
Acta Universitatis Sapientiae

Informatica
Volume 3, Number 1, 2011

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

G. Lischke
Primitive words and roots of words . 5

V. Popov
Arc-preserving subsequences of arc-annotated sequences 35

B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr
ComDeValCo framework: designing software components and
systems using MDD, executable models, and TDD 48

L. Domoszlai, E. Bruël, J. M. Jansen
Implementing a non-strict purely functional language in
JavaScript . 76

A. Iványi, I. Kátai
Testing of random matrices . 99

Z. Kása
On scattered subword complexity . 127

3

Acta Univ. Sapientiae, Informatica, 3, 1 (2011) 5–34

Primitive words and roots of words

Gerhard LISCHKE
Fakultät für Mathematik und Informatik

Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 1-4, D-07743 Jena, Germany

email: gerhard.lischke@uni-jena.de

Abstract. In the algebraic theory of codes and formal languages, the set
Q of all primitive words over some alphabet Σ has received special inter-
est. With this survey article we give an overview about relevant research
to this topic during the last twenty years including own investigations and
some new results. In Section 1 after recalling the most important notions
from formal language theory we illustrate the connection between coding
theory and primitive words by some facts. We define primitive words as
words having only a trivial representation as the power of another word.
Nonprimitive words (without the empty word) are exactly the periodic
words. Every nonempty word is a power of an uniquely determined prim-
itive word which is called the root of the former one. The set of all roots
of nonempty words of a language is called the root of the language. The
primitive words have interesting combinatorial properties which we con-
sider in Section 2. In Section 3 we investigate the relationship between
the set Q of all primitive words over some fixed alphabet and the lan-
guage classes of the Chomsky Hierarchy and the contextual languages
over the same alphabet. The computational complexity of the set Q and
of the roots of languages are considered in Section 4. The set of all pow-
ers of the same degree of all words from a language is the power of this
language. We examine the powers of languages for different sets of ex-
ponents, and especially their regularity and context-freeness, in Section
5, and the decidability of appropriate questions in Section 6. Section 7
is dedicated to several generalizations of the notions of periodicity and
primitivity of words.

Computing Classification System 1998: F.4.3
Mathematics Subject Classification 2010: 03-2, 68-02, 68Q45, 68R15, 03D15
Key words and phrases: primitivity of words, periodicity of words, roots of words and
languages, powers of languages, combinatorics on words, Chomsky hierarchy, contextual
languages, computational complexity, decidability

5

http://theinf2.informatik.uni-jena.de/People/Gerhard+Lischke.html
http://www.fmi.uni-jena.de/Fakultat.html
http://www.uni-jena.de/
mailto:gerhard.lischke@uni-jena.de

6 G. Lischke

1 Preliminaries

1.1 Words and languages

First, we repeat the most important notions which we will use in our paper.
Σ should be a fixed alphabet, which means, it is a finite and nonempty

set of symbols. Mostly, we assume that it is a nontrivial alphabet, which
means that it has at least two symbols which we will denote by a and b,
a 6= b. IN = {0, 1, 2, 3, . . .} denotes the set of all natural numbers. Σ∗ is the free
monoid generated by Σ or the set of all words over Σ. The number of letters
of a word p, with their multiplicities, is the length of the word p, denoted by
|p|. If |p| = n and n = 0, then p is the empty word, denoted by ε (in other
papers also by e or λ). The set of words of length n over Σ is denoted by Σn.
Then Σ∗ =

⋃
n∈IN

Σn and Σ0 = {ε}. For the set of nonempty words over Σ we

will use the notation Σ+ = Σ∗ \ {ε}.
The concatenation of two words p = x1x2 · · · xm and q = y1y2 · · ·yn,

xi, yj ∈ Σ, is the word pq = x1x2 · · · xmy1y2 · · ·yn. We have |pq| = |p| + |q|.
The powers of a word p ∈ Σ∗ are defined inductively: p0 = ε, and pn = pn−1p

for n ≥ 1. p∗ denotes the set {pn : n ∈ IN}, and p+ = p∗ \ {ε}.
For p ∈ Σ∗ and 1 ≤ i ≤ |p|, p[i] is the letter at the i-th position of p.

Then p = p[1]p[2] · · ·p[|p|].
For words p, q ∈ Σ∗, p is a prefix of q, in symbols p v q, if there exists

r ∈ Σ∗ such that q = pr. p is a strict prefix of q, in symbols p < q, if p v q
and p 6= q. Pr(q) =Df {p : p < q} is the set of all strict prefixes of q
(including ε if q 6= ε).
p is a suffix of q, if there exists r ∈ Σ∗ such that q = rp.

For an arbitrary set M, |M| denotes the cardinality of M, and P(M) denotes
the set of all subsets of M.

A language over Σ or a formal language over Σ is a subset L of Σ∗.
{L : L ⊆ Σ∗} = P(Σ∗) is the set of all languages over Σ. If L is a nonempty
strict subset of Σ∗, L ⊂ Σ∗, then we call it a nontrivial language.

For languages L1, L2, and L we define:
L1 · L2 = L1L2 =Df {pq : p ∈ L1 ∧ q ∈ L2},
L0 =Df {ε}, and Ln =Df L

n−1 · L for n ≥ 1.
If one of L1, L2 is a one-element set {p}, then, usually, in L1L2 we write p
instead of {p}.

Languages can be classified in several ways, for instance according to the
Chomsky hierarchy, which we will assume the reader to be familiar with (other-
wise, see, for instance, in [8, 9, 23]). These are the classes of regular, context-

Primitive words and roots of words 7

free, context-sensitive, and enumerable languages, respectively. Later on we
will also consider linear languages and contextual languages and define them
in Section 3.

1.2 Periodic words, primitive words, and codes

Two of the fundamental problems of the investigations of words and languages
are the questions how a word can be decomposed and whether words are
powers of a common word. These occur for instance in coding theory and
in the longest repeating segment problem which is one of the most important
problems of sequence comparing in molecular biology. The study of primitivity
of sequences is often the first step towards the understanding of sequences.

We will give two definitions of periodic words and primitive words, respec-
tively, and show some connections to coding theory.

Definition 1 A word u ∈ Σ+ is said to be periodic if there exists a word
v ∈ Σ∗ and a natural number n ≥ 2 such that u = vn. If u ∈ Σ+ is not
periodic, then it is called a primitive word over Σ.

Obviously, this definition is equivalent to the following.

Definition 1 ′ A word u ∈ Σ+ is said to be primitive if it is not a power of
another word, that is, u = vn with v ∈ Σ∗ implies n = 1 and v = u. If u ∈ Σ+

is not primitive, then it is called a periodic word over Σ.

Definition 2 The set of all periodic words over Σ is denoted by Per(Σ), the
set of all primitive words over Σ is denoted by Q(Σ).

Obviously, Q(Σ) = Σ+ \ Per(Σ).
In the sequel, if Σ is understood, and for simplicity, instead of Per(Σ) and

Q(Σ) we will write Per and Q, respectively.
Now we cite some fundamental definitions from coding theory.

Definition 3 A nonempty set C ⊆ Σ∗ is called a code if every equation
u1u2 · · ·um = v1v2 · · · vn with ui, vj ∈ C for all i and j implies n = m and
ui = vi for all i.
A nonempty set C ⊆ Σ∗ is called an n-code for n ∈ IN, if every nonempty
subset of C with at most n elements is a code. A nonempty set C ⊆ Σ+ is
called an intercode if there is some m ≥ 1 such that Cm+1 ∩ Σ+CmΣ+ = ∅.

Connections to primitive words are stated by the following theorems.

8 G. Lischke

Theorem 4 If C ⊆ Σ+ and for all p, q ∈ C with p 6= q holds that pq ∈ Q,
then C is a 2-code.

The proof will be given in Section 2.

Theorem 5 If C is an intercode, then C ⊆ Q.

Proof. Assume that C 6⊆ Q is an intercode and Cm+1 ∩Σ+CmΣ+ = ∅ for some
m ≥ 1. Then we have a periodic word u in C which means u = vn ∈ C for some
v ∈ Σ+ and n ≥ 2. Then um+1 = vn(m+1) = v(vnm)vn−1 ∈ Cm+1 ∩ Σ+CmΣ+,
which is a contradiction. �

1.3 Roots of words and languages

Every nonempty word p ∈ Σ+ is either the power of a shorter word q (if it is
periodic) or it is not a power of another word (if it is primitive). The shortest
word q with this property (in the first case) resp. p itself (in the second case)
is called the root of p.

Definition 6 The root of a word p ∈ Σ+ is the unique primitive word q
such that p = qn for some also unique natural number n. It is denoted by

√
p

or root(p). The number n in this equation is called the degree of p, denoted
by deg(p). For a language L,

√
L =Df {

√
p : p ∈ L∧ p 6= ε} is the root of L,

deg(L) =Df {deg(p) : p ∈ L∧ p 6= ε} is the degree of L.

Remark. The uniqueness of root and degree is obvious, a formal proof will
be given in Section 2.

Corollary 7 p =
√
pdeg(p) for each word p 6= ε;

√
L ⊆ Q for each language

L;
√
Σ∗ = Q;

√
L = L if and only if L ⊆ Q.

2 Primitivity and combinatorics on words

Combinatorics on words is a fundamental part of the theory of words and lan-
guages. It is profoundly connected to numerous different fields of mathematics
and its applications and it emphasizes the algorithmic nature of problems
on words. Its objects are elements from a finitely generated free monoid and
therefore combinatorics on words is a part of noncommutative discrete math-
ematics. For its comprehensive results and its influence to coding theory and

Primitive words and roots of words 9

p x

x p

q

q

Figure 1: To the proof of Theorem 8

primitive words we refer to the textbooks of Yu [28], Shyr [24], Lothaire [19],
and to Chapter 6 in [23]. Here we summarize some results from this theory
which are important for studying primitive words or which will be used later.

The following theorem was first proved for elements of a free monoid.

Theorem 8 (Lyndon and Schützenberger [20]). If pq = qp for nonempty
words p and q, then p and q are powers of a common word and therefore pq
is not primitive.

Proof. We prove the theorem by induction on the length of pq, which is at
least 2. For |pq| = 2 and pq = qp, p, q 6= ε, we must have p = q = a for some
a ∈ Σ, and the conclusion is true. Now suppose the theorem is true for all pq
with |pq| ≤ n for a fixed n ≥ 2. Let |pq| = n + 1, pq = qp, p, q 6= ε, and,
without loss of generality, |p| ≤ |q|. We have a situation as in Figure 1. There
must exist x ∈ Σ∗ such that q = px = xp.

Case 1) x = ε. Then p = q, and the conclusion is true.
Case 2) x 6= ε. Since |px| ≤ n, by induction hypothesis p and x are powers

of a common word. Then also q is a power of this common word.
The theorem follows from induction. �

Corollary 9 w /∈ Q if and only if there exist p, q ∈ Σ+ such that
w = pq = qp.

Theorem 10 (Shyr and Thierrin [25]) For words p, q ∈ Σ∗, the two-element
set {p, q} is a code if and only if pq 6= qp.

Proof. First note, that both statements in the theorem imply, that p, q 6= ε

and p 6= q. It is trivial that for a code {p, q}, pq 6= qp must hold. Now we
show, that no set {p, q} with pq 6= qp can exist which is not a code. Assume
the opposite. Then

10 G. Lischke

M =Df {{p, q} : p, q ∈ Σ∗ ∧ pq 6= qp ∧ {p, q} is not a code} 6= ∅.
Let {p, q} ∈ M where |pq| is minimal, and let w be a word with minimal
length having two different representations over {p, q}. Then |w| > 2 and one
of the following must be true:
either (a) w = pup = qu ′q or (b) w = pvq = qv ′p for some u, u ′, v, v ′ ∈
{p, q}∗. Because of p 6= q, p < q or q < p must follow. Let us assume that
p < q. For the case q < p the proof can be carried out symmetrically. Then
from both (a) and (b) it follows that q = pr = sp for some r, s ∈ Σ+. We
have |r| = |s| 6= |p| (because otherwise r = s = p and q = pp), |pr| < |pq|,
and pr 6= rp (because otherwise r = s and pq = psp = prp = qp). With
q = pr follows either (a’) pup = pru ′pr from (a), or (b’) pvpr = prv ′p from
(b). Because of |pr| < |pq|, the choice of {p, q} having minimal length, and the
definition of M, it must follow that {p, r} is a code. But then from both (a’)
and (b’) follows p = r, which is a contradiction. Hence M must be empty. �

From the last two theorems we get the following corollary which for its part
proves Theorem 4.

Corollary 11 If pq ∈ Q for words p, q 6= ε, then {p, q} is a code.

Note, that the reversal of this corollary is not true. For example, {aba, b} is
a code, but abab /∈ Q.

A weaker variant of the next theorem has been proved also by Lyndon
and Schützenberger [20] for elements of a free monoid. Our proof follows that
presented by Lothaire [19].

Theorem 12 (Fine and Wilf [7]) Let p and q be nonempty words, |p| = n,
|q| = m, and d = gcd(n,m) be the greatest common divisor of n and m. If pi

and qj for some i, j ∈ IN have a common prefix u of length n+m− d, then p
and q are powers of a common word of length d and therefore

√
p =
√
q.

Proof. Assume that the premises of the theorem are fulfilled and, without
loss of generality, 1 ≤ n ≤ m − 1 (otherwise n = m = d and p = q = u). We
first assume d = 1 and show, that p and q are powers of a common letter.
Because of u v pi and |u| = m− 1+ n we have
(1) u[x] = u[x+ n] for 1 ≤ x ≤ m− 1.
Because of u v qj we have
(2) u[y] = u[y+m] for 1 ≤ y ≤ n− 1.
Because of (1) and 1 ≤ m− n ≤ m− 1 we have
(3) u[m] = u[m− n].

Primitive words and roots of words 11

Let now 1 ≤ x ≤ y ≤ m − 1 with y − x ≡ n mod m. Then we have two
cases.

Case a). y = x+ n ≤ m− 1, and therefore u[x] = u[y] by (1).
Case b). y = x + n −m. Since x ≤ m − 1 we have x + n −m ≤ n − 1 and

u[y] = u[x+ n−m] = u[x+ n] = u[x] by (2) and (1).
Hence u[x] = u[y] whenever 1 ≤ x ≤ y ≤ m − 1 and y − x ≡ n mod m. It

follows by (1) that u[x] = u[y] whenever 1 ≤ x ≤ y ≤ m− 1 and
y − x ≡ k · n mod m for some k ∈ IN. Because of gcd(n,m) = 1, the latter
is true if y− x is any value of {1, 2, . . . ,m− 1}. This means, under inclusion of
(3), u[1] = u[2] = · · · = u[m], and p and q are powers of the letter u[1].

If d > 1, we argue in exactly the same way assuming Σd instead of Σ as the
alphabet. �

If we assume, pi = qj for primitive words p and q and i, j ∈ IN\ {0}, then by
Theorem 12, p and q are powers of a common word which can only be p = q

itself because of its primitivity. This means the uniqueness of the root of a
word which also implies the uniqueness of its degree.

Using Theorem 12 we can easily prove the next theorem.

Theorem 13 (Borwein) If w /∈ Q and wa /∈ Q, where w ∈ Σ+ and a ∈ Σ,
then w ∈ a+.

The next theorem belongs to the most frequently referred properties con-
cerning primitive words.

Theorem 14 (Shyr and Thierrin [26]) If u1u2 6= ε and u1u2 = pi for some
p ∈ Q, then u2u1 = qi for some q ∈ Q. This means, if u = u1u2 6= ε and
u ′ = u2u1, then deg(u) = deg(u ′), |

√
u| = |

√
u ′|, and therefore u primitive if

and only if u ′ primitive.

Proof. Let u1u2 = pi 6= ε and p ∈ Q. We consider two cases.
Case 1). i = 1, which means, u1u2 is primitive. Assume that u2u1 is not

primitive and therefore u2u1 = qj for some q ∈ Q and j ≥ 2. Then q = q1q2 6=
ε such that u2 = (q1q2)

nq1, u1 = q2(q1q2)
m, and j = n +m + 1. It follows

that u1u2 = (q2q1)
m+n+1 = (q2q1)

j is not primitive. By this contradiction,
u2u1 = q1 is primitive.

Case 2). i ≥ 2. Then p = p1p2 6= ε such that u1 = (p1p2)
np1, u2 =

p2(p1p2)
m, and i = n +m + 1. Since p = p1p2 is primitive, by Case 1 also

q =Df p2p1 is primitive, and u2u1 = (p2p1)
m+n+1 = qi. �

The proof of the following theorem, which was first done by Lyndon and
Schützenberger [20] for a free group, is rather difficult and therefore omitted
here.

12 G. Lischke

Theorem 15 If umvn = wk 6= ε for words u, v,w ∈ Σ∗ and natural numbers
m,n, k ≥ 2, then u,v and w are powers of a common word.
We say, that the equation umvn = wk, where m,n, k ≥ 2 has only trivial
solutions.

The next two theorems are consequences of Theorem 15.

Theorem 16 If p, q ∈ Q with p 6= q, then piqj ∈ Q for all i, j ≥ 2.

This theorem is not true if i = 1 or j = 1. For instance, let p = aba, q = baab,
i = 2, j = 1.

Theorem 17 If p, q ∈ Q with p 6= q and i ≥ 1, then there are at most two
periodic words in each of the languages piq∗ and p∗qi.

Proof. Assume that there are periodic words in piq∗, and piqj should be the
smallest of them. Then piqj = rk for some r ∈ Q, k ≥ 2, r 6= q. Let also
piql = sm ∈ Per, s ∈ Q, l > j, m ≥ 2. Then sm = rkql−j, and l − j = 1

by Theorem 15. Therefore at most two words piqj and piqj+1 in piq∗ can be
periodic. For p∗qi the proof is done analogously. �

With essentially more effort, the following can be shown.

Theorem 18 (Shyr and Yu [27, 28]) If p, q ∈ Q with p 6= q, then there is at
most one periodic word in the language p+q+.

3 Primitivity and language classes

As soon as the set Q of primitive words (over a fixed alphabet Σ) was defined,
the question arose which is the exact relationship betweenQ and several known
language classes. Here it is important that Σ is a nontrivial alphabet because
in the other case all results become trivial or meaningless: If Σ = {a} then
Q(Σ) = Σ = {a} and Per(Σ) = {an : n ≥ 2}.

First we will examine the relationship of Q to the classes of the Chomsky
hierarchy, and second that to the Marcus contextual languages.

3.1 Chomsky hierarchy

Let us denote by REG, CF and CS the class of all regular languages, the class
of all context-free languages and the class of all context-sensitive languages
(all over the nontrivial alphabet Σ), respectively. It is known from Chomsky
Hierarchy that REG ⊂ CF ⊂ CS (see, e.g., the textbooks [8, 9, 23]). It is easy

Primitive words and roots of words 13

to show that Q ∈ CS \ REG, and hence it remains the question whether Q is
context-free. Before stating the theorem let us remember that CF is the class of
languages which are acceptable by nondeterministic pushdown automata, and
CS is the class of languages which are acceptable by nondeterministic linear
bounded automata. The latter are Turing machines where the used space on
its tapes (this is the number of tape cells touched by the head) is bounded by a
constant multiple of the length of the input string. If the accepting automaton
is a deterministic one the corresponding language is called a deterministic
context-free or a deterministic context-sensitive language, respectively. It can
be shown that the deterministic context-free languages are a strict subclass of
the context-free languages, whereas it is not yet known whether this inclusion
is also strict in the case of context-sensitive languages (This is the famous
LBA-problem).

Theorem 19 Q is deterministic context-sensitive but not regular.

Proof. 1. It is easy to see that by a deterministic Turing machine for a given
word u can be checked whether it fulfills Definition 1 and thus whether it is
not primitive or primitive, and this can be done in space which is a constant
multiple of |u|.

2. is a corollary from the next theorem.

Theorem 20 A language containing only a bounded number of primitive words
and having an infinite root cannot be regular.

If Q would be regular, then also Q = Per∪ {ε} would be regular because the
class of regular languages is closed under complementation. But

√
Q = Q is

infinite and therefore by Theorem 20 it cannot be regular. �

Proof of Theorem 20. Let L be a language with an infinite root and a
bounded number of primitive words. Further let
m =Df max({|p| : p ∈ L∩Q}∪ {0}). Assume that L is regular. By the pumping
lemma for regular languages, there exists a natural number n ≥ 1, such that
any word u ∈ L with |u| ≥ n has the form u = xyz such that |xy| ≤ n, y 6= ε,
and xykz ∈ L for all k ∈ IN. Let now u ∈ L with |

√
u| > n and |u| > m. Then

u = xyz such that 1 ≤ |y| ≤ |xy| ≤ n, z 6= ε, and xykz ∈ L for all k ∈ IN.
By Theorem 14, for each k ≥ 1, zxyk is periodic (since |xykz| ≥ |u| > m). Let
p =Df

√
zx, i =Df deg(zx), and q =Df

√
y. It is p 6= q because otherwise, by

Theorem 14, |
√
u| = |

√
zxy| = |

√
y| ≤ |y| ≤ n contradicting the assumption

|
√
u| > n. Then we have infinitely many periodic words in piq∗ contradicting

Theorem 17. �

14 G. Lischke

In 1991 it was conjectured by Dömösi, Horváth and Ito [4] that Q is not
context-free. Even though up to now all attempts to prove or disprove this
conjecture failed, it is mostly assumed to be true. Some approximations to the
solution of this problem will be given with the following theorems.

Theorem 21 Q is not deterministic context-free.

Proof. We use the fact that the class of deterministic context-free languages
is closed under complementation and under intersection with regular sets.
Assume that Q is deterministic context-free. Then also Q ∩ a∗b∗a∗b∗ =

{aibjaibj : i, j ∈ IN} must be deterministic context-free. But using the pumping
lemma for context-free languages, it can be shown that the latter is not even
context-free. �

In the same way (using the pumping lemma for Per ∩ a∗b∗a∗b∗) it also
follows that Per is not context-free.

The next theorem has a rather difficult proof. Therefore and because we will
not explain what unambiguity means, we omit the proof.

Theorem 22 (Petersen [22]) Q is not an unambigous context-free language.

Another interesting language class which is strictly between the context-free
and the regular languages is the class LIN of all linear languages.

Definition 23 A grammar G = [N, T, P, S] is linear if its productions are of
the form A → aB or A → Ba or A → a, where a ∈ T and A,B ∈ N. A
production of the form S → ε can also be accepted if the start symbol S does
not occur in the right-hand side of any production.

A linear language is a language which can be generated by a linear gram-
mar. LIN is the class of all linear languages.

It can be shown that REG ⊂ LIN ⊂ CF.

Theorem 24 (Horváth [10]) Q is not a linear language.

The proof can be done by using a special pumping lemma for linear lan-
guages and will be omitted here.

Let L be the union of the classes of linear languages, unambigous context-
free languages and deterministic context-free languages. Then L ⊂ CF and, by
the former theorems, Q /∈ L. But, whether Q ∈ CF or not, is still unknown.

Primitive words and roots of words 15

3.2 Contextual languages

Though we do not know the exact position of Q in the Chomsky Hierarchy, its
position in the system of contextual languages is clear. First, we cite the basic
definitions from [21], see also [15], and then, after three examples we prove our
result.

Definition 25 A (Marcus) contextual grammar is a structure G =

[Σ,A,C,φ] where Σ is an alphabet, A is a finite subset of Σ∗ (called the set
of axioms), C is a finite subset of Σ∗ × Σ∗ (called the set of contexts), and φ
is a function from Σ∗ into P(C) (called the choice function). If φ(u) = C for
every u ∈ Σ∗ then G is called a (Marcus) contextual grammar without
choice.

With such a grammar the following relations on Σ∗ are associated: For
w,w ′ ∈ Σ∗,
(1) w⇒ex w

′ if and only if there exists [p1, p2] ∈ φ(w) such that
w ′ = p1wp2,
(2) w⇒in w

′ if and only if there exists w1, w2, w3 ∈ Σ∗ and [p1, p2] ∈ φ(w2)

such that w = w1w2w3 and w ′ = w1p1w2p2w3.⇒∗ex and ⇒∗in denote the reflexive and transitive closure of these two rela-
tions.

Definition 26 For a contextual grammar G = [Σ,A,C,φ] (with or without
choice),
Lex(G) =Df {w : ∃u(u ∈ A ∧ u ⇒∗ex w)} is the external contextual lan-
guage (with or without choice) generated by G,
and Lin(G) =Df {w : ∃u(u ∈ A ∧ u ⇒∗in w)} is the internal contextual
language (with or without choice) generated by G.

For every contextual grammar G = [Σ,A,C,φ], A ⊆ Lex(G) ⊆ Lin(G)

holds.
The above definitions are illustrated by the following examples.
Example 1 LetG = [Σ,A,C,φ] be a contextual grammar where Σ = {a, b},

A = {ε, ab}, C = {[ε, ε], [a, b]}, φ(ε) = {[ε, ε]}, φ(ab) = {[a, b]} and φ(w) = ∅
if w /∈ A. Then Lex(G) = {ε, ab, aabb} and
Lin(G) = {anbn : n ∈ IN} since ab⇒ex aabb, ab⇒∗in anbn for every n ≥ 1,
and there does not exist any w ′ such that aabb⇒ex w

′.
Example 2 Let G = [Σ,A,C,φ] be a contextual grammar where

Σ = {a, b}, A = {a}, C = {[ε, ε], [ε, a], [ε, b]},

16 G. Lischke

φ(ε) = {[ε, ε]}, φ(ua) = {[ε, b]} for u ∈ Σ∗ and φ(ub) = {[ε, a]} for u ∈ Σ∗.
Then Lex(G) = {a, ab, aba, abab, . . .} = a(ba)∗ ∪ a(ba)∗b and Lin(G) =

aΣ∗ \ aaΣ∗.
Example 3 Let u = a1a2a3 · · · be an ω-word over a nontrivial alpha-

bet Σ where ai ∈ Σ for all i ≥ 1. Let G = [Σ,A,C,φ] be a contextual
grammar where A = {ε, a1}, C = {[ε, ε]} ∪ {[ε, a] : a ∈ Σ}, φ(ε) = {[ε, ε]},
φ(a1a2 · · ·ai) = {[ε, ai+1]} and φ(w) = ∅ if w is not a prefix of u. Then
Lex(G) = {ε, a1, a1a2, a1a2a3, . . .} = Pr(u) is the set of all prefixes of u.
Hence, there exist contextual grammars generating languages which are not
recursively enumerable.

Theorem 27 (Ito [5]) Q is an external contextual language with choice but
not an external contextual language without choice or an internal contextual
language with or without choice.

Proof. 1. Let G = [Σ, Σ, {[u, v] : uv ∈ Σ∗ ∧ |uv| ≤ 2}, φ] be a contextual
grammar, where φ(w) = {[u, v] : uv ∈ Σ∗ ∧ |uv| ≤ 2 ∧ uwv ∈ Q} for every
w ∈ Σ∗. Then obviously Lex(G) ⊆ Q. We prove Q ⊆ Lex(G) by induction.
First we have Σ ⊆ (Σ ∪ Σ2) ∩Q ⊆ Lex(G). Now assume that for a fixed n ≥ 2
all primitive words p with |p| ≤ n are in Lex(G). Let u be a primitive word of
smallest length ≥ n+ 1. We have two cases.

Case a). u = wx1x2 with x1, x2 ∈ Σ and at least one of w and wx1 is in
Q. Then, by induction hypothesis, w ∈ Lex(G) or wx1 ∈ Lex(G). But then
w⇒ex wx1x2 or wx1 ⇒ex wx1x2, and thus u ∈ Lex(G).

Case b). u = wx1x2 with x1, x2 ∈ Σ and none of w and wx1 is in Q. Then,
by Theorem 13, w = x i

1 for some i ≥ 1, hence u = x i+1
1 x2 with x1 6= x2, and

x2 ⇒ex x1x2 ⇒ex x1x1x2 ⇒ex · · ·⇒ex x
i+1
1 x2, and therefore u ∈ Lex(G).

2. Assume that there exists a contextual grammar G = [Σ,A,C,φ] without
choice such that Q = Lex(G). There must be at least one pair [u, v] ∈ φ(w)

with uv 6= ε for all w ∈ Σ∗. Let p =
√
vu and i = deg(vu) ≥ 1. Because

of p ∈ Q = Lex(G), also upv would be in Lex(G). We have vup = pi+1. By
Theorem 14, deg(upv) = deg(vup) = i+ 1 ≥ 2 and therefore upv /∈ Q, which
is a contradiction.

3. Assume Q = Lin(G) for some contextual grammar G = [Σ,A,C,φ] (with
or without choice). There must be words u, v,w ∈ Σ∗ with uv 6= ε and [u, v] ∈
φ(w). Let n = |uwv| and a, b ∈ Σ with a 6= b. Then anbnwanbnuwv ∈ Q,
but anbnwanbnuwv ⇒in a

nbnuwvanbnuwv = (anbnuwv)2 /∈ Q, contra-
dicting Lin(G) = Q. �

Theorem 28 Per is not a contextual language of any kind.

Primitive words and roots of words 17

Proof. Assume Per = Lex(G) or Per = Lin(G) for some contextual grammar
G = [Σ,A,C,φ] (with or without choice). Let m be a fixed number with
m > max{|p| : p ∈ A∨∃u([p, u] ∈ C∨[u, p] ∈ C)}. Because ambmambm ∈ Per
we must have q ∈ Per such that q ⇒ex a

mbmambm or q ⇒in a
mbmambm.

In the first case, q = aibmambj with i < m ∨ j < m must follow. But then
q /∈ Per. In the second case, q = aibjakbl with i < m∨j < m∨k < m∨l < m

must follow. But then qq⇒in a
mbmambmaibjakbl /∈ Per whereas qq ∈ Per.

Therefore Per 6= Lex(G) and Per 6= Lin(G). �

4 Primitivity and complexity

To investigate the computational complexity of Q and that of roots of lan-
guages on the one hand is interesting for itself, on the other hand - because
Q =

√
Σ∗ - there was some speculation to get hints for solving the problem of

context-freeness of Q. First, let us repeat some basic notions from complexity
theory.

If M is a deterministic Turing machine, then tM is the time complexity
of M, defined as follows. If p ∈ Σ∗, where Σ is the input alphabet of M,
and M on input p reaches a final state (we also say M halts on p), then
tM(p) is the number of computation steps required by M to halt. If M does
not halt on p, then tM(p) is undefined. For natural numbers n, tM(n) =Df

max{tM(p) : p ∈ Σ∗ ∧ |p| = n} if M halts on each word of length n. If t is a
function over the natural numbers, then TIME(t) denotes the class of all sets
which are accepted by multitape deterministic Turing machines whose time
complexity is bounded from above by t. Restricting to one-tape machines, the
time complexity class is denoted by 1-TIME(t).

For simplicity, let us write TIME(n2) instead of the more exact notation
TIME(f), where f(n) = n2.

Theorem 29 (Horváth and Kudlek [12]) Q ∈ 1-TIME(n2).

The proof which will be omitted is based on Corollary 9 and the linear
speed-up of time complexity. The latter means that 1-TIME(t ′) ⊆ 1-TIME(t)

if t ′ ∈ O(t) and t(n) ≥ n2 for all n.
The time bound n2 is optimal for accepting Q (or Per) by one-tape Turing

machines, which is shown by the next theorem.

Theorem 30 ([17]) For each one-tape Turing machine M deciding Q, tM ∈
Ω(n2) must hold. The latter means:
∃c∃n0(c > 0∧ n0 ∈ IN ∧ ∀n(n ≥ n0 → tM(n) ≥ c · n2)).

18 G. Lischke

The proof which will be omitted also, uses the for complexity theorists well-
known method of counting the crossing sequences.

Now we turn to the relationship between the complexity of a language and
that of its root. It turns out that there is no general relation, even more, there
can be an arbitrary large gap between the complexity of a language and that
of its root.

Theorem 31 ([17, 16]) Let t and f be arbitrary total functions over IN such
that t ∈ ω(n) is monotone nondecreasing and f is monotone nondecreasing,
unbounded, and time constructible. Then there exists a language L such that
L ∈ 1-TIME(O(t)) but

√
L /∈ TIME(f).

