Menzer and Nowak showed in [9] that if a < b then the error term in the
asymptotic estimate of ∑

n6x

τ(a,ma, ra;b,mb, rb;n)

has form
(
x/ma

am
b
b

)Ξ(a,b)+ε
, where

Ξ(a, b) := inf
(k,l)∈conv P

max

{
k+ l

(k+ 1)(a+ b)
,

k

kb+ a(1+ k− l)

}
,

286 A. V. Lelechenko

σ µ(σ) Depth 100 Depth 1000
3/5 1409/12170 10 10
2/3 0.0879154 154 1609
3/4 0.0581840 154 1610
4/5 0.0422535 103 1003

Table 2: Estimates for µ(σ) and the number of calls to L.

where ε > 0 is arbitrary small. They also listed estimates of Ξ(a, b) for 1 6
a < b 6 5. As soon as Ξ(a, b) is of form (3) we can refine all their results. See
Table 1.

Various estimates of the Riemann zeta function depends on optimization
tasks (1). The following theorem seems to be the simplest example.

Theorem 11 ([6, (7.57)]) Let ζ denote the Riemann zeta function and σ >
1/2. Further, let µ(σ) be an infimum of all x such that ζ(σ+ it)� tx. Then

µ(σ) 6
k+ l− σ

2
.

for every exponent pair (k, l) such that l− k > σ.

Better results on µ leads to better estimates for power moments of ζ, and
the last are helpful to improve estimates in multidimensional divisor problem.
See [6, Th. 8.4, 13.2, 13.4].

Table 2 contains several results on µ(σ) obtained with the use of the pro-
posed algorithm. Results are accompanied with the number of calls to L(·, ·, ·, ·)
up to the given depth of search.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry:
Algorithms and Applications (3rd edition), Springer, Berlin, Heidelberg, 2008.⇒280

[2] S. W. Graham, An algorithm for computing optimal exponent pair, J. Lond.
Math. Soc. 33, 2 (1986) 203–218. ⇒272, 273, 279, 280

[3] M. N. Huxley, Exponential sums and the Riemann zeta function, Proc. Interna-
tional Number Theory Conference, Laval, Canada, 1987, pp. 417–423. ⇒272

[4] M. N. Huxley, Exponential sums and the Riemann zeta function V, Proc. Lond.
Math. Soc. 90, 1 (2005) 1–41. ⇒272

http://www.win.tue.nl/~mdberg/
http://tclab.kaist.ac.kr/~otfried/
http://www.cs.uu.nl/staff/marc.html
http://www.cs.uu.nl/staff/markov.html
http://springer.com/
http://people.cst.cmich.edu/graha1sw/
http://jlms.oxfordjournals.org/
http://jlms.oxfordjournals.org/
http://cardiff.ac.uk/maths/contactsandpeople/profiles/huxley.html
http://books.google.com.ua/books?id=N_jaIH7KV7kC
http://books.google.com.ua/books?id=N_jaIH7KV7kC
http://cardiff.ac.uk/maths/contactsandpeople/profiles/huxley.html
http://plms.oxfordjournals.org/
http://plms.oxfordjournals.org/

Linear programming over exponent pairs 287

[5] M. N. Huxley, N. Watt, Exponential sums and the Riemann zeta function, Proc.
Lond. Math. Soc. 57, 1 (1988) 1–24. ⇒272

[6] A. Ivić The Riemann Zeta-function: Theory and Applications, Dover Publica-
tions, Mineola, NY, 2003. ⇒286

[7] D. E. Knuth, The Art of Computer Programming. Vol. 4A. Combinatorial Al-
gorithms, part 1, Addison–Wesley, Upper Saddle River, NJ, 2011. ⇒276

[8] E. Krätzel. Lattice Points, Kluwer, Dordrecht, Boston, London, 1988. ⇒ 271,
272, 283, 284, 285

[9] H. Menzer, W. G. Nowak, On an asymmetric divisor problem with congruence
conditions, Manuscr. Math. 64, 1 (1989) 107–119. ⇒285

[10] The PARI Group, Bordeaux, PARI/GP, Version 2.6.1, 2013. ⇒281
[11] N. Watt, Exponential sums and the Riemann zeta function II, J. Lond. Math.

