
Acta Universitatis Sapientiae

Informatica
Volume 3, Number 2, 2011

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

N. Pataki
C++ Standard Template Library by template specialized
containers . 141

G. Farkas, G. Kallós, G. Kiss
Large primes in generalized Pascal triangles 158

T. Herendi, R. Major
Modular exponentiation of matrices on FPGA-s 172

C. Pătcaş
The debts’ clearing problem: a new approach 192

A. Járai, E. Vatai
Cache optimized linear sieve . 205

D. Pálvölgyi
Lower bounds for finding the maximum and minimum
elements with k lies . 224

A. Iványi, L. Lucz, T. F. Móri, P. Sótér
On Erdős-Gallai and Havel-Hakimi algorithms 230

139

Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 141–157

C++ Standard Template Library by

template specialized containers

Norbert PATAKI
Dept. of Programming Languages and Compilers
Faculty of Informatics, Eötvös Loránd University

Pázmány Péter sétány 1/C H-1117 Budapest,
Hungary

email: patakino@elte.hu

Abstract. The C++ Standard Template Library is the flagship exam-
ple for libraries based on the generic programming paradigm. The usage
of this library is intended to minimize the number of classical C/C++
errors, but does not warrant bug-free programs. Furthermore, many new
kinds of errors may arise from the inaccurate use of the generic program-
ming paradigm, like dereferencing invalid iterators or misunderstanding
remove-like algorithms.

In this paper we present some typical scenarios that may cause run-
time or portability problems. We emit warnings and errors while these
risky constructs are used. We also present a general approach to emit
“customized” warnings. We support the so-called “believe-me marks”
to disable warnings. We present another typical usage of our technique,
when classes become deprecated during the software lifecycle.

1 Introduction

The C++ Standard Template Library (STL) was developed by generic pro-
gramming approach [2]. In this way containers are defined as class templates
and many algorithms can be implemented as function templates. Furthermore,
algorithms are implemented in a container-independent way, so one can use
them with different containers [23]. C++ STL is widely-used because it is a

Computing Classification System 1998: D.3.2
Mathematics Subject Classification 2010: 68N19
Key words and phrases: C++, STL, template, compilation

141

http://www.inf.elte.hu/english/aboutus/departments/Lapok/DepartmentofProgrammingLanguagesAndCompilers.aspx
http://www.inf.elte.hu/english/Lapok/default.aspx
http://www.elte.hu/en
mailto:patakino@elte.hu

142 N. Pataki

very handy, standard C++ library that contains beneficial containers (like
list, vector, map, etc.) and a large number of algorithms (like sort, find, count,
etc.) among other utilities [5].

The STL was designed to be extensible [14]. We can add new containers that
can work together with the existing algorithms. On the other hand, we can
extend the set of algorithms with a new one that can work together with the
existing containers. Iterators bridge the gap between containers and algorithms
[4]. The expression problem [26] is solved with this approach. STL also includes
adaptor types which transform standard elements of the library for a different
functionality [1].

However, the usage of C++ STL does not guarantee bugless or error-free
code [7]. Contrarily, incorrect application of the library may introduce new
kinds of problems [22].

One of the problems is that the error diagnostics are usually complex, and
very hard to figure out the root cause of a program error [27, 28]. Violating
requirement of special preconditions (e.g. sorted ranges) is not tested, but
results in runtime bugs [20]. A different kind of stickler is that if we have an
iterator object that pointed to an element in a container, but the element
is erased or the container’s memory allocation has been changed, then the
iterator becomes invalid [17]. Further reference of using invalid iterators causes
undefined behaviour [19].

Another common mistake is related to removing algorithms. The algorithms
are container-independent, hence they do not know how to erase elements from
a container, just relocate them to a specific part of the container, and we need
to invoke a specific erase member function to remove the elements phisically.
Since, for example the remove algorithm does not actually remove any element
from a container [13].

Some of the properties are checked at compilation time [8]. For example,
the code does not compile if one uses sort algorithm with the standard list
container, because the list’s iterators do not offer random accessibility [10].
Other properties are checked at runtime [21], like the standard vector container
offers an at method which tests if the index is valid and it raises an exception
otherwise [18].

Unfortunately, there are still a large number of properties that are tested
neither at compilation-time nor at run-time. The observance of these proper-
ties is in the charge of the programmers [6]. On the other hand, type systems
can provide a high degree of safety at low operational costs. As part of the
compiler, they discover many semantic errors very efficiently.

Associative containers (e.g. multiset) use functors exclusively to keep their

C++ Standard Template Library by template specialized containers 143

elements sorted. Algorithms for sorting (e.g. stable sort) and searching in
ordered ranges (e.g. lower bound) are typically used with functors because
of efficiency. These containers and algorithms need strict weak ordering. Con-
tainers become inconsistent if used functors do not meet the requirement of
strict weak ordering [15].

Certain containers have member functions with the same names as STL al-
gorithms. This phenomenon has many different reasons, for instance efficiency,
safety or avoidance of compilation errors. For example, as mentioned before
list’s iterators cannot be passed to sort algorithm, hence code with this mis-
take cannot be compiled [24]. To overcome this problem list has a member
function called sort. In these cases, although the code compiles, the member
function calls are preferable to the usage of generic algorithms.

Whereas C++ STL is pre-eminent in a sequential realm, it is not aware of
multicore environment [3]. For example, the Cilk++ language aims at mul-
ticore programming. This language extends C++ with new keywords and
one can write programs for multicore architectures easily. Although the lan-
guage does not contain an efficient multicore library, just the C++ STL only
which is an efficiency bottleneck in multicore environment. We develop a new
STL implementation for Cilk++ to cope with the challenges of multicore
architectures[25]. This new implementation can be safer solution, too. Hence,
our safety extensions will be included in the new implementation. However,
the advised techniques presented in this paper concern to the original C++
STL, too.

In this paper we argue for an approach that generates warnings or errors
when a template container is instantiated with improper parameters. These
instantiations mean erroneous, unportable code or other weird compilation
effects. A general technique is presented to express custom warnings at compi-
lation time. Our technique is able to indicate the usage of deprecated classes.

This paper is organized as follows. In Section 2 we present an approach
to generate “customized” warnings at compilation time. After, in Section 3
we describe the specialized vector container which contains boolean values.
We show why this container is problematic, and argue for warnings when it
is in use. We explain the forbidden containers of auto pointers and present
an approach to disable their usage by template specializations. In Section 5
the so-called believe-me marks are introduced. Finally, this paper concludes in
Section 7.

144 N. Pataki

2 Generation of warnings

Compilers cannot emit warnings based on the erroneous usage of the library.
STLlint is the flagship example for external software that is able to emit
warnings when the STL is used in an incorrect way [9]. We do not want to
modify the compilers, so we have to enforce the compiler to indicate these
kinds of potential problems. However, static assert as a new keyword is
introduced in C++0x to emit compilation errors based on conditions, but no
similar construct is designed for warnings.

template <class T>

inline void warning(T t) { }

struct VECTOR_BOOL_IS_IN_USE { };

// ...

warning(VECTOR_BOOL_IS_IN_USE());

When the warning function is called, a dummy object is passed. This
dummy object is not used inside the function template, hence this is an unused
parameter. Compilers emit warning to indicate unused parameters. Compila-
tion of warning function template results in warning messages, when it is re-
ferred and instantiated [16]. No warning message is shown if it is not referred.
In the warning message the template argument is referred. New dummy type
has to be written for every new kind of warning.

Different compilers emit this warning in different ways. For instance, Visual
Studio emits the following message:

warning C4100: ’t’ : unreferenced formal parameter

...

see reference to function template instantiation ’void

warning<VECTOR_BOOL_IS_IN_USE>(T)’

being compiled

with

[

T=VECTOR_BOOL_IS_IN_USE

]

C++ Standard Template Library by template specialized containers 145

And g++ emits the following message:

In instantiation of ’void warning(T)

[with T = VECTOR_BOOL_IS_IN_USE]’:

... instantiated from here

... warning: unused parameter ’t’

Unfortunately, implementation details of warnings may differ, thus there is
no universal solution to generate custom warnings.

This approach of warning generation has no runtime overhead inasmuch as
the compiler optimizes the empty function body. On the other hand—as the
previous examples show—the message refers to the warning of unused param-
eter, incidentally the identifier of the template argument type is appeared in
the message.

3 The weirdest vector

In this section we present the basic idea behind the specialized vector<bool>

container. We present the pros and cons of this weird type. We argue for
generate warnings at compilation-time if a programmer uses vector<bool>

because it is the embodiment of the weird container.
Many programmers think that the vector<bool> is the instantiation of

STL’s vector template, but it is not true. On many platforms sizeof(int

) == sizeof(bool) because of reverse compatibility. (In the C program-
ming language int type has been used to represent Boolean values.) Hence,
the vector<bool> is a template specialized container to develop a more ad-
vanced, denser implementation for boolean values. This representation is able
to represent 32 boolean values on 4 bytes.

The following code sketch represents the connection between vector<bool>

and vector template:

template <class T, class Alloc = std::alloc>

class vector

{

T* p;

size_t capacity;

size_t size;

public:

vector()

146 N. Pataki

{

// ...

}

void push_back(const T& t)

{

// ...

}

// ...

};

template <class Alloc>

class vector<bool, class Alloc>

{

// dense representation of vector bool

// No bool* member

public:

// public interface is similar to the previous one

void push_back(const bool& t)

{

// ...

}

vector()

{

//...

}

};

So, the vector<bool> has a special representation to handle dense boolean
values. It is designed to be effective when someone stores boolean values. But
it has weird behaviour compared to the vector template:

std::vector<int> a;

a.push_back(3);

int* p = &a[0];

C++ Standard Template Library by template specialized containers 147

std::vector<bool> b;

b.push_back(true);

bool* q = &b[0];

The previous code does not compile because of the bool* q = &b[0]; as-
signment. However, when the template vector is in use, its counterpart does
compile. It is a contradiction in terms, because this way the vector<bool>

cannot meet the requirements of C++ Standard. Hence, it is not advised to
use. Let us see the background of this compilation issue:

template <class T, class Alloc = std::alloc>

class vector

{

T* p;

//..

public:

T& operator[](int idx)

{

return p[idx];

}

const T& operator[](int idx) const

{

return p[idx];

}

// ...

};

template <class Alloc>

class vector<bool, class Alloc>

{

// dense representation of vector bool

// No bool* member

public:

class bool_reference

{

// ...

};

148 N. Pataki

bool_reference operator[](int idx)

{

// ...

}

};

Because the vector<bool> does not hold actual bool values it cannot re-
turn bool&. Hence, a proxy class is developed which actually simulates bool&.
However, conversions cannot be defined between pointer to a bool reference

and a pointer to a bool. This behaviour can be much more appalling, when the
programmer uses vector as a base class. Arcane error messages are emitted
when the subtype is instantiated with bool.

Unfortunately, most of STL references hardly mention that vector<bool>

is not the instantiation of template, but a completely different class. It would
be useful if the compiler indicated if the programmer used vector<bool>

container, even intentionally or inadvertently.
Now it is not difficult to emit warning with the presented function. Fortu-

nately, vector<bool> is still a class template because the type of its allocator
is a template parameter. So, the compilation warning is emitted only when
this template class is instantiated, hence someone uses it:

template<class Allocator>

class vector<bool, Allocator>

{

// ...

public:

vector()

{

warning(VECTOR_BOOL_IS_IN_USE());

// ...

}

template<class InputIterator>

vector(InputIterator first, InputIterator last)

{

warning(VECTOR_BOOL_IS_IN_USE());

// ...

}

C++ Standard Template Library by template specialized containers 149

vector(size_t n, const bool& value = bool())

{

warning(VECTOR_BOOL_IS_IN_USE());

// ...

}

vector(const vector& rhs)

{

warning(VECTOR_BOOL_IS_IN_USE());

// ...

}

};

In Section 2 the emitted warning message can be seen.

4 Containers of auto pointers

In this section the containers of auto pointers are detailed. We present their
motivation and reason why are they problematic. We present a solution to
forbid the usage of these kinds of containers.

Usually, auto pointers (std::auto ptr objects) make easier to manage ob-
jects in the heap memory. This class assists in memory management. The auto
pointers deallocate the pointed memory when they are gone out of scope [23].
Hence, they prevent memory leaks:

void f()

{

std::auto_ptr<int> p(new int(5));

// no memory leak

}

Containers of STL are template classes, so technically they should be in-
stantiated with auto pointers and store auto pointers that point to the heap:

std::vector<std::auto_ptr<int> > v;

v.push_back(new int(7));

// ...

150 N. Pataki

The previous code snippet seems to be safe. On the other hand, the C++
Standardization Committee forbid the usage of containers of auto pointers
(COAPs). The motivation behind this idea is that the copy of auto pointers
is strange:

std::auto_ptr<int> p(new int(3));

std::auto_ptr<int> q = p;

// At this point p is null pointer

The copied auto pointer becomes null pointer. Only one auto pointer is able
to point to any object in the heap. This one is responsible for the deallocation.

So, if COAPs are not be forbidden, the following code snippet results in a
very strange behaviour:

struct Auto_ptr_less

{

bool operator()(const std::auto_ptr<int>& a,

const std::auto_ptr<int>& b)

{

return *a < *b;

}

};

std::vector<std::auto_ptr<int> > v;

v.push_back(new int(7));

// ...

std::sort(v.begin(), v.end(), Auto_ptr_less());

Some of the pointers may become null pointer because of the assignments
during swapping vector’s elements when it is necessary. This is the reason why
COAPs are forbidden.

Unfortunately, some of the compilers and STL platforms are still permitting
the usage of COAPs, some of them are not. This inhibits the writing of portable
code [13].

We argue for an extension to emit compilation error if COAPs are in use.
We have to create specializations for auto pointers. The trick that is we do
not write the implementation for the auto pointer specializations. Thus, these
specializations are declared, but are not defined types. For instance, the vector
declaration can be the following:

C++ Standard Template Library by template specialized containers 151

template <class T, class Alloc>

class vector< std::auto_ptr<T>, Alloc>;

The instantiation of a COAP results in the hereinafter error message:

error: aggregate ’std::vector<std::auto_ptr<int>,

std::allocator<std::auto_ptr<int> > > v’

has incomplete type and cannot be defined

We have to develop these declarations for all standard containers. These
declarations mean bugless and more portable code.

5 Believe-me marks

Generally, warnings should be eliminated. On the other hand, the usage of
vector<bool> does not necessarily mean a problem. It can be used safely.
However, we cannot disable the generated warning if it is in use.

Believe-me marks [12] are used to identify the points in the program text
where the type system cannot obtain if the used construct is risky. For instance,
in the hereinafter example, the user of the library asks the type system to
“believe” that the programmer is conscious of the specialized vector container.
This way we enforce the user to reason about the parameters of containers.

First, we create a new type which stands for the believe-me mark:

struct I_KNOW_VECTOR_BOOL { };

After, we extend the vector template container with one new template pa-
rameter. The new template parameter has default parameter value, so it is
reverse compatible with the original container. This parameter has not been
taken advantage of, and has no effect on the implementation:

template <class T, class Alloc = std::alloc, class Info = int>

class vector { };

Let us consider, that the original implementation of vector<bool> which
does not generate warning has been removed to a new template class:

template <class Alloc>

class __VectorBool

{

// original implementation of vector<bool>

};

152 N. Pataki

The new template parameter has effect on the vector<bool> specialization:

template <class Alloc>

class vector<bool, I_KNOW_VECTOR_BOOL, Alloc>:

public __VectorBool<Alloc>

{ };

template <class Alloc>

class vector<bool, Alloc, I_KNOW_VECTOR_BOOL>:

public __VectorBool<Alloc> { };

template <class Alloc, class Info>

class vector<bool, Alloc, Info>:

public __VectorBool<Alloc>

{

public:

vector(): __VectorBool<Alloc>()

{

warning(VECTOR_BOOL_IS_IN_USE());

}

template<class InputIterator>

vector(InputIterator first, InputIterator last):

__VectorBool<Alloc>(first, last)

{

warning(VECTOR_BOOL_IS_IN_USE());

}

vector(size_t n, const bool& value = bool()):

__VectorBool<Alloc>(n, value)

{

warning(VECTOR_BOOL_IS_IN_USE());

}

vector(const vector& rhs): __VectorBool<Alloc>(rhs)

{

warning(VECTOR_BOOL_IS_IN_USE());

}

};

C++ Standard Template Library by template specialized containers 153

In this case no compilation warning is emitted if the last added template
parameter is I KNOW VECTOR BOOL, otherwise the mentioned warning can be
seen during compilation.

6 Deprecated classes

In section 3 we generated warnings when a template-specialized class was used.
A similar idea can be mentioned. It would be useful to generate warnings when
the usage of classes becomes unsupported.
A common idea during a software lifecycle is, that some of the classes are

not deleted from the project, but their usage is not advised. These classes are
called deprecated. Deprecated annotation can be added to classes in Java. In-
stantiation of deprecated classes results in compilation warnings [11]. However,
no similar technique is used in C++.
First, we create some utility classes for warning generation:

struct DeprecatedClass { };

template <class DEPRECATED>

struct Deprecated

{

Deprecated()

{

warning(DeprecatedClass());

}

};

The role of the template parameter in Deprecated struct is to pass the
identifier of deprecated class to the emitted warning.
Now, let us consider that the following class becomes deprecated during

software lifecycle:

class Foo

{

// ...

public:

Foo(int a, int b)

{

// ...

}

};

154 N. Pataki

The user has to add one more base class to the deprecated class. This does
not mean limitation because the C++ programming language supports mul-
tiple inheritance. For example:

class Foo: public Deprecated<Foo>

{

// very same...

};

The following warning is received from the compiler:

In instantiation of ’void warning(T)

[with T = DeprecatedClass]’:

... instantiated from

’Deprecated<DEPRECATED>::Deprecated()

[with DEPRECATED = Foo]’

... instantiated from here

... warning: unused parameter ’t’

However, this message is received irrespectively of its usage. If the usage
is important, the deprecated class or a called method or constructor must be
a template. This transformation cannot be executed automatically with the
respect of client code. Our future work is to overcome this situation.
We do not advise to make believe-me marks for the deprecated classes inas-

much as always exists a better approach to use.

7 Conclusions

C++ STL is the most widely-used library based on the generic programming
paradigm. It is efficient and convenient, but the incorrect usage of the library
results in weird or undefined behaviour.
In this paper we argue for some extensions to make the STL itself safer. Not

supported or not advised instantiations result in compilation warnings and
errors to prevent unportable or defective code.
We present an effective approach to generate custom warnings. Believe-me

marks are also written to disable warning messages. With our technique classes
can be marked deprecated, too.

C++ Standard Template Library by template specialized containers 155

Acknowledgements

The Project is supported by the European Union and co-financed by the Eu-
ropean Social Fund (grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-
0003).

References

[1] A. Alexandrescu, Modern C++ Design: Generic Programming and De-
sign Patterns Applied, Addison-Wesley, Reading, MA, 2001. ⇒142

[2] M. H. Austern, Generic Programming and the STL: Using and Extend-
ing the C++ Standard Template Library, Addison-Wesley, Reading, MA,
1998. ⇒141

[3] M. H. Austern, R. A. Towle, A. A. Stepanov, Range partition adaptors:
a mechanism for parallelizing STL, ACM SIGAPP Applied Computing
Review 4, 1 (1996) 5–6. ⇒143

[4] T. Becker, STL & generic programming: writing your own iterators,
C/C++ Users Journal 19, 8 (2001) 51–57. ⇒142

[5] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools
and Applications, Addison-Wesley, Reading, MA, 2000. ⇒142

[6] G. Dévai, N. Pataki, Towards verified usage of the C++ Standard Tem-
plate Library, Proc. 10th Symposium on Programming Languages and
Software Tools (SPLST) 2007, Dobogókő, Hungary, pp. 360–371. ⇒142

[7] G. Dévai, N. Pataki, A tool for formally specifying the C++ Standard
Template Library, Ann. Univ. Sci. Budapest. Comput. 31 (2009) 147–166.⇒142

[8] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, A. Lumsdaine,
Concepts: linguistic support for generic programming in C++, Proc. 21st
Annual ACM SIGPLAN 2006 Conference on Object-oriented Program-
ming Systems, Languages, and Applications (OOPSLA 2006), Portland,
Oregon, USA, pp. 291–310. ⇒142

[9] D. Gregor, S. Schupp, Stllint: lifting static checking from languages to
libraries, Software – Practice & Experience, 36, 3 (2006) 225-254. ⇒144

http://erdani.com/
http://www.pearsonhighered.com/
http://www.pearsonhighered.com/
http://gsd.uwaterloo.ca/kczarnec
http://www.pearsonhighered.com/
http://deva.web.elte.hu/index.html
http://ikportal.inf.elte.hu:8080/rendezvenyek/splst.html
http://deva.web.elte.hu/index.html
http://ac.inf.elte.hu/Vol_031_2009/147.pdf
http://parasol.tamu.edu/~jarvi/
http://ecee.colorado.edu/~siek/
http://www2.research.att.com/~bs/
http://osl.iu.edu/~lums/
http://www.oopsla.org/2006/

156 N. Pataki

[10] J. Järvi, D. Gregor, J. Willcock, A. Lumsdaine, J. Siek, Algorithm spe-
cialization in generic programming: challenges of constrained generics in
C++, Proc. ACM SIGPLAN 2006 Conference on Programming Language
Design and Implementation (PLDI 2006), Ottawa, Canada, pp. 272–282.⇒142

[11] Z. Juhász, M. Juhás, L. Samuelis, Cs. Szabó, Teaching Java programming
using case studies, Teaching Mathematics and Computer Science 6, 2
(2008) 245–256. ⇒153

[12] T. Kozsik, Tutorial on subtype marks, in Proc. Central European Func-
tional Programming School (CEFP 2005), Lecture Notes in Comput. Sci.
4164 (2006) 191–222. ⇒151

[13] S. Meyers, Effective STL – 50 Specific Ways to Improve Your Use of the
Standard Template Library, Addison-Wesley, Reading, MA, 2001. ⇒142,
150

[14] D. R. Musser, A. A. Stepanov, Generic programming, Proc. International
Symposium ISSAC’88 on Symbolic and Algebraic Computation, Lecture
Notes in Comput. Sci. 358 (1989) 13–25. ⇒142

[15] N. Pataki: C++ Standard Template Library by safe functors, Abstracts
8th Joint Conference on Mathematics and Computer Science (MaCS’10),
Komárno, Slovakia, July 14-17, 2010, p. 44. ⇒143

[16] N. Pataki, Advanced functor framework for C++ Standard Template
Library, Stud. Univ. Babeş-Bolyai Inform. 56, 1 (2011) 99–113. ⇒144

[17] N. Pataki, C++ Standard Template Library by ranges, Proc. 8th In-
ternational Conference on Applied Informatics (ICAI 2010) Vol. 2., pp.
367–374. ⇒142

[18] N. Pataki, Z. Porkoláb, Z. Istenes, Towards soundness examination of
the C++ Standard Template Library, Proc. Electronic Computers and
Informatics (ECI 2006), pp. 186–191. ⇒142

[19] N. Pataki, Z. Szűgyi, G. Dévai, C++ Standard Template Library in a
safer way, Proc. Workshop on Generative Technologies 2010 (WGT 2010),
Paphos, Cyprus, pp. 46–55. ⇒142

http://parasol.tamu.edu/~jarvi/
http://osl.iu.edu/~lums/
http://ecee.colorado.edu/~siek/
http://research.microsoft.com/en-us/um/redmond/events/pldi06/
http://kpi1.fei.tuke.sk/person/samuelis/dcicard.php
http://kpi1.fei.tuke.sk/person/szabo/dcicard.php
http://tmcs.math.klte.hu/
http://kto.web.elte.hu/
http://plc.inf.elte.hu/cefp/cefp2005/
http://plc.inf.elte.hu/cefp/cefp2005/
http://www.springer.com/series/558
http://www.aristeia.com/
http://www.pearsonhighered.com/
http://www.cs.rpi.edu/~musser/
http://www.springer.com/series/558
http://www.selyeuni.sk/macs/
http://www.cs.ubbcluj.ro/~studia-i/2011-1/09-Pataki.pdf
http://icai.ektf.hu/
http://gsd.web.elte.hu
http://quasar.inf.elte.hu
http://hornad.fei.tuke.sk/kpi/eci/
http://hornad.fei.tuke.sk/kpi/eci/
http://deva.web.elte.hu/index.html
http://wgt2010.elte.hu

C++ Standard Template Library by template specialized containers 157

[20] N. Pataki, Z. Szűgyi, G. Dévai, Measuring the overhead of C++ Standard
Template Library safe variants, Electronic Notes in Theoret. Comput. Sci.
264, 5 (2011) 71–83. ⇒142

[21] P. Pirkelbauer, S. Parent, M. Marcus, B. Stroustrup, Runtime concepts for
the C++ Standard Template Library, Proc. ACM Symposium on Applied
Computing 2008, Fortaleza, Ceará, Brazil, pp. 171–177. ⇒142

[22] Z. Porkoláb, Á. Sipos, N. Pataki, Inconsistencies of metrics in C++ Stan-
dard Template Library, Proc. 11th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE), Berlin,
Germany, pp. 2–6. ⇒142

[23] B. Stroustrup, The C++ Programming Language (Special edition),
Addison-Wesley, Reading, MA, 2000. ⇒141, 149

[24] Z. Szűgyi, Á. Sipos, Z. Porkoláb, Towards the modularization of C++
concept maps, Proc. Workshop on Generative Programming (WGT 2008),
Budapest, Hungary, pp. 33–43. ⇒143

[25] Z. Szűgyi, M. Török, N. Pataki, Towards a multicore C++ Standard
Template Libary, Proc. Workshop on Generative Programming (WGT
2011), Saarbrücken, Germany, pp. 38–48. ⇒143

[26] M. Torgersen, The expression problem revisited – Four new solutions us-
ing generics, Proc. European Conference on Object-Oriented Programming
(ECOOP) 2004, Lecture Notes in Comput. Sci. 3086 (2004) 123–143. ⇒
142

[27] L. Zolman: An STL message decryptor for visual C++, C/C++ Users
Journal, 19(7) (2001) 24–30. ⇒142

[28] I. Zólyomi, Z. Porkoláb: Towards a general template introspection li-
brary, Proc. of Generative Programming and Component Engineering:
Third International Conference (GPCE 2004), Lecture Notes in Comput.
Sci. 3286, 266–282. ⇒142

Received: March 16, 2011 • Revised: July 20, 2011

http://deva.web.elte.hu/index.html
http://entcs.org
http://www.emarcus.org/
http://www2.research.att.com/~bs/
http://www.acm.org/conferences/sac/sac2008/
http://www.acm.org/conferences/sac/sac2008/
http://gsd.web.elte.hu/
http://www.inf.usi.ch/faculty/lanza/QAOOSE2007/
http://www.inf.usi.ch/faculty/lanza/QAOOSE2007/
http://www2.research.att.com/~bs/
http://www.pearsonhighered.com/
http://gsd.web.elte.hu/
http://wgt2008.elte.hu/
http://wgt.elte.hu/2011/
http://www.daimi.au.dk/~madst/
http://www.ifi.uio.no/ecoop2004/
http://www.springer.com/series/558
http://gsd.web.elte.hu/
http://www.springer.com/series/558
http://www.springer.com/series/558

Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 158–171

Large primes in generalized Pascal

triangles

Gábor FARKAS
Eötvös Loránd University

email: farkasg@compalg.inf.elte.hu

Gábor KALLÓS
Széchenyi István University, Győr

email: kallos@sze.hu

Gyöngyvér KISS
Eötvös Loránd University

email: kissgyongyver@gmail.com

Abstract. In this paper, after presenting the results of the generalization
of Pascal triangle (using powers of base numbers), we examine some prop-
erties of the 112-based triangle, most of all regarding to prime numbers.
Additionally, an effective implementation of ECPP method is presented
which enables Magma computer algebra system to prove the primality of
numbers with more than 1000 decimal digits.

1 Generalized Pascal triangles using the powers of
base numbers

As it is a well-known fact, the classic Pascal triangle has served as a model for
various generalizations. Among the broad variety of ideas of generalizations
we can find e.g.: the generalized binomial coefficients of sth order (leading to
generalized Pascal triangles of sth order), the multinomial coefficients (leading
to Pascal pyramids and hyperpyramids), special arithmetical sequences (lead-
ing to resulting triangles which we might call as Lucas, Fibonacci, Gaussian,
Catalan, ... triangle) (details in [3]).

One of the present authors has devised, and then worked out in detail and
published such a type of generalization, which is based on the idea of using

Computing Classification System 1998: G.4
Mathematics Subject Classification 2010: 05A10, 11Y11
Key words and phrases: generalized Pascal triangles, elliptic curve primality proving

158

http://compalg.inf.elte.hu
http://www.elte.hu
mailto:farkasg@compalg.inf.elte.hu
http://www.sze.hu/~kallos
http://www.sze.hu
mailto:kallos@sze.hu
http://compalg.inf.elte.hu
http://www.elte.hu
mailto:kissgyongyver@gmail.com

Large primes in generalized Pascal triangles 159

“the powers of the base number”. Referring to our former results (presented in
detail in [7] and [8]; here we don’t repeat/echo the theorems and propositions)
we show here the first few rows of the 112-based triangle (Figure 1), which
will gain outstanding importance below in this paper.

1
1 1 2

1 2 5 4 4
1 3 9 13 18 12 8

1 4 14 28 49 56 56 32 16
1 5 20 50 105 161 210 200 160 80 32

1 6 27 80 195 366 581 732 780 640 432 192 64
. . .

Figure 1: The 112-based triangle

Let us use the notation E
a0a1...am−1

k,n for the kth element in the nth row of
a0a1 . . . am−1-based triangle (0 ≤ a0, a1, . . . , am−1 ≤ 9 are integers). Then we
have the definition rule, as follows:

E
a0a1...am−1

k,n = am−1E
a0a1...am−1

k−m+1,n−1 + am−2E
a0a1...am−1

k−m+2,n−1 + · · ·+

+a1E
a0a1...am−1

k−1,n−1 + a0E
a0a1...am−1

k,n−1 .

The indices in the rows and columns run from 0, elements with non-existing
indices are considered to be zero. Applying this general form to the 112-based
triangle (now: m = 3), we get the specific rule

E112k,n = 2E112k−2,n−1 + E
112
k−1,n−1 + E

112
k,n−1.

The historical overview of this special field is presented in [8]. In the last few
years there were published several new results which are related to our topic
(e.g. [2]). Moreover, besides that, up to about 2005, all generalized triangle
sequences of the type ax + by were added to the database On-line Encyclo-
pedia of Integer sequences [11], since that time there have been several new
applications, too, based on sequences appearing in our triangles. However, e.g.
the sequences based on the general abc-based triangles are still not widely
known.

Recalling the basic properties of generalized triangles—most of all in con-
nection with powering the base number a0a1 . . . am−1 and with the polynomial

160 G. Farkas, G. Kallós, G. Kiss

(a0x0+a1x1+ · · ·+am−1xm−1)
n—we can state that we have the “right” to call

these types of triangles as generalized Pascal triangles (details in [8], summary
in [6]).

2 Divisibility of elements and prime numbers

The classic divisibility investigations in Pascal triangle (for binomial coeffi-
cients) are very popular and even spectacular, if the traditional “strict” math-
ematical approach is moved toward coloring and fractals (details in [3]). For
generalized binomial coefficients (with our notation: in triangles with bases
11 · · · 1) we have similar results, too, with a remark that in these cases general
proofs are harder, and there are many conjectures, too.

We recall here the beautiful result of Richard C. Bollinger, who proved
for generalized Pascal triangles of pth order that for large n, “almost every”
element in the nth row is divisible by p (see [3], p. 24). For example, for the
111-based triangle this means divisibility by 3. (We mention that the pth order
Pascal triangle is a triangle with base 11 · · · 1, where we have p pieces of 1.)

Now we turn our attention specially to the 112-based triangle, and in the
following we are interested mostly in prime numbers. It is obvious that the
right part of the triangle contains only even numbers. Moreover, if we move
to the right, the powers of 2 are usually (not always) growing as divisors.
Analyzing connections with the multinomial theorem we can conclude that
the left part of the triangle contains mostly (with possible exception of the
first two places) composite numbers, too. Of course, this can be not true for
the 0th and 1st numbers, which are the same as in the classic Pascal triangle.
Moreover, using induction we can see that the center element in every row is
always odd.