Instead of the proof which is a little bit complicated we only explain the
notions occuring in the theorem. t ∈ ω(n) means lim

n→∞ n
t(n) = 0. A time

constructible function is a function f for which there is a Turing machine
halting in exactly f(n) steps on every input of length n for each n ∈ IN. One
can show that the most common functions have these properties. Finally,
1-TIME(O(t)) =

⋃
{1-TIME(t ′) : ∃c∃n0(c > 0 ∧ n0 ∈ IN ∧ ∀n(n ≥ n0 →

t ′(n) ≤ c · t(n)))}.
Let us still remark, that from Theorem 31 we can deduce that there exist

regular languages the roots of which are not even context-sensitive, see [15, 16].

5 Powers of languages

In arithmetics powers in some sense are counterparts to roots. Also for formal
languages we can define powers, and also here we shall establish some con-
nections to roots. For the first time, the power pow(L) of a language L was
defined by Calbrix and Nivat in [3] in connection with the study of properties
of period and prefix languages of ω-languages. They also raised the problem
to characterize those regular languages whose powers are also regular, and to
decide the problem whether a given regular language has this property. Cachat
[2] gave a partial solution to this problem showing that for a regular language
L over a one-letter alphabet, it is decidable whether pow(L) is regular. Also
he suggested to consider as the set of exponents not only the whole set IN of
natural numbers but also an arbitrary regular set of natural numbers. This
suggestion was taken up in [13] with the next definition.

Definition 32 For a language L ⊆ Σ∗ and a natural number k ∈ IN,
L(k) =Df {pk : p ∈ L}. For H ⊆ IN,

Primitive words and roots of words 19

powH(L) =Df
⋃

k∈H

L(k) = {pk : p ∈ L∧ k ∈ H} is the H-power of L.

Instead of powH(L) we also write L(H), and also it is usual to write pow(L)

instead of powIN(L) = L(IN).

Note the difference between L(k) and Lk. For instance, if L = {a, b} then
L(2) = {aa, bb}, L2 = {aa, ab, ba, bb} and L(IN) = a∗ ∪ b∗.

We say that a set H of natural numbers has some language theoretical
property if the corresponding one-symbol language {ak : k ∈ H} = {a}(H)

which is isomorphic to H has this property.
It is easy to see that every regular power of a regular language is context-

sensitive. More generally, we have the following theorem.

Theorem 33 ([13]) If H ⊆ IN is context-sensitive and L ∈ CS then also
powH(L) = L(H) is context-sensitive.

Proof. Let L ⊆ Σ∗ be context-sensitive and also H ⊆ IN be context-sensitive.
By the following algorithm, for a given word u ∈ Σ∗ we can decide whether
u ∈ L(H).

1 if (u ∈ L∧ 1 ∈ H) ∨ (u = ε∧ 0 ∈ H)

2 then return “u is in L(H)”
3 else compute p =

√
u and d = deg(u)

4 for i← 1 to bd2 c
5 do if pi ∈ L∧ d

i ∈ H
6 then return “u is in L(H)”
7 return “u is not in L(H)”

bd2 c in line 4 is d
2 if d is even, and d−1

2 if d is odd. Each step of the algorithm
can be done by a linear bounded automaton or by a Turing machine where
the used space is bounded by a constant multiple of |u|. Crucial for this are
that |p| ≤ |u|, d ≤ |u|, and the decisions in line 1 and in line 5 can also be
done by a linear bounded automaton with this boundary, because L and H are
context-sensitive and therefore acceptable by linear bounded automata. �

The last theorem raises the question whether and when L(H) is in a smaller
class of the Chomsky hierarchy, especially if L is regular. This essentially de-
pends on whether the root of L is finite or not. Therefore we will introduce
the notions FR for the class of all regular languages L such that

√
L is finite,

and IR =Df REG \ FR for the class of all regular languages L such that
√
L is

infinite.

20 G. Lischke

Theorem 34 ([13]) The class FR of regular sets having a finite root is closed
under the power with finite sets.

Proof. Let L be a regular language with a finite root {p1, . . . , pk} and ε /∈ L,
and let Li =Df L ∩ p ∗i for each i ∈ {1, . . . , k}. Since Li ⊆ p ∗i and Li ∈ REG, Li

is isomorphic to a regular set Mi of natural numbers, namely Mi = deg(Li).
For each n ∈ IN, Mi · n =Df {m · n : m ∈Mi} is regular too. Therefore, for a
finite set H ⊆ IN, also

⋃
n∈H

Mi ·n is regular which is isomorphic to L(H)
i . Then

L(H) =
k⋃

i=1

L
(H)
i is regular, and

√
L(H) =

√
L is finite. If the empty word is in

the language then, because of powH(L∪ {ε}) = powH(L)∪ {ε} we get the same
result. �

If H is infinite then powH(L) may be nonregular and even non-context-free.
This is true even in the case of a one-letter alphabet where the root of each
nonempty set (except {ε}) has exactly one element. This is illustrated by the
following example.
Let L = {a2m+3 : m ∈ IN}. Then L ∈ FR but
L(IN) = {ak : k ∈ IN \ {2m : m ≥ 0}} /∈ CF.
Therefore it remains a problem to characterize those regular sets L with finite
roots where powH(L) is regular for any (maybe regular) set H.

Our next theorem shows that the powers of arbitrary (not necessarily reg-
ular) languages which have infinite roots are not regular, even more, they are
not even context-free, if the exponent set is an arbitrary set of natural numbers
containing at least one element which is greater than 2 and does not contain
the number 1, or some other properties are fulfilled.

Theorem 35 ([13]) For every language L which has an infinite root and for
every set H ⊆ IN containing at least one number greater than 2, powH(L) is
not context-free if one of the following conditions is true:

(a) 1 /∈ H, (c) L ∩
√
L ∈ REG,

(b)
√
L ∈ REG, (d) L ∈ REG and

√
L(H) \ L is infinite.

Proof. Let L ⊆ Σ∗ be a language such that
√
L is infinite, and let H ⊆ IN with

H \ {0, 1, 2} 6= ∅. We define

L ′ =Df


powH(L) if (a) is true,
powH(L) \

√
L if (b) is true,

powH(L) \ (L ∩
√
L) if (c) is true,

powH(L) \ L if (d) is true.

Primitive words and roots of words 21

If more than one of the conditions (a), (b), (c), (d) are true simultaneously,
then it doesn’t matter which of the appropriate lines in the definition of L ′ we
choose. It is important that in each case,

√
L ′ is infinite, there is no primitive

word in L ′ and, if powH(L) was context-free then also L ′ would be context-
free. But we show that the latter is not true.
Assume that L ′ is context-free, and let n ≥ 3 be a fixed number from H. By
the pumping lemma for context-free languages, there exists a natural number
m such that every z ∈ L ′ with |z| > m is of the form w1w2w3w4w5 where:
w2w4 6= ε, |w2w3w4| < m, and w1w

i
2w3w

i
4w5 ∈ L ′ for all i ∈ IN.

Now let z ∈ L ′ with deg(z) ≥ n and |
√
z| > 2m which exists because√

L ′ is infinite. Let p =Df
√
z and k =Df deg(z). Then |z| = k · |p| >

2km. By the pumping lemma, z = pk = w1w2w3w4w5 where w2w4 6= ε,
|w2w3w4| < m <

|p|
2 , and w1w

i
2w3w

i
4w5 ∈ L ′ for each i ∈ IN. Especially,

for i = 0, x =Df w1w3w5 ∈ L ′ and therefore x is nonprimitive. Now let
z ′ =Df w5w1w2w3w4, q =Df

√
z ′, x ′ =Df w5w1w3, and s =Df

√
x ′. By

Theorem 14 we have deg(z ′) = deg(z) = k and x ′ nonprimitive, therefore
|q| = |p| > 2m and |s| ≤ |x ′|

2 . It follows z ′ = qk and x ′ = qk−1q ′ for some word
q ′ with |q|

2 < |q ′| < |q| (because of 0 < |w2w4| ≤ |w2w3w4| <
|q|
2). The words

z ′ and x ′ which are powers of q and s, respectively, have a common prefix
w5w1 of length |z| − |w2w3w4| > k · |q| −

|q|
2 . Because of |s| ≤ |x ′|

2 < k
2 · |q|

and k ≥ 3, we have |q| + |s| < (k
2 + 1)|q| ≤ (k − 1

2)|q|, and therefore q = s

by Theorem 12. But then x ′ = sk−1q ′ with 0 < |q ′| < |s| which contradicts√
x ′ = s. �

It remains open whether the H-power of a regular language is regular or
context-free or neither, if H = IN or H ⊆ {0, 1, 2}. First, we consider the
exceptions 0, 1, and 2 where we find out a different behavior.

Theorem 36 ([13]) (i) For each L ∈ REG and H ⊆ {0, 1}, L(H) ∈ REG.
(ii) For each L ∈ FR, L(2) ∈ FR.
(iii) For each L ∈ IR, L(2) /∈ REG.

Proof. (i) is trivial, (ii) follows from Theorem 34. (iii) follows from Theorem
20. �

A set pow{2}(L) = L(2) we call also the square of L. Because of the former
theorem, only the squares of regular languages with infinite roots remain for
interest. In contrast to the former results where the power of a regular set
either is regular again or not context-free, this is not true for the squares. It
is illustrated by the following examples:

22 G. Lischke

Let L1 =Df a · {b}∗ and L2 =Df {a, b}∗. Then both L1 and L2 are regular
with infinite roots, but L(2)

1 ∈ CF and L(2)
2 /∈ CF.

To characterize those regular languages whose squares are context-free we
introduce the following notion.

Definition 37 Let p ∈ Q and w,w ′ ∈ Σ∗ such that p is not a suffix of w and
w ′w /∈ p+. The sets wp∗w ′ and p∗wp∗ are called inserted iterations
of the primitive word p. The words p, w, w ′ are called the modules of
wp∗w ′, and p, w are called the modules of p∗wp∗. A FIP-set is a finite
union L1∪. . .∪Ln of inserted iterations of primitive words. The sets L1, . . . , Ln

are also called the components of the FIP-set.

Using this notion we can give the following reformulation and simplification
of a theorem by Ito and Katsura from 1991 (see [14]) which has a rather
difficult proof.

Theorem 38 If L(2) ∈ CF and L(2) ⊆ Q(2) then L must be a subset of a
FIP-set.

Using this theorem and the proof idea from Theorem 35 we can show the
following characterization.

Theorem 39 ([18]) For a regular language L, L(2) is context-free if and only
if L is a subset of a FIP-set.

Proof. We show here only one direction. Let L be regular and L(2) ∈ CF.
We consider three cases. Case a). L ∈ FR. Let

√
L = {p1, . . . , pn}. Then L ⊆

p ∗1 ∪ · · · ∪ p ∗n and p ∗1 ∪ · · · ∪ p ∗n is a FIP-set.
Case b). L ∈ IR and

√
L ∩ Per is infinite. This means, L has infinitely many

periodic words with altogether infinitely many roots of unbounded lengths.
Then L(2) contains words z with |

√
z| > 2m for arbitrary m and deg(z) ≥ 4.

If L(2) would be context-free then we would get the same contradiction as in
the proof of Theorem 35. Therefore case b) cannot occur.

Case c). L ∈ IR and
√
L ∩ Per is finite. Let L1 =Df L ∩ Q, L2 =Df L ∩ Q,

and
√
L2 = {p1, . . . , pk}. Then L = L1 ∪ L2, L1 ∩ L2 = ∅, and

L2 = ((p ∗1 ∪ · · · ∪ p ∗k) \ {p1, . . . , pk}) ∩ L is in FR. Therefore also L(2)
2 ∈ FR

by Theorem 36, and L(2)
1 ∈ CF because L(2) = L

(2)
1 ∪ L(2)

2 ∈ CF. We have
L

(2)
1 ⊆ Q

(2), and by Theorem 38 follows that L1 is a subset of a FIP-set. L2 is
a subset of a FIP-set by case a), and so is L = L1 ∪ L2. �

Primitive words and roots of words 23

Now it is easy to clarify the situation for the n-th power of a regular or
even context-free set for an arbitrary natural number n, where it is trivial
that L(0) = {ε}, L(1) = L.

Theorem 40 ([18]) For an arbitrary context-free language L and a natural
number n ≥ 2, if L(n) is context-free, then either n ≥ 3 and L ∈ FR or n = 2

and L ∩ Per ∈ FR.

Proof. If n ≥ 3 and
√
L is infinite then L(n) /∈ CF by Theorem 35. It is

well-known that every context-free language over a single-letter alphabet is
regular. Using this fact it is easy to show that every context-free language
with finite root is regular too. Therefore, if

√
L is finite and L ∈ CF then

L ∈ FR, and L(n) ∈ FR by Theorem 34. If n = 2, L(n) ∈ CF and
√
L is infinite,

then L ∩ Per ∈ FR must be true by the proof of Theorem 39. �

Now we consider the full power pow(L) = powIN(L) for a regular language
L.

Theorem 41 (Fazekas [6]) For a regular language L, pow(L) is regular if and
only if pow(L) \ L ∈ FR.

Proof. If pow(L) \ L ∈ FR ⊆ REG then (pow(L) \ L) ∪ L = pow(L) ∈ REG
because the class of regular languages is closed under union. For the opposite
direction assume pow(L) ∈ REG. Then also L ′ =Df pow(L) \ L is regular
because the class of regular languages is closed under difference of two sets.
There are no primitive words in L ′ and therefore, by Theorem 20, it must have
a finite root. �

6 Decidability questions

Questions about the decidability of several properties of sets or decidability
of problems belong to the most important questions in (theoretical) computer
science. Here we consider the decidability of properties of languages regarding
their roots and powers. We will cite the most important theorems in chrono-
logical order of their proofs but we omit the proofs because of their complexity.

Theorem 42 (Horváth and Ito [11]) For a context-free language L it is de-
cidable whether

√
L is finite.

Theorem 43 (Cachat [2]) For a regular or context-free language L over single-
letter alphabet it is decidable whether pow(L) is regular.

24 G. Lischke

Using Cachat’s algorithm, Horváth showed (but not yet published) the fol-
lowing.

Theorem 44 (Horváth) For a regular or context-free language L with finite
root it is decidable whether pow(L) is regular.

Remark. Since the context-free languages with finite root are exactly the
languages in FR (Remark in the proof of Theorem 40), it doesn’t matter
whether we speak of regularity or context-freeness in the last theorems.

Remarkable in this connection is also the only negative decidability result
by Bordihn.

Theorem 45 (Bordihn [1]) For a context-free language L with infinite root it
is not decidable whether pow(L) is context-free.

The problem of Calbrix and Nivat [3] and the open question of Cachat [2] for
languages over any finite alphabet and almost any sets of exponents, but not
for all, was answered in [13]. Especially the regularity of pow(L) for a regular
set L remained open, but it was conjectured that the latter is decidable. Using
these papers, finally Fazekas [6] could prove this conjecture.

Theorem 46 (Fazekas [6]) For a regular language L it is decidable whether
pow(L) is regular.

Finally, we look at the squares of regular and context-free languages.

Theorem 47 ([18]) For a regular language L it is decidable whether L(2) is
regular or context-free or none of them.

Proof. Let L be a regular language generated by a right-linear grammar G =

[Σ,N, S, R] and let m = |N| + 1. By Theorem 36, L(2) is regular if and only if√
L is finite. The latter is decidable by Theorem 42. If

√
L is infinite then by

Theorem 39, L(2) is context-free if and only if L is a subset of a FIP-set. If L is
a subset of a FIP-set then we can show that there exists a FIP-set F such that
L ⊆ F and all modules of all components of F have lengths smaller than m.
Thus there are only finitely many words which can be modules and only finitely
many inserted iterations of primitive words having these modules. The latter
can be effectively computed. Let L1, . . . , Ln be all these inserted iterations of
primitive words. Then L(2) is context-free if and only if L ⊆ L1 ∪ · · · ∪ Ln

which is equivalent to L ∩ (L1 ∪ · · · ∪ Ln) = ∅. The latter is decidable for
regular languages L and L1, . . . , Ln. �

Primitive words and roots of words 25

p

p
p

p
or

Figure 2: Concatenation with overlap

7 Generalizations of periodicity and primitivity

If u is a periodic word then we have a strict prefix v of u such that u is ex-
hausted by concatenation of two or more copies of v, u = vn, n ≥ 2 (see Figure
3). But it could be that such an exhaustion is not completely possible, there
may remain a strict prefix of v and the rest of v overhangs u, i.e. u = vnv ′,
n ≥ 2, v ′ < v (see Figure 4). In such case we call u to be semi-periodic. A third
possibility is to exhaust u by concatenation of two or more copies of v where
several consecutive copies may overlap (see Figure 5). In this case we speak
about quasi-periodic words. If a nonempty word is not periodic, semi-periodic,
or quasi-periodic, respectively, we call it a primitive, strongly primitive, or hy-
perprimitive word, respectively. Of course, periodic and primitive words are
those we considered before in this paper. Finally, we can combine the possi-
bilities to get three further types which we will summarize in the forthcoming
Definition 49. Before doing so, we give a formal definition of concatenation
with overlaps. All these generalizations have been introduced and detailed
investigated in [15]. Most of the material in this section is taken from there.

Definition 48 For p, q ∈ Σ∗, we define
p⊗ q =Df {w1w2w3 : w1w3 6= ε ∧ w1w2 = p ∧ w2w3 = q},
p⊗0 =Df {ε}, p⊗k+1 =Df

⋃
{w⊗ p : w ∈ p⊗k} for k ∈ IN,

A⊗ B =Df
⋃

{p⊗ q : p ∈ A ∧ q ∈ B} for sets A,B ⊆ Σ∗.

The following example shows that in general, p⊗ q is a set of words:
Let p = aabaa. Then p⊗p = p⊗2 = {aabaaaabaa, aabaaabaa, aabaabaa}.
We can illustrate this by Figure 2.

In the following definition we repeat our Definitions 1 and 2 and give the
generalizations suggested above.

26 G. Lischke

u

v v v v

Figure 3: u is periodic, u ∈ Per, v = root(u)

Definition 49
Per =Df {u : ∃v∃n(v < u∧ n ≥ 2∧ u = vn)} is the set of

periodic words.
Q =Df Σ+ \ Per is the set of primitive words.

SPer =Df {u : ∃v∃n(v < u∧ n ≥ 2∧ u ∈ vn · Pr(v))} is the
set of semi-periodic words.

SQ =Df Σ+ \ SPer is the set of strongly primitive words.

QPer =Df {u : ∃v∃n(v < u∧ n ≥ 2∧ u ∈ v⊗n)} is the set of
quasi-periodic words.

HQ =Df Σ+ \QPer is the set of hyperprimitive words.

PSPer =Df {u : ∃v∃n(v < u∧ n ≥ 2∧ u ∈ {vn}⊗ Pr(v))} is the
set of pre-periodic words.

SSQ =Df Σ+ \ PSPer is the set of super strongly primitive
words.

SQPer =Df {u : ∃v∃n(v < u∧ n ≥ 2∧ u ∈ v⊗n · Pr(v))} is the
set of semi-quasi-periodic words.

SHQ =Df Σ+ \ SQPer is the set of strongly hyperprimitive
words.

QQPer =Df {u : ∃v∃n(v < u∧ n ≥ 2∧ u ∈ v⊗n ⊗ Pr(v))} is the
set of quasi-quasi-periodic words.

HHQ =Df Σ+ \QQPer is the set of hyperhyperprimitive
words.

The different kinds of generalized periodicity are illustrated in the Figures
3–8.

Theorem 50 The sets from Definition 49 have the inclusion structure as
given in Figure 9. The lines in this figure denote strict inclusion from bottom
to top. Sets which are not connected by such a line are incomparable under
inclusion.

Primitive words and roots of words 27

u

v v v v v

Figure 4: u is semi periodic, u ∈ SPer, v = sroot(u)

u

v

v v

v

v

v

Figure 5: u is quasi-periodic, u ∈ QPer, v = hroot(u)

u

v v v v v

v

Figure 6: u is pre-periodic, u ∈ PSPer, v = ssroot(u)

u

v

v v

v

v

v v

Figure 7: u is semi-quasi-periodic, u ∈ SQPer, v = shroot(u)

u

v

v v

v

v

v

v

Figure 8: u is quasi-quasi-periodic, u ∈ QQPer, v = hhroot(u)

28 G. Lischke

QQPer

PSPer

SPer

Per

SQPer

QPer

Q

SQ

SSQ

HHQ

HQ

SHQ

Figure 9: Inclusion structure

Proof. Because of the duality between the sets, it is enough to prove the
left structure in Figure 9. Let u ∈ SPer, it means, u = vnq where n ≥ 2

and q < v. Thus v = qr for some r ∈ Σ∗ and u = (qr)nq ∈ (qrq)⊗n and
therefore u ∈ QPer and SPer ⊆ QPer. The remaining inclusions are clear by
the definition. To show the strictness of the inclusions we can use the following
examples:
u1 = abaababab, u2 = aababaababaabaab, u3 = aabaaabaaba,
u4 = abaabab, u5 = ababa.
Then u1 ∈ QQPer \ (SQPer ∪ PSPer), u2 ∈ SQPer \QPer,
u3 ∈ QPer \ PSPer, u4 ∈ PSPer \ SQPer, and u5 ∈ SPer \ Per.
u3 and u4 also prove the incomparability. �

The six different kinds of periodicity resp. primitivity of words give rise to
define six types of roots where the first one is again that from Definition 6.

Definition 51 Let u ∈ Σ+.
The shortest word v such that there exists a natural number n with
u = vn is called the root of u, denoted by root(u).
The shortest word v such that there exists a natural number n with
u ∈ vn · Pr(v) is called the strong root of u, denoted by sroot(u).
The shortest word v such that there exists a natural number n with
u ∈ v⊗n is called the hyperroot of u, denoted by hroot(u).
The shortest word v such that there exists a natural number n with
u ∈ {vn}⊗Pr(v) is called the super strong root of u, denoted by ssroot(u).
The shortest word v such that there exists a natural number n with

Primitive words and roots of words 29

u ∈ v⊗n · Pr(v) is called the strong hyperroot of u, denoted by shroot(u).
The shortest word v such that there exists a natural number n with
u ∈ v⊗n⊗ Pr(v) is called the hyperhyperroot of u, denoted by hhroot(u).
If L is a language, then root(L) =Df {root(p) : p ∈ L ∧ p 6= ε} is the root
of L. Analogously sroot(L), hroot(L), ssroot(L), shroot(L) and hhroot(L)
are defined.

The six kinds of roots are illustrated in the Figures 3–8 (if v is the shortest
prefix with the appropriate property).
root, sroot, hroot, ssroot, shroot and hhroot are word functions over

Σ+, i.e., functions from Σ+ to Σ+. Generally, for word functions we define the
following partial ordering, also denoted by v.
dom(f) for a function f denotes the domain of f.

Definition 52 For word functions f and g having the same domain,
f v g =Df ∀u(u ∈ dom(f)→ f(u) v g(u)).

Theorem 53 The partial ordering v for the functions from Definition 51
is given in Figure 10.

Proof. It follows from the definition, that for an arbitrary word u ∈ Σ+ and its
roots we have the prefix relationship as shown in the figure. It remains to show
the strict prefixes and incomparability. This can be done, for instance, by the
following examples. Let u1 = abaabaababaabaabab, u2 = abaabaabab,
and u3 = abaababaabaabaab. Then
hhroot(u1) = aba < shroot(u1) = abaab < ssroot(u1) = sroot(u1) =

abaabaab < hroot(u1) = abaabaabab < root(u1) = u1,
ssroot(u2) = aba < shroot(u2) = abaab < sroot(u2) = abaabaab <

hroot(u2) = u2, and
hroot(u3) = abaab < sroot(u3) = abaababaaba, which proves our figure.

�

For most words u, some of the six roots coincide, and we have the question
how many roots of u are different, and whether there exist words u such that
all the six roots of u are different from each other. This last question was
raised in [15], and it was first assumed that they do not exist. But in 2010
Georg Lohmann discovered the first of such words.

Definition 54 Let k ∈ {1, 2, 3, 4, 5, 6}. A word u ∈ Σ+ is called a k-root
word if
|{root(u), sroot(u), hroot(u), ssroot(u), shroot(u), hhroot(u)}| = k.

30 G. Lischke

hhroot

shroot

sroot

root

ssroot

hroot

Figure 10: Partial ordering of the root-functions

A 6-root word is also called a Lohmann word.
u is called a strong k-root word if it is a k-root word and root(u) 6= u, it
means, it is a periodic k-root word.

The following theorems give answers to our questions. The proofs are easy
or will be published elsewhere.

Theorem 55 The lexicographic smallest k-root words are a for k = 1,
aba for k = 2, ababa for k = 3, abaabaabab for k = 4,
abaabaababaabaabab for k = 5, and
ababaabababaababaababababaabab for k = 6.
The lexicographic smallest strong k-root words are aa for k = 1,
abaababaab for k = 2, (ab3abab3abab3)2 for k = 3, and
(ababaabababaabab)2 for k = 4.

Theorem 56 There exist no strong k-root words for k = 5 and k = 6.

Theorem 57 Let v and w be words such that ε < v < w, wv 6v pl for some
p < w and l > 1 and k1, k2, k3 be natural numbers with 2 ≤ k1 < k2 < k3 ≤
2k1. Then u = wk1vwk2vwk1vwk3vwk3−k1 is a Lohmann word.

Primitive words and roots of words 31

It is still open whether the sufficient condition in the last theorem is also a
necessary condition for Lohmann words.

Let us now examine whether the results from the former sections are also
true for generalized periodicity and primitivity. First, we give generalizations
of Corollary 9 and Theorem 13. For their proofs we refer to [15].

Lemma 58 w /∈ SQ if and only if w = pq = qr for some p, q, r ∈ Σ+ and
|q| ≥ |w|

2 .

Lemma 59 If aw /∈ SQ and wb /∈ SQ, where w ∈ Σ+ and a, b ∈ Σ, then
awb /∈ SQ.

Lemma 60 If aw /∈ HQ and wb /∈ HQ, where w ∈ Σ+ and a, b ∈ Σ, then
awb /∈ HQ.

Theorem 19 remains true for each of the sets from Definition 49. The Theo-
rems 21, 22, and 24 with their proofs are passed to each of the languages SQ,
HQ, SSQ, SHQ, and HHQ. Also the non-context-freeness of each of the sets
of generalized periodic words is simple as remarked after Theorem 21. The
context-freeness of the sets of generalized primitive words is open just as that
of Q.

Using Lemma 59 and Lemma 60 it can be shown that Theorem 27 is also
true for SQ and HQ. Also none of SSQ, SHQ, HHQ, and the sets of generalized
periodic words is a contextual language of any kind.

Theorem 30 and its proof remain true for each of the sets from Definition 49.
Theorem 29 is true for SQ where the proof uses Lemma 58. Whether the time
bound n2 is also optimal for accepting one of the remaining sets remains open.
Theorem 31 and its proof remain true for each of the roots from Definition 51.

Acknowledgements

The author is grateful to Antal Iványi in Budapest for his suggestion to write
this paper, for Martin Hünniger in Jena for his help with the figures, and to
Peter Leupold in Kassel and to the anonymous referee for some hints.

This work was supported by the project under the grant agreement no.
TÁMOP 4.2.1/B-09/1/KMR-2010-0003 (Eötvös Loránd University, Budapest)
financed by the European Union and the European Social Fund.

32 G. Lischke

References

[1] H. Bordihn, Context-freeness of the power of context-free languages is
undecidable, Theoret. Comput. Sci. 314, 3 (2004) 445–449. ⇒24

[2] T. Cachat, The power of one-letter rational languages, Proc. 5th Interna-
tional Conference Developments in Language Theory, Wien, July 16–21,
2001, Lecture Notes in Comput. Sci. 2295 (2002) 145–154. ⇒18, 23, 24

[3] H. Calbrix, M. Nivat, Prefix and period languages of rational ω-
languages, Proc. Developments in Language Theory II, At the Crossroads
of Mathematics, Computer Science and Biology, Magdeburg, Germany,
July 17–21, 1995, World Scientific, 1996, pp. 341–349. ⇒18, 24

[4] P. Dömösi, S. Horváth, M. Ito, On the connection between formal lan-
guages and primitive words, Proc. First Session on Scientific Commu-
nication, Univ. of Oradea, Oradea, Romania, June 1991, pp. 59–67. ⇒
14

[5] P. Dömösi, M. Ito, S. Marcus, Marcus contextual languages consisting of
primitive words, Discrete Math. 308, 21 (2008) 4877–4881. ⇒16

[6] S. Z. Fazekas, Powers of regular languages, Proc. Developments in Lan-
guage Theory, Stuttgart 2009, Lecture Notes in Comput. Sci. 5583 (2009)
221–227. ⇒23, 24

[7] N. J. Fine, H. S. Wilf, Uniqueness theorems for periodic functions, Proc.
Amer. Math. Soc., 16, 1 (1965) 109–114. ⇒10

[8] M. Harrison, Introduction to Formal Language Theory, Addison-Wesley,
Reading, MA, 1978. ⇒6, 12

[9] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, MA, 1979. ⇒ 6,
12

[10] S. Horváth, Strong interchangeability and nonlinearity of primitive words,
Proc. Algebraic Methods in Language Processing, Univ. of Twente, En-
schede, the Netherlands, December 1995, pp. 173–178. ⇒14

[11] S. Horváth, M. Ito, Decidable and undecidable problems of primitive
words, regular and context-free languages, J. UCS 5, 9 (1999) 532–541.⇒23

http://www.cs.uni-potsdam.de/ml/bordihn.html
http://www.sciencedirect.com/science/journal/03043975
http://www-i7.informatik.rwth-aachen.de/~cachat/indexEN.html
http://www.informatik.uni-trier.de/~ley/db/conf/dlt/index.html
http://www.springerlink.com/content/105633
http://arnetminer.org/viewperson.do?naid=161034&name=Hugues%20Calbrix
http://www.informatik.uni-trier.de/~ley/db/conf/dlt/index.html
http://www.inf.unideb.hu/~domosi/
http://www.cs.elte.hu/u/horvath
http://www.jucs.org/jucs_articles_by_author/Ito_Masami/BusinessCard
http://www.uoradea.ro/english/
http://www.inf.unideb.hu/~domosi/
http://www.jucs.org/jucs_articles_by_author/Ito_Masami/BusinessCard
http://funinf.cs.unibuc.ro/~marcus/
http://www.sciencedirect.com/science/journal/0012365X
http://www.springerlink.com/content/105633
http://www-history.mcs.st-and.ac.uk/Biographies/Fine_Nathan.html
http://www.math.upenn.edu/~wilf/
http://www.ams.org/publications/journals/journalsframework/proc
http://www.cs.berkeley.edu/~harrison/
http://www.pearsonhighered.com/
http://en.wikipedia.org/wiki/John_Hopcroft
http://en.wikipedia.org/wiki/Jeffrey_D._Ullman
http://www.pearsonhighered.com/
http://www.cs.elte.hu/u/horvath
http://www.cs.elte.hu/u/horvath
http://www.jucs.org/jucs_articles_by_author/Ito_Masami/BusinessCard
http://www.jucs.org/

Primitive words and roots of words 33

[12] S. Horváth, M. Kudlek, On classification and decidability problems of
primitive words, Pure Math. Appl. 6, 2–3 (1995) 171–189. ⇒17

[13] S. Horváth, P. Leupold, G. Lischke, Roots and powers of regular lan-
guages, Proc. 6th International Conference Developments in Language
Theory, Kyoto 2002, Lecture Notes in Comput. Sci. 2450 (2003) 220–230⇒18, 19, 20, 21, 24

[14] M. Ito, M. Katsura, Context-free languages consisting of non-primitive
words, Internat. J. Comput. Math. 40, 3–4 (1991) 157–167. ⇒22

[15] M. Ito, G. Lischke, Generalized periodicity and primitivity for words,
Math. Log. Quart. 53, 1 (2007) 91–106. ⇒15, 18, 25, 29, 31

[16] M. Ito, G. Lischke, Corrigendum to “Generalized periodicity and primi-
tivity for words”, Math. Log. Quart. 53, 6 (2007) 642–643. ⇒18

[17] G. Lischke, The root of a language and its complexity, Proc. 5th Interna-
tional Conference Developments in Language Theory, Wien 2001, Lecture
Notes in Comput. Sci., 2295 (2002) 272–280 ⇒17, 18

[18] G. Lischke, Squares of regular languages, Math. Log. Quart., 51, 3 (2005)
299–304. ⇒22, 23, 24

[19] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA,
1983. ⇒9, 10

[20] R. C. Lyndon, M. P. Schützenberger, On the equation aM = bNcP in a
free group, Michigan Math. J., 9, 4 (1962) 289–298. ⇒9, 10, 11

[21] G. Păun, Marcus Contextual Grammars, Kluwer, Dordrecht-Boston-
London, 1997. ⇒15

[22] H. Petersen, The ambiguity of primitive words, Proc. STACS 94, Lecture
Notes in Comput. Sci., 775 (1994) 679–690. ⇒14

[23] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol.
1, Springer, Berlin-Heidelberg, 1997. ⇒6, 9, 12

[24] H. J. Shyr, Free Monoids and Languages, Hon Min Book Company,
Taichung, 1991. ⇒9

http://www.cs.elte.hu/u/horvath
http://web.uni-corvinus.hu/puma/
http://www.cs.elte.hu/u/horvath
http://theinf2.informatik.uni-jena.de/People/Gerhard+Lischke.html
http://www.informatik.uni-trier.de/~ley/db/conf/dlt/index.html
http://www.informatik.uni-trier.de/~ley/db/conf/dlt/index.html
http://www.springerlink.com/content/105633
http://www.jucs.org/jucs_articles_by_author/Ito_Masami/BusinessCard
http://www.tandf.co.uk/journals/IJCM
http://www.jucs.org/jucs_articles_by_author/Ito_Masami/BusinessCard
http://theinf2.informatik.uni-jena.de/People/Gerhard+Lischke.html
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291521-3870
http://www.jucs.org/jucs_articles_by_author/Ito_Masami/BusinessCard
http://theinf2.informatik.uni-jena.de/People/Gerhard+Lischke.html
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291521-3870
http://theinf2.informatik.uni-jena.de/People/Gerhard+Lischke.html
http://www.sciencedirect.com/science/journal/03043975
http://theinf2.informatik.uni-jena.de/People/Gerhard+Lischke.html
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291521-3870
http://www-igm.univ-mlv.fr/~berstel/Lothaire/
http://www.pearsonhighered.com/
http://en.wikipedia.org/wiki/Marcel-Paul_Schutzenberger
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.mmj/1220879391
http://www.imar.ro/~gpaun/
http://www.wkap.com/
http://www.springerlink.com/content/105633
http://www.liacs.nl/CS/TCS/pubrozenberg.html
http://vanha.math.utu.fi/staff/asalomaa/
http://www.springer.com

34 G. Lischke

[25] H. J. Shyr, G. Thierrin, Codes and binary relations, Séminare d’Algèbre,
Paul Dubreil, Paris 1975–1976, Lecture Notes in Math. 586 (1977) 180–
188. ⇒9

[26] H. J. Shyr, G. Thierrin, Disjunctive languages and codes, Proc. Interna-
tional Conference Mathematical Foundations of Computer Science, Poz-
nan 1977, Lecture Notes in Comput. Sci. 56 (1977) 171–176 ⇒11

[27] H. J. Shyr, S. S. Yu, Non-primitive words in the language p+q+, Soochow
J. Math. 20, 4 (1994) 535–546. ⇒12

[28] S. S. Yu, Languages and Codes, Tsang Hai Book Publishing Co., Taichung,
2005. ⇒9, 12

Received: December 16, 2010 • Revised: February 22, 2011

http://www.csd.uwo.ca/~gab/
http://www.springerlink.com/content/0075-8434/books/?sort=p_OnlineDate&sortorder=desc&o=40
http://www.csd.uwo.ca/~gab/
http://www.springerlink.com/content/105633
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Shyr=Shen.html
file:Soochow J. Math.
http://www.tsanghai.com.tw

Acta Univ. Sapientiae, Informatica, 3, 1 (2011) 35–47

Arc-preserving subsequences of

arc-annotated sequences

Vladimir Yu. POPOV
Department of Mathematics and Mechanics

Ural State University
620083 Ekaterinburg, RUSSIA

email: Vladimir.Popov@usu.ru

Abstract. Arc-annotated sequences are useful in representing the struc-
tural information of RNA and protein sequences. The longest arc-pre-
serving common subsequence problem has been introduced as a frame-
work for studying the similarity of arc-annotated sequences. In this pa-
per, we consider arc-annotated sequences with various arc structures.
We consider the longest arc preserving common subsequence problem.
In particular, we show that the decision version of the 1-fragment
LAPCS(crossing,chain) and the decision version of the 0-diagonal
LAPCS(crossing,chain) are NP-complete for some fixed alphabet Σ
such that |Σ| = 2. Also we show that if |Σ| = 1, then the decision version of
the 1-fragment LAPCS(unlimited, plain) and the decision version
of the 0-diagonal LAPCS(unlimited, plain) are NP-complete.