Soc. 39, 3 (1989) 385–404. ⇒272

Received: August 28, 2013 • Revised: December 30, 2013

http://cardiff.ac.uk/maths/contactsandpeople/profiles/huxley.html
http://www.caerdydd.ac.uk/maths/contactsandpeople/profiles/wattn.html
http://plms.oxfordjournals.org/
http://plms.oxfordjournals.org/
http://numbertheory.org/ntw/extras/ivic.html
http://doverpublications.com
http://doverpublications.com
http://www-cs-faculty.stanford.edu/~knuth/
http://pearsonhighered.com
http://www.mat.univie.ac.at/~baxa/kraetzel.html
http://wolterskluwer.com
http://users.minet.uni-jena.de/~menzer/
https://forschung.boku.ac.at/fis/suchen.person_uebersicht?sprache_in=de&menue_id_in=101&id_in=190
http://link.springer.com/journal/volumesAndIssues/229
http://pari.math.u-bordeaux.fr
http://www.caerdydd.ac.uk/maths/contactsandpeople/profiles/wattn.html
http://jlms.oxfordjournals.org/
http://jlms.oxfordjournals.org/

Book Reviews 289

ALGORITHMS OF INFORMATICS Vol. 3
SELECTED TOPICS

Editor: A. Iványi
Publisher: Mondat Kft. (http://www.mondat.hu/), Vác, 2013.

ISBN: 978-963-87596-7-2, 528 pages

First and second volumes of Algorithms of Informatics appeared in 2007. These
volumes contained 12 + 11 chapters. Volume 3 contains further eight chapters. The
base of this volume is the third volume of the electronic edition, which appeared in
2011 and contained 7 chapters.

Volume 3 consists of three parts. Part 7 (DISCRETE METHODS) contains 4 chap-
ters. Chapter 24 (Comparison-based Ranking) is written by Antal Iványi (Eötvös
Loránd University) and Shariefuddin Pirzada (University of Kashmir), Chapter 25
(Complexity of Words) by Zoltán Kása (Sapientia Hungarian University of Transyl-
vania) and Mira-Cristiana Anisiu (Tiberiu Popoviciu Institute of Numerical Analysis
of Romanian Academy), Chapter 26 (Perfect Arrays) by Antal Iványi (Eötvös Loránd
University) and Chapter 27 (Score Sets and Kings) by Shariefuddin Pirzada (Kash-
mir University), Antal Iványi (Eötvös Loránd University) and Muhammad Ali Khan
(King Fahd University of Petroleum and Minerals).

Part 8 (PARALLEL METHODS) consists of two chapters. Chapter 28 (GPGPU:
Computing on Graphics Processors) is due to László Szirmay-Kalos and László Szécsi
(both Budapest University of Technology and Economics) and Chapter 29 (Quantum-
based Computing) is due to László Bacsárdi, and Sándor Imre (all Budapest University
of Technology and Economics).

In Part 9 (PRACTICAL METHODS) are presented two chapters. Chapter 30
(Branch and Bound) is written by Béla Vizvári, while Chapter 31 (Conflict Situ-
ations) by Ferenc Szidarovszky (The University of Arizona) and László Domoszlai
(Eötvös Loránd University). The book is closed by bibliography, subject index, name
index and color version of 16 figures.

The chapters were validated by teachers and researchers of Archidata, Gödöllő
University of Agricultural Sciences, Eötvös Loránd University, Nimfea Nature Con-
servation Association, Sapientia Hungarian University of Transylvania, and University
of Szeged.

The volume contains pseudocodes of the presented algorithms, further tables, fig-
ures, verbal description and resource requirements, which help to understand the
algorithms.

Bibliography contains more than 300 references, mirroring—beside the alien books

and papers—and near all of the publications written in Hungarian. Electronic version

of the bibliography contains near 1000 links to home pages of cited authors, journals

and publishers: if you ask, then the editor of the volume sends you the digital bibli-

ography.

http://www.mondat.hu/

Book Reviews 290

INFORMATIKAI ALGORITMUSOK 3. kötet
Editor: A. Iványi

Publisher: Mondat Kft. (http://www.mondat.hu/), Vác, 2013.
ISBN: 978-963-87596-8-9, 388 pages

First and second volumes of Informatikai algoritmusok (in Hungarian) were pub-
lished in 2004 and 2005, resp. These volumes contained 17 + 14 chapters. Now we
present Volume 3 containing further 8 chapters.