We can pose obviously two (not hard) questions in connection with prime
numbers:

1. Can we find every prime number as an element in our triangle?
2. Can we find every prime number as an element in our triangle in non-

trivial places?
The answer to question 1 is “yes”, as we already saw above (the 1st elements

in every row, however, this is a trivial match). To question 2, we fix first that
primes are worth looking for only in the middle position.

With a computer investigation (using e.g. the Maple program) we can find
6 small primes up to the 100th row (Figure 2).

Extending the examination up to the 1900th row, we get only one more

Large primes in generalized Pascal triangles 161

Position (row, column) Prime
2, 2 5
3, 3 13
8, 8 7393
15, 15 65753693
21, 21 175669746209
24, 24 9232029156001

Figure 2: Small primes in the 112-based triangle

positive answer, in position (156, 156), a 90-digit prime (candidate). So, the
answer to our second question (considering only this triangle) is “no”.

Our possibilities are extended rapidly, if we look up not only pure prime
numbers, but even decompositions. So now we modify our question 2 as “can
we find every prime number as a factor of any element in our triangle?” (Exam-
ining only non-trivial places, so, positions 0 and 1 are in every row excluded.)

We see immediately that every one-digit prime occurs as a factor at least
once up to the 4th row. Here 2 and 5 are triangle elements themselves; 3 is a
factor of 9, 7 is a factor of 14.

Continuing with an easy computer examination for two-digit primes we find
all but 4 up to the 12th row. For the rest of the numbers we get the following
first occurrences (in number–row form): 79–14, 71–15, 59–17 and, surprisingly
41–27.

Now, we turn our attention to 3-digit primes. Here we need a much larger
triangle-part. Let’s choose, say, a 100-row triangle in an easy-factorized form.
With a small Maple program on a normal table-PC, we can generate the
necessary data in a few minutes. (Easy factorization is very important here,
otherwise, with full factorization the generation could take an extremely long
time...) The output of the program in txt form will be approximately 1.15
MBytes.

From the 143 3-digit primes we find 105 up to 40th row. For the remaining
38 numbers, 18 numbers are situated in rows 41− 50, 11 additional primes in
rows 51− 60, and 2 (823 and 827) in rows 61− 70. The still missing “hardest”
3-digit primes finally give the following first occurrences (in number – row
form): 479 – 74, 499 – 74, 677 – 76, 719 – 77, 859 – 72, 937 – 98 and 947 – 73.
To the contrary, the “easiest” 3-digit primes are 103, 191 and 409 in the 7th

row.
With this we give up the claim “to find all of the primes as divisors”.

162 G. Farkas, G. Kallós, G. Kiss

Our next investigation focuses on very large prime factors (more accurately:
prime candidates).

Computer investigations suggest that the largest prime factors in a given row
occur very likely in the center position or very close to that place. Of course,
this is not an absolute rule, but since our goal is “only” to find very large prime
(candidate) factors, we can limit the investigation to the center element. (This
has a significant importance to achieving: go as “deep” relatively quickly in
the triangle as possible.)

Moreover, the center element carries special properties compared with other
elements. Recalling Richard C. Bollinger’s result above, we can set up a similar
interesting conjecture:

For large n, the center element in the nth row “almost surely” will be divis-
ible by 5 and 7 (but surely not by 2 and usually not by 3).

So, with a relatively simple Maple program we set out to the easy-factorization
of the center element up to the 1900th row. On a normal table-PC, the execu-
tion time is approximately 11 hours, with an output file in txt form roughly
110 KBytes.

Analyzing the output we can deduce that prime divisors here follow the
Knuth-observation [9], too: we usually find few small factors some of which are
repetitive; composite (not decomposable with the ’easy’ option) large factors
are common, pure large prime factors are however rare or extremely rare.

Position (row, column) Digits of the prime candidate
1726, 1726 1002
1793, 1793 1028
1794, 1794 1030

Figure 3: Large “pure” prime factors (candidates)—112-based triangle, center
position

Considering only the primes (prime candidates) with digits more than 1000
we get 3 matches.

Here the second and third matches are especially interesting, since they can
be considered as a special kind of “twin-primes” (candidates) in the triangle.
In general, our chance to find “pure” large prime factors in consecutive rows
is very little...

Here the factorization of element with position 1793, 1793 is as follows:

Large primes in generalized Pascal triangles 163

1793, 1793; ‘‘(5) ∗ ‘‘(7)2 ∗ ‘‘(673) ∗ ‘‘(65119) ∗ ‘‘(1485703) ∗ ‘‘(15578887875328
926423851777567602680378792003694589981499750631818308971422277975

902867850432471811687112334064063828539296067422531997963055491323

406425659317001574425151788919713654021679547897110675223861482309

644220358490739245691930715715021145166205571510978302005857149111

239471032734380710285002174983967604232152940389858538629493812650

108566716591594874813194189360195173091031608755605756723631900973

625032697091409833078265261680211635427069757196618031458397872466

034789488450265204214587550269112317436588892430166513888148357222

480962630168478230243146450158020142586939406221546644931686618139

068737541801842683626194613956159330873776421795220707554672321055

658602305273678940456712151943459348907356567358277310497505925970

210070347980231047308886323693790450859256057748541430119354204022

527748661261790305800487349106563678280226712828838174678186252307

070941149885645163684441661612796581751766644659424590726902531393

104098376100305217952214533052008783687240950373043230661705142861

901235736247002277563333)

In [6] we proved the primality of the largest factor of 1726, 1726 which
has 1002 decimal digits. That time we used a freeware software developed
by F. Morain. In the remaining part of this paper our goal is to present our
selfmade program which is appropriate to prove the prime property of such
large numbers. Let us denote the 1028 digits long factor of 1793, 1793 by n1
and the 1030 digits long factor of 1794, 1794 by n2. We investigated n1 and
n2 with our program, and have found that both of them are really primes.
Moreover, the process of the proof and shematic structure of the evidence will
be presented, too.

3 Atkin’s primality test

We described the theoretical foundations of the elliptic curve primality proving
in [6]. Unfortunately, most computer algebra systems include just probability
primality test, so we can not use them to reach our purposes. Although the
Magma system (described below) is able to carry out primality proving with
ECPP (Elliptic Curve Primality Proving), we did not get any result even after
two days running for n2. Thus we have developed an own primality proving
program presented in the next section.

According to the notation of [6] let us denote an elliptic curve over Z/nZ
by En. The first step in the basic ECPP algorithm is choosing randomly an

164 G. Farkas, G. Kallós, G. Kiss

En elliptic curve, the second one is counting |En|, the order of En. The latter
action is very time-consuming, so we had to find an improved version of ECPP.
Finally we have implemented an algorithm suggested by A. O. L. Atkin. A
specification of this method can be found in [1]. Lenstra and Lenstra published
a heuristic running time analysis of Atkin’s elliptic curve primality proving
algorithm in [10]. They conjectured that with fast arithmetic methods the
running time of ECPP can be reduced to O(ln4+ε(n)).

Atkin brilliant idea was founding an appropriate m order in advance and
then constructing En for this m avoiding the order-counting. Moreover, we
get simultaneously two elliptic curves increasing the chance of the successful
running of the test. m order has to be chosen from the algebraic integer of an
imaginary quadratic field Q(

√
D). An appropriate D, so-called fundamental

discriminant, has some properties: D ≡ 0 (mod 4), or D ≡ 1 (mod 4), for
every k(> 1) D/k2 is not a fundamental discriminant, D ≤ −7 and (D|n) = 1,
where (D|n) is the Jacobi symbol.

The function NextD() gives a value D which meets the above mentioned
requirements. A given D value is suitable if there exist such x, y ∈ Z for which

4n = (2x+ yD)2 − y2D. (1)

In that case we get two possible orders: m = |ν± 1|2, where

ν = x+ y
D+

√
D

2
.

If (1) is valid, then we can compute an x0 root of the Hilbert polynomial
(mod n). The function Hilbert(n,D) returns with a root of the appropriate
Hilbert polynomial. Then we get two elliptic curves with order m = |ν± 1|2.
The rest of the algorithm works as we described in [6].

Proof(En,m, f)

1 P ← Randompoint(En)
2 if f · P is not defined
3 then return composite
4 if f · P = O
5 then goto 1
6 if mP 6= O
7 then return no
8 return yes

Large primes in generalized Pascal triangles 165

Here symbol O means the “point infinitely far” e.g. the unit of the Abelian
group. The function Proof() has three input values: En, m, f, where En is
an elliptic curve with order m, m = f · s, the factorization of f is known and
s is probably prime. The output value composite means that n is surely
composite. If the output is no, then n is composite or we have to choose the
other elliptic curve. In case yes the next recursion step follows. In the following
we present the pseudocode of the Atkin’s test.

Atkin-primality-test(n)

1 D← NextD()

2 ω← (D+
√
D)/2

3 if ∃ x, y ∈ Z : 4n = (2x+ yD)2 − y2D
4 then ν← x+ yω
5 else goto 1

6 m← |ν+ 1|2

7 if m = f · s, where s “probably prime” and s >
(

4
√
n+ 1

)2
8 then goto 12

9 m← |ν− 1|2

10 if m = f · s can not be produced so that s is “probably prime”

and s >
(

4
√
n+ 1

)2
11 then goto 1
12 x0 ← Hilbert(n,D)
13 c← arbitrary integer for which (c/n) = −1
14 k← arbitrary integer for which k ≡ x0/(1728− x0) (mod n)
15 En ← {(x, y) | y2 = x3 + 3kx+ 2k}
16 if Proof(En,m, f) = composite
17 then return composite
18 else if Proof(En,m, f) = yes
19 then goto 23
20 En ← {(x, y) | y2 = x3 + 3kc2x+ 2kc3}
21 if Proof(En,m, f) = composite or Proof(En,m, f) = no
22 then return composite
23 if s surely prime
24 then return prime
25 else Atkin-primality-test(s)

166 G. Farkas, G. Kallós, G. Kiss

4 Magma Computer Algebra System

Magma [5] is a large software system specialized in high-performance com-
putations in number theory, group theory, geometry, combinatorics and other
branches of algebra. It was launched at the First Magma Conference on Com-
putational Algebra held at Queen Mary and Westfield College, London, August
1993. It contains a large body of intrinsic functions (implemented in C lan-
guage), but also allows the user to implement functions on top of this, making
use of the Pascal-like user language and the programming environment that
is provided.

4.1 Primality tests in Magma

Magma has several built-in functions for primality testing purposes.

IsProbablyPrime(n: parameter) : RngIntElt 7→ BoolElt

The function returns TRUE if and only if n is a probable prime. This function
uses the Miller-Rabin test; setting the optional integer parameter Bases to
some value B, the Miller-Rabin test will use B bases while testing composite-
ness. The default value is 20. This function will never declare a prime number
composite, but with very small probability (much smaller than 2−B, and by
default less than 10−6) it may fail to find a witness for compositeness, and
declare a composite number probably prime.

IsPrime(n: parameter) : RngIntElt 7→ BoolElt

This function proves primality using ECPP which is of course more time-
consuming. It is possible though to set the optional Boolean parameter Proof
to FALSE; in which case the function uses the probabilistic Miller-Rabin test,
with the default number of bases.

PrimalityCertificate(n: parameter) : RngIntElt 7→ List

This function proves primality and provides a certificate for it using ECPP.
If the number n is proven to be composite or the test fails, a runtime error
occurs.

IsPrimeCertificate(c: parameter) : List 7→ BoolElt

To verify primality from a given certificate c this function is used. This re-
turns the result of the verification by default, a more detailed outcome can
be obtained by setting the optional Boolean parameter ShowCertificate to
TRUE.

Large primes in generalized Pascal triangles 167

The numbers n1 and n2 were tested with Magma’s own ECPP, using the
intrinsic IsPrime function, and with our ECPP implementation written in
Magma language. We refer to Magma’s ECPP algorithm as Magma-ECPP
and to our implementation as modified-ECPP. Both tests were running in
Magma 2.16 on a machine with 7425 MB RAM and four 2400 MHz Dual-Core
AMD Opteron (TM) Processors.

The Magma-ECPP provided a primality proof for n1 in 32763.52 seconds,
but seemed to stuck after the third iteration during the test of n2; the modified-
ECPP provided proof for n1 in 5666.96 seconds and for n2 in 5153.37 seconds.
As the modified-ECPP is not finished yet, the running time can still be im-
proved.

4.2 The implementation of ECPP algorithm

The ECPP algorithm consists of iteration steps, where the ith iteration step
outputs an si which will be the input of the next iteration step. In one iteration
step an attempt is made to factor order mi of the group of points on a curve
Ei. Curve Ei is defined using the input si−1 and a discriminant of an imaginary
quadratic field, read in from a list.

If the attempt is successful, factor si is the output; if not, we need to back-
track. A different discriminant in an iteration step results in a different si.
The possible iteration chains that occur this way, can be represented as paths
in a directed graph G(n). The nodes of G(n) are the si’s, the root represents
n, the edges are the iteration steps. An edge leads from si to si+1 if there is
an iteration that produces si+1 with input si. Consider a path successful if
the corresponding iteration-chain starts with input n and ends with input sl,
where sl is a small prime, which can be verified by easy inspection, or trial
division. In the rest of the paper we refer to the si’s also as nodes.

Magma-ECPP uses a small fixed set of discriminants during the process.
Each iteration goes through this set until it finds a discriminant which pro-
duces a new node. Using a small set of discriminants makes the algorithm
faster, but increases the probability of producing no new node. If no discrim-
inant produces new node in the set it backtracks to the previous node and
retries that with the same set of discriminants but possibly stronger factor-
ization methods to factor the mi’s. If backtracking does not produce a new
node, it will try to factor again with more effort; these hard factorizations may

168 G. Farkas, G. Kallós, G. Kiss

consume a large amount of time, and the process appears to get stuck in a
seemingly endless loop. This happened during the test of our number n2 with
Magma-ECPP.

4.2.1 Modifications

During the iteration steps certain limits are used; for example, the bound
B on the primes found in factoring the mi-s. Imposing a small B decreases
the difference between the size of the si-s and thus may extend the path
down to the small primes. On the other hand, setting a large B significantly
increases the running time needed for factoring. Of course, choosing a more
sophisticated factoring method smoothes the differences in running time, but
the size of B still remains an important factor. Other important limits are
the bound D on the discriminants and the limit S on the prime factors of the
discriminants. Decreasing them leads to speed improvement but to a smaller
set of discriminants, too.

The modified-ECPP uses a huge file which contains a list of fully factored
discriminants up to 109. During the selection of discriminants useful for the
current input we extract a modular square root of its prime divisors and build
up the square root of the discriminant by multiplication. After using one prime,
the square root is stored, and thus it will be computed only once in an iteration
step. The speed that we gain this way makes it possible to increase limits D,
S in the iterations, which are adjusted to the size of the current input.

The steps can be extended to result in a series of si-s at a time instead of just
a single one: if the iteration step does not stop at the first good discriminant
but will collect several good ones. This way, we can select the input of the
next step from a set of new nodes.

The numbers have individual properties, which makes a difference from the
point of usability. The modified-ECPP predicts the minimal value of D which
is still enough to produce at least one new node for each si produced by earlier
steps and, building upon this prediction, sets up a priority between them. It
selects the one with the highest priority as input for the next iteration step. If
the step does not provide output the limit D will be increased in order to use
a new set of discriminants next time when the node is selected. The priority
is reevaluated after each step because either there are new nodes or in case
of no output D is increased. This way the possibility of getting stuck is lower
(details can be found in [4]).

Large primes in generalized Pascal triangles 169

T
ab

le
1:

T
h

e
fi

rs
t

ro
w

s
of

th
e

p
ro

of
of
n
1

i
s
i

a
i

b
i

x
i

y
i

f
i

1
1
6
5
4
9
0
1
3
9

1
4
8
6
2
9
5
1
8
3
6
9
9
1
9

1
5
4
0
6
4
1
9
8
7
8
4
1
0
6

1
2
4
8
1
8
8
5
0
9
1
2
9

1
5
6
7
7
9
8
5
1
0
6
7
2
1
9

1
0
4
7
2
2
2

2
1
7
3
3
0
4
9
3
1
2
7
4
4
6
7

8
3
7
2
7
8
2
6
7
4
1
2
3
3
4
9
2
1
1
6

2
6
7
4
8
8
9
5
8
3
7
9
5
6
0
0
5
5
8
5

2
3
7
1
7
4
8
6
1
8
0
3
1
5
8
9
0
6
0
5

1
1
5
2
8
9
4
8
6
3
3
4
5
5
9
5
1
8
9
3

5
0
3
2
1
1
1
0
5

0
2
1

1
2
1

0
6
0

5
4
5

3
8
7
2
0
8
9
6
5
9
6
8
5
9
8
9
6
7
4
7
6

2
7
7
0
7
4
0
0
9
5
7
2
4
7
2
9
9
9
7
7

3
8
4
6
5
3
7
5
2
6
8
1
9
6
1
1
1
0
4
1

2
8
1
4
2
5
1
8
9
6
3
8
6
9
5
0
6
5
2
3

2
0
6
2
6
6
4
4
9
9
7
0
5
4
4
2
7
7
9
2

6
8
7
7
8
8
5

6
7
9

4
1
1
1
9
4
7
1
9
7

0
7
7
4
8
1
9
9
9
1

6
0
4
7
3
9
3
5
5

7
8
0
5
9
5
4
7
5
2

4
5
9
9
8
1
3
2
3
8
9
0
0
9
3
7
3
3
1
6
8

4
4
3
6
0
7
1
3
1
7
7
5
5
9
1
7
7
5
7
2

1
1
1
1
7
0
4
0
2
4
2
7
6
5
9
9
6
3
5
2

1
9
7
7
5
1
1
1
4
0
7
0
6
6
7
0
1
2
5
3

1
8
4
2
8
9
1
0
7
0
3
9
6
2
9
0
1
5
1
9

4
0
8
1
1
0

4
1
0
0
5
6
5
5
7
9

5
4
7
6
8
2
5
4
7
7
1
8
4
7
4

2
3
7
5
1
1
8
3
2
8
8
1
1
6
9
3

6
5
0
8
0
9
7
9
7
3
4
9
6
7
5
8

3
7
3
3
5
6
3
2
5
9
9
3
7
2
6
6

5
2
4
4
7
8
9
7
8
0
9
2
7
8
6
1
5
3
5
4
2

1
8
9
5
7
5
6
8
1
3
9
3
2
8
8
8
7
8
1
3

1
0
8
0
2
0
8
7
3
1
5
8
2
8
6
3
2
1
9
3

6
9
1
2
7
8
3
9
0
1
1
2
6
6
5
0
3
4
3
1

3
5
5
9
3
5
7
8
5
0
8
6
7
9
1
9
4
3
9
4

4
8
5
3

2
0
2
9
9
8
9
8
9
0
9
9
8
1
3
1

3
6
0
4
1
0
5
8
6
2
9
6
8
0
2
1
0
9
9

9
5
6
6
9
4
7
8
3
9
3
4
8
3
6
2
3
1
4
1

9
3
4
6
4
2
2
5
0
5
7
7
6
6
0
8
5
5
0

5
3
5
9
7
7
2
1
8
7
3
0
1
4
0
2
4
8
6

6
1
1
8
7
9
6
4
8
0
6
8
4
2
9
1
2
0
3
1
3

4
2
0
8
3
3
6
6
4
7
3
0
0
7
9
8
7
9
2
7

2
8
0
5
5
5
7
7
6
4
8
6
7
1
9
9
1
9
5
1

1
8
0
6
6
8
2
8
3
5
8
3
5
1
6
3
7
3
2
6

2
5
8
2
7
4
2
3
5
5
0
7
8
9
5
0
8
6
2
6

4
8
6
0
4
5
5
4
0
8
4
8

5
9
0
5
6
9
2
9
0
1
2
0
3
3
4
3
2
5
7
9

6
2
8
0
4
8
2
0
1
4
0
7
7
8
8
2
1
0
3
9

7
5
2
0
3
2
1
3
4
2
7
1
8
5
8
8
0
6
9
3

3
0
2
2
9
4
7
1
6
4
0
7
4
8
6
1
5
5
7
2

7
7
7
3
1
0
9
7
2
4
0
7
6
9
3
2
8
4
7
3

9
2
3
8
6
6
8
5
3
9
3

2
8
2
5
7
7
9
0
2
6
2

0
9
3
8
5
8
3
9
8
1
4

1
8
9
0
9
3
3
7
9
7
2

7
5
7
7
4
0
4
9
9
7
0
5
0
3
5
3
0
2
9
6
5

1
1
3
8
0
4
4
3
2
3
3
4
4
7
1
5
1
6
8
2

1
2
2
0
6
2
0
2
1
3
2
0
3
4
2
5
8
6
9
2

9
6
7
8
4
5
8
3
5
0
3
6
4
2
1
6
8
8
5
6

5
9
7
1
0
2
2
2
0
8
4
6
0
6
0
9
5
7
1
1

2
4

7
1
9
9
1
9
7
3
6
5
1
7
0
3
9
5
9
7
5
2

4
1
0
3
6
5
7
2
0
1
0
9
5
7
8
7
1
9
5
1

1
9
7
8
3
7
3
4
2
7
2
2
0
5
5
2
4
8
2
9

0
7
6
4
6
2
4
4
5
6
7
1
7
9
7
2
4
8
1
8

7
5
7
8
6
0
7
0
0
8
6
4
6
6
6
1
8
9
7
5

0
2
7
3
2
1
1
5
6
6
1

7
2
9
4
7
6
8
2
2
6
4
9
6

2
9
0
2
6
6
3
7
7
4
8
9
5

9
7
2
9
2
0
6
8
2
9
1
6

5
3
3
2
2
8
0
2
1
4
8
7

8

1
3
8
5
7
7
1
9
9
2
9
2
0
8
4
7
2
7
1
1

4
1
6
9
4
5
8
2
4
2
4
5
9
1
1
1
1
7
6
4

6
3
7
7
5
5
1
8
2
0
8
6
4
6
4
1
4
6
0
3

3
4
1
2
4
7
4
7
4
3
9
6
4
0
5
2
5
9
9
7

1
3
4
3
3
6
6
9
1
0
9
6
1
2
4
1
8
3
1
5

5
3
0
9
6
9
0
7
9
1
1

7
7
2
7
8
0
5
8
7
9
4
7
0
0
8
3
0
5
8
4

4
3
1
5
6
4
5
3
8
9
4
7
7
5
1
5
2
5
4
4

0
3
1
2
5
6
8
6
9
0
8
4
9
5
3
3
6
3
7
9

7
2
9
2
9
6
8
8
2
2
0
7
7
8
6
0
1
2
9
0

5
9
6
1
7
7
7
8
5
8
2
7
9
1
5
8
0
1
9
2

4
1
1
8
4
5
4
8
7
1
6
9
3

4
5
2
5
5
8
6
7
1
9
4
5
0
0
5
3
5
4
8
4

0
5
4
8
0
4
7
0
7
8
4
8
5
5
1
9
7
8
2
4

7
6
5
4
2
6
5
2
4
2
3
5
1
8
7
1
4
8
4
7

4
2
1
8
0
6
1
4
5
6
3
0
4
1
5
1
1
5
1
5

5
4
8

5
2
7

6
3
8

8
2
4

9

7
3
5
8
0
2
0
7
8
9
3
7
6
1
1
7
1
4
6
9

4
3
0
7
2
3
6
9
7
2
0
0
9
0
9
4
6
2
6
4

3
7
8
7
1
6
7
8
1
0
6
8
1
3
8
9
4
5
0
1

7
0
8
5
9
9
7
5
9
6
5
2
4
3
4
2
6
6
0
6

8
7
5
0
3
9
4
3
5
4
8
7
3
0
9
3
5
0
4
5

1
2
7
1
4
9
2

7
9
5
5
7
7
6
4
3
4
5
7
6
5
3
3
5
9
6
2

1
3
3
5
0
7
4
9
7
5
8
1
2
7
9
2
5
7
9
5

7
6
3
8
0
9
5
4
7
7
0
4
2
0
2
2
7
2
1
7

6
9
4
9
9
5
3
3
9
7
0
8
1
1
7
9
1
7
5
1

0
5
6
6
1
6
9
5
0
4
5
9
9
7
1
9
1
1
8
2

7
2
7
7
2
0
7
5
9
6
9
2
3
2
8
3
6
3
2
5

3
4
8
3
1
4
8
5
1
4
3
6
7
5
2
1
8
3
1
3

8
8
3
6
3
2
6
4
5
2
5
5
2
3
8
9
0
8
8
0

1
3
4
7
9
4
7
4
5
7
4
6
8
0
8
1
2
7
4
3

0
8
7
4
1
1
2
3
8
7
0
0
9
9
4
3
6
6
0
2

2
0
3

2
3
4
0
0
9
3
7
2

5
0
7
4
0
1
8
4
5

3
2
6
3
3
6
0
8
2

6
6
7
5
5
8
0
8
3

1
0

9
3
5
5
6
6
4
5
6
9
5
2
5
4
1
7
9
4
3
4

1
8
9
9
2
4
3
9
4
2
5
8
7
7
5
9
9
7
7
9

1
2
6
6
1
6
2
6
2
8
3
9
1
8
3
9
9
8
5
3

2
5
4
5
9
3
0
1
1
9
3
8
4
2
7
9
8
1
6
7

2
0
2
3
4
0
8
7
3
1
4
6
0
0
2
3
4
6
4
5

6
7
6
2
0
0
0
3
6
6

4
7
3
3
1
8
6
0
9
0
3
5
2
5
8
0
4
8
4
1

8
1
7
2
9
7
9
2
8
8
3
1
8
9
4
7
3
3
8
2

2
1
1
5
3
1
9
5
2
5
5
4
5
9
6
4
8
9
2
1

4
8
5
8
8
0
9
5
9
3
9
9
3
4
5
8
9
6
7
3

5
6
9
6
0
0
7
9
0
5
2
4
8
5
6
6
7
6
7
3

4
0
6
0
5
4
4
5
2
9
3
1
3
3
4
2
4
4
6
0

6
7
7
6
3
4
4
8
7
1
0
0
2
9
9
7
4
3
6
1

7
8
5
0
8
9
6
5
8
0
6
6
8
6
6
4
9
5
7
4

5
4
5
1
6
3
9
8
3
4
7
8
3
7
5
4
8
5
2
6

3
3
3
2
4
8
5
1
2
3
1
8
2
8
9
2
7
7
5
2

8
7
0
4
5
3
0
3
7

4
3
5
8
0
8
6
1
7
1
2
1
1
0
0
9
2
7
7

2
9
0
5
3
9
0
7
8
0
8
0
7
3
3
9
5
1
8

9
0
2
8
6
4
6
2
8
4
8
8
1
5
9
3
8
6
2

7
7
4
7
5
9
6
3
6
9
9
1
5
0
1
6
8
6
0

170 G. Farkas, G. Kallós, G. Kiss

4.3 The proof

On input n, a probable prime, the primality test results in a list, which provides
sufficient data to prove the correctness of the sequence of the steps along the
successful path. If we consider the length of the proof list as #L, the ith

list element, as the proof runs in reverse order, starting from the smallest si,
corresponds to the #L− ith step in the sequence and consists of si, ai, bi, Pi,
fi, where sifi = mi and si is a probable prime, the factorization of fi is known,
y2 = x3 + aix + bi is an elliptic curve of order mi over Z/si+1Z, and Pi is a
point on this curve that satisfies the condition miPi = 0, fiPi 6= 0. Pi is given
by its two coordinates xi and yi. The correctness proof guarantees recursively
that all si are genuine primes, and eventually that the input n is prime.

Since the size of the above mentioned list is too large (approximately 809
KB in txt form), the exact details can not be presented in this paper. Instead
of this, we give here only a small part of this file (see in Table 1). The full
text can be downloaded from page: http://compalg.inf.elte.hu/tanszek/
farkasg/proof-tri.txt

Acknowledgements

Prepared in the framework of application TÁMOP 4.1.1/A-10/1/KONV-2010-
0005 with the support of Universitas-Győr Foundation (pages: 158–164); The
Project is supported by the European Union and co-financed by the Euro-
pean Social Fund (grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-
0003) (pages: 165–171).

References

[1] A. O. L. Atkin, F. Morain, Elliptic curves and primality proving, Math.
Comp. 61, 203 (1993) 29–68. ⇒164

[2] H. Belbachir, S. Bouroubi, A. Khelladi, Connection between ordinary
multinomials, Fibonacci numbers, Bell polynomials and discrete uniform
distribution, Ann. Math. Inform. 35 (2008) 21–30. ⇒159

[3] B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, Their
Fractals, Graphs and Applications, The Fibonacci Association, Santa
Clara, CA, USA, 1993. ⇒158, 160

http://compalg.inf.elte.hu/tanszek/farkasg/proof-tri.txt
http://compalg.inf.elte.hu/tanszek/farkasg/proof-tri.txt
http://a-o-l-atkin.co.tv
http://www.lix.polytechnique.fr/~morain
http://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1199989-X/S0025-5718-1993-1199989-X.pdf
http://www.emis.de/journals/AMI/2008/ami2008-belbachir-bouroubi-abdelkader.pdf
http://www.emis.de/journals/AMI/2008/ami2008-belbachir-bouroubi-abdelkader.pdf
http://www.mscs.dal.ca/Fibonacci

Large primes in generalized Pascal triangles 171

[4] W. Bosma, A. Járai, Gy. Kiss, Better paths for elliptic curve primality
proofs, http://www.math.ru.nl/∼bosma/pubs/reportfinal.pdf, 2009. ⇒
168

[5] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The
user language, J. Symbolic Comput., 24, 3-4 (1997) 235–265. ⇒166

[6] G. Farkas, G. Kallós, Prime numbers in generalized Pascal triangles, Acta
Tech. Jaur. 1, 1 (2008) 109-118. ⇒160, 163, 164

[7] G. Kallós, A Pascal háromszög általánośıtásai (in Hungarian), Master
thesis, Eötvös Loránd University, Budapest, 1993. ⇒159

[8] G. Kallós, A generalization of Pascal’s triangle using powers of base num-
bers, Ann. Math. Blaise Pascal 13, 1 (2006) 1–15. ⇒159, 160

[9] D. E. Knuth, The Art of Computer Programming, Vol. 2., Addison-
Wesley, Reading, MA, USA, 1981. ⇒162

[10] A. K. Lenstra, H. W. Lenstra, Algorithms in number theory, in: Handbook
of Theoretical Computer Science, Vol. A, Algorithms and Complexity, Ed.
J. van Leeuwen, Elsevier Science Publisher, B.V., Amsterdam; MIT Press,
Cambridge, MA, 1990, pp. 673–715. ⇒164

[11] The On-line Encyclopedia of Integer Sequences, Published electronically
at http://oeis.org, 2011. ⇒159

Received: June 11, 2011 • Revised: September 14, 2011

http://www.math.ru.nl/~bosma
http://compalg.elte.hu/~ajarai
http://compalg.inf.elte.hu
http://www.math.ru.nl/~bosma/pubs/reportfinal.pdf
http://www.math.ru.nl/~bosma
http://magma.maths.usyd.edu.au/magma
http://www.sciencedirect.com/science/journal/07477171
http://compalg.inf.elte.hu
http://www.sze.hu/~kallos
http://acta.maxwell.sze.hu/archive.html
http://www.sze.hu/~kallos
http://www.elte.hu
http://www.sze.hu/~kallos
http://www.numdam.org/numdam-bin/browse?id=AMBP_2006__13_1
http://www-cs-faculty.stanford.edu/~knuth/
http://www.pearsonhighered.com/
http://www.pearsonhighered.com/
http://www.win.tue.nl/~klenstra
http://math.berkeley.edu/~hwl
http://oeis.org

Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 172–191

Modular exponentiation of matrices on

FPGA-s

Tamás HERENDI
University of Debrecen

email: herendi.tamas@inf.unideb.hu

Roland Sándor MAJOR
University of Debrecen

email: mroland@digikabel.hu

Abstract. We describe an efficient FPGA implementation for the expo-
nentiation of large matrices. The research is related to an algorithm for
constructing uniformly distributed linear recurring sequences. The design
utilizes the special properties of both the FPGA and the used matrices to
achieve a very significant speedup compared to traditional architectures.