1 Introduction

Algorithms on sequences of symbols have been studied for a long time and
now form a fundamental part of computer science. One of the very important
problems in analysis of sequences is the longest common subsequence (LCS)
problem. The computational problem of finding the longest common subse-
quence of a set of k strings has been studied extensively over the last thirty
years (see [5, 19, 21] and references). This problem has many applications.

Computing Classification System 1998: F.1.3
Mathematics Subject Classification 2010: 68Q15
Key words and phrases: longest common subsequence, sequence annotation, NP-
complete

35

http://ai.math.usu.ru/site/
http://www.usu.ru
mailto:Vladimir.Popov@usu.ru

36 V. Popov

When k = 2, the longest common subsequence is a measure of the similarity
of two strings and is thus useful in molecular biology, pattern recognition, and
text compression [26, 27, 34]. The version of LCS in which the number of
strings is unrestricted is also useful in text compression [27], and is a special
case of the multiple sequence alignment and consensus subsequence discovery
problem in molecular biology [11, 12, 32].

The k-unrestricted LCS problem is NP-complete [27]. If the number of
sequences is fixed at k with maximum length n, their longest common subse-
quence can be found in O(nk−1) time, through an extension of the pairwise
algorithm [21]. Suppose |S1| = n and |S2| = m, the longest common subse-
quence of S1 and S2 can be found in time O(nm) [8, 18, 35].

Sequence-level investigation has become essential in modern molecular bi-
ology. But to consider genetic molecules only as long sequences consisting of
the 4 basic constituents is too simple to determine the function and physical
structure of the molecules. Additional information about the sequences should
be added to the sequences. Early works with these additional information are
primary structure based, the sequence comparison is basically done on the
primary structure while trying to incorporate secondary structure data [2, 9].
This approach has the weakness that it does not treat a base pair as a whole
entity. Recently, an improved model was proposed [13, 14].

Arc-annotated sequences are useful in describing the secondary and tertiary
structures of RNA and protein sequences. See [13, 4, 16, 22, 23] for further
discussion and references. Structure comparison for RNA and for protein se-
quences has become a central computational problem bearing many challeng-
ing computer science questions. In this context, the longest arc preserving com-
mon subsequence problem (LAPCS) recently has received considerable atten-
tion [13, 14, 22, 23, 25]. It is a sound and meaningful mathematical formaliza-
tion of comparing the secondary structures of molecular sequences. Studies for
this problem have been undertaken in [5, 16, 1, 3, 6, 7, 10, 15, 20, 28, 29, 30, 33].

2 Preliminaries and problem definitions

Given two sequences S and T over some fixed alphabet Σ, the sequence T is a
subsequence of S if T can be obtained from S by deleting some letters from S.
Notice that the order of the remaining letters of S bases must be preserved.
The length of a sequence S is the number of letters in it and is denoted as |S|.
For simplicity, we use S[i] to denote the ith letter in sequence S, and S[i, j] to
denote the substring of S consisting of the ith letter through the jth letter.

Arc-preserving subsequences 37

Given two sequences S1 and S2 (over some fixed alphabet Σ), the classic
longest common subsequence problem asks for a longest sequence T that is a
subsequence of both S1 and S2.

An arc-annotated sequence of length n on a finite alphabet Σ is a couple
A = (S, P) where S is a sequence of length n on Σ and P is a set of pairs
(i1, i2), with 1 ≤ i1 < i2 ≤ n. In this paper we will then call an element of S
a base. A pair (i1, i2) ∈ P represents an arc linking bases S[i1] and S[i2] of S.
The bases S[i1] and S[i2] are said to belong to the arc (i1, i2) and are the only
bases that belong to this arc.

Given two annotated sequences S1 and S2 with arc sets P1 and P2 respec-
tively, a common subsequence T of S1 and S2 induces a bijective mapping from
a subset of {1, . . . , |S1|} to subset of {1, . . . , |S2|}. The common subsequence T is
arc-preserving if the arcs induced by the mapping are preserved, i.e., for any
(i1, j1) and (i2, j2) in the mapping,

(i1, i2) ∈ P1 ⇔ (j1, j2) ∈ P2.

The LAPCS problem is to find a longest common subsequence of S1 and
S2 that is arc-preserving (with respect to the given arc sets P1 and P2) [13].

LAPCS:
Instance: An alphabet Σ, annotated sequences S1 and S2, S1, S2 ∈ Σ∗, with

arc sets P1 and P2 respectively.
Question: Find a longest common subsequence of S1 and S2 that is arc-

preserving.
The arc structure can be restricted. We consider the following four natural

restrictions on an arc set P which are first discussed in [13]:
1. no sharing of endpoints:
∀(i1, i2), (i3, i4) ∈ P, i1 6= i4, i2 6= i3, and i1 = i3 ⇔ i2 = i4.

2. no crossing:
∀(i1, i2), (i3, i4) ∈ P, i1 ∈ [i3, i4] ⇔ i2 ∈ [i3, i4].

3. no nesting:
∀(i1, i2), (i3, i4) ∈ P, i1 ≤ i3 ⇔ i2 ≤ i3.

4. no arcs:
P = ∅.

These restrictions are used progressively and inclusively to produce five
distinct levels of permitted arc structures for LAPCS:

– unlimited — no restrictions;
– crossing — restriction 1;
– nested — restrictions 1 and 2;
– chain — restrictions 1, 2 and 3;

38 V. Popov

– plain — restriction 4.
The problem LAPCS is varied by these different levels of restrictions as

LAPCS(x, y) which is problem LAPCS with S1 having restriction level x
and S2 having restriction level y. Without loss of generality, we always assume
that x is the same level or higher than y.

We give the definitions of two special cases of the LAPCS problem, which
were first studied in [25]. The special cases are motivated from biological ap-
plications [17, 24].

The c-fragment LAPCS problem (c ≥ 1):
Instance: An alphabet Σ, annotated sequences S1 and S2, S1, S2 ∈ Σ∗, with

arc sets P1 and P2 respectively, where S1 and S2 are divided into fragments of
lengths exactly c (the last fragment can have a length less than c).

Question: Find a longest common subsequence of S1 and S2 that is arc-
preserving. The allowed matches are those between fragments at the same
location.

The c-diagonal LAPCS problem, (c ≥ 0), is an extension of the c-
fragment LAPCS problem, where base S2[i] is allowed only to match bases
in the range S1[i− c, i+ c].

The c-diagonal LAPCS and c-fragment LAPCS problems are relevant
in the comparison of conserved RNA sequences where we already have a rough
idea about the correspondence between bases in the two sequences.

3 Previous results

It is shown in [25] that the 1-fragment LAPCS(crossing, crossing) and
0-diagonal LAPCS(crossing, crossing) are solvable in time O(n). An
overview on known NP-completeness results for c-diagonal LAPCS and
c-fragment LAPCS is given in Figure 1.

unlimited crossing nested chain plain
unlimited NP-h [25] NP-h [25] NP-h [25] ? ?
crossing — NP-h [25] NP-h [25] ? ?
nested — — NP-h [25] ? ?

Figure 1: NP-completeness results for c-diagonal LAPCS (with c ≥ 1) and
c-fragment LAPCS (with c ≥ 2)

Arc-preserving subsequences 39

4 The c-fragment LAPCS(unlimited,plain) and the
c-diagonal LAPCS(unlimited,plain) problem

Let us consider the decision version of the c-fragment LAPCS problem.
Instance: An alphabet Σ, a positive integer k, annotated sequences S1

and S2, S1, S2 ∈ Σ∗, with arc sets P1 and P2 respectively, where S1 and S2

are divided into fragments of lengths exactly c (the last fragment can have a
length less than c).

Question: Is there a common subsequence T of S1 and S2 that is arc-
preserving, |T | ≥ k? (The allowed matches are those between fragments at the
same location).

Similarly, we can define the decision version of the c-diagonal LAPCS
problem.

Theorem 1 If |Σ| = 1, then 1-fragment LAPCS(unlimited, plain) and
0-diagonal LAPCS(unlimited, plain) are NP-complete.

Proof. It is easy to see that 1-fragment LAPCS(unlimited, plain) =
0-diagonal LAPCS(unlimited, plain).

Let G = (V, E) be an undirected graph, and let I ⊆ V. We say that the set I
is independent if whenever i, j ∈ I then there is no edge between i and j. We
make use of the following problem:

Independent Set (IS): Instance: A graph G = (V, E), a positive integer
k.

Question: Is there an independent set I, I ⊆ V, with |I| ≥ k?
IS is NP-complete (see [31]).
Let us suppose that Σ = {a}. We will show that IS can be polynomially

reduced to problem 1-fragment LAPCS(unlimited, plain).
Let 〈G = (V, E), V = {1, 2, . . . , n}, k〉 be an instance of IS. Now we transform

an instance of the IS problem to an instance of the 1-fragment LAPCS(un-
limited, plain) problem as follows.
• S1 = S2 = an.
• P1 = E, P2 = ∅.
• 〈(S1, P1), (S2, P2), k〉.
First suppose that the graph G has an independent set I of size k. By

definition of independent set, (i, j) /∈ E for each i, j ∈ I. For a given subset I,
let

M = {(i, i) : i ∈ I}.

Since I is an independent set, if (i, j) ∈ E = P1 then either (i, i) /∈ M or

40 V. Popov

(j, j) /∈ M. This preserves arcs since P2 is empty. Clearly, S1[i] = S2[i] for
each i ∈ I, and the allowed matches are those between fragments at the same
location. Therefore, there is a common subsequence T of S1 and S2 that is
arc-preserving, |T | = k, and the allowed matches are those between fragments
at the same location.

Now suppose that there is a common subsequence T of S1 and S2 that is
arc-preserving, |T | = k, and the allowed matches are those between fragments
at the same location. In this case there is a valid mapping M, with |M| = k.
Since c = 1, it is easy to see that if (i, j) ∈M then i = j. Let

I = {i : (i, i) ∈M}.

Clearly,
|I| = |M| = k.

Let i1 and i2 be any two distinct members of I. Then let (i1, j1), (i2, j2) ∈M.
Since

i1 = j1, i2 = j2, i1 6= i2,

it is easy to see that j1 6= j2. Since P2 is empty, (j1, j2) /∈ P2, so (i1, i2) /∈ P1.
Since P1 = E, the set I of vertices is a size k independent set of G. �

5 The c-fragment LAPCS(crossing,chain) and the
c-diagonal LAPCS(crossing,chain) problem

Theorem 2 If |Σ| = 2, then 1-fragment LAPCS(crossing,chain) and
0-diagonal LAPCS(crossing,chain) are NP-complete.

Proof. It is easy to see that 1-fragment LAPCS(crossing, chain) = 0-
diagonal LAPCS(crossing, chain).

Let us suppose that Σ = {a, b}. We will show that IS can be polynomially
reduced to problem 1-fragment LAPCS(crossing, chain).

Let 〈G = (V, E), V = {1, 2, . . . , n}, k〉 be an instance of IS. Note that IS
remains NP-complete when restricted to connected graphs with no loops and
multiple edges. Let G = (V, E) be such a graph. Now we transform an instance
of the IS problem to an instance of the 1-fragment LAPCS(crossing,
chain) problem as follows.

Arc-preserving subsequences 41

There are two cases to consider.

Case I. k > n
• S1 = S2 = a

• P1 = P2 = ∅
• 〈(S1, P1), (S2, P2), k〉
Clearly, if I is an independent set, then I ⊆ V and |I| ≤ |V | = n. Therefore,

there is no an independent set I, with |I| ≥ k.
Since k > n and n ∈ {1, 2, . . . }, it is easy to see that k > 1. Since S1 = S2 = a

and P1 = P2 = ∅, T = a is the longest arc-preserving common subsequence.
Therefore, there is no an arc-preserving common subsequence T such that
|T | ≥ k.

Case II. k ≤ n
• S1 = S2 = (banb)n

• Let α < β. Then

(α,β) ∈ P1 ⇔ [∃i ∈ {1, 2, . . . , n}∃j ∈ {1, 2, . . . , n}

((i, j) ∈ E∧ α = (i− 1)(n+ 2) + j+ 1∧

∧β = (j− 1)(n+ 2) + i+ 1)]∨

∨[∃i ∈ {1, 2, . . . , n}(α = (i− 1)(n+ 2) + 1∧ β = i(n+ 2))],

(α,β) ∈ P2 ⇔ ∃i ∈ {1, 2, . . . , n}

(α = (i− 1)(n+ 2) + 1∧ β = i(n+ 2)).

• 〈(S1, P1), (S2, P2), k(n+ 2)〉
First suppose that G has an independent set I of size k. By definition of

independent set, (i, j) /∈ E for each i, j ∈ I. For a given subset I, let

M = {(j, j) : j = (n+ 2)(i− 1) + l, i ∈ I,

l ∈ {1, 2, . . . , n+ 2}}.

Let (j, j) ∈M, and there exist i such that j = (n+2)(i−1)+1. By definition
of M,

((n+ 2)(i− 1) + 1, (n+ 2)(i− 1) + 1) ∈M ⇔
⇔ ((n+ 2)i, (n+ 2)i) ∈M.

42 V. Popov

By definition of Pl, ((n + 2)(i − 1) + 1, (n + 2)i) ∈ Pl where l = 1, 2. Let
(j, j) ∈M, and there exist i such that j = (n+ 2)i. By definition of M,

((n+ 2)i, (n+ 2)i) ∈M ⇔
⇔ ((n+ 2)(i− 1) + 1, (n+ 2)(i− 1) + 1) ∈M.

By definition of Pl,

((n+ 2)(i− 1) + 1, (n+ 2)i) ∈ Pl

where l = 1, 2. Let (j, j) ∈M, and

j = (n+ 2)(i− 1) + l

where 1 < l < n+ 2. By definition of M, i ∈ I. Since I is an independent set,
if (i, l− 1) ∈ E then l− 1 /∈ I. Since

1 < l < n+ 2,

by definition of P1, either

((n+ 2)(i− 1) + l, (n+ 2)(l− 2) + i+ 1) ∈ P1

or
((n+ 2)(i− 1) + l, t) /∈ P1

for each t. Since
1 < l < n+ 2,

by definition of P2,
((n+ 2)(i− 1) + l, t) /∈ P2

for each t. If

((n+ 2)(i− 1) + l, (n+ 2)(l− 2) + i+ 1) ∈ P1,

then in view of l− 1 /∈ I,

((n+ 2)(l− 2) + i+ 1, (n+ 2)(l− 2) + i+ 1) /∈M.

This preserves arcs. Since |I| = k, it is easy to see that

|M| = k(n+ 2).

Arc-preserving subsequences 43

Clearly, S1[i] = S2[i] for each i ∈ I, and the allowed matches are those between
fragments at the same location. Therefore, there is a common subsequence T
of S1 and S2 that is arc-preserving, |T | = k(n + 2), and the allowed matches
are those between fragments at the same location.

Now suppose that there is a common subsequence T of S1 and S2 that is
arc-preserving, |T | = k, and the allowed matches are those between fragments
at the same location. In this case there is a valid mapping M, with |M| = k.
Since c = 1, it is easy to see that if (i, j) ∈M then i = j. Let I = {i : (i, i) ∈M}.
Clearly, |I| = |M| = k. Let i1 and i2 be any two distinct members of I. Then
let (i1, j1), (i2, j2) ∈ M. Since i1 = j1, i2 = j2, i1 6= i2, it is easy to see that
j1 6= j2. Since P2 is empty, (j1, j2) /∈ P2, so (i1, i2) /∈ P1. Since P1 = E, the set
I of vertices is a size k independent set of G. �

6 Conclusions

In this paper, we considered two special cases of the LAPCS problem, which
were first studied in [25]. We have shown that the decision version of the
1-fragment LAPCS(crossing,chain) and the decision version of the 0-
diagonal LAPCS(crossing,chain) are NP-complete for some fixed alpha-
bet Σ such that |Σ| = 2. Also we have shown that if |Σ| = 1, then the decision
version of the 1-fragment LAPCS(unlimited, plain) and the decision ver-
sion of the 0-diagonal LAPCS(unlimited, plain) are NP-complete. This
results answers some open questions in [16] (see Table 4.2. in [16]).

Acknowledgements

The work was partially supported by Grant of President of the Russian Fed-
eration MD-1687.2008.9 and Analytical Departmental Program “Developing
the scientific potential of high school” 2.1.1/1775.

References

[1] J. Alber, J. Gramm, J. Guo, R. Niedermeier, Computing of two sequences
with nested arc notations, Theoret. Comput. Sci. 312, 2-3 (2004) 337–358.⇒36

http://www-ti.informatik.uni-tuebingen.de/~alber
http://www-ti.informatik.uni-tuebingen.de/~gramm/
http://people.mmci.uni-saarland.de/~jguo/
http://theinf1.informatik.uni-jena.de/~niedermr/
http://www.sciencedirect.com/science/journal/03043975

44 V. Popov

[2] V. Bafna, S. Muthukrishnan, R. Ravi, Comparing similarity between RNA
strings, Proc. 6th Annual Symposium on Combinatorial Pattern Match-
ing, Lecture Notes in Comput. Sci. 937 (1995) 1–16. ⇒36

[3] G. Blin, H. Touzet, How to compare arc-annotated sequences: The align-
ment hierarchy, Proc. 13th International Symposium on String Processing
and Information Retrieval (SPIRE), Lecture Notes in Comput. Sci. 4209
(2006) 291–303. ⇒36

[4] G. Blin, M. Crochemore, S. Vialette, Algorithmic aspects of arc-annotated
sequences, in: Algorithms in Computational Molecular Biology: Tech-
niques, Approaches and Applications (ed. M. Elloumi, A. Y. Zomaya),
John Wiley & Sons, Inc., Hoboken, NJ, 2011, pp. 171–183. ⇒36

[5] H. L. Bodlaender, R. G. Downey, M. R. Fellows, H. T. Wareham, The
parameterized complexity of sequence alignment and consensus, Theoret.
Comput. Sci. 147, 1-2 (1995) 31–54. ⇒35, 36

[6] H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, H. T.
Wareham, Parameterized complexity analysis in computational biology,
Computer Applications in the Biosciences 11, 1 (1995) 49–57. ⇒36

[7] J. Chen, X. Huang, I. A. Kanj, G. Xia, W-hardness under linear FPT-
reductions: structural properties and further applications, Proc. of CO-
COON, Kunming, China, 2005, pp. 975–984. ⇒36

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, Third edition, The MIT Press, Cambridge, Massachusetts,
2009. ⇒36

[9] F. Corpet, B. Michot, Rnalign program: alignment of RNA sequences
using both primary and secondary structures, Computer Applications in
the Biosciences 10, 4 (1994) 389–399. ⇒36

[10] P. Damaschke, A remark on the subsequence problem for arc-annotated
sequences with pairwise nested arcs, Inform. Process. Lett. 100, 2 (2006)
64–68. ⇒36

[11] W. H. E. Day, F. R. McMorris, Discovering consensus molecular se-
quences, in: Information and Classification – Concepts, Methods, and
Applications (ed. O. Opitz, B. Lausen, R. Klar), Springer-Verlag, Berlin,
1993, pp. 393–402. ⇒36

http://cseweb.ucsd.edu/~vbafna/
http://www.cs.rutgers.edu/~muthu/
http://www2.tepper.cmu.edu/andrew/ravi/
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www-igm.univ-mlv.fr/~gblin/LIGM_LIKE/
http://www.lifl.fr/~touzet/
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www-igm.univ-mlv.fr/~gblin/LIGM_LIKE/
http://igm.univ-mlv.fr/~mac/
http://www-igm.univ-mlv.fr/~vialette/
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470505192.html
http://mouradelloumi.homestead.com/home.html
http://sydney.edu.au/engineering/it/~zomaya/
http://eu.wiley.com/WileyCDA/
http://www.cs.uu.nl/staff/hansb.html
http://www.victoria.ac.nz/smsor/staff/rod-downey.aspx
http://www.mrfellows.net/
http://web.cs.mun.ca/~harold/
http://www.sciencedirect.com/science/journal/03043975
http://www.cs.uu.nl/staff/hansb.html
http://www.victoria.ac.nz/smsor/staff/rod-downey.aspx
http://www.mrfellows.net/
http://web.cs.mun.ca/~harold/
http://www.researchgate.net/journal/0266-7061_Computer_applications_in_the_biosciences_CABIOS
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/algorithms
http://mitpress.mit.edu/
http://www.researchgate.net/journal/0266-7061_Computer_applications_in_the_biosciences_CABIOS
http://www.cse.chalmers.se/~ptr/
http://www.sciencedirect.com/science/journal/00200190
http://www.springer.com/?SGWID=0-102-0-0-0

Arc-preserving subsequences 45

[12] W. H. E. Day, F. R. McMorris, The computation of consensus patterns
in DNA sequences, Math. Comput. Modelling 17, 10 (1993) 49–52. ⇒36

[13] P. A. Evans, Algorithms and Complexity for Annotated Sequence Analysis,
PhD Thesis, University of Victoria, Victoria, 1999. ⇒36, 37

[14] P. A. Evans, Finding common subsequences with arcs and pseudo-
knots, Proc. 10th Annual Symposium on Combinatorial Pattern Matching
(CPM’99), Lecture Notes in Comput. Sci. 1645 (1999) 270–280. ⇒36

[15] J. Gramm, J. Guo, R. Niedermeier, Pattern matching for arc-annotated
sequences, ACM Trans. Algorithms 2, 1 (2006) 44–65. ⇒36

[16] J. Guo, Exact algorithms for the longest common subsequence problem
for arc-annotated sequences, Master Thesis, Eberhard-Karls-Universität,
Tübingen, 2002. ⇒36, 43

[17] D. Gusfield, Algorithm on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology, Cambridge University Press, Cam-
bridge, 1997. ⇒38

[18] D. S. Hirschberg, The Longest Common Subsequence Problem, PhD The-
sis, Princeton University, Princeton, 1975. ⇒36

[19] D. S. Hirschberg, Recent results on the complexity of common subse-
quence problems, in: Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison (ed. D. Sankoff, J.
B. Kruskal), Addison-Wesley Publishing Company, Reading/Menlo Park,
NY, 1983, pp. 325–330. ⇒35

[20] C. S. Iliopouéos, M. S. Rahman, Algorithms for computing variants of
the longest common subsequence problem, Theoret. Comput. Sci. 395,
2-3 (2008) 255–267. ⇒36

[21] R. W. Irving, C. B. Fraser, Two algorithms for the longest common
subsequence of three (or more) strings, Proc. Third Annual Symposium
on Combinatorial Pattern Matching, Lecture Notes in Comput. Sci. 644
(1992) 214–229. ⇒35, 36

[22] T. Jiang, G.-H. Lin, B. Ma, K. Zhang, The longest common subsequence
problem for arc-annotated sequences, Proc. 11th Annual Symposium on
Combinatorial Pattern Matching (CPM 2000), Lecture Notes in Comput.
Sci. 1848 (2000) 154–165. ⇒36

http://www.sciencedirect.com/science/journal/08957177
http://www.cs.unb.ca/~pevans/
http://www.uvic.ca/
http://www.cs.unb.ca/~pevans/
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www-ti.informatik.uni-tuebingen.de/~gramm/
http://people.mmci.uni-saarland.de/~jguo/
http://theinf1.informatik.uni-jena.de/~niedermr/
http://talg.acm.org/
http://people.mmci.uni-saarland.de/~jguo/
http://www.uni-tuebingen.de/
http://csiflabs.cs.ucdavis.edu/~gusfield/
http://www.amazon.com/exec/obidos/tg/detail/-/0521585198/qid=1056308893/sr=8-1/ref=sr_8_1/102-4875758-2141731?v=glance&s=books&n=507846
http://www.cambridge.org/
http://www.ics.uci.edu/~dan/
http://www.princeton.edu
http://www.ics.uci.edu/~dan/
http://www.amazon.com/Time-Warps-String-Edits-Macromolecules/dp/1575862174
http://albuquerque.bioinformatics.uottawa.ca/
http://en.wikipedia.org/wiki/Joseph_Kruskal
http://www.pearsonhighered.com/
http://www.dcs.kcl.ac.uk/staff/csi/
http://teacher.buet.ac.bd/msrahman/
http://www.sciencedirect.com/science/journal/03043975
http://www.dcs.gla.ac.uk/~rwi/
http://www.dcs.gla.ac.uk/~fraserc/
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www.cs.uwaterloo.ca/~binma/
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0

46 V. Popov

[23] T. Jiang, G.-H. Lin, B. Ma, K. Zhang, The longest common subsequence
problem for arc-annotated sequences, J. Discrete Algorithms 2, 2 (2004)
257–270. ⇒36

[24] M. Li, B. Ma, L. Wang, Near optimal multiple alignment within a band in
polynomial time, Proc. Thirty-second Annual ACM Symposium on The-
ory of Computing (STOC’00), Portland, OR, 2000, pp. 425–434. ⇒38

[25] G. H. Lin, Z. Z. Chen, T. Jiang, J. J. Wen, The longest common subse-
quence problem for sequences with nested arc annotations, Proceedings
of the 28th International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Comput. Sci. 2076 (2001) 444–455. ⇒ 36,
38, 43

[26] S. Y. Lu, K. S. Fu, A sentence-to-sentence clustering procedure for pat-
tern analysis, IEEE Transactions on Systems, Man, and Cybernetics 8,
5 (1978) 381–389. ⇒36

[27] D. Maier, The complexity of some problems on subsequences and super-
sequences, J. ACM 25, 2 (1978) 322–336. ⇒36

[28] D. Marx, I. Schlotter, Parameterized complexity of the arc-preserving sub-
sequence problem, Proc. 36th International Workshop on Graph Theoretic
Concepts in Computer Science (WG 2010), Lecture Notes in Comput. Sci.
6410 (2010) 244–255. ⇒36

[29] A. Ouangraoua, C. Chauve, V. Guignon, S. Hamel, New algorithms
for aligning nested arc-annotated sequences, Laboratoire Bordelais de
Recherche en Informatique, Research Report RR-1443-08, Université Bor-
deaux, 2008. ⇒36

[30] A. Ouangraoua, V. Guignon, S. Hamel, C. Chauve, A new algorithm for
aligning nested arc-annotated sequences under arbitrary weight schemes,
Theoret. Comput. Sci. 412, 8-10 (2011) 753–764. ⇒36

[31] C. H. Papadimitriou, Computational complexity , Addison-Wesley Pub-
lishing Company, Reading/Menlo Park, NY, 1994. ⇒39

[32] P. A. Pevzner, Multiple alignment, communication cost, and graph match-
ing, SIAM J. Appl. Math. 52, 6 (1992) 1763–1779. ⇒36

http://www.cs.uwaterloo.ca/~binma/
http://www.sciencedirect.com/science/journal/15708667
http://learn.tsinghua.edu.cn:8080/2008310470/mingqiang.htm
http://www.cs.uwaterloo.ca/~binma/
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www.ieeesmc.org/publications/index.html
http://jacm.acm.org/
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www.cecm.sfu.ca/~cchauve/
http://www.u-bordeaux3.fr
http://www.u-bordeaux3.fr
http://www.cecm.sfu.ca/~cchauve/
http://www.sciencedirect.com/science/journal/03043975
http://www.cs.berkeley.edu/~christos/
http://www.amazon.com/Computational-Complexity-Christos-H-Papadimitriou/dp/0201530821
http://www.pearsonhighered.com/
http://cseweb.ucsd.edu/~ppevzner/
http://www.siam.org/journals/siap.php

Arc-preserving subsequences 47

[33] K. Pietrzak, On the parameterized complexity of the fixed alphabet short-
est common supersequence and longest common subsequence problems,
J. Comput. System Sci. 67, 4 (2003) 757–771. ⇒36

[34] D. Sankoff, Matching comparisons under deletion/insertion constraints,
Proc. Natl. Acad. Sci. USA 69, 1 (1972) 4–6. ⇒36

[35] R. A. Wagner, M. J. Fischer, The string-to-string correction problem, J.
ACM 21, 1 (1974) 168–173. ⇒36

Received: November 17, 2010• Revised: March 11, 2011

http://homepages.cwi.nl/~pietrzak/
http://www.sciencedirect.com/science/journal/00220000
http://albuquerque.bioinformatics.uottawa.ca/
http://www.pnas.org/
http://jacm.acm.org/
http://jacm.acm.org/

Acta Univ. Sapientiae, Informatica, 3, 1 (2011) 48–75

ComDeValCo framework: designing

software components and systems using

MDD, executable models, and TDD

Bazil PÂRV
Babeş-Bolyai University

Cluj-Napoca
email: bparv@cs.ubbcluj.ro

Simona-Claudia
MOTOGNA

Babeş-Bolyai University
Cluj-Napoca

email: motogna@cs.ubbcluj.ro

Ioan LAZĂR
Babeş-Bolyai University

Cluj-Napoca
email: ilazar@cs.ubbcluj.ro

Istvan-Gergely CZIBULA
Babeş-Bolyai University

Cluj-Napoca
email: istvanc@cs.ubbcluj.ro

Codruţ-Lucian LAZĂR
Babeş-Bolyai University

Cluj-Napoca
email: clazar@cs.ubbcluj.ro

Abstract. This paper provides an overall description of ComDeValCo,
a framework for component definition, validation and composition. It
comprises a modeling language, a component repository and a set of
tools aimed to assist developers in all activities above.