Volume 3 consists of three parts. Part 7 titled DISCRETE METHODS contains
3 chapters: Chapter 32 (Heuristic Graph Searching) is written by Tibor Gregorics
(Eötvös Loránd University), Chapter 33 (Comparison-based Ranking) by Antal Iványi
(Eötvös Loránd University) and Shariefuddin Pirzada (University of Kashmir), and
Chapter 34 (Complexity of Words) by Zoltán Kása (Sapientia Hungarian University
of Transylvania) and Mira-Cristiana Anisiu (Tiberiu Popoviciu Institute of Numerical
Analysis of Romanian Academy).

Part 8 titled PARALLEL METHODS consists of two chapters. Chapter 35 (GPGPU:
Computing on Graphics Processors) is due to László Szirmay-Kalos and László Szécsi
(both Budapest University of Technology and Economics) and Chapter 36 (Quantum-
based Computing) is due to László Bacsárdi, Máté Galambos and Sándor Imre (all
Budapest University of Technology and Economics).

In Part 9 titled PRACTICAL METHODS we present three chapters. Chapter 37
(Conflict Situations) is written by Ferenc Szidarovszky (The University of Arizona)
and László Domoszlai (Eötvös Loránd University), Chapter 38 (Query Languages of
Semantic Web) by Balázs Pinczel, Balázs Kósa, Tamás Matuszka and Attila Kiss
(all Eötvös Loránd University), and Chapter 39 (Applications of Semantic Web) by
Gábor Rácz, Gergő Gombos and Attila Kiss (all Eötvös Loránd University).

The book is closed by bibliography, subject index, name index, and color version
of 16 figures.

The chapters were validated by teachers and researchers of Archidata
(György Antal), Gödöllő University of Agricultural Sciences (Sándor Molnár), In-
stitute for Computer Science and Control (István Csaba Sidló), Nimfea Nature Con-
servation Association (Anna Iványi), Sapientia Hungarian University of Transylvania
(Zoltán Kása), and University of Szeged (Zoltán Blázsik).

The volume contains pseudocodes of the presented algorithms, further tables, fig-
ures, verbal description and resource requirements, which help to understand the
algorithms.

Bibliography contains near 300 references, mirroring—beside the publications of

the Hungarian authors—also books and papers from all over the World.

http://www.mondat.hu/

Contents

Volume 5, 2013

T. Németh, S. Nagy, Cs. Imreh
Online data clustering algorithms in an RTLS system 5

A. Kovács, N. Tihanyi
Efficient computing of n-dimensional simultaneous
Diophantine approximation problems . 16

A. Járai, G. Kiss
Finding suitable paths for the elliptic curve primality
proving algorithm . 35

M. Bashov
Nonexistence of a Kruskal–Katona type theorem for double-
sided shadow minimization in the Boolean cube layer 53

É. Ádámkó, A. Pethõ
Location-stamp for GPS coordinates . 63

A. Kovács, K. Szabados
Test software quality issues and connections to international
standards .77

Zs. Csizmadia, T. Illés, A. Nagy
The s-monotone index selection rule for criss-cross algorithms
of linear complementarity problems .103

Katalin Pásztor Varga, Gábor Alagi, Magda Várterész
Many-valued logics–implications and semantic consequences . . 145

293

Boldizsár Németh, Zoltán Csörnyei
Stackless programming in Miller . 167

Richárd Forster, Ágnes Fülöp
Yang-Mills lattice on CUDA . 184

José L. Ramı́rez, Gustavo N. Rubiano
On the k-Fibonacci words . 212

Boris Melnikov, Aleksandra Melnikova
Some more on the basis finite automaton . 227

Antal Iványi, Loránd Lucz, Gergő Gombos, Tamás Matuszka
Parallel enumeration of degree sequences of simple graphs II . .245

Andrew V. Lelechenko
Linear programming over exponent pairs . 271

Book reviews
Algorithms of Informatics Vol. 3 (ed. A. Iványi) and
Informatikai algoritmusok 3. kötet (ed. A. Iványi) 289

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
László DÁVID

Main Editorial Board

Zoltán A. BIRÓ Zoltán KÁSA András KELEMEN
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica

Executive Editor
Zoltán KÁSA (Sapientia University, Romania)

kasa@ms.sapientia.ro

Editorial Board
Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Ladislav SAMUELIS (Technical University of Košice, Slovakia)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Gloria Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