1 Introduction

Field-programmable gate arrays (FPGA) offer a number of special options in
computation. Utilizing the unique properties of an FPGA, some algorithms
that are impractical to implement on a more traditional architecture can be-
come both convenient to create and resource-efficient. The programmable ar-
ray of look-up tables commonly found on an FPGA provide both flexibility
in creating logic to suit specific needs and naturally lend themselves to great
parallelism in computations.

Fast operations on matrices are of great practical interest. Ways to speed
up certain matrix calculations still find their way into numerous applications.

Faster implementations of matrix algorithms can be achieved either from a
“software” point of view, by improving upon the algorithm itself, or from a

Computing Classification System 1998: B.2.4
Mathematics Subject Classification 2010: 65F60 11Y55
Key words and phrases: pseudo random number generators, linear recurring sequences,
uniform distribution, matrix exponentiation, parallel arithmetic, FPGA design, hardware
acceleration of computations, hardware implementation of computations

172

http://www.inf.unideb.hu/~herendi/
http://www.inf.unideb.hu/~herendi/
mailto:herendi.tamas@inf.unideb.hu
mailto:mroland@digikabel.hu

Modular exponentiation of matrices on FPGA-s 173

“hardware” point of view, by using faster or differently structured architec-
tures.

Theoretical improvements on matrix algorithms include Strassen’s algo-
rithm [12] and the Coppersmith-Winograd algorithm [2]. The naive algorithm
for matrix multiplication is a well-known Θ(n3) algorithm. Strassen’s algo-
rithm uses an idea similar to the Karatsuba-multiplication. It has a time
complexity of O(nlg 7) by dividing the matrices into sub-matrices. Then by
multiplying them in a different arrangement, it manages an overall lower multi-
plication count compared to the classical algorithm. Research implementing it
on the Cell Broadband Engine can be found in [5]. Strassen’s algorithm and its
applicability to the project is briefly discussed in Section 7. The Coppersmith-
Winograd algorithm further improves the complexity to O(n2.376) by combin-
ing the idea of Strassen with the Salem-Spencer theorem. [9] discusses and
compares the performance of implementations of these algorithms.

Numerous research has been done on creating efficient realizations of differ-
ent matrix operations on different architectures. [8] and [10] both use FPGAs
to perform matrix inversion.

The design presented here is an implementation of matrix multiplication
on an FPGA. Works of similar nature can be found in [1] and [4], dealing
with FPGA configurations used for floating point matrix multiplication. [11]
uses an FPGA design for digital signal processing. [3] discusses another FPGA
implementation for accelerating matrix multiplication.

The research in this paper is related to an algorithm for the construction of
pseudo random number generators. It requires the exponentiation of large ma-
trices to an extremely high power. This allows for numerous optimizations to
be made on the FPGA implementation, resulting in an extremely fast design.
A speedup factor of ∼200 is achieved compared to a highly optimized program
on a more traditional architecture.

We give the details of a design implemented on a Virtex-5 XC5VLX110T
FPGA that multiplies two 896× 896 sized matrices. The matrices are defined
over the mod 4 residue class ring. Using this property and the fact that the
hardware uses 6-LUTs (Lookup Tables), we describe first a module that com-
putes the dot product of vectors taken from Z284 in a single clock cycle at
100MHz clock speed. With these modules we construct a matrix multiplier
module that computes the C ∈ Z20×204 product matrix of A ∈ Z20×28d4 and

B ∈ Z28d×204 in d clock cycles at 100MHz. The significance of the value 28
in the implementation and its experimental determination is also discussed.
Finally, we describe how to use these modules for multiplying matrices taken
from Z896×8964 . The proposed algorithm deals with the management of stored

174 T. Herendi, R. Major

data in such a way that it can be accomplished completely in parallel with
the computations. The resulting design completes the multiplication in 64800
clock cycles at 100MHz.

Future work for increasing the size of the used matrices, and further opti-
mizing the design’s performance using Strassen’s algorithm is also described.

2 Mathematical background

The present work is initiated by a method for the construction of uniformly
distributed pseudo random number generators. (See [7].) The generator uses
recurring sequences modulo powers of 2 of the form

un ≡ ad−1un−1 + ad−2un−2 + · · ·+ a0un−d mod 2s, ai ∈ {0, 1, 2, 3}, s ∈ Z+

The theoretical background can be found in [6].
The construction assumes that the values a0, a1, . . . , ad−1 are such that

xd − ad−1x
d−1 − · · ·− a0 ≡ (x− 1)2P(x) mod 2

holds for some P(x) irreducible polynomial. It is practical to choose P(x) to
have maximal order, since the order of P is closely related to the period length
of the corresponding recurring sequence. The sequence un obtained this way
does not necessarily have uniform distribution, however exactly one of the
following four sequences does:

u
(0)
n ≡ ad−1u

(0)
n−1 + ad−2u

(0)
n−2 + · · ·+ a1u

(0)
n−d+1 + a0u

(0)
n−d mod 2s

u
(1)
n ≡ ad−1u

(1)
n−1 + ad−2u

(1)
n−2 + · · ·+ a1u

(1)
n−d+1 + (a0 + 2)u

(1)
n−d mod 2s

u
(2)
n ≡ ad−1u

(2)
n−1 + ad−2u

(2)
n−2 + · · ·+ (a1 + 2)u

(2)
n−d+1 + a0u

(2)
n−d mod 2s

u
(3)
n ≡ ad−1u

(3)
n−1 + ad−2u

(3)
n−2 + · · ·+ (a1 + 2)u

(3)
n−d+1 + (a0 + 2)u

(3)
n−d mod 2s .

For the details see [7]. Finding the sequence with uniform distribution is of
interest. Let

M(u) =


0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1

a0 a1 . . . ad−2 ad−1



Modular exponentiation of matrices on FPGA-s 175

be the companion matrix of sequence u. To find which of the above se-
quences has a uniform distribution, we have to compute M(u)2

d+1−2 mod 4.

If M(u)2
d+1−2 mod 4 equals the identity matrix, then the period length of un

is 2d+1 − 2, which means it is not the sequence we are searching for.
The exponentiation of matrices to high powers can quickly become time

consuming on traditional computers. The aim of the project was to utilize
the special properties of an FPGA to achieve a significant upgrade in speed
compared to implementations on more traditional architectures.

3 Hardware used in the implementation

The project was implemented on a Xilinx XUPV505-LX110T development
platform. The board features a variety of ports for communication with the
device. As a first approach the RS-232 serial port was used to send data
between the board and a PC. A high-speed PCI Express connection is also
available if the amount of data transferred would necessitate its use.

The board’s most prominent feature is the Virtex-5 XC5VLX110T FPGA.
The FPGA’s main tool for computation is the array of 6-input look-up tables,
arranged into 17280 Slices, with four look-up tables found in each Slice, adding
up to a total of 69120 LUTs. A single 6-input LUT can store 64 bits of data,
where its six input bits are used as an address to identify the single bit of data
that is to be outputted. By manipulating the 64 bit content of the look-up
table, it can be configured to carry out arbitrary Boolean functions with at
most six input bits. In our design they are used to create LUTs performing
a multiply-accumulate function, which are hierarchically arranged into larger
and more complex modules. One out of four LUTs on the device can also be
used as a 32 bit deep shift register; these are the basis to implement containers
storing the data, which is directly fed to the computational module.

Attached to the board, there is a 256MB DDR2 SODIMM module, which
is used for storing data exceeding the amount that can be practically stored
on the FPGA.

4 Structure of modules used in the computation

The basic elements of the design are the LUTs denoted by L(a, b, s) = c, where
a, b, c and s are two-digit binary numbers. The function carried out by L is a
multiply-accumulate (for short: MA) function, i.e.:

c ≡ (a · b) + s mod 4 .

176 T. Herendi, R. Major

Let a = 2α1 + α0, b = 2β1 + β0, s = 2σ1 + σ0, c = 2γ1 + γ0, where
α0, α1, β0, β1, σ0, σ1, γ0, γ1 ∈ {0, 1}, and L = (l1, l0) where l1 and l0 are two
single bit LUTs, according to the following:

• l0(α0, β0, σ0) = γ0

• l1(a, b, s) = γ1

Figure 1: The structure of L(a, b, s)

We remark that while l0 needs only three input bits to accomplish its func-
tion, l1 requires all six bits of input.

The LUTs l0 and l1 were configured to the values shown in Table 1 and
Table 2 to perform the multiply-accumulate function.

PPPPPPPPP(α0, β0)
σ0 0 1

(0,0) 0 1

(0,1) 0 1

(1,0) 0 1

(1,1) 1 0

Table 1: Contents of l0

With the help of these basic units one can compute the dot product w of
two vectors u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1). Let us define a
module m = (L[0], L[1], . . . , L[n−1]) by cascading n MA units denoted by L[i].
In this module m we use the output of a given MA unit as the sum input of
the next unit, i.e. si+1 = ci for i = 0, 1, . . . , n − 2, where si and ci are the s
input and c output of L[i].

Therefor m is a function that accepts a pair of vectors u, v of two-digit
numbers of length n and outputs on cn−1 the two-digit dot-product of the two
vectors, i.e. m(u, v) = w.

Modular exponentiation of matrices on FPGA-s 177

PPPPPPPPP(a, b)
s

0 1 2 3

(0,0) 0 0 1 1

(0,1) 0 0 1 1

(0,2) 0 0 1 1

(0,3) 0 0 1 1

(1,0) 0 0 1 1

(1,1) 0 1 1 0

(1,2) 1 1 0 0

(1,3) 1 0 0 1

(2,0) 0 0 1 1

(2,1) 1 1 0 0

(2,2) 0 0 1 1

(2,3) 1 1 0 0

(3,0) 0 0 1 1

(3,1) 1 0 0 1

(3,2) 1 1 0 0

(3,3) 0 1 1 0

Table 2: Contents of l1

Figure 2: The structure of m(u, v)

In total, the number of LUTs used in m is 2n. Note that vectors of arbitrary
length can be used in the computation if we connect the output of module m
to the sum input of L[0] (cn−1 = s0), and then iteratively shift u and v onto
the module’s input by n elements at a time:

178 T. Herendi, R. Major

Function iterated m(u, v) // k = length(u) = length(v)

1. Define κ = d kne, v
′, u ′ ∈ Zκ·n4

2. for i = 0 to κ · n− 1 do // fill v and u with 0’s
3. if i < k then v ′i = vi else v ′i = 0
4. if i < k then u ′i = ui else u ′i = 0

5. end for
6. Define vtemp, utemp, w, let w = 0
7. for i = 0 to κ− 1 do // shift v ′ and u ′ to vtemp and utemp

8. vtemp = (v ′i·n, v
′
1+(i·n), . . . , v

′
n−1+(i·n))

9. utemp = (u ′i·n, u
′
1+(i·n), . . . , u

′
n−1+(i·n))

10. w = w+m(vtemp, utemp)
11. end for
12. return w

end Function

Here u ′ and v ′ are the extensions of u and v by 0’s.
We shall see that the number chosen for n is critical in setting many char-

acteristics of the entire project. The experiment used for determining n will
be discussed in the following chapter.

Our aim is to obtain a module that performs the matrix multiplication of
A,B ∈ Zk×k4 , where Z4 is the mod 4 residue class ring. In the following, let

C ∈ Zk×k4 be the output matrix, such that C = A× B. Furthermore, let ai be
the ith row of matrix A and let bj be the jth column of matrix B.

The multiplier units denoted by m are used to create more complex mod-
ules in a hierarchical manner. First, by taking ten m multiplier blocks we
create a row of multipliers R = (m0,m1, . . . ,m9). This is used to compute ten
consecutive elements of a single row of the output matrix:

R(ai, bj, bj+1, . . . , bj+9) = (ci,j, ci,j+1, . . . , ci,j+9) ,

where ci,j = ai ·bj. The input vector ai is used by all ten multiplier units of R.
The length of these vectors, as mentioned above, can be arbitrary, but vectors
of length greater than n will need to be iteratively shifted to the input of R.

By taking ten row multipliers we can create a unit M10×10 = (R0, R1, . . . , R9)
which outputs a 10× 10 sub-matrix of C:

Modular exponentiation of matrices on FPGA-s 179

M10×10(ai, ai+1, . . . , ai+9, bj, bj+1, . . . , bj+9) =


ci,j ci,j+1 · · · ci,j+9
ci+1,j ci+1,j+1 · · · ci+1,j+9

...
. . .

ci+9,j ci+9,j+1 · · · ci+9,j+9

 .
Finally, four such units are arranged so that a 20× 20 sub-matrix of C could
be obtained as output:
M20×20(ai, ai+1, . . . , ai+19, bj, bj+1, . . . , bj+19) =

ci,j ci,j+1 · · · ci,j+19
ci+1,j ci+1,j+1 · · · ci+1,j+19

...
. . .

ci+19,j ci+19,j+1 · · · ci+19,j+19

 .
The M20×20’s inputs are twenty vectors from both matrices A and B. Because
of hardware constraints — in particular the number of LUTs on the used device
— a larger arrangement of multipliers would be impractical to implement. The
module M20×20 is comprised of 400 m multiplier units. Figure 3 shows the
hierarchy of units used to build M20×20.

Figure 3: The structure of M20×20

The M20×20 unit can be used iteratively to multiply matrices of arbitrary
size, producing 20×20 sub-matrices of the output matrix C with each iteration.
After inputting twenty rows from matrix A and twenty columns from matrix
B and obtaining the desired output, we can simply repeat the process for a

180 T. Herendi, R. Major

set of rows and columns of A and B respectively, until we obtain the entire
output matrix C:

Function large matrix mult(A,B)

1. Define κ = d k20e, A
′, B ′, C ′ ∈ Zκ·n×κ·n4

2. for i = 0 to 20κ− 1 do
3. for j = 0 to 20κ− 1 do

4. if i < k and j < k a ′ij = aij else a ′ij = 0

5. if i < k and j < k b ′ij = bij else b ′ij = 0

6. end for end for
7. for i = 0 to κ− 1 do

8. for j = 0 to κ− 1 do

9. C ′[i,ji+19,j+19] =M20×20(ai, ai+1, . . . , ai+19, bj, bj+1, . . . , bj+19)

10. end for end for
11. return C ′[0,0k−1,k−1]

end Function

Here

C ′[i,jk,l] =


c ′i,j c ′i,j+1 · · · c ′i,l
c ′i+1,j c ′i+1,j+1 · · · c ′i+1,l

...
. . .

c ′k,j c ′k,j+1 · · · c ′k,l

 .
Note that in the naive algorithm large matrix mult(A,B), during the main

loop (lines 7-10), for each twenty rows read from A, the entire matrix B is read.
During the whole procedure, matrix A will be read entirely exactly once, while
matrix B will be read κ times. Methods improving on this number are described
in section 6.

Since for almost all practical cases the size k of matrices A,B ∈ Zk×k4 will be
greater than the parameter n, the vectors taken from these matrices will need
to be iteratively shifted onto the input of the multiplier M20×20, n elements
at a time. Therefore, an efficient way to both store and then use the vectors
taken from the matrices is the creation of FIFO type containers made of shift
registers.

Let tdn be a shift register of width n and depth d. It means that tdn can store
at most d vectors of length n, or equivalently a single vector of length at most
nd. We choose d such that nd ≥ k, thus it can store one row or column from
the input matrices A or B. Let the vector filling tdn be f = (f0, f1, . . . , fd−1),

Modular exponentiation of matrices on FPGA-s 181

where fi ∈ Zn4 , i = 0, 1, . . . , d − 1. In practice, tdn is a queue data structure.
In a single step, tdn outputs a vector of length n and shifts its content by n
places. For the ith activation, the container will output fi. After d activations,
the container becomes empty.

One container tdn is used to store a single row or column of matrices A
or B respectively. Connecting twenty of them in parallel, denoted by Td20n =
(tdn[0], t

d
n[1], . . . , t

d
n[19]), we obtain a container that stores twenty rows or column-

s. This is exactly the amount of data the M20×20 multiplier structure requires
as input in d iteration steps. After d activations Td20n has shifted all its stored
data to M20×20, broken up into pieces of length n for each activation. Two
such Td20n containers are connected to M20×20, one for the rows taken from
matrix A and one for the columns taken from matrix B.

Figure 4: The structure of Td20n

Using M20×20 and Td20n in a proper structure, we can execute one iteration
cycle of the computation. After filling one Td20n container with the desired
twenty rows from matrix A and one Td20n container with the desired twenty
columns from matrix B, we simply send d activation signals to the containers.
This will shift the data onto M20×20, which computes the 20 × 20 product
matrix in the way described in function iterated m(u, v). The number of
steps in one iteration cycle is d.

5 Experimental determination of parameters

Now, we turn to the determination of n (how many MA modules should be
connected into a single multiplier m). This sets the length of the vectors that
we use in the computation in a single step and thus has an effect on many other
technical parameters of the design. The goal was to find the greatest number

182 T. Herendi, R. Major

such that the multiplier would still reliably produce the correct dot product
in a single clock cycle. Clearly, this number dependents on the used hardware
and the clock frequency. For the device used, the chosen clock frequency was
100 MHz, the default frequency provided by the board.

The following experiment was devised to determine the value of n:
Let S be a multiplier m, called the “Subject”, and let E0, E1, . . . , E9 be ten

more m multipliers, called the “Examiners”. Informally, the Examiners’ duty
was to verify the answers given by the Subject to questions they already knew
the answer to. The “questions” here are test data: two vectors v, u of length n
generated by the following sequence to obtain suitable pseudo-random values:

Di = Di−1 +Di−2 + 2Di−4 +Di−5,

where D0 = D1 = D2 = D3 = 0, D4 = 1.
More formally, let p ∈ Z10 be a counter that cycles between values 0, 1, . . . , 9,

incrementing its value by one with each clock cycle, and returning to value
0 after 9. For each clock cycle during the experiment, the following happens
depending on the value of p:

• The output of S is checked for equality with the output of Ep. If inequality
is detected, then an error is noted.

• The test data Ep+1 is currently working on is given to S.

• New test data is given to Ep−1.

Procedure testing
1. Let S, E0, E1, . . . , E9 be m multipliers
2. Let D be the test data generator
3. Let i ∈ N, p ∈ Z10
4. forever do

5. i = i+ 1
6. p ≡ i mod 10
7. if Sout 6= Ep out then return ERROR
8. Ep−1 in ← D(i)
9. Sin ← Ep+1 in

10. end forever
end Procedure

Note that the output of S is checked every clock cycle, which yields that
S has only a single cycle to calculate its answer to the question it was given

Modular exponentiation of matrices on FPGA-s 183

Figure 5: Activity of testing module when counter’s value is p

in the preceding clock cycle. A given Examiner, however, has ten times more
time to work on its test data. Once in every ten clock cycles, new data is given
to the Examiner to work on, and its output is only checked nine clock cycles
later, just before it is given new input again. This way the Examiners have
enough time to compute the correct answer to the question by the time it is
needed.

As the initial value for n, we have chosen 16, a number small enough to
be reasonably expected to pass the criteria set for n, but large enough to
be of interest. If the experiment reported no error, meaning the Subject was
flawlessly able to calculate the dot product for a sufficiently long time, then
the value of n was increased and the experiment repeated. After the first
error was encountered, meaning the Subject was not able to keep up with the
calculations, the largest value was chosen for n for which there were no errors.

On the used device, the largest such value was found to be 28 at a clock
speed of 100 MHz and setting the length of m multipliers to n = 28 were able
to work error-free for days without interruption.

184 T. Herendi, R. Major

6 Computation of large matrices

In the Section 4 we gave an algorithm for using the described modules for
computing the product of large matrices. Following the description, the im-
plemented design would make use of the parallelism offered by the FPGA
only in the computation of dot products. Making further use of parallel oper-
ations, the design’s performance can be significantly improved. In this section
we describe the implementation choices made to raise the overall performance.

The biggest factor to consider is the management of data. When comput-
ing the product of large matrices, the amount of data to store and to move
between the computation modules can easily exceed the size which can be
practically stored on the FPGA. Fortunately, as mentioned before, a 256MB
DDR2 SODIMM is connected to the board as the main data storage device.
A module is generated using the Memory Interface Generator v3.5 intellectual
property core provided by Xilinx to implement the logic needed to communi-
cate with the DDR2 RAM. The module is structured hierarchically, connecting
the memory device to a user interface. All communication with the device is
done through two FIFO queues: one queue to send the command and address
signals, while the other queue is used for write data and write data mask (when
masking is allowed).

A naive utilization of the memory would be to simply read the required data
before each iteration of the computation, and writing the output back after
it is finished. An undesirable effect of this approach would be that the design
would spend significantly more time with memory management than with the
actual computation. The desired result would be that memory management
(and all other auxiliary operations) were done during the time interval of the
computation. Note that since both the size of the matrices and the multiplier
module is fixed, the time the multiplication consumes is a fixed constant, which
cannot be lowered. Optimally, the time of the computation should be an upper
bound for the running time of the entire design. The difficulty of reaching this
optimum lies in the high speed of the multiplier modules compared to the
memory module.

One way to resolve the problem caused by slow transmission speed is to
increase the amount of data stored on the FPGA. Informally, the main idea is
to keep enough data in a prepared state, i.e. by the time the multiplier module
finishes all of its computations, we have enough new data to continue working.
More formally, let us define the following quantities:

• Let d be the time necessary to complete one iteration of the computation.

Modular exponentiation of matrices on FPGA-s 185

As described in the previous sections, this is equal to the depth of the
containers Td20n.

• Let κ = d k20e, where k is the size of the matrices. (A,B ∈ Zk×k4) This
quantity is already used in algorithm large matrix mult. For the rest
of the section, it is practical to think of A and B as κ × κ sized block
matrices, where each element is a 20× 20 matrix.

• Let f(A,B) be an arbitrary algorithm executing matrix multiplication
on A and B, including the memory management needed for the com-
putation. Let K(f) be the number of times the algorithm needs to fill a
Td20n container, i.e. the number of times it has to read twenty rows or
columns from the matrices. Note that completely reading either input
matrices once means filling Td20n containers κ times, since one Td20n can
store twenty rows or columns at a time. Algorithm large matrix mult’s
main loop (starting at line 7) reads twenty rows from matrix A (filling a
Td20n once) and reads matrix B entirely for each step. Since the loop has
κ steps, it follows that K(large matrix mult) = κ2 + κ.

• Let δ be the time it takes to fill a Td20n container. This quantity depends
on both the width and depth of the container. The total time f(A,B)
spends on reading from memory to fill the containers is K(f)δ.

• Let Φ(f) be the total time the design has to spend with memory man-
agement. This is the sum of the time it spends on reading matrices A
and B from the memory and the time it spends on writing the product
matrix C into the memory. The number of times f has to read A and
B from the memory depends on f. Note that since the size of the total
output matrix C is the same as the size of A and B, writing C into the
memory takes time equal to reading either matrices once from the mem-
ory. In other words, it takes κδ time. The total time the design has to
spend with memory management is Φ(f) = K(f)δ+ κδ.

• Let Γ(f) be the time f(A,B) spends on the computation itself. From the
definition of d and κ it follows that C(large matrix mult) = dκ2.

The goal here is to reduce K(f) in such a way that the data required for the
next iteration of the computation is always ready by the time the previous
iteration ends. If this arrangement is achieved then C(f) becomes the upper
bound for the running time of the design.

186 T. Herendi, R. Major

Storing more data on the FPGA can be done by adding more Td20n containers
to the design. During an iteration only two such containers are used directly.
The rest can be used to load data necessary for the forthcoming iteration steps.

Suppose the design has z + 2 pieces of Td20n containers. We assign z of the
containers to store rows from matrix A, called “row-stores”, and two of them to
store columns from matrix B, called “column-stores”. With this arrangement,
we can carry out z− 1 iterations of the computation, using up the data stored
in z − 1 row-stores and one column-store. This leaves one row-store and one
column-store to load new data into during the computation. Using the above
definitions, the allover computation takes (z− 1)d time.

Figure 6: Configuration of data stored on the FPGA

If we use all z row-stores and one column-store for the computation while
the remaining column-store is devoted to loading new columns into, then we
would have to load all z row-stores with new rows once we read all the columns
before we can continue the computation. This would take zδ time for each case
where we read all the columns but haven’t read all the rows yet, which happens
bκz c times. In total, it would add bκz czδ to the running time.

Instead, the computation of the output matrix moves slightly diagonally.
See Figure 7. The z − 1 row-stores used in the computations store a total of
(z− 1) · 20 rows. Initially, the row-stores are filled with rows a0 → a(z−1)·20−1.

Modular exponentiation of matrices on FPGA-s 187

New rows are loaded in at a slower pace than columns are. By the time all
columns are read once, the contents of the row-stores have shifted exactly to
the next segment of data needed, the next (z− 1) · 20 rows. After matrix B is
completely read once, the row-stores are filled with rows a(z−1)2̇0 → a2(z−1)·20−1.
Reading rows and columns proceeds in this manner until we’ve completely
read matrix A once. For this reason, it is practical to choose z such that
(z − 1) | κ. All together we read matrix B κ

z−1 times and matrix A once.

During each z−1 iterations shown in Figure 6, twenty new columns and (z−1)·20
κ

new rows are loaded into the column-store and row-store currently unused by
the computation. When the unused row-store is filled with twenty new rows, it
becomes active, to be used in the following iterations. The row-store containing
the rows with the least index becomes inactive in the computation and starts
accepting the new rows read.

Figure 7: Progression of computations through matrix C

Function improved matrix mult(A,B)

1. Define z, κ = d k20e, A
′, B ′, C ′ ∈ Zκ·n×κ·n4

2. for i = 0 to 20κ− 1 do
3. for j = 0 to 20κ− 1 do

4. if i < k and j < k then a ′ij = aij else a ′ij = 0

5. if i < k and j < k then b ′ij = bij else b ′ij = 0

6. end for end for

188 T. Herendi, R. Major

7. Fill the row-stores with rows a0 → a(z−1)·20−1
8. Fill the column-stores with columns b0 − b19
9. For i = 1 to κ2

z−1

Do in parallel: |perform z− 1 iterations of the computation
|READ the next 20 columns mod κ · 20
|READ the next (z−1)·20

κ rows mod κ · 20
|WRITE the result of the previous z− 1 iterations

11. return C ′[0,0k−1,k−1]
end Function

The possible values for the parameters used in this section depend on the
used hardware.

The size of the matrices used in the implementation are determined by
parameters n = 28 and d = 32. The LUTs on the device that comprise the Td20n
containers can be configured as d = 32 bit deep shift registers. For this reason
the matrices are of size 896 × 896. Rows with length k = 896 are the largest
that can be stored in containers that are one LUT deep, making them any
larger would double the number of LUTs needed for creating a Td20n. Because
of the limited number of LUTs which can be used for storage purposes, z = 10
was chosen. This yields that twelve Td20n containers are defined in the design.
Dealing with matrices larger than k = 896 is part of future work.

For convenience, time quantities are measured in clock cycles at 100MHz,
the clock speed of the M20×20 multiplier.

The value of δ depends on the DDR2 RAM used. The device was used at
200MHz, and has a 64 bit wide physical data bus.

From these values we determine the following parameters:

• κ = d 89620 e = 45,

• K(improved matrix mult) = κ
z−1κ+ κ = 45

9 · 45+ 45 = 270,

• δ = 140 clock cycles at 100MHz,

• Φ(improved matrix mult) = K(improved matrix mult)δ+κδ = 270·
140+ 45 · 140 = 44100 clock cycles at 100MHz,

• Γ(improved matrix mult) = dκ2 = 32 · 452 = 64800 clock cycles at
100MHz.

Modular exponentiation of matrices on FPGA-s 189

The goal of Γ(improved matrix mult) > Φ(improved matrix mult) is a-
chieved, meaning that the running time of the design is equal to the time used
by the computation.

The speedup provided by the configuration can be shown by comparing its
performance to a similar implementation created on a more traditional archi-
tecture. A highly optimized C++ program was created for a machine using
an Intel E8400 3GHz Dual Core processor with 2GB RAM. The algorithm is
strongly specialized for the task, making use of all available options for in-
creasing performance. It uses 64 bit long variables to perform multiplication
on 16 pairs of two-digit elements at once in parallel on both processor cores.

The running time of the multiplication of matrices of the same size is over
100 ms. The FPGA implementation, as mentioned above, achieves a runtime
of ∼0.6 ms. On average, a speedup factor of 200 is reached using the described
FPGA design.

7 Future work

The future course of research will focus on increasing the size of the used
matrices.

As mentioned in the previous section, simply increasing the depth d of the
Td20n containers would be impractical. Since a single LUT on the device can
only be configured as a 32 bit deep shift register, setting d > 32 would double
the number of LUTs needed for a Td20n, and the design is already using well
over half of the device’s LUTs that can be configured this way (13440 out of
17280, to be exact). Increasing the size of the matrices this way would require
the restructuring of both the multiplier module and the algorithm used for
memory management.

Instead, the currently implemented module can be used as a basic unit for
the multiplication of larger matrices. Then the entries of the large matrices
are 896× 896 blocks.

This also allows for further optimization using Strassen’s algorithm. Suppose
we double the matrix sizes, interpreting them as matrices with four blocks.
Using the classical algorithm, multiplying two 1792×1792 sized matrices would
take eight multiplication of the blocks. Using a divide-and-conquer strategy,
we can exchange one multiplication for a few extra additions.[
A11 A12
A21 A22

]
·
[
B11 B12
B21 B22

]
=

[
−D2 +D4 +D5 +D6 D1 +D2

D3 +D4 D1 −D3 +D5 −D7

]
,

190 T. Herendi, R. Major

where

D1 = A11(B12 − B22)

D2 = (A11 +A12)B22

D3 = (A21 +A22)B11

D4 = A22(B21 − B11)

D5 = (A11 +A22)(B11 + B22)

D6 = (A12 −A22)(B21 + B22)

D7 = (A11 −A21)(B11 + B12).

This algorithm, with its O(nlg 7) time complexity, could speed up the design on
large matrices. We should note however, that the speed of the extra additions
have to be carefully considered. Since the multiplication is already extremely
fast, a similar improvement may also be necessary for additions if the overall
performance upgrade is to remain significant.

Acknowledgements

Research supported by the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project
and TARIPAR3 project grant Nr. TECH 08-A2/2-2008-0086.