1 Introduction

The main benefits of component-based development are [32]: (i) loose coupling
among the application components, (ii) third-party component selection, and

Computing Classification System 1998: D.2.11
Mathematics Subject Classification 2010: 68Q60
Key words and phrases: model-driven development, test-driven development, executable
models

48

http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro
mailto:bparv@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro
mailto:motogna@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro
mailto:ilazar@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro/istvanc
http://www.cs.ubbcluj.ro
mailto:istvanc@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro
http://www.cs.ubbcluj.ro
mailto:clazar@cs.ubbcluj.ro

ComDeValCo framework overview 49

(iii) increased component reuse. In traditional component-based approaches,
the set of components is statically configured, i.e. the benefits outlined above
typically extend only to the development portion of the software system life-
cycle, not to the run-time portion [2].

Modern component models and frameworks allow components unavailable
at the time of application construction to be later integrated into the appli-
cation, after its deployment [25]. Such frameworks use a dynamic execution
environment, providing the following: (a) dynamic availability of components
– components can be installed, updated, and removed at runtime, and their
provided and required interfaces are managed dynamically; (b) dynamic re-
configuration – the configuration properties of a running component can be
changed, and (c) dynamic composition - new components can be composed at
runtime from other existing components.

Development approach is another key aspect of component-based develop-
ment. The success of using models (formal or not) is influenced in part by
the availability and the degree of acceptance of modeling tools and techniques
developed by the software development community. It is convenient to build
simple models, without great intellectual effort and considerable investments
in time. What is really important regarding resulting models is their accessibil-
ity, ease of understanding and analyzing, and a reasonable degree of formality.

ComDeValCo project started three years ago having the above require-
ments in mind. Its main goal is to help developers in the component-based
development process, i.e. to build, validate and assemble simple or complex
components, using a platform-independent modeling language and a set of
tools.

The structure of the paper is as follows. After this introductory section, the
next two contain background information and a short description of the evolu-
tion of ComDeValCo framework. The sections 4 to 6 describe in some detail
the components of the framework, i.e. the modeling language, the component
repository and the toolset, following the natural evolution of programming
paradigms, from procedural to component-based, with modular and object-
oriented as intermediate steps. The last section draws some conclusions and
states further work to be done.

50 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

2 Background

The construction of software components is simplified by (1) applying a model-
driven development (MDD) approach and (2) separating the business logic of
a component from the nonfunctional requirements.

2.1 Model-driven development

Model-Driven Architecture (MDA) framework allows system specification in-
dependently of a particular platform and for transforming the system specifica-
tion into one for a particular platform. MDA is considered the OMG approach
to Model Driven Engineering (MDE), which is a development solution to ap-
plications that have to deal with increased platform complexity and domain
concepts, aiming to raise the level of abstraction in program specification and
to increase automation in program development. According to MDE, the sys-
tem development is based on models at different levels of abstraction; later,
model transformations partially automate some steps of program development.
Besides MDA, the other MDE approach is Domain Specific Modeling.

Unfortunately, development processes based on MDA are not widely used
today because most of them are viewed as heavy-weight processes – they can-
not deliver (incrementally) partial implementations to be executed as soon as
possible.

In this context, an alternative is to execute UML models. For such processes,
models must act just like code, and UML 2 and its Action Semantics [22] pro-
vide a foundation to construct executable models. A model is executable if it
contains a complete and precise behavior description. Unfortunately, creating
such a model is a tedious task or an impossible one because of many UML
semantic variation points.

Executable UML described in [14] has an execution semantics for a subset
of actions sufficient for computational completeness. It includes two basic el-
ements: an action language, specifying the elements that can be used, and an
operational semantics, establishing how the elements can be placed in a model,
and how the model can be interpreted. Again, there are some inconveniences:
creating reasonable-sized executable UML models is difficult, because the UML
primitives from the UML Action Semantics package are too fine-grained.

Another alternative is represented by agile MDA processes [15], which apply
the main Agile Alliance principles (e.g. testing first, immediate execution) into
a classical MDA process. The requirement of making such process models to
act just like code, means that they must be executable.

ComDeValCo framework overview 51

2.2 Separation of the business logic and non-functional re-
quirements

This principle targets two important aspects of software development. First,
the developer will concentrate on the functionality with no concern on data
access or presentation issues. Second, such an approach supports reuse on a
larger scale. Early commercial component models such as Component Object
Model (COM) (Microsoft, 1995), Enterprise Java-Beans 2.1 (Sun, 2003), and
CORBA Component Model (OMG, 2002) propose specific application pro-
gramming interfaces, so they do not offer a clear separation between functional
and non-functional requirements. These approaches increase the development
costs and decrease the component’s potential of reuse.

There are many other component models developed by the academic com-
munity which provide solutions for the separation problem but do not provide
dynamic execution environment features [3]. Some of these frameworks – such
as iPOJO [2], OSGi framework [25], and SCA [23] – have similar features to
our ComDeValCo approach.

3 ComDeValCo evolution

MDA and Agile principles are the driving forces of our proposal, ComDe-
ValCo – a framework for Software Component Definition, Validation, and
Composition [26].

The framework is intended to cover two sub-processes of the component-
based development: component development and component-based system de-
velopment.

Component development starts with its definition, using an object-oriented
modeling language, and graphical tools. Modeling language provides the nec-
essary precision and consistency, and the use of graphical tools simplifies de-
veloper’s work. Once defined, component models are passed to a verification
and validation (V & V) step, which checks their correctness and evaluates
their performance. When a component passes V & V step, it is stored in a
component repository, for later (re)use.

Component-based system development takes the components from reposi-
tory and uses graphical tools, for: (a) selecting components fulfilling a specific
requirement, (b) performing consistency checks regarding component assem-
bly and (c) including a component in the already existing architecture of the
target system. When the assembly step is completed, and the target system
is completely built, other tools will perform system V & V, as well as perfor-

52 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

mance evaluation operations on it.
ComDeValCo framework consists of:

• a modeling language, used to describe component models;
• a component repository, which stores and retrieves software components

and systems, and
• a toolset, aimed to help developers to define, check, and validate software

components and systems, and to provide maintenance operations for the
component repository.

The next three sections describe in more detail the three components of
the ComDeValCo framework. A detailed presentation of the procedural and
modular stages of ComDeValCo project is given in [28, 29], while object-
oriented and component-based features are discussed in [30].

4 The modeling language

The software component model is described by a platform-independent mod-
eling language, having the following features:

• all elements are objects, instances of classes defined at logical level, with
no relationship to a concrete object-oriented programming language;

• top-level language constructs cover both complete software systems and
concrete software components;

• there is a 1:1 relationship between the internal representation of the com-
ponent model – an aggregated object – and its external representation
on a persistent media, using various formats: XML, object serialization,
etc.

The initial evolution of the modeling language includes the following steps
and elements:

• initial object model, developed in the preliminary phase of the project
(feasibility study);

• Procedural Action Language (PAL), with a concrete syntax and
graphical notations for statements and program units;

• execution infrastructure, including the concepts of module and ex-
ecution environment; the module has both classical (including several
data types, functions, and procedures) and modern (containing several
data types, including components – unit of deployment) semantics;

• type system, containing primitive types, then vectors and structures.

ComDeValCo framework overview 53

Figure 1: Expression class hierarchy

4.1 Initial object model

The initial object model was structured on three layers, from simple to com-
plex: (1) low-level (syntactical) constructs, (2) execution control constructs
(statements) and (3) program units.

The lowest layer (as Figure 1 shows, see for more details [27]) contains ba-
sic constructs of the modeling language, classes Type, Declaration, Value,
Variable and Expression. The concrete subclasses of the abstract class
Expression are: Value, Variable, BinaryExpression, UnaryExpression,
and DefinedFunction are also subclasses of Expression.

The middle layer contains objects which model the execution control, all
of them inheriting from a base class Statement. This class hierarchy uses
Composite and Interpretor design patterns, as Figure 2 shows. Statement has
a single abstract operation, execute(), which produces a state change in many
situations.

The subclasses of SimpleStatement are the following: CallStatement,
AssignmentStatement, InputStatement, OutputStatement, LoopStatement
and BranchStatement. They cover all control structures of imperative pro-
gramming and have appropriate implementations for their execute() meth-
ods.

Program units considered in the initial model are shown in Figure 3: Program,
Procedure and Function. They belong to the upper layer of the modeling lan-
guage.

54 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

C
a
ll
S

ta
te

m
e
n

t

F
o

rS
ta

te
m

e
n

t
R

e
p

e
a
tS

ta
te

m
e
n

t
W

h
il
e
S

ta
te

m
e
n

t

B
ra

n
c
h

S
ta

te
m

e
n

t
L

o
o

p
S

ta
te

m
e
n

t
O

u
tp

u
tS

ta
te

m
e
n

t
In

p
u

tS
ta

te
m

e
n

t
A

s
s
ig

n
m

e
n

tS
ta

te
m

e
n

t

S
im

p
le

S
ta

te
m

e
n

t
C

o
m

p
o

u
n

d
S

ta
te

m
e
n

t

S
ta

te
m

e
n

t

–
m

in
C

o
u

n
te

r
m

a
x
C

o
u

n
te

r
+

c
o

u
n

te
r

– +
e

x
e

c
u

te
()

+
e

x
e

c
u

te
()

+
e

x
e

c
u

te
()

+
e

x
e

c
u

te
()

+
e

x
e

c
u

te
()

+
e

x
e

c
u

te
()

+
e

x
e

c
u

te
()

+
e

x
e

c
u

te
()

+
e

x
e

c
u

te
()

– – – –

p
ro

c
in

A
rg

s
in

O
u

tA
rg

s
o

u
tA

rg
s

– –
v
a

r
e

x
p

r
–

v
a

r
–

v
a

r
–

b
o

d
y

–
te

s
t

th
e

n
S

ta
te

m
e

n
t

+
e

ls
e

S
ta

te
m

e
n

t
–

–
te

s
t

–
te

s
t

+
e

x
e

c
u

te
()

a
d

d
()

+
re

m
o

v
e

()
+

s
iz

e
()

+
()

+

–
d

e
s
c
r

–
s
ta

te
m

e
n

ts

Figure 2: Statement class hierarchy

ComDeValCo framework overview 55

Figure 3: Program units

Program objects are executable components, having a name, a state and a
body of statements; their state is made up of all Variable objects local to the
component, and the body is a Statement object. The only operation is run(),
implemented by the call body.execute().
Procedure and Function represent concrete software components. A pro-

cedure declaration states its name, formal parameters, local state, and body.
Procedure class inherits naturally from Program class; additionally, separate
lists for in, in-out and out parameters are needed for a complete implemen-
tation of CallStatement.execute() method. A Function object has just a
list of in parameters and returns a Value object.

4.2 PAL, procedural action language

Having the above initial object model in mind, an action language PAL (Pro-
cedural Action Language) was developed. PAL, described in more detail in
[4], has a concrete (textual) syntax and graphical notations corresponding to
statement and component objects. The concrete syntax allows the developer
to express quickly the body of an operation, while graphical notations help in
understanding the control flow. A subset of PAL constructs is shown in Figure
4.

4.3 Modular constructs

The modeling language was improved in other two directions, by (1) including
module and execution environment, and (2) extending its type system with
structured types.

56 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

*
*

T
y

p
e

d
E

le
m

e
n

t

T
e

s
tC

a
s

e

O
p

e
ra

ti
o

n

P
ro

g
ra

m
0

..
1

-p
ro

g
ra

m
O

w
n

e
r

0
..

1

-p
a

ra
m

e
te

r

P
a

ra
m

e
te

r

V
a

ri
a

b
le

-p
a
ra

m
e
te

rO
w

n
e
r

N
a

m
e

d
E

le
m

e
n

t

-n
a

m
e

:
S

tr
in

g

-v
a

ri
a

b
le

-v
a
ri

a
b

le
O

w
n

e
r

-s
ta

te
m

e
n

tO
w

n
e

r

0
..

1

0
..
1

S
im

p
le

S
ta

te
m

e
n

t
S

tr
u

c
tu

re
d

S
ta

te
m

e
n

t

-s
ta

te
m

e
n

t
*

S
ta

te
m

e
n

t

M
o

d
e

lE
le

m
e

n
t

-t
y
p

e
:

S
tr

in
g

0
..

1

-o
w

n
e

d
E

le
m

e
n

t

-o
w

n
e

r
*

C
o

m
p

o
u

n
d

S
ta

te
m

e
n

t

-m
a

in
0

..
1

Figure 4: PAL – extract from metamodel

ComDeValCo framework overview 57

install
update

Installed Resolved Activeresolve

uninstall
uninstall

start

stop

DynamicExecutionEnvironment

+install(moduleUrl : String)
+start(moduleld : Integer)
+resolve(moduleld : Integer)
+update(moduleld, moduleUrl)
+stop(moduleld : Integer)

Module

/name : String
/componentInstance : InstanceSpecification [0..*]
/location : String
/configProperty : Property [0..*]

0..*

0..*

0..*

/uses

deployedModule/

Figure 5: The execution environment and the module – excerpt from the meta-
model

4.3.1 Module and dynamic execution environment

The module is considered in the general case, as a deployment unit. It can
include either (a) several data types, functions, and procedures – as in the
traditional modular programming model, or (b) several data types, including
components – as in the case of component-based programming. The elements
included in a module may use other elements from other modules; in other
words, there are dependency relations between modules, which must be spec-
ified during module definition phase.

In order to ease the process of implementing modular concepts, an adaptable
infrastructure was created, based on a meta-model defining the concepts of
module and execution environment, shown in Figure 5.

The dynamic execution environment loads modules and starts their execu-
tion provided that all dependencies are solved. The state diagram (Figure 5,
right) depicts the states of a module and state transitions.

Traditional (static) execution environments load all modules of an applica-
tion before starting its execution. The proposed model supports this scenario,
but adds dynamic module load/unload facilities. Some of the existing exe-
cution environments – like OSGi [25] – have these features, assembling Java
applications from dynamic modules.

Following this pattern, we can satisfy both (static) modular programming
requirements and those of assembling applications from dynamic modules. Our
proposal is described in greater detail in [5].

58 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

Figure 6: Metaclasses for data types

4.3.2 Type system extensions

The initial modeling language used only primitive data types. Currently, its
type system includes a new ArrayType class – see Figure 6. Also, PAL grammar
was changed to allow the definition of tables (vectors) and structured types,
like lists. These achievements are described in detail in [17], which proposes
an extensible data type hierarchy.

Papers [5, 6] discuss in great detail UML stereotypes aimed to define new
concepts included in the modeling language. As an example, Figure 7 shows
UML stereotypes for modules and components.

4.4 Object-oriented constructs

The infrastructure aimed to support procedural and modular programming
was extended in order to allow the implementation of object-oriented, component-
based and service-oriented concepts. The module, considered as unit of deploy-
ment, contains user-defined types, including classes and interfaces.

4.4.1 Classes and interfaces

Classes and interfaces are defined according to the UML standard and fUML
specification. The latter, Foundational UML, published by OMG in 2008 [21],

ComDeValCo framework overview 59

Figure 7: UML stereotypes for defining modules and components

Figure 8: (a) Domain model; (b) Concrete syntax and (c) Graphical description
for an operation definition

establishes a UML subset and a semantics for model execution.
ComDeValCo workbench, described in more detail in the next section, al-

lows the developer to define classes and interfaces according to UML standard.
Figure 8 (a) shows a Point of Sale (POS) domain model fragment. Figure 8
(b) and (c) shows a simple example of how operations are defined. The tex-
tual syntax for constructing UML models is very important for their rapid

60 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

development. As a matter of fact, OMG issued a request for proposing such a
textual syntax; in this respect, our proposal can be considered as a response
from academic community.

4.4.2 PAL improvements

Another important contribution is the synchronization between the textual
representation – Figure 8 (b) – and the graphical one – Figure 8 (c), com-
pliant to the fUML standard. ComDeValCo workbench allows the user to
define operations using either textual or graphical perspectives, and to switch
between the two views at any moment.

The previous version of action language PAL, implementing the modular
paradigm concepts, used primitive types and vectors. Its type system now
includes Class and Interface types; also, PAL grammar was updated to allow
the use of these new constructs.

These results are described in full detail in [9].

Figure 9: Stereotypes for user operations

4.5 Component-based constructs

The first contribution is a platform-independent model for components, iCom-
ponent, used to model component-based and service-oriented systems. Later
on, these platform-independent models will be automatically transformed into
platform-dependent models like OSGi, Sun EJB3, JBoss Seam, Grails, and so
on by using appropriate mappings. The first sub-section contains more details
about this topic.

In order to validate the proposed ideas, some particular applications were
considered, involving component construction for OSGi and Web systems.
During these efforts, we proposed a new prototyping approach aimed to speed
up the model construction and established the mappings between the platform-
independent model described in the first sub-section and the target platform-

ComDeValCo framework overview 61

specific ones. The last sub-section describe these results in more detail and
provide the full references.

4.5.1 iComponent meta-model

The platform-independent meta-model for component definition, iComponent,
is shown in Figure 10. The components are defined as simple classes (Com-
ponent) which implement (provides) and use (requires) some interfaces. Com-
ponents are assembled into modules (Module) and are deployed into domains
(Domain) which establish a process configuration needed for the system to
work (Node or DynamicExecutionEnvironment).

Figure 10: iComponent – UML stereotypes for component definition

The dynamic execution environment manages the component life-cycle, as
Figure 11 shows. The validate, invalidate, config and controller stereotypes
can be used to intercept and generate events related to the component state.

Figure 11: Component life-cycle in a dynamic execution environment

Component binding is performed automatically by the dynamic execution

62 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

environment, which injects the appropriate dependencies between components.
Component selection takes into account the interfaces they implement and
some other features which can be associated to the implemented interfaces
(using the properties of provides and requires stereotypes).

The papers [5, 18] describe in full detail the above presented results.

4.5.2 PAL extension

The modeling language and PAL grammar were extended to cover the use of
components and to provide support for Web application modeling. Figure 12
contains an excerpt from the corresponding UML profile. This support was
introduced as a necessary step for model validation. As we mentioned earlier,
the target of ComDeValCo project is to allow the modeling of a large variety
of component-based and service-oriented systems. For example, the platform-
independent model described in the first subsection allows us to model OSGi
and OASIS Service Component Architecture systems.

Figure 12: Stereotypes for web applications

The papers [18, 9] describe these results in more detail.

4.6 Analysis of robustness

At the end of 2009, OMG published the second revision of Foundational UML
(fUML) specification. Also, at the beginning of 2010, OMG published the first
version of Alf (Action language for fUML).

ComDeValCo framework overview 63

The proposed platform-independent infrastructure of ComDeValCo is based
on the two above-mentioned specifications. The earlier versions of our model
were made compliant with these specifications. This way, we are entitled to
say that our model and development methods are among the first releases of
this kind, based on public OMG standards. Papers [11, 12, 13] describe in
more detail these achievements.

5 ComDeValCo workbench

ComDeValCo toolset is intended to automate many tasks and to assist devel-
opers in performing component definition and V & V, maintenance of compo-
nent repository, and component assembly. The tools initially considered were
the following:

• DEFCOMP – component definition;
• VALCOMP – component V & V;
• REPCOMP – component repository management;
• DEFSYS – software system definition by component assembly;
• VALSYS – software system V & V;
• SIMCOMP, SIMSYS – component and software system simulation;
• GENEXE – automatic generation of (platform-specific) executable com-

ponents and software systems.

5.1 First developments: DEFCOMP, VALCOMP, ComDeValCo
workbench

First version of DEFCOMP was an Eclipse plug-in, covering model construc-
tion, execution, and testing, thus having VALCOMP functionality also.

Program units can be expressed in both graphical or textual ways. The two
different editing perspectives of DEFCOMP (see Figure 13) are synchronized,
acting on the same model, which uses PAL meta-model.

VALCOMP tool was designed with the Agile test-driven development pro-
cess in mind, allowing developers to build, execute, and test applications in
an incremental way, in short development cycles. The proposed Agile MDA
process builds programs in four-step increments:

1. Add a test. For each new functionality to be added, create first a test
case, expressed in PAL, which also includes assertion-based constructs.
Test cases comply to UML Testing Profile [19, 20].

64 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

Figure 13: ComDeValco workbench: modeling perspective

2. Execute all tests. At first exection, the test added at previous step fails.
The execution engine (virtual machine) of DEFCOMP is used for test
execution also, similar to other automatic tools. The major difference
is that DEFCOMP executes platform-independent models, PIMs, from
which platform-dependent models or even complete implementations can
be generated, including automatic generation of test cases.

3. Add production code, expressed in PAL.

4. Execute again all tests and go back to step (3) if at least one of the
tests fails. When all tests succeed, start another development cycle (in-
crement), going back to step (1).

DEFCOMP has a debugging perspective also (see Figure 14), and the de-
veloper can adnotate the model with breakpoints. Besides assertions, used for
testing and functional code, PAL includes pre- and post-conditions for proce-
dures/functions and invariants for cycles.

ComDeValCo framework overview 65

Figure 14: ComDeValco workbench: debugging/simulation perspective

Later on, DEFCOMP and VALCOMP, were included in the so-called ComDe-
ValCo workbench.

5.2 Modular paradigm improvements: DEFCOMP, VALCOMP,
DEFSYS and VALSYS

The functionality of DEFCOMP and VALCOMP, parts of the ComDeValCo
workbench, was extended to cover the two new concepts included in the mod-
eling language, module and execution environment. The results are described
in the papers [1, 5, 7].

DEFSYS and VALSYS were initially considered as tools for developing,
verifying and validating software systems by assembling components taken
from component repositories. Later on, by adopting a test-driven development
method, these two sub-processes (component definition and system definition)
were considered as a whole, and DEFCOMP and VALCOMP tools address all
needed functionality. This way, the functionality of ComDeValCo workbench
covers both component/software system development/verification and valida-

66 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

Figure 15: Stereotypes for domain and actions

wizard CreateEntity {
guard : self.isKindOf(Class)
title : "Create entity " + self.name
do {

var id : new Property; id.name := ’id’;
id.class := self;
-- other attributes and operations added

}
}

Figure 16: Entity creation

tion activities. These results are described in more detail in [7].

5.3 Object- and component-based improvements: DEFCOMP
and VALCOMP

As parts of the ComDeValCo workbench, DEFCOMP and VALCOMP tools
were extended to allow the use of new updates of the modeling language re-
ferring to object-oriented and component-based concepts. Also, these updates
include support for architecture (Model-View-Controller architectural pattern)
and domain modeling. Figures 9 and 15 contain excerpts from the correspond-
ing UML profiles.

Other added functionality refers to the creation of new model elements by
applying recommended design and architecture best practices. These were im-
plemented as M2M transformations, as the Figure 16 shows.

Papers [18, 8, 10] describe in full detail these achievements.

ComDeValCo framework overview 67

Additionally, DEFCOMP and VALCOMP tools were extended to support
new constructions included in the modeling language and illustrated in Figure
10. Besides these improvements, a new development method was proposed, in-
volving the creation of the following models: service (interface) models, struc-
tural models (component composition), implementation models (for simple
components), verification models (for simple and compound components), and
deployment models (assembling a component-based system).

These improvements are discussed in full detail in the papers [6, 18].

5.4 SIMCOMP and SIMSYS

During system development, need to be considered at least the following key
issues related to requirements: expressing requirements as clearly as possi-
ble, appropriate mapping of requirements to system components and checking
that all requirements are implemented. Our proposed methodology takes into
account these issues, as described below.

In order to improve the clarity of requirements, a method that automati-
cally translates textual description of use cases into executable models was
proposed. A component (more precisely an active object) is associated to
each use case, in order to define the behaviour described by the use case’s
scenarios. The UML activity associated to the component is automatically
generated, starting from textual description. Because the generated models
are executable, the developer is able to execute the use case at once; these
experiments could help the developer to find some defects in the requirements
and to improve their clarity.

Another active component is associated to a set of related use cases; its
meaning is to describe the integration of individual behaviours of use cases into
a subsystem’s behaviour. By experimenting the resulting executable model,
developers could observe and repair the integration of requirements.

In order to check that all requirements are implemented, an behaviour-
driven development approach was considered. The novelty of this approach
is given by the fact that it is applied to executable models. Developers may
describe requirements in the form of given-when-then scenarios: given ”some
context” when ”something happens” then ”the system enters in some state”.
Each scenario is detailed by an activity; when this activity is executed, it
will provide an answer related to the specified system state. Papers [12, 13]
describe these results in more detail.

68 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

Figure 17: ComDeValCo framework: interactions

5.5 GENEXE

One of most difficult tasks of software engineering is the complete genera-
tion of executable code on a specific platform, without additional (manual)
coding activities using platform-dependent languages. Using ComDeValCo
approach, the solution is simple because all models are executable, and the
component behaviour is completely described by these models.

In order to produce executable code, a mapping between action languages
(PAL or Alf) and the considered concrete platform(s) is needed. Currently, the
concrete platform is Java, but ComDeValCo workbench is able to support
other platforms. Papers [11, 13] describe these achievements in greater detail.

6 The component repository

Component repository represents the persistent part of the framework, con-
taining the models of all full validated components. Its development include
separate steps for designing the data model, establishing indexing and search-
ing criteria, and choosing the representation format.

Figure 17 shows the interactions between component repositories, ComDe-
ValCo workbench and client applications. The details of the proposed solution
are presented in [5, 16].

ComDeValCo framework overview 69

Figure 18: Classification scheme

6.1 Component classification criteria

The starting point in the work of providing a correct taxonomy for components
was the establishment of classification criteria. Several concrete approaches
were considered; Figure 18 shows such a classification scheme.

Software components can be classified upon different criteria, including in-
formation domain (e.g. Retail) and functionality (e.g. Service). These cri-
teria may be used in searching for components stored in the repositories. The
paper [16] discuses these matters in great detail.

6.2 Component representation in the repository

In order to describe the representation of components in the repository, an
object model (shown in Figure 19) was defined. This model includes all com-
ponent types covered by the modeling language and allows for adding new
ones. Its classes and their relationships are described in detail in [5, 16].
RegistryObject is the root of all objects managed by the component repos-

70 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

Figure 19: Representation of objects in repositories

itory, from which all components inherit thru ExtrinsicObject class. The two
concepts, classification and classification scheme have distinct classes in this
hierarchy, thus providing a greater degree of flexibility.

Component representation format complies to the OASIS RIM (Registry In-
formation Model) standard [24]. To achieve this, the class ExtrinsicObject
was extended by adding subclasses specific to component-based applications:
DModule – module, DComponent – component, Capability – functionality pro-
vided by a component, and Requirement – the dependencies of a component.
The paper [16] discusses these achivements in great detail.

6.3 Adding components to component repository

When a component passes all V & V checks, it can be stored in the repository,
for later (re)use. Several types of components were considered, implementing
different functionality: console-type and graphical user interfaces, CRUD op-
erations, MVC architectural pattern, behavioral design patterns and so on.
These components may be reused either to build more complex components
or to assemble (build) software applications.

Another benefit of this stage was the validation of the proposed development
methodology. Additionally, the components in the repository may serve as
usage examples for the proposed conceptual infrastructure. Papers [12, 13]
describe in more detail these aspects.

Originally, all components in the repository were platform-independent.

ComDeValCo framework overview 71

By using GENEXE, the developer can produce platform-dependent compo-
nents, that need also to be stored in the repository. Thus, requirements re-
lated to component repository were changed, allowing it to manage platform-
dependent components.

Another real-world issue refers to the fact that a software system may con-
tain components of both worlds: platform-independent and platform-dependent.
More precisely, the execution of a platform-independent component may trig-
ger the execution of a platform-dependent component. According to our knowl-
edge so far, only CASE tools for designing hardware components (e.g. IBM
Rhapsody) cover this situation.

7 Conclusions and further work

In our opinion, the main contributions of the ComDeValCo framework are: a
concrete syntax for fUML, iComponent – a platform-independent component
model for dynamic execution environments, and an agile MDA approach for
building executable models.

Compared to other concrete approaches, like iPOJO and SCA, our proposal
is platform-independent. By using iComponent profile, ComDeValCo models
can be constructed using any UML tool and can be executed in any executable
UML tool.

As we mentioned above, the original idea of using platform-independent
executable models was of a great importance. Subsequent developments origi-
nated especially by OMG and related to fUML and Alf prove that our research
fits into the mainstream of current ideas and standards. By making ComDe-
ValCo infrastructure compliant to very recent OMG specifications related to
fUML and Alf, our solution is among the first ones able to build platform-
independent components based on executable models.

The intended use of ComDeValCo framework is twofold. The first tar-
get is componentbased development, since ComDeValCo conforms to UML
and MDA standards, providing a complete framework for executable service-
oriented component models.

The second target is of an academic nature. ComDeValCo can be used in
many Software Engineering courses as an example of applying model-driven
principles in the software development process. At a beginner level, students
get used earlier with model-based development, while at an advanced level,
the framework may be used for model-driven V & V tasks.

Future developments of ComDeValCo framework include: improving model

72 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

V & V capabilities, model transformation and SOAML [31] compliance. More
precisely, model V & V will cover the investigation of multi-modal test execu-
tion techniques in the context of fUML by using UML composite structures
and test data concepts.

The ComDeValCo workbench will also include other model transformation
capabilities, allowing the generation of full executable code from executable
models. The download server is planned to be live in the Spring of 2011.

Acknowledgements

This work was supported by the grant ID 546, sponsored by NURC – Roma-
nian National University Research Council (CNCSIS).