References

[1] F. Bensaali, A. Amira, R. Sotudeh, Floating-point matrix product on
FPGA, IEEE/ACS International Conference on Computer Systems and
Applications, Amman, Jordan, 2007, pp. 466–473. ⇒173

[2] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic pro-
gressions, J. Symbolic Comput. 9, 3 (1990) 251–280. ⇒173

[3] N. Dave, K. Fleming, M. King, M. Pellauer, M. Vijayaraghavan, Hardware
acceleration of matrix multiplication on a Xilinx FPGA, MEMOCODE
’07 Proc. 5th IEEE/ACM International Conference on Formal Methods
and Models for Co-Design, Nice, France, 2007, pp. 97–100. ⇒173

http://www.arnetminer.org/viewperson.do?naid=1131379&name=D.%2520Coppersmith
http://www.elsevier.com/wps/find/journaldescription.cws_home/622902/description
http://arnetminer.org/viewperson.do?naid=1089695
http://arnetminer.org/viewperson.do?naid=1407331

Modular exponentiation of matrices on FPGA-s 191

[4] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, G. N. Gaydadjiev, 64-bit
floating-point FPGA matrix multiplication, Proc. 2005 ACM/SIGDA
13th international symposium on Field-programmable gate arrays, Mon-
terey, CA, USA, 2005, pp. 86–95. ⇒173

[5] T. J. Earnest, Strassen’s Algorithm on the Cell Broadband Engine, 2008,
http://mc2.umbc.edu/docs/earnest.pdf ⇒173

[6] T. Herendi, Uniform distribution of linear recurrences modulo prime pow-
ers, J. Finite Fields Appl. 10, 1 (2004) 1–23. ⇒174

[7] T. Herendi, Construction of uniformly distributed linear recurring se-
quences modulo powers of 2 (to appear). ⇒174

[8] A. Irturk, S. Mirzaei, R. Kastner, An Efficient FPGA Implementation of
Scalable Matrix Inversion Core using QR Decomposition, UCSD Techni-
cal Report, CS2009-0938, 2009. ⇒173

[9] B. Kakaradov, Ultra-fast matrix multiplication, An empirical analysis
of highly optimized vector algorithms, Stanford Undergraduate Research
Journal 3 (2004) 33–36. ⇒173

[10] M. Karkooti, J. R. Cavallaro, C. Dick, FPGA implementation of matrix
inversion using QRD-RLS algorithm, Proc. 39th Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, USA, 2005, pp.
1625–1629. ⇒173

[11] S. M. Qasim, A. A. Telba, A. Y. AlMazroo, FPGA design and implemen-
tation of matrix multiplier architectures for image and signal processing
applications, IJCSNS International Journal of Computer Science and
Network Security 10, 2 (2010) 168–176. ⇒173

[12] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969)
354–356. ⇒173

Received: May 17, 2011 • Revised: October 11, 2011

http://ce.et.tudelft.nl/person.php?id=2
http://mc2.umbc.edu/docs/earnest.pdf
http://www.inf.unideb.hu/~herendi/
http://www.elsevier.com/wps/find/journaldescription.cws_home/622831/description
http://www.inf.unideb.hu/~herendi/
http://ucsd.academia.edu/AliIrturk/About
http://cs.stanford.edu/people/boyko/
http://surj.stanford.edu/2004/pdfs/kakaradov.pdf
http://surj.stanford.edu/2004/pdfs/kakaradov.pdf
http://www.ece.rice.edu/~marjan/
http://www.ece.rice.edu/~cavallar/
http://faculty.ksu.edu.sa/atelba/
http://www.ijcsns.org/
http://www.math.uni-konstanz.de/~strassen/
http://www.springer.com/mathematics/numerical+and+computational+mathematics/journal/211

Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 192–204

The debts’ clearing problem: a new

approach

Csaba PĂTCAŞ
Babeş-Bolyai University

Cluj-Napoca
email: patcas@cs.ubbcluj.ro

Abstract. The debts’ clearing problem is about clearing all the debts in
a group of n entities (e.g. persons, companies) using a minimal number
of money transaction operations. In our previous works we studied the
problem, gave a dynamic programming solution solving it and proved
that it is NP-hard. In this paper we adapt the problem to dynamic graphs
and give a data structure to solve it. Based on this data structure we
develop a new algorithm, that improves our previous one for the static
version of the problem.

1 Introduction

In [2] we studied the debts’ clearing problem, and gave a dynamic programming
solution using Θ(2n) memory and running in time proportional to 3n. The
problem statement is the following:

Let us consider a number of n entities (e.g. persons, companies), and a list
of m borrowings among these entities. A borrowing can be described by three
parameters: the index of the borrower entity, the index of the lender entity and
the amount of money that was lent. The task is to find a minimal list of money
transactions that clears the debts formed among these n entities as a result of
the m borrowings made.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C85
Key words and phrases: debt clearing, dynamic graph

192

http://cs.ubbcluj.ro/~patcas/
http://cs.ubbcluj.ro/
http://cs.ubbcluj.ro/
mailto:patcas@cs.ubbcluj.ro

The debts’ clearing problem: a new approach 193

Example 1

Borrower Lender Amount of money

1 2 10
2 3 5
3 1 5
1 4 5
4 5 10

Solution:

Sender Reciever Amount of money

1 5 10
4 2 5

In [2] we modeled this problem using graph theory:

Definition 2 Let G(V,A,W) be a directed, weighted multigraph without loops,
|V | = n, |A| = m, W : A → Z, where V is the set of vertices, A is the set of
arcs and W is the weight function. G represents the borrowings made, so we
will call it the borrowing graph.

Example 3 The borrowing graph corresponding to Example 1 is shown in
Figure 1.

Figure 1: The borrowing graph associated with the given example. An arc
from node i to node j with weight w means, that entity i must pay w amount
of money to entity j.

Definition 4 Let us define for each vertex v ∈ V the absolute amount of
debt over the graph G: DG(v) =

∑
v ′ ∈ V

(v, v ′) ∈ A

W(v, v ′) −
∑

v ′′ ∈ V

(v ′′, v) ∈ A

W(v ′′, v)

194 C. Pătcaş

Definition 5 Let G ′(V,A ′,W ′) be a directed, weighted multigraph without
loops, with each arc (i, j) representing a transaction of W ′(i, j) amount of
money from entity i to entity j. We will call this graph a transaction graph.
These transactions clear the debts formed by the borrowings modeled by graph
G(V,A,W) if and only if:
DG(vi) = DG ′(vi), ∀i = 1, n, where V = {v1, v2, . . . , vn}.
We will note this by: G ∼ G ′.

Example 6 See Figure 2 for a transaction graph with minimal number of arcs
corresponding to Example 1.

Figure 2: The respective minimum transaction graph. An arc from node i to
node j with weight w means, that entity i pays w amount of money to entity
j.

Using the terms defined above, the debt’s clearing problem can be reformu-
lated as follows:

Given a borrowing graph G(V,A,W) we are looking for a minimal tran-
saction graph Gmin(V,Amin,Wmin), so that G ∼ Gmin and ∀G ′(V,A ′,W ′) :
G ∼ G ′, |Amin| ≤ |A ′| holds.

2 The debts’ clearing problem in dynamic graphs

Definition 7 A dynamic graph is a graph, that changes in time, by under-
going a sequence of updates. An update is an operation, that inserts or deletes
edges or nodes of the graph, or changes attributes associated to edges or nodes.

The debts’ clearing problem: a new approach 195

In a typical dynamic graph problem one would like to answer queries re-
garding the state of the graph in the current time moment. A good dynamic
graph algorithm will update the solution efficiently, instead of recomputing it
from scratch after each update, using the corresponding static algorithm [1].

In the dynamic debts’ clearing problem we want to support the following
operations:

• InsertNode(u) – adds a new node u to the borrowing graph.

• RemoveNode(u) – removes node u from the borrowing graph. In order
for a node to be removed, all of its debts must be cleared first. In order to
affect the other nodes as little as possible, the debts of u will be cleared
in a way that affects the least number of nodes, without compromising
the optimal solution for the whole graph.

• InsertArc(u, v, x) – insert an arc in the borrowing graph. That is, u
must pay x amount of money to v.

• RemoveArc(u, v) – removes the debt between u and v.

• Query() – returns a minimal transaction graph.

Example 8 For instance calling the Query operation after adding the third
arc in the borrowing graph corresponding to Example 1 would result in the
minimal transaction graph from Figure 3.

These operations could be useful in the implementation of an application
that facilitates borrowing operations among entities, such as BillMonk [5] or
Expensure [6]. When a new user registers to the system, it is equivalent with
an InsertNode operation, and when a user wants to leave the system it is the
same as a RemoveNode. When a borrowing is made, it can be implemented
by a simple call of InsertArc. Two persons may decide, that they no longer
owe each other anything. In this case RemoveArc can be useful. If the whole
group decides, that it is time to settle all the debts, the Query operation will
be used.

3 A data structure for solving dynamic debts’ clear-
ing

As the static version of the problem is NP-hard [3], it is not possible to support
all these operations in polynomial time (unless P = NP). Otherwise we could

196 C. Pătcaş

Figure 3: Result of the Query operation called after the third arc was added

just build up the whole graph one arc at a time, by m calls of InsertArc,
then construct a minimal transaction graph by a call of Query, which would
lead to a polynomial algorithm for the static problem.

Our data structure used to support these operations is based on main-
taining the subset of nodes, that have non-zero absolute amount of debt
V∗ = {u|D(u) 6= 0}. The sum of D values for all the 2|V

∗| subsets of V∗ is
also stored in a hash table called sums.

3.1 InsertNode

As for our data structure only nodes having non-zero D values are important,
and a new node will always start with no debts, it means that nothing has to
be done when calling InsertNode.

3.2 InsertArc

When InsertArc is called, the D values of the two nodes change, so V∗ can
also change. When a node leaves V∗, we do not care about the updating the
sum of the subsets it is contained in, because when a new node enters V∗ we
will have to calculate the sum of all of the subsets it is contained in anyway.

If both u and v were in V∗ and remained in it after changing the D values,
then we simply add x to the sum of all subsets containing u, but not v,
and subtract x from those containing v but not u. The sum of the subsets
containing both nodes does not change.

The debts’ clearing problem: a new approach 197

If one of the nodes was just added to V∗ (D[u] = x, or D[v] = −x), then
all the sums of the subsets containing it must be recalculated. This recalcu-
lation can be done in O(1) for each subset, taking advantage of sums already
calculated for smaller subsets.

Procedure 1: UpdateSums(u, v, x)

// Updates the sum of all subsets containing u but not v

1 foreach S ⊂ V∗, such that u ∈ S and v 6∈ S do
2 if D[u] = x then sums[S] := sums[S \ {u}] + x;
3 else sums[S] := sums[S] + x;

Algorithm 2: InsertArc(u, v, x)

1 if D[u] = 0 then V∗ := V∗ ∪ {u};
2 if D[v] = 0 then V∗ := V∗ ∪ {v};
3 D[u] := D[u] + x; D[v] := D[v] − x;
4 if D[u] = 0 then V∗ := V∗ \ {u};
5 if D[v] = 0 then V∗ := V∗ \ {v};
6 if D[u] 6= 0 then UpdateSums (u, v, x);
7 if D[v] 6= 0 then UpdateSums (v, u,−x);
8 if D[u] = x or D[v] = −x then
9 foreach S ⊂ V∗, such that u, v ∈ S do

10 sums[S] := sums[S \ {u, v}] +D[u] +D[v];

One call of UpdateSums iterates over 2|V
∗|−2 subsets, thus lines 6 and 7 of

InsertArc together take 2|V
∗|−1 steps. Additionally line 9 takes 2|V

∗|−2 more
steps.

3.3 Query

To carry out Query we observe, that finding a minimal transaction graph
is equivalent to partitioning V∗ in a maximal number of disjoint zero-sum
subsets, more formally V∗ = P1 ∪ . . . ∪ Pmax, sums[Pi] = 0, ∀i = 1,max and
Pi ∩ Pj = ∅,∀i, j = 1,max, i 6= j. The reason for this is, that all the debts in a
zero-sum subset Pi can be cleared by |Pi| − 1 transactions (see [2, 3, 4]), thus
to clear all the debts, |V∗|−max transactions are necessary. Let S0 be the set
of all subsets of V∗, having zero sum: S0 = {S|S ⊂ V∗, sums[S] = 0}. Then, to
find the maximal partition, we will use dynamic programming.

Let dp[S] be the maximal number of zero-sum sets, S ⊂ V∗ can be parti-
tioned in.

198 C. Pătcaş

dp[S] =


not defined, if sums[S] 6= 0

0, if S = ∅
max{dp[S \ S ′] + 1|S ′ ⊂ S, S ′ ∈ S0}, otherwise.

Building dp takes at most 2|V
∗| · |S0| steps.

As the speed at which Query can be carried out depends greatly on the
size of S0, we can use two heuristics to reduces its size, without compromising
the optimal solution. To facilitate the running time of these heuristics, S0 can
be implemented as a linked list.

Clear pairs Choosing sets containing exactly two elements in the partition
will never lead to a suboptimal solution, if the remaining elements are parti-
tioned correctly [4]. Thus, before building dp, sets having two elements can be
removed from S0, along with all the sets, that contain those two elements (be-
cause we already added them to the solution, so there is no need to consider sets
that contain them in the dynamic programming): S0 := S0 \ ({u, v}∪ {S ′|u ∈ S ′
or v ∈ S ′}).

Procedure 3: ClearPairs

1 max := 0;
2 inPair := ∅;
3 foreach S ∈ S0 do
4 if |S| = 2 then
5 if S ∩ inPair = ∅ then
6 max := max+ 1;
7 Pmax := S;

8 inPair := inPair ∪ S ;

9 foreach S ∈ S0 do
10 if |S| ∩ inPair 6= ∅ then S0 := S0 \ S;

The running time of this heuristic is Θ(|S0|).

Clear non-atomic sets If a set Si ∈ S0 is contained in another set Sj ∈ S0,
then Sj can be safely discarded, because Sj \ Si will also be part of S0, and
combining Si with Sj \Si always leads to a better solution, than using Sj alone:
S0 := S0 \ {Sj|∃Si ∈ S0 : Si ⊂ Sj}.

This heuristic can be carried out in Θ(|S0|2).

The debts’ clearing problem: a new approach 199

Procedure 4: ClearNonAtomic

1 foreach Si ∈ S0 do
2 foreach Sj ∈ S0, Si 6= Sj do
3 if Si ⊂ Sj then S0 := S0 \ Sj;

3.4 RemoveNode

To delete a node u with the conditions listed in the introduction is equivalent
to finding a set P of minimal cardinality containing u, that can still be part
of an optimal partition, that is dp[V∗] = dp[V∗ \ P] + 1. This algorithm can
not be used together with the Clear pairs heuristic, because clearing pairs
may compromise the optimal removal of u. The running time is the same as
for Query, because dp must be built.

3.5 RemoveArc

Because clearing an arc between two nodes is the same as adding an arc in
the opposite direction, this can be easily implemented using InsertArc. If
the D values of the two nodes have the same sign, it means, that no arc could
appear in a minimal transaction between the two nodes, so nothing has to be
done.

Algorithm 5: RemoveArc(u, v)

1 if D[u] < 0 and D[v] > 0 then InsertArc(u, v,min{−D[u], D[v]});
2 else
3 if D[u] > 0 and D[v] < 0 then InsertArc(v, u,min{D[u],−D[v]});

3.6 Implementation details

In our implementation we used 32-bit integers to represent subsets. A subset
of at most 32 nodes can be codified by a 32-bit integer by looking at its binary
representation: node i is in the subset if and only if the ith bit is one. This
idea allows using bit operations to improve the running time of the program.

Because we did not use test cases having more than 20 nodes, the hash table
sums was implemented as a simple array having 2n elements. V∗ was stored
as an ordered array, but other representations are also possible, because the
running time of the operations on V∗ is dominated by other calculations in
our algorithm.

200 C. Pătcaş

Before using the methods of the data structure for the first time, the memory
for its data fields containing V∗ and sums should be allocated and their values
initialized, both being empty at the beginning. In a destructor type method
these memory fields can be deallocated.

4 A new algorithm for the static problem

We can observe, that the Query operation needs only the set S0 to be built,
and in order to build S0 the sum of all subsets of V∗ needs to be calculated.
Thus, after processing all the arcs in Θ(m) time and finding the D values, we
build V∗ in Θ(n) time along with the sums hash table, that can be built in
Θ(2|V

∗|) by dynamic programming:

sums[S = {s1, . . . sk}] =


0, if S = ∅

D[s1], if |S| = 1
sums[{s2, . . . sk}] +D[s1], otherwise.

After sums is built, we can construct S0 by simply iterating once again
over all the subsets of V∗ and adding zero-sum subsets to S0. Then we clear
pairs and non-atomic sets, call Query and we are done. This yields to a total
complexity of Θ(m+ n+ 2|V

∗| + |S0|2 + 2|V
∗| · |S0|).

5 Practical behavior

As it can be seen from the time complexities of the operations, the behavior of
the presented algorithms depends on the cardinalities of V∗ and S0 and their
running times may vary from case to case.

We have made some experiments to compare our new algorithms and the
static algorithm presented in [2]. We used the same 15 test cases which were
used, when the problem was proposed in 2008 at the qualification contest of
the Romanian national team. Figure 4 contains the structure of the graphs
used for each test case.

In our first experiment we compared three algorithms: the old static al-
gorithm based on dynamic programming from [2], our new static algorithm
described in Section 4 and the dynamic graph algorithm based on the data
structure presented in Section 3. For the third algorithm we called InsertArc
for each arc, then Query once in the end, after all arcs were added.

We executed each algorithm three times for each test case, and computed the
average of the running times. The new static algorithm was the fastest in nine
test cases, while the old static algorithm was the fastest in the remaining six

The debts’ clearing problem: a new approach 201

Test n m |Amin| Short description

1 20 19 1 A path with the same weight on each arc
2 20 20 0 A cycle with the same weight on each arc
3 8 7 7 Minimal transaction graph equals to borrowing

graph
4 20 19 19 Two connected stars

5 20 15 15 Yields to D[i] = 2,∀i = 1, 10, D[i] = −1, ∀i =
11, 19 and D[20] = −11, maximizing the number
of triples (zero-sets with cardinality three)

6 20 10 10 Yields to D[i] = 99,∀i = 1, 10, D[i] = −99, ∀i =
11, 20, maximizing the number of pairs

7 20 19 12 A path with random weights having close values
(50± 10)

8 20 20 10 A cycle with random weights having close values
(50± 10)

9 10 100 7 Random graph with weights ≤ 10
10 12 100 9 Random graph with weights ≤ 10
11 15 100 11 Random graph with weights ≤ 10
12 20 100 14 Random graph with weights ≤ 10
13 20 19 15 A path with consecutive weights
14 20 30 15 Ten pairs, a path, a star and triples put together
15 20 100 15 Dense graph with weights ≤ 3

Figure 4: The structure of the test cases

test cases. Looking at the average running time over all the test cases, the new
static algorithm was clearly the fastest with an average of 0.08 seconds. The old
static algorithm came second with 0.64 seconds, and the dynamic algorithm
third with 1.22 seconds. The difference between the last two is surprisingly
small, taking into account that the dynamic algorithm may perform 2n steps
after each arc insertion. Running times are shown in Figure 5.

In the second experiment we used the same methodology to compare our
new dynamic algorithm and the static algorithm presented in [2]. For the first
algorithm the solution was recomputed from scratch each time an arc was read
from the input file, and for the second after each InsertArc a Query was also
executed. The dynamic algorithm was faster for eight test cases, recalculating
from scratch was faster in the other seven cases. The average running time
over all test cases is 23.6 seconds for the first algorithm and 41.9 seconds for

202 C. Pătcaş

Test Old static New static Dynamic Improvement
algorithm algorithm algorithm

1 0.018 0.017 0.018 3.7%
2 0.019 0.007 0.010 64.4%
3 0.013 0.007 0.007 43.9%
4 0.036 0.050 0.441 -38.1%
5 6.383 0.551 0.932 91.3%
6 0.013 0.138 0.488 -909.7%
7 0.014 0.034 0.169 -145.2%
8 0.015 0.019 0.084 -26.6%
9 0.014 0.008 0.010 45.5%
10 0.014 0.007 0.022 47.6%
11 0.015 0.008 0.106 44.4%
12 0.016 0.056 5.526 -242.8%
13 0.765 0.079 0.465 89.6%
14 0.013 0.048 1.527 -271.7%
15 2.274 0.218 8.553 90.3%

Figure 5: Average running times for the first experiment, all given in seconds.
The best running times are bolded for each test. The last column shows the
improvement of the new static algorithm over the old one in percentage. A
negative value means, that no improvement was done.

the dynamic algorithm, mostly due to the last test case which runs for a long
time compared to the others. Without taking into account the last test case
the average running times are 1.05 and 1.28 seconds respectively.

By comparing the last two columns of the table depicted in Figure 6, one can
see how powerful our heuristics are, reducing the cardinality of S0 by several
magnitudes in many cases. We can observe, that the dynamic algorithm usually
performs slower than recomputing from scratch, when the size of S0 before
applying the heuristics is quite large, at least several hundreds. The reason
behind this is probably the quadratic complexity of clearing non-atomic sets.

6 Conclusions

In this paper we introduced a new data structure capable of supporting arc
insertions and deletions, node insertions and deletions in a dynamic borrow-

The debts’ clearing problem: a new approach 203

Test Old Dynamic Improvement |V∗| |S0| |S0|

static algorithm after
algorithm heuristics

1 0.079 0.019 76.0% 2 1 0
2 0.066 0.013 79.8% 1.9 0.95 0
3 0.029 0.009 69.6% 5 1 0.85
4 0.109 0.588 -437.8% 11 1 0.94
5 10.541 1.515 85.6% 11.66 7257 407.26
6 0.040 0.469 -1072.5% 11 25094.2 0
7 0.063 0.217 -243.6% 10.15 1035.63 3.57
8 0.066 0.142 -113.5% 10.75 801.3 7.7
9 0.294 0.017 94.1% 9.35 10.4 4.2
10 0.300 0.046 84.4% 11.28 40.28 13.17
11 0.329 0.258 21.6% 13.59 283.9 33.19
12 1.575 11.346 -620.0% 17.72 6002.9 189.38
13 1.101 0.588 46.5% 11 969.947 80.94
14 0.105 2.801 -2551.4% 16.46 1428.6 6.36
15 340.719 611.282 -79.4% 18.26 11790.8 9501.37

Figure 6: Average running times for the second experiment, all given in sec-
onds. The best running times are bolded for each test. The third column shows
the improvement of the dynamic algorithm over recomputing from scratch with
the old static one in percentage. A negative value means, that no improvement
was done. The last three columns show the average cardinality of V∗, S0 and
S0 after applying both heuristics respectively.

ing graph, along with finding the minimal transaction graph. Using this data
structure we developed a new static algorithm, which is faster than the one
described in [2] in many cases and in average.

We find the running times of the dynamic algorithm and recomputing from
scratch with the old static algorithm to be comparable on average. With a
good heuristic, that runs in reasonable time, but still reduces the size of S0

significantly, a better performance could be possible for the dynamic algorithm.
Finding such a heuristic remains an open problem.

Our experiments are not meant to be an exact comparison among the al-
gorithms, as the running time can greatly depend on the details of the imple-
mentation. Their purpose was just to get a general overview on the behavior
of the various algorithms for different kind of graphs.

204 C. Pătcaş

References

[1] C. Demetrescu, I. Finocchi, G. F. Italiano, Dynamic graph algorithms,
in: Handbook of Graph Theory (ed. J. L. Gross, J. Yellen), CRC Press,
Boca Raton, London, Washington, DC, 2004, pp. 985–1014. ⇒195

[2] C. Pătcaş, On the debts’ clearing problem, Studia Universitatis Babeş-
Bolyai, Informatica, 54, 2 (2009) 109–120. ⇒ 192, 193, 197, 200, 201,
203

[3] C. Pătcaş, The debts’ clearing problem’s relation with complexity classes,
to appear ⇒195, 197

[4] T. Verhoeff, Settling multiple debts efficiently: an invitation to computing
science, Informatics in Education, 3, 1 (2003), 105–126 ⇒197, 198

[5] *** BillMonk, http://www.billmonk.com ⇒195

[6] *** Expensure, http://expensure.com ⇒195

Received: May 16, 2011 • Revised: October 10, 2011

http://www.dis.uniroma1.it/~demetres/
http://www.dsi.uniroma1.it/~finocchi/
http://www.disp.uniroma2.it/users/italiano/
http://www.dis.uniroma1.it/~demetres/docs/crc-dyngraphs.pdf
http://www.cs.columbia.edu/~gross/
http://web.rollins.edu/~jyellen/
http://www.crcpress.com/
http://cs.ubbcluj.ro/~patcas/
http://www.cs.ubbcluj.ro/~studia-i/2009-2/10-Patcas.pdf
http://cs.ubbcluj.ro/~patcas/
http://www.win.tue.nl/~wstomv/
http://www.mii.lt/informatics_in_education/pdf/INFE023.pdf
http://www.billmonk.com/
http://expensure.com/

Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 205–223

Cache optimized linear sieve

Antal JÁRAI
Eötvös Loránd University

email: ajarai@moon.inf.elte.hu

Emil VATAI
Eötvös Lorńd University

email: emil.vatai@gmail.com

Abstract. Sieving is essential in different number theoretical algorithms.
Sieving with large primes violates locality of memory access, thus degrad-
ing performance. Our suggestion on how to tackle this problem is to use
cyclic data structures in combination with in-place bucket-sort.

We present our results on the implementation of the sieve of Eratos-
thenes, using these ideas, which show that this approach is more robust
and less affected by slow memory.

1 Introduction

In this paper we present the results obtained by implementing the sieve of
Eratosthenes [1] using the methods described at the 8th Joint Conference on
Mathematics and Computer Science in Komárno [3]. In the first section, the
problem which is to be solved by the algorithm and some basic ideas about
implementation and representation are presented. In Section 2, the methods
to speed up the execution are discussed. In Section 3 the numerical data of the
measurement of runtimes is provided on two different platforms in comparison
with the data found at [4].

Given an array (of certain size) and a set P of (p, q) pairs, where p is
(usually) a prime and 0 ≤ q < p is the offset (integer) associated with p. A
sieving algorithm for each (p, q) ∈ P pair performs an action on every element
of the array with a valid index i = q+mp (for m ≥ 0 integers).

Sieving with small primes can be considered a simple and efficient algorithm:
start at q and perform the action for sieving, then increase q by p and repeat.

Computing Classification System 1998: F.2.1, E.1
Mathematics Subject Classification 2010: 11-04, 11Y11, 68W99
Key words and phrases: sieve, cache memory, number theory, primality

205

http://compalg.inf.elte.hu/~ajarai
http://www.elte.hu
mailto:ajarai@moon.inf.elte.hu
http://compalg.inf.elte.hu/~vatai
http://www.elte.hu
mailto:emil.vatai@gmail.com

206 A. Járai, E. Vatai

But when sieving with large primes, larger than the cache, memory hierarchy
comes into play. With these large primes, sieving is not sequential (i. e. q skips
great portions of memory), thus access to the sieve array is not sequential and
this causes the program to spend most of its time waiting to access memory,
because of cache misses.

1.1 Sieve of Eratosthenes

The sieve of Eratosthenes is the oldest algorithm for generating consecutive
primes. It can be used for generating primes “by hand” but it is also the
simplest and most efficient way to generate consecutive primes of high vicinity
using computers. The algorithm is quite simple and well-known. Starting with
the number 2, declare it as prime and mark every even number as a composite
number. The first number, which is not marked is 3. It is declared as the next
prime, so all the numbers divisible by 3 (that is every third number) is sieved
out (marked), and so on.

1.2 Basic ideas about implementation

The program finds all primes in an interval [u, v] ⊂ N represented in a bit table.
The program addresses the issue of memory locality by sieving the [u, v] in
subintervals of predefined size, called segments, which can fit in the cache,
thus every segment of the sieve table needs to pass through the cache only
once. For simplicity and efficiency the size of segment is presumed to be the
power of two.

Because every even number, except 2, is a composite, a trivial improvement
is to represent only the odd numbers, and cutting the size of the task at hand
in half.

1.2.1 Input and output

The program takes three input parameters: the base 2 logarithm of the segment
size denoted by l,1 and instead of the explicit interval boundaries u and v, the
“index” of the first segment denoted by f, and the number of segments to be
sieved denoted by n, is given. This means, the numbers between u = f2l+1+1
and v = (f + n)2l+1 are sieved. For simpler comparison with results from [4],

1cache size ≈ segment size = 2l bits = 2l−3 bytes = 2l+1 numbers represented, because
only odd numbers are represented in the bit table.

Cache optimized linear sieve 207

the exponent of the approximate midpoint of the interval can also be given as
an input parameter instead of f2.

As for the output, the program stores the finished bit table in a file in the
/tmp directory, with the parameters written in the filename.

1.3 Sieve table and segments

Definition 1 (Sieve table, Segments) The sieve table S (for the above gi-
ven parameters) is an array of n2l bits. For 0 ≤ j < n2l, the bit Sj represents
the odd number 2(f2l + j) + 1 ∈ [u, v] = [f2l

+1, (f+ n)2l+1]. Sj is initialized to
0 (which indicates that 2(f2l + j) + 1 is prime); Sj is set to 1, if 2(f2l + j) + 1
is sieved out i.e. it is composite.

The t-th segment, denoted by S(t) is subtable of the t-th 2l bits of the sieve

table S, i.e. S
(t)
q = St2l+q for 0 ≤ q < 2l and 0 ≤ t < n.

After p sieves at Sj, marking 2(f2l + j) + 1 as a composite, the next odd
composite divisible by p is the 2(f2l + j) + 1+ 2p = 2(f2l + j+ p) + 1, so the
index j has to be incremented only by p. That is, not representing the even
numbers doesn’t change the sieving algorithm, except the calculation of the
offsets (described in Lemma 3).

1.4 Initialization phase

For every prime p, the first composite number not marked by smaller primes,
will be p2, i.e. sieving with p can start from p2. To sieve out the primes in
the [u, v] interval, only the primes p ≤

√
v are needed. Finding these primes

and calculating the q offsets, so that q ≥ 0 is the smallest integer satisfying
p | 2(fss+q)+1 is the initialization phase. Presumably

√
v is small (

√
v < u),

and finding primes p <
√
v (and calculating offsets) can be done quickly.

Definition 2 The set of primes, found during the initialization of the sieve
is called the base. P = {p prime : 2 < p ≤

√
v}

2 Addressing memory locality

Because the larger the prime, the more it violates locality of memory access
when sieving, the basic idea is to treat primes of different sizes in a different

2Of course, this just relieves the user from the tedious task of calculating f by hand for
the given exponent of the midpoint of the interval, but internally the flow of the program
was same as if f is given.

208 A. Járai, E. Vatai

way, and process the sieve table by segments in a linear fashion, loading each
segment in the cache only once and sieving out all the composites in it.

2.1 Medium primes

The primes p < 2l are medium primes. Segment-wise sieving with medium
primes is simple: (p, q) prime-offset pairs with p ≤ 2l and 0 ≤ q < p are
stored. Each prime marks at least one bit in each segment. For each prime p,
starting from q, every p-th bit has to be set, by sieving at the offset q and
then incrementing it to q ← q + p while q < 2l. Now q would sieve in the
next segment, so the offset is replaced with q− 2l. The first offset for a prime
p and the given parameters f and l can be found using the following Lemma.

Lemma 3 For each odd prime p and positive integers l and f, there is a
unique offset 0 ≤ q < p satisfying:

p | 2(f2l + q) + 1 (1)

Proof. Rearranging (1) gives f2l+1 + 2q + 1 = mp for some m. The integer
m has to be odd, because the left hand side and p are odd. The equation
can further be rearranged to a form, which yields a coefficient and something
similar to a reminder:

f2l+1 = (m− 1)p+ (p− (2q+ 1)).

The last term is even, so if the remainder r = f2l+1 mod p is even, then
q = (p−r−1)/2 satisfies 0 ≤ q < p and (1). If r is odd, then q = (2p−r−1)/2
satisfies 0 ≤ q < p and (1). Because r is unique, q is also unique. �

2.2 Large primes

The primes p > 2l are large primes. These primes “skip” segments i.e. if a
bit is marked in one segment by the large prime p, (usually) no bit is marked
by the prime p in the adjacent segment. The efficient administration of large
primes is based on the following observation:

Lemma 4 If the prime p, which satisfies the condition k2l ≤ p < (k + 1)2l

(for some integer k ≥ 0), marks a bit in S(t), then the next segment where the
sieve marks a bit (with p) is the segment S(t

′) for t ′ = t+ k or t ′ = t+ k+ 1.

Cache optimized linear sieve 209

Proof. If the prime p marks a bit in S(t) then it is the S
(t)
q bit, for some offset

0 ≤ q < 2l. The St2l+q bit is marked first, then the St2l+q+p bit, so the index

of the next segment is t ′ =
⌊
(t2l + q+ p)/2l

⌋
, thus

t+ k =
t2l + 0+ k2l

2l
≤

⌊
t2l + q+ p

2l

⌋
︸ ︷︷ ︸

=t ′

<
t2l + 2l + (k+ 1)2l

2l
= t+ k+ 2.

�

2.3 Circles and buckets

The goal is, always to have the right primes available for sieving at the right
time. This is done by grouping primes of the same magnitude together in so
called circles, and within these circles grouping them together by magnitude
of their offsets in so called buckets.

Definition 5 (Circles and Buckets) A circle (of order k, in the t-th state)
denoted by Ck,t is sequence of k + 1 buckets Bk,td (where 0 ≤ d ≤ k). Each
bucket contains exactly those (p, q) prime-offset pairs, which have the following
properties:

k2l < p < (k+ 1)2l (2)

0 ≤ q < max{p, 2l} (3)

p | 2
(
(f+ t+ d− b+ k+ 1)2l + q

)
+ 1 if 0 ≤ d < b (4)

p | 2
(
(f+ t+ d− b)2l + q

)
+ 1 if b ≤ d ≤ k (5)

where b = t mod (k+ 1) is the index of the current bucket.

(p, q) ∈ Ck,t means that there is an index 0 ≤ d ≤ k for which (p, q) ∈ Bk,td
and p ∈ Ck,t means that there is an offset 0 ≤ q < 2l for which (p, q) ∈ Ck,t.

As the state t is incremented b changes from 0 to k cyclically. This can be
imagined as a circle turning through k+1 positions, justifying its name. Also,
each bucket contains all the right primes with all the right offsets, that is when
it becomes the current bucket, it will contain exactly those prime-offsets which
are needed for sieving the current segment.

Circles and buckets can be defined for arbitrary k, t ∈ N, but only 0 ≤ k ≤
bmaxP/2lc = K and 0 ≤ t < n are needed.

210 A. Járai, E. Vatai

Theorem 6 For each p ∈ P there is a unique 0 ≤ k ≤ K and for each state
t, a unique 0 ≤ d ≤ k and offset q such that (p, q) ∈ Bk,td .

Proof. For every p prime, dividing (2) with 2l gives k = bp/2lc, and if p ∈ P,
then p ≤ maxP, so bp/2lc ≤ bmaxP/2lc = K, therefore 0 ≤ k ≤ K. For each
p, (2) is true independent of the state t.

For each t, a unique offset q satisfying (3) and a unique index 0 ≤ d ≤ k
satisfying (4) and (5) has to be found . It should be noted that the precondition
of (4) and (5) are mutually exclusive, that is an index d satisfies only one of
the two preconditions, and only that one has to be proven.

Medium primes, that is p < 2l is the special case of k = 0. C0,t has only one
bucket with the index d = b = 0, so the precondition of (4) is always false. (3)
is equivalent to 0 ≤ q < p since p < 2l. (5) is equivalent to p | 2

(
(f+t)2l+q

)
+1

because 0 ≤ b ≤ d, that is b = 0 = d. Lemma 3 for the prime p and integers
l and t+ f shows that there is an integer q which satisfies (3) and (5).

For p > 2l, the proof is by induction. If t = 0 is fixed, then b = 0 is the
current bucket’s index. The precondition of (4) is false and (5) is equivalent
to p | 2

(
(f+d)2l+q

)
+ 1. Lemma 3 for the prime p and integers l and f gives

a q ′ which satisfies p | 2(f2l + q ′) + 1 and 0 ≤ q ′ < p. Dividing q ′ by 2l gives
q ′ = d2l + q, where d and q are unique and satisfy (3) and (5).

If the statement holds for t ≥ 0, then there is an index 0 ≤ d ≤ k and
an offset 0 ≤ q < 2l such that (p, q) ∈ Bk,td . The current bucket is b = t

mod (k + 1), and the statement will be proven for the next state t ′ = t + 1
with b ′ = (b+ 1) mod (k+ 1) as the index of the “next” current bucket.

The first case is d 6= b. It can be shown that incrementing the state, the
prime remains in the same bucket with the same offset, i.e. (p, q) ∈ Bk,t ′d . If
b < k, then b ′ = b+ 1 ≤ k holds, that is t ′ − b ′ = (t+ 1) − (b+ 1) = t− b so
(4) and (5) remain the same, except for the preconditions. But since d 6= b,
0 ≤ d < b < b ′ or b < b ′ ≤ d will still remain true. If b = k, then 0 ≤ d <
b = k and b ′ = 0 = b−k, so the precondition of (4) is false, and (5) becomes:

p |
(
(f+ (t+ 1) + d− (−k))2l + q

)
+ 1 =

(
(f+ t+ d+ k+ 1)2l + q

)
+ 1

for 0 = b ′ ≤ d. Since (4) was true for d and t, now (5) is true for d and t+ 1.
The second case is when d = b, and it can be shown that incrementing

the state the prime remains in the same bucket or goes into the previous one
(modulo (k + 1)) with a different offset. If d = b, d satisfies the precondition
of (5), that is p | 2

(
(f+ t)2l+q

)
+1 is true. The next odd number divisible by

p can be obtained by incrementing the offset by p. As seen in Lemma 4 q+ p

Cache optimized linear sieve 211

can be written as q + p = k ′2l + q ′, where k ′ = k or k + 1 and 0 ≤ q ′ < 2l.
With incrementing the offset by p for t (5) gives:

p | 2
(
(f+ t+ k ′)2l + q ′)+ 1. (6)

Let d ′ be d+ (k ′ − 1) mod (k+ 1), that is d ′ ≡ d (mod k+ 1) or d ′ ≡ d− 1
(mod k+1). The precondition of (5) for the next state t ′ is true if b = k (then
b ′ = 0 and d ′ = k or k − 1) or if b = 0 and k ′ = k (then b ′ = 1 and d ′ = k).
If these values are plugged in (5) for t ′, i.e. p |

(
(f+ t ′ + d ′ − b ′)2l + q ′)+ 1,

equation (6) is obtained, which is true. The preconditions of (4) are satisfied
for every other case, that is, when 0 < d = b < k (then 0 ≤ d ′ < b ′ ≤ k)
or b = 0 and k ′ = k + 1 (then b ′ = 1 and d ′ = 0). Again, by plugging these
values in (4) for t ′, that is p |

(
(f+ t ′ + d ′ − b ′ + k+ 1)2l + q ′)+ 1 equation

(6) is obtained, which is also true. �

As a consequence, if it doesn’t cause any confusion, the state may be omitted
from the notation, because each prime with its offset is maintained only for the
current state. As the program iterates through states, the primes may “move”
between buckets, and offsets usually change.

The following Corollary shows, that sieving with circles and buckets sieves
out all composites marked by large primes (sieving with medium primes is
more or less trivial).

Corollary 7 For each p > 2l and odd i ′ ∈ [u, v] satisfying p | i ′ there exists
a unique state t and an offset q, so that (p, q) is in the current bucket of the
circle to which p belongs to.

Proof. Let i ′ be represented by Si for 0 ≤ i < n2l, that is i ′ = 2(f2l+i)+1. The
statement is true for t = bi/2lc, because then i = t2l + q, b = t mod (k+ 1),
and substituting d with b in (5), the equation p | 2

(
(f + t)2l + q) + 1 =

2(f2l + i) + 1 is obtained. �

The proof of Theorem 6 could have been simpler, but the proof by induction
gives some insight on how the circles and buckets work and behave, giving some
idea about how to implement them. This behavior is explicitly stated in the
following Corollary.

Corollary 8 For each state t, each order k, b = t mod (k + 1) and b ′ =
(t + k) mod (k + 1), if (p, q) ∈ Bk,t+1b then (p, q ′) ∈ Bk,tb for some offset q ′,
and Bk,tb ′ ⊂ B

k,t+1
b ′ and for every b 6= d 6= b ′ and d 6= d ′ Bk,td = Bk,t+1d .

The first statement says that with respect only to primes Bk,t+1b ⊂ Bk,tb .

212 A. Járai, E. Vatai

Proof. The index b ′ refers to the current bucket in the previous state and
as seen in the remarks in the proof of Theorem 6, iterating from state t to
t + 1 leaves the buckets with indexes d 6= b and d 6= b ′ untouched, and some
primes with new offsets are left in the current bucket while others are put in
the previous one. �

2.4 Modus operandi

The goal is to perform a segment-wise sieve:
Medium primes belonging to C0 are a special case, and they sieve at least

once in a segment. The t-th state of C0 contains all medium primes with
the smallest offsets for sieving in the S(t) segment. For a prime in C0, after
sieving with it the offset is replaced with the smallest offset for sieving the
next segment S(t+1). After sieving with all medium primes, C0 is in the t+ 1-
th state. This is implemented in a single loop, iterating through all medium
primes.

The circle Ck (k > 0), in the t-the state, for primes between k2l and (k +
1)2l, has the prime-offset pairs, needed for sieving S(t) in the current bucket.
After sieving with all these primes, the circle is in it’s next state, with offsets
replaced, and some primes moved to the previous bucket, ready for sieving
S(t+1). Sieving large primes is implemented via two embedded loops, the outer
iterating through circles by their order, covering all primes, and the inner loop
iterating through the primes of the current bucket of the current circle.

The above two procedures are called in a loop for segment S(t), iterating
from t = 0 to n − 1. Corollary 7 shows, that the primes for sieving the t-th
segment are in the current buckets of circles in t-th state, so this procedure
performs the sieve correctly.

2.5 Implementation

For sequential access, all prime-offset pairs, buckets and circles are stored as
linear arrays: the array of prime-offset pairs is denoted by (p̂i, q̂i), the array
of buckets denoted by b̂i and the array of circles denoted by ĉi (i ∈ N).

2.5.1 Array of circles

ĉk is the data structure (C struct) implementing the circle Ck. It is responsible
for most of the administration of the associated primes and buckets. Of course
memory to store K+ 1 circles is allocated.

Cache optimized linear sieve 213

(3, 2)

(5, 3)

(7, 2)

(11, 6)

(13, 2)

(17, 14)

(19, 5)

(23, 1)

(29, 3)

(31, 11)

(37, 4)

(41, 4)

(43, 6)

(47, 12)

...

b̂0

b̂1

b̂2

b̂3

b̂4

b̂5

...

ĉ0

ĉ1

ĉ2

. . .

Figure 1: Array of circles, buckets and primes

In the implementation, primes of one circle are a continuous part of the array
of primes. It was convenient to store the end-pointers of circles, i.e. a pointer
to the prime after the last prime in the circle. So the medium primes are all
primes before the up to but not including the prime at the end-pointer of ĉ0,
and all primes in Ck are the primes from the end-pointer of ĉk−1 up to but not
including the prime pointed to by the end-pointer of ĉk. Since the primes are
generated in an ascending order, these end-pointers can be determined easily,
and they don’t change during the execution of the program.

The circle ĉk maintains the index of the current bucket. It is incremented by
one (modulo k+ 1), that is b← b+ 1, if b < k or b← 0 if b = k assignment
is performed after sieving with primes from the circle. Circle need to maintain

214 A. Járai, E. Vatai

the index of the broken bucket explained in section 2.5.4.
The circle ĉk could also maintain a pointer, to the first bucket Bk0 represented

by b̂k(k+1)/2 in the buckets array, but it is not necessary because it can be
calculated from k. There is a more efficient solution if the circles are processed
with ascending orders: The starting bucket of ĉ1 is b̂1 and this is stored as a
temporary pointer. For every circle ĉk+1 the starting bucket is at k+1 buckets
after the first bucket of the previous circle ĉk, so when finished with circle ĉk,
this pointer has to be increased by k+ 1.

In Figure 1 the value l is 4 so the cache size is 16. C0 has a white background
as well as the bucket and primes associated with it. C1 is light gray with black
text, with two different shades for the two buckets and primes in them, and
in a similar way C2 is black with white text and slightly lighter shades of
gray for the buckets and primes. The end-pointers are drawn as thick arrows,
indicating that they don’t move during the execution. The dotted lines are the
calculable pointers to the first buckets.

2.5.2 Array of buckets

All buckets are stored consecutively in one array, i.e. the bucket Bkd of circle
Ck for 0 ≤ d ≤ k is represented by b̂k(k+1)/2+d. There are K + 1 circles, with
k + 1 buckets for each 0 ≤ k ≤ K, so memory for storing (K + 1)(K + 2)/2
buckets needs to be allocated.

The value of each b̂d is the index (uint32 t) of the first prime-offset pair
which belongs to the bucket b̂d. Primes that belong to one bucket are also in
a continuous part of the primes array, so the bucket Bkd contains the primes p̂i
(and the associated offsets q̂i) for b̂d ′ ≤ i < b̂d ′′ where d ′ = k(k+1)/2+d and
d ′′ = k(k+ 1)/2+ (d+ 1) mod (k+ 1). The broken bucket is an exception to
this. Empty buckets are represented with entries in the buckets array having
the same value, i.e. Bkd is empty if b̂d ′ = b̂d ′′ for d ′ = k(k + 1)/2 + d and
d ′′ = k(k+ 1)/2+ (d+ 1) mod (k+ 1), e.g. b̂4 is empty in Figure 1.

Buckets are set during the initialization, but change constantly during siev-
ing. First, using Lemma 3 an offset 0 ≤ q ′ < p is found for each p prime. All
prime-offset pairs of the circle Ck are sorted in ascending offsets. Similarly, as
primes are collected in circles, within one circles the offsets are collected in
buckets. Bkd contains all prime-offset pairs, so that d2l ≤ q ′ < (d + 1)2l, but
instead q ′, 0 ≤ q = q ′ − d2l < 2l is stored.

For each circle Ck, for each pair (p, q) ∈ Bkb, the bit with index q in the
current segment is set. After that, the new offset q ′ = q+p is calculated, which
is, because of Lemma 4, either k2l ≤ q ′ < (k+1)2l or (k+1)2l ≤ q ′ < (k+2)2l.

Cache optimized linear sieve 215

In the former case q ′− k2l is stored in the previous bucket (modulo k+ 1), or
in the latter case q ′ − (k + 1)2l is stored in the current bucket, as described
in Corollary 8.

This can be implemented efficiently by keeping copies of a prime from the
beginning and another prime from the end of the bucket. That way, in the
first case (k segments were skipped), the prime-offset pair in the beginning
of the bucket is overwritten and the value in the buckets array indicating the
beginning of the bucket is incremented, thus putting the replaced, new prime-
offset pair, in the previous bucket. In the second case (k + 1 segments were
skipped), the prime-offset pair in the end of the bucket is overwritten with the
new prime-offset pair and it stays in the current bucket. After replacing a pair
in one of the ends (the beginning or the end) of the bucket, the next prime
is read from that end of the bucket, that is from the next entry, closer to the
center of the bucket.

2.5.3 Array of primes

The array of primes contains all primes (medium and large), with the appro-
priate offsets, needed for sieving. The prime-offset pairs are stored as two 32
bit unsigned integers (two uint32 ts in a struct). Enough memory to store

about
√
v

log
√
v

pairs is allocated.

The array of primes is filled during the initialization phase. The values of
the offsets q change after finishing a segment. Sometimes pairs from the end
and the beginning of a bucket are swapped (as explained earlier), but this is all
done in-place, that is, the array itself does not need to be modified or copied,
just the values stored. All primes that belong to one circle as well as those
that belong to one bucket (except the broken bucket) are stored in a coherent
and continuous region of memory.

2.5.4 Broken bucket

For the circle Ck, the index of the broken bucket is r = max{d : b̂k(k+1)/2+d =

M}, where M = max{b̂d : k(k+ 1)/2 ≤ d < (k+ 1)(k+ 2)/2}. The primes
which belong to this bucket, are the ones from the index b̂k(k+1)/2+r and up
to but not including the prime at the end-pointer of ĉk and the primes from
the end-pointer of ĉk−1 up to but not including the prime with the index
b̂k(k+1)/2+r ′ where r ′ = (r + 1) mod (k + 1), e.g. b̂2 in Figure 1. This idea
also justifies the name circles, because logically the next prime after the end-
pointer of a circle is the first prime of the circle. When the broken bucket is

216 A. Járai, E. Vatai

not actually broken, the value of b̂k(k+1)/2+r ′ is set to the index of the prime

at the end-pointer of ĉk−1, e.g. b̂3 in Figure 1.
Every circle has a broken bucket and this has to be stored as a variable

for each circle. The fact, that this can not be omitted is not trivial, but if
all primes of a circle are one bucket, then all other buckets in that circle are
empty. Because empty buckets are represented by having the same value as
the following bucket, all buckets in that circle, that is all entries of b̂d which
represent the buckets of that circle, will have the same value. In this situation
the program can’t decide which buckets are empty and which one contains all
the primes.

The broken bucket also moves around. When sieving with a bucket, its
lower boundary is incremented. If sieving with the broken bucket, when the
beginning of the bucket moves past the end of the circle (and jumps to the
beginning), the previous bucket (modulo k+1) becomes the new broken bucket.

3 Speeding up the algorithm

The roughly described implementation of sieving can be further refined to gain
valuable performance boosts.

3.1 Small primes

Sieving with primes p < 64 can be sped up by not marking individual bits, but
rather applying bit masks. The subset of medium primes below 64 are called
small primes.

The AMD64 3 architecture processors with SSE2 extension, have sixteen
64-bit general purpose R registers, and sixteen 128-bit XMM registers. For
sieving with small primes, the generated 64bit wide bit masks are loaded in
these registers and or-ed together, to form the sieve table with small primes
applied to it. The masks are then shift-ed, to be applied to the next 64 bits
for R registers and 128 bits for XMM registers.

This is of course done in parallel, sieving by 128 bits at a time. The XMM
registers first 64 bits are loaded from the memory at the beginning of sieving
of a segment, and the last 64 bits are shift-ed (just like the R registers are
shifted “mod 64”). There is two times as much sieving with the R registers
than with the XMM registers.

With the first four primes “merged” into two, all the small primes can fit

3AMDTM is a trademark of Advanced Micro Devices, Inc.

Cache optimized linear sieve 217

in the R and XMM registers, so the only memory access is sequential and
done once when starting and once when finished sieving. The primes 3 and
11 are merged into 33, that is, the masks of 3 and 11 are combined at the
initialization, and the shifting needs to be done as if 33 was the prime for
sieving, because the pattern repeats after 33 bits. 5 and 7 are merged into 35
and treated similarly.

3.2 Medium primes

As described earlier, for (p, q) pairs with medium primes, sieving starts from
q by increasing it by p after sieving, until q ≥ 2l. Then the sieving is finished
for that segment, and the sieving of the next segment starts from q ′ = q− 2l.
There are two methods in which this algorithm can be sped up.

3.2.1 Wheel sieve

In the special case of the sieve of Eratosthenes, the “wheel” algorithm (de-
scribed in [5]) can be used to speed up the program. In some sense, it is an
extension of the idea of not sieving with number 2.

Let W be the set of the first few primes and w =
∏
p∈W p. Sieving with the

primes from W, sieves out a major part of the sieve table, and these bits can
be skipped. Basically, when sieving with a prime p 6∈ W, the number i needs
to be sieved (marked) by p, only if it is relative prime to w, that is, if i is in
the reduced residue system modulo w denoted by W ′ (if i 6∈ W ′ some prime
from W will mark it).

Let w0 < · · · < wϕ(w)−1 be the elements of W ′, and ∆s the number of bits
that should be skipped, after sieving the bit with index congruent to ws, that
is ∆i = (w +w(i+1) mod ϕ(w) −wi) mod w. When i is sieved out by p 6∈ W,
instead of sieving i+p next, the program can skip to i+∆sp if i ≡ ws (mod w).

In the implementation, W = {2, 3, 5}, but 2 is “built in” the representation
and this complicates thing a little bit: w = 15, ϕ(w) = 8 and w0 = 0, w1 = 3,
w2 = 5, w3 = 6, w4 = 8, w5 = 9, w6 = 11, w7 = 14 are used (instead of
w = 30 and 1, 7, 11, 13, 17, 19, 23, 29 for ws). For each prime the offset q
is initialized to the value q ′ +mp, where q ′ the offset found using Lemma 3
and m is the smallest non-negative integer, so that f2l + q ≡ ws (mod w) for
some 0 ≤ s ≤ 7.

Let p−1 be the inverse of p modulo 15, and x a non-negative integer so that:

f2l + q+ xp ≡ 7 (mod 15). (7)

218 A. Járai, E. Vatai

Note that the residue class represented by 7 is 15, and that is the class divisible
both by 3 and 5, and it is in a sense the “beginning” of the pattern generated by
the primes in W when sieving. (7) states that after x times sieving (regularly)
with p, the offset is at the “beginning” of the pattern, that is, in the residue
class represented by 7, so y = 7− x is the residue class in which q actually is.
x ≡ (7 − (f2l + q))p−1 (mod 15) can be obtained from (7) by multiplying it
with p−1.

There is an index 0 ≤ s ≤ 7, so that ws = y. The index s, indicating where
in the pattern is the offset q, is stored beside each (p, q) pair. Before sieving
with p, the array ∆0p, . . . , ∆7p is generated in memory, and a pointer is set to
∆sp. After marking a bit, the offset is incremented by the values found at that
pointer, and the pointer is incremented modulo 8, which can be implemented
very efficiently with a logical and operation and a bit mask. Also all prime-
offset pairs are stored on 64 bits and medium primes are p < 2l (where l is
never more than 30), so at least 4 bits are not used where the index 0 ≤ s ≤ 7
can fit.

3.2.2 Branch misses

Another speed boost can be obtained by treating the larger medium primes
(near to 2l) differently. This idea is somewhat similar to the one used with

circles, because it is based on the observation that, if 2l

(k+1) < p < 2l

k , then

p sieves k or k + 1 times in one segment (0 < k ∈ N). There is a different
procedure gk, for each of the first few values of k (e.g. 0 < k < 16). gk iterates
the offset k + 1 time, with the last iteration implemented using conditional
move (cmov) operations. So, for each k, primes 2l

(k+1) < p < 2l

k are collected
in a different array, and the procedure gk is invoked for each prime in that
array. Having fixed number of iterations with a conditional move is faster then
a branch miss, because the CPUs instruction stream is not interrupted.

3.3 Large primes

The sieving with large primes is roughly described above. Sieving with one
prime, putting it back, with the new offset, and modifying the bucket bound-
ary can be accomplished with only about 15 assembly instructions using con-
ditional moves (cmov). This is very efficient, but other techniques can also be
applied to reduce execution time.

Cache optimized linear sieve 219

3.3.1 Interleaved processing

Because the order in which the primes are processed doesn’t matter, the mem-
ory latency can be hidden by processing primes from both ends of the bucket.
As described earlier, for each bucket, two prime-offset pairs are loaded from
the beginning and end of the current bucket and one of them is processed.
To hide memory latency, the next prime is loaded into place of the processed
prime while the other one is being processed. “Processing a prime” covers the
following steps: marking the bit at the offset q; determining if q+p skips k or
k+ 1 segments; calculating the new offset q ′ ← q+p−k2l, replacing the pair
at the beginning of the bucket and incrementing the bucket’s lower boundary,
for the former case; or in the latter case, decrementing the pointer indicating
the finished primes at the top of the bucket, after replacing the pair at the end
of the bucket with the offset q ′ ← q+ p− (k+ 1)2l. Processing of one prime
is about 15-18 assembly instructions, which is approximately 5-6 clock cycles
on today’s processors, about the same time needed for the other prime to be
loaded in the registers.

3.3.2 Broken bucket and loop unrolling

The well-known technique of loop unrolling can efficiently be used for process-
ing primes-offset pairs. The core of the loop described above, which processes
two primes terminates when the difference between the pointer from the begin-
ning and end of the bucket becomes zero. With right shift and a logical and
instructions, the quotient a and remainder r of this difference when divided
by 2h can be obtained (e.g. h = 4 or 5). Then the loop core can be executed
a times in batches of 2h runs, and afterward r times, thus reducing the time
spent on checking if the difference is zero.

The loop unrolling of the broken bucket is a bit trickier, but manageable.
Let δ1 denote the difference between the beginning of the bucket and the end
of the circle, and δ2 the difference between the beginning of the circle and the
end of the bucket. The difference used for unrolling, as described above, would
be δ1 + δ2 but the when modifying the pointers after processing a prime, it
would have to be checked, if it moves past the beginning or end of the circle (to
jump to the other side). Instead, the unrolling is applied to min{δ1, δ2}. Since
it can’t be predicted if the beginning or end pointer is going to be modified,
the values of δ1 and δ2, the maximum, quotient a and reminder r have to be
reevaluated after each batch, until one of the pointers “jump” to the other side.
Then the bucket will no longer be broken, so the simpler unrolling described
above can be applied.

220 A. Járai, E. Vatai

4 Results

The program was run on (a single core of) two computers referred to by their
names lime and complab07. The goal was to supersede the implementation
found in the speed comparison chart of [4], but the results can not be compared
directly, because of the differences in hardware. Our implementation, running
on lime would come in 7th and complab07 the 16th in the speed comparison
chart, but with significantly slower memory.

e lime cl07 [a0F80] [a0FF0] [i06E8] [a0662]

1e12 1.45 2.09 0.57 0.68 1.28 1.07

2e12 1.45 2.10 0.64 0.75 1.37 1.17

5e12 1.45 2.27 0.74 0.85 1.48 1.29

1e13 1.45 2.28 0.80 0.92 1.57 1.38

2e13 1.46 2.38 0.86 0.99 1.66 1.47

5e13 1.45 2.46 0.95 1.08 1.76 1.59

1e14 1.46 2.5 1.01 1.14 1.85 1.67

2e14 1.45 2.58 1.08 1.21 1.94 1.76

5e14 1.68 2.70 1.16 1.29 2.04 1.87

1e15 1.63 2.80 1.22 1.36 2.11 1.96

2e15 1.71 2.86 1.28 1.42 2.19 2.06

5e15 1.83 2.95 1.37 1.50 2.29 2.20

1e16 1.89 3.04 1.42 1.56 2.37 2.32

2e16 1.95 3.13 1.49 1.63 2.45 2.47

5e16 2.03 3.25 1.58 1.75 2.57 2.72

1e17 2.08 3.34 1.64 1.86 2.67 2.93

2e17 2.15 3.45 1.72 2.02 2.79 3.23

5e17 2.22 3.60 1.84 2.21 2.96 3.66

1e18 2.29 3.75 1.99 2.39 3.13 4.03

2e18 2.33 0 2.26 2.61 3.31 4.52

Table 1: Execution times in seconds for intervals of 109 ≈ 230 with the midpoint
at 10e

Compared to the 666MHz DDR2 memory of lime, the first five or so com-
puters from the speed comparison chart have memory speeds of 800MHz and
above, and with a better memory our implementation could probably compete

Cache optimized linear sieve 221

lime 2000MHz Intel Core2 Duo (E8200) model 23, stepping 6, DDR2 666MHz
cl07 1595MHz AMD Athlon64 3500+, model 47, stepping 2, DDR 200MHz
a0F80 2600MHz 6-Core AMD Opteron (Istanbul), model 8, stepping 0, DDR2
a0FF0 2210MHz Athlon64 (Winchester), model 15, stepping 0, DDR 333
i06E8 1830MHz T2400 (Core Duo), model 14, stepping 8, DDR2 533
a0662 1669MHz Athlon (Palomino), model 6, stepping 2, DDR 333

Table 2: The CPU and memory configurations of the computers used for mea-
surements

better. But the real improvement can be seen, when running on older hard-
ware, like complab07. With the slow memory of 200MHz, the plot in Figure
2, is much flatter and closer to the theoretical speed of n log logn than for
example the similar i0662 with a faster 333MHz RAM.

It should also be noted, that the major part of execution is spent on sieving
with medium primes and more optimization is desired out of that part of the
algorithm. We also had some unexpected difficulties optimizing assembly code
for the Intel processors, due to confusing documentation and slow execution
of the bts (bit test set) instruction.

For lime, complab07 and some computers from [4], Table 1 shows the time
needed to sieve out an interval (represented by 230 ≈ 109 bits, with its midpoint
at 10e). This data is plotted out in Figure 2: values of e are represented on
the horizontal, execution times in seconds on the vertical axis.

5 Future work

The program was originally written for verifying the Goldbach conjecture, but
only the sieve for generating the table of primes was finished and measured
because that takes up the majority of the work for the verification. The com-
pletion of the verification application would be desirable. Also the current
implementation supports sieving with primes only up to 32 bits, on current
architectures, the implementation of sieving with primes up to 64 bits would
not be a problem.

Most of the techniques described here (except the wheel algorithm), es-
pecially the use of circles and buckets can be applied for a wider range of
sieving algorithms. For example, in [2] a similar attempt is made to exploit

222 A. Járai, E. Vatai

12 13 14 15 16 17 18

0

1

2

3

4

5

a0F80
a0FF0
i06E8
a0662

lime
cl07

Figure 2: Speed comparison chart

the cache hierarchy, but the behavior of the large primes is more predictable
with our method, and even an implementation for processors not designed for
sieving algorithms is possible. Therefore the multiple polynomial quadratic
sieve, on the Cell Broadband Engine Architecture4, with 128K byte cache (i.e.
Local Store) controlled by the user via DMA, can be implemented efficiently.
Further performance can be gained by combining buckets and circles with par-
allel processing: sieving with different polynomials on different processors for
MPQS-like algorithms, and a segment-wise pipeline-like processing for algo-
rithms similar to the sieve of Eratosthenes.

Acknowledgements

The Project is supported by the European Union and co-financed by the Eu-
ropean Social Fund (grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-
0003).

4Cell Broadband EngineTM is a trademark of Sony Computer Entertainment Incorporated

Cache optimized linear sieve 223

References

[1] D. M. Bressoud, Factorization and Primality Testing, Springer-Verlag,
New York, 1989. ⇒205

[2] J. Franke, T. Keinjung, Continued fractions and lattice sieving, Proceed-
ing SHARCS 2005, http://www.ruhr-uni-bochum.de/itsc/tanja/

SHARCS/talks/FrankeKleinjung.pdf. ⇒221

[3] A. Járai, E. Vatai, Cache optimized sieve, 8th Joint Conf. on Math and
Comput. Sci. MaCS 2010, Selected papers, Komárno, Slovakia, July 14–
17, 2010, Novadat, 2011, pp. 249–256. ⇒205

[4] T. Oliveira e Silva, Goldbach conjecture verification, 2011, http://www.
ieeta.pt/~tos/goldbach.html. ⇒205, 206, 220, 221

[5] P. Pritchard, Explaining the wheel sieve, Acta Inform., 17, 4 (1982) 477–
485. ⇒217

Received: October 2, 2011 • Revised: November 8, 2011

http://www.macalester.edu/~bressoud/
http://www.springer.com/mathematics/numbers/book/978-0-387-97040-0?changeHeader
http://www.springer.com/
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf
http://compalg.inf.elte.hu/~ajarai
http://compalg.inf.elte.hu/~vatai
http://www.ieeta.pt/~tos/
http://www.ieeta.pt/~tos/goldbach.html
http://www.ieeta.pt/~tos/goldbach.html
http://dx.doi.org/10.1007/BF00264164

Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 224–229

Lower bounds for finding the maximum

and minimum elements with k lies

Dömötör PÁLVÖLGYI
Loránd Eötvös University Budapest

Institute of Mathematics
email: dom@cs.elte.hu

Abstract. In this paper we deal with the problem of finding the smallest
and the largest elements of a totally ordered set of size n using pairwise
comparisons if k of the comparisons might be erroneous where k is a
fixed constant. We prove that at least (k+ 1.5)n+Θ(k) comparisons are
needed in the worst case thus disproving the conjecture that (k+1+ε)n
comparisons are enough.

1 Introduction

Search problems with lies have been studied in many different settings (see
surveys Deppe [2] and Pelc [5]). In this paper we deal with the model when a
fixed number, k, of the answers may be false, which we call lies. There are also
several models depending on what kind of questions are allowed as well, the
most famous being the Rényi-Ulam game. In this paper we deal with the case
when we are given n different elements and we can use pairwise comparisons
to decide which element is bigger from the two.

The problem of finding the maximum (or the minimum) element with k lies
was first solved by Ravikumar et al. [7]. They have shown that (k + 1)n − 1
comparisons are necessary and sufficient. The topic of this paper is finding
the maximum and the minimum. If all answers have to be correct then the
minimum number of comparisons needed is d 3n2 e − 2 (see [6]). Aigner in [1]

Computing Classification System 1998: F.2.2
Mathematics Subject Classification 2010: 68P10
Key words and phrases: search, lies

224

http://www.cs.elte.hu/~dom
http://www.elte.hu/en
http://www.cs.elte.hu/index.html?lang=en
mailto:dom@cs.elte.hu

Finding the maximum and minimum elements with k lies 225

proved that (k + Θ(
√
k))n + Θ(k) comparisons are always sufficient∗. It was

proved by Gerbner et al. [3] that if k = 1, then 87n
32 + Θ(1) comparisons are

necessary and sufficient. We also made the conjecture that for general k, there
is an algorithm using only (k + 1 + ck)n comparisons where ck tends to 0
as k tends to infinity. Hoffmann et al. [4] showed that (k + 1 + C)n + O(k3)
comparisons are sufficient for some absolute constant C (whose value is less
than 10 but no attempts to optimize it were made yet). Until now the best
lower bound on ck was Ω((1 +

√
2)−k) by Aigner [1]. The main result of this

paper is the following theorem.