References

[1] I. G. Czibula, C. L. Lazăr, B. Pârv, S. Motogna, I. Lazăr, ComDeValCo
Tools for procedural paradigm, Int. J. of Computers, Communication and
Control 3, suppl. issue (2008) 243–247. ⇒65

[2] C. Escofier, R. S. Hall, Dynamically adaptable applications with iPOJO
service components, Proc. 6th Conference on Software Composition, M.
Lumpe & W. Vanderperre (Eds.), Lecture Notes in Comput. Sci. 4829
(2007) 113–128. ⇒49, 51

[3] K. K. Lau, Z. Wang, A taxonomy of software component models, Proc.
31st EUROMICRO Conference of Software Engineering and Advanced
Applications, Porto, Portugal, 2005, pp. 88–95. ⇒51

[4] I. Lazăr, B. Pârv, S. Motogna, I.G. Czibula, C. L. Lazăr, An agile MDA
approach for executable UML structured activities, Studia Univ. Babeş-
Bolyai, Inform. 52, 2 (2007) 101–114. ⇒55

[5] I. Lazăr, B. Pârv, S. Motogna, I. G. Czibula, C. L. Lazăr, An agile MDA
approach for the development of service-oriented component-based appli-
cations, Proc. CANS08 Complexity and Intelligence of the Artificial and
Natural Complex Systems, Tg. Mureş, Romania, 2008, pp. 37–46. ⇒57,
58, 62, 65, 68, 69

[6] I. Lazăr, B. Pârv, S. Motogna, I. G. Czibula, C. L. Lazăr, iComponent: a
platform-independent component model for dynamic execution environ-

http://www.cs.ubbcluj.ro/~istvanc
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~ilazar
http://journal.univagora.ro/
http://www.springer.com/computer/swe/book/978-3-540-77350-4
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~istvanc
http://www.cs.ubbcluj.ro/~studia-i/2007-2/10-Lazar.pdf
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~istvanc
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~istvanc

ComDeValCo framework overview 73

ments, Proc. 10th SYNASC Symposium of Symbolic and Numeric Algo-
rithms for Scientific Computing, Timişoara, Romania, 2008, pp. 257–264.⇒58, 67

[7] I. Lazăr, C. L. Lazăr, On simplifying the construction of executable UML
structured activities, Studia Univ. Babeş-Bolyai, Inform. 53, 2 (2008)
147–160. ⇒65, 66

[8] I. Lazăr, S. Motogna, B. Pârv, Rapid prototyping of conversational web
flows, Proc. 2nd KEPT International Conference Knowledge Engineering:
Principles and Techniques, Cluj-Napoca, Romania, 2009, pp. 223–230. ⇒
66

[9] I. Lazăr, I. G. Czibula, S. Motogna, B. Pârv, C. L. Lazăr, Rapid proto-
typing of service-oriented applications on OSGi platform, Proc. 4th BCI
Balkan Conference in Informatics, Thessaloniki, Greece, 2009, pp. 217–
222. ⇒60, 62

[10] I. Lazăr, B. Pârv, S. Motogna, I. G. Czibula, C. L. Lazăr, Using a fUML
action language to construct UML models, Proc. 11th SYNASC Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing,
Timişoara, Romania, 2009, pp. 93–101. ⇒66

[11] C. L. Lazăr, I. Lazăr, B. Pârv, S. Motogna, I. G. Czibula, Code generation
from an fUML action Language, Int. J. of Computers, Communication
and Control 5, 5 (2010) 775–782. ⇒63, 68

[12] I. Lazăr, S. Motogna, B. Pârv, Behaviour-driven development of founda-
tional UML components, Electronic Notes on Theoret. Comput. Sci. 264,
1 (2010) 91–105. ⇒63, 67, 70

[13] I. Lazăr, S. Motogna, B. Pârv, Realizing use cases for full code generation
in the context of fUML, Proc. MDA & MTDD International Workshop
on Model-Driven Architecture and Modeling Theory-Driven Development,
Athens, Greece, 2010, pp. 80–89. ⇒63, 67, 68, 70

[14] S. J. Mellor, M. J. Balcer, Executable UML: a Foundation for Model-
driven Architecture, Addison-Wesley, MA, 2002. ⇒50

[15] S. J. Mellor, Agile MDA, Technical Report, 2005. http://www.omg.org/
mda/mda_files/AgileMDA.pdf ⇒50

http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~studia-i/2008-2/13-Lazar.pdf
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~bparv
http://cs.ubbcluj.ro/kept2009/
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~istvanc
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~istvanc
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~istvanc
http://journal.univagora.ro/
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~bparv
http://www.elsevier.com/locate/entcs
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~bparv
http://www.omg.org/mda/mda_files/AgileMDA.pdf
http://www.omg.org/mda/mda_files/AgileMDA.pdf

74 B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr

[16] S. Motogna, I. Lazăr, B. Pârv, I. G. Czibula, C. L. Lazăr, Component
classification criteria for a platform-independent component repository,
Creative J. Math & Inf. 17, 3 (2008) 481–486. ⇒68, 69, 70

[17] S. Motogna, B. Pârv, I. Lazăr, I. G. Czibula, C. L. Lazăr, Extension of an
OCL-based executable UML components action language, Studia Univ.
Babeş-Bolyai, Inform. 53, 2 (2008) 15–26. ⇒58

[18] S. Motogna, I. Lazăr, B. Pârv, I. G. Czibula, An agile MDA approach for
service-oriented components, Electronic Notes on Theoret. Comput. Sci.
253, 1 (2009) 95–110. ⇒62, 66, 67

[19] Object Management Group, UML 2.0 testing profile specification, 2005.⇒63

[20] Object Management Group, Model-level testing and debugging, 2007. ⇒
63

[21] Object Management Group, Semantics of a Foundational Subset for Ex-
ecutable UML models (FUML), 2008. ⇒58

[22] Object Management Group, UML superstructure specification, Rev. 2.3,
May 2010. ⇒50

[23] OASIS, SCA service component architecture. Assembly model specifica-
tion, Version 1.1., 2007. ⇒51

[24] OASIS, RIM registry information model , 2007. ⇒70

[25] OSGi Alliance, OSGi service platform core specification, Release 4, Ver-
sion 4.1., 2007. ⇒49, 51, 57

[26] B. Pârv, S. Motogna, I. Lazăr, I. G. Czibula, C. L. Lazăr, ComDeValCo
– A framework for software component definition, validation, and com-
position, Studia Univ. Babeş-Bolyai, Inform. 52, 2 (2007) 59–68. ⇒51

[27] B. Pârv, I. Lazăr, S. Motogna, ComDeValCo framework – The modeling
language for procedural paradigm, Int. J. of Computers, Communication
and Control 3, 2 (2008) 183–195. ⇒53

[28] B. Pârv, I. Lazăr, S. Motogna, I. G. Czibula, C. L. Lazăr, ComDe-
ValCo framework: procedural and modular issues, Proc. 2nd KEPT
International Conference Knowledge Engineering: Principles and Tech-
niques, Cluj-Napoca, Romania, 2009, pp. 213–222. ⇒52

http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~istvanc
http://creative-mathematics.ubm.ro/
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~istvanc
http://www.cs.ubbcluj.ro/~studia-i/2008-2/02-Parv.pdf
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~istvanc
http://www.elsevier.com/locate/entcs
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-07.pdf
http://www.omg.org/cgi-bin/doc?ptc/2007-05-14/
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.oasis-opencsa.org/sca
http://docs.oasis-open.org/regrep/v3.0/regrep-3.0-os.zip
http://www.osgi.org/download/r4v41/r4.core.pdf
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~istvanc
http://www.cs.ubbcluj.ro/~studia-i/2007-2/06-Parv.pdf
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~motogna
http://journal.univagora.ro/
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~istvanc
http://cs.ubbcluj.ro/kept2009/

ComDeValCo framework overview 75

[29] B. Pârv, I. Lazăr, S. Motogna, I. G. Czibula, C. L. Lazăr, ComDeValCo
Framework – Component modeling and validation issues, Proc. 5th IC-
TAMI International Conference on Theory and Applications of Mathe-
matics and Informatics, Alba-Iulia, Romania, 2009, pp. 83–101. ⇒52

[30] B. Pârv, I. Lazăr, S. Motogna, I. G. Czibula, C. L. Lazăr, ComDeValCo
framework: Working with objects and components, Int. J. of Computers,
Communication and Control, 6 (2011) (accepted). ⇒52

[31] Service oriented architecture modeling language (SOAML),
http://www.omg.org/spec/SoaML/ OMG, 2009. ⇒72

[32] C. Szyperski, D. Gruntz, S. Murer, Component Software. Beyond Object-
Oriented Programming, 2nd edition, Addison-Wesley, 2002. ⇒48

Received: January 27, 2011 • Revised: February 23, 2011

http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~istvanc
http://www.cs.ubbcluj.ro/~bparv
http://www.cs.ubbcluj.ro/~ilazar
http://www.cs.ubbcluj.ro/~motogna
http://www.cs.ubbcluj.ro/~istvanc
http://journal.univagora.ro/
http://www.omg.org/spec/SoaML/

Acta Univ. Sapientiae, Informatica, 3, 1 (2011) 76–98

Implementing a non-strict purely

functional language in JavaScript

László DOMOSZLAI
Eötvös Loránd University, Budapest, Hungary
Radboud University Nijmegen, the Netherlands

email: dlacko@gmail.com

Eddy BRUËL
Vrije Universiteit Amsterdam

the Netherlands
email: ejpbruel@gmail.com

Jan Martin JANSEN
Faculty of Military Sciences

Netherlands Defence Academy
Den Helder, the Netherlands

email: jm.jansen.04@nlda.nl

Abstract. This paper describes an implementation of a non-strict purely
functional language in JavaScript. This particular implementation is based
on the translation of a high-level functional language such as Haskell or
Clean into JavaScript via the intermediate functional language Sapl. The
resulting code relies on the use of an evaluator function to emulate the
non-strict semantics of these languages. The speed of execution is com-
petitive with that of the original Sapl interpreter itself and better than
that of other existing interpreters.

1 Introduction

Client-side processing for web applications has become an important research
subject. Non-strict purely functional languages such as Haskell and Clean have
many interesting properties, but their use in client-side processing has been
limited so far. This is at least partly due to the lack of browser support for
these languages. Therefore, the availability of an implementation for non-strict

Computing Classification System 1998: D.1.1
Mathematics Subject Classification 2010: 68N18
Key words and phrases: web programming, functional programming, Sapl, JavaScript,
Clean

76

http://www.elte.hu/en
http://www.ru.nl/english/
mailto:dlacko@gmail.com
http://www.vu.nl/en/
mailto:ejpbruel@gmail.com
http://www.nlda-tw.nl/janmartin/
http://www.defensie.nl/nlda
mailto:jm.jansen.04@nlda.nl

Implementing a non-strict purely functional language in JavaScript 77

purely functional languages in the browser has the potential to significantly
improve the applicability of these languages in this area.

Several implementations of non-strict purely functional languages in the
browser already exist. However, these implementations are either based on
the use of a Java Applet (e.g. for Sapl, a client-side platform for Clean [8,
14]) or a dedicated plug-in (e.g. for HaskellScript [11] a Haskell-like functional
language). Both these solutions require the installation of a plug-in, which
is often infeasible in environments where the user has no control over the
configuration of his/her system.

1.1 Why switch to JavaScript?

As an alternative solution, one might consider the use of JavaScript. A
JavaScript interpreter is shipped with every major browser, so that the in-
stallation of a plug-in would no longer be required. Although traditionally
perceived as being slower than languages such as Java and C, the introduction
of JIT compilers for JavaScript has changed this picture significantly. Modern
implementations of JavaScript, such as the V8 engine that is shipped with the
Google Chrome browser, offer performance that sometimes rivals that of Java.

As an additional advantage, browsers that support JavaScript usually also
expose their HTML DOM through a JavaScript API. This allows for the as-
sociation of JavaScript functions to HTML elements through the use of event
listeners, and the use of JavaScript functions to manipulate these same ele-
ments.

This notwithstanding, the use of multiple formalisms complicates the devel-
opment of Internet applications considerably, due to the close collaboration
required between the client and server parts of most web applications.

1.2 Results at a glance

We implemented a compiler that translates Sapl to JavaScript expressions.
Its implementation is based on the representation of unevaluated expressions
(thunks) as JavaScript arrays, and the just-in-time evaluation of these thunks
by a dedicated evaluation function (different form the eval function provided
by JavaScript itself).

Our final results show that it is indeed possible to realize this translation
scheme in such a way that the resulting code runs at a speed competitive
with that of the original Sapl interpreter itself. Summarizing, we obtained the
following results:

78 L. Domoszlai, E. Bruël, J. M. Jansen

• We realized an implementation of the non-strict purely functional pro-
gramming language Clean in the browser, via the intermediate language
Sapl, that does not require the installation of a plug-in.

• The performance of this implementation is competitive with that of the
original Sapl interpreter and faster than that of many other interpreters
for non-strict purely functional languages.

• The underlying translation scheme is straightforward, constituting a one-
to-one mapping of Sapl onto JavaScript functions and expressions.

• The implementation of the compiler is based on the representation of
unevaluated expressions as JavaScript arrays and the just-in-time evalu-
ation of these thunks by a dedicated evaluation function.

• The generated code is compatible with JavaScript in the sense that the
namespace for functions is shared with that of JavaScript. This allows
generated code to interact with JavaScript libraries.

1.3 Organization of the paper

The structure of the remainder of this paper is as follows: we start with intro-
ducing Sapl, the intermediate language we intend to implement in JavaScript
in Section 2. The translation scheme underlying this implementation is pre-
sented in Section 3. We present the translation scheme used by our compiler
in two steps. In step one, we describe a straightforward translation of Sapl to
JavaScript expressions. In step two, we add several optimizations to the trans-
lation scheme described in step one. Section 4 presents a number of benchmark
tests for the implementation. A number of potential applications is presented
in Section 5. Section 6 compares our approach with that of others. Finally, we
end with our conclusions and a summary of planned future work in Section 7.

2 The Sapl programming language and interpreter

Sapl stands for Simple Application Programming Language. The original ver-
sion of Sapl provided no special constructs for algebraic data types. Instead,
they are represented as ordinary functions. Details on this encoding and its
consequences can be found in [8]. Later a Clean like type definition style was
adopted for readability and to allow for the generation of more efficient code
(as will become apparent in Section 3).

The syntax of the language is the following:

Implementing a non-strict purely functional language in JavaScript 79

〈program〉 ::= {〈function〉 | 〈type〉}+
〈type〉 ::= ’::’ 〈ident〉 ’=’ 〈ident〉 〈ident〉* {’|’ 〈ident〉 〈ident〉*}*
〈function〉 ::= 〈ident〉 〈ident〉* ’=’ 〈let-expr〉
〈let-expr〉 ::= [’let’ 〈let-defs〉 ’in’] 〈main-expr〉
〈let-defs〉 ::= 〈ident〉 ’=’ 〈application〉 {’,’ 〈ident〉 ’=’ 〈application〉}*
〈main-expr〉 ::= 〈select-expr〉 | 〈if-expr〉 | 〈application〉
〈select-expr〉 ::= ’select’ 〈factor〉 {’(’ {〈lambda-expr〉 | 〈let-expr〉} ’)’}+
〈if-expr〉 ::= ’if’ 〈factor〉 ’(’ 〈let-expr〉 ’)’ ’(’ 〈let-expr〉 ’)’
〈lambda-expr〉 ::= ’\’ 〈ident〉+ ’=’ 〈let-expr〉
〈application〉 ::= 〈factor〉 〈factor〉*
〈factor〉 ::= 〈ident〉 | 〈literal〉 | ’(’ 〈application〉 ’)’

An identifier can be any identifier accepted by Clean, including operator
notations. For literals characters, strings, integer or floating-point numbers
and boolean values are accepted.

We illustrate the use of Sapl by giving a number of examples. We start with
the encoding of the list data type, together with the sum function.
:: List = Nil | Cons x xs
sum xxs = select xxs 0 (λx xs = x + sum xs)

The select keyword is used to make a case analysis on the data type of
the variable xxs. The remaining arguments handle the different constructor
cases in the same order as they occur in the type definition (all cases must be
handled separately). Each case is a function that is applied to the arguments
of the corresponding constructor.

As a more complex example, consider the mappair function written in Clean,
which is based on the use of pattern matching:
mappair f Nil zs = Nil
mappair f (Cons x xs) Nil = Nil
mappair f (Cons x xs) (Cons y ys) = Cons (f x y) (mappair f xs ys)

This definition is transformed to the following Sapl function (using the above
definitions for Nil and Cons).
mappair f as zs

= select as Nil (λx xs = select zs Nil (λy ys = Cons (f x y) (mappair f xs ys)))

Sapl is used as an intermediate formalism for the interpretation of non-strict
purely functional programming languages such as Haskell and Clean. The Clean
compiler includes a Sapl back-end that generates Sapl code. Recently, the Clean
compiler has been extended to be able to compile Haskell programs as well [5].

80 L. Domoszlai, E. Bruël, J. M. Jansen

2.1 Some remarks on the definition of Sapl

Sapl is very similar to the core languages of Haskell and Clean. Therefore,
we choose not to give a full definition of its semantics. Rather, we only say
something about its main characteristics and give a few examples to illustrate
these.

The only keywords in Sapl are let, in, if and select. Only constant (non-
function) let expressions are allowed that may be mutually recursive (for
creating cyclic expressions). They may occur at the top level in a function
and at the top level in arguments of an if and select. λ-expressions may
only occur as arguments to a select. If a Clean program contains nested λ-
expressions, and you compile it to Sapl, they should be lifted to the top-level.

3 A JavaScript based implementation for Sapl

Section 1 motivated the choice for implementing a Sapl interpreter in the
browser using JavaScript. Our goal was to make the implementation as efficient
as possible.

Compared to Java, JavaScript provides several features that offer opportuni-
ties for a more efficient implementation. First of all, the fact that JavaScript is
a dynamic language allows both functions and function calls to be generated
at run-time, using the built-in functions eval and apply, respectively. Second,
the fact that JavaScript is a dynamically typed language allows the creation
of heterogeneous arrays. Therefore, rather than building an interpreter, we
have chosen to build a compiler/interpreter hybrid that exploits the features
mentioned above.

Besides these, the evaluation procedure is heavily based on the use of the
typeof operator and the runtime determination of the number of formal pa-
rameters of a function which is another example of the dynamic properties of
the JavaScript language.

For the following Sapl constructs we must describe how they are translated
to JavaScript:

• literals, such as booleans, integers, real numbers, and strings;
• identifiers, such as variable and function names;
• function definitions;
• constructor definitions;
• let constructs;
• applications;

Implementing a non-strict purely functional language in JavaScript 81

• select statements;
• if statements;
• built-in functions, such as add, eq, etc.

Literals Literals do not have to be transformed. They have the same repre-
sentation in Sapl and JavaScript.

Identifiers Identifiers in Sapl and JavaScript share the same namespace, there-
fore, they need not to be transformed either.

However, the absence of block scope in JavaScript can cause problems. The
scope of variables declared using the var keyword is hoisted to the entire
containing function. This affects the let construct and the λ-expressions, but
can be easily avoided by postfixing the declared identifiers to be unique. In
this way, the original variable name can be restored if needed.

With this remark we will neglect these transformations in the examples of
this paper for the sake of readability.

Function definitions Due to JavaScript’s support for higher-order functions,
function definitions can be translated from Sapl to JavaScript in a straightfor-
ward manner:

TJf x1 ... xn = bodyK = function f(x1, ..., xn) { TJbodyK }

So Sapl functions are mapped one-to-one to JavaScript functions with the same
name and the same number of arguments.

Constructor definitions Constructor definitions in Sapl are translated to
arrays in JavaScript, in such a way that they can be used in a select con-
struct to select the right case. A Sapl type definition containing constructors
is translated as follows:

TJ:: typename = ... | Ck xk0 ... xkn | ...K
= ... function Ck(xk0, ..., xkn) { return [k, ‘Ck’, xk0, ..., xkn]; } ...

where k is a positive integer, corresponding to the position of the construc-
tor in the original type definition. The name of the constructor, ‘Ck’, is put
into the result for printing purposes only. This representation of the construc-
tors together with the use of the select statement allows for a very efficient
JavaScript translation of the Sapl language.

Let constructs Let constructs are translated differently depending on whether
they are cyclic or not. Non-cyclic lets in Sapl can be translated to var decla-
rations in JavaScript, as follows:

82 L. Domoszlai, E. Bruël, J. M. Jansen

TJlet x = e in bK = var x = TJeK ; TJbK

Due to JavaScript’s support for closures, cyclic lets can be translated from
Sapl to JavaScript in a straightforward manner. The idea is to take any occur-
rences of x in e and replace them with:
function () { return x; }

This construction relies on the fact that the scope of a JavaScript closure is
the whole function itself. This means that after the declaration the call of this
closure will return a valid reference. In Section 3.1 we present an example to
illustrate this.

Applications Every Sapl expression is an application. Due to JavaScript’s
eager evaluation semantics, applications cannot be translated from Sapl to
JavaScript directly. Instead, unevaluated expressions (or thunks) in Sapl are
translated to arrays in JavaScript:
TJx0 x1 .. xnK = [TJx0K , [TJx1K , ..., TJxnK]]

Thus, a thunk is represented with an array of two elements. The first one
is the function involved, and the second one is an array of the arguments.
This second array is used for performance reasons. In this way one can take
advantage of the JavaScript apply() method and it is very straightforward
and fast to join such two arrays, which is necessary to do during evaluation.

select statements A select statement in Sapl is translated to a switch
statement in JavaScript, as follows:
TJselect f (\x0 ... xn = b) ...K

=

var _tmp = Sapl.feval(TJfK);
switch(_tmp[0]) {

case 0: var x0 = _tmp[2] , ..., xn = _tmp[n+2] ;
TJbK ;
break;

...
};

Evaluating the first argument of a select statement yields an array repre-
senting a constructor (see above). The first argument in this array represents
the position of the constructor in its type definition, and is used to select
the right case in the definition. The parameters of the λ- expression for each
case are bound to the corresponding arguments of the constructor in the var
declaration (see also examples).

Implementing a non-strict purely functional language in JavaScript 83

if statements An if statement in Sapl is translated to an if statement in
JavaScript straightforwardly:

TJif p t fK = if (Sapl.feval(TJpK)){ TJtK ; } else { TJfK ; }

This translation works because booleans in Sapl and JavaScript have the same
representation.

Built-in functions Sapl defines several built-in functions for arithmetic and
logical operations. As an example, the add function is defined as follows:

function add(x, y) { return Sapl.feval(x) + Sapl.feval(y); }

Unlike user-defined functions, a built-in function such as add has strict evalu-
ation semantics. To guarantee that they are in normal form when the function
is called, the function Sapl.feval is applied to its arguments (see Section
3.2).

3.1 Examples

The following definitions in Sapl:

:: List = Nil | Cons x xs

ones = let os = Cons 1 os in os
fac n = if (eq n 0) 1 (mult n (fac (sub n 1)))
sum xxs = select xxs 0 (λx xs = add x (sum xs))

are translated to the following definitions in JavaScript:

function Nil() { return [0 , ’Nil’] ; }
function Cons(x, xs) { return [1 , ’Cons’ , x, xs] ; }

function ones() { var os = Cons(1, function() { return os; }); return os; }

function fac(n) {
if (Sapl.feval(n) == 0) {

return 1;
} else {

return [mult, [n, [fac, [[sub, [n, 1]]]]]] ;
}

}

84 L. Domoszlai, E. Bruël, J. M. Jansen

function sum(as) {
var _tmp = Sapl.feval(as);
switch (_tmp[0]) {

case 0: return 0;
case 1: var x = _tmp[2] , xs = _tmp[3] ;

return [add, [x, [sum, [xs]]]] ;
}

}

The examples show that the translation is straightforward and preserves the
structure of the original definitions.

3.2 The feval function

To emulate Sapl’s non-strict evaluation semantics for function applications,
we represented unevaluated expressions (thunks) as arrays in JavaScript. Be-
cause JavaScript treats these arrays as primitive values, some way is needed to
explicitly reduce thunks to normal form when their value is required. This is
the purpose of the Sapl.feval function. It reduces expressions to weak head
normal form. Further evaluation of expressions is done by the printing rou-
tine. Sapl.feval performs a case analysis on an expression and undertakes
different actions based on its type:

Literals If the expression is a literal or a constructor, it is returned immedi-
ately. Literals and constructors are already in normal form.

Thunks If the expression is a thunk of the form [f, [xs]], it is transformed
into a function call f(xs) with the JavaScript apply function, and Sapl.feval
is applied recursively to the result (this is necessary because the result of a
function call may be another thunk).

Due to JavaScript’s reference semantics for arrays, thunks may become
shared between expressions over the course of evaluation. To prevent the same
thunk from being reduced twice, the result of the call is written back into the
array. If this result is a primitive value, the array is transformed into a boxed
value instead. Boxed values are represented as arrays of size one. Note that in
JavaScript, the size of an array can be altered in-place.

If the number of arguments in the thunk is smaller than the arity of the
function, it cannot be further reduced (is already in normal form), so it is
returned immediately. Conversely, if the number of arguments in the thunk is
larger than the arity of the function, a new thunk is constructed from the result
of the call and the remainder of the arguments, and Sapl.feval is applied
iteratively to the result.

Implementing a non-strict purely functional language in JavaScript 85

Boxed values If the expression is a boxed value of the form [x], the value
x is unboxed and returned immediately (only literals and constructors can be
boxed).

Curried applications If the expression is a curried application of the form
[[f, [xs]], [ys]], it is transformed into [f, [xs ++ ys]], and Sapl.feval
is applied iteratively to the result.

More details on evaluation For the sake of deeper understanding we also
give the full source code of feval:

feval = function (expr) {
var y, f, xs;
while (1) {

if (typeof(expr) == "object") { // closure
if (expr.length == 1) return expr[0] ; // boxed value
else if (typeof(expr[0]) == "function") { // application -> make call

f = expr[0] ; xs = expr[1] ;
if (f.length == xs.length) { // most often occurring case

y = f.apply(null, xs); // turn chunk into call
expr[0] = y; // overwrite for sharing!
expr.length = 1; // adapt size

} else if (f.length < xs.length) { // less likely case
y = f.apply(null,xs.splice(0, f.length));
expr[0] = y; // slice of arguments

} else
return expr; // not enough arguments

} else if (typeof(expr[0])=="object") { // curried app -> uncurry
y = expr[0] ;
expr[0] = y[0] ;
expr[1] = y[1].concat(expr[1]);

} else
return expr; // constructor

} else if (typeof(expr) == "function") // function
expr = [expr, []] ;

else // literal
return expr;

}
}

3.3 Further optimizations

Above we described a straightforward compilation scheme from Sapl to
JavaScript, where unevaluated expressions (thunks) are translated to arrays.

86 L. Domoszlai, E. Bruël, J. M. Jansen

The Sapl.feval function is used to reduce thunks to normal form when their
value is required. For ordinary function calls, our measurements indicate that
the use of Sapl.feval is more than 10 times slower than doing the same call
directly. This constitutes a significant overhead. Fortunately, a simple compile
time analysis reveals many opportunities to eliminate unnecessary thunks in
favor of such direct calls. Thus, expressions of the form:

Sapl.feval([f, [x1, ..., xn])

are replaced by:

f(x1, ..., xn)

This substitution is only possible if f is a function with known arity at compile-
time, and the number of arguments in the thunk is equal to the arity of the
function. It can be performed wherever a call to Sapl.feval occurs:

• The first argument to a select or if;
• The arguments to a built-in function;
• Thunks that follow a return statement in JavaScript. These expressions

are always evaluated immediately after they are returned.

As an additional optimization, arithmetic operations are inlined wherever
they occur. With these optimizations added, the earlier definitions of sum and
fac are now translated to:

function fac(n) {
if (Sapl.feval(n) == 0) {

return 1;
} else {

return Sapl.feval(n) * fac(Sapl.feval(n) - 1);
}

}

function sum(xxs) {
var _tmp = Sapl.feval(xxs);
switch(_tmp[0]){

case 0: return 0;
case 1: var x = _tmp[2] , xxs = _tmp[3] ;

return Sapl.feval(x) + sum(xs);
}

}

Moreover, let’s consider the following definition of the Fibonacci function, fib,
in Sapl:

Implementing a non-strict purely functional language in JavaScript 87

fib n = if (gt 2 n) 1 (add (fib (sub n 1)) (fib (sub n 2)))

This is translated to the following function in JavaScript:

function fib(n) {
if (2 > Sapl.feval(n)) {

return 1;
} else {

return (fib([sub, [n, 1]]) + fib([sub, [n, 2]]));
}

}

A simple strictness analysis reveals that this definition can be turned into:

function fib(n) {
if (2 > n) {

return 1;
} else {

return (fib(n - 1) + fib(n - 2));
}

}

The calls to feval are now gone, which results in a huge improvement in
performance. Indeed, this is how fib would have been written, had it been
defined in JavaScript directly. In this particular example, the use of eager eval-
uation did not affect the semantics of the function. However, this is not true in
general. For the use of such an optimization we adopted a Clean like strictness
annotation. Thus, the above code can be generated from the following Sapl
definition:

fib !n = if (gt 2 n) 1 (add (fib (sub n 1)) (fib (sub n 2)))

But strictly defined arguments also have their price. In case one does not know
if an argument in a function call is already in evaluated form, an additional
wrapper function call is needed that has as only task to evaluate the strict
arguments:

function fib$eval(a0) {
return fib(Sapl.feval(a0));

}

As a possible further improvement, a more thorough static analysis on the
propagation of strict arguments could help to avoid some of these wrapper
calls.

Finally, the Sapl to JavaScript compiler provides simple tail recursion opti-
mization, which has impact on not only the execution time, but also reduces
stack use.

88 L. Domoszlai, E. Bruël, J. M. Jansen

The optimizations only affect the generated code and not the implementa-
tion of feval. In the next section an indication of the speed-up obtained by
the optimizations is given.

4 Benchmarks

In this section we present the results of several benchmark tests for the
JavaScript implementation of Sapl (which we will call Sapljs) and a comparison
with the Java Applet implementation of Sapl. We ran the benchmarks on a
MacBook 2.26 MHz Core 2 Duo machine running MacOS X10.6.4. We used
Google Chrome with the V8 JavaScript engine to run the programs. At this
moment V8 offers one of the fastest platforms for running Sapljs programs.
However, there is a heavy competition on JavaScript engines and they tend
to become much faster. The benchmark programs we used for the compari-
son are the same as the benchmarks we used for comparing Sapl with other
interpreters and compilers in [8]. In that comparison it turned out that Sapl
is at least twice as fast (and often even faster) as other interpreters like He-
lium, Amanda, GHCi and Hugs. Here we used the Java Applet version for the
comparison. This version is about 40% slower than the C version of the in-
terpreter described in [8] (varying from 25 to 50% between benchmarks), but
is still faster than the other interpreters mentioned above. The Java Applet
and JavaScript version of Sapl and all benchmark code can be found at [2]. We
briefly repeat the description of the benchmark programs here:

1. Prime Sieve The prime number sieve program, calculating the 2000th
prime number.

2. Symbolic Primes Symbolic prime number sieve using Peano numbers,
calculating the 160th prime number.

3. Interpreter A small Sapl interpreter. As an example we coded the prime
number sieve for this interpreter and calculated the 30th prime number.

4. Fibonacci The (naive) Fibonacci function, calculating fib 35.
5. Match Nested pattern matching (5 levels deep) repeated 160000 times.
6. Hamming The generation of the list of Hamming numbers (a cyclic def-

inition) and taking the 1000th Hamming number, repeated 1000 times.
7. Sorting Tree Sort (3000 elements), Insertion Sort (3000 elements), Quick

Sort (3000 elements), Merge Sort (10000 elements, merge sort is much
faster, we therefore use a larger example)

8. Queens Number of placements of 11 Queens on a 11 x 11 chess board.

Implementing a non-strict purely functional language in JavaScript 89

Pri Sym Inter Fib Match Ham Qns Kns Sort Plog Parse
Sapl 1200 4100 500 8700 1700 2500 9000 3200 1700 1500 1100
Sapljs 2200 4000 220 280 2200 3700 11500 3950 2450 2750 4150
Sapljs nopt 4500 11000 1500 36000 6700 5500 36000 11000 4000 5200 6850
perc. mem. 58 68 38 0 21 31 37 35 45 53 41

Figure 1: Speed comparison (time in miliseconds).

9. Knights Finding a Knights tour on a 5 x 5 chess board.
10. Prolog A small Prolog interpreter based on unification only (no arith-

metic operations), calculating ancestors in a four generation family tree,
repeated 100 times.

11. Parser Combinators A parser for Prolog programs based on Parser Com-
binators parsing a 3500 lines Prolog program.

For sorting a list of size n a source list is used consisting of numbers 1 to n.
The elements that are 0 modulo 10 are put before those that are 1 modulo 10,
etc.

The benchmarks cover a wide range of aspects of functional programming:
lists, laziness, deep recursion, higher order functions, cyclic definitions, pattern
matching, heavy calculations, heavy memory usage. The programs were chosen
to run at least for a second, if possible. This helps eliminating start-up effects
and gives the JIT compiler enough time to do its work. In many cases the
output was converted to a single number (e.g. by summing the elements of a
list) to eliminate the influence of slow output routines.

4.1 Benchmark tests

We ran the tests for the following versions of Sapl:

• Sapl: the Java Applet version of Sapl;
• Sapljs: the Sapljs version including the normal form optimization, the

inlining of arithmetic operations and the tail recursion optimization.
The strictness optimization is only used for the fib benchmark;

• Sapljs nopt: the version not using these optimizations.

We also included the estimated percentage of time spent on memory manage-
ment for the Sapljs version. The results can be found in Figure 1.

90 L. Domoszlai, E. Bruël, J. M. Jansen

4.2 Evaluation of the benchmark tests

Before analysing the results we first make some general remarks about the
performance of Java, JavaScript and the Sapl interpreter which are relevant for
a better understanding of the results. In general it is difficult to give absolute
figures when comparing the speeds of language implementations. They often
also depend on the platform (processor), the operating system running on it
and the particular benchmarks used to compare. Therefore, all numbers given
should be interpreted as global indications.