Theorem 1 At least d(k+ 1.5)(n− 1) − 0.5e = (k+1.5)n+Θ(k) comparisons
are needed in the worst case to find the largest and the smallest element if there
might be k erroneous answers.

This bound is tight for k = 0 (see Theorem 4) but not for k = 1 as shown in
[3] and using a slightly more involved argument than the one presented here
it is easy to see that the bound can be simply improved for any k ≥ 1. The
reason why the theorem is presented in this “weak” form is that it already
disproves the conjecture and the argument is simply, yet gives a perfectly
matching bound for k = 0. To find a stronger version would involve a thor-
ough case analysis, similar to the one in [3] and improving the constant a bit
is uninteresting at the moment. It would be more interesting to study the
behavior of ck in future works. Now we know that 1.5 ≤ ck ≤ C ∼ 10. But
is ck monotonously increasing as k grows? This would imply, of course, the
existence of a limit, which is likely to exist.

The rest of the paper is organized as follows. In Section 2 we develop a
method to increase the lower bound by k for many search problems and give
proofs using it for some known results. In Section 3 we prove our main result,
Theorem 1.

2 k more questions

In this section, as a warm-up, we prove a very general result that holds for
all search problems and generally gives an additional constant to the lower
bounds that are proved using a consistent adversary.

Claim 2 Suppose we have a search problem where we want to determine the
value of some function f using (not necessarily yes-no) questions from a family

∗He also obtained asymptotically tight results in another model.

226 D. Pálvölgyi

of allowed questions. The answers are given by an adversary who can lie at
most k times. Suppose that we have already asked some questions and the
answers we got are consistent, i.e. it is possible that none of them is a lie. If
we do not yet know the value of f, then we need at least k+1 further questions
to determine it.

This claim has an immediate, quite weak corollary.

Corollary 3 If there is a search problem as in Claim 2 with a non-trivial f,
then we need at least 2k+ 1 questions to determine f.

Although it is not too standard, we first give a proof of the Corollary, as it
is a simplified version of the proof of the Claim.

Proof. Take two possible elements of the universe, x and y, for which f(x) 6=
f(y). The adversary can answer the first k questions according to x and the
next k questions according to y, thus after 2k questions both are still possible.

�

Proof of Claim 2. Suppose we have already asked some consistent questions,
i.e. there is an x such that they are all true for x. However, if we do not yet
know f, there is a y for which at most k of these questions would be false, such
that f(x) 6= f(y). We can answer the next k questions according to y. �

To show the power of this simple claim, let us prove the following theorem.

Theorem 4 (Ravikumar et al. [7]) To find the maximum among n ele-
ments using comparisons of which k might be incorrect, we need (k+ 1)n− 1
comparisons in the worst case.

Proof. The upper bound follows from using any tournament scheme and com-
paring any two elements until one of them is bigger than the other k+1 times.
This is (k+ 1)(n− 1) plus the possible k lies that might prolong our search.

To prove the lower bound, answer the first (k + 1)(n − 1) − 1 questions
consistently. Now we have an element that was always bigger, and another
that was the smaller one at most k times, thus the conditions of Claim 2 are
satisfied, so we need k+ 1 more questions. �

Finding the maximum and minimum elements with k lies 227

3 Proof of Theorem 1

We start with defining some standard terminology. Define the actual compar-
ison graph as a directed graph whose vertices are the elements and it has an
edge for every comparison between the compared elements, directed from the
bigger towards the smaller. We say that the comparison graph is consistent
if there is no directed cycle in the comparison graph. In this case any vertex
with in-degree at most k can still be the maximum element and any vertex
with out-degree at most k can still be the minimum element. We also denote
the comparison graph after the first t questions by Gt. So if there are no lies
among the first t answers, then they are necessarily consistent and there is no
directed cycle in Gt.

Now we prove Theorem 1, which states that d(k+ 1.5)(n− 1) − 0.5e com-
parisons are needed to find the largest and the smallest element if there might
be k erroneous answers.

Proof of Theorem 1. We have to give an adversary argument, i.e., for every
possible comparing algorithm, we have to give answers such that it is not
possible to determine with less than (k+1.5)(n−2)+1 questions the maximum
and the minimum. Our answers will be always consistent, i.e., that there will
be no directed cycle in the comparison graph.

First, we suppose that n is even and the (undirected) edges of Gn/2 (the
graph of the first n/2 questions) form a perfect matching, i.e., every element
is compared exactly once during the first n/2 comparisons. Denote the set of
elements that were bigger in their first comparison by TOP and the ones that
were smaller by BOTTOM. Whenever in the future an element from TOP is
compared to an element from BOTTOM, we always answer that the one from
TOP is bigger. This way the problem reduces to finding the maximum from
n/2 elements and the minimum from n/2 other elements. Every vertex but
one from TOP must have in-degree at least k + 1 at the end and, similarly,
every vertex but one from BOTTOM must have out-degree at least k+1 at the
end. Therefore after n/2 + 2(k + 1)(n/2 − 1) − 1 comparisons we still cannot
know both the maximum and the minimum, and the answers we got are all
consistent, thus we need k+1 more questions because of Claim 2. This implies
that at least (k+ 1.5)(n− 1) − 0.5 comparisons are needed in the worst case.

In general, define the sets TOP and BOTTOM to be empty at the beginning
and whenever an element is first compared, put it to TOP if it is bigger and
to BOTTOM if it is smaller than the element it is compared to. Whenever we
compare and element from TOP with an element from BOTTOM, always the

228 D. Pálvölgyi

TOP one will be bigger, so the maximum will be in TOP and the minimum
in BOTTOM. At the end of the algorithm every element must be assigned
to TOP or BOTTOM. Denote the number of elements that are put to TOP
by n1 and the number of the ones that are put to BOTTOM by n2 (so we
have n1 + n2 = n). It is clear that there are at least dn/2e questions that
compare at least one element that was not compared before. Also note, that if
we compare two elements one of which is not in TOP, then the in-degree of the
vertices in TOP will not increase. Therefore we need at least (k + 1)(n1 − 1)
comparisons inside TOP. We similarly need at least (k+1)(n2−1) comparisons
inside BOTTOM. Therefore after dn/2e + (k + 1)(n − 2) − 1 comparisons we
still cannot know both the maximum and the minimum, and the answers we
got are all consistent, thus we can apply Claim 2. This implies that at least
d(k+ 1.5)(n− 1) − 0.5e comparisons are needed in the worst case. Note that
this equals d(k+ 1.5)ne− k− 2, which for k = 0 is d3n/2e, matching the best
algorithm and the result of [6]. �

Acknowledgement

I would like to thank the members of Gyula’s search seminar, especially Dani
and Keszegh, to listen to my attempts to prove the conjecture that I eventually
ended up disproving.

The European Union and the European Social Fund have provided finan-
cial support to the project under the grant agreement no. TÁMOP 4.2.1/B-
09/1/KMR-2010-0003.

References

[1] M. Aigner, Finding the maximum and the minimum, Discrete Appl. Math.

74, 1 (1997) 1–12. ⇒224, 225

[2] C. Deppe, Coding with feedback and searching with lies, in: Entropy,

Search, Complexity, Bolyai Society Mathematical Studies, 16(2007) 27–70.⇒224

[3] D. Gerbner, D. Pálvölgyi, B. Patkós, G. Wiener, Finding the biggest and
smallest element with one lie, Discrete Appl. Math., 158, 9 (2010) 988–995.⇒225

[4] M. Hoffmann, J. Matoušek, Y. Okamoto, Ph. Zumstein, Minimum and
maximum against k lies, http://arxiv.org/abs/1002.0562. ⇒225

http://www.elsevier.com/wps/find/journaldescription.cws_home/505609/description
http://www.math.uni-bielefeld.de/ahlswede/papers/deppe.html
http://www.springer.com/series/4706
http://www.renyi.hu/~gerbner
http://www.cs.elte.hu/~dom
http://www.renyi.hu/~patkos
http://www.cs.bme.hu/~wiener
http://www.elsevier.com/wps/find/journaldescription.cws_home/505609/description
http://www.inf.ethz.ch/personal/hoffmann/
http://kam.mff.cuni.cz/~matousek/
http://www.is.titech.ac.jp/~okamoto/research/
https://lists.inf.ethz.ch/pipermail/fag/2009-September/005384.html
http://arxiv.org/abs/1002.0562

Finding the maximum and minimum elements with k lies 229

[5] A. Pelc, Searching games with errors – Fifty years of coping with liars,
Theor. Comp. Sci. 270, 1-2 (2002) 71–109. ⇒224

[6] I. Pohl, A sorting problem and its complexity, Comm. ACM 15, 6 (1972)
462–464. ⇒224, 228

[7] B. Ravikumar, K. Ganesan, K. B. Lakshmanan, On selecting the largest
element in spite of erroneous information, 4th Annual Symposium on The-

oretical Aspects of Computer Science, Passau, Germany, Febr. 19–21, 1987.
Lecture Notes in Comp. Sci. 247 (1987) pp. 88–99. ⇒224, 226

Received: October 15, 2011 • Revised: November 10, 2011

http://www.elsevier.com/wps/find/journaldescription.cws_home/505625/description
http://users.soe.ucsc.edu/~pohl/
http://cacm.acm.org/
http://ravi.cs.sonoma.edu/
http://www.acs.brockport.edu/~klakshma/
http://www.stacs-conf.org/
http://www.stacs-conf.org/

Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 230–268

On Erdős-Gallai and Havel-Hakimi

algorithms

Antal Iványi
Department of Computer Algebra,
Eötvös Loránd University, Hungary

email: tony@inf.elte.hu

Loránd Lucz
Department of Computer Algebra,
Eötvös Loránd University, Hungary

email: lorand.lucz@gmail.com

Tamás F. Móri
Department of Probability Theory and
Statistics, Eötvös Loránd University,

Hungary
email: moritamas@ludens.elte.hu

Péter Sótér
Department of Computer Algebra,
Eötvös Loránd University, Hungary

email: mapoleon@freemail.hu

Abstract. Havel in 1955 [28], Erdős and Gallai in 1960 [21], Hakimi in
1962 [26], Ruskey, Cohen, Eades and Scott in 1994 [69], Barnes and Sav-
age in 1997 [6], Kohnert in 2004 [49], Tripathi, Venugopalan and West in
2010 [83] proposed a method to decide, whether a sequence of nonnega-
tive integers can be the degree sequence of a simple graph. The running
time of their algorithms is Ω(n2) in worst case. In this paper we pro-
pose a new algorithm called EGL (Erdős-Gallai Linear algorithm), whose
worst running time is Θ(n). As an application of this quick algorithm we
computed the number of the different degree sequences of simple graphs
for 24, . . . , 29 vertices (see [74]).

1 Introduction

In the practice an often appearing problem is the ranking of different objects
as hardware or software products, cars, economical decisions, persons etc. A

Computing Classification System 1998: G.2.2. [Graph Theory]: Subtopic - Network
problems.
Mathematics Subject Classification 2010: 05C85, 68R10
Key words and phrases: simple graphs, prescribed degree sequences, Erdős-Gallai theo-
rem, Havel-Hakimi theorem, graphical sequences

230

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony&angolul=1
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1
http://www.elte.hu/en
mailto:tony@compalg.inf.elte.hu
http://people.inf.elte.hu/lulsaai
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1
http://www.elte.hu/en
mailto:lorand.lucz@gmail.com
http://www.math.elte.hu/~mori
http://www.cs.elte.hu/probability/common/index.a.html
http://www.cs.elte.hu/probability/common/index.a.html
http://www.elte.hu/en
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1
http://www.elte.hu/en
mapoleon@freemail.hu

On Erdős-Gallai and Havel-Hakimi algorithms 231

typical method of the ranking is the pairwise comparison of the objects, as-
signment of points to the objects and sorting the objects according to the sums
of the numbers of the received points.

For example Landau [51] references to biological, Hakimi [26] to chemical,
Kim et al. [45], Newman and Barabási [61] to net-centric, Bozóki, Fülöp, Poesz,
Kéri, Rónyai and Temesi to economical [1, 10, 11, 42, 80], Liljeros et al. [52]
to human applications, while Iványi, Khan, Lucz, Pirzada, Sótér and Zhou
[30, 31, 38, 65, 67] write on applications in sports.

From several popular possibilities we follow the terminology and notations
used by Paul Erdős and Tibor Gallai [21].

Depending from the rules of the allocation of the points there are many
problems. In this paper we deal only with the case when the comparisons have
two possible results: either both objects get one point, or both objects get zero
points. In this case the results of the comparisons can be represented using
simple graphs and the number of points gathered by the given objects are the
degrees of the corresponding vertices. The decreasing sequence of the degrees
is denoted by b = (b1, . . . , bn).

From the popular problems we investigate first of all the question, how
can we quickly decide, whether for given b does exist there a simple graph
G whose degree sequence is b. In connection with this problem we remark
that the main motivation for studying of this problem is the question: what is
the complexity of deciding whether a sequence is the score sequence of some
football tournament [24, 32, 35, 36, 43, 44, 54].

As a side effect we extended the popular data base On-line Encyclopedia of
Integer Sequences [72] with the continuation of contained sequences.

In connection with the similar problems we remark, that in the last years
a lot of papers and chapters were published on the undirected graphs (for
example [8, 9, 12, 16, 19, 29, 37, 41, 55, 68, 81, 83, 84, 85]) and also on
directed graphs (for example [7, 11, 14, 23, 24, 30, 31, 33, 38, 45, 48, 50, 57,
58, 63, 65, 64, 66]).

The majority of the investigated algorithms is sequential, but there are
parallel results too [2, 18, 20, 36, 60, 62, 77].

Let l, u and m integers (m ≥ 1 and u ≥ l). A sequence of integer numbers
b = (b1, . . . , bm) is called (l, u,m)-bounded, if l ≤ bi ≤ u for i = 1, . . . ,m.

A (l, u,m)-bounded sequence b is called (l, u,m)-regular, if bm ≥ bm−1 ≥
· · · ≥ b1. An (l, u,m)-regular sequence is called (l, u,m)-even, if the sum of
its elements is even. A (0, n− 1, n)-regular sequence b is called n-graphical, if
there exists a simple graph G whose degree sequence is b. If l = 0, u = n− 1
and m = n, then we use the terms n-bounded, n-regular, n-even, and n-

232 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

graphical (or simply bounded, regular, even, graphical).
In the following we deal first of all with regular sequences. In our definitions

the bounds appear to save the testing algorithms from the checking of such
sequences, which are obviously not graphical, therefore these bounds do not
mean the restriction of the generality.

The paper consists of nine parts. After the introductory Section 1 in Sec-
tion 2 we describe the classical algorithms of the testing and reconstruction of
degree sequences of simple graphs. Section 3 introduces several linear testing
algorithms, then Section 4 summarizes some properties of the approximate
algorithms. Section 5 contains the description of new precise algorithms and
in Section 6 the running times of the classical testing algorithms are pre-
sented. Section 7 contains enumerative results, in Section 8 we report on the
application of the new algorithms for the computation of the number of score
sequences of simple graphs. Finally Section 9 contains the summary of the
results.

Our paper [37] written in Hungarian contains further algorithms and simu-
lation results. [35] contains a short summary on the linear Erdős-Gallai algo-
rithm while in [36] the details of the parallel implementation of enumerating
Erdős-Gallai algorithm are presented.

2 Classical precise algorithms

For a given n-regular sequence b = (b1, . . . , bn) the first i elements of the
sequence we call the head of the sequence belonging to the index i, while the
last n − i elements of the sequence we call the tail of the sequence belonging
to the index i.

2.1 Havel-Hakimi algorithm

The first algorithm for the solution of the testing problem was proposed by
Vaclav Havel Czech mathematician [28, 53]. In 1962 Louis Hakimi [26] pub-
lished independently the same result, therefore the theorem is called today
usually as Havel-Hakimi theorem, and the method of reconstruction is called
Havel-Hakimi algorithm.

Theorem 1 (Hakimi [26], Havel [28]). If n ≥ 3, then the n-regular sequence
b = (b1, . . . , bn) is n-graphical if and only if the sequence b ′ = (b2 − 1, b3 −
1, . . . , bb1 − 1, bb1+1 − 1, bb1+2, . . . , bn) is (n− 1)-graphical.

Proof. See [9, 26, 28, 37]. �

On Erdős-Gallai and Havel-Hakimi algorithms 233

If we write a recursive program based on this theorem, then according to
the RAM model of computation its running time will be in worst case Ω(n2),
since the algorithm decreases the degrees by one, and e.g. if b = ((n − 1)n),
then the sum of the elements of b equals to Θ(n2). It is worth to remark that
the proof of the theorem is constructive, and the algorithm based on the proof
not only tests the input in quadratic time, but also construct a corresponding
simple graph (of course, only if it there exists).

It is worth to remark that the algorithm was extended to directed graphs
in which any pair of the vertices is connected with at least a ≥ 0 and at most
b ≥ a edges [30, 31]. The special case a = b = 1 was reproved in [23].

In 1965 Hakimi [27] gave a necessary and sufficient condition for two se-
quences a = (a1, . . . , an) and b = (b1, . . . , bn) to be the in-degree sequences
and out-degree sequence of a directed multigraph without loops.

2.2 Erdős-Gallai algorithm

In chronological order the next result is the necessary and sufficient theorem
published by Paul Erdős and Tibor Gallai [21].

For an n-regular sequence b = (b1, . . . , bn) let Hi = b1 + · · ·+ bi. For given
i the elements b1, . . . , bi are called the head of b, belonging to i, while the
elements bi+1, . . . , bn are called the tail of b belonging to i.

When we investigate the realizability of a sequence, a natural observation is
that the degree requirement Hi of a head is covered partially with inner and
partially with outer degrees (with edges among the vertices of the head, resp.
with edges, connecting a vertex of the head and a vertex of the tail). This
observation is formalized by the following Erdős-Gallai theorem.

Theorem 2 (Erdős, Gallai [21]) Let n ≥ 3. The n-regular sequence b =
(b1, . . . , bn) is n-graphical if and only if

n∑
i=1

bi even (1)

and
j∑
i=1

bi ≤ j(j− 1) +
n∑

k=j+1

min(j, bk) (j = 1, . . . , n− 1). (2)

Proof. See [9, 15, 21, 70, 83]. �

234 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

n R(n) E(n) E(n)/R(n)

1 1 1 1.0000000000000

2 3 2 0.6666666666667

3 10 6 0.6000000000000

4 35 19 0.5428571428571

5 126 66 0.5238095238095

6 462 236 0.5108225108225

7 1716 868 0.5058275058275

8 6435 3235 0.5027195027195

9 24310 12190 0.5014397367339

10 92378 46252 0.5006819805581

11 352716 176484 0.5003572279114

12 1352078 676270 0.5001708481315

13 5200300 2600612 0.5000888410284

14 20058300 10030008 0.5000427753100

15 77558760 38781096 0.5000221251603

16 300540195 150273315 0.5000107057227

17 1166803110 583407990 0.5000055150693

18 4537567650 2268795980 0.5000026787479

19 17672631900 8836340260 0.5000013755733

20 68923264410 34461678394 0.5000006701511

21 269128937220 134564560988 0.5000003432481

22 1052049481860 526024917288 0.5000001676328

23 4116715363800 2058358034616 0.5000000856790

24 16123801841550 8061901596814 0.5000000419280

25 63205303218876 31602652961516 0.5000000213918

26 247959266474052 123979635837176 0.5000000104862

27 973469712824056 486734861612328 0.5000000053420

28 3824345300380220 1912172660219260 0.5000000026224

29 15033633249770520 7516816644943560 0.5000000013342

30 59132290782430712 29566145429994736 0.5000000006558

31 232714176627630544 116357088391374032 0.5000000003333

32 916312070471295267 458156035385917731 0.5000000001640

33 3609714217008132870 1804857108804606630 0.5000000000833

34 14226520737620288370 7113260369393545740 0.5000000000410

35 56093138908331422716 28046569455332514468 0.5000000000208

36 221256270138418389602 110628135071477978626 0.5000000000103

37 873065282167813104916 436532641088444120108 0.5000000000052

38 3446310324346630677300 1723155162182151654600 0.5000000000026

Figure 1: Number of regular and even sequences, and the ratio of these numbers

Although this theorem does not solve the problem of reconstruction of
graphical sequences, the systematic application of (2) requires in worst case

On Erdős-Gallai and Havel-Hakimi algorithms 235

(for example when the input sequence is graphical) Θ(n2) time.
Recently Tripathi and Vijay [83] published a constructive proof of Erdős-

Gallai theorem and proved that their construction requires O(n3) time.
Figure 1 shows the number of n-regular (R(n) and n-even (E(n) sequences

and their ratio (E(n)/R(n) for n = 1, . . . , 38. According to (34) the sequence
of these ratios tends to 1

2 as n tends to ∞. According to Figure 1 the conver-
gence is quick: e.g. E(20)/R(20) = 0.5000006701511.

The pseudocode of Erdős-Gallai see in [37].

3 Testing algorithms

We are interested in the investigation of football sequences, where often ap-
pears the necessity of the testing of degree sequences of simple graphs.

A possible way to decrease the expected testing time is to use quick (linear)
filtering algorithms which can state with a high probability, that the given
input is not graphical, and so we need the slow precise algorithms only in the
remaining cases.

Now we describe a parity checking, then a binomial, and finally a headsplit-
ting filtering algorithm.

3.1 Parity test

Our first test is based on the first necessary condition of Erdős-Gallai theorem.
This test is very effective, since according to Figure 1 and Corollary 14 about
the half of the regular sequences is odd, and our test establishes in linear time,
that these sequences are not graphical.

The following simple algorithm is based on (1).
Input. n: number of the vertices (n ≥ 1);

b = (b1, . . . , bn): an n-regular sequence.
Output. L: logical variable (L = False shows, that b is not graphical, while

the meaning of the value L = True is, that the test could not decide, whether
b is graphical or not).

Working variable. i: cycle variable;
H = (H1, . . . , Hn): Hi is the sum of the first i elements of b.

Parity-Test(n, b, L)

01 H1 = b1
02 for i = 2 to n
03 Hi = Hi−1 + bi

236 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

04 if Hn odd
05 L = False
06 return L
07 L = True
08 return L

The running time of this algorithm isΘ(n) in all cases. Figure 1 characterizes
the efficiency of Parity-test.

(1) is only a necessary condition, therefore Parity-Test is only an approx-
imate (filtering) algorithm.

3.2 Binomial test

Our second test is based on the second necessary condition of Erdős-Gallai
theorem. It received the given name since we estimate the number of the inner
edges of the head of b using a binomial coefficient. Let Ti = bi+1+ · · ·+bn (i =
1, . . . , n).

Lemma 3 If n ≥ 1 and b is an n-graphical sequence, then

Hi ≤ i(i− 1) + Ti (i = 1, . . . , n− 1). (3)

Proof. The left side of (3) represents the degree requirement of the head of b.
On the right side of (3) i(i−1) is an upper bound of the inner degree capacity
of the head, while Ti is an upper bound of the degree capacity of the tail,
belonging to the index i. �

The following program is based on Lemma 3.
Input. n: number of the vertices (n ≥ 1);

b = (b1, . . . , bn): an n-regular even sequence;
H = (H1, . . . , Hn): Hi the sum of the first i elements of b;
H0: auxiliary variable, helping to compute the elements of H.

Output. L: logical variable (L = False signals, that b is surely not graphical,
while L = True shows, that the test could not decide, whether b is graphical).

Working variables. i: cycle variable;
T = (T1, . . . , Tn): Ti the sum of the last n− i elements of b;
T0: auxiliary variable, helping to compute the elements of T .

Binomial-Test(n, b,H, L)

01 T0 = 0
02 for i = 1 to n− 1

On Erdős-Gallai and Havel-Hakimi algorithms 237

03 Ti = Hn −Hi
04 if Hi > i(i− 1) + Ti
05 L = False
06 return L
07 L = True
08 return L

The running time of this algorithm is Θ(n) in worst case, while in best case
is only Θ(1).

According to our simulation experiments Binomial-Test is an effective
filtering test (see Figure 2 and Figure 3).

3.3 Splitting of the head

We can get a better estimation of the inner capacity of the head, than the
binomial coefficient gives in (3), if we split the head into two parts. Let bi/2c =
hi, p the number of positive elements of b. Then the sequence (b1, . . . , bhi)
is called the beginning of the head belonging to index i and the sequence
(bhi+1, . . . , bi) the end of the head belonging to index i.

Lemma 4 If n ≥ 1 and b is an n-graphical sequence, then

Hi ≤ min(min(Hhi , Tn − Ti, hi(n− i))

+ min(Hi −Hhi , Tn − Ti, (i− hi)(n− i)), Ti)

+ min(hi(i− hi) +

(
hi
2

)
+

(
i− hi
2

)
(i = 1, . . . , n), (4)

further

min(Hhi , Tn− Ti, hi(n− i)) +min(Hi−Hhi , Tn− Ti, (i−hi)(n− i)) ≤ Ti. (5)

Proof. Let G be a simple graph whose degree sequence is b. Then we divide
the set of the edges of the head belonging to index i into five subsets: (Si,1)
contains the edges between the beginning of the head and the tail, (Si,2) the
edges between the end of the head and the tail, Si,3 the edges between the parts
of the head, Si,4 the edges in the beginning of the head and Si,5 the edges in
the end of the head. Let us denote the number of edges in these subsets by
Xi,1, . . . , Xi,5.
Xi,1 is at most the sum Hhi of the elements of the head, at most the sum

Tn − Ti of the elements of the tail, and at most the product hi(n − i) of the

238 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

elements of the pairs formed from the tail and from the beginning of the head,
that is

Xi,1 ≤ min(Hhi , Tn − Ti, hi(n− i)). (6)

A similar train of thought results

Xi,2 ≤ min(Hi −Hhi , Tn − Ti, (i− hi)(n− i)). (7)

Xi,3 is at most hi(i− hi) and at most Hi, implying

Xi,3 ≤ min(hi(i− hi), Hi). (8)

Xi,4 is at most
(
hi
2

)
and at most Hhi , implying

Xi,4 ≤ min(

(
hi
2

)
, Hhi), (9)

while Xi,5 is at most
(
i−hi
2

)
and at most Hi −Hhi , implying

Xi,5 ≤
(
i− hi
2

)
. (10)

A requirement is also, that the tail can overrun its capacity, that is

Xi,1 + Xi,2 ≤ Ti. (11)

Summing of (6), (7), (8), (9), and (10) results

Hi ≤ Xi,1 + Xi,2 + Xi,3 + 2Xi,4 + 2Xi,5. (12)

Substituting of (6), (7), (8), (9), and (10) into (12) results (4), while (11) is
equivalent to (5). �

The following algorithm executes the test based on Lemma 4.
Input. n: the number of vertices (n ≥ 1);

b = (b1, . . . , bn): an n-even sequence, accepted by Binomial-Test;
H = (H1, . . . , Hn): Hi the sum of the first i elements of b;
T = (T1, . . . , Tn): Ti the sum of the last n− i elements of b.

Output. L: logical variable (L = False signals,that b is not graphical, while
L = True shows, that the test could nor decide, whether b is graphical).

Working variables. i: cycle variable;
h: the actual value of hi;
X = (X1, X2, X3, X4, X5): Xj is the value of the actual Xi,j.

On Erdős-Gallai and Havel-Hakimi algorithms 239

Headsplitter-Test(n, b,H, T, L)

01 for i = 2 to n− 1
02 h = bi/2c
03 X1 = min(Hh, Tn − Ti, h(n− i))
04 X2 = min(Hi −Hh, Tn − Ti, (i− h)(n− i))
05 X3 = min(h(i− h)

06 X4 =
(
h
2

)
07 X5 =

(
i−h
2

)
06 if Hi > X1 + X2 + X3 + 2X4 + 2X5 or X1 + X2 > Ti
07 L = False
08 return L
09 L = True
10 return L

The running time of the algorithm is Θ(1) in best, and Θ(n) in worst case.
It is a substantial circumstance that the use of Lemma 3 and Lemma 4

requires only linear time (while the earlier two theorems require quadratic
time). But these improvements of Erdős-Gallai theorem decrease only the co-
efficient of the quadratic member in the formula of the running time, the order
of growth remains unchanged.

Figure 2 contains the results of the running of Binomial-Test and Head-
splitter-Test, further the values G(n) and G(n)

G(n+1) (the computation of the

values of the function G(n) will be explained in Section 8).
Figure 3 shows the relative frequency of the zerofree regular, binomial, head-

splitted and graphical sequences compared to the number of regular sequences.

3.4 Composite test

Composite-Test uses approximate algorithms in the following order: Parity-
Test, Binomial-Test, Positive-Test, Headsplitter-Test.

Composite-test(n, b, L)

01 Parity-Test(n, b, L)
02 if L == False
03 return L
04 Binomial-Test(n, b,H, L)
05 if L == False
06 return L
07 Headsplitter-Test(n, b,H, T, L)

240 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

08 if L == False
09 return L
10 L = True
11 return L

The running time of this composite algorithm is in all cases Θ(n).

4 Properties of the approximate testing algorithms

We investigate the efficiency of the approximate algorithms testing the regular
algorithms. Figure 1 contains the number R(n) of regular, the number E(n) of
even, and the number G(n) of graphical sequences for n = 1, . . . , 38.

The relative efficiency of arbitrary testing algorithm A for sequences of given
length n we define with the ratio of the number of accepted by A sequences of
length n and the number of graphical sequences G(n). This ratio as a function
of n will be noted by XA(n) and called the error function of A [34].

We investigate the following approximate algorithms, which are the compo-
nents of Composite-Test:

1) Parity-Test;
2) Binomial-Test;
3) Headsplitter-Test.
According to (23) there are R(2) = 3 2-regular sequences: (1, 1), (1, 0) and

(0, 0). According to (25) among these sequences there are E(2) = 2 even se-
quences. Binomial-Test accepts both even ones, therefore B(2) = 2. Both
sequences are 2-graphical, therefore G(2) = 2 and so the efficiency of Parity-
Test (PT) and Binomial-Test (BT) is XPT(2) = XBT(2) = 2/2 = 1, in this
case both algorithms are optimal.

The number of 3-regular sequences is R(3) = 10. From these sequences
(2, 2, 2), (2, 2, 0), (2, 1, 1), (2, 0, 0) (1, 1, 0) and (0, 0, 0) are even, so E(3) =
6. Binomial-Test excludes the sequences (2, 2, 0) and (2, 0, 0), so remains
B(3) = 4. Since these sequences are 3-graphical, G(3) = 4 implies XPT(3) =

3
2

and XBT(3) = 1.
The number of 4-regular sequences equals to R(4) = 35. From these se-

quences 16 is even, and the following 11 are 4-graphical: (3, 3, 3, 3), (3, 3, 2, 2),
(3, 2, 2, 1), (3, 1, 1, 1,), (2, 2, 2, 2), (2, 2, 2, 0), (2, 2, 1, 1), (2, 1, 1, 0), (1, 1, 1, 1),
(1, 1, 0, 0) and (0, 0, 0, 0). From the 16 even sequences Binomial-Test also
excludes the 5 sequences, so B(4) = G(4) = 11 and XBT(4) = 1.

According to these data in the case of n ≤ 4 Binomial-Test recognizes all
nongraphical sequences. Figure 2 shows, that for n ≤ 5 we have B(n) = G(n),

On Erdős-Gallai and Havel-Hakimi algorithms 241

n Bz(n) Fz(n) G(n) G(n+ 1)/G(n)

1 1 0 1 2.000000

2 2 2 2 2.000000

3 4 4 4 2.750000

4 11 11 11 2.818182

5 31 31 31 3.290323

6 103 102 102 3.352941

7 349 344 342 3.546784

8 1256 1230 1213 3.595218

9 4577 4468 4361 3.672552

10 17040 16582 16016 3.705544

11 63944 62070 59348 3.742620

12 242218 234596 222117 3.765200

13 922369 891852 836315 3.786674

14 3530534 3409109 3166852 3.802710

15 13563764 13082900 12042620 3.817067

16 52283429 50380684 45967479 3.828918

17 202075949 194550002 176005709 3.839418

18 782879161 753107537 675759564 3.848517

19 3039168331 2921395019 2600672458 3.856630

20 11819351967 11353359464 10029832754 3.863844

21 38753710486 3.870343

22 149990133774 3.876212

23 581393603996 3.881553

24 2256710139346 3.886431

25 8770547818956 3.890907

26 34125389919850 3.895031

27 132919443189544 3.897978

28 518232001761434 3.898843

29 2022337118015338

Figure 2: Number of zerofree binomial, zerofree headsplitted and graphical
sequences, further the ratio of the numbers of graphical sequences for neigh-
bouring values of n

that is Binomial-Test accepts the same number of sequences as the precise
algorithms. If n > 5, then the error function of Binomial-Test is increasing:
while XBT(6) = 103

102 (BT accepts one nongraphical sequence), XBT(7) = 349
342

(BT accepts 7 nongraphical sequences) etc.
Figure 4 presents the average running time of the testing algorithms BT

242 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

n Ez(n) Ez(n)/R(n) Bz(n)/R(n) Fz(n)/R(n) G(n)/R(n)

1 0 0.000000 1.000000 1.000000 1.000000

2 1 0.333333 0.666667 0.666667 0.666667

3 2 0.300000 0.400000 0.400000 0.400000

4 9 0.257143 0.314286 0.314286 0.314286

5 28 0.230159 0.246032 0.246031 0.246032

6 110 0.238095 0.222943 0.220779 0.220779

7 396 0.231352 0.203380 0.200466 0.199301

8 1519 0.236053 0.195183 0.191142 0.188500

9 5720 0.235335 0.188276 0.183793 0.179391

10 21942 0.237524 0.184460 0.179502 0.173375

11 83980 0.238098 0.181290 0.175977 0.168260

12 323554 0.239301 0.179145 0.173508 0.164278

13 1248072 0.240000 0.177368 0.171500 0.160821

14 4829708 0.240784 0.176014 0.169960 0.157882

15 18721080 0.241379 0.174884 0.168684 0.155271

16 72714555 0.241946 0.173965 0.167634 0.152950

17 282861360 0.242424 0.173188 0.166738 0.150844

18 1101992870 0.242860 0.172533 0.165972 0.148926

19 4298748300 0.243243 0.171970 0.165306 0.147158

20 16789046494 0.243590 0.171486 0.164725 0.145521

21 0.143997

22 0.142569

23 0.141228

24 0.139961

25 0.138762

26 0.137625

27 0.136542

28 0.135509

29 0.134521

Figure 3: The number of zerofree even sequences, further the ratio of the num-
bers binomial/regular, headsplitted/regular and graphical/regular sequences

and HT in secundum and in number of operations. The data contain the time
and operations necessary for the generation of the sequences too.

On Erdős-Gallai and Havel-Hakimi algorithms 243

n BT, s BT, operation HT, s HT, operation

1 0 14 0 15
2 0 41 0 43
3 0 180 0 200
4 0 716 0 815
5 0 2 918 0 3 321
6 0 11 918 0 13 675
7 0 48 952 0 56 299
8 0 201 734 0 233 182
9 0 831 374 0 964 121

10 0 3 426 742 0 3 988 542
11 0 14 107 824 0 16 469 036
12 0 58 028 152 0 67 929 342
13 0 238 379 872 0 279 722 127
14 0 978 194 400 1 1 150 355 240
15 2 4 009 507 932 3 4 724 364 716
16 6 16 417 793 698 13 19 379 236 737
17 26 67 160 771 570 51 79 402 358 497
18 106 274 490 902 862 196 324 997 910 595
19 423 1 120 923 466 932 798 1 328 948 863 507
20 1 627 4 573 895 421 484 3 201 5 429 385 115 097

Figure 4: Running time of Binomial-Test (BT) and Headsplitter-Test
(HT) in secundum and as the number of operations for n = 1, . . . , 20

5 New precise algorithms

In this section the zerofree algorithms, the shifting Havel-Hakimi, the parity
checking Havel-Hakimi, the shortened Erdős-Gallai, the jumping Erdős-Gallai,
the linear Erdős-Gallai and the quick Erdős-Gallai algorithms are presented.

5.1 Zerofree algorithms

Since the zeros at the and of the input sequences correspond to isolated ver-
tices, so they have no influence on the quality of the sequence. This observation
is exploited in the following assertion, in which p means the number of the
positive elements of the input sequence.

Corollary 5 If n ≥ 1, the (b1, . . . , bn) n-regular sequence is n-graphical if
and only if (b1, . . . , bp) is p-graphical.

Proof. If all elements of b are positive (that is p = n), then the assertion
is equivalent with Erdős-Gallai theorem. If b contains zero element (that is

244 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

p < n), then the assertion is the consequence of Havel-Hakimi and Erdős-
Gallai algorithms, since the zero elements do not help in the pairing of the
positive elements, but from the other side they have no own requirement. �

The algorithms based on this corollary are called Havel-Hakimi-Zerofree
(HHZ), resp. Erdős-Gallai-Zerofree (EGZ).

5.2 Shifting Havel-Hakimi algorithm

The natural algorithmic equivalent of the original Havel-Hakimi theorem is
called Havel-Hakimi Sorting (HHSo), since it requires the sorting of the
reduced input sequence in every round.

But it is possible to design such implementation, in which the reduction of
the degrees is executed saving the monotonity of the sequence. Then we get
Havel-Hakimi-Shifting (HHSh) algorithm.

For the pseudocode of this algorithms see [37].

5.3 Parity checking Havel-Hakimi algorithm

It is an interesting idea the join the application of the conditions of Erdős-
Gallai and Havel-Hakimi theorems in such a manner, that we start with the
parity checking of the input sequence, and only then use the recursive Havel-
Hakimi method.

For the pseudocode of the algorithm Havel-Hakimi-Parity (HHP) see
[37].

5.4 Shortened Erdős-Gallai algorithm (EGSh)

In the case of a regular sequence the maximal value of Hi is n(n−1), therefore
the inequality (2) certainly holds for i = n, therefore it is unnecessary to check.

Even more useful observation is contained in the following assertion due to
Tripathi and Vijai.

Lemma 6 (Tripathi, Vijay [82]) If n ≥ 1, then an n-regular sequence b =
(b1 . . . , bn) is n-graphical if and only if

Hn even (13)

and

Hi ≤ min(Hi, i(i− 1)) +
n∑

k=i+1

min(i, bk) (i = 1, 2, . . . , r), (14)

On Erdős-Gallai and Havel-Hakimi algorithms 245

where

r = max
1≤s≤n

(s | s(s− 1) < Hs) (15)

Proof. If i(i − 1) ≥ Hi, then the left side of (2) is nonpositive, therefore the
inequality holds, so the checking of the inequality is nonnecessary. �

The algorithm based on this assertion is called Erdős-Gallai-Shortened.
For example if the input sequence is b = (5100), then Erdős-Gallai computes
the right side of (2) 99 times, while Erdős-Gallai-Shortened only 6 times.

5.5 Jumping Erdős-Gallai algorithm

Contracting the repeated elements a regular sequence (b1, . . . , bn) can be writ-
ten in the form (be1i1 , . . . , b

eq
iq
), where bi1 < · · · < biq , e1, . . . , eq ≥ 1 and

e1 + · · ·+ eq = n. Let gj = e1 + · · ·+ ej (j = 1, . . . , q).
The element bi is called the checking points of the sequence b, if i = n or

1 ≤ i ≤ n− 1 és bi > bi+1. Then the checking points are bg1 , . . . , bgq .

Theorem 7 (Tripathi, Vijay [82]) An n-regular sequence b = (b1, . . . , bn) is
n-graphical if and only if

Hn even (16)

and

Hgi − gi(gi − 1) ≤
n∑

k=gi+1

min(i, bk) (i = 1, . . . , q). (17)

Proof. See [82]. �

Later in algorithm Erdős-Gallai-Enumerating we will exploit, that in
the inequality (17) gq is always n, therefore it is enough to check the inequality
only up to i = q− 1.

The next program implements a quick version of Erdős-Gallai algorithm,
exploiting Corollary 5, Lemma 6 and Lemma 7. In this paper we use the
pseudocode style proposed in [17].

Input. n: number of vertices (n ≥ 1);
b = (b1, . . . , bn): an n-even sequence.

Output. L: logical variable (L = False signalizes, that, b is not graphical,
while L = True shows, that b is graphical).

Working variables. i and j: cycle variables;
H = (H0, H1, . . . , Hn): Hi is the sum of the first i elements of b;

246 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

C: the degree capacity of the actual tail;
bn+1: auxiliary variable helping to decide, whether bn is a jumping element.

Erdős-Gallai-Jumping(n, b,H, L)

01 H1 = b1 // lines 01–06: test of parity
02 for i = 2 to n
03 Hi = Hi−1 + bi
04 if Hn odd
05 L = False
06 return L
07 bn+1 = −1 // lines 07–20: test of the request of the head
08 i = 1
09 while i ≤ n and i(i− 1) < Hi
10 while bi == bi+1
11 i = i+ 1
12 C = 0
13 for j = i+ 1 to n
14 C = C+ min(j, bj)
15 if Hi > i(i− 1) + C
16 L = False
17 return L
18 i = i+ 1
19 L = True
20 return L

The running time of EGJ varies between the best Θ(1) and the worst Θ(n2).

5.6 Linear Erdős-Gallai algorithm

Recently we could improve Erdős-Gallai algorithm [35, 37]. The new al-
gorithm Erdős-Gallai-Linear exploits, that b is monotone. It determines
the capacities Ci in constant time. The base of the quick computation is the
sequence w(b) containing the weight points wi of the elements of the input
sequence b.

For given sequence b let w(b) = (w1, . . . , wn−1), where wi gives the index
of bk having the maximal index among such elements of b which are greater
or equal to i.

Theorem 8 (Iványi, Lucz [35], Iványi, Lucz, Móri, Sótér [37]) If n ≥ 1, then

On Erdős-Gallai and Havel-Hakimi algorithms 247

the n-regular sequence (b1, . . . , bn) is n-graphical if and only if

Hn is even (18)

and if i > wi, then
Hi ≤ i(i− 1) +Hn −Hi,

further if i ≤ wi, then

Hi ≤ i(i− 1) + i(wi − i) +Hn −Hwi
.

Proof. (18) is the same as (1).
During the testing of the elements of b by Erdős-Gallai-Linear there

are two cases:

• if i > wi, then the contribution Ci =
∑n
k=i+1 min(i, bk) of the tail of b

equals to Hn−Hi, since the contribution ck of the element bk is only bk.

• if i ≤ w1, then the contribution of the tail of b consists of contributions of
two types: ci+1, . . . , cwi

are equal to i, while cj = bj for j = wi+1, . . . , n.

Therefore in the case n− 1 ≥ i > wi we have

Ci = Hn −Hi, (19)

and in the case 1 ≤ i ≤ wi

Ci = i(wi − i) +Hn −Hwi
. (20)

�

The following program is based on Theorem 8. It decides on arbitrary n-
regular sequence whether it is n-graphical or not.

Input. n: number of vertices (n ≥ 1);
b = (b1, . . . , bn): n-regular sequence.

Output. L: logical variable, whose value is True, if the input is graphical,
and it is False, if the input is not graphical.

Work variables. i and j: cycle variables;
H = (H1, . . . , Hn): Hi is the sum of the first i elements of the tested b;
b0: auxiliary element of the vector b
w = (w1, . . . , wn−1): wi is the weight point of bi, that is the maximum of the
indices of such elements of b, which are not smaller than i;
H0 = 0: help variable to compute the other elements of the sequence H;
b0 = n− 1: help variable to compute the elements of the sequence w.

248 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

Erdős-Gallai-Linear(n, b, L)

01 H0 = 0 // line 01: initialization
02 for i = 1 to n // lines 02–03: computation of the elements of H
03 Hi = Hi−1 + bi
04 if Hn odd // lines 04–06: test of the parity
05 L = False
06 return L
07 b0 = n− 1 // line 07: initialization of a working variable
08 for i = 1 to n // lines 08–12: computation of the weights
09 if bi < bi−1
10 for j = bi−1 downto bi + 1
11 wj = i− 1
12 wbi = i
13 for j = bn downto 1 // lines 13–14: large weights
14 wj = n
15 for i = 1 to n // lines 15–23: test of the elements of b
16 if i ≤ wi // lines 16–19: test of indices for large wi’s
17 if Hi > i(i− 1) + i(wi − i) +Hn −Hwi

18 L = False
19 return L
20 if i > wi // lines 20–23: test of indices for small wi’s
21 if Hi > i(i− 1) +Hn −Hi
22 L = False
23 return L
24 L = True // lines 24–25: the program ends with the value True
25 return L

Theorem 9 (Iványi, Lucz [35], Iványi, Lucz, Móri, Sótér [37]) Algorithm
Erdős-Gallai-Linear decides in Θ(n) time, whether an n-regular sequence
b = (b1, . . . , bn) is graphical or not.

Proof. Line 1 requires O(1) time, lines 2–3 Θ(n) time, lines 4–6 O(1) time,
line 07 O(1) time, lines 08–12 O(1) time, lines 13–14 O(n) time, lines 15–23
O(n) time and lines 24–25 O(1) time, therefore the total time requirement of
the algorithm is Θ(n). �

Since in the case of a graphical sequence all elements of the investigated
sequence are to be tested, in the case of RAM model of computations [17]
Erdős-Gallai-Linear is asymptotically optimal.

On Erdős-Gallai and Havel-Hakimi algorithms 249

6 Running time of the precise testing algorithms

We tested the precise algorithms determining their total running time for all
the even sequences. The set of the even sequences is the smallest such set of
sequences, whose the cardinality we know exact and explicite formula. The
number of n-bounded sequences K(n) is also known, but this function grows
too quickly when n grows.

If we would know the average running time of the bounded sequences we
would take into account that is is sufficient to weight the running times of the
regular sequences with the corresponding frequencies. For example a homoge-
neous sequence consisting of identical elements would get a unit weight since
it corresponds to only one bounded sequence, while a rainbow sequence con-
sisting is n different elements as e.g. the sequence n,n− 1, . . . , 1 corresponds
to n! different bounded sequences and therefore would get a corresponding
weight equal to n!.

We follow two ways of the decreasing of the running time of the precise
algorithms. The first way is the decreasing of the number of the executable
operations. The second way is, that we try to use quick (linear time) prepro-
cessing algorithms for the filtering of the sequences in order to decrease of the
part of sequences requiring the relative slow precise algorithms.

For the first type of decrease of the expected running time is the short-
ening of the sequences and the application of the checking points, while for
the the second type are examples the completion of HH algorithm with the
parity checking or the completion of the EG algorithm with the binomial and
headsplitted algorithms.

In this section we investigate the following precise algorithms:
1) Havel-Hakimi-Shorting (HHSo).
2) Havel-Hakimi-Shifting (HHSh).
3) Erdős-Gallai algorithm (EG).
4) Erdős-Gallai-Jumping algorithm (EGJ).
5) Erdős-Gallai-Linear algorithm (EGL).

Figure 5 contains the total number of operations of the algorithms HHSo,
HHSh, EG, and EGL required for the testing of all even sequences of length
n = 1, . . . , 15. The operations necessary to generate the sequences are included.

Comparison of the first two columns shows that algorithm HHSh is much
quicker than HHSo, especially if n increases. Comparison of the third and
fourth columns shows that we get substantial decrease of the running time
if we have to test the input sequence only in the check points. Finally the
comparison of the third and fifth columns demonstrates the advantages of a

250 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

n HHSo HHSh EG EGJ EGL

1 10 15 87 - -
2 40 61 119 12 37
3 231 236 267 116 148
4 1 170 1 052 946 551 585
5 5 969 4 477 4 000 2 677 2 339
6 31 121 20 153 18 206 12 068 9 539
7 157 345 88 548 82 154 54 184 38 984
8 784 341 393 361 372 363 238 813 160 126
9 3 628 914 1 726 484 1 666 167 1 666 167 656 575

10 17 345 700 7 564 112 7 418 447 4 552 276 2 692 240
11 80 815 538 32 895 244 32 737 155 19 680 986 11 018 710
12 385 546 527 142 460 352 143 621 072 84 608 529 45 049 862
13 1 740 003 588 613 739 913 626 050 861 362 141 061 183 917 288
14 8 066 861 973 2 633 446 908 2 715 026 827 1 543 745 902 750 029 671
15 36 630 285 216 11 254 655 388 11 717 017 238 6 557 902 712 3 055 289 271

Figure 5: Total number of operations as the function of n for precise algorithms
HHSo, HHSh, EG, EGJ, and EGL.

n E(n) T(n), s Op(n) T(n)/E(n)/n, s Op(n)/E(n)/n

2 2 0 37 0 9.25000000000
3 6 0 148 0 8.22222222222
4 19 0 585 0 7.69736842105
5 66 0 2 339 0 7.08787878788
6 236 0 9 539 0 6.73658192090
7 868 0 38 984 0 6.41606319947
8 3 235 0 160 126 0 6.18724884080
9 12 190 0 656 575 0 5.98464132714

10 46 252 0 2 692 240 0 5.82080774885
11 176 484 0 11 018 710 0 5.67587378511
12 676 270 0 45 049 862 0 5.55126675243
13 2 600 612 0 183 917 288 0 5.44005937537
14 10 030 008 1 750 029 671 0.000000007121487 5.34132654018
15 38 781 096 5 3 055 289 271 0.000000008595253 5.25219687963
16 150 273 315 23 12 434 367 770 0.000000009565903 5.17156346504
17 583 407 990 79 50 561 399 261 0.000000007965367 5.09797604337
18 2 268 795 980 297 205 439 740 365 0.00000000727258 5.03056202928

Figure 6: Total and amortized running time of Erdős-Gallai-Linear in
secundum, resp. in the number of executed operations

On Erdős-Gallai and Havel-Hakimi algorithms 251

E(n) −G(n) n/i f1 f2 f3 f4 f5 f6 f7

2 3 2 0 0 0 0 0 0

8 4 6 2 0 0 0 0 0

35 5 33 2 0 0 0 0 0

134 6 122 12 0 0 0 0 0
526 7 459 65 2 2 0 0 0
2022 8 1709 289 24 0 0 0 0
7829 9 6421 1228 176 4 0 0 0
30236 10 24205 4951 1013 67 0 0 0
115136 11 91786 19603 5126 610 11 0 0
454153 12 349502 76414 23755 4274 208 0 0
1764297 13 1336491 296036 104171 25293 2277 29 0

6863156 14 5128246 1142470 439155 133946 18673 666 0

26738476 15 19739076 4404813 1803496 655291 127116 8603 81

Figure 7: Distribution of the even nongraphical sequences according to the
number of tests made by Erdős-Gallai-Jumping to exclude the given se-
quence for n = 3, . . . , 15

linear algorithm over a quadratic one.
Figure 6 shows the running time of Erdős-Gallai-Linear in secundum

and operation, and also the amortized number of operation/even sequence.
The most interesting data of Figure 6 are in the last column: they show

that the number of operations/investigated sequence/length of the investigated
sequence is monotone decreasing (see [69]).

Figure 7 shows the distribution of the E(n) − G(n) even nongraphical se-
quences according to the number of tests made by Erdős-Gallai-Jumping
to exclude the given sequence for n = 3, . . . , 15 vertices. fi(n) = fi gives the
frequency of even nongraphical sequences of length n, which requeired exactly
i round of the test.

These data show, that the maximal number of tests is about n
2 in all lines.

Figure 8 shows the average number of required rounds for the nongraphical,
graphical and all even sequences. The data of the column belonging to G(n)
are computed using Lemma 17. It is remarkable that the sequences of the
coefficients are monotone decreasing in the last three columns.

Figure 9 presents the distribution of the graphical sequences according to
their first element. These data help at the design of the algorithm Erdős-
Gallai-Enumerating which computes the new values of G(n) (in the slicing
of the computations belonging to a given value of n).

252 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

n E(n) G(n) E(n) −G(n) average of average of average of
E(n) −G(n) G(n) E(n)

3 6 4 2 0.3333n 0.8000n 0.6444n

4 19 11 8 0.3125n 0.5714n 0.4661n

5 66 31 35 0.2114n 0.5555n 0.3730n

6 236 102 134 0.1967n 0.5455n 0.3730n

7 868 342 526 0.1649n 0.5385n 0.3475n

8 3233 1213 2020 0.1458n 0.5333n 0.2911n

9 12190 4363 7829 0.1337n 0.5294n 0.2753n

10 46232 16016 30216 0.1249n 0.5263n 0.2700n

11 174484 59348 115136 0.1175n 0.5238n 0.2557n

12 676270 222117 454153 0.1085n 0.5217n 0.2444n

13 2603612 836313 1767299 0.1035n 0.5200n 0.2373n

14 10030008 3166852 6863156 0.0960n 0.5185n 0.2294n

15 38761096 12042620 26718476 0.0934n 0.5172n 0.2251n

Figure 8: Weighted average number of tests made by Erdős-Gallai-Jumping
while investigating the even sequences for n = 3, . . . , 15

n/b1 0 1 2 3 4 5 6 7 8 9 10 11

1 1
2 1 1
3 1 1 2
4 1 1 4 4
5 1 2 7 10 11
6 1 3 10 22 35 31
7 1 3 14 34 78 110 102
8 1 4 18 54 138 267 389 342
9 1 4 23 74 223 503 968 1352 1213
10 1 5 28 104 333 866 1927 3496 4895 4361
11 1 5 34 134 479 1356 3471 7221 12892 17793 16016
12 1 6 40 176 661 2049 5591 13270 27449 47757 65769 59348

Figure 9: The distribution of the graphical sequences according to b1 for n =
1, . . . , 12

We see in Figure 9 that from n = 6 the multiplicities increase up to n − 2,
and the last positive value is smaller then the last but one element.

On Erdős-Gallai and Havel-Hakimi algorithms 253

7 Enumerative results

Until now for example Avis and Fukuda [4], Barnes and Savage [5, 6], Burns
[13], Erdős and Moser [59], Erdős and Richmond [22], Frank, Savage and Sel-
ers [25], Kleitman and Winston [47], Kleitman and Wang [46], Metropolis and
Stein [56], Rødseth et al. [68], Ruskey et al. [69], Stanley [78], Simion [71] and
Winston and Kleitman [86] published results connected with the enumeration
of degree sequences. Results connected with the number of sequences investi-
gated by us can be found in the books of Sloane és Ploffe [76], further Stanley
[79] and in the free online database On-line Encyclopedia of Integer Sequences
[73, 74, 75]

It is easy to show, that if l, u and m are integers, further u ≥ l, m ≥ 1, and
l ≤ bi ≤ u for i = 1, . . . , m, then the number of (l, u,m)-bounded sequences
a = (a1, . . . , am) of integer numbers K(l, u,m) is

K(l, u,m) = (u− l+ 1)m. (21)

It is known (e.g. see [39, page 65]), that if l, u and m are integers, further
u ≥ l and m ≥ 1, and u ≥ b1 ≥ · · · ≥ bn ≥ l, then the number of (l, u,m)-
regular sequences of integer numbers R(l, u,m) is

R(l, u,m) =

(
u− l+m

m

)
. (22)

The following two special cases of (22) are useful in the design of the algo-
rithm Erdős-Gallai-Enumerating.

If n ≥ 1 is an integer, then the number of R(0, n−1, n)-regular sequences is

R(0, n− 1, n) = R(n) =

(
2n− 1

n

)
. (23)

If n ≥ 1 is an integer, then the number of R(1, n−1, n)-regular sequences is

R(1, n− 1, n) = Rz(n) =

(
2n− 2

n

)
. (24)

In 1987 Ascher derived the following explicit formula for the number of
n-even sequences E(n).

Lemma 10 (Ascher [3], Sloane, Pfoffe [76]) If

254 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

Lemma 11 lemma-En n ≥ 1, then the number of n-even sequences E(n) is

E(n) =
1

2

((
2n− 1

n

)
+

(
n− 1

bnc

))
. (25)

Proof. See [3, 76]. �

At the designing and analysis of the results of the simulation experiments
is useful, if we know some features of the functions R(n) and E(n).

Lemma 12 If n ≥ 1, then

R(n+ 2)

R(n+ 1)
>
R(n+ 1)

R(n)
, (26)

lim
n→∞ R(n+ 1)

R(n)
= 4, (27)

further
4n√
4πn

(
1−

1

2n

)
< R(n) <

4n√
4πn

(
1−

1

8n+ 8

)
. (28)

Proof. On the base of (23) we have

R(n+ 2)

R(n+ 1)
=

(2n+ 3)!(n+ 1)n!

(n+ 2)!(n+ 1)!(2n+ 1)!
=
4n+ 6

n+ 2
= 4−

2

n+ 2
, (29)

from where we get directly (26) and (27). �

Using Lemma 13 we can give the precise asymptotic order of growth of E(n).

Lemma 13 If n ≥ 1, then

E(n+ 2)

E(n+ 1)
>
E(n+ 1)

E(n)
, (30)

lim
n→∞ E(n+ 1)

E(n)
= 4, (31)

further
4n√
πn

(1−D3(n)) < E(n) <
4n√
πn

(1−D4(n)), (32)

where D3(n) and D4(n) are monotone decreasing functions tending to zero.

On Erdős-Gallai and Havel-Hakimi algorithms 255

Proof. The proof is similar to the proof of Lemma 12. �

Comparison of (23) and Lemma 13 shows, that the order of growth of num-
bers of even and odd sequences is the same, but there are more even se-
quences than odd. Figure 1 contains the values of R(n), E(n) and E(n)/R(n)
for n = 1, . . . , 37.

As the next assertion and Figure 1 show, the sequence of the ratios E(n)/R(n)
is monotone decreasing and tends to 1

2 .

Corollary 14 If n ≥ 1, then

E(n+ 1)

R(n+ 1)
<
E(n)

R(n)
(33)

and

lim
n→∞ E(n)

R(n)
=
1

2
. (34)

Proof. This assertion is a direct consequence of (23) and (25).
�

The expected value of the number of jumping elements has a substantial in-
fluence on the running time of algorithms using the jumping elements. There-
fore the following two assertions are useful.

The number of different elements in an n-bounded sequence b is called the
rainbow number of the sequence, and it will be denoted by rn(b).

Lemma 15 Let b be a random n-bounded sequence. Then the expectation and
variance of its rainbow number are as follows.

E[rn(b)] = n

[
1−

(
1−

1

n

)n]
= n

(
1−

1

e

)
+O(1), (35)

Var[rn(b)] = n

(
1−

1

n

)n [
1−

(
1−

1

n

)n]
+ n(n− 1)

[(
1−

2

n

)n
−

(
1−

1

n

)2n]

=
n

e

(
1−

2

e

)
+O(1). (36)

Proof. Let ξi denote the indicator of the event that number i is not contained
in a random n-bounded sequence. Then the rainbow number of a random

256 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

sequence is n−
∑n−1
i=0 ξi, hence its expectation equals n−

∑n−1
i=0 E[ξi]. Clearly,

E[ξi] =

(
1−

1

n

)n
(37)

holds independently of i, thus

E[rn(b)] = n

[
1−

(
1−

1

n

)n]
. (38)

On the other hand,

Var[rn(b)] = Var

[
n−1∑
i=0

ξi

]
=

n−1∑
i=0

Var[ξi] + 2
∑

0≤i<j≤n−1
cov[ξi, ξj]. (39)

Here

Var[ξi] =

(
1−

1

n

)n [
1−

(
1−

1

n

)n]
, (40)

and

cov[ξi, ξj] = E[ξiξj] − E[ξi]E[ξj] =

(
1−

2

n

)n
−

(
1−

1

n

)2n
, (41)

implying (36). �

We remark that this lemma answers a question of Imre Kátai [40] posed in
connection with the speed of computers having interleaved memory and with
checking algorithms of some puzzles (e.g sudoku).

Lemma 16 The number of (0, n − 1,m)-regular sequences composed from k

distinct numbers is (
n

k

)(
m− 1

k

)
, k = 1, . . . , n. (42)

In other words, the distribution of the rainbow number rn(b) of a random
(0, n− 1,m)-regular sequence b is hypergeometric with parameters n+m− 1,
n, and m.

Proof. The k-set of distinct elements of the sequence can be selected from
{0, 1, . . . , n − 1} in

(
n
k

)
ways. Having this values selected we can tell their

multiplicities in
(
m−1
k−1

)
ways. Let us consider the k blocks of identical elements.

The first one starts with b1, and the starting position of the other k−1 blocks
can be selected in

(
m−1
k−1

)
ways. �

From this the expectation and the variance of a random n-regular sequence
follow immediately.

On Erdős-Gallai and Havel-Hakimi algorithms 257

Corollary 17 Let b be a random n-regular sequence. Then the expectation
and the variance of its rainbow number rn(b) are as follows:

E[rn(b)] =
n2

2n− 1
=
n

2
+

n

4n− 2
=
n

2
+O(1), (43)

Var[rn(b)] =
n2(n− 1)

2(2n− 1)2
=
n

8
+

n

128n2 − 128n+ 32
=
n

8
+O(1). (44)

Lemma 18 Let b be a random n-regular sequence. Let us write it in the form
b = (be11 , . . . , b

er
r). Then the expected value of the exponents ej is

E[ej | r(b) ≥ j] = 4+ o(1). (45)

Proof. Let c(n, j) denote the number of n-regular sequences with rainbow
number not less than j. By Lemma 16,

c(n, j) =

n∑
k=j

(
n

k

)(
n− 1

k− 1

)
. (46)

Let us turn to the number of n-regular sequences with rainbow number not
less than j and ej = `. This is equal to the number of (0, n−1, n−`+1)-regular
sequences containing at least j different numbers, that is,

n∑
k=j

(
n

k

)(
n− `

k− 1

)
. (47)

From this the sum of ej over all n-regular sequences with ej > 0 is equal to

n−j+1∑
`=1

`

n∑
k=j

(
n

k

)(
n− `

k− 1

)
=

∑
k=j

n

(
n

k

) n−j+1∑
`=1

(
`

1

)(
n− `

k− 1

)

=

n∑
k=j

(
n

k

)(
n+ 1

k+ 1

)
= c(n+ 1, j+ 1). (48)

This can also be seen in a more direct way. Consider an arbitrary n-regular
sequence with at least j+ 1 blocks, then substitute the elements of the j+ 1st
block with the number in the jth block (that is, concatenate this two adjacent
blocks) and delete one element from the united block; finally, decrease by 1
all elements in the subsequent blocks. In this way one obtains an n-regular

258 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

sequence with at least j blocks, and it easy to see that every such sequence is
obtained exactly ej times.

Thus the expectation to be computed is just

c(n+ 1, j+ 1)

c(n, j)
. (49)

Clearly, c(n, 1) = R(0, n− 1, n) =

(
2n− 1

n

)
, hence

c(n, j) =

(
2n− 1

n

)
−

j−1∑
k=1

(
n

k

)(
n− 1

k− 1

)
=

(
2n− 1

n

)
+O

(
n2j−3

)
, (50)

as n→ ∞. This is asymptotically equal to(
2n+ 1

n+ 1

)
(
2n− 1

n

) =
4n+ 2

n+ 1
= 4−

2

n+ 1
= 4+ o(1). (51)

�

It is interesting to observe that by (43) the average block length in a random
n-regular sequence is

1

r

r∑
j=1

ej =
n

r(b)
≈ 2 (52)

approximately, as n → ∞. This fact could be interpreted as if blocks in the
beginning of the sequence were significantly longer. However, fixing rn(b) = r
we find that the lengths of the r blocks are exchangeable random variables with
equal expectation n/r. At first sight this two facts seem to be in contradiction.
The explanation is that exchangability only holds conditionally. Blocks in the
beginning do exist even for smaller rainbow numbers, when the average block
length is big, while blocks with large index can only appear when there are
many short blocks in the sequence.

The following assertion gives the number of zerofree sequences and the ratio
of the numbers of zerofree and regular sequences.

Corollary 19 The number of the zerofree n-regular sequences Rz(n) is

Rz(n) =

(
2n− 2

n− 1

)
(53)

On Erdős-Gallai and Havel-Hakimi algorithms 259

and

lim
n→∞ Rz(n)

R(n)
=
1

2
. (54)

Proof. (53) identical with (22), (54) is a direct consequence of (22) and (23).
�

As the experimental data in Figure 3 show, Ez(n)
R(n) ≈

1
4 .

The following lemma allows that the algorithm Erdős-Gallai-Enumera-
ing tests only the zerofree even sequences instead of the even sequences.