According to the language shoot-out site [3] Java programs run between
3 and 5 times faster than similar JavaScript programs running on V8. So a
reimplementation of the Sapl interpreter in JavaScript is expected to run much
slower as the Sapl interpreter.

We could not run all benchmarks as long as we wished because of stack
limitations for V8 JavaScript in Google Chrome. It supports a standard (not
user modifiable) stack of only 30k at this moment. This is certainly enough
for most JavaScript programs, but not for a number of our benchmarks that
can be deeply recursive. This limited the size of the runs of the following
benchmarks: Interpreter1 all sorting benchmarks, and the Prolog and Parser
Combinator benchmark. Another benchmark that we used previously, and that
could not be ran at all in Sapljs is: twice twice twice twice inc 0.

For a lazy functional language the creation of thunks and the re-collection
of them later on, often takes a substantial part of program run-times. It is
therefore important to do some special tests that say something about the
speed of memory (de-)allocation. The Sapl interpreter uses a dedicated mem-
ory management unit (see [8]) not depending on Java memory management.
The better performance of the Sapl interpreter in comparison with the other
interpreters partly depends on its fast memory management. For the JavaScript
implementation we rely on the memory management of JavaScript itself. We
did some dedicated tests that showed that memory allocation for the Java
Sapl interpreter is about 5-7 times faster than the JavaScript implementation.
Therefore, we included an estimation of the percentage of time spent on mem-
ory management for all benchmarks ran in Sapljs. The estimation was done
by counting all memory allocations for a benchmark (all creations of thunks)
and multiplying it with an estimation of the time to create a thunk, which
was measured by a special application that only creates thunks.

1The latest version of Chrome has an even more restricted stack size. We can now run
Interpreter only up to the 18th prime number.

Implementing a non-strict purely functional language in JavaScript 91

Results The Fibonacci and Interpreter benchmarks run (30 and 2 times resp.)
significantly faster in Sapljs than in the Sapl interpreter. Note that both these
benchmarks profit significantly from the optimizations with Fibonacci being
more than 100 times faster and Interpreter almost 7 times faster than the
non-optimized version. The addition of the strictness annotation for Fibonacci
contributes a factor of 3 to the speed-up. With this annotation the compiled
Fibonacci program is equivalent to a direct implementation of Fibonacci in
JavaScript and does not use feval anymore. The original Sapl interpreter does
not apply any of these optimizations. The Interpreter benchmark profits much
(almost a factor of 2) from the tail recursion optimization that applies for a
number of often used functions that dominate the performance of this bench-
mark.

Symbolic Primes, Match, Queens and Knights run at a speed comparable
to the Sapl interpreter. Hamming and Sort are 40 percent slower, Primes and
Prolog are 80 percent slower. Parser Combinators is the worst performing bench-
mark and is almost 4 times slower than in Sapl.

All benchmarks benefit considerably from the optimizations (between 1.5
and 120 times faster), with Fibonacci as the most exceptional.

The Parser Combinators benchmark profits only modestly from the optimiza-
tions and spends relatively much time in memory management operations. It
is also the most ‘higher order’ benchmark of all. Note that for the original
Sapl interpreter this is one of the best performing benchmarks (see [8]), per-
forming at a speed that is even competitive with compiler implementations.
The original Sapl interpreter does an exceptionally good job on higher order
functions.

We conclude that the Sapljs implementation offers a performance that is
competitive with that of the Sapl interpreter and therefore with other inter-
preters for lazy functional programming languages.

Previously [8] we also compared Sapl with the GHC and Clean compilers. It
was shown that the C version of the Sapl interpreter is about 3 times slower
than GHC without optimizer. Extrapolating this result using the figures men-
tioned above we conclude that Sapljs is about 6-7 times slower than GHC
(without optimizer). In this comparison we should also take into account that
JavaScript applications run at least 5 times slower than comparable C appli-
cations. The remaining difference can be mainly attributed to the high price
for memory operations in Sapljs.

92 L. Domoszlai, E. Bruël, J. M. Jansen

4.3 Alternative memory management?

For many Sapljs examples a substantial part of their run-time is spent on mem-
ory management. They can only run significantly faster after a more efficient
memory management is realized or after other optimizations are realized. It is
tempting to implement a memory management similar to that of the Sapl in-
terpreter. But this memory management relies heavily on representing graphs
by binary trees, which does not fit with our model for turning thunks into
JavaScript function calls which depends heavily on using arrays to represent
thunks.

5 Applications

Developing rich client-side applications in Clean We can use the Sapljs
compiler to create dedicated client-side applications in Clean that make use of
JavaScript libraries. We can do this because JavaScript and code generated by
Sapljs share the same namespace. In this way it is possible to call functions
within Sapl programs that are implemented in JavaScript. The Sapljs compiler
doesn’t check the availability of a function, so one has to rely on the JavaScript
interpreter to do this. Examples of such functions are the built-in core functions
like add and eq, but they can be any application related predefined function.

Because we have to compile from Clean to Sapl before compiling to JavaScript,
we need a way to use functions implemented in JavaScript within Clean pro-
grams. Clean does not allow that programs contain unknown functions, so we
need a way to make these functions known to the Clean compiler. This can be
realized in the following way. If one wants to postpone the implementation of
a function to a later time, one can define its type and define its body to be
undef. E.g., example is a function with 2 integer arguments and an integer
result with an implementation only in JavaScript.

example :: Int Int → Int
example = undef

The function undef is defined in the StdMisc module. An undef expressions
matches every type, so we can use this definition to check if the written code
is syntactically and type correct. We adapted the Clean to Sapl compiler not
to generate code for functions with an undefined body. In this way we have
created a universal method to reference functions defined outside the Clean
environment.

Implementing a non-strict purely functional language in JavaScript 93

We used these techniques to define a library in Clean for manipulating the
HTML DOM at the client side. The following Clean code gives a demonstration
of its use:

import StdEnv, SaplHtml

onKeyUp :: !HtmlEvent !*HtmlDocument → *(*HtmlDocument, Bool)
onKeyUp e d

(d, str) = getDomAttr d "textarea" "value"
(d, str) = setDomAttr d "counter" "innerHTML" (toString (size str))
= (d, True)

Start
= toString (Div [] [] [TextArea [Id "textarea", Rows 15, Cols 50]

[OnKeyUp onKeyUp] ,
Div [Id "counter"] [] []])

It is basically a definition of a piece of HTML using arrays and ADTs defined
in the SaplHtml module. What is worth to notice here are the definitions of
the event handler function and the DOM manipulating functions, getDomAttr
and setDomAttr, which are also defined in SaplHtml, but are implemented
in JavaScript using the above mentioned techniques. The two parameters of
the event handler function are effectively the related JavaScript Event and
Document objects, respectively.

Compiling the program to JavaScript and running it returns the following
string, which is legal HTML:

<div><textarea id="textarea"
rows="15"
cols="50"
onKeyUp="Sapl.execEvent(event, ’onKeyUp$eval’)">

</textarea>
<div id="counter"></div>

</div>

The event handler call is wrapped by the Sapl.execEvent function which is
responsible for passing the event related parameters to the actual event han-
dler. Including this string into an HTML document along with the generated
JavaScript functions we get a client side web application originally written in
Clean. Despite this program is deliberately very simple, it demonstrates al-
most all the basics necessary to write any client side application. Additional
interface functions, e.g. calling methods of a JavaScript object, can be found
in the SaplHtml module.

94 L. Domoszlai, E. Bruël, J. M. Jansen

iTask integration Another possible application is related to the iTask system
[13]. iTask is a combinator library written in Clean, and is used for the realiza-
tion of web-based dynamic workflow systems. An iTask application consists of
a structured collection of tasks to be performed by users, computers or both.

To enhance the performance of iTask applications, the possibility to handle
tasks on the client was added [14], accomplished by the addition of a simple
OnClient annotation to a task. When this annotation is present, the iTask
runtime automatically takes care of all communication between the client and
server parts of the application. The client part is executed by the Sapl inter-
preter, which is available as a Java applet on the client.

However, the approachability of JavaScript is much better compared to Java.
The Java runtime environment, the Java Virtual Machine might not even be
available on certain platforms (on mobile devices in particular). Besides that,
it exhibits significant latency during start-up. For these reasons, a new im-
plementation of this feature is recommended using Sapljs instead of the Sapl
interpreter written in Java. Several feature were made to foster this modifica-
tion:

• The Sapl language was extended with some syntactic sugar to allow
distinguishing between constructors and records.
• Automatic conversion of data types like records, arrays, etc, between

Sapl and JavaScript was added. In this way full interaction between Sapl
and existing libraries in JavaScript became possible.
• Automatic conversion of JSON data structures to enable direct interfac-

ing with all kinds of web-services was added.

6 Related work

Client-side processing for Internet applications is a subject that has drawn
much attention in the last years with the advent of Ajax based applications.

Earlier approaches using JavaScript as a client-side platform for the execu-
tion of functional programming languages are Hop [15, 10], Links [1] and Curry
[7].

Hop is a dedicated web programming language with a HTML-like syntax
build on top of Scheme. It uses two compilers, one for compiling the server-
side program and one for compiling the client-side part. The client-side part is
only used for executing the user interface. The application essentially runs on
the client and may call services on the server. Syntactic constructions are used
for indicating client and server part code. In [10] it is shown that a reasonably

Implementing a non-strict purely functional language in JavaScript 95

good performance for client-side functions in Hop can be obtained. However,
contrary to Haskell and Clean, both Hop and the below mentioned Links are
strict functional languages, which simplifies their translation to JavaScript
considerably.

Links [1] and its extension Formlets is a functional language-based web pro-
gramming language. Links compiles to JavaScript for rendering HTML pages,
and SQL to communicate with a back-end database. Client-server communi-
cation is implemented using Ajax technology, like this is done in the iTask
system.

Curry offers a much more restricted approach: only a very restricted subset
of the functional-logic language Curry is translated to JavaScript to handle
client-side verification code fragments only.

A more recent approach is the Flapjax language [12], an implementation of
functional reactive programming in JavaScript. Flapjax can be used either as
a programming language, compiling to JavaScript, or as a JavaScript library.
Entire applications can be developed in Flapjax. Flapjax automatically tracks
dependencies and propagates updates along dataflows, allowing for a declara-
tive style of programming.

An approach to compile Haskell to JavaScript is YCR2JS [4] that com-
piles YHC Core to JavaScript, comparable to our approach compiling Sapl to
JavaScript. Unfortunately, we could not find any performance figures for this
implementation.

Another, more recent approach, for compiling Haskell to JavaScript is HS2JS
[6], which integrates a JavaScript backend into the GHC compiler. A comparison
of JavaScript programs generated by this implementation indicate that they
run significantly slower than their Sapljs counterparts.

7 Conclusion and future work

In this paper we evaluated the use of JavaScript as a target language for lazy
functional programming languages like Haskell or Clean using the intermediate
language Sapl. The implementation has the following characteristics:

• It achieves a speed for compiled benchmarks that is competitive with
that of the Sapl interpreter and is faster than interpreters like Amanda,
Helium, Hugs and GHCi. This is despite the fact that JavaScript has a
3-5 times slower execution speed than the platforms used to implement
these interpreters.

96 L. Domoszlai, E. Bruël, J. M. Jansen

• The execution time of benchmarks is often dominated by memory oper-
ations. But in many cases this overhead could be significantly reduced
by a simple optimization on the creation of thunks.

• The implementation tries to map Sapl to corresponding JavaScript con-
structs as much as possible. Only when the lazy semantics of Sapl re-
quires this, an alternative translation is made. This opens the way for
additional optimizations based on compile time analysis of programs.

• The implementation supports the full Clean (and Haskell) language, but
not all libraries are supported. We tested the implementation against a
large number of Clean programs compiled with the Clean to Sapl com-
piler.

7.1 Future work

We have planned the following future work:

• Implement a web-based Clean to Sapl (or to JavaScript) compiler (exper-
imental version already made).

• Experimenting with supercompilation optimization by implementing a
Sapl to Sapl compiler based on whole program analysis.

• Encapsulate JavaScript libraries in a functional way, e.g. using generic
programming techniques.

• Attach client-side call-backs written in Clean to iTask editors. It can be
implemented using Clean-Sapl dynamics [9] which make it possible to
serialize expressions at the server side and execute them at the client
side.

• Use JavaScript currying instead of building thunks. Our preliminary
results indicate that using JavaScript currying would be significantly
slower, but further investigation is needed for proper analysis.

Acknowledgements

The research of the first author was supported by the European Union and
the European Social Fund under the grant agreement no. TÁMOP 4.2.1/B-
09/1/KMR-2010-0003.

Implementing a non-strict purely functional language in JavaScript 97

References

[1] E. Cooper, S. Lindley, P. Wadler, J. Yallop, Links: web programming
without tiers, Proc. 5th International Symposium on Formal Methods for
Components and Objects (FMCO ’06) , Lecture Notes in Comput. Sci.,
4709 (2006) 266–296. ⇒94, 95

[2] L. Domoszlai, E. Bruël, J. M. Jansen, The Sapl home page, http://www.
nlda-tw.nl/janmartin/sapl. ⇒88

[3] B. Fulgham, The computer language benchmark game, http://
shootout.alioth.debian.org. ⇒90

[4] D. Golubovsky, N. Mitchell, M. Naylor, Yhc.Core – from Haskell to Core,
The Monad.Reader, 7 (2007) 236–243. ⇒95

[5] J. van Groningen, T. van Noort, P. Achten, P. Koopman, R. Plasmeijer,
Exchanging sources between Clean and Haskell – a double-edged front
end for the Clean compiler, Haskell Symposium, Baltimore, MD, 2010.⇒79

[6] T. Hallgren, HS2JS test programs, http://www.altocumulus.org/

~hallgren/hs2js/tests/. ⇒95

[7] M. Hanus, Putting declarative programming into the web: translating
Curry to JavaScript, Proc. 9th ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming (PPDP ’07),
Wroclaw, Poland, 2007, ACM, pp. 155–166. ⇒94

[8] J. M. Jansen, P. Koopman, R. Plasmeijer, Efficient interpretation by
transforming data types and patterns to functions, Proc. Seventh Sympo-
sium on Trends in Functional Programming (TFP 2006), Nottingham,
UK, 2006. ⇒77, 78, 88, 90, 91

[9] J. M. Jansen, P. Koopman, R. Plasmeijer, iEditors:extending iTask with
interactive plug-ins, Proc. 20th International Symposium on the Imple-
mentation and Application of Functional Languages (IFL 2008), Hert-
fordshire, UK, 2008, pp. 170–186. ⇒96

[10] F. Loitsch, M. Serrano, Hop client-side compilation, Trends in Functional
Programming (TFP 2007), New York, 2007, pp. 141–158. ⇒94

http://www.ezrakilty.net/pubs/links-fmco.pdf
http://www.springer.com/series/558
http://www.nlda-tw.nl/janmartin/
http://www.nlda-tw.nl/janmartin/sapl
http://www.nlda-tw.nl/janmartin/sapl
http://shootout.alioth.debian.org
http://shootout.alioth.debian.org
http://reference.kfupm.edu.sa/content/y/h/yhc_core___from_haskell_to_core_55219.pdf
http://themonadreader.wordpress.com/
http://www.cs.ru.nl/~thomas
http://www.cs.ru.nl/P.Achten/
http://www.cs.ru.nl/~pieter
http://www.niii.ru.nl/~rinus/
http://www.cs.ru.nl/~thomas/publications/groj10-exchanging-sources-between.pdf
http://www.altocumulus.org/~hallgren/
http://www.altocumulus.org/~hallgren/hs2js/tests/
http://www.altocumulus.org/~hallgren/hs2js/tests/
http://www.informatik.uni-kiel.de/~mh/
http://www.informatik.uni-kiel.de/~mh/papers/PPDP07.pdf
http://www.informatik.uni-kiel.de/~mh/papers/PPDP07.pdf
http://www.acm.org/
http://www.nlda-tw.nl/janmartin/
http://www.cs.ru.nl/~pieter
http://www.niii.ru.nl/~rinus/
http://www.cs.nott.ac.uk/~nhn/TFP2006/Papers/03-JansenKoopmanPlasmeijer-EfficientInterpretation.pdf
http://www.nlda-tw.nl/janmartin/
http://www.cs.ru.nl/~pieter
http://www.niii.ru.nl/~rinus/
http://www.st.cs.ru.nl/papers/2009/janj09-IFL2008-iEditors.pdf
http://www-sop.inria.fr/members/Manuel.Serrano/publi/ls-tfp07.pdf

98 L. Domoszlai, E. Bruël, J. M. Jansen

[11] E. Meijer, D. Leijen, J. Hook, Client-side web scripting with HaskellScript,
First International Workshop on Practical Aspects of Declarative Lan-
guages (PADL ’99), San Antonio, Texas, 1999, Lecture Notes in Comput.
Sci., 1551 (1999) 196–210. ⇒77

[12] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, S. Krishnamurthi, Flapjax: a programming language for
Ajax applications, SIGPLAN Not., 44 (2009) 1–20. ⇒95

[13] R. Plasmeijer, P. Achten, P. Koopman, iTasks: executable specifica-
tions of interactive work flow systems for the web, Proc. 12th ACM
SIGPLAN International Conference on Functional Programming (ICFP
2007), Freiburg, Germany, 2007, ACM, pp. 141–152. ⇒94

[14] R. Plasmeijer, J. M. Jansen, P. Koopman, P. Achten, Declarative Ajax
and client side evaluation of workflows using iTasks, 10th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP ’08), Valencia, Spain, 2008. ⇒77, 94

[15] M. Serrano, E. Gallesio, F. Loitsch, Hop: a language for programming the
web 2.0, ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2006),
Portland, Oregon, 2006, pp. 975–985. ⇒94

Received: January 31, 2011 • Revised: March 23, 2011

http://research.microsoft.com/en-us/um/people/emeijer/Papers/client-side-web-scripting.pdf
http://www.springer.com/series/558
http://www.springer.com/series/558
http://www.cs.brown.edu/~arjun/public/flapjax.pdf
http://portal.acm.org/citation.cfm?id=J706&CFID=5176673&CFTOKEN=22156418
http://www.niii.ru.nl/~rinus/
http://www.cs.ru.nl/P.Achten/
http://www.cs.ru.nl/~pieter
http://www.st.cs.ru.nl/papers/2007/plar2007-ICFP07-iTasks.pdf
http://www.st.cs.ru.nl/papers/2007/plar2007-ICFP07-iTasks.pdf
http://www.acm.org/
http://www.niii.ru.nl/~rinus/
http://www.nlda-tw.nl/janmartin/
http://www.cs.ru.nl/~pieter
http://www.cs.ru.nl/P.Achten/
http://www.nlda-tw.nl/janmartin/papers/ppdp14-plasmeijer.pdf
http://www.inria.fr/mimosa/Manuel.Serrano
http://www.essi.fr/~eg
http://www.inria.fr/mimosa/Florian.Loitsch
http://www-sop.inria.fr/members/Manuel.Serrano/publi/dls06/article.html

Acta Univ. Sapientiae, Informatica, 3, 1 (2011) 99–126

Testing of random matrices

Antal IVÁNYI
Eötvös Loránd University

Department of Computer Algebra
H-1117, Budapest, Hungary

Pázmány sétány 1/C
email: tony@compalg.inf.elte.hu

Imre KÁTAI
Eötvös Loránd University

Department of Computer Algebra
H-1117, Budapest, Hungary

Pázmány sétány 1/C
email: katai@compalg.inf.elte.hu

Abstract. Let n be a positive integer and X = [xij]1≤i,j≤n be an n× n
sized matrix of independent random variables having joint uniform dis-
tribution

Pr{xij = k for 1 ≤ k ≤ n} =
1

n
(1 ≤ i, j ≤ n) .

A realization M = [mij] of X is called good, if its each row and each col-
umn contains a permutation of the numbers 1, 2, . . . , n. We present and
analyse four typical algorithms which decide whether a given realization
is good.

1 Introduction

Some subsets of the elements of Latin squares [1, 13, 23, 29, 32, 53, 54, 59, 60],
of Sudoku squares [6, 7, 15, 16, 20, 21, 22, 28, 31, 45, 50, 55, 57, 60, 62,
65, 66, 69, 71], of de Bruijn arrays [2, 3, 4, 5, 10, 11, 18, 26, 27, 35, 38, 39,
42, 44, 48, 52, 56, 61, 64, 68, 70, 72] and gerechte designs, connected with
agricultural and industrial experiments [7, 8, 34] have to contain different
elements. The one dimensional special case is also studied is several papers
[30, 33, 36, 37, 38, 40, 41, 46, 47, 49].

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 68M20, 05B15
Key words and phrases: random sequences, analysis of algorithms, Latin squares, Sudoku
squares

99

http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1
mailto:tony@compalg.inf.elte.hu
http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1
mailto:katai@compalg.inf.elte.hu

100 A. Iványi, I. Kátai

The testing of these matrices raises the following problem.
Let m ≥ 1 and n ≥ 1 be integers and X = [xij]1≤i≤m,1≤j≤n be an m×n sized

matrix of independent random variables having joint uniform distribution

Pr{xij = k for 1 ≤ k ≤ n} =
1

n
(1 ≤ i ≤ m, 1 ≤ j ≤ n) .

A realizationM = [mij] of X is called good, if its each row and each column
contain different elements (in the case m = n a permutation of the numbers
1, 2, . . . , n. We present and analyse algorithms which decide whether a given
realization is good. If the realization is good then the output of the algorithms
is True, otherwise is False.

The structure of the paper is as follows. Section 1 contains the introduc-
tion. In Section 2 the mathematical background of the main results is prepared.
Section 3 contains the running times of the testing algorithms Linear, Back-
ward, Bucket and Matrix in worst, best and expected cases. In Section 4
the results are summarised.

2 Mathematical background

We start with the first step of the testing of M: describe and analyse several
algorithms testing the first row of M. The inputs of these algorithms are
n (the length of the first row of M) and the elements of the first row m =

(m11,m12, . . . ,m1n). For the simplicity we use the notation s = (s1, s2, . . . , sn).
The output is always a logical variable g (its value is True, if the input
sequence is good, and False otherwise).

We will denote the binomial coefficient
(
n
k

)
by B(n, k) and the function log2 n

by lgn [19], and usually omit the argument n from the functions τ(n), σ(n),

κ(n), κ1(n), κ2(n), γ(n), λ(n), δ(n), α(n), µ(n), η(n), φ(n), ρ(n), β(n),

Si(n), Ri(n), Q(n), pk(n), y(n), qi(k, n), Ai(n), bj(n), f(n), p(i, j, k, n),
cj(n), c(n), and A(i1, i2, k, n).

We characterise the running time of the algorithms by the number of neces-
sary assignments and comparisons and denote the running time of algorithm
Alg by Tworst(n,Alg), Tbest(n,Alg) and Texp(n,Alg) in the worst, best,
resp. expected case. The numbers of the corresponding assignments and com-
parisons are denoted by A, resp. C. The notations O, Ω, Θ, o and ω are used
according to [19, pages 43–52] and [51, pages 107–110].

Before the investigation of the concrete algorithms we formulate several
lemmas. The first lemma is the following version of the well-known Stirling’s
formula.

Testing of sequences by simulation 101

Lemma 1 ([19]) If n ≥ 1 then

n! =
(n
e

)n√
2πneτ , (1)

where
1

12n+ 1
< τ <

1

12n
,

and τ(n) = τ tends monotonically decreasing to zero when n tends to infinity.

Let ak(n) = ak and Si(n) = Si defined for any positive integer n as follows:

ak =
nk

k!
(k = 0, 1, 2, . . .) ,

Si =

n−1∑
k=0

akk
i (i = 0, 1, 2, . . .) . (2)

If in (2) k = i = 0, then ki = 0.
Solving a problem posed by S. Ramanujan [63], Gábor Szegő [67] proved

the following connection between en and S0.

Lemma 2 ([67]) The function σ(n) = σ, defined by

en

2
= S0 +

(
1

3
+ σ

)
an =

n−1∑
k=0

nk

k!
+

(
1

3
+ σ

)
an (n = 1, 2, . . .) (3)

and
σ(0) =

1

6
,

tends monotonically decreasing to zero when n tends to ∞.

The following lemma shows the connection among Si and S0, S1, . . . , Si−1.

Lemma 3 If i and n are positive integers, then

Si = n

i−1∑
k=0

B(i− 1, k)Sk − ni−1an−1 (4)

and
Si = Θ(enni) . (5)

102 A. Iványi, I. Kátai

Proof. Omitting the member belonging to the index k = 0 in Si, then simpli-
fying by k and using the substitution k− 1 = j we get

Si =

n−1∑
k=0

nk

k!
ki = n

n−1∑
k=1

nk−1

(k− 1)!
ki−1 = n

n−2∑
j=0

nj

j!
(j+ 1)i−1 .

Completing the sum with the member belonging to index j = n− 1 results

Si = n

n−1∑
j=0

nj

j!
(j+ 1)i−1 − nian−1 . (6)

Now the application of the binomial theorem results (4).
According to (5) S0 = Θ(en), so using induction and (6) we get (5). �

In this paper we need only the simple form of S0, S1, S2 and S3 what is
presented in the next lemma.

Lemma 4 If n is a positive integer then

S0 =
en

2
−
nn

n!

(
1

3
+ σ

)
, (7)

S1 = nS0 − nan−1, S2 = S0(n
2 + n) − 2n2an , (8)

and
S3 = S0(n

3 + 3n2 + n) − (3n3 + 2n2)an . (9)

Proof. Expressing S0 from (3), and using recursively Lemma 3 for i = 1, 2

and 3 we get the required formula for S0, S1, S2, and S3. �

We introduce also another useful function Ri(n) = Ri

Ri =

n∑
k=1

pk(n)ki (i = 0, 1, 2, . . .) , (10)

where pk(n) = pk is the key probability of this paper, defined in [33] as

pk =
n

n

n− 1

n
· · · n− k+ 1

n

k

n
=

n!k

(n− k)!nk+1
(k = 1, 2, . . . , n) . (11)

The following lemma mirrors the connection between the function Ri and
the functions S0, S1, . . . , Si+1.

Testing of sequences by simulation 103

Lemma 5 If i and n are positive integers, then

Ri =
n!

nn+1

i+1∑
l=0

(−1)l
(
i+ 1

l

)
ni+1−lSl . (12)

Proof. Using (10) and (11) the substitution n− k = j results

Ri =

n∑
k=1

n!ki+1

(n− k)!nk+1
=

n!

nn+1

n−1∑
j=0

nj(n− j)i+1

j!
.

From here, using the binomial theorem we get (12). �

In this paper we need only the following consequence of Lemma 5.

Lemma 6 If n is a positive integer, then

R0 = 1, R1 =
n!

nn
S0 ,

and
R2 = 2n−

n!

nn
S0 . (13)

Proof. R0 = 0 follows from the definition of the probabilities pk. Substituting
i = 1 into (12) we get

R1 =
n!

nn+1

n2 n−1∑
j=0

nj

j!
− 2n

n−1∑
j=0

nj

j!
j+

n−1∑
j=0

nj

j!
j2

 .

From here, using (2) we get

R1 =
n!

nn+1
(n2S0 − 2nS1 + S2) ,

and using (6) the required formula for R1.
Substituting i = 2 into (12) we get

R2 =
n!

nn+1

n3 n−1∑
j=0

nj

j!
− 3n2

n−1∑
j=0

nj

j!
j+ 3n

n−1∑
j=0

nj

j!
j2 −

n−1∑
j=0

nj

j!
j3

 .

From here, using (2) we have

R2 =
n!

nn+1
(n3S0 − 3n2S1 + 3nS2 − S3) , (14)

and using (8) and (9) the required formula for R2. �

The following lemmas give some further properties of R1 and R2.

104 A. Iványi, I. Kátai

Lemma 7 If n is a positive integer, then

R1 =
n!

nn
S0 =

√
πn

2
−
1

3
+ κ , (15)

where

κ(n) = κ =

√
πn

2

(
eτ − 1−

2σeτ

en

)
, (16)

and κ tends monotonically decreasing to zero when n tends to infinity.

Proof. Substituting S0 according to (7) in the formula (13) for R1 we get

R1 =
n!

nn

[
en

2
−
nn

n!

(
1

3
+ σ

)]
= −

1

3
+
n!

nn

(
en

2
−
nn

n!
σ

)
. (17)

Substitution of n! according to (1) (Stirling’s formula) and writing 1+(eτ−1)

instead of eτ results

R1 = −
1

3
+
1

nn

(n
e

)n√
2πn [1+ (eτ − 1)]

[
en

2
− σ

]
. (18)

The product P of the expressions in the square brackets is

P =
en

2
+
en

2
(eτ − 1) − σeτ , (19)

therefore

R1 =

√
πn

2
−
1

3
+

√
2πn

en

[
en

2
(eτ − 1) − σeτ

]
, (20)

implying

R1 =

√
πn

2
−
1

3
+

√
πn

2
(eτ − 1) −

√
πn

2

2σeτ

en
. (21)

Let

κ1(n) = κ1 =

√
πn

2
(eτ − 1), κ2(n) = κ2 =

√
πn

2

2σeτ

en
, κ = κ1 + κ2 , (22)

and

γ(n) = γ =
κ(n+ 1)

κ(n)
=
κ1(n+ 1) − κ2(n+ 1)

κ1(n) − κ2(n)
for n = 1, 2, (23)

Testing of sequences by simulation 105

Since all κ functions are positive for all positive integer n’s, therefore γ < 1
for n ≥ 1 implies the monotonity of κ. Numerical results in Table 1 show that
γ < 1 for n = 1, 2, . . . , 9, therefore it remained to show γ < 1 for n ≥ 10.
κ2(n + 1) can be omitted from the numerator of (22). Since σ and τ are

monotone decreasing functions, and 0 < σ(5) < 0.0058, and 0 < eτ(5) < 1.02,
and n2 < en for n ≥ 10, therefore

2σeτ

en
<
2 · 0.0058 · 1.02

en
<
0.012

n2
for n ≥ 10 . (24)

Using (23), (24) and the Lagrange remainder of the Taylor series of the
function ex we have

γ <

√
n+ 1√
n

τ(n+ 1) + τ2ξn+1/2

τ(n) + τ2ξn/2− 0.012/n2
,

where 0 < ξn+1 < n+ 1 and 0 < ξn < n, therefore using Lemma 1 we get

γ <

√
n+ 1√
n

1
12(n+1)+1

1
12n + 1

2

(
1
12n

)2
− 0.012

n2

. (25)

Now multiplication of the denominator and denominator of the right side of
(25) by (12n)2 results

γ =

√
n+ 1√
n

12n·12n
12n+13

12n+ 0.5− 1.584
=

√
n+ 1√
n

12n

(12n− 1.084)
(
1+ 13

12n

) . (26)

Since

(12n− 1.084)

(
1+

13

12n

)
> 12n+ 10 , (27)

(26) and (27) imply

γ <

√
144n3 + 144n2√
144n3 + 240n2

< 1 ,

finishing the proof of the monotonity of κ. �

We remark, that the monotonity of κ was published in [40] without proof, and
was proved by E. Bokova and G. Tzaturjan in 1985 [9], and in 1988—using
a formula due to E. Egorychev et al. [25] derived by the method of integral
representation of combinatorial sums elaborated by E. P. Egorychev [24]—by
T. T. Cirulis and A. Iványi [17]. Our proof is much simpler than the earlier
ones.

106 A. Iványi, I. Kátai

Lemma 8 If n is a positive integer, then

R2 = 2n−
n!

nn
S0 = 2n+

1

3
−

√
πn

2
eτ − λ ,

where λ =

√
πn

2
(eτ − 1) + σ , (28)

and λ tends monotonically decreasing to zero when n tends to infinity.

Proof. The proof is omitted since it is similar to the proof of Lemma 7. �

3 Running times of the algorithms

In the following analysis let n ≥ 1 and let x = (x1, x2, . . . , xn) be independent
random variables having uniform distribution on the set {1, 2, . . . , n}. The input
sequence of the algorithms is s = (s1, s2, . . . , sn) (a realization of x).

We derive exact formulas for the expected numbers of comparisons Cexp(n,
Linear) = CL, Cexp(n,Backward) = CW , and Cexp(n,Bucket) = CB, fur-
ther for the expected running times Texp(n,Linear) = TL, Texp(n,

Backward) = TW , and Texp(n,Bucket) = TB.
The inputs of the following algorithms are n (the length of the sequence s)

and s = (s1, s2, . . . , sn), a sequence of nonnegative integers with 1 ≤ si ≤ n
for 1 ≤ i ≤ n) in all cases. The output is always a logical variable g (its value
is True, if the input sequence is good, and False otherwise). The working
variables are usually the cycle variables i and j.