Lemma 20 If n ≥ 2, then the number of the n-graphical sequences G(n) is

G(n) = G(n− 1) +Gz(n). (55)

Proof. If an n-graphical sequence b contains at least one zero, that is bn = 0,
then b ′ = (b1, . . . , bn−1) is (n − 1)-graphical or not. If a = (a1, . . . , an−1) is
an (n− 1)-graphical sequence, then a ′ = (a1, . . . , an−1, 0) is n-graphical.

The set of the n-graphical sequences S consists of two subsets: set of zerofree
sequences S1 and the set of sequences S2 containing at least one zero. There
is a bijection between the set of the (n − 1)-graphical sequences and such n-
graphical sequences, which contain at least one zero. Therefore |S| = |S1|+|S2| =
Gz(n) +G(n− 1). �

Corollary 21 If n ≥ 1, then

G(n) = 1+

n∑
i=2

Gz(n). (56)

Proof. Concrete calculation gives G(1) = 1. Then using (55) and induction
we get (56). �

A promising direction of researches connected with the characterization of
the function G(n) is the decomposition of the even integers into members
and the investigation, which decompositions represent a graphical sequence
[5, 6, 13]. Using this approach Burns proved the following asymptotic bounds
in 2007.

Theorem 22 (Burns [13]) There exist such positive constants c and C, that
the following bounds of the function G(n) is true:

4n

cn
< G(n) <

4n

(logn)C
√
n
. (57)

260 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

Proof. See [13]. �

This result implies that the asymptotic density of the graphical sequences
is zero among the even sequences.

Corollary 23 If n ≥ 1, then there exists a positive constant C such that

G(n)

E(n)
<

1

(log2 n)
C

(58)

and

lim
n→∞ G(n)

E(n)
= 0. (59)

Proof. (58) is a direct consequence of (25) and (58), and (58) implies (59).
�

As Figure 1 and Figure 3 show, the convergence of the ratio G(n)/E(n) is
relative slow.

8 Number of graphical sequences

Erdős-Gallai-Enumerating algorithm (EGE) [37] generates and tests for
given n every zerofree even sequence. Its input is n and output is the number
of corresponding zerofree graphical sequences Gz(n).

The algorithm is based on Erdős-Gallai-Linear algorithm. It generates
and tests only the zerofree even sequences, that is according to Corollary 5
and Figure 3 about the 25 percent of the n-regular sequences.

EGE tests the input sequences only in the checking points. Corollary 17
shows that about the half of the elements of the input sequences are check
points.

Figure 3 contains data showing that EGE investigates even less than the
half of the elements of the input sequences.

Important property of EGE is that it solves in O(1) expected time

1. the generation of one input sequence;

2. the updating of the vector H;

3. the updating of the vector of checking points;

4. the updating of the vector of the weight points.

We implemented the parallel version of EGE (EGEP). It was run on about
200 PC’s containing about 700 cores. The total running time of EGEP is
contained in Figure 10

On Erdős-Gallai and Havel-Hakimi algorithms 261

n running time (in days) number of slices

24 7 415

25 26 415

26 70 435

27 316 435

28 1130 2001

29 6733 15119

Figure 10: The runnng time of EGEP for n = 24, . . . , 29

The pseudocode of the algorithm see in [37]. The amortized running time of
this algorithm for a sequence is Θ(1), so the total running time of the whole
program is O(E(n)).

9 Summary

In Figure 1 the values of R(n) up to n = 24 are the elements of the sequence
A001700 of OEIS [73], the values of E(n) up to n = 23 are the elements of the
sequence A005654 [75] of the OEIS, and in Figure 2 the values G(n) are up to
n = 23 are the elements of sequence A0004251-es [74] of OEIS. The remaining
values are new [37, 36].

Figure 2 contains the number of graphical sequences G(n) for n = 1, . . . , 29,
and also G(n+ 1)/G(n) for n = 1, . . . , 28.

The referenced manuscripts, programs and further simulation results can
be found at the homepage of the authors, among others at http://compalg.
inf.elte.hu/~tony/Kutatas/EGHH/

Acknowledgements

The authors thank Zoltán Király (Eötvös Loránd University, Faculty of Sci-
ence, Dept. of Computer Science) for his advice concerning the weight points,
Antal Sándor and his colleagues (Eötvös Loránd University, Faculty of In-
formatics), further Ádám Mányoki (TFM World Kereskedelmi és Szolgáltató
Kft.) for their help in running of our timeconsuming programs and the un-
known referee for the useful corrections. The European Union and the Eu-
ropean Social Fund have provided financial support to the project under the
grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-0003.

http://compalg.inf.elte.hu/~tony/Kutatas/EGHH/
http://compalg.inf.elte.hu/~tony/Kutatas/EGHH/

262 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

References

[1] M. Anholcer, V. Babiy, S. Bozóki, W. W. Koczkodaj, A simplified imple-
mentation of the least squares solution for pairwise comparisons matrices.
CEJOR Cent. Eur. J. Oper. Res. 19, 4 (2011) 439–444. ⇒231

[2] S. R. Arikati, A. Maheshwari, Realizing degree sequences in parallel.
SIAM J. Discrete Math. 9, 2 (1996) 317–338. ⇒231

[3] M. Ascher, Mu torere: an analysis of a Maori game, Math. Mag. 60, 2
(1987) 90–100. ⇒253, 254

[4] D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Appl. Math.
2, 1-3 (1996) 21–46. ⇒253

[5] T. M. Barnes, C. D. Savage, A recurrence for counting graphical parti-
tions, Electron. J. Combin. 2 (1995), Research Paper 11, 10 pages (elec-
tronic). ⇒253, 259

[6] T. M. Barnes, C. D. Savage, Efficient generation of graphical partitions,
Discrete Appl. Math. 78, 1-3 (1997) 17–26. ⇒230, 253, 259

[7] L. B. Beasley, D. E. Brown, K. B. Reid, Extending partial tournaments,
Math. Comput. Modelling 50, 1 (2009) 287–291. ⇒231

[8] S. Bereg, H. Ito, Transforming graphs with the same degree sequence, The
Kyoto Int. Conf. on Computational Geometry and Graph Theory (ed. by
H. Ito et al.), LNCS 4535, Springer-Verlag, Berlin, Heidelberg, 2008. pp.
25–32. ⇒231

[9] N. Bödei, Degree sequences of graphs (Hungarian), Mathematical mas-
ter thesis (supervisor A. Frank), Dept. of Operation Research of Eötvös
Loránd University, Budapest, 2010, 43 pages. ⇒231, 232, 233

[10] S. Bozóki S., J. Fülöp, A. Poesz, On pairwise comparison matrices that
can be made consistent by the modification of a few elements. CEJOR
Cent. Eur. J. Oper. Res. 19 (2011) 157–175. ⇒231

[11] Bozóki S., J. Fülöp, L. Rónyai: On optimal completion of incomplete
pairwise comparison matrices, Math. Comput. Modelling 52 (2010) 318–
333. ⇒231

http://kbo.ue.poznan.pl/anholcer/
http://www.oplab.sztaki.hu/cv_bs_hu.htm
http://www.cs.laurentian.ca/wkoczkodaj/info.html
http://www.springerlink.com/content/1435-246x/
http://epubs.siam.org/sidma/
http://www.jstor.org/action/showPublication?journalCode=mathmaga&
http://www.ifor.math.ethz.ch/~fukuda/
http://www.sciencedirect.com/science/journal/0012365X
http://www4.ncsu.edu/~savage/
http://www.combinatorics.org/Volume_2/volume2.html#R11
http://www4.ncsu.edu/~savage/
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/article/pii/S0895717709000077
http://www.sciencedirect.com/science/article/pii/S0895717709000077
http://www.cs.elte.hu/~frank/
http://www.oplab.sztaki.hu/cv_bs_hu.htm
http://www.oplab.sztaki.hu/cv_fj_hu.htm
http://portal.uni-corvinus.hu/index.php?id=801
http://www.springerlink.com/content/u5564j3413400n67/fulltext.pdf
http://www.springerlink.com/content/1435-246x/
http://www.oplab.sztaki.hu/cv_bs_hu.htm
http://www.oplab.sztaki.hu/cv_fj_hu.htm
http://www.sztaki.hu/~ronyai/

On Erdős-Gallai and Havel-Hakimi algorithms 263

[12] A. R. Brualdi, K. Kiernan, Landau’s and Rado’s theorems and partial
tournaments, Electron. J. Combin. 16, #N2 (2009) 6 pages. ⇒231

[13] J. M. Burns, The Number of Degree Sequences of Graphs, PhD Disserta-
tion, MIT, 2007. ⇒253, 259, 260

[14] A. N. Busch, G. Chen, M. S. Jacobson, Transitive partitions in realizations
of tournament score sequences, J. Graph Theory 64, 1 (2010), 52–62. ⇒
231

[15] S. A. Choudum, A simple proof of the Erdős-Gallai theorem on graph
sequences, Bull. Austral. Math. Soc. 33 (1986) 67–70. ⇒233

[16] J. Cooper, L. Lu, Graphs with asymptotically invariant degree sequences
under restriction, Internet Mathematics 7, 1 67–80. ⇒231

[17] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, Third edition, The MIT Press/McGraw Hill, Cambridge/New
York, 2009. ⇒245, 248

[18] S. De Agostino, R. Petreschi, Parallel recognition algorithms for graphs
with restricted neighbourhoods. Internat. J. Found. Comput. Sci. 1, 2
(1990) 123–130. ⇒231

[19] C. I. Del Genio, H. Kim, Z. Toroczkai, K. E. Bassler, Efficient and exact
sampling of simple graphs with given arbitrary degree sequence, PLoS
ONE 5, 4 (2010) e10012. ⇒231

[20] A. Dessmark, A. Lingas, O. Garrido, On parallel complexity of maximum
f-matching and the degree sequence problem. Mathematical Foundations
of Computer Science 1994 (Kos̆ice, 1994), LNCS 841, Springer, Berlin,
1994, 316–325. ⇒231

[21] P. Erdős, T. Gallai, Graphs with prescribed degrees of vertices (Hungar-
ian), Mat. Lapok 11 (1960) 264–274. ⇒230, 231, 233

[22] P. Erdős, L. B. Richmond, On graphical partitions, Combinatorica 13, 1
(1993) 57–63. ⇒253

[23] P. L. Erdős, I. Miklós, Z. Toroczkai, A simple Havel-Hakimi type algo-
rithm to realize graphical degree sequences of directed graphs, Electron.
J. Combin. 17, 1 (2010) R66 (10 pages). ⇒231, 233

http://www.math.wisc.edu/~brualdi/
http://www.combinatorics.org/Volume_16/PDF/v16i1n2.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/38882/166267576.pdf?sequence=1
http://web.mit.edu/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118/issues
http://journals.cambridge.org/action/displayJournal?jid=BAZ
http://www.tandfonline.com/toc/uinm20/current
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://www.mhprofessional.com/category/?cat=1012
http://www.worldscinet.com/ijfcs/ijfcs.shtml
http://www.biond.org/user/22
http://icensa.nd.edu/kim.shtml
http://obelix.phys.nd.edu/~toro/
http://phys.uh.edu/people/faculty/index.php?155622-961-5=kbassler
http://www.plosone.org/article/info$%$3Adoi$%$2F10.1371$%$2Fjournal.pone.0010012
http://www.plosone.org/home.action
http://www.plosone.org/home.action
http://www-history.mcs.st-and.ac.uk/Mathematicians/Erdos.html
http://hu.wikipedia.org/wiki/Gallai_Tibor
http://www.renyi.hu/~p_erdos/1961-05.pdf
http://www-history.mcs.st-and.ac.uk/Mathematicians/Erdos.html
http://www.combinatorica.hu/kezdolap.html
http://www.renyi.hu/~elp/
http://www.renyi.hu/~miklosi/
http://obelix.phys.nd.edu/~toro/
http://www.combinatorics.org/Volume_17/PDF/v17i1r66.pdf

264 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

[24] A. Frank, Connections in Combinatorial Optimization, Oxford University
Press, Oxford, 2011. ⇒231

[25] D. A. Frank, C. D. Savage, J. A. Sellers, On the number of graphical
forest partitions, Ars Combin. 65 (2002) 33–37. ⇒253

[26] S. L. Hakimi, On the realizability of a set of integers as degrees of the
vertices of a simple graph. J. SIAM Appl. Math. 10 (1962) 496–506. ⇒
230, 231, 232

[27] S. L. Hakimi, On the degrees of the vertices of a graph, F. Franklin
Institute, 279, 4 (1965) 290–308. ⇒233

[28] V. Havel, A remark on the existence of finite graphs (Czech), C̆asopis
Pĕst. Mat. 80 (1955), 477–480. ⇒230, 232

[29] P. Hell, D. Kirkpatrick, Linear-time certifying algorithms for near-
graphical sequences, Discrete Math. 309, 18 (2009) 5703–5713. ⇒231

[30] A. Iványi, Reconstruction of complete interval tournaments, Acta Univ.
Sapientiae, Inform. 1, 1 (2009) 71–88. ⇒231, 233

[31] A. Iványi, Reconstruction of complete interval tournaments. II, Acta
Univ. Sapientiae, Math. 2, 1 (2010) 47–71. ⇒231, 233

[32] A. Iványi, Deciding the validity of the score sequence of a soccer tour-
nament, in: Open problems of the Egerváry Research Group, ed. by A.
Frank, Budapest, 2011. ⇒231

[33] A. Iványi, Directed graphs with prescribed score sequences, The 7th
Hungarian-Japanese Symposium on Discrete Mathematics and Applica-
tions (Kyoto, May 31–June 3, 2011, ed by S. Iwata), 114–123. ⇒231

[34] A. Iványi, Memory management, in: Algorithms of Informatics (ed by.
A. Iványi), AnTonCom, Budapest, 2011, 797–847. ⇒240

[35] A. Iványi, L. Lucz, Erdős-Gallai test in linear time, Combinatorica (sub-
mitted). ⇒231, 232, 246, 248

[36] A. Iványi, L. Lucz, Parallel Erdős-Gallai algorithm, CEJOR Cent. Eur.
J. Oper. Res. (submitted). ⇒231, 232, 261

http://www.cs.elte.hu/~frank/
http://oup.com/
http://www4.ncsu.edu/~savage/
http://en.wikipedia.org/wiki/S._L._Hakimi
http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.sciencedirect.com/science/journal/0012365X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-math/matematica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://lemon.cs.elte.hu/egres/open/Deciding_the_validity_of_the_score_sequence_of_a_soccer_tournament
http://www.cs.elte.hu/~frank/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.tankonyvtar.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.antoncom.hu/books.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
http://www.springerlink.com/content/1435-246x/

On Erdős-Gallai and Havel-Hakimi algorithms 265

[37] A. Iványi, L. Lucz, T. F. Móri, P. Sótér, Linear Erdős-Gallai test (Hun-
garian), Alk. Mat. Lapok (submitted). ⇒ 231, 232, 235, 244, 246, 248,
260, 261

[38] A. Iványi, S. Pirzada, Comparison based ranking, in: Algorithms of In-
formatics, Vol. 3, ed. A. Iványi, AnTonCom, Budapest 2011, 1209–1258.⇒231

[39] A. Járai, Introduction to Mathematics (Hungarian). ELTE Eötvös Kiadó,
Budapest, 2005. ⇒253

[40] I. Kátai, Personal communication, Budapest, 2010. ⇒256

[41] K. K. Kayibi, M. A. Khan, S. Pirzada, A. Iványi, Random sampling
of minimally cyclic digraphs with given imbalance sequence, Acta Univ.
Sapientiae, Math. (submitted). ⇒231

[42] G. Kéri, On qualitatively consistent, transitive and contradictory judg-
ment matrices emerging from multiattribute decision procedures, CEJOR
Cent. Eur. J. Oper. Res. 19, 2 (2011) 215–224. ⇒231

[43] K. Kern, D. Paulusma, The new FIFA rules are hard: complexity aspects
of sport competitions, Discrete Appl. Math. 108, 3 (2001) 317–323. ⇒
231

[44] K. Kern, D. Paulusma, The computational complexity of the elimination
problem in generalized sports competitions, Discrete Optimization 1, 2
(2004) 205–214. ⇒231

[45] H. Kim, Z. Toroczkai, I. Miklós, P. L. Erdős, l. A. Székely, Degree-based
graph construction, J. Physics: Math. Theor. A 42, 39 (2009) 392–401.⇒231

[46] D. J. Kleitman, D. L. Wang, Algorithms for constructing graphs and
digraphs with given valencies and factors, Discrete Math. 6 (1973) 79–88.⇒253

[47] D. J. Kleitman, K. J. Winston, Forests and score vectors, Combinatorica
1, 1 (1981) 49–54. ⇒253

[48] D. E. Knuth, The Art of Computer Programming. Volume 4A, Combina-
torial Algorithms, Addison–Wesley, Upper Saddle River, 2011. ⇒231

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.dharwadker.org/pirzada/
http://www.tankonyvtar.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.antoncom.hu/books.htm
http://www.math.bme.hu/~ajarai/
http://www.elte.hu/en
http://www.eotvoskiado.hu/
http://compalg.inf.elte.hu/tanszek/katai/oktato.php?oktato=katai
http://www.dharwadker.org/pirzada/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.oplab.sztaki.hu/cv_kg_hu.htm
http://www.springerlink.com/content/1435-246x/19/2/
http://www.journals.elsevier.com/discrete-applied-mathematics/
http://www.journals.elsevier.com/discrete-optimization/
http://obelix.phys.nd.edu/~toro/
http://www.renyi.hu/~miklosi/
http://www.renyi.hu/~elp/
http://www.math.sc.edu/~szekely/
http://www.renyi.hu/~elp/KTEMS-IOP09.pdf
http://www-math.mit.edu/~djk/
http://www.sciencedirect.com/science/journal/0012365X
http://www-math.mit.edu/~djk/
http://www.combinatorica.hu/kezdolap.html
http://www-cs-faculty.stanford.edu/~uno/

266 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

[49] A. Kohnert, Dominance order and graphical partitions, Elec. J. Comb.
11, 1 (2004) No. 4. 17 pp. ⇒230

[50] M. D. LaMar, Algorithms for realizing degree sequences of directed
graphs. arXiv-0906:0343ve [math.CO], 7 June 2010. ⇒231

[51] H. G. Landau, On dominance relations and the structure of animal so-
cieties. III. The condition for a score sequence, Bull. Math. Biophys. 15
(1953) 143–148. ⇒231

[52] F. Liljeros, C. R. Edling, L. Amaral, H. Stanley, Y. Áberg, The web of
human sexual contacts, Nature 411, 6840 (2001) 907–908. ⇒231

[53] L. Lovász, Combinatorial Problems and Exercises (corrected version of
the second edition), AMS Chelsea Publishing, Boston, 2007. ⇒232

[54] L. Lucz, A. Iványi, P. Sótér, S. Pirzada, Testing and enumeration of foot-
ball sequences, Abstracts of MaCS 2012, ed. by Z. Csörnyei (Siófok, Febru-
ary 9–12, 2012). ⇒231

[55] D. Meierling, L. Volkmann, A remark on degree sequences of multigraphs,
Math. Methods Oper. Res. 69, 2 (2009) 369–374. ⇒231

[56] N. Metropolis, P. R. Stein, The enumeration of graphical partitions, Eu-
ropean J. Comb. 1, 2 (1980) 139–153. ⇒253

[57] I. Miklós, Graphs with prescribed degree sequences (Hungarian), Lecture
in Alfréd Rényi Institute of Mathematics, 16 November 2009. ⇒231

[58] I. Miklós, P. L. Erdős, L. Soukup, A remark on degree sequences of multi-
graphs (submitted). ⇒231

[59] J. W. Moon, Topics on Tournaments, Holt, Rinehart, and Winston, New
York, 1968. ⇒253

[60] T. V. Narayana, D. H. Bent, Computation of the number of score se-
quences in round-robin tournaments, Canad. Math. Bull. 7, 1 (1964)
133–136. ⇒231

[61] M. E. J. Newman, A. L. Barabási, The Structure and Dynamics of Net-
works, Princeton University Press, Princeton, NJ. 2006. ⇒231

[62] G. Pécsy, L. Szűcs, Parallel verification and enumeration of tournaments,
Stud. Univ. Babeş-Bolyai , Inform. 45, 2 (2000) 11–26. ⇒231

http://arxiv.org/abs/0906.0343
http://www.springerlink.com/content/765042v152l07721/
http://www.springerlink.com/content/765042v152l07721/
http://www.springerlink.com/content/765042v152l07721/
http://people.su.se/~liljeros/
http://www.cs.elte.hu/~lovasz/
http://www.ams.org/bookstore/chelsealist
http://people.inf.elte.hu/lulsaai
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/sopsaai
http://www.dharwadker.org/pirzada/
http://people.inf.elte.hu/csz/
http://www.math2.rwth-aachen.de/meierling
http://www.math2.rwth-aachen.de/de/mitarbeiter/volkm
http://www.springerlink.com/content/102510/
http://scienceworld.wolfram.com/biography/Metropolis.html
http://www.sciencedirect.com/science/journal/01956698
http://www.sciencedirect.com/science/journal/01956698
http://www.renyi.hu/~miklosi/
http://www.renyi.hu/~miklosi/Fiatal2009/Miklos.pdf
http://www.renyi.hu/
http://www.renyi.hu/~miklosi/
http://www.renyi.hu/~elp/
http://www.renyi.hu/~soukup/
http://www.harcourt.com/bu_info/hrw.html
http://cms.math.ca/10.4153/CMB-1964-015-1
http://cms.math.ca/cmb/
http://www-personal.umich.edu/~mejn/
http://www.nd.edu/~alb/
http://www.cs.ubbcluj.ro/~studia-i/2000-2/2-Pecsy.pdf
http://www.cs.ubbcluj.ro/~studia-i/contents.php

On Erdős-Gallai and Havel-Hakimi algorithms 267

[63] S. Pirzada, Graph Theory, Orient Blackswan (to appear). ⇒231

[64] S. Pirzada, A. Iványi, Imbalances in digraphs, Abstracts of MaCS 2012,
ed. by Z. Csörnyei (Siófok, February 9–12, 2012). ⇒231

[65] S. Pirzada, A. Iványi, M. A. Khan, Score sets and kings, in: Algorithms
of Informatics, Vol. 3, ed. by A. Iványi. AnTonCom, Budapest 2011,
1410–1450. ⇒231

[66] S. Pirzada, T. A. Naikoo, U. T. Samee, A. Iványi, Imbalances in directed
multigraphs, Acta Univ. Sapientiae, Inform. 2, 1 (2010) 47–71. ⇒231

[67] S. Pirzada, G. Zhou, A. Iványi, On k-hypertournament losing scores, Acta
Univ. Sapientiae, Inform. 2, 2 (2010) 184–193. ⇒231

[68] Ø J. Rødseth, J. A. Sellers, H. Tverberg, Enumeration of the degree
sequences of non-separable graphs and connected graphs, European J.
Comb. 30, 5 (2009) 1309–1319. ⇒231, 253

[69] F. Ruskey, R. Cohen, P. Eades, A. Scott, Alley CAT’s in search of good
homes, Congr. Numer. 102 (1994) 97–110. ⇒230, 251, 253

[70] G. Sierksma, H. Hoogeveen, Seven criteria for integer sequences being
graphic, J. Graph Theory 15, 2 (1991) 223–231. ⇒233

[71] R. Simion, Convex polytopes and enumeration, Advances in Applied
Math. 18, 2 (1996) 149–180. ⇒253

[72] N. J. A. Sloane (Ed.), Encyclopedia of Integer Sequences, 2011. ⇒231

[73] N. J. A. Sloane, The number of ways to put n+ 1 indistinguishable balls
into n + 1 distinguishable boxes, in: The On-line Encyclopedia of the
Integer Sequences (ed. by N. J. A. Sloane), 2011. ⇒253, 261

[74] N. J. A. Sloane, The number of degree-vectors for simple graphs, in: The
On-line Encyclopedia of the Integer Sequences (ed. by N. J. A. Sloane),
2011. ⇒230, 253, 261

[75] N. J. A. Sloane, The number of bracelets with n red, 1 pink and n − 1
blue beads, in: The On-line Encyclopedia of the Integer Sequences (ed. by
N. J. A. Sloane), 2011. ⇒253, 261

[76] N. J. A. Sloane, S. Plouffe, The Encyclopedia of Integer Sequences, Aca-
demic Press, Waltham, MA, 1995. ⇒253, 254

http://www.dharwadker.org/pirzada/
http://www.orientlongman.com/
http://www.dharwadker.org/pirzada/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://macs.elte.hu/?category=abs&submenu=receivedabs
http://people.inf.elte.hu/csz/
http://www.dharwadker.org/pirzada/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://faculty.kfupm.edu.sa/PYP/malikhan/
http://www.tankonyvtar.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.antoncom.hu/books.htm
http://www.dharwadker.org/pirzada/
http://compalg.inf.elte.hu/~tony
http://www.acta.sapientia.ro
http://www.dharwadker.org/pirzada/
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro
http://www.sciencedirect.com/science/journal/01956698
http://webhome.cs.uvic.ca/~ruskey/
http://www.rug.nl/staff/g.sierksma/index
http://www.cs.uu.nl/staff/slam.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118/issues
http://www2.research.att.com/~njas/
http://oeis.org/Seis.html
http://www2.research.att.com/~njas/
http://oeis.org/A001700
http://www2.research.att.com/~njas/
http://oeis.org/A004251
http://www2.research.att.com/~njas/
http://oeis.org/A005654
http://www2.research.att.com/~njas/

268 A. Iványi, L. Lucz, T. F. Móri, P. Sótér

[77] D. Soroker, Optimal parallel construction of prescribed tournaments, Dis-
crete Appl. Math. 29, 1 (1990) 113–125. ⇒231

[78] R. P. Stanley, A zonotope associated with graphical degree sequence,
in: Applied geometry and discrete mathematics, Festschr. 65th Birthday
Victor Klee. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. 4 (1991) 555-570. ⇒253

[79] R. P. Stanley, Enumerative Combinatorics, Cambridge University Press,
Cambridge, 1997. ⇒253

[80] J. Temesi, Pairwise comparison matrices and the error-free property of the
decision maker, CEJOR Cent. Eur. J. Oper. Res. 19, 2 (2011) 239–249.⇒231

[81] A. Tripathi, H. Tyagi, A simple criterion on degree sequences of graphs,
Discrete Appl. Math. 156, 18 (2008) 3513–3517. ⇒231

[82] A. Tripathi, S. Vijay, A note on a theorem of Erdős & Gallai, Discrete
Math. 265, 1-3 (2003) 417–420. ⇒244, 245

[83] A. Tripathi, S. Venugopalanb, D. B. West, A short constructive proof of
the Erdös-Gallai characterization of graphic lists, Discrete Math. 310, 4
(2010) 833–834. ⇒230, 231, 233, 235

[84] E. W. Weisstein, Degree Sequence, From MathWorld—Wolfram Web Re-
source, 2011. ⇒231

[85] E. W. Weisstein, Graphic Sequence, From MathWorld—Wolfram Web
Resource, 2011. ⇒231

[86] K. J. Winston, D. J. Kleitman, On the asymptotic number of tournament
score sequences, J. Combin. Theory Ser. A. 35 (1983) 208–230. ⇒253

Received: September 30, 2011 • Revised: November 10, 2011

http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://www-math.mit.edu/~rstan/
http://www-math.mit.edu/~rstan/
http://www.cambridge.org/home/home/item5655304/?site_locale=hu_HU
http://www.springerlink.com/content/1435-246x/19/2/
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.sciencedirect.com/science/journal/0166218X
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.math.illinois.edu/~sujith/
http://www.sciencedirect.com/science/journal/0012365X
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.math.uiuc.edu/~west/
http://www.sciencedirect.com/science/journal/0012365X
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/DegreeSequence.html
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/GraphicSequence.html
http://www-math.mit.edu/~djk/
http://www.sciencedirect.com/science/journal/00973165

Contents

Volume 3, 2011

G. Lischke
Primitive words and roots of words . 5

V. Popov
Arc-preserving subsequences of arc-annotated sequences 35

B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr
ComDeValCo framework: designing software components and
systems using MDD, executable models, and TDD 48

L. Domoszlai, E. Bruël, J. M. Jansen
Implementing a non-strict purely functional language in
JavaScript . 76

A. Iványi, I. Kátai
Testing of random matrices . 99

Z. Kása
On scattered subword complexity . 127

N. Pataki
C++ Standard Template Library by template specialized
containers . 141

G. Farkas, G. Kallós, G. Kiss
Large primes in generalized Pascal triangles 158

T. Herendi, R. Major
Modular exponentiation of matrices on FPGA-s 172

269

C. Pătcaş
The debts’ clearing problem: a new approach 192

A. Járai, E. Vatai
Cache optimized linear sieve . 205

D. Pálvölgyi
Lower bounds for finding the maximum and minimum
elements with k lies . 224

A. Iványi, L. Lucz, T. F. Móri, P. Sótér
On Erdős-Gallai and Havel-Hakimi algorithms 230

270

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
Antal BEGE

abege@ms.sapientia.ro

Main Editorial Board

Zoltán A. BIRÓ Zoltán KÁSA András KELEMEN
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica

Executive Editor
Zoltán KÁSA (Sapientia University, Romania)

kasa@ms.sapientia.ro

Editorial Board
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Ladislav SAMUELIS (Technical University of Košice, Slovakia)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is needed too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Gloria Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

	info32-00
	info32-01
	info32-1
	1 Introduction
	2 Generation of warnings
	3 The weirdest vector
	4 Containers of auto pointers
	5 Believe-me marks
	6 Deprecated classes
	7 Conclusions

	info32-2
	1 Generalized Pascal triangles using the powers of base numbers
	2 Divisibility of elements and prime numbers
	3 Atkin's primality test
	4 Magma Computer Algebra System
	4.1 Primality tests in Magma
	4.2 The implementation of ECPP algorithm
	4.2.1 Modifications

	4.3 The proof

	info32-3
	1 Introduction
	2 Mathematical background
	3 Hardware used in the implementation
	4 Structure of modules used in the computation
	5 Experimental determination of parameters
	6 Computation of large matrices
	7 Future work

	info32-4
	1 Introduction
	2 The debts' clearing problem in dynamic graphs
	3 A data structure for solving dynamic debts' clearing
	3.1 InsertNode
	3.2 InsertArc
	3.3 Query
	3.4 RemoveNode
	3.5 RemoveArc
	3.6 Implementation details

	4 A new algorithm for the static problem
	5 Practical behavior
	6 Conclusions

	info32-5
	1 Introduction
	1.1 Sieve of Eratosthenes
	1.2 Basic ideas about implementation
	1.2.1 Input and output

	1.3 Sieve table and segments
	1.4 Initialization phase

	2 Addressing memory locality
	2.1 Medium primes
	2.2 Large primes
	2.3 Circles and buckets
	2.4 Modus operandi
	2.5 Implementation
	2.5.1 Array of circles
	2.5.2 Array of buckets
	2.5.3 Array of primes
	2.5.4 Broken bucket

	3 Speeding up the algorithm
	3.1 Small primes
	3.2 Medium primes
	3.2.1 Wheel sieve
	3.2.2 Branch misses

	3.3 Large primes
	3.3.1 Interleaved processing
	3.3.2 Broken bucket and loop unrolling

	4 Results
	5 Future work

	info32-6
	1 Introduction
	2 k more questions
	3 Proof of Theorem 1

	info32-7
	1 Introduction
	2 Classical precise algorithms
	2.1 Havel-Hakimi algorithm
	2.2 Erdos-Gallai algorithm

	3 Testing algorithms
	3.1 Parity test
	3.2 Binomial test
	3.3 Splitting of the head
	3.4 Composite test

	4 Properties of the approximate testing algorithms
	5 New precise algorithms
	5.1 Zerofree algorithms
	5.2 Shifting Havel-Hakimi algorithm
	5.3 Parity checking Havel-Hakimi algorithm
	5.4 Shortened Erdos-Gallai algorithm (EGSh)
	5.5 Jumping Erdos-Gallai algorithm
	5.6 Linear Erdos-Gallai algorithm

	6 Running time of the precise testing algorithms
	7 Enumerative results
	8 Number of graphical sequences
	9 Summary

	info32-8