We use the pseudocode defined in [19].

3.1 Definition and running time of algorithm Linear

Linear writes zero into the elements of an n length vector v = (v1, v2,

. . . , vn), then investigates the elements of the realization s and if vsi > 0

(signalising a repetition), then returns False, otherwise adds 1 to vk. If Lin-
ear does not find a repetition among the elements of s then it returns finally
True.

Linear(n, s)

1 g← True
2 for i← 1 to n
3 vi ← 0

Testing of sequences by simulation 107

4 for i← 1 to n
5 if vsi > 0
6 g← False
7 return g
8 else vsi ← vsi + 1

9 return g

Linear needs assignments in lines 1, 3, and 8, and it needs comparisons in
line 5. The number of assignments in lines 1 and 3 equals to n+1 for arbitrary
input and varies between 1 and n in line 8. The number of comparisons in line
8 also varies between 1 and n. Therefore the running time of Linear is Θ(n)

in the best, worst and expected case too.
The following theorem gives the expected number of the comparisons of

Linear.

Theorem 9 The expected number of comparisons Cexp(n,Linear) = CL of
Linear is

CL = 1−
n!

nn
+ R1 =

√
πn

2
+
2

3
+ κ−

n!

nn
. (29)

where

κ =
1

3
−

√
πn

2
+

n∑
k=1

n!k2

(n− k)!nk+1

tends monotonically decreasing to zero when n tends to infinity.

Proof. Let

y(n) = y = max{k : 1 ≤ k ≤ n and s1, s2, . . . , sk are different} (30)

be a random variable characterising the maximal length of the prefix of s
containing different elements. Then

Pr{y = k} = pk (k = 1, 2, . . . , n) ,

where pk is the probability introduced in (11).
If y = k and 1 ≤ k ≤ n − 1, then Linear executes k + 1 comparisons, and

only n comparisons, if y = n, therefore

CL =

n−1∑
k=1

pk(k+ 1) + pnn =

n∑
k=1

pk(k+ 1) − pn = 1−
n!

nn
+

n∑
k=1

pkk , (31)

108 A. Iványi, I. Kátai

from where using Lemma 7 we receive

CL = 1−
n!

nn
+ R1 =

√
πn

2
+
2

3
−
n!

nn
+ κ . (32)

The monotonity of κ(n) was proved in the proof of Lemma 7. �

The next assertion gives the running time of Linear.

Theorem 10 The expected running time Texp(n,Linear) = TL of Linear is

TL = n+
√
2πn+

7

3
+ 2κ− 2

n!

nn
,

where κ tends monotonically decreasing to zero when n tends to infinity.

Proof. Linear requires n+1 assignments in lines 01 and 03, plus assignments
in line 08. The expected number of assignments in line 8 is the same as CL.
Therefore

TL = n+ 1+ 2CL . (33)

Substitution of (32) into (33) results the required (29). �

We remark, that (32) is equivalent with

CL = 1−
n!

nn
+ 1+

n− 1

n
+
n− 1

n

n− 2

n
+ · · ·+ n− 1

n

n− 2

n
· · · 1
n
,

demonstrating the close connection with the function

Q(n) = Q = CL − 1+
n!

nn
, (34)

studied by several authors, e.g. in [12, 40, 51].
Table 1 shows the concrete values of the functions appearing in the analysis

of CL and TL for 1 ≤ n ≤ 10, where CL was calculated using (32), κ using (11),
and σ using (3) (data in this and further tables are taken from [43]). We can
observe in Table 1 that δ(n) = δ = κ− n!

nn is increasing from n = 1 to n = 8,

but for larger n is decreasing. Taking into account that for n > 8

n!

nn
=
(n
e

)n√
2πn

eτ

nn
<

√
2πn

en
e1/(12n) <

2.7
√
n

en
<
0.012

n2

holds, we can prove—using the same arguments as in the proof of Lemma
7—the following assertion.

Testing of sequences by simulation 109

n CL u n!/nn κ δ σ

1 1.000000 1.919981 1.000000 0.080019 −0.919981 0.025808
2 2.000000 2.439121 0.500000 0.060879 −0.439121 0.013931
3 2.666667 2.837470 0.222222 0.051418 −0.170804 0.009504
4 3.125000 3.173295 0.093750 0.045455 −0.048295 0.007205
5 3.472000 3.469162 0.038400 0.041238 +0.002838 0.005799
6 3.759259 3.736647 0.015432 0.038045 +0.022612 0.004852
7 4.012019 3.982624 0.006120 0.035515 +0.029395 0.004170
8 4.242615 4.211574 0.002403 0.033444 +0.031040 0.003656
9 4.457379 4.426609 0.000937 0.031707 +0.030770 0.003255
10 4.659853 4.629994 0.000363 0.030222 +0.029859 0.002933

Table 1: Values of CL, u =
√
πn/2+ 2/3, n!/nn, κ, δ = κ− n!/nn, and σ for

n = 1, 2, . . . , 10

Theorem 11 The expected running time Texp(n,Linear) = TL of Linear is

TL = n+
√
2πn+

7

3
+ δ ,

where δ(n) = δ tends to zero when n tends to infinity, further

δ(n+ 1) > δ(n) for 1 ≤ n ≤ 7 and δ(n+ 1) < δ(n) for n ≥ 8 .

If we wish to prove only the existence of some threshold index n0 having the
property that n ≥ n0 implies δ(n + 1) < δ(n), then we can use the following
shorter proof.

Using (29) and (34) we get

κ = CL −

√
πn

2
−
2

3
−
n!

nn
= Q−

√
πn

2
+
1

3
. (35)

Substituting the power series

Q =

√
πn

2
−
1

3
+
1

12

π

2n
−

14

135n
+

1

288

π

2n3
+O(n−2)

cited by D. E. Knuth [51, Equation (25) on page 120] into (35) and using

1

nk/2
−

1

(n+ 1)k/2
= Θ

(
1

n1+k/2

)

110 A. Iványi, I. Kátai

for k = 1, 2, 3 and 4 we get

κ(n) − κ(n+ 1) =

√
π

12
√
2

(
1√
n

−
1√
n+ 1

)
+O(n−2) ,

implying

κ(n) − κ(n+ 1) =

√
π

12
√
2

1
√
n
√
n+ 1(

√
n+
√
n+ 1)

+O(n−2) ,

guaranteeing the existence of the required n0.

3.2 Running time of algorithm Backward

Backward compares the second (s2), third (s3), . . . , last (sn) element of the
realization with the previous elements until the first collision or until the last
pair of elements.

Taking into account the number of the necessary comparisons in line 04
of Backward, we get Cbest(n,Backward) = 1 = Θ(1), and Cworst(n,

Backward) = B(n, 2) = Θ(n2). The number of assignments is 1 in the best
case (in line 1) and is 2 in the worst case (in lines 1 and in line 5). The expected
number of assignments is Aexp(n,Backward) = 1+ n!

nn , since only the good
realizations require the second assignment.

Backward(n, s)
1 g← True
2 for i← 2 to n
3 for j← i− 1 downto 1
4 if si = sj
5 g← False
6 return g
7 return g

The next assertion gives the expected running time.

Theorem 12 The expected number of comparisons Cexp(n,Backward) =

CW of the algorithm Backward is

CW = n−

√
πn

8
+
2

3
−
1

2
κ−

n!

nn
n+ 1

2
=

√
πn

8
+
2

3
− α ,

where α(n) = α = κ
2 + n!

nn
n+1
2 monotonically decreasing tends to zero when n

tends to ∞.

Testing of sequences by simulation 111

Proof. Let y be as defined in (30), pk as defined in (11), and let

z = {q : 1 ≤ q ≤ k; s1, s2, . . . , sk are different; sk+1 = sq | y = k}

be a random variable characterising the index of the first repeated element of
s.

Let

qi(k, n) = qi(k) = Pr{z = i|y = k} (k = 1, 2, . . . , n; i = 1, 2, . . . k) .

Backward executes B(k, 2) comparisons among the elements s1, s2, . . . , sk,
and sk+1 requires at least 1 and at most k comparisons (with exception of case
k = n when additional comparisons are not necessary). Therefore using the
theorem of the full probability we have

CW =

n−1∑
k=1

pk

(
B(k, 2) +

k∑
i=1

iqi(k)

)
+ pnB(n, 2) ,

where

qi(k, n) = qi(k) =
1

k
(i = 1, 2, . . . , k; k = 1, 2, . . . , n) . (36)

Adding a new member to the first sum we get

CW =

n∑
k=1

pk

(
B(k, 2) +

k∑
i=1

qi(k)i

)
− pn

n∑
i=1

qi(k)i . (37)

Using the uniform distribution (36) of z we can determine its contribution to
CW :

k∑
i=1

qi(k)i =

k∑
i=1

i

k
=
k+ 1

2
. (38)

Substituting the contribution in (38) into (37), and taking into account Lemma
6 and Lemma 7 we have

CW =
1

2
R2 −

1

2
R0 −

n!

nn
n+ 1

2
.

Now Lemma 6 and Lemma 7 result

CW = n−

√
πn

8
+
2

3
−
1

2
κ−

n!

nn
n+ 1

2
. (39)

The known decreasing monotonity of κ and n!
nn imply the decreasing mono-

tonity of α. �

112 A. Iványi, I. Kátai

n CW n−
√
πn/8+ 2/3 t κ α

1 0.000000 1.040010 1.000000 0.080019 1.040010

2 1.000000 1.780440 0.750000 0.060879 0.780440

3 2.111111 2.581265 0.444444 0.051418 0.470154

4 3.156250 3.413353 0.234375 0.045455 0.257103

5 4.129600 4.265419 0.115200 0.041238 0.135819

6 5.058642 5.131677 0.054012 0.038045 0, 073035

7 5.966451 6.008688 0.024480 0.035515 0.042237

8 6.866676 6.894213 0.010815 0.033444 0.027536

9 7.766159 7.786695 0.004683 0.031707 0.020537

10 8.667896 8.685003 0.001996 0.030222 0.017107

Table 2: Values of CW , n −
√
πn/8 + 2/3, t = n!

nn
n+1
2 , κ, and α = κ/2 +

(n!/nn)((n+ 1)/2) for n = 1, 2, . . . , 10

Theorem 13 The expected running time Texp(n,Backward) = TW of the
algorithm Backward is

TW = n−

√
πn

8
+
5

3
− α , (40)

where α = κ/2 + (n!/nn)((n + 1)/2) tends monotonically decreasing to zero
when n tends to ∞.

Proof. Taking into account (39) and Aexp(n,Backward) = 1+ n!
nn − n!

nn
n+1
2

we get (40). �

Table 2 represents some concrete numerical results. It is worth to remark
that n!

nn
n+1
2 = Θ

(
n
√
n

en

)
, while κ = Θ

(
1√
n

)
, therefore κ decreases much

slower than the other expression.

3.3 Running time of algorithm Bucket

Bucket divides the interval [1, n] into m =
√
n subintervals I1, I2, . . . , Im,

where Ij = [(j − 1)m + 1, jm] for j = 1, 2, . . . m, and sequentially puts the
elements of s into the bucket Bj (we use the word bucket due to some similarity
to bucket sort [19]): if dsi/me = j, then si belongs to Bj. Bucket works until
the first repetition (stopping with g = False), or up to the processing of the
last element sn (stopping with g = True).

Testing of sequences by simulation 113

Bucket handles an array Q[1 : m, 1 : m] (where m = d
√
ne and puts the

element si into the rth row of Q, and it tests using linear search whether
sj appeared earlier in the corresponding bucket. The elements of the vector
c = (c1, c2, . . . , cm) are counters, where cj (1 ≤ j ≤ m)) shows the actual
number of elements in Bj.

Bucket(n, s)

1 g← True
2 m← √n
3 for j← 1 to m
4 cj ← 1

5 for i← 1 to n
6 r← dsi/me
7 for j← 1 to cr − 1

8 if si = Qr,j
9 g← False

10 return g

11 Qr,cr ← si
12 cr ← cr + 1

13 return g

For the simplicity let us suppose that m is a positive integer and n = m2.
In the best case s1 = s2. Then Bucket executes 1 comparisons in line 8,

m assignments in line 4, and 1 assignment in line 1, 1 in line 2, 2 in line 6,
and 1 in line 8, 11 and 12, therefore Tbest(n,Bucket) = m + 7 = Θ(

√
n).

The worst case appears, when the input is bad. Then each bucket requires
1+2+ · · ·+m−1 = B(n−1, 2) comparisons in line 8, further 3m assignments
in lines 6, and 12, totally m2(m−1)

2 + 3m2 operations. Lines 1, 2, and 9 require
1 assignment per line, and the assignment in line 4 is repeated m times. So
Tworst(n,Bucket) =

m2(m−1)
2 + 3m2 +m+ 3 = Θ(n3/2).

In connection with the expected behaviour of Bucket at first we show that
the expected number of elements in a bucket has a constant bound which is
independent from n.

Lemma 14 Let bj(n) = bj (j = 1, 2, . . . , m) be a random variable char-
acterising the number of elements in the bucket Bj at the moment of the first
repetition. Then

E{bj} =

√
π

2
− µ for j = 1, 2, . . . , m , (41)

114 A. Iványi, I. Kátai

where
µ(n) = µ =

1

3
√
n

−
κ√
n
, (42)

and µ tends monotonically decreasing to zero when n tends to infinity.

Proof. Due to the symmetry of the buckets it is sufficient to prove (41) and
(42) for j = 1.

Let m be a positive integer and n = m2. Let y be the random variable
defined in (28) and pk be the probability defined in (11).

Let Ai(n) = Ai (i = 1, 2, . . . , n) be the event that the number i appears
in s before the first repetition and Yi(n) = Yi be the indicator of Ai. Then
using the theorem of the full probability we have

E{b1} =

m∑
i=1

Yi =

m∑
i=1

Pr{Ai} = mPr{A1}

and

Pr{A1} = Pr{1 ∈ {s1, s2, . . . , sk}|y = k} =

n∑
k=1

pk
k

n
=
1

n

n∑
k=1

pkk =
1

n
R1 .

Using Lemma 7, we get

E{b1} = m
1

n
R1 =

m

n

(√
πn

2
−
1

3
+ κ

)
,

resulting (41) and (42).
We omit the proof of the monotonity of µ, since it is similar to the corre-

sponding part in the proof of Lemma 7. �

Table 3 shows some concrete values.

Lemma 15 Let f(n) = f be a random variable characterising the number of
comparisons executed in connection with the first repeated element. Then

E{f} = 1+

√
π

8
− η ,

where

η(n) = η =
1/6+

√
π/8− κ/2√
n+ 1

,

and η tends monotonically decreasing to zero when n tends to infinity.

Testing of sequences by simulation 115

n E{b1}
√
π/2 1/(3

√
n) κ/

√
n µ

1 1.000000 1.253314 0.333333 0.080019 0.253314
2 1.060660 1.253314 0.235702 0.043048 0.192654
3 1.090055 1.253314 0.192450 0.029686 0.162764
4 1.109375 1.253314 0.166667 0.022727 0.143940
5 1.122685 1.253314 0.149071 0.018442 0.130629
6 1.132763 1.253314 0.136083 0.015532 0.120551
7 1.140740 1.253314 0.125988 0.013423 0.112565
8 1.147287 1.253314 0.117851 0.011824 0.106027
9 1.152772 1.253314 0.111111 0.010569 0.100542
10 1.157462 1.253314 0.105409 0.009557 0.095852

Table 3: Values of E{b1},
√
π/2, 1/(3

√
n), κ/

√
n, and µ = 1/(3

√
n) − κ/

√
n

for n = 1, 2, . . . , 10

Proof. Let p(i, j, k, n) = p(i, k, n) be the probability of the event that there
are k different elements before the first repetition, and the repeated element
belongs to Bj, and Bj contains i elements in the moment of the first repetition.
Due to the symmetry p(i, j, k, n) does not depend on j and

p(i, j, k, n) =

(
m

i

)(
n−m

k− i

)
k!

i

nk+1
,

since we investigate nk+1 sequences, and if there are k (1 ≤ k ≤ n) different
elements before the repeated one, then we can choose i elements for the jth
bucket in

(
m
i

)(
n−m
k−1

)
manner, we can permute them in k! manner, and we can

choose the repeated element in i manner. Then

E{f} =
∑
i,j,k,n

p(i, j, k)
i+ 1

2
−mpn (43)

=
m

2n

n∑
k=1

k!

nk

k∑
i=1

(
m

i

)(
n−m

k− i

)
i(i+ 1) − pn

n+ 1

2
(44)

The last member of the formula takes into account that if k = n, then
additional comparisons with the elements of the bucket corresponding to the
repeated element are not necessary.

Let
E’{f} = E{f} + pn

n+ 1

2
.

116 A. Iványi, I. Kátai

Then dividing the inner sum in (44) by
(
n
k

)
we get the expected value of

the random variable ξ(ξ + 1), where ξ has hypergeometric distribution with
parameters n, m, and k. It is easy to compute that

E’{ξ(ξ+ 1)} = E’{ξ}(E’{ξ+ 1}) + Var{ξ} =
km[k(m− 1) + (2n− 1−m)]

n(n− 1)
,

therefore

E’{f} =
m

2n

n∑
k=1

k!

nk

(
n

k

)
km[k(m− 1) + (2n− 1−m)]

n(n− 1)
(45)

=
1

2(n− 1)

n∑
k=1

pk[k(m− 1) + (2n− 1−m)]

=
m− 1

2(n− 1)
R1 +

2n− 1−m

2(n− 1)
=
2m+ 1+ R1
2m+ 2

(46)

= 1+

√
π

8
−
1/6+

√
π/8− κ/2√
n+ 1

. (47)

The convergence and monotonicity of η is the consequence of the properties of
κ. Taking into account the small value of pn (see equation (11)) the difference
E ′{f} − E{f} has negligible influence on the limit of E{f}. �

Theorem 16 The expected number of comparisons Cexp(n,Bucket) = CB
of Bucket is

CB =
√
n+

1

3
−

√
π

8
+ ρ , (48)

where

ρ(n) = ρ =
5/6−

√
9π/8− 3κ/2√
n+ 1

. (49)

and ρ tends monotonically decreasing to zero when n tends to infinity.

Proof. Let s = (s1, s2, . . . , sn) be the input sequence of the algorithm
Bucket. Bucket processes the input sequence usingm =

√
n buckets B1, B2,

. . . , Bn: it investigates the input elements sequentially and if the i-th input
element si belongs to the interval [(r − 1)m + 1, (r − 1)m + 2, . . . , rm], then
it sequentially compares si with the elements in the bucket Br and finishes, if
it finds a collision, or puts si into Br, if si differs from all elements in Br.

Testing of sequences by simulation 117

Let y be the random variable, defined in (30), and pk the probability
defined in (11). Let bi be the random variable defined in Lemma 14, and
cj(n) = cj (j = 1, 2, . . . , m) be a random variable characterising the number
of comparisons executed in Bj before the processing of the first repeated ele-
ment, and c(n) = c a random variable characterising the number of necessary
comparisons executed totally by Bucket. Then due to the symmetry we have

CB = E


m∑
j=1

cj

+ E{f} = mE{c1} + E{f} . (50)

The probability of the event A(i1, i2, k, n) = A(i1, i2, k) that the elements
i1 and i2 (1 ≤ i1, i2 ≤ m) will be compared before the processing of the first
repeated element at the condition that y = k and 2 ≤ k ≤ n equals to

Pr{A(i1, i2, k)|y = k and 2 ≤ k ≤ n} =

(
n−2
k−2

)(
n
k

) =
k(k− 1)

n(n− 1)
,

Since there are
(
m
n

)
possible comparisons among the elements of the interval

[1,m], we have

E{c1} =

n∑
k=1

pk
k(k− 1)

n(n− 1)

(
m

2

)
=
m(m− 1)

2n(n− 1)

(
n∑
k=1

pkk
2 −

n∑
k=1

pkk

)
,

from where using Lemma 7 and Lemma 8 we get

E{c1} =
n−
√
n

2n2 − 2n
(R2 − R1) =

1

2n+ 2
√
n

[
2n− 2

(√
πn

2
−
1

3
+ κ

)]
. (51)

This equality implies

E{c1} = 1−
1√
n+ 1

(√
π

8
+
2

3
− κ

)
. (52)

From (50), taking into account (52), (45), and (47) we get

CB =
√
n+

1

3
−

√
π

8
+

√
9π/8+ 5/6− 3κ/2√

n+ 1
.

Denoting the last fraction by ρ we get the required (48). The monotonity of ρ
is the consequence of the monotonity of κ. �

118 A. Iványi, I. Kátai

Theorem 17 The expected running time Texp(n,Bucket) = TB of Bucket
is

TB =
√
n

(
3+ 3

√
π

2

)
+

√
25π

8
+ φ , (53)

where

φ(n) = φ = 3κ− ρ− 3η−
n!

nn
−
3
√
π/8− 1/3− 3κ/2√

n+ 1
,

and φ tends to zero when n tends to infinity.

Proof. Bucket requires 2 assignments in lines 1 and 2,
√
n assignments in

line 4, R1 assignments in line 6, CB+E{f} assignments in line 8, 1−pn expected
assignment in line 9 and 2R1 assignments in lines 11 and 12 before the first
repeated element, and 2E{f} − 1 assignments after the first repeated element.

Therefore the expected number Aexp(n,Bucket) = AB of assignments of
Bucket is

AB = 2+
√
n+ 3R1 + CB + 3E{f} −

n!

nn
.

Substituting R1, and CB, and E{f} we get

AB = 2
√
n+

13

3
+ 3

√
πn

2
+ 3κ−

√
π

8
+ ρ+ 3

√
π

8
− 3η−

n!

nn
, (54)

implying

AB =
√
n

(
2+ 3

√
π

2

)
+
13

3
+

√
π

2
+ 3κ+ ρ− 3η−

n!

nn
.

Summing up the expected number of comparisons in (48) and of assignments
in (54) we get the final formula (53). �

3.4 Test of random arrays

Matrix is based on Bucket.
For the simplicity let us suppose that n is a square.
Let M be an n× n sized matrix, where mij ∈ {1, 2, . . . , n}. The ith row of
M is denoted by ri, and the jth column by cj for 1 ≤ i, j ≤ n. The matrix M
is called good, if its all lines (rows and columns) contain a permutation of the
elements 1, 2, . . . , n.

Testing of sequences by simulation 119

Matrix(n,M)

1 g← True
2 Bucket(n, r1)

3 if g = False
4 return g
5 for i← 2 to n
6 Bucket(n, ri)

7 if g = False
8 return g
9 for j← 1 to n
10 Bucket(n, cj)

11 if g = False
12 return g
13 return g

Theorem 18 The expected running time Texp(n,Matrix) = TM of Matrix
is

TM = TB + o(1) . (55)

Proof. According to Theorem 17 we have

TB =
√
n

(
3+ 3

√
π

2

)
+

√
25π

8
+ o(1) .

Since the rows of M are independent, therefore the probability of the event
Gk(n) = Gk (k = 1, 2, . . . , n) that the first k rows are good is

Pr{Gk} =

(
n!

nn

)k
,

so for the expected time Texp(n,Matrix) = TR of the testing of the rows we
have

TR ≤ TB + TB

n−1∑
k=1

(
n!

nn

)k
= TB + o(1) .

Since the columns are also independent, all the rows and the first k columns
are good with the probability

p =

(
n!

nn

)n+k

,

120 A. Iványi, I. Kátai

Index and algorithm Cbest(n) Cworst(n) Cexp(n)

1. Linear Θ(1) Θ(n) Θ(
√
n)

2. Backward Θ(1) Θ(n2) Θ(n)

3. Bucket Θ(1) Θ(n
√
n) Θ(

√
n)

4. Matrix Θ(1) Θ(n
√
n) Θ(

√
n)

Table 4: The expected number of comparisons of the investigated algorithms
in best, worst and expected cases

Index and algorithm Tbest(n) Tworst(n) Texp(n)

1. Linear Θ(n) Θ(n) n+Θ(
√
n)

2. Backward Θ(1) Θ(n2) Θ(n)

3. Bucket Θ(
√
n) Θ(n

√
n) Θ(

√
n)

4. Matrix Θ(
√
n) Θ(n

√
n) Θ(

√
n)

Table 5: The running times of the investigated algorithms in best, worst and
expected cases

and so for the expected time of testing of the columns Texp(n,Matrix) = TC
holds

TC ≤ TB
n−1∑
k=0

(
n!

nn

)
= o(1) ,

and so
TM = TR + TC

implies (55). �

4 Summary

Table 4 summarises the basic properties of the number of necessary compar-
isons of the investigated algorithms.

Table 5 summarises the basic properties of the running times of the inves-
tigated algorithms.

We used in our calculations the RAM computation model [19]. If the inves-
tigated algorithms run on real computers then we have to take into account
also the limited capacity of the memory locations and the increasing execution
time of the elementary arithmetical and logical operations.

Testing of sequences by simulation 121

Acknowledgements

Authors thank Tamás F. Móri [58] for proving Lemmas 14 and 15, Péter Burcsi
[14] for useful information on references (both are teachers of Eötvös Loránd
University) and the unknown referee for the useful corrections.

The European Union and the European Social Fund have provided finan-
cial support to the project under the grant agreement no. TÁMOP 4.2.1/B-
09/1/KMR-2010-0003.

References

[1] P. Adams, D. Bryant, M. Buchanan, Completing partial Latin squares with
two filled rows and two filled columns, Electron. J. Combin. 15, 1 (2008),
R56, 26 pages. ⇒99

[2] A. M. Alhakim, A simple combinatorial algorithm for de Bruijn sequences,
Amer. Math. Monthly 117, 8 (2010) 728–732. ⇒99

[3] M.-C. Anisiu, Z. Blázsik, Z. Kása, Maximal complexity of finite words,
Pure Math. Appl. 13, 1-2 (2002) 39–48. ⇒99

[4] M.-C. Anisiu, A. Iványi, Two-dimensional arrays with maximal complexity,
Pure Math. Appl. (PU.M.A.) 17, 3-4 (2006) 197–204. ⇒99

[5] M.-C. Anisiu, Z. Kása, Complexity of words, in Algorithms of Informatics,
Vol. 3 (electronic book, ed. A. Iványi), AnTonCom, Budapest, 2011 (to
appear). ⇒99

[6] C. Arcos, G. Brookfield, M. Krebs, Mini-Sudokus and groups. Math. Mag.
83, 2 (2010) 111–122. ⇒99

[7] R. A. Bailey, R. Cameron P. J., Connelly, Sudoku, gerechte designs, reso-
lutions, affine space, spreads, reguli, and Hamming codes, American Math.
Monthly 115, 5 (2008) 383–404. ⇒99

[8] W. U. Behrens, Feldversuchsanordnungen mit verbessertem Ausgleich der
Bodenunterschiede, Zeitschrift für Landwirtschaftliches Versuchs- und Un-
tersuchungswesen 2 (1956) 176–193. ⇒99

http://www.uq.edu.au/uqresearchers/researcher/adamsp.html
http://www.uq.edu.au/uqresearchers/researcher/bryantde.html
http://www.combinatorics.org/
http://people.clarkson.edu/~aalhakim/
http://www.maa.org/pubs/monthly.html
http://www.ad-astra.ro/whoswho/view_profile.php?user_id=1583
http://www.inf.u-szeged.hu/~blazsik/
http://www.sapientia.ro/hu/dr.-kasa-zoltan.html
http://www.ad-astra.ro/whoswho/view_profile.php?user_id=1583
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.bke.hu/puma/Contents.htm
http://www.ad-astra.ro/whoswho/view_profile.php?user_id=1583
http://www.sapientia.ro/hu/dr.-kasa-zoltan.html
http://www.jstor.org/journals/0025570X.html
http://www.maths.qmul.ac.uk/~rab/
http://www.maths.qmul.ac.uk/~pjc/
http://www.math.cornell.edu/~connelly/
http://www.jstor.org/journals/00029890.html

122 A. Iványi, I. Kátai

[9] E. Bokova, G. Tzaturjan, Speed of computers with interleaved memory (in
Russian), Master thesis. Moscow State University, Moscow, 1985, 43 pages.⇒105

[10] J. Bond, A. Iványi, Modelling of interconnection metworksusing
de Bruijn graps, Third Conference of Program Designers (ed. A.
Iványi), Budapest, July 1–3, 1987, Eötvös Loránd University, Bu-
dapest, 1987, pp. 75–88. http://compalg.inf.elte.hu/~tony/Kutatas/
Conferences-of-Program-Designers/Volume-4/ ⇒99

[11] S. Brett, G. Hurlbert, B. Jackson, Preface [Generalisations of de Bruijn
cycles and Gray codes], Discrete Math., 309, 17 (2009) 5255–5258. ⇒99

[12] R. Breusch, H. W. Gould, The truncated exponential series. Amer. Math.
Monthly 75, 9 (1968) 1019–1021. ⇒108

[13] H. L. Buchanan, M. N. Ferencak, On completing Latin squares, J. Com-
bin. Math. Combin. Comput. 34 (2000) 129–132. ⇒99

[14] P. Burcsi, Personal communication. Budapest, March 2009. ⇒121

[15] Ch.-Ch. Chang, P.-Y. Lin, Z.-H. Wang, M.-Ch. Li, A sudoku-based secret
image sharing scheme with reversibility. J. Commun. 5, 1 (2010) 5–12. ⇒
99

[16] Z. Chen, Heuristic reasoning on graph and game complexity of sudoku, 6
pag. arXiv:0903.1659v1, 2010. ⇒99

[17] T. Cirulis, A. Iványi, On the monotonity of a ”small func-
tion“, Fourth Conference of Program Designers (ed. A. A.
Iványi), Eötvös Loránd University, Budapest, June 1–3, 1988.
pp. 171–180. http://compalg.inf.elte.hu/~tony/Kutatas/
Conferences-of-Program-Designers/Volume-4/ ⇒105

[18] J. Cooper, C. Heitsch, The discrepancy of the lex-least de Bruijn sequence,
Discrete Math. 310, 6–7 (2010) 1152–1159. ⇒99

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, Third edition, The MIT Press, 2009. ⇒ 100, 101, 106, 112,
120

[20] J. F. Crook, A pencil-and-paper algorithm for solving Sudoku puzzles,
Notices Amer. Math. Soc. 56, (2009) 460–468. ⇒99

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/~tony/Kutatas/Conferences-of-Program-Designers/Volume-4/
http://compalg.inf.elte.hu/~tony/Kutatas/Conferences-of-Program-Designers/Volume-4/
http://mingus.la.asu.edu/~hurlbert/
http://www.sciencedirect.com/science/journal/0012365X
http://www.maa.org/pubs/monthly.html
http://compalg.inf.elte.hu/~bupe/oktatas.html
http://www.wiley.com/bw/journal.asp?ref=0021-9916
http://arxiv.org/PS_cache/arxiv/pdf/0903/0903.1659v1.pdf
http://compalg.inf.elte.hu/~tony/Kutatas/Conferences-of-Program-Designers/Volume-4/
http://compalg.inf.elte.hu/~tony/Kutatas/Conferences-of-Program-Designers/Volume-4/
http://www.math.sc.edu/~cooper/
http://www.sciencedirect.com/science/journal/0012365X
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://www.ams.org/notices/200904/tx090400460p.pdf

Testing of sequences by simulation 123

[21] G. Dahl, Permutation matrices related to Sudoku, Linear Algebra Appl.
430 (2009) 2457–2463. ⇒99

[22] J. Dénes, A. D. Keedwell, Latin Squares. New Developments in the Theory
and Applications, North-Holland, Amsterdam, 1991. ⇒99

[23] T. Easton, R. G. Parker, On completing Latin squares, Discrete Appl.
Math. 113, 2–3 (2001) 167–181. ⇒99

[24] E. P. Egorychev, Integral Representation and the Computation of Com-
binatorial Sums, American Mathematical Society, Providence, RI, Trans-
lations of Mathematical Monographs, 59. ⇒105

[25] G. P. Egorychev, A. Iványi, A. I. Makosiy, Analysis of two characterizing
the speed of computers with interleaved memory (in Russian), Annales
Univ. Sci. Budapest., Sectio Comput. 7 (1987) 19–32. ⇒105

[26] C. H. Elzinga, S. Rahmann, H. Wang, Algorithms for subsequence com-
binatorics, Theor. Comput. Sci. 409, 3 (2008) 394–404. ⇒99

[27] C. H. Elzinga, Complexity of categorial time series, Sociological Methods
& Research 38, 3 (2010) 463–481. ⇒99

[28] M. Erickson, Pearls of discrete mathematics, Discrete Mathematics and
its Applications. CRC Press, Boca Raton, 2010. ⇒99

[29] R. Euler, On the completability of incomplete Latin squares. European
J. Combin. 31 (2010) 535–552. ⇒99

[30] S. Ferenczi, Z. Kása, Complexity for finite factors of infinite sequences,
Theoret. Comput. Sci. 218, 1 (1999) 177–195. ⇒99

[31] A. F. Gabor, G. J. Woeginger, How *not* to solve a Sudoku. Operation
Research Letters 38, 6 (2010) 582–584. ⇒99

[32] I. Hajirasouliha, H. Jowhari, R. Kumar, R. Sundaram, On complet-
ing Latin squares, Lecture Notes in Comput. Sci. 4393 (2007) 524–535,
Springer, Berlin, 2007. ⇒99

[33] H. Hellerman, Digital Computer System Principles, McGraw Hill, New
York, 1967. ⇒99, 102

http://www.sciencedirect.com/science/journal/00243795
http://www.surrey.ac.uk/maths/people/donald_keedwell/
http://www.elsevier.com/wps/find/homepage.cws_home
http://www.sciencedirect.com/science/journal/0166218X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ac.inf.elte.hu
http://home.fsw.vu.nl/ch.elzinga/
http://www.sciencedirect.com/science/journal/03043975
http://home.fsw.vu.nl/ch.elzinga/
http://smr.sagepub.com/content/38/3.toc
http://www.sciencedirect.com/science/journal/01956698
http://iml.univ-mrs.fr/~ferenczi/
http://www.ms.sapientia.ro/~kasa
http://www.sciencedirect.com/science/journal/03043975
http://www.polito.it/index.en.php
http://www.cs.sfu.ca/~imanh/personal/
http://www.cs.sfu.ca/~hjowhari/personal/
http://www.springerlink.com/content/105633
http://www.mheducation.com/home/index.shtml

124 A. Iványi, I. Kátai

[34] A. Heppes, P. Révész, A new generalization of the concept of Latin squares
and orthogonal Latin squares and its application to the design of experi-
ments (in Hungarian), Magyar Tud. Akad. Mat. Int. Közl., 1 (1956) 379–
390. ⇒99

[35] M. Horváth M., A. Iványi, Growing perfect cubes, Discrete Math. 308,
19 (2008) 4378–4388. ⇒99

[36] A. Iványi, On the d-complexity of words. Ann. Univ. Sci. Budapest., Sect.
Comput. 8 (1987) 69–90. ⇒99

[37] A. Iványi, Construction of infinite de Bruijn arrays, Discrete Appl. Math.
22, 3 (1988/89), 289–293. ⇒99

[38] A. Iványi, Construction of three-dimensional perfect matrices, (Twelfth
British Combinatorial Conference, Norwich, 1989), Ars Combin. 29C
(1990) 33–40. ⇒99

[39] A. Iványi, Perfect arrays, in Algorithms of Informatics, Vol. 3 (electronic
book, ed. A. Iványi), AnTonCom, Budapest, 2011 (to appear). ⇒99

[40] A. Iványi, I. Kátai, Estimates for speed of computers with interleaved
memory systems, Annales Univ. Sci. Budapest., Sectio Math. 19 (1976)
159–164. ⇒99, 105, 108

[41] A. Iványi, I. and Kátai, Processing of random sequences with priority.
Acta Cybernet. 4, 1 (1978/79) 85–101. ⇒99

[42] A. Iványi, J. Madarász, Perfect hypercubes. Electron. Notes Discrete
Math. (submitted). ⇒99

[43] A. Iványi, B. Novák, Testing of random sequences by simulation. Acta
Univ. Sapientiae, Inform. 2, 2 (2010) 135–153. ⇒108

[44] A. Iványi, Z. Tóth, Existence of de Bruijn words, Second Conference on
Automata, Languages and Programming Systems (Salgótarján, 1988), 165–
172, DM, 88-4, Karl Marx Univ. Econom., Budapest, 1988. ⇒99

[45] I. Kanaana, B. Ravikumar, Row-filled completion problem for Sudoku,
Util. Math. 81 (2010) 65–84. ⇒99

[46] Z. Kása, Computing the d-complexity of words by Fibonacci-like se-
quences. Studia Univ. Babes-Bolyai Math. 35, 3 (1990) 49–53. ⇒99

http://www.math.bme.hu/~mhorvath/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.sciencedirect.com/science/journal/0012365X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ac.inf.elte.hu/volumes.html
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.sciencedirect.com/science/journal/0166218X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/katai/oktato.php?oktato=katai
http://www.cs.elte.hu/~annalesm/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/katai/oktato.php?oktato=katai
http://www.inf.u-szeged.hu/actacybernetica/prevvols.xml
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
mailto:deusmadjan@gmail.com
http://www.elsevier.com/wps/find/journaldescription.cws_home/681020/description#description
http://www.elsevier.com/wps/find/journaldescription.cws_home/681020/description#description
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
mailto:pszihopata.inf.elte.hu
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ravi.cs.sonoma.edu/
http://www.ms.sapientia.ro/~kasa
http://www.cs.ubbcluj.ro/~studia-m/contents.php

Testing of sequences by simulation 125

[47] Z. Kása, On the d-complexity of strings, Pure Math. Appl. 9, 1-2 (1998)
119–128. ⇒99

[48] Z. Kása, On arc-disjoint Hamiltonian cycles in De Bruijn graphs, arXiv
1003.1520 (submitted 7 March 2010). ⇒99

[49] Z. Kása, On scattered subword complexity of strings, Acta Univ. Sapien-
tiae, Inform. 3, 1 (2011) 127–136. ⇒99

[50] A. D. Keedwell, Constructions of complete sets of orthogonal diagonal
Sudoku squares, Australas. J. Combin. 47 (2010) 227–238. ⇒99

[51] D. E. Knuth, The Art of Computer Programming. Vol. 1. Fundamen-
tal Algorithms (third edition), Addison–Wesley, Upper Saddle River, NJ,
1997. ⇒100, 108, 109

[52] D. E. Knuth, The Art of Computer Programming. Vol. 4A. Combinatorial
Algorithms, Addison–Wesley, Upper Saddle River, NJ, 2011. ⇒99

[53] J. S. Kuhl, T. Denley, On a generalization of the Evans conjecture, Dis-
crete Math. 308, 20 (2008) 4763–4767. ⇒99

[54] S. R. Kumar, A. Russell, R. Sundaram, Approximating Latin square ex-
tensions, Algorithmica 24, 2 (1999) 128–138. ⇒99

[55] L. Lorch, Mutually orthogonal families of linear Sudoku solutions, J. Aust.
Math. Soc. 87, 3 (2009) 409–420. ⇒99

[56] M. Matamala, E. Moreno, Minimum Eulerian circuits and minimum de
Bruijn sequences, Discrete Math. 309, 17 (2009) 5298–5304. ⇒99

[57] T. K. Moon, J. H. Gunther, J. J. Kupin, Sinkhorn solves Sudoku, IEEE
Trans. Inform. Theory, 55, 4 (2009) 1741–1746. ⇒99

[58] T. Móri, Personal communication, Budapest, March 2011. ⇒121

[59] L.-D. Öhman, A note on completing Latin squares, Australas. J. Combin.
45 (2009) 117–123. ⇒99

[60] R. M. Pedersen, T. L. Vis, Sets of mutually orthogonal Sudoku Latin
squares. College Math. J. 40, 3 (2009) 174–180. ⇒99

[61] R. Penne, A note on certain de Bruijn sequences with forbidden subse-
quences, Discrete Math. 310, 4 (2010) 966–969. ⇒99

http://www.sapientia.ro/hu/dr.-kasa-zoltan.html
http://www.bke.hu/puma/Contents.htm
http://www.ms.sapientia.ro/~kasa
http://arxiv.org/abs/1003.1520
http://www.ms.sapientia.ro/~kasa
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.surrey.ac.uk/maths/people/donald_keedwell/
http://ajc.maths.uq.edu.au/?page=home
http://www-cs-faculty.stanford.edu/~knuth/
http://www.pearsonhighered.com/
http://www-cs-faculty.stanford.edu/~knuth/
http://www.pearsonhighered.com/
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://www.springerlink.com/content/1432-0541/
http://journals.cambridge.org/action/displayJournal?jid=JAZ
http://www.dim.uchile.cl/~mmatamal/
http://emoreno.uai.cl/Eduardo_Moreno/Homepage_Eduardo_Moreno.html
http://www.sciencedirect.com/science/journal/0012365X
http://www.math.elte.hu/~mori/index.m.html
http://ajc.maths.uq.edu.au/
http://www-math.cudenver.edu/~tvis/Research/cmj174-181.pdf
http://www.sciencedirect.com/science/journal/0012365X

126 A. Iványi, I. Kátai

[62] J. S. Provan, Sudoku: strategy versus structure, Amer. Math. Monthly
116, 8 (2009) 702–707. ⇒99

[63] S. Ramanujan, Question 294, J. Indian Math. Society 3 (1928) 128–128.⇒101

[64] R. Rowley, B. Bose, On the number of arc-disjoint Hamiltonian circuits
in the De Bruijn graphs, Parallel Processing Letters 3 4 (1993) 375–382.⇒99

[65] T. Sander, Sudoku graphs are integral, Electron. J. Combin. 16, 1 (2009),
N25, 7 pag. ⇒99

[66] M. J. Soottile, T. G. Mattson, and C. E. Rasmussen, Introduction to
Concurrency in Programming Languages. Chapman & Hall/CRC Compu-
tational Science Series, CRC Press, Boca Raton, FL, 2010. ⇒99

[67] G. Szegő, Über einige von S. Ramanujan gestellte Aufgaben, J. London
Math. Society 3 (1928) 225–232. See also in Collected Papers of Gábor
Szegő (ed. by R. Askey), Birkhäuser, Boston, MA, 1982. Volume 2, 141–
152. ⇒101

[68] O. G. Troyanskaya, O. Arbell, Y. Koren, G. M. Landau, A. Bolshoy,
Sequence complexity profiles of prokaryotic genomic sequences: A fast al-
gorithm for calculating linguistic complexity, Bioinformatics 18, 5 (2002)
679–688. ⇒99

[69] E. R. Vaughan, The complexity of constructing gerechte designs, Electron.
J. Combin. 16, 1 (2009) R15, 8 pag. ⇒99

[70] X. Xu, Y. Cao, J.-M. Xu, Y. Wu, Feedback numbers of de Bruijn digraphs,
Comput. Math. Appl. 59, 4 (2010) 716–723. ⇒99

[71] C. Xu, W. Xu, The model and algorithm to estimate the difficulty levels
of Sudoku puzzles. J. Math. Res. 11, 2 (2009) 43–46. ⇒99

[72] W. Zhang, S. Liu, H. Huang, An efficient implementation algorithm for
generating de Bruijn sequences. Computer Standards & Interfaces 31, 6
(2009) 1190–1191. ⇒99

Received: January 11, 2011 • Revised: April 5, 2011

http://www.jstor.org/journals/00029890.html
http://en.wikipedia.org/wiki/Srinivasa_Ramanujan
http://web.engr.oregonstate.edu/~bose/
http://www.worldscinet.com/ppl/03/0304/S01296264930304.html
http://www.combinatorics.org/
http://www.crcpress.com/
http://en.wikipedia.org/wiki/G$%$C3$%$A1bor_Szeg$%$C5$%$91
http://www.springer.com/?SGWID=0-102-0-0-0
http://www.molbio.princeton.edu/index.php?option=content&task=view&id=243
http://bioinformatics.oxfordjournals.org/
http://www.maths.qmul.ac.uk/people/308
http://www.combinatorics.org/
http://www.sciencedirect.com/science/journal/08981221
http://www.ccsenet.org/journal/index.php/jmr/article/viewFile/3732/3336
http://www.sciencedirect.com/science/journal/0012365X

Acta Univ. Sapientiae, Informatica, 3, 1 (2011) 127–136

On scattered subword complexity

Zoltán KÁSA
Sapientia Hungarian University of Transylvania
Department of Mathematics and Informatics,

Tg. Mureş, Romania
email: kasa@ms.sapientia.ro

Abstract. Special scattered subwords, in which the gaps are of length
from a given set, are defined. The scattered subword complexity, which is
the number of such scattered subwords, is computed for rainbow words.

1 Introduction

Sequences of characters called words or strings are widely studied in combi-
natorics, and used in various fields of sciences (e.g. chemistry, physics, social
sciences, biology [2, 3, 4, 11] etc.). The elements of a word are called letters.
A contiguous part of a word (obtained by erasing a prefix or/and a suffix) is a
subword or factor. If we erase arbitrary letters from a word, what is obtained
is a scattered subword. Special scattered subwords, in which the consecutive
letters are at distance at most d (d ≥ 1) in the original word, are called
d-subwords [7, 8]. In [9] the super -d-subword is defined, in which case the
distances are of length at least d. The super-d-complexity, as the number of
such subwords, is computed for rainbow words (words with pairwise different
letters).

In this paper we define special scattered subwords, for which the distance
in the original word of length n between two letters which will be consecutive
in the subword, is taken from a subset of {1, 2, . . . , n− 1}.

Computing Classification System 1998: G.2.1, F.2.2
Mathematics Subject Classification 2010: 68R15
Key words and phrases: word complexity, scattered subword, d-complexity, super-d-
complexity

127

http://www.ms.sapientia.ro/~kasa
http://www.emte.ro
http://www.ms.sapientia.ro/
mailto:kasa@ms.sapientia.ro

128 Z. Kása

The complexity of a word is defined as the number of all its different sub-
words. Similar definitions are for d-complexity, super-d-complexity and scat-
tered subword complexity.

The scattered subword complexity is computed in the special case of rainbow
words. The idea of using scattered words with gaps of length between two given
values is from József Bukor [1].

Another point of view of scattered complexity in the case of non-primitive
words is given is [5].

2 Definitions

Let Σ be an alphabet, Σn, as usually, the set of all words of length n over Σ,
and Σ∗ the set of all finite word over Σ.

Definition 1 Let n and s be positive integers, M ⊆ {1, 2, . . . , n− 1} and u =

x1x2 . . . xn ∈ Σn. An M-subword of length s of u is defined as v = xi1xi2 . . . xis

where
i1 ≥ 1,
ij+1 − ij ∈M for j = 1, 2, . . . , s− 1,
is ≤ n.

Definition 2 The number of M-subwords of a word u for a given set M is
the scattered subword complexity, simply M-complexity.

The M-subword in the case of M = {1, 2, . . . , d} is the d-subword defined in
[7], while in the case of M = {d, d + 1, . . . , n − 1} is the super -d-complexity
defined in [9].
Examples. The word abcd has 11 {1, 3}-subwords: a, ab, abc, abcd, ad, b,
bc, bcd, c, cd, d. The {2, 3 . . . , n − 1}-subwords of the word abcdef are the
following: a, ac, ad, ae, af, ace, acf, adf, b, bd, be, bf, bdf, c, ce, cf, d, df,
e, f.

Hereinafter instead of {d1, d1 + 1, . . . , d2 − 1, d2}-subword we will use the
simple notation (d1, d2)-subword.

3 Computing the scattered complexity for rainbow
words

Words with pairwise different letters are called rainbow words. The M-comple-
xity of a rainbow word of length n does not depend on what letters it contains,

On scattered subword complexity 129

and is denoted by K(n,M).
Let us recall two results for special scattered words, as d-subwords and

super-d-subwords.
For a rainbow word of length n the super-d-compexity [9] is equal to

K
(
n, {d, d+ 1, . . . , n− 1}

)
=
∑
k≥0

(
n− (d− 1)k

k+ 1

)
, (1)

and the (n− d)-complexity [8] is

K
(
n, {1, 2, . . . , n− d}

)
= 2n − (d− 2) · 2d−1 − 2, for n ≥ 2d− 2.

For special cases the following propositions can be easily proved.

Proposition 3 For n, d1 ≤ d2 positive integers

K
(
n, {d1, d1 + 1, . . . , d2}

)
≤ n+

∑
k≥1

(
n− (d1 − 1)k

k+ 1

)
−
∑
k≥1

(
n− d2k

k+ 1

)
.

Proof. This can be obtained from (1) and the formula

K
(
n, {d1, d1 + 1, . . . , d2}

)
≤ K

(
n, {d1, d1 + 1, . . . , n− 1}

)
− K

(
n, {d2 + 1, d2 + 2, . . . , n− 1}

)
+ n.

�

For example, K(7, {2, 3, 4, 5, 6}) = 33, K(7, {4, 5, 6}) = 13, and from the propo-
sition K(7, {2, 3}) ≤ 27. The exact value is K(7, {2, 3}) = 25, the two words acg
and aeg are not eliminated (here the original distances are 2 and 4 in acg,
and 4 and 2 in aeg).

Proposition 4 For the integers n, d ≥ 1, where n = hd+m

K(n, {d}) =
(h+ 1)(n+m)

2
.

Proof.

K(n, {d}) = n+

n−d∑
i=1

⌊
n− i

d

⌋
= n+ d(1+ 2+ . . .+ h− 1) +mh

= n+
dh(h− 1)

2
+mh =

(h+ 1)(n+m)

2
.

�

130 Z. Kása

a b c d e f

Figure 1: Graph for (2, n− 1)-subwords when n = 6.

To compute the M-complexity of a rainbow word of length n we will use
graph theoretical results. Let us consider the rainbow word a1a2 . . . an and
the correspondig digraph G = (V, E), with
V =

{
a1, a2, . . . , an

}
,

E =
{
(ai, aj) | j− i ∈M, i = 1, 2, . . . , n, j = 1, 2, . . . , n

}
.

For n = 6,M = {2, 3, 4, 5} see Figure 1.
The adjacency matrix A =

(
aij

)
i=1,n,j=1,n

of the graph is defined by:

aij =

{
1, if j− i ∈M,
0, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

Because the graph has no directed cycles, the entry in row i and column j in
Ak (where Ak = Ak−1A, with A1 = A) will represent the number of directed
paths of length k from ai to aj. If I is the identity matrix (with entries equal to
1 only on the first diagonal, and 0 otherwise), let us define the matrix R = (rij):

R = I+A+A2 + · · ·+Ak, where Ak+1 = O (the null matrix).

The M-complexity of a rainbow word is then

K(n,M) =

n∑
i=1

n∑
j=1

rij.

Matrix R can be better computed using a variant of the well-known Warshall
algorithm (for the original Warshall algorithm see for example [12]):

On scattered subword complexity 131

Warshall(A,n)

1 W ← A

2 for k← 1 to n
3 do for i← 1 to n
4 do for j← 1 to n
5 do wij ← wij +wikwkj

6 return W

From W we obtain easily R = I+W.
For example let us consider the graph in Figure 1. The corresponding adjacency
matrix is:

A =



0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


After applying the Warshall algorithm:

W =



0 0 1 1 2 3

0 0 0 1 1 2

0 0 0 0 1 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

 , R =



1 0 1 1 2 3

0 1 0 1 1 2

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1


and then K

(
6, {2, 3, 4, 5}

)
= 20, the sum of elements in R.

The Warshall algorithm combined with the Latin square method can be
used to obtain all nontrivial (with length at least 2) M-subwords of a given
rainbow word a1a2 · · ·an. Let us consider a matrix A with the entries Aij,
which are set of words. Initially this matrix is defined as:

Aij =

{
{aiaj}, if j− i ∈M,
∅, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

If A and B are sets of words, AB will be formed by the set of concatenation
of each word from A with each word from B:

AB =
{
ab
∣∣a ∈ A, b ∈ B}.

If s = s1s2 · · · sp is a word, let us denote by ′s the word obtained from s by
erasing the first character: ′s = s2s3 · · · sp. Let us denote by ′Aij the set Aij

132 Z. Kása

in which we erase the first character from each element. In this case ′A is a
matrix with entries ′Aij.

Starting with the matrix A defined as before, the algorithm to obtain all
nontrivial M-subwords is the following:

Warshall-Latin(A, n)

1 W ← A
2 for k← 1 to n
3 do for i← 1 to n
4 do for j← 1 to n
5 do if Wik 6= ∅ and Wkj 6= ∅
6 then Wij ←Wij ∪Wik

′Wkj

7 return W

The set of nontrivial M-subwords is
⋃

i,j∈{1,2,...,n}

Wij.

For n = 8, M = {3, 4, 5, 6, 7} the initial matrix is:

∅ ∅ ∅ {ad} {ae} {af} {ag} {ah}

∅ ∅ ∅ ∅ {be} {bf} {bg} {bh}

∅ ∅ ∅ ∅ ∅ {cf} {cg} {ch}

∅ ∅ ∅ ∅ ∅ ∅ {dg} {dh}

∅ ∅ ∅ ∅ ∅ ∅ ∅ {eh}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅


.

The result of the algorithm Warshall-Latin in this case is:

∅ ∅ ∅ {ad} {ae} {af} {ag, adg} {ah, adh, aeh}

∅ ∅ ∅ ∅ {be} {bf} {bg} {bh, beh}

∅ ∅ ∅ ∅ ∅ {cf} {cg} {ch}

∅ ∅ ∅ ∅ ∅ ∅ {dg} {dh}

∅ ∅ ∅ ∅ ∅ ∅ ∅ {eh}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅


.

The algorithm Warshall-Latin can be used for nonrainbow words too,
with the remark that repeating subwords must be eliminated. For the word
aabbbaaa and M = {3, 4, 5, 6, 7} the result is: aa, ab, aba, ba.

On scattered subword complexity 133

4 Computing the (d1, d2)-complexity

Let us denote by ai the number of (d1, d2)-subwords which terminate at po-
sition i in a rainbow word of length n. Then

ai = 1+ ai−d1
+ ai−d1−1 + · · ·+ ai−d2

, (2)

with the remark that for i ≤ 0 we have ai = 0. Subtracting ai−1 from ai we
get the following simpler equation.

ai = ai−1 + ai−d1
− ai−1−d2

.

The (d1, d2)-complexity of a rainbow word of length n is

K
(
n, {d1, d1 + 1, . . . , d2}

)
=

n∑
i=1

ai (3)

For example, if d1 = 2, d2 = 4, the following values are obtained

n 1 2 3 4 5 6 7 8 9 10 11 12 13
an 1 1 2 3 5 7 11 16 24 35 52 76 112

K(n, {2, 3, 4}) 1 2 4 7 12 19 30 46 70 105 157 233 345

If we denote by A(z) =
∑
n≥1

anz
n the generating function of the sequence

an, then from (2) we obtain∑
n≥1

anz
n =
∑
n≥1

zn +
∑
n≥1

an−d1
zn−d1 + · · ·+

∑
n≥1

an−d2
zn−d2 ,

and
A(z) =

z

1− z
+ zd1A(z) + · · ·+ zd1A(z).

From this we obtain

A(z) =
z

zd2+1 − zd1 − z+ 1
. (4)

For d1 = 2, d2 = 4 the sequence (an)n≥0 ([10] sequence A023435) corre-
sponds to a variant of the dying rabbits problem [6].

134 Z. Kása

To compute the generating function for the complexity K
(
n, {d1, d1 +1, . . . ,

d2}
)
, let us denote this complexity simply by Kn only, and its generating

function by K(z) =
∑
n≥1

Knz
n. We remark that Kn = 0 for n ≤ 0, and K1 = 1.

From (3) and (4) we can immediately conclude that

K(z) =
1

1− z
A(z) =

z

(1− z)(zd2+1 − zd1 − z+ 1)
.

5 Correspondence between (d, n + d − 1)-subwords
and {1, d}-subwords

The following result is inspired from the sequence A0502281 of [10].

Proposition 5 The number of {1, d}-subwords of a rainbow word of length n
is equal to the number of {d, d + 1, . . . , n + d − 1}-subwords of length at least
2 of a rainbow word of length n+ d.

Proof. By the generalization of the sequence A050228 [10] the number of the
{1, d}-subwords of a rainbow word of length n is equal to

K
(
n, {1, d}

)
=
∑
k≥0

(
n+ 1− (d− 1)k

k+ 2

)
.

From (1) we have

K
(
n+ d, {d, d+ 1, . . . , n+ d− 1}

)
− (n+ d) =

∑
k≥1

(
n+ d− (d− 1)k

k+ 1

)
.

By changing k to k + 1 in the sum, we obtain
∑
k≥0

(
n+ 1− (d− 1)k

k+ 2

)
, and

this proves the theorem. �

Example. For abcde the 19 {1, 3}-subwords are:
a, b, c, d, e, ab, abc, abcd, ad, ade, abcde, abe, bc, bcd, bcde, be, cd, cde, de.

For abcdefgh the 19 {3, 4, 5, 6, 7}-subwords of length at least 2 are:
ad, ae, af, ag, adg, ah, adh, aeh, be, bf, bg, bh, beh, cf, cg, ch, dg, dh, eh.

1A050228: an is the number of subsequences {sk} of {1, 2, 3, ...n} such that sk+1 − sk is 1
or 3.

On scattered subword complexity 135

Conclusions

A special scattered subword, the so-called M-subword is defined, in which the
distances (gaps) between letters are from the set M. The number of the M-
subwords of a given word is the M-complexity. Graph algorithms are used to
compute the M-complexity and to determine all M-subwords of a rainbow
word. This notion of M-complexity is a generalization of the d-complexity [7]
and of the super-d-complexity [9]. If M consists of successive numbers from d1

to d2 then the so-called (d1, d2)-complexity is computed by recursive equations
and generating functions.

Acknowledgements

This work was supported by the project under the grant agreement no. TÁMOP
4.2.1/B-09/1/KMR-2010-0003 (Eötvös Loránd University, Budapest) financed
by the European Union and the European Social Fund.

References

[1] J. Bukor, Personal communication at the 8th Joint Conference on Math-
ematics and Computer Science, Komárno (Slovakia), July 14–17, 2010.⇒128

[2] W. Ebeling, R. Feistel, Physik der Selbstorganisation und Evolution,
Akademie-Verlag, Berlin, 1982. ⇒127

[3] C. Elzinga, S. Rahmann, H. Wang, Algorithms for subsequence combina-
torics, Theor. Comput. Sci. 409, 3 (2008) 394–404. ⇒127

[4] C. H. Elzinga, Complexity of categorial time series, Sociological Methods
& Research 38, 3 (2010) 463–481. ⇒127

[5] Sz. Zs. Fazekas, B. Nagy, Scattered subword complexity of non-primitive
words, J. Autom. Lang. Comb. 13, 3–4 (2008) 233–247. ⇒128

[6] V. E. Hoggatt Jr., D. A. Lind, The dying rabbit problem, Fib. Quart. 7,
5 (1969), 482–487. ⇒133

[7] A. Iványi, On the d-complexity of words, Ann. Univ. Sci. Budapest., Sect.
Comput. 8 (1987) 69–90. ⇒127, 128, 135

http://www.selyeuni.sk/macs/
http://www.selyeuni.sk/macs/
http://summa.physik.hu-berlin.de/~werner/
http://www.fsw.vu.nl/en/departments/social-research-methodology/staff/elzinga/
http://www.sciencedirect.com/science/journal/03043975
http://www.fsw.vu.nl/en/departments/social-research-methodology/staff/elzinga/
http://home.fsw.vu.nl/ch.elzinga/Complexity%20Preliminary.pdf
http://smr.sagepub.com/content/38/3.toc
http://www.inf.unideb.hu/~nbenedek/
http://www.jalc.de
http://en.wikipedia.org/wiki/Verner_Emil_Hoggatt,_Jr.
http://www.fq.math.ca/
http://compalg.inf.elte.hu/~tony/
http://ac.inf.elte.hu/

136 Z. Kása

[8] Z. Kása, On the d-complexity of strings, Pure Math. Appl. 9, 1–2 (1998)
119–128. ⇒127, 129

[9] Z. Kása, Super-d-complexity of finite words, MACS 2010: 8th Joint
Conference on Mathematics and Computer Science, Selected Papers,
Komárno (Slovakia), July 14–17, 2010, pp. 251–261. ⇒ 127, 128, 129,
135

[10] N. J. A. Sloane, The on-line encyclopedia of integer sequences,
http://www.research.att.com/~njas/sequences/. ⇒133, 134

[11] O. G. Troyanskaya, O. Arbell, Y. Koren, G. M. Landau, A. Bolshoy,
Sequence complexity profiles of prokaryotic genomic sequences: A fast al-
gorithm for calculating linguistic complexity, Bioinformatics 18, 5 (2002)
679–688. ⇒127

[12] S. Warshall, A theorem on Boolean matrices, J. ACM 9, 1 (1962) 11–12.⇒130

Received: December 4, 2010 • Revised: March 12, 2011

http://www.ms.sapientia.ro/~kasa
http://web.uni-corvinus.hu/puma/
http://www.ms.sapientia.ro/~kasa
http://www.selyeuni.sk/macs/
http://www2.research.att.com/~njas/
http://www.research.att.com/~njas/sequences/
http://imperio.princeton.edu/cm/node/13
http://research.yahoo.com/Yehuda_Koren
http://cs.haifa.ac.il/~landau/
http://evolution.haifa.ac.il/index.php/component/content/article/34
http://cs.haifa.ac.il/LANDAU/gadi/olga.pdf
http://bioinformatics.oxfordjournals.org/
http://en.wikipedia.org/wiki/Stephen_Warshall
http://jacm.acm.org/

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
Antal BEGE

abege@ms.sapientia.ro

Main Editorial Board

Zoltán A. BIRÓ Zoltán KÁSA András KELEMEN
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica

Executive Editor
Zoltán KÁSA (Sapientia University, Romania)

kasa@ms.sapientia.ro

Editorial Board
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Ladislav SAMUELIS (Technical University of Košice, Slovakia)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is needed too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Gloria Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

	INFO31-0.pdf
	info31-1.pdf
	1 Preliminaries
	1.1 Words and languages
	1.2 Periodic words, primitive words, and codes
	1.3 Roots of words and languages

	2 Primitivity and combinatorics on words
	3 Primitivity and language classes
	3.1 Chomsky hierarchy
	3.2 Contextual languages

	4 Primitivity and complexity
	5 Powers of languages
	6 Decidability questions
	7 Generalizations of periodicity and primitivity

	info31-2.pdf
	1 Introduction
	2 Preliminaries and problem definitions
	3 Previous results
	4 The c-fragment LAPCS(unlimited,plain) and the c-diagonal LAPCS(unlimited,plain) problem
	5 The c-fragment LAPCS(crossing,chain) and the c-diagonal LAPCS(crossing,chain) problem
	6 Conclusions

	info31-3.pdf
	1 Introduction
	2 Background
	2.1 Model-driven development
	2.2 Separation of the business logic and non-functional requirements

	3 ComDeValCo evolution
	4 The modeling language
	4.1 Initial object model
	4.2 PAL, procedural action language
	4.3 Modular constructs
	4.3.1 Module and dynamic execution environment
	4.3.2 Type system extensions

	4.4 Object-oriented constructs
	4.4.1 Classes and interfaces
	4.4.2 PAL improvements

	4.5 Component-based constructs
	4.5.1 iComponent meta-model
	4.5.2 PAL extension

	4.6 Analysis of robustness

	5 ComDeValCo workbench
	5.1 First developments: DEFCOMP, VALCOMP, ComDeValCo workbench
	5.2 Modular paradigm improvements: DEFCOMP, VALCOMP, DEFSYS and VALSYS
	5.3 Object- and component-based improvements: DEFCOMP and VALCOMP
	5.4 SIMCOMP and SIMSYS
	5.5 GENEXE

	6 The component repository
	6.1 Component classification criteria
	6.2 Component representation in the repository
	6.3 Adding components to component repository

	7 Conclusions and further work

	info31-4.pdf
	76.pdf
	77-88.pdf
	89.pdf
	90-96.pdf
	97.pdf
	98.pdf

	info31-5.pdf
	1 Introduction
	2 Mathematical background
	3 Running times of the algorithms
	3.1 Definition and running time of algorithm Linear
	3.2 Running time of algorithm Backward
	3.3 Running time of algorithm Bucket
	3.4 Test of random arrays

	4 Summary

	info31-6.pdf
	1 Introduction
	2 Definitions
	3 Computing the scattered complexity for rainbow words
	4 Computing the (d1,d2)-complexity
	5 Correspondence between (d,n+d-1)-subwords and {1,d}-subwords

	COVER1.pdf
	COVER2.pdf

